
Visual Studio
Code Distilled

Evolved Code Editing for Windows,
macOS, and Linux
—
Third Edition
—
Alessandro Del Sole

Visual Studio Code
Distilled

Evolved Code Editing for Windows,
macOS, and Linux

Third Edition

Alessandro Del Sole

Visual Studio Code Distilled: Evolved Code Editing for Windows, macOS, and Linux

ISBN-13 (pbk): 978-1-4842-9483-3 ISBN-13 (electronic): 978-1-4842-9484-0
https://doi.org/10.1007/978-1-4842-9484-0

Copyright © 2023 by Alessandro Del Sole

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Laura Berendson
Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (github.com/apress). For more detailed information, please visit http://www.apress.
com/source-code.

Printed on acid-free paper

Alessandro Del Sole
Cremona, Italy

https://doi.org/10.1007/978-1-4842-9484-0

To my wonderful wife, Angelica. You are my reason to live.

v

About the Author ��� xiii

Acknowledgments ���xv

Introduction ���xvii

Chapter 1: Introducing Visual Studio Code ��� 1

Visual Studio Code, a Cross-Platform Development Tool �� 1

When and Why Visual Studio Code �� 2

Installing and Configuring Visual Studio Code �� 4

Installing Visual Studio Code on Windows ��� 6

Installing Visual Studio Code on macOS �� 8

Installing Visual Studio Code on Linux ��� 9

Localization Support �� 11

Updating Visual Studio Code �� 12

Previewing Features with Insiders Builds ��� 14

Visual Studio Code on Web �� 16

Summary��� 17

Chapter 2: Getting to Know the Environment ��� 19

The Welcome Page �� 19

The Code Editor ��� 21

Reordering, Resizing, and Zooming Editor Windows ��� 22

The Status Bar �� 22

The Activity Bar ��� 23

The Side Bar �� 24

The Explorer Bar �� 24

The Search Tool ��� 30

Table of Contents

vi

The Git Bar ��� 31

The Run and Debug Bar ��� 32

The Extensions Bar �� 33

The Accounts Button�� 34

The Settings Button ��� 36

Navigating Between Files ��� 36

The Command Palette ��� 37

The Panels Area �� 38

The Problems Panel ��� 38

The Output Panel ��� 40

The Debug Console Panel �� 40

Working with the Terminal ��� 41

Summary��� 43

Chapter 3: Language Support and Code Editing Features �������������������������������������� 45

Language Support ��� 45

Working with C# and C++ ��� 46

Working with Python ��� 47

Working with Julia ��� 48

Working with Go �� 48

Basic Code Editing Features ��� 48

Working with Text �� 49

Syntax Colorization �� 50

Delimiter Matching and Text Selection �� 51

Code Block Folding �� 52

Multicursors �� 52

Reusable Code Snippets �� 53

Word Completion ��� 54

Minimap Mode ��� 55

Sticky Scroll ��� 56

Whitespace Rendering and Breadcrumbs ��� 57

Markdown Preview �� 58

Table of ConTenTs

vii

Evolved Code Editing ��� 59

Working with IntelliSense �� 60

Parameter Hints ��� 62

Inline Documentation with Tooltips ��� 63

Go to Definition and Peek Definition �� 64

Go to Implementation and Peek Implementations ��� 66

Finding References �� 67

Renaming Symbols and Identifiers �� 70

Live Code Analysis ��� 72

Hints About IntelliCode �� 80

Summary��� 80

Chapter 4: Working with Files and Folders��� 81

Visual Studio Code and Project Systems �� 81

Working with Individual Files �� 82

Creating Files ��� 84

File Encoding, Line Terminators, and Line Browsing ��� 86

Working with Folders and Projects ��� 87

Opening a Folder ��� 88

Opening �NET Solutions ��� 90

Opening JavaScript and TypeScript Projects ��� 91

Opening Loose Folders �� 92

Working with Workspaces ��� 92

Creating Workspaces ��� 95

Opening Existing Workspaces ��� 95

Workspace Structure ��� 96

Security: Workspace Trust ��� 97

Summary��� 101

Table of ConTenTs

viii

Chapter 5: Customizing Visual Studio Code ��� 103

Customizations and Extensions Explained �� 103

Customizing Visual Studio Code �� 105

Theme Selection �� 105

Customizing the Environment �� 107

Customizing Keyboard Shortcuts �� 118

Creating Reusable Profiles �� 123

Summary��� 125

Chapter 6: Installing and Managing Extensions ��� 127

Installing Extensions ��� 127

Extension Recommendations �� 131

Useful Extensions �� 133

Managing Extensions �� 134

Configuring Extensions �� 136

Writing Your First Extension �� 138

Setting Up the Environment ��� 139

Creating an Extension �� 140

Developing the Extension �� 142

Running the Extension ��� 145

Packaging Extensions�� 147

Extension Development Summary��� 148

Summary��� 149

Chapter 7: Source Control with Git ��� 151

Source Control in Visual Studio Code �� 151

Downloading Other Source Control Providers ��� 152

Managing Repositories ��� 153

Initializing a Local Git Repository �� 154

Creating a Remote Repository ��� 155

Handling File Changes �� 159

Staging Changes ��� 160

Table of ConTenTs

ix

Managing Commits ��� 161

Working with the Git Command-Line Interface ��� 163

Creating and Managing Branches ��� 164

Switching to a Different Branch �� 166

Merging from a Branch �� 166

Hints About Rebasing Branches �� 170

Deleting Branches ��� 170

Adding Power to the Git Tooling with Extensions �� 170

Git History �� 171

GitLens ��� 172

GitHub Pull Requests and Issues ��� 174

Working with Azure DevOps �� 178

Creating a Team Project��� 178

Connecting Visual Studio Code to a Remote Repository�� 181

Summary��� 182

Chapter 8: Automating Tasks ��� 185

Understanding Tasks ��� 185

Tasks Types ��� 186

Running and Managing Tasks �� 187

The Default Build Task ��� 192

Auto-Detected Tasks �� 192

Configuring Tasks �� 194

Running Files with a Default Program ��� 213

Summary��� 213

Chapter 9: Building and Debugging Applications ��� 215

Creating Applications �� 215

The Status of Microsoft �NET ��� 216

Creating �NET Projects ��� 217

Creating Projects on Other Platforms �� 223

Table of ConTenTs

x

Debugging Your Code �� 225

Configuring the Debugger ��� 227

Managing Breakpoints��� 230

Debugging an Application �� 231

Configuring Debug Options �� 237

Summary��� 238

Chapter 10: Building Applications with Python �� 239

Chapter Prerequisites ��� 239

Creating Python Applications ��� 241

Running Python Code �� 243

Code Editing Features for Python �� 250

Enhanced Word Completion with IntelliSense ��� 250

Understanding Function Parameters with Parameter Hints �� 251

Quickly Retrieving Type Definitions ��� 251

Finding References �� 252

Renaming Symbols �� 253

Finding Code Issues with Linters ��� 254

Advanced Code Editing with Pylance �� 257

Managing Pylance Settings ��� 260

Running Python Scripts ��� 261

Summary��� 262

Chapter 11: Deploying Applications to Azure ��� 263

Introducing Azure Extensions �� 263

Deploying Web Applications �� 265

Installing Extensions �� 265

Signing In to Azure Subscriptions �� 266

Publishing Web Applications �� 268

Creating and Deploying Azure Functions �� 271

Configuring Visual Studio Code ��� 271

Creating Azure Functions ��� 273

Deploying Azure Functions �� 280

Table of ConTenTs

xi

Deploying Docker Images ��� 283

Docker Prerequisites ��� 284

Creating the Application Image ��� 285

Uploading the Application Image to a Container Registry ��� 287

Deploying the Docker Image to Azure ��� 290

Summary��� 292

Chapter 12: Consuming AI Services ��� 295

Introducing Azure for AI ��� 296

General Considerations ��� 297

Introducing Computer Vision ��� 297

Setting Up Computer Vision Services �� 297

Retrieving the Service Keys ��� 302

Consuming AI Services with �NET ��� 304

Setting Up Variables and Constants��� 306

Creating Authenticated Service Clients ��� 308

Executing Image Analysis �� 309

Running the Application��� 313

Consuming AI Services with JavaScript �� 315

Setting Up Variables and Constants��� 317

Creating Authenticated Service Clients ��� 318

Executing Image Analysis �� 319

Running the Application��� 322

Consuming AI Services with Python ��� 323

Setting Up Variables and Constants��� 324

Creating Authenticated Service Clients ��� 325

Executing Image Analysis �� 326

Running the Application��� 329

Summary��� 330

Index ��� 331

Table of ConTenTs

xiii

About the Author

Alessandro Del Sole is a senior software engineer for a

healthcare company, building mobile apps for doctors and

dialysis patients. He has been in the software industry for

more than 20 years, focusing on Microsoft technologies

such as .NET, C#, Visual Studio, and Xamarin. He has been

a trainer, consultant, and a Microsoft MVP since 2008 and

is the author of many technical books. He is a Xamarin

Certified Mobile Developer, Microsoft Certified Professional,

and a Microsoft Programming Specialist in C#.

xv

Acknowledgments

Thanks to Smriti Srivastava, Nirmal Selvaraj, Laura Berendson, and everyone else at

Apress for the opportunity, renewed trust, and the great teamwork on this book.

Special thanks to the technical editor Damien Foggon, who contributed to the

quality and accuracy of the content.

Special thanks to my wife Angelica, for her continuous and strong support.

xvii

Introduction

One of the most common requirements in software development today is building

applications and services that run on multiple systems and devices, especially with the

continued expansion of cloud and artificial intelligence services, and of architectures

based on microservices.

Developers have many options for building cross-platform and cross-device

software, from languages to development platforms and tools. However, in most cases,

such tools rely on proprietary systems, which result in strong dependencies. Moreover,

most development tools target specific platforms and development scenarios. Microsoft

Visual Studio Code takes a step forward by providing a fully featured development

environment for Windows, macOS, and Linux that offers not only advanced coding

features but also integrated tools. These tools span across the entire application lifecycle,

from coding to debugging to team collaboration. The full tooling is consistent across

these languages and frameworks, natively or via extensions, so that developers share the

same experience regardless of the technology they use.

With .NET 7 and with .NET MAUI recently released, and with artificial intelligence

services becoming part of the modern software implementation, Visual Studio Code

becomes even more important to support cross-platform development on multiple

operating systems. In this book, developers with any skill level learn how to leverage

Visual Studio Code to target scenarios such as web, cloud, and mobile development

using the programming language of their choice. This book provides guidance on

building apps for any system and any device. This includes managing the application

lifecycle, as well as team collaboration.

1

CHAPTER 1

Introducing Visual Studio
Code
Visual Studio Code is not just another evolved notepad with syntax colorization and

automatic indentation. Instead, it is a very powerful, code-focused development

environment expressly designed to make it easier to write web, mobile, and cloud

applications using languages that are available in different development platforms. It

supports the application development lifecycle with a built-in debugger and integrated

support for the popular Git version control engine.

With Visual Studio Code, you can work with individual code files or with folders

containing projects or loose files. This chapter provides an introduction to Visual Studio

Code, giving you information on when and why you should use it. It includes details

about installing and configuring the program on the different supported operating

systems.

Note In this book, I refer to the product using its full name, Visual Studio Code, as
well as its friendly names, VS Code and Code, interchangeably.

 Visual Studio Code, a Cross-Platform
Development Tool
Visual Studio Code is the first cross-platform development tool in the Microsoft Visual

Studio family that runs on Windows, Linux, and macOS. It is a free, open-source

(https://github.com/microsoft/vscode), code-centric tool. This not only makes

editing code files and folder-based project systems easier, but also facilitates writing

cross-platform web, mobile, and cloud applications in the most popular platforms, such

© Alessandro Del Sole 2023
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_1

https://github.com/microsoft/vscode
https://doi.org/10.1007/978-1-4842-9484-0_1

2

as Node.js and .NET. It also has integrated support for a huge number of languages and

rich editing features such as IntelliSense, finding symbol references, quickly reaching a

type definition, and much more.

Visual Studio Code is based on Electron (https://electronjs.org/), a framework

for creating cross-platform applications with native technologies. It combines the

simplicity of a powerful code editor with the tools a developer needs to support the

application lifecycle development, including debuggers and version control integration

based on Git. Visual Studio Code is therefore a complete development tool, rather than

being a simple code editor. For a richer development experience, consider Microsoft

Visual Studio 2022 on Windows and Visual Studio 2022 for Mac on macOS, but Visual

Studio Code can be really helpful in many situations.

In this book, you learn how to use Visual Studio Code and how to get the most

out of it; you discover how you can use it as a powerful code editor and as a complete

environment for end-to-end development. Except where necessary to differentiate

operating systems, figures are based on Microsoft Windows 10, but typically there is

no difference in the interface on Windows 11, Linux, and macOS. Also, Visual Studio

Code includes several color themes that style its layout. In this book, figures display the

Light (Visual Studio) theme, so you might see different colors on your own screen if you

choose a different color theme. Chapter 5 explains how to change the theme, but if you

want to be consistent with the book’s figures, simply choose File ➤ Preferences ➤ Color

Theme and select the Visual Studio 2019 Light Theme. It is worth mentioning that the

theme you select does not affect the features described in this book.

 When and Why Visual Studio Code
Before you learn how to use Visual Studio Code, explore the features it offers, and

discover how it provides an improved code editing experience, you have to clearly

understand its purpose. Visual Studio Code is not a simple code editor; rather, it is a

powerful environment that puts writing code at its center. The main purpose of Visual

Studio Code is to make it easier to write code for web, mobile, and cloud platforms for

any developers working on Windows, Linux, or macOS, providing independence from

proprietary development environments.

For a better understanding of the nonproprietary nature of Visual Studio Code,

let’s consider an example based on ASP.NET Core, the cross-platform, open-source

technology able to run on Windows, Linux, and macOS that Microsoft produced to

Chapter 1 IntroduCIng VISual StudIo Code

https://electronjs.org/

3

create portable web applications. Forcing you to build cross-platform, portable web apps

with Microsoft Visual Studio 2022 would make you dependent on that specific integrated

development environment (IDE). This also applies to the (free) Visual Studio 2022

Community edition. Conversely, though Visual Studio Code certainly is not intended to

be a replacement for more powerful and complete environments, it can run on a variety

of operating systems and can manage different project types, as well as the most popular

languages. To accomplish this, Visual Studio Code provides the following core features:

• Built-in support for coding in many languages, including those

you typically use in cross-platform development scenarios, such as

C# and JavaScript, with advanced editing features and support for

additional languages via extensibility

• Built-in debugger for Node.js, with support for additional debuggers

(such as .NET and Julia) via extensibility

• Version control based on the popular Git version-control system,

which provides an integrated experience for collaboration,

supporting code commits and branches

In order to properly combine all these features into one tool, Visual Studio Code

provides a coding environment based on folders, which makes it easy to work with code

files that are not organized within projects and offers a unified way to work with different

languages. Starting with this assumption, Visual Studio Code offers an advanced editing

experience with features that are common to many supported languages, plus some

features that are available to specific languages. As you’ll learn throughout the book,

Code also makes it easy to extend its built-in features by supplying custom languages,

syntax coloring, editing tools, debuggers, and much more via a number of extensibility

points. It is a code-centric tool, with primary focus on web, cross-platform code. That

said, it does not provide all of the features you need for full, more complex application

development and application lifecycle management and it is not intended to be the best

choice with some development platforms. If you have to make a choice, consider the

following points:

• Visual Studio Code can produce binaries and executable files only if

the language you use has support to do so through a command-line

interface (CLI), a compiler, and a debugger. If you use a language

for which there is no extensive support (e.g., the open-source Go

programming language, https://golang.org), Visual Studio Code

Chapter 1 IntroduCIng VISual StudIo Code

https://golang.org

4

cannot invoke a compiler. You can work around this by implementing

task automation, discussed in Chapter 8, but this is different than

having an integrated compilation process.

• Except where provided by specific extensions, Visual Studio Code

has no designers, so you can create an application user interface

only by writing all of the related code manually. As you can imagine,

this is fine for some languages and for some scenarios, but it can be

very complicated with some kinds of applications and development

platforms, especially if you are used to working with the powerful

graphical tools available in Microsoft Visual Studio 2022.

• Visual Studio Code is a general-purpose tool and is not the proper

choice for specific development scenarios such as building Windows

desktop applications.

If your requirements are different, consider Microsoft Visual Studio 2022 or Microsoft

Visual Studio 2022 for Mac instead, which are optimized for building, testing, deploying,

and maintaining multiple types of applications.

Now that you have a clearer idea of Code’s goals, you are ready to learn the amazing

editing features that elevate it above any other code editor.

 Installing and Configuring Visual Studio Code
Installing Visual Studio Code is an easy task. In fact, you can simply visit https://

code.visualstudio.com from your favorite browser, and the web page will detect

your operating system, suggesting the appropriate installer. Figure 1-1 shows how the

download page appears on Windows.

Chapter 1 IntroduCIng VISual StudIo Code

https://code.visualstudio.com
https://code.visualstudio.com

5

Figure 1-1. The download page for Visual Studio Code

Note Visual Studio Code can also run in portable Mode, which means that
you can create a self-containing folder that can be moved across environments.
Since this is a very specific scenario, it isn’t covered in this book; you can read
the documentation (https://code.visualstudio.com/docs/editor/
portable) to learn the steps required to generate portable Mode.

In the following sections, you learn some tips for installing Visual Studio Code on

various supported systems.

Note the latest stable release of Visual Studio Code at the time of this writing is
version 1.76.0, released in February 2023.

Chapter 1 IntroduCIng VISual StudIo Code

https://code.visualstudio.com/docs/editor/portable
https://code.visualstudio.com/docs/editor/portable

6

 Installing Visual Studio Code on Windows
Visual Studio Code can be installed on Windows 8, 10, and 11. For this operating system,

Visual Studio Code is available with two installers: a global installer and a user-level

installer. The global installer requires administrative privileges for installation and

makes Code available to all users. The user-level installer makes Code available only to

the currently logged-in user, but it does not require administrative privileges.

The user-level installer is the choice I recommend, especially if you work within a

corporate environment and you do not have administrative privileges to install software

on your PC. The Download for Windows button that you can see in Figure 1-1 will

automatically download the user-level installer. If you instead want to download the

system-level installer, go to https://code.visualstudio.com/download and select

the System Installer download that best fits your system configuration (32- or 64-bit,

or ARM).

Once the download has been completed, launch the installer and simply follow the

guided procedure that is typical of most Windows programs. During the installation, you

will be prompted to specify how you want to integrate shortcuts to Visual Studio Code

in the Windows shell. In the Select Additional Tasks dialog box, make sure you select (at

least) the following options:

• Add “Open with Code” action to Windows Explorer file context
menu, which allows you to right-click a code file in the Explorer and

open a file with VS Code.

• Add “Open with Code” action to Windows Explorer directory
context menu, which allows you to right click a folder in the Explorer

and open a folder with VS Code.

• Add to PATH (available after restart), which adds the VS Code’s

pathname to the PATH environment variable, making it easy to run

Visual Studio Code from the command line without typing the

full path.

Note Some antivirus and system protection tools, such as Symantec endpoint
protection, might block the installation of some files that are recognized as false
positives. In most cases, this will not prevent Visual Studio Code from working, but

Chapter 1 IntroduCIng VISual StudIo Code

https://code.visualstudio.com/download

7

it is recommended that you disable the protection tool before installing Code or,
if you do not have elevated permissions, that you ask your administrator to do it
for you.

A specific dialog box will inform you once the installation process has completed.

The installation folder for the user-level installer is C:\Users\username\AppData\Local\

Programs\Microsoft VS Code, while the installation folder for the global installer is

C:\Program Files\Microsoft VS Code on 64-bit systems and C:\Program Files(x86)\

Microsoft VS Code on 32-bit systems. You will find a shortcut to Visual Studio Code in

the Start menu and on the Desktop, if you selected the option to create a shortcut during

the installation. When it starts, Visual Studio Code appears as shown in Figure 1-2.

Figure 1-2. Visual Studio Code running on Windows

Chapter 1 IntroduCIng VISual StudIo Code

8

 Installing Visual Studio Code on macOS
Installing VS Code on macOS is extremely simple. From the download page, simply click

the Download for macOS button and wait for the download to complete. On macOS,

Visual Studio Code works as an individual program, and therefore you simply need to

double-click the downloaded file to start the application. Figure 1-3 shows Visual Studio

Code running on macOS.

Figure 1-3. Visual Studio Code running on macOS

Chapter 1 IntroduCIng VISual StudIo Code

9

 Installing Visual Studio Code on Linux
Linux is a very popular operating system and many derived distributions exist, so

there are different installers available depending on the distribution you are using.

For the Ubuntu and Debian distributions, you need the .deb installer. For the Red Hat

Linux, Fedora, and SUSE distributions, you need the .rpm installer. This clarification is

important because, as opposed to Windows and macOS, the browser might not be able

to automatically detect the Linux distribution you are using, and therefore it will offer

both options.

Once Visual Studio Code is installed, simply click the Show Applications button on

the Desktop and then choose the Visual Studio Code shortcut. Figure 1-4 shows Visual

Studio Code running on Ubuntu.

Chapter 1 IntroduCIng VISual StudIo Code

10

Fi
gu

re
 1

-4
.

V
is

u
al

 S
tu

di
o

C
od

e
ru

n
n

in
g

on
 U

bu
n

tu

Chapter 1 IntroduCIng VISual StudIo Code

11

Note If you are a Windows user and want to try Visual Studio Code on a linux
distribution, you can create a virtual machine with the hyper-V tool. For example,
you could install the latest ubuntu version (https://www.ubuntu.com/
download/desktop) as an ISo image and use it as an installation media in
hyper-V. on macoS, you need to purchase the apple parallels desktop software
separately in order to create virtual machines, but you can basically do the same.

 Localization Support
Visual Studio Code ships in English, but it can be localized in many other supported

languages and cultures. When it's started, VS Code checks for the operating system

language and, if it's different from English, it shows a popup message suggesting to

install a language pack for the culture of your operating system. The localization support

can be also enabled manually.

To accomplish this, choose View ➤ Command Palette. When the text box appears at

the top of the page, type the following command:

> Configure Display Language

You can also just type configure display and the command will be automatically

listed in the command palette (see Figure 1-5).

Figure 1-5. Invoking the command to change the localization

Note the Command palette is discussed thoroughly in Chapter 2.

Chapter 1 IntroduCIng VISual StudIo Code

https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop

12

When you click this command, the Command Palette displays the following options:

• English (en), which allows you to select American English as the

culture. This is the default localization and is always available.

• A list of available language packs built by Microsoft.

When you select a language pack, VS Code will download the appropriate package

and will show a message saying that a restart is required in order to localize the user

interface.

 Updating Visual Studio Code
Visual Studio Code is configured to receive automatic updates in the background;

Microsoft usually releases monthly updates.

Note Because VS Code receives monthly updates, some features might have
been updated at the time of your reading, and others might be new. this is a
necessary clarification you should keep in mind while reading, and it is also the
reason that I also provide links to the official documentation, so that you can stay
up to date more easily.

Additionally, you can manually check for updates by choosing Help ➤ Check for

Updates on Windows and Linux or choosing Code ➤ Check for Updates on macOS. If

you do not want to receive automatic updates and prefer manual updates, you can

disable automatic updates by choosing File ➤ Preferences ➤ Settings. Then, in the

Update section of the Application settings group, disable the Background Updates

option. Figure 1-6 shows an example based on Windows. (Obviously, on macOS and

Linux, the Enable Windows Background Updates option is not available.)

Chapter 1 IntroduCIng VISual StudIo Code

13

Figure 1-6. Disabling automatic updates

You follow the same steps to re-enable updates in the background. Whenever Visual

Studio Code receives an update, you will receive a notification suggesting that you restart

Code in order to apply the changes. The first time you restart Visual Studio Code after an

update, you will see the release notes for the version that was installed, as demonstrated

in Figure 1-7.

Chapter 1 IntroduCIng VISual StudIo Code

14

Figure 1-7. VS Code release notes

Release notes contain the list of new and updated features, as well as hyperlinks that

will open the proper feature page in the documentation. You can recall release notes at

any time by choosing Help ➤ Show Release Notes.

 Previewing Features with Insiders Builds
By default, the download page of the Visual Studio Code’s website allows you to

download the latest stable build. However, Microsoft periodically also releases preview

builds of Visual Studio Code, called Insiders builds. You can download these Insiders

builds to look at any new and updated upcoming features before they are released to the

general public.

Chapter 1 IntroduCIng VISual StudIo Code

15

Insiders builds can be downloaded from https://code.visualstudio.com/

insiders, and they follow the same installation rules described previously for each

operating system. They have a different icon color, typically a green icon instead of a blue

icon, and the name you see in the application bar is Visual Studio Code - Insiders instead

of Visual Studio Code (see Figure 1-8).

Figure 1-8. Visual Studio Code Insiders builds

Insiders builds and stable builds can work side by side without any issues. Because

each lives in its own environment, your setting customizations and extensions you

installed on the stable build will not be automatically available to the Insiders build and

vice versa, so you will need to provide them again.

Insiders builds are a very good way to see what is coming with Visual Studio Code,

but because they are not stable, final builds, it is not recommended you use them in

production or with code you will release to production.

Chapter 1 IntroduCIng VISual StudIo Code

https://code.visualstudio.com/insiders
https://code.visualstudio.com/insiders

16

 Visual Studio Code on Web
Microsoft is working on making Visual Studio Code available as a web application

running in your favorite browser.

This is currently available as a preview and can be reached at https://vscode.dev.

A shortcut is also available in the main site for Visual Studio Code. Figure 1-9 shows how

VS Code looks in the browser.

Figure 1-9. Visual Studio Code as a web app

When running in the browser, Visual Studio Code offers the same features available

on the regular desktop app. You can also fully customize your development environment

and experience, and changes will be saved into the local cache. This is a very interesting

alternative, but still in preview stage at the time of this writing.

Chapter 1 IntroduCIng VISual StudIo Code

https://vscode.dev

17

 Summary
Visual Studio Code is not a simple code editor, but a fully featured development

environment optimized for web, mobile, and cloud development. In this chapter, you

saw how to install Visual Studio Code on Windows, macOS, and Linux distributions,

learning how to select the appropriate installers and fine-tune the setup process. You

also saw how to configure localization and updates. Next, you looked at the Insiders

builds, which offer previews of upcoming, unreleased features. Finally, you saw Visual

Studio Code running in the browser as a web app, with the same features as the desktop

version.

Now that your environment is ready for use, it is time to start discovering the

amazing features offered by Visual Studio Code. The next chapter walks through the

environment, then in Chapter 3, you learn about all the amazing code-editing features

that make Visual Studio Code a rich, powerful cross platform editor.

Chapter 1 IntroduCIng VISual StudIo Code

19

CHAPTER 2

Getting to Know
the Environment
Before you use Visual Studio Code as the editor of your choice, you need to know how

the workspace is organized and what commands and tools are available, in order to get

the most out of the development environment.

The VS Code user interface and layout are optimized to maximize the space for code

editing, and it also provides easy shortcuts to quickly access all the additional tools you

need in a given context. More specifically, the user interface is divided into five areas:

the code editor, the Status Bar, the Activity Bar, the Panels area, and the Side Bar. This

chapter explains how the user interface is organized and how you can be productive

using it.

Note All the features discussed in this chapter apply to any file in any language,
and they are available regardless of the language you see in the figures (normally
C#). You can open one or more code files via File ➤ Open File to access the editor
windows and explore the features discussed in this chapter. Then, Chapter 4
discusses more thoroughly how to work with individual files and multiple files, in
one or more languages, concurrently.

 The Welcome Page
At startup, Visual Studio Code displays the Welcome page, as shown in Figure 2-1.

© Alessandro Del Sole 2023
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_2

https://doi.org/10.1007/978-1-4842-9484-0_2

20

Figure 2-1. The Welcome page

On the left side of the page, under the Start group, you find shortcuts for creating and

opening files and folders, and for cloning an existing Git repository. Under the Recent

group is a list of recently opened files and folders that you can click for fast opening.

Under the Walkthroughs group, there are useful links to product documentation,

tutorials, cheat sheets, introductory videos, and other learning resources about Visual

Studio Code.

By default, the Welcome page is set to appear every time you launch VS Code. To

change this default behavior, remove the check mark from the Show Welcome Page On

Startup check box. To re-enable the Welcome page on startup, choose Help ➤ Welcome

and add the check mark back.

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

21

 The Code Editor
The code editor is certainly the area where you will spend most of your time in VS Code.

The code editor becomes available when you create a new file or open existing files and

folders. You can edit one file at a time or edit multiple files side by side concurrently.

Figure 2-2 shows an example of the latter.

Figure 2-2. The code editor and multiple file views

To do this, you have a couple options:

• Right-click a filename in the Explorer Bar and then select Open to

the Side.

• Ctrl-click a filename in the Explorer Bar. This is discussed in the

section “The Side Bar” later in this chapter.

• Press Ctrl+\ (or ⌘+\ on macOS) to split the editor into two.

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

22

Open editors can also be organized into groups. To accomplish this, you can drag

and drop the title of an open editor close to another one and they will be grouped in

the same space and the Explorer Bar will show the list of groups. You can quickly switch

between editors by pressing Ctrl+1, 2, and so on, until 9. Keep in mind this works with up

to nine editor windows. The code editor is the heart of Visual Studio Code and provides

tons of powerful productivity features that are discussed in detail in the next chapter. For

now, it is enough to know how to open and arrange editor windows.

 Reordering, Resizing, and Zooming Editor Windows
You can reorder and resize editor windows based on your preferences. To reorder an

editor, click the editor’s header (which is where you see the filename) and move the

editor to a different position. Resizing an editor can instead be accomplished by clicking

the left mouse button when the pointer is on the editor’s border, until it appears as a left/

right arrow pair.

You can also zoom in and out the environment by clicking Ctrl++ and Ctrl+-,

respectively. As an alternative, you can choose View ➤ Appearance ➤ Zoom In and View

➤ Appearance ➤ Zoom Out. You can reset the original zoom factor with Appearance ➤

Reset Zoom.

Note in visual Studio Code, the zoom is actually an accessibility feature. As an
implication, when you zoom the code editor, everything else will also be zoomed.

 The Status Bar
The Status Bar contains information about the current file or folder and provides

shortcuts for some quick actions. Figure 2-3 shows an example of how the Status Bar

appears.

Figure 2-3. The Status Bar

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

23

The Status Bar contains the following information, from left to right:

• Git version control information and options, such as the current

branch. This is only visible when VS Code is connected to a Git

repository.

• Errors and warnings detected in the source code.

• The cursor position expressed in line and column.

• Tab size, in this case Spaces: 4. You can click this to change the

indentation size and to convert indentation to tabs or spaces.

• The encoding of the current file.

• The current line terminator.

• The programming or markup language of the open file. By clicking

the current language name, you can change the language from a

drop-down list that pops up.

• The project name, if you open a folder that contains a supported

project system. It is worth noting that, if the folder contains multiple

project files, clicking this item enables you to switch between

projects.

• The Feedback button, which enables you to share your feedback

about Visual Studio Code on Twitter.

• The notification icon, which shows the number of new notifications

(if any). Notification messages typically come from extensions or they

are about product updates.

It is worth mentioning that the color of the Status Bar changes depending on the

situation. For example, it is purple when you open a single file, blue when you open a

folder, and orange when Visual Studio Code is in debugging mode. Additionally, third-

party extensions might use the Status Bar to display their own information.

 The Activity Bar
The Activity Bar is on the left side of the workspace and can be considered a collapsed

container for the Side Bar. Figure 2-4 shows the Activity Bar.

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

24

Figure 2-4. The Activity Bar

The Activity Bar provides shortcuts for the Explorer, Search, Git, Run and Debug,

Extensions, Accounts, and Settings tools, each described in the next section. When you

click a shortcut, the Side Bar related to the selected tool becomes visible. You can click

the same shortcut again to collapse the Side Bar.

 The Side Bar
The Side Bar is one of the most important tools in Visual Studio Code, and one of

the tools you will interact most with. It is composed of five tools, each enabled by the

corresponding icon, described in the following subsections.

 The Explorer Bar
The Explorer Bar is enabled by clicking the first icon from the top of the Side Bar and

provides a structured, organized view of the folder or files you are working with. The

list of active files can be shown in the OPEN EDITORS subview. This can be enabled by

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

25

clicking the ... button and then selecting Open Editors. It also includes open files that are

not part of a project, folder, or files that have been modified. These are instead shown in

a subview whose name is the folder or project name. Figure 2-5 provides an example of

Explorer.

Figure 2-5. The Explorer Bar

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

26

You must hover your cursor over any file or folder to make the four buttons visible.

The subview that shows a folder structure provides four buttons (from left to right): New

File, New Folder, Refresh Explorer, and Collapse Folders in Explorer, each of which is

self-explanatory. The OPEN EDITORS subview has three buttons (which you get when

hovering over with the mouse): New Untitled Text File, Save All, and Close All Editors.

Right-clicking a folder or filename in Explorer provides a context menu that offers

common commands (such as Open to the Side, referenced earlier in this chapter). A very

interesting command is Reveal in File Explorer (or Reveal to Finder on Mac and Open

Containing Folder on Linux), which opens the containing folder for the selected item.

Notice that the Explorer icon in the Activity Bar also reports the number of unsaved files.

 The Outline View

The bottom of the Explorer Bar contains another group, called OUTLINE. This group

provides a hierarchical view of types and members defined within a code file or tags.

Figures 2-6 and 2-7 show the OUTLINE group based on a TypeScript file and based on

an HTML file, respectively.

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

27

Figure 2-6. The Outline view on a TypeScript file

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

28

Figure 2-7. The Outline view on an HTML file

You can expand types and members defined in a markup file to see what other

objects they define, and you can click each item and get the cursor over the selected item

definition in the source code. It is worth mentioning that Visual Studio Code highlights

with a different color (red in the case of the Visual Studio Light Theme) items that have

potential problems and that are highlighted with squiggles in the code editor. Currently,

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

29

the Outline view is only available to languages such as JavaScript, TypeScript, C#,

HTML, Markdown, and JSON. Support for additional languages might be available when

installing the appropriate extensions.

 The Timeline View

The Timeline view shows the history of local changes made to an individual file. It only

works with code for which a local Git repository has been created.

Note The Timeline view is related to working with Git source control, the topic of
Chapter 7, but it is discussed here because it is part of the explorer Bar. For now,
you can click the Source Control button on the Side Bar and then click the initialize
repository button. This initializes a local Git repository and, consequently, the
Timeline feature over individual files.

Figure 2-8 shows an example based on a file called index.html.

Figure 2-8. The Timeline view showing change history

In this particular example, the Timeline is showing three changes in the file history:

a first local commit, changes saved to disk, and staged changes. This tool is very useful

when you work with Git source control, and you want to see a detailed view of the history

for each file. Chapter 7 provides detailed explanations about integrated source control

features.

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

30

 The Search Tool
The Search tool, enabled by clicking the Search icon, allows for searching and,

optionally, replacing text across files. You can search for one or more words, including

special characters (such as * and ?), and you can even search based on regular

expressions. Figure 2-9 shows the Search tool in action, with advanced options expanded

(files to include and files to exclude), which you enable by clicking the … button located

under Replace. In the example, search is performed only within .tsx files.

Figure 2-9. The Search tool

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

31

Search results are presented in a hierarchical view that groups all the files that

contain the specified search key, showing an excerpt of the line of code that contains it.

Occurrences are also highlighted in both the list of files and in the code editor. You can

finally clean up search results by clicking the Clear Search Results button located in the

toolbar close to the SEARCH header. If you instead want to replace some text with new

text, you can do this by entering the new text into the Replace text box and then clicking

the Replace All button.

 Searching in the Active File

If you just need to search for contents in the active editor, you can choose Edit ➤

Find. An interactive popup allows you to type the content you want to search, and all

occurrences will be highlighted.

With large files and many occurrences of the search result, you can quickly navigate

to a specific match by enabling the Command Palette and then typing Go to Match. At

this point, you can enter the number of a match based on the search result count.

You can also choose Edit ➤ Replace if you need to make replacements in the

active editor.

 The Git Bar
The Side Bar provides access to Git integration for version control. Git integration is a

core topic and is thoroughly discussed in Chapter 7, but a quick look is provided here

for the sake of completeness about the Side Bar and because the Timeline view was

discussed previously.

The Git Bar can be enabled by clicking the third button from the top of the Side

Bar (with a kind of fork icon) and provides access to all of the common source control

operations, such as initializing a repository, committing code files, and synchronizing

branches. The Git icon also shows the number of files that have been modified locally.

Figure 2-10 shows an example. Modified files are listed under the Changes group. Three

buttons are available for each listed file: Open File, Discard Changes, and Stage Changes.

In Git, as you learn in Chapter 7, the concept of staging changes means keeping changes

separate from the main code branch so that a developer can evaluate whether to commit

the changes or discard them. Clicking a filename enables a split view that shows the

differences between the modified code and the original code; this topic is also more

thoroughly discussed in Chapter 7.

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

32

Figure 2-10. The Git Bar

The Git Bar also provides a popup menu that contains the list of supported Git

commands in Visual Studio Code organized into submenus, such as Commit, Push,

Pull, and several more you discover later in the book. Click the … button in the top-right

corner of the Git Bar to open the menu.

 The Run and Debug Bar
Visual Studio Code is not only a simple code editor, but also a fully featured development

tool that ships with an integrated debugger for JavaScript and .NET. It can be extended

with third-party debuggers for other platforms and languages. as well Chapter 9

describes in more detail this important part of Visual Studio Code, but for now note that

you can access the debugging tools by clicking the fourth icon from the top of the Side

Bar. This opens the Run and Debug Bar, shown in Figure 2-11.

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

33

Figure 2-11. The Run and Debug Bar

The view varies depending on the platform and programming language. The Run

and Debug button, which allows you to start and debug apps, is common to all. In the

case of TypeScript or JavaScript files, you will also see the JavaScript Debug Terminal

button, which enables a developer console inside the integrated Terminal, and the

Debug URL button, which allows you to attach an instance of the debugger to a remote

application.

In Chapter 9, you see how to configure the debugging tools and how powerful they

are in Visual Studio Code. You also see how easy it is to install additional debuggers.

 The Extensions Bar
The Extensions Bar can be enabled by clicking the fifth button from the top in the

Activity Bar and allows you to search and install extensions for Visual Studio Code, which

include additional languages, debuggers, code snippets, and much more. Extensibility is

discussed in Chapter 6, but Figure 2-12 provides an example of how the Extensions Bar

appears.

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

34

Figure 2-12. The Extensions Bar

You not only can search online for extensions, but can also see the list of installed

extensions as well as disabled and recommended extensions.

 The Accounts Button
One of the biggest benefits of Visual Studio Code is that you can customize it in many ways

by arranging the development environment in whichever configuration is most convenient

for you. This includes extensions, keyboard shortcuts, general settings, and much more.

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

35

If you run VS Code on multiple machines, it would be very useful if you could re-

create your environment automatically on all the machines, without the need to set your

preferences manually on each machine. Fortunately, this is possible using the Accounts

button on the Side Bar.

With this tool, you can sign in with a Microsoft or GitHub account and your settings

will be synchronized across all the VS Code installations to which you have signed in

with the same account. Following is a list of settings that can be synchronized:

• General settings

• Keyboard shortcuts

• Extensions

• User-defined code snippets

• State of the user interface

You enable settings synchronization by clicking the Accounts button and then

choosing Turn on Settings Sync. At this point, VS Code shows a list of settings that you

can sync across machines, selecting all of them by default, as shown in Figure 2-13.

Figure 2-13. Selecting settings to synchronize

Select the settings you want to sync, then click Sign In & Turn On. At this point you

will be asked to specify which kind of account you want to use, such as Microsoft or

GitHub. Obviously, you need to use the same account on all the other Code installations.

A browser window opens in which you enter your credentials, and you will quickly get a

confirmation message when the sign-in is completed.

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

36

Note On windows, the Firewall might prompt you with a warning saying that vS
Code is trying to open a resource on the web. if this happens, you can safely allow
this action.

At this point, Visual Studio Code starts synchronizing all the selected settings, which

might take a while. Behind the scenes, settings synchronization is based on two files,

settings.json and extensions.json, which VS Code needs to merge from different

installations. If it encounters problems in merging these files automatically, VS Code

gives you an option to manually merge settings with the same merging tool used with

Git. This is a very useful feature and it will save you a lot of time in getting the same

comfortable environment across machines.

 The Settings Button
The Settings button is represented with the gear icon, at the bottom of the Activity Bar. If

you click it, you will see a popup menu with a list of commands that represent shortcuts for

customizing Visual Studio Code (these are discussed more thoroughly in Chapter 5). Among

others, a command in the menu enables you to manually search for product updates.

 Navigating Between Files
Other than clicking the tab of an editor, Visual Studio Code provides two ways of

navigating between files. The quickest way is to press Alt+Left or Alt+Right to switch

between active files.

If you instead press Ctrl+Tab, you can browse the list of currently open files and

select one for editing, as shown in Figure 2-14.

Figure 2-14. Navigating between active files

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

37

 The Command Palette
Together with the code editor and the Activity Bar and Side Bar, the Command Palette

is another very important tool in Visual Studio Code, and it enables you to access Visual

Studio Code built-in commands and commands added by extensions via the keyboard.

You can open the Command Palette, shown in Figure 2-15, by choosing View ➤

Command Palette or via the Ctrl+Shift+P keyboard shortcut (⌘+P on macOS).

Figure 2-15. The Command Palette

The Command Palette is not just about menu commands and user interface

instrumentation; it also provides access to other actions that are not accessible

elsewhere. For instance, the Command Palette enables you to install extensions as well

as restore NuGet packages over the current project or folder. You can simply move up

and down to see the full list of available commands, and you can type in some characters

to filter the list. You will notice how many of them map actions available within menus

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

38

and that, for many of them, there is a keyboard shortcut available. Other commands

related to extensions, debugging, and Git are discussed in the following chapters, so it is

important that you get started with the Command Palette at this point.

 The Panels Area
Visual Studio Code very often needs to display not only information about source

code but also information coming from the Git engine, external tools, or debuggers. To

accomplish this in an organized way, the environment provides the so-called Panels

area, which appears by default at the bottom of the user interface.

The Panels area is composed of four built-in panels: Problems, Output, Debug

Console, and Terminal, each discussed in this section. The Panels area is not visible

by default, and it usually pops up when the information the panels represent becomes

available (such as the debugger sending information about symbols in the source code).

Additionally, by default the Panels area appears at the bottom of the VS Code’s user

interface, but you can move it to the side of the workspace by right-clicking a panel

and then selecting Move Panel Right or Move Panel Left, or you can restore the original

position with Move Panel to Bottom. In addition, you can drag and drop panels in a

different position using the mouse. The next sections discuss each panel in more detail.

 The Problems Panel
With languages that have built-in enhanced editing support, such as TypeScript

(https://www.typescriptlang.org), or for which an extension has been added to

provide advanced editing features, such as C#, Visual Studio Code can detect code

issues as you type. In the code editor, these are usually highlighted with red squiggles

(for blocking errors) and in green (for warnings). The list of errors, warnings, and

informational messages is also displayed in the Problems panel. This can be enabled by

clicking the number of errors at the bottom-left corner of the Status Bar (see Figure 2-16).

The Problems panel makes it easy to distinguish between errors and warnings due to

different icons (a white x over red background for errors and a black exclamation mark

over yellow background for warnings). Figure 2-16 shows an example based on some C#

code that contains an unused variable (warning) and a syntax error.

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

https://www.typescriptlang.org

39

Figure 2-16. The Problems panel

If you have multiple files open, the Problems panel groups problems by filename.

Also, for each problem, you can see the folder name and the position within the source

code file. Just double-click a problem, and VS Code will move the cursor to the selected

item in the code editor.

Note The code editor also provides a way to quickly fix code issues while typing,
but this is not related to the problems panel and is instead discussed in the next
chapter.

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

40

 The Output Panel
The Output panel is the place where Visual Studio Code displays messages from

internal and external tools, such as runtime tools, Git commands, extensions, and tasks.

Figure 2-17 shows an example based on the output of Visual Studio Code’s main thread.

Figure 2-17. The Output panel

Because multiple tools might run concurrently during an operation against source

code files (e.g., package restore and then compilation) or during the Visual Studio Code

lifetime (such as extensions), you can use the drop-down box in the panel to change the

view and see the output of each tool. This tool is particularly useful if the execution of

external tools fails, and you want to get more information about what happened.

 The Debug Console Panel
As the name implies, the Debug Console panel is a specialized panel used by debuggers

to display information about code execution. Figure 2-18 shows an example based on

the execution of a simple C# application.

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

41

Figure 2-18. The Debug Console panel

The Debug Console panel not only shows information about code execution, debug

symbols, and any other information a debugger needs to display, but it also acts as

an interactive console where you can evaluate expressions. Figure 2-18 shows that a

mathematical expression has been manually evaluated using variables defined in the

code. Debugging is a very important topic in Visual Studio Code and is thoroughly

discussed in Chapter 9, where you find additional information about the Debug Console.

 Working with the Terminal
Visual Studio Code allows you to execute commands against the operating system

directly from within the development environment. In fact, you can choose the Terminal

➤ New Terminal command to open a new Terminal instance in a panel at the bottom of

the work area. Figure 2-19 shows an example based on Windows.

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

42

Figure 2-19. The Terminal panel

On macOS and Linux, the Terminal tool is based on the bash shell of each system.

On Windows, the Terminal is based on PowerShell by default. However, you can select a

different tool by clicking the drop-down menu on the panel’s toolbar and then clicking

Select Default Profile. At this point, you can select, from the Command Palette, several

options, including (but not limited to) the Windows command prompt, PowerShell,

and the Git bash command line tool. You can also open multiple Terminal instances by

clicking the New Terminal button (the icon with the + symbol).

The Terminal panel is also used by Visual Studio Code to launch automatic scripts

and commands against the operating system. For example, when you build a C#

application, Visual Studio Code starts the .NET compiler, whose output is displayed in

the Terminal panel, as shown in Figure 2-20.

Figure 2-20. The Terminal panel used for automatic scripting

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

43

 Summary
In this chapter, you got an overview of the workspace in Visual Studio Code and of the

tools you will interact with frequently. You saw how to take advantage of quick shortcuts

in the Welcome page and how you can arrange editor windows.

You saw how the Status Bar provides information about the active file and how the

Activity Bar is a collapsed container of shortcuts for the tools contained in the Side Bar:

the Explorer Bar, the Search tool, the Git Bar, the Debug Bar, the Extensions Bar, the

Accounts button, and the Settings button. You saw how to quickly navigate between files

and how the Command Palette provides a way to access commands via the keyboard,

both Visual Studio Code commands and extensions’ commands. You also walked

through another important area in the environment, the Panels area, where you can

get information about code issues, get messages from internal and external tools and

debuggers, and execute commands and scripts via the Terminal.

Now that you have seen how the environment is organized, it is time to have some

fun walking through all the powerful productivity features in the code editor. This is the

topic of the next chapter.

ChApTer 2 GeTTinG TO KnOw The envirOnmenT

45

CHAPTER 3

Language Support
and Code Editing Features
Visual Studio Code is not just another evolved text editor with syntax colorization

and automatic indentation. Instead, it is a very powerful code focused development

environment expressly designed to make it easier to write web, mobile, and cloud

applications using languages that are available to different development platforms.

With the ambition to provide a powerful, rich development environment, Visual

Studio Code integrates a number of editing features that are focused on improving

the productivity and quality of your code. This chapter discusses what languages are

supported in Visual Studio Code and all the available code editing features, starting from

the most basic that are available to all the supported languages to the most advanced

productivity tools that are available to specific languages such as C#, JavaScript, and

TypeScript.

Note Keyboard shortcuts used in this chapter are based on the default settings in
Visual Studio Code.

 Language Support
Out of the box, Visual Studio Code has built-in support for many languages. Table 3-1

groups supported languages by their editing features.

© Alessandro Del Sole 2023
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_3

https://doi.org/10.1007/978-1-4842-9484-0_3

46

Table 3-1. Language Support by Feature

Languages Editing Features

Batch, C, C#, C++, Clojure, CoffeeScript, Diff, Dockerfile, F#,

Go, HLSL, Jade, Java, Julia, HandleBars, Ini, Lua, Makefile,

Objective-C, Objective-C++, Perl, PowerShell, Properties, Pug,

Python, R, Razor, Ruby, Rust, SCSS, ShaderLab, Shell Script,

SQL, Visual Basic, XML

Common features (syntax coloring,

bracket matching, basic word

completion)

Groovy, Markdown, PHP, Swift Common features and code

snippets

CSS, HTML, JSON, JSON with Comments, Less, Sass Common features, code snippets,

IntelliSense, Outline

JavaScript, JavaScript React, TypeScript, TypeScript React Common features, code snippets,

IntelliSense, Outline, parameter

hints, refactoring, Find All

References, Go to Definition, Peek

Definition

Visual Studio Code can be extended with additional languages produced by the

developer community and downloadable from the Visual Studio Marketplace. This

is discussed in more detail in Chapter 6, but, in the meantime, you can look at the

available languages out of the box. In addition, support for built-in languages can also

be enhanced via extensions in order to leverage all the advanced editing features. This is

the case of Python, Julia, C#, and Go. For the purposes of this book, an introduction to C#

and C++ is provided for your convenience.

 Working with C# and C++
The C# programming language deserves a more detailed introduction, because of its

popularity and because it is now a cross-platform language that you can use not only

on Windows but also on macOS and Linux. As you can see from Table 3-1, the editing

experience that Visual Studio Code offers out of the box for C# is limited to common

features.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

47

However, full and rich support for the coding experience with C# is offered

via the Microsoft C# free extension (https://marketplace.visualstudio.com/

items?itemName=ms-dotnettools.csharp). This provides an optimized experience for

.NET development and includes all the support and tools you need to build apps with

C#, including the necessary support for the .NET debugger. With this extension, you

basically get the same experience available to TypeScript, including advanced editing

capabilities based on the .NET Compiler Platform (also known as Roslyn) that makes it

easier to fix code issues as you type. If you plan to work with C#, I definitely recommend

that you install this extension, especially because this chapter discusses some editing

features that are available only through the extension.

Extensibility is explained in more detail in Chapter 6, but you can easily install the C#

extension without further information by opening any C# code file (.cs) and following

the instructions shown by Visual Studio Code when it detects that a proper extension is

available for that file type.

Similarly, you might want to install the Microsoft C/C++ extension that adds

enhanced editing features to the C and C++ languages, plus debugging support for

Windows (PDB, MinGW, Cygwin), macOS, and Linux. The extension is available at

https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools, and

you can follow the same easy installation steps just described for the C# extension by

opening a .c, .h, or .cpp file.

 Working with Python
Python is another very popular programming language that has been widely used for

data science scenarios especially in the last years.

Out of the box, Visual Studio Code provides basic editing features for Python.

However, you can install the Python extension by Microsoft to add editing features such

as IntelliSense and code refactoring, plus the debugger.

Due to its importance, Chapter 10 of this book is dedicated to programming with

Python in VS Code, but it can be a good idea to start preparing your environment now if

you want to discover all the editing features with this language.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=msvscode.cpptools

48

 Working with Julia
Julia is another programming language that is commonly used for data science

scenarios, but it is still a general-purpose programming language.

Out of the box, Visual Studio Code provides basic editing features for Julia, such

as syntax colorization, but you can install the Julia extension (https://marketplace.

visualstudio.com/items?itemName=julialang.language-julia) built by the

developers of Julia itself. This will add support for debugging and enhanced editing

features, such as IntelliSense, code navigation, a plot panel, and most of the editing

features available to languages such as TypeScript.

Obviously, you first need to download and install the Julia binaries on your machine

(https://julialang.org/downloads).

 Working with Go
Go is an open-source, object-oriented, and general-purpose programming language

supported by Google. During the past few years, Go has been enhanced to support the

most advanced and complex development scenarios, so it has become very popular and

used by many important software vendors.

By default, Visual Studio Code offers basic editing support for Go files. However,

you can install the official Go extension (https://marketplace.visualstudio.com/

items?itemName=golang.go), which adds support for IntelliSense, integrated debugging

and testing, and enhanced code editing features. If you are a developer working with Go,

this extension is needed.

 Basic Code Editing Features
Visual Studio Code provides many of the features you would expect from a powerful

code editor. This section describes what editing features make your coding experience

amazing with this tool. It is worth mentioning that Visual Studio Code provides

keyboard shortcuts for almost all the editing features, giving you an option to edit code

more quickly. For this reason, keyboard shortcuts are also mentioned for many of the

described features.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

https://marketplace.visualstudio.com/items?itemName=julialang.language-julia
https://marketplace.visualstudio.com/items?itemName=julialang.language-julia
https://julialang.org/downloads
https://marketplace.visualstudio.com/items?itemName=golang.go
https://marketplace.visualstudio.com/items?itemName=golang.go

49

Note Features described in this section apply to all the supported languages
described in Table 3-1, except where expressly specified.

 Working with Text
As you would expect, the code editor in VS Code offers commands for text manipulation

and text selection. The Edit menu provides the Undo, Redo, Copy, Cut, Paste, Find,

Replace, Find in Files, and Replace in Files commands. These commands are available in

every text editor and do not require any further explanation.

The Edit menu also includes the Toggle Line Comment and Toggle Block Comment

commands, which add a single-line comment or a block comment, respectively,

depending on the language. For instance, in C# the first command would comment a

line like this:

// int a = 0;

By contrast, the block comment tool would add a multiline comment as follows:

/* int a = 0;

int b = 0; */

The Edit menu also provides a command to work with code snippets, Emmet:

Expand Abbreviation. This command is the menu representation of keyboard shortcuts

offered by the code editor to add a code snippet. Code snippets are discussed in more

detail in the “Reusable Code Snippets” section in this chapter.

The Selection menu not only provides commands for text selection but also provides

commands that make it easier to move or duplicate lines of code above and below the

current line. The Add Cursor Above, Add Cursor Below, and Add Cursors To Line Ends

commands allow working with multicursors, described in the “Multicursors” section in

this chapter.

If you click an identifier or a reserved word, or you type name in the editor, you can

use the Add Next Occurrence, Add Previous Occurrence, and Select All Occurrences

commands. They allow you to quickly select occurrences of the selected word, and

occurrences will be highlighted in a different color, which differs depending on the

current theme.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

50

 Syntax Colorization
For all the languages summarized in Table 3-1, the code editor in Visual Studio Code

provides the proper syntax colorization. Figure 3-1 shows an example based on a

TypeScript code file.

Figure 3-1. Syntax colorization

Syntax colorization is available for other languages via extensibility. If you need to

work with a language that is not included with Visual Studio Code out of the box, you

can check the Visual Studio Marketplace and see if an extension is available to support

such a language. See Chapter 6 for information about extensibility. As a side note, syntax

colorization is the minimum that an extension must provide to add support for a new

language.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

51

 Delimiter Matching and Text Selection
The code editor can highlight matching delimiters such as curly braces, brackets, and

parentheses (both square and round). This feature is extremely useful to delimit code

blocks and is triggered once the cursor gets near one of the delimiters. Figure 3-2 shows

an example based on bracket matching in a constructor definition.

Figure 3-2. Delimiter matching

This feature is also very useful when you need to visually delimit nested blocks and

with complex and long expressions. It is worth mentioning that you can press Ctrl+D to

quickly select a word or identifier at the right of the cursor. You can also quickly select all

the text within the delimiters of a code block by pressing Shift+Alt+Arrow Right, and you

can quickly deselect the same code block by pressing Shift+Alt+Arrow Left.

Note With multiple bracket pairs, VS Code now applies bracket colorization so
that every pair can be distinguished even more easily. This setting can be managed
via the Bracket Pair Colorization option available in the Text editor settings.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

52

 Code Block Folding
The code editor allows you to fold delimited code blocks. Just hover your cursor over line

numbers and a symbol representing a down arrow will appear near the start of a code

block. Simply click to fold, and you will see the > symbol at this point, which you click to

unfold the code block. Figure 3-3 provides an example.

Figure 3-3. Code block folding

Note If code block folding is not enabled in the code editor, open VS Code’s
Settings. Then in the Text editor group, enable both the Folding and Folding
Highlight options.

 Multicursors
The code editor supports multicursors. Each cursor operates independently, and you

can add secondary cursors by pressing Alt+Click at the desired position. The most typical

situation in which you want to use multicursors is when you want to add (or replace) the

same text in different positions of a code file.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

53

 Reusable Code Snippets
Visual Studio Code ships with many built-in code snippets that you can easily add by

using the Emmet abbreviation syntax and pressing Tab. See Table 3-1 in the “Language

Support” section to review which languages support code snippets natively. For

instance, in a Swift file, you can easily add a do..catch block definition by using the do

code snippet, as shown in Figure 3-4.

Figure 3-4. Adding code snippets

Code snippets are available as you type within the code editor, and you can

recognize them by the icon representing a small, white sheet. Notice how a tooltip shows

a preview of the code snippet. Pressing Tab over the previous snippet produces the result

shown in Figure 3-5.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

54

Figure 3-5. A newly added code snippet with a variable name highlighted

Notice that if the code snippet contains variable names or identifiers, these might be

highlighted to suggest that you give them a different name (like for the error identifier in

Figure 3-5). When you rename a highlighted identifier, all occurrences are also renamed.

Visual Studio Code is not limited to built-in code snippets. You can download code

snippets produced by other developers for many languages from the Visual Studio

Marketplace. Actually, most of the extensions that introduce or extend support for

programming languages also include a collection of code snippets.

 Word Completion
Out of the box, the code editor in Visual Studio Code implements basic word completion

for all the supported languages. This feature helps you complete words and statements

as you type. For example, Figure 3-6 shows how the code editor suggests terminating a

statement with the Class keyword in a Visual Basic file, based on what the developer

is typing.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

55

Figure 3-6. Completing a statement with word completion

Simply press Enter or Tab to insert the suggested word. The word completion engine

learns as you code and can provide suggestions based on variables and member names

you declare. For example, Figure 3-7 demonstrates how the editor suggests adding the

name of a variable called Test, which was declared previously in the code.

Figure 3-7. The code editor can suggest identifiers declared in the code

 Minimap Mode
Sometimes it is difficult to find the position of the cursor inside a source code file,

especially with very long files. Visual Studio Code provides the Minimap, which is a small

preview of the source code file on the code editor’s scrollbar. Figure 3-8 provides an

example.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

56

Figure 3-8. The Minimap allows you to preview source code on the scrollbar

If you click the Minimap, the portion of source code that is visible in the code editor

is highlighted in the scrollbar, so that you can have a better perception of the current

position of the cursors. The Minimap can be disabled and enabled using the View ➤

Appearance ➤ Minimap command.

 Sticky Scroll
Sticky Scroll allows you to show the nested current scopes during the scroll of the active

file at the top of the editor. This feature is not enabled by default.

To enable Sticky Scroll, open the settings and then locate the Sticky Scroll setting

within the Text Editor group. You can select the checkbox to enable and disable the

feature, and you can specify the number of sticky lines that can be displayed, with a

maximum of 5.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

57

 Whitespace Rendering and Breadcrumbs
A very common feature with text editors is the option to show light dots instead of white

spaces. In Visual Studio Code, this is possible for white spaces within indentations. To

accomplish this, choose View ➤ Appearance ➤ Render Whitespace. Figure 3-9 shows an

example of how white spaces for indentations are replaced with dots. For this figure, the

Solarized Light color theme has been used for better visualization on the paper.

Figure 3-9. Rendering indentation spaces with dots

Simply use the same command to return to white spaces. Another very useful

command is Breadcrumbs, available in the Appearance submenu. With supported

languages, such as JavaScript, TypeScript, and C# with the extension installed, this

command shows the list of types and members defined in the current code file at the top

of the editor, which you can expand to see their members, as shown in Figure 3-10.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

58

Figure 3-10. Navigating between types and members with breadcrumbs

Clicking a type or member name moves the cursor to its definition and highlights the

related code block, making code navigation much easier.

 Markdown Preview
Visual Studio Code supports the Markdown syntax for producing documents in the very

popular .md file format. Other than syntax colorization, for this particular language,

Visual Studio Code also provides a preview of what the document will look like. Simply

press Ctrl+Shift+V (Cmd+Shift+V on macOS) in the code editor, and the preview will

appear in a separate window, as demonstrated in Figure 3-11.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

59

Figure 3-11. Integrated Markdown preview

This feature is very useful because it allows you to preview your documents without

the need of an external program such as a web browser.

 Evolved Code Editing
Visual Studio Code is an extremely powerful code-editing tool and it brings to a cross-

platform and multilanguage environment many features that have been available in

Microsoft Visual Studio for many years, providing what is called evolved code editing.

This section explains all the advanced code editing features that are available, out of the

box, to languages such as TypeScript and JavaScript and, with the appropriate extensions

installed, to languages like C#, C++, and Python.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

60

 Working with IntelliSense
IntelliSense provides rich, advanced word completion via a convenient popup list

that appears as you type. In the developer tools from Microsoft, such as Visual Studio,

IntelliSense has always been one of the most popular features, and the reason is that it

is not simply word completion. In fact, IntelliSense provides suggestions as you type,

showing the documentation about a member (if available) and displaying an icon

near each suggestion that describes what kind of syntax element a word represents.

Figure 3-12 shows IntelliSense in action with a C# code file.

Figure 3-12. IntelliSense showing suggestions as you type and advanced word
completion

As you can see in Figure 3-12, IntelliSense shows the list of available members as

you write, for the given type (in this case, Console). When you scroll the list with the

keyboard and stop on a word from the completion list, Visual Studio Code shows the

member documentation. The little arrow to the right of the dialog can be used to turn the

documentation off.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

61

Note The documentation for a type or member is available only if it has been
supplied by the developers. For example, in C#, the documentation for types and
members must be provided with XML comments. This enables IntelliSense to
display it in a tooltip, as shown in Figure 3-12.

Press either Tab or Enter to complete the word insertion, or simply click. Not limited

to this, IntelliSense in Visual Studio Code supports suggestion filtering: based on the

CamelCase convention, you can type the uppercase letters of a member name to filter

the suggestion list. For instance, if you are working against the System.Console type and

you type cv, the suggestion list will show the CursorVisible property, as demonstrated

in Figure 3-13.

Figure 3-13. Suggestion filtering in IntelliSense

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

62

IntelliSense also provides the foundation for other advanced features in the code

editor that depend on it, as described in the next subsections.

 Parameter Hints
When you write a function invocation, IntelliSense also shows a tooltip that describes

each parameter. This feature is called parameter hints and is available only if the

documentation for function parameters has been implemented. An example is visible in

Figure 3-14.

Figure 3-14. IntelliSense showing parameter hints

For languages such as C# and TypeScript or, more generally, languages that allow

for function overloads, parameter hints show the description for the parameters of each

overload. You can also scroll the list of overloads with the up and down arrow keys to

select a different overload.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

63

 Inline Documentation with Tooltips
If you hover your cursor over types, variables, and type members, Visual Studio Code

shows a tooltip that contains the documentation for the selected object. Figure 3-15

provides an example.

Figure 3-15. Tooltips provide quick, inline documentation

Like parameter hints, this feature is available only if the documentation has been

implemented.

Note If you hover your cursor over a variable name, the tooltip shows only the
type for the variable.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

64

 Go to Definition and Peek Definition
Visual Studio Code provides another interesting feature, called Go to Definition. If you

hover your cursor over a symbol and press Ctrl (or ⌘ on macOS), the symbol appears

as a hyperlink; also, a tooltip shows the code that declares that symbol. If you click the

type name while pressing Ctrl, you will be redirected to the code that defines that type.

Figure 3-16 shows how the code editor appears when you press Ctrl and hover over a

type name.

Figure 3-16. Ctrl+ hovering over a type enables Go to Definition

The same tool is available if you select a type name and press F12 or if you right-

click a type name and then select Go to Definition from the context menu. This is an

extremely useful feature that lets you quickly browse between type definitions that are in

different code files.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

65

Note For C#, Go to Definition can also open the definition of a type exposed
by the .NeT libraries and any NuGet package that includes the type definition
information, not just your code.

Now suppose that you have dozens of code files and want to see or edit the definition

of a type you are currently using. With other editors, you would search among the code

files, which not only can be annoying but also moves your focus away from the original

code. Visual Studio Code brilliantly solves this problem with a feature called Peek

Definition.

You can simply right-click a type name and then choose Peek ➤ Peek Definition (the

keyboard shortcut is Alt+F12). An interactive popup window appears, showing the code

that defines the type, giving you not only an option to look at the code but also of direct

editing. Figure 3-17 shows the Peek Definition window in action. You can press Esc to

quickly close the Peek Definition window as an alternative to clicking the Close button.

Figure 3-17. Working on a type defined in another file with Peek Definition

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

66

As you can see, the Peek Definition window is very similar to the Find All References

feature, and it still shows the filename that defines the type at its top. Simply click the

filename to open the code file in a separate editor.

 Go to Implementation and Peek Implementations
Sometimes you might need to understand how many times and where an interface or an

abstract class has been implemented.

Though you can accomplish this by finding a type’s references (see the next section),

Visual Studio Code now offers more convenient ways that work similarly to Go to

Definition and Peek Definition, respectively called Go to Implementation and Peek

Implementations. You can right-click an interface or abstract class definition and then

choose Go to Implementation or Peek ➤ Peek Implementations. Both actions bring up

an interactive, nested editor that shows the list of implementations of the selected type

on the right, and the code for the first occurrence of the implementation, as you can see

in Figure 3-18.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

67

Figure 3-18. Navigating among type implementations

The difference between the two actions is the following: with Go to Implementation,

when you click an implementation in the list, VS Code opens a new editor window

pointing to the file that contains the implementation; with Peek Implementations, when

you click an implementation in the list, it is displayed in an interactive popup window

similarly to how Peek Definition works.

 Finding References
You will often need to know where types or members have been used across your code,

and Visual Studio Code provides two nice tools to retrieve references.

The first tool is called Find All References, which you might already be familiar

with if you have experience with Visual Studio on Windows. There are different options

to run this tool: you can right-click a type or member name and then choose Find All

References or you can press Shift+Alt+F12 (Option+Shift+F12 on macOS). Figure 3-19

shows an example based on finding all references of a type called App.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

68

Figure 3-19. Finding all references of types and members

The References panel opens on the left side of the screen and shows a list of

references grouped by code file, together with the total number of references and of code

files involved. It also adds a new entry to the Side Bar that is disabled once you close

the References panel. The occurrences are highlighted; when you click one of them,

an editor opens on the file that contains the selected occurrence, which is highlighted

inside the code.

There is also another tool called Go to References (Shift+F12), which works inside

the active editor window. You enable Go to References either by right-clicking the object

name and then selecting Go to References or by clicking the number of references at the

top of the member definition (see Figure 3-19). You can use the first option anywhere

in the code, whereas you can use the second option only when the type or member

definition is focused in the code editor.

The user interface for Go to References is the same as for Find All References. Visual

Studio Code also provides another useful tool to find type and member references,

called Peek References. You can enable this tool by right-clicking an object name and

then choosing Peek ➤ Peek References. As the name implies, Peek References displays

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

69

all the references in the active editor, inside an interactive panel similar to what you saw

previously with Peek Definition. Figure 3-20 shows an example, again based on finding

all references of a type called App.

Figure 3-20. Finding references with Peek References

If you click an occurrence in the list on the right, the code editor opens a popup

window containing the code where that occurrence has been found. It is very important

to note that this popup window is interactive, which means that you can edit the code

directly without the need to open the containing code file separately. This enables you to

keep your focus on the code, saving time. Also, notice that the interactive popup window

shows, at the top, the filename that contains the selected reference.

Similar to Find All References is Find All Implementations, which makes it easy to

find implementations of an interface or abstract class. Figure 3-21 shows an example

where an interface called IPerson is implemented by two classes, Person and Employee.

Find All Implementations shows in a tree view all the implementations of the interface

and highlights the class definition in the code editor.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

70

Figure 3-21. Finding all type implementations

 Renaming Symbols and Identifiers
Renaming a symbol is a frequent task, so Visual Studio Code offers a convenient way

to accomplish this. If you press F2 over the symbol you want to rename or right-click

and then select the Rename Symbol command, a small interactive popup box appears.

There you can write the new name without any dialogs, keeping your focus on the code.

Figure 3-22 shows an example based on a symbol called app.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

71

Figure 3-22. Renaming symbols

If you press Shift+Enter before renaming, Visual Studio Code shows a preview

of how symbols will be renamed (see the REFACTOR PREVIEW tab at the bottom of

Figure 3-22). Toolbar buttons in the tab enable you to accept changes (Apply Refactoring

button) and reject changes (Discard Refactoring button).

By pressing Enter, all references of that symbol will be renamed accordingly.

Additionally, you can rename all the occurrences of an identifier. You simply right-click

the identifier, then choose Change All Occurrences (or press Ctrl+F2 on Windows/Linux

and ⌘+F2 on macOS). All the occurrences will be highlighted and updated with the new

name as you type.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

72

 Live Code Analysis
With TypeScript, JavaScript, and languages whose support can be enhanced via

extensions like C# and Python, Visual Studio Code can detect code issues as you type,

suggesting fixes and offering code refactorings. This is one of the most powerful features

in this tool, which is something that you will not find in other code editors. The next

examples are based on the C# programming language, since (together with TypeScript)

this supports the richest experience possible in Visual Studio Code, and therefore it is

a good choice to discuss the powerful coding features available. Of course, everything

discussed here applies to all other languages that support the same enhanced features.

According to the severity level of a code issue, Visual Studio Code underlines with

squiggles the pieces of code that need your attention. Green squiggles mean a warning;

red squiggles mean an error that must be fixed. If you hover over the line or symbol

with squiggles, you get a tooltip that describes the issue. Figure 3-23 shows two code

issues, one with green squiggles (an unused local variable) and one with red squiggles (a

symbol that does not exist).

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

73

Figure 3-23. Code issue detection as you type

Code issues are detected as you type and they are also listed in the Problems panel.

Look again at Figure 3-23 and note the icon with the shape of a light bulb. This icon

is a shortcut for a tool called Light Bulb. When you click the icon, Visual Studio Code

shows possible code fixes for the current context. For example, Figure 3-24 shows the

suggestions that the Light Bulb provides to fix the missing symbol underlined with red

squiggles.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

74

Figure 3-24. Potential fixes suggested by the Light Bulb

In this particular case, the editor suggests five options for generating members:

create a field, create a read-only field, create a property, create a local variable, or create

a parameter. It also offers three options to change the identifier into a different object

name, but in this case the goal is generating a new member. Based on the code in

Figure 3-24, a field would be created as follows:

private static bool message;

A property would be generated like this:

public static bool Message { get; private set; }

Perhaps bool is not the type you would expect here, but Visual Studio Code does

not have enough information to infer a different type, so it will generate one based

on the type parameter accepted by the first overload of the method, which is bool for

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

75

WriteLine. However, when the code contains some information that Visual Studio Code

could use to understand the proper type, it generates properties, fields, local variables,

and parameters of the expected type. With the Light Bulb, it is also easier to generate

types on the fly. Figure 3-25 shows an example based on an object called person, for

which a type has not yet been defined. As you can see, for this context the code editor

shows a larger list of possible fixes, including generating a new class, either in the current

file or in a separate file, including the option of a nested class.

Figure 3-25. Generating types on the fly

The Light Bulb can also help you refactor your code and keep it cleaner. For example,

you can click any of the using directives (or equivalent in other languages) and, when

the Light Bulb appears, you can see how it offers to remove unused code, as shown in

Figure 3-26.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

76

Figure 3-26. Code refactoring made easy

Actually, the Light Bulb tool offers even more power. Suppose you want to create

a class that implements the IDisposable interface. As you can see in Figure 3-27,

IDisposable is underlined with a red squiggle because the code is not implementing the

interface yet. When a code issue is detected on the usage of a type, you can hover your

cursor over the underlined code and see an informational tooltip, as demonstrated in

Figure 3-27.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

77

Figure 3-27. Informational tooltips about code issues

Tooltips disappear when you move the cursor off the issue, but you can click Peek

Problem and dock the error description inside a red box that stays in the code editor. If

you still have the Light Bulb enabled, you will see how the code editor suggests potential

fixes based on the current context, such as implementing the interface in different ways

(see Figure 3-28).

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

78

Figure 3-28. The Light Bulb provides suggestions based on the current context

Just to give you an idea of the power of this tool, the following code is generated if

you choose the Implement Interface with Dispose Pattern option:

using System;

public class Person: IDisposable

{

 #region IDisposable Support

 private bool disposedValue = false; // To detect redundant calls

 protected virtual void Dispose(bool disposing)

 {

 if (!disposedValue)

 {

 if (disposing)

 {

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

79

 // TODO: dispose managed state (managed objects).

 }

 // TODO: free unmanaged resources (unmanaged objects)

 // TODO: set large fields to null.

 disposedValue = true;

 }

 }

 // // TODO: override a finalizer only if Dispose(bool disposing) above

has code to free unmanaged resources.

 // ~Person() {

 // Do not change this code. Put cleanup code in Dispose(bool

disposing) above.

 // Dispose(false);

 // }

 // This code added to correctly implement the disposable pattern.

 public void Dispose()

 {

 // Do not change this code. Put cleanup code in Dispose(bool

disposing) above.

 Dispose(disposing: true);

 GC.SuppressFinalize(this);

 }

 #endregion

}

You will get a similar result, but with different implementation, if you choose one

of the other possible code fixes. Although it is not possible to show examples for all

the code fixes that Visual Studio Code can apply, what you have to keep in mind is that

suggestions and code fixes are based on the context for the code issue, which is a very

powerful feature that makes Visual Studio Code a unique editor.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

80

 Hints About IntelliCode
For languages such as TypeScript, JavaScript, Java, T-SQL, and Python, the coding

experience can be further enhanced with the IntelliCode extension

(https://marketplace.visualstudio.com/items?itemName=VisualStudioExptTeam.

vscodeintellicode).

IntelliCode is an AI-powered code completion engine, whose user interface and

user experience is very close to IntelliSense, but it is capable of learning from the way

you write code. This includes patterns you use and analysis of the context of your source

code. The resulting experience is made of improved suggestions for code completions,

based on the context.

 Summary
Visual Studio Code is a code-centric tool that supports a wide variety of languages out

of the box, offering coding features that are common to all the supported languages,

such as syntax colorization, delimiter matching, code block folding, multicursors, code

snippets, and code completion.

In addition, languages such as TypeScript and C# provide the so-called evolved code

editing experience via integrated tools such as IntelliSense, Go to Definition and Peek

Definition, Find All References, and the extremely powerful Light Bulb, which detects

code issues as you type and suggests potential fixes based on the context.

Now that you have knowledge of the powerful coding features that Visual Studio

Code offers, it is time to see how to use them with individual source code files and

structured folders in Chapter 4.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

https://marketplace.visualstudio.com/items?itemName=VisualStudioExptTeam.vscodeintellicode
https://marketplace.visualstudio.com/items?itemName=VisualStudioExptTeam.vscodeintellicode

81

CHAPTER 4

Working with Files
and Folders
Being the powerful editor it is, Visual Studio Code provides a convenient way of working

with code files and folders containing both loose files and projects. In this chapter, you

learn how to work with individual files, with folders containing source code files, and

with workspaces. You also learn about VS Code’s independence from proprietary project

systems as well as its built-in support for a few popular project types.

 Visual Studio Code and Project Systems
Visual Studio Code is file and folder based. That means that you can open one or more

code files distinctly, but it also means that you can open a folder that contains source

code files and treat them in a structured, organized way. When you open a folder, Visual

Studio Code searches for one of the following files to organize a structured view of the list

of files in the folder:

• Tsconfig.json

• Jsconfig.json

• Package.json

• Project.json

• .sln Visual Studio solutions and .csproj project files for .NET with

the C# extension installed

If VS Code finds one of these files, it can organize the file structure into a convenient

editing experience and can offer additional rich editing features such as IntelliSense

and code refactoring. If a folder only contains source code files, without any of the

© Alessandro Del Sole 2023
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_4

https://doi.org/10.1007/978-1-4842-9484-0_4

82

aforementioned .json or .sln files, it still opens and shows all the source code files

in that folder, providing a convenient way to switch between all of them. This chapter

describes how to work with individual files and with folders in Visual Studio Code, and

more details about how it manages projects is provided in the subsection “Working with

Folders and Projects.”

 Working with Individual Files
The easiest way to get started editing with Visual Studio Code is to work with one code

file. You can open an existing supported code file with File ➤ Open (Ctrl+O or ⌘+O on

macOS). Visual Studio Code automatically detects the language for the code files and

enables the proper editing features. In addition, it checks if an extension is available

on the Visual Studio Marketplace for the selected language and, if so, offers to install

it to improve the editing experience. Of course, you can certainly open more files and

easily switch between files by pressing Ctrl+Tab (or ^+Tab on macOS). As you can see in

Figure 4-1, a convenient popup box shows the list of open files; by pressing Ctrl+Tab, you

can browse files and cycle through the files in the list, and when you release the keys, the

selected file becomes the active editing window.

Chapter 4 Working With Files and Folders

83

Figure 4-1. Quickly navigating between open editors

You can close an editor simply by clicking the Close button in the upper-right corner

of each tab, or by using File ➤ Close Editor. You can also quickly close all open editors

with the Close All command in the top-right options, under the … shortcut.

Note in Visual studio Code terminology, it is common to refer to open files as
active editors or open editors. this is because editor windows are not limited to
code files, but can also display documentation files or provide formatted previews
of the content of other types of files (e.g., images and spreadsheets).

Chapter 4 Working With Files and Folders

84

 Creating Files
You have several ways to create a new file:

• Via File ➤ New File

• By pressing Ctrl+N (⌘+N on macOS)

• By using the New File shortcut on the Welcome page

• By clicking the New File button in the Explorer Bar when a folder is

currently opened

By default, new files are treated as plain text files. To change the language for a new

file, click the Select Language Mode item in the right corner of the Status Bar, near the

smile icon, or click the Select a language hyperlink in the editor. In this case, you will

see Plain Text as the current mode, so click it. As you can see in Figure 4-2, you will be

presented with a list of supported languages from which you can select the new language

for the current file. You can also start typing a language name to filter the list.

Chapter 4 Working With Files and Folders

85

Figure 4-2. Selecting the language for a new file

When you select a new language, the Select Language Mode item is updated with

the current language, and the editor enables the supported features for the selected

language, such as syntax colorization, word completion, and code snippets.

Obviously, you can change the language of any open code file, not just new files.

 Language Autodetection

Visual Studio Code can also auto-detect the language in a new code file. For example, if

you paste some code from the clipboard into a new file, VS Code will automatically select

the appropriate language.

You can also manually select the Auto Detect option from the language

selection box.

Chapter 4 Working With Files and Folders

86

 File Encoding, Line Terminators, and Line Browsing
Visual Studio Code allows you to specify an encoding for new and existing files. Default

encoding for new files is UTF-8. You can change the current encoding by clicking the Select

Encoding item in the Status Bar (in the previous figures, it is represented with UTF-8, the

current encoding). You are first asked to select an action between Reopen with Encoding

and Save with Encoding. Click the first option to be presented with a long list of supported

encodings and a search box where you can filter the list as you type (see Figure 4-3).

Figure 4-3. Selecting the file encoding

Similarly, you can change the line terminator by clicking the Select End of Line Sequence

item (in previous figures, it’s represented by CRLF). Visual Studio Code supports CRLF

(Carriage Return and Line Feed) and LF (Line Feed), and the default selection is CRLF. On

Windows, the default sequence is CRLF, while on macOS and Linux it is LF. You can also

move fast to a line of code by clicking the Go to Line item, represented by the line number/

column group in the Status Bar. This opens a search box in which you can type the line

number you want to go to, and the line of code is immediately highlighted as you type (see

Figure 4-4). When you press Enter, the cursor moves to the start of the selected line.

Chapter 4 Working With Files and Folders

87

Figure 4-4. Quickly moving to a specific line of code with Go to Line

 Working with Folders and Projects
Unlike other development environments, such as Microsoft Visual Studio, Visual Studio

Code is folder based, not project based. This makes Visual Studio Code independent

from proprietary project systems. VS Code can open folders on disk containing multiple

code files and organize them the best way possible in the environment, and it also

supports a variety of project files. More specifically, when you open a folder, VS Code

first searches for the following:

• MSBuild solution files (.sln): In this case, VS Code expects to find a

.NET solution made of C# projects, so it scans the referenced projects

(*.csproj files) and organizes files and subfolders in the proper way.

Remember that VS Code needs the Microsoft C# extension installed

to properly treat solution files. Note that VS Code can open any .sln

solution, but full support is currently offered only for .NET 5 and

higher. An example of this scenario is provided in Chapter 8.

Chapter 4 Working With Files and Folders

88

• tsconfig.json files: If found, VS Code knows these represent the

root of a TypeScript project, so it scans for the referenced files and

provides the proper file and folder representation.

• jsconfig.json files: If found, VS Code knows these represent the

root of a JavaScript project. So, similarly to TypeScript, it scans

for the referenced files and provides the proper file and folder

representation.

• package.json files: These are typically included with JavaScript

projects, so VS Code automatically resolves the project type based on

the folder’s content.

• project.json files: If found, VS Code treats the folder as an older

.NET Core project.

Note opening a .sln, .csproj, or .json file directly will result in editing the
content of the individual file. For this reason, you must open a folder, not a solution
or a project file.

Additional project systems might be supported via extensibility. If none of the

supported projects is found, Visual Studio Code loads all the code files in the folder as

a loose assortment, organizing them into a virtual folder for easy navigation. Now let’s

explore how to work with folders and supported projects in Visual Studio Code, with

corresponding examples.

 Opening a Folder
You open a folder by choosing File ➤ Open Folder or choosing the Open Folder shortcut

on the Welcome page. You can also drag and drop a folder name from Windows Explorer

or macOS Finder onto Visual Studio Code.

Note on Windows, the Vs Code installer also provides an option to enable a
shortcut called open With Code when you right-click a folder or filename in File
explorer.

Chapter 4 Working With Files and Folders

89

Whatever folder you open, VS Code creates a structured view in the Explorer Bar,

where it shows all files and subfolders that belong to the main folder. Figure 4-5 shows an

example based on a TypeScript project.

Figure 4-5. The structured view of files and folders in Explorer

The root container is the folder name. You see nested files and subfolders, and you

can expand each subfolder to browse every file it contains. Simply click a file to open an

editor window on it.

Chapter 4 Working With Files and Folders

90

 Opening .NET Solutions
When you open a folder that contains a .NET solution based on the MSBuild project

system (.sln file) or a C# project (.csproj file), Visual Studio Code organizes all the

code files into the Explorer Bar and enables all the available editing features for C#.

Figure 4-6 shows an example.

Figure 4-6. A .NET solution opened in Visual Studio Code

Notice how the root level in Explorer is the project name. You can browse folders,

browse code files, and edit anything that Visual Studio Code can properly recognize.

It is worth mentioning that VS Code can certainly open any MSBuild solution, but it is

only able to debug applications built with .NET 5 and higher. For instance, .NET 7 allows

for creating Windows Presentation Foundation (WPF) and Windows Forms projects;

Visual Studio Code and the C# extension support opening this type of solutions as well

as running and debugging code. WPF and Windows Forms projects created for the .NET

Framework can still be opened in VS Code, and you will still benefit from the structured

Chapter 4 Working With Files and Folders

91

folder view in the Explorer Bar and the full C# language support, but you will not be

able to build, run, and debug the code. Instead, with .NET 7 you also have integrated

debugging support, which allows running, debugging, and testing code directly within

VS Code. This is discussed in Chapter 9.

 Opening JavaScript and TypeScript Projects
Similarly to .NET solutions, Visual Studio Code can manage JavaScript folders by

searching for jsconfig.json or package.json files. If found, Code organizes the list of

folders and files the proper way and enables all the available editing features for all the

files it supports, as shown in Figure 4-7.

Figure 4-7. A JavaScript project opened in Visual Studio Code

TypeScript projects’ behavior is the same as for JavaScript, except that Visual Studio

Code searches for a file called tsconfig.json as the root.

Chapter 4 Working With Files and Folders

92

 Opening Loose Folders
Visual Studio Code supports opening folders that contain unrelated, loose assortments

of files. VS Code creates a logical root based on the folder name, showing files and

subfolders. Figure 4-8 shows an example based on a sample folder called MyFiles that

contains files in different languages.

Figure 4-8. A folder containing a loose assortment of files

With this option, you can basically open any folder in VS Code and edit all supported

files, taking advantage of the code editing features for each file individually.

 Working with Workspaces
Visual Studio Code has the concept of a workspace. A workspace can be thought of as a

logical container of folders. In the latest versions of Visual Studio Code, this feature has

also been known as multi-root workspaces.

Chapter 4 Working With Files and Folders

93

Note if you have experience with Microsoft Visual studio, a workspace in Visual
studio Code can be compared to a Visual studio solution as a container of projects.

Workspaces are extremely useful to organize multiple projects and/or folders into

one place. For example, you might have a .NET Web API project, a JavaScript application

that consumes such API, and a folder containing documentation. Instead of working

on each folder separately, you can put them all under the same workspace and have

them all available in Visual Studio Code at the same time. Figure 4-9 shows a workspace,

called SampleWorkspace, that includes a .NET Web API project, a JavaScript project, and

a loose folder.

Chapter 4 Working With Files and Folders

94

Figure 4-9. A workspace can group multiple projects and folders into one logical
container

The multeor-master folder contains the files for a sample open-source project

called Multeor that you can download for instructional purposes from https://github.

com/filidorwiese/multeor. The Explorer Bar shows the name of the workspace in

Chapter 4 Working With Files and Folders

https://github.com/filidorwiese/multeor
https://github.com/filidorwiese/multeor

95

uppercase together with the (WORKSPACE) literal so that it’s easier to recognize it. In

the next sections, I explain in more detail how to create and open workspaces and the

structure of a workspace file.

 Creating Workspaces
You can create a workspace regardless of whether you already have a folder open. If you

do have a folder open, choose File ➤ Save Workspace As and VS Code will ask you to

specify the location and filename for the new workspace. A workspace is represented

by a JSON file with the .code-workspace extension, the structure of which is explained

shortly.

The workspace name is simply the filename without the .code workspace extension

and is shown in the Explorer Bar (see Figure 4-9). Then you can add other folders to the

workspace by choosing File ➤ Add Folder to Workspace. Added folders are displayed in

the Explorer Bar under the workspace root.

If you do not have any folders open, you can start either with File ➤ Save Workspace

As or with File ➤ Add Folder to Workspace. With the first option, you basically create

an empty workspace with a name, and then you add folders as described in the

preceding text. With the second option, you instead create an empty, untitled workspace

starting from an existing folder. In this case, in fact, the Explorer Bar shows UNTITLED

(WORKSPACE) as the new workspace name. When you save the workspace as described

in the preceding text, the Explorer Bar shows the new name based on the workspace

filename. Remember that workspaces are only logical containers and do not affect the

structure or behavior of your projects and folders in any manner.

Note Folders you add to a workspace can be anywhere on disk; Visual studio
Code will group their content under the workspace root and let you work as if they
were in the same location.

 Opening Existing Workspaces
You can open an existing workspace by choosing File ➤ Open Workspace. You can

also drag and drop a workspace filename from your operating system’s file browsing

program onto the Visual Studio Code surface. Opening a .code-workspace file directly

Chapter 4 Working With Files and Folders

96

simply results in viewing the file content, not opening the workspace. Similarly, opening

a folder that contains a .code-workspace file results in opening only the folder, not the

workspace. You can only use the specific commands described at the beginning of this

paragraph.

 Workspace Structure
The information of a Visual Studio Code workspace is stored inside a file with a .code-

workspace extension. A workspace file is a JSON file with a root element called folders.

This is an array of path elements, each assigned with the name of a folder that is

included in the workspace. The following JSON markup represents how the workspace

file of the example shown in Figure 4-9 looks on my machine, and it will vary on your

computer:

{

 "folders": [

 {

 "path": ".\MyFiles"

 },

 {

 "path": "C:\\Source\\helloweb"

 },

 {

 "path": "C:\\Source\\multeor-master"

 }

]

}

Notice that the full pathname of a folder is provided only if the folder is not in the

same location of the workspace file. In this case, the .code-workspace file, the webapp

folder, and the multeor-master folders are all in the same location; instead, the MyFiles

folder is located under a different folder. If you want to see the structure of a workspace

file for yourself, you can open it in Visual Studio Code by choosing File ➤ Open File.

Chapter 4 Working With Files and Folders

97

 Security: Workspace Trust
Visual Studio Code includes interesting security features that allow for safely

working with files, folders, and workspaces. These features go under a group named

Workspace Trust.

When Visual Studio Code cannot trust the source or author of an individual file,

a folder, or a workspace, it will prompt you with different choices such as opening the

content as trusted, opening the content in restricted mode, or cancelling the operation.

Figure 4-10 shows the warning message.

Figure 4-10. Workspace Trust in action

Note the warning message varies if Vs Code cannot automatically trust
the source or author of the content. Figure 4-10 refers to untrusted files. With
untrusted authors, the title of the dialog shows the following message: Do you
trust the authors of the files in this workspace? also, text in the
buttons changes accordingly.

If you trust the source or author of the files, folder, or workspace, you can click Open

and the content will be opened with no restrictions. If you are not sure, you can click

Open in Restricted Mode.

Chapter 4 Working With Files and Folders

98

Note if you select the remember My decision for all Workspaces checkbox,
your choice will be applied to all files, folders, and workspaces you open from now
on and you will no longer be prompted for enabling or disabling restricted mode.
however, you can change this preference in Vs Code’s settings, as explained
shortly.

When you open contents in restricted mode, VS Code only enables code browsing

and disables features like debugging, tasks, and some extensions that could work with

that content type. Figure 4-11 shows a JSON file opened in restricted mode. Notice the

warning message at the top of the file saying that restricted mode allows for safe code

browsing, and the Manage shortcut.

Figure 4-11. Opening files in restricted mode

If you click Manage, you can manage the restricted mode for the current file and

folder. Figure 4-12 demonstrates this.

Chapter 4 Working With Files and Folders

99

Figure 4-12. Managing the restricted mode

The active window, called Workspace Trust, clearly explains the difference between

a trusted window and the restricted mode. In a trusted window, debugger, tasks, and

extensions are all enabled and running. In the restricted mode, tasks and debugging are

disabled, whereas extensions are disabled or have limited functionality. Visual Studio

Code decides which extensions must be disabled or partially enabled depending on their

target. In Figure 4-12 you can see how, based on my configuration, seven extensions

have been disabled. By clicking 7 Extensions, it is possible to see the list of both disabled

and limited extensions in the Extensions panel on the left.

Once you have investigated the code, you can click the Trust button to move your file

to a trusted window. You can also add specific folders and workspaces to a list of trusted

content by clicking the Add Folder button at the bottom of the page.

Chapter 4 Working With Files and Folders

100

 Configuring Workspace Trust

You can change Workspace Trust configuration at any time in the Visual Studio Code

settings. This is accomplished in the Workspace group of the Security node, as shown in

Figure 4-13.

Figure 4-13. Configuring Workspace Trust

Note Figure 4-13 shows how to configure Workspace trust at the user level.
When you open a workspace in restricted mode, you can able configure trust
settings per workspace and per folder.

Chapter 4 Working With Files and Folders

101

 Summary
Visual Studio Code is file and folder based, and it allows for working with individual files

as well as with folders that contain source code files. It treats them all in a structured,

organized way.

Visual Studio Code also supports a number of project systems such as .NET,

TypeScript, and JavaScript, and it allows for creating and managing multi-root

workspaces. Workspaces are logical containers of folders that make it easy to have

multiple projects and folders under the same visual root. Files, folders, and workspaces

can be opened in restricted mode for safe code browsing and moved to a trusted

environment once you are sure of the contents. VS Code is not only a very powerful

code editor but also a very flexible environment that can be customized in many ways.

Customization is the topic of the next chapter.

Chapter 4 Working With Files and Folders

103

CHAPTER 5

Customizing Visual Studio
Code
Visual Studio Code is an extremely versatile development tool that can be customized

and extended in many ways. In fact, you can customize its appearance, the code editor,

and key shortcuts to make your editing experience extremely personalized.

Additionally, you can install third-party extensions such as new languages,

debuggers, themes, linters, and code snippets. This chapter explains how to customize

Visual Studio Code, explaining the difference between customizations and extensions.

Then, in the next chapter, you learn how to work with extensions.

 Customizations and Extensions Explained
You can personalize the environment of Visual Studio Code with customizations and

extensions. The difference is that extensions add new instrumentation or functionalities

to a tool or change the behavior of existing functionalities. Implementing IntelliSense

for a language that does not have it by default, adding commands to the Status Bar, and

adding custom debuggers are examples of extensions.

Customizations are instead related to environment settings and do not add

functionalities to a tool. Examples of popular customizations are color themes and key

bindings. Table 5-1 summarizes the customizations and extensions in VS Code.

© Alessandro Del Sole 2023
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_5

https://doi.org/10.1007/978-1-4842-9484-0_5

104

Table 5-1. Customizations and Extensions

Feature Description Type

Color themes Style the environment layout with different colors. Customization

User and workspace

settings

Specify environment preferences. Customization

Key bindings Redefine keyboard shortcuts. Customization

Language grammar

and syntax colorizers

Add support to additional languages with syntax colorizers. Customization

Code snippets Add TextMate and Sublime Text snippets and type repetitive

code faster.

Customization

Debuggers Add new debuggers for specific languages and platforms. Extension

Language servers Implement validation logic for files opened in VS Code. Extension

Activation Load an extension when a specific file type is detected or

when a command is selected in the Command Palette.

Extension

Editor Work against the code editor’s content, including text

manipulation and selection.

Extension

Workspace Enhance the Status Bar, working file list, and other tools. Extension

Eventing Interact with VS Code’s lifecycle events such as open and

close.

Extension

Evolved editing Improve language support with IntelliSense, Peek Definition,

Go to Definition, and all the advanced, supported editing

capabilities.

Extension

In this chapter, you see how to customize Visual Studio Code by changing the

existing preferences. Then in the next chapter, you see how to install extensions,

including extensions that add new customizations to the development environment,

such as themes and key bindings.

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

105

 Customizing Visual Studio Code
In this section, you discover how easy it is to customize Visual Studio Code by walking

through the customization types described in Table 5-1.

 Theme Selection
You can select among several themes to give Visual Studio Code a different look and feel.

A brief introduction to color themes was given at the beginning of Chapter 1, but now

you get more details.

You select a color theme by choosing File ➤ Preferences ➤ Themes ➤ Color Theme

or by clicking the Settings button and then choosing Themes ➤ Color Theme. The list of

available color themes is shown in the Command Palette, as you can see in Figure 5-1.

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

106

Figure 5-1. Selecting a theme

Themes are divided into light themes, dark themes, and high-contrast themes. Once

you select a different color theme, it is applied immediately. Also, you can get a preview

of the theme as you scroll the list with the keyboard. Figure 5-2 shows the Dark (Visual

Studio) theme applied to VS Code, which is a very popular choice; try out the other

themes to find one that suits you.

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

107

Figure 5-2. The Dark (Visual Studio) theme applied to Visual Studio Code

As you might expect, applying a theme also affects the colors used in the code editor

so that there is an appropriate brightness and contrast balance. In the next chapter, you

see how to install additional themes as extensions.

 Customizing the Environment
In most applications, including other IDEs, you set environment settings and preferences

via a convenient user interface, and VS Code is no exception. There are two different

types of settings: user settings and workspace settings. User settings apply globally to the

development environment, while workspace settings only apply to the current project or

folder. The following subsections cover both user settings and workspace settings.

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

108

 Understanding User Settings

User settings globally apply to the VS Code’s development environment. Customizing

user settings is accomplished by choosing File ➤ Preferences ➤ Settings. When you do

this, the Settings editor appears, as represented in Figure 5-3.

Figure 5-3. Working with user settings

On the left side of the editor, settings are grouped by category. In the Search

Settings bar, you can quickly search settings based on what you type, and you can also

see the number of total settings found, which varies depending on the version of VS

Code and on the number of extensions you have installed. You can manually expand

setting categories, or you can just scroll the list of settings, and the related category is

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

109

automatically highlighted as you scroll. For instance, you could control the behavior of

the Explorer Bar by locating and selecting Explorer under the Features category, and

there you can change the current settings, as shown in Figure 5-4.

Figure 5-4. Changing user settings

Similarly, you can change settings and preferences for the text editor, the whole

application, and extension settings. In fact, extensions that allow for customizing

preferences store their settings in the same place as VS Code does, so that you have a

unique Settings editor. There are hundreds of settings and the number varies depending

on your configuration and installed extensions, so it’s not possible to list all settings here.

For more details about available settings, visit the official documentation at https://

code.visualstudio.com/docs/getstarted/settings.

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/getstarted/settings

110

Behind the Scenes: The settings.json File

Behind the scenes, VS Code (and extensions) stores settings inside a file called

settings.json. In this file, each key/value pair represents a specific setting and its value.

It is important to understand how this file works, so click the Open Settings (JSON)

button located above the search bar and represented by a sheet icon with a plus symbol

overlayed (the first from left to right). Figure 5-5 shows how the editor appears at

this point.

Figure 5-5. Working with the settings.json file

As you can see, the editor for settings.json allows you to define custom settings by

overriding one or more default settings. It is worth mentioning that changes you do in

this file are at the user or workspace level only, and they do not affect general settings of

VS Code. Also, you will see how IntelliSense helps you choose among available settings

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

111

as you type. The code editor also reports errors, such as missing commas or curly braces,

as you would expect when editing a JSON file. Within settings.json, it is also possible

to customize settings for an extension. Every time you modify a setting in the user

interface, the related JSON is updated in settings.json.

IntelliSense also allows you to get more information about a given setting by clicking

the rollover, which shows hints about the setting with a convenient tooltip, exactly as

you would expect after learning about IntelliSense’s features in Chapter 3. When you are

done, do not forget to save settings.json; otherwise your changes will be lost.

A Real-World Example: Working with Proxies

If you work for an enterprise, the network probably is behind a proxy server. In this

case, you or the system administrator might need to configure Visual Studio Code to

work with the proxy. If you do not, you cannot download packages, extensions, and

product updates. Visual Studio Code should automatically detect proxies and ask for

your credentials, but this does not always happen, so you might need to take some

manual steps.

The first thing to do is make sure that the sites described in Table 5-2 are in the

allowed applications list of the firewall.

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

112

Table 5-2. Sites Allowed by a Firewall

URL Description

update.code.

visualstudio.com

Visual Studio Code download and update server

code.visualstudio.com Visual Studio Code documentation

go.microsoft.com Microsoft link forwarding service

vscode.blob.core.

windows.net

Blob storage for Visual Studio Code

marketplace.

visualstudio.com

Visual Studio Marketplace

*.gallery.vsassets.io Visual Studio Marketplace

*.gallerycdn.vsassets.

io

Visual Studio Marketplace

rink.hockeyapp.net Crash reporting service

bingsettingssearch.

trafficmanager.net

In-product settings search

vscode.search.windows.

net

In-product settings search

raw.githubusercontent.

com

Github repository raw file access

vsmarketplacebadge.

apphb.com

Visual Studio Marketplace badge service

az764295.vo.msecnd.net Content Delivery network (CDn) for Visual Studio Code downloads

download.visualstudio.

microsoft.com

Visual Studio download service, which includes dependencies for

extensions such as C# and C++

The next step is to configure VS Code to work with the proxy. Actually, if the http_

proxy and https_proxy environment variables have been defined at the system level, VS

Code uses their values. If these variables have not been set, you must provide the proxy

address in the user settings. In the Settings editor, locate Proxy under the Application

category. Then, as you can see in Figure 5-6, enter the proxy address in the Proxy text box.

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

113

Figure 5-6. Configuring VS Code to work behind a proxy server

If your proxy also requires an authorization header, this must be specified in the

settings.json file, so you have to click the Edit in settings.json hyperlink and then

enter the value supplied by your network administrator as the value for the http.

proxyAuthorization key. Also, check the Proxy Strict SSL checkbox if the certificate

should be verified against the list of supplied certification authorities.

Save your changes and check if Visual Studio Code is able to download extensions,

packages, and libraries required by some languages and product updates. If you still

encounter network issues, ask your network administrator to help you configure the

proxy settings.

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

114

Note Some protection programs such as Symantec Endpoint Protection
block some Visual Studio Code installation (and update) files because they are
recognized as CryptoLocker virus instances. obviously, these are false positives,
but you might want to talk to your network administrator to review the protection
rules for Visual Studio Code.

Privacy Settings: Telemetry

By default, Visual Studio Code anonymously collects and sends to Microsoft information

about usage, errors, and crashes. You can disable one or more of these telemetry settings

by scrolling the user settings to the Telemetry group, located under the Application

category (see Figure 5-7).

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

115

Figure 5-7. Managing telemetry in Visual Studio Code

There are four options:

• All: When enabled, VS Code collects and sends to Microsoft

information about errors and crashes.

• Error: When enabled, VS Code collects and sends to Microsoft

information about application errors only.

• Crash: when enabled, VS Code collects and sends to Microsoft

information about application crashes only.

• Off: Telemetry is disabled.

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

116

A shortcut to the privacy policy is also available, and I recommend that you read it

before enabling one or both the options.

Synchronization Settings

In Chapter 1, you learned that Visual Studio Code allows for synchronizing settings

across different installations. You have full control over items that can be synchronized

through the Settings Sync group under the Application category.

You can decide which extension will be synchronized and which is not, you can

exclude specific settings from synchronization, and you can disable or re-enable

keybinding synchronization. Apart from the latter, which is managed via a simple

checkbox, you need to make your changes in the settings.json file. The Ignored

Extensions and Ignored Settings hyperlinks enable you to edit specific blocks of

settings about extensions and general settings, respectively. As mentioned previously,

IntelliSense will help by adding the available settings. Figure 5-8 shows an example, but

keep in mind that available settings may vary on your machine, especially depending on

the extensions you have installed.

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

117

Figure 5-8. IntelliSense helps manage synchronization settings

 Understanding Workspace Settings

Differently from user settings, which globally apply to VS Code’s environment,

workspace settings apply to the current workspace and folders in the workspace. As an

implication, you first need to open an existing workspace or add an existing folder to a

new workspace, to customize workspace settings.

Next you choose File ➤ Preferences ➤ Settings. At this point, the Settings editor

shows three tabs: one for user settings, one for workspace settings, and one for

individual folders within the workspace, as demonstrated in Figure 5-9.

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

118

Figure 5-9. Customizing workspace settings

You customize workspace and folders settings exactly as you do with user settings,

so you have not only a second view in the Settings editor but also two other JSON files

where you can specify your preferences. More specifically, workspace settings are stored

in the .code-workspace file (you can see this in the Explorer), while folder settings are

stored in the settings.json file. The .code-workspace file is saved under the workspace

folder, while settings.json is saved under the .vscode subfolder that Visual Studio

Code creates inside the opened folder, restricting the settings' availability to the current

folder only.

 Customizing Keyboard Shortcuts
Visual Studio Code includes a huge number of keyboard shortcuts that you can

override with custom values. This is particularly useful if you are used to working with

other development tools and you want to have the same keyboard shortcuts in Visual

Studio Code.

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

119

Note In the next chapter, you learn how to download ready-to-use keyboard
shortcuts that will save you a lot of time, but it’s first important for you to know
how they actually work.

Like user and workspace settings, keyboard shortcuts are represented with JSON

markup, and each is made of two elements: key, which stores one or more keys to be

associated to an action, and command, which represents the action to invoke. In some

cases, VS Code might offer the same shortcuts for different scenarios. This is the typical

case of the Esc key, which targets a number of actions depending on what you are

working with, such as the code editor or a tool window. To identify the proper action,

keyboard shortcut settings support the when element, which specifies the proper

action based on the context. You can quickly get the list of current keyboard shortcuts

by choosing File ➤ Preferences ➤ Keyboard Shortcuts. At this point, Visual Studio

Code displays a nicely formatted list of commands and shortcuts, as you can see in

Figure 5-10.

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

120

Figure 5-10. The list of current keyboard shortcuts

To customize keyboard shortcuts, all you need to do is click the Open Keyboard

Shortcuts button, represented by a sheet icon with a plus symbol overlayed, located at

the top-right corner of the window. This opens the keybindings.json file, where you

can override default shortcuts with custom ones (see Figure 5-11).

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

121

Note Remember that Visual Studio Code has (and allows for customizing)
different default keyboard shortcuts depending on the operating system it is
running on.

You can quickly add a custom keyboard shortcut by clicking the Define Keybinding

button or by using the shortcut suggested in the button text (which varies depending on

your operating system). When you do this, a popup box appears and asks you to specify

the keyboard shortcut, as shown in Figure 5-11.

When you press Enter, the JSON markup for the new keyboard shortcut is added, as

shown in Figure 5-12.

Figure 5-11. Adding a keyboard shortcut

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

122

Figure 5-12. Editing the new keyboard shortcut

You need to edit the command and when elements with the command you want to

map and for which scenario. Additionally, when editing keybindings.json manually,

you need to supply the markup for both the old shortcut and the new one. For example,

suppose you want to replace the Alt+O shortcut for the C/C++ extension (Switch:

Header/Source) with Shift+Alt+O. The markup you need to write looks like the following:

{

 "key": "shift+alt+o",

 "command": "C_Cpp.SwitchHeaderSource",

 "when": "editorTextFocus && editorLangId == 'cpp'"

},

{

 "key": "alt+o",

 "command": "-C_Cpp.SwitchHeaderSource",

 "when": "editorTextFocus && editorLangId == 'cpp'"

}

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

123

Actually, the when element is optional. Save your changes to the keybindings.json

file to get your new keyboard shortcuts ready.

 Creating Reusable Profiles
Suppose you want to use Visual Studio Code for different development scenarios, for

example web development with C#, writing documentation with Markdown, or data

science development with Python.

For each scenario, you might need specific settings, such as (but not limited to) code

snippets, extensions, and keyboard shortcuts that go well with one scenario but that

might not be appropriate for another one.

Visual Studio Code allows you to create profiles. A profile is a group of

customizations that includes extensions, environment settings, code snippets, keyboard

shortcuts, UI appearance, and tasks. Profiles can be saved, exported, and shared with

others. In order to manage profiles, you click the Settings icon in the Side Bar and then

select Profiles. This opens the menu shown in Figure 5-13.

Figure 5-13. Accessing profile options

As you can see, there is always a default profile to which current customizations are

applied at a global level. Before creating a new profile, you can export the current one

for later reuse. With regard to this, click Create Profile. You will be asked to specify if you

want to create an empty profile or a new profile from the current one. Select the latter

option, then specify a profile name, for example My Default (see Figure 5-14).

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

124

Figure 5-14. Creating a new profile

Press Enter when you're ready. At this point, the new profile also becomes the active

profile. This can be easily demonstrated by reopening the Profiles menu. If you want to

see what is included in the current profile, select Show Contents. Figure 5-15 shows an

example of profile contents.

Figure 5-15. Displaying profile contents

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

125

As you can see, customizations in the profile are grouped by Settings, Keyboard

Shortcuts, UI State, Extensions. From here you can also remove one or more

customizations from the profile, and you can decide to export the profile for later reuse.

Click the Export button. The Command Palette appears and first asks you to specify a

profile name, then if the profile should be exported to a remote Gist repository (GitHub

option) or to a local file (Local option). Select the second option and choose a target

folder and filename. Profile filenames have .code-profile extension and are JSON files

whose structure represents the profile contents. Exported profiles can be shared with

other developers; you can import a profile by selecting the Import Profile command

from the Profiles menu (see Figure 5-13).

Note You do not need to reimport your own profiles every time you switch
between existing profiles. You can instead select among installed profiles from the
Profiles menu.

Profiles are an easy and convenient way to organize your workspace based on your

needs and can really save you a lot of time.

 Summary
Visual Studio Code enables you to make several customizations that will help you

feel at home, especially if you are used to working with other development tools or

code editors. You can select a different color theme from a list, you can customize the

environment settings globally or for a specific folder, and you can even create custom

keyboard shortcuts.

But the very good news is that customizations can also be downloaded as extensions,

as well as new languages, debuggers, and tools. Extensibility is discussed in the next

chapter.

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

127

CHAPTER 6

Installing and Managing
Extensions
Extensibility is one of the key features in Visual Studio Code, because you can add

tools, languages, code snippets, debuggers, key bindings, and themes. Extensibility is

especially beneficial in the area of languages, because Visual Studio Code enables you to

extend the code editor with specific syntax support, which can also include IntelliSense,

code snippets, and code refactoring.

This all means that Visual Studio Code has open support for any language and any

tool on any platform, opening the possibilities to infinite development scenarios. This

chapter explains how to find and install extensions and how to manage extensions on

your system.

 Installing Extensions
You have two ways of browsing and installing extensions: from the Visual Studio

Marketplace and from within Visual Studio Code. The Visual Studio Marketplace is a

website that contains extensions for the most popular Microsoft development tools and

services, such as Visual Studio, Visual Studio Code, and Azure DevOps. It is available at

https://marketplace.visualstudio.com, and you need to click the Visual Studio Code

tab to see a list of extensions for Visual Studio Code. Figure 6-1 shows the Marketplace

for Visual Studio Code.

© Alessandro Del Sole 2023
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_6

https://marketplace.visualstudio.com
https://doi.org/10.1007/978-1-4842-9484-0_6

128

Figure 6-1. The Visual Studio Marketplace

You can search for extensions by typing in the search box, or you can browse

the groups below, such as Featured, Trending, Most Popular, and Recently Added. If

you scroll to the bottom of the page, you can also browse extensions by category or

collection. Once you have found an extension of your interest, click its name to see a

detail page. Figure 6-2 shows an example based on the C# extension by Microsoft.

Chapter 6 InstallIng and ManagIng extensIons

129

Figure 6-2. Detail page for an extension

An extension’s page provides a detailed description and guidance about using

the extension, often providing links to additional documentation, resources, and the

source code (if open-source). I strongly recommend that you read the detail page to

get information about what the extension includes, especially with extensions that add

language support, because it is important to know if there is support only for a new

syntax or also for IntelliSense, code snippets, and debugging.

If you click the Install button, your browser will ask your confirmation to open

the download link with Visual Studio Code. When this starts, the extension will

automatically be installed. You can also download the offline installer of the extension

Chapter 6 InstallIng and ManagIng extensIons

130

for later reuse. To do so, click the Download Extension hyperlink under the Resources

group, on the right of the page. In this way you can download a .vsix installer file that

you can then launch manually.

Note If you have experience with the Microsoft Visual studio development
environment, you probably know that VsIx is the format used by Microsoft for
extension installer files. however, the VsIx format for Visual studio Code is not
the same. extensions for Visual studio Code are packaged with a tool called vsce
and cannot work with Visual studio 2022 on Windows or with Visual studio 2022
for Mac.

The second way of installing extensions is from within Visual Studio Code. You can

open the Extensions Bar and search for an extension and then click a specific extension

to get the details, as shown in Figure 6-3.

Figure 6-3. Installing extensions from within Visual Studio Code

Chapter 6 InstallIng and ManagIng extensIons

131

You can click the Install button when you're ready. You need to click the Reload

button (that appears once the installation completes) to enable the extension in VS

Code. You can also filter the search results; for instance, if you type category:linters in

the search box, Visual Studio Code will list all the extensions that provide linting support

with syntax colorization to specific languages. You can use the same category names you

see in the Visual Studio Marketplace.

As an alternative, you can use the Command Palette to download (and manage)

extensions. Open the Command Palette and type extensions. A list of self-explanatory

commands related to extension management will appear. You will typically prefer

working with extensions from the Command Palette when you do not want to lose focus

on the active editor window; otherwise, using the Extensions Bar’s user interface is

definitely easier.

Note Many extensions, especially extensions that provide full language support
such as C# and C/C++, rely on additional tools like debuggers and libraries. these
additional tools are usually downloaded the first time you use the extension.
For example, in the case of the C# extension, required tools and libraries are
downloaded the first time you create or open a C# file. these include libraries
to support .net debugging and tools to improve the editing experience via
Intellisense and live static analysis. also, newly downloaded extensions might need
some initial configuration. In this case, a popup box will appear explaining what
you need to do to get started.

 Extension Recommendations
Visual Studio Code can provide suggestions about recommended extensions based

on your activity. When you open the Extensions Bar, you will see a group called

RECOMMENDED under the list of installed extensions.

The list of recommended extensions varies on your activity and might be empty

the first time you work with Visual Studio Code. As one option, Visual Studio Code

can suggest extensions based on the file you open. For example, suppose you open a

code file written with the Go language but you do not have installed any Go extension

yet. Visual Studio Code has built-in support for the Go language syntax, so the editor

Chapter 6 InstallIng and ManagIng extensIons

132

provides syntax colorization and basic word completion, but you might want to work

with a richer editing experience that includes code snippets, code navigation, and rich

IntelliSense support. In this case, VS Code will suggest that an extension is available to

help you work with Go files and will offer to install it, as represented in Figure 6-4.

Figure 6-4. Extension recommendations based on the current file

You can click Install and Visual Studio Code will automatically install the extension

that it thinks to be the most appropriate, or you can click Show Recommendations to see

a list of possible extensions. In both cases, the Extensions Bar will open and you will see

the list of available recommended extensions, but when you click Install, the proposed

extension will be already installing.

Chapter 6 InstallIng and ManagIng extensIons

133

 Useful Extensions
The Visual Studio Marketplace contains tons of useful extensions, but there is a set that

I personally recommend after using Visual Studio Code for a long time in my daily job.

Table 6-1 summarizes this set of useful extensions.

Table 6-1. Recommended Extensions for Visual Studio Code

Name Description Type

C# C# full language support language,

debugger, editing

C/C++ C and C++ full language support language,

debugger, editing

python python full language support language,

debugger, editing

language support

for Java

Java full language support language, editing

sQl server (mssql) sQl server support language, editing,

tools

Javascript

debugger

node.js debugging with the Chrome browser debugger

debugger for Java Java debugging support debugger

debugger for

Microsoft edge

Javascript debugging with the edge browser debugger

.net Meteor Mobile development with .net MaUI editing, tools

node debug debug support for node.js debugger

Visual studio

Keymap

Keyboard shortcuts based on Microsoft Visual studio Key binding

atom Keymap Keyboard shortcuts based on atom Key binding

notepad++

Keymap

Keyboard shortcuts based on notepad++ Key binding

(continued)

Chapter 6 InstallIng and ManagIng extensIons

134

Table 6-1. (continued)

Name Description Type

docker language support for dockerfile language, editing,

tools

vscode-icons Colored icons for the explorer Bar tools

gitlens extend git integrated features for Visual studio Code tools

powershell powershell scripting support language, editing,

tools

live share extension for collaborative, real-time development that

shares your instance of Vs Code with other developers

tools

azure account Manage your azure subscription from within Vs Code tools

As you work with Visual Studio Code on your projects and on the operating system of

your choice, you will be able to find and fine-tune extensions that will help you be more

productive.

 Managing Extensions
The Extensions Bar allows you to quickly manage extensions. It shows the list of installed

extensions, as shown in Figure 6-5. Then, for each extension, the button with the gear

icon opens a popup menu that contains commands for disabling or uninstalling an

extension.

Chapter 6 InstallIng and ManagIng extensIons

135

Figure 6-5. Shortcuts for extension management

You can also click an extension name, and the detail page will show the Disable and

Uninstall buttons. Notice that when you disable or uninstall an extension, in most cases

you will need to click a button called Reload (that appears when the extension has been

disabled or uninstalled) to refresh the development environment. It is worth mentioning

that you can change the default view of the Extensions Bar (displaying the list of installed

extensions) by clicking the … button at the top of the EXTENSIONS group and choosing

the Views submenu. You then can choose among different options, such as viewing

popular extensions, checking for extension updates, and installing extensions from

.vsix files.

Note shortcuts for extension management are also available in the Command
palette.

Chapter 6 InstallIng and ManagIng extensIons

136

 Configuring Extensions
Visual Studio Code has some options that allow you to control the global behavior of

extensions. You can see these options in the user settings, under the Extensions group,

as shown in Figure 6-6 (which is based on the list of extensions installed on my machine

and likely differs from yours).

Figure 6-6. Customizing options about extension management

There are detailed comments that explain what each option is about. Each extension

allows for customizing its own behavior in the user settings and edits can also be done

in the well-known settings.json file. For instance, suppose you have the C# extension

installed. If you look in the user settings, you will find a group called C# Configuration. If

you expand this group, you will see the full list of options about the C# extension, which

include options for code editing and for tools the extensions add. Figure 6-7 shows these

options.

Chapter 6 InstallIng and ManagIng extensIons

137

Figure 6-7. Customizing extension options

If you want to instead edit extension settings in the settings.json file, IntelliSense

will simplify your work by showing setting names and a tooltip with the setting

description when you scroll the list. Figure 6-8 shows an example where IntelliSense is

showing some settings for the C# extension, identified with the csharp literal.

Chapter 6 InstallIng and ManagIng extensIons

138

Figure 6-8. Customizing extension options in settings.json

Normally, extension authors provide detailed comments that explain what an option

is about so that it is easier for you to fine-tune an extension behavior, such as in the case

of the C# extension.

 Writing Your First Extension
You can build extensions for Visual Studio Code and share them through the Visual

Studio Marketplace. You can basically build any type of supported extension, such as

language support, editing features, themes, code snippets, debugger adapters, and key

bindings. You also need to register as a publisher on the Marketplace, which requires you

to have a Microsoft account.

Extensions are usually written with TypeScript and, for most of them, you can use an

extension generator such as the Yeoman tool on Node.js. As you can imagine, extension

authoring is a complex task and, due to the large number of extension types, it is not

possible to provide full guidance in this chapter. However, here you learn how to create

your first extension to share custom code snippets. In this way, you learn how to set up

the development environment to build extensions and learn the extensibility basics.

Chapter 6 InstallIng and ManagIng extensIons

139

 Setting Up the Environment
You create Visual Studio Code extensions via special TypeScript and JavaScript projects,

and the project structure differs depending on the extension type. As a prerequisite, you

need to install Node.js (https://nodejs.org), if you have not already done so.

Once Node.js is installed, the simplest way for getting started is installing an

extension generator, such as Visual Studio Code Extension Generator tool, also

known as Yeoman. Either in a command prompt or in the Terminal, run the following

command line:

> npm install -g yo generator-code

Once installed, create a new folder called codesnippetsdistilled and move into

the new folder. This will be the location for the new extension project. Then, run the

following command:

> yo code

This will start the Visual Studio Code Extension Generator, as shown in Figure 6-9.

Figure 6-9. The start options of the Visual Studio Code Extension Generator

Chapter 6 InstallIng and ManagIng extensIons

https://nodejs.org

140

As you can see, the tool allows for creating any type of VS Code extension. You will

likely use it at least until you get familiar with the VS Code extensibility API and with the

specific project structure.

 Fixing PowerShell Script Problems

Depending on your system configuration, launching the Yeoman tool might result in the

following PowerShell error: ".ps1 is not digitally signed. The script will not

execute on the system."

If this is the case, you can change the script execution policy to be bypassed for the

current PowerShell session with the following command line:

> Set-ExecutionPolicy -Scope Process -ExecutionPolicy Bypass

This is a temporary change and only affects the current session.

 Creating an Extension
You will now create an extension that allows for packaging and sharing reusable C# code

snippets. As you will see shortly, you will be able to choose a different language and the

approach is still the same.

Building an extension of this type is the simplest option and fits well in a book of the

Distilled series. If you look at Figure 6-9, you can see a list of extension types. With the

arrow keys, move to New Code Snippets and press Enter. At this point, the tool asks you

to specify if you want to import existing TextMate or Sublime code snippets from disk

(see Figure 6-10).

Chapter 6 InstallIng and ManagIng extensIons

141

Figure 6-10. Specifying new or existing snippets

This is not mandatory, and you can press Enter to start with a blank code snippet,

which is also a good idea for a better understanding of a snippet’s structure. You will now

get a sequence of questions, and you can answer by keeping Figure 6-11 as a reference.

• For the What's the name of your extensions? question, enter

SnippetsDistilled.

• For the What's the identifier of your extension? question,

enter snippetsdistilled if it's not automatically entered.

• For the What's the description of your extension? question,

enter Reusable C# Code Snippets.

• As the Language id, enter csharp. This is also where you specify a

different identifier if your snippets target another language.

• Choose to not initialize a Git repository, also because working with

Git is the topic of the next chapter.

Chapter 6 InstallIng and ManagIng extensIons

142

Figure 6-11. The steps required to create the extension

When you press Enter, Visual Studio Code will generate the extension project.

 Developing the Extension
Open the extension folder in Visual Studio Code, as you would do any other folder.

Figure 6-12 shows how it appears.

Chapter 6 InstallIng and ManagIng extensIons

143

Figure 6-12. The extension project opened in VS Code

Following is a summary of the relevant points:

• The package.json file contains the extension metadata and the

information about the included code snippets and their source.

• The README.md file is a Markdown file that you will likely upload as

the extension documentation.

• The CHANGELOG.md file is a Markdown file where you can write any

changes with the previous version.

• The vsc-extension-quickstart.md file is a Markdown file that

provides useful information for the extension development and testing.

• The snippets subfolder contains a file called snippets.code-

snippets and is the place where you enter your reusable code

snippets.

Chapter 6 InstallIng and ManagIng extensIons

144

Now suppose you want to share the following C# method as a reusable, integrated

code snippet:

public ObservableCollection<T>

 ToObservableCollection<T>(this IEnumerable<T> inputCollection)

{

 if (inputCollection != null)

 return new ObservableCollection<T>(inputCollection);

 else

 return null;

}

This C# extension method takes an input collection that implements the

IEnumerable<T> interface, such as a List<T>, and returns an ObservableCollection<T>.

The way you represent this snippet inside the snippets.code-snippets file is as follows:

{

 "ToObservableCollection": {

 "prefix": "obs",

 "body": [

 "public ObservableCollection<T> ToObservableCollection<T>(this

IEnumerable<T> ${0:inputCollection}) {",

 "\tif (${0:inputCollection} != null)",

 "\t\treturn new ObservableCollection<T>(${0:inputColle

ction});",

 "\telse",

 "\t\treturn null;",

 "}"

],

 "description": "Convert to ObservableCollection"

 },

}

Chapter 6 InstallIng and ManagIng extensIons

145

ToObservableCollection is the snippet identifier. The prefix, with value obs,

represents the keyboard shortcut that you type in the editor to generate code based

on the snippet. The body element contains the actual code snippet, and it requires the

following explanations:

• You can associate variable tags so that the code editor highlights

occurrences of the same variable or identifier. In the previous code,

this is represented by the ${0:inputCollection} tag. Tags can be

added as sequences (e.g., ${0}, ${1}, ${2}, and so on).

• Indentation is represented with the \t escape sequence.

• The body of each code snippet is an array of strings. This is why there

is a string for each line of the snippet itself.

If you create your code snippets with a dedicated editor such as TextMate or

.Sublime, you can create snippet extensions more easily and with fewer manual steps.

 Running the Extension
You can quickly test your extension by choosing Run ➤ Start Debugging.

Note debugging in Visual studio Code has not been explained yet; however,
you do not need to know the details right now. at the moment, you simply need
to know that you start debugging the extension to see how it works in an isolated
instance and that you will be able to use all the typescript and Javascript
debugging tools that you learn about in Chapter 9.

This will start a new instance of Visual Studio Code. A new C# file should be

automatically generated. If this does not happen, create a new text file and select C#

as the language. At this point, you can immediately use your extension by typing the

snippet prefix, as you can see in Figure 6-13.

Chapter 6 InstallIng and ManagIng extensIons

146

Figure 6-13. Previewing the new code snippet via IntelliSense

You can press Tab and the code snippet will be added to the editor, as demonstrated

in Figure 6-14.

Figure 6-14. Adding the snippet to the code file

Chapter 6 InstallIng and ManagIng extensIons

147

Notice how the occurrences of the inputCollection identifier have been highlighted

because of the tags you added to the JSON previously. This also makes the developer

quickly understand which identifiers can be renamed.

 Packaging Extensions
When you have completed the extension development and testing, you can share your

work. The appropriate way to do this is by generating a VSIX installer package that can

be shared or published to the Visual Studio Marketplace.

You package extensions via the Visual Studio Code Extensions tool, often referred to

as vsce. This tool must be installed with the following command line:

> npm install -g @vscode/vsce

Now you can package your extensions, but you first need to edit the README.md file in

your extension project. You need at least to remove the following line:

This is the README for your extension "snippetsdistilled".

The reason is that the packaging tool wants to prevent you from shipping the

extension with the auto-generated documentation. This is obviously arguable, but it is

the way it works. At this point you can type the following command inside an instance of

the Terminal. Make sure that the current folder is the project folder:

> vsce package

Figure 6-15 shows the vsce output (as well as the README.md file with the changes

mentioned previously).

Chapter 6 InstallIng and ManagIng extensIons

148

Figure 6-15. Packaging the VS Code extension

The vsce tool has generated a .vsix package inside the project folder. This file can

either be installed manually or published to the Visual Studio Marketplace. Publication

requires setting up an account plus access tokens and other support tasks, so this is

not covered here. You can refer to the Publishing Extension page of the documentation

(https://code.visualstudio.com/api/working-with-extensions/publishing-

extension), but at least you have your package ready.

 Extension Development Summary
There is much more about extension development, but there are steps and concepts that

are common to all the extension types, such as:

• Generating a project via Yeoman, the Visual Studio Code Extension

Generator.

Chapter 6 InstallIng and ManagIng extensIons

https://code.visualstudio.com/api/working-with-extensions/publishing-extension
https://code.visualstudio.com/api/working-with-extensions/publishing-extension

149

• Debugging and testing with the integrated tools.

• Generating packages via the vsce tool.

In addition, building extensions like custom languages, commands, and other

integrated tools requires knowledge of the extensibility points, thoroughly described in the

Extension API page of the documentation (https://code.visualstudio.com/api). This

should be your starting point if you want to discover more about building sophisticated

extensions.

 Summary
Extensibility is a key feature in Visual Studio Code, because it allows you to add power to

the development environment. Extensions can add new languages (with or without rich

editing support), debuggers, keyboard shortcuts, themes, code snippets, and tools. You

can install extensions from the Visual Studio Marketplace or from within Visual Studio

Code, through the Extensions Bar or the Command Palette.

Visual Studio Code can also provide extension recommendations based on the

context, such as when you open a file written in a language for which there is no built-

in support. Visual Studio Code makes also makes managing extensions simple, with

shortcuts to disable and uninstall extensions and the capability to configure extensions’

behavior via the user settings file. In the last part of the chapter, you learned how to

start developing and publishing extensions, using the Visual Studio Code Extension

Generator tool. In the next chapter, you see how to leverage extensions to add features to

Visual Studio Code to another core feature that makes it a step forward compared to its

competitors: version control with Git.

Chapter 6 InstallIng and ManagIng extensIons

https://code.visualstudio.com/api

151

CHAPTER 7

Source Control with Git
Writing software often involves collaboration. This is true whether you are part of a

development team, are involved in open-source projects, or are an individual developer

who has interactions with customers. Microsoft strongly supports both collaboration and

open-source, so Visual Studio Code provides an integrated source control system that is

based on Git and can be extended to other providers.

This chapter describes not only all the integrated tools for collaboration over source

code from within Visual Studio Code that are available out of the box, but also explains

how to use extensions that you will find very useful on the job. These extensions will help

you better review your code and push your work to services based on Git, such as Azure

DevOps and GitHub. Notice that the source control and version control terms are used

interchangeably.

 Source Control in Visual Studio Code
Visual Studio Code supports different source control providers via extensibility, but

it offers integrated support for Git. Git (https://git-scm.com/) is a very popular

distributed, cross-platform version control engine that makes collaboration easier for

small and large projects. One of the reasons for its popularity is that Git is open-source,

and therefore it has always been loved by large open-source communities.

Visual Studio Code works with any Git repository, such as GitHub or Azure DevOps,

and it provides an integrated way to manage your code commits.

Note that this chapter is not a guide to Git; rather, it is a place to learn how Visual

Studio Code works with it, so for further information, visit the Git official page. Also,

remember that Visual Studio Code requires the Git engine to be installed locally, so

make sure it is available on your machine or download it from https://git-scm.com/

downloads. To demonstrate how Git version control works with Visual Studio Code,

I use a small TypeScript project called Greeter, available in the TypeScript Samples

© Alessandro Del Sole 2023
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_7

https://git-scm.com/
https://git-scm.com/downloads
https://git-scm.com/downloads
https://doi.org/10.1007/978-1-4842-9484-0_7

152

repository from Microsoft (https://github.com/Microsoft/TypeScriptSamples). This

is marked as archived but it is good for the purposes of this chapter. You can download

the repository on your system as a .zip file by clicking the Code button in the repository

page, and then clicking the Download ZIP shortcut. When you're ready, you can extract

the Greeter subfolder on your disk. Obviously, you are free to use another example or

another project of your choice, regardless of the language, but to follow along with the

examples in this chapter, you’ll need Greeter. At this point, open the Greeter project

folder in Visual Studio Code to start collaborating over the source code.

 Downloading Other Source Control Providers
As I mentioned earlier, VS Code supports additional source control managers, also

referred to as SCM, via extensibility. You can open the Extensions Bar and type SCM

providers in the search box to find third-party extensions that target other source

control engines. Figure 7-1 shows an example of selecting an extension that adds support

for the Subversion engine (https://subversion.apache.org).

Chapter 7 SourCe Control with Git

https://github.com/Microsoft/TypeScriptSamples
https://subversion.apache.org

153

Figure 7-1. Installing additional source control providers

Because VS Code provides in-the-box support only for Git, other source control

providers are not discussed in this chapter. If you want to install SCM extensions, make

sure you refer to the documentation provided by the producer.

 Managing Repositories
With Git, version control supports both a local repository and a remote repository to

work. This section explains how to create both, supplying information that you will not

find in the documentation, especially for remote repositories.

Chapter 7 SourCe Control with Git

154

Note a very popular abbreviation for repository is repo. although this term is
not used in this book, you will encounter it often, especially when searching for
information about open-source projects.

 Initializing a Local Git Repository
As a starting point for the following examples, open the Greeter project you downloaded

previously. The first thing you need to do is create a local repository for the current

project. This is accomplished by opening the Git tool from the Side Bar, as shown in

Figure 7-2.

Figure 7-2. Ready to initialize a local Git repository

Clicking the Publish to GitHub button allows you to initialize a local repository and

publish to GitHub at the same time, but because it is important to understand how the

flow works and how to properly authorize VS Code to GitHub, the steps here are split

into creating a local repository first and then publishing to the remote one. Click the

Chapter 7 SourCe Control with Git

155

Initialize Repository button at the top (see Figure 7-2). Visual Studio Code will initialize

the local repository and show the list of files that now are under version control but not

committed yet (see Figure 7-3).

Figure 7-3. Files are under version control but not committed yet

Notice how the Git icon shows the number of pending changes. This is an important

indicator that you will always see anytime you have pending, uncommitted changes. Write

a commit description and then press Ctrl+Enter. You will see a warning message saying

that there are no staged files at the moment, and you will be offered to stage and commit all

files directly. Staging is discussed in the next section, so for now click Yes. At this point, files

are committed to the local repository, and the list of pending changes will be cleaned. Now

there is a problem: you need a remote repository, but the official documentation does not

describe how to associate one to VS Code. The next section explains how to accomplish this.

 Creating a Remote Repository
Visual Studio Code works with any Git repository. There are plenty of platforms that use

Git as the version control engine, but probably the most popular platforms are GitHub,

Atlassian Bitbucket, and Microsoft Azure DevOps. This section shows you how to create

Chapter 7 SourCe Control with Git

156

a remote repository on GitHub. I chose GitHub not only because of the popularity of the

platform but also because Visual Studio Code includes a built-in extension called GitHub

that is expressly designed to simplify the workflow against GitHub itself. This requires

you to have an existing GitHub account or to create one for free at https://github.

com/join. Visual Studio Code makes it very easy to publish repositories to GitHub with

a single mouse click, but VS Code first needs to be authorized by the GitHub engine, so

there are some preliminary steps you need to do just once.

On the Status Bar, click the Publish to GitHub button, identified by an icon

representing a cloud with an arrow and located to the right of the master branch name.

Figure 7-4 shows this button inside the blue box.

Figure 7-4. The Publish to GitHub button

An alert will inform you that VS Code wants to access GitHub and, after you click

OK to accept, it will open the default browser pointing to a GitHub page where it will

be possible to authorize VS Code. Click Authorize, then enter your GitHub credentials

and accept the access requirements that the extension requires. Once you're logged into

GitHub, the browser will ask for your confirmation to open Visual Studio Code.

VS Code will ask your permission to open an URL passed by the browser and that is

required to log in from the development environment. Allow this, so that Visual Studio

Code can complete the authentication process automatically. At this point VS Code is

enabled to access GitHub. As I mentioned previously, the steps required to authorize

Visual Studio Code need to be done only once.

Because the project folder has been created from a web source (you downloaded the

sample code), Visual Studio Code marks the repository as unsafe, as shown in Figure 7-5.

Chapter 7 SourCe Control with Git

https://github.com/join
https://github.com/join

157

Figure 7-5. VS Code detects an unsafe repository

According to the documentation, Visual Studio Code marks a repository as unsafe

when it resides in a folder that is owned by multiple users. However, this can also

happen with downloaded files. You can click Manage Unsafe Repositories and, from the

Command Palette, select the name of the repository you want to mark as safe (greeter in

this case).

At this point you need to click the Publish to GitHub button again on the Status Bar.

VS Code shows a text box containing the repository name; by default, this is based on the

current folder name, but you can write a different name. It also provides two options to

publish the repository to GitHub based on the folder name, as you can see in Figure 7-6.

One option is to publish to a private repository, and the other option is to publish to a

public repository.

Chapter 7 SourCe Control with Git

158

Figure 7-6. Available options to publish the repository remotely

The current example uses the private option, but you are free to choose whichever

option you prefer. When publishing is completed, you will get a confirmation message

and an option to open the GitHub repository in the browser.

Note if you work with platforms different from Github, you can easily associate a
remote repository by clicking the … button located in the upper-right corner of the
Source Control Bar and then choosing remote ➤ add remote. this is explained
in practice in the section “working with azure Devops” toward the end of this
chapter.

Once the repository has been created remotely and published, VS Code will ask if

you want to open GitHub and if you want to periodically run the git fetch command to

pull any remote changes automatically (see Figure 7-7).

Figure 7-7. VS Code offers to open GitHub and to run git commands

You are free to open GitHub and to click Yes on the second prompt. If you are not

sure and want to get more information, you can always click Ask Me Later.

Chapter 7 SourCe Control with Git

159

 Handling File Changes
Git locally tracks changes on your code files, and the Git icon in VS Code shows the

number of files with pending changes. This number is actually updated only after you

save your files. In VS Code, handling file changes is very straightforward. In Figure 7-8

you can see how the number of pending changes is highlighted in the Git icon but also

how files that have changes are marked with a brown M (where M stands for Modified),

whereas deleted files are marked with a red D (where D stands for Deleted). Note that

these markers are also visible in the Explorer Bar, and the total number of changes

appears on the Git icon of the Explorer Bar.

Figure 7-8. Identifying the number of pending changes

By clicking a file in the list, you can see the differences between the current and

previous versions of the file with the Diff tool. Figure 7-9 shows an example.

Chapter 7 SourCe Control with Git

160

The left side shows the old version and the right side shows the new one. The

line highlighted in red represents code that has been removed, whereas the line

highlighted in green represents new code. Specific changes inside the lines of code are

represented with darker shades of red and green, as you can see for the words world and

developers in Figure 7-9. This is a very important tool when working with any version

control engine.

There is also another way to open the Diff tool, which is by clicking the Open

Changes button at the upper-right corner of the active editor. This button is only

available when the file has tracked changes.

 Staging Changes
You can promote files for staging, which means marking them as ready for the next

commit. This is actually not mandatory, as you can commit directly, but it is useful to

have a visual representation of your changes. You can stage a file by simply clicking the

+ symbol near its name, or you can stage all files by right-clicking the Changes title and

Figure 7-9. Comparing file versions with the Diff tool

Chapter 7 SourCe Control with Git

161

then choosing Stage All Changes or clicking the plus icon on the bar. Visual Studio Code

organizes staged files into a logical container, as you can see in Figure 7-10. Similarly,

you can unstage files by clicking the – symbol.

Figure 7-10. The view of staged and unstaged changes

The workflow based on staging is very convenient, because if you no longer want

to commit a file, you can simply unstage it before the code gets committed to the

repository.

 Managing Commits
The … button provides access to additional actions, such as Commit, Sync, Pull,

Stash, and Pull (Rebase). Figure 7-11 shows the full list of built-in Git synchronization

commands available in VS Code. Notice that some of them are grouped into submenus,

such as the Pull, Push submenu, which you can see in Figure 7-11.

Chapter 7 SourCe Control with Git

162

Figure 7-11. Shortcuts to commit and synchronize changes

When you are satisfied with your work on the source code, you can choose the

Commit ➤ Commit All command to commit your changes. Remember that this action

commits files to the local repository. Also, before you commit, you might want to check

staged and nonstaged changes so that the code is committed without missing any files.

You have to use the Push command to send changes to the remote repository.

You also have an option to undo the last commit and revert to the previous version

with the Commit ➤ Undo Last Commit command. Pull and Pull (Rebase), both in

the Pull, Push submenu, allow you to merge a branch into another branch; Pull is

nondestructive and merges the history of the two branches, while Pull (Rebase) rewrites

the project history by creating new commits for each commit in the local branch. The

Sync command in the same submenu performs a Pull first and then a Push operation, so

that both the local and remote repositories are synchronized.

Chapter 7 SourCe Control with Git

163

There is also a command called Stash, which allows you to store modified tracked

changes and staged changes in a cache, so that you can switch to another branch while

having unfinished work on the current branch. Then, with the Pop Latest Stash and Pop

Stash commands, under the Stash submenu, you can retake the latest version of your

unfinished work or a specific version of the unfinished work, respectively.

Every time you work with Git commands, such as Commit and Push, Visual Studio

Code redirects the output of the Git command line to the Output panel. Figure 7-12

shows an example.

Figure 7-12. Messages from the Git command line are shown in the Output panel

You need to select Git from the drop-down menu in the Output panel in order to see

the Git output. You can also open the Output panel using the Show Git Output command

from the popup menu shown in Figure 7-11.

 Working with the Git Command-Line Interface
The Command Palette has support for specific Git commands that you can type as if

you were in a command-line terminal. Figure 7-13 shows a partial list of available Git

commands, displayed by typing Git in the Command Palette. The full list of commands

is quite long and cannot be totally included in Figure 7-13, but you can type Git on your

own computer and scroll the list to see all available commands.

Chapter 7 SourCe Control with Git

164

Figure 7-13. Supported Git commands in the Command Palette

It is worth mentioning that the list of commands is also grouped by most recently

used and all commands.

For instance, you can use Git Sync to synchronize the local and remote repositories,

or you can use Git Push to send pending changes to the remote repository. A common

scenario in which you use Git commands is with branches.

 Creating and Managing Branches
For a better understanding of what a branch is, suppose you have a project that, at a

certain point of its lifecycle, goes to production. You need to continue the development

of your project, but you do not want to do it over the code you have written so far.

You can create two histories by using a branch. When you create a repository, you

also get a default branch called master.

Note there have been changes in Github, as well as in azure Devops, so if you
first create a remote repository on this platform directly, the main branch is no
longer called master, but instead is called main. this change is specific to Github,
so if you create a Git repository either locally or on other platforms, you still get the
master branch.

Chapter 7 SourCe Control with Git

165

Continuing with the example, the master branch could contain the code that has

gone to production, and now you can create a new branch, such as development, based

on master but different from it. In Visual Studio Code, you have different options to

create a new branch: The first option is to create a branch from the Command Palette by

typing Git branch, selecting the Git: Create Branch option, and specifying a new branch

name, such as develop.

Note develop is a shortening for development. Creating a branch
named develop is intentional because it is how a development branch is
called in the so-called GitFlow (http://datasift.github.io/gitflow/
IntroducingGitFlow.html) approach. if you join a team that uses GitFlow, you
will likely work on the develop branch.

This creates a new branch locally, based on master. The second option is to click the

current branch name in the Status Bar (master in this case) and then click the Create

New Branch command (see Figure 7-14). Enter the new branch name and press Enter.

Figure 7-14. Creating a branch

In addition, you can use the Create New Branch From command to create a new

branch from a branch that is not the active one. When a new branch is created, the Status

Bar shows it as the active branch; when you are ready, you can publish the new branch

to the remote repository with the Publish Branch button, represented by the cloud icon

(see Figure 7-15).

Figure 7-15. The new branch is set as active and ready to be published

Chapter 7 SourCe Control with Git

http://datasift.github.io/gitflow/IntroducingGitFlow.html
http://datasift.github.io/gitflow/IntroducingGitFlow.html

166

 Switching to a Different Branch
Switching to a different branch is very easy. Simply click the name of the active branch in

the Status Bar, and VS Code displays the list of branches, as shown in Figure 7-16. If the

repository already has a remote branch, it will also be visible in the list and recognizable

by the origin/ prefix.

Figure 7-16. Selecting a different branch

Click the desired branch, and VS Code checks it out and sets it as the active branch.

 Merging from a Branch
Suppose you have completed and tested some work on the development branch and

you want this work to be published to production. Because the production code is on the

master branch, you must bring all the work from the development branch to the master

branch. This is a merge operation (which normally happens via pull requests, described

later in this chapter). You can merge from a branch into another one via the Command

Palette, using the Git: Merge Branch command. VS Code shows the list of branches,

and you need to select the branch you want to merge from into the current branch (see

Figure 7-17).

Note remember that the branch that receives the merge is the active branch,
so make sure you have switched to the proper branch before starting a merge
operation.

Chapter 7 SourCe Control with Git

167

Figure 7-17. Merging from a branch

In the example, some changes were made and pushed to the development

branch, then the master branch has been selected as the active one and changes from

development will be merged into master.

Once the merge operation is completed, remember to push your changes to the

remote repository.

 Resolving Merge Conflicts

When you merge branches in which the same code files were modified, Visual Studio

Code leverages the Git tooling to combine the different edits into one code inside the

target files. However, sometimes VS Code cannot automatically combine the edits, in

which case it raises a merge conflict. If this happens, VS Code shows an editor where it

highlights the code on which a conflict exists, displaying the current version and the

incoming version with different colors, as you can see in Figure 7-18, which shows an

example of one conflict due to edits on the same line of code in different branches.

Chapter 7 SourCe Control with Git

168

Figure 7-18. Resolving merge conflicts

Click the Resolve in Merge Editor button. At this point, Visual Studio Code compares

changes at the top of the view and it allows for previewing the merged code at the

bottom. Figure 7-19 shows how the Merge Editor appears at this point.

Chapter 7 SourCe Control with Git

169

Figure 7-19. Resolving merge conflicts

You can resolve conflicts by clicking one of the available choices placed at the top of

the line of code:

• Accept Incoming: You resolve the conflict by using changes in the

incoming branch.

• Accept Current: You resolve the conflict by keeping changes done in

the current branch.

• Accept Combination: You resolve the conflict by combining both

changes.

When ready, click the Complete Merge button. As you can see, Visual Studio Code

gives you an integrated and user-friendly way to resolve conflicts without the need to

deal with complex Git command lines.

Chapter 7 SourCe Control with Git

170

 Hints About Rebasing Branches
Among the available commands for Git in Visual Studio Code, you will find one called

Rebase. In Git, rebasing still allows you to include the changes made by a branch in

another branch, but rebasing and merging accomplish this task differently.

More specifically, rebasing does not create overlaps between branches but rather

appends code changes to the end of the target branch, which means that the history of

the code is easier to understand, even if there is a need to frequently incorporate the

commits of one branch into the other.

Rebasing therefore offers the possibility of accessing a more linear history, because,

unlike merging, it allows you to not incorporate unnecessary commits into the

target branch.

However, rebasing should be used with care. For example, if another team member

is working on the same branch, it is preferable to avoid rebasing because this might lead

to the duplication of the branch instead of merging changes.

 Deleting Branches
Sometimes you might have branches that have been created only for testing some code

and that are not really necessary in the application lifecycle management. In this case, in

the Command Palette, you can use the Git: Delete Branch command.

With a user interface like what you see in Figure 7-17, VS Code shows the list of

branches. Select the branch you want to delete and press Enter. Remember that the

active branch cannot be deleted, and you first need to switch to a different branch. Also,

remember that you can delete remote branches only if you created them.

 Adding Power to the Git Tooling with Extensions
The integrated tools for Git cover all the needs that you, as a developer, may have when

working with local and remote repositories to manage your source code, but there are

extensions that provide additional power to the integrated tools.

This section describes the most useful free extensions that will improve your

collaboration experience in Visual Studio Code.

Chapter 7 SourCe Control with Git

171

 Git History
Git History is a free extension that enables you to view the history of your source code,

such as information and author about each commit and that can display how a file has

gone through branches; plus it adds commands that make it easier to manage your code

against Git. After you have installed the extension, you can right-click a file inside the

folder view of Explorer Bar and select Git: View File History.

Figure 7-20 shows an example based on a file that has three commits. If available, the

view shows the branches where the file has been included, comments and author for the

commit, and the commit ID. The view also allows for searching and filtering contents by

branch and author. Local branches are highlighted in green and remote branches in red.

Figure 7-20. Viewing the history of commits with Git History

Note if the commit author has associated a picture to the Git credentials, Git
history shows the picture near the author name.

Chapter 7 SourCe Control with Git

172

If you click the More shortcut at the right of each commit, a menu appears showing

a number of very useful commands that make it easier to work with commits (see

Figure 7-21).

Figure 7-21. Git History provides commands that make it easier to work
with commits

At the bottom of the view, you will see the list of files involved in the selected

commit. If you click a filename, you also get shortcuts to compare the file with the

previous version and to view the history of that file. Git History is a very useful extension,

especially when your team works with the Agile methodologies, because for each task in

the backlog, a new branch is created and then merged into one branch at the end of the

sprint, making it easier to walk through the history of the work.

 GitLens
Another extremely useful extension that will boost your productivity is GitLens.

Note Gitlens has been recently elevated to a paid extension; however, the
features described in this chapter are still available in trial mode.

Upon first use, GitLens requires you to be authorized by GitHub, so VS Code will

invite you to follow the same steps you did when creating your first remote repository.

GitLens adds to VS Code many features and commands related to Git. For example,

GitLens extends the Source Control Bar (see Figure 7-22) with a number of useful

Git groups.

Chapter 7 SourCe Control with Git

173

Figure 7-22. The Source Control Bar extended by GitLens

The GitLens extension adds several areas to the Source Control Bar. The BRANCHES

and REMOTES areas show the list of local and remote branches, respectively, and, for

each branch, GitLens displays the list of commits. Each commit can be expanded to see

the commit message, the list of files involved in the commit, and an icon that represents

the operation made on the file. The STASHES area shows stashed changes with a similar

Chapter 7 SourCe Control with Git

174

structure (if any). The FILE HISTORY area shows the list of commits for a file (this

requires an open editor). For each commit, you can see the name, the author, and the

time of last edit.

GitLens also adds summary information about edits made on a specific code

snippet, right above the code snippet itself. You can click this to get commit details.

Figure 7-23 shows an example where GitLens highlights that a code change to the

Greeter class was made four hours earlier by the author, plus the commit details.

Note if you hover your cursor over the Gitlens, you will see some information
such as author, code differences, and commit number inside an interactive
popup box.

Other commands are available in the context menu when you right-click the code

editor, such as Copy Commit ID to Clipboard, Copy Message to Clipboard, and Copy

Remote File URL to Clipboard, all of which are self-explanatory.

 GitHub Pull Requests and Issues
Pull requests in Git make it easier to perform code reviews, while issues enable you

to keep track of feedback from other developers. With pull requests, your code is not

automatically merged into a branch until someone else on the team reviews the code

and accepts it. If you use GitHub for your repositories, an extension called GitHub Pull

Requests and Issues is available to introduce support for pull requests in Visual Studio

Code. When you first install the extension (and reload the environment), you are asked

Figure 7-23. GitLens adds summary information about a code snippet

Chapter 7 SourCe Control with Git

175

to sign in to GitHub. To accomplish this, you can either click Settings in the Side Bar and

then click Sign In To Use GitHub Pull Requests and Issues, or click the Sign In button in

the GitHub Bar. Simply follow the same steps you did to authorize GitLens.

After you provide your GitHub credentials and open a folder that is associated to a

remote repository hosted on GitHub, you can leverage the GitHub Bar, which you enable

by clicking the GitHub icon on the Side Bar. An example of the GITHUB view is provided

in Figure 7-24, which refers to an existing pull request detected by the extension and that

was opened (checked-out) previously in the repository.

Figure 7-24. The GitHub Pull Requests view

When a pull request is detected, a new shortcut called GITHUB PULL REQUEST is

added to the Explorer Bar to quickly move to the pull request information. The extension

supports both viewing and submitting pull requests, regardless of their source, which

can be VS Code, GitHub, or another development environment connected to the same

repository. When pull requests are available, you see them listed in the view. If you select

Chapter 7 SourCe Control with Git

176

a pull request, a new editor window appears showing all the pull request details, and you

have the option of adding comments and then closing, rejecting, or approving the pull

request (see Figure 7-24).

You can also work on the pull request locally by clicking the Checkout button, which

displays it under the Local Pull Request Branches node in the tree view.

New pull requests can be directly created from within Visual Studio Code via the

Create Pull Request button available on the toolbar of the GITHUB view. This requires

changes on the current branch. Figure 7-25 shows how the user interface appears when

you create a new pull request.

Chapter 7 SourCe Control with Git

177

Figure 7-25. Creating a pull request

In addition to pull requests, you can create issues from within Visual Studio Code by

using the + button located near the ISSUES view at the bottom of the bar, after which you

can edit and then save them so that they are associated to the remote repository. Viewing

issues happens inside the browser, so when you click the globe icon at the right side of

an issue, the default web browser opens the GitHub page for the issue.

This is a very useful extension, especially if you work within Agile teams, but

remember it only supports GitHub as the host.

Chapter 7 SourCe Control with Git

178

 Working with Azure DevOps
Azure DevOps (https://dev.azure.com) is the complete solution from Microsoft to

manage the entire application lifecycle, from development to testing to continuous

integration and delivery. Among the many features, Azure DevOps provides source

control capabilities based on the Git engine.

In this section, I explain how to configure a Git repository that you can use for

source control with Visual Studio Code, and the good news is that you do not need

any extensions. I also reuse the Greeter project described in the previous sections. If

you want to do the same, you can simply delete the local .git folder located under the

project folder.

You obviously need an account on Azure DevOps, which you can create by using a

Microsoft account. If you do not have one, you can get a Microsoft account at https://

www.outlook.com, and then you can get an account on Azure DevOps at https://aka.

ms/SignupAzureDevOps. Follow all the instructions required to configure your account

for the first time.

 Creating a Team Project
From the home page, click the New Project button. As you can see in Figure 7-26, you

need to supply a team project name, optionally a source control engine, and a work item

process. About the source control engine, leave Git as the selection. Azure DevOps also

supports the Team Foundation Server source control engine, but this is out of scope.

Chapter 7 SourCe Control with Git

https://dev.azure.com
https://www.outlook.com
https://www.outlook.com
https://aka.ms/SignupAzureDevOps
https://aka.ms/SignupAzureDevOps

179

Figure 7-26. Creating a team project in Azure DevOps

Enter a project name and click Create. After a few seconds, your new team project

will be ready. At this point, the Azure DevOps site shows a page with all the information

about your new team project. Now click Repos on the left side of the screen so that you

can see all the information about the new Git repository (see Figure 7-27). Notice that the

new repository is created with the same name as the new project. Copy the repository

URL into the clipboard, as it will be necessary very shortly.

Chapter 7 SourCe Control with Git

180

Figure 7-27. Information about a Git repository on Azure DevOps

Visual Studio Code will need to authenticate against the repository in order to

push changes, so click Generate Git Credentials. Take note of both the username and

password that is generated because they will be used shortly, and keep in mind that this

is the only option you have to see and store the password.

Now that a remote repository is set up, you have several options to associate it to

Visual Studio Code. You could clone the repository to the local machine, or you could

even use the Git CLI. However, the simplest yet most effective option is to use the VS

Code tools you learned about in the first part of this chapter, as described next.

Chapter 7 SourCe Control with Git

181

 Connecting Visual Studio Code to a Remote Repository
Go back to Visual Studio Code. The first thing to do is initialize a local Git repository (see

the “Initializing a Local Git Repository” section earlier in the chapter for a refresher).

Once you have a local repository set up, you can connect it to the remote Azure DevOps

repository with little effort.

In the Source Control Bar, click the … button, then choose Remote ➤ Add Remote.

You first need to specify the name of the remote repository (which is the one you

specified in Azure), then you will have the option to enter the URL of the remote

repository you created, so paste in the URL and press Enter (see Figure 7-28).

Figure 7-28. Specifying an Azure DevOps remote repository

You are also asked to provide a name, which is used as a project identifier. Enter a

name of your choice, with no blank spaces, then press Enter. At this point, Visual Studio

Code will first ask for your username and then for the password that was generated

previously as Git credentials in the DevOps portal. This should no longer be necessary

the next time you connect to Azure DevOps. After entering your credentials, Visual

Studio Code links the local repository to the remote one, but note that you do not get

a confirmation message of the operation completion, only indicators running on the

Status Bar.

The very last step is to push the branch to the remote repository, using any of the

options described in the first part of this chapter; however, you need to take care about

the main branch. As previously mentioned, due to recent changes in Azure DevOps

that reflect what GitHub also does, when you create a repository on Azure DevOps, the

main branch is now named main rather than master. The problem is that VS Code still

creates a master branch. So basically you need to push the master branch from VS Code

and then create a pull request to merge master into main so that you can work with the

new branch.

Chapter 7 SourCe Control with Git

182

Note all these steps are necessary if you connect existing code to a remote
repository. if you start from creating a remote repository for a new project, you can
clone the repository in VS Code so that you start with the main branch directly.

Once the changes are pushed, they are visible in the Repos view of the Azure DevOps

project (see Figure 7-29).

Figure 7-29. The source code has been pushed to Azure DevOps

Now that your code has been pushed remotely, other developers can collaborate on

the project. The key point is how easy it has been to set up a connection between a local

Git repository and a remote Azure DevOps one, all from within Visual Studio Code.

 Summary
Writing software involves collaboration, whether you are part of a development team,

involved in open-source projects, or are an individual developer who has interactions

with customers. In this chapter, you have explored how Visual Studio Code provides

integrated tools to work with Git, the popular open-source and cross-platform source

control provider.

Chapter 7 SourCe Control with Git

183

You learned how to create a local repository with the Git Bar and how to associate

it to a remote repository with a couple of commands from the integrated terminal. You

have also learned how to handle file changes, including commits, and how to create

and manage branches directly from within the environment. In addition, you were

introduced to some useful extensions, such as Git History, Git Lens, and GitHub Pull

Requests and Issues, that will boost your productivity by adding important features that

every developer needs when it comes to team collaboration. Finally, you learned how

easy it is to link a local repository to a remote Git repository hosted on Azure DevOps,

the premiere cloud solution from Microsoft to manage the whole application lifecycle.

Behind the scenes, Visual Studio Code invokes the Git commands to execute operations

over your source code, and it is preconfigured to work with this external tool.

However, Visual Studio Code is not limited to work with a small set of predefined

tools; rather, it can be configured to work with basically any external program. This is

what you learn about in the next chapter.

Chapter 7 SourCe Control with Git

185

CHAPTER 8

Automating Tasks
As described in previous chapter, Visual Studio Code is more than a simple code editor

because it enables you to execute operations such as compiling and testing code by

running external tools. In this chapter, you learn how VS Code can execute external

programs via tasks, by both existing tasks and customized tasks. To run the examples

provided in this chapter, you need the following software:

• Node.js, a free and open source JavaScript runtime based on

Chrome’s JavaScript engine, which you can download from

https://nodejs.org

• The TypeScript compiler (tsc), which you install via the Node.js

command line with the following command:

> npm install -g typescript

Using Node.js and TypeScript helps you avoid dependencies on the operating system

and proprietary development environments. Obviously, all the topics discussed in this

chapter apply to other languages and platforms as well.

 Understanding Tasks
At its core, Visual Studio Code is a code-centric tool, so it often requires executing

external programs to complete operations that are part of the application lifecycle, such

as compilation, debugging, and testing.

In Visual Studio Code terminology, integrating with an external program within the

flow of the application lifecycle is a task. Running a task means not only executing an

external program but also getting the output of the external program and displaying it in

the most convenient way inside the user interface, such as the integrated Terminal.

© Alessandro Del Sole 2023
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_8

https://nodejs.org
https://doi.org/10.1007/978-1-4842-9484-0_8

186

A task is basically a set of instructions and properties represented with the JSON

notation, stored in a special file called tasks.json. If VS Code can detect the type of

project or source code inside the folder, a tasks.json file is not always necessary, and

VS Code does all the work for you. If VS Code cannot detect the type of project or source

code, or if you are not satisfied with the default settings of a task, under the current

folder, it generates a hidden subfolder called .vscode and, inside this folder, generates a

tasks.json file. If VS Code can detect the type of project or source code inside the folder,

it also prefills the tasks.json content with the proper information; otherwise, you need

to configure tasks.json manually. For a better understanding, I explain tasks that VS

Code can detect and that it configures on your behalf, and then I discuss how to create

and configure tasks manually.

 Tasks Types
There is no limit to how many types of tasks can be available for a source code folder, but

the most common are the following:

• Build task: A build task is configured to compile the source code,

assets, metadata, and resources into a binary or executable file, such

as libraries or programs.

• Test task: A test task is configured to run unit tests in the source code.

• Watch task: A watch task starts a compiler in the so-called watch

mode. In this mode, a compiler always watches for changes to

any unresolved files after the latest build and recompiles them at

every save.

Visual Studio Code provides built-in shortcuts to execute a build task. When

new tasks are added, VS Code updates itself to provide shortcuts for the new tasks.

Additionally, you can differentiate tasks of the same type. For example, you can have

a default build task and other custom build tasks that can be executed only in specific

situations.

Chapter 8 automating tasks

187

 Running and Managing Tasks
The first approach to understanding tasks in practice is to run existing, preconfigured

tasks. For the sake of simplicity, start Visual Studio Code and open the project folder

called simple from the collection of examples you downloaded previously from

the TypeScript Samples repository on GitHub (https://github.com/Microsoft/

TypeScriptSamples).

Visual Studio Code detects it as a TypeScript project, and therefore it preconfigures

some tasks (in the next section, I provide more details about task auto-detection). Now

open the Terminal menu. As you can see in Figure 8-1, there are several commands

related to tasks.

Figure 8-1. Commands for running and managing tasks in the Terminal menu

An explanation of each command is provided in Table 8-1.

Chapter 8 automating tasks

https://github.com/Microsoft/TypeScriptSamples
https://github.com/Microsoft/TypeScriptSamples

188

Table 8-1. Commands for Task Execution and Management

Command Description

run task shows the list of available tasks in the Command palette and runs the

selected task.

run Build task runs the default, preconfigured build task (if any).

terminate task Forces a task to be stopped.

restart running

task

restarts the currently running task.

show running tasks shows the output of the currently running task in the terminal panel.

Configure tasks shows the list of available tasks in the Command palette and allows editing

the selected task inside the tasks.json file editor.

Configure Default

Build task

shows the list of available tasks in the Command palette and allows selection

of the task to use as the build task.

If you select Run Task, VS Code opens the Command Palette showing the list of

available task categories, as represented in Figure 8-2.

Figure 8-2. Selecting task categories from the Command Palette

From here you can pick up a group of available tasks by category. In this case, you

need to select the typescript category. At this point the Command Palette displays the

list of available tasks for that category, as you can see in Figure 8-3.

Chapter 8 automating tasks

189

Figure 8-3. Running a task from the Command Palette

As you can see, there are two tasks, tsc: build and tsc: watch, both pointing to the

tsconfig.json project file. This means that either task will run against the specified file.

tsc is the name of the command-line TypeScript compiler, whereas build and watch are

two preconfigured tasks whose descriptions were provided previously. If you select tsc

build, Visual Studio Code launches the tsc compiler and compiles the TypeScript code

into JavaScript code, as shown in Figure 8-4.

Note in the case of typescript, the build task compiles typescript code into
Javascript code. in the case of other languages, the build task generates binaries
from the source code. more generally, a build task produces the expected output
from the compilation process depending on the language. also, the list of available
tasks varies depending on the type of project or folder you are working with. For
example, for .net projects, only a task called build is available.

Figure 8-4. Executing a build task

Chapter 8 automating tasks

190

The Terminal panel shows the progress and result of the task execution. In this case,

the result of the task is also represented by the generation of a .js file and a .js.map file,

now visible in the Explorer Bar.

Note if the terminal shows an error message saying that a .ps1 file could not
be loaded because running scripts is disabled on the systems, first try to restart Vs
Code as an administrator and to repeat the steps. if this does not solve the issue,
you need to enable script execution on your machine. You can do this on your own
if you are the computer administrator; otherwise, you need to ask the administrator
of your network. You can find more detailed information on how to enable script
execution depending on your environment and on how to enable specific privileges
at https:/go.microsoft.com/fwlink/?LinkID=135170.

You can stop and restart a task using the Terminate Task and Restart Running Task

commands, respectively, both described in Table 8-1. Now suppose there is a critical

error that prevents the build task from completing successfully. For demonstration

purposes, remove a closing bracket from the code of the animals.ts file and run the

build task again. At this point, Visual Studio Code will show the detailed log from the tsc

tool in the Terminal panel, as shown in Figure 8-5, describing the error and the line of

code that caused it.

Chapter 8 automating tasks

https://go.microsoft.com/fwlink/?LinkID=135170

191

Figure 8-5. Visual Studio Code shows the output of the external tool in a
convenient way

In the real world, this error probably would not happen because you have the

Problems panel and red squiggles in the code editor that both highlight the error. But

this is actually an example of how Visual Studio Code integrates with an external tool

and shows its output directly in the Terminal panel, helping to solve the problem with

the most detailed information possible. With tasks, the Terminal also shows specific

annotations. For example, it highlights with red squiggles the root of the code that raised

the error, and it shows icons close to each command in the task and that represent the

status of the command. For example, invoking the tsc compiler raised an error and the

corresponding line shows an error icon.

Chapter 8 automating tasks

192

 The Default Build Task
Because building the source code is the most frequently used task, Visual Studio Code

provides a built-in shortcut to run this task in the Terminal menu, called Run Build Task

(Ctrl+Shift+B on Windows and ⇧+⌘+B on macOS). However, you first need to set a

default build task, because otherwise the Run Build Task command will behave like the

Run Task command.

To accomplish this, choose Terminal ➤ Configure Default Build Task. When the

Command Palette appears, select the task you want to be set as the default build task. In

this case, choose tsc build. When you do this, Visual Studio Code is actually changing its

default configuration and therefore generates a new tasks.json file under the .vscode

folder, and it then opens this file in a new editor window. The content and structure of

tasks.json will be discussed in the upcoming “Configuring Tasks” section, so for now

let’s focus on the new default build task. Choose Terminal ➤ Run Build Task, or use the

keyboard shortcut, and you will see how the default build task will be executed, without

the need to specify it every time from the Command Palette.

 Auto-Detected Tasks
Visual Studio Code can auto-detect tasks for the following environments: Grunt, Gulp,

Jake, and Node.js. Auto-detecting tasks means that Visual Studio Code can analyze a

project built for one of the aforementioned platforms and generate the appropriate tasks

without needing to create custom ones. Figure 8-6 shows an example based on the Node

debugger extension for Visual Studio Code, whose source code is available at https://

github.com/Microsoft/vscode-node-debug.

Chapter 8 automating tasks

https://github.com/Microsoft/vscodenodedebug
https://github.com/Microsoft/vscodenodedebug

193

Figure 8-6. Auto-detected tasks

The source code of this extension is made of JavaScript and TypeScript files and is

built on the Node.js runtime. So Visual Studio Code has been able to detect a number of

tasks that work well with this kind of project, such as the npm build and npm watch tasks.

You can then open the npm category to view the full list of preconfigured tasks that can

run against npm.

Auto-detected tasks are very useful because they allow you to save a lot of time in

terms of task automation. However, more often than not, you will have needs that are not

satisfied by existing tasks, so you need to make your own customizations.

Note in order to auto-detect tasks, behind the scenes Vs Code requires that
specific environments are installed. For example, Vs Code can auto-detect tasks
based on node.js only if node.js is installed; similarly, it can auto-detect tasks
based on gulp only if gulp is installed, and so on.

Chapter 8 automating tasks

194

 Configuring Tasks
When Visual Studio Code cannot auto-detect tasks for a folder, or when auto-detection

does not satisfy your needs, you can create and configure custom tasks by editing the

tasks.json file. In this section I present an example that will help you understand how

to configure your own tasks.

More specifically, I explain how to compile Pascal source code files using the

OmniPascal extension and the Free Pascal compiler, available to all operating systems.

To complete the example, you need the following:

• The OmniPascal language extension for Visual Studio Code, which

you can download via the Extensions panel. This extension is useful

to enable Pascal syntax highlighting and code navigation, though you

can still compile source files without it.

• The Free Pascal compiler, which includes all you need to develop

applications using Pascal and provides a free command-line

compiler. Free Pascal is available for Windows, macOS, Linux,

and other systems, and you can download it from https://www.

freepascal.org.

Let’s start with the Pascal example.

 Task Example: Compiling Pascal Source Code

In this section, I explain how to create a custom task that allows you to compile Pascal

source code files by invoking the Free Pascal command-line compiler from VS Code.

Assuming you have downloaded and installed the required software as listed in the

preceding text, locate the Free Pascal folder installation on disk (usually C:\FPC\

VersionNumber on Windows and /FPC/VersionNumber on macOS and Linux), then open

the examples folder. In Visual Studio Code, open any folder containing some Pascal

source code. I use one called fcl-json.

Figure 8-7 shows how Visual Studio Code appears with Pascal source files

currently opened.

Chapter 8 automating tasks

https://www.freepascal.org
https://www.freepascal.org

195

Figure 8-7. Editing Pascal source code

The OmniPascal extension installed previously enables syntax colorization and

the other common editing features. Now imagine you want to compile the source code

into an executable binary by invoking the Free Pascal command-line compiler. You can

accomplish this by creating a custom task. Follow these steps to create a new tasks.json

file and set up the custom task:

 1. Choose Terminal ➤ Configure Tasks. When the Command Palette

appears asking for a task to configure, select Create tasks.json

file From Template (see Figure 8-8). There is no existing task to

configure at this particular point, so the only thing you can do is

create a new tasks.json file.

Chapter 8 automating tasks

196

Figure 8-8. Creating a new task from scratch

 2. The Command Palette shows the list of available task templates:

MSBuild, maven, .NET Core, and Others (see Figure 8-9). Select

Others to create a new task that is independent from other systems.

Figure 8-9. Selecting a task template

Visual Studio Code generates a subfolder called .vscode and, inside this folder, a

new tasks.json file whose content at this point is the following:

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

 {

 "label": "echo",

 "type": "shell",

 "command": "echo Hello"

 }

]

}

Chapter 8 automating tasks

197

The core node of this JSON file is an array called tasks. It contains a list of tasks, and

for each task, you can specify the text that VS Code will use to display it in the Command

Palette (label), the type of task (type), and the external program that will be executed

(command). An additional JSON property called args allows you to specify command-line

arguments for the program you invoke. The list of supported JSON properties is available

in Table 8-2 in the upcoming “Understanding tasks.json Properties” section, but if you

are impatient, you can quickly look at the table and then return here.

Now suppose you want to create a build task, which, by convention, is the type of

task you use to compile source code. You can accomplish this by modifying tasks.json

as follows:

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

 {

 "label": "build",

 "type": "shell",

 "command": "fpc",

 "args": ["${file}"]

 }

]

}

The key points are the following:

• The label property value is now build so that the task is clearly

provided as the build task.

• The type property value is shell, meaning it will be executed by the

operating system’s shell.

• The command property value is fpc, which is the filename of the Free

Pascal compiler.

• The args property value is an array of command-line arguments to be

passed to the external program; in this case there is only one argument,

which is the active source file, represented by the $(file) variable.

Chapter 8 automating tasks

198

Note as a general rule, an external program can be invoked without specifying
its full path only if such a path has been registered in the operating system’s
environment variables, such as PATH on Windows. in the case of Free pascal, the
installer claims to take care of registering the program’s path, but remember to
look at the environment variables for other programs.

You could certainly specify the name of the file you want to compile, but using a

variable is more flexible so that you can simply compile any file that is currently active

in the code editor. Variables are discussed in the section “Understanding Substitution

Variables” and summarized in Table 8-3 later in this chapter. Notice how IntelliSense

helps you find the appropriate properties in tasks.json, as shown in Figure 8-10.

Figure 8-10. IntelliSense helps in defining task properties

Chapter 8 automating tasks

199

Save and close tasks.json, then open one of the Pascal source files. Now you can

run the newly created build task. Choose Terminal ➤ Run Task and, from the Command

Palette, select the build task (see Figure 8-11).

Figure 8-11. Selecting the new task

At this point, VS Code asks what would you like to do to detect any problems

encountered during the execution of the external program so that it can display them

in the Problems panel. Detecting problems in the program’s output is the job of a so-

called problem matcher. This is a more complex topic and is discussed in the section

“Understanding Problem Matchers” later in this chapter. For now, select Continue

Without Scanning the Task Output (see Figure 8-12).

Chapter 8 automating tasks

200

Figure 8-12. Selecting a problem matcher

The Free Pascal compiler is executed in the Terminal panel, where you also see the

program output, as demonstrated in Figure 8-13.

Chapter 8 automating tasks

201

Figure 8-13. Executing the Free Pascal compiler

If the execution succeeds, you will find a new binary file in the source code’s folder.

If it fails, the compiler’s output displayed in the Terminal panel will help you understand

what the problem was. I now explain more about default tasks, task templates, JSON

properties in tasks.json, and variables.

 Multiple Tasks and Default Build Tasks

The tasks.json file can define multiple tasks. As introduced earlier in this chapter,

among others, common tasks are build and test, but you might want to implement

multiple tasks that are specific to your scenario. For example, suppose you want to use

the Free Pascal compiler to build Delphi source code files.

The Free Pascal command-line compiler provides the -Mdelphi option, which

enables compilation based on the Delphi compatibility mode. You can therefore modify

tasks.json as follows:

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

Chapter 8 automating tasks

202

 "tasks": [

 {

 "label": "build",

 "type": "shell",

 "command": "fpc",

 "args": ["${file}"]

 },

 {

 "label": "Delphi build",

 "type": "shell",

 "command": "fpc",

 "args": [

 "${file}",

 "-Mdelphi"

]

 }

]

}

As you can see, there is a new custom task called Delphi build in the tasks array,

which still invokes the Free Pascal compiler on the active file, but with the -Mdelphi

option being passed as a command-line argument. Now if you choose Terminal ➤ Run

Task again, you see both tasks in the Command Palette, as demonstrated in Figure 8-14.

Figure 8-14. All defined tasks are displayed in the Command Palette

Chapter 8 automating tasks

203

It is common to have multiple build tasks, and even multiple tasks of the same

type, but in most cases, you will usually run the same task and keep other tasks for very

specific situations. Related to the current example, you will usually build Pascal source

files and sometimes build Delphi source files, so a convenient choice is to configure a

default build task for Pascal files. As you learned in the “The Default Build Task” section

previously, you can easily accomplish this with the following steps:

 1. Choose Terminal ➤ Configure Default Build Task.

 2. In the Command Palette, select the build task defined previously

by adding an isDefault parameter (as you will see shortly

in code).

 3. With a Pascal source file active, choose Terminal ➤ Run Build

Task or press the keyboard shortcut for your system.

This command automatically starts the default build task, without having to

manually select a task every time.

 Understanding tasks.json Properties

There are a number of properties available to customize a task. Table 8-2 provides a

summary of common properties that you can use with custom tasks.

Table 8-2. Available Properties for Task Customization

Property Name Description

label a string used to identify the task (e.g., in the Command palette).

type represents the task type. For custom tasks, supported values are shell and

process. With shell, the command is interpreted as a shell command (such

as bash, cmd, or powershell). With process, the command is interpreted as a

process to be executed.

command the command or external program to be executed.

args an array of command-line arguments to be passed to the command.

windows allows specifying task properties that are specific to the Windows operating

system.

(continued)

Chapter 8 automating tasks

204

Table 8-2. (continued)

Property Name Description

osx allows specifying task properties that are specific to macos.

linux allows specifying task properties that are specific to Linux and its distributions.

group allows for defining task groups and for specifying to which group a task belongs.

presentation Defines how Visual studio Code handles the task output in the user interface (see

the following example).

options allows for providing custom values about the cwd (current working directory), env

(environment variables), and shell (default shell) options.

The windows, osx, and linux properties are discussed separately in a later section.

The group property allows you to group tasks by category. For instance, if you consider

the two multiple tasks created previously, they are both related to building code, so

they might be grouped into a category called build. This is accomplished by modifying

tasks.json as follows:

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

 {

 "label": "build",

 "type": "shell",

 "command": "fpc",

 "args": ["${file}"],

 "group": {

 "kind": "build",

 "isDefault": true

 },

 },

Chapter 8 automating tasks

205

 {

 "label": "Delphi build",

 "type": "shell",

 "command": "fpc",

 "args": ["${file}", "-Mdelphi"],

 "group": "build"

 }

]

}

Notice how IntelliSense shows the built-in supported values for the group property

(see Figure 8-15).

Figure 8-15. IntelliSense helping with groups

Chapter 8 automating tasks

206

You can also specify additional values for individual tasks in a group. For example,

if you want to set a task as the default one in the group, you might change the JSON as

follows:

"group": {

 "kind": "build",

 "isDefault": true

 }

}

The kind property represents the group name and isDefault is self-explanatory.

You can also customize the way VS Code handles the task output via the presentation

property. When you type presentation and then press Tab, IntelliSense adds a number

of key/value pairs with some default values, as follows:

"presentation": {

 "echo": true,

 "reveal": "always",

 "focus": false,

 "panel": "shared",

 "showReuseMessage": true

}

Following is the description of each key and its values:

• echo can be true or false and specifies whether the task output is

actually written to the Terminal panel.

• reveal can be always, never, or silent and specifies whether the

Terminal panel where the task is running should be always visible,

never visible, or visible only when a problem matcher is not specified

and some errors occur.

• focus can be true or false and specifies if the Terminal panel should

get focus when the task is running.

• panel can be shared, dedicated, or new and specifies if the Terminal

instance is shared across tasks, or if an instance must be dedicated

to the current task, or if a new instance should be created at every

task run.

Chapter 8 automating tasks

207

• showReuseMessage can be true or false and specifies whether a

message should be displayed to inform that the Terminal panel will

be reused by a task and that therefore it is possible to close it.

The values you see in the preceding snippet are the default values. In case of default

values, a key can be omitted. For example, the following markup demonstrates how to

create a new Terminal panel at every run without showing a reuse message:

"presentation": {

 "panel": "new",

 "showReuseMessage": false

}

Other values can be omitted because the default values seen in the preceding text are

acceptable for this example.

Note the list of supported properties is much longer, but most of them are not
of common use. if you want to get deeper knowledge about the full list of available
properties, you can look at the tasks.json schema, which provides detailed
comments about each property; the schema is available at https://code.
visualstudio.com/docs/editor/tasks-appendix.

 Understanding Substitution Variables

Visual Studio Code also offers several predefined variables that you can use instead of

regular strings and that are useful to represent file and folder names when passing these

to a command. Table 8-3 provides a summary of supported variables.

Chapter 8 automating tasks

https://code.visualstudio.com/docs/editor/tasks-appendix
https://code.visualstudio.com/docs/editor/tasks-appendix

208

Table 8-3. Supported Substitution Variables

Variable Description

${workspaceFolder} represents the path of the currently opened folder.

${workspaceFolder

Basename}

represents the name of the currently opened folder without any

slashes.

${file} the path to the active code file.

${relativeFile} the active code file relative to ${workspaceFolder}.

${fileBasename} the active code file’s base name, without path and leading slash.

${fileBasenameNo

Extension}

the active code file’s base name without the extension.

${fileDirname} the path of the directory that contains the active code file.

${fileExtname} the file extension of the active code file.

${cwd} the current working directory of the task.

${lineNumber} the currently selected line number in the active file.

${selectedText} the currently selected text in the active file.

${env.VARIABLENAME} references an environment variable, such as {$env.PATH}.

${userHome} platform-independent variable that represents the root folder for

user contents.

${relativeFileDirname} the name of the directory for the current opened file, relative to

workspaceFolder.

Using variables is very common when you run a task that works at the project/folder

level or against filenames that you either cannot predict or do not want to hardcode.

You can check the variables documentation for further details at https://code.

visualstudio.com/docs/editor/variables-reference.

 Operating System–Specific Properties

Sometimes you might need to provide task property values that are different based on

the operating system. In Visual Studio Code, you can use the windows, osx, and linux

properties to specify different values of a property, depending on the target.

Chapter 8 automating tasks

https://code.visualstudio.com/docs/editor/variables-reference
https://code.visualstudio.com/docs/editor/variables-reference

209

For example, the following tasks.json implementation shows how to explicitly

specify the path of an external tool for Windows and Linux (the directory names might

not be the same on your machine):

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

 {

 "label": "build",

 "type": "shell",

 "args": ["${file}"],

 "windows": {

 "command": "C:\\Program Files\\FPC\\fpc.exe"

 },

 "linux": {

 "command": "/usr/bin/fpc"

 }

 }

]

}

More specifically, you need to move the property of your interest under the

operating system property and provide the desired value. In the preceding code, the

command property has been moved from the higher level down to the windows and linux

property nodes.

 Reusing Existing Task Templates

In the previous example about compiling Pascal source code, you saw how to create

a custom task from scratch. However, for some particular scenarios, you can leverage

existing task templates, which consists of tasks.json files already preconfigured to work

with specific commands and settings.

Chapter 8 automating tasks

210

The list of task templates may vary depending on the extensions you have installed,

but assuming you have installed only the C# extension, your list should look like that

shown in Figure 8-9. For .NET development, you can use the template called .NET Core:

Execute .NET Core Build Command (see Figure 8-9 for a reference). This generates the

following tasks.json file:

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

 {

 "label": "build",

 "command": "dotnet",

 "type": "shell",

 "args": [

 "build",

 // Ask dotnet build to generate full paths for filenames.

 "/property:GenerateFullPaths=true",

 // Do not generate summary otherwise it leads to duplicate

errors in Problems panel

 "/consoleloggerparameters:NoSummary"

],

 "group": "build",

 "presentation": {

 "reveal": "silent"

 },

 "problemMatcher": "$msCompile"

 }

]

}

This template is very useful if you want to work with Microsoft Visual Studio

solutions inside VS Code or, more generally, with C# projects. It is worth mentioning that

this template has been included for solutions created with .NET 5 and higher, but the

dotnet tool can build any kind of solution so it can be reused for different purposes.

Chapter 8 automating tasks

211

The second template is called Maven and is tailored to support the same-named

build automation tool for Java. Such a template generates the following tasks.json file:

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

 {

 "label": "verify",

 "type": "shell",

 "command": "mvn -B verify",

 "group": "build"

 },

 {

 "label": "test",

 "type": "shell",

 "command": "mvn -B test",

 "group": "test"

 }

]

}

Obviously, Maven must be installed on your machine (you can find it at https://

maven.apache.org). The template called MSBuild works with legacy Visual Studio

solutions that target the .NET Framework, which goes beyond the cross-platform

development purposes of Visual Studio Code, so it is not discussed here.

In general, these templates are useful for at least two reasons:

• They provide ready-to-use configurations for projects of the targeted

type, where you might need only a few adjustments.

• They provide a complete task structure, where you only need to

replace the command and target and optionally the presentation and

the problem matcher.

Among the others, tasks can detect problems in your code and present them in the

Problems panel. This is possible because of problem matchers, discussed in the next

section.

Chapter 8 automating tasks

https://maven.apache.org
https://maven.apache.org

212

 Understanding Problem Matchers

Problem matchers scan the task output text for known warning or error strings and

report these inline in the editor and in the Problems panel. Visual Studio Code ships

with a number of built-in problem matchers for TypeScript, JSHint, ESLint, Go, C#

and Visual Basic, Lessc, and Node Sass (see https://code.visualstudio.com/docs/

editor/tasks#_processing-task-output-with-problem-matchers).

Built-in problem matchers are extremely useful, because for the aforementioned

environments, VS Code can present problems that occurred at build time in the Problems

panel, but it can also highlight the line of code in the code editor that caused the problem.

You can also define custom problem matchers to scan the output of an external

program. For instance, a problem matcher for scanning the Free Pascal compiler could

look like the following:

 "problemMatcher": {

 "owner": "external",

 "fileLocation": ["relative", "${workspaceRoot}"],

 "pattern": {

"regexp": "((([A-Za-z]):\\\\(?:[^\\/:*?\\\"

<>|\\r\\n]+\\\\)*)?[^\\/\\s\\(:*?\\\"<>|\\r\\n]*)\\((\\d+)\\):

\\s.*(fatal|error|warning|hint)\\s(.*):\\s(.*)",

// The first match group matches the filename which is relative.

 "file": 1,

// The second match group matches the line on which the problem occurred.

 "line": 2,

// The third match group matches the column at which the problem occurred.

 "column": 3,

// The fourth match group matches the problem's severity. Can be ignored.

Then all problems are captured as errors.

 "severity": 4,

 // The fifth match group matches the message.

 "message": 5

 }

Chapter 8 automating tasks

https://code.visualstudio.com/docs/editor/tasks#_processing-task-output-with-problem-matchers
https://code.visualstudio.com/docs/editor/tasks#_processing-task-output-with-problem-matchers

213

The owner property represents the language service, whose value is external in this

case, but it could be, for example, cpp in the case of a C++ project. But the most important

property is pattern, where you specify a regular expression (regexp) to match error strings

sent by the external program. Also notice, with the help of comments, how matches are

grouped by target. Building problem matchers can be tricky and it is out of the scope of

this book, so I recommend that you read the official documentation available at https://

code.visualstudio.com/docs/editor/tasks#_defining-a-problem-matcher.

 Running Files with a Default Program
If you are editing a file whose type is associated with the operating system, you do not

need to create custom tasks to run it in VS Code. For example, you can run a batch

program (.bat) in Windows or a shell script file (.sh) on macOS by simply clicking

Terminal ➤ Run Active File.

The filename is passed to the current Terminal program on your system (PowerShell

on Windows or the bash shell on Linux and macOS) so that the operating system tries

to open the file with the program that is registered with the file extension, if any. In the

case of a batch or shell script file, the operating system executes the file. The output is

displayed in the Terminal panel.

Note only the output of the operating system or of command-line tools will be
redirected to the terminal panel. For instance, if you try to edit a .txt file and then
choose terminal ➤ run active File, such a file will be opened inside the default
text editor on your system, and there will be no additional interactions with the
terminal panel.

 Summary
There are many features in Visual Studio Code that make it different from a simple code

editor. Tasks are among these features. With tasks you can attach external programs

to the application lifecycle and run tools like compilers. VS Code ships with task auto-

detection for some environments, but it allows you to create custom tasks when you

need to associate specific tools to a project or folder.

Chapter 8 automating tasks

https://code.visualstudio.com/docs/editor/tasks#_defining-a-problemmatcher
https://code.visualstudio.com/docs/editor/tasks#_defining-a-problemmatcher

214

By working on the tasks.json file and with the help of IntelliSense, you can

include the execution of any external program in your folders. The execution of external

programs like compilers is certainly useful, but it would not be so important if VS Code

could not make a step forward: debugging code, which is discussed in the next two

chapters, first with .NET and then with Python.

Chapter 8 automating tasks

215

CHAPTER 9

Building and Debugging
Applications
Being an end-to-end development environment, Visual Studio Code offers opportunities

that you will not find in other code editors. In fact, in Visual Studio Code, you can work

with many project types and debug your code in several languages. This chapter first

provides a general overview of application development, and then it explains how to

build .NET projects supported in Visual Studio Code and how to use all the built-in,

powerful debugging features. Even if you do not plan to use C# with Visual Studio Code,

I recommend that you read this chapter because most of the concepts are applicable to

other languages, especially TypeScript, JavaScript, and Python.

 Creating Applications
Visual Studio Code is independent from proprietary project systems and platforms and,

consequently, it does not offer any built-in options to create projects. This means that

you need to rely on the tools offered by each platform. This section explains how to build

projects based on .NET, but you can similarly create projects with the command-line

interface offered by other platforms.

I also recommend that you create a dedicated folder on disk for the following

examples. With the help of the file manager tool on your system (Windows Explorer on

Windows, Finder on macOS, and Nautilus on Linux distributions such as Ubuntu), create

a folder called VSCode under the root folder, such as C:\VSCode or ~/Library/VSCode. In

this folder, you will shortly create new applications.

© Alessandro Del Sole 2023
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_9

https://doi.org/10.1007/978-1-4842-9484-0_9

216

Note The following topics are discussed in the context of .NET 7, but Visual
Studio Code also supports .NET 5 and 6, as well as .NET Core versions up to 3.1.
All explanations and examples therefore apply to .NET Core as well.

 The Status of Microsoft .NET
After releasing .NET Core a few years ago, Microsoft has had in mind the vision of a

complete unification between .NET Framework and .NET Core, working on a single,

cross-platform API that could bring the great power of .NET to any developer on

any system.

As you might know, .NET Core is a cross-platform, open-source, modular runtime

to build applications using C#, F#, and Visual Basic that run on Windows, macOS, and

Linux distributions. With .NET Core, you can create different kinds of applications

such as web applications, Web API REST services, Console applications, and class

libraries. Its bigger brother, the .NET Framework, also includes the ability to create

desktop applications, such as Windows Forms and Windows Presentation Foundation,

but the .NET Framework’s biggest limitation is that it only runs on Windows. After

passing through .NET 5, an update for both .NET Core and .NET Framework with which

Microsoft brought together the two technologies and offers a unified development

platform, they have released .NET 6, which completed the transition to one .NET API. At

this writing, .NET 7 is the latest release, with many improvements and additional API

unification. For example, with .NET 7 you can use the latest version of .NET MAUI, the

new cross-platform development technology that allows you to create applications for

Android, iOS, Tizen, Windows and Mac Catalyst from one, shared codebase.

Note From now on, I show examples based on the .NET 7 runtime because it is
the latest available, but I refer to .NET without any version numbers. The reason
is that such examples will also work on .NET 6 (and the development approach is
the same).

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

217

 Setting Up .NET for VS Code Development

There are several options to get .NET. The first option is to download the .NET Coding

Pack (https://code.visualstudio.com/docs/languages/dotnet#_net-coding-pack).

This includes Visual Studio Code, the .NET Software Development Kit, and essential

extensions.

The second option, which is good for existing Visual Studio Code users, is to

download the .NET Software Development Kit (https://code.visualstudio.com/docs/

languages/dotnet#_installing-the-net-software-development-kit) and then the

.NET Extension Pack (https://marketplace.visualstudio.com/items?itemName=ms-

dotnettools.vscode-dotnet-pack). The Software Development Kit includes all the

necessary tools, such as the command-line interface, compilers, and debuggers, whereas

the Extension Pack includes recommended extensions such as the C# extension.

For the following explanations and examples, I’m assuming you have downloaded

and installed .NET and the C# extension on your machine.

 Creating .NET Projects
.NET ships with a rich command-line interface that provides many options to create

different kinds of projects and individual files. You can create projects and files from the

command line by using the dotnet tool, more specifically by invoking the dotnet new

command. For example, if you want to create a Console application with C#, you enter

the following command:

> dotnet new console

By default, the dotnet tool assumes you want to use C# unless you explicitly specify a

different language. For example, the following command enables you to create a Console

application with Visual Basic:

> dotnet new console -lang VB

Table 9-1 provides a comprehensive list and description of all the available

templates.

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

https://code.visualstudio.com/docs/languages/dotnet#_net-coding-pack
https://code.visualstudio.com/docs/languages/dotnet#_installing-the-net-software-development-kit
https://code.visualstudio.com/docs/languages/dotnet#_installing-the-net-software-development-kit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.vscode-dotnet-pack
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.vscode-dotnet-pack

218

Table 9-1. Available .NET Project and File Templates

Template Name Short Name Language

Console Application Console C#, F#, VB

Class library Classlib C#, F#, VB

WpF Application Wpf C#, VB

WpF Class library Wpflib C#, VB

WpF Custom Control library wpfcustomcontrollib C#, VB

WpF user Control library wpfusercontrollib C#, VB

Windows Forms (WinForms) Application Winforms C#, VB

Windows Forms Class library winformslib C#, VB

Windows Forms Control library winformscontrollib C#, VB

Worker Service Worker C#

unit Test project Mstest C#, F#, VB

Nunit 3 Test project Nunit C#, F#, VB

Nunit 3 Test Item nunit-test C#, F#, VB

xunit Test project Xunit C#, F#, VB

razor Component razorcomponent C#

razor page page C#

MVC ViewImports viewimports C#

MVC ViewStart viewstart C#

Blazor Server App blazorserver C#

Blazor WebAssembly App blazorwasm C#

ASp.NET Core Empty Web C#, F#

ASp.NET Core Web App (Model-View-

Controller)

Mvc C#, F#

ASp.NET Core Web App webapp, razor C#

ASp.NET Core with Angular Angular C#

(continued)

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

219

Table 9-1. (continued)

Template Name Short Name Language

ASp.NET Core with react.js react C#

ASp.NET Core with react.js and redux reactredux C#

razor Class library razorclasslib C#

ASp.NET Core Web ApI Webapi C#, F#

ASp.NET Core grpC Service grpc C#

dotnet gitignore file gitignore

global.json file globaljson

Nuget Config Nugetconfig

dotnet local tool manifest file tool-manifest

Web Config Webconfig

Solution File Sln

protocol Buffer File proto

EditorConfig File editorconfig

.NET MAuI App Maui C#

.NET MAuI Blazor App maui-blazor C#

.NET MAuI Class library mauilib C#

.NET MAuI Contentpage maui-page-xaml XAMl

.NET MAuI Contentpage maui-page-csharp C#

.NET MAuI ContentView maui-view-xaml XAMl

.NET MAuI ContentView maui-page-csharp C#

.NET MAuI resource dictionary maui-dict-xaml XAMl

Android Activity android-activity C#

Android Application Android C#

Android Class library Androidlib C#

(continued)

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

220

Template Name Short Name Language

Android Java library android-bindinglib C#

Android layout template android-layout C#

Android Wear Application androidwear C#

ioS Application Ios C#

ioS Binding library Iosbinding C#

ioS Class library Ioslib C#

ioS Controller ios-controller C#

ioS Storyboard ios-storyboard C#

ioS Tabbed Application ios-tabbed C#

ioS View ios-view C#

ioS View Controller ios-viewcontroller C#

Mac Catalyst Application maccatalyst C#

Mac Catalyst Binding library maccatalystbinding C#

Mac Catalyst Class library maccatalystlib C#

Mac Catalyst Controller maccatalyst-controller C#

Mac Catalyst Storyboard maccatalyst-storyboard C#

Mac Catalyst View maccatalyst-view C#

Mac Catalyst View Controller maccatalyst-viewcontroller C#

Table 9-1. (continued)

Note You can get the full list of templates by typing dotnet new list in a
command prompt. This can be useful with new .NET releases that introduce new
templates.

In this section, I show an example based on C# and an ASP.NET web application

built on the Model-View-Controller (MVC) pattern. Open a command prompt or a

Terminal instance on the VSCode folder created previously, depending on your system.

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

221

Type the following command to create a new empty folder called HelloWeb:

> mkdir HelloWeb

Then, move into the new directory. On Windows and Linux, you can type

> chdir HelloWeb

On macOS, the command is instead cd, which is also commonly used on Windows

as a shortcut for chdir.

Next, type the following command to build a new .NET web application using C#:

> dotnet new mvc

The mvc command-line switch specifies that the new web application is based on the

MVC pattern and the .NET SDK will generate all the plumbing code for some controllers

and views. You can also use the web switch and create an empty web application, but

having some autogenerated pages will help with describing the debugging features.

Once the project has been created, .NET will automatically restore NuGet packages for

the project. You can also do this manually by typing the following command:

> dotnet restore

If you were to type dotnet run, the development server would start running and

then you would need to open your browser and launch the application manually.

However, the goal is understanding how to run and debug the application in Visual

Studio Code. So, open the project folder with VS Code. You can also type code . to

open Visual Studio Code from the command line. Thanks to the C# extension, VS Code

recognizes the presence of the .csproj project file, organizing files and folders and

enabling all the powerful code editing features you learned previously.

The next step is to run the application. As a general rule, in Visual Studio Code you

have two options:

• Running the application with an instance of the debugger attached,

where a debugger is available for the current project type. In the

case of .NET, this ships with its own debugger that integrates with

VS Code.

• Running the application without an instance of the debugger

attached.

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

222

Let’s start with the second option, and then the debugging features are described

in detail in the next section. You can choose Run ➤ Run Without Debugging. Visual

Studio Code first asks you to specify an environment, so select .NET Core. VS Code then

starts the default build task. For Web applications, VS Code starts an instance of the

development server. The application should automatically start in the browser. If this

does not happen, you need to manually open the browser and enter the web address you

see in the Terminal panel.

Note The first time you run some code, VS Code might show a popup message
saying that required assets are needed to enable building and debugging. Accept
the offer and VS Code will do the rest.

Figure 9-1 shows the web application built previously.

Figure 9-1. The .NET web application running

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

223

Note Your browser might show a warning saying that the website is not secure.
Because the local development environment is currently being used, you can
ignore the warning and proceed to display the web page. Also, some browsers
might ask to add a security exception for the current site, which you might want to
accept to avoid the warning every time.

ASP.NET web applications use an open-source development server called Kestrel

(https://github.com/aspnet/AspNetCore), which provides independence from

proprietary systems. By default, Kestrel listens for the application on a random port

between 5000 and 5300 for HTTP and between 7000 and 7300 for HTTPS. This means

your application can be reached at http://localhost:5000 or different port

number. You can change the default port setting in a file called launch.json, which is

discussed more thoroughly in the later section “Configuring the Debugger.”

With the preceding simple steps, you have been able to create and run a .NET project

in VS Code that you can certainly edit as you need with the powerful C# code editing

features.

 Creating Projects on Other Platforms
Obviously, .NET is not the only platform you will use with VS Code. Depending on the

platform, you will use specific command-line tools to build new projects. In the next

chapter, you learn how to work with Python projects, but providing some context in

this chapter is worthwhile as well. For example, with Node.js you can quickly create

JavaScript projects based on the Express.js framework (https://expressjs.com).

Express is a minimal and flexible Node.js web application framework that provides

a robust set of features to develop web and mobile applications. It facilitates the rapid

development of Node-based web applications and includes features such as setting

up middleware to respond to HTTP requests, defining a routing table used to perform

different actions based on HTTP methods and URL, and dynamically rendering HTML

pages based on passing arguments to templates. An easy way to start creating apps

with Express is to use the Express application generator (https://expressjs.com/en/

starter/generator.html), which you install with the following command:

> npm install -g express-generator

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

https://github.com/aspnet/AspNetCore
https://expressjs.com
https://expressjs.com/en/starter/generator.html
https://expressjs.com/en/starter/generator.html

224

Next, you can generate a JavaScript project with the following command:

> express expressexample

Note that npm requires using all lowercase letters. You can then type code . to open

the new project in Visual Studio Code. Figure 9-2 shows a JavaScript project created with

the Express JavaScript framework inside Visual Studio Code.

Figure 9-2. A JavaScript project created with the Express JavaScript framework
in VS Code

You follow a similar process with other command-line tools that allow you to

generate projects, such as the Yeoman generator (https://yeoman.io/), still available

for Node.js, and that also allow you to generate ASP.NET Core projects and VS Code

extensions. For example, you can create mobile apps with the Apache Cordova

framework (https://cordova.apache.org). Cordova is a JavaScript-based framework,

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

https://yeoman.io/
https://cordova.apache.org

225

and it works very well with Node.js. Apps you build with Cordova are based on

JavaScript, HTML, and Cascading Style Sheets (CSS). First, install Cordova with the

following command:

> npm install -g cordova

Then you can easily build a Cordova project with the following command:

> cordova create mycordovaproject

where mycordovaproject is the name of the new project. Once you have a new or

existing Cordova project, you can install the Cordova Tools extension for Visual Studio

Code (https://marketplace.visualstudio.com/items?itemName=vsmobile.cordova-

tools). This extension adds support for Cordova projects to the integrated debugger for

Node.js, providing specific configurations to target Android and iOS devices, as well as

simulators.

Note You also need some additional specific tools for Cordova, depending on
which system you intend to target. For ioS, you need to install the tools described
in the ioS platform guide from Apache Cordova (https://cordova.apache.
org/docs/en/latest/guide/platforms/ios/index.html). For Android,
you need to install the tools described in the Android platform guide from Apache
Cordova (https://cordova.apache.org/docs/en/latest/guide/
platforms/android/index.html).

 Debugging Your Code
The code-debugging capability of Visual Studio Code is one of its most powerful features

and probably the one that makes it a notch above other code editors. Visual Studio Code

ships with an integrated debugger for Node.js applications and can be extended with

third-party debuggers. For instance, if you have .NET installed, the C# extension for

Visual Studio Code detects the availability of a compatible debugger and takes care of

attaching it to VS Code.

This section considers the scenario of using C# and .NET as the example of how

debugging works, so reopen the HelloWeb folder that you created previously.

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

https://marketplace.visualstudio.com/items?itemName=vsmobile.cordova-tools
https://marketplace.visualstudio.com/items?itemName=vsmobile.cordova-tools
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html

226

Note All the features discussed in this chapter apply to all the supported
debuggers (both built-in and via extensibility), so they are not specific to C#
and .NET.

The Run view provides a way to interact with the debugger. Figure 9-3 shows how it

appears at this point.

Figure 9-3. Run view

At the top of the view, you can see the RUN toolbar, which provides the

following items:

• The Start Debugging button, represented with the play icon (the

white and green arrow). Clicking this button starts the application

with an instance of the debugger attached.

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

227

• The configuration drop-down box. Here you can select a debugger

configuration for running the application.

• The settings button, represented with the gear icon and whose tooltip

says Open launch.json (details coming shortly).

• A submenu represented by the … button that contains the list of

available and selected views, plus the Debug Console command,

which opens the Debug Console panel where you see the output

messages from the debugger.

After this quick overview, you are ready to learn about debugger configurations, and

then you will walk through the debugging tools available in VS Code.

 Configuring the Debugger
Before a debugger can inspect an application, it must be configured. For Node.js and for

platforms like .NET, where an extension takes care of everything, default configurations

are provided. Figure 9-3 shows the two predefined configurations, .NET Core Launch

(Web) and .NET Core Attach.

The first configuration is used to run the application within the proper host, with

an instance of the debugger attached. For an ASP.NET web application like in the

current example, the host is the web browser. In the case of a Console application, the

host would be the Windows Console or the Terminal in macOS and Linux. The second

configuration can be used to attach the debugger to another running .NET application.

Note Actually, there is a .NET Core launch configuration that is different for each
kind of application you create with .NET. For example, the configuration for Console
applications is called .NET Core launch (console). The concept to keep in mind is
that a launch configuration is provided to attach an instance of the debugger to
the current project.

Debugger configurations are stored in a special file called launch.json. Visual

Studio Code stores this file in the .vscode subfolder (along with tasks.json). This

special JSON file contains the markup that instructs Visual Studio Code about the output

binary that must be debugged and about the application host. The contents of launch.

json for the current .NET Core sample look like the following:

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

228

{

 "version": "0.2.0",

 "configurations": [

 {

 // Use IntelliSense to find out which attributes exist for C#

debugging

 // Use hover for the description of the existing attributes

 // For further information visit https://github.com/OmniSharp/

omnisharp-vscode/blob/master/debugger-launchjson.md

 "name": ".NET Core Launch (web)",

 "type": "coreclr",

 "request": "launch",

 "preLaunchTask": "build",

 // If you have changed target frameworks, make sure to update

the program path.

 "program": "${workspaceFolder}/bin/Debug/net7.0/helloweb.dll",

 "args": [],

 "cwd": "${workspaceFolder}",

 "stopAtEntry": false,

 // Enable launching a web browser when ASP.NET Core starts.

For more information: https://aka.ms/VSCode-CS-LaunchJson-

WebBrowser

 "serverReadyAction": {

 "action": "openExternally",

 "pattern": "\\bNow listening on:\\s+(https?://\\S+)"

 },

 "env": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 },

 "sourceFileMap": {

 "/Views": "${workspaceFolder}/Views"

 }

 },

 {

 "name": ".NET Core Attach",

 "type": "coreclr",

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

229

 "request": "attach"

 }

]

}

As you can see, the syntax of this file is similar to the syntax of tasks.json. In this

case you have an array called configurations. For each configuration in the array, the

most important properties are

• name, which represents the configuration-friendly name.

• type, which represents the type of runtime the debugger is running on.

• request (launch or attach), which determines whether the debugger

is attached to the current project or to an external application.

• preLaunchTask, which contains any task to be executed before the

debugging session starts. Usually, this property is assigned with the

default build task.

• program, which represents the binary that will be the subject of the

debugging session.

• env, which represents the environment. In the case of .NET,

a value of Development instructs VS Code to run the Kestrel

development server.

If you wanted to implement custom configurations, launch.json is the place where

you would add them. Because these two configurations, and more generally default

configurations, are enough for most of the common needs, custom configurations

are not covered in this book. The documentation provides additional details about

this topic (https://code.visualstudio.com/docs/editor/debugging#_add-a-new-

configuration).

Note If you click the Add Configuration button located at the bottom-right corner
of the code editor when launch.json is the active file, you can select from a
built-in list of configurations that you can add to launch.json. This can be useful
especially in those cases where VS Code should detect a project type and its
configuration but doesn’t.

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

https://code.visualstudio.com/docs/editor/debugging#_add-a-new-configuration
https://code.visualstudio.com/docs/editor/debugging#_add-a-new-configuration

230

 Managing Breakpoints
Before starting a debugging session, it is useful to place one or more breakpoints to

discover the full debugging capabilities in VS Code. You place breakpoints by clicking

the whitespace near the line number or by pressing F9 on the line of your interest.

For instance, you can place a breakpoint on line 9 of the Startup.cs file, as shown in

Figure 9-4.

Figure 9-4. Adding breakpoints

You can remove a breakpoint by simply clicking it again, or you can manage

breakpoints in the Breakpoints area of the Run view (see Figure 9-5). You can also

temporarily disable a breakpoint by pressing Shift+Click.

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

231

Figure 9-5. Managing breakpoints

Here you can see the list of files that contain breakpoints and the line numbers. You

can also cause the debugger to break on user-unhandled exceptions (default) and on

all exceptions. You can click the Add Function Breakpoint (+) button. Instead of placing

breakpoints directly in source code, a debugger can support creating breakpoints by

specifying a function name. This is useful in situations where source is not available but

a function name is known.

 Debugging an Application
Now it is time to start a debugging session so that you can see in action all the debugging

tools and make decisions when breakpoints are hit. In the Run view, make sure the .NET

Core Launch (Web) configuration is selected, then click the Start button or press F5.

Visual Studio Code launches the debugger, and it will display the output of the debugger

in the Debug Console panel. It will also break when it encounters an exception or a

breakpoint, like in the current example.

Figure 9-6 shows VS Code hitting a breakpoint and all the debugging

instrumentation. The line of code highlighted in yellow is the line that will be executed

as the next one.

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

232

Figure 9-6. The debugging tools available when a breakpoint is hit

Notice that the status bar becomes orange while debugging and the Debug Console

window shows information about the debugging process. On the left side, the Debug

view shows a number of tools:

• VARIABLES, which shows the list of variables that are currently

under the debugger control and that you can investigate by

expanding each variable. This panel includes a sublist called Locals,

which displays the list of the variables that are currently in scope.

Each can be further expanded to see their details.

• WATCH, a place where you can evaluate expressions.

• CALL STACK, where you can see the stack of method calls. If you

click a method call, the code editor takes you to the code that is

making that call.

• BREAKPOINTS, where you can manage breakpoints.

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

233

At the top of the window, also notice the debugging toolbar (see Figure 9-6) called

the Debug action pane, which is composed of the following commands (from left

to right):

• Continue, which allows you to continue the application execution

after breaking on a breakpoint or an exception.

• Step Over, which executes one statement at a time, except for

method calls, which are invoked without stepping into.

• Step Into, which executes one statement at a time. Statements within

method bodies are also executed one at a time.

• Step Out, which executes the remaining lines of a function starting

from the current breakpoint.

• Restart, which you select to restart the application execution.

• Stop, which you invoke to stop debugging.

These commands are also available in the Run menu, together with their keyboard

shortcuts. For example, if you click the Step Over button, the highlighted line runs and

the execution advances one line (see Figure 9-7). If you hover your cursor over a variable

name in the code editor, a convenient popup box enables you to easily investigate

values and property values (depending on the type of the variable), as demonstrated

in Figure 9-7, which shows a popup box that includes information about the builder

variable. You can expand properties and see their values, and you can also investigate

properties in the VARIABLES area of the Run and Debug Bar.

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

234

Figure 9-7. Investigating property values at debugging time

Note Sometimes it is necessary to execute some code before a variable’s value
is available for investigation. In Visual Studio Code, this is known as lazy variables.
When debugging JavaScript code, the value of a lazy variable is not available by
default, to avoid expensive code execution, but it will show an expander icon that you
can click in order to evaluate the necessary code. You can force lazy variables to be
automatically expanded (and evaluated) in the debugger settings (see Figure 9-11).

 Evaluating Expressions

You have an option to use the Watch tool to evaluate expressions. While debugging,

click the Add Expression (+) button in the Watch box, then type the expression you want

to evaluate. For instance, if you type builder != null, the Watch tool returns true or

false depending on whether the object has an instance. Figure 9-8 shows an example.

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

235

Figure 9-8. Evaluating expressions

 The Call Stack

The debugger also offers the Call Stack feature, which allows you to step through the

hierarchy of method calls. When you click a method call in the stack, the code editor

opens the containing file, highlighting the method call (see Figure 9-9).

Figure 9-9. Walking through method calls

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

236

As you walk through method calls, the Locals subview of the VARIABLES panel also

updates to show variables that are in the current scope. The code editor can highlight

method calls only if the method is part of the source code, so it does not allow further

control over the methods marked as [External Code] in the CALL STACK (see Figure 9-9),

but this feature is very useful, especially when you encounter errors and you need to step

back through the code.

 The Debug Console Panel

The Debug Console is certainly the place where VS Code shows the debugger output,

but, as the name implies, it is also an interactive panel where you can evaluate

expressions. You can type the expression near the > symbol and then press Enter.

Figure 9-10 shows an example that evaluates whether the builder variable is null.

Figure 9-10. Evaluating expressions in the Debug Console panel

Note It is important to reinforce the concept that all the debugging tools
described in this chapter apply to other platforms and languages as well, assuming
that a debugger is available either by VS Code directly or via extensions.

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

237

 Configuring Debug Options
Settings in Visual Studio Code allow you to customize the general debugging experience.

Figure 9-11 shows the Debug settings, located under the Features node.

Figure 9-11. Configuring the debugging settings

Settings are self-explanatory and, as with any other VS Code settings, they can also

be manually edited in the settings.json file. Notice how it is also possible to auto-

expand lazy variables, mentioned previously. In this settings area, you find options that

are related to the general debugging experience. For specific debugger options, such as

debugging for C# or C++, you need to open the Extensions node and then walk through

the debugging settings for each specific extension.

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

238

 Summary
The power of Visual Studio Code as a development environment comes out when you

work with real applications. With the help of specific generators, you can easily generate

.NET projects using C# or Node.js projects. This chapter described how you can leverage

a powerful, built-in debugger that offers all the necessary tools you need to write great

apps, such as breakpoints, variable investigation, call stack, and expression evaluators.

By completing this chapter, you have walked through all the most important and

powerful features you need to know to write great cross-platform applications using

Visual Studio Code.

ChApTEr 9 BuIldINg ANd dEBuggINg ApplICATIoNS

239

CHAPTER 10

Building Applications
with Python
Python is a very popular and powerful programming language that can be used to

develop applications of any kind, and it is especially useful to build data science and

data analysis applications.

Python is an interpreted, object-oriented programming language that can be learned

by developers of any background. This chapter describes how Visual Studio Code supports

building and debugging Python code, including specific code-editing features. Obviously, the

chapter’s focus is not the Python language but rather how Python can be used with VS Code.

 Chapter Prerequisites
In this chapter, I provide examples of running and debugging Python code. Following

along with these examples requires that you install the following components before you

continue reading:

• The Python interpreter with its tools, which you can download from

the Python official site (https://www.python.org/downloads). The

download page automatically detects your operating system and

offers the appropriate download package for Windows, macOS, and

Linux distributions. On Windows 10 and higher, Python can also be

installed from the Microsoft Store.

• The Python extension for Visual Studio Code provided by Microsoft,

which you can install via the Extensions panel. There are several

extensions for Python in the Marketplace, but I recommend that

you download the official one, shown in Figure 10-1, because it

dramatically improves the development experience with a debugger

and additional coding tools.

© Alessandro Del Sole 2023
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_10

https://www.python.org/downloads
https://doi.org/10.1007/978-1-4842-9484-0_10

240

Figure 10-1. The official Python extension from Microsoft

Note This chapter walks through a simple code example, but in the real world
you might want to build more complex applications, in which case you need
additional components. For instance, building data science applications requires
Anaconda (https://www.anaconda.com), a distribution that includes Python
and the R programming languages, plus a set of libraries specific for data science.
If you instead need to do web development, you might want to consider Django
(https://www.djangoproject.com), a web framework built with Python.

If you haven’t already created a dedicated folder on disk for the code examples (mine

is called VSCode), as suggested in the previous chapters, I recommend doing so for this

chapter.

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

https://www.anaconda.com
https://www.djangoproject.com

241

Now that you have all the minimum required tools installed, you are ready to start

coding and debugging with Python in Visual Studio Code.

 Creating Python Applications
Previously in the book you learned that Visual Studio Code is independent from

proprietary project systems and platforms and, consequently, does not offer any built-in

options to create projects, and this is also true for the Python programming language.

What you can do with Visual Studio Code is open existing Python files and projects

or create new code files from within the development environment. As an example, let’s

consider a simple battleships game available in one code file at pythonfiddle.com/

battleships-game-in-python/.

In Visual Studio Code, create a new file and then select Python as the language from

the well-known drop-down menu located in the bottom-right corner. The source code in

its current state will not work with the latest versions of the Python interpreter, because

it is missing parentheses that enclose parameters of the print function and some string-

to- integer conversions. The modified and working code for Python is listed here for your

convenience:

import random

board = []

for x in range(0,5):

 board.append(["O"] * 5)

def print_board(board):

 for row in board:

 print (" ".join(row))

print ("Let's play Battleship!")

print_board(board)

def random_row(board):

 return random.randint(0,len(board)-1)

def random_col(board):

 return random.randint(0,len(board[0])-1)

ship_row = random_row(board)

ship_col = random_col(board)

print (ship_row)

print (ship_col)

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

242

for turn in range(4):

 guess_row = int(input("Guess Row:"))

 guess_col = int(input("Guess Col:"))

 if guess_row == ship_row and guess_col == ship_col:

 print ("Congratulations! You sunk my battleship!")

 break

 else:

 if turn == 3:

 board[guess_row][guess_col] = "X"

 print_board(board)

 print ("Game Over")

 print ("My ship was here:

 [" + str(ship_row) + "][" + str(ship_col)

 + "]")

 else:

 if (guess_row < 0 or guess_row > 4) or

 (guess_col < 0 or guess_col > 4):

 print ("Oops, that's not even in the ocean.")

 elif(board[guess_row][guess_col] == "X"):

 print

 ("You guessed that one already.")

 else:

 print ("You missed my battleship!")

 board[guess_row][guess_col] = "X"

 print (turn + 1)

 print_board(board)

Save the file as BattleshipsGame.py. This is a simplified implementation of the

battleships game and is mostly for learning purposes, but it is enough to understand

how Visual Studio Code can support Python development. You will immediately notice

powerful editing features as you type the source code, such as (but not limited to)

IntelliSense and parameter hinting, but before highlighting Python-specific editing

features, I walk you through running and debugging Python code.

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

243

 Running Python Code
Visual Studio Code automatically attempts to retrieve an appropriate Python interpreter

on your machine when you assign this language to a code file or open an existing file.

Sometimes VS Code might not be able to do this even if you previously installed a Python

interpreter successfully, in which case you receive a warning similar to the one shown in

Figure 10-2.

Figure 10-2. Visual Studio Code could not find a Python interpreter

Clicking the Select Python Interpreter button in the warning card or the same-

named item at the bottom-left corner of the Status Bar enables you to pick your favorite

version of the Python interpreter (see Figure 10-3).

Figure 10-3. Selecting a version of the Python interpreter

This is a very nice option in case you need to select a specific version and not

necessarily the most recent one. Once you have selected a Python interpreter, the name

appears on the Status Bar, replacing the Select Python Interpreter button with the name

of the selected interpreter, and you can either run or debug your code. Let’s start with

running code, which you can do by choosing Run ➤ Run Without Debugging. The

Python runtime builds the code file and, if no error is found, the output of the code is

displayed in an instance of the Terminal panel. Figure 10-4 shows an example based on

the sample game provided previously.

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

244

Figure 10-4. Output of Python code in the Terminal

The Terminal allows user input, so you can enter the values for the battleships.

Behind the scenes, Visual Studio Code invokes a tool called Launcher, which is installed

together with the Python interpreter and makes it possible to run Python code from the

command line.

Note In more specific development scenarios based on the Anaconda libraries,
such as data science, Visual studio Code can display additional tool windows
and show charts and calculation results inside the development environment.
More details are available from the official Data science Tutorial (code.
visualstudio.com/docs/python/data-science-tutorial).

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

245

For the next example, make sure you add a breakpoint at the following line (as

described in Chapter 9):

if guess_row == ship_row and guess_col == ship_col:

This is to demonstrate how debugging tools for Python work. You start debugging

Python code by pressing F5, by clicking the Run and Debug button in the Run panel, or

by choosing Run ➤ Start Debugging. At this point Visual Studio Code asks you what file

or program you want to debug, as shown in Figure 10-5.

Figure 10-5. Selecting the debugging target

You can select any one of the configurations, which are provided by the Python

extension for VS Code, described in Table 10-1.

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

246

Table 10-1. Debug Configurations for Python

Configuration
Name

VS Code
Description

Description

Python File Debug the currently

active Python file

starts debugging the currently active Python file, where

“active” means the file in the active editor.

Module Debug a Python

module by invoking

it with -m

A Python module can be considered a code library,

comparable to namespaces in a C# library. Debugging with

the -m switch enables Vs Code to also debug a module.

Remote Attach Attach to a remote

debug server

Allows connecting Vs Code to a remote debug service.

Attach using

Process ID

Attach to a local

process

Allows connecting the debugger to a process that is already

running. you need to retrieve the process ID (e.g., on

windows you can do so via the Task Manager).

Django launch and debug

a Django web

application

Django is a high-level Python web framework that enables

rapid development of secure and maintainable websites.

with this option, you can debug a Django project in Vs

Code.

FastAPI launch and debug

a FastAPI web

application

FastAPI is a modern web framework for building APIs

with Python (requires version 3.6 or higher). with this

configuration, you can use Vs Code to debug a FastAPI

project.

Flask launch and debug

a Flask web

application

Flask is another framework that allows building web

applications with Python. with this configuration, Vs Code

makes it possible to debug Flask projects.

Pyramid launch and debug

a Pyramid web

application

Pyramid is a framework for Python that allows you to create

web applications based on the Model-View-Controller

(MVC) pattern. with this configuration, you can debug a

Pyramid project in Vs Code.

For the current example, select the first option, Python File, which allows you to

debug the current code file. The application starts in the integrated Terminal and VS

Code’s Status Bar becomes orange, which indicates that the application is in debug

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

247

mode. In the Terminal, you can enter the values for the battleships game, and then,

because you previously set a breakpoint, the execution will break at the line where you

placed the debugger. This will enable all the toolboxes in the Run panel as well as data

tips in the code editor (see Figure 10-6).

Figure 10-6. The application in debug mode and debugging tools enabled

If you hover your cursor over a variable name in the code editor, you can see its

current value. For instance, if you hover over the guess_col variable, you will see

that it contains the integer value you entered during the execution. However, Python

debugging tools offer more: if you hover over a complex type like the board variable,

which is a list of arrays, you will see how a sophisticated data tip shows values for each

array in the list. You can expand the Special Variables and Function Variables groups to

get more information about runtime functions.

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

248

The values you see through data tips are also visible in the Locals group of the

VARIABLES tool in the Run panel. Debugging tools for Python can catch runtime

exceptions and display appropriate information to solve them. To understand how this

works, you can intentionally introduce a runtime exception in the current sample file.

Consider the following line:

guess_row = int(input("Guess Row:"))

Change the line as follows:

guess_row = input("Guess Row:")

This particular line will still work, because it still waits for the user to enter

something from the keyboard; the difference from the original line is simply that the

input, of type str, is not converted into an int. However, while comparisons with the

equality operator will succeed, comparisons made with the < and > operators at the

following line:

if (guess_row < 0 or guess_row > 4) or (guess_col < 0 or guess_col > 4):

will fail, because this line attempts to compare the user input, which is now a string, with

an integer value, and such a comparison is not supported, so a runtime exception will

happen. Figure 10-7 shows how Visual Studio Code breaks the application execution

when it encounters a runtime exception.

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

249

Figure 10-7. Debugging runtime exceptions in Python

More specifically, the exception information is displayed in a different-colored

tooltip that is displayed right below the line of code that caused the error. In this tooltip,

you can see the exception type (TypeError in this case), the number and contents of

the line of code, and the full error message. Actually, the tooltip also displays the name

of the file that caused the exception in the form of a hyperlink. This is very useful when

the exception was raised by a different file in the execution hierarchy, enabling you to

quickly go to the problem by clicking the filename.

As you have seen, debugging Python code in Visual Studio Code is a rich experience,

but the Python extension offers even more functionality, such as a dedicated language

service and additional features, discussed in the next section.

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

250

 Code Editing Features for Python
The Python extension for Visual Studio Code brings most of the powerful code editing

features described in Chapter 3 to Python files. This section walks you through the

evolved code editing features, describing how these can improve your productivity.

 Enhanced Word Completion with IntelliSense
Probably the most productive code editing feature with any language is an enhanced

word completion engine, and VS Code brings IntelliSense to Python. IntelliSense shows

up as you type and displays documentation tooltips about the type or member currently

selected in the IntelliSense popup box. Figure 10-8 shows an example based on the bin

function, where you can also see how syntax colorization is available in the tooltip to

provide easier understanding of the method usage.

Figure 10-8. IntelliSense in action with Python

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

251

 Understanding Function Parameters with Parameter Hints
Connected to IntelliSense is Parameter Hints. When you type the name of a function, you

get suggestions on how to provide parameters, as demonstrated in Figure 10-9, which is

based on the pow function.

Figure 10-9. Parameter Hints explains how to provide function parameters

As you can see, the parameter you are currently supplying is highlighted in bold,

while a description of the parameter itself is provided as the text content of the tooltip.

 Quickly Retrieving Type Definitions
Among the code editor productivity features, Go to Definition and Peek Definition (see

Chapter 3) are certainly very useful and popular, and these are also available to Python

code files. To understand how they work in Python, right-click the board parameter of

the print_board statement in the last line of the code file.

If you click Go to Definition, the cursor moves to the place where the board variable

is declared. If you instead select Peek and then Peek Definition, the definition is

shown inside an interactive popup box, where you can make your edits directly (see

Figure 10-10).

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

252

Figure 10-10. Peeking type definitions

 Finding References
As explained in Chapter 3 and exactly like for other languages such as C#, you can

quickly search for all references of a given type, member, or variable in Python. Simply

right-click the object of your choice in the code editor and select Find All References.

For instance, you can do this with the board variable in the sample code file and you

will see where it was used across the code via the already well-known interactive editor,

which highlights occurrences and shows a list of references on the left. Figure 10-11

demonstrates this.

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

253

Figure 10-11. Finding object references

 Renaming Symbols
With the Python extension, renaming symbols is an easy task. You can just right-click

a symbol, select Rename Symbol (or press F2), and provide the new name, and all the

occurrences in the source code will be renamed accordingly. When typing the new

name, you can also press Shift+Enter and see a preview of all the occurrences that will be

renamed.

Figure 10-12 shows an example based on the board variable, with the preview

enabled.

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

254

Figure 10-12. Renaming symbols

If you enabled the Refactor Preview panel, you need to click the tick icon in order to

accept your changes. If you instead entered a new name without looking at the preview,

simply press Enter and all the occurrences of (including references to) the symbol will be

renamed.

 Finding Code Issues with Linters
Linters highlight syntactical and stylistic problems in your code. Just as an example,

linters highlight missing brackets or parentheses in a code block or highlight the

usage of an undefined variable, underlining the code with squiggles. Linting is not

enabled by default, but you can quickly do this via the Command Palette. You can type

Python Select Linter directly, or just Python and then pick the appropriate command.

Figure 10-13 shows how to enable linting with the list of commands filtered as I

was typing.

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

255

Figure 10-13. Enabling Python linters

When you select this command, the Command Palette also displays a list of available

linters for Python. This is actually up to your choice, but I suggest using pylint, which

is the official Microsoft linter provided via the Python extension. When the linter is

enabled, the code editor displays squiggles under code that has issues, and these code

issues are also detailed in the Problems panel, as shown in Figure 10-14.

Note If you have experience with C# in Visual studio Code, you might expect
the same behavior of live code analysis as you type, but, with Python, linters show
squiggles under code that has issues only after saving a code file or by explicitly
invoking the linter from the Command Palette. An enhancement to this is provided
by the Pylance extension, described shortly.

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

256

Figure 10-14. Linters highlight code issues in the editor and in the Problems panel

Note linters, as well as the other editing features, can be further customized
with the settings user interface and via the settings.json file. Because
the goal of this book is to provide guidance on the most effective ways to get
productive quickly, I am showing the fastest configuration options available with a
few mouse clicks. If you want to dig deep into setting customizations, bookmark
the related documentation at https://code.visualstudio.com/docs/
python/linting, where you will also find more details about the pylint linter and
summary information about the other linters listed in the Command Palette.

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

https://code.visualstudio.com/docs/python/linting
https://code.visualstudio.com/docs/python/linting

257

 Advanced Code Editing with Pylance
Without a doubt, the Python extension for Visual Studio Code tremendously improves

developer productivity and the coding experience, but Microsoft is doing even more.

In fact, Microsoft is offering a new extension called Pylance, which introduces code

refactorings, IntelliCode (an evolved code completion engine powered by artificial

intelligence), and other improvements.

When you open (or create) a Python code file, Visual Studio Code shows a popup

box that offers to install Pylance, as shown in Figure 10-15. As an alternative, you can

download the Pylance extension from the Extensions tool directly (see Figure 10-16).

Figure 10-15. Visual Studio Code offering to install the Pylance extension

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

258

Figure 10-16. The Pylance extension details

Once Pylance has been installed, IntelliSense will be powered by IntelliCode. This

tool learns from your code and from your patterns and offers an improved editing

experience based on your coding styles, enabling IntelliSense to provide even better

suggestions based on the coding context.

Pylance is not limited to offering an improved IntelliSense engine, but it makes

it easier to write better code with new code refactorings and live code analysis. For

instance, Pylance enables linters to show error squiggles as you type. As another

example, whereas the Python extension, by default, only allows sorting import directives,

Pylance introduces new refactorings: Extract Method, Extract Variable, and automatic

addition of the required import directives when adding code via IntelliSense or code

snippets. For a better understanding of how this all works, select the following code

block of the sample file, as shown in Figure 10-17:

for x in range(0,5):

 board.append(["O"] * 5)

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

259

def print_board(board):

 for row in board:

 print (" ".join(row))

print ("Let's play Battleship!")

You will see a light bulb icon appear, which means that there are some suggestions to

refactor the selected code block.

If you hover your cursor over the light bulb icon, you will see a tooltip saying Show

Fixes. Click it to see available suggestions for the current context; in this case there is

one suggestion, Extract Method. Click this suggestion and VS Code will extract a new

method for the selected block, adding the related method call. This is demonstrated in

Figure 10-18.

Figure 10-18. Extracting a method

Figure 10-17. Enabling suggestions for code fixes

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

260

The new method is created with a default name (new_func), but VS Code offers

you the option to rename it via the Rename Symbol user interface. Similarly, the code

fix called Extract Variable enables you to extract a variable from a code block, and it is

available through the light bulb icon only if the context of the code allows you to extract

variables. The light bulb icon is not the only shortcut to retrieve code fixes for a code

block; you can also select a code block, right-click, and then select Refactor from the

context menu.

 Managing Pylance Settings
Like for other extensions, you can manage Pylance options under Visual Studio Code

settings. Figure 10-19 shows how the Pylance settings appear and how they can be

located under the Extensions node.

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

261

Figure 10-19. Changing Pylance settings

You can further customize the coding experience by changing options whose name

are self-explanatory and that Visual Studio Code describes appropriately.

 Running Python Scripts
Python is also an interpreted language, so it allows you to run arbitrary code without the

need of a backing build process. Visual Studio Code supports Python as an interpreter,

providing an option to write and run code via an REPL (read-eval-print-loop) interactive

console, available within the Terminal.

You enable the Python REPL in the Command Palette by selecting the Python: Start

REPL command (see Figure 10-20).

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

262

Figure 10-20. Enabling the Python REPL console

At this point the Terminal appears and loads the Python REPL, where you can write

and run arbitrary code. Figure 10-21 shows an example based on declaring a variable

and printing its contents onscreen.

Figure 10-21. Running arbitrary code in the Python REPL console

This is another important tool for Python developers, because it is a very common

way to use this language and certainly a way that leverages one of the most powerful of

its characteristics.

 Summary
Python is a very popular and powerful programming language and it is fully supported

by Visual Studio Code. It offers full support for evolved code editing, debugging, and

even for advanced development with data science tools and libraries.

Visual Studio Code enhances support for Python with the official Python extension,

which makes working with Python very similar to working with other languages

and platforms. That means you can apply existing skills and knowledge if you are

approaching Python for the first time but have experience with C# or Node.js.

Microsoft also offers the Pylance extension, which provides an improved IntelliSense

experience with IntelliCode and additional code refactorings. An interactive REPL for

interpreted code completes the integrated tooling for Python.

Once again, Visual Studio Code demonstrates how versatile it is, providing a perfect

environment for Python and its most popular flavors.

ChAPTeR 10 BuIlDIng APPlICATIons wITh PyThon

263

CHAPTER 11

Deploying Applications
to Azure
Azure is Microsoft’s premiere cloud solution that offers many services, from hosting

web applications and SQL databases to remote virtual machines, artificial intelligence

services, and many more.

With Visual Studio Code, it is easy to deploy your code to Azure through a number

of extensions that support multiple environments, such as Node.js and .NET, and that

offer an integrated experience so that you can work directly within your development

environment. Many extensions for Azure development are available, each targeting

different scenarios, but it would require an entire book to describe them all, so in this

chapter, I cover two of the most popular extensions: Azure App Service, which supports

publishing web applications, and Azure Functions, which enables you to work with

serverless apps directly from Visual Studio Code.

Note This chapter requires an active Microsoft Azure subscription to complete
the examples. If you do not have one, you can get a free trial at https://azure.
microsoft.com/en-us/free.

 Introducing Azure Extensions
Visual Studio Code supports developing with the most popular and powerful Azure

services. Support is integrated in the development environment with specific extensions

available in the Visual Studio Marketplace. Table 11-1 lists and describes common

extensions for Azure development.

© Alessandro Del Sole 2023
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_11

https://azure.microsoft.com/en-us/free
https://azure.microsoft.com/en-us/free
https://doi.org/10.1007/978-1-4842-9484-0_11

264

Table 11-1. Common Extensions for Azure Development

Extension Description

Azure Account Allows you to sign into one or more Azure subscriptions.

Azure App

Service

Provides integrated support to deploy web applications to the cloud.

Azure CLI Tools Installs all the command-line tools required to work with all the Azure services.

Azure

Databases

Allows you to create, browse, and manage SQL Azure, MongoDB, Cosmos DB,

PostgreSQL, and DocumentDb databases directly within VS Code via an integrated

browser.

Azure Functions Provides integrated support for writing, testing, and deploying Azure Functions.

Azure Machine

Learning

Formerly called Visual Studio Code for AI Tools, allows you to create, build, train,

and deploy machine learning models based on your Azure subscriptions.

Azure Resource

Manager

Allows you to manage Azure resource groups in VS Code.

Azure Storage Allows you to connect to blobs, tables, files, and queue storage in your Azure

subscriptions. It also allows you to upload folders directly from within VS Code.

Docker Allows you to publish containerized applications from Visual Studio Code, with

improved code editing features for Docker and YAML files.

Kubernetes Provides integrated support to deploy Docker containers to Kubernetes, an

open-source system for automating deployment, scaling, and management of

containerized applications, supported by Azure.

I recommend that you bookmark the official documentation, available at

https://code.visualstudio.com/docs/azure/extensions, for further details and

examples. Noteworthy is that Visual Studio Code can support Docker and Kubernetes for

containerized applications, which is something very important for many developers.

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

https://code.visualstudio.com/docs/azure/extensions

265

 Deploying Web Applications
Deploying web applications to Azure with Visual Studio Code is very easy. You can

retake the HelloWeb sample applications created with C# and .NET in Chapter 9, but it’s

worth remembering that publishing to Azure is not limited to these technologies, but is

also possible for Node.js.

Note Visual Studio Code, the Microsoft Azure platform, and Azure extensions for
VS code continuously evolve. new releases might introduce changes to what is
described in this chapter.

 Installing Extensions
The first thing you need to do is install the Azure App Service extension from the

Marketplace. This extension also needs the Azure Account and the Azure Resources

extensions, but these are installed together with the App Service, so you do not need to

take any additional steps.

The Azure Account extension is required to enable developers to log in to their Azure

account from within Visual Studio Code and to select which subscription to use. The

Azure Resources extension is used to manage resources groups, which are the places

where your cloud services are organized. Figure 11-1 shows the Azure App Service

extension in the Extensions panel.

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

266

Figure 11-1. The Azure App Service extension from Microsoft

 Signing In to Azure Subscriptions
Once the Azure App Service extension has been installed, along with the Azure Account

and Azure Resource Groups extensions, you need to sign in before you can use any

service.

To accomplish this, you can use the Azure: Sign In command from the Command

Palette or the Sign in to Azure shortcut in the App Service node of the Azure Side Bar.

Either action opens an instance of your default browser pointing to the Microsoft

Account login service. Simply enter your credentials, sign in, and close the browser

window once you are logged in. Now in Visual Studio Code you can open the Azure

extension and see the list of services associated with your subscription.

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

267

Note If you don’t see the list of subscriptions, you can read the official
troubleshooting guide (https://github.com/microsoft/vscode-azure-
account/wiki/Troubleshooting). For example, a very common way to solve
this problem is by typing the Azure Select Tenant command in the Palette
and selecting the subscription.

Figure 11-2 shows an example based on my subscription.

Figure 11-2. The Azure services view

Note The Microsoft Azure offering is very extensive and spans a plethora of
services, so I recommend that you look at the official website (https://azure.
microsoft.com/en-us/free) for detailed information. In addition, do not
forget to enter the management portal (https://portal.azure.com), which
gives you access to the full tools and options to create and manage your services
and resources.

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

https://github.com/microsoft/vscode-azure-account/wiki/Troubleshooting
https://github.com/microsoft/vscode-azure-account/wiki/Troubleshooting
https://azure.microsoft.com/en-us/free
https://azure.microsoft.com/en-us/free
https://portal.azure.com

268

The hierarchical view displays resources and the services they contain, and it also

supports multiple subscriptions.

You can quickly interact with each service by expanding its node and accessing the

available options by right-clicking its name.

 Publishing Web Applications
Visual Studio Code makes the process of publishing web apps to Azure very easy.

The goal of this section is to demonstrate how quick and easy it is to publish a web

application to Azure. Assuming you have opened the HelloWeb sample project, in the

Azure view, right-click the App Service node under the name of your subscription and

select Create New Web App.

A three-step wizard guides you through the creation of the application. The first

step asks you to supply a unique name for your new web application in the Command

Palette, as shown in Figure 11-3.

Figure 11-3. Specifying a name for the web application

Because the name you specify will be combined with the azurewebsites.net

domain and represents the web address of your applications, if the name is already

taken, a validation message appears, inviting you to choose a different name. You might

want to specify a name that is different from vscodedistilled, which is the name I use

for the examples in this chapter.

The next step is to specify the target environment for your web application; this is

necessary because the Azure extension cannot detect which technology your app is

based on. Figure 11-4 shows the list of available options.

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

269

Figure 11-4. Specifying a target platform

Because the sample application was written on .NET 7, select this as the target

platform. The last step of the wizard asks you to specify a pricing tier. I suggest using the

Free (F1) tier, as shown in Figure 11-5.

Figure 11-5. Specifying a pricing tier

After you complete these three easy steps, Visual Studio Code first builds the project

in Release mode (and the result will be visible in the Terminal) and then starts creating

the necessary resources inside your Azure subscription, and you will be able to see the

progress in a popup box that appears in the bottom-right corner of the environment.

When everything is ready, a popup message asks if you want to deploy or cancel. Click

Deploy. VS Code might tell you that some configuration is still missing, but this will be

added if you click the Add Config button on the warning dialog. As a final step, another

popup message asks if you want to enable automatic deployment. Click Yes so that the

application will be published.

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

270

When deployment is completed, the browser automatically launches the newly

published application (see Figure 11-6). If this does not happen, you can right-click the

application name in the APP SERVICE view of the Azure Side Bar and select Browse

Website, then click the Open button in the dialog that informs you about the fact that an

external program is being launched.

Figure 11-6. The web application running in the cloud

You need no additional steps. Your application is up and running in the browser,

hosted in your Azure subscription. You can further manage your Azure services and

resources, both within Visual Studio Code and in the Azure portal (https://portal.

azure.com). Though managing resources in the Azure portal is a bigger topic and is out

of the scope of this chapter, Figure 11-7 shows the management page for the sample

web application, where you can see the full list of available settings on the left side and

information on the deployment, the data center, and statistics in the main view.

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

https://portal.azure.com
https://portal.azure.com

271

Figure 11-7. Managing App Services in the Azure portal

 Creating and Deploying Azure Functions
Put succinctly, Azure Functions (https://docs.microsoft.com/en-us/azure/azure-

functions) is a service that allows you to run code on-demand in the cloud, and it is

considered part of the growing trend of serverless computing. The biggest benefit of

using Azure Functions is that functions are triggered only when invoked, which not only

reduces the use of cloud resources but also reduces maintenance and infrastructure

needs, thereby providing more cost savings.

 Configuring Visual Studio Code
Azure supports writing functions in several languages, such as C#, Python, Java,

JavaScript, and Rust. Usually, tools are available for different development environments

to write Azure Functions, such as Visual Studio 2022, and Visual Studio Code is no

exception.

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

https://docs.microsoft.com/en-us/azure/azure-functions
https://docs.microsoft.com/en-us/azure/azure-functions

272

The first thing you need to develop Azure Functions with VS Code is Azure Functions

Core Tools. This set of command-line tools is required to run the tasks necessary to

develop, debug, and publish functions. On Windows, you have two ways to install these

tools: download the installer for Windows from the official website (https://bit.

ly/3f1lHxR) or use the following command that leverages npm on Node.js and that you

can run from a Terminal window in VS Code or from a developer command prompt:

> npm i -g azure-functions-core-tools@4 --unsafe-perm true

I recommend using the latter command-line method to install the tools, because

Visual Studio Code might not recognize that the tools were installed via the installer

package.

On macOS, you need to run the following commands:

> brew tap azure/functions

> brew install azure-functions-core-tools@4

On the latest version of Ubuntu, the required commands are the following:

> wget

-q https://packages.microsoft.com/config/ubuntu/20.04/packages-

microsoft- prod.deb

> sudo dpkg -i packages-microsoft-prod.deb

The installation commands vary depending on the Linux distribution, so you can

locate the appropriate commands at https://github.com/Azure/azure-functions-

core-tools#linux.

Once you have installed Azure Functions Core Tools, you need to install the Azure

Functions extension for Visual Studio Code (see Figure 11-8).

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

https://bit.ly/3f1lHxR
https://bit.ly/3f1lHxR
https://github.com/Azure/azure-functions-core-tools#linux
https://github.com/Azure/azure-functions-core-tools#linux

273

Figure 11-8. The Azure Functions extension for VS Code

The Azure Functions extension also needs the Azure Account one, which you already

installed previously.

 Creating Azure Functions
With the Azure Functions extension installed, VS Code simplifies the way you can create

Azure Functions projects. For the current example about deploying Azure Functions, I

show how to create a function stub using the built-in templates, but you can certainly

use existing Azure Functions projects created with other environments or sample

projects.

If you are starting with new code, you first need to have (or create) a new folder on

disk where the new projects will be created. For the next example, I created a folder on

disk called C:\VSCode\AzureFunctionsDistilled.

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

274

When you have the folder ready, in Visual Studio Code enable the Command

Palette and search for the command called Azure Functions: Create New Project (see

Figure 11-9).

Figure 11-9. Creating a new Azure Functions project

Note There are two additional commands available to create Functions:
Create Function App in Azure and Create Function App in Azure (Advanced). Both
commands allow you to create a project that is automatically provisioned in your
Azure subscription, together with a local project for development and debugging. In
this book, I’m not using these commands in order to better highlight the different
phases of development and debugging, and then deployment.

When you click this command, an eight-step wizard starts. First, you are asked to

select a target folder on disk, so pick the one you created previously. Then you are asked

to select a language. For the sake of consistency with the previous examples, I selected

C#, but you are free to use a different one. In the third step, you are asked to specify a

runtime platform. If you selected C#, the wizard shows .NET versions and you can select

the latest.

Note The wizard identifies .neT 7 as .neT 7 (Isolated). understanding what this
means requires taking a step back into the previous versions of Azure Functions.
Previously (and before .neT 5), Azure Functions only supported a tightly integrated

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

275

mode for .neT functions, which run as a class library in the same process as the
host. Though this mode provides deep integration between the host process and
the functions, this integration also requires a tighter coupling between the host
process and the .neT function. For example, .neT functions running in-process
are required to run on the same version of .neT as the Functions runtime. To run
outside these constraints, you can now choose to run in an isolated process.
.neT 7 (Isolated) then means that support for running functions out-of-process is
allowed.

If you selected another language, the list of target platforms will change depending

on your language of choice.

In the fourth step, you have the option to select a project template (see Figure 11-10).

Figure 11-10. Selecting an Azure Functions project template

The project template you select here is not really relevant to the current example,

whose goal is not to go into the details of Azure Functions development but rather to

show how quick and easy building and deploying functions is. I selected the HttpTrigger

template, which generates simple code that defines a function that is triggered on Azure

when an HTTP/HTTPS request is intercepted, sending a response back.

In the fifth and sixth steps, you first enter a name for the new project (or leave the

default project name, like AzureFunctionsDistilled in the current example) and

then enter a namespace that will be used in the code. The namespace should be in

the form CompanyName.Function; for example, my namespace is AlessandroDelSole.

AzureFunctionsDistilled.

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

276

In the seventh step of the wizard, you specify a security access level: Anonymous,

Function, or Admin. Table 11-2 provides a short description of each authorization level.

Table 11-2. Azure Functions Authorization Levels

Level Description

Anonymous no authorization required; all hTTP requests pass.

Function Function authorization level is based on security keys generated in the Azure portal.

host keys (at the application level) and function keys (at the function level) can work as

security keys in the Function level.

Admin Similar to the Function level, but only works with host keys (at the app level).

For the current example, you can just select the Anonymous level. After a few

seconds, the new project will be available and you will be ready to edit the code

depending on your needs (see Figure 11-11).

Note The function name defined by the FunctionName attribute should always
be lowercase by convention. In the current example, make sure to change from
FunctionName("AzureFunctionsDistilled") to FunctionName("azure
functionsdistilled").

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

277

Figure 11-11. Editing the Azure Functions project in VS Code

Note When you create an Azure Functions project, a local git repository is also
automatically initialized. At this writing, the extension settings do not allow for
changing this behavior.

You are now working fully locally, which is a good opportunity to debug your

code on a development environment before promoting the code to the Azure remote

environment. Before debugging, extend the Run method as follows:

 [Function("azurefunctionsdistilled")]

 public HttpResponseData Run([HttpTrigger(AuthorizationLevel.

Anonymous, "get", "post")] HttpRequestData req)

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

278

 {

 _logger.LogInformation("C# HTTP trigger function processed a

request.");

 // Parse parameters in the query string

 var queryParameters = HttpUtility.ParseQueryString(req.

Url.Query);

 // Assume a parameter called "name" is found

 var input = queryParameters["name"];

 var response = req.CreateResponse(HttpStatusCode.OK);

 response.Headers.Add("Content-Type", "text/plain;

charset=utf-8");

 // If a value for the "name" parameter is available, it is

displayed

 if(!string.IsNullOrEmpty(input))

 response.WriteString($"Welcome {input}");

 else

 response.WriteString("Welcome to Azure Functions!");

 return response;

 }

As you can see from the comments, the code parses the URL of the function to detect

if any parameters where added in the form of a query string. If a parameter called name is

found, the value is retrieved and displayed. Otherwise, a standard message is displayed.

At this point, press F5 to start debugging, exactly as you would do with any C#

project, and after a few seconds the Terminal will show not only the compiler output but

also a local URL that you can use to test the code (see Figure 11-12).

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

279

Figure 11-12. Debugging an Azure function

The URL shown in the Terminal is the following: http://localhost:7071/api/

azurefunctionsdistilled. 7071 is the port of the local development server, while

azurefunctionsdistilled is the name (all lowercase) of the function defined in

the code, and both will vary depending on the projects you create. You can paste the

aforementioned URL into the address bar of your browser plus a query string. In the

following example, my first name is passed to the name parameter:

http://localhost:7071/api/azurefunctionsdistilled?name=Alessandro

At this point, press Enter. Figure 11-13 shows the function running in the browser

and listening for HTTP GET and POST calls.

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

280

Figure 11-13. Running an Azure function locally

Assuming that you have done all your local development, debugging, and testing,

you can publish the Azure function to the cloud, as described next. However, before the

function is deployed to Azure you need to edit the web request timeout, otherwise any

HTTP or HTTPS call will result in an Error 502 (Bad request). To accomplish this, open

Visual Studio Code’s Settings, and type request timeout in the search bar. In the Azure

Functions: Request Timeout setting, enter 60 as the timeout in seconds. Finally, save the

settings and you are ready to go.

 Deploying Azure Functions
Deploying Azure Functions to your subscription in Visual Studio Code is an easy

task. You can right-click the Function App node, under the subscription name in the

RESOURCES, view and then select the Create Function App in Azure command (see

Figure 11-14).

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

281

Figure 11-14. Initiating the deploy process

The Create Function App in Azure (Advanced) option is not discussed here because

it relates to creating a function app with custom settings and resources. Once you

click the highlighted shortcut, the Command Palette shows a quick wizard consisting

of three steps. In the first step, specify a unique name (for the current example it is

azurefunctionsdistilled) and then you need specify the target platform; the available

options depend on the technology you used to build the app. Select the same platform

you selected when creating the project.

In the last step of the wizard, you need to specify a data center location (see

Figure 11-15).

Figure 11-15. Selecting a location for the data center

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

282

If you have experience with Azure development, you know that this is a crucial

choice, because the location you select has an impact on the costs charged to your

subscription. At least for this example related to development purposes, make sure that

you select the data center that is closest to your location (in my case it is West Europe),

which translates to less latency and less bandwidth required during development and

deployment, and corresponding cost savings, especially if your subscription does not

have a spending limit enabled.

Note not all Azure regions and data centers offer the same services. For real-
world scenarios, you might want to look at the official documentation about
choosing the appropriate Azure region based on your location, needs, and
requested services (https://azure.microsoft.com/en-us/global-
infrastructure/geographies).

At this point, Visual Studio Code first builds the project in Release mode and then

starts publishing the function to Azure. You can follow the progress in the Output

panel and with the popup box that shows the name of the currently running task (see

Figure 11-16).

Figure 11-16. Publication of the Azure function is in progress

After the last step, the function will be up and running in the cloud, which you can

easily verify by opening the function’s URL in the browser, as shown in Figure 11-17.

Remember that the function’s URL is made by the unique name you supplied when

creating the project, followed by the azurewebsites.net domain name and by the /

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

https://azure.microsoft.com/en-us/global-infrastructure/geographies
https://azure.microsoft.com/en-us/global-infrastructure/geographies

283

api/<functionname> part. In the case of an Azure Function, you can add the query string

required to trigger the function itself. In Figure 11-18, you can see how the same query

string used locally has also been supplied to the remote URL.

Figure 11-17. The Azure function is running in the cloud

As you have seen, Visual Studio Code makes it very simple not only to deploy an

Azure Function, but also to create a project and interact with the Azure subscription

directly from within the environment, which improves overall productivity.

Note To avoid unexpected charges or consumption of your Azure credit, I
recommend deleting all the resources that you no longer use, such as the sample
applications created in this chapter. In VS Code you can quickly delete apps and
functions by right-clicking on their name in the APP SeRVICe and FunCTIonS
panels (respectively) of the Azure Side Bar and then selecting the appropriate
Delete command. Additional resources can be deleted in the Azure portal.

 Deploying Docker Images
Put succinctly, Docker (https://www.docker.com/) is a platform that allows you to

publish an app and all of its dependencies through containers. This allows you to have

applications that are independent from one another and that work autonomously.

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

https://www.docker.com/

284

Containers are deployed to a host such as Azure or another cloud service, and they

are widely used with architectures based on microservices. In order to create a Docker

container, you need to accomplish the following steps:

• Preparing a so-called Docker image for your app. An image contains

the source code, the app dependencies, and the configuration

information.

• Uploading the local Docker image to a remote container registry.

• Deploying the Docker image from the container registry to a cloud

host, such as Azure App Service.

There are many ways to create Docker images and deploy apps to cloud-hosted

containers, and several development environments provide integrated tools to do so,

and Visual Studio Code is no exception. In this section you learn how to set up and

publish your apps to Docker from within Visual Studio Code. It is important to mention

that the focus is on the Visual Studio Code tools, not the full Docker possibilities. You will

get the proper, necessary information but summarizing everything about Docker in this

section is not possible. Do not forget to bookmark the official VS Code documentation

(https://code.visualstudio.com/docs/containers/app-service) that you can check

when you need to go to the next level.

 Docker Prerequisites
Publishing apps to Docker containers requires the following prerequisites:

• The Docker Desktop software. A download link is automatically

provided when you visit the Docker website (https://www.

docker.com).

• The Docker extension for Visual Studio Code (see Figure 11-18).

• The Azure App Service extension for Visual Studio Code. You

installed this previously if you followed the examples about

publishing web applications to Azure.

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

https://code.visualstudio.com/docs/containers/app-service
https://www.docker.com
https://www.docker.com

285

Figure 11-18. The Docker extension for VS Code

The next examples are built on the HelloWeb C# project created in Chapter 9, but

remember that all the steps are platform- and language-agnostic. Having that said, open

the HelloWeb project in VS Code.

 Creating the Application Image
The application image contains the source code and the dependencies. You create the

application image via the Docker Images: Build Image command, which is available in

the Command Palette (see Figure 11-19).

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

286

Figure 11-19. The command for building docker images

VS Code will ask if you want to add a Docker file to the project, so click Yes. This file

contains the Docker configuration, so it is a necessary asset. VS Code will then ask for

the application platform (see Figure 11-20). For this example, select .NET: ASP.NET Core.

In all the other cases, select the platform that matches the development framework you

used for your project.

Figure 11-20. Selecting the application platform

At this point you are asked to choose between Windows and Linux as the host

system. For the current example, select Windows. In the following steps, Visual Studio

Code will ask you to specify:

• The port number that the application will use to listen to messages.

• If you want to include a Docker Compose file. This is optional and

you can click No.

At this point, a Docker file is generated, and the application image is built.

Figure 11-21 shows the Docker file in the active editor and the build results in the

Terminal.

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

287

Figure 11-21. The results of building the app image

The application image has been created locally, and the next step is uploading the

image to a remote container registry. It is worth mentioning that the Docker extension

shows both the local and remote images. Keep this in mind, so you will not get confused.

 Uploading the Application Image to a Container Registry
The application image built previously cannot be directly published to an App Service or

Container app. It first needs to be published to a container registry. As the name implies,

a container registry holds the list of application images.

To accomplish this, open the Docker panel and click the Connect Registry shortcut

in the REGISTRIES view (see Figure 11-22). Also specify Azure as the registry provider.

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

288

Figure 11-22. Specifying the registry provider

Visual Studio Code now connects to the registry service of your Azure subscription,

but you likely do not have any registries. So, right-click the subscription name

and select Create Registry. At this point, a wizard starts and, in Step 1 of 4, you

need to enter a registry name. For consistency with the current example, enter

visualstudiocodedistilled and then press Enter. In Step 2 of 4, you are then prompted

with a list of stock-keeping units (SKUs). Available options are Basic, Standard, and

Premium. Select Basic and press Enter. Step 3 of 4 requires you to select a resource group

from a list of existing ones, or to create a new one. You can select one of the resource

groups generated for the previous sections of this chapter. In the Step 4 of 4, you specify

a registry location. Select the data center that is closest to your place of living. After a

few seconds, the new registry will be visible in the REGISTRIES view and the application

image will appear in the IMAGES view, as shown in Figure 11-23.

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

289

Figure 11-23. The new registry has been created on Azure

Uploading the image requires this to be tagged with the registry name. Right-click

a build name (in Figure 11-23 the build name is identified as latest 17 minutes

ago) and select Tag. A tag should have the following form: registry/imagename:tag.

Visual Studio Code, via the Docker extension, automatically provides a valid tag, as

demonstrated in Figure 11-24.

Figure 11-24. Supplying the image tag

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

290

Now the image can be pushed to the registry. Right-click the image name again and

select Push. You will be asked to select an existing registry or create a new one. Select the

one created previously and press Enter.

The very last step is confirming the full address of the target registry, which includes

the image tag. Figure 11-25 demonstrates this. Visual Studio Code automatically provides

the appropriate definition, so you can just press Enter.

Figure 11-25. Supplying the full image tag

The image will now be uploaded to the container registry. When ready, right-click

the Azure subscription name in the REGISTRIES view and make sure the remote image

is now visible in both the IMAGES and REGISTRIES views.

 Deploying the Docker Image to Azure
The final step is uploading the application image from the container registry to an Azure

App Service or Azure Container App. For the current example, the Azure App Service

is used.

In the REGISTRIES view, right-click the build name and then select Deploy Image to

Azure App Service (see Figure 11-26).

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

291

Figure 11-26. Preparing to publish the image to Azure

At this point, Visual Studio Code will open the Command Palette and start a wizard

made of a few steps. The following are the most relevant:

 1. Entering a globally unique name for the web application. Specify a

name of your choice and press Enter.

 2. Specifying a Linux service plan. This is required because your

image will be hosted on a Linux server. If you do not have one,

click the Create New App Service Plan command.

 3. Specifying the pricing tier. Select Free (F1) and press Enter.

When the last step is completed, Visual Studio Code will start uploading the Docker

image to the new web application service. When finished, Visual Studio Code shows the

success message shown in Figure 11-27.

Figure 11-27. The Docker image was successfully uploaded

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

292

If you click Open Site, the application will be regularly opened in the browser (see

Figure 11-28) but, behind the scenes, it has been packaged into a Docker container.

Figure 11-28. The containerized app running in the browser

There is obviously much more about Docker that cannot be included in this

discussion, but you have seen how the Docker and Azure extensions provide an

integrated experience to Visual Studio Code.

 Summary
Once again, Visual Studio Code demonstrates its power and versatility even with cloud

development based on Microsoft Azure. With the Azure extensions, you have access to

your subscriptions directly from within the environment.

With specialized extensions, such as Azure App Service and Azure Functions, you

can create, configure, and deploy your web applications and functions with limited effort

and a few mouse clicks, reducing the need to manage resources in the Azure portal only

to situations in which you need custom configurations. In addition, multiple languages

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

293

and environments are supported, including .NET, Java, Python, and Node.js, extending

the cloud development possibilities to a larger number of companies and developers.

In the last part of the chapter, you learned how to create Docker containers that can

be managed and published directly from within Visual Studio Code. Continuing on

your cloud journey, the next and last chapter of the book describes how to consume AI

services from Visual Studio Code.

ChAPTeR 11 DePLoYIng APPLICATIonS To AzuRe

295

CHAPTER 12

Consuming AI Services
Without a doubt, artificial intelligence represents one of the most important topics for

the present and future of application development.

All the biggest software vendors offer their own AI solutions and services, and many

applications are already based on AI even if the user does not notice this.

As a developer, you need to have some knowledge of the possibilities offered by

artificial intelligence and how you can implement solutions in your applications.

This chapter explains how you can consume AI services when developing apps from

Visual Studio Code, taking advantage of coding and debugging tools when using client

libraries. Obviously, the focus cannot be on explaining what artificial intelligence is,

which branches of AI exist, and all the available offers. Instead, the focus of the chapter

is explaining the steps you need to follow to consume most AI services from Visual

Studio Code.

With regard to this, because you have created a Microsoft Azure account for the

previous chapter, a few services from Azure are used. Due to the relevance of this topic,

code examples are provided for C#, JavaScript, and Python. More specifically, you learn

how to analyze an image and extract relevant information.

Note Artificial intelligence services, usage, and implementations should always
be done according to the so-called Responsible AI principles. This basically
means that artificial intelligence should be offered with good intentions, to
empower people and businesses to achieve positive results. You can read
Microsoft’s point of view on their AI blog (https://blogs.microsoft.com/
on-the-issues/2023/02/02/responsible-ai-chatgpt-artificial-
intelligence/)

© Alessandro Del Sole 2023
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0_12

https://blogs.microsoft.com/on-the-issues/2023/02/02/responsible-ai-chatgpt-artificial-intelligence/
https://blogs.microsoft.com/on-the-issues/2023/02/02/responsible-ai-chatgpt-artificial-intelligence/
https://blogs.microsoft.com/on-the-issues/2023/02/02/responsible-ai-chatgpt-artificial-intelligence/
https://doi.org/10.1007/978-1-4842-9484-0_12

296

 Introducing Azure for AI
Microsoft Azure provides many artificial intelligence services, and most of them are

available via API and Software Development Kits (SDKs).

Table 12-1 provides a summary of the available services. Note that this list might

change in the future. You can periodically check the product page for updates (https://

azure.microsoft.com/en-us/products/).

Table 12-1. Most Important Azure Services for AI

Service Description

Azure Bot Service Allows you to create conversational bots.

Azure Databricks Provides support for working with Big Data.

Azure Cognitive Services A group of AI services to analyze images, faces, videos, speech, and

text.

Language Understanding

(LUIS)

Allows you to analyze natural language.

Azure Machine Learning Azure service to train AI models.

Personalizer Allows you to generate personalized customer experiences.

Health Bot A specialized bot aimed to create healthcare assistants.

Translator Provides machine translations via API calls.

Azure OpenAI Provides advanced language models for many use cases.

Azure Applied AI Provides specialized services to help businesses solve common

problems via AI.

The AI offer from Azure is really wide, so for this chapter, the choice is on the Azure

Cognitive Services, more specifically on the Computer Vision service. This service allows

you to analyze images and extract a lot of information. In the next section you learn how

to set up your projects in Visual Studio Code and how to invoke such a service.

Note If you work behind a proxy or company firewall, your code might not
be able to reach the Azure services. If this is the case, contact your network
administrator to open the necessary ports.

CHAPTeR 12 COnSUMIng AI SeRvICeS

https://azure.microsoft.com/en-us/products/
https://azure.microsoft.com/en-us/products/

297

 General Considerations
Generally speaking, AI services from Azure can be consumed via REST APIs. In this

way, any platform and language can invoke the services. For some services, Microsoft

also provides client libraries that allow you to work in a way that is specific to a given

language or platform. For example, with C# and Python, these libraries make it possible

to work in an object-oriented and strongly-typed way. The code examples in this chapter

use the aforementioned client libraries, so that you can leverage all the code editor

features in VS Code. On Azure, services can be enabled in the Management Portal. This

certainly includes Cognitive Services with Computer Vision.

 Introducing Computer Vision
Computer Vision is a group of AI services included in the Cognitive Services (https://

azure.microsoft.com/en-us/products/cognitive-services). Table 12-2 provides a

description of services included with Computer Vision.

Table 12-2. Computer Vision Services

Service Description

Computer

vision

Allows you to extract rich information from images and videos, including image

understanding and text extraction.

Custom vision Allows you to build custom image analysis services.

Face API Allows you to analyze and identify faces. It includes the Celebrity API that recognize

celebrities in images and videos.

Computer Vision services can be set up in the Azure Management Portal, as you will

see shortly, and can be consumed both via REST APIs and client libraries.

 Setting Up Computer Vision Services
The sample code of the next examples shows how to analyze an image and retrieve

information from it. Before starting, you need to set up an endpoint in the Azure

Management Portal (https://portal.azure.com).

Following the lesson learned in Chapter 11, log in to the Azure Management Portal.

CHAPTeR 12 COnSUMIng AI SeRvICeS

https://azure.microsoft.com/en-us/products/cognitive-services
https://azure.microsoft.com/en-us/products/cognitive-services
https://portal.azure.com

298

Note There is no extension for visual Studio Code that allows you to create AI
endpoints from within the development environment, so you need to set up the
resource inside the browser.

Once you are in the Portal, click the Create Resource button at the top-left corner of

the page. When the Create a Resource page appears (see Figure 12-1), click AI + Machine

Learning on the left. Finally, click the Create hyperlink under the Computer Vision item

on the right.

Figure 12-1. Locating the Computer Vision service for creation

CHAPTeR 12 COnSUMIng AI SeRvICeS

299

When the Create Computer Vision page appears, you need to configure the basic

information for your new service. In the Project Details group, you can select the

subscription that will host the service and a new or existing resource group. In the

Instance Details group, you need to specify a data center; make sure you select the

one closest to your location. Then you need to specify a name, which is very important

because it will be part of the service endpoint. The service name must be unique, so the

sample vscodedistilledcomputervision name might not be available. The last setting

is about the pricing tier. If you have no other AI services enabled, you can select the F0

Free tier, which is always recommended for development purposes.

Figure 12-2 summarizes all the aforementioned steps.

CHAPTeR 12 COnSUMIng AI SeRvICeS

300

Figure 12-2. Configuring the basic service information

CHAPTeR 12 COnSUMIng AI SeRvICeS

301

When ready, click the Next: Network ➤ button. In the next page, you can configure

the network access. For the current example, the service will be reachable via all the

networks, so make sure that the first option (All Networks) is selected (see Figure 12-3).

Figure 12-3. Configuring network access

You can then click the Next button. You can ignore the Identity and Tags pages that

are not relevant for this example. You can further configure identities depending on your

specific requirements. In the last page, you will see a Create button that you can click to

generate a new Computer Vision service.

After a few seconds, the new resource will be deployed (see Figure 12-4). Click the

Go to Resource button to access the service properties.

CHAPTeR 12 COnSUMIng AI SeRvICeS

302

Figure 12-4. The deployment has been completed

 Retrieving the Service Keys
Whatever programming language or framework you use to consume Computer Vision

APIs, you need to retrieve the service keys. These allow your code to authenticate against

the service.

In the Keys and Endpoint page (see Figure 12-5), click the Keys and Endpoint item

on the left.

CHAPTeR 12 COnSUMIng AI SeRvICeS

303

Figure 12-5. Retrieving the service keys

By default, keys are hidden so you have to click the Show Keys button. You do not

need both keys. Key 1 is enough, but Key 2 is provided for security reasons. Take note

of the Key 1 and Endpoint fields. These will be necessary in the next paragraphs when

writing code. The service setup is now complete, so you can open Visual Studio Code to

start developing an app that consumes the new AI service.

You will write code for three platforms: .NET, JavaScript, and Python. For this reason,

in order to be consistent across all platforms, you will create a Console project that will

display the image analysis results inside a Terminal instance. The code examples are

independent from one another, so you can read them all or just look at the one that is

closest to the development environment of your choice.

CHAPTeR 12 COnSUMIng AI SeRvICeS

304

Note This chapter assumes you have the necessary knowledge of the
programming languages used for the coming examples. In fact, the focus here is
on the Cognitive Services and cannot be on explaining the programming languages.

 Consuming AI Services with .NET
The first code example is about creating a Console app with .NET. In Visual Studio Code,

open a new Terminal instance via Terminal, New Terminal. Create a subfolder where you

want the new project to be placed.

Then, following the lesson learned in Chapter 9, type the following command to

generate a new Console project:

> dotnet new console

Figure 12-6 shows the result of the project generation.

Figure 12-6. Creating a new .NET Console project

CHAPTeR 12 COnSUMIng AI SeRvICeS

305

You can keep the Terminal open because you will need to type new commands

shortly. In the meantime, open the new project in VS Code. Before writing any C# code,

it is important to know that Microsoft provides a client library for .NET that simplifies

the way you consume Computer Vision APIs in a strongly-typed and object-oriented

approach. This means that you can use specific classes and methods instead of manually

invoking REST APIs. It also means, with regard to VS Code, that you can leverage

debugging and coding tools (such as IntelliSense) to use and investigate objects and

their members. You will see more about this when you run the sample application.

The client library is provided via NuGet and it is called Microsoft.Azure.

CognitiveServices.Vision.ComputerVision. You can quickly install the library to the

project with the following command line:

> dotnet add package Microsoft.Azure.CognitiveServices.Vision.

ComputerVision

Figure 12-7 shows the results for this command.

CHAPTeR 12 COnSUMIng AI SeRvICeS

306

Figure 12-7. Installing the Microsoft client library from NuGet

 Setting Up Variables and Constants
Open the Program.cs file and add the following code:

using Microsoft.Azure.CognitiveServices.Vision.ComputerVision;

using Microsoft.Azure.CognitiveServices.Vision.ComputerVision.Models;

namespace ComputerVisionNet

{

 class Program

 {

 static string serviceKey = "YOUR-KEY-GOES-HERE";

 static string endpoint =

 "https://YOUR-ENDPOINT.cognitiveservices.azure.com/";

CHAPTeR 12 COnSUMIng AI SeRvICeS

307

 private const string imageToAnalyze = "https://

moderatorsampleimages.blob.core.windows.net/samples/sample16.png";

Replace the serviceKey and endpoint variable contents with the key for your

Computer Vision service and endpoint, respectively. The imageToAnalyze constant

contains the URL of the image that will be analyzed. This image is provided for free by

Microsoft as a sample image for the Computer Vision official samples, and it represents a

puppy on a grass field. Figure 12-8 shows the sample image so you can understand what

the analysis will be about.

Figure 12-8. The sample image used for Computer Vision analysis (Courtesy:
Microsoft Corp.)

The Main method for the application looks like the following:

 async static void Main(string[] args)

 {

 // Create a client

 ComputerVisionClient client = Authenticate(endpoint,

serviceKey);

 // Analyze an image to get features and other properties.

 await AnalyzeImageUrlAsync(client, imageToAnalyze);

 }

CHAPTeR 12 COnSUMIng AI SeRvICeS

308

The first line of code creates an instance of the ComputerVisionClient class, which

allows you to access Computer Vision APIs in a managed way. Such an instance is

created via the Authenticate method, implemented shortly, which takes the service key

and endpoint as arguments and authenticates against the service. The second line of

code performs the actual image analysis with a method called AnalyzeImageUrlAsync,

also implemented shortly.

 Creating Authenticated Service Clients
A service client is a class that exposes members for accessing the service APIs in an

object-oriented way.

This is the biggest benefit of using a client library, rather than writing REST API calls

manually. In .NET, the Microsoft.Azure.CognitiveServices.Vision.ComputerVision

provides the ComputerVisionClient class.

Note Microsoft provides .neT client libraries for most AI services included in the
Azure offer, so the approach described in this chapter applies to other services
as well.

An instance of this class must be created passing the authentication keys, which

are the service key and the endpoint. The following method demonstrates how to

accomplish this:

 public static ComputerVisionClient Authenticate(string endpoint,

 string key)

 {

 ComputerVisionClient client =

 new ComputerVisionClient(new ApiKeyServiceClientCredent

ials(key))

 { Endpoint = endpoint };

 return client;

 }

CHAPTeR 12 COnSUMIng AI SeRvICeS

309

The argument for the constructor of the ComputerVisionClient class is an

instance of the ApiKeyServiceClientCredentials class that receives and validates

the service key. The Endpoint property of the ApiKeyServiceClientCredentials class

is also assigned directly. The result of this method is an authenticated instance of the

ComputerVisionClient class that callers use to perform image analysis.

 Executing Image Analysis
Analyzing an image means understanding the contents of an image by detecting the

presence of people, animals, objects, colors, and everything around.

The analysis result is collected into a list of tags, each representing an element

detected in the image, with the related level of accuracy (confidence). In the current

example, the image analysis is performed by the following AnalyzeImageUrlAsync:

 public static async Task AnalyzeImageUrlAsync(ComputerVisionClient

client, string imageUrl)

 {

 // A list that defines the features to be extracted from

the image.

 List<VisualFeatureTypes?> features = new List<VisualFeature

Types?>()

 {

 VisualFeatureTypes.Tags,

 VisualFeatureTypes.Color,

 VisualFeatureTypes.Description,

 VisualFeatureTypes.Objects,

 VisualFeatureTypes.Faces,

 VisualFeatureTypes.Adult

 };

 Console.WriteLine($"Analyzing the image

 {Path.GetFileName(imageUrl)}...");

 Console.WriteLine();

 // Analyze the URL image

 ImageAnalysis results = await client.

 AnalyzeImageAsync(imageUrl, visualFeatures:

features);

CHAPTeR 12 COnSUMIng AI SeRvICeS

310

The first part of the method declares a List<VisualFeatureTypes?> object, which

contains a list of elements you want to detect. The type of elements is represented by the

VisualFeatureTypes enumeration, whose most important values is Tags. This contains

the tags and confidence level that the analysis engine will detect. Table 12-3 describes

the possible values for the VisualFeatureTypes enumeration. The actual analysis is

performed by the AnalyzeImageAsync method from the ComputerVisionClient class,

which receives the source image and a list of VisualFeatureTypes object as arguments

and returns an object of type ImageAnalysis. This exposes properties that return the

results of the visual types described in Table 12-3.

Table 12-3. VisualFeatureTypes Enumeration

Value Description

Adult Detects if the image contains adult or racist contents.

Brands Detects if the image contains brand names.

Categories Categorizes the contents of an image.

Color Detects the most relevant colors in the image.

Description generates one or more descriptions for the image.

Faces Detects any faces in the image.

ImageType Detects an image type.

Objects Detects a list of objects in an image.

Tags Creates a list of tags that represent the list of elements in an

image.

As you type, you can realize the benefits of using a client library: Visual Studio Code

enables IntelliSense, code refactoring, and all the most advanced editing tools against

the types and members exposed by the library itself. Figure 12-9 shows how IntelliSense

can help when invoking methods from the ComputerVisionClient class.

CHAPTeR 12 COnSUMIng AI SeRvICeS

311

Figure 12-9. IntelliSense enabled with the client library

The next step is displaying the analysis result. The following code snippet shows

information about adult classification:

 // Adult content?

 Console.WriteLine($"Is adult content?:

 {results.Adult.IsAdultContent}");

Among the others, the Adult object, of type AdultInfo, exposes the IsAdultContent

property, of type bool. It returns true if the image contains adult content. The following

code snippet iterates through the list of detected tags, and it is probably the most

relevant in the example:

 // Image tags and their confidence score

 Console.WriteLine("Tags:");

 foreach (var tag in results.Tags)

 {

 Console.WriteLine($"{tag.Name} {tag.Confidence}");

 }

CHAPTeR 12 COnSUMIng AI SeRvICeS

312

The Tags property is a collection of type IList<ImageTag>, and each ImageTag

instance contains a human-readable string representing the type of object detected and

the level of confidence. The following code displays information about the accent color

detected in the image, and it iterates the list of dominant colors:

 Console.WriteLine("Colors:");

 Console.WriteLine($" {results.Color.AccentColor}");

 foreach(var color in results.Color.DominantColors)

 {

 Console.WriteLine($" {color}");

 }

Color information is stored inside the Color property, of type ColorInfo. The

AccentColor property is of type string and contains the hex representation of the most

predominant color. The DominantColors object is a collection of type IList<string>,

and each string represents a color in hex format. The next code snippet displays a

description for the image:

 Console.WriteLine("Description: ");

 foreach(var text in results.Description.Captions)

 {

 Console.WriteLine($" {text.Text}");

 }

The AI engine of Cognitive Services can generate meaningful phrases that describe

the contents of the image. Each phrase is represented by an object of type ImageCaption,

whose Text property is a string containing the phrase. All the generated phrases are

stored inside the Captions collection, of type IList<ImageCaption>, provided by the

Description property. There is usually at least one phrase. It is also possible to analyze

the list of objects contained in the image, as follows:

 Console.WriteLine("Objects:");

 foreach(var obj in results.Objects)

 {

 Console.WriteLine($" {obj.ObjectProperty}");

 }

CHAPTeR 12 COnSUMIng AI SeRvICeS

313

The ObjectProperty property of each Object represents the name of a detected

object. The last part of the sample application detects if there are any faces in the image:

 Console.WriteLine($"Does it contain any faces?: {results.Faces.

Any()}");

 Console.ReadLine();

 }

 }

}

The Faces collection, of type IList<FaceDescription>, contains information

on faces detected in the image, but if you need to use AI to analyze faces, the

recommendation is to look at the Face API.

Note If you do not explicitly add values from the VisualFeatureTypes
enumeration to the list of objects you want to retrieve, the code that walks through
the result of the image analysis will be ignored.

 Running the Application
Now that you have set up all the code required to perform image analysis based on

artificial intelligence, you can see the result by running the application. You can press F5

or choose Run ➤ Start Debugging and you will see the analysis results in the integrated

Terminal after a few seconds.

Figure 12-10 demonstrates this.

CHAPTeR 12 COnSUMIng AI SeRvICeS

314

Figure 12-10. The results of the image analysis via Cognitive Services

Notice how the list of tags is automatically ordered by confidence (in descending

order), and how the description is a complete, human-readable phrase. You can

combine multiple AI services with Computer Vision to create great user experiences.

 Using the Debugging Tools

There is another benefit in using a client library over regular code that sends HTTP REST

requests, which is taking advantage of the full debugging experience.

You can certainly leverage debugging tools over the code that sends regular

requests, but in specialized scenarios such as AI, having precise support is definitely

CHAPTeR 12 COnSUMIng AI SeRvICeS

315

a better option, especially if you do not have deep knowledge of the libraries you are

using. Figure 12-11 shows how you can use the VS Code debugging tools for .NET when

analyzing the image via the ComputerVisionClient class.

Figure 12-11. Debugging tools in action on the ComputerVisionClient class

As you can see, by placing a breakpoint in your code, you can investigate properties

and their values also understand the backing .NET type.

 Consuming AI Services with JavaScript
The second code example is about creating a JavaScript project that consumes the Azure

Cognitive Services. You can open an instance of the integrated Terminal in Visual Studio

Code to create a new folder that will contain the new project.

The name is up to you, although you can use computervisionjs for consistency with

the companion code. Once the folder has been created, you need to type the following

command line to initialize the project with a package.json file:

> npm init

Press Enter to run the command. Before writing any JavaScript code, it is important

to know that Microsoft provides a client library that simplifies the way you consume

Computer Vision APIs in an object-oriented approach. This means that you can use

specific classes and functions instead of manually invoking REST APIs.

CHAPTeR 12 COnSUMIng AI SeRvICeS

316

Such a library is provided via npm and it is called cognitiveservices-

computervision. You can quickly install the library to the project with the following

command line:

> npm install @azure/cognitiveservices-computervision

Press Enter to run the command. You also need to install the async package, which

allows you to make asynchronous function calls, as follows:

> npm install async

Press Enter to run the command. Figure 12-12 shows the summary of both

operations.

CHAPTeR 12 COnSUMIng AI SeRvICeS

317

Figure 12-12. Installing the Cognitive Services client library

When you’re ready, add a file called index.js to the project folder. You will now

learn the various parts required to execute artificial intelligence analysis over images.

 Setting Up Variables and Constants
Open the index.js file and start by adding the following code:

'use strict';

const async = require('async');

CHAPTeR 12 COnSUMIng AI SeRvICeS

318

const fs = require('fs');

const https = require('https');

const path = require("path");

const createReadStream = require('fs').createReadStream

const sleep = require('util').promisify(setTimeout);

const ComputerVisionClient = require('@azure/cognitiveservices-

computervision').ComputerVisionClient;

const ApiKeyCredentials = require('@azure/ms-rest-js').ApiKeyCredentials;

/**

 * Authenticated client instance

 */

const key = 'YOUR-KEY-GOES-HERE';

const endpoint = 'https://YOUR-ENDPOINT.cognitiveservices.azure.com/';

The first const declarations are required to use objects from the various libraries,

including the ComputerVisionClient and ApiKeyCredentials objects. The first object

is a client class that makes it easier to consume Cognitive Services APIs, whereas the

second object allows you to authenticate against Cognitive Services. Replace the key and

endpoint variable contents with the key for your Computer Vision service and endpoint,

respectively.

 Creating Authenticated Service Clients
A service client is an object that exposes members for accessing the service APIs in an

object-oriented way.

This is the biggest benefit of using a client library, rather than writing REST API calls

manually. In the Azure JavaScript SDK, the cognitiveservices-computervision library

provides the ComputerVisionClient class.

Note Microsoft provides client libraries for most AI services included in the Azure
offer, so the approach described in this chapter applies to other services as well.

An instance of this class must be created by passing the authentication keys,

which are the service key and the endpoint. The following code demonstrates how to

accomplish this:

CHAPTeR 12 COnSUMIng AI SeRvICeS

319

const computerVisionClient = new ComputerVisionClient(

 new ApiKeyCredentials({ inHeader:

 { 'Ocp-Apim-Subscription-Key': key } }), endpoint);

The parameter for the constructor of the ComputerVisionClient class is an instance

of the ApiKeyCredentials object, and it receives and validates the service key. The result

of this code is an authenticated instance of the ComputerVisionClient class that callers

will use to perform image analysis.

 Executing Image Analysis
Analyzing an image means understanding the contents of an image by detecting the

presence of people, animals, objects, colors, and everything around.

The analysis result is collected into a list of tags, each representing an element

detected in the image, with the related level of accuracy (confidence). In the current

example, the image analysis is performed by the following code:

function computerVision() {

 async.series([

 async function () {

 // Image of different kind of dog.

 const imageUrl = 'https://moderatorsampleimages.blob.core.windows.

net/samples/sample16.png';

 // Analyze URL image

 console.log('Analyzing the image...', imageUrl.split('/').pop());

 var results = await computerVisionClient.analyzeImage(imageUrl, {

visualFeatures: ['Tags', 'Adult', 'Color', 'Description'] });

The first part of the method sets up the URL of the image to be analyzed, and then

it invokes the analyzeImage method from the ComputerVisionClient class to analyze

the image.

The second parameter for the method is an array called visualFeatures which

contains a list of elements you want to detect. The most important type of element

is Tags. This contains the tags and confidence level that the analysis engine will

detect. Table 12-3 describes the possible values for the visualFeatures array. The

analyzeImage method returns an object of type AnalyzeImageResponse. This exposes

members that return the results of the visual types described in Table 12-3.

CHAPTeR 12 COnSUMIng AI SeRvICeS

320

The next step is displaying the analysis result. The following code snippet shows

information about adult classification:

 console.log(`Is adult content?: ${results.adult.isAdultContent}`);

Among the others, the adult object, of type AdultInfo, exposes the isAdultContent

property, of type bool. It returns true if the image contains adult content. The following

code snippet iterates through the list of detected tags, and it is probably the most

relevant in the example:

 console.log('Image tags:');

 console.log(`Tags: ${formatTags(results.tags)}`);

 // Format tags for display

 function formatTags(tags) {

 return tags.map(tag => (`${tag.name}

 (${tag.confidence.toFixed(2)})`)).join(', '); }

The tags property is an array of ImageTag objects, and each ImageTag instance

contains a human-readable string representing the type of the object detected and the

level of confidence. The following code displays information about the accent color, which

is the most predominant color, detected in the image. It iterates the list of dominant colors:

 console.log(`Accent color: ${results.color.accentColor}`);

 console.log('Dominant colors:');

 results.color.dominantColors.forEach(col=>console.log(col));

Color information is stored inside the color property, of type ColorInfo. The

accentColor property is of type string and contains the hex representation of a color.

The dominantColors object is an array of strings, and each string represents a color in

hex format. The next code snippet displays a description for the image:

 console.log('Description: ');

 results.description.captions.forEach(dsc=>console.log(dsc.text));

The AI engine of Cognitive Services can generate meaningful phrases that describe

the contents of the image. Each phrase is represented by an object of type ImageCaption,

whose text property is a string containing the phrase. All the generated phrases are

CHAPTeR 12 COnSUMIng AI SeRvICeS

321

stored inside the captions collection, an array of ImageCaption, provided by the

description property. There is usually at least one phrase. The code file is closed with a

standard JavaScript promise and with the invocation to the computerVision method.

 console.log();

 },

 function () {

 return new Promise((resolve) => {

 resolve();

 })

 }

], (err) => {

 throw (err);

 });

}

computerVision();

Note Put succinctly, in JavaScript a promise represents the eventual completion,
or failure, of an asynchronous operation and its resulting value. If you want to learn
more about promises, you can read the JavaScript documentation (https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Promise).

 Coding and Debugging Tools in Action

Like for .NET, one of the benefits of using a client library is that VS Code enables

powerful editing tools, such as IntelliSense, plus the debugging tools you have seen

previously.

For example, IntelliSense for JavaScript shows the list of members from the

ComputerVisionClient class as you type, as it will do for all the other members. In

addition, you can leverage the integrated debugging tools to investigate variables and,

more generally, to control the execution flow. Figure 12-13 demonstrates this.

CHAPTeR 12 COnSUMIng AI SeRvICeS

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

322

Figure 12-13. Debugging tools and IntelliSense in action

As you can see in Figure 12-13, Visual Studio Code enables IntelliSense for

JavaScript when invoking types and members from the client library, and it allows you to

investigate variable values at debugging time via the VARIABLES window.

 Running the Application
Now that you have set up all the code required to perform image analysis based on

artificial intelligence, you can see the result by running the application. You can press F5

or choose Run ➤ Start Debugging and then select the Node.js debugger. You will see the

analysis results in the integrated Terminal after a few seconds.

Figure 12-14 demonstrates this.

CHAPTeR 12 COnSUMIng AI SeRvICeS

323

Figure 12-14. The results of the image analysis via Cognitive Services

Notice how the list of tags is automatically ordered by confidence (in descending

order), and how the description is a complete, human-readable phrase. With a similar

approach, you can even combine multiple Cognitive Services.

 Consuming AI Services with Python
The third and last code example is about creating a Python application that consumes

the Azure Cognitive Services.

CHAPTeR 12 COnSUMIng AI SeRvICeS

324

Note This section requires that you have set up your development environment
with the Python tools described in Chapter 10.

You can open an instance of the integrated Terminal in Visual Studio Code to create

a new folder that will contain a new Python code file. The name is up to you, but you

could use computervisionpython for consistency with the companion code. Add a new

Python file called main.py to this folder.

Before writing any Python code, it is important to know that Microsoft provides a

client library that simplifies the way you consume Computer Vision APIs in an object-

oriented approach. This means that you can use specific classes and functions instead of

manually invoking REST APIs.

Such a library is provided via the pip library manager and it is called azure-

cognitiveservices- vision-computervision. You can quickly install the library to the

folder via the following command line:

> pip install --upgrade azure-cognitiveservices-vision-computervision

You now learn the various parts required to execute artificial intelligence analysis

over images.

 Setting Up Variables and Constants
Open the main.py file and start writing the following code:

from azure.cognitiveservices.vision.computervision import

ComputerVisionClient

from azure.cognitiveservices.vision.computervision.models import

OperationStatusCodes

from azure.cognitiveservices.vision.computervision.models import

VisualFeatureTypes

from msrest.authentication import CognitiveServicesCredentials

from array import array

import os

from PIL import Image

import sys

CHAPTeR 12 COnSUMIng AI SeRvICeS

325

import time

subscription_key = "YOUR-KEY-GOES-HERE"

endpoint = "https://YOUR-ENDPOINT.cognitiveservices.azure.com/"

The from and import declarations are required to use objects from the various

libraries, including the ComputerVisionClient and CognitiveServiceCredentials

objects. The first object is a client class that makes it easier to consume Cognitive

Services APIs, whereas the second object allows you to authenticate against Cognitive

Services. Replace the key and endpoint variable contents with the key for your

Computer Vision service and endpoint, respectively.

 Creating Authenticated Service Clients
A service client is an object that exposes members for accessing the service APIs in an

object-oriented way.

This is the biggest benefit of using a client library, rather than writing REST API

calls manually. In the Azure Python SDK, the azure-cognitiveservices-vision-

computervision library provides the ComputerVisionClient class.

Note Microsoft provides client libraries for most AI services included in the Azure
offer, so the approach described in this chapter applies to other services as well.

An instance of this class must be created passing the authentication keys, which

are the service key and the endpoint. The following code demonstrates how to

accomplish this:

computervision_client = ComputerVisionClient(endpoint, CognitiveServices

Credentials(subscription_key))

The parameter for the constructor of the ComputerVisionClient class is an instance

of the CognitiveServiceCredentials object that receives and validates the service key.

The result of this code is an authenticated instance of the ComputerVisionClient class

that callers will use to perform image analysis.

CHAPTeR 12 COnSUMIng AI SeRvICeS

326

 Executing Image Analysis
Analyzing an image means understanding the contents of an image by detecting the

presence of people, animals, objects, colors, and everything around.

The analysis result is collected into a list of tags, each representing an element

detected in the image, with the related level of accuracy (confidence). In the current

example, the image analysis is performed by the following code:

url = "https://moderatorsampleimages.blob.core.windows.net/samples/

sample16.png"

image_analysis = computervision_client.analyze_image(url,

 visual_features=[VisualFeatureTypes.tags,

 VisualFeatureTypes.description,

 VisualFeatureTypes.adult,

 VisualFeatureTypes.color,

 VisualFeatureTypes.objects])

The first part of the code snippet sets up the URL of the image to be analyzed, and

then it invokes the analyze_image method from the ComputerVisionClient class to

analyze the image.

The second parameter for the method is an array called visual_features

which contains a list of elements you want to detect from the VisualFeatureTypes

enumeration. The most important type of element is tags. This contains the tags and

confidence level that the analysis engine will detect. Table 12-3 describes the possible

values for the VisualFeatureTypes enumeration. The analyze_image method returns an

object of type ClientRawResponse. This exposes members that return the results of the

visual types described in Table 12-3.

The next step is displaying the analysis result. The following code snippet shows

information about adult classification:

print("Is adult content?")

print(image_analysis.adult.is_adult_content)

Among the others, the adult object, of type AdultInfo, exposes the is_adult_

content property, of type bool. It returns true if the image contains adult content. The

following code snippet iterates through the list of detected tags, and it is probably the

most relevant in the example:

CHAPTeR 12 COnSUMIng AI SeRvICeS

327

print("Tags:")

for tag in image_analysis.tags:

 print("'{}' with confidence {:.2f}%".format(tag.name, tag.

confidence * 100))

The tags property is an array of ImageTag objects and each ImageTag instance

contains a human-readable string representing the type of object detected and the level

of confidence. The following code displays information about the accent color (that is,

the predominant color) detected in the image, and it iterates the list of dominant colors:

print("Accent color:")

print(image_analysis.color.accent_color)

print("Dominant colors:")

for col in image_analysis.color.dominant_colors:

 print(col)

Color information is stored inside the color property, of type ColorInfo. The

accent_color property is of type string and contains the hex representation of a color.

The dominant_colors object is an array of strings, and each string represents a color in

hex format. The next code snippet displays a description for the image:

print("Image description:")

for des in image_analysis.description.captions:

 print(des.text)

The AI engine of Cognitive Services can generate meaningful phrases that describe

the contents of the image. Each phrase is represented by an object of type ImageCaption,

whose text property is a string containing the phrase. All the generated phrases are

stored inside the captions collection, an array of ImageCaption, provided by the

description property. There is usually at least one phrase. It is also possible to analyze

the list of objects contained in the image, as follows:

print("Objects:")

for obj in image_analysis.objects:

 print(obj.object_property)

The object_property property of each Object represents the name of a

detected object.

CHAPTeR 12 COnSUMIng AI SeRvICeS

328

 Coding and Debugging Tools in Action

Like for .NET and JavaScript, the benefit of using a client library is that VS Code enables

powerful editing tools, such as IntelliSense, plus the debugging tools you have seen

previously.

For example, IntelliSense for Python shows the list of members from the

ComputerVisionClient class as you type, as it will do for all the other members. In

addition, you can leverage the integrated debugging tools to investigate variables and,

more generally, to control the execution flow. Figure 12-15 demonstrates this.

Figure 12-15. Debugging tools and IntelliSense in action

As you can see in Figure 12-15, Visual Studio Code enables IntelliSense for

JavaScript when invoking types and members from the client library, and it allows you to

investigate variable values at debugging time via the VARIABLES window.

CHAPTeR 12 COnSUMIng AI SeRvICeS

329

 Running the Application
Now that you have set up all the code required to perform image analysis based on

artificial intelligence, you can see the result by running the application. You can

press F5 or choose Run ➤ Start Debugging and you will be asked to specify the debug

configuration.

Select the first option, Python File Debug the Currently Active Python File. After a

few seconds, you will see the analysis results in the integrated Terminal.

Figure 12-16 demonstrates this.

Figure 12-16. The results of the image analysis via Cognitive Services

CHAPTeR 12 COnSUMIng AI SeRvICeS

330

Notice how the list of tags is automatically ordered by confidence (in descending

order), and how the description is a complete, human-readable phrase. With a similar

approach, you can even combine multiple Cognitive Services.

 Summary
With artificial intelligence becoming more and more a part of the daily work of many

developers, you can use Visual Studio Code to write code that consumes the most

popular services.

In this chapter, you learned how to create, configure, and consume one of the most

popular AI services from Microsoft, the Computer Vision APIs offered through the Azure

platform. You have seen how to write code in the most popular programming languages,

leveraging all the powerful code editing features that VS Code generally offers.

CHAPTeR 12 COnSUMIng AI SeRvICeS

331

Index

A
AccentColor property, 312, 320
Active editors/open editors, 31, 69, 83,

131, 160, 286
Activity Bar, 19, 23, 24, 26, 33, 36, 37, 43
analyze_image method, 326
AnalyzeImageAsync method, 310
AnalyzeImageUrlAsync, 308, 309
Application development

creating application
command-line interface, 215
Microsoft .NET, 216, 217
.NET projects, 217–223
platforms, 223–225

debugging code
breakpoints, 230–232
call stack, 235
configuration, 227–229
console path, 236
Debug Console window, 232
evaluate expressions, 234, 235
ru view, 226
settings, 237
toolbar, 233, 234

Artificial intelligence (AI) services
Azure services, 296
Computer Vision service, 297–299,

301, 302
JavaScript

authenticated service clients, 318
cognitive services client library, 317

command, 316
image analysis, 319–322
running applications, 322, 323
variables/constants, 317, 318

.NET
authenticated service clients, 308
console project, 304
image analysis, 309–313
NuGet, 306
running application, 313, 314
variables/constants, 306–308

Python
authenticated service clients, 325
image analysis, 326–328
Microsoft, 324
running applications, 329
variables/constants, 324

retrieving keys, 302, 303
Authenticate method, 308
Azure Functions, 263, 274, 292

deploy web applications
extensions, installing, 265, 266
sigining to subscriptions, 266–268
web application, 268–271

Docker images (see Docker)
extensions, 263, 264
functions

authorization levels, 276, 277
configuring VS code, 271–273
creating project, 274, 275, 277,

279, 280

© Alessandro Del Sole 2023
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-9484-0

https://doi.org/10.1007/978-1-4842-9484-0

332

deploying code, 280–283
multiple environments, 263

Azure DevOps, 127, 151, 155, 178–183

B
Branches, Git

create new branch, 165
deleting branch, 170
master, 164, 165
merge conflicts, 167–169
merging, 166, 167
rebase, 170
switching different branch, 166

Breadcrumbs, 57–58

C
Carriage Return and Line Feed (CRLF), 86
Cascading Style Sheets (CSS), 225
C# Configuration, 136
C# extension method, 144
CHANGELOG.md file, 143
Code-centric tool, 1, 3, 80, 185
Code editing features, 45

code block folding, 52
code snippets, 53, 54
Markdown syntax, 58, 59
matching delimiters, 51
Minimap, 55, 56
multicursors, 52
sticky scroll, 56
syntax colorization, 50
text, working, 49
whitespace rendering/

breadcrumbs, 57
word completion, 54, 55

Code editor, 21
Explorer Bar, 22
multiple file views, 21
reorder/resize editor windows, 22

codesnippetsdistilled, 139
cognitiveservices-computervision,

316, 318
Command-line interface (CLI), 3,

163–164, 215, 217
Command-line TypeScript compiler, 189
Command Palette, 11, 12, 31, 37, 38, 43,

105, 125, 131, 135, 157, 163–165,
170, 188, 189, 192, 196, 197, 199,
202, 203, 254, 255, 261, 266, 268,
274, 281, 285, 291

Computer Vision, 296–299, 301, 302, 305,
307, 308, 314, 315, 318, 324, 325

C# programming language, 46, 72
Customizations/extensions

examples, 103, 104
keyboard shortcuts, 118–122
reusable profile, 123–125
theme selection, 105–107
user settings

changing setting, 109
firewall applications, 112
proxy server, 111–113
settings.json, 110, 111
synchronization, 116, 117
telemetry, 115
working, 108
workspace, 117, 118

D
Debug Console panel, 40, 41, 231, 236–237
Delphi build, 202
Diff tool, 159, 160

Azure Functions (cont.)

INDEX

333

Docker
application image, creating, 285–287
container, 284
container registry, uploading

application, 287–290
definition, 283
deploying image to Azure, 290–292
extension, VS code, 285

Docker image, 283–286, 290, 291
dotnet tool, 210, 217

E
Evolved code editing, 80

advanced code editing features, 59
documentation tooltip, 63
finding references, 67–70
Go to Definition, 64
IntelliCode, 80
IntelliSense, 60, 61
live code analysis, 72, 74, 75, 77–79
parameter hints, 62
Peek Definition, 65, 66
peek implementation, 66, 67
renaming symbols/identifiers, 70, 71

Execute .NET Core Build Command, 210
Explorer Bar, 21, 24–26, 29, 43, 89, 90, 94,

95, 159, 175, 190
Extensibility (see Extension)
Extensions

configuration, 137, 138
installing

Command Palette, 131
detail page, 129
Marketplace, 127, 128
recommendations, 131, 132
useful extensions, 133, 134

management, 134, 135

writing
creating extension, 140–142
developing extension, 142–145
development, 148
packaging extension, 147, 148
PowerShell error, 140
run, 145, 146
setting up environment, 139, 140
TypeScript, 138

F
Files

creating files, 84, 85
editing features, 82
encoding, 86
folder, 81
line termination, 86, 87
open editors, 83
popup box, 82
structured view, 81

Find All References, 66–69, 80
Folder-based project systems, 1
Folders

JavaScript/TypeScript, 91
loose folders, opening, 92
.NET solution, 90
opening folder, 88, 89
project files, 87

Free Pascal command-line compiler, 194,
195, 201

FunctionName attribute, 276

G, H
Git History, 171, 172, 183
GitHub, 35, 151, 154–158, 164,

175–176, 187

INDEX

334

GitHub Pull Requests, 174–176, 183
GitLens, 172–174
Git, source control

branches, 164
command-line interface, 163, 164
commits, 161–163
downloading providers, 152, 153
extensibility, 151
extensions

git history, 171, 172
GitHub pull requests, 174–177
GitLens, 172–174

handling file changes, 159, 160
repositories

creating remote, 155–158
local, 154, 155
remote, 153

repository, 151
staging changes, 160, 161

Go, 48
Go to Definition, 64–66, 80, 251
Go to References, 68
Greeter, 151, 152, 154, 174, 178

I
Insiders builds, 14–15, 17
Integrated development environment

(IDE), 3, 107
IntelliCode, 80, 257
IntelliSense, 2, 47, 48, 60–62, 81, 103, 110,

111, 116, 127, 129, 132, 137, 146,
250, 258, 310, 321, 322, 328

IsAdultContent property, 311, 320

J, K
Julia, 46, 48

L
Language support

C#/C++ working, 46
editing features, 45, 46
Go, 48
Julia, 48
Python, 47

launch.json, 223, 227, 229
Line Feed (LF), 86

M
master, 156, 164–166
Microsoft account

Azure DevOps, 178
creating team project, 178–180
remote repository, connecting VS

code, 181, 182
Microsoft.Azure.CognitiveServices.Vision.

ComputerVision, 305, 308
Microsoft Visual Studio 2022, 2, 4
Minimap, 55, 56
Model-View-Controller (MVC), 220, 246
MSBuild, 87, 90, 196, 211
Multi-root workspaces, 92, 101
MyFiles, 92, 96

N
.NET Compiler Platform, 47
.NET Core, 88, 196, 210, 216, 227
Node.js, 2, 3, 138, 139, 185, 193, 223–225,

227, 238, 263, 272, 322

O
ObjectProperty property, 313

INDEX

335

P, Q
package.json file, 88, 91, 143, 315
Panels area

built-in panels, 38
debug console panel, 40, 41
output, 40
problems panel, 38
terminal tool, 41, 42

Parameter hints, 62, 63, 251
Peek Definition, 64–66, 69, 80, 251
pip library, 324
Pop Stash commands, 163
print function, 241
Problem matcher, 199, 200, 206, 211–213
Pylance, 257–260
Pylance extension, 262
Python, 47

code editing features
finding references, 252, 253
IntelliSense, 250
linters, 254–256
Parameter Hints, 251
peek definition, 251, 252
Pylance extension, 258–261
renaming symbols, 253, 254

components, 239
create projects, 241, 242
definition, 239
Microsoft, 240
running code, 243–249
running scripts, 261, 262

R
README.md file, 143, 147
Rebase, 161, 162, 170
Reload, 131, 135, 174

Responsible AI principles, 295
Reusable Code Snippets, 49, 53–54, 143
Roslyn, 47
Run Build Task, 192

S
SampleWorkspace, 93
settings.json file, 36, 110–111, 113, 116,

118, 136–138, 237, 256
Side Bar

accounts, 34–36
definition, 24
Explorer

Open Editors, 25, 26
outline view, 26, 28
timeline view, 29

extension, 33, 34
git integration, 31, 32
run/debug, 32, 33
search tool, 30, 31
settings button, 36

snippets.code-snippets, 143, 144
Software Development Kits (SDKs),

217, 296
Stash, 161, 163
Status Bar, 19, 22–23, 38, 43, 84, 86, 103,

156, 157, 165, 166, 232
Stock-keeping units (SKUs), 288

T, U
Tags property, 312, 320, 327
Tasks

auto-detecting, 192, 193
commands, 188
compile Pascal source code,

194–199, 201

INDEX

336

default build task, 192, 203
operating system, 208, 209
problem matchers, 212
properties, 203–207
reusing existing templates, 209–211
running default program, 213
running/managing, 187–191
substitution variables, 207, 208
tasks.json, 201, 202
types, 186

tasks.json file, 186, 192, 194–199, 201, 203,
207, 210, 214, 229

ToObservableCollection, 145
tsconfig.json file, 81, 88, 91, 189
TypeScript, 27, 29, 33, 38, 48, 57, 59, 80, 89,

91, 139, 185, 187–189, 193, 212
TypeScript compiler (tsc), 185

V
visualFeatures, 319, 326
VisualFeatureTypes enumeration,

310, 326
Visual Studio code

ASP.NET Core, 2
built-in debugger, 1
color themes, 2
cross-platform development tool, 1, 2

development platforms, 3
features, 3
installation/configuration

automatic updates, 12, 13
download page, 4
insiders builds, 14, 15
Linux, 9, 10
localization suppport, 11, 12
macOS, 8, 17
web, 16
Windows, 6, 7, 17

navigating between files, 36
Welcome page, 19, 20

vsc-extension-quickstart.md
file, 143

.vscode, 118, 186, 192, 196, 227

W, X, Y, Z
Web API REST services, 216
Windows Presentation Foundation

(WPF), 90
Workspace

creating, 95
multeor-master, 94
.NET Web API project, 93
open existing workspace, 95, 96
security, trust in action, 97–100
structure, 96

Tasks (cont.)

INDEX

	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: Introducing Visual Studio Code
	Visual Studio Code, a Cross-Platform Development Tool
	When and Why Visual Studio Code
	Installing and Configuring Visual Studio Code
	Installing Visual Studio Code on Windows
	Installing Visual Studio Code on macOS
	Installing Visual Studio Code on Linux
	Localization Support
	Updating Visual Studio Code
	Previewing Features with Insiders Builds
	Visual Studio Code on Web

	Summary

	Chapter 2: Getting to Know the Environment
	The Welcome Page
	The Code Editor
	Reordering, Resizing, and Zooming Editor Windows

	The Status Bar
	The Activity Bar
	The Side Bar
	The Explorer Bar
	The Outline View
	The Timeline View

	The Search Tool
	Searching in the Active File

	The Git Bar
	The Run and Debug Bar
	The Extensions Bar
	The Accounts Button
	The Settings Button

	Navigating Between Files
	The Command Palette
	The Panels Area
	The Problems Panel
	The Output Panel
	The Debug Console Panel
	Working with the Terminal

	Summary

	Chapter 3: Language Support and Code Editing Features
	Language Support
	Working with C# and C++
	Working with Python
	Working with Julia
	Working with Go

	Basic Code Editing Features
	Working with Text
	Syntax Colorization
	Delimiter Matching and Text Selection
	Code Block Folding
	Multicursors
	Reusable Code Snippets
	Word Completion
	Minimap Mode
	Sticky Scroll
	Whitespace Rendering and Breadcrumbs
	Markdown Preview

	Evolved Code Editing
	Working with IntelliSense
	Parameter Hints
	Inline Documentation with Tooltips
	Go to Definition and Peek Definition
	Go to Implementation and Peek Implementations
	Finding References
	Renaming Symbols and Identifiers
	Live Code Analysis
	Hints About IntelliCode

	Summary

	Chapter 4: Working with Files and Folders
	Visual Studio Code and Project Systems
	Working with Individual Files
	Creating Files
	Language Autodetection

	File Encoding, Line Terminators, and Line Browsing

	Working with Folders and Projects
	Opening a Folder
	Opening .NET Solutions
	Opening JavaScript and TypeScript Projects
	Opening Loose Folders

	Working with Workspaces
	Creating Workspaces
	Opening Existing Workspaces
	Workspace Structure
	Security: Workspace Trust
	Configuring Workspace Trust

	Summary

	Chapter 5: Customizing Visual Studio Code
	Customizations and Extensions Explained
	Customizing Visual Studio Code
	Theme Selection
	Customizing the Environment
	Understanding User Settings
	Behind the Scenes: The settings.json File
	A Real-World Example: Working with Proxies
	Privacy Settings: Telemetry
	Synchronization Settings

	Understanding Workspace Settings

	Customizing Keyboard Shortcuts

	Creating Reusable Profiles
	Summary

	Chapter 6: Installing and Managing Extensions
	Installing Extensions
	Extension Recommendations
	Useful Extensions

	Managing Extensions
	Configuring Extensions

	Writing Your First Extension
	Setting Up the Environment
	Fixing PowerShell Script Problems

	Creating an Extension
	Developing the Extension
	Running the Extension
	Packaging Extensions
	Extension Development Summary

	Summary

	Chapter 7: Source Control with Git
	Source Control in Visual Studio Code
	Downloading Other Source Control Providers

	Managing Repositories
	Initializing a Local Git Repository
	Creating a Remote Repository

	Handling File Changes
	Staging Changes

	Managing Commits
	Working with the Git Command-Line Interface
	Creating and Managing Branches
	Switching to a Different Branch
	Merging from a Branch
	Resolving Merge Conflicts

	Hints About Rebasing Branches
	Deleting Branches

	Adding Power to the Git Tooling with Extensions
	Git History
	GitLens
	GitHub Pull Requests and Issues

	Working with Azure DevOps
	Creating a Team Project
	Connecting Visual Studio Code to a Remote Repository

	Summary

	Chapter 8: Automating Tasks
	Understanding Tasks
	Tasks Types
	Running and Managing Tasks
	The Default Build Task
	Auto-Detected Tasks
	Configuring Tasks
	Task Example: Compiling Pascal Source Code
	Multiple Tasks and Default Build Tasks
	Understanding tasks.json Properties
	Understanding Substitution Variables
	Operating System–Specific Properties
	Reusing Existing Task Templates
	Understanding Problem Matchers

	Running Files with a Default Program

	Summary

	Chapter 9: Building and Debugging Applications
	Creating Applications
	The Status of Microsoft .NET
	Setting Up .NET for VS Code Development

	Creating .NET Projects
	Creating Projects on Other Platforms

	Debugging Your Code
	Configuring the Debugger
	Managing Breakpoints
	Debugging an Application
	Evaluating Expressions
	The Call Stack
	The Debug Console Panel

	Configuring Debug Options

	Summary

	Chapter 10: Building Applications with Python
	Chapter Prerequisites
	Creating Python Applications
	Running Python Code

	Code Editing Features for Python
	Enhanced Word Completion with IntelliSense
	Understanding Function Parameters with Parameter Hints
	Quickly Retrieving Type Definitions
	Finding References
	Renaming Symbols
	Finding Code Issues with Linters

	Advanced Code Editing with Pylance
	Managing Pylance Settings

	Running Python Scripts
	Summary

	Chapter 11: Deploying Applications to Azure
	Introducing Azure Extensions
	Deploying Web Applications
	Installing Extensions
	Signing In to Azure Subscriptions
	Publishing Web Applications

	Creating and Deploying Azure Functions
	Configuring Visual Studio Code
	Creating Azure Functions
	Deploying Azure Functions

	Deploying Docker Images
	Docker Prerequisites
	Creating the Application Image
	Uploading the Application Image to a Container Registry
	Deploying the Docker Image to Azure

	Summary

	Chapter 12: Consuming AI Services
	Introducing Azure for AI
	General Considerations
	Introducing Computer Vision

	Setting Up Computer Vision Services
	Retrieving the Service Keys

	Consuming AI Services with .NET
	Setting Up Variables and Constants
	Creating Authenticated Service Clients
	Executing Image Analysis
	Running the Application
	Using the Debugging Tools

	Consuming AI Services with JavaScript
	Setting Up Variables and Constants
	Creating Authenticated Service Clients
	Executing Image Analysis
	Coding and Debugging Tools in Action

	Running the Application

	Consuming AI Services with Python
	Setting Up Variables and Constants
	Creating Authenticated Service Clients
	Executing Image Analysis
	Coding and Debugging Tools in Action

	Running the Application

	Summary

	Index

