

C++17 in Detail
Learn the Exciting Features of The New C++ Standard!

Bartłomiej Filipek

This book is for sale at http://leanpub.com/cpp17indetail

This version was published on 2019-09-12

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the right
book and build traction once you do.

© 2018 - 2019 Bartłomiej Filipek

http://leanpub.com/cpp17indetail
http://leanpub.com/
http://leanpub.com/manifesto

for Wiola and Mikołaj

Contents

About the Author . i

Technical Reviewer . ii
Additional Reviewers & Supporters . iii

Revision History . vi

Foreword . vii

Preface . viii

About the Book . ix
Who This Book is For . ix
Overall Structure of the Book . x
Reader Feedback . xi
Example Code . xi

Part 1 - Language Features . 1

1. Quick Start . 2

2. Removed or Fixed Language Features . 5
Removed Elements . 6
Fixes . 9
Compiler Support . 12

3. Language Clarification . 13
Stricter Expression Evaluation Order . 14
Guaranteed Copy Elision . 18
Dynamic Memory Allocation for Over-Aligned Data 23

CONTENTS

Exception Specifications in the Type System . 26
Compiler Support . 27

4. General Language Features . 28
Structured Binding Declarations . 29
Init Statement for if and switch . 37
Inline Variables . 40
constexpr Lambda Expressions . 42
Capturing [*this] in Lambda Expressions . 43
Nested Namespaces . 45
__has_include Preprocessor Expression . 47
Compiler support . 49

5. Templates . 50
Template Argument Deduction for Class Templates 51
Fold Expressions . 55
if constexpr . 58
Declaring Non-Type Template Parameters With auto 65
Other Changes . 66
Compiler Support . 69

6. Standard Attributes . 70
Why Do We Need Attributes? . 71
Before C++11 . 72
Attributes in C++11 and C++14 . 73
C++17 Additions . 74
Section Summary . 80
Compiler support . 80

Part 2 - The Standard Library Changes 81

7. std::optional . 82
Introduction . 83
std::optional Creation . 85
Returning std::optional . 90
Accessing The Stored Value . 92
std::optional Operations . 93
Performance & Memory Consideration . 95

CONTENTS

Migration from boost::optional . 97
Special case: optional<bool> and optional<T*> 98
Examples of std::optional . 98
Summary . 101
Compiler Support . 101

8. std::variant . 102
The Basics . 103
std::variant Creation . 106
Changing the Values . 111
Accessing the Stored Value . 113
Visitors for std::variant . 114
Other std::variant Operations . 119
Exception Safety Guarantees . 120
Performance & Memory Considerations . 121
Migration From boost::variant . 122
Examples of std::variant . 123
Wrap Up . 131
Compiler Support . 131

9. std::any . 132
The Basics . 133
std::any Creation . 135
Changing the Value . 137
Accessing The Stored Value . 138
Performance & Memory Considerations . 139
Migration from boost::any . 140
Examples of std::any . 141
Wrap Up . 144
Compiler Support . 144

10. std::string_view . 145
The Basics . 146
The std::basic_string_view Type . 148
std::string_view Creation . 149
Other Operations . 150
Risks Using string_view . 153
Initializing stringMembers from string_view 157
Handling Non-Null Terminated Strings . 162

CONTENTS

Performance & Memory Considerations . 164
Migration from boost::string_ref and boost::string_view 166
Examples . 167
Wrap Up . 170

11. String Conversions . 171
Elementary String Conversions . 172
Converting From Characters to Numbers: from_chars 174
Converting Numbers into Characters: to_chars 178
The Benchmark . 180
Summary . 184
Compiler support . 184

12. Searchers & String Matching . 185
Overview of String Matching Algorithms . 186
New Algorithms Available in C++17 . 187
Examples . 189
Summary . 195
Compiler support . 195

13. Filesystem . 196
Filesystem Overview . 197
Demo . 198
The Path Object . 201
The Directory Entry & Directory Iteration . 208
Supporting Functions . 210
Error Handling & File Races . 216
Examples . 218
Chapter Summary . 224
Compiler Support . 225

14. Parallel STL Algorithms . 226
Introduction . 227
Overview . 228
Execution Policies . 229
Algorithm Update . 235
New Algorithms . 236
Performance of Parallel Algorithms . 241
Examples . 243

CONTENTS

Chapter Summary . 254
Compiler Support . 256

15. Other Changes In The Library . 257
std::byte . 258
Improvements for Maps and Sets . 259
Return Type of Emplace Methods . 265
Sampling Algorithms . 266
New Mathematical Functions . 267
Shared Pointers and Arrays . 269
Non-member size(), data() and empty() . 270
constexpr Additions to the Standard Library . 271
std::scoped_lock . 273
Polymorphic Allocator, pmr . 274
Compiler support . 277

16. Removed And Deprecated Library Features . 278
Removing auto_ptr . 279
Removed std::random_shuffle . 281
“Removing Old functional Stuff” . 282
std::iterator Is Deprecated . 283
Other Smaller Removed or Deprecated Items . 285
Compiler support . 287

Part 3 - More Examples and Use Cases 288

17. Refactoring with std::optional and std::variant 289
The Use Case . 290
The Tuple Version . 291
A Separate Structure . 292
With std::optional . 293
With std::variant . 294
Wrap up . 296

18. Enforcing Code Contracts With [[nodiscard]] 297
Introduction . 298
Where Can It Be Used? . 299
How to Ignore [[nodiscard]] . 301

CONTENTS

Before C++17 . 302
Summary . 302

19. Replacing enable_ifwith if constexpr - Factory with Variable Arguments 303
The Problem . 304
Before C++17 . 306
With if constexpr . 307
Summary . 308

20. How to Parallelise CSV Reader . 309
Introduction and Requirements . 310
The Serial Version . 311
Using Parallel Algorithms . 318
Tests . 322
Wrap up & Discussion . 324

Appendix A - Compiler Support . 327
GCC . 327
Clang . 327
VisualStudio - MSVC . 327
Compiler Support of C++17 Features . 328

Appendix B - Resources and References . 332

Index . 336

About the Author
Bartłomiej (Bartek) Filipek is a C++ software developer with more than 12 years of
professional experience. In 2010 he graduated from Jagiellonian University in Cracow,
Poland with a Masters Degree in Computer Science.

Bartek currently works at Xara, where he develops features for advanced document editors.
He also has experience with desktop graphics applications, game development, large-scale
systems for aviation, writing graphics drivers and even biofeedback. In the past, Bartek
has also taught programming (mostly game and graphics programming courses) at local
universities in Cracow.

Since 2011 Bartek has been regularly blogging at bfilipek.com. Initially, the topics revolved
around graphics programming, but now the blog focuses on core C++. He’s also a co-
organiser of the C++ User Group in Cracow. You can hear Bartek in one @CppCast episode
where he talks about C++17, blogging and text processing.

Since October 2018, Bartek has been a C++ Expert for the Polish National Body which works
directly with ISO/IEC JTC 1/SC 22 (C++ Standardisation Committee). In the same month,
Bartek was awarded his first MVP title for the years 2019/2020 by Microsoft.

In his spare time, he loves collecting and assembling Lego models with his little son.

http://www.xara.com/
https://www.bfilipek.com/
https://www.meetup.com/C-User-Group-Cracow/
http://cppcast.com/2018/04/bartlomiej-filipek/

Technical Reviewer
Jacek Galowicz is a Software Engineer with roughly a decade of professional experience
in C++. He got his master of science degree in electrical engineering at RWTH Aachen
University in Germany.

Jacek co-founded the Cyberus Technology GmbH in early 2017 and works on products
around low-level cybersecurity, virtualization, microkernels, and advanced testing infras-
tructure. At former jobs, he implemented performance- and security-sensitive microkernel
operating systems for Intel x86 virtualization at Intel and FireEye in Germany. In general,
he gained experience with kernel driver development, 3D graphics programming, databases,
network communication, physics simulation, mostly in C or C++.

In his free time, Jacek maintains a little C++ blog, which has seen some lack of love while he
wrote the C++17 STL Cookbook. He is a regular visitor of the C++ Usergroups in Hannover
and Braunschweig. In order to do meta programming and generic programming better, he
also learned and uses Haskell, which in turn sparked his interest to generally bring the
advantages of purely functional programming to C++.

Technical Reviewer iii

Additional Reviewers & Supporters

Without the support of many good people, this book would have been far less than it is.
It is a great pleasure to thank them. A lot of people read drafts, found errors, pointed out
confusing explanations, suggested different wording, tested programs, and offered support
and encouragement. Many reviewers generously supplied insights and comments that I was
able to incorporate into the book. Any mistakes that remain are, of course, my own.

Thanks especially to the following reviewers, who either commented on large sections of the
book, smaller parts or gave me a general direction for the whole project.

Patrice Roy - Patrice has been playing with C++, either professionally, for
pleasure or (most of the time) both for over 20 years. After a few years doing
R&D and working on military flight simulators, he moved on to academics and
has been teaching computer science since 1998. Since 2005, he’s been involved
more specifically in helping graduate students and professionals from the fields
of real-time systems and game programming develop the skills they need to face
today’s challenges. The rapid evolution of C++ in recent years has made his job
even more enjoyable.

Jonathan Boccara - Jonathan is a passionate C++ developer working on large
codebase of financial software. His interests revolve around making code expres-
sive. He created and regularly blogs on Fluent C++¹, where he explores how to
use the C++ language to write expressive code, make existing code clearer, and
also about how to keep your spirits up when facing unclear code.

Łukasz Rachwalski - Software engineer - founder C++ User Group Krakow.

Michał Czaja - C++ software developer and network engineer.Works in telecom-
munication industry since 2009.

ArneMertz - Software Engineer fromHamburg, Germany. He is a C++ and clean
code enthusiast. He’s the author of the Simplify C++² blog.

JFT - Has been involvedwith computer programming and “computer techy stuff”
for over 45 years - including OS development and teaching c++ in the mid 1990’s.

¹https://www.fluentcpp.com/
²https://arne-mertz.de/

https://www.fluentcpp.com/
https://arne-mertz.de/
https://www.fluentcpp.com/
https://arne-mertz.de/

Technical Reviewer iv

Victor Ciura - Senior Software Engineer at CAPHYON and Technical Lead on
the Advanced Installer team³. For over a decade, he designed and implemented
several core components and libraries of Advanced Installer. He’s a regular guest
at Computer Science Department of his Alma Mater, University of Craiova,
where he gives student lectures & workshops on “Using C++STL for Competitive
Programming and Software Development”. Currently, he spends most of his
time working with his team on improving and extending the repackaging and
virtualization technologies in Advanced Installer IDE, helping clients migrate
their Win32 desktop apps to the Windows Store (MSIX).

Karol Gasiński - Tech Lead on macOS VR in Apple’s GPU SW Architecture
Team. Previously Senior Graphics Software Engineer at Intel. As a member of
KHRONOS group, he contributed to OpenGL 4.4 and OpenGL ES 3.1 Specifi-
cations. Except for his work, Karol’s biggest passion is game development and
low-level programming. He conducts research in the field of VR, new interfaces
and game engines. In game industry is known from founding WGK conference.
In the past, he was working on mobile versions of such games as Medieval Total
War, Pro Evolution Soccer and Silent Hill.

Marco Arena - Software Engineer and C++ Specialist building mission critical
and high performance software products in the Formula 1 Industry. Marco is very
active in the C++ ecosystem as a blogger, speaker and organizer: he founded the
Italian C++ Community in 2013, he joined isocpp.org⁴ editors in 2014 and he
has been involved in community activities for many years. Marco has held the
Microsoft MVP Award since 2016. Discover more at marcoarena.com⁵.

Konrad Jaśkowiec - C++ expert with almost 8 years of professional experience
at the time with prime focus on system design and optimization. You can find
his profile at Linkedin⁶.

³http://www.advancedinstaller.com
⁴http://isocpp.org/
⁵http://marcoarena.com/
⁶https://www.linkedin.com/in/konrad-ja%C5%9Bkowiec-84585159/

http://www.advancedinstaller.com/
http://isocpp.org/
http://marcoarena.com/
https://www.linkedin.com/in/konrad-ja%C5%9Bkowiec-84585159/
http://www.advancedinstaller.com/
http://isocpp.org/
http://marcoarena.com/
https://www.linkedin.com/in/konrad-ja%C5%9Bkowiec-84585159/

Technical Reviewer v

Daniel Khoshnoudirad - a passionate C++ Developer. Daniel graduated in 2016
with the PhD in Computer Science from Université Paris-Est, under the direction
of Pr. Hugues Talbot. Daniel also holds a Master’s degree in Mathematical
Engineering from Université de Bordeaux. He is a proud reviewer of the French
version of Effective Modern C++ by Dr Scott Meyers. He has experience in Qt,
Python, Fortran,Machine Learning and teaching. Daniel is also interested in Java,
Rust, JavaScript, HTML, networks, and many other technologies. You can follow
him @DanielKhoshnoud⁷

Rob Stewart - started programming in high school on a Commodore VIC-20. He
taught himself BASIC, 6502 machine code, Forth, C, C++, JavaScript, Python, and
other programming languages. (He also took a course on Fortran in college.) He
has been using C++ for 30 years for things like cockpit simulators, commercial
real estate tools, web browsing accelerators, computer desktop alternatives,
financial trading, network communications, and more, while working for the US
Air Force, startups, and Susquehanna International Group. He actually writes
documentation (!) for his own libraries and has helped with the documentation
for numerous Boost libraries. He has helped with several well-known C++ books.
He has taught C++ classes and mentored many developers. He was a founding
member of the Boost Steering Committee. He and his wife of 33 years have nine
children.

⁷https://twitter.com/DanielKhoshnoud

https://twitter.com/DanielKhoshnoud
https://twitter.com/DanielKhoshnoud

Revision History
• 10th August 2018 - the first release!

• 31st August 2018 - new sections: nested namespaces,using statement in pack expansion

– An example of std::visit with multiple variants and about overloaded
– Improved “Code Contracts With nodiscard and “Refactoring with optional”

• 28th September 2018, New chapters String Conversions and Searchers

– Added notes about gcd, lcm, clamp in the Other STL Changes Chapter

• 3rd October 2018 - hot fixes and clarifications in String Conversions

• 4th November 2018 - Parallel Algorithms was rewritten and is 3X larger, new examples
and descriptions

• 21st December 2018 - New chapter - How to Parallelise CSV Reader

• 18th January 2019 - the book is 99% ready!

– Filesystem chapter was rewritten and is 5X larger, new examples and descriptions

• 1st February 2019 - additions to Filesystem

• 15th February 2019 - updates in “Structured Binding” and “if constexpr”

• 1st March 2019 - the book is 100% ready!

– Added scoped_lock, std::iterator deprecation and polymorphic memory
allocator sections

• 21st June 2019 - book format, foreword by Herb Sutter, smaller updates

– Changes book format from 21.6 x 27.9cm (US Letter) into 17.8 x 23.1cm (Technical)
– common code style, add code titles in most of the places
– updated Constexpr Lambda, added capturing [*this]

• 9th August 2019 - wording, layout for print version, extracted deprecated Lib features
chapter, notes for GCC 9.1

• 7th September 2019 - print version ready! improved section about dynamic memory
allocation.

Foreword
If you’ve ever asked “what’s in C++17 and what does it mean for me and my code?” — and
I hope you have — then this book is for you.

Now that the C++ standard is being released regularly every three years, one of the
challenges we have as a community is learning and absorbing the new features that are being
regularly added to the standard language and library. That means not only knowing what
those features are, but also how to use them effectively to solve problems. Bartlomiej Filipek
does a great job of this by not just listing the features, but explaining each of them with
examples, including a whole Part 3 of the book about how to apply key new C++17 features
to modernize and improve existing code — everything from upgrading enable_if to the
new if constexpr, to refactoring code by applying the new optional and variant
vocabulary types, to writing parallel code using the new standard parallel algorithms. In
each case, the result is cleaner code that’s often also significantly faster too.

The point of new features isn’t just to know about them for their own sake, but to know
about how they can let us express our intent more clearly and directly than ever in our
C++ code. That ability to directly “say what we mean” to express our intent, or to express
“what” we want to achieve rather than sometimes-tortuous details of “how” to achieve it
through indirect mechanisms, is the primary thing that determines how clean and writable
and readable — and correct — our code will be. For C++ programmers working on real-world
projects using reasonably up-to-date C++ compilers, C++17 is where it’s at in the industry
today for writing robust production code. Knowing what’s in C++17 and how to use it well is
an important tool that will elevate your day-to-day coding, and more likely than not reduce
your day-to-day maintenance and debugging chores.

If you’re one of the many who have enjoyed Barteks’s blog (bfilipek.com, frequently cited
at isocpp.org), you’ll certainly also enjoy this entertaining and informative book. And if you
haven’t enjoyed his blog yet, you should check it out too… and then enjoy the book.

Herb Sutter , herbsutter.com

https://herbsutter.com/

Preface
After the long-awaited C++11, the C++ Committee has made changes to the standardisation
process, and we can now expect a new language standard every three years. In 2014 the ISO
Committee delivered C++14. Now it’s time for C++17, which was published at the end of
2017. As I am writing these words, in the middle of 2019, the C++20 draft is feature ready
and prepared for the final review process.

As you can see, the language and the Standard Library evolves quite fast! Since 2011 you’ve
got a set of new library modules and language features every three years. Thus, staying up
to date with the whole state of the language has become quite a challenging task, and that
is why this book will help you.

This book describes all the significant changes in C++17 and will give you the essential
knowledge to stay current with the latest features. What’s more, each section contains lots of
practical examples and also compiler-specific notes to provide you with a more comfortable
start.

It’s a pleasure for me to write about new and exciting things in the language and I hope
you’ll have fun discovering C++17 as well!

Best regards,

Bartek

About the Book
C++11 was a major update for the language. With all the modern features like lambdas,
constexpr, variadic templates, threading, range-based for loops, smart pointers and many
more powerful elements, it signalled enormous progress for the language. Even now, in 2019,
many teams struggle to modernise their projects to leverage all the modern features. Later
there was a minor update - C++14, which improved some things from the previous Standard
and added a few smaller elements.

Although C++17 is not as big as C++11, it’s larger than C++14 and brings many exciting
additions and improvements. And this book will guide through all of them!

The book brings you exclusive content about C++17 and draws from the experience of many
articles that have appeared at bfilipek.com. The material was rewritten from the ground-up
and updated with the latest information. All of that equipped with lots of new examples and
practical tips. Additionally, the book provides insight into the current implementation status,
compiler support, performance issues and other relevant knowledge to boost your current
projects.

Who This Book is For

This book is intended for all C++ developers who have at least essential experience with
C++11/14.

The principal aim of the book is to equip you with practical knowledge about C++17. After
reading the book, you’ll be able to move past C++11 and leverage the latest C++ techniques
in your day to day tasks.

Please don’t worry if you’re not an expert in C++11/14. This book provides the necessary
background, so you’ll get the information in a proper context.

https://www.bfilipek.com/

About the Book x

Overall Structure of the Book

C++17 brings a lot of changes to the language and the Standard Library. In this book, all the
new features were categorised into a few segments, so that they are easier to comprehend.

As a result, the book has the following sections:

• Part One - C++17 Language Features

– Fixes and Deprecation
– Language Clarification
– General Language Features
– Templates
– Attributes

• Part Two - C++17 The Standard Library

– std::optional
– std::variant
– std::any
– std::string_view
– String Operations
– Filesystem
– Parallel STL
– Other Changes

• Part Three - More Examples and Use Cases

– Refactoring with std::optional and std::variant
– Enforcing Code Contracts With [[nodiscard]]
– Replacing enable_if with ifconstexpr
– How to Parallelise CSV Reader

• Appendix A - Compiler Support

• Appendix B - Resources and Links

Part One, about the language features, is shorter and will give you a quick run over the most
significant changes. You can read it in any order you like.

About the Book xi

Part Two, describes a set of new types and utilities that were added to the Standard Library.
The helper types create a potential new vocabulary for C++ code: like when you use
optional, any, variant or string_view. And what’s more, you have new powerful
capabilities, especially in the form of parallel algorithms and the standard filesystem. A lot
of examples in this part will use many other features from C++17.

Part Three brings together all of the changes in the language and shows examples where a
lot of new features are used alongside. You’ll see discussions about refactoring, simplifying
code with new template techniques or working with parallel STL and the filesystem. While
the first and the second part can also be used as a reference for individual changes, the third
part shows more of larger C++17 patterns that join many features.

A considerable advantage of the book is the fact that with each new feature you’ll get
information about the compiler support and the current implementation status. That way
you’ll be able to check if a particular version of the most popular compilers (MSVC, GCC
or Clang) implements it or not. The book also gives practical hints on how to apply new
techniques in your current codebase.

Reader Feedback

If you spot an error, a typo, a grammar mistake… or anything else (especially logical
issues!) that should be corrected, then please send your feedback to bartlomiej.filipek AT
bfilipek.com.

You can also use those two places to leave your feedback:

• Leanpub Book’s Feedback Page⁸

• GoodReads Book’s Page⁹

Example Code

You can find the ZIP package with all the example on the book’s website:

cppindetail.com/data/cpp17indetail.zip¹⁰

The same ZIP package should also be attached with the ebook.

⁸https://leanpub.com/cpp17indetail/feedback
⁹https://www.goodreads.com/book/show/41447221-c-17-in-detail
¹⁰https://www.cppindetail.com/data/cpp17indetail.zip

https://leanpub.com/cpp17indetail/feedback
https://www.goodreads.com/book/show/41447221-c-17-in-detail
https://www.cppindetail.com/data/cpp17indetail.zip
https://leanpub.com/cpp17indetail/feedback
https://www.goodreads.com/book/show/41447221-c-17-in-detail
https://www.cppindetail.com/data/cpp17indetail.zip

About the Book xii

Many examples in the book are relatively short. You can copy and paste the lines into your
favourite compiler/IDE and then run the code snippet.

Code License

The code for the book is available under the Creative Commons License.

Compiling

To use C++17 make sure you provide a proper flag for your compiler:

• for GCC (at least 7.1 or 8.0 or newer): use -std=c++17 or -std=c++2a

• for Clang (at least 4.0 or newer): use -std=c++17 or -std=c++2a

• for MSVC (Visual Studio 2017 or newer): use /std:c++17 or /std:c++latest in
project options -> C/C++ -> Language -> C++ Language Standard

Formatting

The code is presented in a monospace font, similarly to the following example:

For longer examples with a corresponding cpp file:

ChapterABC/example_one.cpp

#include <iostream>

int main() {
std::string text = "Hello World";
std::cout << text << '\n';

}

Or shorter snippets (without a corresponding file):

int foo() {
return std::clamp(100, 1000, 1001);

}

About the Book xiii

Snippets of longer programs were usually shortened to present only the core mechanics. In
that case, you’ll find their full version in the separate ZIP package that comes with the book.

The corresponding file for the code snippet is mentioned in the title above the frame:

Chapter ABC/example_one.cpp

Usually, source code uses full type nameswith namespaces, likestd::string, std::clamp,
std::pmr. However, to make code compact and present it nicely on a book page the
namespaces sometimes might be removed, so they don’t use space. Also, to avoid line
wrapping, longer lines might be manually split into two. In some case, the code in the book
might skip include statements.

Syntax Highlighting Limitations

The current version of the book might show some Pygments syntax highlighting limitations.

For example:

• if constexpr - Link to Pygments issue: #1432 - C++ if constexpr not recognized
(C++17)¹¹

• The first method of a class is not highlighted - #1084 - First method of class not
highlighted in C++¹²

• Template method is not highlighted #1434 - C++ lexer doesn’t recognize function if
return type is templated¹³

• Modern C++ attributes are sometimes not recognised properly

Other issues for C++ and Pygments: issues C++¹⁴.

Online Compilers

Instead of creating local projects to play with the code samples, you can also leverage online
compilers. They offer a basic text editor and usually allow you to compile only one source
file (the code that you edit). They are convenient if you want to play with code samples and
check the results using various compilers.

For example, many of the code samples for this book were created using Coliru Online and
Wandbox compilers and then adapted for the book.

¹¹https://bitbucket.org/birkenfeld/pygments-main/issues/1432/c-if-constexpr-not-recognized-c-17
¹²https://bitbucket.org/birkenfeld/pygments-main/issues/1084/first-method-of-class-not-highlighted-in-c
¹³https://bitbucket.org/birkenfeld/pygments-main/issues/1434/c-lexer-doesnt-recognize-function-if
¹⁴https://bitbucket.org/birkenfeld/pygments-main/issues?q=c%2B%2B

https://bitbucket.org/birkenfeld/pygments-main/issues/1432/c-if-constexpr-not-recognized-c-17
https://bitbucket.org/birkenfeld/pygments-main/issues/1432/c-if-constexpr-not-recognized-c-17
https://bitbucket.org/birkenfeld/pygments-main/issues/1084/first-method-of-class-not-highlighted-in-c
https://bitbucket.org/birkenfeld/pygments-main/issues/1084/first-method-of-class-not-highlighted-in-c
https://bitbucket.org/birkenfeld/pygments-main/issues/1434/c-lexer-doesnt-recognize-function-if
https://bitbucket.org/birkenfeld/pygments-main/issues/1434/c-lexer-doesnt-recognize-function-if
https://bitbucket.org/birkenfeld/pygments-main/issues?q=c%2B%2B
https://bitbucket.org/birkenfeld/pygments-main/issues/1432/c-if-constexpr-not-recognized-c-17
https://bitbucket.org/birkenfeld/pygments-main/issues/1084/first-method-of-class-not-highlighted-in-c
https://bitbucket.org/birkenfeld/pygments-main/issues/1434/c-lexer-doesnt-recognize-function-if
https://bitbucket.org/birkenfeld/pygments-main/issues?q=c%2B%2B

About the Book xiv

Here’s a list of some of the useful services:

• Coliru¹⁵ - uses GCC 8.2.0 (as of July 2019), offers link sharing and a basic text editor,
it’s simple but very effective.

• Wandbox¹⁶ - offers a lot of compilers, including most Clang and GCC versions, can
use boost libraries; offers link sharing and multiple file compilation.

• Compiler Explorer¹⁷ - offers many compilers, shows compiler output, can execute the
code.

• CppBench¹⁸ - runs simple C++ performance tests (using google benchmark library).

• C++ Insights¹⁹ - a Clang-based tool for source to source transformation. It shows
how the compiler sees the code, for example by expanding lambdas, auto, structured
bindings or range-based for loops.

There’s also a helpful list of online compilers gathered on this website: List of Online C++
Compilers²⁰.

¹⁵http://coliru.stacked-crooked.com/
¹⁶https://wandbox.org/
¹⁷https://gcc.godbolt.org/
¹⁸http://quick-bench.com/
¹⁹https://cppinsights.io/
²⁰https://arnemertz.github.io/online-compilers/

http://coliru.stacked-crooked.com/
https://wandbox.org/
https://gcc.godbolt.org/
http://quick-bench.com/
https://cppinsights.io/
https://arnemertz.github.io/online-compilers/
https://arnemertz.github.io/online-compilers/
http://coliru.stacked-crooked.com/
https://wandbox.org/
https://gcc.godbolt.org/
http://quick-bench.com/
https://cppinsights.io/
https://arnemertz.github.io/online-compilers/

Part 1 - Language Features

We can say that C++ comes in two parts: The Language and The Standard Library. The first
element, The Language, focuses on the expressive code and conscience syntax. The second
element gives you tools, utilities and algorithms. For example, in C++11, we got lambdas that
simplified writing short function objects. C++14 allowed ‘auto‘ type deduction for function
return types which also shorten code and simplified templated code.

C++17, as a major update to the Standard, brings many amazing language elements that
generally, make the language clearer and more straightforward. For instance, you can reduce
the need to use enable_if and tag dispatching techniques by leveraging if constexpr.
You can treat tuples like first class language citizens thanks to structured bindings, rely
on and understand expression evaluation order, write code that naturally uses copy-elision
mechanism, and much, much more!

In this part you’ll learn:

• What was removed from the language and what is deprecated

• How the language is more precise: for example, thanks to expression evaluation order
guarantees

• What are new features of templates: like if constexpr or fold expressions

• What are the new standard attributes

• How you can write cleaner and more expressive code thanks to structured binding,
inline variables, compile-time if or template argument deduction for classes

1. Quick Start
To make you more curious about the new Standard, below, there are a few code samples that
present combined language features.

Don’t worry if you find the examples confusing or too complicated. All the new features are
individually explained in depth in the coming chapters.

Working With Maps

Part I/demo_map.cpp

1 #include <iostream>
2 #include <map>
3
4 int main() {
5 std::map<std::string, int> mapUsersAge { { "Alex", 45 }, { "John", 25 } };
6
7 std::map mapCopy{mapUsersAge};
8
9 if (auto [iter, wasAdded] = mapCopy.insert_or_assign("John", 26); !wasAdded)

10 std::cout << iter->first << " reassigned...\n";
11
12 for (const auto& [key, value] : mapCopy)
13 std::cout << key << ", " << value << '\n';
14 }

The code will output:

John reassigned...
Alex, 45
John, 26

The above example uses the following features:

• Line 7: Template Argument Deduction for Class Templates - mapCopy type is deduced
from the type of mapUsersAge. No need to declare std::map<std::string,
int> mapCopy{...}.

Quick Start 3

• Line 9: New inserting member function for maps - insert_or_assign.

• Line 9: Structured Bindings - captures a returned pair from insert_or_assign into
separate names.

• Line 9: init if statement - iter and wasAdded are visible only in the scope of the
surrounding if statement.

• Line 12: Structured Bindings inside a range-based for loop - we can iterate using key
and value rather than pair.first and pair.second.

Debug Printing

Part I/demo_print.cpp

1 #include <iostream>
2
3 template<typename T> void linePrinter(const T& x) {
4 if constexpr (std::is_integral_v<T>)
5 std::cout << "num: " << x << '\n';
6 else if constexpr (std::is_floating_point_v<T>) {
7 const auto frac = x - static_cast<long>(x);
8 std::cout << "flt: " << x << ", frac " << frac << '\n';
9 }

10 else if constexpr(std::is_pointer_v<T>) {
11 std::cout << "ptr, ";
12 linePrinter(*x);
13 }
14 else
15 std::cout << x << '\n';
16 }
17
18 template<typename ... Args> void printWithInfo(Args ... args) {
19 (linePrinter(args), ...); // fold expression over the comma operator
20 }
21
22 int main () {
23 int i = 10;
24 float f = 2.56f;
25 printWithInfo(&i, &f, 30);
26 }

Quick Start 4

The code will output:

ptr, num: 10
ptr, flt: 2.56, frac 0.56
num: 30

Here you can see the following features:

• Line 4, 6, 10: if constexpr - to discard code at compile-time, used to match the
template parameter.

• Line 4, 6, 10: _v variable templates for type traits - no need to write std::trait_-
name<T>::value.

• Line 19: Fold Expressions inside printWithInfo. This feature simplifies variadic
templates. In the example, we invoke linePrinter() over all input arguments.

Let’s Start!

The code you’ve seen so far is just the tip of the iceberg! Continue reading to see much
more: fixes in the language, clarifications, removed things (like auto_ptr), and of course
the new stuff: constexpr lambda, if constexpr, fold expressions, structured bindings,
template<auto>, inline variables, template argument deduction for class templates and
much more!

2. Removed or Fixed Language
Features

The C++17 Standard contains over 1600 pages, growing over 200 pages compared to C++14¹!
Fortunately, the language specification was cleaned up in a few places, and some old or
potentially harmful features could be cleared out. This short chapter lists several language
elements that were removed or fixed. See the Removed And Deprecated Library Features
Chapter for a list of changes in the Standard Library.

In this chapter, you’ll learn:

• What was removed from the language like the register keyword or operator++
for bool

• What was fixed, notably the auto type deduction with brace initialisation.

• Other improvements like for static_assert and range-based for loops.

¹For example the draft from July 2017 N4687 compared to C++14 draft N4140

https://wg21.link/n4687
https://wg21.link/n4140

Removed or Fixed Language Features 6

Removed Elements

One of the core concepts behind each iteration of C++ is its compatibility with previous
versions. We’d like to have new things in the language, but at the same time, our old projects
should still compile. However, sometimes, there’s a chance to remove parts that are wrong
or rarely used.

This section briefly explains what was removed from the Standard.

Removing the register Keyword

The register keyword was deprecated in 2011 (C++11), and it has had no meaning since
then. It was removed in C++17. The keyword is reserved and might be repurposed in future
revisions of the Standard (for example auto keyword was reused and now is an entirely
new and powerful feature).

If you use register to declare a variable:

register int a;

You might get the following warning (GCC8.1 below)

warning: ISO C++17 does not allow 'register' storage class specifier

or error in Clang (Clang 7.0)

error: ISO C++17 does not allow 'register' storage class specifier

Extra Info
The change was proposed in: P0001R1².

²https://wg21.link/p0001r1

https://wg21.link/p0001r1
https://wg21.link/p0001r1

Removed or Fixed Language Features 7

Removing Deprecated operator++(bool)

The increment operator for bool has been already deprecated for a very long time! The
committee recommended against its use back in 1998 (C++98), but they only now finally
agreed to remove it from the language. Note that operator--was never enabled for bool.

If you try to write the following code:

bool b;
b++;

You should get a similar error like this from GCC (GCC 8.1):

error: use of an operand of type 'bool' in 'operator++' is forbidden in C++17

Extra Info
The change was proposed in: P0002R1³.

Removing Deprecated Exception Specifications

In C++17, exception specification will be part of the type system (as discussed in the next
chapter about Language Clarification). However, the standard contains old and deprecated
exception specification that appeared to be impractical and unused.

For example:

void fooThrowsInt(int a) throw(int) {
printf_s("can throw ints\n");
if (a == 0)

throw 1;
}

Pay special attention to that throw(int) part.

The above code has been deprecated since C++11. The only practical exception declaration
is throw() which means - this code won’t throw anything. Since C++11 it’s been advised
to use noexcept.

³https://wg21.link/p0002r1

https://wg21.link/p0002r1
https://wg21.link/p0002r1

Removed or Fixed Language Features 8

For example in clang 4.0 you’ll get the following error:

error: ISO C++1z does not allow dynamic exception specifications
[-Wdynamic-exception-spec] note: use 'noexcept(false)' instead

Extra Info
The change was proposed in: P0003R5⁴.

Removing Trigraphs

Trigraphs are special character sequences that could be used when a system doesn’t support
7-bit ASCII (like ISO 646). For example ??= generated #, ??- produced∼. (All of C++’s basic
source character set fits in 7-bit ASCII). Today, trigraphs are rarely used, and by removing
them from the translation phase, the compilation process can be more straightforward. See
a table below with all the trighraps that were declared until C++17:

Trigraph Replacement
??= #
??([
??< {
??/ \
??)]
??> }
??’ ˆ
??! |
??- ∼

Extra Info
The change was proposed in: N4086⁵.

⁴http://wg21.link/p0003r5
⁵https://wg21.link/n4086

http://wg21.link/p0003r5
https://wg21.link/n4086
http://wg21.link/p0003r5
https://wg21.link/n4086

Removed or Fixed Language Features 9

Fixes

We can argue what is a fix in a language standard and what is not. Below there are three
things that might look like a fix for something that was missing or not working in the
previous rules.

New auto rules for direct-list-initialisation

Since C++11 there’s been a strange problem where:

auto x { 1 };

Is deduced as std::initializer_list<int>. Such behaviour is not intuitive as in most
cases you should expect it to work like int x { 1 };.

Brace initialisation is the preferred pattern in modern C++, but such exceptions make the
feature weaker.

With the new Standard, we can fix this so that it will deduce int.

To make this happen, we need to understand two ways of initialisation - copy and direct:

// foo() is a function that returns some Type by value
auto x = foo(); // copy-initialisation
auto x{foo()}; // direct-initialisation, initializes an

// initializer_list (until C++17)

int x = foo(); // copy-initialisation
int x{foo()}; // direct-initialisation

For the direct initialisation, C++17 introduces new rules:

• For a braced-init-list with a single element, auto deduction will deduce from that entry.

• For a braced-init-list with more than one element, auto deduction will be ill-formed.

Removed or Fixed Language Features 10

For example:

auto x1 = { 1, 2 }; // decltype(x1) is std::initializer_list<int>
auto x2 = { 1, 2.0 }; // error: cannot deduce element type
auto x3{ 1, 2 }; // error: not a single element
auto x4 = { 3 }; // decltype(x4) is std::initializer_list<int>
auto x5{ 3 }; // decltype(x5) is int

Extra Info
The change was proposed in: N3922⁶ and N3681⁷. The compilers fixed this issue
quite early, as the improvement is available in GCC 5.0 (Mid 2015), Clang 3.8
(Early 2016) and MSVC 2015 (Mid 2015). Much earlier than C++17 was approved.

static_assertWith no Message

This feature adds a new overload for static_assert. It enables you to have the condition
inside static_assert without passing the message.

It will be compatible with other asserts like BOOST_STATIC_ASSERT. Programmers with
boost experience will now have no trouble switching to C++17 static_assert.

static_assert(std::is_arithmetic_v<T>, "T must be arithmetic");
static_assert(std::is_arithmetic_v<T>); // no message needed since C++17

In many cases, the condition you check is expressive enough and doesn’t need to be
mentioned in the message string.

Extra Info
The change was proposed in: N3928⁸.

⁶http://wg21.link/n3922
⁷http://wg21.link/n3681
⁸https://wg21.link/n3928

http://wg21.link/n3922
http://wg21.link/n3681
https://wg21.link/n3928
http://wg21.link/n3922
http://wg21.link/n3681
https://wg21.link/n3928

Removed or Fixed Language Features 11

Different begin and end Types in Range-Based For Loop

C++11 added range-based for loops:

for (for-range-declaration : for-range-initializer)
statement;

According to the C++14 standard that loop is equivalent to the following code:

auto && __range = for-range-initializer;
for (auto __begin = begin-expr, __end = end-expr;

__begin != __end;
++__begin) {

for-range-declaration = *__begin;
statement;

}

As you can see, __begin and __end have the same type. This works nicely but is not
scalable enough. For example, you might want to iterate until some sentinel value with a
different type than the start of the range.

In C++17 range-based for loops are defined as equivalent to the following code:

auto && __range = for-range-initializer;
auto __begin = begin-expr;
auto __end = end-expr;
for (; __begin != __end; ++__begin) {

for-range-declaration = *__begin;
statement;

}

The types of __begin and __end might be different; only the comparison operator is
required. That change has no effect on existing for loops but it provides more options for
libraries. For example, this little change allows Range TS (and Ranges in C++20) to work
with the range-based for loop.

Extra Info
The change was proposed in: P0184R0⁹.

⁹https://wg21.link/p0184r0

https://wg21.link/p0184r0
https://wg21.link/p0184r0

Removed or Fixed Language Features 12

Compiler Support

Feature GCC Clang MSVC
Removing register keyword 7.0 3.8 VS 2017 15.3
Remove Deprecated operator++(bool) 7.0 3.8 VS 2017 15.3
Removing Deprecated Exception Specifications 7.0 4.0 VS 2017 15.5
Removing trigraphs 5.1 3.5 VS 2010
New auto rules for direct-list-initialisation 5.0 3.8 VS 2015
static_assert with no message 6.0 2.5 VS 2017
Different begin and end types in range-based for 6.0 3.6 VS 2017

3. Language Clarification
C++ is a challenging language to learn and fully understand, and some parts might be
confusing for programmers. One of the reasons for the lack of clarity might be the freedom
given to the implementation/compiler. For example, some parts of the language are left vague
to allow for more aggressive optimisations. Other difficulties can arise from the requirement
to be compatible with C. C++17 addresses some of the most common “holes” in the language.

In this chapter, you’ll learn:

• What Evaluation Order is and why it might generate unexpected results

• Copy elision guarantees in the language

• Exceptions specifications as part of the type system

• Memory allocations for (over)aligned data

Language Clarification 14

Stricter Expression Evaluation Order

Until C++17 the language hasn’t specified any evaluation order for function parameters.
Period.

For example, that’s why in C++14 make_unique is not just syntactic sugar, but it guarantees
memory safety:

Consider the following examples:

foo(unique_ptr<T>(new T), otherFunction()); // first case

And with explicit new.

foo(make_unique<T>(), otherFunction()); // second case

Considering the first case, in C++14, we only know that new T is guaranteed to happen
before the unique_ptr construction, but that’s all. For example, new T might be called
first, then otherFunction(), and then the constructor unique_ptr is invoked.

For such evaluation order, when otherFunction() throws, then new T generates a leak
(as the unique pointer is not yet created).

When you use make_unique, as in the second case, the leak is not possible as you wrap
memory allocation and creation of unique pointer in one call.

C++17 addresses the issue shown in the first case. Now, the evaluation order of function ar-
guments is “practical” and predictable. In our example, the compiler won’t be allowed to call
otherFunction() before the expression unique_ptr<T>(new T) is fully evaluated.

The Changes

In an expression:

f(a, b, c);

The order of evaluation of a, b, c is still unspecified, but any parameter is fully evaluated
before the next one is started. It’s especially crucial for complex expressions like this:

Language Clarification 15

f(a(x), b, c(y));

If the compiler chooses to evaluate a(x) first, then it must evaluate x before processing b,
c(y) or y.

This guarantee fixes the problem with make_unique vs unique_ptr<T>(new T()). A
given function argument must be fully evaluated before other arguments are evaluated.

Consider the following case:

Chapter Clarification/chain_order.cpp

#include <iostream>

class Query {
public:

Query& addInt(int i) {
std::cout << "addInt: " << i << '\n';
return *this;

}

Query& addFloat(float f) {
std::cout << "addFloat: " << f << '\n';
return *this;

}
};

float computeFloat() {
std::cout << "computing float... \n";
return 10.1f;

}

float computeInt() {
std::cout << "computing int... \n";
return 8;

}

int main() {
Query q;
q.addFloat(computeFloat()).addInt(computeInt());

}

You probably expect that using C++14 computeInt() happens after addFloat. Unfortu-
nately, that might not be the case. For instance here’s an output from GCC 4.7.3:

Language Clarification 16

computing int...
computing float...
addFloat: 10.1
addInt: 8

The chaining of functions is already specified to work from left to right (thus addInt()
happens after addFloat()), but the order of evaluation of the inner expressions can differ.
To be precise:

The expressions are indeterminately sequenced with respect to each other.

With C++17, function chaining will work as expected when they contain inner expressions,
i.e., they are evaluated from left to right:

In the expression:

a(expA).b(expB).c(expC)

expA is evaluated before calling b().

Compiling the previous example with a conformant C++17 compiler, yields the following
result:

computing float...
addFloat: 10.1
computing int...
addInt: 8

Another result of this change is that when using operator overloading, the order of evaluation
is determined by the order associated with the corresponding built-in operator.

For example:

std::cout << a() << b() << c();

The above code contains operator overloading and expands to the following function
notation:

Language Clarification 17

operator<<(operator<<(operator<<(std::cout, a()), b()), c());

Before C++17, a(), b() and c() could be evaluated in any order. Now, in C++17, a() will
be evaluated first, then b() and then c().

Here are more rules described in the paper P0145R3¹:

the following expressions are evaluated in the order a, then b:

1. a.b
2. a->b
3. a->*b
4. a(b1, b2, b3) // b1, b2, b3 - in any order
5. b @= a // '@' means any operator
6. a[b]
7. a << b
8. a >> b

If you’re not sure how your code might be evaluated, then it’s better to make it simple and
split it into several clear statements. You can find some guides in the Core C++ Guidelines,
for example ES.44² and ES.44³.

Extra Info
The change was proposed in: P0145R3⁴.

¹https://wg21.link/p0145r3
²http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-order
³http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es44-dont-depend-on-order-of-evaluation-of-function-

arguments
⁴https://wg21.link/p0145r3

https://wg21.link/p0145r3
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es44-dont-depend-on-order-of-evaluation-of-function-arguments
https://wg21.link/p0145r3
https://wg21.link/p0145r3
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es44-dont-depend-on-order-of-evaluation-of-function-arguments
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es44-dont-depend-on-order-of-evaluation-of-function-arguments
https://wg21.link/p0145r3

Language Clarification 18

Guaranteed Copy Elision

Copy Elision is a common optimisation that avoids creating unnecessary temporary objects.

For example:

Chapter Clarification/copy_elision.cpp

#include <iostream>

struct Test {
Test() { std::cout << "Test::Test\n"; }
Test(const Test&) { std::cout << "Test(const Test&)\n"; }
Test(Test&&) { std::cout << "Test(Test&&)\n"; }
~Test() { std::cout << "~Test\n"; }

};

Test Create() {
return Test();

}

int main() {
auto n = Create();

}

In the above call, you might assume a temporary copy is used - to store the return value
of Create. In C++14, most compilers recognise that the temporary object can be optimised
easily, and they can create n “directly” from the call of Create(). So you’ll probably see
the following output:

Test::Test // create n
~Test // destroy n when main finishes

In its basic form, the copy elision optimisation is called Return Value Optimisation (RVO).

As an experiment, in GCC you can add a compiler flag -fno-elide-constructors and
use -std=c++14 (or some earlier language standard). In that case you’ll see a different
output:

Language Clarification 19

// compiled as "g++ CopyElision.cpp -std=c++14 -fno-elide-constructors"
Test::Test
Test(Test&&)
~Test
Test(Test&&)
~Test
~Test

In this case, we have two extra copies that the compiler uses to pass the return value into n;

Compilers are even smarter, and they can elide in cases when you return a named object -
it’s called Named Return Value Optimisation - NRVO:

Test Create() {
Test t;
// several instruction to initialize 't'...
return t;

}

auto n = Create(); // temporary will be usually elided

Currently, the Standard allows eliding in cases like:

• When a temporary object is used to initialise another object (including the object
returned by a function, or the exception object created by a throw-expression)

• When a variable that is about to go out of scope is returned or thrown

• When an exception is caught by value

However, it’s up to the compiler/implementation to elide or not. In practice, all the
constructors’ definitions are required.

With C++17, we get clear rules on when elision has to happen, and thus constructors
might be entirely omitted. In fact, instead of eliding the copies the compiler defers the
“materialisation” of an object.

Why might this be useful?

• To allow returning objects that are not movable/copyable - because we could now skip
copy/move constructors

• To improve code portability since every conformant compiler supports the same rule

Language Clarification 20

• To support the “return by value” pattern rather than using output arguments

• To improve performance

Below you can see an example with a non-movable/non-copyable type, based on P0135R0:

Chapter Clarification/copy_elision_non_moveable.cpp

struct NonMoveable {
NonMoveable(int x) : v(x) { }
NonMoveable(const NonMoveable&) = delete;
NonMoveable(NonMoveable&&) = delete;

std::array<int, 1024> arr;
int v;

};

NonMoveable make(int val) {
if (val > 0)

return NonMoveable(val);

return NonMoveable(-val);
}

int main() {
auto largeNonMoveableObj = make(90); // construct the object
return largeNonMoveableObj.v;

}

The above code wouldn’t compile under C++14 as it lacks copy and move constructors. But
with C++17 the constructors are not required - because the object largeNonMovableObj
will be constructed in place.

Please notice that you can also use many return statements in one function and copy elision
will still work.

Moreover, it’s important to remember, that in C++17 copy elision works only for unnamed
temporary objects, and Named RVO is not mandatory.

To understand how mandatory copy elision/deferred temporary materialisation is defined
in the C++ Standard, we must understand value categories which are covered in the next
section.

Language Clarification 21

Updated Value Categories

In C++98/03, we had two basic categories of expressions:

• lvalue - an expression that can appear on the left-hand side of an assignment

• rvalue - an expression that can appear only on the right-hand side of an assignment

C++11 extended this taxonomy (due to the move semantics), with three more categories:

• xvalue - an eXpiring lvalue
• prvalue - a pure rvalue, an xvalue, a temporary object or subobject, or a value
that is not associated with an object.

• glvalue - a generalised lvalue, which is an lvalue or an xvalue

Examples:

std::string str;
str; // lvalue
42; // prvalue
str + "10" // prvalue
std::move(str); // xvalue

Here’s a diagram that shows how the categories are related:

Value Categories

Language Clarification 22

There are three core categories (below with colloquial “definitions”):

• lvalue - an expression that has an identity, and which we can take the address of

• xvalue - “eXpiring lvalue” - an object that we can move from, which we can reuse.
Usually, its lifetime ends soon

• prvalue - pure rvalue - something without a name, which we cannot take the
address of, we can move from such expression

To support Copy Elision, the authors of the proposal provided the updated definitions of
glvalue and prvalue. From the Standard⁵:

• glvalue - A glvalue is an expression whose evaluation computes the location of
an object, bit-field, or function

• prvalue - A prvalue is an expression whose evaluation initialises an object, bit-
field, or operand of an operator, as specified by the context in which it appears

For example:

class X { int a; };
X{10} // this expression is prvalue
X x; // x is lvalue
x.a // it's lvalue (location)

In short: prvalues perform initialisation, glvalues describe locations. The C++17 Stan-
dard specifies that when there’s a prvalue initialising some glvalue, then there’s no need
to create a temporary and we can defer its materialisation.

In C++17 Copy Elision/Deferred Temporary Materialization happens when:

• in initialisation of an object from a prvalue: Type t = T()
• in a function call where the function returns a prvalue - like in our examples.

Extra Info
The change was proposed in: P0135R0⁶(reasoning) - and P0135R1⁷(wording).

⁵https://timsong-cpp.github.io/cppwp/n4659/basic.lval
⁶https://wg21.link/p0135r0
⁷https://wg21.link/p0135r1

https://timsong-cpp.github.io/cppwp/n4659/basic.lval
https://wg21.link/p0135r0
https://wg21.link/p0135r1
https://timsong-cpp.github.io/cppwp/n4659/basic.lval
https://wg21.link/p0135r0
https://wg21.link/p0135r1

Language Clarification 23

Dynamic Memory Allocation for Over-Aligned Data

Embedded environments, kernel, drivers, game development and other areas might require
a non-default alignment for memory allocations. Complying those requirements might
improve the performance or satisfy some hardware interface.

For example, to perform geometric data processing using SIMD⁸ instructions, you might
need 16-byte or 32-byte alignment for a structure that holds 3D coordinates:

struct alignas(32) Vec3d { // alignas is available since C++11
double x, y, z;

};
auto pVectors = new Vec3d[1000];

Vec3d holds double fields, and usually, its natural alignment should be 8 bytes. Now, with
alignas keyword, we change this alignment to 32. This approach allows the compiler to
fit the objects into SIMD registers like AVX (256-bit-wide registers).

Unfortunately, in C++11/14, you have no guarantee how the memory will be aligned
after new[]. Often, you have to use routines like std::aligned_alloc() or MSVC’s
_aligned_malloc() to be sure the alignment is preserved. That’s not ideal as it’s not
working easily with smart pointers and also makes memory management visible in the code.

C++17 fixes that hole by introducing new memory allocation function overloads for new()
and delete() with the align_val_t parameter. Example function signatures below⁹:

void* operator new(size_t, align_val_t);
void operator delete(void*, size_t, align_val_t);

The Standard also defines __STDCPP_DEFAULT_NEW_ALIGNMENT__ macro that specifies
the default alignment for dynamic memory allocations. On common platforms, Clang, GCC
and MSVC specify it as 16 bytes.

Now, in C++17, when you allocate:

auto pVectors = new Vec3d[1000];

⁸Single Instruction, Multiple Data, for example, SSE2, AVX, see https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
⁹See all 22 new() overloads at https://en.cppreference.com/w/cpp/memory/new/operator_new

Language Clarification 24

The alignment for Vec3d is larger than __STDCPP_DEFAULT_NEW_ALIGNMENT__, and
thus the compiler will select the overloads with the align_val_t parameter.

In Clang and GCC you can control the default alignment by using the
fnew-alignment switch (see Clang’s documentation¹⁰). The MSVC compiler
exposes the /Zc:alignedNew¹¹ flag that turns the feature on or off.

We can also provide custom implementation, have a look:

Chapter Clarification/aligned_new.cpp

void* operator new(std::size_t size, std::align_val_t align) {
#if defined(_WIN32) || defined(__CYGWIN__)

auto ptr = _aligned_malloc(size, static_cast<std::size_t>(align));
#else

auto ptr = std::aligned_alloc(static_cast<std::size_t>(align), size);
#endif

if (!ptr) throw std::bad_alloc{};

std::cout << "new: " << size << ", align: "
<< static_cast<std::size_t>(align) << ", ptr: " << ptr << '\n';

return ptr;
}

void operator delete(void* ptr, std::size_t size, std::align_val_t algn) noexcept {
std::cout << "delete: " << size << ", align: "

<< static_cast<std::size_t>(algn) << ", ptr : " << ptr << '\n';
#if defined(_WIN32) || defined(__CYGWIN__)

_aligned_free(ptr);
#else

std::free(ptr);
#endif
}

void operator delete(void* ptr, std::align_val_t algn) noexcept { ... } // hidden

The code uses _aligned_malloc() and _aligned_free() for the Windows version¹².
It’s because the Windows platform uses different allocation mechanisms for over-aligned

¹⁰https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-fnew-alignment
¹¹https://docs.microsoft.com/en-us/cpp/build/reference/zc-alignednew?view=vs-2019
¹²this applies to MSVC, MinGW, Clang on Windows or Cygwin.

https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-fnew-alignment
https://docs.microsoft.com/en-us/cpp/build/reference/zc-alignednew?view=vs-2019
https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-fnew-alignment
https://docs.microsoft.com/en-us/cpp/build/reference/zc-alignednew?view=vs-2019

Language Clarification 25

data, and that’s why std::free() wouldn’t release the memory correctly. On other
platforms that conform with C11 you can try using std::aligned_alloc(), as since
C++17 the Standard is based on the C11 specification. In that context free() can delete the
aligned memory.

The new functionality can significantly improve the code, and you can now hold the aligned
objects in standard containers without writing custom allocators, or custom deleters for
smart pointers.

For example:

Chapter Clarification/aligned_new.cpp

std::vector<Vec3d> vec;
vec.push_back({});
vec.push_back({});
vec.push_back({});
assert(reinterpret_cast<uintptr_t>(vec.data()) % alignof(Vec3d) == 0);

When executed, our replaced allocation functions might log the following output:

new: 32, align: 32, ptr: 000001F866625960
new: 64, align: 32, ptr: 000001F866625680
delete: 32, align: 32, ptr : 000001F866625960
new: 96, align: 32, ptr: 000001F866623EA0
delete: 64, align: 32, ptr : 000001F866625680
delete: 96, align: 32, ptr : 000001F866623EA0

The example allocates memory for a single entry, then deletes it and increases the size for the
vector twice to make space for all three elements. At the end we check the pointer alignment
to be sure it’s aligned to 32 bytes.

You can read more about the experiments with the new functionality at New new() - The
C++17’s Alignment Parameter for Operator new()¹³. This blog post also shows the dangerous
side when you try to ask for a non-standard alignment with placement new.

Extra Info
The change was proposed in: P0035¹⁴.

¹³https://www.bfilipek.com/2019/08/newnew-align.html
¹⁴http://wg21.link/p0035

https://www.bfilipek.com/2019/08/newnew-align.html
https://www.bfilipek.com/2019/08/newnew-align.html
http://wg21.link/p0035
https://www.bfilipek.com/2019/08/newnew-align.html
http://wg21.link/p0035

Language Clarification 26

Exception Specifications in the Type System

Exception Specification for a function didn’t use to belong to the type of the function, but
now it will be part of it. You can now have two function overloads: one with noexcept and
the second without it. See below:

Chapter Clarification/func_except_type.cpp

using TNoexceptVoidFunc = void (*)() noexcept;
void SimpleNoexceptCall(TNoexceptVoidFunc f) { f(); }

using TVoidFunc = void (*)();
void SimpleCall(TVoidFunc f) { f(); }

void fNoexcept() noexcept { }
void fRegular() { }

int main() {
SimpleNoexceptCall(fNoexcept);
//SimpleNoexceptCall(fRegular); // cannot convert

SimpleCall(fNoexcept); // converts to regular function
SimpleCall(fRegular);

}

A pointer to noexcept function can be converted to a pointer to a regular function (this
also works for a pointer to a member function). But it’s not possible the other way around
(from a regular function pointer into a function pointer that is marked with noexcept).

One of the reasons for adding the feature is a chance to optimise the code better. If the
compiler has a guarantee that a function won’t throw, then it can generate faster code.

Also, as described in the previous chapter about Language Fixes, in C++17, the Exception
Specification is cleaned up. Effectively, you can only use the noexcept specifier¹⁵ for
declaring that a function won’t throw.

Extra Info
The change was proposed in: P0012R1¹⁶.

¹⁵http://en.cppreference.com/w/cpp/language/noexcept_spec
¹⁶http://wg21.link/p0012r1

http://en.cppreference.com/w/cpp/language/noexcept_spec
http://wg21.link/p0012r1
http://en.cppreference.com/w/cpp/language/noexcept_spec
http://wg21.link/p0012r1

Language Clarification 27

Compiler Support

Feature GCC Clang MSVC
Stricter expression evaluation order 7.0 4.0 VS 2017
Guaranteed copy elision 7.0 4.0 VS 2017 15.6
Dynamic memory allocation for over-aligned data 7.0 4.0 VS 2017 15.5
Exception specifications part of the type system 7.0 4.0 VS 2017 15.5

4. General Language Features
In this section of the book, we’ll look at widespread improvements to the language that have
the potential to make your code more compact and expressive. A perfect example of such
a general feature is structured binding. Using that feature, you can leverage a comfortable
syntax for tuples (and tuple-like expressions). Something easy in other languages like Python
is now possible with C++17.

In this chapter, you’ll learn:

• Structured bindings/Decomposition declarations

• How to provide Structured Binding interface for your custom classes

• Init-statement for if/switch

• Inline variables and their impact on header-only libraries

• Lambda expressions that might be used in a constexpr context

• How to properly wrap the this pointer in lambda expressions

• Simplified use of nested namespaces

• How to test for header existence with __has_include directive

General Language Features 29

Structured Binding Declarations

Do you often work with tuples or pairs?

If not, then you should probably start looking into those handy types. Tuples enable you to
bundle data ad-hoc with excellent library support instead of creating small custom types. The
language features like structured binding make the code even more expressive and concise.

Consider a function that returns two results in a pair:

std::pair<int, bool> InsertElement(int el) { ... }

You can write:

auto ret = InsertElement(...)

And then refer to ret.first or ret.second. However, referring to values as .first
or .second is also not expressive - you can easily confuse the names, and it’s hard to
read. Alternatively you can leverage std::tie which will unpack the tuple/pair into local
variables:

int index { 0 };
bool flag { false };
std::tie(index, flag) = InsertElement(10);

Such code might be useful when you work with std::set::insert which returns
std::pair:

std::set<int> mySet;
std::set<int>::iterator iter;
bool inserted { false };

std::tie(iter, inserted) = mySet.insert(10);

if (inserted)
std::cout << "Value was inserted\n";

As you see, such a simple pattern - returning several values from a function - requires several
lines of code. Fortunately, C++17 makes it much simpler!

General Language Features 30

With C++17 you can write thw following:

std::set<int> mySet;

auto [iter, inserted] = mySet.insert(10);

Now, instead of pair.first and pair.second, you can use variables with concrete
names. In addition, you have one line instead of three, and the code is easier to read. The
code is also safer as iter and inserted are initialised in the expression.

Such syntax is called a structured binding expression.

The Syntax

The basic syntax for structured bindings is as follows:

auto [a, b, c, ...] = expression;
auto [a, b, c, ...] { expression };
auto [a, b, c, ...] (expression);

The compiler introduces all identifiers from the a, b, c, ... list as names in the
surrounding scope and binds them to sub-objects or elements of the object denoted by
expression.

Behind the scenes, the compiler might generate the following pseudo code:

auto tempTuple = expression;
using a = tempTuple.first;
using b = tempTuple.second;
using c = tempTuple.third;

Conceptually, the expression is copied into a tuple-like object (tempTuple) with member
variables that are exposed through a, b and c. However, the variables a, b and c are not
references; they are aliases (or bindings) to the generated object member variables. The
temporary object has a unique name assigned by the compiler.

General Language Features 31

For example:

std::pair a(0, 1.0f);
auto [x, y] = a;

x binds to int stored in the generated object that is a copy of a. And similarly, y binds to
float.

Modifiers

Several modifiers can be used with structured bindings:

const modifiers:

const auto [a, b, c, ...] = expression;

References:

auto& [a, b, c, ...] = expression;
auto&& [a, b, c, ...] = expression;

For example:

std::pair a(0, 1.0f);
auto& [x, y] = a;
x = 10; // write access
// a.first is now 10

In the example, x binds to the element in the generated object, that is a reference to a.

Now it’s also quite easy to get a reference to a tuple member:

auto& [refA, refB, refC, refD] = myTuple;

You can also add [[attribute]] to structured bindings:

[[maybe_unused]] auto& [a, b, c, ...] = expression;

Structured Bindings or Decomposition Declaration?

You might have seen another name used for this feature: “decomposition dec-
laration”. During the standardisation process, both names were considered, but
“structured bindings” was selected.

General Language Features 32

Structured Binding Limitations

There are several limitations related to structured bindings. They cannot be declared as
static or constexpr and also they cannot be used in lambda captures. For example:

constexpr auto [x, y] = std::pair(0, 0);
// generates:
error: structured binding declaration cannot be 'constexpr'

It was also unclear about the linkage of the bindings. Compilers had a free choice to
implement it (and thus some of themmight allow capturing a structured binding in lambdas).
Fortunately, those limitations might be removed due to C++20 proposal (already accepted):
P1091: Extending structured bindings to be more like variable declarations¹.

Binding

Structured Binding is not only limited to tuples, we have three cases from which we can
bind from:

1. If the initializer is an array:

// works with arrays:
double myArray[3] = { 1.0, 2.0, 3.0 };
auto [a, b, c] = myArray;

In this case, an array is copied into a temporary object, and a, b and c refers to copied
elements from the array.

The number of identifiers must match the number of elements in the array.

2. If the initializer supports std::tuple_size<>, provides get<N>() and also exposes
std::tuple_element functions:

std::pair myPair(0, 1.0f);
auto [a, b] = myPair; // binds myPair.first/second

In the above snippet, we bind to myPair. But this also means that you can provide support
for your classes, assuming you add get<N> interface implementation. See an example in the
later section.

¹https://wg21.link/P1091

https://wg21.link/P1091
https://wg21.link/P1091

General Language Features 33

3. If the initialiser’s type contains only non-static data members:

struct Point {
double x;
double y;

};

Point GetStartPoint() {
return { 0.0, 0.0 };

}

const auto [x, y] = GetStartPoint();

x and y refer to Point::x and Point::y from the Point structure.

The class doesn’t have to be POD, but the number of identifiers must equal to the number of
non-static data members. The members must also be accessible from the given context.

Note: In C++17, initially, you could use structured bindings to bind to class
members as long as they were public. That could be a problem when you wanted
to access such members in a context of friend functions, or even inside a struct
implementation. This issue was recognised quickly as a defect, and it’s now fixed
in C++17. See P0969R0².

Examples

This section will show you a few examples where structured bindings are helpful. In the first
one, we’ll use them to write more expressive code, and in the next one, you’ll see how to
provide API for your class to support structured bindings.

Expressive Code With Structured Bindings

If you have a map of elements, you might know that internally they are stored as pairs of
<const Key, ValueType>.

²https://wg21.link/P0969R0

https://wg21.link/P0969R0
https://wg21.link/P0969R0

General Language Features 34

Now, when you iterate through elements of that map:

for (const auto& elem : myMap) { ... }

You need to write elem.first and elem.second to refer to the key and value. One of the
coolest use cases of structured binding is that we can use it inside a range based for loop:

std::map<KeyType, ValueType> myMap;
// C++14:
for (const auto& elem : myMap) {

// elem.first - is velu key
// elem.second - is the value

}
// C++17:
for (const auto& [key,val] : myMap) {

// use key/value directly
}

In the above example, we bind to a pair of [key, val] so we can use those names in the
loop. Before C++17 you had to operate on an iterator from the map - which returns a pair
<first, second>. Using the real names key/value is more expressive.

The above technique can be used in:

Chapter General Language Features/city_map_iterate.cpp

#include <map>
#include <iostream>
#include <string>

int main() {
const std::map<std::string, int> mapCityPopulation {

{ "Beijing", 21'707'000 },
{ "London", 8'787'892 },
{ "New York", 8'622'698 }

};

for (auto&[city, population] : mapCityPopulation)
std::cout << city << ": " << population << '\n';

}

In the loop body, you can safely use city and population variables.

General Language Features 35

Providing Structured Binding Interface for Custom Class

As mentioned earlier, you can provide Structured Binding support for a custom class.

To do that you have to define get<N>, std::tuple_size and std::tuple_element
specialisations for your type.

For example, if you have a class with three members, but you’d like to expose only its public
interface:

Chapter Chapter General Language Features/custom_structured_bindings.cpp

class UserEntry {
public:

void Load() { }

std::string GetName() const { return name; }
unsigned GetAge() const { return age; }

private:
std::string name;
unsigned age { 0 };
size_t cacheEntry { 0 }; // not exposed

};

The interface for Structured Bindings:

Chapter Chapter General Language Features/custom_structured_bindings.cpp

// with if constexpr:
template <size_t I> auto get(const UserEntry& u) {

if constexpr (I == 0) return u.GetName();
else if constexpr (I == 1) return u.GetAge();

}

namespace std {
template <> struct tuple_size<UserEntry> : integral_constant<size_t, 2> { };

template <> struct tuple_element<0,UserEntry> { using type = std::string; };
template <> struct tuple_element<1,UserEntry> { using type = unsigned; };

}

tuple_size specifies howmany fields are available, tuple_element defines the type for
a specific element and get<N> returns the values.

General Language Features 36

Alternatively, you can also use explicit get<> specialisations rather than if constexpr:

template<> string get<0>(const UserEntry &u) { return u.GetName(); }
template<> unsigned get<1>(const UserEntry &u) { return u.GetAge(); }

For a lot of types, writing two (or several) functions might be more straightforward than
using if constexpr.

Now you can use UserEntry in a structured binding, for example:

UserEntry u;
u.Load();
auto [name, age] = u; // read access
std:: cout << name << ", " << age << '\n';

This example only allows read access of the class. If you want write access, then the
class should also provide accessors that return references to members. Later you have to
implement get with references support.

The code in this section used if constexpr, you can read more about this powerful feature
in the next chapter: Templates: if constexpr.

Extra Info
The change was proposed in: P0217³(wording), P0144⁴(reasoning and examples),
P0615⁵(renaming “decomposition declaration” with “structured binding declara-
tion”).

³https://wg21.link/p0217
⁴https://wg21.link/p0144
⁵https://wg21.link/p0615

https://wg21.link/p0217
https://wg21.link/p0144
https://wg21.link/p0615
https://wg21.link/p0217
https://wg21.link/p0144
https://wg21.link/p0615

General Language Features 37

Init Statement for if and switch

C++17 provides new versions of the if and switch statements:

if (init; condition)

And

switch (init; condition)

In the init section you can specify a new variable, similarly to the init section in for loop.
Then check the variable in the condition section. The variable is visible only in if/else
scope.

To achieve a similar result, before C++17, you had to write:

{
auto val = GetValue();
if (condition(val))

// on success
else

// on false...
}

Please notice that val has a separate scope, without that it ‘leaks’ to enclosing scope.

Now, in C++17, you can write:

if (auto val = GetValue(); condition(val))
// on success

else
// on false...

Now, val is visible only inside the if and else statements, so it doesn’t ‘leak.’ condition
might be any boolean condition.

Why is this useful?

Let’s say you want to search for a few things in a string:

General Language Features 38

const std::string myString = "My Hello World Wow";

const auto pos = myString.find("Hello");
if (pos != std::string::npos)

std::cout << pos << " Hello\n"

const auto pos2 = myString.find("World");
if (pos2 != std::string::npos)

std::cout << pos2 << " World\n"

You have to use different names for pos or enclose it with a separate scope:

{
const auto pos = myString.find("Hello");
if (pos != std::string::npos)

std::cout << pos << " Hello\n"
}

{
const auto pos = myString.find("World");
if (pos != std::string::npos)

std::cout << pos << " World\n"
}

The new if statement will make that additional scope in one line:

if (const auto pos = myString.find("Hello"); pos != std::string::npos)
std::cout << pos << " Hello\n";

if (const auto pos = myString.find("World"); pos != std::string::npos)
std::cout << pos << " World\n";

Asmentioned before, the variable defined in the if statement is also visible in the else block.
So you can write:

if (const auto pos = myString.find("World"); pos != std::string::npos)
std::cout << pos << " World\n";

else
std::cout << pos << " not found!!\n";

General Language Features 39

Plus, you can use it with structured bindings (following Herb Sutter code⁶):

// better together: structured bindings + if initializer
if (auto [iter, succeeded] = mymap.insert(value); succeeded) {

use(iter); // ok
// ...

} // iter and succeeded are destroyed here

In the above example, you can refer to iter and succeeded rather than pair.first and
pair.second that is returned from mymap.insert.

As you can see, structured bindings and tuples allow you to create even more variables in
the init section of the if-statement. But is the code easier to read that way?

For example:

string str = "Hi World";
if (auto [pos, size] = pair(str.find("Hi"), str.size()); pos != string::npos)

std::cout << pos << " Hello, size is " << size;

We can argue that putting more code into the init section makes the code less readable, so
pay attention to such cases.

Extra Info
The change was proposed in: P0305R1⁷.

⁶https://herbsutter.com/2016/06/30/trip-report-summer-iso-c-standards-meeting-oulu/
⁷http://wg21.link/p0305r1

https://herbsutter.com/2016/06/30/trip-report-summer-iso-c-standards-meeting-oulu/
http://wg21.link/p0305r1
https://herbsutter.com/2016/06/30/trip-report-summer-iso-c-standards-meeting-oulu/
http://wg21.link/p0305r1

General Language Features 40

Inline Variables

With Non-Static Data Member Initialisation introduced in C++11, you can now declare and
initialise member variables in one place:

class User {
int _age {0};
std::string _name {"unknown"};

};

However, with static variables (or const static) you need a declaration and then a
definition in the implementation file.

C++11 with constexpr keyword allows you to declare and define static variables in one
place, but it’s limited to constant expressions only.

Previously, only methods/functions could be specified as inline, but now you can do the
same with variables, inside a header file.

From the proposal P0386R2⁸:

A variable declared inline has the same semantics as a function declared inline: it can be
defined, identically, in multiple translation units, must be defined in every translation unit
in which it is used, and the behaviour of the program is as if there was exactly one variable.

For example:

// inside a header file:
struct MyClass {

static const int sValue;
};

// later in the same header file:
inline int const MyClass::sValue = 777;

Or even declaration and definition in one place:

⁸http://wg21.link/p0386r2

http://wg21.link/p0386r2
http://wg21.link/p0386r2

General Language Features 41

struct MyClass {
inline static const int sValue = 777;

};

Also, note that constexpr variables are inline implicitly, so there’s no need to use
constexpr inline myVar = 10;.

An inline variable is also more flexible than a constexpr variable as it doesn’t have to
be initialised with a constant expression. For example, you can initialise an inline variable
with rand(), but it’s not possible to do the same with constexpr variable.

How Can it Simplify the Code?

A lot of header-only libraries can limit the number of hacks (like using inline functions or
templates) and switch to using inline variables.

For example:

class MyClass {
static inline int Seed(); // static method

};

inline int MyClass::Seed() {
static const int seed = rand();
return seed;

}

Can be changed into:

class MyClass {
static inline int seed = rand();

};

C++17 guarantees that MyClass::seed will have the same value (generated at runtime)
across all the compilation units!

Extra Info
The change was proposed in: P0386R2⁹.

⁹http://wg21.link/p0386r2

http://wg21.link/p0386r2
http://wg21.link/p0386r2

General Language Features 42

constexpr Lambda Expressions

Lambda expressions were introduced in C++11, and since that moment they’ve become
an essential part of modern C++. Another significant feature of C++11 is the constexpr
specifier, which is used to express that a function or value can be computed at compile-time.
In C++17, the two elements are allowed to exist together, so your lambda can be invoked in
a constant expression context.

In C++11/14 the following code doesn’t compile, but works with C++17:

Chapter General Language Features/lambda_square.cpp

int main () {
constexpr auto SquareLambda = [] (int n) { return n*n; };
static_assert(SquareLambda(3) == 9, "");

}

Since C++17 lambda expressions (their call operator operator()) that follow the rules of
standard constexpr functions are implicitly declared as constexpr.

What are the limitations of constexpr functions? Here’s a summary (from 10.1.5 The
constexpr specifier [dcl.constexpr]¹⁰):

• they cannot be virtual

• their return type shall be a literal type

• their parameter types shall be a literal type

• their function bodies cannot contain: asm definition, a goto statement, try-block, or
a variable that is a non-literal type or static or thread storage duration

In practice, in C++17, if you want your function or lambda to be executed at compile-
time, then the body of this function shouldn’t invoke any code that is not constexpr. For
example, you cannot allocate memory dynamically or throw exceptions.

constexpr lambda expressions are also covered in the Other Changes Chapter and in a
free ebook: C++ Lambda Story¹¹.

Extra Info
The change was proposed in: P0170¹².

¹⁰https://timsong-cpp.github.io/cppwp/n4659/dcl.constexpr#3
¹¹https://leanpub.com/cpplambda
¹²http://wg21.link/p0170

https://timsong-cpp.github.io/cppwp/n4659/dcl.constexpr#3
https://timsong-cpp.github.io/cppwp/n4659/dcl.constexpr#3
https://leanpub.com/cpplambda
http://wg21.link/p0170
https://timsong-cpp.github.io/cppwp/n4659/dcl.constexpr#3
https://leanpub.com/cpplambda
http://wg21.link/p0170

General Language Features 43

Capturing [*this] in Lambda Expressions

When you write a lambda inside a class method, you can reference a member variable by
capturing this. For example:

Chapter General Language Features/capture_this.cpp

struct Test {
void foo() {

std::cout << m_str << '\n';
auto addWordLambda = [this]() { m_str += "World"; };
addWordLambda ();
std::cout << m_str << '\n';

}

std::string m_str {"Hello "};
};

In the line with auto addWordLambda = [this]() {... } we capture this pointer
and later we can access m_str.

Please notice that we captured this by value… to a pointer. You have access to the member
variable, not its copy. The same effect happens when you capture by [=] or [&]. That’s why
when you call foo() on some Test object then you’ll see the following output:

Hello
Hello World

foo() prints m_str two times. The first time we see "Hello", but the next time it’s
"Hello World" because the lambda addWordLambda changed it.

How about more complicated cases? Do you know what will happen with the following
code?

General Language Features 44

Returning a Lambda From a Method

#include <iostream>

struct Baz {
auto foo() {

return [=] { std::cout << s << '\n'; };
}
std::string s;

};

int main() {
auto f1 = Baz{"ala"}.foo();
f1();

}

The code declares a Baz object and then invokes foo(). Please note that foo() returns a
lambda that captures a member of the class.

A capturing block like [=] suggests that we capture variables by value, but if you access
members of a class in a lambda expression, then it does this implicitly via the this pointer.
So we captured a copy of this pointer, which is a dangling pointer as soon as we exceed
the lifetime of the Baz object.

In C++17 you can write: [*this] and that will capture a copy of the whole object.

auto lam = [*this]() { std::cout << s; };

In C++14, the only way to make the code safer is init capture *this:

auto lam = [self=*this] { std::cout << self.s; };

Capturing this might get tricky when a lambda can outlive the object itself. This might
happen when you use async calls or multithreading.

In C++20 (see P0806¹³) you’ll also see an extra warning if you capture [=] in a method. Such
expression captures the this pointer, and it might not be exactly what you want.

Extra Info
The change was proposed in: P0018¹⁴.

¹³https://wg21.link/P0806
¹⁴http://wg21.link/p0018

https://wg21.link/P0806
http://wg21.link/p0018
https://wg21.link/P0806
http://wg21.link/p0018

General Language Features 45

Nested Namespaces

Namespaces allow grouping types and functions into separate logical units.

For example, it’s common to see that each type or function from a library XY will be stored
in a namespace xy. Like in the below case, where there’s SuperCompressionLib and it
exposes functions called Compress() and Decompress():

namespace SuperCompressionLib {
bool Compress();
bool Decompress();

}

Things get interesting if you have two or more nested namespaces.

namespace MySuperCompany {
namespace SecretProject {

namespace SafetySystem {
class SuperArmor {

// ...
};
class SuperShield {

// ...
};

} // SafetySystem
} // SecretProject

} // MySuperCompany

With C++17 nested namespaces can be written more compactly:

namespace MySuperCompany::SecretProject::SafetySystem {
class SuperArmor {
// ...
};
class SuperShield {
// ...
};

}

Such syntax is comfortable, and it will be easier to use for developers that have experience
in languages like C# or Java.

General Language Features 46

In C++17 also the Standard Library was “compacted” in several places by using the new
nested namespace feature:

For example, for regex.

In C++17 it’s defined as:

namespace std::regex_constants {
typedef T1 syntax_option_type;
// ...

}

Before C++17 the same was declared as:

namespace std {
namespace regex_constants {

typedef T1 syntax_option_type;
// ...

}
}

The above nested declarations appear in the C++ Specification, but it might look different in
an STL implementation.

Extra Info
The change was proposed in: N4230¹⁵.

¹⁵http://wg21.link/N4230

http://wg21.link/N4230
http://wg21.link/N4230

General Language Features 47

__has_include Preprocessor Expression

If your code has to work under two different compilers, then you might experience two
different sets of available features and platform-specific changes.

In C++17 you can use __has_include preprocessor constant expression to check if a given
header exists:

#if __has_include(<header_name>)
#if __has_include("header_name")

__has_include was available in Clang as an extension for many years, but now it was
added to the Standard. It’s a part of “feature testing” helpers that allows you to check if a
particular C++ feature or a header is available. If a compiler supports this macro, then it’s
accessible even without the C++17 flag, that’s why you can check for a feature also if you
work in C++11, or C++14 “mode”.

As an example, we can test if a platform has <charconv> header that declares C++17’s
low-level conversion routines:

Chapter General Language Features/has_include.cpp

#if defined __has_include
if __has_include(<charconv>)
define has_charconv 1
include <charconv>
endif
#endif

std::optional<int> ConvertToInt(const std::string& str) {
int value { };
#ifdef has_charconv

const auto last = str.data() + str.size();
const auto res = std::from_chars(str.data(), last, value);
if (res.ec == std::errc{} && res.ptr == last)

return value;
#else

// alternative implementation...
#endif

return std::nullopt;
}

General Language Features 48

In the above code, we declare has_charconv based on the __has_include condition. If
the header is not there, we need to provide an alternative implementation for Convert-
ToInt. You can check this code against GCC 7.1 and GCC 9.1 and see the effect as GCC 7.1
doesn’t expose the charconv header.

Note: In the above code we cannot write:

#if defined __has_include && __has_include(<charconv>)

As in older compilers - that don’t support __has_include we’d get a compile error. The
compiler will complain that since __has_include is not defined and the whole expression
is wrong.

Another important thing to remember is that sometimes a compiler might provide a header
stub. For example, in C++14 mode the <execution> header might be present (it defines
C++17 parallel algorithm executionmodes), but the whole file will be empty (due toifdefs).
If you check for that file with __has_include and use C++14mode, then you’ll get a wrong
result.

In C++20 we’ll have standardised feature test macros that simplify checking for
various C++ parts. For example, to test for std::any you can use __cpp_-
lib_any, for lambda support there’s __cpp_lambdas. There’s even a macro
that checks for attribute support: __has_cpp_attribute(attrib-name).
GCC, Clang and Visual Studio exposes many of the macros already, even before
C++20 is ready. Read more in Feature testing (C++20) - cppreference¹⁶

__has_include along with feature testing macros might greatly simplify multiplatform
code that usually needs to check for available platform elements.

Extra Info
__has_include was proposed in: P0061¹⁷.

¹⁶https://en.cppreference.com/w/cpp/feature_test
¹⁷http://wg21.link/p0061

https://en.cppreference.com/w/cpp/feature_test
http://wg21.link/p0061
https://en.cppreference.com/w/cpp/feature_test
http://wg21.link/p0061

General Language Features 49

Compiler support

Feature GCC Clang MSVC
Structured Binding Declarations 7.0 4.0 VS 2017 15.3
Init-statement for if/switch 7.0 3.9 VS 2017 15.3
Inline variables 7.0 3.9 VS 2017 15.5
constexpr Lambda Expressions 7.0 5.0 VS 2017 15.3
Lambda Capture of *this 7.0 3.9 VS 2017 15.3
Nested namespaces 6.0 3.6 VS 2015
has_include 5 Yes VS 2017 15.3

5. Templates
Do you work with templates and/or meta-programming?

If your answer is “YES,” then you might be pleased with the updates from C++17.

The new standard introduces many enhancements that make template programming much
easier and more expressive.

In this chapter, you’ll learn:

• Template argument deduction for class templates

• template<auto>

• Fold expressions

• if constexpr - the compile-time if for C++!

• Plus some smaller, detailed improvements and fixes

Templates 51

Template Argument Deduction for Class
Templates

C++17 filled a gap in the deduction rules for templates. Now, the template argument
deduction can occur for class templates and not just for functions. That also means that
a lot of your code that uses make_Type functions can now be removed.

For instance, to create an std::pair object, it was usually more comfortable to write:

auto myPair = std::make_pair(42, "hello world"s);

Rather than:

std::pair<int, std::string> myPair{42, "hello world"};

Because std::make_pair() is a template function, the compiler can perform the deduc-
tion of function template arguments and there’s no need to write:

auto myPair = std::make_pair<int, std::string>(42, "hello world");

Now, since C++17, the conformant compiler will nicely deduce the template parameter types
for class templates too!

The feature is called “Class Template Argument Deduction” or CTAD in short.

In our example, you can now write:

using namespace std::string_literals;
std::pair myPair{42, "hello world"s}; // deduced automatically!

CTAD also works with copy initialisation and when allocating memory through new():

auto otherPair = std::pair{42, "Hello"s}; // also deduced
auto ptr = new std::pair{42, "World"s}; // for new

Templates 52

CTAD can substantially reduce complex constructions like:

// lock guard:
std::shared_timed_mutex mut;
std::lock_guard<std::shared_timed_mutex> lck(mut);

// array:
std::array<int, 3> arr {1, 2, 3};

Can now become:

std::shared_timed_mutex mut;
std::lock_guard lck(mut);

std::array arr { 1, 2, 3 };

Note, that partial deduction cannot happen, you have to specify all the template parameters
or none:

std::tuple t(1, 2, 3); // OK: deduction
std::tuple<int,int,int> t(1, 2, 3); // OK: all arguments are provided
std::tuple<int> t(1, 2, 3); // Error: partial deduction

With this feature, a lot of make_Type functions might not be needed - especially those that
“emulate” template deduction for classes.

Still, there are factory functions that do additional work. For example, std::make_shared
- it not only creates shared_ptr, but also makes sure the control block, and the pointed
object are allocated in one memory region:

// control block and int might be in different places in memory
std::shared_ptr<int> p(new int{10});

// the control block and int are in the same contiguous memory section
auto p2 = std::make_shared<int>(10);

How does template argument deduction for classes work?

Let’s enter the “Deduction Guides” area.

Templates 53

Deduction Guides

The compiler uses special rules called “Deduction Guides” to work out parameter types.

There are two types of guides: compiler-generated (implicitly generated) and user-defined.

To understand how the compiler uses the guides, let’s look at a simplified deduction guide¹
for std::array:

template<typename T, typename... U>
array(T, U...) ->

array<enable_if_t<(is_same_v<T, U> && ...), T>, 1 + sizeof...(U)>;

The syntax looks like a template function with a trailing return type. The compiler treats
such “imaginary” function as a candidate for the parameters. If the pattern matches, then
the found types are returned from the deduction.

In our case when you write:

std::array arr {1, 2, 3, 4};

Then, assuming T and U... arguments are of the same type, we can build up an array object
of the type std::array<int, 4>.

In most cases, you can rely on the compiler to generate automatic deduction guides. They
will be created for each constructor (also copy/move) of the primary class template. Please
note that classes that are specialised or partially specialised won’t work here.

As mentioned, you might also write custom deduction guides. A classic example is a
deduction of std::string rather than const char*:

template<typename T> struct MyType {
T str;

};

// custom deduction guide
MyType(const char *) -> MyType<std::string>;
MyType t{"Hello World"}; // deduces std::string

Without the custom deduction T would be deduced as const char*.

¹simplified version of libstdc++ code https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/std/array

Templates 54

Another example of custom deduction guide comes from the overload pattern²:

template<class... Ts>
struct overload : Ts... { using Ts::operator()...; };

template<class... Ts>
overload(Ts...) -> overload<Ts...>; // deduction guide

The overload class inherits from other classes Ts... and then exposes their operator().
The custom deduction guide is used here to “transform” a list of callable types into the list
of classes that we can derive from.

CTAD Limitations

In C++17 template argument deduction for classes has the following limitations:

• it doesn’t work with template aggregate types

• the deduction doesn’t include inheriting constructors

• it doesn’t work with template aliases

Those limitations will be removed in C++20 through the already accepted proposal: P1021³.

Extra Info
The CTAD feature was proposed in: P0091R3⁴ and P0433 - Deduction Guides in
the Standard Library⁵.

Please note that while a compiler might declare full support for Template Ar-
gument Deduction for Class Templates, its corresponding STL implementation
might still lack of custom deduction guides for some STL types. See the Compiler
Support section at the end of the chapter.

²Read more about this pattern in the chapter about std::variant, section related to std::visit()
³https://wg21.link/P1021
⁴http://wg21.link/p0091r3
⁵https://wg21.link/p0433

https://wg21.link/P1021
http://wg21.link/p0091r3
https://wg21.link/p0433
https://wg21.link/p0433
https://wg21.link/P1021
http://wg21.link/p0091r3
https://wg21.link/p0433

Templates 55

Fold Expressions

C++11 introduced variadic templates, which is a powerful feature, especially if you want
to work with a variable number of input template parameters to a function. For example,
previously (pre C++11) you had to write several different versions of a template function
(one for one parameter, another for two parameters, another for three params…).

Still, variadic templates required some additional code when you wanted to implement
“recursive” functions like sum, all. You had to specify rules for the recursion.

For example:

auto SumCpp11() {
return 0;

}

template<typename T1, typename... T>
auto SumCpp11(T1 s, T... ts) {

return s + SumCpp11(ts...);
}

And with C++17 we can write much simpler code:

template<typename ...Args> auto sum(Args ...args) {
return (args + ... + 0);

}

// or even:
template<typename ...Args> auto sum2(Args ...args) {

return (args + ...);
}

The following variations of fold expressions⁶ with binary operators (op) exist:

Expression Name Expansion
(... op e) unary left fold ((e1 op e2) op ...) op eN
(init op ... op e) binary left fold (((init op e1) op e2) op ...) op eN
(e op ...) unary right fold e1 op (... op (eN-1 op eN))
(e op ... op init) binary right fold e1 op (... op (eN-1 op (eN op

init)))
⁶https://en.cppreference.com/w/cpp/language/fold

https://en.cppreference.com/w/cpp/language/fold
https://en.cppreference.com/w/cpp/language/fold

Templates 56

op is any of the following 32 binary operators: + - * / % ^ & | = < > << >> += -
= *= /= %= ^= &= |= <<= >>= == != <= >= && || , .* ->*. In a binary fold,
both ops must be the same.

For example, when you write:

template<typename ...Args> auto sum2(Args ...args) {
return (args + ...); // unary right fold over '+'

}

auto value = sum2(1, 2, 3, 4);

The template function is expanded into:

auto value = 1 + (2 + (3 + 4));

Also by default we get the following values for empty parameter packs:

Operator default value
&& true
|| false
, void()
any other ill-formed code

That’s why you cannot call sum2()without any parameters, as the unary fold over operator
+ doesn’t have any default value for the empty parameter list.

More Examples

Here’s a quite nice implementation of a printf using folds P0036R0⁷:

⁷http://wg21.link/p0036r0

http://wg21.link/p0036r0
http://wg21.link/p0036r0

Templates 57

template<typename ...Args>
void FoldPrint(Args&&... args) {

(std::cout << ... << std::forward<Args>(args)) << '\n';
}

FoldPrint("hello", 10, 20, 30);

However, the above FoldPrint will print arguments one by one, without any separator.
For the above function call, you’ll see "hello102030" on the output.

If you want separators and more formatting options, you have to alter the printing technique
and use fold over comma:

template<typename ...Args>
void FoldSeparateLine(Args&&... args) {

auto separateLine = [](const auto& v) {
std::cout << v << '\n';

};
(... , separateLine (std::forward<Args>(args))); // over comma operator

}

The technique with fold over the comma operator is handy. Another example of it might be
a special version of push_back:

template<typename T, typename... Args>
void push_back_vec(std::vector<T>& v, Args&&... args) {

(v.push_back(std::forward<Args>(args)), ...);
}

std::vector<float> vf;
push_back_vec(vf, 10.5f, 0.7f, 1.1f, 0.89f);

In general, fold expression allows you to write cleaner, shorter and probably more comfort-
able to read the code.

Extra Info
The change was proposed in: N4295⁸ and P0036R0⁹.

⁸https://wg21.link/n4295
⁹https://wg21.link/p0036r0

https://wg21.link/n4295
https://wg21.link/p0036r0
https://wg21.link/n4295
https://wg21.link/p0036r0

Templates 58

if constexpr

This is a big one!

The compile-time if for C++!

The feature allows you to discard branches of an if statement at compile-time based on a
constant expression condition.

if constexpr (cond)
statement1; // Discarded if cond is false

else
statement2; // Discarded if cond is true

For example:

template <typename T>
auto get_value(T t) {

if constexpr (std::is_pointer_v<T>)
return *t;

else
return t;

}

if constexpr has the potential to simplify a lot of template code - especially when tag
dispatching, SFINAE or preprocessor techniques are used.

Why Compile Time If?

At first, you may ask, why do we need if constexpr and those complex templated
expressions… wouldn’t a regular if work?

Here’s a code example:

Templates 59

template <typename Concrete, typename... Ts>
std::unique_ptr<Concrete> constructArgs(Ts&&... params) {

if (std::is_constructible_v<Concrete, Ts...>) // regular `if`
return std::make_unique<Concrete>(std::forward<Ts>(params)...);

else
return nullptr;

}

The above routine is an “updated” version of std::make_unique: it returns std::unique_-
ptr when the parameters allow it to construct the wrapped objects, or it returns nullptr.

Below there’s simple code that tests constructArgs:

class Test {
public:

Test(int, int) { }
};

int main() {
auto p = constructArgs<Test>(10, 10, 10); // 3 args!

}

The code tries to build Test out of three parameters, but please notice that Test has only
constructor that takes two int arguments.

When compiling you might get a similar compiler error:

In instantiation of 'typename std::_MakeUniq<_Tp>::__single_object
std::make_unique(_Args&& ...) [with _Tp = Test; _Args = {int, int, int};
typename std::_MakeUniq<_Tp>::__single_object
= std::unique_ptr<Test, std::default_delete<Test> >]':

main.cpp:8:40: required from 'std::unique_ptr<_Tp>
constructArgs(Ts&& ...) [with Concrete = Test; Ts = {int, int, int}]'

Let’s try to understand this error message. After the template deduction the compiler
compiles the following code:

Templates 60

if (std::is_constructible_v<Concrete, int, int, int>)
return std::make_unique<Concrete>(10, 10, 10);

else
return nullptr;

During the runtime, the if branch won’t be executed - as is_constructible_v returns
false, yet the code in the branch must compile.

That’s why we need if constexpr, to “discard” code and compile only the matching
statement.

To fix the code you have to add constexpr:

template <typename Concrete, typename... Ts>
std::unique_ptr<Concrete> constructArgs(Ts&&... params) {
if constexpr (std::is_constructible_v<Concrete, Ts...>) // fixed!

return std::make_unique<Concrete>(std::forward<Ts>(params)...);
else

return nullptr;
}

Now, the compiler evaluates the if constexpr condition at compile-time and for the
expression auto p = constructArgs<Test>(10, 10, 10); the whole if branch
will be “removed” from the second step of the compilation process.

To be precise, the code in the discarded branch is not entirely removed from the compilation
phase. Only expressions that are dependent on the template parameter used in the condition
are not instantiated. The syntax must always be valid.

For example:

template <typename T>
void Calculate(T t) {

if constexpr (std::is_integral_v<T>) {
// ...
static_assert(sizeof(int) == 100);

}
else {

execute(t);
strange syntax

}
}

Templates 61

In the above artificial code, if the type T is int, then the else branch is discarded, which
means execute(t) won’t be instantiated. But the line strange syntax will still be
compiled (as it’s not dependent on T) and that’s why you’ll get a compile error about that.

Furthermore, another compilation error will come from static_assert, the expression is
also not dependent on T, and that’s why it will always be evaluated.

Template Code Simplification

Before C++17 if you had several versions of an algorithm - depending on the type require-
ments - you could use SFINAE or tag dispatching to generate a dedicated overload resolution
set.

For example:

Chapter Templates/sfinae_example.cpp

template <typename T>
std::enable_if_t<std::is_integral_v<T>, T> simpleTypeInfo(T t) {

std::cout << "foo<integral T> " << t << '\n';
return t;

}

template <typename T>
std::enable_if_t<!std::is_integral_v<T>, T> simpleTypeInfo(T t) {

std::cout << "not integral \n";
return t;

}

In the above example, we have two function implementations, but only one of them will end
up in the overload resolution set. If std::is_integral_v is true for the T type, then the
top function is taken, and the second one rejected due to SFINAE.

The same thing can happen when using tag dispatching:

Templates 62

Chapter Templates/tag_dispatching_example.cpp

template <typename T>
T simpleTypeInfoTagImpl(T t, std::true_type) {

std::cout << "foo<integral T> " << t << '\n';
return t;

}

template <typename T>
T simpleTypeInfoTagImpl(T t, std::false_type) {

std::cout << "not integral \n";
return t;

}

template <typename T>
T simpleTypeInfoTag(T t) {

return simpleTypeInfoTagImpl(t, std::is_integral<T>{});
}

Now, instead of SFINAE, we generate a unique type tag for the condition: true_type or
false_type. Depending on the result, only one implementation is selected.

We can now simplify this pattern with if constexpr:

template <typename T>
T simpleTypeInfo(T t) {

if constexpr (std::is_integral_v<T>) {
std::cout << "foo<integral T> " << t << '\n';

}
else {

std::cout << "not integral \n";
}
return t;

}

Writing template code becomes more “natural” and doesn’t require that many “tricks”.

Examples

Let’s see a couple of examples:

Templates 63

Line Printer

You might have already seen the below example in the Jump Start section at the beginning
of this Part of the book. Let’s dive into the details and see how the code works.

template<typename T> void linePrinter(const T& x) {
if constexpr (std::is_integral_v<T>) {

std::cout << "num: " << x << '\n';
}
else if constexpr (std::is_floating_point_v<T>) {

const auto frac = x - static_cast<long>(x);
std::cout << "flt: " << x << ", frac " << frac << '\n';

}
else if constexpr(std::is_pointer_v<T>) {

std::cout << "ptr, ";
linePrinter(*x);

}
else {

std::cout << x << '\n';
}

}

linePrinter uses if constexpr to check the input type. Based on that, we can output
additional messages. An interesting thing happens with the pointer type - when a pointer is
detected the code dereferences it and then calls linePrinter recursively.

Declaring Custom get<N> Functions

The structured binding expression works for simple structures that have all public members,
like

struct S {
int n;
std::string s;
float d;

};

S s;
auto [a, b, c] = s;

However, if you have a custom type (with privatemembers), then it’s also possible to override
get<N> functions so that structured binding can work. Here’s some code to demonstrate this
idea:

Templates 64

class MyClass {
public:

int GetA() const { return a; }
float GetB() const { return b; }

private:
int a;
float b;

};

template <std::size_t I> auto get(MyClass& c) {
if constexpr (I == 0) return c.GetA();
else if constexpr (I == 1) return c.GetB();

}

// specialisations to support tuple-like interface
namespace std {

template <> struct tuple_size<MyClass> : integral_constant<size_t, 2> { };

template <> struct tuple_element<0,MyClass> { using type = int; };
template <> struct tuple_element<1,MyClass> { using type = float; };

}

In the above code you have the advantage of having everything in one function. It’s also
possible to do it as template specialisations:

template <> auto& get<0>(MyClass &c) { return c.GetA(); }
template <> auto& get<1>(MyClass &c) { return c.GetB(); }

For more examples you can read the chapter about Replacing std::enable_if with if
constexpr and also the chapter Structured Bindings - the section about custom get<N>
specialisations.

You can also see the following article: Simplify code with if constexpr in C++17¹⁰

Extra Info
The change was proposed in: P0292R2¹¹.

¹⁰https://www.bfilipek.com/2018/03/ifconstexpr.html
¹¹https://wg21.link/p0292r2

https://www.bfilipek.com/2018/03/ifconstexpr.html
https://wg21.link/p0292r2
https://www.bfilipek.com/2018/03/ifconstexpr.html
https://wg21.link/p0292r2

Templates 65

Declaring Non-Type Template Parameters With
auto

This is another part of the strategy to use auto everywhere. With C++11 and C++14, you
can use it to deduce variables or even return types automatically, plus there are also generic
lambdas. Now you can also use it for deducing non-type template parameters.

For example:

template <auto value> void f() { }
f<10>(); // deduces int

This is useful, as you don’t have to have a separate parameter for the type of non-type
parameter. Like in C++11/14:

template <typename Type, Type value> constexpr Type TConstant = value;
constexpr auto const MySuperConst = TConstant<int, 100>;

With C++17 it’s a bit simpler:

template <auto value> constexpr auto TConstant = value;
constexpr auto const MySuperConst = TConstant<100>;

There’s no need to write Type explicitly.

As one of the advanced uses a lot of papers, and articles point to an example of heterogeneous
compile time list:

template <auto ... vs> struct HeterogenousValueList {};
using MyList = HeterogenousValueList<'a', 100, 'b'>;

Before C++17 it was not possible to declare such list directly, some wrapper class would have
had to be provided first.

Extra Info
The change was proposed in: P0127R2¹². In P0127R1¹³, you can find some more
examples and reasoning.

¹²https://wg21.link/p0127r2
¹³https://wg21.link/p0127r1

https://wg21.link/p0127r2
https://wg21.link/p0127r1
https://wg21.link/p0127r2
https://wg21.link/p0127r1

Templates 66

Other Changes

In C++17 there are also other language and library features related to templates that are
worth mentioning:

Allow typename in a Template Template Parameters.

Allows you to use typename instead of class when declaring a template template
parameter. Normal type parameters can use them interchangeably, but template template
parameters were restricted to class.

More information in N4051¹⁴.

Allow Constant Evaluation for all Non-Type Template Arguments

Remove syntactic restrictions for pointers, references, and pointers to members that appear
as non-type template parameters.

More information in N4268¹⁵.

Variable Templates for Traits

All the type traits that yields ::value got accompanying _v variable templates. For
example:

std::is_integral<T>::value has std::is_integral_v<T>

std::is_class<T>::value has std::is_class_v<T>

This improvement already follows the _t suffix additions in C++14 (template aliases) to type
traits that returns ::type. Such change can considerably shorten template code.

More information in P0006R0¹⁶.

¹⁴https://wg21.link/n4051
¹⁵https://wg21.link/n4268
¹⁶https://wg21.link/p0006r0

https://wg21.link/n4051
https://wg21.link/n4268
https://wg21.link/p0006r0
https://wg21.link/n4051
https://wg21.link/n4268
https://wg21.link/p0006r0

Templates 67

Pack Expansions in Using Declarations

The feature is an enhancement for variadic templates and parameter packs.

The compiler will now support the using keyword in pack expansions:

template<class... Ts> struct overloaded : Ts... {
using Ts::operator()...;

};

The overloaded class exposes all overloads for operator() from the base classes. Before
C++17, you would have to use recursion for parameter packs to achieve the same result.
The overloaded pattern is a very useful enhancement for std::visit, read more in the
“Overload” section in the Variant chapter.

More information in P0195¹⁷.

Logical Operation Metafunctions

C++17 adds handy template metafunctions:

• template<class... B> struct conjunction; - logical AND
• template<class... B> struct disjunction; - logical OR
• template<class B> struct negation; - logical negation

Here’s an example, based on the code from the proposal:

template<typename... Ts>
std::enable_if_t<std::conjunction_v<std::is_same<int, Ts>...> >
PrintIntegers(Ts ... args) {

(std::cout << ... << args) << '\n';
}

The above function PrintIntegersworks with a variable number of arguments, but they
all have to be of type int.

The helper metafunctions can increase the readability of advanced template code. They are
available in <type_traits> header.

More information in P0013¹⁸.
¹⁷https://wg21.link/P0195
¹⁸https://wg21.link/P0013

https://wg21.link/P0195
https://wg21.link/P0013
https://wg21.link/P0195
https://wg21.link/P0013

Templates 68

std::void_t Transformation Trait

A surprisingly simple¹⁹ metafunction that maps a list of types into void:

template< class... >
using void_t = void;

void_t is very handy to SFINAE ill-formed types. For example it might be used to detect a
function overload:

void Compute(int &) { } // example function

template <typename T, typename = void>
struct is_compute_available : std::false_type {};

template <typename T>
struct is_compute_available<T,

std::void_t<decltype(Compute(std::declval<T>())) >>
: std::true_type {};

static_assert(is_compute_available<int&>::value);
static_assert(!is_compute_available<double&>::value);

is_compute_available checks if a Compute() overload is available for the given
template parameter. If the expression decltype(Compute(std::declval<T>())) is
valid, then the compiler will select the template specialisation. Otherwise, it’s SFINEed, and
the primary template is chosen.

More information in N3911²⁰.

¹⁹Compilers that don’t implement a fix for CWG 1558 (for C++14) might need a more complicated version of it.
²⁰https://wg21.link/n3911

https://wg21.link/n3911
https://wg21.link/n3911

Templates 69

Compiler Support

Feature GCC Clang MSVC
Template argument
deduction for class
templates

7.0/8.0²¹ 5.0 VS 2017 15.7

Deduction Guides in the
Standard Library

8.0²² 7.0/in progress²³ VS 2017 15.7

Declaring non-type
template parameters
with auto

7.0 4.0 VS 2017 15.7

Fold expressions 6.0 3.9 VS 2017 15.5
if constexpr 7.0 3.9 VS 2017

²¹Additional improvements for Template Argument Deduction for Class Templates happened in GCC 8.0, P0512R0.
²²Deduction Guides are not listed in the status pages of LibSTDC++, so we can assume they were implemented as part of

Template argument deduction for class templates.
²³The status page for LibC++ mentions that <string>, sequence containers, container adaptors and <regex> portions have

been implemented so far.

http://wg21.link/p0512r0
https://gcc.gnu.org/projects/cxx-status.html
http://libcxx.llvm.org/cxx1z_status.html

6. Standard Attributes
Code annotations - attributes - are probably not the best-known feature of C++. However,
they might be handy for expressing additional information for the compiler and also for
other programmers. Since C++11, there has been a standard way of specifying attributes.
And in C++17 we got even more useful additions.

In this chapter, you’ll learn:

• What are the attributes in C++

• Vendor-specific code annotations vs the Standard form

• In what cases attributes are handy

• C++11 and C++14 attributes

• New additions in C++17

Standard Attributes 71

Why Do We Need Attributes?

Have you ever used __declspec, __attribute__ or #pragma directives in your code?

For example:

// set an alignment
struct S { short f[3]; } __attribute__ ((aligned (8)));

// this function won't return
void fatal () __attribute__ ((noreturn));

Or for DLL import/export in MSVC:

#if COMPILING_DLL
#define DLLEXPORT __declspec(dllexport)

#else
#define DLLEXPORT __declspec(dllimport)

#endif

Those are existing forms of compiler-specific attributes/annotations.

So what is an attribute?

An attribute is additional information that can be used by the compiler to produce code. It
might be utilised for optimisation or some specific code generation (like DLL stuff, OpenMP,
etc.). Also, annotations allow you to write more expressive syntax and help other developers
to reason about code.

Contrary to other languages such as C#, in C++, the compiler has fixed the meta-in-
formation system. You cannot add user-defined attributes. In C# you can derive from
System.Attribute.

What’s best about Modern C++ attributes?

Since C++11, we get more and more standardised attributes that will work with other
compilers. We’re moving away from compiler-specific annotation to standard forms. Rather
than learning various annotation syntaxes you’ll be able to write code that is common and
has the same behaviour.

In the next section, you’ll see how attributes used to work before C++11.

Standard Attributes 72

Before C++11

In the era of C++98/03, each compiler introduced its own set of annotations, usually with a
different keyword.

Often, you could see code with #pragma, __declspec, __attribute spread throughout
the code.

Here’s the list of the common syntax from GCC/Clang and MSVC:

GCC Specific Attributes

GCC uses annotation in the form of __attribute__((attr_name)). For example:

int square (int) __attribute__ ((pure)); // pure function

Documentation:

• Attribute Syntax - Using the GNU Compiler Collection (GCC)¹

• Using the GNU Compiler Collection (GCC): Common Function Attributes²

MSVC Specific Attributes

Microsoft mostly used __declspec keyword, as their syntax for various compiler exten-
sions. See the documentation here: __declspecMicrosoft Docs³.

__declspec(deprecated) void LegacyCode() { }

Clang Specific Attributes

Clang, as it’s straightforward to customise, can support different types of annotations, so
look at the documentation to find more. Most of GCC attributes work with Clang.

See the documentation here: Attributes in Clang — Clang documentation⁴.

¹https://gcc.gnu.org/onlinedocs/gcc-4.8.1/gcc/Attribute-Syntax.html
²https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes
³https://docs.microsoft.com/en-Us/cpp/cpp/declspec
⁴https://clang.llvm.org/docs/AttributeReference.html

https://gcc.gnu.org/onlinedocs/gcc-4.8.1/gcc/Attribute-Syntax.html
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes
https://docs.microsoft.com/en-Us/cpp/cpp/declspec
https://clang.llvm.org/docs/AttributeReference.html
https://gcc.gnu.org/onlinedocs/gcc-4.8.1/gcc/Attribute-Syntax.html
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes
https://docs.microsoft.com/en-Us/cpp/cpp/declspec
https://clang.llvm.org/docs/AttributeReference.html

Standard Attributes 73

Attributes in C++11 and C++14

C++11 took one big step to minimise the need to use vendor-specific syntax. By introducing
the standard format, we can move a lot of compiler-specific attributes into the universal set.

C++11 provides a cleaner format of specifying annotations over our code.

The basic syntax is just [[attr]] or [[namespace::attr]].

You can use [[attr]] over almost anything: types, functions, enums, etc., etc.

For example:

[[attrib_name]] void foo() { } // on a function
struct [[deprecated]] OldStruct { } // on a struct

In C++11 we have the following attributes:

[[noreturn]] :

It tells the compiler that control flow will not return to the caller. Examples:

• [[noreturn]] void terminate() noexcept;

• functions like std::abort or std::exit are also marked with this attribute.

[[carries_dependency]] :

Indicates that the dependency chain in release-consume std::memory_order propagates
in and out of the function, which allows the compiler to skip unnecessary memory fence
instructions. Mostly to help to optimise multi-threaded code and when using different
memory models.

C++14 added:

[[deprecated]] and [[deprecated("reason")]] :

Code marked with this attribute will be reported by the compiler. You can set its reason.

Standard Attributes 74

Example of [[deprecated]]:

[[deprecated("use AwesomeFunc instead")]] void GoodFunc() { }

// call somewhere:
GoodFunc();

GCC reports the following warning:

warning: 'void GoodFunc()' is deprecated: use AwesomeFunc instead
[-Wdeprecated-declarations]

You know a bit about the old approach, new way in C++11/14… so what’s the deal with
C++17?

C++17 Additions

With C++17 we get three more standard attributes:

• [[fallthrough]]
• [[nodiscard]]
• [[maybe_unused]]

Extra Info
The new attributes were specified in P0188⁵ and P0068⁶(reasoning).

Plus three supporting features:

• Attributes for Namespaces and Enumerators

• Ignore Unknown Attributes

• Using Attribute Namespaces Without Repetition

Let’s go through the new attributes first.

⁵https://wg21.link/p0188
⁶https://wg21.link/p0068

https://wg21.link/p0188
https://wg21.link/p0068
https://wg21.link/p0188
https://wg21.link/p0068

Standard Attributes 75

[[fallthrough]] Attribute

Indicates that a fall-through in a switch statement is intentional and a warning should not
be issued for it.

switch (c) {
case 'a':

f(); // Warning! fallthrough is perhaps a programmer error
case 'b':

g();
[[fallthrough]]; // Warning suppressed, fallthrough is ok
case 'c':

h();
}

With this attribute, the compiler can understand the intentions of a programmer. It’s also
much more readable than using a comment.

[[maybe_unused]] Attribute

Suppresses compiler warnings about unused entities:

static void impl1() { ... } // Compilers may warn when function not called
[[maybe_unused]] static void impl2() { ... } // Warning suppressed

void foo() {
int x = 42; // Compilers may warn when x is not used later
[[maybe_unused]] int y = 42; // Warning suppressed for y

}

Such behaviour is helpful when some of the variables and functions are used in debug only
path. For example in assert() macros;

void doSomething(std::string_view a, std::string_view b) {
assert(a.size() < b.size());

}

If later a or b is no used in this function, then the compiler will generate a warning in release
only builds. Marking the given argument with [[maybe_unused]]will solve this warning.

Standard Attributes 76

[[nodiscard]] Attribute

[[nodiscard]] can be applied to a function or a type declaration to mark the importance
of the returned value:

[[nodiscard]] int Compute();
void Test() {

Compute(); // Warning! return value of a
// nodiscard function is discarded

}

If you forget to assign the result to a variable, then the compiler should emit a warning.

What it means is that you can force users to handle errors. For example, what happens if
you forget about using the return value from new or std::async()?

Additionally, the attribute can be applied to types. One use case for it might be error codes:

enum class [[nodiscard]] ErrorCode {
OK,
Fatal,
System,
FileIssue

};

ErrorCode OpenFile(std::string_view fileName);
ErrorCode SendEmail(std::string_view sendto,

std::string_view text);
ErrorCode SystemCall(std::string_view text);

Now, every time you’d like to call such functions, you’re “forced” to check the return value.
For important functions checking return codes might be crucial and using [[nodiscard]]
might save you from a few bugs.

You might also ask what it means “not to use” a return value?

In the Standard, it’s defined as “Discarded-value expressions”⁷. It means that you call a
function only for its side effects. In other words, there’s no if statement around or an
assignment expression. In that case, when a type is marked as [[nodiscard]] the compiler
is encouraged to report a warning.

However, to suppress the warning you can explicitly cast the return value to void or use
[[maybe_unused]]:

⁷http://en.cppreference.com/w/cpp/language/expressions#Discarded-value_expressions

http://en.cppreference.com/w/cpp/language/expressions#Discarded-value_expressions
http://en.cppreference.com/w/cpp/language/expressions#Discarded-value_expressions

Standard Attributes 77

[[nodiscard]] int Compute();
void Test() {

static_cast<void>(Compute()); // fine...

[[maybe_unused]] auto ret = Compute();
}

In addition, in C++20 the Standard Library will use [[nodiscard]] in
a few places like: operator new, std::async(), std::allocate(),
std::launder(), and std::empty().
This feature was already merged into C++20 with P0600⁸.

The second addition to C++20 is [[nodiscard("reason")]], see in P1301⁹.
This lets you specify why not using a returned value might generate issues — for
example, some resource leak.

Attributes for Namespaces and Enumerators

The idea for attributes in C++11was to be able to apply them to all sensible places like classes,
functions, variables, typedefs, templates, enumerations… But there was an issue in the
specification that blocked attributes when they were applied on namespaces or enumerators.

This is now fixed in C++17. We can now write:

namespace [[deprecated("use BetterUtils")]] GoodUtils {
void DoStuff() { }

}

namespace BetterUtils {
void DoStuff() { }

}

// use:
GoodUtils::DoStuff();

⁸https://wg21.link/p0600
⁹https://wg21.link/P1301

https://wg21.link/p0600
https://wg21.link/P1301
https://wg21.link/p0600
https://wg21.link/P1301

Standard Attributes 78

Clang reports:

warning: 'GoodUtils' is deprecated: use BetterUtils
[-Wdeprecated-declarations]

Another example is the use of deprecated attribute on enumerators:

enum class ColorModes {
RGB [[deprecated("use RGB8")]],
RGBA [[deprecated("use RGBA8")]],
RGB8,
RGBA8

};

// use:
auto colMode = ColorModes::RGBA;

Under GCC we’ll get:

warning: 'RGBA' is deprecated: use RGBA8
[-Wdeprecated-declarations]

Extra Info
The change was described in N4266¹⁰(wording) and N4196¹¹(reasoning).

Ignore Unknown Attributes

The feature is mostly for clarification.

Before C++17, if you tried to use some compiler-specific attribute, you might even get
an error when compiling in another compiler that doesn’t support it. Now, the compiler
omits the attribute specification and won’t report anything (or just a warning). This wasn’t
mentioned in the Standard, and it needed clarification.

¹⁰https://wg21.link/n4266
¹¹https://wg21.link/n4196

https://wg21.link/n4266
https://wg21.link/n4196
https://wg21.link/n4266
https://wg21.link/n4196

Standard Attributes 79

// compilers which don't
// support MyCompilerSpecificNamespace will ignore this attribute
[[MyCompilerSpecificNamespace::do_special_thing]]
void foo();

For example in GCC 7.1 there’s a warnings:

warning: 'MyCompilerSpecificNamespace::do_special_thing'
scoped attribute directive ignored [-Wattributes]
void foo();

Extra Info
The change was described in P0283R2¹²(wording) and P0283R1¹³(reasoning).

Using Attribute Namespaces Without Repetition

The feature simplifies the case where you want to use multiple attributes, like:

void f() {
[[rpr::kernel, rpr::target(cpu,gpu)]] // repetition
doTask();

}

Proposed change:

void f() {
[[using rpr: kernel, target(cpu,gpu)]]
doTask();

}

That simplification might help when building tools that automatically translate annotated
code of that type into different programming models.

Extra Info
The change was described in: P0028R4¹⁴.

¹²https://wg21.link/p0283r2
¹³https://wg21.link/p0283r1
¹⁴http://wg21.link/p0028r4

https://wg21.link/p0283r2
https://wg21.link/p0283r1
http://wg21.link/p0028r4
https://wg21.link/p0283r2
https://wg21.link/p0283r1
http://wg21.link/p0028r4

Standard Attributes 80

Section Summary

Attributes available in C++17:

Attribute Description
[[noreturn]] a function does not return to the caller
[[carries_dependency]] extra information about dependency chains
[[deprecated]] an entity is deprecated
[[deprecated("reason")]] provides additional message about the deprecation
[[fallthrough]] indicates a intentional fall-through in a switch statement
[[nodiscard]] a warning is generated if the return value is discarded
[[maybe_unused]] an entity might not be used in the code

Each compiler vendor can specify their syntax for attributes and annotations. In Modern
C++, the ISO Committee tries to extract common parts and standardise it as [[at-
tributes]].

There’s also a relevant quote from Bjarne Stroustrup’s C++11 FAQ¹⁵ about suggested use:

There is a reasonable fear that attributes will be used to create language dialects.
The recommendation is to use attributes to only control things that do not affect
the meaning of a program but might help detect errors (e.g. [[noreturn]]) or
help optimisers (e.g. [[carries_dependency]]).

Compiler support

Feature GCC Clang MSVC
[[fallthrough]] 7.0 3.9 15.0
[[nodiscard]] 7.0 3.9 15.3
[[maybe_unused]] 7.0 3.9 15.3
Attributes for namespaces and
enumerators

4.9/6¹⁶ 3.4 14.0

Ignore unknown attributes All versions 3.9 14.0
Using attribute namespaces without
repetition

7.0 3.9 15.3

All of the above compilers also support C++11/14 attributes.

¹⁵http://stroustrup.com/C++11FAQ.html#attributes
¹⁶GCC 4.9 (namespaces) / GCC 6 (enumerations)

http://stroustrup.com/C++11FAQ.html#attributes
http://stroustrup.com/C++11FAQ.html#attributes

Part 2 - The Standard Library
Changes

While new language features allow you to write more compact code, you also need the
tools - in the form of the Standard Library types. The classes, algorithms, containers and
components from the Library can significantly enhance your productivity. C++17 offers even
more handy instruments: for example the filesystem, new vocabulary types and even parallel
algorithms!

In this part you’ll learn:

• How to represent nullable types with std::optional

• What’s a tagged union?Andwhywe need a type-safe union in the form of std::variant

• How to represent any type with std::any

• How to use string_view to gain performance and not break your application

• What are the new string operations available in the Standard Library

• How to work with the filesystem using the Standard Library

• What are the parallel algorithms

• What are other smaller changes to the Standard Library, like std::byte, polymorphic
memory resources, new math functions or improvements to ordered containers

• What was deprecated or removed in C++17 in terms of the Standard Library

7. std::optional
C++17 adds a few wrapper types that make it possible to write more expressive code. In
this chapter, you’ll see std::optional, which models a nullable type. With this utility,
your objects can easily express that they don’t have any value. Such behaviour is more
straightforward to achieve than using some unique values (like -1, null).

In this chapter, you’ll learn:

• Why we need nullable types

• How does std::optional work and what does it do

• Operations on std::optional

• The performance cost of using the type

• Example use cases

std::optional 83

Introduction

How can you mark that a type doesn’t contain any value?

One approach is to achieve “null-ability” by using unique values (-1, infinity, nullptr).
Before use, you need to compare the object against the predefined value to see if it’s not
empty. Such a pattern is widespread in programming. For instance string::find returns
a value that represents the position or npos when it’s “null” or the pattern is not found.

Alternatively, you could try with std::unique_ptr<Type> and treat the empty pointer
as not initialised. That works but comes with the cost of allocating memory for the object
and is not a recommended technique.

Another technique is to build a wrapper that adds a boolean flag to other types. Such
wrapper can quickly determine the state of the object. And this is how in a nutshell works
std::optional.

Optional types that come from the functional programming world bring type safety and
expressiveness. Most other languages have something similar: for example std::option
in Rust, Optional<T> in Java, Data.Maybe in Haskell.

std::optionalwas added in C++17 and brought a lot of experience fromboost::optional
that has been available for many years. With C++17 you can just #include <optional>
and use the type.

What’s more std::optional was available also in Library Fundamentals TS,
so there’s a chance that your C++14 compiler could also support it in the
<experimental/optional> header.

std::optional is still a value type (so it can be copied, via deep copy). Additionally,
std::optional doesn’t need to allocate any memory on the free store.

std::optional is a part of C++ vocabulary types alongwith std::any, std::variant
and std::string_view.

std::optional 84

When to Use

You can usually use an optional wrapper in the following scenarios:

1) If you want to represent a nullable type.

• Rather than using unique values (like -1, nullptr, NO_VALUE or something)

• For example, a user’s middle name is optional. You could assume that an empty string
would work here, but knowing if a user entered something or not might be important.
std::optional<std::string> gives you more information.

2) Return a result of some computation (processing) that fails to
produce a value and is not an error.

For example, finding an element in a dictionary: if there’s no element under a key, it’s not
an error, but we need to handle the situation.

3) To perform lazy-loading of resources.

For example, if the construction of a resource type is substantial, or if there’s no default
constructor, you can define it as std::optional<Resource>. In that form, you can pass
it around the system, and then initialise it (load a resource), when the application wants to
access it for the first time.

4) To pass optional parameters into functions.

The documentation for boost.optional has a useful summary on when we should use
the type, see in When to use Optional¹:

It is recommended to use optional<T> in situations where there is exactly one, clear (to
all parties) reason for having no value of type T, and where the lack of value is as natural
as having any regular value of T.

While sometimes the decision to use optional might be blurry, it best suits the cases when
the value is empty, and it’s a normal state of the program.

¹https://www.boost.org/doc/libs/1_67_0/libs/optional/doc/html/boost_optional/tutorial/when_to_use_optional.html

https://www.boost.org/doc/libs/1_67_0/libs/optional/doc/html/boost_optional/tutorial/when_to_use_optional.html
https://www.boost.org/doc/libs/1_67_0/libs/optional/doc/html/boost_optional/tutorial/when_to_use_optional.html

std::optional 85

A Basic Example

Here’s a simple example of what you can do with optional:

// UI class...
std::optional<std::string> UI::FindUserNick() {

if (IsNickAvailable())
return mStrNickName; // return a string

return std::nullopt; // same as return { };
}

// use:
std::optional<std::string> UserNick = UI->FindUserNick();
if (UserNick)

Show(*UserNick);

In the above code, we define a function that returns an optional containing a string. If
the user’s nickname is available, then it will return a string. If not, then it returns nullopt.
Later we can assign it to an optional and check (it converts to bool) if it contains any value
or not. Optional defines operator* so we can easily access the stored value.

In the following sections, you’ll see how to create std::optional, operate on it, pass it
around, and even what is the performance cost you might want to consider.

std::optional Creation

There are several ways to create std::optional:

• Initialise as empty

• Directly with a value

• With a value using deduction guides

• By using make_optional

• With std::in_place

• From other optional

std::optional 86

See code below:

// empty:
std::optional<int> oEmpty;
std::optional<float> oFloat = std::nullopt;

// direct:
std::optional<int> oInt(10);
std::optional oIntDeduced(10); // deduction guides

// make_optional
auto oDouble = std::make_optional(3.0);
auto oComplex = std::make_optional<std::complex<double>>(3.0, 4.0);

// in_place
std::optional<std::complex<double>> o7{std::in_place, 3.0, 4.0};

// will call vector with direct init of {1, 2, 3}
std::optional<std::vector<int>> oVec(std::in_place, {1, 2, 3});

// copy from other optional:
auto oIntCopy = oInt;

As you can see in the above code sample, you have a lot of flexibility with the creation
of optional. It’s straightforward for primitive types, and this simplicity is extended even to
complex types.

If youwant the full control over the creation and efficiency, it’s also good to knowin_place
helper types.

in_place Construction

std::optional is a wrapper type, so you should be able to create optional objects almost
in the same way as the wrapped object. And in most cases you can:

std::optional<std::string> ostr{"Hello World"};
std::optional<int> oi{10};

std::optional 87

You can write the above code without stating the constructor such as:

std::optional<std::string> ostr{std::string{"Hello World"}};
std::optional<int> oi{int{10}};

Because std::optional has a constructor that takes U&& (a universal reference to a type
that converts to the type stored in the optional). In our case it’s recognised as const char*
and strings can be initialised from it.

So what’s the advantage of using std::in_place_t in std::optional?

There are at least two crucial reasons:

• Default constructor

• Efficient construction for constructors with many arguments

Default Construction

If you have a class with a default constructor, like:

class UserName {
public:

UserName() : mName("Default") {

}
// ...

};

How would you create an optional that contains UserName{}?

You can write:

std::optional<UserName> u0; // empty optional
std::optional<UserName> u1{}; // also empty

// optional with default constructed object:
std::optional<UserName> u2{UserName()};

That works but it creates an additional temporary object. If we traced each different
constructor and destructor calls, we would get the following output:

std::optional 88

UserName::UserName('Default')
UserName::UserName(move 'Default') // move temp object
UserName::~UserName('') // delete the temp object
UserName::~UserName('Default')

The code creates a temporary object and then moves it into the object stored in optional.

Here we can use a more efficient constructor - by leveraging std::in_place_t:

std::optional<UserName> opt{std::in_place};

With constructor and destructor traces you’d get the following output:

UserName::UserName('Default')
UserName::~UserName('Default')

The object stored in the optional is created in place, in the same way as you’d call
UserName{}. No additional copy or move is needed.

See the example in Chapter Optional/optional_in_place_default.cpp. In the
file, you’ll also see the traces for constructors and destructor.

Non Copyable/Movable Types

As you saw in the example from the previous section, if you use a temporary object to
initialise the contained value inside std::optional then the compiler will have to use a
move or a copy constructor.

But what if your type doesn’t allow that? For example, std::mutex is not movable or
copyable.

In that case, std::in_place is the only way to work with such types.

Constructors With Many Arguments

Another use case is a situation where your type has more arguments in a constructor. By
default optional can work with a single argument (r-value ref), and efficiently pass it to
the wrapped type. But what if you’d like to initialise Point(x, y)?

You can always create a temporary copy and then pass it in the construction:

std::optional 89

Chapter Optional/optional_point.cpp

struct Point {
Point(int a, int b) : x(a), y(b) { }

int x;
int y;

};

std::optional<Point> opt{Point{0, 0}}; // temp created!

or use in_place and the version of the constructor that handles variable argument list:

template< class... Args >
constexpr explicit optional(std::in_place_t, Args&&... args);

// or initializer_list:

template< class U, class... Args >
constexpr explicit optional(std::in_place_t,

std::initializer_list<U> ilist,
Args&&... args);

Your code can look like this:

std::optional<Point> opt{std::in_place_t, 0, 0};

The second option is quite verbose and omits to create temporary objects. Temporaries,
especially for containers or larger objects, are not as efficient as constructing in place.

std::make_optional()

If you don’t like std::in_place then you can look at make_optional factory function.

The code:

auto opt = std::make_optional<UserName>();
auto opt = std::make_optional<Point>(0, 0);

std::optional 90

Is as efficient as:

std::optional<UserName> opt{std::in_place};
std::optional<Point> opt{std::in_place_t, 0, 0};

std::make_optional implements in place construction equivalent to:

return std::optional<T>(std::in_place, std::forward<Args>(args)...);

Also due to mandatory copy elision there is no temporary object involved.

Returning std::optional

If you return an optional from a function, then it’s very convenient to return juststd::nullopt
or the computed value.

Chapter Optional/optional_return_rvo.cpp

std::optional<std::string> TryParse(Input input) {
if (input.valid())

return input.asString();

return std::nullopt;
}

// use:
auto oStr = TryParse(Input{...});

In the above example, you can see that the function returns std::string computed from
input.asString() and it’s wrapped in optional. If the value is unavailable, then it
returns std::nullopt.

Due to mandatory copy elision from C++17 ² the optional object - oStr will be created at
the caller site.

Alternatively, you can also try with non-standardised Named Returned Value Optimisation.
This happens when you create an object at the beginning of a function and then return it.

²Read more in section “Guaranteed Copy Elision” in the General Language Features Chapter

std::optional 91

Chapter Optional/optional_return_rvo.cpp

std::optional<std::string> TryParseNrvo(Input input) {
std::optional<std::string> oOut; // empty

if (input.valid())
oOut = input.asString();

return oOut;
}

// use:
auto oStr = TryParseNrvo(Input{...});

In the second example, the oStr object should also be created at the caller side. Play with
the sample, which includes extra logging to check the addresses of the optional variable.

Be Careful With Braces when Returning

You might be surprised by the following code³:

std::optional<std::string> CreateString() {
std::string str {"Hello Super Awesome Long String"};
return {str}; // this one will cause a copy

// return str; // this one moves
}

According to the Standard if you wrap a return value into braces {} then you prevent move
operations from happening. The returned object will be copied only.

This is similar to the case with non-copyable types:

std::unique_ptr<int> foo() {
std::unique_ptr<int> p;
return {p}; // tries to copy a unique_ptr and it fails to compile

// return p; // this one moves, so it's fine with unique_ptr
}

³Thanks to JFT for pointing that problem out.

std::optional 92

The Standard says [class.copy.elision]/3⁴

In the following copy-initialisation contexts, a move operation might be used instead of a
copy operation:

• If the expression in a return statement ([stmt.return]) is a (possibly parenthesised)
id-expression that names an object with automatic storage duration declared in
the body or parameter-declaration-clause of the innermost enclosing function or
lambda-expression, or

• if the operand of a throw-expression is the name of a non-volatile automatic object
(other than a function or catch-clause parameter) whose scope does not extend
beyond the end of the innermost enclosing try-block (if there is one),

Try playing with the example that is located in:

Chapter Optional/optional_return.cpp.

The code shows a few examples with std::unique_ptr, std::vector, std::string
and a custom type.

Accessing The Stored Value

Probably the most important operation for optional (apart from creation) is the way you can
fetch the contained value.

There are several options:

• operator* and operator-> - if there’s no value the behaviour is undefined!

• value() - returns the value, or throws std::bad_optional_access

• value_or(defaultVal) - returns the value if available, or defaultVal otherwise

To check if the value is present, you can use the has_value() method or check if
(optional) as optional is contextually convertible to bool.

⁴hhttps://timsong-cpp.github.io/cppwp/n4659/class.copy.elision#3

hhttps://timsong-cpp.github.io/cppwp/n4659/class.copy.elision#3
hhttps://timsong-cpp.github.io/cppwp/n4659/class.copy.elision#3

std::optional 93

Here’s an example that shows those possibilites:

// by operator*
std::optional<int> oint = 10;
std::cout<< "oint " << *oint << '\n';

// by value()
std::optional<std::string> ostr("hello");
try {

std::cout << "ostr " << ostr.value() << '\n';
}
catch (const std::bad_optional_access& e) {

std::cout << e.what() << '\n';
}

// by value_or()
std::optional<double> odouble; // empty
std::cout<< "odouble " << odouble.value_or(10.0) << '\n';

And here’s a handy pattern that checks if the value is present and then accesses it:

// compute string function:
std::optional<std::string> maybe_create_hello();
// ...

if (auto ostr = maybe_create_hello(); ostr)
std::cout << "ostr " << *ostr << '\n';

else
std::cout << "ostr is null\n";

std::optional Operations

Let’s see what other operations are available for the type.

Changing the Value & Object Lifetime

If you have an existing optional object, then you can quickly change the contained value by
using several operations like emplace, reset, swap, assign. If you assign (or reset) with a
nullopt then if the optional contains a value, its destructor will be called.

std::optional 94

Here’s an example that shows all of the cases:

Chapter Optional/optional_reset.cpp

#include <optional>
#include <iostream>
#include <string>

class UserName {
public:

explicit UserName(std::string str) : mName(std::move(str)) {
std::cout << "UserName::UserName('" << mName << "')\n";

}
~UserName() {

std::cout << "UserName::~UserName('" << mName << "')\n";
}

private:
std::string mName;

};

int main() {
std::optional<UserName> oEmpty;

// emplace:
oEmpty.emplace("Steve");

// calls ~Steve and creates new Mark:
oEmpty.emplace("Mark");

// reset so it's empty again
oEmpty.reset(); // calls ~Mark
// same as:
//oEmpty = std::nullopt;

// assign a new value:
oEmpty.emplace("Fred");
oEmpty = UserName("Joe");

}

Each time the object is changed, a destructor of the currently stored UserName is called.

std::optional 95

Comparisons

std::optional allows you to compare contained objects almost “naturally”, but with a
few exceptions when the operands are nullopt. See below:

Chapter Optional/optional_comparision.cpp

#include <optional>
#include <iostream>

int main() {
std::optional<int> oEmpty;
std::optional<int> oTwo(2);
std::optional<int> oTen(10);

std::cout << std::boolalpha;
std::cout << (oTen > oTwo) << '\n';
std::cout << (oTen < oTwo) << '\n';
std::cout << (oEmpty < oTwo) << '\n';
std::cout << (oEmpty == std::nullopt) << '\n';
std::cout << (oTen == 10) << '\n';

}

The above code generates:

true // (oTen > oTwo)
false // (oTen < oTwo)
true // (oEmpty < oTwo)
true // (oEmpty == std::nullopt)
true // (oTen == 10)

When operands contain values (of the same type), then you’ll see the expected results. But
when one operand is nullopt then it’s always “less” than any optional with some value.

Performance & Memory Consideration

When you use std::optional you’ll pay with an increased memory footprint.

The optional class wraps your type, prepares space for it and then adds one boolean
parameter. This means it will extend the size of your type according to the alignment rules.

std::optional 96

Conceptually your version of the standard library might implement optional as:

template <typename T>
class optional {
bool _initialized;
std::aligned_storage_t<sizeof(t), alignof(T)> _storage;

public: // operations
};

Alignment rules for the optional are defined as follows in optional.optional⁵:

The contained value shall be allocated in a region of the optional storage suitably aligned
for the type T.

For example, assuming sizeof(double) = 8 and sizeof(int) = 4:

std::optional<double> od; // sizeof = 16 bytes
std::optional<int> oi; // sizeof = 8 bytes

While the bool type usually takes only one byte, the optional type needs to obey the
alignment rules, and it’s larger than just sizeof(YourType) + 1 byte.

For example, if you have two types:

struct Range {
std::optional<double> mMin;
std::optional<double> mMax;

};

struct RangeCustom {
bool mMinAvailable;
bool mMaxAvailable;
double mMin;
double mMax;

};

⁵https://timsong-cpp.github.io/cppwp/n4659/optional.optional#1

https://timsong-cpp.github.io/cppwp/n4659/optional.optional#1
https://timsong-cpp.github.io/cppwp/n4659/optional.optional#1

std::optional 97

The Range takes up more space than RangeCustom. In the first case, we’re using 32 bytes!
The second version is 24 bytes. This is because the second class can “pack” boolean variables
at the front of the structure, while two optional objects in Range has to align to double.

You can see the full code in Chapter Optional/optional_sizeof.cpp.

Migration from boost::optional

std::optional was adapted directly from boost::optional, thus you should expect
the same experience in both versions. Moving from one to the other should be easy, but of
course, there are little differences.

The table below summarises the changes:

aspect std::optional boost::optional (as of 1.67.0⁶)
Move semantics yes yes
noexcept yes yes
hash support yes no
a throwing value accessor yes yes
literal type (can be used in
constexpr expressions)

yes no

in place construction `emplace`, tag
`in_place`

emplace(), tags
in_place_init_if_t,
in_place_init_t, utility
in_place_factory

disengaged state tag nullopt none
optional references no yes
conversion from
optional<U> to
optional<T>

yes yes

explicit convert to ptr
(get_ptr)

no yes

deduction guides yes no

The main difference is that std::optional supports hashing, can be used in constexpr
contexts and also has deduction guides. boost::optional however supports references
which is blocked in C++17 version ⁷.

⁷read more in “Why Optional References Didn’t Make It In C++17” at https://www.fluentcpp.com/2018/10/05/pros-cons-
optional-references/

https://www.boost.org/doc/libs/1_67_0/libs/optional/doc/html/index.html

std::optional 98

Special case: optional<bool> and optional<T*>

While you can use optional on any type, you need to pay attention to boolean and pointers.

optional<bool> - what does it model?With such a construction, you have a tri-state bool.
If you need it, then maybe it’s better to look for a real tri-state bool like boost::tribool⁸.

What’s more, it might be confusing to use such type because optional<bool> converts to
bool. Also, if there’s a value inside then accessing that value returns bool.

Likewise, you have a similar ambiguity with pointers:

// Don’t try doing it this way, it’s just an example!
std::optional<int*> opi { new int(10) };
if (opi && *opi) {

std::cout << **opi << std::endl;
delete *opi;

}

if (opi)
std::cout << "opi is still not empty!";

In the above example, you have to check opi to see if the optional is empty or not, but then
the value of opi can also be nullptr.

The pointer to int is naturally “nullable”, wrapping it into optional makes it confusing to
use.

Examples of std::optional

Here are a few more extended examples where std::optional fits nicely.

In the first example, you’ll see how to use optional in a class. In the second sample, we’ll
cover parsing of integers and storing the result in an optional.

⁸https://www.boost.org/doc/libs/1_67_0/doc/html/tribool.html

https://www.boost.org/doc/libs/1_67_0/doc/html/tribool.html
https://www.boost.org/doc/libs/1_67_0/doc/html/tribool.html

std::optional 99

User Name with an Optional Nickname and Age

Chapter Optional/optional_user_name.cpp

#include <optional>
#include <iostream>
using namespace std;

class UserRecord {
public:

UserRecord (string name, optional<string> nick, optional<int> age)
: mName{move(name)}, mNick{move(nick)}, mAge{age}
{ }

friend ostream& operator << (ostream& stream, const UserRecord& user);

private:
string mName;
optional<string> mNick;
optional<int> mAge;

};

ostream& operator << (ostream& os, const UserRecord& user) {
os << user.mName;

if (user.mNick)
os << ' ' << *user.mNick;

if (user.mAge)
os << ' ' << "age of " << *user.mAge;

return os;
}

int main() {
UserRecord tim { "Tim", "SuperTim", 16 };
UserRecord nano { "Nathan", nullopt, nullopt };

cout << tim << '\n';
cout << nano << '\n';

}

The above example shows a simple class with optional fields. While the name is obligatory,
the other attributes: “nickname” and “age” are optional.

std::optional 100

Parsing ints From the Command Line

Chapter Optional/optional_parsing.cpp

#include <optional>
#include <iostream>
#include <string>

std::optional<int> ParseInt(const char* arg) {
try {

return { std::stoi(std::string(arg)) };
}
catch (...) {

std::cerr << "cannot convert '" << arg << "' to int!\n";
}

return { };
}

int main(int argc, const char* argv[]) {
if (argc >= 3) {

auto oFirst = ParseInt(argv[1]);
auto oSecond = ParseInt(argv[2]);

if (oFirst && oSecond) {
std::cout << "sum of " << *oFirst << " and " << *oSecond;
std::cout << " is " << *oFirst + *oSecond << '\n';

}
}

}

The above code uses optional to indicate whether we performed the conversion or not.
Please note that we actually converted exception handling into optional, we suppress
exceptions that might appear in the conversion process. Such a technique might look
“controversial”.

The code uses stoi which might be replaced with new low-level functions from_chars.
You can read more about new conversion utilities in the String Conversions Chapter.

std::optional 101

Other Examples

Here are a few more ideas where you might use std::optional:

• Representing optional configuration values

• Geometry & Math: finding if there’s an intersection between objects

• Return values for Find*() functions (assuming you don’t care about errors, like
connection drops, database errors or something)

You may find other exciting uses in the post: A Wall of Your std::optional Examples⁹. The
blog post contains a lot of examples submitted by blog readers.

Summary

A few core elements to know about std::optional:

• std::optional is a wrapper type to express “null-able” types

• std::optional won’t use any dynamic allocation

• std::optional contains a value or it’s empty

– use operator *, operator->, value() or value_or() to access the under-
lying value.

• std::optional is implicitly converted to bool so that you can easily check if it
contains a value or not

Compiler Support

Feature GCC Clang MSVC
std::optional 7.1 4.0 VS 2017 15.0

⁹https://www.bfilipek.com/2018/06/optional-examples-wall.html

https://www.bfilipek.com/2018/06/optional-examples-wall.html
https://www.bfilipek.com/2018/06/optional-examples-wall.html

8. std::variant
Another handy wrapper type that we get in C++17 is std::variant. This is a type-safe
union - you can store different type variants with the proper object lifetime guarantee. The
new type offers a huge advantage over the C-style union. You can store all of the types
inside - no matter if it’s something simple like int, or float, but also complex entities like
std::vector<std::string>. In all of the cases, objects will be correctly initialised and
cleaned up.

What’s crucial is the fact that the new type enhances implementation of design patterns.
For example, you can now use a visitor, pattern matching and runtime polymorphism for
unrelated type hierarchies in a much easier way.

In this chapter, you’ll learn:

• What problems can occur with unions

• What discriminated unions are, and why we need type-safety with unions

• How std::variant works and what it does

• Operations on std::variant

• Performance cost and memory requirements

• Example use cases

std::variant 103

The Basics

Unions are rarely used in the client code, and most of the time, they should be avoided.

For example, there’s a “common” trick with floating-point operations:

union SuperFloat {
float f;
int i;

}

int RawMantissa(SuperFloat f) {
return f.i & ((1 << 23) - 1);

}
int RawExponent(SuperFloat f) {

return (f.i >> 23) & 0xFF;
}

However, while the above codemight work in C99, due to stricter aliasing rules it’s undefined
behaviour in C++!

There’s an existing Core Guideline Rule on that C.183¹:

C.183: Don’t use a union for type punning:

It is undefined behaviour to read a unionmember with a different type from the one with
which it was written. Such punning is invisible, or at least harder to spot than using a
named cast. Type punning using a union is a source of errors.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c183-dont-use-a-union-for-type-punning

Before C++17, if you wanted a type-safe union, you could use boost::variant or another
third-party library. But now you have std::variant.

Here’s a demo of what you can do with this new type:

¹http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c183-dont-use-a-union-for-type-punning

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c183-dont-use-a-union-for-type-punning
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c183-dont-use-a-union-for-type-punning
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c183-dont-use-a-union-for-type-punning
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c183-dont-use-a-union-for-type-punning

std::variant 104

Chapter Variant/variant_demo.cpp

1 #include <string>
2 #include <iostream>
3 #include <variant>
4
5 using namespace std;
6
7 // used to print the currently active type
8 struct PrintVisitor {
9 void operator()(int i) { cout << "int: " << i << '\n'; }

10 void operator()(float f) { cout << "float: " << f << '\n'; }
11 void operator()(const string& s) { cout << "str: " << s << '\n'; }
12 };
13
14 int main() {
15 variant<int, float, string> intFloatString;
16 static_assert(variant_size_v<decltype(intFloatString)> == 3);
17
18 // default initialised to the first alternative, should be 0
19 visit(PrintVisitor{}, intFloatString);
20
21 // index will show the currently used 'type'
22 cout << "index = " << intFloatString.index() << endl;
23 intFloatString = 100.0f;
24 cout << "index = " << intFloatString.index() << endl;
25 intFloatString = "hello super world";
26 cout << "index = " << intFloatString.index() << endl;
27
28 // try with get_if:
29 if (const auto intPtr = get_if<int>(&intFloatString))
30 cout << "int: " << *intPtr << '\n';
31 else if (const auto floatPtr = get_if<float>(&intFloatString))
32 cout << "float: " << *floatPtr << '\n';
33
34 if (holds_alternative<int>(intFloatString))
35 cout << "the variant holds an int!\n";
36 else if (holds_alternative<float>(intFloatString))
37 cout << "the variant holds a float\n";
38 else if (holds_alternative<string>(intFloatString))
39 cout << "the variant holds a string\n";
40
41 // try/catch and bad_variant_access
42 try {

std::variant 105

43 auto f = get<float>(intFloatString);
44 cout << "float! " << f << '\n';
45 }
46 catch (bad_variant_access&) {
47 cout << "our variant doesn't hold float at this moment...\n";
48 }
49 }

The output:

int: 0
index = 0
index = 1
index = 2
the variant holds a string
our variant doesn't hold float at this moment...

Several points are worth examining in the example above:

• Line 15, 19: If you don’t initialise a variant with a value, then the variant is initialised
with the first type. In that case, the first alternative type must have a default
constructor. Line 22 will print the value 0.

• Line: 22, 24, 26, 34, 36, 38: You can check what the currently used type is via index()
or holds_alternative.

• Line 29, 31: You can access the value by using get_if - it returns null pointer when
the type is not active.

• Line 43, 46: You can access the value by using get (the compiler might throw the
bad_variant_access exception).

• Type Safety - the variant doesn’t allow you to get a value of the type that’s not active.

• No extra heap allocation occurs.

• Line 8, 19: You can use a visitor to invoke an action on a currently active type. The
example uses PrintVisitor to print the currently active value. It’s a simple structure
with overloads for operator(). The visitor is then passed to std::visit which
performs the visitation.

• The variant class calls destructors and constructors of non-trivial types, so in the
example, the string object is cleaned up before we switch to new variants.

std::variant 106

When to Use

Unless you’re doing some low-level stuff, possibly only with simple types, then unions
might be a valid option². But for all other uses cases, where you need alternative types,
std::variant is the way to go.

Some possible uses:

• All the places where you might get a few types for a single field: so things like parsing
command lines, ini files, language parsers, etc.

• Expressing several possible outcomes of a computation efficiently: like finding roots of
equations.

• Error handling - for example you can return variant<Object, ErrorCode>. If
the value is available, then you return Object otherwise you assign some error code.

• Finite State Machines.

• Polymorphism without vtables and inheritance (thanks to the visitor pattern).

A Functional Background

It’s also worth mentioning that variant types (also called a tagged union, a discriminated
union, or a sum type) come from the functional language world and Type Theory³.

std::variant Creation

There are several ways you can create and initialize std::variant:

²See C++ Core Guidelines - Unions for examples of a valid use cases for unions.
³https://en.wikipedia.org/wiki/Algebraic_data_type

https://en.wikipedia.org/wiki/Algebraic_data_type
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#cunion-unions
https://en.wikipedia.org/wiki/Algebraic_data_type

std::variant 107

Chapter Variant/variant_creation.cpp

// default initialisation: (the first type has to have a default ctor)
std::variant<int, float> intFloat;
std::cout << intFloat.index() << ", val: " << std::get<int>(intFloat) << '\n';

// monostate for default initialisation:
class NotSimple {
public:

NotSimple(int, float) { }
};

// std::variant<NotSimple, int> cannotInit; // error
std::variant<std::monostate, NotSimple, int> okInit;
std::cout << okInit.index() << '\n';

// pass a value:
std::variant<int, float, std::string> intFloatString { 10.5f };
std::cout << intFloatString.index()

<< ", value " << std::get<float>(intFloatString) << '\n';

// ambiguity
// double might convert to float or int, so the compiler cannot decide

//std::variant<int, float, std::string> intFloatString { 10.5 };

// ambiguity resolved by in_place
variant<long, float, std::string> longFloatString {

std::in_place_index<1>, 7.6 // double!
};
std::cout << longFloatString.index() << ", value "

<< std::get<float>(longFloatString) << '\n';

// in_place for complex types
std::variant<std::vector<int>, std::string> vecStr {

std::in_place_index<0>, { 0, 1, 2, 3 }
};
std::cout << vecStr.index() << ", vector size "

<< std::get<std::vector<int>>(vecStr).size() << '\n';

// copy-initialize from other variant:
std::variant<int, float> intFloatSecond { intFloat };
std::cout << intFloatSecond.index() << ", value "

<< std::get<int>(intFloatSecond) << '\n';

std::variant 108

• By default, a variant object is initialised with the first type

– if that’s not possible when the type doesn’t have a default constructor, then you’ll
get a compiler error

– you can use std::monostate to pass it as the first type in that case
– std::monostate allows you to build a variant with “no-value” so it can behave
similarly to std::optional

• You can initialise it with a value, and then the best matching type is used

– if there’s an ambiguity, then you can use a version std::in_place_index to
explicitly mention what type should be used

• std::in_place also allows you to create more complex types and pass more
parameters to the constructor

About std::monostate

In the example, you might notice a special type called std::monostate. This is just an
empty type that can be used with variants to represent an empty state. The type might be
handy when the first alternative doesn’t have a default constructor. In that situation, you
can place std::monostate as the first alternative (or you can also shuffle the types, and
find the type with a default constructor).

In Place Construction

std::variant has two in_place helpers that you can use:

• std::in_place_type - used to specify which type you want to change/set in the
variant

• std::in_place_index - used to specify which index youwant to change/set. Types
are enumerated from 0.

– In a variant std::variant<int, float, std::string> - int has the
index 0, float has index 1 and the string has index of 2. The index is the same
value as returned from variant::index method.

Fortunately, you don’t always have to use the helpers to create a variant. It’s smart enough
to recognise if it can be constructed from the passed single parameter:

std::variant 109

// this constructs the second/float:
std::variant<int, float, std::string> intFloatString { 10.5f };

For a variant we need the helpers for at least two cases:

• ambiguity - to distinguish which type should be created where several could match

• efficient complex type creation (similar to optional)

Ambiguity

What if you have an initialisation like:

std::variant<int, float> intFloat { 10.5 }; // conversion from double?

The value 10.5 could be converted to int or float, and the compiler doesn’t know which
conversion should be applied. It might report a few pages of compiler errors. You can easily
handle such errors by specifying which type you’d like to create:

std::variant<int, float> intFloat { std::in_place_index<0>, 10.5 };
// or
std::variant<int, float> intFloat { std::in_place_type<int>, 10.5 };

Complex Types

Similarly to std::optional, if you want to efficiently create objects that require several
constructor arguments - then use std::in_place_index or std::in_place_type:

For example:

std::variant<std::vector<int>, std::string> vecStr {
std::in_place_index<0>, { 0, 1, 2, 3 } // initializer list passed into vector

};

Unwanted Type Conversions And Narrowing

std::variant in the first implementations used regular C++ rules for converting con-
structors and assignment operator. In a case when a conversion was required, the compiler
preferred narrowing conversions which might not be what you expected.

std::variant 110

For example:

std::variant<std::string, int, bool> vStrIntBool = "Hello World";

The above line created a variant with bool as the active type, not std::string.

The string literal "Hello World" is not the exact type that appears in vStrIntBool, so
the conversion has to happen. The compiler sees two possible conversions: one from const
char* into bool and then from const char* into std::string. Since bool is the built-
in type, the compiler will select it.

There’s another case with narrowing conversions:

variant<float, long, double> v = 0;

Before the fix, this line won’t compile (we have several narrowing conversions possible), but
after the improvement, it will hold long.

The implementation was improved through the fix from P0608: A sane variant converting
constructor⁴ and is ready since GCC 10.0.

Below you can see a table that shows what type will be selected for a given expression, we
have a colum before and after the fix (P0608):

Expression Before Fix After Fix
1. variant<bool, string> v = "Hello" bool string
2. variant<float, optional<double>> x = 10.05 float optional
3. variant<float, char> v = 0 ill-formed ill-formed
4. variant<float, long> v = 0 ill-formed selects long

Notes:

1. the narrowing bool conversion is not taken into account now, and string is selected
2. prefers non-narrowing conversion into std::optional
3. both narrowing conversions required so the whole expression won’t compile

4. before the fix the two conversions were possible after the fix float is not considered

Try to match the exact type that is available in a given std::variant to limit
the case of unexpected conversions.

⁴https://wg21.link/p0608

https://wg21.link/p0608
https://wg21.link/p0608
https://wg21.link/p0608

std::variant 111

Changing the Values

There are four ways to change the current value of the variant:

• the assignment operator

• emplace

• get and then assign a new value for the currently active type

• a visitor (you cannot change the type, but you can change the value of the current
alternative)

The important part is to know that everything is type-safe and also that the object lifetime
is honoured.

Chapter Variant/variant_changing_values.cpp

std::variant<int, float, std::string> intFloatString { "Hello" };

intFloatString = 10; // we're now an int

intFloatString.emplace<2>(std::string("Hello")); // we're now string again

// std::get returns a reference, so you can change the value:
std::get<std::string>(intFloatString) += std::string(" World");

intFloatString = 10.1f;
if (auto pFloat = std::get_if<float>(&intFloatString); pFloat)

*pFloat *= 2.0f;

Object Lifetime

When you use union, you need to manage the internal state: call constructors or destructors.
This is error-prone, and it’s easy to shoot yourself in the foot. But std::variant handles
object lifetime as you expect. That means that if it’s about to change the currently stored
type, then a destructor of the underlying type is called.

std::variant 112

std::variant<std::string, int> v { "Hello A Quite Long String" };
// v allocates some memory for the string
v = 10; // we call destructor for the string!
// no memory leak

Or see this example with a custom type:

Chapter Variant/variant_lifetime.cpp

class MyType {
public:

MyType() { std::cout << "MyType::MyType\n"; }
~MyType() { std::cout << "MyType::~MyType\n"; }

};

class OtherType {
public:

OtherType() { std::cout << "OtherType::OtherType\n"; }
~OtherType() { std::cout << "OtherType::~OtherType\n"; }

};

int main() {
std::variant<MyType, OtherType> v;
v = OtherType();

return 0;
}

This will produce the following output:

MyType::MyType
OtherType::OtherType
MyType::~MyType
OtherType::~OtherType
OtherType::~OtherType

At the start, we initialise with a default value of type MyType; then we change the value
with an instance of OtherType, and before the assignment, the destructor of MyType is
called. Later we destroy the temporary object and the object stored in the variant.

std::variant 113

Accessing the Stored Value

From all of the examples you’ve seen so far, you might get an idea of how to access the value.
But let’s make a summary of this vital operation.

First of all, even if you know what the currently active type is you cannot do:

std::variant<int, float, std::string> intFloatString { "Hello" };
std::string s = intFloatString;

// error: conversion from
// 'std::variant<int, float, std::string>'
// to non-scalar type 'std::string' requested
// std::string s = intFloatString;

So you have to use helper functions to access the value.

You have std::get<Type|Index>(variant) which is a non member function. It
returns a reference to the desired type if it’s active (you can pass a Type or Index). If not
then you’ll get std::bad_variant_access exception.

std::variant<int, float, std::string> intFloatString;
try {

auto f = std::get<float>(intFloatString);
std::cout << "float! " << f << '\n';

}
catch (std::bad_variant_access&) {

std::cout << "our variant doesn't hold float at this moment...\n";
}

The next option is std::get_if. This function is also a non-member and won’t throw. It
returns a pointer to the active type or nullptr. While std::get needs a reference to the
variant, std::get_if takes a pointer.

if (const auto intPtr = std::get_if<0>(&intFloatString))
std::cout << "int!" << *intPtr << '\n';

However, probably the most important way to access a value inside a variant is by using
visitors.

std::variant 114

Visitors for std::variant

With the introduction of std::variant, we also got a handy STL function called
std::visit.

It can call a given “visitor” on all passed variants.

Here’s the declaration:

template <class Visitor, class... Variants>
constexpr visit(Visitor&& vis, Variants&&... vars);

And it will call vis on the currently active type of variants.

If you pass only one variant, then you have to have overloads for the types from that variant.
If you give two variants, then you have to have overloads for all possible pairs of the types
from the variants.

A visitor is “a Callable that accepts every possible alternative from every variant”.

Let’s see some examples:

// a generic lambda:
auto PrintVisitor = [](const auto& t) { std::cout << t << '\n'; };

std::variant<int, float, std::string> intFloatString { "Hello" };
std::visit(PrintVisitor, intFloatString);

In the above example, a generic lambda is used to generate all possible overloads. Since all
of the types in the variant support << (stream output operator) then we can print them.

In another example we can use a visitor to change the value:

auto PrintVisitor = [](const auto& t) { std::cout << t << '\n'; };
auto TwiceMoreVisitor = [](auto& t) { t*= 2; };

std::variant<int, float> intFloat { 20.4f };
std::visit(PrintVisitor, intFloat);
std::visit(TwiceMoreVisitor, intFloat);
std::visit(PrintVisitor, intFloat);

Generic lambdas can work if our types share the same “interface”, but in most cases, we’d
like to perform different actions based on an active type.

That’s why we can define a structure with several overloads for the operator():

std::variant 115

struct MultiplyVisitor {
float mFactor;

MultiplyVisitor(float factor) : mFactor(factor) { }

void operator()(int& i) const {
i *= static_cast<int>(mFactor);

}

void operator()(float& f) const {
f *= mFactor;

}

void operator()(std::string&) const {
// nothing to do here...

}
};

std::visit(MultiplyVisitor(0.5f), intFloat);
std::visit(PrintVisitor, intFloat);

In the example, you might notice that MultiplyVisitor uses a state to hold the desired
scaling factor value. That gives a lot of options for visitation.

With lambdas, we got used to declaring things just next to its usage. And when you need
to write a separate structure, you need to go out of that local scope. That’s why it might be
handy to use overload construction.

Overload

With this utility you can write all lambdas for all matching types in one place:

std::variant 116

std::variant<int, float, std::string> myVariant;
std::visit(
overload {
[](const int& i) { std::cout << "int: " << i; },
[](const std::string& s) { std::cout << "string: " << s; },
[](const float& f) { std::cout << "float: " << f; }

},
myVariant

);

Currently this helper is not a part of the Standard Library (it might be added into with
C++20). You can implement it with the following code:

template<class... Ts> struct overload : Ts... { using Ts::operator()...; };
template<class... Ts> overload(Ts...) -> overload<Ts...>;

The code creates a struct that inherits from lambdas and uses their Ts::operator().
The whole structure can now be passed to std::visit - it will then select the proper
overload.

overload uses three C++17 features:

• Pack expansions in using declarations - short and compact syntax with variadic
templates.

• Custom template argument deduction rules - this allows the compiler to deduce types
of lambdas that are the base classes for the pattern. Without it, we’d have to define a
“make” function.

• Extension to aggregate Initialisation - the overload pattern uses aggregate initialisation
to init base classes. Before C++17, it was not possible.

std::variant 117

Here’s another example of how to use the overload pattern:

Chapter Variant/variant_overload.cpp

std::variant<int, float, std::string> intFloatString { "Hello" };
std::visit(overload{

[](int& i) { i*= 2; },
[](float& f) { f*= 2.0f; },
[](std::string& s) { s = s + s; }

}, intFloatString);
std::visit(PrintVisitor, intFloatString);
// prints: "HelloHello"

Here’s the paper for the proposal of std::overload: P0051 - C++ generic overload
function⁵.

And you can read more about the mechanics of the overload pattern in this blog post at
bfilipek.com: 2 Lines Of Code and 3 C++17 Features - The overload Pattern⁶

Visiting Multiple Variants

std::visit allows you not only to visit one variant but many in the same call. However,
it’s essential to know that with multiple variants, you have to implement function overloads
taking as many arguments as the number of input variants. And you have to provide all the
possible combination of types.

For example for:

std::variant<int, float, char> v1 { 's' };
std::variant<int, float, char> v2 { 10 };

You have to provide 9 function overloads if you call std::visit on the two variants:

⁵https://wg21.link/p0051r3
⁶https://www.bfilipek.com/2019/02/2lines3featuresoverload.html

https://wg21.link/p0051r3
https://wg21.link/p0051r3
https://www.bfilipek.com/2019/02/2lines3featuresoverload.html
https://wg21.link/p0051r3
https://www.bfilipek.com/2019/02/2lines3featuresoverload.html

std::variant 118

std::visit(overload{
[](int a, int b) { },
[](int a, float b) { },
[](int a, char b) { },
[](float a, int b) { },
[](float a, float b) { },
[](float a, char b) { },
[](char a, int b) { },
[](char a, float b) { },
[](char a, char b) { }

}, v1, v2);

If you skip one overload, then the compiler will report an error.

Have a look at the following example, where each variant represents an ingredient and we
want to compose two of them together:

Chapter Variant/visit_multiple.cpp

#include <iostream>
#include <variant>

template<class... Ts> struct overload : Ts... { using Ts::operator()...; };
template<class... Ts> overload(Ts...) -> overload<Ts...>;

struct Pizza { };
struct Chocolate { };
struct Salami { };
struct IceCream { };

int main() {
std::variant<Pizza, Chocolate, Salami, IceCream> firstIngredient{IceCream()};
std::variant<Pizza, Chocolate, Salami, IceCream> secondIngredient{Chocolate()};

std::visit(overload{
[](const Pizza& p, const Salami& s) {

std::cout << "here you have, Pizza with Salami!\n";
},

[](const Salami& s, const Pizza& p) {
std::cout << "here you have, Pizza with Salami!\n";

},
[](const Chocolate& c, const IceCream& i) {

std::cout << "Chocolate with IceCream!\n";
},

std::variant 119

[](const IceCream& i, const Chocolate& c) {
std::cout << "IceCream with a bit of Chocolate!\n";

},
[](const auto& a, const auto& b) {

std::cout << "invalid composition...\n";
},

}, firstIngredient, secondIngredient);

return 0;
}

The code will output: IceCream with a bit of Chocolate!

The above code uses overload and uses multiple lambdas rather than a separate struct
with overloads for operator().

What’s interesting is that the example provides implementation only for “valid” ingredient
compositions, while the “rest” is handled by generic lambdas (from C++14).

A generic lambda [](const auto& a, const auto& b) { } is equivalent to the
following callable type:

class UnnamedUniqueClass { // << compiler specific name...
public:

template<typename T, typename U>
auto operator () (const T& a, const T& b) const { }

};

The generic lambda used in the example will provide all the remaining function overloads
for the ingredient types. Since it’s a template, it will always fall behind the concrete overload
(lambda with concrete types) when the best viable function is determined.

Other std::variant Operations

Just for the sake of completeness:

• You can compare two variants of the same type:

– if they contain the same active alternative, then the corresponding comparison
operator is called.

std::variant 120

– If one variant has an “earlier” alternative then it’s “less than” the variant with the
next active alternative.

• Variant is a value type, so you can move it.

• std::hash on a variant is specialised if std::hash is available for all type alterna-
tives. The hash value might be different than a hash for an active type as this enables
to distinguish between variants that have duplicated types like std::variant<int,
int, float>.

Exception Safety Guarantees

So far everything looks nice and smooth… but what happens when there’s an exception
during the creation of the alternative in a variant?

For example:

Chapter Variant/variant_valueless.cpp

class ThrowingClass {
public:

explicit ThrowingClass(int i) { if (i == 0) throw int (10); }
operator int () { throw int(10); }

};

int main(int argc, char** argv) {
std::variant<int, ThrowingClass> v;

// change the value:
try {

v = ThrowingClass(0);
}
catch (...) {

std::cout << "catch(...)\n";
// we keep the old state!
std::cout << v.valueless_by_exception() << '\n';
std::cout << std::get<int>(v) << '\n';

}

// inside emplace
try {

v.emplace<0>(ThrowingClass(10)); // calls the operator int
}

std::variant 121

catch (...) {
std::cout << "catch(...)\n";
// the old state was destroyed, so we're not in invalid state!
std::cout << v.valueless_by_exception() << '\n';

}

return 0;
}

In the first case - with the assignment operator - the exception is thrown in the constructor
of the type. This happens before the old value is replaced in the variant, so the variant state
is unchanged. As you can see we can still access int and print it.

However, in the second case - emplace - the exception is thrown after the old state of the
variant is destroyed. emplace calls operator int to replace the value, but that throws.
After that, the variant is in a wrong state, and we cannot recover the previous state.

Also note that a variant that is “valueless by exception” is in an invalid state. Accessing a
value from such variant is not possible. That’s why variant::index returns variant_-
npos, and std::get and std::visit will throw bad_variant_access.

Performance & Memory Considerations

std::variant uses the memory in a similar way to union: so it will take the max size of
the underlying types. But since we need something that will know what the currently active
alternative is, then we need to use some more space. Plus everything needs to honour the
alignment rules.

Here are some basic sizes:

Chapter Variant/variant_sizeof.cpp

std::cout << "sizeof string: "
<< sizeof(std::string) << '\n';

std::cout << "sizeof variant<int, string>: "
<< sizeof(std::variant<int, std::string>) << '\n';

std::cout << "sizeof variant<int, float>: "
<< sizeof(std::variant<int, float>) << '\n';

std::variant 122

std::cout << "sizeof variant<int, double>: "
<< sizeof(std::variant<int, double>) << '\n';

On GCC 8.1, 32 bit:

sizeof string: 32
sizeof variant<int, string>: 40
sizeof variant<int, float>: 8
sizeof variant<int, double>: 16

What’smore interesting is thatstd::variantwon’t allocate any extra space! No dynamic
allocation happens to hold variants or the discriminator.

To have a safe sum type, you pay with an increased memory footprint. The additional bits
might influence CPU caches. That’s why you might want to do some benchmarking for the
hot spots in your application that uses variants.

Migration From boost::variant

Boost Variant was introduced around the year 2004, so it was 13 years of experience before
std::variant was added into the Standard. The STL type draws from the experience of
the boost version and improves it.

Here are the main changes:

Feature Boost.Variant (1.67.0)⁷ std::variant
Extra memory allocation Possible on assignment, see Design Overview -

Never Empty⁸
No

visiting apply_visitor std::visit
get by index no yes
recursive variant yes, see make_recursive_variant⁹ no
duplicated entries no yes
empty alternative boost::blank std::monostate

⁸https://www.boost.org/doc/libs/1_67_0/doc/html/variant/design.html
⁹https://www.boost.org/doc/libs/1_67_0/doc/html/boost/make_recursive_variant.html

https://www.boost.org/doc/libs/1_67_0/doc/html/variant.html
https://www.boost.org/doc/libs/1_67_0/doc/html/variant/design.html
https://www.boost.org/doc/libs/1_67_0/doc/html/variant/design.html
https://www.boost.org/doc/libs/1_67_0/doc/html/boost/make_recursive_variant.html
https://www.boost.org/doc/libs/1_67_0/doc/html/variant/design.html
https://www.boost.org/doc/libs/1_67_0/doc/html/boost/make_recursive_variant.html

std::variant 123

Examples of std::variant

Having learned most of the std::variant details, we can now explore a few examples.

Error Handling

The basic idea is to wrap the possible return type with some ErrorCode, and that way
allow functions to output more information about the errors. Without using exceptions or
output parameters. This is similar to what std::expected - a new type planned for the
future C++ Standard.

Chapter Variant/variant_error_handling.cpp

enum class ErrorCode {
Ok,
SystemError,
IoError,
NetworkError

};

std::variant<std::string, ErrorCode> FetchNameFromNetwork(int i) {
if (i == 0)

return ErrorCode::SystemError;

if (i == 1)
return ErrorCode::NetworkError;

return std::string("Hello World!");
}

int main() {
auto response = FetchNameFromNetwork(0);
if (std::holds_alternative<std::string>(response))

std::cout << std::get<std::string>(response) << "n";
else

std::cout << "Error!\n";

response = FetchNameFromNetwork(10);
if (std::holds_alternative<std::string>(response))

std::cout << std::get<std::string>(response) << "n";
else

std::cout << "Error!\n";

std::variant 124

return 0;
}

In the example, ErrorCode or a regular type is returned.

Parsing a Command Line

Command line might contain text arguments that could be interpreted in a few ways:

• as an integer

• as a floating-point

• as a boolean flag

• as a string (not parsed)

• or some other types…

We can build a variant that will hold all the possible options.

Here’s a simple version with int, float and string:

Chapter Variant/variant_parsing_int_float.cpp

class CmdLine {
public:

using Arg = std::variant<int, float, std::string>;

private:
std::map<std::string, Arg> mParsedArgs;

public:
explicit CmdLine(int argc, const char** argv) { ParseArgs(argc, argv); }

std::optional<Arg> Find(const std::string& name) const;

// ...
};

And the parsing code:

std::variant 125

Chapter Variant/variant_parsing_int_float.cpp

CmdLine::Arg TryParseString(std::string_view sv) {
// try with float first
float fResult = 0.0f;
const auto last = sv.data() + sv.size();
const auto res = std::from_chars(sv.data(), last, fResult);
if (res.ec != std::errc{} || res.ptr != last) {

// if not possible, then just assume it's a string
return std::string{sv};

}

// no fraction part? then just cast to integer
if (static_cast<int>(fResult) == fResult)

return static_cast<int>(fResult);

return fResult;
}

void CmdLine::ParseArgs(int argc, const char** argv) {
// the form: -argName value -argName value
for (int i = 1; i < argc; i+=2) {

if (argv[i][0] != '-') // super advanced pattern matching! :)
throw std::runtime_error("wrong command name");

mParsedArgs[argv[i]+1] = TryParseString(argv[i+1]);
}

}

At the moment of writing, std::from_chars in GCC/Clang only supports
integers. MSVC starting from the version 2017 15.8 has full support also for
floating-point numbers. You can read more about from_chars in the separate
String Conversions Chapter. If you want to play with the code in GCC/Clang, you
can use the following file variant_parsing_int_float_gcc.cpp - it works
only with integers and strings.

The idea of TryParseString is to try parsing the input string into the best matching type.
So if it looks like an integer, then we try to fetch an integer. Otherwise, we’ll return an
unparsed string. Of course, we can extend this approach.

After the parsing is complete the client can use Find() method to test for existence of a
parameter:

std::variant 126

std::optional<CmdLine::Arg> CmdLine::Find(const std::string& name) const {
if (const auto it = mParsedArgs.find(name); it != mParsedArgs.end())

return it->second;

return { };
}

Find() uses std::optional to return the value. If the argument cannot be found in the
map, then the client will get empty optional.

Example of how we can use it:

Chapter Variant/variant_parsing_int_float.cpp

try {
CmdLine cmdLine(argc, argv);

if (auto arg = cmdLine.Find("paramInt"); arg)
std::cout << "paramInt is " << std::get<int>(*arg) << '\n';

if (auto arg = cmdLine.Find("paramFloat"); arg) {
if (const auto intPtr = std::get_if<int>(&*arg); intPtr)

std::cout << "paramFloat is " << *intPtr << " (integer)\n";
else

std::cout << "paramFloat is " << std::get<float>(*arg) << '\n';
}

if (auto arg = cmdLine.Find("paramText"); arg)
std::cout << "paramText is " << std::get<std::string>(*arg) << '\n';

}
catch (const std::bad_variant_access& err) {

std::cerr << " ...err: accessing a wrong variant type, "
<< err.what() << '\n';

}
catch (const std::runtime_error &err) {

std::cerr << " ...err: " << err.what() << '\n';
}

The above example uses cmdLine.Find() to check if there’s a given parameter. It returns
std::optional so we have to check if it’s not empty. When we’re sure the parameter is
available, we can check its type.

CmdLine tries to find the best matching type, so for example, with floats, we have ambiguity
- as 90 is also float but the code will store it as int (as it doesn’t have the fraction part).

std::variant 127

To solve such ambiguities, we could pass some additional information about the desired type,
or provide some helper methods.

Parsing a Config File

The idea comes from the previous example of a command line. In the case of a configuration
file, we usually work with pairs of <Name, Value>. Where Value might be a different
type: string, int, array, bool, float, etc.

For such a use case, even void* could be used to hold such an unknown type. However, this
pattern is extremely error-prone. We could improve the design by using std::variant if
we know all the possible types, or leverage std::any.

State Machines

How about modelling a state machine? For example, door’s state:

Door State Machine

We can use different types of states and the use visitors as events:

std::variant 128

Chapter Variant/variant_fsm.cpp

struct DoorState {
struct DoorOpened {};
struct DoorClosed {};
struct DoorLocked {};

using State = std::variant<DoorOpened, DoorClosed, DoorLocked>;

void open() {
m_state = std::visit(OpenEvent{}, m_state);

}

void close() {
m_state = std::visit(CloseEvent{}, m_state);

}

void lock() {
m_state = std::visit(LockEvent{}, m_state);

}

void unlock() {
m_state = std::visit(UnlockEvent{}, m_state);

}

State m_state;
};

And here are the events:

Chapter Variant/variant_fsm.cpp

struct OpenEvent {
State operator()(const DoorOpened&){ return DoorOpened(); }
State operator()(const DoorClosed&){ return DoorOpened(); }
// cannot open locked doors
State operator()(const DoorLocked&){ return DoorLocked(); }

};

struct CloseEvent {
State operator()(const DoorOpened&){ return DoorClosed(); }
State operator()(const DoorClosed&){ return DoorClosed(); }
State operator()(const DoorLocked&){ return DoorLocked(); }

};

std::variant 129

struct LockEvent {
// cannot lock opened doors
State operator()(const DoorOpened&){ return DoorOpened(); }
State operator()(const DoorClosed&){ return DoorLocked(); }
State operator()(const DoorLocked&){ return DoorLocked(); }

};

struct UnlockEvent {
// cannot unlock opened doors
State operator()(const DoorOpened&){ return DoorOpened(); }
State operator()(const DoorClosed&){ return DoorClosed(); }
// unlock
State operator()(const DoorLocked&){ return DoorClosed(); }

};

We can now create Door object and switch between states:

DoorState state;
assert(std::holds_alternative<DoorState::DoorOpened>(state.m_state));
state.lock();
assert(std::holds_alternative<DoorState::DoorOpened>(state.m_state));

You can read more about state machines and implementation of a simple space game in the
following blog post: A std::variant-Based State Machine by Example¹⁰.

Polymorphism

Most of the time in C++, we can safely use runtime polymorphism based on a vtable
approach. You have a collection of related types that share the same interface, and you have
a well defined virtual method that can be invoked.

But what if you have “unrelated” types that don’t share the same base class? What if you’d
like to quickly add new functionality without changing the code of the supported types?

With std::variant and std::visit we can build the following example:

¹⁰https://www.bfilipek.com/2019/06/fsm-variant-game.html

https://www.bfilipek.com/2019/06/fsm-variant-game.html
https://www.bfilipek.com/2019/06/fsm-variant-game.html

std::variant 130

Chapter Variant/variant_polymorphism.cpp

class Triangle {
public:

void Render() { std::cout << "Drawing a triangle!\n"; }
};

class Polygon {
public:

void Render() { std::cout << "Drawing a polygon!\n"; }
};

class Sphere {
public:

void Render() { std::cout << "Drawing a sphere!\n"; }
};

int main() {
std::vector<std::variant<Triangle, Polygon, Sphere>> objects {

Polygon(),
Triangle(),
Sphere(),
Triangle()

};

auto CallRender = [](auto& obj) { obj.Render(); };

for (auto& obj : objects)
std::visit(CallRender, obj);

}

The above example shows only the first case of invoking a method from unrelated types. It
wraps all the possible shape types into a single variant and then uses a visitor to dispatch
the call to the proper type.

If you’d like, for example, to sort objects, then you can write another visitor, one that holds
some state. And that way you’ll get more functionality without changing the types.

std::variant 131

Wrap Up

Here are the things to remember about std::variant:

• It holds one of several alternatives in a type-safe way

• No extra memory allocation is needed. The variant needs the size of the max of the
sizes of the alternatives, plus some little extra space for knowing the currently active
value

• By default, it initialises with the default value of the first alternative

• You can access the value through std::get, std::get_if or through a form of a
visitor

• To check the currently active type you can use std::holds_alternative or
std::variant::index

• std::visit provides a way to perform an operation that is implemented for any
possible type that might currently be the active one in the variant. Such a polymorphic
operation is represented by a callable object that implements its call-operator for every
possible type that this variant can hold

• Rarely std::variant might get into an invalid state, you can check this issue with
the valueless_by_exception() method

Compiler Support

Feature GCC Clang MSVC
std::variant 7.1 4.0 VS 2017 15.0

9. std::any
With std::optional you can represent a regular Type values or mark it as empty. With
std::variant you can wrap several type alternatives into one entity. But C++17 gives us
one more wrapper type: std::any which can hold anything in a type-safe way.

In this chapter, you’ll learn:

• Why void* is a very unsafe pattern

• std::any and its primary usage

• std::any use cases with examples

• any_cast and how to use all its “modes”

std::any 133

The Basics

In C++14 there weren’t many options for holding variable types in a variable. You could use
void*, of course, but this wasn’t safe. void* is just a raw pointer, and you have to manage
the whole object lifetime and protect it from casting to a different type.

Potentially, void* could be wrapped in a class with some type discriminator.

class MyAny {
void* _value;
TypeInfo _typeInfo;

};

As you see, we have some basic form of the type, but there’s a bit of coding required to make
sure MyAny is type-safe. That’s why it’s best to use the Standard Library rather than rolling
a custom implementation.

And this is what std::any from C++17 is in its basic form. It lets you store anything in an
object, and it reports errors (or throw exceptions) when you’d like to access a type that is
not active.

A little demo:

Chapter Any/any_demo.cpp

std::any a(12);

// set any value:
a = std::string("Hello!");
a = 16;
// reading a value:

// we can read it as int
std::cout << std::any_cast<int>(a) << '\n';

// but not as string:
try {

std::cout << std::any_cast<std::string>(a) << '\n';
}
catch(const std::bad_any_cast& e) {

std::cout << e.what() << '\n';
}

std::any 134

// reset and check if it contains any value:
a.reset();
if (!a.has_value()) {

std::cout << "a is empty!" << '\n';
}

// you can use it in a container:
std::map<std::string, std::any> m;
m["integer"] = 10;
m["string"] = std::string("Hello World");
m["float"] = 1.0f;

for (auto &[key, val] : m) {
if (val.type() == typeid(int))

std::cout << "int: " << std::any_cast<int>(val) << '\n';
else if (val.type() == typeid(std::string))

std::cout << "string: " << std::any_cast<std::string>(val) << '\n';
else if (val.type() == typeid(float))

std::cout << "float: " << std::any_cast<float>(val) << '\n';
}

The code will output:

16
bad any_cast
a is empty!
float: 1
int: 10
string: Hello World

The example above shows us several things:

• std::any is not a template class like std::optional or std::variant.

• by default it contains no value, and you can check it via .has_value().

• you can reset an any object via .reset().

• it works on “decayed” types - so before assignment, initialisation, or emplacement the
type is transformed by std::decay¹.

• when a different type is assigned, then the active type is destroyed.

¹http://en.cppreference.com/w/cpp/types/decay

http://en.cppreference.com/w/cpp/types/decay
http://en.cppreference.com/w/cpp/types/decay

std::any 135

• you can access the value by using std::any_cast<T>. It will throw bad_any_cast
if the active type is not T.

• you can discover the active type by using .type() that returns std::type_info²
of the type.

When to Use

While void*might be an extremely unsafe pattern with some limited use cases, std::any
adds type-safety, and that’s why it has more applications.

Some possibilities:

• In Libraries - when a library type has to hold or pass anything without knowing the
set of available types

• Parsing files - if you really cannot specify what the supported types are

• Message passing

• Bindings with a scripting language

• Implementing an interpreter for a scripting language

• User Interface - controls might hold anything

• Entities in an editor

In many cases, you can limit the number of supported types, and that’s why std::variant
might be a better choice. Of course, it gets tricky when you implement a library without
knowing the final applications - so you don’t know the possible types that will be stored in
an object.

std::any Creation

There are several ways you can create std::any object:

• a default initialisation - then the object is empty

• a direct initialisation with a value/object

• in place std::in_place_type
• via std::make_any

²http://en.cppreference.com/w/cpp/types/type_info

http://en.cppreference.com/w/cpp/types/type_info
http://en.cppreference.com/w/cpp/types/type_info

std::any 136

You can see it in the following example:

Chapter Any/any_creation.cpp

// default initialisation:
std::any a;
assert(!a.has_value());

// initialisation with an object:
std::any a2{10}; // int
std::any a3{MyType{10, 11}};

// in_place:
std::any a4{std::in_place_type<MyType>, 10, 11};
std::any a5{std::in_place_type<std::string>, "Hello World"};

// make_any
std::any a6 = std::make_any<std::string>{"Hello World"};

In Place Construction

Following the style of std::optional and std::variant, std::any can use std::in_-
place_type to efficiently create objects in place.

Complex Types

In the below example a temporary object will be needed:

std::any a{UserName{"hello"}};

but with:

std::any a{std::in_place_type<UserName>, "hello"};

The object is created in place with the given set of arguments.

For convenience std::any has a factory function called std::make_any that returns:

std::any 137

return std::any(std::in_place_type<T>, std::forward<Args>(args)...);

In the previous example we could also write:

auto a = std::make_any<UserName>{"hello"};

make_any is probably more straightforward to use.

Changing the Value

When you want to change the currently stored value in std::any then you have two
options: use emplace or the assignment:

Chapter Any/any_changing.cpp

std::any a;

a = MyType(10, 11);
a = std::string("Hello");

a.emplace<float>(100.5f);
a.emplace<std::vector<int>>({10, 11, 12, 13});
a.emplace<MyType>(10, 11);

Object Lifetime

The crucial part of being safe for std::any is not to leak any resources. To achieve this
behaviour std::any will destroy any active object before assigning a new value.

Chapter Any/any_lifetime.cpp

std::any var = std::make_any<MyType>();
var = 100.0f;
std::cout << std::any_cast<float>(var) << '\n';

If the constructors and destructors were instrumented with prints, we would get the
following output:

std::any 138

MyType::MyType
MyType::~MyType
100

The any object is initialised with MyType, but before it gets a new value (of 100.0f) it calls
the destructor of MyType.

Accessing The Stored Value

To access the currently active value in std::any you have one option:

std::any_cast<T>().

The function has three “modes” you can work with:

• read access - takes std::any as a reference, returns a copy of the value, throws
std::bad_any_cast when it fails

• read/write access - takes std::any as a reference, returns a reference, throws
std::bad_any_cast when it fails

• read/write access - takes std::any as a pointer, returns a pointer to the value (const
or not) or nullptr

In short:

std::any var = 10;

// read access:
auto a = std::any_cast<int>(var);

// read/write access through a reference:
std::any_cast<int&>(var) = 11;

// read/write through a pointer:
int* ptr = std::any_cast<int>(&var);
*ptr = 12;

See the example:

std::any 139

Chapter Any/any_access.cpp

struct MyType {
int a, b;

MyType(int x, int y) : a(x), b(y) { }

void Print() { std::cout << a << ", " << b << '\n'; }
};

int main() {
std::any var = std::make_any<MyType>(10, 10);
try {

std::any_cast<MyType&>(var).Print();
std::any_cast<MyType&>(var).a = 11; // read/write
std::any_cast<MyType&>(var).Print();
std::any_cast<int>(var); // throw!

}
catch(const std::bad_any_cast& e) {

std::cout << e.what() << '\n';
}

int* p = std::any_cast<int>(&var);
std::cout << (p ? "contains an int... \n" : "doesn't contain an int...\n");

if (MyType* pt = std::any_cast<MyType>(&var); pt) {
pt->a = 12;
std::any_cast<MyType&>(var).Print();

}
}

There are two options regarding error handling: via exceptions (std::bad_any_cast) or
by returning a pointer (or nullptr). The function overloads for std::any_cast with
pointer access are also marked with noexcept.

Performance & Memory Considerations

std::any looks quite powerful, and you might use it to hold variables of variable types…
but you might ask what is the price for such flexibility.

The main issue here is the cost of extra dynamic memory allocations.

std::any 140

std::variant and std::optional don’t require any extra memory allocations but this
is because they know which type (or types) will be stored in the object. std::any doesn’t
know which types might be stored, and that’s why it might use some heap memory.

Will it always happen, or sometimes? What are the rules? Will it happen even for a simple
type like int?

Let’s see what the standard says 23.8.3 [any.class]³:

Implementations should avoid the use of dynamically allocated memory for a small
contained value. Example: where the object constructed is holding only an int. Such small-
object optimisation shall only be applied to types T for which is_nothrow_move_-
constructible_v<T> is true.

To sum up, implementations are encouraged to use SBO (Small Buffer Optimisation). But
that also comes at some cost: it will make the type larger to fit the buffer.

Let’s check the size of std::any:

Here are the results from the three compilers:

Compiler sizeof(any)
GCC 8.1 (Coliru) 16
Clang 7.0.0 (Wandbox) 32
MSVC 2017 15.7.0 32-bit 40
MSVC 2017 15.7.0 64-bit 64

In general, as you see, std::any is not a “simple” type and it brings a lot of overhead with
it. It’s usually not small - due to SBO - it takes 16 or 32 bytes (GCC, Clang, or even 64 bytes
in MSVC).

You can see the code in Chapter Any/any_sizeof.cpp.

Migration from boost::any

Boost Any was introduced around the year 2001 (Version 1.23.0). Interestingly, the author of
the boost library - Kevlin Henney - is also the author of the proposal for std::any. So the
two types are strongly connected, and the STL version is heavily based on the predecessor.

³https://timsong-cpp.github.io/cppwp/n4659/any#class-3

https://timsong-cpp.github.io/cppwp/n4659/any#class-3
https://timsong-cpp.github.io/cppwp/n4659/any#class-3

std::any 141

Here are the main changes:

Feature Boost.Any (1.67.0)⁴ std::any
Extra memory allocation Yes Yes
Small buffer optimisation Yes Yes
emplace No Yes
in_place_type_t in constructor No Yes

There are not many differences between the two types. Most of the time you can easily
convert from boost.any into the STL version.

Examples of std::any

The core of std::any is flexibility. In the examples below, you can see some ideas where
supporting variable types can make an application a bit simpler.

Parsing files

In the examples for std::variant, you can see how it’s possible to parse configuration
files and store the result as an alternative of several types. If you write an entirely generic
solution - for example as a part of some library, then you might not know all the possible
types.

Storing std::any as a value for a property might be good enough from the performance
point of view and will give you flexibility.

Message Passing

In Windows API, which is C mostly, there’s a message-passing system that uses message IDs
with two optional parameters that store the value of the message. Based on that mechanism,
you can implement WndProc to handle the messages passed to your window/control:

https://www.boost.org/doc/libs/1_67_0/doc/html/any.html

std::any 142

LRESULT CALLBACK WindowProc(
In HWND hwnd,
In UINT uMsg,
In WPARAM wParam,
In LPARAM lParam

);

The trick here is that the values are stored inwParam or lParam in various forms. Sometimes
you have to use only a few bytes of wParam…

What if we changed this system into std::any, so that a message could pass anything to
the handling method?

For example:

Chapter Any/any_winapi.cpp

class Message {
public:

enum class Type {
Init,
Closing,
ShowWindow,
DrawWindow

};

public:
explicit Message(Type type, std::any param) :

mType(type),
mParam(param)

{ }
explicit Message(Type type) :

mType(type)
{ }

Type mType;
std::any mParam;

};

class Window {
public:

virtual void HandleMessage(const Message& msg) = 0;
};

std::any 143

For example you can send a message to a window:

Message m(Message::Type::ShowWindow, std::make_pair(10, 11));
yourWindow.HandleMessage(m);

Then the window can respond to the message with the following message handler:

switch (msg.mType) {
// ...
case Message::Type::ShowWindow: {

auto pos = std::any_cast<std::pair<int, int>>(msg.mParam);
std::cout << "ShowWindow: "

<< pos.first << ", "
<< pos.second << '\n';

break;
}

}

Of course, you have to define how the values are specified (what the types of a value of a
message are), but now you can use real types rather than doing various tricks with integers.

Properties

The original paper that introduces any to C++, N1939⁵ shows an example of a property class.

struct property {
property();
property(const std::string &, const std::any &);

std::string name;
std::any value;

};

typedef std::vector<property> properties;

The properties object looks quite powerful as it can hold many different types. One of
the examples where such a structure might be leveraged is a game editor.

⁵http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1939.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1939.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1939.html

std::any 144

Wrap Up

Here are the things to remember about std::any:

• std::any is not a template class

• std::any uses Small Buffer Optimisation, so it will not dynamically allocate memory
for simple types like ints, doubles… but for larger types, it will use extra new.

• std::any might be considered ‘heavy’, but offers a lot of flexibility and type-safety.

• you can access the currently stored value by using any_cast that offers a few
“modes”: for example it might throw an exception or return nullptr.

• use it when you don’t know the possible types - in other cases considerstd::variant.

Compiler Support

Feature GCC Clang MSVC
std::any 7.1 4.0 VS 2017 15.0

10. std::string_view
Since C++11 and move semantics, passing strings has become much faster. Yet you can end
up with many temporary string copies. In C++17 you get a new type called string_view.
It allows you to create a constant, non-owning view of a contiguous character sequence.
You can manipulate that view and pass it around without the need to copy the referenced
data. Nevertheless, the feature comes at some cost: you need to be careful not to end up with
“dangling” views, and usually such views might not be null-terminated.

In this chapter, you’ll learn:

• What is string_view?

• Why might it speed up your code?

• What are the risks involved with using string_view objects?

• What is the reference lifetime extension, and what does it mean for string_view?

• How you can use string_view to make your API more generic?

std::string_view 146

The Basics

Let’s try a little experiment:

How many string copies are created in the below example?

// string function:
std::string StartFromWordStr(const std::string& strArg, const std::string& word) {

return strArg.substr(strArg.find(word)); // substr creates a new string
}

// call:
std::string str {"Hello Amazing Programming Environment" };

auto subStr = StartFromWordStr(str, "Programming Environment");
std::cout << subStr << '\n';

Can you count them all?

The answer is 3 or 5 depending on the compiler, but usually, it should be 3.

• The first one is for str.

• The second one is for the second argument in StartFromWordStr - the argument is
const string& so since we pass const char* it will create a new string.

• The third one comes from substr which returns a new string.

• Then we might also have another copy or two - as the object is returned from the
function. But usually, the compiler can optimise and elide the copies (especially since
C++17 when Copy Elision became mandatory in that case).

• If the string is short, then there might be no heap allocation as Small String Optimisa-
tion¹.

The above example is simplistic. However, youmight imagine a production codewhere string
manipulations happen very often. In that scenario, it’s even hard to count all the temporaries
that the compiler creates.

Amuch better pattern to solve the problemwith extra temporary copies is to usestd::string_-
view. As the name suggests, instead of using the original string, you’ll only get a non-owning

¹Small String Optimisation is not defined in the C++ Standard, but it’s a common optimisation across popular compilers.
Currently, it’s 15 characters in MSVC (VS 2017)/GCC (8.1) or 22 characters in Clang (6.0).

std::string_view 147

view of it. Most of the time, it will be a pointer to the contiguous character sequence and the
length. You can pass it around and use most of the conventional string operations.

Views work well with string operations like substring - substr. In a typical case, each
substring operation creates another, smaller copy of the string.Withstring_view, substr
will only map a different portion of the original buffer, without additional memory usage,
or dynamic allocation.

Here’s the updated version of our code that accepts string_view:

Chapter string_view/avoiding_copies_string_view.cpp

std::string_view StartFromWord(std::string_view str, std::string_view word) {
return str.substr(str.find(word)); // substr creates only a new view

}

// call:
std::string str {"Hello Amazing Programming Environment"};

auto subView = StartFromWord(str, "Programming Environment");
std::cout << subView << '\n';

In the above case, we have only one allocation - just for the main string - str. None of
the string_view operations invokes copy or extra memory allocation for a new string. Of
course, string_view is copied - but since it’s only a pointer and a length, it’s much more
efficient than the copy of the whole string.

One warning: while this example shows the optimisation capability of string views, please
read on to see the risks and assumptions with that code! Or maybe you can spot a few now?

Ok, so when you should use string_view:

When to Use

• Optimisation: you can carefully review your code and replace various string operations
with string_view. In most cases, you should end up with faster code and fewer
memory allocations.

• As a possible replacement for const std::string& parameter - especially in
functions that don’t need the ownership and don’t store the string.

• Handling strings coming from other API: QString, CString, const char*...
everything that is placed in a contiguous memory chunk and has a basic char-type.

std::string_view 148

You can write a function that accepts string_view and no conversion from that
other implementation will happen.

In any case, it’s important to remember that it’s only a non-owning view, so if the original
object is gone, the view becomes rubbish and you might get into trouble.

Moreover, string_view might not contain null terminator so your code has to support
that as well. For example, it’s never a good idea to pass string_view to a function that
accepts null-terminated strings. More on that in a separate section - about “Risks with
string_view”.

The std::basic_string_view Type

Although we talk about string_view it’s important to know that this is only a specialisa-
tion of a template class called basic_string_view:

template<
class CharT,
class Traits = std::char_traits<CharT>

> class basic_string_view;

Traits class is used to abstract the operations on the character type, for example, on how
to compare characters, how to find one character in a sequence.

Such a hierarchy creates a similar relation as there is for std::string which is a
specialisation of std::basic_string.

We have the following specialisations:

std::string_view std::basic_string_view<char>
std::wstring_view std::basic_string_view<wchar_t>
std::u16string_view std::basic_string_view<char16_t>
std::u32string_view std::basic_string_view<char32_t>

As you can see, the specialisations use a different underlying character type.

For the sake of convenience, in the rest of this chapter, only string_view will be
considered.

std::string_view 149

std::string_view Creation

You can create a string_view in several ways:

• from const char* - providing a pointer to a null-terminated string

• from const char* with length

• by using a conversion from std::string

• by using ""sv literal

Here’s an example of various creation options:

Chapter string_view/string_view_creation.cpp

const char* cstr = "Hello World";

// the whole string:
std::string_view sv1 { cstr };
std::cout << sv1 << ", len: " << sv1.size() << '\n';

// slice
std::string_view sv2 { cstr, 5 }; // not null-terminated!
std::cout << sv2 << ", len: " << sv2.size() << '\n';

// from string:
std::string str = "Hello String";
std::string_view sv3 = str;
std::cout << sv3 << ", len: " << sv3.size() << '\n';

// ""sv literal
using namespace std::literals;
std::string_view sv4 = "Hello\0 Super World"sv;
std::cout << sv4 << ", len: " << sv4.size() << '\n';
std::cout << sv4.data() << " - till zero\n";

std::string_view 150

The code will print:

Hello World, len: 11
Hello, len: 5
Hello String, len: 12
Hello Super World, len: 18
Hello - till zero

Please notice the last two lines: sv4 contains '\0' in the middle, but std::cout can still
print the whole sequence. In the last line, we try to print with .data() and we end up with
a string pointer so the printing breaks at the null terminator.

Other Operations

string_view is modelled to be very similar to std::string. The view, however, is non-
owning, so any operation that modifies the data cannot go into the API. Here’s a brief list of
methods that you can use with this new type:

Iterators:

Method Description
cbegin(), begin() Return an iterator to the first character
crbegin(), rbegin() Return a reverse iterator to the first character of the reversed view. It

corresponds to the last character of the sequence.
cend(), end() Returns an iterator to a place after the last character of a sequence
crend(), rend() Returns an iterator to the end of reversed sequence. It corresponds to a

place before the first character

Please note that all of the above methods are constexpr and const, so you always get a
const iterator (even for begin() or end()).

Accessing Elements:

Method Description
operator[] Returns a const reference to the character at the specified position. Bounds are

not checked.
at() Returns a const reference to the character at specified position with bound

checking (might throw std::out_of_range)
front() Returns a const reference to the first character of the sequence
back() Returns a const reference to the last character of the sequence
data() Returns a pointer to the underlying data

std::string_view 151

If the view is empty then you’ll get undefined behaviour for operator[], front(),
back() and data().

Size & Capacity:

Method Description
size()/length() Returns the numbers of characters in a sequence
max_size() The largest possible number of char-like objects that can be referred to by a

basic_string_view.
empty() Returns size == 0

Modifiers:

Method Description
remove_prefix(size_type n) Equivalent to: data_ += n; size_ -= n;
remove_suffix(size_type n) Equivalent to: size_ -= n;
swap(basic_string_view& s) Exchanges the values of *this and s

Other methods:

Method Description
copy(charT* s, size_type n,
size_type pos)

Copies n characters into s starting from pos.
not constexpr

substr(size_type pos, size_type n) Complexity O(1) and not O(n) as in
std::string

compare(...) ² Compares strings, similarly to
std::basic_string::compare

find(...) Returns position of the first occurence of the
input string or basic_string_view::npos

rfind(...) Returns position of the last occurence of the
input string or basic_string_view::npos

find_first_of(...) Returns position of the first character that is
equal to any character from the input pattern
or basic_string_view::npos

find_last_of(...) Returns position of the last character that is
equal to any character from the input pattern
or basic_string_view::npos

find_first_not_of(...) Returns position of the first character that is
different to any character from the input
pattern or basic_string_view::npos

find_last_not_of(...) Returns position of the last character that is
different to any character from the input
pattern or basic_string_view::npos

²ellipsis (...) means that a method has several overloads.

std::string_view 152

Non-member functions:

Function Description
comparison operators: ==, !=, <=, >=, <, > Lexicographically compares two string views
operator << For ostream output

Key things about the above methods, functions and types:

• All of the abovemethods (except for copy, operator << and std::hash specialisa-
tion) are also constexpr! With this capability, you might now work with contiguous
character sequences in constant expressions.

• The above list is almost the same as all non-mutable string operations. However, there
are two new methods: remove_prefix and remove_suffix - they are not const,
and they modify the string_view object. Note that they still cannot modify the
referenced data.

• operator[], at, front, back, data - are also const - thus you cannot change the
underlying character sequence (it’s only “read access”). In std::string there are
overloads for those methods that return a reference, so you get “write access”. That’s
not possible with string_view.

• string_view also has specialisation for std::hash

• string_view has a string literal ""sv, and you can define a variable like auto sv
= "hello"sv;

More in C++20!
In C++20 we’ll get two new methods:

• starts_with()
• ends_with()

They are implemented both for std::basic_string_view and
std::basic_string. As of August 2019 Clang 6.0, GCC 9.0 and VS 2019
16.2 support them.

std::string_view 153

Risks Using string_view

std::string_view was added into the Standard mostly to allow performance optimisa-
tions. Nevertheless, it’s not a replacement for strings! That’s why when you use views you
have to remember about a few potentially risky things:

Taking Care of Not Null-Terminated Strings

string_view may not contain \0 at the end of the string. So you have to be prepared for
that.

• string_view is problematic with all functions that accept traditional C-strings
because string_view breaks with C-string termination assumptions. If a function
accepts only a const char* parameter, it’s probably a bad idea to pass string_-
view into it. On the other hand, it might be safe when such a function accepts const
char* and length parameters.

• Conversion into strings - you need to specify not only the pointer to the contiguous
character sequence but also the length.

References and Temporary Objects

string_view doesn’t own the memory, so you have to be very careful when working with
temporary objects.

In general, the lifetime of a string_view must never exceed the lifetime of the string-
owning object.

That might be crucial when:

• Returning string_view from a function - the view has to point to that data that is
still alive after the function has completed.

• Storing string_view in objects or containers - this is similar to storing pointers in a
container. The referenced data must be still present when you access elements of this
container.

To explore all the issues, let’s start with the initial example from this chapter.

std::string_view 154

Problems with the Initial Example

The intro section showed you an example of:

std::string_view StartFromWord(std::string_view str, std::string_view word) {
return str.substr(str.find(word)); // substr creates only a new view

}

The code doesn’t have any issues with non-null-terminated strings - as all the functions are
from the string_view API.

However, how about temporary objects?

What will happen if you call:

auto str = "My Super"s;
auto sv = StartFromWord(str + " String", "Super");
// use `sv` later in the code...

Code like that might blow!

"Super" is a temporary const char* literal and it’s passed as string_view word into
the function. That’s fine, as the temporary is guaranteed to live as long as the whole function
invocation.

However, the result of string concatenation str + " String" is a temporary and the
function returns a string_view of this temporary outside the call!

So the general advice in such cases is that while it’s possible to return a string_view from
a function, you have to be careful and be sure about the state of the underlying string.

To understand issues with temporary values, it’s good to have a look at the reference lifetime
extension.

Reference Lifetime Extension

What happens in the following case:

std::string_view 155

std::vector<int> GenerateVec() {
return std::vector<int>(5, 1);

}
const std::vector<int>& refv = GenerateVec();

Is the above code safe?

Yes - the C++ rules say that the lifetime of a temporary object bound to a const reference
is prolonged to the lifetime of the reference itself.

Here’s a full example quoted from the standard (Draft C++17 - N4687³) 15.2 Temporary
objects [class.temporary]:

[Example:

struct S {
S();
S(int);
friend S operator+(const S&, const S&);
~S();

};
S obj1;
const S& cr = S(16)+S(23);
S obj2;

The expression S(16) + S(23) creates three temporaries: a first temporary T1 to hold
the result of the expression S(16), a second temporary T2 to hold the result of the
expression S(23), and a third temporary T3 to hold the result of the addition of these two
expressions. The temporary T3 is then bound to the reference cr. It is unspecified whether
T1 or T2 is created first. On an implementation where T1 is created before T2, T2 shall be
destroyed before T1. The temporaries T1 and T2 are bound to the reference parameters of
operator+; these temporaries are destroyed at the end of the full-expression containing
the call to operator+. The temporary T3 bound to the reference cr is destroyed at the
end of cr’s lifetime, that is, at the end of the program. In addition, the order in which T3
is destroyed takes into account the destruction order of other objects with static storage
duration. That is, because obj1 is constructed before T3, and T3 is constructed before
obj2, obj2 shall be destroyed before T3, and T3 shall be destroyed before obj1. -end
example]

³https://wg21.link/n4687

https://wg21.link/n4687
https://wg21.link/n4687

std::string_view 156

While it’s better not to write such code for all of your variables, it might be a handy feature
in cases like:

for (auto &elem : GenerateVec()) {
// ...

}

In the above example, GenerateVec is bound to a reference (rvalue reference for the start
of the vector) inside the range-based for loop. Without the extended lifetime support, the
code would break.

How does it relate to string_view?

For string_view the below code is usually error-prone:

std::string func() {
std::string s;
// build s...
return s;

}

std::string_view sv = func();
// no temp lifetime extension!

This might be not obvious - string_view is also a constant view, so should behave
almost like a const reference. But according to existing C++ rules, it’s not- the compiler
immediately destroys the temporary object after the whole expression is done. The lifetime
cannot be extended in this case.

string_view is just a proxy object, similar to another code:

std::vector<int> CreateVector() { ... }
std::string GetString() { return "Hello"; }

auto &x = CreateVector()[10]; // arbitrary element!
auto pStr = GetString().c_str();

In both cases x and pStr won’t extend the lifetime of the temporary object created in
CreateVector() or GetString().

std::string_view 157

You might fix it by:

std::string func() {
std::string s;
// build s...
return s;

}
auto temp = func();
std::string_view sv { temp };
// fine lifetime of temporary is extended through `temp`

Every time you assign a return value from some function, you have to be sure the lifetime
of the object is correct.

There’s a proposal to fix the issues with string_views and other types that should
have extended reference lifetime semantics: see P0936⁴.

Initializing stringMembers from string_view

Since string_view is a potential replacement for const string& when passing in
functions, we might consider a case of string member initialisation. Is string_view
the best candidate here? See the following example:

class UserName {
std::string mName;

public:
UserName(const std::string& str) : mName(str) { }

};

As you can see a constructor is taking const std::string& str.The other option is to
use string_view:

UserName(std::string_view sv) : mName(sv) { }

Let’s compare those alternatives implementations in three cases: creating from a string literal,
creating from an lvalue and creating from an rvalue reference:

⁴https://wg21.link/p0936

https://wg21.link/p0936
https://wg21.link/p0936

std::string_view 158

// creation from a string literal
UserName u1{"John With Very Long Name"};

// creation from lvalue:
std::string s2 {"Marc With Very Long Name"};
UserName u2 { s2 };
// use s2 later...

// from rvalue reference
std::string s3 {"Marc With Very Long Name"};
UserName u3 { std::move(s3) };

// third case is also similar to taking a return value:
std::string GetString() { return "some string..."; }
UserName u4 { GetString() };

Now we can analyse two versions of UserName constructor - with a string reference or
a string_view.

Please note that allocations/creation of s2 and s3 are not taken into account, we’re only
looking at what happens for the constructor call. For s2 we can also assume it’s used later
in the code.

For const std::string&:

• u1 - two allocations: the first one creates a temp string and binds it to the input
parameter, and then there’s a copy into mName.

• u2 - one allocation: we have a no-cost binding to the reference, and then there’s a copy
into the member variable.

• u3 - one allocation: we have a no-cost binding to the reference, and then there’s a copy
into the member variable.

• You’d have to write a ctor taking rvalue reference to skip one allocation for the u1
case, and also that could skip one copy for the u3 case (since we could move from
rvalue reference).

For std::string_view:

• u1 - one allocation - no copy/allocation for the input parameter, there’s only one
allocation when mName is created.

std::string_view 159

• u2 - one allocation - there’s a cheap creation of a string_view for the argument,
and then there’s a copy into the member variable.

• u3 - one allocation - there’s a cheap creation of a string_view for the argument,
and then there’s a copy into the member variable.

• You’d also have to write a constructor taking rvalue reference if you want to save one
allocation in the u3 case, as you could move from rvalue reference.

While the string_view behaves better when you pass a string literal, it’s no better when
you use it with existing string, or you move from it.

However, since the introduction of move semantics in C++11, it’s usually better, and safer
to pass string as a value and then move from it.

For example:

class UserName {
std::string mName;

public:
UserName(std::string str) : mName(std::move(str)) { }

};

Now we have the following results:

For std::string:

• u1 - one allocation - for the input argument and then one move into the mName. It’s
better than with const std::string& where we got two memory allocations in
that case. And similar to the string_view approach.

• u2 - one allocation - we have to copy the value into the argument, and then we can
move from it.

• u3 - no allocations, only two move operations - that’s better than with string_view
and const string&!

When you pass std::string by value not only is the code simpler, there’s also no need to
write separate overloads for rvalue references.

See the full code sample in

Chapter string_view/initializing_from_string_view.cpp

std::string_view 160

The approach with passing by value is consistent with item 41 - “Consider pass by value for
copyable parameters that are cheap to move and always copied” from Effective Modern C++
by Scott Meyers.

However, is std::string cheap to move?

Although the C++ Standard doesn’t specify that, usually, strings are implementedwith Small
String Optimisation (SSO) - the string object contains extra space to fit characters without
additional memory allocation⁵. That means that moving a string is the same as copying it.
And since the string is short, the copy is also fast.

Let’s reconsider our example of passing by value when the string is short:

UserName u1{"John"}; // fits in SSO buffer

std::string s2 {"Marc"}; // fits in SSO buffer
UserName u2 { s2 };

std::string s3 {"Marc"}; // fits in SSO buffer
UserName u3 { std::move(s3) };

Remember that each move is the same as copy.

For const std::string&:

• u1 - two copies: one copy from the input string literal into a temporary string argument,
then another copy into the member variable.

• u2 - one copy: the existing string is bound to the reference argument, and then we
have one copy into the member variable.

• u3 - one copy: the rvalue reference is bound to the input parameter at no cost, later
we have a copy into the member field.

For std::string_view:

• u1 - one copy: no copy for the input parameter, there’s only one copy when mName is
initialised.

• u2 - one copy: no copy for the input parameter, as string_view creation is fast, and
then one copy into the member variable.

⁵SSO is not standardised and prone to change. Currently, it’s 15 characters in MSVC (VS 2017)/GCC (8.1) or 22 characters in
Clang (6.0). For multiplatform code, it’s not a good idea to assume optimisations based on SSO.

std::string_view 161

• u3 - one copy: string_view is cheaply created, there’s one copy from the argument
into mName.

• Extra risk that string_view might point to a deleted string.

For std::string:

• u1 - two copies: the input argument is created from a string literal, and then there’s
copy into mName.

• u2 - two copies: one copy into the argument and then there’s the second copy into the
member.

• u3 - two copies: one copy into the argument (move means copy) and then there’s the
second copy into the member.

As you see for short strings passing by value might be “slower” when you pass some existing
string, simply because you have two copies rather than one. On the other hand, the compiler
might optimise the code better when it sees an object and not reference. What’s more, short
strings are cheap to copy, so the potential “slowdown” might not be even visible.

All in all, passing by value and then moving from a string argument is the preferred solution.
You have simple code and better performance for larger strings.

As always, if your code needs maximum performance, then you have to measure all possible
cases.

Other Types & Automation
The problem discussed in this section can also be extended to other copyable and
movable types. If the move operation is cheap, then passing by value might be
better than by reference. You can also use automation, like Clang-Tidy, which can
detect potential improvements. Clang Tidy has a separate rule for that use case,
see clang-tidy - modernize-pass-by-value⁶.

⁶https://clang.llvm.org/extra/clang-tidy/checks/modernize-pass-by-value.html

https://clang.llvm.org/extra/clang-tidy/checks/modernize-pass-by-value.html
https://clang.llvm.org/extra/clang-tidy/checks/modernize-pass-by-value.html

std::string_view 162

Here’s the summary of string passing and initialisation of a string member:

input parameter const string& string_view string and move
const char* 2 allocations 1 allocation 1 allocation + move
const char* SSO 2 copies 1 copy 2 copies
lvalue 1 allocation 1 allocation 1 allocation + 1 move
lvalue SSO 1 copy 1 copy 2 copies
rvalue 1 allocation 1 allocation 2 moves
rvalue SSO 1 copy 1 copy 2 copies

Handling Non-Null Terminated Strings

If you get a string_view from a string then it will point to a null-terminated chunk of
memory:

std::string s = "Hello World";
std::cout << s.size() << '\n';
std::string_view sv = s;
std::cout << sv.size() << '\n';

The two cout statements will both print 11.

But what if you have just a part of the string:

std::string s = "Hello World";
std::cout << s.size() << '\n';
std::string_view sv = s;
auto sv2 = sv.substr(0, 5);
std::cout << sv2.data() << '\n'; /// ooops?

sv2 should contain only "Hello", but when you access the pointer to the underlying mem-
ory, you’ll receive the pointer to the whole string. The expression: cout << sv2.data()
will print the whole string, and not just a part of it! sv2.data() returns the pointer to the
"Hello World" character array inside the string s object.

Of course when you print sv2 you’ll get the correct result:

std::string_view 163

std::cout << sv2 << '\n';
// prints "Hello"

This is because std::cout handles string_view type.

The example shows a potential problem with all third-party APIs that assume null-
terminated strings. To name a few:

Printing with printf()

For example:

std::string s = "Hello World";
std::string_view sv = s;
std::string_view sv2 = sv.substr(0, 5);
printf("My String %s", sv2.data()); // oops?

Instead you should use:

printf("%.*s\n", static_cast<int>(sv2.size()), sv2.data());

.* - describes the precision, see in the printf specification⁷:

The precision is not specified in the format string, but as an additional integer value
argument preceding the argument that has to be formatted.

Conversion Functions Like atoi()/atof():

std::string number = "123.456";
std::string_view svNum { number.data(), 3 };
auto f = atof(svNum.data()); // should be 123, but is 123.456!
std::cout << f << '\n';

atof takes only the pointer to a null-terminated string, so string_view is not compatible.

To fix this, you might have a look at from_chars functions (also added in C++17)

⁷http://www.cplusplus.com/reference/cstdio/printf/

http://www.cplusplus.com/reference/cstdio/printf/
http://www.cplusplus.com/reference/cstdio/printf/

std::string_view 164

// use from_chars (C++17)
std::string number = "123.456";
std::string_view svNum { number.data(), 3 };
int res = 0;
std::from_chars(svNum.data(), svNum.data()+svNum.size(), res);
std::cout << res << '\n';

A General Solution

If your API supports only null-terminated strings and you cannot switch to a function that
takes additional count or size parameter, then you need to convert a view into the string.

For example:

Chapter string_view/string_view_null.cpp

void ConvertAndShow(const char *str) {
auto f = atof(str);
std::cout << f << '\n';

}

std::string number = "123.456";
std::string_view svNum { number.data(), 3 };
// ... some code
std::string tempStr { svNum.data(), svNum.size() };
ConvertAndShow(tempStr.c_str());

ConvertAndShow only works with null-terminated strings, so the only way we have is to
create a temporary string tempStr and then pass it to the function.

If you want to create a string object from string_view then remember to use
.data() and .size() so that you refer to the correct slice of the underlying
character sequence.

Performance & Memory Considerations

The core idea behind adding string_view into the Standard Library was performance and
memory consumption. By leveraging string_view, you can efficiently skip the creation
of many temporary strings which might boost performance.

std::string_view 165

Regarding the memory: string_view is usually implemented as [ptr, len] - one
pointer and usually size_t to represent the possible size.

That’s why you should see the size of it as 8 bytes or 16 bytes (depending on whether the
architecture is x86 or x64).

If we consider thestd::string type, due to common Small StringOptimisationsstd::string
is usually 24 or 32 bytes, so double the size of string_view. If a string is longer than the SSO
buffer then std::string allocates memory on the heap. If SSO is not supported (which is
rare), then std::string would consist of a pointer to the allocated memory and the size.

Regarding the performance of string operations.

string_view has only a subset of string operations, those that don’t modify the referenced
character sequence. Functions like find() should offer the same performance as the
string counterparts.

On the other hand, substr is just a copy of two elements in string_view, while string
will perform a copy of a memory range. The complexity is O(1) vs O(n). That’s why if you
need to split a larger string and work with those splices, the string_view implementation
should offer better speed.

Strings in Constant Expressions

The interesting property of string_view is that all of the methods are marked as
constexpr (except for copy, operator << and std::hash functions specialised for
string views). With this capability, you can work on strings at compile time.

For example:

Chapter string_view/string_view_constexpr.cpp

#include <string_view>

int main() {
using namespace std::literals;

constexpr auto strv = "Hello Programming World"sv;
constexpr auto strvCut = strv.substr("Hello "sv.size());

static_assert(strvCut == "Programming World"sv);
return strvCut.size();

}

std::string_view 166

If you use a modern compiler, like GCC 8.1 with the following options -std=c++1z -Wall
-pedantic -O2. Then the compiled assembler should be in the following form:

main:
movl $17, %eax
ret

A similar version of such code, but with std::string would generate much more code.
Since the example uses long strings, then Small String Optimisation is not possible, and then
the compiler must generate code for new/delete to manage the memory of the strings.

Migration from boost::string_ref and
boost::string_view

As with most of the new types in C++17 string_view is also inspired by boost libraries.
Marshall Clow implemented boost::string_ref in the version 1.53 (February 2012) and
then it evolved into boost::string_view (added into the version 1.61 - May 2016).

The main difference between boost::string_ref and boost::string_view is the
support for constexpr.

boost::string_view implements the same functionality as std::string_view and
also adds a few new functions:

• starts_with

• ends_with

See the full header file in boost/doc/libs/1_67_0/boost/utility/string_view.hpp⁸ And in Boost
utility library⁹

The link to the discussion about deprecation of string_ref: “string_view versus string_-
ref”¹⁰.

⁸https://www.boost.org/doc/libs/1_67_0/boost/utility/string_view.hpp
⁹https://www.boost.org/doc/libs/1_67_0/boost/utility/
¹⁰https://lists.boost.org/Archives/boost/2017/07/236903.php

https://www.boost.org/doc/libs/1_67_0/boost/utility/string_view.hpp
https://www.boost.org/doc/libs/1_67_0/boost/utility/
https://www.boost.org/doc/libs/1_67_0/boost/utility/
https://lists.boost.org/Archives/boost/2017/07/236903.php
https://lists.boost.org/Archives/boost/2017/07/236903.php
https://www.boost.org/doc/libs/1_67_0/boost/utility/string_view.hpp
https://www.boost.org/doc/libs/1_67_0/boost/utility/
https://lists.boost.org/Archives/boost/2017/07/236903.php

std::string_view 167

Examples

Below you can find two examples of using string_view.

Working with Different String APIs

An interesting use case for string_view is when you use it in code that works with
different string implementations.

For example, you might have CString from MFC, const char* from C-APIs, QString
from QT, and of course std::string.

Rather than creating overloads for different string types, you might leverage string_view!

For example:

void Process(std::string_view sv) { }

If you want to use Process with different string implementations, then all you have to do
is to create a string view from your type. Most of the string types should easily allow that.

For example:

// MFC Strings:
CString cstr;
Process(std::string_view{cstr.GetString(), cstr.GetLength()});

// QT Strings:
QString qstr;
Process(std::string_view{qstr.toLatin1().constData()};

// Your implementation:
MySuperString myStr;
// MySuperString::GetData() - returns char*
// MySuperString::Length() - returns length of a string
Process(std::string_view{myStr.GetData(), myStr.Length()});

Hypothetically, Process() could be implemented as Process(const char*, int
len), but with string_view the code is more explicit and simpler. Additionally, you have
all the available methods of string_view, and such code is more convenient than C-style.

std::string_view 168

String Split

string_view might be a potential optimisation for string splitting. If you own a large
persistent string, you might want to create a list of string_view objects that maps words
of that larger string.

Please note that the code is inspired by the article byMarco Arena - string_view odi et amo¹¹.

Chapter string_view/string_view_split.cpp

std::vector<std::string_view>
splitSV(std::string_view strv, std::string_view delims = " ") {

std::vector<std::string_view> output;
auto first = strv.begin();

while (first != strv.end()) {
const auto second = std::find_first_of(

first, std::cend(strv),
std::cbegin(delims), std::cend(delims));

if (first != second) {
output.emplace_back(strv.substr(std::distance(strv.begin(), first),

std::distance(first, second)));
}

if (second == strv.end())
break;

first = std::next(second);
}
return output;

}

Example use case:

const std::string str { "Hello Extra,,, Super, Amazing World" };

for (const auto& word : splitSV(str, " ,"))
std::cout << word << '\n';

¹¹https://marcoarena.wordpress.com/2017/01/03/string_view-odi-et-amo/

https://marcoarena.wordpress.com/2017/01/03/string_view-odi-et-amo/
https://marcoarena.wordpress.com/2017/01/03/string_view-odi-et-amo/

std::string_view 169

This will print:

Hello
Extra
Super
Amazing
World

The algorithm iterates over the input string_view and finds breaks - characters that match
the delimiter list. Then the code extracts part of that sequence - between the last and the new
break. The sub-view is stored in the output vector.

Some notes regarding the implementation:

• The string_view version of the algorithm assumes the input string is persistent and
not a temporary object. Be careful with the returned vector of string_view as it
also points to the input string.

• The instruction if (first != second) - protects from adding empty “words”, in
a case where there are multiple delimiters next to each other (like double spaces).

• The algorithm uses std::find_first_of but it’s also possible to use string_-
view::find_first_of. The member method doesn’t return an iterator, but the
position in the string.

• The member method of string_view appeared to be slower than the std::find_-
first_of version in some tests when the number of delimiters is small.

If you want to see some experiments regarding the code in this section have a look at:
Performance of std::string_view vs std::string from C++17¹² and Speeding Up string_view
String Split Implementation¹³. Those two blog posts describe the benchmark results and add
some more possible improvements to the code.

¹²https://www.bfilipek.com/2018/07/string-view-perf.html
¹³https://www.bfilipek.com/2018/07/string-view-perf-followup.html

https://www.bfilipek.com/2018/07/string-view-perf.html
https://www.bfilipek.com/2018/07/string-view-perf-followup.html
https://www.bfilipek.com/2018/07/string-view-perf-followup.html
https://www.bfilipek.com/2018/07/string-view-perf.html
https://www.bfilipek.com/2018/07/string-view-perf-followup.html

std::string_view 170

Wrap Up

Here are the things to remember about std::string_view:

• It’s a specialisation of std::basic_string_view<charType, traits<charType>>
- with charType equal to char.

• It’s a non-owning view of a contiguous sequence of characters.

• It might not include null terminator at the end.

• It can be used to optimise code and limit the need for temporary copies of strings.

• It contains most of std::string operations that don’t change the underlying
characters.

• Its operations are also marked as constexpr.

But:

• Make sure the underlying sequence of characters is still present!

• While std::string_view looks like a constant reference to the string, the lan-
guage doesn’t extend the lifetime of returned temporary objects that are bound to
std::string_view.

• Always remember to use stringView.size() when you build a string from
string_view. The size() method properly marks the end of string_view.

• Be careful when you pass string_view into functions that accept null-terminated
strings unless you’re sure your string_view contains a null terminator.

Compiler support:

Feature GCC Clang MSVC
std::string_view 7.1 4.0 VS 2017 15.0

11. String Conversions
string_view is not the only feature that we get in C++17 that relates to strings. While
views can reduce the number of temporary copies, there’s also another convenient feature:
conversion utilities. In the new C++ Standard, you have two sets of functions from_chars
and to_chars that are low level and promises impressive performance improvements.

In this chapter, you’ll learn:

• Why do we need low-level string conversion routines?

• Why the current options in the Standard Library might not be enough?

• How to use C++17’s conversion routines

• What performance gains you can expect from the new routines

String Conversions 172

Elementary String Conversions

The growing number of data formats like JSON or XML require efficient string processing
and manipulation. The maximum performance is especially crucial when such data formats
are used to communicate over the network, where high throughput is the critical factor.

For example, you get the characters in a network packet, you deserialise it (convert strings
into numbers), then process the data, and finally, it’s serialised back to the same file format
(numbers into strings) and sent over the network as a response.

The Standard Library had bad luck in those areas. It’s usually perceived to be too slow for
such advanced string processing. Often developers prefer custom solutions or third-party
libraries.

The situation might change as with C++17 we get two sets of functions: from_chars and
to_chars that allow for low-level string conversions.

In the original paper (P0067¹) there’s a useful table that summarises all the current solutions:

Facility Shortcomings
sprintf format string, locale, buffer overrun
snprintf format string, locale
sscanf format string, locale
atol locale, does not signal errors
strtol locale, ignores whitespace and 0x prefix
strstream locale, ignores whitespace
stringstream locale, ignores whitespace, memory allocation
num_put / num_get facets locale, virtual function
to_string locale, memory allocation
stoi etc. locale, memory allocation, ignores whitespace and 0x prefix,

exceptions

As you can see from the table above, sometimes converting functions do too much work,
which makes the whole processing slower. Often, there’s no need for the extra features.

First of all, all of them use “locale”. Even if you work with language-independent strings,
you have to pay a small price for localisation support. For example, if you parse numbers
from XML or JSON, there’s no need to apply current system language, as those formats are
interchangeable.

The next issue is error reporting. Some functions might throw an exception while others

¹https://wg21.link/P0067

https://wg21.link/P0067
https://wg21.link/P0067

String Conversions 173

return just a converted value. Exceptionsmight not only be costly (as throwingmight involve
extra memory allocations) but often a parsing error is not an exceptional situation. Returning
a simple value, for example, 0 for atoi, 0.0 for atof is also not satisfactory, as in that case
you don’t know if the parsing was successful or not.

The third topic, especially related to C-style API, is that you have to provide some form of
the “format string”. Parsing such string might involve some additional cost.

Another thing is “empty space” support. Functions like strtol or stringstream might
skip empty spaces at the beginning of the string. That might be handy, but sometimes you
don’t want to pay for that extra feature.

There’s also another critical factor: safety. Simple functions don’t offer any buffer overrun
solutions, and also they work only on null-terminated strings. In that case, you cannot use
string_view to pass the data.

The new C++17 API addresses all of the above issues. Rather than providing many
functionalities, they focus on giving very low-level support. That way, you can have the
maximum speed and tailor them to your needs.

The new functions are guaranteed to be:

• non-throwing - in case of some error theywon’t throw exceptions (as opposed to stoi)

• non-allocating - the entire processing is done in place, without any extra memory
allocation

• no locale support - the string is parsed as if used with default (“C”) locale

• memory safety - input and output range are specified to allow for buffer overrun checks

• no need to pass string formats of the numbers

• error reporting - you’ll get information about the conversion outcome

All in all, with C++17, you have two sets of functions:

• from_chars - for conversion from strings into numbers, integer and floating points.

• to_chars - for converting numbers into string.

Let’s have a look at the functions in a bit more detail.

String Conversions 174

Converting From Characters to Numbers:
from_chars

from_chars is a set of overloaded functions: for integral types and floating-point types.

For integral types we have the following functions:

std::from_chars_result from_chars(const char* first,
const char* last,
TYPE &value,
int base = 10);

Where TYPE expands to all available signed and unsigned integer types and char.

base can be a number ranging from 2 to 36.

Then there’s the floating point version:

std::from_chars_result from_chars(const char* first,
const char* last,
FLOAT_TYPE& value,
std::chars_format fmt = std::chars_format::general);

FLOAT_TYPE expands to float, double or long double.

chars_format is an enum with the following values:

enum class chars_format {
scientific = /*unspecified*/,
fixed = /*unspecified*/,
hex = /*unspecified*/,
general = fixed | scientific

};

It’s a bit-mask type, that’s why the values for enums are implementation-specific. By default,
the format is set to be general so the input string can use “normal” floating-point format
with scientific form as well.

String Conversions 175

The return value in all of those functions (for integers and floats) is from_chars_result:

struct from_chars_result {
const char* ptr;
std::errc ec;

};

from_chars_result holds valuable information about the conversion process.

Here’s the summary:

• On Success from_chars_result::ptr points at the first character not matching
the pattern, or has the value equal to last if all characters match and from_chars_-
result::ec is value-initialized.

• On Invalid conversion from_chars_result::ptr equals first and from_-
chars_result::ec equals std::errc::invalid_argument. value is unmod-
ified.

• On Out of range - The number is too large to fit into the value type. from_-
chars_result::ec equals std::errc::result_out_of_range and from_-
chars_result::ptr points at the first character not matching the pattern. value
is unmodified.

Examples

To sum up this section, here are two examples of how to convert a string into a number
using from_chars. The first one will convert into int and the second one converts into a
floating-point number.

String Conversions 176

1) Integral types

Chapter String Conversions/from_chars_basic.cpp

#include <charconv> // from_char, to_char
#include <iostream>
#include <string>

int main() {
const std::string str { "12345678901234" };
int value = 0;
const auto res = std::from_chars(str.data(),

str.data() + str.size(),
value);

if (res.ec == std::errc()) {
std::cout << "value: " << value

<< ", distance: " << res.ptr - str.data() << '\n';
}
else if (res.ec == std::errc::invalid_argument) {

std::cout << "invalid argument!\n";
}
else if (res.ec == std::errc::result_out_of_range) {

std::cout << "out of range! res.ptr distance: "
<< res.ptr - str.data() << '\n';

}
}

The example is straightforward. It passes a string str into from_chars and then displays
the result with additional information if possible.

Below you can find an output for various str value.

str value output
12345 value: 12345, distance 5
-123456 value: -123456, distance: 7
12345678901234 out of range! res.ptr distance: 14
hfhfyt invalid argument!

In the case of 12345678901234, the conversion routine could parse the number (all 14
characters were checked), but it’s too large to fit in int thus we got out_of_range.

String Conversions 177

2) Floating Point

To get the floating point test, we can replace the top lines of the previous example with:

Chapter String Conversions/from_chars_basic_float.cpp

const std::string str { "16.78" };
double value = 0;
const auto format = std::chars_format::general;
const auto res = std::from_chars(str.data(),

str.data() + str.size(),
value,
format);

The main difference is the last parameter: format.

Here’s the example output that we get:

str value format value output
1.01 fixed value: 1.01, distance 4
-67.90000 fixed value: -67.9, distance: 9
1e+10 fixed value: 1, distance: 1 - scientific notation not supported
1e+10 fixed value: 1, distance: 1 - scientific notation not supported
20.9 scientific invalid argument!, res.p distance: 0
20.9e+0 scientific value: 20.9, distance: 7
-20.9e+1 scientific value: -209, distance: 8
F.F hex value: 15.9375, distance: 3
-10.1 hex value: -16.0625, distance: 5

The general format is a combination of fixed and scientific so it handles regular
floating-point string with the additional support for e+num syntax.

You have a basic understanding of converting from strings to numbers, so let’s have a look
at how to do it the opposite way.

Parsing a Command Line

In the std::variant chapter, there’s an example with parsing command line parameters.
The example uses from_chars to match the best type: int, float or std::string and
then stores it in a std::variant.

You can find the example here: Parsing a Command Line, the Variant Chapter

String Conversions 178

Converting Numbers into Characters: to_chars

to_chars is a set of overloaded functions for integral and floating-point types.

For integral types there’s one declaration:

std::to_chars_result to_chars(char* first, char* last,
TYPE value, int base = 10);

Where TYPE expands to all available signed and unsigned integer types and char.

Since basemight range from 2 to 36, the output digits that are greater than 9 are represented
as lowercase letters: a...z.

For floating-point numbers, there are more options.

Firstly there’s a basic function:

std::to_chars_result to_chars(char* first, char* last, FLOAT_TYPE value);

FLOAT_TYPE expands to float, double or long double.

The conversion works the same as with printf and in default (“C”) locale. It uses %f or %e
format specifier favouring the representation that is the shortest.

The next function adds std::chars_format fmt that let’s you specify the output format:

std::to_chars_result to_chars(char* first, char* last,
FLOAT_TYPE value,
std::chars_format fmt);

Then there’s the “full” version that allows also to specify precision:

std::to_chars_result to_chars(char* first, char* last,
FLOAT_TYPE value,
std::chars_format fmt,
int precision);

When the conversion is successful, the range [first, last) is filled with the converted
string.

The returned value for all functions (for integer and floating-point support) is to_chars_-
result, it’s defined as follows:

String Conversions 179

struct to_chars_result {
char* ptr;
std::errc ec;

};

The type holds information about the conversion process:

• On Success - ec equals value-initialized std::errc and ptr is the one-past-the-end
pointer of the characters written. Note that the string is not NULL-terminated.

• On Error - ptr equals first and ec equals std::errc::invalid_argument.
value is unmodified.

• On Out of range - ec equals std::errc::value_too_large the range [first,
last) in unspecified state.

An Example

To sum up, here’s a basic demo of to_chars.

At the time of writing there was no support for floating-point overloads, so the
example uses only integers.

Chapter String Conversions/to_chars_basic.cpp

#include <iostream>
#include <charconv> // from_chars, to_chars
#include <string>

int main() {
std::string str { "xxxxxxxx" };
const int value = 1986;

const auto res = std::to_chars(str.data(),
str.data() + str.size(),
value);

if (res.ec == std::errc()) {
std::cout << str << ", filled: "

<< res.ptr - str.data() << " characters\n";
}

String Conversions 180

else {
std::cout << "value too large!\n";

}
}

Below you can find a sample output for a set of numbers:

value output
1986 1986xxxx, filled: 4 characters
-1986 -1986xxx, filled: 5 characters
19861986 19861986, filled: 8 characters
-19861986 value too large! (the buffer is only 8 characters)

The Benchmark

So far, the chapter has mentioned the huge performance potential of the new routines. It
would be best to see some real numbers then!

This section introduces a benchmark that measures the performance of from_chars and
to_chars against other conversion methods.

How does the benchmark work:

• Generates vector of random integers of the size VECSIZE.
• Each pair of conversion methods will transform the input vector of integers into a
vector of strings and then back to another vector of integers. This round-trip will be
verified so that the output vector is the same as the input vector.

• The conversion is performed ITER times.

• Errors from the conversion functions are not checked.

• The code tests:
– from_char/to_chars
– to_string/stoi
– sprintf/atoi
– ostringstream/istringstream

You can find the full benchmark code in:

“Chapter String Conversions/conversion_benchmark.cpp”

Here’s the code for from_chars/to_chars:

String Conversions 181

Chapter String Conversions/conversion_benchmark.cpp

const auto numIntVec = GenRandVecOfNumbers(vecSize);
std::vector<std::string> numStrVec(numIntVec.size());
std::vector<int> numBackIntVec(numIntVec.size());

std::string strTmp(15, ' ');

RunAndMeasure("to_chars", [&]() {
for (size_t iter = 0; iter < ITERS; ++iter) {

for (size_t i = 0; i < numIntVec.size(); ++i) {
const auto res = std::to_chars(strTmp.data(),

strTmp.data() + strTmp.size(),
numIntVec[i]);

numStrVec[i] = std::string_view(strTmp.data(),
res.ptr - strTmp.data());

}
}
return numStrVec.size();

});

RunAndMeasure("from_chars", [&]() {
for (size_t iter = 0; iter < ITERS; ++iter) {

for (size_t i = 0; i < numStrVec.size(); ++i) {
std::from_chars(numStrVec[i].data(),

numStrVec[i].data() + numStrVec[i].size(),
numBackIntVec[i]);

}
}
return numBackIntVec.size();

});

CheckVectors(numIntVec, numBackIntVec);

CheckVectors - checks if the two input vectors of integers contain the same values and
prints mismatches on error.

The benchmark converts vector<int> into vector<string> and wemeasure
the whole conversion process which also includes the string object creation.

Here are the results (time in milliseconds) of running 1000 iterations on a vector with 1000
elements:

String Conversions 182

Method GCC 8.2 Clang 7.0 Win VS 2017 15.8 x64
to_chars 21.94 18.15 24.81
from_chars 15.96 12.74 13.43
to_string 61.84 16.62 20.91
stoi 70.81 45.75 42.40
sprintf 56.85 124.72 131.03
atoi 35.90 34.81 32.50
ostringstream 264.29 681.29 575.95
stringstream 306.17 789.04 664.90

The machine: Windows 10 x64, i7 8700 3.2 GHz base frequency, 6 cores/12 threads (although
the benchmark uses only one thread for processing).

• GCC 8.2 - compiled with -O2 -Wall -pedantic, MinGW Distro²

• Clang 7.0 - compiled with -O2 -Wall -pedantic, Clang For Windows³

• Visual Studio 2017 15.8 - Release mode, x64

Some notes:

• On GCC to_chars is almost 3x faster than to_string, 2.6x faster than sprintf
and 12x faster than ostringstream!

• On Clang to_chars is a bit slower than to_string, but ∼7x faster than sprintf
and surprisingly almost 40x faster than ostringstream!

• MSVC also has slower performance in comparison with to_string, but then to_-
chars is ∼5x faster than sprintf and ∼23x faster than ostringstream.

Looking now at from_chars :

• On GCC it’s ∼4,5x faster than stoi, 2,2x faster than atoi and almost 20x faster than
istringstream.

• On Clang it’s ∼3,5x faster than stoi, 2.7x faster than atoi and 60x faster than
istringstream!

• MSVC performs ∼3x faster than stoi, ∼2,5x faster than atoi and almost 50x faster
than istringstream!

²https://nuwen.net/mingw.html
³http://releases.llvm.org/dow4

https://nuwen.net/mingw.html
http://releases.llvm.org/dow4
https://nuwen.net/mingw.html
http://releases.llvm.org/dow4

String Conversions 183

As mentioned earlier, the benchmark also includes the cost of string object creation. That’s
why to_string (optimised for strings) might perform a bit better than to_chars. If you
already have a char buffer, and you don’t need to create a string object, then to_chars
should be faster.

Here are the two charts built from the table above.

Strings into Numbers, time in milliseconds

Numbers into Strings, time in milliseconds

String Conversions 184

As always, it’s encouraged to run the benchmarks on your own before you make
the final judgment. You might get different results in your environment, where
maybe a different compiler or STL library implementation is available.

Summary

This chapter showed how to use two sets of functions from_chars - to convert strings into
numbers, and from_chars that converts numbers into their textual representations.

The functions might look very raw and even C-style. This is a “price” you have to pay for
having such low-level support, performance, safety and flexibility. The advantage is that you
can provide a simple wrapper that exposes only the needed parts that you want.

Extra Info
The change was proposed in: P0067⁴.

Compiler support

Feature GCC Clang MSVC
Elementary String
Conversions

8.0⁵ 7.0⁶ VS 2017 15.7/15.8⁷

⁴https://wg21.link/P0067
⁵In progress, only integral types are supported
⁶In progress, only integral types are supported
⁷Integer support for from_chars/to_chars available in 15.7, floating-point support for from_chars ready in 15.8. Floating-

point to_chars should be ready with 15.9. See STL Features and Fixes in VS 2017 15.8 | Visual C++ Team Blog.

https://wg21.link/P0067
https://wg21.link/P0067
https://blogs.msdn.microsoft.com/vcblog/2018/09/18/stl-features-and-fixes-in-vs-2017-15-8/

12. Searchers & String Matching
std::search in C++14 offers a generic way to search for a pattern in a given range. The
algorithm can be used not only for character containers but also for containers with custom
types. This technique was, unfortunately, a bit limited as the performance was usually slow
- it uses the naive matching algorithm, with the complexity of the size of the pattern times
the size of the text. With C++17 we get new std::search overloads that expose new and
powerful algorithms like Boyer Moore variations that have linear complexity in the average
case.

In this chapter, you’ll learn:

• How we can beat a naive search algorithm with pattern preprocessing.

• How you can use std::search to efficiently search for a pattern in a range.

• How to use std::search for custom types.

Searchers & String Matching 186

Overview of String Matching Algorithms

String-matching consists of finding one or all of the occurrences of a string (“pattern”) in a
text. The strings are built over a finite set of characters, called “alphabet”.

There are lots of algorithms that solve this problem; here’s a short list from Wikipedia¹:

Algorithm Preprocessing Matching Space
Naive string-search none O(nm) none
Rabin–Karp O(m) average O(n + m), worst O((n−m)m) O(1)
Knuth–Morris–Pratt O(m) O(n) O(m)
Boyer–Moore O(m + k) best O(n/m), worst O(mn) O(k)
Boyer–Moore-Horspool O(m + k) best O(n/m), worst O(mn) O(k)

m - the length of the pattern n - the length of the text k - the size of the alphabet

The naive algorithm tries to match the pattern at each position of the text:

Pattern = Hello
Text = SuperHelloWorld

SuperHelloWorld
1. Hello <- XX
2. Hello <- XX
3. Hello <- XX
4. Hello <- XX
5. Hello <- XX
6. Hello <- OK!

In the example above we’re looking for “Hello” in “SuperHelloWorld”. As you can see, the
naive version tries each position until it finds the “Hello” at the 6th iteration.

The main difference between the naive way and the other algorithms is that the faster
algorithms use additional knowledge about the input pattern. That way, they can skip a
lot of fruitless comparisons.

To gain that knowledge, they usually build some lookup tables for the pattern in the
preprocessing phase. The size of lookup tables is often tied to the size of the pattern and
the alphabet.

¹https://en.wikipedia.org/wiki/String-searching_algorithm#Single-pattern_algorithms

https://en.wikipedia.org/wiki/String-searching_algorithm#Single-pattern_algorithms
https://en.wikipedia.org/wiki/String-searching_algorithm#Single-pattern_algorithms

Searchers & String Matching 187

In the above case we can skip most of the iterations, as we can observe that when we try to
match Hello in the first position, there’s a difference at the last letter o vs r. In fact, since
r doesn’t occur in our pattern at all, we can actually move 5 steps further.

Pattern = Hello
Text = SuperHelloWorld

SuperHelloWorld
1. Hello <- XX,
2. Hello <- OK

We have a match with just 2 iterations! The rule that was used in that example comes from
the Boyer Moore algorithm - it’s called The Bad Character Rule.

In C++ string matching is implemented through std::search, which finds a range (the
pattern) inside another range:

template< class ForwardIt1, class ForwardIt2 >
ForwardIt1 search(ForwardIt1 first, ForwardIt1 last,

ForwardIt2 s_first, ForwardIt2 s_last);

Before C++17, you had no control over the algorithm selection inside std::search. The
complexity of std::searchwas specified as O(mn) - so it was usually the naive approach.
Now, in C++17, you have a few more options.

To be precise, there’s also string::find that works exclusively with character sequences.
There might be different implementations of this method, and you don’t have control over
the algorithm that is used inside. In the examples section, you’ll see some performance
experiments that also compare the new algorithms for std::searchwith string::find.

New Algorithms Available in C++17

C++17 updated std::search algorithm in two ways:

• you can now use execution policy to run the default version of the algorithm in a
parallel way.

• you can provide a Searcher object that handles the search.

Searchers & String Matching 188

In C++17, we have three searchers:

• default_searcher - same as the version before C++17, usually meaning the naive
approach. Operates on Forward Iterators.

• boyer_moore_searcher - uses Boyer Moore Algorithm - the full version, with two
rules: bad character rule and good suffix rule. Operates on Random Access Iterators.

• boyer_moore_horspool_searcher - Simplified version of Boyer-Moore that uses
only Bad Character Rule, but still has good average complexity. Operates on Random
Access Iterators.

std::search with a searcher cannot be used along with execution policy.

Using Searchers

The std::search function uses the following overload for searchers:

template<class ForwardIterator, class Searcher>
ForwardIterator search(ForwardIterator first, ForwardIterator last,

const Searcher& searcher);

For example:

string testString = "Hello Super World";
string needle = "Super";
const auto it = search(begin(testString), end(testString),

boyer_moore_searcher(begin(needle), end(needle));

if (it == cend(testString))
cout << "The string " << needle << " not found\n";

Each searcher initialises its state through the constructor. The constructors need to store
the pattern range and also perform the preprocessing phase. Then std::search calls their
operator()(iter TextFirst, iter TextLast) method to perform the search in
the text range.

Since a searcher is an object, you can pass it around in the application. That might be useful
if you’d like to search for the same pattern inside various text objects. In that case, the
preprocessing phase will be done only once.

Searchers & String Matching 189

Examples

Performance Experiments

This example builds a performance test to exercise several ways of finding a pattern in a
larger text.

Here’s how the test works:

• the application loads a text file (configurable via a command-line argument), for
example, a book sample (like a 500KB text file)

• the entire file content is stored in one string - that will be “text” where we’ll be doing
the lookups.

• a pattern is selected - N letters from the input text. That way, we can be sure the pattern
can be found. The position of the string can be located at the front, centre or at the end.

• the benchmark uses several algorithms and runs each search ITER times.

You can find the example in:

Chapter Searchers/searchers_benchmark.cpp

Example benchmarks:

the std::string::find version:

RunAndMeasure("string::find", [&]() {
for (size_t i = 0; i < ITERS; ++i) {

std::size_t found = testString.find(needle);
if (found == std::string::npos)

std::cout << "The string " << needle << " not found\n";
}

});

Searchers & String Matching 190

The boyer_moore_horspool version:

RunAndMeasure("boyer_moore_horspool_searcher", [&]() {
for (size_t i = 0; i < ITERS; ++i) {

auto it = std::search(testString.begin(), testString.end(),
std::boyer_moore_horspool_searcher(

needle.begin(), needle.end()));
if (it == testString.end())

std::cout << "The string " << needle << " not found\n";
}

});

RunAndMeasure is a function that takes a callable object to execute (for example a lambda).
It measures the time of that execution and prints the results.

Since the input string is loaded from a file, the compiler cannot trick us and won’t optimise
code away.

Here are some of the results running the application on Win 10 64bit, i7 8700, 3.20 GHz base
frequency, 6 cores/ 12 threads (the application runs on a single thread, however).

The string size is 547412 bytes (comes from a 500KB text file), and we run the benchmark
1000 times.

Algorithm GCC 8.2 Clang 7.0 Visual Studio (Release x64)
string::find 579.48 367.90 380.78
default searcher 391.99 552.02 604.33
boyer_moore_searcher 37.89 (init 3.98) 32.73 (init 3.02) 34.71 (init 3.52)
boyer_moore_horspool_-
searcher

30.943 (init 0) 28.72 (init 0.5) 31.70 (init 0.69)

When searching for 1000 letters from the centre of the input string, both of the new
algorithms were faster than the default searcher and string::find. boyer_moore uses
more time to perform the initialisation than boyer_moore_horspool (it creates two
lookup tables, rather than one, so it will use more space and preprocessing). The results
also show that boyer_moore usually takes longer time to preprocess the input pattern than
boyer_moore_horspool. And also, the second algorithm is faster in our case. But all in
all, the new algorithms perform even 10…15x faster than the default versions.

Searchers & String Matching 191

Searching for a 1000-letter pattern in the middle of the 500KB text file

Here are the results from another run, this time we use the same input string (from a 500KB
text file), we perform 1000 iterations, but the pattern is only 48 letters. It’s a sentence that’s
located at the end of the file (a single occurrence).

Algorithm GCC 8.2 Clang 7.0 Visual Studio (Release x64)
string::find 164.58 39.63 40.28
default searcher 102.75 332.98 396.11
boyer_moore_searcher 115.69 (init 0.96) 95.56 (init 0.45) 101.73 (init 0.49)
boyer_moore_-
horspool_searcher

100.74 (init 0) 97.48 (init 0.21) 105.44 (init 0.23)

In this test, Boyer-Moore algorithms in Visual Studio and Clang are 2.5x slower than
string::find. However, on GCC string::find performed worse, and boyer_-
moore_horspool is the fastest.

Searchers & String Matching 192

Searching for a 48-lettern text at the end of the 500KB text file

You can run the experiments and see how your STL implementation performs. There are
many ways to configure the benchmark so you can test various positions (beginning, centre,
end) of the text, or check for some string pattern.

DNA Matching

To demonstrate the range of uses for std::search, let’s have a look at a simple DNA
matching demo. The example will match custom types rather than regular characters.

For instance, we’d like to search a DNA sequence to see whether GCTGC occurs in the
sequence CTGATGTTAAGTCAACGCTGC.

The application uses a simple data structure for Nucleotides:

Chapter Searchers/dna_demo.cpp

struct Nucleotide {
enum class Type : uint8_t {

A = 0,
C = 1,
G = 3,
T = 2

};

Type mType;

friend bool operator==(Nucleotide a, Nucleotide b) noexcept {

Searchers & String Matching 193

return a.mType == b.mType;
}

static char ToChar(Nucleotide t);
static Nucleotide FromChar(char ch);

};

With the two converting static methods:

Chapter Searchers/dna_demo.cpp

char Nucleotide::ToChar(Nucleotide t) {
switch (t.mType) {
case Nucleotide::Type::A: return 'A';
case Nucleotide::Type::C: return 'C';
case Nucleotide::Type::G: return 'G';
case Nucleotide::Type::T: return 'T';
}
return 0;

}

Nucleotide Nucleotide::FromChar(char ch) {
return Nucleotide { static_cast<Nucleotide::Type>((ch >> 1) & 0x03) };

}

And the two functions that work on a whole string:

Chapter Searchers/dna_demo.cpp

std::vector<Nucleotide> FromString(const std::string& s) {
std::vector<Nucleotide> out;
out.reserve(s.length());
std::transform(std::cbegin(s), std::cend(s),

std::back_inserter(out), Nucleotide::FromChar);
return out;

}

std::string ToString(const std::vector<Nucleotide>& vec) {
std::stringstream ss;
std::ostream_iterator<char> out_it(ss);
std::transform(std::cbegin(vec), std::cend(vec), out_it, Nucleotide::ToChar);
return ss.str();

}

Searchers & String Matching 194

The demo uses boyer_moore_horspool_searcher which requires hashing support. So
we have to define it as follows:

Chapter Searchers/dna_demo.cpp

namespace std {
template<> struct hash<Nucleotide> {

size_t operator()(Nucleotide n) const noexcept {
return std::hash<Nucleotide::Type>{}(n.mType);

}
};

}

std::hash has support for enums, so we just have to “redirect” it from the whole class.

And then the test code:

Chapter Searchers/dna_demo.cpp

const std::vector<Nucleotide> dna = FromString("CTGATGTTAAGTCAACGCTGC");
std::cout << ToString(dna) << '\n';
const std::vector<Nucleotide> s = FromString("GCTGC");
std::cout << ToString(s) << '\n';

std::boyer_moore_horspool_searcher searcher(std::cbegin(s), std::cend(s));
const auto it = std::search(std::cbegin(dna), std::cend(dna), searcher);

if (it == std::cend(dna))
std::cout << "The pattern " << ToString(s) << " not found\n";

else {
std::cout << "DNA matched at position: "

<< std::distance(std::cbegin(dna), it) << '\n';
}

As you can see, the example builds a vector of custom types - Nucleotides. To satisfy the
searcher, a custom type needs to supportstd::hash interface and also defineoperator==.

The Nucleotide type wastes a bit of space - as we use the full byte just to store four options -
C T G A. We could use only 2 bits, though the implementation would be more complicated.
Another option is to represent the triplets of Nucleotides - Codons. Each codon can be
expressed in 6 bits, so that way we’d use the full byte more efficiently.

Searchers & String Matching 195

Summary

In this chapter, you’ve learned about the searchers that can be passed into std::search
algorithm. They allow you to use more advanced algorithms for string matching - Boyer-
Moore and Boyer-Moore-Horspool that offers better complexity than a naive approach.

std::search with searchers is a general algorithm that works for most of the containers
that expose random access iterators. If you work with strings and characters, then you might
also compare it against std::string::find, which is usually specialised and optimised
for character processing (implementation-dependent!).

Extra Info
The change was proposed in: N3905².

Compiler support

Feature GCC Clang MSVC
Searchers 7.1 3.9 VS 2017 15.3

²https://wg21.link/n3905

https://wg21.link/n3905
https://wg21.link/n3905

13. Filesystem
Since early versions, the Standard Library has included an option to work with files. Through
streams - like fstream - you can open files, read data, write bytes and perform many other
operations. However, whatwasmissingwas an ability toworkwith the filesystem as awhole.
For example, in C++14 you had to use some third party libraries to iterate over directories,
compose paths, delete directories or read file permissions. Now with C++17, we’ve taken a
big step forward in the form of the std::filesystem component!

In this chapter, you’ll learn:

• How std::filesystem got into the Standard

• What the basic types and operations are

• How you can work with the paths

• How to handle errors in std::filesystem

• How to iterate over a directory

• How to create new directories and files

Filesystem 197

Filesystem Overview

While the Standard Library lacked some important features, you could always use Boost
with its dozens of sub-libraries and do the work. The C++ Committee decided that the Boost
libraries are very important and some parts of it were merged into the Standard. For example,
smart pointers (although improved with the move semantics in C++11), regular expressions,
std::optional, std::any and much more.

A similar story happened with std::filesystem.

The filesystem library is modelled directly from Boost filesystem, which has been available
since 2003 (with the version 1.30). In C++ implementation, the committee also extended
the component with non-POSIX systems. The library was first available as TS (Technical
Specification) and later, after a long time of improvements and feedback, merged into the
C++17 Standard.

The library is located in the<filesystem> header, and it uses namespacestd::filesystem.

Core Parts of The Library

The filesystem library is a rather significant part of the Standard Library. It defines many
types with dozens of methods, and also gives us many free functions.

Below we can define the core elements of this module:

• The std::filesystem::path object allows you to manipulate paths that represent
existing or not existing files and directories in the system.

• std::filesystem::directory_entry represents an existing path with addi-
tional status information like last write time, file size, or other attributes.

• Directory iterators allow you to iterate through a given directory. The library provides
a recursive and non-recursive version.

• Many supporting functions like getting information about the path, file manipulation,
permissions, creating directories, and many more.

In the next section, you’ll see a demo of all the parts that compose std::filesystem.

Filesystem 198

Demo

Instead of exploring the library piece by piece at the start, on the next page, you’ll see a demo
example: displaying basic information about all the files in a given directory (recursively).
This should give you a high-level overview of what the library looks like.

Chapter Filesystem/filesystem_list_files.cpp

#include <filesystem>
#include <iomanip>
#include <iostream>
namespace fs = std::filesystem;

void DisplayDirectoryTree(const fs::path& pathToScan, int level = 0) {
for (const auto& entry : fs::directory_iterator(pathToScan)) {

const auto filenameStr = entry.path().filename().string();
if (entry.is_directory()) {

std::cout << std::setw(level*3) << "" << filenameStr << '\n';
DisplayDirectoryTree(entry, level + 1);

}
else if (entry.is_regular_file()) {

std::cout << std::setw(level*3) << ""<< filenameStr
<< ", size " << fs::file_size(entry) << " bytes\n";

}
else

std::cout << std::setw(level*3) << "" << " [?]" << filenameStr << '\n';
}

}
int main(int argc, char* argv[]) {

try {
const fs::path pathToShow{ argc >= 2 ? argv[1] : fs::current_path() };
std::cout << "listing files in the directory: "

<< fs::absolute(pathToShow).string() << '\n';
DisplayDirectoryTree(pathToShow);

}
catch (const fs::filesystem_error& err) {

std::cerr << "filesystem error! " << err.what() << '\n';

}
catch (const std::exception& ex) {

std::cerr << "general exception: " << ex.what() << '\n';
}

}

Filesystem 199

We can run this program on a temp path D:\testlist and see the following output:

Running on Windows:

.\ListFiles.exe D:\testlist\
listing files in the directory: D:\testlist\
abc.txt, size 357 bytes
def.txt, size 430 bytes
ghi.txt, size 190 bytes
dirTemp

jkl.txt, size 162 bytes
mno.txt, size 1728 bytes

tempDir
abc.txt, size 174 bytes
def.txt, size 163 bytes
tempInner

abc.txt, size 144 bytes
mno.txt, size 1728 bytes
xyz.txt, size 3168 bytes

The application lists files recursively, and with each indentation, you can see that we enter
a new directory.

Running on a Linux (Ubuntu 18.04 on WSL):

fenbf@FEN-NODE:/mnt/f/wsl$./list_files.out testList/
listing files in the directory: /mnt/f/wsl/testList/
a.txt, size 965 bytes
b.txt, size 1667 bytes
c.txt, size 1394 bytes
d.txt, size 1408 bytes
directoryTemp

a.txt, size 1165 bytes
b.txt, size 1601 bytes

tempDir
a.txt, size 1502 bytes
b.txt, size 1549 bytes
x.txt, size 1487 bytes

Let’s now examine the core elements of this demo.

Filesystem 200

To work with the library, we have to include relevant headers. For the filesystem library it’s:

#include <filesystem>

All the types, functions and names live in the std::filesystem namespace. For conve-
nience it’s useful to make a namespace alias:

namespace fs = std::filesystem;

And now we can refer to the names as fs::path rather than std::filesystem::path.

Let’s start with the main() function where the logic of the application starts.

The program takes a single optional argument from the command line. If it’s empty then we
use the current system path:

const fs::path pathToShow{ argc >= 2 ? argv[1] : fs::current_path() };

pathToShow can be created from strings - from argv[1] if available. If not, then we take
current_path() which is a helper free function that returns the current system path.

In the next two lines - line 28 and 29 - we display the starting path for the iteration. The
absolute() function “expands” the input path and it converts it from a relative form into
the absolute form if required.

The core part of the application is the DisplayDirectoryTree() function.

Inside, we use directory_iterator to examine the directory and find other paths:

for (const auto& entry : fs::directory_iterator(pathToShow))

Each loop iteration yields another directory_entry that we need to check.We can decide
if we should call the function recursively (when entry.is_directory() is true) or just
show some basic information if it’s a regular file.

As you can see, we have access to many methods of path and directory entry. For example,
we use filename to return only the filename part of the path so we can display “tree”
structure. We also invoke fs::file_size to query the size of the file.

After a little demo, let’s now have a closer look at filesystem::path, filesys-
tem::directory_entry, supporting, non-member functions and error handling.

Filesystem 201

The Path Object

The core part of the library is the path object. It contains a pathname - a string that forms
the name of the path. The object doesn’t have to point to an existing file in the filesystem.
The path might even be in an invalid form.

The path is composed of the following elements:

root-name root-directory relative-path:

• (optional) root-name: POSIX systems don’t have a root name. OnWindows, it’s usually
the name of a drive, like "C:"

• (optional) root-directory: distinguishes relative path from the absolute path

• relative-path:

– filename
– directory separator
– relative-path

We can illustrate it with the following diagram:

The Path Structure

The class implements a lot of methods that extracts the parts of the path:

Filesystem 202

Method Description
path::root_name() returns the root-name of the path
path::root_directory() returns the root directory of the path
path::root_path() returns the root path of the path
path::relative_path() returns path relative to the root path
path::parent_path() returns the path of the parent path
path::filename() returns the filename path component
path::stem() returns the stem path component
path::extension() returns the file extension path component

If a given element is not present, then the above functions return an empty path.

There are also methods that query elements of the path:

Query name Description
path::has_root_path() queries if a path has a root
path::has_root_name() queries if a path has a root name
path::has_root_directory() checks if a path has a root directory
path::has_relative_path() checks if a path has a relative path component
path::has_parent_path() checks if a path has a parent path
path::has_filename() checks if a path has a filename
path::has_stem() checks if a path has a stem component
path::has_extension() checks if a path has an extension

We can use all of the above methods and compose an example that shows info about a given
path:

Chapter Filesystem/filesystem_path_info.cpp

const filesystem::path testPath{...};

if (testPath.has_root_name())
cout << "root_name() = " << testPath.root_name() << '\n';

else
cout << "no root-name\n";

if (testPath.has_root_directory())
cout << "root directory() = " << testPath.root_directory() << '\n';

else
cout << "no root-directory\n";

if (testPath.has_root_path())
cout << "root_path() = " << testPath.root_path() << '\n';

else

Filesystem 203

cout << "no root-path\n";

if (testPath.has_relative_path())
cout << "relative_path() = " << testPath.relative_path() << '\n';

else
cout << "no relative-path\n";

if (testPath.has_parent_path())
cout << "parent_path() = " << testPath.parent_path() << '\n';

else
cout << "no parent-path\n";

if (testPath.has_filename())
cout << "filename() = " << testPath.filename() << '\n';

else
cout << "no filename\n";

if (testPath.has_stem())
cout << "stem() = " << testPath.stem() << '\n';

else
cout << "no stem\n";

if (testPath.has_extension())
cout << "extension() = " << testPath.extension() << '\n';

else
cout << "no extension\n";

Here’s an output for a file path like "C:\Windows\system.ini":

root_name() = "C:"
root directory() = "\\"
root_path() = "C:\\"
relative_path() = "Windows\\system.ini"
parent_path() = "C:\\Windows"
filename() = "system.ini"
stem() = "system"
extension() = ".ini"

Similarly, the output, fom a POSIX system, for a path /usr/temp/abc.txt:

Filesystem 204

no root-name
root directory() = "/"
root_path() = "/"
relative_path() = "usr/temp/abc.txt"
parent_path() = "/usr/temp"
filename() = "abc.txt"
stem() = "abc"
extension() = ".txt"

There’s also a trick that lets you iterate over the parts of a path object.std::filesystem::path
implements overloads for begin() and end() and that’s why you can use it in a range
based for loop:

int i = 0;
for (const auto& part : testPath)

cout << "path part: " << i++ << " = " << part << '\n';

The output for C:\Windows\system.ini:

path part: 0 = C:
path part: 1 = \
path part: 2 = Windows
path part: 3 = system.ini

Path Operations

Below you can find a table with other important methods of the path class:

Operation Description
path::append() appends one path to the other, with a directory separator
path::concat() concatenates the paths, without a directory separator
path::clear() erases the elements and makes it empty
path::remove_filename() removes the filename part from a path
path::replace_filename() replaces a single filename component
path::replace_extension() replaces the extension
path::swap() swaps two paths
path::compare() compares the lexical representations of the path and another

path, returns an integer
path::empty() checks if the path is empty

Filesystem 205

Comparison

The path class has several overloaded operators:

==, !=, <, >, <=, =>

And the path::compare() method, which returns an integer value.

All methods compare element by element, using the native format of the path.

fs::path p1 { "/usr/a/b/c" };
fs::path p2 { "/usr/a/b/c" };
assert(p1 == p2);
assert(p1.compare(p2) == 0);

p1 = "/usr/a/b/c";
p2 = "/usr/a/b/c/d";
assert(p1 < p2);
assert(p1.compare(p2) < 0);

And on Windows we can also test the cases where we have a root element in a path:

p1 = "C:/test";
p2 = "abc/xyz"; // no root path, so it's "less" than a path with a root
assert(p1 > p2);
assert(p1.compare(p2) > 0);

Or, also on Windows, a case where path formats are different:

fs::path p3 { "/usr/a/b/c" }; // on Windows it's converted to native format
fs::path p4 { "\\usr/a\\b/c" };
assert(p3 == p4);
assert(p3.compare(p4) == 0);

You can play with the code in Chapter Filesystem/filesystem_compare.cpp.

Path Composition

We have two methods that let us compose a path:

• path::append() - adds a path with a directory separator.

Filesystem 206

• path::concat() - only adds the ‘string’ without any separator.

The functionality is also available with operators /, /= (append), + and += (concat).

For example:

// append:
fs::path p1{"C:\\temp"};
p1 /= "user";
p1 /= "data";
cout << p1 << '\n';

// concat:
fs::path p2("C:\\temp\\");
p2 += "user";
p2 += "data";
cout << p2 << '\n';

The output:

C:\temp\user\data
C:\temp\userdata

However, appending a path has several rules that you have to be aware of.

For example, if the other path is absolute or the other path has a root-name, and the root-
name is different from the current path root name. Then the append operation will replace
this.

auto resW = fs::path{"foo"} / "D:\"; // Windows
auto resP = fs::path{"foo"} / "/bar"; // POSIX
// resW is "D:\" now
// resP is now "/bar"

In the above case resW and resP will contain the value from the second operand. As D:\
and /bar contains root elements.

Filesystem 207

Stream Operators

The path class also implements >> and << operators.

The operators use std::quoted to preserve the correct format. That’s why the paths in the
examples showed quotes.

On Windows, this will also cause the runtime to output "\\" for paths in native format.

For example on POSIX:

fs::path p1 { "/usr/test/temp.xyz" };
std::cout << p1;

The code will print "/usr/test/temp.xyz".

And on Windows:

fs::path p1{ "usr/test/temp.xyz" };
fs::path p2{ "usr\\test\\temp.xyz" };
std::cout << p1 << '\n' << p2;

The code will output:

"usr/test/temp.xyz"
"usr\\test\\temp.xyz"

Path Formats and Conversion

The filesystem library is modelled on top of POSIX (for example all Unix Based systems
implements POSIX standard), but also works with other filesystems, for instance with
Windows. Because of that, there are a few things to keep in mind when using paths in a
portable way.

The first thing is the path format. We have two core modes:

• generic - generic format, the format as specified by the standard (based on the POSIX
format)

• native - format used by the particular implementation

Filesystem 208

In POSIX systems native format is equal to generic. But On Windows it’s different.

The main difference of the format is that Windows uses backslashes (\) rather than slashes
(/). Another point is that Windows has a root directory - like C:, D: or other drive letters.

One more important aspect is the string type that is used to hold path elements. In POSIX
it’s char (and std::string), but on Windows it’s wchar_t and std::wstring. The
path type specifies path::value_type and string_type (defined as std::basic_-
string<value_type>) to expose those properties.

The path class has several methods that allow you to use the best matching format.

If you want to work with the native format you can use:

Operation Description
path::c_str() returns value_type*
path::native() returns string_type&

And there are many methods that will convert the native format:

Operation Description
path::string() converts to string
path::wstring() converts to wstring
path::u8string() converts to u8string
path::u16string() converts to u16string
path::u32string() converts to u32string

Since Windows uses wchar_t as the underlying type for paths, then you need to
be aware of “hidden” conversions to char.

The Directory Entry & Directory Iteration

While the path class represent files or paths that exist or not, we also have another object
that is more concrete: it’s directory_entry object. This object points to existing files and
directories, and it’s usually obtained with the aid of filesystem iterators.

What’s more, implementations are encouraged to cache the additional file attributes. That
way, there can be fewer system calls.

Filesystem 209

Traversing a Path with Directory Iterators

You can traverse a path using two available iterators:

• directory_iterator - iterates in a single directory, input iterator.

• recursive_directory_iterator - iterates recursively, input iterator

In both approaches the order of the visited filenames is unspecified, each directory entry is
visited only once.

If a file or a directory is deleted or added to the directory tree after the directory iterator has
been created, it is unspecified whether the change would be observed through the iterator.

In both iterators the directories . and .. are skipped.

You can iterate through a directory using the following pattern:

for (auto const & entry : fs::directory_iterator(pathToShow)) {
...

}

Or another way, with an algorithm, where you can also filter out paths:

std::filesystem::path inPath = /* GetInputPath() */;
std::vector<std::filesystem::directory_entry> outEntries;
std::filesystem::recursive_directory_iterator dirpos{ inPath };

std::copy_if(begin(dirpos), end(dirpos), std::back_inserter(outEntries),
some_predicate);

some_predicate is a predicate that takes const directory_entry& and returns true
or false depending on if a given directory_entry object matches our filter or not. All
matching paths are pushed back to the outEntries vector. See “Filtering Files Using Regex”
in the Examples section of this chapter to see the use case of this technique. Also, instead of
the output vector of directory entries, you can use a vector of paths since directory entries
can convert into paths.

directory_entryMethods

Here’s a list of directory_entry methods:

Filesystem 210

Operation Description
directory_entry::assign() replaces the path inside the entry and calls

refresh() to update the cached attributes
directory_entry::replace_-
filename()

replaces the filename inside the entry and calls
refresh() to update the cached attributes

directory_entry::refresh() updates the cached attributes of a file
directory_entry::path() returns the path stored in the entry
directory_entry::exists() checks if a directory entry points to existing

file system object
directory_entry::is_block_file() returns true if the file entry is a block file
directory_entry::is_character_-
file()

returns true if the file entry is a character file

directory_entry::is_directory() returns true if the file entry is a directory
directory_entry::is_fifo() returns true if the file entry refers to a named

pipe
directory_entry::is_other() returns true if the file entry is refers to another

file type
directory_entry::is_regular_file() returns true if the file entry is a regular file
directory_entry::is_socket() returns true if the file entry is a named IPC

socket
directory_entry::is_symlink() returns true if the file entry is a symbolic link
directory_entry::file_size() returns the size of the file pointing by the

directory entry
directory_entry::hard_link_count() returns the number of hard links referring to

the file
directory_entry::last_write_time() gets or sets the last time write for a file
directory_entry::status() returns status of the file designated by this

directory entry
directory_entry::symlink_status() returns the symlink_status of the file

designated by this directory entry

Supporting Functions

So far we’ve covered three elements of the filesystem: the path class, directory_entry and
directory iterators. The library also provides a set of non-member functions.

Query functions:

Filesystem 211

function description
filesystem::is_block_file() checks whether the given path refers to block device
filesystem::is_character_file() checks whether the given path refers to a character

device
filesystem::is_directory() checks whether the given path refers to a directory
filesystem::is_empty() checks whether the given path refers to an empty

file or directory
filesystem::is_fifo() checks whether the given path refers to a named

pipe
filesystem::is_other() checks whether the argument refers to another file
filesystem::is_regular_file() checks whether the argument refers to a regular file
filesystem::is_socket() checks whether the argument refers to a named IPC

socket
filesystem::is_symlink() checks whether the argument refers to a symbolic

link
filesystem::status_known() checks whether file status is known
filesystem::exists() checks whether path refers to existing file system

object
filesystem::file_size() returns the size of a file
filesystem::last_write_time() gets or sets the time of the last data modification

Path related:

function name description
filesystem::absolute() composes an absolute path
filesystem::canonical(),
weakly_canonical()

composes a canonical path

filesystem::relativeproximate() composes a relative path
filesystem::current_path() returns or sets the current working directory
filesystem::equivalent() checks whether two paths refer to the same file

system object

Directory and files management

function name description
filesystem::copy() copies files or directories
filesystem::copy_file() copies file contents
filesystem::copy_symlink() copies a symbolic link
filesystem::create_directory(),
filesystem::create_directories()

creates new directory

filesystem::create_hard_link() creates a hard link
filesystem::create_symlink(),
filesystem::create_directory_-
symlink()

creates a symbolic link

Filesystem 212

function name description
filesystem::hard_link_count() returns the number of hard links referring to

the specific file
filesystem::permissions() modifies file access permissions
filesystem::read_symlink() obtains the target of a symbolic link
filesystem::remove(),
filesystem::remove_all()

removes a single file or whole directory
recursively with all its content

filesystem::rename() moves or renames a file or directory
filesystem::resize_file() changes the size of a regular file by truncation

or zero-fill
filesystem::space() determines available free space on the file

system
filesystem::status(),
filesystem::symlink_status()

determines file attributes, determines file
attributes, checking the symlink target

filesystem::temp_directory_path() returns a directory suitable for temporary files

Getting & Displaying the File Time

In C++17 there’s one thing about last_write_time() values that’s inconvenient.

We have one free function and a method in directory_entry. They both return file_-
time_type which is currently defined as:

using file_time_type = std::chrono::time_point</*trivial-clock*/>;

From the standard, 30.10.25 Header <filesystem> synopsis:

trivial-clock is an implementation-defined type that satisfies the TrivialClock re-
quirements and that is capable of representing and measuring file time values. Imple-
mentations should ensure that the resolution and range of file_time_type reflect the
operating system dependent resolution and range of file time values.

In other words, it’s implementation-dependent.

For example, in GCC/Clang STL file time is implemented on top of chrono::system_-
clock, but in MSVC it’s a platform-specific clock.

Filesystem 213

Here are somemore details about the implementation decisions in Visual Studio: std::filesystem::file_-
time_type does not allow easy conversion to time_t¹

The situation might soon improve as in C++20 we’ll get std::chrono::file_clock and
also conversion routines between clocks. See P0355² (already added into C++20).

Let’s have a look at some code.

auto filetime = fs::last_write_time(myPath);
const auto toNow = fs::file_time_type::clock::now() - filetime;
const auto elapsedSec = duration_cast<seconds>(toNow).count();
// skipped std::chrono prefix for duration_cast and seconds

The above code gives you a way to compute the number of seconds that have elapsed since
the last update. This is however, not as useful as showing a real date.

On POSIX (GCC and Clang Implementation) you can easily convert file time to system_-
clock and then obtain std::time_t:

auto filetime = fs::last_write_time(myPath);
std::time_t convfiletime = std::chrono::system_clock::to_time_t(filetime);
std::cout << "Updated: " << std::ctime(&convfiletime) << '\n';

In MSVC the code won’t compile. However there’s a guarantee that file_time_type is
usable with native OS functions that takes FILETIME. So we can write the following code
to solve the issue:

auto filetime = fs::last_write_time(myPath);
FILETIME ft;
memcpy(&ft, &filetime, sizeof(FILETIME));
SYSTEMTIME stSystemTime;
if (FileTimeToSystemTime(&ft, &stSystemTime)) {

// use stSystemTime.wYear, stSystemTime.wMonth, stSystemTime.wDay, ...
}

See Chapter Filesystem/filesystem_list_files_info.cpp for the full sample.

¹https://developercommunity.visualstudio.com/content/problem/251213/stdfilesystemfile-time-type-does-not-allow-easy-
co.html

²https://wg21.link/p0355

https://developercommunity.visualstudio.com/content/problem/251213/stdfilesystemfile-time-type-does-not-allow-easy-co.html
https://developercommunity.visualstudio.com/content/problem/251213/stdfilesystemfile-time-type-does-not-allow-easy-co.html
https://wg21.link/p0355
https://developercommunity.visualstudio.com/content/problem/251213/stdfilesystemfile-time-type-does-not-allow-easy-co.html
https://developercommunity.visualstudio.com/content/problem/251213/stdfilesystemfile-time-type-does-not-allow-easy-co.html
https://wg21.link/p0355

Filesystem 214

File Permissions

In the table above you might noticed functions related to file permissions. We have two
major functions:

• std::filesystem::status() and

• std::filesystem::permissions()

The first one returns file_statuswhich contains information about the file type and also
its permissions.

And you can use the second function to modify the file permissions. For example, to change
a file to be read-only.

File permissions - std::filesystem::perms - it’s an enum class that represents the
following values:

Name Value (octal) POSIX macro Notes
none 0000 There are no permissions set for the file
owner_read 0400 S_IRUSR Read permission, owner
owner_write 0200 S_IWUSR Write permission, owner
owner_exec 0100 S_IXUSR Execute/search permission, owner
owner_all 0700 S_IRWXU Read, write, execute/search for owner
group_read 0040 S_IRGRP Read permission, group
group_write 0020 S_IWGRP Write permission, group
group_exec 0010 S_IXGRP Execute/search permission, group
group_all 0070 S_IRWXG Read, write, execute/search by group
others_read 0004 S_IROTH Read permission, others
others_write 0002 S_IWOTH Write permission, others
others_exec 0001 S_IXOTH Execute/search permission, others
others_all 0007 S_IRWXO Read, write, execute/search for others
all 0777 owner_all | group_all | others_all
set_uid 04000 S_ISUID Set-user-ID on execution
set_gid 02000 S_ISGID Set-group-ID on execution
sticky_bit 01000 S_ISVTX Operating system dependent
mask 07777 all | set_uid | set_gid |

sticky_bit
unknown 0xFFFF The permissions are not known

Here’s a short code that demonstrates how to print file permissions:

Filesystem 215

Chapter Filesystem/filesystem_permissions.cpp

std::ostream& operator<< (std::ostream& stream, fs::perms p)
{

stream << "owner: "
<< ((p & fs::perms::owner_read) != fs::perms::none ? "r" : "-")
<< ((p & fs::perms::owner_write) != fs::perms::none ? "w" : "-")
<< ((p & fs::perms::owner_exec) != fs::perms::none ? "x" : "-");

stream << " group: "
<< ((p & fs::perms::group_read) != fs::perms::none ? "r" : "-")
<< ((p & fs::perms::group_write) != fs::perms::none ? "w" : "-")
<< ((p & fs::perms::group_exec) != fs::perms::none ? "x" : "-");

stream << " others: "
<< ((p & fs::perms::others_read) != fs::perms::none ? "r" : "-")
<< ((p & fs::perms::others_write) != fs::perms::none ? "w" : "-")
<< ((p & fs::perms::others_exec) != fs::perms::none ? "x" : "-");

return stream;
}

You can use the above operator<< implementation as follows:

std::cout << "perms: " << fs::status("myFile.txt").permissions() << '\n';

Setting Permissions

To change the permissions you can use the following code:

std::cout << "after creation: " << fs::status(sTempName).permissions() << '\n';
fs::permissions(sTempName, fs::perms::owner_read, fs::perm_options::remove);
std::cout << "after change: " << fs::status(sTempName).permissions() << '\n';

std::filesystem::permissions is a function that takes a path and then a flag and the
“action” parameter.

fs::perm_options has three modes:

• replace - The permissions flag you pass will replace the existing state. It’s the default
value for this parameter.

• add - The permission flag will be bitwise OR-ed with the existing state.

Filesystem 216

• remove - The permissions will be replaced by the bitwise AND of the negated
argument and current permissions.

• nofollow - The permissions will be changed on the symlink itself, rather than on the
file it resolves to

For example:

// remove "owner_read"
fs::permissions(myPath, fs::perms::owner_read, fs::perm_options::remove);

// add "owner_read"
fs::permissions(myPath, fs::perms::owner_read, fs::perm_options::add);

// replace and set "owner_all":
fs::permissions(myPath, fs::perms::owner_all); // replace is default param

Note for Windows

Windows is not a POSIX system, and it doesn’t map POSIX file permissions to its scheme.
For std::filesystem it only supports two modes: read-only and all.

From Microsoft Docs filesystem documentation³:

The supported values are essentially “readonly” and all. For a readonly file, none of the
*_write bits are set. Otherwise, the all bit (0777) is set.

Thus, unfortunately, you have limited options if you want to change file permissions on
Windows.

Error Handling & File Races

So far, the examples in this chapter have used exception handling to report errors. The
filesystem API is also equipped with function and method overloads that outputs an error
code. You can decide if you want exceptions or error codes.

³https://docs.microsoft.com/en-us/cpp/standard-library/filesystem-enumerations?view=vs-2017

https://docs.microsoft.com/en-us/cpp/standard-library/filesystem-enumerations?view=vs-2017
https://docs.microsoft.com/en-us/cpp/standard-library/filesystem-enumerations?view=vs-2017

Filesystem 217

For example we have two overloads for file_size:

uintmax_t file_size(const path& p);
uintmax_t file_size(const path& p, error_code& ec) noexcept;

the second one can be used in the following way:

const std::filesystem::path testPath("C:\test.txt");
std::error_code ec{};
auto size = std::filesystem::file_size(testPath, ec);
if (ec == std::error_code{})

std::cout << "size: " << size << '\n';
else

std::cout << "error when accessing test file, size is: "
<< size << " message: " << ec.message() << '\n';

file_size takes an additional output parameter - error_code and will set a value if
something happens. If the operation is successful, then ec will be value initialised.

File Races

It’s important to point out the undefined behaviour that might happen when a file race
occurs.

From 30.10.2.3 File system race behavior:

The behavior is undefined if the calls to functions in this library introduce a file system
race.

And from 30.10.9 file system race:

The condition that occurs whenmultiple threads, processes, or computers interleave access
and modification of the same object within a file system.

Filesystem 218

Examples

In this section, we’ll analyse a few examples where std::filesystem is used. We’ll go
from a simple case - loading a file into a string, then explore creating directories and then
filtering filenames using std::regex.

The demo sample is available inChapter Filesystem/filesystem_list_files.cpp
and its extended version (that shows file time and size) is located at Chapter Filesys-
tem/filesystem_list_files_info.cpp

For more use cases you can also read the chapter - How to Parallelise CSV Reader - where
std::filesystem is a crucial element for finding CSV files.

Loading a File into a String

The first example shows a compelling case where we leverage std::filesystem’s size-
related functions to build a buffer for the file contents.

Here’s the code:

Chapter Filesystem/filesystem_load_string.cpp

[[nodiscard]] std::string GetFileContents(const fs::path& filePath) {
std::ifstream inFile{ filePath, std::ios::in | std::ios::binary };
if (!inFile)

throw std::runtime_error("Cannot open " + filePath.string());

const auto fsize = fs::file_size(filePath);
if (fsize > std::numeric_limits<size_t>::max())

throw std::runtime_error("file is too large to fit into size_t! "
+ filePath.string());

std::string str(static_cast<size_t>(fsize), 0);

inFile.read(str.data(), str.size());
if (!inFile)

throw std::runtime_error("Could not read the full contents from "
+ filePath.string());

return str;
}

Filesystem 219

Before C++17 to get the file size you’d usually reposition the file pointer to the end and then
read the position again. For example:

ifstream testFile("test.file", ios::binary);
const auto begin = myfile.tellg();
testFile.seekg (0, ios::end);
const auto end = testFile.tellg();
const auto fsize = (end-begin);

You could also open a file with ios::ate flag and then the file pointer will be positioned
automatically at the end.

However, all of the above methods require to open a file but with std::filesystem the
code is much shorter, and we only have to read file properties.

What’s more, the std::filesystem technique requires “lower” access rights as you only
need parent directory read permission. There’s no need to have “file read” permission.

If you use std::filesystem::directory_entry method, then it’s possible that the
file size comes from a cache.

Creating Directories

In the second example, we’ll build N directories each with M files.

The core part of the main():

Chapter Filesystem/filesystem_build_temp.cpp

const fs::path startingPath{ argc >= 2 ? argv[1] : fs::current_path() };
const std::string strTempName{ argc >= 3 ? argv[2] : "temp" };
const int numDirectories{ argc >= 4 ? std::stoi(argv[3]) : 4 };
const int numFiles{ argc >= 5 ? std::stoi(argv[4]) : 4 };

if (numDirectories < 0 || numFiles < 0)
throw std::runtime_error("negative input numbers...");

const fs::path tempPath = startingPath / strTempName;
CreateTempData(tempPath, numDirectories, numFiles);

And the CreateTempData() function:

Filesystem 220

Chapter Filesystem/filesystem_build_temp.cpp

std::vector<fs::path> GeneratePathNames(const fs::path& tempPath,
unsigned num) {

std::vector<fs::path> outPaths{ num, tempPath };
for (auto& dirName : outPaths) {

// use pointer value to generate unique name...
const auto addr = reinterpret_cast<uintptr_t>(&dirName);
dirName /= std::string("tt") + std::to_string(addr);

}
return outPaths;

}

void CreateTempFiles(const fs::path& dir, unsigned numFiles) {
auto files = GeneratePathNames(dir, numFiles);
for (auto &oneFile : files)
{

std::ofstream entry(oneFile.replace_extension(".txt"));
entry << "Hello World";

}
}

void CreateTempData(const fs::path& tempPath, unsigned numDirectories,
unsigned numFiles) {

fs::create_directory(tempPath);
auto dirPaths = GeneratePathNames(tempPath, numDirectories);

for (auto& dir : dirPaths) {
if (fs::create_directory(dir))

CreateTempFiles(dir, numFiles);
}

}

In CreateTempData() we first create the root of our folder structure. Then we generate
path names in GeneratePathNames(). Each pathname is built from a pointer address.
Such an approach should give us a good selection of unique names. When we have a vector
of unique paths, then we also generate another vector of paths for files. In this case, we use
the .txt extension. While a directory is created using fs::create_directory, to create
files we can use standard stream objects.

If we run the application with the following parameters: “. temp 2 4” it will create the
following directory structure:

Filesystem 221

temp
tt22325368

tt22283456.txt, size 11 bytes
tt22283484.txt, size 11 bytes
tt22283512.txt, size 11 bytes
tt22283540.txt, size 11 bytes

tt22325396
tt22283456.txt, size 11 bytes
tt22283484.txt, size 11 bytes
tt22283512.txt, size 11 bytes
tt22283540.txt, size 11 bytes

Filtering Files Using Regex

The last example in this chapter will filter file names with the addition of std::regex,
which has been available since C++11.

The core of the main():

Chapter Filesystem/filesystem_filter_files.cpp

const fs::path pathToShow{ argc >= 2 ? argv[1] : fs::current_path() };
const std::regex reg(argc >= 3 ? argv[2] : "");

auto files = CollectFiles(pathToShow);

std::sort(files.begin(), files.end());

for (auto& entry : files) {
const auto strFileName = entry.mPath.filename().string();
if (std::regex_match(strFileName, reg))

std::cout << strFileName << "\tsize: " << entry.mSize << '\n';
}

The application collects all the files from a given directory (recursively). Later a file entry is
shown if it matches regex.

The CollectFiles() function uses recursive directory iterator to find all the files, and it
also builds necessary information about each file. In main() we sort each file by size.

Filesystem 222

Chapter Filesystem/filesystem_filter_files.cpp

struct FileEntry {
fs::path mPath;
uintmax_t mSize{ 0 };

static FileEntry Create(const fs::path& filePath) {
return FileEntry{ filePath, fs::file_size(filePath) };

}

friend bool operator < (const FileEntry& a, const FileEntry& b) noexcept {
return a.mSize < b.mSize;

}
};

std::vector<FileEntry> CollectFiles(const fs::path& inPath) {
std::vector<fs::path> paths;
if (fs::exists(inPath) && fs::is_directory(inPath)) {

std::filesystem::recursive_directory_iterator dirpos{ inPath };

std::copy_if(begin(dirpos), end(dirpos), std::back_inserter(paths),
[](const fs::directory_entry& entry) {

return entry.is_regular_file();
}

);
}
std::vector<FileEntry> files(paths.size());
std::transform(paths.cbegin(), paths.cend(), files.begin(), FileEntry::Create);
return files;

}

In CollectFiles we use a recursive iterator and then std::copy_if to filter only
regular files. Later, once the files are collected, we create the output vector of File Entries.
FileEntry::Create() initialises objects and also fetches the size of a file.

For example, if we run the application with the following parameters “temp .*.txt” we’ll
be looking for all txt files in a directory.

Filesystem 223

.\FilterFiles.exe temp .*.txt
tt22283456.txt size: 11
tt22283484.txt size: 11
tt22283512.txt size: 11
tt22283540.txt size: 11
tt22283456.txt size: 11
tt22283484.txt size: 11
tt22283512.txt size: 11
tt22283540.txt size: 11

Optimisation & Code Cleanup

The CollectFiles() function iterates over a directory and then outputs regular file’s
paths into a vector. Later the function creates FileEntry objects and returns them into a
separate vector.

It appears that we don’t leverage all the benefits of filesystem::directory_entry
objects that we have during the scan. For example, the directory_entry::file_size
member method will be much faster than a free function filesystem::file_size
because directory_entry usually keeps file attributes in cache.

Another element to optimise is a temporary vector of paths. We can skip it by using range-
based for loop.

Here’s the final code:

Chapter Filesystem/filesystem_filter_files.cpp

std::vector<FileEntry> CollectFilesOpt(const fs::path& inPath) {
std::vector<FileEntry> files;
if (fs::exists(inPath) && fs::is_directory(inPath)) {

for (const auto& entry : fs::recursive_directory_iterator{ inPath }) {
if (entry.is_regular_file())

files.push_back({ entry, entry.file_size() });
}

}
return files;

}

Filesystem 224

Chapter Summary

In this chapter, we dove into one of themost significant additions of C++17:std::filesystem.
You saw the core elements of the library: the path class, directory_entry and iterators
and lots of supporting free functions.

Throughout the chapter, we also explored lots of examples: from simple cases like composing
a path, getting file size, iterating through directories to even more complex: filtering with
regex or creating temp directory structures.

You should be equipped with solid knowledge about std::filesystem and be prepared
to explore the library on your own.

The full implementation of std::filesystem is described in the paper P0218:
Adopt the File System TS for C++17⁴. There are also others updates like P0317:
Directory Entry Caching⁵, P0430 – File system library on non-POSIX-like oper-
ating systems⁶, P0492R2 - Resolution of C++17 National Body Comments⁷, P0392
-Adapting string_view by filesystem paths⁸

You can find the final specification in C++17 draft - N4687⁹: the “filesystem”
section, 30.10. Or under this online location timsong-cpp/filesystems¹⁰.

⁴https://wg21.link/p0218
⁵https://wg21.link/p0317
⁶https://wg21.link/p0430
⁷https://wg21.link/p0492
⁸https://wg21.link/p0392r0
⁹https://wg21.link/n4687
¹⁰https://timsong-cpp.github.io/cppwp/n4659/filesystems

https://wg21.link/p0218
https://wg21.link/p0218
https://wg21.link/p0317
https://wg21.link/p0317
https://wg21.link/p0430
https://wg21.link/p0430
https://wg21.link/p0492
https://wg21.link/p0392r0
https://wg21.link/p0392r0
https://wg21.link/n4687
https://timsong-cpp.github.io/cppwp/n4659/filesystems
https://wg21.link/p0218
https://wg21.link/p0317
https://wg21.link/p0430
https://wg21.link/p0492
https://wg21.link/p0392r0
https://wg21.link/n4687
https://timsong-cpp.github.io/cppwp/n4659/filesystems

Filesystem 225

Compiler Support

GCC/libstdc++

The library was added in the version 8.0, see commit - Implement C++17 Filesystem¹¹. Since
GCC 5.3, you can play with the experimental version - the TS implementation.

Starting with GCC 9.1 the filesystem library is located in the same binary as the rest of The
Standard Library, but before that release, you have to link with -lstdc++fs.

To compile demo.cpp you should write the following command:

// GCC 9.1 and up:
g++ -std=c++17 -O2 -Wall -Werror demo.cpp
// before GCC 9.1:
g++ -std=c++17 -O2 -Wall -Werror demo.cpp -lstdc++fs

Clang/libc++

The support for <filesystem>was implemented in version 7.0, you can see this commit¹².
Since Clang 3.9, you can start playing with the experiential version, TS implementation.

Similarly to GCC (before GCC 9.1), you have to link to libc++fs.a.

Visual Studio

The full implementation of <filesystem> was added in Visual Studio 2017 15.7.

Before 15.7, you could play with <experimental/filesystem> in a much earlier
version. The experimental implementation was available even in Visual Studio 2012, and
later it was gradually improved with each release.

Compiler Support Summary

Feature GCC Clang MSVC
Filesystem 8.0 7.0 VS 2017 15.7

¹¹https://github.com/gcc-mirror/gcc/commit/3b90ed62fb848046ed7ddef07df7c806e7f3fadb
¹²https://github.com/llvm-mirror/libcxx/commit/a0866c5fb5020d15c69deda94d32a7f982b88dc9

https://github.com/gcc-mirror/gcc/commit/3b90ed62fb848046ed7ddef07df7c806e7f3fadb
https://github.com/llvm-mirror/libcxx/commit/a0866c5fb5020d15c69deda94d32a7f982b88dc9
https://github.com/gcc-mirror/gcc/commit/3b90ed62fb848046ed7ddef07df7c806e7f3fadb
https://github.com/llvm-mirror/libcxx/commit/a0866c5fb5020d15c69deda94d32a7f982b88dc9

14. Parallel STL Algorithms
Concurrency and Parallelism are core aspects of any modern programming language. Before
C++11, there was no standard support in the language for threading - you could use third-
party libraries or System APIs. Modern C++ started to bring more and more necessary
features: threads, atomics, locks, std::async and futures.

C++17 gives us a way to parallelise most of the standard library algorithms. With a robust
and yet straightforward abstraction layer, you can leverage more computing power out of a
machine.

In this chapter, you’ll learn:

• What’s on the way for C++ regarding parallelism and concurrency

• Why std::thread is not enough

• What the execution policies are

• How to run parallel algorithms

• Which algorithms were parallelised

• What the new algorithms are

• Expected performance of parallel execution

• Examples of parallel execution and benchmarks

Parallel STL Algorithms 227

Introduction

If we look at the computers that surround us, we can observe that most of them are multi-
processors units. Even mobile phones have four or even eight cores. Not to mention graphics
cards that are equipped with hundreds (or even thousands) of small computing cores.

The trend towardsmulticore machines was summarised perfectly in a famous article by Herb
Sutter The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software¹. The
article appeared in 2006.

A glance around is all it takes to see that this trend is not slowing down.

While for a simple application there’s probably no need to use the full computing capacity
of your machine, there are applications which do require just that. Gaming, fast, responsive
apps, graphics processing, video/music editing, data processing, financial, servers and many
more types of systems. Spawning threads on a CPU and processing tasks concurrently is one
way to achieve that.

With C++11/14 we’ve finally got threading into the Standard Library. You can now create
instances of std::thread and not just depend on third-party libraries or a system API.
What’s more, there’s also async processing with futures (std::async).

Multithreading is a significant aspect of modern C++. In the C++ Committee, there’s a
separate group - “SG1, Concurrency” that works on bringing more features like this to the
standard.

What’s on the way?

• Coroutines

• Atomic Smart pointers

• Transactional Memory

• Barriers

• Tasks blocks

• Parallelism

• Compute

• Executors

• Heterogeneous programming models support

¹http://www.gotw.ca/publications/concurrency-ddj.htm

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

Parallel STL Algorithms 228

As you can see, the plan is to expose as much of yourmachine’s computing power as possible,
directly from The Standard Library.

Not Only Threads

As mentioned earlier, using threads is not the only way of leveraging the power of your
machine.

If your system has 8 cores in the CPU then you can use 8 threads and assuming you can
split your work into separate chunks then you can hypothetically process your tasks several
times faster than on a single thread.

But there’s a chance to speed up things even more!

So where’s the rest of the power coming from?

Vector Instructions from CPU and GPU computing.

The first element - vector instructions - allows you to compute several components of an
array in a single instruction. It’s also called SIMD - Single Instruction Multiple Data. Most
of CPUs have 128-bit wide registers, and recent chips contain registers even 256 or 512 bits
wide (AVX 256, AVX 512).

For example, using AVX-512 instructions, you can operate on 16 integer values (32-bit) at the
same time!

The second element is the GPU. It might contain hundreds of smaller cores.

There are third-party APIs that allow you to access GPU/vectorisation: for example, we have
CUDA, OpenCL, OpenGL, Intel TBB, OpenMP and many more. There’s even a chance that
your compiler will try to auto-vectorise some of the code. Still, we’d like to have such support
directly from the Standard Library. That way the same code can be used on many platforms.

C++17 moves us a bit into that direction and allows us to use more computing power: it
unlocks the auto vectorisation/auto parallelisation feature for algorithms in The Standard
Library.

Overview

The new feature of C++17 looks surprisingly simple from a user point of view. You have
a new template parameter that can be passed to most of the standard algorithms: this new
argument is called execution policy.

Parallel STL Algorithms 229

template< class ExecutionPolicy, class RandomIt, ... >
std::algorithm_name(ExecutionPolicy&& policy, RandomIt first, RandomIt last, ...);

We’ll go into the details later, but the general idea is that you call an algorithm and then you
specify how it can be executed. Can it be parallel or just serial.

For example:

std::vector<int> v = genLargeVector();
// sort a vector using a parallel policy
std::sort(std::execution::par, v.begin(), v.end());

The above example will sort a vector in parallel - as specified by the first argument
std::execution::par. The whole machinery is hidden from a user perspective. It’s up
to the STL implementation to choose the best approach to run tasks in parallel. Usually, they
might leverage thread pools.

The hint - the execution policy parameter - is necessary because the compiler cannot deduce
everything from the code. You, as the author of the code, only know if there are any side
effects, possible race conditions, deadlocks, or if there’s no sense in the running in parallel
(such as if you have a small collection of items).

C++17’s Parallelism comes from the Technical Specification that was published
officially in 2015. The whole project of bringing parallel algorithms into C++ took
more than five years - it started in 2012 and was merged into the standard in 2017.
See the paper: P0024 - The Parallelism TS Should be Standardised².

Execution Policies

The execution policy parameter suggests how the algorithm should be executed.

²https://wg21.link/P0024

https://wg21.link/P0024
https://wg21.link/P0024

Parallel STL Algorithms 230

We have the following options:

Policy Name Description
sequenced_policy It is an execution policy type used as a unique type to

disambiguate parallel algorithm overloading and require
that a parallel algorithm’s execution not be parallelised.

parallel_policy It is an execution policy type used as a unique type to
disambiguate parallel algorithm overloading and indicate
that a parallel algorithm’s execution may be parallelised.

parallel_unsequenced_policy It is an execution policy type used as a unique type to
disambiguate parallel algorithm overloading and indicate
that a parallel algorithm’s execution may be parallelised
and vectorised.

We have also three global objects corresponding to each execution policy type:

• std::execution::seq

• std::execution::par

• std::execution::par_unseq

Please note that execution policies are unique types, with their corresponding global objects.
They are not enumerations, nor do they share the same base type.

Execution policy declarations and global objects are located in the <execution> header.

Understanding Execution Policies

To understand the difference between execution policies, let’s try to build a model of how
an algorithm might work.

Consider a simple vector of float values. In the below example, each element of the vector
is multiplied by 2 and then the result is stored into an output container:

Parallel STL Algorithms 231

std::transform on a vector

std::vector<float> vecX = {...}; // generate
std::vector<float> vecY(vecX.size());

std::transform(
std::execution::seq,
begin(vecX), end(vecX), // input range
begin(vecY), // output
[](float x) { return x * 2.0f; }); // operation

Here’s a pseudo-code for sequential execution of the above algorithm:

operation
{

load vecX[i] into RegisterX
multiply RegisterX by 2.0f
store RegisterX into vecY[i]

}

In the sequential execution, we’ll access one element (from vecX), perform an operation and
then store the result into the output (vecY). Execution for all elements happens on a single
thread (on the calling thread).

With the par policy, the whole operation for the i-th element will be executed on one
thread. But there may be many threads that process different elements of the container. For
example, if you have 8 free threads in the system, 8 elements of the container might be
computed at the same time. The element access order is unspecified.

The Standard Library implementations might usually leverage some thread-pool to execute a
parallel algorithm. The pool holds some worker threads (generally as many as system cores
count), and then a scheduler will divide the input into chunks and assign them into the
worker threads³. In theory, on a CPU, you could also create as many threads as elements in
your container, but due to context switching that wouldn’t give you good performance. On
the other hand, implementations that use GPUs might provide hundreds of smaller “cores”,
in that scenario, the scheduler might work entirely differently.

The third execution policy par_unseq is an extension of the parallel execution policy. The
operation for the i-th element will be performed on a separate thread, but also instructions
of that operation might be interleaved and vectorised.

³You might watch this great interview with Pedro Teixeira about thread pools in Windows - Inside Windows 8: Pedro Teixeira
- Thread pools | Channel 9. This is what MSVC implementation is using.

https://channel9.msdn.com/Shows/Going+Deep/Inside-Windows-8-Pedro-Teixeira-Thread-pool
https://channel9.msdn.com/Shows/Going+Deep/Inside-Windows-8-Pedro-Teixeira-Thread-pool

Parallel STL Algorithms 232

For example:

operation
{

load vecX[i...i+3] into RegisterXYZW
multiply RegisterXYZW by 2 // 4 elements at once!
store RegisterXYZW into vecY[i...i+3]

}

The above pseudo-code uses RegisterXYZW to represent a wide register that
could store 4 elements of the container. For example, in SSE (Streaming SIMD
Extensions) you have 128-bit registers that can handle 4 32-bit values, like 4
integers or 4 floating-point numbers (or can store 8 16-bit values). However, such
vectorisation might be extended to even larger registers like with AVX where you
have 256 or even 512-bit registers. It’s up to the implementation of the Standard
Library to choose the best vectorisation scheme.

In this case, each instruction of the operation is “duplicated” and interleaved with others.
That way the compiler can generate instructions that will handle several elements of the
container at the same time.

In theory, if you have 8 free system threads, with 128-bit SIMD registers, and we process
float values (32-bit values) - then, we can compute 8*4 = 32 values at once!

Why do you need the sequential policy?
Most of the time you’ll be probably interested in using parallel policy
or parallel unsequenced one. But for debugging it might be easier to use
std::execution::seq. The parameter is also quite convenient as you might
easily switch between the execution model using a template parameter. For some
algorithms, the sequential policy might also give better performance than the
C++14 counterpart. Read more in the Benchmark section.

Limitations and Unsafe Instructions

The whole point of execution policies is to parallelise standard algorithms effortlessly.
Nevertheless, there are some limitations you need to be aware of.

Parallel STL Algorithms 233

For example, with std::par if you want to modify a shared resource, you need to use some
synchronisation mechanism to prevent data races and deadlocks⁴:

Locking inside a parallel operation

std::vector<int> vec(1000);
std::iota(vec.begin(), vec.end(), 0);
std::vector<int> output;
std::mutex m;
std::for_each(std::execution::par, vec.begin(), vec.end(),
[&output, &m, &x](int& elem) {

if (elem % 2 == 0) {
std::lock_guard guard(m);
output.push_back(elem);

}
});

The above code filters out the input vector and then puts the elements in the output container.

If you forget about using a mutex (or another form of synchronisation), then push_back
might cause data races - as multiple threads might try to add a new element to the vector
at the same time.

The above example will also demonstrate weak performance, as using too many synchroni-
sation points kills the parallel execution.

When using par execution policy try to access the shared resources as little as
possible.

With par_unseq function invocations might be interleaved, so it’s forbidden to use unsafe
vectorised code. For example, using mutexes or memory allocation might lead to data races
and deadlocks.

⁴When you only want to read a shared resource, then there’s no need to synchronise.

Parallel STL Algorithms 234

Unsafe Instructions in Par Unseq Execution

std::vector<int> vec = GenerateData();
std::mutex m;
int x = 0;
std::for_each(std::execution::par_unseq, vec.begin(), vec.end(),
[&m, &x](int& elem) {

std::lock_guard guard(m);
elem = x;
x++; // increment a shared value

});

Since the instructionsmight be interleaved on one thread, youmay end upwith the following
sequence of actions:

std::lock_guard guard(m) // for i-th element
std::lock_guard guard(m) // for i+1-th element
...

As you can see, two locks (in the same mutex) will happen on a single thread causing a
deadlock!

Don’t use synchronisation and memory allocation when executing with par_-
unseq policy.

Exceptions

When using execution policies, you need to be prepared for two kinds of situations.

• the scheduler or the implementation fails to allocate resources for the invocation - then
std::bad_alloc is thrown.

• an exception is thrown from the user code (a functor) - in that case, the exception is
not re-thrown, std::terminate() is called.

Parallel STL Algorithms 235

See the example below.

Chapter Parallel Algorithms/par_exceptions.cpp

try {
std::vector<int> v{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

std::for_each(std::execution::par, v.begin(), v.end(),
[](int& i) {

std::cout << i << '\n';

if (i == 5)
throw std::runtime_error("something wrong... !");

});
}
catch (const std::bad_alloc& e) {

std::cout << "Error in execution: " << e.what() << '\n';
}
catch (const std::exception& e) { // will not happen

std::cout << e.what() << '\n';
}
catch (...) {

std::cout << "error!\n";
}

If you run the above code, the catch section will only handle std::bad_alloc. And if
you exit a lambda because of some exception, then the std::terminate will be called.
The exceptions are not re-thrown.

When you use parallel algorithms, for better error handling, try to make your
functors noexcept.

Algorithm Update

The execution policy parameter was added to most of the existing algorithms.

Here’s the list of new overloads for the algorithms:

Parallel STL Algorithms 236

adjacent_difference inplace_merge replace_copy
adjacent_find is_heap replace_copy_if
all_of is_heap_until replace_if
any_of is_partitioned reverse
copy is_sorted reverse_copy
copy_if is_sorted rotate
copy_n is_sorted_until rotate_copy
count lexicographical_compare search
count_if max_element search_n
equal merge set_difference
exclusive_scan min_element set_intersection
fill minmax_element set_symmetric_difference
fill_n mismatch set_union
find move sort
find_end none_of stable_partition
find_first_of nth_element stable_sort
find_if partial_sort swap_ranges
find_if_not partial_sort_copy transform
for_each partition transform_exclusive_scan
for_each_n partition_copy transform_inclusive_scan
generate remove transform_reduce
generate_n remove_copy uninitialized_copy
includes remove_copy_if uninitialized_copy_n
inclusive_scan remove_if uninitialized_fill
inner_product replace uninitialized_fill_n

unique unique_copy

New Algorithms

To fully support new parallel execution patterns The Standard Library was also equipped
with a set of new algorithms:

Parallel STL Algorithms 237

Algorithm Description
for_each similar to for_each except returns void
for_each_n applies a function object to the first n elements of a sequence
reduce similar to accumulate, except out of order execution to

allow parallelism
transform_reduce transforms the input elements using a unary operation, then

reduces the output out of order
exclusive_scan parallel version of partial_sum, excludes the i-th input

element from the i-th sum, out of order execution to allow
parallelism

inclusive_scan parallel version of partial_sum, includes the i-th input
element in the i-th sum, out of order execution to allow
parallelism

transform_exclusive_scan applies a functor, then calculates exclusive scan
transform_inclusive_scan applies a functor, then calculates inclusive scan

The new algorithms form three groups: for_each, reduce and then scan, plus their
alternatives.

With reduce and scan you also get “fused” versions like transform_reduce. These
compositions should give you much better performance than using two separate steps -
because the cost of parallel execution setup is smaller and also you have one loop traversal
less.

The new algorithms also provide overloads without the execution policy parameter so that
you can use them in a standard serial version.

Below you’ll find a description of each group.

For Each Algorithm

In the serial version of for_each, the version that was available before C++17 you get a
unary function as a return value from the algorithm.

Returning such an object is not possible in a parallel version, as the order of invocations is
indeterminate.

Here’s a basic example:

Parallel STL Algorithms 238

Chapter Parallel Algortihms/par_basic.cpp

std::vector<int> v(100);
std::iota(v.begin(), v.end(), 0);

std::for_each(std::execution::par, v.begin(), v.end(),
[](int& i) { i += 10; });

std::for_each_n(std::execution::par, v.begin(), v.size()/2,
[](int& i) { i += 10; });

The first for_each algorithm will update all of the elements of a vector, while the second
execution will work only on the first half of the container.

Understanding Reduce Algorithms

Another core algorithm that is available with C++17 is std::reduce. This new algorithm
provides a parallel version of std::accumulate. But it’s important to understand the
difference.

std::accumulate returns the sum of all the elements in a range (or a result of a binary
operation that can be different than just a sum).

std::vector<int> v{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

auto sum = std::accumulate(v.begin(), v.end(), /*init*/0);
// sum is 55

The algorithm is sequential and performs “left fold”, which means it will accumulate
elements from the start to the end of a container.

The above example can be expanded into the following code:

sum = init +
v[0] + v[1] + v[2] +
v[3] + v[4] + v[5] +
v[6] + v[7] + v[8] + v[9];

The parallel version - std::reduce - computes the final sum using a tree approach (sum
sub-ranges, then merge the results, divide and conquer). This method can invoke the binary

Parallel STL Algorithms 239

operation/sum in a non-deterministic order. Thus if binary_op is not associative or not
commutative, the behaviour is also non-deterministic.

Here’s a simplified picture that illustrates how a sum of 10 elements might work in a parallel
way:

Parallel Sum Example

The above example with accumulate can be rewritten into reduce:

std::vector<int> v{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

auto sum = std::reduce(std::execution::par, v.begin(), v.end(), 0);

By default std::plus<>{} is used to compute the reduction steps.

A little explanation about associative and commutative operations:

A binary operation @ on a set S is associative if the following equation holds for
all x, y, and z in S:

(x @ y) @ z = x @ (y @ z)

An operation is commutative if:

x @ y = y @ x

For example, we’ll get the same results for accumulate and reduce for a vector of integers
(when doing a sum), but we might get a slight difference for a vector of floats or doubles.
That’s because floating-point sum operation is not associative.

Parallel STL Algorithms 240

An example:

// #include <limits> - for numeric_limits
std::cout.precision(std::numeric_limits<double>::max_digits10);
std::cout << (0.1+0.2)+0.3 << " != " << 0.1+(0.2+0.3) << '\n';

The output:

0.60000000000000009 != 0.59999999999999998

Another example might be the operation type: plus, for integer numbers, is associative and
commutative, but minus is not associative nor commutative:

1+(2+3) == (1+2)+3 // sum is associative
1+8 == 8+1 // sum is commutative

1-(5-4) != (1-5)-4 // subtraction is not associative
1-7 != 7-1 // subtraction is not commutative

transform_reduce - Fused Algorithm

To get even more flexibility and performance, the reduce algorithm also has a version
where you can apply a transform operation before performing the reduction.

Fused Algorithm - Transform and then Reduce

std::vector<int> v{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
auto sumTransformed = std::transform_reduce(std::execution::par,

v.begin(),
v.end(),
0,
std::plus<int>{},
[](const int& i) { return i * 2; }

);

// sum is 110

The above code will first execute the unary functor - the lambda that doubles the input value;
then the results will be reduced into a single sum.

The fused version will be faster than using two algorithms: std::reduce firstly and then
std::reduce - because the implementation will need to perform the parallel execution
setup only once.

Parallel STL Algorithms 241

Scan Algorithms

The third group of new algorithms is scan. They implement a version of partial sum, but
out of order.

The exclusive scan does not include the i-th element in the output i-th sum, while inclusive
scan does.

For example for array = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

We’ll get the following values for partials sums:

Name
Index 0 1 2 3 4 5 6 7 8 9
Values 1 2 3 4 5 6 7 8 9 10
Exclusive partial sums 0 1 3 6 10 15 21 28 36 45
Inclusive partial sums 1 3 6 10 15 21 28 36 45 55

Similarly to std::reduce the order of the operations is unsequenced, thus to get deter-
ministic results, the binary_op must be associative.

scan has also two fused algorithms: transform_exclusive_scan and transform_-
inclusive_scan. Both of the algorithms will perform a unary operation on the input
container, and then they will compute the prefix sums on the output.

Prefix sums have an essential role in many applications, for example for stream compaction,
computing summed-area tables or radix sort. Here’s a link to an article that describes the
algorithms in detail: GPU Gems 3 - Chapter 39. Parallel Prefix Sum (Scan) with CUDA⁵.

Performance of Parallel Algorithms

Parallel algorithms are a robust abstraction layer. Although they’re relatively easy to use,
assessing their performance is less straightforward.

The first point to note is that a parallel algorithm will generally do more work than the
sequential version. That’s because the algorithm needs to set up and arrange the threading
subsystem to run the tasks.

For example, if you invoke std::transform on a vector of 100k elements, then the STL
implementation needs to divide your vector into chunks and then schedule each chunk to
be executed appropriately. If necessary, the implementation might even copy the elements

⁵https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch39.html

https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch39.html
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch39.html

Parallel STL Algorithms 242

before the execution. If you have a system with 10 free threads, the 100k element vector
might be divided into chunks of 10k, and then each chunk is transformed by one thread.
Due to the setup cost and other limitations of parallel code, the whole execution time won’t
be 10x faster than the serial version.

The second factor that plays an important role is synchronisation. If your operations need
to synchronise on some shared objects, then the parallel execution performance decreases.
A parallel algorithm performs best when you execute separate tasks.

The third element that has a big effect on the execution is memory throughput. If we look at
a common desktop CPU, we can see that all cores share the same memory bus. That’s why
if your instructions wait for the data to be fetched from memory, then the performance
improvement over the sequential won’t be visible, as all cores will synchronise on the
memory access. Algorithms like std::copy, std::reverse might be even slower than
their serial versions - at least on common PC hardware⁶. It’s best when your parallel tasks
use CPU cycles for computation rather than waiting for memory access.

The fourth important thing is that the algorithms are very implementation-dependent. They
might use different techniques to achieve parallelism. Not to mention the device that an
algorithm might be executed on - on CPU or GPU.

Right now (as of July 2019) there are two implementations available in a popular compiler -
starting with Visual Studio 2017 and GCC 9.1.

The Visual Studio Implementation is based on thread pools fromWindows and only supports
execution on the CPU and skips the vectorisation execution policy ⁷.

In GCC 9.1, we got parallel algorithms that are based on a popular Intel implementation -
PSTL. Intel offered the implementation, update the licence so that the code could be reused
in the Standard Library. Internally it requires OpenMP 4.0⁸ support and Intel TBB⁹ to be
linked with the application.

Another thing is the GPU support.With hundreds of smaller computing cores, the algorithms
might perform faster than their CPU version. It’s important to remember that before
executing something on the GPU, you have to usually copy the data to memory visible
to the GPU (unless it’s a shared memory like in integrated Graphics Cards). And sometimes
the cost of the data transfer might reduce the total performance.

⁶See section “Current Limitations of the MSVC Implementation of Parallel Algorithms” in Using C++17 Parallel Algorithms
for Better Performance | Visual C++ Team Blog where parallel std::reverse appeared to be 1.6 times slower.

⁷The VS implementation will usually process elements in blocks, so there’s a chance that auto-vectorisation might still optimise
the code and allow vector instruction for better performance.

⁸https://www.openmp.org/
⁹https://www.threadingbuildingblocks.org/

https://www.openmp.org/
https://www.threadingbuildingblocks.org/
https://blogs.msdn.microsoft.com/vcblog/2018/09/11/using-c17-parallel-algorithms-for-better-performance/
https://blogs.msdn.microsoft.com/vcblog/2018/09/11/using-c17-parallel-algorithms-for-better-performance/
https://www.openmp.org/
https://www.threadingbuildingblocks.org/

Parallel STL Algorithms 243

If you decide to use parallel algorithms, it’s best to measure the performance
against the sequential version. Sometimes, especially for a smaller number of
elements, the performance might be even slower.

Examples

Until now, you’ve seen introductory code samples with parallel algorithms. This section will
introduce a few more examples with more complex scenarios.

• You’ll see a few benchmarks and see the performance gains over the sequential version.

• We’ll discuss an example of how to process several containers in the same parallel
algorithm.

• There will also be a sample of how to implement a parallel version of counting
elements.

Benchmark

Finally, we can see the performance of the new algorithms.

Let’s have a look at an example where we execute separate tasks on each element - using
std::transform. In that example, the speed up vs the sequential version should be more
visible.

Chapter Parallel Algorithms/par_benchmark.cpp

#include <algorithm>
#include <execution>
#include <iostream>
#include <numeric>
#include <cmath>
#include "simpleperf.h"

int main(int argc, const char* argv[]) {
const size_t vecSize = argc > 1 ? atoi(argv[1]) : 6000000;
std::cout << vecSize << '\n';
std::vector<double> vec(vecSize, 0.5);
std::vector out(vec);

Parallel STL Algorithms 244

RunAndMeasure("std::transform seq", [&vec, &out] {
std::transform(std::execution::seq, vec.begin(), vec.end(), out.begin(),

[](double v) {
return std::sin(v)*std::cos(v);

}
);
return out.size();

});

RunAndMeasure("std::transform par", [&vec, &out] {
std::transform(std::execution::par, vec.begin(), vec.end(), out.begin(),

[](double v) {
return std::sin(v)*std::cos(v);

}
);
return out.size();

});

return 0;
}

The code calculates sin*cos ¹⁰ and stores the result in the output vector. Those trigonom-
etry functions will keep CPU busy with arithmetic instructions, rather than just fetching an
element from memory.

The application was run on two machines and three modes:

• i7 4720H VS - means Win 10 64bit, i7 4720H, 2.60 GHz base frequency, 4 Cores/8
Threads, MSVC 2017 15.8, Release mode, x86.

• i7 8700 VS- means Win 10 64bit, i7 8700, 3,2 GHz base frequency, 6 Cores/12 Threads,
MSVC 2017 15.8, Release Mode, x86.

• i7 8700 GCC - means NixOS 19.03 64bit, i7 8700, 3,2 GHz base frequency, 6 Cores/12
Threads, GCC 9.1, Intel TBB

RunAndMeasure is a helper function that runs a function and then prints the timings. The
result is used later so that the compiler doesn’t optimise the variable away:

¹⁰You can also use more optimal computation of sin*cos as sin(2x) = 2 sin(x) cos(x).

Parallel STL Algorithms 245

Helper Function that Measures Execution Time

template <typename TFunc> void RunAndMeasure(const char* title, TFunc func) {
const auto start = std::chrono::steady_clock::now();
ret = func();
const auto end = std::chrono::steady_clock::now();
std::cout << title

<< ": " << std::chrono::duration<double, std::milli>(end - start).count()
<< " ms " << ret << '\n';

}

Here are the results (time in milliseconds):

algorithm vector size i7 4720H VS i7 8700 VS i7 8700 GCC
std::transform, seq 1000000 10.9347 7.51991 19.8189
std::transform, par 1000000 2.67921 1.30245 3.14286
std::transform, seq 2000000 21.8466 15.028 37.3226
std::transform, par 2000000 5.29644 2.34634 6.22417
std::transform, seq 3000000 32.7403 22.1449 55.8141
std::transform, par 3000000 7.79366 3.42295 9.34034
std::transform, seq 4000000 44.2565 30.1643 74.2437
std::transform, par 4000000 11.7558 4.40974 12.4206

Benchmark of std::transform

Parallel STL Algorithms 246

The example above might be the perfect case for a parallelisation: we have an operation that
requires a decent amount of instructions (trigonometry functions), and then all the tasks are
separate. In this case, on a machine with 6 cores and 12 threads, the performance is almost
7X faster! On a computer with 4 cores and 8 threads, the performance is 4.2X faster.

GCC results are surprisingly slower than the Visual Studio version¹¹. Still, we can also notice
that with the parallel execution we get even 8x improvement on 6 cores/12 threads over the
sequential execution.

It’s also worth to notice that when the transformation instructions are simple like return
v*2.0 then the performance speed-up might be not seen. This is because all the code will be
just waiting on the global memory, and it might perform the same as the sequential version.

Below there’s a benchmark of computing the sum of all elements in a vector:

Chapter Parallel Algorithms/par_benchmark.cpp

#include <algorithm>
#include <execution>
#include <iostream>
#include <numeric>
#include "simpleperf.h"

int main(int argc, const char* argv[]) {
const size_t vecSize = argc > 1 ? atoi(argv[1]) : 6000000;
std::cout << vecSize << '\n';
std::vector<double> vec(vecSize, 0.5);

RunAndMeasure("std::accumulate", [&vec] {
return std::accumulate(vec.begin(), vec.end(), 0.0);

});

RunAndMeasure("std::reduce, seq", [&vec] {
return std::reduce(std::execution::seq,

vec.begin(), vec.end(), 0.0);
}

);

RunAndMeasure("std::reduce, par", [&vec] {
return std::reduce(std::execution::par,

vec.begin(), vec.end(), 0.0);
}

);

¹¹A similar machine was used, but the results were 2x slower. The full investigation is outside the scope of the book.

Parallel STL Algorithms 247

return 0;
}

Here are the results:

algorithm size i7 4720H VS i7 8700 VS i7 8700 GCC
std::accumulate 10000000 10.5814 9.62405 9.65569
std::reduce seq 10000000 6.9556 4.58746 9.20017
std::reduce par 10000000 4.88708 3.67831 2.45625
std::accumulate 15000000 17.8769 14.9163 14.2885
std::reduce seq 15000000 11.5103 5.42508 13.7725
std::reduce par 15000000 9.99877 4.5679 3.79334
std::accumulate 20000000 21.8888 19.6507 18.8786
std::reduce seq 20000000 16.2142 6.80581 18.4035
std::reduce par 20000000 10.8826 4.79214 5.141

Benchmark std::accumulate vs std::reduce

During this execution, thepar versionwas 2x..4x faster than the standardstd::accumulate!

When looking at par and accumulate, this time, GCC results are almost the same as Visual
Studio. It’s also clear that the GCC version switches to regular std::accumulate when
you use sequential mode for std::reduce.

Parallel STL Algorithms 248

Another reason to use sequential policy?
In Visual Studio the sequential version of std::reduce was also faster than
std::accumulate. This might happen because in std::reduce the order
of operations is not determined, while std::accumulate is a left fold. The
compiler has more options to optimise the code.

Processing Several Containers At the Same Time

When using parallel algorithms, you might sometimes want to access other containers. For
example, you might want to execute for_each on two containers.

The main technique is to get the index of the element currently being processed. Then you
can use that index to access other containers (assuming the containers are of the same size).

We can do it in a few ways:

• by using a separate container of indices

• by using zip iterators/wrappers

Let’s have a look at the techniques:

Separate Container of Indices

Chapter Parallel Algorithms/par_iterating_multiple.cpp

void Process(int a, int b) { }

std::vector<int> v(100);
std::vector<int> w(100);
std::iota(v.begin(), v.end(), 0);
std::iota(w.begin(), w.end(), 0);

std::vector<size_t> indexes(v.size());
std::iota(indexes.begin(), indexes.end(), 0);

std::for_each(std::execution::par, indexes.begin(), indexes.end(),
[&v, &w](size_t& id) {

Process(v[id], w[id]);
}

);

Parallel STL Algorithms 249

Since the order of execution is not specified, we cannot iterate through v and w using some
global i variable. That’s why we have to generate a separate vector of indices and then use
it to access our containers.

Zip Iterators

Chapter Parallel Algorithms/par_iterating_multiple.cpp

void Process(int a, int b) { }

std::vector<int> v(100);
std::vector<int> w(100);
std::iota(v.begin(), v.end(), 0);
std::iota(w.begin(), w.end(), 0);

vec_zipper<int, int> zipped{ v, w };
std::for_each(std::execution::seq, zipped.begin(), zipped.end(),

[](std::pair<int&, int&>& twoElements) {
Process(twoElements.first, twoElements.second);

}
);

This is a more elegant approach as we combine two containers into a single sequence and
then iterate at once. The example uses a custom implementation of a vec_zipper that
works only with std::vector. You can improve the code and make it more general or use
third-party zip iterators (like boost¹²).

Erroneous Technique

What’s more, it’s necessary to mention one aspect.

According to the Standard [algorithms.parallel.exec]¹³:

Unless otherwise stated, implementations may make arbitrary copies of elements (with
type T) from sequences where is_ trivially_ copy_ constructible_ v<T> and is_-
 trivially_ destructible_ v<T> are true. [Note: This implies that user-supplied func-
tion objects should not rely on object identity of arguments for such input sequences. Users
for whom the object identity of the arguments to these function objects is important should

¹²https://www.boost.org/doc/libs/1_70_0/libs/iterator/doc/zip_iterator.html
¹³https://timsong-cpp.github.io/cppwp/n4659/algorithms.parallel#exec-2

https://www.boost.org/doc/libs/1_70_0/libs/iterator/doc/zip_iterator.html
https://timsong-cpp.github.io/cppwp/n4659/algorithms.parallel#exec-2
https://www.boost.org/doc/libs/1_70_0/libs/iterator/doc/zip_iterator.html
https://timsong-cpp.github.io/cppwp/n4659/algorithms.parallel#exec-2

Parallel STL Algorithms 250

consider using a wrapping iterator that returns a non-copied implementation object such
as reference_ wrapper<T> or some equivalent solution. —end note]

Thus you cannot write:

Don’t Rely on the Addresses

vector<int> vec;
vector <int> other;
vector <int> external;
int* beg = vec.data();
std::transform(std::execution::par,

vec.begin(), vec.end(), other.begin(),
[&beg, &external](const int& elem) {

// use pointer arithmetic
auto index = &elem - beg;
return elem * externalVec[index];

}
);

The code above uses pointer arithmetic to find the current index of the element. Then we
can use this index to access other containers.

The technique, however, uses the assumption that elem is the exact element from the
container and not its copy! Since the implementations might copy elements, the addresses
might be completely unrelated! This faulty technique also assumes that the container is
storing the items in a contiguous chunk of memory.

Only for_each and for_each_n have a guarantee that the elements are not being copied
during the execution [alg.foreach]¹⁴:

Implementations do not have the freedom granted under [algorithms.parallel.exec] tomake
arbitrary copies of elements from the input sequence.

¹⁴https://timsong-cpp.github.io/cppwp/n4659/alg.foreach#9

https://timsong-cpp.github.io/cppwp/n4659/alg.foreach#9
https://timsong-cpp.github.io/cppwp/n4659/alg.foreach#9

Parallel STL Algorithms 251

Counting Elements

To gain some practice, let’s build an algorithm that counts the number of elements in a
container. Our algorithm will be a version of another standard algorithm count_if.

The main idea is to use transform_reduce - a new “fused” algorithm. It first applies some
unary function over an element and then performs a reduce operation.

To get the count of elements that satisfy some predicate, we can firstly filter each element
(transform). We return 1 if the element passes the filter and 0 otherwise. Then, in the
reduction step, we count how many elements returned 1.

Here’s a diagram that illustrates the algorithm for a simple case:

Parallel Count IF Example

• The first step is to perform the transform step in transform_reduce algorithm.
We return 1 for matching elements and 0 otherwise.

• Then the reduce step is used to compute the sum of all 1. We have three values that
satisfy the condition, so the output is 3.

Parallel STL Algorithms 252

Here’s the code:

Chapter Parallel Algorithms/par_count_if.cpp

template <typename Policy, typename Iter, typename Func>
std::size_t CountIf(Policy policy, Iter first, Iter last, Func predicate) {

return std::transform_reduce(policy,
first,
last,
std::size_t(0),
std::plus<std::size_t>{},
[&predicate](const Iter::value_type& v) {

return predicate(v) ? 1 : 0;
}

);
}

We can run it on the following test containers:

Chapter Parallel Algorithms/par_count_if.cpp

std::vector<int> v(100);
std::iota(v.begin(), v.end(), 0);
auto NumEven = CountIf(std::execution::par, v.begin(), v.end(),

[](int i) { return i % 2 == 0; }
);
std::cout << NumEven << '\n';

To get number of spaces in a string:

Chapter Parallel Algorithms/par_count_if.cpp

std::string_view sv = "Hello Programming World";
auto NumSpaces = CountIf(std::execution::seq, sv.begin(), sv.end(),

[](char ch) { return ch == ' '; }
);
std::cout << NumSpaces << '\n';

Or even on a map:

Parallel STL Algorithms 253

Chapter Parallel Algorithms/par_count_if.cpp

std::map<std::string, int> CityAndPopulation{
{"Cracow", 765000},
{"Warsaw", 1745000},
{"London", 10313307},
{"New York", 18593220},
{"San Diego", 3107034}

};
auto NumCitiesLargerThanMillion = CountIf(std::execution::seq,

CityAndPopulation.begin(), CityAndPopulation.end(),
[](const std::pair<const std::string, int>& p) {

return p.second > 1000000;
}

);
std::cout << CitiesLargerThanMillion << '\n';

The example uses simple test data and to have good performance over the sequential version
the size of data would have to be significantly increased. For example, the cities and their
population could be loaded from a database.

More Examples

Here’s a list of a few other ideas where parallel algorithms could be beneficial:

• statistics - calculating various maths properties for a set of data

• processing CSV records line by line in parallel

• parsing files in parallel - one file per thread, or chunks of a file per thread

• computing summed-area tables

• parallel matrix operations

• parallel dot product

You can find a few more examples in the following articles:

• The Amazing Performance of C++17 Parallel Algorithms, is it Possible?¹⁵

• How to Boost Performance with Intel Parallel STL and C++17 Parallel Algorithms¹⁶

¹⁵https://www.bfilipek.com/2018/11/parallel-alg-perf.html
¹⁶https://www.bfilipek.com/2018/11/pstl.html

https://www.bfilipek.com/2018/11/parallel-alg-perf.html
https://www.bfilipek.com/2018/11/pstl.html
https://www.bfilipek.com/2018/11/parallel-alg-perf.html
https://www.bfilipek.com/2018/11/pstl.html

Parallel STL Algorithms 254

• Examples of Parallel Algorithms From C++17¹⁷

• Parallel STL And Filesystem: Files Word Count Example¹⁸

Chapter Summary

After reading the chapter, you should be equipped with the core knowledge about parallel
algorithms. We discussed the execution policies, how they might be executed on hardware,
what are the new algorithms.

At the moment, parallel algorithms show good potential. With only one extra parameter,
you can easily parallelise your code. Previously that would require to use some third-party
library or write a custom version of some thread pooling system.

For sure, we need to wait for more available implementations and experience. Currently,
only Visual Studio and GCC 9.1 let you use parallel algorithms, and we’re waiting for Clang’s
library to catch up. Executing code on GPU looks especially interesting.

It’s also worth quoting the TS specification P0024¹⁹:

The parallel algorithms and execution policies of the Parallelism TS are only a starting
point. Already we anticipate opportunities for extending the Parallelism TS’s functionality
to increase programmer flexibility and expressivity. A fully-realised executors feature
will yield new, flexible ways of creating execution, including the execution of parallel
algorithms.

Things to remember:

• Parallel STL gives you a set of 69 algorithms that have overloads for the execution
policy parameter.

• Execution policy describes how the algorithm might be executed.

• There are three execution policies in C++17 (<execution> header)

– std::execution::seq - sequential
– std::execution::par - parallel

¹⁷https://www.bfilipek.com/2018/06/parstl-tests.html
¹⁸https://www.bfilipek.com/2018/07/files-word-count.html
¹⁹https://wg21.link/P0024

https://www.bfilipek.com/2018/06/parstl-tests.html
https://www.bfilipek.com/2018/07/files-word-count.html
https://wg21.link/P0024
https://www.bfilipek.com/2018/06/parstl-tests.html
https://www.bfilipek.com/2018/07/files-word-count.html
https://wg21.link/P0024

Parallel STL Algorithms 255

– std::execution::par_unseq - parallel and vectorised

• In parallel execution policy functors that are passed to algorithms cannot cause
deadlocks and data races

• In parallel unsequenced policy functors cannot call vectorised unsafe instructions like
memory allocations or any synchronisation mechanisms

• To handle new execution patterns there are also new algorithms: like std::reduce,
exclusive_scan - They work out of order so the operations must be associative to
generate deterministic results

• There are “fused” algorithms:transform_reduce, transform_exclusive_scan,
transform_inclusive_scan that combine two algorithms together.

• Assuming there are no synchronisation points in the parallel execution, the parallel
algorithms should be faster than the sequential version. Still, they perform more work
- especially the setup and divisions into tasks.

• Implementations might usually use some thread pools to implement a parallel algo-
rithm on CPU.

Parallel STL Algorithms 256

Compiler Support

As of today (July 2019) only two compilers/STL implementation support parallel algorithms:
it’s Visual Studio (since 2017 15.7) and GCC (since 9.1).

Visual Studio implements par_unseq as par, so you shouldn’t expect any difference
between code runs.

GCC implementation uses modified Intel PSTL and relies on OpenMP 4.0 and Intel TBB
2018. You need to install and link with -ltbb if you want to work with parallel algorithms.

For example:

g++-9.1 -std=c++17 -Wall -O2 sample.cpp -ltbb

For Building GCC 9.1 and Intel TBB you can check this guide@Solarian Programmer: C++17
STL Parallel Algorithms - with GCC 9.1 and Intel TBB on Linux and macOS²⁰.

Summary:

Feature GCC Clang MSVC
Parallel Algorithms 9.1²¹ in progress VS 2017 15.7²²

There are also several other implementations out there:

• Codeplay - SYCL Parallel STL²³

• STE||AR Group - HPX²⁴

• Intel - Parallel STL²⁵ - based on OpenMP 4.0 and Intel® TBB.

• Parallel STL²⁶ - early Microsoft implementation for the Technical Specification.

• n3554 - proposal implementation (started by Nvidia)²⁷

• Thibaut Lutz Implementation @Github²⁸ - early implementation

²⁰https://solarianprogrammer.com/2019/05/09/cpp-17-stl-parallel-algorithms-gcc-intel-tbb-linux-macos/
²¹See in the article: GCC 9.1 Released and GCC 9 Release Series — Changes, New Features, and Fixes)
²²See Announcing: MSVC Conforms to the C++ Standard | Visual C++ Team Blog
²³http://github.com/KhronosGroup/SyclParallelSTL
²⁴http://stellar-group.github.io/hpx/docs/html/hpx/manual/parallel.html
²⁵https://software.intel.com/en-us/get-started-with-pstl
²⁶https://parallelstl.codeplex.com/
²⁷https://github.com/n3554/n3554
²⁸http://github.com/t-lutz/ParallelSTL

https://solarianprogrammer.com/2019/05/09/cpp-17-stl-parallel-algorithms-gcc-intel-tbb-linux-macos/
https://solarianprogrammer.com/2019/05/09/cpp-17-stl-parallel-algorithms-gcc-intel-tbb-linux-macos/
http://github.com/KhronosGroup/SyclParallelSTL
http://stellar-group.github.io/hpx/docs/html/hpx/manual/parallel.html
https://software.intel.com/en-us/get-started-with-pstl
https://parallelstl.codeplex.com/
https://github.com/n3554/n3554
http://github.com/t-lutz/ParallelSTL
https://solarianprogrammer.com/2019/05/09/cpp-17-stl-parallel-algorithms-gcc-intel-tbb-linux-macos/
https://lwn.net/Articles/787385/
https://gcc.gnu.org/gcc-9/changes.html
https://blogs.msdn.microsoft.com/vcblog/2018/05/07/announcing-msvc-conforms-to-the-c-standard/
http://github.com/KhronosGroup/SyclParallelSTL
http://stellar-group.github.io/hpx/docs/html/hpx/manual/parallel.html
https://software.intel.com/en-us/get-started-with-pstl
https://parallelstl.codeplex.com/
https://github.com/n3554/n3554
http://github.com/t-lutz/ParallelSTL

15. Other Changes In The Library
C++17 is a significant update for the language, and it brings a lot of features in the Standard
Library. So far, this book has covered the most important aspects, but there are many more
things to describe!

This part of the book summaries briefly other changes in the Standard Library:

• What’s std::byte?

• What are the new functionalities of maps and sets

• New algorithms: sampling

• Special Mathematical Functions

• Shared Pointers and Arrays

• Non-member size(), data() and empty()

• constexpr additions to the Standard Library

• How to lock multiple mutexes with scoped_lock?

• What’s a polymorphic allocator? How can it help with memory management?

Other Changes In The Library 258

std::byte

std::byte is a small type that gives you a view of bytes and bits rather than numeric/char
values (like unsigned char). It’s defined as enum:

enum class byte : unsigned char {} ; // in <cstddef>

You can initialise byte from an unsigned char - which is in fact, another handy C++17
feature that allows you to init a scoped enum with the underlying type¹. To convert from
byte into a numeric type use std::to_integer().

Let’s see a basic example:

Chapter STL Other/byte.cpp

constexpr std::byte b{1};
// std::byte c{3535353}; // error: narrowing conversion from int

constexpr std::byte c{255};

// shifts:
constexpr auto b1 = b << 7;
static_assert(std::to_integer<int>(b) == 0x01);
static_assert(std::to_integer<int>(b1) == 0x80);

// various bit operators, like &, |, &, etc
constexpr auto c1 = b1 ^ c;
static_assert(std::to_integer<int>(c) == 0xff);
static_assert(std::to_integer<int>(c1) == 0x7f);

constexpr auto c2 = ~c1;
static_assert(std::to_integer<int>(c2) == 0x80);
static_assert(c2 == b1);

The primary motivation behind std::byte is type-safety in the context of memory/byte
access.

Extra Info
See the reference paper P0298R3².

¹Read more in P0138 - https://wg21.link/P0138
²https://wg21.link/P0298R3

https://wg21.link/P0298R3
https://wg21.link/P0298R3

Other Changes In The Library 259

Improvements for Maps and Sets

In the Standard there are two notable features for maps and sets:

• Splicing Maps and Sets - P0083³

• New emplacement routines - N4279⁴

Splicing

You can nowmove nodes from one tree-based container (maps/sets) into other ones, without
additional memory overhead/allocation.

For example:

Chapter STL Other/set_extract_insert.cpp

#include <set>
#include <string>
#include <iostream>

struct User {
std::string name;

User(std::string s) : name(std::move(s)) {
std::cout << "User::User(" << name << ")\n";

}
~User() {

std::cout << "User::~User(" << name << ")\n";
}
User(const User& u) : name(u.name) {

std::cout << "User::User(copy, " << name << ")\n";
}

friend bool operator<(const User& u1, const User& u2) {
return u1.name < u2.name;

}
};

int main() {

³https://wg21.link/P0083
⁴https://wg21.link/N4279

https://wg21.link/P0083
https://wg21.link/N4279
https://wg21.link/P0083
https://wg21.link/N4279

Other Changes In The Library 260

std::set<User> setNames;
setNames.emplace("John");
setNames.emplace("Alex");
setNames.emplace("Bartek");
std::set<User> outSet;

std::cout << "move John...\n";
// move John to the outSet
auto handle = setNames.extract(User("John"));
outSet.insert(std::move(handle));

for (auto& elem : setNames)
std::cout << elem.name << '\n';

std::cout << "cleanup...\n";
}

Output:

User::User(John)
User::User(Alex)
User::User(Bartek)
move John...
User::User(John)
User::~User(John)
Alex
Bartek
cleanup...
User::~User(John)
User::~User(Bartek)
User::~User(Alex)

In the above example, one element “John” is extracted from setNames into outSet. The
extract method moves the found node out of the set and physically detaches it from the
container. Later the extracted node can be inserted into a container of the same type.

Before C++17, if you wanted to move an object from one map (or set) and put it into another
map (or set), you had to remove it from the first container and then copy/move into another.
With the new functionality, you can manipulate tree nodes (by using implementation-
defined type node_type) and leave objects unaffected. Such a technique allows you to
handle non-movable elements and of course, is more efficient.

Other Changes In The Library 261

Emplace Enhancements for Maps and Unordered Maps

With C++17 you get two new methods for maps and unordered maps:

• try_emplace() - if the object already exists then it does nothing, otherwise it
behaves like emplace().
– emplace() might move from the input parameter when the key is in the map,
that’s why it’s best to use find() before such emplacement.

• insert_or_assign() - gives more information than operator[] - as it returns
if the element was newly inserted or updated and also works with types that have no
default constructor.

try_emplaceMethod

Here’s an example:

Chapter STL Other/try_emplace_map.cpp

#include <iostream>
#include <string>
#include <map>

int main() {
std::map<std::string, int> m;

m["hello"] = 1;
m["world"] = 2;

// C++11 way:
if (m.find("great") == std::end(m))

m["great"] = 3;

// the lookup is performed twice if "great" is not in the map

// C++17 way:
m.try_emplace("super", 4);
m.try_emplace("hello", 5); // won't emplace, as it's

// already in the map

for (const auto& [key, value] : m)
std::cout << key << " -> " << value << '\n';

}

Other Changes In The Library 262

The behaviour of try_emplace is important in a situation when you move elements into
the map:

Chapter STL Other/try_emplace_map_move.cpp

#include <iostream>
#include <string>
#include <map>

int main() {
std::map<std::string, std::string> m;
m["Hello"] = "World";

std::string s = "C++";
m.emplace(std::make_pair("Hello", std::move(s)));

// what happens with the string 's'?
std::cout << s << '\n';
std::cout << m["Hello"] << '\n';

s = "C++";
m.try_emplace("Hello", std::move(s));
std::cout << s << '\n';
std::cout << m["Hello"] << '\n';

}

The code tries to replace ["Hello", "World"] into ["Hello", "C++"].

If you run the example the string s after emplace is empty and the value “World” is not
changed into “C++”!

try_emplace does nothing in the case where the key is already in the container, so the s
string is unchanged.

insert_or_assignMethod

The second function insert_or_assign, inserts a new object in the map or assigns the
new value. But as opposed to operator[] it also works with non-default constructible
types.

Other Changes In The Library 263

For example:

Chapter STL Other/insert_or_assign.cpp

#include <iostream>
#include <map>
#include <string>

struct User {
std::string name;

User(std::string s) : name(std::move(s)) {
std::cout << "User::User(" << name << ")\n";

}
~User() {

std::cout << "User::~User(" << name << ")\n";
}
User(const User& u) : name(u.name) {

std::cout << "User::User(copy, " << name << ")\n";
}

friend bool operator<(const User& u1, const User& u2) {
return u1.name < u2.name;

}
};

int main() {
std::map<std::string, User> mapNicks;
//mapNicks["John"] = User("John Doe"); // error: no default ctor for User()

auto [iter, inserted] = mapNicks.insert_or_assign("John", User("John Doe"));
if (inserted)

std::cout << iter->first << " entry was inserted\n";
else

std::cout << iter->first << " entry was updated\n";
}

Other Changes In The Library 264

Output:

User::User(John Doe)
User::User(copy, John Doe)
User::~User(John Doe)
John entry was inserted
User::~User(John Doe)

In the example above we cannot use operator[] to insert a new value into the container, as
it doesn’t support types with non-default constructors. We can do it with the new function.

insert_or_assign returns a pair of <iterator, bool>. If the boolean value is true, it
means the element was inserted into the container. Otherwise, it was reassigned.

Extra Info
See more information in Splicing Maps and Sets P0083⁵ and New emplacement
routines N4279⁶.

⁵https://wg21.link/P0083
⁶https://wg21.link/N4279

https://wg21.link/P0083
https://wg21.link/N4279
https://wg21.link/N4279
https://wg21.link/P0083
https://wg21.link/N4279

Other Changes In The Library 265

Return Type of Emplace Methods

Since C++11 most of the standard containers got .emplace*methods. With those methods,
you can create a new object in place, without additional object copies.

However, most of .emplace* methods didn’t return any value - it was void. Since C++17
this is changed, and they now return the reference type of the inserted object.

For example:

// since C++11 and until C++17 for std::vector
template< class... Args >
void emplace_back(Args&&... args);

// since C++17 for std::vector
template< class... Args >
reference emplace_back(Args&&... args);

This modification should shorten the code that adds something to the container and then
invokes some operation on that newly added object.

For example:

Chapter STL Other/emplace_return.cpp

#include <vector>
#include <string>

int main() {
std::vector<std::string> stringVector;

// in C++11/14:
stringVector.emplace_back("Hello");
// emplace doesn't return anything, so back() needed
stringVector.back().append(" World");

// in C++17:
stringVector.emplace_back("Hello").append(" World");

}

Extra Info
See more information in the paper: P0084R2⁷.

⁷http://wg21.link/p0084r2

http://wg21.link/p0084r2
http://wg21.link/p0084r2

Other Changes In The Library 266

Sampling Algorithms

New algorithm - std::sample - that selects n elements from the sequence:

Chapter STL Other/sample.cpp

#include <iostream>
#include <random>
#include <iterator>
#include <algorithm>

int main() {
std::vector<int> v { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
std::vector<int> out;
std::sample(v.begin(), // range start

v.end(), // range end
std::back_inserter(out), // where to put it
3, // number of elements to sample
std::mt19937{std::random_device{}()});

std::cout << "Sampled values: ";
for (const auto &i : out)

std::cout << i << ", ";
}

Possible output:

Sampled values: 1, 4, 9,

Extra Info
The new sampling algorithms come from the adoption of Library Fundamentals
V1 TS Components, Sampling P0220R1⁸.

⁸https://wg21.link/p0220

https://wg21.link/p0220
https://wg21.link/p0220

Other Changes In The Library 267

New Mathematical Functions

With C++17 we get lots of new mathematical functions like std::gcd (Greatest Common
Divisor), std::lcm (Least Common Multiple), std::clamp and other special ones.

For example std::gcm and std::lcm, introduced in P0295R0⁹, declared in <numerics>
header:

Chapter STL Other/numeric_gcd_lcm.cpp

#include <iostream>
#include <numeric> // for gcm, lcm

int main() {
std::cout << std::gcd(24, 60) << ', ';
std::cout << std::lcm(15, 50) << '\n';

}

Output:

12, 150

Another useful function is std::clamp(v, min, max), declared in <algorithm>, from
P0025¹⁰:

Chapter STL Other/clamp.cpp

#include <iostream>
#include <algorithm> // clamp

int main() {
std::cout << std::clamp(300, 0, 255) << ', ';
std::cout << std::clamp(-10, 0, 255) << '\n';

}

The output: 255, 0

⁹http://wg21.link/p0295r0
¹⁰http://wg21.link/p0025

http://wg21.link/p0295r0
http://wg21.link/p0025
http://wg21.link/p0295r0
http://wg21.link/p0025

Other Changes In The Library 268

What’s more, there are newly available special functions, defined in the <cmath> header.

Function Description
assoc_laguerre Functions compute the associated Laguerre polynomials of their respective

arguments n, m, and x
assoc_legendre Functions compute the associated Legendre functions of their respective

arguments l, m, and x
beta Functions Compute the beta function of their respective arguments x and y
comp_ellint_1 Complete elliptic integral of the first kind of their respective arguments k
comp_ellint_2 Compute the complete elliptic integral of the second kind of their respective

arguments k
comp_ellint_3 Compute the complete elliptic integral of the third kind of their respective

arguments k and nu
cyl_bessel_i Compute the regular modified cylindrical Bessel functions of their

respective arguments nu and x
cyl_bessel_j Compute the cylindrical Bessel functions of the first kind of their respective

arguments nu and x
cyl_bessel_k Compute the irregular modified cylindrical Bessel functions of their

respective arguments nu and x
cyl_neumann Compute the cylindrical Neumann functions, also known as the cylindrical

Bessel functions of the second kind, of their respective arguments nu and x
ellint_1 Compute the incomplete elliptic integral of the first kind of their respective

arguments k and phi (phi measured in radians)
ellint_2 Compute the incomplete elliptic integral of the second kind of their

respective arguments k and phi (phi measured in radians)
ellint_3 Compute the incomplete elliptic integral of the third kind of their respective

arguments k, nu, and phi (phi measured in radians)
expint Compute the exponential integral of their respective arguments x
hermite Compute the Hermite polynomials of their respective arguments n and x
laguerre Compute the Laguerre polynomials of their respective arguments n and x
legendre Compute the Legendre polynomials of their respective arguments l and x
riemann_zeta Compute the Riemann zeta function of their respective arguments x
sph_bessel Compute the spherical Bessel functions of the first kind of their respective

arguments n and x
sph_legendre Compute the spherical associated Legendre functions of their respective

arguments l, m, and theta (theta measured in radians)
sph_neumann Compute the spherical Neumann functions, also known as the spherical

Bessel functions of the second kind, of their respective arguments n and x

Extra Info
The above special functions were introduced in N1542 ver 3¹¹.

¹¹http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1542.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1542.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1542.pdf

Other Changes In The Library 269

Shared Pointers and Arrays

Before C++17, only unique_ptrwas able to handle arrays out of the box (without the need
to define a custom deleter). Now it’s also possible with shared_ptr.

std::shared_ptr<int[]> ptr(new int[10]);

Please note that std::make_shared doesn’t support arrays in C++17. But this will be fixed
in C++20 (see P0674¹² which is already merged into C++20)

Another important remark is that raw arrays should be avoided. It’s usually better to use
standard containers. However, sometimes, you don’t have the luxury to use vectors or lists -
for example, in an embedded environment, or when you work with third-party API. In that
situation, you might end up with a raw pointer to an array. With C++17, you’ll be able to
wrap those pointers into smart pointers (std::unique_ptr or std::shared_ptr) and
be sure the memory is deleted correctly.

Extra Info
See the initial proposal: P0414R2¹³.

¹²https://wg21.link/p0674
¹³https://wg21.link/P0414R2

https://wg21.link/p0674
https://wg21.link/P0414R2
https://wg21.link/p0674
https://wg21.link/P0414R2

Other Changes In The Library 270

Non-member size(), data() and empty()

Following the approach fromC++11 regarding non-memberstd::begin() and std::end()
C++17 brings three new functions.

Chapter STL Other/non_member_functions.cpp

#include <iostream>
#include <vector>

template <class Container>
void PrintBasicInfo(const Container& cont) {

std::cout << typeid(cont).name() << '\n';
std::cout << std::size(cont) << '\n';
std::cout << std::empty(cont) << '\n';

if (!std::empty(cont))
std::cout << *std::data(cont) << '\n';

}

int main() {
std::vector<int> iv { 1, 2, 3, 4, 5 };
PrintBasicInfo(iv);
float arr[4] = { 1.1f, 2.2f, 3.3f, 4.4f };
PrintBasicInfo(arr);

}

Output (from GCC 8.2):

St6vectorIiSaIiEE
5
0
1
A4_f
4
0
1.1

Extra Info
The new functions are located in <iterator>, and the referencing paper is
N4280¹⁴.

¹⁴https://wg21.link/n4280

https://wg21.link/n4280
https://wg21.link/n4280

Other Changes In The Library 271

constexpr Additions to the Standard Library

With this enhancement you can work with iterators, std::array, range-based for loops in
constexpr contexts.

The below example shows a basic implementation of accumulate algorithm as const-
expr (C++11/14/17 version of std::accumulate is not constexpr):

Chapter STL Other/constexpr_additions.cpp

#include <array>

template<typename Range, typename Func, typename T>
constexpr T SimpleAccumulate(const Range& range, Func func, T init) {

for (auto &&obj : range) { // begin/end are constexpr
init += func(obj);

}
return init;

}

constexpr int square(int i) { return i*i; }

int main() {
constexpr std::array arr{ 1, 2, 3 }; // class deduction...

// with constexpr lambda
static_assert(SimpleAccumulate(arr, [](int i) constexpr {

return i * i;
}, 0) == 14);

// with constexpr function
static_assert(SimpleAccumulate(arr, &square, 0) == 14);

return arr[0];
}

C++14 compilers would not compile the above example, but it’s now possible with C++17
support.

There are several features used in this code:

• SimpleAccumulate is a constexpr template function and uses range access
(hidden in range based for loop) to iterate over the input range.

Other Changes In The Library 272

• arr is deduced as std::array<3, int> - class template deduction works here.

• the code uses a constexpr lambda.

• static_assert without any message.

• std::begin() and std::end() are also constexpr since C++17

You can also see another example of constexpr additions in Chapter about General
Language Features: Constexpr Lambda.

Each C++ Standard allows more and more code to be constexpr. In C++17, we can start
using basic containers in constant expressions. In C++20 we’ll get more standard algorithms
that are declared as constexpr.

Extra Info
The main referencing paper is P0031 - Proposal to Add Constexpr Modifiers to
reverse_iterator, move_iterator, array and Range Access¹⁵.

¹⁵https://wg21.link/p0031

https://wg21.link/p0031
https://wg21.link/p0031
https://wg21.link/p0031

Other Changes In The Library 273

std::scoped_lock

With C++11 and C++14 we got the threading library and many support functionalities.

For example, with std::lock_guard you can take ownership of a mutex and lock it in
RAII style:

std::mutex m;

std::lock_guard<std::mutex> lock_one(m);
// unlocked when lock_one goes out of scope...

The above code works, however, only for a single mutex. If you wanted to lock several
mutexes, you had to use a different pattern, for example:

std::mutex first_mutex;
std::mutex second_mutex;

// ...

std::lock(fist_mutex, second_mutex);
std::lock_guard<std::mutex> lock_one(fist_mutex, std::adopt_lock);
std::lock_guard<std::mutex> lock_two(second_mutex, std::adopt_lock);
// ..

With C++17 things get a bit easier as with std::scoped_lock you can lock a variadic
number of mutexes at the same time.

std::scoped_lock lck(first_mutex, second_mutex);

Due to compatibility std::lock_guard couldn’t be extended with a variadic number of
input mutexes and that’s why a new type - scoped_lock - was needed.

Extra Info
You can read more information in P0156¹⁶.

¹⁶https://wg21.link/p0156

https://wg21.link/p0156
https://wg21.link/p0156

Other Changes In The Library 274

Polymorphic Allocator, pmr

The polymorphic allocator is an enhancement to the standard allocator from the Standard
Library.

In short, a polymorphic allocator conforms to the rules of an allocator from the Standard
Library, but at its core, it uses a memory resource object to perform the memory manage-
ment. Polymorphic Allocator contains a pointer to a memory resource class, and that’s why
it can use a virtual method dispatch. You can change the memory resource at runtime while
keeping the type of the allocator.

All the types for polymorphic allocators live in a separate namespace std::pmr (PMR
stands for Polymorphic Memory Resource), in the <memory_resource> header.

Core elements of pmr:

• std::pmr::memory_resource - is an abstract base class for all other implementa-
tions. It defines the following pure virtual methods: do_allocate, do_deallocate
and do_is_equal.

• std::pmr::polymorphic_allocator - is an implementation of a standard al-
locator that uses memory_resource object to perform memory allocations and
deallocations.

• global memory resources accessed by new_delete_resource() and null_mem-
ory_resource()

• a set of predefined memory pool resource classes:

– synchronized_pool_resource
– unsynchronized_pool_resource
– monotonic_buffer_resource

• template specialisations of the standard containers with polymorphic allocator, for
example std::pmr::vector, std::pmr::string, std::pmr::map and others.
Each specialisation is defined in the same header file as the corresponding container.

Other Changes In The Library 275

Here’s a short overview of the predefined memory resources:

Resource Description
new_delete_resource() a free function that returns a pointer to a global

“default” memory resource. It manages memory with
the global new and delete

null_memory_resource() a free function that returns a pointer to a global “null”
memory resource which throws std::bad_alloc on
every allocation

synchronized_pool_resource thread-safe allocator that manages pools of different
sizes. Each pool is a set of chunks that are divided into
blocks of uniform size.

unsynchronized_pool_resource non-thread-safe pool_resource
monotonic_buffer_resource non-thread-safe, fast, special-purpose resource that gets

memory from a preallocated buffer, but doesn’t release
it with deallocation.

It’s also worthmentioning that pool resources (includingmonotonic_buffer_resource)
can be chained. So that if there’s no available memory in a pool, the allocator will allocate
from the “upstream” resource.

Below you can find a simple example of monotonic_buffer_resource and pmr::vector:

Chapter STL Other/pmr_monotonic_resource.cpp

#include <iostream>
#include <memory_resource> // pmr core types
#include <vector> // pmr::vector

int main() {
char buffer[64] = {}; // a small buffer on the stack
std::fill_n(std::begin(buffer), std::size(buffer) - 1, '_');
std::cout << buffer << '\n';

std::pmr::monotonic_buffer_resource pool{std::data(buffer), std::size(buffer)};

std::pmr::vector<char> vec{ &pool };
for (char ch = 'a'; ch <= 'z'; ++ch)

vec.push_back(ch);

std::cout << buffer << '\n';
}

Other Changes In The Library 276

Possible output:

aababcdabcdefghabcdefghijklmnopabcdefghijklmnopqrstuvwxyz______

In the above example, we use a monotonic buffer resource initialised with a memory chunk
from the stack. By using a simple char buffer[] array, we can easily print the contents of
the “memory”. The vector gets memory from the pool, and if there’s no more space available,
it will ask for memory from the “upstream” resource (which is new_delete_resource
by default). The example shows vector reallocations when there’s a need to insert more
elements. Each time the vector gets more space, so it eventually fits all of the letters.

More Information

This section only touched upon the idea of polymorphic allocators and memory resources.
If you want to learn more about this topic, there’s a long chapter in C++17 The Complete
Guide¹⁷ by Nicolai Josuttis. There are also several conference talks, for example Allocators:
The Good Parts by Pablo Halpern¹⁸ from CppCon 2017.

Extra Info
See more information in P0220R1¹⁹ and P0337R0²⁰.

¹⁷https://leanpub.com/cpp17
¹⁸https://channel9.msdn.com/Events/GoingNative/CppCon-2017/119
¹⁹https://wg21.link/p0220r1
²⁰https://wg21.link/p0337r0

https://leanpub.com/cpp17
https://leanpub.com/cpp17
https://channel9.msdn.com/Events/GoingNative/CppCon-2017/119
https://channel9.msdn.com/Events/GoingNative/CppCon-2017/119
https://wg21.link/p0220r1
https://wg21.link/p0337r0
https://leanpub.com/cpp17
https://channel9.msdn.com/Events/GoingNative/CppCon-2017/119
https://wg21.link/p0220r1
https://wg21.link/p0337r0

Other Changes In The Library 277

Compiler support

Feature GCC Clang MSVC
std::byte 7.1 5.0 VS 2017 15.3
Improvements for Maps and Sets 7.0 3.9 VS 2017 15.5
insert_or_assign()/try_emplace() for maps 6.1 3.7 VS 2017 15
Emplace Return Type 7.1 4.0 VS 2017 15.3
Sampling algorithms 7.1 In Progress VS 2017 15
gcd and lcm 7.1 4.0 VS 2017 15.3
clamp 7.1 3.9 VS 2015.3
Special Mathematical Functions 7.1 Not yet VS 2017 15.7
Shared Pointers and Arrays 7.1 In Progress VS 2017 15.5
Non-member size(), data() and empty() 6.1 3.6 VS 2015
constexpr Additions to the Standard Library 7.1 4.0 VS 2017 15.3
scoped_lock 7.1 5.0 VS 2017 15.3
Polymorphic Allocator & Memory Resource 9.1 In Progress VS 2017 15.6

16. Removed And Deprecated
Library Features

In the chapter about Removed or Fixed Language Features, the book focused only on the
language side. But The Standard Library was also cleaned-up in C++17. This chapter shows
the list of most ¹ of the removed or deprecated types and utilities.

In this chapter, you’ll learn:

• Why auto_ptr was removed and why you should stick with smart pointers

• Why std::random_shuffle algorithmwas removed andwhat’s a better alternative
for it

• How to implement custom iterator and not derive from deprecated std::iterator
type

• What are the other smaller elements that were deprecated or removed

¹If you want to find the list of all deprecated elements, you can check “Annex D Compatibility features” of the Standard, for
example under this link: https://timsong-cpp.github.io/cppwp/n4659/depr

Removed And Deprecated Library Features 279

Removing auto_ptr

Probably the best news of all!

C++98 added auto_ptr as a way to support basic RAII features for raw pointers. However,
due to the lack of move semantics in the language, this smart pointer could be easily misused
and cause runtime errors.

Here’s an example where auto_ptr might cause a crash:

Chapter Removed Lib Features/auto_ptr_crash.cpp

void doSomething(std::auto_ptr<int> myPtr) {
*myPtr = 11;

}

void AutoPtrTest() {
std::auto_ptr<int> myTest(new int(10));
doSomething(myTest);
*myTest = 12; // uups!

}

doSomething() takes auto_ptr by value, but since it’s not a shared pointer, it gets the
unique ownership of the managed object. Later, when the function is completed, the copy of
the pointer goes out of scope, and the object is deleted.

In AutoPtrTest() when doSomething() is finished the pointer is already cleaned up,
and you’ll get undefined behaviour when calling *myTest = 12.

In C++11we got smart pointers: unique_ptr, shared_ptr and weak_ptr.With themove
semantics, the language could finally support proper unique resource transfers. Also, new
smart pointers can be stored in standard containers, which was not possible with auto_ptr.
You should replace auto_ptr with unique_ptr as it’s the direct and the best equivalent
for auto_ptr.

We can rewrite the example so it uses unique_ptr:

Removed And Deprecated Library Features 280

Using unique_ptr

void doSomething(std::unique_ptr<int> myPtr) {
*myPtr = 11;

}

void AutoPtrTest() {
auto myTest = std::make_unique<int>(10);
doSomething(myTest); // won't compile!
*myTest = 12; // use after move ??

}

Now, the code won’t compile as you need to move unique_ptr into doSomething().
Since the move is explicit it requires to possibly rething the solution. For example, in this
case, maybe doSomething() doesn’t need the ownership of the pointer? Perhaps it’s better
to pass a raw pointer, without the ownership?

Alternatively, you can use shared_ptr and then, the pointer won’t be deleted after
doSomething() is finished, as shared_ptr uses reference counting.

New smart pointers are much more powerful and safer than auto_ptr, so it has been
deprecated since C++11. Compilers should report a warning:

warning: 'template<class> class std::auto_ptr' is deprecated

Now, when you compile with a conformant C++17 compiler, you’ll get an error.

Here’s the error from MSVC 2017 when using /std:c++latest:

error C2039: 'auto_ptr': is not a member of 'std'

If you need help with the conversion from auto_ptr to unique_ptr you can check Clang
Tidy, as it provides auto conversion: Clang Tidy: modernize-replace-auto-ptr².

Extra Info
The change was proposed in: N4190³.

²https://clang.llvm.org/extra/clang-tidy/checks/modernize-replace-auto-ptr.html
³https://wg21.link/n4190

https://clang.llvm.org/extra/clang-tidy/checks/modernize-replace-auto-ptr.html
https://wg21.link/n4190
https://clang.llvm.org/extra/clang-tidy/checks/modernize-replace-auto-ptr.html
https://wg21.link/n4190

Removed And Deprecated Library Features 281

Removed std::random_shuffle

The random_shuffle(first, last) and random_shuffle(first, last, rng)
functions were marked already as deprecated in C++14. The reason was that in most cases it
used the rand() function, which is considered inefficient and even error-prone (as it uses
global state). Alternatively, you could provide the rng function parameter that appeared to
be unusable in practice. If you need the same functionality, use std::shuffle:

template< class RandomIt, class URBG >
void shuffle(RandomIt first, RandomIt last, URBG&& g);

std::shuffle takes a random number generator as the third template argument, which
is safer, easier to use and more scalable.

Have a look at the following example on how to convert from random_shuffle to
shuffle:

Chapter Removed Lib Features/shuffle.cpp

std::vector<int> vec = { 0, 1, 2, 3, 4, 5 };

// Pre-C++17:
std::random_shuffle(begin(vec), end(vec));

for (auto& elem : vec)
std::cout << elem << ", ";

// C++17 version:
std::random_device randDev;
std::mt19937 gen(randDev());

std::shuffle(begin(vec), end(vec), gen);

for (auto& elem : vec)
std::cout << elem << ", ";

Extra Info
See more information in N4190⁴.

⁴https://wg21.link/n4190

https://wg21.link/n4190
https://wg21.link/n4190

Removed And Deprecated Library Features 282

“Removing Old functional Stuff”

Functions like bind1st()/bind2nd()/mem_fun(), … were introduced in the C++98-era
and are not needed now as you can apply a lambda. What’s more, the functions were not
updated to handle perfect forwarding, decltype and other techniques from C++11. Thus
it’s best not to use them in modern code.

Removed functions:

• unary_function()/pointer_to_unary_function()
• binary_function()/pointer_to_binary_function()
• bind1st()/binder1st
• bind2nd()/binder2nd
• ptr_fun()
• mem_fun()
• mem_fun_ref()

For example to replace bind1st/bind2nd you can use lambdas or std::bind (available
since C++11) or std::bind_front that should be available since C++20.

Chapter Removed Lib Features/bind.cpp

auto onePlus = std::bind1st(std::plus<int>(), 1);
auto minusOne = std::bind2nd(std::minus<int>(), 1);
std::cout << onePlus(10) << ", " << minusOne(10) << '\n';

// with hardcoded lambdas:
auto lamOnePlus1 = [](int b) { return 1 + b; };
auto lamMinusOne1 = [](int b) { return b - 1; };
std::cout << lamOnePlus1(10) << ", " << lamMinusOne1(10) << '\n';

// a capture with an initializer
auto lamOnePlus = [a=1](int b) { return a + b; };
auto lamMinusOne = [a=1](int b) { return b - a; };
std::cout << lamOnePlus(10) << ", " << lamMinusOne(10) << '\n';

Extra Info
See more information in N4190⁵.

⁵https://wg21.link/n4190

https://wg21.link/n4190
https://wg21.link/n4190

Removed And Deprecated Library Features 283

std::iterator Is Deprecated

The Standard Library API requires that each iterator type has to expose five typedefs:

• iterator_category - the type of the iterator

• value_type - type stored in the iterator

• difference_type - the type that is the result of subtracting two iterators

• pointer - pointer type of the stored type

• reference - the reference type of the stored type

iterator_category must be one of input_iterator_tag, forward_iterator_-
tag, bidirectional_iterator_tag or random_access_iterator_tag.

Before C++17, if you wanted to define a custom iterator, you could use std::iterator as
a base class. In C++14 it’s defined as:

template<
class Category,
class T,
class Distance = std::ptrdiff_t,
class Pointer = T*,
class Reference = T&

> struct iterator;

This helper class made defining the typedefs in a short way:

class ColumnIterator
: public std::iterator<std::random_access_iterator_tag, Column>
{

// ...
};

In C++17 you must not derive from std::iterator and you need to write the trait
typedefs explicitly:

Removed And Deprecated Library Features 284

class ColumnIterator {
public:

using iterator_category = std::random_iterator_tag;
using value_type = Column;
using difference_type = std::ptrdiff_t;
using pointer = Column*;
using reference = Column&;

// ...
};

While you have to write more code, it’s much easier to read, and it’s less error-prone.

For example, the referencing paper mentions the following example from The Standard
Library:

template <class T, class charT = char, class traits = char_traits<charT> >
class ostream_iterator:
public iterator<output_iterator_tag, void, void, void, void>;

In the above code, it’s not clear what all of those four void types mean in the definition.

Additionally, std::iterator could lead to complicated errors in the name lookup,
especially if you happen to use the same name in the derived iterator as in the base class.

Extra Info
You can read more information in the paper P0174R2 - Deprecating Vestigial
Library Parts in C++17⁶.

⁶https://wg21.link/p0174r2

https://wg21.link/p0174r2
https://wg21.link/p0174r2
https://wg21.link/p0174r2

Removed And Deprecated Library Features 285

Other Smaller Removed or Deprecated Items

Let’s have a look at some smaller elements that were altered in the Standard Library.

Deprecating shared_ptr::unique()

In C++14 shared_ptr::unique() was defined as use_count() == 1. But since
use_count() is only approximation in multithreaded environments (as it doesn’t imply
any synchronisation access) then unique() it not reliable.

See more information in P0521⁷.

Deprecating <codecvt>

The <codecvt> header declares several conversion utilities: codecvt_utf8, codecvt_-
utf16 and codecvt_utf8_utf16. But those classes are hard to use, unsafe and not well
specified.

Note: the class std::codesvt is not deprecated, as it’s located in another header <lo-
cale>. So you can still use that.

See more information in P0618R0⁸

Removing Deprecated Iostreams Aliases

Since C++11 the following iostream types and methods were deprecated, and now they are
removed from the Library.

typedef T1 io_state; // T1 is integer
typedef T2 open_mode; // T2 is integer
typedef T3 seek_dir; // T3 is integer
typedef implementation-defined streamoff;
typedef implementation-defined streampos;
basic_streambuf::stossc()

Also, the methods and overrides that depend on the above types were removed.

⁷http://wg21.link/P0521
⁸https://wg21.link/P0618R0

http://wg21.link/P0521
https://wg21.link/P0618R0
http://wg21.link/P0521
https://wg21.link/P0618R0

Removed And Deprecated Library Features 286

Previously they were all declared in Annex D of the Standard: [depr.ios.members]⁹.

See more information in P0004R1¹⁰.

Deprecate C library headers

The following headers are now deprecated:

• <ccomplex>

• <cstdalign>

• <cstdbool>

• <ctgmath>

This is a result of cleaning up places that depend on the C99 specification. In C++17 the
Standard relates to C11 rather than C99.

See more information in P0063R3¹¹.

Deprecate std::result_of

The type trait std::result_of used a non-variadic template declaration which limited
its uses. It’s advised to use enhanced traits, for example std::invoke_result.

See more information in P0604R0¹².

Deprecate std::memory_order_consume Temporarily

The memory model of memory_order_consume is hard to implement and not well
specified in the Standard. The model is now temporarily deprecated and may reappear in
the future.

See more information in P0371R1¹³.

⁹https://timsong-cpp.github.io/cppwp/n4140/depr.ios.members
¹⁰https://wg21.link/P0004R1
¹¹https://wg21.link/P0063R3
¹²https://wg21.link/P0604R0
¹³https://wg21.link/P0371R1

https://timsong-cpp.github.io/cppwp/n4140/depr.ios.members
https://wg21.link/P0004R1
https://wg21.link/P0063R3
https://wg21.link/P0604R0
https://wg21.link/P0371R1
https://timsong-cpp.github.io/cppwp/n4140/depr.ios.members
https://wg21.link/P0004R1
https://wg21.link/P0063R3
https://wg21.link/P0604R0
https://wg21.link/P0371R1

Removed And Deprecated Library Features 287

Remove allocator support from std::function

std::function uses type-erasure to handle callable objects. It’s very complicated (or not
implementable efficiently) to have allocator support for this type, so it was decided to remove
this from the Standard.

See more information in P0302R1¹⁴.

Compiler support

Feature GCC Clang MSVC
Removing auto_ptr,
random_shuffle, old
<functional> stuff

No ¹⁵ not yet VS 2015

Deprecating std::iterator not yet not yet VS 2017 15.5
Deprecating
shared_ptr::unique()

not yet not yet VS 2017 15.5

Deprecating <codecvt> not yet not yet VS 2017 15.5
Removing Deprecated Iostreams
Aliases

not yet 3.8 VS 2015.2

Deprecate result_of not yet not yet VS 2017 15.3
Removing Allocator Support In
std::function

not yet 4.0 VS 2017 15.5

C++17 should refer to C11 instead
of C99

9.1 7.0 VS 2015

Removing Deprecated Iostreams
Aliases

not yet 3.8 VS 2015.2

¹⁴https://wg21.link/P0302R1
¹⁵Kept for compatibility.

https://wg21.link/P0302R1
https://wg21.link/P0302R1

Part 3 - More Examples and
Use Cases

In the first two parts of the book, you’ve seen Language and the Standard Library features.
Most of the time, the book presented them as isolated from each other. However, the real
power of each new C++ Standard comes from the composition of the new building blocks.
This part will lead you through several larger examples where multiple C++17 elements were
used together.

In this part, you’ll learn:

• How to refactor code with std::optional and std::variant

• How if constexpr simplifies the complex meta-programming code.

• What are the uses for the [[nodiscard]] attribute.

• How to work with the filesystem and parallel algorithms and improve the performance
of CSV Reader application.

17. Refactoring with std::optional
and std::variant

std::variant and std::optional are called “vocabulary” types because you can
leverage them to convey more design information. Your code can be much more compact
and more expressive.

This chapter will show you one example of how std::optional and std::variant can
help with the refactoring of one function. We’ll start with some legacy code, and through
several steps, we’ll arrive with a much better solution. To give you a better understanding,
you’ll see the pros and cons of each step.

Refactoring with std::optional and std::variant 290

The Use Case

Consider a function that takes the current mouse selection for a game. The function scans
the selected range and computes several outputs:

• the number of animating objects

• if there are any civil units in the selection

• if there are any combat units in the selection

The existing code looks like this:

class ObjSelection {
public:

bool IsValid() const { return true; }
// more code...

};

bool CheckSelectionVer1(const ObjSelection &objList,
bool *pOutAnyCivilUnits,
bool *pOutAnyCombatUnits,
int *pOutNumAnimating);

As you can see above, the function uses a lot of output parameters (in the form of raw
pointers), and it returns true/false to indicate success (for example the input selection
might be invalid).

The implementation of the function is not relevant now, but here’s an example code that
calls this function:

ObjSelection sel;

bool anyCivilUnits { false };
bool anyCombatUnits { false };
int numAnimating { 0 };
if (CheckSelectionVer1(sel, &anyCivilUnits, &anyCombatUnits, &numAnimating))
{

// ...
}

Refactoring with std::optional and std::variant 291

How can we improve the function?

There might be several things:

• Look at the caller’s code: we have to create all the variables that will hold the outputs.
It definitely generates code duplication if you call the function in many places.

• Output parameters: Core guidelines suggests not to use them.
– F.20: For “out” output values, prefer return values to output parameters¹

• If you have raw pointers you have to check if they are valid. You might get away with
the checks if you use references for the output parameters.

• What about extending the function? What if you need to add another output param?

Anything else?

How would you refactor this?

Motivated by Core Guidelines and new C++17 features, here’s the plan for how we can
improve this code:

1. Refactor output parameters into a tuple that will be returned.

2. Refactor tuple into a separate struct and reduce the tuple to a pair.

3. Use std::optional to express if the value was computed or not.

4. Use std::variant to convey not only the optional result but also the full error
information.

The Tuple Version

The first step is to convert the output parameters into a tuple and return it from the function.

According to F.21: To return multiple “out” values, prefer returning a tuple or struct²:

A return value is self-documenting as an “output-only” value. Note that C++
does have multiple return values, by the convention of using a tuple (including
pair), possibly with the extra convenience of tie at the call site.

After the change the code might look like this:

¹https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f20-for-out-output-values-prefer-return-values-to-
output-parameters

²https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f21-to-return-multiple-out-values-prefer-returning-a-
tuple-or-struct

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f20-for-out-output-values-prefer-return-values-to-output-parameters
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f21-to-return-multiple-out-values-prefer-returning-a-tuple-or-struct
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f20-for-out-output-values-prefer-return-values-to-output-parameters
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f20-for-out-output-values-prefer-return-values-to-output-parameters
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f21-to-return-multiple-out-values-prefer-returning-a-tuple-or-struct
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f21-to-return-multiple-out-values-prefer-returning-a-tuple-or-struct

Refactoring with std::optional and std::variant 292

std::tuple<bool, bool, bool, int>
CheckSelectionVer2(const ObjSelection &objList) {

if (!objList.IsValid())
return {false, false, false, 0};

// local variables:
int numCivilUnits = 0;
int numCombat = 0;
int numAnimating = 0;

// scan...

return {true, numCivilUnits > 0, numCombat > 0, numAnimating };
}

A bit better… isn’t it? The tuple version has the following advantages:

• There’s no need to check raw pointers.

• Code is more expressive. We return everything in a single object.

What’s more on the caller site, you can use Structured Bindings to wrap the returned tuple:

auto [ok, anyCivil, anyCombat, numAnim] = CheckSelectionVer2(sel);
if (ok) {

// ...
}

Unfortunately, this version might not be the best one. For example, there’s a risk of forgetting
the order of outputs from the tuple.

The problem of function extensions is also still present. So when you’d like to add another
output value, you have to extend this tuple and the caller site.

We can fix this with one further step: instead of a tuple, use a structure (as also suggested by
the Core Guidelines).

A Separate Structure

The outputs seem to represent related data. That’s why it’s probably a good idea to wrap
them into a struct called SelectionData.

Refactoring with std::optional and std::variant 293

struct SelectionData {
bool anyCivilUnits { false };
bool anyCombatUnits { false };
int numAnimating { 0 };

};

And then you can rewrite the function into:

std::pair<bool, SelectionData> CheckSelectionVer3(const ObjSelection &objList) {
SelectionData out;

if (!objList.IsValid())
return {false, out};

// scan...

return {true, out};
}

And the caller site:

if (auto [ok, selData] = CheckSelectionVer3(sel); ok)
{

// ...
}

The code uses std::pair so we still preserve the success flag, it’s not the part of the new
struct.

The main advantage that we achieved here is the improved code structure and extensibility.
If you want to add a new parameter, then extend the structure. Previously - with a list of
output parameters in the function declaration - you’d have to update much more code.

But isn’t std::pair<bool, MyType> similar to the concept of std::optional?

With std::optional

From the std::optional chapter:

std::optional is a wrapper type to express “null-able” types. It either contains a
value, or it’s empty. It doesn’t use any extra memory allocation.

Refactoring with std::optional and std::variant 294

That seems to be the right choice for our code. We can remove the ok variable and rely on
the semantics of the optional.

The new version of the code:

std::optional<SelectionData> CheckSelectionVer4(const ObjSelection &objList) {
if (!objList.IsValid())

return std::nullopt;

SelectionData out;

// scan...

return out;
}

And the caller site:

if (auto ret = CheckSelectionVer4(sel); ret.has_value()) {
// access via *ret or even ret->
// ret->numAnimating

}

What are the advantages of the optional version? Let’s name a few:

• Clean and expressive form - optional expresses nullable types.

• Efficiency - implementations of optional are not permitted to use additional storage,
such as dynamic memory. The contained value shall be allocated in a region of the
optional storage suitably aligned for the type T.

With std::variant

The last implementation with std::optional omits one crucial aspect: error handling.
There’s no way to know the reason why a value wasn’t computed. For example, with the
version where std::pair was used, we were able to return an error code to indicate the
reason. What can we do about that?

If you need full information about the error that might occur in the function, you can think
about an alternative approach with std::variant.

Refactoring with std::optional and std::variant 295

enum class [[nodiscard]] ErrorCode {
InvalidSelection,
Undefined

};

variant<SelectionData, ErrorCode> CheckSelectionVer5(const ObjSelection &objList) {
if (!objList.IsValid())

return ErrorCode::InvalidSelection;

SelectionData out;
// scan...

return out;
}

As you see the code uses std::variant with two possible alternatives: either Selec-
tionData or ErrorCode. It’s almost like a pair, except that you’ll always see one active
value.

You can use the above implementation:

if (auto retV5 = CheckSelectionVer5(sel);
std::holds_alternative<SelectionData>(retV5)) {

std::cout << "ok..."
<< std::get<SelectionData>(retV5).numAnimating << '\n';

}
else {

switch (std::get<ErrorCode>(retV5))
{

case ErrorCode::InvalidSelection:
std::cerr << "Invalid Selection!\n";
break;

case ErrorCode::Undefined:
std::cerr << "Undefined Error!\n";
break;

}
}

As you can see, withstd::variant you have evenmore information thanwhenstd::optional
was used. You can return error codes and respond to possible failures.

Refactoring with std::optional and std::variant 296

std::variant<ValueType, ErrorCode> might be a possible implementa-
tion of std::expected - a new vocabulary type that might go into the future
version of The Standard Library.

Wrap up

You can play with the code in:

Chapter Refactoring With Optional And Variant/refactoring_optional_-
variant.cpp.

In this chapter, you’ve seen how to refactor lots of ugly-looking output parameters to a nicer
std::optional version. The optional wrapper clearly expresses that the computed value
might be absent. Also, you’ve seen how to wrap several function parameters into a separate
struct. Having one separate type lets you easily extend the code while keeping the logical
structure untouched.

And finally, if you need the full information about errors inside a function, then you might
also consider an alternative with std::variant. This type gives you a chance to return a
full error code.

18. Enforcing Code Contracts With
[[nodiscard]]

C++17 brought a few more standard attributes. By using those extra annotations, you can
make your code not only readable to other developers but also the compiler can use this
knowledge. For example, it might produce more warnings about potential mistakes. Or the
opposite: it might avoid a warning generation because it will notice a proper intention (for
example with [[maybe_unused]]).

In this chapter, you’ll see how one attribute - [[nodiscard]] - can be used to provide
better safety in the code.

Enforcing Code Contracts With [[nodiscard]] 298

Introduction

The [[nodiscard]] attribute wasmentioned in the Attributes Chapter, but here’s a simple
example to recall its properties.

The attribute is used to mark the return value of functions:

[[nodiscard]] int Compute();

When you call such function and don’t assign the result:

void Foo() {
Compute();

}

You should get the following (or a similar) warning:

warning: ignoring return value of 'int Compute()',
declared with attribute nodiscard

We can go further and not just mark the return value, but a whole type:

[[nodiscard]] struct ImportantType { }
ImportantType CalcSuperImportant();
ImportantType OtherFoo();
ImportantType Calculate();

and you’ll get a warning whenever you call any function that returns ImportantType.

In other words, you can enforce the code contract for a function, so that the caller
won’t skip the returned value. Sometimes such omission might cause you a bug, so using
[[nodiscard]] will improve code safety.

The compiler will generate a warning, but usually it’s a good practice to enable
“treat warnings as errors” when building the code. /WX in MSVC or -Werror in
GCC. Errors stop the compilation process, so a programmer needs to take some
action and fix the code.

Enforcing Code Contracts With [[nodiscard]] 299

Where Can It Be Used?

Attributes are a standardised way of annotating the code. They are optional, but they
might help the compiler to optimize code, detect possible errors or just clearly express the
programmer’s intentions.

Here are a few places where [[nodiscard]] can be potentially handy:

Errors

One crucial use case for [[nodiscard]] are error codes.

Howmany times have you forgotten to check a returned error code from a function? (Crucial
if you don’t rely on exceptions).

Here’s some code:

enum class [[nodiscard]] ErrorCode {
OK,
Fatal,
System,
FileIssue

};

And if we have several functions:

ErrorCode OpenFile(std::string_view fileName);
ErrorCode SendEmail(std::string_view sendto,

std::string_view text);
ErrorCode SystemCall(std::string_view text);

Now every time you’d like to call such functions, you’re “forced” to check the return value.

Often you might see code where a developer checks only a few function calls, while other
function invocations are left unchecked. That creates inconsistencies and can lead to some
severe runtime errors.

You think your method is doing fine (because N (of M) called functions returned OK), but
something still is failing. You verify it with the debugger, and you notice that the Y function
returns FAIL, and you haven’t checked it.

Enforcing Code Contracts With [[nodiscard]] 300

Should you use [[nodiscard]] to mark the error type or maybe some essential functions
only?

For error codes that are visible through the whole application that might be the right thing to
do. Of coursewhen your function returns justbool then you can onlymark the function, and
not the type (or you can create a typedef/alias and then mark it with [[nodiscard]]).

Factories / Handles

Another important type of functions where [[nodiscard]] adds value are “factories”.

Every time you call “make/create/build” you don’t want to skip the returned value. Maybe
that’s a very obvious thing, but there’s a possibility (especially when doing some refactoring),
to forget, or comment out.

[[nodiscard]] Foo MakeFoo();

When Returning Non-Trivial Types?

What about such code:

std::vector<std::string> GenerateNames();

The returned type seems to be heavy, so usually, it means that you have to use it later. On
the other hand, even int might be heavy regarding semantics of the given problem.

Code With No Side Effects?

The code in the previous section:

std::vector<std::string> GenerateNames(); // no side effects...

This is also an example of a function with no side effects - no global state is changed during
the call. In that case, we need to do something with the returned value. Otherwise, the
function call can be removed/optimised from the code.

Enforcing Code Contracts With [[nodiscard]] 301

Everywhere?!

There’s a paper that might be a “guide” P0600R0 - [[nodiscard]] in the Library¹. The proposal
didn’t make into C++17 but was voted into C++20. It suggests a few places were the attribute
should be applied.

For existing API’s:

• not using the return value always is a “huge mistake” (e.g. always resulting in
resource leak)

• not using the return value is a source of trouble and easily can happen (not obvious
that something is wrong)

For new API’s (not been in the C++ standard yet):

• not using the return value is usually an error.

Here are a few examples where the new attribute should be added:

• malloc()/new/allocate - expensive call, usually not using the return value is a
resource leak

• std::async() - not using the return value makes the call synchronous, which might
be hard to detect.

On the other hand such function as top() is questionable, as “not very useful, but no danger
and such code might exist”

It’s probably a good idea not to add [[nodiscard]] in all places of your code but focus
on the critical places. Possibly, error codes and factories are a good place to start.

How to Ignore [[nodiscard]]

There might be rare situations where you might want to surpress “unused variable”
warnings. To do that you can use another attribute from C++17: [[maybe_unused]]:

¹https://wg21.link/p0600r0

https://wg21.link/p0600r0
https://wg21.link/p0600r0

Enforcing Code Contracts With [[nodiscard]] 302

[[nodiscard]] int Compute() { return 42; }
[[maybe_unused]] auto t = Compute();

Also, as described in the Attributes Chapter, you can cast the function call to void and the
the compiler will think you “used” the value:

[[nodiscard]] int Compute();
static_cast<void>(Compute()); // used

Another good alternative might be to write a separate function that wraps the results and
pretends to do use it²:

template <class T> inline void discard_on_purpose(T&&) {}
discard_on_purpose(Compute());

Be careful with the techniques to avoid warnings with [[nodiscard]]. It’s
better to follow the rules of the attribute rather than artificially prevent them.

Before C++17

Most of the attributes that went into the standardised [[attrib]] come from compiler
extensions, same happened with [[nodiscard]].

For example, in GCC/Clang, there’s: __attribute__((warn_unused_result))

MSVC offers _Check_return_ - see at MSDN: Annotating Function Behavior³.

Summary

To sum up: [[nodiscard]] is an excellent addition to all the important code: public APIs,
safety-critical systems, etc. Adding this attribute will at least enforce the code contract, and
a compiler will help you detect bugs - at compile-time, rather than finding it in runtime.

²Suggested by Arne Mertz
³https://msdn.microsoft.com/en-us/library/jj159529.aspx

https://msdn.microsoft.com/en-us/library/jj159529.aspx
https://msdn.microsoft.com/en-us/library/jj159529.aspx

19. Replacing enable_if with if
constexpr - Factory with
Variable Arguments

One of the most powerful language features that we get with C++17 is the compile-time if
in the form of if constexpr. It allows you to check, at compile-time, a condition and
depending on the result the code is rejected from the further steps of the compilation.

In this chapter, you’ll see one example of how this new feature can simplify the code.

Replacing enable_if with if constexpr - Factory with Variable Arguments 304

The Problem

In the item 18 of Effective Modern C++ Scott Meyers described a method called makeIn-
vestment:

template<typename... Ts>
std::unique_ptr<Investment>
makeInvestment(Ts&&... params);

There’s a factory method that creates derived classes of Investment, and the main
advantage is that it supports a variable number of arguments!

For example, here are the proposed derived types:

Chapter If Constexpr Factory/variable_factory.cpp

// base type:
class Investment {
public:

virtual ~Investment() { }

virtual void calcRisk() = 0;
};

class Stock : public Investment {
public:

explicit Stock(const std::string&) { }

void calcRisk() override { }
};

class Bond : public Investment {
public:

explicit Bond(const std::string&, const std::string&, int) { }

void calcRisk() override { }
};

class RealEstate : public Investment {
public:

explicit RealEstate(const std::string&, double, int) { }

Replacing enable_if with if constexpr - Factory with Variable Arguments 305

void calcRisk() override { }
};

The code from the book was too idealistic, and it worked until all your classes have the same
number and types of input parameters:

Scott Meyers: Modification History and Errata List for Effective Modern C++¹:

The makeInvestment interface is unrealistic because it implies that all derived object
types can be created from the same types of arguments. This is especially apparent in the
sample implementation code, where arguments are perfect-forwarded to all derived class
constructors.

For example, if you had a constructor that needed two arguments and one constructor with
three arguments, then the code might not compile:

// pseudo code:
Bond(int, int, int) { }
Stock(double, double) { }
make(args...)
{
if (bond)

new Bond(args...);
else if (stock)

new Stock(args...)
}

Now, if you write make(bond, 1, 2, 3) - then the else statement won’t compile - as
there no Stock(1, 2, 3) available! To make it work, we need a compile time if statement
that rejects parts of the code that don’t match a condition.

On my blog, with the help of one reader, we proposed one working solution (you can read
more in Bartek’s coding blog: Nice C++ Factory Implementation 2²).

¹http://www.aristeia.com/BookErrata/emc++-errata.html
²http://www.bfilipek.com/2016/03/nice-c-factory-implementation-2.html

http://www.aristeia.com/BookErrata/emc++-errata.html
http://www.bfilipek.com/2016/03/nice-c-factory-implementation-2.html
http://www.aristeia.com/BookErrata/emc++-errata.html
http://www.bfilipek.com/2016/03/nice-c-factory-implementation-2.html

Replacing enable_if with if constexpr - Factory with Variable Arguments 306

Here’s the code that works:

template <typename... Ts>
unique_ptr<Investment>
makeInvestment(const string &name, Ts&&... params)
{

unique_ptr<Investment> pInv;

if (name == "Stock")
pInv = constructArgs<Stock, Ts...>(forward<Ts>(params)...);

else if (name == "Bond")
pInv = constructArgs<Bond, Ts...>(forward<Ts>(params)...);

else if (name == "RealEstate")
pInv = constructArgs<RealEstate, Ts...>(forward<Ts>(params)...);

// call additional methods to init pInv...

return pInv;
}

As you can see the “magic” happens inside constructArgs function.

The main idea is to return unique_ptr<Type> when Type is constructible from a given
set of attributes and nullptr when it’s not.

Before C++17

In the previous solution (pre C++17) std::enable_if had to be used:

// before C++17
template <typename Concrete, typename... Ts>
enable_if_t<is_constructible<Concrete, Ts...>::value, unique_ptr<Concrete>>
constructArgsOld(Ts&&... params)
{

return std::make_unique<Concrete>(forward<Ts>(params)...);
}

template <typename Concrete, typename... Ts>
enable_if_t<!is_constructible<Concrete, Ts...>::value, unique_ptr<Concrete> >
constructArgsOld(...)
{

Replacing enable_if with if constexpr - Factory with Variable Arguments 307

return nullptr;
}

std::is_constructible - allows us to test if a list of arguments could be used to create
a given type.

Just a quick reminder about enable_if

enable_if (and enable_if_t since C++14). It has the following syntax:

template< bool B, class T = void >
struct enable_if;

enable_if will evaluate to T if the input condition B is true. Otherwise, it’s
SFINAE and a particular function overload is removed from the overload set.

What’s more, in C++17 there’s a helper:

is_constructible_v = is_constructible<T, Args...>::value;

Potentially, the code should be a bit shorter.

Still, using enable_if looks ugly and complicated. How about C++17 version?

With if constexpr

Here’s the updated version:

template <typename Concrete, typename... Ts>
unique_ptr<Concrete> constructArgs(Ts&&... params)
{

if constexpr (is_constructible_v<Concrete, Ts...>)
return make_unique<Concrete>(forward<Ts>(params)...);

else
return nullptr;

}

We can even extend it with some little logging features, using fold expression:

Replacing enable_if with if constexpr - Factory with Variable Arguments 308

template <typename Concrete, typename... Ts>
std::unique_ptr<Concrete> constructArgs(Ts&&... params)
{

cout << __func__ << ": ";
// fold expression:
((cout << params << ", "), ...);
cout << '\n';

if constexpr (std::is_constructible_v<Concrete, Ts...>)
return make_unique<Concrete>(forward<Ts>(params)...);

else
return nullptr;

}

All the complicated syntax of enable_if went away; we don’t even need a function
overload for the else case. We can now wrap expressive code in just one function.

if constexpr evaluates the condition and only one block will be compiled. In our case, if
a type is constructible from a given set of attributes, then we’ll compile make_unique call.
If not, then nullptr is returned (and make_unique is not even compiled).

You can play with the code in:

Chapter If Constexpr Factory/variable_factory.cpp

Summary

In this chapter, you’ve seen how if constexpr can make code much clearer and more ex-
pressive. Before C++17, you could use enable_if techniques (SFINAE) or tag dispatching.
Those options usually generated complicated code which might be hard to read by novice
and non-meta-programming experts. if constexpr lowers the expertise level needed to
write template code effectively.

20. How to Parallelise CSV Reader
In the Parallel Algorithms chapter, we learned how to speed up code by running it automat-
ically on multiple threads. That chapter showed a few smaller examples and benchmarks. It
would also be a good idea to see more extensive applications and how they can benefit from
parallelisation, so that’s where we turn to now.

In the next pages, you’ll see how to build a tool that works on CSV files, parses lines into sales
records and then performs calculations on the data. You’ll see how easy it is to add parallel
execution to selected algorithms and have a performance improvement across the whole
application. In the end, we’ll discuss problems that we found along the way and possible
future enhancements.

In this chapter, you’ll learn:

• How to build an application that loads CSV files

• How to efficiently use parallel algorithms

• How to use std::filesystem library to gather required files

• How to use other C++17 library features like std::optional, conversion routines -
std::from_chars and string_view

How to Parallelise CSV Reader 310

Introduction and Requirements

Imagine you’re working with some sales data and one task is to calculate a sum of orders
for some products. Your shopping system is elementary, and instead of a database, you have
CSV files with the order data. There’s one file per product.

Take this example of book sales:

date coupon code price discount quantity
5-12-2018 10.0 0 2
5-12-2018 10.0 0 1
6-12-2018 Santa 10.0 0.25 1
7-12-2018 10.0 0 1

Each line shows a book sale on a specific date. For example, 5th Dec there were three sales,
10$ each, and one person bought two books. On 6th Dec we had one transaction with a
coupon code.

The data is encoded as a CSV file: sales/book.csv:

5-12-2018;;10.0;0;2;
5-12-2018;;10.0;0;1;
6-12-2018;Santa;10.0;0.25;1;
7-12-2018;;10.0;0;1;

The application should read the data and then calculate the sum, so in the above case we
have

sum = 10*2+10*1+ // 5th Dec
10*(1-0.25)*1 + // 6th Dec with 25% coupon
10*1; // 7th Dec

For the above sales data, the final sum is 47.5$.

Here are the requirements of the application we want to build:

• The application loads all CSV files in a given folder - read from the first argument in
the command line

• The files might contain thousands of records but will fit into memory. There’s no need
to provide extra support for huge files

How to Parallelise CSV Reader 311

• Optionally, the application reads the start and end dates from the second and the third
command-line argument

• Each CSV line has the following structure:

– date;coupon code;unit price;quantity;discount;

• The application sums all orders between given dates and prints the sum to the standard
output

We’ll implement the serial version first, and then we’ll try to make it parallel.

The Serial Version

For the first step, we’ll cover a serial version of the application. This allows you to understand
the core parts of the system and see how the tool works.

The code doesn’t fit easily on a single page so you can have a look at it in the following file:

CSV Chapter/csv_reader.cpp

In the next sections, we’ll explore the core parts of the application.

The Main

Let’s start with the main() function.

CSV Chapter/csv_reader.cpp - main()

1 int main(int argc, const char** argv) {
2 if (argc <= 1)
3 return 1;
4
5 try {
6 const auto paths = CollectPaths(argv[1]);
7
8 if (paths.empty()) {
9 std::cout << "No files to process...\n";

10 return 0;
11 }
12
13 const auto startDate = argc > 2 ? Date(argv[2]) : Date();
14 const auto endDate = argc > 3 ? Date(argv[3]) : Date();

How to Parallelise CSV Reader 312

15
16 const auto results = CalcResults(paths, startDate, endDate);
17
18 ShowResults(startDate, endDate, results);
19 }
20 catch (const std::filesystem::filesystem_error& err) {
21 std::cerr << "filesystem error! " << err.what() << '\n';
22 }
23 catch (const std::runtime_error& err) {
24 std::cerr << "runtime error! " << err.what() << '\n';
25 }
26
27 return 0;
28 }

Once we’re sure that there are enough arguments in the command line, we enter the main
scope where all the processing happens:

• line 6 - gather all the files to process - in CollectPaths()

• line 16 - convert data from the files into record data and calculate the results - in
CalcResults()

• line 18 - show the results on the output - in ShowResults()

The code relies on exceptions across the whole application.

The paths are collected usingdirectory_iterator from the std::filesystem library:

CSV Chapter/csv_reader.cpp - CollectPaths()

bool IsCSVFile(const fs::path &p) {
return fs::is_regular_file(p) && p.extension() == CSV_EXTENSION;

}

[[nodiscard]] std::vector<fs::path> CollectPaths(const fs::path& startPath) {
std::vector<fs::path> paths;
fs::directory_iterator dirpos{ startPath };
std::copy_if(fs::begin(dirpos), fs::end(dirpos), std::back_inserter(paths),

IsCSVFile);
return paths;

}

How to Parallelise CSV Reader 313

As in other filesystem examples, the namespace fs is an alias for std::filesystem.

With directory_iteratorwe can easily iterate over a given directory. By using copy_-
if, we can filter out unwanted files and select only those with a CSV extension. Notice how
easy it is to get the elements of the path and check files’ properties.

Going back to main(), we check if there are any files to process (line 8).

Then, in lines 13 and 14, we parse the optional dates: startDate and endDate are read
from argv[2] and argv[3].

The dates are stored in a helper class Date that lets you convert from strings with a simple
format of Day-Month-Year or Year-Month-Day. The class also supports comparison of
dates. This will help us check whether a given order fits between selected dates.

Now, all of the computations and printouts are contained in lines:

const auto results = CalcResults(paths, startDate, endDate);
ShowResults(results, startDate, endDate);

CalcResults() implements the core requirements of the application:

• converting data from the file into a list of records to process

• calculating a sum of records between given dates

CSV Chapter/csv_reader.cpp - CalcResults()

struct Result {
std::string mFilename;
double mSum{ 0.0 };

};

[[nodiscard]] std::vector<Result>
CalcResults(const std::vector<fs::path>& paths, Date startDate, Date endDate) {

std::vector<Result> results;
for (const auto& p : paths) {

const auto records = LoadRecords(p);

const auto totalValue = CalcTotalOrder(records, startDate, endDate);
results.push_back({ p.string(), totalValue });

}
return results;

}

How to Parallelise CSV Reader 314

The code loads records from each CSV file, then calculates the sum of those records. The
results (along with the name of the file) are stored in the output vector.

We can now reveal the code behind the two essential methods LoadRecords and CalcTo-
talOrder.

Converting Lines into Records

LoadRecords is a function that takes a filename as an argument, reads the contents into
std::string and then performs the conversion:

CSV Chapter/csv_reader.cpp - LoadRecords()

[[nodiscard]] std::vector<OrderRecord> LoadRecords(const fs::path& filename) {
const auto content = GetFileContents(filename);

const auto lines = SplitLines(content);

return LinesToRecords(lines);
}

We assume that the files are small enough to fit into RAM, so there’s no need to process
them in chunks.

The core task is to split that one large string into lines and then convert them into a collection
of Records.

If you look into the code, you can see that content is std::string, but lines is a vector
of std::string_view. Views are used for optimisation. We guarantee to hold the large
string - the file content - while we process chunks of it (views). This should give us better
performance, as there’s no need to copy string data.

Eventually, characters are converted into OrderRecord representation.

The OrderRecord Class

The main class that is used to compute results is OrderRecord. It’s a direct representation
of a line from a CSV file.

How to Parallelise CSV Reader 315

CSV Chapter/csv_reader.cpp - OrderRecord

class OrderRecord {
public:

// constructors...

double CalcRecordPrice() const noexcept;
bool CheckDate(const Date& start, const Date& end) const noexcept;

private:
Date mDate;
std::string mCouponCode;
double mUnitPrice{ 0.0 };
double mDiscount{ 0.0 }; // 0... 1.0
unsigned int mQuantity{ 0 };

};

The conversion

Once we have lines we can convert them one by one into objects:

CSV Chapter/csv_reader.cpp - LinesToRecord()

[[nodiscard]] std::vector<OrderRecord>
LinesToRecords(const std::vector<std::string_view>& lines) {

std::vector<OrderRecord> outRecords;
std::transform(lines.begin(), lines.end(),

std::back_inserter(outRecords), LineToRecord);

return outRecords;
}

The code above is just a transformation, it uses LineToRecord to do the hard work:

How to Parallelise CSV Reader 316

CSV Chapter/csv_reader.cpp - LineToRecord()

[[nodiscard]] OrderRecord LineToRecord(std::string_view sv) {
const auto cols = SplitString(sv, CSV_DELIM);
if (cols.size() == static_cast<size_t>(OrderRecord::ENUM_LENGTH)) {

const auto unitPrice = TryConvert<double>(cols[OrderRecord::UNIT_PRICE]);
const auto discount = TryConvert<double>(cols[OrderRecord::DISCOUNT]);
const auto quantity = TryConvert<unsigned int>(cols[OrderRecord::QUANTITY]);

if (unitPrice && discount && quantity) {
return { Date(cols[OrderRecord::DATE]),

std::string(cols[OrderRecord::COUPON]),
*unitPrice,
*discount,
*quantity };

}
}
throw std::runtime_error("Cannot convert Record from " + std::string(sv));

}

Firstly, the line is split into columns, and then we can process each column.

If all elements are converted, then we can build a record.

For conversions of the elements we’re using a small utility based on std::from_chars:

CSV Chapter/csv_reader.cpp - TryConvert()

template<typename T>
[[nodiscard]] std::optional<T> TryConvert(std::string_view sv) noexcept {

T value{ };
const auto last = sv.data() + sv.size();
const auto res = std::from_chars(sv.data(), last, value);
if (res.ec == std::errc{} && res.ptr == last)

return value;

return std::nullopt;
}

TryConvert uses std::from_chars and returns a converted value if there are no errors.
As you remember, to guarantee that all characters were parsed, we also have to check
res.ptr == last. Otherwise, the conversionmight return success for input like “123xxx”.

How to Parallelise CSV Reader 317

Calculations

Once all the records are available we can compute their sum:

CSV Chapter/csv_reader.cpp - CalcTotalOrder()

[[nodiscard]] double CalcTotalOrder(const std::vector<OrderRecord>& records,
const Date& startDate, const Date& endDate) {

return std::accumulate(std::begin(records), std::end(records), 0.0,
[&startDate, &endDate](double val, const OrderRecord& rec) {

if (rec.CheckDate(startDate, endDate))
return val + rec.CalcRecordPrice();

else
return val;

}
);

}

The code runs on the vector of all records and then calculates the price of each element if they
fit between startDate and endDate. Then they are all summed in std::accumulate.

Design Enhancements

The application calculates only the sum of orders, but we could think about adding other
things. For example, minimal value, maximum, average order and other statistics.

The code uses a simple approach, loading a file into a string and then creating a temporary
vector of lines. We could also enhance this by using a line iterator. It would take a large
string and then return a line when you iterate.

Another idea relates to error handling. For example, rather than throwing exceptions, we
could enhance the conversion step by storing the number of successfully processed records.

Running the Code

The application is ready to compile, and we can run it on the example data shown in the
introduction.

CSVReader.exe sales/

This should read a single file sales/book.csv and sum up all the records (as no dates
were specified):

How to Parallelise CSV Reader 318

.\CalcOrdersSerial.exe .\sales\
Name Of File | Total Orders Value
sales\book.csv | 47.50
CalcResults: 3.13 ms
CalcTotalOrder: 0.01 ms
Parsing Strings: 0.01 ms

The full version of the code also includes timingmeasurement, so that’s why you can see that
the operation took around 3ms to complete. The file handling took the longest; calculations
and parsing were almost immediate.

In the next sections, you’ll see a few simple steps you can take to apply parallel algorithms.

Using Parallel Algorithms

Previously the code was executed sequentially. We can illustrate it in the following diagram:

Serial Execution of CSV Reader

We open each file, process it, calculate, then we go to another file. All this happens on a
single thread.

How to Parallelise CSV Reader 319

However, there are several places we can consider using parallel algorithms:

• Where each file can be processed separately

• Where each line of a file can be converted independently into the Record Data

• Where calculations can be enhanced with parallel execution

If we focus on the second and the third options, we can move into the following execution
model:

Parallel Execution of CSV Reader

The above diagram shows that we’re still processing file one by one, but we use parallel
execution while parsing the strings and making the calculations.

When doing the conversion, we have to remember that exceptions won’t be re-thrown from
our code. Only std::terminate will be called.

As of July 2019, only the MSVC compiler (since Visual Studio 2017) and GCC
(since 9.1) support parallel execution in the Standard Library. The parallel version
of the example does not work with Clang. It’s possible to use a third-party library
like Intel Parallel STL or HPX.

How to Parallelise CSV Reader 320

Data Size & Instruction Count Matters

How to get the best performance with parallel algorithms?

You need two things:

• a lot of data to process

• instructions to keep the CPU busy

We also have to remember one rule:

In general, parallel algorithms do more work, as they introduce the extra cost of
managing the parallel execution framework as well as splitting tasks into smaller
batches.

First and foremost, we have to think about the size of the data we’re operating on. If we
have only a few files, with a few dozen records, then we may not gain anything with parallel
execution. But if we have lots of files, with hundreds of lines each, then the potential might
increase.

The second thing is the instruction count. CPU cores need to compute and not just wait
on memory. If your algorithms are memory-bound, then parallel execution might not give
any speed-up over the sequential version. In our case, it seems that the parsing strings
task is a good match here. The code performs searching on strings and does the numerical
conversions, which keeps CPU busy.

Parallel Data Conversion

As previously discussed, we can add parallel execution to the place where we convert the
data. We have lots of lines to parse, and each parsing is independent.

How to Parallelise CSV Reader 321

CSV Chapter/csv_reader.cpp - LinesToRecord()

[[nodiscard]] std::vector<OrderRecord>
LinesToRecords(const std::vector<std::string_view>& lines) {

std::vector<OrderRecord> outRecords(lines.size());
std::transform(std::execution::par, std::begin(lines), std::end(lines),

std::begin(outRecords), LineToRecord);

return outRecords;
}

Two things need to be changed to the serial version:

• we need to preallocate the vector

• we have to pass std::execution::par (or par_unseq) as the first argument

The serial code also used std::transform, so why cannot we just pass the execution
parameter?

We can even compile it… but you should see an error like:

Parallel algorithms require forward iterators or stronger.

The reason is simple: std::back_inserter is very handy, but it’s not a forward iterator.
It inserts elements into the vector, and that causes a vector to be changed (reallocated) by
multiple threads. All of the insertions would have to be guarded by some critical section,
and thus the overall performance could be weak.

Since we need to preallocate the vector, we have to consider two things:

• we pay for default construction of objects inside a vector, which probably isn’t a big
deal when objects are relatively small, and their creation is fast.

• on the other hand, the vector is allocated once, and there’s no need to grow it (copy,
reallocate) as in the case of std::back_inserter.

Parallel Calculations

Another place where we can leverage parallel algorithms is CalcTotalOrder().

Instead of std::accumulate we can use std::transform_reduce.

How to Parallelise CSV Reader 322

Asmentioned in the Parallel Algorithms chapter, the floating-point sum operation
is not associative. However, in our case, the results should be stable enough to give
2 decimal places of precision. If you need better accuracy and numerical stability,
you may be better off using a different method.

CSV Chapter/csv_reader.cpp - CalcTotalOrder()

double CalcTotalOrder(const std::vector<OrderRecord>& records,
const Date& startDate, const Date& endDate) {

return std::transform_reduce(
std::execution::par,
std::begin(records), std::end(records),
0.0,
std::plus<>(),
[&startDate, &endDate](const OrderRecord& rec) {

if (rec.CheckDate(startDate, endDate))
return rec.CalcRecordPrice();

return 0.0;
}

);
}

We use the transform step of std::transform_reduce to “extract” values to sum. We
cannot easily use std::reduce as it would require us to write a reduction operation that
works with two OrderRecord objects.

Tests

We can run the two versions on a set of files and compare if the changes brought any
improvements in the performance. The application was tested on a 6 core/12 thread PC -
i7 8700, with a fast SSD drive, Windows 10.

Our applications access files, so it’s harder to make accurate benchmarks as we
can quickly end up in the file system cache. Before major runs of applications, a
tool called Use SysInternal’s RAMMap app¹ is executed to remove files from the
cache. There are also Hard Drive hardware caches which are harder to release
without a system reboot.

¹http://technet.microsoft.com/en-us/sysinternals/ff700229.aspx

http://technet.microsoft.com/en-us/sysinternals/ff700229.aspx
http://technet.microsoft.com/en-us/sysinternals/ff700229.aspx

How to Parallelise CSV Reader 323

Mid Size Files 1k Lines 10 Files

Let’s start with 10 files, 1k lines each. Files are not in the OS cache:

Step Serial (ms) Parallel (ms)
All steps 74.05 68.391
CalcTotalOrder 0.02 0.22
Parsing Strings 7.85 2.82

The situation when files are in the system cache:

Step Serial (ms) Parallel (ms)
All steps 8.59 4.01
CalcTotalOrder 0.02 0.23
Parsing Strings 7.74 2.73

The first numbers - 74ms and 68ms - come from reading uncached files, while the next two
runs were executed without clearing the system cache so you can observe how much speed-
up you get by system caches.

The parallel version still reads files sequentially, so we only get a few milliseconds of
improvement. Parsing strings (line split and conversion to Records) is now almost 3x faster.
The sum calculations are not better as a single-threaded version seem to handle sums more
efficiently.

Large Set 10k Lines in 10 Files

How about larger input?

Uncached files:

Step Serial (ms) Parallel (ms)
All steps 239.96 178.32
CalcTotalOrder 0.2 0.74
Parsing Strings 70.46 15.39

Cached:

Step Serial (ms) Parallel (ms)
All steps 72.43 18.51
CalcTotalOrder 0.33 0.67
Parsing Strings 70.46 15.56

How to Parallelise CSV Reader 324

The more data we process, the better our results. The cost of loading uncached files “hides”
slowly behind the time it takes to process the records. In the case of 10k lines, we can also
see that the parsing strings step is 3.5 times faster; however, the calculations are still slower.

Largest Set 100k Lines in 10 Files

Let’s do one more test with the largest files:

Uncached files:

Step Serial (ms) Parallel (ms)
All steps 757.07 206.85
CalcTotalOrder 3.03 2,47
Parsing Strings 699.54 143.31

Cached:

Step Serial (ms) Parallel (ms)
All steps 729.94 162.49
CalcTotalOrder 3.05 2.16
Parsing Strings 707.34 141.28

In a case of large files (each file is ∼2MB), we can see a clear win for the parallel version.

Wrap up & Discussion

The main aim of this chapter was to show how easy it is to use parallel algorithms.

The final code is located in two files:

Chapter CSV Reader/csv_reader.cpp and Chapter CSV Reader/csv_reader_-
par.cpp for the parallel version.

In most of the cases, all we have to do to add parallel execution is to make sure there’s no
synchronisation required between the tasks and, if we can, provide forward iterators. That’s
why when doing the conversion we sometimes needed to preallocate std::vector (or
other compliant collections) rather than using std::back_inserter. Another example
is that we cannot iterate in a directory in parallel, as std::filesystem::directory_-
iterator is not a forward iterator.

The next part is to select the proper parallel algorithm. In the case of this example, we
replaced std::accumulate with std::transform_reduce for the calculations. There

How to Parallelise CSV Reader 325

was no need to change std::transform for doing the string parsing - as you only have
to use the extra execution policy parameter.

Our application performed a bit better than the serial version. Here are some thoughts we
might have:

• Parallel execution needs independent tasks. If you have jobs that depend on each other,
the performance might be lower than the serial version! This happens due to extra
synchronisation steps.

• Your tasks cannot be memory-bound, otherwise CPU will wait for the memory. For
example, the string parsing code performed better in parallel as it hasmany instructions
to execute: string search, string conversions.

• You need a lot of data to process to see the performance gain. In our case, each file
required several thousands of lines to show any gains over the sequential version.

• Sum calculations didn’t show much improvement and there was even worse perfor-
mance for smaller input. This is because the std::reduce algorithm requires extra
reduction steps, and also our calculations were elementary. It’s possible that, with more
statistical computations in the code, we could improve performance.

• The serial version of the code is straightforward and there are places where extra
performance could be gained. For example, we might reduce additional copies and
temporary vectors. It might also be good to use std::transform_reduce with se-
quential execution in the serial version, as it might be faster than std::accumulate.
You might consider optimising the serial version first and then making it parallel.

• If you rely on exceptions then youmightwant to implement a handler forstd::terminate,
as exceptions are not re-thrown in code that is invoked with execution policies.

Putting it all together, we can draw the following summary:

Parallel algorithms can bring extra speed to the application, but they have to be
used wisely. They introduce an additional cost of parallel execution framework,
and it’s essential to have lots of tasks that are independent and good for
parallelisation. As always, it’s important to measure the performance between
the versions to be able to select the final approach with confidence.

Are there any other options to improve the project? Let’s see a few other possibilities on the
next page.

How to Parallelise CSV Reader 326

Additional Modifications and Options

The code in the parallel version skipped one option: parallel access to files. So far we read
files one by one, but how about reading separate files from separate threads?

Here’s a diagram that illustrates this option:

Parallel Execution of CSV Reader, Reading files in separate threads

In the above diagram, the situation is a bit complicated. If we assume that OS cannot handle
multiple file access, then threads will wait on files. But once the files are available, the
processing might go in parallel.

If you want to play around with this technique, you can replace std::execution::seq
in CalcResults() with std::execution::par. That will allow the compiler to run
LoadRecords() and CalcTotalOrder() in parallel.

Is your system capable of accessing files from separate threads?

In general, the answer might be tricky, as it depends on many elements: hardware, system,
and cost of computations, etc. For example, on a machine with a fast SSD drive, the system
can handle several files reads, while on a HDD drive, the performance might be slower.
Modern drives also use Native Command Queues, so even if you access from multiple
threads, the command to the drive will be serial and also rearranged into a more optimal
way. We leave the experiments to the readers as this topic goes beyond the scope of this
book.

Appendix A - Compiler Support
If you work with the latest version of a compiler like GCC, Clang or MSVC you may assume
that C++17 is fully supported (with some exceptions to the STL implementations). GCC
implemented the full support in the version 7.0, Clang did it in the version 6.0 and MSVC is
conformant as of VS 2017 15.7 For completeness, here you have a list of features and versions
of compilers where it was added.

The main resource to be up to date with the status of the features: CppReference - Compiler
Support²

GCC

• Language³

• The Library - LibSTDC++⁴

Clang

• Language⁵

• The Library - LibC++⁶

VisualStudio - MSVC

• Announcing: MSVC Conforms to the C++ Standard⁷

• C++17/20 Features and Fixes in Visual Studio 2019⁸

• STL Features and Fixes in VS 2017 15.8⁹

²https://en.cppreference.com/w/cpp/compiler_support
³https://gcc.gnu.org/projects/cxx-status.html#cxx17
⁴https://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html#status.iso.2017
⁵http://clang.llvm.org/cxx_status.html#cxx17
⁶http://libcxx.llvm.org/cxx1z_status.html
⁷https://blogs.msdn.microsoft.com/vcblog/2018/05/07/announcing-msvc-conforms-to-the-c-standard/
⁸https://devblogs.microsoft.com/cppblog/cpp17-20-features-and-fixes-in-vs-2019/
⁹https://devblogs.microsoft.com/cppblog/stl-features-and-fixes-in-vs-2017-15-8/

https://en.cppreference.com/w/cpp/compiler_support
https://en.cppreference.com/w/cpp/compiler_support
https://gcc.gnu.org/projects/cxx-status.html#cxx17
https://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html#status.iso.2017
http://clang.llvm.org/cxx_status.html#cxx17
http://libcxx.llvm.org/cxx1z_status.html
https://blogs.msdn.microsoft.com/vcblog/2018/05/07/announcing-msvc-conforms-to-the-c-standard/
https://devblogs.microsoft.com/cppblog/cpp17-20-features-and-fixes-in-vs-2019/
https://devblogs.microsoft.com/cppblog/stl-features-and-fixes-in-vs-2017-15-8/
https://en.cppreference.com/w/cpp/compiler_support
https://gcc.gnu.org/projects/cxx-status.html#cxx17
https://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html#status.iso.2017
http://clang.llvm.org/cxx_status.html#cxx17
http://libcxx.llvm.org/cxx1z_status.html
https://blogs.msdn.microsoft.com/vcblog/2018/05/07/announcing-msvc-conforms-to-the-c-standard/
https://devblogs.microsoft.com/cppblog/cpp17-20-features-and-fixes-in-vs-2019/
https://devblogs.microsoft.com/cppblog/stl-features-and-fixes-in-vs-2017-15-8/

Appendix A - Compiler Support 328

Compiler Support of C++17 Features

Fixes and Deprecation

Feature GCC Clang MSVC
Removing register keyword 7.0 3.8 VS 2017 15.3
Remove Deprecated operator++(bool) 7.0 3.8 VS 2017 15.3
Removing Deprecated Exception Specifications 7.0 4.0 VS 2017 15.5
Removing trigraphs 5.1 3.5 VS 2010
New auto rules for direct-list-initialisation 5.0 3.8 VS 2015
static_assert with no message 6.0 2.5 VS 2017
Different begin and end types in range-based for 6.0 3.6 VS 2017

Clarification

Feature GCC Clang MSVC
Stricter expression evaluation order 7.0 4.0 VS 2017
Guaranteed copy elision 7.0 4.0 VS 2017 15.6
Exception specifications part of the type system 7.0 4.0 VS 2017 15.5
Dynamic memory allocation for over-aligned data 7.0 4.0 VS 2017 15.5

General Language Features

Feature GCC Clang MSVC
Structured Binding Declarations 7.0 4.0 VS 2017 15.3
Init-statement for if/switch 7.0 3.9 VS 2017 15.3
Inline variables 7.0 3.9 VS 2017 15.5
constexpr Lambda Expressions 7.0 5.0 VS 2017 15.3
Lambda Capture of *this 7.0 3.9 VS 2017 15.3
Nested namespaces 6.0 3.6 VS 2015
has_include 5 Yes VS 2017 15.3

Appendix A - Compiler Support 329

Templates

Feature GCC Clang MSVC
Template argument
deduction for class
templates

7.0/8.0¹⁰ 5.0 VS 2017 15.7

Deduction Guides in the
Standard Library

8.0¹¹ 7.0/in progress¹² VS 2017 15.7

Declaring non-type
template parameters
with auto

7.0 4.0 VS 2017 15.7

Fold expressions 6.0 3.9 VS 2017 15.5
if constexpr 7.0 3.9 VS 2017

Attributes

Feature GCC Clang MSVC
[[fallthrough]] 7.0 3.9 VS 2017 15.0
[[nodiscard]] 7.0 3.9 VS 2017 15.3
[[maybe_unused]] 7.0 3.9 VS 2017 15.3
Attributes for namespaces and enumerators 4.9(namespaces)/6(enums) 3.4 VS 2015 14.0
Ignore unknown attributes yes 3.9 VS 2015 14.0
Using attribute namespaces without
repetition

7.0 3.9 VS 2017 15.3

¹⁰Additional improvements for Template Argument Deduction for Class Templates happened in GCC 8.0, P0512R0.
¹¹Deduction Guides are not listed in the status pages of LibSTDC++, so we can assume they were implemented as part of

Template argument deduction for class templates.
¹²The status page for LibC++ mentions that <string>, sequence containers, container adaptors and <regex> portions have

been implemented so far.

http://wg21.link/p0512r0
https://gcc.gnu.org/projects/cxx-status.html
http://libcxx.llvm.org/cxx1z_status.html

Appendix A - Compiler Support 330

The Standard Library

Feature GCC Clang MSVC
std::optional 7.1 4.0 VS 2017 15.0
std::variant 7.1 4.0 VS 2017 15.0
std::any 7.1 4.0 VS 2017 15.0
std::string_view 7.1 4.0 VS 2017 15.0
String Searchers 7.1 5.0 VS 2017 15.3
String Conversions 8 (only integral types) in progress VS 2017 15.8
Parallel Algorithms 9.1 in progress VS 2017 15.7
Filesystem 8.0 7.0 VS 2017 15.7

Other STL changes

Feature GCC Clang MSVC
std::byte 7.1 5.0 VS 2017 15.3
Improvements for Maps and Sets 7.0 3.9 VS 2017 15.5
insert_or_assign()/try_emplace() for maps 6.1 3.7 VS 2017 15
Emplace Return Type 7.1 4.0 VS 2017 15.3
Sampling algorithms 7.1 In Progress VS 2017 15
gcd and lcm 7.1 4.0 VS 2017 15.3
clamp 7.1 3.9 VS 2015.3
Special Mathematical Functions 7.1 Not yet VS 2017 15.7
Shared Pointers and Arrays 7.1 In Progress VS 2017 15.5
Non-member size(), data() and empty() 6.1 3.6 VS 2015
constexpr Additions to the Standard Library 7.1 4.0 VS 2017 15.3
scoped_lock 7.1 5.0 VS 2017 15.3
Polymorphic Allocator & Memory Resource 9.1 In Progress VS 2017 15.6

Appendix A - Compiler Support 331

Removed Or Deprecated Library Features

Feature GCC Clang MSVC
Removing auto_ptr,
random_shuffle, old
<functional> stuff

No ¹³ not yet VS 2015

Deprecating std::iterator not yet not yet VS 2017 15.5
Deprecating
shared_ptr::unique()

not yet not yet VS 2017 15.5

Deprecating <codecvt> not yet not yet VS 2017 15.5
Removing Deprecated Iostreams
Aliases

not yet 3.8 VS 2015.2

Deprecate result_of not yet not yet VS 2017 15.3
Removing Allocator Support In
std::function

not yet 4.0 VS 2017 15.5

C++17 should refer to C11 instead
of C99

9.1 7.0 VS 2015

Removing Deprecated Iostreams
Aliases

not yet 3.8 VS 2015.2

¹³Kept for compatibility.

Appendix B - Resources and
References
You can purchase the official C++17 Standard at the ISO site:

ISO/IEC 14882:2017 - Programming languages - C++¹⁴

However, you can also read the free draft that’s very close to the published version:

N4687, 2017-07-30,Working Draft, Standard for Programming Language C++¹⁵

This PDF is from isocpp.org¹⁶. Also, have a look here for more information about the papers
and the status of C++: isocpp/Standard C++¹⁷.

For a quick overview of C++17 changes, here’s a handy list located at:

P0636 - Changes between C++14 and C++17¹⁸

Books:

• C++17 - The Complete Guide by Nicolai Josuttis

• C++17 STL Cookbook by Jacek Galowicz

• Modern C++ Programming Cookbook by Marius Bancila

• C++ Templates: The Complete Guide (2nd Edition) by David Vandevoorde, Nicolai
M. Josuttis, Douglas Gregor

• Professional C++, 4th Edition by Marc Gregoire

General C++ Links:

• Compiler support: C++ compiler support

• ISO Standard C++
¹⁴https://www.iso.org/standard/68564.html
¹⁵https://wg21.link/n4687
¹⁶https://isocpp.org/
¹⁷https://isocpp.org/std/the-standard
¹⁸https://wg21.link/P0636

https://www.iso.org/standard/68564.html
https://wg21.link/n4687
https://isocpp.org/
https://isocpp.org/std/the-standard
https://wg21.link/P0636
https://leanpub.com/cpp17
http://amzn.to/2xGXE2g
http://amzn.to/2vFUUQM
http://amzn.to/2xcCXKe
https://amzn.to/2tUKivY
http://en.cppreference.com/w/cpp/compiler_support
https://isocpp.org/
https://www.iso.org/standard/68564.html
https://wg21.link/n4687
https://isocpp.org/
https://isocpp.org/std/the-standard
https://wg21.link/P0636

Appendix B - Resources and References 333

• Jason Turner: C++ Weekly channel, where he covered most (or even all!) of C++17
features.

• Simon Brand blog - with lot’s of information about C++17

• Arne Mertz blog

• Rainer Grimm Blog

• CppCast

• FluentC++

General C++17 Language Features

• Simon Brand: Template argument deduction for class template constructors

• Class template deduction(since C++17) - cppreference.

• “Using fold expressions to simplify variadic function templates” in Modern C++
Programming Cookbook.

• Simon Brand: Exploding tuples with fold expressions

• Baptiste Wicht: C++17 Fold Expressions

• Fold Expressions - ModernesCpp.com

• Adding C++17 structured bindings support to your classes

• C++ Weekly Special Edition - Using C++17’s constexpr if - YouTube - real examples
from Jason and his projects.

• C++17: let’s have a look at the constexpr if – FJ

• C++ 17 vs. C++ 14 — if-constexpr – LoopPerfect – Medium

• Two-phase name lookup support comes to MSVC

• What does the carries_dependency attribute mean? - Stack Overflow

• Value Categories in C++17 – Barry Revzin – Medium

• Rvalues redefined | Andrzej’s C++ blog

• Guaranteed Copy Elision Does Not Elide Copies - MSVC C++ Team Blog

Expression Evaluation Order:

• GotW #56: Exception-Safe Function Calls

• Core Guidelines: ES.43: Avoid expressions with undefined order of evaluation

• Core Guidelines: ES.44: Don’t depend on order of evaluation of function arguments

https://www.youtube.com/playlist?list=PLs3KjaCtOwSZ2tbuV1hx8Xz-rFZTan2J1
https://blog.tartanllama.xyz/
https://arne-mertz.de/
http://www.modernescpp.com/
http://cppcast.com/
http://www.fluentcpp.com/
https://blog.tartanllama.xyz/c++/2017/01/11/deduction-for-class-templates/
http://en.cppreference.com/w/cpp/language/class_template_deduction
http://amzn.to/2t62io9
http://amzn.to/2t62io9
https://tartanllama.github.io/c++/2016/11/10/exploding-tuples-fold-expressions/
http://baptiste-wicht.com/posts/2015/05/cpp17-fold-expressions.html
http://www.modernescpp.com/index.php/fold-expressions
https://blog.tartanllama.xyz/structured-bindings/
https://www.youtube.com/watch?v=_Ny6Qbm_uMI
http://filipjaniszewski.com/2016/07/29/c17-lets-have-a-look-at-the-constexpr-if/
https://medium.com/@LoopPerfect/c-17-vs-c-14-if-constexpr-b518982bb1e2
https://blogs.msdn.microsoft.com/vcblog/2017/09/11/two-phase-name-lookup-support-comes-to-msvc/
https://stackoverflow.com/questions/6411270/what-does-the-carries-dependency-attribute-mean
https://medium.com/@barryrevzin/value-categories-in-c-17-f56ae54bccbe
https://akrzemi1.wordpress.com/2018/05/16/rvalues-redefined/
https://devblogs.microsoft.com/cppblog/guaranteed-copy-elision-does-not-elide-copies/
http://gotw.ca/gotw/056.htm
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es44-dont-depend-on-order-of-evaluation-of-function-arguments

Appendix B - Resources and References 334

About std::optional:

• Andrzej’s C++ blog: Efficient optional values

• Andrzej’s C++ blog: Ref-qualifiers

• Clearer interfaces with optional<T> - Fluent C++

• Optional - Performance considerations - Boost 1.67.0

• Enhanced Support for Value Semantics in C++17 - Michael Park, CppCon 2017

• std::optional: How, when, and why | Visual C++ Team Blog

About std::variant:

• SimplifyC++ - Overload: Build a Variant Visitor on the Fly.

• Variant Visitation by Michael Park

• Sum types and state machines in C++17

• Implementing State Machines with std::variant

• Pattern matching in C++17 with std::variant, std::monostate and std::visit

• Another polymorphism | Andrzej’s C++ blog

• Inheritance vs std::variant, C++ Truths

About string_view

• CppCon 2015 string_view — Marshall Clow

• string_view odi et amo - Marco Arena

• C++17 string_view – Steve Lorimer

• Modernescpp - string_view

• J. Müller - std::string_view accepting temporaries: good idea or horrible pitfall?

• abseil / Tip of the Week #1: string_view

• std::string_view is a borrow type – Arthur O’Dwyer – Stuff mostly about C++

• C++ Russia 2018: Victor Ciura, Enough string_view to hang ourselves - YouTube

• StringViews, StringViews everywhere! - Marc Mutz - Meeting C++ 2017 - YouTube

• Jacek’s C++ Blog · Const References to Temporary Objects

• abseil / Tip of the Week #107: Reference Lifetime Extension

• C++17 - Avoid Copying with std::string_view - ModernesCpp.com

https://akrzemi1.wordpress.com/2015/07/15/efficient-optional-values/
https://akrzemi1.wordpress.com/2014/06/02/ref-qualifiers/
https://www.fluentcpp.com/2016/11/24/clearer-interfaces-with-optionalt/
https://www.boost.org/doc/libs/1_67_0/libs/optional/doc/html/boost_optional/tutorial/performance_considerations.html
https://channel9.msdn.com/Events/GoingNative/CppCon-2017/029
https://blogs.msdn.microsoft.com/vcblog/2018/09/04/stdoptional-how-when-and-why/
https://arne-mertz.de/2018/05/overload-build-a-variant-visitor-on-the-fly/
https://mpark.github.io/programming/2015/07/07/variant-visitation/
http://mooooo.ooo/sumtypes-and-statemachines/
http://khuttun.github.io/2017/02/04/implementing-state-machines-with-std-variant.html
http://www.walletfox.com/course/patternmatchingcpp17.php
https://akrzemi1.wordpress.com/2016/02/27/another-polymorphism/
http://cpptruths.blogspot.com/2018/02/inheritance-vs-stdvariant-based.html
https://channel9.msdn.com/Events/CPP/CppCon-2015/CPPConD04V018
https://marcoarena.wordpress.com/2017/01/03/string_view-odi-et-amo/
https://skebanga.github.io/string-view/
http://www.modernescpp.com/index.php/c-17-avoid-copying-with-std-string-view
http://foonathan.net/blog/2017/03/22/string_view-temporary.html
https://abseil.io/tips/1
https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/
https://www.youtube.com/watch?v=RKjvIZQO71c
https://www.youtube.com/watch?v=0QFPKgvLhao
https://blog.galowicz.de/2016/03/23/const_reference_to_temporary_object/
https://abseil.io/tips/107
http://www.modernescpp.com/index.php/c-17-avoid-copying-with-std-string-view

Appendix B - Resources and References 335

String Conversions and Searchers

• How to Convert a String to an int in C++ - Fluent C++

• How to Efficiently Convert a String to an int in C++ - Fluent C++

• How to encode char in 2-bits? - Stack Overflow

About Filesystem

• Chapter 7, “Working with Files and Streams” - of Modern C++ Programming
Cookbook.

• examples like: Working with filesystem paths, Creating, copying, and deleting files and
directories, Removing content from a file, Checking the properties of an existing file
or directory, searching.

• Chapter 10 ““Filesystem” from “C++17 STL Cookbook”

• examples: path normalizer, Implementing a grep-like text search tool, Implementing an
automatic file renamer, Implementing a disk usage counter, statistics about file types,
Implementing a tool that reduces folder size by substituting duplicates with symlinks

• C++17- std::byte and std::filesystem - ModernesCpp.com

• How similar are Boost filesystem and the standard C++ filesystem libraries? - SO

• bfilipek.com: Converting from Boost to std::filesystem

Parallel Algorithms

• Bryce Adelstein’s talk about parallel algorithms. Contains a lot of examples for map
reduce (transform reduce) algorithm: CppCon 2016: Bryce Adelstein Lelbach “The
C++17 Parallel Algorithms Library and Beyond” - YouTube

• Sean Parent – Better Code: Concurrency - code::dive 2016

• Simon Brand - std::accumulate vs. std::reduce

• Using C++17 Parallel Algorithms for Better Performance | Visual C++ Team Blog

• bfilipek.com: The Amazing Performance of C++17 Parallel Algorithms, is it Possible?

https://www.fluentcpp.com/2018/07/24/how-to-convert-a-string-to-an-int-in-c/
https://www.fluentcpp.com/2018/07/27/how-to-efficiently-convert-a-string-to-an-int-in-c/
https://stackoverflow.com/questions/39242932/how-to-encode-char-in-2-bits
https://www.amazon.com/Modern-Programming-Cookbook-Marius-Bancila/dp/1786465183/ref=as_li_ss_il?_encoding=UTF8&me=&linkCode=li3&tag=bfilipek-20&linkId=cee83ce1630b93e141af8fe77f974c97
https://www.amazon.com/Modern-Programming-Cookbook-Marius-Bancila/dp/1786465183/ref=as_li_ss_il?_encoding=UTF8&me=&linkCode=li3&tag=bfilipek-20&linkId=cee83ce1630b93e141af8fe77f974c97
http://amzn.to/2utFjzB
http://www.modernescpp.com/index.php/c-17-more-details-about-the-library
https://stackoverflow.com/questions/40899267/how-similar-are-boost-filesystem-and-the-standard-c-filesystem-libraries
https://www.bfilipek.com/2019/05/boost-to-stdfs.html
https://www.youtube.com/watch?v=Vck6kzWjY88
https://www.youtube.com/watch?v=Vck6kzWjY88
https://www.youtube.com/watch?time_continue=3459&v=QIHy8pXbneI
https://blog.tartanllama.xyz/accumulate-vs-reduce/
https://blogs.msdn.microsoft.com/vcblog/2018/09/11/using-c17-parallel-algorithms-for-better-performance/
https://www.bfilipek.com/2018/11/parallel-alg-perf.html

Index

A B
Algorithms bad_optional_access, 92
  accumulate(), 237-239, 246-248, 271, 317-324 basic_string_view, 148
  exclusive_scan(), 236, 237 beta(), 268
  for_each_n(), 237, 238, 250 bind1st, bind2nd, 282
  inclusive_scan(), 236, 237 boost
  parallel algorithms, 226   boost::any, 140
  reduce(), 237, 238, 239, 246, 247, 248, 251   boost::optional, 83, 97
  sample(), 266   BOOST_STATIC_ASSERT, 10
  transform_exclusive_scan(), 236, 237, 241, 255   boost::string_ref, 166
  transform_inclusive_scan(), 236, 237, 255   boost::string_view, 166
  transform_reduce(), 237, 240, 251, 255, 321   boost::tribool, 98
align_val_t, 23-25   boost::variant, 103, 122
alignment, 23-25 boyer_moore, 188, 190
allocator, polymorphic, 274 boyer_moore_horspool, 188, 190
any, 132-144 byte, std::byte, 258
  any_cast(), 133-135, 137-139, 143
  bad_any_cast, 133, 135 C
  creation, 135 carries_dependency, attribute, 73
  examples, 141 charconv, 47, 176, 179
  has_value(), 134, 136 chars_format, 174, 177, 178
  operations, 137, 138 clamp(), 267
  reset(), 134 codecvt, 285
  type(), 134 comp_ellint_*(), 268
assoc_laguerre, assoc_legendre, 268 conjunction_v, 67
attributes, 70-80 constexpr, lambda, 42
  [[carries_dependency]], 73 copy elision, 18-22
  [[deprecate]], 73, 80 CTAD, 51, 52, 54
  [[fallthrough]], 74, 75, 80 current_path(), 198, 200, 211, 219
  [[maybe_unused]], 74, 75, 80 cyl_bessel_i, cyl_bessel_j, cyl_bessel_k 268
  [[nodiscard]], 74, 76, 80, 297 cyl_neumann 268
  [[noreturn]], 73, 80
auto, initialisation, 9 D
auto_ptr, 279 deduction guide, 53

default_searcher, 188

Index 337

deprecate, attribute, 73, 80   create_directory_symlink(), 211
directory_entry, 208-210   create_hard_link(), 211
  assign(), 210   create_symlink(), 211
  exists(), 210   current_path(), 211
  file_size(), 210   equivalent(), 211
  hard_link_count(), 210   error handling, 216
  is_block_file(), 210   examples, 2018
  is_character_file(), 210   exists(), 211
  is_directory(), 210   file_size(), 198, 211, 217, 218, 222
  is_fifo(), 210   hard_link_count(), 212
  is_other(), 210   is_block_file(), 211
  is_regular_file(), 210   is_character_file(), 211
  is_socket(), 210   is_directory(), 211
  is_symlink(), 210   is_empty(), 211
  last_write_time(), 210   is_fifo(), 211
  path(), 210   is_other(), 211
  refresh(), 210   is_regular_file(), 211
  replace-filename,210   is_socket(), 211
  status, 210   is_symlink(), 211
  symlink_status, 210   last_write_time(), 211
directory_iterator, 209   path, type, 201

  permissions, 214
E   read_symlink(), 212
ellint_1, ellint_2, ellint_3, 268   relativeproximate(), 211
emplace(), 94, 260, 262, 265   remove(), 212
enable_if, 67, 303, 306, 307   remove_all(), 212
ends_with(), 152   rename(), 212
error_code, 217   resize_file(), 212
exclusive_scan(), 236, 237   space(), 212
expression evaluation order, 14   status(), 212
extract(), 259, 260   status_known(), 211

  symlink_status(), 212
F   temp_directory_path(), 212
fallthrough, attribute, 74 filesystem_error, 198, 312
filesystem, 196-225 fold expressions, 55
  absolute(), 211 from_chars(), 174-184, 316
  canonical(), 211 from_chars_result, 174, 175
  copy(), 211
  copy_file(), 211 G
  copy_symlink(), 211 gcd(), 267
  create_directory(), 211 get_if(), 104, 105, 111, 113, 131

Index 338

glvalue, 21, 22 nullopt, 47, 85, 86, 90, 93, 95, 97

H O
__has_include, 47 optional, 82-101, 293
has_value(), any, 134, 136   accessing, 90
has_value(), optional, 92, 294   bad_optional_access, 92
hermite(), 268   creation, 83
holds_alternative(), 104, 105, 123, 295   emplace(), 93, 94

  examples, 96, 293
I   nullopt, 47, 85, 86, 90, 93, 95, 97
if constexpr, 58 64, 307, 308   operations, 91
in_place, optional, 86   reset(), 93, 94
in_place_index, 107, 108, 109   value(), 92
in_place_type, any, 136, 137   value_or(), 92, 93
in_place_type, variant, 107, 108, 109 overload (pattern), 115-119
inclusive_scan(), 236, 237
inline, variables, 40 P
insert_or_assign(), 261, 262 par, 229 - 231, 233, 238, 239, 240, 243-256

par_unseq, 230, 231, 233, 234, 255
L parallel_policy, 230
laguerre(), 268 parallel_unsequenced_policy, 230
launder(), 77 partial_sum(), 237
legendre(), 268 path, 201-208
lifetime extension, 154, 156   append(), 204, 205
lvalue, 21, 22, 157, 162   c_str(), 208

  clear(), 204
M   compare(), 204, 205
make_any(), 136, 137, 139   concat(), 204, 206
make_optional(), 86, 89   empty(), 204
maybe_unused, attribute, 74, 75, 80   extension(), 202
memory_resource, 274, 275   filename(), 202
monostate, 107, 108, 122   has_extension(), 202
monotonic_buffer_resource, 275   has_filename(), 202

  has_parent_path(), 202
N   has_relative_path(), 202
new_delete_resource, 275   has_root_directory(), 202
nodiscard, attribute, 74, 76, 80, 297   has_root_name(), 202
noexcept, specification, 7   has_root_path(), 202
noreturn, attribute, 73, 80   has_stem(), 202
NRVO, 19   native(), 207
null_memory_resource, 275   parent_path(), 202

Index 339

  relative_path(), 202   ”“sv literal, 149
  remove_filename(), 204   creation, 149
  replace_extension(), 204   examples, 167
  replace_filename(), 204   operations, 150
  root_directory(), 202   remove_prefix(), 151
  root_name(), 202   remove_suffix(), 151
  root_path(), 202   risks, 153
  stem(), 202
  string(), 208 T
  swap(), 204 tie, 29, 291
  value_type, 208 to_chars(), 178, 179, 181
pmr, 274 to_chars_result, 178
prvalue, 21, 22 transform_exclusive_scan(), 236, 237, 241, 255

transform_inclusive_scan(), 236, 237, 255
R transform_reduce(), 237, 240, 251, 255, 321
RVO, 18, 20, 90 try_emplace(), 261, 262
random_shuffle(), 281 type(), any, 134
recursive_directory_iterator, 209
reduce(), 237, 238, 239, 246, 247, 248, 251 U
reset(), any, 134 unique_ptr, 269, 279
reset(), optional, 93, 94 unsynchronized_pool_resource, 274, 275
result_out_of_range, 175, 176
riemann_zeta(), 268 V
rvalue, 21, 22, 157 value(), 92, 93, 101

value_or(), 92, 93, 101
S variant, 102-131, 294
sample(), 266   accessing, 113
SBO, 140   changing the value, 111
scoped_lock, 273   creation, 107
search(), 186-195   examples, 123, 294
searcher, 187, 188, 191, 194   operations, 120
sequenced_policy, 230 visit(), variant, 104, 114-118, 128, 130
shared_ptr, 269, 279, 280
shuffle(), 281 X
sph_bessel(), 268 xvalue, 21, 22
sph_legendre(), 268
sph_neumann(), 268
SSO, 160, 162, 165
STDCPP_DEFAULT_NEW_ALIGNMENT, 23,
  24
string_view, 145-170

	Table of Contents
	About the Author
	Technical Reviewer
	Additional Reviewers & Supporters

	Revision History
	Foreword
	Preface
	About the Book
	Who This Book is For
	Overall Structure of the Book
	Reader Feedback
	Example Code

	Part 1 - Language Features
	Quick Start
	Removed or Fixed Language Features
	Removed Elements
	Fixes
	Compiler Support

	Language Clarification
	Stricter Expression Evaluation Order
	Guaranteed Copy Elision
	Dynamic Memory Allocation for Over-Aligned Data
	Exception Specifications in the Type System
	Compiler Support

	General Language Features
	Structured Binding Declarations
	Init Statement for if and switch
	Inline Variables
	constexpr Lambda Expressions
	Capturing [*this] in Lambda Expressions
	Nested Namespaces
	__has_include Preprocessor Expression
	Compiler support

	Templates
	Template Argument Deduction for Class Templates
	Fold Expressions
	if constexpr
	Declaring Non-Type Template Parameters With auto
	Other Changes
	Compiler Support

	Standard Attributes
	Why Do We Need Attributes?
	Before C++11
	Attributes in C++11 and C++14
	C++17 Additions
	Section Summary
	Compiler support

	Part 2 - The Standard Library Changes
	std::optional
	Introduction
	std::optional Creation
	Returning std::optional
	Accessing The Stored Value
	std::optional Operations
	Performance & Memory Consideration
	Migration from boost::optional
	Special case: optional<bool> and optional<T*>
	Examples of std::optional
	Summary
	Compiler Support

	std::variant
	The Basics
	std::variant Creation
	Changing the Values
	Accessing the Stored Value
	Visitors for std::variant
	Other std::variant Operations
	Exception Safety Guarantees
	Performance & Memory Considerations
	Migration From boost::variant
	Examples of std::variant
	Wrap Up
	Compiler Support

	std::any
	The Basics
	std::any Creation
	Changing the Value
	Accessing The Stored Value
	Performance & Memory Considerations
	Migration from boost::any
	Examples of std::any
	Wrap Up
	Compiler Support

	std::string_view
	The Basics
	The std::basic_string_view Type
	std::string_view Creation
	Other Operations
	Risks Using string_view
	Initializing string Members from string_view
	Handling Non-Null Terminated Strings
	Performance & Memory Considerations
	Migration from boost::string_ref and boost::string_view
	Examples
	Wrap Up

	String Conversions
	Elementary String Conversions
	Converting From Characters to Numbers: from_chars
	Converting Numbers into Characters: to_chars
	The Benchmark
	Summary
	Compiler support

	Searchers & String Matching
	Overview of String Matching Algorithms
	New Algorithms Available in C++17
	Examples
	Summary
	Compiler support

	Filesystem
	Filesystem Overview
	Demo
	The Path Object
	The Directory Entry & Directory Iteration
	Supporting Functions
	Error Handling & File Races
	Examples
	Chapter Summary
	Compiler Support

	Parallel STL Algorithms
	Introduction
	Overview
	Execution Policies
	Algorithm Update
	New Algorithms
	Performance of Parallel Algorithms
	Examples
	Chapter Summary
	Compiler Support

	Other Changes In The Library
	std::byte
	Improvements for Maps and Sets
	Return Type of Emplace Methods
	Sampling Algorithms
	New Mathematical Functions
	Shared Pointers and Arrays
	Non-member size(), data() and empty()
	constexpr Additions to the Standard Library
	std::scoped_lock
	Polymorphic Allocator, pmr
	Compiler support

	Removed And Deprecated Library Features
	Removing auto_ptr
	Removed std::random_shuffle
	``Removing Old functional Stuff''
	std::iterator Is Deprecated
	Other Smaller Removed or Deprecated Items
	Compiler support

	Part 3 - More Examples and Use Cases
	Refactoring with std::optional and std::variant
	The Use Case
	The Tuple Version
	A Separate Structure
	With std::optional
	With std::variant
	Wrap up

	Enforcing Code Contracts With [[nodiscard]]
	Introduction
	Where Can It Be Used?
	How to Ignore [[nodiscard]]
	Before C++17
	Summary

	Replacing enable_if with if constexpr - Factory with Variable Arguments
	The Problem
	Before C++17
	With if constexpr
	Summary

	How to Parallelise CSV Reader
	Introduction and Requirements
	The Serial Version
	Using Parallel Algorithms
	Tests
	Wrap up & Discussion

	Appendix A - Compiler Support
	GCC
	Clang
	VisualStudio - MSVC
	Compiler Support of C++17 Features

	Appendix B - Resources and References
	Index

