

Implementing Automated Software
Testing

IMPLEMENTING AUTOMATED
SOFTWARE TESTING

Neha Kaul

www.arclerpress.com

ARCLER
P r e s s

Implementing Automated Software Testing
Neha Kaul

Arcler Press
224 Shoreacres Road
Burlington, ON L7L 2H2
Canada
www.arclerpress.com
Email: orders@arclereducation.com

e-book Edition 2023

ISBN: 978-1-77469-608-8 (e-book)

This book contains information obtained from highly regarded resources. Reprinted material
sources are indicated and copyright remains with the original owners. Copyright for images and
other graphics remains with the original owners as indicated. A Wide variety of references are
listed. Reasonable efforts have been made to publish reliable data. Authors or Editors or Publish-
ers are not responsible for the accuracy of the information in the published chapters or conse-
quences of their use. The publisher assumes no responsibility for any damage or grievance to the
persons or property arising out of the use of any materials, instructions, methods or thoughts in
the book. The authors or editors and the publisher have attempted to trace the copyright holders
of all material reproduced in this publication and apologize to copyright holders if permission has
not been obtained. If any copyright holder has not been acknowledged, please write to us so we
may rectify.

Notice: Registered trademark of products or corporate names are used only for explanation and
identification without intent of infringement.

Arcler Press publishes wide variety of books and eBooks. For more information about
Arcler Press and its products, visit our website at www.arclerpress.com

© 2023 Arcler Press

ISBN: 978-1-77469-403-9 (Hardcover)

Neha Kaul is an experienced software consultant and technical author currently
residing in Sydney, Australia. She is the author of five technical books: Object
Oriented Programming with Java, Logging Frameworks in Java, Applications
of Data Mining in Engineering, Management and Medicine, Software Security:
Building Secure Software Applications and Analytic Methods of Systems and
Software Testing. She received her double Master’s Degree in Computer and
Communication Networks and Information Technology from Telecom SudParis
and University Paris-Saclay in 2016. She is a recipient of the prestigious
Telecom Scholarship for Excellence provided by Fondation Telecom, France.
She received the Bachelor of Engineering degree in Computer Engineering
from the University of Pune, India in 2011. From 2011 to 2014, she was
employed as a Software Engineer with Geometric Ltd, Pune, India. Her major
avenues of research include Advanced Java/J2EE frameworks, Automation
Testing, Software Quality, Software Security, Logging Frameworks, Project
Management and Leadership.

ABOUT THE AUTHOR

List of Abbreviations..ix

Dedication..xi

Preface..xiii

Chapter 1	 Software Testing: Definition and Importance... 1

1.1. What is Software Testing?... 2

1.2. Importance of Software Testing.. 2

Chapter 2	 Automated Software Testing.. 9

2.1. Introduction... 10

2.2. Benefits of Automation Testing... 10

2.3. Types of Automation Tests in Software.. 16

2.4. Different Automation Testing Software... 23

Chapter 3	 Katalon Studio.. 25

3.1. Introduction... 26

3.2. Installation... 26

3.3. Practical Implementations/Examples.. 38

Chapter 4	 Watir.. 111

4.1. Important Watir Commands and Terminology.................................. 112

4.2. Watir Installation... 114

4.3. Examples... 127

Chapter 5	 Ranorex Studio... 191

5.1. Setup and Installation.. 192

5.2. Ranorex Studio Basics.. 199

5.3. Examples... 201

	 Bibliography... 255

	 Index.. 259

TABLE OF CONTENTS

LIST OF ABBREVIATIONS

API		 application programming interface
REPL		 read-eval-print loop
TDD		 test-driven development
UI		 user interface

DEDICATION

To my wonderful husband, Sibin, you have been a source of constant support and
encouragement.
To my parents, Virender and Anita, who always pushed for tenacity.
To my sister, Nidhi, for your wisdom and unconditional love.

Software systems are an essential component of our day-to-day lives. Software has
morphed into one of our most basic necessities. We depend on software to accomplish
routine tasks and activities in our lives. The impact that software has made in this world
is enormous. Software applications are engaged on a large scale in both essential and
non-essential sectors across the world. The immensity of the involvement and impact of
software in the world is enormous. Software applications and systems help in complet-
ing complex tasks in an easier and cost-effective way which has improved the quality
of life of millions of people.

The relevance of software will only increase in the future. Software will continue to
increase in complexity as it is going to be used to solve the biggest problems faced by
the world. It is a proven fact that as the complexity of software rises, the challenges
associated with software testing and software maintenance will subsequently rise too.
Complex software solutions created to solve complicated problems are destined to have
an element of complexity in the process of testing as well. It is a known fact that there is
a direct relation between the quality of a software system and testing. Effective testing
is thought of as a measure of efficiency and quality of software. Testing is a vital non-
skippable step in the software development lifecycle.

The field of software testing has grown considerably since its origin in the early 1900s.
Testing of software helps instill confidence in the quality of the software to its users and
stakeholders. It is advisable that software be evaluated and tested thoroughly as it is vul-
nerable to a range of potential attacks that may be of a malicious nature. Comprehensive
testing and evaluation of any software solution is paramount to identifying vulnerabili-
ties in the system and shield it from potential attacks. The lack of quality testing is one
of prime reasons for the failure of software systems resulting in significant losses for
the stakeholders, clients, and users. One can assume with certainty that software testing
is a determining factor in the success of a software solution.

Over the last few decades, the field of software testing has grown exponentially. A
branch of software testing namely automation testing has helped reshape the way in
which testing is done. Automation testing is the exercise of executing tests automati-

PREFACE

cally in a repetitive manner. This branch of study concentrates of execution of repetitive
tests, management of the test data and the utilization of the results to ameliorate and
improve the quality of software. In this book, we will investigate the automation testing
field within software testing. The advantages of this type of testing will be discussed in
brief. Further, different software solutions that perform automation testing will be pre-
sented and examined in this book. The implementation of different automated software
systems will be presented in detail. Detailed practical implementations of automated
software applications covering different types of testing scenarios have been provided
in this book. This book assumes that the audience is familiar with the basic concepts of
software testing.

SOFTWARE TESTING: DEFINITION
AND IMPORTANCE

1

CONTENTS
1.1. What is Software Testing?... 2

1.2. Importance of Software Testing.. 2

CHAPTER

Implementing Automated Software Testing2

In this chapter, we shall investigate the definition of software testing in brief
and the importance of software testing in the SDLC lifecycle.

1.1. WHAT IS SOFTWARE TESTING?
Software Testing is an activity of evaluating a software system and its
components to check if the software system meets its specifications. It can
be described as the process of examining software with the intention of
verifying whether the requirements have been met by the software under
test (Beizer, 2003).

In elementary terms, it can be described as an activity or procedure of
running/executing a software application or system with the purpose of
pinpointing any errors, bugs, gaps, or missing/incomplete requirements that
were not present in the initial requirements.

The definition of testing according to the ANSI/IEEE 1059 standard is
(Singh and Singh, 2012):
“A process of analyzing a software item to detect the differences between
existing and required conditions (that is defects/errors/bugs) and to evalu-
ate the features of the software item.”

The two main goals of the process of software testing are:
•	 Verification and validation of the requirements; and
•	 Bug detection to improve the quality of the software.
Based on the way in which tests are carried are out and who/what carries

out the test, software testing is divided into two broad categories: manual
testing and automation testing.

1.2. IMPORTANCE OF SOFTWARE TESTING
Software Testing is considered to be an important part of the software
development life cycle. The need for software testing originated from the
desire to provide some proof that a software system works as required. The
need to prove the validity of software led to the creation of Software Testing
as a discipline. The initial implementation of software testing demonstrated
the benefits of testing to the software community which made it very popular
in the software community. In addition to detecting bugs/errors with the
intention of improving the quality of the software, testing also helped with
providing metrics regarding quality of the product.

Software Testing: Definition and Importance 3

Some of the advantages of software testing are:
•	 Early Detection of Errors/Bugs: Software testing helps find

errors early in the software development process so that fewer
errors or bugs are found once the product has been developed.
When a software product is in the development phase, there is
a possibility that one or more developers will make a mistake
during the coding process. There could be several reasons for
them making an error, such as lack of programming knowledge,
lack of expertise in the programming language and syntax,
improper understanding of the requirements, incorrect algorithmic
implementation, insufficient experience in the subject matter, or
just a simple human error. The software testing process helps
locate simple or complex errors/omissions in the code. In the
case of enterprises that adopt Agile and DevOps processes, the
testing process is iterative, and hence bugs are identified and fixed
promptly. This iterative process helps in effectively managing the
software development and helps understand potential areas of
complexity in the requirements, thereby improving the quality of
the product.

•	 Improved Product Maintenance and Product Performance:
After a software product has been released on to the market it
goes into its maintenance phase. Defects that come up after the
release of the product are handled by the maintenance teams.

In most cases, maintenance teams designed to handle service requests
post-product deployment are small in number. Therefore, should there be
a large number of defects reported after the deployment of the software
product, the maintenance team would not be well-equipped to handle the
workload and become saturated with maintenance-related work. If they are
unable to address all the requests coming their way in a timely manner,
customer satisfaction could be threatened. Higher number of defects found
after the product is in the hands of the customer can further damage customer
and stakeholder relations. Furthermore, a significant number of defects
could necessitate use of additional resources to help fix the defects leading to
monetary losses. By use of software testing methodologies, early detection
of issues is possible which helps in the maintenance phase of the product.
If the product has been well tested and is of good quality, the number of
defects is therefore less, and the maintenance team’s job is reduced. A well

Implementing Automated Software Testing4

tested software product is highly likely to have an exponential success rate
and generate only trivial issues after it has been released in the market.

Along the same lines one can say that a product that has been thoroughly
tested will generate good results. Needless to say, but to incur a gain on
the financial markets, a product must be of good quality and perform
exceptionally well which makes testing absolutely indispensable. A software
product will do well on the market if it functions correctly and produces
fewer defects (Mills, Dyer, and Linger, 1987). This can be achieved only
through thorough testing. During the continuous examination by means
of software testing, the product will undergo repeated testing throughout
its lifecycle, weeding out unwanted bugs as and when they are detected.
The product is validated and re-validated over time increasing its accuracy.
More the software is tested; more it is understood and examined critically
which leads to better performance. An oversimplification of this statement
is – a software product that is well tested will perform well. This can only be
attained by the help of software testing.

•	 Enhanced Product Quality: In order to realize the view of the
software proposed by the client or stakeholders, it is highly desired
that the system do what it is supposed to do in an efficient manner.
The software development phase must correctly implement the
software requirements correctly to attain the desired effect for
the customer. In the end, a software product is mostly provided
as a service to the customers and hence it is essential that the
product delivers the value promised to the customer. This is
where software quality comes into place.

Software testing is a precursor to software quality as it validates the
requirements and the functioning of the software system. Tests performed
in a repeated manner on the software system assure that the most common
use case scenarios have been covered. This helps in providing a product that
functions well and does not fail during execution. Rigorous testing ensures
that scenarios of execution of the software with different inputs have been
done and that the software matches its expectations. The more a software
application is tested, the lesser the chances are of finding a major flaw or
defect, thereby guaranteeing the quality of the product.

Furthermore, software testing can uncover hidden or tricky issues
resulting in an added benefit to the overall health of the software product.
Moreover, a software product that is sufficiently tested produces better
results and is more reliable. Acquiring accurate results of execution is an

Software Testing: Definition and Importance 5

excellent measure of the quality of the software product. The better the
product is tested, the better it performs consequently improving its quality.

•	 Cost Effective: Contrary to the popular belief, software testing
is successful in reducing long terms costs of a software product.
The development of a software solution is a complex process
made up of several stages in its life cycle. If issues or bugs are
detected during the initial phases of the development cycle,
the cost of rectifying the mistakes is less. As the stages of the
software development process move towards release it becomes
harder and costlier to correct errors. An error found after the
product has been released would incur maintenance costs and
costs pertaining to releasing an updated version of the software.
A similar defect found in the development phase would not cost
the same. Testing done at an early stage in an iterative manner is
helpful in identifying all possible defects before the product is
handed off to the users.

Issues found after the software product has been released incur losses
that are not just of a monetary nature. In additional to reduced sales of the
product due to its poor quality, if an application has several defects that are
present in the final product there could be loss in terms of reputation and
customer satisfaction. If customers are not satisfied with the product, they
could switch to using other products of a similar nature. They could lose
trust in the company and be wary of entering into a professional relationship
with the same firm in the future which is less than ideal for the company.

Software testing, on the other hand, is an excellent tool for avoiding
such disastrous results. It serves as a pocket-friendly approach over time.
It is an investment that will benefit the project in terms of its budget and
quality. Additionally, proper testing uncovers more defects which in turn
reduces the maintenance costs which ends up as an economical decision in
the end. The price that is paid by implementing software testing practices is
definitely worth the returns acquired owing to the success of the well-tested
and accurately functioning software product.

•	 Customer Satisfaction: The primal intent of designing and
releasing a software product is to deliver a product that meets
the expectations of the customer. The goal of the entire process
of development is to provide the best possible product to the
customer and ensure that he is satisfied with the product. As the
customer/stakeholder is the one paying for the product, his/her

Implementing Automated Software Testing6

satisfaction is primordial to its success. The company providing
the software product, in turn, wishes to ensure this by providing
the customer the best possible experience while using their
product.

The experience the customers have with the product, directly and
indirectly, dictate the value of the software in the market. If the product
given to the customers is of a great caliber its value will only rise in the
market. If the product quality is trusted by the clients using the product, the
loyalty of the clients is gained. Additionally, if the product garners more
customers its success increases as chances of getting term clients rises.

A software product does not function properly more than 40% of the
time fails to gain the trust of the customer. A product that does not work at
all times, that has unusual behavior for the same inputs, is considered to be
unstable and unreliable. Unsatisfactory experiences with the product do not
help gain the customer’s confidence. It is important that user’s or customer’s
experience with the product is a good one, else they might end up looking
for other products in the market. Customer’s confidence can be gained if the
product performs well which can only be achieved through detailed testing.
Detailed and thorough testing is the only way to ensure that a customer’s
experience with the product is a positive one. Repeated testing of different
use cases that will be executed by the customer is a good way to check if
the product works as designed for the customer. Testing done in an iterative
manner which is also continuous is ideally a good way to uncover defects,
fix them and retest them in the next iteration. It will help reduce defects,
improve the accuracy of the software system thereby paving the way for a
product of good quality which the customer can trust.

•	 Better Business: Any organization providing a software product
which is supposed to be released in the market is in the market to
provide a service to the customers and to make profit. The market
to which any software products are released is a critical place
where all new products are introduced to the public. Any company
that produces software products is counting on the software to do
well to make profits and stay afloat as a business. As discussed in
the previous point, customers do not look too kindly on software
systems that do not work correctly. They might be skeptical of
adopting the product if they are not completely satisfied with its
performance. If the product does not do well and is disliked by its
customers, there is a chance that the product fails in the market.
Failure on the part of the software could result in significant losses

Software Testing: Definition and Importance 7

financially. The company could end up failing and incurring a
debt. If things do not go well, they might even have to shut down
their operations. This usually happens in the case of start-ups or
small enterprises, and financial loss is a dire outcome for such
organizations.

An infallible way to assure that the company’s product and in turn the
company’s business performs well is to test it thoroughly. This process
would elevate the quality of the software product which in turn would gain
the customer’s support and appreciation which eventually would increase
the product’s global success. The only way of avoiding product failure is to
ensure that the product performs well is to ensure its quality, its validity and
establishing the client’s trust. This can be achieved with the help of software
testing. Testing the product in depth before introducing it would help deliver
a system that is robust, of good quality and user friendly. This in turn, would
help build long-lasting client relationships and retain the customers which
would help the business stay afloat and generate profit.

AUTOMATED SOFTWARE TESTING

2

CONTENTS
2.1. Introduction... 10

2.2. Benefits of Automation Testing... 10

2.3. Types of Automation Tests in Software.. 16

2.4. Different Automation Testing Software... 23

CHAPTER

Implementing Automated Software Testing10

This chapter introduces the concept of automated software testing. We cover
the benefits of automated software testing followed by its classification and
descriptions of each type of classification.

2.1. INTRODUCTION
Automated testing is the implementation of software tools to automate the
manual process of reviewing and validating a software product (Dustin,
Rashka, and Paul, 1999). Test automation is used to perform automation of
tasks that are repetitive in nature and perform testing tasks that are difficult
to perform in a manual setting. Automation Testing is a technique of software
testing which follows the basic principle of software testing which is to test
the product and then compare the expected results with the actual outcomes.
The difference is that in case of automated testing, this process is done by
means of an automation testing tool or test scripts.

Automated software testing is in most cases done by using an automation
tool. This is so that the quality assurance team can focus on other tests
that require manual intervention and input. Doing so will increase the test
coverage and render the project scalable. The automated type of software
testing is usually well matched and compatible with large-scale software
development projects that require testing of the same sections again and
again and projects that have already covered an initial iteration of manual
testing. In the next section, we look at some advantages of automated
software testing.

2.2. BENEFITS OF AUTOMATION TESTING
One of the rudiments of the agile delivery process is the development of
software using automation testing. The agile process aims to achieve
continuous delivery of the software and automation testing is the only
course of action to sustain such a continuous delivery model. Automated
software testing serves to increase test coverage, reduce the testing costs,
increase testing productivity, and achieve and sustain continuous delivery of
the software (Collins et al., 2012).

The earliest origins of automation in the field of software testing can
be linked to automation in the automotive industry in 1947 done by the
company Ford that created an automation department (Groover, 2020).
The automobile industry used the word ‘automation’ to expound the

Automated Software Testing 11

augmented use of automatic devices and controls in production lines that
were mechanized. The word ‘automation’ was conceived in 1946 by D.S.
Harder who worked as an engineering manager the Ford Motor company
at that point in time (Groover, 2020). Although this is a term that is widely
used in the context of manufacturing, it is also employed in other domains
to describe a wide range of systems that implement a considerable amount
of substitution of either electrical, mechanical, or computerized action for
human intelligence and/or action.

One of the earlier works in the field of automation testing was a paper
written in the year 1962 titled ‘Automatic program testing’ by G. Renfer
presented at the 3rd conference of the Computing and Data Processing
Society. This paper described the creation/programming of testing packages
that would be used for standardization of test procedures and promoted
efficient use of machine’s time (Renfer, 1962).

In the late 1900s (1970s–1980s) the field of automation testing got
more traction and test tools capable of automation soon became available
(“Test automation,” 2021). The field of automation testing has grown
exponentially since then. Now, it is a discipline, and the evolution of this
field has given birth to exciting career opportunities for students studying
software engineering and professionals alike.

Automated testing in software helps the process of software development
become more robust, productive, and capable of delivery in fast iterative
cycles. Let us look at some of the benefits of implementing automation in
software projects:

•	 Reduced Long-Term Costs: The initial cost of investing in
automation testing is a little steep which is a deterrent for most
companies. But contrary to popular belief, automation in software
testing has proven to be worth the primary payoff. It is proven to
be more cost efficient as compared to manual testing. Analysis
has shown that over a period this method of testing helps you
break even.

Although manual testing is needed in some cases, it does not allow the
execution of tests in a repetitive manner. Manually repeating tests is more
expensive, arduous, and demanding. Over time, repeating tests in a manual
fashion increases the cost of testing your software application.

On the other hand, in contrast to manual testing, automated software
testing is inexpensive because once the scripts for testing have been

Implementing Automated Software Testing12

generated; they can be reused any time with incurring any supplementary
costs. Despite the initial hurdles in terms of money for the adoption and
implementation of automation testing, the pros of automation outweigh the
cons, in this case, money. One must remember that the size and depth of
adoption of automation testing determines the return on the initial investment
in automation. The more one uses automation and creates tests, the higher
the returns accrued. The higher the number of test cases and test suites, the
better the returns on the money spent for adoption of automation.

What automation testing does is that it liberates time that could be
used to focus on cases where manual testing is necessary. Larger and more
challenging issues such as customer inputs, improvements, and functionality-
related topics can be covered by the quality assurance team. Automation
helps reduce the need for revising the code several times, and in due time, it
pays for itself. Furthermore, every time the code of the software is changed,
the automated tests can be re-executed as many times as desired with no
supplementary overhead and cost. Another way to be cost-effective by using
automated testing is to execute tests in a parallel manner. Instead of running
the test cases or test suite or test scripts individually, one can use parallel
testing, thereby allowing you to execute multiple tests that are automated at
the same time. This way, considerable amount of time and effort is reduced.
The sizeable reduction in terms of execution time of automated tests can
then be put to good use to take care of other needs of the project.

•	 Faster Software Development and Delivery: Automation
of testing in software allows one to execute tests that can be
executed repeatedly and with speed. This will save a lot of time
that would have been spent on manual testing. The testing team
would not have to wait for longer periods of time to obtain the
results of execution of the tests. They would obtain the results in
a few hours which would help them give feedback, if any, to the
development team rapidly so that they could correct the defects.
Once the code is changed, rerunning the tests would incur no
overhead; one must simply execute the scripts again. This not
only reduces time, but all reduces the development cycle and
helps release the product frequently. Owing to the rapid execution
of test cases and the repeatable quality of the tests, automation
easily augments the speed in which the software is developed.

Automated Software Testing 13

Key benefits of shorter testing times by the use of automation are as
follows:

i.	 Short Cycle of Development: As testing is faster com-
pared to manual testing, issues are found and fixed fas-
ter, which reduces the time of a regular iteration of sof-
tware development.

ii.	 Frequent Software Releases: As testing is done at a
faster rate, an iteration of the development cycle is com-
pleted in lesser time, which in turn helps release more
versions of the software, which is desirable (Mantyla et
al., 2015).

iii.	 Prompt Changes to the Application: Owing to the re-
duced testing time, any modifications or updates to the
software can be brought about in a rapid manner. Also,
as the development cycle is shorter with automated tes-
ting, any changes that are implemented can also be re-
leased quickly.

iv.	 Rapid Time-to-Market: As the development and tes-
ting life cycle is shortened by use of automation in the
software testing process, it is no surprise that the time
required to deliver the product is reduced as well (Li-
maye, 2019). Thanks to automated testing, the product
can be delivered to market in a shorter time frame which
works in the favor of the company. The use of automa-
tion in testing will boost the development process and
reduce the overall waiting time to release the product
into the market.

1.	 Growth in the Productivity of the Team: A distinct gain offe-
red by automating the tests is that no individual intervention by
a person is needed to execute the automated tests. This means
that the tests can be executed at night in bulk or in parallel and
the results can be repeated the next morning. As automated tests
execute on their own and in a repeatable manner, nobody from
the quality assurance team needs to be present in person and
run them and monitor them. This helps plan the testing pro-
cess so that automated tests are carried out at night, the results
monitored early next morning, and feedback given to the de-
velopment team immediately upon harvesting the results. This
reduces the time spent between execution of the tests and fee-

Implementing Automated Software Testing14

dback given to the development team. The developers do not
have to spend time testing extensively thereby saving their time
and allowing them to focus on other development focused tasks.
Same goes for the quality assurance engineers who can spend
less time on testing and focus on tasks that need human interven-
tion. In short, the team in general now has time to concentrate on
critical tasks rather than spend their time on testing which gives
their productivity and motivation a boost.

2.	 Test Accuracy: Automation testing reduces the human interac-
tion and intervention into repeatable tests to a minimum. This
eliminates the chances of human error that could be made by any
person during the testing an application repeatedly. One must
remember that executing and repeating the same tests repeatedly
can become monotonous for a quality assurance engineer. The
engineer can lose interest or become tired of doing the same
thing over and over again which could result in him making
mistakes and missing things. This can be eliminated by use of
automation in software testing. With automation, there are likely
to be no human errors during the process of testing as a machine
would be executing the tests. The test cases that are generated
by an automation tool are more precise and ideally cover all
the possible scenarios which will reduce the risk of failures. In
general, the tests conducted by use of automation have a high
chance of being accurate. Reduced error in the testing process
will lead to product releases that are free of defects.

This can also help the quality assurance team as it frees up their time
to focus on critical issues. They can switch their attention from doing a
repetitive and mind-numbing task to interesting critical issues such as
exploratory testing, customer needs, generation of additional automation
scripts and so on. The quality assurance team is free to perform manual
testing on areas they feel need more inspection and attention. The benefit of
using automation is that the time gained by the test engineers can be used
to draw insights from the tests that might not be noticed by test automation.

3.	 Higher Product Quality and Performance: As automating
testing gives us the capability of generating and executing thou-
sands of test cases in parallel at the same time, the software
application is tested extensively. The possibility of developing
automated test cases increases the number of tests that can be
executed thereby granting extensive coverage of the application.

Automated Software Testing 15

As more than thousands of tests can be executed simultaneously
and on different platforms and different devices, in-depth testing
can be guaranteed which would result in the software being a
better-quality product. Chances are that with increase in test co-
verage, most of the potential issues would be uncovered which
means that the product would perform well. Different hardware
and operating system configurations on which the software can
work will be covered with ease by means of software testing.
Many tests, including complex ones, can be created in a short
time which leads to producing a system that is of high caliber.

4.	 Rapid Feedback Loop: Yet another reward of using automa-
tion in software testing is that due to the rapidity of executions
of tests, the reports are obtained sooner. This means the deve-
lopers receive the reports and the feedback instantly and they
can then quickly set about correcting any issues found during
testing. They can immediately start working on issues raised
by the iteration of automation testing. They can react more qui-
ckly to the report rather than in a few weeks in case of manual
testing. They do not have to wait and recall what they coded a
week back as the results are received not long after the code was
written and therefore it is fresh in their minds. This helps the de-
velopers maintain the context under which they wrote the code.

This is primarily of use when the software system is already released
to the market. In such cases, any defects found post-deployment need to
be fixed quickly and testing such defects and their fixes manually will only
slow down the response time. Comparatively, when test automation is used,
any changes or modifications to the system will be done quickly and the
application will be released in a short span of time. This will help maintain
the customer’s trust. Thus, owing to the rapid feedback loop the productivity
and responsiveness of the team increases, which further provides better user
experience resulting in a satisfied customer.

5.	 Continuous Integration/Continuous Delivery and DevOps
(Development and Operations): Automation testing is one of
the pillars for the process of DevOps and continuous delivery of
software products. Currently, most software projects implement
the Continuous Integration/Continuous Delivery and DevOps
practices. In a delivery pipeline that is programed to perform
continuous integration and delivery of the software product,

Implementing Automated Software Testing16

there is a need to test every little code modification (or code
commit) done which is not possible unless one has automated
testing. It is not feasible to test every code modification quickly
and in an efficient manner when a continuous delivery pipeline
is implemented where a software release is delivered several
times in a week. To test the product effectively in the given time
frame is next to impossible which why is automation comes in
to save the day. Automation and CI/CD methodologies go hand
in hand as automation helps implement development cycles that
are short by allowing the quality assurance team to test each
delivery/version of the product rapidly. This way the product is
tested after every change in an efficient and fast-paced manner.
By using automation testing the implementation of CI/CD and
DevOps practices becomes effortless.

2.3. TYPES OF AUTOMATION TESTS IN SOFTWARE
To decide the automation test suite that you wish to implement in a particular
project, it is important to know the type of the automation test that you wish
to include in your project. The type of automation test helps define the test
suite that the project will implement. Depending on your software application
there are different types of testing that could be potentially automated.

Automation of tests can be classified in different ways based on the type
of functional testing, the type of testing (unit testing, regression testing,
etc.), or the phase of software development life cycle.

2.3.1. Automation Based on Type of Functional Testing
1.	 Functional Test Automation: Automated tests can be designed

based on the functionality of the application under test (Polo et
al., 2013). Functional testing is used to test the business logic
of the software system (Beizer, 1995). The logic with which the
system is implemented is tested using functional testing which
means that this type of testing can be automated as well. Auto-
mation of functional tests would entail the writing of scripts that
validate the business logic of the system. The test script meant
for automation must also be capable of validating the functiona-
lity that is expected from the application.

2.	 Non-Functional Test Automation: Another way in which
one can decide the automated test suite is to base the tests on

Automated Software Testing 17

non-functional aspects of the project. Non-functional tests are
used to test the non-functional parameters or requirements of the
software project. Non-functional parameters consist of parame-
ters such as performance, database, scalability, security, etc.
These requirements are static in nature which makes it easier for
them to be included in automated tests. Such requirements can
remain static or constant for the test suites or they can also be
scaled depending on the size of the software application and the
hardware and/or operating system requirements.

2.3.2. Automation Based on Type of Testing
There exist several types of testing such as unit testing, regression testing,
smoke testing, integration testing, security testing, etc. (Beizer, 2003).

Some of these types of tests that can be automated are:
•	 Unit Tests: It is one of the most common tests used and run

by developers. A unit is nothing but a test that is used to test
a particular part or particular functionality implemented by a
certain part of code (Pugh and Ayewah, 2007). In short, a unit can
be anything from a small method to a function. The gist is that the
unit performs a single functionality that needs to be tested. A unit
test is a script that tests a specific code by means of initializing
it, calling the different methods and functions in the code, and
checking the values returned by the method or function.

Unit tests are generally written by developers/programers locally as
a part of the standard TDD (test driven development) practices. Most of
the unit test are built to test the code of the software application and are
usually in built in the code of the software itself. Unit tests are written by
the developers but in recent times automation engineers or testers may be
required to write them as well. Such tests are used by developers to check
if the particular code behaves as it is supposed to without errors. Executing
a unit test and obtaining a positive result (no defects) means that the code
compiles well, that it does not have issues and that it is working as designed.
Unit tests do not target complicated and highly functional aspects of the
software application because they usually target just the code. This makes it
easier for one to automate these tests. The developer can just write the tests
and execute them whenever he wants.

•	 Integration Tests: This is the test that verifies whether all the
modules function correctly once integrated with one another. This

Implementing Automated Software Testing18

type of testing is used to test the software system by combining
all the modules or integrating all the modules and sub-modules
and checking whether the functionality desired is achieved after
the amalgamation (Beizer, 2003). An integration test, in most
cases, is a code level script which means that when writing such a
test we do not run the user interface (UI). An integration test tests
the entire process that involves several objects that interact with
one another.

Integration testing can be done through different means such as through
API testing or by use of mocking. An integration test would require a little
more work for its creation as the test team has to set up a lot of data and
consider complex processes and how different modules interact with one
another. This test might also require a mock database. Although the initial
configuration for an integration test is a little high, once automated, it is very
easy to add new modules to the software and test their integration. Therefore,
an integration test is considered to be good candidate for automation.
Additionally, to eliminate the initial effort required, one can always make
use of automation frameworks that reduce the initial workload.

•	 Smoke Tests: These are tests that are performed to ensure the
stability of the software application. It is used to guarantee
that the core functionality provided by the software is working
as expected (Chauhan and Kumar, 2014). This is a type of a
functional test that covers the important and crucial functions of
the software. This type of test is carried out to guarantee that the
application can be tested additionally does not ‘catch fire’ which
is where the name ‘Smoke Test’ comes from. Smoke tests are
generally tests that are run after the application build is done
(Antunes and Vieira, 2012). This means that after a full build is
done, smoke tests are run to check if the application still works at
its core before any more tests are run. This helps determine issues
in the application early in the development cycle.

Usually, smoke tests are not large in number which means that the
test suite would be small as well because only the core functionalities are
tested. But, as smoke tests are executed after every build, they are executed
several times. Hence, it is another prime candidate for automation. Since it
is repetitive in nature, automation will reduce the manual labor required to
perform the smoke tests. It makes sense to automate smoke tests as they are
a precursor to any further testing that needs to be performed by the quality
assurance team. Smoke tests are functional in nature and based on the type

Automated Software Testing 19

of software application being developed, critical features and paths can be
outlined to be tested and automated by the quality assurance team (Chauhan
and Kumar, 2014).

•	 Regression Tests: It is the test that is done when a new module/
component is added to check that the new module has not
impacted the existing modules in any way. It is a test that makes
sure that the new addition to the software has not affected the
existing modules and their features in any way (Beizer, 2003). In
other words, this test ensures that the old code works exactly the
way it worked before without any issues or ‘regressions.’ This
test is usually performed to ensure the validity of the application
after new changes have been added to it.

Regression tests are usually performed once a new module has been
added to the software system and been tested on its own. Unlike integration
testing which is carried out to check the functionality of different modules
with each other, regression testing is performed to check if old defects have
been reintroduced into the software application after some code changes
have taken place. This test is ordinarily done after the new modules have
been tested on its own which means that it is executed after every iteration
of the test process. As regression tests are performed quite often, they are
one of tests that can be easily automated. As regression tests are repeated in
each iteration where the main tests stay the same and a few tests are added
after each new module is tested, it is usually automated. Due to frequency of
execution of regression tests, most quality assurance teams try to automate
them.

•	 Security Tests: These are usually functional and non-functional
type of tests that check the software system for any vulnerabilities.
Security tests are done to uncover any weaknesses in the
system. They reveal potential areas of weakness in the software
application that can be exploited by someone with a malicious
intent. In most cases, security is critical to the acceptance of
the software application. It is done to ensure that that software
application being built is robust. This type of testing covers a wide
range of parameters such as authorization, authentication, safety
protocols, etc., that are used to test the system and help enhance
its security and increase robustness. The goal is to uncover signs
of weakness in the system.

Implementing Automated Software Testing20

The security tests may vary from application to application, but based
on the system being built, a set of security tests tailored for the system under
consideration can be proposed and executed. As such tests are usually static
in nature and would not change regularly, they can be easily automated.
The ways in which one tests the basic authentication and authorization of
a software application is a testing standard and hence security tests can be
automated with ease (Potter and McGraw, 2004).

•	 Performance Tests: It is a non-functional type of test that aims
to test the response of the software under test. This testing is one
of the most frequently implemented testing techniques amongst
all the different non-functional testing. A performance test aims
to observe the way the software application responds under
normal conditions. The intent is to check if the expected network
load is handled well by the system and that the performance falls
under acceptable standards. For instance, the response time to
open a website should ideally not be longer than a minute under
normal circumstances. If it takes more than a minute, it means
that it does not respond well to the load it receives. The load that
can be handled by the system is tested using performance tests.
Responsiveness and stability of the software to handle its regular
influx of requests is measured and evaluated by performance
tests.

In most cases, the expected system load and expected responsiveness
of the software is already determined before the development has started.
Performance tests determine whether the system responds the way it is
supposed to respond under regular working conditions. The parameters are
usually pre-defined and do not vary that much making performance tests a
good pick for automation.

•	 Acceptance Tests: These are tests that evaluate the software
system based on its functionalities, its behavior, and capabilities.
In short, these tests inspect the software system for its readiness
to be deployed and released to the market. This test checks
whether the business needs of the client are satisfied by the
system. Acceptance testing implies that the system is ready
to be evaluated by the potential users of the system (Humble
and Farley, 2010). It entails the testing of the acceptability of
the system by the end-user or the business user. The software
application is tested and evaluated by means of acceptance tests,
and it is decided by the stakeholders/clients/customers whether

Automated Software Testing 21

the software application is acceptable for the purpose of the final
delivery or not. Acceptance testing is additionally used to establish
the conformity of the terms of the contract and legal requirements
by the software system. Whether the software system satisfies its
legal and regulatory needs/standards is checked at this point of
testing, and an informed decision is made. A variety of things are
tested here, such as the end user’s acceptance, the contractual or
legal acceptance, the operational acceptance, and in some cases,
alpha and beta acceptance tests are carried out too.

The validity of the software system for real-time uses by a real-world user
in a target or simulated environment is performed in the case of acceptance
tests. The idea behind executing these tests is to assure that the software
application works the way it is supposed to and that it meets the needs of the
user. This type of test serves to ensure that the user can execute the business
processes seamlessly without complications. The intent is to guarantee that
the end-user/customer can interact with the software system in a hassle-
free and consistent manner. The software system is tested for acceptance
and validation of its requirements and to ensure that it works as mentioned
in the contract. The legal and contractual testing focuses on verifying that
the software system complies to the agreed-upon criteria of acceptance as
documented in the contract. Acceptance test focuses on the software and
makes sure that the ensure that regulatory standards at regional and national
level have been met by the software.

In simpler terms, acceptance tests are highly functional tests that
determine how acceptable the software is to the end-users (Humble and
Farley, 2010). This test is usually the final step in the testing process before
the software can be released. As acceptance criteria is pre-defined in the
contract, these tests can be thought of and determined quite early in the
software development phase. This makes it a good test for automation.
As the criteria for acceptance will already be known prior to the start of
development, the test cases and the test suite for acceptance can be prepared
in advance and hence easily automated which would reduce the load on the
quality assurance team.

2.3.3. Phase of Testing
Another way or type of automation is automation that is performed based
on the phase of software testing. The primary phases where testing can be
automated are:

Implementing Automated Software Testing22

1.	 Unit Testing Phase: As can be inferred from the name ‘unit tes-
ting,’ this phase of testing focuses on testing and evaluating in-
dividual units or components of a software application (Beizer,
2003). Unit tests are executed during the course of development,
ideally by the development team before they hand over the sys-
tem to the quality assurance for testing. Unit testing is usually
done manually by the development team (Beizer, 2003). This
phase of testing is ordinarily the first phase of testing which is
done mostly manually. But, with a little planning and discus-
sion, it can also be automated.

2.	 Application Programming Interface (API) Testing Phase: It
tests the business layer of the software application under test.
Software applications that are built on APIs and that support API
architecture usually employ API testing (Bangare et al., 2012).
Any software system that is based on API architecture can im-
plement API testing. This type of testing is meant to validate the
business layer of the software system by inspecting the response
time of the APIs used in the application for all the requests. Se-
veral test combinations of request-response for various APIs
that the application in built on are executed. APIs are akin to
middlemen that connects different systems used by the software
application in a smooth manner. Due to its nature, API testing
is usually done after the software development is complete to
guarantee that a smooth integration within the systems and the
software under test. API testing is a flexible process which could
be conducted prior or after the UI Testing phase. As API tests are
of a typically fixed nature that follows the theme of request-res-
ponse, it is an excellent contender for automation. As API tes-
ting is like integration testing, some teams include API testing
within their integration tests.

3.	 User Interface (UI) Testing Phase: This phase is the last phase
of testing in case of a large group of software projects. The UI
is the what the customers/users interact with and hence is an
important part of the testing process. UI testing is carried out
by quality assurance engineers or testers after the application
has been deemed to be stable by the other tests (McGraw and
Hovemeyer, 1996). This phase focuses on examining the fron-
tend of the software, its functionality and the look and feel of
the application. This phase is focused on replicating the most

Automated Software Testing 23

authentic user experience in a test environment and finding any
issues when a potential user interacts with the system. UI testing
is a functional test where the business logic is examined and
evaluated. The functionality and the UI elements or the frontend
of software system are tested tests (McGraw and Hovemeyer,
1996). The idea is to mimic a real-life scenario of use of the
software system and find any underlying issues in the working
of the software.

The UI tests can be automated as the scenarios are known to the quality
assurance team. Based on the specifications of the software system, UI
acceptance criteria can be defined at the time of validation of the software
design and updated after each iteration of the development cycle in case
of an agile process. An agile process can be useful when UI tests need to
be automated. Currently, automation of the UI tests is a practice that is
commonplace due to advanced software practices that help automation tests.

Now that we have covered different types of automation testing, we
shall delve in different software tools that can be used for the process of
automation testing in the next section.

2.4. DIFFERENT AUTOMATION TESTING
SOFTWARE
In this section we list some of the commonly used software for automation
testing.

Name Brief Description
Selenium It is an open-source automation testing platform that is recom-

mended for automation testing of web projects.
Katalon Studio It is a commercial automation testing tool that can be used for

testing API, web applications and mobile applications. Access
to the studio is free for individuals but the enterprise version
is priced.

Ranorex It is a commercial automation testing tool that helps automate
web applications, standalone applications, and mobile ap-
plications.

HP UFT (QTP) UFT (previously known as QTP) is a licensed, paid automa-
tion testing tool that can automate Web, Desktop, Mobile,
Oracle, SAP, and Java applications. This tool is known for its
cross-browser testing capabilities.

Watir This is an open-source library developed in Ruby language
which can be used to automate web applications.

Implementing Automated Software Testing24

Telerik Test Studio Telerik Test Studio is a licensed, paid automation tool which
is used to test desktop, web, and mobile applications.

Appium It is an open-source test automation framework that can be
used for testing native applications, mobile applications, and
hybrid applications.

Serenity It is a free open-source library that aids in writing automated
acceptance tests.

TestComplete TestComplete is an automation test tool for GUI testing and
is capable of testing desktop, web, and mobile applications
(TestComplete, 2022).

Silk Test Silk test is a licensed automation tool for functional and
regression testing developed by microfocus which supports
cross-browser testing and can test desktop applications, web
applications, mobile applications, web applications, enterprise
applications and rich client applications.

Over the next chapters, we will study the following three automation
testing tools: Katalon Studio, Watir, and Ranorex Studio.

KATALON STUDIO

3

CONTENTS
3.1. Introduction... 26

3.2. Installation... 26

3.3. Practical Implementations/Examples.. 38

CHAPTER

Implementing Automated Software Testing26

In this chapter, we cover the automation tool Katalon Studio. This chapter
introduces Katalon Studio, covers its installation process, and them
demonstrates its use.

3.1. INTRODUCTION
Katalon Studio is a robust and easy-to-use automation tool which was
initially released in January 2015. It was first released with an engine that
was selenium-based. It is an automation testing tool that was designed
to create scripts for automation without having to code. The platform is
a simple and straightforward tool for automation that does not require in
depth knowledge of programming. It is an excellent automation tool that
supports testing on multiple platforms and allows execution of automated
GUI tests. Additionally, this platform permits execution of tests on a variety
of operating systems (Eriez, 2009).

Katalon studio offers desktop, API, Mobile, and Web solutions. Katalon
studio offers an excellent IDE that is easy to use and generate automated
test scripts (Eriez, 2009). It was initially released as a free solution but now
boasts of an Enterprise version that was introduced to provide additional
options. But the basic Katalon Studio version that was intended for
individual users still is free of charge (Katalon | Simplify Web, API, Mobile,
Desktop Automated Tests, 2022). In the upcoming section, we shall look at
the process to install Katalon Studio on your machine.

3.2. INSTALLATION
Katalon Studio is very easy to install on any machine of your choice. Here,
we install the version designed for individual users on a 64-bit Windows 10
operating system.

The steps followed are as follows:
•	 First, navigate to the Katalon studio website: Katalon | Simplify

Web, API, Mobile, Desktop Automated Tests.

Katalon Studio 27

•	 Go to Products and select the product ‘Katalon Studio’

•	 Select the free download option.

•	 The site will prompt you to create a free account.

Implementing Automated Software Testing28

We create an account and click on the ‘Get Started!’ button. You will
receive an email asking you to verify your account. Once your account is
verified, you can log into your account.

Once you log into your account you are directed to the following page:

Two options are provided namely Katalon Studio and Katalon TestOps.
We will be focusing on Katalon Studio in this book. Hence, we click on

the link that says, ‘Create your first test’ (‘Create Your First Test,’ 2022).

Katalon Studio 29

This will redirect us to the download page where the download will
begin instantly.

Once the download terminates, extract the package, and start the
installation by clicking on ‘katalon.exe’ which will launch the tool.

To activate Katalon studio, you will need to enter the credentials that
you used when signing up for the free account (Eriez, 2019).

Implementing Automated Software Testing30

Once the product has been activated, the Quick Guide screen is
displayed which guides you through the significant features.

At the end of the introduction, Katalon Studio suggests creating a new
project which we follow. Then, we proceed to creating and running a test
case as prompted by the quick guide by clicking on ‘Create and Run your
First Test.’

The steps followed are:

Katalon Studio 31

You are prompted to configure the endpoint. A simple POST request is
configured.

Implementing Automated Software Testing32

Further, we can set up authorization for granting access to the request.
We choose basic type of authorization.

We proceed to update the authorization information to the header.

We click on the HTTP header tab to check if the header has been updated.

Katalon Studio 33

The headers tab can be used to add additional headers. Once the header
is verified, we are prompted to check the request body.

As shown in the screenshot below, the request body is in a simple JSON
form.

Now that the basic parameters of the request are in order, we save the
request, and we can simply execute the API to test if it works. We click on
the play button at the top right corner of the request screen to execute the
request.

Implementing Automated Software Testing34

The response is shown in the response tab located right next to the
request tab on its right.

As we can see, we receive a proper response to the request.
We are now further prompted to add this test case to a test suite. Adding

to a test suite allows us more control over the test cases.

We click on the ‘+’ button to create a new test suite and add this test case
to the test suite.

Katalon Studio 35

We provide a name for the test suite and proceed.

The editor view of the test suite is presented, which allows to configure
the test suite.

We are directed to check the script view of the test suite. Here, we can
see the code that is generated when a test suite is created. If you wish to
program the suite in a specific way, it can be done from the script view.

We do not make any changes to the script and save the test suite. We
now proceed to execute the test suite by clicking on the play button at the
top as shown in the screenshot below:

Implementing Automated Software Testing36

The results of the test suite are shown in the log viewer section at the
bottom of the screen.

Once the test has been completed, we check if the request was sent
correctly by looking at test case results. We can see that the request was sent
correctly, and that the status code of the response was 201(OK).

We proceed to importing multiple requests from another source. We go
to the ‘Import API’ tab and click on ‘OpenApi2’ to open a sample API from
the sample source files.

Katalon Studio 37

We are led to a window that asks for the file location to import the API.
A pre-defined link is provided for the purpose of the demonstration. We
click on OK to import the API.

The addPet API is imported successfully into our repository. We double-
click to open the sample API we just imported.

As we can see from the screenshot below, the newly imported API looks
like the API we created and ran previously.

Implementing Automated Software Testing38

This ends the demonstration, and we can click on the ‘Clap!’ button to
advance to the end.

Additional tours are provided by Katalon that can be followed to learn
how to create tests for different types of solutions such as web, API, and
mobile.

The Quick Guide menu can be accessed again later from the Help menu
(Help → Quick Start Page). In the next section, we shall look at a few
examples that demonstrate how to use Katalon studio for developing test
cases and test suites for web services.

3.3. PRACTICAL IMPLEMENTATIONS/EXAMPLES
In this section, we learn how to use Katalon Studio with the help of some
examples.

•	 Example 1: Rest API Testing Using Katalon Studio: In this
example, we learn how to automate testing of restful web services
using Katalon Studio. We use a dummy rest API that is freely
available – JSONPlaceholder – Free Fake REST API (typicode.
com) (JSONPlaceholder – Free Fake REST API, 2022).

It is an online REST API provider that one can use whenever test/
dummy data is needed in your project (JSONPlaceholder – Free Fake REST
API, 2022).

The steps to test restful web services are as follows:
1.	 Open Katalon studio and create a new project.

Katalon Studio 39

2.	 Create a new web project.

Enter a name for the project and click on the OK button.
The project is created as shown below:

Implementing Automated Software Testing40

3.	 We now add the rest API to the project. To add the restful API to
this project, right click on object repository, then go to New →
Web service request.

4.	 The following window prompt for entering the details of the Web
service request pops up.

Katalon Studio 41

In this example, we will be using the ‘users’ resource from the online
rest API provider JSONPaceHolder. Hence, we give the name ‘GetUsers.’

We select the type of Request, RESTful in our case. We can also provide
the API URL (URL of the dummy REST API). The URL could be left blank
at this step.

We click ‘OK’ to create the request.
The request is created as shown below:

5.	 We now edit the request to update the URL, http method and
other API-related details.

Here, we have updated the URL to https://jsonplaceholder.typicode.
com/users, which is the GET request that gets all the users’ information as
follows:
[
{
“id”: 1,

Implementing Automated Software Testing42

“name”: “Leanne Graham”,
“username”: “Bret”,
“email”: “Sincere@april.biz”,
“address”: {
“street”: “Kulas Light”,
“suite”: “Apt. 556”,
“city”: “Gwenborough”,
“zipcode”: “92998-3874”,
“geo”: {
“lat”: “-37.3159”,
“lng”: “81.1496”
}
},
“phone”: “1-770-736-8031 x56442”,
“website”: “hildegard.org”,
“company”: {
“name”: “Romaguera-Crona”,
“catchPhrase”: “Multi-layered client-server neural-net”,
“bs”: “harness real-time e-markets”
}
},
{
“id”: 2,
“name”: “Ervin Howell”,
“username”: “Antonette”,
“email”: “Shanna@melissa.tv”,
“address”: {
“street”: “Victor Plains”,
“suite”: “Suite 879”,
“city”: “Wisokyburgh”,
“zipcode”: “90566-7771”,

Katalon Studio 43

“geo”: {
“lat”: “-43.9509”,
“lng”: “-34.4618”
}
},
“phone”: “010-692-6593 x09125”,
“website”: “anastasia.net”,
“company”: {
“name”: “Deckow-Crist”,
“catchPhrase”: “Proactive didactic contingency”,
“bs”: “synergize scalable supply-chains”
}
},
{
“id”: 3,
“name”: “Clementine Bauch”,
“username”: “Samantha”,
“email”: “Nathan@yesenia.net”,
“address”: {
“street”: “Douglas Extension”,
“suite”: “Suite 847”,
“city”: “McKenziehaven”,
“zipcode”: “59590-4157”,
“geo”: {
“lat”: “-68.6102”,
“lng”: “-47.0653”
}
},
“phone”: “1-463-123-4447”,
“website”: “ramiro.info”,
“company”: {

Implementing Automated Software Testing44

“name”: “Romaguera-Jacobson”,
“catchPhrase”: “Face to face bifurcated interface”,
“bs”: “e-enable strategic applications”
}
},
{
“id”: 4,
“name”: “Patricia Lebsack”,
“username”: “Karianne”,
“email”: “Julianne.OConner@kory.org”,
“address”: {
“street”: “Hoeger Mall”,
“suite”: “Apt. 692”,
“city”: “South Elvis”,
“zipcode”: “53919-4257”,
“geo”: {
“lat”: “29.4572”,
“lng”: “-164.2990”
}
},
“phone”: “493-170-9623 x156”,
“website”: “kale.biz”,
“company”: {
“name”: “Robel-Corkery”,
“catchPhrase”: “Multi-tiered zero tolerance productivity”,
“bs”: “transition cutting-edge web services”
}
},
{
“id”: 5,
“name”: “Chelsey Dietrich”,

Katalon Studio 45

“username”: “Kamren”,
“email”: “Lucio_Hettinger@annie.ca”,
“address”: {
“street”: “Skiles Walks”,
“suite”: “Suite 351”,
“city”: “Roscoeview”,
“zipcode”: “33263”,
“geo”: {
“lat”: “-31.8129”,
“lng”: “62.5342”
}
},
“phone”: “(254)954-1289”,
“website”: “demarco.info”,
“company”: {
“name”: “Keebler LLC”,
“catchPhrase”: “User-centric fault-tolerant solution”,
“bs”: “revolutionize end-to-end systems”
}
},
{
“id”: 6,
“name”: “Mrs. Dennis Schulist”,
“username”: “Leopoldo_Corkery”,
“email”: “Karley_Dach@jasper.info”,
“address”: {
“street”: “Norberto Crossing”,
“suite”: “Apt. 950”,
“city”: “South Christy”,
“zipcode”: “23505-1337”,
“geo”: {

Implementing Automated Software Testing46

“lat”: “-71.4197”,
“lng”: “71.7478”
}
},
“phone”: “1-477-935-8478 x6430”,
“website”: “ola.org”,
“company”: {
“name”: “Considine-Lockman”,
“catchPhrase”: “Synchronized bottom-line interface”,
“bs”: “e-enable innovative applications”
}
},
{
“id”: 7,
“name”: “Kurtis Weissnat”,
“username”: “Elwyn.Skiles”,
“email”: “Telly.Hoeger@billy.biz”,
“address”: {
“street”: “Rex Trail”,
“suite”: “Suite 280”,
“city”: “Howemouth”,
“zipcode”: “58804-1099”,
“geo”: {
“lat”: “24.8918”,
“lng”: “21.8984”
}
},
“phone”: “210.067.6132”,
“website”: “elvis.io”,
“company”: {
“name”: “Johns Group”,

Katalon Studio 47

“catchPhrase”: “Configurable multimedia task-force”,
“bs”: “generate enterprise e-tailers”
}
},
{
“id”: 8,
“name”: “Nicholas Runolfsdottir V”,
“username”: “Maxime_Nienow”,
“email”: “Sherwood@rosamond.me”,
“address”: {
“street”: “Ellsworth Summit”,
“suite”: “Suite 729”,
“city”: “Aliyaview”,
“zipcode”: “45169”,
“geo”: {
“lat”: “-14.3990”,
“lng”: “-120.7677”
}
},
“phone”: “586.493.6943 x140”,
“website”: “jacynthe.com”,
“company”: {
“name”: “Abernathy Group”,
“catchPhrase”: “Implemented secondary concept”,
“bs”: “e-enable extensible e-tailers”
}
},
{
“id”: 9,
“name”: “Glenna Reichert”,
“username”: “Delphine”,

Implementing Automated Software Testing48

“email”: “Chaim_McDermott@dana.io”,
“address”: {
“street”: “Dayna Park”,
“suite”: “Suite 449”,
“city”: “Bartholomebury”,
“zipcode”: “76495-3109”,
“geo”: {
“lat”: “24.6463”,
“lng”: “-168.8889”
}
},
“phone”: “(775)976-6794 x41206”,
“website”: “conrad.com”,
“company”: {
“name”: “Yost and Sons”,
“catchPhrase”: “Switchable contextually-based project”,
“bs”: “aggregate real-time technologies”
}
},
{
“id”: 10,
“name”: “Clementina DuBuque”,
“username”: “Moriah.Stanton”,
“email”: “Rey.Padberg@karina.biz”,
“address”: {
“street”: “Kattie Turnpike”,
“suite”: “Suite 198”,
“city”: “Lebsackbury”,
“zipcode”: “31428-2261”,
“geo”: {
“lat”: “-38.2386”,

Katalon Studio 49

“lng”: “57.2232”
}
},
“phone”: “024-648-3804”,
“website”: “ambrose.net”,
“company”: {
“name”: “Hoeger LLC”,
“catchPhrase”: “Centralized empowering task-force”,
“bs”: “target end-to-end models”
}
}
]

This dummy REST API returns a record of 10 users.
In addition to the URL, we can edit other information such as

Authorization, HTTP Headers, Request Body, etc. Since this is a dummy
API there is no authorization information entered. But, in real-life cases, this
information should ideally be provided.

6.	 To test this URL, we simply click on the play button located right
next to URL.

7.	 The response of the Request is shown in the ‘Response’ section
on the right end.

Implementing Automated Software Testing50

We can expand the Response window to see the response details as
follows:

We can confirm that the status of the request is OK (return code 200),
and that the response contains the data from the ‘users’ resource from
JSONPlaceHolder.

The response can be viewed in different formats such as XML, html,
and JavaScript.

8.	 Our API request is set; the next step is to create a Test case for
the API. To create a test case for this REST API, we go to Project
Section, right-click on ‘Test Cases’ and select New → Test Case.

Katalon Studio 51

The following window requesting the basic details of the new test case
is displayed:

We provide a name for the test case.

Implementing Automated Software Testing52

Once the name has been entered, click on ‘OK’ to create the test case.
The test case is created as shown below:

9.	 We now provide different parameters to test the API.
In this example, we provide three keywords/parameters that we use to

test the API and its response. Keywords are like test parameters that can be
used to program/configure the test case.

To add keywords, we click on the ‘Add’ button and click on ‘Web
Service Keywords’ as follows:

When we click on this, a new entry is added to our test case, and we can
select the keyword of our choice from the drop-down list.

Katalon Studio 53

The three Web Service keywords that we are adding in this example are
as follows:

a.	 Send Request: This is used to call the API URL. This keyword
is used to send an HTTP request to the web server ([WS] Send
Request, 2022).

To add the ‘Send Request’ keyword, we select it from the available
dropdown:

The following entry is added to the test case:

Implementing Automated Software Testing54

As we can see from the screenshot above, the Object is null here. We
edit the object to select the correct API Request.

In this example, we call the getUsers web service request that we created
previously as follows:

Additionally, we need to save the output of the request to a variable by
setting the ‘Output’ field. This variable will be used in next two keywords of
the test case. We edit the entry to add a variable name to the ‘Output’ field
as shown below:

Katalon Studio 55

b.	 Verify Response Status Code: This keyword is used to verify
response status code received from a call to a web service API
([WS] Verify Response Status Code, 2022).

To add this keyword, we click on the ‘Add’ button and select ‘Web
Service Keywords’ as done in the previous step.

We select the option ‘Verify Response Status Code’ from the dropdown:

A second entry is added to the test case as follows:

Implementing Automated Software Testing56

We now edit the input column to choose the input parameter
‘responseObject’ which is the ‘getUsersResponse’ variable defined in the
previous keyword/item and the parameter ‘expectedStatusCode’ which we
set to 200 (OK).

Once these values are set, we click on ‘OK.’ The changes are reflected
as shown below:

Katalon Studio 57

c.	 Contains String: This keyword as its name implies, verifies that
a particular text appears in the response received from a call to a
web service API ([WS] Contains String, 2022).

To add this keyword, we follow the same process as before: Add → Web
Service Keywords and then selecting the option ‘Contains String’ from the
dropdown list.

An entry is created as follows:

Implementing Automated Software Testing58

We edit the input column to add the string value that we wish to search
for as follows:

In the input parameters, first we set the ResponseObject parameter to
‘getUsersResponse’ which is the variable we created in step a. Then, we set
the value of the string that will be searched as part of the ‘Contains String’
keyword. Here we set the value to be ‘Leanne Graham’ which is the first
entry from API response ‘getUsers.’ Lastly, we set the ‘useRegex’ parameter
which indicates whether the given text is a regular expression. We set this
value to false and click on ‘OK.’

Once done, we click on the save icon at the top left of the screen to save
all the changes. The changes are reflected in the third entry as shown below:

10.	 The last step is to execute the test case. To execute this test case,
we simply click on the play button/icon at the top.

Katalon Studio 59

As observed from the image above, the test case is executed with
success. Details of the test case including the different keywords executed,
time elapsed, time taken by each keyword for execution, etc., can be found
in the Log Viewer tab at the bottom of the screen.

In the next example, we will create additional test cases followed by a
test suite.

•	 Example 2: Creating a Test Suite: A test suite is a collection of
test cases. This can be done by adding multiple test cases and then
executing the test suite in a single go.

In this example, we will learn how to create and execute test suites. First,
we will create another test case and then create a test suite that executes all
the test cases in the test suite.

The steps to be followed are:
1.	 In the current project, we first create a new API request that get

the details of a particular user by passing the user id in the REST
API URL. Go to Object Repository → New → Web Service
Request and create a new request.

Implementing Automated Software Testing60

We provide the following URL to get data of the user with the id 2:
https://jsonplaceholder.typicode.com/users/2.

2.	 To test this, we click on the play icon and execute the request.

As we can see from the above screenshot, the response contains details
of the user with the id 2.

3.	 We now proceed to create a test case for this API as follows by
going to Test Cases → New → Test Case.

Katalon Studio 61

We proceed to add the following keywords to this test case to test the
request: Send Request, Verify Response Status Code and Contains String.

a.	 Send Request:

b.	 Verify Response Status Code:

Implementing Automated Software Testing62

c.	 Contains String:

Now that the parameters of the test case have been added, we can execute
the test case.

Katalon Studio 63

As we can see, the test case executes successfully.
4.	 Now that we have a couple of test cases, we will proceed to create

a test suite in this step. To do this, we go to ‘Test Suites,’ right
click on it and go to ‘New’ and click on ‘Test Suite’ as shown
below:

The following window pops up:

Implementing Automated Software Testing64

We provide the name of the suite and click on ‘OK.’ The test suite is
created as shown below:

5.	 We now proceed to add the test cases to the test suite in this step.
To add test cases to the suite, we simply click on the ‘Add’ button at the

top:

A window that prompts us to select test cases from the current project
is displayed:

Katalon Studio 65

We select both the test cases and add them to the suite by clicking on
‘OK.’

The test cases are added to test suite.

6.	 To execute the test suite, we click on the play icon at the top.

Implementing Automated Software Testing66

The test suite containing the two test cases is executed successfully.
•	 Example 3: Verifying the Response Count: In this example, we

will study the use of the ‘Verify Elements Count’ keyword.
This keyword helps verify the number of elements that were expected in

the response of a web service request ([WS] Verify Elements Count, 2022).
In this example, we will add this keyword to the getUserDataTest test

case that we created in Example 1.
The steps are as follows:
1.	 Open the ‘getUserDataTest’ test case in Katalon Studio.

2.	 Click on ‘Add’ and select ‘New Web Service Keyword’ as shown
in the image below:

Katalon Studio 67

3.	 From the dropdown list, select the option ‘Verify Elements Count’

An entry is added to the test case as follows:

4.	 Double click on the input cell to open the Input dialog as shown
below:

Implementing Automated Software Testing68

5.	 Edit this dialog to provide the response and count value as
follows:

As you can see in the screenshot above, we have set the ResponseObject
as ‘getUsersResponse’ which is the variable that captures the result of the
request as defined in Example 1. As ‘getUsersData’ request returns 10 user
records, we set the value for the ‘count’ parameter to 3. Once we enter this
information, we click on ‘OK.’

The changes are made to the entry as shown below:

Katalon Studio 69

Click on the ‘Save’ button to save the changes to the test case.

6.	 Test the newly updated test case by clicking on the play icon.

Implementing Automated Software Testing70

As we can see from the screenshot above the test case executes
successfully.

•	 Example 4: Verifying the Element Property Value:
1.	 Open the ‘getSingleUserData’ test case in Katalon Studio.

2.	 Click on ‘Add’ and select ‘Web Service Keyword.’ From the
dropdown list, select ‘Get Element Property Value.’

Katalon Studio 71

An entry is added to the test case keywords list as shown below:

3.	 We click on the input cell to display the Input Window as follows:

4.	 We are prompted to enter the parameters response object
and the locator field. Here, the response object is the variable
‘getSingleUserResponse’ that was created in Example 2 when
we created the ‘getSingleUserDataTest’ test case. The locator
parameter is the used to specify the location of the JSON property
that we wish to locate in the returned data. Here, we provide the
value ‘email’ as this is the JSON path (location of the email field
in the response body).

In the test case ‘getSingleUserDataTest’, we get the details of the user
with the id 2. In this example, we will check if the element has the correct
value for the property ‘email’, which should be ‘Shanna@melissa.tv.’ To do

Implementing Automated Software Testing72

this, we enter the value ‘Shanna@melissa.tv’ in the last parameter, which is
the value parameter.

The Input has now been updated as follows:

The entry in the test case is updated as shown below:

5.	 The last step is the execution of the test case which can be
launched by clicking on the play icon at the top.

Katalon Studio 73

The test case is executed correctly, as visible in the screenshot below:

•	 Example 5: Verifying the Element Property Value with a
User-Defined Web Service: In this example, we will look at the
keyword ‘Element Property Value’ keyword. This keyword helps
check whether an element in the wen service’s response object
has the expected value for an element ([WS] Verify Element
Property Value, 2022).

In this example, we will define a new web service request and add this
keyword to test the property field in the response of this request.

The steps followed are:
1.	 First, we will use an online tool to generate a Rest API of our

choosing. In this example, we will use the tool Retool-REST API
Generator(https://retool.com/api-generator/) to create an API of
our own. We navigate to the site.

2.	 We build a dataset of our choosing. For this example, we have
created a list of IP Addresses as follows:

Implementing Automated Software Testing74

3.	 We click on the ‘Generate API’ button in the ‘Configuration’
section to generate the API.

The API is generated successfully. You can find the definition in lower
half of the page as shown below:

4.	 We click on the endpoint URL to get the data. It is shown below:

Katalon Studio 75

5.	 Now that the API has been created, we proceed to create a new
Web Service Request in Katalon Studio. We right-click on ‘Object
Repository,’ go to New → Web Service Request.

Implementing Automated Software Testing76

We then enter the name, description, and URL of this request as follows:

The Rest API request is created successfully as shown below:

6.	 In this step, we run the request to see if it returns the data by
clicking on the play icon located at the end of the request bar.

Katalon Studio 77

The results are displayed in the response tab as shown as follows:

We can verify that a list of 10 IP addresses is present in the response.
7.	 We now proceed to create a test case to test this web service. We

go to ‘Test Cases,’ right-click ‘Test Cases’, then go to New →
Test Case.

Implementing Automated Software Testing78

We provide the test case name and click on ‘OK’ to create the test case
as follows:

The test case is added to the list of test cases as displayed below:

8.	 In this step, we proceed to adding keywords to the test case.
Note that to use the ‘Verify Element Property Value’ variable
([WS] Verify Element Property Value, 2022), we first need to get
the response of the API and store in a variable using the ‘Send
Request’ keyword ([WS] Send Request, 2022). This variable will
be used to access the results when defining the ‘Verify Element
Property Value’ keyword.

We add the keywords as follows:
a.	 Send Request:

Katalon Studio 79

We select ‘Send Request’ from the options in the dropdown list, which
adds an entry to the test case.

We proceed to select the object input as follows:

Implementing Automated Software Testing80

We add a variable to the ‘Output’ column, which stores the response
returned by request.

b.	 Verify Element Property Value: We proceed to add the keyword
‘Verify Element Property Value’ to the test case.

To do this, we add another web service keyword using the ‘Add’ button
and select the keyword ‘Verify Element Property Value’ from the dropdown
list.

A second entry is added to the test case.

Katalon Studio 81

We edit the input column to search for a particular value from the
response:

Here, the first parameter we enter is the response parameter. We set it to
response which is the output of the API request.

The next parameter we enter is the locator parameter which is the
location of the element that we want to check. Here, based on the test data
that we created, we want to check that the value of the first element’s id
property is 1, so, the value we enter for the locator parameter is [0].id. The
value [0].id tells Katalon Studio to locate the first record from the data and
find the property called id within this record.

The last parameter we enter is the expected value of the field/property
specified in the locator. Here, we are checking the first record where the
value of the ‘id’ field is 1. We click on ‘OK’ to update the input.

Implementing Automated Software Testing82

The input is updated, and we then save the test case by clicking on the
‘Save’ icon located at the top left section of the window.

9.	 We execute the test case by clicking on the play icon at the top.

The test case passes successfully as shown above.
•	 Example 6: Testing a SOAP Web Service Request: In the

previous examples we studied different ways in which REST API
requests can be tested. In this example, we will cover the creation
of a SOAP web service request followed by creation of test cases
for a SOAP request using Katalon Studio.

The steps are:
1.	 First, we create the SOAP request. This is done in the same

manner that we created a REST request.
To create a SOAP request, we go to Object Repository → New → Web

Service Request.

Katalon Studio 83

The following window pops up and prompts us to provide details of the
SOAP request.

At this point, we provide just the name of the web service request. We
need to select the Request Type which is ‘SOAP.’ The URL can be left blank.
The description is optional too.

We click on ‘OK’ to create the request.
The request is created as shown below:

Implementing Automated Software Testing84

2.	 We proceed to use a freely available WSLD that prints ‘Hello
<name>’ where name is a value entered in the request body.

In this example, we use the following site: Learn web services (https://
www.learnwebservices.com/).

The WSDL provided is as follows:
http://www.learnwebservices.com/services/hello?WSDL
We access this URL in the browser to see the WSDL definition.

3.	 In Katalon Studio, in the SOAP request we just created, we
provide the WSDL URL and click on the ‘Load Service Function’
to load the functions provided by the SOAP request.

Katalon Studio 85

When we click on the button ‘Load Service Function’ the service
functions are fetched from the web service.

Once the functions have been fetched, we can see them in the ‘Service
Function’ tab as shown below:

Implementing Automated Software Testing86

4.	 We now need to provide the body of the message to be able to
execute the request. By default, it is empty as shown below:

5.	 To load the request body, we click on ‘Load New Content.’

The Service function fetches the content of the WSDL request.

Once the operation is terminated, the Request message is populated with
the request body as shown below:

Katalon Studio 87

We have also provided the ‘Service Endpoint’ value that contains the
available services list for the WSDL.

When we access the link https://www.learnwebservices.com/services
we see the list of available services as displayed in the screenshot below:

We edit the request body and change the name to ‘NIK’ as shown below:

6.	 We execute the SOAP request by clicking on the play icon at the
top.

Implementing Automated Software Testing88

The results are available in the Response tab on the right. It is as follows:

As visible from the screenshot above, we can see the response which
contains the message ‘Hello NIK!.’

7.	 Now, we proceed to test this web service request. To create a test
case, we go to Test Cases → New → Test Case.

We are asked to provide the name, description, and tag. We provide the
name and leave the other optional fields blank.

Katalon Studio 89

We click on ‘OK’ to proceed.
The test case is created as follows:

8.	 We proceed to add keywords to the test case as follows:

First, we need to add the ‘Send request’ keyword to call the web service
request and store the response in a variable which will be used in the next
keywords.

Implementing Automated Software Testing90

We select the ‘PrintHello’ object/web service request in the object Input
column.

We click on ‘OK’ to select the PrintHello web service request.
We also add a variable ‘response’ to the output field as shown in the

screenshot below:

Katalon Studio 91

The next variable that we add is the ‘Verify Response Status Code’ to
check whether the request returns a 200 (OK) request. The entry is created
as follows:

We edit the Input column and provide values for the parameters
responseObject and expectedStatusCode. We select the ‘response’ variable
that we created during creation of the ‘Send Request’ variable. For the
expectedStatusCode we enter 200 as it is what is expected.

Implementing Automated Software Testing92

The entry is updated as shown below:

The next keyword that we add is the ‘Verify Element Text’ keyword that
is used for checking the element’s text from the response returned by the
web service.

Katalon Studio 93

We now need to edit the input column.

In the input, we provide the following values:
a.	 ResponseObject: Response: This value is the variable ‘response’

created in the first step.
b.	 Locator: This is the location of the element in the response of the

web service request. This value for the field can be found in the
soap request’s response as shown below:

As visible from the screenshot above, the location of the field ‘message’
is SayHelloResponse.HelloResponse. We provide this value to the locator
field.

c.	 Text: This parameter is the value of the ‘message’ property which
is ‘Hello NIK!.’

Implementing Automated Software Testing94

We click on ‘OK’ to add the changes which are reflected in the entry as
shown below:

9.	 We run the test case by clicking on the play icon.

Katalon Studio 95

The test case is executed as shown below:

As seen from the results of the test case, the test case passed successfully.
10.	 In this test case, we can also use the ‘Verify Element Property

Value’ to check the value of the message.
This is done as follows:
We click on ‘Add’ then select ‘Web Service Keyword.’ From the

dropdown, we select the keyword ‘Verify Element Property Value.’

Implementing Automated Software Testing96

An entry is added to the test case as shown in the screenshot below:

We edit the ‘Input’ column and provide the three parameters: request,
locator, and value. These values are the same as done in Step 8.

Katalon Studio 97

We click on ‘OK’ to register the changes to the input column. The
changes are registered as shown below:

We click on the play icon to run the test case.

The test case executes successfully as follows:

Implementing Automated Software Testing98

•	 Example 7: Defining Custom Keywords: Katalon Studio
provide a wide range of built-in keywords that are available
for testing different types of projects. But an interesting feature
offered by Katalon Studio is that it allows users to define custom
keywords. Customer keywords can be used to extend the
functionality provided by Katalon studio (Introduction to Custom
Keywords, 2022).

Once we define a new custom keyword, it can be used in test cases just
like the other built-in keywords that we have seen until now.

The steps to be followed are explained below:
1.	 First, we navigate to the ‘Keywords’ option in the Tests Explorer

as shown below:

2.	 We create a new package by right-clicking on ‘Keywords’ and
going to New → Package.

We can also create a new package by going to File → New → Package.

The New Package dialog appears:

Katalon Studio 99

We provide the name and click on ‘OK’ to create the package.
The package is created as shown below:

3.	 We now proceed to create a new Keyword in this package. To
do this, we right click on the newly created package name and
navigate to New → Keyword.

Implementing Automated Software Testing100

The create new Keyword dialog opens as follows:

As seen from the screenshot above, the package name is already pre-
filled as we had selected the package before entering the menu.

We provide the name of the keyword class as shown in the screenshot
below. By default, the naming rules followed are like those of the Java
language which means that the name of a class cannot start with a number,
contain spaces, or have special characters in it. The naming convention for
the Java language suggests creating a class name using a noun or a noun
phrase and following the camel case rule where the first letter of each word
is capitalized which helps better manage the project (Joy et al., 2000).

Katalon Studio 101

We can also create a new Keyword by going to File → New → Keyword
from the main menu. The only difference when using this option is that
the Package name will not be pre-selected in the Package field in the
New Keyword dialog, one would have to browse and choose the package
manually.

Once, we click on ‘OK’ the keyword class is added to the custom
package as shown below:

We now proceed to create a new keyword by defining a method in this
newly created keyword class. In this example, we define a keyword called
test that simply prints a message ‘Message is:’ followed by the value of the
argument/parameter provided. The keyword can be defined in either groovy
or java which are both compatible in Katalon Studio.

Implementing Automated Software Testing102

The newly added keyword is shown below:

Once we add the keyword, we save the file.
4.	 We now proceed to implement this keyword in one of our test

cases. We proceed to edit the ‘GetUsersDataTest’ test case. We
go to ‘Add’ and select the option ‘Custom Keyword’ as shown
below:

A dropdown list of all the available custom keywords is provided as
shown below:

Katalon Studio 103

We select the keyword that we created which is
‘myCustomeKeywordPackage.printMsg.test.’

We provide the value ‘test’ for the ARG parameters that we defined in
the custom keyword. This is shown below:

We run the test case by clicking on the play icon at the top. The test case
executes with success. This is visible in the screenshot below:

In this example, we added a simple test case to study how a custom
keyword can be added. In real-life scenarios, meaningful keywords that help
extend/enhance the quality of testing must be used.

Additionally, Katalon provides us with readily available sample
custom keywords for Web, Mobile, and API projects. The documentation
is available here: https://docs.katalon.com/katalon-studio/docs/sample-
custom-keywords.html.

•	 Example 8: Recording and Playback Using Katalon Studio:
An excellent feature that Katalon Studio has to offer is record

Implementing Automated Software Testing104

and playback option. We can record the activities that we perform
on our machine or in our browser using Katalon Studio and then
play them again as part of our test cases. This feature helps test an
application in a more efficient way. A tester can just record a test
case once and then repeat the same test case with different values
again and again without having to write or script thousands of test
cases which would definitely save on time.

In this example, we shall see how to create a test case that records actions
performed in the Web Browser and records it.

The steps are:
1.	 We first create a new Test case and name it ‘RecordAndPlay.’

2.	 Once we click on ‘OK’ after providing the name, it is added to the
list of test cases. To record the user actions in a Web Browser, we
navigate to the toolbar at the top and click on the ‘Record Web’
button as shown below:

Katalon Studio 105

3.	 The Record dialog appears and asks for information such as
the URL to access and the browser that we wish to open such
Chrome, Firefox, etc.

By default, the URL provided is http://demoaut.katalon.com/
In this example, we update the URL to google.com and keep the browser

selection at Chrome which is the default value.

4.	 We click on ‘Record’ to start recording actions taken in the
browser. When we click on the ‘Record’ button, a Chrome
Browser with the URL http://google.com opens as shown below:

Implementing Automated Software Testing106

We enter the text ‘object-oriented programming by Neha Kaul’ in the
google search bar and click on enter.

Google displays the results as follows:

5.	 We close the browser opened by automation and click on the Stop
button in the Web Record Dialog:

Once we stop recording, the Web Recorder dialog is updated with actions
that we performed in the browser. This is shown below:

Katalon Studio 107

6.	 If we are happy with the test case, we can save the script. If not,
you can record again.

To save the script generated, we click on the ‘Save Script.’

When we save the script, we are prompted to also save the element that
we browsed (google page in this case) to the object repository.

To do this, click on ‘OK’ in ‘Add Element to Object Repository’ dialog
as follows:

Implementing Automated Software Testing108

Once we save the element, it is added to the Object Repository as shown
below:

We can also see that the test cases have an entry pertaining to each action
that we took while recording.

7.	 To run the test case, we click on the play button at the top.

Katalon Studio 109

The test case is executed successfully.

WATIR

4

CONTENTS
4.1. Important Watir Commands and Terminology.................................. 112

4.2. Watir Installation... 114

4.3. Examples... 127

CHAPTER

Implementing Automated Software Testing112

This chapter describes the testing tool Watir. In this chapter, we learn what
this tool is, how to install it and how to use it for automation testing.

Watir is an open-source library meant for test automation which
develop in the Ruby language. The full form of Watir is Web Application
Testing in Ruby and Watir is pronounced as “Water.” This tool helps testers
develop automated tests for testing web applications. The automation tool is
independent of the language in which the application under test is written.
Watir supports the following web browsers: Firefox, Chrome, Internet
Explorer, Edge, and Safari (Watir Project, 2009).

This tool is developed in Ruby and is available as a RubyGems install.
This automation tool is created with the intent of interacting with a web
browser in the same way as humans. Watir mimics user actions such filling
online forms, clicking on different links, opening tabs, etc. (Watir Project,
2009).

The latest version of Watir is 7.1.0. Since it is developed in Ruby, it
requires a user of this tool to possess elementary knowledge of Ruby. To
run Ruby code, you need to install a Ruby interpreter (Watir Project, 2009).

4.1. IMPORTANT WATIR COMMANDS AND
TERMINOLOGY
In this section, we cover some Watir basic commands that will help us start
with this tool (“Module: Watir,” 2022).

•	 Loading the Watir Library:
require ‘watir’

•	 Opening a Browser:
browser = Watir::Browser.new:firefox
browser = Watir::Browser.new:chrome
browser = Watir::Browser.new:ie

•	 Opening the Default Browser:
browser = Watir::Browser.new

•	 Opening a URL
browser.goto “http://mysite.com”

•	 Refreshing the Browser
browser.refresh

Watir 113

•	 Closing the Browser
browser.quit
browser.close

•	 Check if Button is Enabled
browser.button(:id => “button”).enabled?

•	 Get the Button Text
browser.button(:id => “button”).text

•	 Button Click
browser.button(:id => “button”).click

•	 Take a Screenshot
Browser.screenshot.save “filename.png”

•	 Maximize Browser Window
browser.window.maximize

•	 Set Text Field Value
browser.text_field(:id => “textField”).set “test”

•	 Get Text Field Value
browser.text_field(:id => “textField”).value

•	 Clear Text Field Value
browser.text_field(:id => “textField”).clear

•	 Select Checkbox
browser.checkbox(:id => “checkbox1”).set
browser.checkbox(:id => “ checkbox1”).set(true)

•	 Unselect Checkbox
browser.checkbox(:id => “ checkbox1”).clear
browser.checkbox(:id => “ checkbox1”).set(false)

•	 Check if Checkbox is Selected
browser.checkbox(:id => “ checkbox1”).set?

•	 Select from Dropdown List
dropdownList = browser.select(id: ‘names’)
dropdownList.select(text: ‘Tom’)
dropdownList.select “Tom”

Implementing Automated Software Testing114

•	 Clear Dropdown List Selection
dropdownList.clear

•	 Select Radio Button
browser.radio(:id => “radioButton”).set

•	 Check if Radio Button is Selected
browser.radio(:id => “ radioButton “).selected

•	 Click on a Hyperlink Text
browser.link(:text =>“Test”).click
browser.link(:text => /Test/).click

•	 Wait until a Condition Becomes True
browser.link(:text => /Edit/).wait_until(&:present?)
browser.text_field(name: “test”).wait_until(&:present?).click
browser.text_field(name: “test”).wait_until(timeout: 30, &:present?)

•	 Sleep for Set Duration
Sleep 10

•	 Check if the Browser Includes a Certain Text (this will print true/
false)

browser.text.include? ‘Apple’
Use puts to print the output:
puts browser.text.include? ‘Apple’

4.2. WATIR INSTALLATION
In this section, we look at the installation process for Watir.

The installation process for Watir is straightforward. The online
documentation provided on their official website is accurate, helpful, and
up to date.

In this book, we will be installing Watir on a windows machine.
The steps followed are:
1.	 The first step is to install a Ruby Interpreter as it is required to run

code written in the Ruby language. To install the Ruby Interpreter
for windows, we go to the following site https://rubyinstaller.org/
downloads/ and download the latest ruby interpreter for windows.

Watir 115

We download the 64-bit 3.1.0-1 version of the installer.

2.	 We run the ruby installer and follow the setup as follows:

Implementing Automated Software Testing116

Watir 117

3.	 Once the setup is complete, a command prompt window opens
and asks us to install additional components that are needed as
part of the installation. The window that opens is as follows:

We choose option 1 and 3 and click on the ‘Enter’ button on our keyboard.

The installation is successful, and we are again prompted to install it.
But, as visible in the screenshot above, there are no options within the square
brackets which means that the installation of all the compulsory components
is complete. We click on enter and the window terminates.

4.	 The next step is to install water using ruby gems.
To install watir, we first open a new command prompt window. To install

watir we simply need to run the following command:
gem install watir

Let us first try to understand the command that we will execute.
A gem is like a package that you can download and install. A gem is

Implementing Automated Software Testing118

nothing but a collection of Ruby code that we put into a “collection” that we
can name later (Pargal, 2020). The Gems software permits us to download,
install, and make use of ruby packages. Each software package that is
downloaded is called a “gem” and each “gem” contains a packaged Ruby
application or a Ruby library.

The gem install command allows us to specify the gems that we want to
use and the versions of the gems that we wish to use (Pargal, 2020).

In simpler terms, the ‘gem install’ command extracts the gem and places
it into a directory on your machine. Here, we are installing the watir package
to our system.

This is shown below:

Watir is installed successfully as shown in the image below:

Watir 119

5.	 We then proceed to install the necessary drivers to run watir test
cases and suites.

We begin by installing the selenium web driver in this step. The command
to install it is: sudo gem install selenium-webdriver —no-ri —no-rdoc his
is shown below:

On running the command, selenium web driver is installed.

6.	 The next webdriver that we install is the browser driver. We install
the web driver for google chrome called the chromedriver. This

Implementing Automated Software Testing120

is done by going to the ChromeDriver website and downloading
the chromedriver for the chrome browser installed on the test
machine.

In this case, since we are using the version 97 of chrome web browser,
we download the corresponding chromedriver for windows.

Once we have downloaded the chromedriver, we proceed to extract it and
paste a copy of the chrome driver in the bin folder of our Ruby installation.

Watir 121

Implementing Automated Software Testing122

As seen from the screenshot above, we have successfully added the
chrome driver to the following location: C:\Ruby31-x64\bin.

7.	 To test the successful addition of the chromedriver we run the
following command in an irb session: browser = Watir::Browser.
new.

Watir 123

We do not need to provide the browser name as the default browser for
Watir is chrome.

As we can see, a chrome web page is opened confirming that the driver
has been installed correctly.

Implementing Automated Software Testing124

8.	 We proceed to install the driver for Microsoft Edge in this step.
To install the webdriver for Edge, first, we check the version of Microsoft

installed on the system and then proceed to download the web driver for that
version.

We extract the webdriver and paste it in the bin folder of our ruby
installation.

Watir 125

To test whether we are able to open a Microsoft Edge browser using
Watir, we open an irb session. irb or IRB stands for Interactive Ruby Shell
which is a REPL (read-eval print loop) for programming in the object-
oriented scripting language Ruby (Cross Browser Automation Testing Using
Watir, 2019).

We run the following command in an open irb session:
Browser = Watir::Browser.new:edge
In this command, we specify the browser that we wish to open because

watir will open a Google Chrome browser by default.

Implementing Automated Software Testing126

As we can see from the screenshot above, a Microsoft edge browser tab
is opened which indicates that our web driver has been picked up.

This concludes the basic installation of Watir. In the next section, we
look at different examples that demonstrate the creation of test cases and
automation using watir.

Watir 127

4.3. EXAMPLES
In this section, we look at writing test cases and implementing test suites
using watir and ruby gems.

•	 Example 1: Creating a Simple Test Case to Open the Default
Browser: In this example, we will write a simple test case and
execute it using watir.

The steps followed are:
1.	 We open a command prompt and create a folder named watir-

tests as shown below:

2.	 We open the folder and create a new ruby file named test.rb in this
folder.

Implementing Automated Software Testing128

3.	 We check the contents of the folder to check that the file is created.

4.	 We proceed to the folder where the file ‘test.rb’ is created and
proceed to edit it.

Watir 129

We edit the file as follows:

Let us look at the commands that we have entered.
The first line of our code says → require ‘watir’
This statement is like a declaration and here we communicate the fact

that we will be needing the Watir library to run this code. This line of code
ensures that the Watir library gets loaded.

The second statement is → browser = Watir::Browser.new:edge
In this command we specify the browser that we are using.
The next command is → browser.goto “https://google.com“
Here, we specify the URL that we wish to open in the Edge browser.
The last command is → browser.close
5.	 Now, we proceed to executing the test case from the command

line by using the load command as shown in the screenshot
below:

Implementing Automated Software Testing130

The test case is executed and the URL google.com is opened in the
Microsoft Edge browser as shown below:

•	 Example 2: Opening the Default Browser Using Watir: In
this example, we will write a simple test case where we open the
google search page in the default web browser Google chrome.

The steps we follow are:
1.	 First, we create new file in the folder watir-tests named ‘test1.rb.’

Watir 131

2.	 We edit this file as follows:

The test1.rb file content is very similar to the file test.rb created in the
previous example except the browser command. In this example, we simply
change the second statement where we set the browser.

In this example, we do not specify the browser so that the default browser
is opened.

Implementing Automated Software Testing132

3.	 We save the file and proceed to run this file from the command
line.

4.	 The test is executed and the URL google.com is opened in the
default browser which is Google Chrome.

The test is completed successfully as shown below:

Watir 133

We can also run the ruby test case directly by double-clicking on the file
which is an executable. We choose to run it from the command line to see
if any errors are thrown. The command line helps us debug any issues that
might arise. This example is a very simple example of a test case but in the
case of complex test cases, it is always easier to run from the command line.

•	 Example 3: Using the Maximize Command: In this example,
we look at the maximize command to maximize the browser
when opened.

The steps to follow are:
1.	 First, we create a new ruby file in the same location as before and

name it ‘maximize-window.rb.’

2.	 We edit this file to maximize the browser as follows:

As visible in the screenshot above, we make use of browser.window.
maximize command to maximize the browser window.

3.	 We execute this ruby file from the command prompt.

Implementing Automated Software Testing134

4.	 The automation executes the ruby commands and opens the URL
configured in the file using Google chrome. This window is then
maximized.

The test executes with success.

Watir 135

•	 Example 4: Searching for a Text in a Simple html form Using
Watir: In this example, we use watir to test a simple html form.

The steps are as follows:
1.	 First, we create a simple html form in the same directory as our

tests.
In this page, we add a button that redirects to another html page when

clicked.
The main page is as follows:

As seen from the content of the file above, we have a simple html page
with a label and button which is redirected to the page ‘anotherPageLink.
html’ when clicked.

The contents of the file ‘anotherPageLink.html’ are as follows:

Implementing Automated Software Testing136

These files can be viewed in directory as follows:

We double-click on the file ‘inputform’ to open it in the Microsoft edge
browser.

Watir 137

On click on the ‘Click Me!’ button, the redirected page is opened as
shown below:

2.	 We proceed to create a new ruby file in the same directory.

Implementing Automated Software Testing138

3.	 We proceed to edit the file ‘form-test’ as follows:

The test case we created is very simple. Let us go through it step by step.
The first step is a common step that is needed for all test cases to be

executed using ‘Waitr.’
The second statement is where we open the browser and save it in a

variable which we will be used in the further steps. Here, we choose to open
the default browser which is chrome.

The third statement is where we instruct that the html form be opened.
The fourth statement is where we provide the instruction to click on the

button and provide its id to watir. We make use of the ‘wait_until’ command
which waits until the given conditions become true (Watir Project – Waiting,
2009). The condition we give is that we wait until the button is present in the
browser form before clicking it.

Watir 139

4.	 We run the file from the command line as follows:

The browser is opened, and the link is clicked.

•	 Example 5: Using Watir to Test an html for an Take a
Screenshot: In this example, we build upon the previous example
where we test an html file containing a button which when clicked

Implementing Automated Software Testing140

redirects to another html page. Here, we will take screenshots
during the execution of the test case and save them.

The watir command to take a screenshot and save it is:
browser.screenshot.save

Let us see how this this is implemented. The steps we follow are:
1.	 We first open the html page manually.

2.	 We create a new test file named ‘form-test_screenshot.rb.’
We create this file in the same location as the input form.

Watir 141

3.	 We edit the file to add commands where we take a screenshot.

In this test case, we open the html page, take a screenshot, then click on
the ‘Click me’ button and take a screenshot again before closing the browser.

We use the following command:
b.screehshot.save ‘filename.png’
The above command takes a screenshot and saves it in the current

repository with the file name provided.
4.	 We run the file using the command prompt.

The screenshots are created in the same location as the test cases:

Implementing Automated Software Testing142

Watir 143

•	 Example 6: Using Watir to Test an html Form to Test Various
Web Elements: In this example, we use watir to test a sample
html form that accepts input and performs basic CRUD operations
on records such as addition, editing, and deleting.

1.	 First, we create a simple html project containing a form, a CSS
stylesheet and a JavaScript controlling the CRUD actions.

We make use of an HTML editor called Sublime Text (2000) to edit the
files in our html project.

We open Sublime Text and create a new folder named ‘Personal
Information Form’ as follows:

We proceed to create a project structure with an index.html file, a CSS
folder containing a CSS file and a JS folder containing a JavaScript file.

This is shown below:

Implementing Automated Software Testing144

We look at each of the files in detail:
a.	 Index.html:

As seen from the form above, we have created a simple form with four
fields in a table separated by div tabs. A submit button is provided at the end
to submit the data. A second table is created to display the data. At the end,
we have a script element specifying the script to be used for the actions.

b.	 scriptOnClick.js:

Watir 145

Implementing Automated Software Testing146

This file consists of several functions that perform CRUD operations
such as insert, update, and delete. In addition to these methods, this file
contains a validation method that validates whether each field is filled and
throws an error if its empty.

c.	 Stylesheet.css: This file is a CSS file that defines the style for
different elements of the html form.

Watir 147

2.	 We proceed to open the html file in the browser and fill out the
form to check if it works.

We fill in some dummy data.

We click on Submit to process the data and display it in the adjoining
table.

The data is displayed in the table as shown above.
3.	 We proceed to create a test case that does the same actions that we

performed.

Implementing Automated Software Testing148

4.	 We edit this file to perform the actions of creating records
automatically. The contents of this test case are as follows:

5.	 We run this file from the command line as follows:

Watir 149

6.	 The test is executed successfully, and the record is created as
shown below:

Ø	 Example 7: Testing the Edit Functions in an html Form Using
Watir: In this example, we will test the edit functionality of the
html form that we created in the previous example.

Implementing Automated Software Testing150

1.	 We begin by first testing the editing functionality. We enter data
into the form and submit it. The data is loaded and then we click
on the edit link to edit the data.

We edit the Street address and age of the same user record.

We click on submit to register the changes.

2.	 We proceed to create a test for this scenario. In the same folder
as the index.html file, we create a new ruby file named personal-
form-edit-test.rb.

Watir 151

We edit this file and create a watir test case that performs the same
actions for deleting a user as we did manually.

In this test case, we add to the previously created test case ‘personal-
test.rb.’ So, this new test consists of opening the form, adding a record, and
submitting it. We now add the steps to edit a record that is displayed in the
table. First, we click on the edit link using the ‘browser.link’ functionality.
After clicking the link, we proceed to edit some information in the user. As
we can see from the screenshot of the code above, we edit the fields Street
Address and age. We set the Street address to ‘Privet Drive Street’ and age
to 11.

Implementing Automated Software Testing152

3.	 The next step is to execute the test case.
We run the test case from the command prompt as follows:

Note that here we use the command ‘ruby <filename.rb> to execute the
test case. This is an easier way of running ruby files.

The test case is executed as shown below:

Watir 153

4.	 The automation opens the page in the Chrome browser by default
and the changes are made.

First, the data is entered, and the table is populated with the entered data.
This is shown below:

Then, the ‘Edit’ link is clicked and the information pertaining to that
record is loaded in the form. The new changes are made in the form as
shown below:

Implementing Automated Software Testing154

The ‘Submit’ button is clicked to register the changes as seen below:

•	 Example 8: Deleting a User Record from an html Page: In
this example, we build up on the previous example and proceed
to delete a user record after the editing is done. Here, we would
be accessing the form, populating the form, creating a record,
editing it, and then deleting the record.

The steps are:
1.	 First, we open the html page to test the delete link. We create a

record and then click on the ‘Delete’ link.

Watir 155

A popup dialog asks us to confirm if we want to proceed with the
deletion. We click on ‘OK.’

The record is deleted from the table is shown below:

2.	 We then create a new test file in the same location as the html
form and name it ‘personal-form-delete-test.rb.’

Implementing Automated Software Testing156

We edit this file in notepad and add the commands that would click on
the ‘Delete’ link. In this example, like the previous one, we build up on
the test case that we wrote previously. Thus, our new test case for testing
the deletion link consists of opening the page, entering a record, editing it,
saving it followed by the delete action.

This is shown below:

We make use of the browser.link command to check if the link exists and
then click on it. Then we confirm that we wish to delete the record. We have
added sleep commands throughout the test case to be able to slow down the
test and take screenshots.

Watir 157

3.	 We run the test from the command line as shown below:

The test is executed as shown below:

4.	 The automation launches the chrome browser and actions entered
in the test case are performed.

The record is first entered and then edited.

Implementing Automated Software Testing158

The edited record is saved, as shown in the screenshot above.
The delete link is clicked which opens the confirmation popup as shown

below:

Watir 159

The ‘OK’ button on the confirmation alert dialog is clicked and the
record is deleted successfully as shown below:

•	 Example 9: Canceling a Deletion Request on an html Page
Using Watir: In this example, we will proceed to delete a user
record, but cancel the operation.

We proceed to complete all the operations from the previous example
and when we get the confirmation alert, we cancel the operation.

The steps are as follows:
1.	 We create a new record and click on the ‘Delete’ link.

Implementing Automated Software Testing160

We click on ‘Cancel’ to cancel the delete operation.

2.	 We create a new ruby test file named personal-form-delete-
cancel-test.rb.

Watir 161

The test case is very similar to the previous example but here we click
on cancel instead of ok when the alert confirmation message pops up.

3.	 The contents of the test case are as follows:

4.	 To run the test, we execute the ruby file from the command
prompt. This is shown below:

Implementing Automated Software Testing162

5.	 The file is executed, and the automation executes the commands
from the test file one by one in the default browser.

A record is created as shown below:

Watir 163

The delete link for this record is clicked and the alert dialog pops up.

The automation clicks on ‘Cancel’ and the entry remains.

Implementing Automated Software Testing164

•	 Example 10: Validating the Fields: In this example, we will
test the simple validation implemented on all the 4 fields on the
personal information form.

1.	 First, we test the validation on the form manually. This form has
a validation implemented on all the input fields that shows error
message when you try to submit a field that is empty.

Watir 165

2.	 We create a new test file named personal-form-validation-test.rb.

The contents of this file are as follows:

3.	 We execute the test from the command prompt as shown below:

Implementing Automated Software Testing166

4.	 The automation mimics our actions and click on the ‘Submit’
button without entering any data first. The validation errors
appear as expected.

The data is then entered by the automation except for the ‘Age’ field.

Watir 167

As clear from the screenshot below, all fields except the ‘Age’ field are
filled in the form.

On submitting this incomplete form, we get the validation error for the
‘age’ field as follows:

Finally, a value is entered for this field and the record is created.

Implementing Automated Software Testing168

•	 Example 11: Manipulating Multiple Records: In this example,
we will be testing the personal information form by populating it
with multiple records and performing crud actions on the records.

The sequence of events that we will follow in this example are as follows:
a.	 Creating three records;
b.	 Editing a record;
c.	 Testing the validation of a field;
d.	 Deleting a record;
e.	 Canceling a deletion.
The steps are as follows:
1.	 First, we complete the actions manually in the browser.
Three records are created first.

Watir 169

Implementing Automated Software Testing170

Then, we edit the 2nd record by clicking on the edit link located at index
1. For watir, the indexes begin at 0 (Watir Project, 2017).

While editing, the ‘address’ field is left empty to test if the validation
error is thrown. The validation error is thrown as seen in the image below:

The address is then filled, and the record is updated.

Watir 171

We then proceed to deleting the last record.

The record is deleted as shown below:

Implementing Automated Software Testing172

The last thing we do is to click on the delete link for the 2nd record and
then cancel the deletion request.

Watir 173

2.	 The next step is to create a test file. We create the test file in the
same location as before.

We edit this file and write the commands that we need to complete all
the actions we did manually.

The contents of this file are as follows:

Implementing Automated Software Testing174

3.	 We execute the ruby file from the command prompt as follows:

Watir 175

4.	 The automation executes the actions described in the ruby file.
First, the records are created.

Implementing Automated Software Testing176

Watir 177

Then, the second record is edited, and the validation on the ‘address’
field is tested. We edit the 2nd record by providing the index in the ‘browser.
link’ command as follows:
browser.link(:text => /Edit/,:index => 1).click

In watir, the index begins at 0 (Watir Project, 2017).

Implementing Automated Software Testing178

Once the validation for the ‘address’ field is tested, data is entered into
the address field and the record is updated. This is shown below:

Watir 179

The automation proceeds to deleting the last record. This is done by
providing the index of the delete link in the ‘browser.link’ command as
follows:
browser.link(:text => /Delete/,:index => 2).click

The record is deleted as shown:

Next, the automation tries to delete the 2nd record from the remaining
records. The alert confirmation dialog opens, and the automation cancels
this request.

Implementing Automated Software Testing180

The delete operation is canceled as shown below:

•	 Example 12: Testing Checkboxes on a UI Page: In this example,
we test a simple html page containing checkboxes using watir.
We will also be using an IDE to edit and run our watir test case.

The steps are as follows:
1.	 First, we create a simple html page containing a few checkboxes.

We create a new file named checkbox.html in the ‘watir-tests’
folder.

Watir 181

2.	 We edit this file using an html file editor to add the required html
and JavaScript code needed to display checkboxes and display
the selected values.

The contents of this file are as follows:

Implementing Automated Software Testing182

3.	 We will now proceed to creating a ruby file and write our test case
using watir. Before that, we install the RubyMine IDE from the
JetBrains website: https://www.jetbrains.com/ruby/

We download the exe for windows and proceed with the setup.

Watir 183

Implementing Automated Software Testing184

Once we reboot the system, we open the IDE. We accept the user
agreement and proceed.

Watir 185

When the IDE opens, the first thing you are asked to do is to activate your
account. Here, we start a free 30-day trial. RubyMine IDE is a commercially
licensed IDE (RubyMine: The Ruby on Rails IDE by JetBrains, 2022).

Once we setup an account, we can access the Welcome page.

4.	 We proceed to create a new project as follows:

Implementing Automated Software Testing186

Watir 187

5.	 We edit this file to add a test case that tests the html form we
created in Step-1.

In this test case, we open the html page in the browser and then make
use of the checkbox command to select the checkboxes using the ids for
the checkbox values. Here, we select three options: orange, apple, and
watermelon.

6.	 We now run the test case by clicking on the run button at the top.

Implementing Automated Software Testing188

The automation launches the browser and selects the checkboxes. Then
the submit button is clicked.

The test case is executed with success as seen in the screenshot above.

Watir 189

7.	 We can also unselect the values that we selected. This can be done
by using the watir command clear. The command is: browser.
checkbox(:id => ‘id’).clear

We apply this change in the checkbox-test.rb file as follows:

8.	 We run the test case and observe its behavior.

First, the three fruits Orange, Apple, and Watermelon are selected and
the submit button is pressed. This gives us the text saying that these fruits
have been selected.

Implementing Automated Software Testing190

As clear from the screenshot above, the checkbox for ‘Watermelon’ has
been unselected.

Now, the submit button is pressed and the text changes to reflect the
checkboxes that are selected as shown below:

The test case is successful, which is also reflected in the console output
as follows:

RANOREX STUDIO

5

CONTENTS
5.1. Setup and Installation.. 192

5.2. Ranorex Studio Basics.. 199

5.3. Examples... 201

CHAPTER

Implementing Automated Software Testing192

Ranorex Studio is a powerful tool designed to automate tests for web
applications, mobile applications, and standalone applications. This tool
provides excellent GUI Testing features for web, mobile, and desktop
applications. It is a tool that is straightforward to use and people with a non-
coding background can easily create automated tests. It is a versatile tool
that supports parallel testing, cross-browser testing and allows for remote
testing too. A variety of coding languages are supported by this tool such as
.Net, HTML, Java (Ranorex, 2017).

This tool allows users to build test cases and automate them quickly.
Some additional features of this tool are: regression testing, keyword-driven
testing, data-driven testing, and cross-browser testing (Ranorex, 2017).

Before we begin working with the tool, we need to download and install
the Ranorex Studio. Ranorex provides a trial version available for download
which is easily accessible on their website.

5.1. SETUP AND INSTALLATION
To download the tool, you need to register on their official website with
a business email address. On successful registration, a link is sent to your
email so you could download and install the trial version. If you do not have
a valid business email, then you can directly contact the sales them and they
would help you with downloading a trail version (Ranorex, 2017).

On successful registration on the official Ranorex website, you are sent
a link to download the trial version.

Click on the link provided and download the trial version of Ranorex.
A zip file is downloaded on your local machine and the contents of the

zip provided are as follows:

Follow the instructions provided in the README file. The first step is
to install the prerequisites.

Ranorex Studio 193

Once the prerequisites are installed successfully, we proceed to installing
Ranorex by clicking on the MSI installer package provided.

Implementing Automated Software Testing194

We click on ‘Next.’

Ranorex Studio 195

We accept the End User License Agreement and click on ‘Next.’ We
are asked to provide the location where Ranorex studio would be installed.
You can use the location selected by default or navigate to a location of your
choice. Here, we install Ranorex in the default location which is in Program
Files.

We then choose the features that we wish to install. Here, we select all
features. But you can choose the features you wish to install based on you
testing requirements.

For example, if the application that you are testing is never run-on
Firefox, then you can choose to omit the Firefox Add-on from the setup.

Implementing Automated Software Testing196

To start the installation, we click in ‘Install.’

The installation starts and the status is updated.

Ranorex Studio 197

The installation takes a few minutes. On completion of the installation
process, the following window appears:

The ‘Launch Ranorex Studio when setup exits’ is checked by default.
We click on ‘Finish’ to open Ranrex Studio.

We are prompted to the licensing window that asks us to provide a
license or start a free 30-day trial.

Here, we choose the 30-day free trial option.

Implementing Automated Software Testing198

We click on ‘Continue evaluation’ which then opens the Ranorex Studio
configuration window and asks us to choose a theme.

We select a theme after which we can begin creating a project. This is
done in Section 5.3.

Note that to be able to use Ranorex Studio after its trial period of 30
days, you must obtain a license. Before we move forward with the creation
of the first test case, let us look at a few basic details of this tool in the next
section.

Ranorex Studio 199

5.2. RANOREX STUDIO BASICS
In this section, we learn different components that form a part of Ranorex
Studio.

5.2.1. Views
Ranorex Studio provides three important views (Ranorex, 2017).

1.	 Project View: This is a view that is common for most IDE’s
and it permits you to view all the files in the current project. The
project view is composed of the project, different libraries that
are used by the project and the application, the repository file,
modules, and all the files that are needed to execute the project.
The project view also permits working on multiple projects in a
single solution.

2.	 Module View: This displays the test steps and permits users to
execute single or multiple steps. A user can view the individual
test modules here. Different modules can be combined to create a
series of automated suites.

The module browser is made up of two types of folders. They are:
i.	 Groups: These are nothing but a collection of different items. All

the module groups are listed here.
ii.	 Modules: This section lists all the modules in the project.

This section lists all the recordings and the project’s code
files. Additionally, any variables that have been defined in the
recordings are found here as well.

The primary use of the module browser is to view the modules, drag-
drop the modules and automation groups and reuse them.

3.	 File View: The file view is shown when you double-click on a
file name in an open project from the Project View or the Module
View. If you double click on any file name, it is opened in the file
view much like any editor. For example, if you want to view the
recordings in more detail, you can double click on the recording
file, and it is displayed in File view. With the help of this view users
can display all the available files such as the This view displays
all the available files in the project such as the Recordings, the
repository, action tables, code modules, reports, etc.

Implementing Automated Software Testing200

5.2.2. Components
The main components of the Ranorex Studio Tool are (Ranorex, 2017):

•	 Ranorex Recorder: It is a useful device that helps users record
the activities as test steps and providing interesting playback
and editing options. Different experiments can be done by
exploring the recordings, editing them, retesting, and fine-tuning
the recordings. The activities that are recorded can be adjusted
physically in the activity table, which is an interesting feature
provided by this tool. Ranorex is interesting in its design as the
activities recorded and the UI components related to the activities
performed are stored separately (different modules), which makes
it easier to perform changes and update the test cases.

Another useful feature of this tool is that users can record the actions
performed by the mouse in addition to allowing recording of the console.
This feature is very useful in the case of UI testing. Once these movements
are recorded, they are available for editing/updating in the Recorder activity
table, where you can perform a host of operations on the recordings. You are
allowed to adjust the test cases and your recordings to suit all your testing
needs. Although the Recorder is a device and can be used independently, it
can be easily coordinated with other components such the spy, the models,
etc.

•	 Ranorex Spy: It is a versatile test automation tool that is
beneficial for UI testing as it consists of an object recognition
tool. This tool is the Ranorex Spy. The Tanorex Spy is a tool that
is used for object recognition which helps locate and identify the
UI elements in the screen/website that is being tested (Peischel et
al., 2011).

The Ranorex Spy is like a scanner that locates and scans the UI elements
of an application. This helps in understanding the UI components of the
application that help in writing better test cases to test the application. It
permits analysis of the application from the UI viewpoint and allows the
ability to discern different elements of the UI with incredible ease (Peischel
et al., 2011). This scanning tool provides us with UI data mapping relative
to the XPath. We shall cover this in the upcoming sections. This tool helps
in creating tests/recordings that test the modules of the UI correctly. The
Ranorex Spy can see the details of the UI components of the application that
is under test, and it provides a hierarchical representation of the UI elements
which is extremely helpful when creating test cases.

Ranorex Studio 201

•	 Ranorex Repository: It consists of all the UI elements that are
being analyzed. The Ranorex repository provides a view in which
the UI elements are mapped logically. Any UI element that is being
tested is found in this repository. The repository is a component
of Ranorex Studio which is usually used in coordination with
Ranorex Spy and Ranorex Recorder. The repository is like a
storage unit that is used to create and store mappings of the UI
components that help in UI testing by providing insights into the
components of the application under test. The repository portrays
the UI components used in the application under test in a logical
manner set by its UI mapping. The repository stores and displays
the UI elements in a tree-like structure. Each item in this structure
has a ‘RanoreXPath’ that is used to identify the component/
element and helps in creating test cases that interact with the UI
components of the application that is being tested. A repository
is created automatically for every test project created in Ranorex
Studio. The repository file has the extension ‘.rxrep.’

•	 Ranorex Test Suite Runner: As its name suggests, is a program
that executes the test suites created in Ranorex Studio (Peischel et
al., 2011). The runner is opened automatically on double-clicking
a test suite file in the application. The test suite is a standalone
application which means that if you click on the file without
opening Ranorex studio, it will simply execute the test suite in
the Runner.

The Ranorex Test Suite Runner can be used to execute specific test
cases, entire test suites or just specific modules/folders. To execute entire
test suites, run certain test cases and smart folders, or just run a specific
module (Ranorex, 2017). Each time a test suite is run, a test report is created.
Tests can be integrated with other applications such as Jenkins, DevOps
tools, etc., and run from there as well.

Now that we have looked at the components of Ranorex Studio we shall
see practical examples demonstrating how to use Ranorex Studio to create
test cases and test suites.

5.3. EXAMPLES
•	 Example 1: Creating Your First Test Case in Ranorex Studio:

In this example, we will create a test project in Ranorex Studio.
As this would be the first time that we open Ranorex Studio

Implementing Automated Software Testing202

and we do not have any projects created, the Ranorex Studio
Configuration page is displayed.

We choose the theme and proceed.

Once we select a theme, the RocketStart solution wizard appears and
prompts us to choose the type of test project that we want to create.

Here, we create a web project. We provide a name for the project and
choose the location for the project and click on ‘Continue.’

Ranorex Studio 203

The wizard then requests us to provide the URL that we wish to test and
the browser that we are going to use.

In this example, we use the URL provided by default and select ‘Chrome’
as the browser and click on ‘Continue.’

We are then prompted to choose if we wish to use whitelisting. In this
case, we do not use whitelisting.

Implementing Automated Software Testing204

We click on ‘Continue.’

We click on ‘Finish’ to create our project, which opens in Ranorex
Studio as shown below:

Ranorex Studio 205

As we can see clearly in the screenshot above, in the Projects Tab, we
have the solution items such as the recording file, the repository file, the
reports folder, the configuration files, etc.

When we provide the URL while creating the project, a test case is
created by default. A recording file containing basic actions such as opening
the browser, accessing the URL, and closing the browser was created by
default. On the right-hand side of the window, we have the tutorial page that
guides us in creating our very first project. In the right-hand bottom corner,
we also have the Intercom Chat window where we can ask any queries that
we might have regarding the tool.

To run the test case that was created, we click on the play icon located
on the toolbar. When we play this test case, it opens the Chrome Browser,
opens the URL http://www.ranorex.com and then closes the browser.

After the execution of the test case, we receive the test case result and
summary as shown below:

The test case summary provides details of the test case, such as the
status of the test case (Success/Failed/Blocked), the steps of the test case,
and details of the machine/system that ran the test case.

Implementing Automated Software Testing206

This example showed us the creation of a web project in Ranorex. In
the next example, we will look at one of the sample projects provided by
Ranorex and try to understand how it is configured.

Ø	 Example 2: Understanding a Sample Solution: In this example,
we shall look at the sample solution provided by Ranorex and try
to look at how it is configured.

When we relaunch Ranorex, the start page is displayed. From the start
page, we navigate to the ‘Sample Solutions’ tab and click on ‘Desktop
sample.’

We open the Desktop example in Ranorex Studio. This is a sample that
implements a Keepass Test suite where the keepass functionalities such as
adding an entry, deleting an entry, adding a credential, deleting a credential,
adding a group, deleting a group, etc., are tested.

The Desktop example is launched in Ranorex Studio as shown below:

In the project view, we can see that it contains the files of the Solution
– KeePass Test suite.

Ranorex Studio 207

The module browser contains two folders: Groups and Modules.
•	 The Groups folder consists of two groups: StartAndLogin and

SaveAndClose.
•	 The Modules folder consists of additional two folders:

CodeModules and Recordings.
The CodeModules consists of a.cs file which is a code file and consists

of code written for the test suite.
The Recordings folder is composed of all the recordings that form a

part of the test suite. A total of 12 recordings are present in this folder. Each
recording is part of a test case that is outlined in the KeepassTestSuite.rxtst
file which we will cover shortly. A file with the extension.rxtst is a Ranorex
Test suite file. (rxtst is equivalent to ‘Ranorex test suite file’).

In Groups, if we double-click on ‘StartAndLogin,’ the groups are
displayed as shown below:

Implementing Automated Software Testing208

As we can see clearly from the screenshot above, the items in the group
are display in file view. We can see that the Groups folder has two items, and
each item is comprised of two recordings. A recording file is indicated by the
small camera icon before the name of the file.

To better understand how the recordings, work, we need to see the
KeePassTestSuite.rxtst file as shown below:

As we can see from the screenshot above, each recording is part of test
case folder that is defined in this file.

In this sample solution, in the first folder/module of the test suite, each
test case is adding an entry to Keepass using different ways. The first test
case ‘AddEntryByRecording’ focuses on adding an entry via recording only.
The second test case ‘AddEntryByCodeModule’ adds an entry using the
code module file ‘AddCredentialEntry.’ The third test case tries to add entry
by providing arguments in the test case. The last part of this module is the
teardown where the Keepass data is saved and closed.

Each of these test cases in the first module, have three common types of
recordings: add entry, validate entry, and delete entry.

Let us take a brief look at each of these recordings in brief.

Ranorex Studio 209

The AddEntry recording is as follows:

This recording consists of several mouse clicks, entering of keys,
clicking on ‘OK’ buttons, etc.

If we expand the AddEntry recording in the module browser, we can see
that it is made up some variables that are entered at runtime:

If we double-click on any one of the variables, the variables window
pops up as follows:

Implementing Automated Software Testing210

The values displayed in the window above are the values that are entered
during the execution of the test.

The validateEntry recording is as follows:

This recording is smaller as compared to the AddEntry recording and
is made up of 2 actions. One action is the validate action which validates
whether the entered password and re-entered password match.

The deleteEntry recording is as follows:

This recording consists recording of different mouse clicks relative to
the opened window that close the window.

The second module of the test suite consists of the ‘AddNewGroup’ test
case where a new group is added, validated, and delete from Keepass.

Ranorex Studio 211

The Teardown section consists of logging into Keepass, emptying the
recycle, saving the changes and closing it.

Now that we have covered a few of the basics in the sample test suite,
we proceed to run the test suite by click on the green play icon located on
the toolbar.

When we click on the play button, the test suite is launched. A command
window is launched that initializes the test suite and logs the events.

Implementing Automated Software Testing212

The login page is shown:

The automation proceeds to logging in and begins creating a new entry
as follows:

First, a new entry is created using the variables declared in the ‘AddEntry’
recording.

Ranorex Studio 213

The entry is added as shown below:

Once the entry is created, the automation deletes the entry and save the
database.

Implementing Automated Software Testing214

Next, the automation logs in again and adds another entry using the
credentials file.

Ranorex Studio 215

The credentials are added as shown below:

Once the credentials are added and validated, the entry is deleted.

After the entry is deleted, the next part of the test suite is executed where
a new group is added after which the recycle bin is emptied.

Implementing Automated Software Testing216

Once the group is added, it is deleted.

Ranorex Studio 217

Next, the recycle bin is emptied.

The items created are deleted and the keepass database is saved.

Implementing Automated Software Testing218

This step concludes the test suite.
Once the test is completed, the test suite result summary is displayed as

shown below:

The summary details the test suite and the test case that were executed as
part of the test suite. Additional details such as the execution time, machine
details, etc., are provided as well.

•	 Example 3: Create a Test Suite for a Desktop Calculator
Application: In this example, we download a sample calculator
application and create a test suite that records and tests its
functionality.

The steps followed are:
1.	 We download a sample calculator application from the following

website: https://basic-calculator.en.softonic.com/
2.	 Once the calculator application is downloaded, we navigate to the

downloads folder and launch it.

Ranorex Studio 219

The application opens and we perform a few actions:

Implementing Automated Software Testing220

3.	 Once we have checked that the application works fine, we close it
and proceed to create a new solution in Ranorex Studio. We first
open Ranorex Studio.

We navigate to File → New → Solution Wizard to create a new solution.

4.	 We are prompted to choose the type of application that we would
like to test. We select ‘Desktop’ from the available options.

Ranorex Studio 221

5.	 We provide the solution name and location as follows:

We click on ‘Continue’ to proceed.
6.	 We are then prompted to choose the application that we wish to

test.
The following window appears:

Implementing Automated Software Testing222

The above window asks us to choose the application that we would like
to test. We go to ‘Browse for application’ tab.

We click on the ‘Browse for app.’ button:

We browse to the ‘Downloads’ folder where we downloaded the
calculator application and select it.

Ranorex Studio 223

It is added successfully to the solution as shown below:

Note that we keep the ‘Launch application automatically after finishing
the wizard’ option selected because we want to the calculator app to be
launched when the project is opened.

We click on ‘Continue’ to proceed with the project creation.
7.	 We are asked to configure the behavior of Ranorex while recording

for a test case.
We select the first option which is ‘Focus on single application.’ We

select this option as this will record only the actions performed by the
‘Calculator’ application and ignore any other applications that are running
simultaneously on the machine.

Implementing Automated Software Testing224

We click on ‘Continue’ to advance with the creation of the solution.
8.	 We click on ‘Finish’ to end the wizard and create the solution.

We click on finish to complete the wizard and create the new solution.
The solution is created and when its opened and the calculator application

is launched with the solution as shown below:

9.	 We see the CalculatorSolution test suite as follows:

Ranorex Studio 225

By default, the test suite is created with a test case that has a setup, an
empty recording, and a teardown section.

We click on ‘Recording1’ and navigate to the recording1.rxrec file and
can begin recording for the test suite.

10.	 To begin recording for the test case, we click on the record button.

The record window is displayed in the corner of the screen along with
the calculator application in the center as shown below:

Implementing Automated Software Testing226

We begin recording by performing simple operations as follows:

As we can see, each keystroke is recorded in the Ranorex Recorder at
the left corner of the screen.

We keep on recording a few actions.

Ranorex Studio 227

Once we are done with our recording, we can see that the file ‘Recording1.
Rxrec’ is now updated with the actions that we recorded.

As we can see from the screenshot above, each movement has been
recorded.

Implementing Automated Software Testing228

11.	 The last step would be to execute the test suite containing the
updated recording.

We click on the green run button at the top to execute the test suite.

The test suite launches and goes on to repeat the actions that we
performed earlier.

After the test case is executed, a test summary report is generated.
The test suite executes successfully as visible in the Test case result

summary shown below:

Ranorex Studio 229

•	 Example 4: Creating a Test Suite for Paint Application on Your
Location Machine: In this example, we shall test the application
Microsoft paint using Ranorex Studio. We will perform actions
in the paint application and proceed to save the file as ‘test.bmp’
in the ‘Pictures’ Folder.

The steps taken are as follows:
1.	 We create a new solution using the New Solution creation wizard.

2.	 We choose the type of application to be ‘Desktop’ and provide the
details of the test solution, such as the name and location.

Implementing Automated Software Testing230

3.	 We choose the paint application in the next step.

Ranorex Studio 231

4.	 We choose the recording behavior and complete the setup as
follows:

Implementing Automated Software Testing232

5.	 The new solution is now created with a Test suite containing a
single test case which is made up of a setup and teardown step
and an empty recording by default. This is shown below:

Ranorex Studio 233

The paint application is opened on launch of the solution as well.

We open the empty recording file.

6.	 We begin recording actions that we will perform in the paint
application.

Implementing Automated Software Testing234

We proceed to create a simple shape in the application and save the file
as ‘test.bmp.’ The Ranorex recorder located at the right-hand bottom corner
of the screen starts recording our actions.

Note that each keystroke that we performed is recorded by the Ranorex
recorder.

Ranorex Studio 235

Implementing Automated Software Testing236

7.	 Once the recording is complete, we can see that the empty
recording file that we saw in the last step is now filled with entries
containing the actions we took while recording.

Ranorex Studio 237

We run the test suite by click on the play icon located in the toolbar at
the top.

As visible from the screenshot above, the test suite runs successfully.
•	 Example 5: Creating a Test Suite for a Demo Website: In this

example, we shall create a test solution for a web application.
We create a Ranorex solution for an online demo web application using

their solution creation wizard and create a test suite for it.
The steps are as follows:
1.	 We first access a demo website available online. For this exercise,

we go to a sample demo website provided by SwagLabs: https://
www.saucedemo.com/ (Swag Labs, 2022).

2.	 We open the application and login to the demo application using
one of the accepted usernames and the password.

(Swag Labs, 2022)

Implementing Automated Software Testing238

(Swag Labs, 2022)
As we can see, a sample set of products is available for purchase in the

demo application.
3.	 To test this demo website, we open Ranorex Studio and create a

new Web Solution that tests this website as follows:

4.	 We select the Web solution as we are testing a web application.

Ranorex Studio 239

5.	 We proceed to provide the name of the solution and the location.

6.	 We set up the test by providing the URL of the web application
and select the browser that we wish to use. In this case, we use the
Edge browser.

7.	 We then proceed to select the behavior of the way in which the
recordings would take place. We choose not to use whitelisting in
this example.

Implementing Automated Software Testing240

8.	 We finalize the solution and click on ‘Finish’ to complete the
setup.

9.	 On creation of the web solution, a basic test suite with a single
test case containing the setup, an empty recording and teardown
module is created as shown below:

Ranorex Studio 241

We proceed to view the empty recording file as shown below:

10.	 We begin recording by clicking on the ‘Record’ button and start
recording activities that we perform on the demo web application
that we are testing.

The web application is launched, and the login page opens.

(Swag Labs, 2022)

Implementing Automated Software Testing242

We choose the username ‘standard_user’ from the list of accepted
usernames and enter the password provided on the demo site.

(Swag Labs, 2022)
As can be seen from the Ranorex recorder visible in the right-hand

bottom corner, each keystroke and action are being recorded.
On logging into the website, the following page with a list of products

appears.

(Swag Labs, 2022)
For the test case recording, we select the first option to see it in detail.

Ranorex Studio 243

(Swag Labs, 2022)
The item we selected appears in detail as clear in the screenshot above.
We stop the recording at this point.
When we stop recording, we can see that the file ‘Recording1.rxrec’ is

now updatd with all the actions that we performed.

11.	 We proceed to execute the test suite with the test case that we just
recorded clicking on the run button (green play icon) at the top.

Implementing Automated Software Testing244

As seen from the test results summary above, the test suite is executed
successfully.

12.	 Now, we proceed to create a new test case that runs the scenario
of an incorrect or locked out user login. In this test case, we will
try to login using a username that is ‘locked out’ of the demo
system and cannot login in.

To create a new test case, we go to the Projects tab, right click on the
WebSolution project name, and go to Add → New Item.

The Add new item dialog appears and we choose ‘Recording module.’

We name it as ‘Recording2’ for the purpose of this example, but ideally
meaningful names should be given to each recording based on the test case
that is being recorded.

We click on ‘Create’ to create the new recording. It is added to project as
demonstrated by the screenshot below:

Ranorex Studio 245

13.	 We proceed to start recording events in the newly created
‘Recording2.rxrec’ file by clicking on the record button.

The recording starts and the demo website is launched as follows:

(Swag Labs, 2022)

Implementing Automated Software Testing246

Note that the Ranorex recorder appears in the right-hand bottom corner
and starts recording every action that we do on the application under test.

We login using the test username that fails on login, which is the
‘locked_out_user’ and the password ‘secret_sauce.’

When we click on the ‘LOGIN’ button, we get an error saying that user
has been locked out.

(Swag Labs, 2022)
This action concludes our recording and hence we press the ‘stop’ button

on the Ranorex recorder.
As visible from the screenshot below, the actions we performed are

recorded in newly created recording file.

Ranorex Studio 247

14.	 We can test the recording independently of other recordings by
clicking on the ‘Run Recodring’ button as shown below:

15.	 On running the recording, we get a result summary just like on
executing the test suite.

The following report provides us details of the execution of recording2
and we can see that it has executed successfully.

Implementing Automated Software Testing248

16.	 We now proceed to add this newly created recording to a new test
case which is added to the test suite.

This is done as follows:
First, we navigate to the test suite file and click on ‘Add’ and then go to

‘New Test Case.’

A new test case is added, and we rename it to ‘Incorrect_Login_Test’ as
shown:

We proceed to adding the setup and teardown modules to the newly
added test case by copy-pasting them from the previous test case as follows:

Ranorex Studio 249

As clearly visible from the screenshot above, the new test case ‘Incorrect_
Login_Test’ now has a setup and teardown module.

Implementing Automated Software Testing250

We continue and add ‘Recording2’ to this test case by right-clicking on
the test case name and going to Add → Existing module…

We select the option ‘Existing module’ as we wish to choose Recording2,
which we have already created in the previous steps.

The ‘Select Test Module’ window appears, and we select Recording2
from the list of modules.

Ranorex Studio 251

We click on ‘OK’ to add the recording to the newly created test case.
As can be seen in the image below, the newly created test case now has

Recording2 in it.

Now that we have completed the second test case, we save the test suite
file and execute it by clicking on the play icon located in the toolbar.

As can be seen from the results above, the test suite containing the
following two test cases has been executed with success:

•	 Opening the demo website, logging in and clicking on an item to
view its details; and

•	 Opening the demo website and logging in with a locked-out user.
17.	 As the name of the first test case is not very meaningful and does

not accurately describe the test case, we update its name and
description and then re-run the test suite.

Implementing Automated Software Testing252

Ranorex Studio 253

The test suite runs successfully as shown in the screenshot above.

BIBLIOGRAPHY

1.	 (2017). Ranorex. https://www.ranorex.com/ (accessed on 24 March
2022).

2.	 [WS] Contains String, (2022). https://Docs.katalon.com. https://docs.
katalon.com/katalon-studio/docs/ws-contains-string.html (accessed on
24 March 2022).

3.	 [WS] Send Request, (2022). https://Docs.katalon.com. https://docs.
katalon.com/katalon-studio/docs/ws-send-request.html (accessed on
24 March 2022).

4.	 [WS] Verify Element Property Value, (2022). https://Docs.katalon.
com. https://docs.katalon.com/katalon-studio/docs/ws-verify-element-
property-value.html (accessed on 24 March 2022).

5.	 [WS] Verify Elements Count, (2022). https://Docs.katalon.com. https://
docs.katalon.com/katalon-studio/docs/ws-verify-elements-count.
html#description (accessed on 24 March 2022).

6.	 [WS] Verify Response Status Code, (2022). https://Docs.katalon.com.
https://docs.katalon.com/katalon-studio/docs/ws-verify-response-
status-code.html (accessed on 24 March 2022).

7.	 Ammann, P., & Offutt, J., (2016). Introduction to software testing.
Cambridge University Press.

8.	 Antunes, N., & Vieira, M., (2012). Defending against web application
vulnerabilities. Computer, 45(02), 66–72.

Implementing Automated Software Testing256

9.	 Bangare, S. L., Borse, S., Bangare, P. S., & Nandedkar, S., (2012).
Automated API testing approach. International Journal of Engineering
Science and Technology, 4(2).

10.	 Beizer, B., (1995). Black-Box Testing: Techniques for Functional
Testing of Software and Systems. John Wiley & Sons, Inc.

11.	 Beizer, B., (2003). Software Testing Techniques. Dreamtech Press.
12.	 Collins, E., Dias-Neto, A., & De Lucena, Jr. V. F., (2012). Strategies for

agile software testing automation: An industrial experience. In: 2012
IEEE 36th Annual Computer Software and Applications Conference
Workshops (pp. 440–445). IEEE.

13.	 Create Your First Test, (2022). https://docs.katalon.com. https://docs.
katalon.com/katalon-recorder/docs/automate-scenarios.html (accessed
on 24 March 2022).

14.	 Cross Browser Automation Testing Using Watir, (2019). LambdaTest.
https://www.lambdatest.com/blog/cross-browser-automation-testing-
using-watir/ (accessed on 24 March 2022).

15.	 Dustin, E., Rashka, J., & Paul, J., (1999). Automated Software Testing:
Introduction, Management, and Performance. Addison-Wesley
Professional.

16.	 Ereiz, Z., (2019). Automating web application testing using katalon
studio. Zbornik Radova Međunarodne Naučne Konferencije o
Digitalnoj Ekonomiji DIEC, 2(2), 87–97.

17.	 Groover, M. P., (2020). Automation. Encyclopedia Britannica. https://
www.britannica.com/technology/automation (accessed on 24 March
2022).

18.	 https://docs.katalon.com. (2022). [WS] Send Request. [online]
Available at: https://docs.katalon.com/katalon-studio/docs/ws-send-
request.html#returns (accessed on 24 March 2022).

19.	 Humble, J., & Farley, D., (2010). Continuous Delivery: Reliable
Software Releases Through Build, Test, and Deployment Automation.
Pearson Education.

20.	 Introduction to Custom Keywords, (2022). https://Docs.katalon.com.
https://docs.katalon.com/katalon-studio/docs/introduction-to-custom-
keywords.html#create-a-package (accessed on 24 March 2022).

21.	 Joy, B., Steele, G., Gosling, J., & Bracha, G., (2000). The Java
Language Specification.

Bibliography 257

22.	 Jsonplaceholder.typicode.com. (2022). JSONPlaceholder – Free Fake
REST API. [online] Available at: https://jsonplaceholder.typicode.com/
(accessed on 24 March 2022).

23.	 Katalon Solution, (2022). Katalon | Simplify Web, API, Mobile,
Desktop Automated Tests. [online] Available at: https://www.katalon.
com/ (accessed on 24 March 2022).

24.	 Khan, M. E., & Khan, F., (2014). Importance of software testing in
software development life cycle. International Journal of Computer
Science Issues (IJCSI), 11(2), 120.

25.	 Limaye, M. G., (2009). Software Testing. Tata McGraw-Hill Education.
26.	 Mäntylä, M. V., Adams, B., Khomh, F., Engström, E., & Petersen,

K., (2015). On rapid releases and software testing: A case study and
a semi-systematic literature review. Empirical Software Engineering,
20(5), 1384–1425.

27.	 McGraw, G., & Hovemeyer, D., (1996). Untangling the Woven Web:
Testing Web-Based Software, 1, 1–8.

28.	 Mills, H. D., Dyer, M., & Linger, R. C., (1987). Cleanroom Software
Engineering.

29.	 Module: Watir, (2022). RubyDoc.info: Documenting RubyGems,
Stdlib, and GitHub Projects. https://www.rubydoc.info/gems/watir-
webdriver/Watir (accessed on 24 March 2022).

30.	 Pargal, D., (2020). Gemfile and Gemfile. Lock in Ruby. Davalpargal.
https://medium.com/never-hop-on-the-bandwagon/gemfile-and-
gemfile-lock-in-ruby-65adc918b856 (accessed on 24 March 2022).

31.	 Peischl, B., Ramler, R., Ziebermayr, T., Mohacsi, S., & Preschern, C.,
(2011). Requirements and solutions for tool integration in software test
automation. In: Proc. of the 3rd International Conference on Advances
in System Testing and Validation Lifecycle (pp. 71–77).

32.	 Polo, M., Reales, P., Piattini, M., & Ebert, C., (2013). Test automation.
IEEE Software, 30(1), 84–89.

33.	 Potter, B., & McGraw, G., (2004). Software security testing. IEEE
Security & Privacy, 2(5), 81–85.

34.	 Project, W., (2009). Watir Project. Watir.com. http://watir.com/
(accessed on 24 March 2022).

35.	 Pugh, W., & Ayewah, N., (2007). Unit testing concurrent software.
In: Proceedings of the Twenty-Second IEEE/ACM International
Conference on Automated Software Engineering (pp. 513–516).

Implementing Automated Software Testing258

36.	 Renfer, G. F., (1962). Automatic program testing. In: Proceedings of
the 3rd Conference of the Computing and Data Processing Society of
Canada.

37.	 RubyMine: The Ruby on Rails IDE by JetBrains, (2022). JetBrains.
https://www.jetbrains.com/ruby/ (accessed on 24 March 2022).

38.	 Singh, S. K., & Singh, A., (2012). Software Testing. Vandana
Publications.

39.	 Sublime Text, (2000). Sublime Text – A Sophisticated Text Editor for
Code, Markup and Prose. Sublimetext.com. https://www.sublimetext.
com/ (accessed on 24 March 2022).

40.	 Swag Labs, (2022). www.saucedemo.com. https://www.saucedemo.
com/ (accessed on 24 March 2022).

41.	 Test Automation, 20 Years After, (2021). Agile Alliance. https://www.
agilealliance.org/resources/experience-reports/test-automation-20-
years-after/ (accessed on 24 March 2022).

42.	 TestComplete, (2022). Software Testing Tools Guide. Retrieved from:
http://www.testingtoolsguide.net/tools/testcomplete/ (accessed on 24
March 2022).

43.	 User Guide | Ranorex Help Center, (2021). Ranorex. https://www.
ranorex.com/help/latest/ (accessed on 24 March 2022).

44.	 Watir Project, W., (2009). Waiting. Watir.com. Retrieved from: http://
watir.com/guides/waiting/ (accessed on 24 March 2022).

INDEX

A

Acceptance testing 20
AddEntry recording 209, 210
address field 178
Agile delivery process 10
API request 50, 59, 76, 81
Application Programming Interface

(API) 22
Application Programming Interface

(API) Testing 22
authorization 32, 49
Automated software testing 10
Automated testing 10, 11
Automatic program testing 11
Automation 10, 12, 14, 15, 16, 17
automation logs 214
Automation testing 2
Automation tool 10, 14, 24
Automobile industry 10

B

browser driver 119
business email 192

C

calculator application 218, 222,
224, 225

chrome browser 120, 157
chromedriver 119, 120, 122
ChromeDriver website 120
chrome web page 123
code 26, 35, 36, 50
CodeModules 207
coding languages 192
command line 129, 132, 133, 139,

148, 157
command prompt 117, 127, 133,

141, 152, 161, 165, 174
confirmation alert dialog 159
Contains String 57, 58, 61, 62
Continue evaluation 198
Continuous delivery model 10
credentials 214, 215
credentials file 214
cross-browser testing 192
crud actions 168
Customer satisfaction 3, 5
Customer’s confidence 6
custom keyword 98, 103

Implementing Automated Software Testing260

D

data-driven testing 192
Delete 154, 156, 159, 179
deleteEntry recording 210
delete link 154, 158, 163, 172, 179
demonstration 37, 38
Desktop 206, 218, 220, 229
desktop applications 192
Desktop Automated Tests 26

E

Edge 112, 124, 125, 129, 130
Edge browser 239
Edit 114, 149, 153, 177
edited record 158
Element Property Value 70, 73, 78,

80, 95
email address 192
empty 146, 164, 170
endpoint 31, 74
End User License Agreement 195
entry 53, 54, 55, 57, 58, 67, 68, 71,

72, 79, 80, 91, 92, 94, 96, 108
error message 164
execute 33, 35, 58, 59, 60, 62, 65,

82, 86, 87
execution time 218
Existing module 250
expectedStatusCode 56, 91

F

File view 199
Financial markets 4
Firefox 105, 112
Functional testing 16, 20

G

gems 117, 118, 127
Get Element Property Value 70

getUsers 54, 58
getUsersResponse 56, 58, 68
Google chrome 130, 134
google search bar 106
google search page 130

H

header 32, 33
headers tab 33
Help menu 38
html 50, 103
HTTP header tab 32

I

icon 205, 208, 211, 237, 243, 251
Input 67, 71, 72, 90, 91, 96
Input dialog 67
Input Window 71
installation 26, 29, 114, 117, 120,

124, 126
installation process 197
Integration test 18
Intercom Chat window 205
Internet Explorer 112

J

Java 192
JavaScript 50
JSONPlaceHolder 50
JSON property 71

K

katalon.exe 29
Katalon Studio 25, 26, 27, 28, 30,

38, 66, 70, 75, 81, 82, 84, 98,
101, 103

Keepass data 208
keepass database 217
keyword-driven testing 192

Index 261

Keywords 52, 98

L

Leanne Graham 42, 58
Load New Content 86
Load Service Function 84, 85
locator parameter 71, 81
log viewer section 36
Log Viewer tab 59

M

machine details 218
Manually repeating tests 11
Manual testing 2
Microsoft 124, 125, 126, 130, 136
Mobile 26, 103
mobile applications 192
module browser 199, 207, 209
Module View 199
MSI installer package 193
multiple records 168

N

New entry 52
New Web Service Keyword 66
Non-functional parameters 17
Non-functional tests 17

O

Object 54, 59, 75, 82, 107, 108
object-oriented programming 106
object-oriented scripting language

Ruby 125
official website 114
OpenApi2 36
Open-source library 112
operation 86
Output 54, 80

P

package 29, 98, 99, 100, 101
paint application 229, 230, 233
parallel testing 192
parameters 33, 52, 58, 62, 71, 91,

96, 103
Performance test 20
Personal Information Form 143
pre-defined link 37
PrintHello 90
Privet Drive Street 151
program 35, 52
project 30, 38, 39, 40, 48, 59, 64,

100
Project Section 50
Project View 199

Q

Quick Guide menu 38
Quick Guide screen 30

R

Ranorex Recorder 200, 201, 226
Ranorex repository 201
Ranorex Spy 200, 201
Ranorex Studio 191, 192, 197, 198,

199, 200, 201, 204, 206, 220,
229, 238

Ranorex Test Suite Runner 201
Ranorex website 192
Recorder 200
Recorder activity table 200
Record Web 104
record window 225
recycle bin 215, 217
regression testing 192
Regression testing 16, 17, 19, 24
Request message 86

Implementing Automated Software Testing262

responseObject 56, 91
ResponseObject parameter 58
returned data 71
Rigorous testing 4
Ruby 112, 114, 118, 120, 125, 185
Ruby code 112, 118
ruby file 127, 133, 137, 150, 161,

174, 175, 182
Ruby interpreter 112
Ruby Interpreter 114
Ruby language 112, 114

S

Safari 112
screen 33, 36, 58, 59
screenshot 33, 35, 37, 54, 60, 68,

70, 73, 87, 88, 90, 93, 96, 100,
103

script view 35
Security tests 19
Select Test Module 250
selenium web driver 119
Send request 89
Send Request 53, 61, 78, 79, 91
Service Endpoint 87
Smoke Test 18
Software community 2
Software development life cycle 2
Software product 3, 4, 5, 6, 7
Software system 2, 4, 6
Software Testing 1, 2
source files 36
standalone applications 192
StartAndLogin 207
straightforward 114
Street address 150, 151
Sublime Text 143
Submit 147, 154, 166
Supplementary costs 12

T

tab 34, 36, 77, 85, 88
Tanorex Spy 200
TDD (test driven development) 17
teardown module 240, 249
test1.rb file content 131
Test automation 10, 11
Test case 30, 34, 36, 50, 51, 52, 53,

54, 55, 58, 59, 60, 61, 62, 63,
66, 67, 69, 70, 71, 72, 73, 77,
78, 79, 80, 82, 88, 89, 94, 95,
96, 97, 102, 103, 104, 107,
108, 109

test/dummy data 38
Test parameters 52
Tests Explorer 98
test suite 34, 35, 36, 59, 63, 64, 65,

66
toolbar 205, 211, 237, 251

U

Unit testing 16, 17, 22
useRegex 58
User interface (UI) 18

V

validateEntry recording 210
validation errors 166
variable 54, 56, 58, 68, 71, 78, 80,

89, 90, 91, 93
Verify Element Property Value 73,

78, 80
Verify Elements Count 66, 67
Verify Element Text 92
verify response status code 55

W

Watir 111, 112, 114, 118, 122, 123,
125, 126, 129, 130, 135, 138,

Index 263

139, 143, 149, 159, 170, 177
watir package 118
watir test 119, 151, 180
web 38, 39, 44, 54, 55, 57, 66, 73,

77, 80, 82, 83, 84, 85, 88, 89,
90, 92, 93

web applications 192
Web Application Testing 112
web browser 112, 120, 130
Web Browser 104
webdriver 119, 124
Web Record Dialog 106
web server 53
Web Service keywords 53

Web Service Keywords 52, 55, 57
web services 38, 44, 84
Web solution 238
whitelisting 203, 239
window 37, 40, 50, 51, 63, 64, 82,

83
windows machine 114
wizard 202, 203, 223, 224, 229, 237

X

XML 50

Z

zip file 192

	Cover

	Title Page

	Copyright

	ABOUT THE AUTHOR

	TABLE OF CONTENTS

	List of Abbreviations
	Dedication
	Preface
	Chapter 1 Software Testing: Definition and Importance
	1.1. What is Software Testing?
	1.2. Importance of Software Testing

	Chapter 2 Automated Software Testing
	2.1. Introduction
	2.2. Benefits of Automation Testing
	2.3. Types of Automation Tests in Software
	2.4. Different Automation Testing Software

	Chapter 3 Katalon Studio
	3.1. Introduction
	3.2. Installation
	3.3. Practical Implementations/Examples

	Chapter 4 Watir
	4.1. Important Watir Commands and Terminology
	4.2. Watir Installation
	4.3. Examples

	Chapter 5 Ranorex Studio
	5.1. Setup and Installation
	5.2. Ranorex Studio Basics
	5.3. Examples

	Bibliography
	Index
	Back Cover

