
Jetpack
Compose 1.3

Essentials





Jetpack Compose 1.3

Essentials

Title

Jetpack Compose 1.3 Essentials

ISBN-13: 978-1-951442-64-4

© 2023 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, 

reproduction and/or distribution strictly prohibited. All rights 

reserved.

The content of this book is provided for informational purposes 
only. Neither the publisher nor the author offers any warranties or 

representation, express or implied, with regard to the accuracy of 

information contained in this book, nor do they accept any liability 

for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for 

editorial purposes and to the benefit of the respective trademark 

owner. The terms used within this book are not intended as 

infringement of any trademarks.



Rev: 1.0

Copyright



Table of contents

1. Start Here

1.1 For Kotlin programmers

1.2 For new Kotlin programmers 

13 Downloading the code samples

1.4 Feedback

1.5 Errata

2. Setting up an Android Studio Development Environment

2.1 System requirements

2.2 Downloading the Android Studio package

2.3 Installing Android Studio

2.3.1 Installation on Windows
2.3.2 Installation on macOS

2.3.3 Installation on Linux

2.4 The Android Studio setup wizard

25 Installing additional Android SDK packages

2.6 Installing the Android SDK Command-line Tools

2.6.1 Windows 8.1

2.6.2 Windows 10

2.6.3 Windows 11
2.6.4 Linux

2.6.5 macOS



2.7 Android Studio memory management

2.8 Updating Android Studio and the SDK

2.9 Summary

3. A Compose Project Overview

3.1 About the project

3.2 Creating the project

3.3 Creating an activity

3.4 Defining the project and SDK settings

3.5 Previewing the example project

3.6 Reviewing the main activity

3.7 Preview updates
3.8 Bill of Materials and the Compose version

3.9 Summary

4. An Example Compose Proj ect

4.1 Getting started

4.2 Removing the template Code

4.3 The Com posable hierarchy

4.4 Adding the DemoText composable

4.5 Previewing the DemoText composable

4.6 Adding the DemoSlider composable
4.7 Adding the DemoScreen composable

4.8 Previewing the DemoScreen composable

4.9 Adjusting preview settings

4.10 Testing in interactive mode



4.11 Completing the project

4.12 Summary

5. Creating an Android Virtual Device (AVD) in Android Studio

5.1 About Android Virtual Devices

5.2 Starting the emulator

5.3 Running the application in the AVD

5.4 Real-time updates with Live Edit

5.5 Running on multiple devices
5.6 Stopping a running application

5.7 Supporting dark theme

5.8 Running the emulator in a separate window

5.9 Enabling the device frame

5.10 Summary

6. Using and Configuring the Android Studio AVD Emulator

6.1 The Emulator Environment
6.2 Emulator Toolbar Options

6.3 Working in Zoom Mode

6.4 Resizing the Emulator Window

6.5 Extended Control Options
6.5.1 Location

6.5.2 Displays
6.5.3 Cellular

6.5.4 Battery

6.5.5 Camera



6.5.6 Phone
6.5.7 Directional Pad

6.5.8 Microphone

6.5.9 Fingerprint
6.5.10 Virtual Sensors
6.5.11 Snapshots

6.5.12 Record and Playback

6.5.13 Google Play

6.5.14 Settings

6.-5.1-5- Help
6.6 Working with Snapshots

6.7 Configuring Fingerprint Emulation

6.8 The Emulator in Tool Window Mode

6.9 Creating a Resizable Emulator

6.10 Summary

7. A Tour of the Android Studio User Interface

7.1 The Welcome Screen

7.2 The Main Window

7.3 The Tool Windows

7.4 Android Studio Keyboard Shortcuts
7^.5 Switcher and Recent Files Navigation

7.6 Changing the Android Studio Theme
7.7 Summary

8. Testin g Android Studio Apps on a Physical Android Device



8.1 An overview of the Android Debug Bridge (ADB)

8.2 Enabling USB debugging ADB on Android devices

8.2.1 macOS ADB configuration
8.2.2 Windows ADB configuration

8.2.3 Linux adb configuration

8.3 Resolving USB connection issues

8.4 Enabling wireless debugging on Android devices

85 Testing the adb connection

8.6 Summary

9. The Basics of the Android Studio Code Editor

9.1 The Android Studio editor

9.2 Code mode
9.3 Splitting the editor window

9.4 Code completion

9.5 Statement completion
9.6 Parameter information

9.7 Parameter name hints

9.8 Code generation

9.9 Code folding

9.10 Quick documentation lookup

9.11 Code reformatting
9.12 Finding sample code

9.13 Live templates
9.14 Summary

10. An Overview of the Android Architecture



io.i The Android software stack

10.2 The Linux kernel

10.3 Android runtime - ART
10.4 Android libraries

10.4.1 C/C++ libraries

10.5 Application framework

10.6 Applications
10.7 Summary

11. An Introduction to Kotlin

11.1 What is Kotlin?
11.2 Kotlin and Java

11.3 Converting from Java to Kotlin
11.4 Kotlin and Android Studio

11.5 Experimenting with Kotlin

11.6 Semi-colons in Kotlin

11.7 Summary

12. Kotlin Data Types, Variables and Nullability

12.1 Kotlin data types

12.1.1 Integer data types

12.1.2 Floating point data types

12.1.3 Boolean data type

12.1.4 Character data type

12.1.5 String data type

12.1.6 Escape sequences



12.2 Mutable variables

12.3 Immutable variables

12.4 Declaring mutable and immutable variables

12.5 Data types are objects

12.6 Type annotations and type inference

12.7 Nullable type

12.8 The safe call operator

12.9 Not-null assertion

12.10 Nullable types and the let function

12.11 Late initialization (lateinit)

12.12 The Elvis operator

12.13 _Ty.pe casting and type checking

12.14 Summary

13. Kotlin Operators and Expressions

13.1 Expression syntax in Kotlin

13.2 The Basic assignment operator

13.3 Kotlin arithmetic operators

13.4 Augmented assignment operators

13.5 Increment and decrement operators

13.6 Eq uality o perators

13.7 Boolean logical operators

13.8 Range operator

13.9 Bitwise operators

13.9.1 Bitwise inversion
13.9.2 Bitwise AND

13.9.3 Bitwise OR



13.9.4 Bitwise XOR

13.9.5 Bitwise left shift
13.9.6 Bitwise right shift
13.10 Summary

14. Kotlin Control Flow

14.1 Looping control flow

14.1.1 The Kotlin for-in Statement

14.1.2 The while loop

14.1.3 The do ... while loop
14.1.4 Breaking from Loops

14.1.5 The continue statement

14.1.6 Break and continue labels
14.2 Conditional control flow

14.2.1 Using the if expressions
14.2.2 Using if ... else ... ex pressions

14.2.3 Using if ... else if ... Ex pressions

14.2.4 Using the when statement
14.. 3 Summary

15. An Overview of Kotlin Functions and Lambdas

15.1 What is a function?

15.2 How to declare a Kotlin function
15.3 Calling a Kotlin function

15.4 Single expression functions

15.5 Local functions



15.6 Handling return values

15.7 Declaring default function parameters

15.8 Variable number of function parameters

15.9 Lambda expressions
15.10 Higher-order functions

15.11 Summary

16. The Basics of Object-Oriented Programming in Kotlin

16.1 What is an object?

16.2 What is a class?
16.3 Declaring a Kotlin class

16.4 Adding properties to a class
16.5 Defining methods

16.6 Declaring and initializing a class instance

16.7 Primary and secondary constructors

16.8 Initializer blocks

16.9 Calling methods and accessing properties

16.10 Custom accessors

16.11 Nested and inner classes

16.12 Companion objects
16.13 Summary

17. An Introduction to Kotlin Inheritance and Subclassing

17.1 Inheritance, classes, and subclasses
17.2 Subclassing syntax

173 A Kotlin inheritance example



17.4 Extending the functionality of a subclass

175 Overriding inherited methods
17.6 Adding a custom secondary constructor

17.7 Using the SavingsAccount class
17.8 Summary

18. An Overview of Compose

18.1 Development before Compose

18.2 Compose declarative syntax

18.3 Compose is data-driven
18.4 Summary

19. Composable Functions Overview

19.1 What is a composable function?

19.2 Stateful vs. stateless composables

19.3 Composable function syntax

19.4 Foundation and Material composables

19.5 Summary

20. An Overview of Compose State and Recomposition

20.1 The basics of state
20.2 Introducing recomposition

20.3 Creating the StateExample project

20.4 Declaring state in a composable



20.5 Unidirectional data flow
20.6 State hoisting

20.7 Saving state through configuration changes
20.8 Summary

21. An Introduction to Composition Local

21.1 Understanding CompositionLocal
21.2 Using CompositionLocal

21.3 Creating the CompLocalDemo project

21.4 Designing the layout

21.5 Adding the CompositionLocal state

21.6 Accessing the CompositionLocal state
21.7 Testing the design

21.8 Summary

22. An Overview of Compose Slot APIs

22.1 Understanding slot APIs

22.2 Declaring a slot API

22.3 Calling slot API composables

22.4 Summary

23. A Compose Slot API Tutorial

23.1 About the project

23.2 Creating the SlotApiDemo project

23.3 Preparing the MainActivity class file
23.4 Creating the MainScreen composable



23.5 Adding the ScreenContent composable

23.6 Creating the Checkbox composable

23.7 Implementing the ScreenContent slot API

23.8 Adding an Image drawable resource

23.9 Writing the TitleImage com posable
23.10 Completing the MainScreen composable

23.11 Previewing the project

23.12 Summary

24. Using Modifiers in Compose

24.1 An overview of modifiers

24.2 Creating the ModifierDemo project
24.3 Creating a modifier

24.4 Modifier ordering

24.5 Adding modifier support to a composable
24.6 Common built-in modifiers

24.7 Combining modifiers

24.8 Summary

25. Annotated Strings and Brush Styles

25.1 What are annotated strings?

25.2 Using annotated strings
25.3 Brush Text Stylin g

25.4 Creating the example project

25.5 An example SpanStyle annotated string

25.6 An example ParagraphStyle annotated string



25.7 A Brush style exam ple

25.8 Summary

26. Composing Layouts with Row and Column

26.1 Creating the RowColDemo project

26.2 Row composable

26.3 Column composable

26.4 Combining Row and Column composables

26.5 Layout alignment

26.6 Layout arrangement positioning
26.7 Layout arrangement spacing

26.8 Row and Column scope modifiers

26.9 Scope modifier weights

26.10 Summary

27. Box Layouts in Compose

27.1 An introduction to the Box composable

27.2 Creating the BoxLayout project

27.3 Adding the TextCell composable

27.4 Adding a Box layout
27_i5 Box alignment

27.6 BoxScope modifiers
27.7 Using the clip() modifier

27.8 Summary

28. Custom Layout Modifiers



28.1 Compose layout basics

28.2 Custom layouts

28.3 Creating the LayoutModifier project
28.4 Adding the ColorBox composable

28.5 Creating a custom layout modifier
28.6 Understanding default position

28.7 Completing the layout modifier

28.8 Using a custom modifier

28.9 Working with alignment lines

28.10 Working with baselines

28.11 Summary

29. Building Custom Layouts

29.1 An overview of custom layouts

29.2 Custom layout syntax
29.3 Using a custom layout

29.4 Creatin g the CustomLayout proj ect

29.5 Creating the CascadeLayout composable

29.6 Using the CascadeLayout composable
29.7 Summary

30. A Guide to ConstraintLayout in Compose

30.1 An introduction to ConstraintLayout

30.2 How ConstraintLayout works

30.2.1 Constraints



30.2.2 Margins

30.2.3 Opposing constraints

30.2.4 Constraint bias

30.2.5 Chains
30.2.6 Chain styles

30.3 Configuring dimensions

30.4 Guideline helper

30.5 Barrier helper

30.6 Summary

31. Working with ConstraintLayout in Compose

31.1 Calling ConstraintLayout

31.2 Generating references

31^3 Assigning a reference to a composable

31.4 Adding constraints

315 Creating the ConstraintLayout project

31.6 Adding the ConstraintLayout library

31.7 Adding a custom button composable

31.8 Basic constraints

31.9 Opposing constraints

31.10 Constraint bias

31.11 Constraint margins

31.12 The im portance of o p posin g constraints and bias

31.13 Creating chains

31.14 Working with guidelines

31.15 Working with barriers

31.16 Decoupling constraints with constraint sets



31.17 Summary

32. Working with IntrinsicSize in Compose

32.1 Intrinsic measurements

32.2 Max. vs Min. Intrinsic Size measurements

32.3 About the example project
32.4 Creating the IntrinsicSizeDemo project

32.5 Creating the custom text field

32.6 Adding the Text and Box components

32.7 Adding the top-level Column

32.8 Testing the project

32.9 Applying IntrinsicSize.Max measurements
32.10 Applying IntrinsicSize.Min measurements

32.11 Summary

33. Coroutines and LaunchedEffects in Jetpack Compose

33.1 What are coroutines?

33.2 Threads vs. coroutines

33.3 Coroutine Scope

33.4 Suspend functions

33.5 Coroutine dispatchers

33.6 Coroutine builders

33.7 —Jobs
33.8 Coroutines - suspending and resuming

33.9 Coroutine channel communication

33.10 Understanding side effects



33.11 Summary

34. An Overview of Lists and Grids in Compose

34.1 Standard vs. lazy lists

34.2 Working with Column and Row lists

34.3 Creating lazy lists
34.4 Enabling scrolling with ScrollState
34.5 Programmatic scrolling

34.6 Sticky headers

34.7 Responding to scroll position

34.8 Creating a lazy grid

34.9 Summary

35. A Compose Row and Column List Tutorial

35.1 Creating the ListDemo project

35.2 Creating a Column-based list

35.3 Enabling list scrolling

35.4 Manual scrolling
35.5 A Row list example

35.6 Summary

36. A Compose Lazy List Tutorial

36.1 Creating the LazyListDemo project

36.2 Adding list data to the project

36.3 Reading the XML data
36.4 Handling image loading



36.5 Designing the list item composable
36.6 Building the lazy list

36.7 Testing the project
36.8 Making list items clickable

36.9 Summary

37. Lazy List Sticky Headers and Scroll Detection

37.1 Grouping the list item data

37.2 Displaying the headers and items

37.3 Adding sticky headers

37.4 Reacting to scroll position
37^5 Adding the scroll button

37.6 Testing the finished app

37.7 Summary

38. A Compose Lazy Staggered Grid Tutorial

38.1 Lazy Staggered Grids

38.2 Creating the StaggeredGridDemo project

38.3 Adding the Box composable

38.4 Generating random height and color values

38.5 Creating the Staggered List

38.6 Testing the project

38.7 Switching to a horizontal staggered grid
38.8 Summary

39. Compose Visibility Animation



39.1 Creating the AnimateVisibility project
39.2 Animating visibility

39.3 Defining enter and exit animations
39.4 Animation specs and animation easing

39.5 Repeating an animation
39.6 Different animations for different children
39.7 Auto-starting an animation

39.8 Implementing crossfading

39.9 Summary

40. Compose State-Driven Animation

40.1 Understanding state-driven animation

40.2 Introducing animate as state functions

40.3 Creating the AnimateState project

40.4 Animating rotation with animateFloatAsState

40.5 Animating color changes with animateColorAsState

40.6 Animating motion with animateDpAsState
40.7 Adding spring effects

40.8 Working with keyframes

40.9 Combining multiple animations
40.10 Using the Animation Inspector

40.11 Summary

41. Canvas Graphics Drawing in Compose

41.1 Introducing the Canvas component



41.2 Creating the CanvasDemo project

413 Drawing a line and getting the canvas size
41.4 Drawing dashed lines
415 Drawing a rectangle

41.6 Applying rotation

41.7 Drawing circles and ovals
41.8 Drawing gradients

41.9 Drawing arcs

41.10 Drawing paths
41.11 Drawing points

41.12 Drawing an image

41.13 Drawing text

41.14 Summary

42. Working with ViewModels in Compose

42.1 What is Android Jetpack?

42.2 The “old” architecture
42.3 Modern Android architecture

42.4 The ViewModel component
425 ViewModel implementation using state

42.6 Connecting a ViewModel state to an activity
42.7 ViewModel implementation using LiveData

42.8 Observing ViewModel LiveData within an activity
42.9 Summary

43. A Compose ViewModel Tutorial



43.1 About the project

43.2 Creating the ViewModelDemo project

43.3 Adding the ViewModel

43.4 Accessing DemoViewModel from MainActivity

43.5 Designing the temperature input composable
43.6 Designing the temperature input composable

43.7 Completing the user interface design

43.8 Testing the app
43.9 Summary

44. An Overview of Android SQLite Databases

44.1 Understanding database tables

44.2 Introducing database schema

44.3 Columns and data ty pes

44.4 Database rows
44.5 Introducing primary keys

44.6 What is SQLite?

44.7 Structured Query Language (SQL)
44.8 Trying SQLite on an Android Virtual Device (AVD)

44.9 The Android Room persistence library

44.10 Summary

45. Room Databases and Compose

45.1 Revisiting modern app architecture

45.2 Key elements of Room database persistence

45.2.1 Repository



45.2.2 Room database

45.2.3 Data Access Object (DAO)
45.2.4 Entities

45.2.5 SQLite database
45.3 Understanding entities

45.4 Data Access Objects

45.5 The Room database

45.6 The Repository

45.7 In-Memory databases

45.8 Database Inspector

45.9 Summary

46. A Compose Room Database and Repository Tutorial

46.1 About the RoomDemo project

46.2 Creating the RoomDemo project
46.3 Modifying the build configuration

46.4 Building the entity
465 Creating the Data Access Object

46.6 Adding the Room database

46.7 Adding the repository

46.8 Adding the ViewModel
46.9 Designing the user interface

46.10 Writing a ViewModelProvider Factory class
46.11 Completing the MainScreen function

46.12 Testing the RoomDemo app

46.13 Using the Database Inspector
46.14 Summary



47. An Overview of Navigation in Compose

47.1 Understanding navigation

47.2 Declaring a navigation controller

47.3 Declaring a navigation host
47.4 Adding destinations to the navigation graph

47^5 Navigating to destinations

47.6 Passing arguments to a destination

47.7 Working with bottom navigation bars

47.8 Summary

48. A Compose Navigation Tutorial

48.1 Creating the NavigationDemo project

48.2 About the NavigationDemo project
48.3 Declaring the navigation routes

48.4 Adding the home screen
485 Adding the welcome screen

48.6 Adding the profile screen

48.7 Creating the navigation controller and host
48.8 Implementing the screen navigation

48.9 Passing the user name argument

48.10 Testing the project

48.11 Summary

49. A Compose Navi gation Bar Tutorial

49.1 Creating the BottomBarDemo project



49.2 Declaring the navigation routes

49.3 Designing bar items

49.4 Creating the bar item list

49.5 Adding the destination screens

49.6 Creating the navigation controller and host

49.7 Designing the navigation bar

49.8 Working with the Scaffold component

49.9 Testing the project

49.10 Summary

50. Detecting Gestures in Compose

50.1 Compose gesture detection

50.2 Creating the GestureDemo project
50.3 Detecting click gestures

50.4 Detecting taps using PointerInputScope

50.5 Detecting drag gestures

50.6 Detecting drag gestures using PointerInputScope
50.7 Scrolling using the scrollable modifier

50.8 Scrolling using the scroll modifiers
50.9 Detecting pinch gestures

50.10 Detecting rotation gestures

50.11 Detecting translation gestures

50.12 Summary

51. An Introduction to Kotlin Flow

51.1 Understanding Flows



51.2 Creating the sample project
513 Adding a view model to the project

51.4 Declaring the flow
515 Emitting flow data

51.6 Collecting flow data as state

51.7 Transforming data with intermediaries

51.8 Collecting flow data

51.9 Adding a flow buffer
51.10 More terminal flow operators

51.11 Flow flattening

51.12 Combining multiple flows

51.13 Hot and cold flows

51.14 StateFlow

51.15 SharedFlow
51.16 Converting a flow from cold to hot
51.17 Summary

52. A Jetpack Compose SharedFlow Tutorial

52.1 About the project

52.2 Creating the SharedFlowDemo project

52.3 Adding a view model to the project

52.4 Declaring the SharedFlow

525 Collecting the flow values

52.6 Testing the SharedFlowDemo app

52.7 Handling flows in the background
52.8 Summary



53. Creating, Testing, and Uploading an Android App Bundle

53.1 The release preparation process

53.2 Android app bundles

53.3 Register for a Google Play Developer Console account
53.4 Configuring the app in the console

53.5 Enabling Google Play app signing

53.6 Creating a keystore file

53.7 Creating the Android app bundle

53.8 Generating test APK files

53.9 Uploading the app bundle to the Google Play Developer 

Console

53.10 Exploring the app bundle

53.11 Managing testers

53.12 Rolling the app out for testing

53.13 Uploading new app bundle revisions

53.14 Analyzing the app bundle file
53.15 Summary

54. An Overview of Android In-App Billin g

54.1 Preparing a project for In-App purchasing

54.2 Creating In-App products and subscriptions

54.3 Billing client initialization
54.4 Connecting to the Google Play Billing library

54.5 Querying available products
54.6 Starting the purchase process

54.7 Completing the purchase



54.8 Querying previous purchases

54.9 Summary

55. An Android In-App Purchasing Tutorial

55.1 About the In-App purchasing example project
55.2 Creating the InAppPurchase project

55.3 Adding libraries to the project

55.4 Adding the App to the Google Play Store
55.5 Creating an In-App product
55.6 Enabling license testers

55.7 Creating a purchase helper class

55.8 Adding the StateFlow streams
55.9 Initializing the billing client

55.10 Querying the product

55.11 Handling purchase updates

55.12 Launching the purchase flow

55.13 Consuming the product

55.14 Restoring a previous purchase

55.15 Completing the MainActivity

55.16 Testing the app
55.17 Troubleshootin g

55.18 Summary

5 6. Workin g with Compose Themin g

56.1 Material Design 2 vs. Material Design 3

56.2 Material Design 3 theming



56.3 Building a custom theme

56.4 Summary

57. A Material Design 3 Theming Tutorial

57.1 Creating the ThemeDemo project

57.2 Designing the user interface

57.3 Building a new theme

57.4 Adding the theme to the project

57^.5 Enabling dynamic colors

57.6 Summary

58. An Overview of Gradle in Android Studio

58.1 An overview of Gradle

58.2 Gradle and Android Studio

58.2.1 Sensible defaults

58.2.2 Dependencies

58.2.3 Build variants

58.2.4 Manifest entries

58.2.5 APK signing
58.2.6 ProGuard support

58.3 The Properties and Settings Gradle build files

58.4 The top-level gradle build file

585 Module level Gradle build files

58.6 Configuring signing settings in the build file

58.7 Running Gradle tasks from the command-line
58.8 Summary



Index

Contents



1. Start Here

This book aims to teach you how to build Android applications 
using Jetpack Compose 1.3, Android Studio Flamingo (2022.2.1), 

Material Design 3, and the Kotlin programming language.

The book begins with the basics by explaining how to set up an 

Android Studio development environment.

The book also includes in-depth chapters introducing the Kotlin 

programming language, including data types, operators, control 

flow, functions, lambdas, coroutines, and object-oriented 
programming.

An introduction to the key concepts of Jetpack Compose and 

Android project architecture is followed by a guided tour of 

Android Studio in Compose development mode. The book also 

covers the creation of custom Composables and explains how 

functions are combined to create user interface layouts, including 

row, column, box, and list components.

Other topics covered include data handling using state properties, 

key user interface design concepts such as modifiers, navigation 

bars, and user interface navigation. Additional chapters explore 

building your own reusable custom layout components.



The book covers graphics drawing, user interface animation, 
transitions, Kotlin Flows, and gesture handling.

Chapters also cover view models, SQLite databases, Room 

database access, the Database Inspector, live data, and custom 
theme creation. Using in-app billing, you will also learn to 

generate extra revenue from your app.

Finally, the book explains how to package up a completed app 

and upload it to the Google Play Store for publication.

Along the way, the topics covered in the book are put into 

practice through detailed tutorials, the source code for which is 

also available for download.

Assuming you already have some rudimentary programming 

experience, are ready to download Android Studio and the Android 

SDK, and have access to a Windows, Mac, or Linux system, you 

are ready to start.



i.i For Kotlin programmers

This book addresses the needs of existing Kotlin programmers and 
those new to Kotlin and Jetpack Compose app development. If 

you are familiar with the Kotlin programming language, you can 

probably skip the Kotlin-specific chapters.



1.2 For new Kotlin programmers

If you are new to Kotlin programming, the entire book is 

appropriate for you. Just start at the beginning and keep going.



1.3 Downloading the code samples

The source code and Android Studio project files for the examples 

contained in this book are available for download at:

https://www.ebookfrenzy.com/retail/compose13/index.php

The steps to load a project from the code samples into Android 

Studio are as follows:

1. Click on the Open button option from the Welcome to Android 

Studio dialog.

2. In the project selection dialog, navigate to and select the folder 

containing the project to be imported and click on OK.

https://www.ebookfrenzy.com/retail/compose1


1.4 Feedback

We want you to be satisfied with your purchase of this book. 
Therefore, if you find any errors in the book or have any 

comments, questions, or concerns, please contact us at



1.5 Errata

While we make every effort to ensure the accuracy of the content 

of this book, inevitably, a book covering a subject area of this 

size and complexity may include some errors and oversights. Any 

known issues with the book will be outlined, together with 

solutions, at the following URL:

https://www.ebookfrenzy.com/errata/compose13.html

If you find an error not listed in the errata, email our technical 

support team at

https://www.ebookfrenzy.com/errata/compose1


2. Setting up an Android Studio Development Environment

Before any work can begin on the development of an Android 

application, the first step is to configure a computer system to 

act as the development platform. This involves several steps 

consisting of installing the Android Studio Integrated Development 

Environment (IDE) which also includes the Android Software 
Development Kit (SDK), the Kotlin plug-in and OpenJDK Java 

development environment.

This chapter will cover the steps necessary to install the requisite 

components for Android application development on Windows, 

macOS, and Linux-based systems.



2.1 System requirements

Android application development may be performed on any of the 

following system types:

•Windows 8/10/11 64-bit

• macOS 10.14 or later running on Intel or Apple silicon

• Chrome OS device with Intel i5 or higher

• Linux systems with version 2.31 or later of the GNU C Library 

(glibc)

• Minimum of 8GB of RAM

• Approximately 8GB of available disk space 

•1280 x 800 minimum screen resolution



2.2 Downloading the Android Studio package

Most of the work involved in developing applications for Android 

will be performed using the Android Studio environment. The 

content and examples in this book were created based on Android 

Studio Flamingo 2022.2.1 using the Android API 33 SDK 
(Tiramisu) which, at the time of writing, are the latest versions.

Android Studio is, however, subject to frequent updates so a 

newer version may have been released since this book was 

published.

The latest release of Android Studio may be downloaded from the 
primary download page which can be found at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version 

of Android Studio it is important to note that there may be some 

minor differences between this book and the software. A web 

search for “Android Studio Flamingo” should provide the option to 

download the older version if these differences become a problem. 

Alternatively, visit the following web page to find Android Studio 

Flamingo 2022.2.1 in the archives: 

https://developer.android.com/studio/archive

https://developer.android.com/studio/index.html
https://developer.android.com/studio/archive


2.3 Installing Android Studio

Once downloaded, the exact steps to install Android Studio differ 

depending on the operating system on which the installation is 

being performed.



2.3.1 Installation on Windows

Locate the downloaded Android Studio installation executable file 

(named in a Windows Explorer window and double-click on it to 

start the installation process, clicking the Yes button in the User 

Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the 

various screens to configure the installation to meet your 

requirements in terms of the file system location into which 

Android Studio should be installed and whether or not it should 

be made available to other users of the system. When prompted 

to select the components to install, make sure that the Android 

Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should 

be installed on the system, the remainder of this book will 
assume that the installation was performed into C:\Program 

Files\Android\Android Studio and that the Android SDK packages 

have been installed into the user’s AppData\Local\Android\sdk sub­

folder. Once the options have been configured, click on the Install 
button to begin the installation process.

On versions of Windows with a Start menu, the newly installed 

Android Studio can be launched from the entry added to that 

menu during the installation. The executable may be pinned to



the taskbar for easy access by navigating to the Android Studio\bin 
directory, right-clicking on the stud'1064 executable, and selecting 

the Pin to Taskbar menu option (on Windows 11 this option can 

be found by selecting Show more options from the menu).



2.3.2 Installation on macOS

Android Studio for macOS is downloaded in the form of a disk 

image (.dmg) file. Once the android-studio--mac.dmg file has been 

downloaded, locate it in a Finder window and double-click on it to 

open it as shown in Figure

Figure 2-1

To install the package, simply drag the Android Studio icon and drop 

it onto the Applications folder. The Android Studio package will then



be installed into the Applications folder of the system, a process that 

will typically take a few seconds to complete.

To launch Android Studio, locate the executable in the Applications 

folder using a Finder window and double-click on it.

For future, easier access to the tool, drag the Android Studio icon 

from the Finder window and drop it onto the dock.



2.3.3 Installation on Linux

Having downloaded the Linux Android Studio package, open a 

terminal window, change directory to the location where Android 

Studio is to be installed and execute the following command:

unzip /to package>/android-studio-ide--linux.zip

Note that the Android Studio bundle will be installed into a 

subdirectory named android-studio. Assuming, therefore, that the 

above command was executed in the software packages will be 
unpacked into /home/demo/android-studio.

To launch Android Studio, open a terminal window, change 
directory to the android-studio/bin sub-directory and execute the 

following command:

./studio.sh

When running on a 64-bit Linux system, it may be necessary to 

install some 32-bit support libraries before Android Studio will run. 

On Ubuntu these libraries can be installed using the following 

command:



sudo apt-get install libc6:i386 libncurses5:i386 libstdc++6:i386 
lib32zi Iibbz2-i.o:i386

On Red Hat and Fedora-based 64-bit systems, use the following 

command:

sudo yum install zlib.i686 ncurses-libs.i686 bzip2-libs.i686



2.4 The Android Studio setup wizard

If you have previously installed an earlier version of Android Studio, 

the first time this new version is launched, a dialog may appear 

providing the option to import settings from a previous Android 

Studio version. If you have settings from a previous version and 

would like to import them into the latest installation, select the 

appropriate option and location. Alternatively, indicate that you do not 

need to import any previous settings and click on the OK button to 

proceed.

If you are installing Android Studio for the first time, the initial 

dialog that appears once the setup process starts may resemble that 

shown in Figure 2-2 below:



Figure 2-2

If this dialog appears, click the Next button to display the Install 

Type screen On this screen, select the Standard installation option 

before clicking Next.



Figure 2-3

On the Select UI Theme screen, select either the Darcula or Light 

theme based on your preferences. After making a choice, click Next, 

and review the options in the Verify Settings screen before 

proceeding to the License Agreement screen. Select each license 

category and enable the Accept checkbox. Finally, click on the Finish 

button to initiate the installation.

After these initial setup steps have been taken, click the Finish 

button to display the Welcome to Android Studio screen using your 

chosen UI theme:



Welcome to Android Studio

XX Android Studio
Flamingo I 2022.2.1

Projects

Customize

Plugins

Learn Android Studio

Welcome to Android Studio
Create a new project to start from scratch.

Open existing project from disk or version control.

More Actions

Figure 2-4



2.5 Installing additional Android SDK packages

The steps performed so far have installed the Android Studio IDE 

and the current set of default Android SDK packages. Before 

proceeding, it is worth taking some time to verify which packages 

are installed and to install any missing or updated packages.

This task can be performed by clicking on the More Actions link 

within the welcome dialog and selecting the SDK Manager option 

from the drop-down menu. Once invoked, the Android SDK screen of 

the Preferences dialog will appear as shown in Figure

Preferences

v Appearance & Behavior

Appearance

Menus and Toolbars

System Settings

HTTP Proxy

Data Sharing

Date Formats

Updates

Process Elevation

Passwords

Android SDK

Memory Settings 

Notifications 

Quick Lists 

Path Variables

Key map

> Editor

> Build, Execution, Deployment 

Kotlin

> Tools

Advanced Settings

Layout Inspector

Appearance & Behavior > System Settings > Android SDK Reset 4-

Manager for the Android SDK and Tools used by the IDE

Android SDK Location: /Users/neilsmyth/Library/Android/sdk Edit Optimize disk space

SDK Platforms SDK Tools SDK Update Sites

Each Android SDK Platform package includes the Android platform and sources pertaining to an 
API level by default. Once installed, the IDE will automatically check for updates. Check "show 
package details" to display individual SDK components.

Q Hide Obsolete Packages Show Package Details

Name API Level Revision Status

Android UpsideDownCake Preview UpsideDownCake 3 Not installed
Android TiramisuPrivacySandbox Preview TiramisuPrivacySandbox 9_______ Not installed

Z Android 13.0 (Tiramisu) 33 2 Update available
Android 12L (Sv2) 32 1 Partially installed

E Android 12.0 (S) 31 1 Not installed
E Android 11.0 (R) 30 3 Not installed

Android 10.0 (Q) 29 5 Not installed
Android 9.0 (Pie) 28 6 Not installed
Android 8.1 (Oreo) 27 3 Not installed
Android 8.0 (Oreo) 26 2 Not installed
Android 7.1.1 (Nougat) 25 3 Not installed
Android 7.0 (Nougat) 24 2 Not installed
Android 6.0 (Marshmallow) 23 3 Not installed
Android 5.1 (Lollipop) 22 2 Not installed
Android 5.0 (Lollipop) 21 2 Not installed
Android 4.4W (KitKat Wear) 20 2 Not installed
Android 4.4 (KitKat) 19 4 Not installed
Android 4.3 (Jelly Bean) 18 3 Not installed

? Project-level settings will be applied to new projects Cancel Apply OK



Figure 2-5

Immediately after installing Android Studio for the first time it is 

likely that only the latest released version of the Android SDK has 

been installed. To install older versions of the Android SDK simply 

select the checkboxes corresponding to the versions and click on the 

Apply button. The rest of this book assumes that the Android 

Tiramisu (API Level 33) SDK is installed.

Most of the examples in this book will support older versions of 

Android as far back as Android 8.0 (Oreo). This is to ensure that 

the apps run on a wide range of Android devices. Within the list of 

SDK versions, enable the checkbox next to Android 8.0 (Oreo) and 

click on the Apply button. In the resulting confirmation dialog click 

on the OK button to install the SDK. Subsequent dialogs will seek 

the acceptance of licenses and terms before performing the 

installation. Click Finish once the installation is complete.

It is also possible that updates will be listed as being available for 

the latest SDK. To access detailed information about the packages 

that are ready to be updated, enable the Show Package Details option 

located in the lower right-hand corner of the screen. This will display 

information similar to that shown in Figure

Name API Level Revision Status

Android TV ARM 64 v8a System Image 33 5 Not installed
Android TV Intel x86 Atom System Image 33 5 Not installed
Google TV ARM 64 v8a System Image 33 5 Not installed
Google TV Intel x86 Atom System Image 33 5 Not installed

D Google APIs ARM 64 v8a System Image 33 8 gZUpdate Available:
Google APIs Intel x86 Atom_64 System Image 33 9 Not installed

□ Google Play ARM 64 v8a System Image 33 7 Installed



Figure 2-6

The above figure highlights the availability of an update. To install 

the updates, enable the checkbox to the left of the item name and 

click on the Apply button.

In addition to the Android SDK packages, several tools are also 

installed for building Android applications. To view the currently 

installed packages and check for updates, remain within the SDK 

settings screen and select the SDK Tools tab as shown in Figure

Q-_____________________

v Appearance & Behavior 

Appearance 

Menus and Toolbars

v System Settings 

HTTP Proxy 

Data Sharing 

Date Formats 

Updates

Process Elevation 

Passwords

Appearance & Behavior > System Settings > Android SDK

Manager for the Android SDK and Tools used by the IDE

Android SDK Location: C:\Users\neil\AppData\Local\Android\Sdk Edit Optimize disk space

SDK Platforms^^^^^&DK Update Sites

Below are the available SDK developer tools. Once installed, the IDE will automatically 
check for updates. Check "show package details' to display available versions of an 
SDK Tool.

Android SDK

Memory Settings

Name Version Status
□ Android SDK Build-Tools
1 NDK (Side by side)
□ Android SDK Command-line Tools (Idlest)
C CMake

Android Auto API Simulators
Android Auto Desktop Head Unit Emulator

1
2.0

Update Available: 33.0.1
Not Installed
Installed
Not Installed
Not installed
Not installed

Figure 2-7

Within the Android SDK Tools make sure that the following packages 

are listed as Installed in the Status

•Android SDK Build-tools

Android Emulator



•Android SDK Platform-tools

•Google Play Services

• Intel x86 Emulator Accelerator (HAXM

• Google USB Driver (Windows only)

• Layout Inspector image server for API 31 and T

the Intel x86 Emulator Accelerator (HAXM installer) cannot be 

installed on Apple silicon-based Macs.

If any of the above packages are listed as Not Installed or requiring 

an update, simply select the checkboxes next to those packages and 

click on the Apply button to initiate the installation process. If the 

HAXM emulator settings dialog appears, select the recommended 

memory allocation:



HAXM

We have detected that your system can run the Android emulator in an accelerated performance mode.

Set the maximum amount of RAM available for the Intel® Hardware Accelerated Execution Manager (HAXM) to use for all x86 emulator instances. You can 
change these settings at any time by running the Intel® HAXM installer.

Refer to the intel® HAXM Documentation for more information.

512.0 MB 2.0 GB
(Recommended)

3.3 GB 4.6 GB 6.0 GB

RAM allocation: 2,048 MiB Use recommended sue

Caned Prcviou: Next Finish

Figure 2-8

Once the installation is complete, review the package list and make 

sure that the selected packages are now listed as Installed in the 

Status column. If any are listed as Not installed, make sure they are 

selected and click on the Apply button again.



2.6 Installing the Android SDK Command-line Tools

Android Studio includes a set of tools that allow some tasks to be 

performed from your operating system command line. To install these 

tools on your system, open the SDK Manager, select the SDK Tools 

tab and enable the Show Package Details option in the bottom left­

hand corner of the window. Next, scroll down the list of packages 

and, when the Android SDK Command-line Tools (latest) package 

comes into view, enable it as shown in Figure

Preferences

Cb_____________________

v Appearance & Behavior

Appearance

Menus and Toolbars

v System Settings

HTTP Proxy

Data Sharing

Date Formats

Updates

Process Elevation

Passwords

Android SDK

Memory Settings

Notifications

Quick Lists

Path Variables

Keymap

Editor

Build, Execution, Deployment

Kotlin

Tools

Advanced Settings

Layout Inspector

Appearance & Behavior > System Settings > Android SDK Reset <­

Manager for the Android SDK and Tools used by the IDE

Android SDK Location; /Users/neilsmyth/Library/Android/sdk Edit Optimize disk space

SDK Platforms SDK Tools SDK Update Sites

Below are the available SDK developer tools. Once installed, the IDE will automatically check for 
updates. Check "show package details" to display available versions of an SDK Tool.

Name Version Status

L 19.2.5345600 19.2.5345600
IMUl IllbldlieU
Not installed

I 18.1.5063045 18.1.5063045 Not installed
17.2.4988734 17.2.4988734 Not installed

__________□ 16.1.4479499____________________________ 16.1.44/9499 Not installed
v ✓ Android SDK Command-line Tools (latest)

□ Android SDK Command-line Tools (latest) 10.0.0 rc4 Installed
± Q Android SDK Command-line Tools 9.0 Not installed

□ Android SDK Command-line Tools 8.0 Installed
Q Android SDK Command-line Tools 7.0 Installed
Q Android SDK Command-line Tools 6.0 Installed
□ Android SDK Command-line Tools 5.0 Installed
Q Android SDK Command-line Tools 4.0 Installed
Q Android SDK Command-line Tools 3.0 Installed
Q Android SDK Command-line Tools 2.1 Installed
Q Android SDK Command-line Tools 

v CMake
1.0 Installed

□ 3.22.1 3.22.1 Not installed
□ 318.1 3.18.1 Not installed

3.10.2.4988404 3.10.2 Not installed
□ Hide Obsolete Packages Q Show Package Details

OKCancel Apply? Project-level settings will be applied to new projects

Figure 2-9



After you have selected the command-line tools package, click on 

Apply followed by OK to complete the installation. When the 

installation completes, click Finish and close the SDK Manager 

dialog.

For the operating system on which you are developing to be able to 

find these tools, it will be necessary to add them to the system’s 

PATH environment variable.

Regardless of your operating system, you will need to configure the 

PATH environment variable to include the following paths (where 

represents the file system location into which you installed the 

Android SDK): 

/sdk/cmdline-tools/latest/bin 

/sdk/platform-tools

You can identify the location of the SDK on your system by 

launching the SDK Manager and referring to the Android SDK field 

located at the top of the settings panel, as highlighted in Figure

Appearance & Behavior > System Settings > Android SDK

Manager for the Android SDK andToolyisfijUa^h^DE

Android SDK Locatiorg. /Users/neilsmvth/Library/Android/sdk

SDK Platforms SDK Tools SDK Update Sites

Edit Optimize disk space

Each Android SDK Platform package includes the Android platform and sources pertaining to 
an API level by default. Once installed, the IDE will automatically check for updates. Check 
"show package details" to display individual SDK components.



Figure 2-10

Once the location of the SDK has been identified, the steps to add 

this to the PATH variable are operating system dependent:



2.6.1 Windows 8.1

1. On the start screen, move the mouse to the bottom right-hand 

corner of the screen and select Search from the resulting menu. 

In the search box, enter Control Panel. When the Control Panel 

icon appears in the results area, click on it to launch the tool on 

the desktop.

2. Within the Control Panel, use the Category menu to change the 

display to Large Icons. From the list of icons select the one 

labeled System.

3. In the Environment Variables dialog, locate the Path variable in 

the System variables list, select it and click on the Edit... button. 

Using the New button in the edit dialog, add three new entries to 

the path. For example, assuming the Android SDK was installed 

into C:\Users\demo\AppData\Local\Android\Sdk, the following 

entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\cmdline-tools\latest\bin

C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

4. Click on OK in each dialog box and close the system 

properties control panel.



Open a command prompt window by pressing Windows + R on 

the keyboard and entering cmd into the Run dialog. Within the 

Command Prompt window, enter:

echo %Path%

The returned path variable value should include the paths to the 

Android SDK platform tools folders. Verify that the platform-tools 

value is correct by attempting to run the adb tool as follows: 

adb

The tool should output a list of command-line options when 

executed.

Similarly, check the tools path setting by attempting to run the 

AVD Manager command-line tool (don’t worry if the avdmanager 

tool reports a problem with Java - this will be addressed later):

avdmanager

If a message similar to the following message appears for one or 

both of the commands, it is most likely that an incorrect path 

was appended to the Path environment variable: 

'adb' is not recognized as an internal or external command,



operable program or batch file.



2.6.2 Windows 10

Right-click on the Start menu, select Settings from the resulting 

menu and enter “Edit the system environment variables” into the 

Find a setting text field. In the System Properties dialog, click the 
Environment Variables... button. Follow the steps outlined for 

Windows 8.1 starting from step 3.



2.6.3 Windows 11

Right-click on the Start icon located in the taskbar and select 

Settings from the resulting menu. When the Settings dialog 

appears, scroll down the list of categories and select the “About” 

option. In the About screen, select Advanced system settings from 

the Related links section. When the System Properties window 
appears, click on the Environment Variables... button. Follow the 

steps outlined for Windows 8.1 starting from step 3.



2.6.4 Linux

On Linux, this configuration can typically be achieved by adding a 

command to the .bashrc file in your home directory (specifics may 

differ depending on the particular Linux distribution in use).

Assuming that the Android SDK bundle package was installed into 

the export line in the .bashrc file would read as follows:

export PATH=/home/demo/Android/sdk/platform- 

tools:/home/demo/Android/sdk/cmdline- 
tools/latest/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin 

directory to the PATH variable. This will enable the studio.sh script 

to be executed regardless of the current directory within a 

terminal window.



2.6.5 macOS

Several techniques may be employed to modify the $PATH 
environment variable on macOS. Arguably the cleanest method is 

to add a new file in the /etc/paths.d directory containing the paths 
to be added to $PATH. Assuming an Android SDK installation 

location of the path may be configured by creating a new file 

named android-sdk in the /etc/paths.d directory containing the 
following lines:

/Users/demo/Library/Android/sdk/cmdline-tools/latest/bin

/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory it will be necessary to 

use the sudo command when creating the file. For example: 

sudo vi /etc/paths.d/android-sdk



27 Android Studio memory management

Android Studio is a large and complex software application that 

consists of many background processes. Although Android Studio has 

been criticized in the past for providing less than optimal 

performance, Google has made significant performance improvements 

in recent releases and continues to do so with each new version. 

These improvements include allowing the user to configure the 

amount of memory used by both the Android Studio IDE and the 

background processes used to build and run apps. This allows the 

software to take advantage of systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused 

RAM to increase these values (this feature is only available on 64-bit 

systems with 5GB or more of RAM) and find that Android Studio 

performance appears to be degraded it may be worth experimenting 

with these memory settings. Android Studio may also notify you that 

performance can be increased via a dialog similar to the one shown 

below:



Figure 2-11

To view and modify the current memory configuration, select the File 

-> Settings... Studio -> on macOS) menu option and, in the resulting 

dialog, select Appearance & Behavior followed by the Memory Settings 

option listed under System Settings in the left-hand navigation panel, 

as illustrated in Figure 2-12 below.

When changing the memory allocation, be sure not to allocate more 

memory than necessary or than your system can spare without 

slowing down other processes.

Appearance & Behavior > System Settings > Memory Settings

Configure the maximum amount of RAM the OS should allocate for Android Studio processes, 
such as the core IDE or Gradle daemon. Similar to allocating too little memory, allocating too 
much memory might degrade performance.

IDE Heap Size Settings

IDE nw heap size 1280 MB - current *

Thrt « 1 gio&ai sarong that appMt to U projects you opaci uWj AndroO Studc You 
naad to restart the IDE be*ore  any changes to cs heap size take effect

Daemon Heap Size Settings

These settings apply only to the current project, and changes take effect only after you rebuild 
your project (by selecting Build > Rebuild Project from the menu bar). After changing the heap 
size and rebuilding your project, you may find daemons with okl settings and stop them manually.

And existing Gradle daemon(s)

Gradle daemon max heap size 2048 MB - current ▼

Kotlin daemon max heap size 2048 MB - Current *

Figure 2-12

The IDE heap size setting adjusts the memory allocated to Android 

Studio and applies regardless of the currently loaded project. On the 



other hand, when a project is built and run from within Android 

Studio, a number of

background processes (referred to as daemons) perform the task of 

compiling and running the app. When compiling and running large 

and complex projects, build time could be improved by adjusting the 

daemon heap settings. Unlike the IDE heap settings, these daemon 

settings apply only to the current project and can only be accessed 

when a project is open in Android Studio. To display the SDK 

Manager from within an open project, select the Tools -> SDK 

Manager... menu option.



2.8 Updating Android Studio and the SDK

From time to time new versions of Android Studio and the 

Android SDK are released. New versions of the SDK are installed 

using the Android SDK Manager. Android Studio will typically 

notify you when an update is ready to be installed.

To manually check for Android Studio updates, use the Help -> 
Check for Updates... menu option from the Android Studio main 

window Studio -> Check for Updates... on macOS).



2.9 Summary

Before beginning the development of Android-based applications, 

the first step is to set up a suitable development environment. 

This consists of the Android SDKs and Android Studio IDE (which 

also includes the OpenJDK development environment). In this 

chapter, we have covered the steps necessary to install these 

packages on Windows, macOS, and Linux.



3. A Compose Project Overview

Now that we have installed Android Studio, the next step is to 

create an Android app using Jetpack Compose. Although this 

project will make use of several Compose features, it is an 

intentionally simple example intended to provide an early 

demonstration of Compose in action and an initial success on 

which to build as you work through the remainder of the book. 

The project will also serve to verify that your Android Studio 

environment is correctly installed and configured.

This chapter will create a new project using the Android Studio 

Compose project template and explore both the basic structure of 

a Compose-based Android Studio project and some of the key 

areas of Android Studio. In the next chapter, we will use this 

project to create a simple Android app.

Both chapters will briefly explain key features of Compose as they 

are introduced within the project. If anything is unclear when you 

have completed the project, rest assured that all of the areas 

covered in the tutorial will be explored in greater detail in later 

chapters of the book.



3.1 About the project

The completed project will consist of two text components and a 

slider. When the slider is moved, the current value will be 

displayed on one of the text components, while the font size of 

the second text instance will adjust to match the current slider 

position. Once completed, the user interface for the app will 

appear as shown in Figure



12:00

Welcome to Compose

20sp



Figure 3-1



3.2 Creating the project

The first step in building an app is to create a new project within 

Android Studio. Begin, therefore, by launching Android Studio so that 

the “Welcome to Android Studio” screen appears as illustrated in 

Figure

Welcome to Android Studio

Jtjk Android Studio
Flamingo | 2022.2.1

Projects

Customize

Plugins

Learn Android Studio

Welcome to Android Studio
Create a new project to start from scratch.

Open existing project from disk or version control.

New Project Open Get from VCS

More Actions v

Figure 3-2

Once this window appears, Android Studio is ready for a new project 

to be created. To create the new project, click on the New Project 



button to display the first screen of the New Project wizard.



3.3 Creating an activity

The next step is to define the type of initial activity that is to be 

created for the application. The left-hand panel provides a list of 

platform categories from which the Phone and Tablet option must be 

selected. Although a range of different activity types is available when 

developing Android applications, only the Empty Activity template 

provides a pre-configured project ready to work with Compose. Select 

this option before clicking on the Next button:

Figure 3-3



3.4 Defining the project and SDK settings

In the project configuration window set the Name field to The 

application name is the name by which the application will be 

referenced and identified within Android Studio and is also the name 

that would be used if the completed application were to go on sale 

in the Google Play store:

New Project

Empty Activity

Create a new empty activity with Jetpack Compose

Name ComposeDemo

Package name com.example.composedemo

Save location Tiyth/Dropbox/Documents/Books/Jetpack_Compose_1.3/JetpackConnpose13Samples/ComposeDemo

Minimum SDK API 26: Android 8.0 (Oreo)

O Your app will run on approximately 90.7% of devices. 
Help me choose

Cancel Previous Finish

Figure 3-4

The Package name is used to uniquely identify the application within 

the Google Play app store application ecosystem. Although this can 



be set to any string that uniquely identifies your app, it is 

traditionally based on the reversed URL of your domain name 

followed by the name of the application. For example, if your domain 

is and the application has been named then the package name 

might be specified as follows: 

com.mycompany.composedemo

If you do not have a domain name you can enter any other string 

into the Company Domain field, or you may use example.com for 

testing, though this will need to be changed before an application 

can be published:

com.example.composedemo

The Save location setting will default to a location in the folder 

named AndroidStudioProjects located in your home directory and may 

be changed by clicking on the folder icon to the right of the text 

field containing the current path setting.

Set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is 

the minimum SDK that will be used in most of the projects created 

in this book unless a necessary feature is only available in a more 

recent version. The objective here is to build an app using the latest 

Android SDK, while also retaining compatibility with devices running 

older versions of Android (in this case as far back as Android 8.0). 

The text beneath the Minimum SDK setting will outline the 

percentage of Android devices currently in use on which the app will 

example.com


run. Click on the Help me choose link to see a full breakdown of the 

various Android versions still in use:

Last updated: January 6th, 2023 httpsJ/developer.android.com/abouUversions/oreo/android-8.0

• Android Platform/API Version Distribution

ANDROID PLATFORM 
VERSION

API LEVEL CUMULATIVE 
DISTRIBUTION

Oreo

4.4 19 System Security & Privacy
99,3%

Lollipop 99.0% Custom data store 
JobScheduler improvements
Cached data

New permissions
New account access and discovery 
APIsMarshmallow 97.2%

Nougat 94.4%
User Interface Runtime & Tools

Nougat 92.5%
Picture-in-Picture mode 
Improved Notifications

Platform optimizations
Updated Java language supportOreo 90.7%

Oreo
88.1% Autofill framework 

Downloadable fonts 
Multi-display support 
Adaptive icons

Updated ICU4J Android Framework 
APIs

81.2%

Pie Media

VolumeShaper
Audio focus enhancements
Media metrics
Mediaplayer and MediaRecorder 
improvements
Improved media file acceec

10 29
68.0%

48.5% Wireless & Connectivity

R
Wi-Fi Aware
Bluetooth updates
Companion device pairing

s

24.1%

T
5.2%

OK

Figure 3-5

Click on the Finish button to create the project



3.5 Previewing the example project

At this point, Android Studio should have created a minimal example 

application project and opened the main window.

ComposaOemo - Ma inActivity, kt (ComposeDemo.app]

ComposaOemo app src main fava com ebookfrenzy composadamo , MamActmty.kt a IOC • , PtxM 2 XL M>1 319O0M8 ’ ► O rZ C- Is □ 2. % Q

* fr-.app
> I manifests
* Bs java

* bi com.ebooMrenzy.composedemo
____ > Pa uttheme

, Main Activity kt
com ebookfrenzy compotedomo

> com.ebookfrenzy.cornposedemo (test> 
> ► res

> <* GrarM Scripts

s Code it Split E3 Design
1 package coe.ebookfrenzy.coaposedeao ✓

3 iaport ,,,

« class NainActlvity : CoaponentActivltyO {
•’ override fun onCreate(saved!nstanceState: Bundle?) < 

super.onCreate(savedlnstaneeState) 
satContent { 

CoaposoOaaorneee {
// A surfact container using the 'background' color f< 
Surface(colo RaterlalTneae.colors.packorouna) <

Greetlng( name: "Android*)  
} 

} 
} 

> 
25 }

27 BCoaposable
fun 6reeting(i»a«e: String) { 

TextCtext ■ ‘Hello Snaae1')
30 }

pPrevlettshowBackground ■ true) 
33 pcooposable

Q fun DefaultPreviewO { 
CoeposeDeeoTheae < 

Griutingl name: "Android") 
} 

30 )

4 G
rad

*

A successful build ■$ needed before the preview can be •

BuM & Refresh ..(XOXR)

3 TOGO O ProWtni QI Tarmnal \ Dutd C LogcM r?> ProfMtr B App Vtapacticn Q Cvant Lop 13. Layovt Impactor
UO " Oaemon uanad MCcaMTUhr (3 mnutM agol tl U UTF-0 4 spec**  Is 4? d j

Figure 3-6

The newly created project and references to associated files are listed 

in the Project tool window located on the left-hand side of the main 

project window. The Project tool window has several modes in which 

information can be displayed. By default, this panel should be in 

Android mode. This setting is controlled by the menu at the top of 

the panel as highlighted in Figure If the panel is not currently in 

Android mode, use the menu to switch mode:



Figure 3-7

The code for the main activity of the project (an activity corresponds 

to a single user interface screen or module within an Android app) 

is contained within the MainActivity.kt file located under app -> java - 

> com.example.composedemo within the Project tool window as 

indicated in Figure



Android ©
m app
> manifests
v java

com.example.composedemo
> E*  ui.theme Zj

Main Activity, kt
com.example.composedemo (androidTest)

> com.example.composedemo (test)
> res

> 8? Gradle Scripts

Figure 3-8

Double-click on this file to load it into the main code editor panel. 

The editor can be used in different modes when writing code, the 

most useful of which when working with Compose is Split mode. 

The current mode can be changed using the buttons marked A in 

Figure Split mode displays the code editor (B) alongside the Preview 

panel (C) in which the current user interface design will appear:



Figure 3-9

To get us started, Android Studio has already added some code to 

the MainActivity.kt file to display a Text component configured to 

display a message which reads “Hello Android”.

If the project has not yet been built, the Preview panel will display 

the message shown in Figure

A A successful build is needed before the preview can be displayed

Build & Refresh... (XO3€R)



Figure 3-10

If you see this notification, click on the Build & Refresh link to 

rebuild the project. After the build is complete, the Preview panel 

should update to display the user interface defined by the code in 

the MainActivity.kt file:

GreetingPreview

Hello Android!
Figure 3-11



3.6 Reviewing the main activity

Android applications are created by bringing together one or more 

elements known as An activity is a single, standalone module of 

application functionality that either correlates directly to a single user 

interface screen and its corresponding functionality, or acts as a 

container for a collection of related screens. An appointments 

application might, for example, contain an activity screen that 

displays appointments set up for the current day. The application 

might also utilize a second activity consisting of multiple screens 

where new appointments may be entered by the user and existing 

appointments edited.

When we created the ComposeDemo project, Android Studio created 

a single initial activity for our app, named it MainActivity, and 

generated some code for it in the MainActivity.kt file. This activity 

contains the first screen that will be displayed when the app is run 

on a device. Before we modify the code for our requirements in the 

next chapter, it is worth taking some time to review the code 

currently contained within the MainActivity.kt file.

The file begins with the following line (keep in mind that this may 

be different if you used your own domain name instead of 

package com.example.composedemo

This tells the build system that the classes and functions declared in 

this file belong to the com.example.composedemo package which we



configured when we created the project.

Next are a series of import directives. The Android SDK is comprised 

of a vast collection of libraries that provide the foundation for 

building Android apps. If all of these libraries were included within 

an app the resulting app bundle would be too large to run efficiently 

on a mobile device. To avoid this problem an app only imports the 

libraries that it needs to be able to run:

import android.os.Bundle

import androidx.activity.ComponentActivity

import androidx.activity.compose.setContent

import androidx.compose.foundation.layout.fillMaxSize

import androidx.compose.material3.MaterialTheme

import androidx.compose.material3.Surface 

import androidx.compose.material3.Text



Initially, the list of import directives will most likely be “folded” to 

save space. To unfold the list, click on the small “+” button 

indicated by the arrow in Figure 3-12 below:

import ...

package com.ebookfrenzy.composedemo

Figure 3-12

The MainActivity class is then declared as a subclass of the Android 

ComponentActivity class:

class MainActivity : ComponentActivity() {

}

The MainActivity class implements a single method in the form of 

This is the first method that is called when an activity is launched 

by the Android runtime system and is an artifact of the way apps 

used to be developed before the introduction of Compose. The 

onCreate() method is used here to provide a bridge between the 



containing activity and the Compose-based user interfaces that are to 

appear within it:

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

setContent {

ComposeDemoTheme {

}

}

}

The method declares that the content of the activity’s user interface 

will be provided by a composable function named This composable 

function is declared in the Theme.kt file located under the app -> 

name> -> ui.theme folder in the Project tool window. This, along with 

the other files in the ui.theme folder defines the colors, fonts, and 

shapes to be used by the activity and provides a central location 

from which to customize the overall theme of the app’s user 

interface.



The call to the ComposeDemoTheme composable function is 

configured to contain a Surface composable. Surface is a built-in 

Compose component designed to provide a background for other 

composables:

ComposeDemoTheme {

// A surface container using the 'background' color from the 

theme

Surface(

modifier = Modifier.fillMaxSize(), 

color = MaterialTheme.colorScheme.background

}

In this case, the Surface component is configured to fill the entire 

screen and with the background set to the standard background color 

defined by the Android Material Design theme. Material Design is a 

set of design guidelines developed by Google to provide a consistent 

look and feel across all Android apps. It includes a theme (including 



fonts and colors), a set of user interface components (such as 

button, text, and a range of text fields), icons, and generally defines 

how an Android app should look, behave and respond to user 

interactions.

Finally, the Surface is configured to contain a composable function 

named Greeting which is passed a string value that reads “Android”:

ComposeDemoTheme {

// A surface container using the 'background' color from the 

theme

Surface(

modifier = Modifier.fillMaxSize(),

color = MaterialTheme.colorScheme.background

) {

Greeting("Android")

}

}



Outside of the scope of the MainActivity class, we encounter our 

first composable function declaration within the activity. The function 

is named Greeting and is, unsurprisingly, marked as being 

composable by the @Composable annotation:

@Composable

fun Greeting(name: String, modifier: Modifier = Modifier) {

Text(

text = "Hello $name!",

modifier = modifier

)

}

The function accepts a String parameter (labeled and calls the built- 

in Text composable, passing through a string value containing the 

word “Hello” concatenated with the name parameter. The function 

also accepts an optional modifier parameter (a topic covered in the 

chapter titled “Using Modifiers in As will soon become evident as you 

work through the book, composable functions are the fundamental 

building blocks for developing Android apps using Compose.

The second composable function declared in the MainActivity.kt file 

reads as follows:



@Preview(showBackground = true) 

@Composable

fun GreetingPreview() {

ComposeDemoTheme {

Greeting("Android")

}

}

Earlier in the chapter, we looked at how the Preview panel allows us 

to see how the user interface will appear without having to compile 

and run the app. At first glance, it would be easy to assume that 

the preview rendering is generated by the code in the onCreate() 

method. In fact, that method only gets called when the app runs on 

a device or emulator. Previews are generated by preview composable 

functions. The @Preview annotation associated with the function tells 

Android Studio that this is a preview function and that the content 

emitted by the function is to be displayed in the Preview panel. As 

we will see later in the book, a single activity can contain multiple 

preview composable functions configured to preview specific sections 

of a user interface using different data values.



In addition, each preview may be configured by passing parameters 

to the @Preview annotation. For example, to view the preview with 

the rest of the standard Android screen decorations, modify the 

preview annotation so that it reads as follows:

Once the preview has been updated, it should now be rendered as 

shown in Figure



Figure 3-13



37 Preview updates

One final point worth noting is that the Preview panel is live and 

will automatically reflect minor changes made to the composable 

functions that make up a preview. To see this in action, edit the call 

to the Greeting function in the GreetingPreview() preview composable 

function to change the name from “Android” to “Compose”. Note 

that as you make the change in the code editor, it is reflected in the 

preview.

More significant changes will require a build and refresh before being 

reflected in the preview. When this is required, Android Studio will 

display the following “Out of date” notice at the top of the Preview 

panel and a Build & Refresh button (indicated by the arrow in Figure

ate Q

/
Figure 3-14

Simply click on the button to update the preview for the latest 

changes. Occasionally, Android Studio will fail to update the preview 

after code changes. If you believe that the preview no longer 

matches your code, hover the mouse pointer over the Up-to-date



status text and select Build & Refresh from the resulting menu, as 

illustrated in Figure

Figure 3-15

[9 D
evice M

anager 
N

ot

The Preview panel also includes an interactive mode that allows you 

to trigger events on the user interface components (for example 

clicking buttons, moving sliders, scrolling through lists, etc.). Since 

ComposeDemo contains only an inanimate Text component at this 

stage, it makes more sense to introduce interactive mode in the next 

chapter.



3.8 Bill of Materials and the Compose version

Although Jetpack Compose and Android Studio appear to be tightly 

integrated, they are two separate products developed by different 

teams at Google. As a result, there is no guarantee that the most 

recent Android Studio version will default to using the latest version 

of Jetpack Compose. It can, therefore, be helpful to know which 

version of Jetpack Compose is being used by Android Studio. This is 

declared in a Bill of Materials setting within the build configuration 

files of your Android Studio projects.

To identify the BOM for a project, locate the Gradle Scripts -> 

build.gradle (Module: app) file (highlighted in the figure below) and 

double-click on it to load it into the editor:



2^ Android ▼ © -z- Ct —

v B*app
> manifests
v java

v El com.example.composedemo
> El ui.theme

i( MainActivity.kt
> com.example.composedemo (androidTest)
> com.example.composedemo (test)

> res
If res (generated)

v a? Gradle Scripts 
_______________

build.gradle (Module :app)
= proguara-rures.prcrTProGuard Rules for ":app") 

gradle.properties (Project Properties)
, I gradle-wrapper.properties (Gradle Version)

Figure 3-16

With the file loaded into the editor, locate the compose-bom entry in 

the dependencies section: 

dependencies {



implementation

In the above example, we can see that the project is using BOM 

2022.10.00. With this information, we can use the BOM to library 

version mapping web page at the following URL to identify the library 

versions being used to build our app: 

https://developer.android.com/jetpack/compose/bom/bom-mapping

Once the web page has loaded, select the BOM version from the 

menu highlighted in Figure 3-17 below. For example, the figure shows 

that BOM 2022.10.00 uses version 1.3.2 of the Compose libraries:

BOM to library version mapping □
2022.12.00 ’

Library group BOM Versions

androidx.compose.animationianimation

androidx.com pose.animation:animation-core

androidx.compose.animation:animation graphics

androidx.compose.foundation:foundation

https://developer.android.com/j
androidx.com


Figure 3-17

The BOM does not currently define the versions of all the 

dependencies listed in the build file. Therefore, you will see some 

library dependencies in the build.gradle file that include a specific 

version number, as is the case with the core-ktx and lifecycle-runtime- 

ktx libraries:

dependencies {

implementation

implementation

You can add specific version numbers to any libraries you add to the 

dependencies, though it is recommended to rely on the BOM 

settings whenever possible to ensure library compatibility. However, a 

version number declaration will be required when adding libraries not 

listed in the BOM. You can also override the BOM version of a 

library by appending a version number to the declaration. The 

following declaration, for example, overrides the version number in 

the BOM for the compose.ui library: 

implementation



3.9 Summary

In this chapter, we have created a new project using Android 

Studio’s Empty Activity template and explored some of the code 

automatically generated for the project. We have also introduced 

several features of Android Studio designed to make app 

development with Compose easier. The most useful features, and 

the places where you will spend most of your time while 

developing Android apps, are the code editor and Preview panel.

While the default code in the MainActivity.kt file provides an 

interesting example of a basic user interface, it bears no 

resemblance to the app we want to create. In the next chapter, 

we will modify and extend the app by removing some of the 

template code and writing our own composable functions.



4. An Example Compose Project

In the previous chapter, we created a new Compose-based Android 
Studio project named ComposeDemo and took some time to 

explore both Android Studio and some of the project code that it 

generated to get us started. With those basic steps covered, this 

chapter will use the ComposeDemo project as the basis for a new 

app. This will involve the creation of new composable functions, 

introduce the concept of state, and make use of the Preview 

panel in interactive mode. As with the preceding chapter, key 

concepts explained in basic terms here will be covered in 

significantly greater detail in later chapters.



4.1 Getting started

Start Android Studio if it is not already running and open the 

ComposeDemo project created in the previous chapter. Once the 

project has loaded, double-click on the MainActivity.kt file (located 

in Project tool window under app -> java -> to open it in the 

code editor. If necessary, switch the editor into Split mode so that 

both the editor and Preview panel are visible.



4.2 Removing the template Code

Within the MainActivity.kt file, delete some of the template code 

so that the file reads as follows:

package com.example.composedemo 

class MainActivity : ComponentActivity() {

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState) 

setContent {

ComposeDemoTheme {

Surface(

modifier = Modifier.fillMaxSize(),



color =

MaterialTheme.colorScheme.background

) {

Greeting("Android")

}

}

}

}

}

@Composable

fun Greeting(name: String, modifier: Modifier = Modifier) {

Text(

text = "Hello $name!", 

modifier = modifier



)

}

@Preview(showSystemUi = true) 

@Composable 

fun GreetingPreview() {

ComposeDemoTheme {

Greeting("Android")

}

}



4.3 The Composable hierarchy

Before we write the composable functions that will make up our user 

interface, it helps to visualize the relationships between these 

components. The ability of one composable to call other 

composables essentially allows us to build a hierarchy tree of 

components. Once completed, the composable hierarchy for our 

ComposeDemo main activity can be represented as shown in Figure

Figure 4-1

All of the elements in the above diagram, except for 

ComponentActivity, are composable functions. Of those functions, the 

Surface, Column, Spacer, Text, and Slider functions are built-in 

composables provided by Compose. The DemoScreen, DemoText, and 

DemoSlider composables, on the other hand, are functions that we 



will create to provide both structure to the design and the custom 

functionality we require for our app. You can find the 

ComposeDemoTheme composable declaration in the ui.theme -> 

Theme.kt file.



4.4 Adding the DemoText composable

We are now going to add a new composable function to the activity 

to represent the DemoText item in the hierarchy tree. The purpose of 

this composable is to display a text string using a font size value 

that adjusts in real-time as the slider moves. Place the cursor 

beneath the final closing brace (}) of the MainActivity declaration and 

add the following function declaration:

@Composable

fun DemoText() {

}

The @Composable annotation notifies the build system that this is a 

composable function. When the function is called, the plan is for it 

to be passed both a text string and the font size at which that text 

is to be displayed. This means that we need to add some 

parameters to the function:

@Composable

fun String, fontSize: {

}



The next step is to make sure the text is displayed. To achieve this, 

we will make a call to the built-in Text composable, passing through 

as parameters the message string, font size and, to make the text 

more prominent, a bold font weight setting:

@Composable

fun DemoText(message: String, fontSize: Float) {

Text(

text = message,

fontSize = fontSize.sp,

fontWeight = FontWeight.Bold

)

}

Note that after making these changes, the code editor indicates that 

“sp” and are undefined. This happens because these are defined and 

implemented in libraries that have not yet been imported into the 

MainActivity.kt file. One way to resolve this is to click on an 

undefined declaration so that it highlights as shown below, and then 

press Alt+Enter (Opt+Enter on macOS) on the keyboard to import 

the missing library automatically:



@Composable
fun DemoText(message: String, fontsize: Float) { 

Text(

androidx.compose, ui.text.font. Font Weight? X* 3
—I Uli LJ1Z.C----=-----F\y L JXZTC . 3 p ,

fontweight = Fontweight.Bold 

)
}

Figure 4-2

Alternatively, you may add the missing import statements manually to 

the list at the top of the file: 

import and roidx.compose. u i .text.font. FontWeight 

import androidx.compose.ui.unit.sp

In the remainder of this book, all code examples will include any 

required library import statements.



We have now finished writing our first composable function. Notice 

that, except for the font weight, all the other properties are passed 

to the function when it is called (a function that calls another 

function is generally referred to as the This increases the flexibility, 

and therefore re-usability, of the DemoText composable and is a key 

goal to keep in mind when writing composable functions.



4.5 Previewing the DemoText composable

At this point, the Preview panel will most likely be displaying a 

message which reads “No preview found”. The reason for this is that 

our MainActivity.kt file does not contain any composable functions 

prefixed with the @Preview annotation. Add a preview composable 

function for DemoText to the MainActivity.kt file as follows:

@Preview

@Composable

fun DemoTextPreview() {

ComposeDemoTheme() {

DemoText(message = "Welcome to Android", fontSize = 12f)

}

}

After adding the preview composable, the Preview panel should have 

detected the change and displayed the link to build and refresh the 

preview rendering. Click the link and wait for the rebuild to 

complete, at which point the DemoText composable should appear as 

shown in Figure



DemoTextPreview R C>

Welcome to Android

Figure 4-3

Minor changes made to the code in the MainActivity.kt file such as 

changing values will be instantly reflected in the preview without the 

need to build and refresh. For example, change the “Welcome to 

Android” text literal to “Welcome to Compose” and note that the text 

in the Preview panel changes as you type. Similarly, increasing the 

font size literal will instantly change the size of the text in the 

preview. This feature is referred to as Live Edit.



4.6 Adding the DemoSlider composable

The DemoSlider composable is a little more complicated than 

DemoText. It will need to be passed a variable containing the 

current slider position and an event handler function or lambda to 

call when the slider is moved by the user so that the new 

position can be stored and passed to the two Text composables. 

With these requirements in mind, add the function as follows: 

import androidx.compose.foundation.layout.*

import androidx.compose.material3. Slider

import androidx.compose.ui.unit.dp

@Composable 



fun DemoSlider(sliderPosition: Float, onPositionChange: (Float) -> 

Unit ) {

Slider(

modifier = Modifier.padding(10.dp),

valueRange = 20f..38f,

value = sliderPosition, 

onValueChange = { onPositionChange(it) }

)

}

The DemoSlider declaration contains a single Slider composable 

which is, in turn, passed four parameters. The first is a Modifier 

instance configured to add padding space around the slider. 

Modifier is a Kotlin class built into Compose which allows a wide 

range of properties to be set on a composable within a single 

object. Modifiers can also be created and customized in one 

composable before being passed to other composables where they 

can be further modified before being applied.



The second value passed to the Slider is a range allowed for the 

slider value (in this case the slider is limited to values between 

20 and 38).

The next parameter sets the value of the slider to the position 

passed through by the caller. This ensures that each time 

DemoSlider is recomposed it retains the last position value.

Finally, we set the onValueChange parameter of the Slider to call 

the function or lambda we will be passing to the DemoSlider 
composable when we call it later. Each time the slider position 

changes, the call will be made and passed the current value 
which we can access via the Kotlin it keyword. We can further 

simplify this by assigning just the event handler parameter name 

and leaving the compiler to handle the passing of the current 

value for us: 

onValueChange = onPositionChange



4.7 Adding the DemoScreen composable

The next step in our project is to add the DemoScreen 

composable. This will contain a variable named sliderPosition in 
which to store the current slider position and the implementation 

of the handlePositionChange event handler to be passed to the 

DemoSlider. This lambda will be responsible for storing the 

current position in the sliderPosition variable each time it is called 
with an updated value. Finally, DemoScreen will contain a Column 

composable configured to display the DemoText, Spacer, 

DemoSlider and the second, as yet to be added, Text composable 

in a vertical arrangement.

Start by adding the DemoScreen function as follows: 

import androidx.compose.runtime.*

@Composable



fun DemoScreen() {

var sliderPosition by remember { mutableStateOf(2of) }

val handlePositionChange = { position : Float ->

sliderPosition = position

}

}

The sliderPosition variable declaration requires some explanation. As 

we will learn later, the Compose system repeatedly and rapidly 

recomposes user interface layouts in response to data changes. The 

change of slider position will, therefore, cause DemoScreen to be 

recomposed along with all of the composables it calls. Consider if 

we had declared and initialized our sliderPosition variable as 

follows:

var sliderPosition = 20f

Suppose the user slides the slider to position 21. The 

handlePositionChange event handler is called and stores the new 

value in the sliderPosition variable as follows:



val handlePositionChange = { position : Float ->

sliderPosition = position

}

The Compose runtime system detects this data change and 

recomposes the user interface, including a call to the DemoScreen 

function. This will, in turn, reinitialize the sliderposition target state 

causing the previous value of 21 to be lost. Declaring the 

sliderPosition variable in this way informs Compose that the current 

value needs to be remembered during recompositions:

var sliderPosition by remember { mutableStateOf(20f) }

The only remaining work within the DemoScreen implementation 

is to add a Column containing the required composable functions: 

import androidx.compose.ui.Alignment



@Composable 

fun DemoScreen() {

var sliderPosition by remember { mutableStateOf(2of) }

val handlePositionChange = { position : Float ->

sliderPosition = position

}

Column(

horizontalAlignment = Alignment.CenterHorizontally, 

verticalArrangement = Arrangement.Center, 

modifier = Modifier.fillMaxSize()

) {

DemoText(message = "Welcome to Compose", fontSize =
sliderPosition)



Spacer(modifier = Modifier.height(i5O.dp))

DemoSlider(

sliderPosition = sliderPosition,

onPositionChange = handlePositionChange

)

Text(

style = MaterialTheme.typography.headlineMedium,

text = sliderPosition.toInt().toString() + "sp"

)

}

}

Points to note regarding these changes may be summarized as 

follows:



•When DemoSlider is called, it is passed a reference to our 

handlePositionChange event handler as the onPositionChange 

parameter.

•The Column composable accepts parameters that customize 

layout behavior. In this case, we have configured the column to 

center its children both horizontally and vertically.

•A Modifier has been passed to the Spacer to place a 150dp 

vertical space between the DemoText and DemoSlider components.

•The second Text composable is configured to use the 

headlineMedium style of the Material theme. In addition, the 

sliderPosition value is converted from a Float to an integer so that 

only whole numbers are displayed and then converted to a string 

value before being displayed to the user.



4.8 Previewing the DemoScreen composable

To confirm that the DemoScreen layout meets our expectations, 

we need to modify the DemoTextPreview composable:

. 

.

= true)

@Composable

fun DemoTextPreview() {

ComposeDemoTheme {

DemoScreen()

}

}

Note that we have enabled the showSystemUi property of the 

preview so that we will experience how the app will look when 



running on an Android device.

After performing a preview rebuild and refresh, the user interface 

should appear as originally shown in Figure



4.9 Adjusting preview settings

The showSystemUi preview property is only one of many preview 

configuration options provided by Android Studio. In addition, 

properties are available to change configuration settings, such as the 

device type, screen size, orientation, API level, and locale. To access 

these configuration settings, click on the settings button located in 

the gutter to the left of the @Preview line in the code editor, as 

shown in Figure

Figure 4-4

When the button is clicked, the panel shown in Figure 4-5 will 

appear, from which the full range of preview configuration settings is 

available:



/ 7

80 PREVIEW CONFIGURATION

81

82

83

, onPos:

10. dp'),

name

group 3
Hardware84

85

86

87

88

ange
Device

Dimensions

Density

Orientation

Default ▼

1080 x 2340 px ▼

xxhdpi (480 dpi) ▼

portrait ▼
89

90 4.

91

92

93

94

95

96

97

IsRound

ChinSize

false

0

Display

api Level 

locale 

fontScale 

showSystemUi 

showBackground 

backgroundcolor 

uiMode

33 ▼

Default (en-US) ▼

1.0f________________

Q true

□ false

Undefined ▼

Figure 4-5



4.10 Testing in interactive mode

At this stage, we know that the user interface layout for our activity 

looks how we want it to, but we don’t know if it will behave as 

intended. One option is to run the app on an emulator or physical 

device (topics covered in later chapters). A quicker option, however, 

is to switch the preview panel into interactive mode. To start 

interactive mode, hover the mouse pointer over the area above the 

preview canvas so that the two buttons shown in Figure 4-6 appear 

and click on the left-most button:

Figure 4-6

When clicked, there will be a short delay when interactive mode 

starts, after which it should be possible to move the slider and 

watch the two Text components update:



Welcome to Compose

36sp
Figure 4-7

Click the button (highlighted in Figure 4-8 below) to exit interactive 

mode:



Figure 4-8



4.11 Completing the project

The final step is to make sure that the DemoScreen composable 

is called from within the Surface function located in the onCreate() 

method of the MainActivity class. Locate this method and modify 

it as follows: 

class MainActivity : ComponentActivity() {

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState) 

setContent {

ComposeDemoTheme {

Surface(

modifier = Modifier.fillMaxSize(),



color =

MaterialTheme.colorScheme.background

) {

DemoScreen()

}

}

}

}

}

This will ensure that, in addition to appearing in the preview 

panel, our user interface will also be displayed when the app runs 

on a device or emulator (a topic that will be covered in later 

chapters).



4.12 Summary

In this chapter, we have extended our ComposeDemo project to 
include some additional user interface elements in the form of 

two Text composables, a Spacer, and a Slider. These components 

were arranged vertically using a Column composable. We also 

introduced the concept of mutable state variables and explained 

how they are used to ensure that the app remembers state when 

the Compose runtime performs recompositions. The example also 

demonstrated how to use event handlers to respond to user 
interaction (in this case, the user moving a slider). Finally, we 

made use of the Preview panel in interactive mode to test the 

app without the need to compile and run it on an emulator or 

physical device.



5. Creating an Android Virtual Device (AVD) in Android Studio

Although the Android Studio Preview panel allows us to see the 

layout we are designing and test basic functionality using 

interactive mode, it be will necessary to compile and run an 

entire app to fully test that it works. An Android application may 

be tested by installing and running it either on a physical device 
or in an Android Virtual Device (AVD) emulator environment. 

Before an AVD can be used, it must first be created and 

configured to match the specifications of a particular device 

model. In this chapter, we will work through the creation of such 

a virtual device using the Pixel 4a phone as a reference example.



5.1 About Android Virtual Devices

AVDs are essentially emulators that allow Android applications to be 

tested without the necessity to install the application on a physical 

Android-based device. An AVD may be configured to emulate a 

variety of hardware features including options such as screen size, 

memory capacity, and the presence or otherwise of features such as 

a camera, GPS navigation support, or an accelerometer. As part of 

the standard Android Studio installation, several emulator templates 

are installed allowing AVDs to be configured for a range of different 

devices. Custom configurations may be created to match any physical 

Android device by specifying properties such as processor type, 

memory capacity, and the size and pixel density of the screen.

An AVD session can appear either as a separate window or 

embedded within the Android Studio window.

New AVDs are created and managed using the Android Virtual 

Device which may be used either in command-line mode or with a 

more user-friendly graphical user interface. To create a new the first 

step is to launch the AVD Manager. This can be achieved from 

within the Android Studio environment by selecting the Tools -> 

Device Manager menu option from within the main window.

Once launched, the manager will appear as a tool window as shown 

in Figure



Device Manager &

Virtual Physical

Create device

Device API Size on Disk Actions

No virtual devices added. Create a virtual device to tes 
applications without owning a physical device.

Create virtual device

Figure 5-1

To add a new AVD, begin by making sure that the Virtual tab is 

selected before clicking on the Create device button to open the 

Virtual Device Configuration



Virtual Device Configuration

Select Hardware

Choose a device definition

0 Ch Pixel 4a
Category Name ▼ Play Store Size Resolution Density

i-U

Phone Pixel 6 Pro 6.7" 1440x3... 560dpi

Pixel 6 6.4" 1080x2... 420dpi

Pixel5 6.0" 1080x2... 440dpi

Tablet

Wear OS

Desktop

TV

Automotive

5.8*

Size: large 
Ratio: long 
Density; 440dpi

2340px
Pixel 4a 5.8" 1080x2... | 440dpi

Pixel 4 XL 6.3" 1440x3... 560dpi

Pixel 4 5.7" 1080x2... 440dpi

oiv«i -3a vi e monvo /nndni
New Hardware Profile Import Hardware Profiles G Clone Device...

? Cancel Previous Next Finish

Figure 5-2

Within the dialog, perform the following steps to create a Pixel 4a 

compatible emulator:

1. From the Category panel, select the Phone option to display the 

list of available Android phone AVD templates.

2. Select the Pixel 4a device option and click

3. On the System Image screen, select the latest version of Android. 

Note that if the system image has not yet been installed a Download 

link will be provided next to the Release Name. Click this link to 

download and install the system image before selecting it. If the 

image you need is not listed, click on the x86 Images (or ARM



images if you are running a Mac with Apple Silicon) and Other 

images tabs to view alternative lists.

4. Click Next to proceed and enter a descriptive name (for example 

Pixel 4a API into the name field or simply accept the default name.

5. Click Finish to create the AVD.

6. With the AVD created, the Device Manager may now be closed. If 

future modifications to the AVD are necessary, simply re-open the 

Device Manager, select the AVD from the list, and click on the pencil 

icon in the Actions column to edit the settings.



5.2 Starting the emulator

To perform a test run of the newly created AVD emulator, simply 

select the emulator from the Device Manager and click on the 

launch button (the triangle in the Actions column). The emulator will 

appear embedded into the main Android Studio window and begin 

the startup process. The amount of time it takes for the emulator to 

start will depend on the configuration of both the AVD and the 

system on which it is running:

> • • Compose Demo - MainActivity.kt [ComposeDemo.app]

app src main java com example composedemo MainActivity.kt M app Pixel 4 API 32 ▼

o MainActivity.kt

a- =Code =1 Split □ Design
fc • -

20 *
8. 21 import com.example.composedemo.ui.theme.ComposeDemoTheme

122 »
8 23 class MainActivity : ComponentActivityO {
| •! override fun onCreateCsavedlnstanceState: Bundle?) {

super.onCreate(savedlnstanceState) 
setcontent < 

ComposeDemoTheme {
28 // A surface container using the ‘background ‘ color from the theiee
29 Surfaced

modifier = Modifier.fillMaxSlzeO, 
color MaterialTheme.colors.background

) < 
DemoScreenO 

? 34 >

> 
</> 

}
| 38 }

s 39 
★ 46 @Composable

fun DemoScreenO < 
S 42 

war sliderPosition by remember { mutableStateOf( value 20f) } 
2 44 
m 65 val handlePositionChange ■ { position : Float ->

Q Event Log fq Layout Inspector

23 33 LF UTF-8 4 spaces O &

M
xs

fd
xg

 e
pj

 e
ou

ia
o 

□ jom
nu

ij 
%

 > 
ja

Se
ue

yt
 a

ou
ao

 5
] aipejQ

■= TOGO O Problems Ei terminal =r Logcat \ Build r7i Profiler f App inspection 

Failed to start monitoring emulator-5554 (a minute ago)

Figure 5-3

To hide and show the emulator tool window, click on the Emulator 

tool window button (marked A above). Click on the “x” close button 



next to the tab (B) to exit the emulator. The emulator tool window 

can accommodate multiple emulator sessions, with each session 

represented by a tab. Figure for example, shows a tool window with 

two emulator sessions:

Running Devices: Pixel 4 API 33 7a Resizable API 33

O O 4 D5 CD * • ■ M Q, Q :

Figure 5-4

To switch between sessions, simply click on the corresponding tab.

Although the emulator probably defaulted to appearing in portrait 

orientation, this and other default options can be changed. Within 

the Device Manager, select the new Pixel 4a entry and click on the 

pencil icon in the Actions column of the device row. In the 

configuration screen, locate the Startup orientation section and change 

the orientation setting. Exit and restart the emulator session to see 

this change take effect. More details on the emulator are covered in 

the next and Configuring the Android Studio AVD

To save time in the next section of this chapter, leave the emulator 

running before proceeding.



5.3 Running the application in the AVD

With an AVD emulator configured, the example ComposeDemo 

application created in the earlier chapter now can be compiled and 

run. With the ComposeDemo project loaded into Android Studio, 

make sure that the newly created Pixel 4a AVD is displayed in the 

device menu (marked A in Figure 5-5 below), then either click on the 

run button represented by a green triangle (B), select the Run -> 

Run ‘app’ menu option or use the Ctrl-R keyboard shortcut:

Figure 5-5

The device menu (A) may be used to select a different AVD instance 

or physical device as the run target, and also to run the app on 

multiple devices. The menu also provides access to the Device 

Manager as well as device connection configuration and 

troubleshooting options:



Figure 5-6

The app can also be run on the currently selected target by clicking 

on the icon in the editor gutter next to the preview composable 

declaration as indicated by the arrow in Figure



@Preview(showSystemlli = true)
91 @Composable
92 Ck DemoTextPreviewO {

93 ComposeDemoTheme {
94 ■ DemoScreenO
95 • }

}•

Figure 5-7

Once the application is installed and running, the user interface 

layout defined by the MainScreen function will appear within the 

emulator:





Figure 5-8

If the activity does not automatically launch, check to see if the 

launch icon has appeared among the apps on the emulator. If it has, 

simply click on it to launch the application. Once the run process 

begins, the Run tool window will become available. The Run tool 

window will display diagnostic information as the application package 

is installed and launched. Figure 5-9 shows the Run tool window 

output from a successful application launch:

0S/31 10:37*5*!  Launching 'app' on Pixal 4 API 30.
Install successfully finished in 1 s 529 ms.
$ adb shell am start -n "con.ebookfrenzy.androidsaaiple/com.ebookfrenzy.androidsample.MainActivity" -a android.intent.action.MAIN -< android.intent.category.LAUNCHER 
Connected to process 7477 on device 'emulator-5554'.
Capturing and displaying logcat messages from application. This behavior can be disabled in the "Logcat output" section of the "Debugger” settings page.
I/y.androidsaiapl: The ClassLoadertontext is a special shared library.
D/NetworkSecurityConfig: No Network Security Config specified, using platform default

•= TODO ■ Tarminal \ build p fi: Logcat r?> Profiler Database Inspector ►o £: Run Q Event Log layout Inspector

Figure 5-9

If problems are encountered during the launch process, the Run tool 

window will provide information that will hopefully help to isolate the 

cause of the problem.

Assuming that the application loads into the emulator and runs as 

expected, we have safely verified that the Android development 

environment is correctly installed and configured.



5.4 Real-time updates with Live Edit

With the app running, now is an excellent time to introduce the 

Live Edit feature. Like interactive mode in the Preview panel, Live 

Edit updates the appearance and behavior of the app running on 

the device or emulator as changes are made to the code. This 

feature allows code changes to be tested in real time without 

having to build and re-run the project. Try out Live Edit by 

changing the text displayed by the DemoText composable as 

follows:

DemoText(message = is Compose fontSize = sliderPosition)

With each keystroke, the text in the running app will update to 

reflect the change. Live Edit is currently limited to changes made 

within the body of existing functions. It will not, for example, 

handle the addition, removal, or renaming of functions.



5.5 Running on multiple devices

The run menu shown in Figure 5-6 above includes an option to run 

the app on multiple emulators and devices in parallel. When 

selected, this option displays the dialog shown in Figure 5-10 

providing a list of both the AVDs configured on the system and any 

attached physical devices. Enable the checkboxes next to the 

emulators or devices to be targeted before clicking on the Run 

button:

Figure 5-10

After the Run button is clicked, Android Studio will launch the app 

on the selected emulators and devices.



5.6 Stopping a running application

To stop a running application, simply click on the stop button 

located in the main toolbar as shown in Figure

\ app- Pixel 4 API 30 — Ct Ct P 6 <7. & ■ £1 ■?: H Q

app
Stop 'app' 3€F2

Figure 5-11

An app may also be terminated using the Run tool window. Begin by 

displaying the Run tool window using the window bar button that 

becomes available when the app is running as illustrated in Figure

Z5
m

:= TODO p Version Control ► Run 0 Problems Q Terminal

Launch succeeded (2 minutes ago)

Figure 5-12

Once the Run tool window appears, click the stop button highlighted 

in Figure 5-13 _below:

Run: app <*\app

M/31 18:37:54: Launching 'app*  on Pixel 4 API 38.
Install successfully finished in 1 s S29 as.
$ adb shell am start -n "coa.ebookfrenzy.androldsaaple/coa.ebookfrenzy.androidsaaple.NainActlvity" -a android.intent.act ion.MAIN -c android.intent.category.LAUNCHER 
hwnected to process 7477 on device ,e*ulator-5554 ‘.
CaRuring and displaying logcat messages from application. This behavior can be disabled in the "Logcat output" section of the "Debugger" settings page.
X/y.androidsampl: The ClassLoaderContext is a special shared library.
D/NetworkSecurityConfig: No Network Security Config specified, using platfora default



Figure 5-13



57 Supporting dark theme

Android 10 introduced the much-awaited dark theme, support for 

which is enabled by default in Android Studio Compose-based app 

projects. To test dark theme in the AVD emulator, open the Settings 

app within the running Android instance in the emulator. Within the 

Settings app, choose the Display category and enable the Dark theme 

option as shown in Figure 5-14 so that the screen background turns 

black:

Figure 5-14

With dark theme enabled, run the ComposeDemo app and note that 

it appears using a dark theme including a black background and a 

purple background color on the button as shown in Figure



iO:42 Q

Welcome to Compose

20sp



Figure 5-15

Return to the Settings app and turn off Dark theme mode before 

continuing.



5.8 Running the emulator in a separate window

So far in this chapter, we have only used the emulator as a tool 

window embedded within the main Android Studio window. To run 

the emulator in a separate window, select the File -> Settings... menu 

option Studio -> Preferences... on macOS), navigate to Tools -> 

Emulator in the left-hand navigation panel of the preferences dialog, 

and disable the Launch in a tool window option:

Or______________________

Appearance & Behavior
> System Settings

File Colors

Scopes 

Notifications

Tools > Emulator

tool window. Otherwise Android Emulator will launch as a 
standalone application.

Q Enable clipboard sharing

Quick Lists
Q Show camera control prompts

Path Variables
Velocity control keys for virtual scene camera:

Keymap

> Editor WASDQE (for QWERTY keyboard) ▼

Plugins
. A . When encountering snapshots incompatible with the current configuration:

> Version Control

> Build, Execution, Deployment Ask before deleting ▼

> Languages & Frameworks

Figure 5-16

With the option disabled, click the Apply button followed by OK to 

commit the change, then exit the current emulator session by 

clicking on the close button on the tab marked B in Figure 5-3 

above.

Run the sample app once again, at which point the emulator will 

appear as a separate window as shown below:



Android Emulator - Pixel_3a_AP1_32_arm64-v8a:S554

9:12 ,O

Welcome to Compose

20sp



Figure 5-17

The choice of standalone or tool window mode is a matter of 

personal preference. If you prefer the emulator running in a tool 

window, return to the settings screen and re-enable the Launch in a 

tool window option. Before committing to standalone mode, however, 

keep in mind that the emulator tool window may also be detached 

from the main Android Studio window by clicking on the settings 

button (represented by the gear icon) in the tool emulator toolbar 

and selecting the View Mode -> Float menu option:

</ Show Toolbar

Show Zoom Controls 
V Show Device Frame

Emulator:

Remove from Sidebar

Move to
Resize

Figure 5-18

y Dock Pinned
Dock Unpinned

F oat
Window



5.9 Enabling the device frame

The emulator can be configured to appear with or without the device 

frame To change the setting, open the Device Manager, select the 

AVD from the list, and click on the pencil icon in the Actions 

column to edit the settings. In the settings screen, locate and 

change the Enable Device Frame option:

Verify Configuration

Figure 5-19



5.10 Summary

A typical application development process follows a cycle of 
coding, compiling, and running in a test environment. Android 

applications may be tested on either a physical Android device or 

using an Android Virtual Device (AVD) emulator. AVDs are created 

and managed using the Android Studio Device Manager tool. 

When creating an AVD to simulate a specific Android device 

model, the virtual device should be configured with a hardware 

specification matching that of the physical device.

The AVD emulator session may be displayed as a standalone 

window or embedded into the main Android Studio user interface.



6. Using and Configuring the Android Studio AVD Emulator

Before the next chapter explores testing on physical Android 

devices, this chapter will take some time to provide an overview 

of the Android Studio AVD emulator and highlight many of the 

configuration features that are available to customize the 

environment in both standalone and tool window modes.



6.1 The Emulator Environment

When launched in standalone mode, the emulator displays an 

initial splash screen during the loading process. Once loaded, the 

main emulator window appears containing a representation of the 

chosen device type (in the case of Figure 6-1 this is a Pixel 4 

device):



Android Emulator - PiKe!_4jAPf_32:5554



Figure 6-1

Positioned along the right-hand edge of the window is the toolbar 

providing quick access to the emulator controls and configuration 

options.



6.2 Emulator Toolbar Options

The emulator toolbar provides access to a range of options 

relating to the appearance and behavior of the emulator 
environment.

x - ------- Exit 1 Minimize

Power ------------- ►

Volume Down ------------- >

O

4-----

Rotate Right --------------►

Zoom Mode >

S 
0" 

V

4-----

Home -------------- ► 0

□ 4-----

• • * 4-----

Figure 6-2



Each button in the toolbar has associated with it a keyboard 
accelerator which can be identified either by hovering the mouse 

pointer over the button and waiting for the tooltip to appear or 

via the help option of the extended controls panel.

Though many of the options contained within the toolbar are self- 
explanatory, each option will be covered for the sake of 

completeness:

•Exit / Minimize - The uppermost ‘x’ button in the toolbar exits 

the emulator session when selected while the ‘-’ option minimizes 

the entire window.

•Power - The Power button simulates the hardware power button 

on a physical Android device. Clicking and releasing this button 

will lock the device and turn off the screen. Clicking and holding 

this button will initiate the device “Power off” request sequence.

•Volume Up / Down - Two buttons that control the audio volume 

of playback within the simulator environment.

•Rotate Left/Right - Rotates the emulated device between portrait 

and landscape orientations.

•Take Screenshot - Takes a screenshot of the content currently 

displayed on the device screen. The captured image is stored at 



the location specified in the Settings screen of the extended 
controls panel as outlined later in this chapter.

•Zoom Mode - This button toggles in and out of zoom mode, 

details of which will be covered later in this chapter.

•Back - Performs the standard Android “Back” navigation to 

return to a previous screen.

•Home - Displays the device home screen.

•Overview - Simulates selection of the standard Android 

“Overview” navigation which displays the currently running apps 

on the device.

•Fold Device - Simulates the folding and unfolding of a foldable 

device. This option is only available if the emulator is running a 

foldable device system image.

•Extended Controls - Displays the extended controls panel, 
allowing for the configuration of options such as simulated 

location and telephony activity, battery strength, cellular network 

type, and fingerprint identification.



6.3 Working in Zoom Mode

The zoom button located in the emulator toolbar switches in and 

out of zoom mode. When zoom mode is active the toolbar 

button is depressed and the mouse pointer appears as a 

magnifying glass when hovering over the device screen. Clicking 

the left mouse button will cause the display to zoom in relative 

to the selected point on the screen, with repeated clicking 

increasing the zoom level. Conversely, clicking the right mouse 
button decreases the zoom level. Toggling the zoom button off 

reverts the display to the default size.

Clicking and dragging while in zoom mode will define a 

rectangular area into which the view will zoom when the mouse 

button is released.

While in zoom mode the visible area of the screen may be 

panned using the horizontal and vertical scrollbars located within 

the emulator window.



6.4 Resizing the Emulator Window

The size of the emulator window (and the corresponding 

representation of the device) can be changed at any time by 
clicking and dragging on any of the corners or sides of the 

window.



6.5 Extended Control Options

The extended controls toolbar button displays the panel illustrated in 

Figure By default, the location settings will be displayed. Selecting a 

different category from the left-hand panel will display the 

corresponding group of

Extended Controls - Pixel_4_API_31:5554

GPS data point 
5 Displays

Q Location

A Cellular
Coordinate system Decimal Latitude

37.422
Longitude

-122.084

I Battery Currently reported location Altitude (meters) Speed (knots)

Latitude: 37.4220
Longitude: -122.0840
Altitude: 5.0
Speed: 0.0

5.0| 0.0

0 Camera

Phone

Q Directional pad

GPS data playback

Send

Microphone

Fingerprint

Virtual sensors

Bug report

■O Snapshots

■< Record and Playback

Google Play

Xjt Settings

Q Help

Delay (sec) Latitude Longitude Elevation Name Description

► Speed 1X Load GPX/KML

Figure 6-3



6.5.1 Location

The location controls allow simulated location information to be 
sent to the emulator in the form of decimal or sexigesimal 

coordinates. Location information can take the form of a single 

location, or a sequence of points representing movement of the 

device, the latter being provided via a file in either GPS Exchange 

(GPX) or Keyhole Markup Language (KML) format. Alternatively, 

the integrated Google Maps panel may be used to visually select 

single points or travel routes.



6.5.2 Displays

In addition to the main display shown within the emulator screen, 

the Displays option allows additional displays to be added running 
within the same Android instance. This can be useful for testing 

apps for dual-screen devices such as the Microsoft Surface Duo. 

These additional screens can be configured to be any required 

size and appear within the same emulator window as the main 
screen.



6.5.3 Cellular

The type of cellular connection being simulated can be changed 

within the cellular settings screen. Options are available to 

simulate different network types (CSM, EDGE, HSDPA, etc) in 

addition to a range of voice and data scenarios such as roaming 

and denied access.



6.5.4 Battery

A variety of battery state and charging conditions can be 

simulated on this panel of the extended controls screen, including 

battery charge level, battery health, and whether the AC charger is 

currently connected.



6.5.5 Camera

The emulator simulates a 3D scene when the camera is active. 

This takes the form of the interior of a virtual building through 

which you can navigate by holding down the Option key (Alt on 

Windows) while using the mouse pointer and keyboard keys when 

recording video or before taking a photo within the emulator. This 

extended configuration option allows different images to be 

uploaded for display within the virtual environment.



6.5.6 Phone

The phone extended controls provide two very simple but useful 
simulations within the emulator. The first option allows for the 

simulation of an incoming call from a designated phone number. 

This can be of particular use when testing how an app handles 

high-level interrupts of this nature.

The second option allows the receipt of text messages to be 
simulated within the emulator session. As in the real world, these 

messages appear within the Message app and trigger the standard 

notifications within the emulator.



6.5.7 Directional Pad

A directional pad (D-Pad) is an additional set of controls either 
built into an Android device or connected externally (such as a 

game controller) that provides directional controls (left, right, up, 

down). The directional pad settings allow D-Pad interaction to be 
simulated within the emulator.



6.5.8 Microphone

The microphone settings allow the microphone to be enabled and 

virtual headset and microphone connections to be simulated. A 

button is also provided to launch the Voice Assistant on the 

emulator.



6.5.9 Fingerprint

Many Android devices are now supplied with built-in fingerprint 

detection hardware. The AVD emulator makes it possible to test 

fingerprint authentication without the need to test apps on a 

physical device containing a fingerprint sensor. Details on how to 

configure fingerprint testing within the emulator will be covered in 
detail later in this chapter.



6.5.10 Virtual Sensors

The virtual sensors option allows the accelerometer and 

magnetometer to be simulated to emulate the effects of the 

physical motion of a device such as rotation, movement, and 

tilting through yaw, pitch and roll settings.



6.5.11 Snapshots

Snapshots contain the state of the currently running AVD session 

to be saved and rapidly restored making it easy to return the 

emulator to an exact state. Snapshots are covered in later in this 

chapter.



6.5.12 Record and Playback

Allows the emulator screen and audio to be recorded and saved 
in either WebM or animated GIF format.



6.5.13 Google Play

If the emulator is running a version of Android with Google Play 

Services installed, this option displays the current Google Play 

version and provides the option to update the emulator to the 

latest version.



6.5.14 Settings

The settings panel provides a small group of configuration 

options. Use this panel to choose a darker theme for the toolbar 

and extended controls panel, specify a file system location into 

which screenshots are to be saved, configure OpenGL support 

levels, and configure the emulator window to appear on top of 

other windows on the desktop.



6.5.15 Help

The Help screen contains three sub-panels containing a list of 

keyboard shortcuts, links to access the emulator online 

documentation, file bugs and send feedback, and emulator version 
information.



6.6 Working with Snapshots

When an emulator starts for the very first time it performs a cold 

boot much like a physical Android device when it is powered on. 

This cold boot process can take some time to complete as the 

operating system loads and all the background processes are started. 

To avoid the necessity of going through this process every time the 

emulator is started, the system is configured to automatically save a 

snapshot (referred to as a quick-boot of the emulator’s current state 

each time it exits. The next time the emulator is launched, the quick­

boot snapshot is loaded into memory and execution resumes from 

where it left off previously, allowing the emulator to restart in a 

fraction of the time needed for a cold boot to complete.

The Snapshots screen of the extended controls panel can be used to 

store additional snapshots at any point during the execution of the 

emulator. This saves the exact state of the entire emulator allowing 

the emulator to be restored to the exact point in time that the 

snapshot was taken. From within the screen, snapshots can be taken 

using the Take Snapshot button (marked A in Figure To restore an 

existing snapshot, select it from the list (B) and click the run button 

(C) located at the bottom of the screen. Options are also provided 

to edit (D) the snapshot name and description and to delete (E) the 

currently selected snapshot:



Snapshots:

Manage Snapshots (Pixel 4 API 33)

Name Created Size Use to Boot

. Quickboot (auto-saved) 4/14/23 2:49 PM 284 MB

snap_2023-04-28_09-53-19 B Moments ago 745.3 MB

Welcome to Compose

20sp

GO© 
► Z -

snap_2023-04-28_09-53-19
Created 4/28/23 9:53 AM. 745.3 MB
File: snap_2023-04-28_09-53-19

Take Snapshot

Start without using a snapshot (cold boot)

Close

Figure 6-4

To force an emulator session to perform a cold boot instead of 

using a previous quick-boot snapshot, enable the checkbox marked F 

in the above figure.

You can also choose whether to start an emulator using either a 

cold boot, the most recent quick-boot snapshot, or a previous 

snapshot by making a selection from the run target menu in the 

main toolbar, as illustrated in Figure



* app ▼ [ Co Pixel 4 API 33 - Quick Boot ▼ ►(1^,6 M CL
Available devices

□ Pixel 4 API 33 > Cold Boot +
□a Resizable API 33 Quick Boot

Hum, 
sp"

Lq Select Multiple Devices... 
T*  Pair Devices Using Wi-Fi 
d Device Manager

snap_2023-04-28_09-53-19

:= Troubleshoot Device Connections

Figure 6-5



6.7 Configuring Fingerprint Emulation

The emulator allows up to 10 simulated fingerprints to be configured 

and used to test fingerprint authentication within Android apps. To 

configure simulated fingerprints begin by launching the emulator, 

opening the Settings app, and selecting the Security & Location 

option.

Within the Security settings screen, select the Use fingerprint option. 

On the resulting information screen click on the Next button to 

proceed to the Fingerprint setup screen. Before fingerprint security 

can be enabled a backup screen unlocking method (such as a PIN) 

must be configured. Click on the Fingerprint + PIN button and, when 

prompted, choose not to require the PIN on device startup. Enter 

and confirm a suitable PIN and complete the PIN entry process by 

accepting the default notifications option.

Proceed through the remaining screens until the Settings app 

requests a fingerprint on the sensor. At this point display the 

extended controls dialog, select the Fingerprint category in the left­

hand panel and make sure that Finger 1 is selected in the main 

settings panel:



9 Location Fingerprint

Finger 1
5 Displays

Touch Sensor
A Cellular

g Battery

Figure 6-6

Click on the Touch Sensor button to simulate Finger 1 touching the 

fingerprint sensor. The emulator will report the successful addition of 

the fingerprint:



LTy Q 2:46

Fingerprint added!
Whenever you see this icon, you can use your 
fingerprint for identification or to authorize 
a purchase.

ADD ANOTHER DONE



Figure 6-7

To add additional fingerprints click on the Add Another button and 

select another finger from the extended controls panel menu before 

clicking on the Touch Sensor button once again.



6.8 The Emulator in Tool Window Mode

As outlined in the previous chapter an Android Virtual Device 

(AVD) in Android Android Studio can be configured to launch the 

emulator as an embedded tool window so that it does not appear 

in a separate window. When running in this mode, the same 

controls available in standalone mode are provided in the toolbar 

as shown in Figure

Figure 6-8

From left to right, these buttons perform the following tasks 

(details of which match those for standalone mode):

• Power

•Volume Up

•Volume Down

• Rotate Left

• Rotate Right



Back

• Home

•Overview

•Screenshot

•Snapshots

• Extended Controls



6.9 Creating a Resizable Emulator

In addition to emulators configured to match specific Android device 

models, Android Studio also provides a resizable AVD that allows 

you to switch between phone, tablet and foldable device sizes. To 

create a resizable emulator, open the Device Manager and click the 

Create device button. Next, select the Resizable device definition 

illustrated in Figure and follow the usual steps to create a new AVD:

|Q-
Category Name ▼ Play Store Size Resolution Density

Phone Resizable (Experimental) 6.0" 1080x23... 420dpi

Tablet Pixel XL 5.5" 1440x25... 560dpl

Wear OS Pixel 6 Pro 6.7" 1440x31... 560dpi

Desktop Pixel 6 6.4" 1080x24... 420dpi

TV Pixel 5 6.0’ 1080x23... 440dpi

Automotive Pixel 4a 5.8’ 1080x23... 440dpi

This device resizes to:
Phone (1080 x 2340 @ 420dpi)
Foldable (1768 x 2208 @ 420dpi)
Tablet (1920 x 1200 @ 240dpi) 
Desktop (1920 x 1080 @> 160dpi)

Ratio: long 
Density: 420dpi

Figure 6-9

When you run an app on the new emulator within a tool window, 

the Display mode option will appear in the toolbar, allowing you to 

switch between emulator configurations as shown in Figure



Figure 6-10

If the emulator is running in standalone mode, the Display mode 

option can be found in the side toolbar as shown below:

11:28 0

AndroidSample

dollars

(!)

□

□

Figure 6-11



6.10 Summary

Android Studio contains an Android Virtual Device emulator 

environment designed to make it easier to test applications 

without the need to run on a physical Android device. This 

chapter has provided a brief tour of the emulator and highlighted 

key features that are available to configure and customize the 

environment to simulate different testing conditions.



7. A Tour of the Android Studio User Interface

While it is tempting to plunge into running the example 

application created in the previous chapter, doing so involves 

using aspects of the Android Studio user interface which are best 

described in advance.

Android Studio is a powerful and feature-rich development 

environment that is, to a large extent, intuitive to use. That being 

said, taking the time now to gain familiarity with the layout and 

organization of the Android Studio user interface will considerably 

shorten the learning curve in later chapters of the book. With this 

in mind, this chapter will provide an initial overview of the 

various areas and components that make up the Android Studio 

environment.



7.1 The Welcome Screen

The welcome screen is displayed any time that Android Studio is 

running with no projects currently open (open projects can be closed 

at any time by selecting the File -> Close Project menu option). If 

Android Studio was previously exited while a project was still open, 

the tool will bypass the welcome screen next time it is launched, 

automatically opening the previously active project.

Welcome to Android Studio

©Android Studio
Flamingo I 2022.2.1

Customize Welcome to Android Studio

Learn Android Studio

Create a new project to start from scratch.
Open existing project from disk or version control.

New Project Get from VCS

More Actions

Figure 7-1



In addition to a list of recent projects, the welcome screen provides 

options for performing tasks such as opening and creating projects 

along with access to projects currently under version control. In 

addition, the Customize screen provides options to change the theme 

and font settings used by both the IDE and the editor. Android 

Studio plugins may be viewed, installed, and managed using the 

Plugins option.

Additional options are available by clicking on the menu button as

shown in Figure

New Project Open Get from VCS

Demo
Documents/Books...mposeEssentials/ComposeDemo

Uf Profile or Debug APK
I* ’ Import Project (Gradle, Eclipse ADT, etc.) 
[J Import an Android Code Sample 
fy. SDK Manager
Cl Virtual Device Manager

———

Figure 7-2



7.2 The Main Window

When a new project is created, or an existing one opened, the 

Android Studio main window will appear. When multiple projects are 

open simultaneously, each will be assigned its own main window. 

The precise configuration of the window will vary depending on 

which tools and panels were displayed the last time the project was 

open, but will typically resemble that of Figure

manifests package coa.exaaole.coaposedeiM

inpert ..

Hl Main Activity,kt

26
27

com.example.composedemo mdro d'es «» 
com.exampte.composedemo test)

*ava generated) 
res
res (generated) 

> •*  Gradle Scripts

'’■&» as a Q.«n

= Code =1 Split S Design

com. example .compo sede mo 
> t ui. theme

29
38

class HalnActivity : CoaponentActivityO { 
override fun onCreate(savedInstanceState: Bundle?) < 

super.onCreate(savedInstancestate) 

setContent { 
CoaposeDeaoTheae 

// A surface 
Surfacet 

■odifier
color ■ HaterialTheae.colors.background

container using the 'background' color froa the theac

Hooitler.fiIinoxsizel),

52
33 Deao$creen()

35
36
37
38
39

40 UCoooosable 
fun DeaoScreenO {

3

1

I£
£

,0

42
var sliderPosition by reneaber •( autableStateOfl value 29f) 

44
val handlePositionChange ■ { position : Float -> 

sUflerPosltion ■ position
} 

48
Coluan( 

horiaontalAlignaent Alignment.CenterHorizontally,
verticalArrangcnent Arrangement .Center,

= TOOO O Problems ■ Termnal C Logcat /?■ ProfJer f App Incpaction _! E vent Log d. Layout Inspect or

301 U UTF-8 4 spaces 'a v

< ? Em
Uator

Figure 7-3

The various elements of the main window can be summarized as 

follows:



A - Menu Bar - Contains a range of menus for performing tasks 

within the Android Studio environment.

B - Toolbar - A selection of shortcuts to frequently performed 

actions. The toolbar buttons provide quick access to a select group 

of menu bar actions. The toolbar can be customized by right-clicking 

on the bar and selecting the Customize Menus and Toolbars... menu 

option. If the toolbar is not visible, it can be displayed using the 

View -> Appearance -> Toolbar menu option.

C - Navigation Bar - The navigation bar provides a convenient way 

to move around the files and folders that make up the project. 

Clicking on an element in the navigation bar will drop down a menu 

listing the sub-folders and files at that location ready for selection. 

Similarly, clicking on a class name displays a menu listing methods 

contained within that class. Select a method from the list to be 

taken to the corresponding location within the code editor. Hide and 

display this bar using the View -> Appearance -> Navigation Bar menu 

option.

D - Editor Window - The editor window displays the content of the 

file on which the developer is currently working. When multiple files 

are open, each file is represented by a tab located along the top 

edge of the editor as shown in Figure

। MainActivity.kt o colors.xml build.gradle (:app)

= Code =1 Split D Design

26

27

setContent ■(
ComposeDemoTheme {



Figure 7-4

E - Status Bar - The status bar displays informational messages 

about the project and the activities of Android Studio together with 

the tools menu button located in the far left corner. Hovering over 

items in the status bar will display a description of that field. Many 

fields are interactive, allowing the user to click to perform tasks or 

obtain more detailed status information.

F - Project Tool Window - The project tool window provides a 

hierarchical overview of the project file structure allowing navigation 

to specific files and folders to be performed. The toolbar can be 

used to display the project in several different ways. The default 

setting is the Android view which is the mode primarily used in the 

remainder of this book.

The project tool window is just one of many tool windows available 

within the Android Studio environment.



7.3 The Tool Windows

In addition to the project view tool window, Android Studio also 

includes many other windows which, when enabled, are displayed 

along the bottom and sides of the main window. The tool window 

quick access menu can be displayed by hovering the mouse pointer 

over the button located in the far left-hand corner of the status bar 

without clicking the mouse



App Inspection
App Quality Insights

R Bookmarks ^2 
m Build Variants 
□ Device File Explorer 
[g Device Manager 
Q Find

Gradle
Layout Inspector

=T Logcat
i . Notifications
B Problems ^6

Profiler
Project 3€1

■*  Resource Manager 
Running Devices

O Services 3S8
» Structure ^7
E3 Terminal TF12
:= TODO

Version Control

Figure 7-5



Selecting an item from the quick access menu will cause the 

corresponding tool window to appear within the main window.

Alternatively, a set of tool window bars can be displayed by clicking 

on the quick access menu icon in the status bar. These bars appear 

along the left, right, and bottom edges of the main window (as 

indicated by the arrows in Figure and contain buttons for showing 

and hiding each of the tool windows. When the tool window bars 

are displayed, a second click on the button in the status bar will 

hide

to R Q <- \ « .pp » ,.u Pixel 4 API 30 * ►

AndroidSample

O C> 6 I Q, ©*  Br no.
AndroldSample app arc main res layout activity.main.xml

Search Everywhere Double O

Project View

Go to File OXN

Recent Files £E

Navigation Bar X*

Drop files here to open

G
rade 

C
i Em

ulator 
□D

evice File Explore'

:= TODO B Terminal \ Build C fi: Logcat /7> Profiler S Database Inspector ► 4: Run Q Event Log R Layout Inspector

Figure 7-6

Clicking on a button will display the corresponding tool window while 

a second click will hide the window. Buttons prefixed with a number



(for example 1: Project) indicate that the tool window may also be 

displayed by pressing the Alt key on the keyboard (or the Command 

key for macOS) together with the corresponding number.

The location of a button in a tool window bar indicates the side of 

the window against which the window will appear when displayed. 

These positions can be changed by clicking and dragging the buttons 

to different locations in other window toolbars.

Each tool window has its own toolbar along the top edge. The 

buttons within these toolbars vary from one tool to the next, though 

all tool windows contain a settings option, represented by the cog 

icon, which allows various aspects of the window to be changed. 

Figure 7-7 shows the settings menu for the Project tool window. 

Options are available, for example, to undock a window and to allow 

it to float outside of the boundaries of the Android Studio main 

window, and to move and resize the tool

Android Tree Appearance
i app

> manifests
v java

- El com.example.compo! 
v El ui.theme

iV Color.kt
Bi: Th erne, kt
Si Type, kt 

t MainActivity.kt 
> El com.example.compo! 
> El com.example.compo!

> is res
res (generated)

Enable Preview Tab
Open Files with Single Click 
Always Select Opened File

Edit Scopes...

</ Group Tabs 
View Mode 
Move to 
Resize

Remove from Sidebar

? Help

Show Members
Show Visibility Icons

Flatten Packages
>/ Compact Middle Packages

Sort by Type
y Folders Always on Top

Figure 7-7



All of the windows also include a far-right button on the toolbar 

providing an additional way to hide the tool window from view. A 

search of the items within a tool window can be performed simply 

by giving that window focus by clicking in it and then typing the 

search term (for example the name of a file in the Project tool 

window). A search box will appear in the window’s toolbar and items 

matching the search highlighted.

Android Studio offers a wide range of tool windows, the most 

commonly used of which are as follows:

Inspector - Provides access to the Database and Background Task 

inspectors. The Database Inspector allows you to inspect, query, and 

modify your app’s databases while the app is running. The 

Background Task Inspector allows background worker tasks created 

using WorkManager to be monitored and managed.

•Build - The build tool window displays information about the build 

process while a project is being compiled and packaged and displays 

details of any errors encountered.

Variants - The build variants tool window provides a quick way to 

configure different build targets for the current application project (for 

example different builds for debugging and release versions of the 

application, or multiple builds to target different device categories).

File Explorer - Available via the View -> Tool Windows -> Device File 

Explorer menu, this tool window provides direct access to the



filesystem of the currently connected Android device or emulator 

allowing the filesystem to be browsed and files copied to the local 

filesystem.

Manager - Provides access to the Device Manager tool window where 

physical Android device connections and emulators may be added, 

removed, and managed.

- Contains the AVD emulator if the option has been enabled to run 

the emulator in a tool window as outlined in the chapter entitled 

“Creating an Android Virtual Device (AVD) in Android

Log - The event log window displays messages relating to events 

and activities performed within Android Studio. The successful build 

of a project, for example, or the fact that an application is now 

running will be reported within this tool window.

- A variety of project items can be added to the favorites list. Right­

clicking on a file in the project view, for example, provides access to 

an Add to Favorites menu option. Similarly, a method in a source file 

can be added as a favorite by right-clicking on it in the Structure 

tool window. Anything added to a Favorites list can be accessed 

through this Favorites tool window.

• Find - Search for code and text within your project files.

- The Gradle tool window provides a view of the Gradle tasks that 

make up the project build configuration. The window lists the tasks 

that are involved in compiling the various elements of the project 



into an executable application. Right-click on a top-level Gradle task 

and select the Open Gradle Config menu option to load the Gradle 

build file for the current project into the editor. Gradle will be 

covered in greater detail later in this book.

Inspector - Provides a visual 3D rendering of the hierarchy of 

components that make up a user interface layout.

- The Logcat tool window provides access to the monitoring log 

output from a running application in addition to options for taking 

screenshots and videos of the application and stopping and restarting 

a process.

- A central location in which to view all of the current errors or 

warnings within the project. Double-clicking on an item in the 

problem list will take you to the problem file and location.

- The Android Profiler tool window provides real-time monitoring and 

analysis tools for identifying performance issues within running apps, 

including CPU, memory and network usage. This option becomes 

available when an app is currently running.

- The project view provides an overview of the file structure that 

makes up the project allowing for quick navigation between files. 

Generally, double-clicking on a file in the project view will cause that 

file to be loaded into the appropriate editing tool.

Manager - A tool for adding and managing resources and assets 

such as images, colors, and layout files contained with the project.



- The run tool window becomes available when an application is 

currently running and provides a view of the results of the run 

together with options to stop or restart a running process. If an 

application is failing to install and run on a device or emulator, this 

window will typically provide diagnostic information relating to the 

problem.

- The structure tool provides a high-level view of the structure of the 

source file currently displayed in the editor. This information includes 

a list of items such as classes, methods, and variables in the file. 

Selecting an item from the structure list will take you to that 

location in the source file in the editor window.

• Running Devices - Displays any AVD instances running within the 

current Android Studio session.

• Terminal - Provides access to a terminal window on the system on 

which Android Studio is running. On Windows systems, this is the 

Command Prompt interface, while on Linux and macOS systems this 

takes the form of a Terminal prompt.

- As the name suggests, this tool provides a place to review items 

that have yet to be completed on the project. Android Studio 

compiles this list by scanning the source files that make up the 

project to look for comments that match specified TODO patterns. 

These patterns can be reviewed and changed by selecting the File -> 

Settings... menu option Studio -> Preferences... on macOS) and 

navigating to the TODO page listed under



•Version Control - This tool window is used when the project files 

are under source code version control, allowing access to Git 

repositories and code change history.



7.4 Android Studio Keyboard Shortcuts

Android Studio includes an abundance of keyboard shortcuts 

designed to save time when performing common tasks. A full 

keyboard shortcut keymap listing can be viewed and printed from 

within the Android Studio project window by selecting the Help -> 

Keyboard Shortcuts menu option. You may also list and modify the 

keyboard shortcuts by selecting the File -> Settings... menu option 

Studio -> Preferences... on macOS) and clicking on the Keymap entry 

as shown in Figure 7-8 below:

Preferences

Key map

Appearance & Behavior macOS ▼ 0.

Editor

Gel more keyrnaps in Preferences | Plugins

Plugins I Z A Q______ a
Version Control ■ v 1 Editor Actions

Build, Execution, Deployment 

Languages & Frameworks

Add or Remove Caret XO Click

Add Rectangular Selection on Mouse Drag VOX Click

Backspace <3 O®
■ Tools Move Caret Backward a Paragraph

Web Browsers Move Caret Backward a Paragraph with Selection

External Tools Choose Lookup Item e3

Terminal Choose Lookup Item and Insert Dot A.

Choose Lookup Item Replace *•'
Device File Explorer

Clone Caret Above
> Diff & Merge Clone Caret Below

Emulator Move Caret to Code Block End XX]

Server Certificates Move Caret to Code Block End with Selection XOX)

Settings Repository Move Caret to Code Block Start XX]
Move Caret to Code Block Start with Selection XOX(

Startup Tasks Complete Current Statement OXP
> Tasks Create Rectangular Selection XOMiddle-Click

Other Settings Create Rectangular Selection on Mouse Drag XCIick Middle-Click

Experimental Cut Line Backward 
Cut up to Line End ''K

Decrease Font Size 

Delete &
Delete Line X<3

Find Action. Move to Another Changelist... shortcuts conflict with the macOS system shortcuts. 
Assign custom shortcuts or change the macOS system settings.

7 Cancel Apply

Figure 7-8





7.5 Switcher and Recent Files Navigation

Another useful mechanism for navigating within the Android Studio 

main window involves the use of the Accessed via the Ctrl-Tab 

keyboard shortcut, the switcher appears as a panel listing both the 

tool windows and currently open

Switcher

s C Log cat
fei 1 Project
★ 2 Favorites

3 Profiler
O 6 Problems
■■ 7 Structure

Main Activity, kt
build.gradle (:app)

o colors.xml

# A App Inspection
□ D Device File Explorer 
Co E Emulator
& G Gradle

] Layout Inspector
Q L Event Log
Cq I- Device Manager
== 0 TODO

R Resource Manager
H l Terminal
* V Build Variants

~/OneDrive/Documents/Books/Jetpack_Compose/JetpackComposeEssentials/ComposeDemo/app

Figure 7-9

Once displayed, the switcher will remain visible for as long as the 

Ctrl key remains depressed. Repeatedly tapping the Tab key while 



holding down the Ctrl key will cycle through the various selection 

options while releasing the Ctrl key causes the currently highlighted 

item to be selected and displayed within the main window.

In addition to the switcher, navigation to recently opened files is 

provided by the Recent Files panel This can be accessed using the 

Ctrl-E keyboard shortcut (Cmd-E on macOS). Once displayed, either 

the mouse pointer can be used to select an option or the keyboard 

arrow keys used to scroll through the file name and tool window 

options. Pressing the Enter key will select the currently item.

Recent Files Q Show edited only 3€E

8? build.gradle (:app) □
Project 3C1 o colors.xml

★ Favorites 3€2
O Problems 3€6
■ S Structure &7
# App Inspection
* Build Variants
□ Device File Explorer

Emulator
Gradle
Layout Inspector

Q Event Log
Co Device Manager
== TODO

Profiler
Resource Manager

B Terminal XF12
Recent Locations O3SE

~/OneDrive/Documents/Books/Jetpack_Compose/JetpackComposeEssentials/ComposeDemo/app

Figure 7-10



7.6 Changing the Android Studio Theme

The overall theme of the Android 

changed either from the welcome 

or via the File -> Settings... menu 

macOS) of the main window.

Studio environment may be 

screen using the Customize option 

option Studio -> Preferences... on

Once the settings dialog is displayed, select the Appearance & 

Behavior option followed by Appearance in the left-hand panel and 

then change the setting of the Theme menu before clicking on the 

Apply button. The themes available will depend on the platform but 

usually include options such as Light, IntelliJ, Windows, High 

Contrast, and Darcula. Figure 7-11 shows an example of the main 

window with the Darcula theme selected:

Figure 7-11



To synchronize the Android Studio theme with the operating system 

light and dark mode setting, enable the Sync with OS option and 

use the drop-down menu to control which theme to use for each 

mode:

Appearance & Behavior > Appearance

Theme: IntelliJ Light Q Sync with OS <1
Preferred Theme

Use custom font: .AppleSystemUIFont

Accessibility

Support screen readers Requires restart

Use contrast scrollbars

Figure 7-12

Light
y IntelliJ Light

Dark
y Darcula

High contrast



7.7 Summary

The primary elements of the Android Studio environment consist 

of the welcome screen and main window. Each open project is 

assigned its own main window which, in turn, consists of a menu 

bar, toolbar, editing and design area, status bar, and a collection 

of tool windows. Tool windows appear on the sides and bottom 

edges of the main window and can be accessed either using the 

quick access menu located in the status bar or via the optional 

tool window bars.

There are very few actions within Android Studio that cannot be 

triggered via a keyboard shortcut. A keymap of default keyboard 

shortcuts can be accessed at any time from within the Android 

Studio main window.



8. Testing Android Studio Apps on a Physical Android Device

While much can be achieved by testing applications using an 

Android Virtual Device (AVD), there is no substitute for 
performing real-world application testing on a physical Android 

device and there are some Android features that are only available 

on physical Android devices.

Communication with both AVD instances and connected Android 
devices is handled by the Android Debug Bridge (ADB). In this 

chapter, we explain how to configure the adb environment to 
enable application testing on an Android device with macOS, 

Windows, and Linux-based systems.



8.1 An overview of the Android Debug Bridge

The primary purpose of the ADB is to facilitate interaction 

between a development system, in this case, Android Studio, and 

both AVD emulators and Android devices to run and debug 

applications. ADB allows you to connect to devices either over a 

WiFi network or directly using a USB cable.

The ADB consists of a client, a server process running in the 

background on the development system, and a daemon 

background process running in either AVDs or real Android 

devices such as phones and tablets.

The ADB client can take a variety of forms. For example, a client 

is provided in the form of a command-line tool named adb 

located in the Android SDK platform-tools sub-directory. Similarly, 

Android Studio also has a built-in client.

A variety of tasks may be performed using the adb command-line 

tool. For example, a listing of currently active virtual or physical 

devices may be obtained using the devices command-line 

argument. The following command output indicates the presence 

of an AVD on the system but no physical

$ adb devices

List of devices attached 



emulator-5554 device



8.2 Enabling USB debugging ADB on Android devices

Before ADB can connect to an Android device, that device must first 

be configured to allow the connection. On phone and tablet devices 

running Android 6.0 or later, the steps to achieve this are as follows:

1. Open the Settings app on the device and select the About tablet 

or About phone option (on some versions of Android this can be 

found on the System page of the Settings app).

2. On the About screen, scroll down to the Build number field and 

tap on it seven times until a message appears indicating that 

developer mode has been If the Build number is not listed on the 

About screen it may be available via the Software information option. 

Alternatively, unfold the Advanced section of the list if available.

Kernel version
4.9.227-perf-23848788
#1 TueMay31 09:37:34+07 2022

Build number
RP1 A.200720.012.T290XXU3CVE1

Figure 8-1



3. Return to the main Settings screen and note the appearance of a 

new option titled Developer options (on newer versions of Android 

this option is listed on the System settings screen). Select this 

option and on the resulting screen, locate the USB debugging option 

as illustrated in Figure

Debugging

USB debugging
Debug mode when USB is connected

Figure 8-2

4. Enable the USB debugging option and tap the Allow button when 

confirmation is requested.

At this point, the device is now configured to accept debugging 

connections from adb on the development system over a USB 

connection. All that remains is to configure the development system 

to detect the device when it is attached. While this is a relatively 

straightforward process, the steps involved differ depending on 

whether the development system is running Windows, macOS, or 

Linux. Note that the following steps assume that the Android SDK 

platform-tools directory is included in the operating system PATH 

environment variable as described in the chapter entitled “Setting up 

an Android Studio Development



8. 2.1 macOS ADB configuration

To configure the ADB environment on a macOS system, connect the 

device to the computer system using a USB cable, open a terminal 

window and execute the following command to restart the adb 

server:

$ adb kill-server

$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

Once the server is successfully running, execute the following 

command to verify that the device has been detected: 

$ adb devices

List of devices attached

74CE000600000001 offline

If the device is listed as go to the Android device and check for the 

presence of the dialog shown in Figure 8-3 seeking permission to



Allow USB debugging. Enable the checkbox next to the option that 

reads Always allow from this before clicking on

Allow USB debugging?

The computer's RSA key fingerprint is: 
6E:BF:56:13:95:F8:9B:7E:12:CF:C5:67

Always allow from this computer

CANCEL OK

Figure 8-3

Repeating the adb devices command should now list the device as 

being available:

List of devices attached

015d41d4454bf80c device

If the device is not listed, try logging out and then back into the 

macOS desktop and, if the problem persists, rebooting the system.



8.2.2 Windows ADB configuration

The first step in configuring a Windows-based development system 

to connect to an Android device using ADB is to install the 

appropriate USB drivers on the system. The USB drivers to install 

will depend on the model of the Android Device. If you have a 

Google device such as a Pixel phone, then it will be necessary to 

install and configure the Google USB Driver package on your 

Windows system. Detailed steps to achieve this are outlined on 

the following web page:

https://developer.android.com/sdk/win-usb.html

For Android devices not supported by the Google USB driver, it 

will be necessary to download the drivers provided by the device 
manufacturer. A listing of drivers together with download and 

installation information can be obtained online at:

https://developer.android.com/tools/extras/oem-usb.html

With the drivers installed and the device now being recognized as 

the correct device type, open a Command Prompt window and 

execute the following command:

adb devices

https://developer.android.com/sdk/win-usb.html
https://developer.android.com/tools/extras/oem-usb.html


This command should output information about the connected 

device similar to the following:

List of devices attached

HT4CTJT01906 offline

If the device is listed as offline or go to the device display and 

check for the dialog shown in Figure 8-3 seeking permission to 

Allow USB Enable the checkbox next to the option that reads 

Always allow from this before clicking on Repeating the adb devices 

command should now list the device as being ready:

List of devices attached

HT4CTJT01906 device

If the device is not listed, execute the following commands to 

restart the ADB server:

adb kill-server

adb start-server



If the device is still not listed, try executing the following 
command:

android update adb

Note that it may also be necessary to reboot the system.



8.2.3 Linux adb configuration

For this chapter, we will once again use Ubuntu Linux as a 
reference example in terms of configuring adb on Linux to 

connect to a physical Android device for application testing.

Physical device testing on Ubuntu Linux requires the installation of 

a package named android-tools-adb which, in turn, requires that the 

Android Studio user be a member of the plugdev group. This is 

the default for user accounts on most Ubuntu versions and can 

be verified by running the id command. If the plugdev group is 

not listed, run the following command to add your account to the 

group:

sudo usermod -aG plugdev $LOGNAME

After the group membership requirement has been met, the 
android-tools-adb package can be installed by executing the 

following command:

sudo apt-get install android-tools-adb

Once the above changes have been made, reboot the Ubuntu 

system. Once the system has restarted, open a Terminal window, 

start the adb server and check the list of attached devices:



$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

$ adb devices

List of devices attached

015d41d4454bf80c offline

If the device is listed as offline or go to the Android device and 
check for the dialog shown in Figure 8-3 seeking permission to 

Allow USB debugging.



8.3 Resolving USB connection issues

If you are unable to successfully connect to the device using the 

above steps, display the run target menu and select the 
Troubleshoot Device Connections option:

g Pixel 4 API 32 ▼ (■ (Jt S 6
J Running devices

d Pixel 4 API 32

Select Multiple Devices...
Pair Devices Using Wi-Fi
Wear OS emulator pairing assistant 
Device Manager

i= Troubleshoot Device Connections

Figure 8-4

The connection assistant will scan for devices and report problems 

and possible solutions.



8.4 Enabling wireless debugging on Android devices

Follow steps 1 through 3 from section 8.2 above, this time enabling 

the Wireless Debugging option as shown in Figure

Wireless debugging
Debug mode when Wi-Fi is connected

Figure 8-5

Next, tap the above Wireless debugging entry to display the screen 

shown in Figure



Figure 8-6



If the device you are using has a camera, select Pair device with QR 

otherwise select the Pair device with pairing code option. Depending 

on your selection, the Settings app will either start a camera session 

or display a pairing code as shown in Figure

Pair with device
Wi-Fi pairing code

909814
IP address & Port
10.0.2.16:43967

Cancel

Figure 8-7

With an option selected, return to Android Studio and select the Pair 

Devices Using WiFi option from the run target menu as illustrated in 

Figure



’ *

IX Pixel 4 API 33 ▼ ► (a r $ U ’

Available devices

■ Do Pixel 4 API 33
□ Resizable API 33

Lq Select Multiple Devices.,.
Pair Devices Using Wi-Fi

n Device Manager

:= Troubleshoot Device Connections

Figure 8-8

In the pairing dialog, select either Pair using QR code or Pair using 

pairing code depending on your previous selection in the Settings app 

on the device:



Pair devices over Wi-Fi

Pair new devices over Wi-Fi
Pair devices to enable wireless debugging. Pair camera-enabled devices using a QR code.
Other devices can be paired using a pairing code. Learn more

Pair using QR code Pair using pairing code

To pair an Android 11+ device 
scan the QR code from your device

QR scanner available at:
Developer options > Wireless debugging > Pair using QR code

Close

Figure 8-9

Either scan the QR code using the Android device or enter the 

pairing code displayed on the device screen into the Android Studio 

dialog to complete the pairing process:



Figure 8-10

If the pairing process fails, try rebooting both the development 

system and Android device and try again.



8.5 Testing the adb connection

Assuming that the adb configuration has been successful on your 

chosen development platform, the next step is to try running the test 

application created in the chapter entitled “An Example Compose 

Project” on the device. Launch Android Studio, open the 

ComposeDemo project, and verify that the device appears in the 

device selection menu as highlighted in Figure



r Samsung SM-T290 ▼ ►

Samsung SM-T290

a Pixel 4 API Sv2

*4 > "*  "*  ** M ** *

Co Pixel 4 API 31

LO Select Multiple Devices...

*+*  Pair Devices Using Wi-Fi

Wear OS emulator pairing assistant

Cl Device Manager

Troubleshoot Device Connections

Figure 8-11

Select the device from the list and click on the run button (the 

green arrow button located immediately to the right of the device 

menu) to install and run the app.



8.6 Summary

While the Android Virtual Device emulator provides an excellent 

testing environment, it is important to keep in mind that there is 

no real substitute for making sure an application functions 

correctly on a physical Android device. This, after all, is where the 
application will be used in the real world.

By default, however, the Android Studio environment is not 

configured to detect Android devices as a target testing device. It 

is necessary, therefore, to perform some steps to be able to load 

applications directly onto an Android device from within the 

Android Studio development environment either via a USB cable 

or over a WiFi network. The exact steps to achieve this goal differ 
depending on the development platform being used. In this 

chapter, we have covered those steps for Linux, macOS, and 

Windows-based platforms.



9. The Basics of the Android Studio Code Editor

Developing applications for Android involves a considerable 

amount of programming work which, by definition, involves typing, 

reviewing, and modifying lines of code. It should come as no 

surprise that the majority of a developer’s time spent using 

Android Studio will typically involve editing code within the editor 

window.

The modern code editor needs to go far beyond the original 
basics of typing, deleting, cutting, and pasting. Today the 

usefulness of a code editor is generally gauged by factors such as 

the amount by which it reduces the typing required by the 

programmer, ease of navigation through large source code files, 

and the editor’s ability to detect and highlight programming syntax 

errors in real-time as the code is being written. As will become 

evident in this chapter, these are just a few of the areas in which 

the Android Studio editor excels.

While not an exhaustive overview of the features of the Android 

Studio editor, this chapter aims to provide a guide to the key 

features of the tool. Experienced programmers will find that some 

of these features are common to most code editors available 

today, while a number are unique to this particular editing 

environment.



9.1 The Android Studio editor

The Android Studio editor appears in the center of the main window 

when a Java, Kotlin, XML, or other text-based file is selected for 

editing. Figure for example, shows a typical editor session with a 

Kotlin source code file loaded:

MainActivity.kt

import ...

composedemo MainActivity.kt

ComposeDemo - MainActivity.kt [ComposeDemo.app]

49:12 LF UTF-8 4 spaces

Q Event Log Layout Inspector

t G
radle 

[£} Device M
anager 

t? Em
ulator 

□
 Device File Explorer

package com.example.composedemo 

class MainActivity : Component 
override fun onCreate(save 

super.onCreate(savedin 

setContent {
ComposeDemoTheme { 

// A surface c 

Surface^ 

modifier = 
color Ma

DemoScreent

(dComposable 

fun DemoScreenO {

Figure 9-1

The elements that comprise the editor window can be summarized 

as follows:



A - Document Tabs - Android Studio is capable of holding multiple 

files open for editing at any one time. As each file is opened, it is 

assigned a document tab displaying the file name in the tab bar 

located along the top edge of the editor window. A small drop-down 

menu will appear in the far right-hand corner of the tab bar when 

there is insufficient room to display all of the tabs. Clicking on this 

menu will drop down a list of additional open files. A wavy red line 

underneath a file name in a tab indicates that the code in the file 

contains one or more errors that need to be addressed before the 

project can be compiled and run.

Switching between files is simply a matter of clicking on the 

corresponding tab or using the Alt-Left and Alt-Right keyboard 

shortcuts. Navigation between files may also be performed using the 

Switcher mechanism (accessible via the Ctrl-Tab keyboard shortcut).

To detach an editor panel from the Android Studio main window so 

that it appears in a separate window, click on the tab and drag it to 

an area on the desktop outside of the main window. To return the 

editor to the main window, click on the file tab in the separated 

editor window and drag and drop it onto the original editor tab bar 

in the main window.

B - The Editor Gutter Area - The gutter area is used by the editor 

to display informational icons and controls. Some typical items, 

among others, which appear in this gutter area are debugging 

breakpoint markers, controls to fold and unfold blocks of code, 

bookmarks, change markers, and line numbers. Line numbers are 



switched on by default but may be disabled by right-clicking in the 

gutter and selecting the Show Line Numbers menu option.

C - Code Structure Location - This bar at the bottom of the editor 

displays the current position of the cursor as it relates to the overall 

structure of the code. In the following figure, for example, the bar 

indicates that the onCreate() method is currently being edited and 

that this method is contained within the MainActivity class.

ComposeDemo app src main java com example composedemo MainActivity.kt <*  MainActivity m onCreatefsavedlnstanceState: Bundle?) 

MainActivity.kt o st rings, xml

Figure 9-2

Double-clicking an element within the bar will move the cursor to 

the corresponding location within the code file. For example, double­

clicking on the onCreate() entry will move the cursor to the top of 

that method within the source code. Similarly clicking on the 

MainActivity.kt entry will drop down a list of available code navigation 

points for selection:

Figure 9-3



D - The Editor Area - This is the main area where the code is 

displayed, entered, and edited by the user. Later sections of this 

chapter will cover the key features of the editing area in detail.

E - The Validation and Marker Sidebar - Android Studio incorporates 

a feature referred to as “on-the-fly code analysis”. What this 

essentially means is that as you are typing code, the editor is 

analyzing the code to check for warnings and syntax errors. The 

indicators at the top of the validation sidebar will update in real-time 

to indicate the number of errors and warnings found as code is 

added. Clicking on this indicator will display a popup containing a 

summary of the issues found with the code in the editor as 

illustrated in Figure

01 Al

1 error, 1 warning

Highlight: All Problems

Figure 9-4

The up and down arrows may be used to move between the error 

locations within the code. A green checkmark indicates that no 

warnings or errors have been detected.

The sidebar also displays markers at the locations where issues have 

been detected using the same color-coding. Hovering the mouse



pointer over a marker when the line of code is visible in the editor 

area will display a popup containing a description of the issue:

; Too many arguments for public open fun show(): Unit defined in com.google.android.material.snackbar.Snackbar 

Unresolved reference: nul

Create abstract property 'nul' XOP More actions... XP

Figure 9-5

Hovering the mouse pointer over a marker for a line of code that is 

currently scrolled out of the viewing area of the editor will display a 

“lens” overlay containing the block of code where the problem is 

located allowing it to be viewed without needing to scroll to that 

location in the editor:

override fun onOptionsItemSelected(item: Menuitem): Boolean {
47
48
49
50
51
52
53
54

155

// Handle action bar item clicks here. The action bar will
// automatically handle clicks on the Home/Up button, so long 
// as you specify a parent activity in AndroidManifest.xml. 
return when (item.itemld) {

R. id.action_settings -> true
else -> super. onOptionsItemSelected( item) 4 Unresolved reference; I Expecting an element

Figure 9-6

It is also worth noting that the lens overlay is not limited to 

warnings and errors in the sidebar. Hovering over any part of the 

sidebar will result in a lens appearing containing the code present at 

that location within the source file.

F - The Status Bar - Though the status bar is part of the main 

window, as opposed to the editor, it does contain some information 



about the currently active editing session. This information includes 

the current position of the cursor in terms of lines and characters 

and the encoding format of the file (UTF-8, ASCII, etc.). Clicking on 

these values in the status bar allows the corresponding setting to be 

changed. Clicking on the line number, for example, displays the Go 

to Line dialog.

Having provided an overview of the elements that comprise the 

Android Studio editor, the remainder of this chapter will explore the 

key features of the editing environment in more detail.



9.2 Code mode

The code editor has three modes in which it can be placed using 

the buttons located in the top right-hand corner of the editor 

panel. In Figure 9-7 below, for example, Code mode has been 

selected:

Figure 9-7

When in code mode, only the code editor panel is displayed and 

the Preview panel is hidden from view. In Split mode, the editor 

shows the Code and Preview panels side-by-side. In Design mode, 

only the Preview panel is displayed.



9.3 Splitting the editor window

By default, the editor will display a single panel showing the content 

of the currently selected file. A particularly useful feature when 

working simultaneously with multiple source code files is the ability 

to split the editor into multiple panes. To split the editor, right-click 

on a file tab within the editor window and select either the Split 

Vertically or Split Horizontally menu option. Figure for example, 

shows the splitter in action with the editor split into three panels:

Figure 9-8

The orientation of a split panel may be changed at any time by 

right-clicking on the corresponding tab and selecting the Change



Splitter Orientation menu option. Repeat these steps to unsplit a 

single panel, this time selecting the Unsplit option from the menu. 

All of the split panels may be removed by right-clicking on any tab 

and selecting the Unsplit All menu option.

Window splitting may be used to display different files, or to provide 

multiple windows onto the same file, allowing different areas of the 

same file to be viewed and edited concurrently.



9.4 Code completion

The Android Studio editor has a considerable amount of built-in 

knowledge of Kotlin and Compose programming syntax and the 

classes and methods that make up the Android SDK, as well as 

knowledge of your codebase. As code is typed, the editor scans what 

is being typed and, where appropriate, makes suggestions about what 

might be needed to complete a statement or reference. When a 

completion suggestion is detected by the editor, a panel will appear 

containing a list of suggestions. In Figure for example, the editor is 

suggesting possibilities for the beginning of a String declaration:

Figure 9-9

If none of the auto-completion suggestions are correct, simply keep 

typing and the editor will continue to refine the suggestions where 

appropriate. To accept the topmost suggestion, simply press the 

Enter or Tab key on the keyboard. To select a different suggestion, 



use the arrow keys to move up and down the list, once again using 

the Enter or Tab key to select the highlighted item.

Completion suggestions can be manually invoked using the Ctrl-Space 

keyboard sequence. This can be useful when changing a word or 

declaration in the editor. When the cursor is positioned over a word 

in the editor, that word will automatically highlight. Pressing Ctrl- 

Space will display a list of alternate suggestions. To replace the 

current word with the currently highlighted item in the suggestion 

list, simply press the Tab key.

In addition to the real-time auto-completion feature, the Android 

Studio editor also offers a system referred to as Smart Smart 

completion is invoked using the Shift-Ctrl-Space keyboard sequence 

and, when selected, will provide more detailed suggestions based on 

the current context of the code. Pressing the Shift-Ctrl-Space shortcut 

sequence a second time will provide more suggestions from a wider 

range of possibilities.

Code completion can be a matter of personal preference for many 

programmers. In recognition of this fact, Android Studio provides a 

high level of control over the auto-completion settings. These can be 

viewed and modified by selecting the File -> Settings... menu option 

(or Android Studio -> Preferences. on macOS) and choosing Editor -> 

General -> Code Completion from the settings panel as shown in 

Figure



Preferences

1 Editor > General > Code Completion 4-

• Appearance & Behavior

Appearance

Menus and Toolbars

> System Settings

File Colors

Scopes

Notifications

Quick Lists

Path Variables

Keymap 

- Editor

■ General

Auto Import 

Appearance 

Breadcrumbs

Q Match case: Q First letter only All letters

Automatically insert single suggestions for:

□ Basic Completion Space

Q Type-Matching Completion ^0space

Sort suggestions alphabetically

Q Show suggestions as you type

Insert selected suggestion by pressing space, dot, or other context-dependent keys

Show the documentation popup in 1000 ms

□ Insert parentheses automatically when applicable

Configure classes excluded from completion

Machine Learning-Assisted Completion

Sort completion suggestions based on machine learning

Code Completion O Java

Code Folding 

Console

Editor Tabs

Gutter Icons 

Postfix Completion

> Smart Keys 

Code Editing 

Font

> Color Scheme

□ Kotlin

Mark position changes in the completion popup TA

C Mark the most relevant item in the completion popup *

Compose

E Enable enhanced auto-completion when using Jetpack Compose

Cancel Apply? OK

Figure 9-10



9.5 Statement completion

Another form of auto-completion provided by the Android Studio 

editor is statement completion. This can be used to automatically 

fill out the parentheses and braces for items such as methods 

and loop statements. Statement completion is invoked using the 

Shift-Ctrl-Enter (Shift-Cmd-Enter on macOS) keyboard sequence. 

Consider for example the following code:

fun myMethod()

Having typed this code into the editor, triggering statement 

completion will cause the editor to automatically add the braces 

to the method:

fun myMethod() {

}



9.6 Parameter information

It is also possible to ask the editor to provide information about the 

argument parameters accepted by a method. With the cursor 

positioned between the brackets of a method call, the Ctrl-P on 

macOS) keyboard sequence will display the parameters known to be 

accepted by that method, with the most likely suggestion highlighted 

in bold:

val myButtonText: String = mySt ring, format (I)

locale: Locale, vararg args: Any?
vararg args: Any?

Figure 9-11



9.7 Parameter name hints

The code editor may be configured to display parameter name 
hints within method calls. Figure for example, highlights the 

parameter name hints within the calls to the make() and 
setAction() methods of the Snackbar class:

fab.setflnClickListener { view ->
Snackbar.make(view. | text: ["Replace with your own action"’, Snackbar. LENGTH_LONG) 

.setAction(| text| "Action". | listener: null).show()
)

Figure 9-12

The settings for this mode may be configured by selecting the File 
-> Settings menu Studio -> Preferences on macOS) option followed 

by Editor -> Inlay Hints -> Kotlin in the left-hand panel. On the 
resulting screen, select the Parameter Hints item from the list and 

enable or disable the Show parameter hints option. To adjust the 

hint settings, click on the Exclude list... link and make any 
necessary adjustments.



9.8 Code generation

In addition to completing code as it is typed the editor can, 

under certain conditions, also generate code for you. The list of 

available code generation options shown in Figure 9-13 can be 

accessed using the Alt-Insert on macOS) keyboard shortcut when 

the cursor is at the location in the file where the code is to be 

generated.

Figure 9-13

For example, consider a situation where we want to be notified 

when an Activity in our project is about to be destroyed by the 

operating system. This can be achieved by overriding the onStop() 

lifecycle method of the Activity superclass. To have Android Studio 

generate a stub method for this, simply select the Override



Methods... option from the code generation list and select the 

onStop() method from the resulting list of available methods:



Override Members

rt3 N

v c android.app.Activity
fa onCreatefsavedlnstanceState: Bundle?, persistentSt

registerComponentCallbacks(callback: Components 
™ fa unregisterComponentCallbacksfcallback: Componen 
m fa setTheme(resid: Int): Unit 
m fa startActivity(intent: Intent!): Unit
m fa startActivity(intent: Intent!, options: Bundle?): Unit 
m fa startActivitiesfintents: Array<(out) IntentW): Unit 
m fa startActivities(intents: Arrayc(out) lntent!>!, options 
m a startlntentSenderfintent: Intentsender!, filllnlntent: Ir 
m fa startlntentSender(intent: IntentSender!, filllnlntent: If 
m getSystemService(name: String): Any!
m attachBaseContextfnewBase: Context!): Unit
m onApplyThemeResourceftheme: Resources.Theme!, r 
m fa onCreateViewjname: String, context: Context, attrs: 
m fa onCreateViewfparent: View?, name: String, context: ( 
m fa dispatchTouchEventjev: MotionEvent!): Boolean 
m fa dispatchTrackballEvent(ev: MotionEvent!): Boolean 
m fa dispatchGenericMotionEventfev: MotionEvent!): Boo 
m fa dispatchPopulateAccessibilityEvent(event: Accessibi 
m fa onCreatePanelViewffeatureld: Int): View?
m onMenuOpened(featureld: Int, menu: Menu): Boolear

Copy JavaDoc Se|ect None Cancel OK



Figure 9-14

Having selected the method to override, clicking on OK will 

generate the stub method at the current cursor location in the 

Kotlin source file as follows:

override fun onStop() {

super.onStop()

}



9.9 Code folding

Once a source code file reaches a certain size, even the most 

carefully formatted and well-organized code can become overwhelming 

and difficult to navigate. Android Studio takes the view that it is not 

always necessary to have the content of every code block visible at 

all times. Code navigation can be made easier through the use of 

the code folding feature of the Android Studio editor. Code folding is 

controlled using markers appearing in the editor gutter at the 

beginning and end of each block of code in a source file. Figure for 

example, highlights the start and end markers for code that is not 

currently folded:

Figure 9-15

Clicking on either of these markers will fold the statement such that 

only the signature line is visible as shown in Figure



71 @Composable
fun DemoText(message: String, fontsize: Float) 

79

Figure 9-16

To unfold a collapsed section of code, click on the ‘+’ marker in the 

editor gutter. To see the hidden code without unfolding it, hover the 

mouse pointer over the “{...}” indicator as shown in Figure The 

editor will then display the lens overlay containing the folded code 

block:

71 @Composable
72 fun DemoText(message: String, fontsize: Float) {..^1

fun DemoText(message: String, fontsize: Float) { 
Text(

text = message,
fontsize = fontsize.sp, 
fontweight = Fontweight.Bold 

)

: (Float) -> Unit ) {

Figure 9-17

All of the code blocks in a file may be folded or unfolded using the 

Ctrl-Shift-Plus and Ctrl-Shift-Minus keyboard sequences.

By default, the Android Studio editor will automatically fold some 

code when a source file is opened. To configure the conditions under 

which this happens, select File -> Settings... Studio -> Preferences... on



macOS) and choose the Editor -> General -> Code Folding entry in 

the resulting settings panel

Preferences

> Appearance & Behavior 

Keymap

v Editor

v General

Auto Import 

Appearance 

Breadcrumbs

Code Completion

Code Folding

Console 

Editor Tabs 

Gutter Icons 

Postfix Completion

> Smart Keys 

Code Fditing 

Font

> Color Scheme

> Code Style 

Inspections 

File and Code Templates 

File Encodings 

Live Templates 

File Types 

Design Tools

> Copyright

Editor > General > Code Folding

Q Show code folding outline

Fold by default:

General

□ File header

□ Imports

Documentation comments

Method bodies

Custom folding regions

Android

Q String References

C

Multiline comments

C Lambdas

Template parameters

Q Conditionally non-compiled code

Q Space instead of new line before if collapsed

Java

□ Ona-line methods

Simple property accessors

C Inner classes

Anonymous classes

Cancel Apply

Figure 9-18



9.10 Quick documentation lookup

Context-sensitive Kotlin and Android documentation can be accessed 

by hovering the cursor over the declaration for which documentation 

is required. This will display a popup containing the relevant 

reference documentation for the item. Figure for example, shows the 

documentation for the Android Bundle class.

23 <> class MainActivity : ConponentActivityO {
24 ? override fun onCreateCsavedlnstanceState: Bundle?) ■{

super.onCreate(savedinstanceState) _ r Bundle_____________________________________________________
setcontent { Kotlin a IJava

ComposeDemoTheme ■{
28 // A surface container using th

Surf acet.
public final class Bundle

modifier Modifier.fillMax extends BaseBundleimplements Cloneable * , Parcelable <■

color = MaterialTheme.color a mapping from String keys to various Parcelable ? values.
) See also:

DemoScreenO • PersistableBundle*
* r,i, < Android API 32 Platform >

}
Bundle on developer.android.com *

Figure 9-19

Once displayed, the documentation popup can be moved around the 

screen as needed.

developer.android.com


9.11 Code reformatting

In general, the Android Studio editor will automatically format code 

in terms of indenting, spacing, and nesting of statements and code 

blocks as they are added. In situations where lines of code need to 

be reformatted (a common occurrence, for example, when cutting 

and pasting sample code from a website), the editor provides a 

source code reformatting feature which, when selected, will 

automatically reformat code to match the prevailing code style.

To reformat source code, press the Ctrl-Alt-L on macOS) keyboard 

shortcut sequence. To display the Reformat File dialog use the Ctrl- 

Alt-Shift-L on macOS). This dialog provides the option to reformat 

only the currently selected code, the entire source file currently active 

in the editor, or only code that has changed as the result of a 

source code control update.



Reformat File: MainActivity.kt

Scope

Only changes uncommitted to VCS

Selected text

O Whole file

Options

Optimize imports

Code cleanu P Do not keep line breaks

Cancel Run

Figure 9-20

The full range of code style preferences can be changed from within 

the project settings dialog. Select the File -> Settings menu option 

Studio -> Preferences... on macOS) and choose Code Style in the left­

hand panel to access a list of supported programming and markup 

languages. Selecting a language will provide access to a vast array of 

formatting style options, all of which may be modified from the 

Android Studio default to match your preferred code style. To 

configure the settings for the Rearrange code option in the above 

dialog, for example, unfold the Code Style section, select Kotlin and, 

from the Kotlin settings, select the Arrangement tab.



9.12 Finding sample code

The Android Studio editor provides a way to access sample code 

relating to the currently highlighted entry within the code listing. This 

feature can be useful for learning how a particular Android class or 

method is used. To find sample code, highlight a method or class 

name in the editor, right-click on it and select the Find Sample Code 

menu option. If sample code is available, the Find Sample Code 

panel will appear beneath the editor with a list of matching samples. 

Selecting a sample from the list will load the corresponding code 

into the right-hand panel:

Figure 9-21



9.13 Live templates

As you write Android code you will find that there are common 

constructs that are used frequently. For example, a common 

requirement is to display a popup message to the user using the 

Android Toast class. Live templates are a collection of common code 

constructs that can be entered into the editor by typing the initial 

characters followed by a special key (set to the Tab key by default) 

to insert template code. To experience this in action, type toast in 

the code editor followed by the Tab key, and Android Studio will 

insert the following code at the cursor position ready for editing:

Toast.makeText(, "", Toast.LENGTH_SHORT).show()

To list and edit existing templates, change the special key, or add 

your own templates, open the Preferences dialog and select Live 

Templates from the Editor section of the left-hand navigation panel:



Figure 9-22

Add, remove, duplicate or reset templates using the buttons marked 

A in Figure 9-22 above. To modify a template, select it from the list 

(B) and change the settings in the panel marked C.



9.14 Summary

The Android Studio editor goes to great length to reduce the 

amount of typing needed to write code and to make that code 
easier to read and navigate. In this chapter, we have covered 

many of the key editor features including code completion, code 
generation, editor window splitting, code folding, reformatting, 

documentation lookup, and live templates.



io. An Overview of the Android Architecture

So far in this book, steps have been taken to set up an 
environment suitable for the development of Android applications 

using Android Studio. An initial step has also been taken into the 

process of application development through the creation of an 

Android Studio project.

Before delving further into the practical matters of Android 

application development, however, it is important to gain an 

understanding of some of the more abstract concepts of both the 

Android SDK and Android development in general. Gaining a clear 

understanding of these concepts now will provide a sound 
foundation on which to build further knowledge.



io.i The Android software stack

Android is structured in the form of a software stack comprising 

applications, an operating system, run-time environment, middle­

ware, services, and libraries. This architecture can, perhaps, best 

be represented visually as outlined in Figure Each layer of the 
stack, and the corresponding elements within each layer, are 

tightly integrated and carefully tuned to provide the optimal 

application development and execution environment for mobile 

devices. In the rest of this chapter, we will explore the different 

layers of the Android stack, starting at the bottom with the Linux 

Kernel.



Figure 10-1



10.2 The Linux kernel

Positioned at the bottom of the Android software stack, the Linux 

Kernel provides a level of abstraction between the device hardware 

and the upper layers of the Android software stack. The kernel 

provides preemptive multitasking, low-level core system services 

such as memory, process, and power management in addition to 

providing a network stack and device drivers for hardware such as 

the device display, WiFi, and audio.

The original Linux kernel was developed in 1991 by Linus Torvalds 

and was combined with a set of tools, utilities, and compilers 

developed by Richard Stallman at the Free Software Foundation to 

create a full operating system referred to as Various Linux 

distributions have been derived from these basic underpinnings 

such as Ubuntu and Red Hat Enterprise Linux.

It is important to note, however, that Android uses only the Linux 

kernel. That said, it is worth noting that the Linux kernel was 

originally developed for use in traditional computers in the form 

of desktops and servers. In fact, Linux is now most widely 

deployed in mission-critical enterprise server environments. It is a 

testament to both the power of today’s mobile devices and the 

efficiency and performance of the Linux kernel that we find this 

software at the heart of the Android software stack.



10.3 Android runtime - ART

When an Android app is built within Android Studio it is 

compiled into an intermediate bytecode format (referred to as 

DEX format). When the application is subsequently loaded onto 

the device, the Android Runtime (ART) uses a process referred to 

as Ahead-of-Time (AOT) compilation to translate the bytecode 

down to the native instructions required by the device processor. 

This format is known as Executable and Linkable Format (ELF).

Each time the application is subsequently launched, the ELF 
executable version is run, resulting in faster application 

performance and improved battery life.

This contrasts with the Just-in-Time (JIT) compilation approach 

used in older Android implementations whereby the bytecode was 

translated within a virtual machine (VM) each time the application 

was launched.



10.4 Android libraries

In addition to a set of standard Java development libraries 

(providing support for such general-purpose tasks as string 
handling, networking, and file manipulation), the Android 

development environment also includes the Android Libraries. 

These are a set of Java and Kotlin-based libraries that are specific 

to Android development. Examples of libraries in this category 
include the application framework libraries in addition to those 

that facilitate user interface building, graphics drawing, and 

database access.



10.4.1 C/C++ libraries

The Android runtime core libraries outlined in the preceding 

section are Java-based and provide the primary APIs for developers 
writing Android applications. It is important to note, however, that 

the core libraries do not perform much of the actual work and 

are, in fact, essentially Java “wrappers” around a set of C/C++- 

based libraries. When making calls, for example, to the 

android.opengl library to draw 3D graphics on the device display, 

the library ultimately makes calls to the OpenGL ES C++ library 
which, in turn, works with the underlying Linux kernel to perform 

the drawing tasks.

C/C++ libraries are included to fulfill a wide and diverse range of 

functions including 2D and 3D graphics drawing, Secure Sockets 

Layer (SSL) communication, SQLite database management, audio, 

and video playback, bitmap and vector font rendering, display 
subsystem, and graphic layer management and an implementation 

of the standard C system library

In practice, the typical Android application developer will access 

these libraries solely through the Java-based Android core library 

APIs. If direct access to these libraries is needed, this can be 

achieved using the Android Native Development Kit (NDK), the 

purpose of which is to call the native methods of non-Java or



Kotlin programming languages (such as C and C++) from within 

Java code using the Java Native Interface (JNI).



10.5 Application framework

The Application Framework is a set of services that collectively 

form the environment in which Android applications run and are 

managed. This framework implements the concept that Android 

applications are constructed from reusable, interchangeable, and 

replaceable components. This concept is taken a step further in 

that an application is also able to publish its capabilities along 
with any corresponding data so that they can be found and 

reused by other applications.

The Android framework includes the following key services:

•Activity Manager - Controls all aspects of the application lifecycle 

and activity stack.

•Content Providers - Allows applications to publish and share data 

with other applications.

•Resource Manager - Provides access to non-code embedded 

resources such as strings, color settings, and user interface 

layouts.

•Notifications Manager - Allows applications to display alerts and 

notifications to the user.



•View System - An extensible set of views used to create 

application user interfaces.

•Package Manager - The system by which applications can find 

out information about other applications currently installed on the 

device.

•Telephony Manager - Provides information to the application 

about the telephony services available on the device such as 

status and subscriber information.

•Location Manager - Provides access to the location services 

allowing an application to receive updates about location changes.



10.6 Applications

Located at the top of the Android software stack are the 

applications. These comprise both the native applications provided 

with the particular Android implementation (for example web 

browser and email applications) and the third-party applications 

installed by the user after purchasing the device.



10.7 Summary

A good Android development knowledge foundation requires an 

understanding of the overall architecture of Android. Android is 

implemented in the form of a software stack architecture 

consisting of a Linux kernel, a runtime environment and 
corresponding libraries, an application framework, and a set of 

applications. Applications are predominantly written in Java or 

Kotlin and compiled down to bytecode format within the Android 

Studio build environment. When the application is subsequently 

installed on a device, this bytecode is compiled down by the 

Android Runtime (ART) to the native format used by the CPU. 

The key goals of the Android architecture are performance and 
efficiency, both in application execution and in the implementation 

of reuse in application design.



11. An Introduction to Kotlin

Android development is performed primarily using Android Studio 

which is, in turn, based on the IntelliJ IDEA development 

environment created by a company named JetBrains. Before the 

release of Android Studio 3.0, all Android apps were written using 

Android Studio and the Java programming language (with some 
occasional C++ code when needed).

Since the introduction of Android Studio 3.0, however, developers 

now have the option of creating Android apps using another 

programming language called Kotlin. Although detailed coverage of 

all features of this language is beyond the scope of this book 
(entire books can and have been written covering solely Kotlin), 

the objective of this and the following six chapters is to provide 
enough information to begin programming in Kotlin and quickly 

get up to speed developing Android apps using this programming 

language.



ii.i What is Kotlin?

Named after an island located in the Baltic Sea, Kotlin is a 
programming language created by JetBrains and follows Java in 

the tradition of naming programming languages after islands. 

Kotlin code is intended to be easier to understand and write and 
also safer than many other programming languages. The language, 

compiler, and related tools are all open source and available for 

free under the Apache 2 license.

The primary goals of the Kotlin language are to make code both 

concise and safe. Code is generally considered concise when it 

can be easily read and understood. Conciseness also plays a role 

when writing code, allowing code to be written more quickly and 

with greater efficiency. In terms of safety, Kotlin includes several 

features that improve the chances that potential problems will be 

identified when the code is being written instead of causing 

runtime crashes.

A third objective in the design and implementation of Kotlin 

involves interoperability with Java.



11.2 Kotlin and Java

Originally introduced by Sun Microsystems in 1995 Java is still by 

far the most popular programming language in use today. Until 

the introduction of Kotlin, it is quite likely that every Android app 

available on the market was written in Java. Since acquiring the 

Android operating system, Google has invested heavily in tuning 
and optimizing compilation and runtime environments for running 

Java-based code on Android devices.

Rather than try to re-invent the wheel, Kotlin is designed to both 

integrate with and work alongside Java. When Kotlin code is 

compiled it generates the same bytecode as that generated by the 
Java compiler enabling projects to be built using a combination of 

Java and Kotlin code. This compatibility also allows existing Java 

frameworks and libraries to be used seamlessly from within Kotlin 

code and also for Kotlin code to be called from within Java.

Kotlin’s creators also acknowledged that while there were ways to 

improve on existing languages, there are many features of Java 

that did not need to be changed. Consequently, those familiar 

with programming in Java will find many of these skills to be 

transferable to Kotlin-based development. Programmers with Swift 

programming experience will also find much that is familiar when 
learning Kotlin.



11.3 Converting from Java to Kotlin

Given the high level of interoperability between Kotlin and Java, it 

is not essential to convert existing Java code to Kotlin since these 

two languages will comfortably co-exist within the same project. 
That being said, Java code can be converted to Kotlin from within 

Android Studio using a built-in Java to Kotlin converter. To convert 

an entire Java source file to Kotlin, load the file into the Android 

Studio code editor and select the Code -> Convert Java File to 

Kotlin File menu option. Alternatively, blocks of Java code may be 

converted to Kotlin by cutting the code and pasting it into an 

existing Kotlin file within the Android Studio code editor. Note 

when performing Java to Kotlin conversions that the Java code will 

not always convert to the best possible Kotlin code and that time 

should be taken to review and tidy up the code after conversion.



11.4 Kotlin and Android Studio

Support for Kotlin is provided within Android Studio via the Kotlin 

Plug-in which is integrated by default into Android Studio 3.0 or 

later.



11.5 Experimenting with Kotlin

When learning a new programming language, it is often useful to be 

able to enter and execute snippets of code. One of the best ways to 

do this with Kotlin is to use the Kotlin Playground located at

Figure 11-1

In addition to providing an environment in which Kotlin code may be 

quickly entered and executed, the playground also includes a set of 

examples and tutorials demonstrating key Kotlin features in action.

Try out some Kotlin code by opening a browser window, navigating 

to the playground, and entering the following into the main code 

panel:

fun main(args: Array) {

println("Welcome to Kotlin")



for (i in 1..8) {

println("i = $i")

}

}

After entering the code, click on the Run button and note the output 

in the console panel:

Welcome to Kotlin
i = 1
i = 2
i = 3
i = 4
i = 5
i = 6
1 = 7
1 = 8

Figure 11-2



11.6 Semi-colons in Kotlin

Unlike programming languages such as Java and C++, Kotlin does 

not require semi-colons at the end of each statement or 

expression line. The following, therefore, is valid Kotlin code:

val mynumber = 10

println(mynumber)

Semi-colons are only required when multiple statements appear on 

the same line: 

val mynumber = 10; println(mynumber)



11.7 Summary

For the first time since the Android operating system was 

introduced, developers now have an alternative to writing apps in 

Java code. Kotlin is a programming language developed by 

JetBrains, the company that created the development environment 

on which Android Studio is based. Kotlin is intended to make 

code safer and easier to understand and write. Kotlin is also 

highly compatible with Java, allowing Java and Kotlin code to co­

exist within the same projects. This interoperability ensures that 

most of the standard Java and Java-based Android libraries and 
frameworks are available for use when developing using Kotlin.

Kotlin support for Android Studio is provided via a plug-in 

bundled with Android Studio 3.0 or later. This plug-in also 

provides a converter to translate Java code to Kotlin.

When learning Kotlin, the online playground provides a useful 

environment for quickly trying out Kotlin code.



12. Kotlin Data Types, Variables and Nullability

Both this and the following few chapters are intended to introduce 

the basics of the Kotlin programming language. This chapter will 

focus on the various data types available for use within Kotlin 

code. This will also include an explanation of constants, variables, 
type casting and Kotlin’s handling of null values.

As outlined in the previous chapter, entitled “An Introduction to 

Kotlin” a useful way to experiment with the language is to use the 
Kotlin online playground environment. Before starting this chapter, 

therefore, open a browser window, navigate to 

https://play.kotlinlan.org _and use the playground to try out the 
code in both this and the other Kotlin introductory chapters that 

follow.

https://play.kotlinlang.org


12.1 Kotlin data types

When we look at the different types of software that run on 

computer systems and mobile devices, from financial applications 

to graphics intensive games, it is easy to forget that computers 

are really just binary machines. Binary systems work in terms of 0 

and 1, true or false, set and unset. All the data sitting in RAM, 

stored on disk drives and flowing through circuit boards and 

buses are nothing more than sequences of 1s and 0s. Each 1 or 

0 is referred to as a bit and bits are grouped together in blocks 

of 8, each group being referred to as a byte. When people talk 

about 32-bit and 64-bit computer systems they are talking about 

the number of bits that can be handled simultaneously by the 

CPU bus. A 64-bit CPU, for example, is able to handle data in 

64-bit blocks, resulting in faster performance than a 32-bit based 
system.

Humans, of course, don’t think in binary. We work with decimal 

numbers, letters and words. For a human to easily (‘easily’ being 

a relative term in this context) program a computer, some middle 
ground between human and computer thinking is needed. This is 

where programming languages such as Kotlin come into play. 

Programming languages allow humans to express instructions to a 

computer in terms and structures we understand, and then 

compile that down to a format that can be executed by a CPU.



One of the fundamentals of any program involves data, and 

programming languages such as Kotlin define a set of data types 

that allow us to work with data in a format we understand when 

programming. For example, if we want to store a number in a 

Kotlin program we could do so with syntax similar to the 
following:

val mynumber = 10

In the above example, we have created a variable named 

mynumber and then assigned to it the value of 10. When we 

compile the source code down to the machine code used by the 
CPU, the number 10 is seen by the computer in binary as: 

1010

Similarly, we can express a letter, the visual representation of a 

digit (‘0’ through to ‘9’) or punctuation mark (referred to in 

computer terminology as using the following syntax:

val myletter = 'c'

Once again, this is understandable by a human programmer, but 

gets compiled down to a binary sequence for the CPU to 

understand. In this case, the letter ‘c’ is represented by the 

decimal number 99 using the ASCII table (an internationally 

recognized standard that assigns numeric values to human 

readable characters). When converted to binary, it is stored as:



10101100011

Now that we have a basic understanding of the concept of data 

types and why they are necessary we can take a closer look at 

some of the more commonly used data types supported by Kotlin.



12.1.1 Integer data types

Kotlin integer data types are used to store whole numbers (in 

other words a number with no decimal places). All integers in 

Kotlin are signed (in other words capable of storing positive, 

negative and zero values).

Kotlin provides support for 8, 16, 32 and 64 bit integers 

(represented by the Byte, Short, Int and Long types respectively).



12.1.2 Floating point data types

The Kotlin floating-point data types are able to store values 

containing decimal places. For example, 4353.1223 would be stored 

in a floating-point data type. Kotlin provides two floating-point 

data types in the form of Float and Double. Which type to use 

depends on the size of value to be stored and the level of 

precision required. The Double type can be used to store up to 

64-bit floating-point numbers. The Float data type, on the other 

hand, is limited to 32-bit floating-point numbers.



12.1.3 Boolean data type

Kotlin, like other languages, includes a data type for the purpose 

of handling true or false (1 or o) conditions. Two Boolean 

constant values and are provided by Kotlin specifically for working 
with Boolean data types.



12.1.4 Character data type

The Kotlin Char data type is used to store a single character of 

rendered text such as a letter, numerical digit, punctuation mark 

or symbol. Internally characters in Kotlin are stored in the form of 

16-bit Unicode grapheme clusters. A grapheme cluster is made of 

two or more Unicode code points that are combined to represent 

a single visible character.

The following lines assign a variety of different characters to 

Character type variables:

val myChar1 = 'f'

val myChar2 = ':'

val myChar3 = 'X'

Characters may also be referenced using Unicode code points. The 

following example assigns the ‘X’ character to a variable using 

Unicode: 

val myChar4 = '\u0058' 



Note the use of single quotes when assigning a character to a 

variable. This indicates to Kotlin that this is a Char data type as 

opposed to double quotes which indicate a String data type.



12.1.5 String data type

The String data type is a sequence of characters that typically 

make up a word or sentence. In addition to providing a storage 
mechanism, the String data type also includes a range of string 

manipulation features allowing strings to be searched, matched, 

concatenated and modified. Double quotes are used to surround 

single line strings during assignment, for example:

val message = "You have 10 new messages."

Alternatively, a multi-line string may be declared using triple 

quotes

val message = ....You have 10 new messages,

5 old messages

and 6 spam messages.....

The leading spaces on each line of a multi-line string can be 

removed by making a call to the trimMargin() function of the 

String data type:

val message = ....You have 10 new messages,



5 old messages

and 6 spam

Strings can also be constructed using combinations of strings, 

variables, constants, expressions, and function calls using a 

concept referred to as string interpolation. For example, the 

following code creates a new string from a variety of different 
sources using string interpolation before outputting it to the 

console:

val username = "John"

val inboxCount = 25

val maxcount = 100 

val message = "$username has $inboxCount messages. Message 

capacity remaining is ${maxcount - inboxCount} messages"

println(message)

When executed, the code will output the following message: 



John has 25 messages. Message capacity remaining is 75 

messages.



12.1.6 Escape sequences

In addition to the standard set of characters outlined above, there 

is also a range of special characters (also referred to as escape 

characters) available for specifying items such as a new line, tab 

or a specific Unicode value within a string. These special 

characters are identified by prefixing the character with a backslash 

(a concept referred to as escaping). For example, the following 

assigns a new line to the variable named newline:

var newline = '\n'

In essence, any character that is preceded by a backslash is 

considered to be a special character and is treated accordingly. 

This raises the question as to what to do if you actually want a 
backslash character. This is achieved by escaping the backslash 

itself:

var backslash = '\\'

The complete list of special characters supported by Kotlin is as 

follows:

•\n - New line



• \r - Carriage return

• \t - Horizontal tab

• \\ - Backslash

• \” - Double quote (used when placing a double quote into a 

string declaration)

• \’ - Single quote (used when placing a single quote into a string 

declaration)

• \$ - Used when a character sequence containing a $ is 

misinterpreted as a variable in a string template.

• \unnnn - Double byte Unicode scalar where nnnn is replaced by 

four hexadecimal digits representing the Unicode character.



12.2 Mutable variables

Variables are essentially locations in computer memory reserved 

for storing the data used by an application. Each variable is given 

a name by the programmer and assigned a value. The name 

assigned to the variable may then be used in the Kotlin code to 

access the value assigned to that variable. This access can involve 

either reading the value of the variable or, in the case of mutable 

changing the value.



12.3 Immutable variables

Often referred to as a constant, an immutable variable is similar 

to a mutable variable in that it provides a named location in 

memory to store a data value. Immutable variables differ in one 

significant way in that once a value has been assigned it cannot 

subsequently be changed.

Immutable variables are particularly useful if there is a value 

which is used repeatedly throughout the application code. Rather 

than use the value each time, it makes the code easier to read if 

the value is first assigned to a constant which is then referenced 

in the code. For example, it might not be clear to someone 
reading your Kotlin code why you used the value 5 in an 

expression. If, instead of the value 5, you use an immutable 

variable named interestRate the purpose of the value becomes 

much clearer. Immutable values also have the advantage that if 

the programmer needs to change a widely used value, it only 

needs to be changed once in the constant declaration and not 

each time it is referenced.



12.4 Declaring mutable and immutable variables

Mutable variables are declared using the var keyword and may be 

initialized with a value at creation time. For example:

var userCount = 10

If the variable is declared without an initial value, the type of the 

variable must also be declared (a topic which will be covered in 

more detail in the next section of this chapter). The following, for 

example, is a typical declaration where the variable is initialized 

after it has been declared:

var userCount: Int

userCount = 42

Immutable variables are declared using the val keyword.

val maxUserCount = 20

As with mutable variables, the type must also be specified when 

declaring the variable without initializing it: 

val maxUserCount: Int 



maxUserCount = 20

When writing Kotlin code, immutable variables should always be 

used in preference to mutable variables whenever possible.



12.5 Data types are objects

All of the above data types are objects, each of which provides a 

range of functions and properties that may be used to perform a 

variety of different type specific tasks. These functions and 

properties are accessed using so-called dot notation. Dot notation 

involves accessing a function or property of an object by 

specifying the variable name followed by a dot followed in turn by 

the name of the property to be accessed or function to be called.

A string variable, for example, can be converted to uppercase via 

a call to the toUpperCase() function of the String class:

val myString = "The quick brown fox"

val uppercase = myString.toUpperCase()

Similarly, the length of a string is available by accessing the 

length property:

val length = myString.length

Functions are also available within the String class to perform 

tasks such as comparisons and checking for the presence of a 

specific word. The following code, for example, will return a true



Boolean value since the word “fox” appears within the string 

assigned to the myString variable:

val result = myString.contains("fox")

All of the number data types include functions for performing 

tasks such as converting from one data type to another such as 

converting an Int to a Float:

val myInt = 10

val myFloat = myInt.toFloat()

A detailed overview of all of the properties and functions provided 

by the Kotlin data type classes is beyond the scope of this book 

(there are hundreds). An exhaustive list for all data types can, 
however, be found within the Kotlin reference documentation 

available online at: 

https://kotlinlan.org/api/latest/jvm/stdlib/kotlin/

https://kotlinlang.org/a


12.6 Type annotations and type inference

Kotlin is categorized as a statically typed programming language. 

This essentially means that once the data type of a variable has 

been identified, that variable cannot subsequently be used to store 

data of any other type without inducing a compilation error. This 

contrasts to loosely typed programming languages where a 

variable, once declared, can subsequently be used to store other 

data types.

There are two ways in which the type of a variable will be 

identified. One approach is to use a type annotation at the point 

the variable is declared in the code. This is achieved by placing a 

colon after the variable name followed by the type declaration. 

The following line of code, for example, declares a variable named 

userCount as being of type Int:

val userCount: Int = 10

In the absence of a type annotation in a declaration, the Kotlin 

compiler uses a technique referred to as type inference to identify 

the type of the variable. When relying on type inference, the 

compiler looks to see what type of value is being assigned to the 

variable at the point that it is initialized and uses that as the 

type. Consider, for example, the following variable declarations: 

var signalStrength = 2.231 



val companyName = "My Company

During compilation of the above lines of code, Kotlin will infer 

that the signalstrength variable is of type Double (type inference in 

Kotlin defaults to Double for all floating-point numbers) and that 

the companyName constant is of type String.

When a constant is declared without a type annotation it must be 

assigned a value at the point of declaration:

val bookTitle = "Android Studio Development Essentials"

If a type annotation is used when the constant is declared, 

however, the value can be assigned later in the code. For 

example:

val iosBookType = false

val bookTitle: String

if (iosBookType) {

bookTitle = "iOS App Development Essentials"

} else {



bookTitle = "Android Studio Development Essentials"

}



12.7 Nullable type

Kotlin nullable types are a concept that does not exist in most 

other programming languages (with the exception of the optional 

type in Swift). The purpose of nullable types is to provide a safe 

and consistent approach to handling situations where a variable 

may have a null value assigned to it. In other words, the 

objective is to avoid the common problem of code crashing with 
the null pointer exception errors that occur when code encounters 

a null value where one was not expected.

By default, a variable in Kotlin cannot have a null value assigned 

to it. Consider, for example, the following code:

val username: String = null

An attempt to compile the above code will result in a compilation 
error similar to the following:

Error: Null cannot be a value of a non-null string type String

If a variable is required to be able to store a null value, it must 

be specifically declared as a nullable type by placing a question 
mark (?) after the type declaration:

val username: = null



The username variable can now have a null value assigned to it 

without triggering a compiler error. Once a variable has been 

declared as nullable, a range of restrictions are then imposed on 
that variable by the compiler to prevent it being used in 

situations where it might cause a null pointer exception to occur. 

A nullable variable, cannot, for example, be assigned to a variable 

of non-null type as is the case in the following code:

val username: String? = null

val firstname: String = username

The above code will elicit the following error when encountered by 
the compiler:

Error: Type mismatch: inferred type is String? but String was 

expected

The only way that the assignment will be permitted is if some 

code is added to check that the value assigned to the nullable 

variable is non-null:

val username: String? = null

if (username != null) {



val firstname: String = username

}

In the above case, the assignment will only take place if the 

username variable references a non-null value.



12.8 The safe call operator

A nullable variable also cannot be used to call a function or to 

access a property in the usual way. Earlier in this chapter, the 

toUpperCase() function was called on a String object. Given the 

possibility that this could cause a function to be called on a null 

reference, the following code will be disallowed by the compiler:

val username: String? = null

val uppercase = username.toUpperCase()

The exact error message generated by the compiler in this 

situation reads as follows:

Error: (Only safe (?.) or non-null asserted (!!.) calls are allowed on 

a nullable receiver of type String?

In this instance, the compiler is essentially refusing to allow the 

function call to be made because no attempt has been made to 

verify that the variable is non-null. One way around this is to add 

some code to verify that something other than null value has 

been assigned to the variable before making the function call:

if (username != null) {



val uppercase = username.toUpperCase()

}

A much more efficient way to achieve this same verification, 

however, is to call the function using the safe call operator 

(represented by as follows:

val uppercase = username?.toUpperCase()

In the above example, if the username variable is null, the 

toUpperCase() function will not be called and execution will 

proceed at the next line of code. If, on the other hand, a non-null 

value is assigned the toUpperCase() function will be called and the 

result assigned to the uppercase variable.

In addition to function calls, the safe call operator may also be 

used when accessing properties: 

val uppercase = username?.length



12.9 Not-null assertion

The not-null assertion removes all of the compiler restrictions from 

a nullable type, allowing it to be used in the same ways as a 

non-null type, even if it has been assigned a null value. This 

assertion is implemented using double exclamation marks after the 

variable name, for example:

val username: String? = null

val length =

The above code will now compile, but will crash with the 

following exception at runtime since an attempt is being made to 

call a function on a non existent object:

Exception in thread "main" kotlin.KotlinNullPointerException

Clearly, this causes the very issue that nullable types are designed 

to avoid. Use of the not-null assertion is generally discouraged 

and should only be used in situations where you are certain that 

the value will not be null.



12.10 Nullable types and the let function

Earlier in this chapter, we looked at how the safe call operator 

can be used when making a call to a function belonging to a 

nullable type. This technique makes it easier to check if a value is 

null without having to write an if statement every time the 

variable is accessed. A similar problem occurs when passing a 

nullable type as an argument to a function which is expecting a 
non-null parameter. As an example, consider the times() function 

of the Int data type. When called on an Int object and passed 

another integer value as an argument, the function multiplies the 

two values and returns the result. When the following code is 

executed, for example, the value of 200 will be displayed within 

the console:

val firstNumber = 10

val secondNumber = 20

val result = firstNumber.times(secondNumber)

print(result)

The above example works because the secondNumber variable is a 

non-null type. A problem, however, occurs if the secondNumber 

variable is declared as being of nullable type:



val firstNumber = 10 

val secondNumber: Int? = 20

val result = firstNumber.times(secondNumber)

print(result)

Now the compilation will fail with the following error message 
because a nullable type is being passed to a function that is 

expecting a non-null parameter:

Error: Type mismatch: inferred type is Int? but Int was expected

A possible solution to this problem is to simply write an f 

statement to verify that the value assigned to the variable is non­

null before making the call to the function:

val firstNumber = 10

val secondNumber: Int? = 20

if (secondNumber != null) {

val result = firstNumber.times(secondNumber)



print(result) 

}

A more convenient approach to addressing the issue, however, 

involves use of the let function. When called on a nullable type 

object, the let function converts the nullable type to a non-null 

variable named it which may then be referenced within a lambda 

statement.

secondNumber?.let {

val result =

print(result)

}

Note the use of the safe call operator when calling the let 

function on secondVariable in the above example. This ensures 

that the function is only called when the variable is assigned a 
non-null value.



12.11 Late initialization

As previously outlined, non-null types need to be initialized when 

they are declared. This can be inconvenient if the value to be 

assigned to the non-null variable will not be known until later in 

the code execution. One way around this is to declare the variable 

using the lateinit modifier. This modifier designates that a value 

will be initialized with a value later. This has the advantage that a 

non-null type can be declared before it is initialized, with the 

disadvantage that the programmer is responsible for ensuring that 

the initialization has been performed before attempting to access 
the variable. Consider the following variable declaration:

var myName: String

Clearly, this is invalid since the variable is a non-null type but has 

not been assigned a value. Suppose, however, that the value to be 

assigned to the variable will not be known until later in the 

program execution. In this case, the lateinit modifier can be used 

as follows:

lateinit var myName: String

With the variable declared in this way, the value can be assigned 
later, for example: 

myName = "John Smith



print("My Name is " + myName)

Of course, if the variable is accessed before it is initialized, the 

code will fail with an exception:

lateinit var myName: String

print("My Name is " + myName)

Exception in thread "main" 

kotlin.UninitializedPropertyAccessException: lateinit property 

myName has not been initialized

To verify whether a lateinit variable has been initialized, check the 

isInitialized property on the variable. To do this, we need to access 

the properties of the variable by prefixing the name with the ‘::’ 
operator: 

if (::myName.isInitialized) {

print("My Name is " + myName)

}



12.12 The Elvis operator

The Kotlin Elvis operator can be used in conjunction with nullable 

types to define a default value that is to be returned if a value or 

expression result is null. The Elvis operator (?:) is used to 

separate two expressions. If the expression on the left does not 

resolve to a null value that value is returned, otherwise the result 

of the rightmost expression is returned. This can be thought of as 

a quick alternative to writing an if-else statement to check for a 

null value. Consider the following code:

if (myString != null) {

return myString

} else {

return "String is null"

}

The same result can be achieved with less coding using the Elvis 

operator as follows: 

return myString ?: "String is null



12.13 Type casting and type checking

When compiling Kotlin code, the compiler can typically infer the 

type of an object. Situations will occur, however, where the 

compiler is unable to identify the specific type. This is often the 

case when a value type is ambiguous or an unspecified object is 

returned from a function call. In this situation it may be 

necessary to let the compiler know the type of object that your 

code is expecting or to write code that checks whether the object 

is of a particular type.

Letting the compiler know the type of object that is expected is 

known as type casting and is achieved within Kotlin code using 

the as cast operator. The following code, for example, lets the 

compiler know that the result returned from the getSystemService() 

method needs to be treated as a KeyguardManager object:

val keyMgr = getSystemService(Context.KEYGUARD_SERVICE) as 
KeyguardManager

The Kotlin language includes both safe and unsafe cast operators. 

The above cast is an unsafe cast and will cause the app to throw 

an exception if the cast cannot be performed. A safe cast, on the 

other hand, uses the as? operator and returns null if the cast 

cannot be performed:



val keyMgr = getSystemService(Context.KEYGUARD_SERVICE) as? 

KeyguardManager

A type check can be performed to verify that an object conforms 

to a specific type using the is operator, for example:

if (keyMgr is KeyguardManager) {

// It is a KeyguardManager object

}



12.14 Summary

This chapter has begun the introduction to Kotlin by exploring 

data types together with an overview of how to declare variables. 

The chapter has also introduced concepts such as nullable types, 

type casting and type checking and the Elvis operator, each of 
which is an integral part of Kotlin programming and designed 

specifically to make code writing less prone to error.



13. Kotlin Operators and Expressions

So far we have looked at using variables and constants in Kotlin 

and also described the different data types. Being able to create 

variables is only part of the story, however. The next step is to 

learn how to use these variables in Kotlin code. The primary 

method for working with data is in the form



13.1 Expression syntax in Kotlin

The most basic expression consists of The following is an 

example of an expression:

val myresult = 1 + 2

In the above example, the (+) operator is used to add two 

operands (1 and 2) together. subsequently assigns the result of 

the addition to a variable The operands could just have easily 

been variables (or a mixture of values and variables) instead of 

the actual numerical values used in the example.

In the remainder of this chapter, we will look at the basic types 

of operators available in Kotlin.



13.2 The Basic assignment operator

We have already looked at the most basic of assignment 
operators, the = operator. This assignment operator simply assigns 

the result of an expression to a variable. In essence, the = 

assignment operator takes two operands. The left-hand operand is 

the variable to which a value is to be assigned and the right-hand 

operand is the value to be assigned. The right-hand operand is, 

more often than not, an expression that performs some type of 

arithmetic or logical evaluation or a call to a function, the result 

of which will be assigned to the variable. The following examples 

are all valid uses of the assignment operator:

var x: Int // Declare a mutable Int variable

val y = 10 // Declare and initialize an immutable Int variable

x = 10 // Assign a value to x

x = x + y // Assign the result of x + y to x 

x = y // Assign the value of y to x



13.3 Kotlin arithmetic operators

Kotlin provides a range of operators for creating mathematical 
expressions. These operators primarily fall into the category of 

binary operators in that they take two operands. The exception is 

negative which serves to indicate that a value is negative rather 

than positive. This contrasts with which takes two operands (i.e. 

one value to be subtracted from another). For example:

var x = -10 // Unary - operator used to assign -10 to variable x

x = x - 5 // Subtraction operator. Subtracts 5 from x

The following table lists the primary Kotlin arithmetic operators: 

operators:

operators: operators: operators: operators: operators: operators:

operators: operators:

operators:

operators:

operators:

operators:

operators:



Table 13-1

Note that multiple operators may be used in a single expression.

For example: 

x = y * 10 + z - 5 / 4



13.4 Augmented assignment operators

In an earlier section, we looked at the basic assignment operator 
(=). Kotlin provides several operators designed to combine an 

assignment with a mathematical or logical operation. These are 
primarily of use when performing an evaluation where the result 

is to be stored in one of the operands. For example, one might 

write an expression as follows:

x = x + y

The above expression adds the value contained in variable x to 

the value contained in variable y and stores the result in variable 

x. This can be simplified using the addition augmented 

assignment operator:

x += y

The above expression performs the same task = x + saves the 
programmer some typing.

Numerous augmented assignment operators are available in Kotlin. 

The most frequently used of which are outlined in the following 

table:

table:



table: table: table: table: table: table: table: table: table:

table: table: table: table: table: table: table: table: table:

table: table: table: table: table: table: table: table: table:

table: table: table: table: table: table: table: table: table:

table: table: table: table: table: table: table: table: table: table:

table:

Table 13-2



13.5 Increment and decrement operators

Another useful shortcut can be achieved using the Kotlin 

increment and decrement operators (also referred to as unary 

operators because they operate on a single operand). Consider the 

code fragment below:

x = x + 1 // Increase value of variable x by 1

x = x - 1 // Decrease value of variable x by 1

These expressions increment and decrement the value of x by 1. 

Instead of using this approach, however, it is quicker to use the 

++ and -- operators. The following examples perform the same 

tasks as the examples above:

x++ // Increment x by 1

x-- // Decrement x by 1

These operators can be placed either before or after the variable 

name. If the operator is placed before the variable name, the 

increment or decrement operation is performed before any other 

operations are performed on the variable. For example, in the 

following code, x is incremented before it is assigned to y, leaving 

y with a value of 10:



var x = 9 

val y = ++x

In the next example, however, the value of x (9) is assigned to 

variable y before the decrement is performed. After the expression 

is evaluated the value of y will be 9 and the value of x will be 8.

var x = 9

val y = x--



13.6 Equality operators

Kotlin also includes a set of logical operators useful for 

performing comparisons. These operators all return a Boolean 

result depending on the result of the comparison. These operators 

that they work with two operands.

Equality operators are most frequently used in constructing 

program control flow logic. For example may be constructed based 
on whether one value matches another:

if (x == y) {

// Perform task

}

The result of a comparison may also be stored in a Boolean 

variable. For example, the following code will result in value being 

stored in the variable result:

var result: Boolean

val x = 10

val y = 20



result = x < y

Clearly 10 is less than 20, resulting in of < The following table 

lists the full set of Kotlin comparison operators: 

operators:

operators: operators: operators: operators: operators: operators:

operators: operators:

operators: operators: operators: operators: operators: operators:

operators: operators:

operators: operators: operators: operators: operators: operators:

operators: operators: operators: operators: operators:

operators: operators: operators: operators: operators: operators:

operators: operators:

operators: operators: operators: operators: operators: operators:

operators: operators: operators: operators: operators:

operators: operators: operators: operators: operators: operators:

operators: operators: operators:

Table 13-3



13.7 Boolean logical operators

Kotlin also provides a set of so-called logical operators designed 
to return values. These operators both return Boolean results and 

take Boolean values as operands. The key operators are NOT (!), 

AND (&&), and OR (||).

The NOT (!) operator simply inverts the current value of a 

Boolean variable or the result of an expression. For example, if a 

variable currently true, prefixing the variable with a ‘!’ character 

will invert the value to false:

val flag = true // variable is true

val secondFlag = flag // secondFlag set to false

The OR (||) operator returns true if one of its two operands 

evaluates to true, otherwise, it returns false. For example, the 

following code evaluates to true because at least one of the 

expressions on either side of the OR operator is true:

if ((10 < 20) || (20 < 10)) {

print("Expression is true")

}



The AND (&&) operator returns true only if both operands 

evaluate to be true. The following example will return false 

because only one of the two operand expressions evaluates 

to true:

if ((10 < 20) && (20 < 10)) {

print("Expression is true")

}



13.8 Range operator

Kotlin includes a useful operator that allows a range of values to 

be declared. As will be seen in later chapters, this operator is 
invaluable when working with looping in program logic.

The syntax for the range operator is as follows:

x..y

This operator represents the range of numbers starting at x and 

ending at y where both x and y are included within the range 

(referred to as a closed range). The range operator 5..8, for 

example, specifies the numbers 5, 6, 7, and 8.



13.9 Bitwise operators

As previously discussed, computer processors work in binary. 

These are essentially streams of ones and zeros, each one 

referred to as a bit. Bits are formed into groups of 8 to form 

bytes. As such, it is not surprising that we, as programmers, will 

occasionally end up working at this level in our code. To facilitate 

this requirement, Kotlin provides a range

Those familiar with bitwise operators in other languages such as 

C, C++, C#, Objective-C, and Java will find nothing new in this 

area of the Kotlin language syntax. For those unfamiliar with 

binary numbers, now may be a good time to seek out reference 

materials on the subject to understand how ones and zeros are 

formed into bytes to form numbers. Other authors have done a 
much better job of describing the subject than we can do within 

the scope of this book.

For this exercise, we will be working with the binary representation 

of two numbers. First, the decimal number 171 is represented in 
binary as:

10101011

Second, the number 3 is represented by the following binary 

sequence:



00000011

Now that we have two binary numbers with which to work, we 

can begin to look at the Kotlin bitwise operators:



13.9.1 Bitwise inversion

The Bitwise inversion (also referred to as NOT) is performed 

using the inv() operation and has the effect of inverting all of the 

bits in a number. In other words, all the zeros become ones and 

all the ones become zeros. Taking our example 3 number, a 
Bitwise NOT operation has the following result:

00000011 NOT

11111100

The following Kotlin code, therefore, results in a value of -4:

val y = 3

val z = y.inv() 

print("Result is $z")



13.9.2 Bitwise AND

The Bitwise AND is performed using the and() operation. It 

makes a bit-by-bit comparison of two numbers. Any corresponding 

position in the binary sequence of each number where both bits 

are 1 results in a 1 appearing in the same position of the 
resulting number. If either bit position contains a 0 then a zero 

appears in the result. Taking our two example numbers, this 

would appear as follows:

10101011 AND

00000011

00000011

As we can see, the only locations where both numbers have 1s 

are the last two positions. If we perform this in Kotlin code, 

therefore, we should find that the result is 3 (00000011):

val x = 171

val y = 3



val z = x.and(y)

printf'Result is $z")



13.9.3 Bitwise OR

The bitwise OR also performs a bit-by-bit comparison of two 

binary sequences. Unlike the AND operation, the OR places a 1 in 

the result if there is a 1 in the first or second operand. Using 

our example numbers, the result will be as follows:

10101011 OR

00000011

10101011

If we perform this operation in Kotlin using the or() operation the 

result will be 171:

val x = 171

val y = 3 

val z = x.or(y)



pnnt("Result is $z")



13.9.4 Bitwise XOR

The bitwise XOR (commonly referred to performed using the xor() 

operation) performs a similar task to the OR operation except that 

a 1 is placed in the result if one or other corresponding bit 

positions in the two numbers is 1. If both positions are a 1 or a 

0 then the corresponding bit in the result is set to a 0. For 

example: 

10101011 XOR 

00000011

10101000

The result, in this case, is 10101000 which converts to 168 in 

decimal. To verify this we can, once again, try some Kotlin code:

val x = 171

val y = 3

val z = x.xor(y)



print("Result is $z")

When executed, we get the following output from print:

Result is 168



13.9.5 Bitwise left shift

The bitwise left shift moves each bit in a binary number a 

specified number of positions to the left. Shifting an integer one 

position to the left has the effect of doubling the value.

As the bits are shifted to the left, zeros are placed in the vacated 

rightmost (low order) positions. Note also that once the leftmost 

(high order) bits are shifted beyond the size of the variable 

containing the value, those high order bits are discarded:

10101011 Left Shift one bit

101010110

In Kotlin the bitwise left shift operator is performed using the 
shl() operation, passing through the number of bit positions to be 

shifted. For example, to shift left by 1 bit:

val x = 171

val z = x.shl(1)



print("Result is $z")

When compiled and executed, the above code will display a 

message stating that the result is 342 which, when converted to 

binary, equates to 101010110.



13.9.6 Bitwise right shift

A bitwise right shift is, as you might expect, the same as a left 

except that the shift takes place in the opposite direction. Shifting 

an integer one position to the right has the effect of halving the 

value.

Note that since we are shifting to the right there is no 

opportunity to retain the lowermost bits regardless of the data 

type used to contain the result. As a result, the low order bits 

are discarded. Whether or not the vacated high order bit positions 

are replaced with zeros or ones depends on whether to indicate 

positive and negative numbers is set or not.

10101011 Right Shift one bit

01010101

The bitwise right shift is performed using the shr() operation 

passing through the shift count:

val x = 171



val z = x.shr(i)

print("Result is $z")

When executed, the above code will report the result of the shift 

as being 85, which equates to binary 01010101.



13.10 Summary

Operators and expressions provide the underlying mechanism by 
which variables and constants are manipulated and evaluated 

within Kotlin code. This can take the simplest of forms whereby 

two numbers are added using the addition operator in an 

expression and the result stored in a variable using the 

assignment operator. Operators fall into a range of categories, 

details of which have been covered in this chapter.



14. Kotlin Control Flow

Regardless of the programming language used, application 

development is largely an exercise in applying logic, and much of 

the art of programming involves writing code that makes decisions 

based on one or more criteria. Such decisions define which code 

gets executed, how many times it is executed, and, conversely, 

which code gets bypassed when the program is running. This is 

often referred to as control flow since it controls the flow of 

program execution. Control flow typically falls into the categories 

of looping control (how often code is executed) and conditional 
control flow (whether or not code is executed). This chapter is 

intended to provide an introductory overview of both types of 

control flow in Kotlin.



14.1 Looping control flow

This chapter will begin by looking at control flow in the form of 

loops. Loops are essentially sequences of Kotlin statements that 

are to be executed repeatedly until a specified condition is met. 

The first looping statement we will explore is the for loop.



14.1.1 The Kotlin for-in Statement

The for-in loop is used to iterate over a sequence of items 

contained in a collection or number range.

The syntax of the for-in loop is as follows:

for variable name in collection or range {

// code to be executed

}

In this syntax, variable name is the name to be used for a 

variable that will contain the current item from the collection or 

range through which the loop is iterating. The code in the body 

of the loop will typically use this name as a reference to the 

current item in the loop cycle. The collection or range references 

the item through which the loop is iterating. This could, for 

example, be an array of string values, a range operator, or even a 

string of characters.

Consider, for example, the following for-in loop construct: 

for (index in 1..5) {



println("Value of index is $index") 

}

The loop begins by stating that the current item is to be assigned 
to a constant named The statement then declares a closed range 

operator to indicate that the for loop is to iterate through a range 

of numbers, starting at 1 and ending at 5. The body of the loop 

simply prints out a message to the console indicating the current 

value assigned to the index constant, resulting in the following 

output:

Value of index is 1

Value of index is 2

Value of index is 3

Value of index is 4

Value of index is 5

The for-in loop is of particular benefit when working with 

collections such as arrays. In fact, the for-in loop can be used to 

iterate through any object that contains more than one item. The 



following loop, for example, outputs each of the characters in the 

specified string: 

for (index in "Hello") {

println("Value of index is $index")

}

The operation of a for-in loop may be configured using the 

downTo and until functions. The downTo function causes the for 

loop to work backward through the specified collection until the 

specified number is reached. The following for loop counts 

backward from 100 until the number 90 is reached: 

for (index in 100 downTo 90) {

print("$index.. ")

}

When executed, the above loop will generate the following output:

100.. 99.. 98.. 97.. 96.. 95.. 94.. 93.. 92.. 91.. 90..

The until function operates in much the same way with the 

exception that counting starts from the bottom of the collection 



range and works up until (but not including) the specified 
endpoint (a concept referred to as a half-closed range): 

for (index in 1 until 10) {

print("$index.. ")

}

The output from the above code will range from the start value 

of 1 through to 9:

1.. 2.. 3.. 4.. 5.. 6.. 7.. 8.. 9..

The increment used on each iteration through the loop may also 

be defined using the step function as follows: 

for (index in 0 until 100 step 10) {

print("$index.. ")

}

The above code will result in the following console output: 

0.. 10.. 20.. 30.. 40.. 50.. 60.. 70.. 80.. 90..



14.1.2 The while loop

The Kotlin for loop described previously works well when it is 

known in advance how many times a particular task needs to be 

repeated in a program. There will, however, be instances where 

code needs to be repeated until a certain condition is met, with 
no way of knowing in advance how many repetitions are going to 

be needed to meet that criterion. To address this need, Kotlin 

includes the while loop.

Essentially, the while loop repeats a set of tasks while a specified 

condition is met. The while loop syntax is defined as follows:

while condition {

// Kotlin statements go here

}

In the above syntax, condition is an expression that will return 

either true or false and the // Kotlin statements go here comment 

represents the code to be executed while the condition expression 

is true. For example:

var myCount = 0



while (myCount < 100) {

myCount++

println(myCount)

}

In the above example, the while expression will evaluate whether 

the myCount variable is less than 100. If it is already greater than 

100, the code in the braces is skipped and the loop exits without 

performing any tasks.

If, on the other hand, myCount is not greater than 100 the code 

in the braces is executed and the loop returns to the while 

statement and repeats the evaluation of This process repeats until 

the value of myCount is greater than 100, at which point the loop 

exits.



14.1.3 The do ... while loop

It is often helpful to think of the do ... while loop as an inverted 

while loop. The while loop evaluates an expression before 

executing the code contained in the body of the loop. If the 

expression evaluates to false on the first check then the code is 

not executed. The do ... while loop, on the other hand, is 

provided for situations where you know that the code contained in 

the body of the loop will always need to be executed at least 

once. For example, you may want to keep stepping through the 

items in an array until a specific item is found. You know that 

you have to at least check the first item in the array to have any 

hope of finding the entry you need. The syntax for the do ... while 

loop is as follows: 

do {

// Kotlin statements here

} while conditional expression

In the do ... while example below the loop will continue until the 

value of a variable named i equals 0:

var i = 10



do {

i--

println(i)

} while (i > o)



14.1.4 Breaking from Loops

Having created a loop, it is possible that under certain conditions 
you might want to break out of the loop before the completion 

criteria have been met (particularly if you have created an infinite 

loop). One such example might involve continually checking for 

activity on a network socket. Once activity has been detected it 

will most likely be necessary to break out of the monitoring loop 
and perform some other task.

To break out of a loop, Kotlin provides the break statement which 

breaks out of the current loop and resumes execution at the code 

directly after the loop. For example:

var j = 10

for (i in 0..100)

{

j += j

if (j > 100) {

break



}

println("j = $j")

}

In the above example, the loop will continue to execute until the 
value of j exceeds 100 at which point the loop will exit and 

execution will continue with the next line of code after the loop.



14.1.5 The continue statement

The continue statement causes all remaining code statements in a 

loop to be skipped, and execution to be returned to the top of 

the loop. In the following example, the println function is only 

called when the value of variable i is an even number: 

var i = 1

while (i < 20)

{

i += 1 

if (i % 2 != 0) {

continue

}

println("i = $i") 

}



The continue statement in the above example will cause the println 

call to be skipped unless the value of i can be divided by 2 with 

no remainder. If the continue statement is triggered, execution will 

skip to the top of the while loop and the statements in the body 

of the loop will be repeated (until the value of i exceeds 19).



14.1.6 Break and continue labels

Kotlin expressions may be assigned a label by preceding the 

expression with a label name followed by the @ sign. This label 

may then be referenced when using break and continue 

statements to designate where execution is to resume. This is 

particularly useful when breaking out of nested loops. The 

following code contains a for loop nested within another for loop. 

The inner loop contains a break statement which is executed 

when the value of j reaches 10:

for (i in 1..100) {

println("Outer loop i = $i")

for (j in 1..100) {

println("Inner loop j = $j") 

if (j == 10) break

}

}



As currently implemented, the break statement will exit the inner 

for loop but execution will resume at the top of the outer for 

loop. Suppose, however, that the break statement is required to 

also exit the outer loop. This can be achieved by assigning a label 

to the outer loop and referencing that label with the break 

statement as follows:

outerloop@ for (i in 1..100) {

println("Outer loop i = $i")

for (j in 1..100) {

println("Inner loop j = $j") 

if (j == IO)

}

}

Now when the value assigned to variable j reaches 10 the break 

statement will break out of both loops and resume execution at 

the line of code immediately following the outer loop.



14.2 Conditional control flow

In the previous chapter, we looked at how to use logical 
expressions in Kotlin to determine whether something is true or 

Since programming is largely an exercise in applying logic, much 

of the art of programming involves writing code that makes 

decisions based on one or more criteria. Such decisions define 

which code gets executed and, conversely, which code gets 

bypassed when the program is executing.



14.2.1 Using the if expressions

The if expression is perhaps the most basic of control flow 

options available to the Kotlin programmer. Programmers who are 

familiar with C, Swift, C++, or Java will immediately be 

comfortable using Kotlin if statements, although there are some 

subtle differences.

The basic syntax of the Kotlin if expression is as follows:

if (boolean expression) {

// Kotlin code to be performed when expression evaluates to 

true

}

Unlike some other programming languages, it is important to note 

that the braces are optional in Kotlin if only one line of code is 

associated with the if expression. In fact, in this scenario, the 

statement is often placed on the same line as the if expression.

Essentially if the Boolean expression evaluates to true then the code 

in the body of the statement is executed. If, on the other hand, 



the expression evaluates to false the code in the body of the 

statement is skipped.

For example, if a decision needs to be made depending on 

whether one value is greater than another, we would write code 

similar to the following:

val x = 10

if (x > 9) println("x is greater than 9!")

Clearly, x is indeed greater than 9 causing the message to appear 

in the console panel.

At this point, it is important to notice that we have been referring 

to the if expression instead of the if statement. The reason for 

this is that unlike the if statement in other programming 

languages, the Kotlin if returns a result. This allows if constructs 

to be used within expressions. As an example, a typical if 

expression to identify the largest of two numbers and assign the 

result to a variable might read as follows:

if (x > y)

largest = x 

else



largest = y

The same result can be achieved using the if statement within an 

expression using the following syntax:

variable = if (condition) return_val_1 else return_val_2

The original example can, therefore be re-written as follows:

val largest = if (x > y) x else y

The technique is not limited to returning the values contained 

within the condition. The following example is also a valid use of 
if in an expression, in this case assigning a string value to the 

variable:

val largest = if (x > y) "x is greatest" else "y is greatest" 

println(largest)

For those familiar with programming languages such as Java, this 

feature allows code constructs similar to ternary statements to be 

implemented in Kotlin.



14.2.2 Using if... else ... expressions

The next variation of the if expression allows us to also specify 

some code to perform if the expression in the if expression 

evaluates to The syntax for this construct is as follows:

if (boolean expression) {

// Code to be executed if expression is true 

} else {

// Code to be executed if expression is false

}

The braces are, once again, optional if only one line of code is to 

be executed.

Using the above syntax, we can now extend our previous example 

to display a different message if the comparison expression 

evaluates to be 

val x = 10 



if (x > 9) println("x is greater than 9!")

else println("x is less than 9!")

In this case, the second println statement will execute if the value 

of x was less than 9.



14.2.3 Using if... else if... Expressions

So far we have looked at if statements that make decisions based 
on the result of a single logical expression. Sometimes it becomes 

necessary to make decisions based on several different criteria. For 

this purpose, we can use the if... else if... construct, an example 

of which is as follows:

var x = 9

if (x == 10) println("x is 10")

else if (x == 9) println("x is 9")

else if (x == 8) println("x is 8")

else println("x is less than 8")

}



14.2.4 Using the when statement

The Kotlin when statement provides a cleaner alternative to the if 

... else if... construct and uses the following syntax:

when (value) {

match1 -> // code to be executed on match 

match2 -> // code to be executed on match 

else -> // default code to executed if no match

}

Using this syntax, the previous if... else if... construct can be 

rewritten to use the when statement: 

when (x) {



io -> println ("x is 10")

9 -> println("x is 9")

8 -> println("x is 8")

else -> println("x is less than 8")

}

The when statement is similar to the switch statement found in 

many other programming languages.



14.3 Summary

The term control flow is used to describe the logic that dictates 

the execution path that is taken through the source code of an 

application as it runs. This chapter has looked at the two types of 

control flow provided by Kotlin (looping and conditional) and 

explored the various Kotlin constructs that are available to 

implement both forms of control flow logic.



15. An Overview of Kotlin Functions and Lambdas

Kotlin functions and lambdas are a vital part of writing well- 

structured and efficient code and provide a way to organize 

programs while avoiding code repetition. In this chapter, we will 

look at how functions and lambdas are declared and used within 
Kotlin.



15.1 What is a function?

A function is a named block of code that can be called upon to 

perform a specific task. It can be provided data on which to 

perform the task and is capable of returning results to the code 

that called it. For example, if a particular arithmetic calculation 

needs to be performed in a Kotlin program, the code to perform 

the arithmetic can be placed in a function. The function can be 

programmed to accept the values on which the arithmetic is to 

be performed (referred to as parameters) and to return the result 

of the calculation. At any point in the program code where the 
calculation is required, the function is simply called, parameter 

values passed through as arguments and the result returned.

The terms parameter and argument are often used interchangeably 

when discussing functions. There is, however, a subtle difference. 

The values that a function can accept when it is called are 

referred to as parameters. At the point that the function is called 

and passed those values, however, they are referred to as 

arguments.



15.2 How to declare a Kotlin function

A Kotlin function is declared using the following syntax:

fun name> (name>: type>, name>: type>, ... ): type> {

// Function code

}

This combination of function name, parameters, and return type is 

referred to as the function signature or Explanations of the various 

fields of the function declaration are as follows:

•fun - The prefix keyword used to notify the Kotlin compiler that 

this is a function.

• name> - The name assigned to the function. This is the name 

by which the function will be referenced when it is called from 
within the application code.

• name> - The name by which the parameter is to be referenced 
in the function code.

• type> - The type of the corresponding parameter.



•type> - The data type of the result returned by the function. If 
the function does not return a result then no return type is 

specified.

• Function code - The code of the function that does the work.

As an example, the following function takes no parameters, 
returns no result, and simply displays a message:

fun sayHello() {

println("Hello")

}

The following sample function, on the other hand, takes an 

integer and a string as parameters and returns a string result:

fun buildMessageFor(name: String, count: Int): String {

return("$name, you are customer number $count")

}



15.3 Calling a Kotlin function

Once declared, functions are called using the following syntax:

name> (, , ... )

Each argument passed through to a function must match the 

parameters the function is configured to accept. For example, to 

call a function named sayHello that takes no parameters and 

returns no value, we would write the following code:

sayHello()

In the case of a message that accepts parameters, the function 

could be called as follows: 

buildMessageFor("John", 10)



15.4 Single expression functions

When a function contains a single expression, it is not necessary 

to include the braces around the expression. All that is required is 

an equals sign (=) after the function declaration followed by the 
expression. The following function contains a single expression 

declared in the usual way:

fun multiply(x: Int, y: Int): Int {

return x * y

}

Below is the same function expressed as a single line expression:

fun multiply(x: Int, y: Int): Int = x * y

When using single-line expressions, the return type may be 

omitted in situations where the compiler can infer the type 

returned by the expression making for even more compact code: 

fun multiply (x: Int, y: Int) = x * y



15.5 Local functions

A local function is a function that is embedded within another 

function. In addition, a local function has access to all of the 

variables contained within the enclosing function:

fun main(args: Array) {

val name = "John"

val count = 5

fun displayString() {

for (index in o..count) {

println(name)

}

}

displayString()

}



15. 6 Handling return values

To call a function named buildMessage that takes two parameters 

and returns a result, on the other hand, we might write the 

following code:

val message = buildMessageFor("John", 10)

To improve code readability, the parameter names may also be 

specified when making the function call:

val message = buildMessageFor(name = "John", count = 10)

In the above examples, we have created a new variable called 

message and then used the assignment operator (=) to store the 

result returned by the function.



15. 7 Declaring default function parameters

Kotlin provides the ability to designate a default parameter value 

to be used if the value is not provided as an argument when the 

function is called. This simply involves assigning the default value 

to the parameter when the function is declared.

To see default parameters in action the buildMessageFor function 

will be modified so that the string “Customer” is used as a 

default if a customer name is not passed through as an 

argument. Similarly, the count parameter is declared with a default 

value of 0:

fun buildMessageFor(name: String = count: Int = String { 

return("$name, you are customer number $count")

}

When parameter names are used when making the function call, 

any parameters for which defaults have been specified may be 

omitted. The following function call, for example, omits the 

customer name argument but still compiles because the parameter 

name has been specified for the second argument: 

val message = buildMessageFor(count = 10) 



If parameter names are not used within the function call, however, 

only the trailing arguments may be omitted:

val message = buildMessageFor("John") // Valid

val message = buildMessageFor(w) // Invalid



15. 8 Variable number of function parameters

It is not always possible to know in advance the number of 
parameters a function will need to accept when it is called within 

the application code. Kotlin handles this possibility through the 

use of the vararg keyword to indicate that the function accepts an 

arbitrary number of parameters of a specified data type. Within 

the body of the function, the parameters are made available in 

the form of an array object. The following function, for example, 

takes as parameters a variable number of String values and then 

outputs them to the console panel:

fun displayStrings(vararg strings: String)

{

for (string in strings) {

println(string)

}

}

displayStrings("one", "two", "three", "four")



Kotlin does not permit multiple vararg parameters within a 

function and any single parameters supported by the function 

must be declared before the vararg declaration:

fun displayStrings(name: String, vararg strings: String)

{

for (string in strings) {

println(string)

}

}



15. 9 Lambda expressions

Having covered the basics of functions in Kotlin it is now time to 

look at the concept of lambda expressions. Essentially, lambdas 

are self-contained blocks of code. The following code, for example, 

declares a lambda, assigns it to a variable named sayHello, and 

then calls the function via the lambda reference:

val sayHello = { println("Hello") }

sayHello()

Lambda expressions may also be configured to accept parameters 

and return results. The syntax for this is as follows:

{name>: type>, name> type>, ... ->

// Lambda expression here

}

The following lambda expression, for example, accepts two integer 

parameters and returns an integer result: 

val multiply = { val1: Int, val2: Int -> val1 * val2 } 



val result = multiply(10, 20)

Note that the above lambda examples have assigned the lambda 

code block to a variable. This is also possible when working with 

functions. Of course, the following syntax will execute the function 

and assign the result of that execution to a variable, instead of 

assigning the function itself to the variable:

val myvar = myfunction()

To assign a function reference to a variable, simply remove the 

parentheses and prefix the function name with double colons (::) 

as follows. The function may then be called simply by referencing 

the variable name:

val myvar = ::myfunction

myvar()

A lambda block may be executed directly by placing parentheses 

at the end of the expression including any arguments. The 

following lambda directly executes the multiplication lambda 
expression multiplying 10 by 20.

val result = { val1: Int, val2: Int -> val1 * val2 }(io, 20)



The last expression within a lambda serves as the expression’s 

return value (hence the value of 200 being assigned to the result 

variable in the above multiplication examples). In fact, unlike 

functions, lambdas do not support the return statement. In the 

absence of an expression that returns a result (such as an 
arithmetic or comparison expression), simply declaring the value 

as the last item in the lambda will cause that value to be 

returned. The following lambda returns the Boolean true value 
after printing a message:

val result = { println("Hello"); true }()

Similarly, the following lambda simply returns a string literal:

val nextmessage = { println("Hello"); "Goodbye" }()

A particularly useful feature of lambdas and the ability to create 

function references is that they can be both passed to functions 

as arguments and returned as results. This concept, however, 
requires an understanding of function types and higher-order 

functions.



15.1 0 Higher-order functions

On the surface, lambdas and function references do not seem to 

be particularly compelling features. The possibilities that these 

features offer become more apparent, however, when we consider 

that lambdas and function references have the same capabilities 

as many other data types. In particular, these may be passed 

through as arguments to another function, or even returned as a 

result from a function.

A function that is capable of receiving a function or lambda as an 

argument, or returning one as a result is referred to as a higher- 
order

Before we look at what is, essentially, the ability to plug one 

function into another, it is first necessary to explore the concept 

of function The type of a function is dictated by a combination of 

the parameters it accepts and the type of result it returns. A 

function that accepts an Int and a Double as parameters and 

returns a String result for example is considered to have the 
following function type:

(Int, Double) -> String

To accept a function as a parameter, the receiving function simply 

declares the type of function it can accept.



As an example, we will begin by declaring two unit conversion 

functions:

fun inchesToFeet (inches: Double): Double {

return inches * 0.0833333 

}

fun inchesToYards (inches: Double): Double {

return inches * 0.0277778

}

The example now needs an additional function, the purpose of 
which is to perform a unit conversion and print the result in the 

console panel. This function needs to be as general-purpose as 

possible, capable of performing a variety of different measurement 

unit conversions. To demonstrate functions as parameters, this 
new function will take as a parameter a function type that 

matches both the inchesToFeet and inchesToYards functions 

together with a value to be converted. Since the type of these 

functions is equivalent to (Double) -> Double, our general-purpose 
function can be written as follows:



fun outputConversion(converterFunc: (Double) -> Double, value: 

Double) {

val result = converterFunc(value)

println("Result of conversion is $result")

}

When the outputconversion function is called, it will need to be 

passed a function matching the declared type. That function will 

be called to perform the conversion and the result displayed in 

the console panel. This means that the same function can be 

called to convert inches to both feet and yards, simply by 

“plugging in” the appropriate converter function as a parameter, 

keeping in mind that it is the function reference that is being 

passed as an argument:

outputConversion(::inchesToFeet, 22.45)

outputConversion(::inchesToYards, 22.45)

Functions can also be returned as a data type simply by declaring 
the type of the function as the return type. The following function 

is configured to return either our inchesToFeet or inchesToYards 

function type (in other words a function that accepts and returns 

a Double value) based on the value of a Boolean parameter:



fun decideFunction(feet: Boolean): (Double) -> Double 

{

if (feet) { 

return ::inchesToFeet

} else { 

return ::inchesToYards

}

}

When called, the function will return a function reference which 

can then be used to perform the conversion:

val converter = decideFunction(true)

val result = converter(22.4) 

println(result)



15.1 1 Summary

Functions and lambda expressions are self-contained blocks of 

code that can be called upon to perform a specific task and 
provide a mechanism for structuring code and promoting reuse. 

This chapter has introduced the basic concepts of function and 
lambda declaration and implementation in addition to the use of 

higher-order functions that allow lambdas and functions to be 

passed as arguments and returned as results.



16. The Basics of Object-Oriented Programming in Kotlin

Kotlin provides extensive support for developing object-oriented 

applications. The subject area of object-oriented programming is, 

however, large. As such, a detailed overview of object-oriented 

software development is beyond the scope of this book. Instead, 

we will introduce the basic concepts involved in object-oriented 
programming and then move on to explaining the concept as it 

relates to Kotlin application development.



16.1 What is an object?

Objects (also referred to as instances) are self-contained modules 
of functionality that can be easily used and re-used as the 

building blocks for a software application.

Objects consist of data variables (called properties) and functions 

(called methods) that can be accessed and called on the object or 

instance to perform tasks and are collectively referred to as class 

members.



16.2 What is a class?

Much as a blueprint or architect’s drawing defines what an item 
or a building will look like once it has been constructed, a class 

defines what an object will look like when it is created. It defines, 

for example, what the methods will do and what the properties 

will be.



16.3 Declaring a Kotlin class

Before an object can be instantiated, we first need to define the 

class ‘blueprint’ for the object. In this chapter, we will create a 

bank account class to demonstrate the basic concepts of Kotlin 

object-oriented programming.

In declaring a new Kotlin class we specify an optional parent 

class from which the new class is derived and also define the 

properties and methods that the class will contain. The basic 

syntax for a new class is as follows:

class NewClassName: ParentClass {

// Properties

// Methods

}

The Properties section of the declaration defines the variables and 

constants that are to be contained within the class. These are 

declared in the same way that any other variable would be 
declared in Kotlin.



The Methods sections define the methods that are available to be 

called on the class and instances of the class. These are 

essentially functions specific to the class that perform a particular 

operation when called upon and will be described in greater detail 

later in this chapter.

To create an example outline for our BankAccount class, we would 
use the following:

class BankAccount {

}

Now that we have the outline syntax for our class, the next step 

is to add some properties to it.



16.4 Adding properties to a class

A key goal of object-oriented programming is a concept referred 

to as data encapsulation. The idea behind data encapsulation is 

that data should be stored within classes and accessed only 

through methods defined in that class. Data encapsulated in a 

class are referred to as properties or instance variables.

Instances of our BankAccount class will be required to store some 

data, specifically a bank account number and the balance currently 

held within the account. Properties are declared in the same way 

any other variables are declared in Kotlin. We can, therefore, add 

these variables as follows:

class BankAccount {

var accountBalance: Double = 0.0

var accountNumber: Int = 0

}

Having defined our properties, we can now move on to defining 

the methods of the class that will allow us to work with our 

properties while staying true to the data encapsulation model.



16.5 Defining methods

The methods of a class are essentially code routines that can be 

called upon to perform specific tasks within the context of that 

class.

Methods are declared within the opening and closing braces of 

the class to which they belong and are declared using the 
standard Kotlin function declaration syntax.

For example, the declaration of a method to display the account 

balance in our example might read as follows:

class BankAccount {

var accountBalance: Double = 0.0

var accountNumber: Int = 0

fun displayBalance()

{

println("Number $accountN umber")

println("Current balance is $accountBalance")



}

}



16.6 Declaring and initializing a class instance

So far all we have done is define the blueprint for our class. To 

do anything with this class, we need to create instances of it. The 

first step in this process is to declare a variable to store a 

reference to the instance when it is created. We do this as 

follows:

val accounti: BankAccount = BankAccount()

When executed, an instance of our BankAccount class will have 

been created and will be accessible via the accounti variable. Of 

course, the Kotlin compiler will be able to use inference here, 
making the type declaration optional: 

val accounti = BankAccount()



16.7 Primary and secondary constructors

A class will often need to perform some initialization tasks at the 

point of creation. These tasks can be implemented using 

constructors within the class. In the case of the BankAccount 

class, it would be useful to be able to initialize the account 

number and balance properties with values when a new class 

instance is created. To achieve this, a secondary constructor can be 

declared within the class header as follows:

class BankAccount {

var accountBalance: Double = 0.0

var accountNumber: Int = 0

constructor(number: Int, balance: Double) {

accountNumber = number

accountBalance = balance

}



}

When creating an instance of the class, it will now be necessary 

to provide initialization values for the account number and 

balance properties as follows:

val account! BankAccount = BankAccount(456456234, 342.98)

A class can contain multiple secondary constructors allowing 

instances of the class to be initiated with different value sets. The 

following variation of the BankAccount class includes an additional 
secondary constructor for use when initializing an instance with 

the customer’s last name in addition to the corresponding account 

number and balance: 

class BankAccount {

var accountBalance: Double = 0.0

var accountNumber: Int = 0

var lastName: String = ""

constructor(number: Int,



balance: Double) {

accountNumber = number 

accountBalance = balance 

}

constructor(number: Int,

balance: Double, 

name: String ) { 

accountNumber = number 

accountBalance = balance 

lastName = name

}



}

Instances of the BankAccount may now also be created as follows:

val accounts BankAccount = BankAccount(456456234, 342.98, 
"Smith")

It is also possible to use a primary constructor to perform basic 

initialization tasks. The primary constructor for a class is declared 

within the class header as follows: 

class BankAccount (val accountNumber: Int, var accountBalance:
Double) { 

. 

. 

fun displayBalance() 

{ 

println("Number $accountN umber")

println("Current balance is $accountBalance")



}

}

Note that now both properties have been declared in the primary 
constructor, it is no longer necessary to also declare the variables 

within the body of the class. Since the account number will now 

not change after an instance of the class has been created, this 

property is declared as being immutable using the val keyword.

Although a class may only contain one primary constructor, Kotlin 

allows multiple secondary constructors to be declared in addition 
to the primary constructor. In the following class declaration the 

constructor that handles the account number and balance is 

declared as the primary constructor while the variation that also 

accepts the user’s last name is declared as a secondary 
constructor:

class BankAccount (val accountNumber: Int, var accountBalance: 

Double) {

var lastName: String = ""

constructor(accountNumber: Int,

accountBalance: Double,



name: String ) : this(accountNumber,
accountBalance) { 

lastName = name

}

}

In the above example, two key points need to be noted. First, 
since the lastName property is referenced by a secondary 

constructor, the variable is not handled automatically by the 

primary constructor and must be declared within the body of the 
class and initialized within the constructor.

var lastName: String = "" 

lastName = name



Second, although the accountNumber and accountBalance 

properties are accepted as parameters to the secondary 

constructor, the variable declarations are still handled by the 

primary constructor and do not need to be declared. To associate 

the references to these properties in the secondary constructor 

with the primary constructor, however, they must be linked back 
to the primary constructor using the this keyword:

... this(accountNumber, accountBalance)...



16.8 Initializer blocks

In addition to the primary and secondary constructors, a class 
may also contain initializer blocks which are called after the 

constructors. Since a primary constructor cannot contain any code, 
these methods are a particularly useful location for adding code 

to perform initialization tasks when an instance of the class is 

created. Initializer blocks are declared using the init keyword with 

the initialization code enclosed in braces:

class BankAccount (val accountNumber: Int, var accountBalance: 

Double) {

init {

// Initialization code goes here

}

. 

.

}



16.9 Calling methods and accessing properties

Now is probably a good time to recap what we have done so far 

in this chapter. We have now created a new Kotlin class named 

BankAccount. Within this new class, we declared primary and 

secondary constructors to accept and initialize account number, 
balance, and customer name properties. In the preceding sections, 

we also covered the steps necessary to create and initialize an 

instance of our new class. The next step is to learn how to call 

the instance methods and access the properties we built into our 

class. This is most easily achieved using dot notation.

Dot notation involves accessing a property, or calling a method by 

specifying a class instance followed by a dot followed in turn by 

the name of the property or method:

classInstance.propertyname

classInstance.methodname()

For example, to get the current value of our accountBalance 

instance variable: 

val balance1 = account1.accountBalance



Dot notation can also be used to set values of instance 

properties:

accounti.accountBalance = 6789.98

The same technique is used to call methods on a class instance. 

For example, to call the displayBalance method on an instance of 

the BankAccount class:

account1.displayBalance()



16.10 Custom accessors

When accessing the accountBalance property in the previous 
section, the code is making use of property accessors that are 

provided automatically by Kotlin. In addition to these default 

accessors, it is also possible to implement custom accessors that 

allow calculations or other logic to be performed before the 

property is returned or set.

Custom accessors are implemented by creating getter and optional 
corresponding setter methods containing the code to perform any 

tasks before returning the property. Consider, for example, that the 

BankAcccount class might need an additional property to contain 

the current balance less any recent banking fees. Rather than use 

a standard accessor, it makes more sense to use a custom 

accessor that calculates this value on request. The modified 

BankAccount class might now read as follows:

class BankAccount (val accountNumber: Int, var accountBalance: 

Double) {

val fees: Double = 25.00

val balanceLessFees: Double

get() {



return accountBalance - fees

}

fun displayBalance()

{

println("Number $accountNumber")

println("Current balance is $accountBalance")

}

}

The above code adds a getter that returns a computed property 
based on the current balance minus a fee amount. An optional 

setter could also be declared in much the same way to set the 

balance value less fees:

val fees: Double = 25.00 

var balanceLessFees: Double



get() {

return accountBalance - fees

}

set(value) {

accountBalance = value - fees

}

}

The new setter takes as a parameter a Double value from which 

it deducts the fee value before assigning the result to the current 

balance property. Even though these are custom accessors, they 

are accessed in the same way as stored properties using dot­

notation. The following code gets the current balance less the fees 
value before setting the property to a new value: 

val balance1 = account1.balanceLessFees 



accounti.balanceLessFees = 12123.12



i6.ii Nested and inner classes

Kotlin allows one class to be nested within another class. In the 
following code, for example, ClassB is nested inside ClassA:

class ClassA {

class ClassB {

}

}

In the above example, ClassB does not have access to any of the 

properties within the outer class. If access is required, the nested 

class must be declared using the inner directive. In the example 

below ClassB now has access to the myProperty variable belonging 

to ClassA:

class ClassA {

var myProperty: Int = 10

inner class ClassB {

val result = 20 + myProperty



}

}



16.12 Companion objects

A Kotlin class can also contain a companion object. A companion 

object contains methods and variables that are common to all 

instances of the class. In addition to being accessible via class 

instances, these properties are also accessible at the class level 

(in other words without the need to create an instance of the 

class).

The syntax for declaring a companion object within a class is as 

follows:

class ClassName: ParentClass {

// Properties

// Methods

companion object {

// properties 

// methods

}



}

To experience a companion object example in action, enter the 

following into the Kotlin online playground at https://try.kotl.in:

class MyClass {

fun showCount() {

println("counter = " + counter)

}

companion object {

var counter = 1 

fun counterUp() {

counter += 1

}

}

}

https://try.kotl.in


fun main(args: Array) {

println(MyClass.counter)

}

The class contains a companion object consisting of a counter 

variable and a method to increment that variable. The class also 

contains a method to display the current counter value. The 

main() method simply displays the current value of the counter 

variable, but does so by calling the method on the class itself 

instead of a class instance:

Modify the main() method to also increment the counter, 
displaying the current value both before and after:

fun main(args: Array) {

println(MyClass.counter)

MyClass.counterUp()

println(MyClass.counter)

}



Run the code and verify that the following output appears in the 

console:

1

2

Next, add some code to create an instance of MyClass before 

making a call to the showCount() method:

fun main(args: Array) {

println(MyClass.counter)

MyClass.counterUp()

println(MyClass.counter)

val instanceA = MyClass()

instanceA.showCount()

}

When executed, the following output will appear in the console:



1

2 

counter = 2

Clearly, the class has access to the variables and methods 
contained within the companion object.

Another useful aspect of companion objects is that all instances 

of the containing class see the same companion object, including 

current variable values. To see this in action, create a second 
instance of MyClass and call the showCount() method on that 

instance:

fun main(args: Array) {

println(MyClass.counter)

MyClass.counterUp()

println(MyClass.counter)

val instanceA = MyClass()

instanceA.showCount()



val instanceB = MyClass()

instanceB.showCount()

}

When run, the code will produce the following console output:

1

2

counter = 2

counter = 2

Note that both instances return the incremented value of 2, 

showing that the two class instances are sharing the same 

companion object data.



16.13 Summary

Object-oriented programming languages such as Kotlin encourage 

the creation of classes to promote code reuse and the 

encapsulation of data within class instances. This chapter has 

covered the basic concepts of classes and instances within Kotlin 

together with an overview of primary and secondary constructors, 

initializer blocks, properties, methods, companion objects, and 

custom accessors.



17. An Introduction to Kotlin Inheritance and Subclassing

In “The Basics of Object-Oriented Programming in Kotlin” we 

covered the basic concepts of object-oriented programming and 
worked through an example of creating and working with a new 

class using Kotlin. In that example, our new class was not 

specifically derived from a base class (though in practice, all 

Kotlin classes are ultimately derived from the Any class). In this 

chapter, we will provide an introduction to the concepts of 
subclassing, inheritance, and extensions in Kotlin.



17.1 Inheritance, classes, and subclasses

The concept of inheritance brings something of a real-world view 

to programming. It allows a class to be defined that has a certain 

set of characteristics (such as methods and properties) and then 

other classes to be created which are derived from that class. The 

derived class inherits all of the features of the parent class and 

typically then adds some features of its own. In fact, all classes in 

Kotlin are ultimately subclasses of the Any superclass which 

provides the basic foundation on which all classes are based.

By deriving classes, we create what is often referred to as a class 

hierarchy. The class at the top of the hierarchy is known as the 

base class or root class and the derived classes as subclasses or 

child classes. Any number of subclasses may be derived from a 

class. The class from which a subclass is derived is called the 

parent class or superclass.

Classes need not only be derived from a root class. For example, 

a subclass can also inherit from another subclass with the 

potential to create large and complex class hierarchies.

In Kotlin a subclass can only be derived from a single direct 

parent class. This is a concept referred to as single inheritance.



17.2 Subclassing syntax

As a safety measure designed to make Kotlin code less prone to 

error, before a subclass can be derived from a parent class, the 

parent class must be declared as open. This is achieved by 

placing the open keyword within the class header:

open class MyParentClass {

var myProperty: Int = 0

}

With a simple class of this type, the subclass can be created as f 

ollows:

class MySubClass : MyParentClass() {

}

For classes containing primary or secondary constructors, the rules 

for creating a subclass are slightly more complicated. Consider the 
following parent class which contains a primary constructor:

open class MyParentClass(var myProperty: Int) {



}

To create a subclass of this class, the subclass declaration 
references any base class parameters while also initializing the 

parent class using the following syntax:

class : {

}

If, on the other hand, the parent class contains one or more 

secondary constructors, the constructors must also be 

implemented within the subclass declaration and include a call to 

the secondary constructors of the parent class, passing through as 

arguments the values passed to the subclass secondary 
constructor. When working with subclasses, the parent class can 

be referenced using the super keyword. A parent class with a 

secondary constructor might read as follows:

open class MyParentClass {

var myProperty: Int = 0

constructor(number: Int) {

myProperty = number



}

}

The code for the corresponding subclass would need to be 

implemented as follows:

class MySubClass : MyParentClass {

constructor(number: Int) : super(number)

}

If additional tasks need to be performed within the constructor of 

the subclass, this can be placed within curly braces after the 

constructor declaration:

class MySubClass : MyParentClass {

constructor(number: Int) : super(number) {

// Subclass constructor code here

}

}



17.3 A Kotlin inheritance example

As with most programming concepts, the subject of inheritance in 

Kotlin is perhaps best illustrated with an example. In “The Basics 
of Object-Oriented Programming in Kotlin” we created a class 

named BankAccount designed to hold a bank account number and 

corresponding current balance. The BankAccount class contained 

both properties and methods. A simplified declaration for this 

class is reproduced below and will be used for the basis of the 
subclassing example in this chapter:

class BankAccount {

var accountNumber = 0

var accountBalance = 0.0

constructor(number: Int, balance: Double) {

accountNumber = number

accountBalance = balance

}

open fun displayBalance()



{

println("Number $accountNumber") 

println("Current balance is $accountBalance")

}

}

Though this is a somewhat rudimentary class, it does everything 

necessary if all you need it to do is store an account number and 

account balance. Suppose, however, that in addition to the 

BankAccount class you also needed a class to be used for savings 

accounts. A savings account will still need to hold an account 

number and a current balance and methods will still be needed 

to access that data. One option would be to create an entirely 

new class, one that duplicates all of the functionality of the 

BankAccount class together with the new features required by a 

savings account. A more efficient approach, however, would be to 

create a new class that is a subclass of the BankAccount class. 

The new class will then inherit all the features of the BankAccount 

class but can then be extended to add the additional functionality 

required by a savings account. Before a subclass of the 

BankAccount class can be created, the declaration needs to be 

modified to declare the class as open:



open class BankAccount {

To create a subclass of BankAccount that we will call 

SavingsAccount, we simply declare the new class, this time 

specifying BankAccount as the parent class and add code to call 

the constructor on the parent class:

class SavingsAccount : BankAccount {

constructor(accountNumber: Int, accountBalance: Double) : 

super(accountNumber, accountBalance)

}

Note that although we have yet to add any properties or 

methods, the class has inherited all the methods and properties 

of the parent BankAccount class. We could, therefore, create an 

instance of the SavingsAccount class and set variables and call 

methods in the same way we did with the BankAccount class in 

previous examples. That said, we haven’t achieved anything unless 

we take steps to extend the class.



17.4 Extending the functionality of a subclass

So far we have been able to create a subclass that contains all 
the functionality of the parent class. For this exercise to make 

sense, however, we now need to extend the subclass so that it 

has the features we need to make it useful for storing savings 

account information. To do this, we simply add the properties and 

methods that provide the new functionality, just as we would for 

any other class we might wish to create:

class SavingsAccount : BankAccount {

var interestRate: Double = 0.0

constructor(accountNumber: Int, accountBalance: Double) :

super(accountNumber, 

accountBalance)

fun calculateInterest(): Double

{

return interestRate * accountBalance

}



}



17.5 Overriding inherited methods

When using inheritance it is not unusual to find a method in the 

parent class that almost does what you need, but requires 

modification to provide the precise functionality you require. That 

being said, it is also possible you’ll inherit a method with a name 

that describes exactly what you want to do, but it does not come 

close to doing what you need. One option in this scenario would 

be to ignore the inherited method and write a new method with 

an entirely new name. A better option is to override the inherited 

method and write a new version of it in the subclass.

Before proceeding with an example, three rules that must be 

obeyed when overriding a method. First, the overriding method in 

the subclass must accept the same number and type of 

parameters as the overridden method in the parent class. Second, 

the new method must have the same return type as the parent 

method. Finally, the original method in the parent class must be 

declared as open before the compiler will allow it to be 
overridden.

In our BankAccount class, we have a method named 

displayBalance that displays the bank account number and current 

balance held by an instance of the class. In our SavingsAccount 

subclass, we might also want to output the current interest rate 

assigned to the account. To achieve this, we simply declare a new 



version of the displayBalance method in our SavingsAccount 

subclass, prefixed with the override keyword:

class SavingsAccount : BankAccount {

var interestRate: Double = 0.0

constructor(accountNumber: Int, accountBalance: Double) :

super(accountNumber, accountBalance)

fun calculateInterest(): Double

{

return interestRate * accountBalance

}

override fun displayBalance()

{

println("Number $accountNumber") 

println("Current balance is $accountBalance")



println("Prevailing interest rate is $interestRate")

}

}

Before this code will compile, the displayBalance method in the 
BankAccount class must be declared as open:

open fun displayBalance()

{

println("Number $accountNumber")

println("Current balance is $accountBalance")

}

It is also possible to make a call to the overridden method in the 

superclass from within a subclass. The displayBalance method of 

the superclass could, for example, be called to display the account 

number and balance, before the interest rate is displayed, thereby 
eliminating further code duplication: 

override fun displayBalance()



{

super.displayBalance()

println("Prevailing interest rate is $interestRate")

}



17.6 Adding a custom secondary constructor

As the SavingsAccount class currently stands, it makes a call to 

the secondary constructor from the parent BankAccount class 

which was implemented as follows:

constructor(accountNumber: Int, accountBalance: Double) :

super(accountNumber, accountBalance)

Clearly this constructor takes the necessary steps to initialize both 

the account number and balance properties of the class. The 

SavingsAccount class, however, contains an additional property in 

the form of the interest rate variable. The SavingsAccount class, 

therefore, needs its own constructor to ensure that the 

interestRate property is initialized when instances of the class are 

created. Modify the SavingsAccount class one last time to add an 

additional secondary constructor allowing the interest rate to also 

be specified when class instances are initialized:

class SavingsAccount : BankAccount {

var interestRate: Double = 0.0

constructor(accountNumber: Int, accountBalance: Double) :



super(accountNumber, accountBalance)

constructor(accountNumber: Int, accountBalance: Double, rate: 
Double) :

super(accountNumber, 
accountBalance) {

interestRate = rate

}

}



17.7 Using the SavingsAccount class

Now that we have completed work on our SavingsAccount class, 
the class can be used in some example code in much the same 

way as the parent BankAccount class:

val savings1 = SavingsAccount(12311, 600.00, 0.07)

println(savings1.calculateInterest())

savings1.displayBalance()



17.8 Summary

Inheritance extends the concept of object re-use in object oriented 

programming by allowing new classes to be derived from existing 

classes, with those new classes subsequently extended to add new 

functionality. When an existing class provides some, but not all, of 

the functionality required by the programmer, inheritance allows 

that class to be used as the basis for a new subclass. The new 

subclass will inherit all the capabilities of the parent class, but 

may then be extended to add the missing functionality.



18. An Overview of Compose

Now that Android Studio has been installed and the basics of the 

Kotlin programing language covered, it is time to start introducing 

Jetpack Compose.

Jetpack Compose is an entirely new approach to developing apps 

for all of Google’s operating system platforms. The basic goals of 

Compose are to make app development easier, faster, and less 

prone to the types of bugs that typically appear when developing 

software projects. These elements have been combined with 

Compose-specific additions to Android Studio that allow Compose 

projects to be tested in near real-time using an interactive preview 

of the app during the development process.

Many of the advantages of Compose originate from the fact that 

it is both declarative and topics which will be explained in this 
chapter.

The discussion in this chapter is intended as a high-level overview 

of Compose and does not cover the practical aspects of 
implementation within a project. Implementation and practical 

examples will be covered in detail in the remainder of the book.



18.1 Development before Compose

To understand the meaning and advantages of the Compose 

declarative syntax, it helps to understand how user interface 

layouts were designed before the introduction of Compose. 

Previously, Android apps were still built entirely using Android 

Studio together with a collection of associated frameworks that 

make up the Android Development Kit.

To aid in the design of the user interface layouts that make up 

the screens of an app, Android Studio includes a tool called the 

Layout Editor. The Layout Editor is a powerful tool that allows 

XML files to be created which contain the individual components 

that make up a screen of an app.

The user interface layout of a screen is designed within the 

Layout Editor by dragging components (such as buttons, text, text 

fields, and sliders) from a widget palette to the desired location 

on the layout canvas. Selecting a component in a scene provides 

access to a range of property panels where the attributes of the 

components can be changed.

The layout behavior of the screen (in other words how it reacts 

to different device screen sizes and changes to device orientation 

between portrait and landscape) is defined by configuring a range 

of constraints that dictate how each component is positioned and



sized in relation to both the containing window and the other 

components in the layout.

Finally, any components that need to respond to user events 

(such as a button tap or slider motion) are connected to 

methods in the app source code where the event is handled.

At various points during this development process, it is necessary 

to compile and run the app on a simulator or device to test that 
everything is working as expected.



18.2 Compose declarative syntax

Compose introduces a declarative syntax that provides an entirely 
different way of implementing user interface layouts and behavior 

from the Layout Editor approach. Instead of manually designing 

the intricate details of the layout and appearance of components 

that make up a scene, Compose allows the scenes to be 

described using a simple and intuitive syntax. In other words, 

Compose allows layouts to be created by declaring how the user 

interface should appear without having to worry about the 

complexity of how the layout is built.

This essentially involves declaring the components to be included 

in the layout, stating the kind of layout manager in which they 

are to be contained (column, row, box, list, etc.), and using 

modifiers to set attributes such as the text on a button, the 

foreground color of a label, or the handler to be called in the 

event of a tap gesture. Having made these declarations, all the 

intricate and complicated details of how to position, constrain and 

render the layout are handled automatically by Compose. Compose 

declarations are structured hierarchically, which also makes it easy 

to create complex views by composing together small, re-usable 

custom sub-views.

While a layout is being declared and tested, Android Studio 

provides a preview canvas that changes in real-time to reflect the 

appearance of the layout. Android Studio also includes an



interactive mode which allows the app to be launched within the 

preview canvas and fully tested without the need to build and run 
on a simulator or device.

Coverage of the Compose declaration syntax begins with the 

chapter entitled “Composable Functions



18.3 Compose is data-driven

When we say that Compose is data-driven, this is not to say that 

it is no longer necessary to handle events generated by the user 

(in other words the interaction between the user and the app user 

interface). It is still necessary, for example, to know when the user 

taps a button or moves a slider and to react in some app-specific 
way. Being data-driven relates more to the relationship between 

the underlying app data and the user interface and logic of the 

app.

Before the introduction of Compose, an Android app would 

contain code responsible for checking the current values of data 

within the app. If data was likely to change over time, code had 

to be written to ensure that the user interface always reflected the 

latest state of the data (perhaps by writing code to frequently 
check for changes to the data, or by providing a refresh option 

for the user to request a data update). Similar challenges arise 

when keeping the user interface state consistent and making sure 

issues like toggle button settings are stored appropriately. 

Requirements such as these can become increasingly complex 

when multiple areas of an app depend on the same data sources.

Compose addresses this complexity by providing a system that is 

based on Data that is stored as state ensures that any changes 

to that data are automatically reflected in the user interface



without the need to write any additional code to detect the 
change. Any user interface component that accesses a state is 

essentially subscribed to that state. When the state is changed 

anywhere in the app code, any subscriber components to that 

data will be destroyed and recreated to reflect the data change in 

a process called This ensures that when any state on which the 

user interfaces is dependent changes, all components that rely on 

that data will automatically update to reflect the latest state. State 

and recomposition will be covered in the chapter entitled “An 

Overview of Compose State and



18.4 Summary

Jetpack introduces a different approach to app development than 

that offered by the Android Studio Layout Editor. Rather than 

directly implement the way in which a user interface is to be 

rendered, Compose allows the user interface to be declared in 

descriptive terms and then does all the work of deciding the best 
way to perform the rendering when the app runs.

Compose is also data-driven in that data changes drive the 

behavior and appearance of the app. This is achieved through 
states and recomposition.

This chapter has provided a very high-level view of Jetpack 

Compose. The remainder of this book will explore Compose in 
greater depth.



19. Composable Functions Overview

Composable functions are the building blocks used to create user 

interfaces for Android apps when developing with Jetpack 

Compose. In the ComposeDemo project created earlier in the 

book, we made use of both the built-in compose functions 

provided with Compose and also created our own functions. In 

this chapter, we will explore composable functions in more detail, 

including topics such as stateful and stateless functions, function 

syntax, and the difference between foundation and material 

composables.



19.1 What is a composable function?

Composable functions (also referred to as composables or are 

special Kotlin functions that are used to create user interfaces 

when working with Compose. A composable function is 

differentiated from regular Kotlin functions in code using the 

@Composable annotation.

When a composable is called, it is typically passed some data 

and a set of properties that define how the corresponding section 

of the user interface is to behave and appear when rendered to 

the user in the running app. In essence, composable functions 

transform data into user interface elements. Composables do not 

return values in the traditional sense of the Kotlin function, but 

instead, emit user interface elements to the Compose runtime 
system for rendering.

Composable functions can call other composables to create a 

hierarchy of components as demonstrated in the ComposeDemo 

project. While a composable function may also call standard Kotlin 

functions, standard functions may not call composable functions.

A typical Compose-based user interface will be comprised of a 

combination of built-in and custom-built composables.



19.2 Stateful vs. stateless composables

Composable functions are categorized as being either stateful or 

State, in the context of Compose, is defined as being any value 

that can change during the execution of an app. For example, a 

slider position value, the string entered into a text field, or the 

current setting of a check box are all forms of state.

As we saw in the ComposeDemo project, a composable function 

can store a state value which defines in some way how the 

composable function, or those that it calls appear or behave. This 

is achieved using the remember keyword and the mutableStateOf 

function. Our DemoScreen composable, for example, stored the 

current slider position as state using this technique:

@Composable

fun DemoScreen() {

var sliderPosition by remember { mutableStateOf(20f) }

}



Because the DemoScreen contains state, it is considered to be a 

stateful composable. Now consider the DemoSlider composable 

which reads as follows:

@Composable

fun DemoSlider(sliderPosition: Float, onPositionChange : (Float) -> 

Unit ) {

Slider(

modifier = Modifier.padding(10.dp),

valueRange = 20f..40f,

value = sliderPosition,

onValueChange = onPositionChange

)

}

Although this composable is passed and makes use of the state 

value stored by the DemoScreen, it does not itself store any state 



value. DemoSlider is, therefore, considered to be a stateless 

composable function.

The topic of state will be covered in greater detail in the chapter 

entitled “An Overview of Compose State and



19.3 Composable function syntax

Composable functions, as we already know, are declared using the 

@Composable annotation and are written in much the same way 

as a standard Kotlin function. We can, for example, declare a 

composable function that does nothing as follows:

@Composable

fun MyFunction() {

}

We can also call other composables from within the function:

@Composable

fun MyFunction() {

Text("Hello")

}

Composables may also be implemented to accept parameters. The 

following function accepts text, font weight, and color parameters 

and passes them to the built-in Text composable. The fragment 



also includes a preview composable to demonstrate how the 

CustomText function might be called:

@Composable

fun CustomText(text: String, fontWeight: FontWeight, color: Color) {

Text(text = text, fontWeight = fontWeight, color = color)

}

@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

CustomText(text = "Hello Compose", fontWeight = 

FontWeight.Bold,

color = Color.Magenta)

}

When previewed, magenta-colored bold text reading “Hello 

Compose” will be rendered in the preview panel.



Just about any Kotlin logic code may be included in the body of 

a composable function. The following composable, for example, 

displays different text within a Column depending on the setting 

of a built-in Switch composable:

@Composable

fun CustomSwitch() {

val checked = remember { mutableStateOf(true) }

Column {

Switch(

checked = checked.value,

onCheckedChange = { checked.value = it }

)

if (checked.value) {

Text("Switch is On")

} else {



Text("Switch is Off")

}

}

}

In the above example, we have declared a state value named 
checked initialized to true and then constructed a Column 

containing a Switch composable. The state of the Switch is based 

on the value of checked and a lambda assigned as the 

onCheckedChanged event handler. This lambda sets the checked 

state to the current Switch setting. Finally, an if statement is used 

to decide which of two Text composables are displayed depending 

on the current value of the checked state. When run, the text 

displayed will alternate between “Switch is on” and “Switch is 

off”:



Figure 19-1

Similarly, we could use looping syntax to iterate through the items 

in a list and display them in a Column separated by instances of 

the Divider composable:

@Composable

fun CustomList(items: List) {

Column {

for (item in items) {

Text(item)

Divider(color = Color.Black)



}

}

}

The following composable could be used to preview the above 

function:

@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

MyApplicationTheme {

CustomList(listOf("One", "Two", "Three", "Four", "Five", 

"Six"))

}

}

Once built and refreshed, the composable will appear in the 

Preview panel as shown in Figure 19-2 below:



DefaultPreview

One 
Two 
Three 
Four 
Five 
Six

Figure 19-2



19.4 Foundation and Material composables

When developing apps with Compose we do so using a mixture 

of our own composable functions (for example the CustomText 

and CustomList composables created earlier in the chapter) 

combined with a set of ready to use components provided by the 

Compose development kit (such as the Text, Button, Column and 

Slider composables).

The composables bundled with Compose fall into three categories, 

referred to as Foundation, and Material Design components.

Layout components provide a way to define both how components 

are positioned on the screen, and how those components behave 

in relation to each other. The following are all layout composables:

Foundation components are a set of minimal components that 

provide basic user interface functionality. While these components 

do not, by default, impose a specific style or theme, they can be 

customized to provide any look and behavior you need for your 

app. The following lists the set of Foundation components:



The Material Design components, on the other hand, have been 

designed so that they match Google’s Material theme guidelines 

and include the following composables:



When choosing components, it is important to note that the 

Foundation and Material Design components are not mutually 

exclusive. You will inevitably use components from both categories 

in your design since the Material Design category has components 

for which there is no Foundation equivalent and vice versa.



19.5 Summary

In this chapter, we have looked at composable functions and 

explored how they are used to construct Android-based user 

interfaces. Composable functions are declared using the 

@Composable annotation and use the same syntax as standard 

Kotlin functions, including the passing and handling of parameters. 

Unlike standard Kotlin functions, composable functions do not 

return values. Instead, they emit user interface units to be 

rendered by the Compose runtime. A composable function can be 
either stateful or stateless depending on whether the function 

stores a state value. The built-in composables are categorized as 

either Layout, Foundation, or Material Design components. The 

Material Design components conform with the Material style and 

theme guidelines provided by Google to encourage consistent UI 
design.

One type of composable we have not yet introduced is the Slot 

API composable, a topic that will be covered later in the chapter 

entitled “An Overview of Compose Slot



20. An Overview of Compose State and Recomposition

State is the cornerstone of how the Compose system is 

implemented. As such, a clear understanding of state is an 

essential step in becoming a proficient Compose developer. In this 

chapter, we will explore and demonstrate the basic concepts of 

state and explain the meaning of related terms such as 
unidirectional data flow, and state The chapter will also cover 

saving and restoring state through configuration



20.1 The basics of state

In declarative languages such as Compose, state is generally 

referred to as “a value that can change over time”. At first glance, 

this sounds much like any other data in an app. A standard 

Kotlin variable, for example, is by definition designed to store a 

value that can change at any time during execution. State, 

however, differs from a standard variable in two significant ways.

First, the value assigned to a state variable in a composable 

function needs to be remembered. In other words, each time a 

composable function containing state (a stateful is called, it must 

remember any state values from the last time it was invoked. This 

is different from a standard variable which would be re-initialized 

each time a call is made to the function in which it is declared.

The second key difference is that a change to any state variable 

has far reaching implications for the entire hierarchy tree of 

composable functions that make up a user interface. To 

understand why this is the case, we now need to talk about 
recomposition.



20.2 Introducing recomposition

When developing with Compose, we build apps by creating 

hierarchies of composable functions. As previously discussed, a 

composable function can be thought of as taking data and using 

that data to generate sections of a user interface layout. These 

elements are then rendered on the screen by the Compose 

runtime system. In most cases, the data passed from one 

composable function to another will have been declared as a state 

variable in a parent function. This means that any change of state 

value in a parent composable will need to be reflected in any 

child composables to which the state has been passed. Compose 

addresses this by performing an operation referred to as 

Recomposition occurs whenever a state value changes within a 

hierarchy of composable functions. As soon as Compose detects a 

state change, it works through all of the composable functions in 

the activity and recomposes any functions affected by the state 

value change. Recomposing simply means that the function gets 

called again and passed the new state value.

Recomposing the entire composable tree for a user interface each 

time a state value changes would be a highly inefficient approach 

to rendering and updating a user interface. Compose avoids this 

overhead using a technique called intelligent recomposition that 

involves only recomposing those functions directly affected by the 



state change. In other words, only functions that read the state 

value will be recomposed when the value changes.



20.3 Creating the StateExample project

Launch Android Studio and select the New Project option from 

the welcome screen. Within the resulting new project dialog, 

choose the Empty Activity template before clicking on the Next 

button.

Enter StateExample into the Name field and specify 
com.example.stateexample as the package name. Before clicking on 

the Finish button, change the Minimum API level setting to API 

26: Android 8.0 (Oreo). On completion of the project creation 

process, the StateExample project should be listed in the Project 

tool window located along the left-hand edge of the Android 

Studio main window.



20.4 Declaring state in a composable

The first step in declaring a state value is to wrap it in a 

MutableState object. MutableState is a Compose class which is 

referred to as an observable Any function that reads a state value 

is said to have subscribed to that observable state. As a result, 

any changes to the state value will trigger the recomposition of all 

subscribed functions.

Within Android Studio, open the MainActivity.kt file, delete the 

Greeting composable and modify the class so that it reads as 

follows:

package com.example.stateexample 

class MainActivity : ComponentActivity() {

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState) 

setContent {



StateExampleTheme {

Surface(color =

MaterialTheme.colorScheme.background) {

DemoScreen()

}

}

}

}

} 

@Composable 

fun DemoScreen() {

MyTextField()

}



@Composable 

fun MyTextField() {

}

@Preview(showBackground = true) 

@Composable 

fun GreetingPreview() {

StateExampleTheme {

DemoScreen()

}

}

The objective here is to implement MyTextField as a stateful 

composable function containing a state variable and an event 

handler that changes the state based on the user’s keyboard 

input. The result is a text field in which the characters appear as 

they are typed.



MutableState instances are created by making a call to the 
mutableStateOf() runtime function, passing through the initial state 

value. The following, for example, creates a MutableState instance 

initialized with an empty String value:

var textState = { mutableStateOf("") }

This provides an observable state which will trigger a 
recomposition of all subscribed functions when the contained 

value is changed. The above declaration is, however, missing a key 

element. As previously discussed, state must be remembered 

through recompositions. As currently implemented, the state will 

be reinitialized to an empty string each time the function in 

which it is declared is recomposed. To retain the current state 

value, we need to use the remember keyword:

var myState = remember { mutableStateOf("") }

Remaining within the MainActivity.kt file, add some imports and 

modify the MyTextField composable as follows: 

import androidx.compose.material3.*



import androidx.compose. ru ntime. mutableStateOf 

import androidx.compose.runtime.remember

import androidx.compose.foundation.layout.Column 

. 

.

@Composable

fun MyTextField() {

var textState = remember { mutableStateOff"') }

val onTextChange = { text : String -> 

textState.value = text

}

TextField(

value = textState.value,

onValueChange = onTextChange



)

}

If the code editor reports that the Material 3 TextField is 
experimental, modify the MyTextField composable as follows:

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun MyTextField() {

var textState by remember { mutableStateOf("") }

Test the code using the Preview panel in interactive mode and 

confirm that keyboard input appears in the TextField as it is 

typed.

When looking at Compose code examples, you may see 

MutableState objects declared in different ways. When using the 



above format, it is necessary to read and set the value property of 
the MutableState instance. For example, the event handler to 

update the state reads as follows: 

val onTextChange = { text: String ->

= text

}

Similarly, the current state value is assigned to the TextField as 

follows:

TextField(

value =

onValueChange = onTextChange

)

A more common and concise approach to declaring state is to 

use Kotlin property delegates via the by keyword as follows (note 

that two additional libraries need to be imported when using 

property delegates):



import androidx.compose.runtime.getValue 

import androidx.compose.runtime.setValue

@Composable

fun MyTextField() {

var textState by remember { mutableStateOf("") }

We can now access the state value without needing to directly 

reference the MutableState value property within the event handler: 

val onTextChange = { text: String ->



textState = text

}

This also makes reading the current value more concise:

TextField(

value =

onValueChange = onTextChange

)

A third technique separates the access to a MutableState object 

into a value and a setter function as follows:

var (textValue, setText) = remember { mutableStateOf("") }

When changing the value assigned to the state we now do so by 

calling the setText setter, passing through the new value:

val onTextChange = { text: String ->

setText(text)

}



The state value is now accessed by referencing

TextField(

value =

onValueChange = onTextChange

)

In most cases, the use of the by keyword and property delegates 

is the most commonly used technique because it results in 

cleaner code. Before continuing with the chapter, revert the 

example to use the by keyword.



20.5 Unidirectional data flow

Unidirectional data flow is an approach to app development 

whereby state stored in a composable should not be directly 
changed by any child composable functions. Consider, for example, 

a composable function named FunctionA containing a state value 

in the form of a Boolean value. This composable calls another 

composable function named FunctionB that contains a Switch 

component. The objective is for the switch to update the state 

value each time the switch position is changed by the user. In 

this situation, adherence to unidirectional data flow prohibits 

FunctionB from directly changing the state value.

Instead, FunctionA would declare an event handler (typically in the 

form of a lambda) and pass it as a parameter to the child 

composable along with the state value. The Switch within 

FunctionB would then be configured to call the event handler each 

time the switch position changes, passing it the current setting 

value. The event handler in FunctionA will then update the state 

with the new value.

Make the following changes to the MainActivity.kt file to 
implement FunctionA and FunctionB together with a corresponding 

modification to the preview composable: 

@Composable



fun Function A() {

var switchstate by remember { mutableStateOf(true) }

val onSwitchChange = { value : Boolean -> 

switchState = value

}

FunctionB(

switchState = switchState,

onSwitchChange = onSwitchChange

)

}

@Composable

fun FunctionB(switchState: Boolean, onSwitchChange : (Boolean) -> 

Unit ) {

Switch(



checked = switchState, 

onCheckedChange = onSwitchChange

)

}

@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

StateExampleTheme {

Column {

DemoScreen()

FunctionA()

}

}



}

Preview the app using interactive mode and verify that clicking the 

switch changes the slider position between on and off states.

We can now use this example to break down the state process 
into the following individual steps which occur when FunctionA is 

called:

1. The switchState state variable is initialized with a true value.

2. The onSwitchChange event handler is declared to accept a 

Boolean parameter which it assigns to switchState when called.

3. FunctionB is called and passed both switchState and a reference 
to the onSwitchChange event handler.

4. FunctionB calls the built-in Switch component and configures it 

to display the state assigned to The Switch component is also 

configured to call the onSwitchChange event handler when the user 
changes the switch setting.

5. Compose renders the Switch component on the screen.

The above sequence explains how the Switch component gets 

rendered on the screen when the app first launches. We can now 



explore the sequence of events that occur when the user slides 

the switch to the “off” position:

1. The switch is moved to the “off” position.

2. The Switch component calls the onSwitchChange event handler 

passing through the current switch position value (in this case

3. The onSwitchChange lambda declared in FunctionA assigns the 

new value to

4. Compose detects that the switchState state value has changed 
and initiates a recomposition.

5. Compose identifies that FunctionB contains code that reads the 

value of switchState and therefore needs to be recomposed.

6. Compose calls FunctionB with the latest state value and the 

reference to the event handler.

7. FunctionB calls the Switch composable and configures it with 

the state and event handler.

8. Compose renders the Switch on the screen, this time with the 
switch in the “off” position.



The key point to note about this process is that the value 

assigned to switchState is only changed from within FunctionA and 
never directly updated by FunctionB. The Switch setting is not 

moved from the “on” position to the “off” position directly by 

FunctionB. Instead, the state is changed by calling upwards to the 
event handler located in FunctionA, and allowing recomposition to 

regenerate the Switch with the new position setting.

As a general rule, data is passed down through a composable 

hierarchy tree while events are called upwards to handlers in 

ancestor components as illustrated in Figure

Figure 20-1



20.6 State hoisting

If you look up the word “hoist” in a dictionary it will likely be 

defined as the act of raising or lifting something. The term state 

hoisting has a similar meaning in that it involves moving state from 

a child composable up to the calling (parent) composable or a 

higher ancestor. When the child composable is called by the parent, 

it is passed the state along with an event handler. When an event 

occurs in the child composable that requires an update to the state, 

a call is made to the event handler passing through the new value 

as outlined earlier in the chapter. This has the advantage of making 

the child composable stateless and, therefore, easier to reuse. It also 

allows the state to be passed down to other child composables later 

in the app development process.

Consider our MyTextField example from earlier in the chapter:

@Composable

fun DemoScreen() {

MyTextField()

} 

@Composable



fun MyTextField() {

var textState by remember { mutableStateOf("") }

val onTextChange = { text : String ->

textState = text

}

TextField(

value = textState,

onValueChange = onTextChange

)

}

The self-contained nature of the MyTextField composable means that 

it is not a particularly useful component. One issue is that the text 

entered by the user is not accessible to the calling function and, 

therefore, cannot be passed to any sibling functions. It is also not 

possible to pass a different state and event handler through to the 

function, thereby limiting its re-usability.



To make the function more useful we need to hoist the state into 

the parent DemoScreen function as follows:

@Composable

fun DemoScreen() {

var textState by remember { mutableStateOf("") }

val onTextChange = { text : String ->

textState = text

}

= textState, onTextChange =

}

@Composable

fun String, onTextChange : (String) -> {

var textState by remember { mutableStateOf("") }

val onTextChange = { text : String ->



textState = text

}

TextField(

value =

onValueChange = onTextChange

)

}

@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

StateExampleTheme {

DemoScreen()

}

}



With the state hoisted to the parent function, MyTextField is now a 

stateless, reusable composable which can be called and passed any 

state and event handler. Also, the text entered by the user is now 

accessible by the parent function and may be passed down to other 

composables if necessary.

State hoisting is not limited to moving to the immediate parent of a 

composable. State can be raised any number of levels upward within 

the composable hierarchy and subsequently passed down through as 

many layers of children as needed (within reason). This will often be 

necessary when multiple children need access to the same state. In 

such a situation, the state will need to be hoisted up to an ancestor 

that is common to both children.

In Figure 20-2 below, for example, both NameField and NameText 

need access to The only way to make the state available to both 

composables is to hoist it up to the MainScreen function since this 

is the only ancestor both composables have in common:



Figure 20-2

The solid arrows indicate the path of textState as it is passed down 

through the hierarchy to the NameField and NameText functions (in 

the case of the NameField, a reference to the event handler is also 

passed down), while the dotted line represents the calls from 

NameField function to an event handler declared in MainScreen as 

the text changes.

Note that if you find yourself passing state down through an 

excessive number of child layers, it may be worth looking at a topic 

covered in the chapter entitled “An Introduction to Composition

When adding state to a function, take some time to decide whether 

hoisting state to the caller (or higher) might make for a more re­

usable and flexible composable. While situations will arise where state 



is only needed to be used locally in a composable, in most cases it 

probably makes sense to hoist the state up to an ancestor.



20.7 Saving state through configuration changes

We now know that the remember keyword can be used to save 

state values through recompositions. This technique does not, 

however, retain state between configuration A configuration change 

generally occurs when some aspect of the device changes in a 

way that alters the appearance of an activity (such as rotating the 

orientation of the device between portrait and landscape or 

changing a system-wide font setting).

Changes such as these will cause the entire activity to be 

destroyed and recreated. The reasoning behind this is that these 

changes affect resources such as the layout of the user interface 

and simply destroying and recreating impacted activities is the 

quickest way for an activity to respond to the configuration 

change. The result is a newly initialized activity with no memory 

of any previous state values.

To experience the effect of a configuration change, run the 

StateExample app on an emulator or device and, once running, 

enter some text so that it appears in the TextField before 

changing the orientation from portrait to landscape. When using 
the emulator, device rotation may be simulated using the rotation 

button located in the emulator toolbar. To complete the rotation 

on Android 11 or older, it may also be necessary to tap on the 

rotation button. This appears in the toolbar of the device or 
emulator screen as shown in Figure



Figure 20-3

Before performing the rotation on Android 12 or later, you may 

need to enter the Settings app, select the Display category and 

enable the Auto-rotate screen option.

Note that after rotation, the TextField is now blank and the text 

entered has been lost. In situations where state needs to be 

retained through configuration changes, Compose provides the 

rememberSaveable keyword. When rememberSaveable is used, the 

state will be retained not only through recompositions, but also 

configuration changes. Modify the textState declaration to use 

rememberSaveable as follows:



import androidx.compose.runtime.saveable.rememberSaveable

@Composable 

fun DemoScreen() {

var textState by rememberSaveable { mutableStateOf("") }

Build and run the app once again, enter some text and perform 
another rotation. Note that the text is now preserved following the 

configuration change.



20.8 Summary

When developing apps with Compose it is vital to have a clear 

understanding of how state and recomposition work together to 

make sure that the user interface is always up to date. In this 

chapter, we have explored state and described how state values 

are declared, updated, and passed between composable functions. 
You should also have a better understanding of recomposition and 

how it is triggered in response to state changes.

We also introduced the concept of unidirectional data flow and 

explained how data flows down through the compose hierarchy 

while data changes are made by making calls upward to event 

handlers declared within ancestor stateful functions.

An important goal when writing composable functions is to 

maximize re-usability. This can be achieved, in part, by hoisting 

state out of a composable up to the calling parent or a higher 
function in the compose hierarchy.

Finally, the chapter described configuration changes and explained 
how such changes result in the destruction and recreation of 

entire activities. Ordinarily, state is not retained through 

configuration changes unless specifically configured to do so using 
the rememberSaveable keyword.



21. An Introduction to Composition Local

We already know from previous chapters that user interfaces are 

built in Compose by constructing hierarchies of composable 

functions. We also know that Compose is state-driven and that 

state should generally be declared in the highest possible node of 

the composable tree (a concept referred to as state hoisting) and 

passed down through the hierarchy to the descendant 

composables where it is needed. While this works well for most 

situations, it can become cumbersome if the state needs to be 
passed down through multiple levels within the hierarchy. A 

solution to this problem exists in the form of CompositionLocal, 

which is the subject of this chapter.



21.1 Understanding CompositionLocal

In simple terms, CompositionLocal provides a way to make state 

declared higher in the composable hierarchy tree available to 

functions lower in the tree without having to pass it through 

every composable between the point where it is declared and the 

function where it is used. Consider, for example, the following 
hierarchy diagram:

Figure 21-1

In the hierarchy, a state named colorState is declared in 

Composable1 but is only used in Composable8. Although the state 

is not needed in either Composable3 or Composable5, colorState 

still needs to be passed down through those functions to reach 

Composable8. The deeper the tree becomes, the more levels



through which the state needs to be passed to reach the function 

where it is used.

A solution to this problem is to use CompositionLocal. 

CompositionLocal allows us to declare the data at the highest 

necessary node in the tree and then access it in descendants 
without having to pass it through the intervening children as 

shown in Figure

Figure 21-2

CompositionLocal has the added advantage of only making the 

data available to the tree branch below the point at which it is 

assigned a value. In other words, if the state were assigned a 

value when calling composable3 it would be accessible within 

composable numbers 3, 5, 7, and 8, but not to composables 1, 2, 

4, or 6. This allows state to be kept local to specific branches of 



the composable tree and for different sub-branches to have 

different values assigned to the same CompositionLocal state. So 

Composable5 could, for example, have a different color assigned 

to colorState from that set when Composable7 is called.



21.2 Using CompositionLocal

Declaring state using CompositionLocal starts with the creation of 

a ProvidableCompositionLocal instance which can be obtained via 

a call to either the compositionLocalOf() or 

staticCompositionLocalOf() function. In each case, the function 

accepts a lambda defining a default value to be assigned to the 

state in the absence of a specific assignment, for example:

val LocalColor = compositionLocalOf { Color. Red }

val LocalColor = staticCompositionLocalOf { Color. Red }

The staticCompositionLocalOf() function is recommended for storing 

state values that are unlikely to change very often. This is because 

any changes to the state value will cause the entire tree beneath 

where the value is assigned to be recomposed. The 

compositionLocalOf() function, on the other hand, will only cause 

recomposition to be performed on composables where the current 

state is accessed. This function should be used when dealing with 

states that change frequently.

The next step is to assign a value to the 

ProvidableCompositionLocal instance and wrap the call to the 

immediate descendant child composable in a 
CompositionLocalProvider call:



val color = Color.Blue

CompositionLocalProvider(LocalColor provides color) {

Composable5()

}

Any descendants of Composition5 will now be able to access the 

CompositionLocal state via the current property of the 

ProviderCompositionLocal instance, for example:

val background = LocalColor.current

In the rest of this chapter, we will build a project that mirrors the 

hierarchy illustrated in Figure 21-1 to show CompositionLocal in 

action.



21.3 Creating the CompLocalDemo project

Launch Android Studio and create a new Empty Activity project 

named CompLocalDemo. Specify com.example.complocaldemo as the 

package name and select a minimum API level of API 26: 

Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named Composable1:

@Composable

fun Composable1() {

}

Next, edit the OnCreate() method and GreetingPreview function to 

call Composable1 instead of Greeting.



21.4 Designing the layout

Within the MainActivity.kt file, implement the composable hierarchy 

as follows: 

import androidx.compose.foundation.background

import androidx.compose.foundation.isSystemlnDarkTheme

import androidx.compose.foundation.layout.Column

import androidx.compose.runtime.CompositionLocalProvider

import androidx.compose.runtime.staticCompositionLocalOf 

import androidx.compose.ui.graphics.Color



@Composable 

fun Composablei() {

Column {

Composable2()

Composable3()

}

}

@Composable

fun Composable2() {

Composable4()

}

@Composable

fun Composable3() {

Composable5()



}

@Composable

fun Composable4() {

Composable6()

}

@Composable

fun Composable5() {

Composable7()

Composable8()

}

@Composable

fun Composable6() {

Textf'Composable 6")



}

@Composable

fun Composable7() {

}

@Composable

fun Composable8() {

}

Textf'Composable 8")



21.5 Adding the CompositionLocal state

The objective for this project is to declare a color state that can 
be changed depending on whether the device is in light or dark 

mode, and use that to control the background color of the text 

component in Composable8. Since this value will not change 

regularly, we can use the staticCompositionLocalOf() function. 
Remaining within the MainActivity.kt file, add the following line 

above the Composable1 declaration: 

val LocalColor = staticCompositionLocalOf { Color(oxFFffdbcf) }

@Composable

fun Composable1() {

Column {



Next, a call to isSystemInDarkTheme() needs to be added, and the 

result used to assign a different color to the LocalColor state. We 

also need to call Composable3 from within the context of the 

CompositionLocal provider:

@Composable

fun Composable1() {

val color = if (isSystemInDarkTheme()) {

Color(oxFFao8d87)

} else {

Color(oxF Fffdbcf)

}

Column {

Composable2()

CompositionLocalProvider(LocalColor provides color) {

Composable3()



}

}

}



21.6 Accessing the CompositionLocal state

The final task before testing the code is to assign the color state 

to the Text component in Composable8 as follows:

@Composable

fun Composable8() {

Text("Composable 8", modifier =

}



21.7 Testing the design

To test the activity code in both light and dark modes, add a new 
Preview composable to MainActivity.kt with uiMode set to 

UI_NIGHT_MODE_YES: 

import android.content.res.Configuration.UI_MODE_NIGHT_YES

@Preview(showBackground = true, uiMode = 

UI_MODE_NIGHT_YES)

@Composable

fun DarkPreview() {

CompLocalDemoTheme {



Composablei()

}

}

After refreshing the Preview panel, both the default and dark 

preview should appear, each using a different color as the 

background for the Text component in Composable8:

Greetingpreview

Composable 6
Composable 8

DarkPreview

Composable 6
Composable 8

Figure 21-3



We can also modify the code so that composables 3, 5, 7, and 8 

have different color settings. All this requires is calling each 

composable from within a CompositionLocalProvider with a 

different color assignment:

@Composable

fun Composable3() {

Text("Composable 3", modifier =
Modifier.background(LocalColor.current))

CompositionLocalProvider(LocalColor provides Color.Red) {

Composable5()

}

}



@Composable 

fun Composable5() {

Text("Composable 5", modifier =
Modifier.background(LocalColor.current))

CompositionLocalProvider(LocalColor provides Color.Green) {

Composable7()

}

CompositionLocalProvider(LocalColor provides Color.Yellow) {

Composable8()

}

}



@Composable 

fun Composable7() {

Text("Composable 7", modifier =
Modifier.background(LocalColor.current))

}

Now when the Preview panel is refreshed, all four components 

will have a different color, all based on the same LocalColor state:



Greeting Preview

Composable 6
Composable 3
Composable 5
Composable 7
Composable 8

DarkPreview

Composable 6
Composable 3
Composable 5
Composable 7
Composable 8



Figure 21-4

As one final step, try to access the LocalColor state from 

Composable6:

@Composable

fun Composable6() {

Text("Composable modifier =

}

On refreshing the preview the Text component for Compsoable6 

will appear using the default color assigned to LocalColor. This is 

because Composable6 is in a different branch of the tree and 

does not have access to the current LocalColor setting.



21.8 Summary

This chapter has introduced CompositionLocal and demonstrated 

how it can be used to declare state that is accessible to 

composables lower down in the layout hierarchy without having to 

be passed from one child to another. State declared in this way is 

local to the branch of the hierarchy tree in which a value is 

assigned.



22. An Overview of Compose Slot APIs

Now that we have a better idea of what composable functions are 
and how to create them, it is time to explore composables that 

provide a slot In this chapter, we will explain what a slot API is, 

what it is used for and how you can include slots in your own 

composable functions. We will also explore some of the built-in 

composables that provide slot API support.



22.1 Understanding slot APIs

As we already know, composable functions can include calls to 
one or more other composable functions. This usually means that 

the content of a composable is predefined in terms of which 

other composables it calls and, therefore, the content it displays. 
Consider the following function consisting of a Column and three 

Text components:

@Composable

fun SlotDemo() {

Column {

Text("Top Text")

Text("Middle Text")

Text("Bottom Text")

}

}



The function could be modified to pass in parameters that specify 

the text to be displayed or even the color and font size of that 

text. Regardless of the changes we make, however, the function is 

still restricted to displaying a column containing three Text 

components:

Defaultpreview F Ck

I Top Text 
Middle Text
Bottom Text

Figure 22-1

Suppose, however, that we need to display three items in a 

column, but do not know what composable will take up the 

middle position until just before the composable is called. In its 

current form, there is no way to display anything but the declared 

Text component in the middle position. The solution to this 

problem is to open up the middle composable as a slot into 



which any other composable may be placed when the function is 

called. This is referred to as providing a slot API for the 

composable. API is an abbreviation of Application Programming 

Interface and, in this context, implies that we are adding a 

programming interface to our composable that allows the caller to 

specify the composable to appear within a slot. In fact, a 

composable function can provide multiple slots to the caller. In 

the above function, for example, all of the Text components could 

be declared as slots if required.



22.2 Declaring a slot API

It can be helpful to think of a slot API composable as a user 

interface template in which one or more elements are left blank. 

These missing pieces are then passed as parameters when the 

composable is called and included when the user interface is 

rendered by the Compose runtime system.

The first step in adding slots to a composable is to specify that 

it accepts a slot as a parameter. This is essentially a case of 

declaring that a composable accepts other composables as 

parameters. In the case of our example SlotDemo composable, we 

would modify the function signature as follows:

@Composable

fun @Composable () -> {

When the SlotDemo composable is called, it will now need to be 

passed a composable function. Note that the function is declared 

as returning a Unit object. Unit is a Kotlin type used to indicate 

that a function does not return any value. Unit can be considered 



to be the Kotlin equivalent of void in other languages. The 

parameter has been assigned a label of “middleContent”, though 

this could be any valid label name that helps to describe the slot 

and allows us to reference it within the body of the function.

The only remaining change to this composable is to substitute the 

middleContent component into the Column declaration as follows:

@Composable

fun SlotDemo(middleContent: @Composable () -> Unit) {

Column {

Text("Top Text")

middleContent()

Text("Bottom Text")

}

}

We have now successfully declared a slot API for our SlotDemo 

composable.



22.3 Calling slot API composables

The next step is to learn how to make use of the slot API 

configured into our SlotDemo composable. This simply involves 

passing a composable through as a parameter when making the 

SlotDemo function call. Suppose, for example, that we need the 

following composable to appear in the middleContent slot:

@Composable

fun ButtonDemo() {

Button(onClick = { }) {

Text("Click Me")

}

}

We can now call our SlotDemo composable function as follows:

SlotDemo(middleContent = { ButtonDemo() })

While this syntax works, it can quickly become cluttered if the 

composable has more than one slot to be filled. A cleaner syntax



reads as follows:

SlotDemo {

ButtonDemo()

}

Regardless of the syntax used, the design will be rendered as 

shown below in Figure

Defaultpreview

Top Text
Click Me

Bottom Text



Figure 22-2

A slot API is not, of course, limited to a single slot. The 

SlotDemo example could be composed entirely of slots as follows:

@Composable

fun SlotDemo(

topContent: @Composable () -> Unit,

middleContent: @Composable () -> Unit,

bottomContent: @Composable () -> Unit) {

Column {

topContent() 

middleContent() 

bottomContent()

}

}



With these changes made, the call to SlotDemo could be 

structured as follows:

SlotDemo(

topContent = { Text("Top Text") },

middleContent = { ButtonDemo() }, 

bottomContent = { Text("Bottom Text") }

)

As with the single slot, this can be abbreviated for clarity: 

SlotDemo(

{ Text("Top Text") },

{ ButtonDemo() },

{ Text("Bottom Text") }

)



22.4 Summary

In this chapter, we have introduced the concept of slot APIs and 
demonstrated how they can be added to composable functions. By 

implementing a slot API, the content of a composable function 

can be specified dynamically at the point that it is called. This 

contrasts with the static content of a typical composable where 

the content is defined at the point the function is written and 

cannot subsequently be changed. A composable with a slot API is 

essentially a user interface template containing one or more slots 

into which other composables can be inserted at runtime.

With the basics of slot APIs covered in this chapter, the next 

chapter will create a project that puts this theory into practice.



23. A Compose Slot API Tutorial

In this chapter, we will be creating a project within Android 

Studio to practice the use of slot APIs to build flexible and 
dynamic composable functions. This will include writing a 

composable function with two slots and calling that function with 

different content composables based on selections made by the 

user.



23.1 About the project

Once the project is completed, it will consist of a title, progress 

indicator, and two checkboxes. The checkboxes will be used to 

control whether the title is represented as text or graphics, and 

also whether a circular or linear progress indicator is displayed. 

Both the title and progress indicator will be declared as slots 

which will be filled with either a Text or Image composable for 

the title or, in the case of the progress indicator, a 
LinearProgressIndicator or CircularProgressIndicator component.



23.2 Creating the SlotApiDemo project

Launch Android Studio and select the New Project option from 

the welcome screen. Choose the Empty Activity template within 

the New Project dialog before clicking on the Next button.

Enter SlotApiDemo into the Name field and specify 
com.example.slotapidemo as the package name. Before clicking on 

the Finish button, change the Minimum API level setting to API 

26: Android 8.0 (Oreo). Once the project has been created, the 

SlotApiDemo project should be listed in the Project tool window 

located along the left-hand edge of the Android Studio main 

window.



23.3 Preparing the MainActivity class file

Android Studio should have automatically loaded the MainActivity.kt 

file into the code editor. If it has not, locate it in the Project tool 

window -> java -> com.example.slotapidemo -> and double-click on 

it to load it into the editor. Once loaded, modify the file to 

remove the template code as follows:

package com.example.slotapidemo 

class MainActivity : ComponentActivity() {

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

setContent {

SlotApiDemoTheme {

Surface(



modifier = Modifier.fillMaxSize(), 

color =

MaterialTheme.colorScheme.background

) {

Greeting("Android")

}

}

}

}

}

@Composable

fun Greeting(name: String) {

Text(text = "Hello $name!")



}

@Preview(showBackground = true) 

@Composable 

fun GreetingPreview() {

SlotApiDemoTheme {

Greeting("Android")

}

}



23.4 Creating the MainScreen composable

Edit the onCreate method of the MainActivity class to call a 

composable named MainScreen from within the Surface 

component:

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

setContent {

SlotDemoTheme {

Surface(

modifier = Modifier.fillMaxSize(),

color = MaterialTheme.colorScheme.background

) {

MainScreen()

}



}

}

}

MainScreen will contain the state and event handlers for the two 
Checkbox components. Start adding this composable now, making 

sure to place it after the closing brace (}) of the MainActivity 

class declaration: 

import androidx.compose.runtime.*  

import androidx.compose.material3.*  

import androidx.compose.foundation.layout.*

@Composable



fun MainScreen() {

var linearSelected by remember { mutableStateOf(true) }

var imageSelected by remember { mutableStateOf(true) }

val onLinearClick = { value : Boolean ->

linearSelected = value

}

val onTitleClick = { value : Boolean ->

imageSelected = value

}

}

Here we have declared two state variables, one for each of the 
two Checkbox components, and initialized them to true. Next, 

event handlers have been declared to allow the state of each 

variable to be changed when the user toggles the Checkbox 



settings. Later in the project, MainScreen will be modified to call 

a second composable named ScreenContent.



23.5 Adding the ScreenContent composable

When the MainScreen function calls it, the ScreenContent 

composable will need to be passed the state variables and event 

handlers and can initially be declared as follows:

package com.example.slotapidemo 

import androidx.compose.ui.Alignment

import androidx.compose.ui.unit.dp

@Composable

fun ScreenContent(

linearSelected: Boolean,



imageSelected: Boolean,

onTitleClick: (Boolean) -> Unit,

onLinearClick: (Boolean) -> Unit) {

Column(

modifier = Modifier.fillMaxSize(),

horizontalAlignment = Alignment.CenterHorizontally,

verticalArrangement = Arrangement.SpaceBetween

) {

}

}

As the name suggests, the ScreenContent composable is going to 

be responsible for displaying the screen content including the title, 

progress indicator, and checkboxes. In preparation for this content, 

we have made a call to the Column composable and configured it 

to center its children along the horizontal axis. The SpaceBetween 



arrangement property has also been set. This tells the column to 
space its children evenly but not to include spacing before the 

first or after the last child.

One of the child composables which ScreenContent will call will 

be responsible for rendering the two Checkbox components. While 

these could be added directly within the Column composable, a 

better approach is to place them in a separate composable which 

can be called from within ScreenContent.



23.6 Creating the Checkbox composable

The composable containing the checkboxes will consist of a Row 

component containing two Checkbox instances. In addition, Text 

composables will be positioned to the left of each Checkbox with 

a Spacer separating the two Text/Checkbox pairs.

When it is called, the Checkboxes composable will need to be 

passed the two state variables which will be used to make sure 

the checkboxes display the current state. Also passed will be 

references to the onLinearClick and onTitleClick event handlers 

which will be assigned to the onCheckChange properties of the two 

Checkbox components.

Remaining within the MainActivity.kt file, add the CheckBoxes 

composable so that it reads as follows:

@Composable

fun CheckBoxes(

linearSelected: Boolean,

imageSelected: Boolean,

onTitleClick: (Boolean) -> Unit,



onLinearClick: (Boolean) -> Unit 

) {

Row(

Modifier.padding(2O.dp),

verticalAlignment = Alignment.CenterVertically

) {

Checkbox(

checked = imageSelected,

onCheckedChange = onTitleClick

)

Text("Image Title")

Spacer(Modifier.width(20.dp))

Checkbox(checked = linearSelected,



onCheckedChange = onLinearClick

)

Text("Linear Progress")

}

}

If you would like to preview the composable before proceeding, 

add the following preview declaration before clicking on the Build

& Refresh link in the Preview panel:

@Preview

@Composable

fun DemoPreview() {

CheckBoxes(

linearSelected = true, 

imageSelected = true,



onTitleClick = { /*TODO*/  }, 

onLinearClick = { /*TODO*/})

}

When calling the CheckBoxes composable in the above preview 

function we are setting the two state properties to true and 

assigning stub lambdas that do nothing as the event callbacks.

Once the preview has been refreshed, the layout should match 
that shown in Figure 23-1 below:

DemoPreview

Q Image Title s Linear Progress

Figure 23-1



23.7 Implementing the ScreenContent slot API

Now that we have added the composable containing the two 
checkboxes, we can call it from within the Column contained 

within ScreenContent. Since both the state variables and event 

handlers were already passed into ScreenContent, we can simply 

pass these to the Checkboxes composable when we call it. Locate 

the ScreenContent composable and modify it as follows:

@Composable

fun ScreenContent(

linearSelected: Boolean,

imageSelected: Boolean,

onTitleClick: (Boolean) -> Unit,

onLinearClick: (Boolean) -> Unit) {

Column(

modifier = Modifier.fillMaxSize(),

horizontalAlignment = Alignment.CenterHorizontally,



verticalArrangement = Arrangement.SpaceBetween

) {

CheckBoxes(linearSelected, imageSelected, onTitleClick, 
onLinearClick)

}

}

In addition to the row of checkboxes, ScreenContent also needs 

slots for the title and progress indicator. These will be named 

titleContent and progressContent and need to be added as 

parameters and referenced as children of the Column:

@Composable

fun ScreenContent(

linearSelected: Boolean,

imageSelected: Boolean,

onTitleClick: (Boolean) -> Unit,



onLinearClick: (Boolean) ->

titleContent: @Composable () -> Unit,

progressContent: @Composable () -> {

Column(

modifier = Modifier.fillMaxSize(),

horizontalAlignment = Alignment.CenterHorizontally,

verticalArrangement = Arrangement.SpaceBetween

) {

titleContent()

progressContent()

CheckBoxes(linearSelected, imageSelected, onTitleClick, 

onLinearClick)

}

}



All that remains is to add some code to the MainScreen 

declaration so that different composables are provided for the 

slots based on the current values of the linearSelected and 

imageSelected state variables. Before taking that step, however, we 

need to add one more composable to display an image in the 

title slot.



23.8 Adding an Image drawable resource

For this example, we will use one of the built-in vector drawings 

included with the Android SDK. To select a drawing and add it to 

the project, begin by locating the drawable folder in the Project tool 

window -> res -> and right-click on it. In the resulting menu select 

the New -> Vector Asset menu option:

Figure 23-2

Once the menu option has been selected, Android Studio will display 

the Asset Studio dialog shown in Figure 23-3 below:



Figure 23-3

Within the dialog, click on the image to the right of the Clip Art 

label as indicated by the arrow in the above figure to display a list 

of available icons. In the search box, enter “cloud” and select the 

“Cloud Download” icon as shown in Figure 23-4 below:



Select Icon

Q.’ cloud Filled All

A O A O
cloud circle cloud done cloud download cloud off cloud queue

cloud upload wb cloudy

These icons are available under the Apache License Version 2.0 *

Cancel

Figure 23-4

Click on the OK button to select the drawing and return to the 

Asset Studio dialog. Increase the size of the image to 150dp x 150dp 

before clicking the Next button. On the subsequent screen, click on 

Finish to save the file in the default location.

While changing the image’s color in the Asset Studio dialog was 

possible, the color selector only allows us to specify colors by RGB 

value. Instead, we want to use a named color from the project



resources. So, in the Project tool window, find and open the 

colors.xml file under app -> res -> This file contains a set of named 

color properties. In this example, the plan is to use the color named 

version="1.0" encoding="utf-8"?>

name="purple_700">#FF3700 B3

Having chosen a color from the resources, double-click on the 

baseline_cloud_download_24.xml vector asset file in the Project tool 

window to load it into the code editor and modify the android:tint 

property as follows:

android:height="150dp"

android:viewportHeight="24" android:viewportWidth="24"

android:width="150dp"

xmlns:android="http://schemas.android.com/apk/res/android">

android:fillColor="@android:color/white" 

android:pathData="M19.35,10.04C18.67,6.59 15.64,4 12,4 9.11,4 6.6,5.64

http://schemas.android.com/apk/res/android


5.35,8.04 2.34,8.36 0,10.91 0,1400,3.31 2.69,6 6,6hi3C2.76,o 5,-2.24 5,-5 

o,-2.64 -2.05,-4.78 —4.65,—4.96zM17,13l—5,5 —5,—5h3V9h4V4h3z"/>



23.9 Writing the TitleImage composable

Now that we have an image to display for the title, the next step 
is to add a composable to the MainActivity.kt file to display the 

image. To make this composable as reusable as possible, we will 

design it so that it is passed the image resource to be displayed: 

import androidx.compose.foundation .Image

import androidx.compose.ui.res.painterResource

@Composable

fun TitleImage(drawing: Int) {

Image(



painter = painterResource(drawing), 

contentDescription = "title image", 

modifier = Modifier.size(i5O.dp)

)

}

The Image component provides several ways to render graphics 

depending on which parameters are used when it is called. Since 

we are using a resource image, the component makes a call to 

the painterResource method to render the image.



23.10 Completing the MainScreen composable

Now that all of the child composables have been added and the 
state variable and event handlers implemented, it is time to 

complete work on the MainScreen declaration. Specifically, code 

needs to be added to this composable to display different content 

in the two ScreenContent slots depending on the current checkbox 
selections.

Locate the MainScreen composable in the MainActivity.kt file and 

add code to call the ScreenContent function as follows:

@Composable

fun MainScreen() {

var linearSelected by remember { mutableStateOf(true) }

var imageSelected by remember { mutableStateOf(true) }

val onLinearClick = { value : Boolean ->

linearSelected = value

}



val onTitleClick = { value : Boolean ->

imageSelected = value

}

ScreenContent(

linearSelected = linearSelected,

imageSelected = imageSelected, 

onLinearClick = onLinearClick, 

onTitleClick = onTitleClick, 

titleContent = {

if (imageSelected) {

TitleImage(drawing =
R.drawable.baseline_cloud_download_24) 

} else {

Textf’Downloading",



style = MaterialTheme.typography.headlineSmall, 

modifier = Modifier.padding(3O.dp))

}

},

progressContent = {

if (linearSelected) {

LinearProgressIndicator(Modifier.height(4O.dp))

} else {

CircularProgressIndicator(Modifier.size(200.dp),

strokeWidth = 18.dp)

}

}

)



}

The ScreenContent call begins by passing through the state 

variables and event handlers which will subsequently be passed 

down to the two Checkbox instances:

ScreenContent(

linearSelected = linearSelected,

imageSelected = imageSelected,

onLinearClick = onLinearClick,

onTitleClick = onTitleClick,

The next parameter deals with the titleContent slot and uses an if 

statement to pass through either a TitleImage or Text component 

depending on the current value of the imageSelected state:

titleContent = {

if (imageSelected) {

TitleImage(drawing =

R.drawable.baseline_cloud_download_24)



} else {

Text("Downloading", style =

MaterialTheme.typography.headlineSmall,

modifier = Modifier.padding(3o.dp))

}

},

Finally, either a linear or circular progress indicator is used to fill 

ScreenContent’s progressContent slot based on the current value of 
the linearSelected state:

progressContent = {

if (linearSelected) {

LinearProgressIndicator(Modifier.height(40.dp))

} else {

CircularProgressIndicator(Modifier.size(200.dp), strokeWidth

= 18.dp)



}

}

Note that we haven’t passed a progress value through to either of 

the progress indicators. This will cause the components to enter 
indeterminate progress mode which will cause them to show a 

continually cycling indicator.



23.11 Previewing the project

With these changes complete, the project is now ready to preview. 

Locate the DemoPreview composable added earlier in the chapter 

and modify it to call MainScreen instead of the Checkboxes 

composable. Also, add the system UI to the preview:

= true)

@Composable

fun DemoPreview() {

MainScreen()

}

Once a rebuild has been performed, the Preview panel should 

resemble that shown in Figure



13:00

Image Title Linear Progress



Figure 23-5

To test that the project works, start interactive mode by clicking 
on the button indicated in Figure

Figure 23-6

Once interactive mode has started, experiment with different 

combinations of checkbox settings to confirm that the slot API for 

the ScreenContent composable is performing as expected. Figure 

for example, shows the rendering with both checkboxes disabled:



13:00

Downloading

Image TiUe Linear Progress

o



Figure 23-7



23.12 Summary

In this chapter, we have demonstrated the use of a slot API to 
insert different content into a composable at the point that it is 

called during runtime. Incidentally, we also passed state variables 

and event handler references down through multiple levels of 

composable functions and explored how to use Android Studio’s 

Asset Studio to select and configure built-in vector drawable 

assets. Finally, we also used the built-in Image component to 

render an image within a user interface layout.



24. Using Modifiers in Compose

In this chapter, we will introduce Compose modifiers and explain 
how they can be used to customize the appearance and behavior 

of composables. Topics covered will include an overview of 

modifiers and an introduction to the Modifier object. The chapter 

will also explain how to create and use modifiers, and how to 

add modifier support to your own composables.



24.1 An overview of modifiers

Many composables accept one or more parameters that define 
their appearance and behavior within the running app. We can, for 

example, specify the font size and weight of a Text composable by 

passing through parameters as follows:

@Composable

fun DemoScreen() {

Text(

"My Vacation",

fontSize = 4O.sp,

fontWeight = FontWeight.Bold

)

}

In addition to parameters of this type, most built-in composables 

also accept an optional modifier parameter which allows additional 

aspects of the composable to be configured. Unlike parameters, 



which are generally specific to the type of composable (a font 

setting would have no meaning to a Column component for 

example), modifiers are more general in that they can be applied 

to any composable.

The foundation for building modifiers is the Modifier object. 

Modifier is a built-in Compose object designed to store 

configuration settings that can be applied to composables. The 

Modifier object provides a wide selection of methods that can be 

called upon to configure properties such as borders, padding, 

background, size requirements, event handlers, and gestures to 

name just a few. Once declared, a Modifier can be passed to 

other composables and used to change appearance and behavior.

In the remainder of this chapter, we will explore the key concepts 

of modifiers and demonstrate their use within an example project.



24.2 Creating the ModifierDemo project

Launch Android Studio and select the New Project option from 

the welcome screen. Within the new project dialog, choose the 

Empty Activity template before clicking on the Next button.

Enter ModifierDemo into the Name field and specify 
com.example.modifierdemo as the package name. Before clicking on 

the Finish button, change the Minimum API level setting to API 

26: Android 8.0 (Oreo). Once the project has been created, the 

project files should be listed in the Project tool window located 

along the left-hand edge of the Android Studio main window.

Load the MainActivity.kt file into the code editor and delete the 

Greeting composable before making the following changes:

package com.example.modifierdemo 

import androidx.compose.ui.graphics.Color 

import androidx.compose.ui.unit.sp



import androidx.compose. u i .text.font. FontWeight 

class MainActivity : ComponentActivity() {

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedlnstanceState) 

setContent {

Surface(

modifier = Modifier.fillMaxSize(),

color = MaterialTheme.colorScheme.background

) {

DemoScreen()

}



}

}

}

@Composable

fun DemoScreen() {

Text(

"Hello Compose",

fontSize = 4O.sp,

fontWeight = FontWeight.Bold

)

}

@Preview(showBackground = true)

@Composable 

fun {



ModifierDemoTheme {

DemoScreen()

}

}



24.3 Creating a modifier

The first step in learning to work with modifiers is to create one. To 

begin with, we can create a modifier without any configuration 

settings as follows:

val modifier = Modifier

This essentially gives us a blank modifier containing no configuration 

settings. To configure the modifier, we need to call methods on it. 

For example, the modifier can be configured to add 10dp of padding 

on all four sides of any composable to which it is applied:

val modifier = Modifier.padding(all = 10.dp)

Method calls on a Modifier instance may be chained together to 

apply multiple configuration settings in a single operation. The 

following addition to the modifier will draw a black, 2dp wide border 

around a composable:

val modifier = Modifier

.padding(all = 10.dp)

.border(width = 2.dp, color = Color.Black)



Once a modifier has been created it can be passed to any 

composable which accepts a modifier parameter. Edit the 

DemoScreen function so that it reads as follows to pass our modifier 

to the Text composable: 

import and roidx.compose.fou ndation. border

import androidx.compose.foundation.layout.padding

import androidx.compose.ui.unit.dp

@Composable 

fun DemoScreen() { 

val modifier = Modifier

.border(width = 2.dp, color = Color.Black)



.padding(all = io.dp)

Text(

"Hello Compose",

modifier = modifier,

fontSize = 4o.sp,

fontWeight = FontWeight.Bold

)

}

When the layout is previewed it should appear as illustrated in 

Figure

Figure 24-1



As we can see from the preview, the padding and border have been 

applied to the text. Clearly, the Text composable has been 

implemented such that it accepts a modifier as a parameter. If a 

composable accepts a modifier it will always be the first optional 

parameter in the parameter list. This has the added benefit of 

allowing the modifier to be passed without declaring the argument 

name. The following, therefore, is syntactically correct:

Text(

"Hello Compose",

modifier,

fontSize = 40.sp,

fontWeight = FontWeight.Bold

)



24.4 Modifier ordering

The order in which modifiers are chained is of great significance to 

the resulting output. In the above example, the border was applied 

first followed by the padding. This has the result of the border 

appearing outside the padding. To place the border inside the 

padding, the order of the modifiers needs to be swapped as follows:

val modifier = Modifier

.padding(all = 10.dp)

.border(width = 2.dp, color = Color.Black)

When previewed, the Text composable will appear as shown in Figure 

24-2 below:

Defaultpreview

Hello Compose
Figure 24-2



If you don’t see the expected effects when working with chained 

modifiers, keep in mind this may be because of the order in which 

they are being applied to the component.



24.5 Adding modifier support to a composable

So far in this chapter, we have shown how to create a modifier and 

use it with a built-in composable. When developing your own 

composables it is important to consider whether modifier support 

should be included to make the function more configurable.

When adding modifier support to a composable the first rule is that 

the parameter should be named “modifier” and must be the first 

optional parameter in the function’s parameter list. As an example, 

we can add a new composable named CustomImage to our project 

which accepts as parameters the image resource to display and a 

modifier. Edit the MainActivity.kt file and add this composable so that 

it reads as follows: 

import and roidx.compose.fou ndation. Image 

import androidx.compose.ui.res.painterResource



@Composable 

fun CustomImage(image: Int) {

Image(

painter = painterResource(image),

contentDescription = null

)

}

As currently declared, the function only accepts one parameter in the 

form of the image resource. The next step is to add the modifier 

parameter:

@Composable 

fun CustomImage(image: modifier: {

Image(

painter = painterResource(image), 

contentDescription = null



)

}

It is important to remember that the modifier parameter must be 

optional so that the function can be called without one. This means 

that we need to specify an empty Modifier instance as the default 

for the parameter:

@Composable

fun CustomImage(image: Int, modifier: {

Finally, we need to make sure that the modifier is applied to the 

Image composable, keeping in mind that it will be the first optional 

parameter:

@Composable

fun CustomImage(image: Int, modifier: Modifier = Modifier) {

Image(



painter = painterResource(image), 

contentDescription =

modifier

)

}

Now that we have created a new composable with modifier support 

we are almost ready to call it from the DemoScreen function. First, 

however, we need to add an image resource to the project. The 

image is named vacation.jpg and can be found in the images folder 

of the sample code archive which can be downloaded from the 

following web page:

https://www.ebookfrenzy.com/retail/compose13/index.php

Within Android Studio, display the Resource Manager tool window -> 

Tool Windows -> Resource Locate the vacation.png image in the file 

system navigator for your operating system and drag and drop it 

onto the Resource Manager tool window. In the resulting dialog, click 

Next followed by the Import button to add the image to the project. 

The image should now appear in the Resource Manager as shown in 

Figure 24-3 _below:

https://www.ebookfrenzy.com/retail/compose1


Figure 24-3

The image will also appear in the res -> drawables section of the 

Project tool window:

■| res

v drawable

<> ic_launcher_background.xml
<> ic_launcher_foreground.xml (v24)

vacation.jpg

Figure 24-4



Next, modify the DemoScreen composable to include a call to the 

Customimage component: 

import and roidx.compose. ui.Alignment 

import and roidx.compose.fou ndation.layout.*

@Composable 

fun DemoScreen() {

val modifier = Modifier

.border(width = 2.dp, color = Color.Black) 

.padding(all = io.dp)

Column(

Modifier.padding(2o.dp),



horizontalAlignment = Alignment.CenterHorizontally, 

verticalArrangement = Arrangement.Center

) {

Text(

"Hello Compose",

modifier = modifier,

fontSize = 4o.sp,

fontWeight = FontWeight.Bold

)

Spacer(Modifier.height(i6.dp))

CustomImage(R.d rawable.vacation)

}

}



Refresh and build the preview and verify that the layout matches that 

shown in Figure 24-5 below:

DefaultPreview R

Figure 24-5

At this point, the Image component is using the default Modifier 

instance that we declared in the CustomImage function signature. To 

change this we need to construct a custom modifier and pass it



through to Customimage to modify the appearance on the image 

resource when it is displayed: 

import androidx.compose.foundation.shape.RoundedCornerShape

import and roidx.compose. u i .d raw.clip

Spacer(Modifier.height(i6.dp))

Modifier

.padding(i6.dp)

.width(27O.dp) 

.clip(shape = RoundedCornerShape(3O.dp))

)



The preview should now display the image with padding, fixed width, 

and rounded corners:

Figure 24-6



24.6 Common built-in modifiers

A list of the full set of Modifier methods is beyond the scope of 

this book (there are currently over 100). For a detailed and 

complete list of methods, refer to the Compose documentation at 

the following URL:

https://developer.android.com/reference/kotlin/androidx/compose/ui/Modi 

fier

The following is a selection of some of the more commonly used 

functions:

- Draws a solid colored shape behind the composable.

- Specifies a handler to be called when the composable is clicked. 

Also causes a ripple effect when the click is performed.

- Clips the composable content to a specified shape.

- The composable will be sized to fit the maximum height 

permitted by its parent.

- The composable will be sized to fit the maximum height and 

width permitted by its parent.

https://developer.android.com/reference/kotlin/androidx/compose/ui/Modi


- The composable will be sized to fit the maximum width 

permitted by its parent.

- Used when implementing custom layout behavior, a topic 

covered in the chapter entitled “Building Custom

- Positions the composable the specified distance from its current 

position along the x and y-axis.

- Adds space around a composable. Parameters can be used to 

apply spacing to all four sides or to specify different padding for 

each side.

- Rotates the composable on its center point by a specified 

number of degrees.

- Increase or reduce the size of the composable by the specified 
scale factor.

- Enables scrolling for a composable that extends beyond the 

viewable area of the layout in which it is contained.

- Used to specify the height and width of a composable. In the 

absence of a size setting, the composable will be sized to 

accommodate its content (referred to as



24.7 Combining modifiers

When working with Compose, situations may arise where you have 

two or more Modifier objects, all of which need to be applied to 

the same composable. For this situation, Compose allows 

modifiers to be combined using the then keyword. The syntax for 

using this is as follows:

val combinedModifier = 

firstModifier.then(secondModifier).then(thirdModifier) ...

The result will be a modifier that contains the configurations of 

all specified modifiers. To see this in action, modify the 
MainActivity.kt file to add a second modifier for use with the Text 

composable: 

val modifier = Modifier

.border(width = 2.dp, color = Color.Black)

.padding(all = 10.dp)



val secondModifier = Modifier.height(ioo.dp)

Next, change the Text call to combine both modifiers:

Text(

"Hello Compose",

fontSize = 40.sp,

fontWeight = FontWeight.Bold

)

The Text composable should now appear in the preview panel 

with a height of 100dp in addition to the original font, border, 

and padding settings.



24.8 Summary

Modifiers are created using instances of the Compose Modifier 

object and are passed as parameters to composables to change 

appearance and behavior. A modifier is configured by calling 

methods on the Modifier object to define settings such as size, 
padding, rotation, and background color. Most of the built-in 

composables provided with the Compose system will accept a 

modifier as a parameter. It is also possible (and recommended) 

to add modifier support to your own composable functions. If a 

composable function accepts a modifier, it will always be the first 

optional parameter in the function’s parameter list, but positioned 

after any mandatory parameters. Multiple modifier instances may 

be combined using the then keyword before being applied to a 

component.



25. Annotated Strings and Brush Styles

The previous chapter explored how we use modifiers to change 

the appearance and behavior of composables. Many examples 

used to demonstrate modifiers involved the Text composable, 

performing tasks such as changing the font type, size, and weight. 

This chapter will introduce another powerful text-related feature of 

Jetpack Compose, known as annotated strings. We will also look 

at brush styles and how they can be used to add more effects to 

the text in a user interface.



25.1 What are annotated strings?

The previous chapter’s modifier examples changed the appearance 

of the entire string displayed by a Text composable. For instance, 

we could not display part one part of the text in bold while 

another section was in italics. It is for this reason that Jetpack 

Compose includes the annotated strings.

Annotated strings allow a text to be divided into multiple sections, 

each with its own style.



25.2 Using annotated strings

An AnnotatedString instance is created by calling the 

buildAnnotatedString function and passing it the text and styles to 

be displayed. These string sections are combined via calls to the 

append function to create the complete text to be displayed.

Two style types are supported, the first of which, SpanStyle, is 

used to apply styles to a span of individual characters within a 

string. The syntax for building an annotated string using SpanStyle 

is as follows:

buildAnnotatedString {

withStyle(style = SpanStyle( /*  style settings */))  {

append(/*  text string */)

}

withStyle(style = SpanStyle(/*  style settings */))  {

append(/*  more text */)

}



}

A SpanStyle instance can be initialized with any combination of 

the following style options:

•color

•fontSize

•fontWeight

•fontStyle

•fontSynthesis

•fontFamily

•fontFeatureSettings

•letterSpacing 

•baselineShift,



•textGeometricTransform

•localeList

•background

•textDecoration

•shadow

Paragraphstyle, on the other hand, applies a style to paragraphs 
and can be used to modify the following properties:

•textAlign

•textDirection

•lineHeight

•textIndent

The following is the basic syntax for using paragraph styles in 

annotated strings: 

buildAnnotatedString {



withStyle(style = ParagraphStyle( /*  style settings */))  {

append(/*  text string */)

}

withStyle(style = ParagraphStyle(/*  style settings */))

append(/*  more text */)

}

}



25.3 Brush Text Styling

Additional effects may be added to any text by using the 
Compose Brush styling. Brush effects can be applied directly to 

standard text strings or selectively to segments of an annotated 

string. For example, the following syntax applies a radial color 

gradient to a Text composable (color gradients will be covered in 

the chapter entitled “Canvas Graphics Drawing in

val myColors = listOf( /*  color list */)

Text(

text = "text here",

style = TextStyle(

brush = Brush.radialGradient(

colors = myColors

)

)

)





25.4 Creating the example project

Launch Android Studio and select the New Project option from 

the welcome screen. Choose the Empty Activity template within 

the New Project dialog before clicking the Next button.

Enter StringsDemo into the Name field and specify 
com.example.stringsdemo as the package name. Before clicking the 

Finish button, change the Minimum API level setting to API 26: 

Android 8.0 (Oreo). Once the project has been created, the 

SlotApiDemo project should be listed in the Project tool window 

along the left-hand edge of the Android Studio main window.

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to 
call MainScreen instead of Greeting.



25.5 An example SpanStyle annotated string

The first example we will create uses SpanStyle to build an 

annotated string consisting of multiple color and font styles.

Begin by editing the MainActivity.kt file and modifying the 

MainScreen function to read as follows: 

import androidx.compose.ui.graphics.Color

import androidx.compose.ui.text.buildAnnotatedString

import androidx.compose. u i .text.withStyle

import androidx.compose.ui.text.SpanStyle

import androidx.compose. u i .text.font. FontWeight

import androidx.compose. u i .text.font. FontStyle 

import androidx.compose.foundation.layout.Column



import androidx.compose.ui.unit.sp

@Composable

fun MainScreen() {

Column {

SpanString()

}

}

Next, add the SpanString declaration to the MainActivity.kt file as 

follows:

@Composable

fun SpanStringQ {

Text(



buildAnnotatedString {

withStyle(

style = SpanStyle(fontWeight = FontWeight.Bold,

fontSize = 3O.sp)) {

append("T")

}

withStyle(style = SpanStyle(color = Color.Gray)) {

append("his")

}

append(" is ")

withStyle(

style = SpanStyle(

fontWeight = FontWeight.Bold,



fontStyle = FontStyle.Italic, 

color = Color.Blue

)

) {

append("great!")

}

}

)

}

The example code creates an annotated string in three parts using 

several span styles for each section. After making these changes, 

refer to the Preview panel, where the text should appear as shown 

in Figure



Figure 25-1



25.6 An example Paragraphstyle annotated string

Now that we have seen how to create a span-style annotated string, 

the next step is to build a paragraph-style string. Remaining in the 

MainActivity.kt file, make the following changes to add a new function 

named ParaString and to call it from the MainScreen function: 

import and roidx.compose. u i .text. Paragraphstyle 

import and roidx.compose. u i .text.style.TextAlign 

import and roidx.compose. u i .text.style.TextIndent

@Composable 

fun MainScreen() {

Column {



SpanStringQ

ParaString()

}

}

@Composable

fun ParaString() {

Text(

buildAnnotatedString {

append(

"\nThis is some text that doesn't have any style 

applied to it.\n")

})

}



The above code gives us an unmodified paragraph against which we 

can compare the additional paragraphs we will add. Next, modify the 

function to add an indented paragraph with an increased line height:

@Composable

fun ParaString() {

Text(

buildAnnotatedString {

append("\nThis is some text that doesn't have any style 

applied to it.\n")

withStyle(style = ParagraphStyle(

lineHeight = 3O.sp,

textindent = Textindent(

firstLine = 6o.sp,

restLine = 25.sp))

) {



append("This is some text that is indented more 

on the first lines than the rest of the lines. It also has an increased 

line height.\n")

}

})

}

When the preview is rendered, it should resemble Figure 25-2 (note 

that we specified different indents for the first and remaining lines):

This is great!

This is some text that doesn't have any style 
applied to it.

This is some text that is indented more on 

the first lines than the rest of the lines. It also 

has an increased line height.

Figure 25-2



Next, add a third paragraph that uses right alignment as follows: 

@Composable

fun ParaStringQ { 

. 

.

append("This is some text that is indented more 

on the first lines than the rest of the lines. It also has an increased 

line height.\n")

}

withStyle(style = ParagraphStyle(textAlign = TextAlign.End)) {

append("This is some text that is right aligned.")

}

})

}

This change should result in the following preview:



This is great!

This is some text that doesn't have any style 
applied to it.

This is some text that is indented more on 

the first lines than the rest of the lines. It also 

has an increased line height.

This is some text that is right aligned

Figure 25-3



257 A Brush style example

The final example in this tutorial involves using the Brush style to 

change the text’s appearance. First, add another function to the 

MainActivity.kt file and call it from within the MainScreen function: 

import androidx.compose.ui.graphics.Brush

import and roidx.compose. u i .text. Experi mentalTextApi

@Composable

fun MainScreen() {

Column {

SpanString()



ParaString()

BrushStyle()

}

}

@OptIn(ExperimentalTextApi::class)

@Composable

fun BrushStyle() {

}

We will begin by declaring a list of colors and use a span style to 

display large, bold text as follows:

@OptIn(ExperimentalTextApi::class)

@Composable

fun BrushStyle() {

val colorList: List = listOf(Color.Red, Color.Blue,



Color.Magenta, Color.Yellow, Color.Green, Color.Red)

Text(

text = buildAnnotatedString {

withStyle(

style = SpanStyle(

fontWeight = FontWeight.Bold,

fontSize = 70.sp

)

) {

append("COMPOSE!")

}

}

)

}



All that remains is to apply a linearGradient brush to the style, using 

the previously declared color list:

@OptIn(ExperimentalTextApi::class)

@Composable

fun BrushStyle() {

Text(

text = buildAnnotatedString {

withStyle(

style = SpanStyle(

fontWeight = FontWeight.Bold,

fontSize =

brush = Brush.linearGradient(colors = colorList)

)

) {



append("COMPOSE!")

After completing the above changes, check that the new text appears 

in the preview panel as illustrated in Figure 39-3:

Figure 25-4



25.8 Summary

While modifiers provide a quick and convenient way to make 

changes to the appearance of text in a user interface, they do not 

support multiple styles within a single string. On the other hand, 

annotated strings provide greater flexibility in changing the 

appearance of text. Annotated strings are built using the 
buildAnnotatedString function and can be configured using either 

span or paragraph styles. Another option for altering how text 

appears is using the Brush style to change the text foreground 

creatively, such as using color gradients.



26. Composing Layouts with Row and Column

User interface design is largely a matter of selecting the 

appropriate interface components, deciding how those views will 

be positioned on the screen, and then implementing navigation 

between the different screens of the app.

As is to be expected, Compose includes a wide range of user 

interface components for use when developing an app. Compose 

also provides a set of layout composables to define both how the 

user interface is organized and how the layout responds to factors 

such as changes in screen orientation and size.

This chapter will introduce the Row and Column composables 

included with Compose and explain how these can be used to 

create user interface designs with relative ease.



26.1 Creating the RowColDemo project

Launch Android Studio and select the New Project option from 

the welcome screen. Within the resulting new project dialog, 

choose the Empty Activity template before clicking on the Next 

button.

Enter RowColDemo into the Name field and specify 
com.example.rowcoldemo as the package name. Before clicking on 

the Finish button, change the Minimum API level setting to API 

26: Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to 
call MainScreen instead of Greeting. As we work through the 

examples in this chapter, row and column-based layouts will be 

built using instances of a custom component named TextCell 

which displays text within a black border with a small amount of 



padding to provide space between adjoining components. Before 
proceeding, add this function to the MainActivity.kt file as follows: 

import androidx.compose.foundation.border

import androidx.compose.foundation.layout.padding

import androidx.compose.foundationJayout.*

import androidx.compose.ui.graphics.Color 

import androidx.compose. u i .text.font. FontWeight

import androidx.compose. u i .text.style.TextAlign

import androidx.compose.ui.umt.dp 

import androidx.compose.ui.unit.sp



@Composable 

fun TextCell(text: String, modifier: Modifier = Modifier) {

val cellModifier = Modifier

.padding(4.dp) 

.size(ioo.dp, loo.dp) 

.border(width = 4.dp, color = Color.Black)

Text(text = text, cellModifier.then(modifier),

fontSize = 70.sp,

fontWeight = FontWeight.Bold,

textAlign = TextAlign.Center)

}



26.2 Row composable

The Row composable, as the name suggests, lays out its children 

horizontally on the screen. For example, add a simple Row 

composable to the MainScreen function as follows:

@Composable

fun MainScreen() {

Row {

TextCell("i")

TextCell("2")

TextCell("3")

}

}



When rendered, the Row declared above will appear as illustrated 

in Figure 26-1 below:

Figure 26-1



26.3 Column composable

The Column composable performs the same purpose as the Row 

with the exception that its children are arranged vertically. The 

following example places the same three composables within a 
Column:

@Composable

fun MainScreen() {

Column {

TextCell("i")

TextCell("2")

TextCell("3")

}



}

The rendered output from the code will appear as shown in

Figure

Figure 26-2



26.4 Combining Row and Column composables

Row and Column composables can, of course, be embedded 

within each other to create table style layouts. Try, for example, 

the following composition containing a mixture of embedded Row 

and Column layouts:

@Composable

fun MainScreen() {

Column {

Row {

Column {

TextCell("i")

TextCell("2")

TextCell("3")

}



Column {

TextCell("4")

TextCell("5")

TextCell("6")

}

Column {

TextCell("7")

TextCell("8")

}

}

Row {

TextCell("9")

TextCell("io")

TextCell("ii")



}

}

}

Figure 26-3 illustrates the layout generated by the above code:



Figure 26-3

Using this technique, Row and Column layouts may be embedded 

within each other to achieve just about any level of layout 

complexity.



26.5 Layout alignment

Both the Row and Column composables will occupy an area of 

space within the user interface layout depending on child 

elements, other composables, and any size-related modifiers that 

may have been applied. By default, the group of child elements 

within a Row or Column will be aligned with the top left-hand 

corner of the content area (assuming the app is running on a 

device configured with a left-to-right reading locale). We can see 

this effect if we increase the size of our original example Row 

composable:

@Composable

fun MainScreen() {

Row(modifier = Modifier.size(width = 400.dp, height = 200.dp)) {

TextCell("i")

TextCell("2")

TextCell("3")

}



}

Before making this change, the Row was wrapping its children (in 

other words sizing itself to match the content). Now that the Row 

is larger than the content we can see that the default alignment 

has placed the children in the top left-hand corner of the Row 

component:

Figure 26-4

This default alignment in the vertical axis may be changed by 

passing through a new value using the verticalAlignment parameter 

of the Row composable. For example, to position the children in 

the vertical center of the available space, the 

Alignment.CenterVertically value would be passed to the Row as 

follows:



import androidx.compose.ui.Alignment

@Composable

fun MainScreen() {

= Alignment.CenterVertically,

modifier = Modifier.size(width = 4oo.dp, height = 2oo.dp)) {

TextCell(V)

TextCell("2")

TextCell("3")

}

}



This will cause the content to be positioned in the vertical center 

of the Row’s area as illustrated below:

Figure 26-5

The following is a list of alignment values accepted by the Row 

vertical alignment parameter:

- Aligns the content at the top of the Row content area.

- Positions the content in the vertical center of the Row content 

area.

- Aligns the content at the bottom of the Row content area.

When working with the Column composable, the 

horizontalAlignment parameter is used to configure alignment along



the horizontal axis. Acceptable values are as follows:

- Aligns the content at the horizontal start of the Column content 

area.

- Positions the content in the horizontal center of the Column 

content area

- Aligns the content at the horizontal end of the Column content 

area.

In the following example, the Column’s children have been aligned 

with the end of the Column content area:

@Composable

fun MainScreen() {

Column(horizontalAlignment = Alignment.End,

modifier = Modifier.width(25O.dp)) {



TextCell("i")

TextCell("2")

TextCell("3")

}

}

When rendered, the resulting column will appear as shown in

Figure



Figure 26-6

When working with alignment it is worth remembering that it 

works on the opposite axis to the flow of the containing 

composable. For example, while the Row organizes children 

horizontally, alignment operates on the vertical axis. Conversely, 

alignment operates on the horizontal axis for the Column 

composable while children are arranged vertically. The reason for 

emphasizing this point will become evident when we introduce 

arrangements.



26.6 Layout arrangement positioning

Unlike the alignment settings, arrangement controls child positioning 

along the same axis as the container (i.e. horizontally for Rows and 

vertically for Columns). Arrangement values are set on Row and 

Column instances using the horizontalArrangement and 

verticalArrangement parameters respectively. Arrangement properties 

can be categorized as influencing either position or child spacing.

The following positional settings are available for the Row component 

via the horizontalArrangement parameter:

- Aligns the content at the horizontal start of the Row content area.

- Positions the content in the horizontal center of the Row content 

area.

- Aligns the content at the horizontal end of the Row content area.

The above settings can be visualized as shown in Figure

Figure 26-7



The Column composable, on the other hand, accepts the following 

values for the verticalArrangement parameter:

- Aligns the content at the top of the Column content area.

- Positions the content in the vertical center of the Column content 

area.

- Aligns the content at the bottom of the Column content area.

Figure 26-8 illustrates these verticalArrangement settings:

Figure 26-8

Using our example once again, the following change moves the child 

elements to the end of the Row content area:

= Arrangement.End, 

modifier = Modifier.size(width = 400.dp, height = {



TextCell("1")

TextCell("2")

TextCell("3")

}

The above code will generate the following user interface layout:

Figure 26-9

Similarly, the following positions child elements at the bottom of the 

containing Column:



modifier = Modifier.height(40o.dp)) {

TextCell(V)

TextCell("2")

TextCell("3")

}

The above composable will render within the Preview panel as 

illustrated in Figure 26-10 below:



Figure 26-10



26.7 Layout arrangement spacing

Arrangement spacing controls how the child components in a Row or 

Column are spaced across the content area. These settings are still 

defined using the horizontalArrangement and verticalArrangement 

parameters, but require one of the following values:

- Children are spaced equally, including space before the first and 

after the last child.

- Children are spaced equally, with no space allocation before the 

first and after the last child.

- Children are spaced equally, including half spacing before the first 

and after the last child.

In the following declaration, the children of a Row are positioned 

using the SpaceEvenly setting:

Row(horizontalArrangement =

modifier = Modifier.width(1000.dp)) {

TextCell("1")

TextCell("2")



TextCell("3")

}

The above code gives us the following layout with equal gaps at the 

beginning and end of the row and between each child:

Figure 26-11

Figure on the other hand, shows the same row configured with the 

SpaceBetween setting. Note that the row has no leading or trailing 

spacing:

Figure 26-12



Finally, Figure 26-13 shows the effect of applying the SpaceAround 

setting which adds full spacing between children and half the spacing 

on the leading and trailing ends:

Figure 26-13



26.8 Row and Column scope modifiers

The children of a Row or Column are said to be within the scope of 

the parent. These two scopes (RowScope and ColumnScope) provide 

a set of additional modifier functions that can be applied to change 

the behavior and appearance of individual children within a Row or 

Column. The Android Studio code editor provides a visual indicator 

when children are within a scope. In Figure for example, the editor 

indicates that the RowScope modifier functions are available to the 

three child composables:

@Composable
fun MainScreenO {

/?Oiv() {fthis: RowScope
feTTW^^Sxt: "1") 
TextCell( text: "2") 
TextCell( text: "3")

Figure 26-14

When working with the Column composable, a similar ColumnScope 

indicator will appear.

ColumnScope includes the following modifiers for controlling the 

position of child components:



- Allows the child to be aligned horizontally using and Alignment.End 

values.

- Aligns a child horizontally with other siblings on which the 

alignBy() modifier has also been applied.

- Sets the height of the child relative to the weight values assigned 

to its siblings.

RowScope provides the following additional modifier functions to Row 

children:

- Allows the child to be aligned vertically using Alignment.Top, and 

Alignment.Bottom values.

- Aligns a child with other siblings on which the alignBy() modifier 

has also been applied. Alignment may be performed by baseline or 

using custom alignment line configurations.

- Aligns the baseline of a child with any siblings that have also been 

configured by either the alignBy() or alignByBaseline() modifier.

- Allows padding to be added to the alignment line of a child.

- Sets the width of the child relative to the weight values assigned 

to its siblings.



The following Row declaration, for example, sets different alignments 

on each of the three TextCell children:

Row(modifier = Modifier.height(300.dp)) {

}

When previewed, this will generate a layout resembling Figure

Figure 26-15



The baseline alignment options are especially useful for aligning text 

content with differing font sizes. Consider, for example, the following 

Row configuration:

Row {

Text(

text = "Large Text",

fontSize = 40.sp,

fontWeight = FontWeight.Bold

)

Text(

text = "Small Text",

fontSize = 32.sp,

fontWeight = FontWeight.Bold

)

}



This code consists of a Row containing two Text composables, each 

using a different font size resulting in the following layout:

Large TextSmal1 Text
Figure 26-16

The Row has aligned the two Text composables along their top edges 

causing the text content to be out of alignment relative to the text 

baselines. To resolve this problem we can apply the alignByBaseline() 

modifier to both children as follows:

Row {

Text(

text = "Large Text",

Modifier.alignByBaseline(),

fontSize = 40.sp,

fontWeight = FontWeight.Bold



)

Text(

text = "Small Text",

Modifier.alignByBaseline(),

fontSize = 32.sp,

fontWeight = FontWeight.Bold,

)

}

Now when the layout is rendered, the baselines of the two Text 

composables will be aligned as illustrated in Figure

Figure 26-17

As an alternative, the alignByBaseline() modifier may be replaced by a 

call to the alignBy() function, passing through FirstBaseline as the



alignment parameter:

Modifier.alignBy(FirstBaseline)

When working with multi-line text, passing LastBaseline through to 

the alignBy() modifier function will cause appropriately configured 

sibling components to align with the baseline of the last line of text: 

import androidx.compose.ui.layout.LastBaseline

@Composable

fun MainScreen() {

Row {

Text(

text = Text\n\nMore



fontSize = 4o.sp, 

fontWeight = FontWeight.Bold

)

Text(

text = "Small Text",

fontSize = 32.sp,

fontWeight = FontWeight.Bold, 

) 

}

}

Now when the layout appears the baseline of the text content of the 

second child will align with the baseline of the last line of text in 

the first child:



Figure 26-18

Using the FirstBaseline in the above example would, of course, align 

the baseline of the small text composable with the baseline of the 

first line of text in the multi-line component:

Figure 26-19

In the examples we have looked at so far we have specified the 

baseline as the alignment line for both children. If we need the 

alignment to be offset for a child, we can do so using the 

paddingFrom() modifier. The following example adds an additional 

80dp vertical offset to the first baseline alignment position of the 

small text composable:



import androidx.compose.ui.layout.FirstBaseline

@Composable 

fun MainScreen() {

Row {

Text(

text = "Large Text\n\nMore Text", 

fontSize = 4o.sp, 

fontWeight = FontWeight.Bold

)

Text(



text = "Small Text",

modifier = Modifier.paddingFrom(

alignmentLine = FirstBaseline, before = 8o.dp, after 

= o.dp),

fontSize = 32.sp,

fontWeight = FontWeight.Bold

)

}

}

When rendered, the above layout will appear as shown in Figure

Large Text
More TextSmal1 Text



Figure 26-20



26.9 Scope modifier weights

The RowScope weight modifier allows the width of each child to be 

specified relative to its siblings. This works by assigning each child a 

weight percentage (between 0.0 and 1.0). Two children assigned a 

weight of 0.5, for example, would each occupy half of the available 

space. Modify the MainScreen function one last time as follows to 

demonstrate the use of the weight modifier:

@Composable

fun MainScreen() {

Row {

TextCell("i", Modifier.weight(weight = o.2f, fill = true))

TextCell("2", Modifier.weight(weight = o.4f, fill = true))

TextCell("3", Modifier.weight(weight = o.3f, fill = true))

}

}

Rebuild and refresh the preview panel, at which point the layout 

should resemble that shown in Figure 26-21 below:



Figure 26-21

Siblings that do not have a weight modifier applied will appear at 

their preferred size leaving the weighted children to share the 

remaining space.

ColumnScope also provides and weight() modifiers, though these all 

operate on the horizontal axis. Unlike RowScope, there is no concept 

of baselines when working with ColumnScope.



26.10 Summary

The Compose Row and Column components provide an easy way 

to layout child composables in horizontal and vertical 

arrangements. When embedded within each other, the Row and 

Column allow table style layouts of any level of complexity to be 

created. Both layout components include options for customizing 
the alignment, spacing, and positioning of children. Scope 

modifiers allow the positioning, and sizing behavior of individual 
children to be defined, including aligning and sizing children 

relative to each other.



27. Box Layouts in Compose

Now that we have an understanding of the Compose Row and 

Column composables, we will move on to look at the third layout 

type provided by Compose in the form of the Box component. 

This chapter will introduce the Box layout and explore some key 

parameters and modifiers available when designing user interface 

layouts.



27.1 An introduction to the Box composable

Unlike the Row and Column, which organize children in a 

horizontal row or vertical column, the Box layout stacks its 

children on top of each other. The stacking order is defined by 

the order in which the children are called within the Box 

declaration, with the first child positioned at the bottom of the 

stack. As with the Row and Column layouts, Box is provided with 

several parameters and modifiers we can use to customize the 

layout.



27.2 Creating the BoxLayout project

Begin by launching Android Studio and, if necessary, closing any 

currently open projects using the File -> Close Project menu option 

so that the Welcome screen appears.

Select the New Project option from the welcome screen, and 

when the new project dialog appears, choose the Empty Activity 

template before clicking on the Next button.

Enter BoxLayout into the Name field and specify 

com.example.boxlayout as the package name. Before clicking the 
Finish button, change the Minimum API level setting to API 26: 

Android 8.0 (Oreo). On completion of the project creation 

process, the BoxLayout project should be listed in the Project tool 

window located along the left-hand edge of the Android Studio 

main window.

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named MainScreen:

@Composable

fun MainScreen() {

}



Next, change the OnCreate() method and GreetingPreview function 

to call MainScreen instead of Greeting.



27.3 Adding the TextCell composable

In this chapter, we will again use our TextCell composable, though 

to best demonstrate the features of the Box layout, we will modify 

the declaration slightly so that it can be passed an optional font 

size when called. Remaining within the MainActivity.kt file, add this 

composable function so that it reads as follows: 

import androidx.compose.foundation.border

import androidx.compose.foundation.layout.padding

import androidx.compose.ui.graphics.Color

import androidx.compose. u i .text.font. FontWeight

import androidx.compose. u i .text.style.TextAlign

import androidx.compose.ui.umt.dp 

import androidx.compose.ui.umt.sp



@Composable 

fun TextCell(text: String, modifier: Modifier = Modifier, fontSize: Int 

= 150 ) {

val cellModifier = Modifier

.padding(4.dp)

.border(width = 5.dp, color = Color.Black)

Text(

text = text, cellModifier.then(modifier),

fontSize = fontSize.sp,

fontWeight = FontWeight.Bold, 

textAlign = TextAlign.Center



)

}



27.4 Adding a Box layout

Next, modify the MainScreen function to include a Box layout with 

three TextCell children: 

. 

.

import androidx.compose.foundation.layout.Box

import androidx.compose.foundation.layout.size 

. 

.

@Composable

fun MainScreen() {

Box {

val height = 2oo.dp



val width = 2oo.dp

TextCell("i", Modifier.size(width = width, height = height))

TextCell("2", Modifier.size(width = width, height = height))

TextCell("3", Modifier.size(width = width, height = height))

}

}

After modifying the function, update the Preview panel to reflect 

these latest changes. Once the layout appears it should resemble 

Figure



Figure 27-1

The transparent nature of the Text composable allows us to see 
that the three children have, indeed, been stacked directly on top 

of each other. While this transparency is useful to show that the 

children have been stacked, this isn’t the behavior we are looking 

for in this example. To give the TextCell an opaque background, 

we need to call the Text composable from within a Surface 

component. To achieve this, edit the TextCell function so that it 

now reads as follows:

@Composable

fun TextCell(text: String, modifier: Modifier = Modifier, fontSize: Int 

= 150 ) {

Surface {

Text(

text = text, cellModifier.then(modifier),

fontSize = fontSize.sp,



fontWeight = FontWeight.Bold, 

textAlign = TextAlign.Center

)

}

}

When the preview is updated, only the last composable to be 

called by the Box will be visible because it is the uppermost child 

of the stack.



27.5 Box alignment

The Box composable includes support for an alignment parameter to 

customize the positioning of the group of children within the content 

area of the box. The parameter is named contentAlignment and may 

be set to any one of the following values:

The diagram in Figure 27-2 illustrates the positioning of the Box 

content for each of the above settings:

Row

Alignment Top Start Alignment.TopCenter Alignment TopEnd

Alignment.Center Start Alignment.Center Alignment.CenterEnd

Alignment. Bottom Start Alignment.BottomCenter Alignment.BottomEnd



Figure 27-2

To try out some of these alignments options, edit the Box 

declaration in the MainScreen function both to increase its size and 

to add a contentAlignment parameter: 

import and roidx.compose. ui.Alignment

@Composable 

fun MainScreen() {

= Alignment.CenterEnd,



modifier = Modifier.size(4oo.dp, 400.dp)) {

val height = 2oo.dp

val width = 2oo.dp

TextCell("1", Modifier.size(width = width, height = height))

TextCell("2", Modifier.size(width = width, height = height))

TextCell("3", Modifier.size(width = width, height = height))

}

}

Refresh the preview and verify that the Box content now appears at 

the CenterEnd position within the Box content area:





27.6 BoxScope modifiers

In the chapter entitled “Composing Layouts with Row and we 

introduced ColumnScope and RowScope and explored how these 

provide additional modifiers that can be applied individually to child 

components. In the case of the Box layout, the following BoxScope 

modifiers are available to be applied to child composables:

- Aligns the child within the Box content area using the specified 

Alignment value.

- Sizes the child on which the modifier is applied to match the size 

of the parent Box.

The set of Alignment values accepted by the align modifier is the 

same as those listed above for Box alignment. The following changes 

to the MainScreen function demonstrate the align() modifier in 

action:

@Composable 

fun MainScreen() {



Box(modifier = = 9O.dp, width = {

Text("TopStart", Modifier.align(Alignment.TopStart))

Text("TopCenter", Modifier.align(Alignment.TopCenter))

Text("TopEnd", Modifier.align(Alignment.TopEnd))

Text("CenterStart", Modifier.align(Alignment.CenterStart))

Text("Center", Modifier.align(Alignment.Center))

Text(text = "CenterEnd", Modifier.align(Alignment.CenterEnd))

Text("BottomStart", Modifier.align(Alignment.BottomStart))

Text("BottomCenter", Modifier.align(Alignment.BottomCenter))

Text(" BottomEnd", Modifier.align (Align ment. BottomEnd))

}

}

When previewed, the above Box layout will appear as shown in 

Figure 27-4 below:



TopStart TopCenter TopEnd

Centerstart Center CenterEnd

BottomStart Bottom Center Bottom End

Figure 27-4



27.7 Using the clip() modifier

The compose clip() modifier allows composables to be rendered to 
conform to specific shapes. Though not specific to Box, the Box 

component provides perhaps the best example of clipping shapes. 

To define the shape of a composable, the clip() modifier is called 

and passed a Shape value which can be RectangleShape, 

CircleShape, RoundedCornerShape, or CutCornerShape.

The following code, for example, draws a Box clipped to appear 

as a circle: 

import androidx.compose.foundation.background

import androidx.compose.ui.draw.clip 

import androidx.compose.foundation.shape.CircleShape



Box(Modifier.size(2OO.dp).clip(CircleShape).background(Color.Blue))

When rendered, the Box will appear as shown in Figure

Figure 27-5



To draw a composable with rounded corners call 
RoundedCornerShape, passing through the radius for each corner. 

If a single radius value is provided, it will be applied to all four 

corners: 

import androidx.compose.foundation.shape.RoundedCornerShape

The above composable will appear as shown below:



Figure 27-6

As an alternative to rounded corners, composables may also be 

rendered with cut corners. In this case, CutCornerShape is passed 

the cut length for the corners. Once again, we may specify 

different values for each corner, or all corners cut equally with a 

single length parameter:



import androidx.compose.foundation.shape.CutCornerShape

The following figure shows the Box rendered by the above code:



Figure 27-7



27.8 Summary

The Compose Box layout positions all of its children on top of 

each other in a stack arrangement, with the first child positioned 

at the bottom of the stack. By default, this stack will be placed in 

the top left-hand corner of the content area, though this can be 
changed using the contentAlignment parameter when calling the 

Box composable.

Direct children of a Box layout have access to additional modifiers 

via RowScope. These modifiers allow individual children to be 

positioned independently within the Box content using a collection 

of nine pre-defined position settings.



28. Custom Layout Modifiers

Although the Box, Row, and Column composables provide great 

flexibility in terms of layout design, situations will inevitably arise 

where you have a specific layout requirement that cannot be 

achieved using the built-in layout components. Fortunately, 

Compose includes several more advanced layout options. In this 

chapter, we will explore one of these in the form of custom 

layout modifiers.



28.1 Compose layout basics

Before exploring custom layouts, it will be helpful to understand 

the basics of how user interface elements are positioned in a 

Compose-based user interface. As we already know, user interface 

layouts are created by writing composable functions which 

generate UI elements that are, in turn, rendered on the screen. 

Composables call other composables to build a UI hierarchy tree 

consisting of parent and child relationships. Each child can have 
its own children, and so on.

As the app executes, the composable hierarchy is rapidly and 

continually recomposed in response to changes in state. Each 

time a parent composable is called, it is responsible for 
controlling the size and positioning of all of its children. The 

child’s position is defined using x and y coordinates relative to 

the parent’s position. In terms of size, the parent imposes 

constraints that define the maximum and minimum allowable 

height and width dimensions of the child.

Depending on configuration, the size of a parent can either be 

fixed (for example using the size() modifier) or calculated based 
on the size and positioning of its children.

The built-in Box, Row, and Column components all contain logic 

that measures each child and calculates how to position each to 
create the corresponding row, column, or stack positioning. The 



same techniques used behind the scenes by these built-in layouts 

are also available to you to create your own custom layouts.



28.2 Custom layouts

Custom layouts are quite straightforward to implement and fall 
into two categories. In its most basic form, a custom layout can 

be implemented as a layout modifier which can be applied to a 

single user interface element (something similar to the standard 

padding() modifier). Alternatively, a new Layout composable can be 

written which applies to all the children of a composable (the 

technique used by the Box, Column, and Row composables).

In the rest of this chapter, we will explore the custom layout 

modifier approach to custom layout development. Since 

experimentation is a good way to understand custom layouts, each 

step of this introduction to custom layout modifiers will be 

demonstrated using an example project. Feel free to modify the 

examples in this chapter and observe how the changes affect the 

resulting user interface layout.



28.3 Creating the LayoutModifier project

Launch Android Studio and select the New Project option from 

the welcome screen. Within the resulting new project dialog, 

choose the Empty Activity template before clicking on the Next 

button.

Enter LayoutModifier into the Name field and specify 
com.example.layoutmodifier as the package name. Before clicking on 

the Finish button, change the Minimum API level setting to API 

26: Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to 
call MainScreen instead of Greeting.



28.4 Adding the ColorBox composable

The child elements in most of these examples in this chapter will be 

represented by colored boxes. Although the Box component is 

primarily intended as a way to stack children on top of each other, 

an empty Box is also a simple and effective way to draw rectangles 

on the screen. Since we will be drawing multiple boxes, it makes 

sense to add a reusable composable for this purpose. Add the 

following ColorBox composable function to the MainActivity.kt file: 

import androidx.compose.foundation.background 

import androidx.compose.foundation.layout.*  

import androidx.compose.ui.graphics.Color 

import androidx.compose.ui.unit.dp 

import androidx.compose.uiJayoutdayout



@Composable 

fun ColorBox(modifier: Modifier) {

Box(Modifier.padding(i.dp).size(width = 5O.dp, height = 

lo.dp).then(modifier))

}

Next, modify the MainScreen composable function to include a Box 

with a ColorBox child:

@Composable

fun MainScreen() {

Box(modifier = Modifier.size(i2o.dp, 8o.dp)) {

ColorBox(

Modifier.background(Color.Blue)

)

}



}

When the layout is previewed, it will appear as shown in Figure 28-1 

below:

Figure 28-1



28.5 Creating a custom layout modifier

The Box layout in the above example has positioned the ColorBox 

element in the top left-hand corner of its content area. This is 

the default position for the child of a Box layout in absence of 

alignment parameters or modifiers to the contrary.

We can now create a simple custom layout modifier that can be 

applied to the ColorBox to move it to a new position within the 

parent Box.

Custom layout modifiers are written using the following standard 

syntax:

fun Modifier.layout name> (

// Optional parameters here

) = layout { measurable, constraints ->

// Code to adjust position and size of element

}

The layout’s trailing lambda is passed two parameters named 

measurable and constraints respectively. The measurable parameter



is the child element on which the modifier was called, while the 

constraints parameter contains the maximum and minimum width 

and height values allowed for the child.

For this example, we want to be able to specify a new x and y 

position for the child relative to the default position assigned to it 

by the parent. Before we do that, we to clarify what is meant by 

default



28.6 Understanding default position

In the example created so far, the default position is the top left­
hand corner of the Box’s content area which equates to x and y 

coordinates 0, 0. The second child of a Row layout, on the other 

hand, would be positioned at entirely different default x and y 

coordinates within the context of the parent.

The layout modifier is not concerned about the default position of 

the child within the context of the parent. Instead, it is only 

interested in calculating where the child will be positioned relative 

to the default In other words, the modifier will calculate the new 

position relative to 0, 0, and return the new offset coordinates. 

The parent will then apply the offset to the actual coordinates to 

move the child to the custom position.

A parent might, for example, calculate the default x and y 

coordinates of a child are 50, 70. A custom layout modifier will 

calculate the new position relative to 0, 0 and return the new 

offset (perhaps 20, 10). The parent will then apply the offset to 

the actual position (in this case 50, 70) to move the child to the 

custom position at 70, 80.



28.7 Completing the layout modifier

The next step in implementing our modifier is to allow new 

coordinate offsets to be passed through when it is called. Begin 

implementing the modifier, which we will name exampleLayout 

within the MainActivity.kt file so that it reads as follows:

fun Modifier.exampleLayout(

x: Int,

y: Int

) = layout { measurable, constraints ->

}

When the modifier lays out the child it will need to know the 

child’s measurements to make sure it conforms to the constraints 

passed to the lambda. These values are obtained by calling the 

measure() method of the measurable instance, passing through the 

constraints object. This call will return a Placeable instance 

containing height and width values. We can also call methods on 

the Placeable instance to specify the new position of the element 

within its parent content area. Start by adding code to the 

modifier to perform this measurement as follows:



fun Modifier.exampleLayout(

x: Int,

y: Int

) = layout { measurable, constraints ->

val placeable = measurable.measure(constraints)

}

When developing custom layouts an important rule to remember 

is that a child must only be measured once each time the 

modifier is called. This rule, referred to as single-pass is required 

to ensure that the user interface tree hierarchies are rendered 

quickly and efficiently.

Next, we need to call a method named passing through the 

height and width values from the placeable value. We also need 

to pass a trailing lambda to the layout() method containing the 

code to position the child:

fun Modifier.exampleLayout(



x: Int,

y: Int

) = layout { measurable, constraints ->

val placeable = measurable.measure(constraints)

layout(placeable.width, placeable.height) {

placeable.placeRelative(x, y)

}

}

Within the lambda, the child element is positioned via a call to 

the placeRelative() method of the Placeable object, using the new x 

and y coordinates that were passed to the modifier.



28.8 Using a custom modifier

Now that we have created the custom modifier, it is ready to be 

applied to a child composable, in this case, our ColorBox 

component. Locate and edit the MainScreen composable and 

modify the ColorBox call to apply the exampleLayout() modifier:

@Composable

fun MainScreen() {

Box(Modifier.size(120.dp, 80.dp)) {

ColorBox(

Modifier

.exampleLayout(9O, 50)

.background(Color.Blue)

)

}



}

When the layout is now rendered in the preview panel, the 

position of the ColorBox element will be adjusted to match the x 

and y coordinates passed to the exampleLayout modifier:

Figure 28-2



28.9 Working with alignment lines

When adjusting the position of the child composable in the above 
example, the top left-hand corner of the ColorBox was moved to a 

specific x and y coordinate. It could also be said that the box 

was positioned based on the intersection of two alignment lines 

which correspond to the left and top sides of the rectangle as 

illustrated in Figure

Figure 28-3

Given that we have access to the height and width measurements 

of the child element, we can set positioning based on any 

horizontal or vertical alignment line (or a combination of both). 

We could, for example, position the child based on a vertical 

alignment line located midway along its length as visualized 

below:



Alignment Line

Figure 28-4

In fact, we could make the position of our hypothetical alignment 

line configurable by passing it through as a parameter to the 

layout modifier. To demonstrate this concept, modify the 

exampleLayout modifier code as follows: 

import kotlin.math.roundToInt

fun Modifier.exampleLayout(



fraction: Float

) = layout { measurable, constraints ->

val placeable = measurable.measure(constraints)

val x = -(placeable.width * fraction).roundToInt()

layout(placeable.width, placeable.height) {

= x y =

}

}

These changes require some explanation. To begin with, the 

modifier is no longer passed x and y coordinates. Instead, the 

new position will be calculated relative to the default coordinates 

defined by the parent (which will be 0, 0). Also, the modifier now 

accepts a floating-point parameter representing the position of the 

vertical alignment line as a percentage of the width of the child. 

The x coordinate is then calculated as follows: 

val x = -(placeable.width * fraction).roundToInt()



This calculation takes the width of the child from the placeable 
object and multiplies it by the fraction parameter value. Because 

this results in a floating-point result, it is rounded to an integer 

so that it can be used as a coordinate value in the call to Finally, 

since a move of the alignment line to the right is equivalent to 

moving the child to the left, the x value is inverted into a 

negative value. The child is then placed at the new coordinates. 

Note that since the vertical positioning is unchanged, the y value 

is set to 0.

Perhaps the best way to see this modifier in action is to apply it 

to the children of a Column layout. With this in mind, modify the 

MainScreen composable as follows: 

import androidx.compose.ui.Alignment

@Composable

fun MainScreen() {



= Alignment.Center,

een)

w)

modifier = Modifier.size(i2o.dp, 8o.dp)) {

Column {

ColorBox(

Modifier.exampleLayout(of).background(Color.Blue)

)

ColorBox(

Modifier.exampleLayout(o.25f).background(Color.Gr

)

ColorBox(

Modifier.exampleLayout(o.5f).background(Color.Yello

)

Color.Gr


ColorBox(

Modifier.exampleLayout(o.25f).background(Color.Re 

d)

)

ColorBox(

Modifier.exampleLayout(o.of).background(Color.Ma 

genta)

)

}

}

}

The above layout will appear in the Preview panel as shown in 
Figure Note that the dotted line has been superimposed to 

indicate the position of the alignment line for each child:



Figure 28-5



28.10 Working with baselines

We already know from working with the Row and Column layouts 

in the chapter entitled “Composing Layouts with Row and Column” 

that a Text composable can be aligned relative to its text content 

baselines. The FirstBaseline and LastBaseline alignment lines 

correspond to the bottom edge of the first and last lines of text 

content contained within a Text component respectively.

When writing custom layout modifiers, these baselines can be 

accessed via the Placeable object and used as reference points for 
customizing child positioning. For example:

val placeable = measurable.measure(constraints)

val firstBaseline = placeable[FirstBaseLine]

val lastBaseline = placeable[LastBaseline]

Since not all composables support baseline alignment, the code in 

the layout modifier should check that the child it has been passed 

supports this type of alignment. This can be achieved by checking 

that the alignment does not equate to for example: 

if (placeable[FirstBaseline] == AlignmentLine.Unspecified) {



// child passed to modifier does not support FirstBaseline 

alignment

}



28.11 Summary

While much can be achieved using the built-in Row, Column, and 

Box layouts in combination with the corresponding scope 

modifiers, there will often be instances where a child element will 

need to be positioned in a way that is not supported using the 
standard options. This challenge can be addressed by creating a 

custom layout modifier which can then be applied to any child 

element as needed. A custom layout modifier is passed a set of 

constraints indicating size restrictions and the child element to be 

positioned. The child can then be measured (an action that must 

only be performed once within a layout modifier) and calculations 

performed to customize the size and position of the child within 

the content area of the parent. Positioning may also be 

customized based on baseline alignment when supported by the 

child element.



29. Building Custom Layouts

So far in this book, we have introduced the Box, Column, and 

Row layout components provided with Compose and shown how 

these are used to layout child elements in an organized way. We 

have also covered the creation and use of custom layout modifiers 

and explored how these can be used to modify the position of 

individual child elements within a parent layout. In this chapter, 

we will cover the creation of your own custom layout components.



29.1 An overview of custom layouts

Custom layouts in Compose allow you to design your own layout 

components with full control over how all of the child elements 

are sized and positioned. The techniques covered in this chapter 

are the same as those used by Google to create the built-in 

Compose Row, Column, and Box layouts. Custom layouts also 

share some similarities with custom content modifiers. A custom 

layout can be thought of as a way to apply a custom layout 

modifier to multiple children.

Custom layouts are declared using the Compose Layout 

composable function, the sole purpose of which is to provide a 

way to measure and position multiple children.



29.2 Custom layout syntax

Most custom layout declarations will begin with the same 
standard structure. The following code, for example, declares a 

custom layout which doesn’t make any changes to the layout 

properties of its children and serves as a template from which to 

build your own custom layouts:

@Composable

fun DoNothingLayout(

modifier: Modifier = Modifier,

content: @Composable () -> Unit

) {

Layout(

modifier = modifier,

content = content

) { measurables, constraints ->



val placeables = measurables.map { measurable ->

// Measure each children

measurable.measure (constraints)

}

layout(constraints.maxWidth, constraints.maxHeight) {

placeables.forEach { placeable ->

placeable.placeRelative(x = 0, y = 0)

}

}

}

}

As we can see, the layout is declared as a composable function 

named DoNothingLayout. This function accepts both a modifier 

and the content to be displayed via a slot API:



@Composable 

fun DoNothingLayout(

modifier: Modifier = Modifier,

content: @Composable () -> Unit

) {

The custom layout composable may also be designed to accept 
additional parameters which can then be used when calculating 

child layout properties.

The function then makes a call to the Compose Layout() 

composable which accepts a trailing lambda. This lambda is 

passed two parameters named measurables and constraints 

respectively. The measurables parameter contains all of the child 

elements contained within the content, while the constraints 
parameter contains the maximum and minimum width and height 

values allowed for the children:



Layout(

modifier = modifier, 

content = content

) { measurables, constraints ->

Next, the children are measured and those measurements mapped 

to a list of Placeable objects:

val placeables = measurables.map { measurable ->

// Measure each child



measurable.measure (constraints)

}

The map method used above executes the code within the trailing 

lambda on each child element in the measurables object which, in 

turn, measures each child. The result is a list of Placeable 

instances (one for each child) which is then assigned to a 

variable named

Finally, the layout() function (this is the same function that was 

used for custom layout modifiers in the previous chapter) is 

called and passed the maximum height and width values allowed 

by the parent. The trailing lambda then iterates through each child 

in the placeables variable and positions it relative to the default 

position designated by the parent.



29.3 Using a custom layout

Once a custom layout has been created, it can be called in much 
the same way as the standard Compose layouts. Our example 

layout could therefore be called as follows:

DoNothingLayout(Modifier.padding(8.dp)) {

Text("Text Line 1")

Text("Text Line 2")

Text("Text Line 3")

Text("Text Line 4")

}

Since the custom layout doesn’t reposition any child elements, the 

above code would result in the four Text composables being 

stacked in top of each other. In the remainder of this chapter we 

will create a project containing a custom layout that lays out its 
children.



29.4 Creating the CustomLayout project

Launch Android Studio and select the New Project option from 

the welcome screen. Within the resulting new project dialog, 

choose the Empty Activity template before clicking the Next button.

Enter CustomLayout into the Name field and specify 
com.example.customlayout as the package name. Before clicking the 

Finish button, change the Minimum API level setting to API 26: 

Android 8.0 (Oreo). On completion of the project creation 

process, the CustomLayout project should be listed in the Project 

tool window located along the left-hand edge of the Android 

Studio main window.

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to 
call MainScreen instead of Greeting.



29.5 Creating the CascadeLayout composable

The custom layout will be named CascadeLayout, the purpose of 

which is to layout its children in a column with each child 

indented by the width of the preceding child. An optional 

parameter will also be implemented to allow the spacing between 

the child elements to be configured.

Edit the MainActivity.kt file and begin by implementing the basic 

template of the CascadeLayout composable so that it reads as 

follows: 

import androidx.compose. u i.layout. Layout

@Composable 

fun CascadeLayout(



modifier: Modifier = Modifier,

content: @Composable () -> Unit

) {

Layout(

modifier = modifier,

content = content

) { measurables, constraints ->

layout(constraints.maxWidth, constraints.maxHeight) { 

val placeables = measurables.map { measurable -> 

measurable.measure(constraints)

}

placeables.forEach { placeable ->

}



}

}

}

Next, the spacing parameter needs to be added. To make this 

optional, we will provide this parameter with a zero default value. 

Also, since the amount by which a child is to be indented will 

increase each time a child is added to the column, we need to 

add a variable in which to track the latest indent. Similarly, the y 

coordinate will also need to be retained so that each child 

appears below the preceding child:

@Composable

fun CascadeLayout(

modifier: Modifier = Modifier,

spacing: Int = o,

content: @Composable () -> Unit

) {

Layout(



modifier = modifier, 

content = content

) { measurables, constraints -> 

var indent = o

layout(constraints.maxWidth, constraints.maxHeight) {

var yCoord = o

Finally, code needs to be added to the forEach loop to calculate 

the positions of each child:



layout(constraints.maxWidth, constraints.maxHeight) {

var yCoord = o

placeables.forEach { placeable ->

placeable.placeRelative(x = indent, y = yCoord)

indent += placeable.width + spacing

yCoord += placeable.height + spacing

}

}

The first child will be positioned at coordinates o, o so we simply 

use the zero initialized indent and yCoord values: 

placeable.placeRelative(x = indent, y = yCoord)



Next, we increase the indent value by the width of the current 

child, plus the optional spacing value. The yCoord value is also 

increased by the height of the current child, once again adding 

the optional spacing:

indent += placeable.width + spacing

yCoord += placeable.height + spacing

With the indent and y coordinate variable updated, the forEach 

loop iterates to the next child, repeating the process until all the 

children have been positioned.



29.6 Using the CascadeLayout composable

We are now ready to try out our new custom layout. The layout 
is designed to work with children of varying sizes, so the test will 

involve Box layouts of differing widths and heights. We will also 

pass a spacing value to the layout when it is called.

Locate the MainScreen composable within the MainActivity.kt file 

and add a call to our new custom layout as follows: 

import androidx.compose.foundation.background

import androidx.compose.foundation.layout.Box

import androidx.compose.foundation.layout.size

import androidx.compose.ui.graphics.Color 

import androidx.compose.ui.umt.dp



@Composable 

fun MainScreen() {

Box {

CascadeLayout(spacing = 20) {

Box(modifier =
Modifier.size(6o.dp).background(Color.Blue))

Box(modifier = Modifier.size(8o.dp,
4O.d p).background(Color. Red))

Box(modifier = Modifier.size(9O.dp, 
ioo.dp).background(Color.Cyan))

Box(modifier =
Modifier.size(5O.dp).background(Color.Magenta))

Box(modifier =
Modifier.size(7O.dp).background(Color.Green)) 



}

}

}

Preview the layout and verify that it appears as shown in Figure

Figure 29-1



297 Summary

Custom layout support in Compose allows you to create your own 
layouts which operate at the same syntactic level as the built-in 

Row, Column, and Box layouts. These custom layouts are created 

using a standard template mechanism built around the Compose 

Layout function. This function is passed a measurables object 

containing all children of the layout together with a set of 

constraints providing the maximum and minimum size values 

permitted by the parent. The individual children are then extracted 

from the measurables object and placed at specific coordinates 

within the layout content area to meet the custom layout 

requirements. In this chapter, we created a custom layout that 

positions its children in a cascading column layout. In practice, 

this technique can be used to design custom layouts of just 

about any level of complexity.



30. A Guide to ConstraintLayout in Compose

As we have seen in the preceding chapters, Compose provides 
several layout components to design user interfaces in addition to 

the ability to create custom layouts and modifiers. While these will 

meet most layout needs, there may still be situations where more 

detailed control over the positioning and sizing of composables 

may be required. Before the introduction of Jetpack Compose this 

capability was provided by the ConstraintLayout manager which is 

also available from within Compose.

This chapter will outline the basic concepts of ConstraintLayout 

while the next chapter will provide a detailed overview of how 

constraint-based layouts can be created using ConstraintLayout 

within Compose.



30.1 An introduction to ConstraintLayout

Introduced as part of the Android 7 SDK, ConstraintLayout 

provides a simple, expressive and flexible layout system designed 

to ease the creation of responsive user interface layouts. 

ConstraintLayout is of particular use when developing user 

interface layouts that need to adapt automatically to different 

screen sizes and changes in device orientation.



30.2 How ConstraintLayout works

In common with all other layouts, ConstraintLayout is responsible 

for managing the positioning and sizing behavior of its child 

components. It does this based on the constraint connections that 
are set on each child.

To fully understand and use ConstraintLayout, it is important to 
gain an appreciation of the following key concepts:

•Constraints

• Margins

•Opposing Constraints

•Constraint Bias

•Chains

•Chain Styles

•Guidelines

• Barriers



30.2.1 Constraints

Constraints are essentially sets of rules that dictate how a 

composable is aligned and distanced in relation to other 

composables, the sides of the containing ConstraintLayout parent, 

and special elements called guidelines and Constraints also dictate 

how the user interface layout of an activity will respond to 

changes in device orientation, or when displayed on devices of 

differing screen sizes. To be adequately configured, a composable 

must have sufficient constraint connections such that its position 

can be resolved by the ConstraintLayout layout engine in both the 

horizontal and vertical planes.



30.2.2 Margins

A margin is a form of constraint that specifies a fixed distance. 

Consider a Button component that needs to be positioned near 

the top right-hand corner of the device screen. This might be 

achieved by implementing margin constraints from the top and 
right-hand edges of the Button connected to the corresponding 

sides of the parent ConstraintLayout as illustrated in Figure

Figure 30-1

As indicated in the above diagram, each of these constraint 

connections has associated with it a margin value dictating the 

fixed distances of the Button from two sides of the parent layout.



Under this configuration, regardless of screen size or the device 

orientation, the Button will always be positioned 20 and 15 device­

independent pixels (dp) from the top and right-hand edges of the 

parent ConstraintLayout respectively as specified by the two 

constraint connections.

While the above configuration will be acceptable for some 

situations, it does not provide any flexibility in terms of allowing 

the ConstraintLayout layout engine to adapt the position of the 

button to respond to device rotation and to support screens of 

different sizes. To add this responsiveness to the layout it is 

necessary to implement opposing constraints.



30.2.3 Opposing constraints

Two constraints operating along the same axis on a single 

composable are referred to as opposing In other words, a 

component with constraints on both its left and right-hand sides 

is considered to have horizontally opposing constraints. Figure for 

example, illustrates the addition of both horizontally and vertically 

opposing constraints to the previous layout:

Figure 30-2

The key point to understand here is that once opposing 

constraints are implemented on a particular axis, the positioning 

of the composable becomes percentage rather than coordinate-



based. Instead of being fixed at 2odp from the top of the layout, 

for example, the widget is now positioned at a point 30% from 

the top of the layout. In different orientations and when running 

on larger or smaller screens, the Button will always be in the 

same location relative to the dimensions of the parent layout.

It is now important to understand that the layout outlined in 
Figure 30-2 has been implemented using not only opposing 

constraints but also by applying constraint



30.2.4 Constraint bias

It has now been established that a component in a 

ConstraintLayout can potentially be subject to opposing constraint 
connections. By default, opposing constraints are equal, resulting 

in the corresponding widget being centered along the axis of 

opposition. Figure for example, shows a button centered within 

the containing ConstraintLayout using opposing horizontal and 

vertical constraints:

Figure 30-3

To allow for the adjustment of component position in the case of 

opposing constraints, the ConstraintLayout implements a feature 

known as constraint Constraint bias allows the positioning of a



composable along the axis of opposition to be biased by a 

specified percentage in favor of one constraint. Figure for example, 

shows the previous constraint layout with a 75% horizontal bias 

and 10% vertical bias:

Widget Offset using Constraint Bias

Figure 30-4

The next chapter, entitled “Working with ConstraintLayout in will 

cover these concepts in greater detail and explain how these 

features have been integrated into Compose. In the meantime, 

however, a few more areas of the ConstraintLayout class need to 

be covered.



30.2.5 Chains

ConstraintLayout chains provide a way for the layout behavior of two 

or more composables to be defined as a group. Chains can be 

declared in either the vertical or horizontal axis and configured to 

define how the components in the chain are spaced and sized.

Although Compose provides a helper to ease the creation of chains, 

it is worth noting that behind the scenes, composables are chained 

when connected by bi-directional constraints. Figure for example, 

illustrates three Buttons chained in this way:

Figure 30-5

The first element in the chain is the chain head which translates to 

the top item in a vertical chain or, in the case of a horizontal chain, 

the left-most item. The layout behavior of the entire chain is 

primarily configured by setting attributes on the chain head 

component.



30.2.6 Chain styles

The layout behavior of a ConstraintLayout chain is dictated by the 

chain style setting applied to the chain head composable. The 

ConstraintLayout class currently supports the following chain layout 

styles:

•Spread Chain - The composables contained within the chain are 

distributed evenly across the available space. This is the default 

behavior for chains.

Button Button Button

Figure 30-6

•Spread Inside Chain - The composables contained within the chain 

are spread evenly between the chain head and the last widget in the 

chain. The head and last composables are not included in the 

distribution of spacing.

Button Button Button



Figure 30-7

•Weighted Chain - Allows the space taken up by each composable in 

the chain to be defined via weighting properties.

Button Button Button

Figure 30-8

•Packed Chain - The composables that make up the chain are 

packed together without any spacing. A bias may be applied to 

control the horizontal or vertical positioning of the chain in relation 

to the parent container.

Figure 30-9



30.3 Configuring dimensions

Controlling the dimensions of a composable is a key element of 

the user interface design process. The ConstraintLayout provides 

five options that can be set on individual components to manage 

sizing behavior. These settings are configured individually for 

height and width dimensions:

•Dimension.preferredWrapContent - The size of the composable is 

dictated by the content it contains (i.e. text or graphics) subject 

to prevailing constraints.

• Dimension.wrapContent - The size of the composable is dictated 

by the content it contains regardless of prevailing constraints.

• Dimension.fillToConstraints - Allows the composable to be sized 

to fill the space allowed by the prevailing constraints.

• Dimension.preferredValue - The composable is fixed to specified 

dimensions subject to the prevailing constraints.

• Dimension.value - The composable is fixed to specified 

dimensions regardless of the prevailing constraints.



30.4 Guideline helper

Guidelines are special elements available within the 

ConstraintLayout that provide an additional target to which 

constraints may be connected. Multiple guidelines may be added 

to a ConstraintLayout instance which may, in turn, be configured 

in horizontal or vertical orientations. Once added, constraint 

connections may be established from Composables in the layout 

to the guidelines. This is particularly useful when multiple 

composables need to be aligned along an axis. In Figure for 

example, three Buttons contained within a ConstraintLayout are 

constrained along a vertical

Figure 30-10





30.5 Barrier helper

Rather like guidelines, barriers are virtual views that can be used to 

constrain composables within a layout. As with guidelines, a barrier 

can be vertical or horizontal and one or more composables may be 

constrained to it (to avoid confusion, these will be referred to as 

constrained Unlike guidelines where the guideline remains at a fixed 

position within the layout, however, the position of a barrier is 

defined by a set of so-called reference Barriers were introduced to 

address an issue that occurs with some frequency involving 

overlapping components. Consider, for example, the layout illustrated 

in Figure 30-11 below:

Figure 30-11

The key point to note about the above layout is that the width of 

Item 3 is set to fillToConstraints mode, and the left-hand edge of the



view is connected to the right-hand edge of Item 1. As currently 

implemented, an increase in width of Item 1 will have the desired 

effect of reducing the width of Item 3:

Figure 30-12

A problem arises, however, if Item 2 increases in width instead of 

Item 1:



Figure 30-13

Because Item 3 is only constrained by Item 1, it does not resize to 

accommodate the increase in width of Item 2 causing the 

components to overlap.

A solution to this problem is to add a vertical barrier and assign 

Items 1 and 2 as the barrier’s reference components so that they 

control the barrier position. The left-hand edge of Item 3 will then be 

constrained in relation to the barrier, making it a constrained

Now when either Item 1 or Item 2 increase in width, the barrier will 

move to accommodate the widest of the two components, causing 

the width of Item 3 to change in relation to the new barrier position:



Figure 30-14

When working with barriers there is no limit to the number of 

reference views and constrained components that can be associated 

with a single barrier.



30.6 Summary

ConstraintLayout is a layout manager introduced with Android 7 
and is now available for use within Compose layouts. It is 

designed to ease the creation of flexible layouts that adapt to the 

size and orientation of the many Android devices now on the 

market. ConstraintLayout uses constraints to control the alignment 

and positioning of components in relation both to each other and 

to the parent ConstraintLayout instance, guidelines, and barriers. 

ConstraintLayout provides an alternative when desired layout 

behavior cannot be achieved using the standard Compose layout 

techniques.



31. Working with ConstraintLayout in Compose

In the previous chapter, we introduced ConstraintLayout and 

explained how the key features of this layout manager can be 

used to create complex and responsive user interface designs. 

This chapter will describe how ConstraintLayout is used within 

Compose layouts while providing examples of the various 

ConstraintLayout features you can combine to design your layouts.



31.1 Calling ConstraintLayout

ConstraintLayout is provided in the form of a composable in the 

same way as all other layouts in Compose and can be called as 

follows:

ConstraintLayout {

// Children here

}

As with other layout composables, ConstraintLayout also accepts a 

Modifier parameter, for example:

ConstraintLayout(Modifier.size(width = 200.dp, height = 300.dp)

.background(Color.Green)) {

// Children here

}



31.2 Generating references

In the absence of any constraints, a composable child of a 

ConstraintLayout will be positioned in the top left-hand corner of 
the content area (assuming the app is running in a left-to-right, 

top to bottom locale). Composables that are to be constrained 

must be assigned a reference before constraints can be applied. 

This is a two-step process consisting of generating the references, 

and then assigning them to composables before constraints are 

applied. A single reference can be generated via a call to the 

createRef() function and the result assigned to a constant:

val text1 = createRef()

Alternatively, multiple references may be created in a single step 
by calling createRefs() as follows: 

val (button, text1, text2) = createRefs()



31.3 Assigning a reference to a composable

Once references have been generated, they are applied to 

individual composables using the constrainAs() modifier function. 

The following code, for example, assigns the texti reference to a 

Text component:

ConstraintLayout {

val texti = createRef()

Text("Hello", modifier = Modifier.constrainAs(texti) {

// Constraints here

As we can see in the above code, the constrainAs() modifier has a 

trailing lambda in which the constraints are added.



31.4 Adding constraints

The most common form of constraint is one between one side of 

a composable and one side of either the parent ConstraintLayout, 

or another composable. Constraints of this type are declared 
within the constrainAs() trailing lambda via calls to the linkTo() 

function. There are different ways to call linkTo() depending on the 

nature of the constraints being created. The following code, for 

example, constrains the top and bottom edges of a Text 

component to the top and bottom of the parent ConstraintLayout 

instance, both with a 16dp margin:

Text("Hello", modifier = Modifier.constrainAs(text1) {

top.linkTo(parent.top, margin = i6.dp)

bottom.linkTo(parent.bottom, margin = i6.dp)

})

The linkTo() function may also be passed multiple constraints as 

parameters. In the following example, the start and end sides of 

the Text component are constrained to components named 

buttom and button2, while the top and bottom edges are 

constrained to the top and bottom of the parent with a bias of 

0.8:



Text("Hello", modifier = Modifier.constrainAs(mytext) { 

linkTo(parent.top, parent.bottom, bias = o.8f)

linkTo(buttoni.end, button2.start) 

})

In addition to applying constraints using the linkTo() function, a 
component can be centered horizontally and vertically relative to 

another component or the parent:

Text("text1", modifier = Modifier.constrainAs(text1) { 

centerVerticallyTo(text2)

centerHorizontallyTo(parent) 

})

In the above example, texti will be positioned on the vertical axis 

to align with the vertical center of text2 and at the horizontal 

center of the ConstraintLayout parent.



The centerAround() function can be used to center a component 

horizontally or vertically relative to a side of another component. 

In the following example, texti is centered horizontally relative to 

the end of text2 and vertically relative to the top edge of

Text("text1", modifier = Modifier.constrainAs(text1) {

centerAround(text2.end)

centerAround (texty.top)

})

In the remainder of this chapter, we will create a new project and 

work through some examples of using ConstraintLayout in 

Compose.



31.5 Creating the ConstraintLayout project

Launch Android Studio and select the New Project option from 

the welcome screen. In the new project dialog, choose the Empty 

Activity template before clicking the Next button.

Enter ConstraintLayout into the Name field and specify 
com.example.constraintlayout as the package name. Before clicking 

the Finish button, change the Minimum API level setting to API 

26: Android 8.0 (Oreo).Within the MainActivity.kt file, delete the 

Greeting function and add a new empty composable named 

MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to 
call MainScreen instead of Greeting.



31.6 Adding the ConstraintLayout library

Support for ConstraintLayout in Compose is contained in a 
separate library that is not included in new projects by default. 

Before starting to work with ConstraintLayout, we need to add this 

library to the project build configuration. Within the Project tool 

window, navigate to the Gradle Scripts folder and open the 

build.gradle (Module: app) file for editing. Once the file is loaded 

into the editor, locate the dependencies section and add an 

implementation line for the Compose ConstraintLayout library as 

follows:

dependencies {

implementation "androidx.constraintlayout:constraintlayout- 
compose:i.o.i"



Note that a more recent library version may have been released 

since this book was published. If the line is highlighted in yellow, 

hover the mouse pointer over the line and wait for a popup 

message to appear containing the latest version number. Update 
the implementation directive to reflect this newer library version. 

Click on the Sync Now link at the top of the editor panel to 

update the project with the change.



31.7 Adding a custom button composable

When working through the examples in this chapter, we will apply 

constraints to Button composables of various sizes. To make the 

code easier to read, we need to create a custom button 

composable to which we can pass the text content and a 

modifier. Within the MainActivity.kt file, add this composable so 

that it reads as follows: 

import androidx.compose.material3.Button

import androidx.constraintlayout.compose.ConstraintLayout

@Composable

fun MyButton(text: String, modifier: Modifier = Modifier) {

Button(



onClick = { }, 

modifier = modifier

) {

Text(text)

}

}

With these initial steps completed, we can experiment with the 

various features of ConstraintLayout.



31.8 Basic constraints

Begin by adding a ConstraintLayout to the MainScreen function 
together with a set of references that will be used throughout the 

remainder of this chapter: 

import androidx.compose.foundation.layout.size

import androidx.compose.ui.unit.dp

@Composable

fun MainScreen() {

ConstraintLayout(Modifier.size(width = 2oo.dp, height = 2oo.dp)) {

val (buttom, button2, button3) = createRefs()



}

}

Next, add a single MyButton call to the layout and use the 

constrainAs() modifier to assign it the button reference:

@Composable

fun MainScreen() {

ConstraintLayout(Modifier.size(width = 200.dp, height = 

200.dp)) {

val (buttom, button2, button3) = createRefs()

MyButton(text = "Buttoni", Modifier.constrainAs(buttoni)

{

})

}

}



The above layout will appear in the Preview panel with the button 
positioned in the top left-hand corner of the ConstraintLayout 

content area. We can move the button’s position by constraining 

it to the sides of the parent layout. The following changes 

constrain the top and start edges of the button to the 

corresponding sides of the ConstraintLayout parent with margins 

of 60dp and 30dp, respectively:

MyButton(text = "Buttom", Modifier.constrainAs(buttorn) 

{

top.linkTo(parent.top, margin = 6o.dp)

start.linkTo(parent.start, margin = 3O.dp) 

})



Refresh the preview and verify that the button has moved to the 

location specified by the constraints. Note also that hovering over 

the preview causes annotations to appear indicating the 

constraints that have been applied to the layout as shown in 

Figure

Figure 31-1



31.9 Opposing constraints

The previous example demonstrated how to constrain a 
composable to a fixed position within the parent using constraints 

with margins. In this section, we will begin to look at opposing 

constraints. An opposing constraint is created when both sides 

along the same axis of a composable are constrained. The 

following changes, for example, apply opposing constraints on 

buttom along the horizontal axis:

MyButton(text = "Buttom", Modifier.constrainAs(buttom)

{

top.linkTo(parent.top, margin = 60.dp) 

startJinkTo(parentstart)

end.linkTo(parent.end) 

})

The opposing constraints have the effect of horizontally centering 

the component within the ConstraintLayout resulting in the 

preview shown in Figure



Figure 31-2

Note that opposing constraints are designated by the jagged 
spring-like connecting lines between the button and parent. 

Opposing constraints may be declared more concisely passing 

through the constraints as parameters to the linkTo() function as 

follows:

MyButton(text = "Buttom", Modifier.constrainAs(buttorn)

{

top.linkTo(parent.top, margin = 60.dp)

linkTo(parent.start, parentend)

})



If the goal is simply to use opposing constraints to center the 

component within the parent, the same result can more easily be 

achieved as follows:

centerVerticallyTo(parent)

centerHorizontallyTo(parent)

So far, all of the constraints we have looked at have involved 

links between a composable and the parent. Constraints can, of 

course, also be applied between components, for example:

MyButton(text = "Buttom", Modifier.constrainAs(buttorn)

{

centerHorizontallyTo(parent)

top.linkTo(parent.top)

bottom.linkTo(button2.top)

})

MyButton(text = "Button2", Modifier.constrainAs(button2)



{

centerHorizontallyTo(parent)

top.linkTo(buttoni.bottom)

bottom.linkTo(parent.bottom)

})

The above code will render in the preview panel as shown in 

Figure 31-3 below:



Figure 31-3



31.10 Constraint bias

The previous chapter outlined the concept of using bias settings 

to favor one opposing constraint over another. In the absence of 

other settings, opposing constraints will always center a 

component between the elements to which it is constrained. 

Applying bias allows the positioning of the constrained 

composable to be moved relative to the available space. The 
original buttom constraints from earlier in the chapter can, for 

example, be modified to include bias as follows:

MyButton(text = "Buttom", Modifier.constrainAs(buttom)

{

top.linkTo(parent.top, margin = 60.dp)

linkTo(parent.start, bias = 

})

When previewed, buttom will be positioned at 75% of the width 

of the parent as illustrated in Figure



Figure 31-4



31.11 Constraint margins

Constraints can be used in conjunction with margins to 

implement fixed gaps between a component and another element 

(such as another composable, a guideline, barrier, or the side of 

the parent layout). Consider the following example from earlier in 
the chapter:

MyButton(text = "Buttom", Modifier.constrainAs(buttom)

{

top.linkTo(parent.top, margin = 60.dp)

linkTo(parent.start, parent.end) 

})

This code gives us the layout illustrated in Figure 31-2 above. As 

currently configured, horizontal constraints run to the left and 

right edges of the parent ConstraintLayout. As such, buttom has 

opposing horizontal constraints indicating that the ConstraintLayout 

layout engine has some discretion in terms of the actual 

positioning of the component at runtime. This allows the layout 

some flexibility to accommodate different screen sizes and device 

orientations. The horizontal bias setting is also able to control the 



position of the component right up to the right-hand side of the 

layout. Figure for example, shows the same button with 100% 
horizontal bias applied:

Figure 31-5

ConstraintLayout margins appear at the end of constraint 

connections and represent a fixed gap into which the button 

cannot be moved even when adjusting bias or in response to 

layout changes elsewhere in the user interface. In the following 

code, the right-hand constraint now includes a 30dp margin into 

which the component cannot be moved even though the bias is 

still set at 100%:

MyButton(text = "Buttom", Modifier.constrainAs(buttorn)

{



top.linkTo(parent.top, margin = 6o.dp)

linkTo(parent.start, parent.end, endMargin = 3O.dp, bias = 

i.of)

})

Figure 31-6

This margin would also be preserved if the width of the parent 

reduced (such as occurs when a device is rotated between 

landscape and portrait orientation), or if a component to the left, 

to which buttom was constrained, were to grow in size.

Even without a bias setting, margins will have an impact on the 

positioning of a component. The following code, for example, sets 



margins of different widths on the start and end constraints of 

buttoni:

MyButton(text = "Buttoni", Modifier.constrainAs(buttoni)

{

top.linkTo(parent.top, margin = 6o.dp)

linkTo(parent.start, startMargin = 3O.dp, endMargin =

})

This results in the button being offset relative to the margins as 
shown in Figure

Figure 31-7





31.12 The importance of opposing constraints and bias

As discussed in the previous chapter, opposing constraints, margins, 

and bias form the cornerstone of responsive layout design in Android 

when using the ConstraintLayout. When a composable is constrained 

without opposing constraint connections, those constraints are 

essentially margin constraints. This is indicated visually within the 

Preview panel by solid straight lines accompanied by margin 

measurements, as shown in Figure



Figure 31-8



The above constraints essentially fix the button at that position. The 

result of this is that if the device is rotated to landscape orientation, 

the button will no longer be visible since the vertical constraint 

pushes it beyond the top edge of the device screen (as is the case 

in Figure A similar problem will arise if the app is run on a device 

with a smaller screen than that used during the design process.

Figure 31-9

When opposing constraints are implemented, the constraint 

connection is represented by the spring-like jagged line (the spring 

metaphor is intended to indicate that the position of the component 

is not fixed to absolute x and y coordinates):



uttonl



Figure 31-10

In the above layout, vertical and horizontal bias settings have been 

configured such that the button will always be positioned 15% of the 

distance from the top and 25% from the left-hand edge of the parent 

layout. When rotated, therefore, the button is still visible and 

positioned in the same location relative to the dimensions of the 

screen:

Figure 31-11

When designing a responsive and adaptable user interface layout, it 

is important to consider both bias and opposing constraints when 



manually designing a user interface layout and making corrections to 

automatically created constraints.



31.13 Creating chains

A chain constraint may be created between two or more components 

by calling either createHorizontalChain() or passing through the 

component references as parameters. The following code, for 

example, creates a horizontal chain between three buttons:

ConstraintLayout(Modifier.size(width = height = 100.dp)) {

val (button1, button2, button3) = createRefs()

createHorizontalChain(buttoni, button2, button3)

MyButton(text = "Buttoni", Modifier.constrainAs(buttoni) {

centerVerticallyTo(parent)

})

MyButton(text = "Button2", Modifier.constrainAs(button2) {

centerVerticallyTo(parent)

})

MyButton(text = "Button3", Modifier.constrainAs(button3) {



centerVerticallyTo(parent)

})

}

When previewed, the buttons will be positioned as shown in Figure 

31-12 below:

Figure 31-12

As outlined in “A Guide to ConstraintLayout in a chain may be 

arranged using Packed, Spread, or SpreadInside styles. Modify the 

createHorizontalChain() function call to change the style from the 

default (Spread) to SpreadInside as follows:



import androidx.constraintlayout.compose.ChainStyle

@Composable 

fun MainScreen() {

ConstraintLayout(Modifier.size(width = 6oo.dp, height = 100.dp))

{

val (buttoni, button2, button3) = createRefs() 

createHorizontalChain(button1, button2,

chainStyle =

The buttons will now be arranged as shown below:



Figure 31-13



31.14 Working with guidelines

ConstraintLayout guidelines provide a horizontal or vertical anchor 

line to which composables may be contained. This is particularly 

useful when a group of components needs to be aligned relative to 

a specific axis line. A guideline position can be declared as a 

percentage of either the height or width of the parent or positioned 

at a specific offset from a side. The following, for example, creates a 

guideline that is parallel to the starting edge of the parent (in other 

words, a vertical line) and positioned 25% of the way across the 

parent content area:

createGuidelineFromStart(fraction = .25f)

Similarly, the following function call creates a horizontal guideline 

positioned 60dp above the bottom edge of the parent:

createGuidelineFromBottom(offset = 60.dp)

Replace the code in the MainScreen function with the following code 

to create a vertical guideline to which the three buttons are 

constrained:

ConstraintLayout(Modifier.size(width = height = {

val (button1, button2, button3) = createRefs()



val guide = createGuidelineFromStart(fraction = .6of)

MyButton(text = "Buttoni", Modifier.constrainAs(buttom) {

top.linkTo(parent.top, margin = 30.dp) 

end.linkTo(guide, margin = 30.dp)

})

MyButton(text = "Button2", Modifier.constrainAs(button2) {

top.linkTo(button1.bottom, margin = 20.dp) 

start.linkTo(guide, margin = 40.dp)

})

MyButton(text = "Button3", Modifier.constrainAs(button3) {

top.linkTo(button2.bottom, margin = 40.dp) 

end.linkTo(guide, margin = 20.dp)

})

}



This layout should appear as illustrated in Figure 31-14 below when 

rendered in the Preview panel:

Figure 31-14



31.15 Working with barriers

ConstraintLayout barriers are created relative to a specific side of one 

or more components using the following functions:

Each function is passed a list of components to which the barrier is 

to be assigned together with an optional margin and returns a 

barrier reference to which other components may be constrained, for 

example:

val barrier = createEndBarrier(button1, button2, margin = 30.dp)

The above statement will create a vertical barrier (start and end 

barriers are vertical while top and bottom are horizontal) positioned 

30dp from the end of button1 and button2. If button1 and button2 

are of different widths the barrier will be 30dp from the end of the 

widest component at any given time.

To demonstrate ConstraintLayout barriers, we will begin by recreating 

the layout illustrated in Figure 30-11 in the previous chapter. Begin by 

modifying the MainScreen function so that it reads as follows:



import and roidx.compose.fou ndation.layout.width

import androidx.constraintlayout.compose.Dimension

@Composable

fun MainScreen() {

ConstraintLayout(Modifier.size(width = height = {

val (buttoni, button2, button3) = createRefs()

MyButton(text = "Buttoni", 

Modifier.width(ioo.dp).constrainAs(buttoni) {

top.linkTo(parent.top, margin = 3O.dp) 

start.linkTo(parent.start, margin = 8.dp)

})



MyButton(text = "Button2",

Modifier.width(ioo.dp).constrainAs(button2) {

top.linkTo(buttoni.bottom, margin = 2O.dp)

start.linkTo(parent.start, margin = 8.dp)

})

MyButton(text = "Button3", Modifier.constrainAs(button3) {

linkTo(parent.top, parent.bottom,

topMargin = 8.dp, bottomMargin = 8.dp)

linkTo(buttoni.end, parent.end, startMargin = 3O.dp,

endMargin = 

8.dp)

})

}

}



The button3 component needs to be sized to fill the maximum 

available space allowed by its constraints. Not only will this ensure 

that the button fills the available height, but also allows the width to 

adjust in response to changes in the size of button1 and button2. To 

achieve this, the width and height dimension constraints of button3 

need to be changed to Modify the button3 declaration to add these 

dimension constraints as follows:

MyButton(text = "Button3", Modifier.constrainAs(button3) {

linkTo(parent.top, parent.bottom, topMargin = 8.dp, bottomMargin 

= 8.dp)

linkTo(button1.end, parent.end, startMargin = 30.dp, endMargin = 

8.dp)

width = Dimension.fillToConstraints

height = Dimension.fillToConstraints

})

In the Preview panel, the layout should appear as shown in Figure



Figure 31-15

Next, we need to check if the layout is already providing the required 

behavior by increasing the width of button1 as follows:

MyButton(text = "Button1", {

Note the width dimension of button3 has reduced as required as 

expected:



Figure 31-16

Now return the width of buttoni to loodp, then increase the width 

of button2 to 150dp. This time the width of button3 has not been 

reduced, causing an overlap with button2:



Figure 31-17

Clearly, this does not meet our layout specifications. This is 

happening because button3 is only constrained by button1 and is not 

affected by changes to button2. To resolve this shortcoming, we need 

to create a barrier positioned at the end of button1 and button2. 

Instead of constraining the start edge of button3 against the end of 

button1 we will, instead, constrain the start of the button against the 

barrier:

@Composable

fun MainScreen() {

ConstraintLayout(Modifier.size(width = 350.dp, height = 220.dp)) {



val (buttoni, button2, button3) = createRefs()

val barrier = createEndBarrier(buttoni, button2)

MyButton(text = "Button3", Modifier.constrainAs(button3) {

linkTo(parent.top, parent.bottom,

topMargin = 8.dp, bottomMargin = 8.dp)

linkTo(button1.end, parent.end, startMargin = 30.dp,

endMargin = 8.dp)

start.linkTo(barrier, margin = 3O.dp)

width = Dimension.fillToConstraints 

height = Dimension.fillToConstraints

})



}

}

With these changes made, button3 will resize regardless of whether it 

is buttoni or button2 which increases in width. As either width 

changes, the barrier to which button3 is constrained will move 

proportionally, thereby reducing the width of button3:

Figure 31-18



31.16 Decoupling constraints with constraint sets

So far in this chapter, all of the constraints have been declared 
within modifiers applied to individual composables. Compose also 

allows constraints to be declared separately in the form of 

constraint These decoupled constraints can then be passed to the 

ConstraintLayout and applied to composable children.

Decoupled constraints allow you to create sets of constraints that 

can be reused without having to duplicate modifier declarations. 

These constraint sets also provide flexibility in terms of passing 

different sets of constraints depending on other criteria. A layout 

might, for example, use different constraint sets depending on 
screen size or device orientation.

To demonstrate constraint sets, modify the MainScreen function as 

follows:

@Composable

fun MainScreen() {

ConstraintLayout(Modifier.size(width = 200.dp, height = 

200.dp)) {

val button = createRef()



MyButton(text = "Buttoni",
Modifier.size(2OO.dp).constrainAs(buttoni) {

linkTo(parent.top, parent.bottom, topMargin = 8.dp,

bottomMa 

rgin = 8.dp)

linkTo(parent.start, parent.end, startMargin = 8.dp,

endMargi 
n = 8.dp)

width = Dimension.fillToConstraints

height = Dimension.fillToConstraints

})

}

}

This layout displays a button that is allowed to fill the available 

size allowed by the constraints applied to it:



Figure 31-19

We will now decouple these constraints into a separate constraint 

set. To make the constraint set more useful, we will allow the 

margin value to be passed as an argument. Remaining within the 

MainActivity.kt file, declare the constraint set as follows: 

import androidx.compose.ui.unit.Dp



import androidx.constraintlayout.compose.*  

private fun myConstraintSet(margin: Dp): ConstraintSet {

return ConstraintSet {

val button = createRefFor("button1") 

constrain(buttorn) {

linkTo(parent.top, parent.bottom, topMargin = margin,

bottomMargin = margin)

linkTo(parent.start, parent.end, startMargin = margin,

endMargin = margin)

width = Dimension.fillToConstraints 

height = Dimension.fillToConstraints



}

}

}

The above code declares a new function that accepts a margin 
value and returns a ConstraintSet object. Next, a call is made to 

the createRefFor() function to generate a reference for whichever 

composable the constraint set is applied to. Next, the constraint 
set is created by calling the constrain() function passing through 

the reference and declaring the constraints in the trailing lambda.

With the constraint set created, it can be passed to the 

ConstraintLayout and applied to buttom. This involves creating an 

instance of the constraint set, passing it through to the 

ConstraintLayout instance, and using the layout() modifier function 

to associate the constraint set reference with the buttom 

composable. Modify the MainScreen function to apply these 

changes:

@Composable

fun MainScreen() {

val constraints = myConstraintSet(margin = 8.dp)



Modifier.size(width = 2oo.dp, height = 200.dp))

{

val buttoni = createRef()

MyButton(text = "Buttoni", Modifier.size(2oo.dp).layoutld("buttoni"))

}

}

Preview the layout to verify that it still appears as expected.



31.17 Summary

ConstraintLayout provides a flexible way to implement complex 

user interface layouts that respond well to dynamic changes such 

as screen orientation rotation and changes in the size of 

components included in a layout. Before a composable can be 

constrained it must first be associated with a ConstraintLayout 

reference. The most basic of constraints involves attaching or 

linking the sides of a component to either the parent container or 

the side of another component. These links can be applied either 

with or without margins. Components may be centered by 

applying opposing constraints or offset by applying bias. The 

chapter also demonstrated the use of chains, barriers, and 

guidelines to influence the positioning behavior of multiple 

components and explored the use of constraint sets to create 

reusable sets of constraints that can be passed through to 

ConstraintLayout instances.



32. Working with IntrinsicSize in Compose

As we already know from the previous chapters, one of the ways 

that Compose can render user interface layouts quickly and 

efficiently is by limiting each composable to being measured only 

once during a recomposition operation. Situations sometimes 

arise, however, where a parent composable needs to know size 

information about its children before they are measured as part of 

the recomposition. You might, for example, need the width of a 

Column to match that of its widest child. Although a parent 

cannot measure its children, size information may be obtained 

without breaking the “measure once” rule by making use of 
intrinsic



32.1 Intrinsic measurements

A parent composable can obtain sizing information about its 
children by accessing the Max and Min values of the Compose 

IntrinsicSize enumeration. IntrinsicSize provides the parent with 

information about the maximum or minimum possible width or 

height of its widest or tallest child. This allows the parent to 

make sizing decisions based on the sizing needs of its children. 

The following code, for example, sets the height of a Row 

composable based on intrinsic size information:

Row(modifier = modifier.height(IntrinsicSize.Min)) {

}

When this composable is rendered, the height of the Row will be 

set to the minimum possible height needed to display its tallest 

child. Similarly, the following code configures the width of a 

Column to the maximum possible width of its widest child:

Column(modifier = modifier.width(IntrinsicSize.Max)) {



}

In the absence of modifiers to the contrary, a layout composable 

such as a Row or Column will typically be sized to occupy all of 

the space made available to it by its parent. By making use of 

IntrinsicSize, these composables can instead be sized to match 

the space requirements of their children. As we will see in the 

following example project, this becomes particularly useful when 

one or more children are subject to dynamic size changes.



32.2 Max. vs Min. Intrinsic Size measurements

The IntrinsicSize enumeration provides access to both maximum and 

minimum measurements. The difference between these two values 

needs some explanation. All visible composables need space on the 

device display in which to render their content, and many can adapt 

to changes in the amount of space available. This concept is, 

perhaps, best described using the Text composable as an example. A 

Text composable displaying a single line of text has a maximum 

width equivalent to the length of text it is displaying. This equates to 

the IntrinsicSize Max value:

This is a Text composable containing a line of text.
«----------------------------------------------------------------

IntrinsicSize.Max

Figure 32-1

The Text component is, however, also able to display multi-line text. 

This means that the same line of text could potentially be placed on 

multiple lines, considerably reducing the width required to display the 

content. Assuming there are no restrictions on height, the minimum 

width required by a Text composable could be as narrow as the 

length of the longest word in the text string. This value equates to 

the IntrinsicSize Min value:



No height 
restriction

This is a 
Text 
composabie 
containing 
a line of 
text.

IntrinsicSize.Min

Figure 32-2

As indicated in the above diagram, this example IntrinsicSize.Min 

value assumes that no height constraints have been applied to the 

Text component. In the presence of a height restriction, Compose 

would arrive at a different minimum intrinsic width measurement:

Figure 32-3



32.3 About the example project

When the project is complete it will consist of a Text composable, 

colored rectangular Box and custom TextField. The objective is for 

the text entered into the TextField to appear in the Text 

component. As text is typed, the width of the Box, which will be 

positioned directly beneath the Text component, will adjust so that 

it matches the width of the displayed text.

This will be achieved by placing the Text and Box components 
within a Column, the width of which will be defined using the 

IntrinsicSize measurements of its children.



32.4 Creating the IntrinsicSizeDemo project

Launch Android Studio and select the New Project option from 

the welcome screen. Within the new project dialog, choose the 

Empty Activity template and click on the Next button.

Enter IntrinsicSizeDemo into the Name field and specify 
com.example.intrinsicsizedemo as the package name. Before clicking 

on the Finish button, change the Minimum API level setting to 

API 26: Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to 
call MainScreen instead of Greeting.



32.5 Creating the custom text field

The custom text field will need to accept as parameters the state 
variable used to store the current text and an event handler 

reference to be called for each user keystroke. Remaining within 

the MainActivity.kt file, add a new composable with these features 

named MyTextField: 

import androidx.compose.material3.ExperimentalMaterial3Api

import androidx.compose.material3.TextField

@OptIn(ExperimentalMaterial3Api::class)

@Composable 

fun MyTextField(text: String, onTextChange : (String) -> Unit) {



TextField(

value = text,

onValueChange = onTextChange 

)

}

Before moving on to the next step, take this opportunity to add 

the text state variable and event handler to the MainScreen 

function as follows: 

import androidx.compose.runtime.*

@Composable



fun MainScreen() { 

var textState by remember { mutableStateOff"') }

val onTextChange = { text : String ->

textState = text

}

}



32.6 Adding the Text and Box components

A Column now needs to be added to the MainScreen function 

containing both the Text and Box components. Continue editing 

the MainActivity.kt file to add these composables: 

import androidx.compose.foundation.background

import androidx.compose.foundation.layout.*

import androidx.compose.ui.graphics.Color

import androidx.compose.ui.unit.dp

@Composable 

fun MainScreen() {



var textState by remember { mutableStateOf("") }

val onTextChange = { text : String -> 

textState = text

}

Column {

Text(

modifier = Modifier

.padding(start = 4.dp),

text = textState

)

Box(Modifier.height(io.dp).fillMaxWidth().background(Color.Bl 

ue))

}



}

Note that the Box is configured to use the full width of the 

parent Column. Later we will use the intrinsic width measurement 

to make sure the Column is only wide enough to contain the Text 

composable.



32.7 Adding the top-level Column

The final step before performing an initial test is to embed the 

Column added above within another Column together with the 

custom text field as outlined below. Since this is the top-most 

Column in the component hierarchy, we will refer to it as the 

“top-level” column:

@Composable

fun MainScreen() {

var textState by remember { mutableStateOf("") }

val onTextChange = { text : String ->

textState = text

}

Column(Modifier.width(2OO.dp).padding(5.dp)) {

Column {

Text(



modifier = Modifier

.padding(start = 4.dp),

text = textState

)

Box(Modifier.height(io.dp).fillMaxWidth().background(C 

olor.Blue))

}

MyTextField(text = textState, onTextChange = onTextChange)

}

}



32.8 Testing the project

Using either an emulator or device, run the app and enter some text 

into the TextField as shown in Figure

Hello Compose

Hello Compose]

Figure 32-4

Note that text appears in the Text composable as it is typed, but 

that the Box extends to the width of the top-level Column instead of 

matching the text width.



32.9 Applying IntrinsicSize.Max measurements

All that is required to resolve the current problem is to configure the 

Column containing the Text and Box so that its width is based on 

the maximum intrinsic size measurement of its children. Modify the 

Column declaration so that it now reads as follows:

Column(Modifier.width(200.dp).padding(5.dp)) {

Test the app again, and verify that the width of the Box now 

matches the text width as it is typed. In fact, even as text is deleted, 

the Box width updates accordingly. This is because the width of the 

parent Column is changing on each recomposition as characters are 

typed or deleted.



Hello Compose

Hello Compose

Figure 32-5



32.10 Applying IntrinsicSize.Min measurements

Now that we have seen the effect of the minimum IntrinsicSize 

measurement on the Column parent, we are ready to explore the use 

of the minimum measurement. Edit the Column declaration so that it 

now uses IntrinsicSize.Min as follows:

Column(Modifier.width(200.dp).padding(5.dp)) {

{

Test the app once again, this time entering a longer sentence into 

the text field as shown in Figure 32-6 below:



This is 
some text 
containing 
lots of 
words.

This is some text containing lots of words

Figure 32-6

With this change implemented, the minimum Column width matches 

that of the line displaying the longest word (in this case the line 

that reads “containing”).



32.11 Summary

To maximize rendering speeds, Compose prohibits a composable 

from being measured more than once during recomposition. This 

can be problematic if a parent needs to make sizing decisions 

before its children have been measured. All composables have a 
minimum and maximum size at which they can comfortably 

render their content without that content being clipped or 

obscured. IntrinsicSize allows a parent to scan its children and 

identify the minimum and maximum height and width values of 

its widest and tallest child, and to use that information to 

configure its own dimensions.



33. Coroutines and LaunchedEffects in Jetpack Compose

When an Android application is first started, the runtime system 

creates a single thread in which all application components will 

run by default. This thread is generally referred to as the main 

The primary role of the main thread is to handle the user 
interface in terms of event handling and interaction with views in 

the user interface. Any additional components that are started 
within the application will, by default, also run on the main 

thread.

Any code within an application that performs a time-consuming 

task using the main thread will cause the entire application to 

appear to lock up until the task is completed. This will typically 
result in the operating system displaying an “Application is not 

responding” warning to the user. This is far from the desired 

behavior for any application. Fortunately, Kotlin provides a 

lightweight alternative in the form of Coroutines. In this chapter, 

we will introduce Coroutines, including terminology such as 

dispatchers, coroutine scope, suspend functions, coroutine builders, 

and structured concurrency. The chapter will also explore channel­
based communication between coroutines and explain how to 

safely launch coroutines from within composable functions.



33.1 What are coroutines?

Coroutines are blocks of code that execute asynchronously without 

blocking the thread from which they are launched. Coroutines can 

be implemented without having to worry about building complex 

multi-tasking implementations or directly managing multiple 

threads. Because of the way they are implemented, coroutines are 

much more efficient and less resource-intensive than using 

traditional multi-threading options. Coroutines also make for code 

that is much easier to write, understand and maintain since it 

allows code to be written sequentially without having to write 

callbacks to handle thread-related events and results.

Although a relatively recent addition to Kotlin, there is nothing 

new or innovative about coroutines. Coroutines in one form or 

another have existed in programming languages since the 1960s 

and are based on a model known as Communicating Sequential 

Processes (CSP). In fact, Kotlin still uses multi-threading behind 

the scenes, though it does so highly efficiently.



33.2 Threads vs. coroutines

A problem with threads is that they are a finite resource and 

expensive in terms of CPU capabilities and system overhead. In 

the background, a lot of work is involved in creating, scheduling, 

and destroying a thread. Although modern CPUs can run large 

numbers of threads, the actual number of threads that can be run 

in parallel at any one time is limited by the number of CPU 

cores (though newer CPUs have 8 or more cores, most Android 

devices contain CPUs with 4 cores). When more threads are 

required than there are CPU cores, the system has to perform 

thread scheduling to decide how the execution of these threads is 

to be shared between the available cores.

To avoid these overheads, instead of starting a new thread for 

each coroutine and then destroying it when the coroutine exits, 

Kotlin maintains a pool of active threads and manages how 

coroutines are assigned to those threads. When an active 

coroutine is suspended it is saved by the Kotlin runtime and 

another coroutine resumed to take its place. When the coroutine 

is resumed, it is simply restored to an existing unoccupied thread 

within the pool to continue executing until it either completes or 

is suspended. Using this approach, a limited number of threads 

are used efficiently to execute asynchronous tasks with the 

potential to perform large numbers of concurrent tasks without 

the inherent performance degeneration that would occur using 
standard multi-threading.



33.3 Coroutine Scope

All coroutines must run within a specific scope which allows them 

to be managed as groups instead of as individual coroutines. This 
is particularly important when canceling and cleaning up 

coroutines and ensuring that coroutines do not “leak” (in other 

words continue running in the background when they are no 

longer needed by the app). By assigning coroutines to a scope 

they can, for example, all be canceled in bulk when they are no 

longer needed.

Kotlin and Android provide some built-in scopes as well as the 

option to create custom scopes using the CoroutineScope class. 

The built-in scopes can be summarized as follows:

- GlobalScope is used to launch top-level coroutines which are 

tied to the entire lifecycle of the application. Since this has the 

potential for coroutines in this scope to continue running when 

not needed (for example when an Activity exits) use of this scope 

is not recommended for use in Android applications. Coroutines 

running in GlobalScope are considered to be using unstructured

- Provided specifically for use in ViewModel instances when using 

the Jetpack architecture ViewModel component. Coroutines 

launched in this scope from within a ViewModel instance are 

automatically canceled by the Kotlin runtime system when the 

corresponding ViewModel instance is destroyed.



•LifecycleScope - Every lifecycle owner has associated with it a 

LifecycleScope. This scope is canceled when the corresponding 

lifecycle owner is destroyed making it particularly useful for 

launching coroutines from within composables and activities.

For most requirements, the best way to access a coroutine scope 

from within a composable is to make a call to the 
rememberCoroutineScope() function as follows:

val coroutineScope = rememberCoroutineScope()

The coroutineScope declares the dispatcher that will be used to 
run coroutines (though this can be overridden) and must be 

referenced each time a coroutine is started if it is to be included 

within the scope. All of the running coroutines in a scope can be 

canceled via a call to the cancel() method of the scope instance: 

coroutineScope.cancel()



33.4 Suspend functions

A suspend function is a special type of Kotlin function that 

contains the code of a coroutine. It is declared using the Kotlin 

suspend keyword which indicates to Kotlin that the function can be 
paused and resumed later, allowing long-running computations to 

execute without blocking the main thread.

The following is an example suspend function:

suspend fun mySlowTask() {

// Perform long-running task here

}



33.5 Coroutine dispatchers

Kotlin maintains threads for different types of asynchronous 

activity and, when launching a coroutine, you have the option to 

specify a specific dispatcher from the following options:

- Runs the coroutine on the main thread and is suitable for 

coroutines that need to make changes to the UI and as a 

general-purpose option for performing lightweight tasks.

- Recommended for coroutines that perform network, disk, or 

database operations.

- Intended for CPU-intensive tasks such as sorting data or 

performing complex calculations.

The dispatcher is responsible for assigning coroutines to 

appropriate threads and suspending and resuming the coroutine 

during its lifecycle. The following code, for example, launches a 

coroutine using the IO dispatcher:

{



performSlowTask()

}

In addition to the predefined dispatchers, it is also possible to 

create dispatchers for your own custom thread pools.



33.6 Coroutine builders

The coroutine builders bring together all of the components 

covered so far and launch the coroutines so that they start 

executing. For this purpose, Kotlin provides the following six 

builders:

- Starts a coroutine without blocking the current thread and does 
not return a result to the caller. Use this builder when calling a 

suspend function from within a traditional function, and when the 

results of the coroutine do not need to be handled (sometimes 

referred to as “fire and forget” coroutines).

- Starts a coroutine and allows the caller to wait for a result 

using the await() function without blocking the current thread. Use 

async when you have multiple coroutines that need to run in 

parallel. The async builder can only be used from within another 
suspend function.

- This allows a coroutine to be launched in a different context 

from that used by the parent coroutine. A coroutine running using 

the Main context could, for example, launch a child coroutine in 

the Default context using this builder. The withContext builder also 

provides a useful alternative to async when returning results from 

a coroutine.



- The coroutineScope builder is ideal for situations where a 

suspend function launches multiple coroutines that will run in 

parallel and where some action needs to take place only when all 

the coroutines reach completion. If those coroutines are launched 
using the coroutineScope builder, the calling function will not 

return until all child coroutines have completed. When using 

coroutineScope, a failure in any of the coroutines will result in the 
cancellation of all other coroutines.

- Similar to the coroutineScope outlined above, with the exception 

that a failure in one child does not result in cancellation of the 

other coroutines.

- Starts a coroutine and blocks the current thread until the 

coroutine reaches completion. This is typically the opposite of 

what is wanted from coroutines but is useful for testing code and 

integrating legacy code and libraries. Otherwise to be avoided.



33.7 Jobs

Each call to a coroutine builder such as launch or async returns a 
Job instance which can, in turn, be used to track and manage the 

lifecycle of the corresponding coroutine. Subsequent builder calls 

from within the coroutine create new Job instances which will 

become children of the immediate parent Job forming a parent­

child relationship tree where canceling a parent Job will recursively 
cancel all its children. Canceling a child does not, however, cancel 

the parent, though an uncaught exception within a child created 

using the launch builder may result in the cancellation of the 

parent (this is not the case for children created using the async 

builder which encapsulates the exception in the result returned to 

the parent).

The status of a coroutine can be identified by accessing the 

isActive, isCompleted, and isCancelled properties of the associated 

Job object. In addition to these properties, several methods are 

also available on a Job instance. A Job and all of its children 

may, for example, be canceled by calling the cancel() method of 

the Job object, while a call to the cancelChildren() method will 

cancel all child coroutines.

The join() method can be called to suspend the coroutine 

associated with the job until all of its child jobs have completed. 

To perform this task and cancel the Job once all child jobs have 

completed, simply call the cancelAndJoin() method.



This hierarchical Job structure together with coroutine scopes form 

the foundation of structured concurrency, the goal of which is to 

ensure that coroutines do not run for longer than they are 

required without the need to manually keep references to each 

coroutine.



33.8 Coroutines - suspending and resuming

To gain a better understanding of coroutine suspension, it helps to 

see some examples of coroutines in action. To start with, let’s 

assume a simple Android app containing a button that, when clicked, 

calls a suspend function named The code for this might read as 

follows:

val coroutineScope = rememberCoroutineScope()

Button(onClick = {

coroutineScope.launch {

performSlowTask()

}

}) {

Text(text = "Click Me")

}

In the above code, a coroutine scope is obtained and referenced in 

the call to the launch builder which, in turn, calls the



performSlowTask() suspend function. Next, we can declare the 

performSlowTask() suspend function as follows: 

suspend fun performSlowTask() {

println("performSlowTask before")

delay(5000) // simulates long-running task

println("performSlowTask after")

}

As implemented, all the function does is output diagnostic messages 

before and after performing a 5-second delay, simulating a long- 

running task. While the 5-second delay is in effect, the user interface 

will continue to be responsive because the main thread is not being 

blocked. To understand why it helps to explore what is happening 

behind the scenes.

A click on the button launches the peformSlowTask() suspend 

function as a coroutine. This function then calls the Kotlin delay() 

function passing through a time value. In fact, the built-in Kotlin 

delay() function is itself implemented as a suspend function so is 

also launched as a coroutine by the Kotlin runtime environment. The 

code execution has now reached what is referred to as a suspend 

point which will cause the peformSlowTask() coroutine to be 

suspended while the delay coroutine is running. This frees up the 



thread on which performSlowTask() was running and returns control 

to the main thread so that the UI is unaffected.

Once the delay() function reaches completion, the suspended 

coroutine will be resumed and restored to a thread from the pool 

where it can display the log message and return.

When working with coroutines in Android Studio suspend points 

within the code editor are marked as shown in the figure below:

fun startTask(view: View) {
myCoroutineScope. launch(Dispatchers.Main) { this: Coroutinescope 

performSl.owTask()
}

}

suspend fun performSlowTask() {
Log.i(TAG, msg: "performSlowTask before")
delayl timeMillis: 5_000) // simulates long running task 
Log.i(TAG, msg: "performSlowTask after")

}

Figure 33-1

We will explore some coroutine examples when we start to look at 

List composables, starting with the chapter titled “An Overview of 

Lists and Grids in



33.9 Coroutine channel communication

Channels provide a simple way to implement communication 

between coroutines including streams of data. In the simplest 

form this involves the creation of a Channel instance and calling 

the send() method to send the data. Once sent, transmitted data 

can be received in another coroutine via a call to the receive() 

method of the same Channel instance.

The following code, for example, passes six integers from one 

coroutine to another: 

import kotlinx.coroutines.channels.*  

val channel = Channel() 

coroutineScope.launch() {



coroutineScope.launch(Dispatchers.Main) { performTaski() }

coroutineScope.launch(Dispatchers.Main) { performTask2() }

}

suspend fun performTaski() {

(i..6).forEach {

channel.send(it)

}

}

suspend fun performTask2() {

repeat(6) {

println("Received: ${channel.receive()}")

}

}



When executed, the following logcat output will be generated:

Received: 1

Received: 2

Received: 3

Received: 4

Received: 5

Received: 6



33.10 Understanding side effects

So far in this chapter, we have looked at coroutines and explained 

how to use a coroutine scope to execute code asynchronously. In 

each case, the coroutine was launched from within the onClick 

event handler of a Button composable. The reason for this is that 

while it is possible to launch a coroutine in this way from within 

the scope of an event handler, it is not safe to do so from within 

the scope of the parent composable. Consider, for example, the 
following code:

@Composable

fun Greeting(name: String) {

val coroutineScope = rememberCoroutineScope()

coroutineScope.launch() {

performSlowTask()

}

}



An attempt to compile the above code will result in an error that 

reads as follows:

Calls to launch should happen inside a LaunchedEffect and not 

composition

It is not possible to launch coroutines in this way when working 

within a composable because it can cause adverse side effects. In 

the context of Jetpack Compose, a side effect occurs when 

asynchronous code makes changes to the state of a composable 

from a different scope without taking into consideration the 

lifecycle of that composable. The risk here is the potential for a 

coroutine to continue running after the composable exits, a 

particular problem if the coroutine is still executing and making 

state changes the next time the composable runs.

To avoid this problem, we need to launch our coroutines from 

within the body of either a LaunchedEffect or SideEffect 

composable. Unlike the above attempt to directly launch a 

coroutine from within the scope of a composable, these two 

composables are considered safe to launch coroutines because 

they are aware of the lifecycle of the parent composable.

When a LaunchedEffect composable containing coroutine launch 

code is called, the coroutine will immediately launch and begin 

executing the asynchronous code. As soon as the parent 

composable completes, the LaunchedEffect instance and coroutine 

are destroyed.



The syntax for declaring a LaunchedEffect containing a coroutine 

is as follows:

LaunchedEffect(key1, key2, ...) {

coroutineScope.launch() {

// async code here

}

}

The key parameter values (of which there must be at least one) 

control the behavior of the coroutine through recompositions. As 

long as the values of any of the key parameters remain 

unchanged, LaunchedEffect will keep the same coroutine running 

through multiple recompositions of the parent composable. If a 

key value changes, however, LaunchedEffect will cancel the current 

coroutine and launch a new one.

To call our suspend function from within our composable, we 

would need to change the code to read as follows: 

@Composable 



fun Greeting(name: String) {

val coroutineScope = rememberCoroutineScope()

LaunchedEffect(keyi = Unit) {

coroutineScope.launch() {

performSlowTask()

}

}

}

Note that we have passed a Unit instance (the equivalent of a 

void value) as the key in the above example to indicate that the 

coroutine does not need to be recreated through recompositions.

In addition to LaunchedEffect, Jetpack Compose also includes the 

SideEffect composable. Unlike LaunchedEffect, a SideEffect 

coroutine is executed after composition of the parent completes. 

SideEffect also does not accept key parameters and relaunches on 

every recomposition of the parent composable.



We will be making use of LaunchedEffect in the chapter entitled 

“A Jetpack Compose SharedFlow



33.11 Summary

Kotlin coroutines provide a simpler and more efficient approach to 

performing asynchronous tasks than that offered by traditional 

multi-threading. Coroutines allow asynchronous tasks to be 

implemented in a structured way without the need to implement 

the callbacks associated with typical thread-based tasks. This 

chapter has introduced the basic concepts of coroutines including 

jobs, scope, builders, suspend functions, structured concurrency, 

and channel-based communication.

While it is possible to directly start coroutines from within an 
event handler such as the onClick handler of a Button, doing so 

within the main body of a Composable is considered unsafe and 

results in a syntax error. In this situation, coroutines must be 

launched using either the LaunchedEffect or SideEffect composable 

functions.



34. An Overview of Lists and Grids in Compose

It is a common requirement when designing user interface layouts 

to present information in either scrollable list or grid 

configurations. For basic list requirements, the Row and Column 

components can be re-purposed to provide vertical and horizontal 

lists of child composables. Extremely large lists, however, are likely 

to cause degraded performance if rendered using the standard 

Row and Column composables. For lists containing large numbers 

of items, Compose provides the LazyColumn and LazyRow 

composables. Similarly, grid-based layouts can be presented using 

the LazyVerticalGrid composable.

This chapter will introduce the basics of list and grid creation and 

management in Compose in preparation for the tutorials in 

subsequent chapters.



34.1 Standard vs. lazy lists

Part of the popularity of lists is that they provide an effective way 
to present large amounts of items in a scrollable format. Each 

item in a list is represented by a composable which may, itself, 

contain descendant composables. When a list is created using the 

Row or Column component, all of the items it contains are also 

created at initialization, regardless of how many are visible at any 

given time. While this does not necessarily pose a problem for 
smaller lists, it can be an issue for lists containing many items.

Consider, for example, a list that is required to display 1000 

photo images. It can be assumed with a reasonable degree of 

certainty that only a small percentage of items will be visible to 

the user at any one time. If the application was permitted to 

create each of the 1000 items in advance, however, the device 

would very quickly run into memory and performance limitations.

When working with longer lists, the recommended course of 

action is to use LazyColumn, LazyRow, and LazyVerticalGrid. These 

components only create those items that are visible to the user. 

As the user scrolls, items that move out of the viewable area are 

destroyed to free up resources while those entering view are 

created just in time to be displayed. This allows lists of potentially 

infinite length to be displayed with no performance degradation.



Since there are differences in approach and features when working 

with Row and Column compared to the lazy equivalents, this 

chapter will provide an overview of both types.



34.2 Working with Column and Row lists

Although lacking some of the features and performance 

advantages of the LazyColumn and LazyRow, the Row and Column 

composables provide a good option for displaying shorter, basic 

lists of items. Lists are declared in much the same way as regular 

rows and columns with the exception that each list item is usually 

generated programmatically. The following declaration, for example, 

uses the Column component to create a vertical list containing 

100 instances of a composable named MyListItem:

Column {

repeat(100) {

MyListItem()

}

}

Similarly, the following example creates a horizontal list containing 

the same items:

Row {



repeat(ioo) {

MyListItem()

}

}

The MyListItem composable can be anything from a single Text 

composable to a complex layout containing multiple composables.



34.3 Creating lazy lists

Lazy lists are created using the LazyColumn and LazyRow 

composables. These layouts place children within a LazyListScope 

block which provides additional features for managing and 

customizing the list items. For example, individual items may be 

added to a lazy list via calls to the item() function of the 

LazyListScope:

LazyColumn {

item {

MyListItem()

}

}

Alternatively, multiple items may be added in a single statement 
by calling the items() function:

LazyColumn {

items(1000) { index ->



Text("This is item $index");

}

}

LazyListScope also provides the itemsIndexed() function which 

associates the item content with an index value, for example:

val colorNamesList = listOf("Red", "Green", "Blue", "Indigo")

LazyColumn {

itemsIndexed(colorNamesList) { index, item ->

Text("$index = $item")

}

}

When rendered, the above lazy column will appear as shown in 

Figure 34-1 below:



0 = Red
1 = Green
2 = Blue
3 = Indigo

Figure 34-1

Lazy lists also support the addition of headers to groups of items 
in a list using the stickyHeader() function. This topic will be 

covered in more detail later in the chapter.



34.4 Enabling scrolling with ScrollState

While the above Column and Row list examples will display a list 

of items, only those that fit into the viewable screen area will be 

accessible to the user. This is because lists are not scrollable by 

default. To make Row and Column-based lists scrollable, some 

additional steps are needed. LazyList and LazyRow, on the other 

hand, support scrolling by default.

The first step in enabling list scrolling when working with Row 

and Column-based lists is to create a ScrollState instance. This is 

a special state object designed to allow Row and Column parents 

to remember the current scroll position through recompositions. A 

ScrollState instance is generated via a call to the 
rememberScrollState() function, for example:

val scrollState = rememberScrollState()

Once created, the scroll state is passed as a parameter to the 

Column or Row composable using the verticalScroll() and 

horizontalScroll() modifiers. In the following example, vertical 
scrolling is being enabled in a Column list:

{

repeat(100) {



MyListItem()

}

}

Similarly, the following code enables horizontal scrolling on a 

LazyRow list:

{

repeat(1000) {

MyListItem()

}

}



34.5 Programmatic scrolling

We generally think of scrolling as being something a user 

performs through dragging or swiping gestures on the device 

screen. It is also important to know how to change the current 
scroll position from within code. An app screen might, for 

example, contain buttons which can be tapped to scroll to the 

start and end of a list. The steps to implement this behavior 

differ between Row and Columns lists and the lazy list 

equivalents.

When working with Row and Column lists, programmatic scrolling 

can be performed by calling the following functions on the 

ScrollState instance:

Int) - Scrolls smoothly to the specified pixel position in the list 
using animation.

Int) - Scrolls instantly to the specified pixel position.

Note that the value parameters in the above function represent 

the list position in pixels instead of referencing a specific item 

number. It is safe to assume that the start of the list is 

represented by pixel position 0, but the pixel position representing 

the end of the list may be less obvious. Fortunately, the 
maximum scroll position can be identified by accessing the 

maxValue property of the scroll state instance:



val maxScrollPosition = scrollState.maxValue

To programmatically scroll LazyColumn and LazyRow lists, 

functions need to be called on a LazyListState instance which can 
be obtained via a call to the rememberLazyListState() function as 

follows: 

val listState = rememberLazyListState()

Once the list state has been obtained, it must be applied to the 
LazyRow or LazyColumn declaration as follows:

LazyColumn(

state = listState,

{



Scrolling can then be performed via calls to the following 

functions on the list state instance:

Int) - Scrolls smoothly to the specified list item (where 0 is the 

first item).

Int) - Scrolls instantly to the specified list item (where 0 is the 

first item).

In this case, the scrolling position is referenced by the index of 

the item instead of pixel position.

One complication is that all four of the above scroll functions are 

coroutine functions. As outlined in the chapter titled “Coroutines 
and LaunchedEffects in Jetpack coroutines are a feature of Kotlin 

that allows blocks of code to execute asynchronously without 

blocking the thread from which they are launched (in this case 

the main thread which is responsible for making sure the app 

remains responsive to the user). Coroutines can be implemented 

without having to worry about building complex implementations 

or directly managing multiple threads. Because of the way they are 

implemented, coroutines are much more efficient and less 

resource-intensive than using traditional multi-threading options. 

One of the key requirements of coroutine functions is that they 

must be launched from within a coroutine



As with ScrollState and LazyListState, we need access to a 

CoroutineScope instance that will be remembered through 

recompositions. This requires a call to the 
rememberCoroutineScope() function as follows:

val coroutineScope = rememberCoroutineScope()

Once we have a coroutine scope, we can use it to launch the 

scroll functions. The following code, for example, declares a 

Button component configured to launch the animateScrollTo() 

function within the coroutine scope. In this case, the button will 

cause the list to scroll to the end position when clicked:

Button(onClick = { 

coroutineScope.launch {

scrollState.animateScrollTo(scrollState.maxValue)

}



}



34.6 Sticky headers

Sticky headers is a feature only available within lazy lists that 

allows list items to be grouped under a corresponding header. 

Sticky headers are created using the LazyListScope stickyHeader() 

function.

The headers are referred to as being sticky because they remain 

visible on the screen while the current group is scrolling. Once a 

group scrolls from view, the header for the next group takes its 

place. Figure for example, shows a list with sticky headers. Note 

that although the Apple group is scrolled partially out of view, the 

header remains in position at the top of the screen:



1 2:00
Apple

Apple iPhone 1 2

Apple iPhone 7

Apple iPhone 1 3

Apple iPhone 8

Google

Google Pixel 4

Google Pixel 6

Google Pixel 4a

Samsung

Samsung Galaxy 6s

Samsung Galaxy Z Flip

One Plus

OnePlus 7

OnePlus 9 Pro



Figure 34-2

When working with sticky headers, the list content must be stored 

in an Array or List which has been mapped using the Kotlin 

groupBy() function. The groupBy() function accepts a lambda which 

is used to define the selector which defines how data is to be 

grouped. This selector then serves as the key to access the 

elements of each group. Consider, for example, the following list 

which contains mobile phone models:

val phones = listOf("Apple iPhone 12", "Google Pixel 4", "Google 

Pixel 6",

"Samsung Galaxy 6s", "Apple iPhone 7", "OnePlus 7", 

"OnePlus 9 Pro",

"Apple iPhone 13", "Samsung Galaxy Z Flip", "Google 

Pixel 4a",

"Apple iPhone 8")

Now suppose that we want to group the phone models by 

manufacturer. To do this we would use the first word of each 

string (in other words, the text before the first space character) as 
the selector when calling groupBy() to map the list:



val groupedPhones = phones.groupBy { it.substringBefore(' ') }

Once the phones have been grouped by manufacturer, we can use 

the forEach statement to create a sticky header for each 

manufacture name, and display the phones in the corresponding 

group as list items:

groupedPhones.forEach { (manufacturer, models) ->

stickyHeader {

Text(

text = manufacturer, 

color = Color.White, 

modifier = Modifier

.background(Color.Gray) 

.padding(5.dp) 

.fillMaxWidth()

)



}

items(models) { model ->

MyListltem(model)

}

}

In the above forEach lambda, manufacturer represents the selector 

key (for example “Apple”) and models an array containing the 

items in the corresponding manufacturer group (“Apple iPhone 

12”, “Apple iPhone 7”, and so on for the Apple selector):

groupedPhones.forEach { (manufacturer, models) ->

The selector key is then used as the text for the sticky header, 

and the models list is passed to the items() function to display all 

the group elements, in this case using a custom composable 

named MyListItem for each item:

items(models) { model ->

MyListItem(model)



}

When rendered, the above code will display the list shown in 

Figure 34-2 above.



34.7 Responding to scroll position

Both LazyRow and LazyColumn allow actions to be performed 

when a list scrolls to a specified item position. This can be 

particularly useful for displaying a “scroll to top” button that 

appears only when the user scrolls towards the end of the list.

The behavior is implemented by accessing the firstVisibleltemlndex 

property of the LazyListState instance which contains the index of 

the item that is currently the first visible item in the list. For 

example, if the user scrolls a LazyColumn list such that the third 

item in the list is currently the topmost visible item, 
firstVisibleltemlndex will contain a value of 2 (since indexes start 

counting at 0). The following code, for example, could be used to 

display a “scroll to top” button when the first visible item index 

exceeds 8:

val firstVisible = listState.firstVisibleItemIndex

if (firstVisible > 8) {

// Display scroll to top button

}



34.8 Creating a lazy grid

Grid layouts may be created using the LazyVerticalGrid composable. 

The appearance of the grid is controlled by the cells parameter that 

can be set to either adaptive or fixed mode. In adaptive mode, the 

grid will calculate the number of rows and columns that will fit into 

the available space, with even spacing between items and subject to 

a minimum specified cell size. Fixed mode, on the other hand, is 

passed the number of rows to be displayed and sizes each column 

width equally to fill the width of the available space.

The following code, for example, declares a grid containing 30 cells, 

each with a minimum width of 60dp:

LazyVerticalGrid(GridCells.Adaptive(minSize = 60.dp),

state = rememberLazyGridState(),

contentPadding = PaddingValues(10.dp)

) {

items(30) { index ->

Card(

colors = CardDefaults.cardColors(



containerColor = MaterialTheme.colorScheme.primary

),

modifier = Modifier.padding(5.dp).fillMaxSize()) {

Text(

"$index",

textAlign = TextAlign.Center,

fontSize = 3O.sp,

color = Color.White,

modifier = Modifier.width(120.dp)

)

}

}

}



When called, the LazyVerticalGrid composable will fit as many items 

as possible into each row without making the column width smaller 

than 60dp as illustrated in the figure below:

QOOOQO 
QQQ0(D(D 
tR flcl CB flSj CR jR 
fll fll fli) Q) @ flcj

TORSI TO BRER

Figure 34-3

The following code organizes items in a grid containing three 

columns:

LazyVerticalGrid(

GridCells.Fixed(3),

state = rememberLazyGridState(),

contentPadding = PaddingValues(10.dp)



) {

items(i5) { index ->

Card(colors = CardDefaults.cardColors(

containerColor = MaterialTheme.colorScheme.primary

),

modifier = Modifier.padding(5.dp).fillMaxSize()) {

Text(

"$index",

fontSize = 35.sp,

color = Color.White,

textAlign = TextAlign.Center,

modifier = Modifier.width(120.dp))

}



}

}

The layout from the above code will appear as illustrated in Figure 

34-4_below:

Figure 34'4

Both the above grid examples used a Card composable containing a 

Text component for each cell item. The Card component provides a 

surface into which to group content and actions relating to a single 

content topic and is often used as the basis for list items. Although 

we provided a Text composable as the child, the content in a card 

can be any composable, including containers such as Row, Column,



and Box layouts. A key feature of Card is the ability to create a 

shadow effect by specifying an elevation:

Card(

modifier = Modifier

.fillMaxWidth()

.padding(15.dp),

elevation = CardDefaults.cardElevation(

defaultElevation = 10.dp

)

) {

Column(horizontalAlignment = Alignment.CenterHorizontally,

modifier = Modifier.padding(15.dp).fillMaxWidth()

) {

Text("Jetpack Compose", fontSize = 30.sp, )

Text("Card Example", fontSize = 20.sp)



}

}

When rendered, the above Card component will appear as shown in 

Figure

Figure 34-5



34.9 Summary

Lists in Compose may be created using either standard or lazy 
list components. The lazy components have the advantage that 

they can present large amounts of content without impacting the 

performance of the app or the device on which it is running. This 

is achieved by creating list items only when they become visible 

and destroying them as they scroll out of view. Lists can be 

presented in row, column, and grid formats and can be static or 

scrollable. It is also possible to programmatically scroll lists to 

specific positions and to trigger events based on the current scroll 
position.



35. A Compose Row and Column List Tutorial

In this chapter, we will create a project that uses the Column and 
Row components to display items in a list format. In addition to 

creating the list, the tutorial will also enable scrolling and 

demonstrate programmatic scrolling.



35.1 Creating the ListDemo project

Launch Android Studio and select the New Project option from 

the welcome screen. In the new project dialog, choose the Empty 

Activity template before clicking on the Next button.

Enter ListDemo into the Name field and specify 
com.example.listdemo as the package name. Before clicking the 

Finish button, change the Minimum API level setting to API 26: 

Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to 
call MainScreen instead of Greeting.



35.2 Creating a Column-based list

We will start this tutorial by creating a basic list layout using the 
Column composable to display a scrollable list of Text component 

items. Start by modifying the MainActivity.kt file as follows to add 

and call a new composable named 

import androidx.compose.foundation.layout. Column

import androidx.compose.foundation.layout.padding

import androidx.compose.ui.unit.dp

@Composable 

fun MainScreen() {



ColumnList()

}

@Composable 

fun ColumnList() {

Column {

repeat(500) {

Textf'List Item $it", 

style = MaterialTheme.typography.headlineSmall, 

modifier = Modifier.padding(5.dp))

}

}

}

The code within the ColumnList composable creates a Column 

containing a list of 500 Text components. The Text component is 



customized using the “Heading 4” Material typographical style and 

a padding modifier. Each Text instance displays a string including 

the current item number.

To best view the layout, modify the Preview composable to display 

the system UI:

@Preview(showBackground = showSystemUi =

@Composable

fun GreetingPreview() {

ListDemoTheme {

MainScreen()

}

}

Once these changes have been made, the preview should be 

rendered as follows:



12:00

List Item 0
List Item 1
List Item 2
List Item 3
List Item 4
List Item 5
List Item 6
List Item 7
List Item 8
List Item 9
List Item 10
List Item 11
List Item 1 2
List Item 1 3



Figure 35-1

Start interactive mode in the Preview panel and note that it is not 

possible to scroll the list to view the items currently outside the 

bounds of the screen viewing area. To resolve this, we need to 

enable vertical scrolling support on the Column component.



35.3 Enabling list scrolling

The first requirement when enabling scrolling support within a 

Column is a ScrollState state instance which can be obtained via 

a call to the rememberScrollState() function. Once the state has 

been obtained, it needs to be passed to the Column via the 

verticalScroll() modifier: 

import androidx.compose.foundation.rememberScrollState

import androidx.compose.foundation.verticalScroll

@Composable

fun ColumnList() { 

val scrollstate = rememberScrollState()



{

repeat(5oo) {

Text("List Item $it",

style = MaterialTheme.typography.h4, 

modifier = Modifier.padding(5.dp))

}

}

}

After adding scrolling support, refresh the interactive preview, then 

click and drag the list up and down to verify that vertical scrolling 
is now working.



35.4 Manual scrolling

The next step in this tutorial is to add some buttons to the 

layout that can be used to instantly scroll to the top and bottom 

of the list. As previously discussed, the list scroll position can be 

controlled from within code by making calls to methods of the 

ScrollState instance, specifying the target list position. Since these 

are coroutine functions, we also need to obtain a coroutine scope 

within which to initiate the scrolling action. We create coroutine 

scope instances via a call to the rememberCoroutineScope() 
function.

Locate the ColumnList function in the MainActivity.kt file and 

modify it so that the list column is embedded in a new Column 

which also contains two Buttons arranged using a Row 

component: 

import androidx.compose.foundation.layout.Row

import androidx.compose.material3.Button 

import androidx.compose.runtime.rememberCoroutineScope



@Composable 

fun ColumnList() {

val scrollState = rememberScrollState()

val coroutineScope = rememberCoroutineScope()

Column {

Row {

Button(onClick = {

}.

modifier = Modifier.weight(o.5f)

.padding(2.dp)) {

Text("Top")



}

Button(onClick = { 

},

modifier = Modifier.weight(o.5f)

.padding(2.dp)) {

Text("End")

}

}

Column(Modifier.verticalScroll(scrollState)) { 

repeat(5oo) {

Text(

"List Item $it", 

style = MaterialTheme.typography.h4,



modifier = Modifier.padding(5.dp)

)

}

}

} 

}

All that remains is to create a coroutine scope instance and then 

use it to perform the scrolling within the Button onClick actions: 

. 

.

import kotlinx.coroutines.launch

Row {



Button(onClick = {

coroutineScope.launch {

scrollState.animateScrollTo(o)

}

}.

modifier = Modifier.weight(o.5f)

.padding(2.dp)) {

Text("Top")

}

Button(onClick = {

coroutineScope.launch {

}

scrollState.animateScrollTo(scrollState.maxValue)



},

modifier = Modifier.weight(o.5f)

.padding(2.dp)) {

Text("End")

}

}

Instead of scrolling instantly to the top and bottom of the list, we 

have used animated scrolling. Since the target list position is 

specified by pixel position, the code uses 0 as the top target. To 

find the end position of the list, the code accesses the maxValue 

property of the ScrollState instance and passes it to the 
animateScrollTo() function.

Preview the app in interactive mode, or run it on a device or 

emulator and test that the two buttons scroll to the top and 

bottom of the list as expected. Figure for example, shows the list 

after the End button has been clicked:



12:00

Top I End

List Item 487
List Item 488
List Item 489
List Item 490
List Item 491
List Item 492
List Item 493
List Item 494
List Item 495
List Item 496
List Item 497
List Item 498
List Item 499

< o



Figure 35-2



35.5 A Row list example

In addition to vertical Column-based lists we can, of course, also use 

the Row composable to create horizontal lists. To try out a 

horizontally scrolling Row list, add the following composable to the 

MainActivity.kt file and modify the MainScreen function to call it 

instead of ColumnList: 

. 

.

import androidx.compose.foundation.horizontalScroll 

. 

.

@Composable

fun MainScreen() {

RowList()

} 

@Composable



fun RowList() {

val scrollState = rememberScrollState()

Row(Modifier.horizontalScroll(scrollState)) {

repeat(5o) {

Text(" $it ",

style = MaterialTheme.typography.headlineLarge,

modifier = Modifier.padding(5.dp))

}

}

}

Preview the list in interactive mode and click and drag the list 

sideways to test horizontal scrolling as shown in Figure 35-3 below:



Figure 35-3



35.6 Summary

In this chapter, we have used the Row and Column components 
to create vertical and horizontal lists. In both cases, scrolling was 

enabled to allow us to move through the list items using drag 

motions. In the case of the vertical list, buttons were added and 

configured to scroll directly to the top and bottom of the list 

when clicked. This involved launching the animateScrollTo() method 

of the ScrollState instance from within a coroutine scope.



36. A Compose Lazy List Tutorial

Although the creation of lists using the standard compose Row 
and Column layout composables was covered in the previous 

chapter, in most situations, you will be more likely to use the 

LazyColumn and LazyRow components. Not only do these provide 

a more efficient way to display long lists of items, but the lazy 

composables also include additional features such as sticky 
headers and responding to changes in scroll position.

This chapter will create a project demonstrating some of the key 

features of the LazyColumn and LazyRow components. In the next 

chapter, entitled “Lazy List Sticky Headers and Scroll we will extend 

the project to include support for sticky headers and scroll 
position detection.



36.1 Creating the LazyListDemo project

Launch Android Studio and select the New Project option from 

the welcome screen. When the new project dialog appears, choose 

the Empty Activity template before clicking on the Next button.

Enter LazyListDemo into the Name field and specify 
com.example.lazylistdemo as the package name. Before clicking the 

Finish button, change the Minimum API level setting to API 26: 

Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to 
call MainScreen instead of Greeting.



36.2 Adding list data to the project

Before designing the list we first need some data to provide the list 

item content. For this example, we will use an XML resource file 

containing the list items and read it into an array. The XML resource 

file for this project is included with the source code samples 

download within the XML folder. If you have not already done so, 

you can download the sample code from the following web page:

https://www.ebookfrenzy.com/retail/compose13/index.php

Once the sample code has been unpacked, use the file system 

navigator for your operating system (i.e. Finder on macOS or 

Windows Explorer in Windows), locate the car_list.xml file in the XML 

folder, and copy it. Next, return to Android Studio, right-click on the 

app -> res > values folder in the Project tool window, and select 

Paste from the resulting menu as shown in Figure

v tires
> El drawable
> mipmap 
v values 

ficolo New 1

o strir Add C++ to Module 
StherXCut 3€X

> «^Gradle Scriptit Copy 

Copy Path...
D Paste ISV

Find Usages XF7

https://www.ebookfrenzy.com/retail/compose1


Figure 36-1

Finally, click the OK button in the “Copy” dialog to add the file to 

the project resources, making sure to keep the “Open in editor” 

option enabled:

Copy

Copy file /Users/neilsmyth/O...Compose/JetpackComposeEssentials/XML/car_list.xml

New name: carjist.xml

To directory: ipose/JetpackComposeEssentials/LazyListDemo/app/src/main/res/values ▼
Use Space for path completion

? □ Open in editor Cancel

Figure 36-2

Once the file has been added and loaded into the editor, it should 

read as follows:

version="1.0" encoding="utf-8"?>

name="car_array">

Buick Century

Buick LaSabre



Buick Roadmaster

Buick Special Riviera

Cadillac Couple De Ville

Cadillac Eldorado

Cadillac Fleetwood

Cadillac Series 62

Cadillac Seville

Ford Fairlane

Ford Galaxie 500

Ford Mustang

Ford Thunderbird

GMC Le Mans

Plymouth Fury

Plymouth GTX



Plymouth Roadrunner

Note that the data is declared as being of type string-array and given 

the resource name This is the name by which the data will be 

referenced when it is read from the file.



36.3 Reading the XML data

Now that the XML file has been added to the project, it needs to 

be parsed and read into an array. This array will, in turn, provide 

the data in a format that the LazyColumn component can use. To 

achieve this, we will be using the getStringArray() method of the 

Android resources instance. Since the data needs to be initialized 

when the main activity is created, we can perform this task within 

the onCreate() method. Some changes are also required to pass 
the array through to our MainScreen function and to provide 

some sample data for the Preview composable.

Edit the MainActivity.kt file and modify it so that it reads as 

follows: 

class MainActivity : ComponentActivity() {

private var itemArray: Array? = null

override fun onCreate(savedInstanceState: Bundle?) { 

itemArray = resources.getStringArray(R.array.car_array)



super.onCreate(savedlnstanceState) 

setContent {

LazyListDemoTheme {

Surface(

modifier = Modifier.fillMaxSize(),

color =

MaterialTheme.colorScheme.background

) {

= itemArray as Array

}

}

}

}



}

@Composable

fun Array {

}

@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

val itemArray: Array = arrayOf("Cadillac Eldorado",

"Ford Fairlane", 
"Plymouth Fury")

LazyListDemoTheme {

}

}



36.4 Handling image loading

The project now has access to a list of cars with each item 

containing the car manufacturer and model. In addition to this text 

content, each list item will also display an image containing the 

manufacturer’s logo. These logos are hosted on a web server and 

will need to be downloaded and rendered within an Image 

composable. There are many factors to consider when downloading 

and displaying images within an app. For example, the images need 

to be downloaded asynchronously so that the app execution is not 

interrupted. The download process should also be able to recover 

from connectivity issues, and should also handle downsampling of 

the images to minimize memory usage. Instead of writing all the 

code to perform these tasks, this project will use an existing image 

loading library called Coil to perform these tasks automatically. If you 

would like to learn more about Coil, you can find information at the 

following URL:

https://co il- kt. github. io/co il/

To add Coil support to the project, open the module-level build.gradle 

file (located in the Project tool window under Gradle Scripts -> 

build.gradle (Module: locate the dependencies section, and add the Coil 

library: 

dependencies {

https://co_il-_kt


implementation('io.coil-kt:coil-compose:i.3.2‘)

}

After the library has been added, a warning bar will appear indicating 

that the project needs to be re-synchronized to include the change:

MainActivity.kt build.gradle (:ipp)

Gradle files have changed since last project sync. A project sync may be necessary for the IDE to work properly. Sync Now Ignore these changes 
■ixiiiTycnau leu raise 

proguardFiles getDefaultProguardFile('proguard-android-optiniize.txt'), jard-rules.pro' 

} <

Figure 36-3

Click on the Sync Now link and wait while the synchronization 

process completes.

The next step is to add a composable function to download an 

image and display it using the Image component. The naming 

convention for the image files is _logo.png where is replaced by the 

manufacturer name (Ford, Cadillac, etc.). Since each car string begins 

with the manufacturer name, we can construct the image name for



each car entry by combining the first word of the string with 

“_logo.png”. Within the MainActivity.kt file, begin writing the 

ImageLoader composable function: 

import coil.annotation.ExperimentalCoilApi 

. 

.

@OptIn(ExperimentalCoilApi::class)

@Composable

fun ImageLoader(item: String) {

val url = "https://www.ebookfrenzy.com/book_examples/car_logos/" 

+ item.substringBefore(" ") + "_logo.png"

}

While constructing the full image URL, the code calls the Kotlin 

method on the item string to obtain the text before the first space

https://www.ebookfrenzy.com/book_examples/car_logos/


character.

With the path to the image obtained, code now needs to be added 

to create an Image component rendered with the image: 

import and roidx.compose.fou ndation. Image

import and roidx.compose.fou ndation.layout.*

import and roidx.compose. u i .layout.ContentScale

import androidx.compose.ui.unit.dp

import coil.compose. rememberlmagePai nter

@Composable 

fun ImageLoader(item: String) {



val url = "https://www.ebookfrenzy.com/book_examples/car_logos/" 

+ item.

substringBefore(" ") + 

"_logo.png"

Image(

painter = rememberImagePainter(url),

contentDescription = "car image",

contentScale = ContentScale.Fit,

modifier = Modifier.size(75.dp)

)

}

The above code creates an Image and requests an image painter via 

a call to the Coil rememberImagePainter() function, passing through 

the image URL. The image is scaled to fit the size of the Image 

component, the height, and width of which is restricted via a 

modifier to 75dp.

As the logo images will be downloaded, the project manifest needs 

to be updated to add Internet access permission. Within the Project 

https://www.ebookfrenzy.com/book_examples/car_logos/


tool window, open the app -> manifests -> AndroidManifest.xml file 

and add the Internet permission element as follows:

version="i.o" encoding="utf-8"?>

xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools">

android:name="android.permission.INTERNET" />

At the time of writing, the Compose Preview panel did not support 

the rendering of images using Coil. To test that the ImageLoader 

works, make the following addition to the MainScreen function:

@Composable

fun MainScreen(itemArray: ArrayString>) {

ImageLoader("Plymouth GTX")

}

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools


With the change made, run the app on an emulator or device where 

the Plymouth logo should appear as illustrated in Figure

Figure 36-4



36.5 Designing the list item composable

At this point in the tutorial, we have an array of list items and a 

mechanism for loading images. The next requirement is a 

composable to display each item within the list. This will consist of 

a Row containing an ImageLoader and a Text component displaying 

the list item string. To provide more customization options such as 

elevation effects and rounded corners, the Row will be placed within 

a Card component. Add the MyListItem function to the MainActivity.kt 

file so that it reads as follows: 

import androidx.compose.foundation.shape.RoundedCornerShape 

import androidx.compose.material3.Card 

import androidx.compose.material3.CardDefaults 

import and roidx.compose. ui.Alignment



@Composable 

fun MyListItem(item: String) {

Card(

colors = CardDefaults.cardColors(

containerColor = MaterialTheme.colorScheme.background

),

modifier = Modifier

.padding(8.dp)

.fillMaxWidth(),

elevation = CardDefaults.cardElevation(defaultElevation = 5.dp)

)

{

Row(verticalAlignment = Alignment.CenterVertically) {

ImageLoader(item)



Spacer(modifier = Modifier.width(8.dp))

Text(

text = item,

style = MaterialTheme.typography.headlineSmall,

modifier = Modifier.padding(8.dp)

)

}

}

}

Modify the MainScreen function to call the MyListItem composable 

as follows before testing the app on a device or emulator:

@Composable

fun MainScreen(itemArray: ArrayString>) {

MyListItem("Buick Roadmaster")



}

Once the app is running, the list item should appear as illustrated 

in Figure Note that this time the ImageLoader function has loaded 

the Buick logo to match the car description:

Buick Roadmaster

Figure 36-5



36.6 Building the lazy list

With the preparation work complete, the project is ready for the 
addition of the LazyColumn component.

import androidx.compose.foundation.lazy.LazyColumn

import androidx.compose.foundation.lazy.items

@Composable

fun MainScreen(itemArray: ArrayString>) {

LazyColumn {

items(itemArray) { model ->



MyListItem(item = model)

}

}

}

All this code does is call the LazyColumn composable and use 

the items() function of the LazyListScope to iterate through each 

element of the itemArray, passing each through to the MyListItem 

function.



36.7 Testing the project

Compile and run the project once again and verify that a 

scrollable list resembling that shown in Figure 36-6 below appears 

on the device or emulator screen:



3:05

Buick Century

Buick LaSabre

Buick Roadmaster

Buick Special Riviera

Cadillac Couple De Ville

Cadillac Eldorado

Cadillac Fleetwood

Cadillac Series 62



Figure 36-6



36.8 Making list items clickable

It is common for the items in a list to do something when clicked. 

For example, selecting an item for the list might perform an action 

or even navigate to another screen. The final step in this chapter is 

to make the items in the list clickable. For this example, we will 

configure the list items to display a toast message to the user 

containing the text content of the item. Created using the Android 

Toast class, toast messages are small notifications that appear on the 

screen without interrupting the currently visible activity.

Within the MainScreen function, we need to declare an event handler 

to be called when the user clicks on a list item. This handler will be 

passed the text of the current item which it will display within a 

toast message. Locate the MainScreen function in the MainActivity.kt 

file and modify it as follows: 

import android.widget.Toast

import and roidx.compose. u i .platform. LocalContext

import and roidx.compose.fou ndation.*



@Composable 

fun MainScreen(itemArray: ArrayString>) {

val context = LocalContext.current

val onListItemClick = { text : String ->

Toast.makeText(

context,

text,

Toast.LENGTH_SHORT

).show()

}

LazyColumn {

items(itemArray) { model ->



MyListItem(item = model)

}

}

}

Next, both the MyListItem function and how it is called need to be 

updated to pass through a reference to the event handler:

@Composable

fun MainScreen(itemArray: ArrayString>) {

LazyColumn {

items(itemArray) { model ->

MyListItem(item = model, onItemClick =

}



}

}

@Composable

fun MyListItem(item: onItemClick: (String) -> {

}

Before testing this new behavior, the last task is to add a clickable 

modifier to the Card component within MyListItem. This needs to 

call the onListItemClick handler, passing it the current item:

@Composable

fun MyListItem(item: String, onItemClick: (String) -> Unit) {

Card(

Modifier

.padding(8.dp)



.fillMaxWidth()

.clickable { onltemClick(item) },

shape = RoundedCornerShape(10.dp), 

elevation = 5.dp) {

Compile and run the app and test that clicking on an item displays 

the toast message containing the text of the selected item:

Figure 36-7



36.9 Summary

This chapter began by exploring the use of an XML resource for 

storing data and demonstrated how to read that data into an 

array during activity initialization. We then introduced the Coil 

image loading library and explained how it can be used to 

download and display images over an Internet connection with 

minimal coding. Next, the tutorial created a scrollable list based 

on the XML data, using the LazyColumn layout composable and 

the Card component. Finally, we added code to make each item 

in the list respond to click events.

Although we now have a running example of a Compose lazy list, 

the project created so far does not yet take advantage of other 

features of the Compose lazy list components, such as sticky 
headers and scroll position detection. The next chapter, “Lazy List 

Sticky Headers and Scroll will extend the LazyListDemo project to 

add these features.



37. Lazy List Sticky Headers and Scroll Detection

In the previous chapter, we created a project that uses the 

LazyColumn layout to display a list of Card components 

containing images and text. The project also implemented clickable 

list items which display a message when tapped.

This chapter will extend the project both to include sticky header 

support and to use scroll detection to display a “go to top” 

button when the user has scrolled a specific distance through the 

list, both of which were introduced in the chapter entitled “An 

Overview of Lists and Grids in



37.1 Grouping the list item data

As currently implemented, the LazyColumn list is populated 

directly from an array of string values. The goal is now to group 

those items by manufacturer, with each group preceded in the list 
by a sticky header displaying the manufacturer’s name.

The first step in adding sticky header support is to call the 

groupBy() method on the itemList array, passing through the first 

word of each item string (i.e. the manufacturer name) as the 

group selector value. Edit the MainActivity.kt file, locate the 

MainScreen function and modify it as follows to group the items 

into a mapped list:

@Composable

fun MainScreen(itemArray: ArrayString>) {

val context = LocalContext.current 

val groupedItems = itemArray.groupBy { it.substringBefore(' ') }



37.2 Displaying the headers and items

Now that the list items have been grouped, the body of the 

LazyColumn needs to be modified. In terms of logic, this will 

require an outer loop that iterates through each of the 

manufacturer names, displaying the corresponding sticky header. 

The inner loop will display the items for each manufacturer. 
Within the MainScreen function, start by embedding the existing 

items() loop within a forEach loop on the groupedItems object:

@Composable

fun MainScreen(itemArray: ArrayString>) {

LazyColumn {

groupedltems.forEach { (manufacturer, models) ->

items(itemArray) { model ->

MyListItem(item = model, onItemClick =
onListItemClick)



}

}

} 

. 

.

On each loop iteration, the forEach statement will call the trailing 

lambda, passing through the current selector value (manufacturer) 

and the items (models). Instead of displaying items from the 

ungrouped the items() call now needs to be passed the models 

parameter:

{ model ->

MyListItem(item = model, onItemClick = onListItemClick)

}

Before adding sticky headers, compile and run the app to confirm 

that all the items still appear in the list.



37.3 Adding sticky headers

For each manufacturer group, we now need to display the header. 
This involves a call to the LazyListScope stickyHeader function. 

Although the content of the header can be any combination of 

composables, an appropriately configured Text component is 

usually more than adequate for most requirements: 

import androidx.compose.ui.graphics.Color

LazyColumn() {

groupedItems.forEach { (manufacturer, models) -> 

stickyHeader {

Text(



text = manufacturer, 

color = Color.White, 

modifier = Modifier

.background(Color.G ray)

.padding(5.dp)

.fillMaxWidth()

)

}

items(models) { model ->

MyListItem(item = model, onItemClick = 
onListItemClick)

}

}



}

If the code editor reports that stickyHeader is an experimental 
feature, mark the MainScreen function using the 

ExperimentalFoundationApi annotation as follows:

@OptIn(ExperimentalFoundationApi::class)

@Composable

fun MainScreen(itemArray: ArrayString>) {

After building and running the app, it should now appear as 
shown in Figure 37-1 with the manufacturer name appearing in 

the headers above each group:



Buick

10:37

Buick Century

Buick LaSabre

Buick Roadmaster

Cadil lac

Buick Special Riviera

Cadillac Couple De Ville

Cadillac Eldorado

Cadillac Fleetwood

Cadillac Series 62



Figure 37-1



37.4 Reacting to scroll position

In this final step of the LazyListDemo tutorial, we will modify the 

project to use scroll position detection. Once these changes have 

been made, scrolling beyond the item in list position 4 will 

display a button that, when clicked, returns the user to the top of 

the list.

The button will appear at the bottom of the screen and needs to 

be placed outside of the LazyColumn so that it does not scroll 

out of view. To achieve this, we first need to place the 
LazyColumn declaration within a Box component. Within edit the 

MainScreen function so that it reads as follows:

@Composable

fun MainScreen(itemArray: ArrayString>) {

val context = LocalContext.current

val groupedItems = itemArray.groupBy { it.substringBefore(' ') 

}



Box {

LazyColumn() {

groupedItems.forEach { (manufacturer, models) ->

}

}

Next, we need to request a LazyListState instance and pass it to 
the LazyColumn. Now is also a good opportunity to obtain the 

coroutine scope which will be needed to perform the scroll when 

the button is clicked.



import androidx.compose.foundation.lazy.rememberLazyListState 

import androidx.compose.runtime.rememberCoroutineScope

@Composable 

fun MainScreen(itemArray: ArrayString>) { 

val listState = rememberLazyListState()

val coroutineScope = rememberCoroutineScope()

Box {

state = listState,



contentPadding = PaddingValues(bottom = 5O.dp)

) {

groupedItems.forEach { (manufacturer, models) ->

In addition to applying the list state to the LazyColumn, the 

above changes also add padding to the bottom of the list. This 

will ensure that when the bottom of the list is reached there will 

be enough space for the button.

The visibility of the button will be controlled by a Boolean variable 

which we will name The value of this variable will be derived 

using the firstVisibleltemlndex property of the list state:

@Composable

fun MainScreen(itemArray: ArrayString>) {

val listState = rememberLazyListState()

val coroutineScope = rememberCoroutineScope()



val displayButton = listState.firstVisibleltemlndex > 5

In the above declaration, the displayButton variable will be false 
unless the index of the first visible list item is greater than 5.



37.5 Adding the scroll button

Now that code has been added to detect the list scroll position, 

the button needs to be added. This will be called within the Box 

component and will be represented by the OutlinedButton 

composable. The OutlinedButton is one of the Material Design 

components and allows buttons to be drawn with an outline 

border with other effects such as border stroke patterns and 

rounded corners.

Add an OutlinedButton inside the Box declaration and immediately 
after the LazyColumn: 

import androidx.compose.material3.*

import kotlinx.coroutines.launch

Box {



LazyColumn(

state = listState

) {

items(models) { model ->

MyListItem(item = model, onItemClick = 
onListItemClick)

}

}

}

OutlinedButton(

onClick = {



coroutineScope.launch { 

listState.scrollToItem(o)

}

},

border = BorderStroke(i.dp, Color.Gray),

shape = RoundedCornerShape(5O),

colors = ButtonDefaults.outlinedButtonColors(

contentColor = Color.DarkGray),

modifier = Modifier.padding(5.dp)

){

Text( text = "Top" )

}

}



Next, we need to control the position and visibility of the button 

so that it appears at the bottom center of the screen and is only 

visible when displayButton is true. This can be achieved by calling 
the OutlinedButton function from within an AnimatedVisibility 

composable, the purpose of which is to animate the hiding and 

showing of its child components (a topic covered in the chapter 

entitled “Compose Visibility Make the following change to base the 

visibility of the OutlinedButton on the displayButton variable and to 

position it using CenterBottom alignment: 

import androidx.compose.animation.AnimatedVisibility

AnimatedVisibility(visible = displayButton,

Modifier.align(Alignment.BottomCenter)) {



OutlinedButton(

Color.DarkGray),

onClick = {

coroutineScope.launch {

listState.scrollToItem(o)

}

}.

border = BorderStroke(i.dp, Color.Gray),

shape = RoundedCornerShape(4o),

colors = ButtonDefaults.outlinedButtonColors(

contentColor =

modifier = Modifier.padding(5.dp)

) {

Text(text = "Top")



}

}



37.6 Testing the finished app

Compile and run the app one last time and, once running, scroll 

down the list until the button appears. Continue scrolling until the 

bottom of the list to check that enough bottom padding was 

added to the LazyColumn so that there is no overlap with the 
button as shown in Figure 37-2 below:



Figure 37-2

Click on the Top button to return to the top of the list.



37.7 Summary

This chapter completed the LazyListDemo project by adding 

support for sticky headers and scroll position detection. The 

tutorial also introduced the Material Theme OutlinedButton and 

the use of lazy list content padding.



38. A Compose Lazy Staggered Grid Tutorial

The chapter “An Overview of Lists and Grids in Compose” 
introduced the horizontal and vertical lazy grid composables and 

demonstrated how they could be used to organize items in rows 

and columns. However, a limitation of these layouts is that the 

grid cells are the same size. While this may be the desired 

behavior for many grid implementations, it presents a problem if 

you need to display a grid containing items of differing sizes. To 

address this limitation, Jetpack Compose 1.3 introduced staggered 

lazy grid composables.

This chapter will introduce the LazyVerticalStaggeredGrid and 

LazyHorizontalStaggeredGrid composables before creating an 

example project that puts theory into practice.



38.1 Lazy Staggered Grids

Horizontal and vertical staggered grid layouts are created using 

the LazyHorizontalStaggeredGrid and LazyVerticalStaggeredGrid 
composable, respectively. The columns parameter controls the grid’s 

appearance, which can be set to either adaptive or fixed mode. In 

adaptive mode, the grid will calculate the number of rows and 

columns that will fit into the available space, with even spacing 

between items and subject to a minimum specified cell size. Fixed 

mode, on the other hand, is passed the number of rows to be 

displayed and sizes each row or column equally to fill the 

available space. Configuration options are also available to reverse 

the layout, add content padding, disable scrolling, and define the 

spacing between cells. Figure 38-1 illustrates the arrangement of 

items in a vertical grid layout:

Figure 38-1

A typical staggered grid instance might be implemented as



LazyVerticalStaggeredGrid(

columns = StaggeredGridCells.Fixed(2),

modifier = Modifier.fillMaxSize(),

contentPadding = PaddingValues(i6.dp),

verticalltemSpacing: i6.dp,

horizontalArrangement = Arrangement.spacedBy(16.dp),

verticalArrangement = Arrangement.spacedBy(16.dp), 

userScrollEnabled: true

) {

items(items) { item ->

// Cell content here

}

}



The above example creates a LazyVerticalStaggeredGrid consisting 
of two fixed columns with content padding and spacing between 

cells, the layout for which would resemble Figure

Figure 38-2

The following is the equivalent code to create a horizontal 

staggered

LazyHorizontalStaggeredGrid (

rows = StaggeredGridCells.Fixed(2),

modifier = Modifier.fillMaxSize(),

contentPadding = PaddingValues(16.dp),

horizontalItemSpacing: 16.dp,

verticalArrangement = Arrangement.spacedBy(16.dp),



horizontalArrangement = Arrangement.spacedBy(i6.dp),

userScrollEnabled: true

) {

items(items) { item ->

// Cell content here

}

}

In the rest of this chapter, we will create a project demonstrating 

how to use a staggered grid. The example will display a grid 

containing items configured with random heights and colors.



38.2 Creating the StaggeredGridDemo project

Launch Android Studio and select the New Project option from 

the welcome screen. Choose the Empty Activity template in the 

new project dialog before clicking the Next button.

Enter StaggeredGridDemo into the Name field and specify 
com.example.staggeredgriddemo as the package name. Before clicking 

the Finish button, change the Minimum API level setting to API 

26: Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to 
call MainScreen instead of Greeting.



38.3 Adding the Box composable

The grid item in this project will be represented by a Box 

composable. Each instance of this box will be configured with 

random height and background color properties. Before we write 

the code for the Box, we first need a data class to store the 

color and height values, which we can pass to the Box 

composable. Within the MainActivity.kt file, declare the data class 

as follows: 

import androidx.compose.ui.unit.Dp

import androidx.compose.ui.graphics.Color 

data class BoxProperties(

val color: Color,



val height: Dp 

)

Next, add a composable named Griditem to display a Box 

composable based on the values of a BoxProperties instance: 

. 

.

import androidx.compose.foundation.background

import androidx.compose.foundation.layout.*

import androidx.compose.ui.draw.clip

import androidx.compose.foundation.shape.RoundedCornerShape

import androidx.compose.ui.unit.dp

@Composable



fun GridItem(properties: BoxProperties) {

Box(modifier = Modifier

.fillMaxWidth()

.height(properties.height)

.clip(RoundedCornerShape(io.dp))

.background(properties.color)

)

}



38.4 Generating random height and color values

Now that we have a grid item and a way to store the current 

item properties, the next step is to write code to generate random 

height and color values. We will do this by creating a list of 

BoxProperties items, calling the Kotlin Random.nextInt() method for 

each instance to generate height and RGB color values. Edit the 

MainScreen composable to add the following code: 

import androidx.compose.foundation.ExperimentalFoundationApi

import kotlin.random.Random

@OptIn(ExperimentalFoundationApi::class)

@Composable 

fun MainScreen() {



val items = (1 .. 50).map {

BoxProperties(

height = Random.nextInt(5O, 2oo).dp, 

color = Color(

Random.nextInt(255), 

Random.nextInt(255), 

Random.nextInt(255), 

255 

) 

) 

} 

}



The above code configures 50 BoxProperties instances with 

random height values between 50 and 200 dp. Next, Color objects 

are created using random RGB values (0 to 255). In addition, the 

alpha Color property is set to 255 to ensure only solid, non­

transparent colors are generated.

Note that the above code includes a directive to opt into 

experimental API features. At the time of writing, the staggered 

grid composables were still in the experimental development 
phase. Depending on when you are reading this book, this setting 

may no longer be required.



38.5 Creating the Staggered List

The final task before testing the app is to add the 

LazyVerticalStaggeredGrid to the layout. The goal is to create a 
staggered vertical grid using the items list containing three fixed- 

width columns with horizontal and vertical spacing between each 

cell. Edit the MainScreen composable once again and modify it as 

follows: 

import androidx.compose.foundation.lazy.staggeredgrid.*

@OptIn(ExperimentalFoundationApi::class) 

@Composable 

fun MainScreen() {

val items = (1 .. 50).map {



BoxProperties(

}

LazyVerticalStaggeredGrid(

columns = StaggeredGridCells.Fixed(3),

modifier = Modifier.fillMaxSize(),

contentPadding = PaddingValues(8.dp),

horizontalArrangement = Arrangement.spacedBy(8.dp),

verticalArrangement = Arrangement.spacedBy(8.dp)

) {

items(items) { values ->

GridItem(properties = values)



}

}

}



38.6 Testing the project

With the code writing completed, display the preview panel where 

the staggered grid layout should appear, as shown in Figure 38-3 

(allowing, of course, for the random color and height properties). 

Assuming that the layout is rendered as expected, enable 

interactive mode and test that it is possible to scroll vertically 

through the grid items.



Figure 38-3



387 Switching to a horizontal staggered grid

To convert the example grid to use the LazyHorizontalStaggeredGrid 

layout, make the following changes to the MainActivity.kt file: 

data class BoxProperties(

val color: Color,

val Dp

)

@Composable

fun GridItem(properties: BoxProperties) {

Box(modifier = Modifier

.fillMaxWidth()

.width(properties.width)



.clip(RoundedCornerShape(io.dp)) 

.background (properties.color)

)

}

@OptIn(ExperimentalFoundationApi::class) 

@Composable 

fun MainScreen() {

val items = (1 .. 50).map {

BoxProperties(

width = Random.nextInt(50, 200).dp,

}



rows = StaggeredGridCells.Fixed(3),

modifier = Modifier.fillMaxSize(),

contentPadding = PaddingValues(8.dp),

horizontalArrangement = Arrangement.spacedBy(8.dp),

verticalArrangement = Arrangement.spacedBy(8.dp)

) {

items(items) { values ->

GridItem(properties = values)

}

}

}

Finally, switch the preview to landscape orientation:

@Preview(showBackground =

device =



@Composable 

fun GreetingPreview() {

StaggeredGridDemoTheme {

MainScreen()

}

}

Once the preview has updated, the layout should appear as shown in 

Figure

GreetingPreview

Figure 38-4



Enable interactive mode and check that you can scroll horizontally 

through the grid.



38.8 Summary

In this chapter, we have introduced the vertical and horizontal lazy 
grid composables. These layouts are useful when items of varying 

sizes need to be shown in a grid format. Grids can be presented 

in either adaptive or fixed mode. Adaptive mode calculates how 

many rows or columns will fit into the available space, with even 

spacing between items and subject to a minimum specified size. 

Fixed mode, on the other hand, is passed the number of rows or 

columns to be displayed and sizes each to fill the available space.



39. Compose Visibility Animation

For adding animation effects to user interfaces, Jetpack Compose 

includes the Animation API. The Animation API consists of classes 

and functions that provide a wide range of animation options you 

can easily add to your apps. In this chapter, we will explore the 
use of animation when hiding and showing user interface 

components including the use of crossfading when replacing one 

component with another. The next chapter, entitled “Compose 
State-Driven will cover topics such as animating motion, rotation, 

and color changes and combining multiple animations into a 
single transition.

Throughout this chapter, we will demonstrate each animation 

technique within an example project.



39.1 Creating the AnimateVisibility project

Launch Android Studio and create a new Empty Activity project 

named AnimateVisibility, specifying com.example.animatevisibility as 

the package name, and selecting a minimum API level of API 26: 
Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to 

call MainScreen instead of Greeting. Also, enable the system UI 

option on the preview composable:

@Preview(showBackground = showSystemUi =

@Composable 

fun GreetingPreview() {



AnimateVisibilityTheme {

MainScreen()

}

}



39.2 Animating visibility

Perhaps the simplest form of animation involves animating the 

appearance and disappearance of a composable. Instead of a 

component instantly appearing and disappearing, a variety of 

animated effects can be applied using the AnimatedVisibility 

composable. For example, user interface elements can gradually fade 

in and out of view, slide into and out of position horizontally or 

vertically, or show and hide by expanding and shrinking.

The minimum requirement for calling AnimatedVisibility is a Boolean 

state variable parameter to control whether or not its child 

composables are to be visible. Before exploring the capabilities of 

AnimatedVisibility, it first helps to experience the hiding and showing 

of a composable without animation.

When the following layout design is complete, we will use two 

buttons to show and hide content using animation. Before designing 

the screen layout, add a new composable named CustomButton to 

the MainActivity.kt file as follows: 

import androidx.compose.material3.*  

import androidx.compose.ui.graphics.Color



@Composable

fun CustomButton(text: String, targetstate: Boolean,

onClick: (Boolean) -> Unit, bgColor: Color = Color.Blue) {

Button(

onClick = { onClick(targetState) }, 

colors = ButtonDefaults.buttonColors(

containerColor = bgColor, 

contentColor = Color.White

)

) {

Text(text)



}

}

The composable is passed the text to be displayed on the button, 

and both an onClick handler and the new state value to be passed 

to the handler when the button is clicked. The button also accepts 

an optional background color which defaults to blue.

Next, locate the MainScreen function and modify it as follows: 

import and roidx.compose.fou ndation. backgrou nd 

import and roidx.compose.fou ndation.layout.*  

import androidx.compose.ui.unit.dp 

import and roidx.compose. ui.Alignment 

import androidx.compose.runtime.



@Composable

fun MainScreen() { 

var boxVisible by remember { mutableStateOf(true) }

val onClick = { newState : Boolean ->

boxVisible = newState

}

Column(

Modifier.padding(20.dp), 

horizontalAlignment = Alignment.CenterHorizontally

) {

Row(

Modifier.fillMaxWidth(), 

horizontalArrangement = Arrangement.SpaceEvenly



) {

CustomButton(text = "Show", targetstate = true, onClick 

= onClick)

CustomButton(text = "Hide", targetState = false, onClick 

= onClick)

}

Spacer(modifier = Modifier.height(20.dp))

if (boxVisible) {

Box(modifier = Modifier

.size(height = 200.dp, width = 200.dp)

.background(Color.Blue))

}

}

}



In summary, this code begins by declaring a Boolean state variable 

named boxVisible with an initial true value and an onClick event 

handler to be passed to instances of the CustomButton composable. 

The purpose of the handler is to change the boxVisible state based 

on button selection.

Column and Row composables are then used to display two 

CustomButton composables and a blue Box. The buttons are passed 

the text to be displayed, the new setting for the boxVisible state, and 

a reference to the onClick handler. When a button is clicked, it calls 

the handler and passes it the new state value. Finally, an if 

statement is used to control whether the Box composable is included 

as a child of the Column based on the value of

When previewed in interactive mode, or tested on a device or 

emulator, the layout will appear as illustrated in Figure



Figure 39-1

Clicking on the Show and Hide buttons will cause the Box to 

instantly appear and disappear without any animation effects. Default 

visibility animation effects can be added simply by replacing the if 

statement with a call to AnimatedVisibility as follows: 

import androidx.compose.animation.



AnimatedVisibility(visible = boxVisible) {

Box(modifier = Modifier

.size(height = 2oo.dp, width = 2oo.dp) 

.background(Color.Blue))

}

When the app is tested, the box’s hiding and showing will be subtly 

animated. The default behavior of AnimatedVisibility is so subtle it 

can be difficult to notice any difference. Fortunately, the Compose 

Animation API provides a range of customization options. The first 

option allows different animation effects to be defined when the child 

composables appear and disappear (referred to as the enter and exit 

animations).



39.3 Defining enter and exit animations

The animations to be used when children of an AnimatedVisibility 

composable appear and disappear are declared using the enter 

and exit parameters. The following changes, for example, configure 

the animations to fade the box into view and slide it vertically out 

of view:

AnimatedVisibility(

visible =

enter = fadeIn(),

exit = slideOutVertically()

) {

Box(modifier = Modifier

.size(height = 200.dp, width = 200.dp) 

.background(Color.Blue))

}



}

The full set of animation effects is as follows:

- Content is revealed using a horizontal clipping technique. 

Options are available to control how much of the content is 

initially revealed before the animation begins.

- Content is revealed using a vertical clipping technique. Options 

are available to control how much of the content is initially 

revealed before the animation begins.

- Content is revealed using both horizontal and vertical clipping 

techniques. Options are available to control how much of the 

content is initially revealed before the animation begins.

- Fades the content into view from transparent to opaque. The 

initial transparency (alpha) may be declared using a floating-point 

value between 0 and 1.0. The default is 0.

- Fades the content out of view from opaque to invisible. The 

target transparency before the content disappears may be declared 

using a floating-point value between 0 and 1.0. The default is 0.

- The content expands into view as though a “zoom in” has been 

performed. By default, the content starts at zero size and expands 



to full size though this default can be changed by specifying the 

initial scale value as a float value between 0 and 1.0.

- Shrinks the content from full size to a specified target scale 

before it disappears. The target scale is 0 by default but may be 

configured using a float value between 0 and 1.0.

- Content slides from view behind a shrinking vertical clip bounds 

line. The target width and direction may be configured.

- Content slides from view behind a shrinking horizontal clip 

bounds line. The target width and direction may be configured.

- Content slides from view behind shrinking horizontal and vertical 

clip bounds lines.

- Content slides into view along the horizontal axis. The sliding 

direction and offset within the content where sliding begins are 

both customizable.

- Content slides into view along the vertical axis. The sliding 

direction and offset within the content where sliding begins are 

both customizable.

- Slides the content into view at a customizable angle defined 

using an initial offset value.



- Slides the content out of view at a customizable angle defined 

using a target offset value.

- Content slides out of view along the horizontal axis. The sliding 

direction and offset within the content where sliding ends are 

both customizable.

- Content slides out of view along the vertical axis. The sliding 

direction and offset within the content where sliding ends are 

both customizable.

It is also possible to combine animation effects. The following, for 

example, combines the expandHorizontally and fadeIn effects:

AnimatedVisibility(

visible = boxVisible,

enter = fadeIn() +

exit = slideOutVertically()

) {



All of the above animations may be further customized by making 
use of animation



39.4 Animation specs and animation easing

Animation specs are represented by instances of AnimationSpec, 

(or, more specifically, subclasses of AnimationSpec) and are used 

to configure aspects of animation behavior including the animation 

duration, start delay, spring, and bounce effects, repetition, and 
animation easing.

As with Rows, Columns, and other container composables, 

AnimatedVisibility has its own scope (named 

AnimatedVisibilityScope). Within this scope, we have access to 

additional functions specific to animation. For example, to control 

the duration of an animation, we need to generate a 

DurationBasedAnimationSpec instance (a subclass of 

AnimationSpec) by calling the tween() function and passing it as a 
parameter to the animation effect function call. For example, 

modify our example fadeIn() call to pass through a duration 
specification: 

import androidx.compose.animation.core.*



AnimatedVisibility(

visible = boxVisible,

enter = = tween(durationMillis =

exit = slideOutVertically()

) {

Update the preview and hide and show the box, noting that the 

fade-in animation is now slow enough that we can see it.

The tween() function also allows us to specify animation easing. 

Animation easing allows the animation to speed up and slow 

down and can be defined either using custom keyframe positions 

for speed changes (a topic which will be covered in “Compose 

State-Driven or using one of the following predefined values:



• FastOutSlowInEasing

• LinearOutSlowInEasing

• FastOutLinearEasing

• LinearEasing

•CubicBezierEasing

The following change uses LinearOutSlowInEasing easing for a 

slideInHorizontally effect:

AnimatedVisibility(

visible = boxVisible,

enter = slideInHorizontally(animationSpec =

tween(durationMillis = 5000, easing =

exit = slideOutVertically()

) {



When the box is shown, the animation gradually slows as it 

reaches the target position. Similarly, the following change bases 

the animation speed changes on four points within a Bezier curve:

AnimatedVisibility(

visible = boxVisible,

enter = slideInHorizontally(animationSpec = 

tween(durationMillis = 5000,

easing = CubicBezierEasing(of, if,

exit = slideOutVertically(),

) {



39.5 Repeating an animation

To make an animation repeat, we also need to use an animation 

spec, though in this case the RepeatableSpec subclass will be 

used, an instance of which can be obtained using the repeatable() 
function. In addition to the animation to be repeated, the function 

also accepts a RepeatMode parameter specifying whether the 

repetition should be performed from beginning to end 

(RepeatMode.Restart) or reversed from end to beginning of the 

animation sequence. For example, modify the AnimatedVisibility 

call to repeat a fade-in enter animation 10 times using the reverse 

repeat mode:

AnimatedVisibility(

visible = boxVisible,

enter = fadeIn(

animationSpec = repeatable(io, animation = 

tween(durationMillis = 2000),

repeatMode = 
RepeatM ode. Reverse)

),



exit = slideOutVertically(),



39.6 Different animations for different children

When enter and exit animations are applied to an 

AnimatedVisibility call, those settings apply to all direct and 
indirect children. Specific animations may be added to individual 

children by applying the animateEnterExit() modifier to them. As is 

the case with AnimatedVisibility, this modifier allows both enter 

and exit animations to be declared. The following changes add 

vertical sliding animations on both entry and exit to the red Box 

call:

AnimatedVisibility(

visible = boxVisible,

enter = fadeIn(animationSpec = tween(durationMillis = 5500)),

exit = fadeOut(animationSpec = tween(durationMillis = 5500))

) {

Row {

Box(Modifier.size(width = height =

.background(Color.Blue)



)

Spacer(modifier = Modifier.width(20.dp))

Box(

Modifier

.animateEnterExit(

enter = slideInVertically(

animationSpec = tween(durationMillis 

= 5500)),

exit = slideOutVertically(

animationSpec = tween(durationMillis 

= 5500))

)

.size(width = 150.dp, height = 150.dp)

.background(Color.Red)



)

}

}

If the code editor reports that AnimateEnterExit is an experimental 

feature, add the following annotation to the MainScreen 

composable:

@OptIn(ExperimentalAnimationApi::class)

@Composable

fun MainScreen() {

When the above code runs, you will notice that the red box uses 
both fade and sliding animations. This is because the 

animateEnterExit() modifier animations are combined with those 

passed to the parent AnimatedVisibility instance. For example, the 

enter animation in the above example is equivalent to fadeIn(...) + 

If you only want the modifier animations to be used, the enter 

and exit settings for the parent AnimatedVisibility instance must



be set to EnterTransition.None and ExitTransition.None respectively.

In the following code, animation (including the default animation) 

is disabled on the parent so that only those specified by a call to 

the modifier are performed:

AnimatedVisibility(

visible = boxVisible,

enter =

exit = ExitTransition.None

) {

Row {

Box(

Modifier

.animateEnterExit(

enter = fadeIn(animationSpec = 

tween(durationMillis = 5500)),



exit = fadeOut(animationSpec = 

tween(durationMillis = 5500))

)

.size(width = 150.dp, height = i5O.dp)

.background(Color.Blue))

Spacer(modifier = Modifier.width(2O.dp))

Box(

Modifier

.animateEnterExit(

enter = slideInVertically(

animationSpec = tween(durationMillis 

= 5500)),

exit = slideOutVertically(

animationSpec = tween(durationMillis

= 5500))



)

.size(width = 150.dp, height = i5O.dp)

.background(Color.Red)

)

}

}



39.7 Auto-starting an animation

So far in this chapter, animations have been initiated in response 

to button click events. It is not unusual, however, to need an 

animation to begin as soon as the call to AnimatedVisibility is 

made. To trigger this, AnimatedVisibility can be passed a 

MutableTransitionState instance when it is called.

MutableTransitionState is a special purpose state which includes 

two properties named currentState and targetState. By default, 

both the current and target states are set to the same value 
which, in turn, is defined by passing through an initial state when 

the MutableTransitionState instance is created. The following, for 

example, creates a transition state initialized to false and passes it 

through to the AnimatedVisibility call via the visibleState 
parameter:

val state = remember { MutableTransitionState(false) }



AnimatedVisibility(

visibleState =

enter = fadeIn(

animationSpec = tween(5ooo)

),

exit = slideOutVertically(),

) {

When tested, the Box composable will not appear because the 

initial state is set to false. To initiate the “enter” fade-in 

animation, we need to set the targetState property of the 

transition state instance to true when it is created. We do this by 

calling apply() on the state instance and setting the property in 

the trailing lambda as follows:

val state = remember { MutableTransitionState(true) } 

state.apply { targetState = true } 



Now when the app is run the fade-in animation starts 

automatically without user interaction.



39.8 Implementing crossfading

Crossfading animates the replacement of one composable with 
another and is performed using the Crossfade function. This 

function is passed a target state value that is used to decide 

which composable is to replace the currently visible component. A 

fading animation effect is then used to perform the replacement.

In our example app, we currently display both the show and hide 

buttons. In practice, only one of these buttons needs to be visible 

at any one time depending on the current visibility state of the 

Box component. It is not necessary, for example, to display the 

show button when the content is already visible. This is an ideal 
candidate for using cross fading to transition from one button to 

the other. To do this, we need to enclose the two CustomButton 

composables within a Crossfade call, passing through the 

boxVisible state value as the target state. We can then add some 

logic within the Crossfade lambda to decide which button is to be 

visible.

To implement this behavior, modify the MainScreen function so 

that it reads as follows:

@Composable 

fun MainScreen() {



var boxVisible by remember { mutableStateOf(true) }

val onClick = { newState : Boolean ->

boxVisible = newState

}

Column(

Modifier.padding(20.dp),

horizontalAlignment = Alignment.CenterHorizontally

) {

Row(

Modifier.fillMaxWidth(),

horizontalArrangement = Arrangement.SpaceEvenly

) {

Crossfade(



targetstate = boxVisible, 

animationSpec = tween(5ooo)

) { visible ->

when (visible) {

true -> CustomButton(text = "Hide",
targetState = false,

onClick = onClick, bgColor =
Color.Red)

false -> CustomButton(text = "Show",
targetState = true,

onClick = onClick, bgColor =
Color.Magenta)

}

}

}

Spacer(modifier = Modifier.height(2O.dp))



AnimatedVisibility(

visible = boxVisible,

enter = fadeIn(animationSpec = tween(durationMillis

= 5500)),

exit = fadeOut(animationSpec = tween(durationMillis

= 5500))

) {

Box(modifier = Modifier

.size(height = 200.dp, width = 200.dp) 

.background(Color.Blue))

}

}

}



To enhance the effect of the crossfade, the above code also 

changes the background colors of the two buttons. We also use a 

when statement to decide which button to display based on the 

current boxVisible value.

Test the layout and check that clicking on the Show button 

initiates a crossfade to the Hide button and vice versa.



39.9 Summary

This chapter has explored the use of the Compose Animation API 

to animate the appearance and disappearance of components 

within a user interface layout. This requires the use of the 

animatedVisibility() function which may be configured to use 

different animation effects and durations, both for the appearance 

and disappearance of the target composable. The Animation API 

also includes crossfade support which allows the replacement of 

one component with another to be animated.



40. Compose State-Driven Animation

The previous chapter focused on using animation when hiding 
and showing user interface components. In this chapter, we will 

turn our attention to state-driven animation. The Compose 

Animation API features allow various animation effects to be 

performed based on states change from one value to another. 

This includes animations such as rotation, motion, and color 

changes to name just a few options. This chapter will explain the 
concepts of state-driven animation, introduce the animate as state 

functions, spring effects, and keyframes, and explore the use of 

transitions to combine multiple animations.



40.1 Understanding state-driven animation

We already know from previous chapters that working with state is 

a key element of Compose-based app development. Invariably, the 

way that an app appears, behaves, and responds to user input 

are all manifestations of changes to and of state occurring behind 

the scenes. State changes can also be used as the basis for 
animation effects using the Compose Animation API. If a state 

change transforms the appearance, position, orientation, or size of 

a component in a layout, there is a good chance that visual 
transformation can be animated using one or more of the 

animate as state functions.



40.2 Introducing animate as state functions

The animate as state functions are also referred to as the 

animate*AsState  functions. The reason for this is that the 

functions all use the same naming convention whereby the ‘*’ 

wildcard is replaced by the type of the state value that is 

triggering the animation. For example, if you need to animate the 

background color change of a composable, you will need to use 

the animateColorAsState() function. At the time of writing, 

Compose provides state animation functions for Bounds, Color, 

Dp, Float, Int, IntOffset, IntSize, Offset, Rect, and Size data types 
which cover most animation requirements.

These functions animate the results of changes to a single state 

value. In basic terms, the function is given a target state value 

and then animates the change from the current value to the 

target value. The functions return special state values that can be 

used as properties for composables. Consider the following code 

fragment:

var temperature by remember { mutableStateOf(80) }

val animatedColor: Color by animateColorAsState(

targetValue = if (temperature > 92) {

Color.Red



} else {

Color.Green

}.

animationSpec = tween(45oo)

)

The above code declares a state variable named temperature 

initialized with a value of 80. Next, a call is made to 

animateColorAsState which uses the current temperature setting to 

decide whether the color should be red or green. Note that the 

animate as state functions also accept an animation spec, in this 

case, a duration of 4500 milliseconds. The animatedColor state can 

now be assigned as a color property for any composable in the 

layout. In the following code example it is used to control the 

background color of a Box composable:

Box(

Modifier.size(width = 20.dp, height = 200.dp)



)

If the temperature state value exceeds 92 at any point during 

execution, the Box’s background color will transition from green to 

red using the declared animation.

In the remainder of this chapter, we will create some more state- 

driven animation examples. Finally, we will close out the chapter 

by demonstrating the use of the updateTransition() function to 

combine multiple animations.



40.3 Creating the AnimateState project

Launch Android Studio and create a new Empty Activity project 

named AnimateState, specifying com.example.animatestate as the 

package name, and selecting a minimum API level of API 26: 
Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named RotationDemo:

@Composable

fun RotationDemo() {

}

Next, edit the OnCreate() method and GreetingPreview function to 

call RotationDemo instead of Greeting.



40.4 Animating rotation with animateFloatAsState

In this first example, we will animate the rotation of an Image 

component. Since rotation angle in Compose is declared as a Float 

value, the animation will be created using the animateFloatAsState() 

function. Before writing code, a vector image needs to be added to 

the project. The image file is named propeller.svg and can be located 

in the images folder of the sample code download available from the 

following URL:

https://www.ebookfrenzy.com/retail/compose13/index.php

Within Android Studio, display the Resource Manager tool window -> 

Tool Windows -> Resource Locate the propeller.svg image in the file 

system navigator for your operating system and drag and drop it 

onto the Resource Manager tool window. In the resulting dialog, click 

Next followed by the Import button to add the image to the project. 

The image should now appear in the Resource Manager as shown in 

Figure 40-1 below:

https://www.ebookfrenzy.com/retail/compose1


Module: Animate ▼

Drawable Color Layout Mip Map String

AnimateState.app ...

ic_launcher_background
Drawable 1 version

ic_launcher_foreg round
Drawable 1 version

propeller
Drawable 1 version

Figure 40-1

The image will also appear in the res -> drawables section of the 

Project tool window:

v If res
v drawable

<> ic_launcher_background.xml
<> ic_launcher_foreground.xml (v24)

propeller.xml



Figure 40-2

Edit the MainActivity.kt file and modify the RotationDemo function to 

design the user interface layout: 

import and roidx.compose.fou ndation. Image

import and roidx.compose.fou ndation.layout.*

import androidx.compose.material3.Button

import androidx.compose.runtime.*

import and roidx.compose. ui.Alignment 

import androidx.compose. ui.d raw. rotate

import androidx.compose.ui.res.painterResource 

import androidx.compose.ui.unit.dp



@Composable 

fun RotationDemo() { 

var rotated by remember { mutableStateOf(false) }

Column(horizontalAlignment = Alignment.CenterHorizontally,

modifier = Modifier.fillMaxWidth()) {

Image(

painter = painterResource(R.drawable.propeller), 

contentDescription = "fan", 

modifier = Modifier

.padding(10.dp) 

.size(300.dp)

)

Button



onClick = { rotated = !rotated }, 

modifier = Modifier.padding(io.dp)

) {

Text(text = "Rotate Propeller")

}

}

}

The layout consists of a Column containing an Image configured to 

display the propeller drawing and a Button. The code includes a 

Boolean state variable named the value of which is toggled via the 

Button’s onClick handler.

When previewed, the layout should resemble that illustrated in Figure 

40-3 below:



Figure 40-3

Although the button changes the rotation state value, that state has 

not yet been connected with an animation. Therefore, we now need 

to make use of the animateFloatAsState() function by adding the 

following code: 

import androidx.compose.animation.core.



@Composable 

fun RotationDemo() {

var rotated by remember { mutableStateOf(false) } 

val angle by animateFloatAsState(

targetValue = if (rotated) 36of else of, 

animationSpec = tween(durationMillis = 2500)

)

Next, edit the Image declaration and pass the angle state through to 

the rotateQ modifier as follows:

Image(



painter = painterResource(R.drawable.propeller),

contentDescription = "fan",

modifier = Modifier

.rotate(angle)

.padding(io.dp) 

.size(3oo.dp)

)

This code calls animateFloatAsState() and assigns the resulting state 

value to a variable named If the rotated value is currently set to true, 

then the target value for the animation is set to 360 degrees, 

otherwise, it is set to 0. All that remains now is to test the activity. 

Using either the Preview panel in interactive mode or an emulator or 

physical device for testing, click on the button. The propeller should 

rotate 360 degrees in the clockwise direction. A second click will 

rotate the propeller back to 0 degrees.

The rotation animation is currently using the default 

FastOutSlowInEasing easing setting where the animation rate slows 

as the propeller nears the end of the rotation. To see the other 

easing options outlined in the previous chapter in action, simply add 



them to the tween() call. The following change, for example, animates 

the rotation at a constant speed:

animationSpec = tween(durationMillis = easing =



40.5 Animating color changes with animateColorAsState

In this example, we will look at animating color changes using 
the animateColorAsState() function. In this case, the layout will 

consist of a Box and Button pair. When the Button is clicked the 
Box will transition from one color to another using an animation. 

In preparation for this example, we will need to add an 

enumeration to the MainActivity.kt file to provide the two 

background color options. Edit the file and place the enum 

declaration after the MainActivity class: 

. 

.

enum class BoxColor {

Red, Magenta

}

@Composable 

fun RotationDemo() {



Add a new composable function to the MainActivity.kt file named 

ColorChangeDemo together with an @Preview function so that it 

will appear in the Preview panel: 

import androidx.compose.foundation.background 

import androidx.compose.ui.graphics.Color

@Composable 

fun ColorChangeDemo() {

var colorState by remember { mutableStateOf(BoxColor.Red) }

Column(horizontalAlignment = Alignment.CenterHorizontally,



modifier = Modifier.fillMaxWidth()) {

Box(

modifier = Modifier

.padding(2O.dp)

.size(200.dp)

.background(Color.Red)

)

Button(

onClick = {

colorState = when (colorState) {

BoxColor.Red -> BoxColor.Magenta

BoxColor.Magenta -> BoxColor.Red

}



}, 

modifier = Modifier.padding(io.dp)

) {

Text(text = "Change Color")

}

}

}

@Preview(showBackground = true) 

@Composable 

fun ColorChangePreview() {

AnimateStateTheme {

ColorChangeDemo()

}



}

Exit interactive mode, preview the layout, and confirm that it 

resembles that shown in Figure

Figure 40-4

The BoxColor enumeration contains two possible color selections, 

Red and Magenta. First, a state variable named colorState is 

declared and initialized to BoxColor.Red. Next, the Button onClick 



handler uses a when statement to toggle the colorState value 

between the Red and Magenta BoxColor enumeration values.

The ColorChangeDemo function now needs to use the 
animateColorAsState() function to implement and animate the Box 

background color change. The Box also needs to be modified to 

use the animatedColor state as the background color value: 

import androidx.compose.animation.animateColorAsState

@Composable

fun ColorChangeDemo() {

var colorState by remember { mutableStateOf(BoxColor.Red) }

val animatedColor: Color by animateColorAsState(



targetValue = when (colorState) {

BoxColor.Red -> Color.Magenta

BoxColor.Magenta -> Color.Red

}.

animationSpec = tween(4500)

)

Column(horizontalAlignment = Alignment.CenterHorizontally,

modifier = Modifier.fillMaxWidth()) {

Box(

modifier = Modifier

.padding(2O.dp)

.size(200.dp)

)



The code uses the current colorState color value to set the 

animation target value to the other color. This triggers the 

animated color change which is performed over a 4500-millisecond 

duration. Stop the current interactive session in the Preview panel 

if it is still running (only one preview can be in interactive mode 

at a time), locate the new composable preview, and run it in 

interactive mode. Once the preview is running, use the button to 
try out the color change animation.



40.6 Animating motion with animateDpAsState

In this, final example before looking at the updateTransition() 

function, we will use the animateDpAsState() function to animate 

the change in position of a composable. This will involve 
changing the x position offset of a component and animating the 

change as it moves to the new location on the screen. Using the 

same steps as before, add another composable function, this time 

named MotionDemo, together with a matching preview 

composable. As with the color change example, we also need an 
enumeration to contain the position options: 

. 

.

enum class BoxPosition {

Start, End

}

@Composable

fun MotionDemo() {



var boxState by remember { mutableStateOf(BoxPosition.Start)}

val boxSideLength = 7O.dp

Column(modifier = Modifier.fillMaxWidth()) {

Box(

modifier = Modifier

.offset(x = 0.dp, y = 20.dp)

.size(boxSideLength)

.background(Color.Red)

)

Spacer(modifier = Modifier.height(50.dp))

Button(

onClick = {

boxState = when (boxState) {



BoxPosition.Start -> BoxPosition.End

BoxPosition.End -> BoxPosition.Start

}

},

modifier = Modifier.padding(2O.dp)

.align(Alignment.CenterHorizontally)

) {

Text(text = "Move Box")

}

}

}

@Preview(showBackground = true)

@Composable

fun MotionDemoPreview() {



AnimateStateTheme {

MotionDemo()

}

}

This example is structured in much the same way as the color 
change animation, except that this time we are working with 

density-independent pixel values instead of colors. The goal is to 

animate the Box’s movement from the screen’s start to the end. 

Assuming that the code will potentially run on a variety of devices 

and screen sizes, we need to know the width of the screen to be 
able to find the end position. We can find this information by 

accessing the properties of the LocalConfiguration instance. This is 

an object that is local to each Compose-based app and provides 

access to properties such as screen width, height and density, font 

scale information, and whether or not night mode is currently 

activated on the device. For this example, we only need to know 

the width of the screen, which can be obtained as follows:



import androidx.compose.ui.platform.LocalConfiguration

@Composable 

fun MotionDemo() { 

val screenWidth = (LocalConfiguration.current.screenWidthDp.dp)

Next, we need to add the animation using the animateDpAsState() 

function: 

import androidx.compose.ui.unit.Dp



@Composable 

fun MotionDemo() {

val screenWidth =

(LocalConfiguration.current.screenWidthDp.dp)

var boxState by remember { mutableStateOf(BoxPosition.Start)}

val boxSideLength = 70.dp

val animatedOffset: Dp by animateDpAsState(

targetValue = when (boxState) {

BoxPosition.Start -> 0.dp

BoxPosition.End -> screenWidth - boxSideLength

}, 

animationSpec = tween(500)

)



In the above code, the target state is set to either the start or 

end of the screen width, depending on the current boxState 

setting. In the case of the end position, the width of the Box is 

subtracted from the screen width so that the motion does not 

move beyond the edge of the screen.

Now that we have the animatedOffset state declared, we can pass 

it through as the x parameter to the Box offset() modifier call:

Box(

modifier = Modifier

.offset(x = y = 20.dp) 

.size(boxSides) 

.background(Color.Red) 

)



When the code is previewed in interactive mode, clicking the 

button should now cause the box to be animated as it moves 

back and forth across the screen:

Figure 40-5



40.7 Adding spring effects

The above example provides an ideal opportunity to introduce the 
spring animation effect. Spring behavior adds a bounce effect to 

animations and is applied using the spring() function via the 

animationSpec parameter. To understand the spring effect it helps 

to imagine one end of a spring attached to the animation start 

point (for example the left side of the screen or parent) and the 

other end attached to the corresponding side of the box. As the 

box moves, the spring stretches until the endpoint is reached, at 

which point the box bounces a few times on the string before 

finally resting at the endpoint.

The two key parameters to the spring() function are damping ratio 

and The damping ratio defines the speed at which the bouncing 

effect decays and is declared as a Float value where 1.0 has no 

bounce, and 0.1 is the highest bounce. Instead of using Float 

values, the following predefined constants are also available when 
configuring the damping ratio:

To add a spring effect to the motion animation, add a spring() 

function call to the animation as follows:



import
androidx.compose.animation.core.Spring.DampingRatioHighBouncy

.

.

val animatedOffset: Dp by animateDpAsState(

targetValue = when (boxState) {

BoxPosition.Start -> 0.dp

BoxPosition.End -> screenWidth - boxSideLength

}.

animationSpec = spring(dampingRatio = DampingRatioHighBouncy) 

)



When tested, the box will now bounce when it reaches the target 

destination.

The stiffness parameter defines the strength of the spring. When 

using a lower stiffness, the range of motion of the bouncing 

effect will be greater. The following, for example, combines a high 

bounce damping ratio with very low stiffness. The result is an 

animation that is so bouncy that the box bounces beyond the 

edge of the screen a few times before finally coming to rest at 

the endpoint: 

import androidx.compose.animation.core.Spring.StiffnessVeryLow 

val animatedOffset: Dp by animateDpAsState(

targetValue = when (boxState) {

BoxPosition.Start -> 0.dp



BoxPosition.End -> screenWidth - boxSides

}.

spring(dampingRatio = stiffness =

)

The stiffness of the spring effect can be adjusted using the 

following constants:

Take some time to experiment with the different damping and 

stiffness settings to learn more about the effects they produce.



40.8 Working with keyframes

Keyframes allow different duration and easing values to be applied 

at specific points in an animation timeline. Keyframes are applied 

to animation via the animationSpec parameter and defined using 

the keyframes() function which accepts a lambda containing the 

keyframe data and returns a KeyframesSpec instance.

A keyframe specification begins by declaring the total required 

duration for the entire animation to complete. That duration is 

then marked by timestamps declaring how much of the total 

animation should be completed at that point based on the state 

unit type (for example Float, Dp, Int, etc.). These timestamps are 

created via calls to the at() function.

As an example, edit the animateDpAsState() function call to add a 

keyframe specification to the animation as follows:

val animatedOffset: Dp by animateDpAsState(

targetValue = when (boxState) {

BoxPosition.Start -> 0.dp

BoxPosition.End -> screenWidth - boxSides



}.

animationSpec = keyframes {

durationMillis = 1000 

loo.dp.at(io) 

iio.dp.at(5oo) 

2OO.dp.at(7OO)

}

)

This keyframe declares a 1000 millisecond duration for the entire 

animation. This duration is then divided by three timestamps. The 

first timestamp occurs 10 milliseconds into the animation, at 

which point the offset value must have reached 100dp. At 500 

milliseconds the offset must be 110dp and, finally, 200dp by the 

time 700 milliseconds have elapsed. This leaves 300 milliseconds 

to complete the remainder animation.

Try out the animation and observe the changes in the speed of 
the animation as each timestamp is reached.



The animation behavior can be further configured using the with() 

function to add easing settings to the timestamps, for example: 

animationSpec = keyframes {

durationMillis = 1000

}



40.9 Combining multiple animations

Multiple animations can be run in parallel based on a single 

target state using the updateTransition() function. This function is 

passed the target state and returns a Transition instance to which 

multiple child animations may be added. When the target state 

changes, the transition will run all of the child animations 

concurrently. The updateTransition() call may also be passed an 

optional label parameter which can be used to identify the 
transition within the Animation Inspector (a topic that will be 

covered in the next section).

A Transition object configured to trigger its child animations in 

response to changes to a state variable named myState would 

typically be declared as follows:

val transition = updateTransition(targetState = myState,

label = "My Transition")

The Transition class includes a collection of functions that are 

used to add animation to children. These functions use the 
naming convention of animate() depending on the unit type used 

for the animation such as animateDp() and The syntax for these 

functions is as follows: 

val myAnimation: by transition.animate(



transitionSpec = {

// anination spec (tween, spring etc)

}

) { state ->

// Code to identify new target state based on current state

}

To demonstrate updateTransition in action, we will modify the 

example to perform both the color change and motion animations 

based on changes to the boxState value. Begin by adding a new 

function named TransitionDemo together with a corresponding 

preview composable (we will correct undefined symbol errors in 

the next steps):

@Composable

fun TransitionDemo() {

var boxState by remember { mutableStateOf(BoxPosition.Start)}



val screenWidth = LocalConfiguration.current.screenWidthDp.dp

Column(modifier = Modifier.fillMaxWidth()) {

Box(

modifier = Modifier

.offset(x = animatedOffset, y = 2O.dp)

.size(7O.dp)

.background(animatedColor)

)

Spacer(modifier = Modifier.height(50.dp))

Button(

onClick = {

boxState = when (boxState) {

BoxPosition.Start -> BoxPosition.End

BoxPosition.End -> BoxPosition.Start



}

}.

modifier = Modifier.padding(2o.dp)

.align(Alignment.CenterHorizontally)

) {

Text(text = "Start Animation")

}

}

}

@Preview(showBackground = true)

@Composable

fun TransitionDemoPreview() {

AnimateStateTheme {



TransitionDemo()

}

}

Next, edit the new function to obtain a Transition instance 

configured to react to changes to

@Composable

fun TransitionDemo() {

var boxState by remember { mutableStateOf(BoxPosition.Start)}

val screenWidth = LocalConfiguration.current.screenWidthDp.dp

val transition = updateTransition(targetState = boxState,

label = "Color and Motion")

Finally, add the color and motion animations to the transition:



import androidx.compose.animation.animateColor

@Composable 

fun TransitionDemo() {

val transition = updateTransition(targetState = boxState,

label = "Color and Motion")

val animatedColor: Color by transition.animateColor(

transitionSpec = {



tween(4ooo)

}, label = "colorAnimation"

) { state ->

when (state) {

BoxPosition.Start -> Color.Red

BoxPosition.End -> Color.Magenta

}

}

val animatedOffset: Dp by transition.animateDp(

transitionSpec = {

tween(4000)

}, label = "offsetAnimation"

) { state ->



when (state) {

BoxPosition.Start -> o.dp

BoxPosition.End -> screenWidth - 7O.dp

}

}

When previewed, the box should change color as it moves across 

the screen.



40.10 Using the Animation Inspector

The Animation Inspector is a tool built into Android Studio that 

allows you to interact directly with the animation timeline and 

manually scroll back and forth through the animation sequences. The 

inspector is only available when a Transition-based animation is 

present and is accessed using the button highlighted in Figure 40-6 

below:

Figure 40-6

If this button is not visible, try building and running the app on a 

device or emulator, then try again.



Once enabled, the inspector panel will appear beneath the preview 

panel as illustrated in Figure

Figure 40-7

The area marked A contains a section for each transition in the 

current source file. Since our example only contains a single 

transition, there is only one entry in the above image. Since a label 

was passed to the updateTransition() function call, this is displayed as 

the tab title.

The toolbar (B) provides options to play the animation, jump to the 

start or end of the timeline, loop repeatedly through the animation, 

and change the animation playback speed.



The transition’s animation children are listed in the timeline panel 

(C). The blue vertical line (D) indicates the current position in the 

timeline which can be dragged to manually move through the 

animation. The drop-down menus (E) can be used to change the 

direction of the animation. Note that the options listed in these 

menus are taken from the BoxPosition enumeration. As an alternative 

to manually changing these menu settings, click on the button 

marked F.



40.11 Summary

The Compose Animation API provides several options for 

performing animation based on state changes. A set of animate 

as state functions are used to animate the results of changes to 

state values. These functions are passed a target state value and 

animate the change from the current value to the target value. 

Animations can be configured in terms of timeline linearity, 

duration, and spring effects. Individual animations are combined 

into a single Transition instance using the updateTransition() 
function. Android Studio includes the Animation Inspector for 

testing and manually scrolling through animation sequences.



41. Canvas Graphics Drawing in Compose

In this chapter, we will be introducing 2D graphics drawing using 

the Compose Canvas component. As we explore the capabilities of 

Canvas it will quickly become apparent that, as with just about 

everything else in Compose, we can typically achieve impressive 

results with just a few lines of code.



41.1 Introducing the Canvas component

The Canvas component provides a surface on which to perform 

2D graphics drawing. Behind the scenes, however, Canvas does 

much more than just provide a drawing area, including ensuring 

that the graphical content’s state is maintained and managed 

automatically. Canvas also has its own scope (DrawScope), which 

gives us access to properties of the canvas area including the size 

dimensions and center point of the current bounds area, in 

addition to a set of functions we can use to draw shapes, lines, 

and paths, define insets, perform rotations, and much more.

Given the visual nature of this particular Compose feature, the 

rest of this chapter will use a project to demonstrate many of the 

features of the Canvas component in action.



41.2 Creating the CanvasDemo project

Launch Android Studio and create a new Empty Activity project 

named CanvasDemo, specifying com.example.canvasdemo as the 

package name, and selecting a minimum API level of API 26: 
Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to 
call MainScreen instead of Greeting.



41.3 Drawing a line and getting the canvas size

The first drawing example we will look at involves drawing a 

straight diagonal line from one corner of the Canvas bounds to 

the other. To achieve this, we need to obtain the dimensions of 

the canvas by accessing the size properties provided by 

DrawScope. Edit the MainActivity.kt file to add a new function 

named DrawLine and add a call to this new function from within 

the MainScreen composable: 

import androidx.compose.foundation.Canvas 

import androidx.compose.foundation.layout.size 

import androidx.compose. u i .geometry.Offset 

import androidx.compose.ui.geometry.Size 

import androidx.compose.ui.graphics.*  

import androidx.compose.ui.umt.dp



@Composable 

fun MainScreen() {

DrawLine()

}

@Composable 

fun DrawLine() {

Canvas(modifier = Modifier.size(3oo.dp)) {

val height = size.height 

val width = size.width

}

}



The DrawLine composable creates a fixed size Canvas and extracts 

the height and width properties from the DrawScope. All that 

remains is to draw a line via a call to the DrawScope drawLine() 

function:

@Composable

fun DrawLine() {

Canvas(modifier = Modifier.size(300.dp)) {

val height = size.height

val width = size.width

drawLine(

start = Offset(x= of, y = of),

end = Offset(x = width, y = height),

color = Color.Blue,

strokeWidth = i6.of

)



}

}

The drawLine() API function needs to know the x and y 

coordinates of the start and endpoints of the line, keeping in 

mind that the top left-hand corner of the Canvas is position 0, 0. 

In the above example, these coordinates are packaged into an 

Offset instance via a call to the Offset() function. The drawLine() 

function also needs to know the thickness and color of the line 

to be drawn. After making the above changes, refresh the Preview 

panel where the drawing should be rendered as shown in Figure

Figure 41-1



41.4 Drawing dashed lines

Any form of line drawing performed on a Canvas can be 

configured with dash effects by configuring a PathEffect instance 

and assigning it to the pathEffect argument of the drawing 

function call. To create a dashed line, we need to call the 

dashPathEffect() method of the PathEffect instance and pass it an 

array of floating-point numbers. The floating-point numbers 

indicate the “on” and “off” intervals in the line in pixels. There 

must be an even number of interval values with a minimum of 2 

values. Modify the DrawLine composable to add a dashed line 

effect as follows:

@Composable

fun DrawLine() {

Canvas(modifier = Modifier.size(300.dp)) {

val height = size.height

val width = size.width

drawLine(

start = Offset(x= 0f, y = 0f),



end = Offset(x = width, y = height), 

color = Color.Blue,

strokeWidth = i6.of,

pathEffect = PathEffect.dashPathEffect(

floatArrayOf(3of, iof, iof, iof), phase = 

of)

)

}

}

The above path effect will draw a line beginning with a 3opx dash 

and 10px space, followed by 10px dash and a 10px space, 

repeating this sequence until the end of the line as shown in 

Figure



Figure 41-2



41.5 Drawing a rectangle

Rectangles are drawn on a Canvas using the drawRect() function 

which can be used in several different ways. The following code 

changes draw a rectangle of specific dimensions at the default 

position (0, 0) within the canvas area:

@Composable

fun MainScreen() {

DrawRect()

}

@Composable

fun DrawRect() {

Canvas(modifier = Modifier.size(300.dp)) {

val size = Size(600f, 250f) 

drawRect(



color = Color.Blue, 

size = size

)

} 

}

When rendered within the Preview panel, the rectangle will appear 

as shown in Figure



Figure 41-3

Note that the dimensions of the Canvas are 300 x 300 while the 

rectangle is sized to 600 x 250. At first glance, this suggests that 

the rectangle should be much wider than it appears in the above 

figure relative to the Canvas. In practice, however, the Canvas size 

is declared in density-independent pixels (dp) while the rectangle 

size is specified in pixels (px). Density independent pixels are an 

abstract measurement that is calculated based on the physical 

density of the screen defined in dots per inch (dpi). Pixels, on the 

other hand, refer to the actual physical pixels on the screen. To 

work solely in pixels, start with dp values and then convert them 

to pixels as follows:

@Composable

fun DrawRect() {

Canvas(modifier = Modifier.size(300.dp)) {

val size ioo.dp.toPx())

drawRect(

color = Color.Blue, 

size = size



)

}

}

Instead of specifying dimensions, the size of the rectangle can 

also be defined relative to the size of the Canvas. For example, 

the following code draws a square that is half the size of the 

Canvas:

@Composable

fun DrawRect() {

Canvas(modifier = Modifier.size(300.dp)) {

drawRect(

color = Color.Blue,

size = size / 2f

)

}



}

The above changes will result in the following drawing output:

Figure 41-4

The position of the rectangle within the Canvas area can be 

specified by providing the coordinates of the top left-hand corner 
of the drawing: 

@Composable



fun DrawRect() {

Canvas(modifier = Modifier.size(3oo.dp)) {

drawRect(

color = Color.Blue,

topLeft = Offset(x=35of, y = 3oof),

size = size / 2f

)

}

}



Figure 41-5

Alternatively, the inset() function may be used to modify the 

bounds of the Canvas component: 

import androidx.compose.ui.graphics.drawscope.inset



@Composable 

fun DrawRect() {

Canvas(modifier = Modifier.size(3oo.dp)) {

inset(ioof, 2oof) {

drawRect(

color = Color.Blue,

size = size / 2f

)

}

}

}

The inset() function can be called with a wide range of settings 

affecting different sides of the canvas. The function is also 

particularly useful because multiple drawing functions can be 



called from within the trailing lambda, with each adopting the 

same inset values.

The drawRoundRect() function is also available for drawing 

rectangles with rounded corners. In addition to size and position, 

this function also needs to be passed an appropriately configured 

CornerRadius component. It is also worth noting that rectangles 

(both with and without rounded corners) can be drawn in outline 

only by specifying a Stroke for the style property, for example: 

import androidx.compose.ui.geometry.CornerRadius

import androidx.compose. u i .graph ics.d rawscope.Stroke

@Composable

fun DrawRect() {

Canvas(modifier = Modifier.size(300.dp)) {



val size = Size(

width = 28o.dp.toPx(),

height = 2OO.dp.toPx())

drawRoundRect(

color = Color.Blue, 

size = size, 

topLeft = Offset(2of, 2of),

style = Stroke(width = 8.dp.toPx()),

cornerRadius = CornerRadius(

x = 30.dp.toPx(),

y = 30.dp.toPx()

)

)



}

}

The above code produces an outline of a rectangle with rounded 

corners:

Figure 41-6



41.6 Applying rotation

Any element drawn on a Canvas component can be rotated via a 

call to the scope rotate() function. The following code, for 

example, rotates a rectangle drawing by 45°: 

import androidx.compose. u i .graph ics.d rawscope.rotate

@Composable 

fun DrawRect() {

Canvas(modifier = Modifier.size(300.dp)) {

rotate(45f) {

drawRect(



color = Color.Blue,

topLeft = Offset(2oof, 2oof),

size = size / 2f

)

}

}

}

The above changes will render the drawing as shown in Figure 41-

7_below:



Figure 41-7



41.7 Drawing circles and ovals

Circles are drawn in Compose using the drawCircle() function. The 

following code draws a circle centered within a Canvas. Note that 

we find the center of the canvas by referencing the DrawScope 

center property:

@Composable

fun MainScreen() {

DrawCircle()

}

@Composable

fun DrawCircle() {

Canvas(modifier = Modifier.size(3oo.dp)) {

drawCircle(

color = Color.Blue,



center = center, 

radius = i2O.dp.toPx()

)

}

}

When previewed, the canvas should appear as shown in Figure 41- 

8 below:



Figure 41-8

Oval shapes, on the other hand, are drawn by calling the 
drawOval() function. The following composable, for example, draws 

the outline of an oval shape:

@Composable

fun MainScreen() {

DrawOval()



}

@Composable

fun DrawOval() {

Canvas(modifier = Modifier.size(3oo.dp)) {

val canvasWidth = size.width

val canvasHeight = size.height

drawOval(

color = Color.Blue,

topLeft = Offset(x = 25.dp.toPx(), y = 90.dp.toPx()), 

size = Size(

width = canvasWidth - 50.dp.toPx(),

height = canvasHeight / 2 - 50.dp.toPx()

),



style = Stroke(width = i2.dp.toPx())

)

}

}

The above code will render in the Preview panel as illustrated in

Figure

Figure 41-9



41.8 Drawing gradients

Shapes can be filled using gradient patterns by making use of the 

Brush component which can, in turn, paint horizontal, vertical, 

linear, radial, and sweeping gradients. For example, to fill a 

rectangle with a horizontal gradient, we need a Brush initialized 
with a list of colors together with the start and end positions 

along the x-axis and an optional tile mode setting. The following 

example draws a rectangle that occupies the entire canvas and 

fills it with a horizontal gradient:

@Composable

fun MainScreen() {

GradientFill()

}

@Composable

fun GradientFill() {

Canvas(modifier = Modifier.size(3oo.dp)) {

val canvasSize = size



val colorList: List = listOf(Color.Red, Color.Blue,

Color.Magenta, Color.Yellow, Color.Green,
Color.Cyan)

val brush = Brush.horizontalGradient(

colors = colorList, 

startX = of, 

endX = 300.dp.toPx(), 

tileMode = TileMode.Repeated

)

drawRect(

brush = brush, 

size = canvasSize

)



}

}

Try out the above example within the Preview panel where it 

should appear as follows:

Figure 41-10

The following example, on the other hand, uses a radial gradient 

to fill a circle:

@Composable



fun MainScreen() {

RadialFill()

}

@Composable

fun RadialFill() {

Canvas(modifier = Modifier.size(3oo.dp)) {

val radius = i5O.dp.toPx()

val colorList: List = listOf(Color.Red, Color.Blue,

Color.Magenta, Color.Yellow, Color.Green, 
Color.Cyan)

val brush = Brush.radialGradient(

colors = colorList, 

center = center,



radius = radius, 

tileMode = TileMode.Repeated

)

drawCircle(

brush = brush,

center = center, 

radius = radius

)

}

}

Note that the center parameter in the above drawCircle() call is 

optional in this example. In the absence of this parameter, the 

function will automatically default to the center of the canvas. 

When previewed, the circle will appear as shown in Figure



Figure 41-11

Gradients are particularly useful for adding shadow effects to 

drawings. Consider, for example, the following horizontal gradient 

applied to a circle drawing:

@Composable

fun MainScreen() {

ShadowCircle()



}

@Composable

fun ShadowCircle() {

Canvas(modifier = Modifier.size(3oo.dp)) {

val radius = i5O.dp.toPx()

val colorList: List =

listOf(Color.Blue, Color.Black)

val brush = Brush.horizontalGradient( 

colors = colorList, 

startX = 0f,

endX = 300.dp.toPx(),

tileMode = TileMode.Repeated

)



drawCircle(

brush = brush, 

radius = radius

)

}

}

When previewed, the circle will appear with a shadow effect on 

the right-hand side as illustrated in Figure



Figure 41-12



41.9 Drawing arcs

The drawArc() DrawScope function is used to draw an arc to fit 

within a specified rectangle and requires either a Brush or Color 

setting together with the start and sweep angles. The following 

code, for example, draws an arc starting at 20° with a sweep of 

90° within a 250dp by 250dp rectangle:

@Composable

fun MainScreen() {

DrawArc()

}

@Composable

fun DrawArc() {

Canvas(modifier = Modifier.size(3oo.dp)) {

drawArc(

Color.Blue,



startAngle = 2of, 

sweepAngle = 9of,

useCenter = true,

size = Size(25O.dp.toPx(), 25O.dp.toPx())

)

}

}

The above code will render the arc as shown in Figure



Figure 41-13



41.10 Drawing paths

So far in this chapter, we have focused on drawing predefined 

shapes such as circles and rectangles. DrawScope also supports 

the drawing of paths. Paths are essentially lines drawn between a 

series of coordinates within the canvas area. Paths are stored in 

an instance of the Path class which, once defined, is passed to 

the drawPath() function for rendering on the Canvas.

When designing a path, the moveTo() function is called first to 

define the start point of the first line. A line is then drawn to the 
next position using either the lineTo() or relativeLineTo() functions. 

The lineTo() function accepts the x and y coordinates of the next 

position relative to the top left-hand corner of the parent Canvas. 
The relativeLineTo() function, on the other hand, assumes that the 

coordinates passed to it are relative to the previous position and 

can be negative or positive. The Path class also includes functions 

for drawing non-straight lines including Cubic and Quadratic 

Bezier curves.

Once the path is complete, the close() function must be called to 

end the drawing.

Within the MainActivity.kt file, make the following modifications to 

draw a custom shape using a combination of straight lines and 

Quadratic Bezier curves:



@Composable 

fun MainScreen() {

DrawPath()

}

@Composable

fun DrawPath() {

Canvas(modifier = Modifier.size(3oo.dp)) {

val path = Path().apply {

moveTo(of, of)

quadraticBezierTo(5O.dp.toPx(), 2OO.dp.toPx(),

3OO.dp.toPx(), 3OO.dp.toPx())

lineTo(27O.dp.toPx(), ioo.dp.toPx()) 

quadraticBezierTo(6o.dp.toPx(), 8o.dp.toPx(), of, of)



close()

}

drawPath(

path = path,

Color.Blue,

)

}

}

Refresh the Preview panel where the drawing should appear as 

illustrated below:



Figure 41-14



41.11 Drawing points

The drawPoints() function is used to draw individual points at the 

locations specified by a list of Offset instances. The pointMode 
parameter of the drawPoints() function is used to control whether 

each point is plotted separately (using Points mode) or connected 

by lines using the Lines and Polygon modes. The drawPoints() 

function in Points mode is particularly useful for algorithm-driven 

drawing. The following code, for example, plots a sine wave 

comprised of individual points: 

import java.lang.Math.PI

import java.lang.Math.sin

@Composable 

fun MainScreen() {



DrawPoints() 

}

@Composable

fun DrawPoints() {

Canvas(modifier = Modifier.size(3oo.dp)) {

val height = size.height

val width = size.width

val points = mutableListOf()

for (x in o..size.width.toInt()) {

val y = (sin(x * (2f * PI / width))

* (height / 2) + (height / 2)).toFloat()

points.add(Offset(x.toFloat(), y))

}



drawPoints(

points = points,

strokeWidth = 3f,

pointMode = PointMode.Points, 

color = Color.Blue

)

}

}

After making the above changes, the Canvas should appear as 

illustrated below:



Figure 41-15



41.12 Drawing an image

An image resource can be drawn onto a canvas via a call to the 

drawImage() function. To see this function in action, we first need to 

add an image resource to the project. The image is named 

vacation.jpg and can be found in the images folder of the sample 

code archive which can be downloaded from the following web page:

https://www.ebookfrenzy.com/retail/compose13/index.php

Within Android Studio, display the Resource Manager tool window -> 

Tool Windows -> Resource Locate the vacation.png image in the file 

system navigator for your operating system and drag and drop it 

onto the Resource Manager tool window. In the resulting dialog, click 

Next followed by the Import button to add the image to the project. 

The image should now appear in the Resource Manager as shown in 

Figure 41-16 be l ow:

https://www.ebookfrenzy.com/retail/compose1


Figure 41-16

The image will also appear in the res -> drawables section of the 

Project tool window:

■| res

v drawable

<> ic_launcher_background.xml
<> ic_launcher_foreground.xml (v24)

vacation.jpg

Figure 41-17



With the image added to the project, return to the MainActivity.kt file 

and make the following modifications: 

import androidx.compose.ui.res.imageResource 

. 

.

@Composable

fun MainScreen() {

DrawImage()

}

@Composable

fun DrawImage() {

val image = ImageBitmap.imageResource(id = R.drawable.vacation)

Canvas(



modifier = Modifier

.size(36o.dp, 27O.dp)

) {

drawImage(

image = image,

topLeft = Offset(x = of, y = of)

)

}

}

The Drawlmage composable begins by creating an ImageBitmap 

version of the resource image and then passes it as an argument to 

the drawImage() function together with an Offset instance configured 

to position the image in the top left-hand corner of the canvas area. 

Refresh the preview and confirm that the Canvas appears as follows:



Figure 41-18

The drawImage() function also allows color filters to be applied to 

the rendered image. This requires a ColorFilter instance which can be 

configured with tint, lighting, color matrix, and blend settings. A full 

explanation of color filtering is beyond the scope of this book, but 

more information can be found on the following web page: 

https://developer.android.com/reference/kotlin/androidx/compose/ui/graphics/ 

ColorFilter

For this example, add a tint color filter blending with a color matrix 

as follows:

https://developer.android.com/reference/kotlin/androidx/compose/ui/


drawImage(

image = image,

topLeft = Offset(x = of, y =

colorFilter = ColorFilter.tint(

color = Color(oxADFFAA2E), 

blendMode = BlendMode.ColorBurn

)

)

When the canvas renders the image in the Preview panel, it will now 

do so with a yellowish hue.



41.13 Drawing text

Text is drawn on a canvas using DrawScope’s drawText() function and 

a TextMeasurer instance. The role of TextMeasurer is to calculate the 

size of the text drawing based on factors such as font family and 

size. We can obtain a TextMeasurer instance by making a call to the 

rememberTextMeasurer() function as follows:

val textMeasurer = rememberTextMeasurer()

Having obtained a TextMeasurer instance, we can pass it to the 

drawText() function along with the text to be drawn:

Canvas(modifier = Modifier.fillMaxSize()) {

drawText(textMeasurer, "Sample Text")

}

While the above example displays a plain text string, text drawing 

works best when used with annotated strings (a topic covered in this 

book’s “Annotated Strings and Brush Styles” chapter). Try out text 

drawing within the CanvasDemo project by making the following 

changes to the MainActivity.kt file:



import androidx.compose.ui.text.*

import and roidx.compose. u i .text.font. FontWeight

import androidx.compose.ui.unit.sp 

. 

.

@Composable

fun MainScreen() {

DrawText()

}

@OptIn(ExperimentalTextApi::class)

@Composable

fun DrawText() {

val colorList: List = listOf(Color.Black,



Color.Blue, Color.Yellow, Color.Red, Color.Green, Color.Magenta)

val textMeasurer = rememberTextMeasurer()

val annotatedText = buildAnnotatedString {

withStyle(

style = SpanStyle(

fontSize = 60.sp,

fontWeight = FontWeight.ExtraBold,

brush = Brush.verticalGradient(colors = colorList)

)

) {

append("Text Drawing")

}

}

Canvas(modifier = Modifier.fillMaxSize()) {



d rawText(textMeasurer, an notatedText)

}

}

The code we have added declares a list of colors, obtains a 

TextMeasurer and builds an annotated string that uses a large font 

size with extra bold font weight. A brush style is then used to apply 

a vertical gradient consisting of the color list. Next, the text measurer 

and annotated string are passed to the drawText() function of a 

Canvas scope resulting in the following output displayed in the 

preview panel:

Figure 41-19

An interesting benefit of using TextMeasurer is that it gives us 

access to the dimensions of the drawn text. This information is 

beneficial when you need to include a background matching the text 

size. The text size can be obtained by passing the annotated string 

to TextMeasurer’s measure() function. The measure() function will



return a TextLayoutResult object from which we can extract size 

properties.

To see this in action, modify the DrawText function as follows so 

that the text is drawn on an appropriately sized horizontal gradient 

background:

@OptIn(ExperimentalTextApi::class)

@Composable

fun DrawText() {

Canvas(modifier = Modifier.fillMaxSize()) { 

val dimensions = textMeasurer.measure(annotatedText)

drawRect(

brush = Brush.horizontalGradient(colors = colorList), 

size = dimensions.size.toSize() 



)

drawText (text Measurer, ann otatedText)

}

}

After making the above changes, the text should appear in the 

preview panel as illustrated in Figure

Figure 41-20



41.14 Summary

The Compose Canvas component provides a surface on which to 

draw graphics. The Canvas DrawScope includes a set of functions 
that allow us to perform drawing operations within the canvas 

area, including drawing lines, shapes, gradients, images, text, and 

paths. In this chapter, we have explored some of the more 

common drawing features provided by Canvas and the DrawScope 

functions.



42. Working with ViewModels in Compose

Until a few years ago, Google did not recommend a specific 
approach to building Android apps other than to provide tools 

and development kits while letting developers decide what worked 

best for a particular project or individual programming style. That 

changed in 2017 with the introduction of the Android Architecture 

Components which became part of Android Jetpack when it was 

released in 2018. Jetpack has of course, since been expanded with 

the addition of Compose.

This chapter will provide an overview of the concepts of Jetpack, 

Android app architecture recommendations, and the ViewModel 

component.



42.1 What is Android Jetpack?

Android Jetpack consists of Android Studio, the Android 

Architecture Components, Android Support Library, and the 

Compose framework together with a set of guidelines that 

recommend how an Android App should be structured. The 

Android Architecture Components were designed to make it 
quicker and easier both to perform common tasks when 

developing Android apps while also conforming to the key 

principle of the architectural guidelines. While many of these 

components have been superseded by features built into Compose, 

the ViewModel architecture component remains relevant today. 

Before exploring the ViewModel component, it first helps to 

understand both the old and new approaches to Android app 

architecture.



42.2 The “old” architecture

In the chapter entitled “An Example Compose an Android project 

was created consisting of a single activity that contained all of the 

code for presenting and managing the user interface together with 
the back-end logic of the app. Up until the introduction of 

Jetpack, the most common architecture followed this paradigm 

with apps consisting of multiple activities (one for each screen 

within the app) with each activity class to some degree mixing 

user interface and back-end code.

This approach led to a range of problems related to the lifecycle 

of an app (for example an activity is destroyed and recreated each 

time the user rotates the device leading to the loss of any app 

data that had not been saved to some form of persistent storage) 
as well as issues such as inefficient navigation involving launching 

a new activity for each app screen accessed by the user.



42.3 Modern Android architecture

At the most basic level, Google now advocates single activity apps 

where different screens are loaded as content within the same 

activity.

Modern architecture guidelines also recommend separating 

different areas of responsibility within an app into entirely separate 

modules (a concept called “separation of concerns”). One of the 

keys to this approach is the ViewModel component.



42.4 The ViewModel component

The purpose of ViewModel is to separate the user interface-related 

data model and logic of an app from the code responsible for 

displaying and managing the user interface and interacting with 

the operating system. When designed in this way, an app will 

consist of one or more UI Controllers, such as an activity, together 

with ViewModel instances responsible for handling the data 

needed by those controllers.

A ViewModel is implemented as a separate class and contains 

state values containing the model data and functions that can be 

called to manage that data. The activity containing the user 

interface observes the model state values such that any value 
changes trigger a recomposition. User interface events relating to 

the model data such as a button click are configured to call the 

appropriate function within the ViewModel. This is, in fact, a 
direct implementation of the unidirectional data flow concept 

described in the chapter entitled “An Overview of Compose State 

and The diagram in Figure 42-1 illustrates this concept as it 

relates to activities and ViewModels:



Figure 42-1

This separation of responsibility addresses the issues relating to 
the lifecycle of activities. Regardless of how many times an activity 

is recreated during the lifecycle of an app, the ViewModel 

instances remain in memory thereby maintaining data consistency. 

A ViewModel used by an activity, for example, will remain in 

memory until the activity finishes which, in the single activity app, 

is not until the app exits.

In addition to using ViewModels, the code responsible for 

gathering data from data sources such as web services or 

databases should be built into a separate repository module 

instead of being bundled with the view model. This topic will be 
covered in detail beginning with the chapter entitled “Room 

Databases and



42.5 ViewModel implementation using state

The main purpose of a ViewModel is to store data that can be 

observed by the user interface of an activity. This allows the user 

interface to react when changes occur to the ViewModel data. 

There are two ways to declare the data within a ViewModel so 

that it is observable. One option is to use the Compose state 

mechanism which has been used extensively throughout this book. 

An alternative approach is to use the Jetpack LiveData component, 

a topic that will be covered later in this chapter.

Much like the state declared within composables, ViewModel state 

is declared using the mutableStateOf group of functions. The 

following ViewModel declaration, for example, declares a state 

containing an integer count value with an initial value of 0:

class MyViewModel : ViewModel() {

var customerCount by mutableStateOf(0)

}

With some data encapsulated in the model, the next step is to 

add a function that can be called from within the UI to change 

the counter value:



class MyViewModel : ViewModel() {

var customerCount by mutableStateOf(o)

fun increaseCount() {

customerCount++

}

}

Even complex models are nothing more than a continuation of 

these two basic state and function building blocks.



42.6 Connecting a ViewModel state to an activity

A ViewModel is of little use unless it can be used within the 
composables that make up the app user interface. All this 

requires is to pass an instance of the ViewModel as a parameter 

to a composable from which the state values and functions can 

be accessed. Programming convention recommends that these 

steps be performed in a composable dedicated solely for this task 

and located at the top of the screen’s composable hierarchy. The 

model state and event handler functions can then be passed to 

child composables as necessary. The following code shows an 

example of how a ViewModel might be accessed from within an 

activity:

class MainActivity : ComponentActivity() {

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

setContent {

ViewModelWorkTheme {

Surface(color = 

MaterialTheme.colorScheme.background) {



TopLevel()

}

}

}

}

}

@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

MainScreen(model.customerCount) { model.increaseCount() }

}

@Composable

fun MainScreen(count: Int, addCount: () -> Unit = {}) {

Column(horizontalAlignment = Alignment.CenterHorizontally,



modifier = Modifier.fillMaxWidth()) {

Text("Total customers = $count",

Modifier.padding(io.dp))

Button(

onClick = addCount,

) {

Text(text = "Add a Customer")

}

}

}

In the above example, the first function call is made by the 
onCreate() method to the TopLevel composable which is declared 

with a default ViewModel parameter initialized via a call to the 
viewModel() function: 

@Composable



fun MyViewModel = {

The viewModel() function is provided by the Compose view model 

lifecycle library which needs to be added to the project’s build 

dependencies when working with view models as follows:

dependencies { 

implementation 'androidx.lifecycle:lifecycle-viewmodel-compose:2.4.i'

If an instance of the view model has already been created within 

the current scope, the viewModel() function will return a reference 



to that instance. Otherwise, a new view model instance will be 

created and returned.

With access to the ViewModel instance, the TopLevel function is 

then able to obtain references to the view model customerCount 
state variable and increaseCount() function which it passes to the 

MainScreen composable:

{ model.increaseCount() }

As implemented, Button clicks will result in calls to the view 

model increaseCount() function which, in turn, increments the 

customerCount state. This change in state triggers a recomposition 

of the user interface, resulting in the new customer count value 

appearing in the Text composable.

The use of state and view models will be demonstrated in the 

chapter entitled “A Compose ViewModel



42.7 ViewModel implementation using LiveData

The Jetpack LiveData component predates the introduction of 

Compose and can be used as a wrapper around data values 

within a view model. Once contained in a LiveData instance, 

those variables become observable to composables within an 

activity. LiveData instances can be declared as being mutable 

using the MutableLiveData class, allowing the ViewModel functions 

to make changes to the underlying data value. An example view 

model designed to store a customer name could, for example, be 

implemented as follows using MutableLiveData instead of state:

class MyViewModel : ViewModel() {

var customerName: MutableLiveData = MutableLiveData("")

fun setName(name: String) {

customerName.value = name

}

}

Note that new values must be assigned to the live data variable 

via the value property.





42.8 Observing ViewModel LiveData within an activity

As with state, the first step when working with LiveData is to 

obtain an instance of the view model within an initialization 

composable:

@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

}

Once we have access to a view model instance, the next step is 

to make the live data observable. This is achieved by calling the 

observeAsState() method on the live data object:

@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

var customerName: String by
model.customerName.observeAsState("")

}



In the above code, the observeAsState() call converts the live data 

value into a state instance and assigns it to the customerName 

variable. Once converted, the state will behave in the same way 

as any other state object, including triggering recompositions 

whenever the underlying value changes.

The use of LiveData and view models will be demonstrated in the 

chapter entitled “A Compose Room Database and Repository



42.9 Summary

Until recently, Google has tended not to recommend any particular 

approach to structuring an Android app. That changed with the 

introduction of Android Jetpack which consists of a set of tools, 

components, libraries, and architecture guidelines. These 

architectural guidelines recommend that an app project be divided 

into separate modules, each being responsible for a particular area 

of functionality, otherwise known as “separation of concerns”. In 

particular, the guidelines recommend separating the view data 

model of an app from the code responsible for handling the user 

interface. This is achieved using the ViewModel component. In 

this chapter, we have covered ViewModel-based architecture and 

demonstrated how this is implemented when developing with 

Compose. We have also explored how to observe and access view 

model data from within an activity using both state and LiveData.



43. A Compose ViewModel Tutorial

As outlined in the previous chapter, we use ViewModels to 

separate an activity’s data and associated logic from the code 

responsible for rendering the user interface. Having covered the 

theory of modern Android app architecture, this chapter will create 

an example project demonstrating the use of a ViewModel within 

an example project.



43.1 About the project

The project created in this chapter involves a simple app designed 
to perform temperature conversions between Celsius and 

Fahrenheit. Once the app is complete, it will appear as illustrated 

in Figure 43-1 below:



13100

Temperature Converter

— Enter temperature

24

Convert Temperature



Figure 43-1

When a temperature value is entered into the OutlinedTextField, 

and the button is clicked, the converted value will appear in a 

result Text component. In addition, the Switch component 

indicates whether the entered temperature is Fahrenheit or Celsius. 
The current switch setting, conversion result, and conversion logic 

will all be contained within a ViewModel.



43.2 Creating the ViewModelDemo project

Launch Android Studio and create a new Empty Activity project 

named ViewModelDemo, specifying com.example.viewmodeldemo as 

the package name and selecting a minimum API level of API 26: 

Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named ScreenSetup, which, in turn, 
calls a function named MainScreen:

@Composable

fun ScreenSetup() {

MainScreen()

}

@Composable

fun MainScreen() {

}



Edit the OnCreate() method function to call ScreenSetup instead 

of Greeting (we will modify the GreetingPreview composable later).

Next, modify the build.gradle (Module: app) file to add the 

Compose view model library to the dependencies section and click 

the Sync Now link to commit the change: 

dependencies { 

implementation 'androidx.lifecycle:lifecycle-viewmodel-compose:2.5.i'



43.3 Adding the ViewModel

Within the Android Studio Project tool window, locate and right­

click on the app -> java -> com.example.viewmodeldemo entry and 

select the New -> Kotlin Class/File menu option. In the resulting 

dialog, name the class DemoViewModel before tapping the 

keyboard Enter key.

The ViewModel needs to contain state values in which to store 

the conversion result and current switch position as follows:

package com.example.viewmodeldemo

import androidx.compose.runtime.getValue

import androidx.compose. ru ntime. mutableStateOf

import androidx.compose.runtime.setValue

import androidx.lifecycle.ViewModel

class DemoViewModel : ViewModel() {

var isFahrenheit by mutableStateOf(true)

var result by mutableStateOff"')



}

The class also needs to contain the logic for the model, starting 
with a function to perform the temperature unit conversion. Since 

the user enters the temperature into a text field it is passed to 
the function as a String. In addition to performing the calculation, 

code is also needed to convert between string and integer types. 

This code must also ensure that the user has entered a valid 
number. Remaining in the DemoViewModel.kt file, add a new 

function named convertTemp() so that it reads as follows: 

import java.Iang.Exception

import kotlin.math.roundToInt 

class DemoViewModel : ViewModel() {



fun convertTemp(temp: String) {

result = try {

val tempInt = temp.toInt()

if (isFahrenheit) {

((tempInt - 32) * 0.5556).roundToInt().toString()

} else {

((tempInt * 1.8) + 32).roundToInt().toString()

}

} catch (e: Exception) {

"Invalid Entry"

}

}



The above function begins by converting the temperature string 

value to an integer. This is performed within the context of a try... 

catch statement, which reports invalid input if the text does not 

equate to a valid number. Next, the appropriate conversion is 
performed depending on the current isFahrenheit setting, and the 

result is rounded to a whole number and converted back to a 

string before being assigned to the result state variable.

The other function that needs to be added to the view model will 

be called when the switch setting changes and inverts the current 
isFahrenheit state setting:

fun switchChange() {

isFahrenheit = !isFahrenheit

}

The implementation of the view model is now complete and is 

ready to be used from within the main activity.



43.4 Accessing DemoViewModel from MainActivity

Now that we have declared a view model class, the next step is 

to create an instance and integrate it with the composables that 

make up our MainActivity. This project will involve creating a 

DemoViewModel instance as a parameter to the ScreenSetup 

function and then passing through the state variables and function 

references to the MainScreen function. First, open the 
MainActivity.kt file in the code editor and make the following 

changes: 

import androidx.lifecycle.viewmodel.compose.viewModel

@Composable 

fun DemoViewModel = {

MainScreen(



isFahrenheit = viewModel.isFahrenheit,

result = viewModel.result,

convertTemp = { viewModel.convertTemp(it) },

switchchange = { viewModel.switchChange() }

)

}

@Composable

fun MainScreen(

isFahrenheit: Boolean,

result: String,

convertTemp: (String) -> Unit,

switchChange: () -> Unit

) {



}

Before starting work on the user interface design, the 
GreetingPreview function also needs to be modified to make use 

of the view

@Preview(showBackground = showSystemUi =

@Composable

fun DemoViewModel = {

ViewModelDemoTheme {

MainScreen(

isFahrenheit = model. isFahrenheit,

result = model.result, 

convertTemp = { model.convertTemp(it) },



switchchange = { model.switchChange() }

)

}

}



43.5 Designing the temperature input composable

A closer look at the completed user interface screenshot shown in 

Figure 43-1 above will reveal the presence of a snowflake icon on the 

right-hand side of the OutlinedTextField component. Before writing 

any more code, we need to add this icon to the project. Within 

Android Studio, select the Tools -> Resource Manager menu option to 

display the Resource Manager tool window. Within the tool window 

click on the '+' button indicated by the arrow in Figure 43-2 and 

select the Vector Asset menu option to add a new resource to the 

project:

Figure 43-2

In the resulting dialog, click on the Clip Art box as shown in Figure 

43-3_below:



Figure 43-3

When the icon selection dialog appears, enter “ac unit” into the 

search field to locate the clip art icon to be used in the project:

Figure 43-4



Select the icon and click on the OK button to return to the vector 

asset configuration dialog, where the selected icon will now appear. 

Click Next followed by Finish to complete the addition of the icon to 

the project resources.



43.6 Designing the temperature input composable

In the interests of avoiding the MainScreen function becoming 

cluttered, the Switch, OutlinedTextField, and unit indicator Text 

component will be placed in a separate composable named 

InputRow, which can now be added to the MainActivity.kt file: 

import androidx.compose.animation.Crossfade

import and roidx.compose.animation.core.tween

import and roidx.compose.fou ndation.layout.*

import androidx.compose.foundation.text.KeyboardOptions

import androidx.compose.material3.*

import and roidx.compose. ui.Alignment

import androidx.compose.ui.res.painterResource 

import and roidx.compose. u i .text.TextStyle



import and roidx.compose. u i .text.font. FontWeight 

import and roidx.compose. u i .text.input. KeyboardType 

import androidx.compose.ui.unit.dp 

import androidx.compose.ui.unit.sp

@Composable 

fun InputRow(

isFahrenheit: Boolean,

textState: String,

switchChange: () -> Unit,

onTextChange: (String) -> Unit

) {

Row(verticalAlignment = Alignment.CenterVertically) {



Switch(

checked = isFahrenheit,

onCheckedChange = { switchChange() }

)

OutlinedTextField(

value = textState,

onValueChange = { onTextChange(it) },

keyboardOptions = KeyboardOptions(

keyboardType = KeyboardType.Number

),

singleLine = true,

label = { Text("Enter temperature")}, 

modifier = Modifier.padding(w.dp),



textStyle = TextStyle(fontWeight = FontWeight.Bold,

fontSize = 3O.sp),

trailingIcon = {

Icon(

painter =

painterResource(R.drawable.baseline_ac_unit_24),

contentDescription = "frost",

modifier = Modifier

.size(40.dp)

)

}

)

Crossfade(

targetState = isFahrenheit,



animationSpec = tween(2ooo)

) { visible ->

when (visible) {

true -> Text(

"\u2109", style =

MaterialTheme.typography.headlineSmall)

false -> Text(

"\u2103", style =

MaterialTheme.typography.headlineSmall)

}

}

}

}

If the editor reports that OutlinedTextField is experimental, add the 

following OptIn declaration to the function: 

@OptIn(ExperimentalMaterial3Api::class)



@Composable 

fun InputRow(

isFahrenheit: Boolean,

textState: String,

The InputRow function expects as parameters the state values and 

functions contained within the view model together with a textState 

state variable and onTextChange event handler. These last two 

parameters are used to display the text typed by the user into the 

text field and will be “hoisted” to the MainScreen function later in 

the chapter. The current textState value is also what gets passed to 

the convertTemp() function when the user clicks the button.

The composables that make up this section of the layout are 

contained within a Row that is configured to center its children 

vertically. The first child, the Switch component, simply calls the 

switchChange() function on the model to toggle the isFahrenheit state.

While many of the properties applied to the OutlinedTextField will be 

familiar from previous chapters, some require additional explanation. 

For example, since the temperature can only be entered as a 

number, the keyboardOptions keyboard type property is set to 

KeyboardType.Number. This ensures that when the user taps within 

the text field, only the numeric keyboard will appear on the screen:



keyboardOptions = KeyboardOptions (

keyboardType = KeyboardType.Number

Other keyboard type options include email address, password, phone 

number, and URI inputs.

The input is also limited to a single line of text using the singleLine 

property. As the name suggests, the OutlinedTextField component 

draws an outline around the text input area. When the component is 

not selected by the user (in other words, it does not have “focus”), 

the text assigned to the label property appears in slightly faded text 

within the text field, as shown in Figure

Enter temperature

Figure 43-5

When the field has focus, however, the label appears as a title 

positioned within the outline:



Figure 43-6

The result of a call to the TextStyle function is assigned to the 

textStyle property of the OutlinedTextField. TextStyle is used to group 

style settings into a single object that can be applied to other 

composables in a single operation. In this instance, we are only 

setting font weight and font style, but TextStyle may also be used to 

configure style settings including color, background, font family, 

shadow, text alignment, letter spacing, and text indent.

The trailingIcon property is used to position the previously added 

icon at the end of the text input area:

trailingIcon = {

Icon(

painter = painterResource(R.drawable.ic_baseline_ac_unit_24), 

contentDescription = "frost",



modifier = Modifier

.size(4O.dp)

)

}

Finally, crossfade animation (covered in the chapter titled “Compose 

Visibility is used when switching the unit Text field between °F and 

°C (represented by Unicode values \u2109 and \u2103, respectively) 

based on the current isFahrenheit setting.



43.7 Completing the user interface design

The final task before testing the app is to complete the 

MainScreen function, which now needs to read as follows: 

import androidx.compose.runtime.getValue

import androidx.compose. ru ntime. mutableStateOf

import androidx.compose.runtime.setValue

import androidx.compose.runtime.remember

@Composable 

fun MainScreen(



isFahrenheit: Boolean,

result: String,

convertTemp: (String) -> Unit,

switchchange: () -> Unit

) {

Column(horizontalAlignment = Alignment.CenterHorizontally, 

modifier = Modifier.fillMaxSize()) {

var textState by remember { mutableStateOff"') }

val onTextChange = { text : String -> 

textState = text

}

Textf'Temperature Converter",

modifier = Modifier.padding(2O.dp), 

style = MaterialTheme.typography.headlineSmall



)

InputRow(

isFahrenheit = isFahrenheit,

textState = textState,

switchchange = switchchange,

onTextChange = onTextChange

)

Text(result,

modifier = Modifier.padding(2O.dp),

style = MaterialTheme.typography.headlineMedium

)

Button(

onClick = { convertTemp(textState) }



)

{

Textf'Convert Temperature")

}

}

}

The MainScreen composable declares the textState state variable 

and an onTextChange event handler. The first child of the Column 

layout is a static Text component displaying a title. Next, the 

InputRow is called and passed the necessary parameters. The third 

child is another Text component, this time configured to display 

the content of the view model result state variable. Finally, a 

Button composable is configured to call the view model 
convertTemp() function, passing it The convertTemp() function will 

calculate the converted temperature and assign it to the result 

state variable, thereby triggering a recomposition of the 

composable hierarchy.



43.8 Testing the app

Test the activity by enabling interactive mode in the preview panel 

and tapping on the OutlinedTextField component. Note that the 

“Enter temperature” label moves to the outline leaving the input 

field clear to enter a temperature value. Verify that when the 

keyboard appears, it only allows numerical selections. Enter a 

number and click on the Button at which point the converted 

temperature should be displayed.

Use the Switch to change from Fahrenheit to Centigrade, and note 

the unit text to the right of the text field changes using cross-fade 
animation. Finally, test that attempting a conversion with a blank 

text field causes the Invalid Entry text to appear.



43.9 Summary

This chapter has demonstrated the use of a view model to 

separate the data and logic of an application from the code 

responsible for displaying the user interface. The chapter also 

introduced the OutlinedTextField component and covered 
customization options, including adding an icon, restricting 

keyboard input to numerical values, and setting style attributes 
using the TextStyle function.



44. An Overview of Android SQLite Databases

Mobile applications that do not need to store at least some 
amount of persistent data are few and far between. The use of 

databases is an essential aspect of most applications, ranging 

from applications that are almost entirely data-driven, to those 

that simply need to store small amounts of data such as the 

prevailing score of a game.

The importance of persistent data storage becomes even more 

evident when taking into consideration the somewhat transient 

lifecycle of the typical Android application. With the ever-present 

risk that the Android runtime system will terminate an application 

component to free up resources, a comprehensive data storage 

strategy to avoid data loss is a key factor in the design and 
implementation of any application development strategy.

This chapter will provide an overview of the SQLite database 

management system bundled with the Android operating system, 

together with an outline of the Android SDK classes that are 

provided to facilitate persistent SQLite-based database storage 
from within an Android application. Before delving into the 

specifics of SQLite in the context of Android development, 

however, a brief overview of databases and SQL will be covered.



44.1 Understanding database tables

Database tables provide the most basic level of data structure in a 

database. Each database can contain multiple tables and each 

table is designed to hold information of a specific type. For 

example, a database may contain a customer table that contains 

the name, address, and telephone number for each of the 

customers of a particular business. The same database may also 

include a products table used to store the product descriptions 

with associated product codes for the items sold by the business.

Each table in a database is assigned a name that must be unique 

within that particular database. A table name, once assigned to a 

table in one database, may not be used for another table except 

within the context of another database.



44.2 Introducing database schema

Database Schemas define the characteristics of the data stored in 

a database table. For example, the table schema for a customer 

database table might define that the customer name is a string of 

no more than 20 characters in length and that the customer 

phone number is a numerical data field of a certain format.

Schemas are also used to define the structure of entire databases 

and the relationship between the various tables contained in each 

database.



44.3 Columns and data types

It is helpful at this stage to begin to view a database table as 

being similar to a spreadsheet where data is stored in rows and 

columns.

Each column represents a data field in the corresponding table. 

For example, the name, address, and telephone data fields of a 

table are all

Each column, in turn, is defined to contain a certain type of data. 

A column designed to store numbers would, therefore, be defined 

as containing numerical data.



44.4 Database rows

Each new record that is saved to a table is stored in a row. Each 
row, in turn, consists of the columns of data associated with the 

saved record.

Once again, consider the spreadsheet analogy described earlier in 

this chapter. Each entry in a customer table is equivalent to a row 

in a spreadsheet and each column contains the data for each 

customer (name, address, telephone, etc). When a new customer 

is added to the table, a new row is created and the data for that 

customer is stored in the corresponding columns of the new row.

Rows are also sometimes referred to as records or entries and 

these terms can generally be used interchangeably.



44.5 Introducing primary keys

Each database table should contain one or more columns that 
can be used to identify each row in the table uniquely. This is 

known in database terminology as the Primary For example, a 

table may use a bank account number column as the primary key. 

Alternatively, a customer table may use the customer’s social 

security number as the primary key.

Primary keys allow the database management system to identify a 

specific row in a table uniquely. Without a primary key, it would 

not be possible to retrieve or delete a specific row in a table 

because there can be no certainty that the correct row has been 

selected. For example, suppose a table existed where the 

customer’s last name had been defined as the primary key. 

Imagine then the problem that might arise if more than one 

customer named “Smith” were recorded in the database. Without 

some guaranteed way to identify a specific row uniquely, it would 

be impossible to ensure the correct data was being accessed at 
any given time.

Primary keys can comprise a single column or multiple columns 

in a table. To qualify as a single column primary key, no two 
rows can contain matching primary key values. When using 

multiple columns to construct a primary key, individual column 

values do not need to be unique, but all the columns’ values 

combined must be unique.



44.6 What is

SQLite is an embedded, relational database management system 
(RDBMS). Most relational databases (Oracle, SQL Server, and 

MySQL being prime examples) are standalone server processes 

that run independently, and in cooperation with, applications that 

require database access. SQLite is referred to as embedded 

because it is provided in the form of a library that is linked into 

applications. As such, there is no standalone database server 

running in the background. All database operations are handled 

internally within the application through calls to functions 

contained in the SQLite library.

The developers of SQLite have placed the technology into the 

public domain with the result that it is now a widely deployed 

database solution.

SQLite is written in the C programming language and as such, 

the Android SDK provides a Java-based “wrapper” around the 

underlying database interface. This essentially consists of a set of 

classes that may be utilized within the Java or Kotlin code of an 

application to create and manage SQLite-based databases.

For additional information about SQLite refer to



44.7 Structured Query Language

(SQL

)

Data is accessed in SQLite databases using a high-level language 

known as Structured Query Language. This is usually abbreviated 

to SQL and pronounced SQL is a standard language used by 

most relational database management systems. SQLite conforms 

mostly to the SQL-92 standard.

SQL is essentially a very simple and easy-to-use language 

designed specifically to enable the reading and writing of database 

data. Because SQL contains a small set of keywords, it can be 

learned quickly. In addition, SQL syntax is more or less identical 

between most DBMS implementations, so having learned SQL for 

one system, your skills will likely transfer to other database 

management systems.

While some basic SQL statements will be used within this 

chapter, a detailed overview of SQL is beyond the scope of this 

book. There are, however, many other resources that provide a far 

better overview of SQL than we could ever hope to provide in a 

single chapter here.



44.8 Trying SQLite on an Android Virtual Device (AVD)

For readers unfamiliar with databases in general and SQLite in 

particular, diving right into creating an Android application that 

uses SQLite may seem a little intimidating. Fortunately, Android is 

shipped with SQLite pre-installed, including an interactive 
environment for issuing SQL commands from within an adb shell 

session connected to a running Android AVD emulator instance. 

This is both a useful way to learn about SQLite and SQL and 

also an invaluable tool for identifying problems with databases 

created by applications running in an emulator.

To launch an interactive SQLite session, begin by running an AVD 

session. This can be achieved from within Android Studio by 
launching the Device Manager -> Device selecting a previously 

configured AVD, and clicking on the start button.

Once the AVD is up and running, open a Terminal or Command­

Prompt window and connect to the emulator using the adb 

command-line tool as follows (note that the -e flag directs the 
tool to look for an emulator with which to connect, rather than a 

physical device):

adb -e shell

Once connected, the shell environment will provide a command 

prompt at which commands may be entered. Begin by obtaining



superuser privileges using the su command:

Generic_x86:/ su

root@android:/ #

If a message appears indicating that superuser privileges are not 

allowed, the AVD instance likely includes Google Play support. To 

resolve this create a new AVD and, on the “Choose a device 

definition” screen, select a device that does not have a marker in 

the “Play Store” column.

Data stored in SQLite databases are stored in database files on 

the file system of the Android device on which the application is 

running. By default, the file system path for these database files is 

as follows:

/data/data/name>/databases/filename>.db

For example, if an application with the package name 

com.example.MyDBApp creates a database named the path to the 

file on the device would read as follows:

For this exercise, therefore, change directory to /data/data within 

the adb shell and create a sub-directory hierarchy suitable for 
some SQLite experimentation:



cd /data/data 

mkdir com.example.dbexample

cd com.example.dbexample

mkdir databases

cd databases

With a suitable location created for the database file, launch the 

interactive SQLite tool as follows:

root@android:/data/data/databases # sqlite3 ./mydatabase.db

sqlite3 ./mydatabase.db

SQLite version 3.8.10.2 2015-05-20 18:17:19

Enter ".help" for usage hints.

sqlite>

At the sqlite> prompt, commands may be entered to perform 

tasks such as creating tables and inserting and retrieving data. For 



example, to create a new table in our database with fields to hold 

ID, name, address, and phone number fields the following 

statement is required:

create table contacts (_id integer primary key autoincrement, name 

text, address text, phone text);

Note that each row in a table should have a primary key that is 

unique to that row. In the above example, we have designated the 

ID field as the primary key, declared it as being of type integer, 

and asked SQLite to increment the number automatically each 

time a row is added. This is a common way to make sure that 

each row has a unique primary key. On most other platforms, the 

choice of name for the primary key is arbitrary. In the case of 

Android, however, the key must be named _id for the database to 

be fully accessible using all of the Android database-related 

classes. The remaining fields are each declared as being of type 

text.

To list the tables in the currently selected database, use the .tables 

statement:

sqlite> .tables

contacts

To insert records into the table: 



sqlite> insert into contacts (name, address, phone) values ("Bill 

Smith", "123 Main Street, California", "123-555-2323");

sqlite> insert into contacts (name, address, phone) values ("Mike 

Parks", "10 Upping Street, Idaho", "444-444-1212");

To retrieve all rows from a table:

sqlite> select * from contacts;

1|Bill Smith|123 Main Street, California|123-555-2323

2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To extract a row that meets specific criteria:

sqlite> select * from contacts where name="Mike Parks";

2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To exit from the sqlite3 interactive environment:

sqlite> .exit

When running an Android application in the emulator 

environment, any database files will be created on the file system 



of the emulator using the previously discussed path convention. 

This has the advantage that you can connect with adb, navigate 

to the location of the database file, load it into the sqlite3 

interactive tool and perform tasks on the data to identify possible 
problems occurring in the application code.

It is also important to note that, while it is possible to connect 

with an adb shell to a physical Android device, the shell is not 

granted sufficient privileges by default to create and manage 

SQLite databases. Debugging of database problems is, therefore, 

best performed using an AVD session. Alternatively, databases can 

be inspected on both emulators and devices using the Android 

Studio Database Inspector, a topic that will be covered later.



44.9 The Android Room persistence library

SQLite is, as previously mentioned, written in the C programming 

language while Android applications are primarily developed using 

Java or Kotlin. To bridge this “language gap” in the past, the 

Android SDK included a set of classes that provide a layer on top 

of the SQLite database management system. Although still 

available in the SDK, the use of these classes involves writing a 

considerable amount of code and does not take advantage of the 

new architecture guidelines and features such as view models and 

LiveData. To address these shortcomings, the Android Jetpack 

Architecture Components include the Room persistent library. This 

library provides a high-level interface on top of the SQLite 

database system that makes it easy to store data locally on 

Android devices with minimal coding while also conforming to the 

recommendations for modern application architecture.

The next few chapters will provide an overview and tutorial of 

SQLite database management using the Room persistence library.



44.10 Summary

SQLite is a lightweight, embedded relational database management 
system that is included as part of the Android framework and 

provides a mechanism for implementing organized persistent data 

storage for Android applications. When combined with the Room 

persistence library, Android provides a modern way to implement 

data storage from within an Android app.

The goal of this chapter was to provide an overview of databases 

in general and SQLite in particular within the context of Android 

application development. The next chapters will provide an 

overview of the Room persistence library, after which we will work 
through the creation of an example application.



45. Room Databases and Compose

Included with the Android Architecture Components, the Room 

persistence library is specifically designed to make it easier to add 
database storage support to Android apps in a way that is 

consistent with the Android architecture guidelines. With the 

basics of SQLite databases covered in the previous chapter, this 

chapter will explore the concepts of Room-based database 

management, the key elements that work together to implement 

Room support within an Android app, and how these are 

implemented in terms of architecture and coding. Having covered 

these topics, the next chapter will put this theory into practice in 

the form of an example Room database project.



45.1 Revisiting modern app architecture

The chapter entitled “Working with ViewModels in Compose” 

introduced the concept of modern app architecture and stressed 

the importance of separating different areas of responsibility within 

an app. The diagram illustrated in Figure 45-1 outlines the 

recommended architecture for a typical Android app:

Figure 45-1

With the top three levels of this architecture covered in some 

detail in earlier chapters of this book, it is now time to begin an 

exploration of the repository and database architecture levels in 

the context of the Room persistence library.



45.2 Key elements of Room database persistence

Before going into greater detail later in the chapter, it is first 
worth summarizing the key elements involved in working with 

SQLite databases using the Room persistence library:



45.2.1 Repository

The repository module contains all of the code necessary for 

directly handling all data sources used by the app. This avoids the 

need for the UI controller and ViewModel to include code directly 

accessing sources such as databases or web services.



45.2.2 Room database

The room database object provides the interface to the underlying 

SQLite database. It also gives repository access to the Data 

Access Object (DAO). An app should only have one room 

database instance, which we can use to access multiple database 

tables.



45.2.3 Data Access Object (DAO)

The DAO contains the SQL statements required by the repository 

to insert, retrieve and delete data within the SQLite database. 

These SQL statements are mapped to methods that are then 

called from within the repository to execute the corresponding 

query.



45.2.4 Entities

An entity is a class that defines the schema for a table within the 

database, defines the table name, column names, and data types, 

and identifies which column is the primary key. In addition to 

declaring the table schema, entity classes also contain getter and 

setter methods that provide access to these data fields. The data 

returned to the repository by the DAO in response to the SQL 

query method calls will take the form of instances of these entity 

classes. The getter methods will then be called to extract the data 

from the entity object. Similarly, when the repository needs to 

write new records to the database, it will create an entity 

instance, configure values on the object via setter calls, then call 

insert methods declared in the DAO, passing through entity 

instances to be saved.



45.2.5 SQLite database

The SQLite database is responsible for storing and providing 

access to the data. The app code, including the repository, should 
never directly access this underlying database. Instead, all database 

operations are performed using a combination of the room 

database, DAOs, and entities.

The architecture diagram in Figure 45-2 illustrates how these 

different elements interact to provide Room-based database storage 

within an Android app:

Figure 45-2

The numbered connections in the above architecture diagram can 

be summarized as follows:



1. The repository interacts with the Room Database to get a 

database instance which, in turn, is used to obtain references to 

DAO instances.

2. The repository creates entity instances and configures them 

with data before passing them to the DAO for use in search and 

insertion operations.

3. The repository calls methods on the DAO passing through 

entities to be inserted into the database and receives entity 

instances back in response to search queries.

4. When a DAO has results to return to the repository it 

packages those results into entity objects.

5. The DAO interacts with the Room Database to initiate database 

operations and handle results.

6. The Room Database handles all of the low-level interactions 

with the underlying SQLite database, submitting queries and 
receiving results.

With a basic outline of the key elements of database access using 

the Room persistence library covered, it is now time to explore 

entities, DAOs, room databases, and repositories in more detail.



45.3 Understanding entities

Each database table will have associated with it an entity class.
This class defines the schema for the table and takes the form of 

a standard Kotlin class interspersed with some special Room 

annotations. An example Kotlin class declaring the data to be 

stored within a database table might read as follows:

class Customer {

var id: Int = 0

var name: String? = null

var address: String? = null

constructor^ {}

constructor(id: Int, name: String, address: String) {

this.id = id

this.name = name 

this.address = address



}

constructor(name: String, address: String) {

this.name = name

this.address = address

}

}

As currently implemented, the above code declares a basic Kotlin 

class containing several variables representing database table fields 

and a collection of getter and setter methods. This class, however, 

is not yet an entity. To make this class into an entity and to 

make it accessible within SQL statements, some Room 

annotations need to be added as follows:

@Entity(tableName = "customers")

class Customer { 

@PrimaryKey(autoGenerate = true)



@NonNull

@ColumnInfo(name = "customerld")

var id: Int = o

@ColumnInfo(name = "customerName")

var name: String? = null

var address: String? = null

constructor^ {}

constructor(id: Int, name: String, address: String) {

this.id = id

this.name = name

this.address = address

}

constructor(name: String, address: String) {

this.name = name



this.address = address

}

}

The above annotations begin by declaring that the class represents 

an entity and assigns a table name of “customers”. This is the 

name by which we will reference the table in the DAO SQL 

statements:

@Entity(tableName = "customers")

Every database table needs a column to act as the primary key. In 

this case, the customer id is declared as the primary key.

Annotations have also been added to assign a column name to 

be referenced in SQL queries and to indicate that the field cannot 

be used to store null values. Finally, the id value is configured to 

be auto-generated. This means that the system will automatically 

generate the id assigned to new records to avoid duplicate keys.

@PrimaryKey(autoGenerate = true)

@NonNull

@ColumnInfo(name = "customerId")



var id: Int = o

A column name is also assigned to the customer name field. 

Note, however, that no column name was assigned to the address 

field. This means that the address data will still be stored within 

the database, but that it is not required to be referenced in SQL 

statements. If a field within an entity is not required to be stored 

within a database, simply use the @Ignore annotation:

@Ignore

var MyString: String? = null

Annotations may also be included within an entity class to 

establish relationships with other entities using a relational 

database concept referred to as foreign Foreign keys allow a table 

to reference the primary key in another table. For example, a 

relationship could be established between an entity named 

Purchase and our existing Customer entity as follows:

@Entity(foreignKeys = arrayOf(ForeignKey(entity = Customer::class,

parentColumns = arrayOf("customerId"),

childColumns = arrayOf("buyerId"),

onDelete = ForeignKey.CASCADE,



onUpdate = ForeignKey.RESTRICT))) 

class Purchase {

@PrimaryKey(autoGenerate = true)

@NonNull

@ColumnInfo(name = "purchaseld")

var purchaseId: Int = 0

@ColumnInfo(name = "buyerId")

var buyerId: Int = 0 

. 

.

}

Note that the foreign key declaration also specifies the action to 

be taken when a parent record is deleted or updated. Available 



options are CASCADE, NO_ACTION, RESTRICT, SET_DEFAULT, 
and SET_NULL.



45.4 Data Access Objects

A Data Access Object provides a way to access the data stored 
within an SQLite database. A DAO is declared as a standard 

Kotlin interface with some additional annotations that map specific 

SQL statements to methods that the repository may then call.

The first step is to create the interface and declare it as a DAO 

using the @Dao annotation:

@Dao

interface CustomerDao {

}

Next, entries are added consisting of SQL statements and 
corresponding method names. The following declaration, for 

example, allows all of the rows in the customers table to be 

retrieved via a call to a method named

@Dao

interface CustomerDao {

@Query("SELECT * FROM customers")



fun getAllCustomers(): LiveData> 

}

Note that the getAllCustomers() method returns a List object 

containing a Customer entity object for each record retrieved from 

the database table. The DAO is also using LiveData so that the 

repository can observe changes to the database.

Arguments may also be passed into the methods and referenced 
within the corresponding SQL statements. Consider the following 

DAO declaration, which searches for database records matching a 

customer’s name (note that the column name referenced in the 

WHERE condition is the name assigned to the column in the 

entity class):

@Query("SELECT * FROM customers WHERE name = 

:customerName")

fun findCustomer(customerName: String): List

In this example, the method is passed a string value which is, in 

turn, included within an SQL statement by prefixing the variable 
name with a colon (:).



A basic insertion operation can be declared as follows using the 

@Insert convenience

@Insert

fun addCustomer(Customer customer)

This is referred to as a convenience annotation because the Room 

persistence library can infer that the Customer entity passed to 

the addCustomer() method is to be inserted into the database 

without needing the SQL insert statement to be provided. Multiple 

database records may also be inserted in a single transaction as 

follows:

@Insert

fun insertCustomers(Customer... customers)

The following DAO declaration deletes all records matching the 

provided customer name:

@Query("DELETE FROM customers WHERE name = :name")

fun deleteCustomer(String name)

As an alternative to using the @Query annotation to perform 

deletions, the @Delete convenience annotation may also be used. 

In the following example, all of the Customer records that match 



the set of entities passed to the deleteCustomers() method will be 

deleted from the database: 

@Delete

fun deleteCustomers(Customer... customers)

The @Update convenience annotation provides similar behavior 

when updating records:

@Update

fun updateCustomers(Customer... customers)

The DAO methods for these types of database operations may 

also be declared to return an int value indicating the number of 

rows affected by the transaction, for example:

@Delete 

fun deleteCustomers(Customer... customers): int



45.5 The Room database

The Room database class is created by extending the 

RoomDatabase class and acts as a layer on top of the actual 

SQLite database embedded into the Android operating system. The 

class is responsible for creating and returning a new room 

database instance and for providing access to the DAO instances 

associated with the database.

The Room persistence library provides a database builder for 

creating database instances. Each Android app should only have 

one room database instance, so it is best to implement defensive 

code within the class to prevent more than one instance from 

being created.

An example Room Database implementation for use with the 

example customer table is outlined in the following code listing:

import android.content.Context

import androidx.room.Database

import androidx.room.Room 

import androidx.room.RoomDatabase



@Database(entities = [(Customer::class)], version = 1) 

abstract class CustomerRoomDatabase: RoomDatabase() { 

abstract fun customerDao(): CustomerDao

companion object {

private var INSTANCE: CustomerRoomDatabase? = null 

fun getInstance(context: Context): CustomerRoomDatabase

{

synchronized(this) {

var instance = INSTANCE 

if (instance == null) {

instance = Room.databaseBuilder(

context.applicationContext,

CustomerRoomDatabase::class.java,

customer_database



).fallbackToDestructiveMigration()

.build()

INSTANCE = instance

}

return instance

}

}

}

}

Important areas to note in the above example are the annotation 

above the class declaration declaring the entities with which the 

database is to work, the code to check that an instance of the 

class has not already been created, and the assignment of the 

name “customer_database” to the instance.



45.6 The Repository

The repository contains the code that makes calls to DAO 
methods to perform database operations. An example repository 

might be partially implemented as follows:

class CustomerRepository(private val customerDao: CustomerDao) {

private val coroutineScope = CoroutineScope(Dispatchers.Main)

fun insertCustomer(customer: Customer) {

coroutineScope.launch(Dispatchers.IO) {

customerDao.insertCustomer(customer)

}

}

fun deleteCustomer(name: String) {



coroutineScope.launch(Dispatchers.IO) {

customerDao.deleteCustomer(name)

}

}

}

Once the repository has access to the DAO, it can make calls to 

the data access methods. The following code, for example, calls 

the getAllCustomers() DAO method:

val allCustomers: LiveData>?

customerDao.getAllCustomers()

When calling DAO methods, it is important to note that unless 

the method returns a LiveData instance (which automatically runs 

queries on a separate thread), the operation cannot be performed 



on the app’s main thread. In fact, attempting to do so will cause 

the app to crash with the following diagnostic output:

Cannot access database on the main thread since it may 

potentially lock the UI for a long period of time

Since some database transactions may take a longer time to 

complete, running the operations on a separate thread avoids the 

app appearing to lock up. As will be demonstrated in the chapter 
entitled “A Compose Room Database and Repository we can easily 

resolve this problem using coroutines.

With all of the classes declared, instances of the database, DAO, 

and repository need to be created and initialized, the code for 

which might read as follows:

private val repository: CustomerRepository

val customerDb = CustomerRoomDatabase.getInstance(application)

val customerDao = customerDb.customerDao() 

repository = CustomerRepository(customerDao)



45.7 In-Memory databases

The examples outlined in this chapter involved the use of an 

SQLite database that exists as a database file on the persistent 

storage of an Android device. This ensures that the data persists 

even after the app process is terminated.

The Room database persistence library also supports in-memory 

databases. These databases reside entirely in memory and are lost 

when the app terminates. The only change necessary to work with 

an in-memory database is to call the 
Room.inMemoryDatabaseBuilder() method of the Room Database 

class instead of The following code shows the difference between 

the method calls (note that the in-memory database does not 

require a database name):

// Create a file storage-based database 

instance =

context.applicationContext,

"customer_database"

).fallbackToDestructiveMigration()



.build()

// Create an in-memory database 

instance =

context.applicationContext,

CustomerRoomDatabase::class.java,

).fallbackToDestructiveMigration() 

.build()



45.8 Database Inspector

Android Studio includes a Database Inspector tool window which 

allows the Room databases associated with running apps to be 

viewed, searched, and modified, as shown in Figure

App Inspection O —

□ Samsung SM-T290 > com-ebookfrenzy.roomdemo 

= Database inspector Background Task inspector

Databases "7" Ct — SI products

O FT % G Q Live updates lJ
* I product_databa$e I't product id : product Name : quantity *

products i
I't produced INTEGER.

produ ctName TEXT

1

2

cat

dog

3

1
quantity iNitutH.N3 3 mouse 1

► IT room_master_tabls 4 4 horse 5

Results are read-only

Figure 45-3

Use of the Database Inspector will be covered in the chapter entitled 

“A Compose Room Database and Repository



45.9 Summary

The Android Room persistence library is bundled with the Android 

Architecture Components and acts as an abstract layer above the 

lower-level SQLite database. The library is designed to make it 

easier to work with databases while conforming to the Android 

architecture guidelines. This chapter has introduced the different 

elements that interact to build Room-based database storage into 

Android app projects, including entities, repositories, data access 

objects, annotations, and Room Database instances.

With the basics of SQLite and the Room architecture component 

covered, the next step is to create an example app that puts this 

theory into practice.



46. A Compose Room Database and Repository Tutorial

This chapter will use the knowledge gained in the “Working with 

ViewModels in Compose” chapter to provide a detailed tutorial 

demonstrating how to implement SQLite-based database storage 

using the Room persistence library. In keeping with the Android 

architectural guidelines, the project will use a view model and 

repository. The tutorial will also demonstrate the elements covered 
in “Room Databases and Compose” including entities, a Data 

Access Object, a Room Database, and asynchronous database 

queries.



46.1 About the RoomDemo project

The project created in this chapter is a rudimentary inventory app 
designed to store the names and quantities of products. When 

completed, the app will provide the ability to add, delete and 

search for database entries while also displaying a scrollable list 

of all products currently stored in the database. This product list 

will update automatically as database entries are added or deleted. 

Once completed, the app will appear as illustrated in Figure 46-1 

below:



9:25

— Product Name ----------------------------------------------

Samsung S22+

— Quantity

800

ClearSearchAdd Delete

ID Product Quantity

1 iPhone 1 4 1 00

2 iPhone 1 3 87

3 Google Pixel 7 1 87

4 Google Pixel 7 Pro 9

5 Google Pixel 6a 1 024

6 Google Watch 22

7 Nothing Phone 1 38

8 Samsung S23 1 65

9 Samsung A54 98

1 Q Samsung S22 276

1 1 Samsung S22+ 800



Figure 46-1



46.2 Creating the RoomDemo project

Launch Android Studio and create a new Empty Activity project 

named RoomDemo, specifying com.example.roomdemo as the 

package name and selecting a minimum API level of API 26: 

Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named ScreenSetup which, in turn, 
calls a function named MainScreen:

@Composable

fun ScreenSetup() {

MainScreen()

}

@Composable 

fun MainScreen() {

}



Next, edit the OnCreate() method function to call ScreenSetup 

instead of Greeting. Since this project will use features not 

supported by the Preview panel, delete the GreetingPreview 

composable from the file. To test the project, we will run it on a 

device or emulator session.



46.3 Modifying the build configuration

Before adding any new classes to the project, the first step is to 
add some additional libraries to the build configuration, including 

the Room persistence library. Locate and edit the module-level 

build.gradle file -> Gradle Scripts -> build.gradle (Module: and 

modify it as follows before clicking on the Sync Now link:

plugins {

id 'com.android.application'

id 'org.jetbrains.kotlin.android'

id 'kotlin-kapt'

}

android {

namespace 'com.example.roomdemo'

compileSdk 33

defaultConfig {



applicationId "com.example.roomdemo 

minSdk 26

targetSdk 33

versionCode 1

versionName "1.0"

testInstrumentationRunner 
"androidx.test.runner.AndroidJUnitRunner"

vectorDrawables {

useSupportLibrary true

}

kapt {

arguments {

arg("room.schemaLocation", 
"$projectDir/schemas")



}

}

}

dependencies {

implementation "androidx.room:room-runtime:2.5.i"

implementation "androidx.room:room-ktx:2.5.i"

implementation "androidx.compose.runtime:runtime- 
livedata:i.3.3"

annotationProcessor "androidx.room:room-compiler:2.5.i"

kapt "androidx.room:room-compiler:2.5.i"



}



46.4 Building the entity

This project will begin by creating the entity that defines the 

database table’s schema. The entity will consist of an integer for 

the product id, a string column to hold the product name, and 

another integer value to store the quantity. The product id column 

will serve as the primary key and will be auto-generated. Table 46- 

1_summarizes the structure of the entity: 

entity: entity: 

entity: entity: entity: entity: entity: entity: entity: 

entity: 

entity:

Table 46-1

Add a class file for the entity by right-clicking on the app -> java 
-> com.example.roomdemo entry in the Project tool window and 

select the New -> Kotlin File/Class menu option. In the new class 

dialog, name the class select the Class entry in the list and press 

the keyboard return key to generate the file.

When the Product.kt file opens in the editor, modify it so that it 

reads as follows:



package com.example.roomdemo 

class Product {

var id: Int = o

var productName: String = ""

var quantity: Int = o

constructor^

constructor(productname: String, quantity: Int) {

this.productName = productname 

this.quantity = quantity

}

}

The class now has variables for the database table columns and 

matching getter and setter methods. Of course, this class does 

not become an entity until it has been annotated. With the class 



file still open in the editor, add annotations and corresponding 

import statements:

package com.example.roomdemo

import androidx.room.ColumnInfo

import androidx.room. Entity

import androidx.room.PrimaryKey

@Entity(tableName = "products")

class Product {

@PrimaryKey(autoGenerate = true)

@ColumnInfo(name = "productld")

var id: Int = 0

@ColumnInfo(name = "productName")

var productName: String = ""

var quantity: Int = 0



constructor^

constructor(productname: String, quantity: Int) {

this.productName = productname 

this.quantity = quantity

}

}

These annotations declare this as the entity for a table named 

products and assign column names for both the id and name 

variables. The id column is also configured to be the primary key 

and auto-generated. Since it will not be necessary to reference the 

quantity column in SQL queries, a column name has not been 

assigned to the quantity variable.



46.5 Creating the Data Access Object

With the product entity defined, the next step is to create the DAO 

interface. Referring once again to the Project tool window, right-click 

on the app -> java -> com.example.roomdemo entry and select the 

New -> Kotlin File/Class menu option. In the new class dialog, enter 

ProductDao into the Name field and select Interface from the list as 

highlighted in Figure

New Kotlin File/Class 

ij ProductDao]

ft File 

c Class

Interface

Enum class

Object

Figure 46-2

Tap the return key to generate the new interface and, with the 

ProductDao.kt file loaded into the code editor, make the following 

changes: 

package com.example.roomdemo



import androidx.lifecycle.LiveData

import androidx.room.Dao

import androidx.room.Insert

import androidx.room.Query

@Dao

interface ProductDao {

@Insert

fun insertProduct(product: Product)

@Query("SELECT * FROM products WHERE productName = 

:name")

fun findProduct(name: String): List

@Query("DELETE FROM products WHERE productName = 

:name")

fun deleteProduct(name: String)

@Query("SELECT * FROM products")



fun getAllProducts(): LiveData> 

}

The DAO implements methods to insert, find and delete records 

from the products database. The insertion method is passed a 

Product entity object containing the data to be stored while the 

methods to find and delete records are passed a string containing 

the name of the product on which to operate. The getAllProducts() 

method returns a LiveData object containing all of the records within 

the database. We will use this method to keep the product list in 

the user interface layout synchronized with the database.



46.6 Adding the Room database

The last task before adding the repository to the project is to 
implement the Room Database instance. Again, add a new class 

to the project named this time with the Class option selected.

Once the file has been generated, modify it as follows using the 
steps outlined in the “Room Databases and Compose” chapter:

package com.example.roomdemo

import android.content.Context

import androidx.room.Database

import androidx.room.Room

import androidx.room.RoomDatabase

@Database(entities = [(Product::class)], version = 1)

abstract class RoomDatabase() {

abstract fun productDao(): ProductDao



companion object {

private var INSTANCE: ProductRoomDatabase? = null

fun getInstance(context: Context): ProductRoomDatabase { 

synchronized(this) {

var instance = INSTANCE

if (instance == null) {

instance = Room.databaseBuilder(

context.applicationContext,

ProductRoomDatabase::class.java, 

"product_database"

).fall backTo Destructive M i gration ()

.build()

INSTANCE = instance



} 

return instance

}

}

}

}



46.7 Adding the repository

Add a new class named ProductRepository to the project, with the 

Class option selected.

The repository class will be responsible for interacting with the 

Room database on behalf of the ViewModel and will need to 

provide methods that use the DAO to insert, delete and query 

product records. Except for the getAllProducts() DAO method 

(which returns a LiveData object) these database operations will 

need to be performed on separate threads from the main thread.

Remaining within the ProductRepository.kt file, make the following 

changes :

package com.example.roomdemo

import androidx.l ifecycle. LiveData

import androidx.lifecycle.MutableLiveData

import kotlinx.coroutines.*

class val productDao: ProductDao) { 

val searchResults = MutableLiveData>()



}

The above declares a MutableLiveData variable named searchResults 
into which the results of a search operation are stored whenever 

an asynchronous search task completes (later in the tutorial, an 

observer within the ViewModel will monitor this live data object). 

When an instance of the class is created, it will need to be 

passed a reference to a ProductDao object.

The repository class now needs to provide some methods that the 

ViewModel can call to initiate database operations. The repository 

will use coroutines where necessary to avoid performing database 

operations on the main thread. As such, some additional libraries 

need to be added to the project before work on the repository 

class can continue. Start by editing the Gradle Scripts -> 

build.gradle (Module: app) file to add the following lines to the 

dependencies section:

dependencies {

implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-core:i.6.4‘



implementation 'org.jetbrains.kotlinx:kotlinx-coroutines- 
android:i.6.4‘

.

.

}

After making the change, click on the Sync Now link at the top of 

the editor panel to commit the changes.

With a reference to the DAO stored and the appropriate libraries 

added, the methods are ready to be added to the 

ProductRepository class file as follows:

val searchResults = MutableLiveData>()

private val coroutineScope = CoroutineScope(Dispatchers.Main)

fun insertProduct(newproduct: Product) {

coroutineScope.launch(Dispatchers.IO) {



productDao.insertProduct(newproduct)

}

}

fun deleteProduct(name: String) {

coroutineScope.launch(Dispatchers.IO) {

productDao.deleteProduct(name)

}

}

fun findProduct(name: String) {

coroutineScope.launch(Dispatchers.Main) {

searchResults.value = asyncFind(name).await()

}

}



private fun asyncFind(name: String): Deferred?> =

coroutineScope.async(Dispatchers.IO) {

return@async productDao.fi ndProduct(name)

}

In the case of the find operation, the asyncFind() method uses a 
deferred value to return the search results to the findProduct() 

method. Because the findProduct() method needs access to the 

searchResults variable, the call to the asyncFind() method is 

dispatched to the main thread which, in turn, performs the 

database operation using the IO dispatcher.

One final task remains to complete the repository class. The 

LazyColumn, which will be added to the user interface layout later, 

will need to be able to keep up to date with the current list of 

products stored in the database. The ProductDao class already 

includes a method named getAllProducts() which uses a SQL query 

to select all of the database records and return them wrapped in 

a LiveData object. The repository needs to call this method once 

productDao.fi


on initialization and store the result within a LiveData object that 

can be observed by the ViewModel and, in turn, by the main 

activity. Once this has been set up, each time a change occurs to 

the database table, the activity observer will be notified, and the 

LazyColumn recomposed with the latest product list. Remaining 

within the ProductRepository.kt file, add a LiveData variable and a 
call to the DAO getAllProducts() method: 

class ProductRepository(private val productDao: ProductDao) {

val allProducts: LiveData> = productDao.getAllProducts()

val searchResults = MutableLiveData>()



46.8 Adding the ViewModel

The ViewModel will be responsible for creating the database, 

DOA, and repository instances and providing methods and 

LiveData objects that the UI controller can utilize to handle 

events.

Start by editing the build.gradle (Module RoomDemo.app) file to 

add the view model lifecycle library: 

dependencies { 

implementation 'androidx.lifecycle:lifecycle-viewmodel-compose:2.5.i'



Sync the project before adding a ViewModel class to the project 

by right-clicking on the app -> java -> com.example.roomdemo entry 

in the Project tool window and selecting the New -> Kotlin 

File/Class menu option. In the New Class dialog, name the class 

select the Class entry in the list and press the keyboard return 

key to generate the file.

Within the MainViewModel.kt file, modify the class declaration to 

accept an application context instance together with some 

properties and an initializer block, as outlined below. The 

application context, represented by the Android Context class, is 
used in application code to gain access to the application 

resources at runtime. In addition, a wide range of methods may 

be called on an application’s context to gather information and 

make changes to the application’s environment. In this case, the 

application context is required when creating a database and will 

be passed into the view model from within the activity later in 
the chapter: 

import android.app.Application 

import androidx.l ifecycle. LiveData



import androidx.lifecycle.MutableLiveData 

import androidx.lifecycle.ViewModel 

class Application) : ViewModel() {

val allProducts: LiveData>

private val repository: ProductRepository

val searchResults: MutableLiveData>

init {

val productDb =
ProductRoomDatabase.getInstance(application)

val productDao = productDb.productDao()

repository = ProductRepository(productDao) 

allProducts = repository.allProducts



searchResults = repository.searchResults

}

}

The initializer block creates a database that is used to create a 

DAO instance. We then use the DAO to initialize the repository: 

val productDb = ProductRoomDatabase.getInstance(application)

val productDao = productDb.productDao()

repository = ProductRepository(productDao)

Finally, the repository is used to store references to the search 

results and allProducts live data objects so that we can convert 

them to states later within the main activity:

allProducts = repository.allProducts

searchResults = repository.searchResults

All that now remains within the ViewModel is to implement the 

methods that will be called from within the activity in response to 



button clicks. These need to be placed after the init block as 

follows: 

init {

.

.

}

fun insertProduct(product: Product) {

repository.insertProduct(product)

}

fun findProduct(name: String) {

repository.fi ndProduct(name)

}

repository.fi


fun deleteProduct(name: String) {

repository.deleteProduct(name)

}



46.9 Designing the user interface

With the database, DOA, repository, and ViewModel completed, we 

are now ready to design the user interface. Start by editing the 

MainActivity.kt file and adding three composables to be used as 

the input text fields, column rows, and column title: 

import androidx.compose.foundation.background

import androidx.compose.foundation.layout.*

import androidx.compose.foundation.text.KeyboardOptions

import androidx.compose.material3.*

import androidx.compose.ui.graphics.Color

import androidx.compose. u i .text.TextStyle 

import androidx.compose. u i .text.font. FontWeight



import androidx.compose. u i .text.input. KeyboardType 

import androidx.compose.ui.unit.dp 

import androidx.compose.ui.unit.sp 

class MainActivity : ComponentActivity() {

@Composable 

fun TitleRow(headi: String, head2: String, head3: String) {

Row(

modifier = Modifier

.background(MaterialTheme.colorScheme.primary) 

.fillMaxWidth()



.padding(5.dp)

) {

Text(headi, color = Color.White,

modifier = Modifier

.weight(o.if))

Text(head2, color = Color.White,

modifier = Modifier

.weight(o.2f))

Text(head3, color = Color.White,

modifier = Modifier.weight(o.2f))

}

}

@Composable



fun ProductRow(id: Int, name: String, quantity: Int) {

Row(

modifier = Modifier

.fillMaxWidth()

.padding(5.dp)

) {

Text(id.toString(), modifier = Modifier

.weight(0.1f))

Text(name, modifier = Modifier.weight(0.2f))

Text(quantity.toString(), modifier = Modifier.weight(0.2f))

}

} 

@OptIn(ExperimentalMaterial3Api::class)



@Composable 

fun CustomTextField(

title: String,

textState: String,

onTextChange: (String) -> Unit,

keyboardType: KeyboardType

) {

OutlinedTextField(

value = textState, 

onValueChange = { onTextChange(it) }, 

keyboardOptions = KeyboardOptions(

keyboardType = keyboardType

),



singleLine = true, 

label = { Text(title)},

modifier = Modifier.padding(io.dp),

textStyle = TextStyle(fontWeight = FontWeight.Bold, 

fontSize = 30.sp)

)

}



46.10 Writing a ViewModelProvider Factory class

The view model we have created in this chapter is slightly more 

complex than earlier examples because it expects to be passed a 

reference to the Application instance. Previously we have used the 

viewModel() function to create view models. Unfortunately, the 

viewModel() function will not allow us to simply pass through the 

Application reference as an argument when we call it. Instead, we 
need to pass the function a custom ViewModelProvider Factory 

class designed to accept an Application reference and return an 

initialized MainViewModel instance.

Within the MainActivity.kt file, add the following factory class at 

the end of the file after the last closing brace (}): 

import android.app.Application

import androidx.lifecycle.ViewModel 

import androidx.lifecycle.ViewModelProvider



class MainViewModelFactory(val application: Application) :

ViewModel Provider. Factory 

{

override fun : ViewModel> create(modelClass: Class): T {

return MainViewModel(application) as T

}

}

In addition to the factory, the viewModel() function also requires a 
reference to the The view model store can be thought of as a 

container in which all currently active view models are stored 

together with an identifying string for each model (which also 

needs to be passed to the viewModel() call). Remaining in the 

MainActivity.kt file, locate the onCreate() method, and modify it so 

that it reads as follows:



import androidx.compose.ui.platform.LocalContext 

import
androidx.lifecycle.viewmodel.compose.LocalViewModelStoreOwner

import androidx.lifecycle.viewmodel.compose.viewModel 

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedlnstanceState)

setContent {

RoomDemoTheme {

// A surface container using the 'background' color 

from the theme

Surface(

modifier = Modifier.fillMaxSize(),



color = MaterialTheme.colorScheme.background

) {

val owner = LocalViewModelStoreOwner.current

owner?.let {

val viewModel: MainViewModel = 
viewModel(

it,

"MainViewModel",

MainViewModelFactory(

LocalContext.current.applicationContext

as 

Application)

)

ScreenSetu p (viewM odel)



}

}

}

}

}

The added code begins by obtaining a reference to the current 
local view model store owner. After checking the owner is not 

null, the viewModel() function is called and passed the owner, an 

identifying string, and view model factory (to which is passed the 

Application reference). The view model returned by the viewModel() 

call is then passed to ScreenSetup.

Next, modify ScreenSetup to accept the ViewModel and use it to 

convert the allProducts and searchResults live data objects to state 

values initialized with empty lists. These states, together with the 

view model also need to be passed to the MainScreen 

composable:



import androidx.compose.runtime.*  

import androidx.compose. ru ntime. l ivedata.observeAsState

@Composable

fun {

val allProducts by viewModel.allProducts.observeAsState(listOf())

val searchResults by
viewModel.searchResults.observeAsState(listOf())

MainScreen(

all Products = all Products,

searchResults = searchResults, 

viewModel = viewModel

)



}

@Composable

fun MainScreen(

allProducts: List,

searchResults: List,

viewModel: MainViewModel

) {

}

When creating the ViewModel instance above, note that we used 

the LocalContext object to obtain a reference to the application 

context and passed it to the view model so that it can be used 

when creating the database.



46.11 Completing the MainScreen function

Within the MainScreen function, add some state and event 

handler declarations as follows:

@Composable

fun MainScreen(

allProducts: List,

searchResults: List,

viewModel: MainViewModel

) {

var productName by remember { mutableStateOff"') }

var productQuantity by remember { mutableStateOff"') } 

var searching by remember { mutableStateOf(false) }

val onProductTextChange = { text : String ->



productName = text

}

val onQuantityTextChange = { text : String ->

productQuantity = text

}

}

Continue modifying the MainScreen function to add a Column 

containing two CustomTextField composables and a Row 

containing four Button components as follows: 

import androidx.compose.ui.Alignment.Companion.CenterHorizontally



@Composable 

fun MainScreen(

allProducts: List,

searchResults: List,

viewModel: MainViewModel

) {

Column(

horizontalAlignment = CenterHorizontally, 

modifier = Modifier

.fillMaxWidth()

) {



CustomTextField(

title = "Product Name",

textState = productName,

onTextChange = onProductTextChange, 

keyboardType = KeyboardType.Text

)

CustomTextField(

title = "Quantity",

textState = productQuantity,

onTextChange = onQuantityTextChange, 

keyboardType = KeyboardType.N umber

)

Row(

horizontalArrangement = Arrangement.SpaceEvenly,



modifier = Modifier

.fillMaxWidth()

.padding(io.dp)

) {

Button(onClick = {

if (productQuantity.isNotEmpty()) {

viewModel.insertProduct(

Product(

productName,

productQuantity.toInt()

)

) 

searching = false



}

}) {

Text("Add")

}

Button(onClick = {

searching = true

viewModel.findProduct(productName)

}) {

Text("Search")

}

Button(onClick = {

searching = false 

viewModel.deleteProduct(productName)



}) {

Text("Delete")

}

Button(onClick = {

searching = false

productName = ""

productQuantity = ""

}) {

Text("Clear")

}

}

}

}



Finally, add a LazyColumn to the parent Column immediately after 

the row of Button components. This will display a single instance 
of the TitleRow followed by a ProductRow for each product. The 

searching state will be used to decide whether the list is to 

include all products or only those products that match the search 

criteria: 

import androidx.compose.foundation.lazy.LazyColumn

import androidx.compose.foundation.lazy.items

@Composable 

fun MainScreen(allProducts: List, searchResults: List, viewModel: 

MainViewModel) {



LazyColumn(

Modifier

.fillMaxWidth()

.padding(io.dp)

) {

val list = if (searching) searchResults else allProducts

item {

TitleRow(head1 = "ID", head2 = "Product", head3 

= "Quantity")

}

items(list) { product ->

ProductRow(id = product.id, name = 
product.productName,

quantity = productquantity)



}

}

}

}



46.12 Testing the RoomDemo app

Compile and run the app on a device or emulator where it 

should appear as illustrated in Figure 46-1 above. Once the app is 

running, add some products and ensure that they appear 

automatically in the LazyColumn. Next, search for an existing 

product and verify that the matching result is listed. Finally, click 
the Clear button to reset the list, enter the name for an existing 

product, delete it from the database and confirm that it is 

removed from the product list.



46.13 Using the Database Inspector

As previously outlined in “Room Databases and the Database 

Inspector tool may be used to inspect the content of Room 

databases associated with a running app and to perform minor data 

changes. After adding some database records using the RoomDemo 

app, display the Database Inspector tool using the View -> Tool 

Windows -> App Inspection menu option:

From within the inspector window, select the running app from the 

menu marked A in Figure 46-3 _below:

App Inspection

□ Samsung SM-T290 > com.ebookfrenay.roomdemo

S Database inspector

Databases -J

0 5^1?

Background Task Inspector

products

c a Live updates |/

product_dataoase___________ I ■? product id
v SB products

H product Id INTEGER,

product Name EXT 
I” quantity INTEGER. N 3 

> R room_master_tab*e  4 4

: product Name

cat

dog

mouse

horse

: quantity

3

1

1

5

Results are read-only &0

Figure 46-3

From the Databases panel (B) double-click on the products table to 

view the table rows currently stored in the database. Enable the Live 

updates option (C) and then use the running app to add more 

records to the database. Note that the Database Inspector updates 

the table data (D) in real-time to reflect the changes.



Turn off Live updates so that the table is no longer read-only, 

double-click on the quantity cell for a table row, and change the 

value before pressing the keyboard Enter key. Return to the running 

app and search for the product to confirm the change made to the 

quantity in the inspector was saved to the database table.

Finally, click on the table query button (indicated by the arrow in 

Figure 46-4 below) to display a new query tab (A), make sure that 

product_database is selected (B), and enter a SQL statement into the 

query text field (C) and click the Run button (D):

products

Background Task Inspector

product.database

Live updatesINTEGER. 
productName . TEXT 

i" quantity INTEGER. N 

room_master_table

product Id 

2

Results are read-only

productName 

dog

quantity

Figure 46-4

The list of rows should update to reflect the results of the SQL 

query (E).



46.14 Summary

This chapter has demonstrated the use of the Room persistence 

library to store data in an SQLite database. The finished project 

used a repository to separate the ViewModel from all database 

operations and demonstrated the creation of entities, a DAO, and 

a room database instance, including the use of asynchronous 

tasks when performing some database operations.



47. An Overview of Navigation in Compose

Very few Android apps today consist of just a single screen. In 

reality, most apps comprise multiple screens through which the 

user navigates using screen gestures, button clicks, and menu 

selections. Before the introduction of Android Jetpack, the 
implementation of navigation within an app was primarily a 

manual coding process with no easy way to view and organize 

potentially complex navigation paths. This situation improved 

considerably, however, with the introduction of the Android 

Navigation Architecture Component, which has now been extended 

to support navigation in Compose-based apps. This chapter will 
provide an overview of navigation within Compose, including 

explanations of routes, navigation graphs, the navigation back 

stack, passing arguments, and the NavHostController and NavHost 

classes.



47.1 Understanding navigation

Every app has a home screen that appears after the app has 

launched and after any splash screen has appeared (a splash 

screen being the app branding screen that appears temporarily 

while the app loads). From this home screen, the user will 

typically perform tasks that will result in other screens appearing. 

These screens will usually take the form of other composables 

within the project. A messaging app, for example, might have a 

home screen listing current messages from which the user can 

navigate to another screen to access a contact list or a settings 

screen. The contacts list screen, in turn, might allow the user to 

navigate to other screens where new users can be added or 

existing contacts updated. Graphically, the app’s navigation graph 

might be represented as shown in Figure



Figure 47-1

Each screen that makes up an app, including the home screen, is 

referred to as a destination and is usually a composable or 

activity. The Android navigation architecture uses a navigation back 

stack to track the user’s path through the destinations within the 

app. When the app first launches, the home screen is the first 

destination placed onto the stack and becomes the current When 

the user navigates to another destination, that screen becomes the 

current destination and is pushed onto the back stack above the 

home destination. As the user navigates to other screens, they are 

also pushed onto the stack. Figure for example, shows the current 



state of the navigation stack for the hypothetical messaging app 

after the user has launched the app and is navigating to the “Add 

Contact” screen:

Figure 47-2

As the user navigates back through the screens using the system 

back button, each destination composable is popped off the stack 
until the home screen is once again the only destination on the 

stack. In Figure the user has navigated back from the Add 

Contact screen, popping it off the stack and making the Contact 

List screen composable the current destination:



Figure 47-3

O 05 
tZ
C 
O
CQ

> 03 
2

All the work involved in navigating between destinations and 

managing the navigation stack is handled by a navigation 
represented by the NavHostController class. It is also possible to 

manually pop composables off the stack so that the app returns 

to a screen lower down the stack when the user navigates 

backward from the current screen.

Adding navigation to an Android project using the Navigation 

Architecture Component is a straightforward process involving a 
navigation host, navigation graph, navigation actions, and a 

minimal amount of code writing to obtain a reference to, and 
interact with, the navigation controller instance.



47.2 Declaring a navigation controller

The first step in adding navigation to an app project is to create 

a NavHostController instance. This is responsible for managing 

the back stack and keeping track of which composable is the 

current destination. So that the integrity of the back stack is 

maintained through recomposition, NavHostController is a stateful 

object and is created via a call to the rememberNavController() 

method as follows:

val navController = rememberNavController()

Once a navigation controller has been created it needs to be 

assigned to a NavHost instance.



47.3 Declaring a navigation host

The navigation host (NavHost) is a special component that is 

added to the user interface layout of an activity and serves as a 

placeholder for the destinations through which the user will 

navigate. Figure for example, shows a typical activity screen and 

highlights the area represented by the navigation host:

Figure 47-4

When it is called, NavHost must be passed a NavHostController 

instance, a composable to serve as the start destination, and a 

navigation The navigation graph consists of all the composables 



that are to be available as navigation destinations within the 

context of the navigation controller. These destinations are 

declared in the form of

NavHost(navController = navController, startDestination = route>) {

// Navigation graph destinations

}



47.4 Adding destinations to the navigation graph

Destinations are added to the navigation graph by making calls to 
the composable() method and providing a route and destination. 

The route is simply a string value that uniquely identifies the 

destination within the context of the current navigation controller. 

The destination is the composable to be called when the 
navigation is performed. The following NavHost declaration 

includes a navigation graph consisting of three destinations, with 

the “home” route configured as the start destination:

NavHost(navController = navController, startDestination = "home")

{

composable("home") {

Home()

}

composable("customers") {

Customers()

}



composable("purchases") {

Purchases()

}

}

A more flexible alternative to hard-coding the route strings into 

the composable() method calls is to define the routes in a sealed 

class:

sealed class Routes(val route: String) {

object Home : Routes("home")

object Customers : Routes("customers")

object Purchases : Routes("purchases")

}

With the class declared, the NavHost will now reference the 

routes as follows:

NavHost(navController = navController, startDestination = {



{

Home()

}

{

Customers()

}

{

Purchases()

}

}

The use of the sealed class approach gives us the advantage of a 
single location in which to make changes to the routes. Also, it 

adds syntax validation to avoid mistyping a route string when 

creating a NavHost or performing navigation.



47.5 Navigating to destinations

The primary mechanism for triggering navigation is via calls to 

the navigate() method of the navigation controller instance, 

specifying the route for the destination composable. The following 

code, for example, configures a Button component to navigate to 

the Customers screen when clicked:

Button(onClick = {

navController.navigate(Routes.Customers.route)

}) {

Text(text = "Navigate to Customers")

}

The navigate() method also accepts a trailing lambda containing 

navigation options, one of which is the popUpTo() function. 

Consider, for example, a scenario where the user starts on the 
home screen and then navigates to the customer screen. The 

customer screen displays a list of customer names which, when 

clicked navigates to the purchases screen populated with a list of 

the selected customer’s previous purchases. At this point, the 

back stack contains the customer and home destinations. If the 



user where to tap the back button located at the bottom of the 

screen, the app will navigate back to the customer screen. The 

popUpTo() navigation option allows us to pop items off the stack 

back to the specific destination. We could, for example, pop all 

destinations off the stack before navigating to the purchases 

screen so that only the home destination remains on the back 

stack as follows:

Button(onClick = {

navController.navigate(Routes.Customers.route) {

popUpTo(Routes.Home.route)

}

}) {

Text(text = "Navigate to Customers")

}

Now when the user clicks the back button on the purchases 

screen, the app will navigate directly to the home screen. The 

popUpTo() method also accepts options. The following, for 

example, uses the inclusive option to also pop the home 
destination off the stack before performing the navigation:



Button(onClick = {

navController.navigate(Routes.Customers.route) {

popUpTo(Routes.Home.route) {

inclusive = true

}

}

}) {

Text(text = "Navigate to Customers")

}

By default, an attempt to navigate from the current destination to 

itself will push an additional destination instance onto the stack. 

In most situations, this is unlikely to be the desired behavior. To 

prevent the addition of multiple instances of the same destination 

to the top of the stack, set the launchSingleTop option to true 

when calling the navigate() method:

Button(onClick = {



navController.navigate(Routes.Customers.route) {

launchSingleTop = true

}

}) {

Text(text = "Navigate to Customers")

}

The saveState and restoreState options, if set to true, will 

automatically save and restore the state of back stack entries 

when the user reselects a destination that has been selected 

previously.



47.6 Passing arguments to a destination

It is a common requirement when navigating from one screen to 

another to need to pass an argument to the destination. Compose 

supports the passing of arguments of a wide range of types from 

one screen to another and involves several steps. In our 

hypothetical example, we would probably need to pass the name 

of the selected customer from the customer screen to the 

purchases screen so that the correct purchase history can be 

displayed.

The first step in navigating with arguments involves adding the 

argument name to the destination route. We can, for example, 

add an argument named “customerName” to the purchases route 

as follows:

NavHost(navController = navController, startDestination = 

Routes.Home.route) {

{

Purchases()



}

}

When the app triggers navigation to the customer destination, the 

value to be assigned to the argument will be stored within the 

corresponding back stack entry. The back stack entry for the 

current navigation is passed as a parameter to the trailing lambda 

of the composable() method where it can be extracted and passed 

to the Customer composable: 

composable(Routes.Purchases.route + "/{customerName}") { 
backStackEntry ->

val customerName =
backStackEntry.arguments?.getString("customerName")

}



By default, the navigation argument is assumed to be of String 

type. To pass arguments of different types, the type must be 

specified using the NavType enumeration via the composable() 

method arguments parameter. In the following example, the 

parameter type is declared as being of type Int. Note also that 

the argument now needs to be extracted from the back stack 

entry using getInt() instead of

composable(Routes.Purchases.route +

arguments = listOf(navArgument("customerId") { type = 

NavType.IntType })) {

navBackStack ->

}

Returning to the original string argument example, the Purchases 

composable now needs to be modified to expect a String 
parameter:

@Composable 

fun Customers(customerName: String?) {



}

The final step is to pass a value for the argument when making 

the navigate() method call. We do this by appending the argument 

value to the end of the destination route. Assuming that the value 

we need to pass to the purchases screen is stored as a state 

variable named selectedCustomer, the navigate() call would be 

written as follows:

var selectedCustomer by remember {

mutableStateOf("")

}

// Code to identify selected customer here

Button(onClick = {

navController.navigate(Routes.Customers.route + 

}) {

Text(text = "Navigate to Customers")



}

When the button is clicked, the following sequence of events will 

occur:

1. A back stack entry is created for the current destination.

2. The current selectedCustomer state value is stored in the back 

stack entry.

3. The back stack entry is pushed onto the back stack.

4. The composable() method for the purchase route in the 

NavHost declaration is called.

5. The trailing lambda of the composable() method extracts the 

argument value from the back stack entry and passes it to the 

Purchases composable.



47.7 Working with bottom navigation bars

So far in this chapter, we have focused on navigation in response to 

click events on Button components. Another common form of 

navigation involves the bottom navigation bar.

The bottom navigation bar appears at the bottom of the screen and 

displays a list of navigation items, usually comprising an icon and a 

label. Clicking on an item navigates to a different screen within the 

current activity. An example bottom navigation bar is illustrated in 

Figure 47-5 _below:

Figure 47-5

The core components of bottom bar navigation are the Compose 

BottomNavigation and BottomNavigationItem components. 

Implementation typically involves a parent BottomNavigationBar 

containing a forEach loop which iterates through a list creating each 

BottomNavigationItem child. Each child is configured with the label 

and icon to be displayed and an onClick handler to perform the 

navigation to the corresponding destination. Typical syntax will read 

as follows:

BottomNavigation {



list>.forEach { navItem ->

BottomNavigationItem (

selected = | false>, 

onClick = {

navContro ller.navi gate (navItem.ro ute) {

popUpTo(navController.graph.findStartDestination

().id) {

saveState = true

}

launchSingleTop = true 

restoreState = true

}

}.

icon = {

navItem.ro


}, 

label = {

},

)

}

}

Note that the PopUpTo() method is called to ensure that if the user 

clicks the back button the navigation returns to the start destination. 

We can identify the start destination by calling the 

findStartDestination() method on the navigation graph:

navController.graph.findStartDestination()

Also, the launchSingleTop, saveState, and restoreState options must 

be enabled when working with bottom bar navigation.



Each BottomNavigationItem needs to be told whether it is the 

currently selected item via the selected property. When working with 

bottom bar navigation, you will need to write code to compare the 

route associated with the item against the current route selection. We 

can obtain the current route selection by gaining access to the back 

stack via the currentBackStackEntryAsState() method of the navigation 

controller and accessing the destination route property, for example:

BottomNavigation {

val backStackEntry by navController.currentBackStackEntryAsState()

val currentRoute = backStackEntry?.destination?.route

NavBarItems.BarItems.forEach { navItem ->

BottomNavigationItem (

selected = currentRoute == navItem.route

The two routes are then compared and the result assigned to the 

selected property. A more detailed example of bottom bar navigation 

will be demonstrated in the chapter entitled “A Compose Navigation 

Bar



47.8 Summary

This chapter has covered the addition of navigation to Android 

apps using the Compose support built into the Jetpack Navigation 

Architecture Component. Navigation is implemented by creating an 

instance of the NavHostController class and associating it with a 

NavHost instance. The NavHost instance is configured with the 
starting destination and the navigation routes that make up the 

navigation graph for the current activity. Navigation is then 

performed by making calls to the navigate() method of the 
navigation controller instance, passing through the path of the 

destination composable. Compose also supports the passing of 

arguments to the destination composable. Navigation may also be 

added to screens using the Compose BottomNavigation and 
BottomNavigationItem components.



48. A Compose Navigation Tutorial

The previous chapter provided an overview of navigation using the 
Jetpack Navigation Architecture Component when developing with 

Compose. This chapter will build on this knowledge to create a 

project that uses navigation, including an example of passing an 

argument from one destination to another.



48.1 Creating the NavigationDemo project

Launch Android Studio and create a new Empty Activity project 

named NavigationDemo, specifying com.example.navigationdemo as 

the package name, and selecting a minimum API level of API 26: 
Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to 
call MainScreen instead of Greeting.

Before proceeding, we will also need to add the Compose 
navigation library to the project build settings. Within the Project 

tool window, locate and open the module level Gradle build file -> 

Gradle Scripts -> build.gradle (Module: app) file and add the 

following line to the dependencies section (keeping in mind that a 

more recent version of the library may now be available): 



implementation 'androidx.navigation:navigation-compose:2.5.3‘



48.2 About the NavigationDemo project

The completed project will comprise three destination screens 

named “home”, “welcome” and “profile”. The home screen will 

contain a text field into which the user will enter their name and 

a button which, when clicked, will navigate to the welcome screen, 

passing the user’s name as an argument for inclusion in a 

welcome message. The welcome screen will also contain a button 

to navigate to the profile screen, the sole purpose of which is to 

experiment with the popUpTo() navigation option method.



48.3 Declaring the navigation routes

The first step in implementing the navigation in the project is to 

add the routes for the three destinations which will be declared 

using a sealed class. Begin by right-clicking on the app -> java -> 
com.example.navigationdemo entry in the Project tool window and 

selecting the New -> Kotlin File/Class menu option. In the new 

class dialog, name the class select the Sealed Class entry in the 

list and press the keyboard return key to generate the file. Edit 

the new file to add the destination routes as follows:

package com.example.navigationdemo

sealed class route: String) {

object Home : NavRoutes("home")

object Welcome : NavRoutes("welcome")

object Profile : NavRoutes("profile")

}



48.4 Adding the home screen

The three destinations now need a composable, each of which we 

will declare in a separate file placed in a new package named Create 

this package now by right-clicking on the com.example.navigationdemo 

entry in the Project tool window and selecting the New -> Package 

menu option. In the resulting dialog, name the package 

com.example.navigationdemo.screens as shown in Figure 48-1 before 

tapping the keyboard enter key:

New Package

com.example, navigationdemo, sere ens

Figure 48-1

Right-click on the new package entry in the Project tool window, 

select the option to create a new Kotlin class file, name it and 

modify it so that it reads as follows:

package com.example.navigationdemo.screens

import and roidx.compose.fou ndation.layout.*

import androidx.compose.material3.*

import androidx.compose.runtime.*



import and roidx.compose. ui.Alignment 

import and roidx.compose. ui.Modifier 

import and roidx.compose. u i .text.TextStyle 

import and roidx.compose. u i .text.font. FontWeight 

import androidx.compose.ui.unit.dp 

import androidx.compose.ui.unit.sp 

import androidx.navigation.NavHostController 

import com.example. navigationdemo. N avRoutes

@Composable 

fun Home(navController: NavHostController) {

var userName by remember { mutableStateOf("") }

val onUserNameChange = { text : String ->

userName = text



}

Box(

modifier = Modifier

.fillMaxSize(),

contentAlignment = Alignment.Center

) {

Column(horizontalAlignment = Alignment.CenterHorizontally) {

CustomTextField(

title = "Enter your name",

textState = userName,

onTextChange = onUserNameChange

)

Spacer(modifier = Modifier.size(30.dp))

Button(onClick = { }) {



Text(text = "Register")

}

}

}

}

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun CustomTextField(

title: String,

textState: String,

onTextChange: (String) -> Unit,

) {

OutlinedTextField(

value = textState,



onValueChange = { onTextChange(it) }, 

singleLine = true,

label = { Text(title)},

modifier = Modifier.padding(io.dp),

textStyle = TextStyle(fontWeight = FontWeight.Bold,

fontSize = 30.sp)

)

}



48.5 Adding the welcome screen

Add a new class file to the screens package named Welcome.

Once the file has been created, edit it so that it reads as follows:

package com.example.navigationdemo.screens

import androidx.compose.foundation.layout.*

import androidx.compose.material3.*

import androidx.compose.runtime.*

import androidx.compose.ui.Alignment

import androidx.compose.ui.Modifier

import androidx.compose.ui.unit.dp

import androidx.navigation.NavHostController

import com.example.navigationdemo.NavRoutes 

@Composable



fun Welcome(navController: NavHostController) {

Box(

modifier = Modifier

.fillMaxSize(),

contentAlignment = Alignment.Center

) {

Column(horizontalAlignment =
Alignment.CenterHorizontally) {

Text("Welcome", style =
MaterialTheme.typography.headlineSmall)

Spacer(modifier = Modifier.size(30.dp))

Button(onClick = { }) {

Text(text = "Set up your Profile")

}



}

}

}



48.6 Adding the profile screen

The profile screen is the simplest composable and consists of a 
single Text component. Once again, add a new class file to the 

screens package, this time named and edit it to make the 
following changes:

package com.example.navigationdemo.screens

import androidx.compose.foundation.layout.*

import androidx.compose.material3.*

import androidx.compose.runtime.*

import androidx.compose.ui.Alignment

import androidx.compose.ui.Modifier

@Composable

fun Profile() {

Box(



modifier = Modifier

.fillMaxSize(),

contentAlignment = Alignment.Center

) {

Textf'Profile Screen", style =
MaterialTheme.typography.headlineSmall)

}

}



48.7 Creating the navigation controller and host

Now that the basic elements of the project have been created, the 

next step is to create the navigation controller and navigation host 

instances. Edit the MainActivity.kt file and make the following 

modifications: 

import androidx.navigation.compose.NavHost

import androidx.navigation.compose.composable

import androidx.navigation.compose.rememberNavController

import com.example.navigationdemo.screens.Home

import com.example.navigationdemo.screens.Profile 

import com.example.navigationdemo.screens.Welcome



@Composable 

fun MainScreen() {

val navController = rememberNavController()

NavHost(

navController = navController,

startDestination = NavRoutes.Home.route,

) {

composable(NavRoutes.Home.route) {

Home(navController = navController)

}

composable(NavRoutes.Welcome.route) {

Welcome(navController = navController)



}

composable(NavRoutes.Profile.route) {

Profile()

}

}

}

The above code changes to the MainScreen function begin by 
obtaining a navigation controller instance via a call to the 

rememberNavController() method. The NavHost component is 

called, assigning the home screen as the start destination. The 

composable() method is then called to add a route for each 
screen.



48.8 Implementing the screen navigation

Navigation needs to be initiated when the Button components in 
the home and welcome screens are clicked. Both composables 

have already been passed the navigation controller on which we 

will be calling the navigate() method. Starting with the Home.kt 

file, locate the Button component and add the navigation code to 

the onClick property using the route for the welcome screen:

.

.

Button(onClick = {

navController.navigate(NavRoutes.Welcome.route)

}) {

Text(text = "Register")

}



Next, edit the Welcome.kt file and add code to the Button onClick 

property to navigate to the profile screen:

Button(onClick = { 

navController.navigate(NavRoutes.Profile.route)

}) {

Text(text = "Set up your Profile")

}

Take this opportunity to compile and run the app on a device or 

emulator and test that the buttons navigate to the correct screens 

when clicked.



48.9 Passing the user name argument

The welcome destination route in the NavHost declaration now 

needs to be extended so that the user name typed into the text 

field can be passed to the welcome screen during the navigation. 

First, edit the Welcome.kt file and modify the Welcome function to 

accept a user name String parameter and to display it in the Text 

component:

@Composable

fun Welcome(navController: userName: {

Column(horizontalAlignment =

Alignment.CenterHorizontally) {

style = MaterialTheme.typography.headlineSmall)



With the Welcome composable ready to accept and display the 
user name, the NavHost declaration needs to be changed to 

extract the parameter from the navigation back stack entry and 

pass it to the Welcome function. Return to the MainActivity.kt file 

and modify the Welcome route composable() call so that it reads 

as follows:

{ backStackEntry ->

val userName = backStackEntry.arguments?.getString("userName")

Welcome(navController =

}



The final task before we test the app once again is to modify the 

onClick handler assigned to the home screen Button component 

to get the current user name state value and append it to the 

route in the navigate() method call. Edit the Home.kt file, locate 

the Button call and modify the onClick handler:

Button(onClick = {

}) {

Text(text = "Register")

}



48.10 Testing the project

Compile and run the project on a device or emulator and enter a 

name into the text field on the home screen:



2:54

'— Enter your name

Neil

Register



Figure 48-2

Click the Register button and verify that the name you entered 

appears in the Text component of the Welcome screen:



2:55

Welcome, Neil

Set up your Profile



Figure 48-3

After clicking on the “Set up your Profile” button to reach the 

profile screen, the back button located in the bottom toolbar 

should navigate through the back stack (if you are using Android 

12 or later, swipe right to navigate backward), starting with the 

welcome screen followed by the home screen. If we want the 
backward navigation to return directly to the home screen we 

need to make sure everything except the home destination is 

popped off the navigation back stack using the popUpTo() method 

call. This needs to be called as an option to the navigate() 

method in the Button onClick handler in the Welcome 

composable:

Button(onClick = {

navController.navigate(NavRoutes.Profile.route) {

popUpTo(NavRoutes.Home.route)

}



When the app runs, tapping the back button (or swiping right on 

newer Android versions) from the profile screen should now skip 

the welcome screen and return directly to the home screen.



48.11 Summary

In this chapter, we have created a project uses navigation to 
switch between screens within an activity. This included creating a 

navigation controller and declaring a navigation host initialized 

with navigation routes for each destination. The tutorial also 

implemented a navigation argument to pass a string value from 
one navigation destination to another.



49. A Compose Navigation Bar Tutorial

Following on from the overview provided previously in the chapter 

entitled “An Overview of Navigation in Compose” this chapter will 

create a project that integrates navigation into an activity using 

the Compose NavigationBar component. The project will also 

briefly introduce the Scaffold component and demonstrate how we 

can use it to create a standard screen layout that conforms to 

the Material theme guidelines.



49.1 Creating the BottomBarDemo project

Launch Android Studio and create a new Empty Activity project 

named BottomBarDemo, specifying com.example.bottombardemo as 

the package name, and selecting a minimum API level of API 26: 
Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to 
call MainScreen instead of Greeting.

Before proceeding, we will also need to add the Compose 
navigation library to the project build settings. Within the Project 

tool window, locate and open the module level Gradle build file -> 

Gradle Scripts -> build.gradle (Module: app) file and add the 

following line to the dependencies section: 

implementation 'androidx.navigation:navigation-compose:2.5.3'





49.2 Declaring the navigation routes

When the project is completed, it will include a bottom bar 

containing three items which, when clicked, will navigate to 

different screens, each represented by a composable. The first step 

we need to complete is to add the routes for the three 

destinations, which will be declared using a sealed class. Begin by 

right-clicking on the app -> java -> com.example.bottombardemo 

entry in the Project tool window and selecting the New -> Kotlin 

File/Class menu option. In the new class dialog, name the class 

select the Sealed class entry in the list and press the keyboard 

return key to generate the file. Edit the new file to add the 

destination routes as follows:

package com.example.bottombardemo

sealed class route: String) {

object Home : NavRoutes("home")

object Contacts : NavRoutes("contacts")

object Favorites : NavRoutes("favorites")

}



49.3 Designing bar items

Each item in the bottom bar will need a title string, an icon 
image, and the route to which the app should navigate when the 

item is clicked. To keep the MainActivity.kt file as simple as 

possible, we will also declare the bar item class as a separate file. 

Using the steps outlined above, add a new Kotlin Class file 

named this time using the Data class option, to the project and 

modify it so that it reads as follows:

package com.example.bottombardemo

import androidx.compose. u i .graph ics.vector. ImageVector

data class BarItem(

val title: String,

val image: ImageVector,

val route: String

)



49.4 Creating the bar item list

Now that we have the Baritem class providing a template for 

each bar item, the next step is to create a list containing the 

three bar items, each configured with the appropriate string, 

image, and route properties. Add another Kotlin class using the 

Object option, this time named and implement the list as follows:

package com.example.bottombardemo

import androidx.compose.material.icons.Icons

import androidx.compose.material.icons.filled.Face

import androidx.compose.material.icons.filled.Favorite

import androidx.compose.material.icons.filled.Home

object NavBaritems {

val Baritems = listOf(

BarItem(

title = "Home",



image = Icons.Filled.Home, 

route = "home"

),

BarItem(

title = "Contacts",

image = Icons.Filled.Face, 

route = "contacts"

),

BarItem(

title = "Favorites",

image = Icons.Filled.Favorite, 

route = "favorites"

)



)

}

Note that the above declaration makes use of the built-in Material 

theme icons for the images. Although not as extensive as the Clip 

Art list available via the Resource Manager used in earlier 

chapters, these icons provide a quick and convenient way to add 

graphics to your project.



49.5 Adding the destination screens

Each of the three destinations now needs a composable. These will 

be simple functions that do nothing more than display the icon for 

the corresponding bar item selection. We will declare each screen 

composable in a separate file, each of which will be placed in a new 

package named Create this package now by right-clicking on the 

com.example.bottombardemo entry in the Project tool window and 

selecting the New -> Package menu option. In the resulting dialog, 

name the package com.example.bottombardemo.screens as shown in 

Figure 49-1 before tapping the keyboard enter key:

New Package

com.example.bottombardemo.screens

Figure 49-1

Right-click on the new package entry in the Project tool window, 

select the option to create a new Kotlin class named Home, and 

modify it so that it reads as follows: 

import and roidx.compose.fou ndation.layout. Box



import and roidx.compose.fou ndation.layout.fi 11M axSize 

import androidx.compose.foundation.layout.size 

import androidx.compose.material.icons.Icons 

import androidx.compose.material.icons.filled.Home 

import androidx.compose.material3.Icon 

import and roidx.compose. ru nti me.Composable 

import and roidx.compose. ui.Alignment 

import and roidx.compose. ui.Modifier 

import androidx.compose.ui.graphics.Color 

import androidx.compose.ui.unit.dp 

@Composable 

fun Home() {

Box(

ndation.layout.fi


modifier = Modifier.fillMaxSize()

) {

Icon(

imageVector = Icons.Filled.Home,

contentDescription = "home",

tint = Color.Blue,

modifier = Modifier.size(150.dp)

.align(Alignment.Center)

)

}

}

Repeat these steps to add class files for the two remaining screens 

named Contacts and Favorites using the same code as that used for 

the home screen above, but changing the icon import, imageVector 

property, and contentDescription accordingly. In the case of the 

Contacts composable the following changes apply:



import

@Composable

fun {

Box(

modifier = Modifier.fillMaxSize()

) {

Icon(

imageVector =

contentDescription = 

tint = Color.Blue,



modifier = Modifier.size(i50.dp)

.align(Alignment.Center) 

) 

} 

}

Similarly, the following changes will be needed for the Favorites.kt file: 

. 

.

import 

. 

.

@Composable 

fun {

Box(



modifier = Modifier.fillMaxSize()

) {

Icon(

imageVector = 

contentDescription = 

tint = Color.Blue, 

modifier = Modifier.size(i5o.dp)

.align(Alignment.Center)

)

}

}



49.6 Creating the navigation controller and host

Now that the basic elements of the project have been created, the 

next step is to create both the navigation controller and 

navigation host instances. Edit the MainActivity.kt file and make 
the following modifications: 

import androidx.navigation.compose.NavHost

import androidx.navigation.compose.composable

import androidx.navigation.compose.rememberNavController

import androidx.navigation.NavHostController

import com.example.bottombardemo.screens.Contacts

import com.example.bottombardemo.screens.Favorites 

import com.example.bottombardemo.screens.Home



@Composable 

fun MainScreen() {

val navController = rememberNavController()

}

@Composable 

fun NavigationHost(navController: NavHostController) {

NavHost(

navController = navController, 

startDestination = NavRoutes.Home.route, 

) {

composable(NavRoutes.Home.route) {



Home()

}

composable(NavRoutes.Contacts.route) {

Contacts()

}

composable(NavRoutes.Favorites.route) {

Favorites()

}

}

}



49.7 Designing the navigation bar

We will implement the bottom navigation bar in a separate 

composable named BottomNavBar, which will need to be passed 

the navigation controller instance created in the NavSetup 

function. It will, of course, consist of a NavigationBar component 

and a NavigationBarItem child for each of the three destination 

screens. Start by adding the BottomNavBar function to the 

MainActivity.kt file as follows: 

import androidx.compose.material3.*

import androidx.compose.runtime.getValue

import androidx.navigation .compose.cu rrentBackStackEntryAsState 

import androidx.navigation.NavGraph.Companion.findStartDestination



@Composable 

fun BottomNavigationBar(navController: NavHostController) {

NavigationBar {

}

}

Within the BottomNavigationBar composable, we will need to be 

able to identify the route of the currently selected navigation 

destination. We do this by calling the 

currentBackStackEntryAsState() method of the navigation controller 

to obtain the current back stack entry from which we can access 

the route:

@Composable

fun BottomNavigationBar(navController: NavHostController) {

NavigationBar {

val backStackEntry by navController.currentBackStackEntryAsState()

val currentRoute = backStackEntry?.destination?.route



}

}

All that remains is to iterate through the items located in 

Baritems and use the title, image, and route settings for each 

item to configure NavigationBaritem instances for each destination:

@Composable

fun BottomNavigationBar(navController: NavHostController) {

NavigationBar {

val backStackEntry by 

navController.currentBackStackEntryAsState()

val currentRoute = backStackEntry?.destination?.route

NavBaritems.Baritems.forEach { navItem ->

Navigation Baritem (

selected = currentRoute == navitem.route, 

onClick = {



navController.navigate(navItem.route) {

popUpTo(navController.graph.findStartDesti 
nation().id) {

saveState = true

}

launchSingleTop = true

restoreState = true

}

},

icon = {

Icon(imageVector = navItem.image,

},

contentDescription = navItem.title)



label = {

Text(text = navItem.title)

},

)

}

}

}



49.8 Working with the Scaffold component

The final task before testing the project is to complete the layout 

in the MainScreen function. For this, we will use the Compose 

Scaffold component. This component provides a template layout 

structure for the standard Material screen layout. Scaffold includes 

slots for common layout elements, including a top bar, content 
area, bottom bar, floating action button, snackbar, and a 

navigation drawer. We will use the top bar, content area, and 

bottom bar scaffold slots for this example. Edit the MainScreen 

function and add the Scaffold call as follows: 

import androidx.compose.foundation.layout. Column

import androidx.compose.foundation.layout.padding

@OptIn(ExperimentalMaterial3Api::class)



@Composable 

fun MainScreen() {

val navController = rememberNavController()

Scaffold(

topBar = { TopAppBar(title = {Textf'Bottom Navigation 

Demo")}) },

content = { padding ->

Column(Modifier.padding(padding)) {

NavigationHost(navController = navController)

} },

bottomBar = { BottomNavigationBar(navController = navController)}

)

}



For the top bar, we are using the TopAppBar component 

configured to display a Text composable while our NavigationHost 

composable is used for the content area of the screen. Finally, the 

bottom bar position is occupied by our BottomNavigationBar 

component.



49.9 Testing the project

Run the app on a device or emulator, where the app should 

match the screen shown in Figure



3:43

Bottom Navigation Demo

Home Contacts Favorites



Figure 49-2

Test that the navigation works by clicking on the bottom bar 
items and verifying that the correct screen appears in each case. 

Also, check that the code to prevent duplicate back stack entries 

is working by clicking multiple times on the Contacts bar item 

followed by the back button (or a rightward swipe on newer 

Android versions). If the code works as intended, the app should 

navigate back to the Home screen.



49.10 Summary

In this chapter, we have used the Compose NavigationBar 
component to implement navigation between screens within an 

activity. This involves creating a NavigationBarItem child for each 

screen together with a navigation controller and NavHost. A key 
step in implementing bottom bar navigation involves keeping track 

of the current destination route, which is achieved by accessing 

the current back stack entry via a call to the 
currentBackStackEntryAsState() method of the navigation controller. 

The project also used the Scaffold composable to create a layout 

that conforms to Material theme standards.



50. Detecting Gestures in Compose

The term “gesture” defines a contiguous sequence of interactions 

between the touch screen and the user. A typical gesture begins 

at the point that the screen is first touched and ends when the 

last finger or pointing device leaves the display surface. When 

correctly harnessed, gestures can be implemented as a form of 
communication between the user and the application. Swiping 

motions to turn the pages of an eBook or a pinching movement 

involving two touches to zoom in or out of an image are prime 

examples of how we can use gestures to interact with an 
application.



50.1 Compose gesture detection

Jetpack Compose provides mechanisms for the detection of 

common gestures within an application. In this chapter, we will 

cover various gesture types, including tap (click), double-tap, long 

press, and dragging, as well as multi-touch gestures such as 

panning, zooming, and rotation. Swipe gestures are also supported 

but require a little extra explanation, so they will be covered 

independently in the next chapter.

In several instances, Compose provides two ways to detect 

gestures. One approach involves the use of gesture detection 

modifiers which provide gesture detection capabilities with built-in 

visual effects. An alternative option is to use the functions 

provided by the PointerInputScope interface, which require extra 

coding but provide more advanced gesture detection capabilities. 

Where available, we will cover both of these options in this 
chapter.

This chapter will take a practical approach to exploring gesture 

detection by creating an Android Studio project that includes 

examples of the types of gesture detection.



50.2 Creating the GestureDemo project

Launch Android Studio and create a new Empty Activity project 

named GestureDemo, specifying com.example.gesturedemo as the 

package name, and selecting a minimum API level of API 26: 
Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to 
call MainScreen instead of Greeting.



50.3 Detecting click gestures

Click gestures, also known as taps, can be detected on any visible 

composable using the clickable modifier. This modifier accepts a 

trailing lambda containing the code to be executed when a click is 

detected on the component to which it has been applied, for 

example:

SomeComposable(

modifier = Modifier.clickable { /*  Code to be executed */  }

)

Edit the MainActivity.kt file, add a new composable named 

ClickDemo, and call it from the MainScreen function: 

. 

.

import androidx.compose.foundation.*

import androidx.compose.fou ndation .gestu res.*

import androidx.compose.foundation.layout.*



import androidx.compose.runtime.*

import androidx.compose.ui.graphics.*

import androidx.compose.ui.umt.dp

.

.

@Composable

fun MainScreen() {

ClickDemo()

}

@Composable

fun ClickDemo() {

var colorState by remember { mutableStateOf(true)}

var bgColor by remember { mutableStateOf(Color.Blue) }



val clickHandler = {

colorState = !colorState

bgColor = if (colorState) {

Color.Blue

} else {

Color.DarkGray

}

}

Box(

Modifier

.clickable { clickHandler() }

.background(bgColor) 

.size(100.dp)



)

}

The ClickDemo composable contains a Box component, the 

background color of which is controlled by the bgColor state. The 

Box also has applied to it a clickable modifier configured to call 

clickHandler which, in turn, toggles the current value of colorState 

and uses it to switch the current bgColor value between blue and 

gray. Use the Preview panel in interactive mode to test that 

clicking the Box causes the background color to change.



50.4 Detecting taps using PointerInputScope

While the clickable modifier is useful for detecting simple click 

gestures, it cannot distinguish between taps, presses, long presses, 

and double taps. For this level of precision, we need to utilize the 

detectTapGestures() function of PointerInputScope. This is applied 

to a composable via the pointerInput() modifier, which gives us 

access to the PointerInputScope as follows:

SomeComposable(

Modifier

.pointerInput(Unit) {

detectTapGestures(

onPress = { /*  Press Detected */  },

onDoubleTap = { /*  Double Tap Detected */  },

onLongPress = { /*  Long Press Detected */  }, 

onTap = { /*  Tap Detected */  }

)



}

)

Edit the MainActivity.kt file as follows to add and call a 

composable named TapPressDemo: 

. 

.

import androidx.compose.ui.Alignment

import androidx.compose.ui.input.pointer.pointerInput 

. 

.

@Composable

fun MainScreen() {

TapPressDemo()



}

@Composable

fun TapPressDemo() {

var textState by remember {

mutableStateOf("Waiting ....")

}

val tapHandler = { status : String -> 

textState = status

}

Column(

horizontalAlignment = Alignment.CenterHorizontally, 

modifier = Modifier.fillMaxSize()

) {

Box(



Modifier

.padding(io.dp) 

.background(Color.Blue) 

.size(ioo.dp) 

.pointerlnput(Unit) {

detectTapGestures(

onPress = { tapHandler("onPress 

Detected") },

onDoubleTap = { 
tapHandlerfonDoubleTap Detected") },

onLongPress = { 
tapHandler("onLongPress Detected") },

onTap = { tapHandler("onTap Detected") 

}

)



}

)

Spacer(Modifier.height(io.dp))

Text(textState)

}

}

The TapPressDemo composable contains Box and Text components 

within a Column parent. The string displayed on the Text 

component is based on the current textState value. When a 

gesture is detected by the detectTapGestures() function, the 

tapHandler is called and passed a new string describing the type 

of gesture detected. This string is assigned to textState, causing it 

to appear in the Text component. Refresh the Preview panel and 

use interactive mode to experiment with different tap and press 

gestures. While running, the user interface should match that 
shown in Figure



onDoubleTap Detected

Figure 50-1



50.5 Detecting drag gestures

We can detect drag gestures on a component by applying the 

draggable() modifier. This modifier stores the offset (or delta) of the 

drag motion from the point of origin as it occurs and stores it in a 

state, an instance of which can be created via a call to the 

rememberDraggableState() function. This state can then, for example, 

be used to move the position of the dragged component in 

coordination with the gesture. The draggable() call also needs to be 

told whether to detect horizontal or vertical motions.

To see the draggable() modifier in action, make the following changes 

to the MainActivity.kt file: 

import androidx.compose.ui.unit.IntOffset 

import kotlin.math.roundToInt

@Composable



fun MainScreen() {

DragDemo()

}

@Composable

fun DragDemo() {

Box(modifier = Modifier.fillMaxSize()) {

var xOffset by remember { mutableStateOf(of) }

Box(

modifier = Modifier

.offset { IntOffset(xOffset.roundToInt(), o) }

.size(ioo.dp)

. backgrou nd (Color.Blue) 

.draggable(



orientation = Orientation.Horizontal,

state = rememberDraggableState { distance -> 

xOffset += distance

}

)

)

} 

}

The example creates a state to store the current x-axis offset and 

uses it as the x-coordinate of the draggable Box:

var xOffset by remember { mutableStateOf(0f) } 

. 

.

Box(

modifier = Modifier



.offset { IntOffset(xOffset.roundToInt(), o) }

The draggable modifier is then applied to the Box with the 

orientation parameter set to horizontal. The state parameter is set by 

calling the rememberDraggableState() function, the trailing lambda for 

which is used to obtain the current delta value and add it to the 

xOffset state. This, in turn, causes the box to move in the direction 

of the drag gesture:

.draggable(

orientation = Orientation.Horizontal,

state = rememberDraggableState { distance ->

xOffset += distance

}

)

Preview the design and test that the Box can be dragged horizontally 

left and right:



Figure 50-2

The draggable() modifier is only useful for supporting drag gestures 

in either the horizontal or vertical plane. To support multi-directional 

drag operations, the PointerInputScope detectDragGestures function 

needs to be used.



50.6 Detecting drag gestures using PointerInputScope

The PointerInputScope detectDragGestures function allows us to 

support both horizontal and vertical drag operations simultaneously 

and can be implemented using the following syntax:

SomeComposable() {

Modifier

.pointerInput(Unit) {

detectDragGestures { _, distance ->

xOffset += distance.x

yOffset += distance.y

}

}

To see this in action, add and call a new function named 

PointerInputDrag in the MainActivity.kt file as follows:

@Composable



fun MainScreen() {

PointerInputDrag()

}

@Composable

fun PointerInputDrag() {

Box(modifier = Modifier.fillMaxSize()) {

var xOffset by remember { mutableStateOf(of) } 

var yOffset by remember { mutableStateOf(of) } 

Box(

Modifier

.offset { IntOffset(xOffset.roundToInt(), 

yOffset.roundToInt()) }

. backgrou nd (Color.Blue)

.size(ioo.dp)



.pointerlnput(Unit) {

detectDragGestures { _, distance ->

xOffset += distance.x

yOffset += distance.y

}

}

)

}

}

Since we are supporting both horizontal and vertical dragging 

gestures, we have declared states to store both x and y offsets. The 

detectDragGestures lambda passes us an Offset object which we 

have named distance and from which we can obtain the latest drag x 

and y offset values. These are added to the xOffset and yOffset 

states, respectively, causing the Box component to follow the 

dragging motion around the screen: 

.pointerInput(Unit) {



detectDragGestures { _, distance ->

xOffset += distance.x

yOffset += distance.y

}

}

Preview the design in interactive mode and test that it is possible to 

drag the box in any direction on the screen:

Figure 50-3



50.7 Scrolling using the scrollable modifier

We introduced scrolling in the chapter entitled “An Overview of 

Lists and Grids in Compose” in relation to scrolling through lists of 
items. Using the scrollable() modifier, scrolling gestures are not 

limited to list components. As with the draggable() modifier, 

scrollable() is limited to support either horizontal or vertical 

gestures but not both in the same modifier declaration. Scrollable 

state is managed using the rememberScrollableState() function, the 

lambda for which gives us access to the distance traveled by the 

scroll gesture which can, in turn, be used to adjust the offset of 

one or more composables in the hierarchy. Make the following 

changes to implement scrolling in the MainActivity.kt file:

@Composable

fun MainScreen() {

ScrollableModifier()

}

@Composable

fun ScrollableModifier() {



var offset by remember { mutableStateOf(of) }

Box(

Modifier

.fillMaxSize()

.scrollable(

orientation = Orientation.Vertical,

state = rememberScrollableState { distance ->

offset += distance

distance

}

)

) {

Box(modifier = Modifier



.size(9O.dp) 

.offset { IntOffset(o, offset.roundToInt()) } 

.background(Color.Red))

}

}

Preview the new composable and click and drag vertically on the 
screen. Note that the red box scrolls up and down in response to 

vertical scrolling gestures.



50.8 Scrolling using the scroll modifiers

As we saw in the previous example, the scrollable() modifier can only 

detect scrolling in a single orientation. To detect both horizontal and 

vertical scrolling, we need to use the scroll modifiers. These are 

essentially two modifiers named verticalScroll() and horizontalScroll() 

both of which must be passed a scroll state created via a call to the 

rememberScrollState() function, for example:

SomeComposable(modifier = Modifier

.verticalScroll(rememberScrollState())

.horizontalScroll(rememberScrollState())) {

}

In addition to supporting scrolling in both orientations, the scroll 

functions also have the advantage that they handle the actual 

scrolling. This means that we do not need to write code to apply 

new offsets to implement the scrolling behavior.

To demonstrate these modifiers, we will use a Box composable 

containing an image. The Box will be sized to act as a “viewport” 

through which only part of the image can be seen at any one time. 

We will, instead, use scrolling to allow the image to be scrolled 

within the box.



The first step is to add an image resource to the project. In 

previous chapters, we used the Resource Manager to add an image 

to the project resources. As we will demonstrate in this chapter, it is 

also possible to copy and paste an image file directly into the 

drawables folder within the Project tool window.

The image that we will use for the project is named vacation.jpg and 

can be found in the images folder of the sample code download 

available from the following URL:

https://www.ebookfrenzy.com/retail/compose13/index.php

Locate the image in the file system navigator for your operating 

system and select and copy it. Right-click on the app -> res -> 

drawable entry in the Project tool window and select Paste from the 

resulting menu to add the file to the folder:

res
El drawable

<> ic_launcher_background.xml
<> ic_launcher_foreground.xml (v24)
® vacation.jpg (v24)

> mipmap

Figure 50-4

Next, modify the MainActivity.kt file as follows:

https://www.ebookfrenzy.com/retail/compose1


import and roidx.compose. u i .geometry.Offset 

i mport and roidx.compose.ui.res.i mageResou rce 

. 

.

@Composable

fun MainScreen() {

ScrollModifiers()

}

@Composable

fun ScrollModifiers() {

val image = ImageBitmap.imageResource(id = R.drawable.vacation)



Box(modifier = Modifier

.size(i5O.dp)

.verticalScroll(rememberScrollState())

.horizontalScroll(rememberScrollState())) {

Canvas(

modifier = Modifier

.size(36o.dp, 27O.dp)

)

{

drawImage(

image = image,

topLeft = Offset(

x = 0f, 

y = 0f



),

)

}

}

}

When previewed in interactive mode, only part of the image will be 

visible within the Box component. Clicking and dragging on the 

image will allow you to move the photo so that other areas of the 

image can be viewed:

Figure 50-5



50.9 Detecting pinch gestures

The remainder of this chapter will look at gestures that require 

multiple touch-points on the screen, beginning with pinch 

gestures. Pinch gestures are typically used to change the size 

(scale) of content and give the effect of zooming in and out. This 

type of gesture is detected using the transformable() modifier 

which takes as parameters a state of type TransformableState, an 

instance of which can be created by a call to the 
rememberTransformableState() function. This function accepts a 

trailing lambda to which are passed the following three 

parameters:

•Scale change - A Float value updated when pinch gestures are 

performed.

•Offset change - An Offset instance containing the current x and y 

offset values. This value is updated when a gesture causes the 

target component to move (referred to as

•Rotation change - A Float value representing the current angle 
change when detecting rotation gestures.

All three of these parameters need to be declared when calling 
the rememberTransformableState() function, even if you do not 

make use of them in the body of the lambda. A typical



TransformableState declaration that tracks scale changes might 

read as follows:

var scale by remember { mutableStateOf(1f) }

val state = rememberTransformableState { scaleChange, 

offsetChange,

rotationChange
->

scale *=  scaleChange

}

Having created the state, it can then be used when calling the 
transformable() modifier on a composable as follows:

SomeComposable(modifier = Modifier

.transformable(state = state) {

}

)



As the pinch gesture progresses, the scale state will be updated. 

To reflect these changes we will need to make sure that the 

composable also changes in size. We can do this by accessing 

the graphics layer of the composable and setting the scaleX and 

scaleY properties to the current scale state. As we will 

demonstrate later, the rotation and translation transformations will 

also require access to the graphics layer.

Start this phase of the tutorial by making the following changes 

to the MainActivity.kt file to implement pinch gesture detection:

@Composable

fun MainScreen() {

MultiTouchDemo()

}

@Composable

fun MultiTouchDemo() {

var scale by remember { mutableStateOf(if) }

val state = rememberTransformableState {



scaleChange, offsetChange, rotationChange ->

scale *=  scaleChange

}

Box(contentAlignment = Alignment.Center, modifier =
Modifier.fillMaxSize()) {

Box(

Modifier

.graphicsLayer(

scaleX = scale,

scaleY = scale,

)

.transformable(state = state)

.background(Color.Blue) 

.size(100.dp)



}

)

}

To test out the pinch gesture the app will need to be run on a 

device or emulator because the Preview panel does not yet appear 

to support multi-touch gestures). Once running, perform a pinch 

gesture on the blue box to zoom in and out. If you are using an 

emulator, hold the keyboard Ctrl key (Cmd on macOS) while 

clicking and dragging to simulate multiple touches.



50.10 Detecting rotation gestures

We can now add rotation support to the example with just three 

additional lines of code:

@Composable

fun MultiTouchDemo() {

var scale by remember { mutableStateOf(1f) }

var angle by remember { mutableStateOf(of) }

val state = rememberTransformableState {

scaleChange, offsetChange, rotationChange ->

scale *=  scaleChange

angle += rotationChange

}

Box(contentAlignment = Alignment.Center, modifier =

Modifier.fillMaxSize()) {



rotationZ

Box(

Modifier

.graphicsLayer(

scaleX = scale,

scaleY = scale,

angle

)

.transformable(state = state) 

.background(Color.Blue) 

.size(ioo.dp) 

)

}

}



Compile and run the app and perform both pinch and rotation 

gestures. Both the size and angle of the Box should now change:

Figure 50-6



50.11 Detecting translation gestures

Translation involves the change in the position of a component. 

As with rotation detection, we can add translation support to our 

example with just a few lines of code:

@Composable

fun MultiTouchDemo() {

var scale by remember { mutableStateOf(f) }

var angle by remember { mutableStateOf(0f) }

var offset by remember { mutableStateOf(Offset.Zero)}

val state = rememberTransformableState {

scaleChange, offsetChange, rotationChange ->

scale *=  scaleChange

angle += rotationChange

offset += offsetChange



}

Box(contentAlignment = Alignment.Center, modifier =

Modifier.fillMaxSize()) {

Box(

Modifier

.graphicsLayer(

scaleX = scale,

scaleY = scale,

rotationZ = angle,

translationX = offset.x,

translationY = offset.y

) 

.transformable(state = state)



.background(Color.Blue) 

.size(ioo.dp)

)

} 

}

Note that the translation gesture only works when testing on a 

physical device and requires two contact points within the box to 

initiate.



50.12 Summary

Gestures are a key form of interaction between the user and an 
app running on an Android device. Using the gesture detection 

features of Compose, it is possible to respond to a range of 
screen interactions, including taps, long presses, scrolling, pinches, 

and rotations. Gestures are detected in Compose by applying 

modifiers to composables and responding to state changes.



51. An Introduction to Kotlin Flow

The earlier chapter, “Coroutines and LaunchedEffects in Jetpack 

Compose” taught us about Kotlin Coroutines. It explained how we 

can use them to perform multiple tasks concurrently without 

blocking the main thread. However, a shortcoming of suspend 

functions is that they are typically only useful for performing tasks 

that either do not return a result or only return a single value. In 

this chapter, we will introduce Kotlin Flows and explore how these 

can be used to return sequential streams of results from 

coroutine-based tasks.

By the end of the chapter, you should understand the Flow, 

StateFlow, and SharedFlow Kotlin types and appreciate the 

difference between hot and cold flow streams. In the next chapter 

Jetpack Compose SharedFlow we will look more closely at using 

SharedFlow within the context of an example Android app project.



51.1 Understanding Flows

Flows are a part of the Kotlin programming language and are 

designed to allow multiple values to be returned sequentially from 

coroutine-based asynchronous tasks. A stream of data arriving over 

time via a network connection would, for example, be an ideal 

situation for using a Kotlin flow.

Flows are comprised of intermediaries, and Producers are responsible 

for providing the data that makes up the flow. The code that 

retrieves the stream of data from our hypothetical network 

connection, for example, would be considered a producer. As each 

data value becomes available, the producer emits that value to the 

flow. The consumer sits at the opposite end of the flow stream and 

collects the values as the producer emits them.

Intermediaries may be placed between the producer and consumer to 

perform additional operations on the data, such as filtering the 

stream, performing further processing, or transforming the data in 

other ways before it reaches the consumer. Figure 51-1 illustrates the 

typical structure of a Kotlin flow:

Figure 51-1



The flow shown in the above diagram consists of a single producer 

and consumer. However, in practice, multiple consumers can collect 

emissions from a single producer, and for a single consumer to 

collect data from multiple producers.

The remainder of this chapter will demonstrate many key features of 

Kotlin flows within the context of Jetpack Compose-based 

development.



51.2 Creating the sample project

Launch Android Studio and create a new Empty Activity project 

named FlowDemo, specifying com.exampleflowdemo as the package 

name and selecting a minimum API level of API 26: Android 8.0 

(Oreo).

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named ScreenSetup which, in turn, 
calls a function named MainScreen:

@Composable

fun ScreenSetup() {

MainScreen()

}

@Composable 

fun MainScreen() {

}



Edit the onCreate() method function to call ScreenSetup instead of 

Greeting (we will modify the GreetingPreview composable later).

Next, modify the build.gradle (Module: app) file to add the 

Compose view model and Kotlin runtime extensions libraries to 

the dependencies section:

dependencies {

implementation 'androidx.lifecycle:lifecycle-viewmodel- 
compose:2.5.i'

implementation 'androidx.lifecycle:lifecycle-runtime-ktx:2.5.i'

}

When prompted, click on the Sync Now button at the top of the 

editor panel to commit the change.



51.3 Adding a view model to the project

For this project, the flow will reside in a view model class. Add 
this model to the project by locating and right-clicking on the app 

-> java -> com.exampleflowdemo entry in the project tool window 

and selecting the New -> Kotlin Class/File menu option. In the 

resulting dialog, name the class DemoViewModel before tapping 

the keyboard Enter key. Once created, modify the file so that it 

reads as follows:

package com.example.flowdemo

import androidx.lifecycle.ViewModel

class DemoViewModel : ViewModel() {

}

Return to the MainActivity.kt file and make changes to access an 

instance of the view model: 

import androidx.lifecycle.viewmodel.compose.viewModel



@Composable 

fun DemoViewModel = {

MainScreen()

}



51.4 Declaring the flow

The Kotlin Flow type represents the most basic form of flow. Each 

flow can only emit data of a single type which must be specified 

when the flow is declared. The following declaration, for example, 

declares a Flow instance designed to stream String-based data:

Flow

When declaring a flow, we need to assign the code to generate 

the data stream. This code is referred to as the producer This can 

be achieved using the flow() builder, which takes as a parameter a 

coroutine suspend block containing the producer block code. For 

example, add the following code to the DemoViewModel.kt file to 

declare a flow named myFlow designed to emit a stream of 
integer values:

package com.example.flowdemo

import androidx.lifecycle.ViewModel

import kotlinx.coroutines.*

import kotlinx.coroutines.flow.*  

class DemoViewModel : ViewModel() {



val myFlow: Flow = flow {

// Producer block

}

}

As an alternative to the flow builder, the flowOf() builder can be 

used to convert a fixed set of values into a flow:

val myFlow2 = flowOf(2, 4, 6, 8)

Also, many Kotlin collection types now include an asFlow() 

extension function that can be called to convert the contained 

data to a flow. The following code, for example, converts an array 

of string values to a flow: 

val myArrayFlow = arrayOf("Red", "Green", "Blue").asFlow()



51.5 Emitting flow data

Once a flow has been built, the next step is to ensure the data 

is emitted so that it reaches any consumers observing it. Of the 

three flow builders we looked at in the previous section, only the 

flowOf() and asFlow() builders create flows that automatically emit 

the data as soon as a consumer starts collecting. In the case of 

the flow builder, however, we need to write code to manually emit 

each value as it becomes available. We achieve this by making 
calls to the emit() function and passing through as an argument 

the current value to be streamed. The following changes to our 

myFlow declaration implement a loop that emits the value of an 
incrementing counter. In addition, a 2-second delay is performed 

on each loop iteration to demonstrate the asynchronous nature of 

flow streams:

val myFlow: Flow = flow {

for (i in 0..9) {

emit(i) 

delay(2ooo)

}



}



51.6 Collecting flow data as state

As we will see later in the chapter, one way to collect data from 
a flow within a consumer is to call the collect() method on the 

flow instance. When working with Compose, however, a less 

flexible, but more convenient option is to convert the flow to 

state by calling the collectAsState() function on the flow instance. 

This allows us to treat the data just as we would any other state 

within our code. To see this in action, edit the MainActivity.kt file 

and make the following changes: 

import androidx.compose.runtime.*

import kotlinx.coroutines.flow.*

@Composable 

fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {



}

@Composable 

fun { 

val count by flow.collectAsState(initial = o)

}

@Preview(showBackground = true) 

@Composable 

fun GreetingPreview() {

FlowDemoTheme {

ScreenSetu p (viewM odel())



}

}

The changes pass a myFlow reference to the MainScreen 

composable where it is converted to a State with an initial value 

of 0. Next, we need to design a simple user interface to display 

the count values as they are emitted to the flow: 

import androidx.compose.foundation.layout.*

import androidx.compose.ui.Alignment

import androidx.compose. u i .text.TextStyle

import androidx.compose.ui.unit.sp

@Composable



fun MainScreen(myFlow: Flow) {

val count by myFlow.collectAsState(initial = o)

Column(

modifier = Modifier.fillMaxSize(),

verticalArrangement = Arrangement.Center,

horizontalAlignment = Alignment.CenterHorizontally

) {

Text(text = "$count", style = TextStyle(fontSize = 40.sp))

}

}

Try out the app either using the preview panel in interactive 

mode, or by running it on a device or emulator. Once the app 

starts, the count value displayed on the Text component should 

increment as the flow emits each new value.



51.7 Transforming data with intermediaries

In the previous example, we passed the data values to the 
consumer without any modifications. However, we can change the 

data between the producer and consumer by applying one or 

more intermediate flow In this section, we will look at some of 

these operators.

We can use the map() operator to convert the value to another 

value. For example, we can use map() to convert our integer 

value to a string and add some additional text. Edit the 

DemoViewModel.kt file and create a modified version of our flow 

as follows: 

class DemoViewModel : ViewModel() {

val myFlow: Flow = flow {

for (i in 0..9) {

emit(i)



delay(2ooo)

}

}

val newFlow = myFlow.map {

"Current value = $it"

}

}

Before we can test this operator, some changes are needed within 
the MainActivity.kt file to use this new flow:

Composable

fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {

}

@Composable



fun MainScreen(flow: {

val count by flow.collectAsState(initial = "Current value

When the code is executed, the text will display the text string 

updated with the count:

Current value = 1

Current value = 2

The map() operator will perform the conversion on every collected 

value. We can use the filter() operator to control which values get 

collected. The filter code block must contain an expression that 
returns a Boolean value. Only if the expression evaluates to true 

does the value pass through to the collection. For example, the 

following code filters odd numbers out of the data flow (note that 

we’ve left the map() operator in place to demonstrate the 

chaining of operators):



val newFlow = myFlow 

.filter {

it % 2 == o

}

.map {

"Current value = $it"

}

The above changes will display count updates only for even 
numbers.

The transform() operator serves a similar purpose to map() but 

provides more flexibility. The transform() operator also needs to 

manually emit the modified result. A particular advantage of 

transform() is that it can emit multiple values, for example:

val newFlow = myFlow 

.transform {



emit("Value = $it") 

delay(iooo)

val doubled = it * 2

emit("Value doubled = $doubled")

}

// Output

Value = 0

Value doubled = 0

Value = 1

Value doubled = 2

Value = 2

Value doubled = 4

Value = 3



Before moving to the next step, revert the newFlow declaration to 

its original form:

val newFlow = myFlow.map {

"Current value = $it"

}



51.8 Collecting flow data

So far in this chapter, we have used the collectAsState() function 

to convert a flow to a State instance. Behind the scenes, this 

method uses the collect() function to initiate the data collection. 

Although collectAsState() works well most of the time, there will 

be situations where you may need to call In fact, collect() is just 

one of several so-called terminal flow operators that can be called 

directly to achieve results that aren’t possible using

These operators are suspend functions so can only be called from 

within a coroutine scope. In the chapter entitled “Coroutines and 

LaunchedEffects in Jetpack we looked at coroutines and explained 

how to use LaunchedEffect to execute asynchronous code safely 

from within a composable function. Once we have implemented 

the LaunchedEffect call, we still need the streamed values to be 

stored as state, so we also need a mutable state into which to 

store the latest value. Bringing these requirements together, modify 

the MainScreen function so that it reads as follows:

@Composable

fun MainScreen(flow: Flow) {

var count by remember { mutableStateOf("Current value =")}

LaunchedEffect(Unit) {



flow.collect {

count = it

}

}

Column(

modifier = Modifier.fillMaxSize(),

Test the app and verify that the text component updates as 
expected. Now that we are using the collect() function we can 

begin to explore some options that were not available to us when 

we were using

For example, to add code to be executed when the stream ends, 

the collection can be performed in a tryfinally construct, for 

example:



LaunchedEffect(Unit) {

try {

flow.collect {

count = it

}

} finally {

count = "Flow stream ended."

}

}

The collect() operator will collect every value emitted by the 

producer, even if new values are emitted while the last value is 

still being processed in the consumer. For example, our producer 

is configured to emit a new value every two seconds. Suppose, 

however, that we simulate our consumer taking 2.5 seconds to 

process each collected value. When executed, we will still see all 

of the values listed in the output because collect() does not 

discard any uncollected values regardless of whether more recent 

values have been emitted since the last collection. This type of 



behavior is essential to avoid data loss within the flow. In some 
situations, however, the consumer may be uninterested in any 

intermediate values emitted between the most recently processed 

value and the latest emitted value. In this case, the collectLatest() 

operator can be called on the flow instance. This operator works 

by canceling the current collection if a new value arrives before 

processing completes on the previous value and restarts the 

process on the latest value.

The conflate() operator is similar to the collectLatest() operator 

except that instead of canceling the current collection operation 

when a new value arrives, conflate() allows the current operation 

to complete, but discards intermediate values that arrive during 

this process. When the current operation completes, the most 

recent value is then collected.

Another collection operator is the single() operator. This operator 

collects a single value from the flow and throws an exception if it 

finds another value in the stream. This operator is useful where 

the appearance of a second stream value indicates that something 

else has gone wrong somewhere in the app or data source.



51.9 Adding a flow buffer

When a consumer takes time to process the values emitted by a 

producer, there is the potential for execution time inefficiencies to 

occur. Suppose, for example, that in addition to the two-second 

delay between each emission from our newFlow producer, the 

collection process in our consumer takes an additional second to 

complete. We can simulate this behavior as follows: 

import kotlin.system.measureTimeMillis

import kotlinx.coroutines.delay

LaunchedEffect(Unit) {

val elapsedTime = measureTimeMillis {

flow.collect {



count = it

delay(iooo) 

}

}

count = "Duration = $elapsedTime"

}

To allow us to measure the total time to fully process the flow, 
the consumer code has been placed in the closure of a call to 

the Kotlin measureTimeMillis() function. Run the app and, after 

execution completes, a duration similar to the following will be 

reported:

Duration = 30044

This accounts for approximately 20 seconds to process the 10 
values within newFlow and an additional 10 seconds for those 

values to be collected. There is an inefficiency here because the 
producer is waiting for the consumer to process each value before 

starting on the next value. This would be much more efficient if 

the producer did not have to wait for the consumer. We could, of 



course, use the collectLatest() or conflate() operators, but only if 
the loss of intermediate values is not a concern. To speed up the 

processing while also collecting every emitted value we can make 

use of the buffer() operator. This operator buffers values as they 

are emitted and passes them to the consumer when it is ready to 

receive them. This allows the producer to continue emitting values 

while the consumer processes preceding values while ensuring that 

every emitted value is collected. The buffer() operator may be 

applied to a flow as follows:

LaunchedEffect("Unit") {

val elapsedTime = measureTimeMillis {

flow

.buffer()

.collect {

count = it

delay(1000)

}

}



count = "Duration = $elapsedTime

}

Execution of the above code indicates that we have now reclaimed 

the 10 seconds previously lost in the collection code:

Duration = 20052



51.10 More terminal flow operators

The reduce() operator is one of several other terminal flow 

operators that can be used in place of a collection operator to 

make changes to the flow data. The reduce() operator takes two 

parameters in the form of an accumulator and a The first flow 

value is placed in the accumulator and a specified operation is 

performed between the accumulator and the current value (with 

the result stored in the accumulator). To try this out we need to 

revert to using myFlow instead of newFlow in addition to adding 

the reduce() operator call:

@Composable

fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {

}

@Composable

fun MainScreen(flow: {

var count by remember { mutableStateOf(o) }

LaunchedEffect(Unit) {



flow

.reduce { accumulator, value ->

count = accumulator 

accumulator + value

}

}

}

The fold() operator works similarly to the reduce() operator, with 

the exception that it is passed an initial accumulator value:



LaunchedEffect(Unit) {

flow

{ accumulator, value ->

count = accumulator 

accumulator + value

}

}



51.11 Flow flattening

As we have seen in earlier examples, we can use operators to 
perform tasks on values collected from a flow. An interesting 

situation occurs, however, when that task itself creates one or 

more flows resulting in a of flows”. In situations where this 

occurs, these streams can be flattened into a single stream.

Consider the following example code which declares two flows:

val myFlow: Flow = flow {

for (i in 1..5) {

delay(1000) 

emit(i)

}

}

fun doubleIt(value: Int) = flow {

emit(value)



delay(iooo)

emit(value + value)

}

If we were to call doubleIt() for each value in the myFlow stream 

we would end up with a separate flow for each value. This 

problem can be solved by concatenating the doubleIt() streams 

into a single flow using the flatMapConcat() operator as follows:

@Composable

fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {

}

@Composable 

fun {

var count by remember { mutableStateOf(0)}

LaunchedEffect(Unit) {



viewModel.myFlow

.flatMapConcat { viewModel.doublelt(it) }

.collect { count = it }

} 

. 

.

When this modified code executes we will see the following 

output from the collect() operator:

1

2

2

4

3

6



4

8

5

10

As we can see from the output, the doubleIt() flow has emitted 
the value provided by myFlow followed by the doubled value. 

When using the flatMapConcat() operator, the doubleIt() calls are 

being performed synchronously, causing execution to wait until 

doubleIt() has emitted both values before processing the next flow 

value. The emitted values can instead be collected asynchronously 

using the flatMapMerge() operator as follows:

viewModel.myFlow

.flatMapMerge { viewModel.doubleIt(it) }

.collect {

count = it

println("Count = $it")



}

}

Because the collection is being performed asynchronously the 

displayed value change too quickly to see all of the count values. 

Display the Logcat tool window to see the full list of collected 

values generated by the println() call:

I/System.out: Count = 1

I/System.out: Count = 2

I/System.out: Count = 2

I/System.out: Count = 4

I/System.out: Count = 3

I/System.out: Count = 6

I/System.out: Count = 4

I/System.out: Count = 8

I/System.out: Count = 5



I/System.out: Count = 10



51.12 Combining multiple flows

Multiple flows can be combined into a single flow using the zip() 
and combine() operators. The following code demonstrates the 

zip() operator being used to convert two flows into a single flow:

var count by remember {

LaunchedEffect(Unit) {

val flowi = (i..5).asFlow()

.onEach { delay(iooo) }

val flow2 = flowOf("one", "two", "three", "four")

.onEach { delay(i500) }

flowi.zip(flow2) { value, string -> "$value, $string" }

.collect { count = it }

} 

// Output



1, one

2, two

3, three

4, four

Note that we have applied the onEach() operator to both flows in 

the above code. This is a useful operator for performing a task 

on receipt of each stream value.

The zip() operator will wait until both flows have emitted a new 

value before performing the collection. The combine() operator 

works slightly differently in that it proceeds as soon as either flow 

emits a new value, using the last value emitted by the other flow 

in the absence of a new value:

val flow1 = (1..5).asFlow()

.onEach { delay(1000) }



val flow2 = flowOf("one", "two", "three", "four")

.onEach { delay(i5oo) }

{ value, string -> "$value, $string" }

.collect { count = it }

// Output

1, one

2, one

3, one

3, two

4, two

4, three



5, three

5, four

As we can see from the output, multiple instances have occurred 

where the last value has been reused on a flow because a new 

value was emitted on the other.



51.13 Hot and cold flows

So far in this chapter, we have looked exclusively at the Kotlin 
Flow type. Kotlin also provides additional types in the form of 

StateFlow and SharedFlow. Before exploring these, however, it is 

important to understand the concept of hot and cold flows.

A stream declared using the Flow type is referred to as a cold 

flow because the code within the producer does not begin 

executing until a consumer begins collecting values. StateFlow and 

SharedFlow, on the other hand, are referred to as hot flows 

because they begin emitting values immediately, regardless of 

whether any consumers are collecting the values.

Once a consumer begins collecting from a hot flow, it will receive 

the latest value emitted by the producer followed by any 

subsequent values. Unless steps are taken to implement caching, 

any previous values emitted before the collection starts will be 

lost.

Another important difference between Flow, StateFlow, and 

SharedFlow is that a Flow-based stream cannot have multiple 

collectors. Each Flow collector launches a new flow with its own 

independent data stream. With StateFlow and SharedFlow, on the 

other hand, multiple collectors share access to the same flow.



51.14 StateFlow

StateFlow, as the name suggests, is primarily used as a way to 

observe a change in state within an app such as the current 

setting of a counter, toggle button, or slider. Each StateFlow 
instance is used to store a single value that is likely to change 

over time and to notify all consumers when those changes occur. 

This enables you to write code that reacts to changes in state 

instead of code that has to continually check whether or not a 

state value has changed. StateFlow behaves the same way as 

LiveData with the exception that LiveData has lifecycle awareness 

and does not require an initial value (LiveData was covered 
previously in the chapter titled “Working with ViewModels in

To create a StateFlow stream, begin by creating an instance of 

MutableStateFlow, passing through a mandatory initial value. This 

is the variable that will be used to change the current state value 

from within the app code:

private val _stateFlow = MutableStateFlow (0)

Next, call asStateFlow() on the MutableStateFlow instance to 

convert it into a StateFlow from which changes in state can be 

collected: 

val stateFlow = _stateFlow.asStateFlow() 



Once created, any changes to the state are made via the value 

property of the mutable state instance. The following code, for 

example, increments the state value:

_stateFlow.value += 1

Once the flow is active, the state can be consumed using 

collectAsState() or directly using a collection function, though it is 

generally recommended to collect from StateFlow using the 

collectLatest() operator. To try out an example, begin by making 

the following modifications to the DemoViewModel.kt file: 

class DemoViewModel : ViewModel() {

private val _stateFlow = MutableStateFlow(o)

val stateFlow = _stateFlow.asStateFlow()

fun increaseValue() {

stateFlow.value += 1



}

Next, edit the MainActivity.kt file and change MainScreen so that it 

collects from the new state flow and to add a button configured 

to call the view model increaseValue() function: 

import androidx.compose.material3.Button

@Composable

fun MainScreen(viewModel: DemoViewModel) {

val count by viewModel.stateFlow.collectAsState()

Column(



modifier = Modifier.fillMaxSize(), 

verticalArrangement = Arrangement.Center,

horizontalAlignment = Alignment.CenterHorizontally

) {

Text(text = "$count", style = TextStyle(fontSize = 4O.sp))

Button(onClick = { viewModel.increaseValue() }) {

Text("Click Me")

}

}

}

Run the app and verify that the button updates the count Text 

component with the incremented count value each time it is 

clicked.



51.15 SharedFlow

SharedFlow provides a more general-purpose streaming option 

than that offered by StateFlow. Some of the key differences 

between StateFlow and SharedFlow are as follows:

•Consumers are generally referred to as subscribers.

•An initial value is not provided when creating a SharedFlow 

instance.

•SharedFlow allows values that were emitted prior to collection 

starting to be “replayed” to the collector.

•SharedFlow emits values instead of using a value property.

SharedFlow instances are created using MutableSharedFlow as the 

backing property on which we call the asSharedFlow() function to 

obtain a SharedFlow reference. For example, make the following 

changes to the DemoViewModel class to declare a shared flow: 

import androidx.lifecycle.viewModelScope



import kotlinx.coroutines.channels.BufferOverflow 

class DemoViewModel : ViewModel() {

private val _sharedFlow = MutableSharedFlow(

replay = 10, 

onBufferOverflow = BufferOverflow.DROP_OLDEST

)

val sharedFlow = _sharedFlow.asSharedFlow()

As configured above, new flow subscribers will receive the last 10 

values before receiving any new values. The above flow is also 

configured to discard the oldest value when more than 10 values 



are buffered. The full set of options for handling buffer overflows 

are as follows:

- The latest value is dropped when the buffer is full leaving the 

buffer unchanged as new values are processed.

- Treats the buffer as a “first-in, first-out” stack where the oldest 

value is dropped to make room for a new value when the buffer 

is full.

- The flow is suspended when the buffer is full.

Values are emitted on a SharedFlow stream by calling the emit() 

method of the MutableSharedFlow instance from within a 

coroutine. Remaining in the DemoViewModel.kt file, add a new 

method that can be called from the main activity to start the 

shared flow:

fun startSharedFlow() {

viewModelScope.launch {

for (i in 1..5) {

_sharedFlow.emit(i) 

delay(2000)



}

}

}

Finally, make the following changes to the MainScreen 

composable:

@Composable

fun MainScreen(viewModel: DemoViewModel) {

val count by viewModel.sharedFlow.collectAsState(initial = o)

Column(

modifier = Modifier.fillMaxSize(),

verticalArrangement = Arrangement.Center,

horizontalAlignment = Alignment.CenterHorizontally

) {

Text(text = "$count", style = TextStyle(fontSize = 40.sp))



Button(onClick = { viewModel.startSharedFlowQ }) {

Text("Click Me")

}

}

}

Run the app on a device or emulator (shared flow code does not 

always work in the interactive preview) and verify that clicking the 

button causes the count to begin updating. Note that since new 

values are being emitted from within a coroutine you can click on 

the button repeatedly and collect values from multiple flows.

One final point to note about shared flows is that the current 

number of subscribers to a SharedFlow stream can be obtained 

via the subscriptionCount property of the mutable instance: 

val subCount = _sharedFlow.subscriptionCount



51.16 Converting a flow from cold to hot

A cold flow can be made hot by calling the shareIn() function on 

the flow. This call requires a coroutine scope in which to execute 

the flow, a replay value, and a start policy setting indicating the 

conditions under which the flow is to start and stop. The 

available start policy options are as follows:

- The flow is kept alive as long as it has active subscribers.

- The flow begins immediately and remains active even in the 

absence of active subscribers.

- The flow begins only after the first consumer subscribes and 

remains active even in the absence of active subscribers.

We could, for example, make one of our earlier cold flows hot 
using the following code:

val hotFlow = myFlow.shareIn(

viewModelScope,

replay = 1,

started = SharingStarted.WhileSubscribed()



)



51.17 Summary

Kotlin flows allow sequential data or state changes to be returned 

over time from asynchronous tasks. A flow consists of a producer 

that emits a sequence of values and consumers that collect and 

process those values. The flow stream can be manipulated 

between the producer and consumer by applying one or more 

intermediary operators including transformations and filtering. 

Flows are created based on the Flow, StateFlow, and SharedFlow 

types. A Flow-based stream can only have a single collector while 

StateFlow and SharedFlow can have multiple collectors.

Flows are categorized as being hot or cold. A cold flow does not 
begin emitting values until a consumer begins collection. Hot 

flows, on the other hand, begin emitting values as soon as they 

are created, regardless of whether or not the values are being 

collected. In the case of SharedFlow, a predefined number of 

values may be buffered and subsequently replayed to new 

subscribers when they begin collecting values. A cold flow can be 

made hot via a call to the flow’s shareIn() function.



52. A Jetpack Compose SharedFlow Tutorial

The previous chapter introduced Kotlin flows and explored how 
these can be used to return multiple sequential values from 

within coroutine-based asynchronous code. This tutorial will look 

at a more detailed flow implementation, this time using 

SharedFlow. The tutorial will also demonstrate how to ensure that 

flow collection responds correctly to an app switching between 

background and foreground modes.



52.1 About the project

The app created in this chapter will consist of a user interface 

containing a List composable. We will activate a shared flow 

within a ViewModel as soon as the view model is created and 

emit an integer value every two seconds. The Main Activity will 

collect the values from the flow and display them within the List. 

We will then modify the project to suspend the collection process 

while the app is placed in the background.



52.2 Creating the SharedFlowDemo project

Launch Android Studio and create a new Empty Activity project 

named SharedFlowDemo, specifying com.example.sharedflowdemo as 

the package name, and selecting a minimum API level of API 26: 
Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named ScreenSetup which, in turn, 
calls a function named MainScreen:

@Composable

fun ScreenSetup() {

MainScreen()

}

@Composable 

fun MainScreen() {

}



Edit the OnCreate() method function to call ScreenSetup instead 

of Greeting and remove the Greeting call from GreetingPreview.

Next, modify the build.gradle (Module: app) file to add the 

Compose view model and Kotlin runtime extensions libraries to 

the dependencies section:

dependencies {

implementation 'androidx.lifecycle:lifecycle-viewmodel- 
compose:2.5.i'

implementation 'androidx.lifecycle:lifecycle-runtime-ktx:2.5.i'

}

When prompted, click on the Sync Now button at the top of the 

editor panel to commit to the change.



52.3 Adding a view model to the project

For this project, the flow will once again reside in a view model 
class. Add this model to the project by locating and right-clicking 

on the app -> java -> com.example.sharedflowdemo entry in the 

Project tool window and selecting the New -> Kotlin Class/File 

menu option. In the resulting dialog, name the class 

DemoViewModel before tapping the keyboard Enter key. Once 

created, modify the file so that it reads as follows:

package com.example.flowdemo

import androidx.lifecycle.ViewModel

class DemoViewModel : ViewModel() {

}

Return to the MainActivity.kt file and make changes to access an 

instance of the view model: 

import androidx.lifecycle.viewmodel.compose.viewModel



@Composable 

fun DemoViewModel = {

MainScreen()

}



52.4 Declaring the SharedFlow

The next step is to add some code to the view model to create 

and start the SharedFlow instance. Begin by editing the 

DemoViewModel.kt file so that it reads as follows:

package com.example.sharedflowdemo

import androidx.lifecycle.ViewModel

import androidx.lifecycle.viewModelScope

import kotlinx.coroutines.delay

import kotlinx.coroutines.flow.MutableSharedFlow

import kotl i nx.corouti nes.flow.asShared Flow

import kotlinx.coroutines.launch

class DemoViewModel : ViewModel() {

private val _sharedFlow = MutableSharedFlow()

val sharedFlow = _sharedFlow.asSharedFlow()



init {

sharedFlowInit()

}

fun sharedFlowInit() {

}

}

When the ViewModel instance is created, the initializer will call 

the sharedFlowInit() function. This function aims to launch a new 

coroutine containing a loop in which new values are emitted 

using a shared flow.

With the flow declared, we can add code to the sharedFlowInit() 

function to launch the flow using the view model’s scope. This 

will ensure that the flow ends when the view model is destroyed:

private fun sharedFlowInit() {

viewModelScope.launch {



for (i in 1..1000) {

delay(2ooo)

_sharedFlow.emit(i)

}

}

}



52.5 Collecting the flow values

Before testing the app for the first time we need to add some 
code to perform the flow collection and display those values in a 

LazyColumn composable. As the values are collected from the 

flow, we will add them to a mutable list state instance which, in 

turn, will serve as the data source for the LazyColumn content. 

We also need to pass a reference to the shared flow down to the 

MainScreen composable. Edit the MainActivity.kt file and make the 
following changes: 

import androidx.compose.runtime.*  

import androidx.compose.foundation.layout.padding 

import androidx.compose.foundation.lazy.*  

import androidx.compose.ui.unit.dp 

import androidx.compose.ui.platform.LocalLifecycleOwner 

import kotlinx.coroutines.flow.SharedFlow



@Composable 

fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {

}

@Composable

fun {

val messages = remember { mutableStateListOf()}

LazyColumn {

items(messages) {

Text(

"Collected Value = $it",



style = MaterialTheme.typography.headlineLarge,

modifier = Modifier.padding(5.dp)

)

}

}

}

@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

SharedFlowDemoTheme {

val viewModel: DemoViewModel = viewModel()

MainScreen(viewModel.sharedFlow)

}



}

With these changes made we are ready to collect the values 

emitted by the shared flow and display them. Since the flow 

collection will be taking place in a coroutine and outside the 

scope of the MainScreen composable, the launch code needs to 

be placed within a LaunchedEffect call (a topic covered in the 

chapter titled “Coroutines and LaunchedEffects in Jetpack Add a 

LaunchedEffect call to the MainScreen composable as follows to 

collect from the flow: 

import kotl i nx.corouti nes.flow.col lect

@Composable

fun MainScreen(sharedFlow: SharedFlow) {

val messages = remember { mutableStateListOf()}



val lifecycleOwner = LocalLifecycleOwner.current

LaunchedEffect(keyi = Unit) {

sharedFlow.collect {

messages.add(it)

}

}

This code accesses the shared flow instance within the view 

model and begins collecting values from the stream. Each 

collected value is added to the messages mutable list. This will 

cause a recomposition and the new value will appear at the end 

of the LazyColumn list.



52.6 Testing the SharedFlowDemo app

Compile and run the app on a device or emulator and verify that 

values appear within the LazyColumn as the shared flow emits them. 

Rotate the device into landscape orientation to trigger a configuration 

change and confirm that the count continues without restarting from 

zero:

12:47 O □ M G

Collected Value = 5
Collected Value = 6
Collected Value = 7
Collected Value = 8
Collected Value = 9
Collected Value = 10

Figure 52-1

With the app now working, it is time to look at what happens when 

it is placed in the background.



52.7 Handling flows in the background

Our app has a shared flow that feeds values to the user interface 
in the form of a LazyColumn. By performing the collection in a 

coroutine scope, the user interface remains responsive while the 

flow is being collected (you can verify this by scrolling up and 

down within the list of values while the list is updating). This 

raises the question of what happens when the app is placed in 

the background. To find out, we can add some diagnostic output 

to both the emitter and collector code. First, edit the 
DemoViewModel.kt file and add a println() call within the body of 

the emission for loop:

private fun sharedFlowInit() {

viewModelScope.launch {

for (i in 1..1000) {

delay(2ooo)

println("Emitting $i")

_sharedFlow.emit(i)

}



}

}

Make a similar change to the collection code block in the 

MainActivity.kt file as follows: 

• 

•

LaunchedEffect(keyi = Unit) { 

sharedFlow.collect {

println("Collecting $it") 

messages.add(it)

}

}



Once these changes have been made, display the Logcat tool 

window, enter System.out into the search bar, and run the app. As 

the list of values updates, output similar to the following should 

appear in the Logcat tool window:

Emitting 1

Collecting 1

Emitting 2

Collecting 2

Emitting 3

Collecting 3

Now place the app in the background and note that both the 
emission and collection operations continue to run, even though 

the app is no longer visible to the user. The continued emission 

is to be expected and is the correct behavior for a shared flow 

residing within a view model. However, it is wasteful of resources 



to collect data and update a user interface that is not currently 

visible to the user. We can resolve this problem by executing the 

collection using the repeatOnLifecycle function.

The repeatOnLifecycle function is a suspend function that runs a 

specified block of code each time the current lifecycle reaches or 

exceeds one of the following states:

Conversely, when the lifecycle drops below the target state, the 

coroutine is canceled.

In this case, we want the collection to start each time 

Lifecycle.State.STARTED is reached and to stop when the lifecycle 

is suspended. To implement this, modify the collection code as 

follows: 

import androidx.l ifecycle. Lifecycle



import androidx.l ifecycle. repeatOn Lifecycle

LaunchedEffect(key1 = Unit) {

lifecycleOwner.repeatOn Lifecyde(Lifecyde.State.STARTED) {

sharedFlow.collect {

println("Collecting $it")

messages.add(it)

}

}

}

Run the app once again, place it in the background and note that 
only the emission diagnostic messages appear in the Logcat 

output, confirming that the main activity is no longer collecting 



values and adding them to the RecyclerView list. When the app is 

brought to the foreground, the collection will resume at the latest 

emitted value since we did not configure replay on the shared 

flow.



52.8 Summary

In this chapter, we created a SharedFlow instance within a view 

model. We then collected the streamed values within the main 

activity and used that data to update the user interface. We also 

outlined the importance of avoiding unnecessary flow-driven user 

interface updates when an app is placed in the background, a 

problem that can easily be resolved using the repeatOnLifecycle 

function. We can use this function to cancel and restart 

asynchronous tasks such as flow collection when the containing 

lifecycle reaches a target lifecycle state.



53. Creating, Testing, and Uploading an Android App Bundle

Once the development work on an Android application is 

complete and it has been tested on a wide range of Android 

devices, the next step is to prepare the application for submission 

to Google Play. Before submission can take place, however, the 

application must be packaged for release and signed with a 

private key. This chapter will explain how to obtain a private key, 

prepare the Android App Bundle for the project, and upload it to 

Google Play.



53.1 The release preparation process

Up until this point in the book, we have been building application 

projects in a mode suitable for testing and debugging. Building an 

application package for release to customers via Google Play, on 

the other hand, requires that some additional steps be taken. The 

first requirement is that the application is compiled in release 

mode instead of debug mode. Secondly, the application must be 

signed with a private key that uniquely identifies you as the 

application’s developer. Finally, the application must be packaged 
into an Android App

While each of these tasks can be performed outside of the 

Android Studio environment, the procedures can more easily be 

performed using the Android Studio build mechanism as outlined 

in this chapter. First, however, it is important to understand a 

little more about Android App Bundles.



53.2 Android app bundles

When a user installs an app from Google Play, the app is 
downloaded in the form of an APK file. This file contains 

everything needed to install and run the app on the user’s device. 
Before the introduction of Android Studio 3.2, the developer would 

generate one or more APK files using Android Studio and upload 

them to Google Play. To support multiple device types, screen 

sizes, and locales this would require either the creation and 

upload of multiple APK files customized for each target device 
and locale or the generation of a large universal APK containing 

all of the different configuration resources and platform binaries 

within a single package.

Creating multiple APK files involved a significant amount of work 

that had to be repeated each time the app needed to be updated 

imposing a considerable time overhead on the app release 

process.

The universal APK option, while less of a burden to the developer, 

caused an entirely unexpected problem. By analyzing app 

installation metrics, Google discovered that the larger an 
installation APK file becomes (resulting in longer download times 

and increased storage use on the device), the fewer conversions 

the app receives. The conversion rate is calculated as a 

percentage of the users who completed the installation of an app 

after viewing that app on Google Play. Google estimates that the 



conversion rate for an app drops by 1% for each 6MB increase in 
APK file size.

Android App Bundles solve both of these problems by providing a 

way for the developer to create a single package from within 

Android Studio and have custom APK files automatically generated 

by Google Play for each individual supported configuration (a 

concept referred to as Dynamic

An Android App Bundle is essentially a ZIP file containing all of 

the files necessary to build APK files for the devices and locales 

for which support has been provided within the app project. The 

project might, for example, include resources and images for 

different screen sizes. When a user installs the app, Google Play 

receives information about the user’s device including the display, 

processor architecture, and locale. Using this information, the 

appropriate pre-generated APK files are transferred onto the user’s 

device.

An additional benefit of Dynamic Delivery is the ability to split an 

app into multiple modules, referred to as dynamic feature modules, 

where each module contains the code and resources for a 

particular area of functionality within the app. Each dynamic 

feature module is contained within a separate APK file from the 

base module and is downloaded to the device only when that 

feature is required by the user. Dynamic Delivery and app bundles 
also allow for the creation of instant dynamic feature modules



which can be run instantly on a device without the need to install 

an entire app.

Although it is still possible to generate APK files from Android 

Studio, app bundles are now the recommended way to upload 

apps to Google Play.



53.3 Register for a Google Play Developer Console account

The first step in the application submission process is to create a 

Google Play Developer Console account. To do so, navigate to 

https://play.google.com/apps/publish/signup/ and follow the 

instructions to complete the registration process. Note that there 

is a one-time $25 fee to register. Once an application goes on 

sale, Google will keep 30% of all revenues associated with the 
application.

Once the account has been created, the next step is to gather 
together information about the application. To bring your 

application to market, the following information will be required:

• Title - The title of the application.

• Short Description - Up to 80 words describing the application.

• Full Description - Up to 4000 words describing the application.

•Screenshots - Up to 8 screenshots of your application running (a 

minimum of two is required). Google recommends submitting 

screenshots of the application running on a 7” or 10” tablet.

•Language - The language of the application (the default is US 
English).

https://pla
le.com/a


•Promotional Text - The text that will be used when your 

application appears in special promotional features within the 

Google Play environment.

•Application Type - Whether your application is considered to be 
a game or an

•Category - The category that best describes your application (for 

example finance, health and fitness, education, sports, etc.).

•Locations - The geographical locations into which you wish your 

application to be made available for purchase.

•Contact Details - Methods by which users may contact you for 

support relating to the application. Options include web, email, 

and phone.

•Pricing & Distribution - Information about the price of the 

application and the geographical locations where it is to be 

marketed and sold.

Having collected the above information, click on the Create app 

button within the Google Play Console to begin the creation 

process.



53.4 Configuring the app in the console

When the Create app button is first clicked, the app details and 

declarations screen will appear as shown in Figure 53-1 below:

Google Play Console Q. Search Play Console E

gg Allapps

Inbox 4

X- Users and permissions

B Order management

► .4-. Download reports

Settings

▼ Developer account

Account details

Create app

App details
App name

Default language

My Demo App

This is how your app name will appear on Google Play You can edit this later

English (United States) - en-US ▼

Developer page

Activity log

API access

Linked accounts

Payments settings

Benchmarking 
preferences

Preferences

Email lists

License testing

Manage game projects

Pricing templates

App or game

Free or paid

Declarations

Developer Program Policies

You can change this later in Store settings

© App

O Game

You can edit this later on the Paid app page

© Free

(3 Pa’d

(j) You can edit this until you publish your app. Once you've published, you can't 
change a free app to paid.

Q Confirm app meets the Developer Program Policies
The aoolication meets Develooer Proc ram Policies Please check out these lios on how to <

Figure 53-1

Once the app entry has been fully configured, click on the Create 

app button (highlighted in the above figure) to add the app and 

display the dashboard screen. Within the dashboard, locate the Initial 

setup section and unfold the list of steps to configure the app store 

listing:



Initial setup

First steps

Provide some information about your app and set up your store listir

Hide tasks

LET US KNOW ABOUT THE CONTENT OF YOUR APP 

o App access >

o Ads >

o Content rating >

o Target audience >

MANAGE HOW YOUR APP IS ORGANIZED AND PRESENTED

o Select an app category and provide contact details >

o Set up your store listing >

Figure 53-2

Work through the list of links and provide the requested information 

for your app, making sure to save the changes at each step.



53.5 Enabling Google Play app signing

Up until recently, Google Play uploads were signed with a release 

app signing key from within Android Studio and then uploaded to 

the Google Play console. While this option is still available, the 

recommended way to upload files is to now use a process referred 

to as Google Play App For a newly created app, this involves opting 

into Google Play App Signing and then generating an upload key that 

is used to sign the app bundle file within Android Studio. When the 

app bundle file generated by Android Studio is uploaded, the Google 

Play console removes the upload key and then signs the file with an 

app signing key that is stored securely within the Google Play 

servers.

Within the Google Play console, select the newly added app entry 

from the All Apps screen (accessed via the option located at the top 

of the left-hand navigation panel), unfold the Setup section (Marked 

A in Figure and select the App Signing option (B).

Internal testing

Pre-registration

► Pre-launch report

Device catalog

App bundle explorer

» & Setup 

App si

Internal app sharing

Let Google protect your app signing key
To opt in to app signing by Google Play, create a release. Opting in 
is a requirement to publish with the Android App Bundle. Android’s 
recommended publishing format.

Figure 53-3



Opt in to Google Play app signing by clicking on the Create release 

button (C). The console is now ready to create the first release of 

your app for testing. Before doing so, however, the next step is to 

generate the upload key from within Android Studio. This is 

performed as part of the process of generating a signed app bundle. 

Leave the current Google Play Console screen loaded into the 

browser as we will be returning to this later in the chapter.



53.6 Creating a keystore file

To create a keystore file, select the Android Studio Build -> Generate 

Signed Bundle / APK. menu option to display the Generate Signed 

Bundle or APK Wizard dialog as shown in Figure

• O • Generate Signed Bundle or APK

O Android App Bundle

Generate a signed app bundle for upload to app stores for the following bene

• Smaller download size
• On-demand app features
• Asset-only modules

Learn more

APK

Build a signed APK that you can deploy to a device

Figure 53-4

Verify that the Android App Bundle option is selected before clicking 

on the Next button.

If you have an existing release keystore file, click on the Choose 

existing. button on the next screen and navigate to and select the 

file. If you have yet to create a keystore file, click on the Create 

new. button to display the New Key Store dialog Click on the button 



to the right of the Key store path field and navigate to a suitable 

location on your file system, enter a name for the keystore file (for 

example, and click on the OK button.

The New Key Store dialog is divided into two sections. The top 

section relates to the keystore file. In this section, enter a strong 

password with which to protect the keystore file into both the 

Password and Confirm fields. The lower section of the dialog relates 

to the upload key that will be stored in the key store file.



Figure 53-5

Within the Certificate section of the New Key Store dialog, enter the 

following details:

• An alias by which the key will be referenced. This can be any 

sequence of characters, though only the first 8 are used by the 

system.

• A suitably strong password to protect the key.

• The number of years for which the key is to be valid (Google 

recommends at least 25 years).

In addition, information must be provided for at least one of the 

remaining fields (for example, your first and last name, or 

organization name).



Figure 53-6

Once the information has been entered, click on the OK button to 

proceed with the bundle creation.



537 Creating the Android app bundle

The next step is to instruct Android Studio to build the application 

app bundle file in release mode and then sign it with the newly 

created private key. At this point the Generate Signed Bundle or APK 

dialog should still be displayed with the keystore path, passwords, 

and key alias fields populated with information:

Figure 53-7

Make sure that the Export Encrypted Key option is enabled and, 

assuming that the other settings are correct, click on the Next button 

to proceed to the app bundle generation screen Within this screen, 

review the Destination Folder: setting to verify that the location into 

which the app bundle file will be generated is acceptable. If you



would prefer to use another location, click on the button to the right 

of the text field and navigate to the desired file system location.

• • Generate Signed Bundle or APK

Destination Folder: nyth/Dropbox/Documents/Books/Jetpack_Compose_1.3/WORK/lnAppPurchase/app

debug

Build Variants:

Cancel Previous

Figure 53-8

Click on the Finish button and wait for the Gradle system to build 

the app bundle. Once the build is complete, a dialog will appear 

providing the option to open the folder containing the app bundle 

file in an explorer window, or to load the file into the APK Analyzer:

O Generate Signed Bundle
App bundle(s) generated successfully:
Module 'app’: locate or analyze the app bundle.

i File Explorer



Figure 53-9

At this point, the application is ready to be submitted to Google 

Play. Click on the locate link to open a filesystem browser window. 

The file should be named bundle.aab and be located in the 

app/re\ease sub-directory of the project folder unless another location 

was specified.

The private key generated as part of this process should be used 

when signing and releasing future applications and, as such, should 

be kept in a safe place and securely backed up.



53.8 Generating test APK files

An optional step at this stage is to generate APK files from the 

app bundle and install and run them on devices or emulator 

sessions. Google provides a command-line tool called bundletool 

designed specifically for this purpose which can be downloaded 
from the following URL:

https://github.com/google/bundletool/releases

At the time of writing, bundletool is provided as a .jar file which 

can be executed from the command-line as follows (noting that 

the version number may have changed since this book was 

published):

java -jar bundletool-all-0.9.0.jar

Running the above command will list all of the options available 

within the tool. To generate the APK files from the app bundle, 

the build-apks option is used. To generate APK files that can be 

installed onto a device or emulator the files will also need to be 

signed. To achieve this include the --ks option specifying the path 

of the keystore file created earlier in the chapter, together with the 
--ks-key-alias option specifying the alias provided when the key was 

generated.

ithub.com/


Finally, the --output flag must be used to specify the path of the 

file (referred to as the APK Set) into which the APK files will be 

generated. This file must not already exist and is required to have 

a filename extension. Bringing these requirements together results 

in the following command-line (allowing for differences in your 

operating system path structure): 

java -jar bundletool-all-0.9.0.jar build-apks -- 

bundle=/tmp/MyApps/app/release/bundle.aab -- 

output=/tmp/MyApks.apks --ks=/MyKeys/release.keystore.jks --ks-key- 

alias=MyReleaseKey

When this command is executed, a prompt will appear requesting 

the keystore password before the APK files are generated into the 

specified APK Set file. The APK Set file is simply a ZIP file 

containing all of the APK files generated from the app bundle.

To install the appropriate APK files onto a connected device or 
emulator, use a command similar to the following:

java -jar bundletool-all-0.9.0.jar install-apks -- 

apks=/tmp/MyApks.apks

This command will instruct the tool to identify the appropriate 

APK files for the connected device and install them so that the 

app can be launched and tested.



It is also possible to extract the APK files from the APK Set for 
the connected device without installing them. The first step in this 

process is to obtain the specification of the connected device as 

follows:

java -jar bundletool-all-0.9.0.jar get-device-spec -- 
output=/tmp/device.json

The above command will generate a JSON file similar to the 

following:

{

"supportedAbis": ["x86"],

"supportedLocales": ["en-US"],

"screenDensity": 420,

"sdkVersion": 27

}

Next, this specification file is used to extract the matching APK 

files from the APK Set:



java -jar bundletool-all-0.9.0.jar extract-apks -- 

apks=/tmp/MyApks.apks --output-dir=/tmp/nexus5_apks --device- 
spec=/tmp/device.json

When executed, the directory specified via the --output-dir flag will 

contain correct APK files for the specified device configuration.

The next step in bringing an Android application to market 

involves submitting it to the Google Play Developer Console so 

that it can be made available for testing.



53.9 Uploading the app bundle to the Google Play Developer Console

Return to the Google Play Console and select the Internal testing 

option (marked A in Figure located in the Testing section of the 

navigation panel before clicking on the Create new release button (B):

□2 Releases overview

A Production

* (7) Testing

Open testing

Closed testing

Internal testing

Pre-registration

Internal testing Create new release

Releases Testers

Releases

Figure 53-10

On the resulting screen, click on the Continue button (marked A 

below) to confirm the use of Google Play app signing, then drag and 

drop the bundle file generated by Android Studio onto the upload 

drop point (B):



App signing by Google Play

(0 Google is protecting your app signing key

Google will create and protect the signing key for your app and use it to sign each release. This makes sure that any updates
are from you. Api ling is required to publish using Android App Bundles. Learn more

Manage preferences

App bundles and APKs

(7) Complete the steps above to continue with your release

©
A Upload |S Add from library

Figure 53-11

When the upload is complete, scroll down the screen and enter the 

release name and optional release notes. The release name can be 

any information you need to help you recognize the release and it is 

not visible to users.

After the app bundle file has uploaded, Google Play will generate all 

of the necessary APK files ready for testing. Once the APK files have 

been generated, scroll down to the bottom of the screen and click 

on the Save button. Once the settings have been saved, click on the 

Review release button.



53.10 Exploring the app bundle

On the review screen, click on the arrow to the right of the 

uploaded bundle as indicated in Figure

New app bundles and APKs

Required 

File type Version API levels Target SDK Screen layouts ABIs features

Android App
Bundle ' '

Release notes

Figure 53-12

In the resulting panel, click on the Explore bundle link to load the 

app bundle explorer. This provides summary information relating to 

the API levels, screen layouts, and platforms supported by the app 

bundle:



Details Downloads

Details

Releases 1 release
Viewv

Supported Android devices 1,298

Go to device catalog

Localizations 85 localizations
Viewv

Permissions android.permission.USE-BIOMETRIC

Features android.hardware.faketouch

Screen layouts small, normal, large, xlarge

Native platforms No restrictions

API levels 29+

Target SDK 29

OpenGL ES versions 0.0+

OpenGL textures No textures required



Figure 53-13

Clicking on the Go to device catalog link will display the devices that 

are supported by the APK file:

Device catalog
View and manage the devices that are compatible with your app. Show more

Supported devices ■» — Add filter Q. Search devices

1,298 devices supported ® Manage devices i Download device list

Device RAM (total memory) System on Chip Status

Q Al Alpha 20+
3,840 MB (3,726 MB) Mediatek MT6771T 0 Supported ->

AT&TU318AA 1.024 MB (887 MB) Mediatek MT6739WW 0 Supported ->

AT&T U705AA 2,816 MB (2,794 MB) Mediatek MT6762 0 Supported ->

Figure 53-14

At this point, the app is ready for testing but cannot be rolled out 

until some testers have been set up within the console.



53.11 Managing testers

If the app is still in the Internal, Alpha, or Beta testing phase, a list 

of authorized testers may be specified by selecting the app from 

within the Google Play console, clicking on Internal testing in the 

navigation panel, and selecting the Testers tab as shown in Figure

Release

§6 Releases overview

A Production

* »►) Testing

Open testing

Closed testing

Pre-registretion

► Pre-launch report

Testers

Testers

Feedback URL or email address

Create an email list to add users that have access to this testing program.

Up to 100 testers can join your internal tests You can choose more than 100 testers, but only the first 100 to join will be successful

Let testers know how to provide you with feedback 0/512

Figure 53-15

To add testers, click on the Create email list button, name the list 

and specify the email addresses for the test users either manually or 

by uploading a CSV file.

The “Join on the web” URL may now be copied from the screen and 

provided to the test users so that they accept the testing invitation 

and download the app.



53.12 Rolling the app out for testing

Now that an internal release has been created and a list of testers 

added, the app is ready to be rolled out for testing. Remaining 

within the Internal testing screen, select the Releases tab before 

clicking on the Edit button for the recently created release:

Testers

Releases

Very first release for tetsing

Draft

Figure 53-16

On the review screen, scroll to the bottom and click on the Start 

rollout to Internal testing button. After a short delay, while the release 

is processed, the app will be ready to be downloaded and tested by 

the designated users.



53.13 Uploading new app bundle revisions

The first app bundle file uploaded for your application will 

invariably have a version code of 1. If an attempt is made to 

upload another bundle file with the same version code number, 

the console will reject the file with the following error:

You need to use a different version code for your APK because 

you already have one with version code 1.

To resolve this problem, the version code embedded into the 

bundle file needs to be increased. This is performed in the 

module level build.gradle file of the project, shown highlighted in 

Figure

Android ♦ © t -£■ O —

v app 
> 'ta manifests 
> java
> java (genet ated)
> res

I res generated) 
* & Gracile Scripts 

ri c Demo} 
C build.gradle iMorh.le ■ 3

" ’3"yii mjmwtj-rutt'M--prd^fflGuard Rules for "zapp")
. i gradle.prpperties Project Properzr s) 

„ । gradle-wrapper.properties r I ersiar 

, । locaLproperties (SDK Location I 
settings.gradle tject Settit

Figure 53-17



By default, this file will typically read as follows: 

plugins {

id 'com.android.application'

id 'org.jetbrains.kotlin.android' 

}

android {

compileSdk 33

defaultConfig {

applicationId "com.example.demoapp" 

minSdk 26 

targetSdk 33 

versionCode 1 

versionName "1.0



}

To change the version code, simply change the number declared 

next to To also change the version number displayed to users of 

your application, change the versionName string. For example:

versionCode 2

versionName "2.0"

Having made these changes, rebuild the APK file and perform the 

upload again.



53.14 Analyzing the app bundle file

Android Studio provides the ability to analyze the content of an app 

bundle file. To analyze a bundle file, select the Android Studio Build - 

> Analyze APK... menu option and navigate to and choose the 

bundle file to be reviewed. Once loaded into the tool, information 

will be displayed about the raw and download size of the package 

together with a listing of the file structure of the package as 

illustrated in Figure

unknown (version unknown

O APK size: 1.1 MB Download Size: 1.1 MB Compare with previous APK...

File Raw Ale Size Download Sizes of Total Download size

▼ base 1 MB 1MB 96.8%
▼ dex 752.4 KB 751.2 KB 69.3%

w classes.dex 752.4 KB 751.2 KB 69.3% B
► res 216.3 KB 216.2 KB 20% ■

resources, pb 81.5 KB 81.1 KB 7.5% |
► manifest 663 B 663 B 0.1%
► 1 root 95 B 95 B 0%

► META-INF 34.6 KB 34.1 KB 3.1% |
if Bun dleConf ig.pb 135 B 135 B 0%

Figure 53-18

Selecting the classes.dex file will display the class structure of the file 

in the lower panel. Within this panel, details of the individual classes 

may be explored down to the level of the methods within a class:

Load Proguard mappings... O This dex file defines 2142 classes with 16751 methods, and references 22365 methods.
Class Defined Methods Referenced Methods Size
► android 16727 21813 2.3 MB
► L java 503 12 KB
► 1 com 24 28 36.3 KB
► t org 18 434 B
► c floatU 1 20 B
► c Inti) 1 20 B
► c longl) 1 20 B

Figure 53-19



Similarly, selecting a resource or image file within the file list will 

display the file content within the lower panel. The size differences 

between two bundle files may be reviewed by clicking on the 

Compare with previous APK... button and selecting a second bundle 

file.



53.15 Summary

Once an app project is either complete or ready for user testing, 

it can be uploaded to the Google Play console and published for 

production, internal, alpha, or beta testing. Before the app can be 

uploaded, an app entry must be created within the console 

including information about the app together with screenshots to 

be used within the Play Store. A release Android App Bundle file 

is then generated and signed with an upload key from within 

Android Studio. After the bundle file has been uploaded, Google 

Play removes the upload key and replaces it with the securely 

stored app signing key and the app is ready to be published.

The content of a bundle file can be reviewed at any time by 

loading it into the Android Studio APK Analyzer tool.



54. An Overview of Android In-App Billing

In the early days of mobile applications for operating systems 

such as Android and iOS, the most common method for earning 

revenue was to charge an upfront fee to download and install the 

application. However, Google soon introduced another revenue 
opportunity by embedding advertising within applications. Perhaps 

the most common and lucrative option is now to charge the user 
for purchasing items from within the application after it has been 

installed. This typically takes the form of access to a higher level 

in a game, acquiring virtual goods or currency, or subscribing to 

premium content in the digital edition of a magazine or 
newspaper.

Google supports integrating in-app purchasing through the Google 

Play In-App Billing API and the Play Console. This chapter will 

provide an overview of in-app billing and outline how to integrate 

in-app billing into your Android projects. Once these topics have 
been explored, the next chapter will walk you through creating an 

example app that includes in-app purchasing features.



54.1 Preparing a project for In-App purchasing

Building in-app purchasing into an app will require a Google Play 

Developer Console account, which was covered previously in the 

“Creating, Testing and Uploading an Android App Bundle” chapter. In 

addition, you must also register a Google merchant account and 
configure your payment settings. You can find these settings by 

navigating to Setup -> Payments profile in the Play Console. Note 

that merchant registration is not available in all countries. For 

details, refer to the following page:

https://support.google.com/googleplay/android-developer/answer/9306917

The app will then need to be uploaded to the console and 

enabled for in-app purchasing. The console will not activate in-app 

purchasing support for an app, however, unless the Google Play 

Billing Library has been added to the module-level build.gradle file. 
When working with Kotlin, the Google Play Kotlin Extensions 

Library is also recommended: 

dependencies {

https://su
le.com/


implementation

implementation

}

Once the build file has been modified and the app bundle 

uploaded to the console, the next step is to add in-app products 

or subscriptions for the user to purchase.



54.2 Creating In-App products and subscriptions

Products and subscriptions are created and managed using the 
options listed beneath the Monetize section of the Play Console 

navigation panel as highlighted in Figure 54-1 below:

Figure 54-1

Each product or subscription needs an ID, title, description, and 

pricing information. Purchases fall into the categories of



consumable (the item must be purchased each time it is required 

by the user such as virtual currency in a game), non-consumable 

(only needs to be purchased once by the user such as content 

access), and Consumable and non-consumable products are 

collectively referred to as managed

Subscriptions are useful for selling an item that needs to be 

renewed on a regular schedule such as access to news content or 

the premium features of an app. When creating a subscription, a 

base plan is defined specifying the price, renewal period (monthly, 

annually, etc.), and whether the subscription auto-renews. Users 

can also be provided with discount offers and given the option of 
pre-purchasing a subscription.



54.3 Billing client initialization

A BillingClient instance handles communication between your app 

and the Google Play Billing Library. In addition, BillingClient 

includes a set of methods that can be called to perform both 

synchronous and asynchronous billing-related activities. When the 

billing client is initialized, it will need to be provided with a 

reference to a PurchasesUpdatedListener callback handler. The 

client will call this handler to notify your app of the results of any 

purchasing activity. To avoid duplicate notifications, it is 

recommended to have only one BillingClient instance per app.

A BillingClient instance can be created using the newBuilder() 

method, passing through the current activity or fragment context. 

The purchase update handler is then assigned to the client via 

the setListener() method:

private val purchasesUpdatedListener =

PurchasesUpdatedListener { billingResult, purchases ->

if (billingResult.responseCode ==

BillingClient.BillingResponseCode.OK 

&& purchases != null



) {

for (purchase in purchases) {

// Process the purchases

}

} else if (billingResult.responseCode ==

BillingClient.BillingResponseCode.USER_CANCELED

) {

// Purchase cancelled by user

} else {

// Handle errors here

}

} 

billingClient = BillingClient.newBuilder(this)



.setListener(purchasesUpdatedListener)

.enablePendingPurchases()

.build()



54.4 Connecting to the Google Play Billing library

After successfully creating the Billing Client, the next step is 
initializing a connection to the Google Play Billing Library. To 

establish this connection, a call needs to be made to the 

startConnection() method of the billing client instance. Since the 
connection is performed asynchronously, a BillingClientStateListener 

handler needs to be implemented to receive a callback indicating 

whether the connection was successful. Code should also be 

added to override the onBillingServiceDisconnected() method. This is 

called if the connection to the Billing Library is lost and can be 

used to report the problem to the user and retry the connection.

Once the setup and connection tasks are complete, the 

BillingClient instance will make a call to the onBillingSetupFinished() 

method which can be used to check that the client is ready:

billingClient.startConnection(object : BillingClientStateListener {

override fun onBillingSetupFinished(

billingResult: BillingResult

) {

if (billingResult.responseCode ==



BillingClient.BillingResponseCode.OK

) {

// Connection successful

} else {

// Connection failed

}

}

override fun onBillingServiceDisconnected() {

// Connection to billing service lost

}

})



54.5 Querying available products

Once the billing environment is initialized and ready to go, the 

next step is to request the details of the products or 

subscriptions available for purchase. This is achieved by making a 

call to the queryProductDetailsAsync() method of the BillingClient 

and passing through an appropriately configured 

QueryProductDetailsParams instance containing the product ID and 

type (ProductType.SUBS for a subscription or ProductType.INAPP 

for a managed product):

val queryProductDetailsParams = 
QueryProductDetailsParams.newBuilder()

.setProductList(

ImmutableList.of(

QueryProductDetailsParams.Product.newBuilder()

.setProductId(productId)

.setProductType(

BillingClient.ProductType.INAPP



)

.build()

)

)

.build()

billingClient.queryProductDetailsAsync(

queryProductDetailsParams

) { billingResult, productDetailsList ->

if (!productDetailsList.isEmpty()) {

// Process list of matching products

} else {

// No product matches found

}



}

The queryProductDetailsAsync() method is passed a 
ProductDetailsResponseListener handler (in this case in the form 

of a lambda code block) which, in turn, is called and passed a 
list of ProductDetail objects containing information about the 

matching products. For example, we can call methods on these 

objects to get information such as the product name, title, 

description, price, and offer details.



54.6 Starting the purchase process

Once a product or subscription has been queried and selected for 

purchase by the user, the purchase process is ready to be 

launched. We do this by calling method of the BillingClient, 

passing through as arguments the current activity and a 

BillingFlowParams instance configured with the ProductDetail object 

for the item being purchased.

val billingFlowParams = BillingFlowParams.newBuilder()

.setProductDetailsParamsList(

ImmutableList.of(

BillingFlowParams.ProductDetailsParams.newBuilder()

.setProductDetails(productDetails)

.build()

)

)

.build()



billingClient.launchBillingFlow(this, billingFlowParams)

The success or otherwise of the purchase operation will be 

reported via a call to the PurchasesUpdatedListener callback 

handler outlined earlier in the chapter.



54.7 Completing the purchase

When purchases are successful, the PurchasesUpdatedListener 
handler will be passed a list containing a Purchase object for 

each item. You can verify that the item has been purchased by 

calling the getPurchaseState() method of the Purchase instance as 

follows:

if (purchase.getPurchaseState() == 

Purchase.PurchaseState.PURCHASED) {

// Purchase completed.

} else if (purchase.getPurchaseState() == 

Purchase.PurchaseState.PENDING) {

// Payment is still pending

}

Note that your app will only support pending purchases if a call 
is made to the enablePendingPurchases() method during 

initialization. A pending purchase will remain so until the user 

completes the payment process.



When the purchase of a non-consumable item is complete, it will 

need to be acknowledged to prevent a refund from being issued 

to the user. This requires the purchase token for the item which is 

obtained via a call to the getPurchaseToken() method of the 

Purchase object. This token is used to create an 

AcknowledgePurchaseParams instance together with an 

AcknowledgePurchaseResponseListener handler. Managed product 

purchases and subscriptions are acknowledged by calling the 

BillingClient’s acknowledgePurchase() method as follows:

billingClient.acknowledgePurchase(acknowledgePurchaseParams,

acknowledgePurchaseResponseListe
ner);

val acknowledgePurchaseParams =
AcknowledgePurchaseParams.newBuilder()

.setPurchaseToken(purchase.purchaseToken)

.build() 

val acknowledgePurchaseResponseListener =

AcknowledgePurchaseResponseListener {

// Check acknowledgement result



}

billingClient.acknowledgePurchase(

acknowledgePurchaseParams,

acknowledgePurchaseResponseListener

)

For consumable purchases, you will need to notify Google Play 

when the item has been consumed so that it is available to be 

repurchased by the user. This requires a configured 

ConsumeParams instance containing a purchase token and a call 
to the billing client’s consumePurchase() method:

val consumeParams = ConsumeParams.newBuilder()

.setPurchaseToken(purchase.purchaseToken)

.build()

coroutineScope.launch {

val result = billingClient.consumePurchase(consumeParams)

if (result.billingResult.responseCode ==



BillingClient.BillingResponseCode.OK) {

// Purchase successfully consumed

}

}



54.8 Querying previous purchases

When working with in-app billing it is a common requirement to 

check whether a user has already purchased a product or 

subscription. A list of all the user’s previous purchases of a 

specific type can be generated by calling the queryPurchasesAsync() 

method of the BillingClient instance and implementing a 
PurchaseResponseListener. The following code, for example, obtains 

a list of all previously purchased items that have not yet been 

consumed:

val queryPurchasesParams = QueryPurchasesParams.newBuilder()

.setProductType(BillingClient.ProductType.INAPP)

.build() 

billingClient.queryPurchasesAsync(

queryPurchasesParams,

purchasesListener

)



private val purchasesListener =

PurchasesResponseListener { billingResult, purchases ->

if (!purchases.isEmpty()) {

// Access existing active purchases

} else {

// No

}

}

To obtain a list of active subscriptions, change the ProductType 
value from INAPP to SUBS.

Alternatively, to obtain a list of the most recent purchases for 

each product, make a call to the BillingClient 
queryPurchaseHistoryAsync() method:



val queryPurchaseHistoryParams =

QueryPurchaseHistoryParams.newBuilder()

.setProductType(BillingClient.ProductType.INAPP)

.build()

billingClient.queryPurchaseHistoryAsync(queryPurchaseHistoryParams) 

{ billingResult, historyList ->

// Process purchase history list

}



54.9 Summary

In-app purchases provide a way to generate revenue from within 
Android apps by selling virtual products and subscriptions to 

users. In this chapter, we have explored managed products and 

subscriptions and explained the difference between consumable 

and non-consumable products. In-app purchasing support is added 

to an app using the Google Play In-app Billing Library and 
involves creating and initializing a billing client on which methods 

are called to perform tasks such as making purchases, listing 

available products, and consuming existing purchases. The next 

chapter contains a tutorial demonstrating the addition of in-app 

purchases to an Android Studio project.



55. An Android In-App Purchasing Tutorial

In the previous chapter, we explored how to integrate in-app 
purchasing into an Android project and also looked at some code 

samples that can be used when working on your own projects. 

This chapter will put this theory into practice by creating an 

example project that demonstrates how to add a consumable in- 

app product to an Android app using Jetpack Compose. The 

tutorial will also show how in-app products are added and 

managed within the Google Play Console and explain how to 

enable test payments so that purchases can be made during 

testing without having to spend real money.



55.1 About the In-App purchasing example project

The simple concept behind this project is an app in which an in- 

app product must be purchased before a button can be clicked. 

This in-app product is consumed each time the button is clicked, 

requiring the user to re-purchase the product each time they want 

to be able to click the button. On initialization, the app will 

connect to the app store, obtain details of the product, and 

display the product name. Once the app has established that the 

product is available, a purchase button will be enabled which, 

when clicked, will step through the purchase process. On 

completion of the purchase, a second button will be enabled so 

that the user can click on it and consume the purchase.



55.2 Creating the InAppPurchase project

The first step in this exercise is to create a new project. Begin by 

launching Android Studio and selecting the New Project option 

from the welcome screen. In the new project dialog, choose the 
Empty Activity template before clicking on the Next button.

Enter InAppPurchase into the Name field and specify a package 

name that will uniquely identify your app within the Google Play 

ecosystem (for example com. Before clicking on the Finish button, 

change the Minimum API level setting to API 26: Android 8.0 

(Oreo).

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method function to call MainScreen 

instead of Greeting. Since this project will be using features that 

are not supported by the Preview panel, also delete the



GreetingPreview composable from the file. To test the project we 

will be running it on a device or emulator session.



55.3 Adding libraries to the project

Before we start writing code, some libraries need to be added to 

the project build configuration, including the standard Android 

billing client libraries. Later in the project, we will also need to 

use the ImmutableList class which is part of Google’s Guava Core 

Java libraries. Add these libraries now by modifying the Gradle 

Scripts -> build.gradle (Module: app) file with the following changes: 

dependencies {

implementation 'com.android.billingclient:billing:5.2.o'

implementation 'com.android.billingclient:billing-ktx:5.2.o'

implementation 'com.google.guava:guava:24.i-jre'

implementation 'com.google.guava:guava:27.o.i-android‘ 



Click on the Sync Now link at the top of the editor panel to 

commit these changes.



55.4 Adding the App to the Google Play Store

Using the steps outlined in the chapter entitled “Creating, Testing, 

and Uploading an Android App sign into the Play Console at create 

a new app, and set up a new internal testing track including the 

email addresses of designated testers. Return to Android Studio 

and generate a signed release app bundle for the project. Once 

the bundle file has been generated, upload it to the internal 

testing track and roll it out for testing.

Now that the app has a presence in the Google Play Store, we 

are ready to create an in-app product for the project.



55.5 Creating an In-App product

With the app selected in the Play Console, scroll down the list of 

options in the left-hand panel until the Monetize section comes into 

view. Within this section, select the In-app products option listed 

under Products as shown in Figure

Monetize

E Products

App pricing

In-app products

Subscriptions

Promo codes

Figure 55-1

On the In-app products page, click on the Create product button:



In-app products
Offer products for sale in your app for a one-off charge, like extra lives, or access to premium content. Show more

Q. Search products by name or ID X Import i Export

Product name Product ID Price Last updated Status

No results

Figure 55-2

On the new product screen, enter the following information before 

saving the new product:

•Product ID: one_button_click

•Name: A Button Click

•Description: This is a test in-app product that allows a button to be 

clicked once.

Create product

•Default price: Set to the lowest possible price in your preferred 

currency.



55.6 Enabling license testers

When testing in-app billing it is useful to be able to make test 

purchases without spending any money. This can be achieved by 

enabling license testing for the internal track testers. License testers 

can use a test payment card when making purchases so that they 

are not charged.

Within the Play Console, return to the main home screen and select 

the Setup -> License testing option:

▼ Setup

Email lists

Pricing templates

Game projects

License testing

Payments profile

Figure 55-3



Within the license testing screen, add the testers that were added for 

the internal testing track, change the License response setting to 

RESPOND_NORMALLY, and save the changes:

License testing
Test your licensing and in-app billing integrations. Show more

Add license testers userl @example.com, user2@example.com

Add 1 or more email addresses, separated by a comma Press enter to add Addresses must be associated 
with a Google account.

License testers (?)

License response RESPOND.NORMALLY - ________________
License testers will get this response. The account owner will also get this response for any 
apps that haven’t been uploaded to Google Play.

Figure 55—4

Now that both the app and the in-app product have been set up in 

the Play Console, we can start adding code to the project.

example.com
mailto:user2@example.com


55.7 Creating a purchase helper class

To establish a clean separation between the user interface and 
billing code, we will create a new helper class that will handle all 

of the purchasing tasks and use StateFlow instances to update the 

user interface with status changes. While it may be tempting to 

create this helper class as a view model, doing so will result in 

unstable code. The problem is that the billing client will need a 

reference to the main activity to process purchase transactions. 

This means that we will need to pass this reference to our helper 

class when an instance is created. As we know from previous 

chapters, activities are subject to being destroyed and recreated 

during the lifecycle of an app. Since view models are, by 
definition, designed to survive the destruction and recreation of 

activities we run the risk within our billing code of relying on a 

reference to an activity that no longer exists. To avoid this 

problem we will declare our purchase helper as a standard Kotlin 

data class that will be destroyed and recreated along with the 

activity.

Within the Project tool window, right-click on the 
com.company>.InAppPurchase entry, select the New -> Kotlin 

Class/File menu option and create a new class named 

PurchaseHelper. With the new class file created, edit it so that it 

reads as follows:



import android.app.Activity 

import android.util.Log

import com.android.billingclient.api.*

import com.google.common.collect.ImmutableList

import kotl i nx.corouti nes.CoroutineScope

import kotl i nx.corouti nes.Dispatchers

import kotlinx.coroutines.flow.MutableStateFlow

import kotlinx.coroutines.flow.asStateFlow

import kotlinx.coroutines.launch

data class activity: Activity) {

}



These changes import a set of libraries that will be needed later 

in the chapter and configure the class to expect an Activity 

initialization parameter. Next, add variable declarations to store 

values related to the billing process together with the id of the 

product created in the Google Play Console: 

data class PurchaseHelper(val activity: Activity) {

private val coroutineScope = CoroutineScope(Dispatchers.IO)

private lateinit var billingClient: BillingClient

private lateinit var productDetails: ProductDetails

private lateinit var purchase: Purchase

private val demoProductId = "one_button_click"

}



55.8 Adding the StateFlow streams

Communication between the purchase process and the user 

interface will be performed using StateFlow streams. Specifically, 

the user interface will use these to display status information on 

Text components and to ensure that Buttons are appropriately 

enabled and disabled. Using the techniques outlined in the 
chapter titled “An Introduction to Kotlin add the following StateFlow 

declarations to the PurchaseHelper class:

data class PurchaseHelper(val activity: Activity) {

private val _productName = MutableStateFlow("Searching...")

val productName = _productName.asStateFlow()

private val _buyEnabled = MutableStateFlow(false)

val buyEnabled = _buyEnabled.asStateFlow()

private val _consumeEnabled = MutableStateFlow(false)



val consumeEnabled = _consumeEnabled.asStateFlow()

private val _statusText = MutableStateFlow("Initializing...")

val statusText = _statusText.asStateFlow()

}



55.9 Initializing the billing client

Next, the PurchaseHelper class needs a method that can be called 
from the MainActivity to initialize the billing client. Remaining 

within the file, add this new method as follows:

fun billingSetup() {

billingClient = BillingClient.newBuilder(activity)

.setListener(purchasesUpdatedListener) 

.enablePendingPurchases() 

.build()

billingClient.startConnection(object : BillingClientStateListener {

override fun onBillingSetupFinished(

billingResult: BillingResult 

) {

if (billingResult.responseCode ==



BillingClient.BillingResponseCode.OK

Failure"

) {

_statusText.value = "Billing Client Connected"

queryProduct(demoProductld)

} else {

_statusText.value = "Billing Client Connection

}

}

override fun onBillingServiceDisconnected() {

_statusText.value = "Billing Client Connection Lost"

}

})



}

When this method is called, it will create a new billing client 

instance and attempt to connect to the Google Play Billing Library. 

The onBillingSetupFinished() listener will be called when the 

connection attempt completes and update the statusText state flow 

indicating the success or otherwise of the connection attempt. 

Finally, we have also implemented the onBillingServiceDisconnected() 

callback which will be called if the Google Play Billing Library 
connection is lost.

If the connection is successful a method named queryProduct() is 

called. Both this method and the purchasesUpdatedListener 

assigned to the billing client now need to be added.



55.10 Querying the product

To make sure the product is available for purchase, we need to 

create a QueryProductDetailsParams instance configured with the 

product ID that was specified in the Play Console, and pass it to 

the queryProductDetailsAsync() method of the billing client. This will 

require that we also add the onProductDetailsResponse() callback 

method where we will check that the product exists, extract the 

product name, and assign it to the statusText state. Now that we 

have obtained the product details, we can also safely enable the 

purchase button via the buyEnabled flow. Within the file, add the 

queryProduct() method so that it reads as follows:

fun queryProduct(productId: String) {

val queryProductDetailsParams = 
QueryProductDetailsParams.newBuilder()

.setProductList(

ImmutableList.of(

QueryProductDetailsParams.Product.newBuilder()

.setProductId(productId)



.setProductType(

BillingClient.ProductType.INAPP

)

.build()

)

)

. build()

billingClient.queryProductDetailsAsync(

queryProductDetailsParams

) { billingResult, productDetailsList ->

if (productDetailsList.isNotEmptyO) {

productDetails = productDetailsList[o]

_productName.value = "Product: " +

productDetails.name



} else {

statusText.value = "No Matching Products Found 

buyEnabled.value = false

}

}

}

Much of the code used here should be familiar from the previous 

chapter. The listener code checks that at least one product was 

found that matches the query criteria. The ProductDetails object is 

then extracted from the first matching product, stored in the 

productDetails variable, and the product name property assigned to 
the productName state



55.11 Handling purchase updates

The results of the purchase process will be reported to the app 

via the PurchasesUpdatedListener that was assigned to the billing 

client during the initialization phase. Add this handler now as 

follows:

private val purchasesUpdatedListener =

PurchasesUpdatedListener { billingResult, purchases ->

if (billingResult.responseCode ==

BillingClient.BillingResponseCode.OK 

&& purchases != null 

) {

for (purchase in purchases) {

completePurchase(purchase)

}



} else if (billingResult.responseCode ==

BillingClient.BillingResponseCode.USER_CANCELED

) {

_statusText.value = "Purchase Canceled"

} else {

_statusText.value = "Purchase Error"

}

}

The handler will update the status text if the user cancels the 

purchase or another error occurs. A successful purchase, however, 

results in a call to a method named completePurchase() which is 

passed the current Purchase object. Add this method as outlined 

below:

private fun completePurchase(item: Purchase) {

purchase = item



if (purchase.purchaseState ==

Purchase.PurchaseState.PURCHASED) {

buyEnabled.value = false 

consumeEnabled.value = true 

statusText.value = "Purchase Completed"

}

}

This method stores the purchase before verifying that the product 

has indeed been purchased and that payment is not still pending. 

The consume button is enabled, the purchase button disabled, 

and the user is notified that the purchase was successful.



55.12 Launching the purchase flow

We now need to add the following method which will be called 

from the purchase button in the user interface to start the 

purchase process:

fun makePurchase() {

val billingFlowParams = BillingFlowParams.newBuilder()

.setProductDetailsParamsList(

ImmutableList.of(

BillingFlowParams.ProductDetailsParams.newBuilde 

r()

.setProductDetails(productDetails)

.build()

)

)



. build()

billingClient.launchBillingFlow(activity, billingFlowParams)

}



55.13 Consuming the product

With the user now able to click on the “consume” button, the 

next step is to make sure the product is consumed so that only 

one click can be performed before another button click is 

purchased. This requires that we now write the consumePurchase() 

method:

fun consumePurchase() {

val consumeParams = ConsumeParams.newBuilder()

.setPurchaseToken(purchase.purchaseToken) 

.build()

coroutineScope.launch {

val result =

billingClient.consumePurchase(consumeParams)

if (result.billingResult.responseCode ==

BillingClient.BillingResponseCode.OK) {

statusText.value = "Purchase Consumed



buyEnabled.value = true 

consumeEnabled.value = false

}

}

}

This method creates a ConsumeParams instance and configures it 

with the purchase token for the current purchase (obtained from 

the Purchase object previously saved in the completePurchase() 

method). This is passed to the consumePurchase() method which 

is launched within a coroutine using the IO dispatcher. If the 

product is successfully consumed, the consume button is disabled 

and the status text updated.



55.14 Restoring a previous purchase

With the code added so far, we can purchase a product and 

consume it within a single session. If we were to make a 

purchase and then exit the app before consuming it the purchase 

would currently be lost when the app restarts. We can solve this 

problem by configuring a QueryPurchasesParams instance to 

search for the unconsumed In-App product and passing it to the 
queryPurchasesAsync() method of the billing client together with a 

reference to a listener that will be called with the results. Add a 

new method and the listener to the MainActivity.kt file as follows:

private fun reloadPurchase() {

val queryPurchasesParams = 
QueryPurchasesParams.newBuilder()

.setProductType(BillingClient.ProductType.INAPP)

. build()

billingClient.queryPurchasesAsync(

queryPurchasesParams,

purchasesListener



)

}

private val purchasesListener =

PurchasesResponseListener { billingResult, purchases -> 

if (purchases.isNotEmpty()) {

purchase = purchases.first()

_buyEnabled.value = false 

_consumeEnabled.value = true 

_statusText.value = "Previous Purchase Found"

} else {

_buyEnabled.value = true

_consumeEnabled.value = false

}



}

If the list of purchases passed to the listener is not empty, the 

first purchase in the list is assigned to the purchase variable, and 

the consume button enabled (in a more complete implementation 

code should be added to check this is the correct product by 

comparing the product id and to handle the return of multiple 

purchases). If no purchases are found, the consume button is 

disabled until another purchase is made. All that remains is to 
call our new reloadPurchase() method during the billing setup 

process as follows:

fun billingSetup() {

if (billingResult.responseCode ==

BillingClient.BillingResponseCode.OK

) {

statusText.value = "Billing Client Connected"

queryProduct(demoProductId)



reloadPurchase()

} else {

statusText.value = "Billing Client Connection

Failure"

}

}

}



55.15 Completing the MainActivity

Now that the helper class is completed, changes need to be 
made to the MainActivity.kt file. The first step is to modify the 

onCreate() function to create an instance of our PurchaseHelper 

class and pass it to the MainScreen composable:

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

setContent {

InAppPurchaseTheme {

// A surface container using the ‘background’ color

from the theme

Surface(

modifier = Modifier.fillMaxSize(),

color = MaterialTheme.colorScheme.background

) {



val purchaseHelper = PurchaseHelper(this)

purchaseHelper.billingSetup()

}

}

}

}

Remaining in the MainActivity.kt file, modify the MainScreen 

function as follows to accept the purchase handler instance and 

to collect from the state flow instances: 

import androidx.compose.runtime.*



@Composable 

fun {

val buyEnabled by
purchaseHelper.buyEnabled.collectAsState(false)

val consumeEnabled by 

purchaseHelper.consumeEnabled.collectAsState(false)

val productName by 

purchaseHelper.productName.collectAsStatef"')

val statusText by purchaseHelper.statusText.collectAsStatef"')

}

The final task before testing the app is to call the composables 

that make up the user interface. This will consist of a Column 

containing two Text components and an embedded Row containing 

two Buttons configured to call the makePurchase() and 

consumePurchase() methods of the purchase handler. The content 

displayed by the Text composables and the status of the buttons 

will be controlled by the state flow values. Make the following 

changes to complete the MainScreen composable:



import androidx.compose.foundation.layout.*  

import androidx.compose.ui.Alignment 

import androidx.compose.material3.Button 

import androidx.compose.ui.unit.dp 

import androidx.compose.ui.unit.sp

@Composable 

fun MainScreen(purchaseHelper: PurchaseHelper) {



Column(

Modifier.padding(2O.dp), 

horizontalAlignment = Alignment.CenterHorizontally, 

verticalArrangement = Arrangement.Center

) {

Text(

productName,

Modifier.padding(2O.dp), 

fontSize = 30.sp)

Text(statusText)

Row(Modifier.padding(20.dp)) {

Button(

onClick = { purchaseHelper.makePurchase() },

Modifier.padding(20.dp),



enabled = buyEnabled

) {

Text(" Purchase") 

}

Button(

onClick = { purchaseHelper.consumePurchase() },

Modifier.padding(2O.dp), 

enabled = consumeEnabled 

) {

Text("Consume") 

} 

} 

}



}



55.16 Testing the app

Before we can test the app we need to upload this latest version to 

the Play Console. As we already have version 1 uploaded, we first 

need to increase the version number in the build.gradle (Module: app) 

file: 

defaultConfig {

applicationId "com.ebookfrenzy.inapppurchase"

minSdk 26

targetSdk 32

versionCode 2

versionName



Sync the build configuration, then follow the steps in the “Creating, 

Testing, and Uploading an Android App Bundle” chapter to generate a 

new app bundle, upload it to the internal test track, and roll it out 

to the testers. Next, using the internal testing link, install the app on 

a device or emulator where one of the test accounts is signed in. To 

locate the testing link, select the app in the Google Play Console 

and choose the Internal testing option from the navigation panel 

followed by the Testers tab, as shown in Figure

▼ (►) Testing

Open testing

Closed testing

Internal testing

Pre-registration

Releases Testers

Testers
Up to 100 testers can join your internal tests. You can choose more than 100

Testers B List name

Figure 55-5

Scroll to the “How testers join your test” section of the screen and 

click on Copy

How testers join your test

Join on the web Testers can join your test on the web

Figure 55-6



Open the Chrome browser on the testing device or emulator, enter 

the testing link, and follow the instructions to install the app from 

the Play Store. After the app starts, the user interface should appear 

as shown in Figure 55-7 below with the billing client connected, the 

product name displayed, and the Purchase button enabled:

Product: A Button Click

Billing Client Connected

Purchase

Figure 55-7

Clicking the Purchase button will begin the purchase flow as shown 

in Figure



Google Play X

A Button Click $0.05
com.ebookfrenzy.inapppurchase + tax ® 
(unreviewed)

E3 Test card, always approves

This is a test order, you will not be charged.

Currency fluctuations and bank fees may affect the final 
amount charged to you

1-tap buy

Figure 55-8

Tap the buy button to complete the purchase using the test card 

and wait for the Consume button to be enabled.

Tap the Consume button and wait for the “Purchase Consumed” 

status message to appear. With the product consumed, it should 

now be possible to purchase it again. Make another purchase, then 

terminate and restart the app. The app should locate the previous 

unconsumed purchase and enable the consume button.



55.17 Troubleshooting

For additional information about failures, a useful trick is to 

access the debug message from BillingResult instances, for 

example: 

. 

.

} else if (billingResult.responseCode ==

BillingClient.BillingResponseCode.USER_CANCELED

) {

_statusText.value = "Purchase Canceled"

} else {

_statusText.value = "Purchase Error"

Log.if'InAppPurchase", billingResult.getDebugMessage())

}



After adding the debug code, make sure the device is attached to 

Android Studio, either via a USB cable or WiFi, and select it from 

within the Logcat panel. Enter InAppPurchaseTag into the Logcat 

search bar and check the diagnostic output, adding additional Log 

calls in the code if necessary.

Note that as long as you leave the app version number 

unchanged in the module-level build.gradle file, you should now be 

able to run modified versions of the app directly on the device or 

emulator without having to re-bundle and upload it to the 

console.

If the test payment card is not listed, make sure the user account 

on the device has been added to the license testers list. If the 

app is running on a physical device, try running it on an 

emulator. If all else fails, you can enter a valid payment method 

to make test purchases, and then refund yourself using the Order 

management screen accessible from the Play Console home page.



55.18 Summary

In this chapter, we created a project that demonstrated how to 
add an in-app product to an Android app. This included the 

creation of the product within the Google Play Console and the 

writing of code to initialize and connect to the billing client, 

querying of available products, and, finally, the purchase and 

consumption of the product. We also explained how to add 

license testers using the Play Console so that purchases can be 
made during testing without spending money.



56. Working with Compose Theming

The appearance of Android apps is intended to conform to a set 

of guidelines defined by Material Design. Google developed 

Material Design to provide a level of design consistency between 

different apps while also allowing app developers to include their 

own branding in terms of color, typography, and shape choices (a 

concept referred to Material In addition to design guidelines, 

Material Design also includes a set of UI components for use 

when designing user interface layouts, many of which we have 

used throughout this book.

This chapter will provide an overview of how theming works 

within an Android Studio Compose project and explore how the 

default design configurations provided for newly created projects 

can be modified to meet your branding requirements.



56.1 Material Design 2 vs. Material Design 3

Before beginning, it is important to note that Google is 

transitioning from Material Design 2 to Material Design 3 and 

that Android Studio Flamingo is the first to default to Material 

Design 3. Material Design 3 provides the basis for Material You, a 

feature introduced in Android 12 that allows an app to 

automatically adjust theme elements to complement preferences 

configured by the user on the device. For example, dynamic color 

support provided by Material Design 3 allows the colors used in 

apps to adapt automatically to match the user’s wallpaper 
selection.

At the time of writing, shape theming was not yet supported by 

Material Design 3. However, the concepts covered in this chapter 
for color and typography will apply to shapes when support is 

available.



56.2 Material Design 3 theming

Before exploring Material Design 3, we first need to look at how it is 

used in an Android Studio project created using the Empty Activity 

template. The first point to note is that calls to the top-level 

composable in the onCreate() method and the GreetingPreview 

function are embedded in a theme composable. The following, for 

example, is the code generated for a project named MyApp:

class MainActivity : ComponentActivity() {

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState) 

setContent {

MyAppTheme {

Surface(

modifier = Modifier.fillMaxSize(),

color = MaterialTheme.colorScheme.background

) {



Greeting("Android")

}

}

}

}

}

@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

MyAppTheme {

Greeting("Android")

}

}



All of the files associated with MyAppTheme are contained within the 

ui.theme sub-package of the project, as shown in Figure

v java
com.ebookfrenzy.myapp

ui.theme
ift Color.kt

Theme.kt 
ft Type.kt

Figure 56-1

The theme itself is declared in the Theme.kt file, which begins by 

declaring different color palettes for use when the device is in light 

or dark mode. These palettes are created by calling the 

darkColorScheme() and lightColorScheme() builder functions and 

specifying the colors for the different Material Theme color slots:

private val DarkColorScheme = darkColorScheme(

primary = Purple80,

secondary = PurpleGrey80,

tertiary = Pink80

)



private val LightColorScheme = lightColorScheme(

primary = Purple.o, 

secondary = PurpleGrey.o, 

tertiary = Pinlq.o

/*  Other default colors to override 

background = Color(oxFFFFFBFE), 

surface = Color(oxFFFFFBFE), 

onPrimary = Color.White, 

onSecondary = Color.White, 

onTertiary = Color.White, 

onBackground = Color(oxFFiCi B1F), 

onSurface = Color(oxFFiCiBiF), 

*/

)



This is just a subset of the slots available for color theming. For 

Material Design 3, for example, there is a total of 24 color slots 

available for use when designing a theme. In the absence of a slot 

assignment, the Material components use built-in default colors. A 

full listing of MD3 color slot names can be found at:

https://developer.android.eom/reference/kotlin/androidx/compose/material3/C 

olorScheme

These color slots are used by the Material components to set color 

attributes. For example, the primary color slot is used as the 

background color for the Material Button component. The actual 

colors assigned to the slots are declared in the Color.kt file as 

follows:

val Purple80 = Color(0xFFD0BCFF)

val PurpleGrey80 = Color(0xFFCCC2DC)

val Pin<8o = Color(oxFFEFB8C8)

val Purple40 = Color(0xFF6650a4)

val PurpleGrey40 = Color(0xFF625b71) 

val Pinl<40 = Color(0xFF7D5260)

https://developer.android.eom/reference/kotlin/androidx/compose/material


Material Design 3 themes may also include support for dynamic 

colors via calls to the dynamicDarkColorScheme() and 

dynamicLightColorScheme() functions passing through the current local 

context as a parameter. These functions will then generate color 

schemes that match the user’s settings on the device (for example, 

wallpaper selection). Since dynamic colors are only supported on 

Android 12 (S) or later, defensive code is included in the theme 

declared in the Theme.kt file. In addition to the color palette, 

MaterialTheme is also passed typography settings which are declared 

in the Type.kt file.:

@Composable

fun MyAppTheme(

darkTheme: Boolean = isSystemInDarkTheme(),

dynamicColor: Boolean =

content: @Composable () -> Unit

) {

val colorScheme = when {

dynamicColor && Build.VERSION.SDKJNT >= 

Build.VERSION_CODES.S -> {

val context = LocalContext.current



ext)

}

if (darkTheme) dynamicDarkColorScheme(context) else

dynamicLightColorScheme(cont

darkTheme -> DarkColorScheme

else -> LightColorScheme

}

val view = LocalView.current

if (!view.isInEditMode) {

SideEffect {

val window = (view.context as Activity).window

window.statusBarColor = colorScheme.primary.toArgb()

WindowCompat.getInsetsController(window, view).



isAppearanceLightStatusBars =

darkTheme

}

}

MaterialTheme(

colorScheme = colorScheme,

typography = Typography,

content = content

)

}

Note that the theme uses the slot API (introduced in the chapter 

entitled “An Overview of Compose Slot to display the content. In 

terms of typography, Material Design has a set of type scales, three 

of which are declared in the Type.kt file (albeit with two commented 

out):

val Typography = Typography(

bodyLarge = TextStyle(



fontFamily = FontFamily.Default, 

fontWeight = FontWeight.Normal, 

fontSize = i6.sp, 

lineHeight = 24.sp, 

letterSpacing = 0.5.SP

)

/*  Other default text styles to override

titleLarge = TextStyle(

fontFamily = FontFamily.Default, 

fontWeight = FontWeight.Normal, 

fontSize = 22.sp, 

lineHeight = 28.sp, 

letterSpacing = 0.sp



),

labelSmall = TextStyle(

fontFamily = FontFamily.Default,

fontWeight = FontWeight.Medium,

fontSize = ii.sp,

lineHeight = 16.sp,

letterSpacing = 0.5.SP

)

*/

)

As with the color slots, this is only a subset of the type scales 

supported by Material Design. The full list can be found online at: 

https://developer.android.eom/reference/kotlin/androidx/compose/material3/T 

yp_ograp_hy

https://developer.android.eom/reference/kotlin/androidx/compose/material


Creating a custom theme involves editing these files to use different 

colors, typography, and shape settings. These changes will then be 

used by the Material components that make up the app’s user 

interface.

Note that dynamic colors only take effect when enabled on the 

device by the user within the wallpaper and styles section of the 

Android Settings app.



56.3 Building a custom theme

As we have seen, the coding work in implementing a theme is 

relatively simple. The difficult part, however, is often choosing 

complementary colors to make up the theme. Fortunately, Google has 

developed a tool that makes it easy to design custom color themes 

for your apps. This tool is called the Material Theme Builder and is 

available at:

On the custom screen make a color selection for the primary color 

key (A) by clicking on the color circle to display the color selection 

dialog. Once a color has been selected, the preview (B) will change 

to reflect the recommended colors for all MD3 color slots, along with 

example app interfaces and widgets. The button marked D previews 

the color scheme in light and dark modes. In addition, you can 

override the generated colors for the Secondary, Tertiary, and Neutral 

slots by clicking on the corresponding color circles to display the 

color selection dialog.

The area marked B displays example app interfaces, light and dark 

color scheme charts, and widgets that update to preview your color 

selections. Since the panel is longer than the typical browser window, 

you must scroll down to see all the information:



Figure 56-2

To incorporate the theme into your design, click the Export button 

(C) and select the Jetpack Compose (Theme.kt) option. Once 

downloaded, the Color.kt and Theme.kt files can replace the existing 

files in your project. Note that the theme name in the exported 

Theme.kt file must be changed to match your project.



56.4 Summary

Material Design provides guidelines and components defining how 

Android apps appear. Individual branding can be applied to an 

app by designing themes that specify the colors, fonts, and 

shapes used when displaying the app. Google is currently 
introducing Material Design 3 which replaces Material Design 2 

and supports the new features of Material Me, including dynamic 

colors. Google also provides the Material Theme Builder for 
designing your own themes, which eases the task of choosing 

complementary theme colors. Once this tool has been used to 

create a theme, the corresponding files can be exported and used 

within an Android Studio project.



57. A Material Design 3 Theming Tutorial

This chapter will demonstrate how to create a new theme using 

the Material Theme Builder tool, integrate it into an Android 

Studio project, and test dynamic theme colors.



57.1 Creating the ThemeDemo project

Launch Android Studio and create a new Empty Activity project 

named ThemeDemo, specifying com.example.themedemo as the 

package name and selecting a minimum API level of API 26: 

Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and 

add a new empty composable named MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to 

call MainScreen instead of Greeting and enable the system UI 

preview option:

@Preview(showBackground = showSystemUi =

@Composable 

fun GreetingPreview() {





57.2 Designing the user interface

The main activity will contain a simple layout containing some 

common MD3 components. This will let us see the effect of 

theming work performed later in the chapter. For the latest 

information on which MD3 components are available for use with 

Jetpack Compose, refer to the following web page:

https://developer.android.com/jetpack/androidx/releases/compose- 

materiah

Within the MainActivity.kt file, edit the MainScreen composable, so 

it reads as follows: 

import androidx.compose.foundation.layout.Arrangement

import androidx.compose.foundation.layout. Column

import androidx.compose.material.icons.Icons 

import androidx.compose.material.icons.filled.Favorite

https://developer.android.com/


import androidx.compose.material.icons.filled.Home 

import androidx.compose.material.icons.filled.Settings 

import androidx.compose.material3.*  

import androidx.compose.runtime.*  

import androidx.compose.ui.Alignment

@Composable 

fun MainScreen() {

var selectedItem by remember { mutableStateOf(o) }

val items = listOf("Home", "Settings", "Favorites")

val icons = listOf(Icons.Filled.Home, Icons.Filled.Settings,

Icons.Filled.Favorite)



Column(

verticalArrangement = Arrangement.SpaceBetween,

horizontalAlignment = Alignment.CenterHorizontally

) {

TopAppBar(title = { Text("ThemeDemo") }, scrollBehavior 
= null)

Button(onClick = { }) {

Text("MD3 Button")

}

Textf'A Theme Demo")

FloatingActionButton(onClick = { }) {

Text("FAB")

}

NavigationBar {



items.forEachindexed { index, item ->

Navigation Baritem (

icon = { icon(icons[index], 
contentDescription = null) },

label = { Text(item) },

selected = selecteditem == index,

onClick = { selecteditem = index }

)

}

}

}

}

If the editor reports that TopAppBar is an experimental API, add 
the following directive to the MainScreen composable:



@OptIn(ExperimentalMaterial3Api::class) 

@Composable

fun MainScreen() {

When previewed, the MainScreen layout should appear as 

illustrated in Figure



13:00

ThemeDemo

MD3 Button

A Theme Demo

FAB



Figure 57-1

The completed design is currently using default theme colors and 

fonts. The next step is to build an entirely new theme for the 

app.



57.3 Building a new theme

The theme for the project will be designed and generated using the 

Material Theme Builder. Open a browser window and navigate to the 

following URL to access the builder tool:

https://m3.material.io/theme-builder#/custom

Once you have loaded the builder, select a wallpaper and click on 

the Custom button at the top of the screen. Next, click on the 

Primary color circle in the Core colors section to display the color 

selector. From the color selector, choose any color you feel like using 

as the basis for your theme before clicking on the Close button:

https://m


Figure 57-2

Review the color scheme in the Your Theme panel and make any 

necessary color adjustments using the Core colors panel until you are 

happy with the color slots. Once the theme is ready, click on the 

Export button in the top right-hand corner and select the Jetpack 

Compose (Theme.kt) option. When prompted, save the file to a 

suitable location on your computer filesystem. The theme will be 

saved as a compressed file named



Using the appropriate tool for your operating system, unpack the 

theme file, which should contain the following files in a folder with 

the path material-theme/ui/theme:

•Color.kt

•Theme.kt

Now that the theme files have been generated, they need to be 

integrated into the Android Studio project.



57.4 Adding the theme to the project

Before we can add the new theme to the project, we first need to 

remove the old theme files. Select and delete the and Theme.kt 

files from the ui.theme folder within the Android Studio Project 

tool window. Once the files have been removed, locate the 

custom theme files in the material-theme/ui/theme folder on your 

local filesystem and copy and paste them into the ui.theme folder 

in the Project tool window.

After adding the files, edit each one in turn and change the 
package declaration to match the current project which, assuming 

you followed the steps at the start of the chapter, will read as 

follows:

package com.example.themedemo.ui.theme

Next, edit the Theme.kt and change the name of the Theme 

composable from AppTheme to ThemeDemoTheme:

@Composable

fun

useDarkTheme: Boolean = isSystemInDarkTheme(),



content: @Composable() () -> Unit

) {

val colors = if (!useDarkTheme) {

LightColors

} else {

DarkColors

Return to the MainActivity.kt file and refresh the Preview panel to 

confirm that the components are rendered using the new theme. 

Then, take some time to explore the Colors.kt and Theme.kt files 

to see the different available theme settings. Also, experiment by 

making changes to different typography and color values.



57.5 Enabling dynamic colors

The app must be run on a device or emulator running Android 

12 or later with the correct Wallpaper settings to test dynamic 
colors. First, launch the Settings app on the device or emulator 

and select Wallpaper & style from the list of options. On the 
wallpaper settings screen, click the option to change the wallpaper 

(marked A in Figure and select a wallpaper image containing 

colors that differ significantly from the colors in your theme. Once 

selected, assign the wallpaper to the Home screen.

Return to the Wallpaper & styles screen and make sure that the 

Wallpaper colors option is selected (B) before trying out the 

different color scheme buttons (C). As each option is clicked, the 

wallpaper example will change to reflect the selection:



Wallpaper & style

Change waifpaper

Wallpaper color; Basic colors



L -----------

Figure 57-3

Once you have chosen a wallpaper, return to Android Studio, load 

the Theme.kt file into the code editor and make the following 

changes to the ThemeDemoTheme composable to add support for 
dynamic colors: 

import android.os.Build

import androidx.compose.material3.dynamicDarkColorScheme 

import androidx.compose.material3.dynamicLightColorScheme

import androidx.compose.ui.platform.LocalContext

@Composable



fun ThemeDemoTheme(

useDarkTheme: Boolean = isSystemInDarkTheme(),

dynamicColor: Boolean = true,

content: @Composable() () -> Unit

) {

val colors = when {

dynamicColor && Build.VERSION.SDK_INT >= 

Build.VERSION_CODES.S -> {

val context = LocalContext.current

if (useDarkTheme) dynamicDarkColorScheme(context)

else dynamicLightColorScheme(context)

}

useDarkTheme -> DarkColors 

else -> LightColors



}

MaterialTheme(

colorScheme = colors, 

content = content

)

}

Build and run the app and note that the layout is now using a 
theme that matches the wallpaper color. Place the ThemeDemo 

app into the background, return to the Wallpaper & styles settings 

screen, and choose a different wallpaper. Bring the ThemeDemo 

app to the foreground again, at which point it will have 

dynamically adapted to match the new wallpaper.



57.6 Summary

This chapter demonstrates how to use the Material Theme Builder 

to design a new theme and explains the steps to integrate the 

generated theme files into a project. Finally, the chapter showed 

how to implement and use the Material You dynamic colors 

feature introduced with Android 12.



58. An Overview of Gradle in Android Studio

Up until this point, it has, for the most part, been taken for 

granted that Android Studio will take the necessary steps to 

compile and run the application projects we created. Android 

Studio has been achieving this in the background using a system 

known as

It is now time to look at how Gradle is used to compile and 

package together the various elements of an application project 

and to begin exploring how to configure this system when more 

advanced requirements are needed in terms of building projects in 

Android Studio.



58.1 An overview of Gradle

Gradle is an automated build toolkit that allows how projects are 
built to be configured and managed through a set of build 

configuration files. This includes defining how a project is to be 

built, what dependencies need to be fulfilled for the project to 

build successfully, and what the build process’s end result (or 

results) should be.

The strength of Gradle lies in the flexibility that it provides to the 

developer. The Gradle system is a self-contained, command-line 

based environment that can be integrated into other environments 

using plugins. In the case of Android Studio, Gradle integration is 

provided through the appropriately named Android Studio Plugin.

Although the Android Studio Plug-in allows Gradle tasks to be 

initiated and managed from within Android Studio, we can still 

use the Gradle command-line wrapper to build Android Studio­

based projects, including on systems on which Android Studio is 

not installed.

The configuration rules to build a project are declared in Gradle 

build files and scripts based on the Groovy programming 

language.



58.2 Gradle and Android Studio

Gradle brings many powerful features to building Android 

application projects. Some of the key features are as follows:



58.2.1 Sensible defaults

Gradle implements a concept referred to as convention over 

configuration. This means that Gradle has a predefined set of 

sensible default configuration settings that will be used unless 

settings in the build files override them. This means that we can 

perform builds with the minimum of configuration required by the 

developer. Changes to the build files are only needed when the 

default configuration does not meet your build needs.



58.2.2 Dependencies

Another key area of Gradle functionality is that of dependencies. 

Consider, for example, a module within an Android Studio project 

which triggers an intent to load another module in the project. 

The first module has, in effect, a dependency on the second 

module since the application will fail to build if the second 

module cannot be located and launched at runtime. This 

dependency can be declared in the Gradle build file for the first 

module so that the second module is included in the application 

build, or an error flagged if the second module cannot be found 

or built. Other dependencies are libraries and JAR files on which 

the project depends to compile and run.

Gradle dependencies can be categorized as local or remote. A local 

dependency references an item that is present on the local file 
system of the computer system on which the build is being 

performed. A local dependency references an item present on the 

computer system’s local file system on which the build is being 

performed. A remote dependency refers to an item on a remote 

server (typically referred to as a repository).

Remote dependencies are handled for Android Studio projects 

using Maven’s project management tool. For example, suppose a 

remote dependency is declared in a Gradle build file using Maven 

syntax. In that case, the dependency will be downloaded



automatically from the designated repository and included in the 
build process. The following dependency declaration, for example, 

causes the AppCompat library to be added to the project from 

the Google repository:

implementation 'androidx.appcompat:appcompat:1.4.1'



58.2.3 Build variants

In addition to dependencies, Gradle also provides build variant 
support for Android Studio projects. This allows multiple variations 

of an application to be built from a single project. Android runs 

on many devices encompassing a range of processor types and 

screen sizes. To target as wide a range of device types and sizes 

as possible, it will often be necessary to build different variants of 

an application (for example, one with a user interface for phones 

and another for tablet-sized screens). Through the use of Gradle, 

this is now possible in Android Studio.



58.2.4 Manifest entries

Each Android Studio project has an AndroidManifest.xml file 

containing configuration details about the application. Several 

manifest entries can be specified in Gradle build files which are 

then auto-generated into the manifest file when the project is 

built. This capability is complementary to the build variants 

feature, allowing elements such as the application version number, 
application ID, and SDK version information to be configured 

differently for each build variant.



58.2.5 APK signing

The chapter entitled “Creating, Testing, and Uploading an Android 
App Bundle” covered the creation of a signed release APK file 

using the Android Studio environment. It is also possible to 
include the signing information entered through the Android 

Studio user interface within a Gradle build file so that we can 

generate signed APK files from the command-line.



58.2.6 ProGuard support

ProGuard is a tool included with Android Studio that optimizes, 

shrinks, and obfuscates Java byte code to make it more efficient 

and harder to reverse engineer (the method by which others can 

identify the logic of an application through analysis of the 

compiled Java byte code). The Gradle build files provide the ability 
to control whether or not ProGuard is run on your application 

when it is built.



58.3 The Properties and Settings Gradle build files

The gradle build configuration consists of configuration, property, 

and settings files. The gradle.properties file, for example, contains 

mostly esoteric settings relating to the command-line flags used 

by the Java Virtual Machine (JVM), whether or not the project 

uses the AndroidX libraries, and Kotlin coding style support. As a 

typical user, it is unlikely that you will need to change any of 

these settings in this file.

The settings.gradle file, on the other hand, defines which online 

repositories are to be searched when the build system needs to 

download and install any additional libraries and plugins required 

to build the project, as well as the project name. A typical 

settings.gradle file will read as follows:

pluginManagement {

repositories {

gradlePluginPortal()

google() 

mavenCentral()



}

}

dependencyResolutionManagement {

repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REP 

OS)

repositories {

google()

mavenCentral()

}

}

rootProject.name = "AndroidSample"

include ':app'

As with the gradle.properties file, it is unlikely that changes will 

need to made to this file.



58.4 The top-level gradle build file

A completed Android Studio project contains everything needed to 

build an Android application and consists of modules, libraries, 

manifest files, and Gradle build files.

Each project contains one top-level Gradle build file. This file is listed 

as build.gradle (Project: name>) and can be found in the project tool 

window as highlighted in Figure

M Android ▼ O "T- C1 —

▼ feapp
manifests 
java

M res

qp build.gradle (Project: DemoApp)
u i I d. g ra □ t ^^^RN^^^^^uAp^ap p)

Jlgradle-wrapper.properties (Gradle Version)
f proguard-rules.pro (ProGuard Rules for DemoApp.app)
ifllgradle.properties (Project Properties)

settings.gradle (Project Settings) 
tUllocal.properties (SDK Location)

Figure 58-1

By default, the contents of the top-level Gradle build file reads as 

follows:



plugins {

id 'com.android.application' version '8.0.0' apply false

id 'com.android.library' version '8.0.0' apply false

id 'org.jetbrains.kotlin.android' version '1.7.20' apply false

}

As it stands, all the file does is declare the version of Jetpack 

Compose and specify the plugins required to complete a project 

build. In most situations, making changes to this build file is 

unnecessary.



58.5 Module level Gradle build files

An Android Studio application project is made up of one or more 

modules. Take, for example, a hypothetical application project 

named GradleDemo, which contains two modules named Module1 

and Module2, respectively. In this scenario, each modules will 

require its own Gradle build file. In terms of the project structure, 

these would be located as follows:

•Module1/build.gradle

•Module2/build.gradle

By default, the Module1 build.gradle file would resemble that of 

the following listing:

plugins {

id 'com.android.application'

id 'org.jetbrains.kotlin.android'

} 

android {



namespace 'com.example.themedemo'

compileSdk 33

defaultConfig {

applicationId "com.example.themedemo" 

minSdk 26 

targetSdk 33 

versionCode 1 

versionName "1.0" 

testInstrumentationRunner

"androidx.test.runner.AndroidJUnitRunner"

vectorDrawables {

useSupportLibrary true

}

}



buildTypes {

release {

minifyEnabled false 

proguardFiles getDefaultProguardFile('proguard-
android-optimize.txt'), 'proguard-rules.pro'

}

}

compileOptions {

sourceCompatibility JavaVersion.VERSION_1_8 

ta rgetCo mpati bility JavaVersion.VERSION_1_8

}

kotlinOptions {

jvmTarget = '1.8'

}



buildFeatures {

compose true

}

composeOptions {

kotlinCompilerExtensionVersion '1.3.2'

}

packagingOptions {

resources {

excludes += '/META-INF/{AL2.o,LGPL2.i}'

}

}

} 

dependencies {



implementation 'androidx.core:core-ktx:i.8.o ‘

implementation 'androidx.lifecycle:lifecycle-runtime-ktx:2.3.i'

implementation 'androidx.activity:activity-compose:i.5.i‘

implementation platform('androidx.compose:compose- 
bom:2O22.io.oo‘)

implementation 'androidx.compose.ui:ui'

implementation 'androidx.compose.ui:ui-graphics'

implementation 'androidx.compose.ui:ui-tooling-preview'

implementation 'androidx.compose.material3:material3‘

testimplementation j unit:junit:4.i3.2‘

androidTestImplementation 'androidx.test.ext:junit:i.i.5‘

androidTestimplementation 'androidx.test.espresso:espresso- 

core:3.5.i'

androidTestimplementation

platform('androidx.compose:compose-bom:2o22.io.oo‘)



androidTestImplementation 'androidx.compose.ui:ui-test-junit4‘

debugimplementation 'androidx.compose.ui:ui-tooling'

debugimplementation 'androidx.compose.ui:ui-test-manifest'

}

As is evident from the file content, the build file begins by 

declaring the use of the Gradle Android application and Kotlin 

plug-ins:

plugins {

id 'com.android.application'

id 'org.jetbrains.kotlin.android'

The android section of the file then states the version of the SDK 

to be used when building Modulei.

android {

compileSdkVersion 33



The items declared in the defaultConfig section define elements 

that are to be generated into the module’s AndroidManifest.xml file 

during the build. These settings, which may be modified in the 

build file, are taken from the settings entered within Android 

Studio when the module was first created:

defaultConfig {

application Id "com.example.demoapp"

minSdkVersion 26

targetSdkVersion 33

versionCode 1

versionName "1.0"

testInstrumentationRunner 

"androidx.test.runner.AndroidJUnitRunner"

}

The buildTypes section contains instructions on whether and how 

to run ProGuard on the APK file when a release version of the 
application is built: 

buildTypes {



release {

minifyEnabled false

proguardFiles getDefaultProguardFile('proguard-android- 
optimize.txt'), 'proguard-rules.pro'

}

}

As currently configured, ProGuard will not be run when Modulei 

is built. To enable ProGuard, the minifyEnabled entry must be 

changed from false to The proguard-rules.pro file can be found in 

the module directory of the project. Changes made to this file 

override the default settings in the proguard-android.txt file, which 
is located on the Android SDK installation directory under

Since no debug buildType is declared in this file, the defaults will 

be used (built without ProGuard, signed with a debug key and 

with debug symbols enabled).

An additional section, entitled productFlavors may also be included 

in the module build file to enable multiple build variants to be 

created.



Next, directives are included to specify the version of the Java 

compiler to be used when building the project, the Kotlin 

complier version, and a setting to enable Jetpack Compose 

development:

compileOptions {

sourceCompatibility JavaVersion.VERSION_1_8

ta rgetCo m patibility JavaVe rsion.VERSION_1_8

}

kotlinOptions {

jvmTarget = '1.8'

}

buildFeatures {

compose true

}

composeOptions {



kotlinCompilerExtensionVersion '1.3.2' 

}

packagingOptions {

resources {

excludes += '/META-INF/{AL2.o,LGPL2.i}'

}

}

Finally, the dependencies section lists any local and remote 

dependencies on which the module depends. For example, the 

dependency lines in the above example file designate the Android 

libraries that need to be included from the Android Repository: 

. 

.

implementation 'androidx.core:core-ktx:1.8.0' 

implementation 'androidx.lifecycle:lifecycle-runtime-ktx:2.3.1' 



Note that the dependency declarations include version numbers to 
indicate which version of the library should be included.



58.6 Configuring signing settings in the build file

The “Creating, Testing, and Uploading an Android App Bundle” 

chapter of this book covered the steps involved in setting up keys 
and generating a signed release APK file using the Android Studio 

user interface. We may also declare these settings within a 

signingSettings section of the build.gradle file. For example: 

. 

.

defaultConfig { 

. 

.

}

signingConfigs {

release {

storeFile file("keystore. release")



storePassword "your keystore password here" 

keyAlias "your key alias here"

keyPassword "your key password here"

}

}

buildTypes {

}

The above example embeds the key password information directly 

into the build file. An alternative to this approach is to extract 

these values from system environment variables: 

signingConfigs {



release {

storeFile file("keystore.release")

storePassword System.getenv(" KEYSTOREPASSWD")

keyAlias "your key alias here"

keyPassword System.getenv("KEYPASSWD")

}

}

Yet another approach is to configure the build file so that Gradle 

prompts for the passwords to be entered during the build 

process:

signingConfigs {

release {

storeFile file("keystore.release") 

storePassword System.consoleQ.readLine



("\nEnter Keystore password: ")

keyAlias "your key alias here"

keyPassword System.console().readLIne("\n Enter Key 

password: ")

}

}



58.7 Running Gradle tasks from the command-line

Each Android Studio project contains a Gradle wrapper tool to 

allow Gradle tasks to be invoked from the command line. This 

tool is located in the root directory of each project folder. While 

this wrapper is executable on Windows systems, it needs to have 

execute permission enabled on Linux and macOS before it can be 

used. To enable execute permission, open a terminal window, 

change directory to the project folder for which the wrapper is 

needed and execute the following command:

chmod +x gradlew

Once the file has execute permissions, the location of the file will 

either need to be added to your $PATH environment variable, or 

the name prefixed by ./ in order to run. For example:

./gradlew tasks

Gradle views project building in terms of several different tasks. A 

full listing of tasks that are available for the current project can 

be obtained by running the following command from within the 

project directory (remembering to prefix the command with a ./ if 
running on macOS or Linux): 

gradlew tasks 



To build a debug release of the project suitable for device or 

emulator testing, use the assembleDebug option:

gradlew assembleDebug

Alternatively, to build a release version of the application:

gradlew assembleRelease



58.8 Summary

For the most part, Android Studio performs application builds in 

the background without any intervention from the developer. This 

build process is handled using the Gradle system, an automated 

build toolkit designed to allow how projects are built to be 

configured and managed through a set of build configuration files. 

While the default behavior of Gradle is adequate for many basic 

project build requirements, the need to configure the build 

process is inevitable with more complex projects. This chapter has 

provided an overview of the Gradle build system and configuration 

files within the context of an Android Studio project.



Index

symbols

?. 99.

2D graphics 349

@Composable 143

@ExperimentalFoundationApi 306

:: operator 101

@Preview 21

showSystemUi 21

A

acknowledgePurchase() method 503

Activity Manager 87.

adb



command-line tool 65 

connection testing 71 

device pairing 69 

enabling on Android devices 65

Linux configuration 68 

list devices 65 

macOS configuration 66 

overview 65 

restart server 66 

testing connection 72

WiFi debugging 69

Windows configuration 67.

Wireless debugging 69



Wireless pairing 69

AlertDialog 147.

align() 221 

alignByBaseline() 21

Alignment.Bottom 211

Alignment.BottomCenter 219

Alignment.BottomEnd 219

Alignment.BottomStart 219

Alignment.Center 219

Alignment.CenterEnd 219

Alignment.CenterHorizontally 207

Alignment.CenterStart 219

Alignment.CenterVertically 211



Alignment.End 207 

alignment lines 22

Alignment.Start 207

Alignment.Top 211

Alignment.TopCenter 21

Alignment.TopEnd 21

Alignment.TopStart 21

Android 

architecture 85 

runtime 86

SDK Packages 6

Android Architecture Components 369,

Android Debug Bridge. ADB

Android Development



System Requirements 3

Android Jetpack 369,

Android Libraries 86

Android Monitor tool window 40

Android Native Development Kit 87.

Android SDK Location 

identifying 9

Android SDK Manager 10

Android SDK Packages 

version requirements 8

Android SDK Tools 

command-line access 9

Linux 11



macOS 11

Windows 7 10

Windows 8 10

Android Software Stack 85

Android Studio

Animation Inspector 347

Asset Studio 178 

changing theme 62

Database Inspector 41.7.

downloading 3

Editor Window 57.

installation 4

Layout Editor 141.



Linux installation 5

macOS installation 4

Main Window 56

Menu Bar 56

Navigation Bar 56

Project tool window 57.

setup wizard 5

Status Bar 57.

Toolbar 56

Tool window bars 58 

tool windows 57.

updating 12

Welcome Screen 55



Windows installation 4

Android Support Library, 369,

Android Virtual Device. AVD 

overview 35

Android Virtual Device Manager 35

AndroidX libraries 532 

animate as state functions 333 

animateColorAsState() function 338 

animateDpAsState() function 343

AnimatedVisibility 321 

animation specs 325 

enter and exit animations 324, 

expandHorizontally() 324,

expandIn() 324,



expandVertically() 324, 

fadeIn() 324, 

fadeOut() 325

MutableTransitionState 329, 

scaleIn() 325 

scaleOut() 325 

shrinkHorizontally() 325 

shrinkOut() 325 

shrinkVertically() 325 

slideIn() 325 

slideInHorizontally() 325 

slideInVertically() 325 

slideOut() 325



slideOutHorizontally() 325 

slideOutVertically() 325 

animateEnterExit() modifier 328 

animateFloatAsState() function 334 

animateScrollTo() function 293 

animateScrollToItem(index: Int) 282 

animateScrollTo(value: Int) 281

Animation 

auto-starting 328 

combining animations 344 

inspector 347 

keyframes 343

KeyframesSpec 343



motion 339

spring effects 342 

state-based 333 

visibility 321

Animation damping

DampingRatioHighBouncy 342

DampingRatioLowBouncy 342

DampingRatioMediumBouncy 342

DampingRatioNoBouncy 342

Animation Inspector 347

AnimationSpec 325 

tween() function 326

Animation specs 325



Animation stiffness

StiffnessHigh 343

StiffnessLow 343

StiffnessMedium 343

StiffnessMediumLow 343

StiffnessVeryLow 343 

annotated strings 365 

append function 195 

buildAnnotatedString function 195

ParagraphStyle 196

SpanStyle 195

APK analyzer 496

APK file 490

APK File



analyzing 496

APK Signing 532

APK Wizard dialog 488

App Bundles 485

creating 490

overview 485

revisions 495

uploading 492

append function 195

App Inspector 59

Application

stopping 40

Application Framework 87.



Arrangement.Bottom 20

Arrangement.Center 209

Arrangement.End 208

Arrangement.SpaceAround 210

Arrangement.SpaceBetween 210

Arrangement.SpaceEvenly 210

Arrangement.Start 208

Arrangement.Top 209

ART 86 

as 101 

as? 101 

asFlow() builder 463

Asset Studio 17.8



asSharedFlow() 474 

asStateFlow() 473

async 273

AVD

cold boot 50

command-line creation 35

creation 35

device frame 43

Display mode 52

launch in tool window 43

overview 35

quickboot 50

Resizable 52 

running an application 37.



Snapshots 49, 

standalone 41 

starting 36

Startup size and orientation 37.

B

background modifier 192 

barriers 259

Barriers 244 

constrained views 244, 

baseline 

alignment 211 

baselines 231

BaseTextField 146



BillingClient 504, 

acknowledgePurchase() method 503 

consumeAsync() method 503 

getPurchaseState() method 502 

initialization 509, 

launchBillingFlow() method 502 

queryProductDetailsAsync() method 501 

queryPurchasesAsync() method 504, 

startConnection() method 501

BillingResult 517.

getDebugMessage() 517.

Bill of Materials.

Bitwise AND 107.



Bitwise Inversion 106

Bitwise Left Shift 108

Bitwise OR 107.

Bitwise Right Shift 108

Bitwise XOR 107.

BOM 22 

build.gradle 22 

compose-bom 23 

library version mapping 23 

override library version 24

Boolean 94

BottomNavigation 425

BottomNavigationItem 425



Box 146 

align() 221 

alignment 219

Alignment.BottomCenter 219

Alignment.BottomEnd 219

Alignment.BottomStart 219

Alignment.Center 219

Alignment.CenterEnd 219

Alignment.CenterStart 219

Alignment.TopCenter 219

Alignment.TopEnd 21

Alignment.TopStart 219

BoxScope 221 

contentAlignment 21



matchParentSize() 221 

overview 217.

tutorial 217.

BoxScope 

align() 221 

matchParentSize() 221 

modifiers 221

BoxWithConstraints 146

Brush Text Styling 196 

buffer() operator 468 

buildAnnotatedString function 195

Build tool window 59

Build Variants 532



tool window 59,

Button 147

by keyword 152

C

cancelAndJoin() 27.4

cancelChildren() 27.4

Canvas 146

DrawScope 349

inset() function 353

overview 349

size 349

Card 147 

example 286



C/C++ Libraries 86 

centerAround() function 248 

chain head 242 

chaining modifiers 187.

chains 242 

chain styles 242

Char 94

Checkbox 176

CircleShape 221

CircularProgressIndicator 147.

clickable 192 

clip 192

Clip Art 17.9.



clip() modifier 221

CircleShape 221

CutCornerShape 221

RectangleShape 221

RoundedCornerShape 221 

close() function 361

Code completion 7.6

Code editor 17.

Split mode 17.

Code Editor 

basics 73

Code completion 7.6

Code folding 7.9

Code Generation 7.8



Code mode 75

Code Reformatting 81

Document Tabs 74

Editing area 74

Gutter Area 74

Live Templates 82

Parameter information 7.8

Parameter name hints 7.8 

sample code 82

Splitting 7.6

Statement Completion 7.8

Status Bar 7.5

Code folding 7.9



Code Generation 7.8

Code mode 75

Code reformatting 81

code samples

download 1

Coil

library 298

rememberImagePainter() function 299

cold boot 50

Cold flow 473

convert to hot 47.6

collectLatest() operator 468 

collect() operator 464,



ColorFilter 365 

color filtering 365

Column 146

Alignment.CenterHorizontally 207

Alignment.End 207

Alignment.Start 207

Arrangement.Bottom 20

Arrangement.Center 20

Arrangement.SpaceAround 210

Arrangement.SpaceBetween 210

Arrangement.SpaceEvenly 210

Arrangement.Top 20

Layout alignment 206 

list 27.9.



list tutorial 289 

overview 204 

scope 211 

scope modifiers 211 

spacing 210 

tutorial 20 

verticalArrangement 208

Column lists 27.9

ColumnScope 211

Modifier.align() 211

Modifier.alignBy() 211

Modifier.weight() 211

combine() operator 47.2



combining modifiers 192

Communicating Sequential Processes 272

Companion Objects 131 

components 143

Composable 

adding a 26 

previewing 28

Composable function 

syntax 144., 

composable functions 143 

composables 

add modifier support 188

Composables



Foundation 146

Material 146

Compose 

before 141 

components 143 

data-driven 142 

declarative syntax 141 

functions 143 

layout overview 225 

modifiers 185 

overview 141 

state 142 

compose-bom 2 



compose() method 421

CompositionLocal

example 163

overview 161

state 165

syntax 162

compositionLocalOf() function 162

conflate() operator 468

constrainAs() modifier function 247

constrain() function 263

Constraint bias 252

Constraint Bias 241

ConstraintLayout 146

adding constraints 248



barriers 259

Barriers 244 

basic constraints 250 

centerAround() function 248 

chain head 242 

chains 242 

chain styles 242 

constrainAs() function 247.

constrain() function 263

Constraint bias 252

Constraint Bias 241

Constraint margins 253

Constraints 239



constraint sets 262 

createEndBarrier() 259 

createHorizontalChain() 257.

createRefFor() function 263 

createRef() function 247.

createRefs() function 247 

createStartBarrier() 259 

createTopBarrier() 259 

createVerticalChain() 257.

creating chains 257.

generating references 247.

guidelines 258

Guidelines 243



how to call 247 

layout() modifier 264 

library 249 

linkTo() function 248

Margins 240

Opposing constraints 251

Opposing Constraints 254 

overview of 239

Packed chain 243 

reference assignment 247

Spread chain 242

Spread inside chain 242

Weighted chain 242



Widget Dimensions 243

Constraint margins 253 

constraints 234 

constraint sets 262 

consumeAsync() method 503

ConsumeParams 512 

contentAlignment 21

Content Provider 87.

Coroutine Builders 273 

async 273 

coroutineScope 273 

launch 273 

runBlocking 273 

supervisorScope 273



withContext 273

Coroutine Dispatchers 272

Coroutines 461 

channel communication 273 

coroutine scope 282

CoroutineScope 282

GlobalScope 27.2

LaunchedEffect 27.6 

rememberCoroutineScope() 282 

rememberCoroutineScope() function 27.2

SideEffect 27.6

Side Effects 27.6

Suspend Functions 27.2



suspending 27.4,

ViewModelScope 272 

vs Threads 272 

vs. Threads 272 

coroutineScope 273

CoroutineScope 282 

rememberCoroutineScope() 282 

createEndBarrier() 259 

createHorizontalChain() 257.

createRefFor() function 263 

createRef() function 247.

createRefs() 247.

createStartBarrier() 259



createTopBarrier() 259, 

createVerticalChain() 257.

Crossfading 329, 

currentBackStackEntryAsState() method 444

Custom Accessors 12

Custom layout 233 

building 233 

constraints 234

Layout() composable 234 

measurables 234 

overview 233

Placeable 234 

syntax 233 

custom layout modifiers 225



alignment lines 229 

baselines 231 

creating 227 

default position 227

Custom layouts 

overview 225 

tutorial 225

Custom Theme 

building 523

CutCornerShape 221

D

DampingRatioHighBouncy 342

DampingRatioLowBouncy 342



DampingRatioMediumBouncy 342

DampingRatioNoBouncy 342

Dark Theme 41 

enable on device 41 

dashPathEffect() method 351

Data Access Object (DAO) 404,

Data Access Objects 395

Database Inspector 417.

live updates 417.

SQL query 417

Database Rows 386

Database Schema 385

Database Tables 385



data-driven 142

DDMS 40

Debugging 

enabling on device 65 

declarative syntax 141

Default Function Parameters 121 

default position 227

Device File Explorer 59 

device frame 43

Device Manager 59, 

device pairing 69

Dispatchers.Default 273

Dispatchers.IO 273



Dispatchers.Main 272 

drag gestures 450 

drawable 

folder 17.8 

drawArc() function 360 

drawCircle() function 356 

drawImage() function 363

Drawing 

arcs 360 

circle 356 

close() 361 

dashed lines 351 

dashPathEffect() 351 

drawArc() 360



drawImage() 363 

drawPath() 361

drawPoints() 362

drawRect() 351 

drawRoundRect() 354 

gradients 357.

images 363

line 349

oval 356

points 362

rectangle 351

rotate() 355

rotation 355



Drawing text 365 

drawLine() function 350

drawPath() function 361

drawPoints() function 362

drawRect() function 351

drawRoundRect() function 354

DrawScope 349

drawText() function 366

DropdownMenu 147

DROP_LATEST 475

DROP_OLDEST 475

DurationBasedAnimationSpec 325

Dynamic colors



enabling in Android 529,

E

Elvis Operator 101 

emit 143

Empty Compose Activity 

template 14,

Emulator 59 

battery 48 

cellular configuration 48 

configuring fingerprints 50 

directional pad 48 

extended control options 47.

Extended controls 47



fingerprint 48 

location configuration 48 

phone settings 48

Resizable 52 

resize 47 

rotate 46

Screen Record 49,

Snapshots 49 

starting 36 

take screenshot 46 

toolbar 45 

toolbar options 45 

tool window mode 51

Virtual Sensors 49



zoom 46 

enablePendingPurchases() method 503 

enabling ADB support 65 

enter animations 324,

EnterTransition.None 328

Errata 2

Escape Sequences 95

Event Log 59 

exit animations 324,

ExitTransition.None 328 

expandHorizontally() 324, 

expandIn() 324, 

expandVerticallyO 324.



Extended Control 

options 47.

F

fadeIn() 324, 

fadeOut() 325 

Favorites

tool window 59

Files

switching between 7.4

fillMaxHeight 192

fillMaxSize 192 

fillMaxWidth 192

filter() operator 466



findStartDestination() method 426

Fingerprint 

emulation 50 

firstVisibleltemlndex 284 

flatMapConcat() operator 471 

flatMapMerge() operator 471

Float 94

FloatingActionButton 147

Flow 461 

asFlow() builder 463 

asSharedFlow() 474 

asStateFlow() 4,73 

backgroudn handling 481 

buffering 468



buffer() operator 468 

builder 463

cold 473

collect() 467.

collecting data 467.

collectLatest() operator 468

combine() operator 47.2

conflate() operator 468

emit() 463

emitting data 463

filter() operator 466

flatMapConcat() operator 471 

flatMapMerge() operator 47J.



flattening 47.0 

flowOf() builder 463

flow of flows 47.0

fold() operator 47.0

hot 473

MutableSharedFlow 474

MutableStateFlow 473

onEach() operator 47.2

reduce() operator 47.0

repeatOnLifecycle 482

SharedFlow 474

shareIn() function 47.6 

single() operator 468



StateFlow 473 

transform() operator 466 

try/finally 467.



zip() operator 472

flow builder 463 

flowOf() builder 463 

flow of flows 470

Flows 

combining 472

Introduction to 461

FontWeight 27 

forEach loop 236

Foundation components 146

Foundation Composables 146

Function Parameters 

variable number of 121



Functions 11

G

Gestures 447 

click 447 

drag 450 

horizontalScroll() 454 

overview 447 

pinch gestures 456

PointerInputScope 449 

rememberScrollableState() function 453 

rememberScrollState() 454 

rememberTransformableState() 456 

rotation gestures 457 

scrollable() modifier 453



scroll modifiers 454 

taps 449,

translation gestures 458

tutorial 447

verticalScroll() 454

getDebugMessage() 517

getPurchaseState() method 502

getStringArray() method 297

GlobalScope 272

GNU/Linux 86

Google Play Billing Library 499

Google Play Console 506

Creating an in-app product 506



License Testers 507.

Google Play Developer Console 486

Google Play store 15

Gradient drawing 357.

Gradle

APK signing settings 537.

Build Variants 532 

command line tasks 538 

dependencies 531

Manifest Entries 532 

overview 531 

tool window 59

Gradle Build File



top level 533

Gradle Build Files 

module level 534 

gradle.properties file 532

Graphics 

drawing 349,

Grid

overview 27.9,

groupBy() function 283

guidelines 258

H

Higher-order Functions 123 

horizontalArrangement 210



horizontalScroll() 454

Hot flows 473

I

Image 146

add drawable resource 17.8

painterResource method 180

Immutable Variables 96

INAPP 504

In-App Products 499

In-App Purchasing 505

acknowledgePurchase() method 503

BillingClient 500

BillingResult 517.

consumeAsync() method 503



ConsumeParams 512

Consuming purchases 512 

enablePendingPurchases() method 503 

getPurchaseState() method 502

Google Play Billing Library 499, 

launchBillingFlow() method 502

Libraries 505 

newBuilder() method 500 

onBillingServiceDisconnected() callback 510 

onBillingServiceDisconnected() method 501 

onBillingSetupFinished() listener 510 

onProductDetailsResponse() callback 510

Overview 499



ProductDetail 502

ProductDetails 511 

products 499.

ProductType 504,

Purchase Flow 511

PurchaseResponseListener 504,

PurchasesUpdatedListener 502

PurchaseUpdatedListener 511 

purchase updates 511 

queryProductDetailsAsync() 510 

queryProductDetailsAsync() method 501 

queryPurchasesAsync() 512 

queryPurchasesAsync() method 504, 



startConnection() method 501 

subscriptions 499, 

tutorial 505

Initializer Blocks 12

In-Memory Database 398

Inner Classes 130 

inset() function 353

InstrinsicSize.Max 269

InstrinsicSize.Min 27.0 

intelligent recomposition 149

IntelliJ IDEA 89,

Interactive mode 32

Intrinsic measurements 265



IntrinsicSize 265 

intrinsic measurements 265

Max 265

Min 265

tutorial 267

is 101

isInitialized property 101

isSystemInDarkTheme() function 164

item() function 280

items() function 280

itemsIndexed() function 280

J

Java 

convert to Kotlin 89



Java Native Interface 87.

JetBrains 89,

Jetpack Compose 

see Compose 141 

join() 274 

K

keyboardOptions 381

Keyboard Shortcuts 60 

keyframe 326 

keyframes 343

KeyframesSpec 343 

keyframes() function 343

KeyframesSpec 343



Keystore File 

creation 488

Kotlin

accessing class properties 129,

and Java 89

arithmetic operators 103

assignment operator 103

augmented assignment operators 104

bitwise operators 106

Boolean 94

break 114,

breaking from loops 113

calling class methods 12



Char 94 

class declaration 125 

class initialization 126 

class properties 126

Companion Objects 131 

conditional control flow 115 

continue labels 114, 

continue statement 114, 

control flow 111 

convert from Java 89,

Custom Accessors 12 

data types 93 

decrement operator 104



Default Function Parameters 121

defining class methods 126 

do ... while loop 113

Elvis Operator 101 

equality operators 105

Escape Sequences 95 

expression syntax 103

Float 94

Flow 461 

for-in statement 111 

function calling 120

Functions 11 

groupBy() function 283



Higher-order Functions 12

if ... else ... expressions 116 

if expressions 115

Immutable Variables 96 

increment operator 104 

inheritance 135

Initializer Blocks 12

Inner Classes 130 

introduction 89,

Lambda Expressions 122 

let Function 99

Local Functions 120 

logical operators 105

looping 111



Mutable Variables 96

Not-Null Assertion 99

Nullable Type 98

Overriding inherited methods 138 

playground 90

Primary Constructor 126 

properties 12 

range operator 106

Safe Call Operator 98

Secondary Constructors 126

Single Expression Functions 120

String 94.

subclassing 135



subStringBefore() method 299,

Type Annotations 97

Type Casting 10

Type Checking 101

Type Inference 97 

variable parameters 121 

when statement 116 

while loop 112

L

Lambda Expressions 122 

lateinit 100

Late Initialization 100 

launch 273



launchBillingFlow() method 502

LaunchedEffect 27.6 

launchSingleTop 423

Layout alignment 206

Layout arrangement 208

Layout arrangement spacing 210

Layout components 146

Layout() composable 234

Layout Editor 141

Layout Inspector 60 

layout modifier 192 

layout() modifier 264

LazyColumn 27.9



creation 280 

scroll position detection 284

LazyHorizontalStaggeredGrid 318 

syntax 314,

LazyList 

tutorial 295

Lazy lists 27.9

Scrolling 281

LazyListScope 280 

item() function 280 

items() function 280 

itemsIndexed() function 280 

stickyHeader() function 282

LazyListState 284



firstVisibleltemlndex 284

LazyRow 27.9

creation 280

scroll position detection 284

LazyVerticalGrid 27.9

adaptive mode 284

fixed mode 284

LazyVerticalStaggeredGrid 316

syntax 313

let Function 99,

libc 86

License Testers 507.

Lifecycle.State.CREATED 482



Lifecycle.State.DESTROYED 482

Lifecycle.State.INITIALIZED 482

Lifecycle.State.RESUMED 482

Lifecycle.State.STARTED 482

LinearProgressIndicator 147

lineTo() 361

lineTo() function 361

linkTo() function 248

Linux Kernel 86

list devices 65

Lists

clickable items 302

enabling scrolling 281



overview 279, 

literals 

live editing 28

LiveData 372 

observeAsState() 373

Live Edit 39, 

disabling 28 

enabling 28 

of literals 28

Live Templates 82

Local Functions 120

Location Manager 87.

Logcat



tool window 60

M

MainActivity.kt file 17 

template code 25 

map method 234 

matchParentSize() 221

Material Composables 146

Material Design 2 519,

Material Design 2 Theming 519,

Material Design 3 519,

Material Design components 147

Material Theme Builder 523

Material You 519, 

maxValue property 293



measurables 234 

measure() function 367.

measureTimeMillis() function 468

Minimum SDK 

setting 15

ModalDrawer 147.

Modern Android architecture 369, 

modifier 

adding to composable 188 

chaining 187.

combining 192 

creating a 186

ordering 188



tutorial 185

Modifier.align() 211

Modifier.alignBy() 211 

modifiers 

build-in 192 

overview 185

Modifier.weight() 211 

multiple devices 

testing app on 40

MutableLiveData 37.2

MutableSharedFlow 474

MutableState 150

MutableStateFlow 473



mutableStateOf function 143 

mutableStateOf() function 151

MutableTransitionState 329,

Mutable Variables 96

N

NavHost 443

NavHostController 443 

navigate() method 423

Navigation 419,

BottomNavigation 425

BottomNavigationItem 425 

compose() method 421 

currentBackStackEntryAsState() method 426 

declaring routes 429,



findStartDestination() method 426 

graph 421 

launchSingleTop 423 

library 439,

NavHost 433

NavHostController 433 

navigate() method 423 

navigation graph 419,

NavType 424, 

overview 419, 

passing arguments 

popUpTo() method 423 

route 421



stack 420 

start destination 421 

tutorial 429,

Navigation Architecture Component 419,

NavigationBar 444

NavigationBarItem 444

Navigation bars 425 

navigation graph 421

Navigation Host 421 

navigation library 439

NavType 424, 

newBuilder() method 500

Notifications Manager 87.



Not-Null Assertion 99

Nullable Type 98 

O

observeAsState() 373

Offset() function 350 

offset modifier 192 

onBillingServiceDisconnected() callback 510 

onBillingServiceDisconnected() method 501 

onBillingSetupFinished() listener 510 

onCreate() method 21 

onEach() operator 47.2 

onProductDetailsResponse() callback 510

OpenJDK 3



Opposing constraints 251

OutlinedButton 309,

OutlinedTextField 375

P

Package Manager 87

Package name 15

Packed chain 243 

padding 192 

painterResource method 180

ParagraphStyle 196

Parameter name hints 78

PathEffect 351 

pinch gestures 456

Placeable 234



PointerInputScope 449 

drag gestures 452 

tap gestures 449 

popUpTo() method 423

Preview panel 22 

build and refresh 22

Interactive mode 32 

settings 31

Primary Constructor 126

Problems 

tool window 60

ProductDetail 502

ProductDetails 511



ProductType 504,

Profiler 

tool window 60 

proguard-rules.pro file 536

ProGuard Support 532 

project 

create new 14 

package name 15

Project 

tool window 60

Project tool window 60

Android mode 16

PurchaseResponseListener 504,



PurchasesUpdatedListener 511

Q

queryProductDetailsAsync() 510

queryProductDetailsAsync() method 501 

queryPurchaseHistoryAsync() method 504, 

queryPurchasesAsync() 512

queryPurchasesAsync() method 504,

quickboot snapshot 50

Quick Documentation 81

R

RadioButton 147.

Random.nextInt() method 316

Range Operator 106



Recent Files Navigation 61 

recomposition 142 

intelligent recomposition 149, 

overview 149

RectangleShape 221 

reduce() operator 47.0 

relativeLineTo() function 361 

release mode 485

Release Preparation 485 

rememberCoroutineScope() function 291 

rememberDraggableState() function 450 

rememberImagePainter() function 299 

remember keyword 151

rememberSaveable keyword 158



rememberScrollableState() function 453 

rememberScrollState() 454 

rememberScrollState() function 291 

rememberTextMeasurer() function 365 

rememberTransformableState() 456 

rememberTransformationState() function 456 

repeatable() function 327.

RepeatableSpec 

repeatable() 327.

RepeatMode.Reverse 327.

repeatOnLifecycle 482

Repository 

tutorial 401



Resizable Emulator 52

Resource Manager 87.

Room

Data Access Object (DAO) 392 

entities 393

In-Memory Database 398

Repository 391

Room Database 392 

tutorial 401

Room Database Persistence 391

Room persistence library 402

Room Persistence Library 389,

rotate modifier 192



rotation gestures 457.

RoundedCornerShape 221

Row 146

Alignment.Bottom 207

Alignment.CenterVertically 207

Alignment.Top 207

Arrangement.Center 208

Arrangement.End 208

Arrangement.SpaceAround 210

Arrangement.SpaceBetween 210

Arrangement.SpaceEvenly 210

Arrangement.Start 208 

horizontalArrangement 208

Layout alignment 206



Layout arrangement 208 

list 279 

list example 294 

overview 204 

scope 211 

scope modifiers 211 

spacing 210 

tutorial 20

Row lists 27.9

RowScope 211

Modifier.align() 211

Modifier.alignBy() 211

Modifier.alignByBaseline() 211



Modifier.paddingFrom() 212

Modifier.weight() 212

Run 

tool window 60 

runBlocking 273

S

Safe Call Operator 98

Scaffold 445 

bottomBar 445

TopAppBar 446 

scaleIn() 325 

scale modifier 192 

scaleOut() 325



Scope modifiers

weights 215 

scrollable modifier 192 

scrollable() modifier 454

Scroll detection 

example 305 

scroll modifiers 454

ScrollState 

maxValue property 293 

rememberScrollState() function 281 

scrollToItem(index: Int) 282 

scrollTo(value: Int) 281

SDK Packages 6



SDK settings 15

Secondary Constructors 126

Secure Sockets Layer (SSL) 86

settings.gradle file 532

Shape 147.

Shapes

CircleShape 221

CutCornerShape 221

RectangleShape 221

RoundedCornerShape 221

SharedFlow 47.7.

backgroudn handling 481

DROP_LATEST 47.5

DROP_OLDEST 475



in ViewModel 47.8 

repeatOnLifecycle 482

SUSPEND 475

tutorial 477.

shareIn() function 47.6

SharingStarted.EagerlyO 47.6

SharingStarted.Lazily() 476

SharingStarted.WhileSubscribed() 47.6

showSystemUi 290

shrinkHorizontally() 325

shrinkOut() 325

shrinkVertically() 325

SideEffect 27.6



Side Effects 27.6 

single() operator 468

size modifier 192

slideIn() 325

slideInHorizontally() 325

slideInVertically() 325

slideOut() 325

slideOutHorizontally() 325

slideOutVertically() 325

Slider 147.

Slider component 29

Slot APIs 

calling 170



declaring 170 

overview 169

tutorial 173

Snackbar 147.

Snapshots

emulator 49

SpanStyle 195

Spread chain 242

Spread inside chain 242

Spring effects 342

spring() function 342

SQL 386

SQLite 385



AVD command-line use 387.

Columns and Data Types 385 

overview 386

Primary keys 386

Staggered Grids 313 

startConnection() method 501 

start destination 421 

state 142 

basics of 14.9, 

by keyword 152 

configuration changes 157.

declaring 150 

hoisting 155

MutableState 150



mutableStateOf() function 151 

overview 149, 

remember keyword 151 

rememberSaveable 158

Unidirectional data flow 153

StateFlow 473 

stateful 149, 

stateful composables 143

State hoisting 155 

stateless composables 143

Statement Completion 7.8 

staticCompositionLocalOf() function 164 

stickyHeader 306 



stickyHeader() function 282

Sticky headers 

adding 306 

example 305 

stickyHeader() function 282

StiffnessHigh 343

StiffnessLow 343

StiffnessMedium 343

StiffnessMediumLow 343

StiffnessVeryLow 343

String 94

Structure 

tool window 60



Structured Query Language 386

Structure tool window 60

SUBS 504,

subscriptions 499,

subStringBefore() method 299

supervisorScope 273

Surface component 219

SUSPEND 475

Suspend Functions 272

Switch 147

Switcher 61

system requirements 3

T



Telephony Manager 87.

Terminal 

tool window 60

Text 147.

Text component 144

TextField 147.

TextMeasurer 365 

measure() function 367.

TextStyle 382

Theme 

building a custom 523

Theming 519, 

tutorial 525



TODO 

tool window 60

Tool window bars 58

Tool windows 57.

TopAppBar 446 

trailingIcon 382

TransformableState 456 

transform() operator 466 

translation gestures 458 

try/finally 467.

tween() function 326

Type Annotations 97

Type Casting 101

Type Checking 101



Type Inference 97

Type.kt file 522

U

UI Controllers 370

UI_NIGHT_MODE_YES 165

Unidirectional data flow 153 

updateTransition() function 344 

USB connection issues 

resolving 68

V

Vector Asset

add to project 178 

verticalArrangement 210



verticalScroll() 454 

verticalScroll() modifier 291

ViewModel 

example 37.6 

lifecycle library 477.

LiveData 37.2 

observeAsState() 373 

overview 369, 

tutorial 373 

using state 37.0 

viewModel() 412

ViewModelProvider Factory 412

ViewModelStoreOwner 412



viewModel() function 412

ViewModelProvider Factory 412

ViewModelScope 27.2

ViewModelStoreOwner 412

View System 87.

Virtual Device Configuration dialog 36

Virtual Sensors 49,

Visibility animation 321

W

Weighted chain 242

Welcome screen 55 

while Loop 112

Widget Dimensions 243



WiFi debugging 69

Wireless debugging 69

Wireless pairing 69 

withContext 273

X

XML resource 

reading an 295 

Z

zip() operator 472


	Essentials

	1.	Start Here

	i.i	For Kotlin programmers

	1.3	Downloading the code samples

	1.4	Feedback

	1.5	Errata

	2.	Setting up an Android Studio Development Environment

	2.1	System requirements

	2.2	Downloading the Android Studio package

	2.3.3 Installation on Linux

	2.4	The Android Studio setup wizard

	2.5	Installing additional Android SDK packages

	2.6 Installing the Android SDK Command-line Tools

	2.6.1 Windows 8.1

	2.6.2 Windows 10

	2.6.3 Windows 11

	2.6.5 macOS

	27 Android Studio memory management

	2.8	Updating Android Studio and the SDK

	2.9	Summary

	3. A Compose Project Overview

	3.1	About the project

	20sp

	3.2	Creating the project

	3.3	Creating an activity

	3.4	Defining the project and SDK settings

	m app

	> manifests

	v java

	com.example.composedemo

	> E* ui.theme	Zj

	com.example.composedemo (androidTest)

	> com.example.composedemo (test)

	> res

	> 8? Gradle Scripts

	GreetingPreview


	Hello Android!

	3.6 Reviewing the main activity

	37 Preview updates

	ate Q

	[9 Device Manager Not

	3.8 Bill of Materials and the Compose version

	3.9 Summary

	4.	An Example Compose Project

	4.1	Getting started

	4.2	Removing the template Code

	4.3	The Composable hierarchy

	4.4	Adding the DemoText composable

	4.5	Previewing the DemoText composable

	4.6	Adding the DemoSlider composable

	4.7	Adding the DemoScreen composable

	4.8	Previewing the DemoScreen composable

	4.10 Testing in interactive mode



	36sp

	4.11 Completing the project

	4.12 Summary

	5.	Creating an Android Virtual Device (AVD) in Android Studio

	5.1	About Android Virtual Devices

	5.2	Starting the emulator

	122 »

	5.3 Running the application in the AVD

	5.4	Real-time updates with Live Edit

	5.5	Running on multiple devices

	5.6	Stopping a running application

	57 Supporting dark theme


	20sp

	5.8 Running the emulator in a separate window


	20sp

	5.9 Enabling the device frame

	5.10 Summary

	6.1	The Emulator Environment

	6.2	Emulator Toolbar Options

	6.3	Working in Zoom Mode

	6.4	Resizing the Emulator Window

	6.5	Extended Control Options

	6.5.1 Location

	6.5.3 Cellular

	6.5.15 Help

	6.6 Working with Snapshots

	6.7 Configuring Fingerprint Emulation

	Fingerprint added!

	6.8 The Emulator in Tool Window Mode

	6.9 Creating a Resizable Emulator

	AndroidSample

	dollars

	6.10 Summary

	7. A Tour of the Android Studio User Interface

	7.1 The Welcome Screen

	7.3 The Tool Windows

	7.4 Android Studio Keyboard Shortcuts

	7.5 Switcher and Recent Files Navigation

	7.6 Changing the Android Studio Theme

	7.7 Summary

	8.	Testing Android Studio Apps on a Physical Android Device

	8.1	An overview of the Android Debug Bridge

	8.2	Enabling USB debugging ADB on Android devices


	Kernel version

	Build number

	Debugging


	USB debugging

	Debug mode when USB is connected

	8.	2.1 macOS ADB configuration


	The computer's RSA key fingerprint is: 6E:BF:56:13:95:F8:9B:7E:12:CF:C5:67

	Always allow from this computer

	8.2.2 Windows ADB configuration

	8.2.3 Linux adb configuration

	8.3 Resolving USB connection issues


	g Pixel 4 API 32 ▼	(■ (Jt S 6

	8.4 Enabling wireless debugging on Android devices



	Wireless debugging

	Debug mode when Wi-Fi is connected


	Pair with device

	Wi-Fi pairing code

	IP address & Port

	10.0.2.16:43967

	Cancel

	IX Pixel 4 API 33 ▼	► (a r $ U ’


	■ Do Pixel 4 API 33

	□ Resizable API 33

	Lq Select Multiple Devices.,.

	n Device Manager

	:= Troubleshoot Device Connections

	Pair new devices over Wi-Fi

	8.5 Testing the adb connection

	8.6 Summary

	9. The Basics of the Android Studio Code Editor



	1 error, 1 warning

	Highlight: All Problems

	9.2 Code mode

	9.3 Splitting the editor window

	9.4 Code completion

	9.6	Parameter information

	9.7	Parameter name hints

	9.8	Code generation

	9.10 Quick documentation lookup

	9.13 Live templates

	9.14 Summary

	io. An Overview of the Android Architecture

	io.i The Android software stack

	10.4 Android libraries

	11.3 Converting from Java to Kotlin

	11.6 Semi-colons in Kotlin

	11.7 Summary

	12.	Kotlin Data Types, Variables and Nullability

	12.1 Kotlin data types

	12.1.1 Integer data types

	12.1.2 Floating point data types

	12.1.3 Boolean data type

	12.1.4 Character data type

	12.1.5 String data type

	12.1.6 Escape sequences

	12.4	Declaring mutable and immutable variables

	12.5	Data types are objects

	12.6	Type annotations and type inference

	12.7	Nullable type

	12.8	The safe call operator

	12.9	Not-null assertion

	12.10	Nullable types and the let function

	12.12 The Elvis operator

	12.13 Type casting and type checking

	12.14 Summary

	13.	Kotlin Operators and Expressions

	13.1	Expression syntax in Kotlin

	13.2	The Basic assignment operator

	13.3	Kotlin arithmetic operators

	13.9.1 Bitwise inversion

	13.9.2 Bitwise AND

	13.9.6 Bitwise right shift

	13.10 Summary

	14. Kotlin Control Flow

	14.1 Looping control flow

	14.1.1 The Kotlin for-in Statement

	14.1.2 The while loop

	14.1.3 The do ... while loop

	14.1.4 Breaking from Loops

	14.1.5 The continue statement

	14.1.6 Break and continue labels

	14.2 Conditional control flow

	14.2.1 Using the if expressions

	14.2.2 Using if... else ... expressions

	14.2.3 Using if... else if... Expressions

	14.2.4 Using the when statement

	14.3 Summary

	15.3 Calling a Kotlin function

	15.4 Single expression functions

	15.	6 Handling return values

	15.	7 Declaring default function parameters

	15.	8 Variable number of function parameters

	15.	9 Lambda expressions

	15.1	0 Higher-order functions

	15.1	1 Summary

	16.	The Basics of Object-Oriented Programming in Kotlin

	16.1	What is an object?

	16.2	What is a class?

	16.4	Adding properties to a class

	16.5	Defining methods

	16.6	Declaring and initializing a class instance

	16.7	Primary and secondary constructors

	16.8	Initializer blocks

	16.9	Calling methods and accessing properties

	16.10	Custom accessors

	i6.ii	Nested and inner classes

	16.12	Companion objects

	16.13	Summary

	17.	An Introduction to Kotlin Inheritance and Subclassing

	17.1	Inheritance, classes, and subclasses

	17.2	Subclassing syntax

	17.3	A Kotlin inheritance example

	17.4	Extending the functionality of a subclass

	17.5	Overriding inherited methods

	17.7	Using the SavingsAccount class

	17.8	Summary

	18.	An Overview of Compose

	18.4 Summary

	19.2	Stateful vs. stateless composables

	19.3	Composable function syntax

	19.4	Foundation and Material composables

	20. An Overview of Compose State and Recomposition

	20.1 The basics of state

	20.3	Creating the StateExample project

	20.4	Declaring state in a composable

	20.5	Unidirectional data flow

	20.6 State hoisting

	20.7 Saving state through configuration changes

	20.8 Summary

	21.	An Introduction to Composition Local

	21.2	Using CompositionLocal

	21.3	Creating the CompLocalDemo project

	21.5	Adding the CompositionLocal state

	21.6	Accessing the CompositionLocal state


	Greetingpreview

	DarkPreview

	21.8	Summary

	22.	An Overview of Compose Slot APIs

	22.1	Understanding slot APIs


	Defaultpreview	F Ck




	Bottom Text

	22.2	Declaring a slot API

	22.3	Calling slot API composables

	Defaultpreview


	Top Text

	Bottom Text

	22.4	Summary

	23.	A Compose Slot API Tutorial

	23.2	Creating the SlotApiDemo project

	23.3	Preparing the MainActivity class file

	23.4	Creating the MainScreen composable

	23.5	Adding the ScreenContent composable

	23.6	Creating the Checkbox composable

	DemoPreview

	Q Image Title s Linear Progress

	23.7	Implementing the ScreenContent slot API

	23.8	Adding an Image drawable resource

	23.9	Writing the TitleImage composable

	23.10	Completing the MainScreen composable

	23.11	Previewing the project


	Downloading

	23.12	Summary

	24.	Using Modifiers in Compose

	24.1	An overview of modifiers

	24.2	Creating the ModifierDemo project

	24.3	Creating a modifier

	24.4	Modifier ordering

	Defaultpreview

	24.5	Adding modifier support to a composable


	■| res

	v drawable

	<> ic_launcher_background.xml

	<> ic_launcher_foreground.xml (v24)

	24.6 Common built-in modifiers

	24.7 Combining modifiers

	25.	Annotated Strings and Brush Styles

	25.1	What are annotated strings?

	25.2	Using annotated strings

	25.3	Brush Text Styling

	25.4	Creating the example project

	25.6	An example Paragraphstyle annotated string



	This is great!

	This is some text that doesn't have any style applied to it.

	This is some text that is indented more on the first lines than the rest of the lines. It also has an increased line height.

	257 A Brush style example

	25.8 Summary

	26.	Composing Layouts with Row and Column

	26.1	Creating the RowColDemo project

	26.2	Row composable

	26.3	Column composable

	26.4	Combining Row and Column composables

	26.5	Layout alignment

	26.6 Layout arrangement positioning

	26.7	Layout arrangement spacing

	26.8	Row and Column scope modifiers

	26.9 Scope modifier weights

	26.10 Summary

	27.	Box Layouts in Compose

	27.1	An introduction to the Box composable

	27.2	Creating the BoxLayout project

	27.5	Box alignment

	27.6	BoxScope modifiers

	27.7	Using the clip() modifier

	27.8	Summary

	28.	Custom Layout Modifiers

	28.1	Compose layout basics

	28.2	Custom layouts

	28.3	Creating the LayoutModifier project

	28.4	Adding the ColorBox composable

	28.7	Completing the layout modifier

	28.8	Using a custom modifier

	28.9	Working with alignment lines

	28.10	Working with baselines

	28.11	Summary

	29.	Building Custom Layouts

	29.1	An overview of custom layouts

	29.2	Custom layout syntax

	29.3	Using a custom layout

	29.4	Creating the CustomLayout project

	29.5	Creating the CascadeLayout composable

	29.6	Using the CascadeLayout composable

	297 Summary

	30.	A Guide to ConstraintLayout in Compose

	30.1 An introduction to ConstraintLayout

	30.2.1 Constraints


	Widget Offset using Constraint Bias

	30.2.6 Chain styles

	30.3 Configuring dimensions

	30.6 Summary

	31.	Working with ConstraintLayout in Compose

	31.1	Calling ConstraintLayout

	31.2	Generating references

	31.3	Assigning a reference to a composable

	31.6	Adding the ConstraintLayout library

	31.7	Adding a custom button composable

	31.9	Opposing constraints

	31.10	Constraint bias

	31.11	Constraint margins

	31.12	The importance of opposing constraints and bias

	31.13	Creating chains

	31.15 Working with barriers

	31.16 Decoupling constraints with constraint sets

	31.17 Summary

	32.	Working with IntrinsicSize in Compose

	32.1	Intrinsic measurements

	32.2	Max. vs Min. Intrinsic Size measurements

	32.3	About the example project

	32.4	Creating the IntrinsicSizeDemo project

	32.5	Creating the custom text field

	32.7	Adding the top-level Column


	Hello Compose

	Hello Compose]

	32.11 Summary

	33.	Coroutines and LaunchedEffects in Jetpack Compose

	33.4 Suspend functions

	33.8	Coroutines - suspending and resuming

	33.9	Coroutine channel communication

	33.10	Understanding side effects

	33.11 Summary

	34. An Overview of Lists and Grids in Compose

	34.2 Working with Column and Row lists

	34.3 Creating lazy lists

	34.4 Enabling scrolling with ScrollState

	34.6	Sticky headers

	34.7	Responding to scroll position

	34.8	Creating a lazy grid

	34.9 Summary

	35.1	Creating the ListDemo project

	35.2	Creating a Column-based list

	35.3	Enabling list scrolling

	35.4	Manual scrolling

	35.5	A Row list example

	35.6	Summary

	36.	A Compose Lazy List Tutorial

	36.1	Creating the LazyListDemo project

	36.2	Adding list data to the project

	36.3	Reading the XML data

	36.4	Handling image loading

	36.5	Designing the list item composable

	36.7	Testing the project

	36.8	Making list items clickable

	36.9	Summary

	37.	Lazy List Sticky Headers and Scroll Detection

	37.1	Grouping the list item data

	37.2	Displaying the headers and items

	37.3	Adding sticky headers

	37.4	Reacting to scroll position

	37.5	Adding the scroll button

	37.6	Testing the finished app

	37.7	Summary

	38.	A Compose Lazy Staggered Grid Tutorial

	38.2	Creating the StaggeredGridDemo project

	38.3	Adding the Box composable

	38.4	Generating random height and color values

	38.5	Creating the Staggered List

	38.6	Testing the project

	387 Switching to a horizontal staggered grid

	38.8 Summary

	39.	Compose Visibility Animation

	39.1 Creating the AnimateVisibility project

	39.3 Defining enter and exit animations

	39.4 Animation specs and animation easing

	39.5	Repeating an animation

	39.6	Different animations for different children

	39.7	Auto-starting an animation

	39.8	Implementing crossfading

	39.9 Summary

	40.	Compose State-Driven Animation

	40.1	Understanding state-driven animation

	40.2	Introducing animate as state functions

	40.3	Creating the AnimateState project

	40.5	Animating color changes with animateColorAsState

	40.6	Animating motion with animateDpAsState

	40.7	Adding spring effects

	40.8	Working with keyframes

	40.9	Combining multiple animations

	40.10 Using the Animation Inspector

	40.11 Summary

	41. Canvas Graphics Drawing in Compose

	41.2	Creating the CanvasDemo project

	41.3	Drawing a line and getting the canvas size

	41.4	Drawing dashed lines

	41.5	Drawing a rectangle

	41.6	Applying rotation

	41.7	Drawing circles and ovals

	41.8	Drawing gradients

	41.9	Drawing arcs

	41.10	Drawing paths

	41.11	Drawing points

	41.12	Drawing an image

	■| res

	v drawable

	<> ic_launcher_background.xml

	<> ic_launcher_foreground.xml (v24)

	41.13 Drawing text

	41.14 Summary

	42.	Working with ViewModels in Compose

	42.1	What is Android Jetpack?

	42.2	The “old” architecture

	42.3	Modern Android architecture

	42.5 ViewModel implementation using state

	42.6 Connecting a ViewModel state to an activity

	42.8 Observing ViewModel LiveData within an activity

	42.9 Summary

	43.	A Compose ViewModel Tutorial

	43.1	About the project



	Temperature Converter

	24

	43.2	Creating the ViewModelDemo project

	43.3	Adding the ViewModel

	43.4	Accessing DemoViewModel from MainActivity

	43.5	Designing the temperature input composable

	43.6	Designing the temperature input composable


	Enter temperature

	43.8	Testing the app

	43.9	Summary

	44.2 Introducing database schema

	44.5 Introducing primary keys

	44.7	Structured Query Language

	44.8	Trying SQLite on an Android Virtual Device (AVD)

	44.9	The Android Room persistence library

	44.10	Summary

	45.	Room Databases and Compose

	45.1	Revisiting modern app architecture

	45.2.1 Repository

	45.2.2 Room database

	45.2.3 Data Access Object (DAO)

	45.3 Understanding entities

	45.4	Data Access Objects

	45.5	The Room database

	45.6	The Repository

	45.7	In-Memory databases

	46.	A Compose Room Database and Repository Tutorial

	46.1	About the RoomDemo project


	Samsung S22+

	800

	46.2	Creating the RoomDemo project

	46.3	Modifying the build configuration

	46.4	Building the entity

	46.5	Creating the Data Access Object

	New Kotlin File/Class ij ProductDao]

	ft File c Class

	Enum class

	Object

	46.6	Adding the Room database

	46.7	Adding the repository

	46.8	Adding the ViewModel

	46.10	Writing a ViewModelProvider Factory class

	46.12	Testing the RoomDemo app

	46.13	Using the Database Inspector

	46.14	Summary

	47.	An Overview of Navigation in Compose

	47.1	Understanding navigation

	47.2	Declaring a navigation controller

	47.3	Declaring a navigation host

	47.4	Adding destinations to the navigation graph

	47.5	Navigating to destinations

	47.6	Passing arguments to a destination

	47.7	Working with bottom navigation bars

	47.8	Summary

	48.	A Compose Navigation Tutorial

	48.1	Creating the NavigationDemo project

	48.2	About the NavigationDemo project

	48.3	Declaring the navigation routes

	48.4	Adding the home screen


	New Package

	com.example, navigationdemo, sere ens

	48.8	Implementing the screen navigation

	48.9	Passing the user name argument

	48.10	Testing the project



	Neil

	Welcome, Neil

	48.11	Summary

	49.	A Compose Navigation Bar Tutorial

	49.1	Creating the BottomBarDemo project

	49.2	Declaring the navigation routes

	49.3	Designing bar items

	49.4	Creating the bar item list

	49.5	Adding the destination screens


	New Package

	com.example.bottombardemo.screens

	49.7	Designing the navigation bar

	49.8	Working with the Scaffold component

	49.9	Testing the project


	Bottom Navigation Demo

	49.10	Summary

	50.2	Creating the GestureDemo project

	50.3	Detecting click gestures

	50.4	Detecting taps using PointerInputScope

	50.5	Detecting drag gestures

	50.6	Detecting drag gestures using PointerInputScope

	50.7	Scrolling using the scrollable modifier

	50.8	Scrolling using the scroll modifiers

	El drawable

	50.9 Detecting pinch gestures

	50.10 Detecting rotation gestures

	50.11 Detecting translation gestures

	50.12 Summary

	51. An Introduction to Kotlin Flow

	51.2 Creating the sample project

	51.3 Adding a view model to the project

	51.5	Emitting flow data

	51.6	Collecting flow data as state

	51.7	Transforming data with intermediaries

	51.8	Collecting flow data

	51.9	Adding a flow buffer

	51.10	More terminal flow operators

	51.11	Flow flattening

	51.13 Hot and cold flows

	51.14 StateFlow

	51.15 SharedFlow

	51.16 Converting a flow from cold to hot

	51.17 Summary

	52.	A Jetpack Compose SharedFlow Tutorial

	52.1	About the project

	52.2	Creating the SharedFlowDemo project

	52.3	Adding a view model to the project

	52.5	Collecting the flow values

	52.6	Testing the SharedFlowDemo app

	52.7	Handling flows in the background

	52.8 Summary

	53.	Creating, Testing, and Uploading an Android App Bundle

	53.1	The release preparation process

	53.2	Android app bundles

	53.3	Register for a Google Play Developer Console account

	53.5 Enabling Google Play app signing

	53.6 Creating a keystore file

	537 Creating the Android app bundle

	53.8 Generating test APK files

	53.9 Uploading the app bundle to the Google Play Developer Console

	53.10 Exploring the app bundle

	53.13 Uploading new app bundle revisions

	53.14 Analyzing the app bundle file

	53.15 Summary

	54.	An Overview of Android In-App Billing

	54.1	Preparing a project for In-App purchasing

	54.3	Billing client initialization

	54.4	Connecting to the Google Play Billing library

	54.5	Querying available products

	54.6	Starting the purchase process

	54.7	Completing the purchase

	54.8	Querying previous purchases

	54.9	Summary

	55.	An Android In-App Purchasing Tutorial

	55.1	About the In-App purchasing example project

	55.2	Creating the InAppPurchase project

	55.8	Adding the StateFlow streams

	55.9	Initializing the billing client

	55.10	Querying the product

	55.11	Handling purchase updates

	55.12	Launching the purchase flow

	55.13	Consuming the product

	55.14	Restoring a previous purchase

	55.15	Completing the MainActivity

	55.16 Testing the app



	Product: A Button Click

	com.ebookfrenzy.inapppurchase + tax ® (unreviewed)

	Test card, always approves

	55.17 Troubleshooting

	55.18 Summary

	56.	Working with Compose Theming

	56.1	Material Design 2 vs. Material Design 3

	56.2	Material Design 3 theming


	v java

	com.ebookfrenzy.myapp

	ift Color.kt

	Theme.kt ft Type.kt

	56.3	Building a custom theme

	56.4	Summary

	57.1	Creating the ThemeDemo project

	57.2	Designing the user interface


	ThemeDemo

	57.3	Building a new theme

	57.5	Enabling dynamic colors

	57.6	Summary

	58.	An Overview of Gradle in Android Studio

	58.1	An overview of Gradle

	58.2.6 ProGuard support

	58.3	The Properties and Settings Gradle build files

	58.4	The top-level gradle build file

	58.5	Module level Gradle build files

	58.6	Configuring signing settings in the build file

	58.7	Running Gradle tasks from the command-line

	58.8	Summary

	Index






