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Preface

Our lives are immersed in networks that range across
physical infrastructure to tangible economic ties and
encompass the subtle and delicate ties that connect us to
friends and family. The aim of this book is to provide an
introduction to the structure of these networks and the
principles that govern their formation and functioning.

Networks are extraordinarily diverse, so the principles
we will develop must be general. In this book, I view
networks through the lens of economics. This means that
we will view activity in networks and the formation of
networks as arising out of trade-offs that we make between
the costs and benefits of different courses of action. One
virtue of this approach is that it suggests a natural point of
reference for assessing performance: how well does a
network deliver on the goals of the actors who created it?
An assessment of performance will guide us to ways in
which different types of interventions can improve matters.

I would like this book to be readable for people with
different backgrounds. With this in mind, every chapter will
begin with an introduction to a high-level phenomenon that
will be illustrated with the help of case studies used to
motivate lines of formal inquiry. The core of each chapter
will be a theoretical model. The insights from the analysis
of this model will be developed through simple examples
that will be followed by a statement of general results.



Formal proofs will be provided to help readers develop a
deeper appreciation of the structure of the argument.
Where possible, we will return to the original motivating
phenomenon and show how the theory in question helps us
understand it better.

Organization of the Book

The book starts with a short introduction and then has four
parts:
  I  Foundations
 II  Economic Networks
III  Social Networks
IV  Broader Themes

Part I contains four chapters. Chapter 1 introduces the
main themes of the book through a discussion of a number
of real-world networks and the definition of basic network
concepts. Chapter 2 begins our study of how networks are
formed through an introduction to the theory of random
graphs. Chapter 3 describes the basic elements of an
economic approach to the formation of networks. Chapter 4
provides an introduction to how networks shape human
activity through the study of games played on networks.
Taken together, chapters 1–4 provide the theoretical
concepts that are used in the rest of the book.

Part II contains six chapters, each of which takes up a
specific economic sector or theme. Chapter 5 studies the
determinants of the input-output network and how its
structure shapes economic activity. Chapter 6 looks at
infrastructure networks. Chapter 7 discusses the security
of networks that face natural and human threats. Chapter 8
studies how network effects give rise to market power.
Chapter 9 studies the role of interconnections in
propagating shocks in financial networks. Chapter 10 takes
up the study of inter-linked wars.



Part III contains five chapters on social networks.
Chapter 11 discusses the origins of specialization and
unequal information in networks. Chapter 12 considers
how interaction patterns shape the coordination of human
activity. Chapter 13 studies problems of communication
and learning in social networks. Chapter 14 studies the
diffusion of ideas and epidemics in networks. Chapter 15
examines questions at the intersection of social and
economic networks and impersonal markets.

Part IV contains four chapters that locate social and
economic networks in a broader context, in conjunction
with cultural beliefs, impersonal exchange, and the nature
of the state. Chapter 16 takes up the study of networked
markets, where trading restrictions and structures are
modeled as networks. Chapter 17 looks at the role of
communities in economic development. Chapter 18 takes
up the question of trust. Chapter 19 studies the relation
between groups, impersonal exchange, and the state.

Possible Course Outlines

Parts of this material have been used to teach networks
courses. Here are two ways of organizing the material for a
10-week course:
  1.  Applied course: Chapter 1, chapters 3–4; chapters 5–6,

chapters 8–9; chapters 16–19
  2.  Theoretically oriented course: Chapters 1–4; chapters

5–6; chapters 11–15
Here are two ways of organizing the material for a 15-

week course:
  1.  Applied course: Chapters 1–4; chapters 5–6, chapters

8–10; chapters 11, 15, 17–19
  2.  Theoretically oriented course: Chapters 1–4; chapters

5–7; chapters 11–19
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Introduction

Why Networks?

Economics is concerned with the allocation of scarce
resources to meet desired ends. For the decisions to be
made correctly, it is important that the appropriate
information is available to the decision-makers in a timely
manner. Networks are key to understanding the
fundamental processes concerning production,
consumption, and information. Firms located in production
and supply networks combine labor, knowledge, and
material inputs to supply goods and services. Production
and consumption rest on the movement of goods and
services and of people on infrastructure networks like
roads, trains, airlines, and the Internet. The flow of
information takes place in networks of social interaction.
Individuals build friendships and social ties that give them
access to information, shape their values, and ultimately
determine who they become. Economic exchange rests on
trust, but trust, combining elements of beliefs and
behaviors, is a feature of personal ties and group relations.

Twentieth-century economics has made major advances
in the study of these fundamental processes. Economists
have developed sophisticated theoretical methods for
studying decision-making in both small and large groups.
For small groups, the models are based on strategic



reasoning and for large groups the models are based on
ideas of perfect competition.

A background assumption in the strategic models is that
everyone interacts uniformly with everyone else. This is
true, for instance, in models of buyer-seller trading,
oligopoly, matching, and auctions. However, due to social,
geographic, and economic constraints, there are often
restrictions on who can interact with whom. For instance,
traders within a city trade freely with all other traders in
the same city, but there may be ties between a select few
traders that are located in different cities (this may be
costs of transport or costs of cultural distance, reflected in
lower trust). Networks provide us a framework to
accommodate these restrictions.

In the study of large-scale interactions, economists use
models of competitive interaction and the background
assumption is that agents are anonymous. In a production
network or on Twitter, the system as a whole is very large,
with hundreds of thousands of entities, but individual
entities interact with only a small subset of the population.
The average firm will have a few input suppliers and a few
output purchasers; similarly, the average individual will
form a few subsequent links to some Twitter account
holders. These interactions can hardly be said to be
anonymous. Networks provide us a framework that
accommodates local and personalized interactions and also
allows a large number of entities. This versatility offers the
possibility to develop methods for the study of a central
problem in economics (and in the other social sciences)—
the so-called problem of aggregation, which is concerned
with developing an understanding of large-scale
phenomenon through microfounded reasoning that applies
to small-scale settings.

Graphically, we may think of a network as a collection of
points joined by lines. The points are called “nodes” or



“vertices,” and the lines are called “links” or “edges.” This
graphical and abstract nature of a network is helpful, as we
can easily adapt language to describe very different
systems. The nodes/vertices may be individuals, firms, and
countries, and the links/edges may refer to friendships,
supply relations, physical contiguity, or alliances. The
nodes/vertices may be physical objects or locations, and
the links/edges may refer to tangible connections like
cables, trains, roads, and airline routes.

Starting in the early 1990s, economists started to
develop models that incorporate networks alongside the
familiar concepts of purposeful individual actions, strategic
reasoning, competition, externalities, and asymmetric
information. The initial models grew out of an interest in
how social connections shape information diffusion and
social learning. This early work pointed to the powerful
effects of networks and led to the study of the origins of
different types of networks (i.e., to the theory of network
formation). These two ideas—that networks affect behavior
and individuals strive to create networks that are beneficial
for themselves—have given rise to a new research program
in economics that over time has taken on progressively
broader and more ambitious themes. As a result, networks
are now central to our understanding of macroeconomic
volatility and cycles, patterns of trade and intermediation,
contagion in financial networks, diffusion and epidemics in
social systems, resilience of infrastructure and supply
chains, wars, economic development, unemployment and
inequality, the nature of trust, and a host of other
important phenomena.

The aim of this book is to offer an introduction to this
body of research.

Examples of Networks



The production of goods or services involves a set of firms
that are linked through buyer/seller relations. Similarly,
the financial system consists of banks, insurance
companies, and other institutions connected through
borrowing, lending, and other relations. In many cases, the
linkages crisscross national boundaries, so events such as
floods and earthquakes can have an impact on us as they
travel through these connections. To get a first, high-level
impression, we present a snapshot of the network of
production in the US in figure 0.1. In this network, a node
corresponds to a sector of the US economy. Every edge
corresponds to an input-supply relation between two
sectors. Larger (red) nodes, closer to the center of the
network, represent sectors that supply inputs to many
other sectors. There are sixty-six sectors in all. The largest
five highlighted sectors correspond to (1) Professional,
scientific, and technical services, (2) Real estate, (3)
Administrative and support services, (4) Insurance carriers
and related activities, and (5) Management of companies
and services. The presence of these hub sectors means that
most other sectors are close to each other, as they are
often connected to the hub sectors.



Figure 0.1 
US production economy 2020. Source: Bureau of Economic Analysis.

The presence of prominent and large sectors that are
hubs and the small average distances between the sectors
raise a number of questions about the functioning of the
economy. Why are some sectors so large relative to the rest
of the economy, how do hubs matter for the transmission of
shocks, and how should governments target public policy in
order to have maximum impact? Indeed, very similar
questions arise when we consider the impact of shocks on
banks and financial institutions. For instance, what was it
about the production and financial network that allowed a
financial shock in the real-estate sector of the US in 2007–
2008 to spread to the rest of the world and create a global
recession?

We next turn to infrastructure networks such as trains,
roads, airlines, pipelines, shipping, canals, and the
Internet. Figure 0.2 presents the routing network of British
Airways, which resembles a hub and spoke, with one highly
connected central city that links to all other cities (who are
not otherwise linked). The train network in many countries
has a similar hub-spoke structure, with major cities serving



as hubs. As opposed to the airline and rail networks, the
road network in many cities around the world has a grid
structure. Figure 0.3 depicts the original urban plan for
Philadelphia, which stretched two miles from east to west
between two rivers, the Delaware and Schuylkill. It comes
from Thomas Holme’s 1683 “A Portraiture of the City of
Philadelphia in the Province of Pennsylvania.” At the center
is a civic square, and this structure is echoed in each
quadrant by a spacious park that is planted with trees. The
grid plan became central to the division of land during the
westward expansion across America. This proposal was
used as a basis for the city plan of Philadelphia and was an
inspiration for the design of many cities in America. Indeed,
it continues to shape city planning across the world to this
day.

Figure 0.2 
British Airways network. Source: www.ch-aviation.com/portal/.

http://www.ch-aviation.com/portal/


Figure 0.3 
Plan for Philadelphia, 1683. Source: https://explorepahistory.com.

Finally, we take up social networks. Prominent examples
of social networks include kinship-based groups like the
family, friends and colleagues, and professional
relationships such as co-authorships and online social
networks. Figure 0.4 presents the friendship network in an
American high school in 1994. We can see that pupils have
similar numbers of ties. The colour of each node represents
the race of the pupil: we see that most pupils form
friendships with others of the same race. Moreover, we see
that within the same colour, there a further partition of
nodes, which reflects the year of the class. We see that
links form between pupils of the same year and the same
race—a tendency we will term homophily. Pupils share
information and ideas, take part in joint activities, and
develop shared values through friendships. This leads us to

https://explorepahistory.com/


explore questions such as how the number of friends and
location in a school network shape a pupil’s performance,
and what the effects of relatively segregated groups on
pupil and school performance are? To answer such
questions, we need a theory of how social structure affects
individual values and behavior. A challenge in thinking
about these questions is that individuals themselves create
these friendship networks, so we need to take great care to
separate cause from effect.

Figure 0.4 
Countryside High School friendship network. Courtesy: James Moody.

Large-scale online social networks like Twitter,
WhatsApp, Instagram, TikTok, and Facebook are a defining
aspect of social life in the early twenty-first century. On
Twitter, a user can send messages known as “tweets.” The



tweets are seen by other users who “follow” this user. An
important feature of Twitter is that “followers” can forward
the tweets that they receive; this “retweet” is seen by their
followers in turn, and the messages can be retweeted
further. Thus Twitter creates the possibility for messages to
be passed from one user to another, through this network
of links. In figure 0.5, we present the network of Twitter
users who have over a million followers. The size of the
nodes scales with the number of links and tweets.

Figure 0.5 
Twitter Millionaire Club, plotted in Gephi by Brian Srebrenik. Based on data
from “Twitter Network Edges” by Luca Hammer.

As Twitter is used by individuals, firms, and governments
to share ideas and information, we would like to
understand how far information travels on Twitter and how



it depends on the point at which it is first tweeted, what the
influence of different individuals is, and how this influence
is related to the network of connections. Does the truth
prevail, or do mutually contradictory views persist over
long periods of time in the network? What are optimal
nodes to target to maximize influence or to minimize the
spread of false information?

We conclude this section by discussing a network that
combines elements of a social interaction, professional
relations, and information sharing. Scientists collaborate to
conduct research, and co-authorship is perhaps the most
concrete form that this takes. The patterns of co-authorship
can have a profound effect on what questions economists
study, how well informed they are, and thus what methods
they use to conduct their research. Figure 0.6 presents the
local network of a prominent economist, Daron Acemoglu,
for the period 2000–2009. In this network, we start with
Acemoglu (in blue) and trace his coauthors (represented in
yellow) and their coauthors (in green). The thickness of an
edge reflects the number of papers that the two authors
have written together. This diagram leads us to explore the
process that gives rise to such a collaboration network.
What are its implications for the productivity of individual
scholars, and how does it shape the performance of the
profession of economics research as a whole?



Figure 0.6 
Coauthors of Daron Acemoglu, 2000–2009. Note: Some economists might
appear twice or are missing due to the use of different initials or misspellings
in EconLit. The width denotes the strength of a tie. The figure was created by
the software program Pajek.

These examples give a first impression of the
extraordinary variety of tasks that networks perform and
their diverse structure. They pose three high-level
questions: What are the processes of network formation,
and how do they explain the networks that we observe in
the world? What are the effects of the networks? How can
individuals (and firms and governments) use networks to
achieve their objectives?

Properties of Networks

A network consists of points and the lines that connect
these points: this parsimony and abstraction allow us to
represent a wide variety of important social, physical, and
economic systems as networks. The advances in data
collection methods and our computational capacity over the
past three decades allow us to collect progressively richer
data on networks and the different processes that take



place on networks. In this section, we draw attention to
aspects of networks that play an important role in
economics. Formal definitions of network concepts and
measurements are presented in chapter 1.

A fundamental building block for much of network theory
is the simple idea of connections: how many connections
does a node possess? The nodes with which a node has a
connection are called its “neighbors,” and the number of
neighbors is called the “degree” of the node. In a
production network, the links refer to input and output
relations and have a directionality. Similarly, on Twitter,
individuals follow others—that is, a directed relation. In
these cases, it will be useful to use the term “in-degree” for
incoming links and “out-degree” for out going links. A
recurring theme in this book is that networks contain hubs
(i.e., they have very high degrees), and on the other hand,
very many nodes have very low degrees. The degree

distribution of a network will be an important object of
study. We will be led to study the processes and
circumstances that give rise to unequal degree
distributions, and we will examine the performance of
networks with unequal degree distributions on a number of
dimensions.

Another important topic of study is how far apart are
nodes in a network. It is customary to define the distance
between two nodes in a network, the “geodesic-distance,”
as the minimum number of edges one would have to cross
to get from one node to the other. The distance between
two linked nodes is 1, the distance between two nodes that
are not linked but have a common neighbor is 2, and so
forth. A distinctive feature of many networks of interest is
that nodes will on average be very close to one another. We
commented on this in our discussion on production
networks in the previous section. This has given rise to the
well-known expression—the small world, in which one can



get from any node to any other node with just six hops in
the network, the so-called six-degrees of separation.

The role of a node in a network may depend on how
central it is. Degree is a natural measure of centrality, but
there are also other notions of centrality that play an
important role. For instance, centrality may rest on
proximity, and then a node with a few connections with
nodes that have many connections may be very central.
This suggests a recursive definition of centrality: a node is
central if it is connected to nodes that are central. Google’s
PageRank is an example of a measure of centrality that
rests on such a recursive definition. We will present a
number of notions of centrality.

Another feature of network is the idea of community. The
interest in community draws attention to the local structure
of a network. We will introduce a number of ideas relating
to the local structure of a network, such as cliques and
clustering. In the example of friendships, we saw that
pupils have friends from the same year and ethnicity. This
draws attention to the notion of homophily, an idea that lies
somewhere between the local and the global. We will
present definitions of homophily and use them to study
important phenomena such as diversity in social norms and
the persistence of different opinions in a society.

Outline of the Book

The book consists of four parts.
Part I of the book consists of chapters 1–4, and it

provides the theoretical foundation for the rest of the book.
Chapter 1 introduces the main network concepts and
measures that we use throughout the book. It also
illustrates these concepts by presenting computations on
simple examples and applying them to measure a range of
real-world networks. Chapter 2 introduces the theory of
random graphs to help the reader to appreciate the



mechanics of how linking processes shapes the essential
properties of networks, such as degree distribution,
average distances, and clustering. Chapter 3 introduces the
basic elements of the economic theory of network
formation. In this theory, individuals use links to create
networks in order to achieve their objectives. This
discussion draws attention to the central role of
directedness or undirectedness of a link in shaping
networks. We present the role of externalities and strategic

considerations in the process of linking. This leads us to
draw attention to a fundamental tension between
strategically stable networks and collectively desirable or
efficient networks. Chapter 4 presents a theoretical
framework in which individuals interact locally with
neighbors who are embedded in broader chains of
interaction. This model offers us a simple model where
behavior in small groups can be scaled up to very large
populations through a sequence of overlapping
neighborhoods. It illustrates an important high-level
function of networks: they offer a language that can allow
us to talk at one and the same time about the fine-grained
interactions within an extended family and the pathways
that lead from individual lives to engagements that they
have with the world at large. The chapter also draws
attention to the role of the content of interaction—whether
individuals’ actions generate positive or negative spillovers
on their neighbors and nonneighbors and whether the
actions of different individuals are strategic complements

or strategic substitutes.
Part II of the book consists of chapters 5–10, and it

covers economic and infrastructure networks. Chapter 5
introduces the production economy as a network and
studies how properties of networks such as degree
distributions and centrality shape the size and behavior of
individual sectors, and how that determines the resilience



of an economy. We also discuss the role of profit-making
incentives of firms in shaping the structure of networks and
their robustness to shocks. Chapter 6 takes up the study of
infrastructure networks such as airlines, trains, and roads.
We present case studies of prominent infrastructure
networks and then develop theoretical models that help
explain the economic factors that give rise to grid and hub-
and-spoke networks. In addition, we study the implications
of these networks for the distribution of goods, the mobility
of labor, and the performance of the system. Chapter 7
studies the robustness of different infrastructure networks
to natural and artificial shocks. It draws attention to the
circumstances that support the robustness of dense
(gridlike) networks and sparse (hub-and-spoke) networks,
respectively. Chapter 8 studies the effects of network size
and the role of intermediaries (such as platforms). It also
presents a theoretical model that examines the role of
pricing protocols in shaping intermediation networks.
Chapter 9 takes up the role of networks in financial
contagion. We develop the basic economics that give rise to
links across financial institutions. We then study the role of
networks in propagating shocks to individual institutions.
Finally, we examine the role of complexity of connections in
giving rise to the possibility of bank runs in financial
networks. Chapter 10 takes up the study of wars among
interconnected parties. It draws attention to the versatility
of networks: we may think of links as reflecting defense
alliances or physical contiguity. The chapter uses
theoretical models of conflict on networks to provide a
better understanding of the Great War of Congo, the
reduction in the number of wars after World War II, and
the growth of empires in history.

Part III of the book consists of chapters 11–15, and it
covers social networks. Chapter 11 revisits the subject of
personal influence and presents a theoretical model to
understand an important feature of the social network of



communication: the law of the few, which says that such
networks are characterized by specialization in linking and
in information gathering. It also presents an experiment
that brings out in sharp relief the dynamics of linking and
information purchase and how they feed into extreme levels
of specialization in linking and information purchase.
Chapter 12 studies social coordination. Almost all human
activity involves coordination, ranging from our use of time,
when and how we eat, what to wear, and our use of
particular languages and technologies (such as fax
machines or telephones). As coordination is so central to
our lives, it is important for societies to have norms or
standards. In this chapter, we explore how the patterns of
interaction—who interacts with whom—matter as societies
work their way toward developing norms, how they
respond to new circumstances and arrive at new norms,
and how they navigate the tension between differing
personal tastes and the benefits of coordination on common
norms. Chapter 13 takes up the study of how information
flows in a network and how that shapes beliefs and
opinions and the optimality of long-run decisions. The
chapter presents theoretical models of Bayesian learning
and bounded rational learning and shows how these models
lead to similar predictions on the role of networks. The
chapter presents experimental evidence in support of the
main theoretical predictions. The final part of the chapter
proposes a model of verification of news in social networks
and the incentives of an external information provider and
uses it to study the amount and quality of information that
circulates in social networks. Chapter 14 studies the
dynamics of diffusion. The first part takes up the study of
diseases and examines how disease characteristics and
network structure determine the size of an epidemic. The
second part examines the diffusion of ideas and modern
technology and identifies circumstances under which the
seeding of nodes can make a big difference to the extent of



diffusion. In chapter 15, we study the role of social
networks in the functioning of product, labor, and financial
networks.

Part IV of the book consists of chapters 16–19 and it
studies networks in a broader context. Chapter 16 studies
markets as networks. We take the view that bonds of trust
and cooperation lead to personalized relations, and
geographical distance and national boundaries place
restrictions on who can undertake exchanges with whom.
These restrictions may be formulated in terms of (either
present or absent) ties within a network. The chapter
presents models of networked markets that help us
understand the ways in which prices and quantities are
determined in such settings. In chapter 17, we take up the
role of communities in the process of economic
development—here, the interest is in the relation between
group-based ties of family, lineage, tribe and caste, and
how they interact with the arrival of modern technologies
and with impersonal exchange. In chapter 18, we take up
the fundamental notion of trust. Trust is central to most
economic exchange, but the level of trust varies greatly
across countries and across communities within the same
country. We discuss trust in small groups and in society at
large, and we explore the fundamental question of how
trust scales up from the small scale to the large scale, as
well as how the structure of the social network matters in
this process. Chapter 19 goes one step further and
introduces the role of the state. We lay out a theoretical
framework to study the scale and efficiency of economic
exchange in a context that combines elements of civic
capital, impersonal exchange, and state capacity.

Reading Notes

For an introduction to the use of networks in economics,
see Goyal (2016, 2017). The opening lines of this



introduction, on the nature of economics, paraphrase the
definition of the subject offered in 1932 by Lionel Robbins
(for a recent imprint of this essay, see Robbins [2007]).
Hayek (1945) offers an influential statement on the central
role of information and knowledge in economic systems.
Bramoullé, Galeotti, and Rogers (2016) present a
panoramic overview of the literature on the economics of
networks.
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FOUNDATIONS



1
Concepts and Measures

1.1 Introduction

The introduction drew attention to the extraordinary
diversity of networks and described in very general terms a
broad set of properties of networks. This chapter begins
our formal study of networks. We introduce definitions of
network concepts and use them to compute different
properties of prominent real-world networks.

1.2 Concepts and Terminology

We introduce concepts from graph theory in this section.
The discussion will concentrate on the main concepts that
we use in the book and it is therefore selective and brief;
for a more systematic and comprehensive coverage of the
theory of graphs and networks, the interested reader is
referred to Newman (2018) and Bollobas (1998).

We shall think of a network as a collection of nodes and
edges. An edge between two nodes signifies a direct
relation between them. Recalling the examples from the
Introduction, in a production network, an edge represents
an input-output relation; in an airline network, it is a route
between two cities; in a social network, it may be a
friendship; on Twitter, it is a “following” relation; and in a
scientific collaboration network, it reflects coauthorship. In



this book, we will use the terms “edge” and “link”
interchangeably.

Let the set of nodes be given by N = {1, 2, 3, …, n},
where n ≥ 2 is the number of nodes. In the simplest case, a
relationship or link between two nodes i and j is
represented by the number 0 or 1, so a link is either absent
or present. This is for instance the case of a following link
on Twitter and a friendship link on Facebook. In other
cases, such as a production network, a link may have
different weights depending on the input levels. A directed
link gij indicates a directionality from i to j, so, in Twitter, it
may mean that “i follows j” while in a production network,
it may refer to the flow of inputs from sector i to sector j
(as is clear from these examples in the Introduction, there
may be no flows going the other way). An undirected link
has no directionality (or equivalently, the values in both
directions are equal), so gij = gji. An example could be
friendship, a research collaboration, or a transport link
between two cities. The nodes N and the links between
them {gij} define a network g. The set of all networks on n
nodes is denoted by 𝒢n.

A network may be described through an enumeration of
all the links in it. For instance, in a network with three
nodes N = {1, 2, 3}, where nodes 1 and 2 are linked and 2
and 3 are linked, we may write the network as g = {g12, g23}.
Here, gij refers to the presence of a link. Sometimes we will
find it more convenient to describe the network in matrix
form: the three-node two-link network is represented as an
adjacency matrix in table 1.1.

Table 1.1 
Adjacency matrix



A matrix representation allows us to represent directed
and undirected links. Moreover—and this will be useful in
some applications—it also allows us to consider networks in
which the links have weights, that is, they may take on
positive or negative real numbers, not just the values 0 and
1.

It is important to note that even a small number of nodes
gives rise to a very large set of networks. To see this,
suppose n = 100, and let us consider undirected links.
There are approximately 5,000, that is , distinct pairs of
nodes. Note that this is also the number of potential
undirected links possible in a network with 100 nodes. As
every link is either present or absent, there are 25000

possible networks. This is greater than the number of
atoms in the observable universe! Given a network g, let
Ni(g) = { j ≠ i|gij = 1} be the set of nodes with whom i has a
link. The set Ni(g) will be referred to as the set of neighbors
of node i in network g. We will define the degree of node i
in network g, di(g), to be the number of neighbors of i, that
is, di(g) = |Ni(g)|.

1.2.1 Regular and Irregular Networks

A network is said to be regular if every node has the same
number of links. Figure 1.1 presents some examples of
regular networks. In the empty network, the degree is 0; in
the circle, the degree is 2; and in a complete network, it is
n − 1. As we add links in a regular network, all the while
maintaining the equal degree property, we trace out a
progressively denser network. We see this as we move from
panel (a) to (b) to (c) to (d) in figure 1.1.



Figure 1.1 
Regular networks.

We next take up irregular networks: these are networks
in which the degree of at least one pair of nodes is
different. A prominent member of this class of networks is
the core-periphery network. This network contains two
types of nodes—the core and the periphery. Figure 1.2
presents two types of core-periphery networks. In both
cases, the nodes in the core are fully connected among
themselves. The difference lies in the degree of the
periphery nodes. In one case, the periphery node has a
single link as in figure 1.2(b), while in the other, it may be



linked to a subset of the members of the core as in figures
1.2(c) and 1.2(d). The star network in figure 1.2(a) is
perhaps the best-known special case of the core-periphery
network, with a singleton core member. We will sometimes
refer to the star as a hub-spoke network.

Figure 1.2 
Core-periphery networks.

A line network has the form of a line, where two nodes
with one link each are at the two ends of the line while the
nodes with two links are in between. Figure 1.3 presents a
line network.



Figure 1.3 
Line network.

Sometimes, as when we study Twitter or the production
network of firms, we are interested in large networks with
hundreds of thousands of nodes. In the study of large
networks, a complete description of all nodes and each and
every link is not practical, and we will find it useful to work
with summary statistics of the network.

1.2.2 Degree Distributions

A natural way to describe the links in large networks is to
consider their degree distribution. Let P(d) be the
frequency or fraction of nodes with degree d. To develop a
feel for degree distributions, we discuss some examples of
simple and well known networks. The degree distribution of
a regular network will take on a simple form—P(d) = 1 for a
single degree and zero for all other degrees. Next, consider
an irregular network. For the star network, the degrees
take on the values 1 and n − 1, with n − 1 nodes having
degree 1 and 1 node having degree n − 1. The degree
distribution is as follows: P(n − 1) = 1/n, P(1) = (n − 1)/n,
and P(d) = 0 for all other degrees d ∈{0, …, n − 1}. Finally,
in the core-periphery network given in figure 1.2(b), the
degree distribution is given by P(6) = 4/n, P(1) = (n − 4)/n,
and P(d) = 0 for all other degrees d ∈{0, …, n − 1}.

The mean (or average) degree in network g is the sum of
degrees across nodes divided by the number of nodes:

Sometimes, in subsequent chapters, we will find it
convenient, for ease of exposition, to denote the mean
degree of a network by  (and drop the g).



The mean degree in a regular network is the same as the
degree of every node, while the mean degree of a star
network is 2 − 2/n (which is approximately equal to 2 when
the number of nodes is large). The mean degree of a line
network is the same as that of a star because they have the
same number of links (which is n − 1 in a network with n
nodes).

The variance of the degree distribution is given by

To develop a feel for degree distributions of large
networks, we next consider two widely used examples—the
Poisson and the Pareto distributions. Under a Poisson
distribution, the probability that a randomly selected node
has degree d is given by

where λ is the mean number of links. Figure 1.4 presents a
network containing 25 nodes with a Poisson degree
distribution (λ = 4, 5, and 6) and the corresponding degree
distributions. An important feature of the Poisson
distribution is that most of the nodes will have degrees
close to the mean degree λ. We also note that the variance
of this degree distribution is equal to its mean, λ.



Figure 1.4 
Networks with Poisson degree distribution.

Under a Pareto distribution, the probability that a node
has degree d is

where c is a positive constant that normalizes the sum of
probabilities to 1 and γ ∈ (1, 3). Figure 1.5 presents
networks with coefficient values of γ = 1.5, 2, 2.5 (the
mean degree is 3.76 ≈ 4). As we raise the value of γ, we see
that this leads to a network with a few very highly linked



nodes and a large number of poorly linked nodes. The
variance of the Pareto distribution is undefined if γ ∈ (1, 2),
and it grows without bound (in the number of nodes) if γ ∈
(2, 3) (for a derivation of this property, see chapter 2, on
random graphs).

Figure 1.5 
Networks with Pareto degree distribution. Note: Average degree = 4.

As the probability in the Pareto distribution scales with a
power coefficient, this degree distribution is also commonly
referred to as a power-law degree distribution. Figure 1.6
draws attention to a distinctive and interesting feature of
Pareto degree distributions. It shows that the probability
falls at a rate that is independent of the degree, and this
suggests a widely used name for such distributions—the
scale-free distribution.



Figure 1.6 
Pareto degree distributions.

To appreciate the differences between Poisson and
Pareto degree distributions, it is helpful to plot them on the
same scale. Figure 1.7 presents the degree distributions for
Poisson and Pareto distributions (where both the x-axis and
y-axis are on a log scale). We note that there is a larger
fraction of less connected and also a significantly larger
fraction of more highly connected nodes under the Pareto
distribution compared with the Poisson degree distribution.



Figure 1.7 
Poisson versus Pareto. Note: λ = 4, γ = 1.5.

In a small network, it is easy to describe what happens
when we add a link to the network. We write the operation
of adding or deleting a link as g + gij and g − gij. In large
networks, degree distributions allow us to conduct the
same thought experiment as follows. Given a degree
distribution P, let the cumulative distribution function be
denoted by 𝒫: {1, 2, …, n − 1} → [0,1], where

Let P and P′ be two degree distributions and 𝒫 and 𝒫′ be
their corresponding cumulative distribution functions.

In a large network, the notion of adding links is reflected
in the concept of first-order stochastic dominance shifts in



degree distributions.
Definition 1.1 P first-order stochastically dominates (FOSD) P′ if and only if

𝒫(k) ≤𝒫′(k) for every k ∈{1, 2, …, n − 1}.

So the plot of the cumulative degree distribution, 𝒫(d),
will lie weakly below the cumulative degree distribution 𝒫′
(d) for every d.

Motivated by these observations on Poisson and Pareto
distributions, we now study the dispersion of degrees. Our
interest is in understanding if the degrees of one network
are more dispersed than those of another network. The
idea of dispersion is captured by second-order stochastic
dominance and a mean-preserving spread, which we now
define formally as follows.
Definition 1.2 P second-order stochastically dominates P′ if and only if 

 for every x ∈{1, 2, …, n − 1}.

Definition 1.3 P′ is a mean-preserving spread of P if and only if P and P′ have

the same mean and P second-order stochastically dominates P′.

A simple example of first-order stochastic shift in degree
distribution arises when we move from a regular network
with degree k to a regular network with degree k + 1. An
example of a second-order shift arises when we move from
a cycle to a hub-spoke network with one pair of spokes
connected. Figure 1.8 illustrates this in the case of a
network with six nodes.



Figure 1.8 
Mean preserving spread of degrees.

1.2.3 Distances

A path exists between two nodes i and j if gij = 1 or if there
is a sequence of distinct intermediate nodes j1, j2, …, jn such
that gij1 = gj1j2 = ⋯ = gjnj = 1. A component is a maximal
group of nodes such that there is a path between every pair
of them. A network is connected if there is a path between
every pair of nodes.

The geodesic distance between two nodes i and j, d(i, j;
g) is the length of the shortest path between them. The
diameter of a connected network is equal to the geodesic
distance between the pair of nodes that are farthest apart
in that network. The mean distance between nodes in a
connected network g, then, is the arithmetic mean of
distances across all pairs of nodes:

By way of illustration, let us examine the distances in two
simple networks: the star and the line. The mean distance
in a star is 2 − 2/n, and the mean distance in a line network
is (approximately) n/3. The difference in average distances
between the star and the line grows without bound with the



number of nodes. This contrast is worth noting, given that
both networks have n − 1 links.

In some contexts, it is helpful to consider more general
ways of traversing the network. An elementary notion is a
walk, which is a sequence of nodes in which two nodes
have a link between them in the network (i.e., they are
neighbors). A node or a link may appear more than once in
a walk: a walk is the most general sequence of nodes and
links possible in a network, subject to the restriction that
any two consecutive nodes must have a link in the network.
The length of a walk is simply the number of links it
crosses. A walk with three or more nodes, with no
duplication of links, and where the initial and the end nodes
are the same is called a cycle.

It is helpful to illustrate these ideas with the help of
figure 1.9. A possible walk in this network is 2, 3, 4, 3, 2.
This walk contains the links g23 and g34 twice, and the nodes
2 and 3 also appear twice in this walk. The walk 3, 4, 5, 3
constitutes a cycle, and the walk 2, 3, 4, 5 is a path.

Figure 1.9 
Network concepts: walk (2,3,4,3,2), cycle (3,4,5,3), path (2,3,4,5).

The matrix representation of a network is helpful with
figuring out walks of varying lengths between nodes of a
network. To see this, let us recall the simple three-node line
network represented in table 1.1. In this network, there is
one walk of length 1 between 1 and 2 and no such walks
between 1 and 3. We can infer the number of walks of
length 2 by writing the matrix G2 as given in table 1.2.
Table 1.2 reveals that there is one walk of length 2 between
1 and 1 and between 3 and 3, and two walks of length 2



between 2 and 2. There are no other walks of length 2 in
this network.

Table 1.2 
G2: Walks of length 2

1.2.4 Local Structure

A simple example of a local measure is the number of
triangles in the neighborhood of a node. In the context of
social networks, this is motivated by the following intuitive
idea: if A has two close friends, B and C, then sooner or
later, A will introduce them to each other, thereby making
it likely that B and C will also become friends. The
clustering-coefficient of a node i (that has two or more
links) is defined as

The numerator is the number of pairs of neighbors of i who
have a link while the denominator is the number of all
possible pairs among the neighbors.

By way of illustration, let us compute the clustering-

coefficient of nodes in some of the networks in figures 1.1
and 1.2. The clustering for every node in a circle is zero as
none of the neighbors has a link. Moving on to the core-
periphery networks, in figure 1.2(b), clustering for the hub
is 1/5 and clustering for the spoke is not defined; in figure
1.2(c) clustering for the hub is 2/11 and for the spoke is 1;
in figure 1.2(d), clustering for the hub is 13/35 and for the
spoke is 1.

The clustering of a network g can be expressed in two
ways. One is to take the average across the clustering of



individual nodes. This is simply the mean of clustering
across all nodes that have degree two or more and is given
by

The clustering in the star is therefore zero, as none of
the triangles involving the links of the center is present,
and clustering in the complete network is equal to 1, as it
contains all possible links and hence all possible triangles.
An alternative way to proceed is to weigh the nodes by
their degree. Define weighted or overall clustering in a
network g as

The two measures can differ quite significantly if there is
a strong correlation between the degrees and the
clustering coefficient. A question at the end of the chapter
examines the relation between these two measures of
clustering.

The study of local structure can be generalized beyond
three nodes to a larger group of nodes. A clique in a
network g is a complete subgraph of g—that is, a set of
nodes I = {i1, i2, …, ik}⊂ N such that for every pair i, j ∈ I, gij

= 1. In a complete network, the clique consists of all the
nodes. In a core-periphery network, the clique consists of
the nodes in the core (see figure 1.2).

1.2.5 Centrality

The centrality of a node in a network captures a number of
ideas relating to its prominence. Perhaps the simplest
notion pertains to the idea of how many links a node has: in
this spirit, degree centrality measures the relative
prominence of a node vis-à-vis other nodes in terms of its



degree. The standard degree centrality of a node i is its
degree divided by the maximum possible degree:

By way of illustration, consider the network presented in
figure 1.10. We see that nodes 6, 7, and 8 have the lowest
degree centrality, node 5 has the highest degree centrality,
and nodes 1, 2, 3 and 4 lie in between. This measure lies
between 0 and 1.

Figure 1.10 
Network for centrality computations.

Another notion of centrality derives from the idea of
proximity: a node is said to be central in a network if the
distance from other nodes is small. The total distance from
node i to all other nodes in the network g is given by 

. To account for the number of nodes, we
normalize the measure by multiplying it by the minimum
possible total distance in any network, n − 1. The closeness

centrality of node i in network g is defined as

This measure of centrality lies between 0 and 1. Table
1.3 presents the closeness centrality measures of nodes in
the network in figure 1.10. In line with intuition, we see
that nodes 1, 2, 6, 7, and 8 have the lowest levels, nodes 4



and 5 have the highest levels, and node 3 has an
intermediate level of closeness centrality.

Table 1.3 
Centrality measures

Nodes 1, 2 3 4 5
6, 7,
8

Degree 0.29 0.43 0.29 0.57 0.14
Closeness 0.37 0.50 0.58 0.58 0.39
Betweenness 0.00 0.48 0.57 0.71 0.00
Eigenvector 0.40 0.52 0.40 0.40 0.17
Katz prestige 0.32 0.47 0.32 0.63 0.16
Katz prestige-2,
a = 1/3

3.12 4.25 3.50 4.25 1.75

Bonacich b =
1/3, a = 1

9.38 12.75 10.50 12.75 5.25

Bonacich b =
1/4, a = 1

4.96 6.88 5.61 7.57 2.89

Bonacich b =
1/5, a = 1

3.85 5.41 4.32 6.21 2.24

In some contexts, a node’s status may arise from its
location between other nodes, for example, due to
possibilities of intermediation and brokerage. With this idea
in mind, let us define betweenness for a node i with respect
to a pair of other nodes, j and k:

Aggregating across all possible other pairs yields us the
betweenness centrality of a node

where the denominator is the set of all possible pairs of
remaining nodes in the network, . Betweenness
centrality of a node lies between 0 and 1.



The betweenness centrality for the nodes in the network
in figure 1.10 is presented in table 1.3. We see that nodes
1, 2, 6, 7, and 8 do not lie on the shortest paths for any
other pair of nodes, so they have 0 betweenness centrality.
On the other hand, nodes 3, 4, and 5 lie on some shortest
paths; and node 5 has the highest betweenness centrality,
as it lies on the shortest paths of nodes 6, 7, 8 in addition to
connecting 6, 7, 8 with the rest of the population.

A natural idea is that a person’s standing in a society
depends on the standing of their associates. This leads us
to consider prestige or influence recursively. In this spirit,
Katz (1953) proposed that a node’s prestige is given by

Let us set ĝij = gij/dj—that is, we normalize the weight of a
link with the degree of the corresponding neighbor. We can
then write the Katz first prestige measure in matrix form as

where PK is a n × 1 vector, I is the identity matrix, and Ĝ is
the degree-adjusted adjacency matrix of the network.

In other words, calculating prestige requires us to find
the unit eigenvector of the adjacency matrix Ĝ. Katz
prestige values are presented in table 1.3. We note that the
weighting of a neighbor’s prestige by their degree is
important: we see that nodes 6, 7, and 8 have the lowest
measure in spite of their being connected to the most
prestigious node, 5: this is because node 5 has degree 4.
Moreover, node 5 has a higher prestige than node 4
because node 5 is linked to 6, 7, and 8, which are only
linked to 5 (thus having a low degree).

We may also define a recursive notion of prestige that
does not normalize for degrees of neighbors: this yields us



the eigenvector centrality of a node. The eigenvector
centrality of a node is proportional to the sum of the
eigenvector centrality of its neighbors—that is,

where λ is a proportionality factor. In matrix notation, we
write this as

Ce(g) is an eigenvector of G, and λ is an eigenvalue of the
matrix. In general, there are many eigenvalues for which a
nonzero eigenvector solution exists. However, since the
entries in the adjacency matrix are nonnegative, there is a
unique largest eigenvalue that is real and positive (this is a
consequence of the Perron-Frobenius theorem; see Seneta
2006). The eigenvector is defined only up to a common
factor. To define an absolute score, one can normalize the
eigenvector (e.g., by requiring that it be unit valued). Table
1.3 presents computations for eigenvector centrality for the
nodes in figure 1.10. The contrast with Katz prestige
measures, especially with regard to node 5, brings out the
role of normalization by degree.

Katz (1953) also introduced a second measure of
centrality in which the prestige of a node is a weighted sum
of the walks that emanate from it, and a walk of length k is
worth ak for some parameter 0 < a < 1. Katz’s second

prestige measure is given by

where I is the identity matrix, 1 is the n (column) vector of
1s, and a is sufficiently small. Table 1.3 presents the
computations for Katz’s second prestige measure. We see
that nodes 3 and 5 have the highest prestige while nodes 6,



7, and 8 have the lowest prestige. Node 4 has intermediate
prestige.

We can generalize Katz’s second prestige measure to
obtain the Bonacich measure of centrality:

where a > 0 and b > 0 are scalars and b is sufficiently
small. Bonacich centrality values are presented in table 1.3.
Observe that parameter b now provides us the weights for
walk length, and in line with intuition, we see that as b

declines from 1/3 to 1/5, the longer walks become less
weighted and the centrality measure gets closer to the
corresponding degree of centrality measure. We have
covered local measures such as clustering and cliques, and
global measures such as centrality. We next take up a
measure that lies somewhere in between: homophily.

1.2.6 Homophily

Homophily is the tendency of nodes to be linked to others
like themselves (Lazarsfeld and Merton [1954]). For
example, individuals with an interest in the same sport
would like to link with each other. In high school, pupils
who are the same gender or who are in the same year
group may be more likely to form links with one another.

For simplicity, let us define the notion of homophily with
reference to gender. Denote the fraction of men in the
population by wm and the share of women by wf, where wf =
1 − wm. Let Hm denote the mean share of male links among
links of men.

Relative homophily captures a straightforward idea: we
say that a group of men displays relative homophily if the
fraction of links that men have with other men is larger
than the fraction of males in the population; a similar
notion of relative homophily applies to women. Let us



define the relative homophily of group i as RHi = Hi − wi for
i = m, f.

Inbreeding homophily goes a step further and measures
the proportion of links within the same group (such as
gender) in relation to the fraction of the population that
belongs to this group and then normalizes the difference by
the maximum bias that a group could possess (this measure
was introduced by Coleman 1958). Inbreeding homophily
for group s is defined as follows:

A positive IHs indicates homophily, while a negative IHs

indicates heterophily. The definitions of relative and
inbreeding homophily can be extended in a natural way to
cover multiple groups in a population.

To illustrate the definitions of relative and inbreeding
homophily, we present an example of a network with ten
nodes in figure 1.11. In this network, there are six men
(indicated in blue) and four women (indicated in red). The
homophily statistics for this network are given in table 1.4.

Figure 1.11 
Homophily in a network.

Table 1.4 
Gender homophily

Hblue Hred wblue wred RHblue RHred IHblue IHred



Hblue Hred wblue wred RHblue RHred IHblue IHred

0.9 0.8 0.6 0.4 0.3 0.4 0.75 0.67

We next apply the network concepts introduced in this
section to measure a number of prominent real-world
networks.

1.3 Measuring Networks

1.3.1 US Production Network

In the US production network, a node is a sector, and the
(i, j) link represents the flow of inputs from j to i. In plotting
the production network, a link is said to exist from j to i if it
constitutes over 1 percent of i’s purchases in the year 2002.
The data is taken from the US Bureau of Economic Analysis
(BEA) Commodity-by-Commodity Direct Requirements
Detailed tables (https://www.bea.gov/). The data classifies
the US economy into 417 sectors. The resulting network
presented in figure 1.12(a) accounts for about 80 percent
of the value of intermediate input trade in the US economy
in the year 2002. Our discussion draws on Carvalho and
Tahbaz-Salehi (2014).

https://www.bea.gov/


Figure 1.12 
US Production Economy 2002. A power law degree distribution. Source: US
Bureau of Economic Analysis.

In this figure, we note that the highlighted five sectors
refer to (313) Wholesale Trade, (270) Real Estate, (297)
Electric Power Generation and Distribution, (145)
Management of Companies and Enterprises, and (21) Iron
and Steel Mills. Turning to the properties of the network,
the first thing to note is that the network is very sparse:
there are only 5,217 links; thus the network density is 0.03.
The mean degree, 11, is very small relative to the total
number of sectors in the network. There is significant
heterogeneity across sectors pertaining to their role as
input suppliers. To develop a feel for this, let us define wij ∈



[0, 1] as the weighted input from sector j to sector i—that
is, this is the input coming from sector j as a share of total
input coming into sector i. With this in hand, let us define
the weighted out-degree of a sector j as

This measure ranges from zero (if a sector does not
supply inputs to any other sector) to n (if a single sector is
the sole input supplier of every sector). The mean weighted
out-degree of the US production network is 0.5. An average
input-supplying technology is cutting tools manufacturing—
with a weighted out-degree of 0.45—that supplies seven
other sectors. By contrast, consider iron and steel mills:
they have a weighted out-degree of 5.5 and supply 100
other sectors!

Figure 1.12(b) illustrates the empirical degree
distribution associated with the 2002 input-output data.
The x-axis is the weighted out-degree for each sector and is
presented on a log scale. The y-axis (also in log scale) gives
the probability that a sector selected at random has an out-
degree larger than or equal to x. The weighted out-degree
measure is skewed: in particular, the right tail of this
distribution is well approximated by a Pareto degree
distribution with coefficient γ = 1.44 as shown in the two
panels of figure 1.12(b).

The presence of hubs means that many sectors are close
to each other, as they are all connected to the hub sectors.
Indeed, the diameter of the network is approximately 10,
and the mean distance is only 4. This mean distance is very
small, bearing in mind that there are 417 sectors in the
economy and the mean degree is only 11.

The scale-free degree distribution, the presence of hubs,
and the small average distances between sectors raise a
number of questions about the functioning of the economy.



Why are some sectors so central to the rest of the
economy? How do hubs matter for the transmission of
shocks? How should governments target public policy to
have the maximum impact on the economy? Later in this
book, we will examine the determinants of networks with
scale-free degree distributions (chapter 2), the impact of
shocks on production networks (chapter 5), and financial
contagion (chapter 9). We will also examine the choices of
traders and firms located in such networks (chapter 16)
and their incentives to create networks (chapters 3, 5, 7
and 8). This study will also help us understand the forces
that make systems robust on some dimensions but fragile
on others.

1.3.2 Airline Networks

Next, we discuss the routing network of two airlines—
British Airways and Southwest Airlines. The data in this
section is taken from the website FlightsFrom.com
(https://www.flightsfrom.com/top-100-airlines).

British Airways is the flagship airline of the United
Kingdom. It began operating in 1974. As of February 2020,
the airline serves 183 cities (which correspond to the nodes
in the network). There are roughly 400 routes operated,
but practically all the flights are routed through one of
three airports in London—Heathrow, London City, and
Gatwick. Figure 1.13 illustrates this network. For all
practical purposes, it is a hub-spoke network, with a
significant fraction of passengers using indirect flights that
are routed via London. The mean distance in the network is
close to 2. Singapore Airlines, Emirates, Lufthansa, and
several other major airlines operate a similar hub-spoke
network.

https://www.flightsfrom.com/top-100-airlines


Figure 1.13 
British Airways network. Source: www.flightsfrom.com/top-100-airlines.

Southwest Airlines began operating in 1971 and serves
103 cities. As of February 2020, the airline operated flights
on 2,980 city pairs. Figure 1.14 illustrates the Southwest
Airline network. While it is by no means a complete
network, its density—the ratio of operated routes to all
possible routes—is 0.56. So, more than half of all possible
city pairs are served with a point-to-point flight. To
appreciate the extraordinarily high density of the
Southwest network, note that in a hub-spoke network with
103 nodes, the density would be 0.02. The distances in this
network are correspondingly low, while there is significant
clustering. Well-known low-cost airlines like Ryanair and
easyJet similarly operate a very dense network (in fact,
Ryanair allows passengers to purchase only point-to-point
tickets).

http://www.flightsfrom.com/top-100-airlines


Figure 1.14 
Southwest Airlines routing network. Source: https://www.flightsfrom.com/top-
100-airlines.

In later chapters, we will examine how transport
networks shape economic activity, what economic forces
drive these structures toward a grid or hub-spoke
structure, and how that in turn shapes the location of
economic activity (see especially chapter 6, on
infrastructure). Given the central role of infrastructure
networks in modern economies, we will also study the
robustness of different networks to human attacks, as well
as to natural disasters (see chapter 7).

1.3.3 Friendship Networks

We study the friendship network at a high school in the
United States in 1994. Our data is taken from Moody
(2001) and forms part of the first-wave component of the
US National Longitudinal Study of Adolescent Health (often
referred to as “Add Health”). The nodes in this network are
the 673 students from a school that we will refer to as the
“Countryside High School.” A directed link from node A to

https://www.flightsfrom.com/top-100-airlines


node B is a nomination by A that B is their friend. Students
were asked to nominate up to 10 friends (5 of each
gender). The mean degree was 5, so the network is
relatively sparse. The diameter of the network was 9 (if we
were to interpret every nomination as an undirected link).
The clustering coefficient was 0.165. Figure 1.15 presents
this friendship network.

Figure 1.15 
Countryside High School friendship network. Source: Courtesy of James
Moody.

The network shows that pupil characteristics such as
gender, race, and age are important in shaping the
network. We note that links are concentrated within racial
groups. And even within a racial group, there appear to be
strong ties within smaller subgroups, each of which
represents the year of the students.



Turning to a closer examination of friendships, table 1.5
presents the data on the role of race. There are five groups:
White, Black (African-American), Hispanic, Asian, and
Others. Whites and blacks constitute the two dominant
groups (49 percent and 39 percent, respectively); the other
groups are relatively small at this school. Observe that 88
percent of the friendship nominations by whites are of
other whites, while 81 percent of friendship nominations by
blacks are of other blacks. It is clear that both blacks and
white pupils exhibit relative homophily. Inbreeding
homophily is also high for both whites and black pupils—
0.76 and 0.68, respectively.

Table 1.5 
Racial homophily in friendships

Race Number Fraction Nominated Nominated/Fraction

White 333 0.49 0.88 1.79
Black 263 0.39 0.81 2.09
Hispanic 33 0.05 0.02 .48
Asian 3 0.00 0.00 0.00
Other 47 0.07 0.09 1.28

Table 1.6 presents evidence on the role of year: as one
would expect, most of the friends of a student would be
his/her classmates. Finally, table 1.7 provides evidence of
the role of gender: in this school, gender appears to play a
relatively minor role in shaping friendships. A student’s
friends of the same gender are roughly in line with the
fraction of own-gender pupils in the school (the gender
balance in friendships may be an artifact of the
requirement in the survey that students nominate up to five
friends of each gender).

Table 1.6 
Year homophily in friendships

Grade Number Fraction Nominated Nominated/Fraction

9 239 0.35 0.66 1.87



Grade Number Fraction Nominated Nominated/Fraction
10 167 0.25 0.52 2.12
11 140 0.21 0.65 3.17
12 135 0.20 0.69 3.51

Table 1.7 
Gender homophily in friendships

Gender Number Fraction Nominated Nominated/Fraction

Male 336 0.49 0.54 1.11
Female 346 0.51 0.58 1.14

Pupils share information and ideas, take part in joint
activities, and develop shared values through friendships.
This leads us to ask: How does the number of friends and
the location in a school network shape a pupil’s
performance? What are the effects of relatively segregated
groups on pupil and school performance? To answer such
questions, we need a theory of how social structure affects
individual values and behavior. A challenge to thinking
about these questions is that individuals themselves create
these friendship networks; thus we need to take great care
to separate cause from effect. In later chapters, we will
examine how the network of relations among individuals
arises (see chapters 2 and 3) and how it shapes the spread
of norms and of information and the formation of opinions
(see chapters 4, 11, 12, 13, 18, and 19). In these chapters,
we will pay special attention to the role of homophily.

1.3.4 Chains of Affection: Romantic and Sexual Relations

We describe the network of romantic and sexual
relationships in an American high school, named Jefferson
High School, over the period 1993–1995. Our data is taken
from Bearman, Moody, and Stovel (2004) and forms part of
the first-wave component of the Add Health study. This
high school has roughly 1,000 students, and it is located in
a mid-sized midwestern town. The town is over an hour’s



drive from the nearest large city. In all, 90 percent of the
students on the school roster participated in the in-school
survey, and over the course of the study period, 83 percent
of them completed in-home interviews.

Jefferson is a close-knit, insular, predominantly working-
class community that offers few activities for young people.
The relative isolation of the community helps us build a
relatively complete picture of all relationships in the high
school.

Jefferson High is similar to other American schools with
regard to many dimensions, such as grades, prevalence of
smoking, religious affiliation, and alcohol consumption.
More than half of all the students report having had sexual
intercourse, a rate comparable to the national average and
only slightly higher than observed for similar schools with
respect to race and size.

Adolescents were asked if they were currently in or had
been involved in a special romantic relationship at some
point during the past 18 months (1993–1994). Adolescents
involved in such relationships were asked to describe their
three most recent ones (including any current
relationships). In addition, adolescents were asked to
identify up to three individuals with whom they had a
nonromantic sexual relationship in the past 18 months. A
nonromantic sexual relationship was defined as a
relationship involving sexual intercourse that the
respondent did not identify as special and in which the
partners did not kiss, hold hands, or say that they liked
each other. A little less than one-quarter of all Jefferson
students reported no romantic or nonromantic sexual
relationship.

Figure 1.16 presents the network of romantic and sexual
relations among adolescents attending high school in
Jefferson. It maps the actual network structure that
connects the 573 students involved in a romantic or sexual
relationship with another student at Jefferson High. In this



network, a node is a student, and an edge is a romantic or
sexual relation between the two nodes.

Figure 1.16 
Romantic and sexual relations network at “Jefferson School,” 1993–1994.
Source: Bearman, Moody, and Stovel (2004).

The diagram reveals a number of interesting facts. Recall
from section 1.2.3, that a component is a subgraph of a
network in which all nodes are reachable through paths
from other nodes in the subgraph. A component is the
natural object of study for the diffusion of diseases if
infection can spread only via close contact. We first note
that dyads (two individuals whose only partnership is with
each other) are relatively common (appearing 63 times).
Thus 126 students are involved in isolated dyadic relations.
In addition, a large number of other individuals have a
single relationship, but their partners have multiple
partners. Triads composed of one male and two females
occur 12 times, and triads composed of one female and two
males occur 9 times. In all, 189 students at Jefferson
(roughly 35 percent of the romantically active students) are
involved in components containing three or fewer students.



Another interesting feature of the network is the
existence of a giant component involving 288 students (52
percent of the romantically involved students at Jefferson).
This giant component contains many individuals with
multiple partners, and it has short branches and a large
diameter: the two most distant individuals are 37 steps
apart. Interestingly, though perhaps not surprisingly, it
contains no short cycles.

The romantic relations network has some striking
properties—a large component size, long paths, gender
heterophily in links, and the absence of small cycles. In
later chapters, we will draw attention to the wide range of
individual motives that shape linking behavior and
determine the architecture of social networks (chapters 2
and 3) and how the structure of the network shapes
behavior (chapters 4–13), and the spread of opinions,
norms, and diseases (chapters 12, 13, and 14).

1.3.5 Caste Networks in Rural India

We describe the social network in a village in the Indian
state of Karnataka in the year 2006. This data is taken from
a large-scale study conducted by Abhijit Banerjee, Arun
Chandrashekhar, Esther Duflo, and Matthew Jackson
(2013). The nodes in this network are 413 households. A
link reflects a variety of social interactions, ranging across
labor exchange, advice, and monetary transfers, to the
exchange of daily necessities (such as cooking fuel). There
were 1,756 ties between these households. The mean
degree was 8.50; hence the network is very sparse.

Let us examine the local features of the network next.
There was significant overlap in neighbors: the clustering-
coefficient of the network was 0.40! This is very high,
considering that only 2.5 percent of the potential links were
realized. This suggests that if links were formed at random,
then clustering would be roughly 0.025.



To understand the drivers of link formation, we now turn
to the role of individual characteristics. In Indian society,
caste is an important category. It is therefore useful as a
first step to categorize this village in terms of general
groups based on the following legally defined categories of
castes and tribes: Other Backward Caste (OBC), Scheduled
Caste (SC), Scheduled Tribe (ST), and General (G). Figure
1.17 presents the network of social relations in the village,
and we see that there is a significant concentration of
social relations within castes and tribes.

Figure 1.17 
Networks in an Indian village. Note: OBC is presented in yellow; SC is in green;
ST is in red; and G is in blue. Source: Banerjee et al. (2013).



Table 1.8 presents the evidence on subcaste-based
relations. Four subcaste categories are covered: OBC, SC,
ST, and G. OBC and SC constitute 69 percent and 26
percent of the population, respectively.

Table 1.8 
Caste homophily and social relations

Fraction Nomination Nom/Fraction

OBC 69 89 1.2
SC 26 80 3
ST 2 31 13
G 2 15 7

Here, we examine the distribution within and across
links through the lens of caste-based homophily. As an
example, consider SC: its members constitute 26 percent of
the population but 80 percent of their links are within their
own group, yielding am inbreeding homophily of 0.73 (for a
definition of inbreeding homophily, see section 1.2).
Similarly, consider the case of ST; its members constitute
only 2 percent of the population of the village, but 31
percent of their social relations are with other ST members,
yielding an inbreeding homophily ratio of 0.30.

Favor exchange is an important element in these social
networks. As these networks sustain trust and cooperation,
the sparsity of links across caste groups raises the
possibility that many potentially beneficial exchanges do
not occur. In later chapters, we will examine the role of
network structure in shaping the magnitude and patterns
of cooperation. In those discussions, we will also take up
the questions of how trust and cooperation at the level of a
community scale up, how they are related to generalized
trust (the possibility of cooperation at a society level), and
how such communities interact with other institutions like
the market and the state to sustain high economic



performance. These issues are examined in chapters 12,
17, 18, and 19.

1.3.6 Twitter

Twitter is an online information network that was
established in May 2006. It allows users to keep up to date
with messages from other users, a relation that is referred
to as “following.” If A is following B, then tweets received
by A from B can be passed on to their followers. In other
words, a tweet may be “retweeted.” This creates the
possibility of users spreading information of their choice
beyond the neighborhood of the original tweeter, along the
paths of the Twitter social network.

In a 2018 study conducted by the Pew Research Center,
Twitter had 321 million users (Wojcik and Hughes, 2019).
The median in-degree was 25, while the median out-degree
was 89: the median out-degree is therefore much greater
than the median in-degree (recall that the in-degree of a
node refers to the number of followers, while the out-
degree refers to the number of people a person is
following). This gives a first sense of the imbalance in
Twitter, which suggests that in-degree distribution is very
unequal compared to out-degree distribution.

There are also very large differences in the level of
activity, which correlate strongly with the network
structure. The top 10 percent of tweeters made 138 tweets
on average, and these users were responsible for 80
percent of all tweets. In this set of highly active tweeters,
the median in-degree was 387, while the median out-
degree was 456. Users like Donald Trump, Barack Obama,
and Katy Perry had over 25 million followers apiece. These
statistics are in sharp contrast to the behavior of the
bottom 90 percent of tweeters. This last category made 2
tweets per month, their median in-degree was 19, and their
median out-degree was 74.



As Twitter is used by individuals, firms, and governments
to share ideas and information, we would like to
understand how far information travels on Twitter and how
it depends on the point at which it is first tweeted, as well
as the influence of different individuals and how this
influence is related to the network of connections. Does the
truth prevail, or do mutually contradictory views persist
over long periods of time in the network? What are the
optimal nodes to target to maximize influence or to
minimize the spread of false information? These questions
are the subject of much contemporary research; we will
study them in chapters 11, 13, and 14.

Later in this book, we will also examine how such sparse
and unequal networks emerge (chapters 2, 3, and 11), their
implications for the amount of information acquired
(chapter 11), how they shape the spread of information
(chapter 13), and how the structure of such a network can
be exploited for the more effective diffusion of ideas
(chapter 15).

1.3.7 World Wide Web

The World Wide Web is a network in which links connect
pieces of information. Our discussion draws on Broder,
Kumar, Maghoul, et al. (2000), Kleinberg (1998), and
Easley and Kleinberg (2010).

The Web was designed by Tim Berners-Lee between
1989 and 1991. At a basic level, it is an application
designed for people to share information with each other
over the Internet. The Web has two central elements: One,
it provides a way to make documents (in the form of web
pages) easily available to anyone on the Internet. Two, it
provides a way for others to easily access the web pages
using a browser that can connect to public spaces on
computers across the Internet.

Web pages make use of hypertext that allows the
designer to annotate any portion of the document with a



virtual link to another Web page. This allows a reader to
move directly from one page to another. The set of Web
pages thereby becomes a graph, which is in fact a directed
graph.

We draw attention to two features of the Web. The first
feature pertains to the connectivity of the network. We
shall say that a directed graph is strongly connected if
there is a path from every node to every other node. When
a directed graph is not strongly connected, it’s important to
be able to identify the nodes that are “reachable” from
other nodes using directed paths. The key is to find the
right notion of a “component” for directed graphs, and in
fact, one can do this with a definition that strictly mirrors
the formal definition of a component in an undirected
graph. A strongly connected component (SCC) in a directed
graph is a subset of the nodes such that every node in the
subset has a path to every other one, and the subset is not

part of a larger set with the property that every node can
reach every other one.

With these definitions in hand, we turn to the description
of the network structure of the Web. Our description is
based on a study of the Web by Broder, Kumar, Maghoul, et
al. (2000), done when the Web had been in place for about
a decade. For their raw data, the researchers used the
index of pages and links from one of the largest commercial
search engines at the time, AltaVista.

First, we note that it is not possible for us to present a
“map” of the Web, given the scale and complexity of the
network being analyzed. So we will take a more abstract,
high-level perspective: we will divide the Web into a few
large pieces and then show how the pieces fit together.
Figure 1.18 presents a plot of the network at this high level
of abstraction.



Figure 1.18 
Architecture of the World Wide Web. Source: Based on Broder, Kumar,
Maghoul, et al. (2000).

The first observation is that the Web contains a giant
SCC. Let us now discuss the constituents of this SCC. It
consists of a number of major search engines and other
“starting page” sites with links leading to directory-type
pages from which one can in turn reach the home pages of
major educational institutions, large companies, and
governmental agencies. From here, one can reach most of
these pages within each of these large sites. Further, many
of the pages within these sites link back to the search
engines and starting pages themselves. Thus, all these
pages can mutually reach one another and all belong to the
same SCC.

The second step is to position all the remaining SCCs in
relation to the giant one. We consider groups of nodes in
terms of reachability from the SCC. There is a set of IN
nodes that can reach the giant SCC but cannot be reached
from it, and there is a set of OUT nodes that can be
reached from the giant SCC but cannot reach it.

When we put the SCC and the IN and OUT nodes
together, there is the visual effect of IN and OUT as large
lobes hanging off the central SCC. These are the



considerations that lie behind the ‘bow-tie picture” of the
Web in figure 1.18.

There are nodes that do not lie in SCC or in IN or OUT,
and they can be further classified as follows. There are the
“tendrils” of the bow-tie, which consist of (1) the nodes
reachable from IN that cannot reach the giant SCC, and (2)
the nodes that can reach OUT but cannot be reached from
the giant SCC. It is possible for a tendril node to satisfy
both (1) and (2), in which case it forms part of a “tube” that
travels from IN to OUT without touching the giant SCC.
Finally, there are nodes that are disconnected: nodes that
do not have a path to the giant SCC even if we ignore the
directionality of the edges.

Thus we see that the Web contains a central “core”
containing many of its most prominent pages, with many
other nodes that lie “upstream,” “downstream,” or “off to
one side” relative to this core. It is important to keep in
mind that the high-level snapshot reveals an order that
persists in spite of the extraordinarily dynamic nature of
the Web. Every day, people create pages and links and so,
at the micro level, the constituent pieces of the bow-tie are
constantly shifting their boundaries, with nodes entering
(and leaving) the giant SCC over time. But the aggregate or
high-level picture has remained essentially unchanged.

The fundamental function of the Web is that it allows
information to be shared. A first thought would be that a
Web page’s information is shared in proportion to how
many links point to it (i.e., its in-degree). Early studies
suggest that the in-degrees are extremely unequal and they
follow a scale-free distribution. In particular, a number of
early researchers found that the fraction of Web pages that
have k links is approximately proportional to k−2 (see for
e.g., Broder et al. 2000). Over the years, a number of
studies have been done with regard to the degree
distribution: they suggest that both the high-level bow-tie



structure and the great inequality in connections are robust
features of the Web.

This description raises the question of how powerful or
influential a Web page is compared to other Web pages. To
understand questions like this, we need to dig deeper into
the details of the Web’s network structure and to develop a
theory of how information travels through a network. The
discussion on centrality measures in section 1.2.5 reveals
that the power or influence of a node can be understood
recursively in terms of the influence of the Web pages that
point to it. In particular, traditional concepts from matrix
algebra (such as eigenvector centrality) are closely related
to the notion of Page Rank (PR), an algorithm used by
Google Search to rank Web pages in their search engine
results. Roughly, Page Rank works by counting the number
and quality of links to a page to determine an estimate of
how important the website is.

These striking features of the Web motivate a closer
examination of the processes that lead to the bow-tie
structure and the great inequality in links, and invite
further study of the implications of such structures for
information sharing and opinion formation. These questions
are explored in chapters 2 and 3 (which discuss the
formation of networks) and chapters 11 and 13 (which take
up the generation and flow of information in networks).

1.3.8 Scientific Collaboration: The Case of Coauthorship

Scientists collaborate to conduct research. Coauthorship is
perhaps the most concrete form of such collaboration. The
patterns of collaboration can potentially have a profound
effect on the questions that scientists study, how well
informed they are, what methods they use to conduct their
research, and most of all, how fast they make progress.
These considerations motivate the study of coauthor
networks. Our discussion draws on Goyal, van der Leij, and
Moraga-González (2006), Ductor, Fafchamps, Goyal, and



Van der Leij (2014), and Ductor, Goyal, and Prummer
(2022).

We discuss the network of coauthorships among
economists over the 10-year period of 2000–2009. The data
is taken from Econlit, a publicly available data set (https://
www.aeaweb.org/econlit/). In this period, over 151,000
authors published papers. The mean or average number of
coauthors (1.95), was very small, given the period of time
and the number of potential coauthors. Our first
observation is that this network is very sparse. On the
other hand, the most connected 100 authors had an
average degree of 25: this suggests that the coauthor
network is very unequal.

Next, we turn to the local structure: the clustering-
coefficient was large (0.17). To get a sense of why this is a
very large figure, note that if coauthors were found at
random, then the clustering ratio would correspond to the
average number of coauthors divided by the total number
of authors—a number that is close to zero!

Next, consider the macro-level properties of the network.
An interesting feature is that it is relatively well integrated.
The largest component contained over 67,000 nodes (this is
over 44 percent of all the authors), with a mean distance of
only 9.80. At first, this average distance should come as a
surprise: if individual authors have two coauthors on
average, then an author will have two authors who are
neighbors of neighbors, and so forth. Thus the number of
nodes reached only grows by a factor of 2 at every step.
How can we reconcile the size of the largest component
with its small average distance?

The key to understanding the puzzle is to recall the great
difference in average or mean distance in a line network
and a star network. They have roughly the same average
degree, but very different mean distances. Indeed, in the
economic coauthor network, there are some very highly
connected authors (as noted previously). To see this in the

https://www.aeaweb.org/econlit/


simplest way, suppose that we were to delete 5 percent of
authors at random: this has practically no impact on mean
distance in the largest component. But the deletion of the 5
percent most connected authors completely fragments it.
Thus the most connected authors span the research
profession and hold it together. The figure of the local
network of Daron Acemoglu presented in the introduction
and the local network of Jean Tirole from the 1990–1999
period presented in figure 1.19 illustrate this point.

Figure 1.19 
Local coauthor network of Jean Tirole, 1990–1999. Data source:
www.aeaweb.org/econlit/ Note: The figure shows all authors within distance 2
of J. Tirole, as well as the links among them all. The width denotes the strength
of a tie. Some economists might appear twice or are missing due to the use of
different initials or misspellings in EconLit. The figure was created by the
software program Pajek.

We may wonder if authors of different ethnicities or
genders have very different modes of collaboration. Ductor,
Goyal, and Prummer (2022) study the role of gender and
find that the economics coauthor network exhibits

http://www.aeaweb.org/econlit/


homophily along the lines of gender, a male economist (a
female economist) coauthors more often with men (women)
than their fraction in the population of economists. On
average, 81 percent of men’s collaborations are with other
men; the fraction of men in the economist population was
72 percent. Similarly, for women, 33 percent of their
collaborations are with other women on average, while the
ratio of women in the population is 27 percent. Perhaps
more surprisingly, men and women differ in their degree
and clustering: women have roughly 23 percent lower-
degree and 6 percent higher-degree clustering compared to
men. By way of illustration, figure 1.20 presents the
coauthor networks of the three 2019 economics Nobel
laureates—Abhijit Banerjee, Esther Duflo and Michael
Kremer (over the period 2000–2009). Banerjee had a
degree of 22 and a clustering-coefficient of 0.09, Duflo had
a degree of 19 and a clustering-coefficient of 0.14, and
Kremer has a degree of 34 and a clustering coefficient of
0.04.



Figure 1.20 
Gender and networks, 2000–2009. Data source: www.aeaweb.org/econlit/.

Later in this book, we will explore how such unequal
networks of collaboration and exchange emerge (chapters
2, 3, and 16), and their implications for individual
productivity (chapters 4, 11, and 16) and for the creation of

http://www.aeaweb.org/econlit/


norms and standards (chapters 12, 17, and 18). In these
discussions, we will pay special attention to the relation
between networks and inequality.

1.4 Reading Notes

There are many excellent textbooks on networks. As
networks are studied across many disciplines, the books
are written with different questions in mind. For books
written from an economics perspective, see Goyal (2007),
Jackson (2008), and Vega-Redondo (2008). Bramoullé,
Galeotti, and Rogers (2016) provide a panoramic overview
of the economics research on networks. The role of
networks in economics analysis may be traced to papers
written in the mid-1990s. For a discussion of the
methodological issues raised by such interactions and the
introduction of graph theory in the toolkit of economists,
see Goyal (2016) and Goyal (2017).

For a comprehensive introduction to the study of the
theory of networks, see Newman (2018). Networks have
been studied in sociology for a very long time; see Burt
(1994), Granovetter (1994), Smelser and Swedberg (2005),
and Wasserman and Faust (1994). For a mathematical
treatment of graph theory, see Bollobas (1998) and Harary
(1969). For a physics perspective, see Barabási (2016) and
Watts (1999), and for a computer science perspective, see
Parkes and Seuken (2016) and Pass (2019). For a book that
combines the economics and computer science perspective,
see Easley and Kleinberg (2010).

The material on network concepts in the chapter draws
on Goyal (2007), Jackson (2008), and research papers by
Katz (1953), Coleman (1958), Bonacich (1987), and
Freeman (1979).

The study of personal influence starts with the classical
work of Katz and Lazarsfeld (1966) and Lazarsfeld,
Berelson, and Gaudet (1948). For an engaging popular



introduction to the subject of personal influence in social
networks, see Gladwell (2006). The data on Twitter is
drawn from Wojcik and Hughes (2019).

There is a sizable body of literature on the structure and
the functioning of the World Wide Web and large social
media sites like Twitter. Our description of the Web drew
heavily on the seminal empirical study of Broder, Kumar,
Maghoul, et al. (2000). Their study has since been
replicated on other, larger snapshots of the Web, including
an early index of Google’s search engine (Bharat, Chang,
Henzinger, and Ruhl [2001]) and large research collections
of Web pages (Donato, Laura, Leonardi, and Millozzi
[2007]).

The study of input-output methods in economics can be
traced to the work of Wassily Leontief in the 1940s; for an
overview of his work, see Leontief (1941). The recent
revival of input-output networks is due to the influence of
Long and Plosser (1983) and Acemoglu, Carvalho,
Ozdaglar, and Tahbaz-Salehi (2012). The material on the
US production network is taken from Carvalho (2014). For
an overview of the research on production networks, see
Carvalho and Tahbaz-Salehi (2019).

The study of the sociological aspects of the process of
science and its production was pioneered by Robert
Merton; for a collection of his essays on this subject, see
Merton (1973). Scientific collaboration is a central element
in the process of the production and dissemination of
knowledge. The material on coauthorship in economics is
taken from Goyal, van der Leij, and Moraga-González
(2006) and follow-up research by the authors. The findings
on gender and collaboration are taken from Ductor, Goyal,
and Prummer (2022).

The study of friendships as a social process may be
traced to Lazarsfeld and Merton (1954) and Coleman
(1958). Our discussion on American high school friendships



draws on Moody (2001); the data reported here was kindly
provided by James Moody.

Robert Fogel pioneered the quantitative study of the role
of transport networks in economic growth (see Fogel,
1964). Transport networks and infrastructure are now
widely studied in economics; for recent surveys, see
Donaldson (2015) and Redding and Rossi-Hansberg (2017).
For an early study of economic reasons for hub-spokes in
airline networks, see Hendricks, Piccione, and Tan (1995).
The data on airline networks is taken from https://www
.flightsfrom.com/top-100-airlines. A well-known early
example of the urban grid has come down to us from the
ancient city of Mohenjodaro in the Indus Valley civilization.

The study of caste has a long history. Notable modern
sociological works on caste include Beteille (1965, 1969),
Srinivas (1987), and Mayer (1960). The data on the caste
networks in the Indian villages of Karnataka is available at
https://economics.mit.edu/faculty/eduflo/social.

1.5 Questions

  1.  Prove the following facts about graphs:
(a)  A connected tree with n nodes has exactly n − 1

links.
(b)  A leaf in a network is a node that has exactly one

link. Show that there are at least two leaves in every
tree network.

(c)  In a connected tree network, there is a unique path
between every pair of nodes.

  2.  Compute the mean degree and the variance in degrees
of the networks presented in figure 1.2.

  3.  Compute the average distance in the networks
presented in figures 1.1 and 1.2.

  4.  Let i* be the node with the highest degree—or,
equivalently, degree centrality—in g, and let us denote

https://www.flightsfrom.com/top-100-airlines
https://economics.mit.edu/faculty/eduflo/social


this centrality by Cd(i*; g). The degree centralization of
network g is defined relative to the maximum attainable
centralization:

(a)  The denominator is the maximum possible centrality
of a network: show that this is given by (n − 2)(n −
1)/(n − 1). Using this value in the denominator, show
that the degree centralization of a network g is given
by

(b)  What is the degree centralization of a star and a
regular network?

  5.  We define closeness centrality of a network as follows:
Let i* be the node that attains the highest closeness
centrality across all nodes, and let Cc(i*; g) be this
centrality. The centralization of a network is defined in
terms of the difference between this maximum and the
centralities of all nodes, and we normalize the measure
to make sure it lies between 0 and 1.
(a)  Show that this leads us to define the closeness

centrality of a network g as

(b)  Show that the maximum closeness centrality value
of 1 is attained by a star, while a cycle attains the
minimum value of 0.

  6.  Consider a three-node network in which there exist two
links g12 = g23 = 1.



(a)  Leo Katz (1953) defined prestige of node i in
network g as

Let us set ĝij = gij/dj for every link. We can then write
Katz’s first prestige measure in matrix form as

where PK is the n × 1 vector and I is the identity
matrix. Calculate this prestige measure for the three
nodes in our network and compare it to degree
centrality.

(b)  Compute the closeness centrality of nodes 1, 2, and
3 in this tree node network.

  7.  Define an independent set of nodes as a collection of
nodes that have no links among them. Define a maximal
independent set as an independent set that is not a
strict subset of any independent set.
(a)  Identify the maximal independent sets in a star

network.
(b)  Identify the maximal independent sets in a cycle

network.
  8.  A node i is a said to be critical for two nodes j and k in a

network g if it lies on all paths between j and k in that
network.
(a)  What are the critical nodes in a star network and a

cycle network?
(b)  Compute the betweenness centrality of nodes in the

star and a cycle network.
  9.  Compute the degree centrality, closeness centrality,

betweenness centrality, the Katz first prestige,



eigenvector centrality, and Bonacich centrality for the
nodes in the network shown in figure 1.21.

Figure 1.21 
Network for centrality computations.

10.  Explore the structure of the Facebook network of
friendships. Discuss similarities and differences
between the Facebook and the Twitter networks.

11.  The clustering coefficient for a node is given by Cli(g).
One way to define the clustering coefficient of a
network g is as the “average” across nodes:

Alternatively, we can look at the fraction of potential
triads that are actually present in the network. Define
weighted or overall clustering in a network g as

Compare the average and weighted clustering
coefficients in a network when clustering is increasing
and decreasing in degree, respectively.



2
Random Origins

2.1 Introduction

In this chapter, we will begin the journey of understanding
how networks form. We will start with the building blocks
of networks, the nodes and the linking protocols that
connect them, and then we will see how varying these
protocols gives rise to various degree distributions,
connectivity levels, distances and clustering.

We will start with a presentation of the following basic
model: there are n nodes and an identical and independent
probability p that a link forms between any pair of nodes.
In the literature, this is known as the Erdὄs-Rényi model of
random graphs. Observe that for fixed n and p, as links are
random, a wide range of networks, ranging from the empty
all the way to the complete, can arise with positive
probability. An important insight of the research with this
model is that as we raise n and adjust p in such a manner
that np remains unchanged, the structure of the resulting
networks acquires a very definite pattern: the degrees in
the resulting network exhibit the Poisson distribution.
There is a threshold value of np, above which the resulting
network is connected and below which it is not connected.
This threshold draws attention to a general theme in
network formation: small changes in underlying conditions



can lead to dramatic changes in the structure of networks.
Next, we discuss various properties of this network, such as
average distances and clustering. We introduce homophily
into this model by defining groups and specifying different
probabilities of linking within and across groups. This
richer model is known as the stochastic block model.

This model of random graphs is simple and the
properties are intuitive. However, as we saw in chapter 1,
the degree distribution of empirical networks is often
highly skewed and is better approximated by a power law
(and therefore is quite unlike the Poisson distribution). This
leads us to consider models of growing networks in which
nodes arrive over time and a new node links to an existing
node in proportion to the number of its links, giving rise to
a rich-get-richer property. In the literature, this is known as
the preferential attachment model. We will derive the
degree distributions generated by preferential attachment
and develop conditions under which they exhibit a power
law.

The Erddefined, 49ὄs-Rényi random graph model and the
preferential attachment model give rise to specific degree
distributions. From a theoretical point of view, as well as
for empirical purposes, it would be helpful to have a
random graph model that accommodates general degree
distributions. This is the motivation behind the construction
of the configuration model. We next present this network
model and discuss its properties.

As we noted in chapter 1, a distinctive feature of social
networks is that they exhibit short path lengths and

significant clustering. The economics coauthor network
discussed in the previous chapter provides one illustration.
The Poisson graphs and the networks based on the
preferential attachment process generate small distances,
but they exhibit negligible clustering. We next turn to a
network formation process that is able to accommodate



both these properties. The approach is to start with an
initial network of n nodes arranged around a cycle, and
each node is connected to its nearest two neighbors on
either side. So there are 2n links in all. The diameter is n/4,
while the clustering coefficient is 1/2. Observe that in this
initial network, the mean distance and the clustering are
both large. The key idea is a “rewiring” of links: with a very
small probability p, a link is reoriented away from a
neighbor to someone picked at random from the rest of the
network. As we move across links, due to the small value of
p, only a very small fraction of the links are actually
rewired. Thus the clustering remains virtually unchanged.
However, the few links that are reordered reduce mean
distance greatly, as a link to someone across the cycle
significantly shortens the length of a very large number of
paths. Thus the rewiring generates a sparse network with a
small diameter and also high clustering. In the literature,
this is known as the small-world model.

The preferential attachment model delivers skewed
degree distributions but fails to account for clustering,
while the small-world model provides an account for
clustering but exhibits relatively uniform degrees. The
chapter concludes with a model of a growing network in
which a new node creates new links through two routes—
random linking with older existing nodes and linking with
contacts of these nodes. The possibility of linking based on
the connections of others generates networks that exhibit
both a power law degree distribution and also a high
clustering. In the literature, this is known as the network-

based linking model.

2.2 Erdὄs-Rényi Graphs

This section introduces the Erdὄs-Rényi model of random
graphs and studies some of its main properties. There are n
nodes and an equal probability, p ∈ [0, 1], for a link to form



between any two of the nodes. What is the structure of the
network generated through this process? For instance,
what is the distribution of connections? Are most nodes in
the network connected? What is the distance between the
nodes? It will turn out that the answers to these questions
can be formulated in terms of the relation between the two
parameters p and n. The model and the principal results in
this section originate from the work of Solomonoff and
Rapoport (1951) and Erdὄs-Rényi (1959, 1960, 1961). The
presentation in this section draws on Bollobás (1998,
2004), Jackson (2008), and Newman (2018).

To get a first impression of this model, let us consider a
few examples of Erdὄs-Rényi graphs. Figure 2.1(a) and (b)
plot two graphs with 50 nodes, with the probability of
linking given by p = 0.05 and p = 0.10, respectively. In
panel (a), there are multiple components, and the largest
group of connected nodes—the so-called giant component—
is relatively small. By contrast, the graph in panel (b) is
connected (i.e., it contains only one component). This
brings out the point that raising the probability of linking
from 0.05 to 0.10 can have powerful effects on the
connectivity of the graph.

Figure 2.1 
Random graphs with 50 nodes.



Let us next consider a thought experiment in which the
probability of linking is kept constant but the number of
nodes is raised. Fix p = 0.05. As the number of nodes
increases from 25 to 50 to 100, the expected degree (np)
grows roughly from 1.25 to 2.5 to 5. This leads to a
progressively more integrated network and suggests that
as we increase the number of nodes n, a smaller value of p
would suffice to ensure the connectivity of the network.
Figure 2.2 plots the three random graphs corresponding to
this exercise. It shows how, for a fixed probability of links
p, raising the number of nodes raises the average number
of connections for every node, and therefore enhances the
connectivity of the network as a whole.



Figure 2.2 
Random graphs with p = 0.05.

Turning to the higher-level (macroscopic) properties of
the network, consider the probability that a network has k



links: recall that the probability of a single link is p and all
links are independent: so the probability of a specific set of
k links is . A total of n(n − 1)/2 links are
possible, so the probability of k links in a network with n

nodes may be written as

For any given node i, there are n− 1 other nodes; so the
probability that a node i has degree k is

For fixed n and p, any network—ranging from empty to
complete—has a positive probability of being realized. An
important insight of the Erdὄs-Rényi approach is that the
structure of the network can be sharply delineated as we
take limits and consider a very large number of nodes. We
next turn to developing this point with respect to the
distribution of connections.
Degree distribution Suppose that the number of nodes gets
very large and the average degree remains finite. The
simplest way to do this is to suppose that np is a fixed
number. Suppose that pn = λ. Then it is possible to write
the probability that a node has k links as follows:

Here, we are using n and k instead of n − 1 and k − 1; for
large n, the difference is immaterial. This formula
corresponds to the well-known Poisson distribution. A



property of the Poisson degree distribution is that the
probability of degrees drops sharply as we move away from
the mean. Figure 2.3 illustrates the Poisson degree
distribution for n = 50, with the probability of linking given
by p = 0.05 and p = 0.10, respectively.

Figure 2.3 
Degree distribution with 50 nodes.

Connectivity We next discuss the relationship between the
number of nodes n, the probability of linking p, and the
connectedness of the network. A key building block in the
analysis is the concept of threshold function. As we vary p
and n, we would like to ask if connectedness holds. The
examples illustrated in figure 2.2 suggest that as we
increase n, connectedness would be possible for lower p.
With this idea in mind, let us define the probability of
linking as a function of the number of nodes, p(n). Our aim
is to understand whether there is some property of p(n)
that generates connected and disconnected networks. Let
A(N) be the set of networks that exhibit a property (e.g.,



particular nodes have some number of links or
connectedness of the graph as a whole). A threshold
function for this property, A(N), is a function t(n) such that

If such a function exists, then we shall say that there is a
phase transition at the threshold: the qualitative properties
of the networks generated undergo a marked
transformation when we move from slightly below to
slightly above the threshold. In principle, the threshold will
differ as we examine different properties of graphs.

To develop a feel for threshold functions, let us take up
the property that node 1 has at least one link. In this case,
A(N) = {g|d1(g) ≥ 1}. In the Poisson graph with n nodes, the
probability that node 1 has zero links is (1 −p)n−1. Thus the
probability that A(N) holds is 1 − (1 −p)n−1. How does this
probability vary as we move across p(n): for what functions
is this probability equal to 1 and 0? Let us consider the
function

Recalling a standard definition of the exponential
function (i.e., for some number x, ), it
follows that

Thus if p(n) is proportional to 1/(n− 1), then the probability
that node 1 has one or more links lies between 0 and 1. We
will build on this observation to show that t(n) = 1/n is a
threshold function. Consider p(n)/t(n) →∞, which means



that p(n) ≥ r/(n− 1) for any r and a large enough n. From
equation (2.6), it follows that  for every r,
implying that . Similarly, we can verify that
for p(n) < 1/(n − 1), . In other words, t(n) =
1/(n− 1) is a threshold function for the property that node
1 has one or more links.

We now develop the threshold function for
connectedness. For a network to be connected, it must
contain no isolated nodes. In a Poisson degree distribution,
the probability that a node has degree 0 is approximately e−

(n−1)p. If one node is isolated, the fraction of isolated nodes is
1/n. Equating the two yields e−(n−1)p = 1/n. Taking logs on
both sides, we obtain

When (n− 1)p > log n, the fraction of degree zero nodes
becomes small, while for (n − 1)p < log n, the fraction of
degree zero nodes becomes large. The function (log n)/n is
thus a threshold. The probability of linking p must decline
roughly in line with this threshold as n grows. For any
function p of n that remains above the threshold, the
network will contain no isolated nodes, and for any function
p of n that lies below this threshold, the network will
contain many isolated nodes.

For connectedness to be obtained, not only must isolated
notes not exist, but there must also be no distinct
components. As we scale up the number of nodes, a
component with any fixed number of nodes becomes like a
single node. Thus this argument on isolated nodes can be
extended to cover finite-sized components. Finally, consider
the possibility of multiple components that grow with the
network. As the network scales up, two components, each
with an unbounded number of nodes, cannot be sustained,
as the sheer number of outgoing links in each component



makes the probability of the two components being
unconnected negligible. So the probability of no links
across the component will go to 0. This discussion is
summarized in a celebrated result that we can state as
follows.
Proposition 2.1 Consider the Poisson random graph model. The function

(log(n))/n represents a threshold for the connectedness of the network: for p(n)
that lies above this threshold, the network is connected, and for p(n) below this

threshold, the network is disconnected, with probability 1.

As the reasoning underlying this result is the basis of a
number of key results in the theory of random graphs, we
now provide a proof.

Proof. There are two steps in the proof. In the first step,
we will consider the existence of isolated nodes: clearly, for
a network to be connected, it must contain no isolated
nodes. We will show that the postulated threshold suffices
to rule out isolated nodes. The second step will take up
components of size 2 until n/2, and we will show that for
probability p(n) respecting the threshold, the expected
number of such components goes to zero for large n.

Step 1: In a network with n nodes and with a probability
p(n) of a link, the probability that a node forms no links is
given by (1 − p(n))n−1. As p(n) becomes progressively small
and goes to 0 in large n, this probability of zero links is
approximately equal to (1 − p(n))n. Moreover, as p(n)/n →
0, we can approximate the probability by e−np(n). In
developing the threshold result, we will work with the
function , where f(n) → ∞ and f(n) < logn. With
this functional specification, the probability of zero links is
given by e f(n)/n. The expected number of isolated nodes is
simply e f(n). This grows without bound in n. We build on this
observation to establish that the required property of the
postulated function is log(n)/n.



Let Xn denote the random number of isolated nodes. Let
μn = E[Xn]. We show that the variance of Xn, E[(Xn)2]
−E[Xn]2 is at most twice as large as μn. Observe that the
expected number of isolated ordered pairs, E[Xn(Xn − 1)], is
given by n(n − 1)(1 − p)2n−3: this corresponds to the
absence of links from each member of the pair to all the
others and the link between the pair themselves. We may
write E[Xn(Xn − 1)] = E[(Xn)2] − E[Xn]. With this in hand,

We use this upper bound along with Chebyshev’s
inequality (Billingsley [2008]). Recall that Chebyshev’s
inequality says that for a random variable X, with mean μ
and standard deviation σ,  for every r. In
particular, from this derivation of the upper bound on the
variance of Xn, relative to μ, it follows that

for all r > 0. As μ →∞, this implies that probability Xn will
be arbitrarily large converges to 1 as n grows. In other
words, most networks will lie close to networks with an
unbounded number of isolated nodes. To complete the
proof of step 1, with regard to the threshold for isolated
nodes, we need to show that if p(n)/t(n) →∞, then the
probability of isolated nodes goes to 0 as n grows. Take a
function p(n) = (log(n) + f(n))/n, where f(n) →∞, but f(n)/n



→ 0. We now construct a variant of this argument to show
that the expected number of isolated nodes grows as e−f(n)

with n. This expectation tends to 0 with n. This can happen
only if the probability of at least one isolated node tends to
0 in n. This completes step 1 of the proof.

Step 2: This step of the proof shows that the expected
number of components of size 2 to n/2 converges to zero
when f(n) gets close to the postulated threshold function.
Let us say that Xk is the number of components of size k.
Let p(n) = (log(n) + f(n))/n, where, as before, f(n) →∞ and
f(n)/n → 0:

We explain the reasoning underlying the last three
inequalities. The first inequality holds because we abstract
from the probability of links within the components. The
second inequality holds because of Sterling’s formula 

. The third inequality holds because, for k ∈ [n3/4,

n/2], k2p ≤ knp/2 (and therefore e−knpek2p ≤ e−knp/2), and
because .

◼



Distances and diameter In many contexts of interest—spread
of information or disease is one example—we are interested
in how far nodes are from each other. One way to get a
sense of distances in a network is to measure the diameter
of the graph. Recall from chapter 1 that the diameter of a
connected graph is the largest geodesic distance across all
pairs of nodes.

Our interest is in large networks, and we consider the
case where pn is a constant so that p declines with n. To
develop a sense of diameters in such a graph, it is helpful
to imagine a sparse network in which most nodes have
similar degrees. With these remarks in place, we study
diameter in a tree network in which every node has exactly
d degrees or degree 1. Furthermore, to make the
computation simpler, suppose that there is a root node that
is exactly distance ℓ from all the leaves. Start from this root
node i. Each of its neighbors has d links. This means that
there are d + d(d − 1) nodes within distance 2 of node i.
Extrapolating, we see that the number of nodes within
distance k of root node i is

Simplifying, the sum of nodes within distance k may be
written as

So it follows that if we want to cover n − 1 nodes, it
would suffice to have an ℓ  neighborhood, where ℓ  solves
the following equation:



To get an approximate diameter in a tree network, we
can solve for (d − 1)ℓ = n − 1. Taking logs on both sides, it
follows that ℓ  is of order log(n − 1)/log(d − 1). The
diameter is at most 2ℓ . The key point to note is that the
diameter grows very slowly as n grows. To see this,
consider a few examples. Suppose that the degree of every
node is 11. The diameter for a network with 1, 000 nodes is
6, and for a network with 100, 000 nodes, it is 10.
Homophily In chapter 1, we discussed the network of
friendships in an American high school and a social
network of favor exchange among households in Indian
villages. We noted there that a distinctive feature of these
networks was homophily: the tendency of individuals to
form links with others of their own type. Depending on the
context, the type would correspond to gender, year, race,
or caste. In the Erdὄs-Rényi model, the probability of
linking is the same between every pair of individuals. We
now extend the basic model to illustrate how it can
accommodate homophily. A simple way to think of
homophily in the Erdὄs-Rényi model is to suppose that
there are many groups, and that the probability of a link
between two individuals within a group is different from
the probability of a link between two individuals in different
groups. Let there be M groups, and suppose that the
probability of linking within group i is given by pii ∈ [0, 1],
while the probability of a link between two individuals
belonging to groups i and j is given by pij ∈ [0, 1]. These
different probabilities define a random graph that is
referred to as the stochastic block model (Holland, Laskey,
and Leinhardt [1983]).

A special case is where pii = ps while pij = pd, where ps >
pd. Figure 2.4 illustrates networks in a society with 50
individuals that consists of two equal-sized groups, Blue
and Red. In panel (a), we have a uniform Erdὄs-Rényi
graph, with average degree 4. In panel (b), we have a



graph in which the probability within the group is 0.15,
while the probability of linking across groups is 0.03. The
two graphs have a similar average degree, but the
differential probabilities of linking create strong homophily
effects. In panel (c), we have a uniform Erdὄs-Rényi graph
with average degree 8, and in panel (d), we have a graph in
which the probability within the group is 0.30, while the
probability of linking across groups is 0.01. The average
degree in the two networks is the same, and again we see
that the density of links is significantly higher within each
group compared to pairs of individuals across groups.



Figure 2.4 
Stochastic block random graphs.

The Erdὄs-Rényi random graph model is probably the
most widely studied model of networks. The reason for its
popularity is that it is easy to present and provides insights
into the most fundamental questions concerning networks:
the determinants of the degree distribution, the
connectivity, and the diameter of the graph. A major
attraction of this model is that the methods of analysis are
transparent and prove useful when we go beyond the basic
model and study variations. The stochastic block model



provides one illustration of this flexibility. At many points in
this book, when we study diffusion and epidemics, games
on networks, and network interventions, we will return to
this model.

While the model is theoretically very attractive, from an
empirical point of view it has some serious weaknesses.
One problem is that for large graphs, the network will
display negligible clustering—observe that since link
probability is independent across pairs of nodes, the
clustering will be of the order of probability of linking and
this probability gets close to zero in large graphs (it is of
order λ/n).

To get a sense of the numbers, let us revisit economics
coauthor networks. Table 2.1 (based on Goyal, Leij, and
Moraga-González [2006]) presents some aspects of the
economics coauthor network through the period 1970–
2010. We see that, in the 2000–2010 period, the average
degree is around 2: if links were formed at random, the
clustering would be equal to the probability of a link and
would be tiny (smaller than 0.001). However, the clustering
coefficient in the empirical network is 0.17. This is a
general feature of social networks: they exhibit very large
clustering relative to what would arise in the Erdὄs-Rényi
network with a similar mean degree.

Table 2.1 
Coauthorship network in economics: 1970–2010

Decade 1970s 1980s 1990s 2000s

Total authors 32,936 46,181 82,135 151,953
Average degree 0.894 1.268 1.617 1.951
Standard
deviation of
degree

1.358 1.793 2.204 2.539

Size of giant
component

4,962 13,134 30,689 67,158

—as percentage 0.15 0.28 0.37 0.44



Decade 1970s 1980s 1990s 2000s

Clustering
coefficient

0.19 0.18 0.17 0.17

Average
distance

12.39 10.83 10.00 9.81

Source: www.aea.org/econlit/; Goyal, van der Leij, and
Moraga-González (2006).

The random graph differs from real-world networks in
one other critical dimension—degree distribution. Table 2.1
gives us a first sense of this discrepancy: the average
degree at 2 is very small, but the variance around 6.75 is
much larger. In a Poisson random graph, the variance
would be around 2. Thus the variance is greatly in excess of
what a Poisson graph would generate. Let us examine the
degree distribution in a little more detail. Figure 2.5 plots
the empirical degree distribution alongside the Poisson plot
(for a comparable average degree). We see that the
empirical degree distribution has many more low- and high-
degree nodes compared to the corresponding Poisson
network. These differences between the Poisson graph and
empirical networks motivate the study of alternative
models of networks. At this point, we turn to models that
can address the issue of skewed distributions.

http://www.aea.org/econlit/


Figure 2.5 
Coauthor network: Empirical versus Poisson distribution. Source: www.aea.org
/econlit/; Goyal, van der Leij, and Moraga-González (2006).

2.3 Preferential Attachment

The empirical study of skewed distributions originates with
the Italian sociologist and economist Vilfredo Pareto.
Pareto found that across a range of countries, the
distribution of income and wealth is very unequal. Skewed
distributions have also been documented in a number of
other contexts, such as upstream and downstream linkages
in input-output networks, the number of coauthors, and the
citations of scientific papers. These skewed distributions
are sometimes described as exhibiting a power law or
being scale-free. The wide occurrence of these distributions
encourages us to think of a general mechanism that may be
at work.

The theoretical study of the mechanisms underlying
skewed distributions may be traced to an early paper by
Simon (1955). This rich-get-richer story is central to the
study of processes leading to power laws. The existence of

http://www.aea.org/econlit/


power law degrees in networks was first noted in the
context of citation networks by de Solla Price (1965).
Motivated by this empirical finding, de Solla Price proposed
a theoretical model built on the rich-get-richer mechanism
identified by Simon (1955). In subsequent work, this
mechanism has been termed preferential attachment by
Barabási and Albert (1999). We will first present the
directed link model from de Solla Price (1976), and then we
will present the undirected link model from Barabási and
Albert (1999). The exposition in this section draws on
Easley and Kleinberg (2010), Newman (2018), and Jackson
(2008).

Recall from chapter 1, a fact concerning the World Wide
Web: the fraction of web pages that have k links is
approximately proportional to k−2 (see e.g., Broder, Kumar,
Maghoul, et al. [2000]). As the fraction varies in proportion
to k−2, the degree distribution was said to contain a power

law. More generally, the fraction of nodes with degree k is
given by P(k) = a/kc for some positive constants a and c. If
we take logs on both sides, we get the following equation:

Expressed in this way, we see that the log of probability
is a linear function of the log of degree. Thus the rate of fall
in probability is independent of the degree, giving rise to
the term “scale-free distribution.” Given any empirical
degree distribution, it is then possible to ask what values of
a and c offer the best fit. The interest is mainly in the value
of c—sometime referred to as the “Pareto coefficient” or
the “power-law coefficient”—as a is mostly used for the
purposes of normalization.

Figure 2.6 presents the degree-distribution plots in the
production network of four economies, the US, China,
India, and Germany (the Pareto coefficients of the fitted
curves are 1.65, 2.28, 2.25, and 1.84, respectively). These



plots draw attention to the magnitude of the power-law
coefficients: they often lie in the range 2 ≤ c ≤ 3, with
occasional values slightly outside this interval. A second
general point to bear in mind is that the empirical
distribution does not generally follow the power law over
its entire range. For example, in figure 2.6, the power law
distribution provides a good fit for the higher degrees, but
not for the lower degrees. In line with common practice, we
say that a degree distribution follows a power law if the
empirical degrees match the function for high degrees
above some cutoff point. We now present a simple model of
a growing network that generates skewed degree
distributions.



Figure 2.6 
Production network degree distribution (2014). Data from World Input-Output
Database. Source: www.wiod.org.

de Solla Price model of directed linking Suppose that links are
directed. By way of motivation, think of the process of
linking on the World Wide Web: pages are created at
regular intervals and numbered 1, 2, 3…. When page j is
created, it creates a link to an existing web page. With
probability p, the link is created at random with one of the
existing nodes, and with probability 1 − p, page j picks a
node i at random, but then forms a link with the page to
which i is linked. The linking based on copying gives rise to
a rich-get-richer dynamic: in this case, the probability of
linking with page ℓ is directly proportional to the number of

http://www.wiod.org/


incoming links of ℓ. So we can rephrase the copying part of
the linking process as follows: with probability 1 − p, page j
chooses page ℓ with probability that is proportional to ℓ ’s
current incoming links. This is the essence of the
preferential attachment: currently highly connected nodes
are likely to receive more new links.

If we run this process for many pages, the fraction of
pages with k incoming links will be distributed
approximately according to a power law 1/kc, where the
value of the exponent c depends, in an intuitively plausible
way, on the choice of p. As p becomes smaller, most of the
linking is driven by the copying element, which means that
the rich-get richer element gets correspondingly stronger.
We now present the details of this process and explicitly
compute the value of coefficient c as a function of p.

Let di(t) be the links of node i at time t. The new link to
page i, therefore, can arise in two ways: (1) the new page
picks page i at random, and (2) the new page picks page j
and then links to i because j is linked to i. Observe that it is
the second route that creates the rich-gets-richer pressure,
as the probability of j being linked to i is greater the more
links i has. These two routes to an additional link for i are
captured in the following formula:

In principle, there is uncertainty in the growth of links of
nodes, as the links are probabilistic, but we can get a good
understanding of the process by considering a simpler
deterministic analog. To write out and solve the
deterministic process, we need to specify the starting point
and the rate of change over time. Let us say that at the
start, every node has an in-degree of 0. We write the rate of
change as being equal to the expected change in incoming
links:



Dividing both sides by p + (1 − p)di, we get

Integrating both sides and rearranging terms, we arrive
at

where c is a constant. Taking exponents on both sides and
setting A = ec, we get

The degree of node i at time t is then given by

Noting that di(i) = 0, we can obtain A = p/i1−p. This allows
us to rewrite di(t) as

Equipped with this formula, we proceed and compute the
fraction of nodes/pages that have a degree more than k at
time t. Given k, using equation (2.21), it is possible to
compute the point of entry of a node that has degree k at
time t. Define this i as it(k):

Given the deterministic process of linking, the nodes with
a degree greater than k at time t are the nodes that were



born before it(k). This means the fraction of nodes with a
degree greater than k is

The negative of the derivative of this expression with
respect to k gives the frequency of degrees with in-degree
k:

Our discussion may be summarized in the following
result.
Proposition 2.2 In the preferential attachment model of linking, with a large

number of nodes, the fraction of pages with in-degree k is proportional to

k−(1+1/(1−p)). This yields a power-law distribution with exponent 1 + 1/(1 −p).

If p is close to 1, the linking is mostly random, the
reinforcement is minimal, and the coefficient takes on very
large values. This means that large in-degrees are very
unlikely. On the other hand, if p is very small, the
reinforcement aspect of linking is strong: the coefficient is
close to (but larger than) 2. Figures 2.7(a) to 2.7(c)
illustrate networks with 50 nodes corresponding to three
values of the exponent—2.25, 2.5, and 3, respectively.
Figure 2.7(d) plots the degree distributions of these
networks. Observe also that as the coefficient increases
from 2.25, to 2.5, to 3, the probability of higher degrees
falls, which is reflected in the red curve being located
above the blue curve, which in turn is located above the
green curve.



Figure 2.7 
Networks with preferential attachment.

Barabási and Albert (1999)’s model of undirected linking Let us
now take up the undirected linking version of the
preferential attachment model. Suppose that nodes are
born at times i ∈{0, 1, …t, …} and form m links with distinct
existing nodes when they enter. To keep matters simple,
assume that there are enough nodes at the start and they
have the same number of links. A new node forms links



with an existing node with a probability that is proportional
to its links (relative to the total links). Let di(t) be the links
of node i at time t. Then the probability of a new link for
node i at time t is given by

Since m links are created by every i, it follows that at time
t, there are mt links and 2mt degrees. So the probability
may be written as

In principle, this is a stochastic process, but following the
approach outlined in the de Solla model presented earlier,
we will examine the deterministic approximation in which
the rate of change of degree is equated to this probability
of change in degree. With this in mind, we write the rate of
change of degree as

The differential equation with initial condition di(i) = m
has the solution

We can use the solution to explicitly derive the long-run
degree distribution. Given d, we can compute the point of
entry of a node that has degree d at time t, using equation
(2.28). Define this i as it(d):



The nodes with a degree greater than d at time t are simply
the nodes that were born before it(d). This means the
fraction of nodes with a degree greater than d is (m/d)2,
which in turn means that the distribution function is

The frequency of degrees is then simply the derivative,
given by

The Barabási-Albert model has a striking simplicity.
However, from an empirical point of view, this model is
somewhat restrictive, as it yields an exact Pareto
coefficient of 3. There are a number of directions in which
the model has been extended. For instance, we can allow
multiple links to be formed by new entering nodes, the
removal of edges, non-linear preferential attachment, and
nodes of varying quality.

The central motivation for the preferential attachment
model was the degree distribution. Let us examine the
Pareto coefficient more closely, as it offers a way to tune
the degree distribution. A key feature of the degree
distribution is inequality in degrees. We now examine this
issue of degree inequality through a study of dispersion in
power-law networks. Recall that the mean of a degree
distribution P(d) is

The second moment is the mean square:

More generally, we may write the mth moment as



Suppose that the degree distribution obeys a power law
with coefficient a for degrees above dmin. Then we may
write the expression for the mth moment as

As the probability is slowly moving for large d, we can
approximate the second term by an integral so that

The first term is a finite number whose value depends on
the (possibly non-power law) probability distribution for
low degrees. The second term depends on the values of m
and c. If m − c + 1 < 0, then the bracketed term has a
finite value; if m − c + 1 > 0, then the bracketed sum
diverges. Thus ⟨dm⟩ is finite if and only if m + 1 < c. So, for
instance, ⟨d2⟩, which is the variance in degrees, will be
bounded if and only if c > 3.

The raison d’être for the preferential attachment model
is on providing a mechanism that can account for an
empirically observed power law degree distribution. The
great power of the model in explaining power laws has led
researchers to investigate other properties of the networks,
such as connectivity, network diameter, and clustering. In
networks that exhibit a power law degree distribution, the
presence of highly connected hubs brings nodes closer to
each other, suggesting that the network is connected and



the diameter is smaller than the diameter in a Poisson
random graph with a similar average degree (especially for
large networks). The clustering coefficient becomes
negligible in large networks (although it declines at a
slower rate with respect to the number of nodes compared
to the Poisson graph). See Barabási (2016) and Newman
(2018) for a comprehensive study of the properties of
networks generated by the preferential attachment model.

2.4 The Configuration Model

The degree distribution provides a bridge between the
micro and the macro aspects of networks and it has
received a great deal of attention. Interest in more general
degree distributions that go beyond the Poisson and the
power law distributions has grown with our expanding
empirical knowledge of networks. In this section, we
present a widely studied model called the “configuration
model.” Early contributions to the study of the
configuration model include Molloy and Reed (1995),
Newman, Strogatz, and Watts (2001) and Chung and Lu
(2002a). Our exposition draws on Newman (2018) and
Jackson (2008).

The configuration model may be seen as a model of a
random graph with a given degree sequence. The exact
degree of each individual node in the network is fixed. This
in turn means that the number of edges is fixed. Given the
sequence of degrees d1, d2,..dn, the number of edges is 

. Let us now describe the mechanics of how the
degree sequence is constructed.

Let us start with an arbitrary degree sequence d1,.., dn

for n nodes. We can create a random graph with this
degree sequence as follows: Assign node i, di stubs. There
are thus  stubs. We choose two stubs uniformly at
random and connect them. We then take two more stubs
from the remaining 2m− 2 stubs, and so forth. This yields a



network in which every node has the degree that we
started with. Moreover, as we move across possible
matchings of stubs, we will traverse the various possible
networks that are all consistent with the original degree
sequence. The configuration model is then an ensemble of
networks in which each matching of stubs obtains with
equal probability. The uniform distribution over matchings
has an important implication: each stub is equally likely to
be matched with every other stub. This allows us to
interpret the resulting network as being random and
permits use to analyze a number of interesting questions,
such as the size of the giant component and its diameter.

Before we turn to these questions, we need to clarify a
couple of technical issues in the construction of the
configuration model outlined above. First, the network may
contain self-edges (if two stubs from the same node are
matched) and/or multiple edges (if multiple pairs of stubs
from two nodes are matched). However, because the
numbers of such self-edges and multiple edges are
constant, as we raise the number of nodes, they become
progressively negligible and therefore can be ignored when
we consider large populations. A second remark pertains to
the specification of the model in terms of degree sequence:
often our interest is in the degree distribution rather than
the degree sequence. If we start with degree distribution
p(d), then we can compute the probability of a specific
degree sequence {di} as Πipdi

. We can use this definition to
study the average value of objects of interest in the
network ensemble with degree distribution pd.

The configuration model has attracted a great deal of
attention over the past two decades. Due to space
constraints, we will restrict ourselves to a discussion of the
diameter of general random graphs. For a comprehensive
exposition of the configuration model, the interested reader
is urged to consult Newman (2018).



We build here on the ideas proposed in Newman,
Strogatz, and Watts (2001) and Chung and Lu (2002a), to
provide approximate estimates for the diameter in general
random graphs. For expositional simplicity, we will
consider a tree network with degree distribution P(d) and
mean ⟨d⟩. Suppose that the degrees of nodes are at least
approximately independent (this is true in a Poisson
random graph when n is large). How many degrees does a
neighbor node picked at random have?

To answer this question, it is useful to consider the
following related question: Suppose that we randomly pick
a link in the network. What is the degree of one of the ends
of the link? Consider a simple example, in which nodes
have either degree 1 or degree 2 and the two degrees are
equally likely (i.e., P(1) = P(2) = 1/2). In the case of four
nodes, let network g = {g12, g23, g34}. If we fix a node and
pick one of its links at random, we will connect with a node
of degree 2 with probability 2/3 and a node of degree 1
with probability 1/3. This is intuitive, as nodes with degree
2 are more present in links than are nodes with degree 1.
Building on this argument, we say that for a network with
degree distribution P(d), if we were to pick a link at
random and then look at the degree of an end of the link
(picked with equal probability), the degree distribution of
that node would be given by

This degree distribution is sometimes referred to as the
“excess degree distribution.” Note that this distribution is a
property of random graphs when the degrees of neighbors
are independent: this means that the degree of the node at
the other end does not depend on the degree of the initial
starting node.



Applying this excess degree distribution, we may infer
that the expected number of new neighbors of a neighbor is

Before proceeding further, it is worth noting the slightly
unexpected nature of this excess degree distribution and its
implications. In particular, note that the expected degree of
a neighbor is

And the difference between the average neighbor degree
and the average degree in the network is

Thus the average degree of a neighbor is larger than the
average degree in the network, so long as there is a
positive variance in degrees. This is known as the
“friendship paradox” (Feld, S. L. 1991).

Building on equation (2.39), we can write the expected
number of i’s second neighbors (i.e., the neighbors of
neighbors of i) as

Reasoning as in the simple tree example here, as we
reach outward from node i to distance ℓ, we cover



To estimate the diameter of the graph, we require a
number ℓ that covers n − 1 nodes; that is,

Taking logs and simplifying, we get

Recall that in the Poisson degree distribution, ⟨d2⟩ = ⟨d⟩
+ ⟨d⟩2. In the Poisson case, we can then rewrite equation
(2.45) as follows:

We see that if the expected degree is large, then the
expression may be approximated by ℓ = log(n − 1)/log(⟨d⟩),
which looks similar to the original derivation for the
simplest case of a tree with a unique root. Thus if we
abstract from cycles, the ratio of logs of the number of
nodes and the average degree offers a rough estimate of ℓ
(and also therefore the diameter). While these numbers are
approximate, our discussion suggests that in large random
graphs, the diameter is likely to be small.

We conclude with the remark that, as in the Poisson
random graph, clustering becomes very small for large
values of n in networks generated through a configuration
model.

2.5 Small-World Networks

In chapter 1 (and earlier in this chapter), we discussed the
network of economics coauthors. In addition to having a



small average distance, the network exhibits a high
clustering coefficient. The Poisson random graph model
and the preferential attachment model both generate small
distances, but they exhibit negligible clustering. How can
we reconcile high clustering and small distance?

To develop a sense of the difficulty of reconciling small
path lengths and clustering, consider the following simple
example. Suppose that everyone has 100 friends. As I have
100 friends, and each of my friends has 100 friends, if none
of the friends overlap, I will have 10,000 distance 2 friends.
Extrapolating on this, I would have 1 million distance 3
friends, and 100 million distance 4 friends. So short
distances are natural in this world, and indeed would be in
any network with reasonable degree that is a tree.
However, in this example, observe that we are assuming
that there is no overlap among friends—in other words, no
triangles. To see the impact of this assumption in its
extreme form, suppose that all my friends are friends of
each other. In that case, distance 2 friends will be the same
as my immediate friends, as all the friends of my friends
are also my friends. Indeed, the circle of friends of 100 will
constitute a distinct (and disconnected) clique and
therefore will have no paths to other cliques. In other
words, the average distance between nodes in the network
will be unbounded. While this is a very extreme example, it
helps bring out the point that reconciling small average
distance and high clustering may be challenging.

In a celebrated paper, Watts and Strogatz (1998)
proposed a resolution to this tension with the help of the
following simple model. Their approach has an initial
network of n nodes arranged around a cycle, which are
connected to their nearest 2 neighbors on either side. So
there are 2n links in all. The degree distribution is perfectly
equal: everyone has degree 4. The diameter in this network
is roughly n/4 (the average distance is roughly n/8), and the



clustering is 1/2. Observe that as n grows, the diameter
will grow too. Figure 2.8(a) illustrates this starting point.
How can we contain the growth of the mean distance as n
grows?

Figure 2.8 
Link rewiring and small-world networks, based on Watts and Strogatz (1998).

The key idea is the “rewiring” of links: pick a link (A, B),
with a very small probability p, fix one side to node A (for
example), and then pick a new partner selected at random
from all the other nodes. The surprising finding of Watts
and Strogatz (1998) is that for low and modest values of p,



the average distance falls very sharply, while the clustering
remains high and stable.

To get a sense of the numbers here, suppose that n = 25,
so there is a total of 50 links; the network is presented in
figure 2.8(a). Let us rewire 6 links; this leads us to figure
2.8(b). An inspection of the network suggests that the
average distances have come down rather sharply. When
we rewire all links (i.e., p = 1), we arrive at figure 2.8(c), a
random network with very small average distances. Let us
examine the changes more systematically.

The two objects of interest are the mean distance or the
average path length L(p) and the clustering coefficient
C(p). Recall that L(p) is defined as the number of edges in
the shortest path between two vertices, averaged over all
the pairs of vertices. Recall also that the clustering
coefficient C(p) is defined as follows: If node v has kv

neighbors, then there can be at most kv(kv − 1)/2 edges
between them. Cv is the fraction of these edges that
actually exist in the network. Define C(p) as the average of
Cv over all v. Figure 2.8(d) presents a simulation of this
thought experiment in which we vary the values of p and
examine the effects on L(p) and C(p). It presents a
summary of simulation runs: on the x-axis we vary the
fraction of rewired links all the way from 0 to 1. The y-axis
shows that there is a wide range of rewiring probability—
ranging from.001 to.01—for which clustering remains close
to the original local interaction network, while the average
distance falls precipitously relative to distance in the
original network.

How can we account for this pattern? The intuition for
this is that a large number of long paths are shortened
through the relocation of a few links from short to far
range. Meanwhile, as only 6 out of 50 links are affected,
most of the links remain as before, so the clustering is only
marginally lowered.



We may summarize our short discussion as follows: In

the structure of small worlds, starting with a sparse graph

on a cycle, the clustering remains stable for a broad range

of rewiring probabilities, while the diameter comes down

sharply with a small probability of rewiring.

We conclude this section on a more general note by
narrating the history of the idea of small worlds.

2.5.1 A Brief History of the Small-World Idea

The origins of the small-world idea may be traced to the
Hungarian writer Frigyes Karinthy, who wrote a short story
called “Lancszemek,” in which two characters believed that
any two individuals on Earth could be connected to each
other through a chain of no more than five acquaintances
(Karinthy [1929]). These literary origins were followed by
academic research in the 1950s by Ithiel de Sola Pool and
Manfred Kochen, who wrote a paper titled “Contacts and
Influence,” which proposed a number of ideas relating to
social networks and discussed ways of quantifying the
distance between people through chains of connections.
The article eventually appeared as de Sola Pool and Kochen
(1978–79).

The next major development were the experiments
undertaken by the social psychologist Stanley Milgram. In
his first experiment, there were 296 randomly chosen
starting individuals (located in Nebraska, a state in the
US). Each starter was asked to forward a letter to a target
individual. The personal details of the target—the name and
the address (a suburb of Boston, Massachusetts) and the
profession (stockbroker)—were provided. The starter was
asked to forward the letter to someone known on a first-
name basis so it would reach the target as quickly as
possible. The letter therefore passed through a chain of
acquaintances until it arrived at the target. In all, 64 letters
(out of the 296) arrived at the target; the rest did not. The
path lengths ranged from 1 to 11, with a median value of 6.



In the Milgram study, the sample size was small, and even
within this small sample, the vast majority of the chains did
not actually reach the target. These concerns have
motivated a number of follow-up empirical studies on small-
world properties of social networks (see e.g., Dodds,
Muhamad, and Watts, 2003).

It is worth commenting on the relation between these
small-world experiments and the network models of small
worlds. In the model of small worlds, there are short paths
between individuals that create the possibility of
communication across the network using short paths.
However, the problem posed in the original Milgram
experiments (as well as the follow-up experiments) asks an
individual to find someone through chains in the network:
this requires knowledge of where people are located in a
network. In other words, the Milgram problem is one of
navigating a network to find someone whose whereabouts
may or may not be known. Networks that have very short
average distances may nevertheless be difficult to navigate.
For instance, consider a core-periphery network in which
the large core is a clique and every member of the core is
linked to a large number of individuals. The diameter in
this network is 3, so the average distances are small.
However, navigation may be difficult. Suppose that every
node knows the identity of its neighbors. Now suppose that
the origin and the target are both peripheral nodes and an
individual can search through one link at a time. It could in
principle take a very long time for a peripheral node to
locate such an anonymous target. The navigation problem
would be a lot simpler if the potential target had clear
markers of identity and these markers were in turn highly
correlated with the corresponding core node to which they
were linked. These remarks draw our attention to the
importance of correlations between the links individuals
have and their types or their characteristics.



2.6 Network-Based Linking

The preferential attachment model delivers skewed degree
distributions but fails to account for clustering, while the
small-world model provides an account for clustering but
exhibits relatively similar degrees. We now present a model
of a growing network that combines features of preferential
attachment with an additional feature—links are formed
with neighbors of nodes found at random. This model
generates networks with skewed degree distribution, as
well as significant clustering levels. Our presentation is
based on Vazquez (2003) and Jackson and Rogers (2007).

Let us suppose that time proceeds in discrete steps (t =
1, 2, 3, …), and at each point t > 1, a new node enters. So
Nt is the set of nodes at time t. There is a contacting
process followed by a linking process. Let us describe the
contact process first. At birth, a node picks randomly, and
without replacement, mr nodes from set Nt−1 and forms
links to them. She then picks mn nodes randomly, without
replacement, from the neighbors of the mr nodes picked at
random. Thus we can say that m = mr + mn is the number
of outward links formed by every entering new node. It is
important to bear in mind that the neighbor of i is a node j
such that gij = 1. In other words, we are using only
incoming links for the indirect linking part of the process.

To make sure that the process is well defined, let us
suppose that there are enough nodes and links at the start.
Suppose that at the start of time t, node i has di(t) incoming
links. What is the probability that it gets another link in
period t? We note that links are formed via random draws
uniformly from the population and indirectly by following
outlinks from other nodes that have been picked uniformly
at random. Putting together these two ways of forming
links, we may write the expected number of new links for
node i as



Substituting m = mr + mn in equation (2.47) yields us:

which is increasing linearly in di(t). Thus the probability of
getting a new link is increasing in the number of existing
links. This is the preferential attachment aspect of this
model.

Observe that this is a complicated model because the
evolution of the network depends on network-based links
and the network is itself stochastic. As in the study of the
preferential attachment models described previously, we
can employ a deterministic approximation to solve the
model.

Using the deterministic approximation, we may write the
rate of change in links as

Let us set the initial condition for this differential equation,
di(i) = d0 ≥ 0. Define r = (mr)/(mn) as the ratio of random to
network-based links.

The solution to the differential equation is given by

where di(t) is the in-degree of node i at time t ≥ i. We use
this formula to develop the degree distribution of the
network. Using methods similar to those in the preferential
attachment model, we can conclude that the in-degree
distribution of this mean-field process has a cumulative
distribution function of



for d ≥ d0 and each time t.
Starting with the in-degree equation (2.50) and with the

help of equation (2.51), we get the formula for the tail
distribution:

Equation (2.52) permits us to make a number of
observations. First, note that if d is large relative to rm, the
tail probability is roughly linear in log(d). Second, for small
r, the distribution is roughly linear in d and exhibits a
power law. On the other hand, if r is large, most links are
random and the distribution is close to a random linking
model with a growing number of nodes.

We next turn to clustering levels in this network. Recall
that the clustering coefficient in the directed network may
be described as the fraction of transitive triples:

A newborn connects to mr parent nodes, and each one
has m outgoing links. Thus an upper bound of potential
triples (for a single node i) is given by m2. But each
newborn forms mn connections with the neighbors of
parents, so we get the following expression as a lower
bound for clustering:

So, for instance, if m = 4 and r = 1, then the lower bound
for clustering-coefficient is given by 0.125. Moreover, in



line with our intuition, it is falling in the fraction of
randomly drawn links.

2.7 A Concluding Remark

This chapter has provided a brief introduction to models of
random graphs—the Erdὄs-Rényi model (and its variant,
the stochastic block model), the configuration model, the
preferential attachment model, the small-world model, and
a model of random and neighbor linking. This introduction
helps us appreciate how different mechanics of linking give
rise to network properties such as connectivity, degree
distributions, small distances, and clustering.

In the rest of this book, we will locate the network
concepts introduced in chapter 1 and our understanding of
the mechanics of linking introduced in this chapter within a
perspective that sees networks as arising out of the goal-
driven activity of individuals and collective entities (like
firms and the state).

2.8 Reading Notes

The chapter proposes a number of models of random
graphs. At a basic level, one may imagine a random graph
as specifying a number of nodes, n, and a number of
links/edges, m. The links may be ordered in different ways,
and this gives rise to different networks. Say that every
possible arrangement of the m links is equally likely. This
model gives rise to an ensemble of networks, denoted by
G(n, m). We may ask what the properties of these networks
are, say, in terms of their connectivity or of distances. As
the model describes an ensemble of networks, it is
reasonable to ask questions about the average properties of
the networks. Some properties of these networks, such as
the average degree, are easy to derive; however, it turns
out that others, like connectivity or diameter, are less easy
to calculate. Interest has focused on a slightly different



model, which allows much more complete answers with
regard to the properties of networks.

This model is known as the “G(n, p) model.” In this
model, the number of nodes is n and there is an identical
and independent probability p for the formation of a link
between any pair of nodes. Thus the number of links is no
longer fixed but varies depending on the realization of
random draws. As in the original G(n, m) model, the model
describes an ensemble of networks. We can pose questions
about degree distribution and connectivity with regard to
the average network generated by this process. The G(n, p)
model was first studied in Solomonoff and Rapoport (1951).
However, the model is often referred to as the “Erdὄs-
Rényi random graph model” due to three papers published
by Paul Erdὄs and Alfred Rényi in the late 1950s and early
1960s. The Erdὄs-Rényi model is sometimes also called the
“Poisson random graph model” or the “Bernoulli random
graph model.” There is a vast body of literature on this
model and its variants. For excellent overviews of this
work, see Bollobás (1998, 2004).

In chapter 1, we drew attention to the presence of very
highly connected nodes—also called “hubs”—in a variety of
real-world networks. This preponderance of hubs is
accompanied at the other end of the distribution by the
existence of a very large number of nodes with very small
degrees. The degree distribution thus appears to be quite
different from a Poisson degree distribution, where the vast
majority of nodes have degrees close to the mean degree.
The study of unequal networks may be traced to an early
paper by Derek de Solla Price (1965), in which he showed
that the distribution of citations was similarly very skewed
both toward the bottom and the top.

Building on Simon (1955) (and earlier literature in
statistics), de Solla Price (1976) proposed a network model
of linking that generated a power law degree distribution.



The work of de Solla Price went relatively unnoticed until a
revival of interest in networks in the 1990s, when Barabási
and Albert (1999) present a simpler and undirected link
version of the original Price model. It also brings it closer
to a broad range of empirical applications. For a systematic
and wide-ranging overview of various aspects of the model,
see Barabási (2016) and Newman (2018). For a fascinating
experimental study of how information releases can give
rise to power laws, see Salganik, Dodds, and Watts (2006).

Having studied the Poisson and power law degree
distributions, it is only natural that we should consider a
framework that allows general degree distributions. The
configuration model is an example of such a framework. A
model of specific degree sequence was proposed and
studied in the context of the existence of giant components
by Molloy and Reed (1995). Watts, Dodds, and Newman
(2002) study a number of properties of this model, such as
the phase transition at which a giant component first
forms, the mean component size, the size of the giant
component (if one exists), and properties of excess degree
distributions and average distances. Chung and Lu (2002b)
propose a smoother version of the model with expected
degrees and obtain results on the relation between the
power law coefficients and average distances in the
network. There is a large body of literature that examines
various aspects of the model. For a deeper and more
comprehensive overview of these developments, see
Newman (2018).

The presence of power laws has been noted in a number
of contexts, such as city population size, number of copies
of a gene in a genome, and firm size (we have already
mentioned the distribution of citations). At first sight, it is
puzzling that there is a similar macroscopic property in
very different contexts. The fact that the rich-get-richer
process can provide a common account is interesting, but
we should note that there are alternative explanations for



such networks. A parallel thread of research argues that
power laws may arise due to optimization in the presence
of constraints. An early paper by Mandelbrot (1953)
introduces this perspective, and it has been elaborated
upon by a number of authors since then. In chapter 3 (on
an economic theory of network formation), chapter 7 (on
network security), and chapter 11 (on the law of the few),
we will present economic models where both the
decentralized formation of networks and the optimization
of networks leads to hubs and highly unequal networks.

The model with rewiring of links giving rise to networks
with small average distance and high clustering comes
from Watts and Strogatz (1998). This model has given rise
to a vast body of research; see Watts (2004) and Newman
(2018) for an overview of this work. The discussion on
small-world experiments draws on the fascinating early
papers by Milgram (1967) and the follow-up by Travers and
Milgram (1969). With the advances in computing and
information technology, the small-world problem has been
explored by a number of more recent papers; prominent
contributions include Dodds, Muhamad, and Watts (2003).
The small-world experiments have given rise to the study of
the problem of navigation in networks. An important
element of whether a network is navigable lies in the
connection between network structure and individual
identity. For theoretical investigations on this subject, see
Kleinberg (2000) and Watts, Dodds, and Newman (2002).

Finally, in an attempt to reconcile unequal degrees with
clustering, we have presented a model that combines
growing network with network-based linking. The model is
taken from Vazquez (2003) and Jackson and Rogers (2007).
For a more comprehensive exposition of this model, see
Jackson (2008).

2.9 Questions



  1.  Consider the Erdὄs-Rényi model of random graphs. Let
P be the degree distribution corresponding to a
probability of linking p and P′ be the degree distribution
corresponding to a probability of linking p′. Show that if
p′ > p, then the degree distribution P′ first-order
stochastically dominates degree distribution P (for
definitions of stochastic dominance, see chapter 1).

  2.  Show that p(n − 1) = 1 is a threshold for the
emergence of a giant component in the Erdὄs-Rényi
model of random graphs.

  3.  Consider the Erdὄs-Rényi model of random graphs.
Show that t(n) = 1/n2 is a threshold function for having
at least one link.

  4.  The preferential attachment process gives early moving
nodes large advantages. Discuss. Hint: Suppose that in
a every period, a new node is born. Use the formulas in
this chapter to ask how long it would take a node born
in period 10 to have the same number of connections as
the firstborn node in period 10.

  5.  This question is inspired by an experiment on
popularity ratings reported in Salganik, Dodds, and
Watts (2006). Prominent news sites like that of the BBC
and the Guardian present links to their stories; readers
can click on these links to access various pieces of
news. We may define the popularity of a news item by
the number of readers who click on the corresponding
link. Suppose that a news company is considering
adding a counter next to a news link that would show
the number of readers who have already clicked on that
link. Discuss the effects of such readership information
on the popularity distribution of news items.

  6.  Consider the model of growing network presented in
section 2.3. But now suppose that a newborn node
forms k links with uniform probability with each of the



existing nodes. Derive the master equations
corresponding to this process for the growth in in-
degree (for large n) and show that (in the limit of large
n) the in-degree distribution have an exponential
distribution: p(d) = Ce−λd, where C is a normalization
constant and λ = log(1 + 1/k).

  7.  Consider the Jackson-Rogers model of growing
networks discussed in section 2.6. Show that as we
raise the fraction of random linking from r to r′, the
corresponding degree distribution is less skewed; that
is, P′ second-order stochastically dominates P (for
definitions of stochastic dominance, see chapter 1).



3
The Costs and Benefits of Links

3.1 Introduction

In a number of the networks presented in the Introduction
and chapter 1, links are chosen by purposeful agents. For
example, firms decide on whom to source their inputs from,
and this gives rise to production networks. Airline
companies decide on the routing network they operate.
Similarly, individual economists decide on whom to
coauthor with and school pupils choose whom to be friends
with. It is therefore reasonable to approach the formation
of networks through an examination of the motivations that
individuals or firms have in forming links. This chapter
provides an introduction to a theory of network formation
in which purposeful entities create links based on their
costs and benefits.

A fundamental dimension of linking is who can decide on
a link. For instance, on Twitter, an individual user can
decide on whom to follow, while on Facebook, a friendship
link requires that both parties agree. We may think of a link
on Twitter as being unilateral or one-sided, while a link on
Facebook is bilateral or two-sided.

We start with a consideration of the following simple
scenario: There is a group of individuals who each have
some information that is valuable to everyone. Each player
can form links with a subset of others. The model is taken



from Goyal (1993) and Bala and Goyal (2000a). In this
model, the linking decisions of individuals give rise to a
directed network. The benefits to an individual in this
network depend on the number of other people that they
have a directed path to, and the costs depend on the
number of links they have formed. Thus an individual’s
links create paths for others. This potential for a link
between two individuals, A and B, to be used by another
individual, C, is a central feature of the process. One-sided
link formation can be formulated as a noncooperative
game. We study the networks that arise in the Nash
equilibrium of the game.

We find that economic models of linking lead to sharp
transitions in network structure—especially with regard to
connectedness—at certain thresholds that relate to the
costs and benefits of links. A second finding is that there is
a tension between strategically stable and efficient
networks. The sharp transitions in network architecture
and the tension between individual incentives and
collective interests and ideas will be a recurring theme in
our study of linking and network formation throughout the
book.

We then turn to a study of bilateral or two-sided links—a
link between A and B requires the assent of both of them.
Following Jackson and Wolinsky (1996), we are led to study
the incentives of not just one person, but of joint interests.
This leads to the notion of pairwise stability. A comparison
of pairwise stable networks and Nash networks (from the
one-sided model) helps us understand the role of the link
formation protocol in shaping network architecture.

The economics literature on network formation has been
a very active and fruitful field of research over the past
quarter-century. As linking activity occurs across a very
wide range of contexts, the literature has expanded to
accommodate a number of issues that include the dynamics
of linking, the study of linking in combination with assorted



activities, weighted graphs, and nonspecific networking.
We provide an overview of these strands of work and point
to subsequent chapters of this book where these subjects
are explored at greater length.

In chapter 2, our study of random graphs drew attention
to thresholds and sharp transitions in networks. These
transitions also arise in an economic approach. But perhaps
the central distinguishing feature of an economic approach
is its attention to goal-driven linking by individuals. The
central role of individual choice calls for an explicit
consideration of the preferences, knowledge, and
rationality of individuals. In particular, our discussion will
draw attention to how linking by one individual creates
benefits (and costs) for other individuals. We will refer to
the effect of one person on the payoffs of others as an
“externality.” In many applications of interest, the links of
one person also affect the marginal returns from links for
others; this gives rise to strategic interaction and games of
linking.

These spillovers give rise to two fundamental issues that
will recur throughout the book. One, externalities in linking
create a tension between what individuals choose and what
is in their collective interest. Two, strategic interactions
create the possibility of multiple equilibria. This draws
attention to coordination failures in the linking process.
These two phenomena—tension between individual and
collective interest and coordination failure—motivate a
study of appropriate policy interventions in networks.

The ideas we explore in the current chapter are central
to an economic approach to the study of networks. The
formal arguments we develop will be useful throughout the
book, especially in chapters 5–12 and in chapters 16, 17,
and 19.

3.2 One-Sided Links



This section presents an approach to network formation in
which individuals can unilaterally decide to form links with
others. This approach gives rise to a noncooperative game
that can be solved using the concept of the Nash
equilibrium. The model is taken from Goyal (1993) and Bala
and Goyal (2000a).

We consider a set of players given by N = {1, …, n}, with
n ≥ 2; let i and j be typical members of this set. A strategy
of player i ∈ N is a row vector si = (si, 1, …, si, i−1, si, i+1, …, si,

n), where si, j ∈{0, 1} for each j ∈ N∖{i}. Player i has a link to
j if si, j = 1. The set of pure strategies of player i is denoted
by 𝒮i. A strategy profile is denoted by s = (s1, …, sn), with
the set of all strategies given by . There is an
equivalence between a strategy profile and a directed
network. Let 𝒢 be the set of directed networks on n nodes.
We shall say that  is the set of players with
whom player i forms a link and define  as the
number of connections of player i in network g. Note that in
the definition here, the superscript d refers to the directed
nature of the link. Similarly, define  as the
set of players who form a link with player i and define 

 as the number of players who form links with
player i. Recall that  is the out-degree and  the in-
degree of player i in network g. In the directed network g,
let  be the set of individuals accessed through
a directed path by i. We follow the convention that a player
accesses themselves, so the total number of players
accessed by player i in network g is given by ni(g) ≡ |𝒩i(g)|
+ 1.

Given a strategy profile s, let Πi(s) be the payoff of player
i. A Nash equilibrium is a profile of strategies ,
such that for every player i , for every si

∈𝒮i, i.e., every player is choosing the highest payoff
strategy, given the strategies of the other players. A Nash
equilibrium s* is said to be strict if all players choose a



strict best response, i.e., the inequalities defining the
equilibrium are strict for every player.

In the study of network formation, an important concern
will be the relation between equilibrium/stable networks
and socially desirable networks. Two aspects of social
desirability will be touched upon: efficiency and equity.

Two notions of efficiency are used: Pareto efficiency and
aggregate efficiency. A network g yields a profile of
individual payoffs Π(g) = (Π1(g), Π2(g), …, Πn(g)). A
network g is said to Pareto-dominate another network g′ if
Πi(g) ≥ Πi(g′), for all players i ∈ N, and there is a player j
such that Πj(g) > Πj(g′). A network g is Pareto efficient if
there is no other network g′∈𝒢 which Pareto-dominates it.

In the networks literature, a simpler aggregate notion of
efficiency has been more widely used. Define aggregate
welfare from a network g as

Network g is said to be efficient if W(g) ≥ W(g′) for all
g′∈𝒢.

Consider next the issue of equity. In sociology and
political science, social and economic networks have
traditionally been associated with the origins and
perpetuation of inequality. At several points in this book,
we will discuss the inequality of network outcomes.
Inequality can be measured in various ways; we will draw
upon the voluminous literature on economic inequality (for
an introduction to the subject, see Sen [1997]). Standard
measures of inequality include the range, variance, and
Gini coefficient. We will sometimes also consider the ratio
of maximum versus minimum (or the ratio of
maximum/median payoffs). The range of the payoffs in a
network is given by



where max refers to the maximum individual payoff and
min refers to the minimum payoff level in network g. The
variance of payoffs in network g is given by

where  is the average payoff.

3.2.1 The One-Way Flow Model

To illustrate the trade-offs that arise in the one-sided
linking approach, we present the one-way flow model taken
from Bala and Goyal (2000a). Denote the set of
nonnegative integers as 𝒵+. Let  be such that ϕ(x,

y) is strictly increasing in x and strictly decreasing in y.
Define each player’s payoff function Πi: 𝒢 → ℝ+ as

We may interpret ni(g) as the benefit that player i

receives from the network, while  measures the cost
associated with maintaining their links. Note that the
assumptions on the payoff function ϕ(.,.) allow both
increasing and decreasing marginal returns from
connections. The linear payoff function is a simple example
that satisfies these properties:

In other words, player i’s payoffs are the number of players
they observe less the total cost of link formation.

What is the architecture of networks that arise? To
answer this question, we will examine the Nash equilibria
of the game. We start by developing an important property
of Nash equilibrium networks: either no one forms any



links and the network is empty or every individual accesses
everyone else, and the network is connected. (We are using
the term connected slightly loosely here: as the network is
directed, the property we are after requires a directed path
from every player to every other player. In graph theory,
this property is referred to as “strongly” connected. For
ease of exposition, however, we will retain the simpler term
“connected” here). The argument underlying this property
is sketched below.

Suppose that i has paths to the most players and i does
not observe everyone. Then there must be a player j who is
not observed by i and who does not observe i (otherwise, j
would access more players than i). We argue that j can
earn a strictly higher payoff by forming a single link with i.
To see this in the simplest way, suppose that j has formed
links that include a link with k. By deleting all their current
links and forming a single link with i, they will access
strictly more players than i, since they have the additional
benefit of observing i. Since j was observing weakly fewer
individuals than i in their original strategy, and they are
forming weakly fewer links in this deviation, j strictly
increases their payoff through this deviation. This
contradiction means that i must observe everyone in the
society.

Building on this property, we can show that every other
agent will have an incentive to either link with i or to
observe them through a sequence of links (i.e., the network
is connected). Moreover, the network must be minimally
connected: if it is not, then there are two paths between a
pair of individuals and a player can delete a link and still
observe all the players, which would contradict the
optimality of actions in a Nash equilibrium.

Figure 3.1 presents examples of Nash networks in the
linear payoffs shown in equation (3.5). We see that
networks can have a variety of architectures, ranging from



a hub-spoke network to a cycle containing all players and a
number of intermediate structures with smaller cycles (we
refer to them as “petals”). We note that a given
architecture can be supported in various ways: for
instance, any of the n players can occupy the hub place in
the hub-spoke network—therefore, there are n equilibria
that support that architecture. Similarly, the cycle network
can be supported by any permutation of players on the
nodes of the cycle (i.e., there are n! Nash equilibria
supporting that architecture). Indeed, the number of Nash
networks increases quite rapidly with the number of
players; it is possible to show that there are 5, 58, 1,069,
and in excess of 20,000 Nash networks as n takes on the
values of 3, 4, 5, and 6, respectively. Thus the Nash
equilibrium is a fairly permissive requirement. Is there
some way to restrict the set of networks further based on
individual incentives alone?



Figure 3.1 
Nash networks: one-sided links model.

We observe that in the star network, the spoke player is
indifferent between a link with the central player and any
other spoke. In other words, the spoke player has multiple



best responses, which creates the possibility that the
individual may drift away from the star over time, as no
payoff losses are associated with a switch in links. This
motivates the study of a strict Nash equilibrium. Recall that
a Nash equilibrium is strict if every player chooses a strict
best response. It turns out that the requirement of
strictness is powerful and eliminates all but two network
architectures as candidate networks in our game.

The key step is a simple switching argument: in a Nash
equilibrium, if two players i and j have a link with the same
player ℓ, then player i will be indifferent between forming a
link with ℓ and forming a link with j. This means that every
player has one and only one player who initiates a link with
them; thus a nonempty strict Nash network has exactly n

links. From the arguments above, we know that a
(nonempty) equilibrium network is connected. It can be
shown that the cycle is the unique connected (directed)
network with exactly n links. Putting together these
arguments, we arrive at the following result on Nash and
strict Nash equilibrium networks.
Proposition 3.1 In the one-sided model with one-way flow, a Nash

equilibrium network is either connected or empty. A strict Nash network is

either a cycle containing all players or the empty network. In particular, (a) If

ϕ(x + 1, x) > ϕ(1, 0) for some x ∈ {1, 2, …, n}, then the cycle is the unique strict

Nash equilibrium. (b) If ϕ(x + 1, x) < ϕ(1, 0) for all x ∈ {1, 2, …, n − 1} and ϕ(n,

1) > ϕ(1, 0), then the empty network and the cycle are both strict Nash

equilibrium. (c) If ϕ(x + 1, x) < ϕ(1, 0) holds for all x ∈ {1, 2, …, n − 1} and ϕ(n,

1) < ϕ(1, 0), then the empty network is the unique strict Nash equilibrium.

For concreteness, let us apply this result to the linear
payoffs in equation (3.5). Proposition 3.1 says that the cycle
containing all players is a unique strict Nash equilibrium if
k < 1, the cycle and the empty network are strict Nash
equilibria when k ∈ (1, n − 1), and the empty network is a
unique strict Nash equilibrium when k > n − 1. Figure 3.2
depicts these equilibrium networks for n = 7. Note that in
this diagram, a link formed by player i with player j is



represented by a line joining i and j, and the arrow points
toward j.

Figure 3.2 
Strict Nash networks: one-sided link model.

Three aspects of this result are worth highlighting. The
first is that there is an intimate relation between the costs
and benefits of of links and the architecture of the network:
when the costs are smaller than stand-alone benefits, the
network is connected, while when the costs of accessing
everyone are larger than the benefits, the network must be
empty. In addition, for an intermediate range of values,
both empty and connected networks are possible.

The second is that there is a sharp threshold separating
the connected from the empty network at k = n − 1: just
below that level of cost, we get a connected network, and
just above that level, we get an empty network.

The third point is that in the range k ∈ (1, n − 1), there
are multiple equilibria that have extreme properties—one is
empty with no links while the other is connected. This
multiplicity is a recurring theme in strategic models of
networks because it reflects a fundamental dimension of



linking activity: the marginal returns to an individual from
forming a link depend on how many links others have
created. In this example, the marginal returns are 1 in the
absence of any links but may be n − 1 if a player forms a
link with someone who accesses everyone else. Thus for a
cost k ∈ (1, n− 1), the profitability of a link depends on
whether others have formed links.

As economic incentives to form links will be invoked in
different contexts throughout the subsequent chapters in
this book, it is valuable to develop a deeper formal
understanding of how to combine graph theoretic concepts
with strategic reasoning and we therefore present a proof
of the result here.

Proof of Proposition 3.1. The first step in the proof is to
show that a Nash network is either empty or minimally
connected. The focus is on the case ϕ(n, 1) > ϕ(1, 0); the
proof for the case ϕ(n, 1) ≤ ϕ(1, 0) is straightforward and is
therefore omitted.

Suppose that g is a nonempty Nash network. Choose a
player i ∈ argmaxk∈Nnk(g). Since g is nonempty, the set of
individuals accessed by i, xi = ni(g) ≥ 2, and the number of
their links . Furthermore, since g is Nash, Πi(g) =
ϕ(xi, yi) ≥ ϕ(1, 0). It is shown that xi = n. Suppose instead
that xi < n. Then there exists j∉𝒩i(g). Clearly, i∉𝒩j(g), for
otherwise player j would access strictly more players than
player i. Suppose that yj = 0: in this case, player j can
strictly increase their payoffs by forming a link with i

because ϕ(xi + 1, 1) > ϕ(xi, 1) ≥ ϕ(xi, yi) ≥ ϕ(1, 0). Hence yj

≥ 1. Now a variant of the same argument can be used to
show that player j can strictly increase their payoffs by
deleting all their current links and instead form a direct
link with player i. This contradicts the hypothesis of the
Nash equilibrium. It also implies that j ∈𝒩i(g), and since j



was arbitrary, this in turn means that xi = n in a Nash
network.

Let i be a player with xi = n as before. A player j is
critical to player i if ni(g−j) < ni(g). Let E be the set of
noncritical players for player i in network g. If j ∈
argmaxj′∈Nd(i, j′; g), then j is noncritical, so E is clearly
nonempty. Next, it is shown that if j ∈ E, then nj(g) = n.
Suppose that this is not true. If , then from the earlier
argument, there is a deviation for player j that increases
her payoff strictly. Thus . If xj = nj(g) < n, then player
j can delete all their links and instead form a single link
with player i. The earlier argument step concerning access
of all players in a Nash equilibrium can be used to show
that they benefit strictly from such a deviation. Thus g is
not a Nash network. This contradiction implies that nj(g) =
n for all j ∈ E.

The next step in the proof of connectedness establishes
that for every j1∉E ∪{i}, there exists j ∈ E such that j ∈
Nj1(g). Since j1 is critical, there exists j2 ∈ Nj1(g) such that
every path from j2 to i involves j1. Hence d(i, j2; g) > d(i, j1;
g). If j2 ∈ E, then the claim is proved; otherwise, by a
similar argument, there exists a player j3 ∈ Nj2(g) such that
d(i, j3; g) > d(i, j2; g). Since i accesses every player and n is
finite, repeating this argument no more than n−2 times will
yield a player j ∈ E such that j ∈ Nj1(g). Since nj(g) = n, it
follows that nj1(g) = n as well. Hence g is connected. If g is
Nash but not minimal, then a player can delete a link and
the network still remains connected. This means that the
player can strictly increase their payoffs by deleting a link,
contradicting the definition of a Nash equilibrium. We have
therefore shown that a nonempty network is minimally
connected.

The second part of this proof shows that the cycle with
all players is the unique, nonempty, strict equilibrium



network. Let g ∈𝒢 be a nonempty, strict Nash network. It is
shown that for every player k, there is one and only one
player i such that gik = 1. First, note that since g is
nonempty and an equilibrium, it must be minimally
connected. So for every player k, there is a player i such
that gi, k = 1. Suppose that there is another player j ≠ i such
that gjk = 1. Since g is minimal, it follows that gij = 0. Now
consider a strategy gi′ for player i in which they delete the
link with k and instead form a link with j and define gi′ = gi

− gik + gij. Then . Furthermore, since ,
clearly ni(g′) ≥ ni(g). Hence i earns weakly higher payoffs
from this new strategy, gi′, which contradicts the
hypothesis that g is a strict Nash network. As each player
has exactly one player forming a link with them and the
network is connected, it follows that the network must be a
cycle that contains all players. Parts (a)–(c) now follow by
direct verification.

◼

A central theme in the economic study of networks is the
question of performance. We start with a consideration of
efficiency. We will say that a network is efficient if it
maximizes the sum total of payoffs across the set of all
possible networks. Let us make some preliminary
observations to delimit the range of possible efficient
networks. First, consider the class of connected networks.
Every such network contains at least n links because every
player accesses everyone else in such a network and
therefore must form at least one link. The cycle network
containing all players has n links, so it must maximize
aggregate payoffs in the class of connected networks. As
the cycle is the only connected network with n links, we
know that if a connected network is efficient, it must be a
cycle.



The second observation concerns network externalities:
if an efficient network contains some links, it must be
connected (i.e., a partially connected network with multiple
components is never efficient). Thus an efficient network is
either empty or the cycle. The following result builds on
these observations to provide a complete description of
efficient networks.
Proposition 3.2 Suppose that the payoffs are given by (3.4). If ϕ(n, 1) > ϕ(1,
0), then the unique efficient architecture is the cycle containing all players,

while if ϕ(n, 1) < ϕ(1, 0), the unique efficient architecture is the empty

network.

Proof. Let F be the set of values  as g ranges over
𝒢. If ηi(g) = 0, then ni(g) = 1. If , then 

. Thus F ⊂{1, …, n}×{1, …, n − 1}∪{0, 1}.
Given (x, y) ∈ F∖{(1, 0)}, we have ϕ(n, 1) ≥ ϕ(n, y) ≥ ϕ(x, y)
since ϕ is decreasing in its second argument and increasing
in its first. For the cycle network gℓ, note that ni(gℓ) = n and
ηi = 1 for all i ∈ N. Next, consider any other network g ≠

gℓ: for each , then ni(g) ≤ n, while if , then
ni(g) = 1. In either case,

where we have assumed that ϕ(n, 1) > ϕ(1, 0). It follows
that aggregate payoffs are given by

Thus gℓ is an efficient architecture.
To show uniqueness, note that our assumptions on ϕ

imply that equation (3.6) holds with strict inequality if 
 or ni(g) < n. Let g ≠ gℓ be given; if ηi(g) ≠ 1 for even

one player i, then the inequality in equation (3.6) is strict,
which means that W(g ℓ ) > W(g). On the other hand,
suppose that  for all i ∈ N. As the cycle is the only



connected network with n agents and n links and g ≠ g ℓ ,
there must be an agent j such that ni(g) < n. Thus equation
(3.6) again implies that there is a strict inequality for
player j and W(gℓ) > W(g), proving uniqueness.

For the case where ϕ(n, 1) < ϕ(1, 0), let g be different
from the empty network ge. Then there is an agent j such
that . For this player,

while for every other player i,

The result follows by summing across Πj(ge) and all other
players i, Πi(ge).

◼

This result tells us in particular that for the linear payoffs
case given by equation (3.5), the unique efficient network
for 0 < k < n − 1 is the cycle containing all players and for
k > n − 1, it is the empty network. Thus efficient and
equilibrium networks both exhibit sharp transitions at key
threshold points.

A second point is worth noting: when we compare
proposition 3.1 to proposition 3.2, we see that for the cost
values in the range 0 < k < n − 1 and k > n − 1, an
efficient network is sustainable as a Nash equilibrium, but
in the range 1 < k < n − 1, an efficient network is a cycle,
while the empty network is also a (strict) Nash equilibrium.
Thus there is the possibility of coordination failure:
individuals may create an empty network even though they
could create a connected network in equilibrium. A final
remark is that the cycle is perfectly symmetric in terms of
the number of links and the number of payoffs.

In the basic model discussed here, the value of accessing
someone remains constant across path length. We now



consider a more natural setting, in which value declines
with distance. To appreciate the implications of this
change, we restrict our attention to the linear payoffs
model in equation (3.5) and introduce a decay parameter
that is given by δ ∈ [0, 1]. Given network g, if agent i has a
link with another agent j (i.e., gij = 1), then i receives
information of value δ from j. More generally, if the
shortest (directed) path in the network from j to i has q > 1
links, then the value of player j to player i is δq. The cost of
link formation is still taken to be c per link. The payoff to a
player i in the network g is

where d(i, j; g) is the geodesic distance from j to i. The
original linear model of equation (3.5) corresponds to δ =
1. We will follow the convention that if there is no path
between two individuals in a network, then the distance
between them is set equal to infinity.

The trade-off between the costs of link formation and the
benefits of short paths to overcome transmission losses is
key to understanding the architecture of networks in this
setting. Building on the arguments in proposition 3.1, it can
be shown that a strict Nash equilibrium network is
connected or empty. A question at the end of the chapter
develops the argument for this property. We next turn to
other properties of Nash equilibrium networks.

If k < δ −δ2, the marginal return from replacing an
indirect link by a direct one exceeds the cost of link
formation. It is a dominant strategy for a player to form
links with everyone: the complete network is the unique
Nash equilibrium. On the other hand, if δ −δ2 < k < δ, a
player would want to directly or indirectly access everyone,
meaning that the network must be connected. And, since k
> δ − δ2, if there is someone who has links with every other



player, then everyone in the society will be content to form
a single link with him (i.e., a star is a Nash equilibrium
network). Next, observe that if k > δ, then the empty
network is a Nash network, as everyone wishes to form no
links if no one has formed any links. However, other
nonempty networks like the cycle reach equilibrium for k >

δ and δ close to 1. Thus sharp transition thresholds and
multiple equilibria remain salient, as in the baseline model
with no decay.

We conclude this section with a brief comment on the
role of decay in shaping network architecture. The high-
level idea here is that smaller decay—higher values of δ—
pushes toward greater distances. We illustrate this in
figure 3.3 by focusing on networks that range from a single
cycle to a hub to which all are connected. For a fixed cost
of linking, the size of the cycle sustainable in a Nash
equilibrium expands as we increase the value of δ (keeping
k < δ).



Figure 3.3 
Nash networks with decay: n = 7, k = 0.5.

3.3 Two-Sided Links

This section presents a model of network formation in
which a link between two players requires the approval of
both of them. In such games, for any pair of individuals, it
is always a best response for each of them to offer to form
no link if the other does so. This difficulty leads us to
consider solution concepts that allow coordination and
cooperation between pairs of individuals. We propose the
concept of pairwise stability and its elaborations in order to
study games with two-sided links. The discussion will
describe pairwise stable networks and efficient networks
and the relation between the two. We will also draw out the



role of the linking protocol by comparing the architecture
of the Nash equilibrium in the one-sided model with
pairwise stable networks in the two-sided links model.

Following Myerson (1991), we consider a link
announcement game. Every player announces a set of
intended links. An intended link is a binary variable, si, j

∈{0, 1}, where si, j = 1 (si, j = 0) means that player i intends
to (does not intend to) form a link with player j. A pure
strategy for player i is si = {si, j}j∈N∖{i}, with 𝒮i denoting the
strategy set of player i. A strategy profile for all players is
denoted by s = (s1, …, sn), with the set of all strategies
given by . Define gij = min{si, j, sj, i}. A strategy
profile s therefore induces a corresponding undirected

network g(s). Define Πi: 𝒮→ℛ as the payoff function of
player i in network g.

To develop an appreciation of the linking protocol, we
will consider linear payoffs as in equation (3.5) (but now in
an undirected network setting). Let ni(g) be the benefit that
player i receives from each player that they access through
an undirected path in the network, and let ηi(g) be the
number of links they form. Given an undirected network g,
the payoff to individual i is given by

In other words, player i’s payoffs are the number of
players they access less the cost of the links they form.

We start the analysis of this game with a consideration of
the familiar notion of the Nash equilibrium, as this will
illustrate some of the conceptual issues that arise with the
study of network formation with two-sided links. Recall that
a strategy profile  is a Nash equilibrium if 

, for all si ∈𝒮i and all i ∈ N. This means
that if every player announces that they want to form no
links, then a best response of player i is to announce that



they want to form no links as well. In other words, the
empty network is a Nash equilibrium for any network
formation game.

The concept of pairwise stability from Jackson and
Wolinsky (1996) is designed to overcome this coordination
issue.
Definition 3.1 A network g is pairwise stable if

1.  For every gij = 1, Πi(g) ≥ Πi(g − gij) and Πj(g) ≥ Πj(g − gij).
2.  For gij = 0, Πi(g + gij) > Πi(g) ⇒ Πj(g + gij) < Πj(g).

Pairwise stability looks at the attractiveness of links in a
network g one at a time. The first condition requires that
every link in a stable network must be weakly profitable for
the players involved in the link. The second condition
requires that for every link that is not present in the
network, it must be the case that if one player strictly gains
from the link, then the other player must be strictly worse
off.

Let us work through the trade-offs introduced by the
two-sided nature of linking. First, observe that there cannot
be two paths between any two players in a pairwise stable
network. This is because if there were such a link, since
there is no decay and distances don’t matter, a player could
strictly increase their payoff by deleting a link that retained
the connectivity of a component. Thus a pairwise stable
network must be acyclic.

Next, we argue that a pairwise stable network is either
empty or connected. To see why this is true, consider a
nonempty network that is pairwise stable but has multiple
components. Let C1 be the largest component. As this is not
a singleton and it is acyclic, there is a player i who has a
single link with a player j: the payoff to this player is |C1|−
k, and this payoff must exceed 1 (which the player could
earn on their own in a singleton component): thus |C1|− k −
1 ≥ 0. Now consider a player, ℓ , who lies outside



component C1: such a player can propose a link with j that
would yield a net marginal benefit of |C1|− k > |C1|− 1 − k ≥
0. In other words, player ℓ can strictly increase their payoff
by forming a link with player j. Moreover, player j would
not be worse off with the link, as they were happy with the
link with player i. We have therefore shown that ℓ  has a
strict incentive and j has at least a weak incentive to form a
link. But then the original network g would not be pairwise
stable.

Next, observe that if k < 1, then every pair of players has
an incentive to access each other: a pairwise stable
network must be connected. Moreover, if k > 1, then no
player would be willing to form a link with an isolated
player.

Let us next describe the efficient networks in this model.
A preliminary remark is that there cannot be two paths
between any pair of individuals in an efficient network: if
there were two paths, then a link can be deleted without
affecting the connectivity of the component and this new
network would yield strictly higher welfare, as it would
contain one link less with no effect on benefits. So an
efficient network must be acyclic. Note that a minimally
connected network with n nodes has exactly n − 1 links.We
next establish that an efficient network must be empty or
connected.

To see this, consider a nonempty network with two
components (each of which is minimal) with ℓ ≥ 2 and m ≥
2 nodes, respectively. The aggregate payoffs in the two
components are ℓ 2 − 2( ℓ  − 1)k and m2 − 2(m − 1)k,
respectively. As the network is efficient, the components
must generate payoffs greater than the corresponding
empty networks (i.e., ℓ2 − 2(ℓ − 1)k ≥ ℓ and m2 − 2(m − 1)k
≥ m). If we aggregate the two components to create one
minimal component, the total payoffs are (ℓ + m)2 − 2(ℓ +
m − 1)k. It is clear that



given that ℓ2 − 2(ℓ − 1)k ≥ ℓ and m2 − 2(m − 1)k ≥ m. Thus
an efficient network is either minimally connected or it is
empty. A minimally connected network yields a total payoff
of n2 − 2(n− 1)k, while the empty network yields total
payoffs equal to n. Thus the connected network dominates
the empty network if and only if k < n/2.

Our discussion is summarized in the following result.
Proposition 3.3 Suppose that the payoffs are given by equation (3.11). If k <

1, then a pairwise stable network is minimally connected and if k > 1 then the

unique pairwise stable network is empty. If k < n/2, then an efficient network is

minimally connected, while if k > n/2, then the efficient network is empty.

Figures 3.4 and 3.5 present pairwise stable and efficient
networks in the two-sided links model. The study of two-
sided links networks draws attention to the two themes
that were also mentioned in the discussion of the one-sided
links model above: (1) there are sharp transitions at
thresholds from a connected to an empty network and (2)
there is a tension between stability and efficiency.
However, there are also important differences between the
Nash equilibrium of the one-sided model and the pairwise
stable networks of the two-sided model. In particular, in the
one-sided links model, directed cycles are a recurring
feature of Nash networks, while they do not arise in
pairwise stable networks of the two-sided model (cf. figures
3.1 and 3.4).



Figure 3.4 
Pairwise stable networks: two-sided link model.

Figure 3.5 
Efficient networks: two-sided links model.

Turning to the question of payoffs, observe that in an
efficient network like the star, the central player earns n −
(n − 1)k, while the periphery player earns n − k. This is a
more general feature of efficient networks: even in a line
network, the leaves earn n − k, while all other players earn
n − 2k. Thus the marginal return to the leaf from a link is
significantly larger than the marginal return to the nonleaf
from linking with the leaf. In all minimally connected
networks, there is this great asymmetry in marginal
returns, which goes some way toward understanding why
the efficient network is not pairwise stable.



For completeness, we now discuss the two-sided link
model with decay; following Jackson and Wolinsky (1996),
this is known as the “connections model.” Let δ ∈ [0, 1] be
the rate of decay in value as it moves across links. Given a
strategy profile s, the payoffs to player i in a network g(s)
are

where k > 0 is the cost of forming a link (for each player)
and δ ∈ [0, 1] is the decay in value as it passes through
paths of the network. The value of δ = 0 reflects full decay
and no flow of value, while δ = 1 indicates the absence of
any decay. The existence of decay creates an incentive for
players to locate themselves close to others.
Proposition 3.4 Suppose that payoffs are given by equation (3.13). A

pairwise stable network is either connected or empty. For k < δ−δ2, the unique

pairwise stable network is the complete network. For δ −δ2 < k < δ, a star is a

pairwise stable network. For δ < k, the empty network is pairwise stable and

any pairwise stable network that is nonempty is such that each player has at

least two links.

The first part of this proof follows from agglomeration
arguments as in the baseline model without decay. The rest
of the result follows from straightforward computations.
Figure 3.6 illustrates some pairwise stable networks. We
note that dense networks like the complete network, as
well as sparse and small average distance networks like the
star, can be pairwise stable networks.



Figure 3.6 
Pairwise stable networks: two-sided model with decay.

We next turn to an assessment of the performance of
networks. Recall that a network is efficient if it maximizes
the sum of individual payoffs in the set of all networks. In
addition to the trade-offs introduced in proposition 3.3, the
presence of decay creates a further trade-off now. If the
costs of linking are very small, expressed as k < (δ − δ2), it
is socially desirable to form a direct link between every pair
of individuals. If, on the other hand, the costs of links are
very large, then it is clear that no links would be justifiable.
We also note that the star network is attractive because it
economizes on the number of links and simultaneously
keeps the average distance between individuals very low
(there are n − 1 links in a star, the minimum number of
links it takes to connect n nodes) and the average distance
is less than 2. These preliminary remarks help pin down
efficient networks very sharply, as the following result
confirms.
Proposition 3.5 Suppose that payoffs are given by equation (3.13). The

unique efficient network in the connections model is (1) the complete network

if k < δ − δ2, (2) the star if δ − δ2 < k < δ + (n − 2)δ2/2, and (3) the empty

network if k > δ + (n − 2)δ2/2.

The arguments underlying this result resurface at
different points in subsequent chapters. It is therefore



important to develop a thorough understanding of these
arguments, and so we present a proof of the result.

Proof. The joint marginal gains to players i and j from
forming a link are bounded from below by 2[δ − δ2]. If 2k <

2[δ − δ2], then forming a link increases social welfare. Thus
any incomplete network is welfare-dominated by the
complete network, so long as k < [δ − δ2]: that is, the
complete network is uniquely efficient.

Next, fix component C1 in g, with |C1| = m. Suppose that
m ≥ 3, and let l ≥ m − 1 be the number of links in the
component. Then the welfare in C1 is bounded above by

This is because a link ensures direct benefits of 2δ to
each of the connected pairs, the cost of a link is k, and the
closest all other pairs of individuals could be is distance 2.
If the component is a star, then social welfare is

where m reflects stand-alone benefits, the second term
collects the direct benefits less the costs of links, and the
third term reflects the benefits of all pairs who are distance
2 apart.

Under the hypothesis that (δ −δ2) < k, equation (3.14)
can never exceed equation (3.15), and the two are exactly
equal for l = m− 1. It can be checked that the star is the
only network with m players and m− 1 links in which every
pair of players is at a distance of 2 or less. Hence any other
network with m − 1 links must have at least one pair of
players who are at a distance of 3 or more. This implies
that social welfare in any other network with l = m − 1
links is strictly less than social welfare in the star. Thus in
an efficient network, a component must be a star.



Consider next an efficient network with two stars and m
and m′ individuals, respectively. As the network is efficient,
each of the component must have nonnegative welfare. It
can be shown by direct computation that a single
component with m + m′ players has higher social welfare
than two components with the star structure. Thus a single
star maximizes social welfare in the class of all nonempty
networks. Social welfare in a star is given by equation
(3.15), but we substitute m with n. It can be checked that
welfare in the star exceeds welfare in the empty network if
δ + (n − 2)δ2/2 > k. This completes the proof.

◼

The analysis of the connections model reveals a number
of features that are of general interest. We start by noting
that a wide range of network architectures are pairwise
stable—they range from the complete network to the empty
network and include the star network. We next comment on
the role of decay. In the model with no decay, the complete
network is never an equilibrium because the equilibrium
network cannot be cyclic: thus introducing decay makes
denser networks strategically stable. On the other hand,
decay also presses toward bringing individuals closer to
each other: this makes the star especially attractive from a
payoff point of view, as it economizes on links and also has
small average distances.

The second point pertains to the sharp transition in
network structure—both for stability and efficiency—that
occurs at critical cost values. This is again reminiscent of
the thresholds in the one-way flow model (and in the
random graph models).

The third point to note is that there is a tension between
individual incentives and collective welfare. The star is
efficient for a wide range of parameters—if δ −δ2 < k < δ +
(n− 2)δ2—but it cannot be sustained as a pairwise stable
network for k > δ. This is reminiscent of the tension



previously noted in the one-way flow model. It points to the
positive externalities created by individual linking: when
the hub forms links with the spokes, it creates value for all
spokes that it does not take into account.

We conclude our discussion of the two-sided model by
drawing attention to the role of the linking protocol: in the
one-sided model, Nash equilibrium (and efficient) networks
will generally contain (directed) cycles, while in the two-
sided linking model, both pairwise stability (and efficiency)
push toward acyclic networks.

3.4 General Considerations

Up to now, we have presented the elements of an economic
approach to network formation. For expositional reasons,
we have concentrated on distinguishing between one- and
two-sided links, and we have focused on a very simple
model of benefits and costs. The economics literature on
network formation has made major advances over the past
two decades in terms of the generality of the theory, as well
as in terms of the reach of the applications. The aim of this
section is to introduce some of the general features of the
theoretical models in this literature. In subsequent
chapters, these general features will be further elaborated
upon in a number of applications, such as production
networks, infrastructure, brokerage and intermediaries,
security, online social media, social coordination, and
networked markets.

3.4.1 Dynamics

Networks change as individuals add and delete links over
time. This raises the natural question of whether the
process of link formation settles down and what networks
arise. What is the relation between the networks that arise
in the long run and the networks that are Nash equilibria
or pairwise stable networks of the static network formation



game? To develop a first impression of how dynamics can
be used to understand networks, we present the dynamics
of the one-sided model of linking.

Perhaps the simplest way to approach the dynamics of
networks is to think of a world in which individuals get an
opportunity to revise their links, form links with some new
players, maintain some of the existing links, and delete
some of the other links. The structure of the existing
network will determine the rewards from linking with
different individuals. The possibility that current linking
activity will alter incentives for others (and hence shape
future linking activity) may be an important factor as well.
The importance of longer-term effects will depend on how
quickly the network changes, as well as on how patient the
players are.

For expositional simplicity, and in line with most of the
research in the field, let us suppose that individuals are
perfectly impatient: they care only about the immediate
returns and ignore the longer-term effects entirely. This
leads to the myopic best-response model of dynamics that
we now outline.

Time is a discrete variable and indexed by t = 1, 2, 3, ….
Let gt be the network/strategy profile at the start of time t.
In each period, with probability p ∈ (0, 1), a player gets an
opportunity to revise their strategy. They know the network
that exists at that point in time, and they choose links that
maximize the payoff. In making these choices, they assume
that the links of all other players do not change. If more
than one profile of links is optimal, then a player randomly
picks one of them. Denote the strategy of a player i in
period t by . If player i is not active in period t, then it
follows that . This simple best-response strategy
revision rule generates a transition probability function of
Pgg′: 𝒢×𝒢→ [0, 1], with  for every g ∈𝒢. The
dynamics of networks gt obey this transition probability



function. This defines a Markov chain: a strategy profile (or
state) g is said to be an absorbing state of the Markov
chain if the dynamic process cannot escape from that state
(i.e., Pgg = 1).

In some cases, the process may not converge; in such
instances, we will talk of absorbing sets of networks. An
absorbing set is a collection of networks such that once the
process reaches one of the networks in this set, then it
remains within this set forever after. Note that the set of all
networks is clearly an absorbing set of the process. A
preliminary observation is that if the dynamics settle on a
network, the absorbing state is a strict Nash equilibrium:
clearly the absorbing network must be a Nash network, as
otherwise at least one of the players has an alternative,
more profitable profile of links and will deviate in due
course. In addition, we note that the randomization among
best responses means that a nonstrict Nash equilibrium
cannot be an absorbing network for the dynamic.

By way of illustration, figure 3.7 presents the dynamics
of linking in the one-sided link formation model. We
suppose that payoffs have a linear specification as in
equation (3.5) and k ∈ (0, 1). The initial network (labeled t
= 1) has been drawn at random from the set of all directed
networks with five agents. In the periods t ≥ 2, the choices
of agents who exhibit inertia have been drawn in solid
lines, while the links of those who are active are drawn in
dashed lines. Figure 3.7 suggests that the choices of
individuals evolve rapidly and settle down by period 11: the
limit network is a cycle.





Figure 3.7 
Best response network dynamics: taken from Bala and Goyal (2000a).

This simulation motivates a more general question:
under what conditions—the structure of payoffs, the size of
the society, and the initial network—does the dynamic
process converge? Convergence of the dynamic process
would suggest that individuals who are myopically pursuing
self-interested goals, with no assistance from a central
coordinator, are able to arrive at a stable network over
time. It is possible to show that such a decentralized
process does converge in the one-way flow model under
fairly general circumstances; for the details of the
arguments involved, see Bala and Goyal (2000a).

In this example of the linear model with k ∈ (0, 1), the
cycle is the unique strict Nash network, but if k ∈ (1, n −
1), then there are two strict Nash networks: the cycle and
the empty network. A possible question is whether one of
the two networks is more stable or more likely to be picked
by the dynamics. The problem of selection among strict
Nash equilibria—through the introduction of trembles—has
been widely studied in the literature of evolutionary game
theory. We will have to leave the subject here; for an
elegant introduction to evolutionary approaches to
equilibrium selection, see Young (1998).

So far we have assumed that individual players know the
network that they are located in, and therefore they can
calculate the costs and benefits from various links.
However, networks are complicated objects, and even with
a few players, a great many structures can arise. Moreover,
the fact that networks are subject to subtle transformations
typically carried out at a local level suggests that it may be
difficult for players to keep informed about the details of
the evolving network. In chapter 11, we will present
experiments on the dynamics of linking, and we will then
see that the question of knowledge and the complexity of



networks is important for understanding network
formation.

3.4.2 Richer Models of Links

We have studied models in which links are binary—a link is
either present or absent. This is in keeping with most of the
literature to date. However, it is clear that in many
contexts, it is not just the existence of a link but the quality
that is important. For instance, take the case of information
on jobs. In his classical study, “The Strength of Weak Ties,”
Granovetter (1973) drew attention to the distinct roles of
strong and weak ties in shaping the flow of information
about jobs in a society. Following on this, Scott Boorman
(1975) proposed a model of costly investments in strong
and weak ties that help communicate information on jobs.
However, the modeling of weighted links presents a
number of conceptual and mathematical challenges, and
progress has been slow. The discussion in this section
draws attention to some of the these challenges.

We start with an approach that builds directly on the
basic models of binary links presented in sections 3.2 and
3.3. The model is taken from Bloch and Dutta (2009). The
authors focus on an interpretation of communication
networks—networks where agents derive benefits from the
agents with whom they are connected, with the benefits
decreasing as the distance increases between two agents.
Their point of departure is that links may have different
qualities, depending on the investments that individuals
make. Assume that every individual has resources T that
they can allocate across the links with the other n − 1
individuals. Formally, for investments gij, gji ∈ ℝ+ by
individuals i and j, let the quality of the link between them
be qij: ℝ+ × ℝ+ → [0, 1]. Observe that by suitably varying
the nature of function qij, we can obtain the one- and two-
sided linking models discussed earlier as special cases.



To develop intuitions on the forces driving the formation
of weighted networks let us focus on a simple special case:
suppose that the quality of the link is defined as an additive
and separable function of individual investments.
Moreover, suppose that the returns to individual
investments have increasing returns:

where ϕ is an increasing and convex function with ϕ(0) = 0
and ϕ(T) < 1/2.

We next define the quality of a path as a product of the
quality of the links on the path. As an example, the quality
of a path consisting of three individuals A, B, and C is
simply qABqBC. In this formulation, observe that it is not just
the length of a path, but also the quality of the links in it
that matters. We discuss efficient and equilibrium networks
in this setting.

Our first observation is that the efficient network is a
star. The argument for this result builds on the following
intuitions. A star is connected (thus everyone accesses all
other individuals), every peripheral agent concentrates
their investment on a single link (which enhances quality of
the link), and the distance between two nodes that are not
directly connected is minimized. All these features
contribute to making the star the natural candidate for the
efficient network. Turning to the Nash equilibrium, if link
strength is a strictly convex function of individual
investments, then the unique Nash equilibrium network is a
star whose center invests fully on just one link. The
intuition for this result builds on the strict convexity of ϕ: it
implies that an individual will invest in at most one link.
This more or less rules out all networks other than the star.

This discussion shows how the arguments presented in
the context of the baseline binary model need to be
modified to understand weighted networks. They also



suggest that some of the results on the efficiency and
stability of network architecture can be generalized to
settings with richer linking possibilities. In this model, the
investments of the individuals can be substituted in
building up the quality of links (as the investments enter in
a separable form). We next turn to a setting in which the
individual investments are complements in shaping the
quality of the link.

We discuss a model taken from Baumann (2021).
Individuals allocate their resource T between a private
activity tii, and link-specific activities tij, for j ∈ N∖{i}. An
individual’s strategy is given by a vector ti = (ti1, …, tii, …,

tin). A link between two individuals i and j exists if both of
them make positive investments, tij > 0 and tji > 0. Given a
strategy profile s = (t1, …, tn), the utility of individual i is

where β ∈ (0, 1) and  refers to returns from relations in
which individuals i and j contribute tij and tji, respectively.
The term f(tii) refers to the return from contribution tii in
own activities. It is assumed that the return is increasing
and concave, specifically that f′ > 0, f′′ < 0, f′→∞ if tii → 0
and f′(T) is “low enough.” Note that in this model, the
payoffs depend only on the quality of links with immediate
neighbors. This simplification helps us to obtain sharp
results on patterns of investment in equilibrium.

Given the assumptions on reward function, it follows that
in a Nash equilibrium, every individual must fully use all
their resources allocation:

Moreover, due to the form of the link function, in a Nash
equilibrium, if tji = 0 then tij = 0. Finally, if tji > 0, then tij >



0 and

In addition, it follows from the assumption f′(t) →∞ for t
→ 0 that tii > 0 for all individuals in a Nash equilibrium.

Observe that due to the complementarity in link quality,
there is always an equilibrium in which no one invests in
any links with others. Our interest is in equilibria that
contain “active” links. In such an equilibrium, the marginal
returns to investment in own activity must equal the
marginal return to investment in any link; that is,

This means that the ratio of investments for individual i
must be the same for every link in which they are active: let
us define

In equilibrium, a neighbor of i faces a ratio qj that is the
inverse of qi:

Consider a connected network of active ties. In such an
equilibrium network, if the ratio of effort for an individual
is not 1, then the ratios will alternate across neighbors.
Therefore, in a connected network of active links, the
individual ratios must take on two values, q′ and 1/q′. This
yields a simple characterization of Nash networks:

  1.  Reciprocal: qi = 1 for all i. Every player chooses the
same self-investment tb, where β = f′(tb).



  2.  Nonreciprocal: Concentrated qi > 1 for i with self-
investment tc, where β(1/qi)1−β = f′(tc) and diversified qj

< 1 for a j with self-investment td, where β(qi)1−β = f′(td).

Given a nonreciprocal network t and a reciprocal
network t′,

As f is concave, this yields the following ranking of
investment in links: . This in turn induces an
ordering of utility levels:

Figure 3.8 presents examples of reciprocal and
nonreciprocal Nash networks.

Figure 3.8 
Weighted Nash networks.

Let us draw out implications of reciprocal and
nonreciprocal investments for network topologies. First,
observe that regular networks are sustainable via
reciprocal investments. On the other hand, a network with
a leaf cannot be sustained in a reciprocal equilibrium in a
connected network with three or more individuals: this is
because reciprocity would mean that q = 1 for a leaf and its
neighbor. This would in turn rule out investments in other



links by the nonleaf individual. Observe that leaves are
easily sustained in nonreciprocal networks.

This brief discussion does not do justice to the large body
of literature on the subject of weighted networks. The aim
here has been much more modest: to draw attention to
some of the challenges of moving from binary to weighted
links. We see that the results on network topologies
obtained in the binary link model can sometimes be
extended to weighted counterparts (though the arguments
are significantly more complicated), but there arise
interesting asymmetries in patterns of investment between
neighbors that are intimately connected to the network
topology. The area of weighted networks remains a very
active field of research; section 3.6 provides a number of
references for further reading.

3.4.3 Generic Investments and Random Linking

In the models presented here, we have taken the view that
individuals make decisions on individual links and in
computing their costs and benefits they are informed about
all the links in the entire network. In some contexts,
including parent-teacher associations, neighborhood
groups, and professional conferences, it is perhaps more
plausible to think of the network in a more generic sense
and imagine that individuals contemplate the issue in terms
of how much time or resources they will allocate to
interacting with different groups of individuals (such as
friends, neighbors, professional colleagues, and sports
contacts). In these contexts, we are interested in the
amount of time and other resources that different groups of
individuals spend in these forums and how that would
affect the returns to taking part in them. In this approach,
the exact details of who links with whom no longer occupy
central stage. Rather, we are interested in the “thickness”
of interactions or the macroscopic level of the network.
These considerations suggest a simpler and more direct



approach to the problem of network formation. This section
discusses a strand of the literature that takes this “social
investments” perspective.

We start with a model taken from Cabrales, Calvo-
Armengol, and Zenou (2011), in which individuals make
two decisions that pertain to “production” and
“socialization.” Individual payoffs depend on own and
others’ production efforts and these spillovers are mediated
through the social links between individuals.

There are n players with types/values 0 < b1 < ⋯ < bn.
Player i chooses a strategy, si = (ei, gi), comprising
productive effort ei and a synergy effort gi. Both
socialization and effort are costly, and the returns depend
on the strength of synergy between individuals. Given a
profile of strategies s = (s1, …, sn), the payoffs to player i
are

where c > 0 refers to the relative cost of productive effort.
The link quality or intensity is constructed as follows: given
a profile of investments g = (g1, …, gn), for any pair i, j the
link intensity is

This formula captures two intuitive ideas: (1) the weight
of a link between two individuals is increasing in each of
their investments and (2) it is decreasing in the sum total of
all investments of everyone.



As in the earlier models with two-sided links, there is a
coordination aspect to investing in social interaction:
specifically, if everyone else chooses zero social
interaction, then there is no return to investing in social
interaction; therefore, zero investment is always an
equilibrium. The more interesting case concerns positive
social investments. An important feature of the model is the
complementarity between social interaction and efforts—
reflected in the term —and this can give rise to
multiple interior equilibria. In other words, there are a low
interaction plus modest effort equilibrium and a high
interaction plus high effort equilibrium. As the game
exhibits complementarities, the effects of changes in
parameters can be studied using classical methods from
the theory of supermodular games. (e.g., Topkis [1998]).

A second strand of the literature examines models of
linking in which individuals propose a single scalar
number, as in the model described just previously, but the
payoffs depend on the macroscopic properties (such as
connectedness and giant component) of the random graph
that they create. We will present a model taken from
Dasaratha (2021) that takes this approach.

Suppose there are N = {1, …, n}, n ≥ 3 firms. Every firm
has a distinct idea, ai ∈ ℕ. A firm can earn payoffs only if
they have access to a technology that consists of L > 1
ideas. Moreover, due to competition, a firm earns this
payoff only if they uniquely have these L ideas. We may
think of the size of L as a measure of the complexity of the
technology.

The goal of a firm is to form connections to access L

distinct ideas. The firm accesses ideas from others by
choosing a level of openness, qi ∈ [0, 1]. This level of
openness refers to how secretive or collaborative it will be
(e.g., should it be located near or far from other firms, or
should it be liberal in sharing its intellectual advances with



employees and encouraging informal interactions of its
employees).

Greater openness is, however, a double-edged sword: it
facilitates access to other firms’ ideas, but it also makes its
own idea more easily accessible to other firms. Given
openness qi and qj, we say that a firm i learns the idea of
firm j with probability

A key element of the process is that the learning is
directed: so firm i may learn from firm j without the
converse being true (i.e., the random variable pij is realized
independent of pji). Importantly, however, notice that
increasing qi leads to a higher learning probability for both
firms i and j.

The next important element is indirect learning: when i
learns from j, it also gains access to the ideas that j has
learned from other firms. Conditional on connecting with j,
there is a probability given by δ ∈ [0, 1] that it learns the
ideas that firm j has learned directly or indirectly through
its connections. To complete the description of the learning
process, we note that the realizations with respect to
learning are independent and occur simultaneously.



Figure 3.9 
Exclusive technology for firm i: L = 3.

Let us say a few words on the notion of a technology
here. A technology, t, is defined as a set of L distinct ideas.
We will say that firm i has exclusive access to technology t
if it contains i’s idea, ai ∈ t, firm knows all the ideas
contained in t, and no other individual knows all these
ideas. Figure 3.9 illustrates the exclusive access of
individual i to a technology consisting of ideas from three
individuals. An individual earns 1 from every technology to
which it has exclusive access. We can consider these
technologies as proprietary technologies for i. On the other
hand, i receives zero payoff from those technologies that
they know along with other individuals. Given a profile of
openness choices q, the expected earnings of firm i are
simply the expected number of exclusive technologies; that
is,



where PTi is the number of exclusive technologies of
individual i. We next study Nash equilibria in openness
levels and comment on their social efficiency.

Let us start by drawing out some of the economic forces
at work. First, note that profile q gives rise to a directed
graph that tells us who will have access to which ideas. The
value of openness to a firm will depend on how open other
firms are. Greater openness of other individuals creates
two conflicting pressures. On the one hand, it makes them
more likely to have more ideas to share, which increases
the value of accessing them; but on the other hand, as each
of them has access to many ideas, it is not necessary to
access many of them, which lowers the value of openness.
This conflicting impact of openness of others is central to
an understanding of equilibrium.

The analysis will build on our previous discussion of
random graphs, and in particular on the thresholds of sharp
transitions (which were identified in the chapter 2 on
random graphs). As in the case of random graphs, the
arguments will apply as the number of individuals, n, gets
large. We will say that the symmetric level of openness q is
subcritical if the expected number of links where an
individual learns indirectly is less than 1 (i.e., pi(q, q)δn <

1), it is critical if the other ideas learned is 1, and it is
supercritical if the expected number of new ideas learned is
greater than 1.

These thresholds are helpful as we can apply methods
from random graph theory to infer that the number of ideas
learned by an individual in each region can be pinned down
as follows. In the subcritical region, all firms learn at most
o(n) ideas (i.e., the number of ideas is negligible relative to
the value of n when n is large); in the critical region, firms
learn an intermediate number of ideas, while in the



supercritical region, a positive fraction of firms learn γn

ideas for γ ∈ (0, 1), while all other firms learn o(n) ideas.
Figure 3.10 illustrates the role of openness—and the
number of links—in shaping access to others’ ideas.

Figure 3.10 
Regions and component sizes: n = 200.

In this setting, it can be shown that for large enough n, a

symmetric equilibrium has a critical level of openness.
Let us discuss the intuition underlying this result as it

gives us a first glimpse of the forces driving knife-edge
properties of equilibrium networks that are also obtained in
other applications such as financial networks and supply
chains. By definition, at the optimal level of openness, q,
the marginal cost of raising openness must be equal to the
marginal return from openness. The marginal cost comes in
the form of giving up possible exclusivity to technologies,
while the marginal return arises from potentially exclusive
access to new technologies. Marginal costs to links
increase with the number of links, as a firm has more to
lose from their idea leaking through the increased
openness of everyone. So to sustain a high interaction rate
equilibrium, marginal returns to links must also increase in
overall openness. In other words, we need the openness of
different individuals to be complements. However, in the
supercritical region, the network will contain a giant
component, and adding openness serves to lower



exclusivity (i.e., the levels of openness of individuals are
substitutes). On the other hand, in the subcritical region,
the marginal cost of losing access to exclusive technologies
is small, as there are no large components. This pushes up
the openness level. In this way, economic pressures push
individuals to create networks at the critical threshold.

In these models, individuals choose a single level of
interaction that helps define a probability of being
connected to any other individual. It is possible to take this
one step further and say that individuals choose a number
of links. This is the approach proposed by Goyal and Sadler
(2021). In their model, choices of the number of links are
mapped onto a degree distribution using the configuration
model (for a discussion of the configuration model, see
chapter 2). The motivation is similar to the model of linking
and assorted activity discussed previously. Players can
invest effort in obtaining a discrete piece of information,
and they can also invest in costly links that can transmit
information. Individuals choose the probability of obtaining
the information, x ∈ X = [0, 1], and the number of links d ∈
ℕ+. The types of individuals lie in the set T = ℝ+; they
assume that the distribution of F types is continuous with
full support. They interpret x ∈ X as the probability with
which a player independently obtains the information and t
∈ T as the cost of a link. A player learns the information
either if they discover it themselves or if they are path-
connected to a player who learns it. Learning the
information yields a payoff of 1, but choosing strategy (x, d)
incurs the cost x2 + td. Hence, player i earns the expected
payoff

The game proceeds as follows: Players realize their
private costs and make investments x and link requests d,
the network forms, and payoffs are realized. A symmetric



strategy profile σ(t) = (d(t), x(t)) specifies how many links
to request and how much to invest in information as a
function of the link cost parameter t. It is possible to show
that given a type distribution, there is a symmetric
equilibrium (in which a player’s strategy is only a function
of their type). This equilibrium generates a degree
distribution and a probability of learning the information
and the corresponding payoffs. Lower cost types form more
links and exert less personal effort, have a higher
probability of learning the true state, and they earn higher
payoffs. We leave the discussion of this model here; the
interested reader is referred to Goyal and Sadler (2021) for
further details.

3.4.4 Combining Linking with Assorted Activity

In the baseline models, individuals choose links with each
other. In many of the examples studied in chapter 1,
individual entities choose links and make choices on related
activities. For instance, on Twitter, they choose links and
the level of tweeting and retweeting; on Facebook, they
choose friendship links and various types of participation.
Similarly, a researcher or a firm chooses whom to
collaborate with and how much effort and investment to
put in these collaborations. If we reflect on these examples,
we see that the level of activity will affect the rewards of
linking and vice versa. This consideration motivates a large
and very active body of economics literature that explores
models of network formation alongside related activities. In
this section, we illustrate the interaction between linking
and related activity by adding an activity alongside linking
in the one-sided link model from section 3.2. We will then
comment briefly on a range of assorted activities and
discuss the potential role of linking.

Let us begin by adding an effort dimension to the one-
sided linking model in section 3.2. An individual chooses
links with a subset of others, gi, and an effort level of xi ∈



ℝ+. A strategy of individual i is given by si = (gi, xi), and the
profile of strategies is denoted by s = (s1, …, sn). We set 
as the set of individuals who lie at distance l of i in the
directed network g. Following Galeotti and Goyal (2010),
we shall say that given a strategy profile s, the payoffs of
an individual i are

where al ≥ 0, and al+1 ≤ al for all l ≥ 1, f(.) is a strictly
increasing and concave function, with f(0) = 0, c > 0 and k
> 0, and di(g) is the number of links created and paid for by
individual i. To see how activity and linking can powerfully
shape networks, we use a specific functional form for the
reward function (Goyal, Rosenkranz, Weitzel, and Buskens
(2017):

Suppose that the per-unit cost of information c = 11 and
al = 1 for all l ≥ 1 (i.e., there is no decay). Recall that in the
one-sided model with no decay, the cycle containing all
nodes is the unique nonempty equilibrium network (see
proposition 3.1). Let us see how adding an effort level
alters this prediction.

Consider an individual in isolation who chooses effort 9.
Observe that this is the optimal effort level for someone in
isolation under reward function f. What would be the
response of the other individuals? To fix ideas, consider an
individual and label them as B: how much effort should
they exert, and should they link with A? B accesses 9 units
if they link with A. The cost of this effort is 11 × 9 = 99, and
it costs k to access A. So it is in their interest to link with A



if k < 99. Observe that once an individual links with A, they
have access to 9 units of effort, so the incremental value of
additional information is smaller than the cost of
information: they will choose the personal effort level 0.
The same reasoning applies to all individuals other than A.
Therefore, the star network with A choosing effort 9, all
other individuals choosing effort 0, and a link forming with
A constitutes an equilibrium.

This argument helps bring out the dramatic impact of
adding an effort dimension to the basic linking problem: we
move from a cycle containing all individuals to a star
network in which the spokes form a link with the hub and
make zero effort, while the hub forms no links and chooses
effort 9. Chapter 11, on the law of the few, will develop the
theoretical arguments more fully and also describe an
experiment.

The economics literature has developed a range of
models to explore the interplay between linking and
assorted activity. We next discuss some of the important
lines of inquiry that deal with coordination, cooperation,
exchange and intermediation, and collaboration and
competition, and we point to chapters where these topics
are discussed at length.
The problem of coordination The problem of coordination
arises in its simplest form when the optimal course of
action for an individual is to conform to what others are
doing. If there is more than one possible course of action,
then individuals have to coordinate on one of these actions.
One simple example is the choice of software to draft
documents or communicate. As we work with colleagues,
we have a preference to choose the software that they are
using. This suggests that the network of interaction could
shape the ways in which individuals solve their
coordination problems; in a highly integrated group,
individuals may opt for a common course of action, while in



fragmented groups, segments might follow different
courses of action. The reasoning can well flow the other
way: individuals may organize into different segments and
choose different actions if they have different preferences
over these actions. What are the circumstances under
which we expect to see social conformism and diversity?
Can societies get locked into inefficient courses of action?
How does the network shape the openness of a society to
change and movement from an inefficient to an efficient
norm? Chapter 12, on social coordination, studies the role
of linking in shaping social coordination.
The problem of cooperation This arises in its simplest form
when we consider situations that arise over time: an
individual needs support at a point in time that can be
provided by another individual. The key point to note is that
the benefit to the recipient is greater than the cost of
support to the provider. To the extent that individuals need
support over time, it is in their collective interest to provide
mutual support. However, at any instant in time, an
individual who is asked to provide support is better off by
not offering it. As is clear from this description, the
potential provider may be persuaded to provide support
through an appeal to enlightened self-interest: by refusing
to provide support today, they forgo the chance of receiving
help in the future from the person currently in need. This
bilateral cost-benefit, however, may not be sufficient, as
such opportunities may arise insufficiently often. This
brings into play the possibility that connections with other
individuals may be brought into play as well. This points to
the role of networks of mutual support. A large body of
work has studied the role of social structure in sustaining
cooperation. More recent work has incorporated the idea
that the network itself is evolving and endogenous.
Economists have traditionally studied questions of
cooperation, norms, and trust using models of repeated



games. The chapters 18 and 19 present models of
networks, repeated games, trust, and cooperation.
Exchange, intermediation, and brokerage The terms on which
individuals carry out exchanges with each other will
depend on the outside options they have. Here, an
exchange may be direct when a buyer purchases an object
from a seller, or it may be indirect when a buyer purchases
something from a seller, but through intermediaries. In the
first case, for example, a buyer who has links with many
potential sellers is likely to have greater bargaining power.
In the second case of indirect exchange, a pair consisting of
a buyer and a seller are likely to pay less to intermediaries
if there are multiple paths of intermediaries available to
them. These observations have led to a study of the ways in
which networks shape the terms of exchange among
individuals. As networks can potentially have large effects
on terms of trade and earnings, it is natural for individuals
to try to shape the networks within which they conduct
exchanges. The formation of exchange networks has been
the subject of an extensive body of research in economics
(as well as computer science and sociology). The problem
of exchange in networks is studied in chapter 16, on
networked markets, while brokerage rents are studied in
the chapter 8 on market power and intermediation.
Collaboration and competition Firms collaborate to share
knowledge and innovate and to become more competitive
in the market; similarly, individual researchers collaborate
to explore ideas and conduct research. An important
feature of such collaborations is that they are extensive and
nonexclusive (A may collaborate with B, who may
collaborate with C, but A and C do not collaborate with
each other). These collaborations shape the speed and level
of innovation and can have a decisive impact on the relative
performance of firms/individuals. Discussions on empirical
aspects of scientific collaboration networks are spread



across different chapters of the book; chapter 16 takes up
models of oligopolists forming research collaboration
networks to compete in a market.

3.5 Appendix: Advanced Material on Solution Concepts

An important part of the appeal of pairwise stability is its
great simplicity. In this section, we elaborate on some
aspects of this concept and develop conditions for its
existence. We also discuss elaborations on the concept. The
results are taken from Jackson and Watts (2001), and the
exposition is based on Goyal (2007).

We will exploit the ideas of improving paths and cycles,
from Jackson and Watts (2001). An improving path is a
sequence of networks that can emerge when individuals
form or sever links based on individual payoff
considerations.
Definition 3.2 An improving path from a network g to network g′ is a finite

sequence of networks g1, g2, …, gk, with g1 = g and gk = g′, such that for every

l ∈{1, 2, …, k − 1}, either

1.  gl+1 = gl − gij for some  and Πk(gl − gij) > Πk(gl) for k ∈{i, j}, or

2.  gl+1 = gl + gij for some  and Πi(gl + gij) > Πi(gl) and Πj(gl + gij) ≥
Πj(gl).

A set of networks  forms a cycle if for any g, g′ ∈ 
(which includes g = g′), there exists an improving path
from g to g′. A cycle  is maximal if it is not a proper subset
of any other cycle, while a cycle  is closed if no network in 
 lies on an improving path leading to a network that does

not lie in .
A sufficient condition for the existence of a pairwise

stable network is that there is not an improving path
starting from every network; in a game with a finite
number of players (and therefore also a finite number of
networks), a sufficient condition for this is that there are no
cycles of improving paths in the network. We develop



conditions on payoff functions in network formation games
that rule out cycles. These conditions suggest that payoffs
should exhibit a form of monotonicity.

It is convenient to write a network formation game
slightly more generally as follows. There is a set of players
N = {1, 2, …, n}; a value function V: 𝒢→ R, which defines
the aggregate value generated by any network g; and an
allocation function Π: 𝒢→ Rn, which specifies, for each
network g, the payoff accruing to every player in the
network.

The following from Jackson and Watts (2001), provides a
result about existence.
Proposition 3.6 For any value function V and any allocation function Π, there

is at least one pairwise stable network or a closed cycle of networks.

Proof. Start with network g. If it is pairwise stable, then
the proof is done. So suppose that it is not pairwise stable.
This means that there is an improving path leading away
from it. If this improving path ends at some network, that
network is pairwise stable, and the proof is done. So
suppose that there is no end network: given the finiteness
of the game, there must be a cycle. So suppose there is no
pairwise stable network. First, note that since G is finite,
there must be a maximal cycle. Second, consider the set of
maximal cycles, and note that at least one of them must
have no path leaving it. If all maximal cycles had paths
leaving them, then there would be a larger cycle containing
two or more of such cycles, which would be a contradiction
to the hypothesis that these cycles are maximal. Thus at
least one maximal cycle must be closed.

◼

Ruling out closed cycles is one simple way to guarantee
the existence of pairwise stable networks. The following
terminology is used in the next result. For a given game of
network formation, denote the existence of an improving



path from g to g′ as g → g′. Clearly, → is a transitive
relation, and so it follows that there are no cycles if and
only if → is asymmetric. Two networks g and g′ are
adjacent if they differ by only one link. V and Π exhibit no
indifference if, for any two adjacent networks g and g′,
either g defeats g′ or vice versa. Note that a network g

defeats another network g′ if there is an improving path
from g′ to g. Our next result provides a useful
characterization of the existence of cycles.
Proposition 3.7 Fix a value function V and an allocation function Π. If there

is a function 𝒲: 𝒢 → ℛ such that [g′ defeats g] ⇔ [𝒲(g′) > 𝒲(g) and g and g′
are adjacent], then there are no cycles. Conversely, if V and Π exhibit no

indifference, then there are no cycles only if there is a function, 𝒲: 𝒢→ R, such

that [g′ defeats g] ⇔ [𝒲(g′) > 𝒲(g) and g’ and g are adjacent].

Proof. Consider the first statement of the proposition. This
is equivalent to saying that if there is a cycle, then there
cannot be such a 𝒲. Suppose that is not so, and there is
such a 𝒲 function. Then by transitivity of >, it follows that
𝒲(g) > 𝒲(g), which is impossible. So the existence of
cycles precludes any 𝒲 function that satisfies the
mentioned properties.

Now consider the second statement. Assume that there
are no cycles, and also that for any adjacent pair of
networks g and g′, either g defeats g′ or vice versa. The
proof shows that there is such a 𝒲 that satisfies the
desired properties. This step exploits proposition 3.2 in
Kreps (2018), which is stated in lemma 3.1 for easy
reference. A binary relation b is negatively transitive if the
converse relation not-b is transitive.
Lemma 3.1 If X is a finite set and b is a binary relation, then there is 𝒲: X →
R such that 𝒲(x) > 𝒲(y) ⇔ xby, if and only if b is asymmetric and negatively

transitive.

Since there are no cycles, the binary relation → is acyclic
and therefore asymmetric. The relation → is transitive by



the definition of an improving path. However, the relation
not → is not necessarily transitive.

Here is an example: Let n = 5 and start with a cycle
network, gcycle. Suppose that in the network gcycle + g12, the
payoffs of players 1 and 2 fall by 1 each, while all other
payoffs remain the same, relative to gcycle. Proceed next to a
network gcycle + g12 + g34, in which the payoffs of players 3
and 4 fall by 1 each, relative to network gcycle + g12. Finally,
consider the network gcycle + g34, in which the payoffs of
players 1 and 2 fall by 1 each, while the payoffs of players 3
and 4 increase by 2 each, relative to gcycle + g12 + g34. The
payoff of player 5 remains unchanged throughout. So we
have a situation in which gcycle + g12 not → gcycle + g12 + g34

not → gcycle + g34, but gcycle + g12 not → gcycle + g34 does not
hold, since there is an improving path gcycle + g12 → gcycle →
gcycle + g34.

Therefore, a relation b has to be constructed such that
(1) g → g′ implies that g′ b g; (2) if g and g′ are adjacent,
then g → g′ if and only if g′ b g; and (3) b is asymmetric and
negatively transitive. Then lemma 3.1 can be applied to
obtain 𝒲, and proposition 3.7 follows from property (2).
The construction of b is now presented for two cases.

Case 1: For every distinct pair of networks, g and g′, at
least one of the following holds: g → g′ and g′→ g. Set g′ b
g if and only if g → g′. We show that this relation is
negatively transitive. Define g nb g′ if g b g′ fails to obtain.
Suppose that g nb g′ and g′ nb g′′. Given the definition of b,
this means that g′ b g and g′′ b g′. It then follows from the
transitivity of b that g′′ b g, which in turn implies, by
asymmetry of b and definition of nb, that g nb g′′.

Case 2: There are distinct g and g′ (which are not adjacent)
such that g not → g′ and g′ not → g. Define the binary
relation b1 as follows. Let g′′ b1 g′′′ if and only if g′′′→ g′′,



except on g and g′ where set g′ b1 g. Note that by
construction, (1) and (2) are satisfied, and also note that b1
is acyclic (and hence asymmetric). To see the acyclicity of
b1, note that if there is a cycle, then it would have to
include g and g′, as this is the only point at which b1 and →
disagree. However, the existence of such a cycle would
imply that g′→ g, which is a contradiction. Next, define b2

by taking all the transitive implications of b1. Again, (1) and
(2) are true of b2. By construction, b2 is transitive. Then it is
shown (by construction) that b2 is acyclic. Add one
implication from b1 and transitivity at a time, and verify
acyclicity at each step. Consider the first new implication
that is added, and suppose that there is a cycle. Let g′′′ and
g′′ be the networks in question. So g′′ b1 g′′′ and g′′′ nb1 g′′,
but g′′′ b2 g′′, and there is a sequence of networks {go, g1,

…, gr} such that g′′′ b1 g0 b1 g1… .b1 gr b1g′′. This implies
that there is a cycle under b1, which is a contradiction.
Iterating this argument implies that b2 is acyclic.

Now consider cases 1 and 2 when b2 is substituted for →.
Iterations on this process lead to a case where bk has been
constructed and relative to bk–namely, case 1. Iterating on
the argument under case 2, it follows that (1) and (2) will
be true of bk and bk will be transitive and asymmetric. Then
by the argument under Case 1, bk will be negatively
transitive. Set b = bk, and the proof is complete.

◼

While pairwise stability is a useful first check for
strategic stability, only a relatively small set of possible
deviations are ruled out—for instance, the deletion of only
one link is contemplated, and the simultaneous addition
and deletion of links is not allowed. We briefly discuss ways
in which these considerations can be taken into account.

Let us consider example 3.1, in which the deletion or
addition of a link by itself is not profitable, but the



deviation in which several links are deleted together is
profitable.
Example 3.1 Deleting a subset of links

Suppose that n = 4. Assume that the payoffs satisfy
Πi(gc) = 10 for all players, while Πi(g) = 15 in every
network g in which player i has no links. In network g

where two players have 3 links each and two players have 2
links each, the payoffs to players with 3 links are 9, while
the payoffs with 2 links are 8. The complete network is
clearly pairwise stable since no player has an incentive to
delete a single link. However, a player would strictly profit
from deleting all the links.

◼

The notion of a pairwise equilibrium addresses this
concern directly by supplementing the idea of a Nash
equilibrium with the requirement that no pair of players
wishes to form an additional link.
Definition 3.3 A network g* can be sustained in a pairwise equilibrium if

1.  There is a Nash equilibrium s* that yields g*.
2.  For any gij(s*) = 0, Πi(g(s*) + gij) > Πi(g(s*)) ⇒ Πj(g(s*) + gij) < Πj(g(s*)).

A feature of pairwise stability is that deviations in which
each member of a pair of players deletes one or more links
and/or adds a link in a coordinated manner are not allowed.
In some games, it is possible that deleting a subset of links
is not profitable for any single player and adding a link is
not profitable for any pair of players, but it is profitable for
a pair of players to simultaneously delete a subset of their
current links and add a link. Example 3.2 illustrates this
possibility.
Example 3.2 Simultaneous deletion and addition of a link

Consider a game with n = 4. Assume the following
payoffs: Any isolated player earns 0; in a line network the



two central players earn 25 each, while the end players
earn 10 each; in a cycle network, every player earns 20
each; in a network with a cycle and an additional link, the
payoffs of the players with two links each is 20; and the
payoffs of the three link players is 15 each. Then it follows
that the cycle is a pairwise equilibrium. However, if players
can delete links and add a link at the same time, then two
players in the cycle can make a coordinated move—which
yields a line network with themselves as the central players
—and thereby increase their payoffs. Thus the cycle is not
stable with respect to coordinated deviations.

◼

The notion of bilateral equilibrium addresses these
concerns by introducing the possibility of players deviating
in a coordinated manner. Define s−i−j as the strategy profile
s less the strategies of players i and j; that is, s−i−j = {s1, …,

si−1, si+1, …, sj−1, sj+1, …, sn}.
Definition 3.4 A network g* is a bilateral equilibrium if

1.  There is a Nash equilibrium strategy profile s* that yields g*.
2.  For any pair of players i, j ∈ N, and every strategy pair (si, sj),

Thus a given network can be supported in a bilateral
equilibrium if no player or pair of players can deviate
(unilaterally or bilaterally, respectively) and benefit from
the deviation (at least one of them strictly). We note that
the bilateral equilibrium is a special case of the well-known
concept of the strong equilibrium—it is special in the sense
that only two player subsets are allowed (the strong
equilibrium was introduced by Aumann [1959]). The
characterization of conditions on payoffs for the existence
of bilateral equilibrium appears to be an open problem.

3.6 Reading Notes



The beginnings of an economic approach to network
formation can be traced to an early paper by Boorman
(1975), that studied workers who form links to learn about
jobs. The model he proposed captures two key ideas in the
theory of network formation: link formation has costs and
benefits for the individual and also generates externalities
on others (for a brief overview of the Boorman model see
chapter 15).

In an early paper, Myerson (1977b) studied a variation of
the Shapley value for games when players in a component
can form coalitions. This is now referred to as the “Myerson
value.” In a subsequent paper, Aumann and Myerson
(1988) introduced an explicit extensive-form game of link
formation with the following rules: Pairs of players are
ordered, and in each period, one pair is given the
opportunity to form a link. Linking is irreversible. Once
every pair of players has had a chance and decided
whether to form a link, the game ends. The paper examined
some examples to illustrate that subgame perfect
equilibrium networks of this process may be socially
inefficient. In his game theory textbook, Myerson (1991)
proposed a simultaneous link-formation model: every player
announces a subset of links which they intend to form, and
a link between two players is formed if and only if both
players express a wish to do so.

Following these early attempts at network formation, the
systematic study of linking processes and network
formation games may be traced to traced to Goyal (1993),
Bala and Goyal (2000), and Jackson and Wolinsky (1996).
For extended surveys of this research, the interested
reader is referred to Demange and Wooders (2005), Dutta
and Jackson (2003), Goyal (2007), Jackson (2008), Mauleon
and Vannetelbosch (2016), and Bramoullé, Galeotti, and
Rogers (2016).

The chapter starts with a discussion of a model of
network formation in which individuals can unilaterally



decide to form links. Unilateral link formation has the
advantage of allowing the use of the tools of
noncooperative game theory to analyze the games of
linking. This facilitates a study of a number of questions
using familiar methods. This approach was introduced in
Goyal (1993) and was systematically developed in Bala and
Goyal (2000a). In many contexts, such as friendships and
coauthorships, it is more natural to consider link formation
as a two-sided process: both individuals must agree to the
link. In our discussion, we follow Jackson and Wolinsky
(1996), which proposes the solution concept of pairwise
stability and offers a general introduction to this approach.
The study of pairwise stability has been developed in a
large body of literature. Richer solution concepts have been
explored by these works, and we briefly discussed some of
the more widely used notions. The pairwise equilibrium is
formally defined in Goyal and Joshi (2006b) and
Belleflamme and Bloch (2004). The existence of pairwise
stable networks is established by Jackson and Watts (2001).
The basic ideas underlying the proof of the efficiency result
in the two-sided model with decay were provided in a paper
on airlines by Hendricks, Piccione, and Tan (1995).
Overviews of solution concepts for network formation
games are presented in Gilles and Sarangi (2004), Gilles,
Chakrabarti, and Sarangi (2012), Bloch and Jackson
(2006), and Bloch and Dutta (2011). For discussions of
ways to reconcile one-sided and two-sided linking
protocols, see Ding (2021) and Olaizola and Valenciano
(2015).

With the basic models studied in sections 3.2 and 3.3, we
assumed that individuals were symmetric: everyone had
the same payoff function. Differences across individuals
may be important with regard to both costs and benefits.
These heterogeneities can shape networks in important
ways. For an early examination of network formation with
heterogeneous individuals, see Galeotti, Goyal, and



Kamphorst (2006), Galeotti (2006), and Gilles and Johnson
(2000). A prominent development in this line of work is the
incorporation of homophily in linking; for an early model of
network formation with homophily, see Currarini, Jackson,
and Pin (2009).

A recurring theme is the tension between pairwise
stability and equilibrium networks and efficiency. The
literature has explored the scope of this tension and
proposed ways of mitigating it. We refer to Jackson and
Wolinsky (1996) and Dutta and Mutuswami (1997), on
centralized mechanisms, and Bloch and Jackson (2007), on
decentralized transfers between the players. For overviews
of this work, see Jackson (2008) and Goyal (2007).

The literature on network formation has grown greatly
over the past twenty-five years, so a number of variations
on the basic models presented in sections 3.2 and 3.3 have
been developed. The chapter discusses four themes in the
literature: dynamics, weighted links, generic social
investments, and linking and assorted activities. The
dynamics of linking were studied early by Bala and Goyal
(2000a), Watts (2001), and Jackson and Watts (2002a). For
an early overview of the research in this field, see Goyal
(2007) and Jackson (2008); for more recent surveys, see
Bramoullé, Galeotti, and Rogers (2016) and Benhabib,
Bisin, and Jackson (2011).

Turning to weighted links, an early discussion of related
issues is presented in Goyal (2005). A number of papers
have examined the formation of weighted networks and
some of these papers have also studied specific empirical
contexts; for example, see Bloch and Dutta (2009), Deroian
(2009), Rogers (2006), Brueckner (2006), Goyal, Moraga-
González, and Konovalov (2008), Van der Leij and Goyal
(2011), and Skyrms and Pemantle (2009). Recent
contributions include Baumann (2021), Ding (2021),
Salonen (2015), and Griffith (2020).



Fairly early, a number of researchers realized that
nonspecific linking may offer a more tractable framework
to study network formation in large populations, and it
would also help with obtaining more realistic network
architectures. Early contributions using this approach
include Durieu, Haller, and Sola (2011) and Cabrales,
Calvo-Armengol, and Zenou (2011). This line of work has
been recently elaborated upon by Albornoz, Cabrales, and
Hauk (2019) and Canen, Jackson, and Trebbi (2020).

A strand of this literature examines models of linking in
which individuals propose a single scalar number, as in
section 3.4.3, but the payoffs depend on the macroscopic
properties (such as connectedness and giant component) of
the random graph that they create. A number of other
papers have explored a similar approach and have drawn
attention to the economic incentives for creating networks
that exist at the knife edge of macroscopic properties like
connectedness (or the existence of a giant component); for
example, see Dasaratha (2021), Blume, Easley, Kleinberg,
et al. (2013), Elliott, Golub, and Leduc (2020), Golub and
Livne (2010), and Goyal and Sadler (2021).

There is a very large body of literature on linking and
assorted activities. For a survey of the theoretical aspects
of the interplay between linking and related activities, see
Vega-Redondo (2016). A recent paper by Sadler and Golub
(2021) further explores some of the issues in this field. The
chapter discusses contexts relating to coordination,
cooperation and trust, cooperation and competition among
firms, and brokerage and intermediation, where this
perspective has been further developed.

The solution concepts discussed in the chapter focus on
one- and two-player deviations. The ideas can be extended
further to include groups of players to shape pairwise links
and allow many-player links. Consider first the issue of
larger group deviations within a pairwise link context.
Suppose that a group of players of any size can determine



the nature of networks among them, as well as determine
the links between members of the group and the players
who are not in the group. Group-level incentives are
traditionally studied using notions of strong equilibrium
and coalition equilibrium. Jackson and Van den Nouweland
(2005) study strongly stable networks and derive
conditions for the existence of such networks. Building on
the work of Chwe (1994), there is also a strand of research
that examines far-sighted network formation. The
interested reader is referred to Dutta and Mutuswami
(1997), Bloch and Jackson (2006), and Herings, Mauleon,
and Vannetelbosch (2009) for alternative solution concepts
in the context of network formation.

At a more fundamental level, however, there is the issue
of why links should be bilateral. Indeed, in well-known
applications, such as co-authoring, collaboration between
firms, and free-trade agreements between countries, links
often involve more than two players. This suggests that the
level of linking should itself be viewed as endogenous.
Allowing larger groups in network formation brings the
framework closer to the coalitions framework, with one
major difference: a distinctive feature of the coalitions
model is that membership is exclusive. A player can be a
member of one or the other group, but not of several
groups. By contrast, the network literature restricts group
formation to the level of pairs of players, but allows a
player to be a member of any number of two-player groups
at the same time. Extending the network framework to
allow links between general many-player groups and
nonexclusive membership of groups would therefore yield a
general framework for studying coalitions as well as
networks.

We may generalize coalitions and networks using the
concept of hypergraphs: a hypergraph allows for a link to
be formed between any subset of two or more nodes. A



network is thus a special type of hypergraph in which only
subsets of two nodes are permitted. This general
framework would also permit a study of endogenous group
size and exclusivity. Hypergraphs are used in Dziubiński
and Goyal (2017) in the context of network defense (see
chapter 7, on network security). For studies of the
formation of hypergraphs, see Page and Wooders (2010),
Chen, Elliott, and Koh (2020), Martinez, Rostek, and Yoon
(2019), Ding, Dziubinski, and Goyal (2021) and Fershtman
and Persitz (2021).

The formation of networks is subject to a variety of
technological, economic, and social forces. It is therefore
only natural that network formation is studied across a
number of disciplines. Early work on network formation in
mathematics and bibliometrics used the metaphor of
random graphs; chapter 2 presented an introduction to this
topic. There is a rich body of work in mathematical
sociology that studies network formation and dynamics (for
an introduction to this literature, see Wasserman and Faust
[1994]). More recently, network formation has been the
subject of research in computer science (Fabrikant, Luthra,
Maneva, et al. [2003], Roughgarden [2005] and Easley and
Kleinberg [2010]), physics (Barabási and Albert [1999],
Watts and Strogatz [1998]) and business strategy (Gulati
[2007]).

3.7 Questions

  1.  (From Bala and Goyal [2000a]). Consider the one-way
flow model with decay from section 3.2.
(a)  Suppose n = 4. Show that a strict Nash equilibrium

network is either connected or empty.
(b)  Suppose n = 6. Construct an example of a Nash

network that is nonempty and not connected.
(c)  Suppose n = 4. A network is efficient if it maximizes

the sum of individual utilities. Derive the efficient



networks as a function of decay δ and the costs of
linking c.

  2.  Consider the one-way flow model with linear payoffs
discussed in section 3.2. Fix n = 10.
(a)  Derive the conditions on decay, δ, and cost of link, c,

under which a single hub with 9 spokes and a hub
with windmill network with three equal size petals is
a Nash equilibrium.

(b)  Derive the conditions on decay, δ, and cost of link, c,
under which a cycle containing all the nodes is a
Nash equilibrium.

  3.  Recall that the social welfare of a network is the sum of
utilities of players. In a game, define the price of
anarchy as the ratio of first-best social welfare to the
social welfare attained in the worst Nash equilibrium.
Define the price of stability as the ratio of first-best
social welfare to the social welfare attained in the best
Nash equilibrium
(a)  Show that in the two-sided linking model, the price

of anarchy is unbounded for a wide range of cost
parameters.

(b)  Show that in the one-sided linking model with one-
way benefits, the price of anarchy is unbounded for a
wide range of cost parameters.

(c)  Comment on the price of stability in the one-way
and the two-way flow models.

  4.  Consider an n player network formation game. Suppose
that two players i and j can form a link if they both
agree, and pay a cost c > 0. The network created by this
bilateral linking is denoted by g. The payoffs to player i
under network g are



where d(i, j; g) is the (geodesic) distance between i and
j in network g and δ ∈ (0, 1) is the decay factor.
(a)  Define a pairwise stable network.
(b)  Fix n = 6. Provide the range of parameter values, c

and δ, for which the empty, the complete, and star
networks are pairwise stable.

(c)  Fix n = 6. A network is efficient if it maximizes
players’ payoffs across all networks. Provide a
characterization of efficient networks for different
values of c and δ.

  5.  (From Jackson and Wolinsky [1996]). Consider a group
of researchers, each of whom has a fixed amount of
time available, which they can allocate across projects.
The payoffs to a player i in network g are given by

if di(g) > 0, and Πi(g) = 0, if di(g) = 0. A researcher
allocates equal time across projects and productivity
depends on the time spent on the project 1/di(g) +
1/dj(g) and a synergy in the production process,
captured by the interactive term 1/(di(g).dj(g)).
(a)  Show that in a network constituted of distinct pairs,

every player earns a payoff of 3.
(b)  Next, consider the effects of an author starting a

new project. Show that a coauthor with two links
earns [1/2+1+1/2] from an old project and
[1/2+1/2+1/4] from the new one. Show that if
everyone has two projects, then the payoff for each
player would be 5/2.

(c)  Let n be an even number. Show that a network with
n/2 separate pairs maximizes social welfare.



(d)  Any pairwise stable network can be partitioned into
complete components of unequal size. In particular,
if m is the size of a component and m′ is the size of
the next larger component, then m′ > m2.

  6.  (From Bala and Goyal [2000b]). Suppose that every
individual has information of value 1. Individuals can
access each other’s information via direct or indirect
links. A link is costly. However, in contrast to the
models described in this chapter, suppose that the
reliability of a link is uncertain and given by p ∈ [0, 1].
(a)  Discuss the trade-offs that arise as we vary p, c and

n. A network is super connected if deleting a link
leaves the network connected. Show that for fixed c
and p ∈ (0, 1), as we increase n, an efficient network
must be super connected.

(b)  Next, suppose that reliability can be increased
through investments. Discuss how the
convexity/concavity of costs of increasing reliability
will shape the architecture of efficient networks.

  7.  (From Galeotti et al. [2006] and Jackson and Rogers
[2005]). Consider a model of network formation in
which agents belong to groups: individuals are alike
except that the costs of forming links within groups are
less than the costs of linking across groups, and there is
a decay in value as it flows through paths of the
network. Building on the arguments in the chapter,
show how these group-based cost differences and decay
can give rise to a core-periphery network in which a few
agents from different groups constitute hubs. Comment
on the relation between this network architecture and
small worlds networks (discussed in chapter 2).

  8.  (From Goyal and Joshi [2006]). Consider a game of link
announcement. A strategy profile s induces an
undirected network g(s). Let L(g) be the total number of



links in network g. Define g−i as the network obtained
by deleting player i and all their links from the network
g and  as the total number of links in g−i.
The payoffs to a player i are given by:

where c > 0 is the cost of forming a link. We will say
that the payoffs of player i are convex (concave) in own
links if for every y ≥ 0, the marginal returns Φ(x + 1, y)
− Φ(x, y) are strictly increasing (decreasing) in x for x ≥
0. Next we say that the payoffs of player i satisfy the
strategic substitutes property if for y′ > y ≥ 0, Φ(x + 1,

y′) − Φ(x, y′) < Φ(x + 1, y) − Φ(x, y), for every x ≥ 0,
while they satisfy the strategic complements property if
for y′ > y ≥ 0, Φ(x + 1, y′) − Φ(x, y′) > Φ(x + 1, y) −
Φ(x, y), for every x ≥ 0.
(a)  Suppose payoffs (3.35) are convex in own links.

Then a pairwise equilibrium network is either empty,
complete or a dominant group network (a dominant
group network consists of a clique of nodes and a set
of isolated nodes). Comment on how complements
versus substitutes affects network architecture.

(b)  Suppose that payoffs (3.35) are concave in own
links and exhibit strategic complements across
others links. Then a regular pairwise equilibrium
network always exists. In any irregular pairwise
equilibrium network, all nonmaximally linked nodes
are mutually linked.

  9.  Ductor, Goyal, and Prummer (2022) show that male and
female economists have different coauthor networks:
women have fewer coauthors, form stronger ties, and
have higher clustering (for a discussion, see chapter 1).
Using the ideas of purposeful linking introduced in this



chapter, discuss the role of preferences and the
environment in explaining these network differences.

10.  Bearman, Moody, and Stovel (2004) show that
romantic and sexual networks are heterophilous and
contain a large component with long cycles (for a
discussion, see chapter 1). Propose a model of
relationship formation and use it to reason about the
role of preferences and constraints in shaping such a
network.

11.  Currarini, Jackson, and Pin (2009) present empirical
evidence on school friendships: pupils from larger
communities have more friends and there is inbreeding
homophily (see chapter 1 for a definition of this
concept). Propose a model of friendships with the
following features—individuals belong to groups,
individuals are matched at random with each other, the
benefits of within group links are on average larger
than benefits from cross group links, and there are
costs to forming links. Use this model to reason about
these empirical patterns.



4
Network Structure and Human Behavior

4.1 Introduction

In a democracy, a citizen votes in city, regional, and
national elections. To inform themself on the issues and the
competing candidates, they read newspapers and
magazines, and they also exchange views with their family,
friends, and colleagues. As there is a wide range of
problems and the issues are often complex, who they talk
to will play a role in determining how well informed they
are and how they vote. Families decide on whether to
vaccinate their children against infectious diseases such as
measles and mumps. The risk of contracting a disease
depends on its prevalence in the neighborhood, something
that is determined by the vaccination decisions of friends
and neighbors. A person decides on whether to take up a
life of crime; they will be more likely to succeed if they
learn tricks from others who are engaged in crime. The
skills of these others in turn depend on their connections.
The quality of research a scientist undertakes depends on
their efforts and the efforts of collaborators. The
availability of collaborators in turn depends on the other
collaborations they are engaged in.

In each of these instances, an inquiry into individual
behavior pushes us toward a study of a broader set of
relationships within which individuals and their contacts



are embedded. We are led to such questions as: What are
the effects of connections on individual behavior? How does
behavior respond to changes in a network? Are some
networks better for the attainment of socially desirable
outcomes? How can policy interventions alter behavior in a
network? The aim of this chapter is to develop a theoretical
framework that helps to precisely formulate these
questions and to introduce concepts that will help us to
understand how embeddedness shapes human behavior.

The framework we propose will have two ingredients: (1)
a formal description of the pattern of relationships among
individual entities, and (2) a description of the cross effects
that an individual’s actions create for other individuals and
how these are mediated by the pattern of ties among them.
We introduced networks in chapters 1–3. In this chapter,
we will introduce a number of concepts that help us to
organize the different ways in which networks mediate the
effects of others’ actions on individual payoffs.

Our starting point is the observation is that the same
action carried out by two individuals, A and B, will have a
different effect on C depending on their locations vis-à-vis
C. A simple way of formalizing this point is to think of
effects as being either local or global: an individual j is said
to be a neighbor of i if i and j have a tie. In this case, the
actions of j have a local effect on i. All players who are not
neighbors are referred to as nonneighbors and are treated
alike, and their effects on i are said to be global.

We will be especially interested in two dimensions of
such effects. The first is the effect of j’s action on i’s total
payoffs—the actions of others are said to create a positive

externality if an increase in the action raises an individual’s
payoffs; they are said to create a negative externality if an
increase in an action lowers an individual’s payoff. The
second dimension of effect is intimately connected to
individual incentives: if an increase in an other’s actions



raises the marginal returns from one’s own actions, the
actions are said to be strategic complements; if an increase
in an other’s actions lowers the marginal returns from
one’s own actions, then the actions are said to be strategic

substitutes.
The effects of others’ actions can be mixed, depending on

their location in the network: the actions of neighbors may
generate positive effects while actions of nonneighbors may
generate negative effects, and vice versa. This points to the
potentially complex interplay between action externalities
and network location. We will refer to these payoff effects
as the content of interaction. In section 4.2, we present a
number of examples that help us appreciate the rich
possibilities with regard to the content of interaction.

Our analysis of games on networks begins with two
classical binary action games: the best-shot game and the
weakest-link game. The analysis of these games draws
attention to an important general point about embedded
human activity: individual behavior is shaped by both the
structure of the network and the content of interaction. In
the best-shot game, individual activity can be understood in
terms of maximal independent sets of the network; in the
weakest-link game, activity can be understood in terms of
the q-core of the network. The difference between these
two network properties shows how the content of
interaction—strategic substitutes versus complements—is
decisive for identifying a network dimension that defines
individual behavior.

In our study of the best-shot and weakest-link games, we
assume that individuals know all details of the network. In
a large network, it is unlikely that individuals will have
complete knowledge of all details of the network. Rather,
we expect individuals to know some aspects of their local
environment (such as the number of their neighbors) and
some global aspects of the network (such as its overall



connectivity), but not other features—such as, for example,
the links among other nodes in the network. In this setting,
it is natural to define the strategy of an individual as a
function of their degree and we are led to a study of the
Bayes-Nash equilibrium of a game of incomplete
information. The analysis yields sharp predictions:
equilibrium strategy is monotonically decreasing
(increasing) in degree in best-shot (weakest-link) games.
Earnings are increasing in degree in both types of games.
We are also able to study the effects of changes in the
network on individual behavior.

We then turn to games with a continuum of actions. In
this context, networks have smoother effects on behavior.
Take a game of complements: if an individual raises their
action, then their neighbors will best respond by raising
their own actions. This will in turn affect their neighbors,
and so forth. These raised efforts will feed back to the
original individual, with the magnitude of the positive
pressure depending on the number and length of “walks” of
the initial player in the network. Recall from chapter 1 that
the Katz-Bonacich centrality of a node is a summary
statistic of the number and length of all walks from a node
to all other nodes. Our analysis in this chapter will yield the
following insight: the equilibrium action of an individual is
proportional to their Katz-Bonacich centrality. However,
the centrality of different nodes in a network turns on the
nature of the strategic effects: for instance, in games of
strategic complements, the hub of the star network has
highest centrality and chooses the largest action; by
contrast, in games of strategic substitutes, the hub has the
lowest centrality and hence chooses the smallest action.

A central feature of games on networks that we have
discussed so far is the presence of externalities: in an
equilibrium of the game, individual actions will therefore
generally not be socially optimal. The tension between what



individuals do and what is in their collective interest is an
important motivation for intervening in a network. Our
study of the network intervention problem draws attention
to the value of targeting nodes in proportion to their
presence in different principal components/eigenvectors of
the matrix of interactions.

4.2 Choice in Networks

This section presents a framework for the study of
individual choice in networked environments. There are
two essential ingredients. The first is the content of
interaction: What is the form of activity being
contemplated? More precisely, we are interested in
incentives of individuals to undertake different actions, and
so by the content of interaction, we mean how actions of
others affect an individual’s total and marginal returns to
activity. The second is the structure of interaction: Who is
connected to whom? We start by laying out some basic
notations on individuals, their actions, and the network
they are embedded in. Our exposition draws on Goyal
(2007).

Consider a set of individuals N = {1, 2, …, n}, where n ≥
2. Individuals are located in a network g. The set of
networks is denoted by 𝒢. Individuals make their choices
simultaneously: let the strategy of individual i be given by si

∈𝒮. It will be assumed that 0, 1 ∈ S and both discrete and
“continuous” action sets are allowed. The vector of
strategies is denoted by s = (s1, …, sn), where s ∈𝒮n. In
what follows, s−i = (s1, s2, …, si−1, si+1, …, sn) refers to the
profile of strategies of all players other than player i. The
payoff (utility or reward) to player i under the profile of
actions s = (s1, …, sn) is given by Πi: Sn ×𝒢→ ℝ.

In games where the action set is continuous, we assume
that S is also convex (recall that a set S is said to be convex
if, for every pair of elements x, y ∈ S and for any λ ∈ [0, 1],



λx + (1 −λ)y ∈ S). Individuals are located in a network g.
Recall that the neighbors of i in a network, denoted by
Ni(g), are individuals with whom the individual i has a link,
that is, Ni(g) = {j ∈ N|gij = 1}. Also recall that the degree of
i, di(g) is the number of neighbors of i in network g. An
individual’s payoffs depend on their actions and the actions
of others. Given a profile of strategies s and a network g,
let sNi(g) refer to the strategies of i’s neighbors in network g.
It will be useful to define higher and lower actions of
neighbors: we say that a vector  is greater than the
vector sNi(g), , if for every neighbor j ∈ Ni(g), ,
and for some neighbor k, .

In the examples mentioned in the introduction, it is
reasonable to suppose that the action of a neighbor has a
greater impact on an individual compared with the action
of nonneighbors. This leads us to classify “others” into two
groups, neighbors and nonneighbors, and to treat members
in each group alike. This distinction between neighbors and
nonneighbors naturally suggests a corresponding
distinction between local and global spillovers. In a game of
local spillovers, the payoffs of an individual depend only on
their own actions and the actions of their neighbors. Given
a strategy profile s, an individual i’s payoff is

where Φ(.,.): Sdi(g)+1 → ℝ and di(g) = |Ni(g)| is the degree of
individual i in network g.

We assume that the payoff functions of two players with
the same degree are identical, and so payoffs do not
depend on the identity of the player. This simplifying
assumption is reasonable as our primary interest is in
network effects. At a later point, we may wish to add
specific forms of individual heterogeneity—such as gender
or race or age—depending on the particular application



under study. We will also assume that payoffs are
anonymous with regard to choices of neighbors’ actions.
This means that if  is a permutation of actions in sNi(g),
then .

Going beyond the pure local case, we will also be
interested in situations where neighbors and nonneighbors
matter. An important special case arises when an
individual’s payoff depends only on one’s own action, the
sum of neighbors’ actions, and the sum of nonneighbors’
actions. Given a profile s = (s1, …, sn) and a network g, an
individual i’s payoff is

In this chapter, we will restrict attention to the cases where
we treat all neighbors and all nonneighbors alike. It is
possible to generalize this formulation so that effects
depend on the distances in a network. In chapter 11, on the
Law of the Few, we will present an example that illustrates
this possibility.

We now turn to how others’ actions matter for payoffs. A
game of local effects exhibits positive externality if payoffs
are increasing in the actions of neighbors, and it exhibits
negative externality if they are decreasing in the actions of
neighbors. As players are homogeneous (other than
network differences) and as we are assuming that actions
are anonymous, we can simplify strategy of neighbors sNi(g)

and write it as sd for a player with degree d. With this
simplification in place, let us define positive and negative
externality.
Definition 4.1 A game with pure local effects exhibits positive externality if,

for every d ∈ {1, 2, …, n − 1}, for every si ∈ S, and for every pair of neighbors’

strategies ,  implies .



A game with pure local effects exhibits negative externality if, for every d

∈{1, 2, …, n − 1}, for every si ∈ S, and for every pair of neighbors’ strategies 

,  implies .

The game exhibits strict (positive or negative) externality
if the corresponding payoff inequalities are strict whenever

.
We now turn to the effects of neighbors’ actions on

incentives of an individual. The incentives will depend on
how an individual’s marginal returns are affected by
neighbors’ actions. Building on Bulow, Geanakoplos, and
Klemperer (1985), we shall say that a game with pure local
effects exhibits strategic complements or strategic

substitutes depending on whether the marginal returns to
one’s own action for player i are increasing or decreasing
in the efforts of their neighbors.
Definition 4.2 A game with pure local effects exhibits strategic complements

if, for every d ∈{1, 2…, n−1}, for every pair of one’s own strategies si > si′, and

every pair of neighbors’ strategies ,  implies that 

.

A game with pure local effects exhibits strategic substitutes if, for every d ∈ {1,
2…, n − 1}, for every pair of one’s own strategies si > si′ and every pair of

neighbors’ strategies ,  implies that 

.

The payoffs exhibit strict complements and substitutes if
these payoff inequalities are strict whenever .

Games on networks are solved using the concept of Nash
equilibrium. A strategy profile  is a Nash
equilibrium of a network game if, for each player i, given
the strategies of other players  maximizes their payoffs.
Formally, a strategy profile  is a Nash equilibrium
in network g if, for all i ∈ N,

The conditions for the existence of a Nash equilibrium
have been studied extensively; we refer the interested



reader to Osborne and Rubinstein (1994).
We now present examples to illustrate the scope of this

framework.

4.2.1 Examples

The aim of this section is to formally represent social and
economic situations where connections matter, and to draw
out the relationship with strategic complements and
substitutes.

We start with binary games and then turn to continuous
action games. The two binary action games—the best-shot
game and the weakest-link game—are taken from
Hirshleifer (1983).
Example 4.1 Best-shot game

There are two actions, 0 and 1. Action 0 denotes inactivity
and is costless. Action 1 denotes a costly activity. Examples
of action 1 include collecting information on the best route
to a destination, the availability and location of a product,
and facts about a political candidate. The individual utility
is 1 if and only if the sum of their action and their
neighbors’ actions adds up to 1 or more. For simplicity,
suppose that action 1 costs c ∈ (0, 1). Observe that if an
individual is choosing 0, an increase in action of the other
player raises the individual’s payoff from 0 to 1. If they are
choosing 1, such an increase in action by another player
leaves the individual’s payoff unaffected. Thus an increase
in action by another player raises their payoffs or leaves
them unchanged. Next, observe that in this game, there is a
return to choosing a costly action 1 if and only if the
neighbors do not choose 1. Thus the marginal returns to
choosing 1 are falling in the other player’s choice—that is,
the individual action and the actions of neighbors are
strategic substitutes. Following Galeotti, Goyal, Jackson et
al. (2010), we locate this game in a network. Given a



network g and a strategy profile s, the payoffs of individual
i are

Observe that it does not matter who among the
neighbors chooses which action, only the sum of actions
matters. This is an instance of a general feature of such
contexts: these payoffs are anonymous, that is, all
individuals with the same degree have the same payoff
function, and this payoff function is symmetric with regard
to the actions of different neighbors. We also see that
individual payoffs are increasing in the actions of others, so
this is a game with positive externalities.

◼

Example 4.2 Weakest-link game

In a classroom, the returns from learning a new computer
language depend on how many others are learning the
same language. Learning a language takes time and effort
and is a costly endeavor. Observe that if an individual
chooses not to learn (i.e., action 0), then an increase in
action of another player has no effect on an individual’s
payoff. If an individual chooses to learn a new language,
action 1, then such an increase in action by the other
player raises the individual’s payoff from − c to 1 − c. Thus
the marginal returns to choosing action 1 are increasing in
the choice of the other player, and so the actions of an
individual and her classmates are complements. Following
Galeotti, Goyal, Jackson et al. (2010) we locate this
interaction within a network. Given a network g and a
strategy profile s, the payoffs of an individual i are



This is therefore a game with positive externalities.
◼

We now present a number of examples of games where
the action set is continuous.
Example 4.3 Local public goods

In a wide class of situations, an individual makes a costly
contribution that not only brings them closer to their ideal
level of a “good,” but also raises the “good” enjoyed by
their neighbors. Prominent examples include (1) the case of
an individual who reads extensively on public affairs and
shares this information with their friends and colleagues;
(2) contributions to improve physical neighborhoods, such
as residents clearing snow or improving their garden; and
(3) protective measures against infectious disease, such as
getting vaccinated or wearing masks. These examples have
motivated a widely studied model of local public goods
proposed by Bramoullé and Kranton (2007a); for
elaborations on this model, see Galeotti and Goyal (2010),
Allouch (2015), and Galeotti, Golub, and Goyal (2020).

Suppose that each individual i contributes effort si to the
public good. Then the amount of public good that i

experiences is

where . The utility of i is

where .
The optimal level of public good in the absence of any

costs is τ; this can be thought of as the maximum that can
be provided (thus, xi ≤ τ). Individual i has access to a base
level  of the public good. Each agent can expend a costly



effort si to augment this base level to . If i’s neighbor j
expends effort sj, then i has access to an additional 
units of the public good, where .

As higher efforts of others raise an individual’s utility,
this is a game of positive externality. Simple computations
also reveal that a greater effort by neighbors lowers an
individual’s marginal returns from higher efforts, so this is
a game of strategic substitutes.

◼

Example 4.4 Crime

There exist very large differences in rates of crime across
space (this holds true across countries, across cities within
the same country, and also across precincts within the
same city). Glaeser, Sacerdote, and Scheinkman (1996)
show that these differences cannot be accounted for by
differences in local social and economic conditions. This
leads them to argue that positive covariance across agents’
decisions about crime must be an important part of the
explanation for such dispersion in crime.

Building on the rational-actor approach to crime
introduced in Becker (1968), we propose the following
model of criminal activity. As criminal activity is illegal,
individuals acquire proficiency in it through personal
interaction with other trusted people. This suggests that
the level of criminal activity exhibits a form of
“complementarity:” individual incentives to engage in
crime increase with the criminal activity of nearby people.
Developing this reasoning, we are led to the view that the
level of criminal activity will depend on the direct and
indirect connections of individuals. We present a model of
crime taken from Ballester, Calvó-Armengol, and Zenou
(2006) that captures these ideas.

There are n individuals, each of whom chooses, a level of
criminal activity si. The payoffs to player i under strategy
profile s are given by



Assume that α > 0 and ρ > 0. We can see that an
increase in actions of neighbors raises an individual’s
payoffs, implying that this a game of positive spillovers.
Taking cross-partial derivatives with respect to a
neighbor’s action, reveals that this is a game of strategic
complements.

◼

Example 4.5 Research collaboration among firms

Firms collaborate with each other to create new products
and to reduce their costs of production. The study of
business management provides extensive evidence on the
role of such collaborations (see Hagedoorn 2002; Gulati
2007). Two features of this collaborative activity are worth
noting. The first feature is that firms enter into a number of
relationships that are nonexclusive. The second feature is
that firms often collaborate with other firms within the
same market, giving rise to a complex relation which
combines cooperation and competition, thus giving rise to a
form of coopetition (Nalebuff and Brandenburger 1997).
We present a model of research collaboration among firms
taken from Goyal and Moraga-González (2001), which
embodies this perspective.

Suppose that demand is linear and given by Q = 1 − p
and that the initial marginal cost of production in a firm is
c, and assume that nc < 1. Each firm i chooses a level of
research effort given by si ∈ S = [0, c]. The marginal costs
of production of a firm i in a network g, facing a profile of
efforts s, are given by



Efforts involve allocation of scarce resources; let us
suppose that this cost is given by , where α > 0.
Given costs c = {c1, c2, …, cn}, firms choose quantities to
maximize profits. The costs of firms are positive so long as
α is sufficiently large.

Firms choose quantities {qi}i∈N, with . Thus, the
profits of firm i in a collaboration network g are given by

From the theory of oligopoly, we know that, given a cost
vector c = (c1, …, cn), firm i will choose “quantity” given by

Bearing this in mind, the payoffs of a firm i located in
network g, faced with a research profile s, are given by

It can be checked that this payoff function exhibits
positive externality across neighbors’ actions and negative
externality across nonneighbors’ actions. Moreover, the
actions of neighbors are strategic complements, while the
actions of nonneighbors are strategic substitutes. We see
here how a rather simple game of collaboration can
generate a very rich set of externalities and strategic
effects.

◼

Example 4.6 Competition among firms



Consider the classical problem of a set of firms, each
producing a distinct good and choosing a price for that
good. Following Singh and Vives (1984), let us say that
demand for good i is

where p = (p1, …, pn) is the price vector, β is the firm’s
price effect, and γij is the effect of price j on the demand for
good i. Given a price vector p, the profit for firm i is

We may summarize the parameters of the demand
system β and γij in an adjacency matrix D, where β occupies
the diagonal cells and γij is the element in cell ij of the
matrix. The adjacency matrix D may be seen reflecting a
network of demand cross-dependencies across different
goods. Let us assume that γij = γji. We notice that the
nature of effects between firms i and j will depend on the
sign and magnitude of the parameter γij; γij > 0 will imply
that raising the price of j confers a positive externality on i,
and γij < 0 implies that raising the price of j confers a
negative externality on i. Similarly, γij > 0 signifies a
relation of strategic complements between the prices of i

and j, and γij < 0 signifies a relation of strategic substitutes.
◼

Example 4.7 Keeping up with the Joneses

Individuals and families often define the quality of their
lives in relation to the standard of living of their relatives
and neighbors. A distinguished strand of literature starting
with the celebrated work of Torsten Veblen (1973) studies
the consequences of the “keeping up with the Joneses



effect.” (See Duesenberry (1949) for an early discussion of
the implications of such effects.) For empirical evidence on
the presence of relative consumption effects, see Luttmer
(2005) and Kuhn et al. (2011). We present a model, taken
from Ghiglino and Goyal (2010), that studies consumer
choice in a setting where individuals care about relative
consumption.

We consider a group of households who have the same
income ω and spend it on two goods x and y. The
households have Cobb-Douglas preferences; the novel
feature of the preferences is that the good y is a relative
consumption good. The utility of individual i facing a
consumption profile (xi, yi)i∈N is

where y−i is the consumption of all households other than
household i, σ ∈ (0, 1) and α > 0 represent the strength of
social comparisons, ηi is the number of neighbors of i in
network, and di is the number of neighbors. We can check
that the consumption of good y is a strategic complement
across neighbors.

◼

With this general discussion in place, we now analyze
different classes of games on networks. As a first step we
solve binary action games.

4.3 Binary Games

We commence our analysis of behavior in networks with a
study of two simple games: the best-shot game and the
weakest-link game. This binary choice environment offers
us a basic framework within which we can develop a
general message—behavior is jointly shaped by the content



of interaction (as reflected in the payoff externalities in an
activity) and the structure of the network.

4.3.1 Best-Shot Games

Let us consider the best-shot game; the discussion here is
based on Bramoullé and Kranton (2007a). A preliminary
observation is that, since c ∈ (0, 1), in a Nash equilibrium it
must be the case that an individual either chooses 1 for
themself or one of the individual’s neighbors chooses 1.
Moreover, the strong substitutability of actions among
neighbors implies that an individual will choose 1 if and
only if all the neighbors will choose 0. So in any network, a
Nash equilibrium can be constructed using the following
algorithm: number the players from 1 to n. Say that player
1 chooses 1; assign 1 to the set of active players A. Next,
consider players starting from 2 onward: check if 2 is a
neighbor of 1; if not, then add this person to the set of
players A who choose 1. If 2 is a neighbor, put him in the
set B that chooses 0. Proceed next to 3: check if this
individual is a neighbor of anyone in set A. If 3 is not, then
place them in set A; if is a neighbor of someone in set A,
then place them in set B. Proceed next to player 4 and so
forth. Once we complete this procedure with player n, we
will have partitioned the players into two sets, A and B
(every player lies either in A or in B but never in both).
Indeed, the set of active individuals correspond to a
maximally independent set of the network. Formally, an
independent set is a collection of nodes N′ so that no pair
of nodes i, j ∈ N′ has a link. An independent set is maximal
if it is not a strict subset of any other independent set in the
network. A question at the end of this chapter works
through properties of maximal independent sets.

Every player in set A chooses 1 while every player in the
set B chooses 0. By construction of the sets A and B,
observe that these actions are optimal for every individual.



Consider a player i ∈ A: every neighbor lies in set B and
chooses 0, so it is optimal for player i to choose 1.
Similarly, for any player j ∈ B, there must be a neighbor in
set A; otherwise, player j would themself be in set A. But
everyone in set A chooses 1, so it is optimal for everyone in
set B to choose 0. This simple process thus yields a Nash
equilibrium for the best-shot game. By suitably reordering
the players, we can in fact trace any Nash equilibrium on a
given network. Finally, as we have not invoked any special
feature of a network, note that the same procedure would
apply to any network.

Figures 4.1 and 4.2 provide examples of maximally
independent sets. In figure 4.1, we consider Erdὄs-Rényi
graphs and see that the number of nodes in the maximal
independent set can vary widely (in this case, from 6 to 10).
This is a more general feature of maximal independent sets.
Figure 4.2 presents two simple networks—the star and the
circle—and their corresponding maximal independent sets.
In the star, the maximal independent sets vary from size 1
to n − 1, while in the circle, the number varies from n/3 to
n/2.

Figure 4.1 
Maximal independent sets (indicated in orange) in E-R graph (n = 20, p = 20).



Figure 4.2 
Maximal independent sets in simple networks (indicated in orange).

Some features of maximal independent sets are worth
noting. There is no simple relation between an individual’s
connections and that individual’s presence in a maximal
independent set: behavior in the best-shot game thus
depends on the social structure broadly construed. The
multiplicity of maximal independent sets gives rise to the
problem of multiple Nash equilibria.

The multiplicity of equilibria poses a challenge when we
wish to understand the effects of changes in a network. To
see this, let us start from a network that contains two
distinct stars and add a link that connects the two hubs.
The effect of this change can be radically different
depending on which maximally independent set is active.
Figure 4.3 illustrates this point: in the top-left panel (figure
4.3(a)), there is a network with two stars, and in each star
the hub (represented in red) is active and the spokes



(represented in blue) are passive. A link is added between
the two hubs to create a connected network. Figure 4.3(b),
presents an equilibrium in the connected network in which
spokes are active (represented in red) and both the hubs
are passive (represented in blue). This shows that a link
can lead to significant increase in activity. By contrast,
consider the bottom panel on the left (figure 4.3[c]), there
is an equilibrium in which the hubs are passive
(represented in blue) while the spokes are active
(represented in red). In the bottom right panel (figure
4.3[d]), after the addition of the links, the equilibrium
changes—one hub is active and the corresponding spokes
are passive, while the other hub is passive but the
corresponding spokes are active (active in red and passive
in blue). Thus the effects of adding a link—whether it
increases or decreases aggregate activity—depend very
much on the initial starting situation. It is easy to see that
this ambiguity is also true if we look at the effects of
additional links on payoffs.

Figure 4.3 
Adding links: multiplicity in outcomes (active players in red).

The following result summarizes our discussion of best-
shot games.
Proposition 4.1 Consider the best-shot game played on a network. In an

equilibrium, the set of active players is given by a maximal independent set of

the network. Starting from any network g, adding links may increase or



decrease the level of activity. Similarly, adding links may increase or lower the

payoffs of individuals.

We conclude our discussion of best-shot games with
some remarks on social welfare. As in chapter 3, let us
define social welfare as the sum of individual utilities.
Observe that since c ∈ (0, 1), in an equilibrium every
individual must have access to at least one unit of activity.
Thus any variations that arise in social welfare must be due
to the number of active players. Indeed, it follows that
social welfare is falling in the size of the maximal
independent set. In the star network, therefore, differences
in social welfare across equilibria are very large: 1 versus n
− 1.

4.3.2 Weakest-Link Games

We next take up weakest-link games: our discussion is
based on Gagnon and Goyal (2017). Note that the state
where everyone is choosing action 0 is always an
equilibrium. However, there will typically exist other
equilibria. To develop a better sense of how networks
matter, let us fix the cost of action 1 to be c = 4.1. So an
individual will only choose action 1 if the returns of
choosing 1 cover the cost 4.1. From the payoff given in
equation (12.5), this means that at least five of the
individual’s neighbors must also choose action 1. However,
these neighbors will choose action 1 only if each of them
has at least four other neighbors choosing 1 (in addition to
the first player mentioned). Thus for an individual to
choose 1, they must be part of a set of nodes in a network,
each of whom has at least five links with others who have
five links, and so on. This discussion motivates the study of
the q-core of a network.
Definition 4.3 The q-core of a network g, denoted by gq, is the largest

subgraph of g such that all individuals in gq have strictly more than q links to

other individuals in gq.



Here is a simple procedure for obtaining the q-core of a
network. Start with a network g. In step 1, delete all the
nodes (and their links) in g for which degree k ≤ q. Label
the residual graph g1. In step 2, delete all the nodes (and
their links) in g1 for which k ≤ q. Iterate until no node with
k ≤ q remains (i.e., when gt = gt+1). The residual graph in
this last step is the q-core.

By way of illustration, consider the network in figure 4.4.
Suppose that we want to find the 4-core. First, find all the
nodes with k ≤ 4, and delete them and their links. In step 2,
delete the nodes with four or fewer links in the residual
network from step 1. Proceed likewise until no node with k
≤ 4 remains. The remaining nodes form the 4-core. A
question at the end of the chapter works through some
properties of the q-core.



Figure 4.4 
The 4-core. Source: Gagnon and Goyal (2017).

To return to our example with c = 4.1, observe that
everyone in the 4-core choosing action 1 and everyone
outside choosing action 0 constitutes a Nash equilibrium of
the weakest-link game. By definition, everyone in the 4-core
has at least five neighbors, and so their return from
choosing action 1 is at least 5 − 4.1 = 0.9. Moreover, no
one outside the set has five or more neighbors who belong
to the 4-core. Finally, we note that, by definition of the 4-
core, this is also the largest set of individuals who can
choose action 1 in an equilibrium in this network.

Observe that the zero activity outcome remains an
equilibrium for every network. Taken together, the zero
equilibrium and the equilibrium corresponding to the q-
core define the minimal and the maximal level of activity in



a network. Figure 4.5 illustrates the 1-core and 2-core in an
Erdὄs-Rényi network and in a stochastic block random
graph with two communities (and an equal average
degree). We observe that in Erdὄs-Rényi graphs, the q-core
is either extensive and covers much of the graph or is very
small. This is because Erdὄs-Rényi graphs have a fairly
homogeneous structure, with most nodes having a degree
close to the average degree. As we move from the Erdὄs-
Rényi to the stochastic random graph model, this changes
slightly, and we see that a part of one community
constitutes a q-core while the other one lies outside the q-
core. To see how this homogeneity matters, let us consider
another classical network: the core-periphery network.
Figure 4.6 shows that the q-core in this network has a very
different reach compared with the Erdὄs-Rényi graph. On
the effects of changes in a network, note that adding a link
to a network will either leave the q-core unaffected or will
expand it, so adding a link to a network can only weakly
raise the maximal equilibrium.

Figure 4.5 
Q-cores (in orange): n = 20.



Figure 4.6 
Q-cores (in orange).

A final remark concerns utility: the payoffs to an
individual who chooses 0 are zero while the potential
payoffs of an active agent are increasing in the number of
neighbors who choose action 1. So given a positive cost c, it
follows that payoffs are larger for nodes in the q-core as
compared with those outside it. It then follows as a simple
corollary that, for any network, aggregate social welfare is
maximized in the equilibrium corresponding to the q-core.
Hence, adding links to a network has the potential to raise
social welfare that is therefore maximized in the complete
network.

Define ⌈x⌉ as the smallest integer at least as large as x.
The following result summarizes our analysis of the
weakest-link game.
Proposition 4.2 Consider the weakest-link game played on a network. In

every network, there exists a zero activity equilibrium. The maximal activity

equilibrium is defined by the q-core of the network, where q = ⌈c − 1⌉. Starting

from any network g, adding links expands the q-core and has the potential to

increase the level of activity. The payoffs of players are larger in more active

equilibria; thus, adding links can potentially increase payoffs.



A comparison of propositions 4.1 and 4.2 brings out the
general point that individual behavior and utility are jointly
shaped by the content of interaction and the structure of
the network. In particular, in the best-shot game, the
strategic-substitutes property leads us to a focus on
maximal independent sets; in the weakest-link game, the
strategic-complements property leads us to a focus on the
q-core of the network.

A feature of both types of games is that, even in simple
networks, there exist multiple equilibria. This means that it
is often difficult to clearly relate an individual’s location
with their behavior and utility. So, for instance, we cannot
say whether highly connected individuals choose higher or
lower actions and earn more or less than less connected
individuals. This multiplicity also places limits on what we
can say on the effects of network change.

A key assumption underlying the analysis in this section
has been that individuals know the entire network. This is a
reasonable assumption for small networks but is unlikely to
hold for large networks. The next section takes up the
study of human behavior in large networks.

4.4 Binary Games on Random Networks

Many networks of interest—such as coauthor networks,
Twitter, and Facebook—are very large, containing
hundreds of thousands to millions of users. In such large
networks, complete knowledge of every node and every link
is not a plausible assumption. It is more reasonable to
assume that individuals will have limited information on the
details of who is connected to whom. An individual may
know who their friends are, and they may have a rough
idea about the overall distribution of connections. This
section explores human behavior when individuals have
limited knowledge of the network. Our discussion is based
on Galeotti, Goyal, Jackson et al. (2010).



Let us revisit the best-shot game. Now suppose that an
individual has degree d and knows that this is their degree.
Should they choose action 0 or action 1? The returns to
choosing 1 remain the same as before (1 − c), but the
returns from choosing 0 are less clear. If any of her
neighbors chooses 1, then their best choice is 0; if all the
neighbors choose 0, then their best action is 1. To make the
decision, they therefore need to have a view on what
actions their neighbors are choosing. Their choices will
depend on the number of connections they have. To make
progress in this problem, one way to proceed is as follows:
we define individual strategy as a function of the
individual’s degree, si: ℕ →{0, 1}. Next, we need to
consider an individual’s perspective on the behavior of
their neighbors: as their behavior depends on their degree,
they need to have a view on the degrees of each of their
neighbors. For concreteness, let us suppose that they
believe that the network arises out of an Erdὄs-Rényi
random linking process with probability p ∈ (0, 1). With
this belief, she believes that the probability that any
randomly selected neighbor is of degree k is the probability
that the neighbor is connected to k − 1 additional agents of
the remaining n − 2 agents. This probability may be written
as

In principle, since the network is undirected, an
individual’s own degree is related to the degree of others,
and in particular to the degrees of her neighbors. However,
as n gets large, this correlation becomes progressively
smaller. Let us make one final assumption: suppose that
everyone with the same degree chooses the same action.
We now have all the ingredients to fully solve for the
optimal individual strategy.



We show that the optimal strategy has a threshold
property: there is a cutoff value d*, such that everyone
below d* chooses 1 and everyone above d* chooses 0. To see
why this must be true, suppose that it is optimal for
someone with degree k to choose action 1. As degrees of
neighbors are uncorrelated, it follows that each of the
neighbors of someone with degree k − 1 has the same
degree distribution as a neighbor of someone with degree
k. As a neighbor’s degree is independent of an individual’s
own degree, this means that someone with degree k − 1
must expect less activity in the aggregate from their
neighborhood compared to someone with k neighbors. As
this is a game of strategic substitutes, it follows that the
marginal returns to choosing action 1 are higher for the
individual with degree k − 1 than for the individual with
degree k. If action 1 is optimal for degree k, it must also be
optimal for the individual with degree k − 1. Thus there is a
threshold property to optimal choice.

Suppose that every individual is following the threshold
strategy with a threshold t. Let us compute this threshold.
First, note that the individual payoff from action 1 is 1 − c.
The payoff from action 0 depends on whether one of the
neighbors chooses action 1. What is the probability that at
least one of the neighbors chooses 1? This is 1 minus the
probability that none of the neighbors chooses 1:

To compute t, we equate the expected payoff from action
0, given in equation (4.17), with the payoff from action 1, 1
−c. In other words, we are looking for t such that 1 − c lies
between the values of equation (4.17) evaluated at t as
opposed to t + 1. It is possible to show that this equilibrium
is the only equilibrium in strategies that condition only on



degree. Moreover, the strategy is (monotonically)
decreasing in degree: degrees below the threshold choose
action 1, and degrees above the threshold choose action 0.

We now turn to the issue of how changes in the network
affect behavior. An individual conditions their behavior on
their own degree, so it is natural to study changes in the
network in terms of changes in the degree distribution. Let
us again consider the Erdὄs-Rényi random graph: here,
changes in the degree distribution can be studied in terms
of an increase in the probability of linking, p. Let us
consider an increase from p to a higher p′. Note that a
higher p means that for every t,

Recall from chapter 1 that a change from p to p′ induces a
first-order stochastic shift in the degree distribution.

Consider the threshold that we computed under p. Under
a first-order stochastic dominant shift, the term 
is smaller and the expected payoff from action 0 at
threshold t is strictly smaller than the payoff from action 1.
This means that the new threshold t′ under p′ will be
higher, t′≥ t.

To develop a feel for these features of behavior, it is
helpful to compute some thresholds. Table 4.1 presents
thresholds in an Erdὄs-Rényi network with n = 20 and the
probability of linking p = 0.1. The threshold is 2, so degrees
1 and 2 choose action 1, and all degrees above 2 choose 0.
Table 4.2 presents thresholds for different levels of p in the
best-shot game: we see that the threshold is increasing in
connectivity level p.

Table 4.1 
Equilibrium in best-shot game on Erdὄs-Rényi network

Number of nodes 20



Number of nodes 20
Probability of link 0.1
Cost of action 0.5
Threshold 2
Prob. at least 1 neighbor chooses 1: 0.70
Expected utility of threshold degree (s=0) 0.70
Expected utility (s=1) 0.50

Table 4.2 
Best-shot thresholds in Erdὄs-Rényi networks: varying p

The increase in threshold means that effort remains
unchanged for individuals with degrees lower than t or
greater than t′, and increases for all individuals with
degrees between t and t′. The change in threshold also has
another implication: the probability that any randomly
selected neighbor chooses effort falls; in other words, 

. Thus the threshold only increases if,
for a given degree, the total of neighbors’ equilibrium
efforts is greater under the original p than under p′, which
implies that the probability of any selected neighbor
choosing effort must be lower under p′.

The computations here were made in the context of
Erdὄs-Rényi networks. However, nothing essential in these
computations rests on the details of the Erdὄs-Rényi
construction. Recall from chapter 2 that starting from some
degree distribution P, using the configuration model, the
approximate degree distribution for neighbors is

where E(d) is the expected degree under distribution P.
The probability that a neighbor who uses strategy s(.)
chooses 1 is given by



The probability that m out of di neighbors choose action
1 is given by

The expected utility of a player choosing action xi is then
given by

The arguments used to derive the thresholds in the
Erdὄs-Rényi network can easily be used to derive
thresholds for an arbitrary degree distribution P (simply by
substituting the formula from equation (4.23) in the place
of the expressions corresponding to the Erdὄs-Rényi degree
distribution in equations (4.16), (4.17), and (4.19). With
these remarks in mind, we may summarize our discussion
as follows.
Proposition 4.3 Consider the best-shot game played on a random network in

which degrees of neighbors are independent. There exists a unique equilibrium

in threshold strategies. Degrees below the threshold degree choose action 1,

while degrees above the threshold choose 0. Thus activity level is (weakly)

falling and therefore utility is (weakly) increasing in degree.

A first-order stochastic shift in neighbors’ degree distribution from P to P’

leads to a (weak) increase in degree threshold in the equilibrium strategy. Thus

more connected networks exhibit a (weakly) higher level of activity, for every

degree. This implies that for every degree, the expected level of activity of a

neighbor must go down.

We provide a sketch of the argument for uniqueness
here; the interested reader is referred to Galeotti, Goyal,
Jackson et al. (2010) for the details of the proof. Suppose
there exist two equilibria with distinct thresholds t > t′. So
there is a degree t′ + 1 that is weakly lower than t: this



degree chooses action 0 under t′ and action 1 under
threshold t. However, that degree t′ + 1 expects a higher
sum of activity in the t equilibria, and so her marginal
returns from action 1 will be lower than the marginal
returns from action 1 for the same degree under the
threshold t′. Given that t′ + 1 finds it optimal to choose
action 0, this contradicts the optimality of choosing action 1
under threshold t.

We conclude our discussion of the best-shot game on
random graphs with some remarks on social welfare. Let us
say that social welfare is given by the expected payoff of a
randomly chosen player (according to the prevailing degree
distribution). This result tells us that every degree does
weakly less well under the more connected network.
However, utility is increasing in degree, and there is a
higher fraction of individuals in the more connected
network. It is therefore possible that even though every
degree does less well, the average individual does better in
the more connected network.

We next turn to the weakest-link game played by
individuals located in a large random graph. Recall that
payoffs in the weakest-link game are given by

We will show that equilibrium is characterized by a
unique threshold. As before, suppose that individuals
inhabit an Erdὄs-Rényi model with link probability given by
p. If the number of nodes is large enough, the degrees of
neighbors are (close to) independent. This means that the
probability of a neighbor choosing action 1 is independent
of their own degree: in turn, this implies that expected
activity is increasing in the number of neighbors; that is, 

 is increasing in degree of i. If someone with degree
t chooses action 1, then the property of strategic



complements tells us that the marginal returns to action 1
are strictly larger for individuals with a degree greater
than t. In other words, optimal action obeys a threshold:
there is some t, individuals with a degree lower than t

choose 0, while those with a degree greater than t choose
1.

Building on this argument, we can say that, for
sufficiently large p, there exists t < N − 1, for which

Marginal returns are increasing in expected activity in
neighborhood. As their own degree is independent of the
neighbor’s degree, higher degree means higher expected
activity level in the neighborhood. From strategic
complementarity, this implies that the optimal strategy is
monotonically increasing in the degree of an individual. As
individuals can always earn 0 by choosing action 0, it
follows that expected payoffs are increasing in degree as
well.

Let us now take up the effects of changes in the network:
consider an increase in probability of linking from p to p′,
where p′ > p. This means that the degree distribution under
p′ first-order dominates the degree distribution under p;
that is, for any t,  Intuitively, the shift
from p to p′ increases connectivity of neighbors, and this
raises the probability that a neighbor would choose 1. From
the property of strategic complements, this raises the
returns from action 1 and lowers the threshold. Iterating on
this process, we generate a new threshold, t′ < t. A lower
threshold means that the probability that a neighbor
chooses 1 increases: this is because for any t, the
probability of degree greater than t is higher under p′.



To develop a feel for these features of behavior, we
compute some thresholds in Erdὄs-Rényi networks. Table
4.3 presents the computation of active equilibrium
threshold for a network with twenty nodes (n = 20) and
with the probability of linking p = 0.2. The threshold is 3:
this means that all those with degrees 1 and 2 choose
action 0, while players with degree 3 and higher choose
action 1. Table 4.4 presents thresholds for different levels
of p in the weakest-link game: we see that the threshold is
declining in connectivity level p.

Table 4.3 
Equilibrium in weakest-link game on Erdὄs-Rényi network

Number of nodes 20
Probability of link 0.2
Cost of action 2
Threshold 3
Prob. a neighbor’s degree ≥ 3: 0.72
Expected utility (s = 0) 0
Expected utility of threshold degree (s = 1) 0.19

Table 4.4 
Weakest-link thresholds in Erdὄs-Rényi networks: varying p

The following result summarizes our discussion on
weakest-link games on random graphs.
Proposition 4.4 Consider the weakest-link game played on a random graph

where degrees of neighbors are independent. There exists a zero activity

equilibrium in every network. In addition, there may be an equilibrium with

positive activity. A positive-activity equilibrium strategy exhibits a threshold

property: degrees below the threshold degree choose action 0, while degrees

above the threshold choose 1. Thus activity level is (weakly) rising in the

degree of an individual.

A first-order shift in degree distribution of neighbors leads to a (weak)

decrease in the degree threshold. Thus more connected networks exhibit a

(weakly) higher level of activity, for every degree.



We conclude our discussion of the weakest-link game
with some remarks on social welfare. As before, we
measure social welfare by the expected payoff of a
randomly chosen player. This result tells us that every
degree does weakly better under the more connected
network. Moreover, utility is increasing in degree, and
there is a higher fraction of higher-degree individuals in
the more connected network. It therefore follows that in
the active equilibrium of the weakest-link game, the
average individual does better in the more connected
network.

Our study of best-shot and weakest-link games in random
graphs provides a nice illustration of how the content of
interaction interacts with networks to shape behavior. The
structure of interaction is captured by the degree
distribution, while the content of interaction is reflected in
whether the game is one of substitutes or complements.
Equilibrium strategy is monotonically decreasing in degree
under strategic substitutes, while it is monotonically
increasing under strategic complements. Higher-degree
individuals earn higher payoffs in both cases. Increases in
connectivity of neighbors have contrasting implications for
behavior: under strategic substitutes, there is a fall in
expected efforts of each neighbor, while under strategic
complements, there is an increase in expected efforts from
each neighbor.

4.4.1 Experimental Evidence

The previous discussion derives a simple rule for behavior
in large networks when individuals have limited
information on the network. We found that equilibria
involve simple thresholds that determine whether to be
active or passive. The level of the threshold depends on the
degree distribution of the network, the costs of activity, and
whether the game is one of substitutes or complements. In
this section, we present a laboratory experiment that tests



these predictions: do experimental subjects use threshold
rules, and do the thresholds adapt as the underlying
network is changed? Our discussion is based on Charness,
Feri, Meléndez-Jiménez, and Sutter (2014).

At the outset, it is worth drawing attention to a few
potential difficulties faced by subjects. Subjects need to
work their way toward understanding how degrees and
strategic considerations interact. In addition, there is the
potential challenge of choosing the right threshold. In the
best-shot game, there is a unique threshold; in the weakest-
link game, there typically are multiple equilibria, ranging
from the zero activity outcome to the positive activity
outcome. As actions are costly, there is a difference in the
level of security/risk associated with each equilibrium:
choosing action 0 guarantees a payoff, while choosing
action 1 exposes the individual to an uncertain payoff that
depends on how many neighbors choose action 1. Thus
attitudes toward uncertainty may come into play, in
addition to the thresholds.

We consider three networks that are displayed in figure
4.7. Let p be the probability that the Orange network is
picked, with the other two networks being picked with
equal probability given by (1 − p)/2. Observe that the
Orange network has higher connectivity than the other two
networks (the Orange network is obtained by adding link
24 to the Green network, and it is obtained from the Purple
network by adding link 34). An increase in p can therefore
be interpreted as an increase in connectivity of the
networks. Two values of p are considered: p = 0.2 and p =
0.8. So there were four treatments in all—two for
substitutes and two for complements. There were two
sessions per treatment and 20 subjects per session, so
there were 160 subjects in all. The experiment was
conducted at the University of Innsbruck.



Figure 4.7 
Networks for experiment 1. Source: Charness, Feri, Meléndez-Jiménez, and
Sutter (2014).

The theoretical analysis tells us that the equilibria are
defined by a threshold. In the best-shot game, the
parameters are as follows: a player earns 100 if either they
or one of their neighbors is active, and earns zero
otherwise. Action 1 costs 50. In the weakest-link game, if a
player is inactive, they earn 50, and if they are active, they
earn 33.33 times the number of neighbors who are active.
Thus they require at least two neighbors to be active to
justify choosing action 1 themselves.

Table 4.5 summarizes the theoretical analysis for these
parameters. In the case of strategic substitutes, the
theoretical prediction is that players with degree 1 (degree
3) are active (inactive) in both treatments with p = 0.2 and
p = 0.8. Players with degree 2 are active when p = 0.8 and
inactive when p = 0.2. With strategic complements, the
unique theoretical prediction is zero activity with p = 0.2.
With p = 0.8, in addition to the zero activity, there is a
positive action equilibrium in which degrees 2 and 3 are
active, while degree 1 is inactive (it is worth bearing in
mind that the degrees of neighbors may be correlated due
to the size of networks; a question at the end of the chapter
explores this issue further).



Table 4.5 
Equilibrium in games

Active
degrees

Inactive
degrees

Substitutes p=0.20 1 2,3
p=0.80 1, 2 3

Complements p=0.20 — 1,2,3
p=0.80 — 1,2,3

2,3 1

Figure 4.8 (top panel) shows the evolution of behavior
across networks and across the 40 periods in the game of
strategic substitutes (the best-shot game). For strategic
substitutes, we observe that subjects behave very much in
line with the (unique) threshold equilibrium: this is
especially true for degrees 1 and 3, but slightly less so for
degree 2.





Figure 4.8 
Experiment 1—relative frequencies of choices by degree. Source: Charness,
Feri, Meléndez-Jiménez, and Sutter (2014).

Next, let us consider the effect of degree on behavior.
Subjects with degree 2 are much less likely to choose an
activity than those with degree 1; this decrease is large
when p = 0.2 and somewhat smaller when p = 0.8.
Comparing degree 3 to degree 2, the probability of
choosing 1 is significantly lower for subjects with degree 3;
this difference is large when p = 0.8, and it is smaller when
p = 0.2. Overall, the behavior in the laboratory is in line
with the theoretical prediction.

Turning to the effects of greater connectivity (recall that
higher values of p imply higher connectivity), there is no
significant change for degree 1. The degree 2 individuals
do increase activity with a move from p = 0.2 to p = 0.8.
For subjects with degree 3, there is a slight increase in the
probability of action 1.

To summarize, in the best-shot game, subjects

consistently choose the unique equilibrium and the

probability of activity is decreasing with the degree and

increasing with network connectivity.

We next report on the game of strategic complements
(the weakest-link game). When p = 0.2, the zero-action
outcome is the unique equilibrium. Play by subjects with
degrees 1 and 2 is strongly consistent with the equilibrium
prediction. Subjects with degree 3 are inactive with
significant probability. When p = 0.8, in addition to the zero
action outcome, there is the activity equilibrium, in which
subjects with degrees 2 and 3 are active. The behavior of
subjects with degree 1 is strongly consistent, but the
evidence on the behavior of degree 2 and 3 subjects is
mixed.



Turning to the effects of changing p, the behavior of
subjects with degree 1 does not change significantly, but
subjects with degrees 2 and 3 are significantly more likely
to choose 1 for higher values of p. However, these attempts
are largely unsuccessful over time and subjects eventually
converge to the secure and inefficient equilibrium.

Concerning the effect of the degree, a person with
degree 2 is significantly more likely to be active than a
person of degree 1; this difference is considerably larger
with p = 0.8 than with p = 0.2. This qualitatively supports
the theoretical prediction of a lowering of threshold with an
increase in connectivity.

To summarize: in the weakest-link game, subjects choose

the secure zero activity equilibrium with low connectivity.

The probability of activity increases with the degree and

with connectivity. Under the high-connectivity network,

there is eventually convergence to the inefficient (but

secure) zero activity equilibrium.

Let us summarize what we have learned in our study of
binary games on large networks. We took the view that
individuals will know some aspects of the local network
(such as their own degree) and general aspects of the
network as a whole (such as its degree distribution). In
such a setting, individual strategy will be a mapping from
degree to action. The theoretical analysis of binary games
with limited network knowledge yields a number of sharp
and intuitive predictions. Equilibrium strategies exhibit a
simple threshold structure: in games of substitutes,
individuals below a threshold choose action 1, while those
above the threshold choose action 0. In games of
complements, individuals above a threshold choose action
1, while those below the threshold choose action 0. An
increase in the connectivity of the network has clear-cut
effects on these cutoff thresholds. We have presented the



findings of a laboratory experiment that offers support for
these theoretical predictions.

4.5 Continuous Action Games

In the previous two sections, we studied binary action
games. We now enrich the action possibilities open to
individuals: we allow them to chose from a continuum of
options. We will focus on games that admit a linear best
response for individuals. As in the case of binary games, we
will start by considering a setting in which individuals know
the entire network. Our analysis will yield a powerful
insight: the behavior of individuals is proportional to their
Katz-Bonacich centrality in the network. We will comment
on the social welfare of the equilibrium outcomes. The
section concludes with remarks on continuous action
games with incomplete network information. The
discussion draws on the papers by Ballester, Calvó-
Armengol, and Zenou (2006), Bramoullé and Kranton
(2007a), and Galeotti, Goyal, Jackson et al. (2010).

Recall that there is a set of players N = {1, …, n}, with n
≥ 2. Individuals simultaneously choose an action: individual
i chooses an action, si ∈ ℝ+. Individuals are located in a
network g. The network has a corresponding adjacency
matrix, given by G. In the matrix G, entry gij reflects the
strength of the relationship that i has with j. For
expositional simplicity, we will assume that gij = gji: in other
words, the links (and the networks) are symmetric. It will
be assumed that there are no own links (gii = 0). The vector
of actions is denoted by . The payoff to individual i

depends on this vector, s, the undirected network (with
adjacency matrix) G, and other parameters, described as
follows:



The marginal returns from action si depend on i’s action,
si, and on others’ actions. The coefficient bi ∈ ℝ
corresponds to the part of i’s marginal return that is
independent of others’ actions, and it is called i’s stand-
alone marginal return. The contribution of others’ actions
to i’s marginal return is given by the term . The
parameter β captures strategic interdependencies. If β > 0,
then actions are strategic complements; and if β < 0, then
actions are strategic substitutes. The function Pi(s−i, G, b)
captures pure externalities—that is, spillovers that do not
affect the best response.

For ease of reference, let us recall a baseline example of
a game on networks that satisfies these properties.
Example 4.8 The investment game

Individual i makes an investment si at a cost . The private
marginal return on that investment is , where bi

is individual i’s stand-alone marginal return and  is
the aggregate local effort. The utility of i is

The case with β > 0 reflects investment complementarities.
Here, an individual’s marginal returns are enhanced when
his neighbors work harder; this creates both strategic
complementarities and positive externalities. The case of β
< 0 corresponds to strategic substitutes and negative
externalities; this can be microfounded via a model of
competition in a market after investment decisions si have
been made.



◼

In making their choices, an individual will seek to equate
the marginal returns with the marginal costs of action.
Differentiating the payoff with respect to their own action,
setting it equal to zero, and rearranging the terms yields
individual i’s best response:

Thus a player’s best response is their stand-alone
marginal benefit bi plus the sum of the actions of their
neighbors: the direction of movement relative to the
autarkic optimum bi is determined by whether β is positive
or negative (i.e., whether actions are complements or
substitutes), and on the level of connectivity (reflected in
the values of gij).

4.5.1 Equilibrium and Centrality

There are three challenges in the study of such games—the
equilibrium may not be interior (so that the first-order
conditions are not appropriate), there may be multiple
equilibria, or the spillovers are so large that there is no
well-defined optimum. A simple way to ensure that the
equilibrium is interior and defined by the first-order
conditions is to require that spillovers β are suitably small
in relation to the network. As we start with an interior
autarkic optimum, the best response in the game then also
remains interior. The early literature in this field essentially
used this approach, and we will present the restrictions
needed to ensure this now. Let us work through the
mechanics of the derivations to develop a feel for how these
restrictions operate and how such games are solved. The
study of general network effects (i.e., when β is large),
requires more advanced methods that are not covered



here. See Bramoullé, Kranton, and D’Amours (2014) for an
introduction to those methods.

The best responses of the individuals as in equation
(4.27), constitute a system of n linear equations. Recalling
that the matrix G summarizes the cross-dependencies, we
may write this system in matrix form. In particular, any
(interior) Nash equilibrium action profile s* of the game
satisfies

The spectral radius of a matrix is the maximum of its
eigenvalues’ absolute values. Let us denote the eigenvalues
of matrix G by λ1(G), …, λn(G) and suppose that they are
ordered from highest to lowest. The key assumption we will
make is as follows.
Assumption 4.1 The spectral radius of βG is less than 1 (i.e., λ1(G) < 1/β).

Under this condition, equation (4.28) is a necessary and
sufficient condition for a solution to the game. This
condition also ensures the uniqueness (and stability) of the
Nash equilibrium. The interested reader is referred to
Bramoullé and Kranton (2016) for a discussion on this
condition.

The eigenvalues provide us a measure of the
amplification of spillovers via connections in the network.
The assumption places a bound on the magnitude of the
spillovers in relation to the parameter β: note in particular
that the restriction on the matrix is stricter in inverse
proportion to the value of β.

Under assumption 4.1, the unique Nash equilibrium of
the game is given by

We now use this characterization to develop a relation
between network structure and behavior.



If we suppose that β is a small enough number, then the
inverse

is well defined. Recalling our discussion on Katz-Bonacich
centrality vector from chapter 1, we may write

Recall in particular that Katz-Bonacich centrality
summarizes the sum of weighted walks of varying lengths
in the network:

where  is the number of weighted walks of length k
between players i and j in network g.

These observations are summarized as follows.
Proposition 4.5 Suppose assumption 4.1 is satisfied and payoffs are given by

equation (4.28). There exists a unique equilibrium

Equilibrium actions are proportional to Katz-Bonacich centralities of individual

players.

It is helpful to work through some examples to
appreciate how the content of interaction (complements
versus substitutes) and the structure of the network shapes
individual behavior.

Consider example 4.8. The stand-alone benefit bi is set
equal to 1 for every i ∈ N. In the game of substitutes, the
spillover parameter is set to β = −0.05; in the games of
complements, β = 0.05. The equilibrium is as in equation
(4.29). Figure 4.9 presents equilibrium actions under
strategic substitutes in four networks—the star, the cycle,



an Erdὄs-Rényi network (with n = 20, p = 0.20) and a
scale-free network (with n = 20, Pareto coefficient = 1.33).
Figure 4.10 presents behavior under strategic
complements in the same networks.

Figure 4.9 
Centrality and effort: substitutes.



Figure 4.10 
Centrality and effort: complements.

These figures draw our attention to a number of points.
First, we see that in games of complements, as β > 0,
efforts are positively reinforced as we move along a walk.
Thus individuals who are connected to other well-
connected individuals have the highest centrality and make
the highest efforts. On the other hand, in games of



substitutes, as β < 0, the effects alternate: a higher effort
by i lowers the incentives of her neighbors, and this in turn
pushes up the incentives of i’s neighbors’ neighbors, and so
forth. This yields the interesting observation that in such
games, the hub of the star network chooses the smallest
effort. Similar results occur in the scale-free network; the
nodes connected to other highly connected nodes choose
the highest effort under complements and the smallest
effort under substitutes.

The second point to note is that connections raise the
effort level in games of complements compared to games of
substitutes: in the cycle, players choose a higher activity
level under complements. Finally, observe that for games of
complements, the range of effort is greater under the scale-
free network than under the Erdὄs-Rényi network with the
same average degree (3.5). This is a consequence of the
greater dispersion in the centralities in the scale-free
network.

The study of continuous action games provides us with a
clear prediction of the relation between network location
and individual behavior. We now use this characterization
to make some remarks on individual utility and social
welfare.

We will stay with example 4.8 in this exercise. Consider
the star network presented in the figures 4.9 and 4.10.
Observe that the hub chooses relatively higher effort in the
complements game compared to the strategic substitutes
case. The hub also earns a higher payoff in the strategic
complements game than in the strategic substitutes game.
Thus, in the strategic complements case, centrality yields
payoff advantages, and these advantages can be quite large
as we move toward scale-free networks. On the other hand,
higher connectivity translates into lower payoffs in the
strategic substitutes case. Figure 4.11 presents a snapshot



of payoffs in selected networks with games of both
complements and substitutes to bring out this point.

Figure 4.11 
Centrality and payoffs.

Turning to social welfare, a first remark is that in games
with positive externalities, individual efforts are generally
too low relative to what is collectively desirable: this holds
true for games of complements. In the game of strategic



substitutes the externalities are negative, and, as a result,
the efforts are too large relative to the social optimum. This
wedge between individual optimum/equilibrium and what
is collectively desirable suggests that there is space for
interventions that can enhance social welfare. We will
study optimal interventions in networks in section 4.6.

Before we conclude, let us note that we have studied
games with linear best responses and assumed that players
have complete knowledge of the network. It is possible to
study such games in a setting with local network
knowledge. Indeed, the arguments developed in section 4.4
can be carried over to a fairly general class of payoffs that
include games with compact and convex strategy sets (with
a restriction that individual payoffs remain anonymous and
depend only on the sum of neighbors’ actions). See
Galeotti, Goyal, Jackson et al. (2010).

With these assumptions in place, it is possible to show
that there always exists an equilibrium involving monotone
(symmetric) strategies in degrees. In games with strategic
substitutes, equilibrium actions are nonincreasing in
players’ degrees, and in games of strategic complements,
equilibrium actions are nondecreasing in the degree of
players. In turn, the monotonicity property of equilibrium
actions implies that with positive externalities, social
connections create personal advantages regardless of
whether the game exhibits strategic complements or
substitutes: higher degree players earn more than lower
degree players. This implies in particular that in games of
strategic substitutes, higher degree individuals undertake
lower efforts and earn higher payoffs. The results on
changes in networks can similarly be extended: an increase
in connectivity is modeled in terms of the notion of first-
order stochastic dominance of degree distributions. In
games of strategic complements, this has unambiguous
effects, raising the action for every degree and for the



average neighbor. For full statements and proofs of these
claims, the interested reader is urged to consult Galeotti,
Goyal, Jackson et al. (2010).

4.6 Intervening in a Network to Influence Behavior

Our study of strategic interaction on networks reveals that
equilibrium outcomes are generally socially suboptimal.
This is because individual actions give rise to externalities
and individuals do not take these externalities into account
in their decision-making. One way to address this problem
is to adjust the individual marginal returns in such a way
that they are brought more in line with the social returns.
However, an intervention on one individual has direct and
indirect effects on the incentives of others. For example,
suppose that the planner increases a given individual’s
stand-alone marginal returns to effort, thereby increasing
their effort. If actions are strategic complements, this will
push up the incentives of the targeted individual’s
neighbors. That will increase the efforts of the neighbors of
these neighbors, and so forth, creating aligned feedback
effects throughout the network. If actions are strategic
substitutes, the same intervention will discourage the
individual’s neighbors from exerting effort. However, the
effect on those neighbors’ neighbors will be positive (i.e., in
the same direction as the effect on the targeted agent).
This interplay between spillovers and network structure
makes targeting interventions a complex problem. The aim
of this section is to develop general principles for how to
take into account these direct and indirect effects. Our
discussion is based on Galeotti, Golub, and Goyal (2020).

We will consider a simultaneous-move game among
individuals as analyzed in section 4.5, and assume that
links are symmetric and that assumption 4.1 holds.
Equipped with these assumptions, we know from section
4.5 that there is a unique Nash equilibrium of the game.



For easy reference we recall the equation that
characterizes this equilibrium:

Let us now turn to the intervention problem: The
external agent, the planner, whom we shall think of as a
utilitarian, seeks to maximize the sum of utilities. Let us
define aggregate utility as follows:

The planner aims to maximize this aggregate utility by
changing a vector of status quo, stand-alone marginal
returns  to a vector b subject to a budget constraint.

The timing of this intervention is as follows. The planner
moves first and chooses their intervention, and then
individuals simultaneously choose actions. The planner’s
maximization problem is given by

where C is a given budget. Function K represents an
adjustment cost for implementing interventions.

We note that the cost function is separable across
individuals and increasing in the magnitude of the change
to each individual’s incentives. This is a very simple
formulation and it helps us to get at the basic insights in a
straightforward way.

Our final assumption is as follows.
Assumption 4.2 The aggregate equilibrium utility is proportional to the sum

of the squares of the equilibrium actions; that is,  for some w

∈ ℝ, where s* is the Nash equilibrium action profile.



Assumption 4.2 is satisfied by example 4.8; it is also
satisfied by the crime example in section 4.2.

We now introduce a basis for the space of stand-alone
marginal returns and actions in which, under our
assumptions on G, strategic effects and the planner’s
objective both take a simple form. For expositional
simplicity, we restrict attention to networks that are
symmetric, i.e., for every pair i and j, gij = gji.
Fact If G is symmetric, then G = UΛUτ, where

1.  Λ is an n × n diagonal matrix whose diagonal entries Λ ℓ ℓ  = λ ℓ  are the

eigenvalues of G (which are real numbers), ordered from greatest to

smallest: λ1 ≥ λ2 ≥… ≥ λn.
2.  U is an orthogonal matrix. The ℓth column of U, which we call uℓ, is a real

eigenvector—namely, the eigenvector associated with the eigenvalue λ ℓ ,

which is normalized so that ∥uℓ∥ = 1 (in the Euclidean norm).

For generic G, the decomposition described in Fact
above is uniquely determined, except that any column of U
is determined only up to multiplication by − 1. The ℓ th

eigenvector of G, which we denote by uℓ(G), corresponds to
the ℓth principal component of G.

An important interpretation of this diagonalization is as a
decomposition into principal components. First, consider
the vector that best approximates G in the squared-error
sense—equivalently, the vector u such that

is minimized. The minimizer turns out to be a scaling of the
eigenvector u1. Now, if we consider the “residual” matrix
G(2) = G−u1(u1)τ, we can perform the same type of
decomposition on G(2) and obtain the second eigenvector u2

as the best rank-one approximation. Proceeding further in
this way gives a sequence of vectors that constitute an
orthonormal basis. At each step, the next vector generates



the rank-one matrix that “best summarizes” the remaining
structure in matrix G.

We can think of the columns of G as n data points. The
first principal component of G is defined as the n-
dimensional vector that minimizes the sum of squares of
the distances to the columns of G. The first principal
component can therefore be thought of as a fictitious
column that “best summarizes” the data set of all columns
of G. To characterize the next principal component, we
orthogonally project all columns of G off this vector and
repeat this procedure for the new columns. We continue in
this way, projecting orthogonally off the subspace
generated by vectors obtained to date, to find the next
principal component. A well-known result is that the
eigenvectors of G that diagonalize the matrix (i.e., the
columns of U) are indeed the principal components of G in
this sense. Moreover, the eigenvalue corresponding to a
given principal component quantifies the residual variation
explained by that vector.

Figure 4.12 illustrates some eigenvectors/principal
components of a circle network with 14 nodes, where the
links all have equal weight, given by 1. For each
eigenvector, the color of a node indicates the sign of the
entry of that node in that eigenvector (red means negative),
while the size of a node indicates the absolute value of that
entry. Note that the circle network is invariant to rotations
(cyclic permutations) of the nodes, so the eigenvectors are
determined only up to a rotation. A general feature worth
noting is that the entries of the top eigenvectors (with
smaller values of ℓ) are similar among neighboring nodes,
while the bottom eigenvectors (with larger values of ℓ) tend
to be negatively correlated among neighboring nodes.



Figure 4.12 
(top) Eigenvectors 1, 3, 5; (middle) eigenvectors 7, 9, 11; (bottom)
eigenvectors 12, 13, 14.

4.6.1 Analysis of the Game Using Principal Components

For any vector z ∈ ℝn, let z = Uτz. We will refer to zℓ as the
projection of z onto the ℓ th principal component or the
magnitude of z in that component. Setting the expression G
= UΛUτ into equation (4.28), we obtain

Multiplying both sides of this equation by Uτ gives us an
analog of equation (4.34):

This system is diagonal, and the ℓth diagonal entry of [I
− βΛ]−1 is . Hence, for every ℓ ∈{1, 2, …, n},



The principal components of G constitute a basis in which
strategic effects are easily described. The equilibrium
action  in the ℓth principal component of G is the product
of an amplification factor (determined by the strategic
parameter β and the eigenvalue λℓ) and bℓ, which is simply
the projection of b onto that principal component. Under
assumption 4.1, for all ℓ , we have 1 −βλ ℓ  > 0. This
assumption on the spectral radius also implies that βΛ has
no entries larger than 1. Finally, observe that if β > 0 (β <

0), the amplification factor is decreasing (increasing) in ℓ.
We can also use this to give a formula for equilibrium

actions in the original coordinates as follows:

Figure 4.13 depicts the optimal intervention in an
example where the budget is large. We consider an 11-node
undirected network with binary links containing two hubs,
L0 and R0, that are connected by an intermediate node M.
The network is shown in figure 4.13(a). The numbers next
to the nodes are the ex-ante, stand-alone marginal returns;
the budget is set to C = 500 (about 125 times larger than 

). Payoffs are as in example 4.8. For the case of strategic
complements, we set β = 0.1, and for strategic substitutes,
we set β = −0.1. The top left of figure 4.13(b) illustrates the
first eigenvector, and the top right depicts the optimal
intervention in a game with strategic complements. The
bottom left of figure 4.13(b) illustrates the last eigenvector,
and the bottom right depicts the optimal intervention when
the game has strategic substitutes. The node size
represents the size of the intervention, ; node shading
represents the sign of the intervention, with green
signifying a positive intervention and red indicating a
negative intervention.



Figure 4.13 
An example of optimal interventions with large budgets. Taken from Galeotti,
Golub, and Goyal (2020).

For large budgets, C, the optimal intervention is guided
by the “main” component of the network. Under strategic
complements, this is the first (largest-eigenvalue)
eigenvector of the network, whose entries are individuals’
eigenvector centralities. By increasing the stand-alone
marginal return of each individual in proportion to their
eigenvector centrality, the planner targets the individuals
in proportion to their global contributions to strategic
feedback. On the other hand, under strategic substitutes,
optimal targeting is determined by the last eigenvector of
the network (corresponding to its smallest eigenvalue). The
last eigenvector contains information about the local
structure of the network: it determines a way to partition
the set of nodes into two sets so that most of the links are
across individuals in different sets. The optimal
intervention increases the stand-alone marginal returns of
all individuals in one set and decreases those of individuals
in the other set. This asymmetric targeting reduces
crowding-out effects that occur due to the strategic
substitutes property.

Let us summarize what we have learned in this section:
games on networks exhibit positive and negative



externalities. The equilibrium of these games will therefore
generally be socially suboptimal. We studied the question
of how scarce resources can be used to target specific
nodes in a network so as to maximize social welfare. The
key to the approach we studied is a particular way to
organize the direct and indirect spillover effects of
interventions in terms of the principal
components/eigenvectors of the matrix of interactions. In
particular, any change in individual marginal returns can
be expressed in terms of these principal components. This
formulation allows us to describe the magnitude of the
effect of the change in marginal rewards as a product of
the intervention and a multiplier that is determined by an
eigenvalue of the network corresponding to that principal
component. As the principal components are orthogonal,
the effects along various principal components can be
treated separately. This formulation yields a clear-cut
optimal intervention when the budget is large: target the
first eigenvector in games of complements and the last
eigenvector in games of strategic substitutes.

4.7 Reading Notes

This chapter studies how human behavior is shaped by
network structure. It is impossible to do justice to the
extraordinarily wide-ranging literature on this subject in
one chapter. Goyal (2007) and Jackson (2008) provide good
reviews of the early literature, while Jackson and Zenou
(2015) and Bramoullé and Kranton (2016) provide more
recent reviews of the theoretical literature. Jackson,
Rogers, and Zenou et al. (2017) give a more general
overview of how networks affect behavior.

Games on networks has been an active field of research
for close to three decades. In the early 1990s, Blume
(1993) and Ellison (1993) introduced the study of binary
action coordination problems among players located on



simple networks like the cycle and a lattice. The study of
coordination problems is taken up in chapter 12, on social
coordination. In this chapter, in order to develop a basic
understanding of how network structure and the content of
interactions matter, we start with two binary games—the
best-shot and weakest-link games, inspired from Hirshleifer
(1983). Shachter (1986) and Koller and Milch (2003)
introduced the notion of multiagent influence diagrams to
study social strategic interaction. Kearns, Littman, and
Singh (2001) introduced graphical games and provided
algorithms to solve for Nash equilibria in binary action
local interaction games.

We present a number of examples on how networks
affect behavior. Let us place these examples in the broader
context of the literature. The best-shot and weakest-link
games should be seen as a metaphor for a wide range of
situations in which actions exhibit substitutes and
complements properties. The concepts of strategic
complements and substitutes will be useful throughout the
book, especially in chapters 5, 7, 8, 10–12, 16–17, and 19.

Research collaboration among firms from Goyal and
Moraga-González (2001) is an early example of a
continuous action game on a network. There is a large body
of literature on research alliances and competition among
firms. For an overview of the empirical trends, see
Hagedoorn (2002) and König, Rohner, Thoenig, and
Zilibotti (2019). We will discuss this application in detail in
chapter 16 on networked markets.

Bramoullé and Kranton (2007a) introduce the study of
local public goods in networks: they also introduces the
concept of maximally independent sets as a solution to a
game of local public goods in networks. There is a large
body of literature that elaborates on various aspects of this
game and applies it to various contexts. We will take up



models of strategic substitutes in combination with a game
of network formation in chapter 11, on the Law of the Few.

The weakest-link game we study in this chapter is a
variation on the classical weakest-link game proposed by
Hirshleifer (1983). In the original game, payoffs depend on
the minimum action, and thus they are positive only if a
player and their contacts all choose action 1. We take the
smoother variant studied in this chapter from Galeotti,
Goyal, Jackson et al. (2010). Gagnon and Goyal (2017)
introduce the concept of q-core to solve this game when
players have complete information on the network. We will
further use the q-core in chapter 17 to study the relation
between social networks and markets.

The economic study of criminal activity starts with
Becker (1968). Empirical evidence on the role of social
interactions in shaping criminal activity is presented in
Glaeser, Sacerdote, and Scheinkman (1996). For an
overview of the recent literature on criminal networks, see
Lindquist and Zenou (2019). The model of criminal activity
in networks was taken from Ballester, Calvo-Armengol, and
Zenou (2006).

The study of relative consumption effects may be traced
to the early work of Veblen (1973) and Duesenbury (1949).
In recent decades, interest in relative consumption effects
has been revived by the collection of empirical evidence on
these effects (e.g., Luttmer (2005); Kuhn, Kooreman,
Soetevent, and Kapteyn [2011]). This strand of work is also
closely related to the ideas of subjective and relative nature
of happiness that has been developed by Richard Layard
and others (see e.g., Layard 2011). The model we
presented was taken from Ghiglino and Goyal (2010). For
further theoretical explorations of the role of relative status
in networks, see Immorlica, Kranton, Manea et al. (2017).

Ballester, Calvó-Armengol, and Zenou (2006) study
continuous action games with strategic complements. They



introduce the concept of Katz-Bonacich centrality as a
method to solve such games. A large strand of subsequent
research applies the idea of Katz-Bonacich centrality to
understand behavior in networks; for an overview of some
of this work and for references to the literature, see
Jackson and Zenou (2015). We will discuss Katz-Bonacich
to study behavior in network games again in chapter 5 (on
production networks) and in chapter 10 (on the Great War
of Congo).

The literature on games with linear-best responses
proceeds under the assumption that the spillovers are
sufficiently small. In an important advance, Bramoullé,
Kranton, and D’Amours (2014) propose an approach, based
on potential functions, that generalizes the study of Nash
equilibria to allow constrained action sets. The concept of a
potential function is proposed by Monderer and Shapley
(1996). For an introduction to potential functions and an
application to study of coordination problems, see chapter
12.

The models described in sections 4.3 and 4.5 assume
that individuals know the entire network. A parallel strand
of the literature explores behavior in networks when
individuals have only local knowledge of the network.
Examples of such games are studied by Sundararajan
(2005) and Galeotti and Vega-Redondo (2011). Galeotti,
Goyal, Jackson et al. (2010) present a general framework
for the study of games when individuals have limited
information on the network. Their framework allows binary
action games as well as continuous action games (and it
also allows for nonlinear best responses). The predictions
of these models were experimentally studied in Charness,
Feri, Meléndez-Jiménez, and Sutter (2014).

The problem of intervening by targeting “key players” is
well known in the networks literature. For an early
discussion of “key player” see Borgatti (2003). In the



economics literature, the problem of the key player is
introduced by Ballester, Calvó-Armengol, and Zenou
(2006): they study the issue of which nodes to eliminate in
order to minimize the sum of criminal activity in the
network. In this chapter, we present the intervention
problem of a utilitarian planner with a budget constraint
who targets individuals that are playing a game on a
network. The problem of network interventions will be
taken up again in chapter 10 (on attack and defense in
networks), in chapter 15 (on optimal seeds for the diffusion
of innovations) and in chapter 16 (on optimal advertising
and pricing in networked markets). The “key player”
problem may be seen as a specific type of intervention in
networks. For an overview of the literature on “key player”
problem, see Zenou (2016). The exposition in section 4.6
was based on Galeotti, Golub, and Goyal (2020). For an
application of this intervention approach to coordination
problems in networks, see Galeotti, Golub, Goyal, and Rao
(2021) and for an application to optimal tax-subsidy
schemes in oligopoly, see Galeotti, Golub, Goyal et al.
(2022).

4.8 Questions

  1.  Show that every network contains a maximal
independent set.

  2.  Show that in any network there is a unique q-core and
that the algorithm outlined in the chapter identifies this
q-core.

  3.  Fix n = 6. Consider the best-shot game. Fix c = 1/2.
Compute the equilibrium in the circle, complete, and
star networks. Define social welfare as the sum of
individual utilities. Compute social welfare in the
different equilibria.

  4.  Fix n = 6. Consider the weakest-link game. Set c = 1/2.
Compute the equilibrium in the circle, complete, and



star networks. Also, compute social welfare in the active
equilibria.

  5.  Fix n = 6. Consider the following variant of the
weakest-link game. Given a network g, and a strategy
profile s, the payoffs of an individual i are

(a)  Set c = 1/2. Compute equilibria in the circle,
complete, and star networks. Also, compute social
welfare in the active equilibria.

(b)  Set c = 1.2. Compute equilibria in the circle,
complete, and star networks. Also, compute social
welfare in the active equilibria.

  6.  Consider the best-shot game. Set c = 25/64. Suppose
that degrees take on values 1, 2, and 3, and the degrees
of neighbors are independent. Therefore, there is a
unique symmetric equilibrium that is nonincreasing and
it is fully characterized by a threshold. This question
works through the computation of thresholds.
(a)  Let us start with initial beliefs P that assign

probability one-half to neighboring players having
degrees 1 and 2. Show that in the unique symmetric
equilibrium, degree 1 players choose 1 with
probability 1, whereas degree 2 players choose 1
with probability 0.

(b)  Recall from chapter 1 that a degree distribution P

first-order stochastically dominates another degree
distribution P′ if for every degree k, the cumulative
distribution . Consider a first-order
stochastic dominance shift of degree distributions
such that neighboring players are believed to have
degrees 2 and 3 with probability one-half each. Show
that the unique equilibrium involves degree 2 players



choosing action 1 with probability 3/4, whereas
degree 3 players choose 1 with probability 0.

(c)  Show that the threshold degree 2 player has lower
expectation of action 1 under P′ compared to P.

  7.  (Bramoullé and Kranton [2007a]). Consider a game in
which n players are located on nodes of an undirected
network g. Players simultaneously choose actions xi

∈ℛ+. Let Ni(g) be the set of players with whom player i
has a link in network g. The payoffs of player i faced
with a strategy profile x are given by

where f(0) = 0, f′(.) > 0 and f′′(.) < 0 and c > 0.
Suppose that there is a number , such that .
(a)  Show that in every nonempty network, there is an

equilibrium with specialization: some players choose 
 and others choose 0.

(b)  Show that there are only two equilibria in the star
network, one in which only the center contributes
and the other in which only the spokes contribute.

(c)  Define social welfare as the sum of individual
utilities. Discuss the merits of different networks
from a social welfare point of view.

(d)  Define the costs of decentralization as the ratio of
social welfare from the social optimum choice of
effort versus the social welfare from the lowest
welfare Nash equilibrium. Compute this ratio for the
star network with n players.

  8.  (Bramoullé and Kranton [2016]). Consider a
simultaneous move game on networks. Suppose that the
best response of agent i ∈ N is given by:



Suppose that n = 5 and let players be located on a line
network starting with player 1 at one end and going to
player 5 at the other end.
(a)  Suppose β = 0.3. Compute the Nash equilibrium.
(b)  Suppose β = −0.3. Compute the Nash equilibrium.

  9.  Consider a simultaneous action game played on an
undirected network as in the criminal activity example
in section 4.2.1. Suppose the payoffs to player i faced
under strategy profile s are given by

(a)  Fix n = 6. Compute the equilibrium efforts in a
complete, circle, star, and line network.

(b)  Fix n = 6 Compute the equilibria for complete,
circle, star, and line networks when the payoff is

10.  (Goyal and Moraga-González [2001]). Consider the
model of research collaboration among firms presented
in section 4.2.1.
(a)  Consider regular networks of degree d. Compute

equilibrium in research efforts as a function of the
degree d. Show that individual effort is falling, firm
costs are initially falling but eventually increasing,
while firm profits are initially rising but eventually
falling as a function of degree d.

(b)  Compute the equilibrium efforts and profits of the
hub and spoke firms in the star network.



11.  (Goyal and Ghiglino [2010]). Consider the relative
consumption model that was presented in section 4.2.1.
Let the price for good x be a numeraire and set it equal
to 1, and let the price of good y be denoted by py.
Suppose that all households have the same initial
income given by ω. Fix some network g.
(a)  Define the general equilibrium in this economy.
(b)  Compute the general equilibrium prices as a

function of network g.
(c)  Compute the equilibrium consumption of households

as a function of their network position.
12.  Consider the networks presented in figure 4.8. Show

that the strategies specified as equilibria in the main
text are equilibria when we take into the account the
correlations in the degree of neighbors.

13.  Show that equilibrium in games of example 4.8 satisfies
assumption 4.2 in section 4.6.

14.  Consider a star network with undirected binary links.
Derive the eigenvalues and eigenvectors of the
adjacency matrix corresponding to this network.

15.  Suppose the game being played is as described in
example 4.8. Fix a star network (with symmetric links)
and say n = 5. Compute optimal interventions for bi =
0.10 for all i, and for β = 0.05 and β = −0.05 and large
budget (say) C = 300.

16.  (Bourlès, Bramoullé, and Perez-Richet [2017]). There
are n agents. Agent i has income  and makes
transfer tij ≥ 0 to agent j. Income after transfers is equal
to

where  represents overall transfers made by i, while 
 represents overall transfers made to i. Agents care



about each other. Agent i has a private utility over her
own consumption, and she is also potentially altruistic
toward others:

where ui reflects utility from private consumption (it is
twice differentiable and satisfies  and ). The
coefficient αij, with 0 ≤ αij < 1, measures the strength of
the altruistic link that i has toward j. Suppose that all
individuals have CARA (Constant absolute risk aversion)
utility functions: ∀i, ui(y) = −e−Ay.
(a)  Consider the two-agent economy and fix initial

incomes  and , and suppose that − ln(αij)/A =
−ln(αji)/A = 1. Show that a Nash equilibrium in
transfers is such that (i) y1−y2 ≤ 1, y2−y1 ≤ 1, t12 > 0
⇒ y1 − y2 = 1 and t21 > 0 ⇒ y2 − y1 = 1. (ii) if 

 and , then no transfers is
the unique Nash equilibrium. (iii) If 1 is richer. If 1 is
richer than 2 and , then y1 − y2 = 1 and 1
gives to 2 the amount needed to reach this situation.

(b)  Consider a line network with three agents, and with
agent 2 at the center; suppose that , , and 

. Compute the equilibrium.
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ECONOMIC NETWORKS



5
Production and Supply Chains

5.1 Introduction

Layman and professional economist alike, practical planner and the subjects of his regulative
activities, all are equally aware of the existence of some kind of interconnection between even
the remotest parts of a national economy […] The presence of these invisible but nevertheless
very real ties can be observed whenever expanded automobile sales in New York City increase
the demand for groceries in Detroit, […] when the sudden shutdown of the Pennsylvania coal
mines paralyzes the textile mills in New England, and it reasserts itself with relentless
regularity in alternative ups and downs of business cycles.
—Leontief (1941), p. 3.

Following the March 11, 2011, earthquake in Japan, physical
infrastructure was destroyed and over 19,000 people lost their lives.
But the effects of this earthquake were not limited to the local
economy; they were felt widely across the entire Japanese economy. As
Kim and Reynolds (2011) reported:
Supply chain disruptions in Japan have forced at least one global auto maker to delay the
launch of two new models and are forcing other industries to shutter plants (…) The auto
maker is just one of dozens, if not hundreds, of Japanese manufacturers facing disruptions to
their supply chains as a result of the quake, the subsequent tsunami and a still-unresolved
nuclear threat.

This episode raises a number of questions. How do shocks spread
through a production system, and how can firms mitigate the impact of
these shocks?

To study these questions, we develop a model of a production
economy. There are a number of sectors, each producing a distinct
good. These goods are used in households and can also be used as
inputs into production of other goods. An example of such a good is a
computer. The quantity of inputs from a sector used by another sector
defines a link between the two. Households supply labor to production
firms, and they use the income they earn from their work to buy goods
and services. In every sector, there is a technology of production; firms
choose a mix of inputs in order to produce an output. Market prices



help coordinate input demands and supplies across firms and
consumers.

We first take up the issue of what determines the size of a sector.
This size will depend on how important it is for other sectors (in other
words, how much of its output is used as an input in other sectors). In
addition, there is the indirect demand: a sector’s output may be used
as an input by a few sectors, but these sectors may in turn be used as
inputs in a great many other sectors. Thus the size of a sector is
determined by the sum of direct and indirect demands of its output.
These demands are reflected in the “walks” of various lengths in the
production network of the economy. In chapter 1, we showed that the
Katz-Bonacich centrality summarizes all the walks in a network. This
observation yields us the following insight: the size of a sector will be
proportional to its Katz-Bonacich centrality in the production network.
Equipped with this result, we examine input-output data from a
number of countries. We find that the distribution of the centrality is
very unequal: a few sectors dominate their respective economies.

We then study the role of central sectors—the hubs—in amplifying
sectoral shocks and in generating large-scale fluctuations in economic
activity. Individual sectors face a variety of shocks—some positive and
others negative. One might expect that as the sectors face shocks
emanating from distinct sources, and as the sectors are individually
small, the shocks will cancel out, and in the aggregate, the economy
will be relatively unperturbed. The model of a production network
allows us to explore the scope of this intuition. We find that sectoral
shocks indeed wash out if the sectors are of a similar size, but these
shocks are amplified and generate large aggregate fluctuations if the
distribution of sectoral centralities is very unequal (more precisely, if it
exhibits a power law).

This result motivates an examination of the economics of network
formation: what forces give rise to a production network with unequal
sectors? The study of the formation of production networks is still at a
very early stage. We provide a brief overview of the research on
network formation and then turn to firm-level motivations in creating
and supporting supply chains.

Firms are aware of the risks of natural and man-made disruptions in
the production process and they seek to secure supply by diversifying
across input producers. To examine the incentives of a firm, we study a
simple supply chain with multiple layers, where layer A supplies input
to layer B, layer B supplies to layer C, and so forth. There is a single
firm in every layer. Every firm has a baseline reliability level of 1/2.
The supply chain is successful (or delivers) if every firm in the chain is



operational. A firm can invest in plant and machinery and in personnel
to raise its reliability.

In this setting, we find that returns to a firm are increasing in the
investments by firm in other layers: more formally, investments in
reliability are strategic complements. This suggests that there may be
multiple equilibria with regard to the reliability of the supply chain: a
low equilibrium, in which no firm invests in reliability; and a high
reliability equilibrium, in which all firms invest. A second insight from
this model is that when a firm invests in reliability, it raises the
likelihood that the supply chain as whole will deliver, and this therefore
raises the earnings of the other firms in the chain. To the extent that a
firm cannot completely appropriate these gains, there exists a gap
between private and the collective returns to a firm’s investments. As a
firm is primarily interested in its own profits, firms will underinvest in
reliability relative to what is collectively desirable. These results are
derived in a setting with one firm per layer of the supply chain. We
then take up the question of how many firms will join different layers of
the supply chain.

As in the original model, the supply chain is a line starting with a
source and ending in a sink. The new element is that multiple firms in a
layer are linked to all firms in the adjacent upstream and downstream
layers. The study of the entry problem yields a number of insights. The
first is that we show that firm entry decisions are strategic
complements across layers and are strategic substitutes within a layer.
There are thus multiple equilibria in levels of entry. This points to the
role of coordination among firms. Further, as in the basic, single-firm
supply chain model, firms’ incentives to enter will typically be lower
than what is collectively desirable. Taking the decisions on reliability
and entry into account, we conclude that firms will create supply
chains that are less reliable than is socially desirable. This wedge
between firms’ incentives and the collective good provides the raison
d’être for an active public policy. These considerations motivate the
following policy statement.
As the global supply chain becomes more complex and global in scope, it is increasingly at risk
from disruptions including natural hazards, accidents, and malicious incidents. Events like
Hurricane Katrina in 2005, the eruption of the Eyjafjallajökull volcano in Iceland in 2010, and
the Japan earthquake and tsunami of 2011; failing infrastructures such as the I-35 bridge
collapse in 2007; terrorist attacks such as 9/11, and more recent plots involving air cargo
shipments filled with explosives shipped via Europe and the Middle East to the US remind us
that even localized disruptions can escalate rapidly and impact US interests and the broader
global community. We must collectively address the challenges posed by these threats and
strengthen our national and international policies accordingly. US Supply Chain Policy Fact

Sheet 2012.

5.2 Case Study: The 2011 Japanese Earthquake



We commence our exploration of production networks with a brief case
study taken from Carvalho, Nirei, Saito, and Tahbaz-Salehi (2021). On
March 11, 2011, a magnitude 9.0 earthquake occurred off the
northeast coast of Japan. This was the most powerful earthquake in the
history of Japan (a country that is prone to earthquakes) and the fifth
most powerful across the world since 1900. The earthquake led to
significant material damage in one part of the country, it gave rise to a
tsunami that flooded 561 square kilometers of the northeast coastline,
and it led to the failure of the Fukushima Dai-ichi Nuclear Power Plant.
We describe the direct impact of the earthquake and then present
evidence on the transmission of the shock and its amplification through
the upstream and downstream production linkages emanating from the
firms in the physically affected areas and spreading across the
Japanese economy.

The direct physical damage was concentrated in the four Pacific
coast prefectures of Aomori, Fukushima, Iwate, and Miyagi in the
Tohoku region. According to government estimates, the earthquake
caused losses of the order of 16.9 trillion yen, including capital losses
due to destruction of buildings, plants and buildings, and equipment.
There were close to 20,000 deaths (and several thousand people were
missing). These massive losses had an impact on economic standards
in that year, but also affected the economic growth of the region and
the Japanese economy more generally. We now turn to these direct and
indirect economic consequences.

First, we note that the gross domestic product (GDP) growth rate of
the four disaster-stricken prefectures in the 2011 fiscal year was -1.5
percent; the growth rate in the previous year had been 0.7 percent.
This was a large fall in growth rate. The four prefectures account for
only 4.6 percent of the total Japanese GDP; therefore, the direct impact
of this loss in growth on the national economy should be of the order of
0.046 × (0.7 − (−1.5)) = 0.1 percent. However, the actual decline in
Japan’s growth rate was four times as large, dropping from 2.6 percent
in year 2010 to 2.2 percent in 2011. This large aggregate national-level
impact motivates an examination of the channels of transmission of the
local shock.

The key step in understanding this transmission is the measurement
of shocks on firms that are upstream and downstream from the firms in
the prefectures hit by the earthquake. To do this requires us to plot the
input-output network of connections between firms. Firms that sell to
firms in the affected prefectures are immediately upstream, while
those that sell these upstream firms are upstream distance 2 from the
affected firms, and so forth. A similar notion of distance applies when



we consider downstream firms. The network helps us identify how far
upstream and downstream firms are from the directly affected firms.
With this network in place, it is possible to study the relation between
the distance in the network and the magnitude of the shock on sales.

There is evidence of large transmission shocks that are related to the
distance in the supply chain network. Specifically, the earthquake led
to a 3.8 percent decline in the growth rate of firms with disaster-hit
suppliers (upstream) and a 3.1 percent decline in the growth rate of
immediate upstream firms and a 3.1 percent decline in the growth rate
of immediate downstream firms. The disruption caused by the
earthquake also had indirect negative shocks. Turning to indirect
downstream effects, we note that disaster-stricken firms’ customers’
customers experienced a 2.8 percent point reduction in sales growth.
On the upstream side, suppliers’ suppliers experienced a 2.1 percent
decline in sales growth. These observations motivate a number of
questions: How do the technological possibilities shape the decisions of
firms on inputs? Are some production structures more resilient against
shocks than others? What are the incentives that firms have to create
buyer and seller relations, and do private decisions give rise to resilient
networks? We develop a theoretical framework that helps us to address
these questions.

5.3 The Input-Output Model of Production

In this section, we will study an economy with a number of sectors. A
sector produces a good, and this good can be used as an input in the
production of other goods. Further, every good can also be consumed
by a household. A sector consists of firms. Firms are given a set of
technologies that specify how different combinations of inputs lead to
different outputs. Faced with these technologies and a set of prices in
the market, a firm makes decisions on how much to produce and what
inputs to use in their production. The households supply labor to the
firms in the various sectors. Faced with the prices of goods, they use
their income to purchase goods. We will be studying the competitive
market equilibrium of this economy. Of particular interest is the ways
in which production technologies shape the market prices and the size
of different sectors. We will use a model from Acemoglu, Carvalho,
Ozdaglar, and Tahbaz-Salehi (2012); the exposition draws on Carvalho
and Tahbaz-Salehi (2019).

The set of goods is N = {1, …, n}, where n ≥ 2. A sector corresponds
to a good, so there are n sectors. Each of the goods can be used as an
input in the production of the other n − 1 goods, and every good can
also be used by a household.



The output of industry i is given by

where zi is sector i–specific productivity, ℓ i is labor employed, xij is
input from industry j used in industry i, and αi is the share of labor. The
parameter

is a normalization constant.
The exponents aij reflect the role of sector input j in sector i: a larger

aij means that good j is a more important input for the production of
good i, whereas aij = 0 means that good j is not needed to produce good
i. Generally, the relationships between the sectors will not be
symmetric, that is aij ≠ aji, as industry i’s reliance on industry j as an
input supplier may be different from j’s dependence on i. Furthermore,
it may also be the case that aii > 0, as good i may itself be used as an
intermediate input for production by firms in industry i. Finally, note
that the assumption that all technologies exhibit constant returns to
scale implies that  for all i ∈ N. In other words, constant
returns to scale say that if all factors of production scale by factor f,
then output scales by the same factor. Moreover, as αi > 0 for all i, 

 for all i ∈ N. All variables except for xij are exogenous; xij is the
choice made by a firm in sector i on how much it will buy from a firm in
sector j.

There is a representative consumer in the economy. The consumer’s
utility is given by

where βi is the weight placed on good i by the consumer. In what
follows, for expositional simplicity, we will assume that . The
consumer owns 1 unit of labor that is supplied inelastically.

There are competitive markets for every product. The price of
product i is pi and the wage for labor is w: in other words, firms and
the consumer take prices as given.

A representative firm in sector i maximizes profits that are given as
follows:



where the first term is the gross revenue, the second term is the wage
bill, and the third term is the total cost of all other inputs.

The consumer maximizes utility subject to their budget constraint as
follows:

This completes the description of the economy.
The competitive equilibrium of this economy is defined in the usual

way: it consists of a collection of prices and quantities such that (1) the
representative household maximizes their utility; (2) the representative
firm in each sector maximizes its profits while taking the prices and
wages as given; and (3) in all markets demand is equal to the supply, in
other words, all markets clear. We shall study the sizes of different
sectors of the economy in a competitive equilibrium and relate them to
the structures of input and output relations across the sectors.
Adjacency matrices and Katz-Bonacich centrality The input-output linkages
between various industries are summarized by matrix A = [aij], which
we will call the economy’s “input-output matrix.” This matrix, along
with the vector of productivity shocks z = (z1; ..; zn), describes the
production side of the economy. Observe that αi > 0 for all i ∈ N means
that A is a nonnegative matrix, with row sums that are strictly less than
1. This in turn means that the spectral radius of A—defined as the
largest absolute value of its eigenvalues — is strictly less than 1 (for a
derivation of these properties, refer to Berman and Plemmons [1979]).
Alternatively, we may interpret A as a graph with n nodes, with the
weights of the directed edges given by aij. While the production
network representation of the economy is equivalent to the
representation using the input-output matrix, it can provide a
conceptually simpler framework for summarizing (and visualizing)
input-output linkages.

The matrix L = [1 − A]−1 is known as the Leontief inverse. As A is
nonnegative with a spectral radius that is strictly less than 1, we can
deduce that [1 − A] is a nonsingular M-matrix. This in turn implies that
the Leontief inverse L always exists and is element-wise nonnegative.
Moreover, since the spectral radius of A is strictly less than 1, the
Leontief inverse can be expressed as the infinite sum of the powers of
the input-output matrix A (Stewart [1998]):



This decomposition tells us that the lij value in cell (i; j) of the
Leontief inverse measures the importance of industry j as a direct and
indirect input supplier to industry i in the economy. Interpreted in
terms of the production network representation of the economy, lij is a
measure of all possible directed walks (of different lengths) that
connect industry j to industry i over the network. We define :
this is a variant on the Katz-Bonacich centrality of sector i, as it
provides a measure of walks of different lengths emanating from a
sector (for an introduction to Katz-Bonacich centrality, refer to chapter
1).

An important focus of this analysis will be the relative size of
different sectors. This is measured by the Domar weight of an industry,
which is the market value of its output as a ratio of the total output of
the economy:

With these concepts in place, we are now ready to relate the
production and consumption and the size of the sectors in this
economy to its technology as manifest in the matrix of input-output
connections.

5.3.1 The Size of Sectors and the Aggregate Economy

The first step is to derive a firm’s demands for different inputs. As all
firms are identical, we may write demand at the industry level. This
demand is derived by differentiating the profit of a firm with respect to
labor and inputs. Industry i’s demand for labor is

Similarly, industry i’s demand for input from industry j is

Substituting these demands in the production function yields

Dividing by yi and taking logs on both sides yields



Rearranging terms, we may rewrite equation (5.11) as follows:

Defining 𝜖i = logzi, recalling the normalization constant, and
rearranging we get

Recalling , we may rewrite equation (5.13) as

It is convenient to define .
The relationship in equation (5.14) must hold for all industries, so it

yields a system of n equations. Rewriting this system of equations in
matrix form, we get

We can rewrite equation (5.15) in inverse form, as follows

We now turn to consumer demands. Recall that the consumer seeks
to maximize utility subject to budget constraints, as in equation (5.5).
Differentiating with respect to ci and simplifying, we get

The market clearing condition for product j can be written as
follows:

Substituting firm demand from equation (5.9) and consumer demand
from equation (5.17), equation (5.18) can be rewritten as follows:



Multiplying by pj and dividing by w on both sides, we get

Rewriting this equation in terms of Domar weight, we get

We note that Domar weight is a function of consumer preference βj

and production network aij and may be written more compactly as

Observe that the industry impact occurs downstream only. This is an
artifact of the Cobb-Douglas production function. With this production
function, the price and output effects cancel out for upstream firms: if
the quantity of good i falls (because of the negative shock), the price of
good i increases proportionately, leaving pixi unchanged. Thus there is
no upstream impact as a response to productivity shocks. A question at
the end of the chapter examines the upstream propagation of shocks.

Rewriting equation (5.22) in matrix form and solving for the vector
of Domar weights yields

Finally, recall from equation (5.13) that .
Putting these points together, we arrive at the following result on

the size of sectors.
Proposition 5.1 The log of industry output i is given by

where  is a constant that is independent of the shocks zi.

This result reveals that the output of industry i (i.e., its size) depends
on the productivity of every sector, weighted by the entries of the
Leontief inverse. In other words, a sector’s size is proportional to its
Katz-Bonacich centrality in the production network.



The intuition underlying the result is as follows. Suppose that
industry j is hit by a negative shock that reduces its production. This
will push up its prices. Such an increase in price will negatively affect
the industries that use j as an input. This negative impact will then flow
downstream through the firms/sectors that use this sector as an input,
and so forth. The overall effect of downstream propagation of the initial
shock is reflected in the economy’s Leontief inverse (and summarized
in the Katz-Bonacich centrality).

Let us now consider the relation between the production network
and the aggregate output. Recall that

If we multiply on both sides by βi and sum across all i, we get

Recalling that GDP is simply the wage earnings of consumers and labor
supply is inelastic at 1 unit, the GDP is given by w. Substituting for this
in equation (5.26) and rearranging, we get

Define the consumption good bundle  as numeraire and set
its price equal to 1. This implies that .

We are now ready to state the following result on the size of the
aggregate economy as it relates to productivity shocks and the input-
output matrix.
Proposition 5.2 An economy’s real value added is given by

and lji is the (j, i) element of the Leontief inverse, L = [I − A]−1.

Thus the log aggregate output is a linear combination of industry-
level productivity shocks, with coefficients given by the industries’
Domar weights. Importantly, the Domar weight of industry i depends



on the downstream linkages from i to all other sectors. This relation is
known as “Hulten’s theorem” (Hulten, 1978; Gabaix, 2011). The result
also shows that with Cobb-Douglas technology and preferences, the
Domar weight depends only on the preference shares and the
corresponding column of the economy’s Leontief inverse.

To appreciate propositions 5.1 and 5.2, it is helpful to work through
a few simple production networks.

5.3.2 Computations for Simple Economies

Consider the production networks represented in figure 5.1. In these
networks, there are six sectors: n = 6. Suppose that the share of labor
is the same across sectors: αi = 0.2 for all i ∈ N. For simplicity, assume
that productivity shocks are given by zi = 1 for every i and consumer
places equal weight on all sectors, βi = 1/6 for all i ∈ N. Let us now
compute the Leontief inverse and the centralities and Domar weights
of sectors in these different economies. Note that in our setting, the
Katz-Bonacich centrality is simply the column sum whereas the Domar
weight is the column sum weighted by the respective β’s (this is
equivalent to “dividing” by the “number of sectors” here).

Figure 5.1 
Simple production networks.

For the empty network, the Leontief inverse is simply the identity
matrix; the Katz-Bonacich centrality of every node is therefore given by
1. The Domar weight of each sector is given by 0.17.

Table 5.1 presents the adjacency matrix for a cycle network and the
corresponding Leontief matrix. We see that as all nodes are symmetric,



the Katz-Bonacich centrality for every sector is the same and given by
5. The Domar weight of each sector is given by 0.83.

Table 5.1 
Cycle: production matrix A (left) and Leontief matrix L (right)

Table 5.2 presents the adjacency matrix for a star network and the
corresponding Leontief matrix. We see that the Katz-Bonacich
centrality is 13.89 for the center and 3.22 for each spoke. The Domar
weight of each of the peripheral sectors is given by 0.54, while the
Domar weight of the central sector is given by 2.31.

Table 5.2 
Star: production matrix A (left) and Leontief matrix L (right)

Table 5.3 presents the adjacency matrix for the line network and the
corresponding Leontief matrix. We see that the Katz-Bonacich
centrality is 3.69, 3.36, 2.95, 2.44, 1.80, and 1.00 for nodes 1, 2, 3, 4, 5,
and 6, respectively. The Domar weight of the sectors is 0.61,0.56, 0.49,
0.41, 0.30, and 0.17, respectively.

Table 5.3 
Line: production matrix A (left) and Leontief matrix L (right)

5.3.3 Remarks on Empirical Production Networks

The theoretical model offers us a useful lens through which to view
production economies in the world. Perhaps the most widely used
industry-level data is the input-output accounts data compiled by the



US Bureau of Economic Analysis (BEA). This database provides a
detailed breakdown of the US economy into hundreds of industries. We
discussed this data in chapter 1. For easy reference, we briefly recall
some important properties of the US network. The industry-level
network is highly sparsely connected, in the sense that narrowly
defined specialized industries supply inputs on average to only about
11 other industries. Further, the network is dominated by a small
number of hubs that are general-purpose industries. The weighted out-
degree distribution is highly skewed and close to a Pareto distribution.
Next, the network exhibits a “small-world” property: most industry
pairs are indirectly linked by hub-like sectors, and thereby the network
has short average distances and small diameters. Finally, the network
exhibits a highly skewed distribution of sectoral Bonacich centralities
(which is also well approximated by a Pareto distribution with
diverging second moments).

These properties of production networks are not limited to the US.
To get a sense of the structure of production networks more generally,
we present statistics from four other large economies—Great Britain,
China, India, and Germany (the data is taken from the World Input-
Output Database and is presented at a higher level of aggregation than
the BEA data). Define the weighted out-degree of a sector j as

where wij is the input weight from j to i. This measure ranges from 0 (if
a sector does not supply inputs to any other sector) to n (if a single
sector is the sole input supplier of every sector). Figure 5.2 presents
the production networks of these four countries.



Figure 5.2 
Production networks, 2014. Node size is proportional to the weighted out-degree. Source:
World Input-Output Database. www.wiod.org.

Next, recall from chapter 2, that under the Pareto distribution, the
probability of degree k is P(k) = a/kc, for positive constants a and c. If
we take logs on both sides, we get

Expressed in this way, we see that the log of probability is a linear
function of the log of degree. Given any empirical distribution, it is
then possible to ask what value of a and c offers the best fit. Fitting the
Pareto distribution to the weighted out-degree distribution of the four
countries, we get the following coefficients: 2.28 for China, 2.25 for
India, 1.74 for Great Britain, and 1.84 for Germany.

http://www.wiod.org/


The top five sectors in terms of size are presented in table 5.4. An
interesting aspect of the networks across countries is that, depending
on the level of economic development, the networks cluster around
various central industries. Table 5.4 illustrates this by comparing the
top five sectors in Great Britain, China, India, and Germany. We see
that Great Britain and Germany share two sectors out of their top five
—administrative/support services and legal and accounting services (it
is worth comparing these sectors with the largest sectors in the US,
mentioned in chapter 1). Similarly, China and India also have two
sectors in common—manufacturing: chemicals and chemical products
and financial services. We also note the prominent role of general-
purpose sectors like financial services, legal and accounting services,
and administrative services, Wholesale Trade, Real Estate, Electric
Power Generation and Distribution, Management of Companies and
Enterprises, and Iron and Steel Mills.

Table 5.4 
Comparing top sectors across four leading economies

Great Britain China India Germany

Administrative/support
services

Manufacturing:
chemicals/chemical
products

Land transport and
pipelines

Administrative/support
services

Electricity/gas/steam/air
conditioning

Financial services Financial services Real estate activities

Financial services Manufacturing:
food, beverages,
and tobacco

Construction Warehousing/support
transportation

Legal and accounting;
management
consultancy

Wholesale trade Retail trade Legal and accounting;
management
consulting

Manufacturing:
coke/refined petroleum

Manufacturing:
coke/refined
petroleum

Manufacturing:
chemicals/chemical
products

Wholesale trade

To appreciate the inequality in sector size, it is instructive to look at
the shares of the top five sectors. Table 5.5 presents the shares of the
top five sectors from the four economies. We see that the top five
sectors make up over 35 percent of the national economy in India, over
30 percent in Great Britain and Germany, and over 25 percent in
China.

Table 5.5 
Comparing top sectors across four leading economies

Great Britain China India Germany

8.68% 5.85% 11.26% 9.60%
6.27% 5.79% 7.51% 6.47%



Great Britain China India Germany
5.90% 5.68% 6.33% 6.27%
5.70% 5.23% 5.91% 5.58%
5.38% 5.16% 5.71% 5.53%

5.4 Network Structure and Aggregate Volatility

We turn next to the relation between network structure and shock
propagation in the economy. The traditional view is that independent
sector-level shocks will not have a large impact on the aggregate
economy (e.g., Lucas, 1977). The intuition is that shocks on the various
sectors have distinct origins, and therefore some will be positive and
others negative. They will cancel each other out and not have an large
aggregate impact. In what follows, we will examine the scope of this
argument and show that it hinges crucially on the network structure of
the production economy.

To bring out the role of the network structure in the simplest way,
we will simplify some aspects of the production process. First, suppose
that the productivity shocks are identical and independent across
sectors: so 𝜖i = 𝜖 for every sector i. Next, suppose that the mean or
average shock is of size 0 and its standard deviation is σ. Finally,
assume for simplicity that all sectors use labor in the same way (i.e., αi

= α > 0, for all i ∈ N).
Recall from proposition 5.2 that

The volatility of the economy may be measured by the standard
deviation of the aggregate output, σagg. Let us express this standard
deviation in terms of the network structure and the production shocks
of the economy:

where w is GDP and we have used the formula for the variance of a
random variable . Noting that E𝜖 = 0 and , we
obtain the following compact expression:

To appreciate the magnitude of aggregate volatility in an economy,
we next turn to the mean and variance of the distribution of its Domar



weight. Recall from the discussion in section 5.3.1 that the Domar
weight is

Therefore, the sum of Domar weights is

We can therefore write the mean value of λi, E(λ) = 1/(nα). Turning to
the variance, note that

where we have again used the formula for a random variable 
. Substituting for  in equation (5.34), we arrive at

Sector size is central to an understanding of aggregate volatility. To
see this, note that if the Domar weights are equal, then var(λ1,.., λn) =
0. Substituting in equation (5.38) yields the expression

As σ and α are constants, this means that the fluctuation in
aggregate output is proportional to . We have, therefore, arrived at
the conventional wisdom: aggregate volatility becomes negligible as
the number of sectors n grows.

From proposition 5.1, we know that the Domar weight of a sector is
an equilibrium outcome and reflects the production network and
consumer demands. To focus on the network, let us further assume
that the consumer assigns equal weight to all goods: βi = 1/n, ∀i ∈ N.
Recall that the Domar weight λi = vi/n, where



is the column sum of the Leontief inverse matrix and indicates the
importance of industry i as a supplier to the economy. Substitute for λi

in equation (5.38) and, noting that σ2(λ) = σ2(v)/n2, we get

Equation (5.41) suggests that heterogeneity across sectoral
centrality/size can give rise to significant aggregate volatility. For
example, if vi′ has a Pareto distribution with exponent γ ∈ (1, 2), then it
can be shown that σagg will be proportional to n1/γ−1, and therefore it will
be unbounded (the relation between the Pareto coefficient and the
variance is discussed in chapter 2). The interested reader should refer
to Gabaix (2011) and Acemoglu, Carvalho, Ozdaglar, and Tahbaz-
Salehi (2012) for further discussion on this issue.

The intuition underlying this result comes from the propagation
mechanism developed in propositions 5.1 and 5.2. Sector-level shocks
cancel out at the aggregate level if the sectors are roughly the same
size. But when the sectors are very unequal in their roles as input
suppliers, shocks to sectors that are more important suppliers
propagate more widely and dominate the shocks to less prominent
sectors. These observations lie at the heart of the granularity
hypothesis: in the presence of significant heterogeneity at the micro
level, sector-level shocks can be amplified by the network structure of
production.

5.4.1 Shock Propagation: Examples

Figure 5.1 takes up four networks to illustrate our analysis of
aggregate volatility. Consider first an empty network in which every
sector only uses labor as an input. In this economy, shocks to any given
sector will not affect production in any other sector: there is no
amplification of micro-level volatility.

Next, consider the cycle network, in which every sector acts as an
input into one other sector. In this setting, shocks do percolate, but the
effects have similar magnitude, as every sector is symmetrically
located in the network. More generally, if shocks respect the
assumptions of zero mean and equal variance, then they indeed tend to
cancel out: the standard deviation declines as the number of nodes
grows (in line with the expression ).

A supply chain suggests a situation in which inputs flow
unidirectionally from a well-defined upstream sector (e.g., rare earth
minerals). Its output is successively transformed into magnets that are
used in speakers, which are ultimately incorporated in the final



downstream sector, the smart phone. This is a simple line network with
a source node (the first node, with no incoming links), and a single sink
node (the last node, with no outgoing links). The effects of a shock will
depend on the location in the chain: for example, a shock at the most
upstream source (sector 1) now has a first-round effect on its
immediate downstream customer sector 2, a smaller, second-round
effect on sector 3, and an even smaller, third-round effect on sector 4.
The remaining three sectors contribute in a similar manner except that
they are closer to the sink node and hence do not contribute to
aggregate volatility, with as many higher-order indirect effects. This
source-sink arrangement of the production network draws attention to
the disproportionate role of central technologies. The next example, of
a star economy, brings out this point clearly.

Finally, consider a setting in which a single, general-purpose
technology serves as nearly the only input (in addition to labor) in all
other sectors. Moreover, each of the other sectors is an input for the
general-purpose technology. Figure 5.1 illustrates this configuration as
the star economy. This is a very stylized way to represent the role of
sectors such as real estate, construction, and information technology.
This network yields the highest volatility across the four networks
considered. The reason for this is the large effect of the central hub
sector: a shock to this sector has large, first-order effects on all
sectors, while a shock to any other sector has a direct effect on one
other sector and an indirect effect on every other sector.

These theoretical considerations are of substantive interest as
production networks in important economies exhibit great inequality.
Recall that the size of a sector is related to its centrality in the
production network. With this in mind, figure 5.3 plots the centrality
distribution in Great Britain, China, India, and Germany. The Pareto
coefficients of the fitted curves are 1.96, 1.67, 1.65, and 1.82,
respectively (we fit the coefficient b in the function y = eaxb).



Figure 5.3 
Tail distribution of centralities, 2014. Source: World Input-Output Database. www.wiod.org.

Decisions on investments and on securing supply chains are
ultimately made by firms. To understand whether they will act
appropriately—whether they will invest adequately to make their
production reliable, what they will use as input suppliers, and which
sectors they will enter—it is important to understand the connections
at the firm level. The approach of mapping relations at the sector level
can be adapted to study interfirm relations: the nodes are now firms,
and the links reflect the input relations between firms. The interfirm
supply chain networks for a few countries such as Belgium and Japan
have been studied. As in the case of sector-level networks, interfirm
networks exhibit an extensive heterogeneity that is consistent with
power law distributions. In contrast to the sectoral network, the in-
degree distribution is also highly skewed. Finally, the size of a firm is
positively correlated with both its number of upstream supplier firms
and its downstream customer firms.

The discussion has brought out the role of production connections
between firms and sectors in transmitting shocks, and it has illustrated
the role of hub nodes in amplifying shocks. This motivates a closer
study of the economic processes that give rise to hubs.

http://www.wiod.org/


5.4.2 Endogenous Networks

We expect that firms will respond to changes in economic conditions,
and this response may entail a change in their technology, suppliers,
and trading partners. For instance, they may source new inputs to take
advantage of technological innovations or enter relationships with new
customers in response to a customer’s exit. These changes will give
rise to changes in the production network, and this may significantly
alter the economy’s response to exogenous shocks.

To accommodate these considerations, a small but growing body of
literature develops a theory of production and endogenous network
formation. The economic forces involved are complex and include the
direct and indirect network effects, as well as the combinatorial nature
of graphs. A formal presentation of this work is outside the scope of
this chapter, so we limit ourselves to mentioning some papers only.

In an early strand of work, this challenge was addressed through
statistical models of network formation. Atalay, Hortacsu, Roberts, and
Syverson (2011) develop a model in which links between firms are
created through a variant of the preferential attachment model
(proposed in chapter 2). Carvalho and Voigtlander (2015) propose an
industry-level network formation model that builds on the network
formation model of Jackson and Rogers (2007) (also presented in
chapter 2). In that model, existing input-output linkages are used to
search for new inputs for production. Recall that the model generates a
scale-free degree distribution and high clustering. Using industry-level
data, and consistent with the model’s central mechanism, Carvalho and
Voigtlander (2015) find that producers are more likely to adopt inputs
that are already in use by their current (direct or indirect) upstream
suppliers. These statistical models are able to match some of the key
attributes of real-world production networks, but they abstract from
incentives that depend on the specific inputs and production
technologies. Their use for normative and policy purposes is therefore
limited.

Oberfield (2018) proposes a model in which firm-level incentives are
incorporated. In his model, firms optimally choose one input from a
randomly evolving set of suppliers. He finds that such endogenous
choice results in the emergence of star suppliers that sell their goods
to many other firms for intermediate use. Acemoglu and Azar (2020)
consider a model in which firms decide which subset of the other
industries to use as input suppliers, with each input combination
leading to a different constant returns to scale production technology.
The key assumption in the model is that markets are “contestable,”
that is, a number of firms have access to the same menu of



technologies. This assumption ensures that, while making its input
combination decisions, each firm can take the production network and
all prices as given.

5.5 Supply Chains: Fragility and Resilience

In a modern economy, almost any product—be it a cup of coffee or a
smart phone—arises out of a supply chain with multiple layers, with the
output of one layer forming an essential input in the production of the
next layer. Firms are aware of the shocks and uncertainties associated
with these multilayer chains and they take steps to mitigate them—
they invest in their own reliability, choose which layer of the supply
chains to enter opportunistically, and seek to secure their input supply
and downstream demand by creating links with multiple suppliers and
buyers. As supply chains are complex, these decisions involve
complicated interactions with other firms. We present a simple model
of a supply chain to explore incentives of firms and the performance of
supply chains they create.

The simplest example of a supply chain is a line with a unique source
and unique sink: layer A supplies inputs to layer B, layer B supplies
inputs to layer C, and so forth. Let us assume that there is a single firm
in each layer. For ease of computation, assume that there is a baseline
reliability level of 1/2 for every firm (i.e., this is the probability that a
level produces a viable product using inputs from a previous level).
There is, then, a probability of 1/2 that the supply chain with a single
layer delivers, a probability of 1/4 that a chain with two layers delivers,
and so forth. A supply chain with n layers, therefore, successfully
delivers with a probability of 1/2n.

Firms embedded in this supply chain can take steps to improve their
performance. Suppose that a firm earns 1 if the supply chain is
successful and earns 0 if the chain fails to deliver. Let us say that with
an investment C, the firm can raise the reliability to 1. In a supply
chain with a single firm, a firm compares an expected return of 1/2
with the expected return of 1. The marginal returns to investment are
1/2. So the firm will undertake the investment if C < 1/2.

Next, consider a supply chain with two layers: an upstream layer and
a downstream layer. As before, suppose that a firm earns 1 in case the
supply chain delivers successfully. It is instructive to start with a
situation with zero investment in reliability. The supply chain delivers
with a probability of 1/4, and both firms expect to earn 1/4. If the
upstream firm alone makes an investment, then it earns 1 if it succeeds
(this happens now with a probability of 1/2) and 0 if it fails (this
happens with a probability of 1/2). The firm thus expects to earn 1/2 if



it invests, hence a marginal return of 1/4. So a firm will make the
investment if C < 1/4.

To appreciate the strategic relation between investments by firms,
suppose next that downstream firm makes investment C. This means
that the expected returns to an upstream firm without any investment
is 1/2. In this situation, if the upstream firm makes the investment,
then the supply chain delivers with certainty and the upstream firm
expects to earn 1. So the return to investment is 1/2. We have thus
established that the returns to the upstream firm are larger when the
downstream firm invests in reliability. This reveals that the
investments in reliability by various firms are strategic complements
(see chapter 4 for a definition of strategic complements and
substitutes).

We may summarize our computations as follows: a firm will invest in
reliability regardless of what the other firm does if C < 1/4, it invests
only if the other firm invests if 1/4 < C< 1/2, and it never invests in
reliability if C > 1/2.

More generally, in a supply chain with k layers (and k firms), a firm
always invests if C < 1/2k, it invests so long as all other firms invest if
1/2k < C < 1/2, and it never invests if C > 1/2. As the chain grows in
length, 1/2k becomes progressively smaller. The need for firms to
coordinate their investments, therefore, becomes more pressing, but at
the same time, the growing supply chain makes coordination more
difficult.

Observe next that even if firms can coordinate on their investment
decisions, they will never invest if C > 1/2. So we know that if C > 1/2,
then the supply chain will deliver with a probability of 1/2k. Thus the
likelihood of delivery is small and falling as k grows. Is this a desirable
state of affairs? Is this the best that the firms can hope to do?

Consider the collective problem of the firms. If the supply chain is
successful, their joint earnings are k. The complementarity in
investments tells us that we only need to compare the two polar cases:
all firms invest versus no firm invests. If all firms invest, the supply
chain delivers with certainty. The aggregate net earnings are

By contrast, if no firm invests, then the joint earnings are k/2k. A
comparison of the two expressions tells us that firms should invest if



As the number of layers grows, the term 1/2k becomes progressively
smaller and converges to 0. In other words, all firms should invest so
long as C < 1. These simple computations reveal a key tension in the
supply chain: at an individual level, firms have an incentive to invest
only if C < 1/2, but it is in their collective interest to invest, so long as
C < 1. Thus, in the range 1/2 < C < 1, no firm will invest even though
it is in the interest of all firms to do so. These observations are
summarized as follows.
Proposition 5.3 Consider a line supply chain with k layers and one firm in each layer. The

investments of firms across different layers are strategic complements. This gives rise to the

possibility of multiple equilibria and firms need to coordinate their investments to achieve a

high reliability outcome. There is a wedge between the private benefits to investing in

reliability and the collective gains from doing so: as a result, firms will underinvest in

reliability. This underinvestment grows with the length of the supply chain.

5.5.1 The Case of Multiple Firms in a Layer

There is one important aspect of actual supply chains that is missing in
the model described here—the presence of multiple firms producing
the same output. To accommodate this possibility, we extend the model
as follows: we suppose, as before, that there is a single line starting
with A that supplies to B, which supplies to C, and so forth; but now we
allow firms to decide whether they wish to enter a layer of the supply
chain. For simplicity, suppose that there are many firms that are
interchangeable and can enter one (and only one) layer.

To develop our arguments, it is instructive to start with the simple
case of a two-layer network presented in figure 5.4(a). There are two
layers: an upstream layer, U, and a downstream layer, D. The supply
chain can potentially contain several firms in every layer, and there are
links between every firm and firms in the adjacent layers. In this
network, every firm in layer D can source inputs from every firm in
layer U. In figure 5.4(b), this structure is presented with multiple
layers. In other words, the network is a complete multipartite network.
As in our original line supply chain, each firm has a baseline
probability of 1/2 of being functional. To keep the computations simple,
suppose that the firms face equal and independent shocks (and thus
the likelihood of a firm being operational is unrelated to the status of
any other firm).



Figure 5.4 
Supply chains.

Let us consider the decision of a firm to enter the two-layer supply
chain. Entering a production layer entails investments in plant,
equipment, and personnel, which are summarized by a fixed cost F >

0. The supply chain delivers an output if there is at least one
operational firm in each layer. In the simple case, with only one firm
per layer, the payoffs are simple: if the supply chain delivers, then
every operational firm earns 1. A nonoperational firm earns 0 (less the
costs of entry F), regardless of whether the supply chain delivers or
not.

The returns to entering a layer depend on the number of firms in
different layers of the supply chain. Consider the two-layer network,
and suppose that there is no firm active in any layer of the supply
chain. Say that a firm is considering entering the upstream layer. The
expected returns are 0 because there are no firms in the downstream
layer. So the supply chain cannot deliver the output, regardless of what
this firm decides. On the other hand, if there is already a firm in the
downstream layer, then there is a positive value to entering upstream.
The supply chain delivers only if firms in either layer are operational,
so the probability of successful delivery is 1/2 × 1/2 = 1/4. Therefore,
upon entry, the firm expects to earn 1/4. The firm will enter, so long as
F < 1/4.

Let us now consider the entry decision with multiple firms in
different layers of the supply chain. Suppose that there is one firm in
each of the two layers: what are the returns to a firm from entering the
downstream layer? Observe that the supply chain can deliver only if
the firm in layer U is operational: this happens with a probability of
1/2. Given that layer U is functional, the firm in question will earn



profits if it is itself operational: this again happens with a probability of
1/2. There is, however, a further complication—the returns to this firm
depend on whether the other firm in layer D is functional and the form
of competition with that firm. To keep matters simple, suppose that all
firms in a layer produce a perfectly substitutable output. This suggests
that a firm A in layer X earns a positive payoff if and only if it is itself
operational, all other firms in its layer are not operational, and all other
layers are operational. Returning to our example with two layers, with
one firm in each layer, we can write the expected profits of the firm
that enters the downstream layer as

Thus the firm will enter if F < 1/8.
Suppose that the firm enters the downstream layer, so there are now

two firms in layer D and one firm in layer U. What are the returns to a
firm from entering layer U? As before, we need to keep track of the
likelihood of layer D being operational and the likelihood of the other
firm in layer U failing. Keeping these factors in mind, the profits of the
firm that enters layer U are

Thus the firm will enter the upstream layer if F < 3/16.
These computations tell us that firms’ incentive to enter a layer
increase with the number of firms in other layers.
decrease with the number of firms in that layer.
The first effect says that entry in different layers is complementary:

as firms enter in the other layers, a firm has enhanced incentives to
enter its chosen layer. The second effect goes in the opposite direction:
entering decisions in the same layer are strategic substitutes due to
the competition between firms in the same layer.

Let us now define more general supply chains. A supply chain ℓ  =
{ℓ1,.., ℓk}, consists of ℓ i firms in layer i, where i = 1, …, k denotes the
layers. We shall say that a supply chain ℓ  is stable if no firm that is
outside wishes to enter and no firm in the supply chain wishes to exit
or switch to another layer.

Suppose that a firm is considering whether to enter a supply chain
with m firms in every layer. The entry of the firm gives rise to a supply
chain in which one layer contains m + 1 firms and all other layers
contain exactly m firms. The complementarity property tells us that



new firms will have an even greater incentive to enter one of the
remaining layers with m firms. Reasoning through this
complementarity, one layer at a time, we can conclude that in a stable
supply chain, every layer must contain an equal number of firms.

Consider the stability of a two-layer supply chain with one firm in
each layer. A firm prefers to stay if expected returns, 1/4, are larger
than the cost, F. On the other hand, no new firm wishes to enter if F >

1/8. So a single-firm, two-layer supply chain is stable if

Similarly, we can verify that a chain with two firms in each layer is
stable if

These computations reveal an interesting fact about the strategic
structure of the entry problem: there is a range of costs, 2/16 < F <

3/16, in which a 1-firm-per-layer supply chain and a 2-firm-per-layer
supply chain are both stable.

This multiplicity of stable supply chains motivates this question:
which of the two supply chains is better, and more generally, what is
an optimal supply chain?

In a 1-firm 2-layer supply chain, the collective or joint earnings of
the two firms are

From the computations given here, in a 2-firm, 2-layer supply chain,
the payoff of a firm is equal to 3/16 − F. This tells us that the profits of
an individual firm are larger in the 1-firm, 2-layer supply chain than in
the 2-firm, 2-layer supply chain. Let us next consider the joint profits of
the active firms. As all firms are symmetric, the joint earnings of the
four firms in the 2-firm, 2-layer supply chain are

It follows that the aggregate profits in the 2-firm, 2-layer supply
chain are higher than the aggregate profits in the 1-firm, 2-layer
supply chain if



This means that in the range of costs of 2/16 < F < 3/16, the 1-firm,
2-layer chain is better for the firms in the chain than the 2-firm, 2-layer
supply chain. Thus in the range of costs when both 1-firm and 2-firm-
per-layer supply chains are stable, the 1-firm, 2-layer supply chain is
better for the firms.

At a higher level, we may say that the purpose of a supply chain is to
deliver a good. With this in mind, let us consider the total surplus net
of costs of entry. Implicit in the definition of earnings is the idea that in
a successful 2-layer supply chain, the value of the good delivered is 2.
The likelihood that such a chain will deliver is simply the probability
that both layers are operational, which is 9/16. So the social value of
such a chain is

A comparison of equation (5.51) with the expression for joint profits
of firms in equation (5.49) reveals that there is a wedge between the
joint profits of the firms and the social value of a 2-firm, 2-layer supply
chain. This reflects the competition effect of multiple operational firms
in the same layer.

To summarize, the analysis on firms’ choices in supply chains brings
out a rich set of interactions—a firm’s returns on investment depend on
the investments in reliability by other firms. In particular, we showed
that the investments are strategic complements. This gives rise to the
possibility of multiple equilibria. There also exists a wedge between
private and collective returns on investment, suggesting that firms will
generally underinvest relative to what is in their collective interest.
The discussion on entering supply chains reveals rich strategic
relations: entry decisions are strategic complements across layers, but
strategic substitutes within the same layer. A general message is that
there is a need for a policy intervention as firms acting in their private
interest will create supply chains that are insufficiently reliable.

5.6 Reading Notes

The study of an economy in terms of its input-output relations between
its sectors has a long tradition. For an early introduction to the
literature, see Leontief (1941, 1951). Following the early work of
Wassily Leontief and his collaborators, a large strand of research
explored aspects of economic planning and development using input-
output models. This work was accompanied with the collection of very
detailed data on input-output relations of economies across the world.
The more recent interest in input-output relations may be traced to



Black (2009), and Long and Plosser (1983). Acemoglu, Carvalho,
Ozdaglar, and Tahbaz-Salehi (2012) build on this tradition and combine
it with ideas from the economics of networks and the work of Gabaix
(2011) on the “granularity hypothesis.” For an early empirical study of
production networks, see Blöchl, Theis, Vega-Redondo, and Fisher
(2011). An important strand of research has emerged following the
work of Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012),
including Acemoglu, Akcigit, and Kerr (2016) and Baqaee and Farhi
(2019), among others. Carvalho (2014) and Carvalho and Tahbaz-
Salehi (2019) provide excellent surveys of this work. Our exposition
draws heavily on Carvalho and Tahbaz-Salehi (2019).

The data on input-output tables is taken from the University of
Groningen website (www.wiod.org).

Supply chains are a major object of study in many disciplines,
including economics, operations research, management science,
organization theory, and economic sociology. The emergence of a
liberal trading regime has been complemented with advances in
information technology to give rise to global supply chains. This in turn
has been studied extensively by different strands of research. It is not
possible to do justice to this large and fascinating body of work here.
For important contributions from an economics perspective, see Antras
and Chor (2013), Antras and Helpman (2004), and Costinot, Vogel, and
Wang (2013). For an influential contribution on the role of
complementarities in the reliability of production, see Kremer (1993).
Our aim was to develop some basic economics of firm-level decisions in
relation to reliability and participation in supply chains. We developed
a model that builds on ideas taken from Elliott, Golub, and Leduc
(2020) and Bimpikis, Candogan, and Ehsani (2019).

5.7 Questions

  1.  Consider a production economy. Set n = 4. Firms use a Cobb-
Douglas constant returns to scale technology; every industry uses
labor in the same proportion, αi = 1/5 ∈ (0, 1). Industry i faces
productivity shock zi. The consumer has a log utility that assigns
equal weight to all four products, so βi = β = 1/4. The consumer has
endowment of 1 unit of labor that they supply inelastically.
(a)  Define a competitive equilibrium for this economy.
(b)  Fix the production network to be an undirected complete

network in which every industry uses itself and the other three
industries in equal measure (so for all i, j, aij = 1/5). Derive the
Leontief matrix and the Domar weights for this economy.

http://www.wiod.org/


Compute the equilibrium output and prices. (Feel free to use
computer software as needed.)

(c)  Fix the production network as a star network. The hub industry
uses itself and the other three industries in equal measure (1/5),
while the other three industries each uses itself and the hub,
with a coefficient of 2/5 each. Derive the Leontief matrix and the
Domar weights for this economy. Compute the equilibrium
output and prices.

(d)  Comment on the potential for propagation of industry-level
shocks in these two economies.

  2.  Consider a production economy with four sectors, n = 4. Firms use
a Cobb-Douglas constant returns to scale technology. Every
industry uses labor in the same proportion, αi = 1/5. Industry i

faces a productivity shock zi. The consumer has a log utility that
assigns equal weight to all four products, so βi = β = 1/4. The
consumer has endowment of 1 unit of labor that they supply
inelastically.
(a)  Consider the network as in figure 5.5(a). Write the adjacency

matrix and derive the Leontief matrix and the Domar weights for
this economy. Compute the equilibrium output of different
sectors (use computer software as appropriate).

Figure 5.5 
Supply chains.

(b)  Consider the network as in figure 5.5(b). Write the adjacency
matrix and derive the Leontief matrix and the Domar weights for



this economy. Compute the equilibrium output of different
sectors (use computer software as appropriate).

  3.  Consider the model of production from section 5.3, but now
suppose the government purchases an exogenously given quantity
qi of good i. These demands are financed by lump-sum taxes
imposed on consumers. Reason carefully on how such government
demands will propagate upstream from the affected markets with
high demands to their suppliers and further upstream along the
production network.

  4.  Discuss possible reasons for the unequal size and centrality of
sectors in modern economies.

  5.  Consider the two-layer supply chain problem discussed in section
5.5. There is one firm in each layer. Suppose that the probability of
successful operation for a firm is p ∈ (0, 1) and it is identical and
independent across firms. A firm can raise its reliability level from p
to 1 by investing C > 0. Derive the equilibrium reliability
investments as a function of C and p.

  6.  Consider the two-layer supply chain problem with firm entry
discussed in section 5.5. Firms can enter one layer. Suppose that
the probability of successful operation for a firm is p ∈ (0, 1) and its
entry into a layer costs F. Derive the entry equilibrium as a function
of F and p.



6
Infrastructure

6.1 Introduction

Surviving works of infrastructure from antiquity, such as
the urban grids of Mohenjo-daro in the Indus Valley, the
Roman roads and aqueducts, and the Great Wall of China,
continue to impress us, but there is no historical parallel to
the extraordinary range of transport and infrastructure
networks in the modern world. Examples include airlines,
roads and trains, shipping, electricity, pipelines, and the
Internet. It is difficult to do justice to this range of
networks in the space of a single chapter. To convey a
sense of the great diversity of such networks, the chapter
will present case studies on three transport networks—
airlines, roads, and trains. We will then present theoretical
models with a view to developing economic principles that
shape the structure of these networks and determine their
performance.

We start with airlines. Air travel has grown enormously
over the past few decades. Our point of departure is an
empirical observation from our discussions in the
introduction and chapter 1: most airlines operate a hub-
spoke structure, and some recent low-cost airlines operate
point-to-point networks. What are the determinants of
network structure? We develop a theoretical model with
two ingredients—fixed costs in creating links and benefits



of flying that are declining in the number of flight transfers.
The model predicts that airlines will either choose a point-

to-point network or a hub-spoke network depending on the
cost of creating flight links relative to the benefits of direct
versus indirect flights. We use this theory to understand
the routing networks of different airlines.

We then turn to road and train networks. The discussion
begins with case studies on the Roman road network, the
Indian railways, and the American railroads. These case
studies help to bring out the scale of these networks and to
indicate the enormous resources devoted to their creation.
They also draw attention to the topological features of
these networks. A distinctive feature of these transport
networks, as compared to airline networks, is that physical
geography has an important influence on the costs of
linking. We draw upon the classical work of Robert Fogel
and the significant advances made by recent research to
develop a theoretical framework to study the relation
between transport networks and economic activity. In this
approach, the key idea is that transport networks help
reduce the costs of shipping goods between locations; thus
transport networks determine market access. The
integration of markets in turn facilitates better allocation of
resources and thereby raises incomes. Thus, on the one
hand, transport networks seek to connect locations that are
more productive and, on the other hand, the connections
themselves shape the flow of goods and labor, and that
shapes the scale of activity and the performance of various
locations. Thus network design may play a decisive role in
determining the fate of these locations.

We conclude with a discussion of the Belt and Road
Initiative (BRI) launched by China in 2013. The BRI covers
a wide range of infrastructure and involves a large number
of countries. The discussion draws attention to the main



elements of the initiative and connects them to the
theoretical considerations developed in the chapter.

6.2 Airlines

The idea of flying goes as far back as the myth of Daedalus
and Icarus. Leonardo da Vinci’s designs of the fifteenth
century brought it closer to reality, but air travel, as we
know it really began in the early twentieth century as
entrepreneurs, engineers, and governments built on what
Orville Wright and Wilbur Wright had started not so long
before. In this section, our attention will focus on
passenger air travel and the airlines that operate planes.
We begin with a brief discussion of the empirical
background.

6.2.1 Empirical Background

Historically, airlines have been either state owned or
heavily regulated. This meant that both the routing and the
pricing of services were controlled by public authorities. In
the US, private firms were allowed to function but were
strictly regulated. In most other parts of the world, air
services were provided by a natural monopoly (and this
remains the case in many countries). Over the past three
decades, there have been a number of major developments.
One, passenger traffic has grown greatly: over the past two
decades, international passenger numbers have grown by
over 5 percent annually in most years. Two, in some large
countries like India and China, the rates of growth have
been in excess of 10 percent over the past decade (2010–
2020) and countries in Africa and Latin America are
expected to have high growth rates in the coming decade.
Three, many countries have liberalized the airline sector—
public-sector airlines have been privatized and a number of
new companies have entered. Economy airlines like



easyJet, Southwest, and Ryanair have become dominant in
Europe and the US.

Airlines use a variety of strategies to compete in the
market, which include the flights they operate and the
prices they charge for these flights. In addition, airlines
form alliances with other airlines to share capacity and
facilities and to provide a broader market coverage. In this
chapter, we will focus on airlines’ decisions regarding their
routing network.

In chapter 1, we noted that large international airlines
such as British Airways and Singapore Airlines operate a
hub-spoke network, while low-cost airlines such as
Southwest Airlines and Ryanair have a dense network that
is closer to a point-to-point network. We present data on a
few airlines to develop a sense of their sizes and the
architecture of their routing networks in table 6.1. These
numbers draw attention to the networks of some of the
world’s biggest airlines. They also highlight marked
differences in the density of direct flights across airlines:
British Airways, Egypt Air, and Singapore Airlines operate
something close to a hub-spoke structure, while other
airlines operate dense flight networks (with close to 50
percent of their flights being direct). The data also
highlights the growth of new airlines such as Ryanair and
easyJet (in Europe), Indigo and SpiceJet (in India), and
China Eastern and China Southern. United Airlines and
American Airlines lie somewhere in between these two
extremes. To help appreciate the differences across
airlines, we next plot a few routing networks: Singapore
Airlines and Ryanair in figure 6.1 and China Southern and
Indigo Airlines in figure 6.2. We now examine the economic
factors that shape the architecture of routing networks.

Table 6.1 
A number of leading airlines throughout the world

Airlines Destinations Flights



Airlines Destinations Flights

British Airways 226 348
Singapore Airlines 68 103
Ryanair 221 1,741
easyJet 127 420
Indigo 75 508
SpiceJet 68 267
Southwest 109 2,641
China Southern 235 960
China Eastern 210 947
American Airlines 352 1,256
United Airlines 384 1,112
EgyptAir 87 118

Source: https://www.ch-aviation.com/portal/.

https://www.ch-aviation.com/portal/


Figure 6.1 
Airline network examples. Source: www.ch-aviation.com/portal/

http://www.ch-aviation.com/portal/


Figure 6.2 
Airline network examples. Source: www.ch-aviation.com/portal/

In these networks, there are two types of trips: direct
(without stops) and indirect. Passengers prefer a direct
flight to a flight with stop-overs and flight changes. On the
other hand, operating a flight is costly for an airline: these
costs include depreciation of aircraft, personnel salaries,

http://www.ch-aviation.com/portal/


landing slot charges at airports, and costs of selling tickets
and checking in passengers.

To develop a feel for the issues let us consider some
numbers. Suppose that there is a passenger demand of 20
from every city to every other city. Consider the network in
figure 6.3(a). If a plane has a capacity of 60, then a direct
flight between a pair of cities entails an excess capacity of
40. Figure 6.3(b) presents a hub-spoke network. In this
network, every flight carries 60 passengers: thus every
flight operates at full capacity. This is referred to as
economies of density.

Figure 6.3 
Capacity use in networks.

In a hub-spoke network, there are more indirect flights,
and because passengers dislike making flight changes, this
will push the airline to charge lower prices. A question at
the end of the chapter examines pricing in airline network.
These observations suggest the following trade-off: direct
flights entail larger costs of operation, but indirect flights
lead to lower prices for the airlines. With these remarks in
place, let us now turn to a model of optimal network
design.

6.2.2 A Simple Model of Airline Routing

We present a model based on Hendricks, Piccione, and Tan
(1995). There is a set of N = {1, …, n} cities, with n ≥ 2;
people living in each city wish to travel to other cities. Let



A, B denote a pair of cities. A direct connection is a nonstop
flight from A to B. A flight-routing network is graph g, and
a typical link in this network is denoted by gAB. For
simplicity, suppose that all flights have return flights: so gA,

B = gB, A, and we can talk of links as signifying a return
flight. The number of links in network g is given by m(g). A
sequence of cities A1, A2, …, Az+1 is called a path if there is a
direct link between two consecutive cities. The length of
such a path is z: this is the number of direct flights in the
path. Two cities are connected if there is a path between
them. A network is said to be connected if there is a path
between every pair of cities. A hub-spoke network g is said
to have size m if there are m + 1 cities in it, with one hub
and m spokes. A point-to-point network g is another name
for a complete network; so a point-to-point network with m
cities contains m(m − 1)/2 links.

Let f > 0 be the cost of operating a direct flight between
any two cities. Then the cost of a network with k links is fk.

An airline carrier’s operating profits are calculated as
the revenue minus the variable costs. They can therefore
be written as the sum of profits across city-market pairs. In
each city pair, they depend on the length of the path that a
traveler has to traverse: let π(z) denote the (gross) returns
for a city pair that is distance z apart in the network. As
passengers prefer fewer stops we assume that gross profits
are falling in distance z:

The profits of an airline therefore depend on the number
of flights it operates and the length of the flights that
passengers have to traverse. Let d(A, B; g) be the length of
the shortest path in network g between two cities, A and B.
The profits of the airline can be written as:



Clearly, no flights would be created if the costs were too
large. To rule out empty networks, we assume that

The first term on the left side of equation (6.3) reflects
the returns from n − 1 direct flights between the spokes
and the hub, and the second term reflects the returns from
all the one-stop indirect flights between the spokes that go
through the hub. This assumption therefore says that the
benefits of a hub-spoke network outweigh the costs of
operating the n − 1 routes.

The following result provides us a complete description
of optimal routing networks in relation to the costs of
flights.
Proposition 6.1 Suppose equations (6.1) and (6.3) hold. Then there is some f*

such that

(a)  For f < f*, the optimal network is the point-to-point network.

(b)  For f > f*, the optimal network is the hub-spoke network.

Let us develop the arguments underlying this result.
First we will show that creating a network with m < n− 1
links is never optimal. As m is less than n− 1, we know that
the airline cannot connect all the cities. What is the best it
can hope to do? Well, it can provide direct flights between
m city pairs and provides a one-stop flight between the m
pairs of cities. This is possible with a hub-spoke network
with m spokes. The airline earns a profit given by

using this network. Could such a network ever be optimal
for the airline? No. To see why, observe that the last link—



the mth link—helps connect a city to the hub-spoke
network with m − 1 spoke cities. So the marginal cost of
the last flight is f, while the marginal return is the
difference in the operating profits of the m − 1 hub-spoke
network compared to the m hub-spoke network. This is
given by π(1) + (m − 1)π(2). Reasoning similarly, the
marginal value of increasing the number of direct flights
from m to m + 1 is π(1) + mπ(2). Thus if link m is
profitable, so is link m + 1. This means that if the airline
found it profitable to add flight m, it would be even more
profitable to add flight m + 1. This tells us that a network
with 0 < m < n − 1 is never optimal. This is an example of
agglomeration: once a hub-spoke network begins to form,
the marginal returns to connecting grow with the size of
the network.

Next, consider a network with exactly n− 1 direct flights:
such a network provides a direct flight between (n − 1) city
pairs. The shortest path length for all the other (n(n − 1)/2
− (n − 1)) city pairs is 2. The hub-spoke network with n− 1
links attains this best-case scenario. The profits of the
airline in this hub-spoke network are

What are the marginal returns to adding a link to this
hub-spoke network? The new flight would connect two
spoke cities: thus the marginal returns are given by the
difference in profit between a direct flight and a one-stop
flight: (π(1) − π(2)). It therefore follows that if f < (π(1) −
π(2)), then it is profitable for the airline to add a link.
Observe that the marginal returns to adding links between
any pair of spokes remains unchanged as we connect the
spokes. Thus if it is profitable to connect one pair, then it is
profitable to connect all pairs (i.e., to create a point-to-
point network). We have thus shown that an optimal



network is either the hub-spoke network or the point-to-
point network.

These arguments provide a very general basis for
understanding the optimal networks not only for airlines
but also in other settings so it is instructive to present the
details.

Proof. We show that a network with n − 1 < m < n(n −
1)/2 links cannot be optimal. Note that with m links, there
are 2m direct connections and at most (n(n − 1) − 2m)
connections with 1 stop. Thus gross profits are bounded by
the expression

This payoff is attained by a hub-spoke network of the
following type: a hub-spoke network with (n − 1) links plus
(m − (n − 1)) direct links between the remaining spoke
cities.

Note that the gain from adding direct connection (m + 1)
is given by (π(1) −π(2)). Thus if f < (π(1) −π(2)), then it is
profitable to create an additional link. Otherwise, the (n −
1) hub-spoke network generates a higher gross profit than
any larger network.

The second step shows that a network with m < n − 1
links is never optimal. Suppose that X is an optimal
network with m < n − 1 links. Then the maximum payoff
from such a network is given by

Since m links is preferred to (m − 1) links, it must be that
the payoff with m − 1 links is lower:



As equation (6.7) is greater than equation (6.8), we get

The payoff from adding link m + 1 is given by

Subtracting equation (6.7) from equation (6.10), we get
that the benefit of adding another link is

Simplifying,

Clearly, equation (6.11) is positive, given that equation
(6.9) holds. Hence 0 < m < n − 1 cannot be profitable.
Equation (6.3) rules out the empty network (with m = 0).
The proof is complete.

◼

Figure 6.4 presents the optimal networks. We next use
the theory as a lens through which to view the structure of
airline networks in different parts of the world.



Figure 6.4 
Optimal airline networks.

6.2.3 Mapping Theory to Empirical Routing Networks

There are a number of forces at work, but as a first step, it
is instructive to consider the size of planes as they offer an
indication of the costs of a link. Ryanair operates the same
aircraft model on all its flights—the Boeing 737-800—with a
capacity of 189 passengers. British Airways uses a range of
planes, but for its long-haul flights, it uses the Boeing 777-
200 plane, with a capacity ranging from 314 to 451. These
differences in capacity can be related to our discussion on
the capacity of planes and the shape of the network in
figure 6.3: larger-capacity planes are consistent with hub-
spoke networks, while smaller-capacity planes are
consistent with point-to-point networks.

A second point concerns the airports that the two airlines
use. British Airways uses principal airports at major cities,
which have high landing fees; by contrast, Ryanair is well
known for operating its flights from smaller airports that
charge lower landing fees. Both these features lower the
fixed cost of operating direct flights for Ryanair. The theory
therefore helps us understand why Ryanair operates a
dense network (with point-to-point tickets only), whereas
British Airways operates a hub-spoke network. Similar



considerations arise when we consider the networks of the
other airlines listed in table 6.1.

We have assumed that the demand for travel is equal
across city pairs. Clearly, larger city pairs will have
different demands compared to pairs of small cities. This
will shape the routing network in an intuitive way: the
airline will operate a hub-spoke network in which the
larger cities will also have a direct link. A question at the
end of this chapter explores this issue more systematically.
We have considered the problem of optimal network design
by a monopoly airline. In principle, it is possible that
airlines may choose richer and more complicated routing
networks when facing competition from other airlines. A
question at the end of the chapter examines competition
among airlines and develops conditions under which
competing airlines will create hub-spoke networks.

Let us summarize what we have learned in this section.
Air travel has grown enormously since the 1950s, and this
growth has been especially large in the last two decades.
This growth has been accompanied with a progressive
deregulation of the market for flying. The result has been
an expansion of older airlines and the emergence of a
number of new airline companies. These airlines compete
to serve consumers. Their strategies include the pricing
and routing of flights. We have focused on the design of
routing networks. Airlines operate a variety of routing
networks ranging from the hub-spoke networks to dense
point-to-point networks. We explored a simple model of
airline network design: in this model, there are two key
ingredients—the costs of setting up direct routes and the
higher benefits of direct routes. This model yields the
following insight—when all city pairs have similar demand
for air travel, the optimal network is either a hub-spoke or
a point-to-point network (i.e., all other networks are
suboptimal).



6.3 Roads and Trains

To set the stage, we start with a brief discussion of an
ancient transport network—the Roman roads. This is
followed by a discussion of two large modern transport
networks—US railroads and railways in colonial India. The
aim of these short case studies is to bring out the
extraordinary scale of these networks, to discuss the goals
of the network builders, and to draw attention to the spatial
dimension of these networks (that sets them apart from
airline networks).

6.3.1 Empirical Background

Roman roads

At its peak, in the first half of the second century AD, the
Roman Empire ranged from Hadrian’s Wall (in Scotland)
and the banks of the Rhine River in the north to Morocco
and Egypt in the south and from Spain in the west all the
way to the Euphrates River (in Mesopotamia) in the east.
By 125 AD, the Romans had built over 80,000 kilometers of
hard-surfaced roads connecting their capital with the
frontiers of their far-flung empire. Figure 6.5 presents a
map of the principal Roman highway network at the time of
Emperor Hadrian. Our discussion here draws on Britannica
(2000).



Figure 6.5 
Roman road network, 125 AD: By Andrein–Own work, CC BY-SA 3.0, https://
commons.wikimedia.org/w/index.php?curid=6654575.

Wars were frequent, and roads were the principal mode
of transport for the army and for the incorporation of
captured territory into the empire. At the start, highways
connected the capital, Rome, with nearby provinces and
towns that had recently been taken over by the Romans.
The first of the great Roman roads, the Via Appia, started
in 312 BC, originally ran southeast from Rome to Tarentum
(modern-day Taranto), and was later extended to
Brundisium (modern-day Brindisi) on the Adriatic coast. By
the beginning of the second century BC, four other great
roads radiated from Rome: the Via Aurelia, extending
northwest to Genua (modern-day Genoa); the Via Flaminia,

https://commons.wikimedia.org/w/index.php?curid=6654575


running north to the Adriatic, where it joined the Via
Aemilia, crossed the Rubicon, and led northwest; the Via
Valeria, east across the peninsula by way of Lake Fucinus
(Conca del Fucino); and the Via Latina, running southeast
and joining the Via Appia near Capua. These major roads
were supplemented by numerous feeder roads extending
far into the Roman provinces, thereby creating a network
with a hub at Rome, giving rise to the expression, “all roads
lead to Rome.”

In 145 BC, the Romans started constructing the Via
Egnatia, an extension of the Via Appia beyond the Adriatic
into Greece and Asia Minor, where it joined the ancient
Persian Royal Road. In northern Africa, the Romans
followed up their conquest of Carthage by building a road
system that spanned the south shore of the Mediterranean.
In Gaul, they developed a system centred near Lyon, from
where the main roads extended to the Rhine, Bordeaux,
and the English Channel. In Britain, a network was created
with roads stretching out from London. In Gaul and Roman
Britain, the principal roads were laid out in a hub-spoke
structure, while in Spain, the geography dictated a system
of main roads around the periphery of the peninsula (with
secondary roads leading into the central plateau). In
summary, the network combined key elements of the hub-
spoke structure, reached out toward the boundaries of the
empire, and respected the physical constraints of
geography.

Once in place, the roads came to be used to transport
different kinds of agricultural products (oil, olives, wheat,
and wine) and for post, by the imperial courier system. The
Roman road system continued to serve Europe throughout
the Middle Ages; many major modern roads have been built
on old Roman routes, but fragments of the old system
survive and remain in use in many parts of Europe to the
present day. For a detailed and fascinating study of Roman



infrastructure, visit the Stanford University Department of
Classics website (https://classics.stanford.edu/).

◼

Trains in colonial India

We next turn to another of history’s great transportation
projects—the vast network of rail tracks built in colonial
India (an area covering modern-day India, Pakistan, and
Bangladesh). The first railway line in India, Red Hill
Railroad, was built to bring granite for road building in
Madras in 1836. However, the start of the construction of a
national railway network is generally traced to a railway
line that ran from Bombay to Thane and started operations
in April 1853. The train network was built during the
period 1852–1930, and in the end stretched over 67,000
kilometers. The material in this case study draws on
Donaldson (2018).

Prior to the creation of this train network, goods
transport within India took place on roads, rivers, and
coastal shipping routes. The bulk of inland travel was
carried by bullocks along the road network. On the best
road surfaces and during optimal weather conditions,
bullock carts could cover 20–30 kilometers per day. Trade
was also carried by pack bullocks (which carried goods
strapped to their backs and generally traveled directly over
pastureland), which were considerably slower and riskier
than cart bullocks. Water transport was superior to road
transport, but it functioned only on the Brahmaputra,
Ganges, and Indus river systems. Coastal shipping was
available along India’s long coastline; steamships were fast
and could cover over 100 kilometers per day but only
served major seaports. Against this backdrop of costly and
slow internal transportation, the potential for economic
effects appears to be very large when we note that
compared to traditional modes of transport, railroads could
ship commodities over 600 kilometers in a day, and at

https://classics.stanford.edu/


much lower per-unit distance freight rates. It is not
surprising that the construction of a train network was
discussed as early as 1832.

The decisions on where to lay the train tracks were made
by the government of India. The government had three
motives for building railroads—military, commercial, and
humanitarian. Since its inception, military motives were
prominent and appeared at every stage of the development
of the network. The military consideration was reinforced
after the Indian Mutiny of 1857.

The original plan was to build five trunk lines to connect
India’s major provincial capitals—Delhi, Bombay, Madras,
Calcutta, and Lahore—so as to maximize the political
advantages of a train network. These lines were built by
1869. The expansion of the train network is presented in
figure 6.6. We see that the network eventually fanned out
to all corners of the country, reflecting the strategic
considerations underlying its construction. Another aspect
of the network was that it is dense in the northern plains
and relatively sparse in central India and the north (in
Kashmir). Over this period, 1850–1930, the train network
was the dominant form of public investment in colonial
India. The total mileage of the Indian railways remained
relatively unchanged throughout the twentieth century. The
Indian Railways is one of the largest employers in the world
and the major carrier for freight and passenger traffic in
twenty-first-century India.

◼



Figure 6.6 
Expansion of Indian Railways, 1860–1930. Courtesy: Dave Donaldson.

Railroads in the United States

We next take up the development of the American
railroads. The construction of train networks in the US
started in the 1820s and by 1900, 215,000 miles of tracks
had been laid. The presentation here draws on Britannica
(2000) and Donaldson and Hornbeck (2016).

In the 1820s a number of cities on the East Coast,
including New York, Boston, Baltimore, and Charleston,
began exploring railroad routes to access raw materials



and agricultural produce from the inland and to lower
transport costs to ship their manufactured goods to the
inland markets. The first phase of American railroad
development, from 1828 until about 1850, involved
connecting pairs of large cities that were close neighbors:
New York City and New Haven, Connecticut; Richmond,
Virginia, and Washington, D.C.; and Syracuse, New York,
and Rochester, New York.

The growth of the railroads stepped up significantly with
an extension into the interior of the continent and from the
Atlantic to the Pacific. In 1862, the Pacific Railroad Act
chartered the Central Pacific and the Union Pacific railroad
companies, tasking them with building a transcontinental
railroad that would link the US from east to west. The first
transcontinental railroad was completed on May 10, 1869.
The effects of this railroad on travel times were dramatic:
in the 1850s, it took four to six months to travel from the
Missouri River to California by wagon, but in 1870, it took
approximately seven days to travel on the transcontinental
line from New York to San Francisco. Figures 6.7 and 6.8
present an overview of the expansion of the railroads
through the period 1830–1900.





Figure 6.7 
Expansion of US railroads, 1830–1870. Source: Donaldson and Hornbeck
(2016).





Figure 6.8 
Network expansion, 1870–1900. Source: Donaldson and Hornbeck (2016).

By 1871, approximately 45,000 miles of track had been
laid. Beginning in the early 1870s, railroad construction
increased dramatically, and between 1871 and 1900,
another 170,000 miles were added to the railroad system.
Much of this growth can be attributed to the
transcontinental railroads. By 1900, four additional
transcontinental railroads connected the eastern states to
the Pacific Coast.

The state and federal governments supported private
companies in the construction of this railroad network. The
governments offered millions of acres of public land to
railroad companies to lay track and earn revenue by selling
the land. At the start of the twentieth century, railroads
were the primary carrier for both passengers and freight.
During the twentieth century, passenger traffic declined as
people shifted to automobiles and air travel, but the share
of American railroads in freight has remained high today.
At the start of the twenty-first century, the railroads carried
over 40 percent of all freight in the US.

◼

These networks date from different periods in history
and are located in different parts of the world. One feature
they share, though, is that they were truly monumental in
their scale and in the resources devoted to their
construction. A second point pertains to the objectives of
the network builders: in the case of the Roman Roads and
the Indian railways, strategic considerations relating to
conquest and consolidation of empire were critical. By
contrast, the building of the American railroads was driven
primarily by economic considerations. However, regardless
of their objectives, builders faced great resource
constraints: the network that emerged, therefore, may be
seen as a preferred choice in the face of resource (and



geographical) constraints. Finally, the case studies draw
attention to the topology of the network. Each of these
networks spans many more nodes and has a clear physical
aspect to it that is closely related to the topography of the
countries in which it lies.

We now turn to the relation between transport networks
and economic activity. Historians and economists have
studied the role of train networks extensively. The
following passage gives us an impression of the powerful
claims that have been made on the economic impact of
trains:
Research … has further buttressed the idea that the railroad was an imperative
of economic growth. Christopher Savage, in his recent Economic History of

Transport, states that the influence of the railroad in American development
“can hardly be over-emphasized” since “agricultural and industrial
development and the settlement of the West would scarcely have been
possible” without it. W. W. Rostow has administered an even stronger fillip to
this view-point. In the projection of his concept of a “take-off into self-sustained
growth,” Rostow assigns railroads a crucial role. The railroad, he argues, was
“historically the most powerful single initiator of take-offs.” It “performed the
Smithian function of widening the market,” it was a “prerequisite in many
cases to the development of a major new and rapidly expanding export sector,”
and most important, it “led on to the development of modern coal, iron and
engineering industries.” Rostow lists the United States first among the
countries in which the influence of the railroad was “decisive.” (Fogel 1962, pp.
163–164).

There are a number of ways in which railroads may be
important for economic activity. For example, they enable
cheaper and speedier transportation of perishable
products, they may benefit manufacturing through
increased scale and coordination, and by facilitating
movement of people, they may also facilitate a better flow
of ideas and encourage technological growth. For
concreteness, we will focus on one of these, examining the
impact of lower costs of moving goods from one location to
another. We present a theoretical framework that allows us
to study the implication of this cost reduction. We will use
the model to comment on the quantitative impact of the



American railroads and Indian railways, and then we will
use the model to discuss the optimal design of transport
networks.

6.4 Theoretical Framework for Trains and Roads

We will consider a theoretical model in which the primary
benefit of a transport link between two locations is that it
allows producers in one location to access and sell goods to
consumers in the other location. The costs of a link depend
on its quality (a four-lane highway costs more than a one-
lane road) and on geography (a river or a mountain lying
between the locations may necessitate a bridge or a detour
that is costly). The costs of transporting a good in turn
depend on the quality of the link—a regular train service or
a multilane highway may help move goods faster, and
possibly also at a lower cost. The aim is to understand how
location and geography shape the network and how
network formation in turn shapes the scale and spatial
distribution of economic activity.

The model is based on Fajgelbaum and Schaal (2020).
The economy consists of a set of locations 𝒥 = {1, …, J}.
There are Lj workers at location j ∈𝒥;  is the total
number of workers. Workers consume a bundle of traded
goods and a nontraded good (land or housing, which is in
fixed supply). The utility of an individual worker who
consumes c units of the traded goods bundle and h units of
the nontraded good is U(c, h). The utility function U is
homothetic and concave in both its arguments. Cj is the
aggregate demand of the traded goods bundle at location j,
and the per capita consumption of traded goods is cj = Cj/Lj.

There are n = 1, …N traded goods/sectors. These goods
are combined to obtain Cj:



where  is consumption of good n in location j. The
aggregator function Dj(.) is assumed to be concave and
homogenous of degree 1. In addition, in the examples
presented in sections 6.5.1–6.5.2 below, we will assume a
constant elasticity to substitution function.

Suppose for simplicity that production uses only labor,
and that output is linear in labor input. In the basic model,
we will assume that labor is immobile across locations, but
mobile across the production sectors of a location. Thus
production of good n at location j is given by

where  is the number of workers assigned to sector n at
location j. In some of the examples here, we will allow for
differences in productivity across locations.

The locations J are arranged on an undirected graph g =
(𝒥, ℰ), where ℰ denotes the set of edges (i.e., unordered
pairs of 𝒥). For each location j, there is a set Nj(g) of
connected locations or neighbors. Goods can be shipped
only between connected locations; that is, goods shipped
from j can be sent to any k ∈ Nj(g), but to reach any
k∉Nj(g), they must transit through a sequence of linked
locations. The transport network is given by {Ijk}j∈𝒥, k ∈
Nj(g).

A natural interpretation is that j is a geographic unit
such as a county, Nj(g) are its bordering counties, and
shipments are done over land. More generally, the
neighbors in the model do not need to be geographically
contiguous since it could be possible to ship directly
between geographically distant locations by land, air, or
sea. The fully connected scenario in which every location
may ship directly to every other location, Nj(g) = 𝒥 for all j,
is a special case.

Goods may transit through several locations before
reaching a point where they are consumed. Let  be the



quantity of goods in sector n shipped from j to k ∈ Nj(g)
(regardless of where the good was originally produced).
There are a number of ways in which transport costs can be
modeled. For simplicity, we will assume “iceberg” costs—
we will therefore suppose that part of the “good” sent is
used up during the transportation. Moreover, it will be
assumed that there is no congestion in transportation
across goods but there is congestion for individual goods.

Transporting a unit of good n from location j to location k
requires  units of the good itself. So  corresponds to
the iceberg cost. This per-unit cost is specified as a
function of the total quantity  of good n shipped on the
link jk, and of the quality of infrastructure Ijk on that link:

Congestion is an important feature of this model: per-
unit cost of transporting is increasing in the quantity
shipped:

In short, the more that is shipped, the higher the per-unit
shipping cost. This captures higher travel times or road
damage, decreasing returns to scale in transportation due
to land-intensive fixed factors such as warehousing or
specialized inputs.

A second assumption of the model is that better
infrastructure lowers the transport costs:

The transport technology τjk(Q, I) may also depend on jk,
capturing variations in shipping costs across links for the
same quantity shipped and for the same infrastructure.
This variation may reflect geographical considerations such



as distance or physical landscape. In principle, the per-unit
cost function τjk(Q, I) may depend on the direction of the
flow; for example, if elevation is higher in j than k and it is
cheaper to drive downhill, then τjk(Q, I) < τkj(Q, I).

It follows that at every location, the balance of these
flows must hold: for every good n = 1, …, N, and for all
locations j = 1, …, J,

The left side describes location j’s consumption  of
good n, exports to neighbors , and inputs to the transport
sector . These flows must be less than or equal to the
local production  and imports from the neighbors  of
good n.

We let  be the price of good n at location j, which
reflects society’s valuation of a marginal unit of good n in
location j.

6.4.1 The Economic Returns to Train Networks

We use the theoretical framework proposed here to make
some observations about the economic returns to transport
networks. We first take up the American railroads. In a
famous early contribution, Fogel (1964) proposed
measuring the benefits in terms of cost savings generated
by the railroads. Viewed in terms of our theoretical
framework, this may be seen as calculating the impact of
railroads on the total transport costs, , across all goods
and all locations.

As transport of agricultural produce from the American
Midwest was a central motivation for the building of the
railroads, Fogel (1964) focused on cost savings in that
sector in 1890. This cost savings may be computed as the
sum of savings on interregional trade and the savings on
intraregional trade. Interregional trade covered trade from



9 primary markets in the American Midwest to 90
secondary markets in the east and south of the country:
here, shipping costs were only moderately cheaper with
railroads compared to using natural waterways and canals.
The total cost savings amounted to the difference in
shipping costs (with and without railroads) times the
quantity of transported agricultural goods. Fogel (1964)
showed that this number was no more than $73 million, or
0.6 percent of gross national product (GNP).

Intraregional trade covers the shipments from farms to
primary markets. In the absence of railroads, farms would
incur substantially higher costs in transporting goods by
wagon to the nearest waterway before they could be
shipped to the closest primary market. In farms more than
40 miles from a waterway, wagon transportation may have
become prohibitively expensive. Fogel (1964) deemed all
land farther than 40 miles from a navigable waterway as
lying in the infeasible region: he bounded the loss in these
areas by the value of agricultural land in these areas and
arrived at a figure of $154 million lost in annual rent. He
then estimated the savings in transportation costs for the
feasible region (lying within 40 miles of a waterway): he
bounded these by $94 million using a similar approach to
the interregional analysis. Thus the total annual
intraregional cost saving was bounded above by $248
million (or 2.1 percent of GNP). The total social savings
estimate of $321 million—2.7 percent of GNP—is generally
regarded as indicating a limited impact of the railroads on
the American economy.

Fogel (1964)’s approach was followed by a large body of
research studying the value of large infrastructure projects.
A natural next step to the cost savings idea is to examine
the effects of a railroad network on production, income,
and consumption at different locations. This helps us
develop a more aggregate economic picture of railroads.



Donaldson and Hornbeck (2016) present a measurement
of this aggregate impact. Consider the county as the
geographical unit. The railroads lowered the costs of
transport between counties and thereby facilitated the
integration of county markets. A county’s market access
increases when it becomes cheaper to trade with another
county, particularly when the other county has a larger
population and higher trade costs with other counties. So
we can see that changes in market access can act as a
summary statistic for all direct and indirect impacts on
each county from changes in the national railroad network.
In an agricultural economy, greater prices and higher
output responses will result in higher farm incomes, which
will be reflected in higher land values. Donaldson and
Hornbeck (2016) estimate that removing all railroads in
1890 would have lowered the total value of agricultural
land in the US by 60.2 percent. This reduction in
agricultural land value would generate annual economic
losses equal to 3.22 percent of GNP. The estimates of
Donaldson and Hornbeck (2016) are thus slightly larger
than the social savings estimates derived by Fogel (1964).

It is instructive to similarly examine the effects of the
Indian railways from a market integration perspective. To
begin to appreciate the scale of change brought about by
trains, note that prior to the trains, bullocks were the
principal model of transport for commodities. They traveled
no more than 30 kilometers per day along India’s sparse
network of dirt roads. By contrast, railroads could
transport commodities over 600 kilometers in a day, and at
much lower per-unit distance freight rates.

As in the American case, let us examine the economic
implications of the train network in terms of lower costs of
transport. Lower transport costs in principle allow a
producer in one location to earn a higher price from selling
their produce at other locations, and also possibly to sell to
new, more distant and erstwhile inaccessible markets. Both



these effects should raise their incomes. As India was a
predominantly agricultural country at that time, let us
consider changes in agricultural income. Using a
theoretical framework as in the previous section,
Donaldson (2018) shows that the train network did indeed
have large effects. First, he shows that in line with the
theoretical prediction, as transport costs declined, price
differences across locations fell significantly. Moreover,
when a district was connected to the rail network, farm
incomes rose by 16 percent. To place this in perspective,
we note that, over the period 1870–1930, Indian
agricultural income grew by a mere 35 percent. Being
connected to the railroad, therefore, made a very big
difference to a farmer’s income.

As transport links lower costs, the structure of the
network and the strength of the links across locations
matter for economic activity. We now examine how these
considerations shape the optimal design of transport
networks and how that design affects economic activity.

6.5 Optimal Spatial Transport Networks

To formulate the optimal design problem, we introduce the
final ingredient of the model: the costs of networks.
Building transport infrastructure requires a resource (such
as stones, concrete, or asphalt) that is available in a fixed
supply, K. Thus the opportunity cost of building
infrastructure between two locations is simply the value of
forgoing infrastructure elsewhere. Building infrastructure
Ijk on link jk requires an investment of  units of K. The
network-building constraint is

We note that the infrastructure matrix {Ijk} defines a
weighted directed graph. Thus Ijk and Ikj may be different.



We are now ready to state the optimal network design
problem. The planner’s optimization problem consists of
three subproblems: (i) allocating consumption and labor
across locations, , (ii) optimal flows across
locations , and (iii) the allocation of resources to
construct transport links across locations (Ijk). Let us define
wj as the weight that the planner assigns to the utilities of
workers in location j.

The optimization problem can be written as consisting of
three nested problems:

subject to
1.  availability of traded commodities:

and availability of nontraded commodities:

2.  the balanced flow constraint:

where  is the production of good n in location j.
3.  the network building constraint:

4.  local labor-market clearing:



5.  nonnegativity constraints on consumption, flows, and
factor use:

The key to understanding the economics of the problem
is to recall that given a transport network {Ijk}j∈𝒥, k ∈ Nj(g),
we are in a production and consumption economy that
meets all the usual technical assumptions (for an exposition
of the standard general equilibrium model with production,
see Mas-Colell, Whinston, and Green [1995]). So there are
equilibrium prices such that all consumers are maximizing
utility and input and local product markets clear. These
prices reflect the marginal utility of consumption in
different locations. A variation in prices of a good across
two locations defines the potential benefits of flows across
them. These benefits in turn give us a measure of the
advantages of investing in transport links and will be
central to working out the optimal transport networks.

With these observations in mind, let us turn to some
properties of the optimal flow and allocation. At an
optimum, it must be the case that the price differential for
a good between two locations must be smaller than the
costs of transporting the good between the two locations
(and this must also account for the increase in marginal
cost of transporting):

Also, note that this expression must hold with equality if 
.



Observe that in the absence of congestion, , this
price differential would be bounded by the trade cost. This
no-arbitrage condition helps us understand the nature of
flow between locations. Suppose that the transport cost 

 is convex in the quantity shipped. Then the expression
can be inverted, and we can conclude that gross trade flow,

, is increasing in the price differential.
Turning to the optimal transport network, let PK be the

multiplier of the network-building constraint. This reflects
the shadow price of the infrastructure network. For any
positive quality link, Ijk, at the optimum network, the
marginal cost of link must be greater than or equal to the
marginal returns from the link:

The left side of equation (6.29) is the opportunity cost of
building an extra unit of infrastructure along jk—the
multiplier PK of the network-building constraint times the
rate  at which that resource translates to infrastructure.
The right side is the reduction in per-unit shipping costs, 

, applied to the value of the goods used as inputs in
the transport technology.

With these general considerations in mind, we now study
examples in order to understand the role of transport
networks in shaping economic activity. The first set of
examples will have only one traded good and one
nontraded good, and locations are organized in a w × h

symmetric grid. Preferences are constant relative risk
aversion (CRRA) form over a Cobb-Douglas bundle of
traded and nontraded goods:



with α = 0.5 and ρ = 2. The total transport costs for the
single good being transported are given by

where β ≥ 0 and γ ≥ 0.
Observe that parameters β and γ measure the sensitivity

of costs of transport to changes in quantity and to transport
investment. If γ ≤ β, a proportional increase in quantity and
transport investment leads to higher per-unit costs of
transport, and the converse is true when γ > β. We shall
refer to the former as the decreasing returns case and the
latter as the increasing returns case. Fajgelbaum and
Schaal (2020) develop a number of general results on the
solution of the optimal network design problem and how it
varies with the main economic parameters. We next
present some numerical examples to illustrate these
results.

6.5.1 Size of the Infrastructure Budget

This section shows that as the infrastructure budget grows,
the network can reach more deeply from a source into the
hinterland, thereby lowering price differentials across
space, making consumption more uniform, and enhancing
social welfare.

Suppose that β = γ = 1. Thus quantity and transport
quality have proportional effects on costs of transport.
There is a single traded good and no geographic frictions
(i.e., for any pair of locations ).

Figure 6.9 presents the geographic configuration and the
productivity parameters of this scenario. The geography is
represented as a 9 × 9 grid, in which every location is
connected to 8 neighbors. The existence of the links
indicates that a transport link is potentially feasible.
Suppose that labor productivity is 1 at the central location



(1 unit of labor yields 1 unit of output) and 0.10 at all the
other locations. All other features of locations are perfectly
symmetric, (Lj, Hj) = (1, 1), for all locations j ∈𝒥.

Figure 6.9 
Physical layout and productivity.

Figure 6.10 presents the optimal network and its
economic implications as we raise the infrastructure
budget from K = 1 to K = 100. The panel on top
corresponds to K = 1, and the panel on bottom presents the
case for K = 100. The optimal link investments radiate from
the center, and this has a bearing on the level of shipments.
The quality of the network has great economic effects on
prices and utility. This is reflected in the heat diagrams
plotted in the lower half of each of the panels. With a small
budget, the tradable goods are scarcer in the outskirts of
the network, and as a result, the price and the marginal
utility are higher. A larger infrastructure budget leads to a
strengthening of the transport network: it now grows
further afield; as a result, the price differentials and the
difference in marginal utility shrink across space.





Figure 6.10 
Optimal networks: effects of the infrastructure budget.

6.5.2 The Role of Transport Technology

We now turn to a study of the returns to transport
technology—specifically, whether β/γ ≥ 1 or β/γ ≤ 1—for
the design of the optimal transport network. The discussion
will develop the following basic intuition: with decreasing
returns, it is more economical to have multiple routes
between a source and a destination, whereas with
increasing returns, it is more economical to have broader
single highways connecting a source and a destination.
Thus in the former case, optimal networks are dense and
consist of weak transport links, while in the latter case,
they will be trees.

To bring out this point clearly, we consider 20 locations
randomly situated in a space where each location has eight
neighbors. Figure 6.11 presents the layout of the cities.
Labor Lj = 1 in each of the 20 cities and 0 elsewhere.
Assume that productivity is 1 at the central city and 0.10 at
the other 19 locations.



Figure 6.11 
Spatial configuration of cities.

Figure 6.12 presents the optimal networks and optimal
flows. The top panel covers the convex case, when β = γ =
1. The top left figure shows that the optimal network
radiates outward from the centre to reach all destinations.
Due to congestion on routes, some destinations are reached
through multiple routes. But to reach some faraway
locations such as the one in the northwest, there is only one
route. The figure on the top right shows optimal flows of
the good away from the principal producing unit.



Figure 6.12 
Optimal networks: effects of transport technology.

The panel at the bottom presents optimal networks and
flows with increasing returns to network building, γ = 2 > β

= 1. We observe a qualitative change in the network: fewer
but larger roads are built. As a result, there is only one



route linking any two destinations—the network is a tree in
which nodes have a similar number of offshoots.

To elaborate on the effects of transport technology, we
next consider multiple locations for production, and to
bring out the full impact of transport networks, we extend
the baseline spatial economic model to allow labor to move
to more attractive locations. This means that, given a
network, a profile of prices defines an equilibrium to be in
place if in addition to conditions (1)–(3) and (5), no person
wishes to change location and aggregate labor demand
equals labor supply. In the setting with free labor mobility,
utilitarian welfare maximization tells us that individual
utility must be equalized across locations: let us denote this
utility by u. Let us write these conditions formally for
completeness.
6.  no one wishes to move to another location:

7.  aggregate labor market clearing conditions:

where .
We compute the optimal transport network in a simple

example with five industrial products and one agricultural
good. The industrial goods are each produced at only one
city, and the agricultural good is produced at all locations
outside the cities. The agricultural good is labeled 1, so we
have  in all countryside locations and , in all cities.
The five industrial goods are labeled n = 2, 3, 4, 5, 6 are
each produced in one city, so  in only one city j each
and  otherwise. These goods are combined via a
constant elasticity of substitution aggregator with the
elasticity of substitution σ = 2. Labor continues to be the



sole factor of production. As before, labor and nontraded
goods are equal at all locations, Lj = Hj = 1, for all j ∈𝒥.

Figures 6.13(a) and 6.13(b) presents optimal networks in
the decreasing and increasing returns cases, respectively.
A comparison reveals that, as in the one good case, in the
presence of economies of scale in transportation, the
optimal network becomes significantly sparser with fewer
but wider highways. With β = 1 and γ = 0.5, the optimal
network connects every industrial city through multiple
routes to other locations. By contrast, under β = 1 and γ =
4, the optimal network links each industrial city through a
unique, wide highway to all other locations; the case is
similar for the supply of agricultural locations.

Figure 6.13 
Optimal networks: effects of transport technology.

Let us now summarize what we have learned in this
section. We have presented a theoretical model with spatial
features in which the costs of transport are the central
force shaping economic activity. This model allowed us to
draw out principles for the design of optimal spatial



transport networks, and in particular on the role of returns
to transport technology. When these returns are
diminishing, the optimal network has many links, but each
link is weak (one example is a complete network). By
contrast, under increasing returns to scale, the network is
sparse and each of the transport links is strong (examples
include tree graphs and variants of hub-spokes networks).
As increasing returns to transport push toward hub-spoke
networks, they could amplify agglomeration forces and lead
to a greater concentration of economic activity.

6.6 The Belt and Road Initiative

China’s Belt and Road Initiative (BRI), sometimes referred
to as the New Silk Road, was launched in 2013 by
President Xi Jinping. It is a vast collection of development
and investment initiatives that would stretch from East Asia
to Europe and Africa (a more elaborate version also
includes projects in Australia and Latin America). The BRI
calls for close cooperation among countries and is expected
to improve the region’s infrastructure; put in place a secure
and efficient network of land, sea and air passages;
enhance trade and investment; establish a network of free
trade areas; increase financial integration; and enhance
cultural exchanges. The BRI has subsequently become an
important part of Chinese planning and general policy—it
was incorporated into the 13th Five-Year Plan (2016–2020)
and was included in the Chinese Communist Party
constitution in October 2017. The discussion here draws on
a number of sources—OECD (2018), official Chinese
government documents, and Maceaes (2018).

The BRI aims to connect East Asian economies at one
end with European economies at the other end, and covers
a number of countries with a huge potential for economic
development in both Eurasia and Africa. There are two
components to the infrastructure element—the Silk Road



Economic Belt, which is on land, and the twenty-first-
century Maritime Silk Road, which covers seaports and sea
routes. Figure 6.14 provides an impression of the vast
scope of the BRI. Let us look more closely at some of the
principal components of the initiative.

Figure 6.14 
The BRI. Source: Mercator Institute for Chinese Studies.

On land, the Silk Road Economic Belt consists of three
broad routes—(1) from Northwest China and Northeast
China to Europe and Baltic Sea via Central Asia and Russia;
(2) from Northwest China to the Persian Gulf and the
Mediterranean Sea, passing through Central Asia and West
Asia; and (3) from Southwest China through Indochina
Peninsula to the Indian Ocean. These three routes are
divided into six economic corridors:
1.  New Eurasia Land Bridge, involving train connections

from China to Europe via Kazakhstan, Russia, Belarus,



and Poland.
2.  China-Mongolia-Russia Economic Corridor, which would

involve rail links and highways and also link to the land
bridge.

3.  China–Central Asia–West Asia Economic Corridor, which
will involve Kazakhstan, Kyrgyztan, Tajikistan,
Uzbekistan, Turkmenistan, Iran, and Turkey.

4.  China–Indochina Peninsula Economic Corridor, which
will involve Vietnam, Thailand, Lao People’s Democratic
Republic, Cambodia, Myanmar, and Malaysia.

5.  China-Pakistan Economic Corridor, connecting Kashgar
(in Xinjiang) through a highway to the Pakistan port of
Gwadar. The road passes through the Karakoram
Mountains in the Himalayas. Gwadar is a deepwater port
that can be used for both commercial and military
purposes.

6.  China-Bangladesh-India-Myanmar Economic Corridor,
with investment in infrastructure development and joint
exploration and development of mineral, water, and
other natural resources.
These economic corridors will involve broad economic

integration along various dimensions, but physical
integration will be an important feature. This will be
facilitated by a transport network consisting of railways,
highways, and sea and air routes, together with electric
power transmission and telecommunication networks and
oil and gas pipelines.

The Maritime Silk Road runs from the Chinese coast to
the south via a number of Southeast Asian cities (i.e.,
Hanoi, Jakarta, Singapore, and Kuala Lumpur) through the
Strait of Malacca to Sri Lanka. It then carries on through
the southern tip of India via Male to East Africa (i.e.,
Mombasa and Djibouti). The route continues through the
Red Sea via the Suez Canal to the Mediterranean Sea (via



Haifa, Istanbul, and Athens) to Italy (Trieste). The route
then continues via sea and over land connections to Central
Europe and the North Sea. Figure 6.14 illustrates the broad
outlines of the Maritime Silk Road.

BRI’s geographical scope is constantly evolving as new
countries sign up for joint projects and other countries
withdraw from them. By 2018, the BRI covered over 70
countries, accounting for about two-thirds of the world’s
population and around one-third of the world’s total
income.

Let us next place the BRI in a broader context. Resilient
infrastructure is a part of the UN’s 17 Goals of Sustainable
Development, but it is generally agreed that at the global
level there is a large gap in infrastructure. For instance, in
2020, over 840 million people lived more than 2 kilometers
from all-weather roads, 1 billion people lacked electricity,
and 4 billion people lacked Internet access. For a number
of years now, multilateral development institutions such as
the World Bank have prioritized infrastructure funding in
developing countries. From a Chinese perspective, the BRI
is expected to help by providing better access to markets
for its manufactured goods. Closer integration across
markets in Eurasia will increase demand for its
manufactured products and integration with Central Asia
and West Asia will raise the reliability of its oil and gas and
other natural resource supplies. Closer economic
integration between Northwest China and Central and
West Asia will help less-developed provinces like Xinjiang.
At a more general level, closer integration with the
resource-rich but less-developed economies of Central Asia
will help China transition out of a middle-income level by
gradually relocating certain industries out of China. The
BRI may therefore be seen as an attempt by China to fit its
policy goals into a leading global challenge—the shortage
of infrastructure.



Let us consider the financing of the BRI. It calls for very
large investments—in excess of $1 trillion for the decade
starting in 2017—and so financing these projects is a major
challenge. Large Chinese state financial institutions—the
Industrial and Commercial Bank of China, the Agricultural
Bank of China, the Bank of China, and the China
Construction Bank—are expected to play an important role.
But entirely new institutions, such as the Asian
Infrastructure Investment Bank (AIIB), have the BRI as a
priority too: by mid-2016, the AIIB approved funding in
excess of $500 million for projects in Bangladesh,
Indonesia, Pakistan, and Tajikistan (these countries lie in
the core economic corridor of the BRI). Similarly, the Silk
Road Fund was set up to facilitate funding of a variety of
projects ranging across hydropower plants in Pakistan,
fund acquisition of Italian tyremaker Pirelli, and to make
investments in the Russia-based Yamal Liquified Natural
Gas project.

Finally, let us comment on some aspects of the network
elements underlying of the BRI: the transport network
envisaged by the BRI involves a vast number of nodes
(located in over 70 countries) and a rich combination of
types of edges including roads, train tracks, sea routes, oil
pipelines, Internet cables, and financial links. Figure 6.14
draws attention to the importance of oil and gas pipelines.
Turning to the topology of the network, the BRI hopes to
make Xinjiang the hub for the Silk Road Economic Belt and
Fujian the hub for the Maritime Silk Road. There is thus an
important sense in which this extraordinarily large and
complex network seeks to exploit the network advantages
of the hub-spoke structure.

The BRI envisages a close integration of transport
infrastructure across Eurasia and Africa with hubs based in
China, proposes the financing of this infrastructure through
a number of financial institutions based in China, and
advances the idea of greater domestic and trade policy



coordination across countries. These features have led
researchers and commentators to speculate on the longer-
term implications of BRI.

To place the BRI in a broader perspective, recall that this
chapter has covered a range of transport networks. The
discussion drew attention to the scale of train and road
networks, the goals of the network builder, and how they
interact with resource constraints and physical geography
to shape the network. We also presented a theoretical
framework that allows us to explore the economic effects of
transport networks and the determinants of optimal
network design. Keeping these ideas in mind, we conclude
this chapter with a general comment on the BRI:
The Belt and Road Initiative is the name for a global order infused with Chinese
political principles and placing China at it heart. In economic terms this means
that China will be organizing and leading an increasing share of global supply
chains, reserving for itself the most valuable segments of production and
creating strong links of collaboration and infrastructure with other countries,
whose main role in the system will be to occupy lower value segments.
Politically, Beijing hopes to put in place the same kind of feedback mechanism
that the West has benefitted from: deeper links of investment, infrastructure,
and trade can be used as leverage to shape relations with other countries even
more in its favor. The process feeds on itself. (Maceaes, 2018, p. 30)

6.7 Reading Notes

Transport networks come in various forms. The aim of this
chapter is to bring out the close relation between these
networks and economic activity. It discusses roads, trains,
and airlines and briefly comments on a shipping network.

As air travel has grown, economic issues in the airline
industry have attracted increasing attention. For an
overview of developments in airlines, see Petzinger (1996)
and Borenstein (1992). A striking and widely commented-
on feature of airlines is the hub-spoke network structure.
Hendricks, Piccione, and Tan (1995) developed a model in
which the basic trade-offs between dense and sparse
networks could be studied. This chapter draws on their



work to develop an analysis of the optimality of different
networks. The discussion focuses on the case of a single
airline. Similar arguments can be used to show that
competing airlines will create hub-spoke networks; for a
formal model of competing airline networks, see Hendricks,
Piccione, and Tan (1999). For an exploration of the role of
hub-spoke networks as an entry deterrence device, see
Hendricks, Piccione, and Tan (1997).

The study of spatial transport networks has a long and
distinguished history. Perhaps the best-known work is the
study of the effects of American railroads on economic
growth by Robert Fogel. Fogel (1964) studied the impact of
railroads through a method of counterfactuals—how would
the American economy have fared in the absence of any
railroads? He examined the cost savings brought about by
railroads relative to alternative existing modes of transport,
such as rivers and canals. Fogel argued that small
differences in freight rates caused some areas to thrive
relative to others, but railroads had only a small aggregate
impact on the U.S. agricultural sector. This social saving
methodology has been widely applied to transportation
improvements; for an alternative approach that suggests
larger effects, see Fishlow (1965). For a re-evaluation of
this hypothesis and a summary of the state of the literature,
see Donaldson and Hornbeck (2016). For a general
overview of economic issues relating to economic effects of
market integration, see Donaldson (2015).

To highlight the general ideas underlying the benefits of
transport networks and the possible trade-offs in building
different types of networks, the chapter then presents a
theoretical model of optimal spatial transport networks.
This model builds on the large body of literature in
international trade and economic geography and bridges it
with the research on optimal flows in networks. For an
overview of the trade and geography literature, see Eaton
and Kortum (2002) and Redding and Rossi-Hansberg



(2017). For an introduction to optimization methods in
transport networks, see Galichon (2016). The model
presented in section 6.5 is taken from Fajgelbaum and
Schaal (2020). The exposition here also draws heavily on
that paper.

The BRI is one of the most ambitious infrastructure
projects ever undertaken. There is a very large body of
popular literature on different aspects of the BRI. However,
the initiative is also very controversial due to its vast
economic scope and the large political and strategic
elements in it. The discussion here draws on a number of
official documents and a general introduction to the
initiative by Maceaes (2018). Other documents include an
Organisation for Economic Co-operation and Development
(OECD) study of the BRI (OECD, 2018) and official Chinese
government reports taken from http://english.www.gov.cn
/beltAndRoad/.

6.8 Questions

  1.  There are n cities, n ≥ 3. Suppose that demand for
travel between any city pair is a function of the price of
the ticket and is given by

Marginal costs of flying are constant and given by c.
Compute the optimal prices for direct and indirect (two-
step) flights. Then compute the profits for the monopoly
airline in the complete and the hub-spoke networks.
Finally, compute the threshold value of the costs of links
f* such that the optimal network is complete below f*

and hub-spoke above f*.
  2.  Consider a scenario with one airline operating a

network to serve n cities. Suppose that there are two
types of cities, large and small. The demand for air

http://english.www.gov.cn/beltAndRoad/


travel is high (H) between every pair of large cities and
low (L) between every other pair of cities. There is a
cost F per link between any pair of cities. Direct flights
between cities yields profits equal to the size of the
demand between the pair of cities, while an indirect
(two-step) flight yields profits equal to one-half of the
demand. Thus a direct flight between two large cities
yields profit H, while an indirect flight yields profit H/2.
Similarly, a direct flight between a pair of cities (in
which at least one is not large) yields profit L, while an
indirect flight yields a gross profit of L/2. Reason
carefully and describe the nature of the optimal routing
network as a function of the parameters F, L and H.

  3.  (Hendricks, Piccione, and Tan [1999]). There are two
airlines i = A, B and N = {1, 2, …, n}, with n ≥ 3 cities.
Let i, j index cities. Airlines choose routing networks, XA

and XB. The size of an airline’s routing network is 
. Let there be a fixed cost per city-pair link

f > 0 (as in the model described in section 6.2.2). Let
 denote the revenue in a city pair for airline i with

path length zi, faced with a path length zj. Denote by
πM(z) = π(zi, ∞) the monopoly revenue from path length
zi. Passengers prefer shorter routes: so for any z and y,
π(z, y) ≥ π(z + 1, y). Given Xi, define the path length r:
N × N →{1, 2,.., n}. Define the set of city pairs of length
r: Γ(z) = {(g, h)|r(g, h) = z}. We write the payoff to an
airline as

Assume (1)  (2) (n−1)2πM(1)+(n−1)
(n−2)πM(2) > f(n−1): part (1) says that a point-to-point
network is not profitable even for a monopolist, part (2)
says that a hub-spoke network is profitable for a



monopolist. Assume (3) π(z, y) + π(y, z) ≤ πM(min(y, z))
(4) π(z, y) ≤ πM(z); part (3) says the profits of a duopoly
cannot exceed the profits of monopoly on the shorter
route. Part (4) says that duopoly profit is smaller than
monopoly profit. Finally, assume that (5) πM(z) > 0 is
strictly declining in z (i.e., a longer path lowers profits).
(a)  Aggressive competition: π(z, y) = 0, if z ≥ y. Show

that under (1)–(5) and aggressive competition, the
following is true: (A) two hub-spoke networks cannot
arise in a Nash equilibrium; and (B) one airline
operating a hub-spoke network and the other firm
staying out of the market is a Nash equilibrium.

(b)  Moderate competition: airlines offering flights of
same length can make profits. In particular, replace
requirement (2) above with (n− 2)(n− 3)π(2, 2) >

f(n− 2). This means in particular that profits are
positive in city-pair markets where both carriers
offer a one-stop connection. We will say that π is
quasi-submodular if, for any pair of positive integers
(z, y),

The payoff is quasi-supermodular if the converse
inequality holds:
 (i)  Suppose that assumptions (1)–(5) hold. Suppose

that i creates a full hub-spoke network. Show that
the best response of j is either a hub-spoke network
of size n − 1 or a hub-spoke network of size n − 2
(which omits the hub node of i).

(ii)  Define F1 = 2π(1, 1)+2(n−2)π(2, 1). Suppose that f
< F1. Show that if π is quasi-supermodular, then two
full competing hub-spokes centered on the same hub
constitute an equilibrium. If π is quasi-submodular,



then XA, XB with two distinct hub nodes constitutes
an equilibrium.

  4.  (Goyal and Joshi [2006a]). Suppose there are n cities,
each with its own market and with a single monopoly
firm that can sell in the local city market, as well as in
other cities. Suppose that, at the start, transport costs
across cities are prohibitive. However, any two cities
can build a road that lowers these costs and makes
trade feasible. The cost of building a road between any
two cities is given by F > 0 for each of the cities.

Let Ni(g) be the set of cities with whom city i is
connected by road. Let the output of firm j in city i be
denoted by . The total output in city i is then given by 

. In each city i ∈ N, there is an identical
inverse linear demand given by Pi = α − Qi, α > 0.
Assume that all firms have zero fixed costs and a
constant and identical marginal cost of production, γ >

0. Assume that α > γ. Let the initial preroad costs of
transport between any two cities be T > α. A road
between two cities i and j lowers costs of transport
between them to zero.
(a)  Given a network of roads g, the number of active

firms in city/market i is di(g)+1, where di(g) is the
degree of city i in network g. Show that if a firm i is
active in market j, then its output is given by 

.
(b)  Define welfare in a city i as the sum of firm profits

and consumers surplus in that city and denote it by
Wi(g). Show that the welfare of a city i in a network g
is given by



(c)  Consider the social planner who seeks to maximize
the sum of the welfare of cities. Suppose the number
of cities is n = 4. Describe the utilitarian optimum
road network as a function of α, γ and F.

(d)  Next, consider the incentives to build roads. Recall
that a network is pairwise stable if every link that
exists benefits the two cities involved (at least
weakly) and the addition of every link that is missing
makes at least one of the two cities strictly worse off.
Suppose n = 4. Describe pairwise stable networks as
a function of parameters α and γ and F.

(e)  Suppose a city can trade with every city with which
it has a path in the road network. Fix n = 4. Describe
the efficient and pairwise stable networks as a
function of α, γ and F.

  5.  Discuss how the budget for infrastructure and the
nature of the transport technology (whether it is
increasing or decreasing returns) shape the scale and
location of economic activity.

  6.  Present economic arguments to explain the similarities
and differences between airline and train networks.



7
Security

7.1 Introduction

Our nation’s critical infrastructure is crucial to the functioning of the American
economy… (It) is increasingly connected and interdependent and protecting it
and enhancing its resilience is an economic and national security imperative.
US Office of Infrastructure Protection.
—Department of Homeland Security (2012).

Infrastructure networks include highways, aviation,
shipping, pipelines, train systems, and telecommunications.
These networks face a variety of threats, ranging from
natural disasters (such as floods, storms, and earthquakes)
to human attacks (such as guerrilla attacks, attacks by an
enemy country, or nonviolent protests). In this chapter, we
study questions relating to the protection and design of
infrastructure networks.

To set the stage for a study of the threats, we need a
measure of the value of a network and how it is affected by
shocks. We present a concept of network value that rests
on two ideas: (1) the value of a network is equal to the sum
of value of its components, and (2) the value of a
component is increasing and convex in its size. Attacks on
the network are therefore harmful because they reduce its
connectivity. This formulation of network value is the basis
of the various models we study.



We take the view that the goal of the defender/designer
is to maximize the value of the network in the worst case.
This is a realistic assumption in some settings (such as
human attacks) because the adversary is intelligent and
wishes to maximize damage. In other settings (such as
natural disasters), even when the attacks are random, it
may be wise to take the worst contingency as a benchmark
to guard against especially bad outcomes. This leads us to a
model in which the designer/defender moves first, and then
the adversary moves. The designer/defender anticipates
the optimal attack of the adversary and chooses a strategy
(of defense or design) that maximizes the network value,
given this optimal attack.

Section 7.3 takes up the study of the design and defense
of infrastructure networks that face threats that damage or
destroy particular nodes (and links). A network can be
made robust to such threats through additional investments
in equipment and personnel. As networks are pervasive, the
investments needed can be very large; so it is important to
target resources at specific parts of the network. What are
the key parts of the network that should be protected to
ensure maximal functionality? Taking a longer-term view,
we then study how networks should be designed so that
they are robust to attacks.

The first question we take up pertains to the defense of a
given network. As the network value function is increasing
and convex in the size of the components, the adversary
will find it attractive to target nodes that fragment the
network; these are referred to as separators. Anticipating
this, the designer/defender will choose to block these
separators, i.e., choose the most effective transversals of
the sets of separators.

We then take a longer-term view and ask how a network
should be designed so that it remains robust in the face of
attacks. This leads us to enrich the model and to allow for



both linking and protection decisions. The network’s
connectivity can be maintained through adding links and
via protecting nodes. When the adversary’s resources are
limited, we show that this gives rise to a trade-off between
creating a dense network (that uses extra links to sustain
connectivity) and large protection investments in key (hub)
nodes that sustain the connectivity of the network. Our
analysis shows that there is a simple resolution of this
trade-off: either the optimal network is k-connected (the
network remains connected after the removal of any k

nodes) or it is a hub-spoke network with a protected hub.
Section 7.4 takes up the question of threats that spread

via connections. As energy, communication, travel, and
consumer interaction increasingly adopt digital networks,
cybersecurity has emerged as a major concern. Relative to
other infrastructure, a distinctive feature of many
cybersecurity threats is that attacks can travel across the
links to capture and control progressively larger sections of
a network. This creates a tension between the benefits of
connectivity and its costs (in terms of the enhanced
dangers of contagion) and motivates the study of the design
and defense of networks that face contagious threats. We
develop a model of a defender who can design and defend a
network and an adversary that chooses which nodes to
attack and how to route their attack on the network. The
model helps us in identifying circumstances under which a
highly centralized network with the protected center is
optimal and when a network with multiple hub-nodes or
multiple components is desirable.

7.2 The Value of a Network

The value of an infrastructure network comes from goods,
services, and people being able to move smoothly from one
point to another. Similarly, the value of a communication
network like the Internet comes from the possibility of



information moving from one person to another (or one
node to another). In both instances, connectivity of the
network is central to its value.

The network consists of nodes and edges. The set of
nodes is denoted by N = {1, …, n}, where n ≥ 2. A link
between two nodes i and j is represented by gij ∈{0, 1}: we
set gij = 1 if there is a link between i and j, and gij = 0
otherwise. Links are undirected (i.e., gij = gji). The nodes
and the links together define network g.

In this chapter, we will use the notions of paths,
components, and connectedness of networks; the reader
should consult chapter 1 for definitions of these concepts.
Let 𝒞(g) be the set of components of g and Ci(g) be the
component containing node i. We let |C| indicate the
cardinality (or size) of the component C. A maximum
component of g is a component with maximal cardinality in
𝒞(g). Network g′ on N′ is a subnetwork of g if and only if
N′⊆ N, and . We let 𝒢(g) denote the set
of all subnetworks of g.

Following Myerson (1977b), we assume that the value of
a network is the sum of the value of its components and the
value of any component is a function of its size only. Let the
function f: ℕ → ℝ+ specify a value to the component size.
We shall assume that this value is increasing and convex in
the size of a component.
Assumption 7.1 The value of network g is given by

where f is strictly increasing, strictly convex, and f(0) = 0.

Increasing and convex network value functions arise in a
number of different contexts. Let us consider some
examples.



In the models presented in chapter 3, on the costs and
benefits of links, the simplest setting is one where the value
of a network to an individual is equal to the number of
individuals they can access (in other words, the size of the
component). With this payoff function, it follows that the
aggregate value to all individuals in a network component
of size x would be x2. Moreover, the value of the network
will be the sum of the value of the components. This is
consistent with Metcalfe’s Law on telecommunication
networks.

A second example concerns collaborative work. Suppose
that every subset of individuals can perform a task and the
value of a task is 1. Individuals need to coordinate their
activities. A task is carried out by a group of individuals
only if they are connected. The value of the network is the
total value of all tasks that can be carried out. A component
with m nodes thus generates value 2m − 1 (as there are
exactly 2m − 1 tasks that m nodes can perform). This yields
a network value that is the sum of the network components
and exponential in the size of components. This is
consistent with Reed’s Law on networked systems.

7.3 Infrastructure Networks

To develop a feel for the issues involved in the defense of
networks, for concreteness, we present the network
structure of metro-train services in two major cities,
London and Beijing.

Figure 7.1 presents the network of the London
Underground. It consists of 309 nodes, representing
stations, and 370 links, representing direct journey
connections between stations. This network is therefore
relatively sparse. The average distance between stations is
13.1, the diameter is 36, and the average degree is 2.38.
This sparseness is reflected in a number of long branches
reaching to distinct parts of the sprawling city.



Figure 7.1 
The London Underground Network. Source: https://github.com/jaron/railgraph
/blob/master/graphs/tubeDLR.gephi.

Next, we discuss the Beijing Metro Network, presented
in figure 7.2. The network consists of 287 stations, the
number of direct links is 326, the diameter of the network
is 45, and the average degree is 2.27. This is therefore a
relatively sparse and again spread-out network. As in the
London Underground, there is a core set of stations and a
number of long branches reaching to distant parts of the
city.

https://github.com/jaron/railgraph/blob/master/graphs/tubeDLR.gephi


Figure 7.2 
The Beijing Metro Network. Source: http://dvop.github.io
/\%E5\%9C\%B0\%E9\%93\%81/2016/01/11/DiTie.html.

The governments in London and Beijing wish to minimize
any possible disruption in their transport networks. We
develop a theoretical model that explores the economic
trade-offs that arise when nodes are subject to shocks.

In the case of infrastructure such as trains, pipelines,
and canals, alterations in the structure of the network
takes time, so it is reasonable to take the network as a

http://dvop.github.io//%E5/%9C/%B0/%E9/%93/%81/2016/01/11/DiTie.html


given in the short to medium term. We therefore first study
the problem of how to protect a given network. Taking a
longer-term perspective, we then take up the question of
the optimal design of networks that face threats.

A threat to the network may come from natural sources
(such as storms, earthquakes, or floods) or from human
activity (such as violent or peaceful political protestors). In
both types of attack, as we explained in the introduction, it
is useful to take the perspective that the attack will seek to
minimize the value of the network, so the task is to design
and defend the network effectively. Building on this idea,
we will proceed to construct a game of conflict with two
players—a Designer and an Adversary.

7.3.1 Defense of a Network

We study a game of conflict that takes the following form:
in the first stage, the Defender chooses an allocation of
defense resources in the network. In the second stage,
after observing the defended network, the Adversary
chooses the nodes to attack. Successfully attacked nodes
(and their links) are removed from the network, yielding a
residual network. The goal of the Defender is to maximize
the value of the residual network, while the goal of the
Adversary is to minimize this value. The model is taken
from Dziubiński and Goyal (2017).

7.3.1.1 A model

Consider a given network g = (N, E) that consists of
vertices N = {1, …, n} and edges between these vertices.
There are two players, the Defender and the Adversary.
The Defender chooses a set of nodes to protect, given by
𝒟⊆ N. Observing this defense, the Adversary then chooses
a set of nodes X ⊆ N to attack (the attack strategy is thus
formally a function of the defense). For simplicity, we shall
assume that defense is perfect (i.e., a protected node
cannot be removed by an attack). On the other hand, attack



on an unprotected node leads to the elimination of that
node and its links. Given defense 𝒟 and attack X, define Y
= X ∖𝒟 as the nodes that are removed from the network.
This yields a residual network g′ on N ∖ Y nodes with
edges, {gij ∈ g: i, j ∈ N Y}.

Defense is costly: the cost of defending a node is cD > 0.
Similarly, attack is costly: the cost of attacking a node is cA

> 0. Given a network g, the Defender’s payoff from strategy
𝒟⊆ N, when faced with the Adversary’s strategy X ⊆ N, is

Given a defended network (g, 𝒟), the payoff to the
Adversary from strategy X ⊆ N is

We shall refer to this as the Network Defense game.
A subgame perfect equilibrium of this game is a profile of

strategies (𝒟*, X*(𝒟)), such that X*(.) maximizes the payoff
of the Adversary given defense 𝒟 and 𝒟* maximizes the
payoff of the Defender given attack strategy X*(.).

A preliminary observation is that because this is a two-
stage sequential game with full information and a finite
number of actions for both players, we can compute the
subgame perfect equilibrium through backward induction.
It follows from standard considerations that (for most—that
is, generic—parameters of the model) the equilibrium is
unique in terms of a player’s payoffs, the sizes of defense
and attack, and the value of the residual network. In what
follows, we will study the nature of this unique equilibrium.

7.3.1.2 Equilibrium attack and defense

To develop a feel for the economics of the defense and
attack, it is helpful to start with the star network.
Example 7.1 Defense and attack on the star



Figure 7.3 presents a star network with four nodes. The
network value function is f(x) = x2.

Figure 7.3 
Star network (n = 4).

Given a defended network, (g, 𝒟), we compute the
optimal response of the Adversary, X*(g, 𝒟). The Defender
compares his payoffs under different (g, 𝒟) and picks the
one that gives the highest payoffs. Suppose that the
Defender protects the hub. In that case, the Adversary can
only hope to eliminate single nodes (without affecting the
connectivity of the residual network). The payoff to a
Defender from eliminating a single node is f(3). By
contrast, if the hub is not protected and the Adversary
eliminates the hub, they reduce the size of the network and
fragment it completely, yielding the Defender a payoff of
3f(1). As network value f(.) is increasing and convex, f(3) >
3f(1). This comparison brings out the interaction between
the network architecture and the value function in shaping
the conflict between the Defender and the Adversary. The
Adversary would prefer to attack in a manner that would
disconnect the network, and anticipating this, the Defender
would like to block such attacks. The details of the
equilibrium outcomes are summarized in figure 7.4.



Figure 7.4 
Equilibrium outcomes: star network (n = 4) and f(x) = x2.

In this equilibrium, two points are worth noting. First, for
much of the parameter range, attack and defense are
targeted at the on the hub node a. There is a threshold cost
of the attack level, 7, the Adversary either attacks a or does
not attack at all when cA > 7. Second, consider the intensity
of conflict, defined as the resources allocated to defense
and attack. When the cost of attack is large (e.g., 13) there
is no threat to the network, and hence no need for defense.
The intensity of conflict is 0. If the cost of attack is small (cA

< 1), the intensity of conflict hinges on the costs of defense.
When the defense cost is small, all nodes are protected and
there is no attack, implying that the intensity of conflict is
given by ncD. If defense costs are high, there is no defense
and all nodes are eliminated, so the intensity of conflict is
ncA. For intermediate cost of attack and defense, both the
Defender and the Adversary are active.

◼

Let us next consider defense and attack in general
networks. A set X ⊆ N is a separator of the network g if |
𝒞(g)| < |𝒞(g −X)|; in other words, a separator is a set of



nodes whose removal strictly increases the number of
components in the network. A network will typically contain
multiple separators: as the Adversary seeks to maximize
their payoffs, they target the most economical separators.
A separator S ⊆ N is essential for network g ∈𝒢(N) if for
every separator S ′ ⊊ S, |𝒞(g − S)| > |𝒞(g − S ′)| (i.e., a strict
subset of eliminated nodes results in a strictly smaller
number of components). The set of all essential separators
of a network g is denoted by ℰ(g). Figure 7.5 illustrates the
essential separators in a simple network: {a}, {a, b}, and {a,

c}.

Figure 7.5 
Essential separators.

Example 7.1 suggests that the network defense problem
can be divided into two parts depending on the cost of
attack. In the low-cost case, the elimination of single nodes
is attractive for the Adversary, while in the high-cost case,
elimination of a node is justified only if it results in
disconnecting the residual network. Let Δf(x) = f(x + 1) −
f(x) be the marginal increase in the value of a component of
size x when a single node is added to it. Under assumption
7.1, Δf(x) is strictly increasing. High costs occur when cA >
Δf(n − 1), implying that the Adversary does not want to
eliminate single nodes; low costs occur when they may wish
to eliminate single nodes, cA < Δf(n − 1).

With a high attack cost, an active Adversary must
disconnect the network (i.e., choose a separator or not



attack the network at all). Given a cost of attack cA and
network g, we define the set of individually rational
separators as

When the cost of attack is low, it may be profitable for
the Adversary to use attacks that merely remove nodes
from the network without disconnecting it. A set R ⊆ N is a
reducing attack for a network g if there is no X ⊆ R for
which X is a separator for g. For a given network, the set of
all reducing attacks is denoted by ℛ(g).

The attack of the Adversary can be decomposed into two
parts. First, the Adversary fragments the network by
removing a minimal set of nodes needed to obtain the
desired components—this is the essential separator.
Second, the Adversary reduces the size of the components
(but without disconnecting any of them).

Anticipating this attack, the Defender chooses a defense.
It is instructive to start with the setting where the cost of
attack is high, as we can limit our attention to attacks that
disconnect the network. In this case, given the costs of
attack, the Adversary will only use separator ℰ and not use
R. The optimal strategy of the Defender is to block a subset
of the separators in the most economical way. The study of
such blocking strategies requires the use of the notion of a
transversal.

Given a family of sets of nodes ℋ, and a set of nodes M,
define

as the sets in ℋ that are blocked (or covered) by M. Set M
is called a transversal of ℋ if ℬ(M, ℋ) = ℋ. The set of all
transversals of ℋ is denoted by 𝒯 (ℋ). Members of 𝒯 (ℋ)
that are minimal with respect to inclusion are called



minimal transversals of ℋ. Elements of 𝒯 (ℋ) with the
smallest size are called minimum transversals of ℋ. Let
τ(ℋ) denote the transversal number of ℋ (i.e., the size of a
minimum transversal of ℋ). Figure 7.6 illustrates the
minimum transversal in a simple network.

Figure 7.6 
Minimum transversal, {a}, of essential separators {{a}, {a, b}, {a, c}}.

We illustrate the concepts of separator and transversal
using the example of trees and core-periphery networks.
Trees In any tree network, every nonempty set of internal
nodes (nodes that are not leaves) constitutes a separator.
Essential separators are nonempty sets of nodes such that
any node in a set has at least two neighbors outside that
set. Transversals of essential separators are subsets of
internal nodes. In particular, there is a unique minimal
transversal of the set of all essential separators: the set of
all internal nodes. Minimal essential separators and
transversal for tree networks are illustrated in figure 7.7.

Figure 7.7 
Tree: separators (in red) and transversals (in green) (n = 12).



Core-periphery networks Every peripheral node is connected
to exactly one node of the core (and the core constitutes a
clique). Every subset of the core nodes is an essential
separator. There is a unique minimal transversal: the set of
all core nodes. Minimal essential separators and
transversals for core-periphery networks are illustrated in
figure 7.8.

Figure 7.8 
Core-periphery: separators (in red) and transversals (in green) (n = 12).

We build on example 7.1 and the discussion of separators
and transversal to develop the following result on defense
and attack in networks.
Proposition 7.1 Consider the Network Defense game. Suppose the network

value function is given by equation (7.1) and fix a network g that is connected.

Let (𝒟*, X*) be an equilibrium.

1.  If cA < Δf(n − 1), then

𝒟* = N or 𝒟* is a minimal transversal of ℬ(𝒟*, ℰ(g, cA)).
X*(𝒟) = E ∪ R, where E ∈ ℰ(g, cA) and R ∈ ℛ(g − E), with X*(𝒟) ∩𝒟 = ∅.

2.  If cA > Δf(n − 1), then

|𝒟*| ≤ τ(ℰ(g, cA)) and 𝒟* is a minimum transversal of ℬ(𝒟*, ℰ(g, cA)).
X*(𝒟) = ∅ if 𝒟∈𝒯 (ℰ(g, cA)); X*(𝒟) ∈ℰ(g, cA) with X*(𝒟)∩𝒟 = ∅.

A first message is that no attack will target a protected
node. The more general point of this analysis is that
essential separators (ones that are effective at fragmenting
the network) are key to optimal attack, and economical
transversals (that block these separators) are key to



optimal defense. A third point is that if the Defender goes
beyond blocking the separator and protecting nodes that
expand the size of a component, then, due to the convexity
of the network value function, it is optimal for them to
protect all nodes in the network.

We now outline the arguments underlying the proof of
this proposition. Let us start with part 1: when the costs of
attack are small, if defense exceeds a minimal transversal
(of covered essential separators), then it must include a
node that is being protected purely to prevent it from
removal. This protection is being done to protect the size of
the component. This must mean that, in the absence of
defense, the node will be eliminated in the subsequent
optimal attack. As f is convex, the marginal return of the
expanding size of a component is increasing in its size.
Since the cost of node defense is linear, once the Defender
decides to protect nodes beyond the minimal transversal, it
must be optimal for them to defend all nodes.

Turning to part 2: if the costs are large, the Adversary
will not use reducing attacks. So an optimal attack must be
either empty or an essential separator. Clearly, optimal
defense 𝒟* cannot be larger than the size of the minimum
transversal of ℰ(g, cA), as that would be wasteful for the
Defender. If |𝒟*| = τ(ℰ(g, cA)), then 𝒟* must be a minimum
transversal of ℰ(g, cA). If |𝒟*| < τ(ℰ(g, cA)), then 𝒟* is a
minimum transversal of ℬ(𝒟*, ℰ(g, cA)) in ℰ(g, cA).

◼

We next apply the insights of proposition 7.1 to the
problem of defending the London Underground.

7.3.1.3 Application: London Underground

Let us compute some separators and corresponding
tranversals for the London Underground. There are 135
separators of size 1: the large number of separators is due
to the many long paths emanating from the core of the



network with the key junctions. It then follows that the
transversal number τ(ℳ(g, cA)) = 135 (where ℳ(g, cA) is
the set of all minimal separators, given a network g and the
cost of attack cA). Consider other separators, which are of
size 2: there are 209 additional such separators. This in
turn raises the transversal number to 195. Finally, consider
separators of size 3: there are 130 such separators, and
faced with this attack, the transversal number is 205. One
point to note is that as we allow larger separators, there is
only a very modest increase in the transversal number.

Let us summarize what we have learned about the
optimal defense of infrastructure networks in this section.
We have shown that an intelligent Adversary will use an
attack strategy that combines separators and reducing
cuts. Anticipating this strategy, the Designer will focus on
protecting the nodes that block the separators, which gives
rise to a transversal-based defense. In the model
considered, and indeed throughout this chapter, we will
focus on the case with a single Designer and a single
Adversary. This is a natural baseline, and it offers some
intuitions. However, in many contexts, defense may be left
to the nodes (as in cities or states making choices on the
protection of their infrastructure). We conclude this section
with a discussion of some issues that arise when we allow
individual nodes to make decisions on their own protection.



Figure 7.9 
Minimal separators of London Underground.

7.3.1.4 Decentralized defense

Here, we consider a two-stage game. In the first stage,
each of the nodes in the network decides whether to
protect itself or stay unprotected. These choices are
observed by the Adversary, which then chooses the nodes
to attack.

Let N = {1, 2, …, n}, with n ≥ 3 as the set of players, and
let Si = {0, 1} denote the strategy set of node i ∈ N. Here, si

= 1 means that the node chooses to defend itself, and si = 0
refers to the case of no-defense. These choices are made
simultaneously. There is a one-to-one correspondence
between a strategy profile of the nodes, s ∈{0, 1}N, and the
resulting set of defended nodes Δ ⊆ N. So we will use Δ to
refer to the strategy profile of the nodes in the first stage.

In the second stage, the Adversary observes the
defended network (g, Δ) and chooses an attack X ⊆ N,
which leads to a residual network g − (X ∖ Δ). The payoff



to the Adversary remains as in the case of the centralized
defense and as defined in equation (7.3). The payoff to a
node depends on whether the node is removed by the
attack. A removed node receives a payoff of 0. Each of the
surviving nodes receives an equal share of the value of its
component in the residual network:

where C(i) is the component in the residual network g − (X
∖ Δ) containing i.

This completes the description of the Decentralized

Defense Game. As in the two-player game, we study the
subgame perfect equilibria of this game. We focus on
equilibria with no active conflict (these are equilibria in
which either the nodes do not defend or the Adversary does
not attack), because we are able to provide a
characterization, and also because these equilibria suffice
for us to discuss the inefficiencies that arise when defense
decisions are decentralized. All other equilibria in the
Decentralized Defense Game could be characterized in the
same spirit as the characterization provided in proposition
7.1 for the Defender-Adversary game discussed above.

As usual, we solve the game backward, starting from the
second stage. As in the two-player game, the Adversary
chooses either the empty attack or an attack as a
combination of an essential separator and a reducing
attack. If the cost of attack is low and there is no active
conflict, then either the Adversary removes all the nodes or
all nodes are protected. In any other outcome, the
Adversary must remove at least one node. If the cost of
attack is high and there is no active conflict, then either
none of the nodes protects or, anticipating the strategy of
the Adversary, the nodes choose a defense configuration
that blocks all the individually rational essential separators.



Therefore, in equilibrium, they must choose a minimal
transversal of ℰ(g, cA). We build on these observations to
provide the characterization of equilibria with no active
conflict in the Decentralized Defense Game.
Proposition 7.2 Consider the Decentralized Defense Game on a connected

network g. Let Δ* be the equilibrium defense.

1.  If cD > f(n)/n, then Δ* = ∅ is the unique equilibrium defense.

2.  If cD ≤ f(n)/n, and

(a)  cA < f(n) − f(n − 1), then Δ* = N is an equilibrium defense.

(b)  cA > f(n) − f(n − 1), then any minimal transversal of ℰ(g, cA) is an

equilibrium defense.

The equilibrium strategy of the Adversary is as in proposition 7.1.

We now discuss inefficiencies that may arise due to
decentralized protection. This is done via a comparison of
the aggregate welfare of the nodes in the equilibrium of the
two-player game with the aggregate welfare in the
Decentralized Defense Game. Let ΠD*(g, cA, cD) denote the
equilibrium payoff in the two-player game on network g

with cost of defense cD and cost of attack cA. Aggregate
welfare in the two-player game, starting from network g

and with costs cA and cD, are

Aggregate welfare under defense profile Δ and attack X of
the n + 1 player game starting from network g, and given
cost of defense cD, are

We study the cost of decentralization in terms of the
price of anarchy: the ratio of welfare in the two-player
game to the welfare in the worst equilibrium of the
Decentralized Defense Game. Let E(g, cA, cD) denote the set
of equilibria of the n + 1 player game on network g with



cost of attack cA and cost of defense cD. The price of
anarchy is

We first take up the issue of positive externalities: an
individual’s protection decision creates benefits for other
nodes (that they do not take into account). This can lead to
very large welfare losses. To see this, consider a star
network and suppose that the cost of attack is high, cA >

f(n) −f(n− 1), and cD ∈ (f(n)/n, f(n)). In the equilibrium of
the two-player game, the aggregate welfare f(n) −cD. By
contrast, in the equilibrium of the Decentralized Defense
Game, the central player does not find it profitable to
defend itself, as cD > f(n)/n. So aggregate welfare in the
equilibrium of the n + 1 player game is 0. Thus the ratio of
the two is unbounded for the range of costs cD ∈ (f(n)/n,

f(n)).
Protection choices exhibit a threshold property: for a

node to find it profitable to protect itself, it is necessary
that other nodes belonging to the same minimal transversal
also choose to protect themselves. In other words,
protection decisions are strategic complements—a property
that can give rise to coordination failures. To see this,
consider a tree with two hubs, each of whom is linked to (n
− 2)/2 distinct nodes. Suppose that

so the Adversary will only attack hub nodes. If 2f(n/2)/n <

cD < f(n)/n, then the first best outcome is to defend the two
hubs. One hub protecting itself gives incentives to the other
hub to protect itself as well: two protected hubs is an
equilibrium outcome. However, on its own, a hub node does
not have sufficient incentives to protect itself: zero



protection is an equilibrium outcome. In this zero-
protection equilibrium, the aggregate payoffs equal (n −
2)f(1) compared to the first best outcome of f(n) − 2cD.
Given that f() is convex, the cost of decentralization can be
unbounded.

Third, at the local level, the game is clearly one of
strategic substitutes. A node in a separator has incentives
to protect itself only if no other node in the separator
protects itself. As we saw in the study of local public goods
in networks (see chapter 4), the network protection game
therefore displays multiple equilibria. This can generate
very large efficiency losses. As an example, consider
network g, depicted in figure 7.10.

Figure 7.10 
A network with essential separators of size 2 (in red) having two minimal
transversals: one of size 1 and one of size 5 (in green).

Suppose that f(x) = x2, cA ∈ (21, 28) and cD < 11. Given
this cost of attack, the Adversary will not remove a node
without disconnecting the network. The set of individually
rational essential separators is the combination of sets
depicted in figure 7.10. Notice that the minimum
transversal of ℰ(g, cA) is the node belonging to each of the
separators, while the largest minimal transversal consists
of one distinct node from each of the two element
separators. The price of anarchy (POA) will be proportional
to the ratio of extra nodes that protect, and this is of order
(n − 1)/2. In other words, the POA is unbounded.



To summarize, our study of decentralized defense shows
that the equilibrium choices of nodes and the Adversary
can be usefully studied in terms of transversals and
separators of the underlying network. Moreover, we have
shown that the strategic structure of the problem is very
rich, admitting features of both strategic substitutes and
complements (for definitions of these concepts, refer to
chapter 4 on network structure and human behavior). The
welfare gap between decentralized equilibrium and first
best outcomes is unbounded: interestingly, individual
choice may lead to too little or too much protection relative
to the choice of a single, centralized Defender.

7.3.2 Design and Defense

In the previous section, we studied the problem of
defending a given network. While a network may be fixed
in the short or medium run, it is reasonable to suppose that
in the long run it is possible to alter it through appropriate
link investments—lack of investment can erode an existing
link while significant investments can give rise to new
links. With this idea in mind, we now move on to the longer
term and consider the question of design and defense of a
network that faces threats. We use a model taken from
Dziubiński and Goyal (2013).

7.3.2.1 A model

In this model, there are two stages and two players (a
Designer and an Adversary). In the first stage, the Designer
chooses a network and a subset of nodes to defend. In the
second stage, the Adversary observes the network and
defense and then chooses a subset of nodes to attack.

As before, let the set of nodes be given by N = {1, …, n},
where n ≥ 3. The Designer chooses links between pairs of
nodes to create network g, and chooses to protect a subset
of nodes 𝒟. Thus he chooses (g, 𝒟). In the second stage,
the Adversary assigns their attack budget k > 0 to a subset



of nodes X ⊆ N, with |X|≤ k. This attack strategy is called a
cut. Recall that given network g, the removal of X nodes
creates a residual network, g − X.

As in the previous section, in order to focus on network
issues, we consider a simple model of conflict. Defense is
perfect: a protected node cannot be removed by an attack.
On the other hand, an unprotected node is removed with
certainty if it is attacked. Given defense 𝒟 and cut X, set Y
= X ∖𝒟 is removed from the network.

Both links and defense resources are costly: a link costs
cL > 0, and the protection of a node costs cD > 0. The cost
of a defended network (g, 𝒟) is

The payoff to the Designer from choosing (g, 𝒟) when the
Adversary chooses cut X is

The payoff to the Adversary is

The objective of the Designer is to maximize the payoff,
while the goal of the Adversary is to minimize the value of
the residual network. We shall refer to this as the Design

and Defense Game.
We study the subgame perfect equilibrium of this game.

The Designer seeks the defended network that copes best
with the worst attack the Adversary can launch. This is a
setting in which the Designer and the Adversary have
diametrically opposed interests.

Facing a defended network (g, 𝒟), the Adversary will
choose a set of nodes to eliminate, X, such that



Therefore, the Designer chooses (g, 𝒟) such that for all
cuts X with |X|≤ k,

7.3.2.2 The pure connectivity problem

To develop a feel for the economic forces at work, we start
with the simple case in which a network is valuable if and
only if it is connected.

Formally, suppose that the value function Φ of residual
network is

Therefore, the Designer either chooses the empty
network with no defense or selects a lowest-cost network-
defense strategy (g, 𝒟) such that for all X ⊆ N with |X|≤ k, g
− (X ∖𝒟) is connected.

Given k ≥ 2, network g is k-connected if either |N| = k +
1, or |N|≥ k + 2 and there is a separator X ⊆ N if and only if
|X|≥ k. A k-connected network with the minimum number of
links is called minimal k-connected. The set of minimal k-
connected networks is denoted by ℳ(k, n).

It is easy to see that every node of a k-connected network
has a degree at least k, as otherwise it could be separated
from the rest of the network by removing fewer than k

nodes. Thus the minimal number of links in such a network
is ⌈nk/2⌉. Harary (1962) showed that this number of links is
also sufficient. We provide some examples of Harary
graphs in figure 7.11. The following result reveals that the



equilibrium of the Design and Defense Game has a very
simple structure.

Figure 7.11 
Harary networks: n = 7, connectivity k = 2, …, 6.

Proposition 7.3 Consider the Design and Defense Game and suppose that k

≤ n − 2.
In equilibrium,

1.  The Designer chooses the protected network (g, 𝒟), which is as follows:

If  and , then g ∈ ℳ(k, n) and 𝒟 = ∅.

If cL(n−1)+cD < 1 and , then g is a star and the central

node is protected.

Otherwise, g is empty and 𝒟 = ∅.

2.  The Adversary chooses a separating cut for (g, 𝒟) if it exists, and if it does

not exist, then all cuts yield the same payoff.

In other words, faced with an Adversary who can
eliminate k nodes, the Designer chooses one of three
possible networks: a k-connected network (connectivity is



maintained even after k nodes are eliminated), a center-
protected star network (connectivity is maintained through
a protected hub after the spokes are eliminated), or an
empty network. The formal statement delineates the costs
of linking and protection under which each of these three
networks are optimal. We now spell out the details of these
computations.

The payoffs to the Designer from the (k + 1)–connected
network, the center-protected star network, and the empty
network are 1 −⌈n(k + 1)/2⌉cL, 1 − cD − (n − 1)cL, 0,
respectively. The payoff to the Adversary is − 1 when faced
with a (k + 1)–connected network or the center-protected
star, and it is 0 when faced with the empty network. Figure
7.12 illustrates three equilibrium outcomes—empty
network, center-protected star, and 3-connected network.

Figure 7.12 
Equilibrium networks: n = 6, k = 2.

The arguments underlying the result are as follows. In
the first step, we clarify the nature of networks under zero
or positive defense. In the case of no defense, the network
is either empty or connected. If it is connected, then the
residual network must be connected as well, regardless of
any cuts. Thus, in the case of no defense, the Designer
must choose either an empty or a minimal (k + 1)–
connected network. In the case of positive defense, the
residual network must again be connected. So the initial
network set up by the Designer must be connected.



Observe that connectedness of the residual network can be
guaranteed by a star network with 1 unit of defense
assigned to the center. This protected network has a
minimal number of links across all connected networks and
minimal defense across all networks with positive defense.
Any other network with the same number of links must be a
tree, and any tree requires protecting all internal nodes
(i.e., nonleaves) to stay connected after an attack of the
Adversary. Thus the center-protected star is the only
candidate for the Designer who is optimizing.

The payoff to the Designer from the empty network is 0.
Observe that in a (k + 1)–connected network, every node
must have a degree at least k + 1; otherwise, it can be
isolated by the deletion of its neighbors. Harary (1962)
proved that the degree k + 1 for every node (except
possibly for one node, which has degree k + 2)—so ⌈n(k +
1)/2⌉ links in all—is also sufficient for k + 1 connectedness.
Applying this theorem, we can write the payoff from the
minimal (k + 1)-connected network as

Finally, the payoff from the center-protected star is

A comparison of the payoffs from the empty network, a
minimal (k + 1)–connected network, and a center-protected
star yields the desired parameter restrictions.

◼



Figure 7.13 
Equilibrium outcomes and costs of linking and defense.

Figure 7.13 presents the optimal defended networks, as
we vary the costs of defense and linking. We say that R(n,

k) = n(k + 1) mod 2, so R(n, k) = 1 if n is odd and k is even,
and R(n, k) = 0 otherwise. We can see that if the cost of
linking, cL, is higher than 1/⌈n(k + 1)/2⌉, then only a center-
protected star network or empty network can be optimal.
Raising the cost of defense makes the empty network more
attractive. Similarly, if the cost of defense, cD, is higher
than

then only a minimal (k + 1)–connected network or an empty
network can be optimal (and raising the cost of linking
makes the latter more attractive). On the other hand, if the
costs are sufficiently low, cL < 1/⌈n(k + 1)/2⌉ and

then either a minimal (k + 1)–connected network or a
center-protected star is optimal, depending on the relation



between the costs, cD/cL. If cD/cL is sufficiently low, that is,
lower than ⌈n(k − 1)/2⌉ + 1), then the center-protected star
is optimal, and if it is higher, then the minimal (k + 1)–
connected network is optimal.

7.3.2.3 Remarks on model

This description of optimal defended networks is obtained
under the assumption of a perfectly reliable defense. Our
model can also be used to study the case of an imperfect
defense. Suppose that there is a given probability of
successful defense that is less than 1. The Designer will be
averse to creating a protected hub network if the
protection level is low, which may lead them to create a
network with multiple protected hubs. A question at the
end of this chapter explores equilibrium networks with
imperfect defense.

Next consider the issue of Adversary’s budget. In the
model we assumed a fixed budget. Suppose instead, in line
with the previous section, that attacking each node has a
cost cA > 0. Given the Designer’s objective of keeping the
network connected, the Adversary will choose a maximum
of k units of attack where k ×cA ≤ 1. So the Designer will
play as in the game studied previously, with k = 1/cA units
of attack. This implies that as cA increases, the maximum
number of units of attack falls, and this makes the center-
protected star less attractive relative to the (k + 1)–
connected network. An increase in the cost of linking, cL,
makes the center-protected star more attractive, while
increases in the cost of defense, cD, result in a decrease in
the attractiveness of the center-protected star.

Finally, we note that the analysis so far is restricted to
the connectivity network value function. The arguments
that we have developed can be used to study more general
network value functions that satisfy assumption (7.1). The
following result covers the general network value setting.



Proposition 7.4 Consider the Design and Defense Game. Suppose that 1 ≤ k
≤ n and assumption 7.1 holds. In equilibrium,

1.  The Designer chooses defense |𝒟| = 0, 1, or n. If |𝒟| = 0, a variety of

networks—including the empty network and a (k+1)–connected network—

can arise. If |𝒟| = 1, the network is a star with a protected center. If |𝒟| = n,

the network is either empty or minimally connected (a tree).

2.  The Adversary chooses a separating cut if (g, 𝒟) permits such a cut. When

(g, 𝒟) permits no separating cuts, every cut yields the same payoff to the

Adversary and is optimal.

Proof. Suppose that (g, 𝒟) is an equilibrium strategy of
the Designer and |𝒟| = d > 0. We will show that either d =
1 and g is a star with a protected center, or d = n and the
network is either empty or a tree. The proof is constructive.

Let C1, …, Cm be the components of g, and g1, …, gm be
the subnetworks of g over these components. Without loss
of generality, suppose that component C1 contains a
protected node (at least one such component must exist
since d > 0). Component Ci contains at least |Ci|− 1 links.
Starting from g and keeping d constant, we construct a
network g′ with defense 𝒟′ as follows:

Convert g1 to a star network  with a protected node at
the center.
From each of the components C2, …, Cm, remove all but
one node and connect each the removed nodes to the
center of .
If feasible, move defense from protected nodes in one-
node components to unprotected nodes in the newly
created star , thus obtaining a new defense, 𝒟′.

Observe that g′ has m components, as does g, and
component  contains n− (m− 1) nodes, while all the
components  contain exactly one node. The number
of links in g′ is weakly smaller than the number of links in g
(with equality only if all components of g were minimally
connected—that is, trees). The value of network g′ is larger
than the value of network g as f(.) is increasing and convex



and f(0) = 0. Finally, any k-cut X applied to g′ causes
weakly less damage than the cut on network g, as it does
not disconnect any paths between nonattacked nodes. Thus
the pair (g′, 𝒟′) yields a weakly higher payoff than (g, 𝒟).

There are two cases to consider, corresponding to d = 1
and d > 1, which follow next.

Case d = 1: In this case, only the “center” of component 
is protected. As f is convex, it is optimal for the Adversary
to attack component  first. So (g′, 𝒟′) dominates (g′, ∅)
only if . As this is an optimal outcome, it follows
that the marginal value of the last periphery node, n − (m −
1), is greater than the cost of link cL. It now follows from
the convexity of f(.) that linking an additional single node to
the center of  is strictly profitable. Iterating, we conclude
that if d = 1, then the optimal network is a center-protected
star.

Case d > 1: The convexity of f implies that all the nodes
must be defended and the network must be connected.
First, as f(.) is increasing and convex, the Adversary will
start by attacking unprotected periphery nodes (if any) in
component . Again, due to the convexity of f, it is better to
protect a periphery node in component  rather than a
node in some other component. The convexity of f implies
that marginal returns from protecting additional periphery
nodes are increasing, while the cost of protection is linear.
Thus payoff to the Designer is strictly increased by
protecting all periphery nodes in . Arguments analogous
to those used in the case of d = 1 imply that if there are
singleton nodes with protection, then attaching them to the
center of  will strictly increase the payoff to the Designer
as well.

Finally, consider the situation in which all nodes from 
are protected and all singleton isolated nodes are not
protected. If this is optimal, then the cost of linking and



protection, cL + cD, is smaller than the marginal value of
doing so— . The convexity of f implies that the
marginal value of adding an extra periphery node and
protecting it is strictly larger, while the cost is still cL + cD.
It follows that the star network with all protected nodes
would yield a higher utility to the Designer than
configuration (g′, 𝒟′). Observe, finally, that the payoff in
any tree with all nodes protected is equal. This completes
the argument.

We now discuss the architecture of equilibrium networks
when defense size |𝒟| = 0. When k = 1, the equilibrium
network is either empty or a cycle containing all nodes. It is
not profitable to have more than n links since a cycle
guarantees the maximal payoff f(n− 1) in the face of attack
k = 1. A network with positive number of links less than n
is not optimal due to the convexity of f. When the budget of
the Adversary is k = n − 2, the equilibrium network is
either an empty or a complete network: a nonempty
incomplete network can be disconnected by the Adversary
with budget k = n − 2, so depending on the costs of linking
cL the Designer will choose either an empty or a complete
network. This completes the proof of the result.

◼

Let us summarize what we have learned about optimal
defense and the design of infrastructure networks. If
defense is relatively cheap, it is best to protect a single
node and create a hub-spoke network. By contrast, if
defense is relatively costly, then it is best to economize on
defense and instead to create a dense network, thereby
minimizing the disruption caused by the elimination of
some nodes of the network by the adversary. Chapter 6, on
infrastructure, shows that airlines, railways, and roads
exhibit hub-spoke like structures. Our theoretical results
point to the robustness of such networks from a security
perspective.



7.4 Protecting Networks against Contagious Threats

Our daily life, economic vitality, and national security depend on a stable, safe,
and resilient cyberspace. We rely on this vast array of networks to
communicate and travel, power our homes, run our economy, and provide
government services. 
US Department of Homeland Security (DHS)

Connections among individuals, cities, countries, and
computers facilitate the exchange of goods, resources, and
information and generate value. However, these
connections may serve as a conduit for the spread of
damaging attacks. The Internet reflects this tension clearly.
Connectivity facilitates communication but is also used by
hackers, hostile governments and firms, and botnet herders
to spread viruses and worms that compromise user privacy
and jeopardize the functioning of the entire system. In this
section, we will study the design and defense of networks
in the face of threats that are contagious and spread
through the connections of a network. We start with a brief
discussion of cyberattacks.

Perhaps the first known instance of a worm that exploits
programming weakness and the interconnections of the
Internet is the Morris Worm. The Morris Worm was
launched in 1988 by Robert Morris, a graduate student at
Cornell University, and appeared to have infected around
10 percent of the then-existing Internet (which had roughly
sixty thousand computers). We next present other examples
of cyberattacks that exploit weaknesses in computer
programming and connections across the Internet to
compromise the functioning of physical infrastructure:

Ransomware is a type of malicious software that infects a
computer and restricts users’ access to it until a ransom
is paid to unlock it. We present one example of
ransomware to illustrate how it works. The Colonial
Pipeline transports gasoline, diesel, jet fuel, and other
refined products from the Gulf Coast to Linden, New



Jersey, and provides roughly 45 percent of the fuel used
in the US East Coast. On the morning of May 7, 2021, an
employee found a ransom note from hackers on a
control-room computer, informing them that the
computer access had been blocked and that they would
have pay a ransom to gain access. By that night, the
company’s chief executive officer had paid the ransom
(USD 4.4 million). In return, the company received a
decryption tool to unlock the systems that the hackers
had penetrated. But even that payment could not prevent
a shutdown of the pipeline for six days. The stoppage led
to a run on gasoline along parts of the East Coast, which
pushed prices to the highest levels in more than six years
and left thousands of gas stations without fuel.
Eventually, the US Department of Justice recovered part
of the ransom–USD 2.3 million—from the hackers. (Wall
Street Journal, 2021).
On December 23, 2015, hackers successfully gained
access and control of the supervisory control and data
acquisition (SCADA) systems of three energy distribution
companies in Ukraine and temporarily disrupted the
electricity supply to consumers. This attack led to
roughly 230,000 people being without electricity for a
period lasting from one to six hours at the peak of
winter.
Stuxnet is a malicious computer worm first uncovered in
2010 and thought to have been in development since
2005. It targets SCADA systems, as in the Ukraine
attack, and it caused lasting damage to the nuclear
program of Iran. Although there is no official
acknowledgment, it is widely believed that the Stuxnet
attack on Iran arose out of a collaboration between Israel
and the US.
Identity theft is widely prevalent. Let us consider some

numbers to develop a feel for the scale of the problem. In



2009, it was estimated that roughly 10 million computers
were infected with malware designed to steal online
credentials. The annual damages caused by malware is of
the order of $11 billion in Europe, while in the US, the
annual costs of identity theft are estimated at $2.8 billion
(Moore, Clayton, and Anderson, 2009). One indicator of the
economic magnitude of the problem is the valuation of
security firms: Intel bought McAfee in 2010 for $7.68
billion. Finally, we mention intellectual property theft. This
theft could be from research laboratories, private firms,
and universities, and it can involve corporate firms,
independent operators, as well as national governments.
Due to its nature, the theft is hard to measure, and
estimates of its value vary greatly.

Using data from actual attacks, in their influential paper
on computer security, Staniford, Paxson, and Weaver
(2002) identify stealth worms and viruses as the main
threats to security in computer networks. They argue that
adversaries scan a network to explore its topology and the
vulnerabilities of nodes prior to an attack. In the first
instance, the objective is to deploy a worm on selected
nodes in the network. The deployed worms then exploit
communication between nodes to progressively take
control of neighboring nodes in the network. The likelihood
of the capture of a node and the spread of the worm in a
network depends on the strength of the worm, the topology
of connections, and the vulnerabilities of individual nodes.

The likelihood of the successful infection of a host is
higher the more sophisticated the malware and the greater
attention devoted by the Adversary to a node. On the other
hand, it is lower with greater investment in security
software and more specialized personnel assigned to it.
These features of the conflict between security and attacks
call for a model of contest on the node.

Deployed worms propagate through the network by
progressively taking control of neighboring hosts. The



worm replicates and then attaches itself to packages of
data sent between connected hosts. The probability that
the worm succeeds in infecting neighboring hosts varies
with the level of security installations on them and the
quality of malware being used. This transmission of a worm
via communication links, the relative immobility of security
installations, and the subsequent conflict between a virus
and the security installed on neighboring hosts are the
basis of contagion dynamics. In the next section, we will
study the design and defense of networks that are subject
to attack and contagion dynamics.

7.4.1 A Model of Attack, Defense, and Network Design

The theoretical model is taken from Goyal and Vigier
(2014). In this model, there are two players—the Designer
and the Adversary—and two stages. In the first stage, the
Designer chooses a network and a profile of defense across
the nodes. The Adversary observes these choices of the
Designer and decides on how to allocate their resources to
attack particular nodes and also on how to route these
resources to attack other nodes in case of successful
attacks.

There is a collection of nodes N = {1, …, n}, with n ≥ 2.
The Designer chooses links between the nodes and
allocates d ∈ ℕ resource units across the nodes. Let d =
(d1, d2, …, dn) denote the vector of allocated resources,
where di ∈ ℕ and . The network-defense pair (g, d)
defines a strategy for the Designer. The strategy that g is a
star network and all defense resources are allocated to the
central node (a center-protected star) plays a prominent
role. We will refer to this strategy as a CP-star and denote
it as (gs, ds).

The model supposes that there is a Designer that can
choose links and protection to maximize some collective
utility. Clearly, in practice, independent individuals will
have varying degrees of freedom to choose links and



protection. The analysis will therefore identify first best
networks that should be seen as a benchmark against
which more decentralized outcomes can be measured.

The value of a network is given by assumption 7.1. Given
a defended network (g, d), let 𝒫 denote the subset of
protected nodes and 𝒰 the subset of unprotected nodes.
Further, for i ∈ N, let 𝒰i ⊊ 𝒰 denote the subset of
unprotected nodes that can be reached from i through a
path such that each node on that path lies in 𝒰. Similarly,
let 𝒫i ⊂𝒫 denote the subset of protected nodes that can be
reached from i through a path such that each node on that
path lies in 𝒰.

The Designer moves first and chooses a strategy (g, d).
This is observed by the Adversary, who then chooses a
strategy (a, ℛ). The Adversary first allocates a ∈ ℕ units
across the nodes, a = (a1, a2, …, an), where ai ∈ ℕ and 

. The matrix ℛ = (rij)i, j∈N describes subsequent
routing of successful attack resources. Row i in matrix ℛ
specifies a pecking order on 𝒫i: resources on node i

relocate to node j1 ∈𝒫i, with rij1 = 1. If j1 has already been
captured, resources are relocated to node j2 ∈𝒫i, with rij2 =
2, and so forth (in other words, we are taking the view that
the Adversary has limited resources and cannot costlessly
replicate the worm that has captured a node). The details
of the dynamics of attack are described next after a
description of the contest on a node.

Attack resources ai and defense resources di located on
node i engage in a contest for control of the node. If ai + di

> 0, then, following Tullock (1980), we set the following:

where γ > 0. If ai is 0, then the probability of successful
attack is 0, regardless of the value of di: a node is safe if it



is not under attack. An important property of the contest
success function is that it is homogenous of degree 0 in
resources, so scaling up the resources has no proportional
impact on the probability of winning. We assume that all
contests are statistically independent (i.e., the probability
of winning on a node i depends only on the resources
allocated to it, ai and di).

The discrete-time dynamics of attack then proceed as
follows:

At time t = 0: The attack begins with unprotected nodes.
For all i ∈𝒰 such that ai > 0, the Adversary (1) captures
i, (2) captures 𝒰i and (3) relocates the ai attack
resources to node j = arg mink∈𝒫i

{rik}. In particular, if
there is only one element in Pi, then the Adversary
allocates ai resources to that node.
At time t = 1: Let N1 denote the set of uncaptured nodes
at the beginning of period t = 1 and a1 the allocation of
attack resources at that point in time (all attack
resources now target protected nodes). A contest takes
place at all i such that , following the rules defined in
equation (7.21).

1.  If attack succeeds at i, then the Adversary (a)
eliminates all di defense resources located there, (b)
captures node i, (c) captures any remaining node in 𝒰i

and (d) relocates the  attack resources to node j =
arg mink∈𝒫i⋂N2{rik}. If 𝒫i ⋂ N2 = ∅, then the  attack
resources are eliminated.

2.  If defense succeeds at i, then the Designer eliminates
all  attack resources located there.

At time t = 2: Let a2 denote the allocation of attack
resources at the beginning of period t = 2 and N2 the set
of uncaptured nodes. If a2 = 0, then the process



terminates. Otherwise, it follows the rules laid out as in
period t = 1, and this continues until no nodes remain.

Figure 7.14 
Dynamics of attack in a CP-star: n = 12, a = d = 4.

To develop an appreciation of the dynamics of conflict, it
is helpful to locate them in a specific network with resource
configurations. Figure 7.14 considers the dynamics in a
star network. The number of nodes is 12, and the resources
of Adversary and Designer are both equal to 4. The
Designer allocates all 4 units to the central node, while the
Adversary allocates 1 unit each to 4 unprotected peripheral
nodes. These attack units capture the 4 peripheral nodes
and then simultaneously attack the central node. Given the
Tullock contest, the Designer and Adversary have an equal
probability of winning. If the Designer wins the contest, the
attack resources are eliminated. There are 8 surviving
connected nodes. If the Adversary wins, the central node is
captured and the defense resources are eliminated. The



attack resources then capture the remaining 7 undefended
peripheral nodes. The expected payoff of the Designer is

Figure 7.15 illustrates the dynamics of conflict in the
complete network, with n = 4 and a = d = 1. The Designer
allocates their resources to node 1, while the Adversary
allocates theirs to node 2. Since node 2 is undefended, it is
captured at time t = 0, followed by the undefended nodes 3
and 4, which are linked to it. At time t = 1, the attacking
unit then spreads to node 1. Given the Tullock contest
function, the Designer and Adversary win with equal
probability. The expected payoff of the Designer is f(1)/2.

Figure 7.15 
Dynamics of attack in a complete network: n = 4, a = d = 1.

Let us now define the resulting networks once conflict
has played out. Note that by construction, in every round
with both attack and defense resources, one of the two
must decline strictly (by at least 1 unit). Thus the dynamics
can last at most a + d rounds. Given a defended network
(g, d) and attack strategy (a, ℛ), the dynamics of conflict
described here yield a probability distribution on 𝒢(g). Let



ℙ(g′|g, d, a, ℛ) denote the probability that the subnetwork
g′ is the residual network of surviving nodes after all
conflicts have ended. Define Πe(g, d, a, ℛ) to be the
expected payoff of the Designer, given the defended
network (g, d) and attack strategy (a, ℛ). Then

Let  denote the minimum expected payoff of the
Designer playing strategy (g, d):

With these pieces of terminology in place, we are now
ready to define optimal networks for the Designer.
Definition 7.1 A defended network (g, d) is optimal if  for all

defended networks (g′, d′).

We start with the optimal architecture and defense at the
level of a single component. Then we consider the pure
problem of number of components in the absence of any
defense resources. We take up the general problem of
optimal defended networks when defense allocation, the
architecture of individual components, and the number of
components are all decision variables for the Designer in a
problem at the end of the chapter. Discrete optimization
problems are marked by divisibility issues. For simplicity,
let us start with the case where the ratio of attack-to-
defense resources is an integer, a/d ∈ ℕ. The case of a < d

is taken up later in this chapter.

7.4.2 Connected Networks

Consider the set of connected networks. A defended core
network consists of (1) a protected set x ∈{1, …d} of nodes
that constitute a connected subgraph and (2) the n−x

unprotected nodes (if any exist), each of which has a single



link to a protected node. We will show that such a defended

core network is optimal in the class of connected networks.

The first step is to show that it is optimal for protected
nodes to constitute a connected subgraph. Suppose that
there is a pair of protected nodes that is connected only via
a path of unprotected nodes. Then, given our assumptions
on conflict and contagion, the Designer can add a link
between this pair of protected nodes without risking loss.
Thus we can limit our attention to defended networks in
which the set of protected nodes constitutes a connected
subgraph.

Next, we rule out a path of unprotected nodes between
any two protected nodes. Observe that, as per the previous
step, these unprotected nodes play no role in connecting i
and j (or any other pair of protected nodes). So the
alternative network, in which these unprotected nodes on
the path between i and j have a single link to node i, causes
no loss for the Designer. Indeed, in the new network, these
unprotected nodes’ survival is contingent only on node i’s
survival, whereas in the old network, it was contingent on
the survival of both node i and node j. So any outcome in
which node j is captured but node i is not brings about a
strict gain for the Designer.

Finally, we show that a link between two unprotected
nodes is never optimal. Suppose that i and j are
unprotected and have a link between them. As per the
previous step, these unprotected nodes must be linked to
the same protected node (such as k). Let I denote the set of
unprotected nodes connected to k through a path of
unprotected nodes. Given the dynamics of conflict spelled
out earlier, it is then immediate that the alternative
network, in which all nodes in I have a single link to node k,
yields a weakly higher payoff to the Designer compared to
the original network (because connecting them can only
result in some being infected at t = 0 that would otherwise



only be infected at t = 1 if the protected node was
infected).

The CP-star is an example of a defended core network.
Faced with the CP-star, the Adversary’s best response is to
allocate 1 resource unit to exactly a periphery nodes. The a
periphery nodes are captured and the attack resources
then mount a concerted attack on the central node. If the
attack on the central node succeeds, all remaining
periphery nodes are subsequently captured. If the attack
fails, the Designer is left with n−a connected nodes. The
expected payoff of the Designer in a CP-star is

To develop an intuition for the nature of optimal
networks, next consider a defended network with two hubs,
as depicted in figure 7.16. There are 12 nodes in all, and a
= d = 4. This is a core-periphery network with two hubs:
the Designer allocates 2 units of defense to each hub. In
the mimic strategy, the Adversary allocates 2 resource
units to peripheral nodes connected to one hub and 2
resource units to peripheral nodes connected to the other
hub. In the first instance, the Adversary captures these 4
peripheral nodes. The resources then target their
respective hub nodes.



Figure 7.16 
Attack and defense on a two-hub network: n = 12, a = d = 4.

There are four possible outcomes of this attack strategy:
both hubs survive, both hubs are captured, or one hub
survives and the other is captured. Given the equal
resources engaged in contests, it follows that the first two
outcomes each arise with probability 1/4. The two
outcomes define terminal states of the dynamics,
represented at the top and bottom of figure 7.16. There is a
probability of 1/2 that one of the hubs survives and the
other is captured (in the initial period). This is represented
in the middle of the figure. The capture of a hub triggers
the capture of its respective peripheral nodes. All attack
resources then target the surviving hub, inducing a second
round of contests. There is a probability of 1/2 that the hub



survives the attack, and a probability of 1/2 that it is
captured. If the hub is captured, that triggers the capture
of the remaining peripheral nodes.

To summarize, in the two-hub protected network, the
probability P on surviving nodes is as follows:
There is a probability of 1/2 that all nodes are captured, 
a probability of 1/4 that 4 nodes survive, 
and a probability of 1/4 that 8 nodes survive.

Consider the outcomes under the CP-star network: the
Adversary optimally chooses to first capture 4 peripheral
nodes and then mount an attack on the hub. Thus either all
nodes are captured or none are captured. The probability
of outcomes P′′ is as follows:
There is a probability of 1/2 that all nodes are captured, 
and a probability of 1/2 that 8 nodes survive.

Let us compute the expected payoffs to the Designer for
a specific network value function: f(n) = n2. The expected
payoff to the Designer from the two-hub network is

The expected payoff to the Designer from the CP-star
network is

Thus we have shown that the minimum payoff to the
Designer from a CP-star payoff is larger than the payoff
from two-hub protected network for the Designer.

The computations for the example with the CP-star and
two-hub network rely on a particular structure of an attack
strategy: the Adversary first captures a unprotected nodes
and then launches concerted attacks on respective
protected hub nodes. This construction underlies the notion
of a mimic attack strategy.



Let a = xd, where x ∈ ℕ and is an integer, and consider a
defended network (g, d). Label nodes in 𝒫 by i1, i2, …, ik.
For each node in 𝒫, the Adversary allocates 1 resource unit
to exactly x times di nodes in 𝒰i (the unprotected
neighbourhood of i) thereafter relocating each of these
resource units to node i. This attack strategy is referred to
as a “mimic strategy,” as it amounts to attacking every
protected node with attack resources that mimic the overall
ration a/d.

We make the notion of a mimic strategy more formal as
follows: Given the defended network (g, d), say that (a, ℛ)
mimics defense if and only if there is a set of a distinct
nodes, {j1, …, ja}, such that

Part (1) refers to the initial allocation of attack resources
and part (2) pertains to the moves from the initial success
to subsequent protected nodes. Roughly speaking,
successful attacks combine at the same protected node to
maximize the prospects of a successful attack. Figures 7.14
and 7.16, with attack and defense resources both equal to
4, both offer instances of a mimic attack strategy.

Mimic strategies do not always exist. To see this,
consider a defended core-periphery network with 12 nodes,
n = 12, and attack and defense resources equal to 4, a = d
= 4: the network has two hubs, with the first hub being
linked to 9 peripheral nodes and the second hub being
linked to 1 peripheral node. If the Designer allocates 2
units to each hub, then no attack strategy can mimic a
defense on this defended network.



Remark Given defended network (g, d), a mimic attack strategy exists if and

only if the following condition holds:

We are now ready to state the following result.
Proposition 7.5 Consider the game with contagious attacks. Assume that

network value is given by assumption 7.1, a/d ∈ N, n > a+1, and consider the

class of connected networks. Then the optimal network is either a CP-star or a

network that precludes a mimic strategy.

Sketch of Proof: Consider a defended network (g, d) other
than a CP-star, which admits a mimic strategy. We show
that there is an attack strategy (a, ℛ) that keeps the payoff
of the Designer strictly below the payoff that is guaranteed
from the CP-star. Suppose the defended network (g, d)
contains 𝒫 = {i1, …, ik} protected nodes. Clearly, if k = 1,
then there must be two nodes in 𝒰 with a link between
them. Allocating 1 resource unit to each of these
unprotected nodes guarantees the elimination of a + 1
nodes. As there is only 1 defended node and the networks
are connected, under our attack dynamics, the probability
of a successful attack on the defended node is equal in the
two defended networks (the given network and the CP-
star). This means that the expected payoff to Designer is

Next, consider the case of k ≥ 2 defended nodes.
Construct the sequence of sets (Ni

s
)1≤s≤k recursively as

follows:



Let nis
 = |Nis

|, s = 1, …, k. Note that by the connectedness
of .

Suppose first that , ∀s, and attack mimics defense
in such a way that 1 resource unit is allocated to exactly 
nodes in Nis

, with each of these resource units thereafter
relocating to node is.

Observe that since Nis ⊂𝒰is, a necessary condition for
nodes in Nis

 to survive the attack is that is itself survives the
attack. Also, a protected node is may be attacked through
the attack resources allotted to nodes within 𝒰is

 or by
resources originally allocated to an attack using resources
that come via a successful attack on some other protected
node is′. It therefore follows that the distribution of the total
number of surviving nodes is first-order stochastically
dominated by the distribution of

where {I1, …, Ik} denotes a set of independent Bernoulli
random variables with , ∀s ∈{1, …, k}. This
dominance relation holds because in the latter expression,
we are ignoring indirect attacks launched from protected
nodes that have been successfully attacked on other
protected nodes. By way of illustration, note that in the
previous example with two-hubs (see figure 7.16), the
probability distribution of surviving nodes after a direct
attack, P′ (directly eliminated nodes plus those unprotected
nodes that are neighbors of the attacked nodes), is as
follows: there is a probability of 1/4 that all nodes are
captured, a probability of 1/2 that 4 nodes survive, and a
probability of 1/4 that 8 nodes survive. This distribution
first-order stochastically dominates the distribution of
actual surviving nodes in the two-hub network, which is
given by P.

Since the network value function f is increasing, we have



The final step is to note that

Let us discuss the derivation of this equation. First, note
that the probability distribution of eventually surviving
nodes under the CP-star is a mean-preserving spread of the
distribution of surviving nodes under (ni1 + 1 − ai1)I1 + ⋯ +
(nik + 1 − aik)Ik. By way of illustration, note that in the CP-
star example, the probability distribution of surviving nodes
is as follows: there is a probability of 1/2 that all nodes are
captured and a probability of 1/2 that 8 nodes survive. This
distribution is a mean preserving spread of the distribution
of surviving nodes P′. This observation, combined with the
assumption that the network value function f(.) is
increasing and convex, yields strict inequality.

◼

Proposition 7.5 suggests that defended networks
violating equation (7.28) may be attractive for the Designer
since they preclude the use of mimic strategies by the
Adversary. Observe, for instance, that in a setting where n
= 3, f(n) = n2, and a = d = 2, a CP-star yields an expected
payoff of 1/2 for the Designer. On the other hand, the
complete network with two protected nodes, which violates
equation (7.28), yields at least 1. This shows that in some
circumstances, defended networks that violate equation
(7.28) may dominate a CP-star. It is possible to show that
the attractiveness of networks that do not admit a mimic
strategy depends on the number of nodes, n. Indeed, as n
grows, we can generalize the arguments presented in



proposition 7.5 to show that CP-protected networks are
approximately optimal across all possible defended
networks. This point is further developed in a question at
the end of the chapter.

Observe that we are assuming that the resources of the
Adversary are larger than the resources of the Defender, a
≥ d. When a < d, the Designer may find it attractive to
create a spread-out network and to allocate their resources
across more nodes. This is perhaps most easily seen in an
example. Suppose that a = 1, f(n) = n2. The coefficient of
conflict γ is very small, so the probability of successful
attack is close to 1/2 regardless of the resources allocated
to a node. Suppose next that the Adversary has only one
unit (a = 1), while the Designer has two (d = 2). In a CP-
star, the best the Adversary can do is to use the mimic
strategy and target a periphery node, which means that the
expected payoff of the Designer is roughly f(n − 1)/2. In a
two-hub network with both hubs protected, the best the
Adversary can do is to target a periphery node. The
probability of eliminating a single hub is 1/2, and the
probability of eliminating both hubs is 1/4, so the expected
payoff to the Designer is roughly f(n − 1)/2 + f(n − 2)/4. It
is clear that the two-hub network dominates the CP-star.

7.4.3 Optimal Number of Components

So far, we have restricted our attention to connected
networks. Recall that the pressure toward connectivity
comes from the convexity of the network. This convexity is
also central to an understanding of the desirable number of
components. To see this, it is helpful to start with the case
where d = 0 and to consider network value functions f(n) =
nβ, with β > 1. We interpret β as a measure of the convexity
of the network value function. As unequal components will
lead the Adversary to target the larger ones, it is better for
the Designer to choose equal-sized components. A question



at the end of the chapter works through this intuition. The
exact number of components depends on β and the
magnitude of the Adversary’s resources. So you may get a
sense of these effects, figure 7.17 illustrates the optimal
number of components as we vary the attack resources and
the degree of convexity. Consider the effects of attack
resources. Given β = 2, the optimal number of components
increases from 4 to 8 as we increase the attack resources
from 2 to 4. Next, consider the effects of convexity. Given
attack resources a = 4, the optimal number of components
falls from 4 to 3 as we raise the curvature by moving from β
= 2 to β = 3.

Figure 7.17 
Optimal number of components: f(m) = (m)β, n = 24.



Now let us summarize what we have learned about
optimal defense and design of networks in the context of
attacks that can spread through connections in the
network. We have shown that so long as attack resources
exceed defense resources, a highly centralized network
with the protected center is optimal. This observation is
consistent with the practice of traffic monitoring at key
nodes by security personnel (Anderson [2020]). The
optimality of a single protected node rests on the relative
value of attack and defense resources and the convexity of
the network value function. If the network value function is
not always convex or the Defender has more resources than
the Adversary, then multiple hub-nodes or components can
be optimal. These theoretical insights draw our attention to
the economic considerations that determine whether robust
networks will be connected or disconnected and whether
they will have highly concentrated protection or if they will
exhibit dispersed protection.

7.5 Reading Notes

The problem of network defense has traditionally been
studied in operations research, electrical engineering and
computer science; for introduction and overviews of this
research, see, for example, Alpcan and Başar (2011);
Aspnes, Chang, and Yampolskiy (2006); Smith (2008); and
Grötschel, Monma, and Stoer (1995).

The network interdiction problem involves an Adversary
intervening to damage links or nodes in order to
compromise the flow in a network. Early studies by
Wollmer (1964) and Cunningham (1985) study the problem
of network design and defense in which the conflict is on
links. For instance, a link is eliminated if the Adversary
assigns more resources than the Designer (thus conflict is
modeled as an all-pay auction). The models presented in
this chapter build on this formulation through a



consideration of contests on nodes (the all-pay auction is a
special case and corresponds to the situation when the
coefficient of the contest function becomes very large).
Network interdiction remains a very active field of study.
Gueye, Walrand, and Anantharam (2010) and Laszka,
Szeszlér, and Buttyán (2012) look at a model in which the
network operator chooses a spanning tree of a given
network to route messages, and the Attacker
simultaneously chooses an edge to be removed. Aspnes,
Chang, and Yampolskiy (2006) (and the literature that
comes afterward) study protection choices by nodes faced
with a viral infection; upon infecting a node, the virus
travels through the network. This is related to the study of
contagious threats presented in section 7.4. Network
interdiction also remains a field of active research in
economics; for recent work, see Bloch, Chatterjee, and
Dutta (2021).

The subject of network robustness has also received
attention in the statistical physics and network science
literature. In an influential article, Albert, Jeong, and
Barabási (2000) argue that highly unequal networks with
hubs are vulnerable to strategic attacks since potential
adversaries can significantly reduce their functionality by
removing only a few hub nodes. By contrast, the theoretical
models presented in this chapter bring out the
attractiveness of these networks from the perspective of
threats and security. How can we reconcile these
perspectives? The contrasting results offer complementary
perspectives and highlight the importance of defense
resources and the convexity of the network value function.

In these papers, connectivity of the network is the goal.
The network value function introduced in section 7.2
assumes that the value of a network is the sum of the value
of its components, and the value of a component is
increasing and convex in size. This formulation generalizes
the idea of connectivity. The component additive and



convex and increasing function builds on ideas in the
research on communication networks such as Metcalfe’s
and Reed’s laws.

Sections 7.3.1 and 7.3.2 study the two-player problem of
optimal design and defense. For news coverage of the
effects of natural disasters and human attacks on
infrastructure networks, see Eun (2010), Kliesen (1995),
India Today (2011) and Luft (2005). Early theoretical work
in this field includes Bier, Oliveros, and Samuelson (2006);
Clark and Konrad (2007); and Kovenock and Roberson
(2012). This two-stage model with observability of first-
stage actions is consistent with the approach in the large
body of engineering literature on security and networks,
such as Tambe (2011) and Alpcan and Başar (2011). The
theoretical models in this chapter are taken from
Dziubiński and Goyal (2013, 2017). The discussion on
cybersecurity draws on Goyal and Vigier (2014) and
Perlroth (2021). Also, see Schneider (2022) and Gordon
and Rosenbach (2022) for discussions of cybersecurity as it
relates to international relations.

The results on protected central nodes are related to the
well-known and widely studied “key player” problem: what
nodes should be targeted to attain a goal? For an
introduction to key player problems, see Borgatti (2003,
2005). For an early contribution to the study of key
problems in economics, see Ballester, Calvó-Armengol, and
Zenou (2006). Chapters 4, 14, and 16 in the book take up
the general problem of targeting. The discussion in this
chapter suggests that for the problem of attack and
defense, the key players are nodes that lie in separators
and transversals. These nodes are typically distinct from
nodes that maximize familiar notions of centrality. For a
detailed discussion of differences, see Dziubiński and Goyal
(2017).

There is also a strand of work that studies decentralized
defense and linking by individual nodes. In section 7.3.1.2,



we study an example of decentralized defense, which
provides a first impression of the challenges of
decentralization in security problems. We have not
discussed decentralized choice of links (with or without
contagion) due to space considerations. The interested
reader is referred to Acemoglu, Malekian, and Ozdaglar
(2016); Goyal et al. (2016); and Cerdeiro, Dziubiński, and
Goyal (2017).

7.6 Questions

  1.  Consider the Network Defense Game studied in section
7.3.1. Suppose that the network value function is f(n) =
n2. The Designer chooses which nodes to protect, and
observing these choices, the Adversary decides on
which nodes to attack. The cost of defending a node is
cD, while the cost of attacking a node is cA. A defended
node cannot be damaged by an attack, while an
undefended node, if attacked, is eliminated along with
its links. Write the payoffs of the Defender and the
Adversary. Suppose that the Designer seeks to
maximize the value of the residual network net the cost
of defense, while the Adversary seeks to minimize the
value of the residual network less the cost of attack.
Verify the threshold values for the costs of defense and
attack of the star network with four nodes (as in figure
7.3).

  2.  (Dziubiński and Goyal [2013]). Consider the problem of
defense and design with imperfect defense. Suppose
that there is a probability π ∈ [0, 1] that a defended
node can be eliminated by attack. Fix n = 6 and k = 2.
Show that the equilibrium networks in this case depend
on value of p and are either the empty network, a
center-protected star, a complete bipartite network with
one part of size 2 fully protected, a fully protected 2-
connected network with minimal number of links (a



cycle), or a 3-connected network with minimal number
of links and no defense.

  3.  Consider the Network Defense Game. Suppose that n is
large and the cost of attack satisfies

(a)  Show that with this cost of attack, the Adversary
removes 2 nodes from the complete network over n
nodes, 1 node from the complete network containing
n − 1 nodes, and 0 nodes from the complete network
containing n − 2 or fewer nodes.

(b)  Suppose that the cost of defense satisfies

With this cost of defense, show that the Defender
protects all the nodes in a complete network with n
nodes because f(n) −ncD > f(n− 2) (and we know
that in a complete network, the Defender either
protects all or no nodes in equilibrium).

(c)  Now consider a network with n − 1 nodes in a clique
with one node linked to a single element of the core
(let’s call it i). Show that if such a network is not
protected, the Adversary will remove node i only,
disconnecting the network into a clique of size n− 2
and a single isolated node. Then show that with this
cost of defense, the Defender is inactive.

(d)  Complete the argument by showing that the payoff
to the Defender is larger in the core-periphery
network than in the complete network.

  4.  Consider the Design and Defense game presented in
section 7.3.2. Suppose that units of attack 1 ≤ k ≤ n −
2, and suppose that the network value is component
additive and the value of a component is increasing and
convex in size. The Designer moves first and chooses



the network and the defense of nodes. The Adversary
observes the choice of Designer and then chooses to
attack k nodes. The payoff to the Designer from
choosing (g, 𝒟) when the Adversary chooses a cut X is

where cL is the cost of links and cD is the cost of
perfectly protecting a node. The payoff to the Adversary
is

The objective of the Designer is to maximize the payoff,
while the goal of the Adversary is to minimize the value
of the residual network. Show that in a subgame perfect
equilibrium of this game,

The Designer chooses defense |𝒟| = 0, 1, or n. If |𝒟| =
0, a variety of networks—including the empty
network and a (k + 1)–connected network—can arise.
If |𝒟| = 1, the network is a star with a protected
center. If |𝒟| = n, the network is either empty or
minimally connected (i.e., a tree).
The Adversary chooses a separating cut if (g, 𝒟)
permits such a cut. When (g, 𝒟) permits no
separating cuts, every cut yields the same payoff to
the Adversary and is optimal.

  5.  This is a question on the design and defense of
networks with contagious attacks as discussed in
section 7.4. Define . Observe that C(a, β) is
increasing in the quantity of attack resources, a, and
falling in the parameter of convexity, β. Assume that
(A.1) holds, d = 0, and suppose that f(n) = nβ, where β >

1. Show that if C(a, β) ∈{a + 1, …, n} and divides by n,



then the unique equilibrium network consists of C(a, β)
equal-sized components.

  6.  Consider the network design and defense game with
contagion attacks as discussed in section 7.4. Suppose
that n = 12, a = d = 2, and the network value function is
as follows:

Show that a network with two protected hubs yields a
lower expected payoff to the Designer than a center-
protected star.

  7.  (Goyal and Vigier [2014]). Consider the model of the
design and defense of networks that face contagious
attacks. Suppose payoffs satisfy assumption 7.1, a < d,
d ≥ 2, n > a + d. Show that
(a)  If γ is large, a CP-star is optimal.
(b)  If γ is small, the optimal defended network is either

a CP-star or has d nodes in the core. In particular, if
a = 1 then a core with d > 1 nodes strictly dominates
the CP-star.

  8.  (Goyal and Vigier [2014]). Consider the model of the
design and defense of networks that face contagious
attacks. Suppose payoffs satisfy assumption 7.1, a/d is
an integer, n > a + 1. Show that the center-protected
star is (close to) optimal in the class of connected
networks.

  9.  Define . As f is an increasing function,
ℓ  is either equal to 1 or less than 1. Suppose that
network payoffs satisfy assumption 7.1. Let a/d ∈ ℕ, n
> a + 1, and let 𝜖 > 0.
(a)  If ℓ < 1 then CP-star is 𝜖-optimal for large n among

all defended networks.



(b)  If ℓ = 1 then optimal defended network may contain
multiple components.

10.  Albert, Jeong, and Barabási (2000) consider the
resilience of connectivity of a network to the removal of
nodes. They show that networks with power law degree
distributions are robust against random deletion of a
fraction of nodes, but are vulnerable to the targeted
elimination of a small fraction of most connected nodes.
How can we reconcile this result with the result
presented in this chapter on the optimality of center-
protected star networks?



8
Intermediaries and Platforms

8.1 Introduction

In many markets, the benefit that consumers get is a
function of their ability to communicate with other users on
the network. In these markets, network effects are direct:
the more agents on a network, the larger the
communication opportunities. Examples of products with
direct effects include telephone, fax, email, and online
networks such as Facebook and Twitter. In many other
markets, it is helpful to think of products as consisting of
components and the value of a product as increasing the
number of suppliers of products that are used in
combination with the product. In such a market, the
network effect is said to be indirect. Examples of markets
with indirect network effects include computer operating
systems (Microsoft Windows or the Apple Macintosh),
smart phones, credit card systems (such as Visa and
Mastercard), trading intermediaries (such as Amazon and
eBay), and video-game consoles (PlayStation and
Nintendo). This chapter studies the functioning of markets
with network effects.

We will start with a consideration of direct network
effects. As the utility of a product increases in the number
of its users, as a product gains market share, it becomes
more and more attractive relative to other competitors.



This creates a tendency for such markets to be dominated
by a single product. Consumer preference for different
products may offset this pressure and we explore the
circumstances under which markets are covered by
multiple and individual firms, respectively. We then take up
the issue of technological change in such markets. If a
product or a technology is dominant, switching to a new
product may entail a switch to a product with a very small
user base. This may discourage technological change. We
examine the circumstances under which technological
change is excessive or too slow, and we also study the price
and nonprice strategies of firms in such markets.

We then turn to markets with indirect effects. Consider a
computer operating system: software developers want to
create products for Windows (or for iPhone or Android)
because of the potential consumer base. Consumers in turn
are attracted to an operating system if it offers a wider
range of applications. Similarly, people want to use Visa
cards because they are widely accepted, and merchants
want to accept them because most people carry them.
Traders want to trade in markets where they can easily find
counterparties and the markets are liquid. Another example
is online social networks (Facebook, LinkedIn, and Twitter)
that bring together individual users and software
developers and firms that wish to advertise their products.
A third example is a market creator that brings together
buyers and sellers, such as New York Stock
Exchange/Nasdaq exchanges for public equities, eBay and
Amazon’s e-commerce platforms, Apple’s App Store for
developers and consumers, and Google’s ad platform for
websites and advertisers. These examples suggest that
markets with two-sided or multisided network effects are
quite common.

This chapter will focus on two aspects of a firm’s
strategy in such markets—pricing and openness. Pricing
presents some novel features: for instance, the value to a



user on one side of the market will depend on the number
of users of the other side of the market. It is not uncommon
that consumers are paid to carry a credit card, while
merchants pay the credit card for each transaction. This
motivates a study of the economic considerations that
determine optimal prices on different sides of a market.

We next take up the notion of openness: a firm decides
on how many sides of a market it wants to be active. For
instance, Apple markets both its hardware and its
operating system, while Microsoft is focused on producing
its operating system and allows independent producers to
supply the hardware (this contrast has slightly changed
with the launch of the Surface range of products). In this
sense, Microsoft may be seen to be more open than Apple.
We discuss the considerations that are involved in the
choice of the number of sides that a firm is active. Another
aspect of openness relates to competing platforms: should
a firm seek to be compatible or incompatible with other
firms (or, alternatively, partially compatible)?

An important and recurring theme throughout this
chapter is the dynamics of competition among
intermediaries. The text closes with an experimental
examination of this competition. We present models in
which traders need connections to trade. Connections are
costly, which leads traders to economize on links. This in
turn gives rise to intermediaries. The interest is in
understanding the dynamics of competition among
potential intermediaries and the circumstances under
which we see a dominant intermediary.

8.2 Network Externalities

A key feature of many economic contexts is that the value
of choosing a platform is increasing in the number of others
who are already part of the network. A first observation is
that network effects naturally give rise to multiple



equilibria. To see this in the simplest setting, consider the
following example.

Suppose that there are n individuals, each of whom has a
choice between two computer software programs A and B.
We shall suppose that individuals have the same
preferences over the different computer programs. Let
individual returns from a choice x ∈{A, B}, when k persons
are adopting the same program, be given by

The idea of positive network effects is reflected in the
following assumption:

To simplify the exposition, let us also suppose that
network effects are significant. Thus for every individual i,

When individual utility satisfies this assumption, it is
easy to see that there are two natural Nash equilibria:
everyone chooses A or everyone chooses B.

As there are multiple equilibria, the outcome is sensitive
to the expectations that persons have about each other. So
a program may be chosen because everyone expects it to
be: this may be, for instance, because it happened to be
popular in the recent past. Thus recent trends may be
reinforced. Moreover, this suggests that once a software is
widely used, it may be difficult for users to change, even
when a new superior program becomes available. This
raises the possibility of inefficient lock-ins. We take up
these issues in the next section. In the discussion so far, we
have assumed that all individuals have the same
preferences over the programs. Differences in preferences



are important, and we will come back to this point later in
the chapter.

8.2.1 Installed Base, Dynamic Choice, and Lock-Ins

One of the implications of this analysis is that if everyone
has coordinated around action A, then this action will
remain optimal and the outcome will persist even if, due to
technological change, a new product B becomes available
that is superior (i.e., uB(k) > uA(k)), for all k). This suggests
that in settings with network effects, there can be a lock-in
into old, established ways of doing things. We explore the
scope of this argument with the help of a simple model. We
consider a model that is a simplified version of one given by
Farrell and Saloner (1986).

At the start, there is a group of consumers n0, who have
adopted product A, also referred to as the “old technology.”
In period 1, a group of consumers n1, can choose to either
buy product A or refrain from buying. In between periods 1
and 2, product B, also referred to as the “new technology”
becomes available in the market. In period 2, consumers n2

choose between buying A or B or abstaining from buying
altogether. We now specify the payoffs from the different
actions. The payoff from the old technology (per period, for
periods 1 and 2) is given by

An example satisfying this requirement is uA(k) = a + bk,

a, b > 0.
The payoff from the new technology per period is

The first point to note is that period 1 consumers only
know about the old technology. Hence they choose action A



since it is better than the outside option. In period 2,
technologies A and B are both available, and consumers
choose action B if

Thus consumers in period 2 may choose action A even if
uB(k) > uA(k) for all k. For concreteness, suppose that the
old technology has the payoff a + bk, while the new
technology has the payoff c + dk. This inequality tells us
that it is possible for consumers to persist with the old
technology even if c > a and d > b (so long as a + b(n0 + n1

+ n2) > c + dn2).
This is the simplest expression of the traditional

argument of how lock-in into old, established ways of doing
things may arise. While the possibility of such lock-in seems
quite robust, it is not clear whether such an outcome is
good or bad or needs to be remedied. This leads us to
examine the conditions under which technological change
is optimal.

Aggregate social welfare under each choice is as follows:

We will say that technological change is optimal if it
maximizes the total consumer surplus across the
generations. Therefore, comparing the two expressions,
adopting a new technology is optimal if and only if



These computations allow us to move on to the question
of whether there is too little or too much technological
change in markets with network effects. A comparison of
equations (8.6 and 8.9) yields the following observation:
private incentives for switching to a new technology are

greater than what is socially desirable. The reason for too
much technological change is that active period 2
consumers only compare their own payoffs from making a
decision on technology. However, choosing the new
technology generates a negative externality on the payoffs
of earlier-generation consumers in terms of the lack of
growth of the network of the old technology, which is
ignored by period 2 consumers. They therefore
overestimate the benefits of the new technology and have
excessive incentives to adopt the new technology from a
social point of view.

The possibility of too much technological change
naturally raises the issue: are there circumstances under
which there could be too little change? We need to extend
the simple model described here to address this question.

Consider a situation where both period 1 and period 2
consumers can choose between new and old technology
and payoffs are such that period 2 consumers find it
optimal to buy any good that period 1 consumers bought.
First, note that consumers in period 1 choose the old
technology if

On the other hand, social welfare under the new and old
technology is, respectively,



If u(n0) ≈ u(n0 + n1) ≈ u(n0 + n1 + n2), then

A comparison of equations (8.10 and 8.13) reveals that
consumers may persist with the old technology, even if the

new technology is socially desirable, because they do not

take into account the effects of their actions on future

consumers.

Thus individual incentives may generate too little or too
much technological change relative to what is socially
desirable. Our discussion helps identify the nature of
externalities that generate these outcomes. Too much
technological change or excessive momentum comes about
when current consumers ignore the interests of the
installed base (i.e., the users of the existing technology).
This may be termed backward externality. By contrast, too
little change, or excessive inertia, arises because current
consumers ignore the interests of future consumers who
could benefit from a growing network of new-technology
users. This may be termed forward externality. Both
forward and negative externality are present in markets
with network effects, and such markets are therefore likely
to generate technological change that can be too slow or
too fast relative to what is socially desirable. Our analysis
also raises the question: which type of externality is more



likely to arise, and in which markets? An understanding of
this issue requires at the very least a model in which both
the supply and demand sides of the market are active.

So far, we have only looked at the demand side of the
market. In the next section, we take a first look at the
supply side as we consider some strategies that firms can
use in such markets.

8.2.2 The Strategies of Firms

Firms use a variety of strategies to promote their products
and introduce new technologies; some of these strategies,
such as introductory pricing and product
preannouncements, are common in markets with no
network effects as well, but they take on particular
significance when network effects are important.

Preannouncements: Recall that in the basic model, only
period 2 consumers can choose between old and new
technology. Moreover, period 1 consumers had no choice
but to decide buy in period 1. To see the role of product
preannouncements, it is useful to modify the model slightly.
Suppose, first, that the firm introducing the new
technology in period 2 can preannounce the launch.
Second, suppose that consumers in period 1 can postpone
their decision and buy in period 2. We examine the
incentives of the firm to preannounce and the implication of
such an action.

Suppose there is a preannouncement. Consumers in
period 1 can either buy the old technology or wait until
period 2 and buy the new technology or buy nothing. In
making their decision, they compare

with



where we have assumed that period 2 consumers always
buy good B. Period 1 consumers choose the new technology
if

It is worth noting that if

but

then in the absence of preannouncements, the new
technology would not be adopted, while with a
preannouncement, the new technology in principle can be
adopted. Thus preannouncements play a crucial role in

shaping technological evolution in network markets.

Introductory Pricing: In the previous discussions, we have
highlighted the role of the installed base; the larger the
size of n0, the more difficult it is to get consumers to switch
to a new technology. This suggests that firms have an
incentive to build a network rapidly. This raises the
question: can firms induce faster growth of the network
through pricing? The essential idea is the following: the
firm starts by selling cheap to attract consumers, and once
the network is established, it charges high prices to
subsequent consumers and recovers any initial losses it
may suffer.

To see the role of this strategy, we return to the model
where period 1 and period 2 consumers can choose
between new and old technologies. We focus on the case
(the set of parameters) in which period 1 consumers stick
with the old technology. This is the case covered in the
previous analysis. Recall that this happens if



It is worth noting that this inequality can hold even if

This happens due to the loss in payoff in the transition
period:

Now we examine the role of an introductory price
strategy in this setting. Can the firm set prices in such a
way as to induce period 1 consumers to choose the new
technology, and is this in the interest of this firm?

Suppose that in period 1, the firm sets the prices as
follows:

This is the maximum price that the firm can set that will
make consumers in period 1 still buy the new technology. It
is worth noting that this price is negative. Such a strategy
makes sense only if these losses in period 1 are somehow
recouped (and then some) by larger profits earned in
period 2.

We next examine the maximum prices that the firm can
charge in period 2. Note that in period 2, consumers
compare uA(n0 + n2) and uB(n1 + n2). Thus the firm can
set a price such that these two payoffs are equal. In other
words, the sets are as follows:

Finally, we check if this strategy is attractive for the
firm. Note that the previous strategy is the best of the class
of strategies that induce consumers to switch to the new
technology, while the strategy with no switching generates



a payoff of 0. Thus the firm finds it attractive to use this
introductory pricing strategy if the combined profits from
the two periods is positive. The combined profits are given
by

What are the circumstances under which this expression
is positive? From the previous discussion, recall that
adopting the new technology is socially optimal if and only
if

We have thus shown that introductory pricing strategy is

attractive for a firm if and only if it is socially optimal.

So far, we have considered a setting in which consumers
have same preferences with regard to the products on
offer. An important feature of markets with network effects
is that the products are not identical and consumers have
different valuation of the products. The next section studies
the effect of such differences for competition among
platforms.

8.2.3 Competition among Networks

We consider a simple model with two platforms, A and B,
located at points 0 and 1 of the unit interval. Let F(x) be
the fraction of consumers with b < x; in our setting, for
simplicity, F(x) = x; that is, consumers are located
uniformly on the unit interval. The consumer located at
point b has an intrinsic benefit b from platform B, and
intrinsic benefit 1 − b from platform A.

There is an advantage to joining a larger network: the
benefit of joining a network with d consumers is kd. We



assume that consumers can choose no more than one of the
platforms. The prices of the two platforms are given by (pA,

pB).
Let us solve for the equilibrium prices and network sizes.

To begin, suppose that the networks are of size xA and xB,
with xA + xB = 1. This assumes that the market is fully
covered; full market coverage can be ensured by a suitably
high stand-alone value of the platform.

Consider the optimal choice of a consumer: the net utility
of choosing platform A is

The net utility from platform B is

It is optimal to choose A if 1 − b + kxA − pA ≥ b + kxB −
pB. In other words, a consumer will choose platform A if

where we have set xB = 1 − xA.
In an interior equilibrium, the marginal consumer must

be indifferent between the two products and the expected
network size must correspond to the actual networks. Thus,
in the uniform distribution case, in equilibrium it must be
true that the marginal consumer, xA, must be equal to the
size of network A and this must correspond to the expected
network; that is,

We shall say that network effects are weak (strong) if the
marginal returns from an increase in network size are less
(greater) than 1.



To develop a feel for how the magnitude of network
effects matters, let us consider some examples. First,
suppose that network effects are weak, so k < 1/2. We can
solve for the network size as a function of prices to obtain:

The profit of platform A may be written as

The first-order conditions of the optimal price for
platform A yields the following condition:

It is natural to focus on symmetric equilibrium, as the
platforms are symmetric in this model. The equilibrium
price is given by

We see that prices are falling in the magnitude of
network effects. In particular, for k = 0, with zero network
effects, we get a price of 1, which corresponds to the
equilibrium price for the baseline Hotelling model. Thus,
with small network effects, both networks are active and of
equal size. This is illustrated in figure 8.1.



Figure 8.1 
Weak network effects.

Next, let us consider the case of strong network effects.
Suppose that k = 1. For simplicity, suppose that prices are
equal (pA = pB). The demand for platform A is then given by
yA = F(−1/2 + 2xA), as shown in figure 8.2. Notice that
there are now three equilibria: one in which all consumers
go to platform A, a second one in which all consumers go to
platform B, and a third one that is interior. However, the
interior equilibrium is unstable, as a slight change in
network size leads through the strong network effect away
from the interior equilibrium and toward one of the single-
platform outcomes. Equilibrium (xA = 1, xB = 0) is
supported by prices (pA = 1, pB = 0), while equilibrium (xA =
0, xB = 1) is supported by prices (pA = 0, pB = 1). Thus
strong network effects push toward a single dominant
platform.



Figure 8.2 
Strong network effects.

These computations suggest that if network effects are
modest relative to the diversity of consumer tastes, that
can account for the coexistence of multiple
platforms/standards. A prominent example is operating
systems: Apple and Microsoft operating systems have
thrived by focusing on different segments of the market:
business for Microsoft and graphics and education for
Apple. Another example of a market with multiple
platforms is gaming: PlayStation and Nintendo cater to
different markets. PlayStation focuses on hardware, third-
party games, and traditional gamers, while Nintendo is
more focused on its own games and a wider population of
casual gamers.

Ride hailing is another example, in which multiple online
platforms compete with the traditional taxi model. Uber
was the first mover in 2009; in the years following that
launch, a number of competitors have emerged,
particularly Lyft, Grab, Ola, and Didi Chuxing. The first
operates solely in the US market (and a small part of
Canada), Ola is strong in India, and the latter two operate
in the lucrative Southeast Asian and Chinese markets,
respectively. Uber and Lyft control 65 percent and 30
percent of the ride-hailing market in the US, respectively.
Ola and Uber control 50 percent and 35 percent of the



market in India, respectively, and Didi Chuxing controls 90
percent of the market in China.

By contrast, in the market for Internet search, Google is
overwhelmingly dominant in many of the large economies,
such as the US (88 percent), India (95 percent), the UK (85
percent), France (91 percent), Japan (74 percent), Brazil
(96 percent), Nigeria (98 percent), and Germany (97
percent). Google shares the market equally with Yandex RU
in Russia, and it is not allowed to operate at all in China.
The choice of a search engine is driven mainly by a desire
for accurate and relevant results. There is little difference
in consumer preference in this dimension. A search engine
delivers more useful results if it has access to more past
searches. Therefore a larger market share in the past
generates more data, which can give rise to tipping in favor
of a dominant platform in the future.

Let us summarize what we have learned in this section.
An important aspect of many economic activities is that the
returns from choosing an action are increasing with the
number of others who adopt the same action. A variety of
product markets also share this characteristic.

We have argued that markets with strong network
effects exhibit multiple equilibria, which are typically
extremal, with one product/technology usually taking over
the market. The nature of the eventual winner in the
market depends on the expectations that consumers have
regarding the behaviors of other consumers.

We have examined in some detail the effects of historical
factors in shaping the evolution of such markets. Once an
economy is in one equilibrium—choosing a certain network
technology—it may be difficult to transit to a new superior
technology due to the disadvantage that the new
technology has a small network. This is known as the
“installed base effect.” Several authors have argued that
the installed base effect typically inhibits technological
change. Our analysis explored this contention and



identified the different types of externalities inherent in
such markets and how they drive technological change. Our
analysis of the demand side of the market suggests that
this is not necessarily true, and individual incentives for
adopting new products can be greater as well as less than
what is socially optimal. This motivated an examination of
the role of the supply side of the market.

We examined two strategies that firms frequently use in
such markets—product pre-announcements and
introductory pricing. We argued that these strategies
facilitate a switch to new technology.

Finally, we examined a context in which consumers have
different preferences for platforms. The pressure toward a
dominant platform depends on the relative size of the
network effect. When the network effect is modest,
preferences for different platforms lead to coexistence of
platforms. By contrast, when these networks are large, one
platform takes over the entire market.

8.3 Compatibility

The term “compatibility” refers to the ability of a consumer
to use one platform to reach a seller that uses another one.
A well-known example of compatibility concerns banks and
automated teller machine (ATM) networks. A depositor
with one bank can use that bank’s ATM network, but can
also use the networks of other banks depending on the
agreements between them. The networks are more or less
compatible depending on the charges that apply to outside
ATM networks. The example of ATM networks offers an
instance of compatibility arising from interconnection. But
compatibility may have a more technological aspect: for
instance, two products are compatible if they can operate
together to generate value. A common example is Blu-ray
discs and DVDs. A DVD can be played on a Blu-ray player,
but a Blu-ray disc cannot be played on a standard DVD



player. Thus compatibility may sometimes be one-sided. We
study incentive of firms to make their products compatible
using a model taken from Katz and Shapiro (1985).

There are n firms that choose quantities, and there are
consumers who choose whether to buy or not. Moreover,
they care about the size of the network of firms they are
dealing with. They are willing to pay more for large
networks. Expectations play a major role, as in the earlier
model of network externalities.

Let yei be the size of firm i’s network as expected by
consumers. We will assume that consumers have the same
expectations. Then a consumer r’s valuation is given by

Now let’s take a moment to consider the assumptions
about v. As we are studying the role of network effects, it is
natural to assume that the returns from a network are
increasing in size. A decreasing rate of increase helps
ensure that multiple firms are active in the market. Assume
that r is uniformly distributed on [−∞, A], where A > 0.

In making a choice between two products (networks) i

and j, a consumer compares the net payoffs from them,

as against

All consumers are identical with regard to their
preferences across the two products, so it follows that if
one consumer favors i over j, then so will all consumers.



For two distinct networks i and j to be active, they must be
equally attractive to everyone:

Let us define pi − v(yei) = ϕ as the hedonic price of a
product. The condition in equation (8.37) says that for two
firms to be active, their hedonic prices should be the same.
We can use this to compute the aggregate demand. All
consumers with high enough r will buy as follows:

In equilibrium, the quantity sold by firm i is equal to this
number as well. Let xi be the sales of firm i, and let 
be the aggregate sales:

Thus higher yei leads to higher pi, and lower z leads to
higher pi. Observe that if there were no network effects,
v(yei) = 0 and pi = A−z, as in the standard Cournot model.

To keep the computations simple, we assume that firms
have zero production costs. We next turn to compatibility.
Two products are said to be compatible if consumers
buying one of the products can enjoy the benefits of the
networks of either of them. This compatibility may require
technical modifications or add-on features, so we assume
that it is costly to make products compatible. In particular,
firm i incurs a cost of Fi > 0 when making its product
compatible with that of firm j. Given these assumptions, the
payoffs to firm i are as follows:

Pay-off under full compatibility: πi = xi(A − z + v(z)) − Fi

Pay-off under incompatibility: 



Notice that taking expectations and outputs of other
firms as given, we can work out an equilibrium as in the
standard Cournot model. Thus, given expectations y about
network sizes of various firms, there is a unique
equilibrium, in the market. In this equilibrium, the
quantities are given by

Thus expectations of consumers concerning network size
translate into cost advantages or disadvantages for the
firms sponsoring the various networks. To see this, note
that if v(yi

e) = 0, ∀i we get , which is the standard
Cournot equilibrium output. Moreover, for every set of
expectations, there is a corresponding equilibrium. We will
focus on the fulfilled expectations equilibrium next.
Fulfilled expectations equilibrium In such an equilibrium, the
expected network size is equal to the actual network size.
Thus, yi

e = xi, ∀i.
Standard computations allow us to say that the

equilibrium profits are given by , while the consumers,
surplus is given by z2/2. This suggests that firms extract the
entire surplus generated by network effects. Let us briefly
explain this outcome next. Note that r = A − z. Hence,

Consumer r expects

We are now ready to study the equilibrium outcomes
under different levels of compatibility in the market.

8.3.1 Compatibility and Equilibrium



Full Compatibility Case: This is a situation in which all
firms are compatible with each other. Letting  and
yi

e = ze, the equilibrium quantity of firm i is given by

Figure 8.3 
Equilibrium in the full compatibility case.

Following from figure 8.3, the aggregate output is
implicitly defined as follows:

Given our assumptions on the function v(.), it is possible
to check that the equilibrium is unique.

Complete Incompatibility Case: In this case, different types
of equilibria are possible:

Symmetric outcomes: xi = x, ∀i = 1…n

Natural oligopoly: xi = x, ∀i = 1…k, xi = 0, i = k + 1…n.
Asymmetric outcomes: Different outputs for active firms

For simplicity, we will only take up the symmetric outcomes
case. The profits are given by . Taking
derivatives, the first-order conditions are



Rewriting and simplifying equation (8.45) we obtain:

The aggregate output in a symmetric equilibrium is
implicitly defined as

Putting together the cases with full compatibility and
incompatibility yields us the following result.
Proposition 8.1 Under full compatibility, there is a unique symmetric

equilibrium in which unique symmetric equilibrium in which and aggregate

output/sales zc are implicitly defined by

Under incompatibility, there is a unique symmetric equilibrium in which xi =
z*/n and aggregate output/sales z* are implicitly defined by

Figures 8.3 and 8.4 illustrate the equilibrium in the
incompatibility and compatibility cases. We now take up
the effects of compatibility on total output. Recall that the
first-order conditions for individual firms are as follows:



Figure 8.4 
Equilibrium in the complete incompatibility case.

Adding up for all firms and rearranging gives

If there is complete compatibility, then . If there
is incomplete compatibility, then  for some i as
illustrated in figure 8.5. This tells us that aggregate output
is higher under full compatibility as compared to
incompatibility.

Figure 8.5 
Total output under compatibility (top) and incompatibility (below).

We next turn to the effects of compatibility on individual
firms’ output. Here, matters are considerably more
complicated. We will establish the following result.



Proposition 8.2 Suppose two groups of firms make their products mutually

compatible. If, in the precompatibility phase, total output is less than A, then in

any postcompatibility equilibrium, (1) the average output of firms in the

compatibility group will increase, (2) the output of any firm not in the merging

coalitions will fall, and (3) total industry output will rise.

Let us sketch the arguments underlying this result.
Suppose there are J groups of firms, each of which is
compatible within itself but incompatible with every other
group. In the precompatibility phase, first-order conditions
for individual firms (assuming that all firms behave
symmetrically within a group) satisfy

where m j is the number of firms in group j = 1, 2…J. Let 
and  be the individual firm output and total output after
compatibility for groups 1 and 2, respectively.

We now construct an argument by contradiction.
Suppose that aggregate output . Then for groups j ≥ 3,
the output satisfies . However,  lies
above A − z + v(m jx j), so the equilibrium output .
Similarly, we may argue that  if  and  if .

Next, consider the two groups j = 1, 2, which make
compatible products compatible. For these firms in j = 1, 2,

Thus if , then . But this means that if ,
then all firms produce more in the postcompatibility world.
This is a contradiction. Thus . Next, from these
arguments, the claims about the output of the firms in
groups j ≥ 3 and firms in groups 1 and 2 follow.

◼



It is important to be clear about the content of this
result. The result shows that aggregate output by firms in
these two groups must increase: . This
does not imply that every firm in the combining groups
increases output! It may well be that one group loses
output while another group gains output. This will be
important next, when we examine the incentives to achieve
compatibility.

8.3.2 Incentives for Compatibility

There are different ways in which products can be made
compatible. We will start with the case of mutual
compatibility. In this case, all the firms involved must agree
to make their products compatible.

We consider a two-firm setting to illustrate some of the
issues.

The equilibrium under incompatible products is given by

A symmetric equilibrium under compatibility is given by

Let us start with the case where the firms are in a
symmetric situation in a pre-compatibility setting:

Clearly,  and profits .
This suggests that the profits of both firms increase after

moving to compatibility and the increase in profits is equal.
So if one firm wants compatibility, so does the other firm. If



Fi = F is the cost of compatibility, then firms choose
compatibility if F ≤ πc − πI.

The social welfare is given by W = ∑ π + CS. Typically,
CS is an increasing function of aggregate output, so firms
will underestimate the value of moving to compatible
products.

There is another issue: if the costs of compatibility are
different, Fi ≠ Fj, then the incentives for compatibility are
different and transfers may be needed to facilitate
compatibility. We then have to check the condition

Let us now take up the case in which the firms are in an
asymmetric equilibrium in the precompatibility setting.
Suppose  in the initial equilibrium. Then note that the
change in profits due to compatibility will be quite different
for the two firms. Recall that under incompatibility, the
profits are given by

Meanwhile, the profits under compatibility are given by 
. Thus it follows that , which

implies that the larger firm under incompatibility will have
less incentive to switch to compatibility. This is consistent
with the following empirical observation: dominant firms
are generally averse to compatibility.

In this model, we have assumed that compatibility
between different products is attainable, and at some cost.
This is a good starting point, but there are sometimes
technological constraints on how well products can be
made to work together. For instance, consider the case of



digital and analog technology. More generally, there may
be a trade-off between performance and compatibility.

One consideration suggested by the computations given
here is that low cost of compatibility will facilitate the
emergence of a common standard. In the context of
multisided platforms, this suggests the following general
point: if a side of the market can join many platforms at
little cost, then that would make multiple standards
attractive. It has been suggested that the modest costs of
providing video games for multiple standards have led to
increased distribution of games across multiple game
systems (such as PlayStation, Nintendo, and Xbox) and a
less-concentrated game system market (Corts and
Lederman (2009).

In this model, we have assumed that competition
between the firms is considered in terms of quantity of
choice. This moderates the effect of competition, and firms
can earn positive profits even when they choose a
compatible product. If firms compete in price, then there
would be a greater need to differentiate themselves from
each other. The ability of firms to differentiate themselves
on some dimension is important in the choice of
compatibility. Movie producers provide a highly
differentiated good. Consequently, they were quick to settle
on the VHS standard. More recently, this was also a factor
in the emergence of Blu-ray as a single standard. By
contrast, if content providers cannot differentiate
themselves, then they must do so by choosing separate
standards, which leads to the adoption of multiple
standards (Ellison and Fudenberg [2003]).

Let us now summarize what we have learned in this
section. Network effects depend on the compatibility of
products. If two software programs are distinct but files in
one program can be read and understood equally well in
the other, then the two software programs can be said to
be perfectly compatible, essentially constituting a single



network. However, if files in one program cannot be read at
all in the other, then the two programs are incompatible.
We examined the effects of compatibility on market
outcome—outputs, consumer surplus, and profits—and then
examined the incentives of firms to make their products
compatible.

Our analysis suggests that compatibility usually
increases value, and thus the size of any surplus.
Compatibility usually also increases the aggregate output
of firms. However, the impact on the profits of firms is
unclear. It may be that some firms lose out, while others
gain. In general, larger firms are less interested in
choosing compatibility than small firms are. Finally, the
firm’s incentive for making products compatible is less than
what is socially desirable.

8.4 Standards

We now examine the choices that firms have with regard to
compatibility more systematically. For expositional
simplicity, we will focus on the case in which two firms are
compatible if and only if they have the same standard and
make the same product. We first introduce a typology of
compatibility choices, and then we connect the incentives
to the discussion of the Katz-Shapiro model in section 8.3.
This section draws heavily on Belleflamme and Peitz
(2015).

Suppose there are two firms, denoted by 1 and 2. They
choose between two possible versions of their products, A
and B. The two versions are incompatible, so the firms can
be compatible only if they choose the same version. For
easy reference, we present the payoffs in matrix 8.1:



The form of competition will depend on the compatibility
choices. Matrix 8.1 tells us that there are four cases to
consider.

Firms choose the same product version. Let us refer
to this as “straightforward standardization.” There is
straightforward standardization on version A if there is a
unique Nash equilibrium in which both firms choose A.
This occurs when  and  and either 

 or .
Firms agree that standardization is best, but they

disagree about whether version A or B is better. This
is the situation referred to as “the Battle of the Sexes.”
Now both (A, A) and (B, B) are Nash equilibria: 
and  and  and . But firms rank
the equilibria differently:  and .
The firms strictly prefer to compete to become the

de facto standard in the market: this leads to a

standards war. For instance, if firm 1 wants version A
while firm 2 wants version B, then (A, B) is the only Nash
equilibrium in the game, with  and  and
either  or .
Firms have contrasting strategies: firm 2 prefers

incompatibility, while firm 1 prefers to be

compatible. In this setting, there is no Nash equilibrium
in pure strategies because  and  and 

 and .
It is helpful at this point to briefly discuss a well-known

instance of a standards war that took place at the start of



the twenty-first century. This was about the new generation
of DVD: Blu-ray and HD DVD. Both technologies used blue-
light lasers that increased disc capacity. The two formats
were incompatible. Each standard was backed by a
powerful collection of hardware firms: Blu-ray was backed
by Sony, Panasonic, Philips, Pioneer, Dell, and Apple, while
HD DVD was backed by Toshiba, NEC, Microsoft, and Intel.
The main content providers were movie producers, and
even here, some of them were producing exclusively in Blu-
ray, while one of them was producing exclusively in HD
DVD. It seemed as though each standard had a good
chance to prevail. However, in early February 2008,
Toshiba announced that it would stop the production of HD
DVD players and recorders. This brought the standards war
to an end. The tipping point apparently came when Warner
Brothers, following the lead of a number of other movie
producers, decided that it would produce exclusively on
Blu-ray.

We will now explore more systematically the economic
circumstances under which these different outcomes arise.
The discussion will focus on two variables—the size of the
installed bases of the firms and the relative
advantage/disadvantage of the firms vis-a-vis the different
technologies. We extend the Katz-Shapiro model of
compatibility to incorporate these two variables. Each firm
has an installed base of users, βi, with i = 1, 2. The firms
compete for new consumers; let  denote the number of
expected new consumers for firm i. Thus the expected size
of the network of firm i will be . Suppose that γ ∈{0,
1} is the level of compatibility. The expected network
benefit to adopting product i is then given by

8.4.1 Fulfilled Expectations Equilibrium



As in the previous analysis in this chapter, we will study the
equilibrium in which consumer expectations are fulfilled.
Building on the methods of analysis in section 8.3 above,
and assuming that there is a unit measure of consumers
with initial valuations between 0 and 1, we can then write
the inverse demand for product i as

The firms seek to maximize their profits πi = (pi − ci)qi.,
where ci ≥ 0 is the per-unit cost of production. It is
straightforward to check that the fulfilled expectations
equilibrium quantities and profits are

These expressions bring out interesting implications of
compatibility: (1) setting γ = 1 raises the equilibrium
quantities, and (2) setting γ = 0 mitigates the installed base
advantages and cost advantages. To develop these
implications more fully, we further simplify the model:
suppose that costs take on two values, c > 0 and c = 0.
Firm 1 has an advantage in product A, and hence its cost is
0 for product A and c for product B. Firm B has an
advantage in product B, hence its cost is 0 for product B
and c for product A. Also, for simplicity, set v = 1/4. Finally,
suppose that firm 1 has the installed base β1 = β > 0, while
firm 2 has no installed base (β2 = 0). Going forward with
these assumptions, we now write the payoffs of the firm
under standardization. As the products are compatible,
they have the same network benefit, given by .
The inverse demand function is given by



The payoffs of the firms will be different due to
differences in the cost of production. Let us consider
standardization on product A. In that case, the payoffs of
firms 1 and 2 are as follows:

Taking first-order conditions and solving for equilibrium,
we get

Similar computations yield the following equilibrium
quantities and profits for the equilibrium with
standardization on product B:

Consider next the incompatibility situations. We start
with the case where each firm picks its less preferred
product, thereby incurring cost c. Recall that firm 2 suffers
from a smaller user base. Firm 1 has user base β + q1,
while firm 2 has user base q2. Firm 1 and firm 2 payoffs can
then be written as

Taking first-order conditions and solving for equilibrium,
we get



Finally, we can compute the equilibrium for case AB by
noting that all costs are 0. This yields

Matrix 8.2 summarizes our computations.

8.4.2 Describing Equilibrium Outcomes

Let us now explain the different equilibria that can arise as
a function of the two key parameters, c and β. Both firms
choosing product A is an equilibrium if  and .
Substituting these payoffs from matrix 8.2, we get

Similarly, both firms choosing product B is an
equilibrium if  and . Substituting these
payoffs from matrix 8.2, we get



Similarly, for AB to be an equilibrium,  and 
: this means  and/or .

Finally, for BA to be an equilibrium, it must be the case
that  and . However, observe that  is
always violated, as β ≥ 0. So BA can never be an
equilibrium. This is intuitive, as firm 2 prefers to choose its
technology (B) and this incentive is reinforced if doing so
also gives firm 2 access to the installed base of firm 1.

To get an overall picture, we plot the three inequalities
given in equations (8.76–8.78) as shown in figure 8.6.

Figure 8.6 
Installed base size and technology costs.

In area I, the standardization outcomes AA and BB are
both equilibria. This happens because the costs are very
modest, so both firms are open to moving to the other
technology, and the installed base is sufficiently small that
firm 1 is not entirely averse to having firm 2 choose a
compatible product (in return for sharing a network of new
users).



In area II, the benefits from the installed base are large
and the costs of choosing product A are not, so firm 1 has a
strong incentive to choose product A. However, firm 1 does
not wish to share its network with firm 2, so there is no
pure strategy equilibrium.

In area III, straightforward standardization on product
AA is the unique outcome. The costs of product A are
modest, so firm 2 is eager to adopt product A. Firm 1 finds
the costs of switching to product B greater than the
potential costs of sharing its installed base with firm 2.

In area IV, the costs of switching products are large, so
each firm sticks to its preferred product. This leads to a
standards war, outcome AB.

Let us now summarize what we have learned in this
section. Premarket standardization is more likely to emerge
if the installed base effects and costs of different
technologies are both small or the installed base advantage
makes switching technologies worthwhile for new entrants.
By contrast, a standards war is more likely to occur when
the installed base effects are modest relative to the cost
differences across technologies for the firms involved.

8.5 Multisided Platforms

So far in this chapter, we have studied a very simple
setting, in which there is one group and the returns from
choosing an action depend on how many others from that
group choose the same action. We now turn to richer
settings, with multiple groups. Consider the Windows
operating system: having more users makes it more
attractive for software developers, and more software
programs make the operating system more attractive for
users. In this example, there are positive effects for the two
groups of users and software developers. On the other
hand, in a newspaper, an increase in the number of readers
makes it more attractive to advertisers, but more



advertising probably makes the newspaper less attractive
to readers. This draws attention to the richness of effects
across groups: sometimes effects are positive on both sides
(as in the Windows example), while in other cases the
effects can go in opposite directions (as in the newspaper
example).

The issues that we studied in the simple setting with one
group—the emergence of a dominant platform and the risks
of lock-in into an inefficient platform—remain pertinent.
But the setting with multiple groups also raises new
questions, such as how a platform should price access to its
services. We now study this pricing problem.

Let us start with one platform serving two sides of the
market, A and B. Demand on one side Di, is increasing with
the size of the other side j.

where βAB and βAB reflect the magnitude of the cross-side
demand effects and E(DB) and E(DA) reflect the expected
demands on the other side.

The profits of the platform can be written as the sum of
the profits from the two sides of the market:

To make progress, we again consider fulfilled
expectations equilibrium. In other words, the expected
demand is equal to the true demand:

Given the prices, pA and pB, we therefore have a demand
system of two equations in two unknowns, DA and DB.



We can solve these two equations and obtain consistent
demands:

Observe that an increase in pA lowers the demand of side
A and, due to cross-side positive externalities, also lowers
the demand for side B.

If we substitute these demands from equation (8.83) in
the profit expression equation (8.81), we obtain

Equipped with equation (8.46), we can compute optimal
prices. To develop a feel for the problem, it is helpful to
start with the benchmark case, βAB = βBA = 0. It is easy to
see that the optimal price will be V/2, as in the monopoly
pricing of independent markets. Next, let us consider the
case of cross-group externalities.

Solving for optimal prices, we arrive at

To develop an appreciation of the cross-effects, suppose
that βAB, βBA > 0 and βAB + βBA = 1. Applying this assumption
and substituting these prices from (8.85) in equation (8.84)
yields:



Let us examine the effects of the cross-group externality
term. Suppose that βAB > 1/2, so βBA = 1 − βAB < 1/2.
Consumers on side A gain more from side B than vice
versa. It then follows that the optimal price is higher for
side A than for side B. This is intuitive: an increase in the
demand of group B raises the demand of group A more
than the converse, so the firm sets a higher price for group
A and a lower price for group B. This intuition is also
reflected in the price elasticity for the two groups. The
price elasticity expressions for the two groups may be
written as follows:

We see that if βAB > 1/2, then the cross-price elasticity for
side A (with respect to price B) is higher. This means that
the platform can set fairly asymmetric prices to exploit
cross-side network effects. A question at the end of the
chapter examines this point.

Table 8.1 presents examples of well-known platforms and
their pricing strategies—the side they charge high price,
and the side they charge a low price. Our analysis suggests
that if other aspects of the market are broadly similar then
the side that creates larger positive cross-effects is offered
a relatively lower price to access the platform.

Table 8.1 
Platform pricing: premium prices in red, subsidy prices in blue.



Let us summarize what we have learned so far in this
section. We have studied the optimal pricing by a platform
that serves multiple consumer segments. The key insight
was that over and above the standard considerations, as
reflected in the price elasticity of demand, cross-effects on
demand give rise to discrimination in pricing across
different sides of the market: in particular, the side of the
market that exerts a larger positive effect on the demand of
the other side faces a relative lower price to access the
platform.

8.5.1 Openness

Openness pertains to how many sides of a market a firm
should pursue. A prominent example is the different
choices of Apple and Microsoft. Apple produces both its
computer hardware and its operating system, whereas
Microsoft controls only the operating system and counts on
independent manufacturers to supply most of the
hardware. In this market, Microsoft manages a three-sided
market among consumers, software providers, and
hardware providers, whereas Apple manages a three-sided
market, between consumers and software providers. So we
may say that Microsoft is more open, as it manages a three
sided market while Apple manages a two-sided market.

A firm may change its strategy on openness as its market
evolves. This is because an entrant firm faces a chicken-



and-egg problem: to establish a large demand on one side
of the market, a firm should establish itself on the other
side of the market, and that can in principle be addressed
by providing one side of the market itself. An example of
this sequence of strategies is Amazon, which first
established itself as an online book retailer before
introducing its Amazon Marketplace, where sellers set
prices on all kinds of products and interact with consumers.
Thus there is a sense in which it may be better to think of
two-sided strategies rather than two-sided markets because
the number of sides is to some extent endogenous.

8.6 Chains of Intermediation

Intermediaries are a defining feature of banking, retail, and
information services, and are a prominent feature of the
modern economy more generally. A central theme in this
chapter has been competition between different
intermediaries and platforms. This section presents an
experimental examination of this competition. In particular,
inspired by examples like Amazon, we study a scenario
where traders need connections to be able to trade.
Intermediaries lower the costs of exchange or reduce
friction between buyers and sellers. In line with the earlier
discussions on network effects, intermediation has a
reinforcing aspect: the more actors use an intermediary,
the more attractive it becomes for other actors to use. The
earlier sections have highlighted how these network
pressures may give rise to highly visible, globally dominant
intermediaries. This section explores the dynamics of
competition among the intermediaries from an
experimental perspective. The goal is to better understand
the mechanisms underlying the emergence of such
dominant intermediaries. The experiment is taken from
Choi, Goyal, and Moisan (2020).



We consider a setting in which trades between two
actors can be realized if they have a direct link or are
indirectly linked through a chain of intermediaries. These
links are costly to maintain. For concreteness, consider a
network with n actors in which all pairs are linked (i.e., the
complete network). In this setting, every bilateral exchange
involves direct trading: there is no intermediation.
However, n(n − 1)/2 links are formed. By contrast,
consider the hub-spoke network, in which all the exchanges
involving pairs of spokes—that is, (n − 1)(n − 2)/2 pairs—
entail intermediation (and possibly large rents for the hub).
The complete network contains n(n − 1)/2 links, while the
hub-spoke network contains n − 1 links: thus, there is a
large saving in linking costs in the hub-spoke network. A
network may be sparse and connected without a
concentration of intermediation power. An instance of such
a network is a cycle containing all actors: in this setting,
there are only n links, and because everyone is
symmetrically located, every actor earns an equal payoff.
So the cycle reconciles efficiency and equity. The
experiment helps us understand the economic mechanisms
that give rise to cycle and the hub-spoke networks
respectively.

We will consider a network formation model that builds
on the work of Goyal and Vega-Redondo (2007), Kleinberg,
Suri, Tardos, and Wexler (2008) and Galeotti and Goyal
(2014). Individuals choose to form links with each other
and then use the network thus constructed to engage in
exchanges. If an actor maintains links with many others,
they incur large linking costs but in return avoid paying
rents to intermediaries. If, on the other hand, they maintain
few links, then their linking costs will be modest, but they
will either not undertake many exchanges (as they have no
path connecting them to several traders) or conduct their
exchanges with the help of intermediaries to whom they



may have to pay rents. In this environment, there is also an
incentive to form links in order to become an intermediary
and to extract rents.

We start by presenting a theoretical model and then we
discuss an experiment.

8.6.1 Model

We study a network formation game. The set of players is
denoted by N = {1, …, n}, where n ≥ 3. Players propose
links with others: a link is realized only if it is reciprocated.
Formally, the strategy of a player i is a vector of link
proposals si = [sij]j∈N∖{i}, with sij ∈{0, 1} for any j ∈ N∖{i}. The
strategy set of player i is denoted by Si. A link between
agents i and j is formed if both propose a link to each other
(i.e., gij = sijsji). A strategy profile s = (s1, s2, …, sn) induces
an undirected network g(s). For ease of exposition, we will
drop dependence of g on s, and simply write network as g,
in this section. There is a path between i and j in network g
if either gij = 1 or if there is a distinct set of players i1, …, in,
such that gii1 = gi1i2 = gi2i3 = … = ginj = 1. The component of
player i in a network g is denoted by Ci(g).

Suppose that players are traders who can exchange
goods and that this exchange creates a surplus of V. This
exchange can be carried out only if these traders have a
link or there is a path between them. There is a fixed cost
of k > 0 per individual for every link that is established. On
the other hand, any proposal that is not reciprocated
carries no cost. If two traders have a link, it would be
natural that they split the surplus equally, each earning
V/2. If they are linked indirectly, then the allocation of the
surplus depends on the nature of competition between the
intermediary agents. One idea is to view these paths as
perfect substitutes. Another possibility is that the paths
offer differentiated trading possibilities.



Criticality pricing Suppose that paths between traders are
perfect substitutes. If two paths connecting a pair of
traders are perfect substitutes then their lengths do not
matter. This suggests that if intermediaries on two paths
were competing to gain business, they would be unable to
extract any surplus from the traders. If this is true, then the
only way an intermediary can hope to earn profits is if it is
somehow indispensable, that is, it lies on all paths between
two traders. We shall say that a trader is critical for a pair
of players A and B if it lies on all paths between them (for a
model of pricing in networks that develops the notion of
critical traders, see chapter 16).

Denote by T( j, k; g) the set of players who are critical for
j and k in network g, and let t( j, k; g) = |T( j, k; g)|.
Following Goyal and Vega-Redondo (2007), for every
strategy profile s = (s1, s2, …, sn), the net payoffs to player i
are given by

where Ii∈T( j, k) ∈{0, 1} stands for the indicator function
specifying whether i is critical for j and k.

The following result provides a description of pairwise
stable networks for a game with payoffs given by equation
(8.89). (see chapter 3 for a definition of pairwise stable
networks).
Proposition 8.3 Suppose payoffs are given by equation (8.89). There exists a

pairwise stable network. Pairwise stable networks include the star network if 

, the cycle network if , and the empty network if 

. The complete network is not pairwise stable for n ≥ 4.

A general observation is that pairwise stable networks
cover a wide range of structures that include the star and
the cycle. So incentives in this model sustain networks with



very small diameter as well as very large diameter. As the
cycle is pairwise stable this suggests that incentives are
compatible with equality.

Let us briefly examine the inequalities in proposition 8.3.
The conditions on the pairwise stability of the star network
arise from two incentive constraints: spokes must not wish
to form a link (this yields the constraint V/6 < c) and the
central hub must wish to form a link with a spoke (this
yields the constraint c < Vn/3 − V/6). The inequality in the
pairwise stability of the empty network arises because two
isolated individuals earn V/2 on forming a link. In the cycle
network, there are no gains to forming any new links
because that does not enhance access or give rise to
brokerage rent. Deleting a link gives rise to a line network
with the player at one end of it: comparing the payoffs from
a cycle with a line give rise to the inequality in the
proposition. Finally, we note that with more than 4 players,
a complete network is not pairwise stable as a player can
delete a link without incurring any brokerage rents or
losing access to any other player.
Betweenness pricing We next turn to betweenness pricing,
taken from Kleinberg, Suri, Tardos, and Wexler (2008). Let
njk = (d( j, k; g) − 1) denote the number of intermediaries
on a shortest path between j and k in network g. Trade
surplus between j and k is equally distributed between the
source and destination (j and k, respectively), and among
the intermediaries on the shortest path. If there are
multiple shortest paths, one of them is randomly chosen.
Therefore, the ex-ante expected return for any trader i is in
proportion to the shortest paths between j and k that i lies
on. We write  to denote the betweenness of player
i between j and k. Formally,



Given a strategy profile s = (s1, s2, …, sn), the net payoffs
to player i are given by

We next state the result on pairwise stable networks with
betweenness-based pricing.
Proposition 8.4 Suppose that payoffs are given by equation (8.90). There

exists a pairwise stable network. Pairwise stable networks include the complete

network if k < V/6, the star network if V/6 < k < Vn/3 − V/3, and the empty

network if k > V/2. Given any k and V, the cycle is not pairwise stable for large

enough n.

The arguments for pairwise stability of the empty
network and the star are the same as under criticality
pricing. A first difference emerges when we consider the
complete network: we note there are always returns from
forming an additional link as that shortens the path length.
Hence the complete network is pairwise stable if k < V/6.
In the cycle network, the gain in benefits (access benefits
and brokerage rents) for adding a link between two players
sitting at opposite points of the cycle increases with n. As a
result, if n is sufficiently large, a cycle is not pairwise
stable. Finally, observe that for any values of k > 0, and n ≥
3, at least one of complete, star, or empty network is
pairwise stable.

Turning to efficiency, observe that the intermediation
rents cancel out when we sum across individuals. A
network is said to be efficient if it maximizes the sum of the
trade surpluses realized minus the costs of any links. Goyal
and Vega-Redondo (2007) prove that an efficient network is
either an empty network or a minimally connected network.
The total payoffs in the latter case are , and
they equal 0 in the case of an empty network. So it follows



that an efficient network is minimally connected if , and
empty otherwise. A prominent example of a minimally
connected network is a star network.

Finally, payoff inequality varies significantly across
stable network structures. The outcome is equal in an
empty network and a cycle network. By contrast, in the star
network (under both criticality and betweenness), the hub
and spoke earn, respectively,

The ratio of the two payoffs grows without bound, in n,
highlighting large inequalities in large groups.

As is common in network formation games, there are
multiple stable networks with very different properties. For
instance, there are n star networks, each corresponding to
a different player as the hub. In addition, under criticality
pricing, the cycle network is also stable. Finally, the empty
network is stable alongside the star network for a wide set
of parameters. Thus, while the forces of efficiency and
equity point to the cycle and the star, individuals face
multiple challenges to getting on such networks, and it is
far from clear what networks will arise. Next, we present
an experiment with human subjects to delineate the scope
of the theory, particularly the ways in which pricing rules
shape incentives to form links and thereby determine the
architecture of the intermediation network.

8.6.2 Experiment

We will set the value of trade between any two traders to
be V = 10. The cost of a link is k = 80. With these
parameters, the star network is efficient. It is, however,
very unequal: in the star network, the hub and spokes earn
8,745 and 252, respectively. On the other hand, in the cycle
network, every player earns 335. The ratio of maximum to



median payoffs in the star network is 35; the cycle network,
by contrast, is approximately efficient (as it is only one link
more than in a star) and as every node is symmetrically
located the payoffs are equal. This tension between
inequality and efficiency is a key element in this
experiment.

The analysis of pairwise stable networks, efficiency, and
inequality suggests the following hypothesis.

Hypothesis Under both pricing treatments, subjects create

networks that are efficient. Under criticality pricing,

networks are equal and spread out with significant average

distances. Under betweenness pricing, networks are

unequal, with small average distance.

Design of experiment We will consider four groups of 100
subjects per pricing rule. Each group of 100 subjects play
the network formation game six times. Each play is
referred to as a round; a round lasts six minutes. The first
round is a trial round with no payoffs paid out. The first
minute of every round is a trial round. We pick an instant
from the last 5 minutes to pay out payoffs. In a round, at
any instant, the subject is shown the entire network of
reciprocated links. In addition, every subject is shown all
outstanding link proposals—made and received—that
involve them. Every subject is also provided full
information on the payoffs of everyone (this is done by
mentioning the numeric value of the payoffs for every
subject next to their player ID. However, subjects are not
shown unreciprocated links among other pairs. This was
done to keep the information options available to a subject
manageable.

At any instant a subject can make or remove a proposal
to another subject by simply double-clicking on the
corresponding node in the computer screen. Any
reciprocated proposal leads to the formation of a link.



Every subject is also shown the magnitude of access
benefits, brokerage rents, overall cost of linking, and net
payoffs. Finally, subjects are also provided with information
about the net payoffs of every other player (given within
the corresponding node of the network). A session with 6
rounds lasted 90 minutes on average. Subjects earned on
average 16.4 euros, including a 5 euros show-up fee. The
experiments were carried out at the University of Valencia
in Spain.

Findings

We begin by presenting snapshots of the typical dynamics
under the two pricing rules. Figures 8.7(a) and 8.7(b) show
the snapshots of the criticality treatment at minute 3 and
minute 6, respectively. Network structures are sparse and
connected and fairly dispersed. There is no single player
who occupies a dominant network position and extracts
large brokerage rents. Figures 8.7(c) and 8.7(d) show that
the dynamics in the betweenness treatment are quite
different. At minute 3, one subject (represented in red)
starts to emerge as a hub and becomes a dominant hub at
the end of the game.



Figure 8.7 
Snapshots of the dynamics. Source: Choi, Goyal, and Moisan (2022).

These snapshots bring out three points. First, under both
pricing protocols, subjects create sparse and connected
networks. Second, the pricing protocol leads to the
emergence of equal and dispersed networks under



criticality and to unequal and small distance networks in
betweenness pricing. Third, there is little inequality in the
criticality treatment while the hub in the betweenness
treatment earns large brokerage rents, and, as a result,
there is great payoff inequality in the betweenness
treatment. Let us examine the data more systematically.

First, consider efficiency. We define efficiency by the
ratio of the aggregate payoffs as a function of aggregate
payoffs obtained in a star network (that is, an efficient
network). Figure 8.8 plots the time series for efficiency
levels. We note that under criticality pricing, subjects
create networks that attain high levels of efficiency in
excess of 0.7. The situation is quite different under
betweenness pricing: here efficiency starts at a very low
level and increases rapidly to reach close to 0.5. Thus,
there is a large difference in the efficiency of the network
created under the two pricing protocols.

Figure 8.8 
Efficiency. Source: Choi, Goyal, and Moisan (2022).

The level of efficiency depends on the connectivity of
subjects (the realization of trade between subjects) and on
the number of links created by subjects. It turns out that
the connectivity of subjects is very high and that it is



similar across pricing rules—it is on average 98.7 percent
under criticality pricing and 98.1 percent under
betweenness pricing. As connectivity is high and
comparable, the differences in efficiency across treatments
must be due to variations in the number of links. We turn to
this issue next.

Figures 8.9(a) and 8.9(b) show that there is a large
difference in the number of links. Under criticality pricing,
the average degree lies between 2 and 3; by contrast,
under betweenness pricing, the average degree is higher,
between 4 and 5. Thus, there is a significant difference in
the number of links created by subjects in the two pricing
treatments.

Figure 8.9 
Network structure. Source: Choi, Goyal, and Moisan (2022).

We next turn to the distribution of degrees in the
networks. Figures 8.9b and 8.9e show that link inequality is
modest and remains stable under criticality pricing. We see
that the ratio of maximum degree to median degree



remains below 10 throughout the experiment. By contrast,
this ratio is much larger and it is increasing under
betweenness pricing—it is in excess of 30 by the end of the
game. This difference in degree inequality is first order and
is closely related to our next network measure, average
distance.

Figures 8.9c and 8.9f show that average distance is
above 4 in the criticality treatment and close to 2 in the
betweenness treatment. To put these numbers in
perspective, note that in a cycle in the average distance is
of order n/3 = 33, while in the star network the average
distance is (roughly) equal to 2. Thus the average distances
under criticality pricing are lower than the predicted
average distance in a cycle (this should not come as a
surprise; following the logic of the Watts and Strogatz
[1998] model, recall that the average distances in a cycle
would fall off sharply with a few additional links placed
randomly in a circle). However, the average distance under
betweenness is close to that predicted in a star network.

Finally, consider the payoff distribution. Figure 8.10
presents time series of the ratio of maximum payoff divided
by the median payoff. We see that payoff inequality is very
modest under criticality pricing—the ratio lies between 2
and 3. But payoff inequality is very large under
betweenness pricing—the ratio is over 34! This large
difference in payoff inequality mirrors the difference in
degree inequality that we noted above and points to the key
role of brokerage rents.



Figure 8.10 
Payoff inequality. Source: Choi, Goyal, and Moisan (2022).

To summarize: subjects create sparse networks. The
efficiency of the network is high under criticality pricing
and moderate under betweenness pricing. Pricing has
powerful effects—on the number of links, on average
distances and on degree and payoff inequality. We next
examine the incentives that give rise to these differences.

Pricing rules and linking incentives

We start by examining the number of link proposals made
by the different types of subjects (measured in terms of
how many link proposals they have received): the most
popular individual, the second-most-popular individual, and
the other individuals. Figure 8.11 plots the time series of
the average ratio of the number of link proposals made by
each type to the total number of link proposals. We see that
there are major differences in the link proposals made by
the two most popular individuals. Under criticality pricing,
most subjects form two links and no one forms a very large
number of links, which keeps the average degree close to 2.
By contrast, under betweenness pricing, a number of
individuals compete for the hub position by making a large
number of link proposals. Notably, the number of link



proposals by the most popular individual is growing over
time. In addition, the second-most-popular subject proposes
a large number of links. These proposals are reciprocated,
and as a result, there is a high fraction of subjects with
three or more links. This pushes up the average degree.

Figure 8.11 
Link proposals. Source: Choi, Goyal, and Moisan (2022).

The different link proposals under the two pricing rules
arise out of the possibility of generating intermediation
rents—under criticality pricing, there is very little incentive
to propose once individuals are in a cycle, as there are no
brokerage rents to be earned. By contrast, under
betweenness, additional links create shorter paths and
generate brokerage rents. Other individuals respond
positively to the proposals, as this enables them to access
traders at shorter lengths. However, as the network
evolves and the average distance goes down, the returns to
links with multiple hubs declines. Table 8.2 presents the
relationship between the number of links and payoffs and
places that in the context of equilibrium outcomes.

Table 8.2 
Payoffs associated with forming 1, 2, or 3 links: Last 2.5 minutes



Criticality BetweennessCriticality Betweenness

N = 100 N = 100

1 link 235 202
2 links 311 131
3 links 231 70

Equilibrium 335 252

Source: Choi, Goyal, and Moisan (2022). 
Note: Equilibrium payoffs are based on the cycle
network under criticality, and the star network (spokes’
payoffs) under betweenness.

It shows that under criticality pricing, subjects with 2
links earn more than those with either 1 link or 3 links. In
contrast, subjects with 1 link earn the most under
betweenness pricing. Moreover, the difference in payoffs
grows over time as the network evolves and average
distances gradually come down. The rate at which links
come down is slow, however, which accounts for the
relatively low level of efficiency even at the end of 6
minutes.

Let us summarize what we have learned in this section.
We have examined the effects of pricing rules on the
formation of intermediation networks. The theory is
permissive: a wide range of networks are pairwise stable.
The experiments yield a number of striking results. In
particular, we find that under criticality pricing, subjects
create efficient and sparse networks with relatively large
average distances. These networks lead to fairly egalitarian
payoffs. By contrast, under betweenness pricing, subjects
create sparse networks with lower efficiency. These
networks have very unequal degrees and support extreme
payoff inequality. Pricing rules create different incentives
for linking and this helps account for the different networks
we observe in the laboratory.

8.7 Reading Notes



The literature on markets with network goods goes back a
long way. For a seminal discussion of pricing and multiple
equilibrium in such markets, see Rohlfs (1974). The
analysis of inertia, excess momentum, and lock-ins
originated with Farrell and Saloner (1985) and Arthur
(1989). David (1985) offers an influential discussion of
lock-ins using the example of the QWERTY keyboard. More
generally, the issue of technological change has been
extensively studied in the context of network externalities;
see, for example, de Bijl and Goyal (1995). The analysis of
the compatibility problem draws on the seminal work of
Farrell and Saloner (1986) and Katz and Shapiro (1985,
1986). For surveys of the early literature on markets with
network effects, see Besen and Farrell (1994) and Katz and
Shapiro (1994) and for a nontechnical introduction to firm
strategies in markets with network effects, see Shapiro and
Varian (1995).

The literature on indirect network effects can be traced
back to the early work of Chou and Shy (1990) and Church
and Gandal (1992, 1993). Within this body of literature,
two issues have received a great deal of attention: optimal
pricing strategies and emergence of a dominant platforms.
For optimal pricing, see Armstrong (2006), Caillaud and
Jullien (2003), and Rochet and Tirole (2003, 2006). For
research on dominant platforms, see Rochet and Tirole
(2002) and Ellison and Fudenberg (2003). For an early
empirical analysis of network effects, see Rysman (2004,
2007). Rysman (2009) provides a survey of the literature on
two-sided markets. For a textbook treatment of platforms,
see Belleflame and Peitz (2022).

The experiment on trading and network formation is part
of a large body of literature on intermediation. Influential
early work examines pricing by intermediaries and their
ability to reduce friction, and thereby extract surpluses; see
Rubinstein and Wolinsky (1987); Choi, Galeotti, and Goyal
(2017); and Manea (2018). Condorelli and Galeotti (2016)



provide a survey of this work. For experiments on trading
in networks and on intermediation, see Gale and Kariv
(2009); Charness, Corominas-Bosch, and Frechette (2007);
and Choi, Galeotti, and Goyal (2017). The theory is based
on the theoretical models presented in Goyal and Vega-
Redondo (2007) and Kleinberg, Suri, Tardos, and Wexler
(2008). The criticality-based pricing rule is taken from
Goyal and Vega-Redondo (2007), while the betweenness-
based pricing rule is taken from Kleinberg, Suri, Tardos,
and Wexler (2008). The exposition here draws on the
recent experimental paper of Choi, Goyal, and Moisan
(2020).

In addition to these papers, in writing this chapter, I
have drawn on the industrial organization textbook of
Belleflamme and Peitz (2015) and the lecture notes of
Jonathan Levin at Stanford and Andrea Galeotti at the
London Business School (LBS).

8.8 Questions

  1.  Markets with positive adoption externalities are prone
to dominance by single firms. Discuss.

  2.  Markets with demand-side externalities may exhibit too
little or too much technological change. Discuss.

  3.  (Belleflamme and Peitz [2015]). Consider the Hotelling
model with linear transport costs, where two firms, 1
and 2, are located at the ends of the unit interval.
Assume that the unit mass of consumers is uniformly
distributed on this unit interval. Suppose that the
products offered exhibit network effects. Let the choice
of consumer x ∈ [0, 1] be given by ax ∈{1, 2}. A
consumer located at point x ∈ [0, 1] has utility



where  is the expected number of consumers buying
product i ∈{1, 2}. Let us assume that r is sufficiently
large that the market is covered (i.e., ). Both
firms produce at zero marginal costs. 
 We consider a two-stage game: in stage 1, both firms
simultaneously announce prices, and in stage 2,
observing these prices, consumers choose whether to
buy product 1 or 2. We will consider the subgame
perfect equilibrium of the two-stage game. In particular,
we will study the fulfilled expectations equilibrium in
stage 2 and then, given that stage 2 equilibrium, we will
work backward and solve for equilibrium in firm prices
(in stage 1).
(a)  Show that if t > v, then there is a unique fulfilled

expectations equilibrium in stage 2 for any pair of
prices. Assuming that t > v, solve for the equilibrium
in the first-stage game of pricing. Discuss the
network effects, v, on this equilibrium.

(b)  Show that if t < v, then there could be multiple
fulfilled expectations equilibria in stage 2 for some
pairs of prices.

  4.  (Belleflamme and Peitz [2015]). Consider a monopoly
platform that serves two groups of users. Each group i
= a, b comprises a unit mass of users. The platform
charges membership fees of Ma and Mb for two types of
users. The marginal costs of serving users are set equal
to zero. A user of group i enjoys utility

where αi is the stand-alone or intrinsic value of being on
the platform, γi is the marginal benefit of an additional
user on the other side of the market, and nj is the
number of users on side j. We shall assume that αi is



drawn from a uniform distribution on interval [0, v] and
γa, γb > 0.
(a)  Derive the demand on a side of the market as a

function of firm prices and the number of users on
the other side.

(b)  Solve for the system of demand equations derived in
the previous part to express the number of users as a
function of the prices Ma, Mb.

(c)  Now consider an asymmetric externality setting: set
γa = γ (with 0 < γ < 1) and γb = 0; and to simplify
matters, also assume that va = vb = 1. Solve for the
optimal prices of the monopolist.

  5.  Consider an n-player network formation game. Link
formation is two-sided. Every pair of players that has a
path between the players creates a total surplus of 1.
Suppose that the surplus is shared equally with the
critical traders necessary for trade to occur between a
pair of traders.
(a)  Consider a game with five players and write all the

critical players in a cycle network and star network.
(b)  Suppose the payoffs are as given in equation (8.89).

Discuss the different incentives to create links.
(c)  Suppose n = 5. Derive the conditions of costs of

links under which a star and a cycle network are
pairwise stable.

  6.  Carry out the computations and establish the following
result from section 8.6, about criticality based pricing:
pairwise-stable networks include an empty network if 

, a star network if , and a cycle network if 
. The complete network is not stable for n ≥ 4.

  7.  Consider an n-player network formation game. Link
formation is two-sided. Every pair of players that has a
path between them creates a total surplus of 1. Suppose



that the surplus is independent of the length of the
path. The payoffs are shared with players who lie on the
shortest paths between the two traders in the exchange.
(a)  Consider a game with 6 players, numbered 1 to 6,

who are located on a cycle network. Write the
payoffs of a player under betweenness pricing, using
the payoffs expression as in equation (8.90).

(b)  Consider a game with 5 players, numbered 1 to 6,
who are located on a star network (with player 1 as
the hub). Write the payoffs of the players under
betweenness pricing.

(c)  Show that a star is pairwise stable and also efficient
(under suitable costs of linking).

(d)  Show that, for fixed costs of linking, as the number
of players gets large, the cycle is not pairwise stable.

  8.  The star is pairwise stable and efficient under both
criticality pricing and betweenness pricing. However, in
the experiments on brokerage discussed in the chapter,
subjects only create the star under betweenness
pricing.
(a)  Discuss the circumstances under which criticality-

based pricing and betweenness-based pricing are
respectively reasonable.

(b)  Discuss the economic forces leading to the high
diameter network under criticality pricing and to the
small diameter and unequal network under
betweenness pricing.



9
Financial Contagion

9.1 Introduction

The financial crisis of 2007–2008 drew attention to the
great interconnectedness of the global financial system.
The collapse of a large American financial services firm,
Lehman Brothers, set off a financial contagion that spread
across the US and in due course had profound effects on
financial markets across the world. This contagion poses a
number of questions: What is the nature of
interconnectedness among financial institutions? How do
these interconnections transmit shocks? Do more
connections amplify or dampen shocks to individual
institutions? Does the structure of the network matter? If
so, what are the structural features of networks that are
relevant for setting policy? The aim of this chapter is to
develop a theoretical framework that can help us reason
about these issues.

Section 9.2 sets the stage by describing some empirical
features of the financial sector, which consists of banks and
institutions spanning a wide range of activities: mortgages,
insurance, supply credit, and short-term bank liquidity. The
diversity of activities makes the network of financial
linkages potentially very complex.

Section 9.3 begins the theoretical study by introducing
the basic interlinkage of obligations among financial



institutions and their ties with outsiders. We argue that the
valuation/net worth of a bank depends on the valuations of
other banks, which in turn depend on the valuation of the
original bank. This circularity in valuation is a fundamental
feature of financial networks. Thus the health of a financial
system depends on the fundamentals and the network
structure, but beliefs/expectations about valuations also
play an important role.

Section 9.4 presents a simple model of liquidity shocks
that is used to motivate the formation of interbank
linkages. The analysis of this model highlights a
fundamental trade-off in financial networks: linkages
reduce the exposure of individual banks to idiosyncratic
shocks, at the same time, by exposing a bank to the risks of
other banks, they open a path for the spread of defaults
across institutions.

Section 9.5 presents a general setting with an arbitrary
number of financial institutions and a rich class of linkages
that include cross-ownerships as well as borrowing and
lending relations. The study of this model shows that both
the nature of the link and the architecture of the network
play a role in shaping financial contagion. A key insight
concerns the relation between the size of shocks and the
nature of optimal networks. Linkages provide protection
against individual shocks, and thereby make the system
more resilient, but large shocks create the possibility of
systemic failure. Thus interlinkages are a double edged
sword.

Section 9.6 takes up the issue of network complexity and
opacity. The spread of a shock of a bank onto other banks
depends on the connections which that bank has and the
structure of the network. However, this structure is often
very poorly understood by the participants in the network
and outsiders such as policy makers and regulators. We
present a model to examine the implications of network
opacity on the behavior of banks.



Section 9.7 studies the forces that lead to the formation
of core-periphery networks. The conventional view is that
institutions establish links with one another as a way of
diversifying different types of risk and facilitating
intermediation. This model focuses on the intermediation
element; banks choose borrowing and lending links
strategically in a way that tilts the division of surplus along
an intermediation chain in their favor. This strategic
behavior pushes investment banks toward forming many
links with each other and occupying a core position in the
network. The resulting network exhibits higher systemic
risk than for a network that maximizes the aggregate
surplus.

9.2 The Financial Sector: Some Background

This section lays out the broad features of interdependence
among financial institutions. We discuss five topics: (1) the
globalization in the trade of goods and movement of
capital; (2) the growth of market concentration in the
financial sector; (3) correlations in portfolios held by
leading financial institutions; (4) the core-periphery
network connecting financial institutions; and (5) the large
costs of default and bankruptcy. Finally, we discuss a
number of case studies of financial contagion. The
exposition here draws on Jackson (2019), Jackson and
Pernoud (2021), and Glasserman and Young (2016).

Globalization: World trade grew from just under 20 percent
of world gross domestic product (GDP) at the end of World
War II to over 60 percent by 2015. This growth in trade
was supported and mirrored by a growth in financial
interconnectedness. To get a sense of the changes in
financial interconnectedness during this time, let us
consider a much more recent period. In 2000, 17 percent of
equities and 18 percent of bonds around the world were
held by foreigners; by 2016, the corresponding numbers



were 27 percent for equities and 31 percent for bonds.
Similarly, in 2016, more than $132 trillion out of a total
world investment of just over $300 trillion came from
foreigners. This international connectedness is
accompanied by a great measure of linkage within the
financial sector. Take, for example, the US: Duarte and
Eisenbach (2018) estimate that 23 percent of the assets of
bank holding companies and 48 percent of their liabilities
come from within the US financial system.

Consolidation: The financial sector has grown enormously,
but market concentration has grown too. To get an
impression of these trends, consider the situation in the
US: In 1980, there were 14,000 commercial banks, with
total assets of $2 trillion. In 2018, there were only 4,700
banks, but they held total assets of $16.5 trillion. We see
that the number of banks has dropped to a third of what it
was, while the assets have increased by a factor of 8. Thus,
in 1990, the five largest banks in the US held 10 percent of
total assets; in 2007, they held 35 percent; and in 2015,
they held 45 percent of all financial assets. The
concentration can be seen as the global level: in 2016, the
10 largest banks in the world held assets worth $26 trillion.
To put that in perspective, the combined GDP of the US and
China in that year was $29 trillion, and the world GDP was
$75 trillion.

Complexity: An important feature of the financial sector
over time is a great expansion in the range of instruments
available. Consider the case of mortgages. A hundred years
ago, a mortgage was typically issued by a bank, and often
that was the sole intermediary between that borrower and
the bank’s depositors. The bank performed a number of
functions: it took in deposits, it assessed the worthiness of
loans, and it monitored the loans and the payments of the
borrowers.



Over time, the number of parties involved in mortgages
has grown: a mortgage may now be issued through a
broker, who provides sales and marketing expertise. The
brokers work with a large number of firms that do the
actual issuing of the mortgages. They specialize in
documenting the circumstances of the borrowers and the
properties involved, and then they often resell the
mortgages. Mortgages are typically purchased and held en
masse by entities that collect payments and then resell
these payments in various tranches (packages of mortgages
grouped by risks and maturities) in the form of mortgage-
backed securities. The securities are in turn bought by
banks (and other investment companies), which then
package them together in portfolios, either to pay interest
to their depositors or offer them as investment funds to
private investors. Along the way, various parties insure and
hedge their risks via a variety of derivatives and insurance
contracts that are sold by entirely different firms.

Core-Periphery Structures: The interbank lending networks
have a core-periphery structure: a core of very large
national/international banks and a periphery of smaller
(but often still large) regional banks. The core banks are
highly interconnected, whereas the rest of the network is
usually very sparse (a regional bank interacts with a few of
the core banks). These empirical studies motivate the study
of the economic forces that give rise to core-periphery
networks.

Correlations: In the financial crisis of 2008, many financial
institutions were heavily exposed to the same mortgage
and subprime mortgage markets and had extensive
exposure to each other at the same time. Since then,
several studies have examined this sort of correlation
explicitly. For instance, German banks are more likely to
lend to banks with portfolios similar to their own: going



from the 25th to 75th percentile of similarity in portfolios
between two banks increases their lending to each other by
31 percent. There is also a similar pattern when we look at
the extensive margin in terms of the probability that two
banks lend to each other (for a discussion of these and
other relationships among financial institutions, see Elliott,
Georg, and Hazell [2020]).

Bankruptcy Costs: The costs of default or bankruptcy are
very large (see James, 1991). Consider the Lehman
Brothers default. There were initially $1.2 trillion of claims
made by creditors. The courts ultimately allowed only $362
billion of that amount to be recognized. These creditors
received 28 percent of their claims. This is probably an
extreme example, but it does help to bring out the fact that
bankruptcy costs can be very large. More generally,
bankruptcy recovery rates are on average under 60
percent, suggesting that over 40 percent of the value of a
company is lost in the process. These bankruptcy costs are
due to legal fees and the drop in asset value. The
magnitude of these bankruptcy costs is therefore a first-
order factor in understanding the economic costs of
contagion.

9.2.1 The Anatomy of a Crisis

Here, we discuss the collapse of Lehman Brothers, drawing
on Wiggins, Piontek, and Metrick (2019) and Wiggins and
Metrick (2019). At the time of its collapse on September
15, 2008, Lehman was the fourth-largest financial
institution in the US. It sought chapter 11 protection,
initiating the largest bankruptcy in American history. At the
point of its bankruptcy, Lehman had $639 billion in assets
and $613 billion in liabilities. Lehman’s collapse turned out
to be a seminal event in the financial crisis of 2008, that
began in the American subprime mortgage industry in
2007, spread to the credit markets, and then burned



through the world’s financial markets. Estimates of the cost
to the American economy based on lost output range from a
few trillion dollars to over $10 trillion. The global costs
were even greater. These large losses arose despite the
unprecedented efforts of several major American
institutions (like the Federal Reserve, the US Treasury, the
Federal Deposit Insurance Corporation), as well as the
central banks of many of the world’s largest economies.
What were the pathways that led from the collapse of one
institution to a global economic crisis whose consequences
are still being felt more than a decade later?

Let us begin with the immediate cause of Lehman’s
demise: exposure to the subprime mortgage and real estate
markets in the US. When these markets began to slow in
2007, they sparked a retraction in the shadow banking
system for short-term loans as concerns about unknown
exposure to securitized subprime mortgages spread to
other types of assets. Lehman, like many of the largest
investment banks, relied on these short-term markets to
raise billions of dollars each day. In 2008, it had assets of
$680 billion, supported by a mere $22.5 billion of equity.
Thus a 5 percent fall in real estate value could wipe out all
of its capital. When the other institutions refused to roll
over its loans, Lehman was doomed.

Turning now to the spread of the default, it is important
to set out the broader economic context. Through the late
1990s and in 2000–2005, there were two large-scale forces
at work: on the one hand, there was a funding glut due to
large surpluses from oil-rich countries; and on the other
hand, the US government had a policy encouraging home
ownership. This was accompanied by generous funding
through two federal government agencies, Fannie Mae and
Freddie Mac, which supported mortgages worth $5 trillion.
Housing and mortgages were felt to constitute a very safe
market. Private banks borrowed and lent heavily in the
housing market. By 2005, loans were increasingly being



made to individuals and households with little
creditworthiness. Lehman had underwritten very large
mortgage loans and borrowed vast amounts of money to
fund these loans. Many other major institutions had
invested large amounts in Lehman as well.

By 2005–2006, as borrowers defaulted on their housing
loans, there were foreclosures, which in turn led to housing
sales and lower housing prices. By early 2007, several
home mortgage lenders filed for bankruptcy protection,
and on July 31, 2007, Bear Stearns halted all redemptions
and liquidated two of its mortgage funds. By August 2007,
lenders were becoming increasingly reluctant to lend,
fearing that borrowers were holding subprime mortgages
that could become illiquid and be marked down to market:
Although subprime mortgages constituted only a small fraction of the portfolios
of most structured credit vehicles, cautious lenders pulled back from even
those that likely had no exposure to subprime mortgages. The resulting
pressure in turn transmitted to major banks that had sponsored or provided
funding guarantees to vehicles. (Bernanke, 2010, p. 3).

Beginning in early 2008, Lehman faced increasing
questions about the value of its real estate assets and
increased difficulty in trying to sell those assets. Lehman
was increasingly forced to deliver nonreal-estate assets to
secure funding. By March 2008, after the near-collapse of
Bear Stearns, there was a fear that Lehman would fall. This
is indeed what happened: it filed for bankruptcy on
September 15, 2008.

In the next few months, 22 Lehman affiliates around the
world were taken into bankruptcy and had their accounts
frozen. The fire sales of assets and the unwinding of
Lehman’s large stock of derivatives quickly escalated. As
Lehman’s counterparts began to take account of their
exposures, they recorded very large potential losses. In
September 2008 alone, a number of major international
banks and institutions had to be saved by their respective
governments: Bradford and Bingley in the UK, Fortis in the



Netherlands, Glitnir in Iceland, and the entire financial
sector in Ireland. Although Lehman was the only major
international financial institution to actually collapse, 15 to
18 other major institutions worldwide were saved from that
fate through very large government support.

Another important aspect of the Lehman Brothers
collapse relates to the role of regulatory agencies:
So the agencies were concerned. They gathered information. They monitored.
But no agency regulated …

The SEC knew that Lehman was reporting sums in its reported liquidity pool
that the SEC did not believe were in fact liquid; the SEC knew that Lehman was
exceeding its risk control limits; and the SEC should have known that Lehman
was manipulating its balance sheet to make its leverage appear better than it
was. Yet even in the face of actual knowledge of critical shortcomings, and
after Bear Stearns’ near collapse in March 2008 following a liquidity crisis, the
SEC did not take decisive action.

Statement by Anton R. Valukas, examiner, Lehman Brothers bankruptcy,
before the Committee on Financial Services of the US House of Representatives
regarding “Public Policy Issues Raised by the Report of the Lehman Bankruptcy
Examiner.” (April 20, 2010)

The Lehman collapse and its aftermath illustrate the
many ways in which financial contagion can occur. These
include a direct loss imposed on the Federal Reserve
Primary Fund, fears about the quality of all money funds (a
form of information contagion), a run on funding as
creditors pulled back lending, and potential fire sales.
Network opacity heightened these pressures: a major
concern throughout the evolving crisis was that “there was
no way to know who would be owed how much and when
payments would have to be made — information that would
be critically important to analyze the possible impact of a
Lehman bankruptcy on derivatives counter-parties and the
financial markets” (Government, 2011, p. 329).

Let us now summarize a few key points from the
discussion of this case. Financial networks contain very
large banks and financial institutions throughout the world.
The linkages among these institutions spread across a wide
range of entities: mortgages, insurance, supply credit, and



short-term bank liquidity. The wide range of these items
makes the network of financial linkages as a whole
potentially very complex. Moreover, the linkages between
banks are not public knowledge; they are only known to
these institutions. This makes the network very opaque,
and it is often very difficult to work through the
implications of any shock.

9.3 Building Blocks of Financial Networks

A financial network consists of nodes that are financial
institutions and links that represent various types of
obligations between them. We start by describing these two
elements of such a network. The exposition draws on
Glasserman and Young (2016).

It is helpful to start with the financial institutions; for
simplicity, they will be referred to as “banks” in what
follows. Figure 9.1 presents a stylized balance sheet of a
bank. Let a bank be denoted by i. The bank has two types of
assets—outside and in-network. Outside assets are claims
on nonfinancial entities, such as mortgages and commercial
loans. In-network assets are claims on other banks; they
include interbank loans and exposures through derivatives.
We denote by pki the obligation of bank k to bank i. The
bank’s liabilities include obligations to nonfinancial
institutions such as depositors and obligations pij to other
banks, j. The difference between the bank’s assets and
liabilities yields its net worth, ei.



Figure 9.1 
Balance sheet of a bank.

A key function of the bank is to facilitate payments
among sellers, buyers, and other banks. These payments
are central to the large value payment systems, such as
CHAPS in the UK, FEDWIRE in the US and TARGET2 in
Europe. Another key function is the allocation of capital by
intermediating between lenders and borrowers/investors.
This function calls for a sequence of relationships between
depositors and borrowers/investors. In carrying out this
function, the bank invests the outside liabilities bi in outside
assets ci. This gives rise to liquidity exposures for the bank:
to mediate between lenders that prefer short maturities
and borrowers that prefer longer maturities, the bank is led
to engage in interbank borrowing and lending. This
motivation for interbank links will be central to our study of
financial contagion in section 9.4.

A third important function is to mediate among parties
that have different appetites for risk-taking: the bank
provides risk transfer from agents seeking to reduce risk to
others willing to bear greater risk. Banks also help
corporations manage their exposure to exchange rates,
interest rates, and commodity prices through derivatives
and other contracts; the banks hedge this risk by trading
with other banks.

Let us now discuss briefly how a network can act as a
mechanism for the transmission of shocks from one bank to
another. Suppose that the outside assets of bank i fall (say,



due to a fall in the value of real estate). A drop in ci is
initially absorbed by the bank’s net worth, ei. But if the
shock is sufficiently large, the net worth is wiped out, the
bank is unable to fully repay its liabilities, and it defaults.
Its actual payment, pij, to bank j will be less than its
promised payment, pij. If the payment shortfall is
sufficiently large, the assets of bank j may not cover its
liabilities, and it may also default. This in turn could lead to
defaults by creditors of bank j. In this way, an asset shock
to bank i can spread through linkages from one bank to
another.

Figure 9.1 also suggests another important route
through which bank balance sheets may interact: common
exposure to outside assets. If a bank declares a fall in its
mortgage assets, this reveals information to other banks
that hold similar assets. This could give rise to information
contagion. This form of contagion is amplified if the banks
in question also have debt linkages.

So far, we have considered the downward flow of a shock
from an originating bank to its creditors. However,
financial linkages often feed back: bank i may borrow from
bank j, which may in turn borrow from bank i. Thus a shock
on bank i may rebound on itself via a cycle of linkages. Let
us consider a numerical example to appreciate the role of
such financial cycles.

This example is based on the network presented in figure
9.2. The number on each directed edge represents a
payment obligation, and each node’s net worth is shown in
bold. So bank C is owed 160 by mortgage holders, and it
owes 50 to a set of depositors. In addition, C is owed 100
by bank B, and it owes 100 apiece to banks A and D. The
difference between bank C’s assets (160 + 100) and its
liabilities (50 + 100 + 100) leave it with a net worth of 10.



Figure 9.2 
Financial network showing payments.

Suppose that the economy is hit by a shock that causes
some households to default on their payments to bank C:
instead of the promised 160, they pay only 40. Then C
defaults because its assets total 100 + 40 = 140, whereas it
owes 50 to the outside sector and 200 to other banks.
Suppose that C’s remaining assets are paid pro rata to C’s
creditors. Let us consider the spillover effects of this
default.

To begin, suppose that the value of C’s assets is 140.
Then the pro rata rule implies that C pays (140/250) × 100
= 56 to D, 56 to A, and 28 to the outside depositors. Now D
has assets worth 204 + 56 = 260 and debts totaling 300, so
D is in default. The pro rata rule implies that D pays 130 to
A and 130 to its outside depositors. At this stage, A’s assets
have an interim value of 120 + 130 + 56 = 306, whereas its
nominal obligations come to 360. Thus, A defaults, and the
pro rata rule implies that it pays half of its assets (namely
153) to B and an equal amount to outside depositors.

At this juncture, B’s assets are worth 153 + 30 = 183,
whereas its obligations total 200. Therefore, B defaults, and
the pro rata rule implies that it pays 91.5 to C and 91.5 to



outside depositors. Therefore the value of 140 assigned to
C’s assets was incorrect.

That value reflected the initial outside shock of 40, but it
assumed a full repayment of 100 from bank B. In fact, B is
able to pay at most 91.5, so C’s assets are worth at most
131.5, and the cycle must be repeated.

9.3.1 Keeping Accounts

We now present a general approach to computing the
correct profile of payments between banks. This approach
is taken from Eisenberg and Noe (2001), and it starts with
a network of obligations. The goal is to study how shocks to
particular institutions or assets propagate through a
network.

Following the previous discussion, the model has four
key ingredients: (1) a set of n nodes N = {1, 2, …, n}
representing various financial entities, such as banks,
broker-dealers, and insurance companies; (2) an n × n

liabilities matrix P = [pij], where pij ≥ 0, represents the
payment due from node i to node j at the end of the current
period and pii = 0 for every i; (3) vector c = (c1, c2, …, cn),
where ci ≥ 0, represents the total payments due from
nonfinancial entities to node i; and (4) vector b = (b1, b2, …,

bn), where bi ≥ 0 represents the total payments due from
node i to nonfinancial entities. The numbers ci and bi will be
called i’s outside assets and outside liabilities, respectively.

The asset side of node i’s balance sheet is given by 
, while the liability side is given by . The

node’s net worth is

Let us assume that initially, the net worth of every node
is strictly positive.



Consider a shock given by an n-vector x = (x1, x2, …xn),
where 0 ≤ xi ≤ ci for 1 ≤ i ≤ n. The direct effect of the shock
x is to reduce the net worth of each node i to the value:

If the net worth ei(x) is negative, node i defaults. We
shall assume that all debt obligations have equal priority
and in case of default, the assets are distributed to the
creditors in proportion to the nominal amounts they are
owed. (The equity holders are wiped out, since their claim
is on the firm’s net worth, provided that the latter is
positive, which it obviously is not.) The problem is to
determine a consistent set of payments conditional on the
initial shock. Recall that we encountered this problem in
our illustration of a default cascade based on figure 9.3.

Figure 9.3 
Eisenberg-Noe method.

To this end, let us define the relative liabilities matrix A
= (aij) to be the n × n matrix, with the following entries:



The term aij represents the proportion that i’s obligations
to node j represent of its total liabilities to all other nodes
and to the external sector. Suppose that the outside assets
suffer a shock, x. We shall say that node i suffers a direct
default if . The pro rata allocation rule
implies that i’s payments are proportional to the various
claims against i’s assets. The complication is that the value
of i’s assets depends on the payments made by others to i.
Thus i’s payment to j (conditional on x) satisfies

where  is the sum of the payments to i from the
other nodes in the system. In particular, payment pki(x) will
be less than pki if node k is also in default. We shall say that
payments pij(x) are consistent if, for all i and j,

We note here that the symbol a ∧ b indicates the largest
number smaller than a and b.

This condition can be expressed in a more compact form
as follows. Let pi(x) denote the total payment from i to all
other nodes in the financial system plus its payments to the
outside sector. Let p(x) = (p1(x), p2(x), …pn(x)) be the
corresponding payments vector. These payments are
consistent if they are feasible. In other words, for every i,



Any vector  satisfying equation (9.7) is called a
“clearing vector.” We will show next that there is a clearing
vector for any shock realization x.

For a given shock realization x, let p = p(x) and define
the mapping  as follows:

Starting with p0 = p, let

Observe that this algorithm yields a monotone
decreasing sequence p0 ≥ p1 ≥ p2… Since the sequence is
bounded below by the zero vector, it must converge. Let
limit p′ = p′(x). Since ϕ is continuous, p′ satisfies equation
(9.7); hence, it is a clearing vector.

We will now show that the net equity of the clearing
vector is unique. This step of the argument requires some
additional mathematical notation.

We start with a partially ordered set, {ℒ, ≥}.
For S ⊆ℒ, let ∧ S denote the greatest lower bound; that

is, ŝ ∈ℒ, such that (i) ŝ ≤ s for all s ∈ S and (ii) ŝ ≥ s′ for all
other lower bounds s′∈ℒ. Similarly, let ∨ S denote the least
upper bound; that is, , such that (i)  for all s ∈ S and
(ii)  for all other upper bounds s′∈ℒ. (ℒ, ≥) is a
complete lattice if and only if for every S ⊆ℒ, (i) ∧ S ∈ℒ
and (ii) ∨ S ∈ℒ.

In this setting, note that ℒ:= ∏ i[0, pi] and (ii) a partial
order ≥ is given by



Thus, for S ⊆∏ i[0, pi],

It is straightforward to check that for any S ⊆ℒ, (i) ∧ S
∈ℒ and (ii) ∨ S ∈ℒ. Thus (ℒ, ≥) is a complete lattice.
Moreover, the mapping Φ(p): ℒ → ℒ is order preserving: if
p ≥ p′, then Φ(p) ≥ Φ(p′) because all organizations are
repaid more given p. Functions Φ with this property are
called “isotone.”

The Tarski fixed-point theorem (Tarski [1955]) tells us
that if a partially ordered set (ℒ, ≥) is a complete lattice
and Φ: ℒ → ℒ is isotone, then letting 𝒫 be the set of fixed
points of Φ, 𝒫 is nonempty and (𝒫, ≥) is a lattice.

Equipped with this result, we can show that the net
equity is unique. Suppose that there are two clearing
vectors, p and p′. These two vectors constitute fixed points
of Φ. As the set of fixed points is a lattice, it follows that (i) 

 is a fixed point and (ii)  is a fixed point as
well.

Moreover, note that  for all i, and  for some i.
Thus more banks fail and all banks have weakly lower
equity value under , which means that total equity must
be strictly smaller. The total equity under  is given by

It is easy to see that the sum of net equity under  is also
equal to . This is a contradiction that completes the
argument for the uniqueness of net equity.

◼



Let us now the summarize what we have learned in this
section. We have described the basic features of
interlinkages of obligations between banks and the
relations to outside players. The valuation/net worth of a
bank depends on the valuations of other banks, which in
turn depend on the valuation of the original bank. This
circularity in valuations is a fundamental feature of
financial networks and shows that the health of a financial
system depends on the fundamentals, but
beliefs/expectations also play an important role.

9.4 Liquidity Shocks and Financial Contagion

The discussions in section 9.2 have drawn attention to the
role that interconnections among banks played in
spreading the collapse of Lehman Brothers. This section
presents a simple model of liquidity shocks and how
financial linkages can help overcome them. But we will also
see how these linkages create a pathway through which
shocks on a single bank or financial institution can spread
to other banks. Our discussion will draw attention to the
role of the network structure in shaping this trade-off. The
model discussed here is taken from Allen and Gale (2000).

Depositors have different timings for liquidity. Longer-
term investments yield larger returns. The uncertainty in
liquidity timing and the differential returns between short-
and long-term investments create the potential for a
mismatch between liquidity demand and investment
returns. If liquidity shocks are negatively correlated then
banks can make deposits in each other to tide over them.
These linkages give rise to networks that have different
levels of robustness to shocks.

This is a three-period model, where the time periods are
denoted by t = 0, 1, 2. There is a single consumption good,
which can be invested for future use. The consumer is
either type 1 or type 2. Type 1 values only period 1



consumption, while type 2 values only period 2
consumption. The type is revealed at period t = 1. All
consumers are ex ante identical, so there is a probability of
ω that consumers need liquidity in period t = 1 and a
probability of 1 − ω that they need liquidity in period t = 2.
There are two assets: short asset, which invested for one
period yields 1; and long asset, which yields r < 1 after one
period and R > 1 after two periods. There are four regions
A, B, C, and D. In each region, there is a continuum of
consumers. Regions are identical in their compositions of
different types of consumers.

Let c1 be the consumption for a period 1 consumer and c2
the consumption of period 2 consumer. The utility of
consumers depends on consumption in periods 1 and 2 and
is given by U(c1, c2) = u(c1) if type 1 and U(c1, c2) = u(c2) if
type 2. The utility function u(.) is increasing and strictly
concave (risk aversion). There are two states of nature: S1

and S2. In state S1, regions A and C have a large fraction of
period 1 consumers, ωH, and regions B and D have a low
fraction of type 1, ωL. The opposite is true in state S2. The
two states are equally likely. Thus aggregate demand for
liquidity is constant across states and is given by 2ωH +
2ωL.

We now turn to the optimal consumption paths for
consumers. First, note that all consumers in all regions are
identical. As consumer preferences are concave, a
utilitarian planner that seeks to maximize the sum of the
utilities must assign the same ex ante utility to all
individuals in all regions. As all banks are identical, they
too must make the same investments. Let a bank allocate
(per capita) x to the long asset and (per capita) y to the
short asset. The planner chooses x and y such as x + y ≤ 1,
with a view to maximizing the expected utility of
consumers. As the planner’s choice can be implemented in



a competitive equilibrium among the banks, we shall
assume that the banks do likewise.

We note here an important implication of the structure of
uncertainty: in both states 1 and 2, total consumption must
be equal. In other words, there is no aggregate uncertainty.
So the optimal plan is to allocate returns of x to cover type
2 consumers and allocate returns of y to cover type 1
consumers. Define this idea as follows:

The planner maximizes γu(c1) + (1 −γ)u(c2). Let us
substitute for c1 and c2 from equation (9.14). It follows that
in the social optimum, the marginal utilities must be equal:

Since R > 1, c1 < c2. Type 2 consumers therefore have no
incentive to pretend to be type 1 consumers and withdraw
their deposits in period 1.

Observe that this optimal investment strategy provides a
rationale for interbank deposits. A bank in region A cannot
implement this strategy on its own (i.e., in isolation), as it
will not be able to meet the liquidity demands of its
depositors in state 1. On the other hand, a bank in region A
and another in region B can exchange deposits and,
depending on the state, can then liquidate their deposits
and thereby meet the high liquidity needs. We now
describe three interbank deposit networks, each of which
allows the optimal allocation to be feasible: complete,
cycle, and two disconnected pairs.

9.4.1 The Role of Networks

A complete network is one in which each region holds
deposits in all other regions. The size of the deposit is z =
(ωH −γ)/2 (see figure 9.4). A representative bank in a
region will invest (x, y), as in the social optimum (note that



deposits cancel each other out, so the allocation remains
feasible at time t = 0). In period t = 1, with probability 1/2,
we are in state S1: region A has a high demand for liquidity
and liquidates all its deposits in other regions. Region C
does likewise. Regions B and D, however, will retain their
deposits. So the net inflow of liquidity into region A is given
by (ωH −γ)c1, and this is exactly what is required to cover
the liquidity demand in state S1:

Simplifying, we get γc1 = y, the first best allocation
requirement. So deposits of regions B and D remain in
place, and in period t = 2, they are liquidated to pay 1 − ωL

period 2 consumers the promised c2.

Figure 9.4 
Interbank networks: (a) complete; (b) cycle; (c) disconnected pairs.

A cycle network is one in which each region holds
deposits in only one other region. The size of the deposit is
given by z = (ωH − γ) (see figure 9.4). The representative
bank in a region will invest (x, y), as in the social optimum.
In period t = 1, with probability 1/2, we are in state S1:
region A has a high demand for liquidity and liquidates all
its deposits in region B. Region C does likewise in region D.
Regions B and D retain their deposits. The net inflow of



liquidity into region A is given by (ωH −γ)c1: this is exactly
what is required to cover the liquidity demand in state S1:

The situation is similar for region C. Deposits of regions B
and D remain in place, and in period t = 2, they will be
liquidated to pay 1 − ωL period 2 consumers the promised
c2. The liquidity balance for region A in period t = 2 is [(1 −
ωH) + (ωH − γ)]c2 = Rx, and this simplifies to (1 − γ)c2 = Rx,
which is prescribed by the social optimum.

A disconnected network is one in which pairs of regions
hold deposits in each other. The size of the deposit is z =
(ωH − γ) (see figure 9.4). The representative bank in a
region will invest (x, y), as in the social optimum. In period
t = 1, with probability 1/2, we are in state S1: region A has
a high demand for liquidity and liquidates all its deposits in
region B. Region B retains deposits in region A. Region C
liquidates its deposits in region D, while region D retains
them in region C. So the net inflow of liquidity into region A
is given by (ωH − γ)c1, and this is exactly what is required
to cover the liquidity demand in state S1:

Simplifying equation (9.18), we get γc1 = y, the first best
allocation requirement. The situation is similar for region
C. So deposits of regions B and D remain in place, and in
period t = 2, they will be liquidated to pay ωH period 2
consumers the promised c2.

We have shown how interbank deposits help the system
attain the first best allocation (something that is
unattainable under autarchy). Now we show how these
linkages can act as a conduit for the spread of shocks and
lead to the breakdown of the system as a whole. To study
financial contagion in its simplest form, let us suppose that



there is an unanticipated shock to the system that leads to
excess aggregate liquidity. We will show how the shock can
spread across from one region and lead to a systems
breakdown.

9.4.2 Shocks and Robustness

Let there be a new state S in addition to states S1 and S2.
This state has γ + 𝜖 type 1 individuals for region A (with 𝜖
> 0) and γ type 1 consumers in all regions. In other words,
there is excess aggregate liquidity demand in state S.

Suppose that we arrive at state S: The bank in region A
cannot pay off its type 1 consumers by using its own
deposits, y: this is because from the first best allocation, γc1

= y. What can such a bank do? It can liquidate its deposits
in other regions and/or it can liquidate its long assets.
What is the optimal order in which to liquidate assets?

Observe that the cost of liquidating its own short assets
is 1: they yield 1 now, and upon reinvestment, they will also
yield 1 in the next period. Liquidation of deposits in another
bank leads to a current payoff of c1 and a loss of c2 in the
next period. Finally, if it liquidates its own long asset, then
it gives up R in return for r. To study the spread of shocks,
we will suppose that

This condition implies a pecking order for liquidation,
starting with own short assets, then deposits in other
banks, and finally own long assets. We now study how the
liquidation of the bank in region A plays out in the various
networks.

Let us start with the cycle. Recall that each bank holds
an (x, y) initial allocation and promises to pay c1 to type 1
consumers and c2 to type 2 consumers. To make this
feasible, a bank in each region holds [ωH − γ] deposits in



one other region (so banks in region A hold deposits in
region B, B in region C, C in D and D in A, and so forth).
Next, consider the effects of state S as mediated through
the network. As D holds deposits in region A, the focus is
on the effects on D and via D on other regions.

At date 1, a bank is said to be solvent if it can meet
demands from consumers and other banks from its short
assets and deposits on other banks, insolvent if it needs to
liquidate some of its long-term assets, and bankrupt if even
the long-term assets do not suffice to cover all the demands
in period 1.

The value of a deposit in the bank in region A, at date 1,
is c1 if the bank is not bankrupt, and it is q A if it is
bankrupt. Define q A as the value under bankruptcy. This
liquidation value equates the value of assets, y + rx + zqB,
and liabilities, (1 + z)q A, and is given by

If the bank in region B is not bankrupt, then qB = c1 and we
can compute q A directly; if it is, then we must work out qB,
which may depend on the value of qC and so forth. If a bank
cannot cover its liquidity needs from its short assets and
deposits, it liquidates some of its long assets. This is
possible without a run, so long as type 2 consumers are
assured of a return of c1. In other words, a bank must keep
at least [1 − ωH]c1/R units in long-term assets. This yields a
buffer that is given by

Bankruptcy occurs when extra liquidity required by region
A exceeds the buffer:



Bankruptcy in region A in turn means that the assets of
the bank in region A are worth q A < c1 at date 1. Deposits
of region D in region A now entail a loss of (c1 − q A)z. This
creates a liquidity shortage in region D. What is the
magnitude of the shortage and its systemic implications?
Observe that q A is increasing with the value of deposits of
banks in region B. So the maximum value of assets of bank
in region A is given by

This in turn means that the minimum loss to the bank in
region D is z(c1 −qA). The bank in region D will be bankrupt
if this loss exceeds the buffer b(γ):

The following result summarizes this discussion.
Proposition 9.1 Suppose that equations (9.19), (9.22), and (9.24) hold. Then

state S leads to bankruptcy in region A, which spreads through the network

and leads to bankruptcy in all regions.

We have developed all the arguments underlying
proposition 9.1 except for the observation that bankruptcy
in region D implies an even greater loss in region C

deposits. This is because qD < q A: q A is computed under the
assumption that qB = c1, while qD is computed under the
assumption that q A < c1. So if region D bankrupts, then the
losses are even greater for region C, which will lead to
bankruptcy in that region and subsequently in region B as
well.

The network structure can determine the possibility of
financial contagion. To illustrate this point, let us now take
up the complete network. Recall that the deposits are [ωH −
γ]/2 in each region. In state S, the bank in region A faces a
liquidity demand of [γ + 𝜖]c1 and short-term assets yield y,



so there is a deficit of liquidity. Under equation (9.22), this
leads to bankruptcy in region A. The value of the deposit in
region A is

By definition, , so there is a loss in each of the other
regions. The size of this loss is

This loss may be smaller than the loss in the cycle network
since the size of each link is smaller (z/2 < z). Thus moving
from a cycle network to the denser complete network can
avert financial contagion. This suggests that adding
linkages reduces contagion.

We now turn to the disconnected network to illustrate
that the effects of additional links on financial contagion
are nonmonotonic. Recall that in the disconnected network,
banks A and D and B and C separately hold deposits in each
other. The deposit size is z = [ωH − γ]. Bankruptcy in region
A now leads to bankruptcy in region B, but there is no
contagion, as there are no links across to banks C and D.
The connectivity of the network offers some risk insurance
and liquidity smoothing, but also contains the contagion.

Let us now summarize what we have learned with this
model. Resilience issues arise out of a tension between the
benefits of links and the potential spillovers. The push
toward efficient risk sharing necessitates connections
between banks, which creates the potential for systemic
contagion and widespread collapse. We have examined a
very specific type of linkage and looked at very simple
networks with four banks/regions. In the next section, we
will take up more general networks and other types of



connections to further elaborate on the role of financial
linkages in shaping contagion.

9.5 Financial Shocks and Optimal Networks

The discussion in section 9.2 suggests that the linkages
between banks can have bases ranging from debt to equity
to common exposure to the same assets. In section 9.4, we
studied a setting with four sets of banks with deposit-based
links. In this section, building on the Eisenberg-Noe model,
we propose a general theoretical framework that
accommodates an arbitrary number of financial institutions
and allows for ownership links in addition to deposits. The
analysis will reveal that it is both the content of the
relationship, as well as the topology of the network that will
matter for financial contagion. The framework presented
here builds on the work of Cabrales, Gottardi, and Vega-
Redondo (2017); Elliott, Golub, and Jackson (2014);
Glasserman and Young (2015); Acemoglu, Ozdaglar, and
Tahbaz-Salehi (2015b), and Acemoglu, Ozdaglar, and
Tahbaz-Salehi (2015a). The exposition draws on Cabrales,
Gale, and Gottardi (2016).

Let there be N banks. Each bank has liabilities and
assets. The liabilities are to external investors and are
given by ℓ. The assets are claims to returns on N projects.
The return on a project i is given by R − si, with si ∈ [0, R).
The banks have financial linkages to each other. It is
important to observe that the value of the assets of bank i,
vi, is contingent on the value of bank vj, as they both
depend on vector r, which describes the realizations of the
returns of the N projects (so for each bank i, let ri = R−si if
a shock hits the return of project i, and R otherwise). We
will write this relationship as follows (keeping in mind that
vi is contingent on the value of vj):



where  and A is an N × N nonnegative matrix
with entry aij. Matrix A describes the pattern of the linkages
among the banks. Function f(.,.), captures the effect of
linkages on a bank’s value. If the value vi of the assets of
firm i is less than the value ℓ  of its liabilities, the firm
defaults. The default of a bank lowers the value of other
banks and may trigger further defaults. Thus linkages bring
out correlations between the status of banks.

We now turn to interpretations of the nature of linkages.
Links as equity exchange There are various types of links that
banks maintain with each other. Cabrales, Gottardi, and
Vega-Redondo (2017) propose the following interpretation.
Bank i initially controls its own project, i. The bank
exchanges claims to the returns to projects with other
banks that constitute its immediate neighbors. The pattern
of exchanges at each round is described by matrix B, where
the elements of row i describe bank i’s trades with its
immediate neighbors. After K rounds of exchange, we
arrive at the linkage matrix A = BK, and f(A; r) = Ar. This
means that at the end of the exchanges, bank i has access
to returns given by .

In a similar spirit, Elliott, Golub, and Jackson (2014)
propose that banks start with full ownership of returns to a
project and then exchange equity with each other. Letting
cji denote the fraction of the outstanding equity of firm i

sold to firm j, and cii the fraction of returns owned by
external investors, we get . This leads a bank to
own direct and indirect shares in the returns to various
projects that are given by a linear combination of the
returns of the underlying projects, with weights given by
the matrix



where Ĉ is the diagonal matrix with entry ĉii, and C is the
matrix with entry cij (and all diagonal terms set equal to 0).
Mutual ownership here reflects equity. This means that a
bank that has a share in another firm also must bear any
losses due to insolvency of that bank. Letting β be the loss
due to insolvency, we arrive at the following formulation of
a bank’s valuation:

where 1vi<ℓ denotes the vector of indicator functions taking
value 1 if vi < ℓ, and 0 otherwise, for i = 1, …, N. Observe
that v is determined as a fixed point of the function defined
in equation (9.29). This is because the level of v determines
whether a bank is solvent: if a bank is insolvent, then it has
to pay the additional default cost, which affects its
valuation. We illustrate this fixed-point feature of
valuations as follows: Suppose that N = 2, and let the
matrix of cross-ownerships be given by

In this example, let R = 1 and suppose that si takes on
value 0 or 0.5; let ℓ = 0.8 and β = 0.5. First, consider the
case when project 1 yields 1 and project 2 yields 0.5. Then
firm 2 defaults, but firm 1 does as well, due to the fraction
of default costs it must bear. By contrast, if both projects
yield 1, then there are two possible valuations: both firms
are solvent or both firms default. In other words, the belief
that a firm may default suffices to generate losses in banks’
valuation, which triggers a default even when the returns
on the underlying projects are adequate to cover liabilities.

This example is extremely simple, but it helps to bring
out the self-fulfilling nature of default cascades. Moreover,
they are generated by network interdependencies



interacting with beliefs. When there are costs associated
with bankruptcy, these cascades are not just transfers that
fail; the failures trigger real economic costs, and therefore
the multiplicity can have large economic consequences.
This multiplicity is a fundamental feature of this
environment and is a consequence of the default cost: note
that if there are no default costs, then we are back in the
scenario described in section 9.3: the valuations are
unique.
Links as borrowing and lending relations Financial linkages
between banks often represent borrowing and lending;
Glasserman and Young (2015) and Acemoglu, Ozdaglar,
and Tahbaz-Salehi (2015b) study debt linkages. Under the
debt interpretation, aij denotes the payments from bank i to
bank j. The total liabilities of bank i are then given by 

. As in the other interpretations, firm i has access to
the returns from project i, and thus the book value of its
assets is . The firm remains solvent if the actual
value of the assets can cover the liabilities. In other words,
the actual payments made by firm i to firm j will thus
depend on the value of the assets of its debtors. Therefore,
the obligations A create interdependence between the
valuations of the banks. The actual valuation vi of bank i

will thus depend on the realizations of projects r = (r1, …,

rN) and the rules on how the banks settle claims in case of
inadequate returns.

Suppose that all claims have equal seniority. Then we
can use the methods developed in section 9.3 to solve for
clearing vectors and bank valuations. For any vector of
realized returns r, the final repayment from a bank i is
obtained as a solution to the following system:



The actual payments made by firm i to firm j are then

where pi(r) ∈ [0, 1] and pi(r) = 1 if firm i does not default.
Firm i defaults if the actual value of its assets is less than
the value of its liabilities:

In this setting, we know that there is a unique solution of
payments, p(r) (generically). The value of the firms’ assets
net of their internal liabilities, therefore, is given by

9.5.1 The Spread of Defaults

We are now ready to consider the issue of financial
contagion—the process whereby shocks affecting one bank
are transmitted by financial linkages and lead to defaults
by other banks. The interest will be on the role of the
network of financial linkages in transmitting the initial
shock. To develop some basic intuitions, it is convenient to
restrict our attention to regular networks where each bank
is equally exposed and the pattern of exposure is also the
same (i.e., the matrix A is symmetric). We will consider the
impact of a shock on bank 1.

We will study the minimum shock on bank 1 needed to
ensure that a certain number of banks default. In
particular, we will derive this minimal shock s(k) for k

defaults as a function of the architecture of the network.
Let rj be the vector with elements (R −s(k), R, …, R), such
that f(A; rk) has k components less than or equal to ℓ  (at
least one of them being equal) and the other N − k strictly
greater than ℓ . In other words, a shock of size s(k) + 𝜖

where 𝜖 is a small positive number, will lead to the default



of k banks. We will study how the values of s(1), …, s(N)
vary with the network of linkages as reflected in matrix A.
It is instructive to focus our attention on two very stylized
networks: the complete network, where every bank is
equally linked to all other banks; and the one-directional
ring network, where every bank is linked to one other bank.

Cross-ownership Linkages: Consider the interpretation that
financial linkages involve cross-ownerships and sharing the
returns of the projects. Under this interpretation, let us
define a complete network as one in which every bank
owns share c/N − 1 of every other bank. The residual 1 − c
of a bank is owned by outside investors. Applying the
formula A = Ĉ(I − C)−1 yields

The complete network reflects common exposure of a set
of banks to the same set of assets. Let us define a ring
network as one in which every bank i ≥ 2 owns share c of
bank i − 1 and bank n owns share c of bank 1. We
represent this as

In the ring network, the distance reflects the difference
in exposure to a set of assets.

Figure 9.5 presents a complete network and a ring
network. We will assume that every bank i is more exposed
to the returns of its own project i than to the returns of



each of the other projects. It can be verified that condition
α > (1 − α)2/(1 − αN−1) ensures this property for both the
complete and the ring networks.

Figure 9.5 
Networks with cross-ownership (shares between node 1 and other nodes).

Let sC(1) and sR(1) denote the minimal size of the shock
leading to the default of one bank under the complete
network and the ring network, respectively. This minimum
shock is the same for both networks and is given by the
following equation:

This yields the insight that sC(1) = sR(1) > (R − ℓ)/α: thus,
linkages to other banks allow a bank to remain solvent for
larger shocks than an isolated bank can do. Turning to a
larger number of defaults, consider the complete network.
Observe that every bank (other than 1) faces an identical
asset and liability situation. Hence either there is zero
defaults, one default, or all the banks default. In other



words, the minimum shock needed for two or more defaults
is the same, sC(2) = … = sC(N). This shock is given as a
solution to the following equation:

This suggests that the shock must be large enough to
cause the second (and thus Nth) bank to fail to recapture
enough shares to cover its liabilities after the insolvency
caused by the first shock. This equation considers the
threshold from the point of view of bank i ≠ 1. Suppose that
only bank 1 has gone bankrupt and all others are solvent.
What is the largest shock that could be sustained such that
this bank can cover its liabilities? Any shock greater than
this would lead to the bank (and hence all other banks)
going bankrupt.

Observe that in the ring network, the off-diagonal terms
in AR decrease with distance from the diagonal. This
naturally suggests a higher threshold of the number of
defaults. The exact thresholds for different k values may be
obtained as solutions to the following equation:

As the off-diagonal elements are falling in number N, one
immediate implication is that the threshold values on
minimal shocks are all increasing with the number of
banks/projects. In other words, other things being the
same, a larger system permits greater diffusion of
exposure, which makes it more difficult for a shock on one
firm to lead to contagion.



Let us next compare the thresholds in the complete and
the ring networks. It is simpler to take up the case for large
and small default costs separately. First, consider small β.
An inspection of matrices AC and AR reveals that the largest
(smallest) off-diagonal term in the ring network is larger
(smaller) than the common off-diagonal term in the
complete network. This suggests that generalized default of
all banks will be more difficult in the ring network than in
the complete network, but localized defaults by a small set
of banks will be easier in the ring network than in the
complete network.

Let us turn next to large costs of default. When default
costs are large, a default of a single bank leads to default
by all banks. The key to understanding this result is to note
that when β is small, the size of the shock that needs to be
absorbed is roughly equal to the size of the shock hitting
firm 1, s1. By contrast, when β > 0 is large, the size of the
shock is larger and grows on average as more banks
default. There is an amplification created by the default
costs. This yields the desired conclusion: the default of a
single bank leads to the default of all banks. Indeed it is
possible to show that when default costs are large,
generalized default of all banks is easier in a ring network
than in the complete network. This last step is the subject
of a question at the end of the chapter.

The following result summarizes out discussion.
Proposition 9.2 Shock thresholds for the default are rising in the number of

banks/projects, N. If default costs, β, are small, then sR(2) < sC(N) < sR(N). If
default costs are large, then either all or none of the firms default, sm(N) ≤
sm(1) for m ∈{C, R}. The threshold for all firms defaulting is lower in the ring

network, sR(N) < sC(N).

This result sets the stage for the derivation of optimal
networks in a given environment. Given that there is a
uniform cost for bank defaults, the welfare loss due to



contagion is proportional to the number of banks that
default.

An inspection of proposition 9.2 gives an insight into how
levels of shock can translate into relative effectiveness of
different networks in containing contagion. We will say that
a network g dominates another network g′ if the more
banks default under g′ than under g. With this definition in
hand, we can state the following result on the ranking of
networks in terms of their potential for contagion.
Proposition 9.3 (i) If shock s ≤ sR(2) or s > sR(N), then the ring and the

complete networks are equivalent. (ii) If sR(2) < s ≤ sC(N), then the complete

network dominates the ring network. (iii) If sC(N) < s ≤ sR(N), then the ring

network dominates the complete network.

So far, we have focused only on the density of
connections in the network. But other aspects of the
network can in principle play an important role. To see this,
let us take up the possibility of segmenting the system of N
firms into disjoint components. Fragmentation of the
network into separate components can be an effective
instrument for limiting contagion and dominate complete
and ring networks. For concreteness, consider situations
like (iii) in proposition 9.3. In this situation, the network
that consists of disjointed and complete components
typically dominates a single ring structure.

In the discussion so far, we have focused on the role of
the network topology and the nature of the linkage (equity
versus debt). In practice, the details of the network
connections are often not easily available. It is therefore
worth noting that a higher-level statistic is important: the
level of integration of a bank with other banks. In the
equity model, this is captured by 1 − α, while in the debt
context, this is captured by the value of a. An inspection of
equations (9.37–9.39) reveals that the threshold for one
default is increasing in 1 − α, while the threshold for j > 1,
s( j) decreases with 1 − α. This contrasting effect on a



single and multiple default nicely brings out the trade-off
involved in financial linkages.

Debt Linkages: We now study the role of financial networks
when the linkages represent debt relations. Let us start by
noting that complete and ring networks can be constructed
in a straightforward way: in the complete network, set aij =
aji = a/(N − 1), where a > 0, for all i, j. In the ring network,
set ai, i+1 = a for all i, and aij = 0 otherwise. We will also set
β = 0. Let us start by noting that the effect of the size of the
system, N, remains unchanged: The minimal size of the
shock needed for all defaults of all banks grows with N.
This is true because as N grows, the magnitude of a shock
on directly linked banks becomes smaller, which makes
them less likely to default. However, for a given N, the
effects of networks are quite different when links denote
debt.

Observe that when linkages represent debt, changes in
the number of linked banks have no effect on the individual
threshold for default, so long as aggregate liabilities remain
unchanged. This is because an individual bank retains full
right to the returns to its project, and thus the threshold.
Hence when linkages represent debt, their presence does
not provide any insurance to a bank against idiosyncratic
shocks. A second major difference pertains to the relative
attractiveness of the complete and ring networks. When
debt to external creditors (i.e., outside the network) is
senior to debt within the network, the threshold shock
needed to get all banks to default is the same in the
complete and ring structures. However, for the ring
network, we have sR(1) < sR( j) < sR(N) for 1 < j < N for
shocks of intermediate size between sR(1) = R − ℓ  and
sR(N). In this range of shock values, therefore, there are
multiple failures in the ring structure and only a single
failure in the complete structure. Thus, when linkages



represent debt, the complete network always dominates the
ring network.

Let us summarize what we have learned in this section.
We have developed a model of financial linkages among
banks; the linkages may reflect cross-ownerships or debt
contracts. To bring out the main points in a transparent
way, we have focused on two simple networks that are
symmetric—the complete network and the ring network.
We find that: (1) the ways in which defaults or financial
distress spreads from one bank to another depend both on
the nature of the bilateral ties and the topology of the
network. (2) the architecture of the optimal networks
depend on the nature of the risks faced by individual banks:
when shocks are small, greater linkages between
institutions may be best, but when the shocks are large, it
may be better to fragment the network into separate
components.

9.6 Incomplete Network Information and Fire Sales

Our discussion in section 9.2 points to two features of
financial linkages: the first relates to the content of the
link, which can be very varied, reflecting the diversity of
financial instruments; the second is that actors in the
market have very limited knowledge of the network. The
complexity of the network reflects both these aspects. This
complexity comes together with limited information about
the network. These factors are important in the decision
making of managers, as they can potentially magnify the
uncertainty in the market. Federal Reserve chair Ben
Bernanke captures this concern as follows:
Our financial system is extremely complex and interconnected, and Bear
Stearns participated extensively in a range of critical markets. The sudden
failure of Bear Stearns likely would have led to a chaotic unwinding of positions
in those markets and could have severely shaken confidence. The company’s
failure could also have cast doubt on the financial positions of some of Bear
Stearns’ thousands of counterparties and perhaps of companies with similar



businesses …. Moreover, the adverse impact of a default would not have been
confined to the financial system but would have been felt broadly in the real
economy through its effects on asset values and credit availability. (Testimony
to the Senate on April 3, 2008, following the Fed’s Bear Stearns intervention)

The role of domino effects in elevating complexity and
uncertainty was also highlighted by Andrew Haldane, the
chief economist at the Bank of England, when he wrote that
at times of stress, “knowing your ultimate counterparty’s
risk becomes like solving a high-dimension Sudoku puzzle”
(Haldane 2013, p. 15).

In section 9.4, we presented a model that illustrated
amplification mechanisms created by connections that
could lead to contagion and systemic collapse. One
assumption in that model was that the network of
exposures is fully known and understood by the banks. This
section presents a model of financial crises that builds upon
the idea that complexity, a dormant factor during normal
times, becomes acutely relevant and self-reinforcing during
crises. The model is taken from Caballero and Simsek
(2013).

When banks face liquidity shocks, they adjust to them by
maintaining linkages with other banks. The new element is
complexity: this is reflected in the incomplete knowledge of
how far a bank is from the center of the shock. The model
has three periods, labeled t = 0, 1, 2. To avoid strategic
considerations, we will assume that there is a continuum of
banks—specifically, there are n distinct continuums of
banks, denoted by . Each of these continuums consists
of identical banks. We shall refer to a continuum bj as bank
bj. Banks start with a given balance sheet at date 0 (which
will be described shortly), but they only consume at date 2.
Banks can transfer their date 0 dollars to date 2 by
investing in one of two ways. First, banks can keep their
dollars in cash, which yields 1 dollar at the next date per
dollar invested. Second, banks can invest in a long-term
asset. Each unit of the long-term asset yields R > 1 at date



2 (and no dollars at date 1). The asset is supplied at date 0
at a normalized price of 1 dollar. The return structure
captures the standard liquidity and return trade-off, which
is prevalent in financial markets.

Each bank initially has y dollars and 1 − y units of legacy
assets. At date 0, the only decision point, banks can trade
legacy assets in a secondary market at an endogenous
price of p. This price cannot exceed 1 because legacy
assets and new assets are identical (and the price of the
latter is 1). A key assumption is that the only buyers of
legacy assets are the other banks. In the absence of
adequate demand, this legacy asset sells at an outside
valuation of pscrap < 1. Selling at pscrap will be referred to as
a fire sale.

Every bank bi has a deposit at bank bi−1, which yields z in
period 1; bank 1 has a deposit at bank n. These are
unsecured deposits that reflect large interbank exposures.
So bank i is owed z by bank i − 1 and owes z in turn to
bank i + 1, at time 1. This creates a cycle of exposures (as
in equation 9.6).

Banks’ exposures form a financial network. For
simplicity, assume that the network is a cycle (see figure
9.6). The notation bj+1 → bj means that bj+1 has claims on
bank bj. As banks are ordered around a cycle, bank b0 has
claims on bank bn−1. The key idea that financial networks
are complex is captured as follows: Bank A may know
whom it is lending to or borrowing from, but it does not
know where its creditor got its money from and to whom its
debtor bank lends. In particular, it will be assumed that
banks have only local knowledge: i knows who bank i − 1 is
but does not know whom bank i − 1 lends to; in other
words, it does not know the identity of bank i − 2.



Figure 9.6 
Outcomes with complete network information.

Let us define permutations of n banks on a cycle using
the mapping σ: {0, 1, …, n − 1}→{0, 1, …, n − 1}. This
permutation assigns bank j to slot i = σ( j). Let Ni(σ) be the
set of potential permutations for bank i. Banks do not know
the realization, σ. In particular, let Nj(σ) ⊂ N denote the set
of financial networks that bank bj deems possible, given the
actual realization. We refer to the collection {Nj(σ)}j, σ as an
uncertainty model for banks.

At date 0, banks hear that bank bi has had an unexpected
shock in period 1. Let θ > 0 be the size of the shock, which
is known to all banks. This shock is senior to the short-term
claims of its creditor bank.

At this point, banks choose to buy or sell liquidity. The
bank’s goal is to maximize its equity value at date 2,
subject to meeting the liquidity needs at date 1. Suppose,



for simplicity, that a bank can either use all cash to buy
assets B or sell all assets to keep cash S. If a bank buys
assets, then a bank facing a shock will get z and owe z,
which cancel each other out. So it has a liquidity net need
of θ, and it cannot cover these needs. So the bank sells its
legacy assets and keeps cash.

Selling legacy assets is a precautionary move to avert a
potential liquidity crisis: but the bank may not be able to
cover liquidity in spite of that, as θ may be too large. In that
case, it is insolvent and pays q1 ≤ z to the creditor bank,
and its date 2 value is q2 = 0. If, on the other hand, it is
able to cover the liquidity needs, it pays q1 = z to the
depositor bank and its date 2 equity value is q2 ≥ 0.

The bank makes a choice at date 0: it considers the
range of possible financial networks, Nj(σ), and chooses an
action that is robust to this uncertainty. We assume that
the bank chooses an action that maximizes the minimum
payoff that it can get across all possible network location
permutations. Let Ni(σ) be the set of possible permutations
for bank i given its knowledge of the network. Each bank
chooses to buy or sell assets to solve:

Legacy assets are traded at date 0 in a centralized
market. The net supply of the legacy asset is

where p = 1 if NS ≤ 0, p ∈ (pscrap, 1) if NS = 0, and p = pscrap

if NS ≥ 0. pscrap is the minimum price for the legacy asset.
An equilibrium consists of bank actions, debt payments,

and equity values  and a price level p ∈ [
pscrap, 1] for legacy assets such that markets clear and
banks solve their optimization problems.



Consider bank actions and payoffs . To
study this model, it is useful to define the bank’s distance
from the original distressed bank. The distressed bank b0

has distance d = 0 from itself. The neighbor of the original
distressed bank has distance d = 1. We will say that there
is a domino effect of size D if banks within distance d ≤ D −
1 are insolvent and all banks d ≥ D are solvent.

There is a flight-to-quality of size F if banks with distance
d ≤ F − 1 choose S and all banks d ≥ F choose B.

To provide a baseline, we start with the analysis of the
perfect information case: all banks know the true network
permutation σ. To develop the equilibrium for this setting,
it is convenient to make the following assumption:
Assumption (A) ny > ⌈θ⌉, and z + y + (1 − y)pscrap ≥ θ.

The first part says that the shock is smaller than the
aggregate cash holdings of all banks. This assumption is
necessary to make the problem worth studying. Clearly, if
this condition is violated, then all banks will always go for
fire sales after a shock. The second part of the assumption
is for notational simplicity only.

9.6.1 Complete Network Information

The analysis proceeds in three steps: first, we solve for
optimal bank choice given the price and choice of others;
second, we solve for equilibrium among banks taking the
price as given; and finally, we solve for the price.

Let us start with a bank at distance d from the distressed
bank: the net liquidity need for bank at distance d from
distressed bank 1 is z − q1(d − 1) + θ1d=0. The potential
liquidity supply upon liquidation of legacy assets, then, is
l(p) = p(1 −y) + y. If the liquidity need is 0, then the bank
chooses B. If the liquidity need lies in (0, l(p)), then it can
pay off its needs by selling, so optimal action is to sell its
legacy assets, S. Finally, if the need is larger than l(p), then



the bank is insolvent regardless of what it does, and its
equity value is 0. However, its value to debt holders is
larger if it sells its assets, so it chooses S. Observe that the
original distressed bank 1 receives its deposit returns from
bank n. Hence the liquidity need is θ > 0 and the bank
chooses S. If l(p) ≥ θ, then the original bank avoids
insolvency and the domino effect D(p) = 0.

If l(p) < θ, bank 1 cannot address its liquidity needs. It
therefore only transfers q1(0) = z + l(p) −θ < z to bank 2.
Now, note that due to assumption (A), z′≥ 0. As there is a
shortfall in its payments, bank 2 too has a positive liquidity
need, given by z −q1(0) = θ −l(p) > 0. So this bank also
chooses S. Observe that if 2l(p) ≥ θ, then bank 2’s available
liquidity exceeds the need; therefore domino stops at bank
1. If not, then bank 2 is also insolvent and passes on q1(1) =
l(p) + q1(0), and so forth. Eventually, we get the pattern
that payment by a distance-k insolvent bank is given by
q1(k) = l(p)[k − 1] + q1(0). The definition of D(p) says that
it is the first integer where θ ≤ l(p)[D(p) + 1]. Assumption
(A) implies that both the domino effect and the flight-to-
quality are contained (i.e., D(p) < n and F < n).

We are now ready to describe the equilibrium in the full
information setting.
Proposition 9.4 Suppose assumption (A) holds and there is full information

on the network structure. Then:

 (i)  the unique equilibrium price is p = 1 (no fire sales).

(ii)  the domino effect of size ⌈θ⌉− 1 and a flight to quality of size ⌈θ⌉.
(iii) the aggregate amount of new asset purchase is Y = ny −⌈θ⌉.

The main step in the argument is to show that the price
of legacy asset is 1—the rest follows from that fact.
Observe that the net demand for an asset at price p is



By definition, , and substituting and simplifying
and using assumption (A) yields the property that net
demand is positive, and this implies that the price of asset
is 1.

Figure 9.6 illustrates this result. The basic idea is very
simple. Banks closest to the distressed bank 0 use their
liquidity l(p) to cover the losses of bank 0. As the shock
passes from one bank to the next, the liquidity need
decreases by l(p). From the definition of D(p), it then
follows that banks with distance d ≤ D(p) choose to sell. All
but the last of them is insolvent. The last bank with
distance d = D(p) avoids insolvency because it is able to
meet its liquidity needs and pay its immediate neighbor in
full. It then follows that all the banks at distance d > D(p)
have zero liquidity need and optimally choose to buy long-
term assets. There is, therefore, a domino effect of size
D(p) and a flight to quality of size D(p) + 1.

9.6.2 Incomplete Network Information

We now study bank choices under incomplete network
knowledge and the max-min decision rule. Recall that the
local knowledge assumption says that the bank knows the
identity of the bank that owes it money, but only that bank.
There are two scenarios for a nondistressed bank i: (1) the
distressed bank is the borrower i − 1; and (2) the
distressed bank is not the borrower bank. In the latter case,
the worst case scenario is that the distressed bank is bank i
− 2. The optimal choice of bank i depends on the size of the
shock θ. If θ ≤ 2l(p), then D(p) ≤ 1 and the flight-to-quality
size is F = D(p) + 1. Observe that if θ < 2l(p), then it is
common knowledge that the distressed bank and its
immediate depositor can take care of liquidity needs. If
bank i is a distressed bank or its depositor, then it will
know the true state of the world. The distressed bank
always chooses S and the depositor chooses S or B,



depending on whether θ is smaller than l(p) or not. All
other banks will choose B. On the other hand, if θ > 2l(p),
then D(p) ≥ 2 and the flight-to-quality size is F = n. If θ >

2l, all banks sell assets.
Equipped with this simple rule of behavior for banks, the

following result describes the equilibrium in the incomplete
network knowledge setting.
Proposition 9.5 Suppose assumption (A) holds and there is incomplete

network knowledge.

 (i)  If θ < 2l(pscrap), then there is a unique equilibrium with p = 1, D(p) = ⌈θ⌉−
1, and the flight-to-quality size of F = ⌈θ⌉. The aggregate amount of new

asset purchase is Y = ny −⌈θ⌉.
(ii)  If θ > 2, then there is a unique equilibrium with price p = pscrap, D(p) = ⌈θ⌉,

and flight-to-quality size of F = n, and the aggregate amount of new asset

purchases is 0.

(iii) If θ ∈ (2l(pscrap), 2), then there are two equilibria, one corresponding to the

fair value p = 1 case and the other to the p = pscrap case.

The main point to note here is the flight-to-quality
phenomenon: all banks sell their assets, so price collapses
to scrap value as soon as θ > 2.

Figure 9.7 illustrates this result. It plots the equilibrium
actions corresponding to low and high θ. In the low θ case,
the shock is smaller than the available liquidity of original
distressed bank and its immediate neighbor. The top part of
figure 9.7 shows that the equilibrium outcome is the same
as in the full information case. Note that banks at distance
d ≥ 2 act as if they are at distance 2. With this small shock,
the bank at distance 2 does not suffer any losses from
cross-exposures and chooses action B, as do all banks at
distance d ≥ 2.



Figure 9.7 
Outcomes with incomplete network information.

The lower panel of figure 9.7 covers the case of shock θ,
which is larger than the liquidity of two banks. Thus the
bank at distance 2 chooses action S, and so do all banks.
This leads to a flight-to-quality size n.



Let us now summarize what we have learned in this
section. The effects of a shock on a bank on other banks
depend on the connections of the originator bank and the
structure of the network. However, this structure is often
very poorly understood by the participants in the network
and by outsiders such as policy makers and regulators. The
study of behavior with incomplete network knowledge is at
a very early stage. The model presented in this section is
very stylized, but it helps bring out in a stark manner how
complexity and risk aversion can give rise to very large fire
sales in response to a shock on a single bank.

9.7 The Formation of Financial Networks

In section 9.2, we presented evidence that interbank
markets exhibit a core periphery structure. This section
presents a model taken from Farboodi (2021) to
understand the forces that lead to such networks.

There are three periods, t = 0, 1, 2, and one good,
funding. There are two types of agents: banks and
households. There are K banks in all: banks are of two
types, I and NI, and banks in group I have access to
investment opportunities and banks in group NI don’t.
There are KI and KNI banks of the two types; assume KNI ≥
KI.

The investment opportunity is a risky asset that is
linearly scalable. Every bank i ∈ I receives the opportunity
to invest in the risky asset with probability q. The
probability is identical and independent across banks.

At t = 0, banks raise funding from households and create
lending and borrowing relationships. A link gij means bank i
is committed to lending to bank j. At t = 1, investment
opportunities are realized and borrowing takes place along
a subset of borrowing links created at t = 0. At t = 2, the
returns from investment are realized. The returns are
random: there is a probability p that investment yields R



and a probability 1 − p that investment yields 0. The
probability of return is identical and independent across
banks. Over and above this investment, every bank has a
value Vi, which reflects the value of the other businesses,
assets, and services that the bank provides. If the bank
fails, this value is lost. For simplicity, suppose that Vi = V I

for all i ∈ I and Vj = V NI for all j ∈ NI.
A bank can raise funding from two sources. At t = 0, a

bank j ∈ NI raises resources from a continuum of
households hhj of measure 1. A household is endowed with
1 unit of funding. Households lend to banks so long as they
break even. In addition to households, in period t = 1, after
observing the investment opportunities, a bank can borrow
from other banks that created borrowing links with them in
period t = 0.

The financial network is a directed graph, with K nodes
representing the banks and a directed link from i to j

representing a lending commitment. A bank chooses its
links over which it can borrow or lend in order to maximize
its expected profit net of failure cost. For concreteness, we
will focus on an example with four banks: two banks of type
I and two banks of type NI.

To borrow on the interbank market at date t = 1, banks
need to enter potential agreements at t = 0. Potential
agreements are similar to credit lines except that they have
no limit. An agreement established at t = 0 is a promise by
the lender to deliver at least 1 unit to the borrower if the
borrower receives an investment opportunity or if the
borrower has a credit line to another bank that has
received an investment opportunity. A bank can create a
lending link with another bank only if it can deliver on it:
there is thus an opportunity cost to creating a link with a
potential borrower. To see this in the simplest setting,
consider figure 9.8(b). Observe that the network on the left
in panel (a) is not feasible: the NI bank has committed to



lending to two I banks, but it has only 1 unit of household
funds. The network on the right is feasible.

Figure 9.8 
Examples of networks.

We will assume that there is an exogenously given
division of surplus between the investing bank and the
banks that directly or indirectly lend to it. In particular, we
will assume that when bank i raises funding from
households and lends directly to bank j, which makes the
investment, then i and j receive a share α and 1 −α of the
surplus. If, on the other hand, i raises the funding and lends
to j, which in turn lends to K, which invests, then i, j, and k
receive α2, α(1 − α), and 1 − α, respectively.

The final return of the project at t = 2 is not contractible.
Contracts are bilateral and take the form of contingent
debt. The face value of the debt is such that given the
network and the realization of investment opportunities,
each bank along the intermediation chain receives its
appropriate share, as described previously.

A network structure G is blocked by a coalition B of
banks if there is another (feasible, individually rational)
network structure G′ and a coalition B, such that (1) G′ can
be reached from G by a set of bilateral deviations by banks
b, b′∈ B and unilateral deviations by b ∈ B; and (2) every
bank b ∈ B is strictly better off in G′ than in G. A network is



said to be stable if it is not blocked by any coalition of
banks.

We now develop a description of various networks that
are stable and compare them to efficient networks.

9.7.1 Stable and Efficient Networks

Let us begin by noting the incentives of an NI lender and
an I borrower, respectively:

This relationship is in their joint interest if the expected
returns of project pR− 1 are greater than the expected cost
of default (1 − p)(VI + V NI); that is, pR − 1 > (1 − p)(VI + V
NI). Observe that if the lender and borrower find it
attractive to create the link, then it is also in their
collective interest. In other words, individual incentives to
create a link are lower than desirable. For the study of
networks to be interesting, indirect lending must be
profitable. This motivates the restriction on parameter
values: α2(pR − 1) > (1 − p)VNI.

A key concept in the analysis of stable networks is
intermediation spread. Consider the arrangement where
bank i lends 1 unit at face value D to j, which invests the
unit. Consider next the indirect arrangement, in which i

lends 1 unit to kj at face value D1, which lends the unit at
face value D2 to j, and k makes the investment. The face
value of the debt is set in such a manner so as to ensure
that in expectation, each party (including the
intermediator) receives its share of expected net surplus.
Formally,

D2 − D1 represents the intermediation spread. The
intermediation spread provides a measure of the incentive



for a bank to move from being an indirect to a direct
lender.

In particular, recall that in deciding whether to form a
link, a bank compares the returns from the link against the
risks of failure. With this in mind, let us define

where X = pR − 1 is the net expected return of a 1-unit
investment in the project: κ is the ratio of the
intermediation spread per unit divided by the expected cost
of default for an I bank. We can define a similar ratio for an
NI bank. It is helpful to define the following pieces of
additional notation:

In what follows, we will assume that a pair of NI and I
banks always have an incentive for form a link—that is,
conditions are met . Let us start by delineating the set
of networks that can be stable. Observe that if  then
every NI bank must be creating a link in any stable
network. So the only candidates for a stable network are as
in figure 9.10. Within this set, networks (d), (g), and (h)
can be eliminated using straightforward arguments.
Network (d) cannot be stable because bank NI1 has 2 units
of loans available, so it can increase its profits by forming a
link with bank I2. Bank I2 clearly has an incentive to form
this link, given . Next, consider network (g): Observe
that bank NI2 has an incentive to connect with I1 so as to
access its investment opportunity (this is strictly profitable
in the state when bank I2 does not have an opportunity).
Bank I1 can hope to raise its intermediation rents by
forming this link, as it can act as an intermediator for bank
I2. Finally, consider network (h). Clearly, banks NI1 and I2



have an incentive to carry out the deviation because by
doing so, they sidestep bank I1 and thereby lower their
intermediation payments to I1. Putting points together, we
are left with networks (a)–(c) and (e).

The next proposition provides a characterization of
equilibria in the economy with four banks. Networks (a),
(b), (c), (d), and (e) are as in figure 9.10.
Proposition 9.6 Suppose that . Then network (a) is stable if κ ≤ κ;

networks (b) and (c) are stable if κ ≤ 1/2; network (d) is stable if κ ≥ 1; and

network (e) is stable if κ ≥ 1/2.

The proof of the proposition involves checking the
incentives of banks. A question at the end of the chapter
asks for these details to be worked out. Here, we will focus
on the incentives for the formation of a core-periphery
network (d), in which the I banks constitute the core.

Consider the two networks (a) and (e). Observe, that in
network (a), an I bank is involved in a default only if it
made an investment. By contrast, in network (d), all banks
are involved, so long as one of the I banks is active. Thus
there is higher systemic risk in network (d). We will now
show that there are circumstances under which the two I
banks and bank N2 have an incentive to deviate from
network (a) and create network (d). This deviation is
illustrated in figure 9.9. Consider the different investment
opportunities that may arise. If only I2 receives the
investment opportunity, then I1 serves as the intermediator
for NI1 and captures some intermediation rents. The cost is
the potential for default that is triggered if investment in I2

fails. So banks I1 and I2 will undertake this deviation if the
intermediation spread (D2 − D1) is sufficiently high relative
to the cost of the default. This yields the condition κ ≥ 1.
Note that NI2 must benefit from joining the coalition.



Figure 9.9 
Deviations by banks.

We next discuss efficient networks, that is, the network
that maximizes the total surplus subject to feasibility and
individual rationality. Given condition , it follows that
every NI bank must have a link. Moreover, it is strictly
better to have both NI banks feeding into both I banks, in
the event that only one I bank receives the investment
opportunity. Given this maximum investment size, the goal
is to minimize the expected loss of default due to the failure
of project(s). This yields the star network in figure 9.10(a),
with an NI bank at the center.



Figure 9.10 
Candidates for stable networks.



Figure 9.11 summarizes our study of stable and efficient
networks. It shows how stable networks may be
underconnected or overconnected relative to efficient
networks. The underconnectedness arises due to the
familiar problem of positive externalities in linking (and
incomplete appropriation of surplus), while the
overconnectedness arises because banks have incentives to
create links to divert surpluses for themselves.

Figure 9.11 
Stable and efficient networks: summary.

These arguments have been developed in the context of a
four-bank example. Figure 9.12 illustrates the pattern of
core-periphery networks that arises when we consider
many I and NI banks.



Figure 9.12 
Core-periphery with many banks.

Let us now summarize what we have learned from this
model of intermediation. Financial institutions have
incentives to capture intermediation rents through
borrowing and lending decisions. By doing so, they tilt the
division of surplus along an intermediation chain in their
favor. The key finding is that these strategic incentives
create pressure for the creation of a core-periphery
network. This network exhibits excessive exposure to
counter-party risk relative to the efficient network.

9.8 Reading Notes



Financial contagion is an old idea: financial booms and
busts may be seen as instances of this phenomenon, and
they go back a long way; classic historical studies include
Kindleberger (2001) and Mackay (2018). This chapter
focuses on the narrower question of how measurable
connections between institutions reflected in their
borrowing/lending and equity relations can create a
pathway for the spread of shocks, and how various
structures of connections can give rise to the amplification
of original shocks. The study of networks and their impact
on financial contagion is important, as it provides a basis
for the design of appro- priate targeted interventions.

The literature on financial networks has grown especially
rapidly since the financial crisis of 2008. The empirical
research describes the rich variety of connections between
financial institutions. It has also plotted a wide range of
network relations. Empirical studies of networks include
Martinez-Jaramillo, Alexandrova-Kabadjova, Bravo-Benitez,
and Solórzano-Margain (2014); Anand, Craig, and von
Peter (2014); Anand, van Lelyveld, Banai, et al. (2018); and
Bech and Atalay (2010) for the US; and Upper and Worms
(2004) and Craig and Von Peter (2014) for Germany; and
Blasques, Bräuning, and Van Lelyveld (2018) for the
Netherlands.

A number of papers have empirically studied the process
of financial contagion, see, for example, Wiggins, Piontek,
and Metrick (2019); Wiggins and Metrick (2019); and
Khandani and Lo (2007). For overviews of this work, see
Glasserman and Young (2016), Jackson (2019), and Jackson
and Pernoud (2021).

Turning to theoretical studies of financial contagion,
Eisenberg and Noe (2001) present an elegant early model
of bank networks that clarifies the deeply interconnected
nature of bank obligations. This model takes as given the
linkages between financial institutions. Allen and Gale
(2000) provide a foundation for linkages between banks



based on a combination of negatively correlated timings of
liquidity shocks. These two early papers, along with Rochet
and Tirole (1996), form the basis of most of the subsequent
literature on financial contagion. The more recent body of
literature has taken a more sophisticated approach to the
modeling of networks and bankruptcy costs play a more
prominent role; see, for example, Rogers and Veraart
(2013); Cabrales, Gottardi, and Vega-Redondo (2017);
Elliott, Golub, and Jackson (2014); Galeotti and Ghiglino
(2021); Gai and Kapadia (2010); Gai, Haldane, and Kapadia
(2011); Glasserman and Young (2015); Gofman (2017);
Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015b); and
Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015a). There are
a number of excellent surveys of this work, see for
example, Cabrales, Gale, and Gottardi (2016); Glasserman
and Young (2016); and Jackson and Pernoud (2021).

There is a growing body of literature on the formation of
financial networks. The conventional view is that
institutions establish links with one another as a way of
diversifying risk and facilitating intermediation. At a
general level, the process of liquidity intermediation and
the incentives of various actors to create rents are central
to these models. In this perspective, the early theoretical
models of network formation, as in Goyal and Vega-
Redondo (2007), provide a general approach to brokerage
and intermediation and the architecture of networks. A
number of papers place this general approach within a
finance context with the appropriate instruments and
institutional constraints, including Acemoglu, Ozdaglar,
and Tahbaz-Salehi (2015a); Erol and Vohra (2018); Babus
and Hu (2017); Gofman (2017); Wang (2016); Cabrales,
Gottardi, and Vega-Redondo (2017); In’t Veld and Hommes
(2020); Castiglionesi and Navarro (2007); and Georg
(2013). We presented a model taken from Farboodi (2021),
as it helps us understand some of the economic forces that
give rise to a core-periphery financial network.



9.9 Questions

  1.  In the network given in figure 9.13,

Figure 9.13 
Original network.

(a)  Consider a shock that lowers the inflow to bank A
from 210 to 140. Compute the net equity of the
banks after this shock.

(b)  Consider a shock that lowers the inflow to bank A
from 210 drops to 20. Compute the net equity of the
banks after this shock.

  2.  Consider the four-region economy model discussed in
section 9.4. The liquidity demands in state Si, i = 1, 2 as
specified in the table here. Each state takes place with
equal probability.



There is a liquid asset that represents a storage technology.
Investment in a long-term asset is available at t = 0. Per
unit invested in the long-term asset, the yield is of r = 0.4
at t = 1 (premature liquidation), and of R > 1 at t = 2.
Assume that the period utility function is of the form u(ct) =
ln(ct).

(a)  Denote as y and x the per capita amounts that the
social planner invests in the short- and long-term
assets, respectively. The feasibility constraint is thus
y + x ≤ 1. Given that at t = 0, the probability of being
an early or a late consumer equals 0.5, derive the
first best allocation. Verify that this allocation is
incentive compatible.

(b)  Consider decentralization. Describe the combination
of investment decisions and interbank deposits that
achieve the first best allocation when (i) the
representative bank of a region holds deposits in the
representative banks of all other regions (a complete
structure); and (ii) the representative bank of region
A deposits in the representative bank of region B,
and the latter deposits in the representative bank of
region C, and so on (an incomplete structure). For
each case, explain the sequence of withdrawals if
state S1 takes place.

(c)  Now suppose that a state S, which was assigned
zero probability at t = 0, takes place. In this state,
regions B, C, and D have a liquidity demand of 0.5,
but region A faces a demand of 0.5 + ε.
 (i)  Consider the incomplete structure and set ε =

0.1 and R = 1.5. Show that there is no contagion.
Would your results change if ε were larger?

(ii)  Suppose now that ε = 0.1 and R = 1.2. Show that
there is contagion when the structure is
incomplete, but not when it is complete.



  3.  Consider the model described in section 9.5. Show that
when default costs are large, generalized default of all
banks is easier in a ring network than in the complete
network.

  4.  This question is inspired by the idea of the robust yet
fragile networks (see, e.g., Cabrales, Gottardi, and
Vega-Redondo [2017] and Acemoglu, Ozdaglar, and
Tahbaz-Salehi [2015a]). Consider a model where banks
face shocks of size z with distribution F. Consider the
class of networks in which nodes are partitioned into
equal-sized distinct cliques (the empty and complete
networks are extreme examples of this class). Suppose
that every bank has assets worth 1. A bank fails if the
total assets in its clique is smaller than the shock z.
There is a positive cost of a bank failure.
(a)  Develop a model to examine the trade-offs between

small and large cliques.
(b)  How does the nature of F relate to the optimal size

of cliques?
(c)  Chapter 8 studied the design and defense of

networks that face contagious shocks. There we
showed that multiple components may be optimal
depending on the nature of the conflict technology
and the relative size of the Defender and Adversary
resources. Discuss the similarities and differences
between the models and the results.

  5.  Consider the model of network formation presented in
section 9.7. Suppose that , with κ and  being as
defined in that section. Show that network (a) is stable
if κ ≤ κ; networks (b) and (c) are stable if κ ≤ 1/2;
network (d) is stable if κ ≥ 1; and network (e) is stable
if κ ≥ 1/2.



10
Wars

10.1 Introduction

War and violent conflict are recurring themes and continue
to be important in the twenty-first century. Historically,
war occurred between neighboring kingdoms, and a war
between two rulers would in turn affect their neighbors.
Larger wars have generally brought multiple opponents
into play, and alliances play a central role in such wars. In
different ways, then, inter-linkages across parties are an
important feature of conflict. We would like to understand
how the patterns of physical contiguity shape wars, how
alliances affect the belligerence of different parties, and
what the incentives to create alliances are. This chapter
develops theoretical models in which interlinkages are
represented as networks. This leads us to approach these
questions by formulating games of conflict on networks and
by setting up models of network formation.

We take the view that relations between actors—whether
of enmity or friendship—can be modeled as signed links of
a network, with positive links signifying amity and negative
links indicating enmity. The first object of study is how a
given pattern of links affects the incentives and the
intensity of war. The theoretical framework combines
networks with contest success functions (CSFs) and gives
rise to a game on a network. The analysis draws attention



to the role of connections—the sum of friendly and
unfriendly links—in shaping behaviors. We apply this
insight to understand the fighting intensities of different
groups in the Great War of Congo. This framework permits
a consideration of policy questions such as the effects of
the withdrawal of particular foreign powers and of an arms
embargo on the intensity of a conflict. In the discussion on
contests in networks, the network is taken as a given. This
is a reasonable starting point as most groups stuck to their
alliances during the Great War of Congo, but if we take a
longer time perspective then it is clear that alliances evolve
—with old alliances lapsing and new alliances being
formed. There arises the question of what alliance
structures are stable more generally. This is the subject to
which we turn next.

Here, we present a theoretical model for the study of
stable alliances. In this model, countries can attack each
other, form alliances, and trade with each other. The study
of this model helps us understand the forces that shape
incentives to form alliances and wage war. In particular, we
show that in the absence of large trade flows, attempts to
form alliances and attack opponents lead to shifting and
unstable alliances: this instability makes peace hard to
sustain. But if there are large gains from trade between
countries, then alliances will be formed, and these alliances
in turn will deter war. We apply these theoretical insights
to understand the frequency of wars in the years prior to
World War II and the long period of peace after that.

Finally, we use networks as a representation of
contiguity and access and study the dynamics of war and
conquest. Kingdoms are nodes, and the links represent
contiguity. The resource base of kingdoms and the
technology of war affect their chances at winning a war.
Victory in a war brings rewards in the form of new
territories (which come with their own resources). Winning
rulers therefore expand their kingdoms and can wage war



against new opponents. The theoretical analysis uncovers
the role of the resources, the technology, and the network
in shaping the incentives of individual rulers to wage war.
The attack strategies of rulers determine the dynamics of
conflict and the paths of conquest. We apply the theoretical
insights of the model to reflect upon the processes that
gave rise to the First Chinese Empire, the Roman Empire,
and the Spanish Empire in the Americas.

10.2 Netwars

Individual actors and organisms seek to acquire more
resources and expand their influence. One possible avenue
through which to obtain resources is to appropriate them
through conflict. However, agents may face constraints on
whom they can target for conflict. The extensive literature
on wars shows that a significant majority of them take
place among physically proximate entities. Caselli, Morelli,
and Rohner (2014) offer interesting empirical evidence on
the role of physical contiguity in wars. Traditional models
of conflict have focused on bilateral conflicts. As bilateral
conflicts create spillovers on other conflicts, and as the
spillovers are mediated by the pattern of neighborhood
relations, it is important to understand the principles of
interconnected conflict. We start with an early model of
conflict on networks taken from Franke and Öztürk (2009).

There is a set of individuals N = {1, …, n}, with n ≥ 3,
located on nodes of an (undirected) network g. The links
between individuals reflect enmity: so, for instance, links
can be thought of as a shared border between two
regions/countries. The set of rivals of individual i is given
by Ni(g). Individual i is engaged in ni(g) = |Ni(g)| conflicts.
Individual i chooses strategy ei(g) = ({eij}j∈Ni(g)), which
specifies a level of effort eij, for every j ∈ Ni(g). The
outcome of each bilateral conflict is probabilistic and
depends on the investment in conflict by i and j. For



concreteness, we will suppose that with investments eij and
eji, the probability of winning for i is given by

so long as eij + eji > 0. If eij + eji = 0, the probability of
either player winning is 1/2. The cost of investment is given
by the function

Assume that the prize from winning a conflict is Z, while
the cost of losing is − Z. The payoffs of individual i under
effort profile e = (e1, …, en), are given by

Let  be a Nash equilibrium. We will suppose
that there is a unique equilibrium and all links are actively
contested. Define  as the aggregate fighting
effort of player i in network g. Equilibrium investments
satisfy, for every individual i ∈ N and for every link gij,

Define  as the aggregate intensity of
conflict. The following result describes equilibrium
outcomes in two well-known networks.
Proposition 10.1 A conflict equilibrium exhibits the following properties:

Regular networks: Conflict intensity is increasing in degree and in the

number of individuals. Individual investment and expected payoff is

decreasing in degree. Expected payoff is negative for all individuals.

Star network: Conflict intensity is increasing in the number of peripheral

individuals. For the central individual, link-specific (aggregate) investment is



decreasing (increasing), and the expected payoff is decreasing in the number

of peripheral individuals. For the peripheral player, conflict investment is

declining and payoffs are increasing in the number of peripheral individuals.

The result is fairly intuitive: involvement in a greater
number of conflicts leads to a worse expected outcome for
an individual as the convex costs of conflict come into play.
In the star network, a greater number of peripheral players
benefits the peripheral players at the expense of the hub.

While the result is obtained for specific networks only, it
offers a first impression of how the interconnections in
conflict shapes individuals’ fighting efforts. In a regular
network, increasing density of the network raises the
overall level of conflict and lowers payoffs. The central
individual facing more peripheral opponents is obliged to
make larger investments but earns a lower payoff. The
peripheral players gain as their number grows because the
central opponent player is more overstretched, and hence
less effective.

In the present model, the links represent enmity and the
conflict investments are link specific. In the next section,
we take up the more general setting with ties of both
enmity as well as amity (as reflected in alliances). In order
to make analytical progress, we will simplify the effort
formulation and assume that there is a single effort for
every individual and a single prize at stake.

10.3 Alliances and Conflict

Large-scale wars like the two world wars, the Korean War,
and the Vietnam War involve alliances among many nation-
states. Indeed, alliances have been a central feature of
wars and violent conflicts throughout history. In this
section, we study wars between parties who are members
of alliances.

When players A and B form an alliance, they hope to
support each other—possibly by sharing resources and



information. Thus an alliance may strengthen the position
of both A and B vis-á-vis other opponents. This benefit
comes with a potential downside: the effort of A benefits A,
but it also benefits B. This spillover makes A’s effort a
public good and can lower the incentives of A to exert
effort. An alliance between A and B will have effects on
other opponents: they may be obliged to raise their efforts
in the face of such an alliance. Moreover, in large-scale
conflicts, it may be the case that A and B are in an alliance,
while B is in an alliance with other players, X and Y. With
these preliminary observations in place, let us consider the
following model of fighting in a network of alliances taken
from König, Rohner, Thoenig, and Zilibotti (2017).

The set of players is N = {1, …, n}, where n ≥ 3. Players
have relations that are positive (allies) and negative
(enemies). There is a prize of value V, which may reflect
the value of land and natural resources. The relations
among the players are captured in a network of links, g. A
pair of players can be allies, enemies, or neutral. Thus, for
any pair of players i, j, a link is as follows:

The players simultaneously choose fighting efforts, so
player i ∈ N chooses effort xi ∈ ℝ. The role of the network
is modeled in a specific manner: a player’s effort is
reinforced by the efforts of its friends and weakened by the
efforts of its enemies. This idea is captured in the idea of
effective effort, φi as follows:



where  refers to links between allies,  refers to links
between enemies, and β, γ ∈ [0, 1] are spillovers from allies
and enemies, respectively.

It is worth noting some special cases of this formulation:
when there are no friends or enemies, the model yields a
standard contest between n opponents. Observe that the
notion of allies is subtle: consider an example with two
allies. They contest for a prize, but each one’s efforts are
boosted by the efforts of their ally. On the other hand,
when the two opponents are enemies, their efforts are
dampened by each other’s efforts.

Given network g and effort profile x = (x1, …, xn), the
payoff to player i is determined by a Tullock contest
function:

Here, our interest is in interior solutions, outcomes in
which all players are active, and we will assume that such
outcomes exist and are unique. From chapter 4 we know
that in games on networks, Nash equilibrium efforts are
interior and unique when spillovers across group effects
are suitably small.

10.3.1 Equilibrium Conflict

In such an active outcome, every player will set its efforts
at a level where the marginal costs are equal to the
marginal returns. Differentiating individual payoffs with
respect to efforts, we arrive at the following first-order
condition for the optimal individual efforts:



where we have dropped the dependence of φ on the
network and the efforts, set  to be the number of allies,
and set  as the number of enemies of player i. Observe
that a player’s efforts augment the efforts of its friends
(enemies), thus making them more (less) competitive in the
contest.

We would like to express the equilibrium effort of a
player explicitly in terms of the network. To do so, it is
helpful to proceed via a derivation of equilibrium-effective
effort. The first step is to rewrite the first-order condition
to obtain the following expression for effective effort:

Summing over all players yields

The following pieces of new notation help us in
simplifying the expressions:

We may refer to Γi as the local hostility level, as it is
increasing in the number of enemies of i and decreasing in
the number of allies of i. Using the new notation,
equilibrium aggregate effective effort is given by

This in turn allows us to write the individual effective
effort as



Define . Equilibrium effort may
be expressed in matrix form as follows:

When the matrix In + βG+ − γG− is invertible,

It is useful to briefly reflect on the strategic effects in
this environment. First, consider the direct effects of a
player’s enemies. As an enemy raises their efforts, it
follows from equation (10.6) that an individual’s effective
efforts go down. This raises the marginal returns from own
efforts. Thus the efforts of enemies are strategic
complements. Similarly, we can reason that the efforts of
friends are strategic substitutes. Turning to indirect
effects, consider the enemies of my enemies. As they raise
efforts, an individual’s enemies raise efforts, which induces
the individual in question to raise their efforts. On the other
hand, as the friends of an individual’s friend raise efforts,
the friends lower efforts, which induces the individual in
question to raise their efforts. This brief discussion helps us
see the complex interplay of positive and negative strategic
effects through the paths of the network.

The principal result of the analysis provides a relation
between the Katz-Bonacich centrality of a player and their
war effort. To develop a sense for how allies and enemies
shape network centrality and efforts, we present an
example of a line network in figure 10.1. In this network,
there are five nodes, and we set γ = 0.1, β = 0.1. In the
case where all links represent enemies, the Katz-Bonacich
centrality related to the network of hostilities measures the
local hostility levels along all walks reaching i using only
hostility connections, where walks of length k are weighted



by the geometrically decaying hostility externality γk. As
the discounted number of walks emanating from a node in
a line network is higher, the more central an agent is, the
player in the middle of the line has the highest centrality
and centralities decrease moving away from the middle of
the path.

Figure 10.1 
Line network: enemies in red; allies in blue.

Next, consider the situation where the links reflect
friendships. The centrality is determined by . Thus
a player’s neighbor gets negative weight, and their
neighbor’s neighbor gets positive weight. This means that
centrality is falling as we move from the edge of the line to
the next player, and then rising again as we arrive at the
center of the line. Let us now develop the relation between
networks and the fighting effort for networks that combine
both friendship and enmity links.

Define  as player i’s centrality in network G. The
vector of Katz-Bonacich centralities are given by:

Equipped with this definition of centrality, equilibrium
effort levels can be expressed as



Equilibrium payoffs are given by

For sufficiently small cross-player effects (i.e., when β

and γ are close to 0), the centrality measure defined in
equation (10.16) may be expressed as a sum of centrality in
the friends network, centrality in the enemies network, and
a term that captures higher-order cross-relation effects;
that is,

where

is the Katz-Bonacich centrality (this is similar for b(−β,

g+)), while  involves second- and higher-order terms.
One interesting implication of these derivations is that

the ratio of the efforts of two players is equal to the ratio of
their centralities:

When higher-order terms are ignored, the centrality
measure is increasing in γ and in the number of first-
degree enemies, whereas it is decreasing in β and in the
number of first-degree alliances. We use this simple
prediction of the theory next, in our study of the Great War
of Congo.

10.3.2 Case Study: The Great War of Congo



The Democratic Republic of Congo (in what follows,
Congo), with a population of over 86 million, is one of the
largest countries in Africa. This population belongs to over
200 ethnic groups. Congo gained independence from
Belgium in 1960 but has experienced instability and wars
for extended periods. As a result of this political instability,
it is one of the poorest countries in the world, in spite of
having very large deposits of a number of valuable minerals
such as copper, gold, diamonds, cobalt, uranium, coltan,
and oil. Income level in 2020 was at 40 percent of the 1960
level; the per capita income was $400, which is less than 1
percent of what it is in the US. The quality of life is very
low: life expectancy in Congo is 20 years lower than in the
US. A major reason for this dire situation is violent conflict.
The conflicts in Congo involve many interconnected
domestic and foreign actors. Our discussion of the Great
War of Congo draws on König, Rohner, Thoenig, and
Zilibotti (2017) and the Encyclopedia Britannica.

The first point to note is that the war in Congo is closely
connected with ethnic conflicts in neighboring countries
such as Rwanda and Uganda. In 1994, Hutu radicals took
control of the Rwandan government and allowed ethnic
militias to carry out the killing of nearly a million Tutsis and
moderate Hutus. After they lost power in Rwanda, over a
million Hutus fled Rwanda and sought refuge in the Congo
(which was then ruled by Mobutu Sese Seko). These Hutu
militias ran into conflict with local Tutsi groups. As ethnic
tensions mounted, a large coalition of African countries,
which included Uganda and Rwanda, supported an anti-
Mobutu rebellion led by Laurent-Desire Kabila. The First
Congo War (1996–1997) ended with Kabila’s victory.

However, Kabila’s relationship with Uganda and Rwanda
soon turned sour, and he ordered all Rwandan and
Ugandan troops to leave the country. As a result, new
ethnic clashes erupted in eastern Congo, and the crisis



escalated into a larger war. This led to the Second Congo
War.

The Second Congo War lasted from 1998 until 2003 is
regarded as the deadliest war of the twenty-first century.
The eastern part of the Congo became a bloody battlefield
that was as bitterly contested as the Western Front in
World War I. The armies of nine countries and a number of
militias were involved. Angola, Namibia, Chad, Sudan, and
Zimbabwe backed Kabila’s Congolese government forces,
while troops from Burundi, Rwanda, and Uganda supported
anti-Kabila rebels. Mass rapes were reported in areas of
conflict, and large sections of the Congo were stripped of
resources as organized combat between professional
armies gave way to brigandage and plunder. It is estimated
that over three million people (mostly civilians) were killed
in the fighting or died of disease or malnutrition during the
war. A peace agreement was signed in 2002 and the war
officially ended in 2003, but fighting has continued in
different parts of Congo even after that.

After a major reshuffling at the end of the First Congo
War, the web of alliances and enmities between the main
armies and rebel groups has remained largely stable in the
period 1998–2010. There are 80 groups in all; for a
complete list, see König, Rohner, Thoenig, and Zilibotti
(2017). There were 4 Congolese state army groups, 47
domestic Congolese nonstate militias, 11 foreign
government armies, and 18 foreign nonstate militias.

We will think of a group as a player and represent it as a
node in the network. The average degree of a node is 5.35
(here, degree refers to both friends and enemies; this is
therefore a sparse network), the average distance in the
network is 2.35 (groups are close to each other), and the
network is unequal, as the most connected groups have a
very large number of links. Table 10.1 presents an overview
of the eight most connected groups: the Conglolese Army
under Joseph Kabila (FARD-JK), the Conglolese Army under



Laurent Kabila (FARD-LK), Uganda, Rally for Congolese
Democracy, Goma (RCD-G), Rally for Congolese
Democracy, Kisangani (RCD-K), Military Forces of Rwanda
1994–1999 (RWA94), Military Forces of Rwanda 2000–
(RWA00), and Rally for Congolese Democracy (RCD).
Figure 10.2 summarizes the relations between the 80
groups that were active during the Second Congo War:
friends are portrayed in blue, enemies in red, and absent
ties in neutral.

Table 10.1 
Main groups: Allies, enemies, and fights

Source: www.acleddata.com.

http://www.acleddata.com/


Figure 10.2 
The Great War in Congo: friends. Source: www.acleddata.com.

Table 10.1 highlights the great inequality in the number
of links, which helps us see the effects of the number of
allies and enemies on fighting effort. We see that even
among groups with the same number of links, the relative
number of allies and friends matters—more enemies lead to
higher levels of fighting. Let us now describe the network
of friends and enemies.

http://www.acleddata.com/


An initial thought would be that friends and enemies
would be neatly separated: this would suggest that an
enemy of A would be an enemy of all friends of A and a
friend of A would be friends of all friends of A. The actual
pattern of relations in Congo is richer and more
complicated. To see this, we proceeded as follows. We first
plotted the friendship ties only, as shown in figure 10.2.
Then we removed all nodes that have no friends and added
the enmity links among the remaining groups. This yields
the network given in figure 10.3. We see that there is a
dense web of friendship ties within two large clusters, but
we also see that there are enmity ties within these clusters
and some friendship ties across the clusters. These figures
suggest why it might be helpful to go beyond a cluster-level
analysis and consider the details of the pairwise links.



Figure 10.3 
The Great War in Congo: friendship in blue, enmity in red. Source:
www.acleddata.com.

The data source for the fighting effort is the Armed
Conflict Location & Event Data (ACLED) Project
(www.acleddata.com). This data set contains 4,676
geolocalized violent events in the Congo involving 80
groups. The theory predicts that friends depress and
enemies raise the fighting effort of a group. Figure 10.4
plots this relationship in the Great Congo War. On the x-
axis, we plot the (log of) the sum of numbers of friends
(positive) and enemies (negative), and on the y-axis, we
present the number of fights. The patterns of fighting are
broadly consistent with the predictions of the theory.

http://www.acleddata.com/
http://www.acleddata.com/


Figure 10.4 
Friends and enemies and level of fighting. Source: www.acleddata.com.

The network approach to the study of the war can help
us uncover the potential effects of various changes in the
environment. For instance, we can ask how the withdrawal
of foreign players like Uganda and Rwanda would affect the
fighting. This question can be addressed by comparing the
fighting level observed with the fighting level in a network
in which these two groups, Uganda and Rwanda, are taken
out of the network. Given their centrality in the alliance
network, their withdrawal could sharply reduce the level of
fighting. By contrast, the removal of peripheral players like
Zaire or Zambia would have relatively minor effects on the
level of conflict.

Similarly, we can examine the implications of arms
embargoes on certain groups. Such an embargo would
raise the costs of fighting for these groups. An increase in
the costs of fighting for a group will lower the fighting by

http://www.acleddata.com/


that group, which will lower the fighting of its enemies and
raise the fighting of its allies. These effects will percolate
through the network of alliances. Imposing an embargo on
a central group can therefore significantly lower the overall
level of fighting. Let us now summarize what we have
learned about large-scale wars from this model. The model
helps us appreciate how the network of relations shapes
the fighting efforts of opponents and the aggregate level of
fighting. A key prediction of the model is that individual
fighting effort is increasing in the number of enemies and
falling in the number of friends. This prediction is
consistent with the empirical evidence from the Great War
of Congo. In this model, the focus is on war and there is no
other economic activity. In the next section, we expand the
scope of the inquiry along two dimensions—one, we allow
for trade and two, we study the incentives to form
alliances.

10.4 Alliances, Trade, and War

The frequency of wars between countries has declined
significantly over the past 200 years. In particular, wars
were more common from 1800 until World War II than in
the period since then. One way of developing a better feel
for the great change in frequency of wars is to consider the
number of wars in a year in relation to the number of
distinct pairs of countries in that year. Between 1820 and
1959, we find that there were 0.00056 wars per year per
pair of countries. By contrast, from 1960 to 2000, the
average was only 0.00005 wars per year. Thus wars were a
tenth as likely in the period after 1960 as before. Figure
10.4 provides an overview of this trend. This section
examines the factors that can account for this change in
frequency of war. Let us begin by noting that two other
variables have registered significant changes over the same



period—the density and stability of alliances and the size of
international trade.

Our data is taken from the Directed Dyadic Interstate
War Data Set (Maoz et al. [2019]). The nature of military
alliances changed dramatically over this period. Between
1816 and 1950, a country had 2.5 alliances on average (and
if we exclude the 1940s, this number drops even further, to
1.7). By contrast, between 1951 and 2003, the number of
alliances per country grows by a factor of more than 4,
reaching over 10.5. Thus, there were significantly more
alliances after World War II than before it. This change in
the number of alliances was accompanied by a great
change in their persistence or stability. To see this, we ask
what fraction of alliances at year t are also present at year t
+ 5. For the period from 1816 to 1950, we find this number
of to be 0.695. By contrast, the number of the period from
1950 to 2003 is 0.949! In other words, there is a 30 percent
chance that a given alliance disappears in the next five
years in the period prior to the World War II, while there is
only a 5 percent chance that this happens in the period
after it.

Figures 10.5–10.7 present alliance networks from the
nineteenth and twentieth centuries to illustrate these
trends. In the early nineteenth century, the networks were
sparse and rapidly evolving. This is brought out by figure
10.5. The labels for the entities in figure 10.5 are as
follows: AUH—Austria-Hungary; BAD—Baden; BAV—
Bavaria; BRA—Brazil; CHN—China; FRN—France; GMY—
Germany; HAN—Hanover; HSE—Hesse Electoral; HSG—
Hesse Grand Ducal; ITA—Italy; MEC—Mecklenburg-
Schwerin; MOD—Modena; NTH—Netherlands; PMA—
Parma; RUS—Russia; SAX—Saxony; SIC—Two Sicilies;
SWD—Sweden; TUR—Turkey; TUS—Tuscany; UKG—United
Kingdom; URU—Uruguay; WRT—Wuerttemburg. We also
see that the alliance network is sparse and evolving.



Figure 10.5 
Alliances: multilateral in red, bilateral in gray, and both in green. Source:
Maoz, Johnson, Kaplan, et al. (2019).

Figures 10.6 and 10.7 illustrate the situation after World
War II. This period witnessed increasingly dense networks
with largely stable alliances separated by continent and
ideology: the networks contain densely connected subsets
of states, which are bridged by a few larger countries.



Figure 10.6 
Alliances: 1960 (multilateral in red, bilateral in gray, and both in green).
Source: Maoz, Johnson, Kaplan, et al. (2019).



Figure 10.7 
Alliances: 2000 (multilateral in red, bilateral in gray, and both in green).
Source: Maoz, Johnson, Kaplan, et al. (2019).

Turning to international trade, we note that there are
two major periods of growth. The first period covered the
latter half of the nineteenth century and lasted until World
War 1. The second period began after World War II and
lasted roughly until 2010. Table 10.2 provides an overview
of this trend. We see that trade increased dramatically
after World War II, growing by almost a factor of 4.



Table 10.2 
World merchandise exports as percentage of gross domestic product (GDP)

Source: Jackson and Nei (2015), Krugman (1995).

10.4.1 A Model of Alliances

Given this empirical background, we now turn to a
theoretical model taken from Jackson and Nei (2015) that
helps us understand the co-movements in the frequency of
war, the changes in trade, and the nature of alliances.
There are N = {1, …, n}, n ≥ 3, countries. Individual
countries can attack each other, form alliances, and trade
with each other. A link between two countries signifies an
alliance. The collection of alliances is denoted by network
g. Let g − i denote the network obtained by deleting all
alliances that involve country i. Each country i ∈ N is
endowed with military strength Mi ∈ ℝ+. For any subset of
countries C ⊆ N, let  be their collective military
strength. If there is a war between C1 and C2, with C1 being
the aggressor, then C1 wins if M(C1) > ρM(C2). The
parameter ρ > 1 reflects the relative advantage of being
the defender, and ρ < 1 reflects the relative advantage of
being the aggressor.

The notion of vulnerability plays a key role in the
analysis. Country i is vulnerable at network g if there is a
country j and a coalition C ⊆ Nj(g) ∪{j} such that ,
and

where Cc is the complement of C. In this instance, country j
is said to be a potential aggressor. This is saying that there
is a coalition of j and some of their neighbors such that the
combined might of the coalition is greater than the
defensive might of i and its neighbors (those that are not in



the coalition). This definition thus brings out the role of
alliance ties: an alliance creates the potential for asking for
support when faced with a threat (however, as ties are not
exclusive, it is possible that an ally may also switch sides
and become part of a rival group). This definition of
feasible attacking and defending coalitions may be
interpreted as another assumption about the technology of
war (in the same spirit as the CSF).

Figure 10.8 
Probability of war between country pairs: 1820–2000. Source: Jackson and Nei
(2015).

This idea is illustrated in figure 10.9. Country 2 and its
allies (3 and 4) attack country 1 (which is defended by 5).
Country 1 is vulnerable if M({2, 3, 4}) > ρM({1, 5}. Without
getting into further detail, we may assume that winning is
desirable and losing a war is undesirable.



Figure 10.9 
(left) Vulnerable country; (right) ring network.

We are interested in understanding alliance networks
that are stable in the sense that no country is vulnerable,
no one wishes to delete an alliance, and no pair of countries
wishes to add an alliance link. Suppose that there is a cost
cij > 0 to keeping a link between a pair of countries i, j.
These costs will be taken to be small relative to the spoils
of a successful war.

With this notation in place, a network g is war-stable if
all of the following occurs:

No country is vulnerable at g (or else that country will be
invaded and conquered).
∀gj, k∉g, no country is vulnerable at g+gjk (which
discourages new links).
∀gjk ∈ g, both j and k are vulnerable at g − gjk (which
discourages the deletion of existing links).
The notion of war-stability (and the other stability

definition war-and-trade stable discussed next) has the
same essential structure as the usual pairwise stability
notion introduced in chapter 3. In all cases, the
considerations are very similar: links have to benefit both
parties, and all beneficial links are added. The definitions of
stability in this section place these considerations in the
context of war and peace and alliances.



Taken one at a time, the requirements for stability are
reasonable, but they are difficult to satisfy jointly. To see
this tension between the three requirements, let us
consider the complete network. For this network to be war-
stable, no country must be vulnerable. But this means that
for every country, ρM(i) ≥ M(N∖{i}). This, however, implies
that country i is not vulnerable in network g − gik for any j
≠ i, thereby showing that the complete network is not war-
stable.

Consider next a regular network, as depicted in figure
10.9. There are five countries in this network. Let us first
ensure that no country wishes to form a link. Consider link
g53. In order for country 1 not to be vulnerable to the
addition of this link, it must be that ρM(1) ≥ M({2, 3, 4, 5})
(as it must not be vulnerable to 3 and its allies 2, 4, and 5).
But note that this implies that 1 is not vulnerable (with
respect to any coalition of rivals) in the original ring, even
if it deletes a link. This contradicts the war-stability of the
ring network.

On the other hand, the empty network is war-stable if no
country is vulnerable and no two countries can gang up to
successfully attack a third country. Suppose that the
resources of countries are ordered as follows: M1 ≥ M2 ≥….
≥ Mn. Then a sufficient condition for the empty network to
be war-stable is that ρM({n}) ≥ M({1, 2}).

These considerations are general and form the basis for
the following result.
Proposition 10.2 If n ≥ 3, then there are no nonempty, war-stable networks.

In other words, there is no network with alliances that is
war-stable. The argument shows that there is a very fine
line between profitable alliances and vulnerability: if an
alliance between i and x is necessary for sustaining i, then
x could form an alliance with another country z that would
render i vulnerable. This suggests that there may be



rapidly shifting alliances as countries try to take advantage
and navigate this delicate balance. This is reminiscent of
the empirical patterns from the nineteenth century that we
mentioned previously: during the nineteenth century and
the first half of the twentieth century, roughly one-third of
the alliances present at any time were dissolved within a
five-year period. The dynamics of shifting alliances went
hand in hand with the frequency of wars in this period.

Here is a sketch of the proof for this result. Consider a
nonempty, war-stable network, g. There must be a country i
that has an alliance with country k. In order for this link to
be incentive compatible (i.e., there must be no incentive to
delete a link), i must be vulnerable in g − gik. Thus, there is
some j and C ⊂ Nj(g − gik) ∪{j} with i∉C and M(C) ≥
ρM(C′), for every C′⊂{i}∪ Ni(g − gik) ∩ Cc, where Cc is the
complement of set C.

As g is war-stable, i is not vulnerable at g: it must be that
k∉C, and in particular that gjk∉g. However, if link gjk is
added to create network g + gjk, then C ∪{k} can defeat i
because M(C ∪{k}) ≥ M(C), and therefore M(C ∪{k}) ≥
ρM(C′) for any feasible C′ that can defend i; that is,

for any feasible C′ that can defend i in g + gjk. This means
that j and k can form a link that makes i vulnerable,
contradicting the hypothesis that g is war-stable. As g was
an arbitrary nonempty network, this also completes the
proof.

◼

Turning to the period after World War II, a major change
was the introduction of nuclear weapons. It has been
widely argued that this profoundly altered the incentives to
wage large-scale wars. One way to interpret this within the
model is to say that with the widespread availability of



nuclear weapons, countries were no longer vulnerable to
attacks. The only war-stable network is the empty network.
However, the empirical evidence presented here shows
that alliances became more popular and their stability
increased greatly. Moreover, this trend was accompanied
with an increase in international trade. To reconcile these
trends, we introduce international trade into the theoretical
model.

10.4.2 A Model of Alliances and Trade

Suppose that a country earns payoff ui(g) from network g.
The utility reflects gains from trade. Let us adapt the notion
of vulnerability as follows: Denote by Eik(g, C) the net gains
to country k if country i is conquered by coalition C (of
which k is a member). Given network g, country i is said to
be vulnerable despite trade if there exists a country j and a
coalition C ⊆ Nj(g) ∪{j} such that , and

M(C) > ρM(i ∪ (Ni(g) ∩ Cc)) and
uk(g − i) + Eik(g, C) ≥ uk(g), with a strict inequality for
some k.

The utility uk(g − i) brings out the potential implications
of an elimination of i, as it may enhance or lower the
payoffs of country k. We will say that a link gjk is war-
beneficial if it lets j and k attack a third country, i, and the
net gains to conquering i outweigh any losses to adding the
link for both j and k (i.e., the definition of vulnerable
despite trade from before, but with the left side being uk(g
+ gjk − i) + Eik(g, C) and the inequality being strict for at
least one of j or k). Let us define network g to be war-and-

trade stable if the following are true:
No country is vulnerable despite trade at g,
∀gjk = 0, if uj(g + gjk) > uj(g) then uk(g + gjk) < uk(g), and
gjk is not war-beneficial, and



∀gjk = 1, either uj(g − gjk) ≤ uj(g) or j is vulnerable
despite trade at g − gjk, and similarly for k.
In other words, a network of alliances is war and trade

stable if no country is vulnerable despite trade, if no two
countries can add an alliance that is mutually profitable
(through economics or war), and either economic or
conquest considerations prevent every country from
severing any of its links.

For simplicity, we will consider a symmetric setting in
what follows. Suppose that utility from a network depends
only on the degree and the number of alliances. Thus

where di(g) is the degree of i. Let the function f be concave
and nondecreasing, and suppose that there is a d ≤ n − 1
such that f(d) < cd. Finally, let d* maximize f(d) − cd. This
is a simple model of gains from trade and costs of having
trading relationships that abstracts from heterogeneity in
goods and trading partners, and from interdependencies in
trading relationships beyond diminishing returns.

The reward from conquest is important in what follows.
We will set Eij(g; C) as the reward to country i from
conquering country j. We set Eij(g; C) = E(di(g))/|C|, so the
rewards from conquest depend on the degree of the
conquered country and are divided equally among the
members of the winning coalition. Let us refer to the game
with these assumptions as the symmetric payoffs game.
Proposition 10.3 Consider the symmetric payoffs game with d* ≥ 2. If E(d*)
≤ 2[f(d*) −f(d*− 1) −c], then a d*-regular network is war and trade stable if

Recall that a network is pairwise stable if no two
countries weakly benefit from adding a link (at least one



strictly), and no single country benefits from deleting a
link. Note that any network that is d* regular is pairwise
stable. Suppose that g is pairwise stable with respect to u.
Then it follows that if no country is vulnerable despite trade
at g or g + gjk, then g must be war and trade stable. So, to
prove the result, we need to show that this is true under
the given assumption on E(.), for any d*- regular network.

First, note that no country i is vulnerable to any coalition
C that does not include any of its neighbors (even if this
comes from the addition of a link that does not involve any
neighbors) because ρ ≥ (d* + 1)/d*− 1). Thus, we need only
verify vulnerability to a coalition that involves at least one
neighbor (and possibly involves the addition of a link).

Next, observe that a neighbor that has d* links will not
want to attack i. This is because any coalition that succeeds
must involve at least two countries, and if all neighbors
have d* links, then under the condition E(d*)/2 ≤ (f(d*)
−f(d*− 1) −c), being part of such a coalition is not
profitable. Finally, consider the case where all i’s neighbors
in the attacking coalition have d* + 1 links. This means that
the coalition involves at most two of i’s neighbors, as at
most one new link can be formed. However, ρ ≥ (d* +
1)/(d*− 1) ≥ (d* + 2)/(d*), so the attacking coalition cannot
defeat i and its remaining neighbors, regardless of whether
it contains one or two of i’s neighbors.

◼

Observe that the regular networks identified as war and
trade stable are not war-stable. Thus we have shown one
route through which economic forces—working through
gains from trade—support stable networks, and thereby
place limits on the extent of conflict. The condition shows
that with sufficient gains from trade—reflected in the
condition E(d*) ≤ 2 ≤ [f(d*) −f(d*− 1) −c]—the potential
spoils of a war against a trading partner are outweighed by



the loss in trade value, so countries are never attacked by
one of their own allies.

Let us now summarize what we have learned about
alliances, trade, and war. We considered a model of
network formation that yields two interesting insights. The
first is that in a pure conflict setting, individual attempts to
form alliances and attack opponents lead to shifting and
unstable alliances. This instability is consistent with the
constantly shifting structures and recurring wars that
occurred throughout the nineteenth and early twentieth
centuries. The second insight is that the presence of large
gains from trade can sustain stable alliance structures
where no country is vulnerable to attack by a coalition of
enemies. This too is consistent with the empirical trends. In
the period since 1950, wars have greatly subsided in
parallel with the huge increase of trade.

So far in this chapter, we have studied static models of
war. However, in history, important wars have altered the
power and prosperity of the parties involved and have
reconfigured the subsequent relations between them.
Indeed, the fear of such a long-term change in the relative
power of Sparta and Athens was the primary cause of the
Peloponnesian War according to the great Greek historian
Thucydides. In the next section, we study the dynamics of
war and conquest.

10.5 Conquest and Empire

The history of the world …. is an imperial history, the history of empires.

Empires were systems of influence or rule where ethnic, cultural or ecological

boundaries were overlapped or ignored. Their ubiquitous presence arose from

the fact that …. the endowments needed to build strong states were very

unequally distributed. Against the cultural attraction, or physical force, of an

imperial state, resistance was hard, unless reinforced by geographical

remoteness or unusual cohesion.

(Darwin 2007, p. 491)



A recurring theme in history is the that the presence of
small kingdoms is accompanied by bloody conflicts; rulers
fight each other incessantly, small parcels of land are
exchanged, treasures are plundered, and the capture of
human beings is common. However, once a ruler acquires a
large advantage relative to his neighbors, he then quickly
goes on to take them over, one after the other, and create
an empire. Classical studies on the formation of empire
include Polybius (2010), Tacitus (2009), and Khaldun
(1989). We begin by discussing three major historical
empires to bring out general features of the formation of
empires.

10.5.1 Historical Background

The first Chinese Empire

We start with an examination of one of the turning points in
world history: the emergence of the first empire in China in
221 BC. Our discussion draws on Lewis (2010) and Overy
(2010). In China, the years between 475 BC and 221 BC
are referred to as the Warring States Period: this period
was characterized by almost uninterrupted warfare
between seven major states. The seven major kingdoms
were Qin (located in the far west); the three Jins (located in
the center on the Shanxi plateau–Han south along the
Yellow River, Wei located in the middle, Zhao the most
northernmost of the three); Qi (centered on the Shandong
Peninsula); Chu (with its core territory around the valleys
of the Han River); and Yan (centered on modern-day
Beijing). Initially, wars led to changes in the power of the
dynasties, but all the kingdoms survived. However, from
320 BC to 221 BC, there was a major consolidation, and by
221 BC, the Qin defeated all the other kingdoms and
unified the entire area under one ruler, Qin Shi Huang.
Figure 10.10 illustrates these dynamics.





Figure 10.10 
The first Chinese Empire: dynamics. Source: Overy (2010).

The Qin empire was bounded by forests in the south,
deserts and the Tibetan Plateau on the west, wasteland in
the north, and the Pacific Ocean in the east. These
geographic features, especially in the south, west, and east,
presented a physical constraint on further expansion.

The Roman Empire

The Roman Empire has had a profound impact on the
history of the Mediterranean area (and more broadly
across Europe) over the past 2,500 years. Our discussion
draws on Kelly (2006) and Polybius (2010). Figures 10.11
and 10.12 summarize the expansion of Roman empire over
the period 500 BC—30 BC. In these figures, we distinguish
physical contiguity from sea-based contiguity, which was
made possible after the development of a Roman navy; the
latter are represented with dashed lines.



Figure 10.11 
Expansion of the Roman republic, 500 BC–218 BC. Source: Scarre (1995).



Figure 10.12 
Expansion of the Roman republic, 217 BC–30 BC. Source: Wittke, Olshausen,
Szydlak et al. (2010).

We begin with the early Roman Empire and first describe
the period of 500 BC to 272 BC. Rome’s first major war
against an organized state was fought with Fidenae (437–
426 BC), a town located just upstream from Rome. Rome
next fought a long and difficult war against Veii, an
important Etruscan city not far from Fidenae. The conquest
of Veii opened southern Etruria to further Roman
expansion. Rome then proceeded to found colonies at
Nepet and Sutrium and forced the towns of Falerii and
Capena to become its allies. During the period of 348–295
BC, Rome rapidly rose to a position of hegemony in Italy
south of the Po valley. A key moment was the Third
Samnite War (298–290 BC): Samnites persuaded the
Etruscans, Umbrians, and Gauls to join them. Rome
emerged victorious in the Battle of Sentinum in 295 BC.
The next major event was the Pyrrhic War, 280–275 BC.
The conflict between Rome and Pyrrhus lasted five years,
ending in a final Roman victory in 275 BC at Beneventum.



The period from 272 BC to 30 BC witnessed a massive
expansion of the Roman Empire across the Mediterranean
Sea and most of modern western Europe. Rome first began
to make war outside the Italian peninsula during the Punic
Wars against Carthage (in North Africa) around 264 AD. By
146 AD, Rome had defeated Carthage and taken over direct
control over large parts of North Africa, and through its
conflict with Carthage, it also expanded its influence in
Iberia. The wars with Macedonia led to control over Greece
by 148 BC, and the defeat of the Selucid emperor in 188 BC
led to control over Asia Minor. Further conquests over the
next hundred years would result in Rome’s conquest of
large parts of modern Spain and most of modern France
(Kelly [2006], Polybius [2010]). Figure 10.12 illustrates this
growing hegemony.

The Spanish Empire in the New World

European imperial expansion starting from around 1500 AD
reshaped the medieval world and gave rise to the age of
global empires. The expansion of the Spanish domains in
the Americas illustrates this instance of imperial history in
a especially dramatic form. Our discussion draws on Elliott
(2006), and the Encyclopedia Britannica.

Spanish conquest in the Americas started with the first
voyage of Christopher Columbus in 1492 AD. This voyage
created a new link in the contiguity network, as it made a
new part of the world accessible. Equipped with superior
technology from Europe, the Spanish quickly captured an
island in the Caribbean (subsequently named Hispaniola).
The Indigenous population was almost entirely annihilated,
and the island became part of the Spanish domain. Moving
on to Central America, the Spanish conquistador Hernán
Cortés defeated the Aztecs in Mexico City by 1521 AD, and
the Aztec Empire was largely conquered by 1532 AD.
Continuing on land and by sea, Spanish conquest had
reached Cartagena by 1532 AD, and Caracas had been



captured by 1567 AD. Farther south, Francisco Pizzaro
defeated the Inca ruler Atahualpa in 1532, and Spain set up
the viceroyalty of Peru in 1542, a vast area that included
most parts of South America (other than the Portuguese
Empire and Venezuela). The Mayans were finally defeated
in 1697, and the area of southern Mexico, Belize,
Guatemala, and Honduras fell into Spanish hands. In the
same year, El Salvador also became part of the Spanish
Empire. Figure 10.13 illustrates this process.

Figure 10.13 
Spanish and Portuguese conquests in America. Source: O’Brien (2005).

European military technology played a central role in the
dramatic speed and scale of these conquests. For instance,
in 1532 AD, Pizarro captured the Inca emperor with 167
men fighting an imperial Inca army of between 5,000 and
10,000 men. In 1536, 190 conquistadors held out for a year



against an Inca army of over 100,000 men (Hoffman
[2015]). In addition to military superiority, the Europeans
were helped by the vulnerability of Indigenous populations
in America to diseases such as smallpox and measles.
Almost 95 percent of the Aztec population died due to
diseases introduced by the Spanish during this period. The
Indigenous population under the Incas was similarly greatly
reduced due to epidemics of diseases. So the Indigenous
populations and its leadership could not present any real
resistance to the conquistadors who were able to
overwhelm opponents with significantly larger armies.

This record of war and conquest in China, Rome, and
America motivates the study of the following questions:
what are the circumstances under which rulers will choose
to fight? What is the optimal timing of attack, now or later?
When will the resource advantage of ruled translate into
domination over their neighbors? What are the limits to the
size of an empire? The next section proposes a theoretical
framework to explore these questions.

10.5.2 A Dynamic Model of Wars and Conquest

We study a dynamic game in which rulers seek to maximize
the resources they control by waging war and capturing
new territories. There are three building blocks in our
model: the interconnected kingdoms, the resource
endowment for every kingdom, and the CSF. This model is
taken from Dziubinski, Goyal, and Minarsch (2017).

Let V = {1, 2, …, n}, where n ≥ 2 is the set of vertices. A
node i ∈ V is endowed with resources, ri ∈ ℝ++. The nodes
are connected in a network, represented by an undirected
graph g. A link between two nodes signifies access. Access
may reflect physical contiguity, but in principle, it goes
beyond geography: we do not restrict our attention to
planar graphs. So our model allows virtual links (i.e., links
made possible by advances in military and transport
technology).



Every node i ∈ V is controlled/owned by one ruler. At the
beginning, there are ℕ = {1, 2, …, n} rulers. Let 𝕠: V→ ℝ
denote the ownership function. The resources of ruler i ∈ ℕ
under 𝕠, are given by

The network, together with the ownership configuration,
induces a neighbor relation between the rulers: two rulers
i, j ∈ N are neighbors in network g if there exists u ∈ V,
owned by i, and v ∈ V, owned by j, such that guv ∈ g. Figure
10.14 illustrates nodes, resource endowments, and
connections; nodes controlled by the same ruler share a
common color. The light line between nodes represents the
interconnections, the dotted lines encircling nodes owned
by the same ruler indicate the ownership configuration,
and the thick lines between nodes reflect the induced
neighborhood relation between rulers.



Figure 10.14 
Neighboring rulers.

When two rulers fight, the probability of winning is
specified by a CSF. Here, we consider symmetric CSFs with
no ties. Given two rulers, A and B, with resources xA ∈ ℝ++

and xB ∈ ℝ++, respectively, p(xA, xB) is the probability that A
wins the conflict and p(xB, xA) is the probability that B wins
the conflict. We shall use the Tullock contest function in
our analysis of conflict:

where γ > 0. Larger resources enhance the prospects of
success. In this discussion, for expositional simplicity, we
will focus on the case where γ > 1. Here, the probability of
success rises more than proportionately with respect to the
ratio of resources.



The game takes place in discrete time: rounds are
numbered t = 1, 2, 3…. At the start of a round, one of the
rulers is picked with equal probability from the set of
remaining rulers. The chosen ruler, such as i, chooses
either to be peaceful or to attack one of their neighbors. If
a ruler attacks a rival, they do so with all their current
resources. If they choose peace, one of the remaining
rulers is asked to choose between war and peace, and so
forth. If no ruler chooses war, the game ends. If the
attacker loses, the round ends. Otherwise, the attacker is
allowed to attack neighbors until they lose, choose to stop,
or there are no neighbors left to attack. When two rulers i
and j fight, the winner takes over the entire kingdom of the
loser (and also inherits the boundaries, and hence the
connections). For simplicity, we assume that there are no
losses or costs of war; our arguments also hold so long as
the losses are relatively small.

This dynamic is illustrated in figure 10.14: the orange
kingdom wins the war with the red kingdom and expands.
This expansion brings it in contact with new neighbors, the
light- and dark-green kingdoms. The game ends when all
rulers choose to be peaceful (the case of a single surviving
ruler is a special case, as there is no opponent left to
attack). Observe that, given these rules, the game ends
after at most n− 1 rounds. It may end earlier, of course:
this happens if all the rulers choose peace in a round.

A state is a pair (𝕠, P), where P ⊆ N, is the set of rulers
who were picked prior to i and chose peace at 𝕠. Ruler i,
picked at state (𝕠, P) ∈ 𝕆 × 2N∖{i}, chooses a sequence of
rulers to attack. A sequence σ is feasible at 𝕠 in graph G if
either σ is empty or if σ = j1, …, jk for all 1 ≤ l < k, jl∉{i, j1,
…, jl−1}, and jl is a neighbor of one of the rulers from {i, j1, …,

jl−1} under 𝕠 in G. A sequence σ is attacking if it is
nonempty. Let N* denote the set of all finite sequences over
N (including the empty sequence). A strategy of ruler i is



function si: 𝕆 × 2N∖{i} → N* such that for every ownership
configuration, 𝕠 ∈ 𝕆, and every set of rulers, P ⊆ N ∖{i},
si(𝕠, P) is feasible at 𝕠 in G. Observe that the only feasible
sequence for rulers who do not own any nodes, and for the
ruler who owns all nodes, is the empty sequence. Given
ruler i ∈ N and graph G, the set of strategies of i is denoted
by Si; S = ∏ i∈NSi denotes the set of strategy profiles.

The probability that ruler 1 with resources R1 wins a
sequence of conflicts with rulers with resources R2, …, Rm,
accumulating the resources of the losing opponents at each
step of the sequence is

Given 𝕠, a set of rulers, P, and a strategy profile s = (s1,

s2, …, sn) ∈ S, the probability that the game ends at 𝕠′ is
given by F(𝕠′ | s, 𝕠, P). We shall refer to a final ownership
configuration as an outcome. The expected payoff to ruler i
from strategy profile s ∈ S at state (𝕠, P) is

Every ruler seeks to maximize their expected payoff; in
other words, the capture of resources occupies center
stage in this model.

The goals of rulers and the motivations for war have
been extensively studied. In the history of the
Peloponnesian War by Thucydides, we already find a
discussion of this subject. Thucydides (1989) says that
there are three motives for war: greed, fear, and honor.
Hobbes (1886) elaborates on these motivations as follows.
So that in the nature of man, we find three principal causes of quarrel. First,
competition; secondly, diffidence; thirdly, glory. The first maketh men invade
for gain; the second, for safety; and the third, for reputation. The first use



violence, to make themselves masters of other mens persons, wives, children,
and cattle; the second, to defend them; the third, for trifles. (p. 64)

These observations are consistent with historical
evidence. The Roman Empire was founded on a series of
hard-fought campaigns. During the second and first
centuries BC, Roman generals waged ever more extensive
wars and campaigns. Victory yielded land for the expanding
Roman population, large numbers of slaves, and huge
quantities of booty: in the 50 years from 200–150 BC, the
equivalent of 30 metric tonnes of gold was seized. In 62 BC,
the victorious Pompey returned from the east with booty
worth nearly 70 metric tonnes of gold (Kelly [2006]).
Equally important was the high esteem in which successful
generals were held. The highest honour for a general in
Rome was a Triumph: a march of the general with his army
through the city.

The second example concerns European global empires:
The arch-characteristic of European imperialism was expropriation. Land was
expropriated to meet the needs of plantations and mines engaged in long-
distance commerce. Slave labor was acquired and carried thousands of miles to
serve the same purpose. Native peoples were displaced, and their rights
nullified, on the grounds that they had failed to make proper use of their land.
Both native peoples and slaves (by different forms of displacement) suffered
the effective expropriation of their cultures and identities. (Darwin 2007, p. 24)

Control over resources remains a major motivation for
wars in the contemporary world. For instance, the presence
of large oil reserves has been suggested as a potential
explanation for conflict in the Middle East. The historical
and political science literature has suggested a potential
role for natural resources in many wars. Motivated by this
descriptive literature and the relatively large number of
changes in boundaries between countries in the twentieth
century, Caselli, Morelli, and Rohner (2015) present
evidence that the location of oil resources has significant
and quantitatively important effects on interstate conflicts
in the period after World War II.



Returning to the formal model, we say that strategy
profile s ∈ S is a Markov perfect equilibrium of the game if
and only if, for every ruler i ∈ N, every strategy , and
every state (𝕠, P) ∈ 𝕆 × 2N∖{i}, it holds that 

. Standard arguments can be employed
to establish that for a connected network G, for any
symmetric CSF p, and any resource endowment ,
there is an equilibrium and all equilibria are payoff
equivalent.

10.5.3 The Incentives to Wage War

The first step is to understand the basic incentives to wage
war. In our model, a ruler picked to fight needs to decide
whether to fight or to remain peaceful, and if fighting is
desirable, then to decide whom to attack. The answer to
these questions turns on coefficient γ in the contest
function. When γ > 1, xγ has increasing returns to scale,
and when γ < 1, it has diminishing returns to scale. This is
critical in shaping the expected returns to waging war. In
particular, suppose that x > y. It is then easy to check the
following:

  1.  If γ > 1, then (x + y)p(x, y) > x (rich rewarding).
  2.  If γ < 1, then (x + y)p(x, y) < x (poor rewarding).

Under a rich rewarding CSF, the expected resources of
the richer player are higher than their current resources
and the expected resources of the weaker player are lower.
The opposite is true in the case of a weak rewarding CSF.
This means that if rulers have unequal resources and are
myopic, no peace is possible (so long as γ ≠ 1). In our
game, rulers are farsighted and care only about the long-
run outcome. In this setting, a ruler may decide not to fight
a neighbor, as that would bring them in contact with a
more powerful ruler.



To develop a feel for some of the forces at work in this
setting, we present two examples next. The first concerns
the role of the contest success function.
Example 10.1 The role of technology

Suppose that three rulers, located in a complete
network, have equal resources given by x. Let γ = 0. If two
rulers have fought, then the state must contain one ruler
with resources 2x and the other ruler with resources x. It
follows that the poorer ruler has a strict incentive to wage
a war. Anticipating this, consider the incentives of rulers at
the initial state with three active rulers. As rulers have
equal resources and the network is complete, all three
rulers have the same incentives. As the probability of
surviving two wars is 1/4, the expected payoff from waging
a war is 3x/4. This tells us that there are no wars in
equilibrium. By contrast, consider very large γ. When there
are two rulers, one of them must have 2x resources and the
other x. The ruler with more resources wins a war with
probability close to 1, and therefore they expect to increase
payoffs. Anticipating this order of moves in the two-ruler
state, at the initial state, all three rulers have a strict
incentive to wage war. This is because at the initial state,
the expected payoff on waging a war is 3x/2, which is
larger than the expected payoff from no one fighting. We
see that with large γ, rulers will wage war, leading to a
hegemony. This example brings out the role of the
technology of war in shaping the dynamics of conquest.

△
Example 10.2 The role of resources

As before, for simplicity, consider three rulers linked to
each other. Suppose that resources are very unequal: for
example, rulers 1 and 2 have equal resources, x, and ruler
3 has resources 3x. When γ = 0, the two poorer rulers now
wish to fight, while the rich ruler does not. The outcome is



war and hegemony. As γ = 0, the probability of becoming a
hegemon is equal for the three rulers. Thus conflict and
conquest are equalizing. Next, consider the case where γ is
very large. Now ruler 3 will win any war they fight, so they
have a strict incentive to fight two wars. The outcome will
be the hegemony of ruler 3. In this setting, war reinforces
initial inequality.

△
We now turn to a more general study of the dynamics of
conquest. Consider three rulers with resources x, y, and z.
The expected payoffs to waging two wars are

while the expected payoff to waiting is

It is possible to show that a ruler prefers to wage two
wars if γ > 1 and prefers to wait if γ < 1. Thus, if γ > 1,
there is a no-waiting property, while if γ < 1, then
opponents prefer to wait. This is because if γ > 1, then xγ is
supermodular, and because of that, p has the no-waiting
property; and if γ < 1, then xγ is submodular, and because
of that, p has the waiting property. Thus we note that rich
rewarding p is necessarily no-waiting (because increasing
returns to scale imply supermodularity) and poor
rewarding p is necessarily waiting (because diminishing
returns to scale imply submodularity). A question at the
end of the chapter further explores this relationship
between γ and the incentives to wage war.

10.5.4 Equilibrium Analysis: Strong Rulers and Hegemony

We build on this incentive to develop the equilibrium
analysis of the game of conquest. Given ownership
configuration 𝕠, the set of active rulers at 𝕠 is



In other words, an active ruler is someone who controls
at least one vertex but does not control all vertices. An
ordering of the elements of the set Act(𝕠) ∖{i}, σ, such that
the sequence σ is feasible for i in G under 𝕠, is called a full

attacking sequence (f.a.s.). Figure 10.15 illustrates the
execution of such a sequence (for the orange kingdom).

Figure 10.15 
Full attacking sequence (f.a.s.).

Our main result on war and conquest and the extent of
empire concerns the rich rewarding case.
Proposition 10.4 Consider a rich rewarding contest success function that

satisfies equation (10.26). Suppose g is a connected network, and let  be

a generic resource profile. In equilibrium, every active ruler chooses to attack a

neighbor if |A(𝕠)| ≥ 3, and at least one of the active rulers attacks their

opponent if |A(𝕠)| = 2. The outcome is hegemony, and the probability of

becoming a hegemon is unique for every ruler.

The result predicts incessant fighting, preemptive
attacks, and long attacking sequences for all rich
rewarding contest functions, any connected network, and
generic resources.



The argument builds on the notion of a strong ruler. A
ruler is said to be strong if they have an attacking sequence
σ = i1, …, ik, where for all l ∈{1, …, k},

In other words, at every step in the attacking sequence,
the ruler has more resources than the next opponent. The
set of strong rulers at ownership configuration 𝕠 is

A ruler who is not strong is said to be weak. It is worth
noting that in any state, the ruler with the most resources
is strong, while the ruler with the least resources is weak.
Thus both sets are nonempty in every network and for
generic resource profiles.

The first step in the proof shows that, assuming that all
other rulers choose peace in all states, it is optimal for a
strong ruler to choose a full attacking sequence. This is
true because the CSF is rich rewarding, so a strong ruler
has a full attacking sequence that increases their resources
in expectation, at every step along the sequence. The
second step extends the argument to cover opponents that
choose war. If opponents are active, then the no-waiting
property tells us that it is even more attractive not to give
them an opportunity to move. For a strong ruler, it is
therefore a dominant strategy to use an optimal full
attacking sequence. The final step in the proof covers
nonstrong or weak rulers to establish that with three or
more active rulers, it is optimal for every ruler to choose a
full attacking sequence. Observe that we have already
shown that every nonstrong ruler knows that they will be
facing an attack sooner or later. This means that waiting
can only mean that the opposition will become larger and



richer. The no-waiting property then tells us that every
ruler must attack as soon as possible. If there are only two
active rulers, then the richer ruler has a strict incentive to
attack the poorer one (this follows from the definition of
the rich rewarding contest function).

◼

We now study the role of the network in shaping
conquest dynamics. A preliminary remark is that for fixed
resources and sufficiently large γ, it is never optimal to
attack a richer ruler if other options are available. The
optimal strategy for a strong ruler must involve attacking a
poorer ruler at every stage in the attack sequence. Such a
sequence is clearly not available for a weak ruler: the
probability of a weak ruler becoming a hegemon converges
to zero as γ grows. Whether a ruler is strong or weak
depends on both the distribution of resources and the
position of the ruler in the contiguity network. Figure 10.16
helps bring out this point: relatively rich kingdoms, such as
those with resources 16 and 17, are weak, while less rich
kingdoms, such as those with resources 8 and 9, are
strong.

Figure 10.16 
Weak rulers (surrounded by thick red lines) and strong rulers.



It is helpful to define the boundary of a set of vertices U
⊆ V in G as

A set of vertices, U, is weak if G[U] is connected, BG(U) ≠ ∅,
and for all v ∈ BG(U), . A weak set of vertices is
surrounded by a boundary consisting of vertices, each of
which is endowed with more resources than the sum of the
resources of the vertices within the set. It is easy to see
that for any initial state 𝕠, a ruler is weak if their vertex
belongs to a weak set; otherwise, the ruler is strong.

10.5.5 Relating Theory and Historical Experience

It is illuminating to view the rise of the three historical
empires we discussed earlier in this chapter through the
lens of the model presented in section 10.5.1.
Chinese Empire In line with the theoretical prediction, over a
period stretching several hundred years, there was
incessant warfare. To appreciate the time-line of gradual
and then very rapid expansion of empire, consider a slight
variation on the contest function, in which a tie arises with
a probability related to the size of the armies of the
opponents. In the period prior to 360 BC, the armies were
small and the battles indecisive for the fate of a ruler. The
period after 360 BC witnessed major reforms by the Qin
minister, Shang Yang. After these reforms and the
accompanying technological developments, the scale and
violence in a war changed dramatically: now elimination of
the losing ruler and conquest of his kingdom became much
more likely, especially in a war between the Qin and one of
the other warring states:
[T]he rise of Qin to dominance and its ultimate success in creating a unified
empire depended on two major developments. First, under Shang Yang it
achieved the most systematic version of the reforms that characterized the
Warring States. These reforms entailed the registration and mobilization of all
adult males for military service and the payment of taxes. While all Warring



States were organized for war, Qin was unique in its extension of this pattern
to every level of society, and in the manner in which every aspect of
administration was devoted to mobilizing and provisioning its forces for
conquest. (Lewis 2010, pp. 38–39).

These reforms meant that the ruler had the resources—
in terms of both army size and tax revenue—to wage large-
scale wars. Equipped with such a large army, the Qin ruler
was able to implement a long attacking sequence: in 230
BC, Qin conquered Han, the weakest of the Seven Warring
States. In 225 BC, Qin conquered Wei, followed in 223 BC
by Chu. The size of the army was crucial in this contest: the
first Qin invasion failed, when 200,000 Qin troops were
defeated by a much larger Chu army with around 500,000
troops. The following year, Qin mounted a second invasion,
with 600,000 men, defeating the Chu state. At their peak,
the combined armies of Chu and Qin are estimated to have
had in excess of a million soldiers. Qin conquered Zhao and
Yan in 222 BC. Finally, in 221 BC, Qin turned its attention
to the last surviving Warring State opponent: the Qi. In the
face of this great threat, Qi surrendered.

In line with the theory, there was a tendency to attack
the weaker states before the stronger ones. Han, the
weakest of the seven, was the first to fall. Qin’s policy of
attacking the nearby states and befriending the faraway
states was determined partly by proximity and partly by the
fact that Han and Wei were relatively weak, while Qi and
Chu had the most resources. Yan was also a weak state and
was the object of attack by Zhao and Qi. Table 10.3 lists the
size of the armies during the late Warring States period.

Table 10.3 
Chinese kingdoms: Army size and end year

Kingdom Size of Army End Year

Qin 800,000 –

Chu 800,000 BC 223

Qi 600,000 BC 221



Kingdom Size of Army End Year

Zhao 500,000 BC 222

Wei 400,000 BC 225

Han 300,000 BC 230

Yan 300,000 BC 222

Source: Zhao and Xie (1988, p. 18–19).

Our final observation concerns the frontiers of the
empire. Recall that the Qin empire was bounded by forests
in the south, deserts and the Tibetan Plateau in the west,
wasteland in the north, and the Pacific Ocean in the east.
These physical features, especially in the south, west, and
east, presented a physical constraint on further expansion.
We may therefore interpret China as a distinct component
of the world network, somewhat isolated from other parts
of the world. The first Chinese Empire was a hegemon that
was limited by the connectivity of the physical contiguity
network.
Roman Empire Turning next to the Roman Empire, our
theoretical analysis draws attention to four features in this
process. Again, in line with the theoretical prediction,
Rome was at war for much of this period: its vast territory
had been acquired through a long series of hard-fought
campaigns during a period of over 500 years. The second
point pertains to the pace of expansion: over the period 500
BC–272 BC, the expansion was slow and limited to the
Italian peninsula. This relatively slow pace of expansion
would be consistent with outcomes in a slighted extension
of our model, in which the probability of ties is proportional
to the size of the armies employed. However, once Rome
had taken over the Italian peninsula, further expansion was
rapid. Polybius (2010) presents a detailed discussion of the
expansion during the period from 220 BC to 167 BC, a
period that saw Rome take over parts of North Africa,



Greece, and Asia Minor. Later, during the period until 30
BC, saw a further massive expansion of Roman rule to
almost the entire coast around the Mediterranean Sea and
much of modern western Europe. The final observation
concerns the limits of the empire: the boundaries came to
be defined by the Atlantic Ocean in the west, the Rhine and
the Danube River in the north, the Sahara Desert in the
south, and the Euphrates River in the east. Over the
subsequent four hundred years, these boundaries would be
contested, but they would describe the limits of the empire
broadly: they are consistent with the theoretical prediction
that the size of the empire is limited by the connectivity of
the contiguity network.

Figure 10.17 
The first Chinese Empire: Summary. Source: Overy (2010).

Spanish Empire Our theoretical analysis draws attention to
three aspects of this development. The first is the



developments in Europe involving the successes of the
Castilian kingdom through the fifteenth century. These
successes set the stage for even further expansion across
the world. The second point is the incessant fighting
between the Spanish and the native kingdoms in both
North and South America during this period. The third and
key point is the reconfiguration of the contiguity network.
This was made possible by the discovery of new sea routes
to different parts of the world—the Caribbean islands (and
eventually Americas) by Columbus in 1492 AD. This
discovery happened alongside a major change in the
technology of war—the advancement of gunpowder and
corresponding advances in the design of fortresses and the
navy; for a systematic study of military revolutions, see
Rogers (1995a) and Parker (1988). Taken together, these
developments significantly altered the configuration of the
contiguity network, as well as the military resources of
combatants: previously “unknown” parts of the world now
became accessible and open to conquest. Imperial
expansion now proceeded along this new network and gave
rise to a truly global Spanish empire spanning three
continents: Europe, North America, and South America.

Let us now summarize what we have learned about the
dynamics of conquest. Wars of conquest among neighbors
have been a recurring feature of history. These wars give
rise to dominant rulers, who eventually create empires.
Even today, most of the world’s population lives in a few
large countries or integrated large communities like the
European Union. The model is highly stylized, but it helps
us understand why rulers want to fight, how institutional
reforms can create resource advantages, and how these
resources can support contiguous expansion, leading to an
empire. The extent of such an empire is limited by the
connectivity of the contiguity network.

10.6 Reading Notes



This chapter provides an introduction to the study of wars
and networks. For a popular overview of some issues in
network-based conflict, see Arquilla and Ronfeldt (2001)
and Zhu and Levinson (2011). The formal literature brings
together contest success functions and networks within a
unified framework. For an introduction to contest
functions, see Konrad (2009), for an overview of economics
literature on conflict, see Garfinkel and Skaperdas (2012).
For a survey of the literature on on conflict in networks,
see Dziubinski, Goyal, and Vigier (2016).

Section 10.3 covered static models of conflict on
networks and drew heavily on the work of Franke and
Öztürk (2015) and König, Rohner, Thoenig, and Zilibotti
(2017). The model of Franke and Öztürk (2015) builds on a
large literature of contests and conflict; for example, see
Hillman and Riley (1989) and Appelbaum and Katz (1986).
The model in König, Rohner, Thoenig, and Zilibotti (2017)
builds further on this strand of work and the theory of
games on networks, especially in the use of centrality
measures discussed by Freeman (1979) and introduced into
economics by Ballester, Calvó-Armengol, and Zenou
[2006]).

In the discussion on the Great War of Congo, the network
is taken as a given. This is a reasonable starting point, and
it is plausible as well, as most groups stuck to their
alliances during the Second Congolese War. But it is clear
that large-scale interventions will alter the environment,
which will give rise to new incentives for forming and
dissolving alliances. These considerations led us to examine
stable alliance structures and their effects on the frequency
of wars. We presented a model taken from Jackson and Nei
(2015); for related work in a similar vein see Huremovic
(2014) and Hiller (2017). We note that an important
concern in the study of alliances is free riding among the
parties; for an elegant summary of the literature on this



topic, see Bloch (2012). The study of alliances where efforts
is endogenous remains an open problem.

The final part of this chapter moved from static models of
conflict to the dynamics of conquest and appropriation.
Classical studies on the formation of empire include
Polybius (2010), Tacitus (2009), and Khaldun (1989).
Starting with Gibbon (1776), there is a long tradition of
modern work on empires; well-known examples are Braudel
(1995), Darwin (2007), Elliott (2006), Lewis (2010), Morris
and Scheidel (2009), and Thapar (1997, 2002). Section
10.5 located contests in a dynamic context and built on the
work of Hirshleifer (1995) and Krainin and Wiseman (2016)
and the large body of historical work on the motivations
underlying war and conquest (Thucydides (1989), Hobbes
(1886), and Darwin (2007). The presentation in section
10.5 is based on Dziubiński and Goyal (2017). For related
models of predation and violence, see Piccione and
Rubinstein (2007), Jordan (2006), Krainin and Wiseman
(2016), Levine and Modica (2013), and Turchin (2007). The
distinctive feature of the model is the central role of
networks in shaping conflict.

I thank Sebastian Cortes Corrales for preparing the
figures on imperial expansion presented in section 10.5.

10.7 Questions

  1.  Consider the model of contests on networks from
section 10.2.
(a)  Assume that there is a unique and interior

equilibrium effort in a regular network. Show that
equilibrium effort for every link and every player in a
regular network of degree d is given by



Show that the equilibrium payoff for every player is
− (dZ)/4.

(b)  Assume that there is a unique and interior
equilibrium effort in a star network. Let ec denote
the equilibrium effort of the central agent (in every
link) and ep the equilibrium effort of every peripheral
agent.
 (i) Show that equilibrium efforts are as follows:

where  and pp = 1 −pc. Thus the
central agent’s link-specific effort and the
peripheral agent’s effort are both decreasing in n.
Show that the aggregate effort of the central
agent is increasing in n.

(ii) Show that equilibrium payoff of central agent is

while the equilibrium payoff of the peripheral
agent is

(iii) Show that the equilibrium payoff of the central
agent is decreasing, while the equilibrium payoff
of the peripheral player is increasing in n.

  2.  This question considers fighting in a model of alliances
presented in section 10.3. Groups simultaneously
choose a single fighting effort, xi ∈ ℝ. The efforts of a
group are reinforced by the efforts of its allies and



weakened by the efforts of its enemies. Effective effort,
φi is defined as

where  refers to links between allies,  refers to links
between enemies, and β, γ ∈ [0, 1] are spillovers from
allies and enemies, respectively. Given network g and
effort profile x = (x1, …, xn), the payoff to group i is
determined by the following Tullock contest function:

In a regular network, Gk+, k−, every group i has 
alliances and  enmities. Given the symmetric
structure, there is a symmetric Nash equilibrium. Show
that this equilibrium effort and payoff vectors are given
by

Show that the fighting effort of every group x is
decreasing in k+ and increasing in k−, while π is
increasing in k+ and decreasing in k−.

  3.  Consider the symmetric setting of proposition 10.3 with
a concrete functional form  and six agents, N =
{1, 2, 3, 4, 5, 6}.
(a)  Let c = 0.4. Find d*.
(b)  Consider the network g = {g12, g23, g34, g45, g56, g61}

(a cycle). For what values of E(d*) and ρ is this
network war and trade stable?



(c)  Consider the network g = {g12, g23, g31, g45, g56, g64}
(two disconnected triangles). For what values of
E(d*) and ρ is this network war and trade stable?

(d)  Suppose d* = 1 (a case that is not covered by
proposition 10.3). Describe 1-regular networks. What
conditions on E(d*) and/or ρ make such a network
war and trade stable?

(e)  Prove the lack of existence of war-stable networks in
one of the other coalition formation rules (e.g.,
attacking countries all in the same component, an
attacked country being defended by its neighbors).

(f)  Work through the existence in the one case where
that is so (attacking and defending coalitions both
have to be cliques, ρ ∈ (1, 4/3)).

  4.  Consider the conquest game from section 10.5.
Suppose that three rulers are connected to each other.
A ruler can fight the two rulers one after the other or
wait and just fight the victor of the fight between the
other two. Assume that the probability of winning is
given by the Tullock contest function with parameter γ
≥ 0. Show that fighting two battles is better if γ > 1,
while waiting and fighting a single battle with the
winner of the battle between the other two rulers is
better if γ < 1.

  5.  Consider the conquest game from section 10.5.
Suppose three rulers are connected to each other. A
ruler can fight the rich neighbor followed by the poor
neighbor or the other way around. Assume that the
probability of winning is given by the Tullock contest
function with parameter γ ≥ 0. Show that the sequence
with the poor neighbor followed by the rich neighbor is
optimal if γ > 1; the converse holds true if γ < 1.

  6.  Consider the role of defensive alliances in the conquest
game from section 10.5. Suppose that in a round, once a



ruler has been picked, all the other active rulers have
an opportunity to create alliances. An alliance brings
together the resources of all its members to defend a
member of the alliance against an attack.
(a)  Suppose that the contest function is Tullock and γ is

large. Assume first that a ruler who is threatened
can form an alliance with anyone in the network. In
this case, hegemony will obtain only if there is a
ruler who controls more than one-half of the
aggregate resources.

(b)  Next, suppose that an alliance can only consist of
path-connected rulers in the residual contiguity
network involving all rulers other than the ruler
currently picked. Consider a line network with an
odd number of rulers. The central vertex has (n+1)/2
resources, and each of the other n − 1 rulers
controls exactly 1 unit of resources. Show that it is
optimal for the central vertex to launch a full
attacking sequence, and if γ is large, then the
probability of the central ruler becoming the
hegemon is close to 1.
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11
The Law of the Few

11.1 Introduction

Massive online networks are a defining feature of life in the
early twenty-first century. These networks perform a
variety of functions and differ in their structures. However,
many of them exhibit a great inequality in the level of
activity and number of connections across nodes. These
properties were first identified in the context of offline
social networks by Katz and Lazersfeld (1966) and
Lazarsfeld, Berelson, and Gaudet (1948) but they are
greatly amplified in large scale online networks like Twitter
and the World Wide Web. For instance, on Twitter, the top
10 percent of the tweeters make over 80 percent of all
tweets; the vast majority of users had hardly any followers
but there exists a club of users who each have over 25
million followers! The Law of the Few says that in social
groups, individuals get most of their information from a
very small subset of the group. This chapter uses the
economic theory of network formation to explore the
origins of such great inequality.

We are constantly looking for information so as to make
better decisions. We experiment with different alternatives,
we read surveys, and we connect with others, hoping to
learn from their experiences, and also to learn from what
they may have learned from their friends and colleagues.



There are rewards to making more informed decisions, but
acquiring information is costly. Experiments take time and
involve resources; similarly, reading takes time and effort,
and talking with others takes time and also has other
associated costs. The rewards of connecting and spending
time with someone will depend on how well informed they
are and how much new information they have for us. In
turn, the novelty of information they provide depends partly
on how well connected they are to people whom we don’t
already know. Moreover, the quality of the information
accessed from contacts—its timeliness and accuracy—is
higher if the information has to travel less far in the social
network.

We combine these ideas on information with the theory
of strategic network formation introduced in chapter 3, to
propose the following model of information sharing: there
is a group of individuals each of whom has some
information that is of value to everyone. An individual can
access the information from another person by forming a
link with them. However, the links are costly. The theory
illustrates how a comparison of the costs and rewards of
linking leads individuals to join a network, and as they join
up, the network becomes larger, which makes it more
attractive for others to join. This reinforcing aspect of
joining a network pushes toward growth and connectivity.
Turning to the architecture of networks, as the quality of
information accessed is higher if someone is closer to one
in the network, which leads individuals to form links with
highly connected and central individuals. The resulting
network has a hub, which means that it has a small
diameter.

Turning to the performance of networks, a network is
said to be efficient if it maximizes the sum total of
individual rewards minus the sum total of linking costs.
This formulation has the virtue of defining performance in



terms of the concerns of the users of the network. What are
efficient networks, and how do they relate to networks that
individuals created by individuals? We build on the above
reasoning, with regard to network value growing in its size,
to establish that an efficient network is either connected or
empty. We then note that the star network economizes on
the number of links and also minimizes on distances
between nodes. It is thus efficient across a large range of
parameters.

While the reasoning underlying the process of network
formation appears to be simple, the informational demands
on an individual who is comparing the costs and benefits of
forming a link are very great: they need to understand the
benefits of connecting to different combinations of
individuals. So they need to figure out the shortest paths to
different members of the network. Moreover, as they
contemplates their options, other individuals are active and
the network is evolving. So it is far from clear if the theory
is meaningful as a guide to network formation in practice.

To develop an appreciation of the scope of an economic
approach to reasoning about networks, we present an
experiment on this model that is conducted with human
subjects. To make the setting realistic, we consider a group
of 100 subjects. Individuals can form and delete links with
each other over a period of six minutes. The experiment in
this chapter reveals that individuals successfully navigate a
very complex environment to create networks in line with
the theory.

A key element of the law of the few is specialization in
information gathering from external sources: only a small
subset of the group invests in personally acquiring
information, while the vast majority connect with this
minority to learn about the world. In the theory described
above, everyone has an equal amount of information at the



outset. We next turn to a study of the distribution of
information that individuals will personally acquire.

We extend the theory to allow individuals to choose how
much information they acquire themselves. This richer
model creates an additional trade-off: individuals compare
the costs of personally acquiring information against the
costs of linking with others in order to access the
information they have acquired. The key observation is that
if an individual acquires a great deal of information, then it
becomes attractive for others not to acquire information on
their own, but rather to link with this information-rich
individual. The substitutability between information
acquisition by others and by oneself sets up a potential
route to specialization: the main result is that in large
populations, the fraction of individuals who personally
acquire information is negligible. The small active subset
constitutes a clique, and everyone forms a link with every
member of the clique (creating a core-periphery network).

While the theory yields a sharp result, the computational
challenges facing an individual are formidable. Now, in
addition to the network structure, individuals have to keep
track of the effort invested by others in acquiring
information. We present an experiment with human
subjects in a laboratory to explore the scope of the theory.
We consider a group with 100 subjects that chooses
information purchase and linking over a period of six
minutes. The experiment reveals that subjects specialize in
information purchase and linking very much in line with the
theoretical prediction.

11.2 Empirical Background

Throughout history, information has been passed on mostly
via interpersonal communication. But in the first part of the
twentieth century, with the coming of age of radio,
television, and newspapers, there was a expectation that



this would change. Mass media would be central to
communication and largely shape individual opinions and
decisions.

However, in a series of path-breaking surveys,
Lazarsfeld, Berelson, and Gaudet (1948) and Katz and
Lazarsfeld (1966) showed that while mass media was
important, the majority of individuals (as both consumers
and voters) made their decisions based on information and
advice garnered through social interactions. Their
empirical studies led them to propose a two-step model of
information. The mass media puts out information that is
directly accessed by a small fraction of people, and the rest
of the population relies on social contacts with this select
few. These studies showed that information gathered
through social connections played a crucial role in shaping
attitudes and decisions pertaining to fashion, moviegoing,
purchasing goods, voting, and public affairs.

In particular, in their book People’s Choice Lazarsfeld,
Berelson, and Gaudet (1948) studied the determinants of
voting behavior in the presidential election of 1940 in the
small Midwest town of Erie, Ohio. The study involved
repeated interviews of a sample of 2,400 voters from May
to October 1940 and showed that personal interactions
played a key role in shaping voting decisions. In their book
Personal Influence, Katz and Lazarsfeld (1966) conducted a
survey of 800 female residents of Decatur, Illinois, and
identified 40 percent of the sample as potential leaders in
either marketing, fashion, or public affairs.

In subsequent years, the role of social influence has been
widely documented. For instance, Feick and Price (1987)
found that 25 percent of their sample of 1,531 individuals
acquired a great deal of information about food, household
goods, nonprescription drugs, and beauty products, and
those people were widely accessed by the rest of the group.



Research on virtual social communities reveals a similar
pattern of communication. Zhang, Ackerman, and Adamic
(2007) studied the Java Forum, an online community of
users who ask and respond to queries concerning Java.
They identified 14,000 users and found that 55 percent of
these users only asked questions, 12 percent both asked
and answered questions, and about 13 percent only
provided answers.

In chapter 1, we presented a case study of two
information networks—Twitter and the World Wide Web.
The introduction to this chapter recalled some aspects of
Twitter network that are especially striking.

11.3 A Simple Theory of Linking

This section presents a model of the formation of
information networks, that is taken from Goyal (1993) and
Bala and Goyal (2000a). There is a large group of
individuals N = {1, …, n}, each of whom has been given a
distinct piece of information with value 1. Person i can
access person j by forming a link with them. A strategy of
player i ∈ N is a (row) vector gi = (gi1, …, gii−1, gii+1, …, gi n),
where gij ∈{0, 1} for each j ∈ N∖{i}. Player i has a link with j
if gij = 1. The set of pure strategies of player i is denoted by
𝒢i. A strategy profile is denoted by g = {g1, …, gn}. There is
an equivalence between the set of strategy profiles 𝒮, and
the set of all directed networks on n nodes. In what follows,
we will use network notation. Links are one-sided in the
sense that they can be formed on an individual initiative
and the individual forming the link incurs the costs of doing
so. The cost of a link is k > 0.

While the decision to link is taken unilaterally, a link is
undirected for the purposes of communication. A link
created by A to B allows both A and B to access each
other’s information: this is the original information (worth
1) that they started with and any information that they



have acquired by forming links with others. With this in
mind, to describe the flow of information, define ĝij =
max{gij, gji} and define network ĝ correspondingly.

Figure 11.1 
Access and decay.

The quality of information decays as it passes along the
network: this may be due to the time it takes or the noise
that gets added to it. To make this idea precise, let us
define δ ∈ (0, 1) as a measure of decay. So if person A is
one link away from an isolated person B, then A has access
to δ × 1 = δ information from B. If, on the other hand, A is
two links away from B, then A has access to δ2 × 1 = δ2

information from B. Consider the network depicted in
figure 11.1(a). In this network, A is distance 1 away from B
and C, distance 2 from D, and distance 3 from E. Individual
A has access information δ each from B and C, information
δ2 from D, and δ3 from E. Building on this example, we shall
say that the information accessed by individual i in network
g is

The first term, 1, here refers to own information. The
term d(i, j; ĝ) counts the distance between individual i and
node j in network g. The summation across individuals



reflects the idea that every person has a distinct piece of
information.

For expositional purposes, we are taking a very simple
and stylized model of information in this section. These
payoffs are generalized in section 11.4, and a question at
the end of the chapter further explores a game of linking
with general payoffs.

The linking decisions of individuals give rise to a directed
network. An example of such a network is illustrated in
figure 11.1(b). The arrow in the line from A to B indicates
that A has formed a link with B. In this network, A has
formed two links, while B and E have formed one link each.

Figure 11.1 illustrates the flow of information. Let us
define di(g) as the number of links created by person i in
network g. The net payoff of individual 1 in the network in
figure 11.1 is given by 1 + 2δ + δ2 + δ3 − 2c. More
generally, the payoff to an individual i in network g is given
by

A Nash equilibrium of this network formation game is a
strategy profile g* such that every player is choosing an
optimal strategy given the choices of others; that is,

We next study the Nash equilibrium of the network
formation game described above.

11.3.1 Equilibrium Networks

First, we note than an equilibrium network must be
connected or have no links at all. We will establish this
claim by contradiction. Suppose that g is an equilibrium
network and there were two distinct groups of connected
nodes (i.e., two components X and Y), in it. One of them



must be weakly larger than the other. Suppose that X
contains (weakly) more nodes than Y. As the network is not
empty, in component X, there must be an individual A who
has created a link with someone else, such as B. We will
argue that individual C, who is in component Y, will find it
strictly profitable to form a link with B. Such a link will give
C access to everyone that A accessed through their link
with B, and in addition, it will give her access to A (via B).
So if A finds is profitable to form the link with B, then C
must find it even more profitable. This shows that the
network with two distinct components X and Y cannot be an
equilibrium. The argument we propose is general and can
be applied to rule out any network with links and multiple
components. This is a contradiction that completes the
proof.

This line of reasoning also brings out a general feature of
the economics of linking: when an individual forms links
with another person, other individuals will have even
greater incentives to follow suit. This is a valuable insight
and rules out networks with multiple components.

Recall the examples in chapter 1—regular networks as
well as different types of core-periphery networks are all
connected. Connectedness is thus a fairly permissive
requirement. Does economic behavior by individuals imply
any further restrictions on network architecture?

We consider the role of the two economic variables, the
costs of linking k, and the level of decay δ in shaping
incentives for linking. If costs are very small, k < δ − δ2,
then it is attractive to directly link with everyone, which
gives rise to a complete network. The maximum return to a
single link is a return to a single neighbor and n− 2 indirect
neighbors, δ + (n− 2)δ2. If the cost of a link is more than
this return, then no one will form any links and the
equilibrium network will be empty. For costs between these



two thresholds, a wide range of networks may arise in
equilibrium.

To illustrate some of the possibilities here, let us start
with the case of k > δ. In this case, the empty network is an
equilibrium. In addition, if k < δ + (n− 2)δ2, then the star is
also an equilibrium. This brings out the challenge of
coordination problems in the linking game. An individual’s
incentive to form or delete links, therefore, depends on the
linking behavior of others. If no one forms links the returns
to linking are too small and the best response is to also
form no links. This suggests that links are strategic
complements. On the other hand, if everyone forms links
with everyone, then the best response is to again form no
links: here links are strategic substitutes. This possibility
suggests that linking games have a rich strategic structure.
Finally, observe that if δ − δ2 < k, then no two spokes will
wish to form a link, and since k < δ + (n − 2)δ2, it is optimal
to form a single link with the hub. Thus the star is an
equilibrium if δ − δ2 < k < δ + (n − 2)δ2. These
observations are summarized in the following result.
Proposition 11.1 Consider the game of linking with payoffs given by

equation (11.2). An equilibrium network is either empty or connected. The

complete network is a unique equilibrium if k < δ−δ2. The star is an

equilibrium if δ − δ2 < k < δ + (n − 2)δ2. The empty network is an equilibrium

for k > δ and the unique equilibrium if k > δ + (n − 2)δ2.

To appreciate the arguments at a more general level, it is
helpful to consider the situation where k > 1 and δ is close
to 1. As decay is small, there cannot be a cycle in an
equilibrium network. Let us consider a network without a
cycle that is not a star. In such a network, there will be at
least one pair of individuals who are at distance 3 or
greater apart. Denote the agents farthest apart as i and j.
They must each have 1 link (as there are no cycles in the
network). Since k > 1, it follows that each of them must be
paying for their link. Suppose that individual j earns a



weakly higher payoff than player i. Let j have a link with
player l on the unique path between i and j. Since the
distance between i and j is greater than 2, it must be true
that individual i has no link with l. Individual i can earn a
strictly higher payoff if they delete their current link and
instead form a link with individual l. This is because they
will be at the same distance from all players as player j in
the original network, and, in addition, they will be closer to
j in the new network than in g. Hence the distance between
any two individuals in an equilibrium network cannot be
greater than 2. The final step in the argument is to note
that the star is the only acyclic network in which every pair
of players is at a distance of 2 or less.

Figure 11.2 walks through the logic of this argument
with the help of pictures. Start with the network in figure
11.2(a). In this network, individual F has no incentive to
have a direct link with E: they can access E via A, and the
loss in benefits δ −δ2 is smaller than the saving in cost k. It
is similar for individuals B–E. If we were to delete links, we
arrive at the network in figure 11.2(b). Notice next that X
has a strict incentive to delete their link with Y and instead
form a link with A. This allows X to shorten the distance to
B, C, D, E, and F. The distance to Y goes from 1 to 2, but
the distance to A correspondingly declines from 2 to 1. This
link switch by X yields the star in figure 11.2(c). This helps
us appreciate how individual incentives push toward sparse
and unequal networks with a small diameter.



Figure 11.2 
Salience of the hub-spoke architecture.

11.3.2 Efficient Networks

Recall that the social welfare from a network g, W(g), is the
sum of individual utilities:

Network g is said to be efficient if W(g) ≥ W(g′) for all
g′∈𝒢.

If the costs of linking are very small, k < 2(δ − δ2), it is
easy to see that it is socially desirable to form a direct link
between every pair of individuals. On the other hand, if the
costs of links are very large, then at an intuitive level, it is
clear that no links would be justifiable. We also note that
while there is a very rich range of possible networks, the
star network is attractive because it economizes on the
number of links and at the same time keeps the average
distance between individuals very low (there are n − 1 links
in a star—the minimum number of links it takes to connect
n nodes—and the average distance is less than 2). The
following result summarizes these observations.
Proposition 11.2 Suppose that payoffs are given by equation (11.2). The

unique efficient network is (i) the complete network if 0 < k < 2[δ − δ2], (ii) the

star network if 2[δ − δ2] < k < 2δ + (n − 2)δ2, or (iii) the empty network if 2δ +
(n − 2)δ2 < k.



We provide a proof of this result here, as the arguments
are of general interest (the reader will notice that the proof
follows the same lines as the proof of efficiency in the
connections model in chapter 3).

The joint marginal gains to players i and j from forming a
link are bounded from below by 2[δ −δ2]. If k < 2[δ −δ2],
then it follows that forming a link increases social welfare.
This means that any incomplete network is welfare
dominated by the complete network: in this parameter
range, the complete network is uniquely efficient.

Next, fix component C1 in g, with |C1| = m. Suppose that
m ≥ 3. Let l ≥ m− 1 be the number of links in the
component. Then the welfare in C1 is bounded from above
by

This is because a link ensures direct benefits of 2δ to
each of the connected pairs, the cost of a link is k, and the
closest all other pairs of individuals could be is distance 2.
If the component is a star, then social welfare is

where the first term, m, reflects stand-alone benefits, the
second term collects the direct benefits minus the costs of
links, and the third term reflects the benefits of all pairs
who are distance 2 apart.

Under the hypothesis that 2(δ − δ2) < k, equation (11.5)
can never exceed equation (11.6) and the two are exactly
equal for l = m − 1. It can be determined that the star is
the only network with m players and m− 1 links in which
every pair of players is at a distance of 2 or less. Hence any
other network with m− 1 links must have at least one pair
of players who are at a distance of 3 or more. This implies
that social welfare in any other network with l = m − 1



links is strictly less than social welfare in the star network.
Thus, in an efficient network, a component must be a star.

Consider next an efficient network with multiple stars,
with m and m′ individuals, respectively. As the network is
efficient, the component must have nonnegative welfare. It
can be shown by direct computation that a single
component with m + m′ players has higher social welfare
than two components with the star structure. Thus a single
star maximizes social welfare in the class of all nonempty
networks. Social welfare in a star is given by equation
(11.6), where we replace m with n. It can be checked that
the start welfare exceeds welfare in the empty network if
2δ + (n − 2)δ2 > k. This completes the argument.

◼

11.3.3 Relation between Equilibrium and Efficient Networks

An important feature of an economic approach is the
systematic exploration of the relation between what
individuals wish to do and their collective interest. Let us
examine this relation in our model. When individual A
forms a link with B, A gains access to B, but B also gains
access to A. The latter benefit is not taken into account by
A if they care only about their own payoffs: as a result, in
our model, networks created by individuals are typically
underconnected relative to the networks that they would
collectively prefer. This point is clearly brought out both
when the costs of linking are small and when they are
large. If δ − δ2 < k < 2[δ − δ2], then the complete network
is efficient but not an equilibrium (as the returns from
firsthand links to an individual are less than the cost of the
links). Similarly, if δ + (n − 2)δ2 < k < 2δ + (n − 2)δ2, then
the star network is efficient, but no individual has an
incentive to form any links: as a result, the unique
equilibrium is the empty network.

In this model, linking is driven by the individual desire to
access others at a short distance and minimal cost. The



theory yields three insights: (1) there are economic
pressures for individuals to create sparse and unequal
networks that have a short diameter; (2) there are powerful
strategic interaction effects that give rise to the possibility
of multiple equilibria and create serious coordination
difficulties for individuals (e.g., the empty and the star
networks are both equilibria for a wide range of
parameters); and (3) individual incentives to form links are
generally lower than social benefits, so networks created
by individuals will generally be sparser than what they
would collectively like.

We next comment on how the economic approach relates
to the Erdὄs-Rényi model of random graphs (presented in
chapter 2). Recall that in this model, there are two
parameters: the probability of linking and the number of
nodes. An important result of that model is that the
probability of linking must remain at a level above a
threshold to ensure that the network remains connected. In
a certain sense, the cost of linking performs a similar role
in the economic model of linking presented in this section.
As the number of nodes grows, the connected network is
sustainable for larger and larger costs of link k (recall that
the star network is stable so long as k < δ + (n − 2)δ2). On
the other hand, the arguments in the individual linking
model reveal a robust multiplicity of outcomes as pointed
out earlier. Coordination issues are central to an economic
approach. On the other hand, as the number of nodes
grows, the Erdὄs-Rényi model yields graphs with certain
properties that arise with a probability close to 1. This
suggests an important distinction between the economic
approach and the statistical approach of the Erdὄs-Rényi
model. Finally, the economic approach offers a definition of
the performance of networks founded on individual
objectives and helps us appreciate the tension between
individual incentives and collective returns. This goes



beyond the Erdὄs-Rényi model, and it opens up the space
for thinking about interventions that can improve the
network.

While the ingredients of the theory are few—the costs of
linking and the benefits of linking—and the arguments are
simple, it is also clear that in practice, an individual who is
comparing the costs and benefits of forming a link faces a
very complex decision: this person needs to understand the
rewards from linking with different individuals (and also
subsets of individuals). To do so, they must be able to
compute the shortest paths to various individuals in a large
and evolving network. Moreover, even in simple cases,
there are multiple stable networks (e.g., the empty network
and the star network in the previous discussion), so it is far
from clear what networks will actually emerge if individuals
were given the payoffs as in the model. To address this
concern, we now turn to an experiment with human
subjects who play this linking game.

11.3.4 Experiment

We report the findings of an experiment on link formation
taken from Choi, Goyal, and Moisan (2020). The payoff
function is as in equation (11.2). The value of benefits is V
= 10 and the decay parameter is δ = 0.9. The costs of
linking are k = 200. In order to better mimic the
environment of very large networks the experiment is run
with a group of 100 subjects.

Given these parameter values, proposition 11.1 tells us
that the empty and star networks are both equilibria. In the
star network, the hub and spokes earn 901 and 613,
respectively. Thus the star network exhibits significant
inequality—the hub earns roughly 50 percent more than
the spokes. Individual payoffs in the empty network equal
10. Finally, proposition 11.2 tells us that the star network is
the unique efficient network.



Looking ahead, to study the data arising from these large
groups, it is more reasonable to consider the statistical
properties of networks. With this in mind, we study general
aspects of a star network such as density of links, degree
inequality, and average distances and state the hypothesis
to be tested as follows.
Hypothesis 11.1 Subjects create a network that is efficient: it is sparse,

unequal, and exhibits small average distances.

The experiment consists of a continuous-time game that
is played over 6 minutes. There are six rounds in all. At any
point, an individual can choose to form and delete links
with anyone else. The first minute is a trial period, and the
subsequent 5 minutes are the game, with payment
consequences. At the end of each round, every subject is
informed, of a time moment randomly chosen for payment.
The subjects are provided detailed information on
everyone’s behavior at the chosen moment, through the
corresponding network structure. The first round is a trial
round with no payoff relevance, and the only the last five
rounds were relevant for subjects’ earnings. In analyzing
the data, we will focus on the subjects’ behavior and group
outcomes from these last five rounds.

During a round, at every moment, each subject is
informed about the links in their own component and about
their own payoff (but not the payoff of any other subject).
Figure 11.3 presents the screen observed by a subject. At
any instant in the six-minute game, a subject can form or
delete a link with any other subject by simply double-
clicking on the corresponding node in the computer screen.
If the subject forms a link with another subject on the right
side of the screen (i.e., someone who is not in the same
component), that subject (along with the entire component
to which they belong) would be transferred to the left side
of the computer screen. In a case in which the subject
removes a link to another subject, that subject would be



transferred to the right side of the computer screen if they
are no longer part of the same component and remain on
the left side of the screen otherwise.

Figure 11.3 
Decision screen: linking experiment.

On average, a session lasted 90 minutes and subjects
earned 15.3 euros (this includes a 5-euro show-up fee). The
experiments were conducted in the Laboratory for
Research in Experimental and Behavioral Economics
(LINEEX) at the University of Valencia and the Laboratory
for Experimental Economics (LEE) at the Jaume I
University of Castellon.

To get a first impression of the outcome of the
experiment, we present snapshots of the network at four
points in figure 11.4. These plots suggest that subjects
create sparse networks with a few highly connected
individuals. Over time, one dominant hub emerges. This
means that all the individuals are close to each other. As
the number of links and small distances are key to
efficiency, these snapshots suggest that individual linking
gives rise to networks that attain high levels of efficiency.



Figure 11.4 
Evolution of an information network. Source: Choi, Goyal, and Moisan (2020).

There were four groups and each group took part in five
payoff relevant rounds, so we have data from twenty
rounds in all. We summarize the data from these rounds in
figure 11.5 with the help of average time series on four
measures—the total number of links, degree inequality,
average distance, and efficiency. The data used from every
round of the game consists of 360 observations (snapshots
of every subject’s choices) selected at intervals of 1 second.
The time series is constructed as follows: for a fixed second
t and for a round r, consider the number of links created,
ltr. Sum ltr across the twenty rounds and then divide by 20
to obtain an average. This number shows up as the total
number of links for second t in the plot.



Figure 11.5 
Findings: Network structure and efficiency. Source: Choi, Goyal, and Moisan
(2020)

By way of background, we note that in these
experiments, subjects rapidly coordinate their linking
activity and create connected networks: the average size of
the largest component was 96.3. So almost everyone
belonged to the same component. The statistics on distance
that follow pertain to this component.

Figure 11.5(a) plots the total number of links. The
number of links grew at first, reaching a level of 250, and
then declined steadily until it was a little over 100 by the
end of the experiment. Recall that in a group of 100, the
minimal number of links needed for connectedness is 99.



Thus subjects were successful in keeping the links close to
a minimum.

Next, we consider degree inequality: Figure 11.5(b)
presents the ratio of the highest degree to median degrees.
At the start of the experiment, this ratio is close to 1, but
then it grows steadily, and by the end, it reaches over 50.
In other words, the most connected node had a degree that
is over 50 times more than the median degree.

Figure 11.5(c) presents the evolution of average
distance. We see that fairly early in the experiment, the
distance was under 3 and remains so until the end of the
experiment. In view of the group size of 100 and the small
number of links, this is a very low average distance (which
is close to the average distance of a star network).

Finally, we take up relative efficiency: Figure 11.5(d)
presents total payoffs attained as a fraction of the
maximum possible total earnings. Starting at 50 percent,
subjects were able to steadily increase the efficiency, and
by the end of the experiment, they were attaining close to
80 percent relative efficiency.

We conclude here with some remarks on the behavior of
the highly connected individuals. Figure 11.6 shows that
there is intense competition among a couple of individuals
to become the hub: this competition takes the form of
forming many links. We interpret these links as
investments: by forming these links, an individual gets
close to others. This makes them attractive as a connector.
Once an individual has induced others to link with them,
they start deleting links, which induces the newly isolated
individuals to respond by forming a link. This process ends
with the hub forming almost no links, and everyone
connecting with them.



Figure 11.6 
Competition to become a hub (red links are formed by the red player). Source:
Choi, Goyal, and Moisan (2020).

To summarize: The long-run outcome of a sparse network
with a hub is consistent with the theory developed in the
previous section. However, the experiment reveals an
interesting dynamic of large investments and intense
competition that underlies the formation of the network.
This dynamic goes beyond the theoretical arguments
previously developed for the star network being an
equilibrium in the static model.

11.4 Who Buys Information?

A key element in the law of the few is specialization in
information acquisition: only a small subset of society
actually invests in acquiring information, while most of the
others simply connect with them to learn about the world.
In the theory presented in section 11.3, at the outset,
everyone has an equal amount of information. To
understand the determinants of specialization in the
purchase of information, we supplement the choices
available to individuals. In this richer model, therefore,



there are three ingredients: linking, a decay factor, and
efforts in the purchase of information. The discussion in
this section is based on Galeotti and Goyal (2010).

There is a set of individuals N = {1, …, n}, where n ≥ 2.
Every individual chooses an effort level, xi, and a set of
links with others, gi. A link formed by i with j allows i to
access information that j personally bought, as well as the
information that j accesses from those they connect to. Let
si = (xi, gi) be the strategy of individual i, and let s = (s1, …,

sn) denote the strategy profile of the individuals. The payoff
of an individual i given a strategy profile s is

where al ≥ 0 and al+1 ≤ al for all l ≥ 1  refers to
individuals that are distance l from individual i in graph ĝ),
c > 0, k > 0, and di(g) is the number of links created and
paid for by individual i. In the previous scenario, everyone
started with 1 unit of information, and for simplicity, we
assumed that the value of information increases linearly in
the number of people accessed. In the present context, if
we were to use a similar linear formulation and the
marginal value of information was constant at, say, r, then
individuals would demand either zero or an infinite amount
of information, depending on whether r was smaller or
larger than c. Therefore, to make the problem of
information demand interesting (and have an interior
optimum), we will assume that the marginal value of
information declines as an individual has more of it.
Assumption 11.1 f(0) = 0, f(.) is strictly increasing and concave. There exists

a number z such that f′(z) = c, i.e., the marginal benefit is exactly equal to the

marginal cost at z.



Diminishing marginal returns is a reasonable assumption
in an information-sharing setting: for instance, we may
think of action x as draws from a distribution (e.g., the
price distribution for a product). If the different draws are
independent across individuals and players are interested
in the lowest price, then the value of an additional draw,
which is the change in the average value of the lowest-
order statistic, is positive, but the number of draws is
declining. Another possible interpretation is in terms of
individuals choosing an action whose payoffs are unknown.
Every individual has access to a costly sample of
observations, which may reflect personal experience with a
product or a technology. A link with another player then
allows access to their personal experience. The returns
from accessing more samples of information—own and
others—are increasing but concave.

Next, we study the Nash equilibrium of this game of
information purchasing and linking. For concreteness, and
to develop intuitions, following Goyal, Rosenkranz, Weitzel,
and Buskens (2017), we will provide a specific functional
form for the value of information:

Let us discuss the diminishing returns property with the
help of this functional form. Suppose that an individual has
5 units of information. How much is 1 more unit of
information worth? To figure this out, we need to work out
the difference f(6) −f(5). In this example, this number is
138 − 120 = 18. Similarly, one can check that if one
already has 8 units of information, the next unit is worth
180 − 168 = 12. So we see that the value of additional units
of information declines as one has more information. In
particular, if the cost c = 11, then this example the value of



z is given by 9. This number will play an important role in
the discussion that follows.

We next discuss the individual incentives for the
acquisition of information and the formation of links. The
problem at hand is complicated, so we will proceed in
steps. First, we will consider the situation where a1 = 1 and
al = 0 for all l ≥ 2. This corresponds to a situation of high
information decay: an individual gains utility from the
information they get from their neighbors, but does not get
any utility from the neighbors of neighbors.

Consider an individual in isolation, who will choose
information up to the point that the incremental value of an
additional unit is less than or equal to the cost of
information. Then the individual who is on their own will
choose exactly 9 units. To see this, observe that the value
of the 10th unit is 190 − 180 = 10 < 11. Suppose that A has
chosen 9. What would be the response of the other
individuals?

For concreteness, label an individual B. How much
information should this person buy, and should B link with
A? B accesses 9 units if they link with A. The cost of this
information is 11 × 9 = 99, and it costs k to access A. So it
is in B’s interest to link with A if k < 99. Observe that once
an individual has linked with A, they have access to 9 units
of information, so the incremental value of additional
information is smaller than the cost of information; thus
they will choose to acquire 0 units of information
personally. The same reasoning applies to all individuals
other than A. Therefore, once A chooses 9, if k < 99, then
every other individual can do no better than forming a link
with A and choosing 0 purchases of information. Thus the
star network with A choosing purchase level 9 and all other
individuals choosing purchase level 0 and forming a link
with A constitutes an equilibrium.

11.4.1 Direct Information Access



To develop this theme further, suppose that a2 = 0, so
information decays rapidly and only direct neighbors are
useful. Consider a situation where three individuals A, B,
and C all choose 3. It follows that individual D will link with
A only if the cost of the link is smaller than the cost of the
information that D accesses from A. This cost of
information is 11 × 3 = 27. So if k < 33, then D will find it
profitable to form a link with A, and it is similar for B and
C. So it follows that the network in which A, B, and C (with
each choosing 3 units of purchase) constitute a core and
everyone links to them constitutes an equilibrium.

In particular, for B to link with A, the link must be
cheaper than the cost of the information that A acquires.
Suppose that A acquires z. For B to link to A, it must be the
case that k < cz; otherwise, B would be better off
purchasing z on their own and not forming the link with A.

To develop an complete understanding of equilibrium
outcomes, a key issue concerns the sum total of purchases
undertaken by individuals. In the previous discussion, we
have considered outcomes in which the total purchases of
all individuals z = 9. In principle, it is possible that the total
purchases exceed z. The simplest situation arises when k >

cz: there is a unique equilibrium in which everyone chooses
z and no links are formed. However, the interesting case is
when k < cz: even in this case, the total purchases of all
individuals may exceed z.

To see this, consider a game with four individuals. The
following is an equilibrium outcome: there are two
components of two individuals each, and everyone chooses
z = 4.5, while one individual chooses a link with the other
individual in each component. However, note that in this
equilibrium, the individual who is choosing a link is
indifferent between linking with their current match and an
individual in the other component. This suggests that the
linking is not a strict best response. Bearing this in mind,



we can now state a result that describes all strict
equilibrium of the game of activity and linking. Define I(s)
= {i ∈ N|xi > 0} as the set of individuals who chose the
positive purchase xi > 0 under strategy profile s. The
proportion of active players in a strategy profile s is given
by |I(s)|/n.
Proposition 11.3 Consider the game of information purchase and linking

with payoffs given by (11.7). Suppose that a1 = 1 and al = 0 for all l ≥ 2.

Suppose that assumption 11.1 holds and k < cz. In a strict Nash equilibrium, s*,
the sum of information purchases of all individuals is equal to z. In a large

society, in such equilibria, the fraction of active individuals who choose a

positive purchase is negligible. This active subset constitutes a clique, while

the rest of the individuals form a link with every individual in the clique.

Now let us sketch out the arguments underlying the
proof of this result. Fix a strategy profile s. The total
information accessed by individual i under strategy profile
s, yi, is the sum of their own purchase and the purchase of
their neighbors:

We start by noting an important implication of the
assumptions on payoffs. In equilibrium, it must be true that
for every individual, yi ≥ z. If yi < z, then i can profitably
raise their effort, as the marginal benefit of the effort at yi,
f′(yi), is greater than the marginal cost of effort, c (this
follows from the concavity of f and the definition of z). This
implies that for any active individual i with xi > 0, it must
be the case that yi = z. We have already shown that yi ≥ z.
Suppose that yi > z, then i can profitably lower their effort,
as the marginal benefit of the effort, f′(yi), is less than the
marginal cost of effort.

We next sketch the argument for why the sum total of
purchases in a strict equilibrium must equal z. If the total
purchases exceed z, then we know from the previous step



that there must be active individuals who are accessed by
some individuals, but not others. It is possible to show that
only two configurations of purchases are possible: one
where all positive purchase individuals choose the same
activity level, and a second one, in which they choose two
different positive levels (this is an exercise at the end of the
chapter). In both cases, it is possible to show that
equilibrium implies that the cost of linking must exactly
equal the cost of a purchase undertaken by such an
individual. But then players are indifferent between
forming a link and making the corresponding purchase
themselves. In other words, the strategies of the players
are not a strict best response to the strategies of others.

As the total purchase equals z and everyone must access
at least z, it follows that in equilibrium, every individual
must access every active individual. This in turn implies
that the active individuals must constitute a clique and
inactive players must form a link with every member of this
clique.

Finally, consider the specialization in information
purchases. Recall that we are considering an equilibrium in
which the total purchase is z. We have noted already that
for every i, . This means that every player who
acquires information personally is accessed by every player
in equilibrium. There is therefore at most one player i ∈
I(s) with no incoming links (i.e., gji = 0, for all j ∈ N). For all
other players l ∈ I(s), there must be at least one player j ∈
I(s) such that gjl = 1; but this implies that xl > k/c. So the
number of “incoming links” players who acquire
information personally, I(s) − 1, is bounded from above by
(zc)/k. It follows that I(s)/n ≤ ([zc/k] + 1)/n. The right side
can be made arbitrarily small by raising n. This completes
the argument underlying the proof.

◼



Figure 11.7 illustrates core-periphery networks in which
the core is of size 1, 2, 3, and 4.

Figure 11.7 
Core-periphery networks.

What does the law of the few imply for individual and
collective welfare? A first point to note is that as the cost of
purchase is linear and total effort is the same across these
networks, the total cost of effort is equal across the
different sizes of cores. Moreover, in these core periphery
networks, all individuals also access exactly z units of
information. As links are costly, it then follows that the
equilibrium with a single core element is most economical
and hence maximizes aggregate utility across all core-
periphery networks.

Next, consider the appropriate level of information
purchase. Observe that the purchase level z equates the
return to a single individual with the cost of purchase.
However, the social return to an incremental unit of
purchase z + 1 is really n times the private return. Thus the
hub individual will choose a level of purchase that is lower
than what is collectively desirable. Moreover, the gap



between the individually optimal and the socially desirable
levels of purchase grows with the number of individuals. In
large societies characterized by a law of the few network,
very little information is actually collected relative to what
would be desirable.

Proposition 11.3 says that the number of players
personally acquiring information is small relative to the
number of players in large societies. But the result is
permissive with regard to the identity of the hub player. A
recurring theme in the empirical literature is that even
though hubs seem to have similar demographic
characteristics as the others, they have distinctive attitudes
that include greater attention to general market
information and greater enjoyment in collecting this
information. One way to incorporate this empirical
observation in the model is to suppose that some players
have slightly lower costs of acquiring information (or
slightly larger benefits from information) than others. It
turns out that this modification has powerful and clear-cut
effects on who becomes a hub of the network.

To see these effects in the simplest way, let us suppose
that one individual, such as Mr. A has slightly lower costs
of purchasing information than others. For this low-cost
player, the optimal information level, zA, is greater than the
optimal information level for other players z. From the
arguments developed in proposition 11.4, we know that
aggregate information purchase by the rest of the
population is at most z. This means that A must personally
purchase some information (i.e., xA > 0). If xA = zA > z, then
the best response of everyone else is clearly to purchase no
information and to form a link with A.

Next, consider the case of xA < zA: we know, from our
discussions earlier in this chapter that the optimality of A’s
choice implies that xA + yA = zA, so there is a player i ≠ A

with xi > 0 and xi + yi = z. A key observation is that if



someone wants to link with i, then it must be profitable for
everyone else to do likewise. But then i accesses all
information, zA > z, and this contradicts the optimality of i’s
choices. Thus no player can have a link with player i ≠ A in
equilibrium. Hence, i must form a link with player A and,
from the optimality of linking, so must every other player.
Thus, in any equilibrium, the low-cost player is the unique
hub. Finally, since every player is choosing positive effort,
the equilibrium values of xA and xi are given by the two
equations xA + (n − 1)xi = zA and xA + xi = z. A question at
the end of the chapter works through the details of this
argument.

11.4.2 Indirect Information Access

In the discussion so far, we have assumed that information
flows across direct links only. And we have shown that
core-periphery networks in which core nodes are active
(and constitute a clique) and periphery nodes choose zero
purchases but form links with the core members constitute
the unique outcome. We now take up the more natural case
of indirect information transmission. To develop a feel for
the rich range of possibilities that arise, we assume that
payoffs are given by equation (11.8) and that neighbors are
worth 1, two-removed neighbors are worth 1/2, and all
other farther away neighbors are worth 0, that is, a1 = 1, a2

= 1/2, and al = 0, for all l ≥ 3. For concreteness, we will
also assume that c = 11 and k = 90.

We start by noting that with c = 11 and a reward
function f as given by equation (11.8), the optimal purchase
level is given by z = 9. The star network with an active hub
is an equilibrium in this setting, as in the earlier model with
no indirect flow of benefits. We refer to this as the “pure
influencer” outcome. The left side of figure 11.8 illustrates
this outcome. But now a qualitatively very different



configuration of purchases can arise in equilibrium. Let us
develop this equilibrium next.

Figure 11.8 
Examples of equilibria.

In this equilibrium, the network is a star: the hub invests
0 and the spokes each invest 18/n. Thus each spoke has
access to exactly z = 9 units of information. The hub is
content as they are accessing 18(n − 1)/n units of
information and not incurring any costs. The spokes are
content because the link with the hub yields 9(n − 2)/n
units of information and their 18/n purchase supplements
this so that they access 9 units in all (this equates the
marginal cost with the marginal rewards). Observe that the
cost of effort accessed via the central node—which is 11 ×
9(n − 2)/n—is larger than the cost of the link—which is
given by 85 (for a sufficiently large number of peripheral
nodes). We refer to this is as the “pure connector”
outcome, as the hub does not personally purchase any
information but is a connector among active spokes. The
right side of figure 11.8 illustrates this outcome.



Let us briefly relate the equilibrium outcomes with the
empirical research on personal influence. Katz and
Lazarsfeld (1966) emphasize that social influencers
typically have more social ties and also acquire more
information (via radio, newspapers, and television). We
interpret this as a situation in which influencers acquire
information. This is the case depicted in figure 11.8(a). In
other instances, hubs acquire some—possibly a small
amount of—information personally, but their numerous
contacts provide much new information, which they then
communicate to their neighbors and friends. Here, the
highly connected individual functions primarily as a
connector. This is the case depicted in figure 11.8(b). The
interested reader is referred to Gladwell (2006) for an
engaging discussion of connectors.

The theory is still relatively simple. It has four
ingredients—the costs of information, the costs of linking,
and the benefits of direct and indirect linking—but the
individual who is contemplating how much information to
purchase and with whom to link faces a very complex set of
computations. Such a person needs to keep an eye on the
purchase of individuals and the different paths that connect
them to each other. This problem is greatly compounded
when the networks are evolving. Also, we must note that
there is a great multiplicity of equilibrium networks—there
are core-periphery networks with cores of different sizes
and the identities of the individuals who constitute the core
are not pinned down. To develop a better understanding of
the scope of the theory in proving an account for the law of
the few, we therefore take this game to the laboratory.

11.4.2.1 Experiment

This section reports the findings of an experiment that is
taken from Choi, Goyal, and Moisan (2019). Human
subjects make choices concerning purchases and linking
over a six-minute interval. The reward function is as given



in equations (11.7) and (11.8). The first minute of the
experiment is for subjects to get used to the game and is
purely for practice; it does not count for payoffs. Once the
six minutes end, an instant is picked at random from the
last five minutes. The earnings of the subjects are
computed for this instant, and they are paid these earnings.

For simplicity, the purchases are assumed to take on
integer values only, and there is an upper bound, . The
cost of a unit of information is c = 11 and the cost of a link
is k = 95; finally, a1 = 1, a2 = 1/2, and al = 0, for all l ≥ 3.
Given these parameters, the stand-alone optimum effort z is
equal to 9. We will assume that the group consists of 100
individuals.

Given these parameter values, proposition 11.3 tells us
that there is a pure influencer equilibrium in which a single
individual chooses 9 and all other individuals choose 0 and
form a link with this positive-purchase player. Our
discussion in the previous section also reveals that there is
a pure connector outcome, with 18 peripheral individuals
choosing 1 while the rest of the subjects choose 0. This
outcome constitutes an approximate pure connector
equilibrium (this is an “approximate” equilibrium because
the periphery player who chooses purchase level 1 and
forms a link with the hub earns 79.25, whereas they could
earn 81 by deleting the link and instead choosing purchase
level 9).

In the pure influencer equilibrium, the hub chooses an
information purchase of 9, while the spokes choose 0. The
hub earns 81 while the spokes each earn 85. In the pure
connector equilibrium, the hub chooses purchase level 0,
18 spokes choose 1 each, and the other spokes choose 0.
The hub earns 198, the active spokes 74, and the inactive
spokes 85. Hence, there is little earnings inequality in the
pure influencer equilibrium, but there is significant
inequality in the pure connector equilibrium.



We have noted in our discussion on efficiency that for
any given level of information purchase, the hub-spoke
network maximizes the aggregate player welfare. Putting
together our characterization of equilibrium with our
observations on efficiency and equity suggests the
following hypothesis.
Hypothesis 11.2 Subjects create a network that is efficient: it is sparse,

exhibits an unequal number of connections, and has small average distances.

The most connected subject makes large information purchases and the other

subject makes small purchases.

There were three groups of 100 subjects. Each group
played a six minute continuous time game a total of six
times. The first round was a trial round, and only the last
five rounds were relevant for payoffs.

In each round, the first minute was a pure trial period
and did not matter for payoffs. An instant was chosen at
random from the last 5 minutes to determine the payoff for
that round. Therefore in our analysis we will restrict pay
attention to the last five rounds for each of the groups, that
is, on a total of fifteen rounds. Thus a total of 300 subjects
participated in the experiment. At the beginning, each
subject was endowed with an initial balance of 500 points
and added positive earnings to or subtracted negative
earnings from that initial balance. Subjects’ total earnings
in the experiment were the sum of earnings across the last
five rounds and the initial endowment. Each session lasted
on average 90 minutes and subjects earned roughly 18
euros (including a 5-euro show-up fee). The experiments
were conducted in LINEEX at the University of Valencia
and the LEE at the Jaume I University of Castellon.

Figures 11.9 and 11.10 present snapshots of the
experiment at four points in time. Initially, at minute 1,
subject P26 emerges as a hub with the maximum
information purchase 20. There are other subjects who
make maximal purchases (such as P97). At minute 3, P26



continues to be a hub but has substantially lowered their
purchase. Due to this shading of purchase, they start to
lose some of their links to subject P97 (who has kept their
purchase at 20). The transition becomes clearer at the 5-
minute mark, when the initial hub subject P26 has lost most
of their links to the emerging hub P97. Figure 11.10(b)
confirms that this transition to node P97 as the hub is
stable until the end of the game.

Figure 11.9 
Competition in efforts to become a hub. Source: Choi, Goyal, and Moisan
(2019).





Figure 11.10 
Emergence of a pure influencer. Source: Choi, Goyal, and Moisan (2019).

Figure 11.11 summarizes the data on purchases and
networks gathered from these sessions. Let us start with a
preliminary remark about the connectivity of the network.
The average size of the largest component was 94.8 across
the rounds and the groups. So practically everyone
belonged to the same component and the network may be
viewed as being connected.



Figure 11.11 
Findings: network structure and information purchase. Source: Choi, Goyal,
and Moisan (2019).

Figure 11.11(a) presents the evolution of number of total
links across the experiment: at the start groups formed 150
links on average, but the number cames down steadily as
the game proceeded and eventually it was close to 100. In a
group of 100, this is basically the minimum number of links
needed to ensure connectivity of the network.

Figure 11.11(b) presents the evolution of the ratio of the
maximum in-degree to the mean indegree. At the start, this
ratio is very high, and it comes down by the end of the first



minute. After that instant, it rises consistently, and
throughout the payoff-relevant period of the experiment,
from second 60 until second 360, the ratio grows steadily
and eventually reaches 60. Thus subjects create a network
with very unequal degrees.

Figure 11.11(c) presents the evolution of average
distance (in the main component). The proximity between
two nodes is the inverse of the distance. The figure shows
that proximity reaches 0.4 by second 60 and then stays at
this level for the rest of the experiment. In other words, the
average distance in the network was under 2.5 practically
throughout the experiment (a number that is only slightly
larger than proximity 2, which would occur in a star
network).

Finally, figure 11.11(d) presents the time series of
purchases of three types of individuals: the most connected
individuals and everyone else. The plot shows that the top
two connected individuals at any point make much larger
purchases, and all the other individuals make small
purchases that are tailing off and becoming negligible.

These large purchases of information by competing hubs
has the effect of lowering their payoffs. Indeed, the two
most connected individuals earn less than the individuals
who make low purchases. In a pure connector equilibrium,
the hub player earns large rents, so there is an incentive to
make large information purchases to become a hub. The
puzzling aspect is that these competing hubs purchase too
much information for too long, and as a result, there is not
enough time left to recover their investments. It is possible
that they fail to anticipate that the benefits they can reap
as a hub later do not sufficiently compensate for the early
costs of competing. This could be due to computational
complexity: it is indeed difficult to compute expected
payoffs from being a hub, and the only way for subjects to
find that out may be to actually reach that position, when it
is too late to realize that the significant costs they already



paid are not worth the benefits. In the treatment discussed
so far, subjects were shown their own payoffs, but not the
payoffs of others. We now consider a treatment in which
subjects are shown the payoffs of everyone.

Sharing everyone’s payoff can potentially help because
this information can reduce computational complexity:
subjects do not need to compute expected payoffs for being
a hub or wait until they reach that position to find out; they
can simply observe how much others earn by reaching such
a position. If they see that payoffs are not large, then they
may compete less aggressively. This treatment also tests
the alternative hypothesis on status or efficiency because
seeing others’ payoffs should not have any effect on their
behavior in that case.

As in the baseline treatment, this experiment also
considers three groups, and for each group, there are five
payoff-relevant rounds, so there were fifteen rounds in all.
The experiment reveals that showing information on
everyone’s payoffs to subjects has a powerful effect: the
hub chooses low effort in the majority of the rounds.
Indeed, in 40 percent of the twenty rounds, the hub
chooses to make 0 information purchases, giving rise to the
pure connector outcome. This is in sharp contrast to the
pure influencer outcome observed in all the rounds in the
baseline information treatment discussed previously.
Complexity of the environment may be an explanation for
the excessive information purchases by the hub in the
baseline treatment. Figures 11.12 and 11.13 present a
representative instance of the dynamic that leads to the
pure connector outcome.



Figure 11.12 
Snapshots with payoff information: Competition to become a hub. Source: Choi,
Goyal, and Moisan (2019).



Figure 11.13 
Emergence of a pure connector. Source: Choi, Goyal, and Moisan (2019).

To summarize, we find that subjects make choices that
lead to extreme specialization in the purchasing of
information and in linking. This is very much in line with
the law of the few. However, this experiment draws
attention to the dynamics of competition and the role of
informational complexity in shaping behavior; these factors
go beyond the arguments we have used to prove the
equilibrium properties in the static model.



11.5 Monetizing Network Status

In our examination of social networks so far, we have taken
the view that individuals form links and exert effort (to
purchase information or to tweet) solely for the purpose of
acquiring information. In real-world networks like Twitter
or Facebook, links and followers may be used to generate
monetary returns. This section explores the implications of
such returns for the structure and functioning of
communication networks. The discussion is based on
Galeotti and Goyal (2010) and van Leeuwen, Offerman, and
Schram (2020).

In the model of information purchase and linking
presented in section 11.4, we may interpret the cost
incurred in the formation of a link as a payment that the
player forming the link makes to the person receiving the
link. In this case, k becomes a transfer and the payoffs to
player i in a strategy profile s = (x, g) are given by

Observe that the last term involving transfers is
independent of the strategy of i. It then follows that for all
s−i ∈ S−i and ,  if and only if 

. Therefore our methods of analysis and our
findings from section 11.4 carry over to the alternative
model, where link formation costs are transfers from one
individual to another. Note that the payoff in equation
(11.7) corresponds to the case with no indirect information
communication. This means that the equilibrium outcomes
will be as described in proposition 11.3.

While the profile of information purchases and the
network remain unchanged, there is a profound difference
in the distribution of payoffs. The active individuals in the
core will earn link-based transfers that will increase



linearly with the size of the population. In large
populations, therefore, there will arise a great gap in
payoffs between the core and the periphery (which is quite
different from the payoff distribution in the baseline model
with no monetary transfers). Our discussion in the previous
paragraph suggests that the Nash equilibrium of the static
game is unaffected by this possibility. However, in a
dynamic setting where individuals make efforts and form
links over time, the potential for such large earnings can
make a profound difference to behavior and to the nature
of the network that arises. We have seen this dynamic in
one form already in the experiments presented on the pure
linking game in section 11.3 and on information purchase
and linking in section 11.4. In both these experiments, we
see intense competition to become a hub so as to earn
slightly larger returns than the periphery. We expect these
pressures to be amplified when the payoffs are
substantially larger for the hub.

A recent experiment by van Leeuwen, Offerman, and
Schram (2020) shows that this is indeed the case. They
consider a repeated game setting in which, at each stage,
the players play the static game of information purchase
and linking. They have a 2 × 2 design: two group sizes (four
and eight members) and two payoff models (one without
link-based payment transfers and one with such transfers).
Their main results are as follows: In the baseline model
without link-based payments, there is little specialization in
information purchases or linking in both group sizes. Link-
based transfers have a dramatic impact, and these effects
interact with size. Subjects specialize in efforts, and a star
network emerges. Moreover, the efforts of the hub are
much larger in the larger group than in the smaller group.
This is in line with the intuitions we spelled out before: a
larger group means a larger payoff for the individual who
becomes the hub. This leads individuals to compete more
vigorously to become the hub, which is reflected in larger



information purchases by them. Indeed, the hub subjects
choose efforts that are close to the first-best level of effort
(and thus are significantly greater than the equilibrium
level). In this experiment, the efforts of the hubs are so
great that the net earnings of the hub are not very different
from those of the peripheral individuals. This similarity in
payoffs between peripheral individuals and hubs lends
stability to the outcome: there is no great incentive for the
various individuals to switch places.

Putting together the models and experiments reported in
this chapter, we are led to the view that individual attempts
to economize on the costs of linking and information
purchases and to effectively access information from others
lead to a law of the few. The theory also points to an
important welfare problem in these networks: individual
efforts possess public good features, so equilibrium efforts
will be less than what is in their collective interest. In small
societies, monetizing network connections can circumvent
this public good problem by inducing hubs to exert large
effort. However, as the group scales up in size, the theory
suggests that there may exist a pure connector outcome in
which the hub earns large rents, without making an effort.
The experiments offer support in favor such a pure
connector outcome.

11.6 Reading Notes

The interest in influencers and the importance of social
communication dates from the early work of Katz and
Lazarsfeld (1966) and Lazarsfeld, Berelson, and Gaudet
(1948). For more recent research on the role of influencers
in social communication, see Feick and Price (1987) and
Beck, Dalton, Greene, and Huckfeldt (2002) and Zhang,
Ackerman, and Adamic (2007). For a engaging popular
introduction to the subject of personal influence in social
networks, see Gladwell (2006).



For case studies on Twitter and the World Wide Web, see
chapter 1. For an overview of online communities, see
Goyal (2012), and for a firms’ perspective on online
networks and platforms, see Belleflamme and Peitz (2022).
Online social and information networks perform a variety of
functions and differ on many dimensions. In this chapter,
the emphasis is on inequality in the level of activity and
connectivity across nodes. These properties were first
identified in the context of offline social networks by Katz
and Lazersfeld (1966) and Lazarsfeld, Berelson, and
Gaudet (1948) but research shows that they are greatly
amplified in large-scale online networks like Twitter and
the World Wide Web. This chapter uses the economic
theory of network formation to explore the origins of these
properties of networks. For a general introduction to the
economic theory of network formation, see chapter 3 of this
book.

Building on the models presented in chapter 3, in this
chapter we present a model of network formation in which
individuals can unilaterally decide to form links. Unilateral
link formation has the advantage that it allows us to use the
tools of noncooperative game theory to analyze the games
of linking. This facilitates a study of a number of questions
using familiar methods. We start with an exposition of the
two-way flow model in Bala and Goyal (2000a), which
yields simple and intuitive results on network structure and
on the relation between equilibrium and efficient networks.
It also shows that there typically are multiple equilibria in
this model that reflect the complementarity of links. The
two-way flow model has been developed along various
dimensions over the years. Researchers have examined
richer models of benefits, link formation protocols,
bounded rationality of individuals, and heterogeneity
across individuals in costs and benefits (see, e.g., Galeotti,
Goyal, and Kamphorst [2006]; Ferri [2007]; and Hojman
and Szeidl [2008]); for surveys of the research in this line



of work, see Goyal (2007), Jackson (2008), and Mauleon
and Vannetelbosch (2016).

The chapter then turns to an experimental test of this
theory. There is by now a large body of experimental work
on networks; for surveys, see Choi, Gallo, and Kariv (2016)
and Breza (2016). In particular, the pure linking game has
been the subject of extensive experimental work: Callander
and Plott (2005), Falk and Kosfeld (2012), and Goeree,
Riedl, and Ule (2009) present experiments on the same
model with small groups (four and six subjects and
simultaneous moves in discrete time). Network formation
with asynchronous choice and continuous time was studied
in an early paper by Berninghaus, Ehrhart, and Ott (2006),
and more recently by Goyal, Rosenkranz, Weitzel, and
Buskens (2017). The use of continuous time in repeated
game experiments has been explored in a number of recent
papers, such as Friedman and Oprea (2012) and Calford
and Oprea (2017). The chapter presents a large scale
experiment on network formation taking place in
continuous time. This experiment is taken from Choi, Goyal,
and Moisan (2020).

With a view to studying specialization in effort levels and
linking, the chapter then considers a richer theoretical
model that adds effort-level choice to the linking choice.
The presentation is based on a model from Galeotti and
Goyal (2010). A number of subsequent papers have
explored this framework, including Kinateder and Merlino
(2017), Baetz (2015), Perego and Yuksel (2016), Sethi and
Yildiz (2016), and Herskovic and Ramos (2020). These
models may be seen as combining the two-way linking
model of Bala and Goyal (2000a) with the public goods
model in the network model of Bramoullé and Kranton
(2007).

We note that in the model of linking and
efforts/information purchase studied in this chapter, the



benefits function f(.), is increasing and concave. This means
that marginal return to increasing personal effort is falling
in response to the total effort of the neighbors. In other
words, the efforts of neighbors are strategic substitutes.
Several steps in the analysis exploit this feature of the
reward function. In follow-up work, Baetz (2015) and Hiller
(2017) study a model in which efforts of neighbors are
strategic complements. Complementarity can give rise to a
multilayered network in which more highly linked subsets
of individuals exert greater effort than less well connected
individuals. For a survey of games of linking ands assorted
activities, the interested reader is urged to consult Vega-
Redondo (2016).

We have presented a large-scale experiment of this
richer model on information purchasing and linking. The
presentation of the experiment is taken from Choi, Goyal,
and Moisan (2019). This experiment offers strong support
for specialization in purchasing and linking, in line with the
law of the few. However, the experiment also reveals
dynamics that go well beyond the arguments invoked in the
static model. We then present a related experimental paper
by van Leeuwen, Offerman, and Schram (2020), which
considers a finitely repeated version of Galeotti and Goyal
(2010) in which they include monetary transfers based on
incoming links.

The models in this chapter focus on individuals in social
networks and do not consider the role of profit-making
firms. In practice, large social networks are run by firms
that seek to maximize profits. See chapters 8, 15, and 16
for discussions on how firms (and platforms) interact with
information networks.

11.7 Questions

  1.  Consider a model in which link creation in unilateral,
while benefits flow both ways (as in this chapter). In



particular, if A forms a link with B, then both A and B
can access each other. Suppose that there is no decay.
Define ĝij = max{gij, gji}. Let Ni(ĝ) be the set of
individuals that i can access in network g. The payoff to
individual i in network g is

where ni(ĝ) = Ni(ĝ) is the number of individuals
accessed by i in network ĝ, and c is the cost of a link.
(a)  Show that an equilibrium network is either

connected or empty.
(b)  Show that the connected equilibrium network is a

tree.
(c)  Describe the efficient networks as a function of c

and n.
(d)  Show that a strict Nash equilibrium is a hub-spoke

network (in which the hub forms all the links) for c <

1 and the empty network for c > 1.
  2.  (Hojman and Szeidl [2008]). Suppose that the payoffs

to individual i in network g are given by

where  is the number of individuals who are at
geodesic distance k from individual i in the undirected
network associated with network g, a1 ≥ a2 ≥ a3 ≥… ≥
ad, and c > 0. Assume that f(·) is an increasing and
concave function; communication takes place only
within a certain distance (there is D < n such that ad′ =
0 for all d′≥ D); and that there are eventually strongly
diminishing returns to communication (there is M such
that for m ≥ M, f(m) − f(m/2) ≤ c). Show that if the
number of players is large enough, relative to M and D,
and if a2 > a3, then the star network in which peripheral



players form links with the hub is a unique equilibrium
network.

  3.  Consider a game of efforts and linking. Every individual
chooses an action {0, 1} and chooses unilaterally to
connect to a subset of other players. The cost of action
0 is zero, and the costs of action 1 is c. The cost of a link
is k, where k ∈ (0, c). Let si = (ai, gi) be the strategy of
player i and s = (s1, …, sn) be the strategy profile of all
players. Given a directed network g, define ĝij = max{gij,

gji} and the corresponding network ĝ. Let Ni(ĝ) = {j|ĝij =
1}, and let  denote the sum of efforts of
player i and their neighbors in network g. Suppose that
f(yi) = 1 if yi ≥ 1, and 0 otherwise. The payoff to a player
from a strategy profile s is given by

where di is the number of links formed by i under
strategy profile s. Describe the equilibrium when k < c

and the equilibrium when k > c.
  4.  Consider a game of efforts and linking as in question 3.

Suppose, however, that the efforts of neighbors are
strategic complements (instead of strategic substitutes).
Define . Let the payoff to a player from
strategy profile s be given by

where di is the number of links formed by i under
strategy profile s. Describe the equilibrium of this
game, and discuss how moving from substitutes to
complements alters the equilibrium.

  5.  Consider the game of information purchasing and
linking as described in section 11.4. Suppose that the



assumptions of proposition 11.3 hold. Let s* = (x*, g*) be
a Nash equilibrium of the game. Show that:
(a)  If , then g* is a core-periphery network, hubs

purchase information personally and spokes
purchase no information personally.

(b)  If , then the following is true:
 (i) Every player i ∈ I(s*) chooses  and has Δ

∈{1, …, n − 2} links within I(s*), while every
player  forms Δ + 1 links with players in
I(s*).

(ii) High-information-level players choose , low-
information-level players have η links with high-
information-level players, and they are not
neighbors of each other and choose information 

, where .
  6.  Consider the game of information purchasing and

linking as described in section 11.4. Suppose that the
cost of purchasing information is ci = c for all i ≠ 1, but
c1 = c − 𝜖 > 0, where 𝜖 > 0 is a small number. Let z1 =
arg maxyf(y) − c1y. Clearly, so long as 𝜖 > 0, z1 > z, and
z1 → z as 𝜖 → 0. Suppose that k < f(z1) − f(z) + cz. Show
that in a strict Nash equilibrium s* = (x*, g*), the
following is true:
(a)   .
(b)  The network is a star and player 1 is the hub.
(c)  Either  and spokes choose x* = 0, OR 

 and x* = [z1 − z]/[n − 2].
  7.  Consider the game of information purchasing and

linking as described in section 11.4. Let s = (ei, gi) be
the strategy of individual i, and let s = (s1, …, sn) denote
the strategy profile of the individuals. The payoff of an
individual i given a strategy profile s is



where al = 1 for all l ≥ 1, c > 0 and k > 0, and di is the
number of links created and paid for by individual i.
Define z as f′(z) = c.
(a)  Show that the star network with the hub choosing z

and all other individuals choosing effort 0 and
forming a link with the hub is an equilibrium, so long
as k < cz.

(b)  What are the conditions under which a pure
connector outcome is an equilibrium?



12
Social Coordination

12.1 Introduction

We can view any form of communication as a form of
coordination, one in which the speaker and the listener
agree on a set of meanings for the words that are being
spoken. Indeed, almost all human activity involves
coordination, ranging from our use of time, when and how
we eat, what we wear, and the languages and technologies,
such as fax machines or telephones, we use. As
coordination is so central to human life, it is important for
societies to have norms or standards. And once a norm
becomes established, any single person would be reluctant
to change actions, as miscoordination is costly. For change
to come about, therefore, there must be coordination, and
this is one reason why social and cultural change is often so
difficult. At the heart of coordination is the fact that it
arises out of interaction among people. In this chapter, we
will explore how the patterns of interaction matter as
societies work their way toward norms, how they respond
to new circumstances and arrive at new norms, and how
they navigate the tension between differing personal tastes
and the benefits of coordination on common norms.

In the next section, we start by laying out the logic of the
coordination problem in a setting with two individuals. We
clarify the advantages of coordination and the possibility of



more and less risky courses of action. We then locate
individuals in their neighborhoods, which are embedded in
a social network. We study the relation between the
structure of a network and the prospects of common and
diverse social norms. The simple logic of the coordination
problem helps us develop a powerful intuition on this issue:
a person will choose A if a large enough faction of her
neighbors also choose A. Building on this idea, we say that
a subgroup of individuals is p-cohesive if everyone in the
group has at least fraction p of their links within the group.
Societies have diverse social norms if they contain multiple
cohesive subgroups.

We turn next to the issue of changing norms. Suppose
that a society has an established norm and a new superior
action becomes available. What are the networks in which
the new action will be adopted, and where will adoption
fail? The answer lies in the cohesiveness of societies.
Adoption will spread, and the new norm will take over the
entire network only if there is no suitably cohesive
subgroup in the society. How can established norms be
changed in cohesive societies? One possibility is to create
special insulated conclaves in which new norms can be
experimentally tried, and as they succeed, the conclaves
can be appropriately integrated with the main network. We
discuss Special Economic Zones (SEZs) set up in China
(and in other countries) as an instance of a policy in which
the network itself is reconfigured.

The possibility that the network changes leads us to
develop a framework in which individuals choose links with
others and also choose an action in the coordination game.
We study the dynamics of evolving networks and how they
interact with choices in the coordination game. Our
analysis reveals that the possibility of choosing links has
powerful effects on social coordination.



The first part of the chapter studies a setting in which all
individuals earn the same payoffs from different outcomes.
We then turn our attention to the setting where everyone
prefers to coordinate, but individuals differ on how they
view the coordinated outcomes. One motivation for the
study of heterogeneous preferences comes from
contemporary discussions on cultural integration. An
important feature of modern societies is that there exist
large migrant communities often with their own distinct
cultural background that differs from the majority on
grounds of religion, cuisine, and language. For instance,
while individuals would like to successfully coordinate on a
common language, communities would prefer to coordinate
on their own language. Similar considerations arise when
we consider dress codes or norms relating to religion,
giving rise to a tension between diverse preferences and a
desire for a common coordination norm. We study how
patterns of interaction shape social norms when such
communities interact.

We develop a framework to study the process of
formation of neighborhoods in a setting where coordination
is important, but individuals coming from different
communities have differing preferences over norms. This
allows us to define the tension between diverse norms and
social efficiency (which arises when everyone conforms to
the same norm). The theoretical analysis shows that a
variety of network structures, ranging from full integration
and conformism to segregation and diversity, are
theoretically possible. We test this model in the laboratory
and find that when subjects are obliged to interact with
everyone, they choose to conform to the action preferred
by the majority. But if they are allowed to choose their own
connections, then they create segregated neighborhoods
and settle on diverse norms (even though this is socially
suboptimal).



Elements of the coordination problem appear in a wide
variety of concrete and practical settings. To appreciate the
fundamental issues, it is sometimes easier to work with
simple and stylized models. This is the reason why the
discussion in this chapter is carried out on an abstract
level. For a discussion of issues of coordination that arise in
markets, the reader is urged to consult chapter 8, on
platforms and intermediation.

12.2 Coordination in a Network

The problem of coordination arises in its simplest form
when the optimal course of action is to conform to what
others are doing. A well-known example is the choice of
what software to use to draft documents. As we work with
colleagues, we prefer to use the software that they are
using. To bring out the basic elements of the coordination
problem, we start with the case of two individuals, 1 and 2,
choosing between two actions, A and B. The rewards to a
player depend on their own action and the action of the
other player. Table 12.1 shows how payoffs are determined
as a function of the choices of individuals.

Table 12.1 
Coordination game

Choosing the same action is better than choosing
different actions: the payoff from coordinating on either a
or b is thus larger than miscoordinating, d and e. It is
possible that coordinating on one action is better than
coordinating on the other action, so generally a and b will
not be equal. This difference is going to be important later



in this chapter when we discuss efficient and inefficient
norms (and also when we talk about the introduction of a
new superior technology).

A key element in the coordination problem is that
individuals make decisions without knowing each other’s
choices. This uncertainty suggests a natural thought
experiment: which action would be best if the other
individual is equally likely to choose the other action? The
answer to this question would depend on the relative value
of a + d versus b + e. These considerations are summarized
in the following restrictions on the values of the payoffs:

Choosing A is optimal when the other individual chooses
A, and the same applies for B. In other words, the action
combinations (A, A) and (B, B) are both Nash equilibria.
The assumption that a + d > b + e means that if a player
places equal probability on the opponent playing the two
actions, then it is strictly better to choose A. Following
Harsanyi and Selten (1988), we will say that A is the risk-

dominant action if a + d > b + e. Observe that A may be
risk-dominant even if a is smaller than b; in other words,
the efficient and the risk-dominant actions may not be the
same.

As our interest is in social coordination, we now extend
this game to allow for several individuals. There are N = {1,

…, n}, with n ≥ 3, individuals located on the nodes of
network g ∈𝒢. We assume that player i plays the
coordination game with each of their neighbors, Ni(g) = {j
∈ N|gij = 1}. For concreteness, figures 12.1 presents three
simple networks—the complete network, the star network,
and local interaction around a circle network. In the star
network, every individual is in the neighborhood for the
hub, while only the hub is in the neighborhood of each of
the spokes. In the complete network, the neighborhood of



every individual includes every other person. In the circle
network, the neighborhood of any person consists of the
individuals on either side.

Figure 12.1 
Simple networks.

Individual i chooses an action, si, from set {A, B}. Let s =
(s1, …, sn) be the profile of actions chosen by individuals
and S = {A, B}n be the set of all possible strategy profiles.
In a two-player game, let π(x, y) denote the payoff to player
i when this player chooses action x while her opponent
chooses action y. The payoff to an individual in a network is
the sum of the payoffs that they earn from each of the
bilateral interactions in the neighborhood. Assuming that
individuals choose the same action on all interactions,
given network g, the payoff to individual i from a strategy
profile s is

To develop an understanding of coordination in
networks, it is useful to start with the three networks in
figure 12.1. A preliminary observation is that in all three
networks, everyone choosing the same action—whether A
or B—is an equilibrium. This is a direct implication of the
payoff that we have assumed: it is optimal to choose the



action that everyone in your neighborhood chooses. This
suggests that global conformism is always an outcome.

We turn next to a study of the circumstances under
which different parts of a network adopt different actions.
In the networks given in figure 12.1, global conformism is
the only possible equilibrium. This is easiest to see in the
star network: clearly, every spoke will choose the action
chosen by the hub. Next, consider the complete network:
no two individuals can choose different actions. Label the
individuals 1 to n. Suppose that 1 chooses A and n chooses
B. The payoff of 1 is given by [n(A) − 1]a + n(B)d, where
n(A) is the number of individuals choosing action A and
n(B) is the number of individuals choosing B. Similarly, the
payoff to individual n is [n(B) − 1]b + n(A)e. As inidividual
1 is happy with their action, choosing A must be better than
choosing B: [n(A) − 1]a + n(B)d must be at least as large as
n(B)b + [n(A) − 1]e. Similarly, for individual n to be happy
with their choice, the payoff from choosing A, n(A)a + (n(B)
− 1)d, must be less than what they earn with action B,
[n(B) − 1]b + n(A)e. Putting together these implications,
we get the following requirement:

The strict inequality occurs because we have assumed
that equation (12.1) holds, so b > e. Comparing the first
and the last expressions in equation (12.3) yields an
impossibility, as a > d by assumption.

The argument for global conformity on the circle network
relies on a similar construction: for diversity to exist, there
must be a boundary between an A and a B region: on one
side of the boundary, an individual chooses A, while on the
other, an individual chooses B. As the individuals at the
boundary choosing A and B have one A and one B neighbor
each, they must earn a + d and b + e, respectively. But



given our assumption about the payoffs given by equation
12.1, choosing A is strictly better than choosing B, so
diversity is not sustainable.

This raises the following question: what are the networks
for which diversity is possible? To develop a first
impression of how networks sustain diversity, following
Goyal (2007), we consider a class of societies in which
there are multiple communities and intracommunity
interaction is stronger than intercommunity interaction.
Figure 12.2 presents network structures with two
communities that reflect this idea. The number of cross-
community links reflect the level of integration in this
society.

Figure 12.2 
Networks with varying levels of integration.

To develop an understanding of the relation between
integration and diversity, consider some payoff parametric



values. Suppose that d = e = 0. Next, fix a = 4 and b = 2. It
can be verified that the community of individuals 1–4
choosing A and the community of individuals 5–8 choosing
B constitute an equilibrium in network I, but not in
networks II or III. Next, suppose that a = 4 and b = 3: as
we have raised the value of coordinating on action B,
diversity is now an equilibrium in both networks I and II
(but not in III).

For two actions to emerge as social norms in different
neighborhoods of a social network, it suffices that every
individual in each neighborhood is content with their
choice. This would hold if, for everyone in a community, a
sufficient fraction of connections were within the
community choosing the same action. To make this
concrete, fix network g and parameters a and b and set d =
e = 0. Diversity of social norms will occur if there are two
distinct subsets of connected individuals CA and CB with the
following property: for each i ∈ CA, the fraction of contacts
within the community pi ≥ b/(a + b); and for every i ∈ CB,
the fraction of contacts within that community pi is greater
than a/(a + b). Returning to the previous example with a =
4 and b = 2, for the two norms to coexist, we require that pi

≥ 1/3 for individuals in the A community and pi ≥ 2/3 for all
individuals in the B community.

Fix the community Ck, k = A, B, and consider the person i
with the lowest fraction pi. The possibility of sustaining
action A in community CA depends on whether pi ≥ b/a + b
(in what follows, we will define q = b/(a + b)). And the
same goes, for community B. The subset of connected
individuals Ck in a network is p-cohesive if pi ≥ p for every
individual in i ∈ Ck.

Equipped with the concept of cohesiveness, we can
summarize our discussion on conformity and diversity as
follows.



Proposition 12.1 Suppose that d = e = 0, and let q = b/(a + b). Everyone

choosing the same action—conformism—is a Nash equilibrium in every

network. Diversity is an outcome if and only if there are distinct subsets of

nodes CA and CB, with CA being q-cohesive and CB being 1 − q-cohesive.

This result sets the stage for an examination of the
process of change from one social norm to another.

12.3 A Change in a Convention

We will suppose that a society has a well-established social
norm: everyone chooses B. At some point, a new and
superior action, A, becomes available. The action may
involve a new technology, such as the fax machine or
telephone or a new software program. It may refer to a
norm concerning being on time (punctuality) or a norm on
which side of the road to drive. We study how the network
structure determines whether this new norm will be
adopted by the society. Our discussion draws on Goyal
(1996) and Morris (2000); the exposition is based on Easley
and Kleinberg (2010).

To focus on the issue of change, we will set d = e = 0 and
suppose that a > b in equation (12.1). Further, suppose
that the dynamics of adoption take place over time, which
is numbered t = 0, moving to 1 to 2 and so forth. The
process starts at t = 0; a subset of the society adopts action
A. These are the individuals who have been offered a new
and advanced technology for free. Everyone else is
choosing B. At every point from t = 1 onward, an individual
who was with action B at time t− 1 chooses between A and
B. The choice maximizes their payoff, taking as given the
profile of actions of others (i.e, it is a best response to last-
period actions by others). Observe that the process of
choice will continue either until everyone has adopted A or
there is a moment in time when no new person switches
from B to A. Recall the threshold: q = b/(a + b): this is the
minimum fraction of neighbors choosing A needed for



someone to switch from B to A. If an individual has a
fraction of neighbors below q choosing A, then they will
persist with B.

To develop a feel for the dynamics of adoption, consider
the network figure 12.3. Suppose a = 3 and b = 2, so the
threshold is q = 2/5. Suppose that at t = 0, we start with v
and w as the two nodes that switch to A. At t = 1, nodes r
and t switch as the fraction of As in their neighborhood,
2/3, is greater than the threshold q = 2/5. But s and u

persist with B, as the fraction of A choosing neighbors, 1/3,
is less than the threshold q = 2/5. At t = 2, s and u also
switch to A, as the fraction of their A neighbors 2/3 is now
greater than the threshold q = 2/5. So at t = 2, everyone
adopts A. A complete cascade happens when everyone
switches to action A.

Figure 12.3 
Coordination dynamics on a simple network.

We next examine potential barriers in the form of
network structure to a complete cascade. The discussion in
the previous section has already given us some idea of
when a cascade will be blocked; this could happen if there
is a sufficiently cohesive community of individuals who
choose B. To develop this point a little further, consider the
network figure 12.4. The process starts with nodes 7 and 8
choosing A. In this network, there are two subsets of nodes



in the residual network that are tightly knit: nodes 1–3 and
nodes 11–17. In particular, each of them are 2/3 cohesive.
So the maximum exposure to A would be 1/3, which is
smaller than the threshold 2/5. This means that every
individual in either of these groups will find it optimal to
persist with B. This simple example paves the way for a
general result on adoption dynamics in networks.

Figure 12.4 
Cohesive groups blocking contagion.

Proposition 12.2 Consider a set of initial adopters of behavior A. Let the

threshold be q for nodes in the remaining network. Then the following applies:

If the remaining network contains a group of nodes with greater than 1−q

cohesiveness, then a complete cascade does not occur.



Moreover, whenever a set of initial adopters does not cause a complete

cascade, the remaining network must contain a group with cohesiveness

greater than 1 − q.

Consider part 1: Suppose the remaining network
contains a group that is greater than 1 − q cohesive, X. If a
complete cascade occurs, then there must be a time at
which the first node in group X switches from B to A. We
know that this node has greater than a 1 − q fraction of
neighbors within X who all choose B. But then it would be
optimal for the node to choose B. This is a contradiction. So
it cannot be the case that a complete cascade occurs.

Next, consider part 2: Suppose the cascade stops before
complete adoption. Let the set of action B choosers at the
end point of the process be given by Y. Consider node y ∈
Y. Since y does not adopt A, it must be the case that their
fraction of neighbors within Y must exceed 1 − q. Indeed,
this must be true for all nodes in Y. So Y has cohesiveness
greater than 1 − q.

◼

So a new norm will permeate a society if and only if it
contains no suitably cohesive subgroups. This discussion
naturally suggests the following question: what is the
maximal receptiveness of a society? More precisely, we can
ask: given a network, what is the largest threshold q that
will support a complete cascade?

To study this problem, it is helpful to consider large
societies, networks with an infinite set of nodes. At the
start, everyone chooses B. A finite set of nodes change to A.
The cascade capacity of a network is the largest value of
threshold q for which there is a complete cascade.

We discuss some examples here to explore the issues.
Consider a cycle network in which everyone has degree 2.
Working through the computations, as in the earlier
examples, it is easy to verify that there is a complete
cascade for any q < 1/2. Moreover, there is no switching to



A, and hence no cascade at all for q > 1/2. So the cascade
capacity of a cycle is q = 1/2. Next, consider a grid with
degree 8: everyone is connected to all neighbors to the top,
bottom, left, and right, and on each diagonal. Suppose
there is a square of 9 nodes that adopt A. Consider the
neighbors of this square. The most receptive person would
be someone who has the (maximal) 3 neighbors in the
square. So it follows that an action A with q > 3/8 will not
spread. Arguing analogously, it can be seen that any q <

3/8 will lead to a complete cascade. So the cascade
capacity of the grid is 3/8. Observe that for q ∈ (3/8, 1/2),
action A fails to spread. In other words, an action that
yields superior payoffs may fail to spread due to the
cohesiveness of the existing network.

Equipped with these observations, we are ready to state
the following result.
Proposition 12.3 There is no network for which cascade capacity exceeds

1/2.

The argument underlying this proposition goes as
follows: Take a new action with q > 1/2. At any point t,
some individuals are choosing A and others are choosing B.
Label an edge in the network as AA if it connects two nodes
that are choosing A, AB if the edge connects two nodes that
choose A and B, and BB if the edge connected two nodes
that both choose B. Observe that expansion of the set of A
adopters happens only along edges of type AB. At the start
(t = 0), there is a finite set of adopters of A. Let I0 be the
number of AB edges that connect these A adopters to
nonadopters. We will show that at every point from t = 1
onward, the number of AB edges falls strictly. So there are
at most I0 active periods in the dynamics. This means that
the cascade is incomplete.

Consider node x, which switched at time t. As q > 1/2,
the number of AB edges for this node must be strictly
greater than the number of BB edges. So it follows, after



the switch by x, that the number of AB edges for x falls
strictly. This is true for every node that switches at time t.
Hence the number of AB edges falls strictly at time t

compared to at time t − 1. This completes the argument.
◼

This result has a reassuring implication: a new action A,
which is less efficient than the existing action B, can have
some success, but it can never completely take over any
entire network.

The discussion also draws attention to the difficulties in
introducing large-scale change to cohesive societies. One
way to overcome the resistance to change is to initiate
movement from one community to a new location, which
helps to erode the cohesiveness of a community. One
strand of research explores this route from a theoretical
perspective. Let us discuss this approach briefly next.

Building on Ely (2002), Mailath, Samuelson, and Shaked
(1994), Bhaskar and Vega-Redondo (2004), and Oechssler
(1997), let us consider a world with many islands.
Individuals care about the average payoffs from
interactions, and they earn payoffs from interactions with
everyone on an island. Moving from one island to another
leads to the severing of all ties with the former island, and
instead the playing of the game with all players on the new
island. In a sense, then the neighborhood becomes a matter
of choice–the choice of an island.

Now imagine that everyone is on one island and playing
the inefficient action. Then the possibly experimental move
of a few individuals to a new island can lead to the
emergence of a location with an efficient convention.
Individuals left behind on the old island can now migrate to
this newly inhabited island with an efficient convention,
which can lead to a transition from a situation where
everyone is choosing the inefficient action to one in which
everyone is on a new island and choosing the efficient



action. Observe that it takes only a few initial experimental
individuals to move to the new island for this transition to
take place. Thus the possibility of moving to a new, as-yet-
unoccupied location creates a pathway from inefficient to
efficient outcomes (so long as individuals care only about
average payoffs). The basic insight flowing from this work
is that if individuals can easily separate/insulate
themselves from those who are playing an inefficient
action, then efficient enclaves will be formed and
eventually attract the migration of others who will adopt
the efficient action eventually.

At an abstract level, this is a compelling account of the
change of coordination norms. To make it a little concrete,
we discuss one example of a large-scale transformation of
social norms where immigration has been central: the
creation of Special Economic Zones in China and in other
countries.

12.3.1 An Application: Special Economic Zones in China

In 1979, the Chinese leadership introduced four Special
Economic Zones in the neighborhood of Hong Kong as part
of a larger reform of its economic system. These Special
Economic Zones included the cities of Shenzhen, Zhuhai,
and Shantou in Guangdong province and the city of Xiamen
in Fujian province. In these zones, private ownership of
capital and market-oriented labor laws were put in place.
These laws were very different from the institutional
arrangements in China at that point. Individuals from the
rest of the country could come in to these special zones
with their skills and their savings. By 1984, the Chinese
leadership expanded the scope of these zones by opening
14 other coastal cities—Dalian, Qinhuangdao, Tianjin,
Yantai, Qingdao, Lianyungang, Nantong, Shanghai, Ningbo,
Wenzhou, Fuzhou, Guangzhou, Zhanjiang, and Beihai. Over
the past four decades, these special zones have witnessed



extraordinary growth. Some of them now have a population
over 10 million.

Reasoning in terms of our theoretical framework, the
special economic zones and the coastal cities offer
individuals an opportunity to move out of their traditional
network and create new, relatively insulated conclaves.
Once these individuals are in these conclaves, their
interactions are governed by new norms and a new and
large collection of networks emerges. At the same time,
outmigration has the potential to mitigate the constraints of
the old social network. The combination of new networks in
the conclaves and the erosion of the old network may
create the circumstances for large-scale adoption of new
social norms across the entire network.

12.4 Co-evolution: Conventions and Networks

This section studies the evolution of conventions in an
environment where the network itself changes with time.
To appreciate the impact of evolving networks, we begin
with a discussion of evolving conventions in a given
network and then introduce changing networks. The
exposition here draws on Young (1998) and Goyal (2007,
2012).

12.4.1 Exogenous Networks

We first study the setting where the network is fixed and
exogenously given. The dynamics take place over discrete
points in time numbered as t = 1, 2…. At each point, with
probability p ∈ (0, 1), a player gets an opportunity to revise
their strategy. Faced with this opportunity, a player
chooses an action that maximizes the payoff, under the
assumption that the strategy profile of neighbors remains
the same as in the previous period. If more than one action
is optimal, then the player sticks with the current action.
Let the action of i at period t be , where . The profile of



actions at time t is given by st. Therefore, the strategy for
player i at time t maps the action profile at time t − 1 into
an action at time . If player i is not active in period
t, then set . This simple best-response strategy
revision rule generates, for every network g, a transition
probability function Pg(ss′): S × S → [0, 1], which governs
the evolution of the state of the system st. A strategy profile
(or state s) is said to be absorbing if the dynamic process
cannot escape the state once it reaches it (i.e., Pg(ss) = 1).
Here, we will study the relation between absorbing states
and the structures of local interaction. The dynamics of
choice in networks are summarized in the following result.
Proposition 12.4 Given network g, and starting from any initial strategy

profile s0, the dynamic process st converges to an absorbing strategy profile in

finite time, with a probability of 1. Moreover, there is a equivalence between

the set of absorbing strategy profiles and the set of Nash equilibria of the static

social game.

The arguments underlying this result are as follows: Let
us start at state s0. Consider the set of players who are not
playing a best response. If this set is empty, then the
process is at a Nash equilibrium profile; and this is an
absorbing state of the process, as no player has an
incentive to revise strategy. Suppose, therefore, that there
are some players who are currently choosing action A but
would prefer B. Allow them to choose B, and let s1 be the
new state of the system (this transition occurs with positive
probability, given the decision rules used by individuals).
Now inspect the players doing A in state s1 who would like
to switch actions. If there are such players, then have them
switch to B and define the new state as s2. Clearly, this
process of having the A players switch will end in a finite
time (since there are a finite number of players in the
society). Let the state with this property be ŝ. Either there
will be no players left choosing A or there will be some



players choosing A in ŝ. In the former case, the process is
at a Nash equilibrium.

Next consider the latter situation, in which some players
choose A while others choose B. Check if there are any
players choosing B in state ŝ who would like to switch
actions. If there are none, then the process is at an
absorbing state. If there are A players who would like to
switch, then follow the process as outlined previously to
reach a state in which there is no player who wishes to
switch from B to A. Let this state be denoted by s. Next,
observe that no player who was choosing A (and did not
want to switch actions) in ŝ would be interested in
switching to B. This is true because the game is a
coordination game and the set of players choosing A has
weakly increased in the transition from ŝ to s. Hence the
process has arrived (with positive probability) at a state in
which no player has any incentive to switch actions. This is
an absorbing state of the dynamics; since the initial state
was arbitrary and the transition occurs with positive
probability, the theory of Markov chains says that the
transition to an absorbing state will occur in a finite time,
with a probability of 1.

◼

We conclude this discussion by noting that for a profile s
to be an absorbing state, it must be the case that from
some point in time t, no individual has an incentive to
switch actions. But if this is so, then everyone must be
playing a best response to the choices of everyone else. But
this means that such a strategy profile must be a Nash
equilibrium. Similarly, it is easy to see that every Nash
equilibrium profile offers no incentive for anyone to switch
actions; therefore it constitutes an absorbing state of the
dynamics.

Thus every Nash equilibria can be supported via a
natural dynamic process. To select across different



equilibria in networks, we need to go beyond these
dynamics. We will explore the scope of the following
general idea in the next discussion. Suppose that s and s′
are the two absorbing states of the best-response dynamics
described earlier. Given that s is an absorbing state, a
movement from s to s′ requires an error or an experiment
on the part of one or more of the players. Similarly, a
movement from s′ to s requires errors on the part of some
subset of players. State s is said to be stochastically stable

if it requires relatively more errors/experiments to move
from s to s′ than the other way around. If it takes the same
number of mutations to move between the two states, then
they are both stochastically stable.

To develop the analysis of stochastically stable states, let
us spell out some details of this experiment process.
Assume that, conditional on receiving a revision
opportunity at any point in time t, a player chooses a
strategy at random with some small probability 𝜖 > 0.
Given a network g, and for any 𝜖 > 0, it follows that in this
experimental dynamic process, there is a positive
probability of transitioning from any state s to any other
state s′. In other words, the experimental dynamic process
defines a Markov chain that is aperiodic and irreducible:
from standard results, it follows that the process has a
unique invariant probability distribution on states (Kemeny
and Snell [1983] and Seneta [2006]). Denote this
distribution by . The analysis will study the support of 
as the probability of experiments becomes very small (i.e.,
as 𝜖 converges to 0). Define . State s is said to be
stochastically stable if .

We now present some examples that help us appreciate
the effects of the network of interaction, g, on the set of
stochastically stable states.
Example 12.1 The complete network



This example considers a complete network in which
every player is a neighbor of every other player. Suppose
that player 1 is deciding on whether to choose A or B. It is
easy to verify that at least k = (n − 1)(b − d)/[(a − e) + (b
− d)] players need to choose A in order for A to be optimal
for player 1. Similarly, the minimum number of players
needed to induce player 1 to choose B is l = (n − 1)(a −
e)/[(a − e) + (b − d)]. Given the assumption that a + d > b

+ e, it follows that k < n/2 < l. If everyone is choosing A,
then it takes l experiments to transit to a state where
everyone is choosing B; likewise, if everyone is choosing B,
then it takes k mutations to transit to a state where
everyone is choosing A. It follows, therefore, that the risk-
dominant action B is the unique stochastically stable
outcome.

◼

Example 12.2 Local interaction around a circle

Following Ellison (1993), we consider local interactions
with immediate neighbors around a circle. Suppose that at
time t− 1, every player is choosing B. Now suppose that
two adjacent players, i and i + 1, choose action A at time t
due to an experiment with the process. It is now easy to
verify that in the next period, t + 1, the immediate
neighbors of i and i + 1, players i − 1 and i + 2, will find it
optimal to switch to action A (due to the assumption that A
is risk-dominant and a + d > b + e). Moreover, in period t +
2, the immediate neighbors of i − 1 and i + 2 have a similar
incentive, so there is a process under way that leads to
everyone choosing action A within a finite time. On the
other hand, if everyone is choosing A, then n − 1 players
must switch to B to induce a player to switch to action B.
This is true because so long as at least one of the neighbors
is choosing A, the optimal action is to choose A. Thus the



risk-dominant action A is the unique stochastically stable
state.

◼

The simplicity of these arguments suggests the following
conjecture: the risk-dominant outcome occurs in all
networks. This conjecture is false, as example 12.3
illustrates.
Example 12.3 The star network

Following Jackson and Watts (2002b), we consider a star
network and suppose that player 1 is the central player.
The first point to note about a star network is that there are
only two possible equilibrium configurations, both involving
social conformism. A study of stochastically stable actions,
therefore, involves a study of the relative stability of these
configurations. However, it is easily verified that in a star
network, a perturbation that switches the action of player 1
is sufficient to get a switch of all the other players. As this
is also the minimum possible number of mutations, it
follows that both states are stochastically stable.

◼

These examples suggest that network structure matters
for the stability of outcomes; however, the partition of
networks where the various equilibria are stochastically
stable appears to be an open problem. We have so far
assumed that the network is fixed. In many situations of
interest, individuals faced with a coordination problem can
orient their network. This is especially true over time.
Pupils may pick new friends as they choose new languages
or sports activities; similarly, businesses may pick new
partners as they change their standards or technologies.
We now turn to a study of the coevolution of networks and
actions in the coordination game.

12.4.2 Endogenous Networks



Following Goyal and Vega-Redondo (2005), we consider a
model of links and actions. There is a set of players N ∈{1,
2, …, n}, where n ≥ 3. A player chooses a link-action pair,
(gi, ai), where gi refers to the links that are formed and ai

∈{A, B} refers to the action in the accompanying
coordination game. Let g = {g1, …, gn} be a profile of links
chosen by the players. A profile of link decisions defines a
directed network. Given network g, let us say that i and j
are directly linked if at least one of them has established a
link with the other (i.e., a link between i and j exists if
max{gij, gji} = 1). Every player who establishes a link with
some other player incurs a cost of c > 0. To understand
payoffs, we therefore need to keep track of who forms a
link and who receives a link: if gij = 1 and gji = 0, then we
shall say that gij has an active link for player i and a passive
link for player j. Given a strategy profile s = (s1, …, sn), the
payoffs of player i are

where π(ai, aj) are the payoffs in the bilateral game
between two connected players i and j, and ηi(g) is the
number of links formed by player i in strategy profile g. The
payoffs π(ai, aj) are taken from the matrix 12.1. We start
with a brief discussion of the equilibrium of the linking and
coordination game.

In what follows, to focus on the more interesting case,
we will suppose that b > a, so there is a tension between
risk dominance and efficiency in the coordination game:
action A corresponds to the risk-dominant action, but
action B corresponds to the efficient action. Observe that if
the costs of linking are greater than the efficient payoffs, c
> b, then no links will be worthwhile: the network must be
empty. So in what follows, we restrict our attention to the



case of c < b. Our next observation is that if c > a, then two
players will be linked in an equilibrium only if they are both
playing the efficient action. A final comment pertains to the
small costs of linking: if c < a, then complete networks with
everyone choosing A or everyone choosing B are both
equilibria. Interestingly, when c > e, then there also are
equilibria with two component networks where players
choose a different action across the components. Figure
12.5 presents some equilibria of this game of linking and
actions.

Figure 12.5 
Equilibria with endogenous networks.

Moving to the dynamics, we start by noting an immediate
counterpart of proposition 12.4: there is an equivalence
between the set of Nash equilibria of the static game of
linking and actions and the best-response dynamics. We
examine the role of experiments in selecting across these
equilibria. As in the dynamic model with experiments
considered previously, we suppose that at regular intervals,
individuals choose links and actions to maximize
(myopically) their respective payoffs. Occasionally, they
may also experiment. Our interest is in the nature of long-
run networks and actions, when the probability of these
experiments is small. The perturbed dynamics of actions
and endogenous networks lead to very sharp predictions.



Proposition 12.5 Consider the dynamic model of linking and actions with

experiments. Define a number c, where e < c < a. Suppose that the probability

of experiments is small. If 0 < c < c , in the long run, the network is complete

and all players choose the risk-dominant action A. If c < c < b, then the long-

run network is complete and choose efficient action B. Finally, if c > b, then the

long-run network is empty and actions are undetermined.

A proof of the result will take us too far afield, but let us
try and spell out the main ideas informally. So long as costs
of linking are below b, in the long run, the network is
complete. This means that partially connected networks are
ephemeral: to see why this is the case, suppose for
simplicity that b > c > e: so players will only maintain links
with each other if they are playing the same action. Then
note that starting from two components with distinct
actions, a single experiment will take an individual from
one action such as A to the other action B and with links to
the corresponding component. The players in the erstwhile
A component will now best respond by disconnecting their
links with this experimenting individual. We can iterate this
process one experiment at a time, and at each point, the
outcome may be a Nash equilibrium. The process
converges with everyone in a complete component
choosing B. This suggests that the two-component
configurations with distinct action configurations are
fragile. It is easy to check that the complete network with
conformism is not fragile in this way. As a small exercise,
the interested reader may wish to check that a variant of
this argument would work for small costs of links as well.

Next, note that in the complete network, players always
coordinate on the same action (i.e., social conformism
obtains). We can adopt the arguments we discussed in
section 12.2 to show this. Moreover, recall from section
12.1 that if the complete network were fixed, then the risk-
dominant action would be uniquely stochastically stable.
Thus the dynamics of linking must account for the sharp



transition from all A to all B as we move c from under c to
above c.

We observe that threshold c is strictly below a; that is,
there is some interval of values c ∈ (c, a) where the
complete network with risk-dominant action is a Nash
equilibrium, and yet it is not stochastically stable. Rather,
the efficient action is uniquely stochastically stable. This
interval shows that the study of the dynamics allows us to
go beyond what we could infer simply by examining the
Nash equilibrium of the static game.

We now discuss the role of trembles/experiments in
shaping the co-evolution of networks and coordination
game equilibrium. Starting from a complete network and
everyone choosing A, suppose that some players were to
experiment with action B. If the costs of linking are very
small, everyone will maintain the links as they are. In
essence, a player must make fresh choices as if they were
in a complete network. In this case, from our arguments in
example 12.1, the risk-dominant (and inefficient)
convention prevails since, under complete connectivity, this
convention is harder to destabilize than the efficient but
risk-dominated one.

Next, suppose that the costs of links are higher and lie in
the range c > c. Now it is no longer profitable for the
nonexperimenting players to maintain any links with the
experimenters. They will delete their links and the network
is no longer complete. If enough links are deleted in this
manner, the experimenters are adrift in a new complete
component that is playing the efficient action. So long as
there are enough experimenters, those left behind will have
an incentive to switch actions and form links with the
experimenters. Let the minimum number of experimenters
be MAB. We could similarly contemplate a transition from a
complete network with everyone choosing B to a complete
network where everyone chooses A, and compute the



minimum number of experimenters needed for this
transition; let us denote it as MBA. Recalling our discussion
of stochastic stability, we note that the key comparison is
between MAB and MBA. It turns out MAB > MBA for c < c and
MAB < MBA for c > c. The details of the computations are
fairly involved, so we omit them here; see Goyal and Vega-
Redondo (2005) for a complete proof.

◼

12.4.2.1 Fixed locations versus evolving networks

We briefly discuss the relationship between migrating
between locations (as discussed in the previous section)
and evolving networks (as discussed in this section).

The basic insight flowing from the changing location
approach is that if individuals can easily separate/insulate
themselves from those who are playing an inefficient
action, then efficient enclaves will be formed and
eventually attract the migration of others who will adopt
the efficient action. One may be tempted to associate easy
mobility with low costs of forming links. However, the
considerations involved in the two approaches turn out to
be somewhat different. Let us elaborate on this point
briefly.

Recall from our discussion of the coordination dynamics
in the endogenous networks case that, in the network
formation approach, the risk-dominant outcome prevails if
the costs of forming links are small. There are two main
reasons for this contrast. First, in the network formation
approach, players do not indirectly choose their patterns of
interaction with others by moving across a prespecified
network of locations (as in the case of player mobility).
Rather, they directly construct their interaction network
(with no exogenous restrictions) by choosing those agents
with whom they want to play the game. Second, the cost of
link formation is paid per link formed and thus becomes
truly effective only if it is high enough. Thus it is precisely



the restricted mobility of high costs that helps insulate (and
thus protect) the individuals who are choosing the efficient
action. If the costs of link formation are low, then the
extensive interaction that this facilitates may have the
unfortunate consequence of rendering risk-dominance
considerations decisive.

12.4.2.2 Minimal effort games

In the problems we have studied so far, individuals choose
between two actions, A and B. It is easy to extend the
problem to have k ≥ 2 actions. A variant of this game is the
weakest-link or the minimum effort game. We follow Riedl,
Rohde, and Strobel (2016) in describing the game. Let N =
{1, …, n} be a group of players and S = {1, …, k} be the set
of effort levels available to every player. Players
simultaneously choose an effort level si ∈ S. Let s = (s1, …,

sn) be the strategy profile of players, b the marginal cost of
effort, and a the marginal return from the effort in the
group, with a > b > 0. The payoff of player i facing strategy
profile s is

where c > 0 ensures nonnegative payoffs for all strategy
profiles. The restriction a > b > 0 implies that every player
has a monetary incentive to align their effort level with the
minimum level chosen by the other players. Therefore, any
strategy profile in which all players choose the same effort
level constitutes a Nash equilibria. These equilibria are
Pareto-ranked, from the highest- to the lowest-effort
equilibrium. Also, observe that the strategy profile in which
everyone chooses the lowest effort pairwise risk-dominates
every other equilibrium.

In this game, individuals choose from among a finite set
of actions {1, …, k}, where k ≥ 2. The gross payoffs to an
individual from an action profile are given by the minimum



action chosen among all players while a higher action is
costlier. The structure is such that the rewards of higher
actions more than compensate for this cost. Thus there are
k coordination game equilibria, each corresponding to a
different action chosen by everyone (for a binary version of
this game, see chapter 4, on network structure and human
behavior). Therefore, there are k Nash equilibria and they
are Pareto-ranked, with a higher matched action profile
payoff dominating a lower action profile.

There is a large body of experimental literature on this
game: a robust finding is that subjects generally choose the
lowest action as the group of players grows (i.e., they chose
the worst equilibrium of the game). For weakest-link games
played in fixed groups, the seminal papers by Harrison and
Hirshleifer (1989) and Van Huyck, Battalio, and Beil (1990)
indicated that when played in pairs, substantial
coordination on the Pareto-dominant equilibrium occurs,
whereas efficient coordination breaks down completely
when groups grow large (typically beyond size 8). This
result has been replicated by a number of experimental
studies over the years; for an overview of the literature, see
Riedl, Rohde, and Strobel (2016).

Our interest is in understanding how the possibility of
partner choice will shape the nature of social coordination.
Here are some examples of this interaction of actions and
partners. For instance, in the global public good of
preventing the outbreak and spread of infectious diseases,
the country with the poorest preventive measures
determines the likelihood of an outbreak. Governments
with higher standards can respond not only by lowering
their own costly preventive measures, but also by
restricting trade or traveling to and from countries with
low standards. Here is a second example: in groups of
coauthors of a paper, the slowest/lowest-effort member
determines the speed of progress. In response to poor



effort by a researcher, their coauthors may reduce their
own efforts or terminate the collaboration altogether.

With these examples in mind, let us consider a variant of
this game, in which players choose links with each other
and play the weakest-link game. Observe that as in our
earlier discussion of the baseline coordination game, there
are equilibria with a complete network and with everyone
playing any one of the actions. Next, we discuss
experimental evidence on this game that is taken from a
recent paper by Riedl, Rohde, and Strobel (2016), which
examines the behavior of subjects in versions of the
repeated weakest-link games, with and without link choice.
The researchers consider two group sizes: 8 and 24
members. In their Baseline Treatment (BT), 8 players are
located in a complete network and simultaneously choose
an integer (which they interpret as effort) from the set {1,

…, 8}. Everyone choosing 1 is the least efficient Nash
equilibrium and everyone choosing 7 is the most efficient.
They have a Neighborhood Treatment (NT) that adds a link
decision to the BT treatment: interaction between any two
players is endogenous and requires mutual consent. Recall
that a player’s payoff is determined by the minimum effort
in her neighborhood. Further, in line with our field
examples, which exhibit returns from increasing interaction
neighborhood size, we provide incentives to endogenously
form larger neighborhoods. The treatments are designed in
such as way that when each player chooses to connect with
everyone else (i.e., create a complete network), the
incentives on actions in the weakest-link game under NT
coincide with those of BT.

The main results are as follows: In the first round, there
is little difference between treatments. The average effort
level is 5.66 in BT and 5.99 in NT. However, the
subsequent evolution of efforts is very different across the
rounds. In the BT treatment, the frequency of the lowest



effort (11 percent in round 1) increases strongly, and this
effort level is the main choice from round 19 onward. The
frequency of the highest effort level deteriorates over time
from 64 percent to about 30 percent in the last few rounds.
By contrast, in the NT treatment, the frequency of the
lowest effort is never above 4 percent, and the frequency of
the highest effort (7) increases strongly from about 60
percent in the first round to above 94 percent (where it
mostly remains) after round 4.

More generally, efficient coordination is rarely observed
in groups of size 8 and never in groups of size 24. This
echoes the classical findings of Van Huyck, Battalio, and
Beil (1990) and Harrison and Hirshleifer (1989). Matters
are very different with endogenous links: under NT,
subjects quickly coordinate on the fully efficient
equilibrium and virtually all subjects form links with
everyone else (thereby creating a complete network).

Riedl, Rohde, and Strobel (2016) suggest the following
mechanism as an explanation for this result: subjects who
face link deletion from individuals who put in high effort
respond by raising their own effort. Over time, this leads
almost all individuals to choose high effort, which
encourages all individuals to form links with each other,
resulting in a complete network with almost universal high
effort. We see that the link dynamics play a central role in
the emergence of the high-effort outcome.

12.5 Social Coordination with Heterogeneous Preferences

So far, we have assumed that all individuals have the same
preferences about the outcomes, as reflected in equal
payoffs of the row and column players in the outcomes (A,

A) and (B, B). It is easy to see, however, that sometimes
players may wish to coordinate with each other but one of
them prefers the A outcome while the other player prefers
the B outcome. Let us take up some examples of this.



In 2017, in a widely publicized incident in the
Netherlands, the public transportation company Qbuzz
refused to interview an immigrant who had applied for a
job because he refused to shake hand with female clients
(on account of his religious beliefs). The company felt that
the behavior of the applicant went against social norms in
the Netherlands (and would probably put off potential
customers). This is an instance of norms on greeting:
physical contact between a man and woman is accepted in
some communities, while it is entirely prohibited in other
communities. So individuals may have very different
rankings concerning norms.

Language is another context in which a similar tension
arises: members of different communities prefer their own
mother tongue to be the common language of
communication. In modern societies the language of official
communication is of central importance and so it is perhaps
only natural that this tension appears in many countries.
These differences in preferences create the following
tension: individuals would like to coordinate on the same
action, but their utility from the outcomes differs.

12.5.1 Exogenous Networks

Consider the following simple modification of the model
discussed in section 12.4.

There is a group of individuals who each choose between
two actions, A and B. Everyone prefers to coordinate on
one action, but some individuals prefer action A while
others prefer action B. To develop an understanding for
how this difference can have a large impact on individual
decisions, consider the simple setting of a complete
network. Recall that in section 3, we showed that in a
setting where individuals interact with everyone,
conformism must occur. Now consider the modified
situation in which some individuals prefer action A over B,
while others prefer B over A.



Suppose there are 15 individuals in all, and 8 prefer A
while 7 prefer B. This preference is reflected in the payoffs:
in the two-person game, individuals of type A earn 4 from
coordinating on action A and 2 from coordinating on action
B. The payoffs of type B go the other way: B types earn 4
from coordinating on B and earn only 2 from coordinating
on A. Now it is easy to see that with these preferences,
conformism on either action remains an outcome. But there
is also an outcome in which the A types choose action A,
while the B types choose action B, that is, a Nash
equilibrium. The wedge in the payoffs between actions
across types of agents thus gives rise to the possibility of
diverse norms, even in a complete network.

Observe, however, that for diversity to be an equilibrium,
the minority must not be too small. So, for example, if there
were 3 type B individuals in a society with 15 members,
then it is no longer possible to sustain an outcome in which
the type B members choose B and the type A members
choose action A. Type B individuals earn 2 × 4 = 8 in such
an outcome and could earn 12 × 2 = 24 if they were to
switch to action A. The prospects of diversity will depend
on the values of payoffs and the relative size of the
minority.

An important point to note is that these prospects are
considerably brighter if we move away from the complete
network. For instance, take the society with 15 members
where 12 are of type A and 3 are of type B, but partition
them into two distinct cliques corresponding to the type of
individual. Now it is easy to see that diversity is a Nash
equilibrium: the clique with type A individuals chooses A,
while the clique with type B individuals chooses B. This
simple example brings out the role of interaction structure
in shaping the prospects of diversity and motivates the
study of coordination problems in which individuals have
heterogenous preferences. The discussion in this section
will draw on a literature in economics and sociology and in



game theory (e.g, Schelling [2006]; Kearns, Judd, Tan, and
Wortman [2009]; and Goyal et al. [2021]).

To develop the arguments formally, we extend the
coordination game presented in section 12.2 by assigning
different payoffs to players upon successful coordination.
This leads us to the Battle of the Sexes game. For ease of
exposition, let us write the payoffs in the Battle of the
Sexes game as played on a network. There are two actions
in the game: A and B. Every individual i has type θi ∈{A, B}.
Individuals are located on network g. Individual i chooses
action si ∈{A, B}. Recall the payoffs of coordination game in
equation (12.1): for simplicity, set d = e = 0. The payoff to
individual i from strategy profile s is

where Isj=si
 is the indicator function for i’s neighbor j, who

chooses the same action as i. We set  if  and 
if s i ≠ θi. Let α > β > 0.

We note that conformism on either action A or B remains
an equilibrium for all networks, as in the baseline
coordination game with aligned preferences. Moreover,
diversity in actions also can arise, and we expect that it
should be easier to sustain in the Battle of the Sexes game
than in the baseline coordination game. Thus we will face
the problem of multiple equilibria, as in the basic
coordination problem. But differences in preferences now
raise a new issue: how does the location in networks of
individuals with particular preferences shape coordination
in the group? We present an experiment taken from
Kearns, Judd, Tan, and Wortman (2009) to develop a feel
for how networks matter.

12.5.1.1 Experimental evidence: Heterogeneity, networks, and

coordination



The setting of the experiment is as follows: there are 36
individuals located on a network. Every individual inhabits
a node in the network and can choose one of two colors,
red or blue; moreover, the colours can be asynchronously
updated as often as desired during a 1-minute interval.
Subjects are able to view the current color choices of their
immediate neighbors in the network at all times, but
otherwise, they have no information on the current choices
of the others in the network. No other communication
between subjects is permitted.

The experiment offers payoffs to individuals only if all 36
subjects arrive at the same colour choice before the end of
the 1 minute (in this sense, the pressure to coordinate is
even greater than in the Battle of the Sexes game, where
payoffs depend only on the extent of local coordination).
For concreteness, we will suppose that there are two types
of players: Blue players, who are paid $1.25 for Blue
consensus and $0.75 for Red consensus; and Red players,
who are paid $1.25 for Red consensus and $0.75 for Blue
consensus. To reiterate, payments are made only if global
unanimity is reached, whether on red or blue. This
requirement of unanimity is extreme, but it helps us to
develop the main points in a simple way.

There are three design variables underlying the
experiment: the number of individuals with different
preferences, their placement in the network, and the
structure of the network. There are two broad categories of
experiments: the Cohesion experiments and the Minority
Power experiments. The networks used have roughly the
same number of edges (roughly 100), but we consider two
networks: an Erdὄs-Rényi network and a preferential-
attachment network.

In the Cohesion experiments, vertices were divided into
two equal groups corresponding to their colour
preferences. One goal of the experiment was to examine
how variations in the network structure—from Erdὄs-Rényi



to Preferential Attachment—could alter social coordination
choices. Figure 12.6 presents examples of networks with
these features.

Figure 12.6 
Cohesion experiment configurations: two equal groups of 18.

In the Minority Power experiments, all networks were
generated via preferential attachment. A minority of the
vertices with the highest degrees (i.e., number of
neighbors) were then assigned incentives preferring red to
blue (the size of the minority varied between 6, 9, and 14),
the remaining majority of subjects were Blue types. One
objective of the Minority experiment was to examine the
influence of a small but well-connected group of individuals
on collective behavior. Figure 12.7 presents networks and
locates players with colour preferences in the networks.



Figure 12.7 
Minority power configurations: preferential attachment networks.

The authors ran experiments with a variety of payoff
configurations, but here we will restrict ourselves to
discussing the symmetric case: the Blue subjects and the
Red subjects exhibited the same payoff differences ($1.25
versus $0.75).

At any instant in time, a subject sees the current color
choices of neighbors. The subject’s payoffs for the
experiment are shown; there is a bar that displays the time
that has elapsed in the experiment and a “game progress”
indicator that measures the fraction of edges in the
network that choose the same color on each end.

Let us summarize the main findings here. On the issue of
whether groups arrived at consensus, there was a
significant difference in the success rate between the
Cohesion experiments and the Minority Power
experiments: subjects found it significantly easier to reach
consensus in the Minority Power experiments. A second
observation is that in all the cases where the group was
successful in the Minority Power experiment, the global



consensus was reached on the colour preferred by the well-
connected minority. Together, these results suggest that
not only can an influentially positioned minority group
reliably override the majority preference, but such a group
can in fact facilitate global unity.

Our next observation is that within the Cohesion
experiments, unanimity was much more likely in the
preferential-attachment network as compared to the Erdὄs-
Rényi network. When we combine this with the high
success rate of the preferential-attachment Minority Power
experiments, we are led to the view that for this class of
consensus problems, preferential-attachment networks are
easier for subjects as compared to the Erdὄs-Rényi
networks.

12.5.2 Endogenous Networks

Modern societies experience large-scale migrations of
people from rural to urban areas and from one country to
another. Diversity of preferences on issues of shared
interest arise naturally, and as examples in the previous
section illustrate, this can give rise to a tension between
the preference for diversity and the need for common
standards or norms. This tension raises the following
possibility: a community may sustain its preferred way of
doing things—on dress or diet or religion— through social
segregation, and this would come at the cost of social
coordination. The discussion here is based on Advani and
Reich (2015) and Goyal, Hernández, Martínez-Cánovas, et
al. (2021).

12.5.2.1 A model with linking and coordination

There is N = {1, 2, …, n}, with n ≥ 3 individuals. There are
two actions in the coordination game: A and B. Every
individual i has a type, θi ∈{A, B}. Individuals first choose
links with others, and then they choose between actions A
and B. Links are binary, gij ∈{0, 1}: a link is formed between



i and j if both wish to form it. After the network is created,
individual i chooses action xi: g →{A, B}. In equation (12.1),
we will suppose that d = e = 0. The payoff to individual i
from strategy profile s = (x, g) = (x1, …, xn, g1, …, gn) is

Ix
j
=x

i
 is the indicator function for i’s neighbor j who chooses

the same action as i. We will denote  as reflecting the
situation where i and j have proposed having a link to each
other, and therefore the link has actually been formed. We
set  if  and  if . To focus our
attention on the interesting case, we will assume β > k.

To understand strategic behavior in our setting, we
adapt the pairwise stability notion from Jackson and
Wolinsky (1996) (as presented in chapter 3) to our setting.
In the spirit of their definition, we say that a network and
corresponding equilibrium action profile is stable if no
individual can profitably deviate either unilaterally or with
one other individual. Given a network action pair , 

 refers to the choices of all players except for players i
and j. Equipped with this terminology, we can define
pairwise network action profile as follows.
Definition 12.1 A network-action pair  is pairwise stable if the

following is true:

1.    is an equilibrium action profile given network .

2.  For every ,  and , where 

and  are some equilibrium action profiles given network .

3.  For every ,  or , where  is

some equilibrium action profile given network .

Figures 12.8 and 12.9 illustrate the pairwise stable
network and action profiles. A circle node represents a
player in the majority and a triangle a player in the



minority. Majority players prefer action A, represented by
blue, while minority players prefer action B, represented by
red. The border color of a node displays its chosen action.

Figure 12.8 
Pairwise-stable outcomes for k = 0.

Figure 12.9 
Pairwise-stable outcomes for k = 0.

Individual decisions on linking create the possibility of
fruitful interaction and the choices in the coordination
game determine the actual payoffs. It is possible, then, to
study how well individuals do and the group does as a
result of the choices that individuals make. We will say that



an outcome is efficient if it maximizes the sum of the
payoffs of all individuals.

An interesting general property is the following:
individuals creating the complete network and everyone
choosing the majority’s preferred action maximizes the sum
of the individual utilities. To develop some intuition for the
property, let us consider the complete network. Fixing the
behavior of one group, observe that the total aggregate
payoffs can only decrease when the other group mixes
actions. We therefore only need to compare the two
outcomes: (1) where everyone conforms to action up, and
(2) where everyone conforms to action down. The
concluding step shows that conformity on up is better if
and only if the group that prefers up constitutes a majority.
Observe that this argument holds for arbitrary values of α
and β. Thus conformity is preferred, even if α is much
larger than β: this is because the minority collectively gains
less than what the majority loses when the minority
switches from conformism to diversity. We note that the
socially efficient outcome is invariant with respect to the
value of the linking cost k (so long as it is less than β). A
question at the end of the chapter works through the
details of this argument.

As the theory is permissive—allowing both connected
and partially connected networks and both conformism and
diversity—we turn to an experiment to help us develop a
better understanding of the problem. The focus of the
experiment is on the effects of endogenous linking: we first
consider a treatment in which the complete network is
given and subjects choose an action, and then take up a
treatment in which individuals choose links as well as
actions.

12.5.2.2 Experimental evidence: Linking, conformism, and diversity



We consider groups of 15 subjects with a majority of 8 (that
prefer up) and a minority of 7 (that prefer down). There are
three groups in a session and two sessions per treatment
(i.e., six groups per treatment). Every group plays the game
25 times. The first 5 (rounds) are just a trial, and subjects
are paid based on their actions in the last twenty rounds.

The parameters of the payoffs are as follows:
coordinating on preferred action brings 4, and coordinating
on the less preferred action brings 2. The cost of the link, k,
is set equal to 0 in order to facilitate comparison across the
exogenous and endogenous link treatments. The theoretical
predictions are set out in table 12.2.

Table 12.2 
Equilibrium payoffs

Turning to the experimental findings, we start by
describing the linking patterns. Subjects create roughly
94.5 links (out of a maximum possible 105), and the
individual average degree is 12.59 (out of a maximum
possible 14). There are no differences in connectivity
between majority and minority players. The interesting
point is that practically all subjects are fully connected to
everyone of their own type: almost all the missing links are
those between subjects who prefer different actions.

Next, we turn to the choice of actions in the two
treatments with exogenous and endogenous links. Figure
12.10 shows that the average numbers of subjects choosing
the majority’s action in the two networks are 12.68 and



8.18, respectively. This difference is entirely due to the
choices of the minority.

Figure 12.10 
Coordination game choices.

One reason for why this outcome is surprising is that the
minority could be earning more by conforming with the
majority’s preferred action. With this payoff loss in mind,
let us compare the payoffs of the minority subjects in the
two treatments. It turns out that the average minority
payoffs under the exogenous complete network are not

significantly different from the average payoffs obtained
with the diversity outcome under the endogenous
treatment. This is due to the slower rate of convergence
under exogenous networks.

This leads to the following tentative explanation: Due to
the large number of individuals and the different
preferences, subjects face a very complex coordination
problem. They use cues from the environment and any
instruments that they have available to simplify this
problem. In the experiment, relatively greater linking with
own types correlates strongly with rapid convergence to
choosing preferred actions (i.e., to diversity actions).

12.6 Appendix: Advanced Material



12.6.1 Potential Functions and Stochastic Stability

In the discussion in section 12.4, we started with a myopic
best-response decision rule and supplemented it with small
but persistent mutations and looked at what happens as the
probability of mutations becomes small. The key
assumption was that errors take place independent of the
payoffs. We now explore the issue of payoff-sensitive
experiments. Following the work of Blume (1993) and
Young (1998), one strand of the literature has studied the
log-linear best response. We will present the dynamics
under this rule and develop the formal arguments in detail
as they involve the use of potential functions, a concept
that is general interest for the study of games on networks
(a point also made in chapter 4).

Let us suppose that in any period t, an individual i

located in network g is drawn at random and chooses α

according to a probability distribution, , where γ > 0
and st is the strategy profile at time t:

For large values of γ, the probability distribution will place
most of the probability mass on the best-response action.
Define Δi(s|g) = Πi(β, s−i|g) − Πi(α, s−i|g). Then for large γ,
the probability of action α is

The probability of not choosing the best response is
exponentially declining in the payoff loss from the
deviation. It turns out that dynamics of the log-linear
decision rule are extremely well behaved. To develop some
intuition for the dynamics, let us return to the star network
example. In that network, the simplest way to implement a
transition is via a switch in the action of the central player.



In the standard model, with payoff-insensitive mutations,
the probability of the central player switching from A to B
is the same as the other way around. Matters are very
different under the log-linear response rule. If there are
many peripheral players, then there is a significant
difference in the payoff losses involved and the probability
of switching from A to B is significantly smaller than the
probability of switching from B to A.

Our main result with the log-linear decision rule says
that in the long run, behavior is network invariant: in all
networks, the risk-dominant outcome prevails. As the proof
builds on the ideas of potential functions, a concept that is
of general interest for the study of games on networks
more generally, we present it completely here.

A game has a potential if there is a real-valued function
F(x, y) and a rescaling of the utility functions such that
whenever a player deviates unilaterally, the change in
payoff equals the change in the potential. For a symmetric
two-player game, this means that there is a symmetric
function F(x, y) = F(y, x), such that for some rescaling of
utilities, πi, and for all x, x′, y ∈ Si,

Next, note that if a symmetric two-player game admits a
potential, then so does the corresponding social game on
network g. To see this, let x be a profile of actions in the
social game, and suppose that player i deviates by choosing
xi′. Let x′ = (xi′, x−i). Then



where gh, k = 1 refers to all links that are present in network
g. It follows that a potential for the social game is

Given network g, let  be the probability transition
matrix corresponding to the dynamic process and the log-
linear decision rule with γ > 0. We are now ready to state
and prove the following result that is taken from Young
(1998).
Proposition 12.6 Consider a symmetric two-person game with potential

function F. Let g be an undirected graph. For every γ > 0, the adaptive process 
 has the following unique stationary distribution:

and the stochastically stable states of the social game are those that maximize

F*(x).

The proof of this result is as follows: For simplicity, write
μ instead of  and P instead of  The detailed balanced
condition states

Let us begin by showing that μ satisfies this detailed
balance condition. First, observe that P(xy) > 0 only if
either x = y or x and y differ for exactly one player. Note



that any player is chosen with a probability of 1/n. This
means that

Define

This allows us to rewrite equation (12.15) as

This proves that μ(.) satisfies the detailed balanced
condition. Given that the detailed balance condition holds,
it follows that

Thus μ is an invariant distribution, and since the process is
irreducible, it is the unique invariant distribution. The
claim on stochastically stable states now follows from the
behavior of μ as γ →∞.



Note that there is a potential function in the coordination
game: F(α, α) = a−e, F(α, β) = F(β, α) = 0, and F(β, β) =
b−d. Next, define wα(x) (wβ(x)) as the total number of
player-pairs who choose α (β) in profile x. Then it follows
that the probability of profile x in the invariant distribution
μ(x) is proportional to e(a−e)w

α
+(b−d)w

β. If α is risk dominant,
then a − e > b − d, and it follows that μ(.) places all
probability mass on the state in which everyone chooses
the risk-dominant action.

◼

Potential functions can be used to study games on
networks more generally; the interested reader is referred
to Bramoullé, Kranton, and D’Amours (2014) and
Bramoullé and Kranton (2016).

12.6.2 Thresholds, Networks, and Common Knowledge

In the models so far, we have been concerned with
coordination problems played on networks and in which
individuals earn payoffs out of interactions that occur
locally on links in a network. In this section, we very briefly
touch upon a rather different class of situations: let us
suppose that people are aware that a demonstration
against the government is being planned for tomorrow. If a
large number of people show up, then the protest will be
successful (e.g., the government may be forced to change
its stance) and everyone in society—including the
demonstrators—will benefit. But if only a few people show
up, then the demonstrators may be dispersed or arrested,
and it would have been better not to turn up for the
protest. This is an example of a situation in which benefits
from an action are contingent on how many others do
likewise. It is therefore reminiscent of the examples
considered in chapter 8. However, there is an added layer
of difficulty: there may not be enough time to collect
information on how many people are planning to turn up,



so individuals may have to make decisions based on
knowledge gathered over time from their existing social
networks. Alternatively, the collective action may be an
uprising against a repressive regime, so individuals can
only trust their immediate neighbors with any information.

We would like to understand what features of a network
facilitate the organization of such collective actions. Our
discussion outlines a model of collective action of
thresholds in networks that draws on the work of Chwe
(2000) and Granovetter (1978). The exposition in this
section draws on Easley and Kleinberg (2010).

Suppose that everyone knows about an upcoming protest
against the government. Individuals differ in their
willingness to take a risk that is captured by a threshold: a
threshold of 4, for instance, means that this person will
show up if for the protest if they are sure that at least 4
people (including this person) will show up. These
individuals are located in a network. A link in this network
indicates that the two connected individuals know each
other’s threshold. Therefore, every person knows the
thresholds of all their neighbors in the network. Who will
turn up for the Protest, and who will stay at home? Will a
protest take place if there are enough people with
thresholds that support it?

Next, we will discuss some examples of small networks to
address these points. Let us assume that everyone knows
the social network. Consider the network given in figure
12.11(a). Suppose that w would join the protest only if at
least 4 people (in all) do. Since there are only 3 people in
total, this means w will never turn up for the protest. Node
v has a threshold of 3. They know that w’s threshold is 4, so
they know that w will not turn up. Since v requires 3 people
in order to be willing to join, v knows that there will not be
enough people joining the protest, and so v will not turn up
either. Finally, u only requires 2 people to participate, but



they know the thresholds of both w and v and know that no
one else will join. Hence, u also will not join.

Figure 12.11 
Thresholds, networks, and protest. Source: Easley and Kleinberg (2010).

We next take up a slightly more interesting network, as
in figure 12.11(b). Let us consider the situation from u’s
perspective; suppose that u’s threshold is x. They know that
v and w each have a threshold of 3, and that u, v, and w will
individually feel safe taking part in a protest that contained
all three of them. However, as they know the network, they
can infer that v and w do not know each other’s thresholds.
This means that they are not sure that enough people are
going to turn up for the protest, so they will not choose to
protest either. How about u? Observe that in this network,
u does not know x’s threshold: it could be very high, like 5.
In that case, node v, seeing neighbors with 3 and a high
threshold like 5, would not join the protest. The case is
similar for w. So if u joined the protest, they would be the
only one. Therefore, it is not safe for u to join. As u’s
situation is the same as for all four nodes, it follows that no
protest will happen. Observe that in this example, every
node knows that there are three nodes with thresholds of 3,
and this number is enough for a protest to form. But each
of the nodes holds back from joining the protest because it
cannot be sure that the other nodes know this fact.



Things would turn out very differently if the link from v
to x were moved and connected v and w instead. This yields
the network shown in figure 12.11(c). In this new network,
observe that each of u, v, and w knows that there are three
nodes with threshold 3, and each of them also knows that
each of the others knows this fact, and so forth. In other
words, this fact is common knowledge among the three of
them. This suffices for them to have the confidence to
choose the protest action.

This simple example points to a general insight: for a
given set of individuals with protest thresholds that are
compatible for a protest to actually go on, the network that
connects them must have the ability to generate common
knowledge about this fact. In the example we have explored
here, we have shown that the clique structure among
individuals with appropriate thresholds is useful in
generating common knowledge. This logic can be extended
to the case of individuals with different thresholds: these
groups of individuals with different thresholds can be
located in a hierarchy of cliques where the smallest
thresholds are at the top of the hierarchy.

Figure 12.12 presents an example of such a network. In
this network, there are individuals with thresholds 1, 3, 4,
6, and 9. The two individuals with a threshold, 3 are
connected to each other and commonly observe an
individual with a threshold, thereby establishing common
knowledge of 3 individuals with 3 or fewer thresholds. The
4 individuals with threshold 4 constitute a clique among
themselves; similarly, the two individuals with threshold 6
observe each other and commonly observe all the
individuals with threshold 4, thereby ensuring common
knowledge that 6 individuals have the appropriate
threshold. Finally, the three individuals with threshold 9
are connected to each other, and in addition, they
commonly observe all individuals with thresholds 1, 3, and



4, thereby establishing common knowledge that at least 9
individuals have a threshold of 9 or lower.

Figure 12.12 
Hierarchy of cliques. Source: Chwe (2000).

The reader may recall that overlapping neighborhoods
were also a factor in coordination on the risky action in the
study of games in networks in chapter 4. For further
elaborations on this connection between networks, common
knowledge, and real-world illustrations, see Chwe (2000).

12.7 Reading Notes

The literature on coordination problems goes back a long
way. One may reason from introspection and seek to arrive
at a solution. In this spirit, Thomas Schelling offers an
excellent introduction to the notion of focal points as a
solution to the coordination problem in his book The

Strategy of Conflict (Schelling [1960]). The idea of a risk-
dominant action comes from Harsanyi and Selten (1988).
For recent work in this tradition, see Bacharach (1999) and
Sugden (2004). David Lewis offers a philosopher’s
perspective on how conventions help resolve problems of
social coordination in his book Convention: A Philosophical



Study (Lewis [1969]). The dynamics of choice offer an
alternative perspective in which societies solve
coordination problems through the gradual accumulation of
precedent. In his book The Civilizing Process, Norbert Elias
(1978) offers an early historical and conceptual
contribution on this subject. For a more recent theoretical
perspective on the evolution of conventions, see the book
Individual Strategy and Social Structure (Young [1998]).
The study of coordination equilibrium in networks remains
an active field of study in economics. For a survey, see
Vega-Redondo (2016). For recent research, see Jackson
and Storms (2019), Galeotti, Golub, Goyal et al. (2021), and
Leister, Zenou, and Zhou (2022).

The study of coordination games on networks has been
an active field of study for close to three decades. Blume
(1993) and Ellison (1993) introduced the study of binary-
action coordination problems among players located on
simple networks (like the cycle and lattices). The exposition
in sections 12.2 and 12.3 draws on Goyal (2007). The
section focuses on the static problem of coordination. A
number of authors have explored dynamics of learning and
coordination, and some of this work studies the role of
network structure.

Blume (1993) studied coordination games on lattices and
showed convergence of behavior to the risk-dominant
action. An early result on the convergence of dynamics to a
Nash equilibrium in regular networks (where every player
has the same number of neighbors) is presented in
Anderlini and Ianni (1996). Ellison (1993) showed that local
interaction has implications for the speed of convergence—
specifically, that local interaction among neighbors on a
cycle facilitates faster convergence than for random (or
global) interactions. Cassar (2007) provides evidence for
faster convergence under local interactions. On the issue of
equilibrium selection (Pareto-dominant versus risk-



dominant equilibrium), Blume (1993) and Ellison (1993)
show that learning dynamics under local interaction lead to
the risk-dominant outcome. In a slightly different vein,
Berninghaus, Ehrhart, and Keser (2002) and Cassar (2007)
present experimental evidence that local interaction with
high clustering—as in the small-world network of Watts and
Strogatz (1998)—leads to the Pareto-dominant outcome.

The material on the introduction of a new norm in a
society with existing norms in section 4 is taken from Goyal
(1996) and Morris (2000); our exposition draws on
exposition on Easley and Kleinberg (2010). The
introduction and diffusion of new conventions and social
norms is a central feature of the process of economic
development. Chapter 17 further examines the issue of how
network structure affects the adoption of new activities. In
that chapter we also comment on the changes in the social
network as part of the process of economic development.

The existence of multiple strict Nash equilibria in simple
games of coordination has motivated a very large body of
literature that explores equilibrium selection/refinement
criteria. One strand of this work that has been very fruitful
examines the role of perturbations (trials or experiments).
A number of models of experiments have been proposed. In
this chapter, we discussed stochastic stability at some
length. The notion of stochastic stability was introduced by
Foster and Young (1990), Kandori, Mailath, and Rob
(1993), and Young (1993). The basic model of stochastic
stability says that experiments are made independent of the
costs. This assumption has been explored by a number of
authors.

Following Blume (1993) and Young (1998), we present
one possible elaboration on this formulation—the log-linear
best response—in which the probability of experiments
declines exponentially in the payoff losses. We show that
the log-linear best-response rule has a powerful
implication: players select the risk-dominant equilibrium in



all networks. As the proof uses the notion of potential
functions, a concept of wider interest in the study of games
on networks, we present the formal definitions and the
details of the proof. The material is more advanced and it is
presented in the appendix.

We mention one other rule here to further draw out the
importance of decision rules for the dynamics and the
selection of equilibrium. This is the imitate the best payoff
action. Robson and Vega-Redondo (1996) study this rule in
the context of social coordination games and show that,
taken with random matching, it leads to the efficient action
being the unique, stochastically stable action. The study of
imitation dynamics in a model with local interaction and
suitable informational constraints appears to be an open
problem.

The discussion of coordination games in networks
suggests that the interaction structure has important
effects on social coordination. These networks of
interaction evolve over time as individuals reconfigure their
network. We present a theoretical model in which
individuals choose links and an action in the coordination
game. This framework draws on the work of Goyal and
Vega-Redondo (2005), Jackson and Watts (2002b), and
Gilles and Johnson (2000). The minimum effort game (also
referred to as the “weakest-link game”) allows a more
general treatment of risk versus efficiency, and it has been
the subject of extensive study; important contributions
include Van Huyck, Battalio, and Beil (1990); Crawford
(1995); and Weber (2006); for an overview of the literature,
see Riedl, Rohde, and Strobel (2016). Experiments on the
weakest-link game show that as group size grows subjects
tend toward the minimum effort equilibrium. We discuss
the recent work of Riedl, Rohde, and Strobel (2016) that
shows how endogenous linking can dramatically alter
subject behavior leading them to select the efficient
equilibrium.



The final part of the chapter takes up the study of
coordination problems in a setting where individuals differ
in their preferred equilibrium. The study of identity, tastes,
and its impact on coordination is spread across several
disciplines. The dynamics of how preferences on
neighborhoods can give rise to sharp patterns of
segregation were highlighted by Thomas Schelling in his
influential work Micromotives and Macrobehavior

(Schelling 2006). For a general introduction to
contemporary debates surrounding identity, see Fukuyama
(2018). For an introduction to the study of identity in
economics, see Akerlof and Kranton (2000).

Game theory offers us a natural formulation of
coordination games with conflicting preferences: the Battle
of the Sexes game. The chapter presents this game and
discusses how network structure can affect social
coordination. Section 12.6 draws on the work of Advani and
Reich (2015); Kearns, Judd, Tan, and Wortman (2009); and
Goyal, Hernández, Martínez-Cánovas, et al. (2021). In a
closely related paper, Kearns, Judd, and Vorobeychik
(2012) study endogenous linking in a game of voting with
biased voters. In this game, players must coordinate on the
same vote to earn a payoff. They find that with endogenous
linking, subjects form rich networks but fail to reach
coordination. This finding is consistent with those of the
experiment in Goyal et al. (2021) that are presented in
section 12.5.1 There is a strand of research that studies
coordination in a network when individuals have
heterogeneous preferences, see e.g., Calvo-Armengol, de
Marti, and Prat (2011), Galeotti, Golub, Goyal et al. (2021),
and Genicot (2022).

The study of thresholds in social action has a
distinguished history, for early contributions see
Granovetter (1978) and Schelling (2006). We presented a
model taken from Chwe (2000), in which social structure



serves to locally communicate the thresholds of individuals.
The role of communication networks in facilitating protest
movements has been highlighted in the context of the Arab
Spring movement; see, for example, the discussion in
Acemoglu, Hassan, and Tahoun (2018).

12.8 Questions

  1.  Discuss the relation between the q − core of a network
(discussed in chapter 4) and a p-cohesive set of nodes in
a network (as discussed in this chapter).

  2.  Consider the stochastic block model of random graphs
discussed in chapter 2. Suppose there are n individuals
and m groups, with n ≥ m. The probability of a link
between nodes of the same group is ps and the
probability of a link across groups is pd, with ps > pd.
Relate the parameters of linking ps and pd to the
concept of cohesiveness in networks.

  3.  Consider the model of myopic best-response dynamics
studied in this chapter. Suppose that the network is as
in figure 12.13. At the start, everyone is choosing action
B. Suppose that every node has threshold q = 2/5 for
switching to action A. Now, let e and f and k form a
three-node set S that initially chooses action A.
(a)  Which other nodes will eventually switch to A?
(b)  Find a subset of nodes outside S that blocks

behavior A from spreading to all nodes.
(c)  Suppose that we can add one node to the set S of

initial adopters. Is it possible to do it in a such a way
that the new four-node set causes a cascade at
threshold q = 2/5?



Figure 12.13 
Network example.

  4.  (From Goyal and Janssen [1997]). In some contexts, we
can choose a flexible option in addition to the two
actions, A and B. We can learn two languages or carry
two credit cards. Someone who is flexible can
effectively engage with individuals who choose either of
the two actions. Suppose that the cost of choosing the
flexible action is c > 0. Then the matrix of payoffs with
actions A, B and (A, B) can be written as in table 12.3:

Table 12.3 
Coordination game with flexible action

where a > d; b > d; d > e; a + d > b + e; a < b; a > c >

0.
(a)  Compute the Nash equilibrium of this two-person

game.
(b)  Suppose that there are n players located around a

circle. Every player interacts with one neighbor on
either side. Payoffs of a player are the sum of
earnings from the games with the two neighbors.



Describe some of the Nash equilibria of this local
interaction game.

(c)  Suppose for simplicity that there is a continuum of
agents that are located around a cycle network.
Players interact with neighbors the size of which is a
variable of interest. Suppose that at the start there is
an interval of players who choose A and rest of the
players choose B. What are the conditions under
which the dynamics will lead to efficient action and
inefficient action taking over the entire population?

(d)  Develop examples of networks in which the flexible
action is played in equilibrium.

(e)  Use the theoretical analysis in this section to
comment on the sustainability of bilingual states.

  5.  Consider the static game of linking and coordination
games, studied in section 12.4.2. Assume that a > b; b
> d; a + d < b + e. Show that the following hold.
(a)  If c < min{e, b}, then an equilibrium network is

complete.
(b)  If e < c < b, then an equilibrium network is either

complete or can be partitioned into two complete
components.

(c)  If b < c < a, then an equilibrium network is either
empty or complete.

(d)  If c > a, then the unique equilibrium network is
empty.

Describe the action profiles that correspond to these
networks.

  6.  Consider the two-stage game of linking and actions in
the coordination game studied in section 12.5.2. Show
that if k < β, then a complete network with everyone
coordinating on the majority’s preferred action
maximizes the sum of individual utilities.



  7.  Consider the two-stage game of linking and actions in
the coordination game studied in section 12.5.2.
Suppose there are 15 players and 8 players prefer “up,”
while 7 players prefer “down.” Assume that
coordinating on preferred action brings 6, coordinating
on the less preferred action brings 4. Mis-coordination
payoff is set equal to 0. The cost of link, k, is set equal
to 2. Describe the pairwise stable outcomes of this
game.



13
Communication and Social Learning

13.1 Introduction

In these democratic days, any investigation into the trustworthiness and
peculiarities of popular judgements is of interest. The material about to be
discussed refers to a small matter, but it is much to the point.
—Galton (1907, pp. 450–451).

In his piece Voice of the People, Francis Galton (1907)
discusses the merits of estimating the weight of an ox by
asking individuals. Eight hundred persons submitted a
guess, and the guesses ranged from 1,074 (5th percentile)
to a bit over 1,293 pounds (95th percentile). The median
guess was 1,207, while the correct weight was 1,198
pounds. The median weight was thus less than 1 percent off
the correct weight, and Galton also found that more than
50 percent of the guesses lay within roughly 3 percent of
the true weight. This competition gives us a first feel for
the so-called wisdom of the crowd: individuals typically
hold a variety of views that reflect their experiences and
expertise. However, if we were to take an average of their
opinions—by identifying the median or the mean—then we
could arrive at something close to the truth.

A century or so later, democratic politics has become
more common across the world, and as the scale of social
media has grown, our opinions and beliefs matter for an
ever-widening range of subjects. For instance, we decide



on whom to hire, where to work, which computer or car to
buy, what to eat to remain healthy, which fruits or
vegetables to plant, what combination of inputs to use to
grow a crop, where to go for a vacation, how real global
warming is, and if it is real, what should be done about it.
New goods, services, and new ideas are regularly being
added to existing options. In this world of change and
expanding choices, we try to inform ourselves of the
available alternatives and then make decisions. As there
are often many aspects of these decisions and it is costly to
invest time and effort into making them, we necessarily
seek the opinions and thoughts of others. The sharing of
information via mass media and personal interaction is
therefore a central feature of day-to-day life. This chapter
studies the role of patterns of communication in shaping
individual opinions and behaviors.

To set the stage, we begin by presenting a number of
case studies on opinions and choices and the role of social
interaction. These case studies cover empirical contexts
ranging across medicine, agriculture, climate change,
fishing, and domestic and international politics. Taken
along with our discussions of social networks and
communication in chapters 1 and 11, they motivate an
inquiry into general principles that govern social influence
in networks of communication.

Here, we lay out a theoretical framework in which
individuals carry out activities that generate information,
and then they share this information with others. The
information sharing shapes opinions, and these opinions
then lead to new actions that generate new information,
and so forth. Our goal is to understand how the
information-sharing connections among individuals affect
the generation and flow of information. This allows us to
understand the circumstances under which information is
adequately generated and successfully aggregated and the
determinants of the rate at which this aggregation takes



place. Motivated by the case study of Twitter in chapter 1
and the case studies in this chapter, we devote special
attention in our theoretical studies to networks with
unequal connections and to the role of homophily.

We explore models with fully rational individuals as well
as bounded rational individuals. It turns out that on some of
the fundamental questions (such as whether opinions
converge and whether they are correct), the theoretical
predictions of a fully rational and a bounded rational model
are similar. But there are questions on which a bounded
rational approach—as epitomized in the DeGroot model—
allows us to obtain more complete answers. For instance,
take the question of the wisdom of crowds: when is a large
group going to have correct beliefs and choose the right
actions? The (fully rational) Bayesian model helps us
develop the intuition that influential individuals may
interfere with information aggregation and social learning
and offers sufficient conditions on networks to obtain a
correct consensus. The DeGroot model yields a complete
answer to this question: a large group of individuals learns
the truth if and only if there are no overly influential
individuals in it. In other words, the absence of influential
individuals is both necessary and sufficient for the wisdom
of crowds to manifest. Similarly, concerning the role of
homophily, the Bayesian model provides examples with a
diversity of beliefs and choices, while the DeGroot model
shows that homophily slows learning, which sustains the
diversity of opinions for much longer. Section 13.5 presents
experimental evidence that offers support for these
theoretical predictions on the role of network inequality
and homophily.

In the models in sections 13.3–13.5, individuals
embedded in social networks learn by observing their
neighbors: in these models, the neighbors themselves do
not make choices about whether to share information. The
spread of misinformation on social media draws attention



to the motivations and the choices of individuals with
regard to verification and the sharing of information in
social networks. Section 13.6 studies the incentives of
individuals to verify information before sharing it in social
networks. A supplementary materials section at the end of
the chapter presents the sequential choice model of
learning and also presents an experiment on the effects of
networks on learning.

13.2 Evidence about Social Influence

This section starts with a discussion of the classical early
studies on social influence carried out by sociologists in the
period between 1940 and 1965. It then presents studies on
innovation in agriculture, followed by a discussion of the
role of social influence in shaping views and behaviors
concerning climate change and the environment.

13.2.1 Early Studies

In the early twentieth century, with the coming of radio,
television, and newspapers, it was believed that the views
and decisions of individuals would be largely shaped by
mass media. In People’s Choice, Lazarsfeld, Berelson, and
Gaudet (1948) studied the determinants of voting behavior
in the American presidential election of 1940 in the small
Midwest town of Erie, Ohio. The study involved repeated
interviews of a sample of 2,400 voters from May to October
1940. It showed that individual voters identified personal
interactions and specific individuals as critical to a change
in how they voted.

Building on this study, in a subsequent book called
Personal Influence, Katz and Lazarsfeld (1966) studied
marketing, fashion, film viewing, and public affairs. They
conducted a survey of 800 female residents of Decatur,
Illinois, in 1945–1946. In this survey, they identified a
fraction of their sample as potential “opinion leaders”—



these individuals were instrumental in the respondents
changing their opinions and their choices. This work also
highlighted another feature of the nature of social influence
—the opinion leaders are “not a group apart”; opinion
leadership is not a trait possessed by some and not by
others. Rather, opinion leaders are scattered across the
various strata of society—and the leadership arises from
day-to-day personal relationships.

The spread of modern medicines is a major factor in
explaining the remarkable improvements in the longevity
and quality of human life over the past hundred years.
There is considerable uncertainty on the effectiveness of a
drug or a new treatment when it is first introduced. Thus
information about the efficacy of the treatment is vital to
facilitating its adoption. An early study on medical
innovation pertains to the adoption of the antibiotic
tetracycline in four Midwestern towns of the US in the
1950s. Coleman, Katz, and Menzel (1966) examine the
timing of the first prescription of the drug by a physician.
The timing ranged widely—some doctors adopted within
the first four months, while many others had not adopted
the drug even after a year.

In this study, physicians were asked to complete a survey
with questions concerning their personal characteristics
and social contacts. A total of 125 general practitioners,
internists, and pediatricians were studied—they constituted
85 percent of the doctors in these fields practising in the
four towns. The doctors were asked three questions: To
whom did they most often turn for advice and information?
With whom did they most often discuss their cases in the
course of an ordinary week? Who were the friends, among
their colleagues, whom they saw most often socially?
Physicians could nominate up to 3 doctors in response to
each of these questions.

The main finding was that there is a positive correlation
between the number of social connections and the speed of



adoption. Consider the 36 doctors who were mentioned as
friends by no one: at the 6-month point, only 30 percent of
them had prescribed the drug; and at the 8-month point,
only 42 percent of these doctors had prescribed the drug.
By contrast, consider the 33 doctors who were mentioned
as friends by 3 or more other doctors: at the 6-month point,
70 percent of them had prescribed the drug, and by the 8-
month point, over 91 percent of these doctors had
prescribed the drug.

13.2.2 Innovation in Agriculture

The adoption of new technologies is central to change in
agriculture and the process of economic development. For
a new technology to be adopted by a farmer, its fit with the
local circumstances must be understood. This usually calls
for experimentation with various input combinations. As
neighboring farmers face similar circumstances, it is
natural that they should learn from each other’s
experiences. Next, we present two studies that document
the importance of this type of social learning.

High-Yielding Variety (HYV) Seeds in India, 1960s: Foster
and Rosenzweig (1995) collect data on 4,118 households
for the crop years 1968–1969, 1969–1970, and 1970–1971.
This data covered information on areas planted with new,
high-yielding seed varieties (of wheat and rice). Farmers’
adoption of HYVs occurred at an accelerated rate over this
3-year period: consider villages where there was some
adoption of HYV seeds by 1970: in this set of villages, only
19 percent were using HYV seeds by 1968, 29 percent by
1969, and 42 percent by 1970. Moreover, among farmers
using HYV seeds in the 1970–1971 crop year, acreage
under HYV seeds grew from only 4 percent of cultivated
land in the 1968–1969 crop year to over 20 percent in
1970–1971.



The main finding was that imperfect information about
the appropriate input combination was a key obstacle to
the adoption of HYV seeds. In particular, they found that
farmers with experienced neighbors were significantly
more profitable and devoted more of their land to new
technologies than those with inexperienced neighbors.

Pineapple in Ghana in the 1990s: In this period, an
established system of maize and cassava intercropping was
transformed into intensive production of pineapple for
export to European markets. The interest here is in how
farmers learned their appropriate level of input use.

Conley and Udry (2010) collect data in three villages of
southern Ghana for the 1996–1998 period. In the sample
villages, pineapple was grown by less than 10 percent of
farmers in 1990 and by over 46 percent of farmers in 1997.
In all, 180 households were drawn from a population of 550
households. The focus was on 132 farmers who cultivated
pineapple on a total of 406 plots. Of these plots, 288 were
planted during the survey period, and the study focuses on
the determinants of 113 observed changes in fertilizer use.

The information network of every farmer was plotted;
spatial proximity was a contributing factor to information
links, but farmers often held ties with farmers farther away
too. A farmer used their own experience with inputs and
profits and combined it with the experience of their
information neighbors to decide on input use in subsequent
periods.

The main finding was that changes in fertilizer use by a
farmer were affected by the experience of their information
neighbors—if the experience of neighbors using the same
fertilizer mix was negative, that led to a change in the
farmer’s behavior. Moreover, the responsiveness to news in
the information neighborhood was inversely related to the
level of their own experience: veteran pineapple farmers



responded less to news from their neighbors than novice
farmers.

13.2.3 Climate Change and Environment

We now present studies on the role of social networks in
shaping beliefs about climate change and fishing behaviors.

Opinions on Climate Change: There is robust evidence
that temperature has increased over the past hundred
years, and there is wide agreement among scientists that
human activity has played an important role in bringing
about this increase. Yet there are significant differences in
popular opinion on both issues. In a 2019 Pew survey of
Americans, one-half of those surveyed believed that human
activity contributes a great deal to climate change, 30
percent felt that it plays some role in climate change, and
20 percent believed that it plays no role at all in climate
change (Funk and Hefferon [2019]). These differences
were strongly correlated with the political positions of the
respondents. For instance, among liberal Democrats, 84
percent felt that human activity contributes a great deal to
climate change, while among conservative Republicans,
only 14 percent felt that way.

Fishing and Sharks: Hawaii’s longline fishery is a limited-
entry industry supplying domestic and international
markets with fresh tuna and swordfish. It is the largest
commercial fishing sector in the Hawaiian islands. From
2008 to 2012, there were 122–129 active vessels that
completed between 1,205 and 1,381 annual fishing trips.
They generated revenues of $65 to $94 million per year. A
major concern for these fisheries is that they encounter
sharks while fishing for tuna and swordfish. This can lead
to the capture of a species of sharks that is under threat.

Barnes, Lynham, Kalberg, and Leung (2016) collect data
on the social network among fishers and how that related
to the number of sharks captured. The fisher group is



composed of three distinct ethnic groups: Vietnamese
Americans (VA), European Americans (EA), and Korean
Americans (KA). The social network of fishers (i.e., who
shares information with whom) exhibits strong homophily:
fishers organize themselves into three distinct
communities, which overlap strongly with ethnicity. Out of
159 fishers, only 6 have a majority of ties outside their
ethnic group, while 1 has an equal proportion of intraethnic
and interethnic group ties. We will refer to these 6 as
outliers. The network is shown in figure 13.1, which reports
mean (μ) and standard deviations (σ) in shark bycatch (per
1,000 hooks) in Hawaii’s tuna fishery for 2008–2012: there
is a big difference across the three communities.



Figure 13.1 
Social networks and sharks bycatch. Each node corresponds to an individual
fisher color, coded by ethnicity or an actor deemed important for information
sharing by respondents (i.e., industry leader, government, or management
official). Information-sharing groups are delimited by color. Two isolates not
connected to anyone are located in the upper-left corner. Circled nodes denote
outliers. Those with solid lines represent fishers who have a majority of ties
outside their ethnic group, with the color of the circle corresponding to the
group with which they have a majority of ties. Those with gray dashed lines
denote nodes with an equal proportion of ties both within and outside their
ethnic group. Courtesy of Michele L. Barnes.

To examine the role of networks, the authors focus on
the behaviors of the outliers whose connections span
groups with very different rates of shark bycatch. They find
that the behaviors of these outliers are closer to the
behaviors of their respective information neighborhoods
than with their own ethnic group. The effect of information
networks can be very large: if, for instance, the three
ethnic communities were to catch sharks at the same rate



as the EA ethnic group, then roughly 46,339 sharks might
have been avoided (leading to a 12 percent reduction in
overall shark bycatch for Hawaii).

13.2.4 Domestic and International Politics

Weapons of Mass Destruction (WMD) in Iraq: The case for
the invasion of Iraq in 2003 centered on the argument that
Saddam Hussein’s regime had WMD and that this posed a
threat to regional stability and international peace. In a poll
conducted in October 2004, Americans held very different
views on this issue: 47 percent of Republican respondents
believed that Iraq had WMD, while only 9 percent of
Democrats thought so. Over a year later, a poll conducted
in March 2006 found that, in spite of new information and
the passage of time, the percentages had barely changed:
the numbers stood at 41 percent for Republicans and 7
percent for Democrats (see Golub and Jackson [2012] and
“Iraq: The Separate Realities of Republicans and
Democrats,” available from the World Public Opinion
webpage, www.worldpublicopinion.org).

2020 US Presidential Election: The US President is
elected based on votes of an electoral college. The electoral
college brings together individual states. The winner of a
state gets all the electoral votes of that state. A candidate
may win a state with a small margin (less than 10,000)
votes. Thus the number of electoral votes a candidate
secures could in principle be at variance with the size of
the popular vote that they get. The 2020 election was
between Joseph Biden, the Democratic candidate, and
Donald Trump, the incumbent Republican president. Biden
won the election by a margin of over 7 million votes. US
federal and state officials have repeatedly said that they
have no evidence that votes were compromised during this
election. In the period since the election, a number of legal
challenges were filed against the result, all of which were

http://www.worldpublicopinion.org/


rejected by the courts. Next, we discuss the popular
opinion on two issues: (1) whether the election was fair,
and (2) whether Biden was the legitimate winner. We draw
on two polls conducted by Reuter/Ipsos in November 2020
and in May 2021 (https://www.ipsos.com/).

The poll conducted in November 2020 surveyed a
nationally representative sample of 1,346 American adults
(including 598 Democrats, 496 Republicans, and 149
independents). The poll found that 28 percent of Americans
in total and 59 percent of Republicans believed that Donald
Trump had won the election. More than six months after
the election and after the many court decisions had been
handed down, little had changed. In a poll conducted in
May 2021 with a sample of 2,007 adults (909 Democrats,
754 Republicans, and 196 independents), 25 percent of all
Americans believed that Donald Trump was the winner.
Furthermore, there was a big divide on this question across
party lines: 53 percent of Republicans and only 3 percent
Democrats held this view.

These two studies suggest that differences on factual
matters can persist in spite of communication and the
accumulation of evidence over time. These differences
appear to be highly correlated with the political positions of
those surveyed.

The case study on Twitter in chapter 1 drew attention to
the extraordinary size of the network and the great
inequality in connections across individuals (recall figure
0.5 from the introduction chapter.). The case studies in this
section draw attention to the role of social interactions in
shaping opinions and behaviors. In the next two sections,
we develop theoretical models to explore the role of social
communication in shaping social learning and human
behavior.

13.3 Learning a New Technology

https://www.ipsos.com/


A common theme in these case studies is that individuals
have incomplete information on the various available
alternatives. A second feature of some of the case studies—
such as innovation in agriculture—is that individuals may
be able to learn from experience (their own as well as that
of their neighbors). This learning has the capacity to shape
future actions. These considerations motivate the following
model, taken from Bala and Goyal (1998, 2001). The
exposition draws on Goyal (2011) and Golub and Sadler
(2016).

There is a set of individuals N = {1, …, n}, with n ≥ 2,
who choose between two actions, a0 and a1. Action a0 may
be thought of as a known technology—it yields 1 and 0 with
equal probability. Action a1 is the unknown technology—it
may be high quality or low quality. If it is high quality, it
yields 1 and 0 with probabilities π and 1 −π, where π ∈
(1/2, 1). If it is low quality, then it yields 1 or 0, with a
probability of (1 − π) and π, respectively. Individuals have a
prior belief μi ∈ (0, 1) that the quality of technology a1 is
high.

The expected utility from action a0 is

For an individual with belief μi, the expected utility from
action a1 is

An individual who seeks to maximize utility will choose
the new technology, a1 if μi > 1/2 and action a0 if μi < 1/2.

We now consider the individual learning problem.
Suppose that an individual chooses actions repeatedly.
Trials with the known technology a0 do not reveal any new
information on its quality or the quality of a1. However,
when the individual tries the unknown technology a1, the



outcomes yield information about its quality. If the action
yields outcome 1, then the individual will update their
belief about the quality of the action upward, while if the
outcome is 0, than they will lower their belief about the
quality of the action. Formally, new information is
incorporated through an application of the Bayes theorem.
Starting with a belief μi > 1/2, suppose that the individual
tries action a1 and the outcome is 1. Then the posterior
belief that a1 is of high quality is

On the other hand, if the outcome is 0, the posterior
belief is

As π > 1/2, μi′(1) > μi and μi′(0) < μi: this is the sense in
which the experience with action a1 yields information and
shapes the evolution of beliefs over time.

We can now consider the learning dynamics if an
individual chooses actions repeatedly. Let time be indexed
as t = 1, 2, …. In period 1, an individual chooses an action
that maximizes their payoff for that period, in other words,
they choose a1 if μi, 1 > 1/2 and a0 if μi, 1 < 1/2. More
generally, they choose optimal action with respect to the
beliefs μi, t for t = 1, 2, … At the end of the period, they
observe the outcome of their own actions. At the start of
the next period, they update the prior μi, 1, and arrive at the
belief μi, 2. They then make a decision in period 2, and so
forth.

Let us briefly comment on the long-run outcomes of
learning. Suppose that an individual starts with an
optimistic prior concerning action a1 (i.e., μi, 1 > 1/2). A
simple computation on equation (13.4) tells us that there is



a sequence of 0s that would lead the person to a posterior
below the threshold of 1/2. The probability of such a
sequence is positive, regardless of whether the action is
high or low quality. Hence, the individual will stop trying
action a1 with positive probability. Once they stop, they will
persist with action ao forever, as there is no further
information revealed by trials with that action. Thus their
beliefs dictate choosing ao, and an individual can fail to
learn that action a1 is optimal with positive probability.

We now locate this individual in a directed social
network in which they can also observe the trials of their
neighbors. What are the prospects of learning in a
network?

Consider a directed network g: a link gij ∈{0, 1}
represents information access: if gij = 1, then individual i

observes the actions and outcomes of the actions of
individual j. The set of neighbors of individual i is given by
Ni(g) = {k ∈ N|gik = 1}; let ηi(g) ≡ |Ni(g)| be the out-degree

of individual i. Define N−i(g) = {k ∈ N|gki = 1} as the
individuals who observe i; set η−i(g) ≡ |N−i(g)| as the in-

degree of individual i.
Figure 13.2 presents examples of information networks

(which build on the discussion in chapter 1). In the circle
network, every person has a local neighborhood consisting
of four individuals. Prominent social networks like Twitter
combine two key elements: local neighborhoods (which
reflect homophily) and extreme inequality in degree. We
accommodate them by moving from a circle network to a
network with a royal family. This is accomplished as
follows: we create a directed link from everyone to six
selected individuals. This gives rise to a network with
essentially two types of individuals: the royal family, each
of whose members has n − 1 links, and those outside the
royal family (with 10 links).



Figure 13.2 
Simple networks: n = 25.

Recall that there is a directed path from j to i in g if gij =
1 or there are distinct players j1, …, jm that are different
from i and j such that gi, j1 = gj1, j2 = …. = gjm, j = 1. Network g
is said to be strongly connected if there is a path between
any pair of players i and j. All four networks in figure 13.2
are strongly connected.

So an individual i located in network g observes their
own actions and their outcomes and the actions and
outcomes of their neighbors Ni(g). They use these with the
actions to update their beliefs over time.

We note that in principle, the choice of a neighbor
reveals something about their priors, and that over time, it
may also reveal something about the actions and
experiences of the neighbors of their neighbor. So, for
instance, if a neighbor, having chosen action a0 for several
periods, switches to action a1, this probably means that
they have learned something about action a1 by observing
their neighbors. For simplicity, we will first assume that an
individual makes no inferences from the choice of actions



of the neighbors. We then return to the issue of indirect
inferences about neighbors of neighbors.

All the ingredients of the learning from the neighbors
model are now in place. Next, we will explore the influence
of network g on the evolution of individual actions, beliefs,
and utilities, (ai, t, μi, t, Ui, t)i∈N, over time, t = 1, 2…

13.3.1 Information Aggregation

Individual actions are an optimal response to beliefs, which
in turn evolve in response to the information generated by
actions. Thus the dynamics of actions and beliefs feed back
on to each other. Over time, as an individual observes the
outcomes of their own actions and the actions and
outcomes of neighbors, their beliefs will evolve depending
on the particularities of their experience. However, it
seems intuitive that as time goes by and their experience
grows, additional information should have a smaller and
smaller effect on their beliefs about action a1. As actions
respond to beliefs, we would expect that as beliefs settle
down, so should actions and utilities. Moreover, as an
individual observes their neighbors period after period, we
would expect that they should be able to do as well as
them. Iterating on this improvement principle, we note that
individual A should do as well as their neighbors, who do as
well as their neighbors. Putting together these points yields
the following result on learning and information
aggregation.
Proposition 13.1 The beliefs, actions, and utilities of individuals converge in

the long run. If the society is strongly connected, then every individual chooses

the same action and earns the same utility.

We discuss the arguments underlying this result in
general terms now. First, observe that if an individual with
belief μi tries action a1, then their expected belief after the
action is



Equation (13.5) says that the expected posterior belief is
equal to the current belief: the beliefs are a martingale.
Standard arguments from the theory of martingales tell us
that beliefs converge to a limit belief; for an introduction to
the study of martingales, see Williams (1991).

Second, consider actions and utilities: an individual’s
action is optimal with respect to their beliefs. Thus the
long-run actions of any individual must be optimal with
respect to their long-run beliefs. Someone who observes
this individual can in principle imitate this action and
therefore earn the same payoff. While this observation is
intuitively plausible, we need to be careful in the reasoning:
the principal complication is that individual i observes the
actions and corresponding outcomes of a neighbor j but
does not observe the actions and outcomes of the neighbors
of j. The claim that i does as well as j if they observe j, then,
rests on the idea that all payoff-relevant information that j
has gathered is implicitly reflected in the choices that they
make over time. In particular, if j chooses a certain action
in the long run, then this action must be the best action for
them, conditional on all their information. However,
individual i observes these actions and the corresponding
outcomes and therefore can do as well as j simply by
imitating j.

This improvement via imitation logic extends along
paths: in a strongly connected society, every individual has
a directed path to every other individual, so it follows that
everyone must do as well as everyone else. Thus, all players
converge on the same action and earn the same utility. This
discussion provides an outline of the arguments underlying
the result; a question at the end of the chapter works
through the formal details.

13.3.2 Learning Optimal Actions



We started our examination of learning in networks with
the issue of whether an individual located in a social
network will eventually learn the optimal action to take.
This section shows that the answer to this question
depends on the structure of the network.

To see the role of the network in the simplest setting,
suppose that action a1 has a high quality and all individuals
start with the prior beliefs μi, 0 > 1/2. We will also assume
that

where x = (1 − π)/π ∈ (0, 1). In period 1, everyone tries
action a1. Suppose that individuals are located in a Royal
Family network, as shown in figure 13.2(d). In this
example, every person observes their four local neighbors
and the six members of the royal family.

Suppose that every individual in the royal family is
unlucky in the first period and gets an outcome of 0. Any
individual in the circle can hope to get at most five positive
signals from their local neighborhood. Thus any person in
this society will have a minimum residual of one negative
signal. Given the assumptions about priors, it is easily
verified that this negative information is sufficient to push
the posteriors below the critical cutoff level of 1/2. Thus
every individual will switch to action a0 in period 2.

Observe that action a0 yields no new information in
period 2. So beliefs in period 3 will remain as in period 2.
Everyone will choose action a0 in period 3, and this will
remain the case for all subsequent periods. Thus the
society is locked into the suboptimal action a0 forever.
Finally, observe that this argument holds regardless of the
size of the society. This example provides one illustration of
the breakdown of the wisdom of crowds.



The royal family plays a crucial role in this breakdown of
learning. To see this, consider the circle network, in which
everyone observes their four immediate neighbors, as in
figure 13.2(c). As action a1 is of high quality, from
elementary considerations, it follows that if an individual
tries this action forever, then there is a set of sample paths
with positive probability on which the number of 1s always
remains greater than the number of 0s. Similar sequences
of actions can be constructed for each of the four neighbors
of player i. Exploiting the independence of actions across
players, it follows that the probability of the five players {i
− 2, i − 1, i, i + 1, i + 2} receiving positive information on
average is strictly positive. Let this probability be q > 0.
Recalling our assumption of the absence of indirect
inference from the neighbors of neighbors, we conclude
that the experience of individuals outside their
neighborhood cannot lower the beliefs of individual i (when
the outcomes of the neighbors are uniformly positive). Thus
the probability of individual i choosing the suboptimal
action a0, in the long run, is bounded from above by 1 − q.

We can construct a similar set of outcomes for individual
i + 5, whose information neighborhood is {i + 3, i + 4, i + 5,

i + 6, i + 7}. From the independent and identical nature of
trials by different individuals, the probability of this sample
of paths is also q > 0. As individuals i and i + 5 do not
share any neighbors, the two events,

and

are independent. The probability of the joint event



is bounded from above by (1 − q)2. In a society where the
neighborhood is given by Ni = {i − 2, i − 1, i + 1, i + 2}, the
probability of learning can be made arbitrarily close to 1 by
raising the number of such individuals. In other words, the
wisdom of crowds appears in a sufficiently large circle
network.

More generally, we can say that two individuals A and B
are locally independent if their neighborhoods are disjoint
(i.e., they share no neighbors in common). Locally
independent individuals who start with action a1 all have a
positive probability—which is independent—of persisting
with that action forever. This argument shows us that in a
large society, if enough people start by trying action a1,
then some of these players will obtain positive results and
continue using the optimal action forever. They will thereby
gather sufficient information and learn the true quality of
this action. Then, from strong connectedness, it follows
that they will also ensure that everyone chooses the
optimal action in the long run. Our discussion is
summarized in the following result.
Proposition 13.2 Consider a strongly connected society. The probability that

everyone chooses an optimal action in the long run can be made arbitrarily

close to 1 by suitably increasing the number of locally independent optimistic

players.

Our discussion provides us an outline of the arguments
underlying this result; the details of the proof of the result
are developed in a question at the end of the chapter.

13.3.3 Homophily

Proposition 13.1 says that in a strongly connected society,
all individuals will obtain the same utility. In our baseline
model with two actions, there is a unique optimal action in
either state of the world. To see the role of homophily in
the simplest way, imagine that in addition to ao and a1,
there is an action a2 that can be of a high or low type (with



probabilities for outcome 1 given by π or 1 − π, as for
action a1). There are four states of the world corresponding
to both a1 and a2 being of high or low quality, and two
states corresponding to the case where one is of high
quality and the other of low quality. Now we can apply the
arguments of proposition 13.1 to infer that in a strongly
connected society, all individuals must earn the same utility
in the long run. However, in the state where both a1 and a2
are high quality, proposition 13.1 leaves open the
possibility that some individuals choose action a1, while
others choose action a2. We now examine the role of
homophily in this specific situation.

Suppose that all individuals start with the same priors on
the true state. Let us consider a society with two
communities and vary the level of integration of the
communities. Figure 13.3 presents three networks with
varying levels of integration: the networks in panels (a) and
(b) exhibit imperfect integration (with most individuals
linked more within their own group as compared to outside
the group), and the network in panel (c) is complete and
exhibits full integration. Building in the arguments in the
previous section, we can say that it is possible that the 4
individuals on the left start with action a1 and persist with
that action forever, while 4 individuals on the right start
with action a2, receive positive signals on that action, and
persist with that action forever. Crucially, the bridge
agents that connect the two communities are more exposed
to their own groups and therefore persist with the group’s
action. Thus it is the selective exposure of individuals to
information that sustains diversity of actions in the long
run. In the complete network, everyone receives the same
information and therefore must choose the same action
(here, we are abstracting from the case of indifference).
The formal details of the proof of this result are outside the



scope of this chapter; the interested reader is urged to
consult Bala and Goyal (2001).

Figure 13.3 
Levels of integration: n = 8.

13.3.4 Variations on the Model

In the model described previously, we assumed that
individuals do not make inferences from the choice of
actions of their neighbors about the information that the
neighbors are accessing from their own neighbors. This
places a restriction on the rationality of individuals. It is
possible to relax this assumption. A rich strand of recent
research explores the implications of networks when
individuals are fully rational. We consider a model
originally proposed by Gale and Kariv (2003) and that has
been subsequently studied by a number of authors,
including Mossel, Sly, and Tamuz (2014, 2015) and
Chandrasekhar, Larreguy, and Xandri (2020).

In this model, individuals receive a single informative
signal at the beginning of the game. In each period, each
player makes a guess about the true state. For simplicity,
and to avoid strategic interaction issues, suppose that
individuals choose an action that maximizes single-period
utility. Given this behavior, however, belief updating based
on observed neighbors’ choices is fully rational: in other
words, indirect inferences about the signals of the
neighbors of neighbors are allowed. In this context, the



improvement-through-imitation principle holds: individuals
can ensure themselves the same expected utility as a
neighbor through imitation, and they may improve based
on their other information.

Building on this principle, it is possible to show that the
insights of propositions 13.1 and 13.2 can be generalized
and shown to hold when individuals make indirect
inferences about neighbors of neighbors through changes
in the guesses and actions of their neighbors. In particular,
strong connectedness ensures that everyone chooses an
action that yields the same expected utility. This action is
optimal in undirected networks but may fail to be optimal
in networks that contain a royal family.

At different points in this section, we have commented on
the complexity of making inferences about information that
others hold, especially about the information of the
neighbors of neighbors. These types of inferences appear to
be implausible, and especially so when we consider
networks with hundreds or even thousands of individuals.
With these concerns in mind, we now turn to a study of
information aggregation and opinion formation when
individuals follow bounded rational rules.

13.4 A Model of Communication and Social Influence

Galton’s study of weights (discussed in the introduction to
this chapter) draws attention to two central ideas: (1)
information is diverse and dispersed among different
individuals in the community; and (2) this information,
when put together, provides an accurate estimate of the
truth of the matter at hand. In Galton’s (1907) orginal
study, individuals were asked to submit their guesses, but
in many contexts, individuals talk and share ideas. This
section presents a model that examines this process of
communication: does social communication allow
individuals to gain access to all useful information



available, and how quickly is this accomplished? The
material in this section is taken from DeMarzo, Vayanos,
and Zwiebel (2003), and Golub and Jackson (2010, 2012).
Our exposition draws on Goyal (2011), Jackson (2008), and
Golub and Sadler (2016).

There is a set N = {1, 2, …, n} with n ≥ 2 individuals,
each of whom starts with a belief at date 0, a number given
by pi(0) ∈ [0, 1]. Individuals are located in a network that
reflects the weight that individual i assigns to the opinions
of others: the weight that i assigns to the opinion of j is
given by wij, where wij ≥ 0. For simplicity, it will be
assumed that for every i, the sum of weights equals 1 (i.e., 

). Let the n × n matrix of weights be given by W.
In period t ≥ 1, an individual i updates their belief by

taking an average of their own belief pi(0) and the opinions
of others. Thus, in period t = 1,

The belief at time period t ≥ 1 is similarly obtained by
combining the opinions at time p(t − 1) with weights w:

Define for any t ≥ 0 the vector of beliefs at the start of
that period:

Now we discuss how the dynamics of opinions p(t) are
shaped by the initial opinions and the network of
interaction, especially the following questions:

What are the circumstances under which individual
opinions settle down?



When does consensus (i.e., all individuals settle on the
same opinion) occur?
When does the updating of opinions lead to efficient
aggregation of information?
What are the effects of homophily on opinion dynamics?
It is helpful to begin with some simple examples to

appreciate the dynamics of opinion formation. Consider a
society with three individuals in which the weights are as
follows:

Figure 13.4 
Simple weighted network.

Figure 13.4 illustrates this matrix in network form.
Suppose that we start with initial opinions p(0) = (1, 0, 0).
Consider the opinions in periods 1 and 2, respectively:



As individuals communicate and update their opinions,
we see that their opinions become more similar: at the
start, individual 1’s opinion was 1, while individuals 2 and 3
held the opinion 0. By period 2, individual 1 has moved to
5/18, individual 2 has moved to 5/12, and individual 3 has
moved to 1/8. So individual 1’s opinion moves down while
the opinions of 2 and 3 move up.

The rate of change of opinion depends on the weights
that individuals put on their own opinions and the opinions
of others. Observe that individual 1 places equal weight on
all three, while individual 3 places weight only on
individuals 2 and 3. Nevertheless, as individual 2 places
weight on 1, the opinion of 1 has an influence on 3 over
time. Indeed, as these individuals communicate further,
their opinions will continue to evolve. As weights remain
unchanged over time, this evolution is captured in the
simple formula

To understand the evolution of beliefs, it is therefore
sufficient to keep track of the matrix Wt and the initial
opinions p(0). In particular, Wt “converges” to a matrix W*:

where the row vector (x, y, z) corresponds to the stationary
distribution of W if we view W as a Markov matrix.

In our 3 × 3 example, W* is given by

In the long run, an individual influences everyone in
equal measure. The existence of W* in turn means that the



long-run opinion p(∞) is

Thus, repeated communication and updating lead to the
convergence of all individuals to the same opinion. We next
examine the conditions for convergence and consensus
more systematically.

13.4.1 Convergence and Consensus

It is useful to start with a two-person example. Suppose
that the initial opinion is p(0) = (1, 0) and the weighted
matrix is

It is then easy to see that in period 1, p(1) = Wp(0) = (0,
1), and in period 2, p(2) = W2p(0) = (1, 0). Indeed, the
opinions cycle indefinitely, taking on the values (1, 0) in
odd periods and (0, 1) in even periods. In this example, the
cycling of beliefs arises because the matrix Wt alternates
every two periods. Observe that the society is strongly

connected because individuals place all their weight on
each other. A simple way to avoid a cycle in opinions is to
suppose that an individual places at least some weight on
their own opinion, that is, wii > 0, for i ∈ N. To see this,
suppose the weighted matrix is given by

It is easy to verify that opinions in periods 1 and 2 are,
respectively,



Indeed, opinions evolve smoothly. In the long run,

The other issue pertains to the similarity of opinions of
individuals: at an intuitive level, opinions become similar if
two individuals are neighbors of each other (i.e., they place
positive weight on each other). In a network, the opinions
of 1 will become similar to the opinion of 2 if there is a path
from 1 to 2. However, it is possible that there is a path from
1 to 2 but no path from 2 to 1. In that case, 1 is influenced
by 2, but 2 is immune to the opinion of 1. A simple example
of such a society is described in the following weighted
matrix:

Suppose that p(0) = (1, 0, 0, 0, 0). Individual 1 will then
not change their views over time, as they place no weight
on anyone else; similarly, individual 5 will not change their
views over time. However, individuals 2–4 will update their
views, and indeed, as they assign equal weight to
individuals 1 and 5, their long-run opinion will be the
average of the opinions of 1 and 5 (i.e., 1/2). Observe that
the weights that 2–4 place on each other eventually
disappear: as a result, in the long run, the opinions will
converge to p* = (1, 1/2, 1/2, 1/2, 0). This example brings
out the possibility of convergence without consensus. It
also highlights the role of stubborn individuals, who are not



receptive to the opinions of others (but others are open to
them).

Let us develop sufficient conditions on the weighted
network matrix for convergence and consensus. Formally,
we require that there is f ≥ 1 such that all entries of the
iterated matrix W f are positive (i.e., ). An adjacency
matrix that satisfies this property is called primitive. To see
why primitive matrices will exhibit convergence, observe
that if  for some w, then the range of opinions must
shrink over time. Setting wmax(t) and wmin(t) as maximum
and minimum beliefs at the point of time t, we can infer
that

Therefore, in a society with a primitive matrix W,
opinions will converge to a common consensus belief. We
now turn to the issue of social influence: how much
influence does an individual have on the consensus belief of
their society?

13.4.2 Social Influence

Let us examine how the influence of an individual 1 on
individual 2 evolves in a social network over time. At time
1, this influence is captured by the number w21, as this is
the weight placed by 2 on 1. At time 2, the influence of 1 on
2 is captured by paths of length 2 that start from 2 and end
at 1: this situation is captured by the term . More
generally, at time t, the influence of i on any individual j is
given by . Therefore, to understand the influence of i on j
in the long run, we need to examine .

As Wt converges to W*,  is well defined for every pair i
and j. To get a feel for evolving social influence, consider
an example with three individuals that satisfies the
properties of positive own-weights (1 and 3) and strong
connectedness:



Figure 13.5 
Weighted network 2.

Figure 13.5 presents the network corresponding to the
weighted matrix. The limit influence W* is given by

We note that in a strongly connected society, the
influence of i on every individual is the same; we will refer
to this as the social influence of i on the society and denote
it by the number si. The social influence vector is denoted
by s = (s1, …, sn).

As W is strongly connected, it is easy to see that every
individual must have a positive social influence. The social
influence of an individual may be expressed as a weighted
sum of the influence of their neighbors as follows:

Recalling the recursive nature of centrality as discussed
in chapter 1, we will say that the social influence of a node



is proportional to its left eigenvector centrality. As W is
strongly connected and primitive and the rows sum to 1, it
follows from standard results in the theory of Markov
chains that W* always exists and that there is a unique left-
side unit eigenvector (with the eigenvector corresponding
to eigenvalue 1); for an overview of the theory of Markov
chains and matrix algebra, see Kemeny and Snell (1983)
and Seneta (2006). Our discussion is summarized in the
following result.
Proposition 13.3 Suppose that the matrix W is primitive. Then the following

is true:

1.  The influence of individual j on individual i converges:

2.  The opinions p(t) converge to p(∞). The limit opinion p(∞) = sp(0).
3.  The social influence vector s is defined as the (unique) solution to

If individual i receives more weight than individual j (i.e.,
Wki ≥ Wkj for every k), then i is more influential than j. This
follows from equation (13.25), which also implies that if i
receives the same weight as j but i receives weight from
those who have more social influence, then i in turn will
have more influence. Next, note that if all links are
symmetric (wij = wji for all pairs i, j), then every individual
will have the same social influence. A question at the end of
the chapter works through the details of this feature of
social networks.

To illustrate this result, we next consider long-run
opinions in some well-known networks. First, consider a set
of graphs in which links are binary and undirected, so gij =
gji and gij ∈{0, 1}. For every person, set gii = 1, to ensure
that the weights matrix is primitive. Then normalize the
weights by setting wij = gij/di, for every i ∈ N. Figure 13.6
presents three networks of a society with 10 individuals—



an Erdὄs-Rényi graph, a Stochastic Block random graph,
and a Royal Family graph. In all cases, the true state is 0.5.
Every individual draws signals that have equal probability
on {0.2, 0.5, 0.8}. These signals are drawn independently.
So in period 0, pi(0) ∈{0.2, 0.5, 0.8}. Individuals then
update their opinions using the weighted matrix defined by
the graphs. The numbers next to the nodes present the
social influence of individuals in each of the networks.
Observe that the range of social influence is modest in the
Erdὄs-Rényi and Stochastic Block networks, while it is
large in the case of the Royal Family network. The ratios of
maximum social influence to minimum social influence are
2.33, 1.45, and 12 in the Erdὄs-Rényi, Stochastic Block, and
Royal Family network, respectively.

Figure 13.6 
Social influence in networks: n = 10, average degree = 4.

13.4.3 Complete Learning

We turn to an issue that lies at the heart of contemporary
discussions: could individuals in a large society hold
opinions that are contrary to evidence over extended
periods of time? One way to think about this is to suppose
that there is a true state and individuals acquire
impressions about it through personal inquiry or efforts. As
individuals come to this issue with their own personal
experiences, they may arrive at slightly different beliefs



about the true state. A famous story along these lines is the
Galton problem that was discussed in the introduction to
this chapter. The conditions under which individual
idiosyncracies cancel out and the average of these views
corresponds to the truth have been studied in the theory of
probability. A well-known theorem in probability theory, the
strong law of large numbers, tells us that if individual
impressions are independent and unbiased, then the
average opinion would become a better and better measure
for the actual facts as the number of individuals grows. In
other words, a large crowd will be “wise.” This section
examines how this central intuition is affected by the
presence of network connections that route social
communication.

To fix ideas, it is helpful to suppose that there is a true
state, given by θ ∈ ℝ. Individual i’s belief about this true
state at period 0 is given by pi(0), where pi(0) = θ + ρi and
ρi reflects some idiosyncratic term. For concreteness,
suppose that every person draws this ρi from the same
distribution and the draw is independent. Suppose that ρi ∼
𝒩(0, σ2). In period 0, individual i’s opinion or belief about
the state of the world is simply pi(0). In period 1, individual
i updates their view of the world upon the observation of
others’ signals. Bayes’s rule then yields

where wij is a measure of the precision of j’s signal.
We start with a consideration of some simple examples.

First, consider the simple case where everyone
communicates their signal to everyone else: in other words,
suppose that the social network is complete and every
individual places weight 1/n on everyone. In this case, in
period 1, everyone will have the same opinion, given by



where the first equality holds because everyone places the
same weight on everyone and the second equality holds
due to the definition of individual signals. In principle, the
sum of the values of ρi is uncertain, as they are drawn from
distribution F. However, a classical result in probability
theory—namely, the strong law of large numbers—tells us
that the variance of this term becomes negligible as the
number of individuals grows (for a classical exposition of
this theorem, see Billingsley [2008]). In other words, the
belief in the completely connected egalitarian network will
approximate the true value of θ in large groups from period
1 onward.

We now turn to opinion formation in networks more
generally. The principal complication is that repeated
updating privileges more connected individuals over less
connected individuals. This in turn means that the former
come to acquire a disproportionate social influence, which
can bias the opinion of society at large. Let us develop this
idea with the help of an example of hub-spoke networks,
given by the following matrix:



Figure 13.7 
Weighted hub-spoke network.

Figure 13.7 illustrates the network corresponding to this
matrix. It is easy to verify that for general n, with individual
1 at the center, the social influence vector is

This means that the long-run belief is

We can see that p* will not be equal to θ, even when n
gets large, because it will always assign positive weight to
the signal of the hub, and this signal will generally not
equal 0. In other words, a large society organized in a hub-
spoke structure will not arrive at the truth through
communication. Importantly, observe that in a large
society, we know from the strong law of large numbers that
sufficient information will be available to reach the truth.
So we can conclude that the network structure prevents
information aggregation.



The example also gives us the reason for the breakdown
in communication: the hub individual comes to acquire
disproportionate social influence compared to everyone
else. Observe that the influence of all other individuals
becomes negligible as the size of society n grows, while the
social influence of 1 remains unchanged. This means that it
is the signal of individual i—ρ1—that biases public opinion.

We have seen that influential individuals are sufficient to
block correct opinions. It turns out that they are also
necessary: in other words, any society where no single
individual possesses significant social influence will
eventually converge to the correct view (this is a more or
less a direct consequence of the strong law of large
numbers). We summarize our discussion in the following
result.
Proposition 13.4 Fix some initial beliefs pn(0), and let Wn be a sequence of

primitive matrices. Let sn be the social influence and pn be the limit belief in a

network with n individuals. The limit beliefs converge (in probability) to the

truth, θ, if and only if individual social influence disappears as the society

grows large; that is,

Our example of the hub-spoke network illustrates the
basic intuition underlying this result; a question at the end
of the chapter works through the argument for general
networks.

Proposition 13.4 is illustrated with the help of figure
13.8. Here, we consider two networks with 50 individuals
apiece—the Erdὄs-Rényi and the Royal Family networks.
The average degree is the same in the two networks: 3. The
left side of the graphics illustrates the networks. We
generate beliefs at random and then run the opinion
dynamics process. The right side presents the limit belief.
The true state is θ = 1/2. We see that in the Erdὄs-Rényi
network, the limit belief is very close to the true state, at



0.48. On the other hand, the limit belief in the Royal Family
—0.40—is a fair distance from the truth. The reason for this
breakdown of aggregation is the large social influence of
the royal family (which drew a signal lower than the true
state).

Figure 13.8 
Network structure and wisdom of crowds.

Our previous discussion of the persistence of diverse
opinions in the case studies on climate change and fishery
and on WMD and presidential elections motivates the
following question: what features of the social interaction
lead to a persistence of diverse opinions and slow the
convergence of opinions? This is the subject of the next
section.

13.4.4 Homophily

Let us start with a simple example to develop some
intuition. To begin, consider an Erdὄs-Rényi graph with n

individuals and a probability of linking given by p. Next,



consider a variant of the Erdὄs-Rényi graph in which the
individuals are divided into distinct groups and the
probability of linking within a group is higher than the
probability of linking across groups. Suppose that there are
m equal groups, and, for simplicity, suppose that the
probabilities are perfectly symmetric: ps is the probability
of a link between two individuals within a group, and pd is
the probability of a link between two individuals who
belong to different groups; we assume that ps > pd. This ps,

pd model is a special case of the Stochastic Block model, in
which probabilities of pairwise meetings within same group
are equal and given by ps. Similarly, the probability of a
pair from two different groups meeting, pd, is also equal for
all such pairs. We will refer to this model as the “Islands
Model” in the rest of this section. Figure 13.9 illustrates
networks generated using the Islands Model.

Figure 13.9 
Homophily and networks: n = 20.

Let us draw out a relation between homophily and the
Islands Model. In this model, the average probability of
linking is given by



Recall from chapter 1 that the extent of homophily can
be defined as the difference between the same and
different linking probabilities, with a normalization for
dividing by the number of islands, m:

The final formula, on the right side, is known as
Coleman’s Homophily Index (after the sociologist James
Coleman): it provides a measure of how much a group’s
fraction of own-type links (ps/mp) exceeds its population
share (1/m) as a ratio of how big this difference could be 

. Positive IH indicates homophily, while negative IH

indicates heterophily. Observe that this ratio varies
between 0 (when ps = pd) and 1 (when ps > 0 and pd = 0).
We see that it is increasing in the ratio ps/pd. And it can be
verified that it equals 0 for the Erdὄs-Rényi network and it
equals 0.826 for the Islands Model with ps = 1 and pd =
0.05.

Consider the dynamics of opinion in the Erdὄs-Rényi
network and the Islands Model. Both networks are strongly
connected and egalitarian. As before, the true state is 0.5
and the long-run belief in both networks is a good
approximation. However, the structure of the network has
a profound impact on the speed of convergence. In the
Erdὄs-Rényi network, opinions of all individuals are close to
0.5 by period 5. On the other hand, in the Islands Model,
there is considerable dispersion of opinions in period 5. In
particular, in period 5, the opinions range from 0.41 to 0.6.
Indeed, even at time t = 15, when Erdὄs-Rényi beliefs have
converged to 0.51, there remains a considerable dispersion
of opinion in the Islands Model: the opinions of three
communities are 0.47, 0.47, and 0.48, while members of
one community hold the opinion 0.50. Figures 13.10 and



13.11 illustrate the impact of homophily on the pace of
social learning and the persistence of diverse beliefs.

Figure 13.10 
Opinion dynamics in Erdὄs-Rényi networks.

Figure 13.11 
Opinion dynamics in Islands Model.

These examples provide a first impression of how the
rate of convergence of beliefs may be shaped by homophily.
We now develop this idea more systematically.

For expositional simplicity, let us consider binary links,
gij ∈{0, 1} and define weights of the matrix W as wij = gij/di.



We may then diagonalize the matrix W as follows:

where the columns in S are the right eigenvectors and the
rows in S−1 are the left eigenvectors of W. The eignevalues
are presented in descending order, λ1, λ2, …, λn; note that
as all rows sum to 1 for this matrix, the largest eigenvalue
λ1 = 1 (for a discussion of such properties of stochastic
matrices, see Seneta [2006]).

We have shown that in any society, if W is primitive, then
opinions converge to a consensus p(∞). It is possible to
show that the distance between the period t belief and the
long-run belief is an increasing function of the second
eigenvalue of matrix W. This second eigenvalue of the
weighted matrix, W, is closely related to the level of
homophily in the society. To see this in the simplest way,
let us construct the Islands Model with progressively
higher levels of homophily (by varying ps and pd) and
present their second eigenvalues. In all cases, the number
of nodes n = 20, and the average degree is 5. These
networks are presented in figure 13.12. Our discussion
leads to the following result.



Figure 13.12 
Homophily and second eigenvalues.

Proposition 13.5 Consider an Islands Model with a primitive W: the rate of

convergence of opinions to consensus is negatively related to the level of

homophily.

A proof of this result goes beyond the scope of this
chapter; the interested reader is urged to consult Golub
and Jackson (2012) for more detail.

To summarize, we have studied a model of
communication in which individuals repeatedly update
their opinions by averaging across the opinions of their
neighbors. This analysis yields a number of powerful
conclusions. The first is that if a society is strongly
connected, then everyone will hold the same opinions (i.e.,
consensus occurs). The second is that the influence of a
person on this consensus opinion is given by their
eigenvector centrality. The third is that the consensus
belief in a large society reflects all available information if
and only if no one possesses significant social influence.
Finally, the rate at which a society aggregates the



information to arrive at a consensus depends on the extent
of homophily: greater homophily leads to longer
persistence of disagreement.

13.5 Experimental Evidence on Social Learning

Our discussion in section 13.2 reveals that in a variety of
important contexts, we rely on information gathered from
others to make decisions, these others in turn get their
information from their social contacts.

Our discussions in the introduction chapter, and chapters
1 and 11, suggest that real world social networks are often
very large and that they exhibit two key features: deep
inequalities (the average connection is small but the
variance is very large) and homopohily (tendency of people
with similar traits to form links with each other). The
theory of opinion formation and learning we have
presented in sections 13.3 and 13.4 tells us that these
network features have a powerful impact on opinions and
behavior. In this section, we present experimental evidence
on the role of networks in shaping opinions and behavior.
The discussion here is based on Choi, Goyal, Moisan, and
To (2022).

The theoretical model is a simplified version of the
models studied in the previous two sections. There is a set
of individuals N = {1, …, n}, with n ≥ 2, who choose
between two actions, Green and Red. There are two states,
Green and Red. Action Green yields a payoff of 1 if the true
state is Green, and zero otherwise. Likewise, action Red
yields a payoff of 1 if the true state is Red, and zero
otherwise.

Time is discrete and proceeds as t = 1, 2…. At the start,
individuals believe that the two states are equally likely.
They observe a noisy but informative signal on the true
state: individual i receives a binary signal si ∈{Green, Red}.
The probability of receiving the Green (Red) signal that is



conditional on the true state being Green (Red) is p ∈ (1/2,
1). Thus, upon receiving a Green signal, the expected
payoff to an individual from action Green is p, and the
payoff is 1 − p from action Red. In period t, an individual
chooses action ai, t ∈{Green, Red}.

Individuals are located in an information network, g. At
time t, individual i observes the actions of their neighbors
Ni(g) from period 1 until period t − 1. The signal at the
start and the observations on neighbors’ guesses in
subsequent periods are inputs into choices at time t.

In the first period, individuals choose an action that
mimics the signal si. In periods t ≥ 2, they choose an action
ai, t that corresponds to the majority action in their
neighborhood in the previous period. Let us also suppose
that individuals randomize (with equal probability) between
the two actions if there is no clear majority.

We consider three archetypal networks: the Erdὄs-Rényi
(ER) network, the Stochastic Block (SB) network, and the
Royal Family (RF) network. Figure 13.13 (a) presents
examples of these networks. To develop a hypothesis, we
run simulations under the behavioral rule described
previously. The signals are randomly drawn independently
and with the same distribution for 40 subjects with signal
quality p = 0.7. The group-level variable ct measures the
extent to which group actions at time t move toward either
a correct or an incorrect consensus relative to the initial
assignment of signals:

where n0 denotes the number of correct signals received by
individuals at time 0 and nt denotes the number of correct
actions made at time t. This variable ranges between − 1
(incorrect consensus) and 1 (correct consensus). If the



number of individuals choosing a correct action is the same
as that of correct signals, ct = 0.



Figure 13.13 
Canonical networks and DeGroot simulations of 1,000 runs. (A) Average degree
is approximately equal to 4; diameters in ER, RF, and SB are equal to 5, 38, and
9, respectively. (B) By period 4, the RF network (green) achieves complete
consensus in almost all cases. The SB network (blue) realizes 60 percent of
possible consensus, and the ER network (red) achieves 87 percent of the
maximum possible consensus. (C) By period 7, switching frequency is
negligible. (D) In periods 7–12, 62 percent of cases in the ER network reach
correct consensus, whereas it is 31 percent in the SB network and 79 percent



in the RF network. Almost all the remaining cases yield a breakdown of correct
consensus (38 percent in ER, 66 percent in SB) or incorrect consensus (21
percent in RF). Source: Choi, Goyal, Moisan, and To (2022).

Using 1,000 runs of the DeGroot simulations, figure
13.13(b) shows the evolution of consensus, measured by
the absolute value of ct; and figure 13.13(c) shows the
fraction of players switching actions between periods t and
t − 1. We note that learning occurs rapidly: most of the
consensus achieved in the simulation happens at the first
few periods. Network structure has a significant impact on
consensus dynamics: the RF network achieves consensus
by period 4 in almost all cases; the SB network realizes
only about 60 percent of the possible consensus by period 4
and remains at that level afterward. Learning in ER
continues a bit longer and achieves about 87 percent of the
possible consensus by period 7. Figure 13.13(d) presents
the distribution of ct at periods 7–12. It shows that in the
ER network, correct consensus obtains in 62 percent of the
cases; in the SB network, correct consensus is obtained in
31 percent of cases. In the RF network, consensus occurs
in nearly all cases: correct consensus in 79 percent of cases
and incorrect consensus in 21 percent of cases.

These simulations lead to three hypotheses:
  1.  Individual choices converge to a limit action.
  2.  Breakdown of consensus is higher in SB than in ER and

RF.
  3.  Incorrect consensus is higher in RF than in ER and SB.

Let us now describe the experiment. Each experimental
session consisted of a group of 40 subjects who played six
rounds of the learning game. Groups of subjects were
assigned to one of three experimental conditions, each
associated with a distinct network structure: ER, SB, or RF.
Four independent groups participated in each experimental



condition, and no subject participated in more than one
experimental session.

At the start of each round, subjects were informed about
a bag containing 10 balls. The color composition of the bag
was unknown to the subjects. They were told that the bag
contains either 7 red and 3 green balls (the RED bag) or 7
green and 3 red balls (the GREEN bag). Each subject drew
a ball from the bag and saw its color. There was a
probability of 0.7 of getting the correct signal. For 12
periods, subjects were asked to make a guess on whether
the bag is RED or GREEN. At the end of the round, one
period (from 1 to 12) was picked at random to determine
actual payoffs in the round: subjects earned 3 euros if their
guess matched the color of the bag (GREEN or RED), and 0
euros otherwise. The total earnings for a subject
corresponded to the sum of earnings in each round and a 5-
euro show-up fee. The experiment lasted approximately 1.5
hours. The average payment per subject was 19.3 euros.

Figure 13.14 summarizes our experimental findings on
network effects. Figure 13.14(a) shows the evolution of
consensus across rounds and groups. Figure 13.14(b)
presents the switching frequency from period t − 1 to
period t. Figure 13.14(c) presents the distribution of ct in
the last six periods (i.e., between period 7 and period 12) in
each network.



Figure 13.14 
Learning and consensus. (A) By period 12, RF, ER, and SB reach 63 percent, 44
percent, and 30 percent of the possible consensus, respectively. (B) Switching
frequency falls below 10 percent by period 12. (C) Distribution of ct is uniform
between 0 and 1 for ER, bimodal around 1 and −1 for RF, and modal around 0
for SB. Source: Choi, Goyal, Moisan, and To (2022).

We begin by discussing the dynamics of learning in
figures 13.14(a) and 13.14(b). Most of the learning occurs
in the early periods; by period 4, the RF network reaches
58 percent of the maximum margin of consensus and the
SB network reaches 22 percent, while the ER network
achieves 35 percent by period 6. The quick learning is
consistent with the simulations. There remains a small
amount of switching near the end; the frequency of
switching falls to 10 percent eventually.

Figure 13.14(c) shows the distribution of ct across the
three networks in the periods 7–12. The distribution of the



RF network is bimodal near the two types of consensus, as
ct = 1 and ct = −1, the SB network has a mode around the
value of ct = 0, indicating a high likelihood of no learning
and the persistence of diverse opinions, and the ER
network generates a distribution somewhat uniformly
spread between 0 and 1.

To consolidate these findings, let us define binary
variables of correct consensus (if ct > k), incorrect
consensus (if ct < −k), and breakdown of consensus (if −k

≤ ct ≤ k) based on the value of ct. Let us fix k to be 0.3.
Then, consistent with the second hypothesis, the fraction of
breakdown of consensus is highest in the SB network: it is
40 percent in the ER network, 19 percent in the RF
network, and 65 percent in the SB network. Finally,
consistent with the third hypothesis, the fraction of
incorrect consensus is highest in the RF network: it is 4
percent in the ER network, 20 percent in the RF network,
and 1 percent in the SB network.

We study the impact of network structure on social
learning using a laboratory experiment. At the start,
subjects observe a private signal and then make a guess. In
subsequent periods, subjects observe their neighbors’
previous guesses before guessing again. We locate these
individuals in three social networks—Erdὄs-Rényi
(reflecting a baseline setting with homogeneous
decentralized contacts), Stochastic Block (reflecting
homophily), and Royal Family (reflecting “influencers” and
local interaction). In line with theoretical predictions, we
find that networks have powerful effects on social learning:
a society with hubs and influencers is more likely to arrive
at incorrect consensus, a society with homophily is more
likely to persist with diverse beliefs. The behavior of
individuals closely matches the predictions of DeGroot
updating rule.



In section 13.3–13.5, individuals learn by observing their
neighbors but in these models, the neighbors themselves
do not makes choices about whether to verify or to share
information.

In actual practice, individuals often verify a piece of
information before passing it on to their friends and
acquaintances. In the next section, we study the incentives
to verify and share information and how it is affected by the
network structure.

13.6 Verifying and Sharing Information

Our discussion of early evidence in section 11.2 suggest
that social connections have been essential for information
dissemination historically. In recent decades, the role of
social exchange of information has gained momentum with
the use of massive online networks. In 2016, 14 percent of
Americans said they use social media as their primary
sources of news with over 70 percent of Americans getting
at least some of their news from social media. This
development has taken place in parallel with the concern
about the spread of false information concerning a number
of issues—such as politicians, health remedies, vaccines
and firm values (Allcott and Gentzkow 2017, Levy 2021).
These discussions have drawn attention to the importance
of individual decisions on verifying and on sharing
information.

Verification of content is central to preventing
misinformation in traditional news media. However, with
consumers shifting toward social media for news and
information, centralized fact-checking (third-party
identification of inaccuracies before or after content
dissemination) faces the challenge of scalability due to the
growing volume of online contents posted every day.
Moreover, a perceived lack of trust in centralized fact-
checking compromises its scope (for instance, 70 percent



of Republicans and 48 percent of Americans believe that
fact-checkers are biased [Walker and Gottfried 2019]). This
highlights the importance of verification of information by
online media users. This section sketches a model taken
from Goyal, Safranov, and To (2022) and uses it to think of
the ways in which platforms and social networks shape
incentives of individuals to verify information before
passing it on to their neighbors and how that shapes the
quality of information that circulates in the network.

The setting of the model is as follows: there is a set of N
= {1, …, n}, individuals who are located at nodes of a large
(undirected) network. A piece of information arrives to a
seed individual in the network. The news has some
exogenous probability of being true. The seed decides
whether to verify the news (at a cost) and then whether to
share the news. Similarly, a nonseed individual in the
network who receives a piece of information faces a choice
about verifying and sharing. Individuals derive benefits
from sharing news, these benefits are proportional to the
number of direct neighbors. They incur a reputation
damage from sharing news that is false.

We assume that verification reveals the veracity of news
perfectly; this means that an individual who verifies news
will only share it if it is true. Thus an individual can (1)
share without verification, (2), not share and not verify, and
(3), verify information and only share true news. As the
interest is in large networks, it is reasonable to assume that
an individual’s degree is known only to herself, and
moreover, that the identity of the sender is unknown
(whether they are a seed or not). Thus the strategy of an
individual is a function from their degree to one of the
three actions described above. The model is solved using
the concept of Bayesian Nash equilibrium. Our discussion
will focus on two aggregate outcomes: one, how much does



a piece of news travel, and two, what is the quality of the
news that spreads in the network.

A preliminary remark is that the game of verification
exhibits a strategic substitutes property: when other agents
verify more, indirect news is more likely to be true, which
lowers incentives to personally verify the news. We restrict
attention to equilibrium that is symmetric in the sense that
every seed and nonseed with the same degree chooses the
same action, respectively. It turns out that in this model,
there exists a unique equilibrium. In this equilibrium, the
seed of any degree verifies with a (weakly) higher
probability as compared to a nonseed with the same degree
and the probability of verification is (weakly) increasing in
the degree of an individual.

We next examine the role of two key aspects of the
environment—the ex-ante quality of the information and the
structure of the network.

Consider the perceived accuracy of information: this is
the probability that the news is correct at the point that it
arrives at the seed of the network. When accuracy is very
low, either the seed kills it or if their costs of verification
are low then they verify and share if the news is correct.
The nonseed anticipates this and therefore never verifies
any news they receive in this low accuracy scenario. On the
other hand, when accuracy is very high, the seed and the
nonseed share it without verification. In the intermediate
information accuracy range, sharing both with and without
verification are possible depending on the costs of
verification for an individual. This reasoning suggests one
that more news is shared as ex-ante accuracy grows and
two, that there may be a nonmonotonicity in the quality of
news (prevalent in a network) as a function of the ex-ante
accuracy of the news.

Consider next the role of the network. When information
accuracy is below a threshold, the degree and the network
do not matter; the seed verifies, and if true, then shares



information (if their costs of verification are small) or does
not verify and does not share. Above the threshold
accuracy level, network structure becomes relevant for the
nonseeds. As seed verification is increasing in degree, a
denser network implies more connected seed and hence a
higher likelihood of verification and therefore a higher
quality of received news—from strategic substitutes
property, this then means that the nonseed with any degree
verifies with lower probability.

Equipped with these results on equilibrium, we can
examine the incentives of a platform to invest in
information quality. We are interested in questions such as:
how does network structure shape quality of information
chosen by a platform and how does that shape the spread
and quality of information in a network? Consider the
model with a social media platform that invests in
information accuracy with a goal to maximize the spread of
information in the network. As we have noted above, the
spread of news—as measured by the probability of news
reaching a nonseed node—is increasing in the accuracy of
information chosen by the platform. We also noted that
there is a threshold accuracy level above which a seed (and
also a nonseed) always shares news, either with or without
verification. The general problem is quite complicated, but
under suitable assumptions on the costs of verification and
the network degree distributions it is possible to derive
closed-form solutions on optimal accuracy: it is falling in
the platform’s costs of acquiring accuracy and beyond a
certain cost the platform chooses zero level of accuracy.
The network structure affects the rate at which the
accuracy falls with costs and also the threshold cost at
which it declines to zero.

13.7 Appendix

13.7.1 Sequential Models of Learning



For completeness, we present a canonical model of social
learning in this appendix: there is a single sequence of
privately informed individuals who take one action each.
Before making their choice, an individual gets to observe
the actions of all the people who have made a choice
earlier. The actions of the predecessors potentially reveal
their private information. An individual can therefore use
the information revealed via the actions of others (together
with their own private information) to make decisions. This
model was introduced in Banerjee (1992) and
Bikhchandani, Hirshleifer, and Welch (1992); for a general
treatment of this model, see Smith and Sørensen (2000).
An extensive body of literature has grown around this basic
model. See Smith and Sørensen (2000) for an elaboration
of the general model, and Golub and Sadler (2016) and
Chamley (2004) for comprehensive surveys. The principal
question is: do individuals eventually learn and choose the
optimal action?

A basic insight is that learning can lead to herding,
where everyone may choose the wrong action. Consider a
setting in which private signals are equally accurate and
individuals assign equal weight to their own signals and the
signal of others. To fix ideas, suppose that there are two
actions and two states. For simplicity, suppose that in state
1, action 1 is optimal, while in state 0, action 0 is optimal.
Suppose that agents initially believe that the states are
equally likely. At the point of entry, the agent in period t

observes a private signal: the probability of signal x when
the true state is x is q, where q > 1/2. The probability that
the signal is x when the true state is y ≠ x is 1 − q < 1/2.
Assume that signals are drawn independently, conditional
on the true state in every period. Now suppose that the
first two individuals observe a signal in favor of state (and
hence action) 1. They will both choose action 1. Consider
agent 3, who observes this sequence of 1s. Given that the



information from others is as accurate as their own, two
signals in favor of state 1 will overrule their own signal in
favor of action 0. So agent 3 will also choose action 1,
regardless of their own signal. In that case, the action does
not convey any information about agent 3’s signal. In
particular, agents 4 and above are in the same situation as
agent 3, so they too will ignore their own private
information and choose action 1. Thus the sequence of
individuals may herd on action 1.

Observe that this argument applies whether or not 1 is in
fact an optimal action. So we have shown that there is a
strictly positive probability that society may herd on the
wrong action. Finally, observe that private signals arrive
independently (and exogenously) over time, so eventually,
there will always be enough information to infer the
optimal action. This illustrates how observational learning
may fail to aggregate private information.

One way to avoid inefficient herding is that agents draw
signals with different levels of accuracy. This will induce
private beliefs that vary across agents. In particular, if
some agents receive very strong signals—signals that make
one state much more likely than the other state—then they
may choose to ignore past observations and choose an
action that reflects their private signal. Suppose that the
private belief about state 0, given by , ranges between β
and . Let us say that the beliefs are bounded if β > 0 and 

, and unbounded if . It is fairly straightforward
to verify that if agents have bounded beliefs, then
inefficient herding may occur, while if beliefs are
unbounded, then observational learning will lead to an
efficient choice of actions eventually.

In this model, the social network is elementary: a person
at time t gets to observe everyone who came before them.
Let us briefly consider a variation with a richer network
structure. Following Acemoglu, Dahleh, Lobel, and



Ozdaglar (2011), we may introduce social networks in this
model of sequential learning as follows: suppose that the
agent at time t can draw a sample from the past, Nt ⊂{1, 2,

…, t − 1}. Let this sample be drawn with some probability
distribution ℒt. Some examples of such distributions are the
following:

ℒt({1, 2, …t − 1}) = 1: This corresponds to the standard
model, in which every agent observes the entire past
history of actions.
ℒt(t − 1) = 1: Every agent observes only the immediately
preceding agent.
ℒt: This assigns equal probability to picking every subset
of the past sequence of agents.
We can study the impact of social networks by varying

the nature of the distribution ℒt.
For expositional simplicity, let us assume that beliefs are

unbounded. Recall that if the observation window is the
entire past history, then the arguments given here ensure
that actions converge in probability to optimal actions. We
examine the network needed to ensure learning.

A simple example illustrates the key idea: suppose that
there is a positive probability such that for all t ≥ 2, ℒt(1) =
p > 0. Suppose that Mr. 1 chooses action 1. Under the
assumption of unbounded beliefs, we know that at any
point, there is a possibility of an agent with extremal
signals (and the corresponding private beliefs) that sharply
favor one state over the other. But under our hypothesis,
there is a strictly positive probability that such an agent
observes a single agent, Mr. 1, who has chosen action 1. It
is then easy to see that this agent will choose an action that
depends solely on their private signal. As beliefs arise
independently over time and observation neighborhoods
are independent across agents, it follows that there is a
strictly positive probability that agents will choose an



action in line with their private beliefs. This prevents
asymptotic learning.

To avoid this problem, Acemoglu, Dahleh, Lobel, and
Ozdaglar (2011) develop the property of expanding
observations in social networks. A social network is said to
satisfy expanding observations if, for all k ∈ N,

If the network does not satisfy this property, then it is
has nonexpanding observations. Expanding observations
rules out the example discussed previously, in which every
agent samples agent 1 with strictly positive probability. It
is possible to show that if beliefs satisfy the unbounded

beliefs assumption and networks satisfy the expanding

observations assumption, then actions converge to the

optimal action eventually.

Let us sketch the main ideas underlying this result. First,
we establish a generalized “improvement principal.”
Suppose that every agent t gets to observe one person from
the past; then there is a strict increase in the probability of
Mr. t making the correct choice compared to the person
they observe. This argument builds on the earlier
discussion of the improvement upon “imitation” principle
across neighbors in section 13.3. The second step is to
show that this improvement principle can be extended to
allow multiple observations. The third step exploits
expanding observations to infer that later agents will have
access to new information, so the expected utilities must
converge to the maximum possible value (i.e., actions must
converge to the optimal one).

We conclude here with a comment on the relation
between the expanding assumptions property and RF
network. Note that the key obstacle to complete learning in
the repeated action setting is asymmetry in observation:



there is a small group of agents who observe few others but
are observed by everyone. In the sequential learning
model, the expanding observations property of social
networks ensures that agents eventually assign zero
probability to any fixed set of early agents. This ensures
that new information arrives in the system and ensures
long-run learning.

13.7.2 An Experiment on Social Learning

We describe an experiment on wisdom of crowds that
examines the effect of networks on information
aggregation. The experiment is taken from Becker,
Brackbill, and Centola (2017).

Individuals are engaged in an estimation task.
Individuals guess once and they can revise their guesses
two more times. In the control treatment, individuals are
simply asked if they wish to revise their guess. In the social
network treatment, after the first guess, they are shown the
average of the guesses in their network neighborhood and
asked to guess a second time. At the start of the third
round, they get to see the guesses in the second round.
Then they make a third guess. Participants are rewarded a
monetary prize the value of which depended on the
accuracy of their final estimate.

Subjects were allotted either to one of the two social
networks or to a control condition (with no information
sharing). In the decentralized network treatment,
participants were placed in a regular network with degree
4, while in the centralized network treatment a single
person was connected to everyone else (as in a star
network). Subjects were not provided any information
about their social networks—this was to ensure that subject
experience was similar across the two network conditions.
Subjects in the control condition were not placed into social
networks, but were instead given the opportunity to answer



the same questions without being exposed to social
influence.

There were 40 subjects in the three treatments. In total,
there were 13 experimental trials in each of the two
networks (thus 1040 network subjects in all) plus 8 trials
with the control group (comprising 320 subjects). The
subjects were recruited using Mechanical Turk.

The principal findings are as follows: in the control
treatment, there was a negligible decrease in dispersion of
estimates and a small increase in accuracy of average
estimate from round 1 to round 3. By contrast, the
dispersion of opinions declined by over 40 percent in the
two network treatments. In the decentralized network, the
accuracy of estimate increased by over 20 percent. In the
centralized network, the effects on accuracy of estimate
depended on the “quality” of central agent’s signal (relative
to others). If the signal neutralized the bias of the signals of
the other 39 individuals then social interaction led to much
more accurate estimates by everyone. If the signal
reinforced the bias then social interaction led to poorer
estimates. For instance, if the true value is 100 and the
group mean is 90, a central node with an estimate of either
105 (more accurate) or 120 (less accurate) will pull the
group toward the truth. On the other hand, if the central
node’s initial estimate is 70, that would pull the group away
from the truth.

13.8 Reading Notes

The study of social communication and influence has a long
and distinguished history. Pioneering work was carried out
by a group of sociologists around the mid-twentieth
century. Lazarsfeld, Berelson, and Gaudet (1948) present
an early empirical study of social influence on voting
behavior. Katz and Lazarsfeld (1966) expand the scope of
this early study to examine the role of social influence in



marketing, fashion, film viewing, and public affairs.
Coleman, Katz, and Menzel (1966) report on the adoption
of a medical drug, tetracycline, among a group of
physicians in the early 1950s. Rogers (1995b) provides an
overview of the early work on communication and
innovation.

Economists studying technological change in agriculture
have focused on social learning in shaping the adoption of
new input combinations for a variety of crops. An early
contribution is Foster and Rosenzweig (1995), which
explored HYV seeds in India. More recent work includes
Bandiera and Rasul (2006), Munshi (2004), and Duflo,
Kremer, and Robinson (2006). Most of this research
presents evidence on social informational spillovers
(without paying attention to the details of the network
structure). Conley and Udry (2010) take a step forward in
this area by collecting data on the information networks of
farmers and presenting evidence on the role of such
information neighborhoods in shaping the adoption of
fertilizers in the cultivation of pineapple.

The case study on fishery in Hawaii is taken from Barnes,
Lynham, Kalberg, and Leung (2016). The case study on
climate change is taken from Funk and Hefferon (2019).

Establishing causality in network effects poses a number
of challenges, which are greatly exacerbated when the
network is endogenous. There is a body of sophisticated
literature on these issues; see Manski (1995); Brock and
Durlauf (2001); and Bramoullé, Djebbari, and Fortin
(2009). Partly in response to these difficulties, recent
research has used experiments to uncover network effects
on opinion formation and behavior. We present in this
chapter a case study on the wisdom of crowds taken from
Becker, Brackbill, and Centola (2017). Christakis and
Fowler (2007, 2013) study various aspects of learning and
behavior in networks using both observational and
experimental data.



The theoretical literature on information sharing and
learning in networks may be seen as broadly following two
approaches. One studies choices that generate information
and social interactions that spread this information. As
information spreads, it alters beliefs and thereby shapes
the choice of subsequent actions. In this way, current
choice and the network shape the generation of new
information. This approach builds on the insights of the
statistical literature on bandit-arms (Berry and Fristedt
[1985]) and is very close in spirit to the economic
development work on the adoption of new crops (as in
Conley and Udry 2010). The model of learning in (directed)
networks presented in section 13.3 was introduced in Bala
and Goyal (1998), which established that connectedness
was sufficient to ensure convergence of actions and
utilities. This paper also identified the role of influential
individuals in inhibiting learning and showed that
egalitarian networks guarantee complete learning. Bala
and Goyal (2001) studied the role of homophily and
network integration in sustaining the diversity of beliefs
and actions. In closely related work, Ellison and Fudenberg
(1993, 1995) study social learning and the prospects of
long-run diversity (they are less concerned with the
network architecture dimensions of the learning process).
These models involve collective experimentation, but, in the
interests of tractability, they abstract from strategic
considerations relating to the choice of actions; for an early
study of strategic forces in collective experimentation, see
Bolton and Harris (1999).

A second and more widely studied approach endows
individuals with signals and examines the aggregation of
this information via social interaction. The simplest model
is one in which a sequence of individuals learn from the
actions of previous individuals; influential early work in this
tradition includes Banerjee (1992) and Bikhchandani,
Hirshleifer, and Welch (1992). This model was elaborated



upon by Smith and Sørensen (2000). For a model of
sequential learning in which individuals learn from
observing past actions and outcomes of the action, see Bala
and Goyal (1995). Chamley (2004) presents an overview of
the first generation of social learning models. This line of
work was brought into a network setting by Gale and Kariv
(2003), which proposes a model of guesses: individuals
guess on the true state of the world and then update their
guesses after observing the guesses of their neighbors. An
interesting and technically sophisticated line of research
explores observational learning in networks; for instance,
see Rosenberg, Solan, and Vieille (2009); Acemoglu,
Dahleh, Lobel, and Ozdaglar (2011); Mossel, Sly, and
Tamuz (2015); and Mueller-Frank (2013). Mueller-Frank
(2013) studies a general setting that goes beyond the case
of decision rules that maximize expected utility, and allows
arbitrary choice correspondences; he also permits the
decision rules not to be common knowledge. Chen, Mueller-
Frank, and Pai (2021) examine general conditions under
which an outside principal can learn the true state without
knowing the details of the information structure of
individuals.

Within the information aggregation literature, there is
also an alternative (a bounded rational) approach to
information sharing and opinion formation. This approach
is called “DeGroot updating,” as it builds on a model
proposed by DeGroot (1974). Section 13.4 presented a
model of DeGroot learning. Early antecedents of this
approach to updating and consensus-reaching include
French (1956) and Harary (1959). DeMarzo, Vayanos, and
Zwiebel (2003) introduce the DeGroot model to economics
and obtain a number of key early results on connectedness,
social influence, and the rate of convergence to consensus.
In more recent work, Golub and Jackson (2010, 2012)
studied correct and incorrect consensus and the effects of
homophily on the rate of convergence to consensus.



The binary state/action model was introduced by Gale
and Kariv (2003) and has become a workhorse model for
the study of observational learning and information
aggregation in networks; for recent theoretical studies of
this model, see Mossel, Sly, and Tamuz (2014, 2015). For
more recent surveys of research on social learning in
networks, see Goyal (2011) and Golub and Sadler (2016).

The dynamics of opinion formation and behavior have
been extensively studied from an experimental perspective.
Early contributions in the field of economics include Choi,
Gale, and Kariv (2005) and Mobius, Phan, and Szeidl
(2015). For a survey of research in economics, see Choi,
Gallo, and Kariv (2016) and Breza (2016); and for recent
research that tests the binary state, binary action model,
see Grimm and Mengel (2020); Chandrasekhar, Larreguy,
and Xandri (2020); and Choi, Goyal, Moisan, and To (2022).
For experiments on learning in sociology and
communications, see Centola (2011) and Centola and
Baronchelli (2015).

We note that most of this research literature assumes
that individuals can observe the choices and experience of
their neighbors. There is a also a small but interesting
strand of research that examines how networks affect the
incentives of individuals to share their information. This
work places the classical work of Crawford and Sobel
(1982) within a network setting. Early contributions in this
field include Galeotti, Ghiglino, and Squintani (2013) and
Hagenbach and Koessler (2010). For a recent contribution
that combines these two papers with network formation,
see Goyal, Safranov, and To (2022).

There is a large literature on issues relating to
verification and sharing of news in networks, recent papers
include Kranton and McAdams (2022); Charlson (2022);
Mostagir, Ozdaglar, and Siderius (2022); Candogan and
Drakopoulos (2020); Chen and Papanastasiou (2021);
Keppo, Kim, and Zhang (2022); Tornberg (2018); Nguyen,



Yan, Thai et al. (2012); Hsu, Ajorlou, and Jadbabaie (2020);
Acemoglu, Ozdaglar, and Siderius (2021). In addition to the
questions relating to the amount and the accuracy of
information that circulates in social networks, this
literature also studies a number of questions relating to the
role of the platform in shaping opinion formation in
networks. It is impossible to do justice to this very exciting
and currently very active field of work in this book. In
section 13.6 our goal was to provide a very brief
introduction to some of the issues that are being studied
with the help of a parsimonious model. The model we
presented was taken from Goyal and To (2022).

A slight different strand of the literature on news
markets studies how the revenue generating process of
media producers could bias content. Gentzkow and Shapiro
(2006) find that news producers who benefit from having a
reputation for accuracy slant their news toward consumers’
initial beliefs. Besley and Prat (2006) and Gentzkow et al.
(2006) find that producers who earn revenue from
advertising reduces bias; In contrast, Ellman and Germano
(2009) show that newspapers bias their news toward their
advertisers.

13.9 Questions

  1.  The first three questions help the reader work through
the mathematical details of propositions 13.1 and 13.2.
To be able to make the arguments precise, let us
describe the probability space in which all actions and
realizations take place. This probability space is
denoted by (Ω, ℱ, Pθ), where Ω is the space of all
outcomes, ℱ is the σ field, and Pθ is the probability
measure induced over sample paths in Ω by the state θ
∈ Θ. In the two-action example discussed in the
chapter, there are two states: θ1, in which action a1 is
optimal; and state θ0, where action a0 is optimal. 



 Let Θ be endowed with the discrete topology, and
suppose that ℬ is the Borel σ-field on this space. For
rectangles of the form 𝒯 × H, where 𝒯 ⊂ Θ and H is a
measurable subset of Ω, let Pi(𝒯 × H) be given by

for each individual i ∈ N. Each Pi extends uniquely to all
ℬ×ℱ. We will assume that every individual’s prior belief
lies in the interior of 𝒫(Θ) (i.e., individuals assume
every state is possible). The stochastic processes are
defined on the measurable space (Θ × Ω, ℬ×ℱ). A
typical sample path takes the form ω = (θ, ω′), where θ
is the state of nature and ω′ is an infinite sequence of
sample outcomes:

with . Let Ci, t = bi(μi, t) denote the action of
individual i in period t, Zi, t the outcome of this action,
and let Ui, t = u(Ci, t, μi, t) be the expected utility of i with
respect to their own action at time t. Given this
notation, the posterior beliefs of individual i in period t
+ 1 are

In what follows, we will take θ1 to be the true state of
nature. Note that

has P θ1 probability 1. It will be assumed that the strong
law of large numbers holds on Q θ1. All statements of the
form with probability 1 are with respect to measure Pθ1.



Show that the following statement is true: 
 The utilities of individuals converge: lim t→∞Ui, t(ω) =
Ui, ∞(ω), for every i ∈ N with probability 1. If the
society is strongly connected, then every individual
gets the same long-run utility: Ui, ∞(ω) = Uj, ∞(ω) for
every pair of individuals i, j ∈ N with probability 1.

  2.  Turning to the result on long-run optimal actions, recall
that if μi, 0 ≥ 1/2, then the optimal action is a1.

Show that the following property holds: 
 Let B(δθ1) be the set of beliefs on which optimal
action corresponds to optimal action in state θ1. Fix
an individual i ∈ N with |Ni(g)| + 1 ≤ K. For any λ ∈
(0, 1), there is a set of sample paths Wi satisfying P
θ1(Wi) ≥ λ and d(λ) ∈ (0, 1) such that if μi, 1(θ1) ≥ d(λ),
then

That is, if the path of outcomes lies in Wi, then the path
of actions taken must converge to a1.

  3.  We now explore the role of network structure in
shaping social learning. For an individual whose prior μi,

1(θ1) ≥ d(λ), there is a set of sample paths Wi with
probability λ, such that i will choose an optimal action
forever on sample paths ω ∈ Wi. Recall that two
individuals i and j are said to be locally independent if
they share no neighbors (i.e., Ni(g) ∪{i}∩ Nj(g) ∪{j} = ∅).
A pairwise, locally independent group of individuals is a
subset of N, such that any two persons i, j in the set are
mutually locally independent. Fix two numbers K > 0
(which sets an upper bound to the size of the
neighborhood) and a λ > 0 (which relates to the
likelihood of positive information on action a1). Let d =
d(λ) be the corresponding value, whose existence is



guaranteed by the previous step. Consider the
collection of individuals i ∈ N such that |Ni|≤ K and μi,

1(θ1) ≥d are satisfied. Let NK, d be a maximal group of
pairwise, locally independent individuals chosen from
this collection.

Show that the following statement is true: 
 Assume a strongly connected society. Then

 In particular, if, for some λ > 0 and d = d(λ), |NK, d|→∞,
then the probability of everyone choosing the optimal
action goes to 1.

  4.  Consider the model of Bayesian learning in a network.
The network is as follows: individuals observe their
neighbors and a set of common individuals (i.e., Ni = {i
− 1, i + 1}∪{7, 8, 9, 10, 11} for all i ∈ N). Suppose that
everyone is optimistic and that beliefs satisfy the
following condition:

where x = (1 −π)/π ∈ (0, 1). Provide the reasoning to
establish that there is a strictly positive probability for
everyone to choose action a0 from period 2 onward.

  5.  Show that one or more agents having positive self-
weight and strong connectedness of the network are
sufficient for the corresponding weighted matrix to be
primitive.

  6.  (From Jackson [2008]). Consider the model with
DeGroot updating. This question presents a slightly
more general version of the convergence result in
proposition 13.3. In network g, define a closed set of
agents as C ⊂ N, such that there is no directed link from



an agent in C to an agent , and there is no pair i ∈ C
and j∉C, such that Wij > 0. Show that every network
contains at least one closed and strongly connected set
of agents. Next, show that every network can be
partitioned into a collection of strongly connected and
closed groups and remaining agents who each have at
least one directed path to an agent in a strongly
connected and closed group.

  7.  Matrix W is periodic if all cycles in the matrix are of
equal length. Show that opinions converge for W if and
only if every set of nodes that is strongly connected and
closed is aperiodic. Show that opinions converge to
consensus in a strongly connected network that has an
aperiodic W.

  8.  (From Jackson [2008]). Consider the network given in
figure 13.15; the link pointing from i to j indicates the
weight that i places on j. Observe that this network is
not strongly connected such that agent 1 will retain his
original opinion through time. However, the other
individuals in this society are influenced by each other.
Compute the social influence vector and the limit beliefs
in this society.

Figure 13.15 
A network with multiple closed groups.



  9.  (From Jackson [2008]). Suppose the network is strongly
connected and aperiodic. Show that if Wij = Wji, for
every pair i, j of individuals, then si = 1/n for every i ∈
N. (Hint: Use proposition 13.3.)



14
Epidemics and Diffusion

14.1 Introduction

Large-scale diseases have had a profound impact on human
history; influenza, measles, tuberculosis, and sexually
transmitted diseases continue to infect millions of people
every year. In extreme instances, such as the spread of
smallpox, measles, and tuberculosis in Central and South
America—epidemics can lead to the collapse of entire
civilizations. The spread of a disease is determined by the
properties of the pathogen in question (its contagiousness,
the length of its infectious period, and its severity) and on
how infected individuals interact with others. This chapter
studies the relation between the networks of interaction
and the dynamics of epidemics. It concludes with an
application to the diffusion of human behaviors in
networks.

We start in section 14.2 with a brief overview of the
empirical evidence on major disease epidemics. The
discussion covers important episodes of epidemics in
history and then turns to contemporary epidemic diseases.
We note that some diseases can be had only once, while
others can be contracted multiple times; some need only
casual contact, while others need close or intimate contact
to spread. We also note that some diseases exhibit
explosive growth, while others persist at low levels. How



can we explain the extinction of some diseases and the
persistence of others? What is the role of contact networks
in shaping the persistence of epidemics? What sort of
policies can help in alleviating these epidemics? This
chapter will develop theoretical models in order to
understand these questions.

The pathogen and the network are closely intertwined:
even within the same population, the contact networks for
two diseases can have very different structures, depending
on the diseases’ respective modes of transmission. For a
highly contagious disease, involving airborne transmission
based on coughs and sneezes, the contact network will
include a huge number of links, including any two people
who sat together on a bus or an airplane. For a disease
requiring close contact, such as a sexually transmitted
disease, the contact network will be much sparser, with
fewer pairs of people being connected.

At an intuitive level, the spread of a disease from one
person to others should depend on its infectiousness and on
how many contacts this person has had. Our first step is to
formalize this idea in the context of a model where, starting
with a single infected person, every person meets k distinct
and new individuals. We study the conditions under which
the disease will spread and when it will die out. The
analysis clarifies the key role of the reproductive number,
which is the product of the infectiousness and the number
of contacts. We show that in this simple network, a disease
will spread if and only if the reproductive number is larger
than 1. We then turn to the spread of diseases in more
general networks.

We introduce the Susceptible-Infected-Recovered (SIR)
model of disease dynamics: a node either is susceptible to a
disease (S), is infected by the disease (I), or has recovered
from the disease (R). The aim is to understand how
infectiousness and network structure determine the size of



the epidemic. A key observation is that we can study the
dynamics of the disease in terms of an equivalent static
model—we refer to this static formulation as a percolation.
From this perspective, we show how methods from random
graph theory can be employed to understand how far a
disease spreads in Erdὄs-Rényi random graphs. We then
study disease spread in general random graphs (building
on the discussion of configuration model in chapter 2). We
show that the disease is more likely to spread the greater
the dispersion in degree relative to the mean degree in the
network. This ratio of variance to mean degree may be
interpreted as a measure of the relative influence of a
node: greater variance indicates the presence of individuals
whose degree is much higher than the average. Recall from
our discussions in chapters 1, 2, and 5 that this ratio can
grow without bound in scale-free/power law networks: this
means that diseases with arbitrarily small infectiousness
can spread to a large population in such networks.

We then turn to diseases that an individual can suffer
from multiple times. This calls for a modification of the
basic SIR model, and leads us to the Susceptible-Infected-
Susceptible (SIS) model. Individuals can be in one of two
states: they are susceptible (S) or infected (I); once they
recover from a disease, they become susceptible (S) again.
A prominent example of such a disease is the flu. We locate
this SIS process on a network and study the size of
infection. The analysis yields an insight that is similar to
what we found for the SIR model: diseases with arbitrarily
small infectiousness can be sustained by scale-free
networks.

Our theoretical results on the permeability of networks
are empirically relevant. In chapter 1, we presented a study
of romantic and sexual relationships in an American high
school and showed that there is a giant component in that
network: this suggests that once a sexually transmitted



disease takes hold, it can infect a very large number of
people. Our results on scale-free networks draw attention
to the role of a superspreader event, an event that brings
together large numbers of people from different parts of a
country can facilitate the explosive spread of a disease. We
present a case study of major religious festivals in India in
this context. Similarly, in chapter 1, we showed that
computer and information networks (like Twitter and the
World Wide Web) have a very unequal degree distribution.
Our theoretical results suggest that these networks may be
vulnerable to the diffusion of worms and viruses.

We then turn to the diffusion of behaviors and optimal
targeting of interventions. We show that random
vaccinations may be helpful to contain diseases in
homogenous random graphs like the Erdὄs-Rényi network,
but that they are very ineffective in scale-free networks.
However, targeting highest-degree nodes for vaccination
can be very effective in scale-free networks.

Finally, we present a case study of the adoption of
microfinance in South Indian villages. This study draws
attention to the advantages of seeding more central nodes
in facilitating the diffusion of new products. Identifying
more central individuals requires investments in network
information that may be very large and motivates an
enquiry into the value added of optimal versus random
seeding. We conclude with a discussion of the
circumstances in which random seeding may be attractive.

This chapter ends with a section that contains
supplementary material on the Bass model of diffusion.

14.2 Empirical Background

In this section, we provide a very brief description of a few
diseases—plague, smallpox, tuberculosis, influenza, and
acquired immunodeficiency syndrome (AIDS)—that have
had large-scale impacts on society.



14.2.1 Plague

Plague, caused by a bacterium called, Yersinia pestis, has
been the cause of some of the most devastating epidemics
in history—the Black Death in the fourteenth century and a
pandemic in Asia in the late nineteenth and early twentieth
centuries. Yersinia causes three types of plague in humans:
bubonic, pneumonic, and septicemic. Plague is transmitted
between animals and humans by the bite of infected fleas,
direct contact with infected tissues, and inhalation of
infected respiratory droplets. Plague can be a very severe
disease, with a case-fatality ratio of 30 percent to 60
percent for the bubonic type; pneumonic plague is almost
always fatal when left untreated. We focus on the time line
and impact of the Black Death in this discussion. We draw
on documents provided by the Centers for Disease Control
and Prevention (CDC) (https://www.cdc.gov/plague) and
the Encyclopedia Britannica

(https://www.britannica.com/event/Black-Death).
The plague that caused the Black Death probably

originated in China in the early- to mid-1300s. In 1347, the
plague decimated the army of the Khan Janibeg while he
was besieging the Genoese trading port of Kaffa (now
Feodosiya) in Crimea. Janibeg catapulted plague-infested
corpses into the town in an effort to infect his enemies.
From Kaffa, Genoese ships carried the epidemic west to
Mediterranean ports, affecting Sicily (1347), North Africa,
mainland Italy, Spain, and France (1348), and Austria,
Hungary, Switzerland, Germany, and the Low Countries
(1349). A ship from Calais carried the plague to Dorset,
England, in 1348. The plague reached the extreme north of
England, Scotland, Scandinavia, and the Baltic countries in
1350.

Roughly one-third of the European population—around
25 million people—is estimated to have died from the
plague between 1347 and 1351. The population of western

https://www.cdc.gov/plague
https://www.britannica.com/event/Black-Death


Europe did not again reach its pre-1348 level until the
beginning of the sixteenth century (150 years later).

The Black Death had profound and wide-ranging effects
on society. Trade suffered, and wars were temporarily
abandoned. There were more long-lasting effects as well,
as a large number of workers died and the balance of
power between landlords and tenants altered. This led to
landowners paying wages and money rents. Wages for
artisans and other workers increased. Commentators view
the Black Death as a turning point, bringing large-scale
changes in the feudal structures of society that ultimately
led to the Renaissance in Europe.

Plagues are no longer a major source of concern today—
the total number of cases at a global level rarely exceeds a
few thousand. This is because we understand how plagues
spread and because there are drugs that can effectively
treat those who become infected.

14.2.2 Spanish Flu

The 1918 influenza pandemic was perhaps the biggest
pandemic of the twentieth century. A virus called influenza
type A, subtype H1N1, was the cause of this pandemic.
Influenza is transmitted from person to person through
airborne respiratory secretions. Our discussion draws on
the Encyclopedia Britannica (https://www.britannica.com
/event/influenza-pandemic-of-1918-1919) and the website
of the CDC (https://www.cdc.gov/flu/pandemic-resources
/).

The origins of the flu are unclear, but it was first widely
discussed by the press in Spain and this gave the pandemic
its name. As World War I was drawing to an end, the
movement of troops was probably a key mechanism for the
spread of this virus. By the summer of 1918, the virus had
reached parts of Russia, Africa, Asia, and New Zealand.
This first wave was comparatively mild. But a second, more
lethal wave began in August/September 1918. During this

https://www.britannica.com/event/influenza-pandemic-of-1918-1919
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wave, pneumonia developed quickly, with patients often
dying only two days after experiencing the first symptoms.
As social distancing measures were enforced, the second
wave began to die down toward the end of November.
However, once those measures were relaxed, a third wave
began in the winter and early spring of 1919. Although not
as deadly as the second wave, the third wave still claimed a
large number of lives. By that summer, the virus had run its
course in many parts of the world. Some historians suggest
that there was a fourth wave in winter 1920, although it
was far less virulent.

It is estimated that about 500 million people—roughly
one-third of the world’s population—were infected with this
virus. The number of deaths is estimated to be at least 25
million, though some scholars claim that it was more than
50 million.

As no vaccine was available and there were no antibiotics
to treat secondary bacterial infections that can be
associated with influenza, health policy measures were
limited to nonpharmaceutical interventions. These included
limits on contact and interactions (e.g., isolation,
quarantine, and restrictions on public meetings) and
improvements in personal hygiene (e.g., use of
disinfectants). While the Spanish flu has become part of
history, influenza remains a health problem of major
concern even today: there are three to five million cases of
acute influenza and between 250,000 and 500,000 deaths
annually.

14.2.3 AIDS

AIDS is a transmissible disease of the immune system
caused by the human immunodeficiency virus (HIV). HIV is
a lentivirus (the term literally means “slow virus,” and it is
a member of the retrovirus family) that slowly attacks and
destroys the immune system, the body’s defense against
infection, leaving an individual vulnerable to a variety of



other infections (and malignancies) that eventually cause
death. This virus is transmitted by the direct transfer of
bodily fluids—such as blood and blood products, semen and
other genital secretions, or breast milk—from an infected
person to an uninfected person. AIDS is the final stage of
HIV infection, during which time fatal infections and
cancers frequently arise. Our discussion draws on
documents from the CDC website
(https://www.cdc.gov/hiv/).

The origins of HIV remain unclear. A virus that is
genetically similar to HIV has been found in chimpanzees
and gorillas in western equatorial Africa. That virus is
known as simian immunodeficiency virus (SIV). It was
originally thought to be harmless in chimpanzees, but in
2009 a team of researchers investigating chimpanzee
populations in Africa found that SIV causes AIDS-like
illness in the animals. SIV may have migrated to humans
through the consumption of the flesh of infected
chimpanzees.

The first cases of AIDS may be traced to CDC reports
published in 1981. These reports drew attention to
pneumonia in five homosexual men in Los Angeles that was
likely acquired through sexual contact. The reports also
described an outbreak of a rare cancer called Kaposi
sarcoma in homosexual men in New York City and San
Francisco. Researchers subsequently established that the
infections and cancers were manifestations of an acquired
immunodeficiency syndrome, which became known as
AIDS.

According to the World Health Organization (WHO),
about 36.7 million people were living with HIV,
approximately 1.8 million people were newly infected with
HIV, and about 1 million people died of HIV-related causes
in 2016. In the period 1981–2016, about 35 million people
died of HIV infection. From wreaking havoc on certain
populations (such as the gay community in San Francisco

https://www.cdc.gov/hiv/


in the 1980s) to infecting more than one-third of adults in
sub-Saharan African countries such as Botswana,
Swaziland, and Zimbabwe at the turn of the twenty-first
century, AIDS continues to have a devastating social
impact. AIDS appears to have been brought under control
in rich countries but much less so in poor countries.

14.2.4 Tuberculosis

Tuberculosis is an infectious disease that is caused by a
tubercle bacillus called Mycobacterium tuberculosis. The
tubercle bacillus is a small, rod-shaped bacterium that is
extremely hardy; it can survive for months in a state of
dryness and can also resist the action of mild disinfectants.
Infection spreads primarily through the respiratory route
directly from an infected person who discharges live bacilli
into the air. Minute droplets ejected by sneezing, coughing,
and even talking can contain hundreds of tubercle bacilli
that may be inhaled by a healthy person. Our discussion
here draws on the Encyclopedia Britannica

(https://www.britannica.com/science/tuberculosis).
During the eighteenth and nineteenth centuries,

tuberculosis reached near-epidemic proportions in the
rapidly urbanizing and industrializing societies of Europe
and North America. Indeed, consumption (as it was then
known) was the leading cause of death for all age groups in
the Western world from that period until the early
twentieth century. Since the 1940s, though, antibiotic
drugs have reduced the length of treatment to months
instead of years, and drug therapy has done away with the
old tuberculosis sanatoriums where patients were nursed
for years and frequently died.

Due to a combination of more hygienic living conditions
and antibiotic drugs, the rate of deaths from tuberculosis in
developed countries declined sharply over the first half of
the twentieth century. In England and Wales, the death
rate dropped from 190 per 100,000 population in 1900 to 7

https://www.britannica.com/science/tuberculosis


per 100,000 in the early 1960s. In the US, during the same
time period, it dropped from 194 per 100,000 to
approximately 6 per 100,000. In the early twenty-first
century, tuberculosis is mainly a disease of the developing
world, especially in regions of Africa, South and Southeast
Asia, and the eastern Mediterranean. There are 8–10
million new cases of tuberculosis each year, and between
1.6 million and 2 million die.

14.2.5 Smallpox

Smallpox is caused by the Variola virus (major or minor).
The disease begins with a high fever, headache, and back
pain, and then proceeds to an eruption on the skin that
leaves the face and limbs covered with pockmarks (or pox).
Smallpox spreads from one person to another through close
contact, usually by inhalation of the virus that had been
expelled in the breath or saliva droplets of an infected
person. Despite the hardiness of the Variola virus, smallpox
is not highly infectious; infected persons usually did not
infect more than two to five of their closest contacts. Our
discussion draws on the Encyclopedia Britannica

(https://www.britannica.com/science/smallpox) and the
CDC website (https://www.cdc.gov/smallpox/).

There is evidence of the prevalence of smallpox going
back 3,000 years to the time of the pharaohs in Egypt. For
centuries, it was one of the world’s most-dreaded plagues,
killing as many as 30 percent of its victims, most of them
children. Those who survived were permanently immune to
a second infection, but they faced a lifetime of
disfigurement, and in some cases blindness.

There are systematic records of smallpox epidemics
starting in the seventeenth century: a huge pandemic
spread from Europe to the Middle East in 1614, and
epidemics occurred regularly in Europe throughout the
seventeenth and eighteenth centuries. In the eighteenth
century, an estimated 400,000 people died annually of

https://www.britannica.com/science/smallpox
https://www.cdc.gov/smallpox/


smallpox. Introduced to the Americas by European
conquerors and settlers, smallpox decimated Indigenous
groups in North America, including the Aztecs of Mexico,
the Incas of South America, and the Araucanians of Chile.
The Australian Aboriginal populations also suffered large
losses from the disease in the nineteenth century. It is
estimated that over 300 million people have died due to
smallpox in the twentieth century. But this was also one of
the first diseases to be controlled by a vaccine, following
the experiments of the English physician Edward Jenner in
1796. The WHO began an intensive global eradication
program against smallpox in 1967, and in 1980, the disease
was officially declared eradicated.

14.2.6 COVID-19

COVID-19 is an acute disease that is caused by a
coronovirus. The main symptoms are a high temperature, a
continuous cough, and a loss of the sense of smell and
taste. Over time, a variety of other complications may arise,
such as acute pneumonia. The first cases of COVID-19 were
identified in the Chinese city of Wuhan in December 2019.
It spreads through contact with infected individuals. As of
August 2021, it is estimated that over 200 million people
have been infected and over 4 million people have died due
to COVID. It is the most devastating epidemic of the
twenty-first century. Our discussion draws attention to the
role of contact networks in the explosive spread of COVID
in India in 2021. The data is taken from
www.coronavirus.jhu.edu.

The first cases in India were detected in January 2020,
but throughout the rest of the year, rates of infection
remained below 50,000 per day. Similarly, death rates
remained below 500 per day through most of 2020. In the
first quarter of 2021 (January until mid-March), the rates of
infection and mortality were very low. However, by the end
of March, the rate of infection started climbing. Over the

http://www.coronavirus.jhu.edu/


period of mid-April to mid-May, over 250,000 new cases
were recorded daily. As a result, from the end of April to
mid-June, over 3,000 deaths were recorded daily. We
elaborate next on one of the events believed to have led to
a massive increase in infections in April and May 2021.

As COVID spreads through human-to-human contact, an
event that brings very large numbers of individuals
together can dramatically increase the rate of infection. We
illustrate this point through a discussion of the Kumbh
Mela in India in April 2021. Our discussion draws on an
article in the Guardian from May 30, 2021: https://www
.theguardian.com/world/2021/may/30/

On April 12, India registered 169,000 new COVID-19
cases. However, in the same week, millions of people were
gathering on the banks of the Ganges River in the holy city
of Haridwar to celebrate the Kumbh Mela, one the holiest
festivals in the Hindu calendar. By the time the festival
ended, on April 28, more than 9 million people had
attended. By April 15, more than 2,000 festivalgoers had
already tested positive for COVID-19. We now briefly
describe how the Kumbh Mela acted as a key spreader of
COVID-19 infection by tracing the routes taken by two
pilgrims from different parts of the country. Figure 14.1
presents a snapshot of the spread of the disease across
space.

https://www.theguardian.com/world/2021/may/30/


Figure 14.1 
Superspreader event: Kumbh Mela. Source: May 30, 2021. The Guardian.

We start with the case of Thakur Puran Singh, 79, from
Rajouri in Kashmir. Singh and his extended family drove to
Haridwar on April 9. For the next five days, the family took
multiple swims in the Ganges. On April 16, the day after
returning home, Singh began to experience COVID
symptoms, and by April 21, his condition had deteriorated,
and he died shortly afterward. Eight days later, his elder
brother, Balwant Singh, also died. A test-and-trace official
said that more than two dozen people contracted the virus
after contact with Singh’s family members. We turn next to
the case of a 67-year-old woman from Nandini Layout, a



suburb of Bengaluru, who tested positive for COVID days
after returning from the Kumbh Mela. She lived with her
daughter-in-law, who worked in a hospital: tests soon
confirmed she too had COVID. Testing teams at the
hospital found that 12 patients and 3 staffers had contacted
the diease. In addition, 18 other close contacts of the
woman were eventually diagnosed with COVID, but the
true spread of the virus was probably even higher.

14.2.7 Computer Viruses

The discussion so far has focused on biological diseases
that infect human beings. Over the past three decades, with
the growth of the Internet, the spread of computer viruses
and worms has become important. In 2009, roughly 10
million computers were infected with malware designed to
steal online credentials. It is estimated that in Europe,
annual damage caused by malware is around 9.3 billion
euros, while in the US, the annual costs of identity theft are
estimated at $2.8 billion. For a general overview of
computer security issues, see Anderson (2020).

We present here a short discussion of one computer
epidemic called ILoveYou, caused by a worm that
originated in Philippines on May 5, 2000. It spread
westward across the world: Hong Kong, Europe, and then
to the US. Within 10 days, over 50 million infections had
been recorded. Once the worm infected a computer, it
would overwrite files and spread itself through email
messages sent to contacts of the captured computer. It is
estimated that this worm caused $5.5 to $8.7 billion in
damages and it cost around $15 billion to remove it
(https://en.wikipedia.org/wiki/ILOVEYOU). For a
discussion on other computer viruses see chapter 7.

Let us summarize a few points arising from these case
studies. Large-scale disease epidemics are a major
occurrence in human history and account for several
million deaths every year, even with the modern medicine

https://en.wikipedia.org/wiki/ILOVEYOU


of today. The scale and persistence of COVID reaffirm the
seriousness of the threat posed by such diseases. Many of
these diseases originated in animals, while some of them
have human origin. The mode of contagion of these
diseases varies greatly: in some cases, it requires frequent
and intimate contact among humans (such as with AIDS),
while in others, infection can spread via casual contact
(such as with flu), and in still others, infection occurs via
third-party agents (such as plague) that carry disease from
an infected person to an uninfected one. Some diseases
(like smallpox) can infect a person only once, while others
(like flu and COVID) can infect the same person multiple
times. Finally, human responses to diseases range from the
development of vaccines, to limitations on contact, to
changes in standards of hygiene. In all these cases,
patterns of human interaction play a central role in the
spread of diseases.

14.3 A Simple Threshold for Epidemics

In this section, we consider a model in which there is an
initial infected individual who remains infected for some
time, and during this period, they can transmit the disease
to those they come in contact with. Each of these contacts
in turn also have a set of distinct contacts, who have their
contacts, and so forth. The infectiousness of the disease is
captured in a number p ∈ (0, 1) that may be interpreted as
the probability that a contact is infected. Suppose for
simplicity that everyone has k contacts. Our goal is to
understand how p and k determine the size of the epidemic.
The exposition here draws heavily on Easley and Kleinberg
(2010).

The contact network is illustrated in figure 14.2; in this
network, the number of contacts is k = 4, and we present
the first three layers of the network. This network is a tree
with a single root—the initially infected individual. Every



node is connected to k nodes in the level below it, and
every node (other than the root) is connected to a single
node in the level above it. As we wish to understand
whether a disease will persist indefinitely, we will find it
convenient to work with a tree that is infinite.

Figure 14.2 
Spread of disease: varying infectiousness.

To appreciate the basic forces at work, it is helpful to
plot a few examples of disease spread through the network.
Figure 14.2 illustrates the evolution of an epidemic that
infects 1 person in the first level, 2 in the second level, and
1 again in the third level (and possibly none in subsequent
layers). It also shows a more virulent epidemic, with 3
people infected in the first level, 9 infected in the second
level and 28 at level three (and possibly even more in the
subsequent levels). As a result, the disease spreads
explosively. We may interpret the difference between
figures 14.2(a) and 14.2(b) as arising from differences in
the infectiousness of the disease: the value of p is much
higher in the latter case.



Figure 14.3 brings out the role of connectivity of the
network: there is relatively little infection in the network in
figure 14.3(a), while there is persistent and continuing
infection in figure 14.3(b). These diagrams suggest that if
the disease ever fails to infect at a certain level, then it will
die out. In other words, there are two possibilities—either
the disease dies out after a finite number of steps or it
continues to infect people in every wave, proceeding
infinitely through the contact network. Figures 14.2 and
14.3 suggest that higher p and k make a long-lasting
epidemic more likely. To make this idea more precise, we
will define a fundamental notion in epidemics: the
reproductive number.

Figure 14.3 
Spread of disease: varying k.

The reproductive number, denoted as R0, is the expected
number of new cases of the disease caused by a single
individual. In our model, everyone meets k new people and
infects each of them with probability p. The reproductive
number here is given by R0 = pk. We will show that the



outcome of the disease is determined by whether R0 is
smaller or larger than 1.

Let qn denote the probability that the epidemic survives
for at least n levels—in other words, that some individual in
the nth level of the tree becomes infected. Let q* be the
limit of qn as n goes to infinity; we can think of q* as the
probability that the disease persists indefinitely. We will
establish the following result.
Proposition 14.1 Consider a tree network with a single root, and suppose

that infection spreads from the root downward. If R0 < 1, then q* = 0, and if R0
> 1, then q* > 0.

It is instructive to work through the argument step by
step. Note that the number of individuals at any given level
exceeds the number at the previous level by a factor of k,
so the number at level n is kn. Let us examine the expected
number of infected individuals at different levels. For level
n, this will be a random number ranging from 0 to kn.

Define Xd to be a random variable equal to the number of
infected individuals at level d. For every person j at level n,
let Ynj be a random variable equal to 1 if j is infected, and
equal to 0 otherwise. Then

where m = kn. Using the result that the expectation of the
sum of random variables is equal to the sum of their
expectations, we may rewrite equation (14.1) as

Note that E[Ynj] = 1 × Pr[Y nj = 1] + 0 × Pr[Y nj = 0] =
Pr[Y nj = 1], so the expectation of any Ynj is just the
probability that j gets infected. But what is the probability
that j at level n gets infected? This happens when each of
the n contacts leading from the root to j successfully



transmits the disease. The probability of this event is pn:
E[Ynj] = pn. Equipped with this formula, the expected
number of infections at level n is given by:

Equipped with this formula, let us return to the original
object of interest, q*. We note that

An equivalent way to write the expected value is

It follows, then, that the expected value E[Xn] ≥ Pr[Xn ≥
1]. However, Pr[Xn ≥ 1] is the definition of qn; thus E[Xn] ≥
qn. But if R0 < 1, then  as n grows; hence qn must also
converge to 0. This shows that q* = 0 when R0 < 1.

Let us take up the case of R0 > 1 next. It is easy to see
that E[Xn] grows and is unbounded in n. However, this is
not generally sufficient to ensure that the disease persists.
A question at the end of the chapter examines this issue. So
we need to dig a little deeper into the structure of the
model. Our method is to compute qn in terms of qn−1, and
we will use equation (14.5) to work out the value of q*.

Consider the following event: The disease spreads

through the root node’s first contact j and then continues to

persist down to n levels in the part of the tree reachable

through j. For this event to obtain, we need j to catch the
disease directly from the root, which happens with
probability p. At this point, j becomes completely analogous
to the root node of its own branching process, consisting of
all nodes reachable from it downward in the tree. So, for
the event to occur, after j is infected, the disease must
persist for the remaining n − 1 levels: by definition, this
occurs with probability qn−1. As j is infected by the root with



probability p, it follows that the probability of the event is
pqn−1. This event fails to hold with a probability of 1 − pqn−1.
There is an identical copy of the event for each of the direct
contacts of the root node, and each fails to hold with
probability 1 − pqn−1. As each of them starts with a
different root and we are considering a tree network, the
events are independent, so the probability that they all fail
to hold is (1 − pqn−1)k.

But by definition of qn, we know that the probability that
the event fails to occur is 1 − qn. Hence,

Simplifying, we get

We are interested in values of qn as n gets large. Let us
define function f(x) = 1 − (1 − px)k, then we can write
equation (14.7) as qn = f(qn−1). Now our goal is to study the
limit of the sequence 1, f(1), f( f(1)), f( f( f(1))), …, which is
obtained by applying f repeatedly. Function f satisfies the
following properties:

In the case R0 > 1, f(x) therefore lies above x for small
values of x. Putting together these observations, and noting
that f is a continuous function on the range x ∈ [0, 1], we
conclude that there is a unique value x* > 0 such that x* =
f(x*). This concludes the proof.

◼

The threshold property developed in proposition 14.1
highlights a sharp transition at the threshold point.



Suppose R0 is just slightly below 1 and we increase
probability p by a little. This could result in a positive
probability of a large outbreak. Similarly, if R0 is just
slightly above 1, then slightly reducing p to push R0 below 1
would eliminate the risk of a large epidemic outbreak. For
example, if k = 3 and p = 0.4, then q* =.44. Reducing p to
0.35 reduces q* to .14; reducing p further, to below 1/3,
reduces q* to 0. As R0 is the product of p and k, we can
think of two basic types of public-health policies to lower
R0: quarantining people (which lowers k), and encouraging
changes in behavior such as wearing masks or being more
hygienic (which lowers p).

In the model of this section, the disease can only move
from higher to lower levels and there is only one route to
the spread of the disease from an upstream to a
downstream node (as the network is a tree). As we turn to
more general networks, we will need to think about both
these assumptions. We first take up the case of a disease
that a person can get only once (such as smallpox), and
then we study a disease that a person can get multiple
times (such as flu).

14.4 The Susceptible-Infected-Recovered (SIR) Model

Here, we consider a model of a disease that an individual
can suffer from only once. There are therefore three states
for an individual: they may be susceptible, infected, or
recovered. This is the Susceptible-Infectious-Recovered
(SIR) model. Our discussion will focus on the relation
between network structure and the spread of a disease; we
will draw on the exposition of the basic theory in Easley
and Kleinberg (2010) and Jackson (2008).

The dynamics of infection are determined by the contact
network, the probability of contagion p, and the length of
infection time tI. At the start of the process, some nodes are
in state I and all other nodes are in state S. A node v that



enters state I remains infectious for tI steps. During each of
these tI steps, v has a probability p of passing the disease to
each of its susceptible neighbors. After tI steps, node v is no
longer infectious or susceptible to further bouts of the
disease and is referred to as “recovered” or “removed.”

Figure 14.4 presents an example of the SIR model
unfolding on a contact network. At each step, blank nodes
are in a susceptible state, the shaded nodes in red are in
the I state, and the shaded nodes in blue are in the R state.
Notice that the basic model in section 14.3 is a special case
of the SIR model: it corresponds to the case tI = 1 and a
contact network that is an infinite tree, with each node
connected to a fixed number of neighbors in the level below
it.

Figure 14.4 
The SIR process.



We now explain how a network structure can alter the
dynamics as compared to the basic tree structure described
in the previous section. The simplest way to see this is to
reconsider the threshold result given in proposition 14.1.
Recall that in the tree network, the disease dies out if and
only if the reproductive number R0 < 1. We will show that
this result is no longer true when we consider more general
networks.

Consider the network illustrated in figure 14.5, and
suppose that these levels of two nodes continue indefinitely
to the right. To fix ideas, let us consider an SIR epidemic in
which tI = 1, the infection probability p is 2/3, and the two
nodes at the far left are the only nodes that are infected at
the start.

Figure 14.5 
Tunneling in networks. Source: Easley and Kleinberg (2010).

In this simple network, each infected node has edges to
two nodes in the next layer: as every link comes alive with
probability 2/3, the expected number of new cases is 2 ×
2/3 = 4/3 > 1. Hence in this example, R0 > 1. In the
original model with the tree network from the previous
section, we know that this means that there is a strictly
positive probability that the disease will persist indefinitely.

However, in the network in figure 14.5, the disease will
die out almost certainly after reaching only a finite number
of steps. To see this, note that in each layer, there are four
edges leading to the next layer. As each can fail with
probability 1/3, there is a probability (1/3)4 = 1/81 that all
four edges will fail to transmit the disease. It follows that



there is a probability of at least 1/81 that each layer will be
its last. Therefore, from standard reasoning, the disease
will cease to spread after a finite number of layers, with
probability 1.

This is a very simple example, but it helps us understand
that network structure can be more or less conducive to the
spread of a disease. This happens because the network
forces the disease to pass through a narrow tunnel, in
which a small breakdown in contagion can wipe it out.

14.4.1 Percolation

We have presented the SIR model as a dynamic process, in
which the state of the nodes evolves over time, one step at
a time. This is illuminating because it captures the
temporal patterns of the disease as it spreads through a
network. In this section, we will explore an alternative
perspective on the spread of a disease that is static and at
the same time equivalent in a suitable sense. The static
formulation is very helpful, as we can use models of
random graphs to understand disease progression.

Let us consider the basic SIR model, in which tI = 1.
Consider a point in an SIR epidemic when a node v has just
become infectious, and it has a susceptible neighbor w.
Node v has one period—and therefore one chance—to
infect w, and it succeeds with probability p. The outcome of
this random event can be thought of as the outcome of a
coin flip that has probability p of coming up heads. To
understanding how far a disease travels, it is important to
examine whether the disease will proceed from v to w, but
it is not important when the coin was flipped. Keeping in
mind this atemporal interpretation, we can now take one
link in a network at a time and ask whether it comes up
heads, and we can assume that the coin toss is independent
across links. Once we have stored the results of all the coin
tosses, we can proceed to examine the extent of spread of
the disease as follows.



The links in the contact network for which the coin flip
was heads (i.e., successful) are declared open; the
remaining edges are interpreted as blocked. This thought
process is represented in figure 14.6, which shows a
sample result of coin flips that is consistent with the
pattern of infections in the example from figure 14.4. And
we can now see how to use the open and blocked edges to
understand the course of the disease in this network. Let us
start with some initially infected nodes, and then node v

will become infected if and only if there is a path consisting
only of open edges from one of these infected nodes to v.
Figure 14.6 is a concise way to summarize the course of
such a disease. This static view of the progression of a
disease is referred to as percolation, and this concept has
been extensively studied by physicists and mathematicians.
We now use the percolation perspective to understand the
SIR process in a network.

Figure 14.6 
From SIR to percolation: open edges are shown in thick links.

Starting from an initially infected node, a disease will
spread to another node so long as there is a path from the
initially infected node to the node in the subgraph of open
edges in the original network. In other words, to
understand the extent of spread of the disease, we need to



know the distribution of the component sizes of the open
subgraph. This leads us to an exposition of one of the most
celebrated results in graph theory: the distribution of
component sizes in the Erdὄs-Rényi model of random
graphs. Our discussion here will be informal; for more a
formal treatment of the material, the interested reader
should consult Bollobas (1998 and 2004).

Consider the Erdὄs-Rényi model (as in chapter 2) on n −
1 nodes with a probability of any given link being p > 1/n

(in principle, p is a decreasing function of n increases), but
we are suppressing this dependence for simplicity. Add a
new node, numbered n. Connect this last node with the
existing n − 1 nodes, where the probability of each link is
independent and given by p. Let q be the fraction of nodes
in the largest component of the original network. For large
n, the number q will also be a fairly good approximation of
the share of nodes in the largest component in the network
with n nodes. The only case where this may not be true is
when the new node successfully connects two hitherto-
unconnected large components. However, the likelihood of
this happening becomes negligible under the assumption
p(n − 1) > 1 (the details are provided in the proof of
connectedness of Erdὄs-Rényi graphs given in chapter 2).
The new node is not in the largest component if none of its
neighbors are in the giant component; if the new node has
degree d, then for large n, this probability is roughly equal
to (1 − q)d.

Generalizing this reasoning, the probability that a node
with degree d is not a member of the largest component is
(1 − q)d. This leads us to the identity: the fraction of nodes
outside the largest component, 1 − q, is equal to the
expected probability of a node lying outside the largest
component; that is,



Recall the Poisson degree distribution:

Substituting for P(d) in equation (14.10), we get

Recalling the definition

we arrive at the following approximation for q:

A first point to note is that q = 0 is always a solution to
this equation. Whether there is a positive solution depends
on the value of p. Intuitively, if p is very small, then the
network will be fragmented. To derive the threshold
probability, define f(q) = 1 − e−q(n−1)p. Observe that f(0) = 0.
Consider the first derivative,

and the second derivative,

Function f(.) is concave as the second derivative is
negative. Next, observe that f(1) = 1 − e−(n−1)p < 1, so long
as p(n − 1) is bounded. So f(q) = q at some q > 0 if and



only if f′(0) = (n − 1)p > 1. We summarize our discussion as
follows.
Proposition 14.2 In the Erdὄs-Rényi graph, the size of the giant component

becomes negligible and the network is fragmented in case p(n−1) < 1; the

giant component is nonvanishing in a large network only if p(n − 1) > 1.

We note that the threshold for Erdὄs-Rényi graphs is
very much in the spirit of the reproductive number result
obtained for trees in the previous section (see proposition
14.1).

What can we say about general random graphs? Recall
that in chapter 3, we introduced the configuration model as
a way to think of general degree distributions. We now
study giant components in networks that have been
generated using the configuration model.

Let Pn(d) describe the degree distribution for a network
with n nodes. As we are interested in properties of
networks for large n, for reasons of tractability, we place
some restrictions on Pn(d) as n grows. We place the
following restrictions:

  1.  Pn(d) converges uniformly to a degree distribution P

with a finite mean.
  2.  There exists an 𝜖 such that Pn(d) = 0 for .
  3.  (d2 − 2d)Pn(d) converges uniformly to (d2 − 2d)P(d).
  4.  EPn[d2 − 2d] converges uniformly to its limit (which may

be infinite).
The high-level idea is the following: starting at a random

node, we should be able to trace larger and larger
neighborhoods as the distance increases. The first step in
the argument is to note that below the threshold, as we
move outward from a node, we do not encounter an already
visited node (in other words, the network is a tree).
Consider a link in a network generated using a
configuration model that satisfies the four conditions listed



here. The probability that a link connected two nodes that
already have a path between them in a component with s
nodes is the probability that both nodes of the link lie in the
component: this is proportional to (s/n)2. Thus the fraction
of links that end up in cycles is of the order

where si is the size of component i in the network. Let S be
the size of the largest component. Then it follows that,
since , this sum is smaller than S/n. If we are below
the threshold at which the giant component emerges, then,
by definition, S/n is converging to 0 for large n. This
completes a sketch of the argument that the network is a
collection of trees below the threshold. For a more precise
statement and the details of the proof, see Molloy and Reed
(1995).

Let us now turn to the size of the giant component above
the threshold. Define ϕ as the number of nodes that can be
found on average by tracing the paths outward from an end
node taken from a link picked at random in the network (as
it gets large). As there are no cycles, the number of nodes
reached starting from a link is 1 plus the number of nodes
reached starting from each of the neighbors of the node.
Define  and . Then

Simplifying, we obtain

This yields



Equipped with equation (14.18), we can now compute
the threshold for the emergence of the giant component.
Observe that ϕ is finite if 2⟨d⟩−⟨d2⟩ > 0. Thus there is a
giant component if

This in turn yields the threshold 2⟨d⟩ = ⟨d2⟩. To appreciate
the implications of this result, let us apply it to some well-
known degree distributions.

First, consider the Erdὄs-Rényi random graph: recall that
when n is large, this graph has a Poisson degree
distribution so that ⟨d2⟩ = ⟨d⟩ + ⟨d⟩2. Our threshold result
then tells us that the giant component emerges if ⟨d⟩ > 1.
Turning next to a regular network with degree k, ⟨d⟩2 =
2⟨d⟩ implies that k = 2. Finally, for a scale-free degree
distribution Pn(d) = cd−γ, the term ⟨d2⟩ diverges when γ < 3.
This means that there is a giant component for all degree
distributions that satisfy the finite mean condition
mentioned previously.

We next turn to the size of the giant component. Recall
that equation (14.10) does not assume a specific degree
distribution, so the same formula applies for the
configuration model:

A first-order stochastic shift in degree distribution means
that the right side of equation (14.22) is smaller for every
finite q, which in turn means that the 1 −q that solves the
equation must be smaller (i.e., the giant component must
be larger). This is intuitive, as we are implicitly raising the
probability of linking. A question at the end of the chapter



explores the implications of varying degrees distributions
for the size of the giant component.

We now apply the result to the study of vaccination
policies.

14.4.2 Random Vaccination

Suppose that some fraction π of nodes have been
vaccinated against a disease like COVID and are therefore
immune. How does that affect the size of the epidemic? The
initially infected person interacts with their neighbors, of
whom π are immune.

To address this question, it is helpful to lay out the
sequence of events: first, a network is formed. Second, a
fraction of nodes nπ is deleted at random, leaving a
residual network in place. Finally, we identify the
component of a randomly chosen initial infection in the
residual network.

We first take up the Erdὄs-Rényi random graph. As node
vaccination is random, we may study the extent of spread
of the disease by considering an alternative network with
n(1 − π) individuals in which all links are created with
probability p. Recall from our earlier computations that the
threshold for the emergence of a giant component is given
by pn(1 − π) = 1: thus the disease is contained within a
small/finite component if pn(1 − π) < 1, and it spreads over
a unbounded component if pn(1 − π) > 1. Moreover, the
fraction of nodes that will be infected is given by the
number q, where q solves

Taking logs, we can use the following equation to write q
in a more useful form:



We can infer that an increase in p(1 −π)n leads to a
corresponding increase in the size of the giant component,
and hence in the size of the infected fraction of the
population.

Let us now turn to disease spread in a network with a
general degree distribution. We start with a study of the
configuration model. For the network obtained after the
deletion of π nodes, we get the following threshold property
for the emergence of a giant component:

To apply this formula, we need to have an expression for
the degree distribution of the network, Pπ, after the
immune nodes have been deleted. Let us start with a node
in the original network P. The probability that a node
starting with degree d′ has a degree d ≤ d′ is given by

The degree distribution in the modified network after
eliminating immune nodes is

Next, note that

This expectation may be rewritten as



It can be expressed more compactly as ,
where  is the expectation of  from a binomial
distribution with parameter (1 − π) and a maximum of d′
draws. It then follows that Mπ(d; d′) = d′(1 − π) and Mπ(d2;
d′) = ⟨d⟩2 + d′π(1 − π). Using these facts, we may write

Using equation (14.25), the threshold for a giant
component of susceptible nodes is given by a π that solves

Solving for π, we get

Let us consider a few examples of networks in order to
develop an appreciation for the threshold in equation
14.33. In the regular network, every node has degree k.
The threshold is then given by π = (k − 2)/(k − 1). So if k =
2, then the threshold is π = 0; in other words, immunization
of any positive fraction of nodes eliminates the spread of
the disease. On the other hand, if k = 3, then π = 0.5,
meaning that we would need to vaccinate at least one-half
of the nodes to prevent a serious epidemic. We recall from
the earlier discussion that in the Erdὄs-Rényi network (with
a Poisson degree distribution), ⟨d2⟩ = ⟨d⟩2 + ⟨d⟩ and ⟨d⟩ =
(n− 1)p. This implies that the threshold is given by 

, or equivalently by pn(1 − π) = 1. This threshold
is reminiscent of the basic threshold with regard to the
reproductive number obtained in proposition 14.1.

Finally, consider the scale-free network with the degree
distribution P(d) proportional to d−γ. Recall that ⟨d2⟩ is
diverging for γ < 3. This immediately implies that the



threshold value for π is 1. In other words, the disease
spreads to a giant component even when virtually all nodes
are immune. This means that nodes with very high degrees
play a central role in the spread of disease.

Thus whether a network successfully diffuses a disease
or not depends on the relationship between the variance
and the mean. When the variance is sufficiently large
relative to the mean, the network will diffuse the disease
even when large parts of the population are immune. This
motivates the study of targeted vaccination policies, which
follows.

14.4.3 Targeted Vaccination

Suppose that the policy maker knows the degrees of
everyone and can target individuals based on those
degrees. Let us consider the policy of immunizing a fraction
π of the highest-degree individuals. To assess the impact of
this policy, we start with a network formed with the
original degree distribution P(d). Suppose that a share H of
the highest-degree individuals are deleted. For simplicity,
suppose that all nodes with degrees higher than d(π) are
immunized and deleted. This in turn means that all links
emanating from these immunized nodes are also deleted,
which lowers the degree of the remaining nodes. In other
words, if we are immunizing a fraction π, then

Observe that we have removed share π of nodes, but as
these are the highest-degree nodes, we have removed a
higher fraction of links, given by



Thus a node in the residual network loses each of its
links with a probability of f(π). The new degree distribution
is given by

Building on the thresholds obtained in equation 14.32,
and using equation 14.36, we arrive at

where ⟨.|d ≤d(π)⟩ is the expectation with respect to the
original distribution (which is truncated at d(π)).

We use this threshold to clarify the effects of immunizing
the high-degree nodes in scale-free networks. It is
convenient to work with a continuous approximation of the
degree distribution. Let the density be given by (γ − 1)d−γ.
Observe that

Next, we note that

Substituting for the density, we get

Hence 1 −d(π)1−γ = 1 − π, implying π = d(π)1−γ, and so
d(π) = π1/(1−γ).

We can obtain an explicit formula for f(π) using the
density P(d) as follows:



Taking limits with respect to t and substituting for d(π),
we obtain f(π) = π(γ−2)/(γ−1).

Let us next obtain an explicit expression for ⟨dx|d ≤d(π)⟩:

Note that the term, 1/1 − π, is a rescaling due to
truncated distribution. Substituting for x = 1 and x = 2 in
equation (14.46), we obtain

Substituting for f(π) and for ⟨d|d ≤d(π)⟩ and ⟨d2|d ≤d(π)⟩
in equation 14.37, the threshold may be expressed as

To get a sense of the large effects of targeted
immunization, let us consider a few examples: If we set γ =
2.5, then the threshold equation (14.49) above is simplified



and yields π1/3 + π−1/3 = 3, which means that π = 0.06. Thus
immunizing only 6 percent of the (highest-degree) nodes is
sufficient to eliminate the large-scale spread of the disease.
By contrast, the immunization of a positive fraction of
nodes at random cannot eliminate the risk of large-scale
spread. If we raise the coefficient and set γ = 2.9, then the
corresponding threshold is 0.030, thus suggesting that as
coefficient γ grows, the fraction of high-connected nodes
that is needed shrinks.

This section has presented the SIR model. We first
showed through an example how the threshold level of the
reproduction number depends on the network structure.
This set the stage for a more systematic study of threshold
levels and how they depend on networks. We showed that
this issue can be usefully reformulated as a question on the
circumstances under which a giant component emerges in
a large graph. We first established a threshold result for
the infection rate in the Erdὄs-Rényi graph. As empirical
networks exhibit very unequal degrees, we then examined
general degree distributions and obtained the key result
that a giant component emerges for arbitrarily low rates of
infectiousness if the variance in degrees is large enough
relative to the mean degree. Finally, we applied the
threshold results to understand the attractiveness of
various types of vaccination policies.

14.5 The Susceptible-Infected-Susceptible (SIS) Model

We now take up diseases that people can suffer from
multiple times. The mechanics of the disease spread are as
follows: initially, some nodes are in an infectious state, I,
while all others are in a susceptible state, S. A node v that
enters state I remains in it for a fixed number of steps tI.
During each of these tI steps, v has probability p of passing
the disease to each of its susceptible neighbors. After tI

steps, the node is no longer infectious, so it returns to state



S. This gives rise to the SIS model. This model has been
studied in a number of research papers, such as Pastor-
Satorras and Vespignani (2001a, 2001b) and López-Pintado
(2008). Our discussion draws on Jackson (2008) and López-
Pintado (2008). As in section 14.4, the interest here will be
on the relation between the structure of networks and the
spread of disease.

We will study the dynamics of disease using an SIS
model in a network. The networks will be described by
degree distribution P(d). An individual of degree di will
have di interactions with other individuals during a given
period. The probability that individual i meets with an
individual who has degree d is

where ⟨d⟩ = E(d) is the expected degree in distribution P.
Thus individuals are more likely to meet individuals who
have higher degrees. Define ρ(d) as the fraction of d-degree
nodes who are infected. The average proportion of infected
individuals is given by . Using this notation and
the degree distribution of contacts, we may write the
expected probability of meeting an infected person as

Observe that θ is different from the average rate of
infection in the population:

We next turn to the important question of how an
infection arises out of interactions. In principle, this can
take different forms. It may be that i gets infected if they
meet a single infected individual. An alternative is that they



get infected only if the fraction of infected individuals in
the neighborhood is above a certain threshold. We will
suppose that there is a linear rate v at which an infected
person passes on infection. For simplicity, suppose that the
probability that a degree d individual becomes infected is
given by vθd, where v ∈ (0, 1). If we assume that vd ≤ 1 for
the highest degree in the network, this allows us to
interpret this term as a probability. This expression is a
good approximation of the probability of infection when v is
small.

In the SIS model, an infected individual recovers and
becomes susceptible again. Let the recovery rate—from
infection to susceptible—in any period be given by δ > 0.
We note that while this formulation makes the model
tractable, it implicitly assumes that the duration of
infection has no bearing on the probability of recovery.

We start with a comment on the finite model: as in our
earlier discussions, if the network is finite and the recovery
rate δ is independent across persons, then everyone will
eventually be in a susceptible state: the long-run outcome
is an infection rate of zero. In what follows, we will impose
limits on the size of the network and assume an infinite
population.

We will study the steady state of the process of disease
spread. Our interest will be in the conditions on the
probability of infection v, the rates of recovery δ, and the
network P under which infection rates are positive.

In a steady state, the rate of new infections must equal
the rate at which infected individuals move to a susceptible
state. In other words, for every degree d,

Defining λ = v/δ, we can write the steady-state infection
rate for degree d as



Recall that

Substituting for the steady state ρ(d), we obtain

A first point to note is that θ = 0 is always a steady state
of this process. Let us examine the conditions under which
there also exists a nonzero steady state.

It is helpful to begin with the simple case in which all
individuals have the same degree (i.e., the network is
regular). We can rewrite the formula for steady state
infection rates as

In the positive solution for this equation,

Positive infection obtains if dλ > 1 (this threshold is
reminiscent of our results in the SIR model, as well as the
threshold obtained in proposition 14.1). Given a net rate of
infection λ, we require the degree to be large. On the other
hand, for a given degree, we require the net rate of
infection to be large.

To see the role of networks, let us next consider a scale-
free distribution: P(d) = 2d−3. Substitute this distribution in
the expression for the steady-state infection rate and we
get



Let us solve for a nonzero θ. First, note that we can rewrite
the right side of this equation as

Set x = 1/λθ. Taking a continuous approximation, we get

Rearranging, we get

Integrating and simplifying, we get

Simplifying and rearranging, we obtain

Observe that this expression is always positive,
regardless of the value of λ: in other words, infection rate
is positive in the steady state, no matter how low the
infectiousness of the disease is. A comparison of this result
with the positive threshold in the regular graph gives a first
intuition for how degree inequality may facilitate the
spread of a disease.

To develop a more general understanding for the
prospects of infection in networks, we examine the
following question: Suppose that a small fraction of the



population is infected. Would the dynamics take us toward
a zero infection steady state or a significant positive
infection rate? Next, we follow López-Pintado (2008) in
addressing this question.

We start by defining the function

Function H(.) keeps track of the number of people who
become infected starting from θ. If H(θ) > θ, then the new
infection rate will be larger than the initial rate, while if
H(θ) < θ, then the new rate will be less than the initial rate.
Therefore, fixed points of the function H(θ) − θ correspond
to the steady states of the dynamic process. First, note that
H(0) = 0, so zero infection is always a steady state.

It is easily verified that H(θ) is increasing and strictly
concave in θ. Also, observe that H(1) < 1. So there is a
positive infection steady state if and only if H′(0) > 1.
Moreover, if it exists, such a positive steady state will be
unique (due to the strict concavity of H).

When H′(0) > 1, at low values of θ, function H pushes the
infection rate away from 0, so the zero infection rate steady
state is unstable. On the other hand, if H′(0) < 0, then
there is only one steady state, and at low values of θ,
function H pushes back toward this unique zero-rate steady
state. Let us now examine the conditions under which H′(0)
> 1.

Differentiating H(.) with respect to θ yields

We can rewrite this to obtain



The right side of the equation is greater than 1 if and only if

In a regular graph, ⟨d⟩ = d and ⟨d2⟩ = [⟨d⟩]2. Equation
(14.68) is equivalent to λ > 1/d, which is the condition we
obtained in equation (14.58). If, on the other hand, P(d) is
scale free, then we know that ⟨d2⟩ grows without bound as
n grows, so the inequality is satisfied for all λ > 0.

Finally, consider the Poisson degree distribution, in
which ⟨d2⟩ = (⟨d⟩)2 + ⟨d⟩. So we can rewrite the inequality
in equation (14.68) as

The threshold for the Poisson degree distribution lies
between the thresholds for the regular and scale-free
degree distribution cases.

The intuition for this result is as follows: high-degree
individuals serve as conduits for the disease to spread. This
means that even very low rates of net infection (i.e., low λ)
leave open the possibility for the hubs to be infected
because they have a very large number of contacts.
Moreover, once the hub is infected, it can in turn infect
many other nodes due to its high degree. The contrast with
regular networks is clear: everyone has the same degree. If
the degree is high enough, infection persists, otherwise
not. In a Poisson distribution with the same average
degree, there are individuals with higher as well as lower
degrees. The existence of the higher degrees helps lower
the threshold needed for the positive infection steady state.
Moving from Poisson to scale-free networks further
increases the variance in degrees, giving rise to even
higher-degree nodes. This further lowers the threshold
needed for a positive infection rate steady state.



This section introduced the SIS model. The principal
insight was that the level of spread of a disease depends on
the relative magnitude of the variance in degrees as
opposed to the mean degree. This yields a positive
threshold for infectiousness in Erdὄs-Rényi graphs.
However, in scale-free graphs, the variance in degrees
grows without bound, so diseases with arbitrarily small
levels of infectiousness can persist in the population.

14.6 Diffusion of Behaviors

Information on new products or behaviors spreads through
personal contact in a population. So we would like to
understand how best to implant the information at a few
select points so that it benefits the largest number of
individuals. In this section, we will present a case study of
the diffusion of microfinance in Indian villages that will
draw attention to the role of centrally seeded nodes. We
will then examine circumstances when random seeding can
perform close-to-optimal seeding.

We discuss the diffusion of micro-finance in south Indian
villages of Karnataka. This study is taken from Banerjee,
Chandrasekhar, Duflo, and Jackson (2013). For a general
introduction to microfinance, the reader is referred to
chapter 17, on economic growth. There is a sample of 75
villages where the microfinance institution, Bharatha
Swamukti Samsthe (BSS), was planning to start operating.
These villages are spread across five districts in Karnataka,
India (we discussed these villages in chapter 1 and will also
take them up in chapter 17). In 2006, six months before
BSS’s entry into any village, a baseline survey was
conducted in all 75 villages, which had very limited access
to any type of formal credit prior to this move of BSS.

In 2007, after this data collection was completed, BSS
began operations in some of these villages. The study
covers a period from 2006 until 2011. Over this period, BSS



had entered 43 of the villages. There were large differences
in the adoption rate of microfinance across the villages. We
examine the role of the seeding points in explaining these
differences.

We start by noting that, with a view to maximizing
adoption, BSS sought out a number of village leaders,
including teachers, leaders of self-help groups, and
shopkeepers—individuals whom BSS expected to be well
connected and credible. BSS held a private meeting with a
subset of these leaders who were amenable. In this
meeting, credit officers explained the program and asked
the leaders to help organize a meeting to present
information about microfinance to other villagers. These
people, therefore, were the seeding points into a village.

A first thought is that villages in which the seeds had a
greater degree would perform better. Figure 14.7 provides
a first impression of the correlation between the network
location of leaders and the eventual adoption of
microfinance. Figure 14.7(a) shows that degree centrality
is not strongly correlated with the diffusion of
microfinance. This leads us to dig deeper into the location
of seeds in the local village network.



Figure 14.7 
Injection points. Source: Figure 2 in Banerjee, Chandrasekhar, Duflo, and
Jackson (2013).

Next, we will explore the idea that diffusion of
microfinance is a dynamic process and direct as well as
indirect connections of seeds will play a role. Let us
consider the following process: First, the initial households
have one opportunity to choose whether to take up
microfinance. Second, the seeds have one opportunity to
talk with their network neighbors: this happens with
probability qp if they adopt, and probability qn if they do
not. In subsequent periods, households that have been
informed choose to adopt or not, they also pass information
to their neighbors, and so forth. Let us say that the process
stops after T periods; observe that if qn = 0 and T grows
without bound, then the process is a variant of the SIR



model (susceptible before exposure to microfinance,
infected if adopting, and removed after the period of
communication is over). The finite number of periods is
reasonable, as we will be studying relatively small
networks. There are therefore two parameters in this
diffusion process: qp and qn.

In the data from these 75 villages, the values of the
parameters were estimated as follows: qp = 0.35, qn = 0.07.
Thus nonadopters are much less likely to share information,
but they matter for diffusion because a large share of
villagers are nonadopters.

With these parameters in hand, we can compute the
centrality measures for different nodes in a network. Let us
define the communication centrality of a leader as the
estimated number of adopters, under the assumption there
is only one seed and the diffusion is as it is in the model
with the parameters. Figure 14.7(b) shows a positive
correlation between communication centrality and adoption
rates. This supports the idea that good injection points can
make a large difference in diffusion.

Indeed, we can simplify the model further and compute a
measure of diffusion centrality as follows: set qn = qp = q.
Define the diffusion centrality of node i, in network g, as
the vector:

This is a measure of the expected number of times that
all individuals, taken together, hear from individual i. When
T = 1, diffusion centrality is proportional to degree
centrality. If T →∞, diffusion centrality is proportional to
Katz-Bonacich centrality or eigenvector centrality,
depending on whether q is smaller than the first eigenvalue
of the adjacency matrix or smaller than its inverse (for a
discussion on the measures of centrality, see chapter 1). In



the intermediate region of T, diffusion centrality differs
from these standard centrality measures. Figure 14.7(c)
shows that the average diffusion centrality of leaders is
positively correlated with adoption rates for microfinance.
Here, the q value is set equal to the inverse of the first
eigenvalue of the adjacency matrix of the village social
network. The value of T is taken from the number of
trimesters that a village was exposed to the microfinance,
and it was set equal to 6.6.

14.6.1 On the Value of Targeting in Diffusion Problems

This microfinance case study draws attention to the role of
identifying seed nodes. However, collecting detailed
information on networks is costly, and even if we did collect
all the available information, there are computational
limitations on working out the optimal seeds. It is therefore
important to understand how much benefit there is from
optimal seeding strategies, and when it justifies the
expense. Our discussion in this section draws on
Akbarpour, Malladi, and Saberi (2020).

Consider a population of n individuals who are connected
to each other through a social network. At time t = 0, a
small collection of individuals—the seeds—are informed,
and everyone else is uninformed. An individual has one
chance to speak to each of their uninformed neighbors.
This information sharing is successful with probability c ∈
(0, 1), independently for each neighbor. If the information
sharing is successful, then the neighbor becomes informed
at the next period. This informed neighbor now speaks to
each of their neighbors at time t + 1, and so forth. The
process continues until there is no individuals left with an
opportunity to be informed. This is therefore a variant of
the SIR model considered in section 14.4.

To quantify the value of network information, we
contemplate two scenarios. In scenario 1, suppose that
there is access to full network data, and, in addition, we



know the communication links that come alive (as in the
percolation model studies discussed earlier in this chapter).
Moreover, suppose that we can compute the optimal s

seeds. In scenario 2, we ignore the network and simply pick
s + x initial seeds uniformly at random. We are interested
in understanding the value of x for which diffusion in
scenario 2 will exceed that in scenario 1. Observe that
comparing this omniscient seeding with random seeding
provides a generous upper bound for the value of network
information; this is because, for all realizations of the
random communication graph, the omniscient strategy will
perform at least as well as the optimum.

The main insight is as follows: the difference in the
expected fraction of informed individuals between the
random seeding strategy, with s + x seeds, and the
omniscient strategy, with s seeds, disappears as we
increase x. The intuition underlying this result can be
appreciated through a consideration of some well-known
networks.

First, consider networks that are homogenous (where
nodes are similar). In such networks, it would not matter
how we seed them. Thus optimal seeding should be similar
to random seeding in Erdὄs-Rényi networks. Next, consider
unequal networks, such as networks with a hub. Observe
that targeting seeds at random will involve nodes that are
connected to the hubs. Thus random seeds are very likely
to get information across to the hubs, who will in turn
spread it to everyone else. Optimal seeding will directly
target the hubs. Thus random seeding is likely to reach
hubs with a one-period lag as compared to optimal seeding.
This suggests that so long as timing is not critical, random
seeding will do almost as well as optimal seeding.

To develop a better feeling for the relative reach of
random versus optimal seeding, let us consider the reach of
various targeting strategies in the Indian villages



considered in Banerjee, Chandrasekhar, Duflo, and Jackson
(2013). Figure 14.8 compares the average performance of
random, degree-central, diffusion-central, eigenvector-
central, and omniscient seeding strategies (for a definition
of centrality measures, see chapter 1).



Figure 14.8 
A comparison of average diffusion for various seeding strategies (omniscient,
random, degree-, diffusion-, and eigenvector-central seeding) across Indian
village network data. Two levels of communication probabilities are shown.
Source: Akbarpour, Malladi, and Saberi (2020).



Figure 14.8 presents diffusion for different values of the
communication probability p. We see that under both
values of costs c = 0.1 and c = 0.2, random seeding with a
few extra seeds compares well with network-guided
seeding heuristics. For instance, when c = 0.1, random,
with 5 seeds, performs as well as degree- and diffusion-
central seeding, with 2 seeds, and better than omniscient,
with 1 seed. When c = 0.2, random, with 5 seeds, performs
better than all heuristics with an equal number of seeds,
and better than omniscient, with 1 seed.

We turn finally to a comparison to optimal seeding and
omniscient seeding (this is the case where the external
observer knows the links that actually get activated). Let us
denote the average degree in the underlying social network
by d. Simulations show that when the average number of
activated links is d = 1.5, random with 3 extra seeds beats
both optimal and omniscient seeding. Similarly, when d =
2, random with 2 and 3 extra seeds beat both optimal and
omniscient seeding.

We conclude with two comments on the scope of this
reasoning. The first point pertains to timing, and we have
already alluded to it. It is clear that in hub-spoke or scale-
free networks, optimal seeding will be faster than random
seeding because random seeding will get to hubs only
indirectly, while optimal seeding will directly target the
hubs. A second point pertains to the mechanics of the
diffusion process: if information and behavior are related to
thresholds of the neighbors affected, then random seeding
may yield poorer outcomes than optimal seeding. To see
this, let us consider the example of the hub-spoke network
again. Suppose a person believes that a piece of
information or adopts an action only if a high enough
fraction of their neighbors adopt it. Random seeding will
then fail to persuade the hub—with many connections—and
that would lead to a failure of diffusion. Optimal seeding



will take this into account and target a collection of hub-
nodes that will ensure widespread diffusion.

14.7 Supplementary Material

By way of background to the study of diffusion, we present
the Bass model (Bass, [1969]). In this model, there are two
motivations for adopting an opinion or product: (1) a
spontaneous desire, and (2) social influence. Social
influence is assumed to operate at the global level and
depends on the aggregate measure of adopters in a society.
By contrast, the focus in this chapter was on models in
which the details of the social interaction were spelled out.

Suppose time is discrete t = 1, 2.…. Let F(t) be the
fraction of the population that has adopted a product at
time t, expressed as follows:

where p captures the rate of spontaneous adoption and q
reflects the magnitude of social influence. Observe that (1
− F(t − 1)) is the share of the population that has not
adopted the product. The last term in equation (14.71) says
that the social influence acts on the fraction of the
population that has not adopted (1 − F(t − 1)) and the size
of the effect is F(t − 1). We may express the rate of
adoption in continuous time as follows:

If we set the initial condition F(0) = 0 and assume that p
> 0, then we get the following solution to the differential
equation:



As we vary the two parameters p and q, we trace a range
of adoption curves. The Bass curve can be enriched by
introducing pricing and advertising effects, among others.

An important feature of the Bass diffusion curve that has
been widely studied is that it gives rise to an S-shaped
adoption curve—the rate of adoption is small initially,
speeds up, and then tapers off over time. The intuition for
this is that when adoption is close to zero, there is little
social influence, so the rate is given by p. As adoption
progresses, the social influence kicks in and adoption
enters a reinforcement phase, with rapid adoption.
However, as the fraction of adopters expands, while the
scope of social influence expands, there is a smaller and
smaller fraction of nonadopters left, leading to an eventual
fall in the rate of adoption. The S-shaped adoption curve
has been widely studied in empirical research (see, e.g.,
Ryan and Gross [1943], Griliches [1957], and Coleman,
Katz, and Menzel [1966]).

14.8 Reading Notes

Infectious diseases have had profound effects on human
history. A number of diseases continue to be widespread,
causing large-scale mortality. The experience of COVID-19
in 2020–2021 shows that diseases can still cause global
upheaval. The spread of disease depends on its inherent
infectiousness and the ways in which it spreads. Diseases
differ greatly in these two dimensions. There is a vast body
of literature spanning many disciplines on the nature of
infectious diseases. It is impossible to cover all the different
strands of work. The focus in this chapter is on theoretical
models that bring out the role of networks in the spread of
diseases and in the design of policies to limit their spread.
Two well-known, book-length overviews of infectious
disease research are Anderson and May (1992) and Bailey
(1975).



We have concentrated on infectious biological diseases in
this chapter, but it is clear that diffusion of information and
computer viruses may be amenable to similar methods of
analysis. Indeed, some of the mathematical results we have
discussed were first developed in the context of
nonbiological infections. For expositional simplicity, we
have limited ourselves to biological diseases. The final
section, on the diffusion of microfinance, serves to
illustrate the general applicability of these methods.

The SIR and SIS models were originally studied in the
context of large, compartmentalized populations with
individuals belonging to different groups and interacting
with uniform probability. Early work goes back to Ross
(1916) and Ross and Hudson (1917a, 1917b). An early SIR
model was presented in Kermack and McKendrick (1927).
These models were gradually elaborated to include richer
interaction structures; for instance, see Anderson and May
(1992). Explicit models of networks were introduced in
Kretzschmar and Morris (1996) and Pastor-Satorras and
Vespignani (2001a). The literature on diseases and
epidemic dynamics on networks has grown a great deal
over the past two decades. For a panoramic overview of the
theoretical research on epidemics in complex networks, see
Pastor-Satorras, Castellano, Van Mieghem, and Vespignani
(2015).

Some of the key results on the role of network structure
in shaping the spread of disease have been inspired by the
spread of computer viruses; see in particular Pastor-
Satorras and Vespignani (2001a); Cohen, Erez, Ben-
Avraham, and Havlin (2001); and Cohen, Erez, and Havlin
(2000).

Finally, we draw on research on dynamic processes and
percolation on random graphs. Special mention must be
made of Molloy and Reed (1995) and Chung and Lu
(2002b) in this connection. For an overview of this line of



work, the reader is referred to the excellent collection of
articles in Newman, Barabasi, and Watts (2006).

There is a vast literature spanning various disciplines on
the diffusion of information and behavior; Rogers (1995b)
presents an important overview of the early literature. As
we discuss in chapter 13, on communication and social
learning, an early study of diffusion in social networks is
Coleman, Katz, and Menzel (1966); other early studies on
diffusion include Ryan and Gross (1943) and Griliches
(1957). More recently, easy availability of data on large-
scale networks has led to a revival of interest in the
problem of optimal targeting. Domingos and Richardson
(2001) provide a formal statement of the problem of
optimal seeding, and Kempe, Kleinberg, and Tardos (2003)
develop a model of optimal seeding. They explore the
computational challenges involved in optimal seeding and
propose appropriate algorithms that are computationally
efficient. The problem of optimal influence strategies
remains an active field of research; for example, for recent
theoretical contributions, see Galeotti and Goyal (2009)
and Goyal, Heidari, and Kearns (2019). Our case study of
microfinance is based on Banerjee, Chandrasekhar, Duflo,
and Jackson (2013); for other closely related recent
empirical studies on diffusion in social networks, see
Beaman, BenYishay, Magruder, and Mobarak (2021); Kim,
Hwong, Stafford, et al. (2015); and Cai, De Janvry, and
Sadoulet (2015).

14.9 Questions

  1.  In the basic tree network example with a single original
infected node, show that E[Xn] = Rn going to infinity is
consistent with P(qn ≥ 0) → 0 as n grows.

  2.  This question explores an aspect of the proof of
proposition 14.1. In the basic tree network with a single



original infected node, use the construction of f to
demonstrate that q* = 0 when R0 < 1.

  3.  (From Easley and Kleinberg [2010]). Imagine that
you’re advising a group of agricultural officials who are
investigating measures to control the outbreak of an
epidemic in its early stages within a livestock
population. On short notice, they are able to try to
control the extent to which the animals come in contact
with each other, and they are also able to introduce
higher levels of sanitization to reduce the probability
that one animal passes the disease to another. Both of
these measures cost money, however, and the estimates
of the costs are as follows: If the officials spend x

dollars controlling the extent to which animals come
into contact with each other, then they expect each
animal to come into contact with

others. If the officials spend y dollars introducing
sanitization measures to reduce the probability of
transmission, then they expect the probability that an
infected animal passes it to another animal to be

The officials have $2 million budgeted for this activity.
Their current plan is to spend $1 million on each of the
two measures. Using what you know about epidemics,
would you advise them that this is a good use of the
available money? If so, why? If not, can you suggest a
better way to allocate the money?

  4.  Consider diffusion with immune nodes, as discussed in
section 14.4. Fix a degree distribution P(d) and suppose
that the threshold π for the emergence of a giant



component of susceptible nodes lies between 0 and 1.
Consider a first-order stochastic shift in the degree
distribution to P′(d): how does the threshold change?
Similarly, consider a mean-preserving spread of the
degree distribution P′′(d) and study how the threshold
changes (for definitions of first-order stochastic
dominance and mean preserving spread, refer to
chapter 1).

  5.  (From Jackson [2008]). This question provides a
foundation for the linear infection model studied in
section 14.5. Suppose that the probability of becoming
infected in any given meeting with an infected
individual is v. Then the probability of becoming
infected in d random meetings with individuals who are
independently infected with probability θ is

Equation (14.76) sums across the number of infected
neighbors, x, that an individual with d neighbors is
likely to have, where (d x) θx(1 − θ)d−x is the probability
of having x infected meetings. The term (1 − (1 −v)x),
then, is the probability of not becoming infected in any
of the meetings with infected individuals. Show that if v
is small relative to d (so that (1 − v)x is approximately
equal to 1 −vx, for any x ≤ d), then equation (14.76)
reduces to vdθ.

  6.  (From López-Pintado [2008]). Consider the SIS model.
Suppose that the probability of infection depends not on
the absolute number of neighbors, but on the average
rate of infection in the neighborhood. This suggests that
the probability of getting infected with degree d is vθ,
where θ is the neighbor infection rate. Show that ρ(d) is



independent of d:  if λ > 1, and 0
otherwise.



15
Social Ties and Markets

15.1 Introduction

Traditional models in economics assume that individuals
are anonymous and act in isolation. Over the past two
decades, economists have developed models that include
social networks alongside the familiar notions of strategy,
information, prices, and competition. This chapter studies
the role of social networks in product markets, in labor
markets, and in financial markets.

In our discussion on product markets, we will study how
firms can use knowledge of social networks to better
design advertising, product placement, and pricing
strategies. In our study of advertising and placement, we
will explore ways in which a firm can use information on
the social network to improve its performance. Building on
our study of games on networks in chapter 4, we will show
that optimal firm strategies will depend both on the level as
well as the content of the network interaction. In some
situations, an increase in network connectivity calls for an
increased engagement from the firm, while in other
instances, the converse may hold. In a similar vein, we
show that in some settings, it is optimal for a firm to target
the most connected individuals, while in others, it is better
to target poorly connected ones.



We then study how firms can use information about
networks to price discriminate across consumers. The
general finding is that firms will find it attractive to tailor
prices to the network location of consumers, offering
discounts to consumers who are highly influential and
charging markups to consumers who are more susceptible
to influence.

We next take up the role of social ties in labor markets.
We start with an overview of the wide-ranging empirical
evidence on this subject. This discussion brings out the
extensive use of social ties in job search and recruitment by
both workers and firms. We then present theoretical
models to understand how the use of social ties affects
wages, employment, and inequality in labor markets.

We present a very brief discussion of the role of social
networks in financial markets in the material on reading
notes in section 15.4.

15.2 Product Markets

In the theory of industrial organization, a firm traditionally
chooses prices, advertising strategy, and product quality
against a background assumption that individuals are
anonymous and act in isolation from each other (for a
classical exposition of this theory, see Tirole [1988]).
However, a number of studies have brought out the
important role of friends, neighbors, and colleagues in
shaping consumer choice. Social influence is channeled
through two primary routes—information sharing and a
desire to be compatible. For a discussion on the many
motivations for information sharing, see chapter 13 and for
a discussion on pressures to choose compatible products,
see chapter 8. In the past, the practical use of such social
influences for advertising and pricing was limited due to
the absence of good data on social networks. The recent
trends in the availability of large amounts of data on social



networks, along with advances in information technology,
now make it possible for firms to harness the power of
social networks to further their goals.

In particular, the massive quantities of data available on
social network sites such as chat rooms, social networking
websites, and newsgroups, has given rise to measures of
the network value of a customer: the expected increase in
sales that results from marketing to that customer. For
instance, social networking sites like Facebook and Twitter
help firms target consumers by sharing their demographic
characteristics and information on their social interactions,
and new firms have emerged that use these data to create
a profile of consumers’ online behavior and their influence
score. For instance, take the website and social media app
Klout, which created a Klout influence score that firms paid
for the privilege of using.

At the outset, it is useful to distinguish between the level
and the content of a social interaction. There are a number
of different aspects to the level of interaction. A natural
statistic is the number of people someone talks to or the
number of friends they have, which is the degree. In many
of the models in this chapter, we will use degree as a
measure of social networks. Empirical work suggests that
degree distributions vary across product categories and are
correlated with individual demographic characteristics. In
some cases, further details on the social network may be
available. This will lead us to also study models in which
the firm has complete information on the network.

The content of interactions refers to how an individual’s
action affects the returns to others (for an extended
discussion on content of interaction, refer to chapter 4).
For instance, an interaction may involve word-of-mouth
communication about product quality and prices. In this
case, the presence of a single informed neighbor leads to
product awareness, and possibly purchases. Alternatively,



an interaction may involve working together on a project:
in this, an individual may choose a word processing
software. A sufficient proportion of neighbors need to
choose an action before an individual will switch to this
action.

15.2.1 Advertising and Seeding

We now study the problem of a firm that chooses
advertising intensity in order to maximize profits. The
behavior of these individuals is influenced by their
interactions. Our discussion will draw attention to the
content and the level of interaction in shaping optimal firm
strategy. In this setting, content refers to the sharing of
information about new products and the sharing of
computer files in collaborative work. The level of
interaction will be modeled in terms of the network degree
distribution. The discussion is based on Galeotti and Goyal
(2009).

There is a unit measure of individuals N = [0, 1] who are
located in a social network. For individual i ∈ N, the level
of social interaction is parameterized by degree k. Suppose
that every individual draws k others with probability P(k) ≥
0, k ∈𝒦, where 𝒦 = {0, 1, …, k}; . Conditional on
degree k, they make k draws from the population, using a
uniform distribution on the unit interval. As there is a
continuum of individuals, the probability of drawing the
same person two or more times is zero. We say that there is
a fraction P(k) of individuals who choose a k-sized sample.
In what follows, we will refer to P as the “out-degree
distribution.” It will be convenient to define  as
the mean out-degree. As we wish to focus on out-degrees
here, we assume that everyone has the same in-degree
(and that it is equal to the mean out-degree, ).

The firm seeks to maximize its profits by selling its
product to population N. The firm knows the degree



distribution P(·) and chooses an action x ∈ [0, 1]. We will
say that the profits from an individual influenced by k

others are given by ϕk(x), where ϕk(·): [0, 1] → ℝ. For ease
of exposition, we will assume that ϕk(·) is twice
continuously differentiable. The expected profits of the firm
from strategy x are

where C(α, ·): [0, 1] → ℛ is the cost of effort and parameter
α ≥ 0 indicates the efficiency in generating efforts.

Here, we develop two examples to clarify how the
content of interaction among consumers shapes the returns
function ϕk(·).
Example 15.1 Word-of-mouth communication

Consider a firm advertising to a group of consumers who
share product information among themselves. The price of
the product is 1, while the cost of producing the good is
zero. Every buyer has inelastic demand and the reservation
value is 1. These buyers are unaware of the product; the
firm uses advertising to inform them of it.

The firm chooses the fraction of individuals who will
receive advertisements x ∈ [0, 1]. Let the cost of effort x be
αx2/2, where α > 0. A consumer buys either if they receive
the advertisement from the firm or receive information via
word-of-mouth communication from her neighbors. Thus
the expected profits from a degree k buyer are

Note that ϕk(x) is increasing and concave in x and k.
Given the degree distribution, P, the expected profits are



Note that we have assumed that information travels only
one link; a question at the end of the chapter explores the
case of indirect information transmission.

◼

Example 15.2 Adoption externalities

Suppose that a firm is introducing a new product into the
market. This product exhibits positive externalities:
individual returns from a product depend on how many
neighbors buy it. Examples of such products include fax
machines, telephones, video-conference technologies,
online games, online social networks, and file-sharing tools.
There are two periods, 1 and 2. In period 1, the firm seeds
the network by distributing free samples of the product. Let
x ∈ [0, 1] be the fraction of individuals who are sent free
samples, and let the price of the product equal 1. A
consumer with degree k, of whom s are using the product,
buys the product with probability ψ(k, s). Suppose that a
consumer earns v = 1 if all neighbors adopt, and 0
otherwise. Then returns from a k-degree individual are

On the right-hand-side, the first term is the probability of
not receiving a free sample, and the second term is the
probability that all neighbors receive a seed. This function
is increasing and convex for low x, and decreasing and
concave for large x, and it is decreasing and convex in k.
The expected profits under x are

Expected profits are zero at x = 0 and x = 1 and positive for
all x ∈ (0, 1). The cost of production and dissemination of
samples is zero, but a free sample has an implicit cost for



the firm since a consumer who gets a free product does not
buy at a positive price later.

◼

Here we will focus on the effects of networks in the
word-of-mouth. Questions at the end of the chapter explore
the example with adoption externalities.

15.2.1.1 Network effects with word-of-mouth communication

First, consider the effects of networks on profits. Suppose
for simplicity that in equation (15.3), α = 1. Then the
optimal strategy of a firm that ignores word-of-mouth
advertising is to set x = 1 and earn profits as Π(1) = 1/2.
Suppose next that everyone has degree k. The optimal
strategy of a firm that incorporates word-of-mouth
communication is given by , where  solves as follows:

Let  be the profits from optimal advertising, and let us
define the advantages of using social networks using the
difference in profit, . These advantages are
plotted in figure 15.1: we note that if k ≥ 10, then the
optimal use of word of mouth can raise profits by more
than 80 percent.



Figure 15.1 
Incorporating word of mouth. Percent profit difference, P(k) = 1, k = 1, 2, …,
and α = 1.

Denote the optimal strategy under a degree distribution
P by . The interior optimal strategy  solves as follows:

Observe that optimal  is falling in α. Turning to the effects
of networks, consider a first-order stochastic shift from P to
P′ (refer to chapter 1 for definitions of changes in degree
distribution). An informed individual will inform more of
their cohort, but an uninformed individual is more likely to
hear from others. The first pressure increases incentives
for advertisements, while the second pressure lowers them.
The derivative of the marginal returns with respect to
degree k at  is



For low , the marginal returns are increasing, while for
high , the marginal returns are falling. This suggests that
if the costs of advertising are large (small), then optimal
advertising increases (decreases) with word of mouth. The
intuition is as follows: If α is large,  is small; at this stage,
word of mouth and advertising are complements. If, on the
other hand, α is low, then  is high and the relation is one
of substitutes.

Turning to profits, observe that the term [1 − (1 − x)k+1]
is increasing in k, so profits under P′ are larger, keeping
strategy fixed at . It follows, then, that profits increase
with an increase in word of mouth.

Let us next examine the effects of greater dispersion in
social connections. Consider a mean-preserving spread
change from P to P′. The effects depend on the curvature of
marginal returns with respect to k:

For small , this effect is negative, while for large , it is
positive. Hence marginal returns are concave in k for large
costs of ads and convex in k for small costs of ads. This
suggests that if the costs of advertising are large (small),
then advertising falls (rises) under a mean-preserving
spread of word-of-mouth communication. Turning to
profits, recall that [1 − (1 − x)k+1] is concave in k. This
means that profits fall under a mean-preserving spread of
word-of-mouth communication. These observations are
summarized in the following result.
Proposition 15.1 Suppose that a firm’s expected payoffs are given by

equation (15.1).

If the costs of advertising are large (small), then optimal advertising

increases (falls) with word of mouth; profits always increase in word of

mouth.



If the costs of advertising are large (small), then optimal advertising falls

(rises) with greater dispersion in word of mouth; profits fall with greater

dispersion in word of mouth.

Role of network information A recurring idea in marketing and
public health is that organizations can target key
individuals in networks to amplify the power of their
messages or their strategies. To consider optimal targeting
in this setting, suppose that the firm knows the distribution
of degrees P and is able to partition set N into k groups.
P(k) into the fraction of individuals in group k, and
individuals in group k have degree k. The strategy is vector
x = (x1, …, xk), where xk ∈ [0, 1] indicates the effort that the
firm targets to the group k ∈𝒦. It follows that x ∈ [0, 1]k.
Strategy x leads to total effort . Let the
expected profits from a degree k individual be given by
ϕk(xk, θ(x)). The expected returns from a degree k

consumer are

This is the probability that an individual with degree k

will be informed either from direct advertisements or word
of mouth. Observe that ϕk(xk, θ(x)) is concave in the first
argument (i.e., the marginal returns are decreasing in
degree). The expected profits of the monopolist are

A threshold strategy x has  such that xk = 1 if 
, and xk = 0 if . The marginal returns from a

degree s individual are



If  for s ∈ O, then . For all s ∈ O, the latter two
terms are equal, the first term is strictly declining in s, and
so is the optimal strategy. Now suppose 1  for
some s′ < s. Since , it follows that . However, (1
− θ(x*)) only depends on θ(x*), so . Thus the optimal
strategy x* targets low-degree individuals and ignores high-
degree consumers. The intuition for this is simple:
consumers who are poorly connected are less likely to hear
about product from word of mouth.
Incoming and outgoing links In the discussion so far, we have
assumed that all nodes have the same number of incoming
links, that is every node has the same influence. To explore
the role of influencers, let us instead suppose that every
individual draws a sample of the same size, but some
individuals are drawn more than others. If an individual is
sampled by l other individuals, this means that there are l
links pointing to individual i. We will refer to this as the “in-
degree.” We can apply the methods of analysis described in
this chapter to study optimal advertising and targeting in
this setting. In line with intuition, optimal advertising will
target individuals with higher in-degrees. A question at the
end of the chapter explores this model.

To summarize, we have studied the effects of networks
on optimal advertising and product placement in the word-
of-mouth example; in this study, we exploited properties of
the content function as reflected by ϕk. We have seen that
the example with adaption externalities leads to payoff
function with different properties. Questions at the end of
the chapter explore the role of social networks in that
context.

15.2.2 Pricing Network Effects

We study price discrimination based on network
information. Consider a product whose value is increasing
in the consumption of other consumers. Suppose that



consumer A interacts with a large number of other
individuals, who only interact with them. The firm would
find it easier to get these consumers to buy its product if A
buys it. There is therefore an priori case for subsidizing
consumer A and possibly selling the product with a markup
to these other consumers. This section explores the scope
of this argument; the discussion is based on Fainmesser
and Galeotti (2016).

15.2.2.1 A model with degree distributions

There are N = {1, …, n}, n ≥ 2 individuals located in a
network. A tie between two individuals i and j, gij, ∈{0, 1}.
Link gij reflects the influence of j on i. We will allow
influence to be asymmetric: so gij may be different from gji.

Suppose that the firm faces constant marginal cost,
normalized to zero, and that consumer i’s demand, xi, is
decreasing in the price faced and is increasing in the
consumption of their peers:

where γ ≥ 0, captures social influence. This formulation
allows both divisible and indivisible products. In the latter
case, we interpret xi as the probability that individual i will
buy the product.

The out-degree of individual i is  and the in-
degree, . Letting P(k) be the fraction of consumers
with out-degree k and H(l) be the fraction of consumers
with in-degree l, it follows that the average in-degree is
equal to the average out-degree; that is,

Let  denote the variance in out-degrees and  the
variance in in-degrees.



To begin, let us assume that the firm knows the
distributions P(k) and H(k), as well as the in-degree and
the out-degree of every consumer. We will think of the out-
degree, k, as a measure of susceptibility and the in-degree,
l, as a measure of influence. We will set x(k; l) as the
demand of a consumer with susceptibility k and influence l.
The firm sets prices (p(k, l))k, l for various segments. Faced
with these prices, consumers make purchase decisions x =
(xi)i∈N.

As the costs of production are equal to 0, the profit from
consumers of type (k, l) is

The profit from price strategy p is

Facing price profile p, the utility of a consumer from
different purchase choices will depend on the choices of
their neighbors (due to the peer effects term in the
demand). To ensure that the demands do not explode, we
assume that γ ×kmax < 1. Under this condition, for any p,
there is a unique demand equilibrium given by

where p is the average price paid by a neighbor of i and is
given by

In the demand equation (equation 15.16), the first term
reflects individual differences in stand-alone valuation of
the good, so the demand is decreasing in the price offered,



p(k; l). The second term captures the peer effects. In
particular, note that an additional out-degree shifts demand
upward by

This term is a product of the peer effect parameter, γ, and
the average consumption of a neighboring node. The
average consumption is increasing in the average
connectivity of the network and decreasing in the average
price paid by neighboring nodes.
Effects of networks on pricing We first compute the demands
and profits when the firm sets a uniform price (that ignores
peer effects). The optimal price is 1/2. Faced with this
price, the demand will depend only on susceptibility level
and is given by

The total profits are then given by

When we turn to optimal pricing with peer effects, we
again need to be aware of the potential of peer effects
leading to the possibility of having multiple sets of optimal
prices. To rule that out, we require that peer effects be
sufficiently low.

Observe that when a firm increases the price, p(k; l),
there are two standard effects: a larger margin on sales
and a lowering of demand. But there is also a third effect,
which is due to peer effects: the increase in price lowers
the demand of segment (k, l) and indirectly reduces the



average consumption that all consumers expect from their
neighbors.
Proposition 15.2 Suppose that peer effects γkmax < 1/2. The optimal pricing

policy p is

where . The consumption levels x are given by

The optimal pricing strategy thus has a simple structure:
there is a baseline price, 1/2; and there is a markup that is
increasing in the susceptibility, k, and falling in the
influence, l. It is instructive to work through the algebra
step by step. Recall that firm profits are given by

Taking the derivative with respect to the price, we obtain

where . Using p*(k, l) and the
definition of p, we obtain

Similarly, we substitute for p*(k, l) in the definition of ϕ
to obtain



We therefore have a system of two equations, (15.25)
and (15.26), in two unknowns, p* and ϕ. We can solve the
two equations to obtain

Substituting these values of p and ϕ into equation
(15.24), we obtain the optimal prices:

When we substitute these optimal prices into equation
(15.16), we obtain the required equilibrium demand
expression.

◼

We now compute numerical examples to illustrate the
effects of networks on pricing and consumption.
Example 15.3 The effects of networks on pricing

Suppose that γ = 0.012. The distribution F(·) is as
follows: one-third of the population has susceptibility 10,
one-third has susceptibility 25 and one-third has
susceptibility 40. The distribution of influence is identical.
The optimal prices are presented in figure 15.2(a). In this
graph, under each bar, reflecting the level of the price, the
first number is the out-degree and the second number is
the in-degree. We note that the prices are increasing in
susceptibility and falling in influence. The consumption of
different types is plotted in figure 15.2(b): it is increasing
in both influence (due to lower prices) and susceptibility



(due to larger peer effects). The profits of the firm are
0.362.

Figure 15.2 
Optimal prices and equilibrium consumption in networks.

Proposition 15.2 tells us that optimal prices depends on
the mean-linking  and the variance in links. Let us
illustrate the effects of changes in mean and variance.
Consider the network with the following susceptibility



distribution, F′′(.): 20 percent of the population has
susceptibility 10, 30 percent has susceptibility 25, and 50
percent has susceptibility 40. The distribution of influence
is H′′(.) = F′′(.). It can be verified that F′′ first-order
stochastically dominates F (and hence has a higher mean).
Optimal prices and equilibrium consumption are presented
in figure 15.3. An increase in susceptibility means that all
consumers have access to higher positive peer effects,
which pushes up the prices. The rise in prices is modest,
but figure 15.3(b) also shows that the effects on
consumption are more significant. As a consequence,
profits of the firm go up from 0.36 to 0.44.

◼



Figure 15.3 
Effects of changes in network: F in gray, F′′ in blue.

15.2.2.2 A model of pricing with complete network knowledge

So far, we have studied the effects of networks in terms of
degree distribution. In some cases, a firm may have more
complete knowledge of the network. To see how additional
information can be used by a firm, we will consider the
case where a firm has complete information about the
network. We will see that the optimal pricing strategy has a
similar structure to the one described previously:
consumers are offered a baseline price, a markup that



depends on how much the consumer is susceptible to
influence, and a price discount that depends on the amount
of influence that the consumer exercises on others. Our
discussion is based on Bloch and Quérou (2013) and
Candogan, Bimpikis, and Ozdaglar (2012).

Suppose that the firm sets prices targeted at specific
individuals p = (p1, …, pn). Let q = (q1, …, qn) denote the
consumption profile. Given network g (with a
corresponding adjacency matrix G), prices p, and
consumption q, individual i’s utility is given by

Observe that marginal utility to own consumption is
increasing in the consumption of neighbors (i.e.,
consumption choices of neighbors are strategic
complements). We suppose that α > 0 and β > 0 and
assume that β is sufficiently large that the negative
quadratic term eventually dominates. Define the average
influence between i and j in a network g by

The profit of the firm is

where c > 0 is the cost of production for the firm. As in the
incomplete information setting, we will consider a two-
stage game. In the first stage, the firm sets prices, and in
the second stage, the consumers play an equilibrium in
consumption choices:



Fix some prices p. The first-order condition for consumer
i is

Define S = {i: xi > 0}. The first-order condition for
individual i ∈ S is

The best response for consumer i may be written as

This can be written in matrix form as

Rearranging terms in equation (15.36), the equilibrium
consumption for an active consumer is

Equipped with this expression for equilibrium demand,
we now solve for optimal prices. We will assume that α > c.
This ensures that marginal utility at xi = 0 is greater than
the cost of production, thereby creating space for profitable
exchange between the firm and consumers. It is possible to
show that in a subgame perfect equilibrium, consumption is
positive for every consumer (a question at the end of the
chapter works through this property). Given the positive



consumption property, the firm faces the following
problem:

This may be rewritten as

The first-order condition for the firm’s problem is

Setting , we can rewrite the first-order condition
as

and after rearranging terms, we get

Let us define Bonacich centrality in graph G:

Since , it follows that

We are now in a position to state the following result.
Proposition 15.3 Consider a monopoly firm choosing optimal prices with

complete information on a network with adjacency matrix G. Optimal pricing is



given by

The intuition underlying this result is as follows: if an
agent influences others, then giving them a discount raises
the consumption of their peers and raises profits, while if
they are influenced by others, then their marginal utility is
higher and they can pay more for the product. In this
respect, the intuition is very much like in the earlier model
of pricing conditional on the degrees of individuals. What is
new here is that the influence is measured in terms of
degree and the centrality of neighbors.

It is instructive to consider the case when influence and
susceptibility are symmetric (i.e., gij = gji). This means that
G = GT. Proposition 15.3 tells us that the optimal price is
uniform. There are two forces at work: on the one hand,
greater connectivity means greater utility, which pushes
toward higher prices. On the other hand, greater
connectivity also means greater externalities, which push
toward lower prices (as that boosts direct demand, and
hence the demand of neighbors). In the linear model under
study, these two effects cancel out exactly. Observe that
with uniform prices, individual consumption will be
proportional to Bonacich centrality.

To summarize: in this section, we studied price
discrimination with incomplete as well as complete network
information. Our analysis shows that firms will tailor prices
to the network location of consumers, offering subsidies
and discounts to consumers who are highly influential and
charging markups to consumers who are more susceptible
to influence.

15.3 Labor Markets



Workers like jobs that fit their skills and location
preferences, and firms are looking to hire workers with the
right skills for the jobs they need to fill. But both workers
and firms face information constraints: workers do not
know which firms have vacancies, and firms have imperfect
information on the ability of workers who apply for jobs. It
is natural, therefore, for workers to tap into their social
connections to find out more about available jobs, and for
firms to ask their current employees for information on
applicants. This section explores the implications of the use
of social connections on the functioning of labor markets.
Our exposition here draws on Goyal (2007; 2017) and Topa
(2019).

In the context of labor markets, social interactions range
widely, from the simple transmission of information about
job openings at a particular firm (letting a social contact
know that a position is available at firm X) to the provision
of a referral (recommending a social contact to a potential
employer for a given position). Referrals can occur
informally, but they can also be institutionalized as a
recruiting tool by firms: firms set up formal referral
systems for their employees, giving them the opportunity to
refer potential candidates for a given position and
rewarding them for a successful hire.

We start with a presentation of empirical evidence on the
use of social ties. There is extensive evidence for the use of
social ties in locating jobs. On the other side of the market,
we present evidence for the use of referrals by firms.
Finally, we present some evidence about the correlation
between social networks and employment and wage levels.

This discussion sets the stage for a study of theoretical
models on the use of social ties in labor markets. We first
take up a model of referrals by firms to hire workers whose
quality is unknown. This model highlights the role of social
structure in shaping the functioning of the market, and
thereby determining wage levels and inequality.



15.3.1 Empirical Background

Despite modernization, technology, and the dizzying pace of social change, one
constant in the world is that where and how we spend our working hours, the
largest slice of life for most adults, depends very much on how we are
embedded in networks of social contacts—the relatives, friends, and
acquaintances that are not banished by the never-ending proposals to pair
people to jobs by some automatic technical procedures such as national
computerized matching.
—Granovetter (1995, p. 141).

Empirical studies on the uses of social ties have looked at
the use of contacts by both employees and employers. With
regard to the use of personal contacts by workers, we take
up three questions: (1) To what extent do workers rely on
personal sources of information in obtaining jobs? (2) How
does the use of personal contacts vary with the nature of
the job and across countries? (3) How productive is this
reliance upon contacts in terms of wages of the jobs
obtained? Our discussion draws on survey papers by
Ioannides and Datcher Loury [2004], Beaman [2016], and
Topa [2019].

Early work by Rees (1966), Myers and Shultz (1951), and
Granovetter (1973) demonstrate the extensive use of social
connections in obtaining information about jobs. Myers and
Shultz (1951) study textile workers and find that almost 62
percent of those surveyed obtained their first job via
personal contacts, in contrast to only 15 percent who
obtained their job from agencies and advertisements.
Similarly, Granovetter (1973) showed that almost one-half
of the people surveyed received information about their
current job from a personal acquaintance. Table 15.1
presents a high-level summary of some of the early
empirical work on the use of social contacts in labor
markets.

Table 15.1 
Information on jobs.



Source Contacts Application
Emp.
Agency Ads Other

Sample
SizeSource Contacts Application

Emp.
Agency Ads Other

Sample
Size

1. Rees and
Schultz (1970)
Typist 37.3 5.5 34.7 16.4 6.1 343
Keypunch
operator

35.3 10.7 13.2 21.4 19.4 280

Accountant 23.5 6.4 25.9 26.4 17.8 170
Janitor 65.5 13.1 7.3 4.8 9.3 246
Janitress 63.6 7.5 5.2 11.2 12.5 80
Truck driver 56.8 14.9 1.5 1.5 25.3 67
Tool and die
maker

53.6 18.2 1.5 17.3 9.4 127

2. Granovetter
(1974)
Professional 56.1 18.2 15.9 –a 9.8 132
Technical 43.5 24.6 30.4 – 1.4 69
Managerial 65.4 14.8 13.6 – 6.2 81
3. Corcoran et. al.
(1980)
White males 52.0 –b 5.8 9.4 33.8 1499
White females 47.1 – 5.8 14.2 33.1 988
Black males 58.5 – 7.0 6.9 37.6 667
Black females 43.0 – 15.2 11.0 30.8 605

Notes: aAgencies and advertisements are collected together and reported
under employment agencies. bGate applications are included under “other.” 
Source: Goyal (2007).

These findings have inspired an extensive body of
empirical research. While most of the literature has
focused on referral usage by unemployed job seekers,
recent work has highlighted that social networks and
referrals are widely used during on-the-job searches by
employed workers as well. Indeed, for employed workers,
many job offers come about without the workers actively
looking for a job but as the result of informal networking
activities.

Turning to variations in the use of social ties across
different types of jobs, a broad finding is that there is a
negative correlation between age, education, and



occupational status and the likelihood of finding a job
through personal contacts. This is observed in the 1978
Panel Study on Income Dynamics (Corcoran, Datcher, and
Duncan [1980]), a study of an Indianapolis labor market
(Marsden and Campbell [1990]), and a 1970 Detroit-area
study (Marsden and Hurlbert [1988]). A similar negative
correlation is also observed across European countries
(Pellizzari [2010]).

A number of the studies find that personal contacts are
an efficient way of finding jobs: a higher proportion of jobs
found via contacts are likely to be accepted (Blau and
Robins [1990]; Holzer [1988]). Turning to the relation
between wages of jobs found via personal contacts, the
evidence is mixed. Early work by Ullman (1966) suggests
that there is a positive relation between wages and hiring
via contacts. In more recent work, Pellizzari (2010) finds
that in some countries (i.e., Austria, Belgium, and
Netherlands), there is a wage premium for jobs found via
personal contacts while in other countries (i.e., Greece,
Italy, Portugal, and the UK), there is a wage penalty for
jobs obtained via contacts. For a theoretical study of these
empirical patterns, see Granovetter (1994).

While most of the literature has focused on the use of
social networks and referrals from the perspective of the
job seeker, a growing body of research has also looked at
the employer’s use of formal or informal referrals. In an
early study, Holzer (1987) find that over 35 percent of the
firms interviewed filled their last vacancy via referral.
Similarly, Marsden and Campbell (1990), in their study of
53 Indiana establishments, find that roughly 51 percent of
the jobs had been filled through referrals.

More generally, looking at the process—from initial
contact to job application to interview to hire—referrals
seem to be associated with a higher probability of being
hired relative to other job search or recruiting methods.
Referred workers typically receive higher starting wages



(relative to nonreferred), but the wage gap tends to shrink
with tenure at the firm. Referred workers are also less
likely to separate from their employers—a possible sign of
better match quality (see Dustmann, Glitz, and Schönberg
(2009) and Brown, Setren, and Topa [2016]). Finally, the
literature suggests that the joint distribution of the referrer
and the referred characteristics matter for referral
outcomes: for instance, referrals from employees who are
older or at a higher staff level are associated with salary
advantages that are stronger and persist longer.

Granovetter (1973) studied the use of contacts in labor
markets in the US state of Massachusetts. He defined the
strength of a tie as follows: a tie was said to be strong if
two people had interacted twice a week, medium for
interactions less than twice a week but more than once a
year; weak if the pair had interacted less than once a year.
A key finding pertained to the wide use of social contacts:
over one-half of the workers who found jobs did so via
social contacts. A second key finding pertained to the
nature of social ties that were used by workers: of the 54
workers who had found their last job through a social
contact, 16.7 percent found the job via a strong tie, 55.7
percent through a medium tie, and 27.6 percent through a
weak tie. Thus the vast majority of those who used social
contacts relied on nonstrong ties. This led him to coin the
phrase the strength of weak ties.

A major concern of research has been to find a clear line
of causality from social connections to job market
outcomes. A difficulty here is to find detailed data on social
networks and at the same time also have data on
employment status. Another difficulty is that there may be
reverse causation: employment status may shape social
connections. Recent research has made progress in
untangling these chains of effects and we discuss some of
this work now.



We start with some evidence on correlations between
social networks and employment. Conley and Topa (2002)
study the spatial patterns of unemployment in Chicago over
two decades, 1980 and 1990. Their focus is on the
investigation of unemployment clustering with respect to
distance metrics that reflect the structure of agents’ social
networks. With this in mind, these metrics are measures of
physical distance, travel time, and the difference in ethnic
and occupation distributions. Their empirical analysis
reveals that there is a strong positive and statistically
significant spatial dependence in the distribution of raw
unemployment rates, at distances close to zero, for all
these metrics. This correlation decays roughly
monotonically with distance.

They also conduct a study of two-metric correlations.
When the physical, travel time, or occupation metric is
coupled with the ethnic metric, the latter drives most of the
variation in spatial clustering: once we condition on ethnic
distance, physical distance, and other indicators have
relatively little impact on the correlations. On the other
hand, when physical or travel time metrics are combined
with distance in occupations, the correlations decline in
both distances. Finally, they find that the variations in raw
unemployment rates are well explained by tract-level
variables. This study suggests that social interaction effects
at the tract level may be modest.

A large body of continuing research studies interaction
effects. One way to approximate the social interaction is to
examine households at a finer level of granularity. This is
the route taken in Bayer, Ross, and Topa (2008), who study
block-level outcomes for the city of Boston. They find
evidence that households with similar characteristics
located in the same block have more similar employment
outcomes than households located in different blocks. Their
work also examines and rules out the reverse causation



possibility—individuals are in the same block because they
have similar employment outcomes.

Another route taken to study the effects of social
networks is to connect variations in group size to outcome
variables of interest. This strand of work has found strong
social interaction effects on employment and wage
outcomes. For instance, Munshi (2003) studies Mexican
migration to the US. He uses variations in rainfall in
Mexico as an exogenous shock: this rainfall affects
incentives to move, and hence the rate of migration out of
regions in Mexico for reasons that are unrelated to market
conditions in the US. He finds that having a higher number
of migrants who arrived more than three years ago has a
positive effect on migrants’ employment rate. In a similar
vein, Beaman (2013) studies the employment rates and
wages of refugees in the US and finds that the larger the
number of political refugees from a foreign country
allocated to a given area at least two years prior, the higher
the current employment rate and wages of the refugees.

15.3.2 Theoretical Models

On the one hand, referrals can potentially reduce the
asymmetric information between firms and workers and
lead to a better match between workers and firms. On the
other hand, if workers of one type are better connected
than other types, this could also give them an advantage in
the market, which could in turn give rise to wage
inequality. Here, we present a theoretical model on the use
of referrals to examine these issues. The model is taken
from Montgomery (1991). Our exposition is based on Goyal
(2007).

15.3.2.1 A model of referrals

There are two periods, 1 and 2. There are a large number
of firms and workers. In each period, a firm hires one
worker. The output of a firm is equal to the ability of the



worker who works for the firm. Workers know their ability,
while firms do not. In period 1, all firms therefore have an
expectation on the average quality of worker and pay
wages corresponding to this average. During period 1, a
firm learns the ability of its worker. At the start of period 2,
it has a choice between asking the period 1 worker for the
name of a potential worker and offering a referral wage, or
simply posting a wage in the market, which can be taken by
any of the large number of workers. There are a large
number of firms competing for workers, so wages are set to
equate expected ability to wages and ex-ante (at the start
of period 1) expected profits of firms are equal and zero.

We now describe the model more formally.
Workers: There are a large number of workers who all

live for one period. The number of workers is equal in each
period. There are two types of workers: High and Low, and
let us say that there is an equal number of each type. The
productivity of a High type is 1, while the productivity of
Low type is 0. Workers know their own ability, but firms do
not.

Firms: There are a large number of firms; every firm
employs one worker in each period. The profit of a firm is
equal to the productivity of worker minus the wage that is
paid to the worker. Wages are set at the start of each
period and cannot be made contingent on the output. A
simple way to model this is to suppose that wages are set
prior to learning the productivity of workers.

Social structure: Each period 1 worker knows at most
one period 2 worker, and the probability of knowing
someone is r ∈ [0, 1]. Conditional upon holding a tie, period
1 worker knows a period 2 worker of their own type with
probability α > 1/2. The assumption that α > 1/2 captures
the idea that it is more likely that a worker knows someone
with the same ability as themselves. The social structure is
thus defined by two parameters: r, reflecting the density of



links; and α, reflecting the inbreeding bias in the links.
Since links are randomly assigned, it is possible that some
period 2 workers have many connections, while others have
none.

Timing of offers: At the start of period 1, firms hire
workers through the market: the market clears at wages
given by wM1. After this recruitment, production occurs in
period 1. Every firm learns the ability of its worker. At the
start of period 2, a firm decides on whether to hire through
the market or via referral. If a firm decides to offer a
referral wage, this is denoted by wRi

. These wages are
communicated via social contacts to workers in period 2.
The workers in period 2 compare wage offers and decide
whether to accept one of them. If a worker rejects all
offers, then they go to the market. Similarly, if a firm’s
referral offer is rejected, then it goes to the market. The
market in period 2 clears at wage wM2.
Equilibrium analysis We first discuss the baseline case with
no social ties. In the absence of social ties, the two periods
are completely independent. The probability that a firm
hires a High-type worker is equal to 1/2 in both periods;
hence the market wage is 1/2 in both periods. Every
worker earns 1/2, and all firms make zero ex-ante profits.

Let us now take up the case with assortative social ties: r
> 0 and α > 1/2. In this world, learning about the period 1
worker gives the firm some information on the ability of a
contact of its own period 1 worker. If the period 1 worker
has High ability, then the firm expects that a worker
contacted via a referral is more likely to be a High type.
The converse is true if the period 1 worker has Low ability.
A firm will want to hire via referral only if its period 1
worker has High ability.

There cannot be a single referral wage for all firms: if
there is such a single referral wage x, then a firm can
deviate and set a slightly higher wage x + 𝜖 for some small



𝜖. All workers will prefer this slightly raised wage offer.
Thus the deviating firm can strictly raise its probability of
acceptance by paying a slightly higher wage. Firms will
offer prices drawn from a distribution that has support on
an interval [wM2, wR], where wR refers to the maximal
referral wage offered by any firm. We next note that the
probability density is positive for all wages in the interval.
To see why this is the case, suppose that there is an
interval of wage levels [w, w] ⊂ [wM2, wR], for which the
probability is zero. Observe that the firm offering a referral
wage w can lower the wage slightly. This will have no effect
on the probability of acceptance but will strictly increase
the surplus of the firm (upon acceptance of the offer). In
other words, a wage offer of w cannot be optimal.

In period 2, a majority of the workers receiving (and
accepting) the referral wages will be the High-type
workers. This implies that those who go on to the
decentralized market will on average be lower quality than
1/2: in other words, there is a lemon effect created by the
use of social connections for referral wages.

With these observations in mind, let us comment on the
profits of firms. A firm that has a High-type worker in
period 1 can hope to make positive profits in period 2. This
is because it will use referral wages and there is imperfect
competition between firms who use referrals. Expected
profits are positive (and constant) across the wages in
support of the distribution [wM1, wR]. As there is free entry
in the market for firms, the expected profits in the two
periods must be zero. In period 2, firms with High-type
workers will earn positive profits, but not the others. To
compensate for this possibility of positive profits, firms
have to set the wage at wM1, which is higher than the
expected quality of workers in period 1, wM1 > 1/2. These
points are summarized in the following result.



Proposition 15.4 Consider the model of referrals. In an equilibrium, the

following properties hold:

1.  A firm makes a referral offer in period 2 if and only if it employs a high-

ability worker in period 1.

2.  Referral wage offers are dispersed over the interval [wM2, wR], and the

density of the referral wage is positive over the interval.

3.  Period 2 wages are characterized by a lemon effect: wM2 < 1/2.
4.  An increase in the density of links, r, or in the in-breeding bias, α, leads to a

fall in wM2, as well as an increase in the maximal referral wage, wR.

We now present the proof for this result. As is standard,
we start from the last period, starting from period 2 market
wages, wM2, the profits of firms offering referral wages, and
then work backward to period 1 market wages, wM1, and
finally the distribution of referral offers.

To compute the market wages, we need to understand
the referral wages. Consider the decision problem of a
High-type worker, H, faced with a referral wage, wR

i
. The

probability that they accept a referral wage is

where

Suppose that F(·) is the distribution of referral wages. Then
this last expression is equal to

noting that there are N High-type workers and α and r have
the specified meaning.



Substituting from (15.47) in equation (15.45) yields us

From standard considerations, it follows that

Similarly, for large values of N

Note that

because a High-type worker is more likely to receive
more offers since α > 1/2.

Note next that

The assumption that there is a continuum of workers allows
us to derive the expected productivity of workers in the
period 2 market:

In this derivation, we have used the assumption that
Prob(H) = Prob(L) = 1/2).

Note that we use underlying α and r, not realized values.
This is not a problem since we are assuming a continuum of
workers. With finite N, the precise number of H types will
vary depending on realization. Next, observe that the



expected productivity is wM2, given that the market is
competitive. Hence

Notice that wM2 < 1/2, which means that the market wage
is less than the average period 2 productivity!

The profit earned by a firm that has a period 1 High-
ability worker and chooses to offer a referral wage:

We then apply Bayes’s rule:

Similarly,

Thus,

For wR ∈ [wM2, wR] to be offered, firms must earn the same
profit at all these wages:

Recalling that , and we get



Note that c(α, r) > 0 since α > 1/2. Thus such a firm will
always offer referral wages. It may be checked that c(·) is
increasing in both α and r.

We next derive wR. By definition, F(wR) = 1:

Hence

We now show that firms hiring a low-type worker in
period 1 will not make a referral offer in period 2:

It is intuitive that



The latter is zero for all w ∈ (wM2, wR). Hence ΠL(wR) is
maximized at wM2.

It can be checked that

since α > 1/2. By going to the market, it can ensure that
EΠL = 0. Hence a firm with an low-type worker in period 1
will not make a referral offer.

Given free entry in period 1, firms set wages to equate
expected profits:

■
The intuition for the effects of changes in density of

connections r and inbreeding bias α is as follows. An
increase in r and α both strengthen the lemon effect: a
greater proportion of High-type workers are employed via
referrals. This lowers the average quality of workers who
enter the market, which lowers wM2. Turning next to the
maximal referral wage, note that an increase in r increases
the number of offers that a period 2 worker receives, which
increases competition and pushes up wages. Similarly, an
increase in α increases the average type of a worker via
referrals, which also pushes up the maximal referral wage.
Thus an increase in either r or α leads to a greater wage
dispersion.

As was noted earlier in the chapter, the presence of
social connections implies that market wages in period 1
exceed the average quality of workers (i.e., wM1 > 1/2). An
increase in r or α drives up the profits of firms that make a
hire through referrals. The zero-profit market equilibrium
condition implies that wages in period 1 must adjust to



account for this. In other words, an increase in r or α

pushes up the first-period market wage wM1. Since expected
profits are zero in equilibrium, this implies a redistribution
from period 2 referred workers to period 1 workers.

The social structure of contacts has powerful
implications for wage inequality. A period 2 worker’s wage
is determined by the number and quality of ties that they
hold. A Low-quality period 2 worker is likely to have ties
mostly with Low-type period 1 workers; by contrast a High-
type period 2 worker is more likely to have ties with a High-
type worker. This suggests that a High-type period 2
worker is more likely to receive referral wage offers and
will be at an advantage compared to a situation in which
the social structure was absent. Moreover, even among
High-type workers, those who have more links with High-
type period 1 workers will receive more offers and
therefore will earn higher wages.

Let us now summarize what we have learned in this
section. Labor economists have long recognized that many
workers find jobs through friends and relatives. We have
presented a stylized economic model that combined
elements of market competition, asymmetric information,
and social structure within a common framework. This
allows us to study the relationship between social structure
and wages. The analysis reveals that social connections can
generate inequality and how the use of referrals by firms
can lead to higher profits for them. Moreover, an increase
in the density of social ties or homophily (by ability) will
create greater wage dispersion.

15.3.2.2 Sharing information about jobs

In section 15.3.1, we discussed the role of strong and weak
ties in shaping the flow of information on jobs. We also
presented evidence on spatial correlation of employment
status. In this section, we begin with a model of network
formation to explain when individuals will form weak and



strong links and how that will shape overall employment
outcomes. We then present a model of the dynamics of
information flow in a social network to develop a deeper
understanding of spatial and intertemporal correlations in
employment status.

Boorman (1975) offers a seminal contribution on the
uses of strong and weak ties in labor markets. There are
many individuals, each of whom decides how to allocate
their time between strong and weak links. Strong links take
more time to form than weak links. So an individual faces a
trade-off between having many ties that are weak or a few
ties that are strong. If an individual has S strong ties and W
weak ties, then they face the following budget constraint
with respect to time:

where λ > 1 is a factor indicating the extra time needed for
a strong tie and T is the overall time available.

In the model, with probability μ an individual needs a
job. Every person gets news about a job with some
exogenous probability p. If they do not need the job, then
they can pass the information of the vacancy to a
neighbor/contact. The individual first picks someone with
whom they have a strong tie. If there is no one in this set,
they pick someone with whom they have a weak tie. They
send the information to one of the unemployed weak
contacts. If there is no such person, then the job
information is left unused. Suppose for simplicity that the
network is a tree, so there are no cycles and common
neighbors. Let qw and qs be the probability of not hearing
about a job from a weak and a strong tie, respectively. The
probability of hearing about a job is



Starting with an allocation of strong and weak links, we
can derive the values of qs and qw. Equipped with these
probabilities, we can then ask what the optimal allocation
across strong and weak ties. This will define an equilibrium
allocation between strong and weak ties. The model allows
for multiple equilibria. Boorman uses simulations to
develop intuitions about the structure of networks and the
implications for the functioning of the labor market. An
increase in λ raises the relative cost of strong ties: this will
mean fewer strong ties. A decrease in μ means that
individuals are less likely to need a job, and this means that
a weak link may suffice. This in turn pushes up the
allocation toward a weak links. High μ leads to greater
number of strong ties (and hence fewer ties in all).

The paper by Boorman draws attention to an interesting
externality in networking: as the number of strong ties goes
up, the total number of ties falls; as a result, job
information may be wasted. The model also brings out the
difficulties of analytically solving models with networks and
markets. To make progress, we therefore turn to a simpler
model of information sharing in a given network. The model
is taken from Calvó-Armengol and Jackson (2004); our
exposition follows Goyal (2007).
15.3.2.2.1 A dynamic model of information sharing in networks 
Consider a set of N = {1, …, n}, n ≥ 2 individuals/workers
who all have the same skills. Time evolves in discrete
periods t = 1, 2, …. At the end of time t, a worker is either
employed (si, t = 1) or unemployed (si, t = 0). The vector st =
{s1t, …, snt} describes the employment status of everyone at
the end of time t. By convention, the employment status at
the start of time t + 1 is set to be equal to the employment
status at the end of time t.

Period t starts with the arrival of new information on
jobs. Every worker hears about new jobs with probability a



∈ (0, 1). Suppose that this probability is identical and
independent across workers. If the worker is unemployed,
they take the job; if they are employed, then they pass the
information to one of their unemployed contacts. If workers
know no one who is unemployed and is employed
themselves, then the information is wasted. The pattern of
contacts is captured by the undirected network g. The
probability that worker j gets a job that worker i originally
heard about is

There is a competitive aspect to connections: if worker i
knows other workers who are unemployed, then this lowers
the probability of worker j getting the information. There is
a second, more subtle effect that goes in the opposite
direction. The existence of other workers linked to worker i
also means that it is more likely that i will get information
from them about jobs, which in turn means that it is more
likely that they will pass on information about jobs that
they receive to worker j. To study the effect of indirect
connections, it is helpful to recall that a pair of workers, i
and j, are said to be path-connected in network g if there is
a path between them.

Finally, a worker loses his job with probability b ∈ (0, 1),
with this probability being identical and independent
across individual workers.

The model has been deliberately kept very simple to
bring out the essential implications of the network
transmission of information. It is possible to generalize the
model to allow for heterogeneity in skills and indirect
transmission of information, as well as to make the
transmission of information sensitive to the wages that



various workers are earning. For the analysis of such a
general model, see Calvó-Armengol and Jackson (2004).

To summarize, at the start of period t, the employment
status of workers is given by vector st−1. Workers receive
information on new jobs, which is shared via the social
network. Some workers may lose jobs, and these factors
together define a new employment status, st, at the end of
the period. Next, we will examine how network g shapes
the employment status of workers
Networks and employment We first take up the relationship
between the employment statuses of workers in the same
network. Two workers, i and k, who are linked to the same
worker j, compete for the information of worker j, and this
may induce a negative correlation between the employment
statuses of i and k. On the other hand, worker k receives
information on jobs as well, and this information may be
used by worker j to get a job. This in turn may allow worker
j to pass information on jobs to worker i, which may lead a
positive correlation between the employment statuses of i
and k. We will show that the second effect prevails: the
employment status of path-connected workers is therefore
positively correlated.

Let us define a few pieces of notation so we can spell this
out more precisely. Observe that starting at an employment
state, st, the arrival probability a ∈ (0, 1), the job loss
probability b ∈ (0, 1), and a network of information
communication together define the employment status at
time t + 1. In other words, the probability of transition
between employment statuses can be described by a finite-
state (reflecting the set of possible employment statuses of
all individuals) Markov chain. Moreover, as a and b are
both positive, there is a positive probability of transitioning
from any state to any other state. From standard results in
the theory of Markov chains, we conclude that there is a



unique invariant distribution μ on the set of employment
states (Seneta [2006], Billingsley [2008]). The first
observation about this invariant distribution is that the

employment statuses of path-connected workers are

positively correlated. The intuition underlying this result is
simple: if a group of workers are all employed, then it is
more likely that they will share information on new jobs,
which in turn makes it more likely that their friends and
neighbors will be employed too. Next, we present an
example to illustrate this positive correlation.
Example 15.4 Positive correlation of employment status

Suppose that n = 4, a =.100, and b =.015. Consider four
networks—an empty network (ge), a network with one link
(g1), a cycle network with four links (gw), and a complete
network with six links (gc). These networks are presented
in figure 15.4. Table 15.2, taken from Calvó-Armengol and
Jackson (2004), presents the probability of being employed
and the correlations in employment status across workers
in a network. Observe that workers 1 and 2 are directly
connected in networks g1, gw, and gc, while workers 1 and 3
are indirectly connected in network gw and directly
connected in gc.



Figure 15.4 
Examples of networks, n = 4.

Table 15.2 
Employment in networks

g Prob(s1 = 0) Corr(s1,s2) Corr(s1,s3)

ge .132 — —
g1 .083 .041 —
gcycle .063 .025 .019
gc .050 .025 .025

Source: Calvó-Armengol and Jackson (2004).

In the empty network, there is no information sharing on
jobs: every worker has the same probability of
unemployment, given by 0.132. As links are added in the
social network and more information about jobs among the
workers is shared, less information about jobs is wasted.
The result is that the probability of being unemployed falls:
it is 0.083 in the single-link network, 0.063 in the cycle
network, and 0.050 in the complete network. This suggests
that a worker in a denser network faces better employment
prospects. The next observation is about the correlation
between the employment prospects of different workers.
This correlation is positive across all workers, and it is
higher for directly linked workers 1 and 2 than for the
indirectly linked workers 1 and 3 in the cycle network.



◼

We now turn to the question of how the duration of
unemployment affects future employment prospects. The
model delivers a crisp result for this question: the

conditional probability that a worker will be employed in a

given period is decreasing with the length of their observed

unemployment spell. In other words, there is a positive
duration dependence. The intuition goes as follows: the
longer the duration of unemployment of an individual, the
more likely it is that their neighbors, and the neighbors of
their neighbors, are also unemployed. In other words, a
longer duration of unemployment reveals that a worker’s
environment is poor, which in turn leads to low forecasts
for future employment of the worker. To develop a better
feel for this result, we present example 15.5.
Example 15.5 Positive duration dependence

Let us again consider the four-worker economy discussed
in example 15.4. Table 15.3, also taken from Calvó-
Armengol and Jackson (2004), presents the probability of
being employed, conditional on 1, 2, and 10 periods of
unemployment.

Table 15.3 
Duration dependence in networks

g 1 Period 2 Periods 10 Periods Limit

ge .099 .099 .099 .099
g1 .176 .175 .170 .099
gc .305 .300 .278 .099

Source: Calvó-Armengol and Jackson (2004).

In the empty network, the probability of getting
employed depends solely on getting information about a
new job, and then on not losing the job. These events do
not depend on the duration of unemployment, and this



explains the unchanging number in the first row of the
table. However, as the network gets denser, a longer
duration of unemployment tells us more about the status of
the other workers (in particular, that the other workers are
not employed). This negative information in turn means
that the other workers are less likely to share any
information they will get, and this implies that a longer
duration of unemployment lowers the probability of getting
a job in the near future.

◼

In the model discussed here, the structure of links is kept
very simple. It is reasonable to expect that the links will
vary with employment status because it may be easier for
two employed people to maintain a tie than for an
employed and an unemployed person. Similarly, it may be
easier for two workers of the same ethnicity to maintain a
link. These ideas broadly suggest a type of in-breeding bias

in links. Bramoullé and Saint-Paul (2010) show that if
linking is more likely between persons with the same
employment status, then duration dependence arises in a
strong form. A longer duration of unemployment leads to
fewer employed contacts, which lowers access to job
information, which in turn prolongs unemployment. More
recent research uses the models we have presented in this
section to further explore role of homophily in networks in
shaping employment and inequality.

Let us briefly summarize what we have learnt on the role
of social networks in labor market.

Employees and employers use social ties extensively to
secure a better match. Social ties are used for referrals and
to access information on job vacancies. The use of social
ties yields better matches between employers and
employees. However, individuals who are socially
connected will also exhibit positive correlation in their
employment status. The use of social connections by firms



tends to favor those who are well connected and therefore
inequality in connections is mirrored in wage and
unemployment differentials.

15.4 Reading Notes

The industrial organization literature on consumption
externalities starts with Rohlfs (1974). In the two decades
after this paper, most of the research focused on the role of
group size. We presented an overview of this research in
chapter 8, on platforms and intermediation. In the 1990s,
as economists began to examine networks more
systematically, interest progressed beyond the size of the
group and onto a systematic exploration of the effects of
network structure.

There is a longstanding interest in using network
knowledge in better targeting behavioral changes. The
growth in our knowledge of empirical networks has further
spurred the development of formal models. The literature
on targeting in networks spans several disciplines.
Domingos and Richardson (2001) is probably the first
paper to study algorithms that maximize sales in a social
network. They consider a model where consumers can be of
two types, 0 and 1, reflecting whether they buy the product
or not. Consumers’ probability of buying a product depends
on two factors: marketing expenditures and the probability
that their direct neighbors have bought the product. The
paper compares the performance of three algorithms: a
single-pass algorithm that only looks at one iteration, a
greedy algorithm that increases marketing expenditures
wherever they increase payoffs and a hill-climbing
algorithm that increases expenditures where it matters
most. Using data on an experimental program of movie
recommendations, EachMovie (from the years 1996–1997),
they compute the multiplier effect of marketing
expenditures. A key finding is that the distribution of



multipliers is very skewed, such that targeted marketing
strategies can be very profitable.

In an influential contribution, Kempe, Kleinberg, and
Tardos (2003) study the optimal targeting problem within
the framework of standard diffusion processes. The
objective of the firm is to select an initial set of nodes in the
social network in order to maximize the total number of
informed nodes. They show that the optimal strategy is
computationally hard and then establish bounds on the
efficiency of the hill-climbing algorithm; these bounds draw
attention to the specifics of the dynamic processes. The
role of the dynamics process (in other words, the content of
interaction) is also illustrated in a model of competitive
contagion in networks by Goyal, Heidari, and Kearns
[2019]).

The chapter mostly restricts itself to the economics
research on this subject. But it is worth noting there was a
precursor to Klout-like scores in the 1950s literature in
sociology and communication on the two-step flow of
communication, which argues that the mass media did not
directly influence consumption, but it was opinion leaders
who were influenced by the mass media, and they in turn
influenced members of their community (Katz 1957). Also,
see the discussions of the role of social networks in chapter
11, on the law of the few, and chapter 13, on learning and
communication.

Economists have focused on the structure of optimal or
equilibrium outcomes and the effects of different network
statistics in shaping these optimal strategies. The model
that we used was taken from Galeotti and Goyal (2009). It
combines the formulation of advertising from Butters
(1977) with the word-of-mouth communication model of
Ellison and Fudenberg (1995). Building on our discussions
in chapter 4, we draw attention to the content and the level
of interaction in shaping optimal firm policies.



A major issue in the design of peer-leader network
intervention policies is to identify the influencers. A general
practice is to submit questionnaires to members of the
targeted group. Subjects are asked, among other things, to
answer questions about their social network, such as to
nominate their best friends, to nominate other individuals
with whom they talk about specific issues, and other topics.
Individuals who receive more nominations from others are
identified as network leaders. In turn, network leaders are
asked to attend a training session and then to communicate
what they have learned to their acquaintances. For a
detailed discussion on the implementation of these policies,
see Valente, Hoffman, Ritt-Olson, et al. (2003). The model
from Galeotti and Goyal (2009) is used to explore optimal
targeting in networks and to explore the ways in which the
content of interaction shapes the optimal target.

Pricing in markets with network effects has been
discussed at length in chapter 8. In that chapter, the focus
was on size of the networks, while here, we discussed
richer statistics of the network, such as degrees and
centrality. The material on optimal pricing in networks
draws on Fainmesser and Galeotti (2016); the model with
complete network knowledge is taken from Bloch and
Quérou (2013) and Candogan, Bimpikis, and Ozdaglar
(2012). For a survey of this literature, see Goyal (2017) and
Bloch (2016). The literature on pricing remains active; for a
recent contribution to competitive pricing in networks, see
Fainmesser and Galeotti (2020).

It is clear that consumer search and their word-of-mouth
communication interacts with firm advertising; for an early
attempt at integrating social networks with search and
pricing in product markets, see Galeotti (2004). We draw
attention to an interesting paper by Campbell (2013) that
combines pricing with advertising in the presence of word
of mouth communication. In this model, consumers learn



about a product via communication from their contacts.
Information travels through paths in a random graph.

The word of mouth creates a positive externality of
consumption: a lower price increases direct demand and,
through word of mouth, has a further indirect demand
enhancement effect. This suggests that optimal prices will
be lower in the presence of word-in-mouth communication.
While this intuition is true in some simple settings,
Campbell (2013) shows that it is not true in general. In
particular, in empirically interesting cases with correlations
in valuations across connected consumers, this result no
longer obtains. The paper then turns to the effects of
networks on optimal pricing—in particular, first-order and
second-order stochastic shifts in degree distribution and
the effects of clustering. Finally, the paper examines the
nature of optimal advertising: an interesting finding is that
optimal targets for advertising may sometimes be less
connected individuals (as they may not have heard about
the product from contacts). This is consistent with the
result on targeting consumers with low degrees in the
word-of-mouth model presented in section 15.2.1.

The study of social networks in shaping labor markets
has a long and distinguished history. The aim of our
discussion was to draw attention to some of the main
themes in this work. A large body of literature has
documented the widespread use of referrals and social
connections across both developed and developing
countries. In addition to the information in the chapter, we
note here a few other studies. Burks, Cowgill, Hoffman, and
Housman (2015) use personnel data from nine large firms
in three industries to document the use of referrals and
their impact on outcomes. Similarly, Gavazza, Mongey, and
Violante (2018) use a novel survey of recruitment costs and
practices for a sample of about 400 US firms. It contains
information on the amount of resources spent by employers
on employee referrals (among many other recruiting



channels). Ioannides and Datcher Loury (2004), (Topa
2011, 2019), Beaman (2016), Granovetter (1995), and
Pellizzari (2010) provide excellent overviews of the
literature. Then there is research on the effects of the use
of social ties on the efficiency and the inequality in the
labor market; see Conley and Topa (2002) and Bayer, Ross,
and Topa (2008).

The theoretical models help us develop a better
understanding of how social networks interact with the
asymmetric/inperfect information and market competition.
The model of referral by firms is taken from Montgomery
(1991). For recent elaborations of this model that further
develop the role of homophily in creating inequality, see
Bolte, Immorlica, and Jackson (2020). Turning to the social
sharing of job information, we start with the early model of
Boorman (1975) and then turn to the more recent work of
Calvó-Armengol and Jackson (2004). For a more recent
elaboration on the theme of correlations in employment
status across connected workers, see Bramoullé and Saint-
Paul (2010).

In the referral model, a High-type worker has no way of
signaling their ability. In labor markets, workers often can
use mechanisms such as certificates and educational
degrees to communicate their ability and skills. This leads
naturally to the study of the role of social connections when
workers also have access to such signaling mechanisms.
Casella and Hanaki (2008) study this question using an
extension of Montgomery (1991). The model contrasts
signals and networks in the following plausible way: a
signal can be bought at a cost, and it offers a proof of
ability that is valid across all potential employers, while a
personal contact allows access to a single employer and
communicates a candidate’s ability via the assortative tie
hypothesis (as in the referral model discussed previously).
This model yields a simple insight: in a context where
certificates are imperfect signals of ability, for signals to



work well, they must be costly to acquire. However, if they
are costly to acquire, then social ties (which are cheap)
become attractive, and signals are not used. These
contradictory pressures on signals imply that social
networks are quite resilient even in the presence of
anonymous mechanisms such as educational certificates.

We conclude with a very brief discussion of the literature
on the role of social networks in financial markets.
Financial markets are one setting where the standard
market model of anonymous traders and common prices
that reveal information of traders has been especially
dominant. A recent body of literature examines the role of
social networks in shaping the functioning of financial
markets. We have not covered this literature, though, as it
is mainly empirical, and the focus of this chapter was on
theoretical models. We conclude with a few pointers to
interesting lines of enquiry. In a fascinating paper, Cohen,
Frazzini, and Malloy (2008) study the role of school ties in
facilitating the flow of financially valuable information on
firms. School ties typically had been formed years earlier,
and their formation is frequently independent of the
information to be transferred. Social connections provide a
useful tie because one side has private information and the
other side has an incentive to access this private
information. The value of the social tie can be computed
relatively objectively in terms of returns to investments.
Cohen, Frazzini, and Malloy (2008) find that portfolio
managers place larger bets on a firm if they went to school
with its senior managers (or board members) and their
investment on these firms outperforms other investments.

Turning to more general social interaction effects, Hong,
Kubik, and Stein (2005) find that US fund managers
located in the same city commit to correlated investment
decisions. Such correlated choices may be due to peer-to-
peer communications or because fund managers in a given
area condition their decisions upon common sources of



information. In a similar spirit, Kuchler et al. (2022) show
that institutional investors are more likely to invest in firms
located in regions to which they have stronger social ties.
Interestingly, however, these investments do not earn a
differential return. Firms located in regions that have
stronger social ties with institutional investors have higher
valuations and liquidity.

There is also a small strand of research on theoretical
models of social networks in financial markets; for
instance, see Ozsoylev, Walden, Yavuz, and Bildik (2014);
Walden (2019); and Colla and Mele (2010). These papers
study asset pricing in markets where traders are located in
information networks and obtain results on the relation
between social network topology and equilibrium prices
and trading. For a survey of social networks in finance, see
Allen and Babus (2009) and Hirshleifer (2020).

There is a small but interesting body of empirical
research on how social ties—based on the flow of
immigrants between two countries—can lead to positive
effects on international trade. For an introduction to and
overview of this literature, see Rauch (2001).

15.5 Questions

  1.  Consider the word-of-mouth example in section 15.2.1.
This question explores the value of network information.
Show that the value of network information is
increasing with a mean-preserving spread in degree
distribution. Hint: Compare the profits of targeted
versus untargeted firm strategies, and show that this
difference in increasing in a mean-preserving spread of
degree distribution.

  2.  Consider the model of optimal pricing with complete
network information discussed in section 15.2.2.2.
(a)  Show that in a subgame perfect equilibrium every

consumer must choose a positive quantity.



(b)  Suppose n = 6. Consider the star network. Suppose
all spokes assign weight 0.5 to the centre and the
centre assigns weight 1 to the link with each spoke.
Compute optimal prices to different customers in this
network.

(c)  Suppose n = 6. Consider the star network. Suppose
all spokes assign weight 1 to the centre and the
centre assigns weight 0.5 to the link with each
spoke. Compute optimal prices to different
customers in this network.

(d)  Suppose n = 6. Consider networks with binary links
that take values 0 or 1. Suppose that links are
symmetric. Compute the optimal price in the empty,
complete, and the star network.

  3.  An important element in viral marketing is the idea that
information can be passed from person to person via
social connections. Let us extend the model in section
15.2.1 to allow for this possibility as follows. Suppose
that every buyer has the same degree, such as k, and
suppose that information flows r steps; r ≥ 1 is an
integer that indicates the radius of information
diffusion. Assume that there is no overlap in
neighborhoods.
(a)  Given information radius r and strategy x, show that

the probability that a consumer with k friends
becomes aware of the product is

(b)  Next, show that the expected profits to firm ℳ are

(c)  Verify that (I) ϕk(x|r) is increasing and concave in x,
k, and r; (II) the function ϕk(·) exhibits increasing



marginal returns from degree for low values of x,
and otherwise, it exhibits decreasing marginal
returns from degrees; and (III)  is positive for
low values of x, and negative otherwise.

(d)  Using properties I–III, show that the effects of an
increase in the level of word-of-mouth
communication on optimal advertising strategy and
profits presented in the chapter extend to richer
patterns of information diffusion (i.e., r ≥ 1). Then,
show that an increase in the radius of information
flow is analogous to an increase in the level of word-
of-mouth communication.

  4.  Consider the model in section 15.2.1 and let us apply it
to the choice of product quality. There is asymmetric
information between firms and consumers about
quality, and consumers share their experience about
product quality via word-of-mouth communication.
Suppose that there is one firm that is selling to a set of
consumers. The set of buyers is 𝒩 = [0, 1]; each buyer
has inelastic demand, and their reservation value for
the object is v = 1 if the quality is HIGH, but the
reservation utility v = 0 if the quality is LOW. At the
start, all consumers are pessimistic about the product’s
quality so that no one is willing to pay a positive price.
Hence, the only way that the firm can generate sales is
to give away free samples of the product and hope that
the consumers will pass on good information about it.
Consider a two-period model, where in period 1, the
firm chooses the number of samples to give away for
free (x ∈ [0, 1]), and in period 2, it chooses the price to
charge (p ≥ 0). Moreover, to simplify matters, suppose
that there are no direct costs of producing the good,
which implies that the only cost is an indirect one, via
the loss of potential sales. Given that consumers only
buy if they are informed that the product quality is



HIGH, it is optimal for the firm to set price p = 1 in the
second period.
(a)  Show that the payoffs to a firm from a consumer

with degree k are then given by

(1 − x) refers to the probability that a consumer has
not been given the product for free in period 1.

(b)  Verify that ϕk(x) is concave in x and is increasing
and concave in k.

(c)  For a given distribution, P, show that the expected
profits under strategy x is:

(d)  The monopolist chooses x to maximize profits. Show
that the effects of changes in P on the optimal
strategy depend on how marginal returns change
with respect to k, as in the model in this chapter.

  5.  (Galeotti and Goyal [2009]). Consider a variant of the
model in section 15.2.1 that allows us to consider
adoption externalities. Suppose that ψ(k, s) = s/k for all
s, k ∈ O: here, the probability that a consumer buys a
product is increasing with the number of neighbors who
have already bought the product, but it is independent
of the consumer’s neighborhood size.
(a)  Under this assumption, show that the expected

profits to the firm from a degree k buyer are

(b)  Verify that ϕk(x) is increasing and linear in degree
and exhibits increasing (decreasing) marginal



returns in degree for low (high) x.
  6.  (Galeotti and Goyal [2009]). This question considers a

variant of the model discussed in section 15.2.1.
Suppose that all consumers have the same out-degree
but have different in-degrees. Let I = {1, …, l}, and let
H: O → [0, 1] be a probability distribution, where H(l)
indicates the fraction of individuals in 𝒩 that are
sampled by l others. The mean of H . If an
individual is sampled by l other individuals, there are l
links pointing to individual i. Note that P and H satisfy
the condition . For simplicity, we focus on the case
where ; in other words, everyone draws a sample
of the same size (and so the out-degree distribution is
degenerate).
(a)  For a given strategy x ∈ [0, 1], show that the

expected net profits are

(b)  Suppose that H′ first-order stochastically dominates
H. Show that profits under H′ are higher than profits
under H.

(c)  Consider targeted strategies. Suppose that the firm
knows the in-degree of individuals. Let a targeted
strategy be denoted by x = {x1, x2, …, xl}, where xl is
the effort that firm spends on targeting consumers
with in-degree l. Let us denote by , the probability
that consumer i samples a consumer who has in-
degree l. Using Bayes’s rule, we can express  as
follows:



Given a targeted strategy x, let . Show
that expected profits from strategy x are

and for any s ∈ I, we have that

(d)  Show that it is optimal to use an increasing cutoff
strategy.

  7.  This question studies the role of social networks in
labor markets and is based on the model presented in
section 15.3. Consider a two-period model with the
following features. Workers know their ability while
firms do not know it. In each period a firm hires one
worker. The output of a firm is equal to the ability of the
worker who works for the firm. In period 1, all firms
have same average quality of worker, and pay wages
corresponding to this average. During period 1, a firm
learns the ability of its worker. At the start of period 2,
it has a choice between asking the period 1 worker for
the name of contact and offering a referral wage, or

simply posting a wage in the market. Competition
between firms means that wages equal expected ability
of workers. And that profits of firms are equal to zero
over two periods. Each period 1 worker knows at most
one period 2 worker, possessing a social tie with
probability r ∈ [0, 1]. Conditional upon holding a tie,
period 1 worker knows a period 2 worker of his own
type with probability α > 1/2. The social structure is
thus defined by, r and α.



(a)  Explain why a firm will offer a referral wages in
period 2 only if its current worker is of high ability.
Then show that the optimal referral wage offer must
involve randomization.

(b)  Show that period 2 wages are characterized by a
lemons effect: the market wage is below one half.

(c)  Social connections create inequality in the labor
market. Comment.



IV

BROADER THEMES



16
Networked Markets

16.1 Introduction

In the theory of general equilibrium and oligopoly, the
background assumption is that firms and consumers
interact anonymously and globally (anyone can buy and sell
from anyone else) at a common price. In practice, bounds
of trust and cooperation lead to personalized relations, and
geographical distance and national boundaries place
restrictions on who can undertake exchange with whom.
These restrictions may be modeled in terms of ties that are
either present or absent in a network. This chapter
presents models of networked markets that help us
understand the ways in which prices and quantities are
determined in such settings.

We start with a study of a group of sellers, each of whom
wishes to sell an indivisible good to a group of buyers. In a
world where valuations of all sellers are 0 and the
valuations of all buyers are 1, the standard model says that
a law of one price obtains, with the price being equal to 1 if
there are more buyers than sellers and 0 if there are more
sellers than buyers. We examine how this prediction is
affected if there are restrictions on who can trade with
whom. We locate the buyers and sellers in a bipartite
graph. The complete bipartite graph corresponds to the
case where all buyers and sellers can trade with each



other. Our analysis shows that the law of one price obtains
only under very special circumstances: when the local
environment facing sets of buyers and sellers corresponds
to the global ratio: in other words, a price of 1 obtains only
if all buyers find themselves in a situation where they are
connected to sellers with an excess number of buyers to
sell to. Similarly, a uniform price of 0 obtains only if all
buyers find themselves in a situation where they are
connected to sellers with too few buyers to sell to.

We then take up pricing in chains of intermediaries
between an initial seller and an eventual buyer. Examples
of this model are supply chains and financial markets. We
study price formation via three protocols: posted prices,
bargaining, and auctions. The discussion draws attention to
the complexity of the problem and reveals aspects of
networks that will be important in shaping pricing and the
distribution of surplus. We find that the notion of critical
nodes is helpful in organizing arguments. Roughly
speaking, a node is critical in a network if it lies on all
paths between the original seller and the eventual buyer.
Critical traders earn larger payoffs than noncritical nodes.

The last part of the chapter takes up research
collaboration ties among oligopolistic firms. Research
alliances among firms are common and have been widely
studied. Networks of research collaboration exhibit a
number of distinctive features: the average degree is
relatively small but unequal, and the network has a core-
periphery architecture (implying that the average distance
between firms in the network is relatively small). We build
on classical models of price (Bertrand) and quantity
(Cournot) competition to propose a model of network
formation that sheds light on the economic forces that can
help explain the emergence of these network properties.
The analysis reveals that research collaboration among
firms has powerful effects on the competitive position of
firms. These effects are reinforced if firms are allowed to



make transfers to other firms to form collaboration ties, as
would be involved in technology exchange agreements
between a large firm and a start-up. This reinforcement of
advantages can give rise to highly unequal networks.

16.2 Bilateral Exchange

In a textbook model of buyers and sellers, the price is
determined by the intersection of the demand and supply
curves. This classical formulation assumes that all buyers
and sellers can trade with each other. In practice,
participation in trading may be restricted, and some buyers
may be able to trade with only a subset of sellers, and vice
versa. This could be due to transport costs or restrictions
imposed by national boundaries, or due to high contracting
costs. When trading options are limited, sellers may be able
to charge more because many buyers are dependent solely
on them, even if the aggregate picture is one in which
sellers are on the long side and buyers are on the short
side. This section studies the formation of prices and the
allocation of trading surpluses in such settings. We start
with a model of bargaining and then take up auctions in
networks.

16.2.1 Bargaining in Networks

We will consider a model consisting of buyers and sellers,
with trading restrictions between them. The model is taken
from Corominas-Bosch (2004).

We will consider a market comprising of B buyers and S
sellers. Each seller has a single indivisible good, which they
value at 0; every buyer has a known valuation for the good
equal to 1. The trading relationships are represented by a
bipartite network (see figure 16.1): in such a network, a
buyer and a seller have a link if and only if they can trade.
The simplest cases of such networks involve a buyer and a
seller, or two sellers and a single buyer (and vice versa).



Note that the complete bipartite network in which all
sellers can trade with all buyers is an example of a special
interest, as it corresponds to the classical market with no
trading restrictions/frictions.

Figure 16.1 
Examples of bipartite networks. Source: Jackson (2008).

Let us start by recalling how prices will be determined in
an introductory economics textbook model: we can derive
the demand and supply curves by aggregating the



individual schedules. Note that price p means that the
buyer’s payoff is 1 −p, while the seller’s payoff is p. As
every buyer can trade with every seller, there must be a
single price for all transactions. We will refer to this
outcome as the competitive benchmark. In this outcome,
the equilibrium price is determined by the relative sizes of
B and S. If B > S, then the demand and supply curves will
support the price of 1, while if B < S, then the only price
that can equate demand with supply is 0.

Let us next consider settings with trade restrictions. To
facilitate an easy comparison with the Walrasian model, we
consider a simple and relatively synchronized bargaining
process. Time proceeds in discrete steps (t = 1, 2, …). In
period 1 and all subsequent odd-numbered periods, every
remaining seller makes an offer, which is observed by the
remaining connected buyers. Buyers who wish to trade
accept one of the prices that they see, while those who do
not wish to trade reject all prices that they observe. Those
who have an agreed trade make the transaction at the
agreed price and leave the market (in case of a tie with two
traders buying from one seller, we randomly pick one
trade). In round 2 and all subsequent even-numbered
rounds, buyers make offers and connected sellers respond.
To focus on the network structure, let us suppose that all
traders discount the future at the rate δ ∈ (0, 1). If a buyer
(seller) trades at time t, they earn δt(1 − p) (δtp). We study
the relation between network structure and prices.

Consider the simplest network with a pair of traders or
three traders. If two buyers are linked to a single seller,
then p = 1; if two sellers are linked to a single buyer, then
p = 0. In the case of disjoint pairs of traders, p = 1/(1 + δ)
(this comes from the well-known Rubinstein-Stahl model of
alternating offers).

Turning to richer and larger networks, there are indirect
chains of links that are important in bargaining. For



instance, a seller realizes that the response of their
connected buyer depends on how many sellers they are
connected to, and then on how many buyers they in turn
are connected to (and so forth). The first step in the study
of this problem is the following observation: every bipartite
network can be broken into subnetworks in which either
the buyers are in the majority, the sellers are in the
majority, or the two sides are in balance. This
decomposition is helpful because prices in these
subnetworks are either 1, 0, or (roughly) 1/2, respectively.

16.2.2 Network Structure and Prices

A seller-surplus local network, gs, is one in which sellers
are on the long side and every subset of sellers can be
matched with buyers with a cardinality at most as great as
the seller. We refer to the buyer-surplus local network as gb

and the balanced subnetwork as ge. Let Ng(V0) be the set of
vertices linked to a set of vertices V0. We are now ready to
define the concept of a nondeficient set.
Definition 16.1 A set of nodes V with V⊆ S or V⊆ B is nondeficient in

network g if |Ng(V0)|≥ V 0 for every V0 ≤ V.

Every bipartite network g can be decomposed into a
number of subgraphs:  (of the seller surplus type), 

 (of the buyer surplus type), and a third category 
 (of the balanced type). Moreover, a seller in  is

linked only to buyers in some , and a buyer in  is linked
only to sellers in some . Finally, a given node always
belongs to the same type of subgraph across all possible
decompositions.

This decomposition can be implemented as follows:

  1.  Start with two or more sellers who are linked only to
the same buyer. Ignore the other links of this buyer. The
buyer gets 1 and the sellers get 0. Take these traders
out of the network.



  2.  Consider the residual network and repeat step 1, but
with the role of the traders reversed.

  3.  Proceed inductively in the number of traders: identify k
sellers who have links with at most k − 1 buyers.
Alternatively, identify k buyers who have links with at
most k − 1 sellers. Assign the payoffs correspondingly.

  4.  We are left with balanced sets of traders, with k buyers
linked to k sellers.

We illustrate how this algorithm works by applying it to
the last network in figure 16.1. This yields figure 16.2: we
identify a buyer surplus subgraph and then identify a
balanced subnetwork. This yields us a decomposition of the
network and a corresponding allocation of surplus.



Figure 16.2 
Implementing the algorithm (the numbers indicate payoffs when δ → 1).
Source: Jackson (2008).

This decomposition allows us to develop the following
description of prices in the various types of subnetworks.
There is a subgame perfect equilibrium of the bargaining
game in which the price is 0 in subgraphs gs, the price in
subgraphs gb is 1, and the price in subgraphs ge is 1/(1 +
δ).

Let us sketch the argument underlying this pricing
outcome. Consider the profile in which all sellers in a gb

subgraph propose 1 and all buyers accept it. Suppose that
a buyer rejects this proposal. Then in equilibrium, the trade
will take place among the remaining buyers and sellers in



the subgraph. So the buyer will be disconnected from all
the sellers in the original subgraph gb. So their only hope is
a positive payoff from their links in other subgraphs. But
the decomposition we obtained tells us that this buyer is
linked only to sellers in other gb subgraphs. In such a
subgraph, sellers propose 1 and the buyers linked to them
agree to the proposal. The buyer will see all their links to
sellers deleted at the end of the round. The buyer will
therefore be isolated and earn 0 from the deviation. Thus
accepting a price of 1 is optimal for this buyer.

We summarize our analysis in the following result.
Proposition 16.1 Consider a network with S sellers and B buyers and a

decomposition as computed as described previously.

If S > B, then g will support the competitive outcome if and only if every

subgraph is of type gs.
If S < B, then g will support the competitive outcome if and only if every

subgraph is of type gb.

If B = S, then g will support the competitive outcome if and only if every

subgraph is of type ge.

These arguments are intuitive, but the decomposition
underlying the proof involves careful consideration of the
direct and indirect connections in the buyer-seller network.
It is therefore very unclear if actual behavior in such
settings will conform to the theoretical predictions. With
this observation in mind, we report the findings of an
experiment with a small buyer-seller network (with seven
traders). The experiment is taken from Charness,
Corominas-Bosch, and Frechette (2007).

Let us consider the following network: there are four
sellers and three buyers. Sellers 1 and 2 linked only to
buyer 1, seller 3 has links with buyers 1 and 2, while seller
4 has links with buyers 2 and 3. Sellers 1 and 2 and buyer 1
are in one subgraph, and sellers 3 and 4 and buyers 2 and 3
are in the other subgraph. The theoretical prediction is that
sellers 1 and 2 make 0, while buyer 1 makes 1, and sellers
3 and 4 and buyers 2 and 3 make 1/2 each. The network



and the theoretical predictions are presented in figure
16.3(a).

Figure 16.3 
Experiments on buyer-seller bargaining. Source: Charness, Corominas-Bosch,
and Frechette (2007).

The principal experimental finding concerns the average
payoffs, to wit: seller 1 (0.07), seller 2 (0.08), seller 3
(0.53), seller 4 (0.51), buyer 1 (0.85), buyer 2 (0.47), and
buyer 3 (0.49). These are presented in figure 16.3(b). We
conclude that the experimental outcome corresponds
closely to the theoretical predictions of the model.

The Corominas-Bosch (2004) paper provides an elegant
microfoundation for the Walrasian benchmark: it tells us
that the law of one price obtains only when all local
markets reflect the global balance of buyers versus sellers.
So, in a market with surplus sellers, the outcome may entail
some sellers who make large profits because they are
locally in a buyer-surplus market.

We have taken the network as given so far, but given the
trading outcome on any network, we can now take a step
back and ask what sort of networks would form if buyers
and sellers can build links with each other. A question at
the end of the chapter works through the incentives to
create networks in this setting.

We have examined price determination in a network via a
process of bargaining: in our model, everyone knows the
network and also knows that all buyers value the good at 1,



while all sellers value the good at 0. In practice, it is more
natural to suppose that there will be limited information
about valuations and the connections of others. The theory
of bargaining in networks—with incomplete information
about either of these dimensions—is very much a field of
ongoing research. The interested reader is referred to the
excellent survey by Manea (2016). Prices may be
determined by agents posting a price (as firms often do)
and through an auction among connected buyers. A
problem at the end of the chapter explores posted prices in
networks. We conclude this section with a brief discussion
of auctions in networks that also allow for link formation.

16.2.3 Auctions in Networks

We consider a model of auctions in networks that is based
on Kranton and Minehart (2001). In stage 1, players choose
to form links that determine potential trade patterns. In
stage 2, buyers simultaneously make bids to the seller. The
winner is determined using a second-price auction. Assume
that the valuations of the buyers are uniformly distributed
on the unit interval.

To fix ideas, suppose that there are two buyers and one
seller. In the single-link network, a buyer bids 0. In the two-
link network, the buyers submit valuations equal to their
valuation, so the expected price is the expected value of the
second-highest valuation. It maybe verified that the
expected valuation of the winner is 2/3 (which is also the
total value of the surplus generated), while the expected
price is equal to 1/3. Each buyer expects to earn 1/6,
together they expect to earn 1/3, and the seller expects to
earn 1/3.

What are the incentives of the traders to form a network?
Let us first characterize the efficient networks: observe
that the expected social value of one buyer is 1/2, while the
expected social value of selling to two buyers is 2/3. This
implies that the empty network is efficient if c > 1/2, the



single-link network is efficient if 1/6 < c < 1/2, and the
two-link network is efficient if c < 1/6.

Next, consider stage 1 with unilateral links formed by
buyers. Observe that the empty network is an equilibrium if
no buyer has an incentive to form a link: simple
computations reveal that if the cost of a link is c > 1/2,
then the empty network is an equilibrium. Now consider
the single-link network. A buyer is willing to form a link so
long as c < 1/2, and the second buyer has no incentive to
form a link if c > 1/6.

We have thus shown that a single-link network is an
equilibrium if 1/6 < c < 1/2, and the two-link network is an
equilibrium if c < 1/6.

◼

In this example, the efficient and equilibrium networks
coincide. A question at the end of the chapter explores the
role of linking protocol—one-sided versus two-sided—in this
result.

16.3 Intermediaries

Section 16.2 considered direct ties between initial sellers
and final buyers. However, as the examples in earlier
chapters indicate, supply chains are a defining feature of
the modern economy. They are prominent in agriculture,
manufacturing, transport and communication, international
trade, and finance. The routing of economic activity, the
allocation of surplus and the efficiency of the system
depend on the prices set by the various intermediaries. This
section studies the formation of prices in a network of
intermediaries. We start with models of posted prices and
then take up models of bargaining and auctions. The
exposition in this section draws on Condorelli and Galeotti
(2016).



Motivated by the example of supply chains, let us
consider a simple model, in which intermediaries set a bid
price to buy upstream and an ask price to sell downstream
(as in Blume, Easley, Kleinberg, and Tardos [2009]). The
intermediary has no consumption value for the object and
is connected to subsets of buyers and sellers. This may be
seen as a natural next step from the bipartite networks
considered in the previous section. In this model, a seller
has 1 unit of an indivisible good, and every buyer demands
1 unit of the same good. The consumption value of buyers
and sellers may differ, but it is commonly known.

The trading proceeds in two stages. In the first stage, an
intermediary offers a bid price to each seller to whom they
are connected, and an ask price to each buyer to whom
they are connected. In the second stage, sellers and buyers
choose the best offer from the offers of intermediaries open
to them (it is possible that they then choose not to buy or
sell). A large penalty is imposed on intermediaries that sell
more units than they have acquired. This assumption
ensures that in equilibrium, intermediaries will not default
on their price commitment to buyers. It is possible to show
that every Nash equilibrium of this game results in an
efficient outcome (i.e., every possible beneficial trade is
realized). An intermediary makes a positive profit if and
only if they are essential, that is, if attainable social surplus
would fall in the absence of this intermediary. In the special
case with only one buyer and one seller, an intermediary is
essential if they lie on the unique path between them. A
question at the end of the chapter works through an
equilibrium in specific networks based on this model.

In this model, there is only one layer of intermediation
between initial sellers and eventual buyers. Let us move
beyond this two-step network to more complete
multipartite networks with longer paths in which all traders
post bid and ask prices simultaneously. In this case, the



object flows from the initial seller to the highest bidder in
tier 1, from the buyer in tier 1 to the highest bidder in tier
2, and so forth. The object stops moving either when it is
acquired by intermediary i and i’s ask is strictly higher than
the best bid of any of their downstream buyers, or if it has
reached an eventual buyer. This formulation with bid and
ask prices is explored in Gale and Kariv (2009). We would
like to study a richer set of networks, and this leads us to
simplify the pricing process slightly. Our discussion will
focus on a model of posted prices taken from Choi, Galeotti,
and Goyal (2017).

16.3.1 A Model of Posted Prices

By way of motivation for this model, let us consider a
tourist who wishes to travel by train from London to see the
Louvre in Paris. The first leg of the journey is from her
home to the St. Pancras Station in London. She can use the
London Underground, a bus or a taxi to get from home to
St Pancras. Once at the station, the only service provider to
Gare du Nord station in Paris is Eurostar. Upon arriving at
Paris Nord Station, she again has a number of alternatives
(e.g., Metro, bus, or taxi) to get to the Louvre. We can
represent the possibilities with the help of a network
similar to what is shown in figure 16.4: this network
consists of alternative paths, each constituting local
transport alternatives in London and in Paris and Eurostar.
Each of these service providers sets a price with a view to
maximizing its profits. The traveler picks the cheapest
path. How does the network shape prices, and which route
will the tourist eventually choose?



Figure 16.4 
Traveling from home in London to the Louvre in Paris.

This example suggests the following model: there is a
source node, 𝒮, and a destination node, 𝒟. A path between
the two is formed by a sequence of interconnected nodes,
each occupied by an intermediary. The source node and the
destination node and all the paths between them together
define a network. The passage of goods (or people) from
source to destination generates a surplus. Let us suppose
that the value is known, and for simplicity, set it equal to 1.
Intermediaries (who all have zero cost) simultaneously post
a price; the prices determine a total cost for every path
between 𝒮 and 𝒟. The tourist moves along a least-cost
path; so intermediaries earn payoffs only if they are located
on it.

Every node i is called an intermediary; let N = {1, 2, 3, …,

n}, n ≥ 1 denote the set of intermediaries. A path q

between 𝒮 and 𝒟 is formed by a sequence of distinct nodes
{i1, …, il}, such that g𝒮i1 = gi1i2 = ⋯ = gil𝒟 = 1. The nodes N
∪{𝒮, 𝒟} and the paths 𝒬 define network g. Every
intermediary i simultaneously posts price pi ≥ 0. Let p =
{p1, p2, …, pn} denote the price profile. Throughout this
discussion, we will restrict attention to pure pricing
strategies. Network g and price profile p define a cost for
every path q between 𝒮 and 𝒟:



A least-cost path q′ is one such that c(q′, p) = minq∈𝒬c(q,

p). Payoffs arise from active intermediation: intermediary i
obtains pi only if they lie on a feasible least-cost path.
Define c(p) = minq∈𝒬c(q, p). Path q is feasible if c(q, p) ≤ 1,
where 1 is the value of an economic good generated by the
path. All paths generate the same value, 1. If there are
multiple least-cost paths, one of them is chosen randomly
to be the active path. Given g and p, we denote by 𝒬 = {q
∈𝒬: c(q, p) = c(p), c(p) ≤ 1} the set of feasible least-cost
paths. Given price profile p, intermediary i’s payoff is

where ηi is the number of paths in 𝒬 that contain
intermediary i.

We study a pure-strategy Nash equilibrium of the posted
price game. Price profile p* is a Nash equilibrium if, for all 

 for all pi ≥ 0. An equilibrium is efficient
(inefficient) if trade occurs (does not occur). Equilibrium p*

is said to be efficient if c(p*) ≤ 1; otherwise, equilibrium p*

is inefficient.
To build some intuition for how network structure affects

pricing, let us consider two simple networks. The first has
two paths between 𝒮 and 𝒟, each with a distinct node.
These two intermediaries compete in price: this is very
much like price competition between firms selling a
homogenous product. Standard arguments tell us that the
firms will set a price equal to 0. The second contains a
single line with two nodes between 𝒮 and 𝒟. The outcome
is a pair of prices that sums to 1; this is as in the Nash
model of two players bargaining over a cake of size 1.
Observe that in the first network, the prices of the two



competing firms are strategic complements, while in the
latter network (when the two prices add up to 1), they are
strategic substitutes. These examples illustrate how
classical models of price formation constitute special cases
of our framework and how networks and the strategic
structure are intimately related.

Let us build on these examples to make some
observations on pricing in general networks. If there are
multiple routes between source and destination, then the
players located on these nodes become competitors who
are supplying a route, which is a homogenous product. If
the routes are distinct—they have no common intermediary
—then we should expect that the outcome would be like the
Bertrand outcome: all intermediaries set a price of 0. It is
possible to verify that this price profile constitutes a Nash
equilibrium. However, it is not the unique equilibrium: to
see why, consider a simple network with two paths, with
two intermediaries on each path. There is an equilibrium in
which intermediaries on one path miscoordinate and each
sets a price of 1, while each of the intermediaries on the
other path sets a price of 1/2.

Turning next to the case where some intermediaries are
common to the paths, consider the special case where an
intermediary lies on all paths. In this situation, we claim
that the traveler must earn zero surplus. Suppose that they
earn a positive surplus in equilibrium. This means that the
cheapest path adds up to less than 1. But then the
intermediary who lies on all paths can raise their price so
that the prices add up to 1. This is a strictly profitable
deviation for the intermediary and contradicts the claim
that we were in equilibrium.

Building on chapter 1, let us define the betweenness

centrality of intermediary i as BCi = ηi/|𝒬|, where BCi ∈ [0,
1]. Intermediary i is said to be critical if BCi = 1.



Proposition 16.2 In every network, there is an efficient equilibrium. Any

equilibrium p* is either inefficient (c( p*) > 1), allows intermediaries to extract

all surplus (c( p*) = 1), or gives no surplus to intermediaries (c( p*) = 0). In a

network with critical traders, an efficient equilibrium results in full extraction

by intermediaries.

Let us sketch the proof for this result. When equilibria
are efficient, only two outcomes are possible with regard to
surplus extraction—either all of a surplus accrues to
intermediaries or none of it does. To see why this is true,
note that if there is a critical trader, then trade cannot
occur at a price less than full surplus because the critical
trader can simply increase their price and thereby strictly
increase their profits. If there is no critical trader, then the
argument is a little more complicated. If the feasible least-
cost path is unique, then intermediaries in that path
exercise market power, and if intermediation costs are
below the full surplus, then an intermediary on that path
could slightly increase their intermediation price while
guaranteeing that exchange takes place through them. In
contrast, when there are multiple feasible least-cost paths,
then there is price competition among intermediaries on
these paths. In that case, whenever intermediation costs
are larger than zero, an intermediary demanding a positive
price gains by undercutting their price. Price competition
drives intermediation costs down to zero.

Criticality dictates that all surpluses must accrue to
intermediaries, but the theory is permissive about how they
are distributed among them. To see this point, consider the
Ring with Hubs and Spokes network presented in figure
16.5, and suppose that 𝒮 and 𝒟 are located on (a1, d1).
Then, there is an equilibrium in which all surplus accrues
to the critical intermediaries (e.g., A and D charge 1/2 and
all other intermediaries charge 0). However, there is also
an equilibrium in which the entire surplus is earned by
noncritical intermediaries (e.g., A and D charge 0, B and C
charge 1/2, and F and E charge 1).



Figure 16.5 
Examples of networks. Source: Choi, Galeotti, and Goyal (2017).

The theoretical analysis suggests some broad patterns
for how networks affect pricing, but open questions remain
due to the multiplicity of equilibria: we know, for instance,
that miscoordination can lead to the breakdown of trade,
and even when trade occurs, surplus may flow to
noncritical traders. Now we conduct an experiment with
the networks in figure 16.5 that allows us to examine the
roles of coordination, competition, and market power.

The ring networks with 4, 6, and 10 traders allow us to
focus on coordination and competition. For every choice of
𝒮 and 𝒟, there are always two competing paths of
intermediaries. In ring 4, for any nonadjacent pair, there
are two paths with a single intermediary each. Rings 6 and



10 allow situations with a higher (and possibly unequal)
number of intermediaries on either path.

The Ring with Hubs and Spokes network allows us to
study of the impact of market power: for instance, if 𝒮 is
located at a1 and 𝒟 is located at a2, intermediary A is a pure
monopoly, while if 𝒟 is b1, then the intermediaries A and B
play a symmetric Nash demand game. This network also
creates the space for both market power and competition
to come into play. For instance, if 𝒮 is located at a1 and 𝒟 is
located at e1, then there are two competing paths: a shorter
path (through A, F, and E) and a longer path (through A, B,
C, D, and E). Traders A and E are the only critical
intermediaries.

The first finding is that the level of efficiency is
remarkably high in all networks. Trading in rings with 4, 6,
and 10 intermediaries occurs with probability 1. In the Ring
with Hubs and Spokes, trading occurs with probability
around 0.95. Table 16.1 summarizes the data.

Table 16.1 
Frequency of trading

Network

Minimum Distance of Buyer-Sell Pair

All ( ≥
2) 2 3 4 5

Ring 4 1.00 1.00 – – –
(480) (480)

Ring 6 1.00 1.00 1.00 – –
(420) (289) (131)

Ring 10 1.00 1.00 1.00 1.00 1.00
(240) (49) (87) (69) (35)

Ring with
Hubs

0.95 1.00 0.94 0.90 0.90

and Spokes (420) (126) (155) (109) (30)

Note: The number of group observations is reported in
parentheses. Source: Choi, Galeotti, and Goyal (2017).

We next turn to the issue of surplus extraction by
intermediaries. Figure 16.6 presents a summary of the



findings. As we move along the x-axis, we cover the various
networks. On the y-axis, we have the share of surplus
accruing to intermediaries. In the Ring with Hubs and
Spokes, when 𝒮 and 𝒟 are served by a sole critical
intermediary, surplus extraction is in the region of 99
percent. When 𝒮 and 𝒟 are connecting via one single path
with two intermediaries, the game played by the two
intermediaries is analogous to a symmetric Nash demand
game. The intermediaries extract, in total, around 96
percent of the surplus, and they share it roughly equally.
Finally, when there are two competing paths and critical
traders, the intermediation cost ranges between 62 percent
and 83 percent. In the case without critical intermediaries,
this cost falls sharply to around 28 percent, which is
comparable to the low-cost outcome found in the rings.

Figure 16.6 
Costs of intermediation (numbers on x-axis indicate short and long paths
between source and destination; No. Cr refers to number of critical nodes).
Source: Choi, Galeotti, and Goyal (2017).



The final issue pertains to the sharing of surpluses
between critical and noncritical traders. Figure 16.7
summarizes the data. We cover the possible distances and
critical-noncritical configurations as we move along the x-
axis. The y-axis presents the prices. The graph reveals that
in the Ring with Hubs and Spokes, critical intermediaries
set higher prices and earn a much higher share of surplus
than noncritical intermediaries.

Figure 16.7 
Competition among intermediaries. Source: Choi, Galeotti, and Goyal (2017).

To summarize: trading in a network is generally efficient,
and critical intermediaries capture practically all the
surplus.

In this model, there is full information on the size of the
surplus. In practice, traders will normally not know the
value of the surplus. Let us briefly discuss the implications
of this imperfect information. Suppose that to fix ideas, that
value is uniformly distributed on the unit interval. This
defines a new game on a network: the strategies remain as



before, but the profits of intermediaries are altered due to
the incomplete information on valuations.

To develop an idea of how incomplete information
matters, we discuss the two simple network examples as
discussed previously. In the two-path case, nothing
essential changes: prices are still set at 0. But in the line
network with two nodes, there is an outcome where both
intermediaries set a price equal to 1/3, so there is no trade
with probability 2/3. It is easy to see that with three
intermediaries, the price will be 1/4, so the probability of
no trade is 3/4. Thus individual prices are falling,
aggregate price is rising, and the probability of trade is
falling in the number of critical traders. These points can
be shown to hold in more general networks, a point that is
developed in a question at the end of the chapter.

The discussion on post prices reveals that critical nodes
play an important determinant of prices and trading
patterns. This suggests that traders have an incentive to
form links in order to become critical nodes in the trading
network. For a model of network formation with
intermediation rents, see section 8.6 in chapter 8.

As in the previous section on bipartite networks, to
deepen our understanding of pricing in networks, we will
next explore price formation via bargaining.

16.3.2 A Model of Bargaining

We next consider a model of bargaining among
intermediaries that is based on Manea (2018). In this
model, there is a single seller who a single unit of an
indivisible good, which can be resold through a chain of
intermediaries until it reaches a final buyer. The details of
timing and moves are as follows:

At every stage, the current owner of the good selects a
bargaining partner among their downstream neighbors
in the network.



The two traders negotiate the price of the good. With
probability p, the current owner makes an offer and the
partner either accepts or rejects it. With probability 1−p,
the downstream trader makes an offer. Regardless of
who makes the offer, once an offer is rejected,
bargaining in that stage ends. The current owner has an
opportunity to select a new trader in the next stage (they
may select the same partner again).
On the other hand, if an offer is accepted, then the two
traders exchange the good at the agreed price. If the
new owner is an intermediary, they have an opportunity
to resell the good to downstream neighbors following the
same protocol. The final buyer consumes the good upon
purchase.

Traders have a common discount factor δ ∈ (0, 1). At any
point in the game, the strategy of an active trader is
conditioned on current ownership: the strategy consists of
an offer of a price to sell or an offer to buy at a price. The
strategy of the respondent is to accept or reject the offer.
As past actions do not matter, we will study the Markov
perfect equilibrium of the bargaining game. In other words,
the traders condition their offers and responses only on
current ownership status and potential buyers downstream.

To draw out the role of the network architecture, let us
assume that all traders have zero costs and all buyers have
a common value v > 0. A preliminary observation is the
following: any seller/intermediary linked to two or more
buyers will extract the full surplus of v, as traders become
patient (this is reminiscent of our model of bargaining in
bipartite networks). In the rest of this section, the
discussion will proceed under the assumption that players
are very patient (i.e., δ → 1).

With these points in mind, let us consider the class of
connected networks that are acyclic—these are networks in
which there is a path leading from the original seller to



every final buyer and a well-defined progression from the
original owner downstream. Building on the previous
discussion, we will want to identify the sellers who act as a
gateway to competing buyers without having to compete
themselves to buy the good from the upstream seller. We
do this as follows. Start with the final buyers: add all
intermediaries who are linked to at least two buyers, then
add all intermediaries linked to at least two traders already
present, and so on until no more traders have two or more
links to traders already present in layer 0. This defines
layer 0 in the induced network. Consider all the traders
who do not belong to layer 0. Start with traders who have
only one link with a trader in layer 0, then add all
intermediaries who have at least two links with
intermediaries currently in layer 1, and repeat until there is
no one with two or more links with traders in the emerging
layer 1. This completes the construction of layer 1. Proceed
recursively until all agents have been assigned to layers
0,1, 2….

To develop a feel for the economic pressures at work in
this environment, let us restrict attention to a special class
of networks (inspired by the previous example of travel
from London to Paris). We will consider a complete
multipartite network, a network with a single initial seller
and a single final buyer and L ≥ 1 intermediating tiers.
Every node in a level is linked to every node in the adjacent
levels above and below it. A node is critical if it is the
unique member of a tier. Given the layer x, let kx ∈{0, …,

L−x} be the number of downstream tiers that have critical
traders. Let k be the number of tiers with critical traders in
them. Figure 16.8 presents examples of such networks.
Note that in the competitive network, there are multiple
intermediaries at every tier of the network. By contrast, in
the line network, there is a unique—critical—intermediary
at both tiers 1 and 2.



Figure 16.8 
Complete multipartite networks. Source: Condorelli and Galeotti (2016).

The study of bargaining in these networks yields a clear
set of predictions as summarized in proposition 16.3. Recall
that p is the probability that the current owner makes an
offer to a partner.
Proposition 16.3 Fix a complete multipartite network and let δ → 1. In

equilibrium, (i) the reservation value of intermediary i at level x converges to

pkx+1v; (ii) the payoff of the initial seller converges to pk+1v and payoff of the

buyer converges to (1 − p)v; and (iii) the payoff of noncritical intermediaries

converges to 0, while the payoff of critical trader at level x converges to (1 −
p)pkx+1v.

We start with part (i) of proposition 1. The proof relies on
a backward induction argument. When the object reaches
an intermediary in the last tier, we have a standard two-
person bargaining game with a random proposer. In this
game, when δ → 1, the intermediary obtains payoff pv and
the buyer obtains (1 −p)v. The resale value of an
intermediary in tier L is then pv. Suppose next that the
object has reached intermediary i in tier L− 1. If tier L

contains a critical trader j, then there is a standard
bargaining game between intermediaries i and j: the total
size of the cake is j’s resale value pv. In this game,
intermediary i obtains an expected payoff of p2v, which is
their resale value. When tier L has more than one
intermediary, the current owner, i, has multiple potential



buyers in tier L, each with a resale of pv. We invoke the
observation given earlier to infer that competition among
intermediaries will lead i to extract all surplus (i.e., his
resale value is pv). Part (i) of the proposition now follows,
by iterating backward. Given part (i), it is straightforward
to verify the other two parts.

We return to the networks in figure 16.8 to appreciate
the role of networks. Let us start with the line network. In
this case, the resale value of intermediaries is as follows:
p3v for the initial seller, p2v for the first intermediary, and
pv for the last intermediary. This suggests that the resale
value is falling along with the distance from the final
customer. As the equilibrium payoff of an intermediary i is
(1 − p) times their resale value, the ranking of equilibrium
payoffs is the same as the ranking of their resale values.
The payoff of the initial seller is decreasing in the number
of intermediaries, while the payoff of the final buyer is v(1
− p).

In this model, p is naturally interpreted as a measure of
the bargaining power of upstream traders. An increase in p
leads to an increase in payoffs of the initial seller and a
decrease in the payoff of the final buyer. Interestingly, the
payoff of an intermediary changes nonmonotonically with
p: at first, it increases and then it eventually decreases
(due to the presence of multiple layers in the network).

Turning to the competitive network in figure 16.8, we see
that the number of critical traders is k = 0. Proposition 16.3
tells us that intermediaries have the same resale value,
equal to 0, regardless of their location. The initial seller
and the final buyer obtain vp and v(1 − p) because the
intermediary layers earn zero payoff. This suggests that
horizontal mergers—which lead the competing traders in a
tier to collude—are very profitable. For instance, if all
intermediaries in one tier decide to merge, their total



payoff would increase from 0 to pv(1 − p); the seller’s
payoff decreases from pv to p2v.

Finally, we take up price formation through auctions in
intermediation networks. Following Kotowski and Leister
(2019), let us suppose that there is a single source and
possibly multiple eventual buyers (each of whom values the
good at v > 0). There are tiers of intermediaries between
the original owner and buyers. In each tier, traders
compete to provide intermediation services. The current
owner conducts a second-price auction among the traders
in the immediate downstream layer to sell their good. The
new owner does likewise until the good arrives at a buyer.
The network is common knowledge, but intermediaries
have private information about their own costs. If the cost
of trading is High, then the intermediary drops out of the
network.

In this setting, trader behavior is determined by two
network characteristics—the number of layers and the
number of intermediaries in each layer—and the probability
of High- versus Low-cost intermediaries. If there are two or
more Low-cost intermediaries in each layer, the original
owner will extract a full surplus. Therefore, an
intermediary earns rents only if it is the sole Low-cost
player in its layer (i.e., it is critical). With a greater
probability of High cost, intermediate layers can in
principle earn rents in the event that their competitors in
the same layer have turned out to be High cost. However,
this possibility has correspondingly negative effects on the
resale value for upstream traders. The authors show that
the resale value is increasing in the probability of being
Low cost and in the number of traders in each layer.

The models discussed in this section show how standard
pricing protocols—posted prices, bargaining, and auctions
—can be used to study price formation and intermediation
in networks. In all cases, critical traders appear to be



central to shaping market power. Our discussion shows
that the location within a network and the structure of the
network have powerful effects on patterns of trade and on
earnings. In particular, we found that critical
intermediaries earn larger payoffs than noncritical traders.
So it pays to occupy a critical spot in a network. This
suggests that traders have an incentive to create links that
would become critical. Similarly, other traders have an
incentive to circumvent such critical traders by creating
new ties. Chapter 8, on platforms and intermediaries,
studies this process and presents experimental evidence on
the role of pricing protocols in shaping network formation.

16.4 Research Alliances in Oligopoly

Research alliances among firms are common: firms
collaborate with both firms in their own industry and those
outside it, and these alliances are nonexclusive, so a firm
often takes part in multiple projects with different partners.
Empirical research reveals the following stylized facts
about research and development (R&D) networks: the
average degree is relatively small, the degrees are unequal,
there is a core-periphery architecture, and the average
distance between firms in the network is small (König, Liu,
and Hsieh 2021). This section studies the origins and
implications of these network patterns. We present a model
taken from Goyal and Joshi (2003), Goyal and Moraga-
González (2001), and König, Tessone, and Zenou (2014).
Our exposition draws on Goyal (2007, 2017).

Firms produce services and products that involve the use
of different bodies of knowledge. The complexity of
technology means that an individual firm is at the frontier
of some of, but not all the aspects of business. Research
collaboration can be seen as a mechanism for firms to pool
their distinct technological advantages. For firms
producing goods that involve many different technologies,



such as automobiles, there are many areas in which they
can form potentially profitable collaboration partnerships.

Prior to competing in a market, firms can choose to
collaborate on research. Collaboration lowers the costs of
partner firms. Lower costs are advantageous as they lead
to larger market share and profits. On the other hand,
collaboration with other firms involves resources and is
therefore costly. So a firm compares the costs and returns
from collaboration when deciding on how many links to
form. At the heart of the analysis is the issue of how a
collaboration link between two firms alters the incentives
of other firms to form collaboration links (throughout this
discussion, we will assume that there is no collusion in the
market stage among research collaborators).

There are two stages. In stage 1, n firms play a game of
two-sided link formation. Every firm announces a set of
firms, si = {si1, si2, …, sin}, with whom it wishes to form links.
A link is formed between two firms if both announce an
intention to form a link with each other. The collection of
links formed defines an undirected network g(s). Let Ni(g)
be the collaboration partners of firm i in network g, and
define ηi(g) = |Ni(g)|. There are K > n components in the
item that firms produce, and we will assume that all firms
use the same K components. Let the cost for firm i of
component k be given by ci, k. The marginal cost of
production for firm i is given by . The component-
wise cost ci, l takes on a value of cH or cL, with cH > cL.
Assume that for each firm i, there is one and only one 
such that . Moreover, suppose that  for all other
firms, j ≠ i. Then it follows that if two firms form a
collaboration link, then both can reduce their costs by cH −
cL. Define γ = cH − cL.

It follows, then, that the marginal cost of firm i is given
by



where γ0 > 0 is a positive parameter representing a firm’s
marginal cost when it has no links and γ > 0 is the cost
reduction from a link. The cost is a linear and declining
function of the number of collaboration links with other
firms. Given network g, the profile of costs is c(g) = {c1(g),
c2(g), …, cn(g)}. In this formulation, the cost reduction in
each link is exogenously fixed.

In stage 2, firms compete in the market by choosing
quantities or setting prices. Suppose that firms face an
inverse linear demand given by P = 1 − Q, where P is the
price and  is the total output produced by the firms.
Define  as the total number of links of
all firms in network g, except for the links that involve firm
i. For network g, using the standard formulas for Cournot
models with heterogenous costs (see, e.g., Vives [1999]),
the equilibrium quantity of firm i can be written as

To ensure that each firm produces a strictly positive
quantity, we assume that (1 −γ0) − (n− 1)(n− 2)γ > 0. It is
easy to verify that the Cournot profits for firm i in network
g are given by .

To complete the model, assume that every link involves a
fixed cost, c > 0. The net payoffs of firm i in network g are
given as follows:

In the case of price competition, we will assume that all
demand accrues to the lowest-price firm; if there are
multiple lowest-cost firms, then the demand is equally
shared among them. We study the architecture of pairwise



equilibrium networks and payoff distributions (see chapter
3, for the definition of a pairwise equilibrium).

In a market with a homogeneous product, a firm will
attract demand only if it is a lowest-price firm and if there
are many such firms, then they will share the demand
equally. Anticipating this, in stage 1, a firm will invest in
costly links only if it hopes to become a lowest-cost firm.
Either there is only one lowest-cost firm or there are
multiple lowest-cost firms. In either event, if there are costs
to forming links, however small, then in both cases, there
will be firms that have formed links and will make zero
profits in the market: in other words, they will have
negative earnings. Hence the empty network is a unique
pairwise equilibrium.

By contrast, if firms compete in quantities, then an
inspection of the equilibrium quantity in equation (16.4)
reveals that profits are increasing in own links ηi(g). This
means that a firm has an incentive to form a link with every
other firm, so long as the cost of links is sufficiently small.
We conclude that the complete network is a unique
pairwise equilibrium. Thus the nature of market
competition—price versus quantity—has a decisive impact
on the nature of collaboration networks.

As networks shape the costs and quantities produced,
they will determine the utility of consumers. Recall that
social welfare in this market is the sum of firm profits and
consumer surpluses. Let us now derive the efficient
networks in the two markets. We first consider the nature
of efficient networks under quantity competition. Let c(k)
denote the marginal cost of a firm with k links. Social
welfare is defined as



It is possible to show that the complete network is a
unique network that maximizes social welfare. When two
firms form a link, that lowers their costs and increases
their market shares and profits. However, other firms lose
out in market share. The computations show that aggregate
quantity sold is increasing in links. The final step is to show
that the gains of the firm with the additional links, along
with the increase in consumer surpluses due to the larger
aggregate quantity sold, are greater than the loss of the
other firms.

Turning to the case of price competition, let c be the
minimum cost attainable by a firm in any network; this is
achieved when a firm has (n− 1) links. It is possible to show
that a network maximizes social welfare if and only if two
firms attain the minimum cost, c. The argument is
straightforward: with two maximally connected firms, costs
attain their minimum value and price competition therefore
pushes both firms to charge the minimal price. This
maximizes consumption (and consumer surplus). It turns
out that it also maximizes the total surplus. A question at
the end of the chapter works through these computations.

To summarize, we have embedded a standard
oligopolistic competition within a network formation game
and shown that market competition and networks interact
in interesting ways: market competition shapes incentives
to form links and create networks. These networks then
shape the nature of the competition. The interaction
between competition and networks, therefore, can have
large effects on social welfare.

16.4.1 Large Costs of Linking

We next turn to study the case of network formation when
the costs of linking are large. Larger costs will reinforce
the lack of incentives to form links in the pricing
competition case. We therefore focus on quantity
competition in the rest of this section.



As a firm will compare the marginal cost of a link with
the marginal returns from a link, we need to understand
the curvature of the returns as a function of the links in the
network. We note from equation (16.5) that a firm’s
quantity (and therefore its profits) are declining in the links
of other firms. Given network g, the marginal gross returns
from an additional link, gi, j, are given by

where λ(n) = 2(1 − γ0) + (n − 1)γ. Thus the marginal gross
returns from an additional link are increasing in the
number of own links ηi(g) and decreasing in the number of
links of other firms L(g−i). The total cost of links is linearly
increasing in the number of links. So any two firms that
have a link must be linked with each other. This
observation has an important implication: any pair of firms
that has at least one link in the network must also have a
link with each other. Let us define a network with a
dominant group as follows: there is a set of firms 1 < k < n,
which constitutes a clique, and all firms outside the group
are singletons. Equipped with these observations we are
ready to state our next result on pairwise equilibrium
networks.
Proposition 16.4 Suppose that payoffs are given by equation (16.5). A

pairwise equilibrium network either is empty, contains a dominant group, or is

complete.

The key to the proof is a simple observation: the
marginal returns in own links are increasing and convex,
and marginal costs of links are constant, so if two firms
have one or more links, then in a pairwise equilibrium
network, they must also be linked to each other. As every
pair of firms that has any connections must in turn be
linked with each other, the only possibility is that there is a
clique of connected firms and a few isolated firms. Figure



16.9 illustrates network architectures that can arise in
pairwise equilibrium.

Figure 16.9 
Pairwise equilibrium networks, n = 6.

Let gk refer to a dominant group network in which the
dominant group has k firms. A firm in the dominant group
should not have any incentive to delete any subset of its
links. Given that payoffs are increasing and convex in own
links, it is sufficient to check if a firm has an incentive to
delete all its links. Let Y(k) denote the difference in the
payoff of a firm in the dominant group of size k minus the
payoff when the firm becomes isolated. Using equation
(16.5), the incentive constraint may be written as follows:

The left side of equation (16.8) reveals an interesting
property of payoffs: the average returns from links are
nonmonotonic with respect to the size of the dominant
group. They are initially increasing until a critical size k*,
and declining thereafter. Due to the increasing returns



property, a firm in the dominant group would like to link
with any isolated firms. So for the dominant group to be an
equilibrium, the isolated firm must find the link
unprofitable. Let us define X(k) as the difference in payoff
with and without a link. This yields the following incentive
constraint for isolated firms:

We see that the marginal returns to the isolated firm are
declining with the size of the dominant group. An increase
in the costs of forming links will make a smaller dominant
groups sufficient to deter the isolated firms from forming a
link. Figure 16.10(a) illustrates the incentives of firms in
the dominant group and the isolated firms as a function of
the size of the dominant group.

Figure 16.10 
Dominant group and costs of links. Source: Goyal and Joshi (2003).

In figure 16.10, the terms F0, F1, F2, and F3 are defined
as follows:



We see that with the low costs of forming links, the
incentive constraint of an isolated firm is binding. As the
costs of links increase, smaller dominant groups are
sufficient to discourage an isolated firm from forming a
link. This suggests that larger costs of links will sustain a
wider range of dominant group sizes. However, there is a
complication: once we move beyond a certain cost level, the
incentive constraint for a firm in the dominant group comes
to bind. This implies that at high cost levels, small and
large dominant groups are not sustainable; only medium-
sized groups are sustainable. Figure 16.10(b) summarizes
these findings.

Our discussion draws attention to a number of points. We
see that for a wide range of costs of linking, equilibrium
networks will contain a moderate-sized dominant group.
Networking opportunities give rise to asymmetries. These
asymmetries are economically significant: firms in the
dominant group have more links and lower costs than firms
outside it. In a model of quantity competition, this means
that they have a larger market share. We can go further
and show that firms in the dominant group will also earn
more profits. A question at the end of the chapter asks you
to work through the computations.

The results in this section show how firms can use
collaboration links as a strategy to create market
dominance and increase profits. But the architecture of
these networks differs from the empirically observed
networks in one critical aspect: empirical networks have a
core set of firms that have links with a large number of
firms who are relatively poorly linked. Let us reexamine
this model to understand the forces that may push one
toward this architecture.



16.4.2 Transfers and Market Power

In our model, the marginal returns to a firm from an
additional link are increasing in own links and declining in
the links of others. When a high-degree firm forms a link
with a low-degree firm, it earns a higher marginal payoff
compared to the low-degree firm. Thus a high-degree firm
may have an incentive to offer transfers to a low-degree
firm to encourage link formation.

Let  being the transfer from firm i to firm j
on link gij. We will assume that  for all i, j ∈ N, and  for
all i ∈ N. Once transfers are allowed, a link is attractive for
firms i and j so long as the joint marginal returns exceed
the total costs of the link. Let us define a notion of stable
networks that builds on the idea of pairwise equilibrium
and incorporates this idea.
Definition 16.2 Network g is stable against transfers if the following is true:

1.  For all gi, j = 1, [Πi(g) − Πi(g − gij)] + [Πj(g) − Πj(g − gi, j)] > 2c.
2.  For all gi, j = 0, [Πi(g + gi, j) − Πi(g)] + [Πj(g + gi, j) − Πj(g)] < 2c.
3.  There are transfers ti ∈ Rn, i = 1, 2, …, n such that

where Πi(g−i) refers to the profit of firm i after it deletes all
its links.

As payoffs remain as before, it follows that there can be
at most one nonsingleton component in a stable network.
Note that the dominant group was sustained by the
resistance of the isolated firm to forming a link. However,
now a firm in the dominant group can offer a transfer to
induce an isolated firm to form links. Moreover, once it
forms a link with one isolated firm, the increase in total
number of links among other firms lowers the marginal
payoffs of any other isolated firm. However, the marginal
returns to the dominant group go up, as it now has one
more link. It turns out that the positive effect on the



dominant firm dominates the negative effect on the isolated
firm. As a result, once a dominant firm forms a link with
one isolated firm, it will go all the way and form a link with
all isolated firms (by suitably raising the transfers). We
state this next, as a property that we will invoke to
establish results about networks that are stable against
transfers.
Property Suppose that g is stable against transfers. If gi, j = 1 for distinct i, j

∈ N, then gi, k = 1 for all k ∈ N, such that ηk(g − gi, k) ≥ ηj(g − gi, j).

This property helps us establish that the star network is
stable against transfers.
Proposition 16.5 Let n ≥ 4. Suppose that payoffs are given by equation

(16.5). Then there exist numbers FH and FL, where 0 < FL < FH, such that the

star network is stable against transfers if and only if c ∈ (FL, FH).

Let us now work through the details of these
computations to appreciate the role of transfers in
generating market power and augmenting the profits of
well-connected firms.

Suppose that gs is a star network; denote the central firm
by n and typical firms at the spokes by i and j. If firm n

deletes all its links, then the resulting network is empty, ge.
If firm i or firm n deletes a link, then we get the network gs

−gn, i. They will wish to maintain their link if

The requirement that firms i and j have no incentive to
form a link may be written as follows:

We wish to define transfers such that firms have no
incentive to isolate themselves by deleting all their links.
There are transfers ti, for i = 1, 2, …, n, such that



The gross profits for firms under different networks are

After substituting for profits from equation (16.14) we
can rewrite equation (16.11) as follows:

Similarly, equation (16.12) can be rewritten as follows:

Let us define F′ and FL as follows:

Equations (16.11) and (16.12) are satisfied if and only if
the fixed costs are such that FL < f < F′. It is easily verified
that FL < F′ if n > 3.

Finally, let us construct the transfers. For the star to be
stable, it must be the case that the spokes have no



incentive to form a link with each other. Given the
symmetry in their situation, it follows that their marginal
payoffs from the additional link are the same. This
requirement, along with increasing returns, imply that if
the star is to be stable, then it must be the case that each
of the spoke firms also do not have any incentive to form a
link with the central firm. Thus transfers have to be made
by the central firm to each of the spokes. The minimum
value of this transfer is given by

Substituting the profit expressions from equation (16.14)
in equation (16.17) yield us the following minimum value of
transfer:

We wish to show that the central firm has an incentive to
make such transfers to each of the spoke firms rather than
delete all links. This incentive is satisfied if and only if

After some rearrangement, this requirement can be
expressed as

Define F′′ as follows:

It can be verified that F′′ > FL, for all n > 3. Finally
define FH = min{F′, F′′}.

◼



Transfers are critical to the emergence of a star network.
If the marginal returns of a peripheral firm from the link
with the central firm are positive, then it follows, from the
property of increasing returns in own links, that the
peripheral firm would also want to form links with all the
other peripheral firms. Thus a star is stable only in a
situation where the links in the star are not individually
profitable for the peripheral firms. In other words, all the
links between the central firm and the peripheral firm are
sustained by transfers from the central firm! The network
is sustained by transfers from the central firm. It is possible
to show that in spite of these transfers, the central firm
earns a larger payoff than do the peripheral firms. A
question at the end of the chapter works through these
computations.

These arguments can be used to build a general
description of networks that are stable against transfers.
Consider a partition of firms (based on degree) {h1(g), …,

hm(g)} with hl(g) ∩ hk(g) = ∅ for l ≠ k, and .
Following Mahadev and Peled (1995), we define a nested
split graph.
Definition 16.3 A network g is said to have a nested split structure if

1.  For i ∈ h1(g), gi, j = 1 if and only if j ∈ hm(g).
2.  If gi, j = 1 for i ∈ hl(g) and j ∈ hl′(g), then gi, k = 1 for any k ∈ hl′′(g), where l′

′≥ l′.
3.  Suppose i ∈ hm−l(g). Then gi, j = 1 if and only if j ∈ hk(g) for k > l.

We note that as we move up the partition, the
neighborhood of a firm in layer l is nested within the
neighborhood of firms in layer l + 1. Equipped with this
definition, we establish the following result.
Proposition 16.6 Let n ≥ 4 and g ≠ gc be a connected network. If g is stable

against transfers, then it has a nested, split-graph structure.

Figure 16.11 presents nested split networks that are
stable against transfers for n = 6. The reasoning underlying



the nested split structure is as follows: Consider a
connected network g that is stable against transfers.
Suppose that there is a firm i ∈ hx1. Since the network is
connected, ηi(g) ≥ 1. It is possible to show that firm i does
not form a link with any j∉hxm

. If i did form a link, then from
property (ii) in definition 16.2, it follows that firm j would
have a link with all firms (i.e., j ∈ hxm

, a contradiction).
Since ηi(g) ≥ 1, it must form a link with k ∈ hxm

, but then
from property (ii) in definition 16.2 (on stable network
against transfers), it follows that ηk(g) = n − 1, and so xm =
n − 1. A question at the end of the chapter works through
the arguments that show how stability against transfers
satisfies the properties of a nested split graph.

Figure 16.11 
Nested-split graphs, n = 6.

The discussion in this section has been carried out in a
model where all firms compete in quantities and are
present in a single market. It is possible to generalize the
model to allow for firms to be active in multiple markets
and for demand across markets to be interrelated. In such
a setting, the incentives of a firm to conduct research



would depend on the markets that it is active in, the
presence of other in different markets, and in the
interrelations across the markets. Building on our
discussion in chapter 4, this economic setting may be
represented as a game on a network. Galeotti, Goyal, and
Kalbfuss (2022) show that firm research strategies, when
firms compete in overlapping markets with interrelated
demands, can be understood in terms of the principal
components on the matrix that describes the interrelations
of demands across markets. The study of which firms
participate in which markets remains an open problem.

Now let us summarize what we have learned in this
section. Research collaboration among firms has powerful
effects on the competitive position of firms. These effects
can be further reinforced if firms are allowed to make side
payments and transfers—as would be involved, for
instance, in technology exchange agreements between a
large firm and a start-up. The reinforcement of advantages
can give rise to nested-split graph structures. In these
networks, firms earn very unequal profits.

16.5 Reading Notes

The study of exchange and power in social networks has a
long tradition in sociology; for early contributions, see
Homans (1961), Blau (2017), and Emerson (1976). It was
recognized early on by these authors that a network
creates possibilities for trade and bargaining power and
gives rise to considerations of equity. Cook and Emerson
(1978) present an early experiment on how network
location shapes the division of surplus among the actors
that prefigure some of the main themes of research, and
Cook and Emerson (1987) provide a good summary of the
early work in this field. For an overview of some of the
sociology research on economic exchange and price
formation, see Granovetter (2005).



The issues of bargaining power were central to early
work on networks in economics (see, e.g., Myerson
[1977b]). The role of networks was also highlighted in early
work by Kirman (1997); Weisbuch, Kirman, and Herreiner
(2000); and Tesfatsion (1997). Starting with Corominas-
Bosch (2004) and Polanski (2007), a number of papers in
the economics literature have explored the issue of
bargaining power in networks. In the model of Corominas-
Bosch (2004), the bargaining process is centralized: a
single price is announced to all linked traders at the same
time. In recent work, Abreu and Manea (2012) study a
model with decentralized matching: in every period, a
single pair of linked traders is picked to bargain. They show
that this change from centralization to decentralized
trading can have large effects: bargaining may end in
disagreement; a pair of traders may refuse to trade at one
stage but agree to trade at a subsequent point. See Manea
(2016) for an excellent overview of the research on
bargaining in networks.

Price formation may be based on posted prices and
auctions. We presented, very briefly, a discussion of
auctions in networks. For an early and influential
contribution to this subject, see Kranton and Minehart
(2001). Our discussion, both in the bargaining problem and
in the auction case, draws attention to the role of link
formation in shaping the architecture of networks and the
efficiency of the trading system. For a systematic
exploration of inefficiencies in bilateral trading networks,
see Elliott (2015) and Elliott and Nava (2019). Finally, it is
worth noting that all the work we have discussed in this
chapter assumes that traders know the network. The issue
of price formation with imperfect information on valuations
and networks remains an active field of research.

There is a large body of research on intermediaries, and
it is clearly not possible to provide a good coverage of the
main ideas within the space of a book chapter. In our



choice of material, we have focused on research where
networks play a central role. Condorelli and Galeotti (2016)
provide a comprehensive overview of the theoretical
literature. One way of organizing this large body of
literature is to consider the price formation protocol used—
auctions, bargaining, or posted prices. We have presented
models with posted prices and bargaining and briefly
discussed auctions. In addition to the papers mentioned in
the chapter, we would like to mention the following other
contributions. On posted prices, see Acemoglu and
Ozdaglar (2007); on bargaining, see Gofman (2011) and
Siedlarek (2015). We have restricted our attention to
models where traders choose prices; for models where
traders choose quantities, see Babus and Kondor (2018),
Malamud and Rostek (2017), and Nava (2015).

In the model of bargaining presented in this chapter, it
was assumed that every seller knows the value of the good
to the buyers. In many settings, the value of the good is
known to some traders, but not to other. Condorelli,
Galeotti, and Renou (2017) study a situation where the
good either has Low or High value to a trader. This
valuation is independent of others’ valuations and is private
information. Trading proceeds as follows: the current
owner makes a take-it-or-leave-it offer to a neighbor. If the
neighbor accepts, then trade takes place; if not, then he
makes an offer to other neighbors. The process of
bargaining can reveal the private information of traders.
The authors show that in equilibrium, High-valuation
traders always consume the product they own, while Low-
valuation traders seek out potential trading partners. The
novelty relative to the earlier bilateral bargaining literature
is that the search for a High-valuation trader will involve
possibly many other traders in the network. A trader that
lies on all paths between trader i and the original seller is
termed a critical node: such nodes earn higher payoffs. For



a general discount factor δ ∈ (0, 1), the analysis is
intricate, and trading exhibits complicated behavior: prices
may be nonmonotonic and trading inefficient. However, in
the limit, as δ → 1, trading is efficient: the traders will
locate a High-valuation trader (if one exists).

Research collaboration among firms is widespread, with
potentially important implications for the performance of
firms and the functioning of the economy at large. The
traditional approach to collaboration is to consider
coalitions of firms; notable early contributions include
Bloch (1995) and d’Aspremont and Jacquemin (1988).
Following Goyal and Moraga-González (2001) and Goyal
and Joshi (2003), there is now also a large body of
literature on R&D networks. For a study of efficient R&D
networks, see Westbrock (2010); for a systematic study of
nested-split graphs, see König, Tessone, and Zenou (2014);
and for a detailed study of empirical patterns on R&D
networks, see König, Liu, and Hsieh (2021). For a
mathematical treatment of nested-split graphs, the
interested reader is referred to Mahadev and Peled (1995).
We discussed a simple model based on oligopoly
competition to bring out the economic aspects of
collaboration. Research collaboration among firms has also
been extensively studied in sociology, organization theory,
and business strategy. We mention three themes in this
work that bear upon R&D networks.

In the model of R&D alliances we presented, the implicit
assumption is that there is no informational asymmetry
between firms about skills and expertise or about the level
of research effort. In practice, there will be significant
informational asymmetries that will give rise to a variety of
incentive problems (and large transaction costs). To
mitigate these pressures, a firm may prefer repeated
collaboration with existing partners or to collaborate with
firms about whom they can get reliable information via



existing and past common partners. These considerations
inform the social embeddedness perspective in economic
sociology; for instance, see Granovetter (1985); Powell
Walter (1990); Gulati (2007); Raub and Weesie (1990);
Shan, Walker, and Kogut (1994); and Podolny and Page
(1998). Networks also shape the nature of contracts and
governance structures on collaboration links among firms.
Collaboration agreements become less formal if partners
are embedded in social networks of previous collaboration
links; for an overview of this research, see Gulati (2007).

A second comment pertains to the theoretical modeling.
We assumed that firms could join any number of alliances,
but these alliances were restricted to being bilateral. In
actual practice, firms join multiple alliances, and the
alliances typically have more than two partners. This
suggests that a more natural model would involve firms
that join multiple alliances, each of which may be of
arbitrary size. See Ding, Dziubinski, and Goyal (2021) for a
study of stable R&D alliance profiles in such a model.

Collaboration among scientists and academics raises
somewhat related considerations, and there is a parallel
strand of work that explores the role of networks in that
sphere; for instance, see Goyal, van der Leij, and Moraga-
González (2006); Fafchamps, Van der Leij, and Goyal
(2010); and Ductor, Fafchamps, Goyal, and Van der Leij
(2014). Fafchamps, Van der Leij, and Goyal (2010) examine
the formation of coauthor relations among economists over
the period 1970–1999. They find that a new coauthor
collaboration emerges faster between two researchers if
they are closer in the preexisting coauthor network among
economists. This proximity effect on collaboration is strong:
being at a distance of 2 instead of 3 raises the probability
of initiating a collaboration by 27 percent.

16.6 Questions



  1.  (From Jackson [2008]). Suppose that the assumptions
of the Corominas-Bosch model hold. Apply the
decomposition discussed in this chapter to compute the
bargaining payoffs in the networks given in figure
16.12.

Figure 16.12 
Buyer-seller networks.

  2.  Consider the Corominas-Bosch model and suppose that
a link is two-sided and entails a cost of c > 0 for each
trader. Show that if c < 1/2, then the efficient network
will entail a maximal set of disjoint pairs. Show next
that if c < 1/2 and the discount factor is close to 1, then
pairwise-stable networks (as defined in chapter 3, on
the costs and benefits of links) coincide with efficient
networks.

  3.  Let us consider a market with price-setting firms. The
sellers and buyers are located in a bipartite network.
Every firm has a unit good to sell with reservation value
0. Consumers’ utility from the good is 1 and is known to
firms. Every firm sets a single price, and the network is
commonly known.
(a)  Show that if two sellers are linked only to a single

consumer, then they cannot set a price 1 in
equilibrium.

(b)  If there is a consumer who is linked to only one
seller, then the seller who is linked to this captive
consumer can always make a profit of 1.



(c)  Consider a network with three sellers and three
consumers. Seller 1 is linked to consumers 1 and 2,
seller 2 is linked only to consumer 2, and seller 3 is
linked to consumers 2 and 3.
 (i) Compute the pricing equilibrium in this network.
(ii) Compute the outcome of the Corominas-Bosch

bargaining game in this network.
(iii) How would you explain the differences in prices

and allocations of surplus in these two games?
  4.  Consider the model of auctions in networks considered

in section 16.2.2. Suppose that stage 2 is as presented
there but that in stage 1, linking is two-sided. Suppose
that a seller and a buyer both have to pay cost c for a
link to be created. Examine the incentives to create
links and compare efficient and pairwise-stable
networks in that example.

  5.  (From Easley and Kleinberg [2010]). Consider the
trading model with a single layer of intermediaries, as
in section 16.3. Suppose there are two buyers (B1 and
B2), two sellers (S1 and S2), and two intermediary
traders (T1 and T2). The sellers each have one unit of
the object and value it at 0. The buyers each demand
one unit and value it at 1. The network is as follows:
seller S1 and Buyer B1 can trade only with intermediary
T1, seller S2 and Buyer B2 can trade with both
intermediaries T1 and T2. The pricing protocol is as
explained in section 16.3.
(a)  Check if these prices and this flow of goods

constitutes an equilibrium of the trading game.
 (i)  T1’s bid price to Seller S1 is 0, his bid price to

Seller S2 is 1/2, his ask price to Buyer B1 is 1,
and his ask price to Buyer B2 is 1/2. T2’s bid
price to Seller S2 is 1/2 and his ask price to
Buyer B2 is 1/2.



(ii) One unit of the good flows from Seller S1 to
Buyer B1 through Trader T1; and, one unit of the
good flows from Seller S2 to Buyer B2 through
trader T2.

(b)  Suppose now that we add a third trader (T3) who
can trade with Seller S1 and Buyer B1. This trader
cannot trade with the other seller or buyer, and the
rest of the trading network remains unchanged.
Check if these prices and this flow of goods
constitutes an equilibrium of the trading game.
 (i) The prices on the old edges are unchanged from

those in the part above.
(ii) The prices on the new edges are: a bid of 1/2 to

Seller S1 by Trader T3 and an ask of 1/2 to Buyer
B1 by Trader T3.

(iii) The flow of goods is the same as in the part
above.

  6.  Consider the trading model with a single layer of
intermediaries, as in section 16.3. Suppose there are S
sellers, B buyers, and T intermediary traders. Show that
(i) every Nash equilibrium of this game results in an
efficient outcome (every possible beneficial trade is
realized). (ii) an intermediary trader earns profits in
equilibrium only if it is essential.

  7.  Consider the model of posted-pricing by intermediaries
as in section 16.3.1. There is a single SOURCE and a
single DESTINATION and a collection of n intermediary
traders located on nodes of an undirected connected
network in between the source and destination. The
value of exchange is 1. The network of traders and the
valuations are common knowledge. Traders post prices
simultaneously; they have zero costs. Source and
destination compare the costs of different paths and
choose the lowest cost path if it is less than 1
(randomizing across paths if there are multiple lowest



cost paths). Source and destination divide the residual
surplus equally, after paying the cost of the path.
(a)  Suppose n = 8. Consider a line network with source

at one end and destination at other end. Describe an
equilibrium price profile with trade and another
equilibrium price profile with no trade.

(b)  Suppose n = 8. Consider a circle network with
source and destination that are maximal distance
apart. Describe an equilibrium price profile with
trade and another equilibrium price profile with no
trade.

(c)  An equilibrium outcome is said to be efficient if
trade takes place with certainty. Show that for any
network there exists an efficient pure strategy Nash
equilibrium.

  8.  Consider the model of posted-pricing by intermediaries
as in section 16.3.1. There is a single SOURCE and a
single DESTINATION and a collection of n intermediary
traders located on nodes of an undirected connected
network in between the source and destination. The
value of exchange is unknown and has a uniform
distribution on unit interval. The network of traders is
common knowledge. Traders have zero costs and post
prices simultaneously. Source and destination compare
the costs of different paths and choose the lowest cost
path if it is less than the valuation (randomizing across
paths if there are multiple lowest cost paths). Source
and destination divide the residual surplus equally, after
paying the cost of the path.
(a)  Consider a line network with source at one end and

destination at other end. Describe an equilibrium
price profile for n = 3 and n = 4. Compute the
corresponding probability of trade



(b)  Next consider a line with n intermediary traders:
compute a symmetric equilibrium price and the
corresponding probability of trade as a function of
number of traders n.

  9.  Consider the model of bargaining among intermediaries
in section 16.3.2. Suppose that final buyer has a
valuation, suppose that the final buyer has a valuation
of 1 and each trader has a small but positive transaction
cost, c. Consider the network in figure 16.13. Using the
ideas of critical traders and bargaining power, show
that in equilibrium, the object will move via
intermediary 1 or 2 and it reaches the final buyer via at
least three intermediaries.

Figure 16.13 
Short and long paths.

10.  (From Goyal and Joshi [2003]). Consider the two-stage
model of network formation and price or quantity
competition (as discussed in section 16.4). Show that
with small costs of linking, the complete network
maximizes social surplus with quantity competition,
while a network with two maximally connected firms
maximizes social welfare under price competition.



11.  Consider the model of network formation and quantity
competition as presented in section 16.4. Show that in a
pairwise equilibrium network, firms in the dominant
group earn higher profits as compared to isolate firms.

12.  Consider the model of network formation and quantity
competition with transfers as presented in section
16.4.2. Show that in the star network, the central firms
earns higher profits than do the peripheral firms.

13.  Consider the model of network formation and quantity
competition with transfers presented in section 16.4.2.
This question works through different properties of
networks that are stable against transfers.
(a)  Suppose that g is connected and not complete. Show

that it must contain firms with different degrees. Use
property (ii) in definition 16.2 on stable against
transfers to establish that there must be a difference
of at least two degrees between any two firms who
have different degrees.

(b)  Note that if i, j ∈ h1(g) and g is connected, then ηi ≥
1. Next, show that i cannot be connected to a firm
outside hm(g). So it must be connected to a firm in
hm(g). Then apply property (ii) in definition 16.2 on
stable against transfers to show that a firm with the
highest degree must have degree n − 1.

(c)  Apply Property (ii) in definition 16.2 on stable
against transfers to establish part (ii) in the
definition 16.3 of nested split networks.

(d)  Property (iii) in definition 16.3 of nested split
graphs is proved using an argument by induction.
Start with l = 1 and show that if i ∈ hm−1(g), then gi, j

= 0 for j ∈ h1(g). Next, suppose that the hypothesis is
true for , and show that it also holds for .

14.  Consider the model of network formation and quantity
competition as presented in section 16.4. Suppose that



the firms initially have different costs of production.
Discuss how this might alter incentives for linking and
might shape networks.

15.  Consider the model of network formation and quantity
competition as presented in section 16.4. Next, suppose
a setting in which firms have different costs of linking. A
natural way to model such differences is to suppose that
firms can be divided into groups based on cultural,
legal, market, or geographical proximity. The costs are
low within a group but high across the groups. Reason
about how such differences in costs of links can shape
networks.



17
Communities and Economic Growth

17.1 Introduction

Modern economic growth of nations has two distinctive features: in all cases it
involves a sustained and substantial rise in product per capita, and in almost all

cases it involves a sustained and substantial rise in population. … implying even
higher rates of growth of total product.
—(Kuznets 1961, p. 14)

It has long been the majority view among sociologists, anthropologists, political
scientists, and historians that … (economic) behavior was heavily embedded in
social relations in premarket societies but became much more autonomous with
modernization. This view sees the economy as an increasingly separate,
differentiated sphere in modern society, with economic transactions defined no
longer by the social or kinship obligations of those transacting but by rational
calculations of individual gain.
—(Granovetter 1985, p. 482).

This chapter studies the role of communities in the process
of economic growth and development. Sustained economic
growth can have very large effects on income over time—a
rate of increase of 20 percent per decade means a rise of
6.7 times the initial value over a century; over two
centuries, this growth rate will lead to an income level over
38 times the initial level. These rates appear to be high but
were realized by a number of countries, including Sweden,
the US, and France, during the period 1850–1900. During
1950–1990, a number of other countries—such as South
Korea and Japan—registered still higher rates. Finally, in
the years since 1980, China (and, in later years, India) have



recorded even higher growth rates. As economic growth is
closely associated with changes in a number of quality-of-
life indicators, its impact on human well-being over a
period of time can be enormous.

However, one of the enduring facts about economic
growth is that it remains very uneven. A number of
countries have achieved sustained growth over the past
200 years, but there still are a fairly large number of
countries where growth has been slow and a few where
growth has barely occurred. This unevenness leads to an
examination of the sources of economic growth:
… a rise in per capita product usually means an even larger rise in product per
unit of labor input—since some of the extra product is ordinarily exchanged for
more leisure, a concomitant of a higher standard of living. However, marked
rises in product per labor unit, when population and therefore labor force are
increasing, are usually possible only through major innovations, i.e.,
applications of new bodies of tested knowledge to the processes of economic
production. … But this also means structural change as new industries appear
and old industries recede in importance—which, in turn, calls for the capacity
of society to absorb such changes: society must be able to accommodate itself
to and adopt the successive innovations that raise per capita productivity.
—(Kuznets 1961, p. 14).

If development is about creating new knowledge and
investing in its uses to create new products and services,
differences in growth must lie in the various responses to
new innovations.

We start by briefly recalling the common features of
economic development across time and space. The
discussion then discusses specific cases relating to
migration, education, and investments in trade and
industry, where we can see varying responses by societies
to similar opportunities. We examine the role of
communities in explaining these differences.

Communities, and more generally social networks,
perform a number of functions in developing countries. An
important role is to support business activity: a small
number of communities dominate the trade and



manufacturing sectors in many developing countries—for
instance, expatriate Indian communities dominated East
African business during and even after British colonial rule
until the 1970s, and ethnic Chinese have controlled
business in South East Asia, and this dominance may have
grown with trade liberalization. In India, a small number of
Hindu castes and non-Hindu communities continue to
dominate business activity. A second role for community
connections is to find jobs for their members. Friends and
members of the origin community in Europe helped secure
jobs for migrants to the American Midwest during the
nineteenth and early twentieth centuries. A caste-based
working class formed in the Indian cities that grew under
British colonial rule and remain prominent to this day. A
third role for community-based networks is to provide
insurance for their members. Private-sector and state
provision of insurance is limited—agrarian economies face
weather-related uncertainties that generate fluctuations in
income. Social arrangements provide wide-ranging help to
households in the face of such shocks in smoothing their
consumption.

These functions of community-based networks interact
powerfully with the opportunities that the development
process opens up for individuals: in this chapter, we
present three empirical case studies—on migration,
patterns of education choice, and the transition from
agriculture to manufacturing—to illustrate this point. These
case studies motivate an inquiry into the role of social
structure in shaping individual responses.

It is helpful to place the discussion of change and the
take up of new opportunities in a broader context. The
issue of social coordination and change was taken up in a
number of earlier chapters: we studied the weakest-link
games in chapter 4 and the issue of technological change in
markets with network externalities in chapter 8. Chapter
12 discussed the issue of social coordination and we



studied the responsiveness to different social structures to
new, possibly welfare enhancing, social norms.

In this chapter, we build on these discussions in earlier
chapters to propose a new model that locates individuals in
a social network and considers their level of engagement in
a network activity and their take-up of a market
opportunity. Network activity involves personalized
interactions and reciprocal exchanges—the returns to an
individual from taking part in it are thus increasing in the
number of their neighbors who are also active in networks.
The market opportunity is anonymous, and agents are
price-takers. The key issue is the relation between network
activity and market opportunity: we say that they are
substitutes if greater network activity lowers the returns
from market opportunity and complements if greater
network activity enhances the returns from market
opportunity.

As returns from network activity are increasing in the
number of neighbors who take it up, we can use the
analysis of games of complements from chapter 4, on
network structure and human behavior. There, we drew
attention to the role of a q-core of the network as the
maximal group of active individuals. Building on that
analysis, we show that when networks and markets are
substitutes, individuals within the q-core stay out of the
market opportunity, while those outside it take it up. By
contrast, when the two activities are complements,
individuals within the relevant q-core take up both the
network and market activity, while those outside the q-core
remain inactive on both dimensions. Denser networks lead
to larger q-cores: in the case of substitutes, this will mean a
lower take-up of market opportunity and in the case of
complements, it will mean a higher level of take-up.

New market opportunities can in principle benefit or
harm a society. Our analysis reveals that when network



activity and market opportunity are substitutes, the
appearance of markets can leave everyone worse off due to
negative externalities of people moving out of social
networks. On the other hand, in the complements case,
taking up market opportunity raises participation in the
network and therefore creates positive spillovers for
everyone, thereby necessarily raising social welfare. Our
model also sheds light on the question of whether new
market opportunities raise or lower inequality. In the
substitutes case, inequality in the traditional society is
necessarily lowered; in the complements case, the converse
holds.

We next turn to the effects of economic change on social
structure. A key feature of the process of economic growth
is the movement of labor from agriculture to manufacturing
and the service industry. This is accompanied with a
corresponding movement of people from the rural
countryside to the cities. The salience of this large-scale
process has led many scholars to take the position that,
while economic life historically was bound up with social
relations (involving family and close friends), modern
economic life is largely divorced from such ties. We present
a number of empirical studies concerning the expansion of
market activity to illustrate the capacity of social ties to
metamorphose and reconfigure in response. In some cases,
social ties weaken, while in other cases they strengthen.
These case studies thus pose a challenge to the traditional
perspective on the role of social ties in economic activity.
We conclude by arguing that the economic principle of
whether markets and social ties are complements or
substitutes is also helpful in understanding these empirical
patterns on the evolution of social networks over time.

17.2 The Patterns of Economic Growth



We start by presenting basic statistics on per capita income
for a group of countries in table 17.1. The obvious point to
note is that even in 2018, after almost a century of political
movements and research on the determinants of economic
growth, the differences in per capita income across
countries remain very great. There are countries like
Australia, the US, and Germany with per capita incomes in
excess of $55,000, and at the same time, we have several
large countries, such as Bangladesh, Congo, and Kenya,
with per capita incomes below $2,000.

Table 17.1 
Per capita incomes

Countries US Dollars PPP

Australia 57,396 51,036
Bangladesh 1698 4550
Belgium 47,472 52,254
Brazil 9001 14,952
Canada 46,234 49,994
China 9771 15,376
Congo 561 1111
Egypt 2549 11,643
France 41,470 46,447
Germany 47,615 54,456
Ghana 2202 5302
India 2010 6,697
Indonesia 3893 11,646
Kenya 1710 4294
Japan 39,289 41,473
Mexico 9,673 20,396
Nigeria 2028 5281
Pakistan 1,482 4,855
South Korea 31,380 39,661
Russia 11,288 28,556
South Africa 6,374 12,938
Turkey 9370 28,139
UK 42,962 46,868
US 62,887 62,887

Source: World Bank 2018.



These numbers give a first impression of the range of
income levels; this variation remains very great even after
adjustments are made for price and commodity bundle
differences across countries. For instance, even at
purchasing power parity (PPP), a number of large countries
have per capita income in 2018 that is less than one-tenth
of the per capita income of the US.

We noted in the introduction to this chapter how even
small rates of per capita growth can lead to a massive
aggregate change if they are sustained over 50 or 100
years. The other side to this observation is that starting
from a certain income today and moving back in time, a
relatively short stretch of time will bring us to a point
where income is very low. Indeed, it would be difficult to
sustain life if income were any lower. In other words,
sustained economic growth is very much a modern

phenomenon. It is this realization that inspires the hope
that differences in per capita income can be bridged
relatively quickly, if only there were a good understanding
of the process of economic growth.

Table 17.2 presents the growth rates of select countries
over the past 50 and 100 years. There are enormous
variations in growth rates—as noted in the introduction,
some countries, like Japan and South Korea, have sustained
rates of growth of income of over 50 percent for every
decade over that 50-year period. Even more impressively,
China’s per capita income has grown 65 percent every
decade. On the other hand, a number of large countries
have hardly registered any growth—for instance, Congo
actually registered a decline in per capita income, Ghana
grew by 8.5 percent, and Argentina grew at the modest
rate of 13 percent per decade over the past 50 years.

Table 17.2 
Percent change per decade—past 50 and 100 years



Countries
PC Income 50
Yrs

Pop. 50
Yrs

PC Income 100
Yrs

Pop. 100
YrsCountries

PC Income 50
Yrs

Pop. 50
Yrs

PC Income 100
Yrs

Pop. 100
Yrs

Argentina 13.86 16.83 11.66 23.05
Australia 26.07 18.17 19.16 17.68
Bangladesh 17.98 24.53 N/A N/A
Belgium 30.56 3.51 19.75 4.33
Brazil 27.97 26.96 24.61 25.64
Canada 24.95 17.29 21.59 19.01
China 65.82 18.22 29.72 12.18
Colombia 24.28 27.99 25.78 25.84
Congo −18.62 33.59 N/A 18.56
Egypt 35.15 26.42 N/A 21.36
France 28.25 7.53 22.10 4.18
Germany 29.00 3.75 20.70 4.22
Ghana 8.61 30.36 N/A 21.57
India 36.09 22.84 17.19 13.44
Indonesia N/A N/A N/A N/A
Iran 29.02 31.07 N/A 20.26
Japan 50.29 8.53 33.17 11.08
Kenya 9.67 38.08 N/A 22.13
Mexico 22.94 28.53 17.43 22.07
Nigeria 16.91 29.39 N/A 21.60
Pakistan 31.28 29.99 N/A N/A
South
Korea

80.76 17.58 N/A 16.82

Russia N/A 7.55 N/A N/A
South
Africa

12.36 29.42 13.29 24.66

Turkey 31.27 26.09 N/A N/A
UK 25.46 3.50 18.14 3.76
US 23.52 13.13 20.69 13.96

Source: World Bank (2018).

It is important to bear in mind the difference in the
environment for the first countries that created sustained
economic growth—such as England and France—compared
to the situation faced by poor countries in the
contemporary world. This point is brought out by the next
set of data on the income of these countries over the past
25 years. Table 17.3 presents per capita income (in terms
of PPP) on the same set of countries, but now expressed as
a ratio of the US per capita. We see that while some



countries like China have registered large gains, but that
other countries have registered little movement, and
several countries (e.g., Pakistan, Congo, and South Africa)
have actually fallen further behind.

Table 17.3 
Per capita incomes relative to US

Countries 1990 2000 2015

Argentina 30.12 31.98 35.23
Australia 72.55 72.43 81.44
Bangladesh 3.56 3.66 6.26
Belgium 78.09 76.50 81.33
Brazil 28.05 24.94 25.95
Canada 84.35 80.54 78.43
China 4.11 8.04 22.75
Colombia 20.88 18.33 24.46
Congo 3.70 1.23 1.59
Egypt 15.55 15.95 19.98
France 73.76 71.83 71.91
Germany 81.33 74.88 83.92
Ghana 5.18 4.88 9.01
India 5.03 5.77 9.62
Indonesia 12.90 13.06 18.03
Iran 30.21 28.37 23.35
Japan 81.89 73.86 71.09
Kenya 6.18 4.45 5.92
Mexico 33.83 30.52 32.18
Nigeria 8.62 6.35 9.55
Pakistan 8.10 7.26 7.70
South Korea 34.63 49.77 62.93
Russia 33.53 18.78 42.39
South Africa 26.88 21.23 22.09
Turkey 35.66 26.38 45.10
UK 70.41 72.69 74.83
US 100.00 100.00 100.00

Source: World Bank (2018).

The income levels may be seen as creating different
levels of opportunity for the populations of these countries.
But it is possible to go beyond opportunity and to look
directly at measures of human well-being. Figure 17.1
suggests that literacy can range from 40 percent to 100



percent and life expectancy can range from 55 to 85 years.
These are an extraordinarily wide ranges. In addition, it is
interesting to observe that the two quality-of-life indicators
are highly correlated with per capita income, up to the
point where a country attains a per capita income of
around $20,000. Robert Lucas sums up the power of these
data as follows:



Figure 17.1 
Quality of life and per capita income. Source: World Bank (2018).

Rates of growth of real per-capita income are … diverse, even over sustained
periods … Indian incomes will double every 50 years; Korean every 10. An



Indian will, on average, be twice as well off as his grandfather; a Korean 32
times …. We do not see how one can look at figures like these without seeing
them as representing possibilities. Is there some action a government of India
could take that would lead the Indian economy to grow like Indonesia’s or
Egypt’s? If so, what, exactly? If not, what is it about the “nature of India” that
makes it so? The consequences for human welfare involved in questions like
these are simply staggering: once one begins to think about them, it is hard to
think about anything else. 
Lucas (1988, pp. 4–5)

17.2.1 Growth, Structural Transformation, and Technology

One way to describe economic growth is to say that it
involves a change in the types of economic activity that are
undertaken by a society. This can be seen in changes in the
allocation of labor force and aggregate output across broad
sectors of the economy. It is customary to separate
economic activity in three sectors—agriculture and related
industries, such as forestry and fishing; mining,
manufacturing, and construction; and all other activities.
Perhaps the most striking change in the process of
economic growth is in the share of agriculture. Figure 17.2
presents the relation between the share of agriculture in
labor force and the share of agriculture in national income,
in relation to per capita income. We see that the share of
agriculture in labor force moves from 80 percent to 1
percent, and the share of agriculture in national income
similarly moves from 50 percent to 1 percent, as we go
from the very poor to the richest countries. This is a very
robust feature of economic growth—an increase in per
capita income is accompanied by a significant fall in the
importance of agriculture as a share of the national
economy.



Figure 17.2 
Agriculture in economy. Source: World Bank 2018.



The rural-urban relation is central to the process of
economic growth. There are two flows in this relation—that
of labor from farms to factories and that of food from
agriculture to cities to feed workers who have left the
farms. Figure 17.3 presents the relation between per capita
income and share of rural population. We see that the
share of rural population falls progressively as we move up
the income levels—all the way from 80 percent to less than
20 percent.

Figure 17.3 
Share of rural population. Source: World Bank 2018.

In the first half of the twentieth century, theories of
growth and development were deeply concerned about the
relationship between agriculture and the rest of the
economy. There was an early realization that agriculture
must be able to spare labor, and productivity must grow in
agriculture so that it could feed the laborers who were
moving to industry. Fundamental to this process of growth,
therefore, was the relocation of labor away from villages



and countryside to cities—in other words, large-scale
migration.

However, this raises the question: once labor has moved
to manufacturing, what are the possibilities for further
growth? Our discussion in the introduction suggests that
ever-widening circles of scientific discovery and continuous
technological change are central to sustained economic
growth.

Ever-widening circles of scientific discovery and
continuous technological change are central to sustained
economic growth:
Continuous technological progress and, underlying it, a series of new scientific
discoveries are a necessary condition for the high rate of modern growth in per
capita income combined with a substantial rate of growth in population. As
evidence, we need only note the industries that loom large in an advanced
economy: many of the electrical, internal combustion, and chemical fields were
entirely unknown a hundred years ago, and even the older industries are
permeated by processes whose origin lies in relatively recent scientific
discoveries. 
Kuznets (1961, pp. 29–30).

This suggests that one way to understand the uneven
rates of growth in different countries is to examine the
ways that communities and social structure shape the take
up of new opportunities.

17.3 Traditional Society and New Opportunities

In this section we discuss the historical experience of
societies to new economic opportunities in relation to
migration, to education, and investments in trade and
manufacturing.
Example 17.1 Economic growth in China

China has witnessed the same degree of industrialization
in three decades as Europe had over the course of two
centuries; for a discussion on this growth, see Greif and
Tabellini (2017). This economic transformation began in
the early 1980s with the establishment of township-village



enterprises and accelerated with the entry of private firms
in the 1990s. Starting with almost no private firms in 1990,
there were 15 million registered private firms in 2014 (they
accounted for over 90 percent of all registered firms in the
country). Alongside this growth in numbers, the share of
registered capital held by private firms has grown sharply:
by 2014, private firms held 60 percent of all registered
capital in the economy. China’s growth has had profound
effects on the flow of goods and services and capital and on
the balance of political influence across the world.

Governments at the local (county), provincial, and
central levels played an important role in China’s economic
transformation. There still remains the question of how this
growth in private firms occurred without effective legal
systems and well-functioning financial institutions (i.e.,
without the preconditions generally believed to be
necessary for market-based development). How did millions
of individuals born in rural areas transition into the role of
entrepreneurs, setting up and successfully running such a
vast array of extraordinarily successful companies?

◼

Example 17.2 Rural-urban migration differences

We have seen that a central element in the process of
economic development is the transformation of the
economy from one in which most people work in
agriculture and live in villages to an economy in which
most people work in manufacturing or services and live in
cities. The pace of rural to urban migration is thus a key
factor in economic development, and there are big
differences in this rate. Our discussion here draws on
Munshi and Rosenzweig (2016).

In India, the rural-urban wage gap (after correcting for
cost-of-living differences) was 25 percent in 2000—this gap
is large, and it has remained so for decades. This gap is
also significantly larger than the wage gap in other large,



developing countries such as China and Indonesia—one
estimate puts the difference as large as 16 percent higher
in India. This large wage gap is accompanied by relatively
low levels of rural-urban migration in India. For instance,
the rate of rural-urban migration as a fraction of rural
population was around 5.34 percent for India in 2005,
while it was close to 14 percent for Brazil for 1997.

The low migration mobility in India is reflected in its
urbanization rates. For the period 1975–2000, consider the
relative rates across four large, developing countries:
Indonesia, China, India, and Nigeria. Urbanization in all
four countries was low in 1975—around 15–20 percent of
the population lived in cities. However, India fell far behind
the rest by 2000—the fraction of urbanized population is
almost 15 percent less than in the other three countries.
What are the reasons for these differences in migration
rates across these countries?

◼

Example 17.3 Education

One of the commonly observed features of economic
growth is that literacy becomes universal and large
sections of the population go in for secondary and
postsecondary school education. There are major
differences in the rate at which education is adopted by
different countries and by different communities within a
country. We briefly explore the take-up of English-language
education in Mumbai for the purpose of bringing out the
role of social networks in shaping take-up rates. The
discussion here draws on Munshi and Rosenzweig (2006).

Mumbai was a leading manufacturing center in India
throughout the twentieth century. In the last decade of the
century, larger-scale liberalization of the Indian economy
led to a shift in the city’s economy toward the corporate
and financial sectors. Jobs in these sectors required a
knowledge of English, unlike most jobs in the



manufacturing sector. As these sectors expanded, the
returns to learning English grew substantially. Over the
period 1980–2000, the returns to years of schooling
increased only slightly for both men and women. On the
other hand, the English premium increased sharply, rising
from 15 percent in 1980 to 24 percent in 2000 for men, and
from negligible in 1980 to 27 percent in 2000 for women.

This rise in returns to learning English elicited a strong
response from families with children of school age children:
enrollment rates in English-medium schools grew
significantly for both boys and girls, and for all castes. At
the start, in 1980, there were large differences across
castes in the take-up of English-language schooling for both
boys and girls. The fraction of high-caste boys and other
(medium and low) castes going to English-language schools
was 45 percent and 10 percent, respectively, while the
fraction of high-caste girls and other castes going to
English-language schools was 35 percent and 15 percent,
respectively. Over the period 1980–2000, the differences
across castes persist for boys but narrow significantly for
girls: the fraction of high-caste boys and other castes going
to English-language schools was 60 percent and 35
percent, respectively, while the fraction of high-caste girls
and other castes going to English-language schools was 45
percent and 35 percent, respectively. Why did lower-caste
boys fail to take advantage of this new economic
opportunity as well as the lower-caste girls?

◼

We now present a theoretical model to help us uncover a
number of general principles that can help us understand
the relation between social networks and market
opportunities.

17.4 A Theoretical Model



We present a model taken from Gagnon and Goyal (2017).
There is a community with n individuals. The social
relations between these individuals are reflected in a social
network, g. Ties are binary and undirected: gij ∈ {0,1} for
any pair of individuals i and j. Individuals can take part in
network activity x (this could be sharing labor services or
sharing income) and a market opportunity y (such as
learning a language, migrating, or investing in a new
enterprise). Suppose for simplicity that both x and y are
binary—xi ∈ {0,1} and yi ∈ {0,1}. Let ai denote the action
choice of person i and let a denote the profile of actions
chosen. A key variable is the number of neighbors who
choose the network opportunity. Let

be the number of neighbors who choose the network
action, and let Φi(a | g) denote individual i’s payoffs under
action profile a in network g. If an individual abstains from
network exchange, then the network does not affect their
payoffs: choosing xi = 0 may be thus interpreted as “leaving
the network.” If an individual chooses inactivity, ai = (0, 0),
then they earn 0. The payoffs to the market action by itself
(i.e., ai = (0, 1)), are given by πy ∈ ℝ. If individual i chooses
ai = (1, 0), her payoffs are given by ϕ0(χi(a)), and if the
individual chooses ai = (1, 1), they are given by ϕ1(χi(a)). To
summarize,

We note that the payoff function ϕi(.) is the same across
individuals. This is a useful starting point, as it allows us to



focus on network-based differences between individuals.
Toward the end of this section, we will discuss how
heterogeneity across individuals along other dimensions,
such as talent or wealth, interact with network differences.

Network-based activity involves individuals carrying out
favors or barter exchanges. It is therefore reasonable to
suppose that payoffs from network action x display local
complementarity. These ideas are reflected in the following
assumption.
Assumption 17.1 Both ϕ0(·) and ϕ1(·) are strictly increasing in χi(a).

Turning to the relation between the network and market
opportunities, the key idea is that the market action affects
the marginal returns from network action. Define the
function:

Observe that ξ(·) is the difference between the marginal
returns to x when yi = 1, ϕ1(·) − πy, and the marginal
returns to x when yi = 0, ϕ0(·) − 0.

Network and market actions are said to be substitutes if
ξ(·) is negative and weakly decreasing in χi(a). They are
said to be complements if ξ(·) is positive and weakly
increasing in χi(a). Thus, our notion of substitutes combines
a substitutes relation between an individual’s network
action and market action and a strategic substitutes
relation between the network action of their neighbors and
their own market action. The relation between social
networks in traditional occupations with semiskilled labor
and markets for white-collar jobs may be seen as an
example of substitutes. In a similar spirit, our definition of
complements subsumes a complements relation between an
individual’s network and market action and a strategic
complements relation between the network action of their
neighbors and their own market action. Trust in traditional



community ties may be seen as a complement to trading in
products with high but uncertain valuation, like diamonds.
These ideas are reflected in our next definition.
Assumption 17.2 ξ(0) = 0. Network and market actions are either

substitutes or complements.

We suppose that ξ(0) = 0, which is a simplifying
normalization: if no one in the neighborhood adopts action
x, then the network is not functioning, and so action y does
not affect the marginal payoffs from action x. To develop
intuitions underlying the arguments, it is helpful to
consider the following example of a payoff function:

where px ≥ 0 and py ≥ 0, are the prices of actions x and y,
respectively. Observe that x and y are substitutes for θ ∈
[−1, 0] and complements for any θ ≥ 0. We now study the
nature of equilibria and how they depend on the primitives
of the model—network g and the relation between the
market and network opportunities θ.

17.4.1 Communities and Markets: Trade-Offs

To develop a feel for the economic trade-offs involved and
how they shape individual choices, let us work through an
example with the linear payoffs example, as in equation
(17.4). Let us set θ = −0.9, px = 4.1 and py = 0.5. This is the
case for substitutes. Observe that πy = 1 − 0.5 > 0: market
activity on its own is profitable, and therefore, inactivity, ai

= (0, 0), is never optimal. Next, observe that ai = (1, 1) is
never optimal: the payoff from ai = (1, 1), − px + 1 − py is
always smaller than the payoff from action ai = (0, 1), 1 −
py. To compute the optimal action, therefore, we need to
compare pure network activity with pure market activity. It
is easily verified that pure network activity is more
profitable if and only if χi ≥ 5 (as this is the lowest integer



that is greater than 4.1). So, for an individual to choose
network activity, they must have at least five neighbors also
choose it. It now follows, from reasoning as given in
chapter 4 on network games, that the maximal group of
individuals who will choose network activity corresponds to
a 4-core of the network. Figure 17.4 illustrates the
derivation of a 4-core. All individuals outside the 4-core will
take up the market action.

Figure 17.4 
Algorithm to obtain a q-core. Source: Gagnon and Goyal (2017).

Next, consider the setting with complements: set θ = 1.1
and make px = 7.5 and py = 2. Market action is not
profitable on its own, as πy = 1 − 2 < 0. Next, observe that
ai = (1, 0) is never optimal: for it to be optimal, χi −px ≥ 0,
which means that χi > 0. However, the payoff from ai = (1,
1), (1 + 1.1)χi −px + 1 −py is always larger than χi − px

because θ = 1.1 > py − 1. To compute the optimal action,
therefore we need to compare action ai = (1, 1) with the
payoff from inactivity. Simple computations reveal that



joint network activity and market action are optimal if and
only if χi ≥ 5. So, for an individual to choose network
activity, they must have at least five neighbors choose the
network activity. It now follows, from reasoning as in
chapter 4 on network games, that the maximal group of
individuals who will choose network activity corresponds to
the 4-core of the network. All individuals outside the 4-core
will take up inactivity.

These computations serve as a basis for more general
arguments concerning individual choices across a wide
range of payoff functions. First, we observe that as in the
weakest-link game, the local complementarity in the
network action, x, creates the potential for coordination
failure and the possibility of zero-activity outcomes. As the
interest is on the interaction between the network and
market action, it is simplest to abstract from the
coordination problem in the network activity. In what
follows, therefore, we will focus on the maximal equilibrium
—equilibrium a* is said to be maximal if there is no other
equilibrium that Pareto-dominates it. Restricting our
attention to a maximal equilibrium is helpful as, for a given
payoff function and a given network, there is a unique
maximal equilibrium. With these observations in mind, we
are ready to state our first result.
Proposition 17.1 Suppose that assumptions 17.1 and 17.2 hold. For a given

network g, a maximal equilibrium exists and is generically unique.

We begin with existence in the complements case: start
from a profile where everyone chooses ai = (0, 0). Iterate
through best responses: noting that actions are
complements, any increase in action x by one individual
provokes a further increase (weakly) in others’ actions. As
the action set is binary, the process must converge and the
limit is an equilibrium. In the substitutes case, the
argument is a little more involved and exploits the payoff
structure more directly to construct different types of



equilibrium in the cases where the market action alone is
attractive and where it isn’t. The existence of a maximal
equilibrium follows from noting that the set of strategies
(and hence the set of equilibria) is finite.

Next, consider the case of substitutes: it is helpful to
separate the analysis into two parts:

  1.  πy ≤ 0: If , then  for all i ∈ N is an
equilibrium. If ϕ0 (0) ≤ 0, then  for all i ∈ N is an
equilibrium.

  2.  πy > 0: If ϕ1 (0) ≤ πy, then  for all i ∈ N is an
equilibrium. Finally, if ϕ1 (0) > πy, then  for all i ∈
N is an equilibrium (due to complementarity in returns
from action x across individuals).

Turning to uniqueness, suppose that there are two
distinct profiles a and a′ that are both maximal equilibria.
This means that there are individuals i and j such that i

does strictly better under a, while j fares strictly better
under a′.

Consider first the case of complements. Define a new
profile , with  and ŷi = max{yi, yi′} for all i. If 
constitutes an equilibrium, then it follows that  Pareto-
dominates a and a′, as there is a strict inequality for at
least a pair of agents. This contradicts the hypothesis that a
and a′ are maximal equilibria. If  does not constitute an
equilibrium, then iterate using best responses starting from
. Observe that all actions are complements, so best

responses can only lead to an increasing number of
individuals choosing x = 1 and/or y = 1. As in the existence
proof, this process converges and the limit is an
equilibrium. Note that at every iteration stage, the payoffs
of every individual are weakly rising relative to , which
again contradicts the hypothesis that a and a′ are maximal.

Finally, consider uniqueness for the substitutes case.
Construct profile , where  and  for all i.



Suppose that  constitutes an equilibrium. Clearly, the
payoffs of all individuals choosing x = 1 under either a or a′
must be weakly larger in  (due to local complementarity in
x). Also, note that individual k switches from yk = 1 (or 
) to ŷk = 0 only if min{ yk, yk′} = 0. As the payoffs from y are
independent of others’ choices, this must entail a weak
increase in individual k’s payoffs. Hence,  Pareto-
dominates a and a′, which contradicts the hypothesis that a
and a′ are maximal equilibria. The case where  does not
constitute an equilibrium can be studied by iteration as in
the complements case described previously; details are
omitted here.

◼

17.4.2 Networks and Market Participation

We now turn to understanding the relation between
networks and equilibrium behavior. An individual chooses
among four possible opportunities: namely, (0, 0), (1, 0), (0,
1), and (1, 1). Recall that both ϕ0(·) and ϕ1(·) are strictly
increasing in the level of network activity. Assuming that
these payoffs increase sufficiently, there are q1 ≥ 0 and q2
≥ 0 such that

Next, recall from the definition of substitutes, in equation
(17.3), that ϕ0(·) increases “faster” than ϕ1(·) with respect
to χi ∈ ℕ+. This means that there is q3 ≥ 0 such that

Similarly, in the case of complements, there is q4 ≥ 0
such that



The network and market opportunities are strong
substitutes if q3 < q1. They are strong complements if they
are complements and q4 < q2. Observe that strong
substitutes rule out cases where ai = (1, 1) is optimal for
any χi ∈ ℕ+. Following similar logic, we note that the
property of strong complements rules out action ai = (1, 0)
being optimal for any χi ∈ ℕ+. It can be verified that in the
payoff function example (equation [17.4]) and the network
activity, x, and the market action, y, are strong substitutes
if θ ∈ (−1, 0) and θ(n − 1) < py − 1, and they are strong
complements if θ > 0 and θ > py − 1.

In the case of strong substitutes, only individuals in the
q1-core will choose ai = (1, 0), while those outside it will
either choose ai = (0, 1) if πy > 0, or ai = (0, 0) if πy ≤ 0. To
develop some intuition about what individuals in the q1-core
will choose, consider the case where πy ≤ 0. Individuals
choose between ai = (1, 0) and ai = (0, 0). They prefer the
network action if they have at least q1 neighbors who
choose x = 1. Observe that if all individuals in the q1-core
choose x = 1, then it follows that equation (17.5) is satisfied
for all of them. Hence, players in the q1-core all obtain
larger payoffs by playing (1, 0) than by remaining inactive,
and the converse is true for players outside the q1-core.

In the case of strong complements, only individuals in
the q2-core choose ai = (1, 1), while individuals outside the
q2-core choose either ai = (0, 1) (if πy > 0), or ai = (0, 0) (if
πy ≤ 0). Consider the case where πy > 0. Individuals choose
between ai = (1, 1) and ai = (0, 1) and prefer the former if
and only if equation (17.6) is satisfied. If all individuals in
the q2-core choose x = 1, then equation (17.6) is satisfied
for individuals in the q2-core, so all individuals in the q2-
core (and those individuals only) must strictly prefer ai =
(1, 1) to ai = (0, 1).

We summarize the discussion as follows.



Proposition 17.2 Suppose that assumptions 17.1 and 17.2 hold. Let a* be the

maximal equilibrium.

1. Strong substitutes:  if and only if i ∈gq1. If i∉gq1, then  if πy

≤ 0, and  if πy > 0.
2. Strong complements:  if and only if i ∈gq2. If , then  if

πy ≤ 0, and  if πy > 0.

In other words, if networks and markets are strong
substitutes, then all individuals in gq1 choose network
activity only. Individuals outside gq1 choose the market
action only if πy > 0, and choose inactivity if πy ≤ 0. If
networks and markets are strong complements: all
individuals in gq2 choose both network and market activity.
Individuals outside gq2, choose the market action only if πy

> 0, and choose inactivity if πy ≤ 0.
To develop a better understanding of the uses of

proposition 17.2, we present equilibrium outcomes in two
familiar networks on figure 17.6: the regular network, with
degree 3, and a core-periphery network, with an equal
number of nodes and links. In the case of strong substitutes
(figure 17.6[a]), peripheral individuals, who benefit the
least from network exchange, choose the market action,
while all other individuals choose the network action.
Everyone chooses the network action in the regular
network. In the case of complements, the opposite holds:
for the given prices, only the best-connected individuals (in
the core of the core-periphery network) can afford to
choose the market (and the network) action; all other
individuals choose inaction. In the regular network, no one
has sufficient connections: inactivity is pervasive.



Figure 17.5 
Adoption patterns. Source: Gagnon and Goyal (2017).



Figure 17.6 
Core-periphery and regular networks. Source: Gagnon and Goyal (2017).

Figures 17.5 and 17.6 help us appreciate the role of the
topology of networks and the strategic relation between
market and network activity in shaping behavior. In the
case of substitutes, the first thought would be that highly
connected nodes should adopt the network action, while
less connected nodes adopt the market action. The analysis
of the model goes beyond this intuition. Consider the



network in figure 17.5: node 9 has a higher degree than
node 10, and yet it chooses the market action, while the
latter chooses the network action. This is because node 10
forms part of the 4-core while node 9 does not. Turning
next to the impact of the strategic relation between
network and market opportunities, let us compare behavior
in the panel (a-substitutes) and the panel (b-complements)
of figure 17.6. In the substitutes case, the nodes lying
outside the relevant q-core choose market action, while in
the complements case, the nodes within the relevant q-core
do so.

We say that one network g′ is denser than another
network g if gij ≤ gij′ for any pair i, j ∈ N, and the inequality
is strict for at least one such pair. We say that an individual
is well connected if they lie in the appropriate q-core (e.g.,
the q1-core in the case of strong substitutes and the q2-core
for strong complements).

Proposition 17.2 says that the key to market participation
is the size of gq and the value of πy. For instance, in the
case of strong substitutes, if πy > 0, then the set of market
participants is simply the complement of set gq1. Similarly,
in the case of strong complements, if πy < 0, then every
individual in gq2 adopts the market action. This suggests
that, loosely speaking, market participation is falling in the
size of the core set in the case of substitutes, while the
converse is true in the case of complements. This implies
that market participation is weakly lower in denser
networks when x and y are substitutes, and weakly larger
when they are complements. Moreover, market action y is
adopted by less-connected individuals in the case of
substitutes, and by well-connected ones in the case of
complements.

17.4.3 Impact of Markets on Welfare



Our theoretical framework allows an examination of the
circumstances under which the introduction of markets is
welfare enhancing. To do so, we compare welfare in a
society before and after the arrival of market action y.
Given network g and action profile a, aggregate welfare is
given by

In the case of complements, the introduction of y weakly
facilitates the adoption of network action x. The
introduction of y thus implies weakly larger individual
payoffs for everyone, and hence a larger aggregate welfare.
However, if x and y are substitutes, the effects of the
introduction of the market are less clear. A switch away
from the network activity to the market action by some
individuals leads to a drop in the payoffs of the individuals
who remain with the network action. This negative effect
can dominate any gains enjoyed by the market participants.
Example 17.4 illustrates this point.
Example 17.4 When markets lower social welfare

Consider the core-periphery network in figure 17.6, and
suppose that the payoff function is as in equation (17.4),
which we present here for easy reference:

In this payoff function, fix θ = −0.9 and px < 1. Prior to
the introduction of y, all individuals choose x = 1. Suppose
now that market action y becomes available. If 0 < 0.1 < py

≤ px < 1, then all periphery individuals choose y = 1, while
core individuals stick to x = 1. Periphery individuals
increase their payoffs by 0 < px − py < 1 following their
switch. On the other hand, a periphery individual’s switch
entails a decrease of exactly 1 in the benefits of the core



individual to which they are connected. The net effect of
the introduction of the market action is thus strictly
negative.

17.4.4 Markets and Inequality

We now turn to the impact of markets on inequality. To
appreciate the issues in the simplest way, we examine the
ratio of the highest payoffs to the lowest payoffs. Given
network g, this ratio is denoted by ℛ(g):

where a* is the maximal equilibrium in network g.
ℛ(g) is close in spirit to other traditional metrics of

inequality, including the range, the 20:20 ratio, and the
Palma ratio. The range is the difference between the
payoffs of the wealthiest and poorest individuals of a
population. The 20:20 ratio and the Palma ratio reflect the
payoff ratios of the wealthiest 20 percent to the poorest 20
percent, and the wealthiest 10 percent to the poorest 40
percent, respectively. While ℛ(g) has the same structure as
these two measures, it requires less information about the
payoff distribution, and thus about the network structure.

Let ℛ0(g) denote the inequality prior to the introduction
of a market and ℛ1(g) its level after the introduction of
market action. Note that rising ℛ(g) implies increasing
inequality.

In the case of strong substitutes, it is easiest to see the
argument when we start from a premarket situation where
well-connected individuals choose x. The introduction of
the market clearly offers the less connected individuals a
potentially better option. Their switch to the market action
can only lower the payoffs of the best connected who
remain with the network action. Hence the minimum
payoffs must weakly rise and the maximum payoffs must



(weakly) fall, with the introduction of the market. Thus
markets unambiguously lower inequality.

When x and y are strong complements, we can focus on
two action profiles, (0, 0) and (1, 1). Individuals who
benefit the most from network exchange will also benefit
the most from markets. When market take-up is partial,
markets will thus unambiguously raise inequality. Let us
define market participation in a network g, ℳ(g), as the
number of individuals who choose y = 1 in the unique
maximal equilibrium in that network. When market
participation is complete (ℳ(g) = 1), the worst-off
individuals may benefit relatively more or less than the
best-off individuals from the newly available market y,
depending on the social structure and the payoffs to the
two opportunities. Example 17.5 elaborates on this point.
Example 17.5 Networks and inequality

Consider the network in figure 17.7 and the payoff
function in equation (17.4). Fix px = 4.1. In such a case, the
best-off individuals before the introduction of y are
individuals 1 to 6, with payoffs of 0.9, while all other
individuals have payoffs of 0. This means that inequality is
given by ℛ0(g) = 1.9. Now suppose that y is introduced at a
price py = 1.05. Then the earnings of individuals 1, 7, and
3–6 are 5.85, while those of individuals 2 and 8–11 are 7.85
and 3.85, respectively. Consequently, ℛ1(g) = 1.825, which
indicates falling inequality.



Figure 17.7 
Prior to market: px = 4.1. Postmarket: px = 4.1; py = 1.05 or py = 2. Source:
Gagnon and Goyal (2017).

Next, suppose that py = 2. Then the payoffs to individuals
1, 7, and 3–6 is 4.9, while those of individuals 2 and 8–11
amount to 6.9 and 2.9, respectively. Consequently,
inequality is given by ℛ1(g) = 2.026; there is thus an
increase in inequality with the arrival of a market.

We summarize the effects of social structure on social
efficiency and inequality as follows.
Proposition 17.3 Consider the interaction between networks and markets:

In the case of strong substitutes, a new market opportunity may lower

aggregate payoffs but it weakly decreases inequality.

In the case of strong complements, a new market opportunity will raise

aggregate efficiency. It will also raise inequality so long as take-up is partial

(ℳ(g) ∈ (0, 1)). If take-up is complete (ℳ(g) = 1), then the effects on

inequality are ambiguous.

In the discussion so far, we have assumed that
individuals differ only with regard to network location.
Individuals may be heterogeneous in other dimensions that
affect the extent to which they can benefit from markets
(e.g., human capital and initial wealth).

17.4.5 Individual Heterogeneity and Responses to Markets

Suppose that the benefits from the market action, πy, are
different across individuals. We assume that this
heterogeneity does not affect the other determinants of the
payoff function (i.e., returns to x and degree of



complementarity between x and y). To bring out the
interaction between types of heterogeneities, consider the
following variation of the linear payoffs case:

with θ = −0.9. Suppose that individuals have either high or
low returns from y with  and . The first thing to
note is that high-market-value individuals require larger
returns from network action x to remain in the network.
Figure 17.8 illustrates the equilibrium adoptions of x and y
for different values of px.

Figure 17.8 
Implications of heterogeneity on market action: qH = 2 and qL = 5. Source:
Gagnon and Goyal (2017).



We see that as we move to higher prices for network
action, it is the higher-value, not the lowest-connected
individuals who switch to market action (as in figure
17.8[b]). Further, it is possible for the market action to be
adopted as stand-alone by certain individuals, while others
opt for a* = (0,0) (as in figure 17.8[c]).

Building on these observations, we can develop a general
analysis of equilibrium actions with network and market
value heterogeneity. A question at the end of the chapter
explores this point.

Our results on inequality in proposition 17.3 may change
considerably. One example is if returns to market activity, 

, are negatively correlated with membership in the q-core.
To see this, recall that in our benchmark model, only poorly
connected individuals (i.e., those out of the q1-core), opt for
the market action. These individuals are also the worst off
in the premarket situation, which explains why inequality
always goes down with the introduction of markets in the
case of substitutes. But if these poorly connected
individuals have high returns to y while others have no
returns at all, then the introduction of markets may make
the poorly connected individuals the best-off—indeed, they
are better off than the erstwhile rich individuals, and
thereby inequality is exacerbated.

Let us now summarize what we have learned from the
theoretical model. We develop a model where individuals
located in a social network choose a network action and a
market action. The key to our results, as well as to
understanding the empirical patterns, is the relation
between the two activities (i.e., whether they are strategic
complements or substitutes). We show that equilibrium
individual behaviors can be described in terms of the q-core

of the social network. We show that in the case of
substitutes, it is the individuals who benefit the least from
network exchange (i.e., individuals outside the q-core) who



adopt markets. Conversely, in the case of complements,
well-connected individuals find markets more attractive.
Markets always raise aggregate welfare if the two activities
are complements, but they may lower welfare when the two
activities are substitutes. Inequality in social networks is
reinforced by markets in the case of complements but
lowered in the case of substitutes. We now relate these
empirical findings on the rise of manufacturing and
services, migration, and take-up of modern education.

17.4.6 Using the Model to Understand Empirical Patterns

In this section, we use the model as a lens through which to
better understand the case studies presented in section
17.3.

Trading and Manufacturing in China: In the absence of
well-functioning markets and legal institutions, how did
large-scale industrialization and urbanization of China take
place? A number of authors have drawn attention to the
role of communities in the Chinese growth process (i.e.,
Allen, Qian, and Qian [2005]; Dai, Mookherjee, Munshi, and
Zhang [2020]; Song, Storesletten, and Zilibotti [2011];
Fleisher, Hud, McGuiree, and Zhang [2010]; Nee and
Opper [2012]; Peng [2004]; and Greif and Tabellini
[2017]).

We start by noting the importance of the production
clusters in the Chinese growth process (for a discussion of
these clusters, also see chapter 12, on social coordination).
Thousands of firms, large and small, with many specializing
in a strictly defined production process, are agglomerated
in a densely populated region, where a specific
manufactured consumer good is churned out in very large
quantities: these regions are sometimes referred to as the
world’s “socks city,” “sweater city,” “kids’ clothing city,”
and “footwear capital.” Members from clans and lineages
migrate to production clusters in groups. It has been
argued that informal mechanisms based on reputation and



trust have been at work to allow millions of entrepreneurs,
most of whom were born in rural areas, to establish and
grow private companies.

Let us briefly discuss lineages in China. Patrilineal
lineages—also referred to as clans—have long been
associated with Chinese society. Almost 100 years ago, Max
Weber (1951) observed that clan organization was well
preserved in China. A clan rests on blood ties, confers
cultural identity, and has clearly nominated leaders. Clans
are characterized by rules and obligations that have high
ethical standing. Upon taking power in 1949, the
Communist Party took a number of steps to suppress
lineage organizations: it confiscated clan communal land
and properties, deprived clan elders of their power,
repealed clan codes, and injected the ideology of class
consciousness and class struggle to diffuse clan identity. In
spite of an official policy against clans during the
Communist period, there is evidence to show that clans
persisted, albeit in a dormant form, through the Communist
period, and they revived greatly after the market reforms of
1979. There is strong empirical support for the role of
lineages and clans in furthering private enterprise and
economic activity in production clusters.

Seen through the lens of our model, in the setting of
China with its limited legal and market institutions, activity
in social ties may be seen as complementary to
entrepreneurial market activity. In line with our theoretical
work, lineages or clans that have dense networks are able
to better leverage social connections to grow private
enterprises.

Migration: Why are levels of rural-urban migration in India
much lower than other comparable developing economies?
Migration could be low because formal insurance in cities
is very weak and/or informal insurance works particularly
well in villages. There is little evidence to suggest that



formal insurance is significantly better in other developing
countries compared to India. In addition, research has
documented evidence for very high levels of informal risk-
sharing throughout the developing world, not just in India.

It would appear that the key is the size of networks that
engage in informal insurance: if the group or network is
small, then consumption will still fluctuate appreciably as
the group is too small to smoothen all shocks. On the other
hand, if the group is very large, then the smoothing would
be much more effective. It would seem that what is
exceptional about India is the size, spatial spread, and scale
of caste-based insurance networks: as the network is very
large and spread out and comprehensive in its coverage, it
has the ability to smoothen individual-level and even
village-level shocks a great deal more effectively than in
other countries. To put it in the language of our model, in
India, villagers are members of networks with larger q-
cores compared to villagers in other developing countries.
Proposition 17.2 suggests that villagers in India are less
likely to take up the market opportunity of migration. This
is consistent with the empirical record.

English-Language Education: Turning next to education,
the developments can be understood in terms of the
theoretical framework as follows: a significant fraction—68
percent—of men in blue-collar jobs found their current job
through a relative or a member of their subcaste. Thus
network connections appear to be important for blue-collar
jobs in manufacturing. On the other hand, the prospects of
getting a white-collar job appear to depend on number of
years of schooling and proficiency in English. Thus
networks are relatively unimportant for white-collar jobs.
Parents choose the language of instruction: a Marathi-
language school may be interpreted as action x in the
model, and an English-language school as market action y.
These choices are mutually exclusive: in other words, we



are in a setting with perfect substitutes (viz., θ is close to −
1 in example 17.4).

In lower-ranking subcastes, as girls are not part of the
network, they do not expect to secure blue-collar jobs
through their network. The situation is very different for
boys, as they are part of well-functioning networks.
Proposition 17.2 suggests that this difference in access to
networks will lead girls to take English-language education
more than boys. This difference is consistent with the
empirical record. This differential take-up of English-
language education has implications for overall social well
being and inequality. Proposition 17.3 suggests that girls
move into white-collar jobs, their families will withdraw
from lower-caste networks, which would erode these
networks over time. This is costly for those who remain in
the network and may lower the welfare of these subcastes.
On the other hand, greater take-up of white collar jobs will
raise incomes for girls relative to boys, which will help
reduce gender inequality.

17.5 La Longue Duree

In the introduction of this chapter and in section 17.2, we
discussed large-scale patterns of economic change in
historical context. A key feature of the process of economic
growth is the movement of labor from agriculture to
manufacturing and services. This is accompanied by a
corresponding movement of people from the rural
countryside to urban cities. Traditionally, the salience of
this large-scale process has led many scholars to take the
position that, while historically economic life was bound up
with social relations (involving family and close relations),
modern economic life is largely divorced from such social
ties. The three empirical cases in section 17.3 point to the
resilience and the persistent presence of social networks
and a reassessment of this perspective.



In the context of migration, social networks can shape
the overall rate of movement of people from villages to
cities. However, over the past several decades, millions of
people have moved from villages to cities. A number of
studies in India and other parts of the world demonstrate
the emergence and great resilience of community-based
networks in shaping the functioning of labor markets in
manufacturing and services in cities. Indeed, these
community-based networks were a major consideration in
the case study concerning the adoption of English-language
education: it was the presence of strong working class
networks that discouraged the take-up of English-language
education among lower-caste men in Mumbai. This case
study reveals that, almost a century after the setting up of
large mills and factories in Mumbai, community-based
networks are highly effective, as they continue to exercise a
decisive influence on the occupational choices of
individuals. The transition from an agricultural rural
economy to an urban manufacturing economy leads to an
evolution of ties that can take very different forms,
depending on the context: in some cases, ties are eroded
(as when families leave the working class networks and
move into white-collar jobs), while in other cases, the
relations are reconfigured and possibly strengthened (as
when a community moves collectively into the trade and
manufacturing sectors).

There is therefore a two-way flow of influence between
community-based networks and market activity: networks
shape participation in markets, and markets in turn shape
the structure of social networks. This co-evolution of
markets and social networks is a central aspect of the
economic growth process, and it takes place over long
periods of time. We discussed the impact of social networks
on participation in markets in section 17.3; here, we
discuss the flow from markets to networks.



In recent years, a number of researchers have dug
deeper into the details of how social ties–and indeed, the
topology of the network—is affected when traditional
communities come in contact with new opportunities in a
changing economy. Next, we discuss case studies taken
from this line of work to bring out the rich range of
spillovers and interdependencies between formal
institutions and market opportunities and traditional social
ties.
Example 17.6 Expansion in commercial banking and social lending

Consider the effects of new bank accounts on the social
network of informal ties of borrowing and lending. Our
discussion is taken from Comola and Prina (2021).

In 2010, these accounts were offered randomly to women
in 19 villages located in the vicinity of the town of Pokhara
in Nepal. The bank did not charge any opening,
maintenance, or withdrawal fees and paid interest
comparable to the alternatives available in the Nepalese
market. Customers could make transactions at the local
bank’s branch offices in the villages, which were open
twice a week for approximately three hours, or at the
bank’s main office, located in downtown Pokhara, during
regular business hours. The take-up and usage rate of the
savings accounts offered to the treatment group were very
high—84 percent of the households that were offered the
account opened it and used it actively, depositing an
average of 8 percent of their baseline weekly household
income almost once a week for the first year after getting
the account. How did these bank accounts affect informal
ties between the villagers?

The study of village networks is based on a starting
survey in 2009 (prior to when the bank accounts were
offered) and an ending survey in 2011 (conducted after
they were offered). In all, the sample included 915
households. In the survey, the female head of household



was asked to provide a list of people (inside or outside the
village) whom the household could rely on most (and/or
who could rely on them most) for help, in cash or in kind,
and with whom they regularly exchanged gifts and/or
loans. Respondents could list as many names as they
wished.

At the start, households reported having 1.42 partners
on average, of whom 0.64 lived in the village. The network
was therefore very sparse—network density was low (only
2 percent of the potential within-village links were present)
and it was also very fragmented, with 312 households (34
percent of the sample) being isolated. The introduction of
bank accounts leaves the number of binary links virtually
unchanged: 656 links at the start versus 658 at the end.
However, there was an important reshuffling in the
distribution of links—the probability of a tie between new
bank account holders increased, and that of ties between
nonaccount holders declined.

◼

Example 17.7 Community-driven development projects and economic

networks

International donors, multilateral organizations, and
national governments increasingly use bottom-up
approaches, such as community-driven development (CDD)
programs, which involve local communities in project
design and implementation. The scale of these programs is
extensive—they represent between 5 percent and 10
percent of the overall World Bank lending portfolio; roughly
$85 billion was allocated to supporting close to 400
programs in 94 countries during the decade 2000–2010.
We next discuss the impact of CDD on informal social ties.
Our presentation draws on Hess, Jaimovich, and Schündeln
(2020) and Jaimovich (2015).

The Gambian CDD program allocated funds for village-
level development projects to about a third of all rural



villages in the country. The program was implemented
between 2008 and 2009 in close to 500 poor villages that
were chosen randomly from a set of 900 candidates. The
resource allocation was equivalent to one-half of the
households’ annual income. A major goal of CDDs is to
encourage and facilitate community-level interactions. To
accomplish this, villagers were deeply involved at all
stages, ranging from identification of the potential projects
to their maintenance. A total of 38 meetings were
mandated—20 of which intended to involve the whole
village, while the other 18 involved meetings of community-
based organizations. The most common subprojects were
farm implements and inputs, milling machines, water
pumps, seed stores and cereal banking, and draft animals.

Data was collected in 2014 from 56 villages, half of
whom had been exposed to CDD. Ties were measured on
six economic domains (land, labor, inputs, food, gifts, and
credit) and two social domains (friendship and kinship).
The effect of the CDD is estimated by comparing the
probability of a link between any two individuals between
villages that were and were not exposed to the program.

It is helpful to trace, at a high level, a few channels
through which CDD participation can shape informal social
ties. One argument is that by bringing together villagers in
a sustained interaction, the program would also increase
informal ties. A second argument is that CDD exposes a
village to markets and uniform prices, which may lead to a
shift away from informal ties and toward market relations.
A third argument pertains to the possibility of elite capture
and very unequal benefits accruing from the program,
which could create disputes and disrupt social ties.

The empirical study reveals that the CDD program led to
a more formal economy—it eroded informal economic ties,
eliminating roughly one of six transactions between
households, and raised the number of transactions with
individuals outside the village. The loss of ties was higher



in villages where the projects performed poorly, as well as
villages where the gains were shared unequally.

◼

Example 17.8 Entry into diamond markets and social ties

Investments in manufacturing or trading require
financial and social capital that are often beyond the
capacity of a single individual. Individuals may have to turn
to their communities to put together these forms of capital.
We discuss here how a historically disadvantaged subcaste
moved from agriculture into the international diamond
business using its community network, and how its entry
led in turn to changes in the network. The discussion is
based on Munshi (2011).

Diamonds constitute one of the principal exports for
India. But India does not produce rough diamonds. These
diamonds are imported, cut, and polished in domestic
factories and then exported. The diamond mines of Argyle,
Australia, were discovered in 1979. At that time, two
traditional Indian communities, the Palanpuris and the
Marwaris, controlled the business end of the diamond
industry, while the cutting and polishing was done by a
lower caste of agricultural labor contractors, the
Kathiawaris. After the supply shock, some of the Palanpuri
businessmen, who had branches in Antwerp, Belgium,
helped their Kathiawari contacts enter the business by
supplying rough diamonds to them. This initial group of
Kathiawari firms encouraged more of their community
members to follow their lead: by 2005, there were
hundreds of Kathiawari-owned firms in the Indian diamond
industry.

The first entry of Kathiawars into the market was made
possible through connections with well-established
Palanpuri diamond merchants based in Antwerp. This is the
first point where network connections come into play. The
second entry occurred after the initial Kathiawari



enterprises had established themselves: using a strong,
caste-based community, successive members entered the
diamond market, and as they did so, the base of the
Kathiawari community grew further. An examination of the
patterns of transition reveal that at the start in 1975,
almost 70 percent of the new Kathiawaris who joined the
diamond market had parental connections. However, over
the next two decades, this fraction declined sharply: by
2004, only 20 percent of the newly joining Kathiawaris had
paternal connections in the diamond industry: rather, they
were entering on the strength of their ties with the
Kathiawari community.

So far, we have discussed the consequences of social
networks for behavior and market entry, but the transition
of a community from one activity to another also has
consequences for the social network itself. An examination
of the patterns of marriage relations within the
communities reveals an interesting change: the frequency
of intra-industry (and intra-caste) marriages increases
significantly for the Kathiawaris. Practically none of the
early Kathiawari entrants in the diamond market (i.e.,
those who entered prior to 1975) married within the
industry. By 2004, almost 50 percent of the entrants were
marrying within the industry. Their (intra-industry)
marriage rate was higher than the corresponding marriage
rates for the Palanpuris and Marwaris (which remained
largely unchanged over this period).

◼

17.5.1 Microfinance and Social and Economic Networks

Example 17.9 Expansion of microfinance and social lending

Muhammad Yunus founded the Grameen Bank in
Bangladesh in 1983. By 2007, Grameen had made loans of
more than $6 billion to microentrepreneurs in developing
countries. A distinctive feature of the scheme is that it



targeted borrowers with no credit history (i.e., those who
had limited access to traditional banking). Yunus would go
on to win the Nobel Peace Prize in 2006 for his work. Since
1986, microfinance (MF) institutions have grown rapidly:
according to the Microcredit Summit Campaign 2012, the
number of very poor families with a microloan has grown
more than 18-fold, from 7.6 million in 1997 to 137.5 million
in 2010. We study the impact of the introduction of MF on
social networks. Our presentation is based on Banerjee,
Breza, Chandrasekhar, et al. (2021).

MF brings people together in its application process and
the repayment phrase. On the other hand, by providing
loans, it lowers the need for local loans within the village. It
is therefore a priori whether the introduction of MF will
erode or strengthen informal sharing and related social
networks within the village.

The study covers 75 villages in Karnataka, a state in
southern India. We discussed properties of these networks
in chapter 1. Bharatha Swamukti Samsthe (BSS) offered a
conventional group-based microcredit program: borrowers
(who were only women) were formed into groups of five
and are jointly liable for their loans. The starting loan is
approximately 10,000 rupees (a little over $200) and is
repaid in 50 weekly installments. Between 2007 and 2010,
BSS entered 43 of these 75 villages. We call these the “MF
villages,” and the remaining villages as the “nonMF
villages.” The social network is studied at two points in
time: 2006 (prior to the introduction of MF) and 2012
(after the introduction).

The first finding is that the introduction of MF is
associated with a 11 percent decline in the probability of a
link between any two households in an MF village
compared to a nonMF village. Turning to the composition
of these link deletions, let us classify households in terms of
those that adopted MF and those that did not. The second
finding is that links between two nonMF-type households



fell by more than the links between two MF households.
This is somewhat surprising as it would seem that the value
of the link between two nonMF households has not
changed. A third finding is that it is not just the financial
ties of borrowing and lending that have eroded, but other
social ties that involve advice and support have dissolved as
well.

◼

Putting these studies—on bank accounts, development
projects, entry in diamond markets, and MF—together with
the earlier studies in section 17.3, shows that market
opportunities can both substitute for social ties and
complement social relations. In the diamond industry,
market opportunities spurred on and strengthened social
ties. Similarly, in the bank accounts case, access to formal
financial institutions appears to reinforce social ties.
However, in the development project and MF cases,
opportunities arising out of formal institutions and greater
market opportunities eroded informal economic ties based
on borrowing and lending, and to the extent that other
social relations are complementary to these ties, they also
have a negative effect on the broader social network.

The theoretical model proposed in section 17.3 can be
elaborated to make these ideas a little more precise.
Suppose that, in addition to the choices of the network
activity, x, and the market action, y, individuals can choose
links. These links are costly. To pursue this reasoning, it is
helpful to incorporate these costs of links within the linear
example presented in equation (17.4). The augmented
payoffs may be written as

where ηi is the number of links formed by i and c(ηi) is the
total cost of the links. It will be convenient to assume that
c(0) = 0 and these costs are strictly increasing and are a



convex function of the number of links. An individual
contemplating an additional link will earn extra payoffs
only if they are choosing the network activity. In the event
that they are choosing only the network activity, the return
from an additional neighbor who also chooses the network
activity is 1, while in the event that they choose both the
network and the market action, the additional reward is 1 +
θ. It follows that an individual will forms links until the
point that the marginal reward and the marginal cost are
equal. Recall that θ < 0 in the case of substitutes and θ > 0
in the case of complements. This means that the additional
reward, 1 + θ, is larger than 1 if network and market are
complements and less than 1 if they are substitutes. As cost
c(.) is increasing and convex in the number of links, it then
follows that an individual will form more links in the case
where these activities are complements. The number of
links defines the density of the network—thus networks will
grow stronger when individuals in a traditional community
face new opportunities that complement the network
activity, while they will weaken when they are substitutes.

17.6 Reading Notes

At the midpoint of the twentieth century, with the
decolonization process in full swing, the sources of
economic growth and the reasons for its uneven spread
across countries emerged as a major field of study. The
work of Simon Kuznets provided an empirical foundation
for this literature. We draw upon the discussion in the
beautifully self-contained “Six Lectures on Economic
Growth” (Kuznets [1961]). The fundamental role of sectoral
transformation away from agriculture and toward
manufacturing and services was the motivation for the
theoretical models of economic growth inaugurated by the
work of Lewis (1954) and the models of migration initiated
by Harris and Todaro (1970). The exposition in section 17.2



draws on Ray (1998). We also touch upon themes from
other older texts on economic development, such as Myrdal
(1972), Nurkse (1966), and Hirschman (1958). For
overviews of the modern theory of economic growth, see
the excellent books by Acemoglu (2009) and Aghion and
Howitt (1998).

Section 17.2 discusses how social structure can help us
understand individual and social responses to new
opportunities. The discussion draws on the wide-ranging
research of Marcel Fafchamps, Kaivan Munshi, Chang-Tai
Tsieh, Guido Tabellini, and Avner Grief and their
collaborators. In particular, the case studies in this section
draw on Munshi and Rosenzweig (2006); Munshi and
Rosenzweig (2016); Dai, Mookherjee, Munshi, and Zhang
(2020); Bai, Hsieh, Song, and Wang (2020); Bai, Hsieh,
Song, and Wang (2020); and Greif and Tabellini (2017).

The theoretical model is taken from Gagnon and Goyal
(2017)—this model combines the traditional idea that
markets and networks are substitutes (as in the early work
of Kranton [1996]) with the possibility that they can be
complements. Building on the research on network games
and social coordination, these ideas are located within a
social network. They suggest the concept of the q-core as
an organizing principle. The exposition on the relation
between social ties and market opportunities draws on the
elegant essay on the relation between markets and social
ties by Hirschman (1997), the popular book by Sandel
(2000), and the survey paper by Goyal (2017).

The traditional perspective on social structure and
economic growth sees the process as one in which the role
of social ties in economic life is gradually eroded. Karl
Polanyi’s The Great Transformation is a well-known early
work on this subject (Polanyi 1944). Section 17.5 discusses
the enduring role of social networks in the process of
change. It starts with a number of case studies on how new



opportunities—such as markets and the arrival of other
formal institutions—lead to changes in the social network.
An important sphere in which social networks are
especially important is informal risk sharing. There is a
large body of research on the limits of such insurance: Our
discussion on social ties draws on the extensive work of
Marcel Fafchamps and his collaborators (Fafchamps and
Lund [2003]; Fafchamps and Gubert [2007]; and
Fafchamps [2011]); Christopher Udry (Conley and Udry
[2010]; and Udry [1994]); and Ray Fisman (2003) on
informal insurance and social networks in developing
countries. For recent work that takes on an explicit
network perspective, see Ambrus, Mobius, and Szeidl
(2014); Ambrus and Elliott (2021); Bloch, Genicot, and Ray
(2008); Bramoullé and Kranton (2007); and Munshi and
Rosenzweig (2016). Until recently, however, relatively little
attention had been given to the interaction between formal
insurance markets and informal risk sharing in networks. A
notable early exception is Arnott and Stiglitz (1991), who
show that due to moral hazard problems, a developed
informal insurance system can hamper the development of
formal insurance markets. For a recent study of formal and
informal insurance in agriculture, see Mobarak and
Rosenzweig (2013).

The case studies in section 17.5 are taken from recent
papers on the relations between formal institutions and
social networks—the study on microfinance (MF) by
Banerjee, Breza, Chandrasekhar, et al. (2021); the study on
bank accounts by Comola and Prina (2021); the study of the
diamond market by Munshi (2011); and the study on CDD
projects by Heß, Jaimovich, and Schündeln (2020) and
Jaimovich (2015).

Economic growth interacts with the environment and the
base of natural resources. In many parts of the developing
world, the lives of communities depend intimately on the
quality of the local natural resources (examples of which



include waterways, fisheries, pastures, and forests) that
they can access. We do not cover these important
interactions in this book. For an introduction to the subject,
see Dasgupta (1993), and for a study of rules that
communities use to manage natural resources, see Ostrom
(1990).

17.7 Questions

  1.  Consider the model of network and market activity
described in section 17.4. Players simultaneously
choose network action xi ∈{0, 1} and market action yi

∈{0, 1}. Define ai = (xi, yi). Suppose that in network g

faced with the action profile a = (a1, a2, …, an), the
payoff function for player i is given by

where χi(a|g) is the number of neighbors in network g
who choose the network action, and px ≥ 0 and py ≥ 0
are the prices of actions x and y, respectively. We say
that actions x and y are substitutes if θ ∈ [−1, 0] and
complements if θ ≥ 0. A Nash equilibrium is said to be
maximal if there is not no other equilibrium that Pareto-
dominates it.
(a)  Suppose that θ = −1, px = 4, and py = 0.5. Describe

how the network shapes behavior in the maximal
equilibrium.

(b)  Suppose that θ = 1, px = 7, and py = 2. Describe how
the network shapes behavior in the maximal
equilibrium.

(c)  Assess the impact of markets on aggregate welfare
(measured as the sum of individual payoffs) and
inequality (measured as a ratio of highest versus
lowest income) in these two settings.



  2.  Consider the model of network and market activity
described in section 17.4. Players simultaneously
choose a network action xi ∈{0, 1} and a market action
yi ∈{0, 1}. Define ai = (xi, yi). Suppose that in a network
g faced with a action profile a = (a1, a2, …, an), the
payoff function for player i is given by

where χi(a|g) is the number of neighbors in network g
who choose the network action, and px ≥ 0 and py ≥ 0,
respectively, are the prices of actions x and y. We say
that the actions x and y are substitutes if θ ∈ [−1, 0]
and complements if θ ≥ 0. A Nash equilibrium is said to
be maximal if there does not exist another equilibrium
that Pareto dominates it.
(a)  Suppose that px = 6 and py = 0.5. What is the range

of parameter values of θ for which network and
market activity are strong substitutes?

(b)  Do there exist values of θ < 0 and px and py for
which it is optimal to choose actions (xi, yi) = (1, 1)?

(c)  Suppose that px = 9 and py = 4. What are the range
of parameter values of θ for which network and
market activity are strong complements?

(d)  Do there exist values of θ > 0 and px and py for
which it is optimal to choose actions (xi, yi) = (1, 0)?

  3.  In chapter 12, we studied coordination games on
networks and drew attention to the role of network
cohesiveness as a determinant of behavior. In the model
in section 17.4, our analysis draws attention to the role
of the q-core in understanding behavior. Discuss the
relationship between cohesiveness and the q-core of a
network.



  4.  Consider the model of network and market activity
described in section 17.4. Suppose that individuals are
heterogenous with respect to the returns from market
activity and that returns to market activity are
negatively related to membership of the q-core. Reason
how the arrival of markets may well increase inequality
even if networks and markets are substitutes.

  5.  Consider the case study of the impact of MF on social
networks as discussed in section 17.5.4.
(a)  We found that ties between non-MF household fell

by more than ties between MF households, and
finally that ties of advice also fell. How can we
account for this change in social networks?

(b)  We found that informal ties of advice also declined.
Use ideas from the theory of network formation—
that links of various individuals may be strategic
complements or substitutes—to reason about this
change in social networks.

  6.  When social networks and markets are substitutes,
there may arise the possibility of multiple equilibria:
one with large social networks and small markets, and
another with small social networks and well-developed
markets. Moreover, once large social networks are in
place, it may be difficult for markets to develop. Discuss
(and, if possible, provide examples of ) such outcomes.

  7.  Social ties become less important with modernization
because well-functioning markets provide services
traditionally provided by social relations in traditional
societies. Discuss.



18
Trust

18.1 Introduction

Virtually every commercial transaction has within itself an element of trust,
certainly any transaction conducted over a period of time. It can be plausibly
argued that much of the economic backwardness in the world can be explained
by the lack of mutual confidence.
—Arrow (1972, p. 357).

“individuals will rationally place trust if the ratio of the probability that the
trustee will keep the trust to the probability that he will not is greater than the
ratio of the potential loss to the potential gain …”
—Coleman (1990, p. 104).

Transactions in which trust is important include those in
which goods and services are provided in exchange for
future payment; employment contracts in which managers
rely on employees to accomplish tasks that are difficult to
monitor; and investments and savings decisions that rely on
assurances by governments/banks that they will not
expropriate these assets. In some situations, it is possible
that the parties to a transaction will get to know one
another and may carry out transactions with each other in
the future. However, in other situations, it is more natural
to imagine that the parties are strangers and unlikely to
meet ever again. Imagine, for example, a passenger
arriving at an international airport and taking a taxi ride.
The passenger and driver are unlikely to meet after the taxi
drops off the passenger in town.



In this chapter, we will study both types of situations. In
the former situation, we will think of trust as being local to
a small group of individuals (as in the quote from Coleman
above), while in the latter, we will consider trust among
strangers—generalized trust.

We start with an exploration of local trust. From this
perspective, trust is viewed as a solution to a social
dilemma—it is in the collective interest of individuals to
cooperate and choose a certain course of action, but each
individual has an interest in deviating from this course of
action for their own advantage. Good behavior today is
sustained by the anticipation of receiving rewards
tomorrow. The magnitude of rewards and the possibility of
punishments implemented by connected members lead us
to a study of social relations, in particular the role of
common neighbors in a network. These considerations lead
us to the concept of network closure. To formally examine
how direct and indirect connections come into play, we
develop a model of links as social collateral. A relationship
offers a stream of possible benefits in the future.
Individuals can carry out transactions and trust each other
to behave well because if they did not do so, then they
would forsake these future benefits. An investor may
borrow money using the link as collateral. This approach
yields a key insight: the amount a person can borrow
depends on the level of trust that exists, and this trust is
defined as the minimum cut of the network. We present
evidence from urban Peru and rural India to illustrate the
role of network closure.

We turn next to generalized trust; here, we start with a
presentation of data on measures of generalized trust in
different countries and show how that is correlated to
economic performance. This sets the stage for a study of
the determinants of generalized trust. As a first step, we
think of trust as arising out of beliefs and expectations



about behavior. We conceive of culture as describing these
beliefs and expectations and present evidence of how two
central cultural elements—religion and ethnicity—shape
trust.

In the final section of the chapter, we take up the
relation between local and generalized trust. A recurring
theme is the tension between the group-based cooperation
that underlines local trust (and excludes nonmembers) and
the demands of generalized trust. We present a simple
model of favoritism to bring out the origins of group-based
cooperation and its broader negative consequences. This is
followed by a discussion of the role that formal institutions
and social structure play in helping to bridge the gap
between local and generalized trust.

18.2 Local Trust

We start with a famous description of local trust:
Wholesale diamond markets exhibit a property that to an outsider is
remarkable. In the process of negotiating a sale, a merchant will hand over to
another merchant a bag of stones for the latter to examine in private at his
leisure, with no formal insurance that the latter will not substitute one or more
inferior stones or a paste replica. The merchandise may be worth thousands, or
hundreds of thousands, of dollars. Such free exchange of stones for inspection
is important to the functioning of this market. In its absence, the market would
operate in a much more cumbersome, much less efficient fashion.

Inspection shows certain attributes of the social structure. A given merchant
community is ordinarily very close, both in the frequency of interaction and in
ethnic and family ties. The wholesale diamond market in New York City, for
example, is Jewish, with a high degree of intermarriage, living in the same
community in Brooklyn, and going to the same synagogues. It is essentially a
closed community.

Observation of the wholesale diamond market indicates that these close ties,
through family, community, and religious affiliation, provide the insurance that
is necessary to facilitate the transactions in the market. If any member of this
community defected through substituting other stones or through stealing
stones in his temporary possession, he would lose family, religious, and
community ties. The strength of these ties makes possible transactions in which
trustworthiness is taken for granted and trade can occur with ease. In the
absence of these ties, elaborate and expensive bonding and insurance devices
would be necessary- or else the transactions could not take place. 
Coleman (1988, p. S98–99).



It is clear that a high degree of trust in others saves us
from having to incur large costs by drawing up contracts
with them and having to monitor their activities. Coleman’s
description presents us with a context in which the
overlapping social connections, reflected in trading links, of
intermarriage, common religious affiliation, and physical
proximity help in creating and sustaining trust and
facilitating the functioning of a very high-value market.

We now turn to the sources of local trust:
If A does something for B and trusts B to reciprocate in the future, this
establishes an expectation in A and an obligation on the part of B. This
obligation can be conceived as a credit slip held by A for performance by B. If A
holds a large number of these credit slips, for a number of persons with whom
A has relations, then the analogy to financial capital is direct. These credit slips
constitute a large body of credit that A can call in if necessary—unless, of
course, the placement of trust has been unwise, and these are bad debts that
will not be repaid. In some social structures, it is said that “people are always
doing things for each other.” There are a large number of these credit slips
outstanding, often on both sides of a relation (for these credit slips appear
often not to be completely fungible across areas of activity, so that credit slips
of B held by A and those of A held by B are not fully used to cancel each other
out)…. This form of social capital depends on two elements: trustworthiness of
the social environment, which means that obligations will be repaid, and the
actual extent of obligations held. Social structures differ in both these
dimensions, and actors within the same structure differ in the second. 
Coleman (1988, p. S102).

We now move forward from bilateral relations and locate
individuals in a network. A central idea in the literature
pertains to the notion of network closure. Network closure
was first introduced in the context of dropout rates in high
schools in the US (Coleman 1981). Figure 18.1 illustrates
the idea of network closure: in the network on panel (a),
individuals 1, 2, and 3 are linked, but 2 and 3 do not close
the circle of connections. In the network on panel (b), there
is a link between 2 and 3 that does close the circle. Let us
discuss the dropout study and place network closure in that
context.



Figure 18.1 
Network closure.

The High School and Beyond (HS&B) is a national
longitudinal study originally funded by the US Department
of Education’s National Center for Education Statistics
(NCES). The HS&B is part of the National Education
Longitudinal Studies program, which seeks to document
the educational and personal development of young people,
following them over time as they begin to take on adult
roles and responsibilities.

Our discussion draws heavily on Coleman (1981). The
study uses the HS&B data from 893 public schools, 84
Catholic schools, and 27 other private schools. Most of the
other private schools were independent schools with no
religious affiliation. The focus is on the dropout rates of
pupils as they approach their last year of high school. The
dropout rates between sophomore and senior years are
14.4 percent in public schools, 3.4 percent in Catholic
schools, and 11.9 percent in other private schools. The
dropout rate at Catholic schools is one-quarter of the rate
at public schools and about a third of the rate at other
private schools. These large differences persist after we
adjust for differences in economic and demographic
differences between the families sending their children to



these schools. Interestingly, for public schools, the dropout
rates of pupils from Catholic families are only slightly lower
than those of nonCatholics. What are the reasons for this
large difference?

The low dropout rates of the Catholic schools, the
absence of low dropout rates in the other private schools,
and the independent effect of frequency of religious
affiliation point to the importance of the social network in
the adult community surrounding the schools. The
difference in this structure of this community can be
understood with the help of figure 18.2. The vertical lines
represent relations across generations (between parent
and child), while the horizontal lines represent relations
within a generation. In both figure 18.2(a) and figure
18.2(b), the point labeled P1 represents the parent of child
C1, and the point labeled P2 represents the parent of child
C2. The lines between C1 and C2 represent the relations
among pupils in the school. There is a rich set of
connections between the pupils as they see each other at
school, and this develops a set of expectations and norms
about each other’s behavior. The two communities differ,
however, in the presence or absence of links among the
parents of children in the school. The network of parents in
school II has intergenerational closure—the parents’
friends are the parents of their children’s friends. The
social network of parents in school I, on the other hand,
exhibits no closure. Thus, in school II, P1 and P2 can
discuss their children’s activities and come to some
consensus about standards and sanctions. This is not
possible in the network of school I. Network closure helps
the community of parents to develop shared norms and
more effectively impose sanctions in response to deviations
from those norms. P1 is reinforced by P2 in sanctioning
their child’s actions; beyond that, P2 constitutes a monitor
not only for their own child, C2, but also for the other child,
C1. Parents and their children in Catholic schools were



embedded in a network with intergenerational closure, as
in school II, while their public-school counterparts were
located in a network like school I.

Figure 18.2 
Intergenerational closure.

Next, we present two other examples of the use of social
ties that serve to further bring out the role of network
closure in supporting economic transactions. These
examples are taken from Karlan, Mobius, Rosenblat, and
Szeidl (2009).

The first example pertains to a Norwegian shipowner
who was in need of a ship that had undergone repairs in an
Amsterdam shipyard. The shipyard would not release the
ship unless a cash payment was made of 200,000 pounds.
The ship would remain tied up for the weekend, and the
shipowner would lose at least 20,000 pounds. But he did
not have the 200,000 pounds, so he reached out to a
London banker in Hambros, hoping that he would have
contacts in Amsterdam. After hearing the situation, the
Hambros man looked at the clock and said, “It’s getting
late, but I’ll see whether we can catch anyone at the bank
in Amsterdam … stay at the phone.” Over a second phone,
he dictated to a secretary in the bank a telex message to
the Amsterdam bank: “Please pay 200,000 pounds



telephonically to (name of shipyard) on understanding that
(name of ship) will be released at once.”

In this example, the shipowner borrowed 200,000 pounds
from an Amsterdam bank with which he had no direct
connection. He accomplished this by combining two
relations: his connection with the London banker and the
connection between the London and Amsterdam banks. The
London banker acted as a trust intermediary: he provided
access and created the necessary trust for the transaction.

The second example of how networks generate trust is
the guanxi system in China. The term “guanxi” refers to a
trusted relationship that can be used to obtain services,
either directly or indirectly, from that person’s social
network. Consider the example of a buyer and a seller who
share guanxi with a common acquaintance. This third
person can act as a trust source—zhongjian ren—by
introducing the buyer to the supplier. The intermediary
vouches for the buyer by assuring the supplier that should
the buyer exploit the supplier, the intermediary will
compensate for any loss.

These examples illustrate ways in which activity between
one pair of individuals can be supported by links to other
individuals whom the pair knows in common. The intuitive
appeal of the idea of network closure motivates a more
general study that takes account of the overall structure of
the network of connections. However, before exploring this
issue, we briefly comment on other approaches to local
trust not based on self-interest.

One route to trust proceeds as follows: an individual may
act in a trustworthy way because this course of action is
prescribed by their sense of identity. A core element in the
theory of identity concerns the idea that our notion of the
self arises out of interactions with others. Our views of who
we are and how we should act hinge on what we learn from
others with whom we interact. Thus interactions with



others may shape our notion of goals and aspirations and
the appropriate way of behaving. To act in a certain way
that is consistent with one’s sense of identity is to act based
on a different understanding than that which is based on a
computation of material costs and benefits. At a more
general level, as we move away from instrumental to
intrinsic motivations, identity may be seen as being related
to social norms. We will discuss the role of social norms at
length in section 18.4, but at this point, it is probably worth
noting that social interactions may play a role of sustaining
norms. We will return to this theme in section 18.6.

18.3 Social Collateral

In this section, we consider a situation where a borrower
needs the assets of a lender to produce a social surplus. In
the absence of legal contract enforcement, borrowing must
be secured by an informal arrangement supported by the
social network: connections in the network have associated
consumption value, which serves as social collateral to
enable borrowing. The discussion here and the theoretical
model are taken from Karlan, Mobius, Rosenblat, and
Szeidl (2009).

We start with three numerical examples to illustrate the
basic logic of using relationships as collateral. In figure
18.3, individual s would like to borrow an asset, like a car,
from agent t. In figure 18.3(a), the network consists of just
the two individuals s and t; the value of their relationship is
given by 2. This summarizes the total benefits, which may
include the social benefits from friendship or the
discounted present value of future transactions. We take
the view that these benefits may be used as collateral by s
to borrow from t, so t will lend the asset only if its value
does not exceed the relationship value of 2.



Figure 18.3 
Social collateral. Source: Mobius and Rosenblat (2016).

Let us enrich the situation slightly now and consider the
network as shown in figure 18.3(b), where s and t have a
common friend, u. The value of the relationship between s
and u is 3, and that between u and t is 4. Here, the common
friend increases the borrowing limit by min{3, 4} = 3, the
weakest link on the path connecting the borrower and the
lender through u. This common friendship raises the
amount that can be borrowed by s from t to 5. The logic is
that the intermediate agent u vouches for the borrower and
acts as a guarantor of the loan transaction. If s chooses not
to return the car, for example, they are breaking their
promise of repayment to u and therefore lose u’s
friendship. Since the value of this friendship is 3, it can be
used as collateral for a payment of up to 3. For the lender t
to receive this amount, u must prefer transmitting the
payment to losing the friendship with them. This logic also
explains why we need to consider the weakest link.

Finally, figure 18.3(c) considers a coalitional deviation.
Assume that the borrower also has a cousin r, with whom
they have a relationship valued at 5. In principle, r can act
as a guarantor for s, raising the borrowing limit by an
additional 5, to a total of 10. However, r’s threat to break
off their relationship with the borrower is not credible: for
any loan amount exceeding 5, the borrower could propose a
side deal to intermediary u and the cousin such that u can
reimburse the lender for the guaranteed amount (which is



at most 3) while transferring 0 to r in case of a default.
Observe that as there is no onward link from r to any other
individual, r incurs no loss as a result of s reneging on their
promise, Thus the intermediary u and r are not worse off as
a result of this side deal. The borrower will use their
friendship and therefore incur a combined loss of at most 5
(a loss of 3 to u and a loss of 2 to t). However, as they
borrowed an amount exceeding 5, she is strictly better off
under such a side deal. Hence, a punishment of the
borrower that involves individuals like r, who are
unconnected to the lender, is not credible.

18.3.1 A Model

We now develop this idea and apply it in a general network,
G, with nodes N = {1, …, n}. For every pair i and j in N,
there is a capacity given by cij. This capacity is zero if no
link is present and positive if there is a link. For simplicity,
suppose that capacity is symmetric (i.e., c(u, v) = c(v, u)). A
special case that is interesting arises when all positive links
have the same capacity c > 0, such that ∀ i, j ∈ N, cij ∈{0,

c}.
To understand the relation between networks and the

limits of borrowing, it is helpful to explicitly define a
sequence of actions that involve the borrower, the lender,
and the other individuals in the network:

STAGE 1: Realization of needs. Two agents s and t are
randomly selected from the social network. Agent t, the
lender, has an asset that agent s, the borrower, desires.
The lender values the asset at V, and it is assumed that V
is drawn from some distribution F over [0; 1). The
identity of the borrower and the lender, as well as the
value of V, are publicly observed by all players.
STAGE 2: Borrowing arrangement. The borrower publicly
proposes a transfer arrangement to all agents in the
social network. The role of this arrangement is to punish



the borrower and compensate the lender in the event of
a default. A transfer arrangement consists of a set of
transfer payments h(u; v) for all u and v agents involved
in the arrangement. Here, h(u; v) is the amount u

promises to pay v if the borrower fails to return the asset
to the lender. Once the borrower has announced the
arrangement, all agents involved have the opportunity to
accept or decline. If all involved agents accept, then the
asset is borrowed and the borrower earns income ω(V),
where ω is a nondecreasing function with ω(0) = 0. If
some agents decline, then the asset is not lent, and the
game moves directly to stage 5.
STAGE 3: Repayment. Once the borrower has used the
asset, they can either return it to the lender or steal it
and sell it for a price of V. If the borrower returns the
asset, then the game moves to stage 5.
STAGE 4: Transfer payments. All agents observe whether
the asset was returned in stage 3. If the borrower did not
return the asset, then the transfer arrangement is
activated. Each agent makes the promised payment h(u;
v) in full or pays nothing. If some agent u fails to make a
prescribed transfer h(u; v) to v, then they lose their
friendship with agent v (i.e., the (u; v) link goes bad). If
(u; v) link is lost, then the associated capacity is set to
zero for the remainder of the game. We let  denote
the new link capacities after these changes.
STAGE 5: Friendship utility. At this stage, agents derive
utility from their remaining friends. The total utility
enjoyed by agent u from their remaining friends is simply
the sum of the values of all remaining relationships (i.e., 

).
Now, we study the pure-strategy subgame perfect

equilibrium of the game. In particular, we would like to



understand the limits placed by network G on the amount
that s can borrow from lender t.

18.3.2 Analysis of Equilibrium

In any equilibrium where promises are kept, transfers have
to satisfy the capacity constraint

This inequality reflects the incentives facing an
individual. If the borrower fails to return the asset,
individual u has to decide whether to make their promised
transfer payment h(u; v) to v. The cost of making the
payment is h(u; v), while the cost of not making the
payment is the value of the relationship that is foregone. In
any equilibrium where promises are kept, u must prefer the
friendship over the monetary value of the transfer, leading
to equation (18.1).

Consider the two-agent network, consisting of s and t.
We argue that the extent of borrowing V≤ h(s; t). To see
why, suppose that borrower s defaults. Then the lender
receives the transfer payment h(s; t), but they must break
even, which requires that V≤ h(s; t). On the other hand, for
the borrower to prefer to return the asset, they must prefer
not to default, which again requires V≤ h(s; t). Combining
this inequality with the capacity constraint (1) yields

showing that borrowing is limited by the total social assets
available to s in this simple network. The value of the total
social assets is referred to as the “maximum flow” in the
network. It is also easy to see that when equation (18.2) is
satisfied, there is an equilibrium that implements
borrowing: just set h(s; t) = V. Intuitively, the collateral



value of friendship can be used to elicit payment, and thus
solve the agency problem.

The maximum flow is easy to infer in this two-agent
network, but it is a much more complicated object in a
general network with several individuals and with links
having different capacities. As a next step, let us consider a
three-agent network, with s and t and an intermediary, u. A
natural transfer arrangement that implements borrowing in
this network is one in which agent u acts as an
intermediary who elicits and transits payments from s to t
in the case of no compliance and gets zero net profits. To
formalize this arrangement, simply set h(s; u) = h(u; t) = V.
For this arrangement to be in the interest of the
individuals, the capacity constraint (1) must be satisfied for
both links involved: V≤ c(s; u) must hold such that s

delivers the transfer to u, and V≤ c(u; t) is needed to
ensure that u passes the transfer to t. Combining these
yields the weakest-link inequality

Here, the maximum flow is defined, taking into account the
links that s and t have with the intermediary.

However, networks with more than two agents generally
admit other subgame perfect equilibria that can implement
borrowing even if (18.3) fails. To do this in the simplest
way, let us return to a network like the one depicted in
figure 18.3 and consider the network with four individuals.
Assume that borrower s has a strong link to their cousin v,
with a capacity value of c(s; v) = V + 1. The borrower might
then propose an informal arrangement in which they
promise to pay their cousin a transfer of h(s; v) = V + 1 if
they fail to return the asset. This arrangement provides the
right incentives to the borrower and is a subgame perfect
equilibrium, even though (18.3) fails.



However, there is a potential problem with this
arrangement: the borrower could circumvent it by entering
a side deal with v, in which they steal the asset and share
the proceeds with the cousin (who in equilibrium would
otherwise receive nothing). The lender, conscious of these
side deals, will not lend to s if the loan is supported by
transfer arrangements that are vulnerable to such deals. To
address this issue, we define a subgame perfect
equilibrium that is side-deal proof.

Consider the subgame starting in stage 2, after the
identities of the borrower and the lender and the value of
the asset are realized, and for any pure strategy σ, let Uu(σ)
denote the total utility of agent u in this subgame. We
formalize the idea of a side deal as an alternative transfer
arrangement  that s proposes to a subset of agents S ⊂
W after the original arrangement is accepted. If this side
deal is accepted, agents in S are expected to make transfer
payments according to eh, while agents outside S continue
to make payments described by h. In order for the side deal
to be credible to all participating agents, it must be
accompanied by a proposed path of play that these agents
find optimal to follow.

Thus, a side deal with respect to a strategy profile σ is a
set of agents S, a transfer arrangement  for all u, v ∈ S,
and a set of continuation strategies , proposed by s to
agents in S at the end of stage 2, such that

In other words, condition (1) says that all agents u

involved in the side deal are best-responding on the new
path of play (i.e., that the proposed path of play is an
equilibrium for all agents in S, conditional on others



playing their original strategies). Condition (2) says that if
any agent u ∈ S refuses to participate in the side deal, then
play reverts to the original path given by σ. Finally,
condition (3) ensures that borrower s strictly benefits from
the side deal.

A pure strategy profile is a side-deal proof equilibrium if
it is a subgame perfect equilibrium that allows no side
deals.

We now introduce a few more pieces of notation that are
helpful. An s → t flow with respect to capacity c is a
function f: G × G →ℛ that satisfies the following:

  1.  Skew symmetry: f(u, v) = −f(v, u).
  2.  Capacity constraints: f(u, v) ≤ c(u, v).
  3.  Flow conservation: , except if u = s or t.

The value of the flows is the amount that leaves the
borrower: . Let Tst(c) denote the maximum flow
among all s → t flows.

There is a side-deal proof equilibrium that implements
borrowing between s and t if and only if the asset value V
satisfies V≤ Tst(c). Thus the maximum flow sets a limit to
borrowing between s and t. Let us go through the
argument underlying this result. A well-known result on
flows in graphs tells us that the maximum flow between s
and t is equal to the minimum cut between them. So what
is a minimum cut? A cut is a partition of nodes into two sets
S and T, with s ∈ S and t ∈ T, and the value of the cut is
given by the sum of all links between nodes in the sets S
and T. A minimum cut is a partition that minimizes the
value of the cut across all partitions.

To develop a feel for the idea of a minimum cut, let us
consider a few examples. Consider the three networks in
figure 18.3. In a network with two individuals s and t, there
is only one link, and so there is a unique cut. The maximum



flow is simply the capacity of the link. In a network with
three individuals, the minimum cut corresponds to the the
partition with 1 in one set and 2 and 3 in the other set. The
minimum cut is given by 5. Finally, consider the network
with four individuals. It is easy to see that the existence of
individual leaves the minimum cut unaltered relative to the
network with three individuals, so it is also given by 5.

Equipped with this result on the maximum flow and
minimum cut, we can state a simple but powerful
theoretical result: the size of the loan for s, V is limited by
the maximum flow in the network. First, observe that any
amount V≤ Tst(c) can be borrowed. Simply use the flows
that define Tst to construct the transfers in stage 2. By
hypothesis, V≤ Tst(c), so such a flow is incentive feasible.
Also, note that each intermediary node acts as a pure
conveyor in such a flow. The intermediary node merely
passes the transfers onward from borrower to lender. Next,
we argue that no loan larger than the maximum flow is
feasible. Consider a loan that is larger than the maximum
flow. This means that it also exceeds the minimum cut in
the network. In other words, there is a cut in the network S
and T, such that the value of the cut is smaller than V. But
then there is a side deal with the members of set S, in
which V is shared between the members of S. The side deal
is attractive to members of S, as they get to keep V and it
exceeds the sum total of anticipated rewards that they
forgo from members of T.

Let us say that trust is equal to the size of the loan that
can be taken out. We can summarize our discussion so far
as follows.
Proposition 18.1 The maximum flow is given by the minimum cut of the

network. The level of trust in the network is defined by its maximum flow.

The maximum flow therefore defines payoffs in a
network. The payoffs to s in network G with capacities c are



where  (recalling that ω(v) is the value to the
borrower and f is the distribution of v). This value is
computed conditional on the pair (s, t) being picked.

We now examine how network structure shapes
borrowing possibilities. One remark is that an increase in
capacities raises the maximum flow and therefore raises
the borrowing potential in the network. Let us next look at
the deeper structure of the network (while bearing in mind
the idea of network closure).

18.3.3 The Role of Network Closure

At an intuitive level, networks have high closure if the
neighborhoods of connected agents have large overlap (as
in figure 18.1). However, there are also considerations that
suggest that a network with low closure may be more
advantageous. The idea here is that closure involves linking
individuals who already have paths between them. Thus
links are in some sense redundant. To the extent that links
are costly and therefore scarce, closure is wasteful
(Granovetter [1973]; Burt [1994]). Thus networks with low
closure lead to higher performance as they allow agents to
reach many others through the network.

At an intuitive level, high network closure is associated
with having multiple paths to a smaller set of agents. Using
the concept of network flows, let us count the total number
of paths of an agent. Suppose that all existing links have
the unit value 1. Then network flow Tst(c) is effectively the
number of disjoint paths between s and t, .

We use figure 18.4 (which is a relabeling of figure 18.1)
to elaborate on the role of network closure. In the
diagrams, s has a total of four paths in both networks
(where the background assumption is that each of the links
has capacity 1). In figure 18.4(a), there are four paths that
reach four different people, while in figure 18.4(b) they



reach only two people, but there are two paths connecting
s with either of them. More generally, define Ps(n) as the
share of paths s has with individuals to whom they have at
least n paths. In the networks in figure 18.4, Ps(2) = 0 in
figure 18.4(a) and Ps(2) = 1 in figure 18.4(b). Clearly, Ps(0)
= 1 always, and Ps(n) is weakly falling in n.

Figure 18.4 
Closure versus access. Source: Karlan, Mobius, Rosenblat, and Szeidl (2009).

The important point to note is that higher closure
increases trust but reduces access. For example, in figure
18.2(b) two people trust s with assets of value V = 2;
access is low as only two people are available for a loan,
but loans of value 2 can be taken in this closed network. In
contrast, in figure 18.2(a), s can borrow from four people,
but the asset value can be no more than 1: access has
increased, but at the cost of a reduction in the size of the
loan that can be taken out.

The attractiveness of closure depends on the relative
value of high- versus low-value loans. To formalize this
trade-off between access and pairwise trust, define 

 as the frequency-weighted profits from the
ability to borrow V. Observe that  depends on both the
probability that an asset of value V is needed (f(V)) and on
the profits that this asset generates (ω(V)). An economy is



a high-value environment if  is increasing, and it is a
low-value exchange environment if  is decreasing.

We will say that the network neighborhood of s has a
higher closure than the neighborhood of s′ if both of the
following are true:

  1.  Ts(c) = Ts′(c) so that s and s′ have the same total
number of paths.

  2.  For each n, Ps(n) ≥ Ps′(n), so that a greater share of
paths connect s to people with whom n has many paths.

Thus if the neighborhood of s has higher closure, then s
is connected to fewer people through many paths. To
facilitate a comparison of networks, it is helpful to define
payoffs of individuals as a function of the network.

Define qs(j) as the proportion of paths of s with agents to
whom they have exactly j paths. Note that

Thus an increase in closure may be interpreted as a first-
order stochastic shift in density qs(j). Recall that there are
N individuals in all, so s can have 1 out of N − 1 individuals
as a potential lender (so N = 4 in both panels of figure
18.2). Let M be the total number of paths, observe that in
both networks in figure 18.2, we have M = 4. Now qs(j) is
the share of total paths that connect to agents with exactly
j paths. So the number of paths that satisfies this criterion
for j paths is Mqs(j). Next, observe that the number of
potential lenders who have j paths is given by Mqs(j)/j (as
there are j paths for each such individual). The probability
of requesting a favor from any of them equals



The payoff on meeting such an individual is Π(j), and
therefore the expected payoff to s in network is

where we have assumed that all links have capacity 1. This
in turn can be rewritten as

This expression is simply the expected value of Π(j)/j
under density qs(j). In a high-value environment, Π(V) is
convex because the first derivative, , is increasing.
Since Π(0) = 0, it follows that Π(V)/V is nondecreasing in
V. In this case, a first-order stochastic dominance shift in
density qs(j) increases the expected payoff. The converse
holds in low-value exchange environments.

These considerations allow us to state our main result on
network closure.
Proposition 18.2 In a high-value exchange environment, a neighborhood

with higher closure leads to a higher expected payoff to s. Conversely, in a low-

value exchange environment, a neighborhood with higher closure leads to a

lower expected payoff to s.

This result speaks to a classical question on the relative
attractiveness of high- and low-closure networks. In a low-
value exchange environment, the access provided by low
closure is more attractive because knowing more people
(directly or indirectly) increases the likelihood that s can
obtain a low-value asset. This is consistent with theories
put forward by Granovetter (1973) and Burt (1994)
concerning the strength of weak ties and the benefits of a
dispersed social network in providing access to assets such
as small favors, information, or advice. In contrast, in a
high-value exchange environment, network closure is



better. Here, a reduction in access is more than
compensated for by the fact that, through their dense
connections, s will be able to borrow even high-value
assets. This would be critical for parents bringing up
children (where norms need to be established, monitoring
needs to be carried out, and sanctions need to be applied)
or for diamond merchants in New York (where the
exchange of valuable stones requires high trust between
dealers).

18.3.4 Empirical Evidence on Networks and Social Collateral

Here, we present two case studies for the uses of social
collateral that draw attention to the role of network
closure. The discussion here is based on Karlan, Mobius,
Rosenblat, and Szeidl (2009); Mobius and Rosenblat
(2016); and Jackson, Rodriguez-Barraquer, and Tan (2012).

1. Informal Loans in Peruvian Towns

The first case study pertains to two Peruvian shantytowns
in the Northern Cone of Lima. The data is from the year
2005. There are 299 households in all. The network
describes, for each pair of households, how much time is
spent with the friend or acquaintance per week and
whether there were any loans made over the past year.
Households have, on average, 8.6 links, and the average
geographic distance between connected agents (i.e., agents
who have spent time together) is 42 and 39 meters in the
two communities; this is considerably less than the
geographic distance between two randomly selected
addresses, which is 132 and 107 meters, respectively.
There were 254 informal loans; 167 borrowers in 138
households reported to have borrowed on average about
$23 from 173 lenders during the past 12 months. Thus,
informal borrowing is very common in these communities:
46 percent of all households have at least one household
member who borrowed money in this manner.



The amount of time spent together provides a proxy for
the strength of a relationship. This can be used to construct
capacity of ties. Suppose that capacity of a link (u, v) is
given by c(u, v) = cτ(s, t), where τ(s, t) is the time spent
together by s and t. For concreteness, let us consider only
direct and indirect ties with one common intermediary.
This allows a simple decomposition of the trust flow
between s and t as follows:

where the first term represents the direct flow and the
second is the indirect flow. Here, Ns is the set of direct
friends of agent s.

Table 18.1 groups all social links of each borrower into
four categories depending on whether the direct flow
between borrower and lender is below or above the
average direct flow, and whether the indirect flow between
borrower and friend is below or above the average indirect
flow. Table 18.1 suggests that direct and indirect ties are
strongly correlated with the frequency of informal loans.
When we move from below-average direct and indirect ties
to above-average direct and indirect ties, the frequency of
loans grows almost three times—from 14.5 percent to 42
percent. Moreover, considering only strong direct ties,
there is close to a doubling of frequency from 22.5 percent
to 42 percent when we move from weak to strong indirect
ties. Indirect flows thus play an important role in creating
social collateral for borrowing.

Table 18.1 
Social relations and propensity to borrow



Source: Mobius and Rosenblat (2016).

2. Favor Exchange in South India

The second case study is about favor exchange among
households in rural southern India. The study covers 75
villages in the southern Indian state of Karnataka. These
are the same villages that were included in the rural
networks discussion in chapter 1. The average number of
households sampled in a village is 193.5. The average
number of links per household is 2.89. Table 18.2
summarizes the relation between having common friends
and favor exchange.

Table 18.2 
Common friends and favors

Percentages

Favor exchange with common friends 59
Favor exchange without common
friends

41

Favor exchange within a subcaste 68
Favor exchange outside a subcaste 32
Money or kerorice favors with common
friends

61

Money or kerorice favors without
common friends

39

To get a first impression of the level of social collateral,
we present the distribution of pairs with respect to the
number of common friends in figure 18.5.



Figure 18.5 
Distribution of common friends. Source: Jackson, Rodriguez-Barraquer, and
Tan (2012).

We consider the following types of favors:
Borrow kerosene and rice: If you needed to borrow
kerosene or rice, to whom would you go?
Lend kerosene and rice: Who would come to you if they
needed to borrow kerosene or rice?
Borrow money: If you suddenly needed to borrow 50 INR
for a day, whom would you ask?
Lend money: Who do you trust enough that if they
needed to borrow 50 INR for a day, you would lend it to
them?
Advice come: Who comes to you for advice?
Advice go: If you had to make a difficult personal
decision, whom would you ask for advice?



Medical help: If you had a medical emergency and were
alone at home, whom would you ask for help in getting to
a hospital?
First, we consider the relation between common friends

and any of these seven favors. Figure 18.6 presents the
relation between the number of common friends and the
probability of favor exchange. This graph shows that there
is a positive relation: the greater the number of common
friends, the higher the fraction of favor exchange (except in
the case of nine common friends, which is probably due to
the very small number of such links). If we interpret the
number of common friends as higher social collateral, then
this positive correlation is consistent with the theory: a
greater number of common friends can support a wider
range of favors, which raises the probability of a favor.



Figure 18.6 
Common friends and favors. Source: Jackson, Rodriguez-Barraquer, and Tan
(2012).

The size of social collateral would probably matter for
large favors more than for small favors. With this idea in
mind, we look at potentially higher-value favors—loans of
money and loans of kerosene and rice. Figure 18.7 presents
the fraction of large-favor exchange pairs as a function of
the number of common friends. It reveals that the fraction
of pairs undertaking large favors increases with the
number of common friends.



Figure 18.7 
Common friends and large favors. Source: Jackson, Rodriguez-Barraquer, and
Tan (2012).

18.3.5 Repeated Interactions and Common Friends

Section 18.3.1 presented a model of social collateral in
which a link reflected anticipated future rewards. In this
section, we briefly elaborate on the repeated interactions
implicit in these rewards. The discussion draws on a
theoretical model due to Jackson, Rodriguez-Barraquer,
and Tan (2012).

Consider a group of individuals, N = {1, …, n}, with n ≥ 2
that are connected in an undirected network. The
neighbors of i in network g are denoted as Ni(g) = {j|gij =
1}. The degree of i is the number of neighbors, and is
denoted by di(g) = |Ni(g)|.

Time proceeds in discrete periods, t = 0, 1, …. In any
period, there is a chance that an individual needs a favor
from a friend or will be called upon to do a favor for a



friend. To be precise, there is probability p that individual i
will be called upon to do a favor for any of his neighbors. It
is assumed that at most, one favor will be needed across all
agents in any period (i.e., n(n − 1)p ≤ 1).

Doing a favor costs c > 0, and the value of the favor is v.
We will focus on the case where v > c. Thus the value of a
favor to the receiving agent exceeds the cost to the
providing agent, so favor exchange is good for overall
welfare. Individuals discount future payoffs using a factor
of 0 < δ < 1.

To develop a feel for the trade-offs involved, observe that
in the situation with two individuals who do favors for each
other, each would expect a discounted payoff of

So an individual called upon to do a favor compared the
cost c with the stream of benefits given in equation (18.10).
Suppose that costs exceed these benefits—then two
individuals cannot sustain favor exchange in isolation. How
can a network help in this situation?

Consider individual i who is located in network g.
Suppose they refuse an offer to a friend, j. Building on the
idea of social punishments in the social collateral model, a
possibility is that j informs their common acquaintances,
and these acquaintances all decide not to offer any favors
to i in the future. Let Nij(g) = Ni(g) ∪ Nj(g) be the set of
common acquaintances of i and j in network g. Now,
individual i, located in network g, compares the cost of
doing the favor today, c, with the loss in stream of benefits
from the common acquaintances and person j; that is,



This simple computation provides a simple rule of thumb:
the size of favors that can be sustained in the network will
grow with the number of common acquaintances between i
and j; this observation is consistent with the evidence
presented in section 18.3.

The discussion in this section focuses on the ways in
which the structure of relations provides a form of
collateral that allows cooperative relations to exist. The
social collateral argument rests on detailed information
about transfers and the strength of ties being available to
potential partners. In the introduction to this chapter, we
mentioned the role of trust in a one-off interaction among
strangers. The next section takes up that topic.

18.4 Generalized Trust

In this section, we start by presenting evidence on
measures of generalized trust and then examine its
sources. We will use the following generalized trust
question:

Generally speaking, would you say that most people can
be trusted, or that you can’t be too careful when dealing
with others? The two possible answers are
  1.  Most people can be trusted.
  2.  Need to be very careful.
We will measure trust in terms of the fraction of

respondents who answered 1. The same question has been
used by a variety of other questionnaires, such as the
European Social Survey, the General Social Survey, the
World Values Survey, Latinobarometro, and the Australian
Community Survey.

Figures 18.8 and 18.9 summarize the data for a set of
countries for the years 1995 and 2017. They report the
fraction of respondents who responded with “Most people
can be trusted.” There are very great variations in level of



trust across countries, and these differences are fairly
stable. In Sweden, for instance, the trust level is 56 percent
and 60 percent, while in Brazil, the level of trust is 2.8
percent and 5.5 percent, respectively in the two years.

Figure 18.8 
Trust levels in 1995. Source: World Value Survey Wave 3.



Figure 18.9 
Trust levels in 2017. Source: World Value Survey Wave 7.

We next discuss the relation between this measure of
trust and broad economic indicators. Figures 18.10 and
18.11 present a simple scatterplot on the relation between
trust and per capita income for the years 1995 and 2017.
We plot trust on the x-axis and the level of per capita
income on the y-axis. We see that there is a clear positive
correlation between trust and income levels for both years.
These correlations motivate an examination of the sources
of large differences in trust across countries.



Figure 18.10 
Trust and Income (1995). Source: World Value Survey Wave 3.



Figure 18.11 
Trust and Income (2017). Source: World Value Survey Wave 7.

We will trace differences in trust to culture. To
appreciate the pathways through which culture may
influence trust, we start our discussion with the trust game.
There are two players, a trustor and a trustee. The trustor
has a sum of money, M. In the first stage of the game, they
can choose to pass a part of this money, m, where m ∈ [0,

M] to the trustee. Any amount passed to the trustee gains
in value, so the trustor receives 3m. In the second stage of
the game, the trustee can decide how much of this 3m to
return to the trustor. It is clear that if the trustor prefers
more money to less money, then they should retain all of
3m. Anticipating this, the trustor will choose to transfer 0
in stage 1. Thus the money available to the trustor and
trustee will be M and 0, respectively. However, both
players are better off if the trustor and trustee can agree to
each transfer money to each other. For instance, if the



trustor transfers all of M and the trustee transfers half of
what they receive, then both players will earn 1.5M, and
they will both be better off than in the no-transfer outcome.

One resolution to this dilemma sees individual action as
arising out of social obligations, expectations, and norms.
This perspective emphasizes the role of the social context—
how social relations and the broader culture give meaning
to individual choice and thereby shape action. In this line of
thought, players solve this dilemma through trust. Trust
can be thought of as the subjective probability with which
an individual believes that another individual or group of
individuals will perform a particular action (see e.g.,
Gambetta [1988]).

Individual A may trust B because they know that B
adheres to certain norms, and these norms prescribe
certain behaviors. These norms may entail trustworthy
behavior toward own group members or more generally
toward everyone, even strangers:
A prescriptive norm within a collectivity that constitutes an especially
important form of social capital is the norm that one should forgo self-interest
and act in the interests of the collectivity. A norm of this sort, reinforced by
social support, status, honor, and other rewards, is the social capital that builds
young nations (and then dissipates as they grow older), strengthens families by
leading family members to act selflessly in “the family’s” interest, facilitates the
development of nascent social movements through a small group of dedicated,
inward-looking, and mutually rewarding members, and in general leads persons
to work for the public good. In some of these cases, the norms are internalized;
in others, they are largely supported through external rewards for selfless
actions and disapproval for selfish actions. But, whether supported by internal
or external sanctions, norms of this sort are important in overcoming the public
goods problem that exists in collectivities. 
Coleman (1988, pp. S104–S105).

Thus a certain norm may be sustained through a
combination of mechanisms (which involve the
internalization of prescriptions that may form part of
someone’s identity, as well as a range of social pressures).
In the previous section, we discussed the role of self-
interest and ongoing social relations in supporting



cooperative behavior in small groups. We now turn to the
role of higher-level social norms in shaping trust in large,
anonymous groups.

An important line of thought going back at least to Max
Weber (2002), argues for a central role for culture in
shaping economic activity. Any new economic order,
argued Weber, faces initial resistance. Economic incentives
are not sufficient to motivate entrepreneurs to break apart
from the preexisting order. Weber argued that the
Protestant Reformation came with the message that the
pursuit of wealth should be regarded not merely as an
advantage, but as a duty. This powerful injunction opened
the way for individuals (and communities) to move beyond
the earlier social order to create a new one, based on
markets and the pursuit of economic accumulation.

The role of culture in its relation to trust and cooperative
activity has been explored by a large body of literature. We
now briefly discuss this work and then present empirical
evidence on the relation between culture and trust. Culture
may be said to be
those persistent and shared beliefs and values that help a group overcome the
free rider problem in the pursuit of socially valuable activities. 
Guiso, Sapienza, and Zingales (2006, pp. 23–24).

The stability of culture and its effective intergenerational
transmission through family upbringing are central to
understanding the causal relationship flowing from trust to
economic growth. An important aspect of this work is that
it shows that culture may provide a basis for various levels
of trust. It does so by exploiting the intuitive notion that
culture is persistent, which leads to a focus on dimensions
of culture that are inherited by an individual from previous
generations rather than voluntarily accumulated:
Individuals have less control over their culture than over other social capital.
They cannot alter their ethnicity, race or family history, and only with difficulty
can they change their country or religion. Because of the difficulty of changing
culture and its low depreciation rate, culture is largely a “given” to individuals



throughout their lifetimes. 
Becker (1998, p. 16).

In this spirit, let us restrict our attention to cultural
aspects like religion and ethnic background, which can
more reasonably be treated as invariant over an
individual’s lifetime.

Guiso, Sapienza, and Zingales (2003) present the effect
of religion on trust using the World Values Survey. The
dependent variable is a dummy equal to 1 if an individual
replies “Most people can be trusted” to the question
“Generally speaking, would you say that most people can
be trusted or that you have to be very careful in dealing
with people?” The coefficients of interest pertain to the
religions shown in figure 18.12 (where the omitted
category is “No religious affiliation”). The graph suggests
that being raised in a religious family raises the level of
trust by 20 percent (this effect differs across
denominations).



Figure 18.12 
Religion and trust. Source: Guiso, Sapienza, and Zingales (2006).

Similarly, ethnic origin has large effects on trust. To see
this, let us replicate the same regression exercise within
the US, based on data from the General Social Survey,
which measures the ethnic origin of the respondent’s
ancestors and allows us to study whether the culture
transmitted by those ancestors who migrated from different
countries plays a role in the beliefs of people living in the
US. Figure 18.13 indicates a strong effect of ethnic origin:
note that these effects are computed relative to Americans
with British descendants. This suggests that the level of
trust that an American has toward others depends in part
upon where their ancestors came from.



Figure 18.13 
Ethnicity and trust. Source: Guiso, Sapienza, and Zingales (2006).

We conclude this discussion by showing that cultural
traits are persistent. Figure 18.14 plots the impact of
having ancestors from different parts of the world,
compared to having British ancestors, and this finding is
compared to the difference between the current level of
trust in these parts of the world minus the trust in Great
Britain from the World Values Survey. This graph reveals a
strong persistence in the differences in trust levels (the
correlation is 0.6). This finding is consistent with the idea
that beliefs about trust have a cultural component that is
transported to the New World and continues to shape
individual beliefs even in the new environment (several
generations later).



Figure 18.14 
Persistence of culture. Source: Guiso, Sapienza, and Zingales (2006).

18.5 Local and Generalized Trust

In our previous discussion of the diamond market, high
trust within the small Jewish community, which helps
sustain economic activity, also makes it difficult for
individuals who do not belong to the community to
participate in that market. This draws attention to a widely
noted feature of network-based trust—namely, that it may
inhibit wider exchange with outsiders, and therefore it will
be harmful to overall economic performance. In a wide-
ranging study on trust, Fukuyama (1995) draws attention
to a tension between different types of trust. He argues
that prosperous countries tend to be those where loyalty to
the extended family is not a dominant feature of social ties.
Overweening family ties create rigidities and constrain the
circle of trust. In particular, he argues that in countries like



France and Italy (and South Korea), social bonds are
subordinated to family ties and other dysfunctional
loyalties, creating rigidities, provoking state intervention,
and dampening economic growth. By contrast, in Germany,
Japan, and the US, family ties are not dominant and
business relations between people can be conducted
informally and flexibly on the basis of generalized trust.

We next discuss group based favoritism. Favoritism
refers to the act of offering jobs, contracts, and resources
to members of one’s own social group in preference to
others outside the group. Over the years, a large body of
literature has documented the prominent role of groups in
the practice of favoritism in developing countries. For
instance, in Tunisia, members of the extended family of
President Ben Ali and his wife routinely appropriated
economic opportunities and granted each other special
privileges; popular resentment against such favoritism
played an important role in the Arab Spring in 2011.
Appropriation of resources and contracts by dominant
tribal groups in the African countries (such as the
Democratic Republic of Congo and Nigeria), by caste
groups in India, by dominant ethnic minorities in many
countries has been extensively documented. The aim of this
section is examine the economic circumstances that give
rise to favoritism and then to study its consequences for the
welfare of society as a whole. We present a theoretical
model taken from Bramoullé and Goyal (2016).

18.5.1 A Model

We consider a society with n individuals, who are
partitioned into two groups, 𝒜 and ℬ, of sizes gA and gB

with gA + gB = n, respectively; we will assume throughout
that n ≥ 3.

One individual is picked uniformly at random and gets an
economic opportunity. Call that person the “principal.” To
realize this opportunity, this principal needs to transact



with an agent. One other individual is picked uniformly at
random among the remaining individuals in the group to be
the expert. Thus the probability that a pair of individuals i
and j are principal and expert, respectively, is given by p

and defined as

If the principal interacts with the expert, the output
produced equals 1. If the principal hires a nonexpert, the
output produced has a value of L ≤ 1. We assume that
there are no information problems: the principal and expert
are commonly known once nature draws them. The value of
L reflects the relative importance of the match quality.

We shall say that a principal practices market behavior if
they always offer the job to the expert. By contrast, we
shall say that a principal practices favoritism if they always
hire someone from their group, regardless of whether the
expert is in their group. When a principal hires an
inefficient group member, we say that they provide a favor.
We will refer to the situation where a unique group
practices favoritism as limited favoritism, and the situation
where both groups practice favoritism as widespread

favoritism.
We now turn to the rules for the division of output. In the

absence of frictions, competitive bidding provides a natural
benchmark. Potential agents all bid for a contract; the
expert is hired and earns 1 − L, while the principal earns L
and nonexperts earn 0.

To capture the role of frictions and rents, we adopt a
two-stage model. In the first stage, a principal and an agent
bargain over the division of output. If bargaining fails, the
opportunity disappears with probability q ∈ [0, 1]. With
probability 1 − q, the second stage is reached and
competitive bidding takes place. One interpretation of this



probability is that it reflects the fact that bargaining takes
time, and during this time, alternative competing
opportunities may arise. Another interpretation is simply
that it takes time to locate potential partners, and during
this period, the exchange or economic opportunity may be
superseded by alternatives. Payoffs in the first stage are
determined via Nash bargaining. We now work out the
payoff outcomes in this bargaining model.

Consider an interaction between the principal and the
expert. Their reservation utilities are (1 −q)L and (1 −q)(1
−L), respectively. It then follows that their Nash bargaining
payoffs are then equal to

Next, consider bargaining between the principal and a
nonexpert. The reservation utilities are (1 − q)L and 0. So
their first-period payoffs are given by  and ,
respectively. As q increases, frictions worsen and payoffs
get increasingly further from the competitive benchmark.

This model provides a parsimonious representation of
transaction costs and rents. We note that if  and q > 0,
then experts earn more than under frictionless competition,
and their rents are equal to . These rents are
increasing in the level of friction, q, and falling in the
unimportance of match quality, L.

We denote by πj(F, M) the expected payoff of an
individual in group j ∈{𝒜, ℬ} when their group practices
favoritism while the other group practices market behavior;
analogous notation is used for the other combinations. We
will sometimes write πj(F) when the behavior of outsiders is
irrelevant.

18.5.2 Group Incentives



The analysis starts with group incentives for the practice of
favoritism. Suppose that group members can commit, ex
ante, to a common norm of behavior. What are the
circumstances under which they would choose to engage in
favoritism?

When the expert is in the same group as the principal, in-
group bias and efficiency are aligned. In this case,
favoritism does not affect payoffs. Favoritism comes into
play when the expert is an outsider to the group. A favor
then costs  to the principal, relative to market
behavior, and yields  to the favored group member. The
group gains , while the other group loses 
and society loses 1 −L. This happens every time the
principal is in the group while the expert is an outsider,
hence there is a probability of pgAgB. Therefore, the
expected net group gain from favoritism is equal to 

, while the other group loses 
and society loses pgAgB(1 − L). The per capita gain from a
collective switch to favoritism is thus:

Observe that this equality holds no matter what the other
group does. These points are summarized in the following
statement.
Proposition 18.3 A group gains from favoritism if and only if q > 0 and .

The rewards to favoritism for a group are increasing in both q and L.

An important message is that if L > 1/2, then frictions

are both necessary and sufficient for a group to desire
favoritism. If the total payoff from an inefficient within-

group match is higher than the fraction of an efficient
match’s payoff that stays in the group, then the group gains
from favoritism. Therefore, groups may choose to practice
favoritism even in the absence of informational frictions,



social preferences, or social dilemmas. When q > 0 and 
, experts earn rents in their economic transactions. Group
gains from favoritism are precisely proportional to these
rents and are increasing in the extent of frictions q and L.
As market frictions are greater and match quality is less
important (and hence L is larger) in developing countries,
this result also suggests that favoritism is more attractive
in poor countries.

In addition, if a group faces discrimination or if there are
other significant contracting costs with outsiders,
principals in the group may not be able to get a fair reward
for economic opportunities in dealings with outsiders.
Terms of trade would then be group-specific, and our
analysis easily extends to such situations. A group would
then gain from favoritism when expert outsiders earn rents,
no matter what happens for expert insiders. We finally
observe that, under competitive bidding, q = 0 and the
principal’s group is indifferent between favoritism and the
market rule.

When  and q > 0, the game played by the two groups
has the structure of a prisoner’s dilemma. Playing
favoritism is a dominant strategy for each group.

18.5.3 The Consequences of Favoritism

Let us consider the economic consequences of the practice
of favoritism. Suppose, to begin with, that everyone abides
by the market rule: principals hire experts. An individual is
a principal with probability  and earns . Similarly,
they are an expert with probability  and then they earn 

. Therefore their expected payoff is

As expected, the market generates equal payoffs across
individuals. Moreover, total welfare is simply the sum of



the individuals’ utilities and is equal to 1.
Next, suppose that group 𝒜 practices favoritism while

group ℬ abides by the market rule. Consider an individual i
in 𝒜. There are three possibilities:

  1   With probability , individual i is the principal. Then the
expert is a group member with probability , in which
case i earns . Or, with the remaining
probability , the expert is an outsider and i provides a
favor and earns .

  2   With probability , individual i is the expert. Since the
other group does not practice favoritism, i is always
hired and earns .

  3   Individual i obtains a favor when the principal is
another group 𝒜 member while the expert is an
outsider. In addition, the opportunity to receive a favor
is shared with all group members. So with probability 

, the favored individual i earns . Formally,

Regrouping and simplifying give us the expected payoff
to individual i in group 𝒜, which practices favoritism, while
group ℬ does not:

In contrast, group ℬ loses  per favor
provided. So the individual’s expected payoff is



We see that πA(F, M) > π(M, M) > πB(M, F). Starting
from a market, a switch to favoritism by one group
increases the payoffs of the group members at the expense
of the payoffs of the outsiders. Interestingly, holding n

constant, payoffs in the favoritism group are decreasing in
its size. Benefits from exclusive favors are lower when they
have to be shared with more individuals. Payoffs in group ℬ
also decrease as group 𝒜 grows. Moreover, members in
group ℬ lose more than what insiders gain, and the payoff
advantage to group 𝒜,

is positive and increasing with the size of group 𝒜.
Now consider a society with widespread favoritism. An

expert in group 𝒜 is hired only when the principal is also a
group member. Therefore,

and by symmetry, πB(F, F) = p[n − 1 − gA(1 − L)]. Recall
that πA(M, M) = πB(M, M) = p(n− 1), so individuals in both

groups lose relative to the market!
Inequality is now a consequence of differences in group

size. Since

individuals in the larger group earn more than individuals
in the smaller group. As both groups are practicing
favoritism, a larger group means more access to
opportunities. Holding n constant, increasing the size of the
larger group magnifies this effect: it raises payoffs in the
larger group and lowers them in the other group.

Finally, consider aggregate social welfare. Recall that
welfare drops by 1 − L every time a favor is given. Total



welfare loss is then equal to pgAgB(1 − L) under limited
favoritism and 2pgAgB(1 − L) under widespread favoritism.
In either case, welfare loss is maximized in a society with
two groups of equal size.

We summarize these arguments as follows.
Proposition 18.4 The welfare effects of favoritism are as follows:

Limited favoritism: Individuals in the favoritism group earn more than in the

market, while individuals in the other group earn less than in the market.

The payoff to the favoritism group is declining in group size. However, payoff

difference between the two groups is increasing with the size of the

favoritism group.

Widespread favoritism: All individuals earn lower payoffs compared to the

market. The individuals in the larger group earn more than those in the

smaller group; this difference is increasing in the size of the larger group.

Social welfare is lower under favoritism and is minimized in a society with

two equal-size groups.

Thus, group-based favoritism always reduces aggregate
social welfare. We have provided a simple theoretical
model of group-based favor exchange that leads to lower
economic performance. What can the groups and the
society as a whole do to overcome these inefficiencies?

18.5.4 Institutions to Reduce Favoritism

One way to overcome inefficiencies from favoritism is to
create formal legal and executive institutions that create
and implement fair practice. These institutions involve
innovations in institutional design and will entail costs. A
simple way to think about the problem would be to say that
there is a fixed cost, F > 0, to establish such institutions.
The society as a whole would find it worthwhile to install
such institutions if the returns were greater than the costs.
Recall that the institution will help rectify principal and
expert matching in situations where the principal and the
expert are in different groups. The likelihood of this
happening increases with an increase in the size of the
smaller group and is maximized when the two groups are of



equal size. Thus a society is more likely to install formal
monitoring institutions when the two groups are of
relatively similar size, or equivalently, the greater the
similarity in the size of the groups, the higher the costs the
society is willing to incur to prevent favoritism.

In this simple story, the assumption is that, once
established, the formal institution can successfully prevent
favoritism. But installing institutions is generally not
enough: they have to be monitored for successful
performance. The monitoring of institutions calls for effort
and initiative from individuals. Therefore, the extent to
which formal institutions are able to address the problem of
favoritism may depend on the associations and the broader
culture of public spiritedness that exist in a society. The
relation between formal institutions and social structure is
studied in the next chapter.

18.6 Scaling up Trust: The Role of Social Networks

… we need to understand the relationship between trust relations among
individuals and in small communities and those in large networks of
interaction. This question has received little attention.
Granovetter (2017, p. 85).

In our discussion of network closure and social collateral, a
recurrent theme is that particular forms of social networks
can help sustain cooperation and local trust. In our
discussion on generalized trust in the previous section, we
mostly concentrated on the role of culture—interpreted in
terms of expectations and beliefs concerning individual
behaviors in matters regarding public goods—in sustaining
trust. In this section, we explore the role of social
interactions and structures in sustaining such beliefs. In
particular, we will examine ways in which the structure of
the social network can help sustain social norms by
providing a pathway from the small scale and local to the
large scale and societal.



Let us begin with a few empirical observations. Ermisch
and Gambetta (2008), using trust games with a
representative sample of the British population, find that
people with strong family ties have a lower level of trust in
strangers than people with weak family ties. They argue
that this is because of the level of outward exposure:
factors that limit exposure limit subjects’ experience, which
also impairs their motivation to deal with strangers. Greif
and Tabellini (2017) provide a historical analysis of this
opposition by comparing the bifurcation of societal
organization between premodern China and medieval
Europe. Premodern China sustained cooperation within the
clan (e.g., a kinship-based hierarchical organization in
which strong moral ties and reputation among clan
members played the key role). By contrast, in medieval
Europe, the main example of a cooperative organization is
the city, where cooperation is across kinship circles, and
external enforcement played a bigger role. There is also
empirical evidence on a negative relation between strong
family-based ties and political and social engagement; for
instance, see Alesina and Giuliano (2010, 2011).

Studies in this spirit lend support to a widely held and
influential view that local group–based favor exchange is
incompatible with generalized trust. A number of
prominent authors have written about this tension. As we
noted in the previous section, Fukuyama (1995) argues that
strong favor exchange within kin-based groups undermines
generalized trust. Similarly, Henrich (2020), in his study of
WEIRD (an acronym for “Western, Educated,
Industrialized, Rich, and Developed”) societies argues for
the distinctiveness of societies in which individuals hold on
to abstract principles of fairness and are able to
successfully undertake anonymous impersonal exchange, in
contrast to the majority of societies in the world where kin-
based norms are dominant (and rely on favor exchange
within groups). The model presented in the previous



section offered a formulation of this tension: favor
exchange within a group came at a the expense of losses at
the aggregate level.

On the other hand, some authors have written about the
possibilities of scaling up personalized trust through an
appropriate network structure. To see how this may be
accomplished, consider the case of South Korea, a country
that on the one hand conforms to a Confucian family
system and on the other hand has an economy dominated
by large, professionally managed, and highly successful
companies (such as LG, Samsung, and Hyundai). Another
prominent example of a large, professionally managed
conglomerate controlled by a community is the Tata Group
in India. One possibility that could explain these examples
is that a kinship group can scale up its operations
substantially by locating close members of the family in
strategic positions of a large network. This is accompanied
by cross-ownership among the relevant firms to ensure
overlapping financial control:
The typical evolution was that an original family firm expanded not by getting
larger but by setting up branches as independent companies or by buying
already-established businesses. Authority, however, remained highly
centralised across the component companies. Reputation and personal
trustworthiness are crucial, contracts unimportant…. These business groups
can be very large and diversified, but control is maintained through pyramids—
family firms that control other firms that control still other firms, etc—and
dense interlocking directorates.

Thus family members who have strong trust relations with the central family
group are strategically sprinkled through the many holdings in such a way as to
knit the entire structure together. Employees who are not in direct touch with
the core family members may nevertheless trust the motives of that group
through their direct ties to the local family representatives and work harder
and more effectively than if they had no commitment to the central group. 
Granovetter (2017, pp. 87–88).

In this example, it is possible that key members of the
family were deliberately located at certain positions in the
network to monitor and collect information and to enforce
norms.



To see how such a social structure can come about
without deliberate intervention, we turn next to discussing
a large community of researchers. Here, we present data
on research economists. Let us recall from chapter 1 the
broad facts about this community: over the period 2000–
2009, there were over 151, 000 authors who published
papers. The average number of coauthors, 1.95, was very
small, but the most connected 100 authors had 25
coauthors on average. Somewhat remarkably, in spite of
the very low average degree, the largest component
contained over 67,000 nodes (this constitutes over 44
percent of all nodes), with an average distance of only 9.80.
The key to understanding the average small distance is
highly connected authors: the deletion of the 5 percent
most connected authors completely fragmented it. Thus the
most connected authors spanned the research profession
and held it together.

Van der Leij and Goyal (2011) study the location of the
topology of the network with an interest in the role of
strong ties in sustaining it. They measure the strength of a
tie by the number of papers written together by the
coauthors. They find that there is a positive correlation
between the degree of authors and the strength of their tie.
They also find that these strong ties are critical to holding
the network together: in particular, the deletion of strong
ties fragments the network at a much faster rate than the
deletion of weak ties among authors.

We illustrate these points with the help of local network
plots of leading economists. Figures 18.15 and 18.16
present the network of weighted links in the coauthor
network around two leading economists over the period
1990–2009, Jean Tirole and Esther Duflo. These economists
are connected with strong ties to key economists, who in
turn also have many links. The strong ties and the close
access that a large set of economists have to Tirole and
Duflo (and therefore also to each other) facilitate the



process of creating a tightly knit global community with
shared norms on important research questions and the
appropriate methods to address them.

Figure 18.15 
Local network of collaboration of Jean Tirole in the 1990s. Note: This diagram
shows all authors within distance 2 of Tirole, as well as the links between them.
The width denotes the strength of a tie. Some economists might appear twice
or are missing due to the use of different initials or misspellings in EconLit. The
image was created by the software program Pajek. Source: van der Leij and
Goyal (2011).



Figure 18.16 
Local network of collaboration of Esther Duflo, 2000–2009. Note: The diagram
shows all authors within distance 2 of Duflo, as well as the links between them.
Some economists might appear twice or are missing due to the use of different
initials or misspellings in EconLit. The width denotes the strength of a tie. The
image was created by the software program Pajek.

We bring these observations together by presenting a
stylized network that illustrates these structural
possibilities—such as highly connected nodes, strong ties
between high-degree nodes, and small average distances—
as in figure 18.17.



Figure 18.17 
Key individuals and strong ties.

The network of economics co-authors is therefore a small
world—in the sense that the average distances are small—
and perhaps equally importantly the small world is held
together by individuals who have high degree and have
strong ties with other highly connected nodes. In a general
sense, we expect strong ties to facilitate cooperative norms
and the central location of these highly connected nodes to
facilitate easy diffusion of ideas and of social norms. Thus,
these empirical features of the network offer us a pathway
for the building up of possibly general trust based on
patterns of local interaction. The structure we have
uncovered here also has clear points of contact with the
discussions on models of network formation that were
discussed in chapters 2 and 3.

18.7 Supplementary Material: Names of Journals

The network of boards of editors of economics journals
includes 28 journals: Journal of Health Economics (JHE),
Review of Economics and Statistics (REStat), Review of

Economic Studies (REStud), Econometric Theory (ET),
Journal of Monetary Economics (JME), Quarterly Journal of



Economics (QJE), Journal of Economic Literature (JEL),
Journal of Business and Economic Statistics (JBES),
Econometrica (ECMA), Review of Financial Studies (RFS),
RAND Journal of Economics (RAND), Economic Journal

(EJ), Journal of Environmental Economics and Management

(JEEM), Journal of Finance (JoF), Journal of Econometrics

(JoE), Journal of International Economics (JIE), European

Economic Review (EER), World Bank Economic Review

(WBER), International Economic Review (IER), American

Economic Review (AER), Journal of Human Resources

(JHR), Journal of Labor Economics (JLE), Journal of Political

Economy (JPolE), Journal of Public Economics (JPubE),
Games and Economic Behavior (GEB), Journal of Economic

Theory (JET), Journal of Economic Perspectives (JEP), and
Journal of Financial Economics (JFE).

18.8 Reading Notes

The study of trust spans many disciplines. It is closely
connected to the ideas of social capital in sociology and
political science and of reputations and repeated
interactions in game theory. More recently, a large strand
of research in economics studies the role of culture in
shaping trust.

For an early and classical discussion of the role of trust
in reducing transaction costs, see Arrow (1972, 1974). The
origins of the ideas on social capital may be found in
Bourdieu (1977, 1984), Jacobs (2016), and Loury (1976).
Coleman (1988, 1994) provided a broad conceptual
foundation for social capital and also drew attention to the
importance of network closure for norms of monitoring and
cooperation. Gambetta (1988) provides an introduction to
different perspectives on the subject of trust, and Dasgupta
and Serageldin (2001) and Portes (1998) give an excellent
overview of the literature on social capital. Mention must



also be made of the Russell Sage series on Trust (especially
Cook, Levi, and Hardin (2009) and Wellman and Wortley
(1990).

The impetus provided by the work in the 1980s, and
especially Coleman’s work, led to two distinct strands—a
microeconomic approach more focused on local trust and a
line of macroeconomics concerned with the role of culture
in understanding generalized trust. We briefly discuss the
evidence on trust in section 18.2. The material there draws
on the Global Values Surveys, Coleman (1988, 1994) and
the empirical work of Knack and Keefer (1997).

Economists have traditionally studied questions of
cooperation and social norms using models of repeated
games. For a survey of this literature, see Mailath and
Samuelson (2006). A general message from this work is
that cooperation is difficult to sustain in large communities
with anonymous interactions. In section 18.3, we focus on
small communities and examine the role of networks
closure in sustaining cooperation. For a survey of the work
on networks and repeated games, see Nava (2016). To
bring out the role of networks in the simplest way, we focus
in section 18.3 on a model of social collateral taken from
Karlan, Mobius, Rosenblat, and Szeidl (2009). The
empirical study of Peruvian towns comes from the same
paper. The case study of favor exchange in rural India is
taken from Jackson, Rodriguez-Barraquer, and Tan (2012),
which also provides a general theory of favor exchange in
networks that we draw on to elaborate the role of common
neighbors.

We do not discuss this point in the chapter, but it should
be clear that shared norms based on altruism and identity
are not incompatible with the role of self-interest in
sustaining cooperation even in small groups. Networks
evolve in response to changes in the larger environment;
for a study of networks that support cooperation in a
changing environment, see Vega-Redondo (2006). For an



early study of repeated games and network structure, see
Haag and Lagunoff (2006).

There is a large body of literature on the relations
between culture, trust, and economic performance in
political science and sociology. Max Weber’s work on the
Protestant ethic remains a powerful influence in this field.
Similarly, Edward Banfield’s early study of amoral familism
in southern Italy casts a long shadow on our understanding
of the importance of culture (Banfield [1958]). He
attributes underdevelopment to the excessive pursuit of
narrow self-interest by its inhabitants, a condition that he
labels “amoral familism.” More recently, Fukuyama (1995),
argues for a key role for culture and the fabric of society in
our understanding of economic success and failure.
Similarly, (Putnam, Leonardi, and Nanetti [1993]), in their
study of the differences between North and South Italy,
argue for the positive effects of civic culture on the quality
of political institutions.

Trust can be measured using surveys and laboratory
experiments. Empirical research investigating the link
between economic performance and trust usually draws on
answers from survey questions. The reason for this is the
availability of surveys that have covered a large number of
countries since the beginning of the 1980s. Nevertheless,
these surveys raise difficulties in interpretation. It is not
clear how respondents interpret some questions: for
instance, whom do they have in mind when they think of
trustworthiness? Some of these points are taken up in the
next chapter.

This work in political science and the positive empirical
correlations between generalized trust and a number of
economic performance indicators was demonstrated by
Knack and Keefer (1997) and Zak and Knack (2001) drew
the attention of economists to the study of trust.

A large body of subsequent work studies the role of
culture in shaping trust and economic performance.



Influential contributions in this field include Algan and
Cahuc (2010); Bisin and Verdier (2000); Guiso et al. (2003,
2006); and Glaeser, Laibson, Scheinkman, and Soutter
(2000). For a survey of this work, see Algan and Cahuc
(2014) and Guiso, Sapienza, and Zingales (2011). The issue
of trust and distrust in large-scale settings is examined in
Aghion, Algan, Cahuc, and Shleifer (2010); Nunn and
Wantchekon (2011); and La Porta, Lopez-de Silanes,
Shleifer, and Vishny (1997). Section 18.4 presents the
game of trust and provides a brief summary of the relation
between culture and trust.

The game of trust was introduced in Berg, Dickhaut, and
McCabe (1995); for a related game of trust, see Dasgupta
(1988). This game has been used to systematically
investigate the elements of trust—in terms of own behavior,
expectations of other’s behavior, and so forth (Glaeser,
Laibson, Scheinkman, and Soutter (2000); Glaeser,
Laibson, and Sacerdote [2002]). There is also a strand of
literature that examines the relation between survey-based
trust measures and actual behavior in trust games; for
instance, see Glaeser, Laibson, Scheinkman, and Soutter
(2000).

Section 18.6 takes up the relation between local and
generalized trust. Bourdieu (1984), Banfield (1958), and
Fukuyama (1995) draw attention to the tension between
local trust and generalized trust. We present a simple
model of within-group favor exchange to examine this
tension. This model of group-based favor exchange is taken
from Bramoullé and Goyal (2016). We briefly comment on
the role of formal institutions in overcoming the negative
consequences of group-based favor exchange. The
discussion on local trust draws attention to the relation
between social networks and individual level incentives for
cooperative behavior and favor exchange. The discussion
on generalized trust on the other hand focuses on beliefs
abut others’ behavior and the role of culture in shaping



these beliefs. There appears to be a missing link between
the two narratives. Following Wrong (1961), we may see
local trust may be an instance of under-socialized behavior
while generalized trust with its emphasis on culture and
values may be seen as an instance of an oversocialized
model, in which individuals choose actions because they
are expected to do so by society.

This leads us in the last section of the chapter to an
examination of social networks as a mediating construction
that can help provide a bridge between the local and
generalized trust. We draw on Granovetter (2017) and Van
der Leij and Goyal (2011) to discuss the aspects of social
structure that can facilitate scaling up of social norms and
trust from the local setting to larger collectivities.

This discussion forms a bridge to the next chapter, where
we study the role of formal institutions and social structure
in scaling up trust in a society.

18.9 Questions

  1.  Consider the model of social collateral considered in
section 18.3.
(a)  Compute the maximum loan that individual S can

take from individual T in network given in figure
18.18(a). Suppose there is the possibility to allocate
an additional unit of obligation to a link. Identify a
link whose strengthening would raise loan capacity
of S and a link whose strengthening would have no
impact on loan capacity.



Figure 18.18 
Social collateral in networks.

(b)  Compute the maximum loan that individual S can
take from individual T in network given in figure
18.18(b). Suppose there is the possibility to allocate
an additional unit of obligation to a link. Identify a
link whose strengthening would raise loan capacity
of S and a link whose strengthening would have no
impact on loan capacity.

  2.  (Jackson, Rodriguez-Barraquer, and Tan 2012)
Consider the model of favor exchange discussed in
section 18.3.5. Define the support of a link gij in network
g as the number of common neighbors that i and j have
in the network g. The model shows that higher support
would facilitate greater favor exchange. How does the
support compare with clustering in the network (as
defined in chapter 1)?

  3.  (Bramoullé and Goyal [2017]). Consider the model of
group favoritism discussed in section 18.5.1. We
showed there that a group has a collective interest in
practicing favoritism. Now imagine that individuals are
concerned about their own private payoffs only.
(a)  What are the circumstances under which a principal

will offer an opportunity to someone from their own



group rather than an expert who lies outside the
group?

(b)  Are there circumstances under which a group
benefits from favor exchange but individuals within
the group would prefer to offer the opportunity to an
expert outside the group?

  4.  This question explores variations on the model of
group-based favoritism presented in section 18.5.1.
(a)  For historical and institutional reasons, it is often

the case that one group of individuals—for instance,
a tribe, linguistic group, or ethnic group in power—is
more likely to hear about economic opportunities
than other groups. Similarly, for historical reasons,
some groups may have greater expertise than other
groups. Using the model, show that heterogeneity in
opportunities across groups makes favoritism easier
to sustain, while heterogeneity within a group makes
favoritism less sustainable.

(b)  We assumed that individuals have linear
preferences. Show that risk aversion will reinforce
the pressure toward favoritism in groups.

  5.  The problem of trust arises only in large, anonymous
groups. Discuss.

  6.  Cultural beliefs form a natural foundation for trust
among strangers. Discuss the role of social structure in
sustaining such cultural beliefs.

  7.  Figure 18.19 presents a network of ties between the
boards of leading economic journals in 2010. The list of
these journals is provided in section 18.7 (containing
Supplementary Material). We see that the network is
connected and most of the links are relatively weak.
Interestingly, the network is held together through a
hierarchical structure—the general-interest journals
share common editors with the field journals, and there



are relatively few ties among general-interest journals
and field journals, respectively. Use this network in
combination with the discussion in section 18.6 to
discuss the social-structure basis of shared norms in
economics.

Figure 18.19 
The editorial boards of economic journals in 2010. The node size reflects the
number of editors; the link thickness indicates the number of common editors.
Courtesy of Lorenzo Ductor and Bauke Visser.

  8.  In the theory of small worlds as described in chapter 2,
starting from a ring network, as we rewire links with
small probability, the average distance falls very
sharply. This fall is central to the small world
phenomenon. One possible interpretation of these
rewired links is to think of them as weak ties and to
think of the original (unrewired) as strong ties.
However, the empirical evidence on co-authorship



discussed in section 18.6 suggests that it is the strong
ties that connect hubs and therefore play a more
important role in reducing distances. Discuss the role of
the strength of ties and the topology of the network in
the process of socialization and in shaping the level of
trust in a society.



19
Groups, Impersonal Exchange, and State Capacity

Americans of all ages, all conditions, all minds constantly unite. Not only do
they have commercial and industrial associations in which all take part, but
they also have a thousand other kinds: religious, moral, grave, futile, very
general and very particular, immense and very small: Americans use
associations to give fetes, to found seminaries, to build inns, to raise churches,
to distribute books, to send missionaries to the antipodes; in this manner they
create hospitals, prisons, schools. Finally, if it is a question of bringing to light
a truth or developing a sentiment with the support of a great example, they
associate. Everywhere that, at the head of a new undertaking you a see the
government in France and a great lord in England, count on it that you will
perceive an association in the United States.
—Tocqueville (2004, p. 489).

When historians record the history of our time, 300 years from now, the end of
the Cold War will be at most a third story in that history. Events in the Middle
East will be the second story. When the history of our times is written, the
events in Asia, the changes in the lives of so many people so quickly, and its
ramifications for the global system will be the most important story.
—Summers (2007, p. 4).

19.1 Introduction

The role of kin-based groups in its relation to economic
performance remains highly contested. The dominance of
kin-based groups—where we interpret kin broadly to refer
to family, tribes, caste, lineage—is an impediment to the
evolution of broader circles of trust; as generalized trust is
important for impersonal exchange and impersonal
exchange is central to efficient economic activity, strong,
group-based ties inhibit economic performance. On the one



hand, there are well-known examples of societies centered
on nuclear families and weak kinship groups that are
economic and social failures. On the other hand, there are
prominent instances of societies with strong family and kin-
based groups that have enjoyed rapid economic growth.
This suggests that kin-based groups have a rich and varied
relationship with economic performance. The goal of this
chapter is to develop a theoretical framework that helps us
identify principles to understand this relationship.

In section 19.2, we begin by showing a negative
correlation between the strength of kin-based institutions
and generalized trust. This is the point of departure for a
number of case studies of how various societies organize
economic and political activity—those with small kin-based
groups, as well as those with large and powerful kin-based
groups. Of particular interest is the relation between kin-
based groups, the nature of impersonal exchange, and the
role of the state.

Section 19.3 draws on anthropology, sociology, political
science, and economics to discuss, in very broad terms, a
number of concepts that we use to locate the experience of
different countries within a common framework.

Section 19.4 presents a theoretical model, the
ingredients of which are social structure (kin-based groups
and horizontal social linkages across groups), economic
exchange (within and across groups), and the formal
institutions of the state. Kin-based exchange is frictionless,
but it is constrained by the size of the group; exchange
outside the group has the potential to be more valuable,
but it entails transaction costs. The magnitude of these
costs depends on the effectiveness of the state and formal
institutions, as well as on generalized trust. Generalized
trust in turn is correlated with the quality of civic
community and is measured by the strength of ties across
kin-based groups in a society. A larger state and greater
civic community both reduce friction.



The model proceeds as follows: given a social structure,
individuals choose their level of civic engagement. These
choices determine the civic capital in a society. Given the
civic capital, individuals decide on the tax rate through
majority voting. The tax revenue shapes the size of the
state. Given civic capital and state capacity, individuals
finally choose whether to limit themselves to kinship-based
exchange or to engage in impersonal exchange.

Our analysis draws attention to the role of the social
structure in defining the level of civic engagement and the
size of the state, how these outcomes determine the
relative magnitude of group-based and impersonal
exchange, and how that in turn shapes economic
performance.

19.2 Empirical Background

We begin with a brief recapitulation of our discussion on
trust in chapter 18. On the World Values Survey, the key
question on generalized trust is:
Generally speaking, would you say that most people can be trusted, or that you
can’t be too careful when dealing with others?

The two possible responses are “Most people can be
trusted” and “Need to be very careful.” The fraction of
population giving the first answer is interpreted as a
measure of trust. The survey shows that there are very
great variations in the level of trust across countries, and
these differences are stable over time. For instance, in
Sweden, the trust level is 56 percent and 60 percent, while
in Brazil, the level of trust is 2.8 percent and 5.5 percent in
1995 and 2017, respectively. In that chapter, we showed
that generalized trust is positively correlated with income.
The wide variations in generalized trust and the positive
correlation warrant a closer examination of the sources of
trust. We discussed the contrast between local and
generalized trust, introduced the role of culture, and



examined the relation between stable indicators of culture,
such as religious affiliation and ethnicity, and generalized
trust. We now take that discussion further. We introduce
the notion of universalism and then study how these two
variables, generalized trust and universalism, are related to
the strength of kin-based groups in a society.

Universalism is defined in terms of responses to a
hypothetical scenario, the passenger’s dilemma:
You are riding in a car driven by your friend. He hits a pedestrian. You know
that he was going at least 35 miles per hour in an area of the city where the
maximum allowed speed is 20 miles per hour. There are no witnesses, except
for you. His lawyer says that if you testify under oath that he was driving only
20 miles per hour, it may save him from serious legal consequences.

Do you think:

1.  that your friend has a definite right to expect you to testify (as his close
friend), and that you would testify that he was getting 20 miles per hour, or

2.  that your friend has little or no right to expect you to testify and that you
would not falsely testify that he was only going 20 miles per hour?

Surveys have been conducted with managers and
businesspeople in countries across the world. The first
response is interpreted as particularistic or relational,
while the second response is interpreted as universalistic

or nonrelational. In a number of countries such as South
Korea, Venezuela, and Nepal, the vast majority of
responses were (1). By contrast, in a number of other
countries like the US, Canada, and Switzerland, over 90
percent of respondents answered (2).

The studies on generalized trust and universalism are
striking in a number of ways. There is wide variation in
outcomes with regard to both variables. Further, countries
that score high on one measure do not always score high on
the other. For instance, some Asian countries like South
Korea and Japan score highly on generalized trust but
poorly on universalism. Finally, there are some outlier
countries—such as the US, Germany, Switzerland, and
Sweden—that score very highly on both measures.



Following the terminology coined by Joseph Henrich and
his collaborators, we will refer to these countries as WEIRD
(meaning “Western, Educated, Industrialized, Rich,
Developed”). Let us next examine the relation between the
strength of kin-based groups and universalism and
generalized trust.

19.2.1 Kinship and Weirdness

In our discussions on local trust in chapter 18, we
elaborated on the idea of how favor exchange can arise
through personal connections. This was a very concrete
and specific instance of how kinship-based networks can
support trust. More generally, there are many features of
kin-based institutions that promote a sense of trust and
depend on interconnectedness with those within the group.
At the same time, and also as noted in our discussions in
chapter 18, kin-based norms may breed a sharper
recognition of those within and those outside the group,
and this appreciation can undermine generalized trust.
Building on this observation, we examined how strong, kin-
based institutions affect generalized trust, but now we take
care to pose the question on generalized trust in a manner
that distinguishes between (within-kinship-group) insiders
and (nonkin) outsiders. Our discussion draws on Henrich
(2020) and Enke (2019).

The questions on trust distinguish between different sets
of people. They ask how much individuals trust (1) their
own families, (2) their neighbors, (3) people they know, (4)
people they don’t know, (5) people they have met for the
first time, (6) foreigners, and (7) adherents to religions
other than their own. We construct an in-group trust
measure by averaging people’s responses to the first three
categories about family, neighbors, and people they know.
Similarly, we can construct a measure of out-group trust by
averaging responses to responses to the latter four
categories. When we take the difference between the two



averages, we arrive at the Out-In-Group Trust. Figure 19.1
summarizes the data on this measure (the data is from 75
countries; however, it must be noted that it does not cover
large parts of Africa and the Middle East).

Figure 19.1 
World map of kinship patterns. Source: Figure 6.1 in Henrich (2020).

The first point to note is that, as with generalized trust,
there is also great variation in Out-In-Group Trust across
countries. We next note an interesting and more subtle
issue: there are countries—such as China—where
individuals responded very positively to the original
generalized trust question in the World Values Survey, but
where the Out-In-Group Trust measure is low. One way to
interpret this discrepancy between the generalized trust
measure and the Out-In-Group Trust measure is as follows:
when facing the generalized trust question, individuals may
think that it is about people they meet on a day-to day
basis. If they mostly meet own kin-based members then
their response would be to say that such individuals can be
trusted. However, when asked specifically about different
types of individuals in the seven categories mentioned
previously, individuals may be more precise about their
trust attitudes. Equipped with this more sophisticated
notion of generalized trust, let us now turn to the relation



between kin-based institutions and Out-In-Group Trust and
universalism.

Kin-based institutions possess a wide range of features
and they differ in many ways from each other. A natural
place to start is rules and practices concerning marriage:
some societies allow men to have multiple wives, while
others allow only one (this variable is termed “polygamy
versus monogamy”). A related feature pertains to which
partners are allowed and which are disallowed: in some
societies, marriages between uncles and nieces or between
first or second cousins are allowed, whereas in others, even
marriages between fifth cousins is disallowed (this variable
is termed “cousin marriage”).

A second dimension pertains to habitation: in some
societies, the expectation is for multiple generations such
as parents, their sons, and the families of the sons to live
together; in other societies, the norm is that children live
with their parents until adulthood and they then move to
set up their own households (this variable is termed “joint
versus nuclear family”). Finally, there is the issue of
descent: in some societies, descent is traced solely through
the male side (father and son), while in others, decent is
traced through both the paternal and the maternal sides
(this variable is termed “paternal versus bilateral
descent”).

Building on these considerations, we will study the
following attributes of kinship institutions: (1) bilateral
descent, (2) second or closer cousin marriage, (3)
monogamy, (4) nuclear family, and (5) separate/neolocal
residence. Anthropologists have collected data on these
traits from over 1,200 preindustrial societies (available in
the Database of Places, Language, Culture, and
Environment at D-PLACE.org). The frequencies of these
traits vary from 28 percent for bilateral descent to 5
percent for neolocal residence. Table 19.1, taken from
Henrich (2020), summarizes this data.



Table 19.1 
Distribution of kinship traits

Traits    
% of Preindustrial
Societies

Bilateral descent     28
Cousin marriage     25
Monogamy     15
Nuclear family     8
Neolocal
residence   

5

Source: Table 5.1 in Henrich (2020).

Table 19.1 is based on data from the late nineteenth and
early twentieth centuries. Moving forward in time to the
twenty-first century, let us briefly consider the empirical
patterns on marriage among individuals related through
the extended family. For concreteness, let us consider
marriages between relations that are second or closer
cousins. At one end of the spectrum, in the Middle East and
Africa, more than a quarter of all marriages fall in this
category. At the other end of the spectrum, in countries like
the US, Britain, and the Netherlands, only about 0.2
percent of marriages fall in this class. Large countries like
China and India fall in the middle, with intermediate levels
of cousin marriage (around 1 in 10 marriages is a cousin
marriage).

Figure 19.2 plots the global distribution of Out-In-Group
Trust. When we place the evidence on kinship groups
alongside the evidence on generalized trust and
universalism, we find that stronger kinship relations are
negatively associated with Out-In-Group Trust and
universalism. Figures 19.3 and 19.4 present scatter plots of
these relations and the best linear fit.



Figure 19.2 
World map of Out-In-Group Trust. Source: Figure 6.5 in Henrich (2020).





Figure 19.3 
Society and Out-In-Group Trust. Source: Figure 6.6 in Henrich (2020).

Figure 19.4 
Cousin marriage and universalism. Source: Figure 6.7 in Henrich (2020).

These statistical correlations are striking. As we are
interested in understanding the relation between kinship
institutions and economic performance, let us now put
together what we have learned on kinship-based
institutions and generalized trust and universalism,
together with some data on economic performance for a
few specific countries.

The set of WEIRD countries includes the US, the UK,
Canada, North Western Europe, and Australia and New
Zealand. These countries are characterized by low strength
of kinship groups and high scores on generalized trust,
Out-In-Group Trust, and universalism. Our discussion in
chapter 18 brought out a positive correlation between



measures of generalized trust and economic performance.
That correlation, together with our observations on kin-
based groups, suggest a negative relation between the
strength of kin-based groups and economic performance.
Once we move out of the WEIRD group of countries, the
picture becomes considerably richer. The growth rates are
presented in figures 19.5 and 19.6.

Figure 19.5 
Rate of economic growth in selected countries. Source:
https://data.worldbank.org/.

https://data.worldbank.org/


Figure 19.6 
Rate of economic growth in selected WEIRD countries. Source: https://data
.worldbank.org/.

Moving east in Europe, let us consider formerly
communist countries. Russia has weak kinship-based
groups, modest generalized trust, modest Out-In-Group
Trust, and low universalism. After the fall of communism,
economic performance has been very uneven. Over the
period 1990–2020, growth rates have fluctuated widely,
from −5 percent to 5 percent. The average growth rate has
been very modest.

Consider next a group of countries in East Asia that
includes the People’s Republic of China (PRC), Taiwan,
South Korea, and Singapore. Within this group, there are
significant variations that we will discuss in the second
case study in this chapter. Here, we comment on the
experience of the PRC. In the PRC, kinship groups are

https://data.worldbank.org/


strong, as is generalized trust. But a closer examination of
the sources of trust revealed that Out-In-Group Trust is low
to modest. In addition, the PRC scores low on universalism.
These patterns must be set alongside the extraordinary
economic success of the PRC. For example, the Chinese
economy has grown at a rate averaging around 8 percent
over the period 1990–2020 (see figure 19.5). These very
high growth rates raise questions about the compatibility of
strong, kin-based institutions and economic performance
that will be taken up in a case study later.

Moving south in Asia, let us next consider India: kinship-
based groups are strong, as is generalized trust. But a
closer examination of the evidence suggests that Out-In-
Group Trust is modest. Moreover, India also has a low
score on universalism. These institutional and cultural
arrangements are accompanied by impressive economic
performance growth rates over the 1990–2020 period, with
rates of growth ranging between 4 percent and 8 percent
(see figure 19.5). We will examine kinship-based
institutions in India in a case study later.

Turning to Latin America and South America, consider
Brazil: kinship-based groups are weak and the generalized
trust score is very low. In addition, Out-In-Group Trust and
universalism scores are modest. Economic performance
over the period 1990–2020 has been very uneven, with
rates of growth ranging between 0 percent and 6 percent.
Figure 19.5 presents the data.

Finally, we take up two countries in Africa: the
Democratic Republic of the Congo and Egypt. We will
discuss the case of the Democratic Republic of Congo is
some detail later. Here, we note that the population of the
Congo consists of a very large number of ethnic groups
with limited experience of cohabiting the same country. We
note that the rate of economic growth was very low for a
long period of time until 2003, when the Great War of
Congo ended. The rate of growth has improved significantly



after that time. In Egypt, the strength of kinship groups is
high (as reflected in high rates of cousin marriage),
generalized trust is low, and Out-In-Group Trust is very
low. Economic performance over the past two decades has
been uneven, with rates of growth ranging from 2 percent
to 6 percent (see figure 19.5).

We summarize the growth rates in income for these
countries in figures 19.5 and 19.6. For ease of comparison,
we place these countries in two separate plots. One plot
contains Brazil, China, Egypt, India, Democratic Republic
of Congo, South Korea, and Russia, and the second plot
contains a set of the WEIRD countries (Australia, Canada,
France, Germany, Netherlands, the UK, and the US).

Our discussion on kinship institutions and “weirdness”
suggests a few high-level observations. The strength of
kinship-based groups has a negative relationship with Out-
In-Group Trust and with universalism. Also, the relationship
between the strength of kinship-based groups and
economic performance is less clear: on the one hand, some
societies with weak kinship-based ties (the WEIRD
societies) have performed well for extended periods of time
and continue to do so, but there are countries (like Brazil)
that have performed much less well. On the other hand,
there are societies with strong, kinship-based ties (such as
South Korea, China, and India) that have registered very
high rates of growth, and there are others (such as the
Congo) that have performed less well. We now turn to a
closer study of a few countries, which draws attention to
the relation between kinship groups, trust, and the nature
of the state.

19.2.2 Lineages and Clans

China: The Chinese constitute the world’s largest racial,
linguistic, and cultural group. They are spread across a vast
geographic area and live in wide variety of states, from the
communist PRC, to overseas Chinese settlements in South



East Asia (Taiwan, Hong Kong, Singapore, and Malaysia),
to industrial democracies like the UK, the US, and Canada.
We now discuss the role of lineage and extended families in
Chinese communities. Our discussion draws on a wide
range of sources that include Allen, Qian, and Qian (2005);
Dai, Mookherjee, Munshi, and Zhang (2020); Song,
Storesletten, and Zilibotti (2011); Fleisher, Hud, McGuiree,
and Zhang (2010); Nee and Opper (2012); Peng (2004);
Greif and Tabellini (2017); and especially on Fukuyama
(1995).

Let us briefly recapitulate some of the main points of our
discussion in chapter 17, on economic growth and
communities. We start by noting that China has witnessed
the same degree of industrialization in three decades as
Europe did over the course of two centuries (Summers
[2007]). This economic transformation began in the early
1980s with the establishment of township-village
enterprises (TVEs) and accelerated with the entry of
private firms in the economy in the 1990s. Starting with
almost no private firms in 1990, there were 15 million
registered private firms by 2014 (accounting for over 90
percent of all registered firms). Alongside this growth in
numbers, the share of registered capital held by private
firms has grown sharply: by 2014, private firms held 60
percent of all registered capital in the economy. Depending
on how the accounting is done, China is now the world’s
largest or second-largest economy. Its growth has had
profound effects on the flow of goods and services and
capital and on the balance of political influence across the
world.

The dynamism of the Chinese economy is reflected along
different dimensions. Take, for instance, in the list of the
world’s largest firms by revenue by Fortune magazine. In
1990, there were no Chinese firms on the list; by 2020,
China and Hong Kong accounted for most of the firms on it.



Indeed, there are more Fortune Global 500 companies
based in mainland China and Hong Kong than in the US—
124 versus 121. In 2020, China had more firms on the list
than France, Germany, and Britain combined! A second
feature of this economic growth that is worth noting is that
in spite of the very high growth rates of private-sector
firms, many of the largest firms in China are state-owned.
Again, let us look at the largest firms by revenue: in 2020,
84 (i.e., 68 percent) of the Chinese firms in the largest
Fortune 500 firms worldwide are state owned.

We next turn to the role of kin-based groups and the
state in Chinese economic growth. Governments at the
local (county), provincial, and central levels played an
important role in China’s economic transformation. Local
governments provide the infrastructure to support
production clusters, which are a distinctive feature of the
Chinese economy (for a discussion of production clusters,
see chapter 12 on coordination problems.) Provincial
governments and the central government supported firms
by giving them subsidized credit and aggressively
promoting exports. In addition, large parts of the economy
are still dominated by state firms (as noted here). But there
remains the question of how this growth in private firms
occurred without effective legal systems and well-
functioning financial institutions (i.e., those that function
without the preconditions generally believed to be
necessary for market-based development). Specifically,
how did millions of individuals who were born in rural
areas transition into the role of entrepreneurs, setting up
and successfully running such a vast array of
extraordinarily successful companies?

Patrilineal lineages—also referred to as “clans”—have
long been associated with Chinese society; see, for
instance, Weber (1951). A clan rests on blood ties, confers
cultural identity, and has clearly nominated leaders. Clans
are characterized by rules about obligations that have high



standing. The Communist Party took a number of steps to
suppress lineage organizations, but recent research shows
that clans persisted through the communist period and they
have reconstituted themselves and been revived after the
market reforms of 1979. In chapter 17, we provided an
account of the role of lineages and clans in shaping
economic growth. (See chapter 17 for a brief discussion of
the role of lineages and clans in shaping economic growth
in China.)
South Korea: We next turn to South Korea, as another
instance of a society based on strong family ties, to
illustrate a possible configuration of society, state, and
markets. First, we note the extraordinary economic growth
that started in 1960 and that has made South Korea one of
the technologically most advanced countries in the world
today. Second, we note the state support and the
dominance of internationally powerful, large, private-sector
firms. A third point is that in 2020, there were 14 Korean
firms on Fortune magazine’s list of the 500 largest firms in
the world by revenue, and most of those were controlled by
a few large conglomerates (the chaebols), of which only a
few are state-owned.

We will discuss the story of Samsung next, as it serves to
bring out the broader contours of the growth process in
South Korea. The information is taken from Wikipedia
(https://en.wikipedia.org/wiki/Samsung), and the broader
argument concerning Korea draws on Fukuyama (1995)
and Granovetter (2017). Samsung is one of the world’s
largest producers of electronic devices today, including a
wide variety of consumer and industry electronics, such as
appliances, digital media devices, semiconductors, memory
chips, and integrated systems. It produces about a fifth of
South Korea’s total exports. Samsung was founded as a
grocery trading store on March 1, 1938, by Lee Byung-
Chull. He started his business in Taegu, Sourth Korea,

https://en.wikipedia.org/wiki/Samsung


trading noodles and other goods produced in and around
the city and exporting them to China and its provinces.
After the Korean War, Lee expanded his business into
textiles. During that period, his business benefited from
policies adopted by the Korean government that helped
large domestic firms by shielding them from competition
and providing them with easy financing. During the 1970s,
the company expanded its textile-manufacturing processes
and entered other new industries through the launching of
new subsidiaries such as Samsung Heavy Industries,
Samsung Techwin, and Samsung Shipbuilding.

Samsung first entered the electronics industry in 1969.
In the 1970s, it acquired a 50 percent stake in Korea
Semiconductor. The late 1970s and early 1980s witnessed
the rapid expansion of Samsung’s technology businesses.
Separate semiconductor and electronics branches were
established. Samsung Data Systems (now Samsung SDS)
was established in 1985 to serve the growing need for
systems development. In the 1990s, Samsung continued its
expansion into global electronics markets with a number of
its technology products, ranging from semiconductors to
computer monitors and liquid crystal display (LCD)
screens. The 2000’s saw the birth of Samsung’s Galaxy, one
of the top-selling smart phones in the world. Since 2006,
the company has also been the top-selling global
manufacturer of televisions. As of 2020, it includes over 60
firms ranging across most sectors of the Korean economy
and constituting over 20 percent of its total exports.
Notable affiliates include Samsung Electronics, Samsung
Heavy Industries, Samsung Engineering, and Samsung
C&T.

In this highly diversified conglomerate, the convention is
that the top management positions are typically held by
male members of the family of the founder, Lee Byung-
Chull. By way of illustration, consider Samsung Electronics:
the chairman, Lee-Kun Hee, is the son of the founder, while



the vice-chairman (and chairman designate), Lee Jae-yong,
is the son of Lee-Kun Hee. The firms in the Samsung group
are closely interconnected through a network of cross-
ownership. For instance, Samsung Electronics is a
dominant shareholder in Samsung Heavy Industries.

The Samsung story shows how strong family ties
combined with deep and sustained state support can give
rise to world-leading firms.

19.2.3 The Caste-Based Society

Hindu society is centered on castes. Formally, there are
four castes, but a large part of the population lies outside
these four castes (and is referred to as ‘Dalits’). The central
rule in Hindu society involves marriage within a caste
(known as “endogamy”). This rule has been followed over
the past 2,000 years, and even today, 9 out of 10 marriages
respect this rule. There are roughly 3,000–4,000 subcastes,
each of which has on average approximately 250,000
members. Within a village, there is spatial clustering based
on caste, but caste members are usually spread across
many villages, as well as in urban centers. Thus caste
networks have an interesting structure: local spatial
clustering within a village alongside a wide spatial spread.
The local clustering is accompanied by rules on social
interaction both horizontally as well as vertically across a
caste. Caste has been a major factor shaping social
relations and continues to be a powerful presence in
contemporary Indian society, economy, and democracy.
The discussion here draws on Srinivas (1987), Beteille
(1965), Mayer (1960), Munshi ((2019), and Munshi and
Rosenzweig (2015). We recall that the role of caste in
shaping informal exchange was discussed in chapter 1, and
its role in shaping gender differences in education choice
was discussed in chapter 17.

Historically, caste networks helped smooth the
consumption of their members in the face of income



fluctuations. More recently, since the middle of the
nineteenth century, they have expanded into the urban
labor market and into business when new opportunities
became available. As a result, in contemporary India, caste
networks shape participation in labor markets, allocation of
capital, and entry into new markets. Indeed, a distinctive
feature of the Indian economy is that the large and dynamic
private sector is dominated by large conglomerates
centered on extended family and subcaste networks.

One reason for the prominence of caste is that it has a
important relation to trust. Munshi and Rosenzweig (2015)
present cross-country results from wave 5 of the World
Values Survey (conducted between 2005–2009) on
questions relating to trust and tolerance of outsiders.
Restricting the sample to countries with a population in
excess of 20 million that are classified by the World Bank
as low, lower-middle, or upper-middle income, India ranks
close to the top of the list with regard to trust in neighbors.
On the face of it, this appears to be strong evidence for
generalized trust. However, on measures of tolerance of
neighbors following a different religion or speaking a
different language, India ranks at the bottom. This suggests
that an alternative interpretation may be more accurate:
Indian respondents are essentially reporting that they have
a high degree of trust in their fellow caste members living
nearby.

Caste is the basis for one of the most extensive and
aggressive affirmative action programs in the world: in
many parts of the country, over half of all public-sector jobs
are reserved for members of historically disadvantaged
castes. At different levels of the political system, positions
may be reserved for particular communities.

At a more general level, since India’s independence from
British rule in 1947, caste has also become a central pillar
of representative democracy. Parties come to power on the
basis of alliances across caste groups. The ability of a party



to win elections, therefore, depends on how successful it is
in forming partnerships with the different caste groups.
Politicians make decisions that favor a group, the group
rewards the politicians by voting—at a group level—for
them. Caste has become the natural social unit around
which “vote banks” are organized. It can be said that the
democratic process has reinforced caste identity and
strengthened kinship-based groups.

We conclude this discussion with a brief comment on
some aspects of Indian economic growth since
independence from Britain in 1947. Since the early years
after independence, the Indian government has played a
prominent role in shaping the pace and the direction of
economic change. However, economic growth was modest
until the early 1990s. It has picked up over the past 25
years, partly due to the liberalization of the market and the
opening of the economy to foreign firms and capital. Figure
19.5 presents an overview of the economic growth rate
over the period 1990–2020. The dynamism in the economy
is also reflected in the list of the world’s largest firms. In
1990, there were no Indian firms on the Fortune 100 list,
but there were 10 Indian firms there in 2010 and 7 by
2020. In spite of the dynamism of the private sector, we
note that some of the largest firms in India are still state
owned: for example, in the list of 7 largest firms, 4 were
state owned. Another feature of the Indian economy is that
family-based conglomerates control the largest private
firms.

19.2.4 Civic Community and Democracy in Italy

In their landmark study, Putnam, Leonardi, and Nanetti
(1993) argue for a central role for civic community in the
effective functioning of representative democratic
institutions. They study the impact of a political reform in
Italy that shifted budgetary authority from the national
government to the regions (in several key areas such as



education and health care). The result is that starting at 10
percent in the prereform period, the control of regions over
the national budget increased to over 25 percent by 1977.
How did this shift in resources and authority affect the
performance of government in the 20 regions of Italy?

The first finding is that there were large differences in
the performance of the regional governments across the
regions based on independent measures of policy process,
pronouncements, and implementation. These differences
were consistent with citizens’ assessments of regional
governments. Figure 19.7 provides a mapping of the levels
of performance.



Figure 19.7 
Performance of regional governments. Source: Figure 4.1 in Putnam, Leonardi,
and Nanetti (1993).

The second finding is that these differences in the
performance of regional governments were closely related
to the civic culture. Civic culture was seen as a combination
of civil associations, voter turnout at referenda, lack of
clientelism, and local newspaper circulation. Civil
associations include sports societies, leisure clubs, music
and theater, and health and social services. Figure 19.8



charts the levels of civic community in Italy’s 20 regions
according to these factors. A comparison of figures 19.7
and 19.8 reveals a very strong correlation between civic
culture and institutional performance: northern regions
were characterized by high levels of civic engagement, and
the southern regions by hierarchically organized public life
and far less engagement.



Figure 19.8 
Civic capital in regions. Source: Figure 4.4 in Putnam, Leonardi, and Nanetti
(1993).

The third finding is that the origins of differences in civic
culture in late-twentieth-century participation may be
traced to differences in the modes of governance in the
early medieval period. The republicanism of Italian regions



at the beginning of the fourteenth century corresponds
closely to the strength of the civic tradition in the twentieth
century. The parallel between this pattern and the
distribution of civic norms and networks in the 1970s, as
displayed in figure 19.8, is remarkable. The southern
territories once ruled by the Norman kings constitute the
seven least civic regions in the 1970s. Almost as precisely,
the papal states (minus the communal republics that lay in
the northern section of the pope’s domains) correspond to
the next three or four regions up the civic ladder in the
1970s. At the other end of the scale, the heartland of
republicanism in 1300 corresponds uncannily to the most
civic regions of today, followed closely by the areas still
farther north, in which medieval republican traditions had
proved somewhat weaker. The persistence of the high and
low civic community cultures in North and South Italy over
several hundred years suggests that, once attained, these
widely differing social configurations are very stable.

The differences in civic culture and quality of governance
are reflected in large and persistent income differences.
Figure 19.9 presents trends on these income differences
over the last 120 years.



Figure 19.9 
Economic differences between North and South Italy. Source: Daniele and
Malanima (2014) and https://ec.europa.eu/eurostat/.

19.2.5 Ethnic Fragmentation

The Democratic Republic of the Congo (in what follows,
simply Congo) has a population of 68 million and is the
largest subSaharan African country. Congo gained
independence from Belgium in 1960. For a discussion on
ethnic fragmentation and wars in Congo, see chapter 10.
Here we discuss the patterns of economic growth and then
turn to aspects of society and the state.

Figure 19.5 presents the growth rate in gross national
product (GNP) over the period 1990–2020. It shows that
growth rates have fluctuated widely and the average has
been low over this period. In 2020, the per capita income
was around $580, a figure that is less than 1 percent of
Switzerland’s per capita income. This low income is
reflected in a life expectancy that is 20 years less than
Switzerland’s. As indicated in figure 19.6, economic growth
was very poor for an extended period lasting until 2003,
but it has picked up since then. This record of economic
performance must be viewed against the background of
Congo’s extraordinary wealth of natural resources: it has
some of the world’s largest reserves of copper, diamonds,
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cobalt, and coltan (a mineral that is used primarily in the
production of tantalum capacitors used in many electronic
devices, including mobile phones).

An important feature of Congo is that the population
belongs to over 200 ethnic groups. There are close
affinities between several of these ethnic groups and
groups in adjoining countries: as a result, developments in
Congo are closely connected to developments in
neighboring countries such as Rwanda and Uganda. These
kinship ties are an important aspect of the Great War of
Congo (1996–1997, 1998–2003). The state in Congo has
failed to provide one of the essential services expected of a
government—that of providing secure borders. It has also
been unable to offer personal and economic security within
its borders. The result is that the citizens have not been
able to take advantage of the vast mineral resources in the
country, leaving Congo one of the poorest and most
insecure countries in the world.

Let us now summarize what we have learned in this
section. First, we found that there are very great variations
in the strength of kin-based institutions across the world.
Second, the relation between kinship groups and economic
performance is complicated. WEIRD societies like the US,
North Western European countries, New Zealand, and
Australia suggest a positive correlation between weak
kinship ties and economic performance. There are
countries like Brazil that have weak kinship groups and low
generalized trust and have a record or uneven economic
performance. On the other hand, there are countries like
South Korea, China, and India that have strong kinship
groups but a good-to-strong record of economic growth.
Finally, there are countries with strong kinship groups,
such as Congo and Egypt, with poor-to-uneven economic
performance. A recurring theme in these case studies is the
important role of the state. We next develop a theoretical
framework to better understand these empirical patterns.



19.3 Conceptual Considerations

In this section, we consider a theoretical framework with a
focus on economic activity and social welfare. The
discussion introduces a number of concepts and explains
their background.

First, we consider individuals in their relation to kinship-
based groups. Ties between individuals belonging to the
same group are close and reliable. The size of the groups is
a key variable, and it is one indication of the strength of
kinship-based relations in a society (Fukuyama [1995] and
Henrich [2020]). Ties between individuals belonging to
different groups is another important element: the ties may
be civic and relate to common memberships of a variety of
associations, as in Putnam, Leonardi, and Nanetti (1993)’s
study of democracy in Italy, or integrated business
organizations and professional associations as in Varshney
(2001)’s study of Hindu-Muslim communal violence (where
associations involving members of different religious
communities are seen as embodying bridging capital) in the
terminology of Putnam, Leonardi, and Nanetti (1993).

Second, we suppose that individuals earn utility from
economic activity and engagement in civic activities.
Economic activity can be carried out within a group or with
other individuals outside the group. Economic activity takes
place in the presence of asymmetric information, search
and matching frictions, and commitment problems. Kin-
based interaction helps to overcome some of these
frictions, but at the cost of restrictions on who can work
with whom. Economic exchange across kinship groups thus
entails transaction costs: the magnitude of these costs will
depend on the effectiveness of formal institutions and the
level of generalized trust in a society. We borrow these
ideas from North and Thomas (1973), North (1990), and
Williamson (1985) and the recent literature on kin-based
exchange and Fukuyama (1995) and Henrich (2020), and



they underly the following observations from Fukuyama
(1995):
By contrast, people who do not trust one another will end up cooperating only
under a system of formal rules and regulations, which have to be negotiated,
agreed to, litigated, and enforced, sometimes by coercive means. This legal
apparatus, serving as a substitute for trust, entails what economists call
“transaction costs.” Widespread distrust in a society, in other words, imposes a
kind of tax on all forms of economic activity, a tax that high-trust societies do
not have to pay. 
(pp. 27–28).

Third, we consider the state, which carries out
redistribution and provides a range of public goods such as
education, health, and infrastructure. The state may run
large-scale, public-sector firms that produce key inputs for
other sectors, such as iron, steel, coal, and oil; and it also
may run banks that provide credit to private and public
firms. The state is supported by tax revenue and also
contains formal institutions that help enforce contracts and
lower transaction costs of impersonal economic exchange.
It is therefore important to understand who makes
decisions on tax rates and what their incentives are. Our
approach to the political economy of taxation draws on a
long tradition in political economy and state capacity, as
summarized in Besley and Persson (2013).

Fourth, we specify the relation between the state and
civic community and how this bears on impersonal market
exchange (here we draw, among others, on Huntingdon
[1968]). The state and civic community may be
complementary: this is the idea developed in the influential
work of Putnam, Leonardi, and Nanetti (1993), and it is a
key theme in Acemoglu and Robinson (2019)—the
effectiveness of the state is only as good as the strength of
the social institutions.
… the failure of democracy to consolidate itself in many parts of the world may
be due less to the appeal of the idea itself than to the absence of those material
and social conditions that make it possible for accountable government to
emerge in the first place. That is, successful liberal democracy requires both a



state that is strong, unified, and able to enforce laws on its own territory, and a
society that is strong and cohesive and able to impose accountability on the
state. It is the balance between a strong state and a strong society that makes
democracy work, not just in seventeenth-century England but in contemporary
developed democracies as well. 
Fukuyama (2011, pp. 479–480).

While complementarity between civic society and state is
widely noted, there is also an influential strand of thinking
that argues for their substitutability. This idea is implicit in
Polanyi (1944), which says that the growth of national
markets for labor was accompanied by a growing role for
the government and the weakening of local social ties. This
idea is consistent with the line of work that stresses the
importance of greater involvement of the state in countries
that have joined the development process at a later point in
time (see e.g., Gerschenkron [1962]). It is also consistent
with the idea of Fukuyama (1995) and others who have
argued that strong, kinship-based groups and weak civic
institutions may be supported by a powerful and an active
state. The example of an activist state in France is
mentioned in this context. More generally, it is possible to
see some aspects of civic engagement as being
complementary to the activities of the state, while others
are substitutes.

Fifth, we use a notion of civic capital as a composite that
combines beliefs and expectations and social structure. In
this, we draw upon Fukuyama (1995) and Geertz (1973).
Cultural anthropologists and sociologists distinguish between culture and what
they term social structure. Culture in this sense is restricted to meanings,
symbols, values and ideas and encompasses phenomena like religion and
ideology. Geertz’ own definition of culture is “an historical transmitted pattern
of meanings embodied in symbols, a system of inherited conceptions expressed
in symbolic forms by means of which they communicate, perpetuate, and
develop their knowledge about and attitudes toward life.” Social structure, by
contrast, concerns concrete social organizations such as the family, clan, legal
system, or nation. In this sense, Confucian doctrines about the relationship
between fathers and sons belong to culture; the actual Chinese family is social
structure.



… I will not make use of this distinction between culture and social structure
because it is often difficult to distinguish between the two: values and ideas
shape concrete social relationships, and vice versa. The Chinese family has a
patrilineal structure in large measure because Confucian ideology gives
preference to males and teaches children to honor their fathers. Conversely,
Confucian ideology seems reasonable to those who have been brought up in
Chinese families. 
Fukuyama (1995, p. 34).

In the next section, we will present a model of civic
capital that arises out of social structure and expectations
about behavior. In this model, expectations and beliefs, as
well as the autonomy of individuals in shaping them, will
play a major role. See Swidler (1986) for a discussion on
different ways of accommodating individual agency within
notions of culture.

19.4 A Model of State Capacity

This section presents a theoretical framework within which
we can locate different types of societies and assess their
economic performance. The framework is taken from
Bramoullé, Goyal, and Morelli (2022). It builds on the
model of network and market activity in chapter 17 (taken
from Gagnon and Goyal [2017]) and the model of group
favoritism in chapter 18 (taken from Bramoullé and Goyal
[2016]), and we also incorporate the concepts of group
fractionalization (taken from Alesina, Devleeschauwer,
Easterly, et al. 2003), and state capacity (taken from Besley
and Persson [2013]).

We now consider a society composed of individuals who
belong to kinship groups. Denote by N = 1, …, n the set of
individuals and by M = 1, …, m the set of groups, with m ≥
2. The size of group j is sj and . Nuclear families
give rise to small groups; castes, tribes, extended families,
lineages, or clans give rise to larger groups. For simplicity,
we will suppose that individuals within a group are fully
connected to each other. In addition, there may be links



between individuals across groups. We denote this network
of cross-group links by go.

There are three stages in the model. In stage 1,
individuals decide on the level of civic activity (which
defines civic capital in the society). In stage 2, the tax rate
is determined and tax revenue is used to build state
capacity. In stage 3, individuals decide on whether they will
conduct exchange within their kinship group or in
impersonal markets.

Individuals earn utility through economic exchange.
Exchange could take place either between individuals
within the same group or between individuals in different
groups. The return from an exchange depends on the
quality of the match between the individuals and the costs
of transaction between them. The ideal match yields a
value of 1, while a nonideal match yields r ∈ [0, 1]. We
assume that every individual is equally likely to be an ideal
match. The ideal match is then an individual in one’s own
group with a probability proportional to the size of one’s
group minus 1 (si − 1), and someone from another group
with probability proportional to n − si.

Economic exchange within a group has lower transaction
costs: this may be due to advantages of repeated
interaction and cooperative norms within a group, or it may
reflect group-level altruism. For simplicity, let us say that
the within-groups transaction costs are zero. An ideal
match with a group yields the full value, 1, while a nonideal
match yields r < 1. The return from exchange between
members belonging to different groups depends on the
formal institutions and on civic culture. This return is
denoted by F(T, K) ≤ 1, where T is the amount of
government funds invested in the functioning of impersonal
markets and K is the level of civic culture.

A larger revenue can support a more extensive set of
executive and legal institutions that would enhance the



quality of contract enforcement. Similarly, high civic capital
would support higher levels of generalized trust, which in
turn would mitigate the transaction costs among members
of different groups. This leads us to suppose that function F
is increasing with respect to both T and K. We will explore
both the situation in which state and civic capital
complement each other and the situation in which
weaknesses in one can be offset by expansion in the other.
We introduce the concepts of strategic complements and
substitutes to model these relations.
Assumption 19.1 F(0, 0) = 0, F ≤ 1, and F is weakly increasing and concave

in both arguments. We shall say that civic capital and government are

complements if F displays increasing differences for T′≥ T and K′≥ K:

Civic capital and government are substitutes if F displays decreasing

differences:

By way of illustration, consider a specific functional form:
F(T, K) = ϕTαKα. If we assume that α ∈ (0, 1), then the
function satisfies assumption 19.1 and displays
complements. By contrast, F(T, K) = ϕ(T + K)α, with α ∈ (0,
1) satisfies assumption 19.1 and displays substitutes (note
that with both these functional forms, F ≤ 1, when T and K
are small and ϕ is also small enough).

The government is funded by taxes on individual citizens.
Let t ∈ [0, 1] be the tax rate. Suppose that individual i ∈ N
starts with initial income yi. Set . Government’s
resources are equal to tax earnings, tY. We study a
utilitarian social planner and compare that with the choices
of a majority-based democratic government.

Finally, in stage 3, given a level of tax revenue,
individuals choose whether to take part in impersonal
exchange. Let xi ∈{0, 1} denote the two options on within



group and outside group; it takes a value of 1 if an
individual engages in outside exchange and a value of 0
otherwise. When xi = 1, individual i matches an ideal
partner, while when xi = 0, i matches someone in their own
group. For simplicity, assume that an individual gets to
keep the entire value of the exchange that they initiate. The
ideal partner is an outsider with probability . An
individual’s payoff from tax rate t, action xi and group size
si is thus equal to

and we see that the individual strictly prefers to engage in
outside exchange, xi = 1, if and only if F(T, K) > r. It is
worth noting that the decision on whether to participate in
within-group or outside exchange does not depend on
income or group size. In other words, either all individuals
engage in outside exchange or none do, and individual
utility can be rewritten as

19.4.1 Utilitarian Outcome

We consider a utilitarian planner who seeks to maximize
the sum of utilities. This provides a benchmark normative
analysis and will serve as a basis to assess performance of
a democratic government later. As is standard, we start at
the second stage of the model and take the level of civic
culture, K, as given.

We note that, in this setting, the only use of tax revenue
is to improve state capacity. This improvement mitigates
the transaction costs of impersonal exchange. Transaction
costs arise when ideal matches lie across groups. Therefore
the social return to improving state capacity is intimately



related to the proportion of exchanges that will involve
individuals of different groups.

Given a group structure, the fraction of ideal exchanges
that will be across groups is given by

Following Alesina, Devleeschauwer, Easterly, et al.
(2003), we will refer to f as a measure of fractionalization.

The fractionalization index takes the value of 0 if all
individuals belong to a single group, and it is maximized if
all individuals belong to different groups. Thus .
When the number of groups is fixed, fractionalization
decreases following a mean-preserving spread in size.
Moreover, if all groups have the same size, fractionalization
increases with the number of groups.

Our first result characterizes optimal taxation and brings
out the relation between state capacity, the
fractionalization index, and civic capital.
Proposition 19.1 Suppose that F satisfies assumption 19.1 and that 

 and . Let  be the tax rate chosen by an utilitarian

planner. Then, equation (19.4) has a solution tu ∈ [0, 1]

If F(tuY, K) < r, then  and ∀i, xi = 0. If F(tuY, K) > r,  and ∀i, xi = 1.

Proof. Define , with

Using the definition of fractionalization, we may write
aggregate out-group exchange as follows:



Consider a situation where ∀i, xi = 1. Then,

and since F is concave in T,

Moreover, since there are at least two groups, .
Therefore,

This means that

Since ,

This means that

Therefore, the first-order condition  has an interior
solution, 0 < tU < 1, under the stated conditions.

Finally, observe that this is the solution of the planner’s
program only if F(tuY, K) > r. If F(tuY, K) < r, agents choose
not to engage in impersonal markets even when the



planner sets the best possible tax rate. Therefore, investing
in impersonal markets is socially not worthwhile, and .

◼

Proposition 19.1 shows that the optimal tax rate is a
weakly increasing function of fractionalization. Impersonal
exchange may bring higher benefits than exchange within
groups only when the ideal match is an outsider. Our
measure of fractionalization provides a measure of out-
group exchange. As we have noted, fractionalization is high
when there are many groups and when group sizes are the
same. Thus societies with high fractionalization are
precisely those where impersonal markets generate high
social benefits, and therefore they are also societies in
which a large state would be especially valuable.

We now examine the relation between optimal tax and
civic capital.
Corollary 19.1 Suppose that the conditions for proposition 19.1 hold and

civic capital and governments are complements. Then there is a threshold

value of civic capital  such that  if  and , and it is

increasing in K if .

Proof. First, note that the tax rate is positive  only if 
 > r. Next, implicitly differentiate the optimal tax

rate with respect to K:

Since , tu is weakly increasing with respect to K

under complements (i.e., when ). We may therefore
define the threshold Ku as the solution to F(tuY, Ku) = r.
Under assumption 19.1, F(0, K) = 0: it then follows that the
optimal tax is a discontinuous function of civic capital K:
optimal tax  for K ≤Ku and then is strictly positive and
increasing in K for .

◼



As the optimal tax rate is a discontinuous and weakly
increasing function of civic capital K, civic capital must
reach a specific threshold for public investment in
impersonal exchange to be socially worthwhile.

To bring out the different aspects of the utilitarian
optimization problem, we present example 19.1 with an
explicit functional form.
Example 19.1 Optimal tax rates

Suppose that F(T, K) = ϕTαKα with 0 < α < 1. In this case,

while

Therefore

if Y is large enough. This means that the conditions of
proposition 19.1 are satisfied and tu solves

leading to

We see that tu is increasing in civic capital K, and this
function is concave if  and convex if . Then,



This means that  if  and  if , where the
threshold Ku is given by

■
We note that corollary 19.1 relies on the complements

property. Under substitutes, tu is weakly decreasing in K

because . But the optimal tax rate  if and only if
F(tuY, K) > r. There is a positive direct effect of increasing
K, but there is also an indirect negative effect via . The
two effects go in opposite directions, so the effects of K on
optimal tax rate  may be nonmonotonic (  may initially
decline in K, then be equal to zero for a range of K values,
and then become positive and decline again in K).

19.4.2 Democratic State

We next study optimal taxes in a democratic society.
Building on the theory of the median voter, we say that a
profile of tax t and exchange choice (x1, …, xn) is majority
stable if (1) given t, xi is optimal for every i; and (2) given
(x1, …, xn), t equals the median of the distribution of
individual-specific tax rates.

When ∀i, xi = 0, a positive tax rate brings no benefit, and
all agents prefer zero tax. Conversely, if t = 0, xi = 0 is
optimal when F(0, K) < r. By contrast, when xi = 1 for all i
∈ N, the preferred tax rate of agent i, ti, solves

Since 1 ≤ si ≤ n − 1, an interior solution is guaranteed if



and

The interior tax rate is given as a solution to

Since F is concave in T, preferred tax rates in the
population increase with . Therefore, the median of the
distribution of preferred individual tax rates is the tax rate
of the individual with a median value of . This
observation yields the following result on optimal taxes in a
democratic society.
Proposition 19.2 Let d be an individual with the median value of .

Suppose that F satisfies assumption 19.1 and  and 

. The following equation has a solution td ∈ [0, 1]

An outcome ( ) is either (1)  and ∀i, xi = 0 if F(0, K) ≤ r; or (2)  and

∀i, xi = 1 if F(tdY, K) ≥ r. When civic capital and governments are complements,

there is a threshold value of civic capital  such that  if  and  if
, and  is increasing in K if .

If F(tdY, K) > r, then there is a majority-stable profile (t,
x), in which the optimal tax rate , and everyone engages
in impersonal exchange, xi = 1 for all i ∈ N. However, the
profile of zero tax and no impersonal exchange is always
stable so long as markets cannot function without formal
institutions (i.e., if F(0, K) = 0).

19.4.3 Utilitarian versus Democratic Outcomes



A preliminary observation is that with democratic
governance, there is a potential coordination problem: an
active state and impersonal market bring higher welfare,
but society can be stuck in the equilibrium with no tax and
no market. Moving beyond the coordination problem, we
note that even the active government outcome will
generally be different from the utilitarian optimum.

To see why, let us examine the optimal tax rates and the
democratic tax rates in greater detail. Define y = Y/n as the
average income and  as the average size of the
group across individuals. Note that these are population
averages and s usually differs from the average size when
we average across groups, . Equipped with this
notation, we can state the following implication of
proposition 19.2.
Corollary 19.2 The tax rate chosen by a democratic government is weakly

lower than the socially optimal tax rate if . It is weakly higher than the

socially optimal tax rate if .

Proof. Since  is weakly decreasing in T, comparing
equations (19.4) and (19.25) shows that td < tu if and only if

We can simplify this condition and rewrite it as . If
F(tuY, K) > r, then  because  or 0. If F(tuY, K) <
r, then F(tdY, K) < r and . Similar arguments can be
made for the case where the democratic society has a
higher tax rate.

◼

There is therefore tension between the utilitarian
optimum and the median voter’s preferred tax rate. This is
because the marginal benefits from impersonal markets
depend on n−si, the size of the group of outsiders, while
marginal costs depend on income yi through taxation. In a



democracy, the tax rate is controlled by the median ratio 
. By contrast, a utilitarian planner considers aggregate

benefits and aggregate costs, and state size is then
controlled by the ratio of averages, . Corollary 19.2
draws attention to these two ratios.

To further understand the impact of the kinship groups,
let us assume that everyone has the same income. In that
case, from equations (19.4) and (19.25), it follows that the
tax rate is lower in a democracy where median group size
is greater than average group size (i.e., sd ≥s). Applying the
formula of fractionalization, this happens equivalently when

Therefore, holding the median group size fixed, the tax rate

is likely to be lower, and hence the state size smaller, in a

democracy when fractionalization is higher.
Let us elaborate further on its implications for the

relation between the democratic outcomes and the
utilitarian optimum. We note that this inequality holds, for
instance, in the presence of one large group containing a
majority of people. In that case, the median voter belongs
to this large group, and their expected benefits from
impersonal markets are relatively small, leading to a small
state in a democracy and potentially large welfare losses
(compared to the utilitarian outcome).

Next, consider the converse problem: when the state is
too large relative to the social optimum. Start from a
situation with m groups of equal size s. Here, s = sd = s and
democratic outcomes are efficient. Consider a small change
in the group structure, with small gains in size for some
groups and correspondingly small losses in size for other
groups. The median group size remains unchanged, but the
fractionalization is lower: this means that a positive tax



rate in a democratic society is too high compared to the
first-best rate.

The fact that individual preferred policies depend on
group sizes can give rise to interesting regime shifts. To
illustrate this point, consider a society composed of one
large group of size s and many small groups of size 2. The
median voter is in one of the small groups if  and in the
large group if . The average group size s lies strictly
between 2 and s. Therefore, a small change in s from
slightly above n/2 to slightly below n/2 leads to a drastic
expansion in the size of the state from inefficiently small to
inefficiently high.

We close this section by drawing out an implication of
the discontinuous shifts in optimal tax rates at the
thresholds Ku and Kd.
Corollary 19.3 Suppose that the conditions for proposition 19.1 and 19.2

hold and civic capital and governments are complements. The threshold value

for civic capital under democratic regime is higher than under the social

optimum, , when ; the opposite is true otherwise:  when 

.

Proof. From the arguments in corollary 19.2, we know
that the utilitarian optimum tax rate is weakly lower than
the democratic tax rate if

Recall that Ku and Kd are defined by the following
equations:

As td ≤ tu, it then follows that Kd > Ku.
A similar argument may be used to prove the second part

of the corollary that covers the case n − sdd/yd ≤ n − s/ŷ.



◼

To appreciate how fractionalization and civic capital
shape tax rates and the size of the state, we work through
example 19.2, with specific functional forms.
Example 19.2 State and civic culture as complements

Suppose that F(T, K) = fTαKα. It may be verified that this
function satisfies assumption 19.1 and state and civic
culture are complements. Moreover,  is strictly monotonic
in T.

As F(0, K) = 0, it follows that there exists a majority-
stable outcome with zero tax and zero impersonal
exchange. Turning to stable outcomes with positive tax
rates, proposition 19.2 tells us that the median voter tax
rate is as follows:

Observe that tm is increasing in K and decreasing in sm and
ym. Optimal taxes are increasing with the quality of civic
culture because the marginal returns to bigger government
are higher with better civic culture. The optimal taxation is
also falling with the size of this individual’s group: this is
because the larger the group size, the smaller the size of
the potential gains from trading with outsiders (as reflected
in the term (n − sm)).

An active state and impersonal exchange appear if and
only if

Thus there is a threshold level of civic culture K* such
that the tax rate is positive, and the state is active if and
only if K > K*.



Let us compute the aggregate welfare that obtains under
the different parametric conditions. When K < K* and t* =
0, xi = 0, individual utility is

Aggregate utility is

Since F(0, K) = 0, everyone opts for kin-based group
exchange, and therefore its share in the total exchange
equals 1.

When K > K* in a stable outcome with positive tax rates
xi = 1 for all i ∈ N, t = t* > 0. This in turn means that
individual utility is

Aggregate utility is

The share of kin-based exchange is

where



This yields

which is increasing in  (and hence it is falling in the
fractionalization index).

◼

Example 19.2 assumed that state capacity and civic
capital are complements. A question at the end of the
chapter explores the case of substitutes.

Our discussion here reveals that the relative share of kin-
based and impersonal exchange, the size of the state, and
economic performance are shaped by group composition
and civic culture. We now take a closer look at the
determinants of civic capital.

19.5 Sources of Civic Capital

In this section we will discuss the sources of civic capital.
Building on the ideas of Tocqueville and Putnam discussed
in section 19.3, we will take the view that civic capital
arises out of associational ties between individuals who
may belong to distinct groups.

19.5.1 Horizontal Associations

Now we return to our model and recall that in stage 1,
individuals choose an action zi ∈{0, 1}, where zi = 0 refers
to low activity and zi = 1 refers to high activity. Social
engagement takes time and effort, and this cost is given by
c > 0. Let z = (z1, …, zn) denote the profile of social
engagement. The civic capital in stage 2 reflects the
choices in stage 1. In particular, we will suppose that 

.



An individual’s returns to social engagement will depend
on the level of engagement of others in their neighborhood:
if everyone else is narrowly focused on the short-term
interests of their nuclear family, then one individual
expects to earn very little from increasing their own
engagement. By contrast, if an individual is surrounded by
others who are highly engaged, then increasing their social
commitment is more likely to be rewarding. The returns to
horizontal social engagement across groups rest on the
bridging ties between groups (i.e., ties between individuals
that belong to different groups). Recall that go is the
network of ties outside one’s own group. We will suppose
that Ni(go) is the neighborhood of individual i in network go.
Given the profile of actions z, let

be the level of engagement in the neighborhood of
individual i.

Our analysis in section 19.4 indicates that K is central to
understanding the size of the government and the share of
impersonal exchange. However, as a first step, to keep
matters simple, we will assume that in their social
engagement problem, individuals do not take into account
the effects of zi choices on K. Recall that we are primarily
concerned with the case where n is large, an individual’s
choices on civic engagement are unlikely to have a large
impact on the economywide scale of K, so our assumption
is a reasonable approximation. With this assumption in
place, given network go and the profile of actions z the
utility of individual i is

We will say that individual efforts and neighbors’ efforts
are complements if they exhibit increasing differences that



is, for ζi′ > ζi and zi′ > zi:

They are strict complements if this inequality is strict.
We make the following assumptions on the function H(.,.).
Assumption 19.2 H(0, 0) = 0, H(.,.) is weakly increasing in both arguments

and exhibits complementarity.

A simple example of such a function is H(zi, ζi) = ζizi; it
exhibits strict complementarity between own and
neighbors’ engagement.

We will assume that there is a fixed positive cost of social
engagement given by c > 0. Observe that if everyone else
chooses action zi = 0, then under our assumptions on H(.,.),
it is a best response to choose 0 as well. Thus, regardless of
the social structure, inactivity z = (0, …, 0) is a Nash
equilibrium of the game of social engagement. Let us
consider an equilibrium with positive engagement. For
concreteness, let us suppose that H(ζi, zi) = ζizi. In this
case, the best that an individual can hope to earn from
choosing zi = 1 is that all their neighbors also choose 1. In
other words, their payoff is bounded by the size of the
neighborhood. Under the assumption that there is a fixed
positive cost of social engagement c > 0, it follows that an
individual will choose zi = 1 only if the number of neighbors
is greater than or equal to c. The same reasoning applies to
the neighbors of the individual: a neighbor will only choose
action zi = 1 if they have at least c neighbors, and so forth.

This line of reasoning corresponds to the games we
considered in chapter 4, on network structure and human
behavior. We now apply the methods developed in that
chapter to the problem at hand. Suppose, to fix ideas, that
c = 3.1. An individual will choose action 1 only if the
returns to choosing 1 cover the cost of 3.1. This means that
at least 4 neighbors must also choose action 1. However,



these neighbors will choose action 1 only if each of them
has at least 3 other neighbors choosing 1 (in addition to he
neighbor in question). Thus for an individual to choose 1,
they must be part of a set of nodes in a network, each of
which has at least 4 links with others who have 4 links, and
so on. Recall that this line of reasoning led to the 3-core of
a network. For easy reference, we reproduce the definition
of a q-core of a network.
Definition 19.1 The q-core of a network go, denoted by , is the largest

subgraph of go such that all individuals in  have strictly more than q links to

other individuals in .

Recall from our discussion in chapters 4 and 17, the
procedure for obtaining the q-core of a network is as
follows: Start with network g. In step 1, delete all the nodes
(and their links) in g for which degree k ≤ q. Label the
residual graph g1. In step 2, delete all the nodes (and their
links) in g1 for which k ≤ q. Iterate until no node with k ≤ q
remains (i.e., when gt = gt+1). The residual graph in this last
step is the q-core.

The equilibrium corresponding to the q-core defines the
minimal and the maximal levels of social engagement in a
network. The social structure thus sets an upper bound on
the level of civic activity in a society. The actual outcome
will depend on the beliefs that members of the community
have. This suggests that in societies with large q-cores,
beliefs about behavior can make a very large difference in
outcomes.

A final remark concerns the utility of individuals: the
payoff to an individual who chooses 0 is zero, while the
payoffs of an active agent are increasing based on the
number of neighbors choosing action 1. So given a positive
cost c, it follows that payoffs are larger for nodes in the q-
core compared to those outside it. Thus, for any network,
total payoffs are maximized in the equilibrium



corresponding to the q-core. These observations are
summarized in the following result.
Proposition 19.3 Fix a group size profile s = (s1, …, sm) a network, go, a

function H(., ) satisfying assumption 19.2, and a cost c > 0. There exists a zero

activity equilibrium and a maximal activity equilibrium that corresponds to the

q-core of the network. A society with a larger q-core, therefore, has the

potential to support a higher level of social engagement. Aggregate payoffs are

increasing in the number of active players. Therefore, networks with larger q-

cores have the potential for greater aggregate utility.

In our model, there are two aspects of social structure:
the groups and the ties across groups. We work through a
simple example to appreciate the role of the social
structure in shaping economic performance.

Consider a society with n = 12 individuals, and let H(ζi,

zi) = ζizi, and set ex-ante individual income y = 1. We
consider a society with large kin-based groups and a
society with small nuclear families. The former is
represented as consisting of 3 groups, each of size 4, while
the latter consists of 12, groups, each of size 1. To study
the role of ties across groups, we consider two
configurations: in one, the ties are concentrated within a
few individuals, while in the other, the ties are spread out
across individuals. The four configurations of group size
and ties across groups are presented in figure 19.10.



Figure 19.10 
Examples of societies: (a) and (b) are for large groups, and (c) and (d) are for
small groups.

Figures 19.10(a) and 19.10(b) present societies with
large kin groups, while figures 19.10(c) and 19.10(d)
present societies with small kin groups. Figures 19.10(a)
and 19.10(c) represent societies in which the ties across
kin groups are concentrated among a few individuals (i.e.,
they have a large 3-core) while figures 19.10(b) and
19.10(d) represent societies in which they are spread



across individuals (as a consequence, they have an empty
3-core).

Suppose that the cost of social engagement is c = 3.1.
From equation (19.3), we know that the maximal
equilibrium corresponds to the 3-core of the social network.
This tells us that in the societies in figures 19.10(a) and
19.10(c), individuals can support an active civic
community, while in the societies in figures 19.10(b) and
19.10(d), there will be no civic engagement. To be precise,
the number of active members in the maximal equilibrium
is 6 in the former and 0 in the latter.

We now build on these observations to draw out the
implications of civic capital for the size of the state and the
magnitude of impersonal exchange. Suppose that F(T, K) =
(TK)α, α < 1. We note that in this case, civic capital and the
size of the state are complements. As all individuals are in
equal-size groups and have equal incomes, they have the
same incentives. The preferred tax rate for an individual
therefore corresponds to the utilitarian optimum. From
proposition 19.1, it follows that in figures 19.10(b) and
19.10(d), the optimal tax rate will be zero. In the societies
in figures 19.10(a) and 19.10(c), a positive tax is optimal if
F(tUY, K) > r. Let us assume that r is sufficiently small that
this condition is satisfied in both societies. Under this
assumption, differences in tax rates are mirrored in
differences in impersonal exchange: in figures 19.10(a) and
19.10(c), therefore, everyone is engaged in impersonal
exchange, while in figures 19.10(b) and 19.10(d), everyone
is engaged in kin group exchange. This in turn has
implications for utility and welfare. In figure 19.10(a), the
utility for socially active and inactive individuals are,
respectively,



Thus aggregate utility in figure 19.10(a) is

In figure 19.10(b), as there is no taxation (and therefore
the state is inactive), all exchange takes place within kin-
based groups. Individual utility is

and aggregate utility is given by

It follows that the zero tax rate outcome is feasible in figure
19.10(a) and will yield the same utility but the positive tax
rate is preferred. So it must yield a higher utility.

In figure 19.10(c), individual utilities are given by

for the active and inactive members of the society,
respectively. Thus aggregate utility in figure 19.10(c)

Finally, in figure 19.10(d), as there is zero taxation (and an
inactive state), there is also no impersonal exchange. As
group sizes equal 1, individual utility is also equal to 1 + r.
Aggregate utility in figure 19.10(d) is

The zero tax outcome is feasible in figure 19.10(c) and
yields the same utility as in figure 19.10(d), but by
definition, the positive tax outcome is utility maximizing.



Hence figure 19.10(c) does significantly better than figure
19.10(d).

Define E* as the share of impersonal/market exchange in
equilibrium. Our computations are summarized in table
19.2.

Table 19.2 
Social structure and outcomes

Propositions 19.1–19.3 develop relations between
aspects of social structure on the one hand and the nature
of formal versus informal exchange and the size of the state
on the other hand. While the theory highlights the role of
the q-core, we must be careful not to take this measure too
literally. The q-core arises due to a specific formulation of
the coordination game in civic participation; if we specify
the game differently, a different but related network
measure may be identified. The important point is that for
civic capital to arise, we need ties that create bridges
across groups in a society.

The presumption in the model that we have discussed is
that ties are horizontal and range across social, political,
economic, and cultural spheres (as in Putnam, Leonardi,
and Nanetti (1993)’s study of North and South Italy and
Varshney (2001)’s study of Indian riots). The formulation of
complementarity between these ties and the state reflects a
dominant strand of thought that can be traced to
Tocqueville (2004).

We next turn to circumstances with limited horizontal
associations and weak-bridging civic capital. There are two
broad circumstances to consider that correspond to weak
and strong kinship groups, respectively. When a society has



both weak kinship groups and limited civic capital, there is
a greater need for formal institutions but due to a
complementarity between civic capital and state capacity, a
democratic regime may be unable to provide adequate
state capacity. These circumstances can lead to a failed
state, but under some historical circumstances, such as a
communist or a military takeover, it can also lead to a
strong authoritarian state. We may arrive at a situation
where civic capital and state capacity are substitutes.

A second situation corresponds to strong kinship groups
with weak-bridging civic capital. Here, the need for the
state is less pressing, as much economic exchange occurs
within the group; however, due to historical circumstances
such as foreign occupation or war, there may be need for
public goods more broadly construed. This may give rise to
mass social and political movements that can have
profound implications for the nature of the state. For
example, members of large and distinct kinship groups who
take part in a large-scale independence movement may be
led to support a large state once the foreign occupying
power is expelled. These possibilities will surface next,
when we map the theory onto the specific circumstances of
different countries.

19.5.2 Mapping Theory onto the Country Case Studies

In our discussion, it will be helpful to keep in mind the 2 ×
2 matrix table 19.2, that covers the cases of high/low
fractionalization and small/large bridging capital. We will
use this table as a lens through which to view the historical
experience of different countries. This discussion will lead
us to classify the following countries Brazil, China, Congo,
Egypt, India, WEIRD countries, and South Korea in a table
that is represented as table 19.3.

Table 19.3 
Countries’ experience: Summary



Let us start with the top-left cell in table 19.2–19.3,
which depicts a society where fractionalization is low and
bridging capital is high. Let us discuss the experience of
India, China, and South Korea in this context.

In the case of India, the mass independent movement
against British rule led by the Congress Party (and the
associated social reform movements) helped build ties
across the different castes and region-based groups that
dominate Indian society (for a discussion of this process,
see Varshney [2001]). These ties allowed the Indian
Constituent Assembly to draft a progressive constitution for
independent India that created a federal country with a
strong central government. Seen through the lens of our
model, at this moment in time, India was a society with
large groups (small fractionalization) but high bridging-
capital due to the broad-based freedom movement. In the
early 1950s, this bridging civic capital helped the country
to create a large developmental state. In the early twenty-
first century, the state continues to be heavily involved in
the economy (as we noted, some of the largest firms are
state controlled). The rapid economic growth over the past
twenty-five years has also given rise to a large, diverse, and
dynamic private sector, but private-sector firms typically
form part of family-based conglomerates reflecting the
larger presence of kin-based groups in Indian society.
Democratic politics have matured, but voting often takes
place along caste lines. Today, in the early twenty-first
century, India is a country with strong kinship groups and a
state that is deeply involved in its economy. The centrality
of castes and region-based groups has led some observers
to argue that bridging civic capital ties have eroded. Our



model would predict that this erosion of bridging civic
capital would lower state capacity. For a notable recent
articulation of this view, see Acemoglu and Robinson
(2019).

The configuration in the top-left cell of table 19.2 is also
helpful to understand the experience of China. The long
history of a centralized state and foreign occupation of
parts of China by European powers in the nineteenth
century and by Japan in the twentieth century is an
important part of the historical background. The
communist takeover of China in 1949 was accompanied by
a mass political movement that mobilized millions of people
scattered across the country who were traditionally
affiliated with lineages and clans. We may interpret this
mass mobilization as a form of extensive bridging ties,
something that made possible the creation of the Chinese
state. Indeed, throughout the 1950s and 1960s, to assert
itself, the state attempted to weaken traditional lineages
and clans (e.g., cousin marriage was made illegal).
However, market reforms implemented after 1979 have led
to a revival of traditional lineages/clans and regional
networks. These networks have been an important part of
the extraordinarily successful production clusters that have
fueled Chinese economic growth. Moreover, close ties
between the various layers of the state and lineages are an
important feature of contemporary China. In the early
twenty-first century, China is a country with kinship groups
that are reviving and a strong state. We note that we don’t
have a model of decision making in a communist state so
strictly speaking the experience of China lies outside our
purview; the process in China can be seen as an instance of
an ‘authoritarian transition’ in the words of Huntington
(1968). For evidence on these social networks and their
interactions with the state; see Allen, Qian, and Qian
(2005); Dai, Mookherjee, Munshi, and Zhang (2020); and
(Bai, Hsieh, and Song 2020a, 2020b).



In South Korea, kinship ties based on extended family
relations are an important feature of the society, but the
Japanese occupation in the early part of the twentieth
century and the Korean War in the 1950s led to a strong
nationalist ethos. This ethos brought together different
lineage groups and that helped make possible a strong
developmental state led by a sequence of generals (i.e.,
Park Chung-hee, Chun Doo-hwan, and Roh Tae-woo) who
undertook large-scale land reforms and supported the rise
of kinship-based conglomerates (this experience may be
regarded as another instance of ‘authoritarian transition’,
Huntingdon [1968]). Over time, the economy has
prospered, and today, South Korea is one of the most
technologically sophisticated countries in the world.

We next take up the bottom-left cell in table 19.2, with
high fractionalization and high bridging capital. The theory
predicts that these are the ideal circumstances for high
taxes that support a large and effective state. These
conditions describe WEIRD societies such as the US,
Australia, New Zealand, and most of North Western
Europe. Much has been written about these countries: the
limited scope of kinship groups, the individualist
psychology of their people, and the strength of out-group
ties. These societies exhibit sustained economic
performance, as summarized in figure 19.6.

Next, we take up the bottom-right cell in table 19.2, with
high fractionalization and weak bridging capital. The theory
predicts that a democratic state may fail to deliver on the
demands made on it. However, kinship groups are small, so
valuable exchange would often be with outsiders, and it is
subject to high transaction costs. This failure of a
democratic state to deliver creates circumstances that are
ripe for alternative forms of governance. We use this cell to
understand the experiences of Russia and Brazil.



In Russia (and other former communist countries in
Eastern Europe), kin-based groups and bridging capital are
both weak. This is partly due to its precommunist history,
but over its long period of rule, from 1917 to 1990, the
Communist Party actively sought to eliminate political
opposition and restrict associational life (Putnam, Leonardi,
and Nanetti (1993) and Fukuyama [1995]). We next draw
attention to a subtle but very important relation between
political and more general civic associations.
Among all the peoples where political associations are prohibited, civil
association is rare. It is hardly probable that this is an accident; and one ought
rather to conclude that a natural and perhaps necessary relation exists
between these two types of association. A political association draws a
multitude of individuals outside themselves at the same time; however
separated they are by age, mind, fortune, it brings them together and puts
them in contact. They meet each other once and learn to find each other
always.

I do not say that there cannot be civil associations in a country where
political association in prohibited; for men can never live in a society without
engaging in some common undertaking. But I maintain that in a country like
this, civil associations will always be very few in number, weakly conceived,
unskillfully conducted, and that they will never embrace vast designs or will fail
when they want to execute them 
(Tocqueville [2004], pp. 496–8).

In a society with a long history of political repression and
correspondingly weak civic capital, a democratic regime
will support a small state capacity. Our theory suggests
that this state capacity may be much smaller than the
utilitarian optimum. This difficulty was visible in the years
immediately after the collapse of communism; and may
help us understand why democratic politics has struggled
to take root in post-communist Russia. Instead, the
outcome has been de facto one-party rule. The following
comment from Putnam, Leonardi and Nanetti (1993) has
turned out to be prescient:
Many of the formerly Communist societies had weak civic traditions before the
advent of Communism, and totalitarian rule abused even that limited stock of
social capital. Without norms of reciprocity and networks of civic engagement,
the Hobbesian outcome of the Mezzogiorno–amoral familism, clientelism,



lawlessness, ineffective government, and economic stagnation seems likelier
than successful democratization and economic development. Palermo may
represent the future of Moscow. 
Putnam, Leonardi, and Nanetti (1993, p. 183).

Turning to Brazil, at the start of the twentieth century, it
was a very diverse society constituted of immigrants from
different parts of Europe and Africa (and with a long
history of slavery). Our discussion in section 19.2 suggests
that Brazil has weak kinship groups and high
fractionalization. At the same time, generalized trust is very
low. These circumstances make it very difficult for society
to sustain an accountable democratic state. Indeed, at the
start of the twentieth century, there was a long period of
very limited franchise, one-party rule, and military
dictatorship. Since 1988, Brazil has had regular elections,
but its economic record is uneven and its political situation
remains uncertain.

Finally, we turn to the top-right cell in table 19.2, with
high fractionalization and weak bridging capital. The theory
suggests that democratic politics will struggle to support
an effective state in such conditions. Depending on the
specific circumstances of a country (such as conflicts with
neighboring countries), this can lead to either continuing
poor governance or the rise of dictatorship. Let us use the
theory to understand the experiences of the Democratic
Republic of Congo (hereafter Congo) and Egypt.

Consider Congo: we discuss the experience in the years
after 1960 (the year that it won independence from
Belgium). Independence led to a period of instability
between 1960 and 1965, when Joseph-Desire Mobuto took
power. Our discussion in section 19.2 drew attention to the
high fractionalization and the long period of large-scale war
in Congo. The Great War of Congo and the accompanying
disruption of ordinary life suggest that the country has
found it difficult to create an effective and accountable
state. The circumstances of Congo are special in some



respects—such as the very rich mineral wealth and the
complicated overlaps in ethnic groups with neighboring
countries—but the difficulties of creating an effective state
are in line with our theory.

Turning next to Egypt, we note that it gained
independence from Britain in 1922. Our discussion in
section 19.2 reveals a society with high rates of cousin
marriage and cousin marriage and strong kin-based
groups. After a brief period of multiparty politics, from
1956 onward, Egypt has had a combination of military
dictatorship and one-party rule. This has been accompanied
by restrictions on political activity and limits to associations
(the long-standing ban on the Muslim Brotherhood is one
example). The history of Egypt through the twentieth and
early twenty first century is one with a sequence of military
dictatorships. These military dictatorships arose, in the first
instance in the 1950s, when bridging ties were weak. But
the dictatorships have discouraged political associations
and have declared large civic organizations (like the
Muslim Brotherhood) illegal. As they discourage political
associations, they have also, following the observations of
Tocqueville noted above, placed limits on the growth of
civic associations.

Our theory suggests that a democratic society with low
fractionalization and weak civic capital will struggle to
support large state capacity. The failure of the 2011
democratic uprisings to lead to a sustainable democratic
state may be seen in this perspective.

19.6 Reading Notes

The study of the role of culture in shaping economic change
has distinguished antecedents; a prominent early study is
Weber (2010). Kinship groups are an important component
of culture. Indeed, Max Weber himself emphasized the
importance of the role of families in his study of Chinese



society (Weber [1951]). In chapter 18, on trust, we
concluded by noting the tension between local (group-
specific) trust and generalized trust. In that chapter, the
focus was on culture and social relations. This chapter
takes the discussion one step further by interpreting
culture as consisting of a composite of beliefs and social
structure, and by locating it within a broader conceptual
framework that includes the market and the state. Here,
the focus is on understanding how culture interacts with
markets and the state in shaping economic performance.

We begin by providing an empirical background to the
relationship between the various types of kin-based
institutions and measures of trust and values (such as
universalism). This is a subject that been studied in many
disciplines, including anthropology, sociology, political
science, and economics, as well as the theory of cultural
evolution. The research draws on a wide range of
intellectual traditions and theoretical and empirical
methodologies. It is clearly impossible to do justice to this
vast body of scholarship within a single chapter. The goal
here is to provide leads into the different areas of work. For
economics, see Enke (2019); Guiso, Sapienza, and Zingales
(2006); Greif and Tabellini (2017); and Guiso, Sapienza,
and Zingales (2016). For sociology, see Peng (2004). For
political science, see Fukuyama (1995); Putnam, Leonardi,
and Nanetti (1993); and Banfield (1958). Cultural evolution
researchers and business scholars have explored this
subject extensively; see Schulz, Bahrami-Rad, Beauchamp,
and Henrich (2019) and Trompenaars and Hampden-
Turner (1998). Henrich (2020) offers a comprehensive
overview of the research on this subject.

In a sequence of interesting papers, Alberto Alesina and
his collaborators explored the relation between the family
and political and economic activity. Alesina and Giuliano
(2010) construct a measure of the strength of family ties
for over 70 countries. They construct this measure with the



help of individual responses from the World Values Survey
on the role of the family and the love and respect that
children need to have for their parents. They find that when
family ties are strong, there is more reliance on home
production and less participation in market activities,
especially for youngsters and women. Strong family ties
imply a stricter division of labor, with the man working in
the market and the woman working at home. In line with
this practice, women’s education is lower with strong
family ties, and fertility levels are higher. Stronger family
ties support higher levels of informal insurance, and this
substitutes for insurance provided by the state. Family ties
can better provide support if extended families live close to
each other: this in turn leads to lower geographical
mobility. Finally, and in line with the discussions in this
chapter, individuals in families with strong ties trust their
own family members more but nonfamily members less. In
a follow-up, Alesina and Giuliano (2011) show that a larger
role for the family lowers civic engagement and political
participation.

We also have presented Robert Putnam’s study of civic
community and democracy in Italy. A large body of
subsequent work has documented the robustness of the
positive relation between the quality of civic community
and local government and the persistence of civic
traditions, using rich sets of data from different parts of
Europe; for instance, see Henrich (2020) and Guiso,
Sapienza, and Zingales, (2016).

We then moved beyond kinship and trust and take up the
relation between kinship and economic performance. The
empirical work is vast and spans many disciplines. As
before, due to space considerations, the discussion in the
chapter is very short and somewhat narrowly focused. in
our presentation, we draw upon Allen, Qian, and Qian
(2005); Dai, Mookherjee, Munshi, and Zhang (2020); Song,
Storesletten, and Zilibotti (2011); Fleisher, Hud, McGuiree,



and Zhang (2010); Nee and Opper (2012); Peng (2004);
Greif and Tabellini (2017); and Fukuyama (1995) for work
on China and other East Asian societies, upon Munshi
((2019); Beteille (1965, 1969); and Srinivas (1987) for work
on caste in India; and upon Munshi (2014) for an overview
of the role of communities in the development process.

Concerning the theory, our aim was to develop a
framework in which economic performance occupies center
stage and we can understand how culture, the state, and
markets contribute to it. The model discussed here is taken
from Bramoullé, Goyal, and Massimo (2022).

The modeling of the economic elements builds on the
concepts of formal institutions, transaction costs, and
asymmetric information. These themes lie at the heart of
modern studies of economic history and of modern
economic theory; for instance, see North and Thomas
(1973), North (1990), and Williamson (1985). The roots of
the idea that the state and market and kin-based groups
may substitute for or complement each other in relation to
economic activity may be traced to Polanyi (1944) and finds
a more modern expression in Acemoglu and Robinson
(2019) and Fukuyama (1995). That they may be substitutes
is suggested by the empirical evidence from the recent
development experience of a number of large countries
such as China and India. Our formulation of these ideas
draws on the economic theory of strategic substitutes and
complements (Bulow, Geanakoplos, and Klemperer, [1985])
and on the more recent applications to formal and informal
institutions; for instance, see Gagnon and Goyal (2017) and
Kranton (1996). Finally, we draw upon Besley and Persson
(2013) for our modeling of the politics of taxation and the
role of the state, and upon Alesina, Devleeschauwer,
Easterly et al. (2003) in our formulation of fractionalization.

19.7 Questions



Consider the model of state capacity discussed in section
19.4. Suppose that the function f(T, K) = a(T + K)α, where α
∈ (0, 1).

  1.  Suppose that F(T, K) = a(T + K)α, where a > 0.
(a)  Show that this function satisfies assumption 19.1.
(b)  Show that  is monotonic in T.
(c)  Show that if there is a stable outcome with positive

tax rates, then the median tax rate satisfies

This in turn means that

if this value is positive.
(d)  Argue that there is a threshold K** such that if K >

K**, the median tax rate equals 0.
(e)  Show that the median voter’s preferred tax rate, tm,

is decreasing in K and decreasing in the size of their
group, sm, and their income, ym.

(f)  Show that optimal taxes are decreasing in K and in
the size of the median individual’s group size, sm.

(g)  Impersonal exchange appears if F(tmY, K) > r. In
other words,

Show that when K > K**, t* = 0, xi = 0, individual
utility is



In this case, everyone opts for kin-based group
exchange, and therefore its share in total exchange
equals 1.

(h)  If K < K** and equation (19.50) is satisfied, then in a
stable outcome with positive tax rates xi = 1 for all i
∈ N, t* > 0. Show that in this case, individual utility
is

Show that in this final case, the share of kin-based
exchange is

  2.  Consider the model of democratic government
described in section 19.4.2. This question explores the
effects of group composition on democratic outcomes.
Suppose that there is one large group, S, and several
small groups of size s. Then the average group size lies
strictly between s and S. Discuss the conditions—on
group sizes—under which the majority tax rate and the
size of the state would be larger and smaller than the
utilitarian optimum, respectively.

  3.  Consider the model of state capacity described in
section 19.4.
(a)  Show that utilitarian tax rate is higher than the

democratic tax rate if sd ≥s, where sd is the size of
the median voter’s group, and s is the average size of
a group.

(b)  Construct an example for which the democratic tax
rate is higher than the utilitarian optimum tax rate.

  4.  Corollary 19.2 develops conditions under which the
threshold for the positive tax rate is higher under the



democratic society than the utilitarian optimum.
Discuss the ways in which an autocratic government
can function and how it my be able to address the
problems of underprovision of state services.

  5.  Difficulties in sustaining democratic governments and
the persistence of authoritarian governments in many
countries are due to the lack of appropriate civic
capital, as embodied in horizontal associations between
citizens. Discuss.

  6.  “Democratic politics fail to deliver on economic
performance in societies with strong kinship groups.”
Discuss this statement with reference to the experience
of South Korea, India, and China.
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Local spillover, 128
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sources of, 669
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Markov matrix, 491
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Mass media, 405
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Maximum flow, 676–677
Maximum vs. minimum payoffs, 85–86
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Mimic attack strategy, 267, 268
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Minimally connected network, 97
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relation between optimal tax and civic capital, 734–735
state and civic culture as complements, 739–740
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solving games on networks, 129
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Negatively transitive, 115, 116
Neighbor, 9, 76–78, 126, 128
Nepal, 659
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no-arbitrage condition, 222
optimization problem consisting of three nested problems, 221
physical layout and productivity, 223, 223f

role of transport technology, 225–228
spatial configuration of cities, 225f

Out-degree, 30, 31f, 40, 483, 559
Out-degree distribution, 559
Out-group trust, 712
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bilateral equilibrium, 117
deviations where deleting or adding link, 117
existence of, 114-116
improving path, 114
intermediaries, 305, 306
pairwise equilibrium, 117
social coordination, 461, 461f, 462f
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Poisson random graph model, 79
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game with pure local effects, 129
human behavior, 126
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payoffs, 128
research collaboration among firms, 133
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Positive spillover, 132
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raison d’être, 69
social coordination, 458, 459f, 460

Premarket standardization, 295–300
Premodern China vs. medieval Europe, 699
Prestige centrality, 27
Price of anarchy, 251, 252
Price of stability, 122
Pricing
betweenness, 305–306, 308–313
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word-of-mouth advertising, 559–563

Product preannouncements, 282
Professional relationship, 4
Protestant Reformation, 689
Protest movements, 467–469, 472
Public goods, 131
Punic Wars, 384
Pure connectivity problem, 252–257
Pure connector outcome, 422, 423f, 430f, 432
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optimal defended network, 265
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ransomware, 260
reducing attack, 245–246
separating cut, 258
stealth worms and viruses, 261
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value of a network, 237, 239, 273
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Seeding strategies, 549–550, 551f

Seller-surplus network, 600
Separating cut, 258
Separator, 245, 246f
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Sharp transitions, 83, 92, 96, 99, 109
Side-deal proof equilibrium, 676
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Silk Road Fund, 231
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SIR. See Susceptible-infected-recovered (SIR) model
SIS. See Susceptible-infected-susceptible (SIS) model
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“Six Lectures on Economic Growth” (Kuznets), 663
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Small world phenomenon
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historical overview, 75–76
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small world model, 52
small world networks, 73–76
structure of small worlds, 75
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Social collateral, 672–685
analysis of equilibrium, 674–677
coalitional deviation, 673, 673f

common friends and favors, 682t, 683–684, 683f

common friends and large favors, 684, 684f

common friendship, 672–673, 673f, 681, 682f

favor exchange in South India, 681–684
five-stage model of borrowing, 674
high-value exchange environment/low-value exchange environment, 679–680
informal loans in Peruvian towns, 680–681
maximum flow/minimum cut, 676–677
minimum cut, 677
network closure, 678–680
repeated interactions and common friends, 684–685
side-deal proof equilibrium, 676
social punishments, 685
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weakest-link inequality, 675

Social coordination, 437–474
adoption of new norms, 437–438, 443–447
Battle of the Sexes game, 457, 472
cascade capacity, 445
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cohesion experiments, 458, 459f, 460
common knowledge, 467–469
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complete network, 440, 440f, 449, 462
conformism, 439, 442, 457, 462–464
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endogenous networks, 450–456, 460–464, 463f, 463t

Erdos-Rényi network, 458, 459f

exogenous networks, 447–450, 456–460, 463f, 463t
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heterogeneous preferences, 456–464
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log-linear best response, 464, 465, 471
minimum effort game, 454–456, 471
minority power experiments, 458, 459f, 460
pairwise stability, 461, 461f, 462f
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potential functions, 456–464
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protest movements, thresholds, and common knowledge, 467–469, 472
risk-dominant action, 439, 450, 452, 453, 470
social segregation, 460
special economic zones, 447
star network, 440, 440f, 450
stochastically stable states, 449, 450, 464–467
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Social influence
acquiring disproportionate amount of, 422, 497–498
agriculture, 478–479
climate change, 479
domestic and international politics, 481–482
early studies, 477–478
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fishing and sharks, 479–481
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information sharing and desire to be compatible, 558
model of communication, 489–502
representation of, by equation, 494
royal family, 422, 497–498
various networks, 495, 495f

Social informational spillover, 513
Social investments, 107
Social learning. See Communication and social learning
Social network. See also Law of the few; Social ties and markets
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Social saving methodology, 233
Social segregation, 460
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word-of-mouth communication (see Word-of-mouth communication)

Social welfare
adding links to network, 140
aggregate efficiency, 85
best-shot games, 137
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centrality and effort, 156
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defined, 137, 617
Pareto efficiency, 85
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intermediaries and platforms, 280
interventions to influence behavior, 162
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networked markets, 617
star network, 99
sum of individual utilities, 409
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q-core, 742, 745, 745t

Russia, 746t, 748–749
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social structure, 743
South Korea, 747–748
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ties creating bridges across groups in society, 745

South Korea, 699, 722–723, 747–748
Southwest Airlines, 32, 33f, 200, 201, 201t

Spanish empire in the new world, 384, 385f, 395–396
Spanish flu, 522–523
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Special economic zones, 447
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S-shaped adoption curve, 552
Standards war, 295, 296, 299
Star network
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center-protected star (CP-star), 255–258, 261–270
centrality and effort, 154f, 155f

clustering, 25
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efficient network, 104
financial system, 351, 352f

hub-and-spoke network, 17
intermediaries, 305–307, 311
law of the few, 404, 408, 409–410, 411, 412, 431
mean distance, 23
network security, 243, 255–258, 261–270
one-sided links model, 88f

one-way flow model, 87
pairwise stability, 96f

payoffs, 157f

production and supply chains, 181f, 182t

research alliances, 621–623
social coordination, 440, 440f, 450
social welfare, 99, 137
stochastically stable states, 449
two-sided links, 97f

two-sided links with decay, 97, 98f

wars, 361
State capacity. See Model of state capacity
Stealth worms and viruses, 261
Stochastically stable states, 449, 450, 464–467
Stochastic block model, 51
consensus dynamics, 505, 506, 506f, 507
homophily, 498–499
social influence, 495, 495f

social learning, 503, 504f

strongly connected network, 484, 484f

Stochastic matrix, 501
Straightforward standardization, 295, 299
Strategic complements. See also Complementarity
binary games on random network, 145, 148, 148t

centrality and effort, 155f

civic capital and government, 731
civic capital and size of the state, 743
competition among firms, 134
content of interaction, 147



continuous action games, 155f, 156, 156–157
criminal activity, 132
decentralized defense, 251
entering supply chains, 196
game with pure local effects, 129
human behavior, 126
individual efforts and neighbors’ efforts, 741
interventions to influence behavior, 162
investment game, 152
investments, 195
payoffs, 157f

research collaboration among firms, 133
state and civic culture, 739–740
wars, 364

Strategic substitutes
binary games on random networks, 148, 148t

centrality and effort, 154, 154f

civic capital and government, 731
civic capital and state capacity, 746
competition among firms, 134
content of interaction, 147
continuous action games, 155f, 156, 157
decentralized defense, 251
entering supply chains, 196
game of verification, 508
game with pure local effects, 129
human behavior, 126
information accuracy, 509
interventions to influence behavior, 162
investment game, 152
local public goods, 131
payoffs, 157f

research collaboration among firms, 133
wars, 364

Strategy of Conflict, The (Schelling), 470
Strength of weak ties, 574
“Strength of Weak Ties, The” (Granovetter), 103
Strict Nash equilibrium, 85, 87–91, 87–92, 419, 470
Strict Nash network. See Strict Nash equilibrium
Strong equilibrium, 118, 120
Strong law of large numbers, 496
Strongly connected, 41, 86
Strongly connected component (SCC), 41–42
Strongly connected network, 484, 484f

Strongly connected society, 485, 487–488, 489, 492, 494
Strongly stable network, 120
Strong rulers and hegemony, 390–392, 393f



Stuxnet, 260
Subcritical region, 109, 110, 110f

Substitutes. See Strategic substitutes
Supercritical region, 109, 110, 110f

Superspreader event, 520, 525, 526f

Supply chain, 190–195, 604. See also Production and supply chains
Surplus extraction by intermediaries, 609
Susceptible-infected-recovered (SIR) model, 520, 531–542
giant component, 536–539, 542
overview, 542
percolation, 533–538
random vaccination, 538–540
SIR process, 532, 532f

targeted vaccination, 540–542
tunneling in networks, 533, 533f

Susceptible-infected-susceptible (SIS) model, 520, 542–546
Symmetric Nash demand game, 609
Symmetric payoffs game, 378

Targeted vaccination, 540–542
Targeting customers, 558, 562, 588
Tarski fixed-point theorem, 328
Tax subsidy scheme, 165
Technological change, 279–283
Technology exchange agreement, 625
Tetracycline, 477
Theory of general equilibrium and oligopoly, 597
Third Samnite War, 382
3-core, 743, 744f

Threshold function, 55, 56
Thucydides, 379, 388
Tirole, Jean, 44, 44f, 701f

Trains and roads, 208–220
American railroads (see US railway system)
colonial India, 211–212
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level of activity, 40
limited knowledge of network, 141
linking, 83
local neighbors and extreme inequality in degree, 483
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