

C + +

A Step-by-Step Guide for Absolute Beginners

D a n i e l B E L L

Please note the information contained within this document is for educational and entertainment
purposes only. No warranties of any kind are expressed or implied. Readers acknowledge that the author
is not engaging in the rendering of legal, financial, medical or professional advice. Please consult a
licensed professional before attempting any techniques outlined in this book.

By reading this document, the reader agrees that under no circumstances is the author responsible for
any losses, direct or indirect, which are incurred as a result of the use of the information contained
within this document, including, but not limited to, errors, omissions, or inaccuracies.

C++: A Step-by-Step Guide For Absolute Beginners
Copyright © 2019 by Daniel Bell.

All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without
written permission except in the case of brief quotations em- bodied in critical articles or reviews.

Under no circumstances will any legal responsibility or blame be held against the publisher for any
reparation, damages, or monetary loss due to the information herein, either directly or indirectly.

Publisher: Guzzler Media LLC

http://www.guzzlermedia.com
Contact: contact@guzzlermedia.com
Book and Cover design by Angela W.T.
ISBN:
First Edition: July 2019

C O N T E N T S
INTRODUCTION

1-GETTING STARTED WITH C++

AN OVERVIEW OF C++
ENVIRONMENT SETUP

2-C++ PROGRAM STRUCTURE
COMPILING AND EXECUTING C++ PROGRAMS

3-C++ DATA TYPES

PRIMITIVE BUILT-IN TYPES

4-C++ VARIABLES
VARIABLE DEFINITION

VARIABLE DECLARATION

VARIABLE SCOPE

Local Variables
Global Variables

5-C++ CONSTANTS

Using the #define preprocessor.
Using the const Keyword

6-C++ OPERATORS
ARITHMETIC OPERATORS

RELATIONAL OPERATORS

LOGICAL OPERATORS

OPERATOR PRECEDENCE

7-C++ LOOPS

WHILE LOOP

FOR LOOP

DO…WHILE LOOP

NESTED FOR LOOP

BREAK STATEMENT

CONTINUE STATEMENT

GOTO STATEMENT

8-DECISION MAKING
IF STATEMENT

IF…ELSE STATEMENT

IF...ELSE IF...ELSE STATEMENT

SWITCH STATEMENT

NESTED IF STATEMENTS

NESTED SWITCH STATEMENT

9-C++ FUNCTIONS

FUNCTION DECLARATION

CALL BY VALUE

CALL BY POINTER

CALL BY REFERENCE

DEFAULT VALUES FOR PARAMETERS

10-ARRAYS
ARRAY DECLARATION

ARRAY INITIALIZATION

ACCESSING ARRAY VALUES

MULTI-DIMENSIONAL ARRAYS

PASSING AN ARRAY TO A FUNCTION

11-STRINGS

C-STYLE CHARACTER STRING

STRING CLASS

12-POINTERS
13-CLASSES AND OBJECTS

CLASS DEFINITION

OBJECT DEFINITION

ACCESSING DATA MEMBERS

CLASS MEMBER FUNCTIONS

ACCESS MODIFIERS

Public Access Specifier
Private Access Specifier
Protected Access Specifier

CLASS CONSTRUCTOR

PARAMETERIZED CONSTRUCTOR

CLASS DESTRUCTOR

14-INHERITANCE
BASE AND DERIVES CLASSES

MULTIPLE INHERITANCE

15-OVERLOADING

FUNCTION OVERLOADING

OPERATORS OVERLOADING

16- POLYMORPHISM
17-DATA ABSTRACTION

CONCLUSION

“ C + + : W h e r e f r i e n d s h a v e a c c e s s t o y o u r
p r i v a t e m e m b e r s . ”

G a v i n R u s s e l l B a k e r

I n t r o d u c t i o n
C++ is one of the popular computer programming languages. This can be

attributed to the fact that C++ comes fully-packed with great features that are
good for the development of great computer applications. C++ has both low-
level and high-level computer programming features. With the low-level
features offered by C++, software developers and computer programmers are
able to create applications that are close to the computer hardware. These are
applications that can communicate directly with the computer hardware. A
good example of such applications is device drivers such as the Bluetooth
driver of your computer. The high-level features offered by C++ are good for
the development of software applications that are close to the end users.
These are the applications that users directly interact with. A good example
of such an application is a text editor.

C++ is an object-oriented programming language. This marks the
greatest difference between C and C++ programming languages. The object-
oriented allows the development of better applications. It also makes
programming easy, especially for beginners. You can quickly get started with
C++, because you only need basic components for this, and they are open
sources. That is why; C++ is one of the best languages for computer
programming for beginners. This tutorial is an excellent guide to learn C++.
All features provided by C++ have been discussed.

1 - G e t t i n g S t a r t e d w i t h
C + +

A n O v e r v i e w o f C + +
C++ is a compiled object-oriented programming language. It is well-

known for combining both low-level and high-level programming language
features, making it a middle-level programming language.

Bjarne Stroustrup began to develop C++ in 1979 at Bell Labs Murray
Hill, New Jersey. The language was meant to be an enhancement to the C
programming language and hence given the name C with Classes. In 1983,
the language was named C++. This shows that C++ is a superset of C and any
C program is a legal C++ program.

Since C++ is an object-oriented programming language, it offers us with
the following object-oriented programming features:

Encapsulation
Inheritance
Data hiding
Polymorphism

C++ is used widely by programmers developing different kinds of
applications. It has been used widely for development of device drivers and
other applications that manipulate the hardware directly in real-time
constraints. It is also used widely used for research and academic purposes
since its concepts are good for teaching.

E n v i r o n m e n t S e t u p
To write and run a C++ program, you only need a text editor and the

C++ compiler.
The text editor will provide you with an environment where you will

type the program. Some of the text editors that you can use include Windows
Notepad, Brief, Epsilon, EMACS, OS Edit command, and vim/vi.

The names and versions of the various text editors will normally
different in various operating system environments. The Notepad text editor,
for example, can only be used on the Windows operating system while vim
can be used on both Windows and Unix operating systems.

After writing your code in a file, the file will be referred to as the source
file and its name should end with a .cpp, .p or .c extension. Ensure that your
computer is installed with a text editor for writing your C++ programs.

The purpose of the C++ compiler is to compile your C++ source file into
an executable program. Majority of the C++ compilers have no problem with
the kind of extension that you give to your source file, but by default, the
compiler will use the .cpp extension. The most popular of all the C++
compilers is the GNU C/C++ compiler (GCC). There are also compilers
from Solaris and HP for those running their operating systems.

For Linux and Unix users, your system comes installed with the GCC, so
you can check the installed version by running the following command:

g++ -v
If gcc is already installed on your system, you will be able to see its

version. If not, you will have to install it yourself by following the detailed
instructions that you can find on the following web page:

https://gcc.gnu.org/install/
For MAC OS X users, you can get gcc by installing the XCode

development environment which you can find from the official Apple’s
website. You can then follow the necessary instructions to install it.

To get the gcc on Windows, you can install the MinGW. You can find it
on its official web page given below:

http://www.mingw.org/
After the download, install and setup the path environment variable so

that you can have no problem while trying to compile your C++ source files.

https://gcc.gnu.org/install/
http://www.mingw.org/

2 - C + + P r o g r a m
S t r u c t u r e

A C++ program can be seen as a collection of objects that communicate
with each other through invoking the methods of each other. Let us define
some terms that we will be using throughout this book to describe various
parts of our programs:

Object- an object has both state and behaviors. For example, a
car is an object with properties such as color, capacity, etc.
Examples of its behaviors include accelerating, stopping, etc.
See an object as an instance of a class.
Class- a class is a blueprint describing the states and behaviors
that objects of its type should exhibit.
Methods- A method is simply a behavior. A class may have
numerous methods. Logics are written within these methods,
actions are executed and data are manipulated.
Instance Variables- every object comes with a unique set of
instance variables. The state of an object is created by the values
that are assigned to these instance variables.

Consider the simple C++ program given below:

#include <iostream>
using namespace std;
// main() marks where the program execution begins.
int main() {
 cout << "Hello World!"; // to print Hello World!
 return 0;
}

Let us discuss the various parts of the above program:
include <iostream>- Any C++ line that begins with a # is a
directive that will be read and interpreted by what is called the
preprocessor. Such lines are special and have to be interpreted before
the entire program is compiled.

The <iostream> is a header. C++ language provides us with
numerous headers that store information that we may need when
writing and running our programs. In the <iostream> header, there is
a lot of information that has been defined for us to use. Instead of
defining this information from scratch, we only have to call this
header and access this information for free. It defines how standard
input and output operations are done, such as printing the output of
this program on the screen.
using namespace std;- This line instructs the C++ compiler to make
use of the std namespace. Namspaces were added recently to the C++
language.
// main() marks where the program execution begins.- this whole line
is a comment. It only helps in making the program readable by
humans. The C++ compiler will skip or ignore this line. The use of //
at its beginning marked the line as a comment. If the comment
spanned multiple lines, we could have enclosed it within /* and */.
int main() {- this is the main method and marks where the execution
of the program begins. The opening curly brace { marks the
beginning of the body of this method.
cout << "Hello World!"; // to print Hello World!- the purpose of
this line is to print the message Hello World! on the screen. The cout
is a function that has been defined in the <iostream> header file. Our
work is to simply call this function and pass the text that should be
printed to it. It stands for console output. The rest of the line from //
will be treated as a comment, hence the C++ compiler will skip it.
return 0;- the purpose of this line is to terminate the main function. It
will also cause it to return a value of 0 to the calling process.

}- the closing curly brace marks the end of the main() method body.

C o m p i l i n g a n d E x e c u t i n g C + +

P r o g r a m s
To see the output from the above program, you have to compile and

execute it. Follow the steps given below:
Opening your text editor and type the above code into it.
Save the file with the name hello.cpp.
Launch the command prompt of your operating system and navigate
to the directory in which you have saved the above file.
Type the command g++ hello.cpp and hit the enter key on your
keyboard. If your code has no errors, the a.out file will be generated
and you will be taken to the next line.
Now, execute the program by typing a.out on the command prompt
and hit the enter key.

The text Hello World! will be printed on the screen.

$ g++ hello.cpp
$./a.out

3 - C + + D a t a T y p e s
When programming in C++, we will need a way of storing data into the

memory. This can be done by use of variables. Variables help us reserve
memory spaces for storage of values. This means that every time that a
variable is created, some space is reserved in the memory.

Variables belong to different data types. The data type determines the
type of data, whether a string or numeric etc. that you can store in the
reserved memory location as well as the amount of space that is reserved for
that variable in the computer memory.

In C++, data types are put into different categories. Let us discuss these:

P r i m i t i v e B u i l t - i n T y p e s
C++ provides us with numerous built-in as well as user-defined data

types. The following are the common data types and the amount of memory

space allocated to them:
char- has a storage size of 1 byte.
int- has a storage size of 4 bytes.
float- has a storage size of 4 bytes.
double- has a storage size of 8 bytes.

Note that above are just samples of the data types available in C++. To
see the size of each of these data types, you can use the sizeof() operator.
The following C++ program demonstrates how to use this operator:

#include <iostream>
using namespace std;
int main() {
 cout << "char has a size of : " << sizeof(char) << endl;
 cout << "int has a size of : " << sizeof(int) << endl;
 cout << "short int has a size of : " << sizeof(short int) << endl;
 cout << "long int has a size of : " << sizeof(long int) << endl;
 cout << "float has a size of : " << sizeof(float) << endl;
 cout << "double has a size of : " << sizeof(double) << endl;
 cout << "wchar_t has a size of : " << sizeof(wchar_t) << endl;

 return 0;
}

When executed, it should print the following:

What we have done is that we have called the sizeof() operator and
passed to it the names of different data types. It then returned to us the sizes
of these various data types. The text enclosed within double quotes will be
printed as it is on the console. Notice the use of the endl statement, which
inserts a new line character at the end of every line. This means that printing
will start on the next line.

typedef Declarations

A new name can be created for an already existing type by use of the
typedef operator. This keyword should be used with the following syntax:

typedef type new_name;

For example, to give the int data type the name myint, we can run the
following command:

typedef int myint;

After running the above command, the following will be a valid
declaration:

myint distance;

We will have created an int type variable named distance.

4 - C + + Va r i a b l e s
The purpose of variables is to create named storages for our programs to

manipulate. Each variable in C++ belongs to a certain data type which
determines the amount of memory size allocated to the variable and the kind
of data that the variable can hold. It also determines the range of values that
can be stored within that memory space as well as the operations that we can
apply to it.

Variables are given names. The name of a variable can be made up of
characters, digits and the underscore (_). However, the name must begin with
either a letter or an underscore, otherwise, an error will be generated. Note
that C++ is a case sensitive programming language, hence, it distinguishes
between lowercase and uppercase letters. This means that you have to refer to
values correctly by their exact names. Whitespace is allowed in a variable
name. A variable name must also not be any of the reserved keywords in
C++.

V a r i a b l e D e f i n i t i o n
A variable definition is the processing of telling the C++ compiler where

and the amount of memory size to allocate to a certain variable. The
definition of a variable is made up of a data type and the name of names of
variables. This means that more than one variable can be defined within a
single line. It should be done by following the syntax given below:

type variable_list;

In the above syntax, the type must be a valid C++ data type such as char,
int, float double, etc. The variable list is the list of variable names that are to
be defined and these should be separated by commas. The following are valid
examples of variable definitions:

int a, b, z;
char c, ch;
float f, wage;
double d;

The int a, b, z; defines three variables names a, b and z in a single line
and they all belong to the same data type.

Assignment of values to the variables can be done at the time of variable
definition. The assignment can be done using the equal (=) sign followed by a
constant expression.

The following syntax demonstrates this:

type variable_name = variable_value;

The following examples demonstrate this:

int a = 3, b = 5; // definition and initializing a and b.
byte p = 20; // definition and initializes p.
char c = 'c'; // the variable c has the value 'c'.

V a r i a b l e D e c l a r a t i o n
The purpose of a variable declaration is to provide the compiler with the

assurance that there exists only one variable that is existing with that given
type and name for the compiler to continue with further compilation without
having to require complete details regarding the variable.

Variable declaration becomes very important when you have defined
more than one files and the variable has been defined in one of the files, so it
becomes very useful at the time when the two files are to be linked. You can
use the extern keyword for you to declare a variable at any place.

A variable can be declared many times within a C++ program, but you
can only define it once within a file function or block of code.

In the example given below, we have declared a variable at the top but its
definition has been done inside the main function:

#include <iostream>
using namespace std;
// Variable declaration:
extern int x, y;
extern int z;
extern float f;

int main () {
 // Variable definition:
 int x, y;
 int z;
 float f;

 // actual initialization
 x = 5;
 y = 12;
 z = x + y;

 cout << z << endl ;

 f = 45.0/2.0;
 cout << f << endl ;

 return 0;
}

The code should return the following output upon execution:

This concept is also applied in a function declaration in which the
function name is provided during the time of declaration but the real
definition is done anywhere else.

The following example demonstrates this:

// function declaration
int myfunc();
int main() {
 // function call
 int x = myfunc();
}
// function definition
int myfunc() {
 return 0;
}

V a r i a b l e S c o p e
A scope refers to a region or place within a program. In C++, there are 3

scopes in which we can declare our variables:
Inside a block or a function leading to a local variable.
In the definition of the parameters of a function leading to formal

parameters.
Outside all functions leading to a global variable.
Let us discuss the difference between local and global variables:

L o c a l V a r i a b l e s

These are the types of variables that have been defined inside a block of
code or inside a function. Such variables can only be accessed from within
the block or function where they have been defined. This means that only
those statements within that block of function can access the variable. The

variable cannot be accessed from within other functions. The following
example demonstrates the concept of local variables in C++:

#include <iostream>
using namespace std;
int main () {
 // declaration of a Local variable
 int x, y;
 int z;
 // actual initialization
 x = 5;
 y = 12;
 z = x + y;

 cout <<"The value of z is "<<z;

 return 0;
}

All variables, that is, x, y, and z have been defined within the main()
function. We have also accessed these values from within that function. They
are all local variables. The code should return the following result upon
execution:

G l o b a l V a r i a b l e s

These are functions that are defined outside all functions, and most
probably at the top of the program. A global variable will hold value
throughout the whole life of a program.

Any function within the program can access the global variable. This
means that a global variable will be available for access throughout the whole
life of the program after its declaration. The example given below
demonstrates the use of both local and global variables:

#include <iostream>
using namespace std;

// Declaration of a global variable

int g;

int main () {
 // Local variable declaration:
 int x, y;

 // actual initialization
 x = 12;
 y = 5;
 g = x + y;

 cout <<"The value of the global variable g is "<<g;

 return 0;
}

Notice the declaration of the variable g. It has been done outside the
main() function, making it a global variable. This variable can be accessed
from any function defined within our code. We have then accessed this
variable from within the main() function although it has been defined outside
it. The code should return the following result, showing that the variable was
accessed successfully:

It is possible for us to have the same name for a local and a global
variable. However, the value assigned to the local variable will take
preference. This means that when we try to access the value of the variable,
the value assigned to the local variable one will be returned first. The
following example demonstrates this:

#include <iostream>
using namespace std;

// Declaration of a global variable
int g = 5;

int main () {
 // Declaration of a local variable
 int g = 12;

 cout <<"The value of variable g is "<<g;

 return 0;
}

In the above example, we have declared the same variable twice, that is,
the variable g. In the first declaration, g is a global variable since it has been
declared outside the main() function. We have assigned it a value of 5. In
the second declaration, g has been declared within the main() function and
assigned a value of 12, making it a local variable. We have then tried to
access the value of this variable. The code returns the following:

The above output shows that the value of variable g assigned to the local
version has been given priority.

5 - C + + C o n s t a n t s
Constants are fixed values that programs may not be allowed to alter and

they are referred to as literals. A constant can belong to any of the available
basic data types. Note that are just regular variables with the difference being

that the values of constants cannot be changed after definition.
C++ provides us with two ways of defining constants. These include the

following:
Using the #define preprocessor.
Using the const keyword.

Let us discuss how to use these two:

U s i n g t h e # d e f i n e p r e - p r o c e s s o r .

To define a constant using the #define preprocessor, we use the syntax
given below:

#define identifier value

The identifier is the name of the name of the constant while the value
denotes the value assigned to the constant. The following program describes
how this can be done:

#include <iostream>
using namespace std;

#define WIDTH 7
#define LENGTH 11

int main() {
 int rectangle_area;

 rectangle_area = LENGTH * WIDTH;
 cout <<"The area of the rectangle is "<<rectangle_area;
 return 0;
}

In the above example, we have defined two constants namely WIDTH
and LENGTH. We have assigned values of 7 and 11 to these respectively.
We have also defined the variable rectangle_area and assigned it the value of
the product of the two constants. We have then printed out the value of this
variable.

When executed, the code should return the following as the output:

U s i n g t h e c o n s t K e y w o r d

We can also define a constant by use of the const keyword. To do this,
we have to use the syntax given below:

const data_type variable = value;

Note that we have to define the data type of the constant. The value of
the constant this time has been assigned using the assignment (=) operator.
Let us give an example demonstrating this:

#include <iostream>
using namespace std;

int main() {
 const int LENGTH = 7;
 const int WIDTH = 11;
 int rectangle_area;

 rectangle_area = LENGTH * WIDTH;
 cout <<"The area of the rectangle is "<< rectangle_area;
 return 0;
}

We have just created the same example but this time, the constants have
been defined using the const keyword.

When executed, the code should return the following result:

Note that programmatically, it is always good to name constants in upper
case.

6 - C + + O p e r a t o r s
An operator refers to a symbol used for performing operations. C++

comes with different operators for performing different kinds of operations.
These operators have been grouped into the following categories:

Arithmetic Operators
Relational Operators
Logical Operators

Let us discuss these types of operators one by one.

A r i t h m e t i c O p e r a t o r s
These are the operators used for performing basic math operations such

as addition, multiplication, subtraction, division, etc. Let us create an
example that demonstrates how to use these operators in C++:

#include <iostream>

using namespace std;

main() {
 int x = 7;
 int y = 5;
 int z ;

 z = x + y;
 cout << "x + y is " << z << endl ;

 z = x - y;
 cout << "x - y is :" << z << endl
 ;
 z = x * y;
 cout << "x * y is " << z << endl ;

 z = x / y;
 cout << "x / y is " << z << endl ;

 z = x % y;
 cout << "x % y is " << z << endl ;

 z = x++;
 cout << "x++ is " << z << endl ;

 z = x--;
 cout << "x-- is " << z << endl ;

 return 0;
}

When executed, the code should print the following result:

We began by defining three variables namely x, y, and z. Variables x and
y have been assigned the values 7 and 5 respectively.

The expression z = x + y; calculates the sum of the values of variables x
and y and assigns the result to variable z. That is why it returns 12.

The expression z = x - y; subtracts the value of variable y from the value
of variable x and assigns the result to variable z. That is it returns 2.

The expression z = x * y; calculates the product of the values of variables
x and y and assigns the result to variable z. That is it returns 35.

The expression z = x / y; calculates the division of the value of variable x
by the value of variable y and assigns the result to variable z. That is why it
returns 1. Note that the decimal part has been ignored since our variables are
integers rather than float values.

The expression z = x % y; calculates the remainder after dividing the
value of variable x by the value of the variable and assigns the result to
variable z. That is it returns 2. The % is known as the modulus operator.

The expression z = x ++; increments the value of variable x by 1 and
assigns the result to variable z. That is it returns 7. However, the value of the
variable x has not changed. This is because it accesses it when it still 7 and
prints. However, the value is changed to 8 and it will affect the next
expression.

The expression z = x --; decrements the value of variable x by 1 and
assigns the result to variable z. That is it returns 8. Note that the value had
been incremented in the previous operation. The answer is 8 because it
accesses it when it still 8 and prints.

R e l a t i o n a l O p e r a t o r s
These operators help us check the relationship between various variables

in a program. They include the following:
== will return true if both left and right sides are equal.
!= will return true if left and right sides of the operator are not equal.
> returns true if the left side is greater than the right side.
< returns true if the left side is less than the right side.
>= returns true if left side is greater than/equal to right.
<= returns true if the left side is less than the right side.

The following example demonstrates how to use these operators:

#include <iostream>
using namespace std;

main() {

 int x = 11;
 int y = 8;
 int z ;

 cout << "For x= 11 and y=8:"<< endl;

 if(x == y) {
 cout << "x == y is true" << endl ;
 } else {
 cout << "x == y is false" << endl ;
 }

 if(x < y) {
 cout << "x < y is true" << endl ;
 } else {
 cout << "x < y is false" << endl ;
 }

 if(x > y) {
 cout << "x > y is true" << endl ;
 } else {
 cout << "x > y is false" << endl ;
 }

 /* Let's change the values of a and b */
 cout << "For x= 4 and y=12:"<< endl;
 x = 4;
 y = 12;
 if(x <= y) {
 cout << "x <= y is true" << endl ;
 }

 if(y >= x) {
 cout << "y >= x is true" << endl ;
 }

 return 0;
}

The code returns the following output upon execution:

Note that we began by the values of x as 11 and y as 8. We have then
changed these values to x=4 and y=12.

L o g i c a l O p e r a t o r s
C++ supports the following logical operators:
a1&&a2- called the logical AND. Will return true if both a1 and a2 are

true, otherwise, false.
a1||a2- called the logical OR. Will return false if both a1 and a2 are

false, otherwise true.
!a1- called logical NOT. Will return opposite of a1.
The following example demonstrates how to use the above operators:

#include <iostream>
using namespace std;

main() {
 int x = 10;
 int y = 25;
 int z ;

 cout<< "For x=10 and y=25:"<< endl;

 if(x && y) {
 cout << "x && y is true"<< endl ;
 }

 if(x || y) {
 cout << "x || y is true"<< endl ;
 }

 /* change values of x and y */
 x = 0;

 y = 5;

 cout<< "For x=0 and y=5"<< endl;

 if(x && y) {
 cout << "x && y is true"<< endl ;
 } else {
 cout << "x && y is not true"<< endl ;
 }

 if(!(x && y)) {
 cout << "!(x && y) is true"<< endl ;
 }

 return 0;
}

The code prints the following result:

O p e r a t o r P r e c e d e n c e
Operator precedence determines the way the terms of expression are

grouped. This has a great impact on the expression and the final result it
gives. Some operators have higher precedence than others. For example, the
multiplication operator has higher precedence compared to the addition
operator.

Consider the following math expression:

x = 4 + 5 * 2;

The variable x will be assigned a value of 14, not 18. This is because * is
given higher precedence than the + operator. The multiplication operation
will be done first, that is, 5 * 2 to give 10 and then 4 will be added to it.

Consider the following postfix operators:

() [] -> . ++ - -

Their order of decreasing precedence runs from left to right, meaning
that the () operator is given the highest precedence followed by [], etc.

Here is another set of unary operators:

+ - ! ~ ++ - - (type)* & sizeof

Their order of decreasing precedence runs from right to left, meaning
that the sizeof operator is given the highest precedence followed by &, etc.

Here is a set of multiplicative operators:

* / %

Their order of decreasing precedence runs from right to left, meaning
that the * operator is given the highest precedence followed by / etc.

The following C++ program demonstrates the concept of operator
precedence:

#include <iostream>
using namespace std;

main() {
 int x = 20;
 int y = 10;
 int z = 15;
 int d = 5;
 int ans;

 ans = (x + y) * z / d; // (30 * 15) / 5
 cout << "Value of (x + y) * z / d is :" << ans << endl ;

 ans = ((x + y) * z) / d; // (30 * 15) / 5
 cout << "Value of ((a + b) * c) / d is :" << ans << endl ;

 ans = (x + y) * (z / d); // (30) * (15/5)
 cout << "Value of (a + b) * (c / d) is :" << ans << endl ;

 ans = x + (y * z) / d; // 20 + (150/5)
 cout << "Value of x + (y * z) / d is :" << ans << endl ;

 return 0;
}

The comments make it easy for you to understand how the operations
have been performed. When you execute the code, it should return the
following result:

In all expressions, the operation placed within the () has been given the
highest precedence, hence, it was evaluated first.

 7 - C + + L o o p s
Loops provide us with an automated way of performing certain tasks

repetitively. This is the case when we need to execute part of our code
repeatedly. The statements of code placed within a loop are executed
sequentially, that is, in the order that you have written them.

There are different types of loops that we can create in C++. Let us
discuss these:

w h i l e L o o p
A while loop is very simple. You state a condition and the block of

statements will only be executed when the loop condition is true. This means
that the loop condition is evaluated first before executing the block of
statements. If the condition is found to be true, then the block of statements is
executed.

What is the condition evaluates to a false? The block of statements will
not be executed but it will be skipped. This means that a while loop may
never run. The while loop takes the following syntax:

while(condition) {
 statement(s);
}

In the above syntax, we can have a single statement or a sequence of
statements. The loop body placed between { and } will be iterated as long as
the condition is true. When the condition becomes false, the statements
within the loop body will be skipped. The following program demonstrates
the use of a while loop:

#include <iostream>
using namespace std;

int main () {
 // Declaration of a local variable
 int x = 5;

 // while loop execution
 while(x <= 10) {
 cout << "value of x is: " << x << endl;
 x++;
 }

 return 0;
}

In the above example, we have declared a local variable named x and
assigned it a value of 5. Our goal is to increment this by 1 after each iteration
of the while loop.

Consider the following expression extracted from the code:

while(x <= 10)

The above expression means that as long as the value of variable x is less
than or equal to 10, the loop body should be executed. This means that for
values between 5 and 10, the loop condition will evaluate to a true. When the

value of x becomes 11, the loop condition will evaluate to a false, hence the
execution of the loop body will stop. That is why the code returns the
following result upon execution:

We stated that the while loop may never run. Let us change the initial
value of variable x to 11 and see what will happen:

#include <iostream>
using namespace std;
int main () {
 // Declaration of a local variable
 int x = 11;

 // while loop execution
 while(x <= 10) {
 cout << "value of x is: " << x << endl;
 x++;
 }
 return 0;
}

The above code will return nothing upon execution. The reason is that
the loop condition will evaluate to a false on its first evaluation, hence, its
body will not be executed.

f o r L o o p
This type of loop is very good and efficient when you know the exact

number of times that you need to repeat a task. The loop takes the following
syntax:

for (initial; condition; increment) {
 statement(s);
}

The initial part of the loop allows you to declare and initialize the

variable that you will use to control the execution of the loop. In our case,
this is the variable x. We can set it to x=5.

The condition part is where you specify the condition that must be true
for the loop body to be executed. In our case, this is where we specify that the
value of variable x should be less than or equal to 10. We can set this to
x<=10.

The increment is where the flow will jump after each iteration. It
specifies how we should modify the loop control variable after every
iteration. This is where we add the x++ statement to increment the variable
by 1 after every iteration.

The compiler will evaluate the condition after every iteration to check
whether it is true or false. If true, it will jump to the increment part then the
loop body. This is repeated until the condition becomes false.

Here is an example:

#include <iostream>
using namespace std;
int main () {
// Declaration of a local variable
 int x;
 // for loop execution
 for(x=5;x<=10;x++) {
 cout << "value of x is: " << x << endl;
 }

 return 0;
}

The code will return the following result upon execution:

Notice that just like the while loop, the for loop may never execute. This
is the case when we set the initial value of the control variable to a value that
violates the condition. For example:

#include <iostream>
using namespace std;

int main () {
 // Declaration of a local variable
 int x;

 // for loop execution
 for(x=11;x<=10;x++) {
 cout << "value of x is: " << x << endl;
 }

 return 0;
}

The value of variable x has been set to 11, while the loop condition
checks whether it is less than or equal to 10. The loop condition will evaluate
into false upon the first evaluation, hence, the loop body will never be
executed. This means that the code returns nothing when executed.

d o … w h i l e L o o p
In the while and for loops, we were evaluating the loop control condition

at the top of the loop body. This is why in some cases; the loop body was
never executed.

This is different from the do…while loop. The loop control condition is
evaluated at the end of the loop body. This means that the loop body must be
evaluated for at least once, even when the condition evaluates to a false for
the first time. This type of loop takes the following syntax:

do {
 statement(s);
}
while(condition);

After the first iteration, when the condition evaluates to a true, control

will jump back to the do part. If it evaluates to a false, the execution will
continue downwards without going back to the loop. This means that as long
as the condition is true, the loop body will keep on executing. Let us create an
example that demonstrates this:

#include <iostream>
using namespace std;

int main () {
 // Declaration of a local variable
 int x = 5;

 // do loop execution
 do {
 cout << "value of x is: " << x << endl;
 x++;

 }
 while(x<=10);
 return 0;
}

When executed, the code will return the following:

The value of variable x was initialized to 5. The compiler will pass
through the loop body for the first time and return 5 for the value of x. It will
encounter the increment, x++, and increment this value to a 6. When it
reaches the loop condition, x<=10, it will find that the condition is true. It
will jump back to the do part and execute the loop body. The value of x will
be incremented to 7 and the loop condition will still be true. Again, it will
jump to the do part. This will be done a couple of times until when the value
of x is found to be 11. This time, the loop condition will evaluate to a false
and it won’t jump back to the do part. The execution of the loop will halt.

N e s t e d f o r L o o p
We get a nested for loop when we add a for loop inside another for loop.

For a single iteration of the outer loop, the inner loop will be executed fully.
This means that if the outer loop is executed for 4 times, the inner loop will
be 4 times for each, meaning that it will be executed for 16 times. Here is an
example:

#include <iostream>
using namespace std;

int main () {
 for(int x=1;x<=3;x++){
 for(int y=1;y<=3;y++){
 cout<<x<<" "<<y<<"\n";
 }
 }
 }

The variable x has been declared in the outer loop while the variable y
has been declared in the inner loop.

For each value of x, the y should be returned 3 times as shown in the

following output:

At this point, you should be conversant with using different types of
loops in C++. These statements are known as loop control statements and
they change the execution of a loop from the normal to something else. Let us
discuss the various loop control statements supported in C++:

b r e a k S t a t e m e n t
The purpose of this statement is to break the loop at a specified

condition. When the C++ compiler encounters this statement, it halts the
execution of the loop and jumps to the statements that come after the loop.

If you use the break statement inside an inner loop, it will stop the
execution of the inner loop and the line that comes after the block will be
executed. The following example demonstrates the use of the break statement
in C++:

#include <iostream>
using namespace std;
int main() {
 for (int x = 5; x <= 10; x++)
 {
 if (x == 8)
 {
 break;
 }
 cout<<"The value of x is: " <<x<<endl;
 }
}

When you execute the code, it should return the following:

The reason for the above output is that we created a break for when the
value of variable x is 8. When it reached 8, the execution of the loop halted.

c o n t i n u e S t a t e m e n t
This statement helps us to continue a loop. It causes the execution of the

loop to be resumed, and any code in between is ignored or skipped. Here is

an example:

#include <iostream>
using namespace std;
int main() {
 for (int x = 5; x <= 10; x++)
 {
 if (x == 8)
 {
 continue;
 }
 cout<<"The value of x is: " <<x<<endl;
 }
}

The code will return the following result:

There is no value for x equals 8. However, instead of halting the
execution of the loop, it continues from there and prints the values for 9 and
10. That is how different the continue statement is different from the break
statement.

g o t o S t a t e m e n t
It is also called the jump statement. We use it when we need to transfer

control to another part of the program. It will jump unconditionally to the
specified label. Consider the following example:

#include <iostream>
using namespace std;

int main () {

 // Declaring a local variable:
 int x = 5;

 // do loop execution
 LOOP:do {
 if(x == 8) {
 // skip the iteration.
 x = x + 1;
 goto LOOP;
 }
 cout << "value of x is: " << x << endl;
 x = x + 1;
 }
 while(x <= 10);

 return 0;
}

It should return the following result:

8 - D e c i s i o n M a k i n g
Decision making in programming simply involves setting a number of

conditions that are to be evaluated alongside the statements to be executed
when the various conditions are true. Optionally, the programmer can set the
statements to be executed when the conditions are not true.

There are various C++ statements that we can use to make decisions in
C++. Let us discuss them:

i f S t a t e m e n t
To create an if statement, we define a Boolean expression which is then

followed by either one or more statements.

This is demonstrated by the following syntax:

if(expression) {

 // statement(s)
}

The statement(s) will only be executed if the Boolean expression is true.
If not true, nothing will be done. In such a case, execution will jump to the
section of the code that comes after the if body. The following code
demonstrates this:

#include <iostream>
using namespace std;

int main () {
 // Declaration of a local variable:
 int x = 5;

 // check the boolean condition
 if(x < 10) {
 // if condition is true then print the following
 cout << "Variable x is less than 10" << endl;
 }
 cout << "Variable x is : " << x << endl;

 return 0;
}

The co0de should return the following output:

We created a local variable x and assigned it a value of 5. In the Boolean
expression, we are checking whether this value is less than 10. Since this is
true, the statement within the body of the if was executed. The part outside
the if was also executed because it will always be executed, whether the
expression is true or false.

Now, let us change the value of x to 20 for the Boolean expression to
become false:

#include <iostream>
using namespace std;

int main () {
 // Declaration of a local variable:
 int x = 20;

 // check the boolean condition
 if(x < 10) {
 // if condition is true then print the following
 cout << "Variable x is less than 10" << endl;
 }
 cout << "Variable x is : " << x << endl;

 return 0;
}

We have x equals to 20. In the Boolean expression, we are checking
whether this value is less than 10. The Boolean expression evaluates to a
false, hence the statement inside the body of if will not be executed. This
means that only the part outside the if body will be executed to return the
following result:

i f … e l s e S t a t e m e n t
We use this statement when we need to specify the part that will be

executed when the if condition evaluates to a false. This is specified within
the else part. The statement takes the syntax given below:

if(expression) {
 // statement(s) to be executed if the boolean expression is true
} else {
 // statement(s) to be executed if the boolean expression is false
}

The following example demonstrates this:

#include <iostream>
using namespace std;
int main () {
 int x = 15;
 if (x % 2 == 0)
 {
 cout<<"X is an even number";

 }
 else
 {
 cout<<"X is an odd number";
 }
 return 0;
}

We have created the variable x and assigned it a value of 15. In our, if
Boolean expression, we are checking whether we remain with 0 after
dividing x by 2, that is, we are checking whether x is an even number. This is
false since we remain with 1 after dividing 15 by 2.

This means that the statement within the body of the if will be skipped
and the else part will be executed to return the following result:

Now, let us change the value of variable x from 15 to 20 and see the
result that we get:

#include <iostream>
using namespace std;
int main () {
 int x = 20;
 if (x % 2 == 0)
 {
 cout<<"X is an even number";
 }
 else
 {
 cout<<"X is an odd number";
 }
 return 0;
}

The code returns the following:

The Boolean expression under the if statement evaluated to a true hence
the statement within the body of if statement has been executed.

If you need to get the number from the user, you can prompt them to
enter the number using the cin function:

#include <iostream>
using namespace std;
int main () {

int x;
 cout<<"Enter a Number: ";
 cin>>x;

 if (x % 2 == 0)
 {
 cout<<"X is an even number";
 }
 else
 {
 cout<<"X is an odd number";
 }
 return 0;
}

i f . . . e l s e i f . . . e l s e S t a t e m e n t
This statement should be used when there is a need to test multiple

conditions. In this statement, you should begin by a single if statement,
followed by any number of else if statement and lastly an else statement. The
last statement, that is, else will be executed when none of the previous
conditions have evaluated to a true. This syntax is given below:

if(expression 1) {
 // Executes when the expression 1 is true
} else if(expression 2) {
 // Executes when the expression 2 is true
} else if(expression 3) {
 // Executes when the expression 3 is true
} else {
 // executes when none of the above conditions is true.
}

Let us create an example that demonstrates the above:

#include <iostream>
using namespace std;

int main () {
 // local variable declaration:

 int x = 3;

 // check the boolean condition
 if(x == 1) {
 // if condition is true, print the following
 cout << "Value of x is 1" << endl;
 } else if(x == 2) {
 // if else if condition is true
 cout << "Value of x is 2" << endl;
 } else if(x == 3) {
 // if else if condition is true
 cout << "Value of x is 3" << endl;
 } else {
 // if none of the conditions is true
 cout << "Value of x was not matched" << endl;
 }
 cout << "The exact value of x is : " << x << endl;

 return 0;
}

The code should return the following:

We created the variable x and assigned it a value of 3. Due to this, the
following Boolean expression evaluated to a true:

} else if(x == 3) {

The statement below was executed to give us the first line in the above
output. We had also created a cout statement that is outside any of the
conditions. This part must execute whether any condition is true or not. You
can play around with the code by changing the value of variable x and see the
kind of result that you get.

s w i t c h S t a t e m e n t
With the switch statement, we are able to test a variable against a set of

values. Each value is referred to as a case, and the variable that is to be
switched is checked against for every case. The following syntax explains
this better:

switch(expression){
case value_1:
 //code for execution;
 break;
case value_2:
 //code for execution;
 break;
......

default:
 //code for execution if no case is matched;
 break;
}

Optionally, you can add a default case at the end of the switch to be
evaluated if none of the cases is matched. Note that each case should be
followed by a colon.

Let us create an example to demonstrate this:
#include <iostream>
using namespace std;
int main () {
 int num = 3;

 switch (num)
 {
 case 1: cout<<"The num is 1";
 break;

 case 2: cout<<"The num is 2";
 break;

 case 3: cout<<"The num is 3";
 break;

 case 4: cout<<"The num is 4";
 break;

 case 5: cout<<"The num is 5";
 break;

 default:
 cout<<"The num is not 1, 2, 3, 4 or 5";
 break;
 }
 }

The code should print the following result:

We created a variable named num and assigned it a value of 3. We have
then created various cases running for values of num from 1 to 5. The case of
3 was matched and the statement below it was executed giving us the above
output. You can change the value of num to a value such as 10 and see the
default part is executed.

If you are testing a string or a character, the values should be enclosed
within quotes. For example:

.
.
.
case 'A'
:
.

N e s t e d i f S t a t e m e n t s
It is possible for us to nest if…else statements, which means that we can

use an if or else…if statement inside another if or else…if statement. A
nested if statement takes the syntax given below:

if(expression 1) {
 // To execute when expression 1 is true
 if(expression 2) {
 // To execute when expression 2 is true
 }
}

Consider the following example:

#include <iostream>
using namespace std;

int main () {
 // Declaration of a local variable:
 int x = 12;
 int y = 15;

 // checking the boolean condition
 if(x == 12) {
 // if above condition is true, then check this condition
 if(y == 15) {
 // if condition is true, print the following
 cout << "Value of x is 12 and y is 15" << endl;
 }
 }
 cout << "Exact value of x is : " << x << endl;
 cout << "Exact value of y is : " << y << endl;

 return 0;
}

The code returns the following result:

In our above example, we have declared two variables, x, and y, and
initialized their values to 12 and 15 respectively. In the outer, if condition, we
are checking whether the value of variable x is 12. This is true, hence this
condition evaluated to a true. Since the outer, if has evaluated to a true, the
inner if was executed. In the inner if, we are checking whether the value of
variable y is 15, which is true. The value of the inner if has evaluated to a
true. Due to this, the statement below it has been executed. This explains the
source of the first line in the above output.

After the execution of the body of the two if statements, execution has
jumped to the statements outside or immediately after the decision making
statements. Note that these statements have to be executed, whether any of
the if conditions are true or not.

If any of the if conditions evaluate to a false, then the statement below
the inner if will not be executed. To see this, change the code to the
following:

#include <iostream>
using namespace std;

int main () {

 // Declaration of a local variable:
 int x = 12;
 int y = 15;

 // checking the boolean condition
 if(x == 10) {
 // if above condition is true, then check this condition
 if(y == 15) {
 // if condition is true, print the following
 cout << "Value of x is 12 and y is 15" << endl;
 }
 }
 cout << "Exact value of x is : " << x << endl;
 cout << "Exact value of y is : " << y << endl;

 return 0;
}

The value of variable x is 12, but in our outer if, we are checking
whether this value is 12. This will evaluate to a false. The inner if will not be
evaluated, but execution will jump to the statements outside the ifs to return
the following output:

N e s t e d s w i t c h S t a t e m e n t
This is a switch statement that is nested inside another switch statement.

The case statements for both the outer and the inner switch may have
common values, but these will not raise an error. Nested switch takes the
following syntax:

switch(outer) {
 case 'A':
 cout << "This is an A of outer switch";
 switch(inner) {
 case 'A':
 cout "Thi is an A of inner switch";
 break;
 case 'B':
 }
 break;
 case 'B':

}

Let us create an example that demonstrates how to create such:

#include <iostream>
using namespace std;

int main () {
 // |Declaration of a local variable:
 int x = 12;
 int y = 15;

 switch(x) {
 case 12:
 cout << "This is an outer switch" << endl;
 switch(y) {
 case 15:
 cout << "This is an inner switch" << endl;
 }
 }
 cout << "The value of x is : " << x << endl;
 cout << "The value of y is : " << y << endl;

 return 0;
}

The code will return the following output upon execution:

We have defined two variables, x, and y, and initialized their values to
12 and 15 respectively. We have tested these values using the switch
statements. Since the switch statements were matched, they were both
executed. The two statements outside the switch conditions have been
executed. These must be executed whether the switch conditions are matched
or not.

For the inner switch to be executed, the outer switch must be matched.
This means that the inner switch relies on the outer switch. If the outer switch
is not matched, the inner switch will not be evaluated. However, the outer
switch will be evaluated whether the inner switch is matched or not. To test

this changes the code to the following:
#include <iostream>
using namespace std;

int main () {
 // |Declaration of a local variable:
 int x = 12;
 int y = 15;

 switch(x) {
 case 10:
 cout << "This is an outer switch" << endl;
 switch(y) {
 case 15:
 cout << "This is an inner switch" << endl;
 }
 }
 cout << "The value of x is : " << x << endl;
 cout << "The value of y is : " << y << endl;

 return 0;
}

In the above example, the value of x is 12. The outer switch is matching

this for 10, hence no matching will be made. Due to this, execution of the
switch statements will halt and execution will jump to the statements outside
these to return the following result:

Note that the inner switch was to be matched, that is, 15 to 15, but
because it relies on the outer switch, it was not evaluated. Let us change the
code to the following:

#include <iostream>
using namespace std;

int main () {
 // |Declaration of a local variable:
 int x = 12;
 int y = 15;

 switch(x) {
 case 12:
 cout << "This is an outer switch" << endl;

 switch(y) {
 case 10:
 cout << "This is an inner switch" << endl;
 }
 }
 cout << "The value of x is : " << x << endl;
 cout << "The value of y is : " << y << endl;

 return 0;
}

The code will return the following:

The reason for the above output is that the outer switch is matched but
the inner switch is not.

9 - C + + F u n c t i o n s
A function refers to a set of statements that perform related tasks. Every

program in C++ has at least one function, which is the main() function and it
is possible for more functions to be defined within the program.

A C++ program can be subdivided into a set of functions. The way you
sub-divide the code lies up to you, but it should be done in such a way that
every function performs a certain task.

When such code is grouped together and given a name, it becomes easy
for you to reuse the code calling and calling it again through the function
name. Again, the code will become optimized since there will be no need for
you to write it again. Suppose your goal is to check three numbers, 150, 230
and 450 to tell whether they are even or not. Without the use of a function,
you will have to write the logic for the even number each time. This will be a
repetition of code. However, by use of a function, you can write the logic
only once and keep on calling it.

F u n c t i o n D e c l a r a t i o n
The work of a function declaration is to tell the C++ compiler about the

name of the function, its return type and parameters. To define a function in
C++, we use the following syntax:

returnType functionName(dataType parameter...)
{
//function body code
}

From the above syntax, you can tell that a function definition is made up
of a header and function body.

A function can return any value. The returnType denotes the data type of
the value returned by the function. However, there are functions that will
perform their tasks without returning values. In such a case, the return type
should be void.

The functionName is the name of the function. The functionName
together with the parameter list form the function signature.

See a parameter as a placeholder. When you invoke a function, you pass
a value to the parameter. The value will be the actual parameter or argument.
Note that each parameter is associated with a data type. Also, note that there
are functions without parameters.

The function body should have statements defining what the function
should when invoked.

Here is an example of a simple function:

#include <iostream>
using namespace std;
void myFunc() {
 static int x=0; //static variable
 int y=0; //local variable
 x++;
 y++;
 cout<<"x is: " << x<<" and y is: " <<y<<endl;
}
int main()
{
myFunc();

myFunc();
myFunc();
}

The code should print the following output when executed:

We have defined a function named myFunc(). The function takes no
parameters and it is of void type, meaning that it returns nothing. Within the
body of the function, we have defined one static variable x and one variable
y. Their values have been initialized to 0. We have then called the increment
operator on each of these two variables.

We have ended the body of the function myFunc(). Within the main()
method, we have invoked the function myFunc() three times. Note that no
parameter values have been passed during the invocation as our function
takes no parameter. Since x is a static variable, the statement x++ will
increase the value of x by 1 per invocation, meaning we will get 1, 2 and 3.
This will be different for variable y as it has not been marked as static. It will
return 1, 1 and 1 for the three invocations.

You now know why we have the above output.
Let us create an example of a function that takes in parameters:

#include <iostream>
using namespace std;

// declare the function maxNum()
int maxNum(int x, int y);

int main () {
 // declare local variables
 int p;
 int q;
 int max;

 // call the function to get the maximum value.
 max = maxNum(5, 12);

 cout << "The maximum value is : " << max << endl;

 return 0;
}

// function returning the max between two numbers
int maxNum(int x, int y) {
 // local variable declaration
 int result;

 if (x > y)
 result = x;
 else
 result = y;

 return result;
}

The code should return the following as the result:

We began by declaring a function named maxNum() taking two integer
arguments, x, and y. The function is of integer data type, meaning that its
return value will be an integer. Within the main() method, we have invoked
this function in the following line:

 max = maxNum(5, 12);

What happens is that we have called the function and passed to it the
value of the arguments. In the above line, the value of parameter x is 5 while
that of parameter y is 12. Order is very important. The result will be assigned
to the variable named max.

Lastly, we have implemented the logic for our function. We want our
function to return the larger of the two integers that we pass to it. The largest
integer will be stored in the variable result. If the value of x is greater than
that of y, then x will become the result. If y is greater than x, then y will
become the result. That is what we have done in the function body.

In our above call, the function compared 5 and 12. 12 was found to be

the largest, hence, it became the result.

For any function that accepts arguments, it must declare the variables

that will be accepting the values of the arguments. The variables are referred
to as the formal parameters of the function.

The formal parameters exhibit similar behavior as other local variables in
the function and their creation happens after entry into the function and they
are destroyed upon exit.

We pass the values of the arguments when calling or invoking the
function as we did in our previous example. There are various ways through
which we can pass the values of the arguments to the function. Let us discuss
these:

C a l l b y V a l u e
This mechanism involves copying of the actual values of the parameters

to the formal parameters of the function. Any changes made to the parameters
inside the function will have no impact on the argument.

This is the default parameter passing mechanism used in C++. This
means that the code in the function cannot change the arguments used for
calling the function. Let us create a simple example to demonstrate this:

#include <iostream>
using namespace std;
void substitute(int value);
int main()
{
int value = 2;
substitute(value);
cout << "The value is: " << value<< endl;
return 0;
}
void substitute(int value)
{
value = 10;
}

The code should return the following output:

We have defined a function named substitute() that takes in one integer
argument named value. In the implementation of the function, we have set
the value to 10. However, in the main() method, we changed this to 2. That is
why we have the above output. The pass by value was implemented in the
following lines:

int value = 2;
substitute(value);

We initialized the value and passed the name to the function. That is how
simple pass by value is.

C a l l b y P o i n t e r
This mechanism involves copying the address of the argument into the

formal parameter. This address is then used to get the actual value of the
argument inside the function. This means that if a change is done to the
parameter, the argument will be affected.

To pass a value by pointer, the argument pointers should be passed to the
functions similarly to any other value. This means that the function
parameters should be defined as pointer types as demonstrated in the
following snippet:

// defining a function to swap values.
void interchange(int *a, int *b) {
 int temp;
 temp = *a; /* save value at address a */
 *a = *b; /* put b into a */
 b = temp; / put a into b */

 return;
}

Remember that a pointer * points to a memory location.

Let us create a complete code that demonstrates how this works:

#include <iostream>
using namespace std;

// declare a function
void interchange(int *a, int *b);

int main () {
 // declare a local variable:
 int x = 5;
 int y = 12;

 cout << "Before the interachange, the value of x is :" << x << endl;
 cout << "Before the interachange, the value of y is :" << y << endl;

 /* call the function to interchange the values.
 * &x indicates pointer to x, that is, address of variable x and
 * &y indicates pointer to y, that is, address of variable y.
 */
 interchange(&x, &y);

 cout << "After the interchange, the value of x is :" << x << endl;
 cout << "After the interchange, the value of y is :" << y << endl;

 return 0;
}
// defining a function to swap values.
void interchange(int *a, int *b) {
 int temp;
 temp = *a; /* save value at address a */
 *a = *b; /* put b into a */
 b = temp; / put a into b */

 return;
}

Through call by pointer, we were able to interchange the values stored in
the two different addresses. The code returns the following upon execution:

C a l l b y R e f e r e n c e
In call by reference, the reference of an argument is copied to the formal

parameter. Inside the function, we use the reference to access the actual
argument that has been used in the call. This is an indication that the changes
that have been made to the parameter will affect the argument that is passed.

To pass a value by reference, the argument reference is passed to the
functions similarly as any other value. This means that the function
parameters have to be declared as reference types as demonstrated in the
following example:

// define a function to interchange values
void interchange(int &a, int &b) {
 int temp;
 temp = a; /* store the value at address a */
 a = b; /* put b into a */
 b = temp; /* put a into b */

 return;
}

Again, we have the interchange() function that swaps the two values.
Let us now see how we can call the function and pass the arguments by
reference:

#include <iostream>
using namespace std;

// declaration of a function:
void interchange(int &a, int &b);

int main () {
 // declaration of a local variable:
 int x = 5;
 int y = 12;

 cout << "Before the interchange, the value of x is :" << x << endl;
 cout << "Before the interchange, the value of y is :" << y << endl;

 /* call the interchange function to swap the values through reference.*/
 interchange(x, y);

 cout << "After the interchange, the value of x is :" << x << endl;

 cout << "After the interchange, the value of y is :" << y << endl;

 return 0;
}
// defining a function to interchange values
void interchange(int &a, int &b) {
 int temp;
 temp = a; /* store the value at address a */
 a = b; /* put b into a */
 b = temp; /* put a into b */

 return;
}

The code should return the following output upon execution:

That is how pass by reference works in C++.

D e f a u l t V a l u e s f o r P a r a m e t e r s
After defining a function, it is possible for you to define the default

values for the parameters. In such a case, the default value will be used as the
value of the parameter when you call the function without passing the value
of that parameter.

To assign default values for parameters, you use the assignment operator
during the function definition. When no value is specified, that default value
will be used as the value of the parameter. However, if you pass a value for
the parameter, the default value will be ignored and the passed value will be
used instead.

The following example demonstrates this:

#include <iostream>
using namespace std;

int product(int x, int y = 10) {
 int result;

 result = x * y;

 return (result);
}
int main () {
 // declare a local variable:
 int x = 12;
 int y = 5;
 int result;

 // call the product function to multiply the values.
 result = product(x, y);
 cout << "The product is :" << result << endl;

 // call the product function with one argument only
 result = product(x);
 cout << "The product is :" << result << endl;

 return 0;
}

The code should return the following result when executed:

Consider the following statement extracted from the code:

int product(int x, int y = 10)

Above, we are defining a function named product() that takes two
integer arguments, x, and y. If we don’t pass a value for the parameter y
during the function call, then the parameter y will be assigned a default value
of 10.

The function has been called for the first time in the following line:

result = product(x, y);

Above, the value of x is 12 while that of y is 5. When the two are
multiplied, we get a result of 60, hence the source of the first line in the
above output. The default value for parameter y, which is 10, has been
ignored because we have specified a value for the parameter during the call.

We have called the same function for the second time in the following

line:

result = product(x);

Above, we have called the product() function but we have only passed
one parameter to it, x. The value of x is still 12. Since we have not specified
the value for the parameter y, its default value of 10 specified during the
declaration of the function will be used. The two are multiplied to return a
result of 120. The default value for the parameter has been used since we did
not specify its value during the function call.

1 0 - A r r a y s
An array is a data structure provided by C++. This does not mean that

other programming languages don’t have the array data structure.
The array data structure stores its elements sequentially and these

elements must all belong to the same data type. This means that a single array
cannot store numbers and strings together. The elements must belong to one
data type.

With an array, you don’t have to declare all the variables. What you do is
that you declare a single array and give it a name, say age. You can then store
the ages of different individuals into that array.

The elements of an array are stored at indexes. This means that we also
access the elements using their indexes. The first element in the array is said
to be at index 0 of the array while the last element is said to be at index n-1,
where n is the total number of elements in the array. This means that in our
age array, the elements will be stored as age[0], age[1], age[2], etc.

An array has a fixed size.

A r r a y D e c l a r a t i o n
Array declaration in C++ involves telling the C++ compiler the data type

of the array elements, the array name and the number of elements to be stored
in the array. An array is declared using the following syntax:

type array_Name [arraySize];

That is how we declare a one-dimensional array in C++. The type can be
any valid C++ data type, the array_Name is the name you assign to the array
while the arraySize is the number of elements you want to store in the array,
and this must be an integer constant with a value greater than 0. Consider the
following example:

int age[10];

In the above example, we declared an array named age to store 10
integer elements.

A r r a y I n i t i a l i z a t i o n
Initialization here means adding or storing elements in the array. You

can initialize the elements one by one or by using a single statement.

The following example demonstrates this:

int age[10] = {19, 21, 22, 20, 18, 22, 19, 17, 23, 28};

Note that in the [], we stated that our array will store 10 elements. This

match the number of elements that we add between the { }. That is why we
have added exactly 10 elements within the { }.

If you don’t specify the size of the array, the array will only be large
enough to hold the number of elements that have been initialized. For

example:

int age[] = {19, 21, 22, 20, 18, 22, 19, 17, 23, 28};

In the above example, an array of size 10 will be created because we
have added 10 elements into it.

To assign an element to the array, we use the index. For example:

age[4] = 23;

What the above statement does is that it adds the element 23 to index 4
of the array. This means that 23 will be the 5th element in the array.
Remember the array elements start at index 0.

A c c e s s i n g A r r a y V a l u e s
To access an element of an array, we only have to index the array. We

only have to place the index at which the element is located within square
brackets after the array name. Consider the example given below:

int john = age[5]

What we are doing in the above statement is that we are accessing the
value stored at index 5 or the 6th element of the array named age and storing
the value in a variable named john.

Let us create an example that helps us define a one-dimensional array in
C++:

#include <iostream>
using namespace std;
int main()
{
int age[] = {19, 21, 22, 20, 18, 22, 19, 17, 23, 28};
 for (int x = 0; x < 10; x++)
 {
 cout<<age[x]<<"\n";
 }
}

We have our array age with 10 integer elements. We have then created a

for loop to help us iterate through the elements of the array. The variable x
has been used for this.

The code returns the following upon execution:

M u l t i - d i m e n s i o n a l A r r a y s
In our previous examples, we have been creating one-dimensional arrays.

To declare a multi-dimensional array in C++, we use the syntax given below:

type array_name[size1][size2]...[size_N];

Here is an example of how to declare a 3-dimensional array:

int myArray[3][5][9];

A two-dimensional array forms the simplest form of a multi-dimensional
array. See it as a list of one-dimensional arrays. A two-dimensional array of
size a, b can be declared as follows:
type arrayName [a][b];

The type can be any C++ data type while the arrayName is any valid
identifier in C++.

See a two-dimensional array as a table with rows and columns. To
initialize a two-dimensional array, we just specify the array row elements

within curly braces { }. This is demonstrated below:

int a[2][3] = {
 {0, 1, 2} , /* elements for row at index 0 */
 {4, 5, 6} /* elements for row at index 1 */
};

In the above example, we have created a 2 by 3 array named a, meaning
that we have 2 rows and 3 columns. We have also initialized the array values.

Notice that we have nested the curly braces to specify the elements for
each row. However, these are optional. We could have done it as follows:

int a[2][3] = {0, 1, 2, 3, 4, 5, 6};

To access the elements of a two-dimensional array, we have to specify
the row and column indexes where the element is stored in the array. Here is
an example:

int value = a[1][2];

The above statement will access the element stored at row 1 and column
2 of the array named a and assign it to a variable named value.

In the following example, we create a two-dimensional array and use two
loop variables to access the elements:

#include <iostream>
using namespace std;

int main () {
 // an array with 5 rows and 2 columns.
 int x[4][2] = { {0,0}, {1,4}, {2,6}, {3,8}};

 // output every element of the array
 for (int a = 0; a < 4; a++)
 for (int b = 0; b < 2; b++) {

 cout << "x[" << a << "][" << b << "]: ";
 cout << x[a][b]<< endl;
 }

 return 0;
}

The code returns the following result upon execution:

We have created an array named x with 4 rows and 2 columns. We have
then created two for loops. In the first for loop, we have defined the variable
a that we have used to access the row indexes of the elements. In the second
for loop, we have created the variable b that we have used to access the
column indexes of the array elements.

P a s s i n g a n A r r a y t o a F u n c t i o n
In C++, we are not allowed to pass the whole array as a function

argument. However, the same functionality can be achieved when we pass a
pointer to an array by specifying the name of the array without an index. This
means that we only pass the name of the array. This is demonstrated by the
following syntax:

function_name(array_name); //how pass an array to a function

Let us now create an example that demonstrates this:

#include <iostream>
using namespace std;
void displayElements(int arr[5]);
int main()
{
 int array1[5] = { 12, 21, 35, 42, 56 };
 int array2[5] = { 4, 16, 22, 36, 49 };
 displayElements(array1); //passing an array to a function
 displayElements(array2);
}

void displayElements(int arr[5])
{
 cout << "The array elements are:"<< endl;
 for (int x = 0; x < 5; x++)
 {
 cout<<arr[x]<<"\n";
 }
}

The code should return the following result:

We have our two arrays namely array1 and array2. Each array is storing
5 integer elements. We have then used the function named displayElements()
to show the elements of the arrays. The iteration through the array elements
was achieved using a for loop and creating the variable named x. Note that
only the array names were passed to the function.

1 1 - S t r i n g s
C++ provides us with two ways of representing strings. These include

the following:
C-style character string.
Using the string class.

C - S t y l e C h a r a c t e r S t r i n g
This was first introduced in C programming language and it was later

adopted in C++. The string is a one-dimensional array of characters that is
terminated by the null character ‘\0’. This means that a null-terminated string
has characters making a string and then followed by a null.

Consider the example given below:

char salute[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

In the above declaration, we have created a string that forms the word
Hello. For the purpose of holding the null character at the end of our array,
the character array is one more character longer than the number of characters
that we have in the string Hello.

If we follow the rule for declaring arrays, the above can be declared as
follows:

char salute[] = "Hello";

Note that you don’t have to place the null character at the end of the
string constant. The C++ compiler will automatically add the ‘\0’ at the end
of your string during the array initialization. Let us try to print our string:

#include <iostream>

using namespace std;

int main () {

 char salute[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

 cout << "The Hello message: ";
 cout << salute << endl;

 return 0;
}

The code will return the following output:

There are numerous functions that we can use to manipulate null-
terminated strings. They include the following:

strcpy(s1, s2);
This method will copy a string s1 into the string s2.

strcat(s1, s2);
The method will concatenate the string s2 at the end of the string s1.

strlen(s1);
This method will return the length of the string s1.

strcmp(s1, s2);
Returns a 0 if strings s1 and s2 are similar. It will return less than 0 if

s1<s2 and greater than 0 if s1>s2.
strchr(s1, he);

This will return a pointer to the first occurrence of character he in the
string s1.

strstr(s1, s2);
This will return the pointer to the first occurrence of string s2 in string

s1.
The following example demonstrates how to use some of the above

functions:
#include <iostream>
#include <cstring>
using namespace std;

int main () {

 char s1[10] = "Hello";
 char s2[10] = "Class";
 char s3[10];
 int len ;

 // copy s1 into s3
 strcpy(s3, s1);
 cout << "strcpy(s3, s1) : " << s3 << endl;

 // concatenates s1 and s2
 strcat(s1, s2);
 cout << "strcat(s1, s2): " << s1 << endl;

 // get total length of s1 after concatenation
 len = strlen(s1);
 cout << "strlen(s1) : " << len << endl;

 return 0;
}

The code should return the following result:

S t r i n g C l a s s
C++ provides us with a class named string that provides us with all the

operations that we have discussed above and additional functionalities. The
following example demonstrates this:
#include <iostream>
#include <string>

using namespace std;

int main () {

 string s1 = "Hello";
 string s2 = "Class";
 string s3;
 int len ;

 // copy s1 into s3
 s3 = s1;
 cout << "s3 : " << s3 << endl;

 // to concatenate s1 and s2
 s3 = s1 + s2;
 cout << "s1 + s2 : " << s3 << endl;

 // total length of s3 after concatenation
 len = s3.size();
 cout << "s3.size() : " << len << endl;

 return 0;
}

The code will return the following upon execution:

1 2 - P o i n t e r s
Pointers make it easy for us to perform certain tasks in C++. However,

there are tasks that we cannot perform with pointers.
A variable is simply a memory location and every memory location is

associated with an address. To access this address, we can use the ampersand
operator (&) as it denotes the address in memory. Let us create an example to
demonstrate this:
#include <iostream>

using namespace std;
int main () {
 int x;
 char y[5];
 cout << "Address of variable x is: ";
 cout << &x << endl;

 cout << "Address of variable y is: ";
 cout << &y << endl;

 return 0;

}

The code will print the following:

A pointer refers to a variable whose value is an address of another
variable. Just like the way you do with constants and variables, you must
declare a pointer before you can be able to use it. To declare a pointer, we use
the following syntax:

type *variable-name;

The type in the above syntax is the base type of the pointer, and it must
be a valid data type in C++. The variable-name denotes the name of the
pointer variable. The symbol * is known as the asterisk and it is the same
symbol you use as the multiplication operator. However, in this case, the
asterisk helps you designate the variable as a pointer. The following are
examples of valid pointer declarations in C++:

int *ix; // pointer to integer
double *dx; // pointer to double
float *fx; // pointer to a float
char *ch // pointer to a character

The following example demonstrates how to declare and use a pointer in

C++:
#include <iostream>
using namespace std;
int main () {
 int x = 5; // variable declaration.
 int *ip; // a pointer variable

 ip = &x; // to store the address of x in the pointer variable

 cout << "The value of variable x is: ";

 cout << x << endl;

 // return the address of ip pointer variable
 cout << "Address stored in the ip variable is: ";
 cout << ip << endl;

 cout << "Value of *ip variable: ";
 cout << *ip << endl;

 return 0;
}

The code will return the following output:

1 3 - C l a s s e s a n d O b j e c t s
The main difference between C and C++ programming languages is that

the latter introduced the features of object-oriented programming. Classes and
objects are examples of such features.

A class is simply a blueprint for an object. It acts as a template from
which we create objects. The class combines data and methods for
manipulating that data into one package. The data and functions contained
within a class are referred to as the class members.

C l a s s D e f i n i t i o n
A class is a blueprint for a data type. Defining a class means giving the

class a name, which will, in turn, determine the kind of data that an object of
that class will have and the kind of operations that it will allow. A class
definition doesn’t define the data for the class.

To define a C++ class, we use the class keyword followed by the name
of the class and then the body of the class. The beginning of the class body is
marked by an opening curly brace { while the end of the class body is marked
by a closing curly brace }. The class members are then defined within the
body, that is, within the { }. Here is an example:

class Rectangle {
 public:
 double length; // Length of the rectangle
 double breadth; // Breadth of the rectangle
};

In the above example, we have defined a class named Rectangle. See the
Rectangle as a data type. The class has two members/attributes, that is, length
and breadth. Notice the use of the public keyword. It determines the access
attributes of these two members. It means that they are accessible publicly,
that is, from within the entire package. There are also other access modifiers
like private and protected.

O b j e c t D e f i n i t i o n
We stated that a class is a blueprint for an object, meaning that we create

objects from classes. The objects of a class are defined in the same way that
we declare variables of different data types.

In our case, we have a class or a blueprint called Rectangle. We have two
rectangles with different measurements, Rectangle1 and Rectangle 2. We can
create them as follows:

Rectangle Rectangle1; // Declare Rectangle 1 of type Rectangle
Rectangle Rectangle2; // Declare Rectangle2 of type Rectangle

The objects Rectangle1 and Rectangle2 are of type Rectangle. It is of
the same way we declare variables x and y of type int. Each of these two
objects will have their own set of members.

A c c e s s i n g D a t a M e m b e r s
Our class has two data members, length and breadth and these have been

declared as public. Because of this, we can access them by use of the direct
member access operator (.). The following example will make it easy for you
to understand this:

#include <iostream>

using namespace std;

class Rectangle {
 public:
 double length; // Length of the rectangle
 double breadth; // Breadth of the rectangle
};

int main() {
 Rectangle Rectangle1; // Declare Rectangle 1 of type Rectangle
 Rectangle Rectangle2; // Declare Rectangle2 of type Rectangle

 double area = 0.0; // to store the area of the rectangle

 // rectangle 1 specification
 Rectangle1.length = 6.0;
 Rectangle1.breadth = 5.0;

 // rectangle 2 specification
 Rectangle2.length = 12.0;
 Rectangle2.breadth = 10.0;

 // area of rectangle 1
 area = Rectangle1.length * Rectangle1.breadth;
 cout << "Area of Rectangle1 : " << area <<endl;

 // area of rectangle 2
 area = Rectangle2.length * Rectangle2.breadth;
 cout << "Area of Rectangle2 : " << area <<endl;
 return 0;
}

The code should give you the following result:

Consider the following statements extracted from the code:
Rectangle1.length = 6.0;
Rectangle1.breadth = 5.0;

We are using the object named Rectangle1 to access the members of the
Rectangle class, that is, length and breadth. This is because Rectangle1 is an
object of type Rectangle; hence, it has the properties of the Rectangle class.
This means that Rectangle1 has a length, which we have initialized to 6.0
and a breadth which we have initialized to 5.0.

Here is another section extracted from the code:

Rectangle2.length = 12.0;
Rectangle2.breadth = 10.0;

Rectangle2 is an object of type Rectangle, hence, it has both a length
and a breadth. These have been initialized to 12.0 and 10.0 respectively.

Here is another statement extracted from the code:

area = Rectangle1.length * Rectangle1.breadth;

We are multiplying the value of the length and width assigned to the
object named Rectangle1 and storing the result to the variable named area.
This will be the area of the object Rectangle1. This will be 6.0 * 5.0 to give
30.0.

Here is another statement extracted from the code:

area = Rectangle2.length * Rectangle2.breadth;

We are multiplying the value of the length and width assigned to the
object named Rectangle2 and storing the result to the variable named area.
This will be the area of the object Rectangle2. This will be 12.0 * 10.0 to give
120.0.

We were able to access the members of the class Rectangle from our two
objects, Rectangle1 and Rectangle2.

C l a s s M e m b e r f u n c t i o n s
In our previous example, we had two members of the class Rectangle,

length, and breadth. We can have a function defined within a class, and this
can be referred to a class member function. Such a function can be accessed
from objects of that class and it can access all the members of that class.

The length and breadth members were accessed directly. However, it is
possible for us to access them using a member function. This is what we want
to demonstrate. Consider the following code:

class Rectangle {
 public:
 double length; // Length of the rectangle
 double breadth; // Breadth of the rectangle
 double getArea(void);// Returns rectangle area

};

Above, we have our usual members of the class, length, and breadth. In
addition to that, we have defined a member function named getArea().

There are two ways through which we can define the member functions
of a class. First, we can define them directly within the class. This means that
the function is defined inline as shown below:
class Rectangle {
 public:
 double length; // Length of the rectangle
 double breadth; // Breadth of the rectangle
 double getArea(void) {
 return length * breadth;
 }
};

Note that the function getArea() in the above example has been defined
within the body of the class Rectangle. The body of the class is marked by {
and };. The function getArea() also has a body marked by { and }. Inside the
function body, we have defined what the function will do, that is, multiplying
the value of length with the value of breadth.

The second way of defining functions involves doing the definition

outside the class by use of the scope resolution operator (::). The following
example demonstrates this:

double Rectangle::getArea(void) {
 return length * breadth;
}

The important issue in the above example is that you should add the class
name before the scope resolution operator.

After defining the function, we can access it by use of the dot operator
(.). We only have to add the name of the object accessing the class member
function before the dot operator.

Here is an example:

Rectangle Rectangle1; // Creating an object
Rectangle1.getArea(); // Call a member function for the object

We have created an object named Rectangle1 of type Rectangle. We
have then used this object to access the member function of the Rectangle
class.

Consider the following example:

#include <iostream>

using namespace std;

class Rectangle {
 public:
 double length; // Length of the rectangle
 double breadth; // Breadth of the rectangle

 //declaring the member functions
 double getArea(void);
 void setLength(double len);
 void setBreadth(double bre);

};

// Defintions of member functions
double Rectangle::getArea(void) {
 return length * breadth;
}

void Rectangle::setLength(double len) {
 length = len;
}
void Rectangle::setBreadth(double bre) {
 breadth = bre;
}

int main() {
 Rectangle Rectangle1; // Declare Rectangle 1 of type Rectangle
 Rectangle Rectangle2; // Declare Rectangle2 of type Rectangle

 double area = 0.0; // to store the area of the rectangle

 Rectangle1.setLength(6.0);
 Rectangle1.setBreadth(5.0);

 // box 2 specification
 Rectangle2.setLength(12.0);
 Rectangle2.setBreadth(10.0);

 // area of rectangle 1
 area = Rectangle1.getArea();
 cout << "Area of Rectangle1 : " << area <<endl;

 // area of rectangle 2
 area = Rectangle2.getArea();
 cout << "Area of Rectangle2 : " << area <<endl;
 return 0;
}

The code will return the following result:

We have defined three member functions for the class, namely
getArea(), setLength() and setBreadth(). The declaration of these methods
was done within the class body. However, their definitions were done outside
the class body. We were then able to access these function from the objects of
the class.

A c c e s s M o d i f i e r s
Data hiding is a great feature in any object-oriented programming

language including C++. With information hiding, the functions of a program
are prevented from having direct access to the internal representation of a
class. The access can be restricted by labelling the class members as either
public, private or protected. These keywords are known as access specifiers.

It is possible for us to have multiple class sections labeled as private,
public or protected. The default access specifier for classes and its members
is private. The following syntax specifies how these access specifiers can be
used:

class ClassName {
 public:
 // public members should go here
 protected:

 // protected members should go here
 private:
 // private members should go here

};

Let discuss these:

P u b l i c A c c e s s S p e c i f i e r

Any class member set as the public can be accessed from anywhere
outside a class but within the program. The values of public variables can be
set and accessed without using any member function. The following example
demonstrates this:
#include <iostream>

using namespace std;

class Person {
 public:
 double height;
 void setHeight(double heig);
 double getHeight(void);

};

// Definitions of member functions
double Person::getHeight(void) {
 return height ;
}

void Person::setHeight(double heig) {
 height = heig;
}

// Main function
int main() {
 Person person;

 // set person height
 person.setHeight(8.0);
 cout << "Height of person : " << person.getHeight() <<endl;

 // set person height without a member function
 person.height = 9.0; // since height is public
 cout << "Height of person : " << person.height <<endl;

 return 0;
}

The code will return the following result:

We have successfully accessed all the members declared as public.

P r i v a t e A c c e s s S p e c i f i e r

A member function or variable declared as private cannot be accessed or
viewed from outside a class. It’s only the class and the friend functions that
can access the private members.

The default setting is that all members are private, meaning that if a
member is not labeled otherwise, it will become private. Here is an example:

class Rectangle {
 double breadth;

 public:

 double length;
 void setBreadth(double brea);
 double getBreadth(void);
};

In the above example, the member breadth has been declared without

specifying its access type. Due to this, it will become a private member by
default. The rest have been marked as public.

In most cases, data members are defined as private while functions are
defined as public so that they can be called from outside the class. The
following example demonstrates this:
#include <iostream>

using namespace std;

class Rectangle {
 public:
 double length;
 void setBreadth(double brea);
 double getBreadth(void);

 private:
 double breadth;
};

// Definition of member functions
double Rectangle::getBreadth(void) {
 return breadth ;
}

void Rectangle::setBreadth(double brea) {
 breadth = brea;
}

// Main function
int main() {
 Rectangle rectangle;

 // set rectangle length without a member function
 rectangle.length = 12.0; // since length is public
 cout << "Length of rectangle : " << rectangle.length <<endl;

 // set rectangle breadth without a member function
 // rectangle.breadth = 10.0; // Error: because breadth is private
 rectangle.setBreadth(10.0); // Use a member function to set it.
 cout << "Breadth of rectangle : " << rectangle.getBreadth() <<endl;

 return 0;
}

The code will return the following result after execution:

See that we have to use a member function to access a private member,
which was not the case with public members.

P r o t e c t e d A c c e s s S p e c i f i e r

A protected member function or variable is very similar to a private
member function or variable but it comes with an additional benefit in that it
can be accessed in the child classes which are known as derived classes.

Consider the example given below:

#include <iostream>
using namespace std;

class Rectangle {
 protected:
 double breadth;
};

class SmallRectangle:Rectangle { // SmallRectangle is a derived class.
 public:
 void setSmallBreadth(double brea);
 double getSmallBreadth(void);
};

// Member functions of the child class
double SmallRectangle::getSmallBreadth(void) {
 return breadth ;
}

void SmallRectangle::setSmallBreadth(double brea) {
 breadth = brea;
}

// Main function

int main() {
 SmallRectangle rectangle;

 // set rectangle breadth using a member function
 rectangle.setSmallBreadth(10.0);
 cout << "Breadth of rectangle : "<< rectangle.getSmallBreadth() << endl;

 return 0;
}

When executed, the code will return the following:

In the above example, we declared a class named Rectangle and within
this class, we declared a protected member named breadth.

Consider the following line extracted from the code:

class SmallRectangle:Rectangle

What we are doing is that we are creating a child/derived class known
SmallRectangle from the class Rectangle. This process is known as
inheritance. We will discuss it later. The child class was then able to access
the member from the base class that has been marked as protected, which the
breadth.

C l a s s C o n s t r u c t o r
A class constructor refers to a special member function that is executed

anytime a new object of the class is created.
A constructor should be given the same name as the class and it must not

have a return type, even void. Constructors become very useful when we
need to set the initial values of some class member variables.

Consider the example given below:
using namespace std;

class Person {
 public:
 void setHeight(double heig);

 double getHeight(void);
 Person(); // This is the constructor
 private:
 double height;
};

// Definitions of member functions and the constructor
Person::Person(void) {
 cout << "Object is being created" << endl;
}
void Person::setHeight(double heig) {
 height = heig;
}
double Person::getHeight(void) {
 return height;
}

// Main function
int main() {
 Person person;

 // set person height
 person.setHeight(9.0);
 cout << "Height of person : " << person.getHeight() <<endl;

 return 0;
}

The code should return the following:

We have declared the class named Person. The constructor has been
declared and given the same name as the class. This has been done in the
following line of the code:

Person();

P a r a m e t e r i z e d C o n s t r u c t o r
A default constructor takes no parameters, but it is possible for us to

create a constructor that takes in parameters. This way, an initial value can be

assigned to an object during the time of its creation. Here is an example:
class Person {
 public:
 void setHeight(double heig);
 double getHeight(void);
 Person(double heig); // This is the constructor
 private:
 double height;
};

// Definitions of member functions and the constructor
Person::Person(double heig) {
 cout << "Object is being created" << endl;
}
void Person::setHeight(double heig) {
 height = heig;
}
double Person::getHeight(void) {
 return height;
}

// Main function
int main() {
 Person person(8.0);
 cout << "Height of person : " << person.getHeight() <<endl;

 // set person height
 person.setHeight(9.0);
 cout << "Height of person : " << person.getHeight() <<endl;

 return 0;
}

C l a s s D e s t r u c t o r
A destructor refers to a special member function of a class executed

anytime an object of the class goes out of scope or anytime a delete operation
is done on a pointer to the class object.

A destructor takes the same name as a class but it must be preceded with
a tilde (~). A destructor doesn’t take parameters and it does not return values.
Destructors are good when you need to release resources like the closing of a
file before you can leave a program. Here is an example demonstrating the
use of a destructor:

#include <iostream>

#include <iostream>

using namespace std;
#include <iostream>

using namespace std;
class Person {
 public:
 void setHeight(double heig);
 double getHeight(void);
 Person(); // Declaration of the constructor
 ~Person(); // Declaration of the destructor

 private:
 double height;
};

// Definitions of member functions and the constructor
Person::Person (void) {
 cout << "Object is being created" << endl;
}
Person::~Person(void) {
 cout << "Object is being deleted" << endl;
}
void Person::setHeight(double heig) {
 height = heig;
}
double Person::getHeight(void) {
 return height;
}

// Main function
int main() {
 Person person;

 // set person height
 person.setHeight(9.0);
 cout << "Height of person : " << person.getHeight() <<endl;

 return 0;
}

The code should return the following result:

1 4 - I n h e r i t a n c e
Inheritance is a very important concept of object-oriented programming.

With inheritance, we are able to define one class in terms of another class.
During the creation of a new class, instead of defining new data members

and functions for the class, we can state that the new classes will inherit these
from an already existing class.

Inheritance is simply an implementation of the is a relationship. For
example, Harrier IS-A car, cow IS-A mammal, etc.

B a s e a n d D e r i v e s C l a s s e s
It is possible for a class to inherit data and function members from

multiple classes, meaning that it can inherit from multiple base classes. To
define a base class, we have to use a class derivation list to state the base
classes. A class derivation list will name one or more class and it takes the

following form:
class derived-class: access-specifier base-class

The access-specifier in the above class can be private, public or protected
while the base-class is the name of the class. If you don’t specify the access
specifier, then it will become private by default.

Consider the example given below:

#include <iostream>

using namespace std;

// The base class
class Figure {
 public:
 void setBreadth(int b) {
 breadth = b;
 }
 void setLength(int l) {
 length = l;
 }

 protected:
 int breadth;
 int length;
};

// Derived class
class Rectangle: public Figure {
 public:
 int getArea() {
 return (breadth * length);
 }
};

int main(void) {
 Rectangle Rect;

 Rect.setBreadth(7);
 Rect.setLength(8);

 // Return area of the rectangle.
 cout << "Rectangle area is: " << Rect.getArea() << endl;

 return 0;
}

The code should return the following output:

In the above example, we have Figured as the base class and Rectangle
as the derived class. Rect is an object of Rectangle class and it was able to
access the member functions defined in the base class. Note that these
functions had been marked as public using the public access specifier. We
also accessed the two data members, breadth and length defined in the base
class. These had been marked as protected using the protected access
specifier.

M u l t i p l e I n h e r i t a n c e
Multiple inheritance is said to have occurred when a C++ class inherits

from more than one base classes. This is done using the following syntax:

class derived-class: access-specifier base_A, access-specifier base_B...
The derived-class is the name to be given to the derived class, base_A is

the name of the first base class, base_B the name of the second base class….
and access_specifier is the level of access of a class, which can be private,
public or protected.

Here is an example:

#include <iostream>

using namespace std;

// Base class Shape
class Figure {
 public:
 void setBreadth(int b) {
 breadth = b;
 }
 void setLength(int l) {
 length = l;
 }

 protected:

 int breadth;
 int length;
};

// Base class ColorCost
class ColorCost {
 public:
 int getCost(int area) {
 return area * 50;
 }
};

// Derived class
class Rectangle: public Figure, public ColorCost {
 public:
 int getArea() {
 return (breadth * length);
 }
};

int main(void) {
 Rectangle Rect;
 int area;

 Rect.setBreadth(7);
 Rect.setLength(8);

 area = Rect.getArea();

 // Return area of the rectangle.
 cout << "Rectangle area is: " << Rect.getArea() << endl;

 // Print the total cost of painting
 cout << "Total painting cost is: $" << Rect.getCost(area) << endl;

 return 0;
}

The code will return the following output:

1 5 - O v e r l o a d i n g
In C++, it is possible for us to specify more than one definition for a

function or operator within the same scope. These are processes known as
function overloading and operator overloading respectively.

An overloaded declaration is done within the same scope as the previous
declaration but both definitions have different arguments and a different
implementation/definition.

After calling an overloaded function or operator, the compiler will
determine the most appropriate definition to use by comparing the types of
arguments that you have used to call the function or operator with the types
of parameters that have been specified in the definition. The process of
determining the most appropriate definition to use is referred to as overload
resolution.

F u n c t i o n O v e r l o a d i n g
You can have different functions of one function within one scope. To

create the variation between function definitions, you can use different types
or number of parameters for the different functions. Here is an example:

#include <iostream>

using namespace std;
class MyClass {
 public:
static int add(int x,int y){
 return x + y;
 }
static int add(int x, int y, int z)
 {
 return x + y + z;
 }
};
int main(void) {
 MyClass C; // class object declaration.
 cout<<C.add(1, 2)<<endl;
 cout<<C.add(1, 2, 3);
 return 0;
}

In the above class we have two definitions of the function add() within
the same scope. In the first definition, the function takes two integer
arguments, x and y. In the second definition, the function takes three integer
arguments, x, y and z.

When calling the functions, the number of arguments we passed
determined the definition to be invoked. For the two arguments, the first
definition has been invoked. For three arguments, the second definition has
been invoked.

The code should return the following output:

O p e r a t o r s O v e r l o a d i n g
C++ allows you to re-define or overload the majority of its in-built

operators. This means that programmers can use operators with user-defined
types.

Overloaded operators are simple functions with special names, that is,
the operator keyword and then then symbol of the operator that is under the
definition. Just like a function definition, an overloaded operator will have a
return type and a list of parameters. The definition of an overloaded operator

is demonstrated below:

Rectangle operator+(const Rectangle&);

In the above example, we have defined the addition operator that we can
use to add two rectangle objects and it returns the final Figure object. We can
define most overloaded operators as ordinary non-member functions or as
class member functions. If the above function was to be defined as a non-
member function of a class, then we would have passed the two arguments
for every operand as shown below:

Rectangle operator+(const Rectangle&, const Rectangle&);

In the example given below, we are demonstrating the process of

operator overloading by the use of a member function. We will pass an object
as an argument and the properties of the object will be accessed using the
object, and the object that will call the operator will be accessible by use of
the this operator as demonstrated below:

#include <iostream>
using namespace std;

class Rectangle {
 public:
 double getArea(void) {
 return length * breadth;
 }
 void setLength(double len) {
 length = len;
 }
 void setBreadth(double bre) {
 breadth = bre;
 }

 // Overload the + operator to add two Rectangle objects.
 Rectangle operator+(const Rectangle& r) {
 Rectangle rect;
 rect.length = this->length + r.length;
 rect.breadth = this->breadth + r.breadth;
 return rect;
 }

 private:
 double length; // Length of a rectangle
 double breadth; // Breadth of a rectangle
};

// Main function
int main() {
 Rectangle Rectangle1; // Declare Rectangle1 of type Rectangle
 Rectangle Rectangle2; // Declare Rectangle2 of type Rectangle
 Rectangle Rectangle3; // Declare Rectangle3 of type Rectangle
 double area = 0.0; // Store the area of a Rectangle here

 // Rectangle 1 specification
 Rectangle1.setLength(6.0);
 Rectangle1.setBreadth(7.0);

 // Rectangle 2 specification
 Rectangle2.setLength(12.0);
 Rectangle2.setBreadth(13.0);

 // area of Rectangle 1
 area = Rectangle1.getArea();
 cout << "Area of Rectangle1 : " << area <<endl;

 // area of Rectangle 2
 area = Rectangle2.getArea();
 cout << "Area of Rectangle2 : " << area <<endl;

 // Adding two objects:
 Rectangle3 = Rectangle1 + Rectangle2;

 // area of rectangle 3
 area = Rectangle3.getArea();
 cout << "Area of Rectangle3 : " << area <<endl;

 return 0;
}

When executed, the code will return the following:

Consider the following section extracted from the above code:

Rectangle operator+(const Rectangle& r) {
 Rectangle rect;

 rect.length = this->length + r.length;
 rect.breadth = this->breadth + r.breadth;
 return rect;
 }

This is where the mechanism of operator overloading has been
implemented. We have overloaded the + operator so that it adds the
measurements of two rectangle objects. Here is another line extracted from
the code:

Rectangle3 = Rectangle1 + Rectangle2;

In the above line, Rectangle1 will be added to Rectangle2. This means
that the length of Rectangle1 will be added to the length of Rectangle2 to
get the length of Rectangle3 while the breadth of Rectangle1 will be added
to the breadth of Rectangle2 to get the breadth of Rectangle3. These two
will then be multiplied to give the area of Rectangle3.

The meaning of + operator has been overloaded!

1 6 - P o l y m o r p h i s m
Polymorphism means to exist in many forms. In programing,

polymorphism occurs when we have many classes that are related to each
other through inheritance.

In C++, polymorphism means that a call to a function will lead to the
execution of a different function depending on the type of object that has
invoked the function. Consider the example given below in which we have a
base class derived or inherited by two other classes:

#include <iostream>
using namespace std;

class Figure {
 protected:
 int breadth, length;

 public:
 Figure(int x = 0, int y = 0){
 breadth = x;

 length = y;
 }
 int area() {
 cout << "Area of parent class is :" <<endl;
 return 0;
 }
};
class Rectangle: public Figure {
 public:
 Rectangle(int x = 0, int y = 0):Figure(x, y) { }

 int area () {
 cout << "Area of Rectangle class is :" <<endl;
 return (breadth * length);
 }
};

class Square: public Figure {
 public:
 Square(int x = 0, int y = 0):Figure(x, y) { }

 int area () {
 cout << "Area of Square class is :" <<endl;
 return (breadth * length);
 }
};

// Main function
int main() {
 Figure *figure;
 Rectangle rec(10,7);
 Square sq(5,5);

 // store address of Rectangle
 figure = &rec;

 // call rectangle area.
 figure->area();

 // store the address of Square
 figure = &sq;

 // call aquare area.
 figure->area();

 return 0;
}

The code will return the following output:

The output is incorrect. The reason for this is that the call of area()
function has been set only once by the compiler as the version that has been
defined in the base class. |This is referred to as static resolution or static
linkage of the function call. The function call is fixed before the execution of
the program. Sometimes, this is referred to as early binding since our area
has been set during the compilation of the program.

Let us make a modification to the code so that the area() function is
declared within the Figure class. However, we will declare it with the virtual
keyword as shown below:

class Figure {
 protected:
 int breadth, length;

 public:
 Figure(int x = 0, int y = 0){
 breadth = x;
 length = y;
 }
 virtual int area() {
 cout << "Area of parent class is :" <<endl;
 return 0;
 }
};

This means you should now have the following code:

#include <iostream>
using namespace std;

class Figure {
 protected:
 int breadth, length;

 public:
 Figure(int x = 0, int y = 0){
 breadth = x;
 length = y;
 }
 virtual int area() {

 cout << "Area of parent class is :" <<endl;
 return 0;
 }
};
class Rectangle: public Figure {
 public:
 Rectangle(int x = 0, int y = 0):Figure(x, y) { }

 int area () {
 cout << "Area of Rectangle class is :" <<endl;
 return (breadth * length);
 }
};

class Square: public Figure {
 public:
 Square(int x = 0, int y = 0):Figure(x, y) { }

 int area () {
 cout << "Area of Square class is :" <<endl;
 return (breadth * length);
 }
};

// Main function
int main() {
 Figure *figure;
 Rectangle rec(10,7);
 Square sq(5,5);
 // store address of Rectangle
 figure = &rec;

 // call rectangle area.
 figure->area();

 // store the address of Square
 figure = &sq;

 // call aquare area.
 figure->area();

 return 0;
}

The code should now return the following result:

The compiler has considered the elements of the pointer rather than its
type. The objects of rec and sq classes have been stored in the *figure, their
respective definition of the area() function have been called.

This shows that each of the derived classes has a different
implementation of the function named area(). This is known as
polymorphism. You have more than one class with the same function name
and the same parameters, but the implementation is different.

Notice that we used the virtual keyword to make the function virtual.
When a virtual function is defined in the base class, and another version in
the derived class, this will act as a signal to the compiler that a static linkage
to the function is not needed. We only need a selection of the function to be
called at any point in the program based on the type of object for which the
function is being called. This operation is known as late binding or dynamic
linkage.

Sometimes, you may be in need of including a virtual function in the
base class for it to be redefined in a derived class to suit the class objects, but
you have no meaningful definition to give to the function in the base class.

In such a case, our virtual function area() in the base class can be
changed to the following:

class Figure {
 protected:
 int breadth, length;

 public:
 Figure(int x = 0, int y = 0){
 breadth = x;
 length = y;
 }

 virtual int area() = 0;
};

Notice the use of the = 0; in the function. This tells the C++ compiler
that the function doesn’t have a body. Such a function is known as a pure
virtual function.

1 7 - D a t a A b s t r a c t i o n
Data abstraction is another important concept provided in object-oriented

programming languages. It occurs when the user is provided with only what
is necessary to the outside world while hiding the implementation details
from the user.

With data abstraction, we are able to separate the user interface from the
implementation. Consider the example of a car. When you are driving and
you press the accelerator, you see the car increase its speed when you press
the brakes, you see the car stop. However, you don’t know the mechanical
movements that happen internally to make the car accelerate or stop. You
have only been presented with what is necessary for you.

Due to this, we can say that a car separates its internal implementation
details from the external interface and you can play around with the brake,
the accelerator steering wheel, etc. without knowing what happens internally.

In C++, abstraction is provided by classes. They provide enough public

methods to the outside world to play around with the functionality of an
object and to modify the object data without knowing how the class has been
implemented internally. You can call a method such as a sort and it will sort
your values without you knowing the type of algorithm that the algorithm
uses to sort the values.

Classes help us to define abstract data types (ADTs). Consider the
following code:

#include <iostream>
using namespace std;

int main() {
 cout << "Hello there!" <<endl;
 return 0;
}

Above, we have used the cout object defined in the ostream class to
stream data to the standard output. you are not required to know how the cout
object works to display text on your screen.

Anytime that you create a class in C++ with private and public members,
you implement abstraction. Here is an example:

#include <iostream>
using namespace std;

class Sum {
 public:
 // The constructor
 Sum(int x = 0) {
 total = x;
 }

 // interface to the external world
 void sumNum(int number) {
 total += number;
 }

 // interface to ethe xternal world
 int getTotal() {
 return total;
 };

 private:

 // data hideen from the outside world
 int total;
};

int main() {
 Sum s;

 s.sumNum(5);
 s.sumNum(12);
 s.sumNum(3);

 cout << "The sum is " << s.getTotal() <<endl;
 return 0;
}

The code will return the following result:

We have created a class whose work is to add three numbers and return
their sum. We have two members that have been made public, sumNum()
and getTotal(). a user only needs to know them and be able to use the class.
We have also created a hidden member named total. The user does not need
to know more about this member but it is required for the class to function in
the way that it is intended to function.

Through abstraction, we are able to separate the code into two, the
interface and the implementation. This means that when you are
implementing your C++ app, you have to keep the interface independent of
the implementation. This will mean that if you make a change to the
implementation, the interface will still remain intact, that would mean that
programs using the interfaces will not be affected and they will only need a
recompilation so as to be able to use the latest implementation.

C o n c l u s i o n
This marks the end of this guide. C++ is a computer programming

language. It was developed to make number improvements to the then C
programming language. C is a structured programming language whereas
C++ is an object-oriented programming language. This means that C
introduced object-oriented programming features to the C programming
language. Object oriented programming involves the treatment of items as
objects. This is what C++ does. It is a case sensitive programming language,
meaning that it differentiates between uppercase from lowercase letters. You
have to be keen when naming and referring/calling objects in C++ so that you
may call them using the right case according to their definition.

To program in C++, you only a text editor and the C++ compiler. The
text editor will provide you with an environment where you will write your
C++ programs. It is recommended that you give your C++ source files a .cpp
extension to mark them C++ files. It is the default extension used by the C++

compiler. The purpose of the C++ compiler is to process your C++ source file
to give you the result. There are many ways through which you can get this
into your computer depending on the type of operating system you are using
on your computer. For the case of the text editor, you can for the basic ones
like Notepad on Windows and vim for Windows and Linux/Unix. Once you
have assembled these, you can write, compile and execute C++ programs on
your computer.

A B O U T T H E A U T H O R

Daniel Bell was born in the Bronx, New York. When he was nine, he moved
with his father Guy Bell to Nice in France. He received his Ph.D. degree in
computer science from the University of Nice (France) in 2012. Daniel is
conducting research in data management, with an emphasis on topics related
to Big Data and data sharing, such as probabilistic data, data pricing, parallel
data processing, data security. He spends his free time in the writing of books
on computer programming and data science, to help the absolute beginners in
computer programming to code easily. He lives in Chatillon, near Paris.

A c k n o w l e d g m e n t s

Foremost, I would like to express my sincere gratitude to my family, my wife
Genevieve and my son Adan for the continuous support in my everyday life,
for their patience, motivation, enthusiasm. Besides my family, I would like to
thank my friends and colleagues: Prof. Jule Villepreux, Hugo D. and Dr.
James Rivera, for their encouragement, insightful comments, and hard
questions. I thank my fellow labmates: Gang Yu, Ting Fan, Djibrilla Diallo,
Juan Sanchez, for the stimulating discussions, for the sleepless nights we
were working together before deadlines, and for all the fun we have had. Last
but not least, I would like to thank my parents Guy Bell and Ezra Bell, for
giving birth to me at the first place and supporting me spiritually throughout
my life

Thanks for reading! Please add a short review and let us know what you
thought!

www.guzzlermedia.com

	Introduction
	1-Getting Started with C++
	An Overview of C++
	Environment Setup

	2-C++ Program Structure
	Compiling and Executing C++ Programs

	3-C++ Data Types
	Primitive Built-in Types

	4-C++ Variables
	Variable Definition
	Variable Declaration
	Variable Scope
	Local Variables
	Global Variables

	5-C++ Constants
	Using the #define preprocessor.
	Using the const Keyword

	6-C++ Operators
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Operator Precedence

	7-C++ Loops
	while Loop
	for Loop
	do…while Loop
	Nested for Loop
	break Statement
	continue Statement
	goto Statement

	8-Decision Making
	if Statement
	if…else Statement
	if...else if...else Statement
	switch Statement
	Nested if Statements
	Nested switch Statement

	9-C++ Functions
	Function Declaration
	Call by Value
	Call by Pointer
	Call by Reference
	Default Values for Parameters

	10-Arrays
	Array Declaration
	Array Initialization
	Accessing Array Values
	Multi-dimensional Arrays
	Passing an Array to a Function

	11-Strings
	C-Style Character String
	String Class

	12-Pointers
	13-Classes and Objects
	Class Definition
	Object Definition
	Accessing Data Members
	Class Member functions
	Access Modifiers
	Public Access Specifier
	Private Access Specifier
	Protected Access Specifier

	Class Constructor
	Parameterized Constructor
	Class Destructor

	14-Inheritance
	Base and Derives Classes
	Multiple Inheritance

	15-Overloading
	Function Overloading
	Operators Overloading

	16- Polymorphism
	17-Data Abstraction
	Conclusion

