Visual Studio
Code Distilled

Evolved Code Editing for Windows,
macOS, and Linux

Third Edition

Alessandro Del Sole

APress

Visual Studio Code
Distilled

Evolved Code Editing for Windows,
macOS, and Linux

Third Edition

Alessandro Del Sole

Apress’

Visual Studio Code Distilled: Evolved Code Editing for Windows, macOS, and Linux

Alessandro Del Sole
Cremona, Italy

ISBN-13 (pbk): 978-1-4842-9483-3 ISBN-13 (electronic): 978-1-4842-9484-0
https://doi.org/10.1007/978-1-4842-9484-0

Copyright © 2023 by Alessandro Del Sole

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava

Development Editor: Laura Berendson

Coordinating Editor: Mark Powers

Copy Editor: Kezia Endsley

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (github.com/apress). For more detailed information, please visit http://www.apress.
com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-9484-0

To my wonderful wife, Angelica. You are my reason to live.

Table of Contents

About the AUROFcccceemmismsinsnssssss s nnnnnn s xiii
Acknowledgments.......cccceuuisssmmmmmmmmmmmssssssssssnnssmesssssssssssnnsseesssssssssnnnnnnsesssssssnnnnnnnnness XV
INtroduction........ccccumnmmmnsmsmmsns s ———————— Xvii
Chapter 1: Introducing Visual Studio Code.........cccusmmmmsamnmsssnnmsssnsssssnsssssnnssssnnssssnnssss 1
Visual Studio Code, a Cross-Platform Development TOOIccovverververnsensensesessssessessessesessessesses 1
When and Why Visual STUdio COUE.........evrrerrerierenerrereresensesesessssessessesssssssessesssssssessessesssssssessens 2
Installing and Configuring Visual Studio Codeccvvvmrririnnnsnsne s 4
Installing Visual Studio Code on WindOWS. ... snes 6
Installing Visual Studio Code on macOS..........c.ccovirininn s 8
Installing Visual Studio Code 0N LiNUX.........ccccvirenniinnnenesnsisse s ssssese s sesse s sssssssessesnes 9
LoCaliZation SUPPOI.......coi it nne s 11
Updating Visual Studio Code...........cocveerieniininnesn s sressssessesnens 12
Previewing Features with Insiders BUildS ... 14
Visual Studio Cotde 0N WED..........coeeeeerecrrce e 16
SUIMIMAIY....eiiereecre e s e e s e s se e e e s e e e Re e s ae e ne e e e nRe e s ra e nennn e nrnnees 17
Chapter 2: Getting to Know the Environmentccccnnnmmmmmmmnnnnnmmsssssssssnsesnns 19
The WEICOME PAQE........ccoerueereerinesesesese s s s sr s e e s ses s nsesnssssenenss 19
THE COUE EGITOr.......cccieieeirecerese s e nr s 21
Reordering, Resizing, and Zooming Editor WindOWSc.cccevenernsesnennnesenssesessesessesensnnes 22

LILLLCIS LT3 - - 22

L (LYo 11T 7 T SR 23
T3 L= 3 27 S 24
The EXPIOrer Bar.........ccvciiiecirinese sttt st 24

THE SEAICH TOOcoveeeeeeer e se e e nnene s 30

TABLE OF CONTENTS

THE Gt BAF....civieieecireressscse s p s 31
The Run and Debug Bar ... s s e s ss s e s s sssesnesaesnens 32
The EXEENSIONS Bar ..o s s 33
The AcCOUNES BUHON........cccoiircc e 34
The SEttiNgS BULION.......cccvivirieriere e s e s r e s s sa e e s saennes 36
Navigating BetWEEN Files ... s 36
The Command PalBHE ... s 37
THE PANEIS AFBQceevrecereeserree s e e n e nne e nre e 38
The Problems PanEL..........ccovceienmneneresessssesese s s ssssesesssssssssessssessssssssssnens 38
The QUEPUL PANEI ..ottt s 40
The Debug ConSole PANEL...........ccoveerenerreserese s sessssesssnens 40
Working with the Terminal...........ccoeeerecnnnnnesrserr s 41
SUMIMAIY ...ttt e e be e b e e e e e R e e e R e e ee e e e e Re e be e nr e e rnrene s 43
Chapter 3: Language Support and Code Editing Featurescccinnnsnnnnnnsssnnnnnnns 45
IR T4 10112 T L= T 1 o 010 S 45
Working With C# and G+ccevverererirerere s serese s sesse e e s e s s e ssessessesessessesesssssessesaes 46
Working With PYENONcoueieircr st sae s s 47
WOrKing With JUI@.......cveererieiriirere s s sr e s s sae e s e s nnes 48

L L0 T TR N T O 48
Basic Code Editing FEATUIEScccvvererrreriererissessere s s sesessessssesessessssessessessesssssssessessessssensesas 48
WOrKIing With TEXT.....cceceriiriirre st s n e s n e s e 49
L P Q0] (0] 2 1T O 50
Delimiter Matching and Text SEIECHONccccvvvrerir v s 51
COdE BIOCK FOIOING....ceruerreieriererseserserersessessssessessessssessessesssssssessessessssessessesssssssessessessssensessens 52
MURICUISOS ..ot s 52
Reusable Code SNIPPELS.......ccvvrrerierrrerrere s s s s e e s ssesessessesaessssessesaessssessesseses 53

L 0T o B 00T T o] 1= (03 54
MiInIMAP MOGE.........oririee e s s a e s a e s ae e n 55
L1031 (] | R 56
Whitespace Rendering and BreadCrumbscoccvvvverininninnensensesses s ssessesssessessessens 57
MarkdOWN PrEVIBW.......cciviiereeriee s s s 58

TABLE OF CONTENTS

EVOIVEd COAE EQItiNG......ccceererrereriererersrserersessesessessessesessessessessssessessesasssssessessesssssssessessessnsensesas 59
Working With INTEllISENSE........ccvvrerrrirrerere s se s s e e s e saesnes 60
Parameter HiNtS........oocc v 62
Inline Documentation With TOOHIPSccocvreririnin 63
Go to Definition and Peek Definition............ccocvriniinnnnsssssssese s 64
Go to Implementation and Peek Implementations.........cccvvvvrvrrerevensnseniennsensessesesessenensens 66
FiINAING RETEIENCES.....cicve et s a e e s e s n 67
Renaming Symbols and Identifiers.......cccvovrrrrrierinnnsniesesssessesessssessessesessssessessessssessessenes 70
LiVE COUE ANAIYSIS....ererrerrererserersessssersessessessssessessessssessessessessssessessesssssssessesssssssessessessssensessens 72
Hints About INTEHICOUEceeererirrecerr s 80

3111 1117 OO R 80

Chapter 4: Working with Files and Folders........cccvuummmmmmmmmssnnnmmssssnsssssssssssssssssssssess 81

Visual Studio Code and Project SYSIEMSccovoerreirnrcrre e 81

Working with INdividual FileS.........ccovermrerrnnernesesssess s s sessssessssesenses 82
Creating FileS.......ccoviiererernseseresese s s p e ne e e 84
File Encoding, Line Terminators, and Ling BrowSingc.cucvvresmrnserensesessnessssssessesessenessnnes 86

Working with Folders and ProjeCtScucrnrerneniisnssc s s senss 87
OPENING @ FOIARTveveerieerieeeir e np e 88
0pening .NET SOIULIONSccvviririerne s s 90
Opening JavaScript and TypeScript ProjeCtS.........cccvvvenrenennsernsesssesessse s s sene 91
0pening LO0SE FOIAEISccoveeirierne st s se s s 92

WOrking With WOrKSPACES.......ccverererririererenessere s ssssessessessessssessessessessssessessessssessessesasssssessessens 92
Creating WOrKSPACEScivirrrererreseeserersessesessessessesessessessessessssessessessssessessessessssessessessssensessens 95
Opening EXiSting WOIKSPACEScoveurvererinnerseressesessessessessessssessessessssessessesssssssessessesssssssessens 95
WOIKSPACE STTUCTUIEceueeeteerere sttt s r e s nnen 96
Security: WOrkSPace TrUSTcovvvrerrereriesersere s s e s e seese s e s sas e s e saesae e s e saesaesresessessesaes 97

£ 1134 7R 101

vii

TABLE OF CONTENTS

Chapter 5: Customizing Visual Studio Codec..cusummrrnssnnnnnsssssnnsssssssnnssssssnnnnss 103
Customizations and Extensions EXpIAINEd..........cccccceererernienrenennscsnse s seseses e sessesens 103
Customizing Visual Studio COde..........cuvririniinirrnr s 105

THEME SEIBCLION.......cceeceeeer e s nne e 105
Customizing the ENVIronment...........cccorcnininsnrn e 107
Customizing Keyboard SNOMCULSccoeererernererrenerese s e s seenes 118
Creating Reusable ProfileS.........ccvvrnmnnnmnnssrsesese s s sessssessssssessssenns 123
11T 111 17 o OSSOSO 125

Chapter 6: Installing and Managing Extensions..........ccccueemmmnnssssnnmnssssssnmssssssnns 127

INSTAIlING EXTENSIONSccvrerveriesererere e re et s s se s e s sae e se s s sa e e s s sae e s e saesaena e e naennees 127
Extension RecOmMmENdations ... 131
USETUl EXIBNSIONSc.civieiiiiiiririsscse s 133

Managing EXIENSIONS.......cociiiririiriir e s s s r e s a e 134
Configuring EXIENSIONS.cccvverrerrrerrereseses s s ssese s s e s e s ssesassessesaesaesssessesaesssssssesneses 136

Writing Your First EXIENSION ... s 138
Setting Up the ENVIFONMENL...........ccoirrr e 139
Creating an EXLENSION.......c.ccoereccrrce et se e e se s e e 140
Developing the EXIENSION ... 142
Running the EXIENSION.........ccovcinirr e s 145
Packaging EXIENSIONS..........cccuvrerinnsirc s e s 147
Extension Development SUMMACY..........ccorerrrrrnne s se s seenes 148

£ 1T 7 o 149

Chapter 7: Source Control with Git...........ccccenniinmmmmmmnnnmmnms s ————— 151

Source Control in Visual Studio COUE.........coovrmrrrmrrrrenereserssesesese s sessesenns 151

Downloading Other Source COntrol ProVidersccoveerenerenesensesessesesesesessesesssssssssessnns 152
Managing REPOSITOMIEScccvuerereririe s 153
Initializing a Local Git REPOSITONYc.ccceeerrenerrnnesrnenesese s sn s ses s ssssessnnes 154
Creating a Remote RePOSItOrY........ccccvvvereresernsesinese s s s ssanes 155
Handling File CRANGEScccoevrririerierererserere s sessessessssessessessesessessessesssssssessessessssessesssssssssesnens 159
Y 10T 0 L0 T4 TS 160

viil

TABLE OF CONTENTS

ManNAgiNg COMMILScveiereererrererrere s s s e s sre e s saesrese s e s sesae s s e e s aesaesae e e e saesaeneenenannanes 161
Working with the Git Command-Line Interface...........ccoveerevrnicnriesrccc e 163
Creating and Managing BranChes...........ccorrenresresc e 164
Switching to a Different Branch ... 166
Merding from @ BranCh...........ccooeoreieeecrreeree e 166
Hints About Rebasing Branches ... 170
Deleting BranChescooreerenerenerssesesese s se e nenns 170
Adding Power to the Git Tooling With EXIENSIONS........cccvveerenenesenmrrnsesese s sessesesennes 170
T 51 (0] P 171
1T 172
GitHub Pull Requests and ISSUES ... s s sss e sne s 174
Working With AZUre DEVOPS.......cocueeerrirerinsesisesesssse s sssse s sss e sssess s ssssesssssssssssssesssssssenens 178
Creating @ Team ProjECL.........cccvvreresernesens s 178
Connecting Visual Studio Code to a Remote Repository........c.cccvveernresenesessesesensesessesenennes 181
BT 1134 R 182

Chapter 8: Automating Tasksccussemrmssssnsnmmssssssnssssssssnsssssssssssssssssnssssssssssssssssnans 189

UNderstanding TASKS.......ccucvvereririinnin e sse s s s s e e s st s st sae s s e s s s sae s nanans 185
B E L 1 S 186
Running and Managing TaskS.........ccccvvrrrrninninsene e ssessee s s ssesssssaessessenns 187
The Default BUild TASK........cccuvrerirenesesesesesessssssssssssssssssssssssssssssss e sssssssssssssssssssssssanas 192
Aut0-Detected TASKS.......ccoreeriee e e 192
CONFIGUIING TASKS ..veuereerrerieierersersesessessessessssesessesaesssessesaessssessesaesasssssessesaesssnsssesaesssnsssesneses 194
Running Files with a Default Program...........ccccvveninininnnninnnsnse s sesesses s ssessessenns 213

£ 111117 OO 213

Chapter 9: Building and Debugging Applicationsc..ccccurmmmmsmsmsssnnsssssssssssnsssnns 215

Creating APPlICALIONSccoeviiiriie e e 215
The Status of MiCroSOft INET ..o e 216
Creating .NET PrOJECTS......coouooereereercrerese s resese e ses e se s s se s 217
Creating Projects on Other PIatforms...........ccoveerennercrssesre e 223

ix

TABLE OF CONTENTS

DebugQing YOUF COUE.....ccuverrerrrierrerertesersesersessssessessesssssssessessessssessessessessssessesssssssessessessessnsensens 225
Configuring the DEDUGUETccverererrerererersersersesreses e sse e s sessessessssesessesaessssessesaesssssssesneses 227
Managing Breakpoints.........ccucviereiiniensnne s sss s s s sse s s ssesssesaessesssesaesaesannns 230
Debugging an APPlICALION.......cccceveririr e 231
Configuring DebUQG OPLiONS.....coevvverrriererrr e s sa e saesre e s e e sne s 237

£ 111117 O 238

Chapter 10: Building Applications with Python...........ccccunemminnnesnnnnnsssssensssns 239

Chapter Prer@qUISITES ..o e e e 239
Creating Python ApPlICALIONS........c..ccvrceerererrcr s 241
Running PYthon COOEcoveeeereerecrrcreree e 243

Code Editing Features for PYthON..........coccoveerncnne s sessesenns 250
Enhanced Word Completion with IntelliSEnse...........ccccvvvivninininnsnin s 250
Understanding Function Parameters with Parameter Hintscccccvvrievnvninncsnicnnenn, 251
Quickly Retrieving Type Definitionscccoovervsrnneneneserssessse s ssenes 251
Finding REfErenCeS.......coveerierrrirerese s s 252
Renaming SYMDOIS.......cvuemrmrerrrinesesrsrssesessesessse s sessesesss e s s sessesesssssssssssssssssssssssssssssnnes 253
Finding Code Issues With LINTErS.........ccuevrrererenernsmnnsesesssessse s sessesesssssssssesenss 254

Advanced Code Editing with PYlance............ccovvevrennssniniennesensse s ssans 257
Managing Pylance SettiNgS.........ccvrvrrnrennnennsesers s ss s ss s s ss s s sessass 260

RUNNING PYEhON SCHIPLS...cccciiricircerie s se s s se s sre e s saesaesa e e saesnens 261

£ 1§14 7R 262

Chapter 11: Deploying Applications 10 AZUre........ccsseemrrmssssnnnmssssssnnsssssssssesssssnnnss 263

Introducing Azure EXIENSIONS.......cccccviviicninenn s s s 263

Deploying Web Applications ... 265
INSEAlliNG EXIENSIONS.......cccieecereeereecrere s s 265
Signing In t0 Azure SUDSCHPLIONS.......cccvrecrerere e 266
Publishing Web Applications..........coouviirinninnnrir s s snes 268

Creating and Deploying Azure FUNCHIONScoccoevrenerenernsesessse s sessesessssesessesenns 271
Configuring Visual StUAi0 COUEccovererrenmrrnserrnesesese s s sessssessssessnnes 271
Creating AZUre FUNCLIONS.........cccuoervsernesenese s ses s s s e s sessssssnsesennes 273
Deploying AZUre FUNCLIONScccoeoerenmrrnesesesesese s sessese s se s sesse e se s s sesssssssssessnns 280

TABLE OF CONTENTS

Deploying DOCKEN IMAQGEScccerierierieererierie s s see e e s e s sse s s e s e s sesae s s e s saesaeses s e saesaenannns 283
DOCKEr Prer@qUISITEScevvererieriie e re s a e s s e e s a e s s ae s 284
Creating the Application IMAQEcccverrrerrriere s e sa e sne s 285
Uploading the Application Image to a Container REgiStryccocvrvververierierenserseresessensessenns 287
Deploying the Docker IMage 10 AZUIEcccvcvverrenerinninsre e s ssessenns 290

£ 111117 OO 292

Chapter 12: Consuming Al SErviCesucesrrsssssnssssssssnsssssssssssssssssnnsssssssnnssssssnnnnss 295

INtrOdUCING AZUIE TOF Al e 296

General ConSIAEratioNSccoverernseressesesese s nr s 297
Introducing ComMPUEEr VISIONcoveeviereresirnsesesesese s s ses e ssssessnnes 297

Setting Up Computer ViSiON SEIVICES.......ccuurrmerrnenmsnse s sss s ssssssssssssssssesenns 297
Retrieving the SErvice KEYS........uiiirnnriininese s s s sssssssssssesenss 302

Consuming Al Services With NET ..o ssese s s se e ssssesessessesessesaesnes 304
Setting Up Variables and CONStants...........ccvevverernnnienienssnsene s sessesesessssessessesasssssessessens 306
Creating Authenticated Service ClIENtScccvvevevrrrininnn s sae s 308
Executing IMage ANAIYSIS.......cccvrererrreriereressersesesss s sessessesessessessessssessessesssssssessesssssssessesses 309
Running the APPlICALION.........cccvierieririere s s s sae e nnes 313

Consuming Al Services With JAVaSCHIPL.........cccvvrirerniriere s saesees 315
Setting Up Variables and CONSTaNtS...........ccvvvrererersnieniennsensessesessssesessessssessessessessssessessens 317
Creating Authenticated Service ClIENtSccvverererrrierens s e ssssessesne s 318
Executing Image ANAIYSIS.......ccccvveririninniniensns e s e sse s s snssne e saenns 319
Running the APPlICAtiON..........ccucereiiriir s s 322

Consuming Al Services With PYthon ... 323
Setting Up Variables and Constants...........cccoorvrnvnncnnnscnnse s sesesenns 324
Creating Authenticated Service ClIentscccvrevrerrnscnnie s 325
Executing IMage ANAIYSIS........ccuerierrinieriennsinsese e s 326
Running the APPliCAtioN...........ccucereininire e e 329

£ 111 T S 330

INO@X . ueeeiiimnsssnnnsssnnssssnnssssanssssanssssnnssssnnnasssnnsasnnnanssnnansannnnssnnanssnnsnssnnnnssnnnsssnnnnssnnss 331

xi

About the Author

T SRR 1 1 i
Alessandro Del Sole is a senior software engineer for a

healthcare company, building mobile apps for doctors and
dialysis patients. He has been in the software industry for
more than 20 years, focusing on Microsoft technologies
such as .NET, C#, Visual Studio, and Xamarin. He has been

a trainer, consultant, and a Microsoft MVP since 2008 and

is the author of many technical books. He is a Xamarin
Certified Mobile Developer, Microsoft Certified Professional,
and a Microsoft Programming Specialist in C#.

xiii

Acknowledgments

Thanks to Smriti Srivastava, Nirmal Selvaraj, Laura Berendson, and everyone else at
Apress for the opportunity, renewed trust, and the great teamwork on this book.

Special thanks to the technical editor Damien Foggon, who contributed to the
quality and accuracy of the content.

Special thanks to my wife Angelica, for her continuous and strong support.

Introduction

One of the most common requirements in software development today is building
applications and services that run on multiple systems and devices, especially with the
continued expansion of cloud and artificial intelligence services, and of architectures
based on microservices.

Developers have many options for building cross-platform and cross-device
software, from languages to development platforms and tools. However, in most cases,
such tools rely on proprietary systems, which result in strong dependencies. Moreover,
most development tools target specific platforms and development scenarios. Microsoft
Visual Studio Code takes a step forward by providing a fully featured development
environment for Windows, macOS, and Linux that offers not only advanced coding
features but also integrated tools. These tools span across the entire application lifecycle,
from coding to debugging to team collaboration. The full tooling is consistent across
these languages and frameworks, natively or via extensions, so that developers share the
same experience regardless of the technology they use.

With .NET 7 and with .NET MAUI recently released, and with artificial intelligence
services becoming part of the modern software implementation, Visual Studio Code
becomes even more important to support cross-platform development on multiple
operating systems. In this book, developers with any skill level learn how to leverage
Visual Studio Code to target scenarios such as web, cloud, and mobile development
using the programming language of their choice. This book provides guidance on
building apps for any system and any device. This includes managing the application
lifecycle, as well as team collaboration.

xvii

CHAPTER 1

Introducing Visual Studio
Code

Visual Studio Code is not just another evolved notepad with syntax colorization and
automatic indentation. Instead, it is a very powerful, code-focused development
environment expressly designed to make it easier to write web, mobile, and cloud
applications using languages that are available in different development platforms. It
supports the application development lifecycle with a built-in debugger and integrated
support for the popular Git version control engine.

With Visual Studio Code, you can work with individual code files or with folders
containing projects or loose files. This chapter provides an introduction to Visual Studio
Code, giving you information on when and why you should use it. It includes details
about installing and configuring the program on the different supported operating
systems.

Note In this book, | refer to the product using its full name, Visual Studio Code, as
well as its friendly names, VS Code and Code, interchangeably.

Visual Studio Code, a Cross-Platform
Development Tool

Visual Studio Code is the first cross-platform development tool in the Microsoft Visual
Studio family that runs on Windows, Linux, and macOS. It is a free, open-source
(https://github.com/microsoft/vscode), code-centric tool. This not only makes
editing code files and folder-based project systems easier, but also facilitates writing
cross-platform web, mobile, and cloud applications in the most popular platforms, such

© Alessandro Del Sole 2023
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_1

https://github.com/microsoft/vscode
https://doi.org/10.1007/978-1-4842-9484-0_1

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

as Node.js and .NET. It also has integrated support for a huge number of languages and
rich editing features such as IntelliSense, finding symbol references, quickly reaching a
type definition, and much more.

Visual Studio Code is based on Electron (https://electronjs.org/), a framework
for creating cross-platform applications with native technologies. It combines the
simplicity of a powerful code editor with the tools a developer needs to support the
application lifecycle development, including debuggers and version control integration
based on Git. Visual Studio Code is therefore a complete development tool, rather than
being a simple code editor. For a richer development experience, consider Microsoft
Visual Studio 2022 on Windows and Visual Studio 2022 for Mac on macOS, but Visual
Studio Code can be really helpful in many situations.

In this book, you learn how to use Visual Studio Code and how to get the most
out of it; you discover how you can use it as a powerful code editor and as a complete
environment for end-to-end development. Except where necessary to differentiate
operating systems, figures are based on Microsoft Windows 10, but typically there is
no difference in the interface on Windows 11, Linux, and macOS. Also, Visual Studio
Code includes several color themes that style its layout. In this book, figures display the
Light (Visual Studio) theme, so you might see different colors on your own screen if you
choose a different color theme. Chapter 5 explains how to change the theme, but if you
want to be consistent with the book’s figures, simply choose File » Preferences » Color
Theme and select the Visual Studio 2019 Light Theme. It is worth mentioning that the
theme you select does not affect the features described in this book.

When and Why Visual Studio Code

Before you learn how to use Visual Studio Code, explore the features it offers, and
discover how it provides an improved code editing experience, you have to clearly
understand its purpose. Visual Studio Code is not a simple code editor; rather, it is a
powerful environment that puts writing code at its center. The main purpose of Visual
Studio Code is to make it easier to write code for web, mobile, and cloud platforms for
any developers working on Windows, Linux, or macOS, providing independence from
proprietary development environments.

For a better understanding of the nonproprietary nature of Visual Studio Code,
let’s consider an example based on ASP.NET Core, the cross-platform, open-source
technology able to run on Windows, Linux, and macOS that Microsoft produced to

https://electronjs.org/

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

create portable web applications. Forcing you to build cross-platform, portable web apps
with Microsoft Visual Studio 2022 would make you dependent on that specific integrated
development environment (IDE). This also applies to the (free) Visual Studio 2022
Community edition. Conversely, though Visual Studio Code certainly is not intended to
be a replacement for more powerful and complete environments, it can run on a variety
of operating systems and can manage different project types, as well as the most popular
languages. To accomplish this, Visual Studio Code provides the following core features:

e Built-in support for coding in many languages, including those
you typically use in cross-platform development scenarios, such as
C# and JavaScript, with advanced editing features and support for
additional languages via extensibility

e Built-in debugger for Node.js, with support for additional debuggers
(such as .NET and Julia) via extensibility

e Version control based on the popular Git version-control system,
which provides an integrated experience for collaboration,
supporting code commits and branches

In order to properly combine all these features into one tool, Visual Studio Code
provides a coding environment based on folders, which makes it easy to work with code
files that are not organized within projects and offers a unified way to work with different
languages. Starting with this assumption, Visual Studio Code offers an advanced editing
experience with features that are common to many supported languages, plus some
features that are available to specific languages. As you’ll learn throughout the book,
Code also makes it easy to extend its built-in features by supplying custom languages,
syntax coloring, editing tools, debuggers, and much more via a number of extensibility
points. It is a code-centric tool, with primary focus on web, cross-platform code. That
said, it does not provide all of the features you need for full, more complex application
development and application lifecycle management and it is not intended to be the best
choice with some development platforms. If you have to make a choice, consider the
following points:

e Visual Studio Code can produce binaries and executable files only if
the language you use has support to do so through a command-line
interface (CLI), a compiler, and a debugger. If you use a language
for which there is no extensive support (e.g., the open-source Go
programming language, https://golang.org), Visual Studio Code

https://golang.org

CHAPTER 1

INTRODUCING VISUAL STUDIO CODE

cannot invoke a compiler. You can work around this by implementing
task automation, discussed in Chapter 8, but this is different than
having an integrated compilation process.

Except where provided by specific extensions, Visual Studio Code
has no designers, so you can create an application user interface
only by writing all of the related code manually. As you can imagine,
this is fine for some languages and for some scenarios, but it can be
very complicated with some kinds of applications and development
platforms, especially if you are used to working with the powerful
graphical tools available in Microsoft Visual Studio 2022.

Visual Studio Code is a general-purpose tool and is not the proper
choice for specific development scenarios such as building Windows
desktop applications.

If your requirements are different, consider Microsoft Visual Studio 2022 or Microsoft

Visual Studio 2022 for Mac instead, which are optimized for building, testing, deploying,

and maintaining multiple types of applications.

Now that you have a clearer idea of Code’s goals, you are ready to learn the amazing

editing features that elevate it above any other code editor.

Installing and Configuring Visual Studio Code

Installing Visual Studio Code is an easy task. In fact, you can simply visit https://

code.visualstudio.comfrom your favorite browser, and the web page will detect

your operating system, suggesting the appropriate installer. Figure 1-1 shows how the

download page appears on Windows.

https://code.visualstudio.com
https://code.visualstudio.com

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

[| »Q Visual Studio Code - Code Editic X | 4

“ O @ 3 hitps//codevisualstudio.com ‘.'o s @ 0

) Visual Studio Code

Code editing.
Redefined.

Free. Bt

Download for Windows .,
Stable Build

Y & % &5

IntelliSense Run and Debug Built-in Git Extensions

Figure 1-1. The download page for Visual Studio Code

Note Visual Studio Code can also run in Portable Mode, which means that
you can create a self-containing folder that can be moved across environments.
Since this is a very specific scenario, it isn’t covered in this book; you can read
the documentation (https://code.visualstudio.com/docs/editor/
portable) to learn the steps required to generate Portable Mode.

In the following sections, you learn some tips for installing Visual Studio Code on

various supported systems.

Note The latest stable release of Visual Studio Code at the time of this writing is
version 1.76.0, released in February 2023.

https://code.visualstudio.com/docs/editor/portable
https://code.visualstudio.com/docs/editor/portable

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

Installing Visual Studio Code on Windows

Visual Studio Code can be installed on Windows 8, 10, and 11. For this operating system,
Visual Studio Code is available with two installers: a global installer and a user-level
installer. The global installer requires administrative privileges for installation and
makes Code available to all users. The user-level installer makes Code available only to
the currently logged-in user, but it does not require administrative privileges.

The user-level installer is the choice I recommend, especially if you work within a
corporate environment and you do not have administrative privileges to install software
on your PC. The Download for Windows button that you can see in Figure 1-1 will
automatically download the user-level installer. If you instead want to download the
system-level installer, go to https://code.visualstudio.com/download and select
the System Installer download that best fits your system configuration (32- or 64-bit,
or ARM).

Once the download has been completed, launch the installer and simply follow the
guided procedure that is typical of most Windows programs. During the installation, you
will be prompted to specify how you want to integrate shortcuts to Visual Studio Code
in the Windows shell. In the Select Additional Tasks dialog box, make sure you select (at
least) the following options:

e Add “Open with Code” action to Windows Explorer file context
menu, which allows you to right-click a code file in the Explorer and
open a file with VS Code.

e Add “Open with Code” action to Windows Explorer directory
context menu, which allows you to rightclick a folder in the Explorer
and open a folder with VS Code.

e Add to PATH (available after restart), which adds the VS Code’s
pathname to the PATH environment variable, making it easy to run
Visual Studio Code from the command line without typing the
full path.

Note Some antivirus and system protection tools, such as Symantec Endpoint
Protection, might block the installation of some files that are recognized as false
positives. In most cases, this will not prevent Visual Studio Code from working, but

https://code.visualstudio.com/download

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

it is recommended that you disable the protection tool before installing Code or,
if you do not have elevated permissions, that you ask your administrator to do it
for you.

A specific dialog box will inform you once the installation process has completed.
The installation folder for the user-level installer is C: \Users\username\AppData\Local\
Programs\Microsoft VS Code, while the installation folder for the global installer is
C:\Program Files\Microsoft VS Code on 64-bit systems and C:\Program Files(x86)\
Microsoft VS Code on 32-bit systems. You will find a shortcut to Visual Studio Code in
the Start menu and on the Desktop, if you selected the option to create a shortcut during
the installation. When it starts, Visual Studio Code appears as shown in Figure 1-2.

®) Eile Edit Selection Visw Go Rum Jerminal Help Welcame - Visual Studio Code [Administratar] DB Mmoo - n] =

o welcome % m=

Visual Studio Code

Editing evolved

Walkthroughs

VGN Started with VS Code

Discover the best customizations to make VS Code yours.

® Learn the Fundamentals

Recent = Boost your Productivity

You have no recent folders, open a folder to start.
J5 Get started with JavaScript and Node.js

[4] Get Started with Azure in VS Code

/" Show welcome page on startup

Figure 1-2. Visual Studio Code running on Windows

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

Installing Visual Studio Code on mac0S

Installing VS Code on macOS is extremely simple. From the download page, simply click
the Download for macOS button and wait for the download to complete. On macQOS,
Visual Studio Code works as an individual program, and therefore you simply need to
double-click the downloaded file to start the application. Figure 1-3 shows Visual Studio
Code running on macOS.

@ Code File Edit Selection View Go Run Terminal Window Help

" e > £ search M8 m o8
»J Welcome X m -
Visual Studio Code
Editing evolved
Start Walkthroughs
(3 NewFile. VGet Started with VS Code
B Open.. Discover the best customizations to make VS
Code yours.

EP Clene Git Repository...

E¥ Get Started with PowerShell ()
Recent ® Learn the Fundamentals

You have no recent folders, open a folder to start.

&5 Boost your Productivity

€) Get Started with GitLens

More...

v'| Show welcome page on startup

®0MA0 % LiveShare

Figure 1-3. Visual Studio Code running on macOS

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

Installing Visual Studio Code on Linux

Linux is a very popular operating system and many derived distributions exist, so
there are different installers available depending on the distribution you are using.
For the Ubuntu and Debian distributions, you need the .deb installer. For the Red Hat
Linux, Fedora, and SUSE distributions, you need the .rpm installer. This clarification is
important because, as opposed to Windows and macOS, the browser might not be able
to automatically detect the Linux distribution you are using, and therefore it will offer
both options.

Once Visual Studio Code is installed, simply click the Show Applications button on
the Desktop and then choose the Visual Studio Code shortcut. Figure 1-4 shows Visual
Studio Code running on Ubuntu.

INTRODUCING VISUAL STUDIO CODE

CHAPTER 1

njunq[) uo Suruun.i apoy) oipnjs [pnsip “g-1 34nsi

U & 0v0®

YENOJYIH|EM JI0YS © Ul SBINJESJ JOIPD |BIJUSSSS N0 AU)
punoibfield aapesagul
dnyse3s uo abed awodjam moys I

1N @Y1 Jo syusuodwod Jofew ay) Gurybnybiy fejsanc |ensia e 380
MBIAIIND BDBJIBJU]

J2]3215MaN Jno uior

MO}JJBA0 YIBIS

"*13)8d PUBWIWOD 3] WO SPU fioyis0dal gnHID

1103 YDJeas pue ssadde fpidey
SPUBWIWOD ||8 UnJ pue puly UoEUSWNIOP PNPoJd
sy pue sdig

soapin A10npovl
122aysieayd pJeoqhay 2)qeqund

aA0] NoA fem 3y j00] 3P0 JNCK PUE JOJIP3 BYY AXEW
awayy Jojod

$Jap|oJ Juadal oN
Iy ‘AWINgNs ‘Wi JO 5IN23J0Ys pJeoghay pue sbuilles ayl |jeasul A8
sbuipuighay pue sbujas .

“iaydoq ‘aInzy ‘'dHd ‘eaer ‘uoylfg qdudseaer o) Jpodd
sabenfue) pue 5001 ~flojisodal auo) Jo “Iap|oj uado
3y may

e1su|

m X awoxnam [x

djaH Jeulwsal UNY OD MIIA UOMIAISS P3 3id

apoD o|pn3s JENS|A - IWOI|aM

10

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

Note If you are a Windows user and want to try Visual Studio Code on a Linux
distribution, you can create a virtual machine with the Hyper-V tool. For example,
you could install the latest Ubuntu version (https://www.ubuntu.com/
download/desktop) as an ISO image and use it as an installation media in
Hyper-V. On macOS, you need to purchase the Apple Parallels Desktop software
separately in order to create virtual machines, but you can basically do the same.

Localization Support

Visual Studio Code ships in English, but it can be localized in many other supported
languages and cultures. When it's started, VS Code checks for the operating system
language and, if it's different from English, it shows a popup message suggesting to
install a language pack for the culture of your operating system. The localization support
can be also enabled manually.

To accomplish this, choose View » Command Palette. When the text box appears at
the top of the page, type the following command:

> Configure Display Language

You can also just type configure display and the command will be automatically
listed in the command palette (see Figure 1-5).

Run Terminal Help Welcome - Visual Studio Code [Administrator]

l >Configure Display]

Configure Display Language &

Figure 1-5. Invoking the command to change the localization

Note The Command Palette is discussed thoroughly in Chapter 2.

11

https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

When you click this command, the Command Palette displays the following options:

o English (en), which allows you to select American English as the
culture. This is the default localization and is always available.

o Alist of available language packs built by Microsoft.

When you select a language pack, VS Code will download the appropriate package
and will show a message saying that a restart is required in order to localize the user

interface.

Updating Visual Studio Code

Visual Studio Code is configured to receive automatic updates in the background;
Microsoft usually releases monthly updates.

Note Because VS Code receives monthly updates, some features might have
been updated at the time of your reading, and others might be new. This is a
necessary clarification you should keep in mind while reading, and it is also the
reason that | also provide links to the official documentation, so that you can stay
up to date more easily.

Additionally, you can manually check for updates by choosing Help » Check for
Updates on Windows and Linux or choosing Code » Check for Updates on macOS. If
you do not want to receive automatic updates and prefer manual updates, you can
disable automatic updates by choosing File » Preferences » Settings. Then, in the
Update section of the Application settings group, disable the Background Updates
option. Figure 1-6 shows an example based on Windows. (Obviously, on macOS and
Linux, the Enable Windows Background Updates option is not available.)

12

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

) gile Edit Selection Visw Go Bun Terminal Help Settings - Visual Studic Code [Administrator] DE2me - a x

» Welcome Settings % G b 11 R

Search settings \'d
User Tum on Settings Sync

Update

Enable Windows Background Updates

+/ Enable to download and install new

tic updates. Requires a restart after change. The updates are fetched from a Microsoft online senvice.

defauilt w

Show Release Notes [,

W' Show

Telemetry

Telemetry Level (4pplies to all profiles

@odo

Figure 1-6. Disabling automatic updates

You follow the same steps to re-enable updates in the background. Whenever Visual
Studio Code receives an update, you will receive a notification suggesting that you restart
Code in order to apply the changes. The first time you restart Visual Studio Code after an
update, you will see the release notes for the version that was installed, as demonstrated
in Figure 1-7.

13

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

) rile Edit Selection View Go Run Terminal Help Release Notes: 1.76.0 - Visual Studio Code [Administrator] DEDDRE - O =x

Release Notes: 1.76.0 X m --

February 2023 (version 1.76)

Show release notes after zn update

Welcome te the February 2023 release of Visual Studio Code. There are many updates in this version that we hope you'll like, some of the key highlights
include:

Profiles - Active profile badge, quickly switch profiles via the Command Palette.
Accessibility improvements - Mew audio cues, improved terminal screen reader mode.
Moveable Explorer view - Place the Explorer in the secondary side bar or a panel.
Notebook kernel MRU list - Find and select recently used notebook kemnels,

] header link ions - Easily link to headers in files across your workspace

Remote Development usability - New keyboard shortcut. streamlined remote options list,
New Git/GitHub topics - Articles for beginner and advanced Git saurce control users,
Improved Marketplace search - Better results for multi-word queries.

Jupyter IPyWidgets 8 support - Uise the latest IPyWidgets version in your Jupyter natebooks.

Python pytest IntelliSense - Completions for pytest fixtures and parameterized arguments.
i If you'd like to read these release notes online, go to Updates on codewvisualstudio.com.

Insiders: Want to try new features as s00n as possible? You can download the nightly Insiders build and try the latest updates as soon a5 they are
available

Accessibility

Terminal command failure audio cue

When a command exits with a non-zero code in a terminal with shell integration, sighted users can glance at the command decoration to quickly
understand that there was a failure. To convey a failure to screen reader users, VS Code now plays the audisCues ., terminalCommandFailed audio cue °

You can listen to the available audio cue sounds by screlling through the Help: List Audio Cues dropdown,

Figure 1-7. VS Code release notes

Release notes contain the list of new and updated features, as well as hyperlinks that
will open the proper feature page in the documentation. You can recall release notes at
any time by choosing Help » Show Release Notes.

Previewing Features with Insiders Builds

By default, the download page of the Visual Studio Code’s website allows you to
download the latest stable build. However, Microsoft periodically also releases preview
builds of Visual Studio Code, called Insiders builds. You can download these Insiders
builds to look at any new and updated upcoming features before they are released to the
general public.

14

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

Insiders builds can be downloaded from https://code.visualstudio.com/
insiders, and they follow the same installation rules described previously for each
operating system. They have a different icon color, typically a green icon instead of a blue
icon, and the name you see in the application bar is Visual Studio Code - Insiders instead
of Visual Studio Code (see Figure 1-8).

*) File Edit Selection View Go Run Terminal - \elcome - Visual Studio Code - Insiders M8 m o3

) Weicome X

Get Started with VS
Code

Light
@ Choose the look you want

Dark High Contrast

@oho

Figure 1-8. Visual Studio Code Insiders builds

Insiders builds and stable builds can work side by side without any issues. Because
each lives in its own environment, your setting customizations and extensions you
installed on the stable build will not be automatically available to the Insiders build and
vice versa, so you will need to provide them again.

Insiders builds are a very good way to see what is coming with Visual Studio Code,
but because they are not stable, final builds, it is not recommended you use them in
production or with code you will release to production.

15

https://code.visualstudio.com/insiders
https://code.visualstudio.com/insiders

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

Visual Studio Code on Web

Microsoft is working on making Visual Studio Code available as a web application
running in your favorite browser.

This is currently available as a preview and can be reached at https://vscode.dev.
A shortcut is also available in the main site for Visual Studio Code. Figure 1-9 shows how
VS Code looks in the browser.

[|] Welcome - Workspace - Visual = % | - = (= X
C] & https//vscodedev B A ’5 & B ‘
) Visual Studio Code (Preview). Anywhere, anytime, entirely in your browser. Read the Announcement Privacy & Cooldes TermsofUse Download VS Code
] welcome X
DER OPENED

pened a folder.

Open Folder Visual Studio Code
Editi lved

ypen a repository or

Start Walkthroughs

Open Remate Repository %

Get Started wi
T th

® Learn the Fundamentals

ece
Recent " Boost your Productivity

OUTLINE

Figure 1-9. Visual Studio Code as a web app

When running in the browser, Visual Studio Code offers the same features available
on the regular desktop app. You can also fully customize your development environment
and experience, and changes will be saved into the local cache. This is a very interesting
alternative, but still in preview stage at the time of this writing.

16

https://vscode.dev

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

Summary

Visual Studio Code is not a simple code editor, but a fully featured development
environment optimized for web, mobile, and cloud development. In this chapter, you
saw how to install Visual Studio Code on Windows, macOS, and Linux distributions,
learning how to select the appropriate installers and fine-tune the setup process. You
also saw how to configure localization and updates. Next, you looked at the Insiders
builds, which offer previews of upcoming, unreleased features. Finally, you saw Visual
Studio Code running in the browser as a web app, with the same features as the desktop
version.

Now that your environment is ready for use, it is time to start discovering the
amazing features offered by Visual Studio Code. The next chapter walks through the
environment, then in Chapter 3, you learn about all the amazing code-editing features
that make Visual Studio Code a rich, powerful crossplatform editor.

17

CHAPTER 2

Getting to Know
the Environment

Before you use Visual Studio Code as the editor of your choice, you need to know how
the workspace is organized and what commands and tools are available, in order to get
the most out of the development environment.

The VS Code user interface and layout are optimized to maximize the space for code
editing, and it also provides easy shortcuts to quickly access all the additional tools you
need in a given context. More specifically, the user interface is divided into five areas:
the code editor, the Status Bar, the Activity Bar, the Panels area, and the Side Bar. This
chapter explains how the user interface is organized and how you can be productive

using it.

Note All the features discussed in this chapter apply to any file in any language,
and they are available regardless of the language you see in the figures (normally
C#). You can open one or more code files via File » Open File to access the editor
windows and explore the features discussed in this chapter. Then, Chapter 4
discusses more thoroughly how to work with individual files and multiple files, in
one or more languages, concurrently.

The Welcome Page

At startup, Visual Studio Code displays the Welcome page, as shown in Figure 2-1.

19
© Alessandro Del Sole 2023

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_2

https://doi.org/10.1007/978-1-4842-9484-0_2

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

] File Edit Selection View Go Run - Welcome - Visual Studio Code [Administrator] mBimaon - o X

] welcome X m -

Visual Studio Code
Editing evolved

Start Walkthroughs

™ Jow Ei

L New e VGet Started with VS Code

"ﬁ Open File... Discover the best customizations to make VS Code
B open Folder I

3—9 Clone Git Repository...
? Learn the Fundamentals

Recent
5 Boost your Productivity
You have no recent folders, open a folderto start.

Js Get started with JavaScript and N...

@ Get started with Python develop...

+'| Show welcome page on startup

Figure 2-1. The Welcome page

On the left side of the page, under the Start group, you find shortcuts for creating and
opening files and folders, and for cloning an existing Git repository. Under the Recent
group is a list of recently opened files and folders that you can click for fast opening.
Under the Walkthroughs group, there are useful links to product documentation,
tutorials, cheat sheets, introductory videos, and other learning resources about Visual
Studio Code.

By default, the Welcome page is set to appear every time you launch VS Code. To
change this default behavior, remove the check mark from the Show Welcome Page On
Startup check box. To re-enable the Welcome page on startup, choose Help » Welcome
and add the check mark back.

20

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

The Code Editor

The code editor is certainly the area where you will spend most of your time in VS Code.
The code editor becomes available when you create a new file or open existing files and
folders. You can edit one file at a time or edit multiple files side by side concurrently.
Figure 2-2 shows an example of the latter.

»] FEile Edit Selection View Go -+ soures. i fost - L - Visual Studio Code [Administratar] DB 0, -] b8
C LottieViewerToolWindowControlxamlcs 9 & source.extension.vsitmanifest x m -
Lo r> R Lot ndewContro L e t ver > R sion.vsbmanifest
1 <UserControl Lottievi 4 usir;g ;;'stem,Linq . 1 <»xml versione"1.8" &
2 5 using System.Windows; f <PackageManifest Version="2.8.
3 6 using System.Windows.Controls; iz <i'-etadata>. - _—
i F 4 i ind Medi ns <Identity Id="Lottievi
5 8 [5 <DisplayName>Lottie Vi
b @ namespace LottieViewer = & <Bescription xml:space
7 xalns:v 18 { = 7 <MoreInforhttps://gith
8 mc :Ignorable="d" 11 FHT i 8 <LicenserLicense txte/
9 Name="Lottieviewe 12 Iy, Tnter‘ar.-.“ion logic for 9 <Releaseliotes>ReleaseN
18 <Grid x:Name<"LayoutRoot™> 13 /11 <fsummary> s 18 <Icon>Resources)lottie
11 <Grid.RowDefinitions> 5 refeiences =1 11 <PreviewInmage>Resource
12 <RowDefinition Hei 14 public partial class Lotti ro s 12 <Tags>Lottied/Tags>
13 <RowDefinition /> 15 { - ' 13 </Metadata>
14 <RowDefinition Hei oy e = 14 <Installation>
15 <RowDefinition Hei 16 private Lottieviewervi S— 15 <InstallationTarget Id
16 <RowDefinition Hei 17 fH1 <summary>] 16 <Productarchitectu
17 </Grid.RowDefinitions> 18 /#/ Initializes a new 17 </InstallationTarget>
18 <lottieSharp:Lottieani 19 {} 18 </Installation>
19 ¥x:Name="LottieAnimationVie 1 reference 19 <Dependencies>
20 DefaultCacheStrategy="None 28 public LottieviewerToo 20 <Dependency Id="Micros
21 verticalalignsent="Center"” 21 { 21 </Dependencies>
22 HorizontalAlignments="Cente 22 this.InitializeCom 22 <Prerequisites>
23 23 VienModel = new Lo 23 <Prerequisite Id="Micr
24 <StackPanel Orientatic 24 } 24 </Prerequisites>
25 <Button Margin="1@ 25 25 <Assets>
26 ToolTip="0 26 /11 <summary> 26 <Asset Type="Microsoft
27 Background 27 /// Handles click on t 27 </Assets>
28 <Button.Conten 28 {1 <fsummary> 28 <¢/Packagetanifest>
29 <StackPane 29 f// <param name="sende 29
38 <Image £l ff{ ¢param name="e">Th
31 </StackPan 3 [SuppressMessage(“Micr
32 </Button.{onte 3z [s ressMessage("styl
33 </Button> Jre
34 33 void butteonl _C
35 34 {
36 <Button Margine"18 35 MessageBox. Show(
37 36 string.Format(
38 37 "LottieViewerT
o

@640 & BlottieViewersin

Figure 2-2. The code editor and multiple file views

To do this, you have a couple options:

Ln 1, Col1

Spaces4 UTF-8 CRIF XML &

o Right-click a filename in the Explorer Bar and then select Open to
the Side.

e Citrl-click a filename in the Explorer Bar. This is discussed in the
section “The Side Bar” later in this chapter.

e Press Ctrl+\ (or §8+\ on macOS) to split the editor into two.

21

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

Open editors can also be organized into groups. To accomplish this, you can drag
and drop the title of an open editor close to another one and they will be grouped in
the same space and the Explorer Bar will show the list of groups. You can quickly switch
between editors by pressing Ctrl+1, 2, and so on, until 9. Keep in mind this works with up
to nine editor windows. The code editor is the heart of Visual Studio Code and provides
tons of powerful productivity features that are discussed in detail in the next chapter. For
now, it is enough to know how to open and arrange editor windows.

Reordering, Resizing, and Zooming Editor Windows

You can reorder and resize editor windows based on your preferences. To reorder an
editor, click the editor’s header (which is where you see the filename) and move the
editor to a different position. Resizing an editor can instead be accomplished by clicking
the left mouse button when the pointer is on the editor’s border, until it appears as a left/
right arrow pair.

You can also zoom in and out the environment by clicking Ctrl++ and Ctrl+-,
respectively. As an alternative, you can choose View » Appearance » Zoom In and View
» Appearance » Zoom Out. You can reset the original zoom factor with Appearance »
Reset Zoom.

Note In Visual Studio Code, the zoom is actually an accessibility feature. As an
implication, when you zoom the code editor, everything else will also be zoomed.

The Status Bar

The Status Bar contains information about the current file or folder and provides
shortcuts for some quick actions. Figure 2-3 shows an example of how the Status Bar
appears.

§? masterr ® ®O0A0 & Blavaloniacpsin g2 0

Figure 2-3. The Status Bar

22

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

The Status Bar contains the following information, from left to right:

o Gitversion control information and options, such as the current
branch. This is only visible when VS Code is connected to a Git
repository.

o Errors and warnings detected in the source code.
e The cursor position expressed in line and column.

o Tab size, in this case Spaces: 4. You can click this to change the
indentation size and to convert indentation to tabs or spaces.

e The encoding of the current file.
e The current line terminator.

o The programming or markup language of the open file. By clicking
the current language name, you can change the language from a
drop-down list that pops up.

e The project name, if you open a folder that contains a supported
project system. It is worth noting that, if the folder contains multiple
project files, clicking this item enables you to switch between
projects.

e The Feedback button, which enables you to share your feedback
about Visual Studio Code on Twitter.

¢ The notification icon, which shows the number of new notifications
(if any). Notification messages typically come from extensions or they
are about product updates.

It is worth mentioning that the color of the Status Bar changes depending on the
situation. For example, it is purple when you open a single file, blue when you open a
folder, and orange when Visual Studio Code is in debugging mode. Additionally, third-
party extensions might use the Status Bar to display their own information.

The Activity Bar

The Activity Bar is on the left side of the workspace and can be considered a collapsed
container for the Side Bar. Figure 2-4 shows the Activity Bar.

23

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

Figure 2-4. The Activity Bar

The Activity Bar provides shortcuts for the Explorer, Search, Git, Run and Debug,
Extensions, Accounts, and Settings tools, each described in the next section. When you
click a shortcut, the Side Bar related to the selected tool becomes visible. You can click
the same shortcut again to collapse the Side Bar.

The Side Bar

The Side Bar is one of the most important tools in Visual Studio Code, and one of
the tools you will interact most with. It is composed of five tools, each enabled by the
corresponding icon, described in the following subsections.

The Explorer Bar

The Explorer Bar is enabled by clicking the first icon from the top of the Side Bar and
provides a structured, organized view of the folder or files you are working with. The
list of active files can be shown in the OPEN EDITORS subview. This can be enabled by

24

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

clicking the ... button and then selecting Open Editors. It also includes open files that are
not part of a project, folder, or files that have been modified. These are instead shown in
a subview whose name is the folder or project name. Figure 2-5 provides an example of
Explorer.

J'G = o SubtitlesFormat.cs - SubtitlesParser-m:

LD EXPLORER

~ OPEN EDITORS | 2 unsaved

~

® C: SubtitlesFormat.cs SubtitlesParser\Classes
® C* Subtitleltem.cs SubtitlesParser\Classes
. “ SUBTITLESPARSER-MASTER
; > VS
v SubtitlesParser
> bin
~v Classes
| > parsers
> Utils
> Writers
C* StreamHelpers.cs
C: Subtitleltem.cs
Cs SubtitlesFormat.cs
> obj
2 SubtitlesParser.csproj
> SubtitlesParser.Tests
> Test
€ .gitignore
{} globaljson
. LICENSE
@ README.md
SubtitlesParser.sin

> OUTLINE
> TIMELINE

Figure 2-5. The Explorer Bar

25

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

You must hover your cursor over any file or folder to make the four buttons visible.
The subview that shows a folder structure provides four buttons (from left to right): New
File, New Folder, Refresh Explorer, and Collapse Folders in Explorer, each of which is
self-explanatory. The OPEN EDITORS subview has three buttons (which you get when
hovering over with the mouse): New Untitled Text File, Save All, and Close All Editors.
Right-clicking a folder or filename in Explorer provides a context menu that offers
common commands (such as Open to the Side, referenced earlier in this chapter). A very
interesting command is Reveal in File Explorer (or Reveal to Finder on Mac and Open
Containing Folder on Linux), which opens the containing folder for the selected item.
Notice that the Explorer icon in the Activity Bar also reports the number of unsaved files.

The Qutline View

The bottom of the Explorer Bar contains another group, called OUTLINE. This group
provides a hierarchical view of types and members defined within a code file or tags.
Figures 2-6 and 2-7 show the OUTLINE group based on a TypeScript file and based on
an HTML file, respectively.

26

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

y = App.tsx - typescript-todo-master-mast

@ EXPLORER

~ OPEN EDITORS
X TS App.tsx src
 TYPESCRIPT-TODO-MASTER-MASTER [B3 O &

S LYY W
TS TodoForm.tsx
TS Todolist.tsx
TS TodoListitem.tsx
App.css
Ly App.testtsx
App.tsx
index.css
TS index.tsx
~ OUTLINE
v @ App
(] todos
(@] setTodos
v [@] toggleComplete
~ [€] updatedTodos
v @ todos.map(callback
22 todo
22 complete
v [@] addTodo
22 text
22 complete
v [@] removeTodo
v [@] updatedTodos
@ todos.filter() callback
v [@] editTodo
v [@] todoToUpdatelndex
@ todos.findindex() callback

> TIMELINE
®oA0

Figure 2-6. The Outline view on a TypeScript file

27

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

] = index.html - typescript-todo-master-mas

@ EXPLORER

~ OPEN EDITORS
X < index.html public
~ TYPESCRIPT-TODO-MASTER-MASTER
> node_modules
~ public
= app-image.png
% favicon.ico
< index.html
& logo192.png
i logo512.png
} manifestjson

rohots.hxt
~ OUTLINE a .-

~ & html

| v & head
& meta
@ link
@ meta
@ meta
@ meta
@ link
@ link
D title

v & body

& noscript
2 diveroot

> TIMELINE
®0A0

Figure 2-7. The Outline view on an HTML file

You can expand types and members defined in a markup file to see what other
objects they define, and you can click each item and get the cursor over the selected item
definition in the source code. It is worth mentioning that Visual Studio Code highlights
with a different color (red in the case of the Visual Studio Light Theme) items that have
potential problems and that are highlighted with squiggles in the code editor. Currently,

28

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

the Outline view is only available to languages such as JavaScript, TypeScript, C#,
HTML, Markdown, and JSON. Support for additional languages might be available when
installing the appropriate extensions.

The Timeline View

The Timeline view shows the history of local changes made to an individual file. It only
works with code for which a local Git repository has been created.

Note The Timeline view is related to working with Git source control, the topic of
Chapter 7, but it is discussed here because it is part of the Explorer Bar. For now,
you can click the Source Control button on the Side Bar and then click the Initialize
Repository button. This initializes a local Git repository and, consequently, the
Timeline feature over individual files.

Figure 2-8 shows an example based on a file called index.html.

~ TIMELINE
¢ Staged Changes
© File Saved

¢ Local commit Alessandro Del Sole

2® masterr ® ®O0AO0

Figure 2-8. The Timeline view showing change history

In this particular example, the Timeline is showing three changes in the file history:
a first local commit, changes saved to disk, and staged changes. This tool is very useful
when you work with Git source control, and you want to see a detailed view of the history
for each file. Chapter 7 provides detailed explanations about integrated source control
features.

29

CHAPTER 2

The Search Tool

GETTING TO KNOW THE ENVIRONMENT

The Search tool, enabled by clicking the Search icon, allows for searching and,

optionally, replacing text across files. You can search for one or more words, including

special characters (such as * and ?), and you can even search based on regular

expressions. Figure 2-9 shows the Search tool in action, with advanced options expanded

(files to include and files to exclude), which you enable by clicking the ... button located

under Replace. In the example, search is performed only within . tsx files.

>G = App.tsx - typescript-todo-master-master - Visual Studio Code [Administrator] I @ [0 08 — O X
SEARCH USSR E & TsApse X m -
. src » TS Appdtsx > (@D A
Todo s @b, K E2 T8 Bppdai> Blagy : —
/O " 1 import React, { useState } from ‘react’; ';f:‘:.fl
Replace AB & 2 import './App.css'; f:_..‘
=T 3 import { TodoForm } from './components/TO(‘usmeses
files to include R i g e
2 4 import { TodoList } from './components/Toc
l * tsx l =
5 -
files to exclude 6 function App() { =
7 const [todos, setTodos] = useState<Arra)
S S 8
B 123 results in 4 files - Open in editor 9 const toggleComplete: ToggleComplete = ¢
~ TS Appisx src 57 1@ const updatedTodos = todos.map(todo =:
import { TodoForm } from */components/Todo... - if (todg === SEIZCtEdTGd‘;) { iad
1% .
TodoForm } from './components/TodoForm’; ;; 3 return { ...Eg0Q, complete: IEgEQ.
s - 4 . J
import { TodoList } from *./components/TodoLis... 14 —
Todolist } from *./components/TodoList’; 15 B;
const [todos, setTodos] = useState<Armray<Tod... 16 setTodos(updatedTodos);
const [todos, setTodos] = useState<Array<Tod... 17 }i
setTodos] = useState <Array<Todo> >([]); 18
: ToggleComplete = selectedTaEg => { 19 COI:‘IS‘t addTodo: Add?i:?da = newlodo => {
datediH 5 g 20 if (newTodo !== "") {
constupcatedie= RI0COsMaptoco Sl 21 setTodos([...todos, { text: newTodo,
const updatedTodos = todos.map(todo => { 22 }
updatedTodos = todos.map(tode == { 23 1-
if (todo === selectedTodo) { TERMINAL] powersnel 4~ [@ -+ ~ X

if (todo === selectedTodo) {

return { ...toda, complete: ltodo.complete }:

return { ...todo, complete: !toda.complete }:

return todo;

setTodos(updatedTodos);

setTodos(updatedTodas);

const addToda: AddTodo = newTodo == {

const addTodo: AddToda = newTodo == {

const addTodo: AddTodo = newTodo => {
® ®oAo

I-' master+

packages in 99.286s

164 packages are looking for funding
run “npm fund® for details

found 89 vulnerabilities (20 low, 3 moderate, 53 high, 13
run “npm audit fix® to fix them, or “npm audit®™ for deta
PS C:\Users\adelsole\source\repos\typescript-todo-master-m

* History restored

aster>

()} TypeScriptisX & Q

Figure 2-9. The Search tool

30

Ln 8, Col 1

Spaces:2 UTF-8 LF

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

Search results are presented in a hierarchical view that groups all the files that
contain the specified search key, showing an excerpt of the line of code that contains it.
Occurrences are also highlighted in both the list of files and in the code editor. You can
finally clean up search results by clicking the Clear Search Results button located in the
toolbar close to the SEARCH header. If you instead want to replace some text with new
text, you can do this by entering the new text into the Replace text box and then clicking
the Replace All button.

Searching in the Active File

If you just need to search for contents in the active editor, you can choose Edit »
Find. An interactive popup allows you to type the content you want to search, and all
occurrences will be highlighted.

With large files and many occurrences of the search result, you can quickly navigate
to a specific match by enabling the Command Palette and then typing Go to Match. At
this point, you can enter the number of a match based on the search result count.

You can also choose Edit » Replace if you need to make replacements in the
active editor.

The Git Bar

The Side Bar provides access to Git integration for version control. Git integration is a
core topic and is thoroughly discussed in Chapter 7, but a quick look is provided here
for the sake of completeness about the Side Bar and because the Timeline view was
discussed previously.

The Git Bar can be enabled by clicking the third button from the top of the Side
Bar (with a kind of fork icon) and provides access to all of the common source control
operations, such as initializing a repository, committing code files, and synchronizing
branches. The Git icon also shows the number of files that have been modified locally.
Figure 2-10 shows an example. Modified files are listed under the Changes group. Three
buttons are available for each listed file: Open File, Discard Changes, and Stage Changes.
In Git, as you learn in Chapter 7, the concept of staging changes means keeping changes
separate from the main code branch so that a developer can evaluate whether to commit
the changes or discard them. Clicking a filename enables a split view that shows the
differences between the modified code and the original code; this topic is also more
thoroughly discussed in Chapter 7.

31

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

L = App.tsx - typescript-todo-master-mast
SOURCE CONTROL = v D -
l Message (Ctrl+Enter to commit on *master”) ‘
~ Changes 2
¢ index.html public [+ M
@ readme.txt src u

Figure 2-10. The Git Bar

The Git Bar also provides a popup menu that contains the list of supported Git
commands in Visual Studio Code organized into submenus, such as Commit, Push,
Pull, and several more you discover later in the book. Click the ... button in the top-right
corner of the Git Bar to open the menu.

The Run and Debug Bar

Visual Studio Code is not only a simple code editor, but also a fully featured development
tool that ships with an integrated debugger for JavaScript and .NET. It can be extended
with third-party debuggers for other platforms and languages. as well Chapter 9
describes in more detail this important part of Visual Studio Code, but for now note that
you can access the debugging tools by clicking the fourth icon from the top of the Side
Bar. This opens the Run and Debug Bar, shown in Figure 2-11.

32

CHAPTER 2 GETTING TO KNOW THE ENVIRONME

App.tsx - typescript-todo-master-mast:

RUN AND DEBUG: RUN

Run and Debug

To customize Run and Debug create a
launch.json file.

Show all automatic debug configurations.

JavaScript Debug Terminal

You can use the JavaScript Debug Terminal to
debug Node,js processes run on the command
line.

Figure 2-11. The Run and Debug Bar

The view varies depending on the platform and programming language. The Run
and Debug button, which allows you to start and debug apps, is common to all. In the
case of TypeScript or JavaScript files, you will also see the JavaScript Debug Terminal
button, which enables a developer console inside the integrated Terminal, and the
Debug URL button, which allows you to attach an instance of the debugger to a remote
application.

In Chapter 9, you see how to configure the debugging tools and how powerful they
are in Visual Studio Code. You also see how easy it is to install additional debuggers.

The Extensions Bar

The Extensions Bar can be enabled by clicking the fifth button from the top in the

NT

Activity Bar and allows you to search and install extensions for Visual Studio Code, which

include additional languages, debuggers, code snippets, and much more. Extensibility

is

discussed in Chapter 6, but Figure 2-12 provides an example of how the Extensions Bar

appears.

33

CHAPTER 2

<

EXTENSIONS

GETTING TO KNOW THE ENVIRONMENT

App.tsx - typescript-todo-master-mast:

Y O

l }Seerch Extensions in Marketplace

NET

Figure 2-12. The Extensions Bar

~ INSTALLED 26

.NET Install Tool for Extension Auth...
Allows acquisition of the .NET runtime ...

& Microsoft €§?

C/C++
C/C++ IntelliSense, debugging, and co...

£ Microsoft {3}
c#

C# for Visual Studio Code (powered by...
2 Microsoft

Daims

@

Decompiler
Decompile the $h*! out of things
& tintinweb

“~ RECOMMENDED 6

Debugger for Firefox @ 25M % 45

Debug your web application or browse...

D 15M ¥ 45

Firefox DevTools

Microsoft Edge Tools f...
Use the Microsoft Edge Tools from wit...

2 Microsoft m
GitHub Copilot D 36M Kk 4
Your Al pair programmer

£ GitHub [Install |
ESLint D 25M % 45

Integrates ESLint Ja'.-aSCript into VS Co...
Microsoft

®0oA0

You not only can search online for extensions, but can also see the list of installed

extensions as well as disabled and recommended extensions.

The Accounts Button

One of the biggest benefits of Visual Studio Code is that you can customize it in many ways

by arranging the development environment in whichever configuration is most convenient

for you. This includes extensions, keyboard shortcuts, general settings, and much more.

34

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

If you run VS Code on multiple machines, it would be very useful if you could re-
create your environment automatically on all the machines, without the need to set your
preferences manually on each machine. Fortunately, this is possible using the Accounts
button on the Side Bar.

With this tool, you can sign in with a Microsoft or GitHub account and your settings
will be synchronized across all the VS Code installations to which you have signed in
with the same account. Following is a list of settings that can be synchronized:

e General settings

o Keyboard shortcuts

o Extensions

o User-defined code snippets
o State of the user interface

You enable settings synchronization by clicking the Accounts button and then
choosing Turn on Settings Sync. At this point, VS Code shows a list of settings that you
can sync across machines, selecting all of them by default, as shown in Figure 2-13.

¥ = typescript-todo-master-master - Visual Studio Code [Administrator] [& [0 08 — O X
Settings Sync

Please sign in to synchronize your data across devices.

Settings
Keyboard Shortcuts for each platform

|

User Snippets
User Tasks
Ul State

Extensions

CH<H<H<N<N<]

Profiles

Figure 2-13. Selecting settings to synchronize

Select the settings you want to sync, then click Sign In & Turn On. At this point you
will be asked to specify which kind of account you want to use, such as Microsoft or
GitHub. Obviously, you need to use the same account on all the other Code installations.
A browser window opens in which you enter your credentials, and you will quickly get a
confirmation message when the sign-in is completed.

35

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

Note On Windows, the Firewall might prompt you with a warning saying that VS
Code is trying to open a resource on the web. If this happens, you can safely allow
this action.

At this point, Visual Studio Code starts synchronizing all the selected settings, which
might take a while. Behind the scenes, settings synchronization is based on two files,
settings.json and extensions.json, which VS Code needs to merge from different
installations. If it encounters problems in merging these files automatically, VS Code
gives you an option to manually merge settings with the same merging tool used with
Git. This is a very useful feature and it will save you a lot of time in getting the same
comfortable environment across machines.

The Settings Button

The Settings button is represented with the gear icon, at the bottom of the Activity Bar. If

you click it, you will see a popup menu with a list of commands that represent shortcuts for
customizing Visual Studio Code (these are discussed more thoroughly in Chapter 5). Among
others, a command in the menu enables you to manually search for product updates.

Navigating Between Files

Other than clicking the tab of an editor, Visual Studio Code provides two ways of
navigating between files. The quickest way is to press Alt+Left or Alt+Right to switch
between active files.

Ifyou instead press Ctrl+Tab, you can browse the list of currently open files and
select one for editing, as shown in Figure 2-14.

£ = index.tsx - typescript-todo-master-master - Visual Studio Code [Administrator]] & [08 — m] *®

EXPLORER TS index.tsx src m -

. x
~ OPEN EDITORS

D.
Appicss App.Css src

@ readmetxt.. U 2 import ReactDOM from 'react-dom’;
3 import °"./index.css’;

4 import App from './App";

X TS index.tsx src

Figure 2-14. Navigating between active files

36

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

The Command Palette

Together with the code editor and the Activity Bar and Side Bar, the Command Palette
is another very important tool in Visual Studio Code, and it enables you to access Visual
Studio Code built-in commands and commands added by extensions via the keyboard.
You can open the Command Palette, shown in Figure 2-15, by choosing View »
Command Palette or via the Ctrl+Shift+P keyboard shortcut (38+P on macOS).

] File Edit Selection View Go - typescript-todo-master-master - Visual Studio Code [Adminsstrator] DB 0omn - 0 x

Configure Display Language recently used &
B Lottie Preview
MNET Install Tool: Report an issue with the .NET Install Tool for Extension Autho... other commands

3enerate Assets for Build and Debug
estore All Projects

.NE estore Project

Add Browser Breakpoint

Add Functicn Breakpoint

C/C++: Add Debug Configuration
C/C++: Change Configuration Provider...
C/C++: Clear All Code Analysis Problems

C/C++: Copy vcpkg install command to clipboard

P masterr @ ®0A0

Figure 2-15. The Command Palette

The Command Palette is not just about menu commands and user interface
instrumentation; it also provides access to other actions that are not accessible
elsewhere. For instance, the Command Palette enables you to install extensions as well
as restore NuGet packages over the current project or folder. You can simply move up
and down to see the full list of available commands, and you can type in some characters
to filter the list. You will notice how many of them map actions available within menus

37

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

and that, for many of them, there is a keyboard shortcut available. Other commands
related to extensions, debugging, and Git are discussed in the following chapters, so it is
important that you get started with the Command Palette at this point.

The Panels Area

Visual Studio Code very often needs to display not only information about source
code but also information coming from the Git engine, external tools, or debuggers. To
accomplish this in an organized way, the environment provides the so-called Panels
area, which appears by default at the bottom of the user interface.

The Panels area is composed of four built-in panels: Problems, Output, Debug
Console, and Terminal, each discussed in this section. The Panels area is not visible
by default, and it usually pops up when the information the panels represent becomes
available (such as the debugger sending information about symbols in the source code).
Additionally, by default the Panels area appears at the bottom of the VS Code’s user
interface, but you can move it to the side of the workspace by right-clicking a panel
and then selecting Move Panel Right or Move Panel Left, or you can restore the original
position with Move Panel to Bottom. In addition, you can drag and drop panels in a
different position using the mouse. The next sections discuss each panel in more detail.

The Problems Panel

With languages that have built-in enhanced editing support, such as TypeScript
(https://www.typescriptlang.org), or for which an extension has been added to
provide advanced editing features, such as C#, Visual Studio Code can detect code
issues as you type. In the code editor, these are usually highlighted with red squiggles
(for blocking errors) and in green (for warnings). The list of errors, warnings, and
informational messages is also displayed in the Problems panel. This can be enabled by
clicking the number of errors at the bottom-left corner of the Status Bar (see Figure 2-16).

The Problems panel makes it easy to distinguish between errors and warnings due to
different icons (a white x over red background for errors and a black exclamation mark
over yellow background for warnings). Figure 2-16 shows an example based on some C#
code that contains an unused variable (warning) and a syntax error.

38

https://www.typescriptlang.org

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

ﬂ — # Program.cs - hellocode - Visual Studio Cede [Administrator] E D m g - O X
Ii‘\ EXPLORER C Program.cs 2 @ m -
1
~ OPEN EDITORS |1 unsaved C* Program.cs
® C* program.cs 2 1 // See https://aka.ms/new-console-template for more information o
~ HELLOCODE A
2 .vscode 2 gt 9\5 - = —l
4 Console.WriteLine("Hello, World!™)
> bin o
s
> obj 6
& hellocode.csproj
C* Program.cs 2
PROBLEMS (@) OUTPUT TERMINAL DEBUG CONSOLE Filter (e.g. text, */"15,1"/.. %Y & = ~ X
~ C* Program.cs (2
® ; expected [hellocode] csharp(C51002) [Ln 4, Col 35)
N\ The variable ‘3" is declared but never used [hellocode] csharp(C50163) [Ln 3, Col 5]
» OUTLINE

» TIMELINE

@141 & Bhelocode Ln3,Col 7 Spacess4 UTF-8withBOM CRLF

Figure 2-16. The Problems panel

If you have multiple files open, the Problems panel groups problems by filename.
Also, for each problem, you can see the folder name and the position within the source
code file. Just double-click a problem, and VS Code will move the cursor to the selected

item in the code editor.

Note The code editor also provides a way to quickly fix code issues while typing,
but this is not related to the Problems panel and is instead discussed in the next

chapter.

39

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

The Output Panel

The Output panel is the place where Visual Studio Code displays messages from
internal and external tools, such as runtime tools, Git commands, extensions, and tasks.
Figure 2-17 shows an example based on the output of Visual Studio Code’s main thread.

PROBLEMS OUTPUT TERMINAL +-- Main vl a0~ x
<none>]: creating neu... -NET

2023-02-16 07:26:32.882 [info] [UtilityProce|.NET Test Log ionHost, pid:
8536]: successfully created c#

2023-02-16 07:50:20.358 [info] [UtilityProce s; ionHost, pid:
a . ! . .

8536]: received exit event. with code e GitHub Authentication .
2023-92-16 97:50:20.359 [info] Extension hos| o with code: e,
s) Microsoft Authentication

signal: unknown. -

2023-02-16 07:50:20.928 [info] [UtilityProce| Omnisharplog ionHost, pid:
<none>]: creating new... Razor Log

2023-82-16 ©7:50:20.933 [info] [UtilityProce
21804]: successfully created Cloud Changes -
2823-02-16 ©7:51:15.8e4 [info] [UtilityPnoce| Extension H;st ionHost, pid:
21884]: received exit event with code @ L|

2823-02-16 87:51:15.8@4 [info] Extension hos with code: @,
signal: unknown. Pty Host
2023-82-16 07:51:15.652 [info] [UtilityProce| Remote Tunnel Service ionHost, pid:
<none>]: creating new...

ionHost, pid:

ole) (hellocode) & B hellocode In5Col1 Spaces4 UTF-8withBOM CRIF ¢ & 0Q

Figure 2-17. The Output panel

Because multiple tools might run concurrently during an operation against source
code files (e.g., package restore and then compilation) or during the Visual Studio Code
lifetime (such as extensions), you can use the drop-down box in the panel to change the
view and see the output of each tool. This tool is particularly useful if the execution of
external tools fails, and you want to get more information about what happened.

The Debug Console Panel

As the name implies, the Debug Console panel is a specialized panel used by debuggers
to display information about code execution. Figure 2-18 shows an example based on
the execution of a simple C# application.

40

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

] File Edit Selection View Go Run - Program.cs - hellocode - Visual Studio Code [Administrator] DQmo - (m] X
RUNAND.. [NETCcv | @ -+ ©oprogrames X 510 % ¥ T O O~ [-
~ VARIABLES C* Program.cs
~ Locals 1 // See https://aka.ms/new-console-template for more information
args [string[]]: {string[@]} 2
a [int]): 5 3 ?nt et
A 4 int b = 18;
b [int]: 18 = 5 =
=2, s intcma™b;
M~ ¢ [int]: 50 6 nsole.WriteLine("Hello, World!");
= B 7 Consolc.RcadLine();I
8
~ WATCH
DEBUG CONSOLE +-+
“ CALL STACK Paused on breakpaint

hellocode.dll!Program. <Main>$(:

s BREAKPOINTS
() All Exceptions
4 User-Unhandled Exceptions
® M Program.cs 7 >

@00 & NET Core Launch (console] (hellocode) Ln 7, Col 20 (19 selected) Spacess4 UTF-8withBOM CRIF c2 & 0

Figure 2-18. The Debug Console panel

The Debug Console panel not only shows information about code execution, debug
symbols, and any other information a debugger needs to display, but it also acts as
an interactive console where you can evaluate expressions. Figure 2-18 shows that a
mathematical expression has been manually evaluated using variables defined in the
code. Debugging is a very important topic in Visual Studio Code and is thoroughly
discussed in Chapter 9, where you find additional information about the Debug Console.

Working with the Terminal

Visual Studio Code allows you to execute commands against the operating system
directly from within the development environment. In fact, you can choose the Terminal
» New Terminal command to open a new Terminal instance in a panel at the bottom of
the work area. Figure 2-19 shows an example based on Windows.

41

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

PROBLEMS OUTPUT TERMINAL DEBUG CONSOLE + v oA X

build Task +/

PS C:\Users\adelsole\source\repos\hellocode> ||
>| powershell

®O0MA0 £ .NET Core Launch (console) (hellocode) @& B hellocode

Figure 2-19. The Terminal panel

On macOS and Linux, the Terminal tool is based on the bash shell of each system.
On Windows, the Terminal is based on PowerShell by default. However, you can select a
different tool by clicking the drop-down menu on the panel’s toolbar and then clicking
Select Default Profile. At this point, you can select, from the Command Palette, several
options, including (but not limited to) the Windows command prompt, PowerShell,
and the Git bash commandline tool. You can also open multiple Terminal instances by
clicking the New Terminal button (the icon with the + symbol).

The Terminal panel is also used by Visual Studio Code to launch automatic scripts
and commands against the operating system. For example, when you build a C#
application, Visual Studio Code starts the .NET compiler, whose output is displayed in
the Terminal panel, as shown in Figure 2-20.

PROBLEMS QUTPUT TERMINAL DEBUG CONSOLE + woowes A M
build Task +/
v [powershell

o Bl cxecuting task: C:\Program Files\dotnet\dotnet.exe build C:\Users\adelsole\source\repos\hellocode/hellocode.c ,
sproj /property:GenerateFullPaths=true /consoleloggerparameters:NoSummary

B Terminal will be reused by tasks, press any key to close it.

MSBuild version 17.4.1+fedeceadd for .NET

Determining projects to restore...

All projects are up-to-date for restore.

hellocode -> C:\Users\adelsole\source\repos\hellocode\bin\Debug\net?.8\hellocode.d1l
F Terminal will be reused by tasks, press any key to close it. i

I\ 0 &> .NET Core Launch (console) (hellocode) & 3 hellocode Ln7, Col 20 (19 selected) Spacess4 UTF-8withBOM CRIF ¢ & Q

Figure 2-20. The Terminal panel used for automatic scripting

42

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

Summary

In this chapter, you got an overview of the workspace in Visual Studio Code and of the
tools you will interact with frequently. You saw how to take advantage of quick shortcuts
in the Welcome page and how you can arrange editor windows.

You saw how the Status Bar provides information about the active file and how the
Activity Bar is a collapsed container of shortcuts for the tools contained in the Side Bar:
the Explorer Bar, the Search tool, the Git Bar, the Debug Bar, the Extensions Bar, the
Accounts button, and the Settings button. You saw how to quickly navigate between files
and how the Command Palette provides a way to access commands via the keyboard,
both Visual Studio Code commands and extensions’ commands. You also walked
through another important area in the environment, the Panels area, where you can
get information about code issues, get messages from internal and external tools and
debuggers, and execute commands and scripts via the Terminal.

Now that you have seen how the environment is organized, it is time to have some
fun walking through all the powerful productivity features in the code editor. This is the
topic of the next chapter.

43

CHAPTER 3

Language Support
and Code Editing Features

Visual Studio Code is not just another evolved text editor with syntax colorization
and automatic indentation. Instead, it is a very powerful codefocused development
environment expressly designed to make it easier to write web, mobile, and cloud
applications using languages that are available to different development platforms.

With the ambition to provide a powerful, rich development environment, Visual
Studio Code integrates a number of editing features that are focused on improving
the productivity and quality of your code. This chapter discusses what languages are
supported in Visual Studio Code and all the available code editing features, starting from
the most basic that are available to all the supported languages to the most advanced
productivity tools that are available to specific languages such as C#, JavaScript, and
TypeScript.

Note Keyboard shortcuts used in this chapter are based on the default settings in
Visual Studio Code.

Language Support

Out of the box, Visual Studio Code has built-in support for many languages. Table 3-1
groups supported languages by their editing features.

45
© Alessandro Del Sole 2023

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_3

https://doi.org/10.1007/978-1-4842-9484-0_3

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Table 3-1. Language Support by Feature

Languages Editing Features

Batch, C, C#, C++, Clojure, CoffeeScript, Diff, Dockerfile, F#, Common features (syntax coloring,
Go, HLSL, Jade, Java, Julia, HandleBars, Ini, Lua, Makefile, bracket matching, basic word
Objective-C, Objective-C++, Perl, PowerShell, Properties, Pug, completion)

Python, R, Razor, Ruby, Rust, SCSS, ShaderLab, Shell Script,

SQL, Visual Basic, XML

Groovy, Markdown, PHP, Swift Common features and code
snippets
CSS, HTML, JSON, JSON with Comments, Less, Sass Common features, code snippets,

IntelliSense, Qutline

JavaScript, JavaScript React, TypeScript, TypeScript React Common features, code snippets,
IntelliSense, Outline, parameter
hints, refactoring, Find All
References, Go to Definition, Peek
Definition

Visual Studio Code can be extended with additional languages produced by the
developer community and downloadable from the Visual Studio Marketplace. This
is discussed in more detail in Chapter 6, but, in the meantime, you can look at the
available languages out of the box. In addition, support for built-in languages can also
be enhanced via extensions in order to leverage all the advanced editing features. This is
the case of Python, Julia, C#, and Go. For the purposes of this book, an introduction to C#
and C++ is provided for your convenience.

Working with C# and C++

The C# programming language deserves a more detailed introduction, because of its
popularity and because it is now a cross-platform language that you can use not only
on Windows but also on macOS and Linux. As you can see from Table 3-1, the editing
experience that Visual Studio Code offers out of the box for C# is limited to common
features.

46

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

However, full and rich support for the coding experience with C# is offered
via the Microsoft C# free extension (https://marketplace.visualstudio.com/
items?itemName=ms-dotnettools.csharp). This provides an optimized experience for
.NET development and includes all the support and tools you need to build apps with
C#, including the necessary support for the .NET debugger. With this extension, you
basically get the same experience available to TypeScript, including advanced editing
capabilities based on the .NET Compiler Platform (also known as Roslyn) that makes it
easier to fix code issues as you type. If you plan to work with C#, I definitely recommend
that you install this extension, especially because this chapter discusses some editing
features that are available only through the extension.

Extensibility is explained in more detail in Chapter 6, but you can easily install the C#
extension without further information by opening any C# code file (. cs) and following
the instructions shown by Visual Studio Code when it detects that a proper extension is
available for that file type.

Similarly, you might want to install the Microsoft C/C++ extension that adds
enhanced editing features to the C and C++ languages, plus debugging support for
Windows (PDB, MinGW, Cygwin), macOS, and Linux. The extension is available at
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools, and
you can follow the same easy installation steps just described for the C# extension by
openinga.c, .h, or .cpp file.

Working with Python

Python is another very popular programming language that has been widely used for
data science scenarios especially in the last years.

Out of the box, Visual Studio Code provides basic editing features for Python.
However, you can install the Python extension by Microsoft to add editing features such
as IntelliSense and code refactoring, plus the debugger.

Due to its importance, Chapter 10 of this book is dedicated to programming with
Python in VS Code, but it can be a good idea to start preparing your environment now if
you want to discover all the editing features with this language.

47

https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=ms­vscode.cpptools

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Working with Julia

Julia is another programming language that is commonly used for data science
scenarios, but it is still a general-purpose programming language.

Out of the box, Visual Studio Code provides basic editing features for Julia, such
as syntax colorization, but you can install the Julia extension (https://marketplace.
visualstudio.com/items?itemName=julialang.language-julia) built by the
developers of Julia itself. This will add support for debugging and enhanced editing
features, such as IntelliSense, code navigation, a plot panel, and most of the editing
features available to languages such as TypeScript.

Obviously, you first need to download and install the Julia binaries on your machine
(https://julialang.org/downloads).

Working with Go

Go is an open-source, object-oriented, and general-purpose programming language
supported by Google. During the past few years, Go has been enhanced to support the
most advanced and complex development scenarios, so it has become very popular and
used by many important software vendors.

By default, Visual Studio Code offers basic editing support for Go files. However,
you can install the official Go extension (https://marketplace.visualstudio.com/
items?itemName=golang.go), which adds support for IntelliSense, integrated debugging
and testing, and enhanced code editing features. If you are a developer working with Go,
this extension is needed.

Basic Code Editing Features

Visual Studio Code provides many of the features you would expect from a powerful
code editor. This section describes what editing features make your coding experience
amazing with this tool. It is worth mentioning that Visual Studio Code provides
keyboard shortcuts for almost all the editing features, giving you an option to edit code
more quickly. For this reason, keyboard shortcuts are also mentioned for many of the
described features.

48

https://marketplace.visualstudio.com/items?itemName=julialang.language-julia
https://marketplace.visualstudio.com/items?itemName=julialang.language-julia
https://julialang.org/downloads
https://marketplace.visualstudio.com/items?itemName=golang.go
https://marketplace.visualstudio.com/items?itemName=golang.go

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Note Features described in this section apply to all the supported languages
described in Table 3-1, except where expressly specified.

Working with Text

As you would expect, the code editor in VS Code offers commands for text manipulation
and text selection. The Edit menu provides the Undo, Redo, Copy, Cut, Paste, Find,
Replace, Find in Files, and Replace in Files commands. These commands are available in
every text editor and do not require any further explanation.

The Edit menu also includes the Toggle Line Comment and Toggle Block Comment
commands, which add a single-line comment or a block comment, respectively,
depending on the language. For instance, in C# the first command would comment a
line like this:

// int a = 0;
By contrast, the block comment tool would add a multiline comment as follows:

/* int a = 0;
int b = 0; */

The Edit menu also provides a command to work with code snippets, Emmet:
Expand Abbreviation. This command is the menu representation of keyboard shortcuts
offered by the code editor to add a code snippet. Code snippets are discussed in more
detail in the “Reusable Code Snippets” section in this chapter.

The Selection menu not only provides commands for text selection but also provides
commands that make it easier to move or duplicate lines of code above and below the
current line. The Add Cursor Above, Add Cursor Below, and Add Cursors To Line Ends
commands allow working with multicursors, described in the “Multicursors” section in
this chapter.

If you click an identifier or a reserved word, or you type name in the editor, you can
use the Add Next Occurrence, Add Previous Occurrence, and Select All Occurrences
commands. They allow you to quickly select occurrences of the selected word, and
occurrences will be highlighted in a different color, which differs depending on the

current theme.

49

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Syntax Colorization

For all the languages summarized in Table 3-1, the code editor in Visual Studio Code
provides the proper syntax colorization. Figure 3-1 shows an example based on a

TypeScript code file.
= App.tsx - typescript-todo-master-master - Visual Studio Code [Administrator] DEmom - m] x
TS App.tsx X m --

rc > TS Appisx > @ App

import React, { useState } from ‘react’;
2 import './App.css’;
3 import { TodoForm } from './components/TodoForm®;
4 import { TodoList } from './components/TodoList';
5

5 function App() {

7 const [todos, setTodos] = useState<Array<Todo>>([]); -
8

a const toggleComplete: ToggleComplete = selectedTodo => {

18 const updatedTodos = todos.map(todo => {

11 if (todo =s= selectedTodo) {

12 return { ...todo, complete: !todo.complete };

13 }

14 return todo;

15 13 H

15 setTodos(updatedTodos);

17

18

19 const addTodo: AddTecdo = newTodo => {

20 if (newTodo !== "") {

21 setTodos([...todos, { text: newTodo, complete: false }]);

22 }

23 s

24

25 const removeTodo: RemoveTodo = todoToRemove => {

26 let updatedTeodos: Array<Todo> = todos.filter(todo => todo.text != todoToRemove.text);
27 setTodos(updatedTodos);

28 }

29

3@ const editTodo: EditTodo = todoToEdit =» {

31 let todoToUpdateIndex: number = todos.findIndex(todo => todo.text == todoToEdit.text);
32 console. log{todoTolpdateIndex);

Pmaster @ ®@0Ao0 Ln18 Col1 Spacess2 UTF8 LF {} TypeScriptiSX & 0Q

Figure 3-1. Syntax colorization

Syntax colorization is available for other languages via extensibility. If you need to
work with a language that is not included with Visual Studio Code out of the box, you
can check the Visual Studio Marketplace and see if an extension is available to support
such a language. See Chapter 6 for information about extensibility. As a side note, syntax
colorization is the minimum that an extension must provide to add support for a new
language.

50

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Delimiter Matching and Text Selection

The code editor can highlight matching delimiters such as curly braces, brackets, and
parentheses (both square and round). This feature is extremely useful to delimit code
blocks and is triggered once the cursor gets near one of the delimiters. Figure 3-2 shows
an example based on bracket matching in a constructor definition.

= o Program.cs - hellocode - Visual Studio Code [Administrator] [[J B [08 — O X

C Program.cs ® B fiiecs

C Program.cs > 43 Person > @ Person()

9 public class Person

10 {
11 // Some code

12

13 public Person()

14 i

15

16 Y :
17 3 L

Figure 3-2. Delimiter matching

This feature is also very useful when you need to visually delimit nested blocks and
with complex and long expressions. It is worth mentioning that you can press Ctrl+D to
quickly select a word or identifier at the right of the cursor. You can also quickly select all
the text within the delimiters of a code block by pressing Shift+Alt+Arrow Right, and you
can quickly deselect the same code block by pressing Shift+Alt+Arrow Left.

Note With multiple bracket pairs, VS Code now applies bracket colorization so
that every pair can be distinguished even more easily. This setting can be managed
via the Bracket Pair Colorization option available in the Text Editor settings.

51

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Code Block Folding

The code editor allows you to fold delimited code blocks. Just hover your cursor over line
numbers and a symbol representing a down arrow will appear near the start of a code
block. Simply click to fold, and you will see the > symbol at this point, which you click to
unfold the code block. Figure 3-3 provides an example.

X = o Program.cs - hellocode - Visual Studio Code [Administrater] [[] B [02 —] X

C Program.cs 1 ® B fiiecs

C* Program.cs > 43 Person > @ ToString()

9 public class Person
1@ {

11 // Some code
12

13 public Person()
14 {

15
16
17
18 > ® public override string ToString() -

220 3

Figure 3-3. Code block folding

Note If code block folding is not enabled in the code editor, open VS Code’s
Settings. Then in the Text Editor group, enable both the Folding and Folding
Highlight options.

Multicursors

The code editor supports multicursors. Each cursor operates independently, and you
can add secondary cursors by pressing Alt+Click at the desired position. The most typical
situation in which you want to use multicursors is when you want to add (or replace) the
same text in different positions of a code file.

52

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Reusable Code Snippets

Visual Studio Code ships with many built-in code snippets that you can easily add by
using the Emmet abbreviation syntax and pressing Tab. See Table 3-1 in the “Language
Support” section to review which languages support code snippets natively. For
instance, in a Swift file, you can easily add a do. . catch block definition by using the do
code snippet, as shown in Figure 3-4.

£ = o Untitled-1 - Visual Studio Code [Administrater] ([B2 [0 08 — m} G
Bl >3 welcome 3 Untitled-1 ® o --
(B |
1
2 class Person
3
i =
5 [do
6 L [Cldo do
do statement (Swift Language Basics) X
do {

} catch error {

}

LnS,Col 11 Spaces:4 UTF-8 CRLF Swift % & Q

Figure 3-4. Adding code snippets

Code snippets are available as you type within the code editor, and you can
recognize them by the icon representing a small, white sheet. Notice how a tooltip shows
a preview of the code snippet. Pressing Tab over the previous snippet produces the result
shown in Figure 3-5.

53

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

£ = o Untitled-1 - Visual Studio Code [Administrater] ([& [08 — | X
] Welcome 3 Untitled-1 @ o -
. =
2 class Person
gt 4
a4
5 do { -
6
7 } catch gerop {
3
9 }
10 }

Figure 3-5. A newly added code snippet with a variable name highlighted

Notice that if the code snippet contains variable names or identifiers, these might be
highlighted to suggest that you give them a different name (like for the error identifier in
Figure 3-5). When you rename a highlighted identifier, all occurrences are also renamed.

Visual Studio Code is not limited to built-in code snippets. You can download code
snippets produced by other developers for many languages from the Visual Studio
Marketplace. Actually, most of the extensions that introduce or extend support for
programming languages also include a collection of code snippets.

Word Completion

Out of the box, the code editor in Visual Studio Code implements basic word completion
for all the supported languages. This feature helps you complete words and statements
as you type. For example, Figure 3-6 shows how the code editor suggests terminating a
statement with the Class keyword in a Visual Basic file, based on what the developer

is typing.

54

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

£ = o Namespace Foo « Untitled-2 - Visual Studio Code [Administrater] [0 & [0 08 — m} 5
»{ Welcome 3 Untitled-1 @ Namespace Foo Untitled-2 @ o -
1 Namespace Foo =
2 Class Bar i
3 End ¢
s End Names YT

Figure 3-6. Completing a statement with word completion

Simply press Enter or Tab to insert the suggested word. The word completion engine
learns as you code and can provide suggestions based on variables and member names
you declare. For example, Figure 3-7 demonstrates how the editor suggests adding the
name of a variable called Test, which was declared previously in the code.

£ = o Namespace Foo « Untitled-2 - Visual Studio Code [Administrater] [& [0 08 — m} 5
> Welcome 3 Untitled-1 @ Namespace Foo Untitled-2 @ 1
1 Namespace Foo 1

2 Class Bar '

3

- Private Test As String

5]
6 Public Sub MNew

7 | T

: e

9 End Class

18 End Namespace

Figure 3-7. The code editor can suggest identifiers declared in the code

Minimap Mode

Sometimes it is difficult to find the position of the cursor inside a source code file,
especially with very long files. Visual Studio Code provides the Minimap, which is a small
preview of the source code file on the code editor’s scrollbar. Figure 3-8 provides an
example.

55

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

’a = App.tsx - typescript-todo-master-master - Visual Studio Code [A... 08 ([o - m] X
TS App.tsx X o -
src > TS App.tsx > @ App > [@] removeTodo

18
19 const addTodo: AddTodo = newTodo => {
20 if (newTodo !== "") { !
21 setTodos([...todos, { text: newTodo, complete: false }]); "-.i_..."“-_
22 } T s
23 I
24
25 const removeTodo: RemoveTodo = todoToRemove => {
26 let updatedTodos: Array<Todo> = todos.filter(todo => todo.text !: (]
27 ?| setTodos(updatedTodos); 5
28 1
29
3e const editTodo: EditTodo = todoToEdit => {
31 let todoToUpdateIndex: number = todos.findIndex(todo => todo.tex
32 console.log(todoToUpdateIndex);
33 }
34
35 return (
36 <div className="todo-app">
37 <header>
38 <hl>
39 Todo App
48 </h1>
41 </header>
42 <TodoForm addTodo={addTodo}/>
4 | adnl i atals nrn noglaComnl et I sl AnRemn
Pmaster ® ®@0A0 Ln28,Col4 Spacess2 UTF-8 LF () TypeSariptlsX & 0

Figure 3-8. The Minimap allows you to preview source code on the scrollbar

Ifyou click the Minimap, the portion of source code that is visible in the code editor
is highlighted in the scrollbar, so that you can have a better perception of the current
position of the cursors. The Minimap can be disabled and enabled using the View »
Appearance » Minimap command.

Sticky Scroll

Sticky Scroll allows you to show the nested current scopes during the scroll of the active
file at the top of the editor. This feature is not enabled by default.

To enable Sticky Scroll, open the settings and then locate the Sticky Scroll setting
within the Text Editor group. You can select the checkbox to enable and disable the
feature, and you can specify the number of sticky lines that can be displayed, with a
maximum of 5.

56

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Whitespace Rendering and Breadcrumbs

A very common feature with text editors is the option to show light dots instead of white
spaces. In Visual Studio Code, this is possible for white spaces within indentations. To
accomplish this, choose View » Appearance » Render Whitespace. Figure 3-9 shows an
example of how white spaces for indentations are replaced with dots. For this figure, the
Solarized Light color theme has been used for better visualization on the paper.

X = App.tsx - typescript-todo-master-master - Visual Studio Code [A.. [0 B [0 08 - O X
TS Appitsx X m -
src > TS App.tsx > @ App

i LD L [LUUUD, SELIVUUD | S UDEJLALENAI T aysiuuuss (L]/), kg

8 e ey
9 const toggleComplete: ToggleComplete = selectedTodo => { o L
18 const - updatedTodos = todos.map(todo => {]

11 if (todo === selectedTodo) {

12 return-{ ...todo, complete: !todo.complete };

13 }

14 return: todo;

15 1);

16 setTodos (updatedTodos);

17 1

18

19 const-addTodo: - AddTodo - = newTodo - =>- { L
28 if (newTodo !== "") {

21 setTodos([...todos, { text: newTodo, complete: false }]);

22 } .
23 I H

24

25 const removeTodo: RemoveTodo = todoToRemove => {

26 let updatedTodos: ‘Array<Todo> = todos.filter(todo => todo.text !

27 setTodos (updatedTodos);

28 }

29

3e const editTodo: EditTodo = todoToEdit => {

31 let todoToUpdateIndex: number = todos.findIndex(todo => todo.tex

32 console.log(todoToUpdateIndex);

P master ® ®0AO0 Ln35Col 11 Spacess2 UTF-8 LF {} TypeSaiptlSX & Q

Figure 3-9. Rendering indentation spaces with dots

Simply use the same command to return to white spaces. Another very useful
command is Breadcrumbs, available in the Appearance submenu. With supported
languages, such as JavaScript, TypeScript, and C# with the extension installed, this
command shows the list of types and members defined in the current code file at the top
of the editor, which you can expand to see their members, as shown in Figure 3-10.

57

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

g = App.tsx - typescript-todo-master-master - Visual Studio Code [Administrater] [B [08

TS App.tsx ®

rc os > P todos.map(callback > /2 complete
’ I WU, 1 bttt N B I
8 v @ App
el const toggleComplete: ToggleComplete = select te] todos
1@ const updatedTodos = todos.map(todo => { N
S @] setTodos
11 if (todo ===-selectedTodo) { :
12 return-{ ...todo, complete: |todo.compli 2d[Sllogglecomplele
13 3} ~ [@] updatedTodos
14 return- todo; [> F’; todos.map() callback
15 I H > @) addTodo
16 b setTodos(updatedTodos); 3 (@) removeTodo
- > [@] editTodo
18 o
19 const-addTodo: - AddTodo = newTodo => - { te) default
28 if (newTodo !==-"") {
21 setTodos([...todos, { text: newTodo, complete: false }]);
22 ¥
23 H

Figure 3-10. Navigating between types and members with breadcrumbs

Clicking a type or member name moves the cursor to its definition and highlights the

related code block, making code navigation much easier.

Markdown Preview

Visual Studio Code supports the Markdown syntax for producing documents in the very

popular .md file format. Other than syntax colorization, for this particular language,

Visual Studio Code also provides a preview of what the document will look like. Simply

press Ctrl+Shift+V (Cmd+Shift+V on macOS) in the code editor, and the preview will

appear in a separate window, as demonstrated in Figure 3-11.

58

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

%) File Edit Selection View Go =+ Preview Untitled-1 - Visual Studio Code [Administrator] 08 o -] X

¥ = Lottie Viewer for Visual Studio 2022 Untitled-1 @ =»+ Preview Untitled-1 X ‘ﬁ m -
1 # Lottie Viewer for Visual Studio 2022 :

Lottie Viewer for
3 Lottie Viewer is an extension for Visual . .
Studio 2822 that allows for displaying V|Sua| Stud|o 2022

multiple Lottie animations in JSON format.

(T -

It is based on [LottieSharp](https:// Lottie Viewer is an extension for Visual
github.com/ascora/Lottiesharp), a porting Studio 2022 that allows for displaying
of Lottie for WPF.] multiple Lottie animations in JSON format.
L4}
7 ## Download and install It is based on LottieSharp, a porting of
¢ Lottie for WPE.
9 You can download and install Lottie
Viewer from the Extension Manager in Download and install
Visual Studio or from the [Visual Studio
MarketPlace](https://marketplace. You can download and install Lottie Viewer
visualstudio.com/items? from the Extension Manager in Visual
it AlessandroDelSole. Lottieviewer1d) Studio or from the Visual Studio
10

MarketPlace

Figure 3-11. Integrated Markdown preview

This feature is very useful because it allows you to preview your documents without
the need of an external program such as a web browser.

Evolved Code Editing

Visual Studio Code is an extremely powerful code-editing tool and it brings to a cross-
platform and multilanguage environment many features that have been available in
Microsoft Visual Studio for many years, providing what is called evolved code editing.
This section explains all the advanced code editing features that are available, out of the
box, to languages such as TypeScript and JavaScript and, with the appropriate extensions
installed, to languages like C#, C++, and Python.

59

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Working with IntelliSense

IntelliSense provides rich, advanced word completion via a convenient popup list
that appears as you type. In the developer tools from Microsoft, such as Visual Studio,
IntelliSense has always been one of the most popular features, and the reason is that it
is not simply word completion. In fact, IntelliSense provides suggestions as you type,
showing the documentation about a member (if available) and displaying an icon
near each suggestion that describes what kind of syntax element a word represents.
Figure 3-12 shows IntelliSense in action with a C# code file.

%] File Edit Selection View Go :* e Program.cs - hellocode - Visual Studio Code [Administrator] D8 0o - O X
m EXPLORER C* Programcs 4 @ a --
“ OPEN EDITORS |1 unsaved € Program.cs > & Person > @ Person()
® C* Program.cs 4 9 public-class Person ".-'
“ HELLOCODE 1 {
5 ecode 11 // - Some - code
) bln “2) references
> obj 13 public-Person()
& hellocode.csproj 14 q{
C* Program.cs 4 15
16 @ Console.
ConsoleColor Console.Background X —I
71 Beep
Gets or sets the background color of 42 BufferHeight !
the console. &2 Bufferiidth
¢ CancelKeyPress
Z% CapsLock
@ Clear

& CursorLeft

/2 CursorSize

&2 CursorTop

Z% Cursorvisible
& Equals

» OUTLINE
> TIMELINE

®3A1 & Blhellocode Ln16,Col 17 Spaces:4 UTF-8withBOM CRIF C* & 0

Figure 3-12. IntelliSense showing suggestions as you type and advanced word
completion

Asyou can see in Figure 3-12, IntelliSense shows the list of available members as
you write, for the given type (in this case, Console). When you scroll the list with the
keyboard and stop on a word from the completion list, Visual Studio Code shows the
member documentation. The little arrow to the right of the dialog can be used to turn the
documentation off.

60

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Note The documentation for a type or member is available only if it has been
supplied by the developers. For example, in C#, the documentation for types and
members must be provided with XML comments. This enables IntelliSense to
display it in a tooltip, as shown in Figure 3-12.

Press either Tab or Enter to complete the word insertion, or simply click. Not limited
to this, IntelliSense in Visual Studio Code supports suggestion filtering: based on the
CamelCase convention, you can type the uppercase letters of a member name to filter
the suggestion list. For instance, if you are working against the System.Console type and
you type cv, the suggestion list will show the CursorVisible property, as demonstrated
in Figure 3-13.

X = » Program.cs - hellocode - Visual Studio Code [Administrater] (] & [0 08 — =] G
C* Programcs 3 @ @ .-
1

€ Program.cs > % Person > @ Person()
9 public class Person B
10 { =
11 //-Some - code
12
13 public-Person()
14 e
15
16 @ Console.cy
E [isc n
i . .. bool Console.CursorVisible { get; set; } X 1
19 > public overrid
23 } Gets or sets a value indicating whether the cursor is visible.

®2A1 & Bheliocode Ln16,Col 19 Spaces:4 UTF-8withBOM CRIF C& & Q

Figure 3-13. Suggestion filtering in IntelliSense

61

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

IntelliSense also provides the foundation for other advanced features in the code
editor that depend on it, as described in the next subsections.

Parameter Hints

When you write a function invocation, IntelliSense also shows a tooltip that describes
each parameter. This feature is called parameter hints and is available only if the
documentation for function parameters has been implemented. An example is visible in
Figure 3-14.

£ = o Program.cs - hellocode - Visual Studio Code [Administrator) [[] B [0 08 — O X

C Program.cs 2 @ I

C* Program.cs > 4 Person > @ Person(

9 public-class:Person ’___

e { void Console.WritelLine(char[] buffer, int index,
11 // Some - code int count)
12
0 references buffer: An array of Unicode characters.
13 public Person()

~ Writes the specified subarray of Unicode characters, followed

14 { : :
: 95\1/18 by the current line terminator, to the standard output stream.

15
16 9 Console.WriteLine()

17 } I |
18

19 > public override string ToString() ---
23 }

®1A1 @ B hellocode Ln16,Col 27 Spaces:4 UTF-8withBOM CRIF c&¢ & 0Q

Figure 3-14. IntelliSense showing parameter hints

For languages such as C# and TypeScript or, more generally, languages that allow
for function overloads, parameter hints show the description for the parameters of each
overload. You can also scroll the list of overloads with the up and down arrow keys to
select a different overload.

62

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Inline Documentation with Tooltips

If you hover your cursor over types, variables, and type members, Visual Studio Code

shows a tooltip that contains the documentation for the selected object. Figure 3-15

provides an example.

* Program.cs - hellocode - Visual Studio Code [Administrator] [D Q D] s - O X

C Programcs 1 @ I

C* Program.cs > % Person > @ Person(

9
10
11
12

13
14
15
16
17
18
19
20
24

?

public-class:Person

{

/1 50me €Ol y5i4 Console.WriteLine(string? value) (+ 17 overloads)

0 references | Writes the specified string value, followed by the current line terminator, to
public - Per:c the standard output stream.

i Exceptions:
string I0Exception
Console.WritelLine(message); —]

1
i)

public-override string ToString() ---

®0A1 @ B hellocode Ln17,Col 36 Spaces:4 UTF-8withBOM CRIF c&¢ & 0Q

Figure 3-15. Tooltips provide quick, inline documentation

Like parameter hints, this feature is available only if the documentation has been

implemented.

Note If you hover your cursor over a variable name, the tooltip shows only the
type for the variable.

63

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Go to Definition and Peek Definition

Visual Studio Code provides another interesting feature, called Go to Definition. If you
hover your cursor over a symbol and press Ctrl (or 38 on macOS), the symbol appears
as a hyperlink; also, a tooltip shows the code that declares that symbol. If you click the
type name while pressing Ctrl, you will be redirected to the code that defines that type.
Figure 3-16 shows how the code editor appears when you press Ctrl and hover over a

type name.
I] = Program.cs - helloweb - Visual Studio Code [Administrator]] B [0 08 —] X
@ EXPLORER s+ € Program.cs X m -
~ OPEN EDITORS Ct Program.cs
X € Program.cs 1 |sar builder = WebApplication.CreateBuilder(="
~ HELLOWEB class Microsoft.AspNetCore.Builder.WebApplication
> wscode The web application used to configure the HTTP pipeline, and routes.
> bin
i HebApplication
4 ObJ =] dpPp.RUrng) ;
> Properties 7

{} appsettings.Development.json
{} appsettingsjson

2 helloweb.csproj

C: Program.cs

» OUTLINE
» TIMELINE
®0A0 @ B helloweb Ln1,Col1 Spaces:4 UTF-8 CRIF C& & Q

Figure 3-16. Ctrl+ hovering over a type enables Go to Definition

The same tool is available if you select a type name and press F12 or if you right-
click a type name and then select Go to Definition from the context menu. This is an
extremely useful feature that lets you quickly browse between type definitions that are in

different code files.

64

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Note For C#, Go to Definition can also open the definition of a type exposed
by the .NET libraries and any NuGet package that includes the type definition
information, not just your code.

Now suppose that you have dozens of code files and want to see or edit the definition
of a type you are currently using. With other editors, you would search among the code
files, which not only can be annoying but also moves your focus away from the original
code. Visual Studio Code brilliantly solves this problem with a feature called Peek
Definition.

You can simply right-click a type name and then choose Peek » Peek Definition (the
keyboard shortcut is Alt+F12). An interactive popup window appears, showing the code
that defines the type, giving you not only an option to look at the code but also of direct
editing. Figure 3-17 shows the Peek Definition window in action. You can press Esc to
quickly close the Peek Definition window as an alternative to clicking the Close button.

¢ File Edit Selection View Go Run - Program.cs - helloweb - Visual Studic Code [Administrator] DB 0Don - a x
@ EXPLORER e € Programgs @ o -
-
~+ OPEN EDITORS || Unsaved € Program.cs
® O Program.cs 1 var builder = Webapplication.CreateBuilder(args);
 HELLOWER 2 var-app = builder.Build({);
? wscode xf R 2 i
4 app.MapGet("/", () => "Helle world!"}); E
2 bin =
* obj 6 app.Run();
» Properties 9
C AppSettings.cs g AppSettings settings = new AppSettings(“welcome message™);
a
{1 appsettings.Developmentjson AppSettings.cs adelsole\source\reposihellowel - Definitions (1) x
appsettingsjson 2 references public AppSetings(string mess|
& helloweb.csproj 1 public class appsettings :
€ Program.cs 2 {
4 | public string Message { get; set; }
[| public AppSettings(string message) 1]
this.Message = message;
16 }
> OUTLINE

> TIMELINE
@0A0 & Ehelloweh In8 Col35 Spacesd UTR8 CRIF ¢ @ 0O |

Figure 3-17. Working on a type defined in another file with Peek Definition

65

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

As you can see, the Peek Definition window is very similar to the Find All References
feature, and it still shows the filename that defines the type at its top. Simply click the
filename to open the code file in a separate editor.

Go to Implementation and Peek Implementations

Sometimes you might need to understand how many times and where an interface or an
abstract class has been implemented.

Though you can accomplish this by finding a type’s references (see the next section),
Visual Studio Code now offers more convenient ways that work similarly to Go to
Definition and Peek Definition, respectively called Go to Implementation and Peek
Implementations. You can right-click an interface or abstract class definition and then
choose Go to Implementation or Peek » Peek Implementations. Both actions bring up
an interactive, nested editor that shows the list of implementations of the selected type
on the right, and the code for the first occurrence of the implementation, as you can see

in Figure 3-18.

66

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

®) File Edit Selection Yiew Go - IDemoFile.cs - helloweb - Visual Studio Code [Administrator] mDEemanon - m] P

C* Program.cs ® C* IDemoFile.cs X m -

1 public interface IDemoFile

- .
App 1gs.cs CAUsers\adelsole\source\reposihelloweb - Implementations (1) x
2 references ey public class AppSettings: IDemoFile
1 public-class AppSettings: IDemoFile
2
3
4 public string Message { get; set; }
5
6 public-AppSettings(string message)
7 {
8 this.Message = message;
9 }
16
17: public-bool OpenFile(string fileName)
12 {
13 try
14 {
15 var: content = System.I0.File.ReadAllText(fileName);
16 return -trie:
£
3 bool -OpenFile(string fileName);
4)

@0A0 & Bheloweb In1,Col24 Spacesd4 UTF8 CRIF C¢ & 0

Figure 3-18. Navigating among type implementations

The difference between the two actions is the following: with Go to Implementation,
when you click an implementation in the list, VS Code opens a new editor window
pointing to the file that contains the implementation; with Peek Implementations, when
you click an implementation in the list, it is displayed in an interactive popup window
similarly to how Peek Definition works.

Finding References

You will often need to know where types or members have been used across your code,
and Visual Studio Code provides two nice tools to retrieve references.

The first tool is called Find All References, which you might already be familiar
with if you have experience with Visual Studio on Windows. There are different options
to run this tool: you can right-click a type or member name and then choose Find All
References or you can press Shift+Alt+F12 (Option+Shift+F12 on macOS). Figure 3-19
shows an example based on finding all references of a type called App.

67

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

g = SecondPagexaml.cs - hellowpf - Visual Studio Code [Administrater]] B [0 08 — m] x
REFERENCES [SR=—-=1 C* MainWindow.xaml.cs & secondPagexaml C* secondPagexamles X [0 --
4 results in 3 files

~ € MainWindow.xaml.cs
App.StartTime = DateTime.No...

~ € SecondPage.xaml.cs

App.StartTime = DateTime... X 16 namespace hellowpf
> € App.g.cs obj\Debug\net7.0-w... 17 {
18 [/ [<summary >
19 /// Interaction logic: for MainWindow.xaml
28 /1] </summary>
0 references
o 21 public partial - class-SecondPage : Window
E| 22 { -
0 references

23 public - SecondPage()
24 {
25 | - -App.StartTime = DateTime.Now;
26 }
27)
28
29

@0oMA0 & NET Core Launch (console) (hellowpf) & B hellowpf Ln 25 Col 14 Spaces4 UTF-8 CRIF C& & 0

Figure 3-19. Finding all references of types and members

The References panel opens on the left side of the screen and shows a list of
references grouped by code file, together with the total number of references and of code
files involved. It also adds a new entry to the Side Bar that is disabled once you close
the References panel. The occurrences are highlighted; when you click one of them,
an editor opens on the file that contains the selected occurrence, which is highlighted
inside the code.

There is also another tool called Go to References (Shift+F12), which works inside
the active editor window. You enable Go to References either by right-clicking the object
name and then selecting Go to References or by clicking the number of references at the
top of the member definition (see Figure 3-19). You can use the first option anywhere
in the code, whereas you can use the second option only when the type or member
definition is focused in the code editor.

The user interface for Go to References is the same as for Find All References. Visual
Studio Code also provides another useful tool to find type and member references,
called Peek References. You can enable this tool by right-clicking an object name and
then choosing Peek » Peek References. As the name implies, Peek References displays

68

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

all the references in the active editor, inside an interactive panel similar to what you saw
previously with Peek Definition. Figure 3-20 shows an example, again based on finding
all references of a type called App.

g = SecondPagexaml.cs - hellowpf - Visual Studio Code [Administrator] [[] B [0 08 — m] x

xaml.cs C Mainwindow.xaml.cs ™ SecondPagexaml C: secondPagexaml.cs X ™ MainWindow.xam! M --

C* secondPagexaml.cs > {} hellowpf > %2 hellowpf.SecondPage > @ SecondPage()
23 public SecondPage()
24 {
25 ® | App.StartTime = DateTime.Now;
F.
x
z ? Mainwindow.xaml.cs 1
14 ising: System.Windows. St
= ~ SecondPagexaml.cs 1
16 namespace hellowpf App.StartTime = DateTime.No4
17 { > App.g.s obj\Debug\net?.... (2 B
18 /17 - <summary>
19 /// Interaction-logic- for MainWindow.xaml
28 f1 - </summary>
0 re ces
21 public-partial class SecondPage: : ‘Window
22 {
23 public-SecondPage()
24 {
25 | - Bpp.StartTime = DateTime.Now; -
26 }
27 }
26 ¥
27 }
@0MA0 & NET Core Launch (console) (hellowpf) & B hellowpf Ln25Col15 Spacesd4d UTF-8 CRIF Cc& & 0

Figure 3-20. Finding references with Peek References

Ifyou click an occurrence in the list on the right, the code editor opens a popup
window containing the code where that occurrence has been found. It is very important
to note that this popup window is interactive, which means that you can edit the code
directly without the need to open the containing code file separately. This enables you to
keep your focus on the code, saving time. Also, notice that the interactive popup window
shows, at the top, the filename that contains the selected reference.

Similar to Find All References is Find All Implementations, which makes it easy to
find implementations of an interface or abstract class. Figure 3-21 shows an example
where an interface called IPerson is implemented by two classes, Person and Employee.
Find All Implementations shows in a tree view all the implementations of the interface
and highlights the class definition in the code editor.

69

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

£ = Employee.cs - hellocode - Visual Studio Code [Administrater] [0 B [0 08 — O X
REFERENCES: IMPLEME.. 1) = & C* Program.cs C* Employee.cs X Cf Person.cs m -
2 results in 2 files C: Employee.cs > %3 Employee
~ Employee.cs X 0 r S 3
_) 1 public class Employee : IPerson
| public class Employee : IPerson 2 »
v €t Person.cs ‘ 0 references
public class Person : IPerson 3 public string FullName()
4 {
5 return-"";
6 }
L. o
(e
&
@0A0 @& Bhellocode Ln1,Col 14 Spaces:4 UTF-8 CRIF ¢ & QO

Figure 3-21. Finding all type implementations

Renaming Symbols and Identifiers

Renaming a symbol is a frequent task, so Visual Studio Code offers a convenient way

to accomplish this. If you press F2 over the symbol you want to rename or right-click
and then select the Rename Symbol command, a small interactive popup box appears.
There you can write the new name without any dialogs, keeping your focus on the code.
Figure 3-22 shows an example based on a symbol called app.

70

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Person.cs - hellocode - Visual Studio Code [Administrator] [D D Eﬂ g - (] X

&
1

C* Program.cs C* personcs X m -
C Person.cs » 4 Person > & FullName()

0 references
®

3 public string FullName()
? —
4 L |Completel-lame
S throw: new T T T e el Pravien
6 }
7 b

PROBLEMS OUTPUT TERMINAL REFACTORPREVIEW DEBUG CONSOLE ~ X
b g C* Employee.cs
public string FultCompleteName()
~ C* person.cs
public string FeftCompleteName()
~ B € program.cs
string FetCompleteName();

oy J 0w

@0A0 @& BEhellocode Ln3,Col22 Spaces:4 UTF-8 CRIF C& & 0

Figure 3-22. Renaming symbols

If you press Shift+Enter before renaming, Visual Studio Code shows a preview
of how symbols will be renamed (see the REFACTOR PREVIEW tab at the bottom of
Figure 3-22). Toolbar buttons in the tab enable you to accept changes (Apply Refactoring
button) and reject changes (Discard Refactoring button).

By pressing Enter, all references of that symbol will be renamed accordingly.
Additionally, you can rename all the occurrences of an identifier. You simply right-click
the identifier, then choose Change All Occurrences (or press Ctrl+F2 on Windows/Linux
and 38+F2 on macOS). All the occurrences will be highlighted and updated with the new
name as you type.

71

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Live Code Analysis

With TypeScript, JavaScript, and languages whose support can be enhanced via
extensions like C# and Python, Visual Studio Code can detect code issues as you type,
suggesting fixes and offering code refactorings. This is one of the most powerful features
in this tool, which is something that you will not find in other code editors. The next
examples are based on the C# programming language, since (together with TypeScript)
this supports the richest experience possible in Visual Studio Code, and therefore it is
a good choice to discuss the powerful coding features available. Of course, everything
discussed here applies to all other languages that support the same enhanced features.
According to the severity level of a code issue, Visual Studio Code underlines with
squiggles the pieces of code that need your attention. Green squiggles mean a warning;
red squiggles mean an error that must be fixed. If you hover over the line or symbol
with squiggles, you get a tooltip that describes the issue. Figure 3-23 shows two code
issues, one with green squiggles (an unused local variable) and one with red squiggles (a
symbol that does not exist).

72

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

£ = o Program.cs - hellocode - Visual Studio Code [Administrator] [[J b [08 — O X

C Program.cs 2 @ (==

C: Program.cs

//-See-https://aka.ms/new-console-template- for more information T

o

Console.Writeline(message); .
Console.ReadLine();

* Pr

1

2

3 int anlnteger;
4

5

6

7

PROBLEMS (2 OUTPUT TERMINAL DEBUG CONSOLE Filter (e.g. text, /"5, "/.. %W & T ~ X

v € Program.cs (2

)

® The name 'message’ does not exist in the current context [hellocode] csharp(CS0103) [Ln 4, Col 1
/\ The variable ‘aninteger’ is declared but never used [hellocode] csharp(CS0168) [Ln 3, Col 5]

@1A1 @& Bhellocode Ln6 Col 1 Spacess4 UTF-8withBOM CRIF C¢ & 0Q

Figure 3-23. Code issue detection as you type

Code issues are detected as you type and they are also listed in the Problems panel.
Look again at Figure 3-23 and note the icon with the shape of a light bulb. This icon
is a shortcut for a tool called Light Bulb. When you click the icon, Visual Studio Code
shows possible code fixes for the current context. For example, Figure 3-24 shows the
suggestions that the Light Bulb provides to fix the missing symbol underlined with red
squiggles.

73

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

£ = o Program.cs - hellocode - Visual Studio Code [[] @ [0 08 — (] X

C Program.cs 2 @ (==

C* Program.cs > {} hellocode > % hellocode Program > @ Main(string(] args)
1 namespace hellocode; e
0 references

2 class Program

4 static void Main(string[] args)
5 {

6 int a;

7 ® Console.kriteLine(message);
8 E——

9) Quick Fix...

10 ¥ Generate variable ‘message’ -> Generate field ‘message’

® Generate variable ‘message’ -> Generate read-only field ‘message’

PROBLEMS) T LY 8 F o~ X
—— @ Generate variable 'message’ -> Generate property ‘message’

v € Prot o -
. 7 % Generate variable 'message’ -> Generate local 'message’

LI -) p(€CS0103) [Ln 7, Col 27]
& Generate variable 'message’ -> Generate parameter 'message’ e

VAN), Col 13]

® Fix typo 'message’ -> Change 'message’ to ‘HttpMessageHandler'. '

&

5

@ Fix typo 'message’ -> Change 'message’ to 'HttpMessagelnvoker'.

® Fix typo 'message’ -> Change 'message’ to 'HttpRequestMessage.

®1A1 & Elhellocode In7,Col31 Spaces:4 UTF-8withBOM CRLF C# &

Figure 3-24. Potential fixes suggested by the Light Bulb

In this particular case, the editor suggests five options for generating members:
create a field, create a read-only field, create a property, create a local variable, or create
a parameter. It also offers three options to change the identifier into a different object
name, but in this case the goal is generating a new member. Based on the code in
Figure 3-24, a field would be created as follows:

private static bool message;
A property would be generated like this:
public static bool Message { get; private set; }

Perhaps bool is not the type you would expect here, but Visual Studio Code does
not have enough information to infer a different type, so it will generate one based
on the type parameter accepted by the first overload of the method, which is bool for

74

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

WritelLine. However, when the code contains some information that Visual Studio Code
could use to understand the proper type, it generates properties, fields, local variables,
and parameters of the expected type. With the Light Bulb, it is also easier to generate
types on the fly. Figure 3-25 shows an example based on an object called person, for
which a type has not yet been defined. As you can see, for this context the code editor
shows a larger list of possible fixes, including generating a new class, either in the current
file or in a separate file, including the option of a nested class.

£ = o Program.cs - hellocode - Visual StudioCode [0 B [0 08 - (] X

C Program.cs 2 @ (==

C* Program.cs > {} hellocode > 42 hellocode Program > @ Main(string(] args)
1 namespace hellocode; S
0 references

2 class Program

3! o

4 static void Main(string[] args) -l
5 {

6 int a;

7 e Console.Writeline(person.ToString());

8 e

9] Quick Fix...

10 ® Generate variable 'person’ -> Generate field 'person’

® Generate variable ‘person’ -> Generate read-only field *person’
® Generate variable 'person’ -> Generate property ‘person’

® Generate variable 'person’ -> Generate local ‘person’

@ Generate variable 'person’ -> Generate parameter 'person’

® Generate type 'person’ -> Generate class 'person’

® Generate type "person’ -> Generate nested class ‘person’

® Change 'person’ to 'Version'.

®1A1 & Bhellocode Ln7,Col30 Spacess4 UTF-8withBOM CRIF Cc& &

Figure 3-25. Generating types on the fly

The Light Bulb can also help you refactor your code and keep it cleaner. For example,
you can click any of the using directives (or equivalent in other languages) and, when
the Light Bulb appears, you can see how it offers to remove unused code, as shown in
Figure 3-26.

75

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

g = o Program.cs - hellocode - Visual StudioCode [0 B [0 08 — O X
C Program.cs 1 @ ()=
C* Program.cs > ...

1 Ring System.Text;

2 using System.IO;

3 e

4 2 Quick Fix...

i ® Remove Unnecessary Usings

5 class Program
6. s
7 static void Main(string[] args)
8 {
9 int a;
10 }
11
12

—

Figure 3-26. Code refactoring made easy

Actually, the Light Bulb tool offers even more power. Suppose you want to create
a class that implements the IDisposable interface. As you can see in Figure 3-27,
IDisposable is underlined with a red squiggle because the code is not implementing the
interface yet. When a code issue is detected on the usage of a type, you can hover your
cursor over the underlined code and see an informational tooltip, as demonstrated in
Figure 3-27.

76

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

X = o Person.cs - hellocode - Visual Studio Code [0 E [08 — (] X
C* Program.cs 1 C pPersoncs 1 @ m -
: C: Person.cs » %2 Person
1 class Person: IDisposabld s |
B & interface System.IDisposable
i } Provides a mechanism for releasing unmanaged resources.

'Person’ does not implement interface member
'IDisposable.Dispose()" [hellocode] csharp(CS@535)

View Problem (Alt+F8) Quick Fix... (Ctrl+.)

®1A1 & B hellocode Ln1,Col26 Spaces:4 UTF-8 CRIF G & O

Figure 3-27. Informational tooltips about code issues

Tooltips disappear when you move the cursor off the issue, but you can click Peek
Problem and dock the error description inside a red box that stays in the code editor. If
you still have the Light Bulb enabled, you will see how the code editor suggests potential
fixes based on the current context, such as implementing the interface in different ways
(see Figure 3-28).

77

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

X = o Person.cs - hellocode - Visual Studio Code [0 E [08 — (] X

C* Program.cs 1 C pPersoncs 1 @ m -

C: Person.cs » %2 Person

1 class Person: IDisposable s |
2 £
3
o ick Fix...
P Quic

| @ Implement interface

® Implement interface with Dispose pattern

Implement all members explicitly

® Implement interface explicitly with Dispose pattern
More Actions...

® Generate constructor ‘Person()’

®1A1 & B hellocode Ln1,Col26 Spaces:4 UTF-8 CRIF G & O

Figure 3-28. The Light Bulb provides suggestions based on the current context

Just to give you an idea of the power of this tool, the following code is generated if
you choose the Implement Interface with Dispose Pattern option:

using System;
public class Person: IDisposable
{
#region IDisposable Support
private bool disposedValue = false; // To detect redundant calls
protected virtual void Dispose(bool disposing)
{
if (!disposedValue)
{
if (disposing)
{

78

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

// TODO: dispose managed state (managed objects).
}

// TODO: free unmanaged resources (unmanaged objects)
// TODO: set large fields to null.
disposedValue = true;

}

// // TODO: override a finalizer only if Dispose(bool disposing) above
has code to free unmanaged resources.
// ~Person() {
// Do not change this code. Put cleanup code in Dispose(bool
disposing) above.
// Dispose(false);
/1 }
// This code added to correctly implement the disposable pattern.
public void Dispose()

{
// Do not change this code. Put cleanup code in Dispose(bool
disposing) above.
Dispose(disposing: true);
GC.SuppressFinalize(this);
}
#endregion

You will get a similar result, but with different implementation, if you choose one
of the other possible code fixes. Although it is not possible to show examples for all
the code fixes that Visual Studio Code can apply, what you have to keep in mind is that
suggestions and code fixes are based on the context for the code issue, which is a very
powerful feature that makes Visual Studio Code a unique editor.

79

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Hints About IntelliCode

For languages such as TypeScript, JavaScript, Java, T-SQL, and Python, the coding
experience can be further enhanced with the IntelliCode extension
(https://marketplace.visualstudio.com/items?itemName=VisualStudioExptTeam.
vscodeintellicode).

IntelliCode is an Al-powered code completion engine, whose user interface and
user experience is very close to IntelliSense, but it is capable of learning from the way
you write code. This includes patterns you use and analysis of the context of your source
code. The resulting experience is made of improved suggestions for code completions,
based on the context.

Summary

Visual Studio Code is a code-centric tool that supports a wide variety of languages out
of the box, offering coding features that are common to all the supported languages,
such as syntax colorization, delimiter matching, code block folding, multicursors, code
snippets, and code completion.

In addition, languages such as TypeScript and C# provide the so-called evolved code
editing experience via integrated tools such as IntelliSense, Go to Definition and Peek
Definition, Find All References, and the extremely powerful Light Bulb, which detects
code issues as you type and suggests potential fixes based on the context.

Now that you have knowledge of the powerful coding features that Visual Studio
Code offers, it is time to see how to use them with individual source code files and
structured folders in Chapter 4.

80

https://marketplace.visualstudio.com/items?itemName=VisualStudioExptTeam.vscodeintellicode
https://marketplace.visualstudio.com/items?itemName=VisualStudioExptTeam.vscodeintellicode

CHAPTER 4

Working with Files
and Folders

Being the powerful editor it is, Visual Studio Code provides a convenient way of working
with code files and folders containing both loose files and projects. In this chapter, you
learn how to work with individual files, with folders containing source code files, and
with workspaces. You also learn about VS Code’s independence from proprietary project
systems as well as its built-in support for a few popular project types.

Visual Studio Code and Project Systems

Visual Studio Code is file and folder based. That means that you can open one or more
code files distinctly, but it also means that you can open a folder that contains source
code files and treat them in a structured, organized way. When you open a folder, Visual
Studio Code searches for one of the following files to organize a structured view of the list
of files in the folder:

o Tsconfig.json
o Jsconfig.json
o Package.json
e Project.json

e .slnVisual Studio solutions and . csproj project files for NET with
the C# extension installed

If VS Code finds one of these files, it can organize the file structure into a convenient
editing experience and can offer additional rich editing features such as IntelliSense
and code refactoring. If a folder only contains source code files, without any of the

81
© Alessandro Del Sole 2023

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_4

https://doi.org/10.1007/978-1-4842-9484-0_4

CHAPTER 4 WORKING WITH FILES AND FOLDERS

aforementioned . json or .slnfiles, it still opens and shows all the source code files

in that folder, providing a convenient way to switch between all of them. This chapter
describes how to work with individual files and with folders in Visual Studio Code, and
more details about how it manages projects is provided in the subsection “Working with
Folders and Projects.”

Working with Individual Files

The easiest way to get started editing with Visual Studio Code is to work with one code
file. You can open an existing supported code file with File » Open (Ctrl+O or 38+0 on
macOS). Visual Studio Code automatically detects the language for the code files and
enables the proper editing features. In addition, it checks if an extension is available

on the Visual Studio Marketplace for the selected language and, if so, offers to install

it to improve the editing experience. Of course, you can certainly open more files and
easily switch between files by pressing Ctrl+Tab (or ~+Tab on macOS). As you can see in
Figure 4-1, a convenient popup box shows the list of open files; by pressing Ctrl+Tab, you
can browse files and cycle through the files in the list, and when you release the keys, the
selected file becomes the active editing window.

82

CHAPTER 4 WORKING WITH FILES AND FOLDERS

g = » App.tsx - typeseript-todo-master-master - Visual Studio Code [Administrater] [B [0 02 — o X
TS setupTeststs TS App.tsx src e o ---
i L R e L R T L LR LR R e N)
8
9 const toggleComplete: ToggleComplete = selectedTodo => {
18 const updatedTodos = todos.map(todo => {
11 if (todo === selectedTodo) {
12 return { ...todo, complete: !todo.complete }; =]
13 } I
14 return todo;
15 I H
16 setTodos (updatedTodos);
17 3.
k)
19 const addTodo: AddTodo = newTodo => {
28 if (newTodo l== "} {
21 setTodos([...todos, { text: newTodo, complete: false }]);
22]
23
24
25 const removeTodo: RemoveTodo = todoToRemove => {
26 let updatedTodos: Array<Todo> = todos.filter(todo => todo.text != todoToRemove.text);
27 setTodos(updatedTodos);
28 }
29
3e const editTodo: EditTodo = todoToEdit => {
31 let todoToUpdateIndex: number = todos.findIndex(todo => todo.text == todoToEdit.text);
32 console. log(todoToUpdateIndex);
33)
34
35 return (
36 <div className="todo-app”>

37 <header>
3 [[
P master ® ®0A0 Ln15,Col8 Spaces:2 UTF-8 LF () TypeSaiptisX & 0

Figure 4-1. Quickly navigating between open editors

You can close an editor simply by clicking the Close button in the upper-right corner
of each tab, or by using File » Close Editor. You can also quickly close all open editors
with the Close All command in the top-right options, under the ... shortcut.

Note In Visual Studio Code terminology, it is common to refer to open files as
active editors or open editors. This is because editor windows are not limited to
code files, but can also display documentation files or provide formatted previews
of the content of other types of files (e.g., images and spreadsheets).

83

CHAPTER 4 WORKING WITH FILES AND FOLDERS

Creating Files

You have several ways to create a new file:
e ViaFile » New File
o By pressing Ctrl+N (38+N on macOS)
e By using the New File shortcut on the Welcome page

o By clicking the New File button in the Explorer Bar when a folder is
currently opened

By default, new files are treated as plain text files. To change the language for a new
file, click the Select Language Mode item in the right corner of the Status Bar, near the
smile icon, or click the Select a language hyperlink in the editor. In this case, you will
see Plain Text as the current mode, so click it. As you can see in Figure 4-2, you will be
presented with a list of supported languages from which you can select the new language
for the current file. You can also start typing a language name to filter the list.

84

CHAPTER 4 WORKING WITH FILES AND FOLDERS

»] File Edit Selection View Go Run - Untitled-1 - Visual Studio Code [Administrator] B Mo - o X
] welcome [Select Language Mode l o -

1 Select ¢
Auto Detect
Start t)
ASP.NET Razor (aspretcorerazor) languages (identifier)
B8 Batch (bat)
BibTeX (bibtex)
Binary (code-text-binary)
CCild
C C# (csharp)
G C++ (cpp)

@ Clojure (clojure)

w CoffeeScript (c
W Compose (dockercomposs)

CSS (ess)

@00 Ln1,Col1 Spaces:4 UTF-8 CRLF PlainTet & 0Q

Figure 4-2. Selecting the language for a new file

When you select a new language, the Select Language Mode item is updated with
the current language, and the editor enables the supported features for the selected
language, such as syntax colorization, word completion, and code snippets.

Obviously, you can change the language of any open code file, not just new files.

Language Autodetection

Visual Studio Code can also auto-detect the language in a new code file. For example, if
you paste some code from the clipboard into a new file, VS Code will automatically select
the appropriate language.

You can also manually select the Auto Detect option from the language
selection box.

85

CHAPTER 4 WORKING WITH FILES AND FOLDERS

File Encoding, Line Terminators, and Line Browsing

Visual Studio Code allows you to specify an encoding for new and existing files. Default
encoding for new files is UTF-8. You can change the current encoding by clicking the Select
Encoding item in the Status Bar (in the previous figures, it is represented with UTFE-8, the
current encoding). You are first asked to select an action between Reopen with Encoding
and Save with Encoding. Click the first option to be presented with a long list of supported
encodings and a search box where you can filter the list as you type (see Figure 4-3).

X = Untitled-1 - Visual Studio Code [Administrator] M B8 [0 - m] X

kselect File Encoding to Save with a -

1 Sele
UTF-8 utid
Star

UTF-8 with BOM utf8bom

UTF-16 LE utf16le

UTF-16 BE utf16be

Western (Windows 1252) windows1252
Western (ISO 8859-1) is088591
Western (ISO 8859-3) is088593
Western (ISO 8859-15) is0885915

Ln1,Col1 Spaces:4 UTF-8 CRLF PlainText & 0Q

Figure 4-3. Selecting the file encoding

Similarly, you can change the line terminator by clicking the Select End of Line Sequence
item (in previous figures, it’s represented by CRLF). Visual Studio Code supports CRLF
(Carriage Return and Line Feed) and LF (Line Feed), and the default selection is CRLE. On
Windows, the default sequence is CRLE while on macOS and Linux it is LE You can also
move fast to a line of code by clicking the Go to Line item, represented by the line number/
column group in the Status Bar. This opens a search box in which you can type the line
number you want to go to, and the line of code is immediately highlighted as you type (see
Figure 4-4). When you press Enter, the cursor moves to the start of the selected line.

86

CHAPTER 4 WORKING WITH FILES AND FOLDERS

®] File Edit Selection View Go Run - App.tax - typescript-toda-master-master - Visual Studic Code [Administrator] DB meon - o *

TS setupTesis.is TS »'\pp.ls: :;j‘ m -

TS A @

App > [2
e s Go to line 35.

28 f (newTodo !== ="} {

21 setTodos([...todos, { text: newTodo, complete: false }1);

22) =
23 |-

24 -
25 const removeTodo: RemoveTodo = todoToRemove =>

26 let updatedTodos: Array<Todo> = todos.filter(todo => todo.text != todoToRemove.text);

27 setTodos{updatedTodos);

28 }

29

L] const editTodo: EditTodo = todoToEdit => {

31 let todoToUpdateIndex: number = todos.findIndex(todo => todo.text == todoTofdit.text); -
32 console. log(todoToUpdateIndex);

33 }

34

35 return

36 <div classhames="todo-app”>

37 <header>

<hl»

} Todo App

4@ </hi»

41 «/header>

42 <TodoFora addTodo={addTodo}/>

43 «TodoList todos={todos} toggleCompletes{toggleComplete} cnRemoveTocdo={removeTodo} editTodos{editTodo}/>

44 </div>»

P master @ ®0A0 Ln15Col8 Spacess2 UTF-8 LF () TypeSciptliX & 0

Figure 4-4. Quickly moving to a specific line of code with Go to Line

Working with Folders and Projects

Unlike other development environments, such as Microsoft Visual Studio, Visual Studio
Code is folder based, not project based. This makes Visual Studio Code independent
from proprietary project systems. VS Code can open folders on disk containing multiple
code files and organize them the best way possible in the environment, and it also
supports a variety of project files. More specifically, when you open a folder, VS Code
first searches for the following:

e MSBuild solution files (.s1n): In this case, VS Code expects to find a
.NET solution made of C# projects, so it scans the referenced projects
(*.csproj files) and organizes files and subfolders in the proper way.
Remember that VS Code needs the Microsoft C# extension installed
to properly treat solution files. Note that VS Code can open any .sln
solution, but full support is currently offered only for .NET 5 and
higher. An example of this scenario is provided in Chapter 8.

87

CHAPTER 4 WORKING WITH FILES AND FOLDERS

o tsconfig.json files: If found, VS Code knows these represent the
root of a TypeScript project, so it scans for the referenced files and
provides the proper file and folder representation.

o jsconfig.json files: If found, VS Code knows these represent the
root of a JavaScript project. So, similarly to TypeScript, it scans
for the referenced files and provides the proper file and folder
representation.

o package.json files: These are typically included with JavaScript
projects, so VS Code automatically resolves the project type based on
the folder’s content.

o project.jsonfiles: If found, VS Code treats the folder as an older
.NET Core project.

Note Openinga .sln, .csproj,or . json file directly will result in editing the
content of the individual file. For this reason, you must open a folder, not a solution
or a project file.

Additional project systems might be supported via extensibility. If none of the
supported projects is found, Visual Studio Code loads all the code files in the folder as
aloose assortment, organizing them into a virtual folder for easy navigation. Now let’s
explore how to work with folders and supported projects in Visual Studio Code, with
corresponding examples.

Opening a Folder

You open a folder by choosing File » Open Folder or choosing the Open Folder shortcut
on the Welcome page. You can also drag and drop a folder name from Windows Explorer
or macOS Finder onto Visual Studio Code.

Note On Windows, the VS Code installer also provides an option to enable a
shortcut called Open With Code when you right-click a folder or filename in File
Explorer.

88

CHAPTER 4 WORKING WITH FILES AND FOLDERS

Whatever folder you open, VS Code creates a structured view in the Explorer Bar,
where it shows all files and subfolders that belong to the main folder. Figure 4-5 shows an

example based on a TypeScript project.

] File Edit Selection View Go Run -+ App.tsx- type

> OPEN EDITORS]
~ TYPESCRIPT-TODO-MASTER-MASTER

> node_modules
v public
& app-image.png
* favicon.ico
<» index.html
¥ logo192.png
2 logo512.png
{} manifestjson
robots.txt
“ SIC
> components
App.css
% App.test.tsx
TS App.tsx
index.css
TS index.tsx
‘m logo.svg
TS react-app-env.d.ts
TS reportWebVitals.ts
TS setupTests.ts
TS types.d.ts
% .gitignore
package-lockjson
{} packagejson
J5 postess.configjs
(@ README.md
5 tailwind.configjs
B tsconfigjson

> OUTLINE
> TIMELINE

Pmaster @ ®0A0

Figure 4-5. The structured view of files and folders in Explorer

The root container is the folder name. You see nested files and subfolders, and you
can expand each subfolder to browse every file it contains. Simply click a file to open an

editor window on it.

89

CHAPTER 4 WORKING WITH FILES AND FOLDERS

Opening .NET Solutions

When you open a folder that contains a .NET solution based on the MSBuild project
system (.s1n file) or a C# project (. csproj file), Visual Studio Code organizes all the
code files into the Explorer Bar and enables all the available editing features for C#.
Figure 4-6 shows an example.

®] File Edit Selection View Go Run - MainWindowxamlcs -« hallowpd - Visual Studis Code [Administrater] DB meon - (n] x

C* Mainwindow.xamles X B Sec

» OPEN EDITORS C Mainwindowxaml.cs > {} hellowpf t hellowpf.MainwWindow
~ HELLOWPF 1 using System;

» wscode

> bin

usiné, System.Windows;

i
-

16 namespace hellowpf

{

18 f/f <summary>

nteraction legic for MainWindow.xaml
28 HF <fsummary>
21 public partial class MainWindow : Window
22 fl
3 public Mainkindow()
25 InitializeComponent();
26
27 App.StartTime = DateTime.Now;
28 |
29 j
L |

» OUTLINE
> TIMELINE

@0A0 & B helowpf In22,Col6 Spaces4 UTF-8withBOM CRIF €& & 0Q

Figure 4-6. A .NET solution opened in Visual Studio Code

Notice how the root level in Explorer is the project name. You can browse folders,
browse code files, and edit anything that Visual Studio Code can properly recognize.
It is worth mentioning that VS Code can certainly open any MSBuild solution, but it is
only able to debug applications built with .NET 5 and higher. For instance, .NET 7 allows
for creating Windows Presentation Foundation (WPF) and Windows Forms projects;
Visual Studio Code and the C# extension support opening this type of solutions as well
as running and debugging code. WPF and Windows Forms projects created for the .NET
Framework can still be opened in VS Code, and you will still benefit from the structured

90

CHAPTER 4 WORKING WITH FILES AND FOLDERS

folder view in the Explorer Bar and the full C# language support, but you will not be
able to build, run, and debug the code. Instead, with .NET 7 you also have integrated
debugging support, which allows running, debugging, and testing code directly within
VS Code. This is discussed in Chapter 9.

Opening JavaScript and TypeScript Projects

Similarly to .NET solutions, Visual Studio Code can manage JavaScript folders by
searching for jsconfig.json or package. json files. If found, Code organizes the list of
folders and files the proper way and enables all the available editing features for all the
files it supports, as shown in Figure 4-7.

®] File Edit Selection View Go Run - whatsapp-api-nodejs-main - Visual Studio Code [Administratar] DB meon - o x
* OPEN EDITORS
 WHATSAPP-API-NODEJS-MAIN GERBRLSE
» .github
> husky

env.example

@ .eslintrcjson

© .gitignore
-prettiengnore
prettierrc.json

R CONTRIBUTING.md

« docker-composeyml

& Dockerfile

R UCENSE
nodemon.json
packagejson

Y Procfile

(D README.md
whatsapp-api-nodejs.postman_collection json

& yamlock

> OUTLINE
> TIMELINE
@oho A2 Q

Figure 4-7. A JavaScript project opened in Visual Studio Code

TypeScript projects’ behavior is the same as for JavaScript, except that Visual Studio
Code searches for a file called tsconfig. json as the root.

91

CHAPTER 4 WORKING WITH FILES AND FOLDERS

Opening Loose Folders

Visual Studio Code supports opening folders that contain unrelated, loose assortments
of files. VS Code creates a logical root based on the folder name, showing files and
subfolders. Figure 4-8 shows an example based on a sample folder called MyFiles that

contains files in different languages.

] = o SharedFunctions.vb - MyFiles - Visual Studio Code [Administeato] D B M 08 — 0O X
@ EXPLORER SharedFunctions.vb @ ==
1
» OPEN EDITORS |1 unsaved SharedFunctions.vb
v MYFILES 1 Namespace Functions ==
C* DemoFile.cs 2
- "
& DocFilexml 3 Public Class SharedFunction
jex.html .
< ht =k i
mm.ax. |.n 5 Public Sub Dosomething()
Js optionsjs 6
! pipelineyml % End Sub
SharedFunctions.vb 8 |
9 End Class
il:}
11 End Namespace

» OUTLINE
» TIMELINE

@oAo & In11,Col 14 Spaces4 UTF-8 CRLF VisualBasic & 0

Figure 4-8. A folder containing a loose assortment of files

With this option, you can basically open any folder in VS Code and edit all supported
files, taking advantage of the code editing features for each file individually.

Working with Workspaces

Visual Studio Code has the concept of a workspace. A workspace can be thought of as a
logical container of folders. In the latest versions of Visual Studio Code, this feature has
also been known as multi-root workspaces.

92

CHAPTER 4 WORKING WITH FILES AND FOLDERS

Note If you have experience with Microsoft Visual Studio, a workspace in Visual
Studio Code can be compared to a Visual Studio solution as a container of projects.

Workspaces are extremely useful to organize multiple projects and/or folders into
one place. For example, you might have a .NET Web API project, a JavaScript application
that consumes such API, and a folder containing documentation. Instead of working
on each folder separately, you can put them all under the same workspace and have
them all available in Visual Studio Code at the same time. Figure 4-9 shows a workspace,
called SamplelWorkspace, that includes a .NET Web API project, a JavaScript project, and
aloose folder.

93

CHAPTER 4 WORKING WITH FILES AND FOLDERS

’a — Welcome - SAMPLEWORKSPACE (We

@ EXPLORER

v OPEN EDITORS
% ¥ Welcome
+ SAMPLEWORKSPACE (WORKSPACE) B Bt)]
~ multeor-master
> .docker
> designs
> public
© .gitignore
@ config.rb
«" docker-compose.yml
$ multeor.sh
{} package-lockjson
{} packagejson
@ README.md
{} SAMPLEWORKSPACE.code-workspace
JS serverjs
~ helloweb
> Wwscode
? bin
> obj
> Pages
> Properties
> wwwroot
{} appsettings.Developmentjson
{} appsettingsjson
& helloweb.csproj
C* Program.cs
v MyFiles
C: DemofFile.cs
R DocFilexml
<» index.html
IS options,js
! pipelineyml
> OUTLINE
> TIMELINE
®oA0 & B helloweb

Figure 4-9. A workspace can group multiple projects and folders into one logical
container

The multeor-master folder contains the files for a sample open-source project
called Multeor that you can download for instructional purposes from https://github.
com/filidorwiese/multeor. The Explorer Bar shows the name of the workspace in

94

https://github.com/filidorwiese/multeor
https://github.com/filidorwiese/multeor

CHAPTER 4 WORKING WITH FILES AND FOLDERS

uppercase together with the (WORKSPACE) literal so that it’s easier to recognize it. In
the next sections, I explain in more detail how to create and open workspaces and the
structure of a workspace file.

Creating Workspaces

You can create a workspace regardless of whether you already have a folder open. If you
do have a folder open, choose File » Save Workspace As and VS Code will ask you to
specify the location and filename for the new workspace. A workspace is represented
by a JSON file with the .code-workspace extension, the structure of which is explained
shortly.

The workspace name is simply the filename without the . codeworkspace extension
and is shown in the Explorer Bar (see Figure 4-9). Then you can add other folders to the
workspace by choosing File » Add Folder to Workspace. Added folders are displayed in
the Explorer Bar under the workspace root.

If you do not have any folders open, you can start either with File » Save Workspace
As or with File » Add Folder to Workspace. With the first option, you basically create
an empty workspace with a name, and then you add folders as described in the
preceding text. With the second option, you instead create an empty, untitled workspace
starting from an existing folder. In this case, in fact, the Explorer Bar shows UNTITLED
(WORKSPACE) as the new workspace name. When you save the workspace as described
in the preceding text, the Explorer Bar shows the new name based on the workspace
filename. Remember that workspaces are only logical containers and do not affect the
structure or behavior of your projects and folders in any manner.

Note Folders you add to a workspace can be anywhere on disk; Visual Studio
Code will group their content under the workspace root and let you work as if they
were in the same location.

Opening Existing Workspaces

You can open an existing workspace by choosing File » Open Workspace. You can
also drag and drop a workspace filename from your operating system’s file browsing
program onto the Visual Studio Code surface. Opening a . code-workspace file directly

95

CHAPTER 4 WORKING WITH FILES AND FOLDERS

simply results in viewing the file content, not opening the workspace. Similarly, opening
a folder that contains a . code-workspace file results in opening only the folder, not the
workspace. You can only use the specific commands described at the beginning of this
paragraph.

Workspace Structure

The information of a Visual Studio Code workspace is stored inside a file with a . code-
workspace extension. A workspace file is a JSON file with a root element called folders.
This is an array of path elements, each assigned with the name of a folder that is
included in the workspace. The following JSON markup represents how the workspace
file of the example shown in Figure 4-9 looks on my machine, and it will vary on your

computer:
{
"folders": [
{
"path": ".\MyFiles"
b
{
"path": "C:\\Source\\helloweb"
b
{
"path": "C:\\Source\\multeor-master"
}
]
}

Notice that the full pathname of a folder is provided only if the folder is not in the
same location of the workspace file. In this case, the . code-workspace file, the webapp
folder, and the multeor-master folders are all in the same location; instead, the MyFiles
folder is located under a different folder. If you want to see the structure of a workspace
file for yourself, you can open it in Visual Studio Code by choosing File » Open File.

96

CHAPTER 4 WORKING WITH FILES AND FOLDERS

Security: Workspace Trust

Visual Studio Code includes interesting security features that allow for safely
working with files, folders, and workspaces. These features go under a group named
Workspace Trust.

When Visual Studio Code cannot trust the source or author of an individual file,
a folder, or a workspace, it will prompt you with different choices such as opening the
content as trusted, opening the content in restricted mode, or cancelling the operation.

Figure 4-10 shows the warning message.

@ Do you want to allow untrusted files in this
window?
You are trying to open untrusted files in a window which is trusted.

If you don't want to open untrusted files, we recommend to open
them in Restricted Mode in a new window as the files may be
malicious. See our docs to learn more.

(] Remember my decision for all workspaces

Figure 4-10. Workspace Trust in action

Note The warning message varies if VS Code cannot automatically trust

the source or author of the content. Figure 4-10 refers to untrusted files. With
untrusted authors, the title of the dialog shows the following message: Do you
trust the authors of the files in this workspace? Also, textin the
buttons changes accordingly.

If you trust the source or author of the files, folder, or workspace, you can click Open
and the content will be opened with no restrictions. If you are not sure, you can click

Open in Restricted Mode.

97

CHAPTER 4 WORKING WITH FILES AND FOLDERS

Note If you select the Remember My Decision for All Workspaces checkbox,
your choice will be applied to all files, folders, and workspaces you open from now
on and you will no longer be prompted for enabling or disabling restricted mode.
However, you can change this preference in VS Code’s Settings, as explained
shortly.

When you open contents in restricted mode, VS Code only enables code browsing
and disables features like debugging, tasks, and some extensions that could work with
that content type. Figure 4-11 shows a JSON file opened in restricted mode. Notice the
warning message at the top of the file saying that restricted mode allows for safe code
browsing, and the Manage shortcut.

¥] File Edit Selection View Go Run --- nodemon.json - Visual Studio Code

Restricted Mode is intended for safe code browsing. Trust this window to enable all features. Manage Leam More

} nodemon,json X

C: > Users > adelsole > source > repos > whatsapp-api-nodejs-main > {} nodemon,json > ...
1
2 "watch": [“src", “.env"],
3 “ignore": [],
4 b0 o A e
5 "exec": "node src/server.js”
6 [
7

Figure 4-11. Opening files in restricted mode

If you click Manage, you can manage the restricted mode for the current file and
folder. Figure 4-12 demonstrates this.

98

CHAPTER 4 WORKING WITH FILES AND FOLDERS

] File Edit Selection View Go Run Workspace Trust - Visual Studio Code - Insiders D8 Io - (] x
Restricted Mode is intended for safe code browsing. Trust this window to enable all features. Manage Leam More X
EXTENSION Workspace Trust X @D -
: BworkspaceUnsupported
* DISABLED IN RESTRICTED MODE 1 @ You are in Restricted Mode
Code - Insiders is in a restricted mode intended for safe code browsing.
@ & Configure your settings or learn more.
“ LIMITED IN RESTRICTED MODE L 2 3
In a Trusted Window In Restricted Mode
GitHub Authentica... 2 20ms
(, GitHub Authentication Provi... You trust the authors of the files in the You do not trust the authors of the files in
vicode D & current window. All features are enabled: the current window. The following features
are disabled:
JavaSeript Debugger " Tasks are allowed to run
-;g{- An extension for debugging... o X Tasks are not allowed to run
M o} +" Debugging is enabled
* Debugging is disabled
¢/ All enabled e
Mashdoun Langiage Faat-s v All enabled extensions are N ——
Provides rich language supp... activated £ e_nﬂ_ons s -:sa 2 t_zc &
vscode (O} have limited functionality
NPM support for V... T t3ms Trust
m Extension to add task suppo...
vicode D& CtrisEnter
PHP Language Features
° Provides rich language supp...
yscods
MRS Trusted Folders & Workspaces
¥ R A arw foldins cr wotkioac il vet
TypeScript and JsvaScript - You haven't trusted any folders or workspace files ye
‘!’ Provides rich language supp... -
ek Add Folder
vscode @ {':.‘
@ Restricted Mode ®0A0 & 0

Figure 4-12. Managing the restricted mode

The active window, called Workspace Trust, clearly explains the difference between
a trusted window and the restricted mode. In a trusted window, debugger, tasks, and
extensions are all enabled and running. In the restricted mode, tasks and debugging are
disabled, whereas extensions are disabled or have limited functionality. Visual Studio
Code decides which extensions must be disabled or partially enabled depending on their
target. In Figure 4-12 you can see how, based on my configuration, seven extensions
have been disabled. By clicking 7 Extensions, it is possible to see the list of both disabled
and limited extensions in the Extensions panel on the left.

Once you have investigated the code, you can click the Trust button to move your file
to a trusted window. You can also add specific folders and workspaces to a list of trusted
content by clicking the Add Folder button at the bottom of the page.

99

CHAPTER 4 WORKING WITH FILES AND FOLDERS

Configuring Workspace Trust

You can change Workspace Trust configuration at any time in the Visual Studio Code
settings. This is accomplished in the Workspace group of the Security node, as shown in
Figure 4-13.

) FEile Edit Selection Yiew Go Bun - Settings - Visual Studio Code [Administrator] DB8meo - o x
Settings X am -
Search settings AT

Workspace

Trust: Banner (.

Controls wh

5 Application untilDismissed il
Security
Workspace Trust: Empty Window (
3 Extensions J Controls wheth w is trusted by defa i with Security »
Worksp n enable the full fun prompting in an
mpty win

Trust: Enabled (Applies to al

/| Controls whether or nc pace Trust is enabled within VS Code.

Trust: Startup Prompt (Applies

Controls when the startup prompt t

once

Trust: Untrusted Files (Applies

Controls how to

an empty window which is trusted »

prompt W

Figure 4-13. Configuring Workspace Trust

Note Figure 4-13 shows how to configure Workspace Trust at the user level.
When you open a workspace in restricted mode, you can able configure trust
settings per workspace and per folder.

100

CHAPTER 4 WORKING WITH FILES AND FOLDERS

Summary

Visual Studio Code is file and folder based, and it allows for working with individual files
as well as with folders that contain source code files. It treats them all in a structured,
organized way.

Visual Studio Code also supports a number of project systems such as .NET,
TypeScript, and JavaScript, and it allows for creating and managing multi-root
workspaces. Workspaces are logical containers of folders that make it easy to have
multiple projects and folders under the same visual root. Files, folders, and workspaces
can be opened in restricted mode for safe code browsing and moved to a trusted
environment once you are sure of the contents. VS Code is not only a very powerful
code editor but also a very flexible environment that can be customized in many ways.
Customization is the topic of the next chapter.

101

CHAPTER 5

Customizing Visual Studio
Code

Visual Studio Code is an extremely versatile development tool that can be customized
and extended in many ways. In fact, you can customize its appearance, the code editor,
and key shortcuts to make your editing experience extremely personalized.

Additionally, you can install third-party extensions such as new languages,
debuggers, themes, linters, and code snippets. This chapter explains how to customize
Visual Studio Code, explaining the difference between customizations and extensions.
Then, in the next chapter, you learn how to work with extensions.

Customizations and Extensions Explained

You can personalize the environment of Visual Studio Code with customizations and
extensions. The difference is that extensions add new instrumentation or functionalities
to a tool or change the behavior of existing functionalities. Implementing IntelliSense
for a language that does not have it by default, adding commands to the Status Bar, and
adding custom debuggers are examples of extensions.

Customizations are instead related to environment settings and do not add
functionalities to a tool. Examples of popular customizations are color themes and key
bindings. Table 5-1 summarizes the customizations and extensions in VS Code.

103
© Alessandro Del Sole 2023

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_5

https://doi.org/10.1007/978-1-4842-9484-0_5

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

Table 5-1. Customizations and Extensions

Feature Description Type

Color themes Style the environment layout with different colors. Customization
User and workspace Specify environment preferences. Customization
settings

Key bindings Redefine keyboard shortcuts. Customization

Language grammar
and syntax colorizers

Code snippets

Debuggers
Language servers

Activation

Editor

Workspace

Eventing

Evolved editing

Add support to additional languages with syntax colorizers. Customization

Add TextMate and Sublime Text snippets and type repetitive Customization
code faster.

Add new debuggers for specific languages and platforms. Extension
Implement validation logic for files opened in VS Code. Extension

Load an extension when a specific file type is detected or ~ Extension
when a command is selected in the Command Palette.

Work against the code editor’s content, including text Extension
manipulation and selection.

Enhance the Status Bar, working file list, and other tools. Extension

Interact with VS Code’s lifecycle events such as openand Extension
close.

Improve language support with IntelliSense, Peek Definition, Extension
Go to Definition, and all the advanced, supported editing
capabilities.

In this chapter, you see how to customize Visual Studio Code by changing the

existing preferences. Then in the next chapter, you see how to install extensions,

including extensions that add new customizations to the development environment,

such as themes and key bindings.

104

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

Customizing Visual Studio Code

In this section, you discover how easy it is to customize Visual Studio Code by walking
through the customization types described in Table 5-1.

Theme Selection

You can select among several themes to give Visual Studio Code a different look and feel.
A brief introduction to color themes was given at the beginning of Chapter 1, but now
you get more details.

You select a color theme by choosing File » Preferences » Themes » Color Theme
or by clicking the Settings button and then choosing Themes » Color Theme. The list of
available color themes is shown in the Command Palette, as you can see in Figure 5-1.

105

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

®) File Edit Selection View Go - Welcome - Visual Studio Code [Administrator] Do, - o x

] welcome X | Select Color Theme (Up/Down Keys to Preview) (1] e

~+ Browse Additional Color Themes...
Light (Visual Studio) light themes
g Light+ (default light)
V] S Light+ V2 (Experimental)
Quiet Light
Ed It Solarized Light
Abyss dark themes
Dark (Visual Studio)
[‘.:. Me Dark+ (default dark)
(‘I’j op Dark+ V2 (Experimental)

3_9 Clone Git Repository...

Start

‘0 make VS

? Learn the Fundamentals

Recent
= Boost your Productivity
multeor-master C\Users\adelsole\source\repos

Cryptex C\Users\adelsole\source\repos
SAMPLEWORKSPACE (Workspace) Ch\Users\adelsole... B3 Catstarted with Javascript > ted
MyFiles C\Temp

whatsapp-api-nodejs-main C:\Users\adelsole\source... @ Get started with Python de... CLZIS3

More...

/| Show welcome page on startup

Figure 5-1. Selecting a theme

Themes are divided into light themes, dark themes, and high-contrast themes. Once
you select a different color theme, it is applied immediately. Also, you can get a preview
of the theme as you scroll the list with the keyboard. Figure 5-2 shows the Dark (Visual
Studio) theme applied to VS Code, which is a very popular choice; try out the other
themes to find one that suits you.

106

CHAPTER 5 CUSTOMIZING VISUAL STUDIO CODE

File Selection View Go package son - multeor-master - Visual Studio Code [Administrator] B 3 0 08 = (m}

{} package-lockjson X m --

X {} package-lock.s

ULTEOR-MASTER

> public

.gitignore

{} SAMPLEWORKSPACE.code-workspace

J5 s

version
"resolve
"integri
"requires”: {
"delayed-stream™: "
}
OUTLINE s
> TIMELINE “commander”: {

@oA0 In13,Col8 Spaces2 UTF8 IF {}ISON & (3

Figure 5-2. The Dark (Visual Studio) theme applied to Visual Studio Code

As you might expect, applying a theme also affects the colors used in the code editor
so that there is an appropriate brightness and contrast balance. In the next chapter, you
see how to install additional themes as extensions.

Customizing the Environment

In most applications, including other IDEs, you set environment settings and preferences
via a convenient user interface, and VS Code is no exception. There are two different
types of settings: user settings and workspace settings. User settings apply globally to the
development environment, while workspace settings only apply to the current project or
folder. The following subsections cover both user settings and workspace settings.

107

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

Understanding User Settings

User settings globally apply to the VS Code’s development environment. Customizing
user settings is accomplished by choosing File » Preferences » Settings. When you do
this, the Settings editor appears, as represented in Figure 5-3.

] File Edit Selection View Go Run - Settings - Visual Studio Code [Administrator] DB0ooe - o X
Settings X o m -
I kearch settings 7|

User Tum on Settings Sync

Commonly Used

Commonly Used

Files: Auto Save

Controls auto save of editors that have unsaved changes.

off v

Editor: Font Size

Controls the font size in pixels
Controls the font size in pixels.

14

Editor: Font Family

Controls the font fa

Consolas, ‘Courier New”, monospace

Editor: Tab Size (Mo

The L f sp equal to. This setting is overridden based on the file contents when
Edito

4

Editor: Render Whitespace

Controls how the editor should render whitespace characters.

Figure 5-3. Working with user settings

On the left side of the editor, settings are grouped by category. In the Search
Settings bar, you can quickly search settings based on what you type, and you can also
see the number of total settings found, which varies depending on the version of VS
Code and on the number of extensions you have installed. You can manually expand
setting categories, or you can just scroll the list of settings, and the related category is

108

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

automatically highlighted as you scroll. For instance, you could control the behavior of
the Explorer Bar by locating and selecting Explorer under the Features category, and
there you can change the current settings, as shown in Figure 5-4.

] File Edit Selection View Go - Settings - Visual Studio Code [Administrator] DB 0mone - [m] X
Settings X o m -
Search settings Y

User Tum on Settings Sync

Commonly Used

Explorer
Auto Reveal
~ Controls whether the Explorer should automatically reveal and select files when opening them
“ Features
Explorer true v
Search
Debu

Auto Reveal Exclude

aled and selected in the

Source Control

Exte
*=/node_modules

Terminal

Task **/bower_components
Problems
OQutput

Comments

Remote Compact Folders

|Z Cont er the Explorer should render folders

ch

De compressed ina combined tree
for example.

Confirm Delete
|v-’ Cont

ther the Explorer should ask for confirmation when deleting a file via the trash.

? Extensions

Figure 5-4. Changing user settings

Similarly, you can change settings and preferences for the text editor, the whole
application, and extension settings. In fact, extensions that allow for customizing
preferences store their settings in the same place as VS Code does, so that you have a
unique Settings editor. There are hundreds of settings and the number varies depending
on your configuration and installed extensions, so it’s not possible to list all settings here.
For more details about available settings, visit the official documentation at https://
code.visualstudio.com/docs/getstarted/settings.

109

https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/getstarted/settings

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

Behind the Scenes: The settings.json File

Behind the scenes, VS Code (and extensions) stores settings inside a file called
settings.json. In this file, each key/value pair represents a specific setting and its value.
It is important to understand how this file works, so click the Open Settings (JSON)
button located above the search bar and represented by a sheet icon with a plus symbol
overlayed (the first from left to right). Figure 5-5 shows how the editor appears at

this point.

] File Edit Selection View Go - settings.json - Visual Studio Code [Administrater] DB Mo - o x
Settings i} settingsjson 1 X OO -
2 User adelsole > AppData > Roaming > Code » User > settingsjson »
1 [] |

& 2 "editor.suggestSelection™: “first”, P Ca

3 "vsintellicode.modify.editor.suggestSelection™: "automaticallyOverrodeDefaultvalue”,
4 "workbench.colorTheme": "Visual Studio Light", |
5 "workbench.editorAssociations™: {
6 "*.ipynb”: jupyter.notebock. fpynb”
7 o
8 “json.maxItemsComputed™: 1@oceeos,
Q “security.workspace.trust.untrustadriles”: “open”,
1@ “[python]": {
11 “editor.formatOnType”: true 1
12 }s
13 "python.defaultInterpreterPath”: "C:\\Users\\adelsole\\AppData\\Local\\Microsoft\\Wir
14 "editor.renderWhitespace™: "none”
15)

In1,Col1 Spacess4 UTF-8 CRLF {} JSON with Comments & [

Figure 5-5. Working with the settings.json file

As you can see, the editor for settings. json allows you to define custom settings by
overriding one or more default settings. It is worth mentioning that changes you do in
this file are at the user or workspace level only, and they do not affect general settings of
VS Code. Also, you will see how IntelliSense helps you choose among available settings

110

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

as you type. The code editor also reports errors, such as missing commas or curly braces,
as you would expect when editing a JSON file. Within settings.json, it is also possible
to customize settings for an extension. Every time you modify a setting in the user
interface, the related JSON is updated in settings.json.

IntelliSense also allows you to get more information about a given setting by clicking
the rollover, which shows hints about the setting with a convenient tooltip, exactly as
you would expect after learning about IntelliSense’s features in Chapter 3. When you are
done, do not forget to save settings. json; otherwise your changes will be lost.

A Real-World Example: Working with Proxies

If you work for an enterprise, the network probably is behind a proxy server. In this
case, you or the system administrator might need to configure Visual Studio Code to
work with the proxy. If you do not, you cannot download packages, extensions, and
product updates. Visual Studio Code should automatically detect proxies and ask for
your credentials, but this does not always happen, so you might need to take some
manual steps.

The first thing to do is make sure that the sites described in Table 5-2 are in the
allowed applications list of the firewall.

111

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

Table 5-2. Sites Allowed by a Firewall

URL Description
update.code. Visual Studio Code download and update server
visualstudio.com

code.visualstudio.com
go.microsoft.com

vscode.blob.core.
windows.net

marketplace.
visualstudio.com

*.gallery.vsassets.io
*.gallerycdn.vsassets.
io

rink.hockeyapp.net

bingsettingssearch.
trafficmanager.net

vscode.search.windows.
net

raw.githubusercontent.
com

vsmarketplacebadge.
apphb.com

az764295.vo.msecnd.net

download.visualstudio.
microsoft.com

Visual Studio Code documentation
Microsoft link forwarding service

Blob storage for Visual Studio Code

Visual Studio Marketplace

Visual Studio Marketplace
Visual Studio Marketplace

Crash reporting service

In-product settings search

In-product settings search

GitHub repository raw file access

Visual Studio Marketplace badge service

Content Delivery Network (CDN) for Visual Studio Code downloads

Visual Studio download service, which includes dependencies for
extensions such as C# and C++

The next step is to configure VS Code to work with the proxy. Actually, if the http

proxy and https_proxy environment variables have been defined at the system level, VS

Code uses their values. If these variables have not been set, you must provide the proxy

address in the user settings. In the Settings editor, locate Proxy under the Application

category. Then, as you can see in Figure 5-6, enter the proxy address in the Proxy text box.

112

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

] File Edit Selection View Go - Settings - Visual Studio Code [Administrator] DB 0mone - [m] X
Settings X o m -
Search settings Y

User Tum on Settings Sync

Commonly Used

Proxy

& Proxy
The proxy setting to use. If not set, will be inherited from the http_proxy and https_proxy
environment variables

v Application
Proxy

Keyboard

http://127.0.0.1

Proxy Authorization
The value to send as the Proxy-Authorization header for every network request.

Edit in settingsjson

Proxy Strict SSL

|v/| Controls whether the proxy server certificate should be verified against the list of supplied CAs.

Proxy Support

Use the proxy support for extensions.

override v

System Certificates
|v/] Cont

should be loaded from the OS. (On Windows and macOs, a

reload of t

ter turning this off)

Figure 5-6. Configuring VS Code to work behind a proxy server

If your proxy also requires an authorization header, this must be specified in the
settings.json file, so you have to click the Edit in settings.json hyperlink and then
enter the value supplied by your network administrator as the value for the http.
proxyAuthorization key. Also, check the Proxy Strict SSL checkbox if the certificate
should be verified against the list of supplied certification authorities.

Save your changes and check if Visual Studio Code is able to download extensions,
packages, and libraries required by some languages and product updates. If you still
encounter network issues, ask your network administrator to help you configure the

proxy settings.

113

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

Note Some protection programs such as Symantec Endpoint Protection

block some Visual Studio Code installation (and update) files because they are
recognized as CryptoLocker virus instances. Obviously, these are false positives,
but you might want to talk to your network administrator to review the protection
rules for Visual Studio Code.

Privacy Settings: Telemetry

By default, Visual Studio Code anonymously collects and sends to Microsoft information
about usage, errors, and crashes. You can disable one or more of these telemetry settings
by scrolling the user settings to the Telemetry group, located under the Application
category (see Figure 5-7).

114

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

] File Edit Selection View Go - Settings - Visual Studio Code [Administrator] OEimao - (] x
Settings X D m -
Search settings Y

User Tum on Settings Sync

Commonly U

Telemetry

> Text

2 Woskhench &2 | Telemetry Level (Applies to all profiles)
7 Window Controls Visual Studio Code telemetry, first-party extension telemetry, and participating third-party
extension telemetry. Some third party extensions might not respect this setting. Consult the specific
v Application extension's documentation to be sure. Telemetry helps us better understand how Visual Studio Code

) is performing, where improvements need to be made, and how features are being used. Read more
about the data we collect and ou vacy statement. A full restart of the application is necessary for
crash reporting changes to take effect.

eatures

Telemetry The following table outlines the data sent with each setting:
Settings Sync Crash Reports Error Telemetry Usage Data
Expenmental all o e v

> Security error V '

? crash v

e

off

Note: If this setting is 'off, no telemetry will be sent regardiess of other telemetry settil
is set to anything except ‘off and telemetry is disabled with deprecated settings, no tel
sent.

ngs. If this setting
etry will be

[off
all default

error

crash

off

Sends usage data, errors, and crash reports. identifier of an extension is always

TPUUIISTIET 3 e TUT EXaTTPTE,: VECOUE, CSITarp.

Edit in settings.json

Figure 5-7. Managing telemetry in Visual Studio Code

There are four options:

¢ All: When enabled, VS Code collects and sends to Microsoft
information about errors and crashes.

¢ Error: When enabled, VS Code collects and sends to Microsoft

information about application errors only.

¢ Crash: when enabled, VS Code collects and sends to Microsoft
information about application crashes only.

o Off: Telemetry is disabled.

115

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

A shortcut to the privacy policy is also available, and I recommend that you read it
before enabling one or both the options.

Synchronization Settings

In Chapter 1, you learned that Visual Studio Code allows for synchronizing settings
across different installations. You have full control over items that can be synchronized
through the Settings Sync group under the Application category.

You can decide which extension will be synchronized and which is not, you can
exclude specific settings from synchronization, and you can disable or re-enable
keybinding synchronization. Apart from the latter, which is managed via a simple
checkbox, you need to make your changes in the settings. json file. The Ignored
Extensions and Ignored Settings hyperlinks enable you to edit specific blocks of
settings about extensions and general settings, respectively. As mentioned previously,
IntelliSense will help by adding the available settings. Figure 5-8 shows an example, but
keep in mind that available settings may vary on your machine, especially depending on
the extensions you have installed.

116

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

®] File Edit Selection View Go - o sattingsjson - Visual Studio Code [Administrator] maB8imao - (m] X
Settings {} settingsjson 1 & ™ m -
. C: > Users > adelsole > A > Roaming » Code > User > (]} settingsjson > []settingssy Settings
o L
2 “editor.suggestSelection™: “first",
3 “vsintellicode.modify.editor.suggestSelection™: “automaticallyOverrodeDefaultValue”,
a4 “workbench.colorTheme”: “Visual Studio Light™,
5 "workbench.editorAssociations™: { 1
6 "*.ipynb": jupyter.notebook.ipynb”
7
8 "json.maxItemsComputed™: 1@eeeess,
9 "security.workspace.trust.untrustedfiles”: “open”,
10 "[python]™: {
11 "editor.formatOnType™: true
12 b I
13 "python.defaultInterpreterPath”: "C:\\Users\\adelsole\\AppData\\Local\\Microsoft\\Wis
14 "editor.renderWhitespace”: "none”,
15 "telemetry.telemetrylLevel”: “"off",
16 "settingsSync.ignoredSettings™: [
17 |
18 |] .clang_format_path™
19 } codeAnalysis.clangTidy.path"”

codeAnalysis.maxConcurrentThreads™
codeAnalysis.maxMemory™

w? "-C_Cpp.default.browse.databaseFilename™

=% "-C_Cpp.default.browse.path”

=" "-C_Cpp.default.compileCommands™

¥ "-C_Cpp.default.compilerArgs”

=" "-C_Cpp.default.compilerPath”

=" "-C_Cpp.default.customConfigurationVariables™
=" "-C_Cpp.default.defines”

=% "-C_Cpp.default.forcedInclude”

Ln17,Col9 Spaces4 UTF-8 CRLF {} JSON with Comments

Figure 5-8. IntelliSense helps manage synchronization settings

Understanding Workspace Settings

Differently from user settings, which globally apply to VS Code’s environment,
workspace settings apply to the current workspace and folders in the workspace. As an
implication, you first need to open an existing workspace or add an existing folder to a
new workspace, to customize workspace settings.

Next you choose File » Preferences » Settings. At this point, the Settings editor
shows three tabs: one for user settings, one for workspace settings, and one for
individual folders within the workspace, as demonstrated in Figure 5-9.

117

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

g = Settings - SAMPLEWORKSPACE (Workspace) - Visual Studic Code [Administrator] [B [0 08 - (m] X

Settings X D m -

Search settings Y

User Workspace Folder - Tum on Settings Sync

multeor-master

Commonly Use
> Text Editor helloweb

nonly Used

MyFiles L
! * save
Controls auto save of editors that have unsaved changes.

off v

> Extensions

Editor: Font Size

Controls the font size in pixels.

14

Editor: Font Family

Controls the font family.
Consolas, "‘Courier New', monospace

Editor: Tab Size (Modified elsewhere)

®@0AO0 & BEhelloweb

Figure 5-9. Customizing workspace settings

You customize workspace and folders settings exactly as you do with user settings,
so you have not only a second view in the Settings editor but also two other JSON files
where you can specify your preferences. More specifically, workspace settings are stored
in the . code-workspace file (you can see this in the Explorer), while folder settings are
stored in the settings.json file. The .code-workspace file is saved under the workspace
folder, while settings.json is saved under the .vscode subfolder that Visual Studio
Code creates inside the opened folder, restricting the settings' availability to the current
folder only.

Customizing Keyboard Shortcuts

Visual Studio Code includes a huge number of keyboard shortcuts that you can
override with custom values. This is particularly useful if you are used to working with
other development tools and you want to have the same keyboard shortcuts in Visual
Studio Code.

118

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

Note In the next chapter, you learn how to download ready-to-use keyboard
shortcuts that will save you a lot of time, but it’s first important for you to know
how they actually work.

Like user and workspace settings, keyboard shortcuts are represented with JSON
markup, and each is made of two elements: key, which stores one or more keys to be
associated to an action, and command, which represents the action to invoke. In some
cases, VS Code might offer the same shortcuts for different scenarios. This is the typical
case of the Esc key, which targets a number of actions depending on what you are
working with, such as the code editor or a tool window. To identify the proper action,
keyboard shortcut settings support the when element, which specifies the proper
action based on the context. You can quickly get the list of current keyboard shortcuts
by choosing File » Preferences » Keyboard Shortcuts. At this point, Visual Studio
Code displays a nicely formatted list of commands and shortcuts, as you can see in
Figure 5-10.

119

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

g = Keyboard Shortcuts - SAMPLEWORKSPACE (Workspace) - Visual Studio Code [Administrat.. [0 B [0 08 — (m] X
Keyboard Shortcuts X o m -
Type to search in keybindings 8 &
Command Keybinding When Source
Accept Inline Suggestion Tab estionHasIndentationLessTha. System

Accept Next Word Of Inline Suggestion Ctrl + RightAmow iggestionVisible 8& leditorRea.. System

Accept Next Word Of Inline Suggestion Escape onvisible System
Add Cursor Above Ctrl + Alt + UpAmow System
Add Cursor Below Ctrl + At + DownAmow System
Add Cursors to Line Ends Shift |+ At + | System
Add Line Comment Ctrl + K (Ctrl +# C System
Add Selection To Next Find Match Ctl + D System
Auto Fix... Shift + At + . . System
C/C++: Switch Header/Source At + O ‘e— CfC++
Calls: Show Call Hierarchy Shift + At + H Reference Search v
Cancel Selection Anchor Escape System
Change All Occurrences Ctrl + F2 System
Change Language Mode €l + K | M System
Close Exception Widget Escape System
Close Window Ctrl + Shift + W - System
Close Window At + Fa - System
Copy Ctrl + Insert - System
Copy Crl +|C - System
Copy Line Down Shift + At + DownAmow editorTextFocus 8& !editorReadonly System
Copy Line Up Shift + ARt |+ UpArrow xtFocus && !editorReadonly System
Create Folding Range from Selection cirl + k] [+ &% foldingEnabled System
Create: New File... Ctrl + Alt + Windows + - System
Cursor Undo Cil + U textInputFocus System
Cut Shift |+ Delete - System
Cut Ctrl + X = System
Debug: Continue F5 debugState == 'stopped’ System

®0A0 & BEhelloweb

Figure 5-10. The list of current keyboard shortcuts

To customize keyboard shortcuts, all you need to do is click the Open Keyboard
Shortcuts button, represented by a sheet icon with a plus symbol overlayed, located at
the top-right corner of the window. This opens the keybindings. json file, where you
can override default shortcuts with custom ones (see Figure 5-11).

120

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

Note Remember that Visual Studio Code has (and allows for customizing)
different default keyboard shortcuts depending on the operating system it is
running on.

You can quickly add a custom keyboard shortcut by clicking the Define Keybinding
button or by using the shortcut suggested in the button text (which varies depending on
your operating system). When you do this, a popup box appears and asks you to specify
the keyboard shortcut, as shown in Figure 5-11.

?Q = keybindings.json - SAMPLEWORKSPACE (Workspace) - Visual Studio Code [Administrator] [D Q m g - m] x
Keyboard Shortcuts {} keybindingsjson X L N 0 R
C: > Users > adelsole > AppData > Roaming > Code > User > {} keybindings.json
1 // Place your key bindings in this file to override the defaults

Press desired key combination and then press ENTER.

ctri+q

Ctd + Q

Define Keybinding (Ctri+K Ctrl+K)

®0A0 & FIhellowed Ln1,Col1 Spaces:4 UTF-8 LF ()} JSON with Comments & 0Q

Figure 5-11. Adding a keyboard shortcut

When you press Enter, the JSON markup for the new keyboard shortcut is added, as
shown in Figure 5-12.

121

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

o = » keybindings.json - SAMPLEWORKSPACE (Workspace) - Visual Studio Code [A.. [0 B [0 08 — m} Picd
Keyboard Shortcuts {} keybindingsjson ® v m -
1
C: > Users > adelsole > AppData > Roaming > Code > User > {} keybindingsjson > @ ctrl+q
1 // Place your key bindings in this file to override the defaults
2 [
3 "key™: “ctrl+g”, —
" " o (T !
4 command”: " EommandEd .
5 "when": "editorTextFocus"
6
7]

Define Keybinding (Ctri+K Ctr+K)

®0AO0 @ B helloweb Ln 4, Col 26 (9 selected) Spaces:4 UTF-8 LF {} JSON with Comments & 0Q

Figure 5-12. Editing the new keyboard shortcut

You need to edit the command and when elements with the command you want to
map and for which scenario. Additionally, when editing keybindings. json manually,
you need to supply the markup for both the old shortcut and the new one. For example,
suppose you want to replace the Alt+0O shortcut for the C/C++ extension (Switch:
Header/Source) with Shift+Alt+0O. The markup you need to write looks like the following:

{
"key": "shift+alt+o",

"command": "C_Cpp.SwitchHeaderSource",

"when": "editorTextFocus && editorlLangId == ‘cpp'"
})
{

"key": "alt+o",

"command": "-C_Cpp.SwitchHeaderSource",

"when": "editorTextFocus && editorLangId == 'cpp'"
}

122

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

Actually, the when element is optional. Save your changes to the keybindings.json
file to get your new keyboard shortcuts ready.

Creating Reusable Profiles

Suppose you want to use Visual Studio Code for different development scenarios, for
example web development with C#, writing documentation with Markdown, or data
science development with Python.

For each scenario, you might need specific settings, such as (but not limited to) code
snippets, extensions, and keyboard shortcuts that go well with one scenario but that
might not be appropriate for another one.

Visual Studio Code allows you to create profiles. A profile is a group of
customizations that includes extensions, environment settings, code snippets, keyboard
shortcuts, Ul appearance, and tasks. Profiles can be saved, exported, and shared with
others. In order to manage profiles, you click the Settings icon in the Side Bar and then
select Profiles. This opens the menu shown in Figure 5-13.

LI SAMEFLEVWURRIMAL ELOUE-WOI Ky Pdie

Command Palette... Ctrl+Shift+p
Profiles (Default) > v Default
Turn on Settings Sync... Test
Settings Ctrl+, Show Contents...
Extensions Ctrl+Shift+X

Create Profile...
Keyboard Shortcuts Ctrl+K Ctrl+S

Delete Profile...
User Snippets

Themes > Export Profile...

®@O0AO0 @ Bhelloweb Import Profile... l

Figure 5-13. Accessing profile options

As you can see, there is always a default profile to which current customizations are
applied at a global level. Before creating a new profile, you can export the current one
for later reuse. With regard to this, click Create Profile. You will be asked to specify if you
want to create an empty profile or a new profile from the current one. Select the latter
option, then specify a profile name, for example My Default (see Figure 5-14).

123

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

£ = SAMPLEWORKSPACE (Workspace) - Visual Studio Code [Administrator] [[J & [0 08 — o £

Create from Current Profile...

My default |

Press "Enter’ to confirm your input or "Escape’ to cancel

Figure 5-14. Creating a new profile

Press Enter when you're ready. At this point, the new profile also becomes the active
profile. This can be easily demonstrated by reopening the Profiles menu. If you want to
see what is included in the current profile, select Show Contents. Figure 5-15 shows an
example of profile contents.

ﬂ — SAMPLEWORKSPACE (Workspace) - My default -
PROFILES: MY DEFAULT (D)

s Settings
{} settingsjson

v [Keyboard Shortcuts
{} keybindings.json

> [ul state

2 Extensions
.NET Install Tool for Extension Authors
C/C++
c#
Decompiler

d=l Encode Decode

IntelliCode
IntelliCode API Usage Examples
isort
Italian Language Pack for Visual Studio Code
Lottie Viewer
LottieFiles for VSCode
Microsoft.AspMNetCore.Razor.VSCode.Blazorwas...
Pylance
Python
Subtitles Editor

®0A0 @& B helloweb

Figure 5-15. Displaying profile contents
124

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

As you can see, customizations in the profile are grouped by Settings, Keyboard
Shortcuts, Ul State, Extensions. From here you can also remove one or more
customizations from the profile, and you can decide to export the profile for later reuse.
Click the Export button. The Command Palette appears and first asks you to specify a
profile name, then if the profile should be exported to a remote Gist repository (GitHub
option) or to a local file (Local option). Select the second option and choose a target
folder and filename. Profile filenames have .code-profile extension and are JSON files
whose structure represents the profile contents. Exported profiles can be shared with
other developers; you can import a profile by selecting the Import Profile command
from the Profiles menu (see Figure 5-13).

Note You do not need to reimport your own profiles every time you switch
between existing profiles. You can instead select among installed profiles from the
Profiles menu.

Profiles are an easy and convenient way to organize your workspace based on your
needs and can really save you a lot of time.

Summary

Visual Studio Code enables you to make several customizations that will help you
feel at home, especially if you are used to working with other development tools or
code editors. You can select a different color theme from a list, you can customize the
environment settings globally or for a specific folder, and you can even create custom
keyboard shortcuts.

But the very good news is that customizations can also be downloaded as extensions,
as well as new languages, debuggers, and tools. Extensibility is discussed in the next
chapter.

125

CHAPTER 6

Installing and Managing
Extensions

Extensibility is one of the key features in Visual Studio Code, because you can add
tools, languages, code snippets, debuggers, key bindings, and themes. Extensibility is
especially beneficial in the area of languages, because Visual Studio Code enables you to
extend the code editor with specific syntax support, which can also include IntelliSense,
code snippets, and code refactoring.

This all means that Visual Studio Code has open support for any language and any
tool on any platform, opening the possibilities to infinite development scenarios. This
chapter explains how to find and install extensions and how to manage extensions on

your system.

Installing Extensions

You have two ways of browsing and installing extensions: from the Visual Studio
Marketplace and from within Visual Studio Code. The Visual Studio Marketplace is a
website that contains extensions for the most popular Microsoft development tools and
services, such as Visual Studio, Visual Studio Code, and Azure DevOps. It is available at
https://marketplace.visualstudio.com, and you need to click the Visual Studio Code
tab to see a list of extensions for Visual Studio Code. Figure 6-1 shows the Marketplace
for Visual Studio Code.

127
© Alessandro Del Sole 2023

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_6

https://marketplace.visualstudio.com
https://doi.org/10.1007/978-1-4842-9484-0_6

CHAPTER 6

INSTALLING AND MANAGING EXTENSIONS

Visual Studio

Featured

GitHub Copilot

W Kok

B

HTML-Essentials

ydunhn &

L i

Visual Studic Code

FREE TRIAL

Trending this week -

FREE

B Extensions for Visual Studio fam:. % |

Azure DevOps

tps://marketplace.visualstudio.com/vscode

Subscripticns

Build your

Extensions for Visual Studio Code

fje;‘nc'] Visual Studio Code extensions

Batch Rename

%k ok ok FREE
l |
NewBing

FREE

Multiple cursor case

Cardinal0 942K

e e e ek FREE

Zig Language

e e de bk FREE

Gatito Theme

LR & &

ChatGpti2id)

FREE

[T
Qu
AC
LLLJ

QuAC Companion

FREE

Figure 6-1. The Visual Studio Marketplace

You can search for extensions by typing in the search box, or you can browse

the groups below, such as Featured, Trending, Most Popular, and Recently Added. If

you scroll to the bottom of the page, you can also browse extensions by category or

collection. Once you have found an extension of your interest, click its name to see a

detail page. Figure 6-2 shows an example based on the C# extension by Microsoft.

128

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

[Bf C=-Visual Studic Marketplace X | +
<« C w 6

ualStudio | Marketplace

vs://marketplace.visualstudic.com/

Visual Studio Code > Programming Languages > C#

C#
Microsoft # | X 20132561 installs | % % % (432) | Free

C# for Visual Studio Code (powered by OmniSharp).

Overview Version History Q&A Rating & Review

Ci# for Visual Studio Code (powered by OmniSharp)

Welcome to the C# extension for Visual Studio Code! This extension provides the following features inside VS
Code:

* Lightweight development tools for .MET Core.

* Great C# editing support. including Syntax Highlighting, IntelliSense, Go to Definition, Find All References
etc.

Debugging support for NET Core (CoreCLR). NOTE: Mono debugging is not supported. Desktop CLR

debugging has imited support.

Support for projectjson and csproj projects on Windows, macOS and Linux.

The C# extension is powered by OmniSharp,
Requirements

* _NET 6 SDK or newer when omnisharp.useModernNet is set to true (the default value).

* A Full Framework runtime and MSBuild tooling when omnisharp.useModernNet is set to false.
2 Windows: .MET Framework along with M5Build Tools
@ MacO5/Linux: Mo

10 with MSBuild

Works with

Project Details

) OmniSharp/omnisharp-vscode

More Info

MNew to Vi

Figure 6-2. Detail page for an extension

An extension’s page provides a detailed description and guidance about using

the extension, often providing links to additional documentation, resources, and the

source code (if open-source). I strongly recommend that you read the detail page to

get information about what the extension includes, especially with extensions that add

language support, because it is important to know if there is support only for a new

syntax or also for IntelliSense, code snippets, and debugging.

If you click the Install button, your browser will ask your confirmation to open
the download link with Visual Studio Code. When this starts, the extension will
automatically be installed. You can also download the offline installer of the extension

129

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

for later reuse. To do so, click the Download Extension hyperlink under the Resources
group, on the right of the page. In this way you can download a .vsix installer file that
you can then launch manually.

Note If you have experience with the Microsoft Visual Studio development
environment, you probably know that VSIX is the format used by Microsoft for
extension installer files. However, the VSIX format for Visual Studio Code is not
the same. Extensions for Visual Studio Code are packaged with a tool called vsce
and cannot work with Visual Studio 2022 on Windows or with Visual Studio 2022
for Mac.

The second way of installing extensions is from within Visual Studio Code. You can
open the Extensions Bar and search for an extension and then click a specific extension
to get the details, as shown in Figure 6-3.

] FEle Edit Selection View Go Run - Extension: GitHub Pull Requests and lssues - Visual Studic Code [Administrater] DS Mo - o X

EXTEMSIONS: MARKETPLACE Y L= - Extension: GitHub Pull Requests and Issues X a --

GitHub Pull Requests and Issues -
P GitHub Pull Requests and lssues & 10 % 1 Cob ol S
{!\ Pull Request and Issue Provider for GitHub & GitH & 10,790 % % o 7 (129)

< @ GitHub install v Pull Request and lssue Provider for GitHub

o o

GitHub ‘I'heme
b theme for VS Code

ﬂL:Hb =0

py SitHub
b & [roure Posines euceseded Categories
o cap”ot e | Review and manage your GitHub pull requests and issues tter
o Qf i l m directly in'VS Code
This extension allows you to review and manage GitHub pull Extension
O it Eud’upaul - bt requests and issues in Visual Studic Code. The support includes:
- ﬂc o insal + Authenticating and connecting VS Code to GitHub and
GitHub Repositories 1AM & 5 GitHub Enterprise.
@ Remotely browse and edit any GitHub reposit. g and browsing PRs from within VS Code.
& GitHub wing PRs from within VS Code with in-editor
Markdown Preview Github Sty... < i Mare Info
E changes Vs e hat » Validating PRs from within VS Cocle with easy checkauts S
b ﬂr t Blermer Terminal integration that enables Ul and CLIs 1o co-exist .
= Litting and browsing issues from within V5 Code.
GitHub Phas Theme = » Hover cards for “@" mentioned users and for issues.
@ :hlr,tk_: gEpyed SOREHIEMe fogRSco = Completion suggestions for users and issues.
* & "Start working on issue” action which can create a branch
i for you.
%‘g arkfl » Code actions to create issues from “todo” comments.

Figure 6-3. Installing extensions from within Visual Studio Code

130

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

You can click the Install button when you're ready. You need to click the Reload
button (that appears once the installation completes) to enable the extension in VS
Code. You can also filter the search results; for instance, if you type category:linters in
the search box, Visual Studio Code will list all the extensions that provide linting support
with syntax colorization to specific languages. You can use the same category names you
see in the Visual Studio Marketplace.

As an alternative, you can use the Command Palette to download (and manage)
extensions. Open the Command Palette and type extensions. A list of self-explanatory
commands related to extension management will appear. You will typically prefer
working with extensions from the Command Palette when you do not want to lose focus
on the active editor window; otherwise, using the Extensions Bar’s user interface is

definitely easier.

Note Many extensions, especially extensions that provide full language support
such as C# and C/C++, rely on additional tools like debuggers and libraries. These
additional tools are usually downloaded the first time you use the extension.

For example, in the case of the C# extension, required tools and libraries are
downloaded the first time you create or open a C# file. These include libraries

to support .NET debugging and tools to improve the editing experience via
IntelliSense and live static analysis. Also, newly downloaded extensions might need
some initial configuration. In this case, a popup box will appear explaining what
you need to do to get started.

Extension Recommendations

Visual Studio Code can provide suggestions about recommended extensions based
on your activity. When you open the Extensions Bar, you will see a group called
RECOMMENDED under the list of installed extensions.

The list of recommended extensions varies on your activity and might be empty
the first time you work with Visual Studio Code. As one option, Visual Studio Code
can suggest extensions based on the file you open. For example, suppose you open a
code file written with the Go language but you do not have installed any Go extension
yet. Visual Studio Code has built-in support for the Go language syntax, so the editor

131

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

provides syntax colorization and basic word completion, but you might want to work
with a richer editing experience that includes code snippets, code navigation, and rich
IntelliSense support. In this case, VS Code will suggest that an extension is available to
help you work with Go files and will offer to install it, as represented in Figure 6-4.

) FEile Edit Selection View Go - * package main = Untitled-1 - Visual Studio Code [Administrater] ODB8 0o - a X
<0 package main Untitled-1 @ g -

1 package main

2

3 import (

4 “bufio”

5 “fmt"

6 “os”

7) (]
g

9 func check(e error) {

1@ if e !=m nil {

11 panic(e)

12 }

13 b

14

15 func main() {

16

17 dil := []byte("hello\ngo\n")

18 err := os.WriteFile("/tmp/datl”, di, ©644)

19 check(err)

20 -
21 f, err := os.Create("/tmp/dat2")

22 check{err)

23

24 defer f.Close()

25

26 d2 := [Jbyte{115, 111, 109, 101, 10}

27 n2, err := f.Write(d2)

28 check{err)

29 fmt.Printf(“wrote ¥d bytes\n", n2)

£l

31 n3, err := f.WriteString("writes\n")

32 check(err) (D) Do you want to install the recommended extensions for Go? & X
33 fmt.Printf("wrote X%d bytes\n", n3)

s
35 f.5ync()

Ln44,Col2 Spacesd UTF-8 CRIF Go & 0O

Figure 6-4. Extension recommendations based on the current file

You can click Install and Visual Studio Code will automatically install the extension
that it thinks to be the most appropriate, or you can click Show Recommendations to see
a list of possible extensions. In both cases, the Extensions Bar will open and you will see
the list of available recommended extensions, but when you click Install, the proposed
extension will be already installing.

132

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

Useful Extensions

The Visual Studio Marketplace contains tons of useful extensions, but there is a set that
I personally recommend after using Visual Studio Code for a long time in my daily job.
Table 6-1 summarizes this set of useful extensions.

Table 6-1. Recommended Extensions for Visual Studio Code

Name Description Type
C# C# full language support Language,
debugger, editing
C/C++ C and C++ full language support Language,
debugger, editing
Python Python full language support Language,
debugger, editing
Language Support Java full language support Language, editing
for Java
SQL Server (mssql) SQL Server support Language, editing,
tools
JavaScript Node.js debugging with the Chrome browser Debugger
Debugger
Debugger for Java Java debugging support Debugger
Debugger for JavaScript debugging with the Edge browser Debugger
Microsoft Edge
.NET Meteor Mobile development with .NET MAUI Editing, tools
Node Debug Debug support for Node.js Debugger
Visual Studio Keyboard shortcuts based on Microsoft Visual Studio Key binding
Keymap
Atom Keymap Keyboard shortcuts based on Atom Key binding
Notepad++ Keyboard shortcuts based on Notepad++ Key binding
Keymap
(continued)

133

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

Table 6-1. (continued)

Name Description Type

Docker Language support for Dockerfile Language, editing,
tools

vscode-icons Colored icons for the Explorer Bar Tools

GitLens Extend Git integrated features for Visual Studio Code Tools

PowerShell PowerShell scripting support Language, editing,
tools

Live Share Extension for collaborative, real-time development that Tools

shares your instance of VS Code with other developers

Azure Account Manage your Azure subscription from within VS Code Tools

As you work with Visual Studio Code on your projects and on the operating system of
your choice, you will be able to find and fine-tune extensions that will help you be more
productive.

Managing Extensions

The Extensions Bar allows you to quickly manage extensions. It shows the list of installed
extensions, as shown in Figure 6-5. Then, for each extension, the button with the gear
icon opens a popup menu that contains commands for disabling or uninstalling an

extension.

134

] File Edit Selection View Go

Bun Terminal Extension: C/C~+ - Visual Studic Code [Administrator]

AT

CHAPTER 6

Extension: C/C++ X

INSTALLING AND MANAGING EXTENSIONS

DEDOne - o x

m -

Search Extensions in Marketplace
C/C++ wnaas
~ INSTALLED 8
[, w & Microsoft o 42,941,767 * ok Kk
C/C++ CIC+ + C/C++ IntelliSense, debugging. and code br...
C/C++ IntelliSense, debugging, and code bro... Z =
@ £ Microsot &
This extension is enabled globally.
(8] e
B] C# for Visual Studic Code
al\.ti«ogu{t DETAILS FEATURE CONTRIBUTIONS CHANGELOG RUNTIME STATUS
Disable
‘ Decompiler Cat .
i : ategories
Decompile the Sh*! out @ % -
iy -/C++ for Visual
Install Ancther Version... L .
; studio Code
Encode Decode Uninstall
= An extension for Visual 51
Mitch Denny Copy epository | Issues | Documentation | Ce
Copy Extension 1D amples
Go ippets
"GO RichGolanguage suppOt gyencion settings
% Go Team at Google it
Extension Keyboard Shortcuts . :
1liCod ! ne C/C++ extension adds language Extension
IntelliCode o) .) Resources
@ Al-assisted development support for C/C++ to Visual Studio Code,
T . -~ 4 e arketol
~ RECOMMENDED 7 including editing (IntelliSense) and f.,mc,;,.ace
£ debugging features. Repository
npm Intellisense D 56M 45 License
Vist . that autocomplete - M f
EEEII ,|s.|a!.St..Jc.c Code plugin that autocompletes ... Pre-reqmsﬂ:es crosoft
& Christian Kohler
b C++ is a compiled language meaningyour 5
Microsoft Edge Tools for VS C... < 16M % 45 P _g g More Info
e. Use the Microsoft Edge Tools from within Vs C... program’s source code must be tra
£ Microsoft (compiled) before it can be run on yoo Published 3/30/2016,
4, romnuter VS Cnde i€ firet and faramnct an .

§ach 31E

Figure 6-5. Shortcuts for extension management

You can also click an extension name, and the detail page will show the Disable and
Uninstall buttons. Notice that when you disable or uninstall an extension, in most cases
you will need to click a button called Reload (that appears when the extension has been
disabled or uninstalled) to refresh the development environment. It is worth mentioning
that you can change the default view of the Extensions Bar (displaying the list of installed
extensions) by clicking the ... button at the top of the EXTENSIONS group and choosing
the Views submenu. You then can choose among different options, such as viewing
popular extensions, checking for extension updates, and installing extensions from
.vsixfiles.

Note Shortcuts for extension management are also available in the Command
Palette.

135

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

Configuring Extensions

Visual Studio Code has some options that allow you to control the global behavior of
extensions. You can see these options in the user settings, under the Extensions group,
as shown in Figure 6-6 (which is based on the list of extensions installed on my machine

and likely differs from yours).

o] Fle Edit Selection View Go Run - Settings - Visual Studio Code [Administrator] DE0maom - o b4
Settings = TME:
Search settings 4

Extensions
.ipynb Support

Paste Images As Attachments: Enabled

nages into A wn cells in ipynb notebook files. Pasted images are inserted

.NET Install Tool

Dotnet Acquisition Extension: Enable Telemetry

|w/| Enable Telemetry for the .NET install tool.

Dotnet Acquisition Extension: Existing Dotnet Path

File Patt n of NE

Edit i

Dotnet Acquisition Extension: Install Timeout Value

Grunt Timeout for installing NET in seconds

120

.NET Meteor configuration

Figure 6-6. Customizing options about extension management

There are detailed comments that explain what each option is about. Each extension
allows for customizing its own behavior in the user settings and edits can also be done
in the well-known settings.json file. For instance, suppose you have the C# extension
installed. If you look in the user settings, you will find a group called C# Configuration. If
you expand this group, you will see the full list of options about the C# extension, which
include options for code editing and for tools the extensions add. Figure 6-7 shows these

options.

136

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

o File Edit Selection View Go Run - Settings - Visual Studio Code [Administrator] DE o - o G
Settings X O m -

Search settings v
User Tum on Settings Sync

C# configuration

Format: Enable

Inlay Hints - Parameters: Enabled

Display inline parameter name hints

Inlay Hints - Parameters: For Indexer Parameters

3 C/CH+ |__| Show hints for indexers

C# configuration

3 €55 Language Feat

e Inlay Hints » Parameters: For Literal Parameters

| Show hints for literals

Inlay Hints » Parameters: For Object Creation Parameters

se Server Authenti... | Show hints for "new” expressions

Inlay Hints » Parameters: For Other Parameters

| Show hints for everything else

ampies Inlay Hints » Parameters: Suppress For Parameters That Differ Only By Suffix

ts when parameter names differ only by suffix

Figure 6-7. Customizing extension options

If you want to instead edit extension settings in the settings.json file, IntelliSense
will simplify your work by showing setting names and a tooltip with the setting
description when you scroll the list. Figure 6-8 shows an example where IntelliSense is
showing some settings for the C# extension, identified with the csharp literal.

137

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

o] File Edit Selecion View Go Run - » settings json - Visual Studio Code [Administrator] DEmaop - o b4

Settings settingsjson 3 @ @0 -

emetrylevel™: “off"

15

16 "settingsSync.ignoredSettings”: [],

17 s 1
18} 42 csharp.format.enable Display inline type hints X

4% csharp.inlayHints.parameters.enabled

/42 csharp.inlayHints.parameters.forIndexerParameters

4% csharp.inlayHints.parameters.forLiteralParameters

/2 csharp.inlayHints . parameters.forObjectCreationPar.

/% csharp.inlayHints.parameters.forOtherParameters

/#? csharp.inlayHints.parameters. suppressForParameter.. —I
Z* csharp.inlayHints.parameters. suppressForParameter..

/¥ csharp.inlayHints.parameters. suppressForParameter_

42 csharp.inlayHints.types.forImplicitObjectCreation

/% csharp.inlayHints. types.forImplicitVariableTypes

Ln17,Col7 Spaces4 UIF-8 CRLF () JSONwith Comments & 0

Figure 6-8. Customizing extension options in settings.json

Normally, extension authors provide detailed comments that explain what an option
is about so that it is easier for you to fine-tune an extension behavior, such as in the case
of the C# extension.

Writing Your First Extension

You can build extensions for Visual Studio Code and share them through the Visual
Studio Marketplace. You can basically build any type of supported extension, such as
language support, editing features, themes, code snippets, debugger adapters, and key
bindings. You also need to register as a publisher on the Marketplace, which requires you
to have a Microsoft account.

Extensions are usually written with TypeScript and, for most of them, you can use an
extension generator such as the Yeoman tool on Node. js. As you can imagine, extension
authoring is a complex task and, due to the large number of extension types, it is not
possible to provide full guidance in this chapter. However, here you learn how to create
your first extension to share custom code snippets. In this way, you learn how to set up
the development environment to build extensions and learn the extensibility basics.

138

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

Setting Up the Environment

You create Visual Studio Code extensions via special TypeScript and JavaScript projects,
and the project structure differs depending on the extension type. As a prerequisite, you
need to install Node.js (https://nodejs.org), if you have not already done so.

Once Node.js is installed, the simplest way for getting started is installing an
extension generator, such as Visual Studio Code Extension Generator tool, also
known as Yeoman. Either in a command prompt or in the Terminal, run the following

command line:
> npm install -g yo generator-code

Once installed, create a new folder called codesnippetsdistilled and move into
the new folder. This will be the location for the new extension project. Then, run the
following command:

> yo code

This will start the Visual Studio Code Extension Generator, as shown in Figure 6-9.

Welcome to the Visual
Studio Code Extension
generator!

What type of extension do you want to create? (Use arrow keys)

(JavaScript)

Figure 6-9. The start options of the Visual Studio Code Extension Generator

139

https://nodejs.org

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

As you can see, the tool allows for creating any type of VS Code extension. You will
likely use it at least until you get familiar with the VS Code extensibility API and with the
specific project structure.

Fixing PowerShell Script Problems

Depending on your system configuration, launching the Yeoman tool might result in the
following PowerShell error: ".ps1 is not digitally signed. The script will not
execute on the system."

If this is the case, you can change the script execution policy to be bypassed for the
current PowerShell session with the following command line:

> Set-ExecutionPolicy -Scope Process -ExecutionPolicy Bypass

This is a temporary change and only affects the current session.

Creating an Extension

You will now create an extension that allows for packaging and sharing reusable C# code
snippets. As you will see shortly, you will be able to choose a different language and the
approach is still the same.

Building an extension of this type is the simplest option and fits well in a book of the
Distilled series. If you look at Figure 6-9, you can see a list of extension types. With the
arrow keys, move to New Code Snippets and press Enter. At this point, the tool asks you
to specify if you want to import existing TextMate or Sublime code snippets from disk
(see Figure 6-10).

140

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

stilled> yo code

What type of extension do you want to create? New Code ppets
Folder location that contai late (.tmSnippet) and Sublime snippets (.sublime-snippet) or press

ENTER to start with a new sn e.
Folder name for import or none for new: ()

Figure 6-10. Specifying new or existing snippets

This is not mandatory, and you can press Enter to start with a blank code snippet,
which is also a good idea for a better understanding of a snippet’s structure. You will now
get a sequence of questions, and you can answer by keeping Figure 6-11 as a reference.

o FortheWhat's the name of your extensions? question, enter
SnippetsDistilled.

o FortheWhat's the identifier of your extension? question,
enter snippetsdistilledifit's not automatically entered.

o FortheWhat's the description of your extension? question,
enter Reusable C# Code Snippets.

e Asthe Language id, enter csharp. This is also where you specify a
different identifier if your snippets target another language.

o Choose to not initialize a Git repository, also because working with
Git is the topic of the next chapter.

141

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

Welcome to the V
Studio Co

type of extension do you want to create? New Co

Folder location that conta ext Mate (.tmSnippet) a i snippets (.sublime-snippet) or press
ENTER to start with a new
? Folder name for import or none for n

What's the name of your extension? Sr

What's the identifier of your extensio

What's the description of your extension 3 ippet
Enter the language for which t snippets should appear. The id is an identifier and is single, lower-
case name such as ‘php’, 'javascript’

Language id: rf

Initialize a git repository? HNc

Figure 6-11. The steps required to create the extension

When you press Enter, Visual Studio Code will generate the extension project.

Developing the Extension

Open the extension folder in Visual Studio Code, as you would do any other folder.
Figure 6-12 shows how it appears.

142

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

File Edit Selaction View Go Run -~ packs = snippetzdatiled - Visual Studic Code [Adminstrator 18 - =] X
ge o
@ EPLOA pockagejson X m
 OPEN EDITORS [} packagejson
X (] packegeyson 1 g
r » 2 =
~ SNIPPETSDISTILLED GERLS
> wscode =
4
snippets 5
| snippetscode-snippets 6
q 7
9 ategorles
1@ Snippets
11
icslart.m, .
12 contributes
13 snippets
14 {
15 “language™: “csharp”,
16 =path™: "./snippets/snippets.code-snippets”
18 }
19
0
z,
> OUTUNE
> TIMELINE
@040 Ln1.Coll Spaes2 UTF-8 IF () SON & O

Figure 6-12. The extension project opened in VS Code

Following is a summary of the relevant points:

o The package. json file contains the extension metadata and the
information about the included code snippets and their source.

e The README .md file is a Markdown file that you will likely upload as
the extension documentation.

e The CHANGELOG.md file is a Markdown file where you can write any
changes with the previous version.

o Thevsc-extension-quickstart.md file is a Markdown file that
provides useful information for the extension development and testing.

o The snippets subfolder contains a file called snippets.code-
snippets and is the place where you enter your reusable code
snippets.

143

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

Now suppose you want to share the following C# method as a reusable, integrated
code snippet:

public ObservableCollection<T>
ToObservableCollection<T>(this IEnumerable<T> inputCollection)

{
if (inputCollection != null)
return new ObservableCollection<T>(inputCollection);
else
return null;
}

This C# extension method takes an input collection that implements the
IEnumerable<T> interface, such as a List<T>, and returns an ObservableCollection<T>.
The way you represent this snippet inside the snippets.code-snippets file is as follows:

{
"ToObservableCollection": {

"prefix": "obs",
"body": [
"public ObservableCollection<T> ToObservableCollection<T>(this
IEnumerable<T> ${0:inputCollection}) {",
"\tif (${0:inputCollection} != null)",
"\t\treturn new ObservableCollection<T>(${0:inputColle
ction});",
"\telse",
"\t\treturn null;",
nyn
]’
"description”: "Convert to ObservableCollection"

b

144

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

ToObservableCollection is the snippet identifier. The prefix, with value obs,
represents the keyboard shortcut that you type in the editor to generate code based
on the snippet. The body element contains the actual code snippet, and it requires the
following explanations:

e You can associate variable tags so that the code editor highlights
occurrences of the same variable or identifier. In the previous code,
this is represented by the ${0:inputCollection} tag. Tags can be
added as sequences (e.g., ${0}, ${1}, ${2}, and so on).

o Indentation is represented with the \t escape sequence.

e The body of each code snippet is an array of strings. This is why there
is a string for each line of the snippet itself.

If you create your code snippets with a dedicated editor such as TextMate or
.Sublime, you can create snippet extensions more easily and with fewer manual steps.

Running the Extension

You can quickly test your extension by choosing Run » Start Debugging.

Note Debugging in Visual Studio Code has not been explained yet; however,
you do not need to know the details right now. At the moment, you simply need
to know that you start debugging the extension to see how it works in an isolated
instance and that you will be able to use all the TypeScript and JavaScript
debugging tools that you learn about in Chapter 9.

This will start a new instance of Visual Studio Code. A new C# file should be
automatically generated. If this does not happen, create a new text file and select C#
as the language. At this point, you can immediately use your extension by typing the
snippet prefix, as you can see in Figure 6-13.

145

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

o = [Extension Development Host] » obs » Untitled-1 - Visual StudioCode [A... [[] B [0 03 -— O X

3 Welcome C* obs Untitled-1 @ 0] e

ToObservableCollection

Convert to ObservableCollection (SnippetsDistilled) x

public ObservableCollection<T> ToObservableCollection<T
if (inputCollection != null)
return new ObservableCollection<T>(inputCollect
else
return null;

In1,Col4 Spacess4 UTF-8 CRIF Cc&# & 0

Figure 6-13. Previewing the new code snippet via IntelliSense

You can press Tab and the code snippet will be added to the editor, as demonstrated

in Figure 6-14.

] = [Extension Development Host] » public ObservableCollection<T> ToObserva » Untitled-1 - Visual Studio C... DB moe - (m] >

iQ Welcome C* public ObservableCollection<T> ToObserva Untitled-1 @ M -
1 public ObservableCollection<T> ToObservableCollection<T>(this IEnumerable<T> inputCollection) {

2 if (inputCollection != null)

3 return new ObservableCollection<T>(inputCollection);
4 else

5 return null;

6 }

3 selections {45 characters selected) Spaces:4 UTF-8 CRIF C& &

Figure 6-14. Adding the snippet to the code file
146

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

Notice how the occurrences of the inputCollection identifier have been highlighted
because of the tags you added to the JSON previously. This also makes the developer
quickly understand which identifiers can be renamed.

Packaging Extensions

When you have completed the extension development and testing, you can share your
work. The appropriate way to do this is by generating a VSIX installer package that can
be shared or published to the Visual Studio Marketplace.

You package extensions via the Visual Studio Code Extensions tool, often referred to
as vsce. This tool must be installed with the following command line:

> npm install -g @vscode/vsce

Now you can package your extensions, but you first need to edit the README . md file in
your extension project. You need at least to remove the following line:

This is the README for your extension "snippetsdistilled".

The reason is that the packaging tool wants to prevent you from shipping the
extension with the auto-generated documentation. This is obviously arguable, but it is
the way it works. At this point you can type the following command inside an instance of
the Terminal. Make sure that the current folder is the project folder:

> vsce package

Figure 6-15 shows the vsce output (as well as the README .md file with the changes
mentioned previously).

147

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

o] File Edit Selection View Go - README.md - snippetsdistilled - Visual Studio Code [Administrator] D& mo - O H

snippets.code-snippets {} packagejson ® (0 READMEmd X Microsoft Search (Alt+Q) 3@ -

Just start typing here to bring
features to your fingertips and get

sn

1 help.

2

3 After writing up a brief description, we recommend including the following sectio @ Tell me more

4

5 #% Features

6

7 Describe specific features of your extension including screenshots of your extension in action.
Image paths are relative to this README file.

8

9 For example if there is an image subfolder under your extension project workspace:

1@

11 \I\[feature X\]\(images/feature-x.pngh)

12

13 > Tip: Many popular extensions utilize animations. This is an excellent way to show off your
extension! We recommend short, focused animations that are easy to follow.

] pewershen - ma « ~ x

OUTPUT TERMINAL DEBUG COM

® PS5 C:\Users\adelsole\source\repos\codesnippetsdistilled\snippetsdistilled> vsce package
A ‘repository’ field is missing from the ‘package.json’ manifest file. :

® Do you want to continue? [y/N] y

I L1CensE.md, LICENSE.txt or LICENSE not found

Do you want to continue? [y/N] ¥

- Packaged: C:\Users\adelsole\source\repos\codesnippetsdistilled\snippetsdistilled\snippetsdistilled-0.8.1.vsix (6 files, 3.84KB

)

The latest version of vsce is5 2.15.8 and you have 2.9.1.

Update it now: npm install -g vsce

PS C:'Wsers\adelsole\source\reposcodesnippetsdistilledisnippetsdistilled> l

@0A0 & Exension (snippetsdistilled) Ln2,Col1 Spacessd UTF-8 LF Markdown & Q

Figure 6-15. Packaging the VS Code extension

The vsce tool has generated a .vsix package inside the project folder. This file can
either be installed manually or published to the Visual Studio Marketplace. Publication
requires setting up an account plus access tokens and other support tasks, so this is
not covered here. You can refer to the Publishing Extension page of the documentation
(https://code.visualstudio.com/api/working-with-extensions/publishing-
extension), but at least you have your package ready.

Extension Development Summary

There is much more about extension development, but there are steps and concepts that

are common to all the extension types, such as:

o Generating a project via Yeoman, the Visual Studio Code Extension

Generator.

148

https://code.visualstudio.com/api/working-with-extensions/publishing-extension
https://code.visualstudio.com/api/working-with-extensions/publishing-extension

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

o Debugging and testing with the integrated tools.
o Generating packages via the vsce tool.

In addition, building extensions like custom languages, commands, and other
integrated tools requires knowledge of the extensibility points, thoroughly described in the
Extension API page of the documentation (https://code.visualstudio.com/api). This
should be your starting point if you want to discover more about building sophisticated

extensions.

Summary

Extensibility is a key feature in Visual Studio Code, because it allows you to add power to
the development environment. Extensions can add new languages (with or without rich
editing support), debuggers, keyboard shortcuts, themes, code snippets, and tools. You
can install extensions from the Visual Studio Marketplace or from within Visual Studio
Code, through the Extensions Bar or the Command Palette.

Visual Studio Code can also provide extension recommendations based on the
context, such as when you open a file written in a language for which there is no built-
in support. Visual Studio Code makes also makes managing extensions simple, with
shortcuts to disable and uninstall extensions and the capability to configure extensions’
behavior via the user settings file. In the last part of the chapter, you learned how to
start developing and publishing extensions, using the Visual Studio Code Extension
Generator tool. In the next chapter, you see how to leverage extensions to add features to
Visual Studio Code to another core feature that makes it a step forward compared to its
competitors: version control with Git.

149

https://code.visualstudio.com/api

CHAPTER 7

Source Control with Git

Writing software often involves collaboration. This is true whether you are part of a
development team, are involved in open-source projects, or are an individual developer
who has interactions with customers. Microsoft strongly supports both collaboration and
open-source, so Visual Studio Code provides an integrated source control system that is
based on Git and can be extended to other providers.

This chapter describes not only all the integrated tools for collaboration over source
code from within Visual Studio Code that are available out of the box, but also explains
how to use extensions that you will find very useful on the job. These extensions will help
you better review your code and push your work to services based on Git, such as Azure
DevOps and GitHub. Notice that the source control and version control terms are used
interchangeably.

Source Control in Visual Studio Code

Visual Studio Code supports different source control providers via extensibility, but

it offers integrated support for Git. Git (https://git-scm.com/) is a very popular
distributed, cross-platform version control engine that makes collaboration easier for
small and large projects. One of the reasons for its popularity is that Git is open-source,
and therefore it has always been loved by large open-source communities.

Visual Studio Code works with any Git repository, such as GitHub or Azure DevOps,
and it provides an integrated way to manage your code commits.

Note that this chapter is not a guide to Git; rather, it is a place to learn how Visual
Studio Code works with it, so for further information, visit the Git official page. Also,
remember that Visual Studio Code requires the Git engine to be installed locally, so
make sure it is available on your machine or download it from https://git-scm.com/
downloads. To demonstrate how Git version control works with Visual Studio Code,

I use a small TypeScript project called Greeter, available in the TypeScript Samples

151
© Alessandro Del Sole 2023

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_7

https://git-scm.com/
https://git-scm.com/downloads
https://git-scm.com/downloads
https://doi.org/10.1007/978-1-4842-9484-0_7

CHAPTER 7 SOURCE CONTROL WITH GIT

repository from Microsoft (https://github.com/Microsoft/TypeScriptSamples). This
is marked as archived but it is good for the purposes of this chapter. You can download
the repository on your system as a . zip file by clicking the Code button in the repository
page, and then clicking the Download ZIP shortcut. When you're ready, you can extract
the Greeter subfolder on your disk. Obviously, you are free to use another example or
another project of your choice, regardless of the language, but to follow along with the
examples in this chapter, you'll need Greeter. At this point, open the Greeter project
folder in Visual Studio Code to start collaborating over the source code.

Downloading Other Source Control Providers

As I mentioned earlier, VS Code supports additional source control managers, also
referred to as SCM, via extensibility. You can open the Extensions Bar and type SCM
providers in the search box to find third-party extensions that target other source
control engines. Figure 7-1 shows an example of selecting an extension that adds support
for the Subversion engine (https://subversion.apache.org).

152

https://github.com/Microsoft/TypeScriptSamples
https://subversion.apache.org

»] File Edit Selection View Go Run Terminal

\\

\\

[

\\

ETPLACE T L=
SVN P EIK K 45
Integrated Subversion source control

Chris Johnston Install
SVN DT
simple svn implements for vscode.

Tianwu m
SVN K
Integrated Subversion source control
vscode-svn-hooks m
SUN Dk k1
Integrated Subversion source control

Robert Roman

5VN Changes
Show list of files that

eliean

5VN Gutter

Visually blame SVN-stored code line-

beaugust

SVN-EXT 0w

Extended functionality for svn-scm

Scott Meesseman m
rabbitvcs-swn Dk kS
rab s R linux 89t 5vi

rabbitves-svn =0
wscode-svn-polarion-branching & 320

tbd

Jesper Raemaekers =0

SVN Gutter (fork/tcneuen)
Visually blame SVIN-stored code line-by

CHAPTER 7

Extension: SVN - Visual Studio Code [Administrator]

Extension: SN X

SVN w2157
=
L —
T Ee

DETAILS FEATURE CONTRIBUTIONS CHANGELOG

Subversion source control

for VS Code

release date september 2017
last updated ‘december 2022 | version v2.15.7
rating 4.4/5 (32)

buid posing
vulnerabilities 0

Prerequisites

Mote: This extension leverages your machine's
SVN installation,
50 you need to install SVN first.

Windows

If you use TortoiseSVN, make sure the option
Command Line Tools is checked during install

and C:\Program Files\TortoiseSWN\binis

Figure 7-1. Installing additional source control providers

Chris Johnston > 821.514

SOURCE CONTROL WITH GIT

D8O - o x

m -

% % %W i (32)

Integrated Subversion source control

Categories

SCM Providers

Extension
Resources

Marketplace
Repository
License

Chris Jehnston

More Info

Because VS Code provides in-the-box support only for Git, other source control
providers are not discussed in this chapter. If you want to install SCM extensions, make

sure you refer to the documentation provided by the producer.

Managing Repositories

With Git, version control supports both a local repository and a remote repository to

work. This section explains how to create both, supplying information that you will not

find in the documentation, especially for remote repositories.

153

CHAPTER 7 SOURCE CONTROL WITH GIT

Note A very popular abbreviation for repository is repo. Although this term is
not used in this book, you will encounter it often, especially when searching for
information about open-source projects.

Initializing a Local Git Repository

As a starting point for the following examples, open the Greeter project you downloaded
previously. The first thing you need to do is create a local repository for the current
project. This is accomplished by opening the Git tool from the Side Bar, as shown in

Figure 7-2.
) File Edit Selection View Go BRun - greeter.ts - greeter - Visual Studio Code [Administrator] DE DD - o X
SOURCE CONTROL TS greeterts X m -
s I ; : | Ts greeterts > 43 Greeter
The folder currently open doesn't have a git repository. o
: ol e Jor il s, 1 class Greeter {
You can initialize a repository which will enable source 5 S=veere g bli Py p——— - ——
control features powered by git. 3 constructor(public greeting: string) { }
3 greet() {
g.‘? Initialize Repository 4 J return “<h1:" + this.greeting + "</h1>";
5 }
To learn more about how to use git and source control 6
in VS Code read our docs. 7
8 var greeter = new Greeter(“Hello, world!™);
You can directly publish this folder to a GitHub g
repository. Once published, you'll have access to source @ document.body.innerHTML = greeter.greet();
1

control features powered by git and GitHub.

(@) Publish to GitHub

Ln1,Col1 Spacesd4 UTF-8 LF ()} TypeSaipt B 0

Figure 7-2. Ready to initialize a local Git repository

Clicking the Publish to GitHub button allows you to initialize a local repository and
publish to GitHub at the same time, but because it is important to understand how the
flow works and how to properly authorize VS Code to GitHub, the steps here are split
into creating a local repository first and then publishing to the remote one. Click the

154

CHAPTER 7 SOURCE CONTROL WITH GIT

Initialize Repository button at the top (see Figure 7-2). Visual Studio Code will initialize
the local repository and show the list of files that now are under version control but not
committed yet (see Figure 7-3).

] FEile Edit Selection View Go Bun -+ greeter.ts - greeter - Visual Studic Code [Administrator] DB Do - =] X
SOURCE CONTROL = U e TS greeterts U X o
Message (Ctrl+Enter to commit on “master”) TS greeter.ts > 3 Greeter -

1 class Greeter { by
3 greet() {

g—"—; ~ Changes 4 4 return “<hl>" + this.greeting + "</h1»";
< greeter.html u 5
TS greeter.ts u 6
® READMEmd u 7

3 = new "H world!");
B tsconfigjson u 3 var greeter = new Greeter(“"Hello, world!™);
1e document.body.innerHTML = greeter.greet();
1

Pmaster @ @o0ho Ln1,Col1 Spacesd4 UTF-8 LF ()} TypeSaipt B 0

Figure 7-3. Files are under version control but not committed yet

Notice how the Git icon shows the number of pending changes. This is an important
indicator that you will always see anytime you have pending, uncommitted changes. Write
a commit description and then press Ctrl+Enter. You will see a warning message saying
that there are no staged files at the moment, and you will be offered to stage and commit all
files directly. Staging is discussed in the next section, so for now click Yes. At this point, files
are committed to the local repository, and the list of pending changes will be cleaned. Now
there is a problem: you need a remote repository, but the official documentation does not
describe how to associate one to VS Code. The next section explains how to accomplish this.

Creating a Remote Repository

Visual Studio Code works with any Git repository. There are plenty of platforms that use
Git as the version control engine, but probably the most popular platforms are GitHub,
Atlassian Bitbucket, and Microsoft Azure DevOps. This section shows you how to create

155

CHAPTER 7 SOURCE CONTROL WITH GIT

a remote repository on GitHub. I chose GitHub not only because of the popularity of the
platform but also because Visual Studio Code includes a built-in extension called GitHub
that is expressly designed to simplify the workflow against GitHub itself. This requires
you to have an existing GitHub account or to create one for free at https://github.
com/join. Visual Studio Code makes it very easy to publish repositories to GitHub with
a single mouse click, but VS Code first needs to be authorized by the GitHub engine, so
there are some preliminary steps you need to do just once.

On the Status Bar, click the Publish to GitHub button, identified by an icon
representing a cloud with an arrow and located to the right of the master branch name.
Figure 7-4 shows this button inside the blue box.

greeter (Git) - Publish to GitHub
® ®oAo

#° master

Figure 7-4. The Publish to GitHub button

An alert will inform you that VS Code wants to access GitHub and, after you click
OK to accept, it will open the default browser pointing to a GitHub page where it will
be possible to authorize VS Code. Click Authorize, then enter your GitHub credentials
and accept the access requirements that the extension requires. Once you're logged into
GitHub, the browser will ask for your confirmation to open Visual Studio Code.

VS Code will ask your permission to open an URL passed by the browser and that is
required to log in from the development environment. Allow this, so that Visual Studio
Code can complete the authentication process automatically. At this point VS Code is
enabled to access GitHub. As I mentioned previously, the steps required to authorize
Visual Studio Code need to be done only once.

Because the project folder has been created from a web source (you downloaded the
sample code), Visual Studio Code marks the repository as unsafe, as shown in Figure 7-5.

156

https://github.com/join
https://github.com/join

CHAPTER 7 SOURCE CONTROL WITH GIT

¥ File Edit Selection View Go Run -:- gre
SOURCE CONTROL
The detected git repository is potentially unsafe as the

folder is owned by someone other than the current
user.

g-p Manage Unsafe Repositories

To learn more about unsafe repositories Eead our docg.

Figure 7-5. VS Code detects an unsafe repository

According to the documentation, Visual Studio Code marks a repository as unsafe
when it resides in a folder that is owned by multiple users. However, this can also
happen with downloaded files. You can click Manage Unsafe Repositories and, from the
Command Palette, select the name of the repository you want to mark as safe (greeter in
this case).

At this point you need to click the Publish to GitHub button again on the Status Bar.
VS Code shows a text box containing the repository name; by default, this is based on the
current folder name, but you can write a different name. It also provides two options to
publish the repository to GitHub based on the folder name, as you can see in Figure 7-6.
One option is to publish to a private repository, and the other option is to publish to a
public repository.

157

CHAPTER 7 SOURCE CONTROL WITH GIT

] File Edit Selection View Go Run - greeter.ts - greeter - Visual Studio Code DE Do - o X

B [publish to GitHub private repository (@) AlessandroDelSole/greeter

= v P
I3 Publish to GitHub public repository @) AlessandroDelSole/greete

greet() {

Figure 7-6. Available options to publish the repository remotely

The current example uses the private option, but you are free to choose whichever
option you prefer. When publishing is completed, you will get a confirmation message
and an option to open the GitHub repository in the browser.

Note If you work with platforms different from GitHub, you can easily associate a
remote repository by clicking the ... button located in the upper-right corner of the
Source Control Bar and then choosing Remote » Add Remote. This is explained

in practice in the section “Working with Azure DevOps” toward the end of this
chapter.

Once the repository has been created remotely and published, VS Code will ask if
you want to open GitHub and if you want to periodically run the git fetch command to
pull any remote changes automatically (see Figure 7-7).

(@ Successfully published the “AlessandroDelSole/greeter” & x
repository to GitHub.

Source: GitHub (Extension) Open on GitHub

(® would you like Visual Studio Code to periodically run “git & X
fetch"?

Source: Git (Extension) Ask Me Later

Figure 7-7. VS Code offers to open GitHub and to run git commands

You are free to open GitHub and to click Yes on the second prompt. If you are not
sure and want to get more information, you can always click Ask Me Later.

158

CHAPTER 7 SOURCE CONTROL WITH GIT

Handling File Changes

Git locally tracks changes on your code files, and the Git icon in VS Code shows the
number of files with pending changes. This number is actually updated only after you
save your files. In VS Code, handling file changes is very straightforward. In Figure 7-8
you can see how the number of pending changes is highlighted in the Git icon but also
how files that have changes are marked with a brown M (where M stands for Modified),
whereas deleted files are marked with a red D (where D stands for Deleted). Note that
these markers are also visible in the Explorer Bar, and the total number of changes

appears on the Git icon of the Explorer Bar.

< = greeter.html - greeter - Visual Studi

SOURCE CONTROL v D e

l Message (Ctrl+Enter to commit on "master”) |

+/ Commit [~

E«o} v Changes 3
i<> greeter.html| T2+ ™

[Ts greeter.ts M

© REABMEmMd D

¥ Pmaster © ®@0A0

Figure 7-8. Identifying the number of pending changes

By clicking a file in the list, you can see the differences between the current and
previous versions of the file with the Diff tool. Figure 7-9 shows an example.

159

CHAPTER 7 SOURCE CONTROL WITH GIT

The left side shows the old version and the right side shows the new one. The
line highlighted in red represents code that has been removed, whereas the line
highlighted in green represents new code. Specific changes inside the lines of code are
represented with darker shades of red and green, as you can see for the words world and
developers in Figure 7-9. This is a very important tool when working with any version
control engine.

®) File Edit Selection Yiew Go - greeter.ts - greeter - Visual Studio Code [Administrator] mDBemanon - O X
TS greeterts M <» greeterhtm! M TS greeter.ts (Working Tree) M X b I A o -
TS greeterts > ..
1 class Greeter { 1 class Greeter {
2 constructor(public greeting: string) { } 2 constructor(public greeting: string) { }
3 greet() { 3 greet() {
3 4 return "<h1>" + this.greeting + "</h1>"; 4 return "<hl>" + this.greeting + "</h1>";
5 5 !
6 6 }; r.
7 7 3
32— var greeter = new Greeter("Hello, world!"); B - 8+ // A welcome message |
o
18+ var greeter = new Greeter(“Hello, developers!™);
9 11
18 document.body.innerHTHL = greeter.greet(); 12 document.body.innerHTML = greeter.greet();
11 13

In8 Col1 Spacess4 UTF-8 LF {} TypeScript & 0

Figure 7-9. Comparing file versions with the Diff tool

There is also another way to open the Diff tool, which is by clicking the Open
Changes button at the upper-right corner of the active editor. This button is only
available when the file has tracked changes.

Staging Changes

You can promote files for staging, which means marking them as ready for the next
commit. This is actually not mandatory, as you can commit directly, but it is useful to
have a visual representation of your changes. You can stage a file by simply clicking the
+ symbol near its name, or you can stage all files by right-clicking the Changes title and

160

CHAPTER 7 SOURCE CONTROL WITH GIT

then choosing Stage All Changes or clicking the plus icon on the bar. Visual Studio Code
organizes staged files into a logical container, as you can see in Figure 7-10. Similarly,
you can unstage files by clicking the - symbol.

¥) File Edit Selection View Go - greeter.html -

SOURCE CONTROL

7 [5) o

Message (Ctrl+Enter to commit on “master”)

+/ Commit %

z-c; v Staged Changes 3
< greeter.html M

TS greeter.ts M

@ READMEmMd D

Figure 7-10. The view of staged and unstaged changes

The workflow based on staging is very convenient, because if you no longer want
to commit a file, you can simply unstage it before the code gets committed to the
repository.

Managing Commits

The ... button provides access to additional actions, such as Commit, Sync, Pull,

Stash, and Pull (Rebase). Figure 7-11 shows the full list of built-in Git synchronization
commands available in VS Code. Notice that some of them are grouped into submenus,
such as the Pull, Push submenu, which you can see in Figure 7-11.

161

CHAPTER 7 SOURCE CONTROL WITH GIT

®] File Edit Selection Yiew Go - greeter.ts - greeter - Visual Studio Code [Administrator] DBmnomn - O X
SOURCE CONTROL F v U - TSgresterts M X D -
r ar b ¢ . . Views >
. . I e
- (=t
ek it gt i) ()
i—‘: v Changes Pull n "<h1>" + this.greeting + "</h1>";
<> greeter.html Push
TS ter.t i
| |78 greeterts BV2F Cione -
@ READMEmMG
Checkout to... message
Fetch
new Greeter("Hello, developers!™);
Commit
LinnerHTML = greeter.greet();
Changes >
Pull, Push > Sync
Branch > oyl
Remote >
Pull (Rebase)
Stash >
eull from...
Tags >
Push
Show Git Cutput .
Push to...
Fetch
Fetch (Prune)

Fetch From All Remotes

In9,Col1 Spaces4 UTF8 LF ()} TypeScipt & 0

Figure 7-11. Shortcuts to commit and synchronize changes

When you are satisfied with your work on the source code, you can choose the
Commit » Commit All command to commit your changes. Remember that this action
commits files to the local repository. Also, before you commit, you might want to check
staged and nonstaged changes so that the code is committed without missing any files.
You have to use the Push command to send changes to the remote repository.

You also have an option to undo the last commit and revert to the previous version
with the Commit » Undo Last Commit command. Pull and Pull (Rebase), both in
the Pull, Push submenu, allow you to merge a branch into another branch; Pull is
nondestructive and merges the history of the two branches, while Pull (Rebase) rewrites
the project history by creating new commits for each commit in the local branch. The
Sync command in the same submenu performs a Pull first and then a Push operation, so
that both the local and remote repositories are synchronized.

162

CHAPTER 7 SOURCE CONTROL WITH GIT

There is also a command called Stash, which allows you to store modified tracked
changes and staged changes in a cache, so that you can switch to another branch while
having unfinished work on the current branch. Then, with the Pop Latest Stash and Pop
Stash commands, under the Stash submenu, you can retake the latest version of your
unfinished work or a specific version of the unfinished work, respectively.

Every time you work with Git commands, such as Commit and Push, Visual Studio
Code redirects the output of the Git command line to the Output panel. Figure 7-12
shows an example.

PROBLEMS OUTPUT TERMINAL DEBUG CONSOLE Git vIE 8D~ X
| WEJELLIaNE) | dvs

2023-82-22 14:03:06.046 [info] » git ls-tree -1 HEAD -- C:\Users\adelsole\source\repos\greeter\greeter.ts [183ms]
2823-02-22 14:03:18.257 [info] > git ls-tree -1 HEAD -- C:\Users\adelsole\source\repos\greeter\greeter.ts [1@1ms]
2023-82-22 14:05:29.812 [info] > git add -A -- . [118ms]

2023-82-22 14:05:29.812 [info] warning: in the working copy of ‘greeter.html’, LF will be replaced by CRLF the
next time Git touches it

warning: in the working copy of 'greeter.ts’, LF will be replaced by CRLF the next time Git touches it

2823-02-22 14:05:30.852 [info] > git show --textconv :.git/COMMIT_EDITMSG [185ms]

2823-02-22 14:05:20.862 [info] » git ls-files --stage -- C:\Users\adelscle\source\repos\greeter\.

Eit\COI-\'-IIT EDITMSG [187ms]

2023-82-22 14:05:31.332 [info] » git check-ignore -v -z --stdin [27@ms]

2023-82-22 14:05:31.374 [info] > git 1s-files --stage -- C:\Users\adelscle\source\repos\greeterigreeter.ts [161ms]
2823-02-22 14:05:21.382 [info] » git ls-files --stage -- (:\Users\adelscle\source\repos\greeter\.
EA\COMNIT_EDITHSG [144ns]

2023-82-22 14:95:31.430 [info] » git cat-file -s 718@0d668534ce524aaaclbeb56e%a38965a5e33 [99ms]

2023-82-22 14:05:31.489 [info] > git show --textconv :.git/COMMIT_EDITMSG [99ms]

2023-02-22 14:05:31.588 [info] » git show --textconv :greeter.ts [1€@ms]

In1,Col1 Spacess4 UTF-8 LF GitCommitMessage & 0

Figure 7-12. Messages from the Git command line are shown in the Output panel

You need to select Git from the drop-down menu in the Output panel in order to see
the Git output. You can also open the Output panel using the Show Git Output command
from the popup menu shown in Figure 7-11.

Working with the Git Command-Line Interface

The Command Palette has support for specific Git commands that you can type as if
you were in a command-line terminal. Figure 7-13 shows a partial list of available Git
commands, displayed by typing Git in the Command Palette. The full list of commands
is quite long and cannot be totally included in Figure 7-13, but you can type Git on your
own computer and scroll the list to see all available commands.

163

CHAPTER 7 SOURCE CONTROL WITH GIT

®) File Edit Selection Yiew Go - greeter.ts - greeter - Visual Studio Code [Administrator] D& 0o - O X

TS greeterts M X

>g|||

TS greeterts > 12 G gy
s Bl Git Add Remote... & ot
1 <class Gre Git Add T
= Add L e P —
5 const it Add to .gitignore
3 greet Git Apply Latest Stash
4 | r Git Apply Stash...
5 } Git Checkout to (Detached)...
6 IH Git: Checkout to..
y Git: Cherry Pick...
8 [/ A welc

Git Clone
Git: Clone (Recursive)

q

18 var greet

11 Git Close All Diff Editors
12 document. Git Close Repository
13 Git: Commit

Git Commit All

Git Commit All (Amend)
Figure 7-13. Supported Git commands in the Command Palette

It is worth mentioning that the list of commands is also grouped by most recently
used and all commands.

For instance, you can use Git Sync to synchronize the local and remote repositories,
or you can use Git Push to send pending changes to the remote repository. A common
scenario in which you use Git commands is with branches.

Creating and Managing Branches

For a better understanding of what a branch is, suppose you have a project that, ata
certain point of its lifecycle, goes to production. You need to continue the development
of your project, but you do not want to do it over the code you have written so far.

You can create two histories by using a branch. When you create a repository, you
also get a default branch called master.

Note There have been changes in GitHub, as well as in Azure DevOps, so if you
first create a remote repository on this platform directly, the main branch is no
longer called master, but instead is called main. This change is specific to GitHub,
so if you create a Git repository either locally or on other platforms, you still get the
master branch.

164

CHAPTER 7 SOURCE CONTROL WITH GIT

Continuing with the example, the master branch could contain the code that has
gone to production, and now you can create a new branch, such as development, based
on master but different from it. In Visual Studio Code, you have different options to
create a new branch: The first option is to create a branch from the Command Palette by
typing Git branch, selecting the Git: Create Branch option, and specifying a new branch
name, such as develop.

Note develop is a shortening for development. Creating a branch

named develop is intentional because it is how a development branch is

called in the so-called GitFlow (http://datasift.github.io/gitflow/
IntroducingGitFlow.html) approach. If you join a team that uses GitFlow, you
will likely work on the develop branch.

This creates a new branch locally, based on master. The second option is to click the
current branch name in the Status Bar (master in this case) and then click the Create
New Branch command (see Figure 7-14). Enter the new branch name and press Enter.

®) File Edit Selection Yiew Go - greeter.ts - greeter - Visual Studio Code [Administrator] D& 0o - (] x

TS greeterts X

Kelect a branch or tag to checkout

TS greeterts > 43 G
i Bl -+ Create new branch... W

class Gre
~+ Create new branch from... e]

1
2 const

3 greet ¢ Checkout detached...
4

| r §? master 1bddedad
& origin/master Remote branch at 1bddedad

5 }
6 h

Figure 7-14. Creating a branch

In addition, you can use the Create New Branch From command to create a new
branch from a branch that is not the active one. When a new branch is created, the Status
Bar shows it as the active branch; when you are ready, you can publish the new branch
to the remote repository with the Publish Branch button, represented by the cloud icon
(see Figure 7-15).

greeter (Git) - Publish Branch
X [Pdevelop @ ®@0AO0

Figure 7-15. The new branch is set as active and ready to be published

165

http://datasift.github.io/gitflow/IntroducingGitFlow.html
http://datasift.github.io/gitflow/IntroducingGitFlow.html

CHAPTER 7 SOURCE CONTROL WITH GIT

Switching to a Different Branch

Switching to a different branch is very easy. Simply click the name of the active branch in
the Status Bar, and VS Code displays the list of branches, as shown in Figure 7-16. If the
repository already has a remote branch, it will also be visible in the list and recognizable

by the origin/ prefix.
®J FEile Edit Selection View Go o greeter.ts - greeter - Visual Studio Code [Administrator] DB oo - o X
TS greeterts X | Select a branch or tag to checkout . S0 -~

TS greeter.ts > [@]¢
S M + Create new branch...
1

class Gr T e R
r new branch Irom... e
2 ora eate new branch from.

3 gree ©° Checkout detached..
£° develop 033bleb7
} 1° master 05dad472
5. 1

7

Figure 7-16. Selecting a different branch

Click the desired branch, and VS Code checks it out and sets it as the active branch.

Merging from a Branch

Suppose you have completed and tested some work on the development branch and
you want this work to be published to production. Because the production code is on the
master branch, you must bring all the work from the development branch to the master
branch. This is a merge operation (which normally happens via pull requests, described
later in this chapter). You can merge from a branch into another one via the Command
Palette, using the Git: Merge Branch command. VS Code shows the list of branches,

and you need to select the branch you want to merge from into the current branch (see
Figure 7-17).

Note Remember that the branch that receives the merge is the active branch,
S0 make sure you have switched to the proper branch before starting a merge
operation.

166

CHAPTER 7 SOURCE CONTROL WITH GIT

] Fle Edit Selecion Yiew Go greeter.ts - greeter - Visual Studio Code [Administrator] DB8mo - a X
TS greeterts X elect 2 branch t¢ o -

e develop develop
1 class Gre

masteér mast s e
const 3 —

3 greet ©°M9

Figure 7-17. Merging from a branch

In the example, some changes were made and pushed to the development
branch, then the master branch has been selected as the active one and changes from
development will be merged into master.

Once the merge operation is completed, remember to push your changes to the
remote repository.

Resolving Merge Conflicts

When you merge branches in which the same code files were modified, Visual Studio
Code leverages the Git tooling to combine the different edits into one code inside the
target files. However, sometimes VS Code cannot automatically combine the edits, in
which case it raises a merge conflict. If this happens, VS Code shows an editor where it
highlights the code on which a conflict exists, displaying the current version and the
incoming version with different colors, as you can see in Figure 7-18, which shows an
example of one conflict due to edits on the same line of code in different branches.

167

CHAPTER 7 SOURCE CONTROL WITH GIT

30 = greeter.ts - greeter - Visual Studio Code [Administrator] [D Q |:[| 08 = =] X

TS greeterts 3,! X R U R

class Greeter {

1
2 constructor(public greeting: string) { }
3 greet() {
i 4 return “<hl>" + this.greeting + "</h1>»";
5
6 b
7
8 // A welcome message
9 . |
1@ wvar greeter = new Greeter("Hello, developers!™); |
11 |

Current Change | Ac ncoming C
12 ££<<£<< HEAD (Current Change)
13 document.body.innerHTML = greeter.greet(); // This is the last line
14 EzEmEEE

15 document.body.innerHTML = greeter.greet(); // This could be the last line
15 »»»»2»> develop (Incoming Change)

Accept Curren

Resolve in Merge Editor

¥ Pmasted SO0Llt @IAO0 Ln13,Col1 Spaces4 UTF-8 CRLF () TypeSaipt & 3

Figure 7-18. Resolving merge conflicts

Click the Resolve in Merge Editor button. At this point, Visual Studio Code compares
changes at the top of the view and it allows for previewing the merged code at the
bottom. Figure 7-19 shows how the Merge Editor appears at this point.

168

CHAPTER 7 SOURCE CONTROL WITH GIT

] FEile Edit Selection View Go Bun

» Merging: greeterts - greeter - Visual Studio Code [Administrator] DEmo - o x
TS gresterts ! ® TS Marging: greeterts ! ® o+ 4 @0 -
1
o Current @ 1d105ab - master
8 8 ssage
: 9 9
18 eter("Hello, developers!”); 18 ew Greeter(“Hello, developers!”);

12 ML = greeter.greet(); // This could be the last line pnerHTML = greeter.greet(); // This is the last line

8 // A welcome message

18 var greeter = new Greeter("Hello, developers!™);

12 :ducument .body.innerHTHL = greeter.greet(};

Complete Merge

X Pmasted D01t @0A0

In1,Col1 Spacesd CRIF () TypeSaipt & O3

Figure 7-19. Resolving merge conflicts

You can resolve conflicts by clicking one of the available choices placed at the top of
the line of code:

o Accept Incoming: You resolve the conflict by using changes in the
incoming branch.

e Accept Current: You resolve the conflict by keeping changes done in
the current branch.

e Accept Combination: You resolve the conflict by combining both
changes.

When ready, click the Complete Merge button. As you can see, Visual Studio Code

gives you an integrated and user-friendly way to resolve conflicts without the need to
deal with complex Git command lines.

169

CHAPTER 7 SOURCE CONTROL WITH GIT

Hints About Rebasing Branches

Among the available commands for Git in Visual Studio Code, you will find one called
Rebase. In Git, rebasing still allows you to include the changes made by a branch in
another branch, but rebasing and merging accomplish this task differently.

More specifically, rebasing does not create overlaps between branches but rather
appends code changes to the end of the target branch, which means that the history of
the code is easier to understand, even if there is a need to frequently incorporate the
commits of one branch into the other.

Rebasing therefore offers the possibility of accessing a more linear history, because,
unlike merging, it allows you to not incorporate unnecessary commits into the
target branch.

However, rebasing should be used with care. For example, if another team member
is working on the same branch, it is preferable to avoid rebasing because this might lead
to the duplication of the branch instead of merging changes.

Deleting Branches

Sometimes you might have branches that have been created only for testing some code
and that are not really necessary in the application lifecycle management. In this case, in
the Command Palette, you can use the Git: Delete Branch command.

With a user interface like what you see in Figure 7-17, VS Code shows the list of
branches. Select the branch you want to delete and press Enter. Remember that the
active branch cannot be deleted, and you first need to switch to a different branch. Also,
remember that you can delete remote branches only if you created them.

Adding Power to the Git Tooling with Extensions

The integrated tools for Git cover all the needs that you, as a developer, may have when
working with local and remote repositories to manage your source code, but there are
extensions that provide additional power to the integrated tools.

This section describes the most useful free extensions that will improve your
collaboration experience in Visual Studio Code.

170

CHAPTER 7 SOURCE CONTROL WITH GIT

Git History

Git History is a free extension that enables you to view the history of your source code,
such as information and author about each commit and that can display how a file has
gone through branches; plus it adds commands that make it easier to manage your code
against Git. After you have installed the extension, you can right-click a file inside the
folder view of Explorer Bar and select Git: View File History.

Figure 7-20 shows an example based on a file that has three commits. If available, the
view shows the branches where the file has been included, comments and author for the
commit, and the commit ID. The view also allows for searching and filtering contents by
branch and author. Local branches are highlighted in green and remote branches in red.

g = File History (greeter.ts) - greeter - Visual Studio Cede [Administrater] [0 B [0 02 — o 3
‘D File History (greeter.ts) X 7z
Enter term and press enter to search Search master = All Authors » Clear Refresh O
Local change
© Alessandro Del Sole on 2/22/2023, 2:23:36 PM 14105ab B [Soft ByHard + Tag + Branch -o-More
new commit
© Alessandro Del Sole on 2/22/2023, 2:10:02 PM 1nédods @ [)Soft BaHard +Tag + Branch < More
First commit
(@ Alessandro Del Sole on 2/22/2023, 11:06:47 AM 2525360 @ (9 Soft BIHard + Tag + Branch o More

¥ Pmaster OO0t ®0oAo

Figure 7-20. Viewing the history of commits with Git History

Note If the commit author has associated a picture to the Git credentials, Git
History shows the picture near the author name.

171

CHAPTER 7 SOURCE CONTROL WITH GIT

Ifyou click the More shortcut at the right of each commit, a menu appears showing
a number of very useful commands that make it easier to work with commits (see
Figure 7-21).

)q = File History (greeter.ts) - greeter - Visual Studio Cade [Administrator] [D Q ED 08 - (|} *

D File History (gre | J 13} e

BRIl 1) Cherry pick this (1b4dcda) commit into current branch

17 Checkout (1b4dcda) commit

Localchange | g2 saiact this commit (Alessandro Del sole I o 202.. =D
© Alessandro DeiSok ¢ pavert this (1bddcda) commit aHard +Teg + Branch < More
y i Merge this (1b4dcda) commit into current branch
i ?
go Rebase current branch onto this (1bddcda) commit m- COgRVInRE |

& Alessandro Del Sole PRrEdcarr g son g Hard + Tag + Branch o More

Figure 7-21. Git History provides commands that make it easier to work
with commits

At the bottom of the view, you will see the list of files involved in the selected
commit. If you click a filename, you also get shortcuts to compare the file with the
previous version and to view the history of that file. Git History is a very useful extension,
especially when your team works with the Agile methodologies, because for each task in
the backlog, a new branch is created and then merged into one branch at the end of the
sprint, making it easier to walk through the history of the work.

GitLens

Another extremely useful extension that will boost your productivity is GitLens.

Note GitLens has been recently elevated to a paid extension; however, the
features described in this chapter are still available in trial mode.

Upon first use, GitLens requires you to be authorized by GitHub, so VS Code will
invite you to follow the same steps you did when creating your first remote repository.
GitLens adds to VS Code many features and commands related to Git. For example,
GitLens extends the Source Control Bar (see Figure 7-22) with a number of useful
Git groups.

172

CHAPTER 7 SOURCE CONTROL WITH GIT

¥ File Edit Selection View Go - greeter - Visual

SOURCE CONTROL

< Sync Changes 11

v COMMITS 0: 1t er « Last fetched 33 minutes ago
dle Visualize commits on the Commit Graph 4 Gitle...
%) Compare Working Tree with <branch, tag, or ref>
v 1l Merging develop into master

> T Local change You, 20 minutes ago
b A R S PN R P LR P N Y] -

> COMMIT DETAIL
> FILE HISTORY
~ BRANCHES (2)
> 35 develop 01 11 = origin/develop » 19 minutes a... A

> 38 master 01 11 = origin/master » 20 minutes a... A, v/

~ REMOTES (1)
> ' origin = GitHub - AlessandroDelSole/greeter

> STASHES

> TAGS

> WORKTREES

s SEARCH & COMPARE +86==0D @ -

~ 2 results for local L U4 x

? Autolinked Issues and Pull Requests

> % {develop)» Local change You, 20 minutes ago

> % {master)» Local change You, 20 minutes ago

X Pmaster 01t P ®@0AOD

Figure 7-22. The Source Control Bar extended by GitLens

The GitLens extension adds several areas to the Source Control Bar. The BRANCHES
and REMOTES areas show the list of local and remote branches, respectively, and, for
each branch, GitLens displays the list of commits. Each commit can be expanded to see
the commit message, the list of files involved in the commit, and an icon that represents
the operation made on the file. The STASHES area shows stashed changes with a similar

173

CHAPTER 7 SOURCE CONTROL WITH GIT

structure (if any). The FILE HISTORY area shows the list of commits for a file (this
requires an open editor). For each commit, you can see the name, the author, and the
time of last edit.

GitLens also adds summary information about edits made on a specific code
snippet, right above the code snippet itself. You can click this to get commit details.
Figure 7-23 shows an example where GitLens highlights that a code change to the
Greeter class was made four hours earlier by the author, plus the commit details.

Note If you hover your cursor over the GitLens, you will see some information
such as author, code differences, and commit number inside an interactive
popup box.

] File Edit Selection View Go Run Terminal Help greeter.ts - greeter - Visual Studio Code [Administrator]

class Greeter {
constructer{public greeting: string) { }
greet() {

return

“¢h1>" + this.greeting + "</h1>";

/i A welcome message

var greeter = new Greeter("Hello,

developers!™);

document.body.innerHTML = greeter.greet(); //

This cc

Figure 7-23. GitLens adds summary information about a code snippet

Other commands are available in the context menu when you right-click the code
editor, such as Copy Commit ID to Clipboard, Copy Message to Clipboard, and Copy
Remote File URL to Clipboard, all of which are self-explanatory.

GitHub Pull Requests and Issues

Pull requests in Git make it easier to perform code reviews, while issues enable you

to keep track of feedback from other developers. With pull requests, your code is not
automatically merged into a branch until someone else on the team reviews the code
and accepts it. If you use GitHub for your repositories, an extension called GitHub Pull
Requests and Issues is available to introduce support for pull requests in Visual Studio
Code. When you first install the extension (and reload the environment), you are asked

174

CHAPTER 7 SOURCE CONTROL WITH GIT

to sign in to GitHub. To accomplish this, you can either click Settings in the Side Bar and
then click Sign In To Use GitHub Pull Requests and Issues, or click the Sign In button in
the GitHub Bar. Simply follow the same steps you did to authorize GitLens.

After you provide your GitHub credentials and open a folder that is associated to a
remote repository hosted on GitHub, you can leverage the GitHub Bar, which you enable
by clicking the GitHub icon on the Side Bar. An example of the GITHUB view is provided
in Figure 7-24, which refers to an existing pull request detected by the extension and that

was opened (checked-out) previously in the repository.

) Ele Edit Selection View Go Run Jerminal Help Pull Request 22 - greeter - Visusl Studio Code [Administratcr] DB [o2 =} #
GITHUS PULL RECQRIEST <> gresterhtml M ull Reguest 2 X m -
~ CHANGES IN PULL REQUEST 82
w ‘ Develop
ol Develop #2
greeter.html M
TS greeter.ts x
Commits ' AlessandroDelSole wants to merge changes into AlessandrobelScle:master from
2 Local change alessandrobelSole:develop
Small fix
PR LIN . i | s | enom | copy e | cop cosdev ok
Reviewers & Assignees &
Nene yet None yet—assign yoursell
"'"2‘ Labels & Milestone @
& AlessandroDelsole commented seconds ago
Mo description provided.
- DEVELOP #2
Q adelsolefme Local change 3 hours ag
mment
-] adelsolefme Small fix 71£3971 17 hours ago

~* This branch has no conflicts with the base branch.

This branch has no conflicts with the base branch. EEGTIN LT g using method Create Merge Commit v

Create Merge Commit

Checkout ‘master” SRR CORTEN

* Pdevelopr O T @0A0 GalensPro(Tria) I Pull Request £2

Figure 7-24. The GitHub Pull Requests view

When a pull request is detected, a new shortcut called GITHUB PULL REQUEST is
added to the Explorer Bar to quickly move to the pull request information. The extension
supports both viewing and submitting pull requests, regardless of their source, which
can be VS Code, GitHub, or another development environment connected to the same
repository. When pull requests are available, you see them listed in the view. If you select

175

CHAPTER 7 SOURCE CONTROL WITH GIT

a pull request, a new editor window appears showing all the pull request details, and you
have the option of adding comments and then closing, rejecting, or approving the pull
request (see Figure 7-24).

You can also work on the pull request locally by clicking the Checkout button, which
displays it under the Local Pull Request Branches node in the tree view.

New pull requests can be directly created from within Visual Studio Code via the
Create Pull Request button available on the toolbar of the GITHUB view. This requires
changes on the current branch. Figure 7-25 shows how the user interface appears when
you create a new pull request.

176

¥ File Edit Selection View Go Run
GITHUB PULL REQUEST
s CREATE PULL REQUEST
MERGE CHANGES FROM

Bl AlessandroDelSole/greeter

11 develop

INTO

B AlessandroDelSole/greeter

t) | master

TITLE
31 Added comment

DESCRIPTION

Pull Request Description

[Create as draft

CHAPTER 7 SOURCE CONTROL WITH GIT

Terminal Help

o [e

“ COMPARE CHANGES
<> greeter.html|

X Pdevelop O I ®0AO0 Gitlens Pro(Trial) 7 Pull Re

Figure 7-25. Creating a pull request

remember it only supports GitHub as the host.

In addition to pull requests, you can create issues from within Visual Studio Code by
using the + button located near the ISSUES view at the bottom of the bar, after which you
can edit and then save them so that they are associated to the remote repository. Viewing
issues happens inside the browser, so when you click the globe icon at the right side of
an issue, the default web browser opens the GitHub page for the issue.

This is a very useful extension, especially if you work within Agile teams, but

177

CHAPTER 7 SOURCE CONTROL WITH GIT

Working with Azure DevOps

Azure DevOps (https://dev.azure. com) is the complete solution from Microsoft to
manage the entire application lifecycle, from development to testing to continuous
integration and delivery. Among the many features, Azure DevOps provides source
control capabilities based on the Git engine.

In this section, I explain how to configure a Git repository that you can use for
source control with Visual Studio Code, and the good news is that you do not need
any extensions. I also reuse the Greeter project described in the previous sections. If
you want to do the same, you can simply delete the local .git folder located under the
project folder.

You obviously need an account on Azure DevOps, which you can create by using a
Microsoft account. If you do not have one, you can get a Microsoft account at https://
www.outlook.com, and then you can get an account on Azure DevOps at https://aka.
ms/SignupAzureDevOps. Follow all the instructions required to configure your account
for the first time.

Creating a Team Project

From the home page, click the New Project button. As you can see in Figure 7-26, you
need to supply a team project name, optionally a source control engine, and a work item
process. About the source control engine, leave Git as the selection. Azure DevOps also
supports the Team Foundation Server source control engine, but this is out of scope.

178

https://dev.azure.com
https://www.outlook.com
https://www.outlook.com
https://aka.ms/SignupAzureDevOps
https://aka.ms/SignupAzureDevOps

CHAPTER 7 SOURCE CONTROL WITH GIT

Create new project X

Project name *

| Greeter e

Description

Sample project for Visual Studio Code Distilled

Visibility
Private
Anyone on the internet can Only people you give
view the project. Certain access to will be able to
features like TFVC are not view this project.
supported.

Public projects are disabled for your organization. You can turn on public visibility with
organization policies.

. Advanced
Version control @ Work item process @
Git v } l Agile ~ l

b

Figure 7-26. Creating a team project in Azure DevOps

Enter a project name and click Create. After a few seconds, your new team project
will be ready. At this point, the Azure DevOps site shows a page with all the information
about your new team project. Now click Repos on the left side of the screen so that you
can see all the information about the new Git repository (see Figure 7-27). Notice that the
new repository is created with the same name as the new project. Copy the repository
URL into the clipboard, as it will be necessary very shortly.

179

CHAPTER 7 SOURCE CONTROL WITH GIT

alessandrodelsole.visualstu,

J Azure DevOps alessandrodels File © Greeter | 2 Searc = (3 a
[a Greeter -
Greeter is empty. Add some code!

n Onverview

Clone to your computer
% Boards . B

m SSH | httpsy/alessandrodelsclesisualstudio.com/Greeter/_git/Grester [OR & CloneinVsCode
Repos

Generate Git Credentials

B Files

Nindaws or our pluging for Intelll Eslipse Andraid Studio o

¢ Commits
Pushes

Branches Push an existing repository from command line

Tags
3 -

11 Pull requests

G w [

git remote add origin httpsy//alessandrodelsole visualstudic.com/Greeter/_git/Greeter D
git push -u erigin --all
f Fipelines
A Test Plans
Import a repository
E! Artifacts
Impert
Initialize $main branch with a README or gitignore
B AddaREADME Add a.gitignore: None ~ Initialize
1 Project settings «

Figure 7-27. Information about a Git repository on Azure DevOps

Visual Studio Code will need to authenticate against the repository in order to
push changes, so click Generate Git Credentials. Take note of both the username and
password that is generated because they will be used shortly, and keep in mind that this
is the only option you have to see and store the password.

Now that a remote repository is set up, you have several options to associate it to
Visual Studio Code. You could clone the repository to the local machine, or you could
even use the Git CLI. However, the simplest yet most effective option is to use the VS
Code tools you learned about in the first part of this chapter, as described next.

180

CHAPTER 7 SOURCE CONTROL WITH GIT

Connecting Visual Studio Code to a Remote Repository

Go back to Visual Studio Code. The first thing to do is initialize a local Git repository (see
the “Initializing a Local Git Repository” section earlier in the chapter for a refresher).
Once you have a local repository set up, you can connect it to the remote Azure DevOps
repository with little effort.

In the Source Control Bar, click the ... button, then choose Remote » Add Remote.
You first need to specify the name of the remote repository (which is the one you
specified in Azure), then you will have the option to enter the URL of the remote
repository you created, so paste in the URL and press Enter (see Figure 7-28).

»] Ele Edit Selection View Go Bun Jerminal Help Weicome - greeter - Visusl Studio Code [Administrator] Demo - o

SOURCE CONTROL — — — — — — - - .
Add remote from URL hitps//shessandrodelsole wisuab tudio.com/Greeter/_git/Greeter
et . @ Add remote from GitHu emote SOUrCe

Figure 7-28. Specifying an Azure DevOps remote repository

You are also asked to provide a name, which is used as a project identifier. Enter a
name of your choice, with no blank spaces, then press Enter. At this point, Visual Studio
Code will first ask for your username and then for the password that was generated
previously as Git credentials in the DevOps portal. This should no longer be necessary
the next time you connect to Azure DevOps. After entering your credentials, Visual
Studio Code links the local repository to the remote one, but note that you do not get
a confirmation message of the operation completion, only indicators running on the
Status Bar.

The very last step is to push the branch to the remote repository, using any of the
options described in the first part of this chapter; however, you need to take care about
the main branch. As previously mentioned, due to recent changes in Azure DevOps
that reflect what GitHub also does, when you create a repository on Azure DevOps, the
main branch is now named main rather than master. The problem is that VS Code still
creates a master branch. So basically you need to push the master branch from VS Code
and then create a pull request to merge master into main so that you can work with the
new branch.

181

CHAPTER 7 SOURCE CONTROL WITH GIT

Note All these steps are necessary if you connect existing code to a remote
repository. If you start from creating a remote repository for a new project, you can
clone the repository in VS Code so that you start with the main branch directly.

Once the changes are pushed, they are visible in the Repos view of the Azure DevOps
project (see Figure 7-29).

isualstudio.com 5

) Azure DevOps alessandrodelsole Greete Repos Files ¥ Greete R Search ‘ = ui . o a
Greeter + 4 Greeter ¥ master Type to find a file or folder
n COverview [greeterhtmi Files = Clone

TS greeterts Contents History e
E Boards

3 tsconfigjson
Repos Name T Last change Commits
Y Files [greeterntml &m ago 421962387 First commit Ale...
¢ Commits TS greaterts 8m ago 42196287 First commit Ale...
&, Pushes [tsconfigjson 8m ago 42196387 First commit Ale...
¥ Branches
& Tags
i1 Pull requests
f Pipelines
& Project settings &«

Figure 7-29. The source code has been pushed to Azure DevOps

Now that your code has been pushed remotely, other developers can collaborate on
the project. The key point is how easy it has been to set up a connection between a local
Git repository and a remote Azure DevOps one, all from within Visual Studio Code.

Summary

Writing software involves collaboration, whether you are part of a development team,
involved in open-source projects, or are an individual developer who has interactions
with customers. In this chapter, you have explored how Visual Studio Code provides
integrated tools to work with Git, the popular open-source and cross-platform source
control provider.

182

CHAPTER 7 SOURCE CONTROL WITH GIT

You learned how to create a local repository with the Git Bar and how to associate
it to a remote repository with a couple of commands from the integrated terminal. You
have also learned how to handle file changes, including commits, and how to create
and manage branches directly from within the environment. In addition, you were
introduced to some useful extensions, such as Git History, Git Lens, and GitHub Pull
Requests and Issues, that will boost your productivity by adding important features that
every developer needs when it comes to team collaboration. Finally, you learned how
easy itis to link a local repository to a remote Git repository hosted on Azure DevOps,
the premiere cloud solution from Microsoft to manage the whole application lifecycle.
Behind the scenes, Visual Studio Code invokes the Git commands to execute operations
over your source code, and it is preconfigured to work with this external tool.

However, Visual Studio Code is not limited to work with a small set of predefined
tools; rather, it can be configured to work with basically any external program. This is
what you learn about in the next chapter.

183

CHAPTER 8

Automating Tasks

As described in previous chapter, Visual Studio Code is more than a simple code editor
because it enables you to execute operations such as compiling and testing code by
running external tools. In this chapter, you learn how VS Code can execute external
programs via tasks, by both existing tasks and customized tasks. To run the examples
provided in this chapter, you need the following software:

e Node.js, a free and open source JavaScript runtime based on
Chrome’s JavaScript engine, which you can download from
https://nodejs.org

o The TypeScript compiler (tsc), which you install via the Node.js
command line with the following command:

> npm install -g typescript

Using Node.js and TypeScript helps you avoid dependencies on the operating system
and proprietary development environments. Obviously, all the topics discussed in this
chapter apply to other languages and platforms as well.

Understanding Tasks

At its core, Visual Studio Code is a code-centric tool, so it often requires executing
external programs to complete operations that are part of the application lifecycle, such
as compilation, debugging, and testing.

In Visual Studio Code terminology, integrating with an external program within the
flow of the application lifecycle is a task. Running a task means not only executing an
external program but also getting the output of the external program and displaying it in
the most convenient way inside the user interface, such as the integrated Terminal.

185
© Alessandro Del Sole 2023

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_8

https://nodejs.org
https://doi.org/10.1007/978-1-4842-9484-0_8

CHAPTER 8 AUTOMATING TASKS

A task is basically a set of instructions and properties represented with the JSON
notation, stored in a special file called tasks.json. If VS Code can detect the type of
project or source code inside the folder, a tasks. json file is not always necessary, and
VS Code does all the work for you. If VS Code cannot detect the type of project or source
code, or if you are not satisfied with the default settings of a task, under the current
folder, it generates a hidden subfolder called .vscode and, inside this folder, generates a
tasks. json file. If VS Code can detect the type of project or source code inside the folder,
it also prefills the tasks.json content with the proper information; otherwise, you need
to configure tasks.json manually. For a better understanding, I explain tasks that VS
Code can detect and that it configures on your behalf, and then I discuss how to create
and configure tasks manually.

Tasks Types

There is no limit to how many types of tasks can be available for a source code folder, but
the most common are the following:

e Build task: A build task is configured to compile the source code,
assets, metadata, and resources into a binary or executable file, such

as libraries or programs.
o Test task: A test task is configured to run unit tests in the source code.

o Watch task: A watch task starts a compiler in the so-called watch
mode. In this mode, a compiler always watches for changes to
any unresolved files after the latest build and recompiles them at

every save.

Visual Studio Code provides built-in shortcuts to execute a build task. When
new tasks are added, VS Code updates itself to provide shortcuts for the new tasks.
Additionally, you can differentiate tasks of the same type. For example, you can have
a default build task and other custom build tasks that can be executed only in specific
situations.

186

CHAPTER 8 AUTOMATING TASKS

Running and Managing Tasks

The first approach to understanding tasks in practice is to run existing, preconfigured

tasks. For the sake of simplicity, start Visual Studio Code and open the project folder

called simple from the collection of examples you downloaded previously from
the TypeScript Samples repository on GitHub (https://github.com/Microsoft/

TypeScriptSamples).

Visual Studio Code detects it as a TypeScript project, and therefore it preconfigures

some tasks (in the next section, I provide more details about task auto-detection). Now

open the Terminal menu. As you can see in Figure 8-1, there are several commands

related to tasks.

] File Edit Selection View Go Run Terminal Help animalsts - simple - Visual Studic Code D2 Do - o X
@ EXPLORER MNew Terminal Ctrl#Shift+o m .-
~ OPEN EDITORS
X T8 animals.ts
w SIMPLE) w) {} ot
TS animals.ts CUEEShifteS. =

@ READMEmd

1ame + " moved ¥ + meters + "m.");

B tsconfigjson Run Selected Text

b

wering...");

Configure Tasks..

Configure Default Build Task...

15
16
17
18
19
28
21
22
23
24
25
26
27

» OUTLINE
> TIMELINE

class Horse extends Animal {
move() {
console. log("Galloping...™);
super.move(45);

}

var sam = new Snake("Sammy the Python™)
var tom: Animal = new Horse("Tommy the Palomino™)

sam.move()
tom.move(34)

@040 Gitlens Pro (Trial)

Ln1,Col1 Spacesd4 UTF8 LF ()} TypeScipt & 0Q

Figure 8-1. Commands for running and managing tasks in the Terminal menu

An explanation of each command is provided in Table 8-1.

187

https://github.com/Microsoft/TypeScriptSamples
https://github.com/Microsoft/TypeScriptSamples

CHAPTER 8 AUTOMATING TASKS

Table 8-1. Commands for Task Execution and Management

Command Description

Run Task Shows the list of available tasks in the Command Palette and runs the
selected task.

Run Build Task Runs the default, preconfigured build task (if any).

Terminate Task Forces a task to be stopped.

Restart Running Restarts the currently running task.

Task

Show Running Tasks Shows the output of the currently running task in the Terminal panel.

Configure Tasks Shows the list of available tasks in the Command Palette and allows editing
the selected task inside the tasks. json file editor.

Configure Default ~ Shows the list of available tasks in the Command Palette and allows selection
Build Task of the task to use as the build task.

If you select Run Task, VS Code opens the Command Palette showing the list of
available task categories, as represented in Figure 8-2.

3] File fdt Selection Yiew Go Run Terminal Help animalsts - simple - Visual Studio Code D200 - u X
bbb
ﬂ;w:: Gnumais.ts B3 grunt contnbuted
TS animals.ts :_" e
B3 jake
) README.m o
B tsconfigjson e
B
Bde

Figure 8-2. Selecting task categories from the Command Palette

From here you can pick up a group of available tasks by category. In this case, you
need to select the typescript category. At this point the Command Palette displays the
list of available tasks for that category, as you can see in Figure 8-3.

188

CHAPTER 8 AUTOMATING TASKS

] File Edt Selection Yiew Go Run Jerminal Help amimalsts - simple - Visual Studio Code DS Do - (n] X
EXPLORE P | m --
v OPEN EDITORS
X TS animals.ts
v SIMPLE
TS animals.ts

Figure 8-3. Running a task from the Command Palette

Asyou can see, there are two tasks, tsc: build and tsc: watch, both pointing to the
tsconfig.json project file. This means that either task will run against the specified file.
tsc is the name of the command-line TypeScript compiler, whereas build and watch are
two preconfigured tasks whose descriptions were provided previously. If you select tsc
build, Visual Studio Code launches the tsc compiler and compiles the TypeScript code
into JavaScript code, as shown in Figure 8-4.

Note In the case of TypeScript, the build task compiles TypeScript code into
JavaScript code. In the case of other languages, the build task generates binaries
from the source code. More generally, a build task produces the expected output
from the compilation process depending on the language. Also, the list of available
tasks varies depending on the type of project or folder you are working with. For
example, for .NET projects, only a task called build is available.

PROBLEMS QUTPUT TERMINAL DEBUG CONSOLE + v e oA X

o Bl executing task: tsc -p c:\Users\adelsole\source\repos\simple\tsconfig.json ! powershell
% tsc buil...
Il Terminal will be reused by tasks, press any key to close it.

In1,Col1 Spacess4 UTF-8 LF {} TypeSaipt & Q

Figure 8-4. Executing a build task
189

CHAPTER 8 AUTOMATING TASKS

The Terminal panel shows the progress and result of the task execution. In this case,
the result of the task is also represented by the generation of a . js file and a . js.map file,
now visible in the Explorer Bar.

Note If the Terminal shows an error message saying that a . ps1 file could not
be loaded because running scripts is disabled on the systems, first try to restart VS
Code as an administrator and to repeat the steps. If this does not solve the issue,
you need to enable script execution on your machine. You can do this on your own
if you are the computer administrator; otherwise, you need to ask the administrator
of your network. You can find more detailed information on how to enable script
execution depending on your environment and on how to enable specific privileges
at https:/go.microsoft.com/fwlink/?LinkID=135170.

You can stop and restart a task using the Terminate Task and Restart Running Task
commands, respectively, both described in Table 8-1. Now suppose there is a critical
error that prevents the build task from completing successfully. For demonstration
purposes, remove a closing bracket from the code of the animals.ts file and run the
build task again. At this point, Visual Studio Code will show the detailed log from the tsc
tool in the Terminal panel, as shown in Figure 8-5, describing the error and the line of

code that caused it.

190

https://go.microsoft.com/fwlink/?LinkID=135170

CHAPTER 8 AUTOMATING TASKS

] File Edit Selection View Go Run Terminal Help animalsts - simple - Visual Studio Code D3 Do - (m] be
[Q EXPLORER ~- TS animalsts 1 X am -
“ OPEN EDITORS 5 animals.ts > ...
X TS animals.ts 1 1 class Animal {
 SIMPLE 2 constructor(public name) { } i
{ !
I5 animals js = Kiove(paters) { " " P .
2 2 4 console. log(this.name + " moved " + meters + "m.");

I5 animals.js.map 5

TS animals.ts 1 &

(D README.md 7

B tsconfigjson 8 class Snake extends Animal {
] move() {
18 console.log("Slithering...");
11 super.move(s);
12 ¥
13}
14
15 class Horse extends Animal {
156 move() {
prOSLEMS @ QUTPUT TERMINAL DEBUG CONSOLE e S

n Terminal will be reused by tasks, press any key to close it.

& n Executing task: tsc -p c:\Users\adelsole\source\repos\simple\tsconfig.json

animals.ts:8:1 - error T51068: Unexpected token. A constructor, method, accessor,
or property was expected.

i class Snake extends Animal {

Found 1 error in animals.ts:8

n The terminal process "C:\Windows\System32\WindowsPowersShelllwl.@\powershell.ex
e -Command tsc -p ¢:'Users\adelsole\source\repos\simple\tsconfig. json™ terminated
with exit code: 1.

> OUTLINE Terminal will be reused by tasks, press any key to close it.

> TIMELINE

@140 Gitlens Pro [Trial) Ln6,Col1 Spacesd UTF-8 LF {} TypeScript & 0

Figure 8-5. Visual Studio Code shows the output of the external tool in a
convenient way

In the real world, this error probably would not happen because you have the
Problems panel and red squiggles in the code editor that both highlight the error. But
this is actually an example of how Visual Studio Code integrates with an external tool
and shows its output directly in the Terminal panel, helping to solve the problem with
the most detailed information possible. With tasks, the Terminal also shows specific
annotations. For example, it highlights with red squiggles the root of the code that raised
the error, and it shows icons close to each command in the task and that represent the
status of the command. For example, invoking the tsc compiler raised an error and the

corresponding line shows an error icon.

191

CHAPTER 8 AUTOMATING TASKS

The Default Build Task

Because building the source code is the most frequently used task, Visual Studio Code
provides a built-in shortcut to run this task in the Terminal menu, called Run Build Task
(Ctrl+Shift+B on Windows and {++38+B on macOS). However, you first need to set a
default build task, because otherwise the Run Build Task command will behave like the
Run Task command.

To accomplish this, choose Terminal » Configure Default Build Task. When the
Command Palette appears, select the task you want to be set as the default build task. In
this case, choose tsc build. When you do this, Visual Studio Code is actually changing its
default configuration and therefore generates a new tasks. json file under the .vscode
folder, and it then opens this file in a new editor window. The content and structure of
tasks.json will be discussed in the upcoming “Configuring Tasks” section, so for now
let’s focus on the new default build task. Choose Terminal » Run Build Task, or use the
keyboard shortcut, and you will see how the default build task will be executed, without
the need to specify it every time from the Command Palette.

Auto-Detected Tasks

Visual Studio Code can auto-detect tasks for the following environments: Grunt, Gulp,
Jake, and Node.js. Auto-detecting tasks means that Visual Studio Code can analyze a
project built for one of the aforementioned platforms and generate the appropriate tasks
without needing to create custom ones. Figure 8-6 shows an example based on the Node
debugger extension for Visual Studio Code, whose source code is available at https://
github.com/Microsoft/vscode-node-debug.

192

https://github.com/Microsoft/vscode­node­debug
https://github.com/Microsoft/vscode­node­debug

CHAPTER 8 AUTOMATING TASKS

] File Edit Selection View Go Run Terminal Help vscode-node-debug-masin - Visual Studio Code DB 0o - o X
@ EXPLORER |! ect the task to run |
~ OPEN EDITORS -
npm: build configured &3 &
“ VSCODE-NODE-DEBUG-MAIN ;
. npm: watch
.github
& E‘:'“""" contributed
> wscode B qulp
> build EJ-’E"
> images B npm
> src
B3 typescript

> testdata

B cppbuild
B3 dotnet-meteor.task
Show All Tasks.

packagejson

ThirdPartyMotices. bt
@ webpack.configjs

& yamnlock

» OUTUNE
> TIMELINE

@0MA2 Gitlens Pro (Trial)

Figure 8-6. Auto-detected tasks

The source code of this extension is made of JavaScript and TypeScript files and is
built on the Node.js runtime. So Visual Studio Code has been able to detect a number of
tasks that work well with this kind of project, such as the npm build and npm watch tasks.
You can then open the npm category to view the full list of preconfigured tasks that can
run against npm.

Auto-detected tasks are very useful because they allow you to save a lot of time in
terms of task automation. However, more often than not, you will have needs that are not
satisfied by existing tasks, so you need to make your own customizations.

Note In order to auto-detect tasks, behind the scenes VS Code requires that
specific environments are installed. For example, VS Code can auto-detect tasks
based on Node.js only if Node.js is installed; similarly, it can auto-detect tasks
based on Gulp only if Gulp is installed, and so on.

193

CHAPTER 8 AUTOMATING TASKS

Configuring Tasks

When Visual Studio Code cannot auto-detect tasks for a folder, or when auto-detection
does not satisfy your needs, you can create and configure custom tasks by editing the
tasks.json file. In this section I present an example that will help you understand how
to configure your own tasks.
More specifically, I explain how to compile Pascal source code files using the
OmniPascal extension and the Free Pascal compiler, available to all operating systems.
To complete the example, you need the following:

o The OmniPascal language extension for Visual Studio Code, which
you can download via the Extensions panel. This extension is useful
to enable Pascal syntax highlighting and code navigation, though you
can still compile source files without it.

e The Free Pascal compiler, which includes all you need to develop
applications using Pascal and provides a free command-line
compiler. Free Pascal is available for Windows, macQOS, Linux,
and other systems, and you can download it from https://www.
freepascal.org.

Let’s start with the Pascal example.

Task Example: Compiling Pascal Source Code

In this section, I explain how to create a custom task that allows you to compile Pascal
source code files by invoking the Free Pascal command-line compiler from VS Code.
Assuming you have downloaded and installed the required software as listed in the
preceding text, locate the Free Pascal folder installation on disk (usually C: \FPC\
VersionNumber on Windows and /FPC/VersionNumber on macOS and Linux), then open
the examples folder. In Visual Studio Code, open any folder containing some Pascal
source code. I use one called fcl-json.

Figure 8-7 shows how Visual Studio Code appears with Pascal source files
currently opened.

194

https://www.freepascal.org
https://www.freepascal.org

CHAPTER 8 AUTOMATING TASKS

] File Edit Selection View Go Run Terminal Help j2y.pp - fck-jzon - Visual Studic Code DEmone - o X
@ EXPLORER e X jpp S X m -
~ OPEN EDITORS > j2v.pp
X > i2ypp 5 A
o 21 var
2 ECL A ED @ 22 IFN,OFN : String;
S CONCRI0 B = 23 D : TISONData;
o i PP 24 IFS,0F5 : TStream;
> i2ypp 5 25 jtoy : TISONToYaml;
> parsedemo.pp 26
o= simpledemo.pp a7]
28 begin
29 If ParamCount=@ then
] writeln('Usage j2y infile [outfile]")
31 IFN: =ParamStr{l};
32 OFN:=ParamStr(2);
33 if OFN="" then
34 OFMN:=Changefileext(IFN, "yaml');
35 D:
36 QFS:
37 jtoy: F
38 IFS:=TFileStream.Create(IFN, fmOpenfead or fmShareDenyWrite);
38 try
48 D:=GetISON(IFS);
41 OFS:=TFileStream.Create(OFN, faCreate);
42 ITOY:=TISONToYaml .Create;
43 JTOY. Convert (D,0FS);
44 finally
45 D.Free;
458 IFS.Free;
7 OFS.Free;
48 ITOY. Free;
5@
51 d
52
53
> QUTUNE
> TIMELINE
@7AD Gitlens Pro (Trial) OmniPascak Sefect project Ln1,Col 1 Spaces:2 UTF-8 CRLF ObjectPascal & 0

Figure 8-7. Editing Pascal source code

The OmniPascal extension installed previously enables syntax colorization and
the other common editing features. Now imagine you want to compile the source code
into an executable binary by invoking the Free Pascal command-line compiler. You can
accomplish this by creating a custom task. Follow these steps to create a new tasks.json
file and set up the custom task:

1. Choose Terminal » Configure Tasks. When the Command Palette
appears asking for a task to configure, select Create tasks.json
file From Template (see Figure 8-8). There is no existing task to
configure at this particular point, so the only thing you can do is
create a new tasks. json file.

195

CHAPTER 8 AUTOMATING TASKS

] File Edit Selection View Go Run Terminal Help Ry pp - fch-yson - Visual Studo Code DEeomo - o
Belect a task t P m --

~ OPEN EDITORS

. Create tasks json file from template

* 2ypp =
FCL-JSON 5 ——
“» confcemo.p

me e tas tion

@ jake t

=
2 de ed © ask detectior ;I*. .
2ison.00 = ST S T =

Figure 8-8. Creating a new task from scratch
2. The Command Palette shows the list of available task templates:

MSBuild, maven, .NET Core, and Others (see Figure 8-9). Select
Others to create a new task that is independent from other systems.

®] File Edit Selection View Go Run Terminal Help 12y.pp - fck-json - Visual Studio Code DBEmon - o
XPLORER |
- |
~ OPEN EDITORS
X > i2ypp T
~ FCL-ISON =
: 5 ecutes NE . ild cor =
» confdema.) e
= 2 _ce = Others Example to run an arbitrary external command ;F, -
. Inles0npp e PP R — | ———

Figure 8-9. Selecting a task template

Visual Studio Code generates a subfolder called .vscode and, inside this folder, a
new tasks. json file whose content at this point is the following:

{
// See https://go.microsoft.com/fwlink/?LinkId=733558

// for the documentation about the tasks.json format
"version": "2.0.0",
"tasks": [

{
"label": "echo",
"typell: “Shell",
"command": "echo Hello"
}

196

CHAPTER 8 AUTOMATING TASKS

The core node of this JSON file is an array called tasks. It contains a list of tasks, and
for each task, you can specify the text that VS Code will use to display it in the Command
Palette (label), the type of task (type), and the external program that will be executed
(command). An additional JSON property called args allows you to specify command-line
arguments for the program you invoke. The list of supported JSON properties is available
in Table 8-2 in the upcoming “Understanding tasks.json Properties” section, but if you
are impatient, you can quickly look at the table and then return here.

Now suppose you want to create a build task, which, by convention, is the type of
task you use to compile source code. You can accomplish this by modifying tasks. json
as follows:

{
// See https://go.microsoft.com/fwlink/?LinkId=733558
// for the documentation about the tasks.json format
"version": "2.0.0",
"tasks": [
{
"label": "build",
"type": "shell",
"command": "fpc",
"args": ["${file}"]
}
]
}

The key points are the following:

o The label property value is now build so that the task is clearly
provided as the build task.

o The type property value is shell, meaning it will be executed by the
operating system'’s shell.

e The command property value is fpc, which is the filename of the Free
Pascal compiler.

o The args property value is an array of command-line arguments to be
passed to the external program; in this case there is only one argument,
which is the active source file, represented by the $(file) variable.

197

CHAPTER 8 AUTOMATING TASKS

Note Asa general rule, an external program can be invoked without specifying
its full path only if such a path has been registered in the operating system’s
environment variables, such as PATH on Windows. In the case of Free Pascal, the
installer claims to take care of registering the program’s path, but remember to
look at the environment variables for other programs.

You could certainly specify the name of the file you want to compile, but using a
variable is more flexible so that you can simply compile any file that is currently active
in the code editor. Variables are discussed in the section “Understanding Substitution
Variables” and summarized in Table 8-3 later in this chapter. Notice how IntelliSense
helps you find the appropriate properties in tasks.json, as shown in Figure 8-10.

] File Edit Selection View Go Run Terminal Help » tasks json - fel-json - Visual Studio Code DB 0o - u] X
LD EXPLORER > j2ypp 5 tasksjson 1 @ m -
1
~ OPEN EDITORS |1 Unsaved tasksjson > [Jtasks > {} 0
> i2ypp 5 1
® [} taskejeon vicode 1 2 // See https://go.microsoft.com/fwlink/?LinkId=733558
R o 3 :’I.a yol:' Lf‘:e ?u{.umerj:e:wr' about the tasks.json format
e 4 version®: “2.9.9",
NELTCE 5 “tasks": [
| tasksjson 6 {
> confdemo.pp 2 7 “label”: “puild”,
o inizjsonpp 8 “type": "shell”,
v.p 3 9 “command™: "fpc”,
2 parsedemo.pp i? fl SeLien);
o> simplederr= =~
Either 2 string representing another task or an X Diafkuka uslllkIt
array of other tasks that this task depends on. £ dependsQrder
xm] 2® detail
15 } A% group
& hide
Ficon
/2 isBackground
22 linux
4% options
22 osx

/® presentation
A% problemMatcher

» OUTUNE
> TIMELINE

@EAD Gitlens Pro (Trial) OmniPascak Select project Ln11,Col 14 Spaces:4 UTF-8 LF ()} JSON with Comments & 0

Figure 8-10. IntelliSense helps in defining task properties

198

CHAPTER 8 AUTOMATING TASKS

Save and close tasks. json, then open one of the Pascal source files. Now you can
run the newly created build task. Choose Terminal » Run Task and, from the Command
Palette, select the build task (see Figure 8-11).

%) File Edit Selection Yiew Go RBun Jerminal Help simpledemospp - fl-json - Visual Studio Code DEemo - =]

OPEN EDITORS recently used ©1 @ X

] 2

o
s
o I

simpiedema.pp
contributed

FOL-ISON

Io00000
T

BRFE
5 2 L &
|

Figure 8-11. Selecting the new task

At this point, VS Code asks what would you like to do to detect any problems
encountered during the execution of the external program so that it can display them
in the Problems panel. Detecting problems in the program’s output is the job of a so-
called problem matcher. This is a more complex topic and is discussed in the section
“Understanding Problem Matchers” later in this chapter. For now, select Continue
Without Scanning the Task Output (see Figure 8-12).

199

CHAPTER 8 AUTOMATING TASKS

] il
@ EXPLORER

“ OPEN EDITORS
X = simpledemo.pp

Edit Selection Yiew Go RBun Terminal

v FCL-JSON
Mever scan the task output for shell tasks
v wscode s |
3 Learn more about scanning the task output
S armecs associate Wcal.org
= dotnet-meteor problamMatcher
= ini2, |
! e ompact problems Se:
<~ i2ypp
" ;
2 parsedemo,
E o |0 seful
simpledemo.exe - 3
Go problems $go ty of

simpledemo.o

> simpledemo.pp =

JSHint problems Sjshint

JSHint stylish problems Sjshint-stylish

17
i3
19
20
21
22

» OUTLINE
> TIMELINE
@10A0 Gitlens Pro (Tral)

Help

Mever scan the task output for this task

Gulp TSC Problems Squip-tsc

simpledema.pp - fcl-json - Visual Studio Code

{$mode objfpc}{SH+}

uses

Classes, Sysutils, fpjson;

Procedure DumpJSONData(d : TISonData; DOEOLN : Boolean = True);
Var
I : Integer;

begin
/7 JISONType property determines kind of value.
Case J.jsontype of

jthull : Write("Null');
jtBoolean : If J.AsBoolean then
Write(' True®)
else
Write('False');
jthNumber :

{JSONNumber has extra NumberType property

Spaces 2

OmniPascak Select project Ln 16, Cal 1 UTF-8 CRIF ObjectPascal & 0

Figure 8-12. Selecting a problem matcher

The Free Pascal compiler is executed in the Terminal panel, where you also see the

program output, as demonstrated in Figure 8-13.

200

CHAPTER 8 AUTOMATING TASKS

PROBLEMS (10 QUTPUT TERMINAL DEBUG CONSOLE Would-Tesk o +~ D W - ~ X

.n Executing task: fpc C:\FPC\3.2.2\examples\fcl-json\simpledemo.pp

Free Pascal Compiler version 3.2.2 [2021/85/15]) for 1386

Copyright (c) 1993-2821 by Florian Klaempfl and others

Target 05: Win32 for 1386

Compiling C:\FPC\3.2.2\examples\fcl-json\simpledemo.pp

Linking C:\FPC\3.2.2\examples\fcl-json\simpledemo.exe

331 lines compiled, @.2 sec, 254656 bytes code, 18452 bytes data
Terminal will be reused by tasks, press any key to close it.

OmniPascal: Select project Ln16,Col 1 Spacess2 UTF-8 CRLF ObjectPascal & 0Q

Figure 8-13. Executing the Free Pascal compiler

If the execution succeeds, you will find a new binary file in the source code’s folder.
If it fails, the compiler’s output displayed in the Terminal panel will help you understand
what the problem was. I now explain more about default tasks, task templates, JSON
properties in tasks.json, and variables.

Multiple Tasks and Default Build Tasks

The tasks.json file can define multiple tasks. As introduced earlier in this chapter,
among others, common tasks are build and test, but you might want to implement
multiple tasks that are specific to your scenario. For example, suppose you want to use
the Free Pascal compiler to build Delphi source code files.

The Free Pascal command-line compiler provides the -Mdelphi option, which
enables compilation based on the Delphi compatibility mode. You can therefore modify
tasks. json as follows:

{
// See https://go.microsoft.com/fwlink/?LinkId=733558

// for the documentation about the tasks.json format
"version": "2.0.0",

201

CHAPTER 8 AUTOMATING TASKS

"tasks": [
{
"label": "build",
"type": "shell",
"command": "fpc",
"args": ["${file}"]

"label": "Delphi build",
"type": "shell",
"command": "fpc",
"args": [

"${file}",

"-Mdelphi"

]

Asyou can see, there is a new custom task called Delphi build in the tasks array,
which still invokes the Free Pascal compiler on the active file, but with the -Mdelphi
option being passed as a command-line argument. Now if you choose Terminal » Run
Task again, you see both tasks in the Command Palette, as demonstrated in Figure 8-14.

] File Edit Selection View Go Run Terminal Help tasks json - fdl-json - Visual Studio Code Do Mo - o X
BXPLOGER | 2ct the task to run o -
- OPEN EDITORS
= build recently used
X tasks.json wscode S
= Delphi build configured 41 &
“ FCL-JSON PR contributed
v wvscode = c Ip)
tasks json E‘_‘,‘J";e
- - 3
2~ confdemo.pp B3 npm
::. St B3 typescript
= v "
= o B3 cppbuild
w parsacemo po B3 dotnet-meteor.task

simpledemao.exe
. Show All Tasks...

simpledemao.c ~
- 1A “arge”: T

Figure 8-14. All defined tasks are displayed in the Command Palette

202

CHAPTER 8 AUTOMATING TASKS

It is common to have multiple build tasks, and even multiple tasks of the same
type, but in most cases, you will usually run the same task and keep other tasks for very
specific situations. Related to the current example, you will usually build Pascal source
files and sometimes build Delphi source files, so a convenient choice is to configure a
default build task for Pascal files. As you learned in the “The Default Build Task” section
previously, you can easily accomplish this with the following steps:

1. Choose Terminal » Configure Default Build Task.

2. Inthe Command Palette, select the build task defined previously
by adding an isDefault parameter (as you will see shortly
in code).

3. With a Pascal source file active, choose Terminal » Run Build
Task or press the keyboard shortcut for your system.

This command automatically starts the default build task, without having to
manually select a task every time.

Understanding tasks.json Properties

There are a number of properties available to customize a task. Table 8-2 provides a
summary of common properties that you can use with custom tasks.

Table 8-2. Available Properties for Task Customization

Property Name Description

label A string used to identify the task (e.g., in the Command Palette).

type Represents the task type. For custom tasks, supported values are shell and
process. With shell, the command is interpreted as a shell command (such
as bash, cmd, or PowerShell). With process, the command is interpreted as a
process to be executed.

command The command or external program to be executed.

args An array of command-line arguments to be passed to the command.

windows Allows specifying task properties that are specific to the Windows operating
system.

(continued)

203

CHAPTER 8 AUTOMATING TASKS

Table 8-2. (continued)

Property Name Description

0SX Allows specifying task properties that are specific to macOS.
linux Allows specifying task properties that are specific to Linux and its distributions.
group Allows for defining task groups and for specifying to which group a task belongs.

presentation Defines how Visual Studio Code handles the task output in the user interface (see
the following example).

options Allows for providing custom values about the cwd (current working directory), env
(environment variables), and shell (default shell) options.

The windows, osx, and linux properties are discussed separately in a later section.
The group property allows you to group tasks by category. For instance, if you consider
the two multiple tasks created previously, they are both related to building code, so
they might be grouped into a category called build. This is accomplished by modifying
tasks.json as follows:

{
// See https://go.microsoft.com/fwlink/?LinkId=733558

// for the documentation about the tasks.json format
"version": "2.0.0",
"tasks": [
{
"label": "build",
"type": "shell",
"command": "fpc",
"args": ["${file}"],
"group": {
"kind": "build",
"isDefault": true
})
}’

204

CHAPTER 8 AUTOMATING TASKS

"label": "Delphi build",

"type": "shell",

"command": "fpc",

"args": ["${file}", "-Mdelphi"],
"group": "build"

Notice how IntelliSense shows the built-in supported values for the group property
(see Figure 8-15).

%] FEile Edit Selection View Go - » tasks.json - fpc-json - Visual Studio Code [Administrator] DBeomaomne - a] %
2 simpledemo.pp 1 {} tasksjson 1 ® m --
1

R > {} tasksjson > [Jtasks > {} 1 > B group

6 i

7 "label”: "build”,

8 “type”: “shell”,

9 “command”: “fpc",

1e "args": ["${file}"],

11 "group™: {

12 “kind": "build",

13 "isDefault”: true

14 ¥

15 }a

16 {

17 "label™: "Delphi build”,

18 "type": “"shell” n

ype shell”,

19 “command”: “fpc”,

20 "args": ["${file}", "-Mdelphi"],

21 “group”: "

2 ;

23] & "none”

24} a® "test"”

25 o® {"kind":"build", "isDefault”:true}

o {"kind":"test","isDefault”:true}

Marks the task as a build task accessible through the ‘Run Build %
Task' command.

¥ @ 1A 1 Azure: progalex@hotmail.com OmniPascal: Select project Ln21,Col 23 Spaces4 UTF-8 LF {} JSON with Comments Win32 & 0O

Figure 8-15. IntelliSense helping with groups

205

CHAPTER 8 AUTOMATING TASKS

You can also specify additional values for individual tasks in a group. For example,
if you want to set a task as the default one in the group, you might change the JSON as
follows:

"groupll: {
"kind": "build",
"isDefault": true

The kind property represents the group name and isDefault is self-explanatory.
You can also customize the way VS Code handles the task output via the presentation
property. When you type presentation and then press Tab, IntelliSense adds a number
of key/value pairs with some default values, as follows:

"presentation”: {
"echo": true,
"reveal”: "always",
"focus": false,
"panel”: "shared",
"showReuseMessage": true

Following is the description of each key and its values:

o echo can be true or false and specifies whether the task output is
actually written to the Terminal panel.

o reveal can be always, never, or silent and specifies whether the
Terminal panel where the task is running should be always visible,
never visible, or visible only when a problem matcher is not specified

and some errors occur.

o focus can be true or false and specifies if the Terminal panel should
get focus when the task is running.

o panel can be shared, dedicated, or new and specifies if the Terminal
instance is shared across tasks, or if an instance must be dedicated
to the current task, or if a new instance should be created at every
task run.

206

CHAPTER 8 AUTOMATING TASKS

o showReuseMessage can be true or false and specifies whether a
message should be displayed to inform that the Terminal panel will
be reused by a task and that therefore it is possible to close it.

The values you see in the preceding snippet are the default values. In case of default
values, a key can be omitted. For example, the following markup demonstrates how to

create a new Terminal panel at every run without showing a reuse message:

"presentation”: {
"panel”: "new",
"showReuseMessage": false

Other values can be omitted because the default values seen in the preceding text are
acceptable for this example.

Note The list of supported properties is much longer, but most of them are not
of common use. If you want to get deeper knowledge about the full list of available
properties, you can look at the tasks.json schema, which provides detailed
comments about each property; the schema is available at https://code.
visualstudio.com/docs/editor/tasks-appendix.

Understanding Substitution Variables

Visual Studio Code also offers several predefined variables that you can use instead of
regular strings and that are useful to represent file and folder names when passing these
to a command. Table 8-3 provides a summary of supported variables.

207

https://code.visualstudio.com/docs/editor/tasks-appendix
https://code.visualstudio.com/docs/editor/tasks-appendix

CHAPTER 8 AUTOMATING TASKS

Table 8-3. Supported Substitution Variables

Variable Description

${workspaceFolder} Represents the path of the currently opened folder.
${workspaceFolder Represents the name of the currently opened folder without any
Basename} slashes.

${file} The path to the active code file.

${relativeFile} The active code file relative to ${workspaceFolder}.
${fileBasename} The active code file’s base name, without path and leading slash.
${fileBasenameNo The active code file’s base name without the extension.
Extension}

${fileDirname} The path of the directory that contains the active code file.
${fileExtname} The file extension of the active code file.

${cwd} The current working directory of the task.

${1ineNumber} The currently selected line number in the active file.
${selectedText} The currently selected text in the active file.

${env.VARIABLENAME}

${userHome}

${relativeFileDirname}

References an environment variable, such as {$env.PATH}.

Platform-independent variable that represents the root folder for
user contents.

The name of the directory for the current opened file, relative to
workspaceFolder.

Using variables is very common when you run a task that works at the project/folder

level or against filenames that you either cannot predict or do not want to hardcode.

You can check the variables documentation for further details at https://code.

visualstudio.com/docs/editor/variables-reference.

Operating System-Specific Properties

Sometimes you might need to provide task property values that are different based on

the operating system. In Visual Studio Code, you can use the windows, osx, and linux

properties to specify different values of a property, depending on the target.

208

https://code.visualstudio.com/docs/editor/variables-reference
https://code.visualstudio.com/docs/editor/variables-reference

CHAPTER 8 AUTOMATING TASKS

For example, the following tasks.json implementation shows how to explicitly
specify the path of an external tool for Windows and Linux (the directory names might
not be the same on your machine):

{
// See https://go.microsoft.com/fwlink/?LinkId=733558
// for the documentation about the tasks.json format
"version": "2.0.0",
"tasks": [
{
"label": "build",
"type": "shell",
"args": ["${file}"],
"windows": {
"command": "C:\\Program Files\\FPC\\fpc.exe"
})
"linux": {
"command": "/usr/bin/fpc"
}
}
]
}

More specifically, you need to move the property of your interest under the
operating system property and provide the desired value. In the preceding code, the
command property has been moved from the higher level down to the windows and 1inux
property nodes.

Reusing Existing Task Templates

In the previous example about compiling Pascal source code, you saw how to create
a custom task from scratch. However, for some particular scenarios, you can leverage
existing task templates, which consists of tasks. json files already preconfigured to work

with specific commands and settings.

209

CHAPTER 8 AUTOMATING TASKS

The list of task templates may vary depending on the extensions you have installed,
but assuming you have installed only the C# extension, your list should look like that
shown in Figure 8-9. For .NET development, you can use the template called .NET Core:
Execute .NET Core Build Command (see Figure 8-9 for a reference). This generates the
following tasks. json file:

{
// See https://go.microsoft.com/fwlink/?LinkId=733558

// for the documentation about the tasks.json format
"version": "2.0.0",
"tasks": [
{
"label": "build",
"command": "dotnet",
"type": "shell",
"args": [
"build",
// Ask dotnet build to generate full paths for filenames.
"/property:GenerateFullPaths=true",
// Do not generate summary otherwise it leads to duplicate
errors in Problems panel
"/consoleloggerparameters:NoSummary"
]J
"group": "build",
"presentation”: {
"reveal”: "silent"

b

"problemMatcher": "$msCompile"

This template is very useful if you want to work with Microsoft Visual Studio
solutions inside VS Code or, more generally, with C# projects. It is worth mentioning that
this template has been included for solutions created with .NET 5 and higher, but the
dotnet tool can build any kind of solution so it can be reused for different purposes.

210

CHAPTER 8 AUTOMATING TASKS

The second template is called Maven and is tailored to support the same-named
build automation tool for Java. Such a template generates the following tasks. json file:

{
// See https://go.microsoft.com/fwlink/?LinkId=733558

// for the documentation about the tasks.json format
"version": "2.0.0",
"tasks": [
{
"label": "verify",
"type": "shell",
"command": "mvn -B verify",
"group”: "build"

}’

{
"label": "test",
"type": "shell",
"command": "mvn -B test",
"group": "test"

}

Obviously, Maven must be installed on your machine (you can find it at https://
maven.apache.org). The template called MSBuild works with legacy Visual Studio
solutions that target the .NET Framework, which goes beyond the cross-platform
development purposes of Visual Studio Code, so it is not discussed here.

In general, these templates are useful for at least two reasons:

e They provide ready-to-use configurations for projects of the targeted
type, where you might need only a few adjustments.

e They provide a complete task structure, where you only need to
replace the command and target and optionally the presentation and
the problem matcher.

Among the others, tasks can detect problems in your code and present them in the
Problems panel. This is possible because of problem matchers, discussed in the next
section.

211

https://maven.apache.org
https://maven.apache.org

CHAPTER 8 AUTOMATING TASKS

Understanding Problem Matchers

Problem matchers scan the task output text for known warning or error strings and
report these inline in the editor and in the Problems panel. Visual Studio Code ships
with a number of built-in problem matchers for TypeScript, JSHint, ESLint, Go, C#
and Visual Basic, Lessc, and Node Sass (see https://code.visualstudio.com/docs/
editor/tasks# processing-task-output-with-problem-matchers).

Built-in problem matchers are extremely useful, because for the aforementioned
environments, VS Code can present problems that occurred at build time in the Problems
panel, but it can also highlight the line of code in the code editor that caused the problem.

You can also define custom problem matchers to scan the output of an external
program. For instance, a problem matcher for scanning the Free Pascal compiler could
look like the following:

"problemMatcher": {
"owner": "external",
"filelocation": ["relative", "${workspaceRoot}"],
"pattern”: {
"regexp": "((([A-Za-z]) :\\\\(2:[A\\/ o ¥2\\\"
< INNANTENNNN)F) 2ANANSA RN N\ TN ((\\d+)) :
\\s.*(fatal|error|warning|hint)\\s(.*):\\s(.*)",
// The first match group matches the filename which is relative.

"file": 1,
// The second match group matches the line on which the problem occurred.
"line": 2,

// The third match group matches the column at which the problem occurred.
"column": 3,
// The fourth match group matches the problem's severity. Can be ignored.
Then all problems are captured as errors.
"severity": 4,
// The fifth match group matches the message.
"message": 5

}

212

https://code.visualstudio.com/docs/editor/tasks#_processing-task-output-with-problem-matchers
https://code.visualstudio.com/docs/editor/tasks#_processing-task-output-with-problem-matchers

CHAPTER 8 AUTOMATING TASKS

The owner property represents the language service, whose value is external in this
case, but it could be, for example, cpp in the case of a C++ project. But the most important
property is pattern, where you specify a regular expression (regexp) to match error strings
sent by the external program. Also notice, with the help of comments, how matches are
grouped by target. Building problem matchers can be tricky and it is out of the scope of
this book, so I recommend that you read the official documentation available at https://
code.visualstudio.com/docs/editor/tasks# _defining-a-problem-matcher.

Running Files with a Default Program

Ifyou are editing a file whose type is associated with the operating system, you do not
need to create custom tasks to run it in VS Code. For example, you can run a batch
program (.bat) in Windows or a shell script file (. sh) on macOS by simply clicking
Terminal » Run Active File.

The filename is passed to the current Terminal program on your system (PowerShell
on Windows or the bash shell on Linux and macOS) so that the operating system tries
to open the file with the program that is registered with the file extension, if any. In the
case of a batch or shell script file, the operating system executes the file. The output is

displayed in the Terminal panel.

Note Only the output of the operating system or of command-line tools will be
redirected to the Terminal panel. For instance, if you try to edit a . txt file and then
choose Terminal » Run Active File, such a file will be opened inside the default
text editor on your system, and there will be no additional interactions with the
Terminal panel.

Summary

There are many features in Visual Studio Code that make it different from a simple code
editor. Tasks are among these features. With tasks you can attach external programs

to the application lifecycle and run tools like compilers. VS Code ships with task auto-
detection for some environments, but it allows you to create custom tasks when you
need to associate specific tools to a project or folder.

213

https://code.visualstudio.com/docs/editor/tasks#_defining-a-problem­matcher
https://code.visualstudio.com/docs/editor/tasks#_defining-a-problem­matcher

CHAPTER 8 AUTOMATING TASKS

By working on the tasks. json file and with the help of IntelliSense, you can
include the execution of any external program in your folders. The execution of external
programs like compilers is certainly useful, but it would not be so important if VS Code
could not make a step forward: debugging code, which is discussed in the next two
chapters, first with .NET and then with Python.

214

CHAPTER 9

Building and Debugging
Applications

Being an end-to-end development environment, Visual Studio Code offers opportunities
that you will not find in other code editors. In fact, in Visual Studio Code, you can work
with many project types and debug your code in several languages. This chapter first
provides a general overview of application development, and then it explains how to
build .NET projects supported in Visual Studio Code and how to use all the built-in,
powerful debugging features. Even if you do not plan to use C# with Visual Studio Code,
Irecommend that you read this chapter because most of the concepts are applicable to
other languages, especially TypeScript, JavaScript, and Python.

Creating Applications

Visual Studio Code is independent from proprietary project systems and platforms and,
consequently, it does not offer any built-in options to create projects. This means that
you need to rely on the tools offered by each platform. This section explains how to build
projects based on .NET, but you can similarly create projects with the command-line
interface offered by other platforms.

I also recommend that you create a dedicated folder on disk for the following
examples. With the help of the file manager tool on your system (Windows Explorer on
Windows, Finder on macOS, and Nautilus on Linux distributions such as Ubuntu), create
a folder called VSCode under the root folder, such as C: \VSCode or ~/Library/VSCode. In
this folder, you will shortly create new applications.

215
© Alessandro Del Sole 2023

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_9

https://doi.org/10.1007/978-1-4842-9484-0_9

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

Note The following topics are discussed in the context of .NET 7, but Visual
Studio Code also supports .NET 5 and 6, as well as .NET Core versions up to 3.1.
All explanations and examples therefore apply to .NET Core as well.

The Status of Microsoft .NET

After releasing .NET Core a few years ago, Microsoft has had in mind the vision of a
complete unification between .NET Framework and .NET Core, working on a single,
cross-platform API that could bring the great power of .NET to any developer on
any system.

As you might know, .NET Core is a cross-platform, open-source, modular runtime
to build applications using C#, F#, and Visual Basic that run on Windows, macOS, and
Linux distributions. With .NET Core, you can create different kinds of applications
such as web applications, Web API REST services, Console applications, and class
libraries. Its bigger brother, the .NET Framework, also includes the ability to create
desktop applications, such as Windows Forms and Windows Presentation Foundation,
but the .NET Framework’s biggest limitation is that it only runs on Windows. After
passing through .NET 5, an update for both .NET Core and .NET Framework with which
Microsoft brought together the two technologies and offers a unified development
platform, they have released .NET 6, which completed the transition to one .NET API. At
this writing, .NET 7 is the latest release, with many improvements and additional API
unification. For example, with .NET 7 you can use the latest version of .NET MAUI, the
new cross-platform development technology that allows you to create applications for
Android, i0S, Tizen, Windows and Mac Catalyst from one, shared codebase.

Note From now on, | show examples based on the .NET 7 runtime because it is
the latest available, but | refer to .NET without any version numbers. The reason
is that such examples will also work on .NET 6 (and the development approach is
the same).

216

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

Setting Up .NET for VS Code Development

There are several options to get .NET. The first option is to download the .NET Coding
Pack (https://code.visualstudio.com/docs/languages/dotnet# net-coding-pack).

This includes Visual Studio Code, the .NET Software Development Kit, and essential
extensions.

The second option, which is good for existing Visual Studio Code users, is to
download the .NET Software Development Kit (https://code.visualstudio.com/docs/
languages/dotnet# _installing-the-net-software-development-kit)and then the
.NET Extension Pack (https://marketplace.visualstudio.com/items?itemName=ms-
dotnettools.vscode-dotnet-pack). The Software Development Kit includes all the
necessary tools, such as the command-line interface, compilers, and debuggers, whereas
the Extension Pack includes recommended extensions such as the C# extension.

For the following explanations and examples, I'm assuming you have downloaded
and installed .NET and the C# extension on your machine.

Creating .NET Projects

.NET ships with a rich command-line interface that provides many options to create
different kinds of projects and individual files. You can create projects and files from the
command line by using the dotnet tool, more specifically by invoking the dotnet new
command. For example, if you want to create a Console application with C#, you enter
the following command:

> dotnet new console

By default, the dotnet tool assumes you want to use C# unless you explicitly specify a
different language. For example, the following command enables you to create a Console
application with Visual Basic:

> dotnet new console -lang VB

Table 9-1 provides a comprehensive list and description of all the available
templates.

217

https://code.visualstudio.com/docs/languages/dotnet#_net-coding-pack
https://code.visualstudio.com/docs/languages/dotnet#_installing-the-net-software-development-kit
https://code.visualstudio.com/docs/languages/dotnet#_installing-the-net-software-development-kit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.vscode-dotnet-pack
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.vscode-dotnet-pack

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

Table 9-1. Available .NET Project and File Templates

Template Name Short Name Language
Console Application Console C#, F#,VB
Class Library Classlib C#, F#,VB
WPF Application Wpf C#,VB
WPF Class Library Whpflib C#,VB
WPF Custom Control Library wpfcustomcontrollib C#,VB
WPF User Control Library wpfusercontrollib C#,VB
Windows Forms (WinForms) Application Winforms C#,VB
Windows Forms Class Library winformslib C#,VB
Windows Forms Control Library winformscontrollib C#,VB
Worker Service Worker C#
Unit Test Project Mstest C#, F#,VB
NUnit 3 Test Project Nunit C#, F#,VB
NUnit 3 Test Item nunit-test C#, F#,VB
xUnit Test Project Xunit C#, F#,VB
Razor Component razorcomponent C#
Razor Page Page C#
MVC ViewIlmports viewimports C#
MVC ViewStart viewstart C#
Blazor Server App blazorserver C#
Blazor WebAssembly App blazorwasm C#
ASP.NET Core Empty Web C#, F#
ASP.NET Core Web App (Model-View- Mvc C#, F#
Controller)
ASP.NET Core Web App webapp, razor C#
ASP.NET Core with Angular Angular C#
(continued)

218

Table 9-1. (continued)

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

Template Name Short Name Language

ASP.NET Core with React.js React C#

ASP.NET Core with React.js and Redux Reactredux C#

Razor Class Library razorclasslib C#

ASP.NET Core Web API Webapi C#, F#

ASP.NET Core gRPC Service Grpc C#

dotnet gitignore file Gitignore

global.json file Globaljson

NuGet Config Nugetconfig

Dotnet local tool manifest file tool-manifest

Web Config Webconfig

Solution File Sin

Protocol Buffer File Proto

EditorConfig File editorconfig

.NET MAUI App Maui C#

.NET MAUI Blazor App maui-blazor C#

.NET MAUI Class Library mauilib C#

.NET MAUI ContentPage maui-page-xaml XAML

.NET MAUI ContentPage maui-page-csharp C#

.NET MAUI ContentView maui-view-xaml XAML

.NET MAUI ContentView maui-page-csharp C#

.NET MAUI Resource Dictionary maui-dict-xaml XAML

Android Activity android-activity C#

Android Application Android C#

Android Class Library Androidlib C#
(continued)

219

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

Table 9-1. (continued)

Template Name Short Name Language
Android Java Library android-bindinglib C#
Android Layout template android-layout C#
Android Wear Application androidwear C#
i0S Application los C#
i0S Binding Library losbinding C#
i0S Class Library loslib C#
i0S Controller ios-controller C#
i0S Storyboard ios-storyboard C#
i0S Tabbed Application ios-tabbed C#
i0S View ios-view C#
i0S View Controller ios-viewcontroller C#
Mac Catalyst Application maccatalyst C#
Mac Catalyst Binding Library maccatalystbinding C#
Mac Catalyst Class Library maccatalystlib C#
Mac Catalyst Controller maccatalyst-controller C#
Mac Catalyst Storyboard maccatalyst-storyboard C#
Mac Catalyst View maccatalyst-view C#
Mac Catalyst View Controller maccatalyst-viewcontroller C#

Note You can get the full list of templates by typing dotnet new listina
command prompt. This can be useful with new .NET releases that introduce new
templates.

In this section, I show an example based on C# and an ASP.NET web application
built on the Model-View-Controller (MVC) pattern. Open a command prompt or a
Terminal instance on the VSCode folder created previously, depending on your system.

220

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

Type the following command to create a new empty folder called HelloWeb:
> mkdir HelloWeb

Then, move into the new directory. On Windows and Linux, you can type
> chdir HelloWeb

On macOS§, the command is instead cd, which is also commonly used on Windows
as a shortcut for chdir.
Next, type the following command to build a new .NET web application using C#:

> dotnet new mvc

The mvc command-line switch specifies that the new web application is based on the
MVC pattern and the .NET SDK will generate all the plumbing code for some controllers
and views. You can also use the web switch and create an empty web application, but
having some autogenerated pages will help with describing the debugging features.
Once the project has been created, .NET will automatically restore NuGet packages for
the project. You can also do this manually by typing the following command:

> dotnet restore

If you were to type dotnet run, the development server would start running and
then you would need to open your browser and launch the application manually.
However, the goal is understanding how to run and debug the application in Visual
Studio Code. So, open the project folder with VS Code. You can also type code . to
open Visual Studio Code from the command line. Thanks to the C# extension, VS Code
recognizes the presence of the .csproj project file, organizing files and folders and
enabling all the powerful code editing features you learned previously.

The next step is to run the application. As a general rule, in Visual Studio Code you
have two options:

¢ Running the application with an instance of the debugger attached,
where a debugger is available for the current project type. In the
case of .NET, this ships with its own debugger that integrates with
VS Code.

o Running the application without an instance of the debugger
attached.

221

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

Let’s start with the second option, and then the debugging features are described

in detail in the next section. You can choose Run » Run Without Debugging. Visual

Studio Code first asks you to specify an environment, so select .NET Core. VS Code then

starts the default build task. For Web applications, VS Code starts an instance of the

development server. The application should automatically start in the browser. If this

does not happen, you need to manually open the browser and enter the web address you

see in the Terminal panel.

Note The first time you run some code, VS Code might show a popup message
saying that required assets are needed to enable building and debugging. Accept

the offer and VS Code will do the rest.

Figure 9-1 shows the web application built previously.

) | | Home page - helloweb x &

C @ D localhosts1ss A J8 v=

helloweb Home Privacy

Welcome

Learn about building Web apps with ASP.NET Core.

© 2023 - helloweb - Privacy

6 o

Figure 9-1. The .NET web application running

222

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

Note Your browser might show a warning saying that the website is not secure.
Because the local development environment is currently being used, you can
ignore the warning and proceed to display the web page. Also, some browsers
might ask to add a security exception for the current site, which you might want to
accept to avoid the warning every time.

ASP.NET web applications use an open-source development server called Kestrel
(https://github.com/aspnet/AspNetCore), which provides independence from
proprietary systems. By default, Kestrel listens for the application on a random port
between 5000 and 5300 for HTTP and between 7000 and 7300 for HTTPS. This means
your application can be reached at http://localhost:5000 or different port
number. You can change the default port setting in a file called launch.json, which is
discussed more thoroughly in the later section “Configuring the Debugger”

With the preceding simple steps, you have been able to create and run a .NET project
in VS Code that you can certainly edit as you need with the powerful C# code editing
features.

Creating Projects on Other Platforms

Obviously, .NET is not the only platform you will use with VS Code. Depending on the
platform, you will use specific command-line tools to build new projects. In the next
chapter, you learn how to work with Python projects, but providing some context in
this chapter is worthwhile as well. For example, with Node.js you can quickly create
JavaScript projects based on the Express.js framework (https://expressjs.com).
Express is a minimal and flexible Node.js web application framework that provides
arobust set of features to develop web and mobile applications. It facilitates the rapid
development of Node-based web applications and includes features such as setting
up middleware to respond to HTTP requests, defining a routing table used to perform
different actions based on HTTP methods and URL, and dynamically rendering HTML
pages based on passing arguments to templates. An easy way to start creating apps
with Express is to use the Express application generator (https://expressjs.com/en/
starter/generator.html), which you install with the following command:

> npm install -g express-generator

223

https://github.com/aspnet/AspNetCore
https://expressjs.com
https://expressjs.com/en/starter/generator.html
https://expressjs.com/en/starter/generator.html

CHAPTER 9 BUILDING AND DEBUGGING APPLICATIONS
Next, you can generate a JavaScript project with the following command:
> express expressexample

Note that npm requires using all lowercase letters. You can then type code .« to open
the new project in Visual Studio Code. Figure 9-2 shows a JavaScript project created with
the Express JavaScript framework inside Visual Studio Code.

File Edi ion View Run == 3ppjs - expressexample - Visual Studio Administrator] s —
File Edit Selection View Go R le - Visual Studio Code [Ad tor] DS o o x
@ EXPLORER IS appys x m -
~ OPEN EDITORS S app.s >
X appys 1 var createError = require(’http-errors’);
- EXPRESSEXAMPLE RERL& 2 var express = require(’express’);
3 bin 3 var path = require(’path');
abli 4 var cookieParser = require(’cookie-parser’);
Paic 5 var logger = require(‘morgan’);
? images [
~ javascripts 7 var indexRouter = require(’./routes/index');
> stylesheets 8 var usersRouter = require(’./routes/users’);
~ routes 9
XS indexjs 18 var app = express();
& 11
s usersjs z ;
o 12 ff view engine setup
views 13 app.set('views', path.join(_ dirname, ‘views'));
& erorjade 14 app.set(’'view engine’, "jade');
& indexjade 15
& layout jade 16 app.use(logger('dev’));
s appjs 17 app.use(express.json());
} pockageeon 18 app.use(express.urlencoded({ extended: false }));
FEs ek 19 app.use(cookieParser());
28 app.use(express.static(path.join(__dirname, 'public’)}});
21
22 app.use('/", indexRouter);
23 app.use(' fusers', usersRouter);
24
25 // catch 484 and forward to error handler
26 app.use(function(req, res, next) {
27 next{createError{4ed));
28}
29
30 // error handler
31 app.use(function(err, req, res, xt) {
32 // set locals, only providing error in development
3 res.locals.message = err.message;
34 res.locals.error = req.app.get(’env’) === ‘development’ ? err : {};
> QUTLINE 36 /{ render the error page
7 res.status(err.status || sea);
» TIMELINE 4 il i e
@0A0 Gitlens Pro (Tral) nt,Coll Spacess2 UTF-8 IF () JavaScript & 0

Figure 9-2. A JavaScript project created with the Express JavaScript framework
in VS Code

You follow a similar process with other command-line tools that allow you to
generate projects, such as the Yeoman generator (https://yeoman.io/), still available
for Node.js, and that also allow you to generate ASP.NET Core projects and VS Code
extensions. For example, you can create mobile apps with the Apache Cordova
framework (https://cordova.apache.org). Cordova is a JavaScript-based framework,

224

https://yeoman.io/
https://cordova.apache.org

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

and it works very well with Node.js. Apps you build with Cordova are based on
JavaScript, HTML, and Cascading Style Sheets (CSS). First, install Cordova with the

following command:
> npm install -g cordova

Then you can easily build a Cordova project with the following command:
> cordova create mycordovaproject

where mycordovaproject is the name of the new project. Once you have a new or
existing Cordova project, you can install the Cordova Tools extension for Visual Studio
Code (https://marketplace.visualstudio.com/items?itemName=vsmobile.cordova-
tools). This extension adds support for Cordova projects to the integrated debugger for
Node.js, providing specific configurations to target Android and iOS devices, as well as

simulators.

Note You also need some additional specific tools for Cordova, depending on
which system you intend to target. For i0S, you need to install the tools described
in the i0S Platform Guide from Apache Cordova (https://cordova.apache.
org/docs/en/latest/guide/platforms/ios/index.html). For Android,
you need to install the tools described in the Android Platform Guide from Apache
Cordova (https://cordova.apache.org/docs/en/latest/guide/
platforms/android/index.html).

Debugging Your Code

The code-debugging capability of Visual Studio Code is one of its most powerful features
and probably the one that makes it a notch above other code editors. Visual Studio Code
ships with an integrated debugger for Node.js applications and can be extended with
third-party debuggers. For instance, if you have .NET installed, the C# extension for
Visual Studio Code detects the availability of a compatible debugger and takes care of
attaching it to VS Code.

This section considers the scenario of using C# and .NET as the example of how
debugging works, so reopen the HelloWeb folder that you created previously.

225

https://marketplace.visualstudio.com/items?itemName=vsmobile.cordova-tools
https://marketplace.visualstudio.com/items?itemName=vsmobile.cordova-tools
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

Note All the features discussed in this chapter apply to all the supported
debuggers (both built-in and via extensibility), so they are not specific to C#
and .NET.

The Run view provides a way to interact with the debugger. Figure 9-3 shows how it

appears at this point.

) file Edit Selection View Go Run Jerminal Help Programcs - helloweb - Visusl Studic Code [Administrator] D8 Do - (w] x
> [NET Core Launch (web~ | &} - € Programes X m --
~ VARLABLES € Progra
1 var builder = Webdpplication.CreateBuilder(args);
2 -
3 // Add services to the container. = L
4 builder.Services. AddRazorPages();
Add Configuration + 4
I~ ee..——— [var app = builder.Build();
o -
8 /f Configure the HTTP request pipeline.
9 if (lapp.Environment.IsDevelopment())
16 {
11 app.UseExceptionHandler (" /Error™);
12 /f The default HSTS value is 3@ days. You may want to change this for
13 app.UseHsts();
14}
~ WATCH 13
16 app.UseHttpsRedirection();
17 app.UseStaticFiles();
1
19 app.UseRouting();
2
21 app.UseAuthorization();
22
23 app.MapRazorPages();
2
2 #pp.Run();
~ CALL STACK 2

 BREAKPOINTS

@0AD & GitlensPro(Trial) 3 helloweb In6 Col7 Spacesd UTF-8 CRIF c* & 0

Figure 9-3. Run view

At the top of the view, you can see the RUN toolbar, which provides the

following items:

o The Start Debugging button, represented with the play icon (the
white and green arrow). Clicking this button starts the application

with an instance of the debugger attached.

226

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

e The configuration drop-down box. Here you can select a debugger
configuration for running the application.

o The settings button, represented with the gear icon and whose tooltip
says Open launch.json (details coming shortly).

e Asubmenu represented by the ... button that contains the list of
available and selected views, plus the Debug Console command,
which opens the Debug Console panel where you see the output
messages from the debugger.

After this quick overview, you are ready to learn about debugger configurations, and
then you will walk through the debugging tools available in VS Code.

Configuring the Debugger

Before a debugger can inspect an application, it must be configured. For Node.js and for
platforms like .NET, where an extension takes care of everything, default configurations
are provided. Figure 9-3 shows the two predefined configurations, .NET Core Launch
(Web) and .NET Core Attach.

The first configuration is used to run the application within the proper host, with
an instance of the debugger attached. For an ASP.NET web application like in the
current example, the host is the web browser. In the case of a Console application, the
host would be the Windows Console or the Terminal in macOS and Linux. The second
configuration can be used to attach the debugger to another running .NET application.

Note Actually, there is a .NET Core Launch configuration that is different for each
kind of application you create with .NET. For example, the configuration for Console
applications is called .NET Core Launch (console). The concept to keep in mind is
that a Launch configuration is provided to attach an instance of the debugger to
the current project.

Debugger configurations are stored in a special file called launch.json. Visual
Studio Code stores this file in the . vscode subfolder (along with tasks.json). This
special JSON file contains the markup that instructs Visual Studio Code about the output
binary that must be debugged and about the application host. The contents of launch.
json for the current .NET Core sample look like the following:

227

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

{

228

"version": "0.2.0",

"configurations": [

{

// Use IntelliSense to find out which attributes exist for C#
debugging
// Use hover for the description of the existing attributes
// For further information visit https://github.com/OmniSharp/
omnisharp-vscode/blob/master/debugger-launchjson.md
"name": ".NET Core Launch (web)",
"type": "coreclr",
"request”: "launch",
"preLaunchTask": "build",
// If you have changed target frameworks, make sure to update
the program path.
"program": "${workspaceFolder}/bin/Debug/net7.0/helloweb.d11",
"args”: [1,
"cwd": "${workspaceFolder}",
"stopAtEntry": false,
// Enable launching a web browser when ASP.NET Core starts.
For more information: https://aka.ms/VSCode-CS-LaunchJson-
WebBrowser
"serverReadyAction": {

"action": "openExternally",

"pattern": "\\bNow listening on:\\s+(https?://\\S+)"

}
"env": {

"ASPNETCORE_ENVIRONMENT": "Development"
}

"sourceFileMap": {
"/Views": "${workspaceFolder}/Views"

"name": ".NET Core Attach",
"type": "coreclr",

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

"request": "attach"

Asyou can see, the syntax of this file is similar to the syntax of tasks. json. In this

case you have an array called configurations. For each configuration in the array, the

most important properties are

name, which represents the configuration-friendly name.
type, which represents the type of runtime the debugger is running on.

request (launch or attach), which determines whether the debugger
is attached to the current project or to an external application.

preLaunchTask, which contains any task to be executed before the
debugging session starts. Usually, this property is assigned with the
default build task.

program, which represents the binary that will be the subject of the
debugging session.

env, which represents the environment. In the case of .NET,
a value of Development instructs VS Code to run the Kestrel

development server.

If you wanted to implement custom configurations, launch. json is the place where

you would add them. Because these two configurations, and more generally default

configurations, are enough for most of the common needs, custom configurations

are not covered in this book. The documentation provides additional details about
this topic (https://code.visualstudio.com/docs/editor/debugging# add-a-new-
configuration).

Note

If you click the Add Configuration button located at the bottom-right corner

of the code editor when launch. json is the active file, you can select from a
built-in list of configurations that you can add to launch. json. This can be useful
especially in those cases where VS Code should detect a project type and its
configuration but doesn’t.

229

https://code.visualstudio.com/docs/editor/debugging#_add-a-new-configuration
https://code.visualstudio.com/docs/editor/debugging#_add-a-new-configuration

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

Managing Breakpoints

Before starting a debugging session, it is useful to place one or more breakpoints to
discover the full debugging capabilities in VS Code. You place breakpoints by clicking
the whitespace near the line number or by pressing F9 on the line of your interest.
For instance, you can place a breakpoint on line 9 of the Startup.cs file, as shown in
Figure 9-4.

>Q = Program.cs - helloweb - Visual Studio Code [Administrator] DB Do - O X

gram.cs
var builder = WebApplication.CreateBuilder(args);

1
2
3 // Add services to the container.
4 builder.Services.AddRazorPages();
s —
6 var app = builder.Build();
7
8 ! Configure the HTTP request pipeline.
e ¢ if (l!app.Environment.IsDevelopment())
10 {
11 app.UseExceptionHandler(”/Error");
12 // The default HSTS value is 3@ days. You may want to change this for produc
13 app.UseHsts();
14 }
15

16 app.UseHttpsRedirection();
17 app.UseStaticFiles();

19 app.UseRouting();
21 app.Usefuthorization();
23 app.MapRazorPages();

25 app-Run();

®@0A0 & Gitlens Pro (Tral) B3 helloweb Ln9, Col 1 (37 selected) Spaces=4 UTF-8 CRIF C¢ & Q

Figure 9-4. Adding breakpoints

You can remove a breakpoint by simply clicking it again, or you can manage
breakpoints in the Breakpoints area of the Run view (see Figure 9-5). You can also
temporarily disable a breakpoint by pressing Shift+Click.

230

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

~ BREAKPOINTS
] All Exception
4 User-Unhandled Exceptions
® [Program.cs /% @8

Figure 9-5. Managing breakpoints

Here you can see the list of files that contain breakpoints and the line numbers. You
can also cause the debugger to break on user-unhandled exceptions (default) and on
all exceptions. You can click the Add Function Breakpoint (+) button. Instead of placing
breakpoints directly in source code, a debugger can support creating breakpoints by
specifying a function name. This is useful in situations where source is not available but
a function name is known.

Debugging an Application

Now it is time to start a debugging session so that you can see in action all the debugging
tools and make decisions when breakpoints are hit. In the Run view, make sure the .NET
Core Launch (Web) configuration is selected, then click the Start button or press F5.
Visual Studio Code launches the debugger, and it will display the output of the debugger
in the Debug Console panel. It will also break when it encounters an exception or a
breakpoint, like in the current example.

Figure 9-6 shows VS Code hitting a breakpoint and all the debugging
instrumentation. The line of code highlighted in yellow is the line that will be executed
as the next one.

231

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

] FEile Edit Selection \iew Go Bun - Program.cs - helloweb - Visual Studio Code [Administrator] Do Do - m] X
RUN A [.MET Core Launch {web)~ | & - i, iy 0 @ -
~ VARIABLES € Program.cs
~ Locals 1 var builder = WebApplication.CreateBuilder(args);
args [string[]]: { 2
~ builder: fMi 3 // Add services to the container. =
- 4 builder.Services.AddRazorPages(); B
» Configuration 5
[> Sources [IList]: {mi 6 wvar app = builder.Build();
B > Non-Public members 7
8 M Configure the HTTP request pipeline.

a if (lapp.Environment.IsDevelopment())
la {

> Logging [ILoggingBuilder]: {
- F e . 11 app.UseExceptionHandler("/Error”);
3 Services [IServiceCollection]: : 3
: T 12 ff The default HSTS value is 3@ days. You may want to chang
» WebHost: {Hicrosoft.AspNetCore.Builder 13 app.UseHsts();
> Static members 14 3
15

16 app.-UseHttpsRedirection();
17 app.UseStaticFiles();
> Environment [IWebHostEnvironment]

» Lifetime [IHostApplicationLifetim DEBUG CONSOLE

ogger [Ilogger]: {Microsoft Extensi
> WATCH
~ CALL STACK
~ Main Thread PAUSED ON BREAKPOINT

helloweb.d1l!Program.<Main>$({string[] args) Line 3

» NET ThreadPool IO PAUSED

» Conscle logger queue processing thread SAULED
NET ThreadPool Worker RUNNING
NET ThreadPool Gate RUNNING

~ BREAKPOINTS
(] All Exceptions
User-Unhandled Exceptions ger
* [0 Program.cs /7 x @ >

@0MA0 & NET Core Launch (web) (helloweb) & Gitlens Pro (Trial) 3 helloweb Ln9, Col 38 (37 selected) Spaces:4 UTF-8 CRIF C2 & 0Q

Figure 9-6. The debugging tools available when a breakpoint is hit

Notice that the status bar becomes orange while debugging and the Debug Console
window shows information about the debugging process. On the left side, the Debug
view shows a number of tools:

e VARIABLES, which shows the list of variables that are currently
under the debugger control and that you can investigate by
expanding each variable. This panel includes a sublist called Locals,
which displays the list of the variables that are currently in scope.
Each can be further expanded to see their details.

e« WATCH, a place where you can evaluate expressions.

o CALL STACK, where you can see the stack of method calls. If you
click a method call, the code editor takes you to the code that is

making that call.
o BREAKPOINTS, where you can manage breakpoints.
232

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

At the top of the window, also notice the debugging toolbar (see Figure 9-6) called

the Debug action pane, which is composed of the following commands (from left

to right):

Continue, which allows you to continue the application execution
after breaking on a breakpoint or an exception.

Step Over, which executes one statement at a time, except for
method calls, which are invoked without stepping into.

Step Into, which executes one statement at a time. Statements within
method bodies are also executed one at a time.

Step Out, which executes the remaining lines of a function starting
from the current breakpoint.

Restart, which you select to restart the application execution.

Stop, which you invoke to stop debugging.

These commands are also available in the Run menu, together with their keyboard

shortcuts. For example, if you click the Step Over button, the highlighted line runs and

the execution advances one line (see Figure 9-7). If you hover your cursor over a variable

name in the code editor, a convenient popup box enables you to easily investigate

values and property values (depending on the type of the variable), as demonstrated

in Figure 9-7, which shows a popup box that includes information about the builder

variable. You can expand properties and see their values, and you can also investigate
properties in the VARTABLES area of the Run and Debug Bar.

233

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

- helloweb - Visual Studio Code [Administrator] DO - O X
PRSI O [m -
C¢ Program.cs
1 var builder = WebApplication.CreateBuilder(args); __
2 ¢ 1
3 // Add s}arvices to the container.
4 builder.Services.AddRazorPages();
5 {Microsoft.AspNetCore.Builder.webApplicationBuilder}
6 > Configuration: {Microsoft.Extensions.Configuration.C
¥ > Environment [IWebHostEnvironment]: {Microsoft.AspNet
3 > Host: {Microsoft.AspNetCore.Builder.ConfigureHostBui
®» 9 > Logging [ILoggingBuilder]: {Microsoft.Extensions.Hos
1@ > Services [IServiceCollection]: {Microsoft.Extensions
11 > WebHost: {Microsoft.AspNetCore.Builder.ConfigurelebH
12 > Static members nt to chang
13 > Non-Public members
14
15
16 app.UseHttpsRedirection();
17 app.UseStaticFiles();

18

Figure 9-7. Investigating property values at debugging time

Note Sometimes it is necessary to execute some code before a variable’s value

is available for investigation. In Visual Studio Code, this is known as /azy variables.
When debugging JavaScript code, the value of a lazy variable is not available by
default, to avoid expensive code execution, but it will show an expander icon that you
can click in order to evaluate the necessary code. You can force lazy variables to be
automatically expanded (and evaluated) in the debugger settings (see Figure 9-11).

Evaluating Expressions

You have an option to use the Watch tool to evaluate expressions. While debugging,

click the Add Expression (+) button in the Watch box, then type the expression you want
to evaluate. For instance, if you type builder != null, the Watch tool returns true or

false depending on whether the object has an instance. Figure 9-8 shows an example.

234

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

v WATCH
builder != null: true

Figure 9-8. Evaluating expressions

The Call Stack

The debugger also offers the Call Stack feature, which allows you to step through the
hierarchy of method calls. When you click a method call in the stack, the code editor
opens the containing file, highlighting the method call (see Figure 9-9).

Eil i ection Miew Go Run - rogram.cs - hel - Visual Studio Code [Administrator] g -
File Edit Selection View Go Ru P helloweb - Visual Studio Code [Ad tor] DQmos o x
RUN A D | .NET Core Launch (web)~ & - 21> 2 ¥ T O O~ M -
 VARIABLES Jranm.cs
~ Lecals var builder = WebApplication.CreateBuilder{args);
args [string[]]: {=
w bullder: {Microsoft.A // bdd services to the container.

builder.Services.AddRazorPages();
~ Configuration e

» Sources [ILi

I~ var app = builder.Build();
£ > Non-Public members
> Environment [IWebHostEnvironment]: {Mi M configure the HTTP request pipeline.
> Host: {Microsoft.As e if (lapp.Environment.IsDevelopment())
% Logging [ILoggingBuilder] {
i . e e T e S . 11 app.UseExceptionHandler("/Error”);
~ WATCH 12 /f The default H5TS value is 3@ days. You may want to chang
13 app.UseHsts();
14}
15
16 app.UseHttpsRedirection();
17 app.UsestaticFiles();
1
~ CALL STACK =]
~ Main Thread PALISED ON BREAKPOINT
helloweb.dll!Program.<Main>$(string[] args) Line 9
> .NET ThreadPecl 10 BALILED
> Console logger queus processing thread PAUSED
.NET ThreadPool Worker RUNNING
.NET ThreadPocl Gate RUNNING
“ BREAKPOINTS Londad
[all Exceptions 10.Pip
User-Unhandled Exceptions &
& [Program.cs] >
@0A0 4> NET Core Launch (wet) (helloweh) & Gitlens Pro (Trial) P helloweb Ln 9, Col 38 (37 selected) Spacess4 UTF8 CRF @ & 0O

Figure 9-9. Walking through method calls

235

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

As you walk through method calls, the Locals subview of the VARIABLES panel also
updates to show variables that are in the current scope. The code editor can highlight
method calls only if the method is part of the source code, so it does not allow further
control over the methods marked as [External Code] in the CALL STACK (see Figure 9-9),
but this feature is very useful, especially when you encounter errors and you need to step
back through the code.

The Debug Console Panel

The Debug Console is certainly the place where VS Code shows the debugger output,

but, as the name implies, it is also an interactive panel where you can evaluate

expressions. You can type the expression near the > symbol and then press Enter.
Figure 9-10 shows an example that evaluates whether the builder variable is null.

PROBLEMS OUTPUT TERMINAL DEBUG CONSOLE Filter (e.g. text, lexclude) = N~ X
builder != null
true

>

elloweb Ln 9, Col 38 (37 selected) Spaces:4 UTF-8 CRLF C& & 0Q

Figure 9-10. Evaluating expressions in the Debug Console panel

Note It is important to reinforce the concept that all the debugging tools
described in this chapter apply to other platforms and languages as well, assuming
that a debugger is available either by VS Code directly or via extensions.

236

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

Configuring Debug Options

Settings in Visual Studio Code allow you to customize the general debugging experience.
Figure 9-11 shows the Debug settings, located under the Features node.

®J fEile Edit Selection View Go Bun Jerminal - Sattings - helloweb - Visual Studio Code [Administrater] D2 0o, - u] *
Settings X DM -
search settings 7
User ‘Workspace Tum cn Settings Sync

Debug
Allow Breakpoints Everywhere

| Allow setting breakpoints in any file

Aute Expand Lazy Varlables

| Automatically show values for variables that are lazily resolved by the debugger, such as getters.

Confirm On Exit

her to confirm when the window closes if there are active debug sessions

Console: Accept Suggestion On Enter
estions shoul r C e, i whateve, n
Console: Close On End
| Controls if the Debug Console should be automatically dosed when the debug session ends.
Conscle: Collapse ldentical Lines
| Controls if the Debug Console should collapse identical lines and show a number of cccurrences with a badge.

Console: Font Family

@O0M0 @ Gitlens Pro (Trial) B helloweb

Figure 9-11. Configuring the debugging settings

Settings are self-explanatory and, as with any other VS Code settings, they can also
be manually edited in the settings.json file. Notice how it is also possible to auto-
expand lazy variables, mentioned previously. In this settings area, you find options that
are related to the general debugging experience. For specific debugger options, such as
debugging for C# or C++, you need to open the Extensions node and then walk through
the debugging settings for each specific extension.

237

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS

Summary

The power of Visual Studio Code as a development environment comes out when you
work with real applications. With the help of specific generators, you can easily generate
.NET projects using C# or Node.js projects. This chapter described how you can leverage
a powerful, built-in debugger that offers all the necessary tools you need to write great
apps, such as breakpoints, variable investigation, call stack, and expression evaluators.

By completing this chapter, you have walked through all the most important and
powerful features you need to know to write great cross-platform applications using
Visual Studio Code.

238

CHAPTER 10

Building Applications
with Python

Python is a very popular and powerful programming language that can be used to
develop applications of any kind, and it is especially useful to build data science and
data analysis applications.

Python is an interpreted, object-oriented programming language that can be learned
by developers of any background. This chapter describes how Visual Studio Code supports
building and debugging Python code, including specific code-editing features. Obviously, the
chapter’s focus is not the Python language but rather how Python can be used with VS Code.

Chapter Prerequisites

In this chapter, I provide examples of running and debugging Python code. Following
along with these examples requires that you install the following components before you

continue reading:

e The Python interpreter with its tools, which you can download from
the Python official site (https://www.python.org/downloads). The
download page automatically detects your operating system and
offers the appropriate download package for Windows, macOS, and
Linux distributions. On Windows 10 and higher, Python can also be
installed from the Microsoft Store.

e The Python extension for Visual Studio Code provided by Microsoft,
which you can install via the Extensions panel. There are several
extensions for Python in the Marketplace, but I recommend that
you download the official one, shown in Figure 10-1, because it
dramatically improves the development experience with a debugger
and additional coding tools.

239
© Alessandro Del Sole 2023

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_10

https://www.python.org/downloads
https://doi.org/10.1007/978-1-4842-9484-0_10

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

] File Edit Selecion Yiew Go Run Jerminal Help Extension: Python - helloweb - Visual Studic Code [Administrator] DEDoeE - a} b

EXTENSIONS ¥ U Extension: Python % ==

Search Extensions in Marketplace
Pytho n ve.z.e
~ INSTALLED k-])
OmniPascal - Open Preview irason
. Delphi and FPC support. Including code completion, "—E IntelliSense (Pylance). Linting. Debugging (multi-threaded. re...
Wosi

m Uninstall | s [l Switch 1o Pre-Release Version [4H

ance
Pﬂ e e This extension is enabled globally,
o A performant, feature-rich language server for Python i
[a8] & Microsoft o @
CETALS
Intellisense (Pylance), Linting, Debugging (multi-thread...
& Microsoft 0 & Categories

Python extension for Visual
VTT, and SBV in VS Code. Studio Code

A Visual Studio Code with rich support for the
Pytho ported versions of the

& language: ures such as IntelliSense
(Pylance), linting, debugging, code navigation, code

formatting, refactoring, vaniable explorsr, test explorer, and
& it E merel
Support for vscode.dev

including

L -y ﬂ A & The Pythen extension does offer some support when running

on vscode.dev (which includes githu v). This includes

Azure Functions partial InteliSense for open files in the editor.
~ RECOMMENDED 7
4 Debugger for Firefox B 26M 28 Installed extensions
u Deby ur web application or browser extension in Fir.
Fhehoe DewTooks =m The Pythen extension will automatically install the Pylance,
* Jupyter and isort extensions Lo give you the best experience
Microsoft Edge Tools for V5 Code h 1AM K 45 when working with Python files and Jupyter notebooks.
e :e”mom“ sol Edoe Toaks § : ¥Sizad ﬁ However, Pylance is an optienzl dépendency, meaning the
o Pythan extension will remain fully functional if it fails '.o
ESLint @ 252IM K 45 installed. You can alse uninstall it at the expense of so
'{E} egrates ESLint JavaScript into VS Code. features if you're using a different language server,
& Gitlens Pro (Trial) 3 helloweb AR Q

Figure 10-1. The official Python extension from Microsoft

Note This chapter walks through a simple code example, but in the real world
you might want to build more complex applications, in which case you need
additional components. For instance, building data science applications requires
Anaconda (https://www.anaconda. com), a distribution that includes Python
and the R programming languages, plus a set of libraries specific for data science.
If you instead need to do web development, you might want to consider Django
(https://www.djangoproject.com), a web framework built with Python.

If you haven't already created a dedicated folder on disk for the code examples (mine
is called VSCode), as suggested in the previous chapters, I recommend doing so for this
chapter.

240

https://www.anaconda.com
https://www.djangoproject.com

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

Now that you have all the minimum required tools installed, you are ready to start
coding and debugging with Python in Visual Studio Code.

Creating Python Applications

Previously in the book you learned that Visual Studio Code is independent from
proprietary project systems and platforms and, consequently, does not offer any built-in
options to create projects, and this is also true for the Python programming language.

What you can do with Visual Studio Code is open existing Python files and projects
or create new code files from within the development environment. As an example, let’s
consider a simple battleships game available in one code file at pythonfiddle.com/
battleships-game-in-python/

In Visual Studio Code, create a new file and then select Python as the language from
the well-known drop-down menu located in the bottom-right corner. The source code in
its current state will not work with the latest versions of the Python interpreter, because
it is missing parentheses that enclose parameters of the print function and some string-
to-integer conversions. The modified and working code for Python is listed here for your

convenience:

import random
board = []
for x in range(0,5):
board.append(["0"] * 5)
def print_board(board):
for row in board:
print (" ".join(row))
print ("Let's play Battleship!")
print board(board)
def random row(board):
return random.randint(0,len(board)-1)

def random col(board):
return random.randint(0,len(board[0])-1)
ship_row = random_row(board)
ship_col = random col(board)
print (ship row)
print (ship col)

241

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

for turn in range(4):
guess_row = int(input("Guess Row:"))
guess_col = int(input("Guess Col:"))
if guess row == ship_row and guess col == ship col:
print ("Congratulations! You sunk my battleship!™)

break
else:

if turn ==
board[guess row][guess col] = "X"
print_board(board)
print ("Game Over")
print ("My ship was here:
[" + str(ship row) + "][" + str(ship col)
+ ")

else:

if (guess_row < O or guess_row > 4) or
(guess_col < 0 or guess_col > 4):
print ("Oops, that's not even in the ocean.")
elif(board[guess row][guess col] == "X"):
print
("You guessed that one already.")
else:
print ("You missed my battleship!")
board[guess row][guess col] = "X"
print (turn + 1)
print_board(board)

Save the file as BattleshipsGame.py. This is a simplified implementation of the
battleships game and is mostly for learning purposes, but it is enough to understand
how Visual Studio Code can support Python development. You will immediately notice
powerful editing features as you type the source code, such as (but not limited to)
IntelliSense and parameter hinting, but before highlighting Python-specific editing
features, I walk you through running and debugging Python code.

242

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

Running Python Code

Visual Studio Code automatically attempts to retrieve an appropriate Python interpreter
on your machine when you assign this language to a code file or open an existing file.
Sometimes VS Code might not be able to do this even if you previously installed a Python
interpreter successfully, in which case you receive a warning similar to the one shown in
Figure 10-2.

(®) No Python interpreter is selected. You need to select a Python {8 X
interpreter to enable features such as IntelliSense, linting, and

2 debugging.

Source: Python (Extension Select Python Interpreter

A\ select Python Interpreter @0 A0 % Live Share Ln1.Col1 Spaces:4 UTF-8 CRLF Python

Figure 10-2. Visual Studio Code could not find a Python interpreter

Clicking the Select Python Interpreter button in the warning card or the same-
named item at the bottom-left corner of the Status Bar enables you to pick your favorite
version of the Python interpreter (see Figure 10-3).

»] rile Edit Selection View Go Run - Battieshep py - Visual Studho Code [Adm nestrator] DEemoe - o b
%] welcome @ gattl Select Interpreter O b~ D -
*
13 return randol '_";
1 ship_row = ram + Enter interpreter path .‘!:_r
o - y
15 ship_col = ram & Use Python from “python.defaultinterpreterPath” setting ~\Ap A g

16 FISRISNEL L & Python 3.10.10 64-bit (microsoft store) ~\AppData\localMscrosoft\WindowsAp.
print (ship_co. python 3.10.10 64-bit (microsoft store) C:\Program Files\WindowsApps\PythonSoftwarefo Global
for turn in rar BN

Figure 10-3. Selecting a version of the Python interpreter

This is a very nice option in case you need to select a specific version and not
necessarily the most recent one. Once you have selected a Python interpreter, the name
appears on the Status Bar, replacing the Select Python Interpreter button with the name
of the selected interpreter, and you can either run or debug your code. Let’s start with
running code, which you can do by choosing Run » Run Without Debugging. The
Python runtime builds the code file and, if no error is found, the output of the code is
displayed in an instance of the Terminal panel. Figure 10-4 shows an example based on
the sample game provided previously.

243

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

PROBLEMS OUTPUT TERMINAL DESUG CONSOLE I8} Python Debug Console + + [A X

Let's play Battleship!
00000
oo0o0O0O0
0oo00O0O0
oo00O0O0
oo0o0O0O0
1

1

Guess Row:2

Guess Col:4

You missed my battleship!
1

00000

00000

0000X

00000

00000

Guess Row:S

Guess Col:4

Oops, that's not even in the ocean.
2

00000

00000

0000X

00000

00000

Guess Rouw:f]

0 @& Gitlens Pro (Trial) Ln 28, Col29 Spaces:4 UTF-8 CRLF {3 Python 3.10.10 64-bit (microsoft store) & 0

Figure 10-4. Output of Python code in the Terminal

The Terminal allows user input, so you can enter the values for the battleships.
Behind the scenes, Visual Studio Code invokes a tool called Launcher, which is installed
together with the Python interpreter and makes it possible to run Python code from the
command line.

Note In more specific development scenarios based on the Anaconda libraries,
such as data science, Visual Studio Code can display additional tool windows
and show charts and calculation results inside the development environment.
More details are available from the official Data Science Tutorial (code.
visualstudio.com/docs/python/data-science-tutorial).

244

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

For the next example, make sure you add a breakpoint at the following line (as
described in Chapter 9):

if guess row == ship_row and guess col == ship col:

This is to demonstrate how debugging tools for Python work. You start debugging
Python code by pressing F5, by clicking the Run and Debug button in the Run panel, or
by choosing Run » Start Debugging. At this point Visual Studio Code asks you what file
or program you want to debug, as shown in Figure 10-5.

] FEile Edit Selection View Go Run Jerminal Help Battleship.py - Visusl Studio Code [Administrator] DEmaoe - o x

»q welcome
p 3 & Batfleshingy

@ attleship.p Select a debug configuration b @ -

1 return randoa.ranc
1 ship_row = random_r¢
1 ship_col = random_cc Modul
16 print (ship_row)
1
1
1

print (ship_col)
8 for turn in range(s)
Q

gUesS_row =
2 guess_col =
21 if guess_rov
- print (“cc Pyramid Launc

FastAP| La

Flask Laun.

Figure 10-5. Selecting the debugging target

You can select any one of the configurations, which are provided by the Python
extension for VS Code, described in Table 10-1.

245

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

Table 10-1. Debug Configurations for Python

Configuration VS Code
Name Description

Description

Python File Debug the currently
active Python file

Module Debug a Python
module by invoking
it with -m

Remote Attach Attach to a remote
debug server

Attach using Attach to a local
Process ID process

Django Launch and debug
a Django web
application

FastAPI Launch and debug
a FastAPI web
application

Flask Launch and debug
a Flask web
application

Pyramid Launch and debug
a Pyramid web
application

Starts debugging the currently active Python file, where
“active” means the file in the active editor.

A Python module can be considered a code library,
comparable to namespaces in a C# library. Debugging with
the -m switch enables VS Code to also debug a module.

Allows connecting VS Code to a remote debug service.

Allows connecting the debugger to a process that is already
running. You need to retrieve the process ID (e.g., on
Windows you can do so via the Task Manager).

Django is a high-level Python web framework that enables
rapid development of secure and maintainable websites.
With this option, you can debug a Django project in VS
Code.

FastAPI is a modern web framework for building APls
with Python (requires version 3.6 or higher). With this
configuration, you can use VS Code to debug a FastAPI
project.

Flask is another framework that allows building web
applications with Python. With this configuration, VS Code
makes it possible to debug Flask projects.

Pyramid is a framework for Python that allows you to create
web applications based on the Model-View-Controller
(MVC) pattern. With this configuration, you can debug a
Pyramid project in VS Code.

For the current example, select the first option, Python File, which allows you to

debug the current code file. The application starts in the integrated Terminal and VS

Code’s Status Bar becomes orange, which indicates that the application is in debug

246

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

mode. In the Terminal, you can enter the values for the battleships game, and then,
because you previously set a breakpoint, the execution will break at the line where you
placed the debugger. This will enable all the toolboxes in the Run panel as well as data
tips in the code editor (see Figure 10-6).

®) cile Edit Selection View Go Run Terminal Help Battleship.py - Visual Studio Code [Administrator] DQ o - o X
RUN AND DEBUG o AEWR T YT D 0Py B~ M -

[~ VARIABLES C: 3 VSCode > @ Bat
~ Locals 1 import random

> special variables 2 board [1'0% e, 0 o o, ‘o
3 forx
1 boa

> board: [['0°, o' def p
S 2 & | for
=] guess 7 P
% random: " \Pr 3 print -
ship_col: 2 9 print
ship_row: 4 10 def r
11 ret
turn: @
12 def random_col(board):
x: 4 13 return random,randint(@,len(board[8])-1)

14 ship_row = random_row(board)
15 ship_col = random_col{board)
16 print (ship_row)

o', o', 'o'l, [‘'0°, ‘o', ‘o 17 print (ship_col)
13 for turn in range(4):
19 guess_row = int{input(“Guess Row:™}}
28 guess_col = int{input(“Guess Col:™))
o fromi o\ \Frogram FLIes\\- D 21 if guess_row == ship_row and guess_col == ship_col:
OUTPUT TERMINAL DEBUG CONSOLE J5f Pytnon Debug Corsore +~ [& - ~ X
turn: @
> WATCH] ooooo
~ CALL STACK gg;gg
<module> Guess Row:
PS C:\WSCode> «c:; cd "ciWSCode'; B "C:\Users\adelsole\AppData\Local\Microsoft \Windowsipp
A n3.18.exe’ * s\adelsole\.vscodeextensions thon-2023.2.08\pythonFi
ib\python\debugpy\adapter/. ./. . \debugpy\launcher” 52 -* "Cr\wilode\Battleship.
Py
Let's play Battleship!
oo0O0D0D
oo0O00Q
po00OD
cooo00
 BREAKPOINTS 00000
[[J Raised Exceptions 4
= : 2
i uncaught Exceptions
! L9 o Guess Row:3
[J User Uncaught Exceptions Guess Col:2
o [EBattleshippy CAVSCode 21

@D0A0 & Gitlens Pro (Trial) Ln21,Col1 Spaces:4 UTF-8 CRIF {3 Python 3.90.10 64-bit (microsoft store) & 0

Figure 10-6. The application in debug mode and debugging tools enabled

If you hover your cursor over a variable name in the code editor, you can see its
current value. For instance, if you hover over the guess_col variable, you will see
that it contains the integer value you entered during the execution. However, Python
debugging tools offer more: if you hover over a complex type like the board variable,
which is a 1ist of arrays, you will see how a sophisticated data tip shows values for each
array in the list. You can expand the Special Variables and Function Variables groups to
get more information about runtime functions.

247

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

The values you see through data tips are also visible in the Locals group of the
VARIABLES tool in the Run panel. Debugging tools for Python can catch runtime
exceptions and display appropriate information to solve them. To understand how this
works, you can intentionally introduce a runtime exception in the current sample file.

Consider the following line:

guess_row = int(input("Guess Row:"))
Change the line as follows:

guess_row = input("Guess Row:")

This particular line will still work, because it still waits for the user to enter
something from the keyboard; the difference from the original line is simply that the
input, of type str, is not converted into an int. However, while comparisons with the
equality operator will succeed, comparisons made with the < and > operators at the
following line:

if (guess_row < 0 or guess row > 4) or (guess _col < O or guess col > 4):

will fail, because this line attempts to compare the user input, which is now a string, with
an integer value, and such a comparison is not supported, so a runtime exception will
happen. Figure 10-7 shows how Visual Studio Code breaks the application execution
when it encounters a runtime exception.

248

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

) GEile Edit Selection View Go Bun Jerminal Help Battleship.py - Visual Studio Code [Administratar] DQ 0o - o X
R qElb 2 ¥ T D 0Oippy x p~ 0 -
 VARIABLES C: > VSCode > @ Battleship.py >
v Locals 21 if guess_row == ship_row and guess_col == ship_col:
» special variables 22 print ("Congratulaticns! You sunk my battleship!™)
» function variables 23 break
- e o e O Uty 24 else:
Siboard: [[10%; IDI, 0% 0%, 0N [f0Y, 0 Ol -
25 if turn == 3:
ﬁl“-; 26 board[guess_row][guess_col] = "X"
9 27 print_board (board)
f \Program Files\\W 28 print ("Game Over”)
29 print ("My ship was here: [+ str(ship_row) +
30 else: =
D n if (guess_row < B or guess row > 4) or (guess_c
.
Exception has occurred: TypeError =
> Globals ‘<" not supported between instances of ‘str’ and ‘int®
File "Ci\WoCode\Battleship.py”, line 31, in <module>
if (guess_row < @ or guess_row > 4) or (guess_col < @ or guess_col >
4):
TypeError: '<' not supported between instances of 'str' and "int"
32 print (“Oocps, that's not even in the ocean.
33 elif(board[guess_row][guess_col] == "X"):
u AMINAL D ONSOLE frtronDevugConsoe + - [0 & - ~ X
Windows PowerShell
S WATCH Copyright (C) Microsoft Corporation. All rights reserved.
" CALL STACK Try the new cross-platform PowerShell https://aka.ns/pscore6
<module> Battleshippy 311
PS C:\WSCode» & "C:\Users\adelsole‘AppDatahlLecal\Microsoft\WindowsApps'python3.1@.exe” "¢
= \Usel 1 hon. python-2823. 2. 8\pythonF iles\1ib\python\debug
py\ad /. \debugpy\launcher® '50558" '--° "C:\WSCode\Battleship.py"
Let's play Battleship!
00000
co000
00000
00000
00000
~ BREAKPOINTS 4
2

[CJ Raised Exceptions
Uncaught Exceptions
[User Uncaught Exceptions

Guess Row:S
Guess Col:4

@0AD ¢ Gitlens Pro (Trial) Ln31,Col1 Spaces2 UTF-E CRIF (3 Python 3.10.10 64-bit (microsoftstore) & Q

Figure 10-7. Debugging runtime exceptions in Python

More specifically, the exception information is displayed in a different-colored
tooltip that is displayed right below the line of code that caused the error. In this tooltip,
you can see the exception type (TypeError in this case), the number and contents of
the line of code, and the full error message. Actually, the tooltip also displays the name
of the file that caused the exception in the form of a hyperlink. This is very useful when
the exception was raised by a different file in the execution hierarchy, enabling you to
quickly go to the problem by clicking the filename.

As you have seen, debugging Python code in Visual Studio Code is a rich experience,
but the Python extension offers even more functionality, such as a dedicated language
service and additional features, discussed in the next section.

249

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

Code Editing Features for Python

The Python extension for Visual Studio Code brings most of the powerful code editing
features described in Chapter 3 to Python files. This section walks you through the
evolved code editing features, describing how these can improve your productivity.

Enhanced Word Completion with IntelliSense

Probably the most productive code editing feature with any language is an enhanced
word completion engine, and VS Code brings IntelliSense to Python. IntelliSense shows
up as you type and displays documentation tooltips about the type or member currently
selected in the IntelliSense popup box. Figure 10-8 shows an example based on the bin
function, where you can also see how syntax colorization is available in the tooltip to
provide easier understanding of the method usage.

®) File Edit Selection View Go Bun Jerminal Help « Battleship.py - Visual Studio Code [Administrator] DE8ao - o >

] welcome @ Battleshippy @ B~ @ -

elit(board| guess_row | |guess_col| == "X7):
print (“You guessed that one already.")
35 else:
print {"You missed my battleship!™)
board[guess_row][guess_col] = "X"
38 print (turn + 1)
print_board{board)

39
a8
41 bin
Y - bin(x
i3 BlockingIOError __number: int | SupportsIndex,
) breakpoint fi
3 BytesWarning } => str
@ __builtins__
%3 BaseException

Return the binary representation of an integer.

»>> bin(2796202)
'2b1010101010101010181018"

@oA0 4 Gitlens Pro (Trial) Ln41,Col4 Spaces:2 UTF-8 CRLF {3 Python 3.10.10 64-bit microsoft store) & 0

Figure 10-8. IntelliSense in action with Python

250

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

Understanding Function Parameters with Parameter Hints

Connected to IntelliSense is Parameter Hints. When you type the name of a function, you
get suggestions on how to provide parameters, as demonstrated in Figure 10-9, which is
based on the pow function.

><] File Edit Selection View Go Run Terminal Help » Battleship.py - Visual Studio Code [Administrator]
] Welcome % Battleship.py ®
C: > VSCode > % Battleship.py > ...
33 elit(board|guess_row||guess_col| == "X"):
2: (base: int, exp: int, mod: int) -> int
36 Equivalent to base**exp with 2 arguments or base**exp %
37 mod with 3 arguments
38
39 ~ Some types, such as ints, are able to use a mere efficient
40 eiils algorithm when invoked using the three argument form.

41 pow(@,)

Figure 10-9. Parameter Hints explains how to provide function parameters

As you can see, the parameter you are currently supplying is highlighted in bold,
while a description of the parameter itself is provided as the text content of the tooltip.

Quickly Retrieving Type Definitions

Among the code editor productivity features, Go to Definition and Peek Definition (see
Chapter 3) are certainly very useful and popular, and these are also available to Python
code files. To understand how they work in Python, right-click the board parameter of
the print_board statement in the last line of the code file.

If you click Go to Definition, the cursor moves to the place where the board variable
is declared. If you instead select Peek and then Peek Definition, the definition is
shown inside an interactive popup box, where you can make your edits directly (see
Figure 10-10).

251

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

] Eile Edit Selection View Go Run Jerminal Help Battleship.py - Visual Studic Code [Administrator] mDEmaoe - o x

% Battleshippy ® P~ 0 -

v je > @ Battleship.
23 break
24 else:
5 if turn == 3:
26 board[guess_row][guess_col] = “x"
27 print_board{board)
28 print (“Game Over")
29 print ("My ship was here: [" + str(ship_row) +][+ str(ship_col)}+ "]7)
El:] else:
31 if (guess_row < @ or guess_row > 4) or (guess_col < @ or guess_col » a):
32 print {"Oops, that's not even in the ocean.”)
33 elif(board[guess_row][guess_col] == "X"):
34 print ("You guessed that one already.”)
35 else:
36 print ("You missed my battleship!™)
37 board[guess_row][guess_col] = "X" EEN
38 print (turn + 1)
39 print_board{board)

-
feship.py C\VSCode - Definitions (1) x

1 import random
2 board - []
3 for x in range(®,5):
4 board.append(["0"] * 5)
5 def print_board(board):
6 for row in board:
print (" ".join{row))
8 print (“"Let's play Battleship!"™}
a print_board{board)
18 def random_row(board):

board = [

11 return random.randint(@,len(board)-1)
12 def random_col(board):
13 return random.randint(@,len(board[8])-1)

14 ship_row = random_row(board)
15 ship_col = random_col(board)
16 print (ship_row)
17 print (ship col)

Gitlens Pro (Trial) Ln39,Col35 Spacesz2 UTF-8 CRIF {} Python 3.10.10 64-bit (microsoft store) & 0

Figure 10-10. Peeking type definitions

Finding References

As explained in Chapter 3 and exactly like for other languages such as C#, you can
quickly search for all references of a given type, member, or variable in Python. Simply
right-click the object of your choice in the code editor and select Find All References.
For instance, you can do this with the board variable in the sample code file and you
will see where it was used across the code via the already well-known interactive editor,
which highlights occurrences and shows a list of references on the left. Figure 10-11
demonstrates this.

252

] FEile Edit Selection View Go Bun Jerminal Help

UDE & »Jwek

10 results in 1 file

w @ Battleship.py C\WVSCode
print_board(board)
board = [
board append(["0”] * 5)
print_board(board)
random_row{board)
random_coliboard)
board[guess_row][guess_col] = "X*
print_board{board)
elifiboard[guess_row]iguess_cel] == “X7)

board[guess_row][guess_col] =

@H0AD & Gitlens Pro (Tral)

9

CHAPTER 10 BUILDING APPLI

» Eattleship.py - Visual Studio Code [Administrator]

ome % Eattleshippy @

3 & Battleship.py
agetollfittebistcbiniin el oy o S N NERNPR
print_board{board)
def random_row(board):
return random.randint(@,len(board)-1)
def random_col(board):
return random.randint{@,len(bcard[2])-1)
ship_row = random_row(board)
ship_col = random_col(board)
print (ship_row)
print (ship_col)
for turn in range(4):
guess_row = int(input(“Guess Row:"))
guess_col = int({input(“Guess Col:")}
if guess_row == ship row and guess_col =
print (“Congratulations! You sunk my b
break
else:
if turn == 3:
board[guess_row] [guess_col]
| print_board(board)
print ("Game Over")
print ("My ship was here: [~
else:

CATIONS WITH PYTHON

DED0®6 - o X

= ship_cel:
attleship!™)

.y

+ str{ship_row) +

if (guess_row < @ or guess_row > 4) or (guess_c

print ("0ops, that's not

even in the ocean.

elif(board[guess_row][guess col] == “X"}:

print (“You guessed that
else:

print (“You missed my ba

board[guess_row][guess_c
print (turn + 1)
print_board{board}

one already.”)

ttleship!™)
0l] = “X*

Ln27,Col33 Spacess2 UTF-E CRLF {J Python 3.10.10 64-bit {microsoft store) & 0

Figure 10-11. Finding object references

Renaming Symbols

With the Python extension, renaming symbols is an easy task. You can just right-click

a symbol, select Rename Symbol (or press F2), and provide the new name, and all the

occurrences in the source code will be renamed accordingly. When typing the new

name, you can also press Shift+Enter and see a preview of all the occurrences that will be

renamed.

Figure 10-12 shows an example based on the board variable, with the preview

enabled.

253

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

] Eile Edit Selection View Go Run Jerminal Help Battleship.py - Visusl Studio Code [Administrator] Damaoe - (n] x
] Welcome % Battleshippy X v [

&> @ Battleship.py > (&) board
1 import random
2 board = []

|
uwvsr .
[for row in board:
print (" ".join(row))
8 print (“"Let's play Battleship!™)
9 print_board(board)
18 def random_row(board):
11 return random.randint(@,len(board)-1)
12 def random_col(board):
13 return random.randint(@,len(board[8])-1)
14 ship_row = random_row(board)
15 ship_col = random_col(board)
16 print (ship_row)
17 print (ship_col)
18 for turn in range(s):

- E%
& boardmyBoard =]
B besrdmyBcard.append ("0 * 5)
ard(beardmyBoard)
_rowibesrdmyBoard
(beardmyBoard)

@DoA0 & Gitlens Pro (Trial) In2 Col4 Spaces2 UTF-E CRLF (} Python 3.10.10 64-bit (microsoft store) & 0

Figure 10-12. Renaming symbols

If you enabled the Refactor Preview panel, you need to click the tick icon in order to
accept your changes. If you instead entered a new name without looking at the preview,
simply press Enter and all the occurrences of (including references to) the symbol will be
renamed.

Finding Code Issues with Linters

Linters highlight syntactical and stylistic problems in your code. Just as an example,
linters highlight missing brackets or parentheses in a code block or highlight the

usage of an undefined variable, underlining the code with squiggles. Linting is not
enabled by default, but you can quickly do this via the Command Palette. You can type
Python Select Linter directly, or just Python and then pick the appropriate command.
Figure 10-13 shows how to enable linting with the list of commands filtered as I

was typing.

254

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

®) File EcR Selection Yiew Go Bun Jerminal Help Battieshe py - Visusl Studic Code [Adminstrator] Dsooe - o
o w % gattleshipp R B~ @
L 2 [2
Python: 2.n Selection/Line in 0;3ngo She =
import random S e e 7 -
board = [) Python ect e in F ina Shn ¢ Ente 3
for x in range(e,5); Pythom Select interprete y-e
board.append([“0 Python: Select Linter ®

def print_board(board):

Figure 10-13. Enabling Python linters

When you select this command, the Command Palette also displays a list of available
linters for Python. This is actually up to your choice, but I suggest using pylint, which
is the official Microsoft linter provided via the Python extension. When the linter is
enabled, the code editor displays squiggles under code that has issues, and these code
issues are also detailed in the Problems panel, as shown in Figure 10-14.

Note If you have experience with C# in Visual Studio Code, you might expect
the same behavior of live code analysis as you type, but, with Python, linters show
squiggles under code that has issues only after saving a code file or by explicitly
invoking the linter from the Command Palette. An enhancement to this is provided
by the Pylance extension, described shortly.

255

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

'-'0 File Edit Selection Yiew Go Run - beard [.py - Visual Studic Code [Administrator] D& 0o - (m] =
] welcome @ board [Jpy 2 X B~ M =
C: > vSCode > % board [}.py
1 board [] J
2
PROBLEMS (2 Al DEBUL: node modules Y & F ~ X

v @ board [l.py CAVSCode (@
@ syntaxgrror: invalid syntax jedi [Ln

@ Parsing failed: ‘invalid syntax (<unknown>, line 1)°

®2MA0 Gitlens Pro (Trial) Ln2 Col1 Spacess4 UTF-8 CRLF Python 3.10.10 64-bit (microsoft store) & 0

Figure 10-14. Linters highlight code issues in the editor and in the Problems panel

Note Linters, as well as the other editing features, can be further customized
with the Settings user interface and via the settings. json file. Because

the goal of this book is to provide guidance on the most effective ways to get
productive quickly, | am showing the fastest configuration options available with a
few mouse clicks. If you want to dig deep into setting customizations, bookmark
the related documentation at https://code.visualstudio.com/docs/
python/linting, where you will also find more details about the pylint linter and
summary information about the other linters listed in the Command Palette.

256

https://code.visualstudio.com/docs/python/linting
https://code.visualstudio.com/docs/python/linting

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

Advanced Code Editing with Pylance

Without a doubt, the Python extension for Visual Studio Code tremendously improves
developer productivity and the coding experience, but Microsoft is doing even more.
In fact, Microsoft is offering a new extension called Pylance, which introduces code
refactorings, IntelliCode (an evolved code completion engine powered by artificial
intelligence), and other improvements.

When you open (or create) a Python code file, Visual Studio Code shows a popup
box that offers to install Pylance, as shown in Figure 10-15. As an alternative, you can
download the Pylance extension from the Extensions tool directly (see Figure 10-16).

Try out a new faster, feature-rich language server for Python by £ X

Microsoft, Pylance! Install the extension now.
Source: Python (Extension) m Remind me later

Ln21,Col29 TabSize:4 UTF-8 CRLF Python & [

Figure 10-15. Visual Studio Code offering to install the Pylance extension

257

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

¥ File Edit Selection View Go Run - Extension: Pylance - Visual Studio Code [Administrator] DB o - =] >
EXTENSIONS Y U ;Q Welcome Extension: Pylance X m -
Search Extensions in Marketplace
Py[ance v2023.2.40
“ INSTALLED 32
- Delphi and FPC support. Incl... Microsoft
W :; :
o A performant, feature-rich language server for Python in V...
pyance s o e rion
A performant, feature-rich la...
£ Microsoft 0 & This extension is enabled globally.
&8
Fython DETAILS FEATURE CONTRIBUTIONS CHANGELOG DEPENDENCIES RUNTIME STATUS
IntelliSense (Pylance), Linting..
& Microsoft Cin
Categories
Subtitles Editor Pyl ance
m Edit subtitles in SRT, WebVTT... Programming
Peter Prikryl @& Languages
Fast, feature-rich language support for Python :
- -NET Meteor
0 Pylance is an extension that works alongside Python in Moare Info
~ @ Visual Studio Code to provide performant language
- support. Under the hood, Pylance is powered by Fyright,
§ Microsoit's static type checking tool. Using Pyright,
Sm t & Pylance has the ability to supercharge your Python
IntelliSense experience with rich type information, helping
~* RECOMMENDED T - & 5
ry you write better code faster.
GitHub Copilot < 37Mm % 4
Your Al pair programmer Fylance is the default language support for Pytheon in
GitHub =0 Visual Studic Code and is shipped as part of that
* extension as an optional dependency.
) Debugger for... & 26m ¥ 45 °
6 Debug your web application ... The Pylance name is 3 small ode to Monty Python's

Firef: wTool
Ruks Dellcols Lancelot who was the first knight to answer the

@0oMAD Gitlens Pro (Tral)

Figure 10-16. The Pylance extension details

Once Pylance has been installed, IntelliSense will be powered by IntelliCode. This
tool learns from your code and from your patterns and offers an improved editing
experience based on your coding styles, enabling IntelliSense to provide even better
suggestions based on the coding context.

Pylance is not limited to offering an improved IntelliSense engine, but it makes
it easier to write better code with new code refactorings and live code analysis. For
instance, Pylance enables linters to show error squiggles as you type. As another
example, whereas the Python extension, by default, only allows sorting import directives,
Pylance introduces new refactorings: Extract Method, Extract Variable, and automatic
addition of the required import directives when adding code via IntelliSense or code
snippets. For a better understanding of how this all works, select the following code
block of the sample file, as shown in Figure 10-17:

for x in range(0,5):
board.append(["0"] * 5)

258

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

def print board(board):
for row in board:
print (" ".join(row))
print ("Let's play Battleship!")

You will see a light bulb icon appear, which means that there are some suggestions to
refactor the selected code block.

] FEile Edit Selection Yiew Go Run - Battleship.py -

3 Welcome % Battleship.py 9+ X

L]

[N
o
o T
3
a
"
e
it

3 for x in range(e,5):

4 B ; e 5)

5 d Extract... .

7 . & Extract variable “))

8 print ("Let"s play Battleship!™)

Figure 10-17. Enabling suggestions for code fixes

If you hover your cursor over the light bulb icon, you will see a tooltip saying Show
Fixes. Click it to see available suggestions for the current context; in this case there is
one suggestion, Extract Method. Click this suggestion and VS Code will extract a new
method for the selected block, adding the related method call. This is demonstrated in
Figure 10-18.

] File Edit Selection View Go Run - o Battleship.py
»{ Welcome % Battleshippy 9+ @
C: > VSCode > % Battleship.py > [#] print_board
1 import random
2 board = []
3 def new_func(board):
4 .. for x in range(®,s):
5board.append(["0"] * 5)
6 def print_board(board):
7 for row in board:
8 print (" ".join(row))
9 print ("Let's play Battleship!™)

le | return print board
11 '

12 Erint board = new func(board)

Figure 10-18. Extracting a method

259

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

The new method is created with a default name (new_func), but VS Code offers
you the option to rename it via the Rename Symbol user interface. Similarly, the code
fix called Extract Variable enables you to extract a variable from a code block, and it is
available through the light bulb icon only if the context of the code allows you to extract
variables. The light bulb icon is not the only shortcut to retrieve code fixes for a code
block; you can also select a code block, right-click, and then select Refactor from the
context menu.

Managing Pylance Settings

Like for other extensions, you can manage Pylance options under Visual Studio Code
settings. Figure 10-19 shows how the Pylance settings appear and how they can be
located under the Extensions node.

260

<

File Edit Selection View Go Run

CHAPTER 10

Settings - Visual Studio Code [Administrator]

Nelcome % Battleshippy 9+ ® Extension: Pylance Settings X

@oh20@7

es Settings

GitLens Pro (Tral)}

OmniPascal configura...

Python » Analysis » Add Import: Exact Match Only

by exact matches in "add import’ code actions

Python » Analysis: Auto Import Completions

Offer auto-import completions.

Python » Analysis: Auto Import User Symbols

Offer user symbols in auto-import completions.

Python » Analysis: Auto Search Paths

add commaon search paths like "sre.

| Automatic

Python = Analysis: Complete Function Parens

Add parentheses to function completions.

Python - Analysis: Diagnostic Mode

Analysis mede for diagnostics.

openFilesCnly

Python » Analysis: Diagnostic Severity Overrides

a userto

emde the seventy levels for indmdual dia

Figure 10-19. Changing Pylance settings

BUILDING APPLICATIONS WITH PYTHON

mBmoe - o X

i

Turn on Settings Sync

You can further customize the coding experience by changing options whose name

are self-explanatory and that Visual Studio Code describes appropriately.

Running Python Scripts

Python is also an interpreted language, so it allows you to run arbitrary code without the

need of a backing build process. Visual Studio Code supports Python as an interpreter,

providing an option to write and run code via an REPL (read-eval-print-loop) interactive

console, available within the Terminal.

REPL command (see Figure 10-20).

You enable the Python REPL in the Command Palette by selecting the Python: Start

261

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

¥ File Edit Selection View Go Run - » Battleship.py - Visual Studio Code [Administrator] mBmon - o X

»] welcome @ !r>p',1hcnre|;~! B~ @ -
C: > V5Code > @ Batth
hon: Start REPL -
1 inport rand. SCAMA L £l 2 !

Figure 10-20. Enabling the Python REPL console

At this point the Terminal appears and loads the Python REPL, where you can write
and run arbitrary code. Figure 10-21 shows an example based on declaring a variable

and printing its contents onscreen.

e
PS C:\Usershadelsole» & C:/Users/adelsole/AppData/Local/Microsoft/HindowsApps/pythen3. 18, exe s
Python 3.10.1@ (tags/v3.10.1@:aad5f6a, Feb 7 2023, 17:20:36) [MSC v.1929 64 bit (AMDE4)] on win32 REPL
Type “help”, "copyright”, “credits” or "license” for more information.

»>»>» message="Hello, Visual Studio Code Distilled!™

> print(message)

Hello, Visual Studio Code Distilled!

P |

@0A0 Gitlens Pro (Trial)

Figure 10-21. Running arbitrary code in the Python REPL console

This is another important tool for Python developers, because it is a very common
way to use this language and certainly a way that leverages one of the most powerful of
its characteristics.

Summary

Python is a very popular and powerful programming language and it is fully supported
by Visual Studio Code. It offers full support for evolved code editing, debugging, and
even for advanced development with data science tools and libraries.

Visual Studio Code enhances support for Python with the official Python extension,
which makes working with Python very similar to working with other languages
and platforms. That means you can apply existing skills and knowledge if you are
approaching Python for the first time but have experience with C# or Node.js.

Microsoft also offers the Pylance extension, which provides an improved IntelliSense
experience with IntelliCode and additional code refactorings. An interactive REPL for
interpreted code completes the integrated tooling for Python.

Once again, Visual Studio Code demonstrates how versatile it is, providing a perfect
environment for Python and its most popular flavors.

262

CHAPTER 11

Deploying Applications
to Azure

Azure is Microsoft’s premiere cloud solution that offers many services, from hosting
web applications and SQL databases to remote virtual machines, artificial intelligence
services, and many more.

With Visual Studio Code, it is easy to deploy your code to Azure through a number
of extensions that support multiple environments, such as Node.js and .NET, and that
offer an integrated experience so that you can work directly within your development
environment. Many extensions for Azure development are available, each targeting
different scenarios, but it would require an entire book to describe them all, so in this
chapter, I cover two of the most popular extensions: Azure App Service, which supports
publishing web applications, and Azure Functions, which enables you to work with
serverless apps directly from Visual Studio Code.

Note This chapter requires an active Microsoft Azure subscription to complete
the examples. If you do not have one, you can get a free trial at https://azure.
microsoft.com/en-us/free.

Introducing Azure Extensions

Visual Studio Code supports developing with the most popular and powerful Azure
services. Support is integrated in the development environment with specific extensions
available in the Visual Studio Marketplace. Table 11-1 lists and describes common

extensions for Azure development.

263
© Alessandro Del Sole 2023
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_11

https://azure.microsoft.com/en-us/free
https://azure.microsoft.com/en-us/free
https://doi.org/10.1007/978-1-4842-9484-0_11

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

Table 11-1. Common Extensions for Azure Development

Extension Description

Azure Account Allows you to sign into one or more Azure subscriptions.

Azure App Provides integrated support to deploy web applications to the cloud.
Service

Azure CLITools Installs all the command-line tools required to work with all the Azure services.

Azure Allows you to create, browse, and manage SQL Azure, MongoDB, Cosmos DB,
Databases PostgreSQL, and DocumentDb databases directly within VS Code via an integrated
browser.

Azure Functions Provides integrated support for writing, testing, and deploying Azure Functions.

Azure Machine Formerly called Visual Studio Code for Al Tools, allows you to create, build, train,
Learning and deploy machine learning models based on your Azure subscriptions.

Azure Resource Allows you to manage Azure resource groups in VS Code.
Manager

Azure Storage Allows you to connect to blobs, tables, files, and queue storage in your Azure
subscriptions. It also allows you to upload folders directly from within VS Code.

Docker Allows you to publish containerized applications from Visual Studio Code, with
improved code editing features for Docker and YAML files.

Kubernetes Provides integrated support to deploy Docker containers to Kubernetes, an
open-source system for automating deployment, scaling, and management of
containerized applications, supported by Azure.

I recommend that you bookmark the official documentation, available at
https://code.visualstudio.com/docs/azure/extensions, for further details and
examples. Noteworthy is that Visual Studio Code can support Docker and Kubernetes for
containerized applications, which is something very important for many developers.

264

https://code.visualstudio.com/docs/azure/extensions

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

Deploying Web Applications

Deploying web applications to Azure with Visual Studio Code is very easy. You can
retake the HelloWeb sample applications created with C# and .NET in Chapter 9, but it’s
worth remembering that publishing to Azure is not limited to these technologies, but is

also possible for Node.js.

Note Visual Studio Code, the Microsoft Azure platform, and Azure extensions for
VS code continuously evolve. New releases might introduce changes to what is
described in this chapter.

Installing Extensions

The first thing you need to do is install the Azure App Service extension from the
Marketplace. This extension also needs the Azure Account and the Azure Resources
extensions, but these are installed together with the App Service, so you do not need to
take any additional steps.

The Azure Account extension is required to enable developers to log in to their Azure
account from within Visual Studio Code and to select which subscription to use. The
Azure Resources extension is used to manage resources groups, which are the places
where your cloud services are organized. Figure 11-1 shows the Azure App Service

extension in the Extensions panel.

265

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

] File Edit Selection View Go Run - Extension: Azure App Service - Visual Studio Code [Administrator] D8 0w - o X

EXTENSIONS Y O = 3 Welcome Extension: Azure App Service X a --

Extensions in Marketplace

.”* Azure App Service w7 G283
~ INSTALLED 32
Microsoft
.NET Install Tool for Extens...
ITTal 2iiovis acquisition of the NE... An Azure App Service management extension for Visual Studio...
; @
Azure Account This extension is enabled globally.
A common Sign In and Subs...

Microsoft %

DETALS FEATURECONTRIBUTIONS CHANGELOG DEPENDENCIES RUNTIME STATUS

Azure App Service
An Azure App Service manag...

Microsoft Categories

Azure App Service for Visual .
Studio Code (Preview) g

Azure Functions
{&> An Azure Functions extensio...

Microsoft &
App Service is Azure's fully-managed Platform as 3 Service More Info
Azure R“_“"“] (Paas) that lets you deploy and scale web, mobile, and API
[‘] :;‘ Gﬁ"_':""‘-m for vie apps. Use the Azure App Service extension for VS Code to
VICrOS0T
quickly create, manage, and deploy your websites.
C/Ces . e : i
s T i Visit the wiki for more infermation about Azure App
C/C++ IntelliSense, debuggi...
Microsoft & Service and how to use the advanced features of the
extension.
A,
~ RECOMMENDED o Sign up today for your free Azure account and receive

12 months of free popular services, $200 free credit and
25+ always free services g Start Free.

Installation

1. Download and install the Azure App Service e.-ﬂs_°
for Visual Studio Code

K ®O0MA0 Gitlens Pro (Trial)

Figure 11-1. The Azure App Service extension from Microsoft

Signing In to Azure Subscriptions

Once the Azure App Service extension has been installed, along with the Azure Account
and Azure Resource Groups extensions, you need to sign in before you can use any
service.

To accomplish this, you can use the Azure: Sign In command from the Command
Palette or the Sign in to Azure shortcut in the App Service node of the Azure Side Bar.
Either action opens an instance of your default browser pointing to the Microsoft
Account login service. Simply enter your credentials, sign in, and close the browser
window once you are logged in. Now in Visual Studio Code you can open the Azure
extension and see the list of services associated with your subscription.

266

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

Note If you don’t see the list of subscriptions, you can read the official
troubleshooting guide (https://github.com/microsoft/vscode-azure-
account/wiki/Troubleshooting). For example, a very common way to solve
this problem is by typing the Azure Select Tenant command in the Palette
and selecting the subscription.

Figure 11-2 shows an example based on my subscription.

®] File Edit Selection View Go Run - '
AZURE

“ RESOURCES Remot + =208
& App Services

% Azure Cosmos DB

#®] Container Apps

<7> Function App

L PostgreSQL servers (Flexible)

L PostgreSQL servers (Standard)

B3 static web Apps

= Storage accounts

> Bl virtual machines

AV RV R RV R VRV RV AR

Figure 11-2. The Azure services view

Note The Microsoft Azure offering is very extensive and spans a plethora of
services, so | recommend that you look at the official website (https://azure.
microsoft.com/en-us/free) for detailed information. In addition, do not
forget to enter the management portal (https://portal.azure.com), which
gives you access to the full tools and options to create and manage your services
and resources.

267

https://github.com/microsoft/vscode-azure-account/wiki/Troubleshooting
https://github.com/microsoft/vscode-azure-account/wiki/Troubleshooting
https://azure.microsoft.com/en-us/free
https://azure.microsoft.com/en-us/free
https://portal.azure.com

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

The hierarchical view displays resources and the services they contain, and it also
supports multiple subscriptions.

You can quickly interact with each service by expanding its node and accessing the
available options by right-clicking its name.

Publishing Web Applications

Visual Studio Code makes the process of publishing web apps to Azure very easy.
The goal of this section is to demonstrate how quick and easy it is to publish a web
application to Azure. Assuming you have opened the HelloWeb sample project, in the
Azure view, right-click the App Service node under the name of your subscription and
select Create New Web App.

A three-step wizard guides you through the creation of the application. The first
step asks you to supply a unique name for your new web application in the Command
Palette, as shown in Figure 11-3.

gy = Welcome - helloweb - Visual Studic Code [Administrator] DE 0o - =] X

Create new web app (1/3) ED

v RESOURCES

Windows A
bally unique name for the new web app. (Press 'Enter’ to confirm or 'Escape’ to

Enter a
> & AppSevi
> % Azure Cot woughs

Figure 11-3. Specifying a name for the web application

Because the name you specify will be combined with the azurewebsites.net
domain and represents the web address of your applications, if the name is already
taken, a validation message appears, inviting you to choose a different name. You might
want to specify a name that is different from vscodedistilled, which is the name I use
for the examples in this chapter.

The next step is to specify the target environment for your web application; this is
necessary because the Azure extension cannot detect which technology your app is
based on. Figure 11-4 shows the list of available options.

268

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

30 = ‘Welcome - helloweb - Visual Studio Code [Administrator] [] Q |:[| g - O x
AZURE = Create new web app (2/3) m ---
* RESOURCES FRema | Select a runtime stack.
~ Windows A NET 7 (STS) e
> & App servi ™ .
.NET 6 (LTS) <
> % Azure Cot wroughs
ASP.NET V48
> ® Container e
.NET V3.
¢ Function] : t Started ...
> [l Postgresc Nodejg L Node cover the best
S Ao Node 16 LTS tomizations to
W) Postgresy & de 1417 ke VS Code
> Static Wel Irs.
=R Python 3.11 Python
> == Storage a Python 3.10
on 3.
» I8 virtual m: 3 5
Python 3.9 in the F...
——

Figure 11-4. Specifying a target platform

Because the sample application was written on .NET 7, select this as the target
platform. The last step of the wizard asks you to specify a pricing tier. I suggest using the
Free (F1) tier, as shown in Figure 11-5.

30 = Welcome - helloweb - Visual Studio Code [Administrator] [] Q |:[| 03 -] X

AZURE L Create new web app (3/3) m -

v RESOURCES Remc | Select a pricing tier

~ Windows A
Free (F1) Try out Azure at no cost

> & App servi

Basic (B1) Develop and test]
> %/ Azure Cot A wroughs
= . Premium (P1v2) Use in production
> % Container
>

2 et b
[# show pricing information... t Started ...

&
#* Function . e

Figure 11-5. Specifying a pricing tier

After you complete these three easy steps, Visual Studio Code first builds the project
in Release mode (and the result will be visible in the Terminal) and then starts creating
the necessary resources inside your Azure subscription, and you will be able to see the
progress in a popup box that appears in the bottom-right corner of the environment.
When everything is ready, a popup message asks if you want to deploy or cancel. Click
Deploy. VS Code might tell you that some configuration is still missing, but this will be
added if you click the Add Config button on the warning dialog. As a final step, another
popup message asks if you want to enable automatic deployment. Click Yes so that the
application will be published.

269

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

When deployment is completed, the browser automatically launches the newly
published application (see Figure 11-6). If this does not happen, you can right-click the
application name in the APP SERVICE view of the Azure Side Bar and select Browse
Website, then click the Open button in the dialog that informs you about the fact that an
external program is being launched.

) | Home page - helloweb x == = o X

C m (%) https://vscodedistilled.azurewebsites.net A {8 = o

helloweb Home Privacy

Welcome

Learn about building Web apps with ASP.NET Core.

© 2023 - helloweb - Privacy

Figure 11-6. The web application running in the cloud

You need no additional steps. Your application is up and running in the browser,
hosted in your Azure subscription. You can further manage your Azure services and
resources, both within Visual Studio Code and in the Azure portal (https://portal.
azure.com). Though managing resources in the Azure portal is a bigger topic and is out
of the scope of this chapter, Figure 11-7 shows the management page for the sample
web application, where you can see the full list of available settings on the left side and
information on the deployment, the data center, and statistics in the main view.

270

https://portal.azure.com
https://portal.azure.com

Microsoft Azure

B Search resources, senvices, and docs (G+/)

CHAPTER 11

DEPLOYING APPLICATIONS TO AZURE

& | P

progalex@hotmail.com S
wa

(@ vscodedistilled = -
= A

i Browse [Stop Restart Delete () Refresh L Download publish profile) Reset publish profile =*-
| & Overview
~. Essentials
B Activity log
Resource group (move) : appsve_windows_centralu Default domain : vscodedistiled azurewebsites.net
. Access control (JAM)
- ! Status App Service Flan ¢
& Tags Ogerating Sys ows
f Diagnose and solve problems Azur male Health Check Con’

Q' Microsoft Dafender for Cloud

Events (preview) Tags (it t

Deployment Properties Monitoring Logs Capabilities Notifications Recommendations
2 peployment slot

IR SN & Web app

B Deployment Center Jarne vscodedistilled
Settings Publishing model Code

I configuration

B2 Domains

Subscription 1D

ik Authentication

@ Application insights

Figure 11-7. Managing App Services in the Azure portal

Creating and Deploying Azure Functions

Put succinctly, Azure Functions (https://docs.microsoft.com/en-us/azure/azure-
functions) is a service that allows you to run code on-demand in the cloud, and it is
considered part of the growing trend of serverless computing. The biggest benefit of
using Azure Functions is that functions are triggered only when invoked, which not only
reduces the use of cloud resources but also reduces maintenance and infrastructure
needs, thereby providing more cost savings.

Configuring Visual Studio Code

Azure supports writing functions in several languages, such as C#, Python, Java,
JavaScript, and Rust. Usually, tools are available for different development environments
to write Azure Functions, such as Visual Studio 2022, and Visual Studio Code is no
exception.

271

https://docs.microsoft.com/en-us/azure/azure-functions
https://docs.microsoft.com/en-us/azure/azure-functions

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

The first thing you need to develop Azure Functions with VS Code is Azure Functions
Core Tools. This set of command-line tools is required to run the tasks necessary to
develop, debug, and publish functions. On Windows, you have two ways to install these
tools: download the installer for Windows from the official website (https://bit.
ly/3f11HxR) or use the following command that leverages npm on Node.js and that you
can run from a Terminal window in VS Code or from a developer command prompt:

> npm 1 -g azure-functions-core-tools@4 --unsafe-perm true

I recommend using the latter command-line method to install the tools, because
Visual Studio Code might not recognize that the tools were installed via the installer
package.

On macOS§, you need to run the following commands:

> brew tap azure/functions
> brew install azure-functions-core-tools@4

On the latest version of Ubuntu, the required commands are the following:

> wget

-q https://packages.microsoft.com/config/ubuntu/20.04/packages-
microsoft-prod.deb

> sudo dpkg -i packages-microsoft-prod.deb

The installation commands vary depending on the Linux distribution, so you can
locate the appropriate commands at https://github.com/Azure/azure-functions-
core-tools#linux.

Once you have installed Azure Functions Core Tools, you need to install the Azure
Functions extension for Visual Studio Code (see Figure 11-8).

272

https://bit.ly/3f1lHxR
https://bit.ly/3f1lHxR
https://github.com/Azure/azure-functions-core-tools#linux
https://github.com/Azure/azure-functions-core-tools#linux

CHAPTER 11

>Q = Extension: Azure Functions - helloweb - Visual Studic Code [Administrator]

EXTENSIONS: MARKETPL.. W O = -
azure functions

Azure Functions & 17M % 35
An Azure Functions extension f...
& Microsoft Install

Azure Tools 723K % 25
n Get web site hosting, SQL and ...
& Microsoft

Azure Functions snip... <16
Azure Functions snippets for C...
Hamza Hawkins

vscode-azure-functio... @ 246

£ Microsoft =0

Durable Functions

<+> Monitoring/debuggi

DurableFunctionsMonitor m

SQL Bindings 13M
Enables users to develop and p...
& Microsoft

Azure Serverless Tools <& 10k
An extension pack of tools for ...

I @

Marcus Lyons
denofunc extension < 230

@\ VSCode extension as denofunc...
7" horihiro
Azure Account D 275ms

¥ @0A0 & Blhelloweb Azure: progalex@hotmailcom

Extension: Azure Functions X

DEPLOYING APPLICATIONS TO AZURE

DB Om;e - o X

Azure Functions w13

/ \ & Microsoft | @ 1720690 | % % % % % (25)

An Azure Functions extension for Visual Studio Code.

/ @

Azure Functions for Visual
Studio Code

Use the Azure Functions extension to quickly create,
debug, manage, and deploy serverless apps directly
from VS Code. Check out the Azure serverless
community library to view sample projects.

Visit the wiki for more information about Azure
Functions and how to use the advanced features
of this extension.

I Sign up today for your free Azure account
and receive 12 months of free popular
services, $200 free credit and 25+ always free

| services ¢ Start Free, °

Create your first serverless app

Figure 11-8. The Azure Functions extension for VS Code

Categories

Azure

Extension
Resources

Marketplace
Repository
License
Microsoft

More Info

Published 10/20/2017,
42

3/2023

A1

Last

released

Identifier =
azuretools.vscode

azurefunctions

The Azure Functions extension also needs the Azure Account one, which you already

installed previously.

Creating Azure Functions

With the Azure Functions extension installed, VS Code simplifies the way you can create

Azure Functions projects. For the current example about deploying Azure Functions, I

show how to create a function stub using the built-in templates, but you can certainly

use existing Azure Functions projects created with other environments or sample

projects.

If you are starting with new code, you first need to have (or create) a new folder on

disk where the new projects will be created. For the next example, I created a folder on
disk called C:\VSCode\AzureFunctionsDistilled.

273

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

When you have the folder ready, in Visual Studio Code enable the Command
Palette and search for the command called Azure Functions: Create New Project (see
Figure 11-9).

®] File Edit Selection View Go - AzureFunctionsDistilled - Visual Studio Code [Administrator] DE maon - (a] X

»azure functio r-sl

Azure Functions: Add binding...

Azure Functions: Add New Setting...

Azure Functions: Browse Website

Azure Functions: Configure Deployment Source...
Azure Functions: Connect to GitHub Repository...
Azure Functions: Copy Function Url

Azure Functions: Create Function App in Azure...
Azure Functions: Create Function App in Azure... (Advanced)
Azure Functions: Create Function..

Azure Functions: Create Slot...

Azure Functions: Decrypt Settings

Figure 11-9. Creating a new Azure Functions project

Note There are two additional commands available to create Functions:

Create Function App in Azure and Create Function App in Azure (Advanced). Both
commands allow you to create a project that is automatically provisioned in your
Azure subscription, together with a local project for development and debugging. In
this book, I’'m not using these commands in order to better highlight the different
phases of development and debugging, and then deployment.

When you click this command, an eight-step wizard starts. First, you are asked to
select a target folder on disk, so pick the one you created previously. Then you are asked
to select a language. For the sake of consistency with the previous examples, I selected
C#, but you are free to use a different one. In the third step, you are asked to specify a
runtime platform. If you selected C#, the wizard shows .NET versions and you can select
the latest.

Note The wizard identifies .NET 7 as .NET 7 (Isolated). Understanding what this
means requires taking a step back into the previous versions of Azure Functions.
Previously (and before .NET 5), Azure Functions only supported a tightly integrated

274

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

mode for .NET functions, which run as a class library in the same process as the
host. Though this mode provides deep integration between the host process and
the functions, this integration also requires a tighter coupling between the host
process and the .NET function. For example, .NET functions running in-process
are required to run on the same version of .NET as the Functions runtime. To run
outside these constraints, you can now choose to run in an isolated process.
.NET 7 (Isolated) then means that support for running functions out-of-process is
allowed.

Ifyou selected another language, the list of target platforms will change depending
on your language of choice.
In the fourth step, you have the option to select a project template (see Figure 11-10).

®] File Edit Selection View Go -+ Welcome - AzureFunctionsDistilled - Visual Studio Code [Administrator] DE Domnm - (=] X

] welcome X € Create new project o -

Select a template for your project’s first function
. S Skip for now
V[S L Timer trigger
i Azure Queue Storage trigger
Ed]tlr Azure Blob Storage trigger

Azure Event Hub trigger

Start Azure Service Bus Queue trigger

Y oper Azure Cosmos DB trigger nake Vs Code
B oper Curable Functions Orchestration
Op

Azure Service Bus Topic trigger

Azure Event Grid trigger

HTTP trigger(s) from OpenAPI V2/V3 Specification (Preview)
2'9 Clonewi repusiury..

Figure 11-10. Selecting an Azure Functions project template

The project template you select here is not really relevant to the current example,
whose goal is not to go into the details of Azure Functions development but rather to
show how quick and easy building and deploying functions is. I selected the HttpTrigger
template, which generates simple code that defines a function that is triggered on Azure
when an HTTP/HTTPS request is intercepted, sending a response back.

In the fifth and sixth steps, you first enter a name for the new project (or leave the
default project name, like AzureFunctionsDistilled in the current example) and
then enter a namespace that will be used in the code. The namespace should be in
the form CompanyName. Function; for example, my namespace is AlessandroDelSole.
AzureFunctionsDistilled.

275

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

In the seventh step of the wizard, you specity a security access level: Anonymous,
Function, or Admin. Table 11-2 provides a short description of each authorization level.

Table 11-2. Azure Functions Authorization Levels

Level Description

Anonymous No authorization required; all HTTP requests pass.

Function Function authorization level is based on security keys generated in the Azure portal.
Host keys (at the application level) and function keys (at the function level) can work as
security keys in the Function level.

Admin Similar to the Function level, but only works with host keys (at the app level).

For the current example, you can just select the Anonymous level. After a few
seconds, the new project will be available and you will be ready to edit the code
depending on your needs (see Figure 11-11).

Note The function name defined by the FunctionName attribute should always
be lowercase by convention. In the current example, make sure to change from
FunctionName("AzureFunctionsDistilled") to FunctionName("azure
functionsdistilled").

276

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

= AzureFunctionsDistilled.cs - AzureFunctionsDistilled - Visual Studio Code [Administrater] [0 B [0 08 - (m] £

@ EXPLORER C* AzureFunctionsDistilled.cs U X

~ OPEN EDITORS > {} AlessandroDelSole.AzureFunctionsDistilled > 48 AlessandroDelSole. AzureFunctionsDistilled.AzureF
X © AzureFunctionsDistille.. U 1 using System.Net;
~ AZUREFUNCTIONSDISTILLED 2 using Microsoft.Azure.Functions.Worker;
> ivscode . 3 using Microsoft.Azure.Functions.Worker . Http;
0 3 bin 2 using Microsoft.Extensions.Logging;
> obj 6 namespace AlessandroDelSole.AzurefunctionsDistilled
> Properties 7 {
© .gitignore u 1 reference
O AzureFunctionsDistilled.cs U 2 public class AzureFunctionsDistilled
& AzureFunctionsDistilled.csproj U ! { 5 zei B
{} hostjson u 18 private readonly ILogger _logger;
} local.settingsjson 11
C* Program.cs U 0 refarances
12 public AzureFunctionsDistilled(ILcggerFactory loggerFactery)
13 {
14 _logger = loggerFactory.CreatelLogger<AzurefunctionsDistill
15 }
16
17 ! [Function("azurefunctionsdistilled”)]
18 public HttpResponseData Run([HttpTrigger(AuthorizationLevel.An
19 {
20 _logger.LogInformation("C# HTTP trigger function processed
21
22 var response = req.CreateResponse(HttpStatusCode.OK);
23 response.Headers . Add("Content-Type”, "text/plain; charset=
24
25 response.WriteString("Welcome to Azure Functions!™);
26
27 return response;
28 }
29
> OUTLINE @}
» TIMELINE 31

¥ Pmaster @ @0A0 & B AwreFunctionsDistilled Azure: progalex@hotmail.com Ln 17, Col 1 {45 selected) Spacess4 UTF-8 CRIF & &

Figure 11-11. Editing the Azure Functions project in VS Code

Note When you create an Azure Functions project, a local Git repository is also
automatically initialized. At this writing, the extension settings do not allow for
changing this behavior.

You are now working fully locally, which is a good opportunity to debug your
code on a development environment before promoting the code to the Azure remote
environment. Before debugging, extend the Run method as follows:

[Function("azurefunctionsdistilled")]
public HttpResponseData Run([HttpTrigger(AuthorizationLevel.
Anonymous, "get", "post")] HttpRequestData req)

277

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

{
_logger.LogInformation("C# HTTP trigger function processed a
request.");
// Parse parameters in the query string
var queryParameters = HttpUtility.ParseQueryString(req.
Url.Query);
// Assume a parameter called "name" is found
var input = queryParameters["name"];
var response = req.CreateResponse(HttpStatusCode.OK);
response.Headers.Add("Content-Type", "text/plain;
charset=utf-8");
// If a value for the "name" parameter is available, it is
displayed
if(!string.IsNullOrEmpty(input))
response.WriteString($"Welcome {input}");
else
response.WriteString("Welcome to Azure Functions!");
return response;
}

As you can see from the comments, the code parses the URL of the function to detect
if any parameters where added in the form of a query string. If a parameter called name is
found, the value is retrieved and displayed. Otherwise, a standard message is displayed.

At this point, press F5 to start debugging, exactly as you would do with any C#
project, and after a few seconds the Terminal will show not only the compiler output but
also a local URL that you can use to test the code (see Figure 11-12).

278

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

K = AzureFunctionsDistilled.cs - AzureFunctionsDistilled - Visual Studio Code [Administrater] [0 @ 0 08 — =] 2%
RUNAN.. | [»| Attach ~ | 3 .- € azureFunction i I D F

“» VARIABLES € AzureFunctionsDistilled.cs > {} AlessandroDel

1 using System.Net;

2 using Microsoft.Azure.Functions.Worker;

3 using Microsoft.Azure.Functions.Worker.Http;
5

L]

7

using Microsoft.Extensions.logging;

namespace AlessandroDelSole.AzureFunctionsDistilled
{ L
public class AzureFunctionsDistilled
a !

2 references
1e private readonly ILogger _logger;
11
U reterénces
R VAICH 12 public AzurefunctionsDistilled(ILoggerFactory loggerfactory)
13 {
14 _logger = loggerFactory.Createlogger<AzurefunctionsDistilli
15 3
16
< b L 4 TFunctionl "azurefunctinnsdistilled”11
PROBLEMS OUTPUT TERMINAL AZURE DEBUGCONSOLE [Hheststat-Task o/ 4+~ M & - ~ X
[2023-82-27T13:80:34.147Z) Found C:\VSCode\AzureFunctionsDistilled\AzureFunctionsDistilled.csp ~
~ CALL STACK Running roj. Using for user secrets file configuration.
Thread #26352 RUNNING .
Functions: '
Thread #19756 RUNNING
Thread #28904 RUNNING azurefunctionsdistilled: [GET,POST] http://localhost:7@71/api/azurefunctionsdistilled
Thread #25792 RUNNING
= For detailed output, run func with --verbose flag.
= 372 F AMIA r o P] s
[reac S1a172 SUNNING [2823-82-27713:09:37.188Z] Worker process started and initialized.
Thread #10996 RUNNING [2623-82-27T13:99:48.8771) Host lock lease acquired by instance ID ° 20

6320"
 BREAKPOINTS Rt
() All Exceptions
User-Unhandled Exceptions

¥ Pmaster @ @0A0 ¥1 & Attach to NET Functions (AzurefunctionsDistilled) @ B AmureFunctionsDistiled Azure: progalex@hotmailcom CRLF C#

Figure 11-12. Debugging an Azure function

The URL shown in the Terminal is the following: http://localhost:7071/api/
azurefunctionsdistilled. 7071 is the port of the local development server, while
azurefunctionsdistilled is the name (all lowercase) of the function defined in
the code, and both will vary depending on the projects you create. You can paste the
aforementioned URL into the address bar of your browser plus a query string. In the
following example, my first name is passed to the name parameter:

http://localhost:7071/api/azurefunctionsdistilled?name=Alessandro

At this point, press Enter. Figure 11-13 shows the function running in the browser
and listening for HTTP GET and POST calls.

279

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

im} [tocalhost7071/apifazurefunctior X | = = (m] X
<« O m (@ localhost:7071/api/azurefunctionsdistilled?name=Alessandro A g = @ o - ()

Welcome Alessandro

Figure 11-13. Running an Azure function locally

Assuming that you have done all your local development, debugging, and testing,
you can publish the Azure function to the cloud, as described next. However, before the
function is deployed to Azure you need to edit the web request timeout, otherwise any
HTTP or HTTPS call will result in an Error 502 (Bad request). To accomplish this, open
Visual Studio Code’s Settings, and type request timeout in the search bar. In the Azure
Functions: Request Timeout setting, enter 60 as the timeout in seconds. Finally, save the
settings and you are ready to go.

Deploying Azure Functions

Deploying Azure Functions to your subscription in Visual Studio Code is an easy
task. You can right-click the Function App node, under the subscription name in the
RESOURCES, view and then select the Create Function App in Azure command (see
Figure 11-14).

280

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

— AzureFunctionsDistilled.cs - AzureFuncti
AZURE

~ RESOURCES &

Windows Azure MSDN - Visual Studio Ultimate

@& App Services
% Azure Cosmos DB

£

[# Container Apps
4> Function App

G Postgres: Create Function App in Azure..

LJ PostgreSi Create Function App in Azure... (Advanced)
3 static we
= Storage z Refresh

> B virtual machines

vow v v v v v

Figure 11-14. Initiating the deploy process

The Create Function App in Azure (Advanced) option is not discussed here because
it relates to creating a function app with custom settings and resources. Once you
click the highlighted shortcut, the Command Palette shows a quick wizard consisting
of three steps. In the first step, specify a unique name (for the current example it is
azurefunctionsdistilled) and then you need specify the target platform; the available
options depend on the technology you used to build the app. Select the same platform
you selected when creating the project.

In the last step of the wizard, you need to specify a data center location (see
Figure 11-15).

g = AzureFunctionsDistilled.cs - AzureFunctionsDistilled - Visual Studio Code [Administrater] [0 @ 0 08 — =] X
ATUR “ Create new Function App in Azure (3/3)
v RESOURCES | Eelect a location for new resources | eAzureFunctionsD
v Windows Azure o E
Jorth Europe .
> (& App Services S 't i lorker;
weden Cantral .
> % Azure Cosmos orker: Heep;
0 : UK South ' H
> ® Container App
s S West Europe
v > Function App Central US FunctionsDistill]
> (O PostgresQL se :
? " South Africa North .
> [PostgreSQL se c {ind
entral India .
> [E static Web Ap stilled
= East Asia
> = Storage accou -
S B vt Japan East
irtual machi ;
Korea Central -logger;
& Canada Central
3 France Central illed({ILoggerFac

13 T

Figure 11-15. Selecting a location for the data center

281

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

If you have experience with Azure development, you know that this is a crucial
choice, because the location you select has an impact on the costs charged to your
subscription. At least for this example related to development purposes, make sure that
you select the data center that is closest to your location (in my case it is West Europe),
which translates to less latency and less bandwidth required during development and
deployment, and corresponding cost savings, especially if your subscription does not
have a spending limit enabled.

Note Not all Azure regions and data centers offer the same services. For real-
world scenarios, you might want to look at the official documentation about
choosing the appropriate Azure region based on your location, needs, and
requested services (https://azure.microsoft.com/en-us/global-
infrastructure/geographies).

At this point, Visual Studio Code first builds the project in Release mode and then
starts publishing the function to Azure. You can follow the progress in the Output
panel and with the popup box that shows the name of the currently running task (see
Figure 11-16).

|

(1]
»
x

QuUTPUT TERMINAL AZURE: ACTIVITY LOG DEBUG CONSOLE Azure Functions ~

L AT.wa Pri. LOSUE ANE APR JT1 VALE PAGH ASF TOLWE ©1 UL LAUHOULILALICUTUILUG CALILI. ..
2:19:42 PM: Creating App Service plan "ASP-azurefunctionsdistilled-bfb3”...

2:19:48 PM: Successfully created App Service plan "ASP-azurefunctionsdistilled-bfbs”.

2:19:48 PM: Creating storage account “azurefunctionsdist7@8539" in location “West Europe” with sku “Standard_LRS"...
2:208:1@ PM: Successfully created storage account "azurefunctionsdist7ees539”.

2:20:1@ PM: Creating new Log Analytics workspace...

2:20:1@ PM: Successfully created new Log Analytics workspace "workspace-azurefunctionsdistilled”.

2:20:11 PM: Verifying that Application Insights is available for this location...

2:20:12 PM: Creating Application Insights rescurce "azurefunctionsdistilled”...

2:20:16 PM: Successfully created Application Insights resource “azurefunctionsdistilled”.

2:20:16 PM: Creating new function app "azurefunctionsdistilled”...

2:20:52 PM: Successfully created function app "azurefunctionsdistilled": https://azurefunctionsdistilled.
azurewebsites.net

° master” @ @O0A0 ¢ Attach to NET Functions (AzureFunctionsDistilled) & B3 AzureFunctionsDistilled Azure: progalex@hotmailcom CRLF ¢c# &

Figure 11-16. Publication of the Azure function is in progress

After the last step, the function will be up and running in the cloud, which you can
easily verify by opening the function’s URL in the browser, as shown in Figure 11-17.
Remember that the function’s URL is made by the unique name you supplied when
creating the project, followed by the azurewebsites.net domain name and by the /

282

https://azure.microsoft.com/en-us/global-infrastructure/geographies
https://azure.microsoft.com/en-us/global-infrastructure/geographies

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

api/<functionname> part. In the case of an Azure Function, you can add the query string
required to trigger the function itself. In Figure 11-18, you can see how the same query
string used locally has also been supplied to the remote URL.

im} D https://azurefunctionsdistilled.a: x | —+ - (8] X
e G G] Ifl tes,net.-"ap!_fz;zur-:vr'u".ct:f:r‘sci:s'tlli-:—d?narnv:‘=a‘-.|ess:lndr-:! o 3 AN fa {E @ ‘ s -"'I;]

Welcome Alessandro

Figure 11-17. The Azure function is running in the cloud

As you have seen, Visual Studio Code makes it very simple not only to deploy an
Azure Function, but also to create a project and interact with the Azure subscription
directly from within the environment, which improves overall productivity.

Note To avoid unexpected charges or consumption of your Azure credit, |
recommend deleting all the resources that you no longer use, such as the sample
applications created in this chapter. In VS Code you can quickly delete apps and
functions by right-clicking on their name in the APP SERVICE and FUNCTIONS
panels (respectively) of the Azure Side Bar and then selecting the appropriate
Delete command. Additional resources can be deleted in the Azure portal.

Deploying Docker Images

Put succinctly, Docker (https://www.docker.com/) is a platform that allows you to
publish an app and all of its dependencies through containers. This allows you to have
applications that are independent from one another and that work autonomously.

283

https://www.docker.com/

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

Containers are deployed to a host such as Azure or another cloud service, and they
are widely used with architectures based on microservices. In order to create a Docker
container, you need to accomplish the following steps:

e Preparing a so-called Docker image for your app. An image contains
the source code, the app dependencies, and the configuration
information.

e Uploading the local Docker image to a remote container registry.

o Deploying the Docker image from the container registry to a cloud
host, such as Azure App Service.

There are many ways to create Docker images and deploy apps to cloud-hosted
containers, and several development environments provide integrated tools to do so,
and Visual Studio Code is no exception. In this section you learn how to set up and
publish your apps to Docker from within Visual Studio Code. It is important to mention
that the focus is on the Visual Studio Code tools, not the full Docker possibilities. You will
get the proper, necessary information but summarizing everything about Docker in this
section is not possible. Do not forget to bookmark the official VS Code documentation
(https://code.visualstudio.com/docs/containers/app-service) that you can check
when you need to go to the next level.

Docker Prerequisites

Publishing apps to Docker containers requires the following prerequisites:

e The Docker Desktop software. A download link is automatically
provided when you visit the Docker website (https://www.
docker.com).

e The Docker extension for Visual Studio Code (see Figure 11-18).

o The Azure App Service extension for Visual Studio Code. You
installed this previously if you followed the examples about
publishing web applications to Azure.

284

https://code.visualstudio.com/docs/containers/app-service
https://www.docker.com
https://www.docker.com

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

) FEile Edit Selection Yiew Go Bun e Extension: Docker - helloweb - Visual Studio Code DE0Onr - 8] *

(TENSIONS: MARKETPLACE Y O = - Extension: Docker X (HEf o=

Docker w220
Docker & Microsoft | @ 21612228 | Hdkd Kk
Makes it easy to create, manage, an...

& Microsoft Makes it easy to create, manage, and debug cont...

__n, Docker Explorer & 5206 K 45 m i
Y Dacker tai Docker 1 . ;
JManage Docker Containers, Docker ... This extension is enabled globally

Jun Han

DETAILS

= Docker Compose
T Rg Manage Docker Compose services

33 4
plc2u

Docker for Visual Studio Code Categories

Docker Linter DIBEK K 2 version v1.24.0 [installs 228
Lint perl, python and/or ruby in your.
Henrik Sjo6h =0 ! AnxeFipeiines BB

ming

Linters | | Azure

Docker Extension Pack 1326 % 5 The Docker extension makes it easy to build,
Manage Docker Containers, Docker ... manage, and deploy comtainerized applications
docker jun Han [instal | : s
from Visual Studio Code. It also provides one- Extension
click debugging of Node.js, Python, and .NET Resources
@ Docker Run D ST Kk 5 i 9ging Js. Pyt
Start your docker containers automa. inside 3 container. Marketplace

% Georgekutty Antony

R?[_‘CSI!OI"I'

ense

Docker Runner N
{ut:} Docker Integration for VSC
Zim

= vscode-docker-syntax o 38K
-"" Syntax highlighting for Dockerfiles.

dunstontc

Bocker WorkSpace{de... <

¥ @oho & he!.:web

Figure 11-18. The Docker extension for VS Code

The next examples are built on the HelloWeb C# project created in Chapter 9, but
remember that all the steps are platform- and language-agnostic. Having that said, open
the HelloWeb project in VS Code.

Creating the Application Image

The application image contains the source code and the dependencies. You create the
application image via the Docker Images: Build Image command, which is available in
the Command Palette (see Figure 11-19).

285

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

] File Edt Selection Yiew Go Run Terminal Help helloweb - Visual Studio Code oDB8emomn - (u] X
»docker build
Docker Images: Build Image.. o]

Figure 11-19. The command for building docker images

VS Code will ask if you want to add a Docker file to the project, so click Yes. This file
contains the Docker configuration, so it is a necessary asset. VS Code will then ask for
the application platform (see Figure 11-20). For this example, select .NET: ASP.NET Core.
In all the other cases, select the platform that matches the development framework you
used for your project.

®] FEile Edit Selection Yiew Go Program.cs - helloweb - Visual Studio Code [Administrator] DEOonr - (=] X

C pProgram.cs X Add Docker Files (1/2) m -

C Program.cs | Select Application Platform |

var builde
MET: ASP.NET Core (recently used)

1

2

3 // Add ser Nodejs

4 builder.Se .NET: Conscle
5 Python: Django
6

8

var app = | puthon: FastAPI
g Python: Flask
// Configu ° i

& = Python: General
a I (lapp.E i

1@ { Java

11 app.Us C++

12 // The Go narios, si
13 app.Us pupy

14 }

Figure 11-20. Selecting the application platform

At this point you are asked to choose between Windows and Linux as the host
system. For the current example, select Windows. In the following steps, Visual Studio
Code will ask you to specify:

o The port number that the application will use to listen to messages.

e Ifyouwant to include a Docker Compose file. This is optional and
you can click No.

At this point, a Docker file is generated, and the application image is built.
Figure 11-21 shows the Docker file in the active editor and the build results in the

Terminal.

286

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

) FEile Edit Selection Yiew Go Dockerfile - helloweb - Visual Studic Code [Administrator] DQom?o - O *

% Dockerfile X M=
@& Dockerfile >) FROM
FROM mcr.microsoft.com/dotnet/aspnet:7.@ AS base

WORKDIR [app
EXPOSE 5186

ENV ASPNETCORE_URLS=http://+:5186

FROM mcr.microsoft.com/dotnet/sdk:7.9 AS build
WORKDIR /src

9 COPY ["helloweb.csproj”, “./"]

1@ RUN dotnet restore “helloweb.csproj”

- I T T S TV I o

11 COPY . .

2 12 WORKDIR "/src/.”
13 RUN dotnet build "helloweb.csproj” -¢ Release -o fapp/build
14

15 FROM build AS publish
16 RUN dotnet publish “helloweb.csproj” -c Release -o /app/publish /p:UseAppHost=false

18 FROM base AS final
19 WORKDIR /app

PROBLEMS CUTRUT TERMINAL AZURE DEB! NSOLE - e A X

EBUG CONSOLE
po.-.en:l-.el[

view-23861-81+840e2a00e for .NET#16 ©.917 Determining projects to restore...#16 1.201 All projects are up-t ~] docker- r

o-date for restore.#16 1.837 helloweb -> /src/bin/Release/net7.0/helloweb.dll
#16 1.980 helloweb -> fapp/publish/

#16 DONE 2.8s

#17 [final 2/2] COPY --fromepublish fapp/publish .

#17 sha256:b551d041883da68374c8bf245445f@deaabdbde27695cfe251e252e80e75¢532

#17 DONE ©.1s

#18 exporting to image

#18 sha256:e8c613e@7b0b71 13389306041 7759a18d422180f 2b4dc349fb57dc6bT1dcabed

#18 exporting layers ©.1s done#18 writing image sha256:a3ed75001c812¢f71de137bfd141f7ecd726fd6056433d256Fd66216
c476ase3 done

#18 naming to docker.io/library/helloweb:latest done

#18 DONE ©.15Jl] Terminal will be reused by tasks, press any key to close it.

¥ @0A0 @ Blhelloweb Ln1,Col1 Spaces4 UTF-8 CRLF Dockerfle & 0Q

Figure 11-21. The results of building the app image

The application image has been created locally, and the next step is uploading the
image to a remote container registry. It is worth mentioning that the Docker extension
shows both the local and remote images. Keep this in mind, so you will not get confused.

Uploading the Application Image to a Container Registry

The application image built previously cannot be directly published to an App Service or
Container app. It first needs to be published to a container registry. As the name implies,
a container registry holds the list of application images.

To accomplish this, open the Docker panel and click the Connect Registry shortcut
in the REGISTRIES view (see Figure 11-22). Also specify Azure as the registry provider.

287

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

%] FEile Edit Selection View Go Bun o+ Dockerfile - helloweb - Visual Studic Code [Administrator] DEOn® - =] X
DOtk Select the prowvider for your registry m
* CONTAINERS s
Zure
E Tutorial: Get startec Docker Hub

Generic Docker Registry

GitLab

o
 MACE 7 FROM mcr.microsoft.com/dotnet/sdk:7.0 AS build
> [helloweb 8 WORKDIR /src
e 9 COPY [“helloweb.csproj”, "./"]
1@ RUN dotnet restore "helloweb.csproj”
11 COFY . .
12 WORKDIR “/src/."
13 RUN dotnet build “helloweb.csproj” -c Release -o fapp/build
14
“ REGISTRIES 15 FROM build AS publish
Q Connect Registry.. 16 RUN dotnet publish “helloweb.csproj” -c Release -o fapp/publist

18 FROM base AS final

19 WORKDIR /app

28 COPY --from=publish /fapp/publish .
21 ENTRYPOINT [“dotnet™, "helloweb.dll"]

Figure 11-22. Specifying the registry provider

Visual Studio Code now connects to the registry service of your Azure subscription,
but you likely do not have any registries. So, right-click the subscription name
and select Create Registry. At this point, a wizard starts and, in Step 1 of 4, you
need to enter a registry name. For consistency with the current example, enter
visualstudiocodedistilled and then press Enter. In Step 2 of 4, you are then prompted
with a list of stock-keeping units (SKUs). Available options are Basic, Standard, and
Premium. Select Basic and press Enter. Step 3 of 4 requires you to select a resource group
from a list of existing ones, or to create a new one. You can select one of the resource
groups generated for the previous sections of this chapter. In the Step 4 of 4, you specify
aregistry location. Select the data center that is closest to your place of living. After a
few seconds, the new registry will be visible in the REGISTRIES view and the application
image will appear in the IMAGES view, as shown in Figure 11-23.

288

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

®) File Edit Selection View Go Run -+ D¢

~ CONTAINERS
[2 Tutorial: Get started with Docker

+ IMAGES S8 00O
~ B helloweb
[latest 17 minutes ago

~ REGISTRIES
v R Azure
v Windows Azure MSDN - Visual Studio...
i\’ §& visualstudiocodedistilled
: i > iE Tasks

Figure 11-23. The new registry has been created on Azure

Uploading the image requires this to be tagged with the registry name. Right-click
a build name (in Figure 11-23 the build name is identified as 1latest 17 minutes
ago) and select Tag. A tag should have the following form: registry/imagename:tag.
Visual Studio Code, via the Docker extension, automatically provides a valid tag, as
demonstrated in Figure 11-24.

®] File Edit Selection Yiew Go Run -+ Dockerfile - helloweb - Visual Studio Code [Administrator] DB Do - (m] s

CONTAINERS

[2 Tutoriak Get starteo v

s ‘Enter’ to confirm or ‘Escape’ to cance .

e
WORKDIR /app E:
EXPOSE 5186

ENV ASPNETCORE_URLS=http://+:5186

Figure 11-24. Supplying the image tag

289

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

Now the image can be pushed to the registry. Right-click the image name again and
select Push. You will be asked to select an existing registry or create a new one. Select the
one created previously and press Enter.

The very last step is confirming the full address of the target registry, which includes
the image tag. Figure 11-25 demonstrates this. Visual Studio Code automatically provides
the appropriate definition, so you can just press Enter.

®] FEile Edit Selection View Go BRun o+ Dockerfile - helloweb - Visual Studic Code [Administrator] DE0n® - (=] X

DOCKER

~ CONTAINERS Tag image as... (Press ‘Enter’ to confirm or ‘Escape’ to cancel)
E Tutonal: Get started v wrwner

2 WORKDIR /app

3 EXPOSE 5186
4
5

ENV ASPNETCORE_URLS=http://+:5186

Figure 11-25. Supplying the full image tag

The image will now be uploaded to the container registry. When ready, right-click
the Azure subscription name in the REGISTRIES view and make sure the remote image
is now visible in both the IMAGES and REGISTRIES views.

Deploying the Docker Image to Azure

The final step is uploading the application image from the container registry to an Azure
App Service or Azure Container App. For the current example, the Azure App Service
is used.

In the REGISTRIES view, right-click the build name and then select Deploy Image to
Azure App Service (see Figure 11-26).

290

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

v REGISTRIES 15 FROM build AS publish
& ~ A Azure 16 RUN dotnet publish “helloweb.csproj” -c Release -o fapp/publist
R Windows Azure MSDN - Visual Studio... 17

18 FROM base AS final

19 WORKDIR /app

286 COPY --from=publish /fapp/publish .

K helloweb 21 ENTRYPOINT ["dotnet”, "helloweb.d1l"]
[latest 31 minut .

~ @ visualstudiocodedistilled
> S Tasks

Pull Image

Copy Full Tag
> NETWORKS opY :

> VOLUMES Copy Image Digest

> contets
* HELP AND FEEDBACK Deploy Image to Azure Container Apps...

Bl Read Extension Docums

® wWatch Extension Tutoriz Untag Image...

Yr Get Started with Docket Delete image...

E;:g' Open Docker Extension Walkthrough
© Review Issues

¥ @0A0 & Blhelloweb Azure: progalex@hotmailcom In1,Col1 Spacesd4 UTF-8 CRLF Dockerile & 0Q

Figure 11-26. Preparing to publish the image to Azure
At this point, Visual Studio Code will open the Command Palette and start a wizard
made of a few steps. The following are the most relevant:

1. Entering a globally unique name for the web application. Specify a
name of your choice and press Enter.

2. Specifying a Linux service plan. This is required because your
image will be hosted on a Linux server. If you do not have one,
click the Create New App Service Plan command.

3. Specifying the pricing tier. Select Free (F1) and press Enter.

When the last step is completed, Visual Studio Code will start uploading the Docker
image to the new web application service. When finished, Visual Studio Code shows the
success message shown in Figure 11-27.

(® Successfully created web app “hellowebdistilled": & x
https://hellowebdistilled.azurewebsites.net

Source: Docker (Extension)

In1,Col1 Spaces4d UTF-8 CRLF Dockerfle & (3

Figure 11-27. The Docker image was successfully uploaded

291

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

If you click Open Site, the application will be regularly opened in the browser (see
Figure 11-28) but, behind the scenes, it has been packaged into a Docker container.

[| | HomePage - helloweb x | - (] X
o " £ N\
G m | httpsy//hellowebdistilled.azurewebsites.net = @ O i)

helloweb Home Privacy

Welcome

Learn about building Web apps with ASP.NET Core.

© 2023 - helloweb - Privacy

Figure 11-28. The containerized app running in the browser

There is obviously much more about Docker that cannot be included in this
discussion, but you have seen how the Docker and Azure extensions provide an
integrated experience to Visual Studio Code.

Summary

Once again, Visual Studio Code demonstrates its power and versatility even with cloud
development based on Microsoft Azure. With the Azure extensions, you have access to
your subscriptions directly from within the environment.

With specialized extensions, such as Azure App Service and Azure Functions, you
can create, configure, and deploy your web applications and functions with limited effort
and a few mouse clicks, reducing the need to manage resources in the Azure portal only
to situations in which you need custom configurations. In addition, multiple languages

292

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

and environments are supported, including .NET, Java, Python, and Node.js, extending
the cloud development possibilities to a larger number of companies and developers.

In the last part of the chapter, you learned how to create Docker containers that can
be managed and published directly from within Visual Studio Code. Continuing on
your cloud journey, the next and last chapter of the book describes how to consume Al
services from Visual Studio Code.

293

CHAPTER 12

Consuming Al Services

Without a doubt, artificial intelligence represents one of the most important topics for
the present and future of application development.

All the biggest software vendors offer their own Al solutions and services, and many
applications are already based on Al even if the user does not notice this.

As a developer, you need to have some knowledge of the possibilities offered by
artificial intelligence and how you can implement solutions in your applications.

This chapter explains how you can consume Al services when developing apps from
Visual Studio Code, taking advantage of coding and debugging tools when using client
libraries. Obviously, the focus cannot be on explaining what artificial intelligence is,
which branches of Al exist, and all the available offers. Instead, the focus of the chapter
is explaining the steps you need to follow to consume most Al services from Visual
Studio Code.

With regard to this, because you have created a Microsoft Azure account for the
previous chapter, a few services from Azure are used. Due to the relevance of this topic,
code examples are provided for C#, JavaScript, and Python. More specifically, you learn
how to analyze an image and extract relevant information.

Note Artificial intelligence services, usage, and implementations should always
be done according to the so-called Responsible Al principles. This basically
means that artificial intelligence should be offered with good intentions, to
empower people and businesses to achieve positive results. You can read
Microsoft’s point of view on their Al blog (https://blogs.microsoft.com/
on-the-issues/2023/02/02/responsible-ai-chatgpt-artificial-
intelligence/)

295
© Alessandro Del Sole 2023

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_12

https://blogs.microsoft.com/on-the-issues/2023/02/02/responsible-ai-chatgpt-artificial-intelligence/
https://blogs.microsoft.com/on-the-issues/2023/02/02/responsible-ai-chatgpt-artificial-intelligence/
https://blogs.microsoft.com/on-the-issues/2023/02/02/responsible-ai-chatgpt-artificial-intelligence/
https://doi.org/10.1007/978-1-4842-9484-0_12

CHAPTER 12

CONSUMING Al SERVICES

Introducing Azure for Al

Microsoft Azure provides many artificial intelligence services, and most of them are
available via API and Software Development Kits (SDKs).
Table 12-1 provides a summary of the available services. Note that this list might

change in the future. You can periodically check the product page for updates (https://
azure.microsoft.com/en-us/products/).

Table 12-1. Most Important Azure Services for Al

Service

Description

Azure Bot Service
Azure Databricks

Azure Cognitive Services

Language Understanding
(LUIS)

Azure Machine Learning
Personalizer

Health Bot

Translator

Azure OpenAl

Azure Applied Al

Allows you to create conversational bots.
Provides support for working with Big Data.

A group of Al services to analyze images, faces, videos, speech, and
text.

Allows you to analyze natural language.

Azure service to train Al models.

Allows you to generate personalized customer experiences.
A specialized bot aimed to create healthcare assistants.
Provides machine translations via API calls.

Provides advanced language models for many use cases.

Provides specialized services to help businesses solve common
problems via Al.

The Al offer from Azure is really wide, so for this chapter, the choice is on the Azure

Cognitive Services, more specifically on the Computer Vision service. This service allows

you to analyze images and extract a lot of information. In the next section you learn how

to set up your projects in Visual Studio Code and how to invoke such a service.

Note

If you work behind a proxy or company firewall, your code might not

be able to reach the Azure services. If this is the case, contact your network
administrator to open the necessary ports.

296

https://azure.microsoft.com/en-us/products/
https://azure.microsoft.com/en-us/products/

CHAPTER 12 CONSUMING Al SERVICES

General Considerations

Generally speaking, Al services from Azure can be consumed via REST APIs. In this

way, any platform and language can invoke the services. For some services, Microsoft
also provides client libraries that allow you to work in a way that is specific to a given
language or platform. For example, with C# and Python, these libraries make it possible
to work in an object-oriented and strongly-typed way. The code examples in this chapter
use the aforementioned client libraries, so that you can leverage all the code editor
features in VS Code. On Azure, services can be enabled in the Management Portal. This
certainly includes Cognitive Services with Computer Vision.

Introducing Computer Vision

Computer Vision is a group of Al services included in the Cognitive Services (https://
azure.microsoft.com/en-us/products/cognitive-services). Table 12-2 provides a
description of services included with Computer Vision.

Table 12-2. Computer Vision Services

Service Description

Computer Allows you to extract rich information from images and videos, including image
Vision understanding and text extraction.

Custom Vision Allows you to build custom image analysis services.

Face API Allows you to analyze and identify faces. It includes the Celebrity API that recognize
celebrities in images and videos.

Computer Vision services can be set up in the Azure Management Portal, as you will
see shortly, and can be consumed both via REST APIs and client libraries.

Setting Up Computer Vision Services

The sample code of the next examples shows how to analyze an image and retrieve
information from it. Before starting, you need to set up an endpoint in the Azure
Management Portal (https://portal.azure.com).

Following the lesson learned in Chapter 11, log in to the Azure Management Portal.

297

https://azure.microsoft.com/en-us/products/cognitive-services
https://azure.microsoft.com/en-us/products/cognitive-services
https://portal.azure.com

CHAPTER 12 CONSUMING Al SERVICES

Note There is no extension for Visual Studio Code that allows you to create Al
endpoints from within the development environment, so you need to set up the
resource inside the browser.

Once you are in the Portal, click the Create Resource button at the top-left corner of
the page. When the Create a Resource page appears (see Figure 12-1), click AI + Machine
Learning on the left. Finally, click the Create hyperlink under the Computer Vision item

on the right.

P Sewrch rescurces, senaces, and 0ocs (G4

Popular Azure senvices Sed mone 0 All sensces Popular Marketplace products See mare in Marketplace

Categories Azure wup e-mal,.\»o ® App-Service-Ul

Al 4 Maching Leaming

cnq ithoe Senvices A NVIDIA GPU-Cptimized VMI - v22.06.0
Q Spee-d n Wineows Server viext Datacentes: Asure Edition
Language service . NVIDIA GPU-Optimized PyTorch VM1 - v22.03.0
Compunor Vidon 2 Standard
8 ciiinaiinsism L R

Translates H Chatbet Pricing

]
we

IT & Management Tools

o “ Oni Maker 1“ NVIDIA GPU-Optimized TenscrFlow YMI - v22.02.0
W Create |Cocs | MS Lean N Creste| Leam mone
ed Really Language Undorstanding Basic
Y ng & Dugnostics ;
Natworking s, Form Recognicer @ Bk
Secrty B crostelocs | ms tem B | crauel Lk ron
HOrE

> ge
Custom Viskon |) Starter Plan
" Baoibirn i >

Figure 12-1. Locating the Computer Vision service for creation

298

CHAPTER 12 CONSUMING Al SERVICES

When the Create Computer Vision page appears, you need to configure the basic
information for your new service. In the Project Details group, you can select the
subscription that will host the service and a new or existing resource group. In the
Instance Details group, you need to specify a data center; make sure you select the
one closest to your location. Then you need to specify a name, which is very important
because it will be part of the service endpoint. The service name must be unique, so the
sample vscodedistilledcomputervision name might not be available. The last setting
is about the pricing tier. If you have no other Al services enabled, you can select the FO
Free tier, which is always recommended for development purposes.

Figure 12-2 summarizes all the aforementioned steps.

299

CHAPTER 12 CONSUMING Al SERVICES

im] \ Create Computer Vision - Micro: X+

= C (] (5 https://portalazure.com

Microsoft Azure P Search resources, services, and docs (G+/)

Home » Create a resource >

Create Computer Vision

Basics Metwork Identity Tags Review + create

Boost content discoverability, accelerate text extraction, and create products that more people can use by embedding
vision capabilities in your apps. Use visual data processing to label content (from objects to concepts), extract printed
and handwritten text, recognize familiar subjects like brands and landmarks, and moderate content. No machine learning
expertise is raguired.

Learn more

Project Details

Subscription* @ I Windows Azure MSDN - Visual Studio Ultimate ~
Resource group* (D I vso-ro- N ~
Create new

Instance Details

Region O I West Europe w ‘
Name* @ | vscodedistilledcomputervision v
Pricing tier * © I Free FO (20 Calls per minute, 5K Calls per month) s ‘

View full pricing details

Responsible Al Notice

Microsoft provides technical documentation regarding the appropriate operation applicable to this Cognitive Service
that is made available by Microsoft. Customer acknowledges and agrees that they have reviewed this documentation
and will use this service in accordance with it. This Cognitive Services is intended to process Customer Data that includes
Biometric Data (as may be further described in product documentation) that Customer may incorporate into its own
systems used for personal identification or other purposes. Customer acknowledges and agrees that it is responsible for
complying with the Biometric Data obligations contained in the Online Services DPA.

Online Services DPA

Responsible Use of Al documentation for Spatial Analysis

| < Previous Next : Network >

Figure 12-2. Configuring the basic service information

300

CHAPTER 12 CONSUMING Al SERVICES

When ready, click the Next: Network » button. In the next page, you can configure
the network access. For the current example, the service will be reachable via all the
networks, so make sure that the first option (All Networks) is selected (see Figure 12-3).

\ Create Computer Vision - Micra- %+ = 0 X
portal.azure.com te/M (t g = & InPrivate

Microsoft Azure £ Search resources, services, and docs (G+/)

Home Create a resource >

Create Computer Vision - P

Basics Network Identity Tags Review + create

(i] Configure network security for your Cognitive Services resource.

Type * @:I All networks, including the internet, can access this resource.

O Selected networks, configure network security for your Cognitive
Services resource.

O Disabled, no netwarks can access this resource. You could configure
private endpoint connections that will be the exclusive way to access
this resource.

| < Previous | | Next : Identity = J=% Give feedback

Figure 12-3. Configuring network access

You can then click the Next button. You can ignore the Identity and Tags pages that
are not relevant for this example. You can further configure identities depending on your
specific requirements. In the last page, you will see a Create button that you can click to
generate a new Computer Vision service.

After a few seconds, the new resource will be deployed (see Figure 12-4). Click the
Go to Resource button to access the service properties.

301

CHAPTER 12 CONSUMING Al SERVICES

f= @ | lPriace *

progalex@hotmalcom A
A

|] Deiete Redegicy + Dowrlosd () Refreih

e Cweriew

@ Your deployment is complete

Deployment Stattene: 2

O

Cost Management

ol - laben 1D 17448

w Deployment details

#~ MNext stops

Give feedback

Work with an expert

AZUrS BADSITS 308 SENICE PrO

who can help r

hetpr/fportal szure com/ B8 progaiedhotmail onmicros oftcom resounce/subscriptions /1 2ebbea-b bo-Le(io-b

Figure 12-4. The deployment has been completed

Retrieving the Service Keys

Whatever programming language or framework you use to consume Computer Vision
APIs, you need to retrieve the service keys. These allow your code to authenticate against
the service.

In the Keys and Endpoint page (see Figure 12-5), click the Keys and Endpoint item
on the left.

302

CHAPTER 12 CONSUMING Al SERVICES

1m} \ wvscodedistilledcomputervision - x

@ 7]] portal.azure.com 8 ; ® InPrivate) ¢
Microsoft Azure P Search resources, services, and docs (G+/)

Ho e Services | Computer vision vscodedistilledcomputervision
vscodedistilledcomputervision | Keys and Endpoint # - X
Computer vision

| 0 kearch | U Regenerate keyl Regenerate Key2

@ overview

B Activity log

@ These keys are used to access your Cognitive Service API. Do not share your

Ba Access control (JAM) keys. Store them securely- for example, using Azure Key Vault. We also

recommend regenerating these keys regularly. Only one key is necessary to

& Tags make an API call. When regenerating the first key, you can use the second key

for continued access to the service.
& Diagnose and solve problems

Resource Management m

= KEY 1
Keys and Endpoint KE E
7 Pricing tier
KEY 2
“» Networking E
B Identity

Location/Region @

Cost analysis

| westeurope D
Il properties
) Endpaint
8 Locks | https://vscodedistilledcomputervision.cognitiveservices.azure.com/ In)

Figure 12-5. Retrieving the service keys

By default, keys are hidden so you have to click the Show Keys button. You do not
need both keys. Key 1 is enough, but Key 2 is provided for security reasons. Take note
of the Key 1 and Endpoint fields. These will be necessary in the next paragraphs when
writing code. The service setup is now complete, so you can open Visual Studio Code to
start developing an app that consumes the new Al service.

You will write code for three platforms: .NET, JavaScript, and Python. For this reason,
in order to be consistent across all platforms, you will create a Console project that will
display the image analysis results inside a Terminal instance. The code examples are
independent from one another, so you can read them all or just look at the one that is
closest to the development environment of your choice.

303

CHAPTER 12 CONSUMING Al SERVICES

Note This chapter assumes you have the necessary knowledge of the
programming languages used for the coming examples. In fact, the focus here is
on the Cognitive Services and cannot be on explaining the programming languages.

Consuming Al Services with .NET

The first code example is about creating a Console app with .NET. In Visual Studio Code,
open a new Terminal instance via Terminal, New Terminal. Create a subfolder where you
want the new project to be placed.

Then, following the lesson learned in Chapter 9, type the following command to
generate a new Console project:

> dotnet new console

Figure 12-6 shows the result of the project generation.

] Fle Edt Selection View Go Eun - Visual Studio Code [Administrater] D@D - o X
TEMNAL ATURE DERUG CONSOLE Beoweset =« (D @ - ~ X
PS C:\lkers\edelscle\source\reposiconputervisionnet> dotnel new censole

The template “Console Apo™ was created successfully.

Processing post-croation acticns...

2\repos\corputervisionnet\computervisionnat.csproj (in 78 m).

Restore sutceedsd,

PSS C:\lkers\adelwole\source\repos \conputervisiconet> |

Figure 12-6. Creating a new .NET Console project

304

CHAPTER 12 CONSUMING Al SERVICES

You can keep the Terminal open because you will need to type new commands
shortly. In the meantime, open the new project in VS Code. Before writing any C# code,
it is important to know that Microsoft provides a client library for .NET that simplifies
the way you consume Computer Vision APIs in a strongly-typed and object-oriented
approach. This means that you can use specific classes and methods instead of manually
invoking REST APIs. It also means, with regard to VS Code, that you can leverage
debugging and coding tools (such as IntelliSense) to use and investigate objects and
their members. You will see more about this when you run the sample application.

The client library is provided via NuGet and it is called Microsoft.Azure.
CognitiveServices.Vision.ComputerVision. You can quickly install the library to the
project with the following command line:

> dotnet add package Microsoft.Azure.CognitiveServices.Vision.
ComputerVision

Figure 12-7 shows the results for this command.

305

CHAPTER 12 CONSUMING Al SERVICES

¥) Fe Fot Sekchon Wew GO - Frogram.re = CamputerierCikhap = Veus Srudio Code [Admristratze] |) = Mo -] o

DF.CRIR © Progeames X @ --

~ COMPUTIRVEIONCSHARP

y a=ode 1 /f See hitps://eka.®s/rew-console-tenplate for more information
3 b 2 Console.Mritelire(“Hello, Worldl™); —
> oy)

5 compulervancshar puosproj

€ Programues

MONDS OUTRLT TERMINAL ATURE DEBUG SONZOLE Bromwsw -« M @ = ~ %

S {iUsershadelsala\saurcevragas\larputervVisionlSharps datnet 332 packame MIcrasoft.Afure

vician

a\Local\Terp\tipd?58. tip
validarian will ucs the dafaule truct ctars calactad By A

g CiWsersiadelsoledn
: X.583 cortificate chain

t X503 certificote choln velidetion will use the defeult trust store selected by NE

2 OUTUINE
» TIMELINE

¥ @0A0 & Bomputetvmionlihep ndColl Spacessd UTT-SwithDOM CRUF ¢ 2 O

Figure 12-7. Installing the Microsoft client library from NuGet

Setting Up Variables and Constants

Open the Program. cs file and add the following code:

using Microsoft.Azure.CognitiveServices.Vision.ComputerVision;
using Microsoft.Azure.CognitiveServices.Vision.ComputerVision.Models;
namespace ComputerVisionNet

{

class Program

{
static string serviceKey = "YOUR-KEY-GOES-HERE";

static string endpoint =
"https://YOUR-ENDPOINT.cognitiveservices.azure.com/";

306

CHAPTER 12 CONSUMING Al SERVICES

private const string imageToAnalyze = "https://
moderatorsampleimages.blob.core.windows.net/samples/sample16.png"”;

Replace the serviceKey and endpoint variable contents with the key for your
Computer Vision service and endpoint, respectively. The imageToAnalyze constant
contains the URL of the image that will be analyzed. This image is provided for free by
Microsoft as a sample image for the Computer Vision official samples, and it represents a
puppy on a grass field. Figure 12-8 shows the sample image so you can understand what

the analysis will be about.

D]j«...:c,—,:mmm x i — G
C QA 9 mom i, 6 @ @ -

Figure 12-8. The sample image used for Computer Vision analysis (Courtesy:
Microsoft Corp.)

The Main method for the application looks like the following:

async static void Main(string[] args)

{
// Create a client
ComputerVisionClient client = Authenticate(endpoint,
serviceKey);
// Analyze an image to get features and other properties.
await AnalyzeImageUrlAsync(client, imageToAnalyze);

}

307

CHAPTER 12 CONSUMING Al SERVICES

The first line of code creates an instance of the ComputerVisionClient class, which
allows you to access Computer Vision APIs in a managed way. Such an instance is
created via the Authenticate method, implemented shortly, which takes the service key
and endpoint as arguments and authenticates against the service. The second line of
code performs the actual image analysis with a method called AnalyzeImageUrlAsync,
also implemented shortly.

Creating Authenticated Service Clients

A service client is a class that exposes members for accessing the service APIs in an
object-oriented way.

This is the biggest benefit of using a client library, rather than writing REST API calls
manually. In .NET, the Microsoft.Azure.CognitiveServices.Vision.ComputerVision
provides the ComputerVisionClient class.

Note Microsoft provides .NET client libraries for most Al services included in the
Azure offer, so the approach described in this chapter applies to other services
as well.

An instance of this class must be created passing the authentication keys, which
are the service key and the endpoint. The following method demonstrates how to
accomplish this:

public static ComputerVisionClient Authenticate(string endpoint,
string key)

{
ComputerVisionClient client =
new ComputerVisionClient(new ApiKeyServiceClientCredent
ials(key))
{ Endpoint = endpoint };
return client;
}

308

CHAPTER 12 CONSUMING Al SERVICES

The argument for the constructor of the ComputerVisionClient class is an

instance of the ApiKeyServiceClientCredentials class that receives and validates
the service key. The Endpoint property of the ApiKeyServiceClientCredentials class

is also assigned directly. The result of this method is an authenticated instance of the

ComputerVisionClient class that callers use to perform image analysis.

Executing Image Analysis

Analyzing an image means understanding the contents of an image by detecting the

presence of people, animals, objects, colors, and everything around.

The analysis result is collected into a list of tags, each representing an element

detected in the image, with the related level of accuracy (confidence). In the current

example, the image analysis is performed by the following AnalyzeImageUrlAsync:

public static async Task AnalyzeImageUrlAsync(ComputerVisionClient

client, string imageUrl)

{

// A list that defines the features to be extracted from
the image.
List<VisualFeatureTypes?> features = new List<VisualFeature
Types?>()
{
VisualFeatureTypes.Tags,
VisualFeatureTypes.Color,
VisualFeatureTypes.Description,
VisualFeatureTypes.Objects,
VisualFeatureTypes.Faces,
VisualFeatureTypes.Adult

s

Console.WriteLine($"Analyzing the image
{Path.GetFileName(imageUrl)}...");

Console.Writeline();

// Analyze the URL image

ImageAnalysis results = await client.
AnalyzeImageAsync(imageUrl, visualFeatures:
features);

309

CHAPTER 12 CONSUMING Al SERVICES

The first part of the method declares a List<VisualFeatureTypes?> object, which
contains a list of elements you want to detect. The type of elements is represented by the
VisualFeatureTypes enumeration, whose most important values is Tags. This contains
the tags and confidence level that the analysis engine will detect. Table 12-3 describes
the possible values for the VisualFeatureTypes enumeration. The actual analysis is
performed by the AnalyzeImageAsync method from the ComputerVisionClient class,
which receives the source image and a list of VisualFeatureTypes object as arguments
and returns an object of type ImageAnalysis. This exposes properties that return the
results of the visual types described in Table 12-3.

Table 12-3. VisualFeatureTypes Enumeration

Value Description

Adult Detects if the image contains adult or racist contents.

Brands Detects if the image contains brand names.

Categories Categorizes the contents of an image.

Color Detects the most relevant colors in the image.

Description Generates one or more descriptions for the image.

Faces Detects any faces in the image.

ImageType Detects an image type.

Objects Detects a list of objects in an image.

Tags Creates a list of tags that represent the list of elements in an
image.

As you type, you can realize the benefits of using a client library: Visual Studio Code
enables IntelliSense, code refactoring, and all the most advanced editing tools against
the types and members exposed by the library itself. Figure 12-9 shows how IntelliSense
can help when invoking methods from the ComputerVisionClient class.

310

) fle Fde Selecton Ve Ga Fun

&

noar

v COMPUTHOVSIONCSHARP
> wiode
> tan

> oy

A fomautinwaonithampe

O Programas

Termmal Help

c = B W

CHAPTER 12 CONSUMING Al SERVICES

» Programas = ComputeryivonCSharp « Visael S1

TureTypes. Adult

Console.Nrltel ine($"Malyzing the Image {Path.Getr!letare(inapelir]]

the URL inage

) AnalyzelnageByDonalrdsync

D AnalyzelnagsByDorainInStraandsync

3 Analyzelnagebylomaininstreamaithit ipiessagesdsync ates
f1 1mag) AnalyzelnageByDonalinkithittaMessagesasyne

Censule @ Analyzelnagelnstraanrdsyne

fareacn) AnalyzclnogelnstreariithittoMessagesasync
{) Analylelnage LML pHes s agesdsyng
Lot 5 Crodentials

escribelnageasync
£ DescribelnogelnStresndsync
ranlea Q) Detert DoTHAZTASTAR N1 TART T pHa CagatATyAe

Figure 12-9. IntelliSense enabled with the client library

information about adult classification:

// Adult content?
Console.WritelLine($"Is adult content?:

The next step is displaying the analysis result. The following code snippet shows

{results.Adult.IsAdultContent}");

Among the others, the Adult object, of type AdultInfo, exposes the IsAdultContent

property, of type bool. It returns true if the image contains adult content. The following

code snippet iterates through the list of detected tags, and it is probably the most

relevant in the example:

// Image tags and their confidence score

Console.WritelLine("Tags:");
foreach (var tag in results.Tags)

{

Console.WritelLine($"{tag.Name} {tag.Confidence}");

311

CHAPTER 12 CONSUMING Al SERVICES

The Tags property is a collection of type IList<ImageTag>, and each ImageTag
instance contains a human-readable string representing the type of object detected and
the level of confidence. The following code displays information about the accent color
detected in the image, and it iterates the list of dominant colors:

Console.WritelLine("Colors:");
Console.WriteLine($" {results.Color.AccentColor}");
foreach(var color in results.Color.DominantColors)

{

Console.WriteLine($" {color}");

}

Color information is stored inside the Color property, of type ColorInfo. The
AccentColor property is of type string and contains the hex representation of the most
predominant color. The DominantColors object is a collection of type IList<string>,
and each string represents a color in hex format. The next code snippet displays a
description for the image:

Console.WriteLine("Description: ");
foreach(var text in results.Description.Captions)
{

Console.WriteLine($" {text.Text}");

}

The Al engine of Cognitive Services can generate meaningful phrases that describe
the contents of the image. Each phrase is represented by an object of type ImageCaption,
whose Text property is a string containing the phrase. All the generated phrases are
stored inside the Captions collection, of type IList<ImageCaption>, provided by the
Description property. There is usually at least one phrase. It is also possible to analyze
the list of objects contained in the image, as follows:

Console.WritelLine("Objects:");
foreach(var obj in results.Objects)

{
Console.WriteLine($" {obj.ObjectProperty}");

312

CHAPTER 12 CONSUMING Al SERVICES

The ObjectProperty property of each Object represents the name of a detected
object. The last part of the sample application detects if there are any faces in the image:

Console.WritelLine($"Does it contain any faces?: {results.Faces.

Any()}");

Console.ReadLine();

The Faces collection, of type IList<FaceDescription>, contains information
on faces detected in the image, but if you need to use Al to analyze faces, the
recommendation is to look at the Face API.

Note If you do not explicitly add values from the VisualFeatureTypes
enumeration to the list of objects you want to retrieve, the code that walks through
the result of the image analysis will be ignored.

Running the Application

Now that you have set up all the code required to perform image analysis based on
artificial intelligence, you can see the result by running the application. You can press F5
or choose Run » Start Debugging and you will see the analysis results in the integrated
Terminal after a few seconds.

Figure 12-10 demonstrates this.

313

CHAPTER 12 CONSUMING Al SERVICES

A= Programs - ComputesVsonCShwp - Visual Studio Code [Adminstrato) D R D 8 - 0O X
RUMANDDEELG [NCT Core Lav | & - Pl o - e
Wi € Programacz > {) ComputerViionCSharp > 8 ComputerViscnCSharp.frogram = cx
€1 Cansole.Readline();
82 }
83
84 }
ﬁr\:‘ ' ZURL CLEUG CONSOLL = ~A X
Fitet (o be ¥
Is5 adult cont Fal
Bl - WATCH 1ags
grass @,935754351
o 4 L1}
naTnag
aninal
g bre
pet 0,9
outdoor
Tpani
all g
golden r
puppy @
ancient
fleld ¢
~ CALL STACK Bumeing 3 y Lace
brown @,6581906866512 298¢
road #23708 RUNNING
Setn 5 DRUNG Colors
Thread 215612 ALNNING A3t
Thread 219704 AUNNING Grey
Theead #33404 RUNHING Greer
Thread 2265844 ANIHG Description
Throad #22602 RUNHING a small dog in the grass

v BREAKPOINTS
[AN Exceplions Doe
B User-Unhardled Exceptions b3

¥ @0A0 & NET Com lanch (comale) (CompoteVisonCSharp) @ B ComputerVisonCSharp Spaecd UIFSwithBOM (RIF ¢ & 0

Figure 12-10. The results of the image analysis via Cognitive Services

Notice how the list of tags is automatically ordered by confidence (in descending
order), and how the description is a complete, human-readable phrase. You can
combine multiple Al services with Computer Vision to create great user experiences.

Using the Debugging Tools

There is another benefit in using a client library over regular code that sends HTTP REST
requests, which is taking advantage of the full debugging experience.

You can certainly leverage debugging tools over the code that sends regular
requests, but in specialized scenarios such as Al, having precise support is definitely

314

CHAPTER 12 CONSUMING Al SERVICES

a better option, especially if you do not have deep knowledge of the libraries you are
using. Figure 12-11 shows how you can use the VS Code debugging tools for .NET when
analyzing the image via the ComputerVisionClient class.

W sk opd ey MRoe o e X odp 1zgar D Lavpldrhuerliten Vs 2 Lo b remer]
B Con i diire v (G - O
- € Mugrana » D Cupuaisudibay Cornzilnrthanse Clvag briaganr & G Ao glnad veageh W s Do bV th et baber L sl g e

{Eamn At F e i 1) L0 3G
svaagesapra(inanrl, vlasalroatvra: fuiterw);

{mespira.danle. Padtul Boanteat |70

Figure 12-11. Debugging tools in action on the ComputerVisionClient class

As you can see, by placing a breakpoint in your code, you can investigate properties
and their values also understand the backing .NET type.

Consuming Al Services with JavaScript

The second code example is about creating a JavaScript project that consumes the Azure
Cognitive Services. You can open an instance of the integrated Terminal in Visual Studio
Code to create a new folder that will contain the new project.

The name is up to you, although you can use computervisionjs for consistency with
the companion code. Once the folder has been created, you need to type the following
command line to initialize the project with a package. json file:

> npm init

Press Enter to run the command. Before writing any JavaScript code, it is important
to know that Microsoft provides a client library that simplifies the way you consume
Computer Vision APIs in an object-oriented approach. This means that you can use
specific classes and functions instead of manually invoking REST APIs.

315

CHAPTER 12 CONSUMING Al SERVICES

Such a library is provided via npm and it is called cognitiveservices-
computervision. You can quickly install the library to the project with the following

command line:
> npm install @azure/cognitiveservices-computervision

Press Enter to run the command. You also need to install the async package, which
allows you to make asynchronous function calls, as follows:

> npm install async

Press Enter to run the command. Figure 12-12 shows the summary of both
operations.

316

CHAPTER 12 CONSUMING Al SERVICES

&
[

computervisionjs - Visual Studio Code [Administrator] D& 0moe - O X

PROBLEMS OQUTPUT TERMINAL AZURE DEBUG CONSOLE) powershel 4~ [0 & - ~ X

PS C:\Users\adelsole\source\repos\computervisionjs» npm install @azure/cognitiveservices-computervision
npm notice created a lockfile as package-lock.json. You should commit this file.

npm computervisionjs@l.e.® No description
npm computervisionjs@l.e.8 No repository field.

+ azure/cognitiveservices-computervision@8.2.e
added 28 packages from 75 contributors and audited 28 packages in 14.817s
found @ vulnerabilities

PS5 C:\Users\adelsole\source\repos\computervisionjs> npm install async

npm computervisionjsgl.8.8 No description
npm computervisionjsgl.e.e No repository field.

+ async@3.2.4
added 1 package from 1 contributor and audited 29 packages in ©.578s
found @ vulnerabilities

PS C:\Users\adelsole\source\repos\computervisionjs» I

Figure 12-12. Installing the Cognitive Services client library

When you're ready, add a file called index. js to the project folder. You will now
learn the various parts required to execute artificial intelligence analysis over images.

Setting Up Variables and Constants

Open the index. js file and start by adding the following code:
'use strict’';

const async = require('async');

317

CHAPTER 12 CONSUMING Al SERVICES

const fs = require('fs');

const https = require('https');

const path = require("path");

const createReadStream = require('fs').createReadStream

const sleep = require('util').promisify(setTimeout);

const ComputerVisionClient = require('@azure/cognitiveservices-
computervision').ComputerVisionClient;

const ApiKeyCredentials = require('@azure/ms-rest-js').ApiKeyCredentials;

/**

* Authenticated client instance

*/

const key = 'YOUR-KEY-GOES-HERE';

const endpoint = 'https://YOUR-ENDPOINT.cognitiveservices.azure.com/";

The first const declarations are required to use objects from the various libraries,
including the ComputerVisionClient and ApiKeyCredentials objects. The first object
is a client class that makes it easier to consume Cognitive Services APIs, whereas the
second object allows you to authenticate against Cognitive Services. Replace the key and
endpoint variable contents with the key for your Computer Vision service and endpoint,
respectively.

Creating Authenticated Service Clients

A service client is an object that exposes members for accessing the service APIs in an
object-oriented way.

This is the biggest benefit of using a client library, rather than writing REST API calls
manually. In the Azure JavaScript SDK, the cognitiveservices-computervision library
provides the ComputerVisionClient class.

Note Microsoft provides client libraries for most Al services included in the Azure
offer, so the approach described in this chapter applies to other services as well.

An instance of this class must be created by passing the authentication keys,
which are the service key and the endpoint. The following code demonstrates how to
accomplish this:

318

CHAPTER 12 CONSUMING Al SERVICES

const computerVisionClient = new ComputerVisionClient(
new ApiKeyCredentials({ inHeader:
{ "Ocp-Apim-Subscription-Key': key } }), endpoint);

The parameter for the constructor of the ComputerVisionClient class is an instance
of the ApiKeyCredentials object, and it receives and validates the service key. The result
of this code is an authenticated instance of the ComputerVisionClient class that callers
will use to perform image analysis.

Executing Image Analysis

Analyzing an image means understanding the contents of an image by detecting the
presence of people, animals, objects, colors, and everything around.

The analysis result is collected into a list of tags, each representing an element
detected in the image, with the related level of accuracy (confidence). In the current
example, the image analysis is performed by the following code:

function computerVision() {
async.series([
async function () {

// Image of different kind of dog.
const imageUrl = 'https://moderatorsampleimages.blob.core.windows.
net/samples/sample16.png’;

// Analyze URL image

console.log('Analyzing the image...', imageUrl.split('/"').pop());
var results = await computerVisionClient.analyzeImage(imageUrl, {
visualFeatures: ['Tags', 'Adult', 'Color', 'Description'] });

The first part of the method sets up the URL of the image to be analyzed, and then
itinvokes the analyzeImage method from the ComputerVisionClient class to analyze
the image.

The second parameter for the method is an array called visualFeatures which
contains a list of elements you want to detect. The most important type of element
is Tags. This contains the tags and confidence level that the analysis engine will
detect. Table 12-3 describes the possible values for the visualFeatures array. The
analyzeImage method returns an object of type AnalyzeImageResponse. This exposes

members that return the results of the visual types described in Table 12-3.
319

CHAPTER 12 CONSUMING Al SERVICES

The next step is displaying the analysis result. The following code snippet shows
information about adult classification:

console.log(Is adult content?: ${results.adult.isAdultContent}");

Among the others, the adult object, of type AdultInfo, exposes the isAdultContent
property, of type bool. It returns true if the image contains adult content. The following
code snippet iterates through the list of detected tags, and it is probably the most
relevant in the example:

console.log('Image tags:');

console.log(Tags: ${formatTags(results.tags)});

// Format tags for display

function formatTags(tags) {
return tags.map(tag => (" ${tag.name}
(${tag.confidence.toFixed(2)})")).join(", "); }

The tags property is an array of ImageTag objects, and each ImageTag instance
contains a human-readable string representing the type of the object detected and the
level of confidence. The following code displays information about the accent color, which
is the most predominant color, detected in the image. It iterates the list of dominant colors:

console.log(Accent color: ${results.color.accentColor});
console.log('Dominant colors:');
results.color.dominantColors.forEach(col=>console.log(col));

Color information is stored inside the color property, of type ColorInfo. The
accentColor property is of type string and contains the hex representation of a color.
The dominantColors object is an array of strings, and each string represents a color in
hex format. The next code snippet displays a description for the image:

console.log('Description: ");
results.description.captions.forEach(dsc=>console.log(dsc.text));

The Al engine of Cognitive Services can generate meaningful phrases that describe
the contents of the image. Each phrase is represented by an object of type ImageCaption,
whose text property is a string containing the phrase. All the generated phrases are

320

CHAPTER 12 CONSUMING Al SERVICES

stored inside the captions collection, an array of ImageCaption, provided by the
description property. There is usually at least one phrase. The code file is closed with a
standard JavaScript promise and with the invocation to the computerVision method.

console.log();
b
function () {
return new Promise((resolve) => {
resolve();

9]
}
I, (err) => {
throw (err);
1
}

computerVision();

Note Put succinctly, in JavaScript a promise represents the eventual completion,
or failure, of an asynchronous operation and its resulting value. If you want to learn
more about promises, you can read the JavaScript documentation (https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global Objects/Promise).

Coding and Debugging Tools in Action

Like for .NET, one of the benefits of using a client library is that VS Code enables
powerful editing tools, such as IntelliSense, plus the debugging tools you have seen
previously.

For example, IntelliSense for JavaScript shows the list of members from the
ComputerVisionClient class as you type, as it will do for all the other members. In
addition, you can leverage the integrated debugging tools to investigate variables and,
more generally, to control the execution flow. Figure 12-13 demonstrates this.

321

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

CHAPTER 12 CONSUMING Al SERVICES

W lie () Sehelion View Goo fun e 8 e - £ puberas %t = Vinl 1Rt [ate (A4 mentrater| oQmee n >
WN AL | D o CoeSgunati~ | & Sty (HEB S ¥ T 2D L B
1
v VARIATITS s mooys > Qe 6«
v Ledal 12 | > .
> forvatlage: § forwatlogaitags) { 13 lonClient = nra Conpatoriizicallicnt(
{magetiels * iilraderatareans siea., 19 is{ [drHzader: | "Ocp Apin Scbacription Kay': key |)}
v results (-1, o
21 ¥
» adile iine
é\ 2 f
' -
= 1 asyre dunetten () |
v . 28
1 25 Jf Irage of different kind of
5 %og 10 the gras. 28 tonst ivagetrl - ‘htips yarpleiveges . blob.core.windous . net/ =
> Arrey(v £
23 L lwage
£hj g
S 1 i b poa{));
L 30 age{irogeuel, |
¥ iy e J. & 11
vje B oW analyzelnoge [metbad) CrmpterViclasllieer snalyrelTans.
N en analyzelregeByCorain
34 sen T1030% CE) aralyselmapeliyoraininst reqss
35 o3 coler.dondnantl) analyralmapelnitraan
1 con log iptice
(H] e @ eeseribelnage
34 log('Inage tags Sy describelrogelndtrean
coatisenca: ASTTIGINNIANG 39 conzele.legl"Tags: $[ICS) delectiibjects
nonst CEress' & D astectibfec 1sinGtrean
a1 crvat taps for disge encpolnt
A2 funcion forval Taga{Tag @) gererateThurbnall

gererateThurbnallInstreon
E RIUCE foe oy bk T e — x

> WaTO .

¥ CALL 3IACK

2 LOADEID STRIFTY

v BRIAKFOINTS
—ICuatt Exzophicee
IUng gl Dacspliong

* Bindep 2B >

In3LCd38 Spaxxd UTFE OUF ()} JoveSusipl

Figure 12-13. Debugging tools and IntelliSense in action

As you can see in Figure 12-13, Visual Studio Code enables IntelliSense for
JavaScript when invoking types and members from the client library, and it allows you to
investigate variable values at debugging time via the VARIABLES window.

Running the Application

Now that you have set up all the code required to perform image analysis based on
artificial intelligence, you can see the result by running the application. You can press F5
or choose Run » Start Debugging and then select the Node.js debugger. You will see the
analysis results in the integrated Terminal after a few seconds.

Figure 12-14 demonstrates this.

322

CHAPTER 12 CONSUMING Al SERVICES

Il
E
1
a
x

3 ‘Wekome b index;s x 3=

rdexjs > P computerVisicn > @ <function>

’a — index s - computervaong - Yisusl Studio Code [Adminstralon]

functlion formatTags(tags) {

wn -

57 return tags.map(tag => (' ${tag.nane} (${rag.confldence.tofixed(2)})")).Jodn{", ");

58) :

g

€0 o

31 * END - Detect Tags

62 = =
6d console.log();

Lo ks

&5 function () {

66 reTurn nex Pronise({resolve) =» {

67 resolve();

) teat, lexdlude) Launch Program iR A~ X

indax, q<;:58

In43,Col33 Spxes? UIRS CRIF () kwaSopt 5 0

Figure 12-14. The results of the image analysis via Cognitive Services

Notice how the list of tags is automatically ordered by confidence (in descending
order), and how the description is a complete, human-readable phrase. With a similar
approach, you can even combine multiple Cognitive Services.

Consuming Al Services with Python

The third and last code example is about creating a Python application that consumes
the Azure Cognitive Services.

323

CHAPTER 12 CONSUMING Al SERVICES

Note This section requires that you have set up your development environment
with the Python tools described in Chapter 10.

You can open an instance of the integrated Terminal in Visual Studio Code to create
a new folder that will contain a new Python code file. The name is up to you, but you
could use computervisionpython for consistency with the companion code. Add a new
Python file called main.py to this folder.

Before writing any Python code, it is important to know that Microsoft provides a
client library that simplifies the way you consume Computer Vision APIs in an object-
oriented approach. This means that you can use specific classes and functions instead of
manually invoking REST APIs.

Such a library is provided via the pip library manager and it is called azure-
cognitiveservices-vision-computervision. You can quickly install the library to the
folder via the following command line:

> pip install --upgrade azure-cognitiveservices-vision-computervision

You now learn the various parts required to execute artificial intelligence analysis
over images.

Setting Up Variables and Constants

Open the main.py file and start writing the following code:

from azure.cognitiveservices.vision.computervision import
ComputerVisionClient

from azure.cognitiveservices.vision.computervision.models import
OperationStatusCodes

from azure.cognitiveservices.vision.computervision.models import
VisualFeatureTypes

from msrest.authentication import CognitiveServicesCredentials

from array import array
import os

from PIL import Image
import sys

324

CHAPTER 12 CONSUMING Al SERVICES
import time

subscription _key = "YOUR-KEY-GOES-HERE"
endpoint = "https://YOUR-ENDPOINT.cognitiveservices.azure.com/"

The from and import declarations are required to use objects from the various
libraries, including the ComputerVisionClient and CognitiveServiceCredentials
objects. The first object is a client class that makes it easier to consume Cognitive
Services APIs, whereas the second object allows you to authenticate against Cognitive
Services. Replace the key and endpoint variable contents with the key for your
Computer Vision service and endpoint, respectively.

Creating Authenticated Service Clients

A service client is an object that exposes members for accessing the service APIs in an
object-oriented way.

This is the biggest benefit of using a client library, rather than writing REST API
calls manually. In the Azure Python SDK, the azure-cognitiveservices-vision-
computervision library provides the ComputerVisionClient class.

Note Microsoft provides client libraries for most Al services included in the Azure
offer, so the approach described in this chapter applies to other services as well.

An instance of this class must be created passing the authentication keys, which
are the service key and the endpoint. The following code demonstrates how to
accomplish this:

computervision client = ComputerVisionClient(endpoint, CognitiveServices
Credentials(subscription key))

The parameter for the constructor of the ComputerVisionClient class is an instance
of the CognitiveServiceCredentials object that receives and validates the service key.
The result of this code is an authenticated instance of the ComputerVisionClient class
that callers will use to perform image analysis.

325

CHAPTER 12 CONSUMING Al SERVICES

Executing Image Analysis

Analyzing an image means understanding the contents of an image by detecting the
presence of people, animals, objects, colors, and everything around.

The analysis result is collected into a list of tags, each representing an element
detected in the image, with the related level of accuracy (confidence). In the current
example, the image analysis is performed by the following code:

url = "https://moderatorsampleimages.blob.core.windows.net/samples/
sample16.png"

image analysis = computervision client.analyze image(url,
visual features=[VisualFeatureTypes.tags,
VisualFeatureTypes.description,
VisualFeatureTypes.adult,
VisualFeatureTypes.color,
VisualFeatureTypes.objects])

The first part of the code snippet sets up the URL of the image to be analyzed, and
then it invokes the analyze image method from the ComputerVisionClient class to
analyze the image.

The second parameter for the method is an array called visual features
which contains a list of elements you want to detect from the VisualFeatureTypes
enumeration. The most important type of element is tags. This contains the tags and
confidence level that the analysis engine will detect. Table 12-3 describes the possible
values for the VisualFeatureTypes enumeration. The analyze image method returns an
object of type ClientRawResponse. This exposes members that return the results of the
visual types described in Table 12-3.

The next step is displaying the analysis result. The following code snippet shows
information about adult classification:

print("Is adult content?")
print(image_analysis.adult.is adult_content)

Among the others, the adult object, of type AdultInfo, exposes the is_adult_
content property, of type bool. It returns true if the image contains adult content. The
following code snippet iterates through the list of detected tags, and it is probably the
most relevant in the example:

326

CHAPTER 12 CONSUMING Al SERVICES

print("Tags:")

for tag in image_analysis.tags:
print("'{}"' with confidence {:.2f}%".format(tag.name, tag.
confidence * 100))

The tags property is an array of ImageTag objects and each ImageTag instance
contains a human-readable string representing the type of object detected and the level
of confidence. The following code displays information about the accent color (that is,
the predominant color) detected in the image, and it iterates the list of dominant colors:

print("Accent color:")

print(image_analysis.color.accent color)

print("Dominant colors:")

for col in image analysis.color.dominant_colors:
print(col)

Color information is stored inside the color property, of type ColorInfo. The
accent_color property is of type string and contains the hex representation of a color.
The dominant_colors object is an array of strings, and each string represents a color in
hex format. The next code snippet displays a description for the image:

print("Image description:")
for des in image analysis.description.captions:
print(des.text)

The Al engine of Cognitive Services can generate meaningful phrases that describe
the contents of the image. Each phrase is represented by an object of type ImageCaption,
whose text property is a string containing the phrase. All the generated phrases are
stored inside the captions collection, an array of ImageCaption, provided by the
description property. There is usually at least one phrase. It is also possible to analyze
the list of objects contained in the image, as follows:

print("Objects:")
for obj in image analysis.objects:
print(obj.object property)

The object property property of each Object represents the name of a
detected object.

327

CHAPTER 12 CONSUMING Al SERVICES

Coding and Debugging Tools in Action

Like for .NET and JavaScript, the benefit of using a client library is that VS Code enables
powerful editing tools, such as IntelliSense, plus the debugging tools you have seen
previously.

For example, IntelliSense for Python shows the list of members from the
ComputerVisionClient class as you type, as it will do for all the other members. In
addition, you can leverage the integrated debugging tools to investigate variables and,
more generally, to control the execution flow. Figure 12-15 demonstrates this.

W e (B Selmlkn Vew Goo Bon - & Shney - pAmpteRAR ATy TheA - Vinisl tRida (ade LAt Daomeoe o X
WN RO | D Ko CoeSgunativ | & o Pmigy 10ER T ¥ 1T 20 b D e
1
w WARIANI IS & manpy
e seroi Tasoet srmm
v g amalysls: cazure.coanitiveseryl M bt B e
morl =
2/ mpecial vard from PIL epers Trags s
imcort iy .
- —
ax 1 18 Zmiort tirc v

é\' S Ry I A N
wvaitervislon. copnlt
-
set(eedpetnz, Cognit
' deneribe_lnage [0 _streas
) datect_ocojects
hist: weos 6 BN e stedt_obfects_dn stream aee AW
T enerate_thurbnall
= WNSCHS PewirR vr=yhoe Debi.
2 -SERC vt Mt Linane somright (C) Mleroseft Corporation. All rights reservnd, 8 Pyzhor Det..
> WATO
- Try the rea cresteplatfors Posrihell METpe:s e oi/paiomnes
CALL 3 IALK Puased 18 bragaine
v BREAXFOINTS P Crsersiastlielehscuresinepasiceputerd Wearsiadke lzele g aOot
N W cresofit Sops \pyl b, \

Rabad Drepticen il

Un:ught Be
TIUite Ung sl Decepions

® Orargy

Figure 12-15. Debugging tools and IntelliSense in action

As you can see in Figure 12-15, Visual Studio Code enables IntelliSense for
JavaScript when invoking types and members from the client library, and it allows you to
investigate variable values at debugging time via the VARIABLES window.

328

CHAPTER 12 CONSUMING Al SERVICES

Running the Application

Now that you have set up all the code required to perform image analysis based on
artificial intelligence, you can see the result by running the application. You can
press F5 or choose Run » Start Debugging and you will be asked to specify the debug
configuration.

Select the first option, Python File Debug the Currently Active Python File. After a
few seconds, you will see the analysis results in the integrated Terminal.

Figure 12-16 demonstrates this.

L = M py = computerauonpython - Visus Studio Code [Admirsstraton] D=E00B - =] b
% mangy X D~ @
@ mainpy >
25
26 print("Tags:™)
27 for tag in inage_analysis.tags: -
28 print (" {}" with conficence {:.2f)5".format(tag.name, tag.confidence * 100))
T .

poraersheld
{¥ Pythona Deb.
£ Python Deb.

omp
Is adult content?
False

Tags:

‘grass’ with confi
'dog” with confldence 93,39%

‘mamnal’ with confldence 93.23%

‘aninal® with comfidence 99.13X

‘dog breed” with confidence 93.98%

‘pet® with confidence 97.48%

‘outdoor’ with conficence 96.92%

‘carpanicn dog’ with confidonce 00.67X

‘small greek domestic dog” with confidence £3.65%
‘golden retriover’ with confidonce 28.78%
‘labeagor retriever’ with confloence 87.48%
‘puppy’ with confidence 87.26%

‘anclent dog breeds’ with confldence 85.08%
‘field" with cenfidonco 89.18%

‘retriever” with confloence 68.37%

‘brown’ with confidence 05,.827%

Accent Color:

AMIDZE

Doninant coloes:

Grey

Green

Inspe description:

a small dog in the grass

cbjects:

PS5 C:\Users\adelsolel\source\reposicomputervisionpython>

In 34, Col 14 () sokxted) Spacec4 UTF-8 (RIF (3 Python 3000 64-bat (merosoft teee) 57 Q

Figure 12-16. The results of the image analysis via Cognitive Services

329

CHAPTER 12 CONSUMING Al SERVICES

Notice how the list of tags is automatically ordered by confidence (in descending
order), and how the description is a complete, human-readable phrase. With a similar
approach, you can even combine multiple Cognitive Services.

Summary

With artificial intelligence becoming more and more a part of the daily work of many
developers, you can use Visual Studio Code to write code that consumes the most
popular services.

In this chapter, you learned how to create, configure, and consume one of the most
popular Al services from Microsoft, the Computer Vision APIs offered through the Azure
platform. You have seen how to write code in the most popular programming languages,
leveraging all the powerful code editing features that VS Code generally offers.

330

Index

A

AccentColor property, 312, 320
Active editors/open editors, 31, 69, 83,
131, 160, 286
Activity Bar, 19, 23, 24, 26, 33, 36, 37, 43
analyze_image method, 326
AnalyzeIlmageAsync method, 310
AnalyzelmageUrlAsync, 308, 309
Application development
creating application
command-line interface, 215
Microsoft .NET, 216, 217
.NET projects, 217-223
platforms, 223-225
debugging code
breakpoints, 230-232
call stack, 235
configuration, 227-229
console path, 236
Debug Console window, 232
evaluate expressions, 234, 235
ruview, 226
settings, 237
toolbar, 233, 234
Artificial intelligence (AI) services
Azure services, 296
Computer Vision service, 297-299,
301, 302
JavaScript
authenticated service clients, 318

cognitive services client library, 317

© Alessandro Del Sole 2023

command, 316

image analysis, 319-322

running applications, 322, 323

variables/constants, 317, 318
NET

authenticated service clients, 308

console project, 304

image analysis, 309-313

NuGet, 306

running application, 313, 314

variables/constants, 306-308
Python

authenticated service clients, 325

image analysis, 326-328

Microsoft, 324

running applications, 329

variables/constants, 324
retrieving keys, 302, 303

Authenticate method, 308
Azure Functions, 263, 274, 292

deploy web applications
extensions, installing, 265, 266
sigining to subscriptions, 266-268
web application, 268-271

Docker images (see Docker)

extensions, 263, 264

functions
authorization levels, 276, 277
configuring VS code, 271-273
creating project, 274, 275, 277,

279, 280

331

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0

https://doi.org/10.1007/978-1-4842-9484-0

INDEX

Azure Functions (cont.)
deploying code, 280-283
multiple environments, 263
Azure DevOps, 127, 151, 155, 178-183

B

Branches, Git
create new branch, 165
deleting branch, 170
master, 164, 165
merge conflicts, 167-169
merging, 166, 167
rebase, 170
switching different branch, 166
Breadcrumbs, 57-58

C

Carriage Return and Line Feed (CRLF), 86
Cascading Style Sheets (CSS), 225
C# Configuration, 136
C# extension method, 144
CHANGELOG.md file, 143
Code-centric tool, 1, 3, 80, 185
Code editing features, 45

code block folding, 52

code snippets, 53, 54

Markdown syntax, 58, 59

matching delimiters, 51

Minimap, 55, 56

multicursors, 52

sticky scroll, 56

syntax colorization, 50

text, working, 49

whitespace rendering/

breadcrumbs, 57
word completion, 54, 55

332

Code editor, 21
Explorer Bar, 22
multiple file views, 21
reorder/resize editor windows, 22
codesnippetsdistilled, 139
cognitiveservices-computervision,
316, 318
Command-line interface (CLI), 3,
163-164, 215, 217
Command-line TypeScript compiler, 189
Command Palette, 11, 12, 31, 37, 38, 43,
105, 125, 131, 135, 157, 163-165,
170, 188, 189, 192, 196, 197, 199,
202, 203, 254, 255, 261, 266, 268,
274,281, 285, 291
Computer Vision, 296-299, 301, 302, 305,
307, 308, 314, 315, 318, 324, 325
C# programming language, 46, 72
Customizations/extensions
examples, 103, 104
keyboard shortcuts, 118-122
reusable profile, 123-125
theme selection, 105-107
user settings
changing setting, 109
firewall applications, 112
proxy server, 111-113
settings.json, 110, 111
synchronization, 116, 117
telemetry, 115
working, 108
workspace, 117,118

D

Debug Console panel, 40, 41, 231, 236-237
Delphi build, 202
Diff tool, 159, 160

Docker
application image, creating, 285-287
container, 284
container registry, uploading

application, 287-290

definition, 283
deploying image to Azure, 290-292
extension, VS code, 285

Docker image, 283-286, 290, 291

dotnet tool, 210, 217

E

Evolved code editing, 80
advanced code editing features, 59
documentation tooltip, 63
finding references, 67-70
Go to Definition, 64
IntelliCode, 80
IntelliSense, 60, 61
live code analysis, 72, 74, 75, 77-79
parameter hints, 62
Peek Definition, 65, 66
peek implementation, 66, 67
renaming symbols/identifiers, 70, 71
Execute .NET Core Build Command, 210
Explorer Bar, 21, 24-26, 29, 43, 89, 90, 94,
95, 159, 175, 190
Extensibility (see Extension)
Extensions
configuration, 137, 138
installing
Command Palette, 131
detail page, 129
Marketplace, 127, 128
recommendations, 131, 132
useful extensions, 133, 134
management, 134, 135

INDEX

writing
creating extension, 140-142
developing extension, 142-145
development, 148
packaging extension, 147, 148
PowerShell error, 140
run, 145, 146
setting up environment, 139, 140
TypeScript, 138

F

Files
creating files, 84, 85
editing features, 82
encoding, 86
folder, 81
line termination, 86, 87
open editors, 83
popup box, 82
structured view, 81
Find All References, 66-69, 80
Folder-based project systems, 1
Folders
JavaScript/TypeScript, 91
loose folders, opening, 92
.NET solution, 90
opening folder, 88, 89
project files, 87
Free Pascal command-line compiler, 194,
195, 201
FunctionName attribute, 276

G, H

Git History, 171, 172, 183

GitHub, 35, 151, 154-158, 164,
175-176, 187

333

INDEX

GitHub Pull Requests, 174-176, 183
GitLens, 172-174
Git, source control
branches, 164
command-line interface, 163, 164
commits, 161-163
downloading providers, 152, 153
extensibility, 151
extensions
git history, 171, 172
GitHub pull requests, 174-177
GitLens, 172-174
handling file changes, 159, 160
repositories
creating remote, 155-158
local, 154, 155
remote, 153
repository, 151
staging changes, 160, 161
Go, 48
Go to Definition, 64-66, 80, 251
Go to References, 68
Greeter, 151, 152, 154, 174, 178

Insiders builds, 14-15, 17

Integrated development environment
(IDE), 3, 107

IntelliCode, 80, 257

IntelliSense, 2, 47, 48, 60-62, 81, 103, 110,
111, 116, 127, 129, 132, 137, 146,
250, 258, 310, 321, 322, 328

IsAdultContent property, 311, 320

J,K

Julia, 46, 48

334

L

Language support
C#/C++ working, 46
editing features, 45, 46
Go, 48
Julia, 48
Python, 47

launch.json, 223, 227, 229

Line Feed (LF), 86

master, 156, 164-166
Microsoft account
Azure DevOps, 178
creating team project, 178-180
remote repository, connecting VS
code, 181, 182
Microsoft.Azure.CognitiveServicesVision.
ComputerVision, 305, 308
Microsoft Visual Studio 2022, 2, 4
Minimap, 55, 56
Model-View-Controller (MVC), 220, 246
MSBuild, 87, 90, 196, 211
Multi-root workspaces, 92, 101
MytFiles, 92, 96

N

.NET Compiler Platform, 47

.NET Core, 88, 196, 210, 216, 227

Node.js, 2, 3,138, 139, 185, 193, 223-225,
227,238, 263, 272, 322

O

ObjectProperty property, 313

P, Q
package.json file, 88, 91, 143, 315
Panels area
built-in panels, 38
debug console panel, 40, 41
output, 40
problems panel, 38
terminal tool, 41, 42
Parameter hints, 62, 63, 251
Peek Definition, 64-66, 69, 80, 251
pip library, 324
Pop Stash commands, 163
print function, 241
Problem matcher, 199, 200, 206, 211-213
Pylance, 257-260
Pylance extension, 262
Python, 47
code editing features
finding references, 252, 253
IntelliSense, 250
linters, 254-256
Parameter Hints, 251
peek definition, 251, 252
Pylance extension, 258-261
renaming symbols, 253, 254
components, 239
create projects, 241, 242
definition, 239
Microsoft, 240
running code, 243-249
running scripts, 261, 262

R

README.md file, 143, 147
Rebase, 161, 162, 170
Reload, 131, 135, 174

INDEX

Responsible Al principles, 295
Reusable Code Snippets, 49, 53-54, 143
Roslyn, 47

Run Build Task, 192

S

SampleWorkspace, 93
settings.json file, 36, 110-111, 113, 116,
118, 136-138, 237, 256
Side Bar
accounts, 34-36
definition, 24
Explorer
Open Editors, 25, 26
outline view, 26, 28
timeline view, 29
extension, 33, 34
git integration, 31, 32
run/debug, 32, 33
search tool, 30, 31
settings button, 36
snippets.code-snippets, 143, 144
Software Development Kits (SDKs),
217, 296
Stash, 161, 163
Status Bar, 19, 22-23, 38, 43, 84, 86, 103,
156, 157, 165, 166, 232
Stock-keeping units (SKUs), 288

T, U
Tags property, 312, 320, 327
Tasks
auto-detecting, 192, 193
commands, 188
compile Pascal source code,
194-199, 201

335

INDEX

Tasks (cont.)
default build task, 192, 203
operating system, 208, 209
problem matchers, 212
properties, 203-207
reusing existing templates, 209-211
running default program, 213
running/managing, 187-191
substitution variables, 207, 208
tasks.json, 201, 202
types, 186
tasks.json file, 186, 192, 194-199, 201, 203,
207, 210, 214, 229
ToObservableCollection, 145
tsconfig.json file, 81, 88, 91, 189
TypeScript, 27, 29, 33, 38, 48, 57, 59, 80, 89,
91, 139, 185, 187-189, 193, 212
TypeScript compiler (tsc), 185

\'

visualFeatures, 319, 326
VisualFeatureTypes enumeration,
310, 326

Visual Studio code

ASP.NET Core, 2

built-in debugger, 1

color themes, 2

cross-platform development tool, 1, 2

336

development platforms, 3
features, 3
installation/configuration
automatic updates, 12, 13
download page, 4
insiders builds, 14, 15
Linux, 9, 10
localization suppport, 11, 12
macOS, 8, 17
web, 16
Windows, 6, 7, 17
navigating between files, 36
Welcome page, 19, 20
vsc-extension-quickstart.md
file, 143
.vscode, 118, 186, 192, 196, 227

W XY,Z
Web API REST services, 216
Windows Presentation Foundation
(WPE), 90
Workspace
creating, 95
multeor-master, 94
.NET Web API project, 93
open existing workspace, 95, 96
security, trust in action, 97-100
structure, 96

	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: Introducing Visual Studio Code
	Visual Studio Code, a Cross-Platform Development Tool
	When and Why Visual Studio Code
	Installing and Configuring Visual Studio Code
	Installing Visual Studio Code on Windows
	Installing Visual Studio Code on macOS
	Installing Visual Studio Code on Linux
	Localization Support
	Updating Visual Studio Code
	Previewing Features with Insiders Builds
	Visual Studio Code on Web

	Summary

	Chapter 2: Getting to Know the Environment
	The Welcome Page
	The Code Editor
	Reordering, Resizing, and Zooming Editor Windows

	The Status Bar
	The Activity Bar
	The Side Bar
	The Explorer Bar
	The Outline View
	The Timeline View

	The Search Tool
	Searching in the Active File

	The Git Bar
	The Run and Debug Bar
	The Extensions Bar
	The Accounts Button
	The Settings Button

	Navigating Between Files
	The Command Palette
	The Panels Area
	The Problems Panel
	The Output Panel
	The Debug Console Panel
	Working with the Terminal

	Summary

	Chapter 3: Language Support and Code Editing Features
	Language Support
	Working with C# and C++
	Working with Python
	Working with Julia
	Working with Go

	Basic Code Editing Features
	Working with Text
	Syntax Colorization
	Delimiter Matching and Text Selection
	Code Block Folding
	Multicursors
	Reusable Code Snippets
	Word Completion
	Minimap Mode
	Sticky Scroll
	Whitespace Rendering and Breadcrumbs
	Markdown Preview

	Evolved Code Editing
	Working with IntelliSense
	Parameter Hints
	Inline Documentation with Tooltips
	Go to Definition and Peek Definition
	Go to Implementation and Peek Implementations
	Finding References
	Renaming Symbols and Identifiers
	Live Code Analysis
	Hints About IntelliCode

	Summary

	Chapter 4: Working with Files and Folders
	Visual Studio Code and Project Systems
	Working with Individual Files
	Creating Files
	Language Autodetection

	File Encoding, Line Terminators, and Line Browsing

	Working with Folders and Projects
	Opening a Folder
	Opening .NET Solutions
	Opening JavaScript and TypeScript Projects
	Opening Loose Folders

	Working with Workspaces
	Creating Workspaces
	Opening Existing Workspaces
	Workspace Structure
	Security: Workspace Trust
	Configuring Workspace Trust

	Summary

	Chapter 5: Customizing Visual Studio Code
	Customizations and Extensions Explained
	Customizing Visual Studio Code
	Theme Selection
	Customizing the Environment
	Understanding User Settings
	Behind the Scenes: The settings.json File
	A Real-World Example: Working with Proxies
	Privacy Settings: Telemetry
	Synchronization Settings

	Understanding Workspace Settings

	Customizing Keyboard Shortcuts

	Creating Reusable Profiles
	Summary

	Chapter 6: Installing and Managing Extensions
	Installing Extensions
	Extension Recommendations
	Useful Extensions

	Managing Extensions
	Configuring Extensions

	Writing Your First Extension
	Setting Up the Environment
	Fixing PowerShell Script Problems

	Creating an Extension
	Developing the Extension
	Running the Extension
	Packaging Extensions
	Extension Development Summary

	Summary

	Chapter 7: Source Control with Git
	Source Control in Visual Studio Code
	Downloading Other Source Control Providers

	Managing Repositories
	Initializing a Local Git Repository
	Creating a Remote Repository

	Handling File Changes
	Staging Changes

	Managing Commits
	Working with the Git Command-Line Interface
	Creating and Managing Branches
	Switching to a Different Branch
	Merging from a Branch
	Resolving Merge Conflicts

	Hints About Rebasing Branches
	Deleting Branches

	Adding Power to the Git Tooling with Extensions
	Git History
	GitLens
	GitHub Pull Requests and Issues

	Working with Azure DevOps
	Creating a Team Project
	Connecting Visual Studio Code to a Remote Repository

	Summary

	Chapter 8: Automating Tasks
	Understanding Tasks
	Tasks Types
	Running and Managing Tasks
	The Default Build Task
	Auto-Detected Tasks
	Configuring Tasks
	Task Example: Compiling Pascal Source Code
	Multiple Tasks and Default Build Tasks
	Understanding tasks.json Properties
	Understanding Substitution Variables
	Operating System–Specific Properties
	Reusing Existing Task Templates
	Understanding Problem Matchers

	Running Files with a Default Program

	Summary

	Chapter 9: Building and Debugging Applications
	Creating Applications
	The Status of Microsoft .NET
	Setting Up .NET for VS Code Development

	Creating .NET Projects
	Creating Projects on Other Platforms

	Debugging Your Code
	Configuring the Debugger
	Managing Breakpoints
	Debugging an Application
	Evaluating Expressions
	The Call Stack
	The Debug Console Panel

	Configuring Debug Options

	Summary

	Chapter 10: Building Applications with Python
	Chapter Prerequisites
	Creating Python Applications
	Running Python Code

	Code Editing Features for Python
	Enhanced Word Completion with IntelliSense
	Understanding Function Parameters with Parameter Hints
	Quickly Retrieving Type Definitions
	Finding References
	Renaming Symbols
	Finding Code Issues with Linters

	Advanced Code Editing with Pylance
	Managing Pylance Settings

	Running Python Scripts
	Summary

	Chapter 11: Deploying Applications to Azure
	Introducing Azure Extensions
	Deploying Web Applications
	Installing Extensions
	Signing In to Azure Subscriptions
	Publishing Web Applications

	Creating and Deploying Azure Functions
	Configuring Visual Studio Code
	Creating Azure Functions
	Deploying Azure Functions

	Deploying Docker Images
	Docker Prerequisites
	Creating the Application Image
	Uploading the Application Image to a Container Registry
	Deploying the Docker Image to Azure

	Summary

	Chapter 12: Consuming AI Services
	Introducing Azure for AI
	General Considerations
	Introducing Computer Vision

	Setting Up Computer Vision Services
	Retrieving the Service Keys

	Consuming AI Services with .NET
	Setting Up Variables and Constants
	Creating Authenticated Service Clients
	Executing Image Analysis
	Running the Application
	Using the Debugging Tools

	Consuming AI Services with JavaScript
	Setting Up Variables and Constants
	Creating Authenticated Service Clients
	Executing Image Analysis
	Coding and Debugging Tools in Action

	Running the Application

	Consuming AI Services with Python
	Setting Up Variables and Constants
	Creating Authenticated Service Clients
	Executing Image Analysis
	Coding and Debugging Tools in Action

	Running the Application

	Summary

	Index

