

Agile Web Development
with Rails 7

by Sam Ruby

Version: P1.0 (May 2023)

Copyright © 2023 The Pragmatic Programmers, LLC. This book is licensed to the individual who
purchased it. We don't copy-protect it because that would limit your ability to use it for your own
purposes. Please don't break this trust—you can use this across all of your devices but please do not
share this copy with other members of your team, with friends, or via file sharing services. Thanks.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and The Pragmatic Programmers, LLC was
aware of a trademark claim, the designations have been printed in initial capital letters or in all capitals.
The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf
and the linking g device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no
responsibility for errors or omissions, or for damages that may result from the use of information
(including program listings) contained herein.

About the Pragmatic Bookshelf
The Pragmatic Bookshelf is an agile publishing company. We’re here because we want to improve the
lives of developers. We do this by creating timely, practical titles, written by programmers for
programmers.

Our Pragmatic courses, workshops, and other products can help you and your team create better
software and have more fun. For more information, as well as the latest Pragmatic titles, please visit us
at http://pragprog.com.

Our ebooks do not contain any Digital Restrictions Management, and have always been DRM-free. We
pioneered the beta book concept, where you can purchase and read a book while it’s still being written,
and provide feedback to the author to help make a better book for everyone. Free resources for all
purchasers include source code downloads (if applicable), errata and discussion forums, all available on
the book's home page at pragprog.com. We’re here to make your life easier.

New Book Announcements
Want to keep up on our latest titles and announcements, and occasional special offers? Just create an
account on pragprog.com (an email address and a password is all it takes) and select the checkbox to
receive newsletters. You can also follow us on twitter as @pragprog.

About Ebook Formats
If you buy directly from pragprog.com, you get ebooks in all available formats for one price. You can
synch your ebooks amongst all your devices (including iPhone/iPad, Android, laptops, etc.) via
Dropbox. You get free updates for the life of the edition. And, of course, you can always come back and
re-download your books when needed. Ebooks bought from the Amazon Kindle store are subject to
Amazon's polices. Limitations in Amazon's file format may cause ebooks to display differently on
different devices. For more information, please see our FAQ at pragprog.com/#about-ebooks. To learn
more about this book and access the free resources, go to https://pragprog.com/book/rails7, the book's
homepage.

Thanks for your continued support,

The Pragmatic Bookshelf

The team that produced this book includes: Dave Rankin (CEO), Janet Furlow (COO),
Tammy Coron (Managing Editor), Adaobi Obi Tulton (Development Editor),
L. Sakhi MacMillan (Copy Editor), Potomac Indexing, LLC (Indexing),
Gilson Graphics (Layout), Andy Hunt and Dave Thomas (Founders)

For customer support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

http://pragprog.com/
https://pragprog.com/
https://pragprog.com/
https://pragprog.com/support/#about-ebooks
https://pragprog.com/book/rails7
mailto:support@pragprog.com
mailto:rights@pragprog.com

Table of Contents

 Foreword to the Rails 7 Edition

 Preface to the Rails 7 Edition

 Acknowledgments

 Introduction
Rails Simply Feels Right
Rails Is Agile
Who This Book Is For
How to Read This Book

Part I. Getting Started

1. Installing Rails
Installing on Windows
Installing on macOS
Installing on Linux
Choosing a Rails Version
Setting Up Your Development Environment
Rails and Databases

2. Instant Gratification

Creating a New Application
Hello, Rails!
Linking Pages Together
When Things Go Wrong

3. The Architecture of Rails Applications
Models, Views, and Controllers
Rails Model Support
Action Pack: The View and Controller

4. Introduction to Ruby
Ruby Is an Object-Oriented Language
Data Types
Logic
Organizing Structures
Marshaling Objects
Pulling It All Together
Ruby Idioms

Part II. Building an Application

5. The Depot Application
Incremental Development
What Depot Does
Let’s Code

6. Task A: Creating the Application
Iteration A1: Creating the Product Maintenance Application

Iteration A2: Making Prettier Listings

7. Task B: Validation and Unit Testing
Iteration B1: Validating!
Iteration B2: Unit Testing of Models

8. Task C: Catalog Display
Iteration C1: Creating the Catalog Listing
Iteration C2: Adding a Page Layout
Iteration C3: Using a Helper to Format the Price
Iteration C4: Functional Testing of Controllers
Iteration C5: Caching of Partial Results

9. Task D: Cart Creation
Iteration D1: Finding a Cart
Iteration D2: Connecting Products to Carts
Iteration D3: Adding a Button

10. Task E: A Smarter Cart
Iteration E1: Creating a Smarter Cart
Iteration E2: Handling Errors
Iteration E3: Finishing the Cart

11. Task F: Hotwiring the Storefront
Iteration F1: Moving the Cart
Iteration F2: Creating a Hotwired Cart
Iteration F3: Highlighting Changes
Iteration F4: Broadcasting Updates with Action Cable

12. Task G: Check Out!

Iteration G1: Capturing an Order
Iteration G2: Adding Fields Dynamically to a Form
Iteration G3: Testing Our JavaScript Functionality

13. Task H: Sending Emails and Processing Payments
Efficiently

Iteration H1: Sending Confirmation Emails
Iteration H2: Connecting to a Slow Payment Processor
with Active Job

14. Task I: Logging In
Iteration I1: Adding Users
Iteration I2: Authenticating Users
Iteration I3: Limiting Access
Iteration I4: Adding a Sidebar, More Administration

15. Task J: Internationalization
Iteration J1: Selecting the Locale
Iteration J2: Translating the Storefront
Iteration J3: Translating Checkout
Iteration J4: Adding a Locale Switcher

16. Task K: Receive Emails and Respond with Rich Text
Iteration K1: Receiving Support Emails with Action Mailbox
Iteration K2: Storing Support Requests from Our Mailbox
Iteration K3: Responding with Rich Text

17. Task L: Deployment and Production
Configuring the Database
Managing Secrets

Building a Docker Image
Getting Up and Running
Checking Up on a Deployed Application

18. Depot Retrospective
Rails Concepts
Documenting What We’ve Done

Part III. Rails in Depth

19. Finding Your Way Around Rails
Where Things Go
Naming Conventions

20. Active Record
Defining Your Data
Locating and Traversing Records
Creating, Reading, Updating, and Deleting (CRUD)
Participating in the Monitoring Process
Transactions

21. Action Dispatch and Action Controller
Dispatching Requests to Controllers
Processing of Requests
Objects and Operations That Span Requests

22. Action View
Using Templates

Generating Forms
Processing Forms
Uploading Files to Rails Applications
Using Helpers
Reducing Maintenance with Layouts and Partials

23. Migrations
Creating and Running Migrations
Anatomy of a Migration
Managing Tables
Advanced Migrations
When Migrations Go Bad
Schema Manipulation Outside Migrations

24. Customizing and Extending Rails
Creating a Reusable Web Component
Testing with RSpec
Creating HTML Templates with Slim
Customizing Rails in Other Ways
Where to Go from Here

 Bibliography

Copyright © 2023, The Pragmatic Bookshelf.

Early Praise for Agile Web
Development with Rails 7

The best book to get started in the Rails world. A comprehensive,
coherent, and concise overview of the Ruby on Rails framework. It
treats learning in a gradual way, creating an application from scratch
using the latest technologies.

→ Luis Miguel Cabezas Granado
Ruby on Rails and PHP developer at Junta de Extremadura
(Spain) and PHP book writer at Anaya Multimedia

I liked how the book guided me through each step of the tasks. This
book gives a thorough introduction to Rails, and I’d suggest it to
anyone who wants to start development with Rails.

→ Gábor László Hajba
Software Developer, EBCONT Enterprise Technologies

The book was really pleasant to read; I liked how it creates a
foundational understanding of Rails with a realistic scenario and then
builds upon it for the more advanced topics.

→ Alessandro Bahgat
Software Engineer, Google

Foreword to the Rails 7 Edition

It’s been a long time since Ruby on Rails was the new kid on the block, but
it’s more relevant than ever for developing websites and services. After
more than sixteen years since its original release, Rails continues to mature
as a platform that helps you get things done.

One of the secrets of Rails is something that its creator, David Heinemeier
Hansson, calls conceptual compression. A careful building and layering of
abstractions let you quickly start a task. Then, if and when you need to go
deeper and take more control of a particular aspect of Rails, you can. You’ll
see this in every facet of Rails. For example, ActiveRecord—Rails’
database layer—helps you quickly get data in and out of databases yet
allows you to drop down to SQL when needed.

Another secret of Rails is that it builds on Ruby’s emphasis on optimizing
programmer happiness. It makes the process of creating software for the
web fun and rewarding.

What isn’t a secret is what Rails allowed programmers to do. Some of the
biggest software success stories of the last two decades were built and
launched on Rails. Shopify, the company I currently work for, is one of
those success stories. The same codebase that Tobi Lütke started in 2006,
shown in the image, has grown up to serve millions of merchants and
process billions of dollars of transactions a week. And we’re still using
Ruby on Rails, with no plans to ever quit using it. While we use many other

technologies, and will continue to evaluate new ones, Rails and—more
importantly—the principles it is built on are at the core of what we do.

Now, I’m not going to argue that you should learn and use Rails because it’s
what Shopify, GitHub, and many other fantastic companies use. That’s not a
very strong argument. However, a strong argument is that companies like
Shopify and GitHub use Rails because it’s excellent for what we want to do.
And, it might be just the right tool for what you wish to do as well. Even if
you go on to use other things, learning Rails will open your eyes to a deeper
appreciation of how to build web applications.

I still remember the huge smile it gave so many years ago when I first
installed the original version of Rails and started to play around with it. At
the time, I’d been building for the web for almost a decade and thought that
I knew pretty much everything I needed to know. It turns out that I had a lot
to learn. And that experience reminds me to this day that there’s still so
much to learn.

I wish you the best as you start your journey to learning Rails, and I hope it
gives you the same big smile that it’s given so many other people as they’ve
learned it. Last but not least, you’re in the best of hands. Dave Thomas was
the person who helped bring Ruby to the English-speaking world and taught
so many of us how to get the most out of the language. And, over two
decades, I’ve learned so much from Sam Ruby through all of his work on
the web. I consider both of them among the best mentors one can have.

With all that said, let’s get started!

James Duncan Davidson
Distinguished Engineer, Shopify
mailto:duncandavidson@me.com
Berlin, Germany, 2022-05-01

Copyright © 2023, The Pragmatic Bookshelf.

mailto:duncandavidson@me.com

Preface to the Rails 7 Edition

Rails 1.0 was released in December 2005. In the years since, it has gone
from a relatively unknown leading-edge tool to a successful and stable
foundation with a large set of associated libraries that others benchmark
themselves against.

The book you’re about to read was there from the start, and it has evolved
with Rails. It began as a full reference to a small framework when online
documentation was scarce and inconsistent. It’s now an introduction to the
entire Rails ecosystem—one that leaves you with many pointers to more
information that you can explore based on your needs and desires.

This book didn’t just evolve along with Rails: Rails evolved with it. The
content in this book has been developed in consultation with the Rails core
team. Not only is the code you’ll see in this book tested against each release
of Rails, but the converse is also true: Rails itself is tested against the code
in this book and won’t be released until those tests pass.

So read this book with confidence that the scenarios not only work but also
describe how the Rails developers themselves feel about how best to use
Rails. We hope you get as much pleasure out of reading this book as we had
in developing it.

This book covers Rails 7. While some of the commands you’ll be using are
new, the underlying development model remains the same. Even when new
major features are added, such as the tight integration with JavaScipt import
maps, changes are evolutionary, not revolutionary.

Rails 7 introduced an entirely new way to produce state of the art user
experiences comparable to the ones provided by Webpack and libraries such
as React.js, but without the inherent complexity of adding in the complete
node.js ecosystem.

This edition will focus on the new defaults provided with Rails 7 and
introduce you to the Turbo (the follow-on from TurboLinks) and Stimulus
frameworks and show you how you can make interactive and responsive
websites with a bare minimum of JavaScript, reusing the templates and
partials you already have to make this possible.

Along the way you’ll be introduced to the Tailwind CSS framework, which
dramatically reduces the amount of custom CSS style sheets you need to
develop for your application.

The end result is that your primary focus will be as it should be: first and
foremost on the HTML you want to produce, then on the Ruby on Rails
code needed to make your web interfaces come alive.

Copyright © 2023, The Pragmatic Bookshelf.

Acknowledgments

Rails is constantly evolving, and as it has, so has this book. Parts of the
Depot application were rewritten several times, and all of the text and code
was updated. The avoidance of features as they become deprecated has
repeatedly changed the structure of the book, as what was once hot became
just lukewarm.

So, this book would not exist without a massive amount of assistance from
the Ruby and Rails communities. And of course, none of this would exist
without the developers contributing to Ruby on Rails every day. In
particular, the Rails core team has been incredibly helpful, answering
questions, checking out code fragments, and fixing bugs—even to the point
where part of the release process includes verifying that new releases of
Rails don’t break the examples provided in this book.

Sam Ruby

Copyright © 2023, The Pragmatic Bookshelf.

Introduction

Ruby on Rails is a framework that makes it easier to develop, deploy, and
maintain web applications. During the sixteen-plus years since its initial
release, Rails went from being an unknown toy to a worldwide
phenomenon. More importantly, it has become the framework of choice for
the implementation of a wide range of applications.

Why is that?

Rails Simply Feels Right
A large number of developers were frustrated with the technologies they
were using to create web applications. It didn’t seem to matter whether they
used Java, PHP, or .NET—there was a growing sense that their jobs were
just too damn hard. And then, suddenly, along came Rails, and Rails was
easier.

But easy on its own doesn’t cut it. We’re talking about professional
developers writing real-world websites. They wanted to feel that the
applications they were developing would stand the test of time—that they
were designed and implemented using modern, professional techniques. So,
these developers dug into Rails and discovered it wasn’t just a tool for
hacking out sites.

For example, all Rails applications are implemented using the model-view-
controller (MVC) architecture. MVC isn’t a new concept for web
development—the earliest Java-based web frameworks (like Struts) base
their design on it. But Rails takes MVC further: when you develop in Rails,
you start with a working application, each piece of code has its place, and
all the pieces of your application interact in a standard way.

Professional programmers write tests. And again, Rails delivers. All Rails
applications have testing support baked right in. As you add functionality to
the code, Rails automatically creates test stubs for that functionality. The
framework makes it easy to test applications, and, as a result, Rails
applications tend to get tested.

Rails applications are written in Ruby, a modern, object-oriented language.
Ruby is concise without being unintelligibly terse. You can express ideas
naturally and cleanly in Ruby code. This leads to programs that are easy to
write and (just as important) easy to read months later.

Rails takes Ruby to the limit, extending it in novel ways that make our
programming lives easier. Using Rails makes our programs shorter and
more readable. It also allows us to perform tasks that would normally be
done in external configuration files inside the codebase instead. This makes
it far easier to see what’s happening. The following code defines the model
class for a project. Don’t worry about the details for now. Instead, think
about how much information is being expressed in a few lines of code:

 class Project < ApplicationRecord
 belongs_to :portfolio

 has_one :project_manager
 has_many :milestones
 has_many :deliverables , through: milestones

 validates :name , :description , presence: true
 validates :non_disclosure_agreement , acceptance: true
 validates :short_name , uniqueness: true
 end

A major philosophical underpinning of Rails that keeps code short and
readable is the DRY principle, which stands for Don’t Repeat Yourself (see
The Pragmatic Programmer, 20th Anniversary Edition [Hun19]). Every
piece of knowledge in a system should be expressed in one place. Rails uses
the power of Ruby to bring that to life. You’ll find little duplication in a
Rails application; you say what you need to say in one place—a place often
suggested by the conventions of the MVC architecture—and then move on.
For programmers used to other web frameworks, where a simple change to
the database schema could involve a dozen or more code changes, this was
a revelation—and it still is.

From that principle, Rails is founded on the Rails Doctrine,[1] which is a set
of nine pillars that explain why Rails works the way it does and how you
can be most successful in using it. Not every pillar is relevant when just
starting out with Rails, but one pillar in particular is most important:
convention over configuration.

Convention over configuration means that Rails has sensible defaults for
just about every aspect of knitting together your application. Follow the
conventions, and you can write a Rails application using less code than a
typical JavaScript application uses in JSON configuration. If you need to
override the conventions, Rails makes that easy, too.

Developers coming to Rails find something else too. Rails doesn’t merely
play catch-up with the de facto web standards: it helps define them. And
Rails makes it easy for developers to integrate features such as HotWired,
modern JavaScript frameworks, RESTful interfaces, and WebSockets into
their code because support is built in. (And if you’re not familiar with any
of these terms, never fear—you’ll learn what they mean as you proceed
through the book.)

Rails was extracted from a real-world, commercial application. It turns out
that the best way to create a framework is to find the central themes in a
specific application and then package them in a generic foundation of code.
When you’re developing your Rails application, you’re starting with half of
a really good application already in place.

But there’s something else to Rails—something that’s hard to describe.
Somehow, it feels right. Of course, you’ll have to take our word for that
until you write some Rails applications for yourself (which should be in the
next forty-five minutes or so…). That’s what this book is all about.

Rails Is Agile
The title of this book is Agile Web Development with Rails 7. You may be
surprised to discover that we don’t have explicit sections on applying agile
practices X, Y, and Z to Rails coding. In fact, you won’t find mention of
many agile practices, such as Scrum or Extreme Programming, at all.

Over the years since Rails was introduced, the term agile has gone from
being relatively unknown to being overhyped, to being treated as a formal
set of practices, to receiving a well-deserved amount of pushback against
formal practices that were never meant to be treated as gospel, to a return
back to the original principles.

But it’s more than that. The reason is both simple and subtle. Agility is part
of the fabric of Rails.

Let’s look at the values expressed in the Agile Manifesto (Dave Thomas
was one of the seventeen authors of this document) as a set of four
preferences:[2]

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

Rails is all about individuals and interactions. It involves no heavy toolsets,
no complex configurations, and no elaborate processes, just small groups of
developers, their favorite editors, and chunks of Ruby code. This leads to
transparency; what the developers do is reflected immediately in what the
customer sees. It’s an intrinsically interactive process.

The Rails development process isn’t driven by documents. You won’t find
500-page specifications at the heart of a Rails project. Instead, you’ll find a
group of users and developers jointly exploring their need and the possible

ways of answering that need. You’ll find solutions that change as both the
developers and the users become more experienced with the problems
they’re trying to solve. You’ll find a framework that delivers working
software early in the development cycle. This software might be rough
around the edges, but it lets the users start to get a glimpse of what you’ll be
delivering.

In this way, Rails encourages customer collaboration. When customers see
how quickly a Rails project can respond to change, they start to trust that
the team can deliver what’s required, not just what’s been requested.
Confrontations are replaced by “What if?” sessions.

The agile way of working that Rails encourages is tied to the idea of being
able to respond to change. The strong, almost obsessive, way that Rails
honors the DRY principle means that changes to Rails applications impact a
lot less code than the same changes would in other frameworks. And since
Rails applications are written in Ruby, where concepts can be expressed
accurately and concisely, changes tend to be localized and easy to write.
The deep emphasis on both unit and system testing, along with support for
test fixtures and stubs during testing, gives developers the safety net they
need when making those changes. With a good set of tests in place, changes
are less nerve-racking.

Rather than constantly trying to link Rails processes to agile principles,
we’ve decided to let the framework speak for itself. As you read through
the tutorial chapters, try to imagine yourself developing web applications
this way, working alongside your customers and jointly determining
priorities and solutions to problems. Then, as you read the more advanced
concepts that follow in Part III, see how the underlying structure of Rails
can enable you to meet your customers’ needs faster and with less
ceremony.

One last point about agility and Rails—although it’s probably
unprofessional to mention this—think how much fun the coding will be!

Who This Book Is For
This book is for programmers looking to build and deploy web-based
applications. This includes application programmers who are new to Rails
(and perhaps even new to Ruby) as well as those who are familiar with the
basics but want a more in-depth understanding of Rails.

We presume some familiarity with HTML, Cascading Style Sheets (CSS),
and JavaScript—in other words, the ability to view source on web pages.
You needn’t be an expert on these subjects; the most you’ll be expected to
do is copy and paste material from the book, all of which can be
downloaded.

The focus of this book is on the features and choices made by the Rails core
team. More specifically, this book is for users of the Rails framework—
people who tend to be more concerned about what Rails does, as opposed to
how it does it or how to change Rails to suit their needs. Examples of topics
not covered in this book include the following:

Introduced in Rails 4, Turbolinks is a way to load pages more quickly
by just loading markup.[3] If you want to know more about how Rails
makes your pages load faster, follow that link. But should you instead
be content with the knowledge that Rails makes pages load fast and
not need to know more, that’s OK too.

Rails itself is highly hackable and extensible, but this book doesn’t
cover the concept of how to create your own Rails engine.[4] If that
topic is of interest to you, we highly recommend Crafting Rails 4
Applications [Val13] as a follow-on to this book.

The Rails team has chosen not to include plenty of features—such as
user authentication—in the Rails framework itself. That doesn’t mean

that these features aren’t important, but it generally does mean that no
single solution is the obvious default for Rails users.

How to Read This Book
The first part of this book makes sure you’re ready. By the time you’re done
with it, you’ll have been introduced to Ruby (the language), you’ll have
been exposed to an overview of Rails, you’ll have Ruby and Rails installed,
and you’ll have verified the installation with a simple example.

The next part takes you through the concepts behind Rails via an extended
example: we build a simple online store. It doesn’t take you one by one
through each component of Rails (such as “here’s a chapter on models,
here’s a chapter on views,” and so forth). These components are designed to
work together, and each chapter in this section tackles a specific set of
related tasks that involve a number of these components working together.

Most folks seem to enjoy building the application along with the book. If
you don’t want to do all that typing, you can cheat and download the source
code (a compressed tar archive[5] or a zip file[6]).

Be careful if you ever choose to copy files directly from the download into
your application: if the timestamps on the files are old, the server won’t
know that it needs to pick up these changes. You can update the timestamps
using the touch command on either MacOS or Linux, or you can edit the file
and save it. Alternatively, you can restart your Rails server.

Part 3, Rails in Depth, surveys the entire Rails ecosystem. This starts with
the functions and facilities of Rails that you’ll now be familiar with. It then
covers a number of key dependencies that the Rails framework makes use of
that contribute directly to the overall functionality that the Rails framework
delivers. Finally, we survey a number of popular plugins that augment the
Rails framework and make Rails an open ecosystem rather than merely a
framework.

Along the way, you’ll see various conventions we’ve adopted:

Live code
Most of the code snippets we show come from full-length, running
examples that you can download.

To help you find your way, if a code listing can be found in the
download, you’ll see a bar before the snippet (like the one here):

rails7/demo1/app/controllers/say_controller.rb

 class SayController < ApplicationController
» def hello
» end

 def goodbye
 end
 end

The bar contains the path to the code within the download. If you’re
reading the ebook version of this book and your ebook viewer supports
hyperlinks, you can click the bar and the code should appear in a
browser window. Some browsers may mistakenly try to interpret some
of the HTML templates as HTML. If this happens, view the source of
the page to see the real source code.

And in some cases involving the modification of an existing file where
the lines to be changed may not be immediately obvious, you’ll also
see some helpful little triangles to the left of the lines that you’ll need
to change. Two such lines are indicated in the previous code.

David says
Every now and then you’ll come across a “David says” sidebar. Here’s
where David Heinemeier Hansson gives you the real scoop on some
particular aspect of Rails—rationales, tricks, recommendations, and
more. Because he’s the fellow who invented Rails, these are the
sections to read if you want to become a Rails pro.

Joe asks

http://media.pragprog.com/titles/rails7/code/rails7/demo1/app/controllers/say_controller.rb

Joe, the mythical developer, sometimes pops up to ask questions about
stuff we talk about in the text. We answer these questions as we go
along.

This book isn’t meant to be a reference manual for Rails. Our experience is
that reference manuals aren’t the way most people learn. Instead, we show
most of the modules and many of their methods, either by example or
narratively in the text, in the context of how these components are used and
how they fit together.

Nor do we have hundreds of pages of API listings. There’s a good reason for
this: you get that documentation whenever you install Rails, and it’s
guaranteed to be more up-to-date than the material in this book. If you
install Rails using RubyGems (which we recommend), start the gem
documentation server (using the gem server command), and you can access all
the Rails APIs by pointing your browser at http://localhost:8808.

In addition, you’ll see that Rails helps you by producing responses that
clearly identify any error found as well as traces that tell you not only the
point at which the error was found but also how you got there. You’ll see an
example here . If you need additional information, peek ahead to Iteration
E2: Handling Errors, to see how to insert logging statements.

If you get really stuck, plenty of online resources can help. In addition to the
code listings mentioned, you can find more resources on the Pragmatic
Bookshelf site page for this book, including links to the book forum and
errata.[7] The resources listed on these pages are shared resources. Feel free
to post not only questions and problems to the forum but also any
suggestions and answers you may have to questions that others have posted.

Let’s get started! The first steps are to install Ruby and Rails and to verify
the installation with a simple demonstration.

Footnotes

http://localhost:8808/

[1]

[2]

[3]

[4]

[5]

[6]

[7]

http://rubyonrails.org/doctrine/

http://agilemanifesto.org/

https://github.com/turbolinks/turbolinks/blob/master/README.md

http://guides.rubyonrails.org/engines.html

https://media.pragprog.com/titles/rails7/code/rails7-code.tgz

https://media.pragprog.com/titles/rails7/code/rails7-code.zip

https://pragprog.com/titles/rails7/agile-web-development-with-rails-7/

Copyright © 2023, The Pragmatic Bookshelf.

http://rubyonrails.org/doctrine/
http://agilemanifesto.org/
https://github.com/turbolinks/turbolinks/blob/master/README.md
http://guides.rubyonrails.org/engines.html
https://media.pragprog.com/titles/rails7/code/rails7-code.tgz
https://media.pragprog.com/titles/rails7/code/rails7-code.zip
https://pragprog.com/titles/rails7/agile-web-development-with-rails-7/

Part 1
Getting Started

We cover:
Installing Ruby, RubyGems,
SQLite 3, and Rails
Development environments and
tools

Chapter 1

Installing Rails

In Part I of this book, we’ll introduce you to both the Ruby language and
the Rails framework. But we can’t get anywhere until you’ve installed both
and verified that they’re operating correctly.

To get Rails running on your system, you need the following:

A Ruby interpreter. Rails is written in Ruby, and you’ll be writing your
applications in Ruby too. Rails 7 will run on Ruby version 2.7, 3.0,
and 3.1. It won’t work on prior versions of Ruby.

Ruby on Rails. This book was written using Rails version 7
(specifically, Rails 7.0.4).

Some libraries, depending on the operating system.

A database. We’re using SQLite 3 in this book.

For a development machine, that’s about all you’ll need (apart from an
editor, and we’ll talk about editors separately). However, if you’re going to
deploy your application, you’ll also need to install a production web server
(as a minimum) along with some support code to let Rails run efficiently.

You can also install everything in a virtual machine. This can be good to
isolate your Rails environment from your actual computer, though it will
require a fair amount of disk space.

So how do you get all this installed? It depends on your choice of
development environment. We’ll go over three common choices: Windows,

macOS, and Ubuntu Linux. For the Linux option, we’ll show setup for
using a virtual machine running Linux, so this is the version you want if
you want complete isolation of your Rails development environment.

But before you dive in, recognize that for best results these instructions are
meant for a fairly fresh, up-to-date, and clean machine. If this doesn’t match
you, consider doing your development in a Docker container[8] or with
Vagrant.[9] If either of these options appeals to you, proceed with the Linux
instructions that will follow.

A special note for Windows users: most Rails applications are developed on
MacOS machines and deployed to Linux machines. Some tools you may
want to use, like passenger and redis, don’t work natively on Windows.

This puts Windows developers at a disadvantage, as much of the helpful
advice you can find online won’t be geared toward you. Fortunately
Microsoft provides three tools that will provide you with an absolutely first-
class developer environment:

Windows Subsystem for Linux (WSL)[10]

Windows Terminal[11]

Visual Studio Code[12]

With WSL2, select the latest Ubuntu version and proceed with the Linux
instructions that follow.

Installing on Windows

First, you need to install Ruby. We recommend using the RubyInstaller for
Windows package.[13] At the time of this writing, the latest version of Ruby
available via RubyInstaller is Ruby 3.1.3. If you use RubyInstaller, be sure
to pick a version that includes Devkit. If you use a different installer, make
sure you install MSYS2 along with Ruby.

Installation is a snap. After you click Save/Download, click Run and then
click OK. Select “I accept the License” (after reading it carefully, of course)
and then click Next. Ensure “Add Ruby executables to your PATH” is
selected, and click Install. See the screenshot.

Next you’ll need to select the components to be installed. Ensure that the
MSYS2 development toolchain is selected. Click Next. See the following

screenshot:

When you see the following screen, you’ll be done with the first part of the
installation. Click Finish to proceed to the next and final part.

The next screen installs the development toolchains. Select option 3 and
press Enter . This will take a while and ultimately prompt you again for
which tools to install. The second time you’re prompted, press Enter and
the window will be dismissed.

From the Windows start screen you’ll be able to find an app named Start
Command Prompt with Ruby. Following is how this will look with
Windows 11:

From this window you can verify that Ruby was installed correctly by
entering the command ruby -v as follows:

Next, configure Git, adjusting the user.name and user.email as appropriate:

 > git config --global user.name "John Doe"
 > git config --global user.email johndoe@example.com

Before you proceed to install Rails itself, you’ll need to upgrade the version
of RubyGems that’s provided by RubyInstaller to avoid a problem with
missing tzinfo data.

 > gem update --system

With this in place, proceed to installing Rails itself with the following
command:

 > gem install rails -v 7.0.4 --no-document

This will take a while. Once it completes, skip to Choosing a Rails Version,
to ensure that the version of Rails you’ve installed matches the version
described in this edition. See you there.

Installing on macOS
Since macOS Monterey ships with Ruby 2.6.8, you’ll need to download a
newer version of Ruby that works with Rails 7. The easiest way to do this is
to use Homebrew.[14]

Before you start, go to your Utilities folder and drag the Terminal application
onto your dock. You’ll be using this during the installation and then
frequently as a Rails developer. Open the terminal and run the following
command:

 $ /bin/bash -c "$(curl -fsSL \
 https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

You’ll be asked you for your password and then to press Enter . Once the
installation completes, it will output some next steps for you to take. At the
present time, those steps are as follows:

 $ echo 'eval "$(/opt/homebrew/bin/brew shellenv)"' >> ~/.zprofile
 $ eval "$(/opt/homebrew/bin/brew shellenv)"

Next, you have a choice. You can let Homebrew install the latest version of
Ruby (currently Ruby 3.0.3p157). Or you can install rbenv[15] and install the
version of Ruby of your choice.

Installing Ruby with Homebrew starts with a single command:

 $ brew install ruby

Next you’ll need to follow the post-installation instructions provided, which
involve adding lines to your ~/.zshrc file:

 export PATH="/opt/homebrew/lib/ruby/gems/3.0.0/bin:$PATH"
 export PATH="/opt/homebrew/opt/ruby/bin:$PATH"
 export LDFLAGS="-L/opt/homebrew/opt/ruby/lib"
 export CPPFLAGS="-I/opt/homebrew/opt/ruby/include"

Alternatively, you can install rbenv and use it to install Ruby 3.1.3. Just be
sure that you do not have RVM installed, as those two applications don’t
work well together.

Note that starting with macOS Catalina, the default shell is zsh, not bash as
it had been historically. Assuming you’re using either Catalina or Monterey
and zsh, the Homebrew setup is as follows:

 $ brew install rbenv ruby-build
 $ rbenv init
 $ echo 'eval "$(rbenv init -)"' >> ~/.zshrc
 $ rehash

On older versions of macOS (or if you are using bash on Catalina or
Monterey), the instructions are similar:

 $ brew install rbenv ruby-build
 $ echo 'export PATH="$HOME/.rbenv/bin:$PATH"' >> ~/.bash_profile
 $ ~/.rbenv/bin/rbenv init
 $ hash -r

Once you’ve done that, restart your terminal by typing exit and hitting
Return and then opening a new terminal window. After that, you can install
Ruby like so:

 $ rbenv install 3.1.3
 $ rbenv global 3.1.3

If you had previously installed ruby-build and it can’t find the definition for
Ruby 3.1.3, you might need to reinstall ruby-build and try again:

 $ brew reinstall --HEAD ruby-build
 $ rbenv install 3.1.3
 $ rbenv global 3.1.3

These are the two most popular routes for Mac developers. RVM and
chruby are two other alternatives.[16][17]

Whichever path you take, run the following command to see which version
of Ruby you’re working with:

 $ ruby -v

You should see the following type of result:

 ruby 3.1.3p185 (2022-11-24 revision 1a6b16756e) [arm64-darwin22]

Next, run this command to update Rails to the version used by this book:

 $ gem install rails -v 7.0.4 --no-document

While technically not required for development, installing redis now will
prepare you for production later:

 $ brew install redis
 $ brew services start redis

OK, you OS X users are done. You can skip forward to join the Windows
users in Choosing a Rails Version. See you there.

Installing on Linux
Linux has many different distributions, each having its own method of
installing software, along with various idiosyncracies around how it
behaves. It would be too difficult to cover them all, so in this section, we’ll
outline how to get a Rails environment running in a virtual machine running
Ubuntu Linux. Most of the software we’ll install would be needed on any
Linux distribution, so if you aren’t using Ubuntu, hopefully this will help
you know what you need to set up.

Also note that if you’re using Ubuntu but not a virtual machine, some of the
behavior might be different, especially if your machine already has some
packages installed on it.

With that disclaimer out of the way, our setup will require a few different
steps. First, we’ll set up a virtual machine using Vagrant (which you can
skip if you already have Linux running on your computer). Then we’ll
install some system software that the Ruby and Rails development tools
require, before finally installing Ruby and Rails.

Setting Up a Virtual Machine
Vagrant[18] is a system that can manage a virtual computer. Virtual Box[19]

provides that virtual computer, and together they can mimic a real computer
but do so to provide a totally clean, predictable, and isolated environment
from your actual computer. We’ll set up the virtual machine with Ubuntu
Linux.

Of course, that means you need to install both Vagrant and Virtual Box on
your computer, and how you do that depends on your operating system!
Vagrant provides installation instructions,[20] and the best thing to do is to
follow the instructions there. Once you’ve done this, head over to Virtual
Box’s installation page[21] and install that on your computer.

With those installed, we’ll create a file to describe how Vagrant should set
up your virtual machine. This file is called Vagrantfile. You’ll need to create it
somewhere on your computer where you prefer to work, such as your home
directory or a subdirectory of it. Locate wherever that is and create Vagrantfile

to have the following contents (comments in the code explain what each bit
does, if you’re curious):

 # We want to use version '2' of Vagrant's configuration language
 Vagrant. configure ("2") do |config|

 # This is the operating system to use, in this case
 # Ubuntu Linux
 config. vm . box = "ubuntu/jammy64"

 # This is configuration specifically for the virtual
 # machine, and this gives it 4G of memory
 config. vm . provider "virtualbox" do |vb|
 vb. memory = "4096"
 end

 # When Rails runs on port 3000 inside your virtual machine, this
 # allows you to access it from a browser on your machine by
 # going to port 3000 on your machine.
 config. vm . network "forwarded_port" , guest: 3000, host: 3000

 # This will mount your current directory on your computer
 # to the directory /files_on_your_computer inside the virtual machine
 config. vm . synced_folder "." , "/files_on_your_computer"
 end

If you aren’t in a command-line window at this point, open one up and
change to the directory where you created this file. Then bring up the
machine with the following command:

 $ vagrant up

The very first time, it’ll take a while for this command to complete. It has to
download and install an entire operating system, so be patient. When it’s
done, you can log in to the virtual machine, like so:

 $ vagrant ssh

You’re now logged in to your virtual machine, so we can now start
installing the software you’ll need to learn Rails.

Installing System Software
If you’re using a virtual machine, the commands that follow assume you’ve
logged in to it with vagrant ssh. Otherwise, we’ll assume you’re logged in as a
user who can execute sudo. Also note that in this case, you may have some
software installed already. If you experience problems, you might want to
update that software to the latest versions.

Many Ruby libraries are actually wrappers for C libraries, and when you
install them, your system will try to build those libraries or build native
connectors. This is the main reason we need certain software installed
before we get to Ruby. First, refresh the list of packages available for your
operating system:

 $ sudo apt-get update

That will produce a large amount of output. Once that’s done, we’ll install
several different libraries and tools. What this will look like on Ubuntu and
most Debian-based Linuxes is as follows:

 $ sudo apt-get install -y \
 build-essential \
 git \
 libsqlite3-dev \
 redis \
 ruby-dev \
 tzdata

For Centos Stream and most RedHat-based Linuxes, the following will get
you started:

 $ sudo yum install -y \
 gcc \

 git \
 redis \
 ruby-devel \
 sqlite-devel \
 which
 $ sudo yum reinstall -y tzdata

Now we can install Ruby and Rails!

Installing Ruby and Rails
At this point, your system will have Ruby installed, though it may not be
the version you need to run Rails. You need Ruby 2.7.3 or higher. The
2.7.0p0 version that comes with Ubuntu 20.04 is not sufficient; it will
produce segfaults when you attempt to run tests.

If you’re comfortable upgrading your system’s Ruby from a third-party
respository, you can add the BrightBox repository:[22]

 $ sudo apt-get install software-properties-common
 $ sudo apt-add-repository ppa:brightbox/ruby-ng
 $ sudo apt-get update
 $ sudo apt-get upgrade

Note that BrightBox only contains up to to Ruby 2.7. If you want a later
version of Ruby, or are concerned about there being unintended
consequences to upgrading your system’s Ruby, you can use rbenv[23] to
install Ruby in parallel to your system Ruby. This also allows you to use
many different versions of Ruby on the same computer but without
disrupting the version of Ruby your system may depend on. rbenv is widely
used for exactly this purpose. First, install it like so:

 $ sudo apt install rbenv
 $ rbenv init

Close your Terminal window and open a new one so your changes take
effect. Verify that rbenv is properly set up using this rbenv-doctor script:

 $ curl -fsSL \

 https://github.com/rbenv/rbenv-installer/raw/main/bin/rbenv-doctor \
 | bash -

If you’re using another shell, consult the rbenv website for instructions if
you aren’t sure. Next, we’ll install Ruby 3.1.3, the lastest version of Ruby
3.1 at the time of this writing:

 $ rbenv install 3.1.3

This will take a long time, as it’s downloading and compiling Ruby locally.
Once that’s done, you won’t yet be using Ruby 3.1.3. To do that, you either
need to tell rbenv to use Ruby 3.1.3 in the current directory or globally. To
avoid confusion, we’ll do it globally, meaning that rbenv should use Ruby
3.1.3 if it doesn’t know what other version to use. We do that like so:

 $ rbenv global 3.1.3

With this done, you can try running ruby -v on the command line. You should
see 3.1.3 in the output.

Next, we’ll install Rails itself. Rails is a RubyGem, and Ruby comes with
the command gem which installs RubyGems. We’ll use that to install Rails,
like so:

 $ gem install rails -v 7.0.4 --no-document

When that completes, you can verify it worked by running rails --version. You
should see 7.0.4 in the output.

This completes the setup of Ruby and Rails. The rest of this chapter will
outline other software you might need to do development.

Choosing a Rails Version
The previous instructions helped you install the version of Rails used by the
examples in this book. But occasionally you might not want to run that
version. For example, a newer version with some fixes or new features
might become available. Or perhaps you’re developing on one machine but
intending to deploy on another machine that contains a version of Rails that
you don’t have any control over.

If either of these situations applies to you, you need to be aware of a few
things. For starters, you can use the gem command to find out all the
versions of Rails you have installed:

 $ gem list --local rails

You can also verify which version of Rails you’re running as the default by
using the rails --version command. It should return 7.0.4.

If it doesn’t, insert the version of Rails surrounded by underscores before
the first parameter of any rails command. Here’s an example:

 $ rails _7.0.4_ --version

This is particularly handy when you create a new application, because once
you create an application with a specific version of Rails, it’ll continue to
use that version of Rails—even if newer versions are installed on the
system—until you decide it’s time to upgrade. To upgrade, simply update
the version number in the Gemfile that’s in the root directory of your
application and run bundle install.

Setting Up Your Development Environment
The day-to-day business of writing Rails programs is pretty straightforward.
Everyone works differently; here’s how we work.

The Command Line
We do a lot of work at the command line. Although an increasing number
of GUI tools help generate and manage a Rails application, we find the
command line is still the most powerful place to be. It’s worth spending a
little while getting familiar with the command line on your operating
system. Find out how to use it to edit commands that you’re typing, how to
search for and edit previous commands, and how to complete the names of
files and commands as you type.

So-called tab completion is standard on Unix shells such as bash and zsh. It
allows you to type the first few characters of a filename, hit Tab , and have
the shell look for and complete the name based on matching files.

Version Control
We keep all our work in a version control system (currently Git). We make
a point of checking a new Rails project into Git when we create it and
committing changes once we’ve passed the tests. We normally commit to
the repository many times an hour.

If you’re not familiar with Git, don’t worry, because this book will
introduce you to the few commands that you’ll need to follow along with
the application being developed. If you ever need it, extensive
documentation is available online.[24]

If you’re working on a Rails project with other people, consider setting up a
continuous integration (CI) system. When anyone checks in changes, the CI
system will check out a fresh copy of the application and run all the tests.

It’s a common way to ensure that accidental breakages get immediate
attention. You can also set up your CI system so that your customers can
use it to play with the bleeding-edge version of your application. This kind
of transparency is a great way to ensure that your project isn’t going off the
tracks.

Editors
We write our Rails programs using a programmer’s editor. We’ve found
over the years that different editors work best with different languages and
environments. For example, Dave originally wrote this chapter using Emacs
because he thinks that its Filladapt mode is unsurpassed when it comes to
neatly formatting XML as he types. Sam updated the chapter using Vim.
But many think that neither Emacs nor Vim is ideal for Rails development.
Although the choice of editor is a personal one, here are some suggestions
for features to look for in a Rails editor:

Support for syntax highlighting of Ruby and HTML—ideally, support
for erb files (a Rails file format that embeds Ruby snippets within
HTML).

Support for automatic indentation and reindentation of Ruby source.
This is more than an aesthetic feature: having an editor indent your
program as you type is the best way to spot bad nesting in your code.
Being able to reindent is important when you refactor your code and
move stuff. (TextMate’s ability to reindent when it pastes code from
the clipboard is convenient.)

Support for insertion of common Ruby and Rails constructs. You’ll be
writing lots of short methods, and if the IDE creates method skeletons
with a keystroke or two, you can concentrate on the interesting stuff
inside.

Good file navigation. As you’ll see, Rails applications are spread
across many files; for example, a newly created Rails application
enters the world containing seventy-seven files spread across forty-five
directories. That’s before you’ve written a thing.

You need an environment that helps you navigate quickly among these.
You’ll add a line to a controller to load a value, switch to the view to
add a line to display it, and then switch to the test to verify you did it
all right. Something like Notepad, where you traverse a File Open
dialog box to select each file to edit, won’t cut it. We prefer a
combination of a tree view of files in a sidebar, a small set of
keystrokes that help us find a file (or files) in a directory tree by name,
and some built-in smarts that know how to navigate (say) between a
controller action and the corresponding view.

Name completion. Names in Rails tend to be long. A nice editor will
let you type the first few characters and then suggest possible
completions to you at the touch of a key.

Where's My IDE?
If you’re coming to Ruby and Rails from languages such as C# and Java, you may be
wondering about IDEs. After all, we all know that it’s impossible to code modern
applications without at least 100 MB of IDE supporting our every keystroke. For you
enlightened ones, here’s the point in the book where we recommend you sit down—
ideally propped up on each side by a pile of framework references and 1,000-page Made
Easy books.

It may surprise you to know that most Rails developers don’t use fully fledged IDEs for
Ruby or Rails (although some of the environments come close). Indeed, many Rails
developers use plain old editors. And it turns out that this isn’t as much of a problem as
you might think. With other less expressive languages, programmers rely on IDEs to do
much of the grunt work for them because IDEs do code generation, assist with navigation,
and compile incrementally to give early warning of errors.

With Ruby, however, much of this support isn’t necessary. Editors such as TextMate and
BBEdit give you 90 percent of what you’d get from an IDE but are far lighter weight.
About the only useful IDE facility that’s missing is refactoring support.

We hesitate to recommend specific editors because we’ve used only a few
in earnest and we’ll undoubtedly leave someone’s favorite editor off the list.
Nevertheless, to help you get started with something other than Notepad,
here are some suggestions:

Visual Studio Code is a free editor built on open source that runs
everywhere.[25]

TextMate is the favorite of many programmers who prefer to do their
development on macOS, including David Heinemeier Hansson.[26]

Sublime Text is a cross-platform alternative that some see as the de
facto successor to TextMate.[27]

rails.vim is a Vim/NeoVim plugin for editing Ruby on Rails
applications.[28]

RubyMine is a commercial IDE for Ruby and is available for free to
qualified educational and open source projects.[29] It runs on Windows,
macOS, and Linux.

Ask experienced developers who use your kind of operating system which
editor they use. Spend a week or so trying alternatives before settling in.

The Desktop
We’re not going to tell you how to organize your desktop while working
with Rails, but we’ll describe what we do.

Most of the time, we’re writing code, running tests, and poking at an
application in a browser. So, our main development desktop has an editor
window and a browser window permanently open. We also want to keep an
eye on the logging that’s generated by the application, so we keep a
terminal window open. In it, we use tail -f to scroll the contents of the log file

as it’s updated. We normally run this window with a small font so it takes
up less space. If we see something interesting flash by, we increase the font
size to investigate.

Alternately, you can use less +F to scroll through messages. This has the
advantage of being able to exit the follow mode by pressing Ctrl-C , at
which point you can do searches by typing / followed by the string you
want to search for.

Windows developers should take a look at Windows Terminal.[30]

We also need access to the Rails API documentation, which we view in a
browser. In the Introduction, we talked about using the gem server command
to run a local web server containing the Rails documentation. This is
convenient, but it unfortunately splits the Rails documentation across a
number of separate documentation trees. If you’re online, you can see a
consolidated view of all the Rails documentation in one place.[31]

Rails and Databases
The examples in this book were written using SQLite 3 (version 3.36.0 or
thereabouts). If you want to follow along with our code, it’s probably
simplest if you use SQLite 3 as well. If you decide to use something else, it
won’t be a major problem. You may have to make minor adjustments to any
explicit SQL in our code, but Rails pretty much eliminates database-specific
SQL from applications.

If you want to connect to a database other than SQLite 3, Rails also works
with DB2, MySQL, Oracle Database, Postgres, Firebird, and SQL Server.
For all but SQLite 3, you’ll need to install a database driver—a library that
Rails can use to connect to and use with your database engine. This section
contains links to instructions to get that done.

The database drivers are all written in C and are primarily distributed in
source form. If you don’t want to bother building a driver from source, take
a careful look at the driver’s website. Many times you’ll find that the author
also distributes binary versions.

If you can’t find a binary version or if you’d rather build from source
anyway, you need a development environment on your machine to build the
library. For Windows, you need a copy of Visual C++. For Linux, you need
gcc and friends (but these will likely already be installed).

On OS X, you need to install the developer tools (they come with the
operating system but aren’t installed by default). You also need to install
your database driver into the correct version of Ruby. If you installed your
own copy of Ruby, bypassing the built-in one, it’s important to have this
version of Ruby first in your path when building and installing the database
driver. You can use the which ruby command to make sure you’re not running
Ruby from /usr/bin.

[8]

[9]

The following are the available database adapters and the links to their
respective home pages:

DB2

https://rubygems.org/gems/ibm_db/

Firebird https://rubygems.org/gems/fireruby
MySQL https://rubygems.org/gems/mysql2
Oracle
Database

https://rubygems.org/gems/activerecord-
oracle_enhanced-adapter

Postgres https://rubygems.org/gems/pg
SQL Server https://github.com/rails-sqlserver
SQLite https://github.com/luislavena/sqlite3-ruby

MySQL and SQLite adapters are also available for download as RubyGems
(mysql2 and sqlite3, respectively).

What We Just Did

We installed (or upgraded) the Ruby language.
We installed (or upgraded) the Rails framework.
We selected an editor.
We installed (or upgraded) the SQLite 3 database.

Now that we have Rails installed, let’s use it. It’s time to move on to the
next chapter, where you’ll create your first application.

Footnotes

https://docs.docker.com/samples/rails/

https://www.vagrantup.com/

https://rubygems.org/gems/ibm_db/
https://rubygems.org/gems/fireruby
https://rubygems.org/gems/mysql2
https://rubygems.org/gems/activerecord-oracle_enhanced-adapter
https://rubygems.org/gems/pg
https://github.com/rails-sqlserver
https://github.com/luislavena/sqlite3-ruby
https://docs.docker.com/samples/rails/
https://www.vagrantup.com/

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

https://docs.microsoft.com/en-us/windows/wsl/install

https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701

https://code.visualstudio.com/

http://rubyinstaller.org/downloads

https://brew.sh/

https://github.com/rbenv/rbenv#readme

https://rvm.io/rvm/install

https://github.com/postmodern/chruby#readme

https://www.vagrantup.com

https://www.virtualbox.org

https://www.vagrantup.com/intro/getting-started/install.html

https://www.virtualbox.org/wiki/Downloads

https://www.brightbox.com/docs/ruby/ubuntu/#adding-the-repository

https://github.com/rbenv/rbenv

https://git-scm.com/book/en/v2

https://code.visualstudio.com/

http://macromates.com/

http://www.sublimetext.com/

https://github.com/tpope/vim-rails

http://www.jetbrains.com/ruby/features/index.html

https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701

http://api.rubyonrails.org/

Copyright © 2023, The Pragmatic Bookshelf.

https://docs.microsoft.com/en-us/windows/wsl/install
https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701
https://code.visualstudio.com/
http://rubyinstaller.org/downloads
https://brew.sh/
https://github.com/rbenv/rbenv#readme
https://rvm.io/rvm/install
https://github.com/postmodern/chruby#readme
https://www.vagrantup.com/
https://www.virtualbox.org/
https://www.vagrantup.com/intro/getting-started/install.html
https://www.virtualbox.org/wiki/Downloads
https://www.brightbox.com/docs/ruby/ubuntu/#adding-the-repository
https://github.com/rbenv/rbenv
https://git-scm.com/book/en/v2
https://code.visualstudio.com/
http://macromates.com/
http://www.sublimetext.com/
https://github.com/tpope/vim-rails
http://www.jetbrains.com/ruby/features/index.html
https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701
http://api.rubyonrails.org/

We cover:
Creating a new application
Starting the server
Accessing the server from a
browser
Producing dynamic content
Adding hypertext links
Passing data from the controller
to the view
Basic error recovery and
debugging

Chapter 2

Instant Gratification

Let’s write a simple application to verify that we have Rails snugly installed
on our machines. Along the way, you’ll get a peek at the way Rails
applications work.

Creating a New Application
When you install the Rails framework, you also get a new command-line
tool, rails, that’s used to construct each new Rails application you write.

Why do we need a tool to do this? Why can’t we just hack away in our
favorite editor and create the source for our application from scratch? Well,
we could just hack. After all, a Rails application is just Ruby source code.
But Rails also does a lot of magic behind the curtain to get our applications
to work with a minimum of explicit configuration. To get this magic to
work, Rails needs to find all the various components of your application. As
you’ll see later (in Where Things Go), this means we need to create a
specific directory structure, slotting the code we write into the appropriate
places. The rails command creates this directory structure for us and
populates it with some standard Rails code.

To create your first Rails application, pop open a shell window and navigate
to a place in your filesystem where you want to create your application’s
directory structure. In our example, we’ll be creating our projects in a
directory called work. In that directory, use the rails command to create an
application called demo. Be slightly careful here—if you have an existing
directory called demo, you’ll be asked if you want to overwrite any existing
files. (Note: if you want to specify which Rails version to use, as described
in Choosing a Rails Version, now is the time to do so.)

 rubys> cd work
 work> rails new demo
 create
 create README.md
 create Rakefile
 create .ruby-version
 : : :
 remove config/initializers/cors.rb
 remove config/initializers/new_framework_defaults_7_0.rb

 run bundle install
 Fetching gem metadata from https://rubygems.org/...........
 : : :
 append config/importmap.rb
 work>

The command has created a directory named demo. Pop down into that
directory and list its contents (using ls on a Unix box or using dir on
Windows). You should see a bunch of files and subdirectories:

 work> cd demo
 demo> ls -p
 Gemfile app/ db/ storage/
 Gemfile.lock bin/ lib/ test/
 README.md config/ log/ tmp/
 Rakefile config.ru public/ vendor/

All these directories (and the files they contain) can be intimidating to start
with, but you can ignore most of them for now. In this chapter, we’ll only
use two of them directly: the bin directory, where we’ll find the Rails
executables, and the app directory, where we’ll write our application.

Examine your installation using the following command:

 demo> bin/rails about

Windows users need to prefix the command with ruby and use a backslash:

 demo> ruby bin\rails about

If you get a Rails version other than 7.0.4, reread Choosing a Rails Version.

This command also detects common installation errors. For example, if it
can’t find a JavaScript runtime, it provides you with a link to available
runtimes.

As you can see from the bin/ prefix, this is running the rails command from
the bin directory. This command is a wrapper, or binstub, for the Rails

executable. It serves two purposes: it ensures that you’re running with the
correct version of every dependency, and it speeds up the startup times of
Rails commands by preloading your application.

If you see a bunch of messages concerning already initialized constants or a
possible conflict with an extension, consider deleting the demo directory,
creating a separate RVM gemset,[32] and starting over. If that doesn’t work,
use bundle exec[33] to run rails commands:

 demo> bundle exec rails about

Once you get bin/rails about working, you have everything you need to start a
stand-alone web server that can run our newly created Rails application. So
without further ado, let’s start our demo application:

 demo> bin/rails server
 => Booting Puma
 => Rails 7.0.4 application starting in development
 => Run `bin/rails server --help` for more startup options
 Puma starting in single mode...
 * Puma version: 5.5.2 (ruby 3.1.9-p0) ("Zawgyi")
 * Min threads: 5
 * Max threads: 5
 * Environment: development
 * PID: 28763
 * Listening on http://127.0.0.1:3000
 * Listening on http://[::1]:3000
 Use Ctrl-C to stop

Note, if you’re using a virtual machine, you need to run Rails like so:

 demo> bin/rails server -b 0.0.0.0

As the second line of the startup tracing indicates, we started a web server
on port 3000. The localhost part of the address means that the Puma web
server will only accept requests that originate from your machine. We can
access the application by pointing a browser at the URL
http://localhost:3000. The result is shown in the following screenshot.

http://localhost:3000/

If you look at the window where you started the server, you can see tracing
showing that you started the application. We’re going to leave the server
running in this console window. Later, as we write application code and run
it via our browser, we’ll be able to use this console window to trace the
incoming requests. When the time comes to shut down your application,
you can press Ctrl-C in this window to stop the server. (Don’t do that yet—
we’ll be using this particular application in a minute.)

If you want to enable this server to be accessed by other machines on your
network, either you’ll need to list each server you want to have access
separately or you can enable everybody to access your development server
by adding the following to config/environments/development.rb:

 config.hosts.clear

You’ll also need to specify 0.0.0.0 as the host to bind to the following code:

 demo> bin/rails server -b 0.0.0.0

At this point, we have a new application running, but it has none of our
code in it. Let’s rectify this situation.

Hello, Rails!
We can’t help it—we just have to write a Hello, World! program to try a new
system. Let’s start by creating a simple application that sends our cheery
greeting to a browser. After we get that working, we’ll embellish it with the
current time and links.

As you’ll explore further in Chapter 3, The Architecture of Rails
Applications, Rails is a model-view-controller (MVC) framework. Rails
accepts incoming requests from a browser, decodes the request to find a
controller, and calls an action method in that controller. The controller then
invokes a particular view to display the results to the user. The good news is
that Rails takes care of most of the internal plumbing that links all these
actions. To write our Hello, World! application, we need code for a
controller and a view, and we need a route to connect the two. We don’t
need code for a model, because we’re not dealing with any data. Let’s start
with the controller.

In the same way that we used the rails command to create a new Rails
application, we can also use a generator script to create a new controller for
our project. This command is rails generate. So to create a controller called say,
we make sure we’re in the demo directory and run the command, passing in
the name of the controller we want to create and the names of the actions we
intend for this controller to support:

 demo> bin/rails generate controller Say hello goodbye
 create app/controllers/say_controller.rb
 route get 'say/hello'
 get 'say/goodbye'
 invoke erb
 create app/views/say
 create app/views/say/hello.html.erb
 create app/views/say/goodbye.html.erb
 invoke test_unit
 create test/controllers/say_controller_test.rb

 invoke helper
 create app/helpers/say_helper.rb
 invoke test_unit
 invoke assets
 invoke scss
 create app/assets/stylesheets/say.scss

The rails generate command logs the files and directories it examines, noting
when it adds new Ruby scripts or directories to our application. For now,
we’re interested in one of these scripts and (in a minute) the html.erb files.

The first source file we’ll be looking at is the controller. You can find it in
the app/controllers/say_controller.rb file.

Let’s take a look at it:

rails7/demo1/app/controllers/say_controller.rb

 class SayController < ApplicationController
» def hello
» end

 def goodbye
 end
 end

Pretty minimal, eh? SayController is a class that inherits from ApplicationController,
so it automatically gets all the default controller behavior. What does this
code have to do? For now, it does nothing—we simply have empty action
methods named hello and goodbye. To understand why these methods are
named this way, you need to look at the way Rails handles requests.

Rails and Request URLs
Like any other web application, a Rails application appears to its users to be
associated with a URL. When you point your browser at that URL, you’re
talking to the application code, which generates a response to you.

http://media.pragprog.com/titles/rails7/code/rails7/demo1/app/controllers/say_controller.rb

Let’s try it now. Navigate to the URL http://localhost:3000/say/hello in a
browser. You’ll see something that looks like the following screenshot.

Our First Action
At this point, we can see not only that we’ve connected the URL to our
controller but also that Rails is pointing the way to our next step—namely,
to tell Rails what to display. That’s where views come in. Remember when
we ran the script to create the new controller? That command added several
files and a new directory to our application. That directory contains the
template files for the controller’s views. In our case, we created a controller
named say, so the views will be in the app/views/say directory.

By default, Rails looks for templates in a file with the same name as the
action it’s handling. In our case, that means we need to edit a file called
hello.html.erb in the app/views/say directory. (Why html.erb? We’ll explain in a
minute.) For now, let’s put some basic HTML in there:

rails7/demo1/app/views/say/hello.html.erb

 <h1>Hello from Rails!</h1>

Save the hello.html.erb file, and refresh your browser window. You should see it
display our friendly greeting, as in the following screenshot.

In total, we’ve looked at two files in our Rails application tree. We looked at
the controller, and we modified a template to display a page in the browser.
These files live in standard locations in the Rails hierarchy: controllers go

http://localhost:3000/say/hello
http://media.pragprog.com/titles/rails7/code/rails7/demo1/app/views/say/hello.html.erb

into app/controllers, and views go into subdirectories of app/views. You can see
this structure in the diagram shown.

Making It Dynamic
So far, our Rails application is boring—it just displays a static page. To
make it more dynamic, let’s have it show the current time each time it
displays the page.

To do this, we need to change the template file in the view—it now needs to
include the time as a string. That raises two questions. First, how do we add
dynamic content to a template? Second, where do we get the time from?

Dynamic Content
You can create dynamic templates in Rails in many ways. The most
common way, which we’ll use here, is to embed Ruby code in the template.
That’s why the template file is named hello.html.erb; the html.erb suffix tells
Rails to expand the content in the file using a system called ERB.

ERB is a filter, installed as part of the Rails installation, that takes an erb file
and outputs a transformed version. The output file is often HTML in Rails,
but it can be anything. Normal content is passed through without being
changed. However, content between <%= and %> is interpreted as Ruby code
and executed. The result of that execution is converted into a string, and that
value is substituted in the file in place of the <%=…%> sequence. For
example, change hello.html.erb to display the current time:

rails7/demo2/app/views/say/hello.html.erb

 <h1>Hello from Rails!</h1>
» <p>
» It is now <%= Time. now %>
» </p>

When we refresh our browser window, we see the time displayed using
Ruby’s standard format, as shown in the following screenshot.

Notice that the time displayed updates each time the browser window is
refreshed. It looks as if we’re really generating dynamic content.

Making Development Easier
You might have noticed something about the development we’ve been doing so far. As
we’ve been adding code to our application, we haven’t had to restart the running
application. It’s been happily chugging away in the background. And yet each change we
make is available whenever we access the application through a browser. What gives?

It turns out that the Rails dispatcher is pretty clever. In development mode (as opposed to
testing or production), it automatically reloads application source files when a new request
comes along. That way, when we edit our application, the dispatcher makes sure it’s
running the most recent changes. This is great for development.

However, this flexibility comes at a cost: it causes a short pause after you enter a URL
before the application responds. That’s caused by the dispatcher reloading stuff. For

http://media.pragprog.com/titles/rails7/code/rails7/demo2/app/views/say/hello.html.erb

development it’s a price worth paying, but in production it would be unacceptable. For this
reason, this feature is disabled for production deployment.

Adding the Time
Our original problem was to display the time to users of our application. We
now know how to make our application display dynamic data. The second
issue we have to address is working out where to get the time from.

We’ve shown that the approach of embedding a call to Ruby’s Time.now

method in our hello.html.erb template works. Each time they access this page,
users will see the current time substituted into the body of the response. And
for our trivial application, that might be good enough. In general, though, we
probably want to do something slightly different. We’ll move the
determination of the time to be displayed into the controller and leave the
view with the job of displaying it. We’ll change our action method in the
controller to set the time value into an instance variable called @time:

rails7/demo3/app/controllers/say_controller.rb

 class SayController < ApplicationController
 def hello
» @time = Time. now
 end

 def goodbye
 end
 end

In the html.erb template, we’ll use this instance variable to substitute the time
into the output:

rails7/demo3/app/views/say/hello.html.erb

 <h1>Hello from Rails!</h1>
 <p>
» It is now <%= @time %>

http://media.pragprog.com/titles/rails7/code/rails7/demo3/app/controllers/say_controller.rb
http://media.pragprog.com/titles/rails7/code/rails7/demo3/app/views/say/hello.html.erb

 </p>

When we refresh our browser window, we again see the current time,
showing that the communication between the controller and the view was
successful.

Why did we go to the extra trouble of setting the time to be displayed in the
controller and then using it in the view? Good question. In this application,
it doesn’t make much difference, but by putting the logic in the controller
instead, we buy ourselves some benefits. For example, we may want to
extend our application in the future to support users in many countries. In
that case, we’d want to localize the display of the time, choosing a time
appropriate to the user’s time zone. That would require a fair amount of
application-level code, and it would probably not be appropriate to embed it
at the view level. By setting the time to display in the controller, we make
our application more flexible: we can change the time zone in the controller
without having to update any view that uses that time object. The time is
data, and it should be supplied to the view by the controller. We’ll see a lot
more of this when we introduce models into the equation.

The Story So Far
Let’s briefly review how our current application works.

1. The user navigates to our application. In our case, we do that using a
local URL such as http://localhost:3000/say/hello.

2. Rails then matches the route pattern, which it previously split into two
parts and analyzed. The say part is taken to be the name of a controller,
so Rails creates a new instance of the Ruby SayController class (which it
finds in app/controllers/say_controller.rb).

3. The next part of the pattern, hello, identifies an action. Rails invokes a
method of that name in the controller. This action method creates a new

http://localhost:3000/say/hello

Time object holding the current time and tucks it away in the @time

instance variable.

4. Rails looks for a template to display the result. It searches the app/views

directory for a subdirectory with the same name as the controller (say)
and in that subdirectory for a file named after the action (hello.html.erb).

5. Rails processes this file through the ERB templating system, executing
any embedded Ruby and substituting in values set up by the controller.

6. The result is returned to the browser, and Rails finishes processing this
request.

This isn’t the whole story. Rails gives you lots of opportunities to override
this basic workflow (and we’ll be taking advantage of them shortly). As it
stands, our story illustrates convention over configuration, one of the
fundamental parts of the philosophy of Rails. Rails applications are typically
written using little or no external configuration. That’s because Rails
provides convenient defaults, and because you apply certain conventions to
how a URL is constructed, which file a controller definition is placed in, or
which class name and method names are used. Things knit themselves
together in a natural way.

Linking Pages Together
It’s a rare web application that has just one page. Let’s see how we can add
another stunning example of web design to our Hello, World! application.

Normally, each page in our application will correspond to a separate view.
While we’ll also use a new action method to handle the new page, we’ll use
the same controller for both actions. This needn’t be the case, but we have
no compelling reason to use a new controller right now.

We already defined a goodbye action for this controller, so all that remains is
to update the scaffolding that was generated in the app/views/say directory. This
time the file we’ll be updating is called goodbye.html.erb because by default
templates are named after their associated actions:

rails7/demo4/app/views/say/goodbye.html.erb

 <h1>Goodbye!</h1>
 <p>
 It was nice having you here.
 </p>

Fire up your trusty browser again, but this time point to our new view using
the URL http://localhost:3000/say/goodbye. You should see something like
this screenshot.

Now we need to link the two screens. We’ll put a link on the hello screen
that takes us to the goodbye screen, and vice versa. In a real application, we
might want to make these proper buttons, but for now we’ll use hyperlinks.

http://media.pragprog.com/titles/rails7/code/rails7/demo4/app/views/say/goodbye.html.erb
http://localhost:3000/say/goodbye

We already know that Rails uses a convention to parse the URL into a target
controller and an action within that controller. So a simple approach would
be to adopt this URL convention for our links.

The hello.html.erb file would contain the following:

 ...
 <p>
 Say Goodbye!
 </p>
 ...

And the goodbye.html.erb file would point the other way:

 ...
 <p>
 Say Hello!
 </p>
 ...

This approach would certainly work, but it’s a bit fragile. If we were to
move our application to a different place on the web server, the URLs would
no longer be valid. It also encodes assumptions about the Rails URL format
into our code; it’s possible a future version of Rails could change that
format.

Fortunately, these aren’t risks we have to take. Rails comes with a bunch of
helper methods that can be used in view templates. Here, we’ll use the link_to

helper method, which creates a hyperlink to an action. (The link_to method
can do a lot more than this, but let’s take it gently for now.) Using link_to,
hello.html.erb becomes the following:

rails7/demo5/app/views/say/hello.html.erb

 <h1>Hello from Rails!</h1>
 <p>
 It is now <%= @time %>
 </p>

http://media.pragprog.com/titles/rails7/code/rails7/demo5/app/views/say/hello.html.erb

» <p>
» Time to say
» <%= link_to "Goodbye" , say_goodbye_path %> !
» </p>

A link_to call is within an ERB <%=…%> sequence. This creates a link to a
URL that will invoke the goodbye action. The first parameter in the call to
link_to is the text to be displayed in the hyperlink, and the next parameter tells
Rails to generate the link to the goodbye action.

Let’s stop for a minute to consider how we generated the link. We wrote
this:

 link_to "Goodbye" , say_goodbye_path

First, link_to is a method call. (In Rails, we call methods that make it easier to
write templates helpers.) If you come from a language such as Java, you
might be surprised that Ruby doesn’t insist on parentheses around method
parameters. You can always add them if you like.

say_goodbye_path is a precomputed value that Rails makes available to
application views. It evaluates to the /say/goodbye path. Over time, you’ll see
that Rails provides the ability to name all the routes that you use in your
application.

Let’s get back to the application. If we point our browser at our hello page, it
now contains the link to the goodbye page, as shown in the following
screenshot.

We can make the corresponding change in goodbye.html.erb, linking it back to
the initial hello page:

rails7/demo5/app/views/say/goodbye.html.erb

 <h1>Goodbye!</h1>
 <p>
 It was nice having you here.
 </p>
» <p>
» Say <%= link_to "Hello" , say_hello_path %> again.
» </p>

So far, we’ve just done things that should work, and—unsurprisingly—
they’ve worked. But the true test of the developer friendliness of a
framework is how it responds when things go wrong. As we’ve not invested
much time into this code yet, now is a perfect time to try to break things.

http://media.pragprog.com/titles/rails7/code/rails7/demo5/app/views/say/goodbye.html.erb

When Things Go Wrong
Let’s start by introducing a typo in the source code—one that perhaps is
introduced by a misfiring autocorrect function in your favorite editor:

rails7/demo5/app/controllers/say_controller.rb

 class SayController < ApplicationController
 def hello
» @time = Time. know
 end

 def goodbye
 end
 end

Refresh the following page in your browser: http://localhost:3000/say/hello.
You should see something like the following screenshot.

http://media.pragprog.com/titles/rails7/code/rails7/demo5/app/controllers/say_controller.rb
http://localhost:3000/say/hello

For security reasons, the web console is configured to only be shown when
accessed from the same machine that the web server is running on. If you’re
running on a different machine, you’ll need to adjust the configuration to see
this. For example, to enable the web console to be seen by all, add the
following to config/environments/development.rb and restart your server:

 config. web_console . whitelisted_ips = %w(0.0.0.0/0 ::/0)

What you see is that Ruby tells you about the error (“undefined method
‘know’”), and Rails shows you the extracted source where the code can be
found (Rails.root), the stack traceback, and request parameters (at the moment,
None). It also provides the ability to toggle the display of session and
environment dumps.

You’ll even see a suggestion: “Did you mean? now.” What a nice touch.

At the bottom of the window you see an area consisting of white text on a
black background, looking much like a command-line prompt. This is the
Rails web console. You can use it to try out suggestions and evaluate
expressions. Let’s try it out, as shown in the following screenshot.

All in all, helpful stuff.

We’ve broken the code. Now, let’s break the other thing we’ve used so far:
the URL. Visit the following page in your browser:
http://localhost:3000/say/hullo. You should see something like the
screenshot.

http://localhost:3000/say/hullo

This is similar to what we saw before, but in place of source code we see a
list of possible routes, how they can be accessed, and the controller action
they’re associated with. We’ll explain this later in detail, but for now look at
the Path Match input field. If you enter a partial URL in there, you can see a
list of routes that match. That’s not needed right now, as we have only two
routes, but can be helpful later when we have many.

At this point, we’ve completed our toy application and in the process
verified that our installation of Rails is functioning properly and provides
helpful information when things go wrong. After a brief recap, it’s now time
to move on to building a real application.

What We Just Did
We constructed a toy application that showed you the following:

How to create a new Rails application and how to create a new
controller in that application

How to create dynamic content in the controller and display it via the
view template

How to link pages together

How to debug problems in the code or the URL

This is a great foundation, and it didn’t take much time or effort. This
experience will continue as we move on to the next chapter and build a
much bigger application.

Playtime
Here’s some stuff to try on your own:

Experiment with the following expressions:
Addition: <%= 1+2 %>
Concatenation: <%= "cow" + "boy" %>
Time in one hour: <%= 1.hour.from_now.localtime %>

A call to the following Ruby method returns a list of all the files in the
current directory:

 @files = Dir. glob ('*')

Use it to set an instance variable in a controller action, and then write
the corresponding template that displays the filenames in a list on the
browser.

Hint—you can iterate over a collection using something like this:

 <% @files. each do |file| %>
 file name is: <%= file %>
 <% end %>

Note that the first and last lines of this loop use <% without an equal
sign. This causes the code embedded in these markers to be executed
without inserting the results returned into the output.

[32]

[33]

You might want to use a for the list.

Cleaning Up
Maybe you’ve been following along and writing the code in this chapter. If
so, chances are that the application is still running on your computer. When
we start coding our next application in Chapter 6, Task A: Creating the
Application, we’ll get a conflict the first time we run it because it’ll also try
to use the computer’s port 3000 to talk with the browser. Now is a good time
to stop the current application by pressing Ctrl-C in the window you used to
start it. Microsoft Windows users may need to press Ctrl-Pause/ Break instead.

Now let’s move on to an overview of Rails.

Footnotes

https://rvm.io/gemsets/basics/

http://gembundler.com/v1.3/bundle_exec.html

Copyright © 2023, The Pragmatic Bookshelf.

https://rvm.io/gemsets/basics/
http://gembundler.com/v1.3/bundle_exec.html

We cover:
Models
Views
Controllers

Chapter 3

The Architecture of Rails
Applications

One of the interesting features of Rails is that it imposes some fairly serious
constraints on how you structure your web applications. Surprisingly, these
constraints make it easier to create applications—a lot easier. Let’s see why.

Models, Views, and Controllers
Back in 1979, Trygve Reenskaug came up with a new architecture for
developing interactive applications. In his design, applications were broken
into three types of components: models, views, and controllers.

The model is responsible for maintaining the state of the application.
Sometimes this state is transient, lasting for just a couple of interactions with
the user. Sometimes the state is permanent and is stored outside the
application, often in a database.

A model is more than data; it enforces all the business rules that apply to that
data. For example, if a discount shouldn’t be applied to orders of less than
$20, the model enforces the constraint. This makes sense; by putting the
implementation of these business rules in the model, we make sure that
nothing else in the application can make our data invalid. The model acts as
both a gatekeeper and a data store.

The view is responsible for generating a user interface, normally based on
data in the model. For example, an online store has a list of products to be
displayed on a catalog screen. This list is accessible via the model, but it’s a
view that formats the list for the end user. Although the view might present
the user with various ways of inputting data, the view itself never handles
incoming data. The view’s work is done once the data is displayed. There
may well be many views that access the same model data, often for different
purposes. The online store has a view that displays product information on a
catalog page and another set of views used by administrators to add and edit
products.

Controllers orchestrate the application. Controllers receive events from the
outside world (normally, user input), interact with the model, and display an
appropriate view to the user.

This triumvirate—the model, view, and controller—together form an
architecture known as MVC. To learn how the three concepts fit together,
see the following figure.

The MVC architecture was originally intended for conventional GUI
applications, where developers found that the separation of concerns led to
far less coupling, which in turn made the code easier to write and maintain.
Each concept or action was expressed in a single, well-known place. Using
MVC was like constructing a skyscraper with the girders already in place—
it was a lot easier to hang the rest of the pieces with a structure already there.
During the development of our application, we’ll make heavy use of Rails’
ability to generate scaffolding for our application.

Ruby on Rails is an MVC framework too. Rails enforces a structure for your
application: you develop models, views, and controllers as separate chunks
of functionality, and it knits them together as your program executes. One of
the joys of Rails is that this knitting process is based on the use of intelligent
defaults so that you typically don’t need to write any external configuration
metadata to make it all work. This is an example of the Rails philosophy of
favoring convention over configuration.

In a Rails application, an incoming request is first sent to a router, which
works out where in the application the request should be sent and how the
request should be parsed. Ultimately, this phase identifies a particular
method (called an action in Rails parlance) somewhere in the controller
code. The action might look at data in the request, it might interact with the
model, and it might cause other actions to be invoked. Eventually the action
prepares information for the view, which renders something to the user.

Rails handles an incoming request as shown in the following figure. In this
example, the application has previously displayed a product catalog page,
and the user has just clicked the Add to Cart button next to one of the
products. This button posts to http://localhost:3000/line_items?
product_id=2, where line_items is a resource in the application and 2 is the
internal ID for the selected product.

The routing component receives the incoming request and immediately picks
it apart. The request contains a path (/line_items?product_id=2) and a method (this
button does a POST operation; other common methods are GET, PUT, PATCH,

http://localhost:3000/line_items?product_id=2

and DELETE). In this simple case, Rails takes the first part of the path,
line_items, as the name of the controller and the product_id as the ID of a
product. By convention, POST methods are associated with create actions. As a
result of all this analysis, the router knows it has to invoke the create method
in the LineItemsController controller class (we’ll talk about naming conventions
in Naming Conventions).

The create method handles user requests. In this case, it finds the current
user’s shopping cart (which is an object managed by the model). It also asks
the model to find the information for product 2. It then tells the shopping
cart to add that product to itself. (See how the model is being used to keep
track of all the business data? The controller tells it what to do, and the
model knows how to do it.)

Now that the cart includes the new product, we can show it to the user. The
controller invokes the view code, but before it does, it arranges things so that
the view has access to the cart object from the model. In Rails, this
invocation is often implicit; again, conventions help link a particular view
with a given action.

That’s all there is to an MVC web application. By following a set of
conventions and partitioning your functionality appropriately, you’ll
discover that your code becomes easier to work with and your application
becomes easier to extend and maintain. That seems like a good trade.

If MVC is simply a question of partitioning your code a particular way, you
might be wondering why you need a framework such as Ruby on Rails. The
answer is straightforward: Rails handles all of the low-level housekeeping
for you—all those messy details that take so long to handle by yourself—and
lets you concentrate on your application’s core functionality. Let’s see how.

Rails Model Support
In general, we want our web applications to keep their information in a
relational database. Order-entry systems will store orders, line items, and
customer details in database tables. Even applications that normally use
unstructured text, such as weblogs and news sites, often use databases as
their back-end data store.

Although it might not be immediately apparent from the database queries
you’ve seen so far, relational databases are designed around mathematical
set theory. This is good from a conceptual point of view, but it makes it
difficult to combine relational databases with object-oriented (OO)
programming languages. Objects are all about data and operations, and
databases are all about sets of values. Operations that are easy to express in
relational terms are sometimes difficult to code in an OO system. The
reverse is also true.

Over time, folks have worked out ways of reconciling the relational and OO
views of their corporate data. Let’s look at the way that Rails chooses to
map relational data onto objects.

Object-Relational Mapping
Object-relational mapping (ORM) libraries map database tables to classes.
If a database has a table called orders, our program will have a class named
Order. Rows in this table correspond to objects of the class—a particular
order is represented as an object of the Order class. Within that object,
attributes are used to get and set the individual columns. Our Order object
has methods to get and set the amount, the sales tax, and so on.

In addition, the Rails classes that wrap our database tables provide a set of
class-level methods that perform table-level operations. For example, we
might need to find the order with a particular ID. This is implemented as a

class method that returns the corresponding Order object. In Ruby code, that
might look like this:

 order = Order. find (1)
 puts "Customer #{ order. customer_id}, amount=$#{ order. amount}"

Sometimes these class-level methods return collections of objects:

 Order. where (name: 'dave'). each do |order|
 puts order. amount
 end

Finally, the objects corresponding to individual rows in a table have
methods that operate on that row. Probably the most widely used is save, the
operation that saves the row to the database:

 Order. where (name: 'dave'). each do |order|
 order. pay_type = "Purchase order"
 order. save
 end

So an ORM layer maps tables to classes, rows to objects, and columns to
attributes of those objects. Class methods are used to perform table-level
operations, and instance methods perform operations on the individual
rows.

In a typical ORM library, you supply configuration data to specify the
mappings between entities in the database and entities in the program.
Programmers using these ORM tools often find themselves creating and
maintaining a boatload of XML configuration files.

Active Record
Active Record is the ORM layer supplied with Rails. It closely follows the
standard ORM model: tables map to classes, rows to objects, and columns
to object attributes. It differs from most other ORM libraries in the way it’s
configured. By relying on convention and starting with sensible defaults,

Active Record minimizes the amount of configuration that developers
perform.

To show this, here’s a program that uses Active Record to wrap our orders

table:

 require 'active_record'

 class Order < ApplicationRecord
 end

 order = Order. find (1)
 order. pay_type = "Purchase order"
 order. save

This code uses the new Order class to fetch the order with an id of 1 and
modify the pay_type. (For now, we’ve omitted the code that creates a database
connection.) Active Record relieves us of the hassles of dealing with the
underlying database, leaving us free to work on business logic.

But Active Record does more than that. As you’ll see when we develop our
shopping cart application, starting in Chapter 5, The Depot Application,
Active Record integrates seamlessly with the rest of the Rails framework. If
a web form sends the application data related to a business object, Active
Record can extract it into our model. Active Record supports sophisticated
validation of model data, and if the form data fails validations, the Rails
views can extract and format errors.

Active Record is the solid model foundation of the Rails MVC architecture.

Action Pack: The View and Controller
When you think about it, the view and controller parts of MVC are pretty
intimate. The controller supplies data to the view, and the controller
receives events from the pages generated by the views. Because of these
interactions, support for views and controllers in Rails is bundled into a
single component, Action Pack.

Don’t be fooled into thinking that your application’s view code and
controller code will be jumbled up because Action Pack is a single
component. Quite the contrary—Rails gives you the separation you need to
write web applications with clearly demarcated code for control and
presentation logic.

View Support
In Rails, the view is responsible for creating all or part of a response to be
displayed in a browser, to be processed by an application, or to be sent as an
email. At its simplest, a view is a chunk of HTML code that displays some
fixed text. More typically, you’ll want to include dynamic content created
by the action method in the controller.

In Rails, dynamic content is generated by templates, which come in three
flavors. The most common templating scheme, called Embedded Ruby
(ERB), embeds snippets of Ruby code within a view document, in many
ways similar to the way it’s done in other web frameworks, such as PHP or
JavaServer Pages (JSP). Although this approach is flexible, some are
concerned that it violates the spirit of MVC. By embedding code in the
view, we risk adding logic that should be in the model or the controller. As
with everything, while judicious use in moderation is healthy, overuse can
become a problem. Maintaining a clean separation of concerns is part of the
developer’s job.

You can also use ERB to construct HTML fragments on the server that can
then be used by the browser to perform partial page updates. This is great
for creating dynamic Hotwired interfaces. We talk about these starting in
Iteration F2: Creating a Hotwired Cart.

Rails also provides libraries to construct XML or JSON documents using
Ruby code. The structure of the generated XML or JSON automatically
follows the structure of the code.

And the Controller!
The Rails controller is the logical center of your application. It coordinates
the interaction among the user, the views, and the model. However, Rails
handles most of this interaction behind the scenes; the code you write
concentrates on application-level functionality. This makes Rails controller
code remarkably easy to develop and maintain.

The controller is also home to a number of important ancillary services:

It’s responsible for routing external requests to internal actions. It
handles people-friendly URLs extremely well.

It manages caching, which can give applications orders-of-magnitude
performance boosts.

It manages helper modules, which extend the capabilities of the view
templates without bulking up their code.

It manages sessions, giving users the impression of ongoing interaction
with our applications.

We’ve already seen and modified a controller in Hello, Rails!, and we’ll be
seeing and modifying a number of controllers in the development of a
sample application, starting with the products controller in Iteration C1:
Creating the Catalog Listing.

There’s a lot to Rails. But before going any further, let’s have a brief
refresher —and for some of you, a brief introduction—to the Ruby
language.

Copyright © 2023, The Pragmatic Bookshelf.

We cover:
Objects: names and methods
Data: strings, arrays, hashes,
and regular expressions
Control: if, while, blocks,
iterators, and exceptions
Building blocks: classes and
modules
YAML and marshaling
Common idioms that you’ll see
used in this book

Chapter 4

Introduction to Ruby

Many people who are new to Rails are also new to Ruby. If you’re familiar
with a language such as Java, JavaScript, PHP, Perl, or Python, you’ll find
Ruby pretty easy to pick up.

This chapter isn’t a complete introduction to Ruby. It doesn’t cover topics
such as precedence rules (as in most other programming languages, 1+2*3==7

in Ruby). It’s only meant to explain enough Ruby that the examples in the
book make sense.

This chapter draws heavily from material in Programming Ruby [FH13]. If
you think you need more background on the Ruby language (and at the risk
of being grossly self-serving), we’d like to suggest that the best way to
learn Ruby and the best reference for Ruby’s classes, modules, and libraries
is Programming Ruby [FH13] (also known as the PickAxe book). Welcome
to the Ruby community!

Ruby Is an Object-Oriented Language
Everything you manipulate in Ruby is an object, and the results of those
manipulations are themselves objects.

When you write object-oriented code, you’re normally looking to model
concepts from the real world. Typically, during this modeling process you
discover categories of things that need to be represented. In an online store,
the concept of a line item could be such a category. In Ruby, you’d define a
class to represent each of these categories. You then use this class as a kind
of factory that generates objects—instances of that class. An object is a
combination of state (for example, the quantity and the product ID) and
methods that use that state (perhaps a method to calculate the line item’s
total cost). We’ll show how to create classes in Classes.

You create objects by calling a constructor, a special method associated
with a class. The standard constructor is called new. Given a class called
LineItem, you could create line item objects as follows:

 line_item_one = LineItem. new
 line_item_one. quantity = 1
 line_item_one. sku = "AUTO_B_00"

You invoke methods by sending a message to an object. The message
contains the method’s name along with any parameters the method may
need. When an object receives a message, it looks into its own class for a
corresponding method. Let’s look at some method calls:

 "dave" . length
 line_item_one. quantity ()
 cart. add_line_item (next_purchase)
 submit_tag "Add to Cart"

Parentheses are generally optional in method calls. In Rails applications,
you’ll find that most method calls involved in larger expressions have

parentheses, while those that look more like commands or declarations tend
not to have them.

Methods have names, as do many other constructs in Ruby. Names in Ruby
have special rules—rules that you may not have seen if you come to Ruby
from another language.

Ruby Names
Local variables, method parameters, and method names should all start with
a lowercase letter or with an underscore: order, line_item, and xr2000 are all
valid. Instance variables begin with an at (@) sign—for example, @quantity

and @product_id. The Ruby convention is to use underscores to separate
words in a multiword method or variable name (so line_item is preferable to
lineItem).

Class names, module names, and constants must start with an uppercase
letter. By convention they use capitalization, rather than underscores, to
distinguish the start of words within the name. Class names look like Object,
PurchaseOrder, and LineItem.

Rails uses symbols to identify things. In particular, it uses them as keys
when naming method parameters and looking things up in hashes. Here’s an
example:

 redirect_to :action => "edit" , :id => params[:id]

As you can see, a symbol looks like a variable name, but it’s prefixed with a
colon. Examples of symbols include :action, :line_items, and :id. You can think
of symbols as string literals magically made into constants. Alternatively,
you can consider the colon to mean thing named, so :id is the thing named id.

Now that we’ve used a few methods, let’s move on to how they’re defined.

Methods

Let’s write a method that returns a cheery, personalized greeting. We’ll
invoke that method a couple of times:

 def say_goodnight (name)
 result = 'Good night, ' + name
 return result
 end

 # Time for bed...
 puts say_goodnight('Mary-Ellen') # => 'Goodnight, Mary-Ellen'
 puts say_goodnight('John-Boy') # => 'Goodnight, John-Boy'

Having defined the method, we call it twice. In both cases, we pass the
result to the puts method, which outputs to the console its argument followed
by a newline (moving on to the next line of output).

You don’t need a semicolon at the end of a statement as long as you put
each statement on a separate line. Ruby comments start with a # character
and run to the end of the line. Indentation isn’t significant (but two-
character indentation is the de facto Ruby standard).

Ruby doesn’t use braces to delimit the bodies of compound statements and
definitions (such as methods and classes). Instead, you simply finish the
body with the end keyword. The return keyword is optional, and if it’s not
present, the results of the last expression evaluated are returned.

Data Types
While everything in Ruby is an object, some of the data types in Ruby have
special syntax support, in particular for defining literal values. In the
preceding examples, we used some simple strings and even string
concatenation.

Strings
The previous example also showed some Ruby string objects. One way to
create a string object is to use string literals, which are sequences of
characters between single or double quotation marks. The difference
between the two forms is the amount of processing Ruby does on the string
while constructing the literal. In the single-quoted case, Ruby does very
little. With only a few exceptions, what you type into the single-quoted
string literal becomes the string’s value.

With double-quotes, Ruby does more work. It looks for substitutions—
sequences that start with a backslash character—and replaces them with a
binary value. The most common of these is \n, which is replaced with a
newline character. When you write a string containing a newline to the
console, the \n forces a line break.

Then, Ruby performs expression interpolation in double-quoted strings. In
the string, the sequence #{expression} is replaced by the value of expression. We
could use this to rewrite our previous method:

 def say_goodnight (name)
 "Good night, #{ name. capitalize}"
 end
 puts say_goodnight('pa')

When Ruby constructs this string object, it looks at the current value of name

and substitutes it into the string. Arbitrarily complex expressions are

allowed in the #{…} construct. Here we invoked the capitalize method, defined
for all strings, to output our parameter with a leading uppercase letter.

Strings are a fairly primitive data type that contain an ordered collection of
bytes or characters. Ruby also provides means for defining collections of
arbitrary objects via arrays and hashes.

Arrays and Hashes
Ruby’s arrays and hashes are indexed collections. Both store collections of
objects, accessible using a key. With arrays, the key is an integer, whereas
hashes support any object as a key. Both arrays and hashes grow as needed
to hold new elements. It’s more efficient to access array elements, but
hashes provide more flexibility. Any particular array or hash can hold
objects of differing types; you can have an array containing an integer, a
string, and a floating-point number, for example.

You can create and initialize a new array object by using an array literal—a
set of elements between square brackets. Given an array object, you can
access individual elements by supplying an index between square brackets,
as the next example shows. Ruby array indices start at zero:

 a = [1, 'cat' , 3.14] # array with three elements
 a[0] # access the first element (1)
 a[2] = nil # set the third element
 # array now [1, 'cat', nil]

You may have noticed that we used the special value nil in this example. In
many languages, the concept of nil (or null) means no object. In Ruby,
that’s not the case; nil is an object, like any other, that happens to represent
nothing.

The << method is often used with arrays. It appends a single value to its
receiver:

 ages = []

 for person in @people
 ages << person. age
 end

Ruby has a shortcut for creating an array of words:

 a = ['ant' , 'bee' , 'cat' , 'dog' , 'elk']
 # this is the same:
 a = %w{ ant bee cat dog elk }

Ruby hashes are similar to arrays. A hash literal uses braces rather than
square brackets. The literal must supply two objects for every entry: one for
the key, the other for the value. For example, you may want to map musical
instruments to their orchestral sections:

 inst_section = {
 :cello => 'string' ,
 :clarinet => 'woodwind' ,
 :drum => 'percussion' ,
 :oboe => 'woodwind' ,
 :trumpet => 'brass' ,
 :violin => 'string'
 }

The thing to the left of the => is the key, and that on the right is the
corresponding value. Keys in a particular hash must be unique; if you have
two entries for :drum, the last one will win. The keys and values in a hash can
be arbitrary objects: you can have hashes in which the values are arrays,
other hashes, and so on. In Rails, hashes typically use symbols as keys.
Many Rails hashes have been subtly modified so that you can use either a
string or a symbol interchangeably as a key when inserting and looking up
values.

The use of symbols as hash keys is so commonplace that Ruby has a special
syntax for it, saving both keystrokes and eyestrain:

 inst_section = {
 cello: 'string' ,
 clarinet: 'woodwind' ,

 drum: 'percussion' ,
 oboe: 'woodwind' ,
 trumpet: 'brass' ,
 violin: 'string'
 }

Doesn’t that look much better?

Feel free to use whichever syntax you like. You can even intermix usages in
a single expression. Obviously, you’ll need to use the arrow syntax
whenever the key is not a symbol. One other thing to watch out for—if the
value is a symbol, you’ll need to have at least one space between the colons
or else you’ll get a syntax error:

 inst_section = {
 cello: :string ,
 clarinet: :woodwind ,
 drum: :percussion ,
 oboe: :woodwind ,
 trumpet: :brass ,
 violin: :string
 }

Hashes are indexed using the same square bracket notation as arrays:

 inst_section[:oboe] #=> :woodwind
 inst_section[:cello] #=> :string
 inst_section[:bassoon] #=> nil

As the preceding example shows, a hash returns nil when indexed by a key it
doesn’t contain. Normally this is convenient because nil means false when
used in conditional expressions.

You can pass hashes as parameters on method calls. Ruby allows you to
omit the braces but only if the hash is the last parameter of the call. Rails
makes extensive use of this feature. The following code fragment shows a
two-element hash being passed to the redirect_to method. Note that this is the
same syntax that Ruby uses for keyword arguments:

 redirect_to action: 'show' , id: product. id

One more data type is worth mentioning: the regular expression.

Regular Expressions
A regular expression lets you specify a pattern of characters to be matched
in a string. In Ruby, you typically create a regular expression by writing
/pattern/ or %r{pattern}.

For example, we can use the regular expression /Perl|Python/ to write a pattern
that matches a string containing the text Perl or the text Python.

The forward slashes delimit the pattern, which consists of the two things
that we’re matching, separated by a vertical bar (|). The bar character means
either the thing on the left or the thing on the right—in this case, either Perl
or Python. You can use parentheses within patterns, just as you can in
arithmetic expressions, so we could also write this pattern as /P(erl|ython)/.
Programs typically use the =~ match operator to test strings against regular
expressions:

 if line =~ /P(erl|ython)/
 puts "There seems to be another scripting language here"
 end

You can specify repetition within patterns. /ab+c/ matches a string containing
an a followed by one or more bs, followed by a c. Change the plus to an
asterisk, and /ab*c/ creates a regular expression that matches one a, zero or
more bs, and one c.

Backward slashes start special sequences; most notably, \d matches any
digit, \s matches any whitespace character, and \w matches any alphanumeric
(word) character, \A matches the start of the string and \z matches the end of
the string. A backslash before a wildcard character, for example \., causes
the character to be matched as is.

Ruby’s regular expressions are a deep and complex subject; this section
barely skims the surface. See the PickAxe book for a full discussion.

This book will make only light use of regular expressions.

With that brief introduction to data, let’s move on to logic.

Logic
Method calls are statements. Ruby also provides a number of ways to make
decisions that affect the repetition and order in which methods are invoked.

Control Structures
Ruby has all the usual control structures, such as if statements and while

loops. Java, C, and Perl programmers may well get caught by the lack of
braces around the bodies of these statements. Instead, Ruby uses the end

keyword to signify the end of a body:

 if count > 10
 puts "Try again"
 elsif tries == 3
 puts "You lose"
 else
 puts "Enter a number"
 end

Similarly, while statements are terminated with end:

 while weight < 100 and num_pallets <= 30
 pallet = next_pallet()
 weight += pallet. weight
 num_pallets += 1
 end

Ruby also contains variants of these statements. unless is like if, except that it
checks for the condition to not be true. Similarly, until is like while, except
that the loop continues until the condition evaluates to be true.

Ruby statement modifiers are a useful shortcut if the body of an if, unless,
while, or until statement is a single expression. Simply write the expression,
followed by the modifier keyword and the condition:

 puts "Danger, Will Robinson" if radiation > 3000

 distance = distance * 1.2 while distance < 100

Although if statements are fairly common in Ruby applications, newcomers
to the Ruby language are often surprised to find that looping constructs are
rarely used. Blocks and iterators often take their place.

Blocks and Iterators
Code blocks are chunks of code between braces or between do…end. A
common convention is that people use braces for single-line blocks and
do/end for multiline blocks:

 { puts "Hello" } # this is a block

 do ###
 club. enroll (person) # and so is this
 person. socialize #
 end ###

To pass a block to a method, place the block after the parameters (if any) to
the method. In other words, put the start of the block at the end of the
source line containing the method call. For example, in the following code,
the block containing puts "Hi" is associated with the call to the greet method:

 greet { puts "Hi" }

If a method call has parameters, they appear before the block:

 verbose_greet("Dave" , "loyal customer") { puts "Hi" }

A method can invoke an associated block one or more times by using the
Ruby yield statement. You can think of yield as being something like a
method call that calls out to the block associated with the method
containing the yield. You can pass values to the block by giving parameters
to yield. Within the block, you list the names of the arguments to receive
these parameters between vertical bars (|).

Code blocks appear throughout Ruby applications. Often they’re used in
conjunction with iterators—methods that return successive elements from
some kind of collection, such as an array:

 animals = %w(ant bee cat dog elk) # create an array
 animals. each {|animal| puts animal } # iterate over the contents

Each integer N implements a times method, which invokes an associated
block N times:

 3. times { print "Ho! " } #=> Ho! Ho! Ho!

The & prefix operator allows a method to capture a passed block as a named
parameter:

 def wrap &b
 print "Santa says: "
 3. times (&b)
 print "\n"
 end
 wrap { print "Ho! " }

Within a block, or a method, control is sequential except when an exception
occurs.

Exceptions
Exceptions are objects of the Exception class or its subclasses. The raise

method causes an exception to be raised. This interrupts the normal flow
through the code. Instead, Ruby searches back through the call stack for
code that says it can handle this exception.

Both methods and blocks of code wrapped between begin and end keywords
intercept certain classes of exceptions using rescue clauses:

 begin
 content = load_blog_data(file_name)
 rescue BlogDataNotFound

 STDERR. puts "File #{ file_name } not found"
 rescue BlogDataFormatError
 STDERR. puts "Invalid blog data in #{ file_name }"
 rescue Exception => exc
 STDERR. puts "General error loading #{ file_name }: #{ exc. message}"
 end

rescue clauses can be directly placed on the outermost level of a method
definition without needing to enclose the contents in a begin/end block.

That concludes our brief introduction to control flow. At this point you have
the basic building blocks for creating larger structures.

Organizing Structures
Ruby has two basic concepts for organizing methods: classes and modules.
We cover each in turn.

Classes
Here’s a Ruby class definition:

1: class Order < ApplicationRecord
- has_many :line_items
- def self. find_all_unpaid
- self. where ('paid = 0')

5: end
- def total
- sum = 0
- line_items. each {|li| sum += li. total }
- sum

10:

 end

- end

Class definitions start with the class keyword and are followed by the class
name (which must start with an uppercase letter). This Order class is defined
to be a subclass of the ApplicationRecord class.

Rails makes heavy use of class-level declarations. Here, has_many is a
method that’s defined by Active Record. It’s called as the Order class is being
defined. Normally these kinds of methods make assertions about the class,
so in this book we call them declarations.

Within a class body, you can define class methods and instance methods.
Prefixing a method name with self. (as we do on line 3) makes it a class
method; it can be called on the class generally. In this case, we can make
the following call anywhere in our application:

 to_collect = Order. find_all_unpaid

Objects of a class hold their state in instance variables. These variables,
whose names all start with @, are available to all the instance methods of a
class. Each object gets its own set of instance variables.

Instance variables aren’t directly accessible outside the class. To make them
available, write methods that return their values:

 class Greeter
 def initialize (name)
 @name = name
 end

 def name
 @name
 end

 def name =(new_name)
 @name = new_name
 end
 end

 g = Greeter. new ("Barney")
 g. name # => Barney
 g. name = "Betty"
 g. name # => Betty

Ruby provides convenience methods that write these accessor methods for
you (which is great news for folks tired of writing all those getters and
setters):

 class Greeter
 attr_accessor :name # create reader and writer methods
 attr_reader :greeting # create reader only
 attr_writer :age # create writer only
 end

A class’s instance methods are public by default; anyone can call them.
You’ll probably want to override this for methods that are intended to be

used only by other instance methods:

 class MyClass
 def m1 # this method is public
 end
 protected
 def m2 # this method is protected
 end
 private
 def m3 # this method is private
 end
 end

The private directive is the strictest; private methods can be called only from
within the same instance. Protected methods can be called both in the same
instance and by other instances of the same class and its subclasses.

Classes aren’t the only organizing structure in Ruby. The other organizing
structure is a module.

Modules
Modules are similar to classes in that they hold a collection of methods,
constants, and other module and class definitions. Unlike with classes, you
can’t create objects based on modules.

Modules serve two purposes. First, they act as a namespace, letting you
define methods whose names won’t clash with those defined elsewhere.
Second, they allow you to share functionality among classes. If a class
mixes in a module, that module’s methods become available as if they’d
been defined in the class. Multiple classes can mix in the same module,
sharing the module’s functionality without using inheritance. You can also
mix multiple modules into a single class.

Helper methods are an example of where Rails uses modules. Rails
automatically mixes these helper modules into the appropriate view
templates. For example, if you wanted to write a helper method that’s

callable from views invoked by the store controller, you could define the
following module in the store_helper.rb file in the app/helpers directory:

 module StoreHelper
 def capitalize_words (string)
 string. split (' '). map {|word| word. capitalize }. join (' ')
 end
 end

One module that’s part of the standard library of Ruby deserves special
mention, given its usage in Rails: YAML.

YAML
YAML[34] is a recursive acronym that stands for YAML Ain’t Markup
Language. In the context of Rails, YAML is used as a convenient way to
define the configuration of things such as databases, test data, and
translations. Here’s an example:

 development:
 adapter: sqlite3
 database: db/development.sqlite3
 pool: 5
 timeout: 5000

In YAML, indentation is important, so this defines development as having a set
of four key-value pairs, separated by colons. While YAML is one way to
represent data, particularly when interacting with humans, Ruby provides a
more general way for representing data for use by applications.

Marshaling Objects
Ruby can take an object and convert it into a stream of bytes that can be
stored outside the application. This process is called marshaling. This saved
object can later be read by another instance of the application (or by a
totally separate application), and a copy of the originally saved object can
be reconstituted.

Two potential issues arise when you use marshaling. First, some objects
can’t be dumped. If the objects to be dumped include bindings, procedure or
method objects, instances of the IO class, or singleton objects—or if you try
to dump anonymous classes or modules—a TypeError will be raised.

Second, when you load a marshaled object, Ruby needs to know the
definition of the class of that object (and of all the objects it contains).

Rails uses marshaling to store session data. If you rely on Rails to
dynamically load classes, it’s possible that a particular class may not have
been defined at the point it reconstitutes session data. For that reason, use
the model declaration in your controller to list all models that are marshaled.
This preemptively loads the necessary classes to make marshaling work.

Now that you have the Ruby basics down, let’s give what we learned a
whirl with a slightly larger, annotated example that pulls together a number
of concepts. We’ll follow that with a walk-through of special features that
will help you with your Rails coding.

Pulling It All Together
Let’s look at an example of how Rails applies a number of Ruby features
together to make the code you need to maintain more declarative. You’ll see
this example again in Generating the Scaffold. For now, we’ll focus on the
Ruby-language aspects of the example:

 class CreateProducts < ActiveRecord::Migration[7.0]
 def change
 create_table :products do |t|
 t. string :title
 t. text :description
 t. string :image_url
» t. decimal :price , precision: 8, scale: 2

 t. timestamps
 end
 end
 end

Even if you didn’t know any Ruby, you’d probably be able to decipher that
this code creates a table named products. The fields defined when this table is
created include title, description, image_url, and price, as well as a few timestamps
(we’ll describe these in Chapter 23, Migrations).

Now let’s look at the same example from a Ruby perspective. We define a
class named CreateProducts, which inherits from the versioned[35] Migration class
from the ActiveRecord module, specifying that compatibility with Rails 7 is
desired. We define one method, named change. This method calls the
create_table method (defined in ActiveRecord::Migration), passing it the name of the
table in the form of a symbol.

The call to create_table also passes a block that is to be evaluated before the
table is created. This block, when called, is passed an object named t, which
is used to accumulate a list of fields. Rails defines a number of methods on

this object—methods named after common data types. These methods,
when called, simply add a field definition to the ever-accumulating set of
names.

The definition of decimal also accepts a number of optional parameters,
expressed as a hash.

To someone new to Ruby, this is a lot of heavy machinery thrown at solving
such a simple problem. To someone familiar with Ruby, none of this
machinery is particularly heavy. In any case, Rails makes extensive use of
the facilities provided by Ruby to make defining operations (for example,
migration tasks) as simple and as declarative as possible. Even small
features of the language, such as optional parentheses and braces, contribute
to the overall readability and ease of authoring.

Finally, a number of small features—or, rather, idiomatic combinations of
features—are often not immediately obvious to people new to the Ruby
language. We close this chapter with them.

Ruby Idioms
A number of individual Ruby features can be combined in interesting ways.
We use these common Ruby idioms in this book:

Methods such as empty! and empty?

Ruby method names can end with an exclamation mark (a bang
method) or a question mark (a predicate method). Bang methods
normally do something destructive to the receiver. Predicate methods
return true or false, depending on some condition.

a || b

The expression a || b evaluates a. If it isn’t false or nil, then evaluation
stops and the expression returns a. Otherwise, the statement returns b.
This is a common way of returning a default value if the first value
hasn’t been set.

a ||= b

The assignment statement supports a set of shortcuts: a op= b is the same
as a = a op b. This works for most operators:

 count += 1 # same as count = count + 1
 price *= discount # price = price * discount
 count ||= 0 # count = count || 0

So, count ||= 0 gives count the value 0 if count is nil or false.

obj = self.new

Sometimes a class method needs to create an instance of that class:

 class Person < ApplicationRecord
 def self. for_dave
 Person. new (name: 'Dave')
 end
 end

This works fine, returning a new Person object. But later, someone
might subclass our class:

 class Employee < Person
 # ..
 end

 dave = Employee. for_dave # returns a Person

The for_dave method was hardwired to return a Person object, so that’s
what’s returned by Employee.for_dave. Using self.new instead returns a new
object of the receiver’s class, Employee.

lambda

The lambda operator converts a block into an object of type Proc. An
alternative syntax, introduced in Ruby 1.9, is ->. As a matter of style,
the Rails team prefers the latter syntax. You can see example usages of
this operator in Scopes.

require File.expand_path(’../../config/environment’, __FILE__)

Ruby’s require method loads an external source file into our application.
This is used to include library code and classes that our application
relies on. In normal use, Ruby finds these files by searching in a list of
directories, the LOAD_PATH.

Sometimes we need to be specific about which file to include. We can
do that by giving require a full filesystem path. The problem is, we don’t
know what that path will be—our users could install our code
anywhere.

Wherever our application ends up getting installed, the relative path
between the file doing the requiring and the target file will be the
same. Knowing this, we can construct the absolute path to the target by
using the File.expand_path method, passing in the relative path to the

[34]

[35]

target file, and passing the absolute path to the file doing the requiring
(available in the special __FILE__ variable).

In addition, the web has many good resources that show Ruby idioms and
Ruby gotchas. Here are a few of them:

http://www.ruby-lang.org/en/documentation/ruby-from-other-
languages/
http://en.wikipedia.org/wiki/Ruby_programming_language
https://www.zenspider.com/ruby/quickref.html

By this point, you have a firm foundation to build on. You’ve installed
Rails, verified that you have things working with a simple application, read
a brief description of what Rails is, and reviewed (or for some of you,
learned for the first time) the basics of the Ruby language. Now it’s time to
put this knowledge in place to build a larger application.

Footnotes

http://www.yaml.org/

http://blog.bigbinary.com/2016/03/01/migrations-are-versioned-in-rails-5.html

Copyright © 2023, The Pragmatic Bookshelf.

http://www.ruby-lang.org/en/documentation/ruby-from-other-languages/
http://en.wikipedia.org/wiki/Ruby_programming_language
https://www.zenspider.com/ruby/quickref.html
http://www.yaml.org/
http://blog.bigbinary.com/2016/03/01/migrations-are-versioned-in-rails-5.html

Part 2
Building an Application

We cover:
Incremental development
Use cases, page flow, and data
Priorities

Chapter 5

The Depot Application

We could mess around all day hacking together simple test applications, but
that won’t help us pay the bills. So let’s sink our teeth into something
meatier. Let’s create a web-based shopping cart application called Depot.

Does the world need another shopping cart application? Nope, but that
hasn’t stopped hundreds of developers from writing one. Why should we be
different?

More seriously, it turns out that our shopping cart will illustrate many of the
features of Rails development. You’ll see how to create maintenance pages,
link database tables, handle sessions, create forms, and wrangle modern
JavaScript. Over the next twelve chapters, we’ll also touch on peripheral
topics such as unit and system testing, security, and page layout.

Incremental Development
We’ll be developing this application incrementally. We won’t attempt to
specify everything before we start coding. Instead, we’ll work out enough
of a specification to let us start and then immediately create some
functionality. We’ll try ideas, gather feedback, and continue with another
cycle of mini design and development.

This style of coding isn’t always applicable. It requires close cooperation
with the application’s users because we want to gather feedback as we go
along. We might make mistakes, or the client might ask for one thing at first
and later want something different. It doesn’t matter what the reason is. The
earlier we discover we’ve made a mistake, the less expensive it’ll be to fix
that mistake. All in all, with this style of development, there’s a lot of
change as we go along.

Because of this, we need to use a toolset that doesn’t penalize us for
changing our minds. If we decide we need to add a new column to a
database table or change the navigation among pages, we need to be able to
get in there and do it without a bunch of coding or configuration hassle. As
you’ll see, Ruby on Rails shines when it comes to dealing with change. It’s
an ideal agile programming environment.

Along the way, we’ll be building and maintaining a corpus of tests. These
tests will ensure that the application is always doing what we intend to do.
Not only does Rails enable the creation of such tests but it even provides
you with an initial set of tests each time you define a new controller.

On with the application.

What Depot Does
Let’s start by jotting down an outline specification for the Depot application.
We’ll look at the high-level use cases and sketch out the flow through the
web pages. We’ll also try working out what data the application needs
(acknowledging that our initial guesses will likely be wrong).

Use Cases
A use case is simply a statement about how some entity uses a system.
Consultants invent these kinds of phrases to label things we’ve known all
along. (It’s a perversion of business life that fancy words always cost more
than plain ones, even though the plain ones are more valuable.)

Depot’s use cases are simple (some would say tragically so). We start off by
identifying two different roles or actors: the buyer and the seller.

The buyer uses Depot to browse the products we have to sell, select some to
purchase, and supply the information needed to create an order.

The seller uses Depot to maintain a list of products to sell, to determine the
orders that are awaiting shipment, and to mark orders as shipped. (The seller
also uses Depot to make scads of money and retire to a tropical island, but
that’s the subject of another book.)

For now, that’s all the detail we need. We could go into excruciating detail
about what it means to maintain products and what constitutes an order
ready to ship, but why bother? If some details aren’t obvious, we’ll discover
them soon enough as we reveal successive iterations of our work to the
customer.

Speaking of getting feedback, let’s get some right now. Let’s make sure our
initial (admittedly sketchy) use cases are on the mark by asking our users.

Assuming the use cases pass muster, let’s work out how the application will
work from the perspectives of its various users.

Page Flow
We always like to have an idea of the main pages in our applications and to
understand roughly how users navigate among them. This early in the
development, these page flows are likely to be incomplete, but they still help
us focus on what needs doing and know how actions are sequenced.

Some folks like to use Photoshop, Word, or (shudder) HTML to mock up
web application page flows. We like using a pencil and paper. It’s quicker,
and the customer gets to play too, grabbing the pencil and scribbling
alterations right on the paper.

The first sketch of the buyer flow is shown in the following figure.

It’s pretty traditional. The buyer sees a catalog page, from which he selects
one product at a time. Each product selected gets added to the cart, and the
cart is displayed after each selection. The buyer can continue shopping using
the catalog pages or check out and buy the contents of the cart. During
checkout, we capture contact and payment details and then display a receipt
page. We don’t yet know how we’re going to handle payment, so those
details are fairly vague in the flow.

The seller flow, shown in the next figure, is also fairly basic. After logging
in, the seller sees a menu letting her create or view a product or ship existing
orders. When viewing a product, the seller can optionally edit the product
information or delete the product entirely.

The shipping option is simplistic. It displays each order that hasn’t yet been
shipped, one order per page. The seller can choose to skip to the next or can
ship the order, using the information from the page as appropriate.

The shipping function is clearly not going to survive long in the real world,
but shipping is also one of those areas where reality is often stranger than
you might think. Overspecify it up front, and we’re likely to get it wrong.
For now, let’s leave it as it is, confident that we can change it as the user
gains experience using our application.

Data
Finally, we need to think about the data we’re going to be working with.

Notice that we’re not using words such as schema or classes here. We’re
also not talking about databases, tables, keys, and the like. We’re talking
about data. At this stage in the development, we don’t know if we’ll even be
using a database.

Based on the use cases and the flows, it seems likely that we’ll be working
with the data shown in the figure. Again, using pencil and paper seems a
whole lot easier than some fancy tool, but use whatever works for you.

Working on the data diagram raised a couple of questions. As the user buys
items, we’ll need somewhere to keep the list of products they bought, so we
added a cart. But apart from its use as a transient place to keep this product
list, the cart seems to be something of a ghost—we couldn’t find anything
meaningful to store in it. To reflect this uncertainty, we put a question mark
inside the cart’s box in the diagram. We’re assuming this uncertainty will get
resolved as we implement Depot.

Coming up with the high-level data also raised the question of what
information should go into an order. Again, we chose to leave this fairly
open for now. We’ll refine this further as we start showing our early
iterations to the customer.

General Recovery Advice

Everything in this book has been tested. If you follow along with this scenario precisely,
using the recommended version of Rails and SQLite 3 on Linux, MacOS, or Windows,
everything should work as described. However, deviations from this path can occur. Typos
happen to the best of us, and not only are side explorations possible, but they’re positively
encouraged. Be aware that this might lead you to strange places. Don’t be afraid: specific
recovery actions for common problems appear in the specific sections where such problems
often occur. A few additional general suggestions are included here.

You should only ever need to restart the server in the few places where doing so is noted in
the book. But if you ever get truly stumped, restarting the server might be worth trying.

A “magic” command worth knowing, explained in detail in Part III, is bin/rails
db:migrate:redo. It’ll undo and reapply the last migration.

If your server won’t accept some input on a form, refresh the form on your browser and
resubmit it.

Finally, you might have noticed that we’ve duplicated the product’s price in
the line item data. Here we’re breaking the “initially, keep it simple” rule
slightly, but it’s a transgression based on experience. If the price of a product
changes, that price change shouldn’t be reflected in the line item price of
currently open orders, so each line item needs to reflect the price of the
product at the time the order was made.

Again, at this point we’ll double-check with the customer that we’re still on
the right track. (The customer was most likely sitting in the room with us
while we drew these three diagrams.)

Let’s Code
So after sitting down with the customer and doing some preliminary
analysis, we’re ready to start using a computer for development! We’ll be
working from our original three diagrams, but the chances are pretty good
that we’ll be throwing them away fairly quickly—they’ll become outdated
as we gather feedback. Interestingly, that’s why we didn’t spend too long on
them; it’s easier to throw something away if you didn’t spend a long time
creating it.

In the chapters that follow, we’ll start developing the application based on
our current understanding. However, before we turn that page, we have to
answer one more question: what should we do first?

We like to work with the customer so we can jointly agree on priorities. In
this case, we’d point out to her that it’s hard to develop anything else until
we have some basic products defined in the system, so we suggest spending
a couple of hours getting the initial version of the product maintenance
functionality up and running. And, of course, the client would agree.

Copyright © 2023, The Pragmatic Bookshelf.

We cover:
Creating a new application
Configuring the database
Creating models and controllers
Updating a view

Chapter 6

Task A: Creating the Application

Our first development task is to create the web interface that lets us
maintain our product information—create new products, edit existing
products, delete unwanted ones, and so on. We’ll develop this application in
small iterations, where “small” means measured in minutes. Typically, our
iterations involve multiple steps, as in iteration C, which has steps C1, C2,
C3, and so on. In this case, the iteration has two steps.

Let’s get started.

Iteration A1: Creating the Product Maintenance
Application
At the heart of the Depot application is a database. Getting this installed and
configured and tested before proceeding will prevent a lot of headaches. If
you’re not certain about what you want, take the defaults, and it will go
easily. If you know what you want, Rails makes it easy for you to describe
your configuration.

For this project, let’s make use of the Tailwind CSS[36] framework, which
enables you to make pretty websites without authoring any CSS. We’ll do so
by specifying an additional option when we create our application, and as
you’ll shortly see it will also affect how we start our server during
development.

Creating a Rails Application
In Creating a New Application, you saw how to create a new Rails
application. We’ll do the same thing here. Go to a command prompt and
type rails new followed by the name of our project, and then add the option to
make use of the Tailwind CSS framework. Here, our project is called depot,
so make sure you’re not inside an existing application directory, and type
this:

 work> rails new depot --css tailwind

We see a bunch of output scroll by. When it has finished, we find that a new
directory, depot, has been created. That’s where we’ll be doing our work:

 work> cd depot
 depot> ls -p
 Gemfile app/ db/ storage/
 Gemfile.lock bin/ lib/ test/
 README.md config/ log/ tmp/
 Rakefile config.ru public/ vendor/

Of course, Windows users need to use dir /w instead of ls -p.

Creating the Database
For this application, we’ll use the open source SQLite database (which
you’ll need if you’re following along with the code). We’re using SQLite
version 3 here.

SQLite 3 is the default database for Rails development and was installed
along with Rails in Chapter 1, Installing Rails. With SQLite 3, no steps are
required to create a database, and we have no special user accounts or
passwords to deal with. So now you get to experience one of the benefits of
going with the flow (or, convention over configuration, as the Rails folks
say...ad nauseam).

If it’s important to you to use a database server other than SQLite 3, the
commands to create the database and grant permissions will be different.
You can find some helpful hints in the database configuration section of
Configuring Rails Applications in the Ruby on Rails Guides.[37]

Generating the Scaffold
Back in our initial guess at application data , we sketched out the basic
content of the products table. Now let’s turn that into reality. We need to create
a database table and a Rails model that lets our application use that table, a
number of views to make up the user interface, and a controller to
orchestrate the application.

So let’s create the model, views, controller, and migration for our products

table. With Rails, you can do all that with one command by asking Rails to
generate a scaffold for a given model. Note that on the command line that
follows, we use the singular form, Product. In Rails, a model is automatically
mapped to a database table whose name is the plural form of the model’s
class. In our case, we ask for a model called Product, so Rails associates it
with the table called products. (And how will it find that table? The development

entry in config/database.yml tells Rails where to look for it. For SQLite 3 users,
this’ll be a file in the db directory.)

Note that the command is too wide to fit comfortably on the page. To enter a
command on multiple lines, put a backslash as the last character on all but
the last line, and you’ll be prompted for more input. Windows users need to
substitute a caret (^) for the backslash at the end of the first line and a
backslash for the forward slash in bin/rails:

 depot> bin/rails generate scaffold Product \
 title:string description:text image_url:string price:decimal
 invoke active_record
 create db/migrate/20221207000001_create_products.rb
 create app/models/product.rb
 invoke test_unit
 create test/models/product_test.rb
 create test/fixtures/products.yml
 invoke resource_route
 route resources :products
 invoke scaffold_controller
 create app/controllers/products_controller.rb
 invoke erb
 create app/views/products
 create app/views/products/index.html.erb
 create app/views/products/edit.html.erb
 create app/views/products/show.html.erb
 create app/views/products/new.html.erb
 create app/views/products/_form.html.erb
 create app/views/products/_product.html.erb
 invoke resource_route
 invoke test_unit
 create test/controllers/products_controller_test.rb
 create test/system/products_test.rb
 invoke helper
 create app/helpers/products_helper.rb
 invoke test_unit
 invoke jbuilder
 create app/views/products/index.json.jbuilder
 create app/views/products/show.json.jbuilder
 create app/views/products/_product.json.jbuilder

The generator creates a bunch of files. The one we’re interested in first is the
migration one, namely, 20221207000001_create_products.rb.

A migration represents a change we either want to make to a database as a
whole or to the data contained within the database, and it’s expressed in a
source file in database-independent terms. These changes can update both
the database schema and the data in the database tables. We apply these
migrations to update our database, and we can unapply them to roll our
database back. We have a whole section on migrations starting in Chapter
23, Migrations. For now, we’ll just use them without too much more
comment.

The migration has a UTC-based timestamp prefix (20221207000001), a name
(create_products), and a file extension (rb, because it’s Ruby code).

The timestamp prefix that you see will be different. In fact, the timestamps
used in this book are clearly fictitious. Typically, your timestamps won’t be
consecutive; instead, they’ll reflect the time the migration was created.

Applying the Migration
Although we’ve already told Rails about the basic data types of each
property, let’s refine the definition of the price to have eight digits of
significance and two digits after the decimal point:

rails7/depot_a/db/migrate/20221207000001_create_products.rb

 class CreateProducts < ActiveRecord::Migration[7.0]
 def change
 create_table :products do |t|
 t. string :title
 t. text :description
 t. string :image_url
» t. decimal :price , precision: 8, scale: 2

 t. timestamps
 end

http://media.pragprog.com/titles/rails7/code/rails7/depot_a/db/migrate/20221207000001_create_products.rb

 end
 end

Now that we’re done with our changes, we need to get Rails to apply this
migration to our development database. We do this by using the bin/rails

db:migrate command:

 depot> bin/rails db:migrate
 == 20221207000001 CreateProducts: migrating ================================
 -- create_table(:products)
 -> 0.0027s
 == CreateProducts: migrated (0.0023s) ======================================

And that’s it. Rails looks for all the migrations not yet applied to the
database and applies them. In our case, the products table is added to the
database defined by the development section of the database.yml file.

OK, all the groundwork has been done. We set up our Depot application as a
Rails project. We created the development database and configured our
application to be able to connect to it. We created a products controller and a
Product model and used a migration to create the corresponding products table.
And a number of views have been created for us. It’s time to see all this in
action.

Seeing the List of Products
With three commands, we’ve created an application and a database (or a
table inside an existing database if you chose something besides SQLite 3).
Before we worry too much about what happened behind the scenes here,
let’s try our shiny new application.

We mentioned previously that using a CSS processor will affect how we
start our server during development. This is because things like CSS
processors and JavaScript bundlers require a build step. Rather than
requiring you to start multiple processes, Rails provides bin/dev, which is a
small script that will start everything:

 depot> bin/dev
 10:17:38 web.1 | started with pid 75099
 10:17:38 css.1 | started with pid 75100
 10:17:39 web.1 | => Booting Puma
 10:17:39 web.1 | => Rails 7.0.4 application starting in development
 10:17:39 web.1 | => Run `bin/rails server --help` for more startup options
 10:17:39 web.1 | Puma starting in single mode...
 10:17:39 web.1 | * Puma version: 5.5.2 (ruby 3.1.1p18) ("Zawgyi")
 10:17:39 web.1 | * Min threads: 5
 10:17:39 web.1 | * Max threads: 5
 10:17:39 web.1 | * Environment: development
 10:17:39 web.1 | * PID: 75099
 10:17:39 web.1 | * Listening on http://127.0.0.1:3000
 10:17:39 web.1 | * Listening on http://[::1]:3000
 10:17:39 web.1 | Use Ctrl-C to stop
 10:17:39 css.1 |
 10:17:39 css.1 | Rebuilding...
 10:17:39 css.1 | Done in 155ms.

Windows users will need to run the command ruby bin/dev.

If you examine that output, in addtion to the lines containing web.1 that show
the Rails server starting, you see lines containing css.1 that show the CSS
rebuilding. This is all controlled by a file named Procfile.dev:

rails7/depot_a/Procfile.dev

 web: bin/rails server -p 3000
 css: bin/rails tailwindcss:watch

Feel free to modify this file to suit your needs. For example, if you’re using
a virtual machine, you might need to add -b 0.0.0.0 to the rails server line to
accept connections from your host.

As with our demo application, this command starts a web server on our local
host, port 3000. If you get an error saying Address already in use when you try to
run the server, that means you already have a Rails server running on your
machine. If you’ve been following along with the examples in the book, that
might well be the Hello, World! application from Chapter 4. Find its console

http://media.pragprog.com/titles/rails7/code/rails7/depot_a/Procfile.dev

and kill the server using Ctrl-C . If you’re running on Windows, you might
see the prompt Terminate batch job (Y/N)?. If so, respond with y.

Let’s connect to our application. Remember, the URL we give to our
browser is http://localhost:3000/products, which has both the port number (3000) and
the name of the controller in lowercase (products). The application looks like
the following screenshot.

That’s pretty boring. It’s showing us an empty list of products. Let’s add
some. Click the New Product link. A form should appear, as shown in the
next screenshot.

These forms are simply HTML templates, like the ones you created in Hello,
Rails!. In fact, we can modify them. Let’s change the number of rows in the
Description field:

rails7/depot_a/app/views/products/_form.html.erb

 <%= form_with(model: product, class: "contents") do |form| %>
 <% if product. errors . any? %>
 <div id= "error_explanation"
 class= "bg-red-50 text-red-500 px-3 py-2 font-medium rounded-lg mt-3" >
 <h2> <%= pluralize(product. errors . count , "error") %>
 prohibited this product from being saved:</h2>

http://media.pragprog.com/titles/rails7/code/rails7/depot_a/app/views/products/_form.html.erb

 <% product. errors . each do |error| %>
 <%= error. full_message %>
 <% end %>

 </div>
 <% end %>

 <div class= "my-5" >
 <%= form. label :title %>
 <%= form. text_field :title , class: "block shadow rounded-md…" %>
 </div>

 <div class= "my-5" >
 <%= form. label :description %>
» <%= form. text_area :description , rows: 10, class: "block shadow…" %>
 </div>

 <div class= "my-5" >
 <%= form. label :image_url %>
 <%= form. text_field :image_url , class: "block shadow rounded-md…" %>
 </div>

 <div class= "my-5" >
 <%= form. label :price %>
 <%= form. text_field :price , class: "block shadow rounded-md…" %>
 </div>

 <div class= "inline" >
 <%= form. submit class: "rounded-lg py-3 px-5…" %>
 </div>
 <% end %>

We’ll explore this more in Chapter 8, Task C: Catalog Display. But for now,
we’ve adjusted one field to taste, so let’s fill it in, as shown in screenshot
(note the use of HTML tags in the description—--this is intentional and will
make more sense later).

Click the Create button, and you should see that the new product was
successfully created. If you now click the Back link, you should see the new
product in the list, as shown in the screenshot.

Perhaps it isn’t the prettiest interface, but it works, and we can show it to our
client for approval. She can play with the other links (showing details,
editing existing products, and so on). We explain to her that this is only a
first step—we know it’s rough, but we wanted to get her feedback early.
(And four commands probably count as early in anyone’s book.)

At this point, we’ve accomplished a lot with only four commands. Before
we move on, let’s try one more command:

 bin/rails test

Included in the output should be a line that says 0 failures, 0 errors. This is for
the model and controller tests that Rails generates along with the
scaffolding. They’re minimal at this point, but simply knowing that they’re
there and that they pass should give you confidence. As you proceed
through these chapters in Part II, you’re encouraged to run this command
frequently because it’ll help you spot and track down errors. We’ll cover this
more in Iteration B2: Unit Testing of Models.

Note that if you’ve used a database other than SQLite 3, this step may have
failed. Check your database.yml file.

Iteration A2: Making Prettier Listings
Our customer has one more request. (Customers always seem to have one
more request, don’t they?) The listing of all the products is ugly. Can we
pretty it up a bit? And while we’re in there, can we also display the product
image along with the image URL?

We’re faced with a dilemma here. As developers, we’re trained to respond to
these kinds of requests with a sharp intake of breath, a knowing shake of the
head, and a murmured, “You want what?” At the same time, we also like to
show off a bit. In the end, the fact that it’s fun to make these kinds of
changes using Rails wins out, and we fire up our trusty editor.

Before we get too far, though, it would be nice if we had a consistent set of
test data to work with. We could use our scaffold-generated interface and
type data in from the browser. However, if we did this, future developers
working on our codebase would have to do the same. And if we were
working as part of a team on this project, each member of the team would
have to enter his or her own data. It would be nice if we could load the data
into our table in a more controlled way. It turns out that we can. Rails has
the ability to import seed data.

To start, we modify the file in the db directory named seeds.rb.

In this file, we add the code to populate the products table. This uses the create!

method of the Product model. The following is an extract from that file.
Rather than type the file by hand, you might want to download the file from
the sample code available online.[38] While you’re there, copy the images
into the app/assets/images directory in your application.[39]

Be warned: this seeds.rb script removes existing data from the products table
before loading the new data. You might not want to run it if you’ve just
spent several hours typing your own data into your application!

rails7/depot_a/db/seeds.rb

 Product.delete_all
 # . . .
 Product.create!(title: 'Design and Build Great Web APIs',
 description:
 %{<p>
 Robust, Reliable, and Resilient
 APIs are transforming the business world at an increasing pace. Gain
 the essential skills needed to quickly design, build, and deploy
 quality web APIs that are robust, reliable, and resilient. Go from
 initial design through prototyping and implementation to deployment of
 mission-critical APIs for your organization. Test, secure, and deploy
 your API with confidence and avoid the “release into production”
 panic. Tackle just about any API challenge with more than a dozen
 open-source utilities and common programming patterns you can apply
 right away.
 </p>},
 image_url: 'maapis.jpg',
 price: 24.95)
 # . . .

(Note that this code uses %{…}. This is an alternative syntax for double-
quoted string literals, convenient for use with long strings. Note also that
because it uses the Rails create! method, it’ll raise an exception if records
can’t be inserted because of validation errors.)

To populate your products table with test data, run the following command:

 depot> bin/rails db:seed

Now let’s get the product listing tidied up. Normally this would require
multiple steps: creating a CSS style sheet, linking that style sheet to your
HTML, defining a set of style rules within the new style sheet, connecting
these rules to the page by defining an HTML class attribute on the page, and
changing the HTML to make styling the page easier.

Fortunately, we installed Tailwind CSS support, which is ideal for rapid
development. Instead of spending time managing global CSS classes and

http://media.pragprog.com/titles/rails7/code/rails7/depot_a/db/seeds.rb

trying to understand and debug the scope of your changes, you safely style
your HTML page through an extensive set of predefined CSS utility classes.

With Tailwind doing the heavy lifting for us, we’ll use a table-based
template, editing the index.html.erb file in app/views/products and replacing the
scaffold-generated view:

rails7/depot_a/app/views/products/index.html.erb

 <div class= "w-full" >
 <% if notice. present? %>
 <p class= "py-2 px-3 bg-green-50 mb-5 text-green-500 font-medium
 rounded-lg inline-block" id= "notice" >
 <%= notice %>
 </p>
 <% end %>

 <div class= "flex justify-between items-center pb-8" >
 <h1 class= "mx-auto text-lg font-bold text-4xl" >Products</h1>
 </div>

 <table id= "products" class= "mx-auto" >
 <tfoot>
 <tr>
 <td colspan= "3" >
 <div class= "mt-8" >
 <%= link_to 'New product' ,
 new_product_path,
 class: "inline rounded-lg py-3 px-5 bg-green-600
 text-white block font-medium" %>
 </div>
 </td>
 </tr>
 </tfoot>

 <tbody>
 <% @products. each do |product| %>
 <tr class= "<%= cycle('bg-green-50' , 'bg-white') %>" >

 <td class= "px-2 py-3" >
 <%= image_tag(product. image_url , class: 'w-40') %>

http://media.pragprog.com/titles/rails7/code/rails7/depot_a/app/views/products/index.html.erb

 </td>

 <td>
 <h1 class= "text-xl font-bold mb-3" > <%= product. title %> </h1>
 <p>
 <%= truncate(strip_tags(product. description),
 length: 80) %>
 </p>
 </td>

 <td class= "px-3" >

 <%= link_to 'Show' ,
 product,
 class: 'hover:underline' %>

 <%= link_to 'Edit' ,
 edit_product_path(product),
 class: 'hover:underline' %>

 <%= link_to 'Destroy' ,
 product,
 class: 'hover:underline' ,
 data: { turbo_method: :delete ,
 turbo_confirm: "Are you sure?" } %>

 </td>
 </tr>
 <% end %>
 </tbody>
 </table>
 </div>

This template uses a number of built-in Rails features:

The rows in the listing have alternating background colors. The Rails
helper method called cycle does this by setting the CSS class of each

row to either bg-green-50 or bg-white, automatically toggling between the
two style names on successive lines.

The truncate helper is used to display the first eighty characters of the
description. But before we call truncate, we call strip_tags to remove the
HTML tags from the description.

Look at the link_to ’Destroy’ line. See how it has the parameter data: {

turbo_confirm: ’Are you sure?’ }. If you click this link, Rails arranges for your
browser to pop up a dialog box asking for confirmation before
following the link and deleting the product. (Also, see the sidebar for
an inside scoop on this action.)

As far as styling goes:

We left the notice alone.

We added mx-auto to the h1 and table to center them horizontally on the
page. This corresponds to setting the CSS margin to auto, where x is the
horizontal axis and y would be the vertical axis.

We added classes like px-2 and py-3 to add vertical and horizontal
padding.

Most of the rest of the changes are self-explanatory, with names like
text-xl, bg-blue-600, and hover:underline.

We loaded some test data into the database, and we rewrote the index.html.erb

file that displays the listing of products. Now let’s bring up a browser and
point to http://localhost:3000/products. The resulting product listing might
look something like the following screenshot.

http://localhost:3000/products

So we proudly show our customer her new product listing and she’s pleased.
Now it’s time to create the storefront.

What We Just Did
In this chapter, we laid the groundwork for our store application:

We created a development database.

We used a migration to create and modify the schema in our
development database.

We created the products table and used the scaffold generator to write an
application to maintain it.

We updated a controller-specific view to show a list of products.

What we’ve done didn’t require much effort, and it got us up and running
quickly. Databases are vital to this application but need not be scary. In fact,
in many cases we can defer the selection of the database and get started
using the default that Rails provides.

Getting the model right is more important at this stage. As you’ll see,
selection of data types doesn’t always fully capture the essence of all the
properties of the model, even in this small application, so that’s what we’ll
tackle next.

What's with turbo_method: :delete?
You may have noticed that the Destroy link includes the turbo_method: :delete parameter.
This parameter determines which method is called in the ProductsController class and also
affects which HTTP method is used.

Browsers use HTTP to talk with servers. HTTP defines a set of verbs that browsers can
employ and defines when each can be used. A regular hyperlink, for example, uses an
HTTP GET request. A GET request is defined by HTTP as a means of retrieving data and
therefore isn’t supposed to have any side effects. Using the method parameter in this way
indicates that an HTTP DELETE method should be used for this hyperlink. Rails uses this
information to determine which action in the controller to route this request to.

Note that when used within a browser, Rails substitutes the HTTP POST method for PUT,
PATCH, and DELETE methods and in the process tacks on an additional parameter so that
the router can determine the original intent. Either way, the request isn’t cached or
triggered by web crawlers.

Playtime
Here’s some stuff to try on your own:

We created tables in our database using a migration. Try examining the
tables directly by running bin/rails dbconsole. This will put you directly into
the SQLite database that the app uses. Type .help and hit Return to see
the commands you can run to examine the database. If you know SQL,
you can execute SQL in here as well.

If you’re feeling frisky, you can experiment with rolling back the
migration. Type the following:

 depot> bin/rails db:rollback

Your schema will be transported back in time, and the products table will
be gone. Calling bin/rails db:migrate again will re-create it. You’ll also want
to reload the seed data. More information can be found in Chapter 23,
Migrations.

We mentioned version control in Version Control, and now would be a
great point at which to save your work. Should you happen to choose
Git (highly recommended, by the way), you need to do a tiny bit of
configuration first; all you need to do is provide your name and email
address:

 depot> git config --global --add user.name "Sam Ruby"
 depot> git config --global --add user.email rubys@intertwingly.net

You can verify the configuration with the following command:

 depot> git config --global --list

Rails also provides a file named .gitignore, which tells Git which files are
not to be version-controlled:

rails7/depot_a/.gitignore

 # Ignore bundler config.
 /.bundle

 # Ignore the default SQLite database.
 /db/*.sqlite3
 /db/*.sqlite3-*

 # Ignore all logfiles and tempfiles.
 /log/*
 /tmp/*
 !/log/.keep
 !/tmp/.keep

 # Ignore pidfiles, but keep the directory.
 /tmp/pids/*
 !/tmp/pids/

http://media.pragprog.com/titles/rails7/code/rails7/depot_a/.gitignore

[36]

[37]

 !/tmp/pids/.keep

 # Ignore uploaded files in development.
 /storage/*
 !/storage/.keep
 /tmp/storage/*
 !/tmp/storage/
 !/tmp/storage/.keep

 /public/assets

 # Ignore master key for decrypting credentials and more.
 /config/master.key

 /app/assets/builds/*
 !/app/assets/builds/.keep

Note that because this filename begins with a dot, Unix-based
operating systems won’t show it by default in directory listings. Use ls -

a to see it.

At this point, you’re fully configured. The only tasks that remain are to
add all the files and commit them with a commit message (note that
Rails has initialized our repository with git init already):

 depot> git add .
 depot> git commit -m "Depot Scaffold"

Being fully configured may not seem very exciting, but it does mean
you’re free to experiment. If you overwrite or delete a file that you
didn’t mean to, you can always get back to this point by issuing a single
command:

 depot> git checkout .

Footnotes

https://tailwindcss.com/

http://guides.rubyonrails.org/configuring.html#configuring-a-database

https://tailwindcss.com/
http://guides.rubyonrails.org/configuring.html#configuring-a-database

[38]

[39]

https://media.pragprog.com/titles/rails7/code/rails7/depot_a/db/seeds.rb

https://media.pragprog.com/titles/rails7/code/rails7/depot_a/app/assets/images/

Copyright © 2023, The Pragmatic Bookshelf.

https://media.pragprog.com/titles/rails7/code/rails7/depot_a/db/seeds.rb
https://media.pragprog.com/titles/rails7/code/rails7/depot_a/app/assets/images/

We cover:
Performing validation and error
reporting
Unit testing

Chapter 7

Task B: Validation and Unit Testing

At this point, we have an initial model for a product as well as a complete
maintenance application for this data provided for us by Rails scaffolding.
In this chapter, we’re going to focus on making the model more bulletproof
—as in, making sure that errors in the data provided never get committed to
the database—before we proceed to other aspects of the Depot application
in subsequent chapters.

Iteration B1: Validating!
While playing with the results of iteration A1, our client noticed something.
If she entered an invalid price or forgot to set up a product description, the
application happily accepted the form and added a line to the database. A
missing description is embarrassing, and a price of $0.00 costs her actual
money, so she asked that we add validation to the application. No product
should be allowed in the database if it has an empty title or description field,
an invalid URL for the image, or an invalid price.

So where do we put the validation? The model layer is the gatekeeper
between the world of code and the database. Nothing to do with our
application comes out of the database or gets stored into the database that
doesn’t first go through the model. This makes models an ideal place to put
validations; it doesn’t matter whether the data comes from a form or from
some programmatic manipulation in our application. If a model checks it
before writing to the database, the database will be protected from bad data.

Let’s look at the source code of the model class (in app/models/product.rb):

 class Product < ApplicationRecord
 end

Adding our validation should be fairly clean. Let’s start by validating that
the text fields all contain something before a row is written to the database.
We do this by adding some code to the existing model:

 validates :title , :description , :image_url , presence: true

The validates method is the standard Rails validator. It checks one or more
model fields against one or more conditions.

presence: true tells the validator to check that each of the named fields is
present and that its contents aren’t empty. The following screenshot shows

what happens if we try to submit a new product with none of the fields filled
in. Try it by visiting http://localhost:3000/products/new and submitting the form
without entering any data. It’s pretty impressive: the fields with errors are
highlighted, and the errors are summarized in a nice list at the top of the
form. That’s not bad for one line of code. You might also have noticed that
after editing and saving the product.rb file, you didn’t have to restart the
application to test your changes. The same reloading that caused Rails to
notice the earlier change to our schema also means it’ll always use the latest
version of our code.

We’d also like to validate that the price is a valid, positive number. We’ll use
the delightfully named numericality option to verify that the price is a valid

number. We also pass the rather verbosely named :greater_than_or_equal_to option
a value of 0.01:

 validates :price , numericality: { greater_than_or_equal_to: 0.01 }

Now, if we add a product with an invalid price, the appropriate message will
appear, as shown in the following screenshot.

Why test against one cent rather than zero? Well, it’s possible to enter a
number such as 0.001 into this field. Because the database stores just two
digits after the decimal point, this would end up being zero in the database,
even though it would pass the validation if we compared against zero.
Checking that the number is at least one cent ensures that only correct
values end up being stored.

We have two more items to validate. First, we want to make sure that each
product has a unique title. One more line in the Product model will do this.

The uniqueness validation will perform a check to ensure that no other row
in the products table has the same title as the row we’re about to save:

 validates :title , uniqueness: true

Lastly, we need to validate that the URL entered for the image is valid.
We’ll do this by using the format option, which matches a field against a
regular expression. For now, let’s just check that the URL ends with one of
gif, jpg, or png:

 validates :image_url , allow_blank: true , format: {
 with: %r{\.(gif|jpg|png)\z}i ,
 message: 'must be a URL for GIF, JPG or PNG image.'
 }

The regular expression matches the string against a literal dot, followed by
one of three choices, followed by the end of the string. Be sure to use
vertical bars to separate options, and backslashes before the dot and the
lowercase z. If you need a refresher on regular expression syntax, see
Regular Expressions.

Note that we use the allow_blank option to avoid getting multiple error
messages when the field is blank.

Later, we’d probably want to change this form to let the user select from a
list of available images, but we’d still want to keep the validation to prevent
malicious folks from submitting bad data directly.

So in a couple of minutes we’ve added validations that check the following:

The title, description, and image URL fields aren’t empty.
The price is a valid number not less than $0.01.
The title is unique among all products.
The image URL looks reasonable.

Your updated Product model should look like this:

rails7/depot_b/app/models/product.rb

 class Product < ApplicationRecord
 validates :title , :description , :image_url , presence: true
 validates :title , uniqueness: true
 validates :image_url , allow_blank: true , format: {
 with: %r{\.(gif|jpg|png)\z}i ,
 message: 'must be a URL for GIF, JPG or PNG image.'
 }
 validates :price , numericality: { greater_than_or_equal_to: 0.01 }

 end

Nearing the end of this cycle, we ask our customer to play with the
application, and she’s a lot happier. It took only a few minutes, but the
simple act of adding validation has made the product maintenance pages
seem a lot more solid.

http://media.pragprog.com/titles/rails7/code/rails7/depot_b/app/models/product.rb

Iteration B2: Unit Testing of Models
One of the joys of the Rails framework is that it has support for testing
baked right in from the start of every project. As you’ve seen, from the
moment you create a new application using the rails command, Rails starts
generating a test infrastructure for you. Let’s take a peek inside the models

subdirectory to see what’s already there:

 depot> ls test/models
 product_test.rb

product_test.rb is the file that Rails created to hold the unit tests for the model
we created earlier with the generate script. This is a good start, but Rails can
help us only so much. Let’s see what kind of test goodies Rails generated
inside test/models/product_test.rb when we generated that model:

rails7/depot_a/test/models/product_test.rb

 require "test_helper"

 class ProductTest < ActiveSupport::TestCase
 # test "the truth" do
 # assert true
 # end
 end

The generated ProductTest is a subclass of ActiveSupport::TestCase.[40] The fact that
ActiveSupport::TestCase is a subclass of the MiniTest::Test class tells us that Rails
generates tests based on the MiniTest[41] framework that comes preinstalled
with Ruby. This is good news, because it means if we’ve already been
testing our Ruby programs with MiniTest tests (and why wouldn’t we be?),
we can build on that knowledge to test Rails applications. If you’re new to
MiniTest, don’t worry. We’ll take it slow.

http://media.pragprog.com/titles/rails7/code/rails7/depot_a/test/models/product_test.rb

Inside this test case, Rails generated a single commented-out test called "the

truth". The test...do syntax may seem surprising at first, but here
ActiveSupport::TestCase is combining a class method, optional parentheses, and a
block to make defining a test method the tiniest bit simpler for you.
Sometimes it’s the little things that make all the difference.

The assert line in this method is a test. It isn’t much of one, though—all it
does is test that true is true. Clearly, this is a placeholder, one that’s intended
to be replaced by your actual tests.

A Real Unit Test
Let’s get on to the business of testing validation. First, if we create a product
with no attributes set, we’ll expect it to be invalid and for an error to be
associated with each field. We can use the model’s errors and invalid? methods
to see if it validates, and we can use the any? method of the error list to see if
an error is associated with a particular attribute.

Now that we know what to test, we need to know how to tell the test
framework whether our code passes or fails. We do that using assertions. An
assertion is a method call that tells the framework what we expect to be true.
The simplest assertion is the assert method, which expects its argument to be
true. If it is, nothing special happens. However, if the argument to assert is
false, the assertion fails. The framework will output a message and will stop
executing the test method containing the failure. In our case, we expect that
an empty Product model won’t pass validation, so we can express that
expectation by asserting that it isn’t valid:

 assert product. invalid?

Replace the test the truth with the following code:

rails7/depot_b/test/models/product_test.rb

 test "product attributes must not be empty" do

http://media.pragprog.com/titles/rails7/code/rails7/depot_b/test/models/product_test.rb

 product = Product. new
 assert product. invalid?
 assert product. errors [:title]. any?
 assert product. errors [:description]. any?
 assert product. errors [:price]. any?
 assert product. errors [:image_url]. any?
 end

We can rerun just the unit tests by issuing the rails test:models command. When
we do so, we now see the test execute successfully:

 depot> bin/rails test:models
 Run options: --seed 63304

 # Running:

 .

 Finished in 0.021068s, 47.4654 runs/s, 237.3268 assertions/s.
 1 runs, 5 assertions, 0 failures, 0 errors, 0 skips

Sure enough, the validation kicked in, and all our assertions passed.

Clearly, at this point we can dig deeper and exercise individual validations.
Let’s look at three of the many possible tests.

First, we’ll check that the validation of the price works the way we expect:

rails7/depot_c/test/models/product_test.rb

 test "product price must be positive" do
 product = Product. new (title: "My Book Title" ,
 description: "yyy" ,
 image_url: "zzz.jpg")
 product. price = -1
 assert product. invalid?
 assert_equal ["must be greater than or equal to 0.01"],
 product. errors [:price]

 product. price = 0
 assert product. invalid?

http://media.pragprog.com/titles/rails7/code/rails7/depot_c/test/models/product_test.rb

 assert_equal ["must be greater than or equal to 0.01"],
 product. errors [:price]

 product. price = 1
 assert product. valid?
 end

In this code, we create a new product and then try setting its price to -1, 0,
and +1, validating the product each time. If our model is working, the first
two should be invalid, and we verify that the error message associated with
the price attribute is what we expect.

The last price is acceptable, so we assert that the model is now valid. (Some
folks would put these three tests into three separate test methods—that’s
perfectly reasonable.)

Next, we test that we’re validating that the image URL ends with one of gif,
jpg, or png:

rails7/depot_c/test/models/product_test.rb

 def new_product (image_url)
 Product. new (title: "My Book Title" ,
 description: "yyy" ,
 price: 1,
 image_url: image_url)
 end

 test "image url" do
 ok = %w{ fred.gif fred.jpg fred.png FRED.JPG FRED.Jpg
 http://a.b.c/x/y/z/fred.gif }
 bad = %w{ fred.doc fred.gif/more fred.gif.more }

 ok. each do |image_url|
 assert new_product(image_url). valid? ,
 "#{ image_url } must be valid"
 end

 bad. each do |image_url|

http://media.pragprog.com/titles/rails7/code/rails7/depot_c/test/models/product_test.rb

 assert new_product(image_url). invalid? ,
 "#{ image_url } must be invalid"
 end
 end

Here we’ve mixed things up a bit. Rather than write the nine separate tests,
we’ve used a couple of loops—one to check the cases we expect to pass
validation and the second to try cases we expect to fail. At the same time,
we factored out the common code between the two loops.

You’ll notice that we also added an extra parameter to our assert method calls.
All of the testing assertions accept an optional trailing parameter containing
a string. This will be written along with the error message if the assertion
fails and can be useful for diagnosing what went wrong.

Finally, our model contains a validation that checks that all the product titles
in the database are unique. To test this one, we need to store product data in
the database.

One way to do this would be to have a test create a product, save it, then
create another product with the same title and try to save it too. This would
clearly work. But a much simpler way is to use Rails fixtures.

Test Fixtures
In the world of testing, a fixture is an environment in which you can run a
test. If you’re testing a circuit board, for example, you might mount it in a
test fixture that provides it with the power and inputs needed to drive the
function to be tested.

In the world of Rails, a test fixture is a specification of the initial contents of
a model (or models) under test. If, for example, we want to ensure that our
products table starts off with known data at the start of every unit test, we can
specify those contents in a fixture, and Rails takes care of the rest.

You specify fixture data in files in the test/fixtures directory. These files contain
test data in YAML format. Each fixture file contains the data for a single
model. The name of the fixture file is significant: the base name of the file
must match the name of a database table. Because we need some data for a
Product model, which is stored in the products table, we’ll add it to the file
called products.yml.

Rails already created this fixture file when we first created the model:

rails7/depot_a/test/fixtures/products.yml

 # Read about fixtures at
 # https://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

 one:
 title: MyString
 description: MyText
 image_url: MyString
 price: 9.99

 two:
 title: MyString
 description: MyText
 image_url: MyString
 price: 9.99

The fixture file contains an entry for each row that we want to insert into the
database. Each row is given a name. In the case of the Rails-generated
fixture, the rows are named one and two. This name has no significance as far
as the database is concerned—it isn’t inserted into the row data. Instead, as
you’ll see shortly, the name gives us a convenient way to reference test data
inside our test code. They also are the names used in the generated
integration tests, so for now, we’ll leave them alone.

David says:

Picking Good Fixture Names

http://media.pragprog.com/titles/rails7/code/rails7/depot_a/test/fixtures/products.yml

As with the names of variables in general, you want to keep the names of fixtures as self-
explanatory as possible. This increases the readability of the tests when you’re asserting that
product(:valid_order_for_fred) is indeed Fred’s valid order. It also makes it a lot easier to
remember which fixture you’re supposed to test against, without having to look up p1 or order4.
The more fixtures you get, the more important it is to pick good fixture names. So starting early
keeps you happy later.

But what do we do with fixtures that can’t easily get a self-explanatory name like
valid_order_for_fred? Pick natural names that you have an easier time associating to a role. For
example, instead of using order1, use christmas_order. Instead of customer1, use fred. Once you
get into the habit of natural names, you’ll soon be weaving a nice little story about how fred is
paying for his christmas_order with his invalid_credit_card first, then paying with his
valid_credit_card, and finally choosing to ship it all off to aunt_mary.

Association-based stories are key to remembering large worlds of fixtures with ease.

Inside each entry you can see an indented list of name-value pairs. As in
your config/database.yml, you must use spaces, not tabs, at the start of each of
the data lines, and all the lines for a row must have the same indentation. Be
careful as you make changes, because you need to make sure the names of
the columns are correct in each entry; a mismatch with the database column
names can cause a hard-to-track-down exception.

This data is used in tests. In fact, if you rerun bin/rails test now you’ll see a
number of errors, including the following error:

 Error:
 ProductsControllerTest#test_should_get_index:
 ActionView::Template::Error: The asset "MyString" is not present in
 the asset pipeline.

The reason for the failure is that we recently added an image_tag to the product
index page and Rails can’t find an image by the name MyString (remember
that image_tag is a Rails helper method that produces an HTML

element). Let’s correct that error and, while we’re here, add some more data
to the fixture file with something we can use to test our Product model:

rails7/depot_c/test/fixtures/products.yml

http://media.pragprog.com/titles/rails7/code/rails7/depot_c/test/fixtures/products.yml

 # Read about fixtures at
 # https://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

 one:
 title: MyString
 description: MyText
» image_url: lorem.jpg
 price: 9.99

 two:
 title: MyString
 description: MyText
» image_url: lorem.jpg
 price: 9.99

» ruby:
» title: Programming Ruby 1.9
» description:
» Ruby is the fastest growing and most exciting dynamic
» language out there. If you need to get working programs
» delivered fast, you should add Ruby to your toolbox.
» price: 49.50
» image_url: ruby.jpg

Note that the images referenced in image_url do need to exist for the tests to
succeed. It doesn’t matter what they are as long as they’re in app/assets/images

when the tests run. You can either create some yourself or use the ones
provided in the downloadable code.

Now that we have a fixture file, we want Rails to load the test data into the
products table when we run the unit test. And, in fact, Rails is already doing
this (convention over configuration for the win!), but you can control which
fixtures to load by specifying the following line in test/models/product_test.rb:

 class ProductTest < ActiveSupport::TestCase
» fixtures :products
 #...
 end

The fixtures directive loads the fixture data corresponding to the given model
name into the corresponding database table before each test method in the
test case is run. The name of the fixture file determines the table that’s
loaded, so using :products will cause the products.yml fixture file to be used.

Let’s say that again another way. In the case of our ProductTest class, adding
the fixtures directive means that the products table will be emptied out and then
populated with the three rows defined in the fixture before each test method
is run.

Note that most of the scaffolding that Rails generates doesn’t contain calls to
the fixtures method. That’s because the default for tests is to load all fixtures
before running the test. Because that default is generally the one you want,
there usually isn’t any need to change it. Once again, conventions are used
to eliminate the need for unnecessary configuration.

So far, we’ve been doing all our work in the development database. Now
that we’re running tests, though, Rails needs to use a test database. If you
look in the database.yml file in the config directory, you’ll notice Rails actually
created a configuration for three separate databases.

db/development.sqlite3 will be our development database. All of our
programming work will be done here.

db/test.sqlite3 is a test database.

db/production.sqlite3 is the production database. Our application will use
this when we put it online.

Each test method gets a freshly initialized table in the test database, loaded
from the fixtures we provide. This is automatically done by the bin/rails test

command but can be done separately via bin/rails db:test:prepare.

Using Fixture Data

Now that you know how to get fixture data into the database, we need to
find ways of using it in our tests.

Clearly, one way would be to use the finder methods in the model to read the
data. However, Rails makes it easier than that. For each fixture it loads into
a test, Rails defines a method with the same name as the fixture. You can use
this method to access preloaded model objects containing the fixture data:
simply pass it the name of the row as defined in the YAML fixture file, and
it’ll return a model object containing that row’s data.

In the case of our product data, calling products(:ruby) returns a Product model
containing the data we defined in the fixture. Let’s use that to test the
validation of unique product titles:

rails7/depot_c/test/models/product_test.rb

 test "product is not valid without a unique title" do
 product = Product. new (title: products(:ruby). title ,
 description: "yyy" ,
 price: 1,
 image_url: "fred.gif")

 assert product. invalid?
 assert_equal ["has already been taken"], product. errors [:title]
 end

The test assumes that the database already includes a row for the Ruby book.
It gets the title of that existing row using this:

 products(:ruby). title

It then creates a new Product model, setting its title to that existing title. It
asserts that attempting to save this model fails and that the title attribute has
the correct error associated with it.

If you want to avoid using a hardcoded string for the Active Record error,
you can compare the response against its built-in error message table:

http://media.pragprog.com/titles/rails7/code/rails7/depot_c/test/models/product_test.rb

rails7/depot_c/test/models/product_test.rb

 test "product is not valid without a unique title - i18n" do
 product = Product. new (title: products(:ruby). title ,
 description: "yyy" ,
 price: 1,
 image_url: "fred.gif")

 assert product. invalid?
 assert_equal [I18n. translate ('errors.messages.taken')],
 product. errors [:title]
 end

We’ll cover the I18n functions in Chapter 15, Task J: Internationalization.

Before we move on, we once again try our tests:

 $ bin/rails test

This time we see two remaining failures, both in
test/controllers/products_controllertest.rb: one in should create product and the other in
should update product. Clearly, something we did caused something to do with
the creation and update of products to fail. Since we just added validations
on how products are created or updated, it’s likely this is the source of the
problem, and our test is out-of-date.

The specifics of the problem might not be obvious from the test failure
message, but the failure for should create product gives us a clue: “Product.count
didn’t change by 1.” Since we just added validations, it seems likely that our
attempts to create a product in the test are creating an invalid product, which
we can’t save to the database.

Let’s verify this assumption by adding a call to puts in the controller’s create

method:

 def create
 @product = Product. new (product_params)

http://media.pragprog.com/titles/rails7/code/rails7/depot_c/test/models/product_test.rb

 respond_to do |format|
 if @product. save
 format. html { redirect_to @product,
 notice: "Product was successfully created." }
 format. json { render :show , status: :created ,
 location: @product }
 else
» puts @product. errors . full_messages
 format. html { render :new ,
 status: :unprocessable_entity }
 format. json { render json: @product. errors ,
 status: :unprocessable_entity }
 end
 end
 end

If we rerun just the test for creating a new product, we’ll see the problem:

 > bin/rails test test/controllers/products_controller_test.rb:19
 # Running:

 Title has already been taken
 F

 Failure:
 ProductsControllerTest#test_should_create_product [«path to test»]
 "Product.count" didn't change by 1.
 Expected: 3
 Actual: 2

 bin/rails test test/controllers/products_controller_test.rb:18

 Finished in 0.427810s, 2.3375 runs/s, 2.3375 assertions/s.
 1 runs, 1 assertions, 1 failures, 0 errors, 0 skips

Our puts is printing the validation error, which in this case is “Title has
already been taken.” In other words, we’re trying to create a product whose
title already exists. Instead, let’s create a random book title and use that
instead of the value coming out of the test fixture. First, we’ll create a
random title in the setup block:

rails7/depot_b/test/controllers/products_controller_test.rb

 require "test_helper"

 class ProductsControllerTest < ActionDispatch::IntegrationTest
 setup do
 @product = products(:one)
» @title = "The Great Book #{ rand(1000) }"

 end

Next, we’ll use that instead of the default @product.title that the Rails generator
put into the test. The actual change is highlighted (the use of @title), but the
code had to be reformatted to fit the space, so this will look a bit different
for you:

rails7/depot_b/test/controllers/products_controller_test.rb

 test "should create product" do
 assert_difference("Product.count") do

 post products_url, params: {
 product: {
 description: @product. description ,
 image_url: @product. image_url ,
 price: @product. price ,
» title: @title,
 }
 }

 end

 assert_redirected_to product_url(Product. last)
 end

rails7/depot_b/test/controllers/products_controller_test.rb

 test "should update product" do

 patch product_url(@product), params: {
 product: {
 description: @product. description ,

http://media.pragprog.com/titles/rails7/code/rails7/depot_b/test/controllers/products_controller_test.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_b/test/controllers/products_controller_test.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_b/test/controllers/products_controller_test.rb

 image_url: @product. image_url ,
 price: @product. price ,
» title: @title,
 }
 }

 assert_redirected_to product_url(@product)
 end

After making these changes, we rerun the tests, and they report that all is
well.

Now we can feel confident that our validation code not only works but will
continue to work. Our product now has a model, a set of views, a controller,
and a set of unit tests. It’ll serve as a good foundation on which to build the
rest of the application.

What We Just Did
In about a dozen lines of code, we augmented the generated code with
validation:

We ensured that required fields are present.
We ensured that price fields are numeric and at least one cent.
We ensured that titles are unique.
We ensured that images match a given format.
We updated the unit tests that Rails provided, both to conform to the
constraints we’ve imposed on the model and to verify the new code we
added.

We show this to our customer, and although she agrees that this is something
an administrator could use, she says that it certainly isn’t anything that she
would feel comfortable turning loose on her customers. Clearly, in the next
iteration we’re going to have to focus a bit on the user interface.

Playtime
Here’s some stuff to try on your own:

[40]

[41]

If you’re using Git, now is a good time to commit your work. You can
first see which files we changed by using the git status command:

 depot> git status
 # On branch master
 # Changes not staged for commit:
 # (use "git add <file>..." to update what will be committed)
 # (use "git checkout -- <file>..." to discard changes
 # in working directory)
 #
 # modified: app/models/product.rb
 # modified: test/fixtures/products.yml
 # modified: test/controllers/products_controller_test.rb
 # modified: test/models/product_test.rb
 # no changes added to commit (use "git add" and/or "git commit -a")

Since we modified only some existing files and didn’t add any new
ones, you can combine the git add and git commit commands and simply
issue a single git commit command with the -a option:

 depot> git commit -a -m 'Validation!'

With this done, you can play with abandon, secure in the knowledge
that you can return to this state at any time by using a single git checkout .

command.

The :length validation option checks the length of a model attribute. Add
validation to the Product model to check that the title is at least ten
characters.

Change the error message associated with one of your validations.

Footnotes

http://api.rubyonrails.org/classes/ActiveSupport/TestCase.html

http://docs.seattlerb.org/minitest/

http://api.rubyonrails.org/classes/ActiveSupport/TestCase.html
http://docs.seattlerb.org/minitest/

Copyright © 2023, The Pragmatic Bookshelf.

We cover:
Writing our own views
Using layouts to decorate pages
Integrating CSS
Using helpers
Writing functional tests

Chapter 8

Task C: Catalog Display

All in all, it’s been a successful set of iterations. We gathered the initial
requirements from our customer, documented a basic flow, worked out a
first pass at the data we’ll need, and put together the management page for
the Depot application’s products. It hasn’t taken many lines of code, and we
even have a small but growing test suite.

Thus emboldened, it’s on to our next task. We chatted about priorities with
our customer, and she said she’d like to start seeing what the application
looks like from the buyer’s point of view. Our next task is to create a
catalog display.

This also makes a lot of sense from our point of view. Once we have the
products safely tucked into the database, it should be fairly straightforward
to display them. It also gives us a basis from which to develop the shopping
cart portion of the code later.

We should also be able to draw on the work we just did in the product
management task. The catalog display is really just a glorified product
listing.

Finally, we’ll also need to complement our unit tests for the model with
some functional tests for the controller.

Iteration C1: Creating the Catalog Listing
We’ve already created the products controller, used by the seller to
administer the Depot application. Now it’s time to create a second controller,
one that interacts with the paying customers. Let’s call it Store:

 depot> bin/rails generate controller Store index
 create app/controllers/store_controller.rb
 route get 'store/index'
 invoke tailwindcss
 create app/views/store
 create app/views/store/index.html.erb
 invoke test_unit
 create test/controllers/store_controller_test.rb
 invoke helper
 create app/helpers/store_helper.rb
 invoke test_unit

As in the previous chapter, where we used the generate utility to create a
controller and associated scaffolding to administer the products, here we’ve
asked it to create a controller (the StoreController class in the store_controller.rb file)
containing a single action method, index.

While everything is already set up for this action to be accessed via
http://localhost:3000/store/index (feel free to try it!), we can do better. Let’s
simplify things and make this the root URL for the website. We do this by
editing config/routes.rb:

rails7/depot_d/config/routes.rb

 Rails. application . routes . draw do
» root 'store#index' , as: 'store_index'
 resources :products
 # Define your application routes per the DSL in
 # https://guides.rubyonrails.org/routing.html

 # Defines the root path route ("/")
 # root "articles#index"

http://localhost:3000/store/index
http://media.pragprog.com/titles/rails7/code/rails7/depot_d/config/routes.rb

 end

We’ve replaced the get ’store/index’ line with a call to define a root path, and in
the process we added an as: ’store_index’ option. The latter tells Rails to create
store_index_path and store_index_url accessor methods, enabling existing code—
and tests!—to continue to work correctly. Let’s try it. Point a browser at
http://localhost:3000/, and up pops our web page. See the following
screenshot.

It might not make us rich, but at least we know everything is wired together
correctly. It even tells us where to find the template file that draws this page.

Let’s start by displaying a list of all the products in our database. We know
that eventually we’ll have to be more sophisticated, breaking them into
categories, but this’ll get us going.

We need to get the list of products out of the database and make it available
to the code in the view that’ll display the table. This means we have to
change the index method in store_controller.rb. We want to program at a decent
level of abstraction, so let’s assume we can ask the model for a list of the
products:

rails7/depot_d/app/controllers/store_controller.rb

 class StoreController < ApplicationController
 def index
» @products = Product. order (:title)
 end
 end

We asked our customer if she had a preference regarding the order things
should be listed in, and we jointly decided to see what happens if we display

http://localhost:3000/
http://media.pragprog.com/titles/rails7/code/rails7/depot_d/app/controllers/store_controller.rb

the products in alphabetical order. We do this by adding an order(:title) call to
the Product model.

Now we need to write our view template. To do this, edit the index.html.erb file
in app/views/store. (Remember that the path name to the view is built from the
name of the controller [store] and the name of the action [index]. The html.erb

part signifies an ERB template that produces an HTML result.)

rails7/depot_d/app/views/store/index.html.erb

 <div class= "w-full" >
 < % if notice.present? %>
 <p class= "py-2 px-3 bg-green-50 mb-5 text-green-500 font-medium rounded-lg
 inline-block" id= "notice" >
 < %= notice %>
 </p>
 < % end %>

 <h1 class= "font-bold text-xl mb-6 pb-2 border-b-2" >
 Your Pragmatic Catalog
 </h1>

 < % @products.each do |product| %>
 <li class= 'flex mb-6' >
 < %= image_tag(product.image_url,
 class: 'object-contain w-40 h-48 shadow mr-6') %>

 <div>
 <h2 class= "font-bold text-lg mb-3" > < %= product.title %></h2>

 <p>
 < %= sanitize(product.description) %>
 </p>

 <div class= "mt-3" >
 < %= product.price %>
 </div>
 </div>

 < % end %>

http://media.pragprog.com/titles/rails7/code/rails7/depot_d/app/views/store/index.html.erb

 </div>

Note the use of the sanitize method for the description. This allows us to
safely[42] add HTML stylings to make the descriptions more interesting for
our customers.

We also used the image_tag helper method. This generates an HTML tag
using its argument as the image source.

A page refresh brings up the display shown in the following screenshot. It’s
still pretty basic, and it seems to be missing something. The customer
happens to be walking by as we ponder this, and she points out that she’d
also like to see a decent-looking banner and sidebar on public-facing pages.

At this point in the real world, we’d probably want to call in the design
folks. But Pragmatic Web Designer is off getting inspiration on a beach
somewhere and won’t be back until later in the year, so let’s put a
placeholder in for now. It’s time for another iteration.

Iteration C2: Adding a Page Layout
The pages in a typical website often share a similar layout; the designer will
have created a standard template that’s used when content is placed. Our job
is to modify this page to add decoration to each of the store pages.

If you look at the html.erb files we’ve created so far, you won’t find any
reference to style sheets. You won’t even find the HTML <head> section
where such references would normally live. Instead, Rails keeps a separate
file that’s used to create a standard page environment for the entire
application. This file, called application.html.erb, is a Rails layout and lives in the
layouts directory: we can change the look and feel of the entire site by editing
this one file. This makes us feel better about putting a placeholder page
layout in for now; we can update it when the designer eventually returns
from the islands.

Let’s update this file to define a banner and a sidebar:

rails7/depot_e/app/views/layouts/application.html.erb

 <!DOCTYPE html>
 <html>
 <head>
» <title>Pragprog Books Online Store</title>
 <meta name= "viewport" content= "width=device-width,initial-scale=1" >
 < %= csrf_meta_tags %>
 < %= csp_meta_tag %>
 < %= stylesheet_link_tag "inter-font", "data-turbo-track": "reload" %>
 < %= stylesheet_link_tag "tailwind", "data-turbo-track": "reload" %>

 < %= stylesheet_link_tag "application", "data-turbo-track": "reload" %>
 < %= javascript_importmap_tags %>
 </head>

 <body>
» <header class= "bg-green-700" >
» < %= image_tag 'logo.svg', alt: 'The Pragmatic Bookshelf' %>

http://media.pragprog.com/titles/rails7/code/rails7/depot_e/app/views/layouts/application.html.erb

» <h1> < %= @page_title %></h1>
» </header>
»
» <section class= "flex" >
» <nav class= "bg-green-900 p-6" >
» <ul class= "text-gray-300 leading-8" >
» Home
» Questions
» News
» Contact
»
» </nav>
»
» <main class= "container mx-auto mt-4 px-5 flex" >
 < %= yield %>
 </main>
» </section>
 </body>
 </html>

Apart from the usual HTML gubbins, this layout has a number of Rails-
specific items. The Rails stylesheet_link_tag helper method generates a <link> tag
to both Tailwind and our application’s style sheets and specifies an option to
enable Turbo,[43] which transparently works behind the scenes to speed up
page changes within an application.

Finally, the csrf_meta_tags and csp_meta_tag methods set up all the behind-the-
scenes data needed to prevent cross-site request forgery attacks, which will
be important once we add forms in Chapter 12, Task G: Check Out!.

Inside the body, we set the page heading to the value in the @page_title

instance variable. By default, this is blank, meaning there won’t be an H1

rendered, but any controller that sets the variable @page_title can override this.
The real magic, however, takes place when we invoke yield. This causes
Rails to substitute in the page-specific content—the stuff generated by the
view invoked by this request. Here, this’ll be the catalog page generated by
index.html.erb.

The page design is fairly minimal, though we’ve added a lot of padding,
margins, and other speccing directives to ensure a decent layout for the side
nav and main content. Some of the sizes we’ve used might seem strange (for
example, mt-4 and px-5), but everything should work out. Anytime we need
padding, margin, or any other size, we’ll use one of a few hand-picked sizes
that ensure our layout is always decent.

Refresh the page, and the browser window looks something like the
screenshot. It won’t win any design awards, but it’ll show our customer
roughly what the final page will look like.

Looking at this page, we spot a minor problem with how prices are
displayed. The database stores the price as a number, but we’d like to show
it as dollars and cents. A price of 12.34 should be shown as $12.34, and 13
should display as $13.00. We’ll tackle that next.

Iteration C3: Using a Helper to Format the Price
Ruby provides a sprintf function that can be used to format prices. We could
place logic that makes use of this function directly in the view. For example,
we could say this:

 < %= sprintf ("$% 0 . 02f ", product . price) % >

That would work, but it embeds knowledge of currency formatting into the
view. If we display prices of products in several places and want to
internationalize the application later, this would be a maintenance problem.

Instead, let’s use a helper method to format the price as a currency. Rails has
an appropriate one built in, called number_to_currency.

Using our helper in the view is just a matter of invoking it as a regular
method; in the index template, this is the code we start with:

 < %= product . price % >

We can change it to the following:

rails7/depot_e/app/views/store/index.html.erb

 <%= number_to_currency(product. price) %>

When we refresh, we see a nicely formatted price, as in the following
screenshot.

http://media.pragprog.com/titles/rails7/code/rails7/depot_e/app/views/store/index.html.erb

Although it looks nice enough, we’re starting to get a nagging feeling that
we really should be running and writing tests for all this new functionality,
particularly after our experience of adding logic to our model.

Iteration C4: Functional Testing of Controllers
Now for the moment of truth. Before we focus on writing new tests, we need
to determine if we’ve broken anything. Remembering our experience after
we added validation logic to our model, with some trepidation we run our
tests again:

 depot> bin/rails test

This time, all is well. We added a lot, but we didn’t break anything. That’s a
relief, but our work isn’t done yet; we still need tests for what we just added.

The unit testing of models that we did previously seemed straightforward
enough. We called a method and compared what it returned against what we
expected it to return. But now we’re dealing with a server that processes
requests and a user viewing responses in a browser. What we need is
functional tests that verify that the model, view, and controller work well
together. Never fear—Rails has you covered.

First, let’s take a look at what Rails generated for us:

rails7/depot_d/test/controllers/store_controller_test.rb

 require "test_helper"

 class StoreControllerTest < ActionDispatch::IntegrationTest
 test "should get index" do
 get store_index_url
 assert_response :success
 end
 end

The should get index test gets the index and asserts that a successful response is
expected. That certainly seems straightforward enough. That’s a reasonable
beginning, but we also want to verify that the response contains our layout,

http://media.pragprog.com/titles/rails7/code/rails7/depot_d/test/controllers/store_controller_test.rb

our product information, and our number formatting. Let’s see what that
looks like in code:

rails7/depot_e/test/controllers/store_controller_test.rb

 require "test_helper"

 class StoreControllerTest < ActionDispatch::IntegrationTest
 test "should get index" do
 get store_index_url
 assert_response :success
» assert_select 'nav a' , minimum: 4
» assert_select 'main ul li' , 3
» assert_select 'h2' , 'Programming Ruby 1.9'
» assert_select 'div' , /\$[,\d]+\.\d\d/
 end
 end

The four lines we added take a look into the HTML that’s returned, using
CSS selector notation. As a refresher, selectors that start with a number sign
(#) match on id attributes; selectors that start with a dot (.) match on class
attributes; and selectors that contain no prefix match on element names.

So the first select test looks for an element named a that’s contained in a nav

element. This test verifies that a minimum of four such elements is present.
Pretty powerful stuff, assert_select, eh?

The next three lines verify that all of our products are displayed. The first
verifies that there are three li elements inside a ul, which is itself inside the
main element. The next line verifies that there’s an h2 element with the title of
the Ruby book that we’d entered previously. The fourth line verifies that the
price is formatted correctly. These assertions are based on the test data that
we put inside our fixtures:

rails7/depot_e/test/fixtures/products.yml

 # Read about fixtures at
 # https://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

http://media.pragprog.com/titles/rails7/code/rails7/depot_e/test/controllers/store_controller_test.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_e/test/fixtures/products.yml

 one:
 title: MyString
 description: MyText
 image_url: lorem.jpg
 price: 9.99

 two:
 title: MyString
 description: MyText
 image_url: lorem.jpg
 price: 9.99

 ruby:
 title: Programming Ruby 1.9
 description:
 Ruby is the fastest growing and most exciting dynamic
 language out there. If you need to get working programs
 delivered fast, you should add Ruby to your toolbox.
 price: 49.50
 image_url: ruby.jpg

Maybe you noticed that the type of test that assert_select performs varies based
on the type of the second parameter. If it’s a number, it’s treated as a
quantity. If it’s a string, it’s treated as an expected result. Another useful type
of test is a regular expression, which is what we use in our final assertion.
We verify that there’s a price that has a value that contains a dollar sign
followed by any number (but at least one), commas, or digits; followed by a
decimal point; followed by two digits.

One final point before we move on: both validation and functional tests will
test the behavior of controllers only; they won’t retroactively affect any
objects that already exist in the database or in fixtures. In the previous
example, two products contain the same title. Such data will cause no
problems and will go undetected up to the point when such records are
modified and saved.

We’ve touched on only a few things that assert_select can do. More information
can be found in the online documentation.[44]

That’s a lot of verification in a few lines of code. We can see that it works by
rerunning just the functional tests (after all, that’s all we changed):

 depot> bin/rails test:controllers

Now, not only do we have something recognizable as a storefront, but we
also have tests that ensure that all of the pieces—the model, view, and
controller—are all working together to produce the desired result. Although
this sounds like a lot, with Rails it wasn’t much at all. In fact, it was mostly
HTML and CSS and not much in the way of code or tests. Before moving
on, let’s make sure that it’ll stand up to the onslaught of customers we’re
expecting.

Iteration C5: Caching of Partial Results
If everything goes as planned, this page will definitely be a high-traffic area
for the site. To respond to requests for this page, we’d need to fetch every
product from the database and render each one. We can do better than that.
After all, the catalog doesn’t change that often, so there’s no need to start
from scratch on each request.

So we can see what we’re doing, we’re first going to modify the
configuration for the development environment to turn on caching. To make
this easy, Rails provides a handy command to toggle caching on and off in
the development environment:

 depot> bin/rails dev:cache

Note that this command will cause your server to automatically restart.

Next we need to plan our attack. Thinking about it, we only need to rerender
things if a product changed, and even then we need to render only the
products that actually changed. So we need to make two small changes to
our template.

First, we mark the sections of our template that we need to update if any
product changes, and then inside that section we mark the subsection that we
need in order to update any specific product that changed:

rails7/depot_e/app/views/store/index.html.erb

 <div class= "w-full" >
 <% if notice. present? %>
 <p class= "py-2 px-3 bg-green-50 mb-5 text-green-500 font-medium rounded-lg
 inline-block" id= "notice" >
 <%= notice %>
 </p>
 <% end %>

http://media.pragprog.com/titles/rails7/code/rails7/depot_e/app/views/store/index.html.erb

 <h1 class= "font-bold text-xl mb-6 pb-2 border-b-2" >
 Your Pragmatic Catalog
 </h1>

» <% cache @products do %>
 <% @products. each do |product| %>
» <% cache product do %>
 <li class= 'flex mb-6' >
 <%= image_tag(product. image_url ,
 class: 'object-contain w-40 h-48 shadow mr-6') %>

 <div>
 <h2 class= "font-bold text-lg mb-3" > <%= product. title %> </h2>

 <p>
 <%= sanitize(product. description) %>
 </p>

 <div class= "mt-3" >
 <%= number_to_currency(product. price) %>
 </div>
 </div>

» <% end %>
 <% end %>
» <% end %>

 </div>

In addition to bracketing the sections, we identify the data to associate with
each: the complete set of products for the overall store and the individual
product we’re rendering with the entry. Whenever the specified data
changes, the section will be rerendered.

Bracketed sections can be nested to arbitrary depth, which is why those in
the Rails community have come to refer to this as “Russian doll” caching.[45]

With this, we’re done! Rails takes care of all of the rest, including managing
the storage and deciding when to invalidate old entries. If you’re interested,
you can turn all sorts of knobs and make choices as to which backing store

to use for the cache. It’s nothing you need to worry about now, but it might
be worth bookmarking the overview page of Caching with Rails in the Ruby
on Rails Guides.[46]

As far as verifying that this works is concerned, you’re going to get some
insight into the work the server is doing behind the scenes. Go back to your
server window and watch what happens when you refresh the page. The first
time you load the page, you should see some SQL that is loading the
products like Product Load (0.2ms) SELECT "products".* FROM "products" ORDER BY

"products"."title" ASC. When you refresh the page again, it will still work, but
you won’t see that SQL run. You should see some SQL that Rails runs to
check if its cache is outdated, like so: SELECT COUNT(*) AS "size",

MAX("products"."updated_at") AS timestamp FROM "products".

If you still aren’t convinced, you can check your log/development.log file. In
there you should see log messages that look like this:

 Read fragment views/store/index:f6d3d1696e62859f692c4ae9e7980d0f/…
 Write fragment views/store/index:f6d3d1696e62859f692c4ae9e7980d0f/…
 Read fragment views/store/index:f6d3d1696e62859f692c4ae9e7980d0f/…
 Write fragment views/store/index:f6d3d1696e62859f692c4ae9e7980d0f/…
 Read fragment views/store/index:f6d3d1696e62859f692c4ae9e7980d0f/…
 Write fragment views/store/index:f6d3d1696e62859f692c4ae9e7980d0f/…
 Read fragment views/products/2-20170611204944059695/cb43383298…

Once you’re satisfied that caching is working, turn caching off in
development so that further changes to the template will always be visible
immediately:

 depot> bin/rails dev:cache

Once again, wait for the server to restart, and verify that changes to the
template show up as quickly as you save them.

What We Just Did
We put together the basis of the store’s catalog display. The steps were as
follows:

1. Create a new controller to handle customer-centric interactions.

2. Implement the default index action.

3. Add a call to the order method within the Store controller to control the
order in which the items on the website are listed.

4. Implement a view (a html.erb file) and a layout to contain it (another
html.erb file).

5. Use a helper to format prices the way we want.

6. Make use of a CSS style sheet.

7. Write functional tests for our controller.

8. Implement fragment caching for portions of the page.

It’s time to check it all in and move on to the next task—namely, making a
shopping cart!

Playtime
Here’s some stuff to try on your own:

Add a date and time to the sidebar. It doesn’t have to update; just show
the value at the time the page was displayed.

Experiment with setting various number_to_currency helper method
options, and see the effect on your catalog listing.

[42]

[43]

[44]

[45]

[46]

Write some functional tests for the product management application
using assert_select. The tests will need to be placed into the
test/controllers/products_controller_test.rb file.

A reminder: the end of an iteration is a good time to save your work
using Git. If you’ve been following along, you have the basics you
need at this point.

Footnotes

https://owasp.org/www-community/attacks/xss/

https://turbo.hotwired.dev/

https://github.com/rails/rails-dom-testing

http://37signals.com/svn/posts/3113-how-key-based-cache-expiration-works

http://guides.rubyonrails.org/caching_with_rails.html

Copyright © 2023, The Pragmatic Bookshelf.

https://owasp.org/www-community/attacks/xss/
https://turbo.hotwired.dev/
https://github.com/rails/rails-dom-testing
http://37signals.com/svn/posts/3113-how-key-based-cache-expiration-works
http://guides.rubyonrails.org/caching_with_rails.html

We cover:
Sessions and session
management
Adding relationships among
models
Adding a button to add a product
to a cart

Chapter 9

Task D: Cart Creation

Now that we have the ability to display a catalog containing all our
wonderful products, it would be nice to be able to sell them. Our customer
agrees, so we’ve jointly decided to implement the shopping cart
functionality next. This is going to involve a number of new concepts,
including sessions, relationships among models, and adding a button to the
view—so let’s get started.

Iteration D1: Finding a Cart
As users browse our online catalog, they will (we hope) select products to
buy. The convention is that each item selected will be added to a virtual
shopping cart, held in our store. At some point, our buyers will have
everything they need and will proceed to our site’s checkout, where they’ll
pay for the stuff in their carts.

This means that our application will need to keep track of all the items
added to the cart by the buyer. To do that, we’ll keep a cart in the database
and store its unique identifier, cart.id, in the session. Every time a request
comes in, we can recover that identifier from the session and use it to find
the cart in the database.

Let’s go ahead and create a cart:

 depot> bin/rails generate scaffold Cart
 ...
 depot> bin/rails db:migrate
 == CreateCarts: migrating

==
 -- create_table(:carts)
 -> 0.0012s
 == CreateCarts: migrated (0.0014s) ===

Rails makes the current session look like a hash to the controller, so we’ll
store the ID of the cart in the session by indexing it with the :cart_id symbol:

rails7/depot_f/app/controllers/concerns/current_cart.rb

 module CurrentCart

 private

 def set_cart
 @cart = Cart. find (session[:cart_id])
 rescue ActiveRecord::RecordNotFound

http://media.pragprog.com/titles/rails7/code/rails7/depot_f/app/controllers/concerns/current_cart.rb

 @cart = Cart. create
 session[:cart_id] = @cart. id
 end
 end

The set_cart method starts by getting the :cart_id from the session object and then
attempts to find a cart corresponding to this ID. If such a cart record isn’t
found (which will happen if the ID is nil or invalid for any reason), this
method will proceed to create a new Cart and then store the ID of the created
cart into the session.

Note that we place the set_cart method in a CurrentCart module and place that
module in a new file in the app/controllers/concerns directory.[47] This treatment
allows us to share common code (even as little as a single method!) among
controllers.

Additionally, we mark the method as private, which prevents Rails from ever
making it available as an action on the controller.

Iteration D2: Connecting Products to Carts
We’re looking at sessions because we need somewhere to keep our shopping
cart. We’ll cover sessions in more depth in Rails Sessions, but for now let’s
move on to implement the cart.

Let’s keep things simple. A cart contains a set of products. Based on the
Initial guess at application data diagram, combined with a brief chat with
our customer, we can now generate the Rails models and populate the
migrations to create the corresponding tables:

 depot> bin/rails generate scaffold LineItem product:references cart:belongs_to
 ...
 depot> bin/rails db:migrate
 == CreateLineItems: migrating

==
 -- create_table(:line_items)
 -> 0.0013s
 == CreateLineItems: migrated (0.0014s) =====================================

The database now has a place to store the references among line items, carts,
and products. If you look at the generated definition of the LineItem class, you
can see the definitions of these relationships:

rails7/depot_f/app/models/line_item.rb

 class LineItem < ApplicationRecord
 belongs_to :product
 belongs_to :cart
 end

The belongs_to method defines an accessor method—in this case, carts and
products—but more importantly it tells Rails that rows in line_items are the
children of rows in carts and products. No line item can exist unless the
corresponding cart and product rows exist. A great rule of thumb for where
to put belongs_to declarations is this: if a table has any columns whose values

http://media.pragprog.com/titles/rails7/code/rails7/depot_f/app/models/line_item.rb

consist of ID values for another table (this concept is known by database
designers as foreign keys), the corresponding model should have a belongs_to

for each.

What do these various declarations do? Basically, they add navigation
capabilities to the model objects. Because Rails added the belongs_to

declaration to LineItem, we can now retrieve its Product and display the book’s
title:

 li = LineItem. find (...)
 puts "This line item is for #{ li. product . title}"

To be able to traverse these relationships in both directions, we need to add
some declarations to our model files that specify their inverse relations.

Open the cart.rb file in app/models, and add a call to has_many:

rails7/depot_f/app/models/cart.rb

 class Cart < ApplicationRecord
» has_many :line_items , dependent: :destroy
 end

That has_many :line_items part of the directive is fairly self-explanatory: a cart
(potentially) has many associated line items. These are linked to the cart
because each line item contains a reference to its cart’s ID. The dependent:

:destroy part indicates that the existence of line items is dependent on the
existence of the cart. If we destroy a cart, deleting it from the database, we
want Rails also to destroy any line items that are associated with that cart.

Now that the Cart is declared to have many line items, we can reference them
(as a collection) from a cart object:

 cart = Cart. find (...)
 puts "This cart has #{ cart. line_items . count} line items"

http://media.pragprog.com/titles/rails7/code/rails7/depot_f/app/models/cart.rb

Now, for completeness, we should add a has_many directive to our Product

model. After all, if we have lots of carts, each product might have many line
items referencing it. This time, we make use of validation code to prevent
the removal of products that are referenced by line items:

rails7/depot_f/app/models/product.rb

 class Product < ApplicationRecord
» has_many :line_items

» before_destroy :ensure_not_referenced_by_any_line_item

 #...

» private

» # ensure that there are no line items referencing this product
» def ensure_not_referenced_by_any_line_item
» unless line_items. empty?
» errors. add (:base , 'Line Items present')
» throw :abort
» end
» end
 end

Here we declare that a product has many line items and define a hook
method named ensure_not_referenced_by_any_line_item. A hook method is a method
that Rails calls automatically at a given point in an object’s life. In this case,
the method will be called before Rails attempts to destroy a row in the
database. If the hook method throws :abort, the row isn’t destroyed.

Note that we have direct access to the errors object. This is the same place
that the validates method stores error messages. Errors can be associated with
individual attributes, but in this case we associate the error with the base
object.

http://media.pragprog.com/titles/rails7/code/rails7/depot_f/app/models/product.rb

Before moving on, add a test to ensure that a product in a cart can’t be
deleted:

rails7/depot_f/test/controllers/products_controller_test.rb

» test "can't delete product in cart" do
» assert_difference("Product.count" , 0) do
» delete product_url(products(:two))
» end
»
» assert_redirected_to products_url
» end

 test "should destroy product" do
 assert_difference("Product.count" , -1) do
 delete product_url(@product)
 end

 assert_redirected_to products_url
 end

And change the fixture to make sure that product two is in both carts:

rails7/depot_f/test/fixtures/line_items.yml

 # Read about fixtures at
 # https://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

 one:
» product: two
 cart: one

 two:
 product: two
 cart: two

We’ll have more to say about intermodel relationships starting in Specifying
Relationships in Models.

http://media.pragprog.com/titles/rails7/code/rails7/depot_f/test/controllers/products_controller_test.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_f/test/fixtures/line_items.yml

Iteration D3: Adding a Button
Now that that’s done, it’s time to add an Add to Cart button for each
product.

We don’t need to create a new controller or even a new action. Taking a look
at the actions provided by the scaffold generator, we find index, show, new, edit,
create, update, and destroy. The one that matches this operation is create. (new may
sound similar, but its use is to get a form that’s used to solicit input for a
subsequent create action.)

Once this decision is made, the rest follows. What are we creating?
Certainly not a Cart or even a Product. What we’re creating is a LineItem.
Looking at the comment associated with the create method in
app/controllers/line_items_controller.rb, you see that this choice also determines the
URL to use (/line_items) and the HTTP method (POST).

This choice even suggests the proper UI control to use. When we added
links before, we used link_to, but links default to using HTTP GET. We want
to use POST, so we’ll add a button this time; this means we’ll be using the
button_to method.

We could connect the button to the line item by specifying the URL, but
again we can let Rails take care of this for us by simply appending _path to
the controller’s name. In this case, we’ll use line_items_path.

However, there’s a problem with this: how will the line_items_path method
know which product to add to our cart? We’ll need to pass it the ID of the
product corresponding to the button. All we need to do is add the :product_id

option to the line_items_path call. We can even pass in the product instance itself
—Rails knows to extract the ID from the record in circumstances such as
these.

In all, the one line that we need to add to our index.html.erb looks like this:

rails7/depot_f/app/views/store/index.html.erb

 <div class= "w-full" >
 <% if notice. present? %>
 <p class= "py-2 px-3 bg-green-50 mb-5 text-green-500 font-medium rounded-lg
 inline-block" id= "notice" >
 <%= notice %>
 </p>
 <% end %>

 <h1 class= "font-bold text-xl mb-6 pb-2 border-b-2" >
 Your Pragmatic Catalog
 </h1>

 <% cache @products do %>
 <% @products. each do |product| %>
 <% cache product do %>
 <li class= 'flex mb-6' >
 <%= image_tag(product. image_url ,
 class: 'object-contain w-40 h-48 shadow mr-6') %>

 <div>
 <h2 class= "font-bold text-lg mb-3" > <%= product. title %> </h2>

 <p>
 <%= sanitize(product. description) %>
 </p>

 <div class= "mt-3" >
 <%= number_to_currency(product. price) %>

» <%= button_to 'Add to Cart' ,
» line_items_path(product_id: product),
» form_class: 'inline' ,
» class: 'ml-4 rounded-lg py-1 px-2
» text-white bg-green-600' %>
 </div>
 </div>

 <% end %>

http://media.pragprog.com/titles/rails7/code/rails7/depot_f/app/views/store/index.html.erb

 <% end %>
 <% end %>

 </div>

We also need to deal with two formatting issues. button_to creates an HTML
<form> wrapping the <button>. HTML <form> is normally a block element that
appears on the next line. We’d like to place them next to the price. This is no
problem as Rails lets you specify both the form_class as well as the button class.

Now our index page looks like the following screenshot. But before we push
the button, we need to modify the create method in the line items controller to
expect a product ID as a form parameter. Here’s where we start to see how
important the id field is in our models. Rails identifies model objects (and
the corresponding database rows) by their id fields. If we pass an ID to create,
we’re uniquely identifying the product to add.

Why the create method? The default HTTP method for a link is a GET, and for
a button is a POST. Rails uses these conventions to determine which method
to call. Refer to the comments inside the app/controllers/line_items_controller.rb file
to see other conventions. We’ll be making extensive use of these
conventions inside the Depot application.

Now let’s modify the LineItemsController to find the shopping cart for the
current session (creating one if one isn’t there already), add the selected

product to that cart, and display the cart contents.

We use the CurrentCart concern we implemented in Iteration D1 to find (or
create) a cart in the session:

rails7/depot_f/app/controllers/line_items_controller.rb

 class LineItemsController < ApplicationController
» include CurrentCart
» before_action :set_cart , only: %i[create]
 before_action :set_line_item , only: %i[show edit update destroy]

 # GET /line_items or /line_items.json
 #...
 end

We include the CurrentCart module and declare that the set_cart method is to be
involved before the create action. We explore action callbacks in depth in
Callbacks, but for now all you need to know is that Rails provides the ability
to wire together methods that are to be called before, after, or even around
controller actions.

In fact, as you can see, the generated controller already uses this facility to
set the value of the @line_item instance variable before the show, edit, update, or
destroy actions are called.

Now that we know that the value of @cart is set to the value of the current
cart, all we need to modify is a few lines of code in the create method in
app/controllers/line_items_controller.rb. to build the line item itself:

rails7/depot_f/app/controllers/line_items_controller.rb

 def create
» product = Product. find (params[:product_id])
» @line_item = @cart. line_items . build (product: product)

 respond_to do |format|
 if @line_item. save

http://media.pragprog.com/titles/rails7/code/rails7/depot_f/app/controllers/line_items_controller.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_f/app/controllers/line_items_controller.rb

» format. html { redirect_to cart_url(@line_item. cart),
 notice: "Line item was successfully created." }
 format. json { render :show ,
 status: :created , location: @line_item }
 else
 format. html { render :new ,
 status: :unprocessable_entity }
 format. json { render json: @line_item. errors ,
 status: :unprocessable_entity }
 end
 end
 end

We use the params object to get the :product_id parameter from the request. The
params object is important inside Rails applications. It holds all of the
parameters passed in a browser request. We store the result in a local
variable because there’s no need to make this available to the view.

We then pass that product we found into @cart.line_items.build. This causes a
new line item relationship to be built between the @cart object and the product.
You can build the relationship from either end, and Rails takes care of
establishing the connections on both sides.

We save the resulting line item into an instance variable named @line_item.

The remainder of this method takes care of handling errors, which we’ll
cover in more detail in Iteration E2: Handling Errors, (as well as handling
JSON requests, which we don’t need per se but that were added by the Rails
generator). But for now, we want to modify only one more thing: once the
line item is created, we want to redirect users to the cart instead of back to
the line item. Since the line item object knows how to find the cart object,
all we need to do is add .cart to the method call.

Confident that the code works as intended, we try the Add to Cart buttons in
our browser. And the following screenshot shows what we see.

This is a bit underwhelming. We have scaffolding for the cart, but when we
created it we didn’t provide any attributes, so the view doesn’t have
anything to show. For now, let’s add a trivial template that shows the title of
each book in the cart. Update the file views/carts/_cart.html.erb like so:

rails7/depot_f/app/views/carts/_cart.html.erb

 <div id= "<%= dom_id cart %>" >
» <h2 class= "font-bold text-lg mb-3" >Your Pragmatic Cart</h2>
»
» <ul class= "list-disc list-inside" >
» <% cart. line_items . each do |item| %>
» <%= item. product . title %>
» <% end %>
»
 </div>

You may be wondering about the underscore in the file name and where the
cart variable comes from. Don’t worry, we’ll cover all this and more when we
get to Partial Templates, but for now it’s enough to know that this is the file
that Rails uses to render a single cart.

So, with everything plumbed together, let’s go back and click the Add to
Cart button again and see our view displayed, as in the next screenshot.

http://media.pragprog.com/titles/rails7/code/rails7/depot_f/app/views/carts/_cart.html.erb

Go back to http://localhost:3000/, the main catalog page, and add a different
product to the cart. You’ll see the original two entries plus our new item in
your cart. It looks like we have sessions working.

We changed the function of our controller, so we know that we need to
update the corresponding functional test.

For starters, we only need to pass a product ID on the call to post. Next, we
have to deal with the fact that we’re no longer redirecting to the line items
page. We’re instead redirecting to the cart, where the cart ID is internal state
data residing in a cookie. Because this is an integration test, instead of
focusing on how the code is implemented, we should focus on what users
see after following the redirect: a page with a heading identifying that
they’re looking at a cart, with a list item corresponding to the product they
added.

We do this by updating test/controllers/line_items_controller_test.rb:

rails7/depot_g/test/controllers/line_items_controller_test.rb

 test "should create line_item" do
 assert_difference("LineItem.count") do
» post line_items_url, params: { product_id: products(:ruby). id }
 end

» follow_redirect!
»

http://localhost:3000/
http://media.pragprog.com/titles/rails7/code/rails7/depot_g/test/controllers/line_items_controller_test.rb

» assert_select 'h2' , 'Your Pragmatic Cart'
» assert_select 'li' , 'Programming Ruby 1.9'
 end

We now rerun this set of tests:

 depot> bin/rails test test/controllers/line_items_controller_test.rb

It’s time to show our customer, so we call her over and proudly display our
handsome new cart. Somewhat to our dismay, she makes that tsk-tsk sound
that customers make just before telling you that you clearly don’t get
something.

Real shopping carts, she explains, don’t show separate lines for two of the
same product. Instead, they show the product line once with a quantity of 2.
It looks like we’re lined up for our next iteration.

What We Just Did
It’s been a busy, productive day so far. We added a shopping cart to our
store, and along the way we dipped our toes into some neat Rails features:

We created a Cart object in one request and successfully located the
same cart in subsequent requests by using a session object.

We added a private method and placed it in a concern, making it
accessible to all of our controllers.

We created relationships between carts and line items, and relationships
between line items and products, and we were able to navigate using
these relationships.

We added a button that causes a product to be posted to a cart, causing
a new line item to be created.

Playtime

[47]

Here’s some stuff to try on your own:

Add a new variable to the session to record how many times the user
has accessed the store controller’s index action. Note that the first time
this page is accessed, your count won’t be in the session. You can test
for this with code like this:

 if session[:counter]. nil?
 ...

If the session variable isn’t there, you need to initialize it. Then you’ll
be able to increment it.

Pass this counter to your template, and display it at the top of the
catalog page. Hint: the pluralize helper () might be useful for forming the
message you display.

Reset the counter to zero whenever the user adds something to the cart.

Change the template to display the counter only if the count is greater
than five.

Footnotes

https://signalvnoise.com/posts/3372-put-chubby-models-on-a-diet-with-concerns

Copyright © 2023, The Pragmatic Bookshelf.

https://signalvnoise.com/posts/3372-put-chubby-models-on-a-diet-with-concerns

We cover:
Modifying the schema and
existing data
Error diagnosis and handling
The flash
Logging

Chapter 10

Task E: A Smarter Cart

Although we have rudimentary cart functionality implemented, we have
much to do. To start with, we need to recognize when customers add
multiples of the same item to the cart. Once that’s done, we’ll also have to
make sure that the cart can handle error cases and communicate problems
encountered along the way to the customer or system administrator, as
appropriate.

Iteration E1: Creating a Smarter Cart
Associating a count with each product in our cart is going to require us to
modify the line_items table. We’ve used migrations before; for example, we
used a migration in Applying the Migration, to update the schema of the
database. While that was as part of creating the initial scaffolding for a
model, the basic approach is the same:

 depot> bin/rails generate migration add_quantity_to_line_items quantity:integer

Rails can tell from the name of the migration that you’re adding columns to
the line_items table and can pick up the names and data types for each column
from the last argument. The two patterns that Rails matches on are
AddXXXToTABLE and RemoveXXXFromTABLE, where the value of XXX is ignored;
what matters is the list of column names and types that appears after the
migration name.

The only thing Rails can’t tell is what a reasonable default is for this
column. In many cases, a null value would do, but let’s make it the value 1 for
existing carts by modifying the migration before we apply it:

rails7/depot_g/db/migrate/20221207000004_add_quantity_to_line_items.rb

 class AddQuantityToLineItems < ActiveRecord::Migration[7.0]
 def change
» add_column :line_items , :quantity , :integer , default: 1
 end
 end

Once it’s complete, we run the migration:

 depot> bin/rails db:migrate

Now we need a smart add_product method in our Cart, one that checks if our list
of items already includes the product we’re adding; if it does, it bumps the
quantity, and if it doesn’t, it builds a new LineItem:

http://media.pragprog.com/titles/rails7/code/rails7/depot_g/db/migrate/20221207000004_add_quantity_to_line_items.rb

rails7/depot_g/app/models/cart.rb

 def add_product (product)
 current_item = line_items. find_by (product_id: product. id)
 if current_item
 current_item. quantity += 1
 else
 current_item = line_items. build (product_id: product. id)
 end
 current_item
 end

The find_by method is a streamlined version of the where method. Instead of
returning an array of results, it returns either an existing LineItem or nil.

We also need to modify the line item controller to use this method:

rails7/depot_g/app/controllers/line_items_controller.rb

 def create
 product = Product. find (params[:product_id])
» @line_item = @cart. add_product (product)

 respond_to do |format|
 if @line_item. save
 format. html { redirect_to cart_url(@line_item. cart),
 notice: "Line item was successfully created." }
 format. json { render :show ,
 status: :created , location: @line_item }
 else
 format. html { render :new ,
 status: :unprocessable_entity }
 format. json { render json: @line_item. errors ,
 status: :unprocessable_entity }
 end
 end
 end

We make two small changes to the _cart template to use this new information:

rails7/depot_g/app/views/carts/_cart.html.erb

http://media.pragprog.com/titles/rails7/code/rails7/depot_g/app/models/cart.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_g/app/controllers/line_items_controller.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_g/app/views/carts/_cart.html.erb

 <div id= "<%= dom_id cart %>" >
 <h2 class= "font-bold text-lg mb-3" >Your Pragmatic Cart</h2>

» <ul class= "list-none list-inside" >
 <% cart. line_items . each do |item| %>
» <%= item. quantity %> × <%= item. product . title %>
 <% end %>

 </div>

In addition to displaying the quantity for each line item, we remove the
bullets that precede each item in the unordered list by changing list-disc to list-

none. This shows one of many benefits to using a CSS framework to make
our work more agile. When we make this change, we know not only that this
change applies to this particular view; we also know that this change does
not affect any other view—assurances we don’t always have when authoring
CSS style sheets.

Now that all the pieces are in place, we can go back to the store page and
click the Add to Cart button for a product that’s already in the cart. What
we’re likely to see is a mixture of individual products listed separately and a
single product listed with a quantity of two. This is because we added a
quantity of one to existing columns instead of collapsing multiple rows
when possible. What we need to do next is migrate the data.

We start by creating a migration:

 depot> bin/rails generate migration combine_items_in_cart

This time, Rails can’t infer what we’re trying to do, so we can’t rely on the
generated change method. What we need to do instead is to replace this
method with separate up and down methods. First, here’s the up method:

rails7/depot_g/db/migrate/20221207000005_combine_items_in_cart.rb

 def up
 # replace multiple items for a single product in a cart with a
 # single item

http://media.pragprog.com/titles/rails7/code/rails7/depot_g/db/migrate/20221207000005_combine_items_in_cart.rb

 Cart. all . each do |cart|
 # count the number of each product in the cart
 sums = cart. line_items . group (:product_id). sum (:quantity)

 sums. each do |product_id, quantity|
 if quantity > 1
 # remove individual items
 cart. line_items . where (product_id: product_id). delete_all

 # replace with a single item
 item = cart. line_items . build (product_id: product_id)
 item. quantity = quantity
 item. save!
 end
 end
 end
 end

This is easily the most extensive code you’ve seen so far. Let’s look at it in
small pieces:

We start by iterating over each cart.

For each cart, we get a sum of the quantity fields for each of the line
items associated with this cart, grouped by product_id. The resulting sums
will be a list of ordered pairs of product_ids and quantity.

We iterate over these sums, extracting the product_id and quantity from
each.

In cases where the quantity is greater than one, we delete all of the
individual line items associated with this cart and this product and
replace them with a single line item with the correct quantity.

Note how easily and elegantly Rails enables you to express this algorithm.

With this code in place, we apply this migration like any other migration:

 depot> bin/rails db:migrate

We can see the results by looking at the cart, shown in the following
screenshot.

Although we have reason to be pleased with ourselves, we’re not done yet.
An important principle of migrations is that each step needs to be reversible,
so we implement a down too. This method finds line items with a quantity of
greater than one; adds new line items for this cart and product, each with a
quantity of one; and, finally, deletes the line item:

rails7/depot_g/db/migrate/20221207000005_combine_items_in_cart.rb

 def down
 # split items with quantity>1 into multiple items
 LineItem. where ("quantity>1"). each do |line_item|
 # add individual items
 line_item. quantity . times do
 LineItem. create (
 cart_id: line_item. cart_id ,
 product_id: line_item. product_id ,
 quantity: 1
)
 end

 # remove original item
 line_item. destroy
 end

http://media.pragprog.com/titles/rails7/code/rails7/depot_g/db/migrate/20221207000005_combine_items_in_cart.rb

 end

Now, we can just as easily roll back our migration with a single command:

 depot> bin/rails db:rollback

Rails provides a Rake task to allow you to check the status of your
migrations:

 depot> bin/rails db:migrate:status
 database: /home/rubys/work/depot/db/development.sqlite3

 Status Migration ID Migration Name
 --
 up 20160407000001 Create products
 up 20160407000002 Create carts
 up 20160407000003 Create line items
 up 20160407000004 Add quantity to line items
 down 20160407000005 Combine items in cart

Now, we can modify and reapply the migration or even delete it entirely. To
inspect the results of the rollback, we have to move the migration file out of
the way so Rails doesn’t think it should apply it. You can do that via mv, for
example. If you do that, the cart should look like the following screenshot:

Once we move the migration file back and reapply the migration (with the
bin/rails db:migrate command), we have a cart that maintains a count for each of
the products it holds, and we have a view that displays that count.

Since we changed the output the application produces, we need to update the
tests to match. Note that what the user sees isn’t the string × but the
Unicode character ×. If you can’t find a way to enter that character using
your keyboard and operating system combination, you can use the escape
sequence \u00D7[48] instead (also note the use of double quotes, as this is
needed in Ruby to enter the escape sequence):

rails7/depot_h/test/controllers/line_items_controller_test.rb

 test "should create line_item" do
 assert_difference("LineItem.count") do
 post line_items_url, params: { product_id: products(:ruby). id }
 end

 follow_redirect!

 assert_select 'h2' , 'Your Pragmatic Cart'
» assert_select 'li' , "1 \u00D7 Programming Ruby 1.9"
 end

Happy that we have something presentable, we call our customer over and
show her the result of our morning’s work. She’s pleased—she can see the
site starting to come together. However, she’s also troubled, having just read
an article in the trade press on the way e-commerce sites are being attacked
and compromised daily. She read that one kind of attack involves feeding
requests with bad parameters into web applications, hoping to expose bugs
and security flaws. She noticed that the link to the cart looks like carts/nnn,
where nnn is our internal cart ID. Feeling malicious, she manually types this
request into a browser, giving it a cart ID of wibble. She’s not impressed when
our application displays the page shown in the screenshot.

http://media.pragprog.com/titles/rails7/code/rails7/depot_h/test/controllers/line_items_controller_test.rb

This seems fairly unprofessional. So our next iteration will be spent making
the application more resilient.

Iteration E2: Handling Errors
It’s apparent from the page shown in the screenshot that our application
raised an exception at line 67 of the carts controller. Your line number might
be different, as we have some book-related formatting stuff in our source
files. If you go to that line, you’ll find the following code:

 @cart = Cart. find (params[:id])

If the cart can’t be found, Active Record raises a RecordNotFound exception,
which we clearly need to handle. The question arises—how?

We could silently ignore it. From a security standpoint, this is probably the
best move, because it gives no information to a potential attacker. However,
it also means that if we ever have a bug in our code that generates bad cart
IDs, our application will appear to the outside world to be unresponsive—no
one will know that an error occurred.

Instead, we’ll take two actions when an exception is raised. First, we’ll log
the fact to an internal log file using the Rails logger facility.[49] Second, we’ll
redisplay the catalog page along with a short message (something along the
lines of “Invalid cart”) to the user, who can then continue to use our site.

Rails has a convenient way of dealing with errors and error reporting. It
defines a structure called a flash. A flash is a bucket (actually closer to a
Hash) in which you can store stuff as you process a request. The contents of
the flash are available to the next request in this session before being deleted
automatically. Typically, the flash is used to collect error messages. For
example, when our show method detects that it was passed an invalid cart ID,
it can store that error message in the flash area and redirect to the index action
to redisplay the catalog. The view for the index action can extract the error
and display it at the top of the catalog page. The flash information is
accessible within the views via the flash accessor method.

Why can’t we store the error in any old instance variable? Remember that
after a redirect is sent by our application to the browser, the browser sends a
new request back to our application. By the time we receive that request, our
application has moved on; all the instance variables from previous requests
are long gone. The flash data is stored in the session to make it available
between requests.

Armed with this background about flash data, we can create an invalid_cart

method to report on the problem:

rails7/depot_h/app/controllers/carts_controller.rb

 class CartsController < ApplicationController
 before_action :set_cart , only: %i[show edit update destroy]
» rescue_from ActiveRecord::RecordNotFound, with: :invalid_cart
 # GET /carts or /carts.json
 # ...
 private
 # ...

» def invalid_cart
» logger. error "Attempt to access invalid cart #{ params[:id] }"
» redirect_to store_index_url, notice: 'Invalid cart'
» end
 end

The rescue_from clause intercepts the exception raised by Cart.find. In the
handler, we do the following:

Use the Rails logger to record the error. Every controller has a logger

attribute. Here we use it to record a message at the error logging level.

Redirect to the catalog display by using the redirect_to method. The :notice

parameter specifies a message to be stored in the flash as a notice. Why
redirect rather than display the catalog here? If we redirect, the user’s
browser will end up displaying the store URL rather than
http://.../cart/wibble. We expose less of the application this way. We also

http://media.pragprog.com/titles/rails7/code/rails7/depot_h/app/controllers/carts_controller.rb

prevent the user from retriggering the error by clicking the Reload
button.

With this code in place, we can rerun our customer’s problematic query by
entering the following URL:

 http://localhost:3000/carts/wibble

We don’t see a bunch of errors in the browser now. Instead, the catalog page
is displayed with the error message shown in the following screenshot.

If we look at the end of the log file (development.log in the log directory), we see
our message:

 Started GET "/carts/wibble" for 127.0.0.1 at 2016-01-29 09:37:39 -0500
 Processing by CartsController #show as HTML
 Parameters: {"id"=>"wibble"}
 ^[[1m^[[35mCart Load (0.1ms)^[[0m SELECT "carts".* FROM "carts" WHERE
 "carts"."id" = ? LIMIT 1 [["id", "wibble"]]
» Attempt to access invalid cart wibble
 Redirected to http://localhost:3000/
 Completed 302 Found in 3ms (ActiveRecord: 0.4ms)

On Unix machines, we’d probably use a command such as tail or less to view
this file. On Windows, you can use your favorite editor. It’s often a good
idea to keep a window open to show new lines as they’re added to this file.
In Unix, you’d use tail -f. You can download a tail command for Windows[50]

or get a GUI-based tool.[51] Finally, some OS X users use Console.app to track
log files. Just say open development.log at the command line.

This being the Internet, we can’t worry only about our published web forms;
we have to worry about every possible interface, because malicious crackers
can get underneath the HTML we provide and attempt to provide additional
parameters. Invalid carts aren’t our biggest problem here; we also want to
prevent access to other people’s carts.

As always, your controllers are your first line of defense. Let’s go ahead and
remove cart_id from the list of parameters that are permitted:

rails7/depot_h/app/controllers/line_items_controller.rb

 def line_item_params
» params. require (:line_item). permit (:product_id)
 end

We can see this in action by rerunning our controller tests:

 bin/rails test:controllers

No tests fail, but a peek into our log/test.log reveals a thwarted attempt to
breach security:

 LineItemsControllerTest: test_should_update_line_item

 ^[[1m^[[36mLineItem Load (0.0ms)^[[0m ^[[1m^[[34mSELECT "line_items"
 Started PATCH "/line_items/980190962" for 127.0.0.1 at 2022-01-12
 Processing by LineItemsController #update as HTML
 Parameters: {"line_item"=>{"cart_id"=>"980190962", "product_id"=>
 ^[[1m^[[36mLineItem Load (0.0ms)^[[0m ^[[1m^[[34mSELECT "line_items"
» ^[[31mUnpermitted parameter: :cart_id. Context: { }^[[0m
 ^[[1m^[[36mTRANSACTION (0.0ms)^[[0m ^[[1m^[[35mSAVEPOINT
 ^[[1m^[[36mProduct Load (0.0ms)^[[0m ^[[1m^[[34mSELECT "products".*
 ^[[1m^[[36mCart Load (0.0ms)^[[0m ^[[1m^[[34mSELECT "carts".* FROM
 ^[[1m^[[36mTRANSACTION (0.0ms)^[[0m ^[[1m^[[35mRELEASE SAVEPOINT
 Redirected to http://www.example.com/line_items/980190962
 Completed 302 Found in 1ms (ActiveRecord: 0.1ms | Allocations: 1669)
 ^[[1m^[[36mTRANSACTION (0.0ms)^[[0m ^[[1m^[[31mrollback transaction
 ^[[1m^[[36mTRANSACTION (0.0ms)^[[0m ^[[1m^[[36mbegin transaction

Let’s clean up that test case to make the problem go away:

http://media.pragprog.com/titles/rails7/code/rails7/depot_h/app/controllers/line_items_controller.rb

rails7/depot_h/test/controllers/line_items_controller_test.rb

 test "should update line_item" do
» patch line_item_url(@line_item),
» params: { line_item: { product_id: @line_item. product_id } }
 assert_redirected_to line_item_url(@line_item)
 end

At this point, we clear the test logs and rerun the tests:

 bin/rails log:clear LOGS=test
 bin/rails test:controllers

A final scan of the logs identifies no further problems.

It makes good sense to review log files periodically. They hold a lot of
useful information.

Sensing the end of an iteration, we call our customer over and show her that
the error is now properly handled. She’s delighted and continues to play
with the application. She notices a minor problem on our new cart display:
there’s no way to empty items out of a cart. This minor change will be our
next iteration. We should make it before heading home.

http://media.pragprog.com/titles/rails7/code/rails7/depot_h/test/controllers/line_items_controller_test.rb

Iteration E3: Finishing the Cart
We know by now that to implement the empty-cart function, we have to add
a link to the cart and modify the destroy method in the carts controller to clean
up the session.

David says:

Battle of the Routes: product_path vs. product_url

It can seem hard in the beginning to know when to use product_path and when to
use product_url when you want to link or redirect to a given route. In reality, it’s simple.

When you use product_url, you’ll get the full enchilada with protocol and domain name, like
http://example.com/products/1. That’s the thing to use when you’re doing redirect_to, because
the HTTP spec requires a fully qualified URL when doing 302 Redirect and friends. You also
need the full URL if you’re redirecting from one domain to another, like product_url(domain:
"example2.com", product: product).

The rest of the time, you can happily use product_path. This will generate only the /products/1
part, and that’s all you need when doing links or pointing forms, like link_to "My lovely
product", product_path(product).

The confusing part is that oftentimes the two are interchangeable because of lenient browsers.
You can do a redirect_to with a product_path and it’ll probably work, but it won’t be valid
according to spec. And you can link_to a product_url, but then you’re littering up your HTML
with needless characters, which is a bad idea too.

Start with the template and use the button_to method to add a button :

rails7/depot_h/app/views/carts/_cart.html.erb

 <div id= "<%= dom_id cart %>" >
 <h2 class= "font-bold text-lg mb-3" >Your Pragmatic Cart</h2>

 <ul class= "list-none list-inside" >
 <% cart. line_items . each do |item| %>
 <%= item. quantity %> × <%= item. product . title %>
 <% end %>

http://media.pragprog.com/titles/rails7/code/rails7/depot_h/app/views/carts/_cart.html.erb

 </div>

» <%= button_to 'Empty Cart' , cart, method: :delete ,
» class: 'ml-4 rounded-lg py-1 px-2 text-white bg-green-600' %>

In the controller, let’s modify the destroy method to ensure that the user is
deleting his or her own cart (think about it!) and to remove the cart from the
session before redirecting to the index page with a notification message:

rails7/depot_h/app/controllers/carts_controller.rb

 def destroy
» @cart. destroy if @cart. id == session[:cart_id]
» session[:cart_id] = nil

 respond_to do |format|
» format. html { redirect_to store_index_url,
» notice: 'Your cart is currently empty' }
 format. json { head :no_content }
 end
 end

And we update the corresponding test in test/controllers/carts_controller_test.rb:

rails7/depot_i/test/controllers/carts_controller_test.rb

 test "should destroy cart" do
» post line_items_url, params: { product_id: products(:ruby). id }
» @cart = Cart. find (session[:cart_id])
»
 assert_difference("Cart.count" , -1) do
 delete cart_url(@cart)
 end

» assert_redirected_to store_index_url
 end

Now when we view our cart and click the Empty Cart button, we’re taken
back to the catalog page and see the message shown in the following
screenshot.

http://media.pragprog.com/titles/rails7/code/rails7/depot_h/app/controllers/carts_controller.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_i/test/controllers/carts_controller_test.rb

We can remove the flash message that’s autogenerated when a line item is
added:

rails7/depot_i/app/controllers/line_items_controller.rb

 def create
 product = Product. find (params[:product_id])
 @line_item = @cart. add_product (product)

 respond_to do |format|
 if @line_item. save
» format. html { redirect_to cart_url(@line_item. cart) }
 format. json { render :show ,
 status: :created , location: @line_item }
 else
 format. html { render :new ,
 status: :unprocessable_entity }
 format. json { render json: @line_item. errors ,
 status: :unprocessable_entity }
 end
 end
 end

Finally, we get around to tidying up the cart display. The -based approach
makes it hard to style. A table-based layout would be easier. Replace
app/views/carts/_cart.html.erb with the following:

rails7/depot_i/app/views/carts/_cart.html.erb

 <div id= "<%= dom_id cart %>" >
» <h2 class= "font-bold text-lg mb-3" >Your Cart</h2>

http://media.pragprog.com/titles/rails7/code/rails7/depot_i/app/controllers/line_items_controller.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_i/app/views/carts/_cart.html.erb

»
» <table class= "table-auto" >
» <% cart. line_items . each do |line_item| %>
» <tr>
» <td class= "text-right" > <%= line_item. quantity %> </td>
» <td>×</td>
» <td class= "pr-2" >
» <%= line_item. product . title %>
» </td>
» <td class= "text-right font-bold" >
» <%= number_to_currency(line_item. total_price) %>
» </td>
» </tr>
» <% end %>
»
» <tfoot>
» <tr>
» <th class= "text-right pr-2 pt-2" colspan= "3" >Total:</th>
» <td class= "text-right pt-2 font-bold border-t-2 border-black" >
» <%= number_to_currency(cart. total_price) %>
» </td>
» </tr>
» </tfoot>
» </table>

 <%= button_to 'Empty Cart' , cart, method: :delete ,
 class: 'ml-4 rounded-lg py-1 px-2 text-white bg-green-600' %>
 </div>

To make this work, we need to add a method to both the LineItem and Cart

models that returns the total price for the individual line item and entire cart,
respectively. Here is the line item, which involves only simple
multiplication:

rails7/depot_i/app/models/line_item.rb

 def total_price
 product. price * quantity
 end

http://media.pragprog.com/titles/rails7/code/rails7/depot_i/app/models/line_item.rb

We implement the Cart method using the nifty Array::sum method to sum the
prices of each item in the collection:

rails7/depot_i/app/models/cart.rb

 def total_price
 line_items. sum { |item| item. total_price }
 end

The following screenshot shows a nicer-looking cart.

Finally, we update our test cases to match the current output:

rails7/depot_i/test/controllers/line_items_controller_test.rb

 test "should create line_item" do
 assert_difference("LineItem.count") do
 post line_items_url, params: { product_id: products(:ruby). id }
 end

 follow_redirect!

» assert_select 'h2' , 'Your Cart'
» assert_select 'td' , "Programming Ruby 1.9"
 end

What We Just Did
Our shopping cart is now something the client is happy with. Along the way,
we covered the following:

http://media.pragprog.com/titles/rails7/code/rails7/depot_i/app/models/cart.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_i/test/controllers/line_items_controller_test.rb

Adding a column to an existing table, with a default value
Migrating existing data into the new table format
Providing a flash notice of an error that was detected
Using the logger to log events
Removing a parameter from the permitted list
Deleting a record
Adjusting the way a table is rendered, using Tailwind CSS classes

But, just as we think we’ve wrapped up this functionality, our customer
wanders over with a copy of Information Technology and Golf Weekly.
Apparently, it has an article about the HotWired style of browser interface,
where stuff gets updated on the fly. Hmmm…let’s look at that tomorrow.

Playtime
Here’s some stuff to try on your own:

Create a migration that copies the product price into the line item, and
change the add_product method in the Cart model to capture the price
whenever a new line item is created. Add prices to the line_items.yml

fixture.

Write unit tests that add both unique products and duplicate products to
a cart. Assert how many products should be in the cart in each instance.
Note that you’ll need to modify the fixture to refer to products and carts
by name—for example, product: ruby.

Check products and line items for other places where a user-friendly
error message would be in order.

Add the ability to delete individual line items from the cart. This will
require buttons on each line, and such buttons will need to be linked to
the destroy action in the LineItemsController.

[48]

[49]

[50]

[51]

We prevented accessing other users’ carts in the LineItemsController, but
you can still see other carts by navigating directly to a URL like
http://localhost/carts/3. See if you can prevent accessing any cart other than
the one currently stored in the session.

Footnotes

http://www.fileformat.info/info/unicode/char/00d7/index.htm

http://guides.rubyonrails.org/debugging_rails_applications.html#the-logger

http://gnuwin32.sourceforge.net/packages/coreutils.htm

http://tailforwin32.sourceforge.net/

Copyright © 2023, The Pragmatic Bookshelf.

http://www.fileformat.info/info/unicode/char/00d7/index.htm
http://guides.rubyonrails.org/debugging_rails_applications.html#the-logger
http://gnuwin32.sourceforge.net/packages/coreutils.htm
http://tailforwin32.sourceforge.net/

We cover:
Using partial templates
Rendering into the page layout
Updating pages dynamically with
TurboStreams
Testing the TurboStream updates
Highlighting changes with CSS
Animations
Broadcasting changes with
Action Cable

Chapter 11

Task F: Hotwiring the Storefront

Our customer wants us to make the storefront more interactive. After we
ask her what she means, we come to realize that what she wants is for the
page to update in place—no bouncing between pages, but to have the page
dynamically update as the cart is being filled.

Back in the old days (up until 1994 or so), browsers were treated as dumb
devices. When you wrote a browser-based application, you’d send stuff to
the browser and then forget about that session. At some point, the user
would fill in some form fields or click a hyperlink, and your application
would get woken up by an incoming request. It would render a complete
page back to the user, and the whole tedious process would start afresh.
That’s exactly how our Depot application behaves so far.

But it turns out that browsers aren’t really that dumb. (Who knew?) They
can run code. All modern browsers can run JavaScript. And it turns out that
the JavaScript in the browser can interact behind the scenes with the
application on the server, updating the stuff the user sees as a result.

New with Rails 7 is a collection of web frameworks included by default that
collectively go by the name Hotwire,[52] which stands for HTML Over The
Wire. Clever, huh? The general idea is that instead of always building entire
HTML pages to send to the client, you build HTML fragments or partials
and send the results to the client, which will integrate those fragments into
the page that already is being displayed.

So let’s Hotwire our shopping cart. Rather than having a separate shopping
cart page, let’s put the current cart display into the catalog’s sidebar. Then

we’ll use Hotwire to update the cart in the sidebar without redisplaying the
whole page.

Whenever you work with Hotwire, it’s good to start with the non-Hotwire
version of the application and then gradually introduce Hotwired features.
That’s what we’ll do here. For starters, let’s move the cart from its own
page and put it in the sidebar.

Iteration F1: Moving the Cart
Currently, our cart is rendered by the show action in the CartController and the
corresponding html.erb template. We’d like to move that rendering into the
sidebar. This means it’ll no longer be in its own page. Instead, we’ll render it
in the layout that displays the overall catalog. You can do that using partial
templates.

Partial Templates
Programming languages let you define methods. A method is a chunk of
code with a name: invoke the method by the name, and the corresponding
chunk of code gets run. And, of course, you can pass parameters to a
method, which lets you write a piece of code that can be used in many
different circumstances.

Think of Rails partial templates (partials for short) like a method for views.
A partial is simply a chunk of a view in its own separate file. You can invoke
(aka render) a partial from another template or from a controller, and the
partial will render itself and return the results of that rendering. As with
methods, you can pass parameters to a partial, so the same partial can render
different results.

We’ll use partials twice in this iteration. First let’s look at the cart display:

rails7/depot_i/app/views/carts/_cart.html.erb

 <div id= "<%= dom_id cart %>" >
» <h2 class= "font-bold text-lg mb-3" >Your Cart</h2>
»
» <table class= "table-auto" >
» <% cart. line_items . each do |line_item| %>
» <tr>
» <td class= "text-right" > <%= line_item. quantity %> </td>
» <td>×</td>
» <td class= "pr-2" >

http://media.pragprog.com/titles/rails7/code/rails7/depot_i/app/views/carts/_cart.html.erb

» <%= line_item. product . title %>
» </td>
» <td class= "text-right font-bold" >
» <%= number_to_currency(line_item. total_price) %>
» </td>
» </tr>
» <% end %>
»
» <tfoot>
» <tr>
» <th class= "text-right pr-2 pt-2" colspan= "3" >Total:</th>
» <td class= "text-right pt-2 font-bold border-t-2 border-black" >
» <%= number_to_currency(cart. total_price) %>
» </td>
» </tr>
» </tfoot>
» </table>

 <%= button_to 'Empty Cart' , cart, method: :delete ,
 class: 'ml-4 rounded-lg py-1 px-2 text-white bg-green-600' %>
 </div>

It creates a list of table rows, one for each item in the cart. Whenever you
find yourself iterating like this, stop and ask yourself, is this too much logic
in a template? It turns out we can abstract away the loop by using partials. To
do this, make use of the fact that you can pass a collection to the method that
renders partial templates, and that method will automatically invoke the
partial once for each item in the collection. Let’s rewrite our cart view to use
this feature:

rails7/depot_j/app/views/carts/_cart.html.erb

 <div id= "<%= dom_id cart %>" >
 <h2 class= "font-bold text-lg mb-3" >Your Cart</h2>

 <table class= "table-auto" >

» <%= render cart. line_items %>

 <tfoot>
 <tr>
 <th class= "text-right pr-2 pt-2" colspan= "3" >Total:</th>

http://media.pragprog.com/titles/rails7/code/rails7/depot_j/app/views/carts/_cart.html.erb

 <td class= "text-right pt-2 font-bold border-t-2 border-black" >
 <%= number_to_currency(cart. total_price) %>
 </td>
 </tr>
 </tfoot>
 </table>

 <%= button_to 'Empty Cart' , cart, method: :delete ,
 class: 'ml-4 rounded-lg py-1 px-2 text-white bg-green-600' %>
 </div>

That’s a lot simpler. The render method will iterate over any collection that’s
passed to it. The partial template is simply another template file (by default
in the same directory as the object being rendered and with the name of the
table as the name). However, to keep the names of partials distinct from
regular templates, Rails automatically prepends an underscore to the partial
name when looking for the file. That means the partial is named
_line_item.html.erb and can be found in the app/views/line_items directory:

rails7/depot_j/app/views/line_items/_line_item.html.erb

 <tr>
 <td class= "text-right" > <%= line_item. quantity %> </td>
 <td>×</td>
 <td class= "pr-2" >
 <%= line_item. product . title %>
 </td>
 <td class= "text-right font-bold" >
 <%= number_to_currency(line_item. total_price) %>
 </td>
 </tr>

Something subtle is going on here. Inside the partial template, we refer to the
current object by using the variable name that matches the name of the
template. In this case, the partial is named line_item, so inside the partial we
expect to have a variable called line_item.

So now we’ve tidied up the cart display, but that hasn’t moved it into the
sidebar. To do that, let’s revisit our layout. Since we already have a partial

http://media.pragprog.com/titles/rails7/code/rails7/depot_j/app/views/line_items/_line_item.html.erb

template that displays the cart, all we need to do is include this new partial in
the sidebar:

rails7/depot_k/app/views/layouts/application.html.erb

 <!DOCTYPE html>
 <html>
 <head>
 <title>Pragprog Books Online Store</title>
 <meta name= "viewport" content= "width=device-width,initial-scale=1" >
 <%= csrf_meta_tags %>
 <%= csp_meta_tag %>
 <%= stylesheet_link_tag "inter-font" , "data-turbo-track" : "reload" %>
 <%= stylesheet_link_tag "tailwind" , "data-turbo-track" : "reload" %>

 <%= stylesheet_link_tag "application" , "data-turbo-track" : "reload" %>
 <%= javascript_importmap_tags %>
 </head>

 <body>
 <header class= "bg-green-700" >
 <%= image_tag 'logo.svg' , alt: 'The Pragmatic Bookshelf' %>
 <h1> <%= @page_title %> </h1>
 </header>

 <section class= "flex" >
 <nav class= "bg-green-900 p-6" >

» <div id= "cart" class= "bg-white rounded p-2" >
» <%= render @cart %>
» </div>
»
 <ul class= "text-gray-300 leading-8" >
 Home
 Questions
 News
 Contact

 </nav>

 <main class= "container mx-auto mt-4 px-5 flex" >
 <%= yield %>
 </main>
 </section>

http://media.pragprog.com/titles/rails7/code/rails7/depot_k/app/views/layouts/application.html.erb

 </body>
 </html>

As black lettering on a green background would be hard to read, we also
added an HTML <div> element that wraps the cart with a white background,
rounded corners, and some padding.

Next, we have to make a small change to the store controller. We’re invoking
the layout while looking at the store’s index action, and that action doesn’t
currently set @cart. That’s a quick change:

rails7/depot_k/app/controllers/store_controller.rb

 class StoreController < ApplicationController
» include CurrentCart
» before_action :set_cart
 def index
 @products = Product. order (:title)
 end
 end

If you display the catalog after adding something to your cart, you should see
something like the following screenshot.

Let’s just wait for the Webby Award nomination.

http://media.pragprog.com/titles/rails7/code/rails7/depot_k/app/controllers/store_controller.rb

Changing the Flow
Now that we’re displaying the cart in the sidebar, we can change the way that
the Add to Cart button works. Rather than display a separate cart page, all it
has to do is refresh the main index page.

The change is straightforward. At the end of the create action, we redirect the
browser back to the index:

rails7/depot_k/app/controllers/line_items_controller.rb

 def create
 product = Product. find (params[:product_id])
 @line_item = @cart. add_product (product)

 respond_to do |format|
 if @line_item. save

» format. html { redirect_to store_index_url }
 format. json { render :show ,
 status: :created , location: @line_item }
 else
 format. html { render :new ,
 status: :unprocessable_entity }
 format. json { render json: @line_item. errors ,
 status: :unprocessable_entity }
 end
 end
 end

At this point, we rerun our tests and see a number of failures:

 $ bin/rails test
 Running 30 tests in a single process (parallelization threshold is 50)
 Run options: --seed 58541

 # Running:

 ...E

 Error:
 ProductsControllerTest#test_should_show_product:
 ActionView::Template::Error: 'nil' is not an ActiveModel-compatible

http://media.pragprog.com/titles/rails7/code/rails7/depot_k/app/controllers/line_items_controller.rb

 object. It must implement :to_partial_path.
 app/views/layouts/application.html.erb:25

If we try to display the products index by visiting
http://localhost:3000/products in the browser, we see the error shown in the
following screenshot.

This information is helpful. The message identifies the template file that was
being processed at the point where the error occurs
(app/views/layouts/application.html.erb), the line number where the error occurred,
and an excerpt from the template of lines around the error. From this, we see
that the expression being evaluated at the point of error is @cart.line_items, and
the message produced is ’nil’ is not an ActiveModel-compatible object.

So, @cart is apparently nil when we display an index of our products. That
makes sense, because it’s set only in the store controller. We can even verify
this using the web console provided at the bottom of the web page. Now that
we know what the problem is, the fix is to avoid displaying the cart at all
unless the value is set:

rails7/depot_l/app/views/layouts/application.html.erb

 <nav class= "bg-green-900 p-6" >
» <% if @cart and not @cart. line_items . empty? %>
 <div id= "cart" class= "bg-white rounded p-2" >

http://localhost:3000/products
http://media.pragprog.com/titles/rails7/code/rails7/depot_l/app/views/layouts/application.html.erb

 <%= render @cart %>
 </div>

» <% end %>

 <ul class= "text-gray-300 leading-8" >
 Home
 Questions
 News
 Contact

 </nav>

With this change in place, our tests now pass once again. Imagine what could
have happened. A change in one part of an application made to support a
new requirement breaks a function implemented in another part of the
application. If you’re not careful, this can happen in a small application like
Depot. Even if you are careful, this will happen in a large application.

Keeping tests up-to-date is an important part of maintaining your application.
Rails makes this as easy as possible to do. Agile programmers make testing
an integral part of their development efforts. Many even go so far as to write
their tests first, before the first line of code is written.

So now we have a store with a cart in the sidebar. When we click to add an
item to the cart, the page is redisplayed with an updated cart. But if our
catalog is large, that redisplay might take a while. It uses bandwidth, and it
uses server resources. Fortunately, we can use Turbo to make this better.

Iteration F2: Creating a Hotwired Cart
Turbo[53] is one of the Hotwire frameworks. Turbo lets us write code that
runs in the browser and interacts with our server-based application. In our
case, we’d like to make the Add to Cart buttons invoke the server create

action on the LineItems controller in the background. The server can then send
down just the HTML for the cart, and we can replace the cart in the sidebar
with the server’s updates.

Now, normally we’d do this by writing JavaScript that runs in the browser
and by writing server-side code that communicates with this JavaScript
(possibly using a technology such as JavaScript Object Notation [JSON]).
The good news is that, with Rails, all this is hidden from us. We can use
Ruby to do everything we need to do (and with a whole lot of support from
some Rails helper methods).

The trick when adding Turbo to an application is to take small steps. So let’s
start with the most basic one. Let’s change it so that our application responds
with the HTML fragment containing the cart.

Because Rails includes Turbo by default, our client application is already
ready. Behind the scenes it included text/vnd.turbo-stream.html in Accept header in
form requests, so all we need to do is provide a turbo stream response.

We do this by adding a call to respond_to telling it that we want to respond
with a format of turbo_stream:

rails7/depot_l/app/controllers/line_items_controller.rb

 def create
 product = Product. find (params[:product_id])
 @line_item = @cart. add_product (product)

 respond_to do |format|
 if @line_item. save

http://media.pragprog.com/titles/rails7/code/rails7/depot_l/app/controllers/line_items_controller.rb

» format. turbo_stream do
» render turbo_stream: turbo_stream. replace (
» :cart ,
» partial: 'layouts/cart' ,
» locals: { cart: @cart }
»)
» end
 format. html { redirect_to store_index_url }
 format. json { render :show ,
 status: :created , location: @line_item }
 else
 format. html { render :new ,
 status: :unprocessable_entity }
 format. json { render json: @line_item. errors ,
 status: :unprocessable_entity }
 end
 end
 end

The way to read this code is as follows: whenever we get a request that
accepts a turbo stream response, we render a turbo stream response
consisting of turbo stream replace, specifying an HTML element ID of cart
as the element to be replaced, and rendering the partial, which can be found
in app/views/application/_cart.html.erb using the value of @cart as the value of cart.

When receiving a turbo stream response, Turbo instructs the browser to stick
the HTML fragment contained in the response into the browser’s internal
representation of the structure and content of the document being displayed
—namely, the Document Object Model (DOM). By manipulating the DOM,
we cause the display to change in front of the user’s eyes.

Best of all, if the browser’s request does not specify that it will accept a
turbo stream response (perhaps because JavaScript was disabled?), what it
will get instead is the HTML response, which in this case is a redirect to the
store.

Now let’s create the partial that this code references. Starting with code we
extract from app/views/layouts/application.html.erb, add an HTML id attribute so that

Turbo can identify the portion of the display that needs to be replaced. As
we do this, we take care to ensure that the id is present even when the cart
isn’t displayed, which we do by adding an else clause:

rails7/depot_m/app/views/layouts/_cart.html.erb

 <% if cart and not cart. line_items . empty? %>
 <div id= "cart" class= "bg-white rounded p-2" >
 <%= render cart %>
 </div>
 <% else %>
 <div id= "cart" ></div>
 <% end %>

Finally, we update the template that we extracted this from to make use of
the new partial:

rails7/depot_m/app/views/layouts/application.html.erb

 <!DOCTYPE html>
 <html>
 <head>
 <title>Pragprog Books Online Store</title>
 <meta name= "viewport" content= "width=device-width,initial-scale=1" >
 <%= csrf_meta_tags %>
 <%= csp_meta_tag %>
 <%= stylesheet_link_tag "inter-font" , "data-turbo-track" : "reload" %>
 <%= stylesheet_link_tag "tailwind" , "data-turbo-track" : "reload" %>

 <%= stylesheet_link_tag "application" , "data-turbo-track" : "reload" %>
 <%= javascript_importmap_tags %>
 </head>

 <body>
 <header class= "bg-green-700" >
 <%= image_tag 'logo.svg' , alt: 'The Pragmatic Bookshelf' %>
 <h1> <%= @page_title %> </h1>
 </header>

 <section class= "flex" >
 <nav class= "bg-green-900 p-6" >

http://media.pragprog.com/titles/rails7/code/rails7/depot_m/app/views/layouts/_cart.html.erb
http://media.pragprog.com/titles/rails7/code/rails7/depot_m/app/views/layouts/application.html.erb

» <%= render partial: 'layouts/cart' , locals: { cart: @cart } %>

 <ul class= "text-gray-300 leading-8" >
 Home
 Questions
 News
 Contact

 </nav>

 <main class= "container mx-auto mt-4 px-5 flex" >
 <%= yield %>
 </main>
 </section>
 </body>
 </html>

Does it work? At first, it’s hard to tell the difference. But after emptying the
cart and adding another book to the cart we see an obviously not-empty cart
alongside a message that it currently is empty, as illustrated in the following
screenshot.

What’s going on here is that we updated the cart (Yay!), but didn’t update
the notice (Boo!). This failure is something agile folks call failing fast and is
something to be celebrated. So far in this iteration we literally added one call
to format.turbo_stream and we got the cart updated dynamically and learned a lot.

What did we learn? Well for starters, we need a partial for every area of the
screen that we wish to dynamically update, the HTML in that partial needs

to contain a unique HTML ID element, and we need to update the controller
to return turbo streams.

Let’s apply this to the notice. First, we extract the notice from
app/views/store/index.html.erb into a separate partial. While we’re here, we add an
else clause to ensure that there always is an HTML element with an ID of
notice present on the page, even if its content is empty.

rails7/depot_m/app/views/store/_notice.html.erb

 <% if notice. present? %>
 <p class= "py-2 px-3 bg-green-50 mb-5 text-green-500 font-medium rounded-lg
 inline-block" id= "notice" >
 <%= notice %>
 </p>
 <% else %>
 <div id= "notice" ></div>
 <% end %>

And then we update the original template to make use of this partial,
keeping things DRY:

rails7/depot_m/app/views/store/index.html.erb

 <div class= "w-full" >
» <%= render 'notice' %>

 <h1 class= "font-bold text-xl mb-6 pb-2 border-b-2" >
 Your Pragmatic Catalog
 </h1>

Remembering from the test failures from the last iteration that the cart may
not be present in the layout, we add an else clause there too. And while we’re
at it, we tidy things up and make it so that the cart isn’t visible when it’s
empty:

rails7/depot_m/app/views/layouts/application.html.erb

 <nav class= "bg-green-900 p-6" >

http://media.pragprog.com/titles/rails7/code/rails7/depot_m/app/views/store/_notice.html.erb
http://media.pragprog.com/titles/rails7/code/rails7/depot_m/app/views/store/index.html.erb
http://media.pragprog.com/titles/rails7/code/rails7/depot_m/app/views/layouts/application.html.erb

» <%= render partial: 'layouts/cart' , locals: { cart: @cart } %>

 <ul class= "text-gray-300 leading-8" >
 Home
 Questions
 News
 Contact

 </nav>

Now that the partials are in place, we need to send two turbo stream replace
instructions in response to a line item create. We actually can send an array
of responses within the partial, but that feels messy, so we instead create a
new template. As this will be the template for turbo stream LineItem create
responses, the natural place to put this is in
app/views/line_items/create.turbo_stream.erb:

rails7/depot_m/app/views/line_items/create.turbo_stream.erb

 <%= turbo_stream. replace 'notice' do %>
 <%= render partial: 'store/notice' , locals: { notice: @notice } %>
 <% end %>

 <%= turbo_stream. replace 'cart' do %>
 <%= render partial: 'layouts/cart' , locals: { cart: @cart} %>
 <% end %>

Whether you create the turbo stream response inline in your controller or
make use of an HTML template is a matter of personal taste, but generally a
template is recommended whenever multiple items are in the response.

All that’s remaining is to update the controller. Since we followed the
default naming conventions for the template, we don’t need to pass any
arguments to the format.turbo_stream call.

rails7/depot_m/app/controllers/line_items_controller.rb

 def create
 product = Product. find (params[:product_id])

http://media.pragprog.com/titles/rails7/code/rails7/depot_m/app/views/line_items/create.turbo_stream.erb
http://media.pragprog.com/titles/rails7/code/rails7/depot_m/app/controllers/line_items_controller.rb

 @line_item = @cart. add_product (product)

 respond_to do |format|
 if @line_item. save
» format. turbo_stream
 format. html { redirect_to store_index_url }
 format. json { render :show ,
 status: :created , location: @line_item }
 else
 format. html { render :new ,
 status: :unprocessable_entity }
 format. json { render json: @line_item. errors ,
 status: :unprocessable_entity }
 end
 end
 end

The Customer Is Never Satisfied
We’re feeling pretty pleased with ourselves. We changed a handful of lines
of code, and our boring old Web 1.0 application now sports Hotwired speed
stripes. We breathlessly call the client over to come look. Without saying
anything, we proudly click Add to Cart and look at her, eager for the praise
we know will come. Instead, she looks surprised. “You called me over to
show me a bug?” she asks. “You click that button, and nothing happens.”

We patiently explain that, in fact, a lot happened. Just look at the cart in the
sidebar. See? When we add something, the quantity changes from 4 to 5.

“Oh,” she says, “I didn’t notice that.” And if she didn’t notice the page
update, it’s likely that our users won’t either. It’s time for some user
interface hacking.

Iteration F3: Highlighting Changes
A common way to highlight changes made to a page is the (now) infamous
Yellow Fade Technique.[54] It highlights an element in a browser: by default
it flashes the background yellow and then gradually fades it back to white.
The user clicks the Add to Cart button, and the count updates to two as the
line flares brighter. It then fades back to the background color over a short
period of time.

While Tailwind provides an extensive set of utility CSS classes to cover
most needs, there comes a time when you need something more. For us, now
is that time.

You can implement this with CSS animations.[55] In CSS animations, a class
uses the animation attribute to reference a particular animation. The animation
itself is defined as a series of keyframes that describe the style of an element
at various points in the animation. The animation is executed by the browser
when the page loads or when the class is applied to an element. This sounds
complicated, but for our case we only need to define the starting and ending
states of the element.

Let’s see the CSS first. We’ll place it inside app/assets/stylesheets/line_items.css. You
can name the file whatever you like as long as it ends in css and is placed in
this directory, and it will be made available to your entire application.
Generally it makes sense to group related things into separate files.

rails7/depot_n/app/assets/stylesheets/line_items.css

 @keyframes line-item-highlight {
 0% {
 background: #8f8;
 }

 100% {
 background: none;

http://media.pragprog.com/titles/rails7/code/rails7/depot_n/app/assets/stylesheets/line_items.css

 }
 }

 .line-item-highlight {
 animation: line-item-highlight 1s;
 }

The @keyframes directive defines an animation, in this case named line-item-

highlight. Inside that declaration, we specify what the state of the DOM
element should be at various points in the animation. At the start of the
animation (0%), the element should have a background color of bright green,
which is the highlight color. At the end of the animation (100%), it should
have no background color.

Next we define a CSS class named line-item-highlight that uses the animation

attribute. It accepts the name of the animation (which we just defined) and
an animation time, which we’ve set at one second (note that you don’t have
to name the CSS class the same as the animation, but it can help keep it all
straight if you do).

The last step is to use this class on the recently added item. To do that, our
ERB template needs to know which item is the most recently added item.
Set that inside LineItemsController:

rails7/depot_o/app/controllers/line_items_controller.rb

 def create
 product = Product. find (params[:product_id])
 @line_item = @cart. add_product (product)

 respond_to do |format|
 if @line_item. save
» format. turbo_stream { @current_item = @line_item }
 format. html { redirect_to store_index_url }
 format. json { render :show ,
 status: :created , location: @line_item }
 else
 format. html { render :new ,

http://media.pragprog.com/titles/rails7/code/rails7/depot_o/app/controllers/line_items_controller.rb

 status: :unprocessable_entity }
 format. json { render json: @line_item. errors ,
 status: :unprocessable_entity }
 end
 end
 end

In the _line_item.html.erb partial, we then check to see if the item we’re
rendering is the one that just changed. If so, we give it the animation class
we just defined:

rails7/depot_o/app/views/line_items/_line_item.html.erb

» <% if line_item == @current_item %>
» <tr class= "line-item-highlight" >
» <% else %>
» <tr>
» <% end %>
 <td class= "text-right" > <%= line_item. quantity %> </td>
 <td>×</td>
 <td class= "pr-2" >
 <%= line_item. product . title %>
 </td>
 <td class= "text-right font-bold" >
 <%= number_to_currency(line_item. total_price) %>
 </td>
 </tr>

As a result of these two minor changes, the <tr> element of the most recently
changed item in the cart will be tagged with class="line-item-highlight". When the
browser receives this rendered HTML and inserts it into the DOM, the
browser will see that the most recently added line item has the class line-item-

highlight, which will trigger the animation. No JavaScript needed!

With that change in place, reload the page, then click any Add to Cart
button, and you’ll see that the changed item in the cart glows a light green
before fading back to merge with the background.

http://media.pragprog.com/titles/rails7/code/rails7/depot_o/app/views/line_items/_line_item.html.erb

We’re not done yet. We haven’t tested any of our Hotwired additions, such
as what happens when we click the Add to Cart button. Rails provides the
help we need to do that too.

We already have a should create line_item test, so let’s add another one called
should create line_item via turbo-stream:

rails7/depot_o/test/controllers/line_items_controller_test.rb

 test "should create line_item via turbo-stream" do
 assert_difference('LineItem.count') do
 post line_items_url, params: { product_id: products(:ruby). id },
 as: :turbo_stream
 end

 assert_response :success
 assert_match /<tr class="line-item-highlight">/ , @response. body
 end

This test differs in the name of the test, the addition of as: :turbo_stream—and in
the expected results. Instead of a redirect, we expect a successful response
containing a call to replace the HTML for the cart.

http://media.pragprog.com/titles/rails7/code/rails7/depot_o/test/controllers/line_items_controller_test.rb

Iteration F4: Broadcasting Updates with Action
Cable
Up until now, our users’ web browsers have requested information from our
Rails app, either by going directly to a URL or by clicking a link or button.
It’s also possible to send information from our Rails app to our users’
browsers without a direct request. The technology that enables this is called
WebSockets.[56] Prior to Rails 5, setting this up was fairly involved, but Rails
5 introduced Action Cable, which simplifies pushing data to all connected
browsers.

We can use Action Cable and WebSockets to broadcast price updates to the
users browsing the catalog. To see why we’d want to, bring up the Depot
application in two browser windows or tabs. In the first window, display the
catalog. Then, in the second window, update the price of an item. Return to
the first window and add that item to the cart. At this point, the cart shows
the updated price, but the catalog shows the original price, as illustrated in
the following screenshot.

We discuss this with our customer. She agrees to honor the price at the time
the item was placed in the cart, but she wants the catalog being displayed to

be up-to-date. At this point, we’ve reached the limits of what Turbo Streams
can do for us. So far, the server has only responded to requests and has no
way to initiate an update.

In 2011, the Internet Engineering Task Force (IETF) published a Standards
Track document describing a two-way WebSocket protocol.[57] Action Cable
provides both a client-side JavaScript framework and a server-side Ruby
framework that together seamlessly integrate the WebSocket protocol into
the rest of your Rails application. This enables features like real-time
updates to be easily added to your Rails application in a manner that
performs well and is scalable.

Making use of Action Cable is a three-step process: create a channel,
broadcast some data, and receive the data. And by now, it should be no
surprise that Rails has a generator that does most of the work (for two out of
the three steps, anyway):

 depot> bin/rails generate channel products
 invoke test_unit
 create test/channels/products_channel_test.rb
 identical app/channels/application_cable/channel.rb
 identical app/channels/application_cable/connection.rb
 create app/channels/products_channel.rb
 create app/javascript/channels/index.js
 create app/javascript/channels/consumer.js
 append app/javascript/application.js
 append config/importmap.rb
 create app/javascript/channels/products_channel.js
 gsub app/javascript/channels/products_channel.js
 append app/javascript/channels/index.js

The way to create a channel is by updating the file created in the app/channels/

directory:

rails7/depot_o/app/channels/products_channel.rb

 class ProductsChannel < ApplicationCable::Channel
 def subscribed

http://media.pragprog.com/titles/rails7/code/rails7/depot_o/app/channels/products_channel.rb

» stream_from "products"
 end

 def unsubscribed
 # Any cleanup needed when channel is unsubscribed
 end
 end

What’s important here is the name of the class (ProductsChannel) and the name
of the stream (products). It’s possible for a channel to support multiple streams
(for example, a chat application can have multiple rooms), but we only need
one stream for now.

Channels can have security implications, so by default Rails only allows
access from the localhost when running in development mode. If you’re
doing development with multiple machines, you must disable this check. Do
this by uncommenting the following line in config/environments/development.rb:

 config. action_cable . disable_request_forgery_protection = true

We’ll be sending only data over this channel, and not processing commands,
so this is safe to do.

As with before, we begin by separating out the product information from the
store index template into a partial, and wrapping it with an HTML element
with an id attribute.

rails7/depot_o/app/views/store/_product.html.erb

» <%= turbo_frame_tag(dom_id(product)) do %>
 <li class= 'flex mb-6' >
 <%= image_tag(product. image_url ,
 class: 'object-contain w-40 h-48 shadow mr-6') %>

 <div>
 <h2 class= "font-bold text-lg mb-3" > <%= product. title %> </h2>

 <p>
 <%= sanitize(product. description) %>

http://media.pragprog.com/titles/rails7/code/rails7/depot_o/app/views/store/_product.html.erb

 </p>

 <div class= "mt-3" >
 <%= number_to_currency(product. price) %>

 <%= button_to 'Add to Cart' ,
 line_items_path(product_id: product),
 form_class: 'inline' ,
 class: 'ml-4 rounded-lg py-1 px-2
 text-white bg-green-600' %>
 </div>
 </div>

» <% end %>

We use the handy turbo_frame_tag helper to create the HTML element, as well
as the dom_id helper to create a unique id for every product.

Next, we make two changes to the template from which this was extracted.
First, we add a call to turbo_stream_from to identify what channel we’ll
subscribe to. Next we make use of the partial that we just created.

rails7/depot_o/app/views/store/index.html.erb

 <div class= "w-full" >
 <%= render 'notice' %>

 <h1 class= "font-bold text-xl mb-6 pb-2 border-b-2" >
 Your Pragmatic Catalog
 </h1>

» <%= turbo_stream_from 'products' %>
»

 <% cache @products do %>
 <% @products. each do |product| %>
 <% cache product do %>
» <%= render partial: 'product' , object: product %>
 <% end %>
 <% end %>
 <% end %>

http://media.pragprog.com/titles/rails7/code/rails7/depot_o/app/views/store/index.html.erb

 </div>

All that remains to be done is to broadcast the HTML for a product every
time an update is made:

rails7/depot_o/app/controllers/products_controller.rb

 def update
 respond_to do |format|
 if @product. update (product_params)
 format. html { redirect_to product_url(@product),
 notice: "Product was successfully updated." }
 format. json { render :show , status: :ok , location: @product }
»
» @product. broadcast_replace_later_to 'products' ,
» partial: 'store/product'
 else
 format. html { render :edit ,
 status: :unprocessable_entity }
 format. json { render json: @product. errors ,
 status: :unprocessable_entity }
 end
 end
 end

We’re calling broadcast_replace_later_to because we want the messages to go out
asynchronously, and generally after this request completes. We specify the
channel and the partial to be used.

To start the Action Cable process (and to pick up the configuration change if
that was done), we need to restart the server. The first time you visit the
Depot page you’ll see additional messages on the server window
(information slightly abbreviated to fit within the book margins):

 Started GET "/cable" for 127.0.0.1
 Started GET "/cable/" [WebSocket] for 127.0.0.1
 Successfully upgraded to WebSocket
 Started GET "/cable" for 127.0.0.1
 ProductsChannel is transmitting the subscription confirmation
 ProductsChannel is streaming from products

http://media.pragprog.com/titles/rails7/code/rails7/depot_o/app/controllers/products_controller.rb

 Started GET "/cable/" [WebSocket] for 127.0.0.1
 Successfully upgraded to WebSocket
 Turbo::StreamsChannel is transmitting the subscription confirmation
 Turbo::StreamsChannel is streaming from products

Again, update the price of a book in one browser window and watch the
catalog update instantly in any other browser window that shows the Depot
store.

Should you have difficulties, check these:

If you have redis installed, ensure it is running by issuing the following
command:

 $ redis-cli ping

The response you should see is PONG.

You can avoid the use of redis entirely in development by ensuring the
development section of the config/cable.yml is as follows:

 development:
 adapter: async

What We Just Did
In this iteration, we added Hotwire support to our cart:

We moved the shopping cart into the sidebar. We then arranged for the
create action to redisplay the catalog page.

We used as: :turbo_stream to indicate to the LineItemsController.create that the
client supports Turbo Streams.

We then used an ERB partial template to return only the portions of the
page that need to be replaced.

We used Action Cable and Turbo Frames to update the catalog display
whenever a product changes.

We wrote a test that verifies not only the creation of a line item but also
the content of the response that’s returned from such a request.

The key point to take away is the incremental style of Hotwired
development. Start with a conventional application and then add Ajax
features, one by one. Hotwired applications can be hard to debug; by adding
it slowly to an application, you make it easier to track down what changed if
your application stops working. And, as you saw, starting with a
conventional application makes it easier to support both Hotwired and non-
Hotwired behavior in the same codebase.

Finally, here are a couple of hints. First, if you plan to do a lot of Hotwired
development, you’ll probably need to get familiar with your browser’s
JavaScript debugging facilities and with its DOM inspectors, such as
Firefox’s Firebug, Google Chrome’s Developer Tools, Safari’s Web
Inspector, or Opera’s Dragonfly. And, second, the NoScript plugin for
Firefox makes checking JavaScript/no JavaScript a one-click breeze. Others
find it useful to run two different browsers when they’re developing—with
JavaScript enabled in one and disabled in the other. Then, as new features
are added, poking at it with both browsers will ensure that your application
works regardless of the state of JavaScript.

Playtime
Here’s some stuff to try on your own:

The cart is currently hidden when the user empties it by redrawing the
entire catalog. Can you change the application to remove it using a
Turbo Stream request, so the page doesn’t reload?

Add a button next to each item in the cart. When clicked, it should
invoke an action to decrement the quantity of the item, deleting it from

[52]

[53]

[54]

[55]

[56]

[57]

the cart when the quantity reaches zero. Get it working without using
Turbo first and then add the Turbo goodness.

Make images clickable. In response to a click, add the associated
product to the cart.

When a product changes, highlight the product that changed in
response to receiving a broadcast message.

Footnotes

https://hotwired.dev/

https://turbo.hotwired.dev/

https://signalvnoise.com/archives/000558.php

https://developer.mozilla.org/en-
US/docs/Web/CSS/CSS_Animations/Using_CSS_animations

https://www.w3.org/TR/websockets/

https://tools.ietf.org/html/rfc6455

Copyright © 2023, The Pragmatic Bookshelf.

https://hotwired.dev/
https://turbo.hotwired.dev/
https://signalvnoise.com/archives/000558.php
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://www.w3.org/TR/websockets/
https://tools.ietf.org/html/rfc6455

We cover:
Linking tables with foreign keys
Using belongs_to, has_many, and
:through
Creating forms based on models
(form_with)
Linking forms, models, and views
Generating a feed using
atom_helper on model objects

Chapter 12

Task G: Check Out!

Let’s take stock. So far, we’ve put together a basic product administration
system, we’ve implemented a catalog, and we have a pretty spiffy-looking
shopping cart. So now we need to let the buyer actually purchase the
contents of that cart. Let’s implement the checkout function.

We’re not going to go overboard here. For now, all we’ll do is capture the
customer’s contact information and payment details. Using these, we’ll
construct an order in the database. Along the way, we’ll be looking a bit
more at models, validation, and form handling.

Iteration G1: Capturing an Order
An order is a set of line items, along with details of the purchase transaction.
Our cart already contains line_items, so all we need to do is add an order_id

column to the line_items table and create an orders table based on the Initial
guess at application data diagram, combined with a brief chat with our
customer.

First we create the order model and update the line_items table:

 depot> bin/rails generate scaffold Order name address:text email \
 pay_type:integer
 depot> bin/rails generate migration add_order_to_line_item order:references

Note that we didn’t specify any data type for two of the four columns. This
is because the data type defaults to string. This is yet another small way in
which Rails makes things easier for you in the most common case without
making things any more cumbersome when you need to specify a data type.

Also note that we defined pay_type as an integer. While this is an efficient way
to store data that can only store discrete values, storing data in this way
requires keeping track of which values are used for which payment type.
Rails can do this for you through the use of enum declarations placed in the
model class. Add this code to app/models/order.rb:

rails7/depot_o/app/models/order.rb

 class Order < ApplicationRecord
» enum pay_type: {
 "Check" => 0,
 "Credit card" => 1,
 "Purchase order" => 2
 }
 end

http://media.pragprog.com/titles/rails7/code/rails7/depot_o/app/models/order.rb

Finally, we need to modify the second migration to indicate that cart_id can be
null in records. This is done by modifying the existing add_reference line to say
null: true and adding a new change_column line to enable nulls in the cart_id

column.

rails7/depot_o/db/migrate/20221207000008_add_order_to_line_item.rb

 class AddOrderToLineItem < ActiveRecord::Migration[7.0]
 def change
» add_reference :line_items , :order , null: true , foreign_key: true
» change_column :line_items , :cart_id , :integer , null: true
 end
 end

Now that we’ve created the migrations, we can apply them:

 depot> bin/rails db:migrate
 == 20221207000007 CreateOrders: migrating ==============================
 -- create_table(:orders)
 -> 0.0007s
 == 20221207000007 CreateOrders: migrated (0.0022s) =====================

 == 20221207000008 AddOrderToLineItem: migrating ========================
 -- add_reference(:line_items, :order, {:null=>true, :foreign_key=>true})
 -> 0.0058s
 -- change_column(:line_items, :cart_id, :integer, {:null=>true})
 -> 0.0046s
 == 20221207000008 AddOrderToLineItem: migrated (0.0246s) ===============

Because the database didn’t have entries for these two new migrations in the
schema_migrations table, the db:migrate task applied both migrations to the
database. We could, of course, have applied them separately by running the
migration task after creating the individual migrations.

Creating the Order Capture Form
Now that we have our tables and our models as we need them, we can start
the checkout process. First, we need to add a Checkout button to the

http://media.pragprog.com/titles/rails7/code/rails7/depot_o/db/migrate/20221207000008_add_order_to_line_item.rb

shopping cart. Because it’ll create a new order, we’ll link it back to a new

action in our order controller:

rails7/depot_o/app/views/carts/_cart.html.erb

 <div id= "<%= dom_id cart %>" >
 <h2 class= "font-bold text-lg mb-3" >Your Cart</h2>

 <table class= "table-auto" >
 <%= render cart. line_items %>

 <tfoot>
 <tr>
 <th class= "text-right pr-2 pt-2" colspan= "3" >Total:</th>
 <td class= "text-right pt-2 font-bold border-t-2 border-black" >
 <%= number_to_currency(cart. total_price) %>
 </td>
 </tr>
 </tfoot>
 </table>

» <div class= "flex mt-1" >
 <%= button_to 'Empty Cart' , cart, method: :delete ,
 class: 'ml-4 rounded-lg py-1 px-2 text-white bg-green-600' %>

» <%= button_to 'Checkout' , new_order_path, method: :get ,
» class: 'ml-4 rounded-lg py-1 px-2 text-black bg-green-200' %>
» </div>
 </div>

We wrapped the buttons in a div and used a flex layout so that they’ll appear
side by side.

The first thing we want to do is check to make sure that there’s something in
the cart. This requires us to have access to the cart. Planning ahead, we’ll
also need this when we create an order:

rails7/depot_o/app/controllers/orders_controller.rb

 class OrdersController < ApplicationController
» include CurrentCart

http://media.pragprog.com/titles/rails7/code/rails7/depot_o/app/views/carts/_cart.html.erb
http://media.pragprog.com/titles/rails7/code/rails7/depot_o/app/controllers/orders_controller.rb

» before_action :set_cart , only: %i[new create]
» before_action :ensure_cart_isnt_empty , only: %i[new]
 before_action :set_order , only: %i[show edit update destroy]

 # GET /orders or /orders.json
 #...
»
» private
» def ensure_cart_isnt_empty
» if @cart. line_items . empty?
» redirect_to store_index_url, notice: 'Your cart is empty'
» end
» end
 end

If nothing is in the cart, we redirect the user back to the storefront, provide a
notice of what we did, and return immediately. This prevents people from
navigating directly to the checkout option and creating empty orders. Note
that we tucked this handling of an exception case into a before_action method.
This enables the main line processing logic to remain clean.

And we add a test for requires item in cart and modify the existing test for should

get new to ensure that the cart contains an item:

rails7/depot_o/test/controllers/orders_controller_test.rb

» test "requires item in cart" do
» get new_order_url
» assert_redirected_to store_index_path
» assert_equal 'Your cart is empty' , flash[:notice]
» end

 test "should get new" do
» post line_items_url, params: { product_id: products(:ruby). id }
»
 get new_order_url
 assert_response :success
 end

http://media.pragprog.com/titles/rails7/code/rails7/depot_o/test/controllers/orders_controller_test.rb

Now we want the new action to present users with a form, prompting them to
enter the information in the orders table: the user’s name, address, email
address, and payment type. This means we’ll need to display a Rails
template containing a form. The input fields on this form will have to link to
the corresponding attributes in a Rails model object, so we need to create an
empty model object in the new action to give these fields something to work
with.

As always with HTML forms, the trick is populating any initial values into
the form fields and then extracting those values out into our application
when the user clicks the submit button.

In the controller, the order variable is set to reference a new Order model
object. This is done because the view populates the form from the data in
this object. As it stands, that’s not particularly interesting. Because it’s a new
model object, all the fields will be empty. However, consider the general
case. Maybe we want to edit an existing order. Or maybe the user has tried
to enter an order but the data has failed validation. In these cases, we want
any existing data in the model shown to the user when the form is displayed.
Passing in the empty model object at this stage makes all these cases
consistent. The view can always assume it has a model object available.
Then, when the user clicks the submit button, we’d like the new data from
the form to be extracted into a model object back in the controller.

Fortunately, Rails makes this relatively painless. It provides us with a bunch
of form helper methods. These helpers interact with the controller and with
the models to implement an integrated solution for form handling. Before
we start on our final form, let’s look at a small example:

 <%= form_with(model: order) do |form| %>
 <p>
 <%= form. label :name , "Name:" %>
 <%= form. text_field :name , size: 40 %>
 </p>
 <% end %>

This code does two powerful things for us. First, the form_with helper on the
first line sets up an HTML form that knows about Rails routes and models.
The argument, model: order, tells the helper which instance variable to use
when naming fields and sending the form data back to the controller.

The second powerful feature of the code is how it creates the form fields
themselves. You can see that form_with sets up a Ruby block environment
(that ends on the last line of the listing with the end keyword). Within this
block, you can put normal template stuff (such as the <p> tag). But you can
also use the block’s parameter (form in this case) to reference a form context.
We use this context to add a text field with a label by calling text_field and
label, respectively. Because the text field is constructed in the context of
form_with, it’s automatically associated with the data in the order object. This
association means that submitting the form will set the right names and
values in the data available to the controller, but it will also pre-populate the
form fields with any values already existing on the model.

All these relationships can be confusing. It’s important to remember that
Rails needs to know both the names and the values to use for the fields
associated with a model. The combination of form_with and the various field-
level helpers (such as text_field) gives it this information.

Now we can update the template for the form that captures a customer’s
details for checkout. It’s invoked from the new action in the order controller,
so the template is called new.html.erb, found in the app/views/orders directory:

rails7/depot_o/app/views/orders/new.html.erb

 <div class= "mx-auto md:w-2/3 w-full" >
» <h1 class= "font-bold text-4xl" >Please Enter Your Details</h1>

 <%= render "form" , order: @order %>
 </div>

http://media.pragprog.com/titles/rails7/code/rails7/depot_o/app/views/orders/new.html.erb

In this file, we’ve updated the h1 and removed the link back to the orders
index. This template makes use of a partial named _form. We take a peek at
that file and see many long lines repeating the same class definitions. Let’s
introduce another CSS rule so that we can clean this up:

rails7/depot_o/app/assets/stylesheets/application.tailwind.css

 @tailwind base;
 @tailwind components;
 @tailwind utilities;

» @layer components {
» .input-field { @apply
» block shadow rounded-md border border-green-400 outline-none
» px-3 py-2 mt-2 w-full
» }
» }

There are many reasons to consider factoring out repeated definitions into a
style sheet: perhaps it’s to reduce repetition to ease maintenance, perhaps it’s
to reduce visual clutter so that you can focus on the structure of the
document, or perhaps it’s merely to keep the number of columns down so
that it will fit on the printed page. Any of these are good reasons, and they
all apply here.

Once we’ve replaced the class attributes for the form.text_field and wrapped
other lines to fit on the page, we make a second set of changes:

rails7/depot_o/app/views/orders/_form.html.erb

 <%= form_with(model: order, class: "contents") do |form| %>
 <% if order. errors . any? %>
 <div id= "error_explanation" class= "bg-red-50 text-red-500 px-3 py-2
 font-medium rounded-lg mt-3" >
 <h2> <%= pluralize(order. errors . count , "error") %>
 prohibited this order from being saved:</h2>

 <% order. errors . each do |error| %>

http://media.pragprog.com/titles/rails7/code/rails7/depot_o/app/assets/stylesheets/application.tailwind.css
http://media.pragprog.com/titles/rails7/code/rails7/depot_o/app/views/orders/_form.html.erb

 <%= error. full_message %>
 <% end %>

 </div>
 <% end %>

 <div class= "my-5" >
 <%= form. label :name %>
 <%= form. text_field :name , class: "input-field" %>
 </div>

 <div class= "my-5" >
 <%= form. label :address %>
 <%= form. text_area :address , rows: 4, class: "input-field" %>
 </div>

 <div class= "my-5" >
 <%= form. label :email %>
» <%= form. email_field :email , class: "input-field" %>
 </div>

 <div class= "my-5" >
 <%= form. label :pay_type %>
» <%= form. select :pay_type , Order. pay_types . keys ,
» { prompt: 'Select a payment method' },
» class: "input-field" %>
 </div>

 <div class= "inline" >
» <%= form. submit 'Place Order' , class: "rounded-lg py-3 px-5
» bg-green-200 text-black inline-block font-medium cursor-pointer" %>
 </div>
 <% end %>

Rails has form helpers for all the different HTML-level form elements. In
the preceding code we use text_field, email_field, and text_area helpers to capture
the customer’s name, email, and address. We’ll cover form helpers in more
depth in Generating Forms.

The only tricky thing in there is the code associated with the selection list.
We use the keys defined for the pay_type enum for the list of available payment

options. We also pass the :prompt parameter, which adds a dummy selection
containing the prompt text.

We also adjust the background and text color of the submit button as well as
the text for the button itself.

We’re ready to play with our form. Add some stuff to your cart, then click
the Checkout button. You should see something like the following
screenshot.

Looking good! Before we move on, let’s finish the new action by adding
some validation. We’ll change the Order model to verify that the customer
enters data for all the input fields. We’ll also validate that the payment type
is one of the accepted values:

rails7/depot_o/app/models/order.rb

 class Order < ApplicationRecord
 # ...
» validates :name , :address , :email , presence: true
» validates :pay_type , inclusion: pay_types. keys
 end

http://media.pragprog.com/titles/rails7/code/rails7/depot_o/app/models/order.rb

Some folks might be wondering why we bother to validate the payment
type, given that its value comes from a drop-down list that contains only
valid values. We do it because an application can’t assume that it’s being fed
values from the forms it creates. Nothing is stopping a malicious user from
submitting form data directly to the application, bypassing our form. If the
user sets an unknown payment type, that user might conceivably get our
products for free.

Note that we already loop over the @order.errors at the top of the page. This’ll
report validation failures.

Since we modified validation rules, we need to modify our test fixture to
match:

rails7/depot_o/test/fixtures/orders.yml

 # Read about fixtures at
 # https://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

 one:
» name: Dave Thomas
 address: MyText
» email: dave@example.org
» pay_type: Check

 two:
 name: MyString
 address: MyText
 email: MyString
 pay_type: 1

Furthermore, for an order to be created, a line item needs to be in the cart, so
we need to modify the line items test fixture too:

rails7/depot_o/test/fixtures/line_items.yml

 # Read about fixtures at
 # https://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

http://media.pragprog.com/titles/rails7/code/rails7/depot_o/test/fixtures/orders.yml
http://media.pragprog.com/titles/rails7/code/rails7/depot_o/test/fixtures/line_items.yml

 one:
 product: two
 cart: one
 price: 1

 two:
» product: ruby
» order: one
 price: 1

Note that if you didn’t choose to do the optional exercises in Playtime, you
need to modify all of the references to products and carts at this time and not
add price to the line items.

Feel free to make other changes, but only the first is currently used in the
functional tests. For these tests to pass, we’ll need to implement the model.

Capturing the Order Details
Let’s implement the create action in the controller. This method has to do the
following:

1. Capture the values from the form to populate a new Order model object.

2. Add the line items from our cart to that order.

3. Validate and save the order. If this fails, display the appropriate
messages, and let the user correct any problems.

4. Once the order is successfully saved, delete the cart, redisplay the
catalog page, and display a message confirming that the order has been
placed.

We define the relationships themselves, first from the line item to the order:

rails7/depot_o/app/models/line_item.rb

 class LineItem < ApplicationRecord

http://media.pragprog.com/titles/rails7/code/rails7/depot_o/app/models/line_item.rb

» belongs_to :order , optional: true
 belongs_to :product
» belongs_to :cart , optional: true

 def total_price
 price * quantity
 end
 end

And then we define the relationship from the order to the line item, once
again indicating that all line items that belong to an order are to be destroyed
whenever the order is destroyed:

rails7/depot_o/app/models/order.rb

 class Order < ApplicationRecord
» has_many :line_items , dependent: :destroy
 # ...
 end

The method ends up looking something like this:

rails7/depot_o/app/controllers/orders_controller.rb

 def create
 @order = Order. new (order_params)
» @order. add_line_items_from_cart (@cart)

 respond_to do |format|
 if @order. save
» Cart. destroy (session[:cart_id])
» session[:cart_id] = nil
» format. html { redirect_to store_index_url, notice:
» 'Thank you for your order.' }
 format. json { render :show , status: :created ,
 location: @order }
 else
 format. html { render :new , status: :unprocessable_entity }
 format. json { render json: @order. errors ,
 status: :unprocessable_entity }
 end
 end

http://media.pragprog.com/titles/rails7/code/rails7/depot_o/app/models/order.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_o/app/controllers/orders_controller.rb

 end

Joe asks:

Aren’t You Creating Duplicate Orders?

Joe is concerned to see our controller creating Order model objects in two actions: new and
create. He’s wondering why this doesn’t lead to duplicate orders in the database.

The answer is that the new action creates an Order object in memory simply to give the template
code something to work with. Once the response is sent to the browser, that particular object
gets abandoned, and it’ll eventually be reaped by Ruby’s garbage collector. It never gets close to
the database.

The create action also creates an Order object, populating it from the form fields. This object
does get saved in the database. So model objects perform two roles: they map data into and out
of the database, but they’re also regular objects that hold business data. They affect the database
only when you tell them to, typically by calling save.

We start by creating a new Order object and initialize it from the form data.
The next line adds into this order the items that are already stored in the cart;
we’ll write the method to do that in a minute.

Next, we tell the order object to save itself (and its children, the line items)
to the database. Along the way, the order object will perform validation (but
we’ll get to that in a minute).

If the save succeeds, we do two things. First, we ready ourselves for this
customer’s next order by deleting the cart from the session. Then we
redisplay the catalog, using the redirect_to method to display a cheerful
message. If, instead, the save fails, we redisplay the checkout form with the
current cart.

In the create action, we assumed that the order object contains the
add_line_items_from_cart method, so let’s implement that method now:

rails7/depot_p/app/models/order.rb

http://media.pragprog.com/titles/rails7/code/rails7/depot_p/app/models/order.rb

 class Order < ApplicationRecord
 # ...
» def add_line_items_from_cart (cart)
» cart. line_items . each do |item|
» item. cart_id = nil
» line_items << item
» end
» end
 end

For each item that we transfer from the cart to the order, we need to do two
things. First we set the cart_id to nil to prevent the item from going poof when
we destroy the cart.

Then we add the item itself to the line_items collection for the order. Notice we
didn’t have to do anything special with the various foreign-key fields, such
as setting the order_id column in the line item rows to reference the newly
created order row. Rails does that knitting for us using the has_many and
belongs_to declarations we added to the Order and LineItem models. Appending
each new line item to the line_items collection hands the responsibility for key
management over to Rails. We also need to modify the test to reflect the new
redirect:

rails7/depot_p/test/controllers/orders_controller_test.rb

 test "should create order" do
 assert_difference("Order.count") do
 post orders_url, params: { order: { address: @order. address ,
 email: @order. email , name: @order. name ,
 pay_type: @order. pay_type } }
 end

» assert_redirected_to store_index_url
 end

So, as a first test of all of this, click the Place Order button on the checkout
page without filling in any of the form fields. You should see the checkout

http://media.pragprog.com/titles/rails7/code/rails7/depot_p/test/controllers/orders_controller_test.rb

page redisplayed along with error messages complaining about the empty
fields, as shown in screenshot.

If we fill in data, as shown in the following screenshot, and click Place
Order, we should be taken back to the catalog, as shown in next the
screenshot.

But did it work? Let’s look in the database, using the Rails command
dbconsole, which tells Rails to open an interactive shell to whatever database
we have configured.

 depot> bin/rails dbconsole

 SQLite version 3.36.0 2021-06-18 18:58:49
 Enter ".help" for instructions
 sqlite> .mode line
 sqlite> select * from orders;
 id = 1
 name = Dave Thomas
 address = 123 Main St
 email = customer@example.com
 pay_type = 0
 created_at = 2022-01-12 16:41:35.897275
 updated_at = 2022-01-12 16:41:48.065263
 sqlite> select * from line_items;
 id = 10
 product_id = 3
 cart_id =
 created_at = 2022-01-12 16:41:46.548932
 updated_at = 2022-01-12 16:41:48.065780
 quantity = 1
 price = 19.95
 order_id = 1
 sqlite> .quit

Although what you see will differ on details such as version numbers and
dates (and price will be present only if you completed the exercises defined in
Playtime), you should see a single order and one or more line items that
match your selections.

Our customer is enthusiastic about our progress, but after playing with the
new checkout feature for a few minutes, she has a question: how does a user
enter payment details? It’s a great question, since there isn’t a way to do
that. Making that possible is somewhat tricky because each payment method
requires different details. If users want to pay with a credit card, they need to
enter a card number and expiration date. If they want to pay with a check,
we’ll need a routing number and an account number. And for purchase
orders, we need the purchase order number.

Although we could put all five fields on the screen at once, the customer
immediately balks at the poor user experience that would result. Can we
show the appropriate fields, depending on what payment type is chosen?

Changing elements of a user interface dynamically is certainly possible with
some JavaScript but is beyond what we can do with Turbo alone.

Iteration G2: Adding Fields Dynamically to a
Form
We need a dynamic form that changes what fields are shown based on what
pay type the user has selected. We could cobble something together with
jQuery, but Rails includes another framework from the Hotwired set of
frameworks that is well suited to this task: Stimulus.[58] Let’s put it to use!

Creating a Stimulus Controller
Our starting point is clearly the existing order form. The plan is to add some
additonal fields, cause those fields to be hidden on initial display, and
finally, to expose the fields associated with selected pay type whenever the
selection changes.

Let’s focus intially on the behavior we want to implement, then on the
markup. With Stimulus, the behavior is placed inside a controller, so lets
generate one:

 depot> bin/rails generate stimulus payment
 create app/javascript/controllers/payment_controller.js

What we have is a single file. That’s where we place our logic:

rails7/depot_p/app/javascript/controllers/payment_controller.js

 import { Controller } from "@hotwired/stimulus"

 // Connects to data-controller="payment"
 export default class extends Controller {
» static targets = ["selection" , "additionalFields"]
»
» initialize() {
» this .showAdditionalFields()
» }
»
» showAdditionalFields() {

http://media.pragprog.com/titles/rails7/code/rails7/depot_p/app/javascript/controllers/payment_controller.js

» let selection = this .selectionTarget.value
»
» for (let fields of this .additionalFieldsTargets) {
» fields.disabled = fields.hidden = (fields.dataset.type != selection)
» }
» }
 }

This has three parts:

First, we declare a list of targets. Targets identify HTML elements that
our controller will interact with. Our targets are a selection element and
additional fields. We simply list our targets here without specifying
how many of each we expect.

Next, we define the initialization logic, which could implement as a
loop over the targets, hiding each, but it turns out that we can take
advantage of the code that shows additional fields. This has the
additional benefit of gracefully handing the case where the browser
restores the value of some form fields when the user manually refreshes
the browser window.

Finally, we define the code that shows the additional fields. We start by
getting the value of the selection. We then iterate over the additional
fields. Inside the iteration, we either disable and hide each set of fields
or enable and show each set based on whether or not the type of those
fields matches the selection.

This all sounds straightforward but won’t completely make sense until we
see the markup. So the next step is to define the additional fields.

Defining Additional Fields
Paying online from your checking account involves providing a routing code
and an account number. Let’s add these fields to a new partial:

rails7/depot_p/app/views/orders/_check.html.erb

http://media.pragprog.com/titles/rails7/code/rails7/depot_p/app/views/orders/_check.html.erb

 <fieldset data-payment-target= "additionalFields" data-type= "Check" >
 <div class= "my-5" >
 <%= form. label :routing_number %>
 <%= form. text_field :routing_number , class: "input-field" %>
 </div>

 <div class= "my-5" >
 <%= form. label :account_number %>
 <%= form. password_field :account_number , class: "input-field" %>
 </div>
 </fieldset>

The first line defines a payment target of additionalFields as well as a type of
Check. This matches up with the controller, which defined additionalFields as a
target and matches the fields.dataset.type against the value from the selection

target.

The remainder of this file is familiar: it defines the two new fields exactly as
we have been defining them all along. The only new thing is the reference to
a password_field, which causes most browsers to hide the text as you are
entering it.

Next up, we need to define fields for a credit card number and an expiration
date. We put them into a second partial:

rails7/depot_p/app/views/orders/_cc.html.erb

 <fieldset data-payment-target= "additionalFields" data-type= "Credit card" >
 <div class= "my-5" >
 <%= form. label :credit_card_number %>
 <%= form. password_field :credit_card_number , class: "input-field" %>
 </div>

 <div class= "my-5" >
 <%= form. label :expiration_date %>
 <%= form. text_field :expiration_date , class: "input-field" ,
 size:9, placeholder: "e.g. 03/22" %>
 </div>
 </fieldset>

http://media.pragprog.com/titles/rails7/code/rails7/depot_p/app/views/orders/_cc.html.erb

No surprises here. Finally, we need a purchase order number field, which we
put into a third partial:

rails7/depot_p/app/views/orders/_po.html.erb

 <fieldset data-payment-target= "additionalFields" data-type= "Purchase order" >
 <div class= "my-5" >
 <%= form. label :po_number %>
 <%= form. number_field :po_number , class: "input-field" %>
 </div>
 </fieldset>

Now that we’re done with the additional fields, it’s time to update the form
itself:

rails7/depot_p/app/views/orders/_form.html.erb

 <%= form_with(model: order, class: "contents") do |form| %>
 <% if order. errors . any? %>
 <div id= "error_explanation" class= "bg-red-50 text-red-500 px-3 py-2
 font-medium rounded-lg mt-3" >
 <h2> <%= pluralize(order. errors . count , "error") %>
 prohibited this order from being saved:</h2>

 <% order. errors . each do |error| %>
 <%= error. full_message %>
 <% end %>

 </div>
 <% end %>

 <div class= "my-5" >
 <%= form. label :name %>
 <%= form. text_field :name , class: "input-field" %>
 </div>

 <div class= "my-5" >
 <%= form. label :address %>
 <%= form. text_area :address , rows: 4, class: "input-field" %>
 </div>

http://media.pragprog.com/titles/rails7/code/rails7/depot_p/app/views/orders/_po.html.erb
http://media.pragprog.com/titles/rails7/code/rails7/depot_p/app/views/orders/_form.html.erb

 <div class= "my-5" >
 <%= form. label :email %>
 <%= form. email_field :email , class: "input-field" %>
 </div>

» <div data-controller= "payment" >
 <div class= "my-5" >
 <%= form. label :pay_type %>
 <%= form. select :pay_type , Order. pay_types . keys ,
 { prompt: 'Select a payment method' },
» 'data-payment-target' => 'selection' ,
» 'data-action' => 'payment#showAdditionalFields' ,
 class: "input-field" %>
 </div>
»
» <%= render partial: 'check' , locals: { form: form} %>
» <%= render partial: 'cc' , locals: { form: form} %>
» <%= render partial: 'po' , locals: { form: form} %>
» </div>

 <div class= "inline" >
 <%= form. submit 'Place Order' , class: "rounded-lg py-3 px-5
 bg-green-200 text-black inline-block font-medium cursor-pointer" %>
 </div>
 <% end %>

This file has three sets of changes.

First, we wrap all of the elements that are to be controlled by the
payment Stimulus controller with a div element containing a data-controller

field naming the controller.

Next, we identify the form.select element as the selection target for the
payment controller and associate an action by naming the method to be
called when the selection changes.

Finally, we render the three partials that we just created.

With both the code and markup now in place, we revisit the browser to see
the results shown in the screenshots.

If that isn’t what you’re seeing, here are some things to check:

Your browser’s console is always a great resource and where you’ll
find both syntax and runtime errors in your JavaScript code.

Check for typos in your markup and in the portions of the payment
Stimulus controller that need to match your markup. Remember that

generally the default is to do nothing. If the controller doesn’t match,
then no code will be executed. If no additional fields are found, the
loop will not hide anything.

Feel free to add calls to console.log inside your Stimulus controller.

Now that users can check out and purchase products, the customer needs a
way to view these orders. Going into the database directly isn’t acceptable.
We also don’t have time to build a full-fledged admin user interface right
now, so we’ll take advantage of the various Atom feed readers that exist and
have our app export all the orders as an Atom feed so the customer can
quickly see what’s been purchased.

For the times when you really want to run all of your tests with a single
command, Rails has this covered too: try running bin/rails test:all.

What We Just Did
In a fairly short amount of time, we did the following:

We created a form to capture details for the order and linked it to a new
order model.

We added validation and used helper methods to display errors to the
user.

We provided a feed so the administrator can monitor incoming orders.

Playtime
Here’s some stuff to try on your own:

Get HTML- and JSON-formatted views working for who_bought requests.
Experiment with including the order information in the JSON view by
rendering @product.to_json(include: :orders). Do the same thing for XML using
ActiveModel::Serializers::Xml.[59]

What happens if you click the Checkout button in the sidebar while the
checkout screen is already displayed? Can you find a way to disable the
button in this circumstance?

The list of possible payment types is currently stored as a constant in
the Order class. Can you move this list into a database table? Can you
still make validation work for the field?

Iteration G3: Testing Our JavaScript
Functionality
Now that we have application-level functionality in JavaScript code, we’re
going to need to have tests in place to ensure that the function not only
works as intended but continues to work as we make changes to the
application.

Testing this functionality involves a lot of steps: visiting the store, selecting
an item, adding that item to the cart, clicking checkout, filling in a few
fields, and selecting a payment type. And from a testing perspective, we’re
going to need both a Rails server and a browser.

To accomplish this, Rails makes use of the popular Google Chrome web
browser and Capybara,[60] which is a tool that drives this automation.
Microsoft Edge and Mozilla’s Firefox are also supported, as is Apple’s
Safari once Allow Remote Automation is enabled via the Develop menu.

Tests that pull together a complete and integrated version of the software are
called system tests, and that’s exactly what we’ll be doing: we’ll be testing a
full end-to-end scenario with a web browser, web server, our application,
and a database.

When we created scaffolds in previous chapters, Rails created system tests
for us that performed basic checks. Let’s run those now to make sure they’re
passing and that system testing is working. If you’re using a virtual machine,
you’ll need to make one change before running the tests. Edit
test/application_system_test_case.rb and change :chrome to :headless_chrome so that the
system tests use a browser that doesn’t need to pop up on the screen, like so:

rails7/depot_p/test/application_system_test_case.rb

 require "test_helper"

http://media.pragprog.com/titles/rails7/code/rails7/depot_p/test/application_system_test_case.rb

 class ApplicationSystemTestCase < ActionDispatch::SystemTestCase
» driven_by :selenium , using: :headless_chrome , screen_size: [1400, 1400]
 end

Should you wish to test with a different browser, this is the place where you
would indicate which browser to use. :edge, :firefox, and :safari are all
supported.

Let’s run the existing system tests using bin/rails test:system. Oh dear, there are
about a dozen failures—which isn’t all that surprising, given that we’ve
ignored these tests up to this point.

The output indicates screenshot images have been placed into the
/tmp/screenshots directory, and taking a look at a few of them, we feel a bit like
archaeologists. The tests verify the operation of the code as originally
scaffolded—most importantly before we added product validation logic in
Iteration B1: Validating!, and before we moved the cart in Changing the
Flow.

We could fix these errors, but we would end up with tests that largely
duplicate tests we already have. Lets clean things up and write an entirely
new test—one that takes advantage of the fact that we’re interacting with a
real browser that runs the JavaScript code that we provided.

 $ rm test/system/carts_test.rb
 $ rm test/system/line_items_test.rb
 $ rm test/system/product_test.rb

Now we’re ready to write the test we came here to write, which is that our
JavaScript is working when it’s run in a web browser. We start by describing
the actions and checks we want performed in test/system/orders_test.rb, which
already has some tests in it from the scaffold:

rails7/depot_p/test/system/orders_test.rb

 require "application_system_test_case"

http://media.pragprog.com/titles/rails7/code/rails7/depot_p/test/system/orders_test.rb

 class OrdersTest < ApplicationSystemTestCase
» test "check dynamic fields" do
» visit store_index_url
»
» click_on 'Add to Cart' , match: :first
»
» click_on 'Checkout'
»

» assert has_no_field? 'Routing number'
» assert has_no_field? 'Account number'
» assert has_no_field? 'Credit card number'
» assert has_no_field? 'Expiration date'
» assert has_no_field? 'Po number'
»
» select 'Check' , from: 'Pay type'
»
» assert has_field? 'Routing number'
» assert has_field? 'Account number'
» assert has_no_field? 'Credit card number'
» assert has_no_field? 'Expiration date'
» assert has_no_field? 'Po number'
»
» select 'Credit card' , from: 'Pay type'
»
» assert has_no_field? 'Routing number'
» assert has_no_field? 'Account number'
» assert has_field? 'Credit card number'
» assert has_field? 'Expiration date'
» assert has_no_field? 'Po number'
»
» select 'Purchase order' , from: 'Pay type'
»
» assert has_no_field? 'Routing number'
» assert has_no_field? 'Account number'
» assert has_no_field? 'Credit card number'
» assert has_no_field? 'Expiration date'
» assert has_field? 'Po number'
» end
 end

As you can see, it’s largely a repetition of a few lines of code with minor
variations, prefaced by a few discrete steps: visit a URL, find the :first button

with the text "Add to Cart" and click_on it. Then click_on the button labeled
"Checkout". We then select various pay types and verify what fields we expect to
see and what fields we expect not to see.

At this point in the test, we check an assumption that the routing number
field is not on the page yet. We do this using has_no_field? and pass it "Routing

number", which is a the text the user would see if they had selected Check as
the Pay type. We repeat this for all the other fields that the user could
eventually see but at this point should be hidden.

In general, be careful when using has_no_field? as there are an uncountable
number of fields the form doesn’t have, and any typo will cause such a test
to pass. In this case we’re safe, as the test contains matching has_field? method
calls.

After that, we select the value "Check" from the "Pay type" selector and then
assert that the routing number text field showed up, using has_field. We repeat
this for each combination of Pay type and field. Four groups of five
assertions, for a total of twenty asssertions. Whew!

Capybara makes all of this possible using a compact, readable API that
requires very little code. For additional information and more methods, we
suggest that you familiarize yourself with the domain-specific language
(DSL) that Capybara provides.[61]

Now let’s run the test we just wrote:

 $ bin/rails test:system
 Running 5 tests in a single process (parallelization threshold is 50)
 Run options: --seed 55897

 # Running:

 Capybara starting Puma...
 * Version 5.5.2 , codename: Zawgyi
 * Min threads: 0, max threads: 4

 * Listening on tcp://127.0.0.1:56776
 Capybara starting Puma...
 * Version 3.12.1 , codename: Llamas in Pajamas
 * Min threads: 0, max threads: 4
 * Listening on tcp://127.0.0.1:43749

 Finished in 4.065668s, 1.2298 runs/s, 5.9031 assertions/s.

 5 runs, 24 assertions, 0 failures, 0 errors, 0 skips

When you run this, you’ll notice a number of things. First, a web server is
started on your behalf, and then a browser is launched and the actions you
requested are performed. Once the test is complete, both are stopped and the
results of the test are reported back to you. All this is based on your
instructions as to what actions and tests are to be performed, and it’s then
expressed clearly and succinctly as a system test.

Note that system tests tend to take a bit longer to execute than model or
controller tests, which is why they’re not run as a part of bin/rails test. But all in
all, these tests aren’t all that slow, and they can test things that can’t be
tested in any other way, so system tests are a valuable tool to have in our
toolchest.

What We Just Did

We replaced a static form_select field with a dynamic list of form fields
that change instantly based on user selection.

We wrote a Stimulus controller that attached to the HTML to make the
dynamic changes happen.

We used Capybara to system-test this functionality.

Playtime
Here’s some stuff to try on your own:

[58]

[59]

[60]

[61]

[62]

Add an order and check the logs, and you’ll see a number of
Unpermitted parameters messages. While new fields were added to the
form, they have yet to be added to the database. Generate a migration
to add the fields, and add them to the order_parameters method.

Add a test to verify that the Add to Cart and Empty Cart buttons reveal
and hide the cart, respectively.

Add a test of the highlight feature you added in Iteration F3:
Highlighting Changes. The Capybara have_css method[62] may be useful
here.

Footnotes

https://stimulus.hotwired.dev/

https://github.com/rails/activemodel-serializers-xml#readme

https://github.com/teamcapybara/capybara#readme

https://github.com/teamcapybara/capybara#the-dsl

https://rubydoc.info/github/jnicklas/capybara/Capybara%2FRSpecMatchers:have_css

Copyright © 2023, The Pragmatic Bookshelf.

https://stimulus.hotwired.dev/
https://github.com/rails/activemodel-serializers-xml#readme
https://github.com/teamcapybara/capybara#readme
https://github.com/teamcapybara/capybara#the-dsl
https://rubydoc.info/github/jnicklas/capybara/Capybara%2FRSpecMatchers:have_css

We cover:
Sending email
Running background code with
Active Job
System testing background jobs
and email

Chapter 13

Task H: Sending Emails and
Processing Payments Efficiently

At this point, we have a website that responds to requests and provides
feeds that allow sales of individual titles to be checked periodically. The
customer is happier but still not satisfied. The first bit of feedback is that
users aren’t getting confirmation emails of their purchases. The second is
around payment processing. The customer has arranged for us to integrate
with a payment processor that can handle all forms of payment we want to
support, but the processor’s API is very slow. The customer wants to know
if that will slow down the site.

Sending email is a common need for any web application, and Rails has
you covered via Action Mailer,[63] which you’ll learn in this chapter.
Dealing with the slow payment-processing API requires learning about the
library Action Mailer is built on, Active Job.[64] Active Job allows you to
run code in a background process so that the user doesn’t have to wait for it
to complete. Sending email is slow, which is why Action Mailer uses
Active Job to offload the work. This is a common technique you’ll use often
when developing web applications. Let’s take it one step at a time and learn
how to send email.

Iteration H1: Sending Confirmation Emails
Sending email in Rails has three basic parts: configuring how email is to be
sent, determining when to send the email, and specifying what you want to
say. We’ll cover each of these three in turn.

Configuring Email
Email configuration is part of a Rails application’s environment and
involves a Rails.application.configure block. If you want to use the same
configuration for development, testing, and production, add the
configuration to environment.rb in the config directory; otherwise, add different
configurations to the appropriate files in the config/environments directory.

Inside the block, you need to have one or more statements. You first have to
decide how you want mail delivered:

 config. action_mailer . delivery_method = :smtp

Alternatives to :smtp include :sendmail and :test.

The :smtp and :sendmail options are used when you want Action Mailer to
attempt to deliver email. You’ll clearly want to use one of these methods in
production.

The :test setting is great for unit and functional testing, which we’ll make use
of in Testing Email. Email won’t be delivered; instead, it’ll be appended to
an array (accessible via the ActionMailer::Base.deliveries attribute). This is the
default delivery method in the test environment. Interestingly, though, the
default in development mode is :smtp. If you want Rails to deliver email
during the development of your application, this is good. If you’d rather
disable email delivery in development mode, edit the development.rb file in the
config/environments directory and add the following lines:

 Rails. application . configure do
 config. action_mailer . delivery_method = :test
 end

The :sendmail setting delegates mail delivery to your local system’s sendmail

program, which is assumed to be in /usr/sbin. This delivery mechanism isn’t
particularly portable, because sendmail isn’t always installed in this directory
for every operating system. It also relies on your local sendmail supporting the
-i and -t command options.

You achieve more portability by leaving this option at its default value of
:smtp. If you do so, you’ll need also to specify some additional configuration
to tell Action Mailer where to find an SMTP server to handle your outgoing
email. This can be the machine running your web application, or it can be a
separate box (perhaps at your ISP if you’re running Rails in a noncorporate
environment). Your system administrator will be able to give you the
settings for these parameters. You may also be able to determine them from
your own mail client’s configuration.

The following are typical settings for Gmail: adapt them as you need.

 Rails. application . configure do
 config. action_mailer . delivery_method = :smtp

 config. action_mailer . smtp_settings = {
 address: "smtp.gmail.com" ,
 port: 587,
 domain: "domain.of.sender.net" ,
 authentication: "plain" ,
 user_name: "dave" ,
 password: "secret" ,
 enable_starttls_auto: true
 }
 end

As with all configuration changes, you’ll need to restart your application if
you make changes to any of the environment files.

Sending Email
Now that we have everything configured, let’s write some code to send
emails.

By now you shouldn’t be surprised that Rails has a generator script to create
mailers. In Rails, a mailer is a class that’s stored in the app/mailers directory. It
contains one or more methods, with each method corresponding to an email
template. To create the body of the email, these methods in turn use views
(in the same way that controller actions use views to create HTML and
XML). So let’s create a mailer for our store application. We’ll use it to send
two different types of email: one when an order is placed and a second when
the order ships. The rails generate mailer command takes the name of the mailer
class along with the names of the email action methods:

 depot> bin/rails generate mailer Order received shipped
 create app/mailers/order_mailer.rb
 invoke tailwindcss
 create app/views/order_mailer
 create app/views/order_mailer/received.text.erb
 create app/views/order_mailer/received.html.erb
 create app/views/order_mailer/shipped.text.erb
 create app/views/order_mailer/shipped.html.erb
 invoke test_unit
 create test/mailers/order_mailer_test.rb
 create test/mailers/previews/order_mailer_preview.rb

Notice that we create an OrderMailer class in app/mailers and two template files,
one for each email type, in app/views/order. (We also create a test file; we’ll
look into this in Testing Email.)

Each method in the mailer class is responsible for setting up the
environment for sending an email. Let’s look at an example before going
into detail. Here’s the code that was generated for our OrderMailer class, with
one default changed:

rails7/depot_q/app/mailers/order_mailer.rb

http://media.pragprog.com/titles/rails7/code/rails7/depot_q/app/mailers/order_mailer.rb

 class OrderMailer < ApplicationMailer
» default from: 'Sam Ruby <depot@example.com>'

 # Subject can be set in your I18n file at config/locales/en.yml
 # with the following lookup:
 #
 # en.order_mailer.received.subject
 #
 def received
 @greeting = "Hi"

 mail to: "to@example.org"
 end

 # Subject can be set in your I18n file at config/locales/en.yml
 # with the following lookup:
 #
 # en.order_mailer.shipped.subject
 #
 def shipped
 @greeting = "Hi"

 mail to: "to@example.org"
 end
 end

If you’re thinking to yourself that this looks like a controller, that’s because
it does. It includes one method per action. Instead of a call to render, there’s a
call to mail. This method accepts a number of parameters including :to (as
shown), :cc, :from, and :subject, each of which does pretty much what you’d
expect it to do. Values that are common to all mail calls in the mailer can be
set as defaults by simply calling default, as is done for :from at the top of this
class. Feel free to tailor this to your needs.

The comments in this class also indicate that subject lines are already
enabled for translation, a subject we’ll cover in Chapter 15, Task J:
Internationalization. For now, we’ll simply use the :subject parameter.

As with controllers, templates contain the text to be sent, and controllers and
mailers can provide values to be inserted into those templates via instance
variables.

Email Templates
The generate script created two email templates in app/views/order_mailer, one
for each action in the OrderMailer class. These are regular erb files. We’ll use
them to create plain-text emails (you’ll see later how to create HTML
email). As with the templates we use to create our application’s web pages,
the files contain a combination of static text and dynamic content. We can
customize the template in received.text.erb; this is the email that’s sent to
confirm an order:

rails7/depot_q/app/views/order_mailer/received.text.erb

 Dear <%= @order. name %>

 Thank you for your recent order from The Pragmatic Store.

 You ordered the following items:

 <%= render @order. line_items -%>

 We'll send you a separate e-mail when your order ships.

The partial template that renders a line item formats a single line with the
item quantity and the title. Because we’re in a template, all the regular
helper methods, such as truncate, are available:

rails7/depot_q/app/views/line_items/_line_item.text.erb

 <%= sprintf("%2d x %s" ,
 line_item. quantity ,
 truncate(line_item. product . title , length: 50)) %>

We now have to go back and fill in the received method in the OrderMailer class:

rails7/depot_qa/app/mailers/order_mailer.rb

http://media.pragprog.com/titles/rails7/code/rails7/depot_q/app/views/order_mailer/received.text.erb
http://media.pragprog.com/titles/rails7/code/rails7/depot_q/app/views/line_items/_line_item.text.erb
http://media.pragprog.com/titles/rails7/code/rails7/depot_qa/app/mailers/order_mailer.rb

 def received (order)
 @order = order

 mail to: order. email , subject: 'Pragmatic Store Order Confirmation'
 end

What we did here is add order as an argument to the method-received call,
add code to copy the parameter passed into an instance variable, and update
the call to mail specifying where to send the email and what subject line to
use.

Generating Emails
Now that we have our template set up and our mailer method defined, we
can use them in our regular controllers to create and/or send emails. Note
that just calling the method we defined isn’t enough; we also need to tell
Rails to actually send the email. The reason this doesn’t happen
automatically is that Rails can’t be 100 percent sure if you want to deliver
the email right this moment, while the user waits, or later, in a background
job.

Generally, you don’t want the user to have to wait for emails to get sent,
because this can take a while. Instead, we’ll send it in a background job
(which we’ll learn more about later in the chapter) by calling deliver_later (to
send the email right now, you’d use deliver_now.[65])

rails7/depot_qa/app/controllers/orders_controller.rb

 def create
 @order = Order. new (order_params)
 @order. add_line_items_from_cart (@cart)

 respond_to do |format|
 if @order. save
 Cart. destroy (session[:cart_id])
 session[:cart_id] = nil
» OrderMailer. received (@order). deliver_later
 format. html { redirect_to store_index_url, notice:
 'Thank you for your order.' }

http://media.pragprog.com/titles/rails7/code/rails7/depot_qa/app/controllers/orders_controller.rb

 format. json { render :show , status: :created ,
 location: @order }
 else
 format. html { render :new , status: :unprocessable_entity }
 format. json { render json: @order. errors ,
 status: :unprocessable_entity }
 end
 end
 end

And we need to update shipped as we did for received:

rails7/depot_qa/app/mailers/order_mailer.rb

 def shipped (order)
 @order = order

 mail to: order. email , subject: 'Pragmatic Store Order Shipped'
 end

Now we have enough of the basics in place that you can place an order and
have a plain email sent to yourself, assuming you didn’t disable the sending
of email in development mode. Let’s spice up the email with a bit of
formatting.

Delivering Multiple Content Types
Some people prefer to receive email in plain-text format, while others like
the look of an HTML email. Rails supports this directly, allowing you to
send email messages that contain alternative content formats, allowing users
(or their email clients) to decide which they’d prefer to view.

In the preceding section, we created a plain-text email. The view file for our
received action was called received.text.erb. This is the standard Rails naming
convention. We can also create HTML-formatted emails.

Let’s try this with the order-shipped notification. We don’t need to modify
any code—we simply need to create a new template:

http://media.pragprog.com/titles/rails7/code/rails7/depot_qa/app/mailers/order_mailer.rb

rails7/depot_qa/app/views/order_mailer/shipped.html.erb

 <h3>Pragmatic Order Shipped</h3>
 <p>
 This is just to let you know that we've shipped your recent order:
 </p>

 <table>
 <tr><th colspan= "2" >Qty</th><th>Description</th></tr>
 <%= render @order. line_items -%>
 </table>

We don’t need to modify the partial, because the existing one will do just
fine:

rails7/depot_qa/app/views/line_items/_line_item.html.erb

 <% if line_item == @current_item %>
 <tr class= "line-item-highlight" >
 <% else %>
 <tr>
 <% end %>
 <td class= "text-right" > <%= line_item. quantity %> </td>
 <td>×</td>
 <td class= "pr-2" >
 <%= line_item. product . title %>
 </td>
 <td class= "text-right font-bold" >
 <%= number_to_currency(line_item. total_price) %>
 </td>
 </tr>

But for email templates, Rails provides a bit more naming magic. If you
create multiple templates with the same name but with different content
types embedded in their filenames, Rails will send all of them in one email,
arranging the content so that the email client can distinguish each.

This means you’ll want to either update or delete the plain-text template that
Rails provided for the shipped notifier.

http://media.pragprog.com/titles/rails7/code/rails7/depot_qa/app/views/order_mailer/shipped.html.erb
http://media.pragprog.com/titles/rails7/code/rails7/depot_qa/app/views/line_items/_line_item.html.erb

Testing Email
When we used the generate script to create our order mailer, it automatically
constructed a corresponding order_test.rb file in the application’s test/mailers

directory. It’s pretty straightforward; it simply calls each action and verifies
selected portions of the email produced. Because we’ve tailored the email,
let’s update the test case to match:

rails7/depot_qa/test/mailers/order_mailer_test.rb

 require "test_helper"

 class OrderMailerTest < ActionMailer::TestCase
 test "received" do
» mail = OrderMailer. received (orders(:one))
» assert_equal "Pragmatic Store Order Confirmation" , mail. subject
» assert_equal ["dave@example.org"], mail. to
» assert_equal ["depot@example.com"], mail. from
» assert_match /1 x Programming Ruby 1.9/ , mail. body . encoded
 end

 test "shipped" do
» mail = OrderMailer. shipped (orders(:one))
» assert_equal "Pragmatic Store Order Shipped" , mail. subject
» assert_equal ["dave@example.org"], mail. to
» assert_equal ["depot@example.com"], mail. from
» assert_match %r(
» <td[^>]*>1<\/td>\s*
» <td>×<\/td>\s*
» <td[^>]*>\s*Programming\sRuby\s1.9\s*</td>
»)x , mail. body . to_s
 end

 end

The test method instructs the mail class to create (but not to send) an email,
and we use assertions to verify that the dynamic content is what we expect.
Note the use of assert_match to validate just part of the body content. Your
results may differ depending on how you tailored the default :from line in your
OrderMailer.

http://media.pragprog.com/titles/rails7/code/rails7/depot_qa/test/mailers/order_mailer_test.rb

Note that it’s also possible to have your Rails application receive emails.
We’ll cover that in Chapter 16, Task K: Receive Emails
and Respond with Rich Text.

Now that we’ve implemented our mailer and tested it, let’s move on to that
pesky slow payment processor. To deal with that, we’ll put our API calls
into a job that can be run in the background so the user doesn’t have to wait.

Iteration H2: Connecting to a Slow Payment
Processor with Active Job
The code inside the controllers is relatively fast and returns a response to the
user quickly. This means we can reliably give users feedback by checking
and validating their orders and the users won’t have to wait too long for a
response.

The more we add to the controller, the slower it’ll become. Slow controllers
create several problems. First, the user must wait a long time for a response
even though the processing that’s going on might not be relevant to the user
experience. In the previous section, we set up sending email. The user
certainly needs to get that email but doesn’t need to wait for Rails to format
and send it just to show a confirmation in the browser.

The second problem caused by slow code is timeouts. A timeout is when
Rails, a web server, or a browser decides that a request has taken too long
and terminates it. This is jarring to the user and to the code because it means
the code is interrupted at a potentially odd time. What if we’ve recorded the
order but haven’t sent the email? The customer won’t get a notification.

In the common case of sending email, Rails handles sending it in the
background. We use deliver_later to trigger sending an email, and Rails
executes that code in the background. This means that users don’t have to
wait for email to be sent before we render a response. This is a great hidden
benefit to Rails’ integrated approach to building a web app.

Rails achieves this using Active Job, which is a generic framework for
running code in the background. We’ll use this framework to connect to the
slow payment processor.

To make this change, you’ll implement the integration with the payment
processor as a method inside Order, then have the controller use Active Job to

execute that method in a background job. Because the end result will be
somewhat complex, you’ll write a system test to ensure everything is
working together.

Moving Logic into the Model
It’s way outside the scope of this book to integrate with an actual payment
processor, so we’ve cooked up a fake one named Pago, along with an
implementation, which we’ll see in a bit. First, this is the API it provides
and a sketch of how you can use it:

 payment_result = Pago. make_payment (
 order_id: order. id ,
 payment_method: :check ,
 payment_details: { routing: xxx, account: yyy }
)

The fake implementation does some basic validations of the parameters,
prints out the payment details it received, pauses for a few seconds, and
returns a structure that responds to succeeded?.

rails7/depot_qb/lib/pago.rb

 require 'ostruct'
 class Pago
 def self. make_payment (order_id:,
 payment_method:,
 payment_details:)

 case payment_method
 when :check
 Rails. logger . info "Processing check: " +
 payment_details. fetch (:routing). to_s + "/" +
 payment_details. fetch (:account). to_s
 when :credit_card
 Rails. logger . info "Processing credit_card: " +
 payment_details. fetch (:cc_num). to_s + "/" +
 payment_details. fetch (:expiration_month). to_s + "/" +
 payment_details. fetch (:expiration_year). to_s
 when :po

http://media.pragprog.com/titles/rails7/code/rails7/depot_qb/lib/pago.rb

 Rails. logger . info "Processing purchase order: " +
 payment_details. fetch (:po_num). to_s
 else
 raise "Unknown payment_method #{ payment_method }"
 end
 sleep 3 unless Rails. env . test?
 Rails. logger . info "Done Processing Payment"
 OpenStruct. new (succeeded?: true)
 end
 end

If you aren’t familiar with OpenStruct, it’s part of Ruby’s standard library and
provides a quick-and-dirty way to make an object that responds to the
methods given to its constructor.[66] In this case, we can call succeeded? on the
return value from make_payment. OpenStruct is handy for creating realistic objects
from prototype or faked-out code like Pago.

With the payment API in hand, you need logic to adapt the payment details
that you added in Defining Additional Fields, to Pago’s API. You’ll also
move the call to OrderMailer into this method, because you don’t want to send
the email if there was a problem collecting payment.

In a Rails app, when a bit of logic becomes more complex than a line or two
of code, you want to move that out of the controller and into a model. You’ll
create a new method in Order called charge! that will handle all this logic.

To prepare for this, we first define a pay_type_params method in the controller
that will capture the parameters to be passed to the model. We put this new
method in the bottom of the controller, in the private section:

rails7/depot_qb/app/controllers/orders_controller.rb

 def pay_type_params
 if order_params[:pay_type] == "Credit card"
 params. require (:order). permit (:credit_card_number , :expiration_date)
 elsif order_params[:pay_type] == "Check"
 params. require (:order). permit (:routing_number , :account_number)
 elsif order_params[:pay_type] == "Purchase order"

http://media.pragprog.com/titles/rails7/code/rails7/depot_qb/app/controllers/orders_controller.rb

 params. require (:order). permit (:po_number)
 else
 {}
 end
 end

The method will be somewhat long and has to do three things. First, it must
adapt the pay_type_params that you just created to the parameters that Pago

requires. Second, it should make the call to Pago to collect payment. Finally,
it must check to see if the payment succeeded and, if so, send the
confirmation email. Here’s what the method looks like:

rails7/depot_qb/app/models/order.rb

 require 'active_model/serializers/xml'
» require 'pago'

 class Order < ApplicationRecord
 include ActiveModel::Serializers::Xml
 enum pay_type: {
 "Check" => 0,
 "Credit card" => 1,
 "Purchase order" => 2
 }
 has_many :line_items , dependent: :destroy
 # ...
 validates :name , :address , :email , presence: true
 validates :pay_type , inclusion: pay_types. keys
 def add_line_items_from_cart (cart)
 cart. line_items . each do |item|
 item. cart_id = nil
 line_items << item
 end
 end

» def charge! (pay_type_params)
» payment_details = {}
» payment_method = nil
»
» case pay_type
» when "Check"
» payment_method = :check

http://media.pragprog.com/titles/rails7/code/rails7/depot_qb/app/models/order.rb

» payment_details[:routing] = pay_type_params[:routing_number]
» payment_details[:account] = pay_type_params[:account_number]
» when "Credit card"
» payment_method = :credit_card
» month,year = pay_type_params[:expiration_date]. split (//)
» payment_details[:cc_num] = pay_type_params[:credit_card_number]
» payment_details[:expiration_month] = month
» payment_details[:expiration_year] = year
» when "Purchase order"
» payment_method = :po
» payment_details[:po_num] = pay_type_params[:po_number]
» end
»
» payment_result = Pago. make_payment (
» order_id: id,
» payment_method: payment_method,
» payment_details: payment_details
»)
»
» if payment_result. succeeded?
» OrderMailer. received (self). deliver_later
» else
» raise payment_result. error
» end
» end
 end

If you weren’t concerned with how slow Pago’s API is, you’d change the
code in the create method of OrdersController to call charge!:

 if @order. save
 Cart. destroy (session[:cart_id])
 session[:cart_id] = nil
» @order. charge! (pay_type_params) # do not do this
 format. html { redirect_to store_index_url, notice:
 'Thank you for your order.' }

Since you already know the call to Pago will be slow, you want it to happen
in a background job so that users can see the confirmation message in their
browser immediately without having to wait for the charge to actually
happen. To do this, you must create an Active Job class, implement that

class to call charge!, and then add code to the controller to execute this job.
The flow looks like the figure shown.

Creating an Active Job Class
Rails provides a generator to create a shell of a job class for us. Create the
job using it like so:

 > bin/rails generate job charge_order
 invoke test_unit
 create test/jobs/charge_order_job_test.rb
 create app/jobs/charge_order_job.rb

The argument charge_order tells Rails that the job’s class name should be
ChargeOrderJob.

You’ve implemented the logic in the charge! method of Order, so what goes in
the newly created ChargeOrderJob? The purpose of job classes like ChargeOrderJob

is to act as a glue between the controller—--which wants to run some logic
later—--and the actual logic in the models.

Here’s the code that implements this:

rails7/depot_qb/app/jobs/charge_order_job.rb

 class ChargeOrderJob < ApplicationJob
 queue_as :default

» def perform (order,pay_type_params)
»
» order. charge! (pay_type_params)

 end
 end

Next, you need to fire this job in the background from the controller.

Queuing a Background Job
Because background jobs run in parallel to the code in the controller, the
code you write to initiate the background job isn’t the same as calling a
method. When you call a method, you expect that method’s code to be
executed while you wait. Background jobs are different. They often go to a
queue, where they wait to be executed outside the controller. Thus, when we
talk about executing code in a background job, we often use the phrase
“queue the job.”

To queue a job using Active Job, use the method perform_later on the job class
and pass it the arguments you want to be given to the perform method you

http://media.pragprog.com/titles/rails7/code/rails7/depot_qb/app/jobs/charge_order_job.rb

implemented above. Here’s where to do that in the controller (note that this
replaces the call to OrderMailer, since that’s now part of the charge! method):

rails7/depot_qb/app/controllers/orders_controller.rb

 def create
 @order = Order. new (order_params)
 @order. add_line_items_from_cart (@cart)

 respond_to do |format|
 if @order. save
 Cart. destroy (session[:cart_id])
 session[:cart_id] = nil
» ChargeOrderJob. perform_later (@order,pay_type_params. to_h)
 format. html { redirect_to store_index_url, notice:
 'Thank you for your order.' }
 format. json { render :show , status: :created ,
 location: @order }
 else
 format. html { render :new , status: :unprocessable_entity }
 format. json { render json: @order. errors ,
 status: :unprocessable_entity }
 end
 end
 end

With this in place, you can now add an item to the cart, check out, and see
everything working just as we did before, with the addition of seeing the
calls to Pago. If you look at the Rails log when you check out, you should
see some logging, like so (formatted to fit the page):

 [ActiveJob] Enqueued ChargeOrderJob
 (Job ID: 79da671e-865c-4d51-a1ff-400208c6dbd1)
 to Async(default) with arguments:
 #<GlobalID:0x007fa294a43ce0 @uri=#<URI::GID gid://depot/Order/9>>,
 {"routing_number"=>"23412341234", "account_number"=>"345356345"}
 [ActiveJob] [ChargeOrderJob] [79da671e-865c-4d51-a1ff-400208c6dbd1]
 Performing ChargeOrderJob
 (Job ID: 79da671e-865c-4d51-a1ff-400208c6dbd1) from
 Async(default) with arguments:
 #<GlobalID:0x007fa294a01570 @uri=#<URI::GID gid://depot/Order/9>>,

http://media.pragprog.com/titles/rails7/code/rails7/depot_qb/app/controllers/orders_controller.rb

 {"routing_number"=>"23412341234", "account_number"=>"345356345"}
 [ActiveJob] [ChargeOrderJob] [79da671e-865c-4d51-a1ff-400208c6dbd1]
 Processing check: 23412341234/345356345

This shows the guts of how Active Job works and is useful for debugging if
things aren’t working right.

Speaking of debugging and possible failures, this interaction really should
have a test.

System Testing the Checkout Flow
In Iteration G3: Testing Our JavaScript Functionality, you wrote a system
test that uses a real browser to simulate user interaction. To test the entire
flow of checking out, communicating with the payment processor, and
sending an email, you’ll add a second test.

To test the full, end-to-end workflow, including execution of Active Jobs,
you want to do the following:

1. Add a book to the cart.
2. Fill in the checkout form completely (including selecting a pay type).
3. Submit the order.
4. Process all background jobs.
5. Check that the order was created properly.
6. Check that email was sent.

You should already be familiar with how to write most parts of this test.
Processing background jobs and checking mail, however, are new. Rails
provides helpers for us, so the test will be short and readable when you’re
done. One of those helpers is available by mixing in the ActiveJob::TestHelper

module:

rails7/depot_qb/test/system/orders_test.rb

 class OrdersTest < ApplicationSystemTestCase
» include ActiveJob::TestHelper

http://media.pragprog.com/titles/rails7/code/rails7/depot_qb/test/system/orders_test.rb

This provides the method perform_enqueued_jobs, which you’ll use in your test:

rails7/depot_qb/test/system/orders_test.rb

 test "check order and delivery" do
 LineItem. delete_all
 Order. delete_all

 visit store_index_url

 click_on 'Add to Cart' , match: :first

 click_on 'Checkout'

 fill_in 'Name' , with: 'Dave Thomas'
 fill_in 'Address' , with: '123 Main Street'
 fill_in 'Email' , with: 'dave@example.com'

 select 'Check' , from: 'Pay type'
 fill_in "Routing number" , with: "123456"
 fill_in "Account number" , with: "987654"

 click_button "Place Order"
 assert_text 'Thank you for your order'

 perform_enqueued_jobs
 perform_enqueued_jobs
 assert_performed_jobs 2

 orders = Order. all
 assert_equal 1, orders. size

 order = orders. first
 assert_equal "Dave Thomas" , order. name
 assert_equal "123 Main Street" , order. address
 assert_equal "dave@example.com" , order. email
 assert_equal "Check" , order. pay_type
 assert_equal 1, order. line_items . size

 mail = ActionMailer::Base. deliveries . last
 assert_equal ["dave@example.com"], mail. to
 assert_equal 'Sam Ruby <depot@example.com>' , mail[:from]. value
 assert_equal "Pragmatic Store Order Confirmation" , mail. subject

http://media.pragprog.com/titles/rails7/code/rails7/depot_qb/test/system/orders_test.rb

 end

This test reads almost like English. Since you now need to submit the form
and assert that an order was created, you start by clearing out any orders in
the test database that might be hanging around from previous test runs.

Next, you add an item to the cart, check out and fill in the pay type details,
place your order, and verify that you get a Thank you response.

Since this test is about the user’s experience end-to-end, you don’t need to
look at the jobs that have been queued—instead we need to make sure they
are executed. It’s sufficient to assert the results of those jobs having been
executed. To that end, the method perform_enqueued_jobs will perform any jobs
that get enqueued inside the block of code given to it.Since our ChangeOrderJob

enqueues a mail job, clearing the queue once isn’t enough, so we clear it
twice. After this, we verify that exactly two jobs were executed.

Joe asks:

How Are Background Jobs Run in Development or
Production?

When running the application locally, the background jobs are executed and emails are sent by
Rails. By default, Rails uses an in-memory queue to manage the jobs. This is fine for
development, but it could be a problem in production. If your app were to crash before all
background jobs were processed or before emails were sent, those jobs would be lost and
unrecoverable.

In production, you’d need to use a different back end, as detailed in the Active Job Rails Guide.
[67] Sidekiq is a popular open source back end that works great.[68] Setting it up is a bit tricky
since you must have access to a Redis database to store the waiting jobs.[69] If you’re using
Postgres for your Active Records, Queue Classic is another option for a back end that doesn’t
require Redis—it uses your existing Postgres database.[70]

Next, check that an order was created in the way you expect by locating the
created order and asserting that the values provided in the checkout form
were properly saved.

Lastly, you need to check that the mail was sent. In the test environment,
Rails doesn’t actually deliver mail but instead saves it in an array available
via ActionMailer::Base.deliveries. The objects in there respond to various methods
that allow you to examine the email:

If you run this test via bin/rails test test/system/orders_test.rb, it should pass. You’ve
now tested a complex workflow using the browser, background jobs, and
email.

What We Just Did
Without much code and with just a few templates, we’ve managed to pull
off the following:

We configured our development, test, and production environments for
our Rails application to enable the sending of outbound emails.

We created and tailored a mailer that can send confirmation emails in
both plain-text and HTML formats to people who order our products.

We used Active Job to execute slow-running code in the background so
the user doesn’t have to wait.

We enhanced a system test to cover the entire end-to-end workflow,
including verifying that the background job executed and the email was
sent.

Playtime
Here’s some stuff to try on your own:

Add a ship_date column to the orders table, and send a notification when
this value is updated by the OrdersController.

Update the application to send an email to the system administrator—
namely, yourself—when an application failure occurs, such as the one

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

we handled in Iteration E2: Handling Errors.

Modify Pago to sometimes return a failure (OpenStruct.new(succeeded?: false)),
and handle that by sending a different email with the details of the
failure.

Add system tests for all of the above.

Footnotes

http://guides.rubyonrails.org/action_mailer_basics.html

http://guides.rubyonrails.org/active_job_basics.html

http://api.rubyonrails.org/classes/ActionMailer/MessageDelivery.html#method-i-
deliver_now

https://ruby-doc.org/stdlib-2.4.1/libdoc/ostruct/rdoc/OpenStruct.html

http://guides.rubyonrails.org/active_job_basics.html#job-execution

http://sidekiq.org/

https://redis.io/

https://github.com/QueueClassic/queue_classic/tree/3-1-stable

Copyright © 2023, The Pragmatic Bookshelf.

http://guides.rubyonrails.org/action_mailer_basics.html
http://guides.rubyonrails.org/active_job_basics.html
http://api.rubyonrails.org/classes/ActionMailer/MessageDelivery.html#method-i-deliver_now
https://ruby-doc.org/stdlib-2.4.1/libdoc/ostruct/rdoc/OpenStruct.html
http://guides.rubyonrails.org/active_job_basics.html#job-execution
http://sidekiq.org/
https://redis.io/
https://github.com/QueueClassic/queue_classic/tree/3-1-stable

We cover:
Adding secure passwords to
models
Using more validations
Adding authentication to a
session
Using rails console
Using database transactions
Writing an Active Record hook

Chapter 14

Task I: Logging In

We have a happy customer: in a short time, we’ve jointly put together a
basic shopping cart that she can start showing to her users. She’d like to see
just one more change. Right now, anyone can access the administrative
functions. She’d like us to add a basic user administration system that
would force you to log in to get into the administration parts of the site.

Chatting with our customer, it seems as if we don’t need a particularly
sophisticated security system for our application. We just need to recognize
a number of people based on usernames and passwords. Once recognized,
these folks can use all of the administration functions.

Iteration I1: Adding Users
Let’s start by creating a model and database table to hold our administrators’
usernames and passwords. Rather than store passwords in plain text, we’ll
store a digest hash value of the password. By doing so, we ensure that even
if our database is compromised, the hash won’t reveal the original password,
so it can’t be used to log in as this user using the forms:

 depot> bin/rails generate scaffold User name:string password:digest

We declare the password as a digest type, which is another one of the nice
extra touches that Rails provides. Now run the migration as usual:

 depot> bin/rails db:migrate

Next, we have to flesh out the user model:

rails7/depot_r/app/models/user.rb

 class User < ApplicationRecord
 has_secure_password
 end

We check that the name is present and unique (that is, no two users can have
the same name in the database).

Then there’s the mysterious has_secure_password.

You know those forms that prompt you to enter a password and then make
you reenter it in a separate field so they can validate that you typed what you
thought you typed? That’s exactly what has_secure_password does for you: it
tells Rails to validate that the two passwords match. This line was added for
you because you specified password:digest when you generated your scaffold.

The next step is to uncomment the bcrypt-ruby gem in your Gemfile:

http://media.pragprog.com/titles/rails7/code/rails7/depot_r/app/models/user.rb

rails7/depot_r/Gemfile

 # Use Active Model has_secure_password
 # [https://guides.rubyonrails.org/active_model_basics.html#securepassword]
» gem "bcrypt" , "~> 3.1.7"

Next, you need to install the gem:

 depot> bundle install

Finally, you need to restart your server.

With this code in place, we have the ability to present both a password and a
password confirmation field in a form, as well as the ability to authenticate a
user, given a name and a password.

Administering Our Users
In addition to the model and table we set up, we already have some
scaffolding generated to administer the model. Let’s go through it and make
some tweaks as necessary.

We start with the controller. It defines the standard methods: index, show, new,
edit, create, update, and delete. By default, Rails omits the unintelligible password
hash from the view. This means that in the case of users, there isn’t much to
show except a name. So let’s avoid the redirect to showing the user after a
create operation. Instead, let’s redirect to the user’s index and add the
username to the flash notice:

rails7/depot_r/app/controllers/users_controller.rb

 def create
 @user = User. new (user_params)

 respond_to do |format|
 if @user. save
» format. html { redirect_to users_url,
» notice: "User #{ @user. name} was successfully created." }
 format. json { render :show , status: :created , location: @user }

http://media.pragprog.com/titles/rails7/code/rails7/depot_r/Gemfile
http://media.pragprog.com/titles/rails7/code/rails7/depot_r/app/controllers/users_controller.rb

 else
 format. html { render :new , status: :unprocessable_entity }
 format. json { render json: @user. errors ,
 status: :unprocessable_entity }
 end
 end
 end

Let’s do the same for an update operation:

 def update
 respond_to do |format|
 if @user. update (user_params)
» format. html { redirect_to users_url,
» notice: "User #{ @user. name} was successfully updated." }
 format. json { render :show , status: :ok , location: @user }
 else
 format. html { render :edit , status: :unprocessable_entity }
 format. json { render json: @user. errors ,
 status: :unprocessable_entity }
 end
 end
 end

While we’re here, let’s also order the users returned in the index by name:

 def index
» @users = User. order (:name)
 end

Now that the controller changes are done, let’s attend to the view. We need
to update the form used both to create a new user and to update an existing
user. Note this form is already set up to show the password and password
confirmation fields. We’ll make a few aesthetic changes so the form looks
nice and matches the look and feel of the site.

rails7/depot_r/app/views/users/_form.html.erb

 <%= form_with(model: user, class: "contents") do |form| %>
 <% if user. errors . any? %>
 <div id= "error_explanation"

http://media.pragprog.com/titles/rails7/code/rails7/depot_r/app/views/users/_form.html.erb

 class= "bg-red-50 text-red-500 px-3 py-2 font-medium rounded-lg mt-3" >
 <h2> <%= pluralize(user. errors . count , "error") %>
 prohibited this user from being saved:</h2>

 <% user. errors . each do |error| %>
 <%= error. full_message %>
 <% end %>

 </div>
 <% end %>

» <h2>Enter User Details</h2>
»
 <div class= "my-5" >
» <%= form. label :name , 'Name:' %>
» <%= form. text_field :name , class: "input-field" %>
 </div>

 <div class= "my-5" >
» <%= form. label :password , 'Password:' %>
» <%= form. password_field :password , class: "input-field" %>
 </div>

 <div class= "my-5" >
» <%= form. label :password_confirmation , 'Confirm:' %>

» <%= form. password_field :password_confirmation ,
» id: :user_password_confirmation ,
» class: "input-field" %>
 </div>

 <div class= "inline" >
 <%= form. submit class: "rounded-lg py-3 px-5 bg-blue-600 text-white
 inline-block font-medium cursor-pointer" %>
 </div>
 <% end %>

Let’s try it. Navigate to http://localhost:3000/users/new. For a stunning
example of page design, see the following screenshot.

http://localhost:3000/users/new

After Create User is clicked, the index is redisplayed with a cheery flash
notice. If we look in our database, you’ll see that we’ve stored the user
details:

 depot> sqlite3 -line db/development.sqlite3 "select * from users"
 id = 1
 name = dave
 password_digest = $2a$10$lki6/oAcOW4AWg4A0e0...
 created_at = 2022-01-10 23:52:15.599643
 updated_at = 2022-01-10 23:52:15.599643

As we’ve done before, we need to update our tests to reflect the validation
and redirection changes we’ve made. First we update the test for the create

method:

rails7/depot_r/test/controllers/users_controller_test.rb

 test "should create user" do
 assert_difference("User.count") do
» post users_url, params: { user: { name: 'sam' ,
» password: "secret" , password_confirmation: "secret" } }
 end

» assert_redirected_to users_url
 end

Because the redirect on the update method changed too, the update test also
needs to change:

http://media.pragprog.com/titles/rails7/code/rails7/depot_r/test/controllers/users_controller_test.rb

 test "should update user" do
 patch user_url(@user), params: { user: { name: @user. name ,
 password: "secret" , password_confirmation: "secret" } }
» assert_redirected_to users_url
 end

We need to update the test fixtures to ensure there are no duplicate names:

rails7/depot_r/test/fixtures/users.yml

 # Read about fixtures at
 # https://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

 one:
» name: dave
 password_digest: <%= BCrypt::Password.create("secret") %>

 two:
» name: adaobi
 password_digest: <%= BCrypt::Password.create("secret") %>

Note the use of dynamically computed values in the fixture, specifically for
the value of password_digest. This code was also inserted by the scaffolding
command and uses the same function that Rails uses to compute the
password.[71]

At this point, we can administer our users; we need to first authenticate users
and then restrict administrative functions so they’ll be accessible only by
administrators.

http://media.pragprog.com/titles/rails7/code/rails7/depot_r/test/fixtures/users.yml

Iteration I2: Authenticating Users
What does it mean to add login support for administrators of our store?

We need to provide a form that allows them to enter a username and
password.

Once they’re logged in, we need to record that fact somehow for the
rest of the session (or until they log out).

We need to restrict access to the administrative parts of the application,
allowing only people who are logged in to administer the store.

We could put all of the logic into a single controller, but it makes more sense
to split it into two—a session controller to support logging in and out and a
controller to welcome administrators:

 depot> bin/rails generate controller Sessions new create destroy
 depot> bin/rails generate controller Admin index

The SessionsController#create action will need to record something in session to say
that an administrator is logged in. Let’s have it store the ID of that person’s
User object using the key :user_id. The login code looks like this:

rails7/depot_r/app/controllers/sessions_controller.rb

 def create
» user = User. find_by (name: params[:name])
» if user&. authenticate (params[:password])
» session[:user_id] = user. id
» redirect_to admin_url
» else
» redirect_to login_url, alert: "Invalid user/password combination"
» end
 end

http://media.pragprog.com/titles/rails7/code/rails7/depot_r/app/controllers/sessions_controller.rb

This code makes use of the Ruby Safe Navigation Operator, which checks to
see if a variable has a value of nil before trying to call the method.

We’re also doing something else new here: using a form that isn’t directly
associated with a model object. To see how that works, let’s look at the
template for the sessions#new action:

rails7/depot_r/app/views/sessions/new.html.erb

 <div class= "mx-auto md:w-2/3 w-full" >
 <% if notice. present? %>
 <p class= "py-2 px-3 bg-green-50 mb-5 text-green-500 font-medium
 rounded-lg inline-block" id= "notice" >
 <%= notice %>
 </p>
 <% end %>

 <%= form_tag do %>
 <h2 class= "font-bold text-3xl" >Please Log In</h2>

 <div class= "my-5" >
 <%= label_tag :name , 'Name:' %>
 <%= text_field_tag :name , params[:name], class: "payment-field" %>
 </div>

 <div class= "my-5" >
 <%= label_tag :password , 'Password:' %>
 <%= password_field_tag :password , params[:password],
 class: "payment-field" %>
 </div>

 <div class= "actions" >
 <%= submit_tag "Login" , class: "rounded-lg py-3 px-5
 bg-green-600 text-black inline-block font-medium cursor-pointer" %>
 </div>
 <% end %>
 </div>

This form is different from ones you saw earlier. Rather than using form_with,
it uses form_tag, which simply builds a regular HTML <form>. Inside that form,

http://media.pragprog.com/titles/rails7/code/rails7/depot_r/app/views/sessions/new.html.erb

it uses text_field_tag and password_field_tag, two helpers that create HTML <input>

tags. Each helper takes two parameters. The first is the name to give to the
field, and the second is the value with which to populate the field. This style
of form allows us to associate values in the params structure directly with
form fields—no model object is required. In our case, we choose to use the
params object directly in the form. An alternative would be to have the
controller set instance variables.

We also make use of the label_tag helpers to create HTML <label> tags. This
helper also accepts two parameters. The first contains the name of the field,
and the second contains the label to be displayed.

See the figure. Note how the value of the form field is communicated
between the controller and the view via the params hash: the view gets the
value to display in the field from params[:name], and when the user submits the
form, the new field value is made available to the controller the same way.

If the user successfully logs in, we store the ID of the user record in the
session data. We’ll use the presence of that value in the session as a flag to
indicate that an administrative user is logged in.

As you might expect, the controller actions for logging out are much shorter:

rails7/depot_r/app/controllers/sessions_controller.rb

 def destroy
» session[:user_id] = nil
» redirect_to store_index_url, notice: "Logged out"
 end

Finally, it’s about time to add the index page—the first screen that
administrators see when they log in. Let’s make it useful. We’ll have it
display the total number of orders in our store. Create the template in the
index.html.erb file in the app/views/admin directory. (This template uses the pluralize

helper, which in this case generates the order or orders string, depending on the
cardinality of its first parameter.)

rails7/depot_r/app/views/admin/index.html.erb

 <div class= "w-full" >
 <h1 class= "mx-auto text-lg font-bold text-4xl" >Welcome</h1>

 <p>
 It's <%= Time. now %> .
 We have <%= pluralize(@total_orders, "order") %> .
 </p>
 </div>

The index action sets up the count:

rails7/depot_r/app/controllers/admin_controller.rb

 class AdminController < ApplicationController
 def index
» @total_orders = Order. count
 end
 end

http://media.pragprog.com/titles/rails7/code/rails7/depot_r/app/controllers/sessions_controller.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_r/app/views/admin/index.html.erb
http://media.pragprog.com/titles/rails7/code/rails7/depot_r/app/controllers/admin_controller.rb

We have one more task to do before we can use this. Whereas previously we
relied on the scaffolding generator to create our model and routes for us, this
time we simply generated a controller because there’s no database-backed
model for this controller. Unfortunately, without the scaffolding conventions
to guide it, Rails has no way of knowing which actions are to respond to GET

requests, which are to respond to POST requests, and so on, for this
controller. We need to provide this information by editing our config/routes.rb

file:

rails7/depot_r/config/routes.rb

 Rails. application . routes . draw do
» get 'admin' => 'admin#index'
» controller :sessions do
» get 'login' => :new
» post 'login' => :create
» delete 'logout' => :destroy
» end

 get 'sessions/create'
 get 'sessions/destroy'
 resources :users
 resources :orders
 resources :line_items
 resources :carts
 root 'store#index' , as: 'store_index'
 resources :products do
 get :who_bought , on: :member
 end

 # Define your application routes per the DSL in
 # https://guides.rubyonrails.org/routing.html

 # Defines the root path route ("/")
 # root "articles#index"
 end

We’ve touched this before, when we added a root statement in Iteration C1:
Creating the Catalog Listing. What the generate command adds to this file are

http://media.pragprog.com/titles/rails7/code/rails7/depot_r/config/routes.rb

fairly generic get statements for each action specified. You can (and should)
delete the routes provided for sessions/new, sessions/create, and sessions/destroy.

In the case of admin, we’ll shorten the URL that the user has to enter (by
removing the /index part) and map it to the full action. In the case of session
actions, we’ll completely change the URL (replacing things like session/create

with simply login) as well as tailor the HTTP action that we’ll match. Note
that login is mapped to both the new and create actions, the difference being
whether the request was an HTTP GET or HTTP POST.

We also make use of a shortcut: wrapping the session route declarations in a
block and passing it to a controller class method. This saves us a bit of typing
as well as makes the routes easier to read. We’ll describe all you can do in
this file in Dispatching Requests to Controllers.

With these routes in place, we can experience the joy of logging in as an
administrator. See the following screenshot.

We need to replace the functional tests in the session controller to match
what was implemented. First, change the admin controller test to get the
admin URL:

rails7/depot_r/test/controllers/admin_controller_test.rb

 require "test_helper"

 class AdminControllerTest < ActionDispatch::IntegrationTest
 test "should get index" do
» get admin_url
 assert_response :success
 end
 end

http://media.pragprog.com/titles/rails7/code/rails7/depot_r/test/controllers/admin_controller_test.rb

Then we implement several tests for both successful and failed login
attempts:

rails7/depot_r/test/controllers/sessions_controller_test.rb

 require "test_helper"

 class SessionsControllerTest < ActionDispatch::IntegrationTest
 test "should prompt for login" do
 get login_url
 assert_response :success
 end

 test "should login" do
 dave = users(:one)
 post login_url, params: { name: dave. name , password: 'secret' }
 assert_redirected_to admin_url
 assert_equal dave. id , session[:user_id]
 end

 test "should fail login" do
 dave = users(:one)
 post login_url, params: { name: dave. name , password: 'wrong' }
 assert_redirected_to login_url
 end

 test "should logout" do
 delete logout_url
 assert_redirected_to store_index_url
 end
 end

We show our customer where we are, but she points out that we still haven’t
controlled access to the administrative pages (which was, after all, the point
of this exercise).

http://media.pragprog.com/titles/rails7/code/rails7/depot_r/test/controllers/sessions_controller_test.rb

Iteration I3: Limiting Access
We want to prevent people without an administrative login from accessing
our site’s admin pages. It turns out that we can do it with very little code
using the Rails callback facility.

Rails callbacks allow you to intercept calls to action methods, adding your
own processing before they’re invoked, after they return, or both. In our
case, we’ll use a before action callback to intercept all calls to the actions in
our admin controller. The interceptor can check session[:user_id]. If it’s set and
if it corresponds to a user in the database, the application knows an
administrator is logged in and the call can proceed. If it’s not set, the
interceptor can issue a redirect, in this case to our login page.

Where should we put this method? It could sit directly in the admin
controller, but—for reasons that’ll become apparent shortly—let’s put it
instead in ApplicationController, the parent class of all our controllers. This is in
the application_controller.rb file in the app/controllers directory. Note, too, that we
chose to restrict access to this method. This prevents it from ever being
exposed to end users as an action:

rails7/depot_r/app/controllers/application_controller.rb

 class ApplicationController < ActionController::Base
» before_action :authorize

 # ...
»
» protected
»
» def authorize
» unless User. find_by (id: session[:user_id])
» redirect_to login_url, notice: "Please log in"
» end
» end
 end

http://media.pragprog.com/titles/rails7/code/rails7/depot_r/app/controllers/application_controller.rb

The before_action line causes the authorize method to be invoked before every
action in our application.

This is going too far. We’ve just limited access to the store itself to
administrators. That’s not good.

We could go back and change things so that we mark only those methods
that specifically need authorization. Such an approach, called denylisting, is
prone to errors of omission. A much better approach is to allowlist—list
methods or controllers for which authorization is not required. We do this by
inserting a skip_before_action call within the StoreController:

rails7/depot_r/app/controllers/store_controller.rb

 class StoreController < ApplicationController
» skip_before_action :authorize

And we do it again for the SessionsController class:

rails7/depot_r/app/controllers/sessions_controller.rb

 class SessionsController < ApplicationController
» skip_before_action :authorize

We’re not done yet; we need to allow people to create, update, and delete
carts:

rails7/depot_r/app/controllers/carts_controller.rb

 class CartsController < ApplicationController
» skip_before_action :authorize , only: %i[create update destroy]

And we allow them to create line items:

rails7/depot_r/app/controllers/line_items_controller.rb

 class LineItemsController < ApplicationController
» skip_before_action :authorize , only: %i[create]

http://media.pragprog.com/titles/rails7/code/rails7/depot_r/app/controllers/store_controller.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_r/app/controllers/sessions_controller.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_r/app/controllers/carts_controller.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_r/app/controllers/line_items_controller.rb

We also allow them to create orders (which includes access to the new form):

rails7/depot_r/app/controllers/orders_controller.rb

 class OrdersController < ApplicationController
» skip_before_action :authorize , only: %i[new create]

With the authorization logic in place, we can now navigate to
http://localhost:3000/products. The callback method intercepts us on the
way to the product listing and shows us the login screen instead.

Unfortunately, this change pretty much invalidates most of our functional
and system tests because most operations will now redirect to the login
screen instead of doing the function desired. Fortunately, we can address this
globally by creating a setup method in the test_helper. While we’re there, we
also define some helper methods to login_as and logout a user.

We’ll put those into a module because we need all of these methods to be
included in both ActionDispatch::IntegrationTest and ActionDispatch::SystemTestCase.
We’ll define a module AuthenticationHelpers and then include that in both classes,
like so:

rails7/depot_r/test/test_helper.rb

 class ActionDispatch::IntegrationTest
 def login_as (user)
 if respond_to? :visit
 visit login_url
 fill_in :name , with: user. name
 fill_in :password , with: 'secret'
 click_on 'Login'
 else
 post login_url, params: { name: user. name , password: 'secret' }
 end
 end

 def logout
 delete logout_url
 end

http://media.pragprog.com/titles/rails7/code/rails7/depot_r/app/controllers/orders_controller.rb
http://localhost:3000/products
http://media.pragprog.com/titles/rails7/code/rails7/depot_r/test/test_helper.rb

 def setup
 login_as users(:one)
 end
 end

Note that the setup method will call login_as only if session is defined. This
prevents the login from being executed in tests that don’t involve a
controller.

Also note that the scaffold-generated test in test/system/users_test.rb won’t be
passing. That was generated by Rails for us but doesn’t really represent how
we implemented login. We’ll leave that as an exercise for you to fix at the
end of this chapter.

We show our customer and are rewarded with a big smile and a request:
could we add a sidebar and put links to the user and product administration
stuff in it? And while we’re there, could we add the ability to list and delete
administrative users? You betcha!

Iteration I4: Adding a Sidebar, More
Administration
Let’s start with adding links to various administration functions to the
sidebar in the layout and have them show up only if a :user_id is in the session:

rails7/depot_r/app/views/layouts/application.html.erb

 <!DOCTYPE html>
 <html>
 <head>
 <title>Pragprog Books Online Store</title>
 <meta name= "viewport" content= "width=device-width,initial-scale=1" >
 <%= csrf_meta_tags %>
 <%= csp_meta_tag %>
 <%= stylesheet_link_tag "inter-font" , "data-turbo-track" : "reload" %>
 <%= stylesheet_link_tag "tailwind" , "data-turbo-track" : "reload" %>

 <%= stylesheet_link_tag "application" , "data-turbo-track" : "reload" %>
 <%= javascript_importmap_tags %>
 </head>

 <body>
 <header class= "bg-green-700" >
 <%= image_tag 'logo.svg' , alt: 'The Pragmatic Bookshelf' %>
 <h1> <%= @page_title %> </h1>
 </header>

 <section class= "flex" >
 <nav class= "bg-green-900 p-6" >
 <%= render partial: 'layouts/cart' , locals: { cart: @cart } %>

 <ul class= "text-gray-300 leading-8" >
 Home
 Questions
 News
 Contact

»

http://media.pragprog.com/titles/rails7/code/rails7/depot_r/app/views/layouts/application.html.erb

» <% if session[:user_id] %>
» <hr class= "my-2" >
»
» <ul class= "text-gray-300 leading-8" >
» <%= link_to 'Orders' , orders_path %>
» <%= link_to 'Products' , products_path %>
» <%= link_to 'Users' , users_path %>
» <%= button_to 'Logout' , logout_path, method: :delete %>
»
» <% end %>
 </nav>

 <main class= "container mx-auto mt-4 px-5 flex" >
 <%= yield %>
 </main>
 </section>
 </body>
 </html>

Now it’s all starting to come together. We can log in, and by clicking a link
in the sidebar, we can see a list of users. Let’s see if we can break
something.

Would the Last Admin to Leave…
We bring up the user list screen that looks something like the following
screenshot:

If we click the Show this user link, we see the following:

Now click the Destroy this user link to delete that user. Sure enough, our
user is removed. But to our surprise, we’re then presented with the login
screen instead. We just deleted the only administrative user from the system.
When the next request came in, the authentication failed, so the application
refused to let us in. We have to log in again before using any administrative
functions.

But now we have an embarrassing problem: there are no administrative
users in the database, so we can’t log in.

Fortunately, we can quickly add a user to the database from the command
line. If you invoke the rails console command, Rails invokes Ruby’s irb utility,
but it does so in the context of your Rails application. That means you can
interact with your application’s code by typing Ruby statements and looking
at the values they return.

We can use this to invoke our user model directly, having it add a user into
the database for us:

 depot> bin/rails console
 Loading development environment.
 >> User.create(name: 'dave', password: 'secret', password_confirmation: 'secret')
 => #<User:0x2933060 @attributes={...} ... >
 >> User.count
 => 1

The >> sequences are prompts. After the first, we call the User class to create
a new user, and after the second, we call it again to show that we do indeed
have a single user in our database. After each command we enter, rails console

displays the value returned by the code (in the first case, it’s the model
object, and in the second case, it’s the count).

Panic over. We can now log back in to the application. But how can we stop
this from happening again? We have several ways. For example, we could
write code that prevents you from deleting your own user. That doesn’t quite
work: in theory, A could delete B at just the same time that B deletes A.
Let’s try a different approach. We’ll delete the user inside a database
transaction. Transactions provide an all-or-nothing proposition, stating that
each work unit performed in a database must either complete in its entirety
or none of them will have any effect whatsoever. If no users are left after
we’ve deleted the user, we’ll roll the transaction back, restoring the user we
just deleted.

To do this, we’ll use an Active Record hook method. We’ve already seen
one of these: the validate hook is called by Active Record to validate an
object’s state. It turns out that Active Record defines sixteen or so hook
methods, each called at a particular point in an object’s life cycle. We’ll use
the after_destroy hook, which is called after the SQL delete is executed. If a
method by this name is publicly visible, it’ll conveniently be called in the
same transaction as the delete—so if it raises an exception, the transaction
will be rolled back. The hook method looks like this:

rails7/depot_t/app/models/user.rb

 after_destroy :ensure_an_admin_remains

 class Error < StandardError
 end

 private
 def ensure_an_admin_remains
 if User. count . zero?
 raise Error. new "Can't delete last user"
 end
 end

http://media.pragprog.com/titles/rails7/code/rails7/depot_t/app/models/user.rb

The key concept is the use of an exception to indicate an error when the user
is deleted. This exception serves two purposes. First, because it’s raised
inside a transaction, it causes an automatic rollback. By raising the
exception if the users table is empty after the deletion, we undo the delete and
restore that last user.

Second, the exception signals the error back to the controller, where we use
a rescue_from block to handle it and report the error to the user in the notice. If
you want only to abort the transaction but not otherwise signal an exception,
raise an ActiveRecord::Rollback exception instead, because this is the only
exception that won’t be passed on by ActiveRecord::Base.transaction:

rails7/depot_t/app/controllers/users_controller.rb

 def destroy
 @user. destroy

 respond_to do |format|
 format. html { redirect_to users_url,
 notice: "User #{ @user. name} deleted" }
 format. json { head :no_content }
 end
 end

» rescue_from 'User::Error' do |exception|
» redirect_to users_url, notice: exception. message
» end

This code still has a potential timing issue: it’s still possible for two
administrators each to delete the last two users if their timing is right. Fixing
this would require more database wizardry than we have space for here.

In fact, the login system described in this chapter is rudimentary. Most
applications these days use a plugin to do this.

A number of plugins are available that provide ready-made solutions that
not only are more comprehensive than the authentication logic shown here

http://media.pragprog.com/titles/rails7/code/rails7/depot_t/app/controllers/users_controller.rb

but generally require less code and effort on your part to use. Devise[72] is a
common and popular gem that does this.

What We Just Did
By the end of this iteration, we’ve done the following:

We used has_secure_password to store an encrypted version of the password
into the database.

We controlled access to the administration functions using before
action callbacks to invoke an authorize method.

We used rails console to interact directly with a model (and dig us out of a
hole after we deleted the last user).

We used a transaction to help prevent deletion of the last user.

Playtime
Here’s some stuff to try on your own:

Modify the user update function to require and validate the current
password before allowing a user’s password to be changed.

The system test in test/system/users_test.rb was generated by the scaffolding
generator we used at the start of the chapter. Those tests don’t pass. See
if you can get them to pass without breaking the other system tests.
You’ll recall we created the module AuthenticationHelpers and included it in
all of the system tests by default, so you might need to change the code
to not do that so that you can properly test the login functionality.

When the system is freshly installed on a new machine, no
administrators are defined in the database, and hence no administrator
can log on. But if no administrator can log on, then no one can create
an administrative user.

[71]

[72]

Change the code so that if no administrator is defined in the database,
any username works to log on (allowing you to quickly create a real
administrator).

Experiment with rails console. Try creating products, orders, and line
items. Watch for the return value when you save a model object—when
validation fails, you’ll see false returned. Find out why by examining the
errors:

 >> prd = Product.new
 => #<Product id: nil, title: nil, description: nil, image_url:
 nil, created_at: nil, updated_at: nil, price:
 #<BigDecimal:246aa1c,'0.0',4(8)>>
 >> prd.save
 => false
 >> prd.errors.full_messages
 => ["Image url must be a URL for a GIF, JPG, or PNG image",
 "Image url can't be blank", "Price should be at least 0.01",
 "Title can't be blank", "Description can't be blank"]

We’ve gotten our tests working by performing a login, but we haven’t
yet written tests that verify that access to sensitive data requires login.
Write at least one test that verifies this by calling logout and then
attempting to fetch or update some data that requires authentication.

Footnotes

https://github.com/rails/rails/blob/5-1-
stable/activemodel/lib/active_model/secure_password.rb

https://github.com/plataformatec/devise

Copyright © 2023, The Pragmatic Bookshelf.

https://github.com/rails/rails/blob/5-1-stable/activemodel/lib/active_model/secure_password.rb
https://github.com/plataformatec/devise

We cover:
Localizing templates
Database design considerations
for I18n

Chapter 15

Task J: Internationalization

Now we have a basic cart working, and our customer starts to inquire about
languages other than English, noting that her company has a big push on for
expansion in emerging markets. Unless we can present something in a
language that visitors to our customer’s website will understand, our
customer will be leaving money on the table. We can’t have that.

The first problem is that none of us are professional translators. The
customer reassures us that this isn’t something we need to concern
ourselves with because that part of the effort will be outsourced. All we
need to worry about is enabling translation. Furthermore, we don’t have to
worry about the administration pages yet because all the administrators
speak English. What we have to focus on is the store.

That’s a relief—but still a tall order. We’ll need to define a way to enable
the user to select a language, we’ll have to provide the translations
themselves, and we’ll have to change the views to use these translations.
But we’re up to the task, and—armed with a bit of remembered high-school
Spanish—we set off to work.

Joe asks:

If We Stick to One Language, Do We Need to Read This
Chapter?

The short answer is no. In fact, many Rails applications are for a small or homogeneous group
and never need translating. That being said, pretty much everybody who does find that they
need translation agrees that it’s best if this is done early. So unless you’re sure that translation
won’t ever be needed, it’s our recommendation that you at least understand what would be
involved so that you can make informed decisions.

Iteration J1: Selecting the Locale
We start by creating a new configuration file that encapsulates our
knowledge of what locales are available and which one is to be used as the
default:

rails7/depot_t/config/initializers/i18n.rb

 #encoding: utf-8
 I18n. default_locale = :en

 LANGUAGES = [
 ['English' , 'en'],
 ["Español" . html_safe , 'es']
]

This code is doing two things.

The first thing it does is use the I18n module to set the default locale. I18n is a
funny name, but it sure beats typing out internationalization all the time.
Internationalization, after all, starts with an i, ends with an n, and has
eighteen letters in between.

Then the code defines a list of associations between display names and
locale names. Unfortunately, all we have available at the moment is a U.S.
keyboard, and Español has a character that can’t be directly entered via our
keyboard. Different operating systems have different ways of dealing with
this, and often the easiest way is to copy and paste the correct text from a
website. If you do this, make sure your editor is configured for UTF-8.
Meanwhile, we’ve opted to use the HTML equivalent of the n con tilde
character in Spanish. If we didn’t do anything else, the markup itself would
be shown. But by calling html_safe, we inform Rails that the string is safe to
be interpreted as containing HTML.

http://media.pragprog.com/titles/rails7/code/rails7/depot_t/config/initializers/i18n.rb

For Rails to pick up this configuration change, the server needs to be
restarted.

Since each page that’s translated will have an en and an es version (for now—
more will be added later), it makes sense to include this in the URL. Let’s
plan to put the locale up front, make it optional, and have it default to the
current locale, which in turn will default to English.

To implement this cunning plan, let’s start by modifying config/routes.rb:

rails7/depot_t/config/routes.rb

 Rails. application . routes . draw do
 get 'admin' => 'admin#index'
 controller :sessions do
 get 'login' => :new
 post 'login' => :create
 delete 'logout' => :destroy
 end
 get 'sessions/create'
 get 'sessions/destroy'

 resources :users
 resources :products do
 get :who_bought , on: :member
 end

» scope '(:locale)' do
 resources :orders
 resources :line_items
 resources :carts
 root 'store#index' , as: 'store_index' , via: :all
» end
 end

We’ve nested our resources and root declarations inside a scope declaration
for :locale. Furthermore, :locale is in parentheses, which is the way to say that
it’s optional. Note that we didn’t choose to put the administrative and

http://media.pragprog.com/titles/rails7/code/rails7/depot_t/config/routes.rb

session functions inside this scope, because it’s not our intent to translate
them at this time.

What this means is that http://localhost:3000/ will use the default locale
(namely, English) and therefore be routed exactly the same as
http://localhost:3000/en. http://localhost:3000/es will route to the same
controller and action, but we’ll want this to cause the locale to be set
differently.

At this point, we’ve made a lot of changes to config.routes, and with the nesting
and all the optional parts to the path, the gestalt might be hard to visualize.
Never fear—when running a server in development mode, Rails provides a
visual aid. All you need to do is navigate to
http://localhost:3000/rails/info/routes, and you’ll see a list of all your routes.
You can even filter the list, as shown in the screenshot, to quickly find the
route you’re interested in. More information on the fields shown in this table
can be found in the description of rake routes.

http://localhost:3000/
http://localhost:3000/en
http://localhost:3000/es
http://localhost:3000/rails/info/routes

With the routing in place, we’re ready to extract the locale from the
parameters and make it available to the application. To do this, we need to
create a before_action callback. The logical place to do this is in the common
base class for all of our controllers, which is ApplicationController:

rails7/depot_t/app/controllers/application_controller.rb

 class ApplicationController < ActionController::Base
» before_action :set_i18n_locale_from_params
 # ...
 protected
» def set_i18n_locale_from_params
» if params[:locale]
» if I18n. available_locales . map (& :to_s). include? (params[:locale])
» I18n. locale = params[:locale]
» else
» flash. now [:notice] =

http://media.pragprog.com/titles/rails7/code/rails7/depot_t/app/controllers/application_controller.rb

» "#{ params[:locale] } translation not available"
» logger. error flash. now [:notice]
» end
» end
» end
 end

This set_i18n_locale_from_params does pretty much what it says: it sets the locale
from the params, but only if there’s a locale in the params; otherwise, it
leaves the current locale alone. Care is taken to provide a message for both
the user and the administrator when a failure occurs.

With this in place, we can see the results in the following screenshot of
navigating to http://localhost:3000/en.

At this point, the English version of the page is available both at the root of
the website and at pages that start with /en. If you try another language code,
say “es” (or Spanish), you can see that an error message appears saying no

translations are available. The screenshot shows what this might look like
when navigating to http://localhost:3000/es:

Iteration J2: Translating the Storefront
Now it’s time to begin providing the translated text. Let’s start with the
layout since it’s pretty visible. We replace any text that needs to be
translated with calls to I18n.translate. Not only is this method conveniently
aliased as I18n.t, but a helper named t is provided.

The parameter to the translate function is a unique dot-qualified name. We
can choose any name we like, but if we use the t helper function provided,
names that start with a dot will first be expanded using the name of the
template.

So, let’s do that:

rails7/depot_t/app/views/layouts/application.html.erb

 <!DOCTYPE html>
 <html>
 <head>
 <title>Pragprog Books Online Store</title>
 <meta name= "viewport" content= "width=device-width,initial-scale=1" >
 <%= csrf_meta_tags %>
 <%= csp_meta_tag %>
 <%= stylesheet_link_tag "inter-font" , "data-turbo-track" : "reload" %>
 <%= stylesheet_link_tag "tailwind" , "data-turbo-track" : "reload" %>

 <%= stylesheet_link_tag "application" , "data-turbo-track" : "reload" %>
 <%= javascript_importmap_tags %>
 </head>

 <body>
 <header class= "bg-green-700" >
 <%= image_tag 'logo.svg' , alt: 'The Pragmatic Bookshelf' %>
 <h1> <%= @page_title %> </h1>
 </header>

 <section class= "flex" >
 <nav class= "bg-green-900 p-6" >

http://media.pragprog.com/titles/rails7/code/rails7/depot_t/app/views/layouts/application.html.erb

 <%= render partial: 'layouts/cart' , locals: { cart: @cart } %>

 <ul class= "text-gray-300 leading-8" >
» <%= t('.home') %>
» <%= t('.questions') %>
» <%= t('.news') %>
» <%= t('.contact') %>

 <% if session[:user_id] %>
 <hr class= "my-2" >

 <ul class= "text-gray-300 leading-8" >
 <%= link_to 'Orders' , orders_path %>
 <%= link_to 'Products' , products_path %>
 <%= link_to 'Users' , users_path %>
 <%= button_to 'Logout' , logout_path, method: :delete %>

 <% end %>
 </nav>

 <main class= "container mx-auto mt-4 px-5 flex" >
 <%= yield %>
 </main>
 </section>
 </body>
 </html>

Since this view is named layouts/application.html.erb, the English mappings will
expand to en.layouts.application. Here’s the corresponding locale file:

rails7/depot_t/config/locales/en.yml

 en:

 layouts:
 application:
 title: "The Pragmatic Bookshelf"
 home: "Home"
 questions: "Questions"
 news: "News"

http://media.pragprog.com/titles/rails7/code/rails7/depot_t/config/locales/en.yml

 contact: "Contact"

Here it is in Spanish:

rails7/depot_t/config/locales/es.yml

 es:

 layouts:
 application:
 title: "Biblioteca de Pragmatic"
 home: "Inicio"
 questions: "Preguntas"
 news: "Noticias"
 contact: "Contacto"

The format is YAML, the same as the one used to configure the databases.
YAML consists of indented names and values, where the indentation in this
case matches the structure that we created in our names.

To get Rails to recognize new YAML files, the server needs to be restarted.

Navigating to http://localhost:3000/es now will show some translated text, as
shown in the following screenshot.

http://media.pragprog.com/titles/rails7/code/rails7/depot_t/config/locales/es.yml

Next to be updated is the main title as well as the Add to Cart button. The
first can be found in the store index template:

rails7/depot_s/app/views/store/index.html.erb

 <div class= "w-full" >
 <%= render 'notice' %>

 <h1 class= "font-bold text-xl mb-6 pb-2 border-b-2" >
» <%= t('.title_html') %>
 </h1>

The button can be found in the store product partial:

rails7/depot_s/app/views/store/_product.html.erb

» <%= button_to t('.add_html'),
 line_items_path(product_id: product),
 form_class: 'inline' ,
 class: 'ml-4 rounded-lg py-1 px-2
 text-white bg-green-600' %>

http://media.pragprog.com/titles/rails7/code/rails7/depot_s/app/views/store/index.html.erb
http://media.pragprog.com/titles/rails7/code/rails7/depot_s/app/views/store/_product.html.erb

And here’s the corresponding updates to the locales files, first in English:

rails7/depot_t/config/locales/en.yml

 en:

 store:
 index:
 title_html: "Your Pragmatic Catalog"
 product:
 add_html: "Add to Cart"

And here it is in Spanish:

rails7/depot_t/config/locales/es.yml

 es:

 store:
 index:
 title_html: "Su Catálogo de Pragmatic"
 product:
 add_html: "Añadir al Carrito"

Note that since title_html and add_html end in the characters _html, we’re free to
use HTML entity names for characters that don’t appear on our keyboard. If
we didn’t name the translation key this way, what you’d end up seeing on
the page is the markup. This is yet another convention that Rails has adopted
to make your coding life easier. Rails will also treat names that contain html

as a component (in other words, the string .html.) as HTML key names.

By refreshing the page in the browser window, we see the results shown in
the following screenshot.

http://media.pragprog.com/titles/rails7/code/rails7/depot_t/config/locales/en.yml
http://media.pragprog.com/titles/rails7/code/rails7/depot_t/config/locales/es.yml

Feeling confident, we move on to the cart partial, replacing text that needs
translation as well as adding the locale to the new_order_path:

rails7/depot_t/app/views/carts/_cart.html.erb

 <div id= "<%= dom_id cart %>" >
» <h2 class= "font-bold text-lg mb-3" > <%= t('.title') %> </h2>

 <table class= "table-auto" >
 <%= render cart. line_items %>

 <tfoot>
 <tr>
 <th class= "text-right pr-2 pt-2" colspan= "3" >Total:</th>
 <td class= "text-right pt-2 font-bold border-t-2 border-black" >
 <%= number_to_currency(cart. total_price) %>
 </td>
 </tr>
 </tfoot>
 </table>

 <div class= "flex mt-1" >
» <%= button_to t('.empty'), cart, method: :delete ,
 class: 'ml-4 rounded-lg py-1 px-2 text-white bg-green-600' %>

http://media.pragprog.com/titles/rails7/code/rails7/depot_t/app/views/carts/_cart.html.erb

» <%= button_to t('.checkout'), new_order_path(locale: I18n. locale),
 method: :get ,
 class: 'ml-4 rounded-lg py-1 px-2 text-black bg-green-200' %>
 </div>
 </div>

And again, here are the translations:

rails7/depot_t/config/locales/en.yml

 en:

 carts:
 cart:
 title: "Your Cart"
 empty: "Empty cart"
 checkout: "Checkout"

rails7/depot_t/config/locales/es.yml

 es:

 carts:
 cart:
 title: "Carrito de la Compra"
 empty: "Vaciar Carrito"
 checkout: "Comprar"

Refreshing the page, we see the cart title and buttons have been translated,
as shown in the screenshot.

http://media.pragprog.com/titles/rails7/code/rails7/depot_t/config/locales/en.yml
http://media.pragprog.com/titles/rails7/code/rails7/depot_t/config/locales/es.yml

Something to appreciate here—the logic to render the cart is rendered in two
places: first in the storefront and second in response to pushing the Añadir al
Carrito (Add to Cart) button via Turbo/HotWire. Since both make use of the
same partial and are rendered on the server, the cart renders in Spanish no
matter which path we take.

We now notice our next problem. Languages are not the only thing that
varies from locale to locale; currencies do too. And the customary way that
numbers are presented varies too.

So first we check with our customer and we verify that we’re not worrying
about exchange rates at the moment (whew!), because that’ll be taken care
of by the credit card and/or wire companies, but we do need to display the
string USD or $US after the value when we’re showing the result in
Spanish.

Another variation is the way that numbers themselves are displayed.
Decimal values are delimited by a comma, and separators for the thousands
place are indicated by a dot.

Currency is a lot more complicated than it first appears, with lots of
decisions to be made. Fortunately, Rails knows to look in your translations
file for this information; all we need to do is supply it. Here it is for en:

rails7/depot_t/config/locales/en.yml

 en:

 number:
 currency:
 format:
 unit: "$"
 precision: 2
 separator: "."
 delimiter: ","
 format: "%u%n"

Here it is for es:

rails7/depot_t/config/locales/es.yml

 es:

 number:
 currency:
 format:
 unit: "$US"
 precision: 2
 separator: ","
 delimiter: "."
 format: "%n %u"

We’ve specified the unit, precision, separator, and delimiter for
number.currency.format. That much is pretty self-explanatory. The format is a bit
more involved: %n is a placeholder for the number; is a nonbreaking
space character, preventing this value from being split across multiple lines;
and %u is a placeholder for the unit. See the following screenshot for the
result.

http://media.pragprog.com/titles/rails7/code/rails7/depot_t/config/locales/en.yml
http://media.pragprog.com/titles/rails7/code/rails7/depot_t/config/locales/es.yml

Iteration J3: Translating Checkout
Now we’re entering the homestretch. The new order page is next:

rails7/depot_t/app/views/orders/new.html.erb

 <div class= "mx-auto md:w-2/3 w-full" >
» <h1 class= "font-bold text-4xl" > <%= t('.legend') %> </h1>

 <%= render "form" , order: @order %>
 </div>

Here’s the form that’s used by this page:

rails7/depot_t/app/views/orders/_form.html.erb

 <%= form_with(model: order, class: "contents") do |form| %>
 <% if order. errors . any? %>
 <div id= "error_explanation" class= "bg-red-50 text-red-500 px-3 py-2
 font-medium rounded-lg mt-3" >
 <h2> <%= pluralize(order. errors . count , "error") %>
 prohibited this order from being saved:</h2>

 <% order. errors . each do |error| %>
 <%= error. full_message %>
 <% end %>

 </div>
 <% end %>

 <div class= "my-5" >
» <%= form. label :name , t('.name') %>
 <%= form. text_field :name , class: "input-field" %>
 </div>

 <div class= "my-5" >
» <%= form. label :address , t('.address_html') %>
 <%= form. text_area :address , rows: 4, class: "input-field" %>
 </div>

http://media.pragprog.com/titles/rails7/code/rails7/depot_t/app/views/orders/new.html.erb
http://media.pragprog.com/titles/rails7/code/rails7/depot_t/app/views/orders/_form.html.erb

 <div class= "my-5" >
» <%= form. label :email , t('.email') %>
 <%= form. email_field :email , class: "input-field" %>
 </div>

 <div data-controller= "payment" >
 <div class= "my-5" >
 <%= form. label :pay_type %>
 <%= form. select :pay_type ,
» Order. pay_types . keys . map {|key| [t(".pay_types.#{ key }"), key] },
» { prompt: t('.pay_prompt_html') },
 'data-payment-target' => 'selection' ,
 'data-action' => 'payment#showAdditionalFields' ,
 class: "input-field" %>
 </div>

 <%= render partial: 'check' , locals: { form: form} %>
 <%= render partial: 'cc' , locals: { form: form} %>
 <%= render partial: 'po' , locals: { form: form} %>
 </div>

 <div class= "inline" >
» <%= form. submit t('.submit'),
 class: "rounded-lg py-3 px-5
 bg-green-200 text-black inline-block font-medium cursor-pointer" %>
 </div>
 <% end %>

That covers the form elements that Rails is rendering, but what about the
Stimulus-controlled additional payment details we added in Defining
Additional Fields? Once again, the ability to have everything rendered by
the server from a common set of templates makes this concern go away.

First, we update the credit card fields:

rails7/depot_t/app/views/orders/_cc.html.erb

 <fieldset data-payment-target= "additionalFields" data-type= "Credit card" >
 <div class= "my-5" >
» <%= form. label t('.cc_number') %>
 <%= form. password_field :credit_card_number , class: "input-field" %>
 </div>

http://media.pragprog.com/titles/rails7/code/rails7/depot_t/app/views/orders/_cc.html.erb

 <div class= "my-5" >
» <%= form. label t('.expiration_date') %>
 <%= form. text_field :expiration_date , class: "input-field" ,
 size:9, placeholder: "e.g. 03/22" %>
 </div>
 </fieldset>

Next, we do the check fields:

rails7/depot_t/app/views/orders/_check.html.erb

 <fieldset data-payment-target= "additionalFields" data-type= "Check" >
 <div class= "my-5" >
» <%= form. label t('.routing_number') %>
 <%= form. text_field :routing_number , class: "input-field" %>
 </div>

 <div class= "my-5" >
» <%= form. label t('.account_number') %>
 <%= form. password_field :account_number , class: "input-field" %>
 </div>
 </fieldset>

And finally, update the purchase order fields:

rails7/depot_t/app/views/orders/_po.html.erb

 <fieldset data-payment-target= "additionalFields" data-type= "Purchase order" >
 <div class= "my-5" >
» <%= form. label t('.po_number') %>
 <%= form. number_field :po_number , class: "input-field" %>
 </div>
 </fieldset>

With those done, here are the corresponding locale definitions:

rails7/depot_t/config/locales/en.yml

 en:

 orders:
 new:

http://media.pragprog.com/titles/rails7/code/rails7/depot_t/app/views/orders/_check.html.erb
http://media.pragprog.com/titles/rails7/code/rails7/depot_t/app/views/orders/_po.html.erb
http://media.pragprog.com/titles/rails7/code/rails7/depot_t/config/locales/en.yml

 legend: "Please Enter Your Details"
 form:
 name: "Name"
 address_html: "Address"
 email: "E-mail"
 pay_type: "Pay with"
 pay_prompt_html: "Select a payment method"
 submit: "Place Order"
 pay_types:
 "Check" : "Check"
 "Credit card" : "Credit Card"
 "Purchase order" : "Purchase Order"
 check:
 routing_number: "Routing #"
 account_number: "Account #"
 cc:
 cc_number: "CC #"
 expiration_date: "Expiry"
 po:
 po_number: "PO #"

rails7/depot_t/config/locales/es.yml

 es:

 orders:
 new:
 legend: "Por favor, introduzca sus datos"
 form:
 name: "Nombre"
 address_html: "Dirección"
 email: "E-mail"
 pay_type: "Forma de pago"
 pay_prompt_html: "Seleccione un método de pago"
 submit: "Realizar Pedido"
 pay_types:
 "Check" : "Cheque"
 "Credit card" : "Tarjeta de Crédito"
 "Purchase order" : "Orden de Compra"
 check:
 routing_number: "# de Enrutamiento"
 account_number: "# de Cuenta"
 cc:

http://media.pragprog.com/titles/rails7/code/rails7/depot_t/config/locales/es.yml

 cc_number: "Número"
 expiration_date: "Expiración"
 po:
 po_number: "Número"

See the following screenshot for the completed form.

All looks good until we click the Realizar Pedido button prematurely and
see the results shown in the following screenshot. The error messages that
Active Record produces can also be translated; what we need to do is supply
the translations:

rails7/depot_t/config/locales/es.yml

 es:

 activerecord:
 errors:
 messages:
 inclusion: "no está incluido en la lista"
 blank: "no puede quedar en blanco"
 errors:
 template:
 body: "Hay problemas con los siguientes campos:"
 header:
 one: "1 error ha impedido que este %{model} se guarde"

http://media.pragprog.com/titles/rails7/code/rails7/depot_t/config/locales/es.yml

 other: "%{count} errores han impedido que este %{model} se guarde"

Although you can create these with many trips to Google Translate, the
Rails i18n gem’s GitHub repo contains a lot of translations for common
strings in many languages.[73]

Note that messages with counts typically have two forms:
errors.template.header.one is the message that’s produced when there’s one error,
and errors.template.header.other is produced otherwise. This gives the translators
the opportunity to provide the correct pluralization of nouns and to match
verbs with the nouns.

Since we once again made use of HTML entities, we want these error
messages to be displayed as is (or in Rails parlance, raw). We also need to
translate the error messages. So, again, we modify the form:

rails7/depot_u/app/views/orders/_form.html.erb

 <%= form_with(model: order, class: "contents") do |form| %>
 <% if order. errors . any? %>
 <div id= "error_explanation" class= "bg-red-50 text-red-500 px-3 py-2
 font-medium rounded-lg mt-3" >
» <h2> <%= raw t('errors.template.header' , count: @order. errors . count ,
» model: t('activerecord.models.order')) %> .</h2>
» <p> <%= t('errors.template.body') %> </p>

 <% order. errors . each do |error| %>
» <%= raw error. full_message %>
 <% end %>

 </div>
 <% end %>
 <!-- ... -->

Note that we’re passing the count and model name (which is, itself, enabled
for translation) on the translate call for the error template header. With these
changes in place, we try again and see improvement, as shown in the
following screenshot.

http://media.pragprog.com/titles/rails7/code/rails7/depot_u/app/views/orders/_form.html.erb

That’s better, but the names of the model and the attributes bleed through the
interface. This is OK in English, because the names we picked work for
English. We need to provide translations for each model. This, too, goes into
the YAML file:

rails7/depot_u/config/locales/es.yml

 es:

 activerecord:
 models:
 order: "pedido"
 attributes:
 order:
 address: "Dirección"
 name: "Nombre"
 email: "E-mail"
 pay_type: "Forma de pago"

Note that there’s no need to provide English equivalents for this, because
those messages are built into Rails.

We’re pleased to see the model and attribute names translated in the
following screenshot; we fill out the form, we submit the order, and we get a
“Thank you for your order” message.

http://media.pragprog.com/titles/rails7/code/rails7/depot_u/config/locales/es.yml

We need to update the flash messages and add the locale to the store_index_url:

rails7/depot_u/app/controllers/orders_controller.rb

 def create
 @order = Order. new (order_params)
 @order. add_line_items_from_cart (@cart)

 respond_to do |format|
 if @order. save
 Cart. destroy (session[:cart_id])
 session[:cart_id] = nil
 ChargeOrderJob. perform_later (@order,pay_type_params. to_h)
» format. html { redirect_to store_index_url(locale: I18n. locale),
» notice: I18n. t ('.thanks') }
 format. json { render :show , status: :created ,
 location: @order }
 else
 format. html { render :new , status: :unprocessable_entity }
 format. json { render json: @order. errors ,
 status: :unprocessable_entity }
 end
 end
 end

Next, we adjust the test to match:

rails7/depot_u/test/controllers/orders_controller_test.rb

 test "should create order" do
 assert_difference("Order.count") do
 post orders_url, params: { order: { address: @order. address ,
 email: @order. email , name: @order. name ,
 pay_type: @order. pay_type } }

http://media.pragprog.com/titles/rails7/code/rails7/depot_u/app/controllers/orders_controller.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_u/test/controllers/orders_controller_test.rb

 end

» assert_redirected_to store_index_url(locale: 'en')
 end

Finally, we provide the translations:

rails7/depot_u/config/locales/en.yml

 en:

 thanks: "Thank you for your order"

rails7/depot_u/config/locales/es.yml

 es:

 thanks: "Gracias por su pedido"

See the cheery message in the next screenshot.

http://media.pragprog.com/titles/rails7/code/rails7/depot_u/config/locales/en.yml
http://media.pragprog.com/titles/rails7/code/rails7/depot_u/config/locales/es.yml

Iteration J4: Adding a Locale Switcher
We’ve completed the task, but we need to advertise its availability more. We
spy some unused area in the top-right side of the layout, so we add a form
immediately before the image_tag:

rails7/depot_u/app/views/layouts/application.html.erb

 <header class= "bg-green-700" >
» <aside data-controller= "locale" >
» <%= form_tag store_index_path, class: 'locale' do %>
» <%= select_tag 'set_locale' ,
» options_for_select(LANGUAGES, I18n. locale . to_s),
» onchange: 'this.form.submit()' %>
» <%= submit_tag 'submit' , data: { 'locale-target' => 'submit' } %>
» <% end %>
» </aside>
 <%= image_tag 'logo.svg' , alt: 'The Pragmatic Bookshelf' %>
 <h1> <%= @page_title %> </h1>
 </header>

The form_tag specifies the path to the store as the page to be redisplayed when
the form is submitted. A class attribute lets us associate the form with some
CSS.

The select_tag is used to define the input field for this form—namely, locale.
It’s an options list based on the LANGUAGES array we set up in the
configuration file, with the default being the current locale (also made
available via the I18n module). We also set up an onchange event handler,
which submits this form whenever the value changes. This works only if
JavaScript is enabled, but it’s handy. For cases where JavaScript is not
enabled, we’ve also put a submit_tag in so there’s a button the user can press to
switch locales.

That said, since we don’t need the submit button if JavaScript is enabled, it
might be nice to hide it. The simplest way to do that is to write some

http://media.pragprog.com/titles/rails7/code/rails7/depot_u/app/views/layouts/application.html.erb

JavaScript to do the hiding. If JavaScript is disabled, the JavaScript won’t
execute and the button remains to allow those users to submit the form.
You’ll notice we included a data-controller attribute on the aside element, and a
locale-target on the submit_tag in preceding the code. This allows us to locate that
exact submit button in JavaScript.

Once again, we start by generating a stimulus controller:

 depot> bin/rails generate stimulus locale

Now we update this code to set the style.display for the submit button to "none",
which is the programmatic way of setting the CSS display property to none.

rails7/depot_u/app/javascript/controllers/locale_controller.js

 import { Controller } from "@hotwired/stimulus"

 // Connects to data-controller="locale"
 export default class extends Controller {
» static targets = ["submit"]
»
» initialize() {
» this .submitTarget.style.display = 'none'
» }
 }

Next, we modify the store controller to redirect to the store path for a given
locale if the :set_locale form is used:

rails7/depot_u/app/controllers/store_controller.rb

 def index
» if params[:set_locale]
» redirect_to store_index_url(locale: params[:set_locale])
» else
 @products = Product. order (:title)
» end
 end

http://media.pragprog.com/titles/rails7/code/rails7/depot_u/app/javascript/controllers/locale_controller.js
http://media.pragprog.com/titles/rails7/code/rails7/depot_u/app/controllers/store_controller.rb

For the actual selector, see the following screenshot. We can now switch
back and forth between languages with a single mouse click.

At this point, we can place orders in two languages, and our thoughts turn to
deployment. But because it’s been a busy day, it’s time to put down our tools
and relax. We’ll start on deployment in the morning.

What We Just Did
By the end of this iteration, we’ve done the following:

We set the default locale for our application and provided means for the
user to select an alternative locale.

We created translation files for text fields, currency amounts, errors,
and model names.

We altered layouts and views to call out to the I18n module by way of
the t helper to translate textual portions of the interface.

Playtime
Here’s some stuff to try on your own:

Add a locale column to the products database and adjust the index view
to select only the products that match the locale. Adjust the products
view so that you can view, enter, and alter this new column. Enter a few
products in each locale and test the resulting application.

[73]

Determine the current exchange rate between U.S. dollars and euros,
and localize the currency display to display euros when ES_es is
selected.

Translate the Order::PAYMENT_TYPES shown in the drop-down. You’ll
need to keep the option value (which is sent to the server) the same.
Change only what’s displayed.

Footnotes

https://github.com/svenfuchs/rails-i18n/tree/master/rails/locale

Copyright © 2023, The Pragmatic Bookshelf.

https://github.com/svenfuchs/rails-i18n/tree/master/rails/locale

We cover:
Receiving email with Action
Mailbox
Writing and storing rich text with
Action Text
Managing cloud storage with
Active Storage

Chapter 16

Task K: Receive Emails
and Respond with Rich Text

We’ve now got a fully functioning store, internationalized for global
domination, but what if a customer has a problem they can’t solve using our
site? With Rails, we can easily do what most e-commerce sites do, which is
allow customers to email us so we can solve their problem and write them
back with a solution.

Hopefully, you’ve come to expect by now that Rails has us covered. We
sent emails to our customers in Iteration H1: Sending Confirmation Emails,
but Rails includes a powerful way to receive emails called Action Mailbox.
[74] We’ll learn how that works in this chapter. We’ll also learn how to create
richly formatted text in our replies by using a rich-text editing system
included with Rails called Action Text.[75]

Both Action Text and Action Mailbox rely on another Rails library called
Active Storage. Active Storage is an abstraction around cloud storage
systems like Amazon’s S3. Both incoming emails and rich-text attachments
are stored in the cloud using Active Storage. We’ll explain why as we go.

Iteration K1: Receiving Support Emails
with Action Mailbox
Configuring Rails to receive emails requires three steps: initially setting up
Action Mailbox, setting up Active Storage to hold the raw emails we
receive, and implementing a mailbox, which is like a controller that handles
incoming emails.

Setting up Action Mailbox
To set up Action Mailbox in our app, we’ll run a Rake task that will create
some configuration files, a base mailbox class we’ll inherit from, and some
database tables that Rails will use to store information about incoming
emails. Let’s run the Rake task:

 > bin/rails action_mailbox:install
 Copying application_mailbox.rb to app/mailboxes
 create app/mailboxes/application_mailbox.rb
 Copied migration
 20221207000011_create_active_storage_tables.active_storage.rb
 from active_storage
 Copied migration
 20221207000012_create_action_mailbox_tables.action_mailbox.rb
 from action_mailbox

Note that a) we’ve reformatted our output to fit the pages in the book and b)
since there were two migrations created and migration filenames have a date
and timestamp in them, your filenames won’t exactly match ours. Next,
we’ll add the tables that Rake task created to our development and test
databases:

 > bin/rails db:migrate
 == 20221207191846 CreateActiveStorageTables: migrating ======================
 -- create_table(:active_storage_blobs, {})
 -> 0.0015s
 -- create_table(:active_storage_attachments, {})
 -> 0.0013s

 == 20221207191846 CreateActiveStorageTables: migrated (0.0029s) =============

 == 20221207191847 CreateActionMailboxTables: migrating ======================
 -- create_table(:action_mailbox_inbound_emails)
 -> 0.0017s
 == 20221207191847 CreateActionMailboxTables: migrated (0.0017s) =============

In the real world, we’d also need to configure Action Mailbox for our
particular incoming email service provider. The Rails Guide[76] is the best
place to look for how to do that. We won’t set one up here since setting up
accounts with services like Amazon SES or Mailgun is somewhat involved
(though once you have your account set up, configuring Rails to use it is a
snap). For our immediate needs, Rails provides a way to simulate sending
emails, which we’ll see in a moment.

The way Action Mailbox works is that all incoming emails get stored in a
cloud storage system like Amazon’s S3. Rails includes a library called
Active Storage that abstracts away the details of the cloud service you’re
using. We’ll need to configure Active Storage for Action Mailbox to work
properly.

Setting up Active Storage
As with your real-world email provider, your real-world cloud storage
provider will require specific configuration in Rails, and the Guide[77] can
give you the details. For our purposes, we’ll set up the disk-based service
that works with our local disk. This will allow us to fully use Active Storage
locally, which means Action Mailbox can work locally.

To set that up, we’ll need to configure the service in our app’s configuration
and then tell Rails where to store the files that Active Storage will manage.

First, edit config/environments/development.rb, adding this line to the configuration
at the end of the block:

rails7/depot_ua/config/environments/development.rb

http://media.pragprog.com/titles/rails7/code/rails7/depot_ua/config/environments/development.rb

» config. active_storage . service = :local
 end

We will explain what :local means in a moment. Now, add a similar line to
config/environments/test.rb but using the :test service instead:

rails7/depot_ua/config/environments/test.rb

» config. active_storage . service = :test
 end

With those added, we must now define what those symbols mean by
creating config/storage.yml to look like so:

rails7/depot_ua/config/storage.yml

» local:
» service: Disk
» root: <%= Rails.root.join("storage") %>
»
» test:
» service: Disk
» root: <%= Rails.root.join("tmp/storage") %>

The root key in this file should match the values we used in the files in
config/environments. In this case, we’ve configured both :local and :test to use
Active Storage’s disk-based service, with our development environment
(:local) using the directory storage that’s in the root of our project and the test
environment (:test) using tmp/storage.

With this set up, when we receive an email, the entire payload gets written to
our storage service and, as we’ll see in a moment, we can access parts of
that email to trigger whatever logic we need in our Rails app. The reason
Rails does this is that emails can be large (especially if they have
attachments), and you don’t necessarily want to store very large objects in a
relational database. It’s much more common to store such data to disk or
with a cloud storage provider and store a reference to that object in the
database.

http://media.pragprog.com/titles/rails7/code/rails7/depot_ua/config/environments/test.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_ua/config/storage.yml

Now that we’ve done the one-time setup, let’s create a mailbox to receive
our support request emails from customers.

Creating a Mailbox to Receive Emails
Action Mailbox works by routing incoming emails to a mailbox. A mailbox
is a subclass of ApplicationMailbox with a method named process that is called for
each email routed to that mailbox. The way emails get routed is similar to
how web requests get routed in config/routes.rb. For email, you’ll tell Rails what
sorts of emails you want routed where.

We want emails to support@example.com to get routed to a mailbox so we can
handle them. The way to do that is to insert a call to the method routing inside
ApplicationMailbox, like so:

rails7/depot_ua/app/mailboxes/application_mailbox.rb

 class ApplicationMailbox < ActionMailbox::Base
» routing "support@example.com" => :support
 end

This tells Rails that any email to (or cc’d to) support@example.com should be
handled by the class SupportMailbox. We can create that class using a Rails
generator like so:

 > bin/rails generate mailbox support
 create app/mailboxes/support_mailbox.rb
 invoke test_unit
 create test/mailboxes/support_mailbox_test.rb

If you look at app/mailboxes/support_mailbox.rb, you’ll see a few lines of code,
notably an empty method called process:

 class SupportMailbox < ApplicationMailbox
 def process
 end
 end

http://media.pragprog.com/titles/rails7/code/rails7/depot_ua/app/mailboxes/application_mailbox.rb

Now, every email we receive at support@example.com will trigger a call to process

in SupportMailbox. Inside the process method, we have access to the special
variable mail. This is an instance of Mail::Message[78] and allows us to access the
various bits of an email you might expect to have, such as who sent it, the
subject, and the contents.

Let’s see how this works before getting too far along by adding some puts

calls into our mailbox:

rails7/depot_ua/app/mailboxes/support_mailbox.rb

 class SupportMailbox < ApplicationMailbox
 def process
» puts "START SupportMailbox#process:"
» puts "From : #{ mail. from_address}"
» puts "Subject: #{ mail. subject}"
» puts "Body : #{ mail. body}"
» puts "END SupportMailbox#process:"
 end
 end

Since we didn’t configure a real email provider, how do we trigger our
mailbox locally? The answer is a special UI included with Rails called a
conductor.

Using the Conductor to Send Emails Locally
Action Mailbox includes a special developer-only UI we can use to send
emails to ourselves. This allows us to see our mailbox working end-to-end
without having to configure a real email provider. To see it, start up your
server (or restart it if it’s already running).

Navigate to http://localhost:3000/rails/conductor/action_mailbox/inbound_emails and you
should see a bare-bones UI that includes a link labeled “New inbound email
by form”, like so:

http://media.pragprog.com/titles/rails7/code/rails7/depot_ua/app/mailboxes/support_mailbox.rb

Click that link, and you should see a very basic UI to write an email, like so:

Fill this in, remembering to use support@example.com as the From email so that
the email gets routed to your mailbox. If you then click Deliver inbound
email, and flip back to where you ran your server, you should see, among
other log output, the puts you inserted:

 START SupportMailbox #process:
 From : test@somewhere.com
 Subject: I need help!
 Body : I can't find my order. It's #12345

 END SupportMailbox #process:

Now that we see how all the parts fit together, let’s write the real code to
store the request for help from the customer (as well as how to test our
mailbox with a unit test).

Iteration K2: Storing Support Requests from Our
Mailbox
As we mentioned above, the purpose of mailboxes is to allow us to execute
code on every email we receive. Because emails come in whenever the
sender sends them, we’ll need to store the details of a customer support
request somewhere for an administrator to handle later. To that end, we’ll
create a new model called SupportRequest that will hold the relevant details of
the request, and have the process method of SupportMailbox create an instance for
each email we get (in the final section of this chapter we’ll display these in a
UI so an admin can respond).

Creating a Model for Support Requests
We want our model to hold the sender’s email, the subject and body of the
email, and a reference to the customer’s most recent order if there’s one on
file. First, let’s create the model using a Rails generator:

 > bin/rails g model support_request
 invoke active_record
 create db/migrate/20221207000013_create_support_requests.rb
 create app/models/support_request.rb
 invoke test_unit
 create test/models/support_request_test.rb
 create test/fixtures/support_requests.yml

This created a migration for us, which is currently empty (remember that
migration filenames have a date and time in them, so your filename will be
slightly different). Let’s fill that in.

rails7/depot_tb/db/migrate/20221207000013_create_support_requests.rb

 class CreateSupportRequests < ActiveRecord::Migration[7.0]
 def change
 create_table :support_requests do |t|
» t. string :email , comment: "Email of the submitter"

http://media.pragprog.com/titles/rails7/code/rails7/depot_tb/db/migrate/20221207000013_create_support_requests.rb

» t. string :subject , comment: "Subject of their support email"
» t. text :body , comment: "Body of their support email"
» t. references :order ,
» foreign_key: true ,
» comment: "their most recent order, if applicable"
 t. timestamps
 end
 end
 end

With this in place, we can create this table via bin/rails db:migrate:

 > bin/rails db:migrate
 == 20221207121503 CreateSupportRequests: migrating ==========================
 -- create_table(:support_requests)
 -> 0.0016s
 == 20221207121503 CreateSupportRequests: migrated (0.0017s) =================

We’ll also need to adjust the model itself to optionally reference an order:

rails7/depot_tb/app/models/support_request.rb

 class SupportRequest < ApplicationRecord

» belongs_to :order , optional: true
 end

Now, we can create instances of SupportRequest from our mailbox.

Creating Support Requests from Our Mailbox
Our mailbox needs to do two things. First, it needs to create an instance of
SupportRequest for each email that comes in. But it also needs to connect that
request to the user’s most recent order if there’s one in our database (this
will allow our admin to quickly reference the order that might be causing
trouble).

As you recall, all orders have an email associated with them. So to get the
most recent order for an email, we can use where to search all orders by
email, order to order the results by the create data, and first to grab the most

http://media.pragprog.com/titles/rails7/code/rails7/depot_tb/app/models/support_request.rb

recent one. With that, we can use the methods on mail we saw earlier to
create the SupportRequest.

Here’s the code we need in app/mailboxes/support_mailbox.rb (which replaces the
calls to puts we added before):

rails7/depot_tb/app/mailboxes/support_mailbox.rb

 class SupportMailbox < ApplicationMailbox
 def process
» recent_order = Order. where (email: mail. from_address . to_s).
» order ('created_at desc').
» first
» SupportRequest. create! (
» email: mail. from_address . to_s ,
» subject: mail. subject ,
» body: mail. body . to_s ,
» order: recent_order
»)
 end
 end

Why Don't We Access Emails Directly When Needed?
It might seem easier to simply access the customer emails whenever we need them rather
than pluck out the data we want and store it into a database. There are two reasons not to
do this.

The first, and most practical reason, is about separation of concerns. Our support requests
only need part of what is in the emails, but they also might need more metadata than the
customer sends us. To keep our code organized and clean, it’s better to store what we need
explicitly.

The second reason is one of Rails’ famously held opinions. Rails arranges for all emails to
be deleted after thirty days. The reasoning is that emails contain personal data that we don’t
want to hold onto unnecessarily.

Protecting the personal data of your customers is a good practice, and it’s one that’s more
and more required by law. For example, the European General Data Protection Regularly
(GDPR) requires, among other things, that you delete any personal data you have within
one month of a request to do so. By auto-deleting personal data every thirty days, you
automatically comply with this requirement.[79]

http://media.pragprog.com/titles/rails7/code/rails7/depot_tb/app/mailboxes/support_mailbox.rb

Now, restart your server and navigate to the conductor at
http://localhost:3000/rails/conductor/action_mailbox/inbound_emails. Click Deliver new
inbound email and send another email (remember to send it to
support@example.com).

Now, quit your server and start up the Rails console. This will allow us to
check that a new SupportRequest was created (remember we have to format this
to fit in the book, so your output will be on fewer, longer lines):

 > bin/rails console
 irb(main):001:0> SupportRequest.first
 (1.5ms) SELECT sqlite_version(*)
 SupportRequest Load (0.1ms)
 SELECT "support_requests".* FROM "support_requests"
 ORDER BY "support_requests"."id" ASC LIMIT ? [["LIMIT", 1]]
 => #<SupportRequest
 id: 1,
 email: "chris@somewhere.com",
 subject: "Missing book!",
 body: "I can't find my book that I ordered. Please help!",
 order_id: nil,
 created_at: "2021-01-19 12:29:17",
 updated_at: "2021-01-19 12:29:17">

You should see the data you entered into the conductor saved in the
SupportRequest instance. You can also try this using the email of an order you
have in your system to verify it locates the most recent order. Of course,
manually checking our code isn’t ideal. We would like to have an automated
test. Fortunately, Rails provides a simple way to test our mailboxes, which
we’ll learn about now.

Testing Our Mailbox

When we used the generator to create our mailbox, you probably noticed the
file test/mailboxes/support_mailbox_test.rb get created. This is where we’ll write our
test. Since we generally know how to write tests, all we need to know now is
how to trigger an email. Action Mailbox provides the method
receive_inbound_email_from_mail which we can use in our tests to do just that.

We need two tests to cover the functionality of our mailbox. The first is to
send an email from a customer without an order and verify we created a
SupportRequest instance. The second is to send an email from a customer who
does have orders and verify that the SupportRequest instance is correctly
connected to their most recent order.

The first test is most straightforward since we don’t need any test setup, so
we’ll create a new test block inside test/mailboxes/support_mailbox_test.rb, like so:

rails7/depot_tb/test/mailboxes/support_mailbox_test.rb

 require "test_helper"

 class SupportMailboxTest < ActionMailbox::TestCase
» test "we create a SupportRequest when we get a support email" do
» receive_inbound_email_from_mail(
» to: "support@example.com" ,
» from: "chris@somewhere.net" ,
» subject: "Need help" ,
» body: "I can't figure out how to check out!!"
»)
»
» support_request = SupportRequest. last
» assert_equal "chris@somewhere.net" , support_request. email
» assert_equal "Need help" , support_request. subject
» assert_equal "I can't figure out how to check out!!" ,
» support_request. body
» assert_nil support_request. order
» end

 end

If we run this test now, it should pass:

http://media.pragprog.com/titles/rails7/code/rails7/depot_tb/test/mailboxes/support_mailbox_test.rb

 > bin/rails test test/mailboxes/support_mailbox_test.rb
 Run options: --seed 26908

 # Running:

 .

 Finished in 0.322222s, 3.1035 runs/s, 12.4138 assertions/s.
 1 runs, 4 assertions, 0 failures, 0 errors, 0 skips

Great! For the second test, we’ll need to create a few orders before we send
the email. You’ll recall from Test Fixtures, that we can use fixtures to set up
test data in advance. We have one we can use already, but ideally we’d have
a total of two orders for the user sending the email and a third order from
another user. That would validate that we’re both searching for the right user
and selecting the most recent order.

Let’s add two new fixtures to test/fixtures/orders.yml

rails7/depot_tb/test/fixtures/orders.yml

 # Read about fixtures at
 # https://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

 one:
 name: Dave Thomas
 address: MyText
 email: dave@example.org
 pay_type: Check

» another_one:
» name: Dave Thomas
» address: 123 Any St
» email: dave@example.org
» pay_type: Check
» created_at: <%= 2.days.ago %>
»
» other_customer:
» name: Chris Jones
» address: 456 Somewhere Ln

http://media.pragprog.com/titles/rails7/code/rails7/depot_tb/test/fixtures/orders.yml

» email: chris@nowhere.net
» pay_type: Check
 two:
 name: MyString
 address: MyText
 email: MyString
 pay_type: 1

Note how we’re using ERB inside our fixture. This code is executed when
we request a fixture and we’re using it to force an older creation date for one
of our orders. By default, Rails sets created_at on models it creates from
fixtures to the current time. When we ask Rails to create that particular
fixture with orders(:another_one), it will execute the code inside the <%= and %>,
effectively setting the created_at value to the date as of two days ago.

With these fixtures available, we can write our second test, like so:

rails7/depot_tb/test/mailboxes/support_mailbox_test.rb

 require "test_helper"

 class SupportMailboxTest < ActionMailbox::TestCase

 # previous test

» test "we create a SupportRequest with the most recent order" do
» recent_order = orders(:one)
» older_order = orders(:another_one)
» non_customer = orders(:other_customer)
»
» receive_inbound_email_from_mail(
» to: "support@example.com" ,
» from: recent_order. email ,
» subject: "Need help" ,
» body: "I can't figure out how to check out!!"
»)
»
» support_request = SupportRequest. last
» assert_equal recent_order. email , support_request. email
» assert_equal "Need help" , support_request. subject
» assert_equal "I can't figure out how to check out!!" , support_request. body

http://media.pragprog.com/titles/rails7/code/rails7/depot_tb/test/mailboxes/support_mailbox_test.rb

» assert_equal recent_order, support_request. order
» end

 end

Next, rerun the test and we should see our new test is passing:

 > bin/rails test test/mailboxes/support_mailbox_test.rb
 Run options: --seed 47513

 # Running:

 ..

 Finished in 0.384217s, 5.2054 runs/s, 20.8216 assertions/s.
 2 runs, 8 assertions, 0 failures, 0 errors, 0 skips

Nice! We can now confidently write code to handle incoming emails and
test it with an automated test. Now what do we do with these SupportRequest

instances we’re creating? We’d like to allow an administrator to respond to
them. We could do that with plain text, but let’s learn about another part of
Rails called Action Text that will allow us to author rich text we can use to
respond.

Iteration K3: Responding with Rich Text
To allow our admins to respond to support requests, we’ll need to make a
new UI for them to see the requests that need a response, a way for them to
provide a response, and then some code to email the customer back. We
know how to do all of these things, but this is a great opportunity to learn
about Action Text, which is a Rails library that allows us to easily provide a
rich-text editing experience. We can use this to allow our admins to write a
fully formatted response and not just plain text.

Let’s first quickly create the UI where we’ll see the support requests and edit
them. This should be old hat for you by now, so we’ll go quickly. Add a new
route to config/routes.rb for the index and update methods:

rails7/depot_tb/config/routes.rb

 Rails. application . routes . draw do
 get 'admin' => 'admin#index'
 controller :sessions do
 get 'login' => :new
 post 'login' => :create
 delete 'logout' => :destroy
 end
 get 'sessions/create'
 get 'sessions/destroy'

 # START_HIGLIGHT
 resources :support_requests , only: %i[index update]
 # END_HIGLIGHT
 resources :users
 resources :products do
 get :who_bought , on: :member
 end

 scope '(:locale)' do
 resources :orders
 resources :line_items

http://media.pragprog.com/titles/rails7/code/rails7/depot_tb/config/routes.rb

 resources :carts
 root 'store#index' , as: 'store_index' , via: :all
 end
 end

Now, create app/controllers/support_requests_controller.rb and implement index, like so
(we’ll see update in a moment):

rails7/depot_tb/app/controllers/support_requests_controller.rb

» class SupportRequestsController < ApplicationController
» def index
» @support_requests = SupportRequest. all
» end
»
» end

Next, we’ll create the view in app/views/support_requests/index.html.erb:

rails7/depot_tb/app/views/support_requests/index.html.erb

»
» <% @support_requests. each do |support_request| %>
»
» <h1>
» On <%= support_request. created_at . to_formatted_s (:long) %>
» <code> <%= support_request. email %> </code> writes:
» </h1>
» <p>
» <blockquote>
» <h2> <%= support_request. subject %> </h2>
» <%= support_request. body %>
» </blockquote>
» </p>
» <% if support_request. order %>
» <h3>Recent Order</h3>
» <dl>
» <dt>Name</dt>
» <dd> <%= support_request. order . name %> </dd>
»
» <dt>Email</dt>
» <dd> <%= support_request. order . email %> </dd>

http://media.pragprog.com/titles/rails7/code/rails7/depot_tb/app/controllers/support_requests_controller.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_tb/app/views/support_requests/index.html.erb

»
» <dt>Address</dt>
» <dd> <%= support_request. order . address %> </dd>
»
» <dt>PayType</dt>
» <dd> <%= support_request. order . pay_type %> </dd>
»
» <dt>Line Items</dt>
» <dd>
»
» <% support_request. order . line_items . each do |line_item| %>
»
» <%= line_item. product . title %>
» (<%= line_item. product . price %>)
»
» <% end %>
»
» </dd>
» </dl>
» <% else %>
» <h3 class= "notice" >No associated order</h3>
» <% end %>
» <hr>
»
» <% end %>
»

Restart your server, create a few orders and, using the Rails conductor we
saw earlier, create a few support tickets. Be sure at least one of them is from
an email you used to create an order. When you’ve done that, navigate to
http://localhost:3000/admin and log in. Once you’ve done that, navigate to
http://localhost:3000/support_requests and you should see the UI you just created with
your support requests rendered:

It’s not pretty, but it’ll work for now. Next, we need to add the ability to
write a response. If we were OK with plain text, we would make a new
attribute on SupportRequest to hold the response, then wire up a form to write it,
just like we’ve done several times. With rich text, it works a bit differently.

Action Text stores the rich text in its own table outside of the model’s. In our
SupportRequest model, we’ll tell Rails that we have a rich-text field that we
want Action Text to manage by using the has_rich_text method, like so:

rails7/depot_tc/app/models/support_request.rb

 class SupportRequest < ApplicationRecord

 belongs_to :order , optional: true

 has_rich_text :response
 end

This method (and the rest of Action Text) won’t work without some setup,
which we can do with the Rake task action_text:install:

 > bin/rails action_text:install
 append app/javascript/application.js

http://media.pragprog.com/titles/rails7/code/rails7/depot_tc/app/models/support_request.rb

 append config/importmap.rb
 create app/assets/stylesheets/actiontext.css
 append app/assets/stylesheets/application.tailwind.css
 create app/views/active_storage/blobs/_blob.html.erb
 create app/views/layouts/action_text/contents/_content.html.erb
 Ensure image_processing gem has been enabled so image uploads will work
 (remember to bundle!)
 gsub Gemfile
 rails railties:install:migrations FROM=active_storage,action_text
 Copied migration 20221207145849_create_action_text_tables.action_text.rb
 from action_text
 invoke test_unit
 create test/fixtures/action_text/rich_texts.yml

You’ll notice that the generator created a database migration. This is for the
tables that Action Text uses to store the rich text itself.

Let’s add those by running the db:migrate task:

 > bin/rails db:migrate
 == 20221207120454 CreateActionTextTables: migrating ======================
 -- create_table(:action_text_rich_texts, {:id=>:primary_key})
 -> 0.0016s
 == 20221207120454 CreateActionTextTables: migrated (0.0017s) =============

With all of that back-end setup out of the way, we can now make our UI. We
will create this in the exact same way we’ve created other forms in our app,
with the exception of the text area. Instead of using the text_area form helper
to make a regular HTML textarea tag, we’ll use rich_text_area, which will set up
the Trix editor for us, enabling the UI part of Action Text.

Add this to app/views/support_requests/index.html.erb:

rails7/depot_tc/app/views/support_requests/index.html.erb

 <% @support_requests. each do |support_request| %>

 <h1>
 On <%= support_request. created_at . to_formatted_s (:long) %>

http://media.pragprog.com/titles/rails7/code/rails7/depot_tc/app/views/support_requests/index.html.erb

 <code> <%= support_request. email %> </code> writes:
 </h1>
 <p>
 <blockquote>
 <h2> <%= support_request. subject %> </h2>
 <%= support_request. body %>
 </blockquote>
 </p>
 <% if support_request. order %>
 <h3>Recent Order</h3>
 <dl>
 <dt>Name</dt>
 <dd> <%= support_request. order . name %> </dd>

 <dt>Email</dt>
 <dd> <%= support_request. order . email %> </dd>

 <dt>Address</dt>
 <dd> <%= support_request. order . address %> </dd>

 <dt>PayType</dt>
 <dd> <%= support_request. order . pay_type %> </dd>

 <dt>Line Items</dt>
 <dd>

 <% support_request. order . line_items . each do |line_item| %>

 <%= line_item. product . title %>
 (<%= line_item. product . price %>)

 <% end %>

 </dd>
 </dl>
 <% else %>
 <h3 class= "notice" >No associated order</h3>
 <% end %>
» <% if support_request. response . blank? %>
» <%= form_with(model: support_request,
» local: true ,
» class: "depot_form") do |form| %>
» <div class= "field" >

» <%= form. label :response , "Write Response" %>
» <%= form. rich_text_area :response , id: :support_request_response %>
» </div>
» <div class= "actions" >
» <%= form. submit "Send Response" %>
» </div>
» <% end %>
» <% else %>
» <h4>Our response:</h4>
» <p>
» <blockquote>
» <%= support_request. response %>
» </blockquote>
» </p>
» <% end %>

 <hr>

 <% end %>

Note that we check to see if the support request has a response, and if it
does, we render it. As we’ll see, this has been enhanced by Action Text.

The last step is to implement update in our controller:

rails7/depot_tc/app/controllers/support_requests_controller.rb

 class SupportRequestsController < ApplicationController
 def index
 @support_requests = SupportRequest. all
 end

» def update
» support_request = SupportRequest. find (params[:id])
» support_request. update (response: params. require (:support_request)[:response])
» SupportRequestMailer. respond (support_request). deliver_now
» redirect_to support_requests_path
» end
 end

http://media.pragprog.com/titles/rails7/code/rails7/depot_tc/app/controllers/support_requests_controller.rb

Now, start up your server and, assuming you’ve created some support
requests, you should now see a rich-text editor instead of a plain old text
area, like so:

You can see in the screenshot that we’ve added rich text to the text area
using the editor’s controls. Try that in your environment, then click Send
Response. The page will refresh and, because we’ve now saved a response
with this SupportRequest, you’ll see the rich text rendered…in rich text!

We learned how to send emails in Chapter 13, Task H: Sending Emails and
Processing Payments Efficiently, but when dealing with rich text and the
need to send a plain-text email, we have to strip out the rich text. So let’s set
up the mailer to respond to the user and, when we create the plain-text

template, we’ll see how to strip out the rich text. We’ll start this off by
creating the mailer using the Rails generator:

 > bin/rails generate mailer support_request respond
 create app/mailers/support_request_mailer.rb
 invoke erb
 create app/views/support_request_mailer
 create app/views/support_request_mailer/respond.text.erb
 create app/views/support_request_mailer/respond.html.erb
 invoke test_unit
 create test/mailers/support_request_mailer_test.rb
 create test/mailers/previews/support_request_mailer_preview.rb

Our mailer will look similar to the mailers we’ve created in the past. This is
what your app/mailers/support_request_mailer.rb should look like:

rails7/depot_tc/app/mailers/support_request_mailer.rb

 class SupportRequestMailer < ApplicationMailer

 # Subject can be set in your I18n file at config/locales/en.yml
 # with the following lookup:
 #
 # en.support_request_mailer.respond.subject
 #

» default from: "support@example.com"
»
» def respond (support_request)
» @support_request = support_request
» mail to: @support_request. email , subject: "Re: #{ @support_request. subject}"
» end

 end

For the views, we’ll show our response and quote the user’s original email.
As we saw in our web view, Rails will handle rendering the rich text for us,
so the HTML mail view in app/views/support_request_mailer/respond.html.erb will look
fairly straightforward:

rails7/depot_tc/app/views/support_request_mailer/respond.html.erb

http://media.pragprog.com/titles/rails7/code/rails7/depot_tc/app/mailers/support_request_mailer.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_tc/app/views/support_request_mailer/respond.html.erb

 <%= @support_request. response %>
 <hr>
 <blockquote>
 <%= @support_request. body %>
 </blockquote>

We also want to include a plain-text version, since not everyone wants rich
text in their emails. In the case of a plain-text email, we want to strip out the
rich text from our response. Action Text provides a method to do that, called
to_plain_text, which we can use in app/views/support_request_mailer/respond.text.erb, like
so:

rails7/depot_tc/app/views/support_request_mailer/respond.text.erb

 <%= @support_request. response . to_plain_text %>

 <%= @support_request. body %>

The last step is to add a call to our mailer when we update the SupportRequest:

 class SupportRequestsController < ApplicationController
 def index
 @support_requests = SupportRequest. all
 end

 def update
 support_request = SupportRequest. find (params[:id])
 support_request. update (response: params. require (:support_request)[:response])
» SupportRequestMailer. respond (support_request). deliver_now
 redirect_to support_requests_path
 end
 end

Now, if you restart your server and respond to a support request, you’ll see
the mail printed out in your log, and you should see that the plain-text part
of the email is free of formatting.

http://media.pragprog.com/titles/rails7/code/rails7/depot_tc/app/views/support_request_mailer/respond.text.erb

[74]

[75]

[76]

[77]

[78]

[79]

What We Just Did

We configured and set up Action Mailbox to allow our app to receive
support emails. We saw how to configure Rails to inspect each
incoming email and route it to the right bit of code, called a mailbox.

We also configured Active Storage, which Rails uses to store the raw
emails it processes. With it set up, we could easily access cloud storage
for any other purpose we might need.

We used Action Text to enable rich-text editing for responding to
support requests. With just a few lines of code, we have a cross-
browser rich-text editing experience that works.

We stripped out the rich text to send a plain-text email of our rich-text
response.

Playtime
Here are some things you can try on your own:

Modify the product editor to allow products to have rich text.

Change the support request to find all orders for the email, not just the
most recent.

Footnotes

https://guides.rubyonrails.org/action_mailbox_basics.html

https://guides.rubyonrails.org/action_text_overview.html

https://guides.rubyonrails.org/action_mailbox_basics.html#configuration

https://guides.rubyonrails.org/active_storage_overview.html

https://www.rubydoc.info/github/mikel/mail/Mail/Message

We’re not lawyers, so please don’t take this sidebar as legal advice!

https://guides.rubyonrails.org/action_mailbox_basics.html
https://guides.rubyonrails.org/action_text_overview.html
https://guides.rubyonrails.org/action_mailbox_basics.html#configuration
https://guides.rubyonrails.org/active_storage_overview.html
https://www.rubydoc.info/github/mikel/mail/Mail/Message

Copyright © 2023, The Pragmatic Bookshelf.

We cover:
Running our application in a
production web server
Configuring the database for
PostGreSQL
Securely deploying secrets
Placing all of the above into
Docker containers

Chapter 17

Task L: Deployment and
Production

Deployment is supposed to mark a happy point in the lifetime of our
application. It’s when we take the code that we’ve so carefully crafted and
upload it to a server so that other people can use it. It’s when the beer,
champagne, and hors d’oeuvres are supposed to flow. Shortly thereafter, our
application will be written about in Wired magazine, and we’ll be overnight
names in the geek community.

The reality, however, is that it often takes quite a bit of up-front planning to
pull off a smooth and repeatable deployment of your application.

A bewildering number of options are available for deployment: Ansible,
Capistrano, Chef, and Puppet are all popular choices. Covering all of them
would be the subject of several books. We’re going to focus this chapter on
what effectively is the defacto standard for cloud deployment: Docker.

If you’re not familiar with Docker images, they’re essentially self-contained
and portable runtimes that can be deployed by pretty much any cloud-
hosting provider. This means you can build and test your deployment locally
and then choose your cloud provider later, and even change your mind and
move hosts at any time.

At the moment, we’ve been doing all of our work on one machine, though
user interaction with our web server could be done on a separate machine.
On our machine you’ve been making use of the Puma web server, SQLite 3,

various gems you’ve installed, and your application code. Your code may or
may not have also been placed in Git by this point.

For deployment, we’re going to make use of two Docker containers. The
web server container will be running a combination of nginx[80] and Phusion
Passenger.[81] This code will access a PostgreSQL database running in a
separate container.[82]

That’s a lot of moving parts! To help us keep track of them all, we’ll be
using Bundler to manage our dependencies and Docker Compose as the tool
to manage the containers.[83] And yet, despite all the moving parts, the
overall definition is remarkably compact:

rails7/depot_td/docker-compose.yml

 version: "3.8"

 services:
 db:
 image: postgres:14
 volumes:
 - pgdata:/var/lib/postgresql/data
 environment:
 POSTGRES_PASSWORD: password

 web:
 build: .
 volumes:
 - ./log:/home/app/depot/log
 secrets:
 - source: master_key
 target: /home/app/depot/config/master.key
 ports:
 - "8001:80"
 depends_on:
 - db

 secrets:
 master_key:
 file: ./config/master.key

http://media.pragprog.com/titles/rails7/code/rails7/depot_td/docker-compose.yml

 volumes:
 pgdata:

Don’t let the size of the file fool you—there’s a lot to unpack here. We’ll
cover the following in subsequent sections:

Configuring the database
Keeping secrets
Building a docker image
Deploying the application

Configuring the Database
The SQLite website is refreshingly honest when it comes to describing what
this database is good at and what it’s not good at.[84] In particular, SQLite
isn’t recommended for high-volume, high-concurrency websites with large
datasets. And, of course, we want our website to be such a website. Plenty of
alternatives to SQLite, both free and commercial, are available. We’ll go
with PostgreSQL.

Looking at the docker-compose.yml file, the first service listed is named db. This
name serves as the host name for the container. Each service defined in the
container is deployed on a private network isolated from the rest of the
world except for ports that you decide to expose. Inside the network,
services refer to each other by host name.

On the db host we run the stock postgres docker image[85] from Docker Hub.
[86]

On top of that image, we mount a disk volume that we’ve named pgdata. This
volume will be created as a file within the filesystem of the machine running
the container. Placing the contents of the database outside of the container
allows us to update the software image without affecting the data.

Finally, we define an environment variable containing the password we use
to access the database. As this image has no external ports defined, and
therefore no way to access it outside of the isolated environment that docker
compose provides, this doesn’t concern us for now. We may need to revisit
once we deploy this application on a public cloud with a different
configuration.

Now that we’ve defined the database container, we change the configuration
of the production database from using the sqlite3 adapter to using the
postgresql adapter:

rails7/depot_td/config/database.yml

 # SQLite. Versions 3.8.0 and up are supported.
 # gem install sqlite3
 #
 # Ensure the SQLite 3 gem is defined in your Gemfile
 # gem "sqlite3"
 #
 default: &default
 adapter: sqlite3
 pool: <%= ENV.fetch("RAILS_MAX_THREADS") { 5 } %>
 timeout: 5000

 development:
 << : *default
 database: db/development.sqlite3

 # Warning: The database defined as "test" will be erased and
 # re-generated from your development database when you run "rake".
 # Do not set this db to the same as development or production.
 test:
 << : *default
 database: db/test.sqlite3

 production:
» database: depot
» adapter: postgresql
» encoding: unicode
» host: db
» username: postgres
» password: password
» pool: 5

In addition to specifying the adapter name, we define the database name, the
host where the database can be found, the username and password used to
authenticate access, and two configuration options: the character encoding to
be used and the number of database clients to allocate to service requests.

We need one more step to prepare our deployment to use the postgresql
adapter, namely to install the adapter itself:

http://media.pragprog.com/titles/rails7/code/rails7/depot_td/config/database.yml

 $ bundle add pg --group production

Conceptually we’ve defined how to provision a complete virtual machine to
host our data needs—all with a few lines of YAML. We don’t need to worry
about what operating system that container is running or any other platform
details. Welcome to the world of containers!

Managing Secrets
When we defined our seed data back in Iteration A2: Making Prettier
Listings, our database didn’t have any users. After we added our first user in
Chapter 14, Task I: Logging In, we added code to require a valid login to
access pages that update the database.

What that means is that if we were to deploy a new installation starting with
the seed data alone, we would be locked out of our own application. That’s
not good. So lets fix it!

Adding an initial user to our seed data solves the problem, but checking in a
password into our version control and deploying it is hardly secure.
Fortunately Rails has provided a way to encrypt secrets such as this one.
Rails calls such secrets credentials.

We get started by editing our credentials:

 $ EDITOR='code --wait' rails credentials:edit

Feel free to replace the editor with vim or another editor of your choice.

You’ll see that Rails has already defined one credential that’s used to encrypt
cookies, which is how Rails implements sessions such as the one used to
track a user’s cart. Leave that credential alone, and add another one to the
file:

 dave_password: secret

When you save the file, Rails will update config/credentials.yml.enc using the
master key defined in config/master.key. The encoded file can be checked into
version control and shared publicly. The key, however, needs to be kept
private.

If you look into the .gitignore file, you’ll see that /config/master.key is already
listed there. For similar reasons, we won’t want the key to be placed into the
docker image that we’ll be creating shortly, so we’ll want to create a
.dockerignore file with this in it. As the .gitignore is a good starting point, we can
simply copy it:

 $ cp .gitignore .dockerignore

Now that we have a credential defined, let’s make use of it by adding the
following to db/seeds.rb

rails7/depot_td/db/seeds.rb

 User. create! name: 'dave' ,
 password: Rails. application . credentials . dave_password

So far, we’ve defined a credential, made use of it, and ensured that the
master key won’t be committed to version control or placed in the image.
The one task remaining is to set things up to deploy the master key at
runtime. The following lines in docker-compose.yml take care of this:

rails7/depot_td/docker-compose.yml

 services:
 web:
 secrets:
 - source: master_key
 target: /home/app/depot/config/master.key
 secrets:
 master_key:
 file: ./config/master.key

The general pattern of placing a secret in a file, listing all of the secrets
you’ll be using in one place, and then referencing individual secrets by the
containers that use them is common in cloud deployments. Rails makes it
easy in that there’s only one secret you need for Rails applications, namely a
master key. That key can be used to unlock all of the credentials that you’ll
need.

http://media.pragprog.com/titles/rails7/code/rails7/depot_td/db/seeds.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_td/docker-compose.yml

Building a Docker Image
Before proceeding, let’s take one last look at the web service defined in the
docker-compose.yml:

rails7/depot_td/docker-compose.yml

 web:
 build: .
 volumes:
 - ./log:/home/app/depot/log
 secrets:
 - source: master_key
 target: /home/app/depot/config/master.key
 ports:
 - "8001:80"
 depends_on:
 - db

We’ve seen the volumes definition before; in this case it maps the log
directory in the container to our local log directory. We previously covered
how secrets are managed.

ports is new. This maps port 8001 on our development machine to port 80 in
the container. This means that we’ll be able to access our application as
http://localhost:8001 once it’s up and running.

depends_on controls the startup order of the containers. In this case, we want
the database to be up and running when we start our appliction.

This leaves one last option: build. While we were able to make use of a pre-
built docker image for our database, this won’t be the case for the
application we just wrote. The value of . here means that the Dockerfile used to
build this image can be found in the current directory.

rails7/depot_td/Dockerfile

http://media.pragprog.com/titles/rails7/code/rails7/depot_td/docker-compose.yml
http://media.pragprog.com/titles/rails7/code/rails7/depot_td/Dockerfile

 FROM phusion/passenger-full:2.2.0

 RUN rm /etc/nginx/sites-enabled/default
 RUN rm -f /etc/service/nginx/down
 RUN rm -f /etc/service/redis/down
 ADD config/nginx.conf /etc/nginx/sites-enabled/depot.conf

 USER app
 RUN mkdir /home/app/depot
 WORKDIR /home/app/depot

 ENV RAILS_ENV=production
 ENV BUNDLE_WITHOUT="development test"
 COPY --chown=app:app Gemfile Gemfile.lock .
 RUN bundle install
 COPY --chown=app:app . .

 RUN SECRET_KEY_BASE=`bin/rails secret` \
 bin/rails assets:precompile

 USER root
 CMD ["/sbin/my_init"]

This is remarkably short, and that’s because we can start with a pre-build
image as a starting point. Phusion provides a number of images that you can
build upon.[87] We chose full because it includes everything we need. Other
images provide different versions of Ruby, and those are “some assembly
required” starters.

Before proceeding, feel free to look around the image by running the
command provided:[88]

 $ docker run --rm -t -i phusion/passenger-full bash -l

This particular image provides an initialization script (/sbin/my_init) and is
designed to be configured by removing and adding files. We proceed to
remove the default site, enable nginx and redis, and provide our own site
definition:

rails7/depot_td/config/nginx.conf

http://media.pragprog.com/titles/rails7/code/rails7/depot_td/config/nginx.conf

 server {
 listen 80;
 server_name www.depot.com;
 root /home/app/depot/public;

 passenger_enabled on;
 passenger_user app;
 passenger_ruby /usr/bin/ruby;

 location /cable {
 passenger_app_group_name /home/app/depot/cable;
 passenger_force_max_concurrent_requests_per_process 0;
 }
 }

This file starts by giving the web port and server name and identifying
where static files that can be served by the web server itself can be found.
Then it enables passenger and tells it what Unix user to use to run this app
and where the ruby executable can be found. Finally, it configures Action
Cable, which passenger runs in a separate process and allows an unlimited
number of simultaneous requests. More information on this can be found in
the documentation.[89]

We return to the Dockerfile, specifically looking at the portion creating the
application:

rails7/depot_td/Dockerfile

 USER app
 RUN mkdir /home/app/depot
 WORKDIR /home/app/depot

 ENV RAILS_ENV=production
 ENV BUNDLE_WITHOUT="development test"
 COPY --chown=app:app Gemfile Gemfile.lock .
 RUN bundle install
 COPY --chown=app:app . .

 RUN SECRET_KEY_BASE=`bin/rails secret` \
 bin/rails assets:precompile

http://media.pragprog.com/titles/rails7/code/rails7/depot_td/Dockerfile

Most of this is very straightfoward: the user is set, and a directory is created
and set as the current working directory. The Rails environment is set to
production, the code is copied to the image, and bundle install is run. Note that the
Gemfile is copied separately—the reason for this will become clear shortly.

The final command runs assets:precompile.[90] During development, the assets

directory is monitored for changes and served dynamically as needed. This
is unnecessary overhead once deployed, so Rails provides a command to do
this only when necessary. Run this command every time you deploy your
appplication if it’s possible that one or more assets have changed. The
SECRET_KEY_BASE is a work-around to Rails requiring a master key even on
commands that won’t make use of it.[91]

Before proceeding, we have one last thing we may need to clean up: the
passenger-full:2.2.0 image contains Ruby version 3.1.1p18. If you’re running with
a version of Ruby other than 3.1.1, you have three choices:

Find another image that matches the version of Ruby you’re running
locally. The Changelog will prove helpful in finding that image.[92]

Install a different version of Ruby on your development machine,
perhaps using rbenv, rvm, or chruby. Chapter 1, Installing Rails, contains
some helpful information on how to do this.

Remove the .ruby-version file from your project and comment out the ruby

line in your Gemfile. This is not recommended for production but may be
the most expedient way for you to get experience with Docker images.

Getting Up and Running
Three small steps and we’re done with our planning. Now it’s time to get
things up and running. The first thing we need to do is install Docker itself.
You can get it at the Docker website.[93]

Next we use docker to build our image for the web service with a single
command:

 $ docker compose build

This command will take a while. It will download an image. And most of
the remaining time will be spent installing gems. If you run the same
command again, it’ll run quickly as nothing needs to be redone. If you
change any file other than your Gemfile, the image will be updated quickly
with the change. If you change the Gemfile, run bundle update, and then rerun
docker compose build, it’ll take longer as it will rerun the bundle install step on a
fresh image.

Next we start both the db and web containers with a single command:

 $ docker compose up

Normally this command will be run with the --detach or -d option which will
run the containers in the background, but for now it’s helpful to see the
output.

Once the database is started, create the database, run the migrations, and
load the seed data:

 $ docker compose exec web bin/rails db:create db:migrate db:seed

This command only needs to be run once as long as the volume exists. You
can list and remove volumes using the docker volume command. To recreate
the volume, run docker compose down followed by docker compose up.

At this point, your application is up and running! It can be accessed at
http://localhost:8001/.

http://localhost:8001/

Checking Up on a Deployed Application
Once we have our application deployed, we’ll no doubt need to check up
from time to time on how it’s running. We can do this in two primary ways.
The first is to monitor the various log files output by both our front-end web
server and the nginx server running our application. The second is to
connect to our application using rails console.

Looking at Log Files
To get a quick look at what’s happening in our application, we can use the
tail command to examine log files as requests are made against our
application. The most interesting data will usually be in the log files from
the application itself. Even if nginx is running multiple applications, the
logged output for each application is placed in the production.log file for that
application.

Assuming that our application is deployed into the location we showed
earlier, here’s how we look at our running log file:

 # On your server
 $ tail -f log/production.log

Sometimes, we need lower-level information—what’s going on with the
data in our application? When this is the case, it’s time to break out the
most useful live server debugging tool.

Using Console to Look at a Live Application
We’ve already created a large amount of functionality in our application’s
model classes. Of course, we created these to be used by our application’s
controllers—but we can also interact with them directly. The gateway to
this world is the rails console script. We can launch it on our server with this:

 # On your server

 $ docker compose exec web bin/rails console
 Loading production environment (Rails 7.0.4)
 irb(main):001:0> p = Product.last
 =>
 #<Product:0x0000004013a47ad8
 ...
 irb(main):002:0> p.title
 => "Modern CSS with Tailwind"
 irb(main):003:0> p.price = 29.00
 => 29.0
 irb(main):003:0> p.save
 => true

Once we have a console session open, we can poke and prod all the various
methods on our models. We can create, inspect, and delete records. In a
way, it’s like having a root console to your application.

Once we put an application into production, we need to take care of a few
chores to keep the application running smoothly. These chores aren’t
automatically taken care of for us, but luckily we can automate them.

Dealing with Log Files
As an application runs, it constantly adds data to its log file. Eventually, the
log files can grow extremely large. To overcome this, most logging
solutions can roll over log files to create a progressive set of log files of
increasing age. This breaks up our log files into manageable chunks that can
be archived or even deleted after a certain amount of time has passed.

The Logger class supports rollover. We need to specify how many (or how
often) log files we want and the size of each, using a line like one of the
following in the file config/environments/production.rb:

 config. logger = Logger. new (config. paths ['log']. first , 'daily')

Or this is a possibility:

 require 'active_support/core_ext/numeric/bytes'
 config. logger = Logger. new (config. paths ['log']. first , 10, 10. megabytes)

Note that in this case an explicit require of active_support is needed, because
this statement is processed early in the initialization of your application—
before the Active Support libraries have been included. In fact, one of the
configuration options that Rails provides is to not include Active Support
libraries at all:

 config. active_support . bare = true

Alternatively, we can direct our logs to the system logs for our machine:

 config.logger = SyslogLogger.new

Find more options at http://guides.rubyonrails.org/configuring.html.

Moving On to Launch and Beyond
Once we’ve set up our initial deployment, we’re ready to finish the
development of our application and launch it into production. We’ll likely
set up additional deployment servers, and the lessons we learn from our first
deployment will tell us a lot about how we should structure later
deployments. For example, we’ll likely find that Rails is one of the slower
components of our system: more of the request time will be spent in Rails
than in waiting on the database or filesystem. This indicates that the way to
scale up is to add machines to split up the Rails load.

However, we might find that the bulk of the time a request takes is in the
database. If this is the case, we’ll want to look at how to optimize our
database activity. Maybe we’ll want to change how we access data. Or
maybe we’ll need to custom-craft some SQL to replace the default Active
Record behaviors.

One thing is for sure: every application will require a different set of tweaks
over its lifetime. The most important activity is to listen to it over time and
discover what needs to be done. Our job isn’t done when we launch our
application. It’s actually just starting.

http://guides.rubyonrails.org/configuring.html

Although our job is just starting when we first deploy our application to
production, we’ve completed our tour of the Depot application. After we
recap what we did in this chapter, let’s look back at what we’ve
accomplished in remarkably few lines of code.

What We Just Did
We covered a lot of ground in this chapter. We took our code that ran
locally on our development machine for a single user and placed it on a
different machine, running a different web server, accessing a different
database, and possibly even running a different operating system.

To accomplish this, we used a number of products:

We made use of a stock PostGreSQL container and configured our
application to use this as our database server.

We encrypted and securely deployed application secrets consisting
initially of the password of our initial administrator.

We added our application to a base container that included Phusion
Passenger and nginx as a starting point.

Playtime
Here’s some stuff to try on your own:

Instead of using the passenger-full docker image, try one of the passenger-

ruby images. This will enable you to pin down the version of Ruby that
you’re using. To make this work, you’ll need to run redis in a separate
container.

Use Docker secrets instead of having the PostGreSQL password
directly in the compose file.[94] Update your Rails application to use
this same password.

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

Select a hosting provider and deploy your application in the cloud.
Most hosting options support containers and provide a free tier for
initial experimentation, which generally is more than sufficient for you
to get started. You’ll likely be able to directly use the app container
that you built in this chapter but may find that a control panel replaces
your docker-compose.yml file.

Footnotes

https://www.nginx.com/

https://www.phusionpassenger.com/

https://www.postgresql.org/

https://docs.docker.com/compose/

http://www.sqlite.org/whentouse.html

https://hub.docker.com/_/postgres

https://hub.docker.com/

https://github.com/phusion/passenger-docker#about-the-image

https://github.com/phusion/passenger-docker#inspecting-the-image

https://www.phusionpassenger.com/library/config/nginx/action_cable_integration/#running
-the-action-cable-server-on-the-same-host-and-port-under-a-sub-uri

https://guides.rubyonrails.org/asset_pipeline.html#precompiling-assets

https://github.com/rails/rails/issues/32947#issuecomment-401886372

https://github.com/phusion/passenger-docker/blob/master/CHANGELOG.md

https://docs.docker.com/get-docker/

https://docs.docker.com/engine/swarm/secrets/

Copyright © 2023, The Pragmatic Bookshelf.

https://www.nginx.com/
https://www.phusionpassenger.com/
https://www.postgresql.org/
https://docs.docker.com/compose/
http://www.sqlite.org/whentouse.html
https://hub.docker.com/_/postgres
https://hub.docker.com/
https://github.com/phusion/passenger-docker#about-the-image
https://github.com/phusion/passenger-docker#inspecting-the-image
https://www.phusionpassenger.com/library/config/nginx/action_cable_integration/#running-the-action-cable-server-on-the-same-host-and-port-under-a-sub-uri
https://guides.rubyonrails.org/asset_pipeline.html#precompiling-assets
https://github.com/rails/rails/issues/32947#issuecomment-401886372
https://github.com/phusion/passenger-docker/blob/master/CHANGELOG.md
https://docs.docker.com/get-docker/
https://docs.docker.com/engine/swarm/secrets/

We cover:
Reviewing Rails concepts: model,
view, controller, configuration,
testing, and deployment
Documenting what we’ve done

Chapter 18

Depot Retrospective

Congratulations! By making it this far, you’ve obtained a solid
understanding of the basics of every Rails application. There’s much more
to learn, which we’ll pick back up again in Part III. For now, relax, and let’s
recap what you’ve seen in Part II.

Rails Concepts
In Chapter 3, The Architecture of Rails Applications, we introduced models,
views, and controllers. Now let’s see how we applied each of these concepts
in the Depot application. Then let’s explore how we used configuration,
testing, and deployment.

Model
Models are where all of the persistent data retained by your application is
managed. In developing the Depot application, we created five models: Cart,
LineItem, Order, Product, SupportRequest, and User.

By default, all models have id, created_at, and updated_at attributes. To our
models, we added attributes of type string (examples: title, name), integer

(quantity), text (description, address), and decimal (price), as well as foreign keys
(product_id, cart_id). We even created a virtual attribute that’s never stored in
the database—namely, a password.

We created has_many and belongs_to relationships that we can use to navigate
among our model objects, such as from Carts to LineItems to Products.

We employed migrations to update the databases, not only to introduce new
schema information but also to modify existing data. We demonstrated that
they can be applied in a fully reversible manner.

The models we created were not merely passive receptacles for our data.
For starters, they actively validate the data, preventing errors from
propagating. We created validations for presence, inclusion, numericality,
range, uniqueness, format, and confirmation (and length, too, if you
completed the exercises). We created custom validations for ensuring that
deleted products aren’t referenced by any line item. We used an Active

Record hook to ensure that an administrator always remains and used a
transaction to roll back incomplete updates on failure.

We also created logic to add a product to a cart, add all line items from a
cart to an order, encrypt and authenticate a password, and compute various
totals.

Finally, we created a default sort order for products for display purposes.

View
Views control the way our application presents itself to the external world.
By default, Rails scaffolding provides edit, index, new, and show, as well as a
partial named form that’s shared between edit and new. We modified a number
of these and created new partials for carts and line items.

In addition to the model-backed resource views, we created entirely new
views for admin, sessions, and the store itself.

We updated an overall layout to establish a common look and feel for the
entire site. We updated in a style sheet. We made use of partials and added
JavaScript to takes advantage of HotWired and WebSocket technologies to
make our website more interactive.

We localized the customer views for display in both English and Spanish.

Not all of the views were designed for browsers: we created views for email
too, and those views were able to share partials for displaying line items.

Controller
By the time we were done, we created eight controllers: one each for the six
models and the three additional ones to support the views for admin, sessions,
and the store itself.

These controllers interacted with the models in a number of ways, from
finding and fetching data and putting it into instance variables to updating
models and saving data entered via forms. When done, we either redirected
to another action or rendered a view.

We limited the set of permitted parameters on the line item controller.

We created callback actions that were run before selected actions to find the
cart, set the language, and authorize requests. We placed logic common to a
number of controllers into a concern—namely, the CurrentCart module.

We managed sessions, keeping track of the logged-in user (for
administrators) and carts (for customers). We kept track of the current
locale used for internationalization of our output. We captured errors,
logged them, and informed the user via notices.

We employed fragment caching on the storefront.

We also sent confirmation emails on receipt of an order.

Configuration
Conventions keep to a minimum the amount of configuration required for a
Rails application, but we did do a bit of customization.

We modified our database configuration to use MySQL in production.

We defined routes for our resources, admin and session controllers, and the
root of our website—namely, our storefront.

We created an initializer for i18n purposes and updated the locales
information for both English (en) and Spanish (es).

We created seed data for our database.

We created a Docker configuration for deployment, including the definition
of a secret.

Testing
We maintained and enhanced tests throughout.

We employed unit tests to validation methods. We also tested increasing the
quantity on a given line item.

Rails provided basic tests for all our scaffolded controllers, which we
maintained as we made changes. We added tests along the way for things
such as Ajax and ensuring that a cart has items before we create an order.

We used fixtures to provide test data to fuel our tests.

We created an integration test to test an end-to-end scenario involving a
user adding product to a cart, entering an order, and receiving a
confirmation email.

Deployment
We deployed our application to a production-quality web server (nginx)
using a production-quality database server (PostGreSQL). Along the way,
we installed and configured Phusion Passenger to run our application,
Bundler to track dependencies, and Git to configuration manage our code.
Docker compose was employed to orchestrate updating the deployed web
server in production from our development machine.

We made use of test and production environments to prevent our
experimentation during development from affecting production. Our
development environment made use of the lightweight SQLite database
server and web server, Puma. Our tests were run in a controlled
environment with test data provided by fixtures.

Documenting What We’ve Done
To complete our retrospective, let’s see how much code we’ve written.
There’s a Rails command for that too:

 % bin/rails stats
 +----------------------+--------+--------+---------+---------+-----+-------+
 | Name | Lines | LOC | Classes | Methods | M/C | LOC/M |
 +----------------------+--------+--------+---------+---------+-----+-------+
Controllers	614	410	10	59	5	4
Helpers	18	18	0	0	0	0
Jobs	18	8	2	1	0	6
Models	165	113	8	7	0	14
Mailers	51	22	3	3	1	5
Mailboxes	22	16	2	1	0	14
Channels	19	15	3	2	0	5
Views	938	758	0	0	0	0
Stylesheets	79	68	0	0	0	0
JavaScript	88	51	0	0	0	0
Libraries	34	33	1	1	1	31
Controller tests	395	280	8	45	5	4
Helper tests	0	0	0	0	0	0
Job tests	7	3	1	0	0	0
Model tests	139	95	6	9	1	8
Mailer tests	63	44	4	6	1	5
Mailbox tests	58	32	1	2	2	14
Channel tests	19	6	2	0	0	0
Integration tests	0	0	0	0	0	0
System tests	184	134	3	10	3	11
Model specs	58	36	0	0	0	0
+----------------------+--------+--------+---------+---------+-----+-------+						
Total	2969	2142	54	146	2	12
 +----------------------+--------+--------+---------+---------+-----+-------+
 Code LOC: 1512 Test LOC: 630 Code to Test Ratio: 1:0.4

Think about it: you’ve accomplished a lot and with not all that much code.
And much of it was generated for you. This is the magic of Rails.

Copyright © 2023, The Pragmatic Bookshelf.

Part 3
Rails in Depth

We cover:
The directory structure of a Rails
application
Naming conventions
Adding Rake tasks
Configuration

Chapter 19

Finding Your Way Around Rails

Having survived our Depot project, you’re now prepared to dig deeper into
Rails. For the rest of the book, we’ll go through Rails topic by topic (which
pretty much means module by module). You’ve seen most of these modules
in action before. We’ll cover not only what each module does but also how
to extend or even replace the module and why you might want to do so.

The chapters in Part III cover all the major subsystems of Rails: Active
Record, Active Resource, Action Pack (including both Action Controller
and Action View), and Active Support. This is followed by an in-depth look
at migrations.

Then we’re going to delve into the interior of Rails and show how the
components are put together, how they start up, and how they can be
replaced. Having shown how the parts of Rails can be put together, we’ll
complete this book with a survey of a number of popular replacement parts,
many of which can be used outside of Rails.

We need to set the scene first. This chapter covers all the high-level stuff
you need to know to understand the rest: directory structures, configuration,
and environments.

Where Things Go
Rails assumes a certain runtime directory layout and provides application
and scaffold generators, which will create this layout for you. For example,
if we generate my_app using the command rails new my_app, the top-level
directory for our new application appears as shown in the figure.

Joe asks:

So, Where’s Rails?

One of the interesting aspects of Rails is how componentized it is. From a developer’s
perspective, you spend all your time dealing with high-level modules such as Active Record and

Action View. There’s a component called Rails, but it sits below the other components, silently
orchestrating what they do and making them all work together seamlessly. Without the Rails
component, not much would happen. But at the same time, only a small part of this underlying
infrastructure is relevant to developers in their day-to-day work. We’ll cover the parts that are
relevant in the rest of this chapter.

Let’s start with the text files in the top of the application directory:

config.ru configures the Rack Webserver Interface, either to create Rails
Metal applications or to use Rack Middlewares in your Rails
application. These are discussed further in the Rails Guides.[95]

Gemfile specifies the dependencies of your Rails application. You’ve
already seen this in use when the bcrypt-ruby gem was added to the Depot
application. Application dependencies also include the database, web
server, and even scripts used for deployment.

Technically, this file isn’t used by Rails but rather by your application.
You can find calls to the Bundler[96] in the config/application.rb and
config/boot.rb files.

Gemfile.lock records the specific versions for each of your Rails
application’s dependencies. This file is maintained by Bundler and
should be checked into your repository.

Rakefile defines tasks to run tests, create documentation, extract the
current structure of your schema, and more. Type rake -T at a prompt for
the full list. Type rake -D task to see a more complete description of a
specific task.

README contains general information about the Rails framework.

Let’s look at what goes into each directory (although not necessarily in
order).

A Place for Our Application
Most of our work takes place in the app directory. The main code for the
application lives below the app directory, as shown in the figure. We’ll talk
more about the structure of the app directory as we look at the various Rails
modules such as Active Record, Action Controller, and Action View in more
detail later in the book.

A Place for Our Tests
As we’ve seen in Iteration B2: Unit Testing of Models, Iteration C4:
Functional Testing of Controllers, and Iteration G3: Testing Our JavaScript
Functionality, Rails has ample provisions for testing your application, and
the test directory is the home for all testing-related activities, including
fixtures that define data used by our tests.

A Place for Supporting Libraries
The lib directory holds application code that doesn’t fit neatly into a model,
view, or controller. For example, you may have written a library that creates
PDF receipts that your store’s customers can download. These receipts are
sent directly from the controller to the browser (using the send_data method).
The code that creates these PDF receipts will sit naturally in the lib directory.

The lib directory is also a good place to put code that’s shared among
models, views, or controllers. Maybe you need a library that validates a
credit card number’s checksum, that performs some financial calculation, or
that works out the date of Easter. Anything that isn’t directly a model, view,
or controller should be slotted into lib.

Don’t feel that you have to stick a bunch of files directly into the lib
directory. Feel free to create subdirectories in which you group related
functionality under lib. For example, on the Pragmatic Programmer site, the

code that generates receipts, customs documentation for shipping, and other
PDF-formatted documentation is in the directory lib/pdf_stuff.

In previous versions of Rails, the files in the lib directory were automatically
included in the load path used to resolve require statements. This is now an
option that you need to explicitly enable. To do so, place the following in
config/application.rb:

 config. autoload_paths += %W(#{ Rails. root}/lib)

Once you have files in the lib directory and the lib added to your autoload
paths, you can use them in the rest of your application. If the files contain
classes or modules and the files are named using the lowercase form of the
class or module name, then Rails will load the file automatically. For
example, we might have a PDF receipt writer in the file receipt.rb in the
directory lib/pdf_stuff. As long as our class is named PdfStuff::Receipt, Rails will
be able to find and load it automatically.

For those times where a library can’t meet these automatic loading
conditions, you can use Ruby’s require mechanism. If the file is in the lib
directory, you can require it directly by name. For example, if our Easter
calculation library is in the file lib/easter.rb, we can include it in any model,
view, or controller using this:

 require "easter"

If the library is in a subdirectory of lib, remember to include that directory’s
name in the require statement. For example, to include a shipping calculation
for airmail, we might add the following line:

 require "shipping/airmail"

A Place for Our Rake Tasks
You’ll also find an empty tasks directory under lib. This is where you can
write your own Rake tasks, allowing you to add automation to your project.

This isn’t a book about Rake, so we won’t elaborate, but here’s a simple
example.

Rails provides a Rake task to tell you the latest migration that’s been
performed. But it may be helpful to see a list of all the migrations that have
been performed. We’ll write a Rake task that prints the versions listed in the
schema_migration table. These tasks are Ruby code, but they need to be placed
into files with the extension rake. We’ll call ours db_schema_migrations.rake:

rails7/depot_u/lib/tasks/db_schema_migrations.rake

 namespace :db do
 desc "Prints the migrated versions"
 task :schema_migrations => :environment do
 puts ActiveRecord::Base. connection . select_values (
 'select version from schema_migrations order by version')
 end
 end

We can run this from the command line just like any other Rake task:

 depot> bin/rails db:schema_migrations
 (in /Users/rubys/Work/...)
 20221207000001
 20221207000002
 20221207000003
 20221207000004
 20221207000005
 20221207000006
 20221207000007

Consult the Rake documentation at https://github.com/ruby/rake#readme for
more information on writing Rake tasks.

A Place for Our Logs
As Rails runs, it produces a bunch of useful logging information. This is
stored (by default) in the log directory. Here you’ll find three main log files,
called development.log, test.log, and production.log. The logs contain more than just

http://media.pragprog.com/titles/rails7/code/rails7/depot_u/lib/tasks/db_schema_migrations.rake
https://github.com/ruby/rake#readme

trace lines; they also contain timing statistics, cache information, and
expansions of the database statements executed.

Which file is used depends on the environment in which your application is
running (and we’ll have more to say about environments when we talk about
the config directory in A Place for Configuration).

A Place for Static Web Pages
The public directory is the external face of your application. The web server
takes this directory as the base of the application. In here you place static (in
other words, unchanging) files, generally related to the running of the server.

A Place for Script Wrappers
If you find it helpful to write scripts that are launched from the command
line and perform various maintenance tasks for your application, the bin

directory is the place to put wrappers that call those scripts.

This directory also holds the Rails script. This is the script that’s run when
you run the rails command from the command line. The first argument you
pass to that script determines the function Rails will perform:

console

Allows you to interact with your Rails application methods.

dbconsole

Allows you to directly interact with your database via the command
line.

destroy

Removes autogenerated files created by generate.

generate

A code generator. Out of the box, it will create controllers, mailers,
models, scaffolds, and web services. Run generate with no arguments for

usage information on a particular generator; here’s an example:

 bin/rails generate migration

new

Generates Rails application code.

runner

Executes a method in your application outside the context of the Web.
This is the noninteractive equivalent of rails console. You could use this to
invoke cache expiry methods from a cron job or handle incoming email.

server

Runs your Rails application in a self-contained web server, using the
web server listed in your Gemfile, or WEBrick if none is listed. We’ve
been using Puma in our Depot application during development.

A Place for Temporary Files
It probably isn’t a surprise that Rails keeps its temporary files tucked in the
tmp directory. You’ll find subdirectories for cache contents, sessions, and
sockets in here. Generally these files are cleaned up automatically by Rails,
but occasionally if things go wrong, you might need to look in here and
delete old files.

A Place for Third-Party Code
The vendor directory is where third-party code lives. You can install Rails and
all of its dependencies into the vendor directory.

If you want to go back to using the system-wide version of gems, you can
delete the vendor/cache directory.

A Place for Configuration

The config directory contains files that configure Rails. In the process of
developing Depot, we configured a few routes, configured the database,
created an initializer, modified some locales, and defined deployment
instructions. The rest of the configuration was done via Rails conventions.

Before running your application, Rails loads and executes config/environment.rb

and config/application.rb. The standard environment set up automatically by
these files includes the following directories (relative to your application’s
base directory) in your application’s load path:

The app/controllers directory and its subdirectories
The app/models directory
The vendor directory and the lib contained in each plugin subdirectory
The directories app, app/helpers, app/mailers, and app/*/concerns

Each of these directories is added to the load path only if it exists.

In addition, Rails will load a per-environment configuration file. This file
lives in the environments directory and is where you place configuration
options that vary depending on the environment.

This is done because Rails recognizes that your needs, as a developer, are
very different when writing code, testing code, and running that code in
production. When writing code, you want lots of logging, convenient
reloading of changed source files, in-your-face notification of errors, and so
on. In testing, you want a system that exists in isolation so you can have
repeatable results. In production, your system should be tuned for
performance, and users should be kept away from errors.

The switch that dictates the runtime environment is external to your
application. This means that no application code needs to be changed as you
move from development through testing to production. When starting a
server with the bin/rails server command, we use the -e option:

 depot> bin/rails server -e development

 depot> bin/rails server -e test
 depot> bin/rails server -e production

If you have special requirements, such as if you favor having a staging
environment, you can create your own environments. You’ll need to add a
new section to the database configuration file and a new file to the
config/environments directory.

What you put into these configuration files is entirely up to you. You can
find a list of configuration parameters you can set in the Configuring Rails
Applications guide.[97]

Naming Conventions
Newcomers to Rails are sometimes puzzled by the way it automatically
handles the naming of things. They’re surprised that they call a model class
Person and Rails somehow knows to go looking for a database table called
people. In this section, you’ll learn how this implicit naming works.

The rules here are the default conventions used by Rails. You can override
all of these conventions using configuration options.

Mixed Case, Underscores, and Plurals
We often name variables and classes using short phrases. In Ruby, the
convention is to have variable names where the letters are all lowercase and
words are separated by underscores. Classes and modules are named
differently: there are no underscores, and each word in the phrase (including
the first) is capitalized. (We’ll call this mixed case, for fairly obvious
reasons.) These conventions lead to variable names such as order_status and
class names such as LineItem.

Rails takes this convention and extends it in two ways. First, it assumes that
database table names, such as variable names, have lowercase letters and
underscores between the words. Rails also assumes that table names are
always plural. This leads to table names such as orders and third_parties.

On another axis, Rails assumes that files are named using lowercase with
underscores.

Rails uses this knowledge of naming conventions to convert names
automatically. For example, your application might contain a model class
that handles line items. You’d define the class using the Ruby naming
convention, calling it LineItem. From this name, Rails would automatically
deduce the following:

The corresponding database table will be called line_items. That’s the
class name, converted to lowercase, with underscores between the
words, and pluralized.

Rails would also know to look for the class definition in a file called
line_item.rb (in the app/models directory).

Rails controllers have additional naming conventions. If our application has
a store controller, then the following happens:

Rails assumes the class is called StoreController and that it’s in a file
named store_controller.rb in the app/controllers directory.

Rails also looks for a helper module named StoreHelper in the file
store_helper.rb located in the app/helpers directory.

It will look for view templates for this controller in the app/views/store

directory.

It will by default take the output of these views and wrap them in the
layout template contained in the file store.html.erb or store.xml.erb in the
directory app/views/layouts.

All these conventions are shown in the following tables.

Model Naming
Table line_items
File app/models/line_item.rb
Class LineItem

Controller Naming
URL http://../store/list
File app/controllers/store_controller.rb

Controller Naming
Class StoreController
Method list
Layout app/views/layouts/store.html.erb

View Naming
URL http://../store/list
File app/views/store/list.html.erb (or

.builder)
Helper module StoreHelper
File app/helpers/store_helper.rb

There’s one extra twist. In normal Ruby code you have to use the require

keyword to include Ruby source files before you reference the classes and
modules in those files. Since Rails knows the relationship between
filenames and class names, require isn’t normally necessary in a Rails
application. The first time you reference a class or module that isn’t known,
Rails uses the naming conventions to convert the class name to a filename
and tries to load that file behind the scenes. The net effect is that you can
typically reference (say) the name of a model class, and that model will be
automatically loaded into your application.

Grouping Controllers into Modules
So far, all our controllers have lived in the app/controllers directory. It’s
sometimes convenient to add more structure to this arrangement. For
example, our store might end up with a number of controllers performing
related but disjoint administration functions. Rather than pollute the top-
level namespace, we might choose to group them into a single admin

namespace.

David says:

Why Plurals for Tables?

Because it sounds good in conversation. Really. “Select a Product from products.”
And “Order has_many :line_items.”

The intent is to bridge programming and conversation by creating a domain language that can
be shared by both. Having such a language means cutting down on the mental translation that
otherwise confuses the discussion of a product description with the client when it’s really
implemented as merchandise body. These communications gaps are bound to lead to errors.

Rails sweetens the deal by giving you most of the configuration for free if you follow the
standard conventions. Developers are thus rewarded for doing the right thing, so it’s less about
giving up “your ways” and more about getting productivity for free.

Rails does this using a simple naming convention. If an incoming request
has a controller named (say) admin/book, Rails will look for the controller
called book_controller in the directory app/controllers/admin. That is, the final part
of the controller name will always resolve to a file called name_controller.rb,
and any leading path information will be used to navigate through
subdirectories, starting in the app/controllers directory.

Imagine that our program has two such groups of controllers (say, admin/xxx
and content/xxx) and that both groups define a book controller. There’d be a
file called book_controller.rb in both the admin and content subdirectories of
app/controllers. Both of these controller files would define a class named
BookController. If Rails took no further steps, these two classes would clash.

To deal with this, Rails assumes that controllers in subdirectories of the
directory app/controllers are in Ruby modules named after the subdirectory.
Thus, the book controller in the admin subdirectory would be declared like
this:

 class Admin::BookController < ActionController::Base
 # ...
 end

The book controller in the content subdirectory would be in the Content

module:

 class Content::BookController < ActionController::Base
 # ...
 end

The two controllers are therefore kept separate inside your application.

The templates for these controllers appear in subdirectories of app/views.
Thus, the following is the view template corresponding to this request:

 http://my.app/admin/book/edit/1234

And it will be in this file:

 app/views/admin/book/edit.html.erb

You’ll be pleased to know that the controller generator understands the
concept of controllers in modules and lets you create them with commands
such as this:

 myapp> bin/rails generate controller Admin::Book action1 action2 ...

What We Just Did
Everything in Rails has a place, and we systematically explored each of
those nooks and crannies. In each place, files and the data contained in them
follow naming conventions, and we covered that too. Along the way, we
filled in a few missing pieces:

We added a Rake task to print the migrated versions.
We showed how to configure each of the Rails execution
environments.

Next up are the major subsystems of Rails, starting with the largest, Active
Record.

[95]

[96]

[97]

Footnotes

http://guides.rubyonrails.org/rails_on_rack.html

https://github.com/bundler/bundler

http://guides.rubyonrails.org/configuring.html

Copyright © 2023, The Pragmatic Bookshelf.

http://guides.rubyonrails.org/rails_on_rack.html
https://github.com/bundler/bundler
http://guides.rubyonrails.org/configuring.html

We cover:
The establish_connection method
Tables, classes, columns, and
attributes
IDs and relationships
Create, read, update, and delete
operations
Callbacks and transactions

Chapter 20

Active Record

Active Record is the object-relational mapping (ORM) layer supplied with
Rails. It’s the part of Rails that implements your application’s model.

In this chapter, we’ll build on the mapping data to rows and columns that
we did in Depot. Then we’ll look at using Active Record to manage table
relationships and in the process cover create, read, update, and delete
operations (commonly referred to in the industry as CRUD methods).
Finally, we’ll dig into the Active Record object life cycle (including
callbacks and transactions).

Defining Your Data
In Depot, we defined a number of models, including one for an Order. This
particular model has a number of attributes, such as an email address of type
String. In addition to the attributes that we defined, Rails provided an
attribute named id that contains the primary key for the record. Rails also
provides several additional attributes, including attributes that track when
each row was last updated. Finally, Rails supports relationships between
models, such as the relationship between orders and line items.

When you think about it, Rails provides a lot of support for models. Let’s
examine each in turn.

Organizing Using Tables and Columns
Each subclass of ApplicationRecord, such as our Order class, wraps a separate
database table. By default, Active Record assumes that the name of the table
associated with a given class is the plural form of the name of that class. If
the class name contains multiple capitalized words, the table name is
assumed to have underscores between these words, as shown in the table.

Classname Table Name
Order orders
TaxAgency tax_agencies
Batch batches
Diagnosis diagnoses
LineItem line_items
Person people
Datum data
Quantity quantities

These rules reflect Rails’ philosophy that class names should be singular
while the names of tables should be plural.

Although Rails handles most irregular plurals correctly, occasionally you
may stumble across one that’s incorrect. If you encounter such a case, you
can add to Rails’ understanding of the idiosyncrasies and inconsistencies of
the English language by modifying the inflection file provided:

rails7/depot_u/config/initializers/inflections.rb

 # Be sure to restart your server when you modify this file.

 # Add new inflection rules using the following format. Inflections
 # are locale specific, and you may define rules for as many different
 # locales as you wish. All of these examples are active by default:
 # ActiveSupport::Inflector.inflections(:en) do |inflect|
 # inflect.plural /^(ox)$/i, "\\1en"
 # inflect.singular /^(ox)en/i, "\\1"
 # inflect.irregular "person", "people"
 # inflect.uncountable %w(fish sheep)
 # end

 # These inflection rules are supported but not enabled by default:
 # ActiveSupport::Inflector.inflections(:en) do |inflect|
 # inflect.acronym "RESTful"
 # end

 ActiveSupport::Inflector. inflections do |inflect|
 inflect. irregular 'tax' , 'taxes'
 end

If you have legacy tables you have to deal with or don’t like this behavior,
you can control the table name associated with a given model by setting the
table_name for a given class:

 class Sheep < ApplicationRecord
 self. table_name = "sheep"
 end

David says:

http://media.pragprog.com/titles/rails7/code/rails7/depot_u/config/initializers/inflections.rb

Where Are Our Attributes?

The notion of a database administrator (DBA) as a separate role from programmer
has led some developers to see strict boundaries between code and schema. Active

Record blurs that distinction, and no other place is that more apparent than in the lack of explicit
attribute definitions in the model.

But fear not. Practice has shown that it makes little difference whether we’re looking at a
database schema, a separate XML mapping file, or inline attributes in the model. The composite
view is similar to the separations already happening in the model-view-controller pattern—just
on a smaller scale.

Once the discomfort of treating the table schema as part of the model definition has dissipated,
you’ll start to realize the benefits of keeping DRY. When you need to add an attribute to the
model, you simply have to create a new migration and reload the application.

Taking the “build” step out of schema evolution makes it just as agile as the rest of the code. It
becomes much easier to start with a small schema and extend and change it as needed.

Instances of Active Record classes correspond to rows in a database table.
These objects have attributes corresponding to the columns in the table. You
probably noticed that our definition of class Order didn’t mention any of the
columns in the orders table. That’s because Active Record determines them
dynamically at runtime. Active Record reflects on the schema inside the
database to configure the classes that wrap tables.

In the Depot application, our orders table is defined by the following
migration:

rails7/depot_r/db/migrate/20221207000007_create_orders.rb

 class CreateOrders < ActiveRecord::Migration[7.0]
 def change
 create_table :orders do |t|
 t. string :name
 t. text :address
 t. string :email
 t. integer :pay_type

 t. timestamps

http://media.pragprog.com/titles/rails7/code/rails7/depot_r/db/migrate/20221207000007_create_orders.rb

 end
 end
 end

Let’s use the handy-dandy bin/rails console command to play with this model.
First, we’ll ask for a list of column names:

 depot> bin/rails console
 Loading development environment (Rails 7.0.4)
 3.1.3 :001 > Order.column_names
 => ["id", "name", "address", "email", "pay_type", "created_at", "updated_at"]

Then we’ll ask for the details of the pay_type column:

 >> Order.columns_hash["pay_type"]
 =>
 #<ActiveRecord::ConnectionAdapters::Column:0x00000001094cc200
 @collation=nil,
 @comment=nil,
 @default=nil,
 @default_function=nil,
 @name="pay_type",
 @null=true,
 @sql_type_metadata=
 #<ActiveRecord::ConnectionAdapters::SqlTypeMetadata:0x00000001094dc178
 @limit=nil,
 @precision=nil,
 @scale=nil,
 @sql_type="integer",
 @type=:integer>>

Notice that Active Record has gleaned a fair amount of information about
the pay_type column. It knows that it’s an integer, it has no default value, it
isn’t the primary key, and it may contain a null value. Rails obtained this
information by asking the underlying database the first time we tried to use
the Order class.

The attributes of an Active Record instance generally correspond to the data
in the corresponding row of the database table. For example, our orders table
might contain the following data:

 depot> sqlite3 -line db/development.sqlite3 "select * from orders limit 1"
 id = 1
 name = Dave Thomas
 address = 123 Main St
 email = customer@example.com
 pay_type = 0
 created_at = 2022-02-14 14:39:12.375458
 updated_at = 2022-02-14 14:39:12.375458

If we fetched this row into an Active Record object, that object would have
seven attributes. The id attribute would be 1 (an Integer), the name attribute
would be the string "Dave Thomas", and so on.

We access these attributes using accessor methods. Rails automatically
constructs both attribute readers and attribute writers when it reflects on the
schema:

 o = Order. find (1)
 puts o. name #=> "Dave Thomas"
 o. name = "Fred Smith" # set the name

Setting the value of an attribute doesn’t change anything in the database—
we must save the object for this change to become permanent.

The value returned by the attribute readers is cast by Active Record to an
appropriate Ruby type if possible (so, for example, if the database column is
a timestamp, a Time object will be returned). If we want to get the raw value
of an attribute, we append _before_type_cast to its name, as shown in the
following code:

 Order. first . pay_type #=> "Check", a string
 Order. first . pay_type_before_type_cast #=> 0, an integer

Inside the code of the model, we can use the read_attribute and write_attribute

private methods. These take the attribute name as a string parameter.

We can see the mapping between SQL types and their Ruby representation
in the following table. Decimal and Boolean columns are slightly tricky.

SQL Type Ruby Class
int, integer Integer
float, double Float
decimal, numeric BigDecimal
char, varchar, string String
interval, date Date
datetime, time Time
clob, blob, text String
boolean See text

Rails maps columns with Decimals with no decimal places to Integer objects;
otherwise, it maps them to BigDecimal objects, ensuring that no precision is
lost.

In the case of Boolean, a convenience method is provided with a question
mark appended to the column name:

 user = User. find_by (name: "Dave")
 if user. superuser?
 grant_privileges
 end

In addition to the attributes we define, there are a number of attributes that
either Rails provides automatically or have special meaning.

Additional Columns Provided by Active Record
A number of column names have special significance to Active Record.
Here’s a summary:

created_at, created_on, updated_at, updated_on

These are automatically updated with the timestamp of a row’s creation
or last update. Make sure the underlying database column is capable of
receiving a date, datetime, or string. Rails applications conventionally

use the _on suffix for date columns and the _at suffix for columns that
include a time.

id

This is the default name of a table’s primary key column (in Identifying
Individual Rows).

xxx_id

This is the default name of a foreign key reference to a table named
with the plural form of xxx.

xxx_count

This maintains a counter cache for the child table xxx.

Additional plugins, such as acts_as_list,[98] may define additional columns.

Both primary keys and foreign keys play a vital role in database operations
and merit additional discussion.

Locating and Traversing Records
In the Depot application, LineItems have direct relationships to three other
models: Cart, Order, and Product. Additionally, models can have indirect
relationships mediated by resource objects. The relationship between Orders

and Products through LineItems is an example of such a relationship.

All of this is made possible through IDs.

Identifying Individual Rows
Active Record classes correspond to tables in a database. Instances of a class
correspond to the individual rows in a database table. Calling Order.find(1), for
instance, returns an instance of an Order class containing the data in the row
with the primary key of 1.

If you’re creating a new schema for a Rails application, you’ll probably want
to go with the flow and let it add the id primary key column to all your
tables. But if you need to work with an existing schema, Active Record
gives you a way of overriding the default name of the primary key for a
table.

For example, we may be working with an existing legacy schema that uses
the ISBN as the primary key for the books table.

We specify this in our Active Record model using something like the
following:

 class LegacyBook < ApplicationRecord
 self. primary_key = "isbn"
 end

Normally, Active Record takes care of creating new primary key values for
records that we create and add to the database—they’ll be ascending integers

(possibly with some gaps in the sequence). However, if we override the
primary key column’s name, we also take on the responsibility of setting the
primary key to a unique value before we save a new row. Perhaps
surprisingly, we still set an attribute called id to do this. As far as Active
Record is concerned, the primary key attribute is always set using an
attribute called id. The primary_key= declaration sets the name of the column to
use in the table. In the following code, we use an attribute called id even
though the primary key in the database is isbn:

 book = LegacyBook. new
 book. id = "0-12345-6789"
 book. title = "My Great American Novel"
 book. save
 # ...
 book = LegacyBook. find ("0-12345-6789")
 puts book. title # => "My Great American Novel"
 p book. attributes #=> {"isbn" =>"0-12345-6789",
 # "title"=>"My Great American Novel"}

Just to make life more confusing, the attributes of the model object have the
column names isbn and title—id doesn’t appear. When you need to set the
primary key, use id. At all other times, use the actual column name.

Model objects also redefine the Ruby id and hash methods to reference the
model’s primary key. This means that model objects with valid IDs may be
used as hash keys. It also means that unsaved model objects can’t reliably be
used as hash keys (because they won’t yet have a valid ID).

One final note: Rails considers two model objects as equal (using ==) if they
are instances of the same class and have the same primary key. This means
that unsaved model objects may compare as equal even if they have different
attribute data. If you find yourself comparing unsaved model objects (which
is not a particularly frequent operation), you might need to override the ==

method.

As we’ll see, IDs also play an important role in relationships.

Specifying Relationships in Models
Active Record supports three types of relationship between tables: one-to-
one, one-to-many, and many-to-many. You indicate these relationships by
adding declarations to your models: has_one, has_many, belongs_to, and the
wonderfully named has_and_belongs_to_many.

One-to-One Relationships
A one-to-one association (or, more accurately, a one-to-zero-or-one
relationship) is implemented using a foreign key in one row in one table to
reference at most a single row in another table. A one-to-one relationship
might exist between orders and invoices: for each order there’s at most one
invoice.

As the example shows, we declare this in Rails by adding a has_one

declaration to the Order model and by adding a belongs_to declaration to the
Invoice model.

An important rule is illustrated here: the model for the table that contains the
foreign key always has the belongs_to declaration.

One-to-Many Relationships
A one-to-many association allows you to represent a collection of objects.
For example, an order might have any number of associated line items. In
the database, all the line item rows for a particular order contain a foreign
key column referring to that order, as shown in the figure.

In Active Record, the parent object (the one that logically contains a
collection of child objects) uses has_many to declare its relationship to the
child table, and the child table uses belongs_to to indicate its parent. In our
example, class LineItem belongs_to :order, and the orders table has_many :line_items.

Note that, again, because the line item contains the foreign key, it has the
belongs_to declaration.

Many-to-Many Relationships
Finally, we might categorize our products. A product can belong to many
categories, and each category may contain multiple products. This is an
example of a many-to-many relationship. It’s as if each side of the
relationship contains a collection of items on the other side.

In Rails we can express this by adding the has_and_belongs_to_many declaration
to both models.

Many-to-many associations are symmetrical—both of the joined tables
declare their association with each other using “habtm.”

Rails implements many-to-many associations using an intermediate join
table. This contains foreign key pairs linking the two target tables. Active
Record assumes that this join table’s name is the concatenation of the two
target table names in alphabetical order. In our example, we joined the table
categories to the table products, so Active Record will look for a join table named
categories_products.

We can also define join tables directly. In the Depot application, we defined
a LineItems join, which joined Products to either Carts or Orders. Defining it
ourselves also gave us a place to store an additional attribute, namely, a
quantity.

Now that we’ve covered data definitions, the next thing you would naturally
want to do is access the data contained within the database, so let’s do that.

Creating, Reading, Updating, and Deleting
(CRUD)
Names such as SQLite and MySQL emphasize that all access to a database
is via the Structured Query Language (SQL). In most cases, Rails will take
care of this for you, but that’s completely up to you. As you’ll see, you can
provide clauses or even entire SQL statements for the database to execute.

If you’re familiar with SQL already, as you read this section take note of
how Rails provides places for familiar clauses such as select, from, where, group

by, and so on. If you’re not already familiar with SQL, one of the strengths
of Rails is that you can defer knowing more about such things until you
actually need to access the database at this level.

In this section, we’ll continue to work with the Order model from the Depot
application for an example. We’ll be using Active Record methods to apply
the four basic database operations: create, read, update, and delete.

Creating New Rows
Given that Rails represents tables as classes and rows as objects, it follows
that we create rows in a table by creating new objects of the appropriate
class. We can create new objects representing rows in our orders table by
calling Order.new. We can then fill in the values of the attributes
(corresponding to columns in the database). Finally, we call the object’s save

method to store the order back into the database. Without this call, the order
would exist only in our local memory.

rails7/e1/ar/new_examples.rb

 an_order = Order. new
 an_order. name = "Dave Thomas"
 an_order. email = "dave@example.com"
 an_order. address = "123 Main St"

http://media.pragprog.com/titles/rails7/code/rails7/e1/ar/new_examples.rb

 an_order. pay_type = "check"
 an_order. save

Active Record constructors take an optional block. If present, the block is
invoked with the newly created order as a parameter. This might be useful if
you wanted to create and save an order without creating a new local
variable.

rails7/e1/ar/new_examples.rb

 Order. new do |o|
 o. name = "Dave Thomas"
 # . . .
 o. save
 end

Finally, Active Record constructors accept a hash of attribute values as an
optional parameter. Each entry in this hash corresponds to the name and
value of an attribute to be set. This is useful for doing things like storing
values from HTML forms into database rows.

rails7/e1/ar/new_examples.rb

 an_order = Order. new (
 name: "Dave Thomas" ,
 email: "dave@example.com" ,
 address: "123 Main St" ,
 pay_type: "check")
 an_order. save

Note that in all of these examples we didn’t set the id attribute of the new
row. Because we used the Active Record default of an integer column for
the primary key, Active Record automatically creates a unique value and
sets the id attribute as the row is saved. We can subsequently find this value
by querying the attribute:

rails7/e1/ar/new_examples.rb

 an_order = Order. new

http://media.pragprog.com/titles/rails7/code/rails7/e1/ar/new_examples.rb
http://media.pragprog.com/titles/rails7/code/rails7/e1/ar/new_examples.rb
http://media.pragprog.com/titles/rails7/code/rails7/e1/ar/new_examples.rb

 an_order. name = "Dave Thomas"
 # ...
 an_order. save
 puts "The ID of this order is #{ an_order. id}"

The new constructor creates a new Order object in memory; we have to
remember to save it to the database at some point. Active Record has a
convenience method, create, that both instantiates the model object and stores
it into the database:

rails7/e1/ar/new_examples.rb

 an_order = Order. create (
 name: "Dave Thomas" ,
 email: "dave@example.com" ,
 address: "123 Main St" ,
 pay_type: "check")

You can pass create an array of attribute hashes; it’ll create multiple rows in
the database and return an array of the corresponding model objects:

rails7/e1/ar/new_examples.rb

 orders = Order. create (
 [{ name: "Dave Thomas" ,
 email: "dave@example.com" ,
 address: "123 Main St" ,
 pay_type: "check"
 },
 { name: "Andy Hunt" ,
 email: "andy@example.com" ,
 address: "456 Gentle Drive" ,
 pay_type: "po"
 }])

The real reason that new and create take a hash of values is that you can
construct model objects directly from form parameters:

 @order = Order. new (order_params)

http://media.pragprog.com/titles/rails7/code/rails7/e1/ar/new_examples.rb
http://media.pragprog.com/titles/rails7/code/rails7/e1/ar/new_examples.rb

If you think this line looks familiar, it’s because you’ve seen it before. It
appears in orders_controller.rb in the Depot application.

Reading Existing Rows
Reading from a database involves first specifying which particular rows of
data you’re interested in—you’ll give Active Record some kind of criteria,
and it will return objects containing data from the row(s) matching the
criteria.

The most direct way of finding a row in a table is by specifying its primary
key. Every model class supports the find method, which takes one or more
primary key values. If given just one primary key, it returns an object
containing data for the corresponding row (or throws an
ActiveRecord::RecordNotFound exception). If given multiple primary key values,
find returns an array of the corresponding objects. Note that in this case a
RecordNotFound exception is raised if any of the IDs can’t be found (so if the
method returns without raising an error, the length of the resulting array will
be equal to the number of IDs passed as parameters).

 an_order = Order. find (27) # find the order with id == 27

 # Get a list of product ids from a form, then
 # find the associated Products
 product_list = Product. find (params[:product_ids])

David says:

To Raise or Not to Raise?

When you use a finder driven by primary keys, you’re looking for a particular
record. You expect it to exist. A call to Person.find(5) is based on our knowledge of the people
table. We want the row with an ID of 5. If this call is unsuccessful—if the record with the ID of
5 has been destroyed—we’re in an exceptional situation. This mandates the raising of an
exception, so Rails raises RecordNotFound.

On the other hand, finders that use criteria to search are looking for a match. So,
Person.where(name: ’Dave’).first is the equivalent of telling the database (as a black box) “Give
me the first person row that has the name Dave.” This exhibits a distinctly different approach to

retrieval; we’re not certain up front that we’ll get a result. It’s entirely possible the result set may
be empty. Thus, returning nil in the case of finders that search for one row and an empty array
for finders that search for many rows is the natural, nonexceptional response.

Often, though, you need to read in rows based on criteria other than their
primary key value. Active Record provides additional methods enabling you
to express more complex queries.

SQL and Active Record
To illustrate how Active Record works with SQL, pass a string to the where

method call corresponding to a SQL where clause. For example, to return a
list of all orders for Dave with a payment type of “po,” we could use this:

 pos = Order. where ("name = 'Dave' and pay_type = 'po'")

The result will be an ActiveRecord::Relation object containing all the matching
rows, each neatly wrapped in an Order object.

That’s fine if our condition is predefined, but how do we handle it when the
name of the customer is set externally (perhaps coming from a web form)?
One way is to substitute the value of that variable into the condition string:

 # get the name from the form
 name = params[:name]
 # DON'T DO THIS!!!
 pos = Order. where ("name = '#{ name }' and pay_type = 'po'")

As the comment suggests, this isn’t a good idea. Why? It leaves the database
wide open to something called a SQL injection attack, which the Ruby on
Rails Guides[99] describe in more detail. For now, take it as a given that
substituting a string from an external source into a SQL statement is
effectively the same as publishing your entire database to the whole online
world.

Instead, the safe way to generate dynamic SQL is to let Active Record
handle it. Doing this allows Active Record to create properly escaped SQL,

which is immune from SQL injection attacks. Let’s see how this works.

If we pass multiple parameters to a where call, Rails treats the first parameter
as a template for the SQL to generate. Within this SQL, we can embed
placeholders, which will be replaced at runtime by the values in the rest of
the array.

One way of specifying placeholders is to insert one or more question marks
in the SQL. The first question mark is replaced by the second element of the
array, the next question mark by the third, and so on. For example, we could
rewrite the previous query as this:

 name = params[:name]
 pos = Order. where (["name = ? and pay_type = 'po'" , name])

We can also use named placeholders. We do that by placing placeholders of
the form :name into the string and by providing corresponding values in a
hash, where the keys correspond to the names in the query:

 name = params[:name]
 pay_type = params[:pay_type]
 pos = Order. where ("name = :name and pay_type = :pay_type" ,
 pay_type: pay_type, name: name)

We can take this a step further. Because params is effectively a hash, we can
simply pass it all to the condition. If we have a form that can be used to
enter search criteria, we can use the hash of values returned from that form
directly:

 pos = Order. where ("name = :name and pay_type = :pay_type" ,
 params[:order])

We can take this even further. If we pass just a hash as the condition, Rails
generates a where clause using the hash keys as column names and the hash
values as the values to match. Thus, we could have written the previous
code even more succinctly:

 pos = Order. where (params[:order])

Be careful with this latter form of condition: it takes all the key-value pairs
in the hash you pass in when constructing the condition. An alternative
would be to specify which parameters to use explicitly:

 pos = Order. where (name: params[:name],
 pay_type: params[:pay_type])

Regardless of which form of placeholder you use, Active Record takes great
care to quote and escape the values being substituted into the SQL. Use
these forms of dynamic SQL, and Active Record will keep you safe from
injection attacks.

Using Like Clauses
We might be tempted to use parameterized like clauses in conditions:

 # Doesn't work
 User. where ("name like '?%'" , params[:name])

Rails doesn’t parse the SQL inside a condition and so doesn’t know that the
name is being substituted into a string. As a result, it will go ahead and add
extra quotes around the value of the name parameter. The correct way to do
this is to construct the full parameter to the like clause and pass that
parameter into the condition:

 # Works
 User. where ("name like ?" , params[:name]+ "%")

Of course, if we do this, we need to consider that characters such as percent
signs, should they happen to appear in the value of the name parameter, will
be treated as wildcards.

Subsetting the Records Returned
Now that we know how to specify conditions, let’s turn our attention to the
various methods supported by ActiveRecord::Relation, starting with first and all.

As you may have guessed, first returns the first row in the relation. It returns
nil if the relation is empty. Similarly, to_a returns all the rows as an array.
ActiveRecord::Relation also supports many of the methods of Array objects, such
as each and map. It does so by implicitly calling the all first.

It’s important to understand that the query isn’t evaluated until one of these
methods is used. This enables us to modify the query in a number of ways,
namely, by calling additional methods, prior to making this call. Let’s look
at these methods now.

order

SQL doesn’t require rows to be returned in any particular order unless we
explicitly add an order by clause to the query. The order method lets us specify
the criteria we’d normally add after the order by keywords. For example, the
following query would return all of Dave’s orders, sorted first by payment
type and then by shipping date (the latter in descending order):

 orders = Order. where (name: 'Dave').
 order ("pay_type, shipped_at DESC")

limit

We can limit the number of rows returned by calling the limit method.
Generally when we use the limit method, we’ll probably also want to
specify the sort order to ensure consistent results. For example, the
following returns the first ten matching orders:

 orders = Order. where (name: 'Dave').
 order ("pay_type, shipped_at DESC").
 limit (10)

offset

The offset method goes hand in hand with the limit method. It allows us to
specify the offset of the first row in the result set that will be returned:

 # The view wants to display orders grouped into pages,
 # where each page shows page_size orders at a time.
 # This method returns the orders on page page_num (starting
 # at zero).
 def Order. find_on_page (page_num, page_size)
 order(:id). limit (page_size). offset (page_num*page_size)
 end

We can use offset in conjunction with limit to step through the results of a
query n rows at a time.

select

By default, ActiveRecord::Relation fetches all the columns from the underlying
database table—it issues a select * from... to the database. Override this with the
select method, which takes a string that will appear in place of the * in the
select statement.

This method allows us to limit the values returned in cases where we need
only a subset of the data in a table. For example, our table of podcasts might
contain information on the title, speaker, and date and might also contain a
large BLOB containing the MP3 of the talk. If you just wanted to create a
list of talks, it would be inefficient to also load the sound data for each row.
The select method lets us choose which columns to load:

 list = Talk. select ("title, speaker, recorded_on")

joins

The joins method lets us specify a list of additional tables to be joined to the
default table. This parameter is inserted into the SQL immediately after the
name of the model’s table and before any conditions specified by the first
parameter. The join syntax is database-specific. The following code returns a
list of all line items for the book called Programming Ruby:

 LineItem. select ('li.quantity').
 where ("pr.title = 'Programming Ruby 1.9'").

 joins ("as li inner join products as pr on li.product_id = pr.id")

readonly

The readonly method causes ActiveRecord::Resource to return Active Record
objects that cannot be stored back into the database.

If we use the joins or select method, objects will automatically be marked
readonly.

group

The group method adds a group by clause to the SQL:

 summary = LineItem. select ("sku, sum(amount) as amount").
 group ("sku")

lock

The lock method takes an optional string as a parameter. If we pass it a string,
it should be a SQL fragment in our database’s syntax that specifies a kind of
lock. With MySQL, for example, a share mode lock gives us the latest data
in a row and guarantees that no one else can alter that row while we hold the
lock. We could write code that debits an account only if there are sufficient
funds using something like the following:

 Account. transaction do
 ac = Account. where (id: id). lock ("LOCK IN SHARE MODE"). first
 ac. balance -= amount if ac. balance > amount
 ac. save
 end

If we don’t specify a string value or we give lock a value of true, the
database’s default exclusive lock is obtained (normally this will be "for

update"). We can often eliminate the need for this kind of locking using
transactions (discussed starting in Transactions).

Databases do more than simply find and reliably retrieve data; they also do a
bit of data reduction analysis. Rails provides access to these methods too.

Getting Column Statistics
Rails has the ability to perform statistics on the values in a column. For
example, given a table of products, we can calculate the following:

 average = Product. average (:price) # average product price
 max = Product. maximum (:price)
 min = Product. minimum (:price)
 total = Product. sum (:price)
 number = Product. count

These all correspond to aggregate functions in the underlying database, but
they work in a database-independent manner.

As before, methods can be combined:

 Order. where ("amount > 20"). minimum (:amount)

These functions aggregate values. By default, they return a single result,
producing, for example, the minimum order amount for orders meeting
some condition. However, if you include the group method, the functions
instead produce a series of results, one result for each set of records where
the grouping expression has the same value. For example, the following
calculates the maximum sale amount for each state:

 result = Order. group (:state). maximum (:amount)
 puts result #=> {"TX"=>12345, "NC"=>3456, ...}

This code returns an ordered hash. You index it using the grouping element
("TX", "NC", … in our example). You can also iterate over the entries in order
using each. The value of each entry is the value of the aggregation function.

The order and limit methods come into their own when using groups.

For example, the following returns the three states with the highest orders,
sorted by the order amount:

 result = Order. group (:state).
 order ("max(amount) desc").
 limit (3)

This code is no longer database independent—to sort on the aggregated
column, we had to use the SQLite syntax for the aggregation function (max,
in this case).

Scopes
As these chains of method calls grow longer, making the chains themselves
available for reuse becomes a concern. Once again, Rails delivers. An
Active Record scope can be associated with a Proc and therefore may have
arguments:

 class Order < ApplicationRecord
 scope :last_n_days , ->(days) { where('updated < ?' , days) }
 end

Such a named scope would make finding the worth of last week’s orders a
snap.

 orders = Order. last_n_days (7)

Simpler scopes may have no parameters at all:

 class Order < ApplicationRecord
 scope :checks , -> { where(pay_type: :check) }
 end

Scopes can also be combined. Finding the last week’s worth of orders that
were paid by check is just as straightforward:

 orders = Order. checks . last_n_days (7)

In addition to making your application code easier to write and easier to
read, scopes can make your code more efficient. The previous statement, for

example, is implemented as a single SQL query.

ActiveRecord::Relation objects are equivalent to an anonymous scope:

 in_house = Order. where ('email LIKE "%@pragprog.com"')

Of course, relations can also be combined:

 in_house. checks . last_n_days (7)

Scopes aren’t limited to where conditions; we can do pretty much anything
we can do in a method call: limit, order, join, and so on. Just be aware that Rails
doesn’t know how to handle multiple order or limit clauses, so be sure to use
these only once per call chain.

In nearly every case, the methods we’ve been describing are sufficient. But
Rails isn’t satisfied with only being able to handle nearly every case, so for
cases that require a human-crafted query, there’s an API for that too.

Writing Our Own SQL
Each of the methods we’ve been looking at contributes to the construction of
a full SQL query string. The method find_by_sql lets our application take full
control. It accepts a single parameter containing a SQL select statement (or an
array containing SQL and placeholder values, as for find) and returns an
array of model objects (that is potentially empty) from the result set. The
attributes in these models will be set from the columns returned by the
query. We’d normally use the select * form to return all columns for a table,
but this isn’t required:

rails7/e1/ar/find_examples.rb

 orders = LineItem. find_by_sql ("select line_items.* from line_items, orders " +
 " where order_id = orders.id " +
 " and orders.name = 'Dave Thomas' ")

http://media.pragprog.com/titles/rails7/code/rails7/e1/ar/find_examples.rb

Only those attributes returned by a query will be available in the resulting
model objects. We can determine the attributes available in a model object
using the attributes, attribute_names, and attribute_present? methods. The first returns
a hash of attribute name-value pairs, the second returns an array of names,
and the third returns true if a named attribute is available in this model object:

rails7/e1/ar/find_examples.rb

 orders = Order. find_by_sql ("select name, pay_type from orders")
 first = orders[0]
 p first. attributes
 p first. attribute_names
 p first. attribute_present? ("address")

This code produces the following:

 {"name"=>"Dave Thomas", "pay_type"=>"check"}
 ["name", "pay_type"]
 false

find_by_sql can also be used to create model objects containing derived
column data. If we use the as xxx SQL syntax to give derived columns a name
in the result set, this name will be used as the name of the attribute:

rails7/e1/ar/find_examples.rb

 items = LineItem. find_by_sql ("select *, " +
 " products.price as unit_price, " +
 " quantity*products.price as total_price, " +
 " products.title as title " +
 " from line_items, products " +
 " where line_items.product_id = products.id ")
 li = items[0]
 puts "#{ li. title}: #{ li. quantity}x#{ li. unit_price} => #{ li. total_price}"

As with conditions, we can also pass an array to find_by_sql, where the first
element is a string containing placeholders. The rest of the array can be
either a hash or a list of values to be substituted.

http://media.pragprog.com/titles/rails7/code/rails7/e1/ar/find_examples.rb
http://media.pragprog.com/titles/rails7/code/rails7/e1/ar/find_examples.rb

 Order. find_by_sql (["select * from orders where amount > ?" ,
 params[:amount]])

David says:

But Isn’t SQL Dirty?

Ever since developers first wrapped relational databases with an object-oriented
layer, they’ve debated the question of how deep to run the abstraction. Some object-relational
mappers seek to eliminate the use of SQL entirely, hoping for object-oriented purity by forcing
all queries through an OO layer.

Active Record does not. It was built on the notion that SQL is neither dirty nor bad, just verbose
in the trivial cases. The focus is on removing the need to deal with the verbosity in those trivial
cases (writing a ten-attribute insert by hand will leave any programmer tired) but keeping the
expressiveness around for the hard queries—the type SQL was created to deal with elegantly.

Therefore, you shouldn’t feel guilty when you use find_by_sql to handle either performance
bottlenecks or hard queries. Start out using the object-oriented interface for productivity and
pleasure and then dip beneath the surface for a close-to-the-metal experience when you need to
do so.

In the old days of Rails, people frequently resorted to using find_by_sql. Since
then, all the options added to the basic find method mean you can avoid
resorting to this low-level method.

Reloading Data
In an application where the database is potentially being accessed by
multiple processes (or by multiple applications), there’s always the
possibility that a fetched model object has become stale—someone may
have written a more recent copy to the database.

To some extent, this issue is addressed by transactional support (which we
describe in Transactions). However, there’ll still be times where you need to
refresh a model object manually. Active Record makes this possible with
one line of code—call its reload method, and the object’s attributes will be
refreshed from the database:

 stock = Market. find_by (ticker: "RUBY")
 loop do
 puts "Price = #{ stock. price}"
 sleep 60
 stock. reload
 end

In practice, reload is rarely used outside the context of unit tests.

Updating Existing Rows
After such a long discussion of finder methods, you’ll be pleased to know
that there’s not much to say about updating records with Active Record.

If you have an Active Record object (perhaps representing a row from our
orders table), you can write it to the database by calling its save method. If this
object had previously been read from the database, this save will update the
existing row; otherwise, the save will insert a new row.

If an existing row is updated, Active Record will use its primary key column
to match it with the in-memory object. The attributes contained in the Active
Record object determine the columns that will be updated—a column will
be updated in the database only if its value has been changed. In the
following example, all the values in the row for order 123 can be updated in
the database table:

 order = Order. find (123)
 order. name = "Fred"
 order. save

However, in the following example, the Active Record object contains just
the attributes id, name, and paytype—only these columns can be updated when
the object is saved. (Note that you have to include the id column if you
intend to save a row fetched using find_by_sql.)

 orders = Order. find_by_sql ("select id, name, pay_type from orders where id=123")
 first = orders[0]
 first. name = "Wilma"

 first. save

In addition to the save method, Active Record lets us change the values of
attributes and save a model object in a single call to update:

 order = Order. find (321)
 order. update (name: "Barney" , email: "barney@bedrock.com")

The update method is most commonly used in controller actions where it
merges data from a form into an existing database row:

 def save_after_edit
 order = Order. find (params[:id])
 if order. update (order_params)
 redirect_to action: :index
 else
 render action: :edit
 end
 end

We can combine the functions of reading a row and updating it using the
class methods update and update_all. The update method takes an id parameter and
a set of attributes. It fetches the corresponding row, updates the given
attributes, saves the result to the database, and returns the model object.

 order = Order. update (12, name: "Barney" , email: "barney@bedrock.com")

We can pass update an array of IDs and an array of attribute value hashes, and
it will update all the corresponding rows in the database, returning an array
of model objects.

Finally, the update_all class method allows us to specify the set and where

clauses of the SQL update statement. For example, the following increases the
prices of all products with Java in their title by 10 percent:

 result = Product. update_all ("price = 1.1*price" , "title like '%Java%'")

The return value of update_all depends on the database adapter; most (but not
Oracle) return the number of rows that were changed in the database.

save, save!, create, and create!
It turns out that there are two versions of the save and create methods. The
variants differ in the way they report errors.

save returns true if the record was saved; it returns nil otherwise.

save! returns true if the save succeeded; it raises an exception otherwise.

create returns the Active Record object regardless of whether it was
successfully saved. You’ll need to check the object for validation errors
if you want to determine whether the data was written.

create! returns the Active Record object on success; it raises an exception
otherwise.

Let’s look at this in a bit more detail.

Plain old save returns true if the model object is valid and can be saved:

 if order. save
 # all OK
 else
 # validation failed
 end

It’s up to us to check on each call to save to see that it did what we expected.
The reason Active Record is so lenient is that it assumes save is called in the
context of a controller’s action method and the view code will be presenting
any errors back to the end user. And for many applications, that’s the case.

But if we need to save a model object in a context where we want to make
sure to handle all errors programmatically, we should use save!. This method
raises a RecordInvalid exception if the object could not be saved:

 begin
 order. save!

 rescue RecordInvalid => error
 # validation failed
 end

Deleting Rows
Active Record supports two styles of row deletion. First, it has two class-
level methods, delete and delete_all, that operate at the database level. The delete

method takes a single ID or an array of IDs and deletes the corresponding
row(s) in the underlying table. delete_all deletes rows matching a given
condition (or all rows if no condition is specified). The return values from
both calls depend on the adapter but are typically the number of rows
affected. An exception is not thrown if the row doesn’t exist prior to the call.

 Order. delete (123)
 User. delete ([2,3,4,5])
 Product. delete_all (["price > ?" , @expensive_price])

The various destroy methods are the second form of row deletion provided by
Active Record. These methods all work via Active Record model objects.

The destroy instance method deletes from the database the row corresponding
to a particular model object. It then freezes the contents of that object,
preventing future changes to the attributes.

 order = Order. find_by (name: "Dave")
 order. destroy
 # ... order is now frozen

There are two class-level destruction methods: destroy (which takes an ID or
an array of IDs) and destroy_all (which takes a condition). Both methods read
the corresponding rows in the database table into model objects and call the
instance-level destroy method of those objects. Neither method returns
anything meaningful.

 Order. destroy_all (["shipped_at < ?" , 30. days . ago])

Why do we need both the delete and destroy class methods? The delete methods
bypass the various Active Record callback and validation functions, while
the destroy methods ensure that they’re all invoked. In general, it’s better to
use the destroy methods if you want to ensure that your database is consistent
according to the business rules defined in your model classes.

We covered validation in Chapter 7, Task B: Validation and Unit Testing. We
cover callbacks next.

Participating in the Monitoring Process
Active Record controls the life cycle of model objects—it creates them,
monitors them as they’re modified, saves and updates them, and watches
sadly as they’re destroyed. Using callbacks, Active Record lets our code
participate in this monitoring process. We can write code that gets invoked
at any significant event in the life of an object. With these callbacks we can
perform complex validation, map column values as they pass in and out of
the database, and even prevent certain operations from completing.

Active Record defines sixteen callbacks. Fourteen of these form before-after
pairs and bracket some operation on an Active Record object. For example,
the before_destroy callback will be invoked just before the destroy method is
called, and after_destroy will be invoked after. The two exceptions are after_find

and after_initialize, which have no corresponding before_xxx callback. (These
two callbacks are different in other ways too, as we’ll see later.)

In the following figure we can see how Rails wraps the sixteen paired
callbacks around the basic create, update, and destroy operations on model
objects. Perhaps surprisingly, the before and after validation calls are not
strictly nested.

The before_validation and after_validation calls also accept the on: :create or on: :update

parameter, which will cause the callback to be called only on the selected
operation.

In addition to these sixteen calls, the after_find callback is invoked after any
find operation, and after_initialize is invoked after an Active Record model
object is created.

To have your code execute during a callback, you need to write a handler
and associate it with the appropriate callback.

We have two basic ways of implementing callbacks.

The preferred way to define a callback is to declare handlers. A handler can
be either a method or a block. You associate a handler with a particular
event using class methods named after the event. To associate a method,
declare it as private or protected, and specify its name as a symbol to the
handler declaration. To specify a block, simply add it after the declaration.
This block receives the model object as a parameter:

 class Order < ApplicationRecord
 before_validation :normalize_credit_card_number

 after_create do |order|
 logger. info "Order #{ order. id} created"
 end
 protected
 def normalize_credit_card_number
 self. cc_number . gsub! (/[-\s]/ , '')
 end
 end

You can specify multiple handlers for the same callback. They will generally
be invoked in the order they’re specified unless a handler thows :abort, in
which case the callback chain is broken early.

Alternately, you can define the callback instance methods using callback
objects, inline methods (using a proc), or inline eval methods (using a
string). See the online documentation for more details.[100]

Grouping Related Callbacks Together
If you have a group of related callbacks, it may be convenient to group them
into a separate handler class. These handlers can be shared between multiple
models. A handler class is simply a class that defines callback methods
(before_save, after_create, and so on). Create the source files for these handler
classes in app/models.

In the model object that uses the handler, you create an instance of this
handler class and pass that instance to the various callback declarations. A
couple of examples will make this clearer.

If our application uses credit cards in multiple places, we might want to
share our normalize_credit_card_number method across multiple models. To do
that, we’d extract the method into its own class and name it after the event
we want it to handle. This method will receive a single parameter, the model
object that generated the callback:

 class CreditCardCallbacks

 # Normalize the credit card number
 def before_validation (model)
 model. cc_number . gsub! (/[-\s]/ , '')
 end
 end

Now, in our model classes, we can arrange for this shared callback to be
invoked:

 class Order < ApplicationRecord
 before_validation CreditCardCallbacks. new
 # ...
 end

 class Subscription < ApplicationRecord
 before_validation CreditCardCallbacks. new
 # ...
 end

In this example, the handler class assumes that the credit card number is
held in a model attribute named cc_number; both Order and Subscription would
have an attribute with that name. But we can generalize the idea, making the
handler class less dependent on the implementation details of the classes that
use it.

For example, we could create a generalized encryption and decryption
handler. This could be used to encrypt named fields before they’re stored in
the database and to decrypt them when the row is read back. You could
include it as a callback handler in any model that needed the facility.

The handler needs to encrypt a given set of attributes in a model just before
that model’s data is written to the database. Because our application needs to
deal with the plain-text versions of these attributes, it arranges to decrypt
them again after the save is complete. It also needs to decrypt the data when
a row is read from the database into a model object. These requirements
mean we have to handle the before_save, after_save, and after_find events. Because
we need to decrypt the database row both after saving and when we find a

new row, we can save code by aliasing the after_find method to after_save—the
same method will have two names:

rails7/e1/ar/encrypter.rb

 class Encrypter
 # We're passed a list of attributes that should
 # be stored encrypted in the database
 def initialize (attrs_to_manage)
 @attrs_to_manage = attrs_to_manage
 end

 # Before saving or updating, encrypt the fields using the NSA and
 # DHS approved Shift Cipher
 def before_save (model)
 @attrs_to_manage. each do |field|
 model[field]. tr! ("a-z" , "b-za")
 end
 end

 # After saving, decrypt them back
 def after_save (model)
 @attrs_to_manage. each do |field|
 model[field]. tr! ("b-za" , "a-z")
 end
 end

 # Do the same after finding an existing record
 alias_method :after_find , :after_save
 end

This example uses trivial encryption—you might want to beef it up before
using this class for real.

We can now arrange for the Encrypter class to be invoked from inside our
orders model:

 require "encrypter"
 class Order < ApplicationRecord
 encrypter = Encrypter. new ([:name , :email])
 before_save encrypter

http://media.pragprog.com/titles/rails7/code/rails7/e1/ar/encrypter.rb

 after_save encrypter
 after_find encrypter
 protected
 def after_find
 end
 end

We create a new Encrypter object and hook it up to the events before_save,
after_save, and after_find. This way, just before an order is saved, the method
before_save in the encrypter will be invoked, and so on.

So why do we define an empty after_find method? Remember that we said that
for performance reasons after_find and after_initialize are treated specially. One of
the consequences of this special treatment is that Active Record won’t know
to call an after_find handler unless it sees an actual after_find method in the
model class. We have to define an empty placeholder to get after_find

processing to take place.

This is all very well, but every model class that wants to use our encryption
handler would need to include some eight lines of code, just as we did with
our Order class. We can do better than that. We’ll define a helper method that
does all the work and make that helper available to all Active Record
models. To do that, we’ll add it to the ApplicationRecord class:

rails7/e1/ar/encrypter.rb

 class ApplicationRecord < ActiveRecord::Base
 self. abstract_class = true

 def self. encrypt (*attr_names)
 encrypter = Encrypter. new (attr_names)

 before_save encrypter
 after_save encrypter
 after_find encrypter

 define_method(:after_find) { }
 end

http://media.pragprog.com/titles/rails7/code/rails7/e1/ar/encrypter.rb

 end

Given this, we can now add encryption to any model class’s attributes using
a single call:

 class Order < ApplicationRecord
 encrypt(:name , :email)
 end

A small driver program lets us experiment with this:

 o = Order. new
 o. name = "Dave Thomas"
 o. address = "123 The Street"
 o. email = "dave@example.com"
 o. save
 puts o. name

 o = Order. find (o. id)
 puts o. name

On the console, we see our customer’s name (in plain text) in the model
object:

 ar> ruby encrypter.rb
 Dave Thomas
 Dave Thomas

In the database, however, the name and email address are obscured by our
industrial-strength encryption:

 depot> sqlite3 -line db/development.sqlite3 "select * from orders"
 id = 1
 user_id =
 name = Dbwf Tipnbt
 address = 123 The Street
 email = ebwf@fybnqmf.dpn

Callbacks are a fine technique, but they can sometimes result in a model
class taking on responsibilities that aren’t really related to the nature of the
model. For example, in Participating in the Monitoring Process, we created

a callback that generated a log message when an order was created. That
functionality isn’t really part of the basic Order class—we put it there because
that’s where the callback executed.

When used in moderation, such an approach doesn’t lead to significant
problems. If, however, you find yourself repeating code, consider using
concerns[101] instead.

Transactions
A database transaction groups a series of changes in such a way that either
the database applies all of the changes or it applies none of the changes. The
classic example of the need for transactions (and one used in Active
Record’s own documentation) is transferring money between two bank
accounts. The basic logic is straightforward:

 account1. deposit (100)
 account2. withdraw (100)

But we have to be careful. What happens if the deposit succeeds but for
some reason the withdrawal fails (perhaps the customer is overdrawn)?
We’ll have added $100 to the balance in account1 without a corresponding
deduction from account2. In effect, we’ll have created $100 out of thin air.

Transactions to the rescue. A transaction is something like the Three
Musketeers with their motto “All for one and one for all.” Within the scope
of a transaction, either every SQL statement succeeds or they all have no
effect. Putting that another way, if any statement fails, the entire transaction
has no effect on the database.

In Active Record we use the transaction method to execute a block in the
context of a particular database transaction. At the end of the block, the
transaction is committed, updating the database, unless an exception is
raised within the block, in which case the database rolls back all of the
changes. Because transactions exist in the context of a database connection,
we have to invoke them with an Active Record class as a receiver.

Thus, we could write this:

 Account. transaction do
 account1. deposit (100)
 account2. withdraw (100)
 end

Let’s experiment with transactions. We’ll start by creating a new database
table. (Make sure your database supports transactions, or this code won’t
work for you.)

rails7/e1/ar/transactions.rb

 create_table :accounts , force: true do |t|
 t. string :number
 t. decimal :balance , precision: 10, scale: 2, default: 0
 end

Next, we’ll define a rudimentary bank account class. This class defines
instance methods to deposit money to and withdraw money from the
account. It also provides some basic validation—for this particular type of
account, the balance can never be negative.

rails7/e1/ar/transactions.rb

 class Account < ActiveRecord::Base
 validates :balance , numericality: { greater_than_or_equal_to: 0}
 def withdraw (amount)
 adjust_balance_and_save!(-amount)
 end
 def deposit (amount)
 adjust_balance_and_save!(amount)
 end
 private
 def adjust_balance_and_save! (amount)
 self. balance += amount
 save!
 end
 end

Let’s look at the helper method, adjust_balance_and_save!. The first line simply
updates the balance field. The method then calls save! to save the model data.
(Remember that save! raises an exception if the object cannot be saved—we
use the exception to signal to the transaction that something has gone
wrong.)

http://media.pragprog.com/titles/rails7/code/rails7/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails7/code/rails7/e1/ar/transactions.rb

So now let’s write the code to transfer money between two accounts. It’s
pretty straightforward:

rails7/e1/ar/transactions.rb

 peter = Account. create (balance: 100, number: "12345")
 paul = Account. create (balance: 200, number: "54321")

 Account. transaction do
 paul. deposit (10)
 peter. withdraw (10)
 end

We check the database, and, sure enough, the money got transferred:

 depot> sqlite3 -line db/development.sqlite3 "select * from accounts"
 id = 1
 number = 12345
 balance = 90

 id = 2
 number = 54321
 balance = 210

Now let’s get radical. If we start again but this time try to transfer $350,
we’ll run Peter into the red, which isn’t allowed by the validation rule. Let’s
try it:

rails7/e1/ar/transactions.rb

 peter = Account. create (balance: 100, number: "12345")
 paul = Account. create (balance: 200, number: "54321")

rails7/e1/ar/transactions.rb

 Account. transaction do
 paul. deposit (350)
 peter. withdraw (350)
 end

When we run this, we get an exception reported on the console:

http://media.pragprog.com/titles/rails7/code/rails7/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails7/code/rails7/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails7/code/rails7/e1/ar/transactions.rb

 .../validations.rb:736:in `save!': Validation failed: Balance is negative
 from transactions.rb:46:in `adjust_balance_and_save!'
 : : :
 from transactions.rb:80

Looking in the database, we can see that the data remains unchanged:

 depot> sqlite3 -line db/development.sqlite3 "select * from accounts"
 id = 1
 number = 12345
 balance = 100

 id = 2
 number = 54321
 balance = 200

However, there’s a trap waiting for you here. The transaction protected the
database from becoming inconsistent, but what about our model objects? To
see what happened to them, we have to arrange to intercept the exception to
allow the program to continue running:

rails7/e1/ar/transactions.rb

 peter = Account. create (balance: 100, number: "12345")
 paul = Account. create (balance: 200, number: "54321")

rails7/e1/ar/transactions.rb

 begin
 Account. transaction do
 paul. deposit (350)
 peter. withdraw (350)
 end
 rescue
 puts "Transfer aborted"
 end

 puts "Paul has #{ paul. balance}"
 puts "Peter has #{ peter. balance}"

What we see is a little surprising:

http://media.pragprog.com/titles/rails7/code/rails7/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails7/code/rails7/e1/ar/transactions.rb

 Transfer aborted
 Paul has 550.0
 Peter has -250.0

Although the database was left unscathed, our model objects were updated
anyway. This is because Active Record wasn’t keeping track of the before
and after states of the various objects—in fact, it couldn’t, because it had no
easy way of knowing just which models were involved in the transactions.

Built-In Transactions
When we discussed parent and child tables in Specifying Relationships in
Models, we said that Active Record takes care of saving all the dependent
child rows when you save a parent row. This takes multiple SQL statement
executions (one for the parent and one each for any changed or new
children).

Clearly, this change should be atomic, but until now we haven’t been using
transactions when saving these interrelated objects. Have we been
negligent?

Fortunately, no. Active Record is smart enough to wrap all the updates and
inserts related to a particular save (and also the deletes related to a destroy) in a
transaction; either they all succeed or no data is written permanently to the
database. You need explicit transactions only when you manage multiple
SQL statements yourself.

While we’ve covered the basics, transactions are actually very subtle. They
exhibit the so-called ACID properties: they’re Atomic, they ensure
Consistency, they work in Isolation, and their effects are Durable (they’re
made permanent when the transaction is committed). It’s worth finding a
good database book and reading up on transactions if you plan to take a
database application live.

What We Just Did

[98]

[99]

[100]

[101]

[102]

We learned the relevant data structures and naming conventions for tables,
classes, columns, attributes, IDs, and relationships. We saw how to create,
read, update, and delete this data. Finally, we now understand how
transactions and callbacks can be used to prevent inconsistent changes.

This, coupled with validation as described in Chapter 7, Task B: Validation
and Unit Testing, covers all the essentials of Active Record that every Rails
programmer needs to know. If you have specific needs beyond what is
covered here, look to the Rails Guides[102] for more information.

The next major subsystem to cover is Action Pack, which covers both the
view and controller portions of Rails.

Footnotes

https://github.com/rails/acts_as_list

http://guides.rubyonrails.org/security.html#sql-injection

http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html#label-Types+of+callbacks

https://api.rubyonrails.org/classes/ActiveSupport/Concern.html

http://guides.rubyonrails.org/

Copyright © 2023, The Pragmatic Bookshelf.

https://github.com/rails/acts_as_list
http://guides.rubyonrails.org/security.html#sql-injection
http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html#label-Types+of+callbacks
https://api.rubyonrails.org/classes/ActiveSupport/Concern.html
http://guides.rubyonrails.org/

We cover:
Representational State Transfer
(REST)
Defining how requests are routed
to controllers
Selecting a data representation
Testing routes
The controller environment
Rendering and redirecting
Sessions, flash, and callbacks

Chapter 21

Action Dispatch and Action
Controller

Action Pack lies at the heart of Rails applications. It consists of three Ruby
modules: ActionDispatch, ActionController, and ActionView. Action Dispatch routes
requests to controllers. Action Controller converts requests into responses.
Action View is used by Action Controller to format those responses.

As a concrete example, in the Depot application, we routed the root of the
site (/) to the index method of the StoreController. At the completion of that
method, the template in app/views/store/index.html.erb was rendered. Each of these
activities was orchestrated by modules in the Action Pack component.

Working together, these three submodules provide support for processing
incoming requests and generating outgoing responses. In this chapter, we’ll
look at both Action Dispatch and Action Controller. In the next chapter,
we’ll cover Action View.

When we looked at Active Record, we saw it could be used as a
freestanding library; we can use Active Record as part of a nonweb Ruby
application. Action Pack is different. Although it’s possible to use it directly
as a framework, you probably won’t. Instead, you’ll take advantage of the
tight integration offered by Rails. Components such as Action Controller,
Action View, and Active Record handle the processing of requests, and the
Rails environment knits them together into a coherent (and easy-to-use)
whole. For that reason, we’ll describe Action Controller in the context of
Rails. Let’s start by looking at how Rails applications handle requests.
We’ll then dive down into the details of routing and URL handling. We’ll

continue by looking at how you write code in a controller. Finally, we’ll
cover sessions, flash, and callbacks.

Dispatching Requests to Controllers
At its most basic, a web application accepts an incoming request from a
browser, processes it, and sends a response.

A question immediately springs to mind: how does the application know
what to do with the incoming request? A shopping cart application will
receive requests to display a catalog, add items to a cart, create an order, and
so on. How does it route these requests to the appropriate code?

It turns out that Rails provides two ways to define how to route a request: a
comprehensive way that you’ll use when you need to and a convenient way
that you’ll generally use whenever you can.

The comprehensive way lets you define a direct mapping of URLs to actions
based on pattern matching, requirements, and conditions. The convenient
way lets you define routes based on resources, such as the models that you
define. And because the convenient way is built on the comprehensive way,
you can freely mix and match the two approaches.

In both cases, Rails encodes information in the request URL and uses a
subsystem called Action Dispatch to determine what should be done with
that request. The actual process is flexible, but at the end of it Rails has
determined the name of the controller that handles this particular request
along with a list of any other request parameters. In the process, either one
of these additional parameters or the HTTP method itself is used to identify
the action to be invoked in the target controller.

Rails routes support the mapping between URLs and actions based on the
contents of the URL and on the HTTP method used to invoke the request.
We’ve seen how to do this on a URL-by-URL basis using anonymous or
named routes. Rails also supports a higher-level way of creating groups of

related routes. To understand the motivation for this, we need to take a little
diversion into the world of representational state transfer (REST).

REST: Representational State Transfer
The ideas behind REST were formalized in Chapter 5 of Roy Fielding’s
2000 PhD dissertation.[103] In a REST approach, servers communicate with
clients using stateless connections. All the information about the state of the
interaction between the two is encoded into the requests and responses
between them. Long-term state is kept on the server as a set of identifiable
resources. Clients access these resources using a well-defined (and severely
constrained) set of resource identifiers (URLs in our context). REST
distinguishes the content of resources from the presentation of that content.
REST is designed to support highly scalable computing while constraining
application architectures to be decoupled by nature.

This description contains a lot of abstract stuff. What does REST mean in
practice?

First, the formalities of a RESTful approach mean that network designers
know when and where they can cache responses to requests. This enables
load to be pushed out through the network, increasing performance and
resilience while reducing latency.

Second, the constraints imposed by REST can lead to easier-to-write (and
maintain) applications. RESTful applications don’t worry about
implementing remotely accessible services. Instead, they provide a regular
(and straightforward) interface to a set of resources. Your application
implements a way of listing, creating, editing, and deleting each resource,
and your clients do the rest.

Let’s make this more concrete. In REST, we use a basic set of verbs to
operate on a rich set of nouns. If we’re using HTTP, the verbs correspond to
HTTP methods (GET, PUT, PATCH, POST, and DELETE, typically). The nouns are
the resources in our application. We name those resources using URLs.

The Depot application that we produced contained a set of products. There
are implicitly two resources here: first, the individual products, each of
which constitutes a resource, and second, the collection of products.

To fetch a list of all the products, we could issue an HTTP GET request
against this collection, say on the path /products. To fetch the contents of an
individual resource, we have to identify it. The Rails way would be to give
its primary key value (that is, its ID). Again we’d issue a GET request, this
time against the URL /products/1.

To create a new product in our collection, we use an HTTP POST request
directed at the /products path, with the post data containing the product to add.
Yes, that’s the same path we used to get a list of products. If you issue a GET

to it, it responds with a list, and if you do a POST to it, it adds a new product
to the collection.

Take this a step further. We’ve already seen you can retrieve the content of a
product—you just issue a GET request against the path /products/1. To update
that product, you’d issue an HTTP PUT request against the same URL. And,
to delete it, you could issue an HTTP DELETE request, using the same URL.

Take this further. Maybe our system also tracks users. Again, we have a set
of resources to deal with. REST tells us to use the same set of verbs (GET,
POST, PATCH, PUT, and DELETE) against a similar-looking set of URLs (/users,
/users/1, and so on).

Now we see some of the power of the constraints imposed by REST. We’re
already familiar with the way Rails constrains us to structure our
applications a certain way. Now the REST philosophy tells us to structure
the interface to our applications too. Suddenly our world gets a lot simpler.

Rails has direct support for this type of interface; it adds a kind of macro
route facility, called resources. Let’s take a look at how the config/routes.rb file

might have looked back in Creating a Rails Application:

 Depot::Application. routes . draw do
» resources :products
 end

The resources line caused seven new routes to be added to our application.
Along the way, it assumed that the application will have a controller named
ProductsController, containing seven actions with given names.

You can take a look at the routes that were generated for us. We do this by
making use of the handy rails routes command.

 Prefix Verb URI Pattern
 Controller#Action
 products GET /products(.:format)
 {:action=>"index", :controller=>"products"}
 POST /products(.:format)
 {:action=>"create", :controller=>"products"}
 new_product GET /products/new(.:format)
 {:action=>"new", :controller=>"products"}
 edit_product GET /products/:id/edit(.:format)
 {:action=>"edit", :controller=>"products"}
 product GET /products/:id(.:format)
 {:action=>"show", :controller=>"products"}
 PATCH /products/:id(.:format)
 {:action=>"update", :controller=>"products"}
 DELETE /products/:id(.:format)
 {:action=>"destroy", :controller=>"products"}

All the routes defined are spelled out in a columnar format. The lines will
generally wrap on your screen; in fact, they had to be broken into two lines
per route to fit on this page. The columns are (optional) route name, HTTP
method, route path, and (on a separate line on this page) route requirements.

Fields in parentheses are optional parts of the path. Field names preceded by
a colon are for variables into which the matching part of the path is placed
for later processing by the controller.

Now let’s look at the seven controller actions that these routes reference.
Although we created our routes to manage the products in our application,
let’s broaden this to talk about resources—after all, the same seven methods
will be required for all resource-based routes:

index

Returns a list of the resources.

create

Creates a new resource from the data in the POST request, adding it to
the collection.

new

Constructs a new resource and passes it to the client. This resource will
not have been saved on the server. You can think of the new action as
creating an empty form for the client to fill in.

show

Returns the contents of the resource identified by params[:id].

update

Updates the contents of the resource identified by params[:id] with the
data associated with the request.

edit

Returns the contents of the resource identified by params[:id] in a form
suitable for editing.

destroy

Destroys the resource identified by params[:id].

You can see that these seven actions contain the four basic CRUD operations
(create, read, update, and delete). They also contain an action to list
resources and two auxiliary actions that return new and existing resources in
a form suitable for editing on the client.

If for some reason you don’t need or want all seven actions, you can limit
the actions produced using :only or :except options on your resources:

 resources :comments , except: [:update , :destroy]

Several of the routes are named routes enabling you to use helper functions
such as products_url and edit_product_url(id:1).

Note that each route is defined with an optional format specifier. We’ll cover
formats in more detail in Selecting a Data Representation.

Let’s take a look at the controller code:

rails7/depot_a/app/controllers/products_controller.rb

 class ProductsController < ApplicationController
 before_action :set_product , only: %i[show edit update destroy]

 # GET /products or /products.json
 def index
 @products = Product. all
 end

 # GET /products/1 or /products/1.json
 def show
 end

 # GET /products/new
 def new
 @product = Product. new
 end

 # GET /products/1/edit
 def edit
 end

 # POST /products or /products.json
 def create
 @product = Product. new (product_params)

 respond_to do |format|

http://media.pragprog.com/titles/rails7/code/rails7/depot_a/app/controllers/products_controller.rb

 if @product. save
 format. html { redirect_to product_url(@product),
 notice: "Product was successfully created." }
 format. json { render :show , status: :created ,
 location: @product }
 else
 format. html { render :new ,
 status: :unprocessable_entity }
 format. json { render json: @product. errors ,
 status: :unprocessable_entity }
 end
 end
 end

 # PATCH/PUT /products/1 or /products/1.json
 def update
 respond_to do |format|
 if @product. update (product_params)
 format. html { redirect_to product_url(@product),
 notice: "Product was successfully updated." }
 format. json { render :show , status: :ok , location: @product }
 else
 format. html { render :edit ,
 status: :unprocessable_entity }
 format. json { render json: @product. errors ,
 status: :unprocessable_entity }
 end
 end
 end

 # DELETE /products/1 or /products/1.json
 def destroy
 @product. destroy

 respond_to do |format|
 format. html { redirect_to products_url,
 notice: "Product was successfully destroyed." }
 format. json { head :no_content }
 end
 end

 private
 # Use callbacks to share common setup or constraints between actions.

 def set_product
 @product = Product. find (params[:id])
 end

 # Only allow a list of trusted parameters through.
 def product_params
 params. require (:product).
 permit (:title , :description , :image_url , :price)
 end
 end

Notice how we have one action for each of the RESTful actions. The
comment before each shows the format of the URL that invokes it.

Notice also that many of the actions contain a respond_to block. As we saw in
Chapter 11, Task F: Hotwiring the Storefront, Rails uses this to determine
the type of content to send in a response. The scaffold generator
automatically creates code that will respond appropriately to requests for
HTML or JSON content. We’ll play with that in a little while.

The views created by the generator are fairly straightforward. The only
tricky thing is the need to use the correct HTTP method to send requests to
the server.

For example, the view for the index action looks like this:

rails7/depot_a/app/views/products/index.html.erb

 <div class= "w-full" >
 <% if notice. present? %>
 <p class= "py-2 px-3 bg-green-50 mb-5 text-green-500 font-medium
 rounded-lg inline-block" id= "notice" >
 <%= notice %>
 </p>
 <% end %>

 <div class= "flex justify-between items-center pb-8" >
 <h1 class= "mx-auto text-lg font-bold text-4xl" >Products</h1>
 </div>

http://media.pragprog.com/titles/rails7/code/rails7/depot_a/app/views/products/index.html.erb

 <table id= "products" class= "mx-auto" >
 <tfoot>
 <tr>
 <td colspan= "3" >
 <div class= "mt-8" >
 <%= link_to 'New product' ,
 new_product_path,
 class: "inline rounded-lg py-3 px-5 bg-green-600
 text-white block font-medium" %>
 </div>
 </td>
 </tr>
 </tfoot>

 <tbody>
 <% @products. each do |product| %>
 <tr class= "<%= cycle('bg-green-50' , 'bg-white') %>" >

 <td class= "px-2 py-3" >
 <%= image_tag(product. image_url , class: 'w-40') %>
 </td>

 <td>
 <h1 class= "text-xl font-bold mb-3" > <%= product. title %> </h1>
 <p>
 <%= truncate(strip_tags(product. description),
 length: 80) %>
 </p>
 </td>

 <td class= "px-3" >

 <%= link_to 'Show' ,
 product,
 class: 'hover:underline' %>

 <%= link_to 'Edit' ,
 edit_product_path(product),
 class: 'hover:underline' %>

 <%= link_to 'Destroy' ,
 product,
 class: 'hover:underline' ,
 data: { turbo_method: :delete ,
 turbo_confirm: "Are you sure?" } %>

 </td>
 </tr>
 <% end %>
 </tbody>
 </table>
 </div>

The links to the actions that edit a product and add a new product should
both use regular GET methods, so a standard link_to works fine. However, the
request to destroy a product must issue an HTTP DELETE, so the call includes
the method: :delete option to link_to.

Adding Additional Actions
Rails resources provide you with an initial set of actions, but you don’t need
to stop there. For example, if you want to add an interface to allow people to
fetch a list of people who bought any given product, you can add an
extension to the resources call:

 Depot::Application. routes . draw do
 resources :products do
 get :who_bought , on: :member
 end
 end

That syntax is straightforward. It says “We want to add a new action named
who_bought, invoked via an HTTP GET. It applies to each member of the
collection of products.”

Instead of specifying :member, if we instead specified :collection, then the route
would apply to the collection as a whole. This is often used for scoping; for
example, you may have collections of products on clearance or products that
have been discontinued.

Nested Resources
Often our resources themselves contain additional collections of resources.
For example, we may want to allow folks to review our products. Each
review would be a resource, and collections of reviews would be associated
with each product resource. Rails provides a convenient and intuitive way of
declaring the routes for this type of situation:

 resources :products do
 resources :reviews
 end

This defines the top-level set of product routes and additionally creates a set
of subroutes for reviews. Because the review resources appear inside the
products block, a review resource must be qualified by a product resource.
This means that the path to a review must always be prefixed by the path to
a particular product. To fetch the review with ID 4 for the product with an
ID of 99, you’d use a path of /products/99/reviews/4.

The named route for /products/:product_id/reviews/:id is product_review, not simply
review. This naming simply reflects the nesting of these resources.

As always, you can see the full set of routes generated by our configuration
by using the rails routes command.

Routing Concerns
So far, we’ve been dealing with a fairly small set of resources. On a larger
system there may be types of objects for which a review may be appropriate
or to which a who_bought action might reasonably be applied. Instead of

repeating these instructions for each resource, consider refactoring your
routes using concerns to capture the common behavior.

 concern :reviewable do
 resources :reviews
 end

 resources :products , concern: :reviewable
 resources :users , concern: :reviewable

The preceding definition of the products resource is equivalent to the one in
the previous section.

Shallow Route Nesting
At times, nested resources can produce cumbersome URLs. A solution to
this is to use shallow route nesting:

 resources :products , shallow: true do
 resources :reviews
 end

This will enable the recognition of the following routes:

 /products/1 => product_path(1)
 /products/1/reviews => product_reviews_index_path(1)
 /reviews/2 => reviews_path(2)

Try the rails routes command to see the full mapping.

Selecting a Data Representation
One of the goals of a REST architecture is to decouple data from its
representation. If a human uses the URL path /products to fetch products, they
should see nicely formatted HTML. If an application asks for the same
URL, it could elect to receive the results in a code-friendly format (YAML,
JSON, or XML, perhaps).

We’ve already seen how Rails can use the HTTP Accept header in a
respond_to block in the controller. However, it isn’t always easy (and
sometimes it’s plain impossible) to set the Accept header. To deal with this,
Rails allows you to pass the format of response you’d like as part of the
URL. As you’ve seen, Rails accomplishes this by including a field called
:format in your route definitions. To do this, set a :format parameter in your
routes to the file extension of the MIME type you’d like returned:

 GET /products(.:format)
 {:action=>"index", :controller=>"products"}

Because a full stop (period) is a separator character in route definitions,
:format is treated as just another field. Because we give it a nil default value,
it’s an optional field.

Having done this, we can use a respond_to block in our controllers to select our
response type depending on the requested format:

 def show
 respond_to do |format|
 format. html
 format. json { render json: @product. to_json }
 end
 end

Given this, a request to /store/show/1 or /store/show/1.html will return HTML
content, while /store/show/1.xml will return XML, and /store/show/1.json will return
JSON. You can also pass the format in as an HTTP request parameter:

 GET HTTP://pragprog.com/store/show/123?format=xml

Although the idea of having a single controller that responds with different
content types seems appealing, the reality is tricky. In particular, it turns out
that error handling can be tough. Although it’s acceptable on error to
redirect a user to a form, showing them a nice flash message, you have to
adopt a different strategy when you serve XML. Consider your application

architecture carefully before deciding to bundle all your processing into
single controllers.

Rails makes it straightforward to develop an application that’s based on
resource-based routing. Many claim it greatly simplifies the coding of their
applications. However, it isn’t always appropriate. Don’t feel compelled to
use it if you can’t find a way of making it work. And you can always mix
and match. Some controllers can be resource based, and others can be based
on actions. Some controllers can even be resource based with a few extra
actions.

Processing of Requests
In the previous section, we worked out how Action Dispatch routes an
incoming request to the appropriate code in your application. Now let’s see
what happens inside that code.

Action Methods
When a controller object processes a request, it looks for a public instance
method with the same name as the incoming action. If it finds one, that
method is invoked. If it doesn’t find one and the controller implements
method_missing, that method is called, passing in the action name as the first
parameter and an empty argument list as the second. If no method can be
called, the controller looks for a template named after the current controller
and action. If found, this template is rendered directly. If none of these
things happens, an AbstractController::ActionNotFound error is generated.

Controller Environment
The controller sets up the environment for actions (and, by extension, for
the views that they invoke). Many of these methods provide direct access to
information contained in the URL or request:

action_name

The name of the action currently being processed.

cookies

The cookies associated with the request. Setting values into this object
stores cookies on the browser when the response is sent. Rails support
for sessions is based on cookies. We discuss sessions in Rails Sessions.

headers

A hash of HTTP headers that will be used in the response. By default,
Cache-Control is set to no-cache. You might want to set Content-Type headers

for special-purpose applications. Note that you shouldn’t set cookie
values in the header directly—use the cookie API to do this.

params

A hash-like object containing request parameters (along with
pseudoparameters generated during routing). It’s hash-like because
you can index entries using either a symbol or a string—params[:id] and
params[’id’] return the same value. Idiomatic Rails applications use the
symbol form.

request

The incoming request object. It includes these attributes:

request_method returns the request method, one of :delete, :get, :head,
:post, or :put.

method returns the same value as request_method except for :head,
which it returns as :get because these two are functionally
equivalent from an application point of view.

delete?, get?, head?, post?, and put? return true or false based on the
request method.

xml_http_request? and xhr? return true if this request was issued by one
of the Ajax helpers. Note that this parameter is independent of the
method parameter.

url, which returns the full URL used for the request.

protocol, host, port, path, and query_string, which return components of
the URL used for the request, based on the following pattern:
protocol://host:port/path?query_string.

domain, which returns the last two components of the domain name
of the request.

host_with_port, which is a host:port string for the request.

port_string, which is a :port string for the request if the port isn’t the
default port (80 for HTTP, 443 for HTTPS).

ssl?, which is true if this is an SSL request; in other words, the
request was made with the HTTPS protocol.

remote_ip, which returns the remote IP address as a string. The
string may have more than one address in it if the client is behind
a proxy.

env, the environment of the request. You can use this to access
values set by the browser, such as this:

 request. env ['HTTP_ACCEPT_LANGUAGE']

accepts, which is an array with Mime::Type objects that represent the
MIME types in the Accept header.

format, which is computed based on the value of the Accept header,
with Mime[:HTML] as a fallback.

content_type, which is the MIME type for the request. This is useful
for put and post requests.

headers, which is the complete set of HTTP headers.

body, which is the request body as an I/O stream.

content_length, which is the number of bytes purported to be in the
body.

Rails leverages a gem named Rack to provide much of this
functionality. See the documentation of Rack::Request for full details.

response

The response object, filled in during the handling of the request.
Normally, this object is managed for you by Rails. As we’ll see when
we look at callbacks in Callbacks, we sometimes access the internals
for specialized processing.

session

A hash-like object representing the current session data. We describe
this in Rails Sessions.

In addition, a logger is available throughout Action Pack.

Responding to the User
Part of the controller’s job is to respond to the user, which is done in four
ways:

The most common way is to render a template. In terms of the MVC
paradigm, the template is the view, taking information provided by the
controller and using it to generate a response to the browser.

The controller can return a string directly to the browser without
invoking a view. This is fairly rare but can be used to send error
notifications.

The controller can return nothing to the browser. This is sometimes
used when responding to an Ajax request. In all cases, however, the
controller returns a set of HTTP headers because some kind of
response is expected.

The controller can send other data to the client (something other than
HTML). This is typically a download of some kind (perhaps a PDF

document or a file’s contents).

A controller always responds to the user exactly one time per request. This
means you should have just one call to a render, redirect_to, or send_xxx method
in the processing of any request. (A DoubleRenderError exception is thrown on
the second render.)

Because the controller must respond exactly once, it checks to see whether
a response has been generated just before it finishes handling a request. If
not, the controller looks for a template named after the controller and action
and automatically renders it. This is the most common way that rendering
takes place. You may have noticed that in most of the actions in our
shopping cart tutorial we never explicitly rendered anything. Instead, our
action methods set up the context for the view and return. The controller
notices that no rendering has taken place and automatically invokes the
appropriate template.

You can have multiple templates with the same name but with different
extensions (for example, .html.erb, .xml.builder, and .js.erb). If you don’t specify
an extension in a render request, Rails assumes html.erb.

Rendering Templates
A template is a file that defines the content of a response for our
application. Rails supports three template formats out of the box: erb, which
is embedded Ruby code (typically with HTML); builder, a more
programmatic way of constructing XML content; and RJS, which generates
JavaScript. We’ll talk about the contents of these files starting in Using
Templates.

By convention, the template for action of controller will be in the file
app/views/controller/action.type.xxx (where type is the file type, such as html, atom, or
js; and xxx is one of erb, builder, or scss). The app/views part of the name is the
default. You can override this for an entire application by setting this:

ActionController.prepend_view_path dir_path

The render method is the heart of all rendering in Rails. It takes a hash of
options that tell it what to render and how to render it.

It’s tempting to write code in our controllers that looks like this:

 # DO NOT DO THIS
 def update
 @user = User. find (params[:id])
 if @user. update (user_params)
 render action: show
 end
 render template: "fix_user_errors"
 end

It seems somehow natural that the act of calling render (and redirect_to) should
somehow terminate the processing of an action. This isn’t the case. The
previous code will generate an error (because render is called twice) in the
case where update succeeds.

Let’s look at the render options used in the controller here (we’ll look
separately at rendering in the view starting in Partial-Page Templates):

render()

With no overriding parameter, the render method renders the default
template for the current controller and action. The following code will
render the template app/views/blog/index.html.erb:

 class BlogController < ApplicationController
 def index
 render
 end
 end

So will the following (as the default behavior of a controller is to call
render if the action doesn’t):

 class BlogController < ApplicationController
 def index
 end
 end

And so will this (because the controller will call a template directly if
no action method is defined):

 class BlogController < ApplicationController
 end

render(text: string)

Sends the given string to the client. No template interpretation or
HTML escaping is performed.

 class HappyController < ApplicationController
 def index
 render(text: "Hello there!")
 end
 end

render(inline: string, [type: "erb"|"builder"|"scss"], [locals: hash])

Interprets string as the source to a template of the given type,
rendering the results back to the client. You can use the :locals hash to
set the values of local variables in the template.

The following code adds method_missing to a controller if the application
is running in development mode. If the controller is called with an
invalid action, this renders an inline template to display the action’s
name and a formatted version of the request parameters:

 class SomeController < ApplicationController

 if RAILS_ENV == "development"
 def method_missing (name, *args)
 render(inline: %{
 <h2>Unknown action: #{name}</h2>
 Here are the request parameters:

 <%= debug(params) %> })
 end

 end
 end

render(action: action_name)

Renders the template for a given action in this controller. Sometimes
folks use the :action form of render when they should use redirects. See
the discussion starting in Redirects, for why this is a bad idea.

 def display_cart
 if @cart. empty?
 render(action: :index)
 else
 # ...
 end
 end

Note that calling render(:action...) does not call the action method; it
simply displays the template. If the template needs instance variables,
these must be set up by the method that calls the render method.

Let’s repeat this, because this is a mistake that beginners often make:
calling render(:action...) does not invoke the action method. It simply
renders that action’s default template.

render(template: name, [locals: hash])

Renders a template and arranges for the resulting text to be sent back
to the client. The :template value must contain both the controller and
action parts of the new name, separated by a forward slash. The
following code will render the template app/views/blog/short_list:

 class BlogController < ApplicationController
 def index
 render(template: "blog/short_list")
 end
 end

render(file: path)

Renders a view that may be entirely outside of your application
(perhaps one shared with another Rails application). By default, the
file is rendered without using the current layout. This can be
overridden with layout: true.

render(partial: name, …)

Renders a partial template. We talk about partial templates in depth in
Partial-Page Templates.

render(nothing: true)

Returns nothing—sends an empty body to the browser.

render(xml: stuff)

Renders stuff as text, forcing the content type to be application/xml.

render(json: stuff, [callback: hash])

Renders stuff as JSON, forcing the content type to be application/json.
Specifying :callback will cause the result to be wrapped in a call to the
named callback function.

render(:update) do |page| ... end

Renders the block as an RJS template, passing in the page object.

 render(:update) do |page|
 page[:cart]. replace_html partial: 'cart' , object: @cart
 page[:cart]. visual_effect :blind_down if @cart. total_items == 1
 end

All forms of render take optional :status, :layout, and :content_type parameters. The
:status parameter provides the value used in the status header in the HTTP
response. It defaults to "200 OK". Do not use render with a 3xx status to do
redirects; Rails has a redirect method for this purpose.

The :layout parameter determines whether the result of the rendering will be
wrapped by a layout. (We first came across layouts in Iteration C2: Adding

a Page Layout. We’ll look at them in depth starting in Reducing
Maintenance with Layouts and Partials.) If the parameter is false, no layout
will be applied. If set to nil or true, a layout will be applied only if there’s one
associated with the current action. If the :layout parameter has a string as a
value, it’ll be taken as the name of the layout to use when rendering. A
layout is never applied when the :nothing option is in effect.

The :content_type parameter lets you specify a value that will be passed to the
browser in the Content-Type HTTP header.

Sometimes it’s useful to be able to capture what would otherwise be sent to
the browser in a string. The render_to_string method takes the same parameters
as render but returns the result of rendering as a string—the rendering is not
stored in the response object and so won’t be sent to the user unless you
take some additional steps.

Calling render_to_string doesn’t count as a real render. You can invoke the real
render method later without getting a DoubleRender error.

Sending Files and Other Data
We’ve looked at rendering templates and sending strings in the controller.
The third type of response is to send data (typically, but not necessarily, file
contents) to the client.

 send_data(data, options …)

This sends a data stream to the client. Typically the browser will use a
combination of the content type and the disposition, both set in the options,
to determine what to do with this data.

 def sales_graph
 png_data = Sales. plot_for (Date. today . month)
 send_data(png_data, type: "image/png" , disposition: "inline")
 end

The options are as follows:

:disposition (string)
Suggests to the browser that the file should be displayed inline (option
inline) or downloaded and saved (option attachment, the default).

:filename string
A suggestion to the browser of the default filename to use when saving
this data.

:status (string)
The status code (defaults to "200 OK").

:type (string)
The content type, defaulting to application/octet-stream.

:url_based_filename boolean
If true and :filename is not set, this option prevents Rails from providing
the basename of the file in the Content-Disposition header. Specifying
the basename of the file is necessary to make some browsers handle
i18n filenames correctly.

A related method is send_file, which sends the contents of a file to the client.

 send_file(path, options …)

This sends the given file to the client. The method sets the Content-Length,
Content-Type, Content-Disposition, and Content-Transfer-Encoding
headers.

:buffer_size (number)
The amount sent to the browser in each write if streaming is enabled
(:stream is true).

:disposition (string)

Suggests to the browser that the file should be displayed inline (option
inline) or downloaded and saved (option attachment, the default).

:filename (string)
A suggestion to the browser of the default filename to use when saving
the file. If not set, defaults to the filename part of path.

:status string
The status code (defaults to "200 OK").

:stream (true or false)
If false, the entire file is read into server memory and sent to the client.
Otherwise, the file is read and written to the client in :buffer_size chunks.

:type (string)
The content type, defaulting to application/octet-stream.

You can set additional headers for either send_ method by using the headers

attribute in the controller:

 def send_secret_file
 send_file("/files/secret_list")
 headers["Content-Description"] = "Top secret"
 end

We show how to upload files starting in Uploading Files to Rails
Applications.

Redirects
An HTTP redirect is sent from a server to a client in response to a request.
In effect, it says, “I’m done processing this request, and you should go here
to see the results.” The redirect response includes a URL that the client
should try next along with some status information saying whether this
redirection is permanent (status code 301) or temporary (307). Redirects are
sometimes used when web pages are reorganized; clients accessing pages in

the old locations will get referred to the page’s new home. More commonly,
Rails applications use redirects to pass the processing of a request off to
some other action.

Redirects are handled behind the scenes by web browsers. Normally, the
only way you’ll know that you’ve been redirected is a slight delay and the
fact that the URL of the page you’re viewing will have changed from the
one you requested. This last point is important—as far as the browser is
concerned, a redirect from a server acts pretty much the same as having an
end user enter the new destination URL manually.

Redirects turn out to be important when writing well-behaved web
applications. Let’s look at a basic blogging application that supports
comment posting. After a user has posted a comment, our application
should redisplay the article, presumably with the new comment at the end.

It’s tempting to code this using logic such as the following:

 class BlogController
 def display
 @article = Article. find (params[:id])
 end

 def add_comment
 @article = Article. find (params[:id])
 comment = Comment. new (params[:comment])
 @article. comments << comment
 if @article. save
 flash[:note] = "Thank you for your valuable comment"
 else
 flash[:note] = "We threw your worthless comment away"
 end
 # DON'T DO THIS
 render(action: 'display')
 end
 end

The intent here was clearly to display the article after a comment has been
posted. To do this, the developer ended the add_comment method with a call to
render(action:'display'). This renders the display view, showing the updated article
to the end user. But think of this from the browser’s point of view. It sends a
URL ending in blog/add_comment and gets back an index listing. As far as the
browser is concerned, the current URL is still the one that ends in
blog/add_comment. This means that if the user hits Refresh or Reload (perhaps
to see whether anyone else has posted a comment), the add_comment URL will
be sent again to the application. The user intended to refresh the display, but
the application sees a request to add another comment. In a blog
application, this kind of unintentional double entry is inconvenient. In an
online store, it can get expensive.

In these circumstances, the correct way to show the added comment in the
index listing is to redirect the browser to the display action. We do this using
the Rails redirect_to method. If the user subsequently hits Refresh, it will
simply reinvoke the display action and not add another comment.

 def add_comment
 @article = Article. find (params[:id])
 comment = Comment. new (params[:comment])
 @article. comments << comment
 if @article. save
 flash[:note] = "Thank you for your valuable comment"
 else
 flash[:note] = "We threw your worthless comment away"
 end
» redirect_to(action: 'display')
 end

Rails has a lightweight yet powerful redirection mechanism. It can redirect
to an action in a given controller (passing parameters), to a URL (on or off
the current server), or to the previous page.

Let’s look at these three forms in turn:

redirect_to(action: ..., options…)

Sends a temporary redirection to the browser based on the values in
the options hash. The target URL is generated using url_for, so this form
of redirect_to has all the smarts of Rails routing code behind it.

redirect_to(path)

Redirects to the given path. If the path doesn’t start with a protocol
(such as http://), the protocol and port of the current request will be
prepended. This method does not perform any rewriting on the URL,
so it shouldn’t be used to create paths that are intended to link to
actions in the application (unless you generate the path using url_for or a
named route URL generator).

 def save
 order = Order. new (params[:order])
 if order. save
 redirect_to action: "display"
 else
 session[:error_count] ||= 0
 session[:error_count] += 1
 if session[:error_count] < 4
 self. notice = "Please try again"
 else
 # Give up -- user is clearly struggling
 redirect_to("/help/order_entry.html")
 end
 end
 end

redirect_to(:back)

Redirects to the URL given by the HTTP_REFERER header in the current
request.

 def save_details
 unless params[:are_you_sure] == 'Y'
 redirect_to(:back)
 else
 # ...
 end

 end

By default all redirections are flagged as temporary (they’ll affect only the
current request). When redirecting to a URL, it’s possible you might want
to make the redirection permanent. In that case, set the status in the
response header accordingly:

 headers["Status"] = "301 Moved Permanently"
 redirect_to("http://my.new.home")

Because redirect methods send responses to the browser, the same rules
apply as for the rendering methods—you can issue only one per request.

So far, we’ve been looking at requests and responses in isolation. Rails also
provides a number of mechanisms that span requests.

Objects and Operations That Span Requests
While the bulk of the state that persists across requests belongs in the
database and is accessed via Active Record, some other bits of state have
different life spans and need to be managed differently. In the Depot
application, while the Cart itself was stored in the database, knowledge of
which cart is the current cart was managed by sessions. Flash notices were
used to communicate messages such as “Can’t delete the last user” to the
next request after a redirect. And callbacks were used to extract locale data
from the URLs themselves.

In this section, we’ll explore each of these mechanisms in turn.

Rails Sessions
A Rails session is a hash-like structure that persists across requests. Unlike
raw cookies, sessions can hold any objects (as long as those objects can be
marshaled), which makes them ideal for holding state information in web
applications. For example, in our store application, we used a session to
hold the shopping cart object between requests. The Cart object could be
used in our application just like any other object. But Rails arranged things
such that the cart was saved at the end of handling each request and, more
important, that the correct cart for an incoming request was restored when
Rails started to handle that request. Using sessions, we can pretend that our
application stays around between requests.

And that leads to an interesting question: exactly where does this data stay
around between requests? One choice is for the server to send it down to the
client as a cookie. This is the default for Rails. It places limitations on the
size and increases the bandwidth but means that there’s less for the server to
manage and clean up. Note that the contents are (by default) encrypted,
which means that users can neither see nor tamper with the contents.

The other option is to store the data on the server. It requires more work to
set up and is rarely necessary. First, Rails has to keep track of sessions. It
does this by creating (by default) a 32-hex character key (which means
there are 1632 possible combinations). This key is called the session ID, and
it’s effectively random. Rails arranges to store this session ID as a cookie
(with the key _session_id) on the user’s browser. Because subsequent requests
come into the application from this browser, Rails can recover the session
ID.

Second, Rails keeps a persistent store of session data on the server, indexed
by the session ID. When a request comes in, Rails looks up the data store
using the session ID. The data that it finds there is a serialized Ruby object.
It deserializes this and stores the result in the controller’s session attribute,
where the data is available to our application code. The application can add
to and modify this data to its heart’s content. When it finishes processing
each request, Rails writes the session data back into the data store. There it
sits until the next request from this browser comes along.

What should you store in a session? You can store anything you want,
subject to a few restrictions and caveats:

Some restrictions apply on what kinds of object you can store in a
session. The details depend on the storage mechanism you choose
(which we’ll look at shortly). In the general case, objects in a session
must be serializable (using Ruby’s Marshal functions). This means, for
example, that you can’t store an I/O object in a session.

If you store any Rails model objects in a session, you’ll have to add
model declarations for them. This causes Rails to preload the model
class so that its definition is available when Ruby comes to deserialize
it from the session store. If the use of the session is restricted to just
one controller, this declaration can go at the top of that controller.

 class BlogController < ApplicationController

 model :user_preferences

 # . . .

However, if the session might get read by another controller (which is
likely in any application with multiple controllers), you’ll probably
want to add the declaration to application_controller.rb in app/controllers.

You probably don’t want to store massive objects in session data—put
them in the database and reference them from the session. This is
particularly true for cookie-based sessions, where the overall limit is 4
KB.

You probably don’t want to store volatile objects in session data. For
example, you might want to keep a tally of the number of articles in a
blog and store that in the session for performance reasons. But if you
do that, the count won’t get updated if some other user adds an article.

It’s tempting to store objects representing the currently logged-in user
in session data. This might not be wise if your application needs to be
able to invalidate users. Even if a user is disabled in the database, their
session data will still reflect a valid status.

Store volatile data in the database, and reference it from the session
instead.

You probably don’t want to store critical information solely in session
data. For example, if your application generates an order confirmation
number in one request and stores it in session data so that it can be
saved to the database when the next request is handled, you risk losing
that number if the user deletes the cookie from their browser. Critical
information needs to be in the database.

One more caveat—and it’s a big one. If you store an object in session data,
then the next time you come back to that browser, your application will end
up retrieving that object. However, if in the meantime you’ve updated your
application, the object in session data may not agree with the definition of
that object’s class in your application, and the application will fail while
processing the request. You have three options here. One is to store the
object in the database using conventional models and keep just the ID of the
row in the session. Model objects are far more forgiving of schema changes
than the Ruby marshaling library. The second option is to manually delete
all the session data stored on your server whenever you change the
definition of a class stored in that data.

The third option is slightly more complex. If you add a version number to
your session keys and change that number whenever you update the stored
data, you’ll only ever load data that corresponds with the current version of
the application. You can potentially version the classes whose objects are
stored in the session and use the appropriate classes depending on the
session keys associated with each request. This last idea can be a lot of
work, so you’ll need to decide whether it’s worth the effort.

Because the session store is hash-like, you can save multiple objects in it,
each with its own key.

There’s no need to also disable sessions for particular actions. Because
sessions are lazily loaded, simply don’t reference a session in any action in
which you don’t need a session.

Session Storage
Rails has a number of options when it comes to storing your session data.
Each has good and bad points. We’ll start by listing the options and then
compare them at the end.

The session_store attribute of ActionController::Base determines the session storage
mechanism—set this attribute to a class that implements the storage

strategy. This class must be defined in the ActiveSupport::Cache::Store module.
You use symbols to name the session storage strategy; the symbol is
converted into a CamelCase class name.

session_store = :cookie_store

This is the default session storage mechanism used by Rails, starting
with version 2.0. This format represents objects in their marshaled
form, which allows any serializable data to be stored in sessions but is
limited to 4 KB total. This is the option we used in the Depot
application.

session_store = :active_record_store

You can use the activerecord-session_store gem[104] to store your session data
in your application’s database using ActiveRecordStore.

session_store = :drb_store

DRb is a protocol that allows Ruby processes to share objects over a
network connection. Using the DRbStore database manager, Rails
stores session data on a DRb server (which you manage outside the
web application). Multiple instances of your application, potentially
running on distributed servers, can access the same DRb store. DRb
uses Marshal to serialize objects.

session_store = :mem_cache_store

memcached is a freely available, distributed object caching system
maintained by Dormando.[105] memcached is more complex to use than the
other alternatives and is probably interesting only if you’re already
using it for other reasons at your site.

session_store = :memory_store

This option stores the session data locally in the application’s memory.
Because no serialization is involved, any object can be stored in an in-
memory session. As we’ll see in a minute, this generally isn’t a good
idea for Rails applications.

session_store = :file_store

Session data is stored in flat files. It’s pretty much useless for Rails
applications because the contents must be strings. This mechanism
supports the additional configuration options :prefix, :suffix, and :tmpdir.

Comparing Session Storage Options
With all these session options to choose from, which should you use in your
application? As always, the answer is “it depends.”

When it comes to performance, there are few absolutes, and everyone’s
context is different. Your hardware, network latencies, database choices,
and possibly even the weather will impact how all the components of
session storage interact. Our best advice is to start with the simplest
workable solution and then monitor it. If it starts to slow you down, find out
why before jumping out of the frying pan.

If you have a high-volume site, keeping the size of the session data small
and going with cookie_store is the way to go.

If we rule out memory store as being too simplistic, file store as too
restrictive, and memcached as overkill, the server-side choices boil down to
CookieStore, Active Record store, and DRb-based storage. Should you
need to store more in a session than you can with cookies, we recommend
you start with an Active Record solution. If, as your application grows, you
find this becoming a bottleneck, you can migrate to a DRb-based solution.

Session Expiry and Cleanup
One problem with all the server-side session storage solutions is that each
new session adds something to the session store. This means you’ll
eventually need to do some housekeeping or you’ll run out of server
resources.

Another reason to tidy up sessions is that many applications don’t want a
session to last forever. Once a user has logged in from a particular browser,

the application might want to enforce a rule that the user stays logged in
only as long as they’re active; when they log out or some fixed time after
they last use the application, their session should be terminated.

You can sometimes achieve this effect by expiring the cookie holding the
session ID. But this is open to end-user abuse. Worse, it’s hard to
synchronize the expiry of a cookie on the browser with the tidying up of the
session data on the server.

We therefore suggest you expire sessions by simply removing their server-
side session data. Should a browser request subsequently arrive containing a
session ID for data that’s been deleted, the application will receive no
session data; the session will effectively not be there.

Implementing this expiration depends on the storage mechanism being
used.

For Active Record--based session storage, use the updated_at columns in the
sessions table. You can delete all sessions that have not been modified in the
last hour (ignoring daylight saving time changes) by having your sweeper
task issue SQL such as this:

 delete from sessions
 where now() - updated_at > 3600;

For DRb-based solutions, expiry takes place within the DRb server process.
You’ll probably want to record timestamps alongside the entries in the
session data hash. You can run a separate thread (or even a separate
process) that periodically deletes the entries in this hash.

In all cases, your application can help this process by calling reset_session to
delete sessions when they’re no longer needed (for example, when a user
logs out).

Flash: Communicating Between Actions

When we use redirect_to to transfer control to another action, the browser
generates a separate request to invoke that action. That request will be
handled by our application in a fresh instance of a controller object—
instance variables that were set in the original action aren’t available to the
code handling the redirected action. But sometimes we need to
communicate between these two instances. We can do this using a facility
called the flash.

The flash is a temporary scratchpad for values. It’s organized like a hash
and stored in the session data, so you can store values associated with keys
and later retrieve them. It has one special property. By default, values stored
into the flash during the processing of a request will be available during the
processing of the immediately following request. Once that second request
has been processed, those values are removed from the flash.

Probably the most common use of the flash is to pass error and
informational strings from one action to the next. The intent here is that the
first action notices some condition, creates a message describing that
condition, and redirects to a separate action. By storing the message in the
flash, the second action is able to access the message text and use it in a
view. An example of such usage can be found in Iteration E1.

It’s sometimes convenient to use the flash as a way of passing messages
into a template in the current action. For example, our display method might
want to output a cheery banner if there isn’t another, more pressing note. It
doesn’t need that message to be passed to the next action—it’s for use in the
current request only. To do this, it could use flash.now, which updates the
flash but doesn’t add to the session data.

While flash.now creates a transient flash entry, flash.keep does the opposite,
making entries that are currently in the flash stick around for another
request cycle. If you pass no parameters to flash.keep, then all the flash
contents are preserved.

Flashes can store more than just text messages—you can use them to pass
all kinds of information between actions. Obviously, for longer-term
information you’d want to use the session (probably in conjunction with
your database) to store the data, but the flash is great if you want to pass
parameters from one request to the next.

Because the flash data is stored in the session, all the usual rules apply. In
particular, every object must be serializable. We strongly recommend
passing only basic objects like Strings or Hashes in the flash.

Callbacks
Callbacks enable you to write code in your controllers that wrap the
processing performed by actions—you can write a chunk of code once and
have it be called before or after any number of actions in your controller (or
your controller’s subclasses). This turns out to be a powerful facility. Using
callbacks, we can implement authentication schemes, logging, response
compression, and even response customization.

Rails supports three types of callbacks: before, after, and around. Such
callbacks are called just prior to and/or just after the execution of actions.
Depending on how you define them, they either run as methods inside the
controller or are passed to the controller object when they are run. Either
way, they get access to details of the request and response objects, along
with the other controller attributes.

Before and After Callbacks
As their names suggest, before and after callbacks are invoked before or
after an action. Rails maintains two chains of callbacks for each controller.
When a controller is about to run an action, it executes all the callbacks on
the before chain. It executes the action before running the callbacks on the
after chain.

Callbacks can be passive, monitoring activity performed by a controller.
They can also take a more active part in request handling. If a before action
callback returns false, then processing of the callback chain terminates and
the action is not run. A callback may also render output or redirect requests,
in which case the original action never gets invoked.

We saw an example of using callbacks for authorization in the
administration part of our store example in Iteration I3: Limiting Access.
We defined an authorization method that redirected to a login screen if the
current session didn’t have a logged-in user. We then made this method a
before action callback for all the actions in the administration controller.

Callback declarations also accept blocks and the names of classes. If a
block is specified, it’ll be called with the current controller as a parameter.
If a class is given, its filter class method will be called with the controller as
a parameter.

By default, callbacks apply to all actions in a controller (and any subclasses
of that controller). You can modify this with the :only option, which takes
one or more actions on which the callback is invoked, and the :except option,
which lists actions to be excluded from callback.

The before_action and after_action declarations append to the controller’s chain of
callbacks. Use the variants prepend_before_action and prepend_after_action to put
callbacks at the front of the chain.

After callbacks can be used to modify the outbound response, changing the
headers and content if required. Some applications use this technique to
perform global replacements in the content generated by the controller’s
templates (for example, by substituting a customer’s name for the string
<customer/> in the response body). Another use might be compressing the
response if the user’s browser supports it.

Around callbacks wrap the execution of actions. You can write an around
callback in two different styles. In the first, the callback is a single chunk of
code. That code is called before the action is executed. If the callback code
invokes yield, the action is executed. When the action completes, the
callback code continues executing.

Thus, the code before the yield is like a before action callback, and the code
after is the after action callback. If the callback code never invokes yield, the
action isn’t run—this way you can achieve the same result as a before
action callback returning false.

The benefit of around callbacks is that they can retain context across the
invocation of the action.

As well as passing around_action the name of a method, you can pass it a block
or a filter class.

If you use a block as a callback, it’ll be passed two parameters: the
controller object and a proxy for the action. Use call on this second
parameter to invoke the original action.

A second form allows you to pass an object as a callback. This object
should implement a method called filter. This method will be passed the
controller object. It yields to invoke the action.

Like before and after callbacks, around callbacks take :only and :except

parameters.

Around callbacks are (by default) added to the callback chain differently:
the first around action callback added executes first. Subsequently added
around callbacks will be nested within existing around callbacks.

Callback Inheritance

If you subclass a controller containing callbacks, the callbacks will be run
on the child objects as well as in the parent. But callbacks defined in the
children won’t run in the parent.

If you don’t want a particular callback to run in a child controller, you can
override the default processing with the skip_before_action and skip_after_action

declarations. These accept the :only and :except parameters.

You can use skip_action to skip any action callback (before, after, and around).
However, it works only for callbacks that were specified as the (symbol)
name of a method.

We made use of skip_before_action in Iteration I3: Limiting Access.

What We Just Did
We learned how Action Dispatch and Action Controller cooperate to enable
our server to respond to requests. The importance of this can’t be
emphasized enough. In nearly every application, this is the primary place
where the creativity of your application is expressed. While Active Record
and Action View are hardly passive, our routes and our controllers are
where the action is.

We started this chapter by covering the concept of REST, which was the
inspiration for the way in which Rails approaches the routing of requests.
We saw how this provided seven basic actions as a starting point and how to
add more actions. We also saw how to select a data representation (for
example, JSON or XML). And we covered how to test routes.

We then covered the environment that Action Controller provides for your
actions as well as the methods it provides for rendering and redirecting.
Finally, we covered sessions, flash, and callbacks, each of which is
available for use in your application’s controllers.

[103]

[104]

[105]

Along the way, we showed how these concepts were used in the Depot
application. Now that you’ve seen each in use and have been exposed to the
theory behind each, how you combine and use these concepts is limited
only by your own creativity.

In the next chapter, we’ll cover the remaining component of Action Pack,
namely, Action View, which handles the rendering of results.

Footnotes

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

https://github.com/rails/activerecord-session_store#installation

http://memcached.org/

Copyright © 2023, The Pragmatic Bookshelf.

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://github.com/rails/activerecord-session_store#installation
http://memcached.org/

We cover:
Templates
Forms including fields and
uploading files
Helpers
Layouts and partials

Chapter 22

Action View

We’ve seen how the routing component determines which controller to use
and how the controller chooses an action. We’ve seen how the controller
and action between them decide what to render to the user. Normally,
rendering takes place at the end of the action and involves a template.
That’s what this chapter is all about. Action View encapsulates all the
functionality needed to render templates, most commonly generating
HTML, XML, or JavaScript back to the user. As its name suggests, Action
View is the view part of our MVC trilogy.

In this chapter, we’ll start with templates, for which Rails provides a range
of options. We will then cover a number of ways in which users provide
input: forms, file uploads, and links. We’ll complete this chapter by looking
at a number of ways to reduce maintenance using helpers, layouts, and
partials.

Using Templates
When you write a view, you’re writing a template: something that will get
expanded to generate the final result. To understand how these templates
work, we need to look at three areas:

Where the templates go
The environment they run in
What goes inside them

Where Templates Go
The render method expects to find templates in the app/views directory of the
current application. Within this directory, the convention is to have a
separate subdirectory for the views of each controller. Our Depot
application, for instance, includes products and store controllers. As a
result, our application has templates in app/views/products and app/views/store.
Each directory typically contains templates named after the actions in the
corresponding controller.

You can also have templates that aren’t named after actions. You render
such templates from the controller using calls such as these:

 render(action: 'fake_action_name')
 render(template: 'controller/name')
 render(file: 'dir/template')

The last of these allows you to store templates anywhere on your
filesystem. This is useful if you want to share templates across applications.

The Template Environment
Templates contain a mixture of fixed text and code. The code in the
template adds dynamic content to the response. That code runs in an
environment that gives it access to the information set up by the controller:

All instance variables of the controller are also available in the
template. This is how actions communicate data to the templates.

The controller object’s flash, headers, logger, params, request, response, and
session are available as accessor methods in the view. Apart from the
flash, view code probably shouldn’t use these directly, because the
responsibility for handling them should rest with the controller.
However, we do find this useful when debugging. For example, the
following html.erb template uses the debug method to display the contents
of the session, the details of the parameters, and the current response:

 <h4>Session</h4> < %= debug(session) %>
 <h4>Params</h4> < %= debug(params) %>
 <h4>Response</h4> < %= debug(response) %>

The current controller object is accessible using the attribute named
controller. This allows the template to call any public method in the
controller (including the methods in ActionController::Base).

The path to the base directory of the templates is stored in the attribute
base_path.

What Goes in a Template
Out of the box, Rails supports two types of templates:

ERB templates are a mixture of content and embedded Ruby. They’re
typically used to generate HTML pages.

Jbuilder[106] templates generate JSON responses.

By far, the one that you’ll be using the most will be ERB. In fact, you made
extensive use of ERB templates in developing the Depot application.

So far in this chapter, we’ve focused on producing output. In Chapter 21,
Action Dispatch and Action Controller, we focused on processing input. In

a well-designed application, these two are not unrelated: the output we
produce contains forms, links, and buttons that guide the end user to
producing the next set of inputs. As you might expect by now, Rails
provides a considerable amount of help in this area too.

Generating Forms
HTML provides a number of elements, attributes, and attribute values that
control how input is gathered. You certainly could hand-code your form
directly into the template, but there’s no need to.

In this section, we’ll cover a number of helpers that Rails provides that
assist with this process. In Using Helpers, we’ll show you how you can
create your own helpers.

HTML provides a number of ways to collect data in forms. A few of the
more common means are shown in the following screenshot. Note that the
form itself isn’t representative of any sort of typical use; in general, you’ll
use only a subset of these methods to collect data.

Let’s look at the template that was used to produce that form:

rails7/views/app/views/form/input.html.erb

1: <%= form_for(:model) do |form| %>
- <p>
- <%= form. label :input %>
- <%= form. text_field :input , :placeholder => 'Enter text here...' %>

5: </p>
-
- <p>
- <%= form. label :address , :style => 'float: left' %>

http://media.pragprog.com/titles/rails7/code/rails7/views/app/views/form/input.html.erb

- <%= form. text_area :address , :rows => 3, :cols => 40 %>

10:

</p>

-
- <p>
- <%= form. label :color %> :
- <%= form. radio_button :color , 'red' %>

15:

 <%= form. label :red %>

- <%= form. radio_button :color , 'yellow' %>
- <%= form. label :yellow %>
- <%= form. radio_button :color , 'green' %>
- <%= form. label :green %>

20:

</p>

-
- <p>
- <%= form. label 'condiment' %> :
- <%= form. check_box :ketchup %>

25:

 <%= form. label :ketchup %>

- <%= form. check_box :mustard %>
- <%= form. label :mustard %>
- <%= form. check_box :mayonnaise %>
- <%= form. label :mayonnaise %>

30:

</p>

-
- <p>
- <%= form. label :priority %> :
- <%= form. select :priority , (1..10) %>

35:

</p>

-
- <p>
- <%= form. label :start %> :
- <%= form. date_select :start %>

</p>

40:

-
- <p>
- <%= form. label :alarm %> :
- <%= form. time_select :alarm %>

45:

</p>

- <% end %>

In that template, you’ll see a number of labels, such as the one on line 3.
You use labels to associate text with an input field for a specified attribute.
The text of the label will default to the attribute name unless you specify it
explicitly.

You use the text_field and text_area helpers (on lines 4 and 9, respectively) to
gather single-line and multiline input fields. You may specify a placeholder,
which will be displayed inside the field until the user provides a value. Not
every browser supports this function, but those that don’t simply will display
an empty box. Since this will degrade gracefully, there’s no need for you to
design to the least common denominator—make use of this feature, because
those who can see it will benefit from it immediately.

Placeholders are one of the many small “fit and finish” features provided
with HTML5, and once again, Rails is ready even if the browser your users
have installed is not. You can use the search_field, telephone_field, url_field,
email_field, number_field, and range_field helpers to prompt for a specific type of
input. How the browser will make use of this information varies. Some may
display the field slightly differently to more clearly identify its function.
Safari on Mac, for example, will display search fields with rounded corners
and will insert a little x for clearing the field once data entry begins. Some
may provide added validation. For example, Opera will validate URL fields
prior to submission. The iPad will even adjust the virtual onscreen keyboard
to provide ready access to characters such as the @ sign when entering an
email address.

Although the support for these functions varies by browser, those that don’t
provide extra support for these functions simply display a plain, unadorned
input box. Once again, nothing is gained by waiting. If you have an input
field that’s expected to contain an email address, don’t simply use text_field—
go ahead and start using email_field now.

Lines 14, 24, and 34 demonstrate three different ways to provide a
constrained set of options. Although the display may vary a bit from
browser to browser, these approaches are all well supported across all
browsers. The select method is particularly flexible—it can be passed an
Enumeration as shown here, an array of pairs of name-value pairs, or a Hash. A
number of form options helpers[107] are available to produce such lists from
various sources, including the database.

Finally, lines 39 and 44 show prompts for a date and time, respectively. As
you might expect by now, Rails provides plenty of options here too.[108]

Not shown in this example are hidden_field and password_field. A hidden field is
not displayed at all, but the value is passed back to the server. This may be
useful as an alternative to storing transient data in sessions, enabling data
from one request to be passed onto the next. Password fields are displayed,
but the text entered in them is obscured.

This is more than an adequate starter set for most needs. Should you find
that you have additional needs, you’re likely to find a helper or gem is
already available for you. A good place to start is with the Rails Guides.[109]

Meanwhile, let’s explore how the data form’s submit is processed.

Processing Forms
In the figure we can see how the various attributes in the model pass
through the controller to the view, on to the HTML page, and back again
into the model. The model object has attributes such as name, country, and
password. The template uses helper methods to construct an HTML form to
let the user edit the data in the model. Note how the form fields are named.
The country attribute, for example, maps to an HTML input field with the
name user[country].

When the user submits the form, the raw POST data is sent back to our
application. Rails extracts the fields from the form and constructs the params

hash. Simple values (such as the id field, extracted by routing from the form
action) are stored directly in the hash. But if a parameter name has brackets
in it, Rails assumes that it is part of more structured data and constructs a
hash to hold the values. Inside this hash, the string inside the brackets acts
as the key. This process can repeat if a parameter name has multiple sets of
brackets in it.

Form Parameters Params

id=123 { id: "123" }

user[name]=Dave { user: { name: "Dave" }}

user[address][city]=Wien { user: { address: { city: "Wien" }}}

In the final part of the integrated whole, model objects can accept new
attribute values from hashes, which allows us to say this:

 user. update (user_params)

Rails integration goes deeper than this. Looking at the html.erb file in the
preceding figure, we can see that the template uses a set of helper methods
to create the form’s HTML; these are methods such as form_with and text_field.

Before moving on, it’s worth noting that params may be used for more than
text. Entire files can be uploaded. We’ll cover that next.

Uploading Files to Rails Applications
Your application may allow users to upload files. For example, a bug-
reporting system might let users attach log files and code samples to a
problem ticket, or a blogging application could let its users upload a small
image to appear next to their articles.

In HTTP, files are uploaded as a multipart/form-data POST message. As the
name suggests, forms are used to generate this type of message. Within that
form, you’ll use <input> tags with type="file". When rendered by a browser, this
allows the user to select a file by name. When the form is subsequently
submitted, the file or files will be sent back along with the rest of the form
data.

To illustrate the file upload process, we’ll show some code that allows a user
to upload an image and display that image alongside a comment. To do this,
we first need a pictures table to store the data:

rails7/e1/views/db/migrate/20170425000004_create_pictures.rb

 class CreatePictures < ActiveRecord::Migration
 def change
 create_table :pictures do |t|
 t. string :comment
 t. string :name
 t. string :content_type
 # If using MySQL, blobs default to 64k, so we have to give
 # an explicit size to extend them
 t. binary :data , :limit => 1. megabyte
 end
 end
 end

We’ll create a somewhat artificial upload controller just to demonstrate the
process. The get action is pretty conventional; it simply creates a new picture
object and renders a form:

http://media.pragprog.com/titles/rails7/code/rails7/e1/views/db/migrate/20170425000004_create_pictures.rb

rails7/e1/views/app/controllers/upload_controller.rb

 class UploadController < ApplicationController
 def get
 @picture = Picture. new
 end
 # . . .
 private
 # Never trust parameters from the scary internet, only allow the white
 # list through.
 def picture_params
 params. require (:picture). permit (:comment , :uploaded_picture)
 end
 end

The get template contains the form that uploads the picture (along with a
comment). Note how we override the encoding type to allow data to be sent
back with the response:

rails7/e1/views/app/views/upload/get.html.erb

 <%= form_for(:picture ,
 url: { action: 'save' },
 html: { multipart: true }) do |form| %>

 Comment: <%= form. text_field ("comment") %>

 Upload your picture: <%= form. file_field ("uploaded_picture") %>

 <%= submit_tag("Upload file") %>
 <% end %>

The form has one other subtlety. The picture uploads into an attribute called
uploaded_picture. However, the database table doesn’t contain a column of that
name. That means that there must be some magic happening in the model:

rails7/e1/views/app/models/picture.rb

 class Picture < ActiveRecord::Base

 validates_format_of :content_type ,
 with: /\Aimage/ ,

http://media.pragprog.com/titles/rails7/code/rails7/e1/views/app/controllers/upload_controller.rb
http://media.pragprog.com/titles/rails7/code/rails7/e1/views/app/views/upload/get.html.erb
http://media.pragprog.com/titles/rails7/code/rails7/e1/views/app/models/picture.rb

 message: "must be a picture"

 def uploaded_picture =(picture_field)
 self. name = base_part_of(picture_field. original_filename)
 self. content_type = picture_field. content_type . chomp
 self. data = picture_field. read
 end

 def base_part_of (file_name)
 File. basename (file_name). gsub (/[^\w._-]/ , '')
 end
 end

We define an accessor called uploaded_picture= to receive the file uploaded by
the form. The object returned by the form is an interesting hybrid. It’s file-
like, so we can read its contents with the read method; that’s how we get the
image data into the data column. It also has the attributes content_type and
original_filename, which let us get at the uploaded file’s metadata. Accessor
methods pick all this apart, resulting in a single object stored as separate
attributes in the database.

Note that we also add a validation to check that the content type is of the
form image/xxx. We don’t want someone uploading JavaScript.

The save action in the controller is totally conventional:

rails7/e1/views/app/controllers/upload_controller.rb

 def save
 @picture = Picture. new (picture_params)
 if @picture. save
 redirect_to(action: 'show' , id: @picture. id)
 else
 render(action: :get)
 end
 end

Now that we have an image in the database, how do we display it? One way
is to give it its own URL and link to that URL from an image tag. For

http://media.pragprog.com/titles/rails7/code/rails7/e1/views/app/controllers/upload_controller.rb

example, we could use a URL such as upload/picture/123 to return the image for
picture 123. This would use send_data to return the image to the browser. Note
how we set the content type and filename—this lets browsers interpret the
data and supplies a default name should the user choose to save the image:

rails7/e1/views/app/controllers/upload_controller.rb

 def picture
 @picture = Picture. find (params[:id])
 send_data(@picture. data ,
 filename: @picture. name ,
 type: @picture. content_type ,
 disposition: "inline")
 end

Finally, we can implement the show action, which displays the comment and
the image. The action simply loads the picture model object:

rails7/e1/views/app/controllers/upload_controller.rb

 def show
 @picture = Picture. find (params[:id])
 end

In the template, the image tag links back to the action that returns the picture
content. In the following screenshot, we can see the get and show actions.

http://media.pragprog.com/titles/rails7/code/rails7/e1/views/app/controllers/upload_controller.rb
http://media.pragprog.com/titles/rails7/code/rails7/e1/views/app/controllers/upload_controller.rb

rails7/e1/views/app/views/upload/show.html.erb

 <h3> <%= @picture. comment %> </h3>

 <img src= "<%= url_for(:action => 'picture' , :id => @picture. id) %>" />

If you’d like an easier way of dealing with uploading and storing images,
take a look at Active Storage,[110] which we used in Chapter 16, Task K:
Receive Emails and Respond with Rich Text.

Forms and uploads are just two examples of helpers that Rails provides.
Next we’ll show you how you can provide your own helpers and introduce
you to a number of other helpers that come with Rails.

http://media.pragprog.com/titles/rails7/code/rails7/e1/views/app/views/upload/show.html.erb

Using Helpers
Earlier we said it’s OK to put code in templates. Now we’re going to modify
that statement. It’s perfectly acceptable to put some code in templates—
that’s what makes them dynamic. However, it’s poor style to put too much
code in templates.

Three main reasons for this stand out. First, the more code you put in the
view side of your application, the easier it is to let discipline slip and start
adding application-level functionality to the template code. This is definitely
poor form; you want to put application stuff in the controller and model
layers so that it’s available everywhere. This will pay off when you add new
ways of viewing the application.

The second reason is that html.erb is basically HTML. When you edit it,
you’re editing an HTML file. If you have the luxury of having professional
designers create your layouts, they’ll want to work with HTML. Putting a
bunch of Ruby code in there just makes it hard to work with.

The final reason is that code embedded in views is hard to test, whereas
code split out into helper modules can be isolated and tested as individual
units.

Rails provides a nice compromise in the form of helpers. A helper is simply
a module containing methods that assist a view. Helper methods are output-
centric. They exist to generate HTML (or XML, or JavaScript)—a helper
extends the behavior of a template.

Your Own Helpers
By default, each controller gets its own helper module. Additionally, there’s
an application-wide helper named application_helper.rb. It won’t be surprising to
learn that Rails makes certain assumptions to help link the helpers into the
controller and its views. While all view helpers are available to all

controllers, it’s often good practice to organize helpers. Helpers that are
unique to the views associated with the ProductController tend to be placed in a
helper module called ProductHelper in the file product_helper.rb in the app/helpers

directory. You don’t have to remember all these details—the rails generate

controller script creates a stub helper module automatically.

We can use helpers to clean up the application layout a bit. Currently we
have the following:

 <h3> <%= @page_title || "Pragmatic Store" %> </h3>

Let’s move the code that works out the page title into a helper method.
Because we’re in the store controller, we edit the store_helper.rb file in
app/helpers:

 module StoreHelper
 def page_title
 @page_title || "Pragmatic Store"
 end
 end

Now the view code simply calls the helper method:

 <h3> <%= page_title %> </h3>

(We might want to eliminate even more duplication by moving the rendering
of the entire title into a separate partial template, shared by all the
controller’s views, but we don’t talk about partial templates until Partial-
Page Templates.)

Helpers for Formatting and Linking
Rails comes with a bunch of built-in helper methods, available to all views.
Here, we’ll touch on the highlights, but you’ll probably want to look at the
Action View RDoc for the specifics—there’s a lot of functionality in there.

Aside from the general convenience these helpers provide, many of them
also handle internationalization and localization. In Chapter 15, Task J:
Internationalization, we translated much of the application. Many of the
helpers we used handled that for us, such as number_to_currency. It’s always a
good practice to use Rails helpers where they’re appropriate, even if it
seems just as easy to hard-code the output you want.

Formatting Helpers
One set of helper methods deals with dates, numbers, and text:

<%= distance_of_time_in_words(Time.now, Time.local(2016, 12, 25)) %>

4 months

<%= distance_of_time_in_words(Time.now, Time.now + 33, include_seconds: false) %>

1 minute

<%= distance_of_time_in_words(Time.now, Time.now + 33, include_seconds: true) %>

Half a minute

<%= time_ago_in_words(Time.local(2012, 12, 25)) %>

7 months

<%= number_to_currency(123.45) %>

$123.45

<%= number_to_currency(234.56, unit: "CAN$", precision: 0) %>

CAN$235

<%= number_to_human_size(123_456) %>

120.6 KB

<%= number_to_percentage(66.66666) %>

66.667%

<%= number_to_percentage(66.66666, precision: 1) %>

66.7%

<%= number_to_phone(2125551212) %>

212-555-1212

<%= number_to_phone(2125551212, area_code: true, delimiter: " ") %>

(212) 555 1212

<%= number_with_delimiter(12345678) %>

12,345,678

<%= number_with_delimiter(12345678, delimiter: "_") %>

12_345_678

<%= number_with_precision(50.0/3, precision: 2) %>

16.67

The debug method dumps out its parameter using YAML and escapes the
result so it can be displayed in an HTML page. This can help when trying to
look at the values in model objects or request parameters:

<%= debug(params) %>

 --- !ruby/hash:HashWithIndifferentAccess
 name: Dave
 language: Ruby
 action: objects
 controller: test

Yet another set of helpers deals with text, using methods to truncate strings
and highlight words in a string:

<%= simple_format(@trees) %>

Formats a string, honoring line and paragraph breaks. You could give it
the plain text of the Joyce Kilmer poem Trees,[111] and it would add the
HTML to format it as follows.

<p> I think that I shall never see
A poem lovely as a tree.</p>
<p>A tree whose hungry mouth is prest
Against the sweet earth’s

flowing breast; </p>

<%= excerpt(@trees, "lovely", 8) %>

...A poem lovely as a tre...

<%= highlight(@trees, "tree") %>

I think that I shall never see A poem lovely as a <strong
class="highlight">tree. A <strong
class="highlight">tree whose hungry mouth is prest Against
the sweet earth’s flowing breast;

<%= truncate(@trees, length: 20) %>

I think that I sh...

There’s a method to pluralize nouns:

<%= pluralize(1, "person") %> but <%= pluralize(2, "person") %>

1 person but 2 people

If you’d like to do what the fancy websites do and automatically hyperlink
URLs and email addresses, there are helpers to do that. Another one strips
hyperlinks from text.

Back in Iteration A2, we saw how the cycle helper can be used to return the
successive values from a sequence each time it’s called, repeating the
sequence as necessary. This is often used to create alternating styles for the
rows in a table or list. The current_cycle and reset_cycle methods are also
available.

Finally, if you’re writing something like a blog site or you’re allowing users
to add comments to your store, you could offer them the ability to create
their text in Markdown (BlueCloth)[112] or Textile (RedCloth)[113] format.
These are formatters that take text written in human-friendly markup and
convert it into HTML.

Linking to Other Pages and Resources
The ActionView::Helpers::AssetTagHelper and ActionView::Helpers::UrlHelper modules
contain a number of methods that let you reference resources external to the
current template. Of these, the most commonly used is link_to, which creates
a hyperlink to another action in your application:

 < %= link_to "Add Comment", new_comments_path %>

The first parameter to link_to is the text displayed for the link. The next is a
string or hash specifying the link’s target.

An optional third parameter provides HTML attributes for the generated
link:

 <%= link_to "Delete" , product_path(@product),
 { class: "dangerous" , method: 'delete' }
 %>

This third parameter also supports two additional options that modify the
behavior of the link. Each requires JavaScript to be enabled in the browser.

The :method option is a hack—it allows you to make the link look to the
application as if the request were created by a POST, PUT, PATCH, or DELETE,
rather than the normal GET method. This is done by creating a chunk of
JavaScript that submits the request when the link is clicked—if JavaScript is
disabled in the browser, a GET will be generated.

The :data parameter allows you to set custom data attributes. The most
commonly used one is the :confirm option, which takes a short message. If
present, an unobtrusive JavaScript driver will display the message and get
the user’s confirmation before the link is followed:

 <%= link_to "Delete" , product_path(@product),
 method: :delete ,
 data: { confirm: 'Are you sure?' }
 %>

The button_to method works the same as link_to but generates a button in a self-
contained form rather than a straight hyperlink. This is the preferred method
of linking to actions that have side effects. However, these buttons live in
their own forms, which imposes a couple of restrictions: they cannot appear
inline, and they cannot appear inside other forms.

Rails has conditional linking methods that generate hyperlinks if some
condition is met or just return the link text otherwise. link_to_if and
link_to_unless take a condition parameter, followed by the regular parameters to
link_to. If the condition is true (for link_to_if) or false (for link_to_unless), a regular
link will be created using the remaining parameters. If not, the name will be
added as plain text (with no hyperlink).

The link_to_unless_current helper creates menus in sidebars where the current
page name is shown as plain text and the other entries are hyperlinks:

 <% %w{ create list edit save logout } . each do |action| %>

 <%= link_to_unless_current(action. capitalize , action: action) %>

 <% end %>

The link_to_unless_current helper may also be passed a block that’s evaluated
only if the current action is the action given, effectively providing an
alternative to the link. There’s also a current_page helper method that simply
tests whether the current page was generated by the given options.

As with url_for, link_to and friends also support absolute URLs:

 <%= link_to("Help" , "http://my.site/help/index.html") %>

The image_tag helper creates tags. Optional :size parameters (of the form
widthxheight) or separate width and height parameters define the size of the
image:

 <%= image_tag("/assets/dave.png" , class: "bevel" , size: "80x120") %>
 <%= image_tag("/assets/andy.png" , class: "bevel" ,
 width: "80" , height: "120") %>

If you don’t give an :alt option, Rails synthesizes one for you using the
image’s filename. If the image path doesn’t start with a / character, Rails
assumes that it lives under the app/assets/images directory.

You can make images into links by combining link_to and image_tag:

 <%= link_to(image_tag("delete.png" , size: "50x22"),
 product_path(@product),
 data: { confirm: "Are you sure?" },
 method: :delete)
 %>

The mail_to helper creates a mailto: hyperlink that, when clicked, normally
loads the client’s email application. It takes an email address, the name of
the link, and a set of HTML options. Within these options, you can also use
:bcc, :cc, :body, and :subject to initialize the corresponding email fields. Finally,
the magic option encode: "javascript" uses client-side JavaScript to obscure the
generated link, making it harder for spiders to harvest email addresses from
your site. Unfortunately, it also means your users won’t see the email link if
they have JavaScript disabled in their browsers.

 <%= mail_to("support@pragprog.com" , "Contact Support" ,
 subject: "Support question from #{ @user. name}" ,
 encode: "javascript") %>

As a weaker form of obfuscation, you can use the :replace_at and :replace_dot

options to replace the at sign and dots in the displayed name with other
strings. This is unlikely to fool harvesters.

The AssetTagHelper module also includes helpers that make it easy to link to
style sheets and JavaScript code from your pages and to create
autodiscovery Atom feed links. We created links in the layouts for the Depot

application using the stylesheet_link_tag and javascript_importmap_tags methods in the
head:

rails7/depot_r/app/views/layouts/application.html.erb

 <!DOCTYPE html>
 <html>
 <head>
 <title>Pragprog Books Online Store</title>
 <meta name= "viewport" content= "width=device-width,initial-scale=1" >
 <%= csrf_meta_tags %>
 <%= csp_meta_tag %>
 <%= stylesheet_link_tag "inter-font" , "data-turbo-track" : "reload" %>
 <%= stylesheet_link_tag "tailwind" , "data-turbo-track" : "reload" %>

 <%= stylesheet_link_tag "application" , "data-turbo-track" : "reload" %>
 <%= javascript_importmap_tags %>
 </head>

The javascript_importmap_tags method produces a list JavaScript filenames
(assumed to live in app/javascript) which enables these resources to be imported
by your application.

By default, image and style sheet assets are assumed to live in the images and
stylesheets directories relative to the application’s assets directory. If the path
given to an asset tag method starts with a forward slash, then the path is
assumed to be absolute and no prefix is applied. Sometimes it makes sense
to move this static content onto a separate box or to different locations on
the current box. Do this by setting the configuration variable asset_host:

 config. action_controller . asset_host = "http://media.my.url/assets"

Although this list of helpers may seem to be comprehensive, Rails provides
many more; new helpers are introduced with each release, and a select few
are retired or moved off into a plugin where they can be evolved at a
different pace than Rails.

http://media.pragprog.com/titles/rails7/code/rails7/depot_r/app/views/layouts/application.html.erb

Reducing Maintenance with Layouts and Partials
So far in this chapter we’ve looked at templates as isolated chunks of code
and HTML. But one of the driving ideas behind Rails is honoring the DRY
principle and eliminating the need for duplication. The average website,
though, has lots of duplication:

Many pages share the same tops, tails, and sidebars.

Multiple pages may contain the same snippets of rendered HTML (a
blog site, for example, may display an article in multiple places).

The same functionality may appear in multiple places. Many sites have
a standard search component or a polling component that appears in
most of the sites’ sidebars.

Rails provides both layouts and partials that reduce the need for duplication
in these three situations.

Layouts
Rails allows you to render pages that are nested inside other rendered pages.
Typically this feature is used to put the content from an action within a
standard site-wide page frame (title, footer, and sidebar). In fact, if you’ve
been using the generate script to create scaffold-based applications, then
you’ve been using these layouts all along.

When Rails honors a request to render a template from within a controller, it
actually renders two templates. Obviously, it renders the one you ask for (or
the default template named after the action if you don’t explicitly render
anything). But Rails also tries to find and render a layout template (we’ll
talk about how it finds the layout in a second). If it finds the layout, it inserts
the action-specific output into the HTML produced by the layout.

Let’s look at a layout template:

 <html>
 <head>
 <title>Form: <%= controller. action_name %> </title>
 <%= stylesheet_link_tag 'scaffold' %>
 </head>
 <body>

 <%= yield :layout %>

 </body>
 </html>

The layout sets out a standard HTML page, with the head and body sections.
It uses the current action name as the page title and includes a CSS file. In
the body is a call to yield. This is where the magic takes place. When the
template for the action was rendered, Rails stored its content, labeling it
:layout. Inside the layout template, calling yield retrieves this text. In fact, :layout

is the default content returned when rendering, so you can write yield instead
of yield :layout. We personally prefer the slightly more explicit version.

Suppose the my_action.html.erb template contained this:

 <h1> <%= @msg %> </h1>

And also suppose the controller set @msg to Hello, World!. Then the browser
would see the following HTML:

 <html>
 <head>
 <title>Form: my_action</title>
 <link href= "/stylesheets/scaffold.css" media= "screen"
 rel= "Stylesheet" type= "text/css" />
 </head>
 <body>

 <h1>Hello, World!</h1>

 </body>

 </html>

Locating Layout Files
As you’ve probably come to expect, Rails does a good job of providing
defaults for layout file locations, but you can override the defaults if you
need something different.

Layouts are controller-specific. If the current request is being handled by a
controller called store, Rails will by default look for a layout called store

(with the usual html.erb or xml.builder extension) in the app/views/layouts directory.
If you create a layout called application in the layouts directory, it will be applied
to all controllers that don’t otherwise have a layout defined for them.

You can override this using the layout declaration inside a controller. The
most basic invocation is to pass it the name of a layout as a string. The
following declaration will make the template in the file standard.html.erb or
standard.xml.builder the layout for all actions in the store controller.

The layout file will be looked for in the app/views/layouts directory:

 class StoreController < ApplicationController

 layout "standard"

 # ...
 end

You can qualify which actions will have the layout applied to them using the
:only and :except qualifiers:

 class StoreController < ApplicationController

 layout "standard" , except: [:rss , :atom]

 # ...
 end

Specifying a layout of nil turns off layouts for a controller.

Sometimes you need to change the appearance of a set of pages at runtime.
For example, a blogging site might offer a different-looking side menu if the
user is logged in, or a store site might have different-looking pages if the site
is down for maintenance. Rails supports this need with dynamic layouts. If
the parameter to the layout declaration is a symbol, it’s taken to be the name
of a controller instance method that returns the name of the layout to be
used:

 class StoreController < ApplicationController

 layout :determine_layout
 # ...
 private

 def determine_layout
 if Store. is_closed?
 "store_down"
 else
 "standard"
 end
 end
 end

Subclasses of a controller use the parent’s layout unless they override it
using the layout directive. Finally, individual actions can choose to render
using a specific layout (or with no layout at all) by passing render the :layout

option:

 def rss
 render(layout: false) # never use a layout
 end
 def checkout
 render(layout: "layouts/simple")
 end

Passing Data to Layouts

Layouts have access to all the same data that’s available to conventional
templates. In addition, any instance variables set in the normal template will
be available in the layout (because the regular template is rendered before
the layout is invoked). This might be used to parameterize headings or
menus in the layout. For example, the layout might contain this:

 <html>
 <head>
 <title> <%= @title %> </title>
 <%= stylesheet_link_tag 'scaffold' %>
 </head>
 <body>
 <h1> <%= @title %> </h1>
 <%= yield :layout %>
 </body>
 </html>

An individual template could set the title by assigning to the @title variable:

 <% @title = "My Wonderful Life" %>
 <p>
 Dear Diary:
 </p>
 <p>
 Yesterday I had pizza for dinner. It was nice.
 </p>

We can take this further. The same mechanism that lets us use yield :layout to
embed the rendering of a template into the layout also lets you generate
arbitrary content in a template, which can then be embedded into any
template.

For example, different templates may need to add their own template-
specific items to the standard page sidebar. We’ll use the content_for

mechanism in those templates to define content and then use yield in the
layout to embed this content into the sidebar.

In each regular template, use a content_for to give a name to the content
rendered inside a block. This content will be stored inside Rails and will not
contribute to the output generated by the template:

 <h1>Regular Template</h1>

 <% content_for(:sidebar) do %>

 this text will be rendered
 and saved for later
 it may contain <%= "dynamic" %> stuff

 <% end %>
 <p>
 Here's the regular stuff that will appear on
 the page rendered by this template.
 </p>

Then, in the layout, use yield :sidebar to include this block in the page’s
sidebar:

 <!DOCTYPE >
 <html>
 <body>
 <div class= "sidebar" >
 <p>
 Regular sidebar stuff
 </p>
 <div class= "page-specific-sidebar" >
» < %= yield :sidebar % >
 </div>
 </div>
 </body>
 </html>

This same technique can be used to add page-specific JavaScript functions
into the <head> section of a layout, create specialized menu bars, and so on.

Partial-Page Templates

Web applications commonly display information about the same application
object or objects on multiple pages. A shopping cart might display an order
line item on the shopping cart page and again on the order summary page. A
blog application might display the contents of an article on the main index
page and again at the top of a page soliciting comments. Typically this
would involve copying snippets of code between the different template
pages.

Rails, however, eliminates this duplication with the partial-page templates
(more frequently called partials). You can think of a partial as a kind of
subroutine. You invoke it one or more times from within another template,
potentially passing it objects to render as parameters. When the partial
template finishes rendering, it returns control to the calling template.

Internally, a partial template looks like any other template. Externally,
there’s a slight difference. The name of the file containing the template code
must start with an underscore character, differentiating the source of partial
templates from their more complete brothers and sisters.

For example, the partial to render a blog entry might be stored in the file
_article.html.erb in the normal views directory, app/views/blog:

 <div class= "article" >
 <div class= "articleheader" >
 <h3> <%= article. title %> </h3>
 </div>

 <div class= "articlebody" >
 <%= article. body %>
 </div>
 </div>

Other templates use the render(partial:) method to invoke this:

 <%= render(partial: "article" , object: @an_article) %>
 <h3>Add Comment</h3>
 . . .

The :partial parameter to render is the name of the template to render (but
without the leading underscore). This name must be both a valid filename
and a valid Ruby identifier (so a-b and 20042501 are not valid names for
partials). The :object parameter identifies an object to be passed into the
partial. This object will be available within the template via a local variable
with the same name as the template. In this example, the @an_article object
will be passed to the template, and the template can access it using the local
variable article. That’s why we could write things such as article.title in the
partial.

You can set additional local variables in the template by passing render a :locals

parameter. This takes a hash where the entries represent the names and
values of the local variables to set:

 render(partial: 'article' ,
 object: @an_article,
 locals: { authorized_by: session[:user_name],
 from_ip: request. remote_ip })

Partials and Collections
Applications commonly need to display collections of formatted entries. A
blog might show a series of articles, each with text, author, date, and so on.
A store might display entries in a catalog, where each has an image, a
description, and a price.

The :collection parameter to render works in conjunction with the :partial

parameter. The :partial parameter lets us use a partial to define the format of
an individual entry, and the :collection parameter applies this template to each
member of the collection.

To display a list of article model objects using our previously defined
_article.html.erb partial, we could write this:

 <%= render(partial: "article" , collection: @article_list) %>

Inside the partial, the local variable article will be set to the current article
from the collection—the variable is named after the template. In addition,
the variable article_counter will have its value set to the index of the current
article in the collection.

The optional :spacer_template parameter lets you specify a template that will be
rendered between each of the elements in the collection. For example, a
view might contain the following:

rails7/e1/views/app/views/partial/_list.html.erb

 <%= render(partial: "animal" ,
 collection: %w{ ant bee cat dog elk } ,
 spacer_template: "spacer")
 %>

This uses _animal.html.erb to render each animal in the given list, rendering the
partial _spacer.html.erb between each. Say _animal.html.erb contains this:

rails7/e1/views/app/views/partial/_animal.html.erb

 <p>The animal is <%= animal %> </p>

And _spacer.html.erb contains this:

rails7/e1/views/app/views/partial/_spacer.html.erb

 <hr />

Your users would see a list of animal names with a line between each.

Shared Templates
If the first option or :partial parameter to a render call is a String with no
slashes, Rails assumes that the target template is in the current controller’s
view directory. However, if the name contains one or more / characters,
Rails assumes that the part up to the last slash is a directory name and the

http://media.pragprog.com/titles/rails7/code/rails7/e1/views/app/views/partial/_list.html.erb
http://media.pragprog.com/titles/rails7/code/rails7/e1/views/app/views/partial/_animal.html.erb
http://media.pragprog.com/titles/rails7/code/rails7/e1/views/app/views/partial/_spacer.html.erb

rest is the template name. The directory is assumed to be under app/views. This
makes it easy to share partials and subtemplates across controllers.

The convention among Rails applications is to store these shared partials in
a subdirectory of app/views called shared. Render shared partials using
statements such as these:

 <%= render("shared/header" , locals: { title: @article. title }) %>
 <%= render(partial: "shared/post" , object: @article) %>
 . . .

In this previous example, the @article object will be assigned to the local
variable post within the template.

Partials with Layouts
Partials can be rendered with a layout, and you can apply a layout to a block
within any template:

 < %= render partial: "user", layout: "administrator" %>

 <%= render layout: "administrator" do %>
 # ...
 <% end %>

Partial layouts are to be found directly in the app/views directory associated
with the controller along with the customary underbar prefix, such as
app/views/users/_administrator.html.erb.

Partials and Controllers
It isn’t just view templates that use partials. Controllers also get in on the
act. Partials give controllers the ability to generate fragments from a page
using the same partial template as the view. This is particularly important
when you’re using Ajax support to update just part of a page from the
controller—use partials, and you know your formatting for the table row or
line item that you’re updating will be compatible with that used to generate
its brethren initially.

Taken together, partials and layouts provide an effective way to make sure
that the user interface portion of your application is maintainable. But being
maintainable is only part of the story; doing so in a way that also performs
well is also crucial.

What We Just Did
Views are the public face of Rails applications, and we’ve seen that Rails
delivers extensive support for what you need to build robust and
maintainable user and application programming interfaces.

We started with templates, of which Rails provides built-in support for three
types: ERB, Builder, and SCSS. Templates make it easy for us to provide
HTML, JSON, XML, CSS, and JavaScript responses to any request. We’ll
discuss adding another option in Creating HTML Templates with Slim.

We dove into forms, which are the primary means by which users will
interact with your application. Along the way, we covered uploading files.

We continued with helpers, which enable us to factor out complex
application logic to allow our views to focus on presentation aspects. We
explored a number of helpers that Rails provides, ranging from basic
formatting to hypertext links, which are the final way in which users interact
with HTML pages.

We completed our tour of Action View by covering two related ways of
factoring out large chunks of content for reuse. We use layouts to factor out
the outermost layers of a view and provide a common look and feel. We use
partials to factor out common inner components, such as a single form or
table.

That covers how a user with a browser will access our Rails application.
Next up: covering how we define and maintain the schema of the database
our application will use to store data.

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

Footnotes

https://github.com/rails/jbuilder

http://api.rubyonrails.org/classes/ActionView/Helpers/FormOptionsHelper.html

http://api.rubyonrails.org/classes/ActionView/Helpers/DateHelper.html

http://guides.rubyonrails.org/form_helpers.html

https://edgeguides.rubyonrails.org/active_storage_overview.html

https://www.poetryfoundation.org/poetrymagazine/poems/12744/trees

https://github.com/rtomayko/rdiscount

http://redcloth.org/

Copyright © 2023, The Pragmatic Bookshelf.

https://github.com/rails/jbuilder
http://api.rubyonrails.org/classes/ActionView/Helpers/FormOptionsHelper.html
http://api.rubyonrails.org/classes/ActionView/Helpers/DateHelper.html
http://guides.rubyonrails.org/form_helpers.html
https://edgeguides.rubyonrails.org/active_storage_overview.html
https://www.poetryfoundation.org/poetrymagazine/poems/12744/trees
https://github.com/rtomayko/rdiscount
http://redcloth.org/

We cover:
Naming migration files
Renaming and columns
Creating and renaming tables
Defining indices and keys
Using native SQL

Chapter 23

Migrations

Rails encourages an agile, iterative style of development. We don’t expect
to get everything right the first time. Instead, we write tests and interact
with our customers to refine our understanding as we go.

For that to work, we need a supporting set of practices. We write tests to
help us design our interfaces and to act as a safety net when we change
things, and we use version control to store our application’s source files,
allowing us to undo mistakes and to monitor what changes day to day.

But there’s another area of the application that changes, an area that we
can’t directly manage using version control. The database schema in a Rails
application constantly evolves as we progress through the development: we
add a table here, rename a column there, and so on. The database changes in
step with the application’s code.

With Rails, each of those steps is made possible through the use of a
migration. You saw this in use throughout the development of the Depot
application, starting when we created the first products table in Generating
the Scaffold, and when we performed such tasks as adding a quantity to the
line_items table in Iteration E1: Creating a Smarter Cart. Now it’s time to dig
deeper into how migrations work and what else you can do with them.

Creating and Running Migrations
A migration is simply a Ruby source file in your application’s db/migrate

directory. Each migration file’s name starts with a number of digits
(typically fourteen) and an underscore. Those digits are the key to
migrations, because they define the sequence in which the migrations are
applied—they’re the individual migration’s version number.

The version number is the Coordinated Universal Time (UTC) timestamp at
the time the migration was created. These numbers contain the four-digit
year, followed by two digits each for the month, day, hour, minute, and
second, all based on the mean solar time at the Royal Observatory in
Greenwich, London. Because migrations tend to be created relatively
infrequently and the accuracy is recorded down to the second, the chances
of any two people getting the same timestamp is vanishingly small. And the
benefit of having timestamps that can be deterministically ordered far
outweighs the miniscule risk of this occurring.

Here’s what the db/migrate directory of our Depot application looks like:

 depot> ls db/migrate
 20221207000001_create_products.rb
 20221207000002_create_carts.rb
 20221207000003_create_line_items.rb
 20221207000004_add_quantity_to_line_items.rb
 20221207000005_combine_items_in_cart.rb
 20221207000006_create_orders.rb
 20221207000007_add_order_id_to_line_item.rb
 20221207000008_create_users.rb

Although you could create these migration files by hand, it’s easier (and
less error prone) to use a generator. As we saw when we created the Depot
application, two generators create migration files:

The model generator creates a migration to in turn create the table
associated with the model (unless you specify the --skip-migration option).
As the example that follows shows, creating a model called discount also
creates a migration called yyyyMMddhhmmss_create_discounts.rb:

 depot> bin/rails generate model discount
 invoke active_record
» create db/migrate/20221207133549_create_discounts.rb
 create app/models/discount.rb
 invoke test_unit
 create test/models/discount_test.rb
 create test/fixtures/discounts.yml

You can also generate a migration on its own.

 depot> bin/rails generate migration add_price_column
 invoke active_record
» create db/migrate/20221207133814_add_price_column.rb

Later, starting in Anatomy of a Migration, we’ll see what goes in the
migration files. But for now, let’s jump ahead a little in the workflow and
see how to run migrations.

Running Migrations
Migrations are run using the db:migrate Rake task:

 depot> bin/rails db:migrate

To see what happens next, let’s dive down into the internals of Rails.

The migration code maintains a table called schema_migrations inside every
Rails database. This table has just one column, called version, and it will have
one row per successfully applied migration.

When you run bin/rails db:migrate, the task first looks for the schema_migrations

table. If it doesn’t yet exist, it’ll be created.

The migration code then looks at the migration files in db/migrate and skips
from consideration any that have a version number (the leading digits in the
filename) that’s already in the database. It then proceeds to apply the
remainder of the migrations, creating a row in the schema_migrations table for
each.

If we were to run migrations again at this point, nothing much would
happen. Each of the version numbers of the migration files would match
with a row in the database, so there’d be no migrations to apply.

But if we subsequently create a new migration file, it will have a version
number not in the database. This is true even if the version number was
before one or more of the already applied migrations. This can happen
when multiple users are using a version control system to store the
migration files. If we then run migrations, this new migration file—and
only this migration file—will be executed. This may mean that migrations
are run out of order, so you might want to take care and ensure that these
migrations are independent. Or you might want to revert your database to a
previous state and then apply the migrations in order.

You can force the database to a specific version by supplying the VERSION=

parameter to the rake db:migrate command:

 depot> bin/rails db:migrate VERSION=20221207000009

If the version you give is greater than any of the migrations that have yet to
be applied, these migrations will be applied.

If, however, the version number on the command line is less than one or
more versions listed in the schema_migrations table, something different
happens. In these circumstances, Rails looks for the migration file whose
number matches the database version and undoes it. It repeats this process
until there are no more versions listed in the schema_migrations table that
exceed the number you specified on the command line. That is, the

migrations are unapplied in reverse order to take the schema back to the
version that you specify.

You can also redo one or more migrations:

 depot> bin/rails db:migrate:redo STEP=3

By default, redo will roll back one migration and rerun it. To roll back
multiple migrations, pass the STEP= parameter.

Anatomy of a Migration
Migrations are subclasses of the Rails class ActiveRecord::Migration. When
necessary, migrations can contain up and down methods:

 class SomeMeaningfulName < ActiveRecord::Migration
 def up
 # ...
 end

 def down
 # ...
 end
 end

The name of the class, after all uppercase letters are downcased and
preceded by an underscore, must match the portion of the filename after the
version number. For example, the previous class could be found in a file
named 20221207000017_some_meaningful_name.rb. No two migrations can contain
classes with the same name.

The up method is responsible for applying the schema changes for this
migration, while the down method undoes those changes. Let’s make this
more concrete. Here’s a migration that adds an e_mail column to the orders

table:

 class AddEmailToOrders < ActiveRecord::Migration
 def up
 add_column :orders , :e_mail , :string
 end

 def down
 remove_column :orders , :e_mail
 end
 end

See how the down method undoes the effect of the up method? You can also
see a bit of duplication here. In many cases, Rails can detect how to
automatically undo a given operation. For example, the opposite of
add_column is clearly remove_column. In such cases, by simply renaming up to
change, you can eliminate the need for a down:

 class AddEmailToOrders < ActiveRecord::Migration
 def change
 add_column :orders , :e_mail , :string
 end
 end

Now isn’t that much cleaner?

Column Types
The third parameter to add_column specifies the type of the database column.
In the prior example, we specified that the e_mail column has a type of :string.
But what does this mean? Databases typically don’t have column types of
:string.

Remember that Rails tries to make your application independent of the
underlying database; you could develop using SQLite 3 and deploy to
Postgres if you wanted, for example. But different databases use different
names for the types of columns. If you used a SQLite 3 column type in a
migration, that migration might not work if applied to a Postgres database.
So, Rails migrations insulate you from the underlying database type
systems by using logical types. If we’re migrating a SQLite 3 database, the
:string type will create a column of type varchar(255). On Postgres, the same
migration adds a column with the type char varying(255).

The types supported by migrations are :binary, :boolean, :date, :datetime, :decimal,
:float, :integer, :string, :text, :time, and :timestamp. The default mappings of these
types for the database adapters in Rails are shown in the following tables:

db2 mysql openbase oracledb2 mysql openbase oracle
:binary blob(32768) blob object blob
:boolean decimal(1) tinyint(1) boolean number(1)
:date date date date date
:datetime timestamp datetime datetime date
:decimal decimal decimal decimal decimal
:float float float float number
:integer int int(11) integer number(38)
:string varchar(255) varchar(255) char(4096) varchar2(255)
:text clob(32768) text text clob
:time time time time date
:timestamp timestamp datetime timestamp date

postgresql sqlite sqlserver sybase
:binary bytea blob image image
:boolean boolean boolean bit bit
:date date date date datetime
:datetime timestamp datetime datetime datetime
:decimal decimal decimal decimal decimal
:float float float float(8) float(8)
:integer integer integer int int
:string (note 1) varchar(255) varchar(255) varchar(255)
:text text text text text
:time time datetime time time
:timestamp timestamp datetime datetime timestamp

Using these tables, you could work out that a column declared to be :integer

in a migration would have the underlying type integer in SQLite 3 and
number(38) in Oracle.

You can use three options when defining most columns in a migration;
decimal columns take an additional two options. Each of these options is
given as a key: value pair. The common options are as follows:

null: true or false

If false, the underlying column has a not null constraint added (if the
database supports it). Note that this is independent of any presence: true

validation, which may be performed at the model layer.

limit: size

This sets a limit on the size of the field. It appends the string (size) to
the database column type definition.

default: value

This sets the default value for the column. Since it’s performed by the
database, you don’t see this in a new model object when you initialize
it or even when you save it. You have to reload the object from the
database to see this value. Note that the default is calculated once, at
the point the migration is run, so the following code will set the default
column value to the date and time when the migration was run:

 add_column :orders , :placed_at , :datetime , default: Time. now

In addition, decimal columns take the options :precision and :scale. The :precision

option specifies the number of significant digits that will be stored, and the
:scale option determines where the decimal point will be located in these
digits (think of the scale as the number of digits after the decimal point). A
decimal number with a precision of 5 and a scale of 0 can store numbers
from -99,999 to +99,999. A decimal number with a precision of 5 and a
scale of 2 can store the range -999.99 to +999.99.

The :precision and :scale parameters are optional for decimal columns.
However, incompatibilities between different databases lead us to strongly
recommend that you include the options for each decimal column.

Here are some column definitions using the migration types and options:

 add_column :orders , :attn , :string , limit: 100
 add_column :orders , :order_type , :integer
 add_column :orders , :ship_class , :string , null: false , default: 'priority'
 add_column :orders , :amount , :decimal , precision: 8, scale: 2

Renaming Columns
When we refactor our code, we often change our variable names to make
them more meaningful. Rails migrations allow us to do this to database
column names too. For example, a week after we first added it, we might
decide that e_mail isn’t the best name for the new column. We can create a
migration to rename it using the rename_column method:

 class RenameEmailColumn < ActiveRecord::Migration
 def change
 rename_column :orders , :e_mail , :customer_email
 end
 end

As rename_column is reversible, separate up and down methods aren’t required in
order to use it.

Note that the rename doesn’t destroy any existing data associated with the
column. Also be aware that renaming is not supported by all the adapters.

Changing Columns
change_column Use the change_column method to change the type of a column or
to alter the options associated with a column. Use it the same way you’d use
add_column, but specify the name of an existing column. Let’s say that the
order type column is currently an integer, but we need to change it to be a
string. We want to keep the existing data, so an order type of 123 will
become the string "123". Later, we’ll use noninteger values such as "new" and
"existing".

Changing from an integer column to a string is one line of code:

 def up
 change_column :orders , :order_type , :string
 end

However, the opposite transformation is problematic. We might be tempted
to write the obvious down migration:

 def down
 change_column :orders , :order_type , :integer
 end

But if our application has taken to storing data like "new" in this column, the
down method will lose it—"new" can’t be converted to an integer. If that’s
acceptable, then the migration is acceptable as it stands. If, however, we
want to create a one-way migration—one that can’t be reversed—we’ll
want to stop the down migration from being applied. In this case, Rails
provides a special exception that we can throw:

 class ChangeOrderTypeToString < ActiveRecord::Migration
 def up
 change_column :orders , :order_type , :string , null: false
 end

 def down
 raise ActiveRecord::IrreversibleMigration
 end
 end

ActiveRecord::IrreversibleMigration is also the name of the exception that Rails will
raise if you attempt to call a method that can’t be automatically reversed
from within a change method.

Managing Tables
So far we’ve been using migrations to manipulate the columns in existing
tables. Now let’s look at creating and dropping tables:

 class CreateOrderHistories < ActiveRecord::Migration
 def change
 create_table :order_histories do |t|
 t. integer :order_id , null: false
 t. text :notes

 t. timestamps
 end
 end
 end

create_table takes the name of a table (remember, table names are plural) and a
block. (It also takes some optional parameters that we’ll look at in a
minute.) The block is passed a table definition object, which we use to
define the columns in the table.

Generally the call to drop_table isn’t needed, as create_table is reversible.
drop_table accepts a single parameter, which is the name of the table to drop.

The calls to the various table definition methods should look familiar—
they’re similar to the add_column method we used previously, except these
methods don’t take the name of the table as the first parameter and the name
of the method itself is the data type desired. This reduces repetition.

Note that we don’t define the id column for our new table. Unless we say
otherwise, Rails migrations automatically add a primary key called id to all
tables they create. For a deeper discussion of this, see Primary Keys.

The timestamps method creates both the created_at and updated_at columns, with
the correct timestamp data type. Although there’s no requirement to add these

columns to any particular table, this is yet another example of Rails making
it easy for a common convention to be implemented easily and consistently.

Options for Creating Tables
You can pass a hash of options as a second parameter to create_table. If you
specify force: true, the migration will drop an existing table of the same name
before creating the new one. This is a useful option if you want to create a
migration that forces a database into a known state, but there’s clearly a
potential for data loss.

The temporary: true option creates a temporary table—one that goes away
when the application disconnects from the database. This is clearly
pointless in the context of a migration, but as we’ll see later, it does have its
uses elsewhere.

The options: "xxxx" parameter lets you specify options to your underlying
database. They’re added to the end of the CREATE TABLE statement, right
after the closing parenthesis. Although this is rarely necessary with SQLite
3, it may at times be useful with other database servers. For example, some
versions of MySQL allow you to specify the initial value of the
autoincrementing id column. We can pass this in through a migration as
follows:

 create_table :tickets , options: "auto_increment = 10000" do |t|
 t. text :description
 t. timestamps
 end

Behind the scenes, migrations will generate the following DDL from this
table description when configured for MySQL:

 CREATE TABLE "tickets" (
 "id" int (11) default null auto_increment primary key ,
 "description" text ,
 "created_at" datetime ,

 "updated_at" datetime
) auto_increment = 10000;

Be careful when using the :options parameter with MySQL. The Rails
MySQL database adapter sets a default option of ENGINE=InnoDB. This
overrides any local defaults you have and forces migrations to use the
InnoDB storage engine for new tables. Yet, if you override :options, you’ll
lose this setting; new tables will be created using whatever database engine
is configured as the default for your site. You may want to add an explicit
ENGINE=InnoDB to the options string to force the standard behavior in this
case. You probably want to keep using InnoDB if you’re using MySQL
because this engine gives you transaction support. You might need this
support in your application, and you’ll definitely need it in your tests if
you’re using the default of transactional test fixtures.

Renaming Tables
If refactoring leads us to rename variables and columns, then it’s probably
not a surprise that we sometimes find ourselves renaming tables too.
Migrations support the rename_table method:

 class RenameOrderHistories < ActiveRecord::Migration
 def change
 rename_table :order_histories , :order_notes
 end
 end

Rolling back this migration undoes the change by renaming the table back.

Problems with rename_table
When we rename tables in migrations, a subtle problem arises.

For example, let’s assume that in migration 4 we create the order_histories table
and populate it with some data:

 def up
 create_table :order_histories do |t|

 t. integer :order_id , null: false
 t. text :notes

 t. timestamps
 end

 order = Order. find :first
 OrderHistory. create (order_id: order, notes: "test")
 end

Later, in migration 7, we rename the table order_histories to order_notes. At this
point we’ll also have renamed the model OrderHistory to OrderNote.

Now we decide to drop our development database and reapply all
migrations. When we do so, the migrations throw an exception in migration
4: our application no longer contains a class called OrderHistory, so the
migration fails.

One solution, proposed by Tim Lucas, is to create local dummy versions of
the model classes needed by a migration within the migration. For example,
the following version of the fourth migration will work even if the
application no longer has an OrderHistory class:

 class CreateOrderHistories < ActiveRecord::Migration

» class Order < ApplicationRecord::Base; end
» class OrderHistory < ApplicationRecord::Base; end

 def change
 create_table :order_histories do |t|
 t. integer :order_id , null: false
 t. text :notes

 t. timestamps
 end

 order = Order. find :first
 OrderHistory. create (order: order_id, notes: "test")
 end
 end

This works as long as our model classes don’t contain any additional
functionality that would have been used in the migration—all we’re
creating here is a bare-bones version.

Defining Indices
Migrations can (and probably should) define indices for tables. For
example, we might notice that once our application has a large number of
orders in the database, searching based on the customer’s name takes longer
than we’d like. It’s time to add an index using the appropriately named
add_index method:

 class AddCustomerNameIndexToOrders < ActiveRecord::Migration
 def change
 add_index :orders , :name
 end
 end

If we give add_index the optional parameter unique: true, a unique index will be
created, forcing values in the indexed column to be unique.

By default the index will be given the name index_table_on_column. We
can override this using the name: "somename" option. If we use the :name option
when adding an index, we’ll also need to specify it when removing the
index.

We can create a composite index—an index on multiple columns—by
passing an array of column names to add_index.

Indices are removed using the remove_index method.

Primary Keys
Rails assumes every table has a numeric primary key (normally called id)
and ensures the value of this column is unique for each new row added to a
table. We’ll rephrase that.

Rails doesn’t work too well unless each table has a primary key that Rails
can manage. By default, Rails will create numeric primary keys, but you
can also use other types such as UUIDs, depending on what your actual
database provides. Rails is less fussy about the name of the column. So for
your average Rails application, our strong advice is to go with the flow and
let Rails have its id column.

If you decide to be adventurous, you can start by using a different name for
the primary key column (but keeping it as an incrementing integer). Do this
by specifying a :primary_key option on the create_table call:

 create_table :tickets , primary_key: :number do |t|
 t. text :description

 t. timestamps
 end

This adds the number column to the table and sets it up as the primary key:

 $ sqlite3 db/development.sqlite3 ".schema tickets"
 CREATE TABLE tickets ("number" INTEGER PRIMARY KEY AUTOINCREMENT
 NOT NULL, "description" text DEFAULT NULL, "created_at" datetime
 DEFAULT NULL, "updated_at" datetime DEFAULT NULL);

The next step in the adventure might be to create a primary key that isn’t an
integer. Here’s a clue that the Rails developers don’t think this is a good
idea: migrations don’t let you do this (at least not directly).

Tables with No Primary Key
Sometimes we may need to define a table that has no primary key. The most
common case in Rails is for join tables—tables with just two columns
where each column is a foreign key to another table. To create a join table
using migrations, we have to tell Rails not to automatically add an id
column:

 create_table :authors_books , id: false do |t|
 t. integer :author_id , null: false

 t. integer :book_id , null: false
 end

In this case, you might want to investigate creating one or more indices on
this table to speed navigation between books and authors.

Advanced Migrations
Most Rails developers use the basic facilities of migrations to create and
maintain their database schemas. But every now and then it’s useful to push
migrations just a bit further. This section covers some more advanced
migration usage.

Using Native SQL
Migrations give you a database-independent way of maintaining your
application’s schema. However, if migrations don’t contain the methods you
need to be able to do what you need to do, you’ll need to drop down to
database-specific code. Rails provides two ways to do this. One is with
options arguments to methods like add_column. The second is the execute method.

When you use options or execute, you might well be tying your migration to a
specific database engine, because any SQL you provide in these two
locations uses your database’s native syntax.

An example of where you might need to use raw SQL is if you’re creating a
custom data type inside your database. Postgres, for example, allows you to
specify enumerated types. Enumerated types work just fine with Rails; but
to create them in a migration, you have to use SQL and thus execute. Suppose
we wanted to create an enumerated type for the various pay types we
supported in our checkout form (which we created in Chapter 12, Task G:
Check Out!):

 class AddPayTypes < ActiveRecord::Migrations[6.0]
 def up
 execute %{
 CREATE TYPE
 pay_type
 AS ENUM (
 'check',
 'credit card',

 'purchase order'
)
 }
 end

 def down
 execute "DROP TYPE pay_type"
 end
 end

Note that if you need to model your database using execute, you should
consider changing your schema dump format from “ruby” to “SQL,” as
outlined in the Rails Guide.[114] The schema dump is used during tests to
create an empty database with the same schema you’re using in production.

Custom Messages and Benchmarks
Although not exactly an advanced migration, something that’s useful to do
within advanced migrations is to output our own messages and benchmarks.
We can do this with the say_with_time method:

 def up
 say_with_time "Updating prices..." do
 Person. all . each do |p|
 p. update_attribute :price , p. lookup_master_price
 end
 end
 end

say_with_time prints the string passed before the block is executed and prints
the benchmark after the block completes.

When Migrations Go Bad
Migrations suffer from one serious problem. The underlying DDL
statements that update the database schema are not transactional. This isn’t
a failing in Rails—most databases don’t support the rolling back of create

table, alter table, and other DDL statements.

Let’s look at a migration that tries to add two tables to a database:

 class ExampleMigration < ActiveRecord::Migration
 def change
 create_table :one do ...
 end
 create_table :two do ...
 end
 end
 end

In the normal course of events, the up method adds tables, one and two, and
the down method removes them.

But what happens if there’s a problem creating the second table? We’ll end
up with a database containing table one but not table two. We can fix
whatever the problem is in the migration, but now we can’t apply it—if we
try, it will fail because table one already exists.

We could try to roll the migration back, but that won’t work. Because the
original migration failed, the schema version in the database wasn’t
updated, so Rails won’t try to roll it back.

At this point, you could mess around and manually change the schema
information and drop table one. But it probably isn’t worth it. Our
recommendation in these circumstances is simply to drop the entire
database, re-create it, and apply migrations to bring it back up-to-date.
You’ll have lost nothing, and you’ll know you have a consistent schema.

All this discussion suggests that migrations are dangerous to use on
production databases. Should you run them? We really can’t say. If you
have database administrators in your organization, it’ll be their call. If it’s
up to you, you’ll have to weigh the risks. But if you decide to go for it, you
really must back up your database first. Then you can apply the migrations
by going to your application’s directory on the machine with the database
role on your production servers and executing this command:

 depot> RAILS_ENV=production bin/rails db:migrate

This is one of those times where the legal notice at the start of this book
kicks in. We’re not liable if this deletes your data.

Schema Manipulation Outside Migrations
All the migration methods described so far in this chapter are also available
as methods on Active Record connection objects and so are accessible
within the models, views, and controllers of a Rails application.

For example, you might have discovered that a particular long-running
report runs a lot faster if the orders table has an index on the city column. But
that index isn’t needed during the day-to-day running of the application, and
tests have shown that maintaining it slows the application appreciably.

Let’s write a method that creates the index, runs a block of code, and then
drops the index. This could be a private method in the model or could be
implemented in a library:

 def run_with_index (*columns)
 connection. add_index (:orders , *columns)
 begin
 yield
 ensure
 connection. remove_index (:orders , *columns)
 end
 end

The statistics-gathering method in the model can use this as follows:

 def get_city_statistics
 run_with_index(:city) do
 # .. calculate stats
 end
 end

What We Just Did
While we had been informally using migrations throughout the
development of the Depot application and even into deployment, in this
chapter we saw how migrations are the basis for a principled and

[114]

disciplined approach to configuration management of the schema for your
database.

You learned how to create, rename, and delete columns and tables, to
manage indices and keys, to apply and back out entire sets of changes, and
even to add your own custom SQL into the mix, all in a completely
reproducible manner.

At this point we’ve covered the externals of Rails. The next chapter is going
to show a few more involved ways of customizing Rails to demonstrate just
how flexible Rails can be when you need it. We’ll see how to use RSpec for
testing, use Slim instead of ERB for templating, and use Webpack to
manage your CSS.

Footnotes

http://guides.rubyonrails.org/active_record_migrations.html#schema-dumping-and-you

Copyright © 2023, The Pragmatic Bookshelf.

http://guides.rubyonrails.org/active_record_migrations.html#schema-dumping-and-you

We cover:
Replacing Rails’ testing
framework with RSpec
Using Slim for HTML templates
instead of ERB

Chapter 24

Customizing and Extending Rails

As you’ve come to learn, Rails provides an answer for almost every
question you have about building a modern web application. It provides the
basics for handling requests, accessing a database, writing user interfaces,
and running tests. It does this by having a tightly integrated design, which is
often referred to as Rails being “opinionated software.”

This tight coupling comes at a price. If, for example, the way Rails manages
CSS doesn’t meet the needs of your project, you could be in trouble. Or if
you prefer to write your tests in a different way, Rails doesn’t give you a lot
of options. Or does it? In the early days of Rails, customizing it was
difficult or impossible. Starting with Rails 3, much effort was expended to
make Rails more customizable. With Rails 7, developers have the flexibility
to use the tools they prefer or that work the way they want to work. That’s
what we’ll explore in this chapter.

We’ll replace four parts of Rails in this chapter. First, we’ll write a Web
Component instead of using Stimulus. Then we’ll see how to use RSpec
instead of Rails’ default testing library to write our tests. Next, we’ll replace
ERB for the alternative templating language Slim. Finally, we’ll see how to
manage CSS using Webpack instead of putting it in app/assets/stylesheets. This
chapter will demonstrate another benefit to Rails, which is that you don’t
have to throw out the parts that work for you to use alternatives that work
better. Let’s get started.

Creating a Reusable Web Component
Web Components[115] are an industry standard way of extending HTML
itself to implement custom behaviors and presentation.

You don’t need to start from scratch when building a web component. You
can build upon a rich ecosystem of npm[116] packages. We’ll make use of lit.
[117] We start by “pinning” it to our application so that it can be imported:

 > bin/importmap pin lit
 Pinning "lit" to https://.../index.js
 Pinning "@lit/reactive-element" to https://.../reactive-element.js
 Pinning "lit-element/lit-element.js" to https://.../lit-element.js
 Pinning "lit-html" to https://.../lit-html.js
 Pinning "lit-html/is-server.js" to https://.../is-server.js

Next, we’ll write a web component. The following example renders the
current time in blue. Create a directory named app/javascript/elements and create
a file named current-time.js in that directory with the following contents:

 import {html, css, LitElement} from 'lit' ;

 class CurrentTime extends LitElement {
 static styles = css ̀span { color: blue }` ;

 render() {
 return html ̀ ${ new Date().toLocaleTimeString()} ` ;
 }
 }

 customElements.define('current-time' , CurrentTime);

This code imports three properties from the lit package and defines a class
that extends LitElement by defining a style that’s scoped to this single element
function that returns an HTML fragment. Finally, a new custom element is
defined and associated with this class.

Next, we import this file into our application by adding a single line to
app/javascript/application.js:

 // Configure your import map in config/importmap.rb.
 // Read more: https://github.com/rails/importmap-rails
 import "@hotwired/turbo-rails"
 import "controllers"

 <!-- START_HIGHLIGHT -->
 import "./elements/current-time.js"
 <!-- END_HIGHLIGHT -->

With this in place, the current time can be added to any HTML template by
adding the following HTML:

 <current-time>

This just scratches the surface of what can be done with Web Components.
On the lit site you can find plenty of examples. A good place to start is on
the page for Reactive Controllers,[118] which shows how you can add state
and reactivity to a clock element.

Testing with RSpec
RSpec is an alternative to MiniTest, which Rails uses. It’s different in almost
every way, and many developers prefer it. Here’s what one of our existing
tests might look like written in RSpec:

 RSpec. describe Cart do

 let(:cart) { Cart. create }
 let(:book_one) { products(:ruby) }
 let(:book_two) { products(:two) }

 before do
 cart. add_product (book_one). save!
 cart. add_product (book_two). save!
 end

 it "can have multiple products added" do
 expect(cart. line_items . size). to eq(2)
 end

 it "calculates the total price of all products" do
 expect(cart. total_price). to eq(book_one. price + book_two. price)
 end
 end

It almost looks like a different programming language! Developers who
prefer RSpec like that the test reads like English: “Describe Cart, it can have
multiple products added, expect cart.line_items.size to eq 2.”

We’re going to quickly go through how to write tests in RSpec without too
much explanation. A great book for that is already available—Effective
Testing with RSpec 3 [MD17]—so we’ll learn just enough RSpec to see it
working with Rails, which demonstrates Rails’ configurability. Although
many developers who use RSpec set it up from the start of a project, you
don’t have to. RSpec can be added at any time, and that’s what we’ll do
here.

Add rspec-rails to your Gemfile, putting it in the development and test groups:

 group :development , :test do
 gem 'rspec-rails'
 end

After you bundle install, a new generator will set up RSpec for you:

 > bin/rails generate rspec:install
 create .rspec
 create spec
 create spec/spec_helper.rb
 create spec/rails_helper.rb

Verify the configuration is working by running the new task Rspec installed,
spec:

 > bin/rails spec
 No examples found.

 Finished in 0.00058 seconds (files took 0.11481 seconds to load)
 0 examples, 0 failures

Let’s reimplement the test for Cart as an RSpec test or spec. RSpec includes
generators to create starter specs for us, similar to what Rails does with
scaffolding. To create a model spec, use the spec:model generator:

 > bin/rails generate spec:model Cart
 create spec/models/cart_spec.rb

Now rerun spec, and we can see RSpec’s generator has created a pending
spec:

 > bin/rails spec
 Pending: (Failures listed here are expected and do not affect
 your suite's status)

 1) Cart add some examples to (or delete) spec/models/cart_spec.rb
 # Not yet implemented
 # ./spec/models/cart_spec.rb:4

 Finished in 0.00284 seconds (files took 1.73 seconds to load)
 1 example, 0 failures, 1 pending

To reimplement the test for Cart as a spec, let’s first review the existing test:

rails7/depot_u/test/models/cart_test.rb

 require 'test_helper'

 class CartTest < ActiveSupport::TestCase
 def setup
 @cart = Cart. create
 @book_one = products(:ruby)
 @book_two = products(:two)
 end

 test "add unique products" do
 @cart. add_product (@book_one). save!
 @cart. add_product (@book_two). save!
 assert_equal 2, @cart. line_items . size
 assert_equal @book_one. price + @book_two. price , @cart. total_price
 end

 test "add duplicate product" do
 @cart. add_product (@book_one). save!
 @cart. add_product (@book_one). save!
 assert_equal 2*@book_one. price , @cart. total_price
 assert_equal 1, @cart. line_items . size
 assert_equal 2, @cart. line_items [0]. quantity
 end
 end

The setup creates a cart and fetches two products from the fixtures. It then
tests the add_product in two ways: by adding two distinct products and by
adding the same product twice.

Let’s start with the setup. By default, RSpec is configured to look in
spec/fixtures for fixtures. This is correct for a project using RSpec from the

http://media.pragprog.com/titles/rails7/code/rails7/depot_u/test/models/cart_test.rb

start, but for us, the fixtures are in test/fixtures. Change this by editing
spec/rails_helper.rb:

rails7/depot_xa/spec/rails_helper.rb

 RSpec. configure do |config|
 # Remove this line if you're not using ActiveRecord or ActiveRecord fixtures
» config. fixture_path = "#{ ::Rails. root}/test/fixtures"

Back to the spec—its setup will need to create a Cart to use in our tests as
well as fetch two products from fixtures. By default, fixtures aren’t available
in specs, but you can call fixtures to make them available. Here’s what the
setup looks like:

rails7/depot_xa/spec/models/cart_spec.rb

 require 'rails_helper'

 RSpec. describe Cart, type: :model do

» fixtures :products
» subject(:cart) { Cart. new }
»
» let(:book_one) { products(:ruby) }
» let(:book_two) { products(:two) }

This definitely doesn’t look like our original test! The call to subject declares
the variable cart, which you’ll use in the tests later. The calls to let declare
other variables that can be used in the tests. The reason for two methods that
seemingly do the same thing is an RSpec convention. The object that’s the
focus of the test is declared with subject. Ancillary data needed for the test is
declared with let.

The tests themselves will also look different from their equivalents in a
standard Rails test. For one thing, they aren’t called tests but rather
examples. Also, it’s customary for each example to make only one assertion.

http://media.pragprog.com/titles/rails7/code/rails7/depot_xa/spec/rails_helper.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_xa/spec/models/cart_spec.rb

The existing test of adding different products makes two assertions, so in the
spec, that means two examples.

Assertions look different in RSpec as well:

 expect(actual_value). to eq(expected_value)

Applying this to the two assertions around adding distinct items, we have
two examples (we’ll show you where this code goes in a moment):

 it "has two line items" do
 expect(cart. line_items . size). to eq(2)
 end
 it "has a total price of the two items' price" do
 expect(cart. total_price). to eq(book_one. price + book_two. price)
 end

These assertions won’t succeed unless items are added to the cart first. That
code could go inside each example, but RSpec allows you to extract
duplicate setup code into a block using before:

 before do
 cart. add_product (book_one). save!
 cart. add_product (book_two). save!
 end
 it "has two line items" do
 expect(cart. line_items . size). to eq(2)
 end
 it "has a total price of the two items' price" do
 expect(cart. total_price). to eq(book_one. price + book_two. price)
 end

This setup is only relevant to some of the tests of the add_product method,
specifically the tests around adding different items. To test adding the same
item twice, you’ll need different setups. To make this happen, wrap the
above code in a block using context. context takes a string that describes the
context we’re creating and acts as a scope for before blocks. It’s also
customary to wrap all examples of the behavior of a method inside a block
given to describe.

Given all that, here’s what the first half of your spec should look like:

rails7/depot_xa/spec/models/cart_spec.rb

» describe "#add_product" do
» context "adding unique products" do
» before do
» cart. add_product (book_one). save!
» cart. add_product (book_two). save!
» end
»
» it "has two line items" do
» expect(cart. line_items . size). to eq(2)
» end
» it "has a total price of the two items' price" do
» expect(cart. total_price). to eq(book_one. price + book_two. price)
» end
» end

Here’s the second half of the spec, which tests the behavior of add_product

when adding the same item twice:

rails7/depot_xa/spec/models/cart_spec.rb

 require 'rails_helper'

 RSpec. describe Cart, type: :model do

» fixtures :products
» subject(:cart) { Cart. new }
»
» let(:book_one) { products(:ruby) }
» let(:book_two) { products(:two) }
»
» describe "#add_product" do
» context "adding unique products" do
» before do
» cart. add_product (book_one). save!
» cart. add_product (book_two). save!
» end
»
» it "has two line items" do

http://media.pragprog.com/titles/rails7/code/rails7/depot_xa/spec/models/cart_spec.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_xa/spec/models/cart_spec.rb

» expect(cart. line_items . size). to eq(2)
» end
» it "has a total price of the two items' price" do
» expect(cart. total_price). to eq(book_one. price + book_two. price)
» end
» end

» context "adding duplicate products" do
» before do
» cart. add_product (book_one). save!
» cart. add_product (book_one). save!
» end
»
» it "has one line item" do
» expect(cart. line_items . size). to eq(1)
» end
» it "has a line item with a quantity of 2" do
» expect(cart. line_items . first . quantity). to eq(2)
» end
» it "has a total price of twice the product's price" do
» expect(cart. total_price). to eq(book_one. price * 2)
» end
» end
 end

 end

Running bin/rails spec, it should pass:

 > bin/rails spec

 Finished in 0.11007 seconds (files took 1.72 seconds to load)
 5 examples, 0 failures

A lot of code in this file isn’t executing a test, but all the calls to describe,
context, and it aren’t for naught. Passing SPEC_OPTS="--format=doc" to the spec
task, the test output is formatted like the documentation of the Cart class:

 > bin/rails spec SPEC_OPTS="--format=doc"

 Cart

 #add_product
 adding unique products
 has two line items
 has a total price of the two items' price
 adding duplicate products
 has one line item
 has a line item with a quantity of 2
 has a total price of twice the product's price

 Finished in 0.14865 seconds (files took 1.76 seconds to load)
 5 examples, 0 failures

Also note that rspec-rails changes the Rails generators to create empty spec
files in spec/ instead of test files in test/. This means that you use all the
generators and scaffolding you’re used to in your normal workflow without
having to worry about the wrong type of test file being created.

If all of this seems strange to you, you’re not alone. It is strange, and the
reasons RSpec is designed this way, as well as why you might want to use it,
are nuanced and beyond the scope of this book. The main point all this
proves is that you can replace a major part of Rails with an alternative and
still get all the benefits of the rest of Rails. It’s also worth noting that RSpec
is popular, and you’re very likely to see it in the wild.

Let’s learn more about Rails’ configurability by replacing another major
piece of Rails—ERB templates.

Creating HTML Templates with Slim
Slim is a templating language that can replace ERB.[119] It’s designed to
require much less code to achieve the same results, and it does this by using
a nested structure instead of HTML tags. Consider this ERB:

 <h2> <%= t('.title') %> </h2>
 <table>
 <%= render(cart. line_items) %>

 <tr class= "total_line" >
 <td colspan= "2" >Total</td>
 <td class= "total_cell" > <%= number_to_currency(cart. total_price) %> </td>
 </tr>

 </table>

In Slim, it would look like so:

 h2
 = t('.title')
 table
 = render(cart. line_items)

 tr.total_line
 td.colspan=2
 Total
 td.total_cell
 = number_to_currency(cart. total_price)

Slim treats each line as an opening HTML tag, and anything indented under
that line will be rendered inside that tag. Helper methods and instance
variables can be accessed using =, like so:

 ul
 li = link_to @product. name , product_path(@product)

To execute logic, such as looping over a collection, use -, like so:

 ul
 - @products. each do |product|
 li
 - if product. available?
 = link_to product. name , product_path(product)
 - else
 = "#{ product. name} out of stock"

The code after - is executed as Ruby, but note that no end keyword is needed
—Slim inserts that for you.

Slim allows you to specify HTML classes by following a tag with a . and the
class name:

 h1.title This title has the "title" class!

And, in a final bit of ultracompactness, if you want to create a div with an
HTML class on it, you can omit div entirely. This creates a div with the class
login-form that contains two text inputs:

 .login-form
 input type=text name=username
 input type=password name=password

Putting all this together, let’s install Slim and reimplement the home page in
app/views/store/index.html.erb using it. This will demonstrate how Rails allows us
to completely replace its templating engine.

First, install slim-rails by adding it to the Gemfile:

 gem 'slim-rails'

After you bundle install, your Rails app will now render files ending in slim as a
Slim template. We can see this by removing app/views/store/index.html.erb and
creating app/views/stores/index.slim like so:

rails7/depot_xb/app/views/store/index.slim

 - if notice

http://media.pragprog.com/titles/rails7/code/rails7/depot_xb/app/views/store/index.slim

 aside #notice = notice

 h1 = t('.title_html')

 ul.catalog
 - cache @products do
 - @products. each do |product|
 - cache product do
 li
 = image_tag(product. image_url)
 h2 = product. title
 p = sanitize(product. description)
 .price
 = number_to_currency(product. price)
 = button_to t('.add_html'),
 line_items_path(product_id: product, locale: I18n. locale),
 remote: true

Restart your server if you have it running, and you should see the home page
render the same as before.

In addition to being able to render Slim, installing slim-rails changes Rails
generators to create Slim files instead of ERB, so all of the scaffolding and
other generators you’re used to will now produce Slim templates
automatically. You can even convert your existing ERB templates to Slim by
using the erb2slim command, available by installing the html2slim RubyGem.[120]

Customizing Rails in Other Ways
Customizing the edges of Rails, like you did in the preceding section with
CSS, HTML templates, and tests, tends to be more straightforward, and
more options are out there for you. Customizing Rails’ internals is more
difficult. If you want, you can remove Active Record entirely and use
libraries like Sequel or ROM,[121][122] but you’d be giving up a lot—Active
Record is tightly coupled with many parts of Rails.

Tight coupling is usually viewed as a problem, but it’s this coupling that
allows you to be so productive using Rails. The more you change your
Rails app into a loosely coupled assembly of unrelated libraries, the more
work you have to do getting the pieces to talk to each other. Finding the
right balance is up to you, your team, or your project.

The Rails ecosystem is also filled with plugins and enhancements to address
common needs that aren’t common enough to be added to Rails itself. For
example, Kaminari provides pagination for when you need to let a user
browse hundreds or thousands of records.[123] Ransack and Searchkick
provide advanced ways of searching your database with Active Record.[124]

[125] CarrierWave makes uploading files to your Rails app much more
straightforward than hand-rolling it yourself.[126]

And if you want to analyze and improve the code inside your Rails app,
RuboCop can check that you’re using a consistent style,[127] while Brakeman
can check for common security vulnerabilities.[128]

These extras are the tip of the iceberg. The community of extensions and
plugins for Rails is yet another benefit to building your next web
application with Rails.

Where to Go from Here
Congratulations! We’ve covered a lot of ground together.

In Part I, you installed Rails, verified the installation using a basic
application, got exposed to the architecture of Rails, and got acquainted (or
maybe reacquainted) with the Ruby language.

In Part II, you iteratively built an application and built up test cases along
the way. We designed this application to touch on all aspects of Rails that
every developer needs to be aware of.

Whereas Parts I and II of this book each served a single purpose, Part III
served a dual role.

For some of you, Part III methodically filled in the gaps and covered
enough for you to get real work done. For others, these will be the first
steps of a much longer journey.

For most of you, the real value is a bit of both. A firm foundation is
required for you to be able to explore further. And that’s why we started this
part with a chapter that not only covered the convention and configuration
of Rails but also covered the generation of documentation.

Then we proceeded to devote a chapter each to the model, view, and
controller, which are the backbone of the Rails architecture. We covered
topics ranging from database relationships to the REST architecture to
HTML forms and helpers.

We covered migration as an essential maintenance tool for the deployed
application’s database.

Finally, we split Rails apart and explored the concept of gems from a
number of perspectives, from making use of individual Rails components

[115]

[116]

[117]

[118]

[119]

[120]

[121]

separately to making full use of the foundation upon which Rails is built
and, finally, to building and extending the framework to suit your needs.

At this point, you have the necessary context and background to more
deeply explore whatever areas suit your fancy or are needed to solve that
vexing problem you face. We recommend you start by visiting the Ruby on
Rails site and exploring each of the links across the top of that page.[129]

Some of this will be quick refreshers of materials presented in this book,
but you’ll also find plenty of links to current information on how to report
problems, learn more, and keep up-to-date.

Additionally, please continue to contribute to the forums mentioned in the
book’s introduction.

Pragmatic Bookshelf has more books on Ruby and Rails subjects as well as
plenty of related categories that go beyond Ruby and Rails, such as
technical practices; testing, design, and cloud computing; and tools,
frameworks, and languages.

You can find these and many other categories at http://www.pragprog.com/.

We hope you’ve enjoyed learning about Ruby on Rails as much as we’ve
enjoyed writing this book!

Footnotes

https://developer.mozilla.org/en-US/docs/Web/Web_Components

https://www.npmjs.com/

https://lit.dev/

https://lit.dev/docs/composition/controllers/

http://slim-lang.com

https://github.com/slim-template/html2slim

http://www.pragprog.com/
https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://www.npmjs.com/
https://lit.dev/
https://lit.dev/docs/composition/controllers/
http://slim-lang.com/
https://github.com/slim-template/html2slim

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

http://sequel.jeremyevans.net/

http://rom-rb.org/

https://github.com/kaminari/kaminari

https://github.com/activerecord-hackery/ransack

https://github.com/ankane/searchkick

https://github.com/carrierwaveuploader/carrierwave

https://github.com/bbatsov/rubocop

https://github.com/presidentbeef/brakeman

http://rubyonrails.org/

Copyright © 2023, The Pragmatic Bookshelf.

http://sequel.jeremyevans.net/
http://rom-rb.org/
https://github.com/kaminari/kaminari
https://github.com/activerecord-hackery/ransack
https://github.com/ankane/searchkick
https://github.com/carrierwaveuploader/carrierwave
https://github.com/bbatsov/rubocop
https://github.com/presidentbeef/brakeman
http://rubyonrails.org/

[FH13]

[Hun19]

[MD17]

[Val13]

Thank you!
We hope you enjoyed this book and that you’re already thinking about what
you want to learn next. To help make that decision easier, we’re offering you
this gift.

Head on over to https://pragprog.com right now, and use the coupon code
BUYANOTHER2023 to save 30% on your next ebook. Offer is void where
prohibited or restricted. This offer does not apply to any edition of the The
Pragmatic Programmer ebook.

And if you’d like to share your own expertise with the world, why not
propose a writing idea to us? After all, many of our best authors started off as
our readers, just like you. With a 50% royalty, world-class editorial services,
and a name you trust, there’s nothing to lose. Visit

Bibliography

Dave Thomas, with Chad Fowler and Andy Hunt. Programming
Ruby 1.9 & 2.0 (4th edition). The Pragmatic Bookshelf, Raleigh,
NC, 4th, 2013.
David Thomas, Andrew Hunt. The Pragmatic Programmer, 20th
Anniversary Edition. The Pragmatic Bookshelf, Raleigh, NC,
2019.
Myron Marston and Ian Dees. Effective Testing with RSpec 3. The
Pragmatic Bookshelf, Raleigh, NC, 2017.
José Valim. Crafting Rails 4 Applications. The Pragmatic
Bookshelf, Raleigh, NC, 2013.

Copyright © 2023, The Pragmatic Bookshelf.

https://pragprog.com/

Crafting Rails 4 Applications
Get ready to see Rails as you’ve never seen it
before. Learn how to extend the framework, change
its behavior, and replace whole components to bend
it to your will. Eight different test-driven tutorials
will help you understand Rails’ inner workings and
prepare you to tackle complicated projects with
solutions that are well-tested, modular, and easy to
maintain. This second edition of the bestselling

Crafting Rails Applications has been updated to Rails 4 and discusses
new topics such as streaming, mountable engines, and thread safety.

José Valim

(208 pages) ISBN: 9781937785550 $36

Metaprogramming Ruby 2
Write powerful Ruby code that is easy to maintain
and change. With metaprogramming, you can
produce elegant, clean, and beautiful programs.
Once the domain of expert Rubyists,
metaprogramming is now accessible to
programmers of all levels. This thoroughly revised
and updated second edition of the bestselling
Metaprogramming Ruby explains

You May Be Interested In…
Select a cover for more information

http://pragmaticprogrammer.com/titles/jvrails2
http://pragmaticprogrammer.com/titles/ppmetr2

metaprogramming in a down-to-earth style and arms you with a practical
toolbox that will help you write your best Ruby code ever.

Paolo Perrotta

(276 pages) ISBN: 9781941222126 $38

Programming Ruby 1.9 & 2.0 (4th edition)
Ruby is the fastest growing and most exciting
dynamic language out there. If you need to get
working programs delivered fast, you should add
Ruby to your toolbox. This book is the only
complete reference for both Ruby 1.9 and Ruby 2.0,
the very latest version of Ruby.

Dave Thomas, with Chad Fowler and Andy Hunt

(886 pages) ISBN: 9781937785499 $50

Ruby Performance Optimization
You don’t have to accept slow Ruby or Rails
performance. In this comprehensive guide to Ruby
optimization, you’ll learn how to write faster Ruby
code—but that’s just the beginning. See exactly
what makes Ruby and Rails code slow, and how to
fix it. Alex Dymo will guide you through perils of
memory and CPU optimization, profiling,
measuring, performance testing, garbage collection,

and tuning. You’ll find that all those “hard” things aren’t so difficult after
all, and your code will run orders of magnitude faster.

http://pragmaticprogrammer.com/titles/ruby4
http://pragmaticprogrammer.com/titles/adrpo

Alexander Dymo

(200 pages) ISBN: 9781680500691 $36

Rails 5 Test Prescriptions
Does your Rails code suffer from bloat, brittleness,
or inaccuracy? Cure these problems with the regular
application of test-driven development. You’ll use
Rails 5.2, Minitest 5, and RSpec 3.7, as well as
popular testing libraries such as factory_bot and
Cucumber. Updates include Rails 5.2 system tests
and Webpack integration. Do what the doctor
ordered to make your applications feel all better.

Side effects may include better code, fewer bugs, and happier developers.

Noel Rappin

(404 pages) ISBN: 9781680502503 $47.95

Rails, Angular, Postgres, and Bootstrap, Second Edition
Achieve awesome user experiences and
performance with simple, maintainable code!
Embrace the full stack of web development, from
styling with Bootstrap, building an interactive user
interface with Angular 4, to storing data quickly
and reliably in PostgreSQL. With this fully revised
new edition, take a holistic view of full-stack
development to create usable, high-performing

applications with Rails 5.1.

http://pragmaticprogrammer.com/titles/nrtest3
http://pragmaticprogrammer.com/titles/dcbang2

David Bryant Copeland

(342 pages) ISBN: 9781680502206 $39.95

Creating Software with Modern Diagramming Techniques
Diagrams communicate relationships more directly
and clearly than words ever can. Using only text-
based markup, create meaningful and attractive
diagrams to document your domain, visualize user
flows, reveal system architecture at any desired
level, or refactor your code. With the tools and
techniques this book will give you, you’ll create a
wide variety of diagrams in minutes, share them

with others, and revise and update them immediately on the basis of
feedback. Adding diagrams to your professional vocabulary will enable
you to work through your ideas quickly when working on your own code
or discussing a proposal with colleagues.

Ashley Peacock

(156 pages) ISBN: 9781680509830 $29.95

Designing Data Governance from the Ground Up
Businesses own more data than ever before, but it’s
of no value if you don’t know how to use it. Data
governance manages the people, processes, and
strategy needed for deploying data projects to
production. But doing it well is far from easy: Less
than one fourth of business leaders say their
organizations are data driven. In Designing Data

http://pragmaticprogrammer.com/titles/apdiag
http://pragmaticprogrammer.com/titles/lmmlops

Governance from the Ground Up, you’ll build a cross-functional strategy
to create roadmaps and stewardship for data-focused projects, embed
data governance into your engineering practice, and put processes in
place to monitor data after deployment.

Lauren Maffeo

(100 pages) ISBN: 9781680509809 $29.95

	Foreword to the Rails 7 Edition
	Preface to the Rails 7 Edition
	Acknowledgments
	Introduction
	Rails Simply Feels Right
	Rails Is Agile
	Who This Book Is For
	How to Read This Book

	Part I. Getting Started
	1. Installing Rails
	Installing on Windows
	Installing on macOS
	Installing on Linux
	Choosing a Rails Version
	Setting Up Your Development Environment
	Rails and Databases

	2. Instant Gratification
	Creating a New Application
	Hello, Rails!
	Linking Pages Together
	When Things Go Wrong

	3. The Architecture of Rails Applications
	Models, Views, and Controllers
	Rails Model Support
	Action Pack: The View and Controller

	4. Introduction to Ruby
	Ruby Is an Object-Oriented Language
	Data Types
	Logic
	Organizing Structures
	Marshaling Objects
	Pulling It All Together
	Ruby Idioms

	Part II. Building an Application
	5. The Depot Application
	Incremental Development
	What Depot Does
	Let’s Code

	6. Task A: Creating the Application
	Iteration A1: Creating the Product Maintenance Application
	Iteration A2: Making Prettier Listings

	7. Task B: Validation and Unit Testing
	Iteration B1: Validating!
	Iteration B2: Unit Testing of Models

	8. Task C: Catalog Display
	Iteration C1: Creating the Catalog Listing
	Iteration C2: Adding a Page Layout
	Iteration C3: Using a Helper to Format the Price
	Iteration C4: Functional Testing of Controllers
	Iteration C5: Caching of Partial Results

	9. Task D: Cart Creation
	Iteration D1: Finding a Cart
	Iteration D2: Connecting Products to Carts
	Iteration D3: Adding a Button

	10. Task E: A Smarter Cart
	Iteration E1: Creating a Smarter Cart
	Iteration E2: Handling Errors
	Iteration E3: Finishing the Cart

	11. Task F: Hotwiring the Storefront
	Iteration F1: Moving the Cart
	Iteration F2: Creating a Hotwired Cart
	Iteration F3: Highlighting Changes
	Iteration F4: Broadcasting Updates with Action Cable

	12. Task G: Check Out!
	Iteration G1: Capturing an Order
	Iteration G2: Adding Fields Dynamically to a Form
	Iteration G3: Testing Our JavaScript Functionality

	13. Task H: Sending Emails and Processing Payments Efficiently
	Iteration H1: Sending Confirmation Emails
	Iteration H2: Connecting to a Slow Payment Processor with Active Job

	14. Task I: Logging In
	Iteration I1: Adding Users
	Iteration I2: Authenticating Users
	Iteration I3: Limiting Access
	Iteration I4: Adding a Sidebar, More Administration

	15. Task J: Internationalization
	Iteration J1: Selecting the Locale
	Iteration J2: Translating the Storefront
	Iteration J3: Translating Checkout
	Iteration J4: Adding a Locale Switcher

	16. Task K: Receive Emails and Respond with Rich Text
	Iteration K1: Receiving Support Emails with Action Mailbox
	Iteration K2: Storing Support Requests from Our Mailbox
	Iteration K3: Responding with Rich Text

	17. Task L: Deployment and Production
	Configuring the Database
	Managing Secrets
	Building a Docker Image
	Getting Up and Running
	Checking Up on a Deployed Application

	18. Depot Retrospective
	Rails Concepts
	Documenting What We’ve Done

	Part III. Rails in Depth
	19. Finding Your Way Around Rails
	Where Things Go
	Naming Conventions

	20. Active Record
	Defining Your Data
	Locating and Traversing Records
	Creating, Reading, Updating, and Deleting (CRUD)
	Participating in the Monitoring Process
	Transactions

	21. Action Dispatch and Action Controller
	Dispatching Requests to Controllers
	Processing of Requests
	Objects and Operations That Span Requests

	22. Action View
	Using Templates
	Generating Forms
	Processing Forms
	Uploading Files to Rails Applications
	Using Helpers
	Reducing Maintenance with Layouts and Partials

	23. Migrations
	Creating and Running Migrations
	Anatomy of a Migration
	Managing Tables
	Advanced Migrations
	When Migrations Go Bad
	Schema Manipulation Outside Migrations

	24. Customizing and Extending Rails
	Creating a Reusable Web Component
	Testing with RSpec
	Creating HTML Templates with Slim
	Customizing Rails in Other Ways
	Where to Go from Here

	Bibliography

