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Preface 

Recent advances in the integration of multi-omics and multiparametric strategies, high-
throughput analysis of large datasets, and application of state-of-the-art methods at the 
single-cell resolution level and in 3D organoid models have revolutionized the field of 
precision oncology. The overarching goal of these efforts is to develop tools to monitor 
spatial and temporal changes in tumors, track tumor markers in blood, and ultimately 
develop precision medicine to combat the disease in real time. Various methodologies and 
reviews in this book, contributed by leading experts in cancer systems and integrative 
biology, will be an invaluable resource for researchers, pharmaceutical scientists, and oncol-
ogists interested in expanding their knowledge base in the current developments in cancer 
research. 

Washington, DC, USA Usha N. Kasid 
Austin, MN, USA Robert Clarke
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Chapter 1 

Introduction: Cancer Systems and Integrative Biology 

Robert Clarke 

Abstract 

The insights provided by the holistic approaches of systems and integrative biology offer a means to address 
the multiple levels of complexity evident in cancer biology. Often focused on the use of large-scale, high-
dimensional omics data for discovery in silico, integration with lower-dimensional data and lower-
throughput wet laboratory studies allows for the development of a more mechanistic understanding of 
the control, execution, and operation of complex biological systems. While no single volume can cover all of 
the advances across this broad and rapidly developing field, we here provide reviews, methods, and detailed 
protocols for several state-of-the-art approaches to probe cancer biology from an integrative systems 
perspective. The protocols presented are intended for easy implementation in the laboratory and often 
offer a clear rationale for their development and application. This introduction provides a very brief 
description of systems and integrative biology as context for the chapters that follow, with a short overview 
of each chapter to allow the reader to easily and quickly find those protocols of most interest. 

Key words Cancer, Data analysis, Integrative biology, Systems biology, Methods 

Systems and integrative biology combines, in a holistic manner, 
data obtained from different technological platforms—often across 
very high-dimensional omic scale measurements of the genome, 
transcriptome, proteome, and metabolome—with knowledge of 
time, space, and mechanism to create computational and mathe-
matical models that explain and/or predict the function(s) of living 
systems. Modeling and model interpretation require the multidis-
ciplinary integration of critical concepts from computer science, 
experimental biology and medicine, informatics, and statistics 
[1]. Thus, systems approaches rarely (if ever) reduce the under-
standing or interpretation of a system or function to a single gene 
or small topological feature comprised of several interacting nodes. 
It is the more widely applied reductionist approaches that focus on 
single nodes (genes, proteins, metabolites) or relatively small, 
low-dimensional signaling features or pathways (nodes and the 
edges that connect them). 

Usha N. Kasid and Robert Clarke (eds.), Cancer Systems and Integrative Biology, Methods in Molecular Biology, vol. 2660, 
https://doi.org/10.1007/978-1-0716-3163-8_1, 
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2023

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3163-8_1&domain=pdf
https://doi.org/10.1007/978-1-0716-3163-8_1#DOI


2 Robert Clarke

Major differences between systems and reductionist approaches 
include the scale and scope of perspective and analysis. Systems 
analyses place a central emphasis on the integration and coordina-
tion of actions across multiple, high-dimensional data spaces 
(computational modeling) that can often inform or guide modeling 
lower-dimensional scale data (mechanistic or semi-mechanistic 
mathematical modeling) to better understand or predict the con-
trol and/or execution of either a function within a complex system, 
or the entire system itself. Indeed, one of the more rapidly devel-
oping systems approaches is the iterative integration of computa-
tional analyses of high-dimensional data to identify tractable 
parameter spaces for mathematical modeling of low-dimensional 
data. Modeling of these lower-dimensional spaces can provide new 
insights on node-edge activities that can then refine the design or 
constrain features of the search space of a high-dimensional analy-
sis. Quantitative data on a node, as may be obtained from an in 
silico model(s) or wet laboratory reductionist experiment(s), can 
inform its priors in the Bayesian models often applied in high-
dimensional data analysis, or its parameter weight in a mathematical 
model in lower-dimensional analysis. 

Valid and insightful, the focused data and mechanistic insights 
obtained from reductionist approaches often provide the building 
blocks for modeling, validating, and/or interpreting key aspects of 
the in silico models built by systems scientists [1, 2]. For example, 
predictions from an in silico model may require mechanistic valida-
tion in wet laboratory experiments, such as when a model predicts 
that a specific gene is a central hub (a node with multiple edges 
connecting it with other nodes) that controls aspects of a specific 
cellular function. To understand how the node operates within the 
biological system, mechanistic validation of this prediction may 
require overexpressing and/or knocking down the expression of 
this node (hub gene) and then measuring how these perturbations 
affect the target cellular function and perhaps also the expression 
and/or function of other nodes to which it is connected. These wet 
laboratory experiments are often designed and interpreted from a 
reductionist perspective to assist in accomplishing the broader sys-
tems modeling goals. 

Chapters in this volume address, directly or indirectly, critical 
steps in integrative systems analyses. The volume includes some 
reviews, primary observations, and descriptions of tools or work-
flows for use or adaptation to meet several goals for systems scien-
tists. The wet laboratory experimental methods described include 
are detailed protocols that can be easily applied or adapted for use; 
some chapters reflect the authors’ experience with a method, along 
with guides or tips for method implementation or optimization. 
For in silico tools or workflows, readers will find detailed methods 
to allow for ease of adoption. High-dimensional data spaces have 
unique properties and challenges [2, 3]; several of the informatics



workflows provided here account for these issues. Beginning with 
Chapter 2, what follows below is a brief chapter-by-chapter over-
view to help readers make the most of this volume, which extends 
and adds substantially to our previously edited volume of cancer 
systems biology methods focused on gene networks [4]. 
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Large palindromic DNA sequences occur when nucleotide 
sequences are identical to their reverse complements; such palin-
dromic sequences are often associated with tumorigenesis [5]. In 
Chapter 2, Murata et al. describe a modified genome-wide analysis 
of palindrome (GAPF) protocol that includes an experimental 
approach and bioinformatics tool for isolating and amplifying 
DNA palindromes. Prior to applying PCR, denaturing and rena-
turing converts the DNA palindrome into dsDNA that can enrich 
palindromes with amplification of the target signal while concur-
rently reducing noise by S1 nuclease digestion. The modified 
approach allows for the use of low-input DNA concentrations and 
efficiently presents palindromes without the need for ultra-deep 
sequencing [5]. 

Transcriptome analysis has been greatly facilitated by the 
advent of RNA-seq, an approach that has begun to replace some 
of the earlier chip-based microarray platforms. The method 
requires the extraction of high-quality RNA, the preparation of 
mRNA libraries for next-generation sequencing, and bioinformat-
ics analysis of the resulting sequences that are often compared 
across different experimental conditions or phenotypes. Leshchiner 
et al. describe an experimental and bioinformatics pipeline to per-
form RNA-seq in Chapter 3 [6]. Using RNA extraction and analy-
sis from cancer cell lines as an example, a detailed experimental 
pipeline is described that includes the preparation of sequencing 
libraries without the need for either polyA-tail capture or rRNA 
depletion. The bioinformatics workflow for data analysis describes 
mapping reads to a reference genome, accurately quantifying indi-
vidual transcript expression values, and comparing transcript levels 
among different conditions of phenotypes [6]. 

Metastasis is a complex process that is a major driver of cancer 
mortality, yet much about the process and its regulation remains to 
be discovered [2]. A poorly understood area is the contribution to 
the metastatic cascade from the mitochondrial genome, a challenge 
that often reflects a limited choice of appropriate animal models, 
the multiple roles played by mitochondria, and the dynamical fea-
tures of mitochondrial biology. In Chapter 4, Welch et al. describe 
the rationale, development, and uses for a powerful and innovative 
mitochondrial-nuclear exchange (MNX) mouse model [7]. MNX 
mice contain the mitochondrial DNA from one strain and the 
nuclear DNA from another, generated by physically extracting 
and replacing pronuclei (one-cell embryos) from one mouse strain 
with those from another. Notably, the process eliminates the need 
for either back-crossing strains or the use of mutagens. MNX mice



facilitate analysis of the differences in mtDNA of mouse strains that 
exhibit differing intrinsic and extrinsic effects on metastasis. Since 
other diseases also exhibit differences in mitochondrial function, 
the MNX approach may have utility well beyond the study of 
metastasis in cancer [7]. 
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While established cancer cell line models from patient tumors 
have generated significant insights, studies with patient material 
xenografted directly into mice (patient-derived xenografts, PDX) 
or maintained in relatively short-term organoid culture (patient-
derived organoids, PDO) have shown their ability to retain impor-
tant features of the tumors from which they were derived [8]. Xu 
et al. describe in Chapter 5 a novel adaptation of the PDO method 
where a three-dimensional autologous culture method uses a 
patient’s own body fluid or serum to craft both a scaffold for 
organoid growth and to supplement the culture medium for 
PDO growth [9]. Two models are described where the method 
supported cells isolated either from pleural effusions or malignant 
ascites, or from solid tissue biopsies or surgically excised tumors. 
The 3D autologous culture method (3D-ACM) helps to preserve 
critical features of the microenvironment from the original tumor 
and to preserve key biological properties [9]. While this chapter 
provides methods and protocols, Kumar et al. provide a review of 
single cell and spatial analysis of organoid platforms in 
Chapter 22 [10]. 

A further recent advance in the omics revolution is reflected in 
the development of spatial omics technologies that map the spatial 
distribution of protein or RNA expression in cells and tissues. Wang 
et al. describe their experience with the nanoString Digital Spatial 
Profiler (DSP) in Chapter 6. An optimized DSP protocol is 
described that uses next-generation-based barcoding that enables 
formalin-fixed paraffin-embedded (FFPE) tissues to be subjected to 
high-plex RNA and protein profiling [11]. Techniques for sample 
preparation, DSP, and post-collection procedures are described in 
detail, enabling readers to more effectively initiate a DSP-based 
workflow for RNA and protein profiling of FFPE specimens. 

Single-cell RNA sequencing is one approach to deal with some 
forms of tissue heterogeneity in cancer specimens [12]. One major 
systems goal of interpreting single-cell RNA-seq data is the ability 
to build network models of a system of interest. A powerful 
approach for integrating single-cell RNA-seq data with network 
analysis is presented by The et al. in Chapter 7. Based on the 
existing method called Passing Attributes between Networks for 
Data Assimilation (PANDA), the authors clearly present a compu-
tational analysis pipeline that integrates gene expression data with 
both gene-coregulation, protein–protein interaction (PPI), and 
transcription factor binding motif data [13]. Application of the 
PANDA-based analytical pipeline is presented in the context of 
studying cancer drug resistance mechanisms.
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Mapping spatial protein expression in heterogeneous speci-
mens can also be accomplished using immunohistochemistry 
(IHC) when appropriate antibodies are available. When faced 
with multiple protein candidates, individual target protein analysis 
in single samples is often low throughput and can be time- and 
resource-demanding to screen a sufficient number of specimens to 
meet statistical power requirements. Nayak et al. [14] present an 
effective solution in Chapter 8 that applies the combined use of 
tissue microarrays (TMA) with multiplexed immunohistochemis-
try. The method is described in the context of studying nucleoside 
analog transport mechanisms in drug resistance in pancreatic can-
cer. The authors present a stepwise approach for performing multi-
plexed immunohistochemistry, TMA imaging, and the quantitative 
measurement of select marker expression, accompanied by a discus-
sion of central experimental design considerations [14]. 

Measuring spatial protein co-expression is a central feature of 
mapping PPIs. While IHC analysis is useful, inadequate resolution 
and other limitations can make definitive PPI visualization difficult. 
In Chapter 9, Miki et al. describe an in situ proximity ligation assay 
(PLA) that allows for a more direct visualization of PPIs in FFPE or 
frozen sections and in cultured cells [15]. Primary antibodies to 
each of the PPI components first bind their antigens, followed by 
binding to the respective primary antibodies of secondary antibo-
dies each of which bears an oligonucleotide. Treatment with a DNA 
ligase joins one oligonucleotide on one secondary antibody to 
another when the probes are within 40 nm of each other. Amplifi-
cation of the unique ligated reporter strand by PCR is performed 
such that a fluorescence-labeled probe that recognizes only the 
amplified product can then bind and enable visualization of the 
linked proteins. Hence, localization of an active PPI is visualized 
directly, providing a spatial analysis of proteins in a PPI [15]. 

Mass spectrometry-based platforms can provide primary data 
for multiomic proteome and metabolome analyses. However, 
downstream analysis, as required to map a peptide sequence to 
the correct protein or a molecular weight or other measured prop-
erty to the correct metabolite, can represent an analytical bottle-
neck. In Chapter 10, Heckendorf et al. describe an Omics 
Notebook open-source framework that supports initial exploratory 
analysis that can integrate and report MS-based multiomic data 
[16]. Omics Notebook is customizable and offers an automated 
and reproducible pipeline for rapid identification and visualization 
of functional patterns that are statistically significant and biologi-
cally interesting. The authors present a protocol for integrative 
analysis of multiomics data using Omics Notebook that can be 
adopted by high volume core laboratories and research centers. 

Extrinsic signals can be sensed by membrane proteins that then 
initiate and propagate intrinsic signaling to control or execute 
specific cellular functions. Single-cell data is often available but



can be sparse, with single-cell RNA-seq methods often missing low 
abundant transcription factor targets of extrinsic signals. Sagan 
et al., writing in Chapter 11, provide one solution in the form of 
the computational framework SPaRTAN (Single-cell Proteomic 
and RNA-based Transcription factor Activity Network) [17]. The 
novel SPaRTAN framework uses cellular indexing of transcriptome 
and epitope by sequencing (CITE-seq) data and information on 
cis-regulatory sites to capture the interactions between cell surface 
receptors and transcription factors that regulate expression of spe-
cific target genes. The analytical pipeline is presented in the context 
of applying SPaRTAN to CITE-seq data from peripheral blood 
mononuclear cells to connect cell surface molecules to downstream 
transcriptional events that control transcriptomic phenotypes [17]. 
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Highly multiplexed antibody staining of FFPE or frozen tissues 
can be accomplished using multiplex ion beam imaging (MIBI) and 
imaging mass cytometry (IMC), where metal ions released from 
primary antibodies are detected by time-of-flight mass spectrome-
try (ToF). This workflow retains spatial orientation of the primary 
antibody binding [18]. In Chapter 12, Risom et al. present clear 
and detailed protocols for the application of this workflow that 
includes antibody conjugation and validation, staining, and the 
collection of preliminary data using either MIBI or IMC. The 
protocol is potentially capable of detecting up to 50 targets and 
their spatial orientation in tissue sections. The approach is pre-
sented in the context of studies of mouse and human pancreatic 
adenocarcinoma [18]. 

Analysis of secreted proteins is central to understanding cell– 
cell communication and to define specific cellular phenotypes— 
particularly for immune cells. Current immunofluorescence-based 
approaches have limited detection sensitivity, which can be prob-
lematic for single cell-based approaches since cells must secrete 
thousands of molecules to exceed the detection limit [19]. Naveen 
et al. have developed a quantum dot-based method that, with near 
single-molecule resolution, can monitor proteins secreted from 
single cells. Chapter 13 describes the quantum dot-based single-
cell secretion analysis platform and its expansion to include multi-
plexing capabilities for cytokines, in the context of single-cell mac-
rophage polarization changes in response to different stimuli [19]. 

Cells also communicate through paracrine and endocrine sig-
naling facilitated by the production of extracellular vesicles (EVs). 
EVs can be disease biomarkers or provide a means to deliver drugs. 
Central to the study or use of EVs is the application of appropriate 
means for their isolation and identification. For example, the isola-
tion and characterization of EVs from human plasma can be used 
for diagnostic purposes. An effective pipeline for the characteriza-
tion and evaluation of plasma-derived EVs is described in 
Chapter 14 by Lihon et al. [20]. The pipeline includes a high 
recovery EVtrap method for EV isolation, protein extraction by a



phase-transfer surfactant method, and both qualitative and quanti-
tative MS strategies for proteome characterization. EVtrap uses a 
novel magnetic bead-based approach fully compatible with LC–MS 
strategies for EV proteome analysis. Data-dependent (DDA) and 
data-independent (DIA) acquisition protocols are presented for 
proteomic data acquisition and quantification by MS [20]. 
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Posttranslational protein modification is a dynamic process that 
is difficult to study at the proteomic scale in part because the steady-
state measurements recovered reflect the sum of each protein’s rates 
of biosynthesis and degradation. In Chapter 15, Jozwik et al. 
describe the use of a novel, large-scale, targeted antibody micro-
array time-resolved platform that can resolve total protein changes 
and the rates of biosynthesis of low-abundance proteins [21]. The 
study is presented in the context of exploring the proinflammatory 
signaling proteome in lung epithelial cells from cystic fibrosis. 
Feasibility of the approach, which is based on protein labeling 
with 35 S methionine and 32 P, is exemplified by the estimated pro-
teomic kinetics of over 500 low-abundance proteins. Hence, the 
method is sensitive and flexible, permitting identification of altera-
tions in posttranslational modification at a massively parallel 
scale [21]. 

Many standard approaches to study the spatial nature of cell 
interactions in the tumor microenvironment (TME) are often lim-
ited to either co-localization measures of a small number of anti-
gens or require the destruction of the TME architecture. A 
powerful multiplex fluorescent immunohistochemistry approach 
(mfIHC) for use with FFPE sections is described by McGue et al. 
in Chapter 16 [22]. The mfIHC approach preserves critical features 
of the TME architecture in the embedded tissue and can maintain 
the spatial relationship of cells. Antigen retrieval is used to allow 
application of primary and secondary antibodies that is then fol-
lowed by covalent binding of a fluorophore by a tyramide-based 
reaction. Stripping of the antibodies allows for several rounds of 
antibody application, largely eliminating species cross-reactivity. 
Signal amplification is also applied, reducing the autofluorescence 
often encountered in fixed tissues. The authors carefully discuss 
experimental design, staining, and imaging strategies for the imple-
mentation of mfIHC [23]. 

DNA damage, whether resulting from endogenous or exoge-
nous stressors, is an early driver of carcinogenesis. Methods to 
identify DNA damage rarely achieve single base pair resolution 
level across the entire genome. In Chapter 17, Jin et al. describe a 
circle DNA sequencing method (CD-seq) that directly addresses 
this limitation [23]. Following extraction of damaged/modified 
DNA, DNA is cleaved to produce fragment sizes of ~300–400 
bases, sonicated and cleaned to produce blunt ends and then ligated 
into circles. The modified base in the circle is cleaved, creating a 
double-strand break at the lesion sites, and the opened rings are



ligated to Illumina sequencing linkers and used for library prepara-
tion and sequencing using standard methods. CD-seq is applicable 
to the study of several different types of DNA damage [23]. 
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Developing novel strategies to eliminate drug-resistant cancer 
cells remains a major goal. In Chapter 18, Rivera–Torres et al. 
describe a CRISPR-directed gene editing approach to disrupt spe-
cific drug resistance genes [24]. The approach is presented in the 
context of targeting NRF2, a gene that regulates cellular stress 
response genes, in drug-resistant lung cancer cells. A nonviral 
delivery (CRISPRMax) is used to introduce CRISPR/Cas for 
gene disruption. The authors provide a detailed description of the 
methods and protocols [24]. 

Finding novel biomarkers and potential targets for cancer drug 
discovery and development remains a timely and important goal. In 
the context of racial disparities in pancreatic cancer, Bera et al. 
describe an integrative workflow for analyzing proteogenomic 
data and drug targets in Chapter 19 [25]. The authors make 
good use of publicly accessible data and tools including the cBio-
Portal genomics platform, TCGA data, the MD Anderson Cell 
Lines Project (MCLP), and information on specific genes as cap-
tured in GeneCards (www.genecards.org). Illustrating the feasibil-
ity of their approach, results from application of the workflow are 
presented for White, African American/Black, and Asian 
patients [25]. 

Vascular heterogeneity is a central feature of the TME of many 
solid tumors, and changes in tumor vasculature can affect critical 
functions of cancer cells including responses to altered nutrient and 
drug perfusion [12]. In Chapter 20, Kurz and Hahn present a 
protocol that uses morphological and topological data to study 
vascular heterogeneity and its role in therapy response. The proto-
col was applied to single plane illumination microscopy (SPIM) 
images of brain tissues where the vessels had been labeled with 
fluorescent lectin. SPIM images of tissue-cleared mouse brains 
were visualized and the vascular geometry and network topology 
modeled in silico to explore changes within the vasculotome [26]. 

Control of a cancer cell’s entry into mitosis can affect the rate of 
proliferation and responsiveness to mitotic poisons such as the 
taxanes and Vinca alkaloids. Boudreau et al. explore the role of 
DEPDC1B (BRCC3, XTP8, XTP1) in controlling entry into mito-
sis in Chapter 21. The authors propose that DEPDC1B affects 
AKT1 and ERK signaling and show that expression of DEPDC1B 
is a strong candidate biomarker for breast, lung, pancreas, and renal 
cell cancers [27]. These initial studies implicate DEPDC1B as a 
protein partner of the p856 subunit of PIK3, as a regulator of ERK 
and AKT cross talk, and as a cell de-adhesion mitotic checkpoint. 
Moreover, DEPDC1B is regulated by Raf1 and is a direct target of 
SOX10 and so may be a central promoter of angiogenesis and 
metastasis [27].

http://www.genecards.org
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In Chapter 22, Kumar et al. provide a detailed perspective on 
the development and application of organoids. Starting with orga-
noid emergence and construction, the authors then discuss orga-
noid structural and molecular analysis, application of organoid 
platforms, challenges, and practical issues and conclude their per-
spective with a discussion on general use and future prospects 
[10]. Above in Chapter 5, Xu et al. describe a three-dimensional 
autologous organoid culture method [9]. 

Biomolecular condensates are micro-compartments that lack a 
membrane and can include proteins that can form weak and multi-
valent intermolecular interactions separate from the solvent phase 
(liquid–liquid phase separation; LLPS). These condensates are key 
spatiotemporal regulators of their component parts, and changes in 
their biomolecular phase separation can cause dysregulation of the 
cellular processes controlled by condensate proteins. In 
Chapter 23, Li and Jiang review the role of phase-separated bimo-
lecular condensates in cancer and the methods used for their study 
[28]. The authors start with a discussion of the analysis phase 
separation of a protein of interest, expand their discussion into 
functional analyses in cancer, and then mechanistic studies of how 
phase-separated biomolecular condensates regulate cancer. In addi-
tion to citations to the primary literature, the text notes useful 
reviews by others to help readers find more expansive discussions 
of methods and guidelines for LLPS study [28]. The following 
chapter (Chapter 24) includes a discussion of the role of gain-of-
function (GOF) mutations in protein aggregation and LLPS [29]. 

While loss-/disruption-of-function mutations have received 
significant attention, in Chapter 24, Li et al. review the role of 
gain-of-function (GOF) mutations in precision medicine [29]. 
The authors provide a broad discussion of GOF mutations, how 
these have been characterized in multiomic studies, and the mech-
anistic effects of GOF mutations in signaling networks. How more 
recent advances in bioinformatics and computations tools and 
resources can aid the study of GOF and the consequences of their 
acquisition also is discussed. The review begins with a discussion of 
GOF and continues with their epigenetic regulation and consider-
ation of the role of GOF mutations on transcription factor func-
tion, lncRNAs, pseudogenes, PPIs, and posttranslational 
regulation. While these sections deal primarily with GOFs and 
cancer, additional sections consider neurodegenerative and inflam-
matory diseases. Adding to the material presented above in 
Chapter 23 by Li and Jiang [28] on phase-separated bimolecular 
condensates in cancer, the chapter here explores how GOFs may 
affect LLPS function. Finally, the authors describe a series of key 
computational resources for predicting GOF mutations and end 
with a brief concluding section and comments on the potential for 
future studies of GOF mutations [29].
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The contents of this volume cover a broad area of topics related 
to cancer systems and integrative biology. The brief introduction to 
each chapter provided above is intended primarily as a guide and to 
help readers quickly and easily find the material of most interest. 
While it is not possible to cover all areas with the depth evident in 
the chapters here and in our prior volume on cancer gene network 
methods [4], it is hoped that readers will find the insights from 
several chapters relevant and useful in their own cancer systems and 
integrative biology studies. 
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Chapter 2 

Genome-Wide Analysis of Palindrome Formation 
with Next-Generation Sequencing (GAPF-Seq) 
and a Bioinformatics Pipeline for Assessing De Novo 
Palindromes in Cancer Genomes 

Michael M. Murata, Armando E. Giuliano, and Hisashi Tanaka 

Abstract 

DNA palindromes are a type of chromosomal aberration that appears frequently during tumorigenesis. 
They are characterized by sequences of nucleotides that are identical to their reverse complements and often 
arise due to illegitimate repair of DNA double-strand breaks, fusion of telomeres, or stalled replication 
forks, all of which are common adverse early events in cancer. Here, we describe the protocol for enriching 
palindromes from genomic DNA sources with low-input DNA amounts and detail a bioinformatics tool for 
assessing the enrichment and location of de novo palindrome formation from low-coverage whole-genome 
sequencing data. 

Key words DNA palindromes, Fold-back inversions, Inverted repeats, Breakage–fusion–bridge 
(BFB) cycles, Large chromosomal aberrations, Genomic amplification, Genomic instability, Next-
generation sequencing, Bioinformatics 

1 Introduction 

Large structural rearrangements of chromosomes are common in 
human cancers, and they often enable gene amplification and 
subsequent tumor progression [1–3]. This type of genomic insta-
bility is described by breakage–fusion–bridge (BFB) cycles in which 
broken telomeres or other regions of DNA allow chromosome 
fusion and the formation of dicentric chromosomes that break 
unevenly during anaphase (Fig. 1)  [4–8]. Several cycles of this 
breakage–fusion–bridge create large palindromic sequences in the 
DNA, also called fold-back inversions, as well as copy number gains 
and losses [6, 7, 9]. A microarray-based approach for the genome-
wide analysis of palindrome formation called GAPF was developed 
in 2005 to assess palindrome-containing regions and to identify
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potential loci for subsequent gene amplification [10–12]. Briefly, 
input genomic DNA is digested with KpnI or SbfI, two relatively 
infrequently cutting restriction enzymes. The reaction products are 
then combined, and the mixture is boiled to denature double-
stranded DNA (dsDNA). The solution is immediately quenched 
in ice water to rapidly anneal palindromic sequences, which are 
physically tethered together and can easily align complimentary 
sequences, whereas non-palindromic sequences are disassociated 
during boiling and remain as single-stranded DNA. The DNA 
solution is digested using the single-strand specific nuclease S1 to 
isolate the DNA palindromes. The remaining dsDNA is used to 
create libraries for next-generation sequencing (Fig. 2). This strat-
egy was modified in 2014 for high-throughput sequencing to 
pinpoint palindromic junctions [4, 13].
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Fig. 1 Breakage–fusion–bridge (BFB) cycles. Double-stranded DNA breaks can create DNA palindromes via 
BFB cycles. Subsequent BFB cycles can create copy number variation. These processes are common in 
human cancers and facilitate genome instability. (Modified from [9]) 

Here, we describe a modified GAPF protocol for isolating and 
amplifying DNA palindromes from genomic DNA sources with 
low-input DNA amounts and a bioinformatics pipeline for assessing 
the enrichment and location of de novo palindrome formation 
(Fig. 3). Native DNA palindromes typically represent a structural 
challenge for genomic studies because the Taq polymerase involved 
in PCR and library construction for whole-genome sequencing 
cannot navigate the secondary structure of self-annealed palin-
dromes [14]. Therefore, these technologies may underestimate 
palindromes and fold-back inversions. With GAPF, the denaturing 
and renaturing step prior to any PCR steps converts the DNA



palindrome into dsDNA amenable to amplification by PCR. Fur-
thermore, this procedure for enriching palindromes confers the 
advantages of simultaneously amplifying target signal (via PCR) 
and reducing background noise (via S1 nuclease digestion) without 
targeted analysis and, thus, can efficiently present palindromes in 
sequencing data without ultra-deep sequencing [15]. 
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Fig. 2 Principles of genome-wide analysis of palindrome formation (GAPF). DNA 
containing palindromic sequences can be denatured and rapidly renatured via 
intrastrand self-annealing of complimentary sequences that share a DNA 
backbone to form double-stranded DNA. Non-palindromic DNA sequences 
remain single-stranded and are digested by a single-strand specific nuclease. 
The double-stranded DNA can be used to create DNA libraries for sequencing 
during which palindromic signal is amplified by PCR 

2 Materials 

2.1 GAPF 1. SbfI-HF and CutSmart buffer (New England Biolabs, 
R3642S). 

2. KpnI-HF and NEBuffer 1.1 (New England Biolabs, R3142S). 

3. S1 nuclease and buffer (Invitrogen, 18001016).
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Restriction 
enzyme digestion 

(step 3.1) 
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(step 3.2) 
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(step 3.2) 

ssDNA 
digestion 
(step 3.3) 

SbfI KpnI Boiling water Ice quenching S1 nuclease 
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Formamide 
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37oC 100oC 0oC  oC 

Fig. 3 Laboratory procedure for GAPF. Genomic DNA is digested by infrequently cutting restriction enzymes 
SbfI or KpnI. With the addition of NaCl and formamide to help facilitate denaturing, the DNA solutions are 
mixed and boiled. Then, the DNA solution is rapidly quenched in ice water to renature DNA palindromes into 
double-stranded DNA. Single-strand specific S1 nuclease is added to digest any non-palindromic DNA that 
remains single-stranded 

4. Monarch PCR and DNA Cleanup Kit (New England Biolabs, 
T1030S). 

5. Formamide. 

6. 5 M NaCl. 

7. Nuclease-free H2O. 

8. Microcentrifuge tubes. 

9. Thin-wall microcentrifuge tubes. 

10. Microcentrifuge tube cap locks. 

2.2 Library 

Construction 

1. NEBNext Ultra II FS DNA Library Prep Kit for Illumina (New 
England Biolabs, E7805S). 

2. AMPure XP Beads (Beckman Coulter Inc., A63881). 

3. 10 mM Tris–HCl, pH 7.5–8.0 with 10 mM NaCl (for adapter 
dilution). 

4. 80% ethanol (freshly prepared). 

5. 1× TE: 10 mM Tris–HCl, pH 8.0, 1 mM EDTA. 

6. 0.1× TE: 1:10 dilution of 1× TE in water. 

7. Qubit Assay Kit (Invitrogen, Q32851). 

8. Thin-wall PCR tube strips. 

9. Magnetic stand/rack.
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3 Methods 

Prepare all solutions using analytical grade reagents, and store them 
at room temperature unless indicated otherwise. Carry out all 
procedures at room temperature unless specified otherwise. Follow 
waste disposal regulations when disposing waste materials. 

3.1 DNA 

Fragmentation 

(Restriction Enzyme 

Digestion) 

1. Mix 30–1000 ng of DNA with nuclease-free H2O to a total 
volume of 34 μL in a 1.7 mL microcentrifuge tube (see 
Note 1). 

2. In a new 1.7 mL microcentrifuge tube, mix 17 μL of the DNA 
solution with 1 μL KpnI (10 U) and 2 μL 10× NEBuffer 1.1 for 
a total volume of 20 μL (see Note 2) (Fig. 3). 

3. In a new 1.7 mL microcentrifuge tube, mix the remaining 
17 μL of the DNA solution with 1 μL SbfI (10 U) and 2 μL 
CutSmart buffer for a total volume of 20 μL (see Note 3). 

4. Incubate at 37 °C in a water bath overnight (>16 h). 

5. Briefly spin in a microcentrifuge to bring the liquid to the 
bottom. 

6. Heat at 65 °C for 20 min to inactivate restriction enzymes (see 
Note 4). 

3.2 Snap-Back 1. Briefly spin in a microcentrifuge to bring the liquid to the 
bottom. 

2. Mix the 20 μL of KpnI-digested DNA and 20 μL of SbfI-
digested DNA with 1.8 μL 5 M NaCl, 45 μL formamide, and 
3.2 μL nuclease-free H2O in a thin-wall PCR tube (see Note 5). 

3. Apply a cap lock to prevent the tube from opening during DNA 
denaturing. 

4. Heat the DNA mixture in boiling water for 7 min to denature 
DNA (see Note 6). 

5. Immediately quench the DNA mixture in ice water for 5 min to 
rapidly renature DNA (see Note 7). 

3.3 S1 Digestion 1. Briefly spin in a microcentrifuge to bring the liquid to the 
bottom. 

2. Add 4.8 μL 5 M NaCl, 12 μL 10× S1 nuclease buffer, 2 μL S1  
nuclease (20 U/μL), and 11.2 μL nuclease-free H2O to the 
DNA mixture (see Note 8). 

3. Incubate at 37 °C in a water bath for 1 h.
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3.4 Purify DNA 

(Monarch PCR and 

DNA Cleanup Kit) 

1. Centrifugation should be carried out at 16,000 × g 
(~13,000 rpm) at room temperature. 

2. Add 240 μL DNA Cleanup Binding Buffer to the S1 digested-
DNA sample. 

3. Mix well by pipetting ten times. 

4. Briefly spin in a microcentrifuge to bring the liquid to the 
bottom. 

5. Move liquid to a column, insert column into a 2 mL collection 
tube, and close the cap. 

6. Centrifuge for 1 min and then discard the flow-through. 

7. Add 200 μL DNA Wash Buffer, centrifuge for 1 min, and then 
discard the flow-through. 

8. Repeat step 7 once. 

9. Insert the empty column into the collection tube and centri-
fuge for 1 min. 

10. Transfer the column to a new collection tube. 

11. Add 15 μL DNA Elution Buffer and incubate for 1 min at 
room temperature. 

12. Centrifuge for 1 min. 

13. Add 10 μL DNA Elution Buffer and incubate for 1 min at 
room temperature. 

14. Centrifuge for 1 min and save the sample (see Note 9). 

3.5 Library 

Construction (NEBNext 

Ultra II FS DNA Library 

Prep Kit for Illumina) 

1. Mix 22 μL of DNA, 4 μL nuclease-free H2O, 7 μL NEBNext 
Ultra II FS Reaction Buffer and 2 μL NEBNext Ultra II FS 
Enzyme Mix in a PCR tube. 

2. Vortex reaction for 5 s, and briefly spin in a centrifuge to bring 
the liquid to the bottom. 

3. In a thermocycler with the lid heated to 75 °C, incubate the 
reaction for 15 min at 37 °C followed by 30 min at 65 °C and 
then hold at 4 °C. 

4. Add to the reaction mixture 1 μL Ligation Enhancer, 2.5 μL 
diluted NEBNext Adaptor, and 30 μL Ligation Master Mix. 

5. Mix well by pipetting ten times set to 50 μL, and briefly spin in 
a microcentrifuge to bring the liquid to the bottom. 

6. In a thermocycler with no heated lid, incubate the reaction for 
15 min at 20 °C, and then hold at 4 °C. 

7. Add to the reaction mixture 3 μL USER Enzyme. 

8. Mix well by pipetting ten times set to 50 μL, and briefly spin in 
a microcentrifuge to bring the liquid to the bottom. 

9. In a thermocycler with the lid heated to at least 47 °C, incubate 
the reaction for 15 min at 37 °C, and then hold at 4 °C.



GAPF-Seq for Assessing De Novo Palindromes 19

10. Vortex magnetic beads. 

11. Add 57 μL magnetic beads to adaptor-ligated DNA. 

12. Incubate at room temperature for 5 min. 

13. Place magnetic bead DNA mixture on magnet for 5 min. 

14. Remove supernatant. 

15. On magnet, add 200 μL 80% ethanol, wait for 30 s, and then 
remove supernatant. 

16. Repeat step 15 once. 

17. Air-dry the magnetic beads for 3 min. 

18. Off magnet, add 17 μL 0.1× low TE buffer. 
19. Mix well by pipetting ten times. 

20. Incubate at room temperature for 5 min. 

21. Place magnetic bead DNA mixture on magnet for 5 min. 

22. Remove 15 μL supernatant and put into a new PCR tube. 
23. Add 5 μL Universal PCR Primer, 5 μL Index Primer, and 25 μL 

NEBNext Q5 Master Mix. 

24. Mix well by pipetting ten times set to 40 μL, and briefly spin in 
a microcentrifuge to bring the liquid to the bottom. 

25. In a thermocycler with the lid heated to at least 103 °C, 
incubate the reaction for 30 s at 98 °C followed by 20 cycles 
of 10 s at 98 °C and 75 s at 65 °C, then 5 min at 65 °C, and 
hold at 4 °C. 

26. Vortex magnetic beads. 

27. Add 45 μL magnetic beads to adaptor-ligated DNA. 

28. Incubate at room temperature for 5 min. 

29. Place magnetic bead DNA mixture on magnet for 5 min. 

30. Remove supernatant. 

31. On magnet, add 200 μL 80% ethanol, wait for 30 s, and then 
remove supernatant. 

32. Repeat step 31 once. 

33. Air-dry the magnetic beads for 3 min. 

34. Off magnet, add 33 μL 0.1× low TE buffer. 
35. Mix well by pipetting ten times. 

36. Incubate at room temperature for 5 min. 

37. Place magnetic bead DNA mixture on magnet for 5 min. 

38. Remove 30 μL supernatant and store in a DNA LoBind tube. 

39. Measure concentration of DNA with High Sensitivity Qubit 
Fluorometer for dsDNA using 2 μL of sample. 

40. Check size distribution with Agilent Bioanalyzer High Sensi-
tivity DNA chip.
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41. Sequence samples using an Illumina-based sequencing plat-
form with low sequencing depth (0.5–1.0× coverage is 
sufficient). 

3.6 Data Analysis 1. Trim raw *.fastq data with Trim_galore (v0.6.1) and Cutadapt 
(v2.3) with parameters “--length 55.” 

2. Align trimmed *.fastq data to hg38 reference genome using 
Bowtie2 (v2.3.5) with unpaired alignment. 

3. Convert *.sam alignment file using Samtools (v1.9) to binary 
format and sort the subsequent *.bam files. 

4. Filter uniquely mapped reads by applying a mapping quality 
filter of 40 using the “samtools view” command with para-
meters “-b -q 40” (see Note 10). 

5. Extract the number of sequencing reads after applying the 
mapped quality filter to determine the per-million scaling fac-
tor to normalize for mapping depth (see Note 11). 

6. Sort *.bam file using Samtools and convert to *.bed format 
using Bedtools (v2.28.0). 

7. Sort *.bed files using the “sort” command with parameters 
“-k1,1 -k2,2n.” 

8. Use Bedtools2 to take an alignment of reads as input and 
generate a coverage track as output in 1 kb nonoverlapping 
bins with parameters “-sorted -counts.” 

9. Use the scaling factor to normalize the coverage in 1 kb bins for 
the mapping depth. 

10. Locate regions of high coverage bins to identify de novo DNA 
palindromes (see Note 12). 

4 Notes 

1. This protocol has been optimized to efficiently enrich palin-
dromes from low-input DNA sources. 

2. Digestion by restriction enzymes is necessary to cut DNA into 
fragments that can be effectively denatured by boiling in later 
steps. It is recommended to create master mixes of the restric-
tion enzyme solution when handling multiple samples. 

3. In order to capture large DNA palindromes (~5 kb), DNA 
needs to be cut infrequently by KpnI or SbfI, and so, GAPF 
performs best when these restriction enzymes are used 
separately. 

4. During heat inactivation, begin heating water so that it is 
boiling by the time the heat inactivation step is completed.
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This minimizes the amount of time that DNA digested by KpnI 
or SbfI is exposed to the other restriction enzyme when these 
solutions are later combined. 

5. Minimize the amount of time that KpnI and SbfI are combined 
prior to boiling. It is recommended to create a master mix of 
the snap-back solution when handling multiple samples. Form-
amide and NaCl are necessary additions in order to facilitate 
efficient DNA denaturing. 

6. The timing is critical for denaturing and renaturing the DNA. 
Boiling for too long starts to degrade DNA, while too short 
does not efficiently denature dsDNA into ssDNA. 

7. It is best to prepare the ice water early (e.g., during heat 
inactivation of the restriction enzymes) so that the water can 
be cooled by the ice. Occasional stirring of the ice water during 
quenching will also prevent local increases of temperature. 

8. It is recommended to create a master mix of the nuclease 
solution when handling multiple samples. 

9. 2 or 3 μL of sample can be used for measuring sample concen-
tration by a Qubit 3.0 Fluorometer to assess the overall deple-
tion of DNA by comparing the remaining DNA to the input 
DNA prior to GAPF. 

10. The hg38 human reference genome contains palindromic 
sequences that will be amplified by this procedure [16]. 
Because alignment software will attempt to find a single point 
of origin, reads that can align to either arm of the palindrome 
will have a low mapping quality. To detect de novo palindrome 
formation in tumor samples, palindromes found in the refer-
ence genome can be removed using a filter for uniquely 
mapped reads. 

11. The per-million scaling factor is calculated by dividing the total 
number of reads in the file by 1,000,000. 

12. The threshold for what is considered “high coverage” can 
change depending on how efficiently GAPF enriched DNA 
palindromes. After the per-million scaling factor, the average 
coverage in 1 kb bins is approximately 0.3, so an appropriate 
threshold may be between 1.0 and 5.0 depending on the 
background signal in single-copy regions of the genome. 

Acknowledgments 

This work is supported by the National Cancer Institute (2 R01 
CA149385), Department of Defense (W81XWH-18-1-0058), 
Cedars-Sinai Medical Center (to H.T.), and the Margie and Robert 
E. Petersen Foundation (to A.E.G.).



22 Michael M. Murata et al.

References 

1. Li Y, Roberts ND, Wala JA, Shapira O, Schu-
macher SE, Kumar K, Khurana E, Waszak S, 
Korbel JO, Haber JE, Imielinski M, Akdemir 
KC, Alvarez EG, Baez-Ortega A, 
Beroukhim R, Boutros PC, Bowtell DDI, 
Brors B, Burns KH, Campbell PJ, Chan K, 
Chen K, Cortés-Ciriano I, Dueso-Barroso A, 
Dunford AJ, Edwards PA, Estivill X, 
Etemadmoghadam D, Feuerbach L, Fink JL, 
Frenkel-Morgenstern M, Garsed DW, 
Gerstein M, Gordenin DA, Haan D, Haber 
JE, Hess JM, Hutter B, Imielinski M, Jones 
DTW, Ju YS, Kazanov MD, Klimczak LJ, 
Koh Y, Korbel JO, Kumar K, Lee EA, Lee 
JJK, Li Y, Lynch AG, Macintyre G, 
Markowetz F, Martincorena I, Martinez-
Fundichely A, Meyerson M, Miyano S, 
Nakagawa H, Navarro FCP, Ossowski S, Park 
PJ, Pearson JV, Puiggròs M, Rippe K, Roberts 
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Chapter 3 

Sample Preparation and Differential Gene Expression 
Analysis of Human Cancer Cell Lines by RNA Sequencing 

Dmitry Leshchiner, Tommy V. Vo, and Sachi Horibata 

Abstract 

RNA sequencing (RNA-seq) is a method used for the high-throughput quantification of mRNA in a 
biological sample. It is widely used to investigate differential gene expression between drug-resistant and 
sensitive cancers to identify genetic mediators of drug resistance. Here, we describe a comprehensive 
experimental and bioinformatic pipeline to isolate mRNA from human cell lines, prepare mRNA libraries 
for next-generation sequencing, and perform post-sequencing bioinformatics analyses. 

Key words RNA-sequencing, mRNA, Gene expression, Transcriptomics 

1 Introduction 

Regulation of RNA levels is a fundamental way by which all cells 
modulate gene expression. Traditionally, approaches such as 
Northern blotting and quantitative PCR have been widely used to 
measure target RNA levels and to perform comparative studies 
[1, 2]. The early use of DNA microarrays enabled these types of 
analyses on the transcriptome-wide scale, albeit with low resolution 
[3]. More recent developments in second- and third-generation 
sequencing have enabled unprecedented high-resolution studies 
into RNA regulation [4]. This revolution led to the advent of 
RNA sequencing (RNA-seq) methods [5]. The use of RNA-seq 
on cancer cells, cancer models, and patient samples have dramati-
cally improved our understanding of the transcriptomic landscapes 
of cancers [6] and of the evolution of cancer drug resistance 
mechanisms [7]. Moreover, the recent applications of single cell 
RNA-seq [8] and spatial transcriptomics [9] have further enhanced 
our understanding of cancer drug resistance mechanisms [10]. 

RNA-seq often uses pools of high-quality RNA that are either 
enriched for polyA-tailed mRNAs or depleted for the highly abun-
dant ribosomal RNAs (rRNAs). Nevertheless, both approaches
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suffer from known challenges including low efficiency in the cap-
ture of mRNAs with short polyA tails (by the polyA tail enrichment 
approach) [11] or very low concentrations of remaining RNAs after 
rRNA depletion [12]. Moreover, downstream bioinformatic analy-
sis procedures of RNA-seq data can vary greatly between end users 
depending on the packages used [13, 14], making it difficult for 
new researchers to know how to perform their studies. Here, we 
demonstrate a detailed pipeline that can be used to isolate high-
quality RNA from human cancer cells, prepare sequencing libraries 
without preparation of polyA-tail capture or rRNA depletion, and 
perform typical downstream bioinformatic analyses of RNA-seq 
data [15]. Additionally, we will provide a general protocol addres-
sing three main bioinformatic steps for many RNA-seq analysis: 
(1) mapping reads to the reference genome, (2) quantifying tran-
script levels for each gene, and (3) finding genes that are differen-
tially expressed between different conditions such as drug-treated 
and drug-untreated cells or drug-sensitive and drug-resistant can-
cer cells.
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2 Materials 

2.1 RNA Preparation 1. Cell plates. 

2. Media for cell culture. 

3. PBS. 

4. RNAseZap. 

5. Cell lines. 

6. 1.5 mL nuclease-free tubes. 

7. Ice bucket. 

8. 100% ethanol. 

9. QIAGEN RNeasy Mini Kit. 

10. DeNovix or NanoDrop. 

11. Bioanalyzer system. 

12. Optional: RNase-Free DNase Set Kit. 

2.2 RNA-Seq Library 

Preparation 

1. 0.2 mL nuclease-free PCR individual tubes or tube strips. 

2. 1.5 mL nuclease-free tubes. 

3. Molecular-grade, nuclease-free water. 

4. PCR machine. 

5. QIAseq FastSelect -rRNA HMR kit. 

6. NEBNext Ultra II Directional RNA Library Prep Kit for 
Illumina. 

7. AMPure XP beads (Beckman Coulter) (see Note 1).
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8. Magnetic stand for 1.5 mL tubes. 

9. 80% ethanol, freshly prepared within 24 h prior to use. 

10. 0.1× TE, pH 7.4. 

11. NEBNext Adaptor (see Note 2). 

12. NEBNext Adaptor Dilution Buffer (10 mM NaCl, 10 mM 
Tris–HCl pH 7.5). 

13. USER enzyme (NEB). 

14. NEBNext Index primers (see Notes 2 and 3). 

15. Qubit dsDNA high sensitivity kit. 

16. Qubit 4 fluorometer. 

17. Agilent TapeStation or Bioanalyzer system. 

2.3 Bioinformatic 

Software and Tools 

1. FastQC. 

2. CutAdapt. 

3. A Linux/Unix-based machine with a at least 30 GB of RAM 
and 50 GB of disk space (see Note 4). 

4. Aligner software such as STAR [16], TopHat2 [17], RSEM 
[18], Salmon [19], or Kallisto [20] (see Note 5). 

3 Methods 

3.1 RNA Isolation 

(see Note 6) 

1. Spray the lab bench table with RNAseZap to decontaminate 
the area with any RNases. 

2. For adherent cancer cells (see Notes 7 and 8), rinse with PBS 
and place the 6-well plate on ice bucket. 

3. Add 350 μL of Buffer RLT (lysis buffer) to the cells according 
to manufacturer’s protocol. 

4. Use cell scraper or pipette tips to scrape off the lysed cells and 
place them into 1.5 mL nuclease-free tubes. 

5. For nonadherent cancer cells, rinse the cells with PBS and add 
350 μL of Buffer RLT to the cell pellet. 

6. Add 350 μL of 70% ethanol to the lysate and mix the samples 
by pipetting. Transfer 700 μL of sample mixture to RNeasy 
mini spin columns placed in a 2 mL collection tubes that are 
provided in the QIAGEN RNeasy Mini kit. 

7. Centrifuge the columns for 15 s at ≥8000 × g. Discard the 
flow-through that is now in the collection tubes (see Note 9). 

8. Following this step, there is an option to perform a DNase 
digestion using the RNase-Free DNase Set Kit to remove any 
DNA contamination in the samples.
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Fig. 1 Bioanalyzer tracers of typical high-quality total RNAs from untreated control and drug treated cancer 
cells that are used for RNA-seq. The tracers were generated by analyzing on RNA Bioanalyzer chips. (a) Gel 
representation of the major rRNA species in total RNA samples, with RNA integrity number (RIN) provided per 
sample at the bottom. RIN >8 indicates high-quality RNA preps. (b) Plots of isolated RNA sizes (bp). Generally, 
only the highly abundant rRNAs are observed, as indicated by the two major peaks

9. Add 700 μL of Buffer RW1 (a stringent washing buffer) to the 
RNeasy spin column to wash the samples. Close the lid, and 
centrifuge the samples for 15 s at ≥8000 × g. Discard the flow-
through. 

10. Add 4 volumes of 100% ethanol to Buffer RPE. 

11. Add 500 μL of Buffer RPE containing ethanol (a mild washing 
buffer) to the RNease spin column to wash the samples. Close 
the lid and centrifuge the samples for 15 s at ≥8000 × g. 
Discard the flow-through. 

12. Repeat step 7 but perform a 2-min spin instead of 15 s. 

13. Transfer the RNeasy spin column into a new 2 mL collection 
tube provided by the kit to increase the purity of the samples. 
Close the lid and centrifuge the samples for 1 min at ≥8000 × g 
to dry the membrane on the RNeasy spin column. 

14. Place the RNeasy spin column into a new 1.5 mL tubes. Add 
30 μL of RNase-free water and centrifuge for 15 s at 
≥8000 × g. Take the collected 30 μL samples, and let it run 
through the RNeasy spin column again to get a higher RNA 
yield. 

15. Check the RNA yield using DeNovix or NanoDrop. If the yield 
is high, dilute the samples with RNase-free water, and re-check 
for RNA yield and RNA quality. 

16. Send samples for further RNA quality control using RNA Bioa-
nalyzer. RNA integrity number (RIN) of at least 8 (represent-
ing high-quality minimally fragmented RNA) is recommended 
for RNA-seq library construction (Fig. 1a,b). 
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3.2 rRNA 

Hybridization 

1. For each unique sample, pre-chill a 0.2 mL PCR tube on ice for 
at least 2 min. 

2. Separately, thaw QIAseq FastSelect-rRNA reagent (from QIA-
seq FastSelect -rRNA HMR kit), First-Strand Synthesis buffer 
(from NEBNext Ultra II Directional Library prep kit), and 
Random Primers (from NEBNext Ultra II Directional Library 
prep kit) by holding tubes briefly in hands. Then, quickly 
vortex the tubes and centrifuge to collect all liquids to the 
tube bottom. 

3. Add the following reagents into each pre-chilled sample tube: 
1 μg of DNase I-pretreated total RNA in 4 μL volume, 4 μL of  
First-Strand Synthesis buffer, 1 μL of Random Primers, and 
1 μL of QIAseq FastSelect -rRNA reagent. Total volume 
should be 10 μL per tube (see Note 10). 

4. Mix by pipetting up and down five times, and then briefly 
centrifuge to collect all liquids to the tube bottom. 

5. Place sample tube into a PCR machine with hot-lid tempera-
ture at 105 °C, and perform the following sequential incuba-
tion steps: 15 min at 94 °C, 2 min at 75 °C, 2 min at 70 °C, 
2 min at 65 °C, 2 min at 60 °C, 2 min at 55 °C, 2 min at 37 °C, 
and 2 min at 25 °C, then hold at 4 °C (see Note 11). 

3.3 First-Strand 

cDNA Synthesis 

1. Prepare the next First-Strand cDNA synthesis step by gently 
flicking the tube bottom of the NEBNext First-Strand Synthe-
sis Enzyme Mix three to five times, then quickly centrifuging to 
collect liquids, and then placing tube on ice. Briefly thaw the 
NEBNext Strand Specificity Reagent by holding tube in hand, 
then vortexing and centrifuging to collect liquids, and then 
placing tube on ice. 

2. To each 0.2 mL PCR tube containing captured rRNA, add 
8 μL NEBNext Strand Specificity Reagent, 2 μL NEBNext 
First-Strand Synthesis Enzyme Mix. Total volume should be 
20 μL per tube. 

3. Mix each tube by pipetting up and down five times and briefly 
centrifuging to collect liquids to the tube bottom. 

4. Place sample tube into a PCR machine with hot-lid tempera-
ture at 80 °C and perform the following sequential incubation 
steps: 10 min at 25 °C, 15 min at 42 °C, and 15 min at 70 °C, 
then hold at 4 °C. 

3.4 Second-Strand 

cDNA Synthesis 

1. Prepare the next Second-Strand cDNA synthesis step by gently 
flicking the tube bottom of the NEBNext Second Strand Syn-
thesis Enzyme Mix three to five times, then quickly centrifu-
ging to collect liquids, and then placing tube on ice. Briefly 
thaw the NEBNext Second Strand Synthesis Reaction Buffer
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with dUTP Mix (10×) by holding tube in hand, then vortex 
and centrifuge to collect liquids. Place tube on ice. 

2. To each 20 μL First-Strand Synthesis product in 0.2 mL PCR 
tubes, add 8 μL of NEBNext Second Strand Synthesis Reaction 
Buffer with dUTP Mix (10×), 4 μL of NEBNext Second Strand 
Synthesis Enzyme, and 48 μL of molecular-grade nuclease-free 
water. Total volume should be 80 μL per tube. 

3. Mix each tube by pipetting up and down five times and briefly 
centrifuging to collect liquids to the tube bottom. 

4. Place sample tube into a PCR machine with hot-lid tempera-
ture at 40 °C, and incubate for 1 h at 16 °C. 

3.5 cDNA Cleanup 1. Pre-warm AMPure XP beads by leaving aliquots of the beads at 
room temperature for at least 30 min prior to use. 

2. For each sample, thoroughly homogenize the AMPure XP 
bead aliquots by vortexing, then add 144 μL of beads (1.8×) 
to a new 1.5 mL tube. 

3. Next, add 80 μL of the corresponding sample double-stranded 
cDNA product to the 144 μL of AMPure XP beads in the 
1.5 mL tube. Immediately mix by pipetting up and down ten 
times. 

4. Allow the cDNA-beads mixture to sit at room temperature for 
5 min. 

5. Apply the 1.5 mL sample tube to a magnetic stand. Keep the 
tube on the stand until all AMPure XP beads have separated to 
the magnetized tube wall and the solution appears clear (usu-
ally takes 1–2 min). 

6. Use a P1000 pipette tip to carefully remove and discard the 
aqueous clear solution without disturbing the AMPure XP 
beads (see Note 12). 

7. Without removing the tube from the magnetic stand, gently 
add 200 μL of 80% ethanol to the tube to wash the beads. Do 
not resuspend the beads. Allow the tube to remain on the 
magnetic stand, unperturbed, for at least 30 s. 

8. Use a P1000 pipette tip to carefully remove all 80% ethanol, 
leaving behind the beads that are still magnetized to the 
tube wall. 

9. Repeat the wash procedure once more with new 200 μL of 80% 
ethanol. 

10. Be sure to remove all traces of ethanol solution after the second 
wash by using a P10 pipette tip to remove residual solution 
from the tube bottom. 

11. Keep tube cap open to air-dry the beads for 5 min at room 
temperature (see Note 13).
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12. Transfer the tube from the magnetic stand to a tube holder. 

13. Use a P200 pipette tip to add 53 μL of 0.1× TE, pH 7.4 
directly to the AMPure XP beads. Be sure to pipette up and 
down five to ten times to get all the beads into solution and 
fully resuspended. 

14. Let the resuspended beads incubate at room temperature for 
2 min. 

15. Apply the tube back onto the magnetic stand, and wait for all 
beads to separate to the tube wall. The solution should appear 
clear (usually takes 2 min). 

16. Carefully transfer 50 μL of clear solution to a new 0.2 mL PCR 
tube. Completely avoid taking any AMPure XP beads. 

3.6 cDNA End Prep 1. Prepare the next Second-Strand cDNA synthesis step by gently 
flicking the tube bottom of the NEBNext Ultra II End Prep 
Enzyme Mix three to five times, then quickly centrifuging to 
collect liquids, and then placing tube on ice. Briefly thaw the 
NEBNext Ultra II End Prep Reaction Buffer by holding tube 
in hand, then vortex and centrifuge to collect liquids. Place 
tube on ice. 

2. To each 50 μL purified double-stranded cDNA in 0.2 mL PCR 
tubes, add 7 μL of NEBNext Ultra II End Prep Reaction 
Buffer, 3 μL of NEBNext Ultra II End Prep Enzyme Mix. 
Total volume should be 60 μL. 

3. Mix well by pipetting 50 μL volumes up and down five to ten 
times. Avoid making air bubbles. 

4. Place sample tube into a PCR machine with hot-lid tempera-
ture at 75 °C, and perform the following sequential incubation 
steps: 30 min at 20 °C, 30 min at 65 °C, then hold at 4 °C. 

5. Proceed immediately to the next adapter ligation step. 

3.7 cDNA Adapter 

Ligation 

1. Thaw NEBNext Adaptor by holding tube in hand. Then briefly 
vortex and centrifuge to collect all liquids. Finally place tube 
on ice. 

2. Dilute the NEBNext Adaptor 25-fold in NEBNext Adaptor 
Dilution Buffer. For example, to make a 50 μL diluted NEB-
Next Adaptor aliquot, mix 2 μL of NEBNext Adaptor and 
48 μL of NEBNext Adaptor Dilution Buffer. Briefly vortex 
and centrifuge to collect all liquids. 

3. To each 60 μL purified end-prepped double-stranded cDNA in 
0.2 mL PCR tubes, add 2.5 μL of 25-fold diluted NEBNext 
Adaptor, 1 μL of NEBNext Ligation Enhancer, and 30 μL  of  
NEBNext Ultra II Ligation Master Mix. Total volume should 
be 93.5 μL  (see Note 14).
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4. Immediately and gently mix the viscous solution by pipetting 
up and down ten times, while avoiding the introduction of air 
bubbles. 

5. Place sample tube into a PCR machine, with hot-lid tempera-
ture off, and incubate for 15 min at 20 °C. 

6. Take tube out of the PCR machine and place on ice. 

7. Add 3 μL of USER enzyme to each tube. Mix by pipetting up 
and down three to five times, avoiding the introduction of air 
bubbles. 

8. Place tube back into PCR machine, with hot-lid temperature at 
45 °C, and incubate for an additional 15 min at 37 °C. 

9. Continue to the next ligation cleanup step. 

3.8 Ligation Cleanup 1. Pre-warm AMPure XP beads by leaving aliquots of the beads at 
room temperature for at least 30 min prior to use. 

2. For each sample, thoroughly homogenize the AMPure XP 
bead aliquots by vortexing, then add 87 μL of beads (0.9×) 
to a new 1.5 mL tube. 

3. Next, add 93.5 μL of the corresponding cDNA ligation prod-
uct to the 87 μL of AMPure XP beads in the 1.5 mL tube. 
Immediately mix by pipetting up and down ten times. 

4. Allow the ligation product-beads mixture to sit at room tem-
perature for 10 min. 

5. Apply the 1.5 mL sample tube to a magnetic stand. Keep the 
tube on the stand until all AMPure XP beads have separated to 
the magnetized tube wall and the solution appears clear (usu-
ally takes 1–2 min). 

6. Use a P1000 pipette tip to carefully remove and discard the 
aqueous clear solution without disturbing the AMPure XP 
beads (see Note 12). 

7. Without removing the tube from the magnetic stand, gently 
add 200 μL of 80% ethanol to the tube to wash the beads. Do 
not resuspend the beads. Allow the tube to remain on the 
magnetic stand, unperturbed, for at least 30 s. 

8. Use a P1000 pipette tip to carefully remove all 80% ethanol, 
leaving behind the beads that are still magnetized to the 
tube wall. 

9. Repeat the wash procedure once more with new 200 μL of 80% 
ethanol. 

10. Be sure to remove all traces of ethanol solution after the second 
wash but using a P10 pipette tip to remove residual solution 
from the tube bottom.
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11. Keep tube cap open to air-dry the beads for 5 min at room 
temperature (see Note 13). 

12. Transfer the tube from the magnetic stand to a test tube 
holder. 

13. Use a P200 pipette tip to add 17 μL of 0.1× TE, pH 7.4 
directly to the AMPure XP beads. Be sure to pipette up and 
down five to ten times to get all the beads into solution and 
fully resuspended. 

14. Let the resuspended beads incubate at room temperature for 
2 min. 

15. Apply the tube back onto the magnetic stand, and wait for all 
beads to separate to the tube wall. The solution should appear 
clear (usually takes 2 min). 

16. Carefully transfer 15 μL of clear solution to a new 0.2 mL PCR 
tube. Completely avoid taking any AMPure XP beads. 

3.9 Library PCR 1. Prepare the next Library PCR step by gently flicking the tube 
bottom of the NEBNext Ultra II Q5 Master Mix three to five 
times, then quickly centrifuging to collect liquids, and then 
placing tube on ice. Briefly thaw the Universal PCR primer 
and NEBNext Index Primer(s) by holding tubes in hand, then 
vortex and centrifuge to collect liquids. Place tubes on ice. 

2. To each 15 μL purified adaptor-ligated cDNA in 0.2 mL PCR 
tube, add 5 μL Universal PCR primer, 5 μL NEBNext Index 
Primer, and 25 μL NEBNext Ultra II Q5 Master Mix. Total 
volume should be 50 μL (see Note 15). 

3. Mix by pipetting up and down five to ten times. 

4. Place sample tubes into PCR machine, with hot-lid tempera-
ture at 105 °C. Perform PCR amplification using the following 
cycling conditions: (1 cycle) 98 °C for 30 s, (9–12 cycles) 98 °C 
for 10 s, 65 °C for 75 s, and (1 cycle) 65 °C for 5 min, then 
hold at 4 °C (see Note 16). 

3.10 PCR Cleanup 1. Pre-warm AMPure XP beads by leaving aliquots of the beads at 
room temperature for at least 30 min prior to use. 

2. For each sample, thoroughly homogenize the AMPure XP 
bead aliquots by vortexing, then add 45 μL of beads (0.9×) 
to a new 1.5 mL tube. 

3. Next, add 50 μL of the corresponding PCR product to the 
45 μL of AMPure XP beads in the 1.5 mL tube. Immediately 
mix by pipetting up and down ten times. 

4. Allow the PCR product-beads mixture to sit at room tempera-
ture for 5 min.
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5. Apply the 1.5 mL sample tube to a magnetic stand. Keep the 
tube on the stand until all AMPure XP beads have separated to 
the magnetized tube wall and the solution appears clear (usu-
ally takes 1–2 min). 

6. Use a P1000 pipette tip to carefully remove and discard the 
aqueous clear solution without disturbing the AMPure XP 
beads (see Note 12). 

7. Without removing the tube from the magnetic stand, gently 
add 200 μL of 80% ethanol to the tube to wash the beads. Do 
not resuspend the beads. Allow the tube to remain on the 
magnetic stand, unperturbed, for at least 30 s. 

8. Use a P1000 pipette tip to carefully remove all 80% ethanol, 
leaving behind the beads that are still magnetized to the 
tube wall. 

9. Repeat the wash procedure once more with new 200 μL of 80% 
ethanol. 

10. Be sure to remove all traces of ethanol solution after the second 
wash but using a P10 pipette tip to remove residual solution 
from the tube bottom. 

11. Keep tube cap open to air-dry the beads for 5 min at room 
temperature (see Note 13). 

12. Transfer the tube from the magnetic stand to a test tube 
holder. 

13. Use a P200 pipette tip to add 23 μL of 0.1× TE, pH 7.4 
directly to the AMPure XP beads. Be sure to pipette up and 
down five to ten times to get all the beads into solution and 
fully resuspended. 

14. Let the resuspended beads incubate at room temperature for 
2 min. 

15. Apply the tube back onto the magnetic stand, and wait for all 
beads to separate to the tube wall. The solution should appear 
clear (usually takes 2 min). 

16. Carefully transfer 20 μL of clear solution to a new 1.5 mL tube. 
Completely avoid taking any AMPure XP beads. This sample is 
the final library, ready for RNA sequencing on an Illumina 
platform. 

3.11 Library 

Quantification and 

Assessment 

1. Use 2–5 μL of final library to quantify the concentration of 
dsDNA using the Qubit dsDNA high sensitivity system. Do 
not attempt quantification using NanoDrop or Denovix sys-
tems (or similar spectroscopic systems). They are not sensitive 
or accurate enough to measure these libraries.
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2. Use at least 1 μL of final library to also assess by Agilent 
TapeStation or Bioanalyzer systems. These systems can reliably 
provide the library fragment size distributions and dsDNA 
concentrations. 

3. Library concentrations and average fragment sizes are then 
used to compute the molarity of each library (in nM units). 
For multiplexing, equal molarity of each library is pooled 
together and then processed for sequencing. We do not discuss 
further the details of multiplexing, sample denaturation, sam-
ple dilution, and Illumina machine running because those steps 
are usually performed by sequencing core personnel (since it is 
not expected that the typical laboratory will have their own 
Illumina sequencer). 

3.12 Assessing 

Sequencing Quality 

1. The sequencer output is usually a fastq file that contains the raw 
sequence reads of the RNA. Raw sequencing fastq or fastq.gz 
data files can be opened using quality assessment software such 
as FastQC. This will give a broad overview of sequencing 
quality for each library using metrics such as number of total 
reads, quality scores of base-calls, and number of duplicated 
reads. Figure 2 shows example FastQC outputs for a successful 
RNA-seq library (Fig. 2a, b). 

2. The user can also modify reads (i.e., read trimming) using 
bioinformatic tools such as CutAdapt, depending on the qual-
ity of the sequencing data and the user needs. 

3.13 Understanding 

Pre-Alignment Data 

and Preparation 

1. A typical entry in a fastq file appears as in the example below: 
@SRR1111111 HWI-ST632:1601:1735:2104 length = 56. 
CCTGCCTGGGGGACCGACTAGGGAGCGCAGGGG 

AACGTGTACAAGAGCGCGCGCTG. 
+ SRR1111111 HWI-ST632:1601:1735:2104 length = 56. 
FCCCDC@ HACCCCDCDBCHCCDDCIFBFCCICH 

FICCDDCHCBHDCFCDCIHDCHFHHE. 
Each group of four lines provides information about a 

single read (or pair of reads if paired-end sequencing was 
performed). 

2. The first line, starting with the @ symbol, includes information 
about the SRR number (which is required for downloading the 
entire fastq file from NCBI’s Sequence Read Archive or from 
NCBI GEO), the ID of the instrument, the run and flow cell, 
and the length of the sequenced read. If pair-ended sequencing 
was performed, information about the paired read is also 
included in the first line. 

3. The second line is the base-sequence of the read.
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Fig. 2 Example FastQC plots of a raw fastq data file from a typical RNA-seq experiment. In this example 
RNA-seq experiment, single-end reads of 75-bases were sequenced on an Illumina NextSeq500 platform. The 
read data in the raw fastq data file was analyzed by FastQC software. (a) Distribution of mean quality scores 
(measured as Phred scores) across all sequenced bases in a read where green indicates typically good mean 
quality scores. (b) Plot of total counts of sequenced bases (y-axis) at various Phred scores (x-axis) 

4. The third line, starting with the + symbol, can be used to add 
any description information and usually is identical to the 
first line. 

5. The fourth line contains the sequencing quality data for each 
base in the same position as in the second line. 

6. The quality score is the estimated probability of a base being 
called incorrectly by the sequence machine. The higher the 
score, the higher the estimated sequencing quality. 

7. Important in conducting high-quality RNA-seq analysis is 
deciding the initial design of the study. Comparisons should 
be made between biologically relevant samples, with at least 
three biological replicates available per condition. Sequencing 
depth is also important in ensuring high data quality. Depth 
above ten million reads is generally recommended, with around 
30 million reads being the target for best-quality sequencing to 
allow the capture of expression changes of genes with low basal 
expression. 

3.14 Building the 

Reference 

Transcriptome 

1. The first step in any RNA-seq analysis is the building of refer-
ences for the alignment and quantification software. The user 
can find the exact command to build references in the docu-
mentation of the aligner package of choice, such as STAR, 
Tophat2, RSEM, Salmon, or Kallisto. 

2. The genome sequence of hg38 (human) can be found using 
these links:

• ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_ 
genbank/Eukaryotes/vertebrates_mammals/Homo_

ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_genbank/Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh38/seqs_for_alignment_pipelines/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_genbank/Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh38/seqs_for_alignment_pipelines/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
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sapiens/GRCh38/seqs_for_alignment_pipelines/  
GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz

• https://www.ncbi.nlm.nih.gov/assembly/GCF_00000140 
5.26/ 

3. The latest version of the reference human genome annotation 
can  be  downloaded from Gencode:  https://www.  
gencodegenes.org/human/. 

4. From here, the user needs to download a comprehensive gene 
annotation GTF file to prepare the reference genome by anno-
tating where expected genes are. 

3.15 Read Alignment 1. After running the scripts in reference building mode, the user 
needs to make sure that the same versions of the scripts will be 
used to perform the RNA-seq analysis—for some scripts, the 
references can be version-specific. 

2. An example of such a script would be one that accepts a 
“samples.txt” file where every line is the sample name, which 
will be used to find the fastq file and pass it on to the aligner of 
choice. After that, the output of the aligner (usually SAM or 
BAM files) should be passed on to the feature count script. If 
the program performs both steps, it will only need the fastq file 
as the user input. The user will also need to ensure that the 
script can determine whether the initial sequencing was done 
using the single- or pair-end method. 

3. It is important to perform another quality control check post-
alignment. 

4. This allows to check the quality of both the RNA-seq data and 
the alignment. This will also be able to detect contamination of 
samples with foreign DNA, improper references, PCR over-
amplification, and poorly performed RNA-seq sample 
preparation. 

5. Some examples of post-alignment quality assessment tools are 
Picard, Qualimap2, SAMTools, RSeQC, and, more recently, 
RNA-SeQC2. 

6. Understanding the various normalized gene expression units is 
also very important and is required to perform correct analysis: 

(a) CPM (counts per million) is the ratio between number of 
reads mapped to a gene and the total number of reads 
divided by a million (scaling factor). This does not allow 
for comparisons between genes within the same sample, 
since the number of mapped reads will be affected by the 
gene length, with longer genes inherently having higher 
counts. CPM can be used to compare expression levels of 
the same gene across different samples.

ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_genbank/Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh38/seqs_for_alignment_pipelines/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_genbank/Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh38/seqs_for_alignment_pipelines/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/
https://www.gencodegenes.org/human/
https://www.gencodegenes.org/human/
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(b) RPKM (reads per kilobase per million reads) and FPKM 
(fragments per kilobase per million reads) are calculated as 
the ratio of number of reads mapped to a gene, per 1000 
bases of the gene, and the total number of reads 
(in million units). The main difference between the two 
metrics is that the former is used for single-end sequenc-
ing, whereas the latter is used in pair-end sequencing. 
Both metrics allow for within sample comparison but 
should not be used to compare between samples. 

(c) TPM (transcripts per million reads) is a more advanced 
normalization metric which is proportional to RPKM/ 
FPKM were the number of reads to a gene is divided by 
the length of the gene in kilobases, giving reads per kilo-
base (RPK). Next, the sum of all RPK values in a sample is 
divided by a million to give the RPK scaling factor. At each 
base of the transcriptome, the ratio between RPK and the 
RPK scaling factor is the TPM. TPM is useful in compar-
ing expression levels between genes within a sample but 
comparisons across different samples can be affected by 
library composition. 

3.16 Differential 

Expression Analysis 

1. This analysis will determine which genes are overexpressed or 
downregulated in the condition of interest, relative to a 
control. For example, one can perform a differential gene 
expression analysis to test the effect a certain drug has on the 
transcriptional landscape of cancer cells. Differential gene 
expression analysis can also be used to compare gene expression 
profiles between drug-sensitive and drug-resistant cancer cells 
to determine a target or potential marker of drug resistance. 
There are multiple packages available for this type of analysis 
such as DESeq2 [21], edgeR [22], CuffDiff2 [23], and limma 
[24]. 

2. In order to run these programs, the researcher will need to 
generate a read count table. Most packages accept only raw 
read counts and not normalized TPM or FPKM, since normal-
ization removes many information that is used by the packages 
to make statistical calculations. Within the script, the user 
should identify which columns of the table represent the con-
trol conditions against which the comparison will be made. 

3. It is recommended to filter out genes with low read counts to 
avoid any possibility of false positive differential expression calls 
by the program. Biological replicates can help determine 
whether small expression changes represent statistical artifacts 
or biological phenomena.
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4. Another analysis that the user may want to perform is using 
dimension reduction techniques to test for transcriptional dif-
ferences between different samples. There are several methods 
to perform this type of analysis such as principal component 
analysis (PCA) or multidimensional scaling (MDS), which will 
determine if any sample is a significant outlier in the data. 

5. Once the preprocessing and quality control of the data are 
completed, the differential gene expression analysis can be 
performed. Every package has its own set of commands. 

6. After computing the differential gene expression analysis 
between the control and the test group, the user should iden-
tify genes which are significantly differentially expressed by 
applying cutoffs to the adjusted p-values (padj) and log2 fold 
change values (log2FC). Commonly used cutoffs are padj 
<0.05 and |log2FC| > 1. 

7. Also, the user can visualize the differential gene expression 
using a heatmap, MA plot, or a volcano plot. This is especially 
useful if there are multiple control and test groups (i.e., differ-
ent drugs). This will allow the user to quickly visualize the data 
and get an overview to begin building a scientific hypothesis. 

3.17 Gene Set 

Enrichment Analysis 

1. A common downstream analysis that can aid the researcher in 
generating scientific hypotheses based on RNA-seq data is gene 
set enrichment (Fig. 3). 

2. Enrichment is generally defined as an over-representation of 
genes within a predefined set of genes, such as a biological path-
way. This analysis can be performed using the gene set enrich-
ment analysis (GSEA) tool [25] (https://www.gsea-msigdb. 
org/gsea/index.jsp). The data needs to be formatted specifi-
cally for this tool, as detailed at https://software.bro 
adinstitute.org/cancer/software/gsea/wiki/index.php/ 
Data_formats. 

3. The enrichment score (ES) for a user-provided pre-defined 
set of genes (usually corresponding to a known pathway or 
gene ontology term) (see Fig. 3) is calculated by going down a 
list of genes which are ranked by the value of the differential 
expression. The ES for a pathway or ontology term increases 
when an encountered gene is present in the gene set and 
decreases when a gene is not in the set. The size of the increase 
or decrease depends on how close the gene is to the top or 
bottom of the ranked list. 

4. A phenotype permutation test is then performed in order to 
determine the statistical significance of the ES. A null distribu-
tion for ES is calculated based on the permuted data, and then 
the ES score is compared to it in order to calculate the nominal 
p-value.

https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats
https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats
https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats
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Fig. 3 Graphical representation of enrichment scores. Enrichment score (ES) quantifies the over-
representation of a user-defined gene set within a list of differentially expressed genes. Differential expression 
is determined from RNA-seq analyses described above. ES is calculated based on the maximum deviation 
value from zero during a random walk within a ranked gene list 

5. The ES is then normalized by gene set size which creates the 
normalized enrichment score (NES). False discovery rate 
(FDR) is then calculated for each NES to account for random 
false positives that arise from the multiple hypothesis testing. 

4 Notes 

1. These beads are normally stored at 4 °C. It is best to make small 
aliquots of these beads (up to 1 mL). Prior to transferring to 
new tubes, make absolutely sure to thoroughly mix the bead 
solution by vortexing or shaking of the bead container. 

2. Users can purchase the NEBNext Multiplex Oligos for Illu-
mina (Index Primers Set 1 and/or 2) which contains NEBNext 
Adapter, USER enzyme, Universal PCR primer, and NEBNext 
Index primers for single-indexing of libraries (compatible with 
Illumina sequencing).
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3. The Universal and Index primers can be found in the NEBNext 
Multiplex Oligos for Illumina (Index Primers Set 1 and/or 2) 
kits. Alternatively, they can be individually synthesized and 
PAGE-purified. The exact primer sequences can be found in 
the reference manual for the respective NEBNext Multiplex 
Oligos for Illumina kits. 

4. Most of RNA-seq analysis is server-based due to high compu-
tational requirements. The amount of time required to run 
alignment of a single RNA-seq sample can range from roughly 
30 min to several hours, assuming roughly 30 million reads and 
depending on processor speeds. Alignment is usually the most 
resource intensive part of RNA-seq analysis. 

5. Various aligners have been developed over the years such as 
STAR or Tophat2, which are most commonly used. After 
alignment, feature counts need to be counted, RSEM is also a 
popular package that can perform this task. 

6. Cell lysis can be done on different dates for replicates, but it is 
recommended that RNA isolation steps be performed together 
for all samples. 

7. Do not overgrow the cells in the plate before collection as that 
can affect gene expression. Ideal would be ~70% confluency 
depending on the cells. Growing cells in 6-well plate gives the 
most optimal result. In our hands, we noticed that having more 
cells (>1 × 106 ) clumps the RNA purification column and can 
result in low yield and/or poorer RNA quality. Also, while 
collecting the cells, the lysed samples should always be kept 
on ice to prevent RNA degradation. 

8. For adherent cells: RNA collection should be performed 
between 24 and 48 h after plating to provide enough time for 
the cells to attach to the culture plate or flask. 

9. During the centrifugation of the RNeasy spin column, the 
centrifugation step should be performed at room temperature 
and not at 4 °C to avoid any formation of precipitates that can 
ruin the RNA isolation. The RNA isolation step should be 
performed quickly but precisely. Once the RNA is purified, 
the samples should be kept on ice or stored at -20 °C. 

10. The QIAselect reagent contains probes that will hybridize to 
rRNA fragments within the total RNA. Bound rRNA frag-
ments cannot be used to generate cDNA in the subsequent 
steps of the library preparation procedure. 

11. This step will also result in RNA fragmentation. The indicated 
step procedure assumes intact RNA of RIN number at least 
8. For partially degraded RNA of RIN number 2–6, perform 
the incubation at 94 °C for 7–8 min, instead of 15 min.
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12. Be careful not to allow the AMPure XP beads to dry out. Once 
the beads are not in liquid suspension, it can take ~5 min for 
them to dry. The best practice is to remove liquid from the 
beads, then immediately add new solution to the beads to keep 
them hydrated. 

13. The beads should appear dark brown and a bit glossy. If the 
beads become light brown and flaky, they have over-dried. 
Over drying beads might cause unintentional loss of 
purified cDNA. 

14. We do not advise preparing a ligation pre-mix beforehand 
because the mixtures may not be stable in the long term. We 
generally add as needed directly from stock tubes of the various 
reagents. 

15. For each unique sample library, the same Universal primer 
(forward) will be used. But each unique sample library must 
use a different Index primer (reverse). If the user will make two 
or more unique libraries, we highly recommend using NEB-
Next Index 6 and 12 for the first two libraries, followed by any 
unique indices for all remaining libraries. Having two libraries 
with indices 6 and 12 will ensure that the user can safely 
multiplex their libraries (irrespective of how many libraries 
they have). However, if the user will only make one library, 
they can use any Index primer. 

The number of PCR cycles will depend on the quality of 
the input RNA material and should be optimized by the user to 
minimize PCR overamplification, while having sufficient 
library for sequencing (at least 100 ng). 
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Chapter 4 

Generating Mitochondrial-Nuclear Exchange (MNX) Mice 
to Identify Mitochondrial Determinants of Cancer 
Metastasis 

Danny R. Welch, Melissa A. Larson, Carolyn J. Vivian, and Jay L. Vivian 

Abstract 

Understanding the contributions of mitochondrial genetics to disease pathogenesis is facilitated by a new 
and unique model—the mitochondrial-nuclear exchange mouse. Here we report the rationale for their 
development, the methods used to create them, and a brief summary of how MNX mice have been used to 
understand the contributions of mitochondrial DNA in multiple diseases, focusing on cancer metastasis. 
Polymorphisms in mtDNA which distinguish mouse strains exert intrinsic and extrinsic effects on metastasis 
efficiency by altering epigenetic marks in the nuclear genome, changing production of reactive oxygen 
species, altering the microbiota, and influencing immune responses to cancer cells. Although the focus of 
this report is cancer metastasis, MNX mice have proven to be valuable in studying mitochondrial contribu-
tions to other diseases as well. 

Key words Mitochondria, Genetics, Mitochondria-nuclear exchange mice, Animal model 

1 Introduction 

Many diseases, like neoplasia, diabetes, neurodegenerative diseases, 
Alzheimer’s disease, Parkinson’s disease, and cardiovascular dis-
eases, have heritable underpinnings. Genetic contributions to 
these complex diseases have focused primarily on mutations or 
polymorphisms in the nuclear genome, but increasing evidence 
supports contributions of the mitochondrial genome as well. 
Unfortunately, the contributions of the mitochondrial genome 
have proven challenging to study for a variety of reasons summar-
ized below [1]. 

1.1 Challenges to 

Studying 

Mitochondrial Genetics 

As organelles, mitochondria have many roles. The function most 
associated with them is energy production, but controlling chemi-
cal oxidation and reduction as well as providing substrates for 
macromolecular biogenesis are also well recognized. Bioenergetic
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functions are documented for their contributions to many diseases. 
Yet, bioenergetics may not be the sole means by which the mito-
chondrial genome contributes to cellular functions [2–6].
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Mammalian mitochondrial genomes are circular DNA consist-
ing of ~16.5 kb encoding 13 protein subunits of the electron 
transport chain, 2 rRNA (16S and 12S), and 22 tRNA. Mitochon-
drial DNA (mtDNA) duplexes are distinguished by base composi-
tion, and there can be 10’s to 1000’s of copies per cell. Since an 
Alphaproteobacterium was first engulfed, it has lost most of its 
genome to the nucleus. Indeed, the nuclear genome encodes 
>90% of the molecules responsible for mitochondrial structure, 
function, bioenergetics, replication, and repair. In recent years, 
some of the genes remaining encoded in the mtDNA have been 
shown to have identical copies in the nuclear DNA [7, 8]. Look-
alikes within the nuclear genome require caution when interpreting 
sequencing-based associations. Furthermore, mitochondria are 
dynamic, changing shape and function depending on tissue type 
and physiological needs. Mitochondria can even change subcellular 
localization, depending upon cellular conditions [9–12]. 

Mitochondrial diseases are traditionally characterized as being 
caused by mutations in genes involved in oxidative phosphorylation 
and ATP synthesis [1]. The current prevalence of mitochondrial 
diseases is ~1:5000 people, but newer whole-genome analyses 
appear to be increasing the measured rates. Clinical diagnoses and 
definitive cause–effect relationships have been challenging for mul-
tiple reasons since penetrance and disease severity vary greatly, 
depending upon copy number variants per cell and thresholds of 
heteroplasmy leading to a detectable phenotype [13]. That is, if the 
mutational burden is below a certain level, cells may be phenotypi-
cally indistinguishable from fully wild-type, homoplasmic cells. 
However, if the percentage of mutant mtDNA within a cell exceeds 
a threshold, functions are impaired. Making matters more compli-
cated, cellular levels of heteroplasmy can change with age and 
depending upon stress [14–16], revealing age-associated or 
environmentally stimulated mitochondrial disease. Additionally, 
cross talk between mitochondria, the nucleus, and other cells influ-
ences epigenetic marks or the extracellular microenvironment 
which impact disease penetrance and/or severity [17–19]. Further, 
despite matrilineal inheritance, mitochondrial diseases can appear 
autosomal recessive or dominant, maternal, or X-linked. Within the 
mitochondrial genome, there are single-nucleotide variants that 
represent polymorphisms that confer disease susceptibility [4, 20, 
21]. Acquired somatic mutations, deletions, and/or mtDNA 
depletion can be driven by nuclear gene defects as well as compara-
tively high mutation rates due to high concentrations of reactive 
oxygen species in the mitochondrial milieu coupled with poor or 
incomplete repair of mtDNA. Despite all of these technical and 
biological issues related to difficulty in studying mitochondrial



genetics, mutations and polymorphisms in mtDNA are increasingly 
becoming recognized as important contributors to complex 
diseases. 
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1.2 Models for 

Studying 

Mitochondrial Genetics 

Previous studies of the contributions of mitochondria in normal 
physiology and pathologies have utilized generation of “rho-null” 
cells which contain no mtDNA and replacing the mitochondrial 
genome with the mtDNA of choice [22–24]. The newly con-
structed cells are termed cybrids. While powerful, the generation 
of rho-null cells involves prolonged exposure of cells to low-grade 
mutagens, like ethidium bromide. The possibility of non-mtDNA 
mutations is high, and subsequent interpretation of experimental 
results could be challenged. Other approaches to study mitochon-
drial genetics involve repeated (>8–10×) backcrossing to create 
congenic mice or xenomitochondrial animals which involved a 
rho-null intermediate. Bussard and Siracusa reviewed the relative 
strengths and weaknesses of these historical approaches [25]. We 
desired an experimental model in which no further genotype com-
plexity was introduced by nuclear crossover or recombination in 
filial generations or exposure of cells to mutagens. 

These considerations led us to develop mitochondrial-nuclear 
exchange (MNX, pronounced minx) mice. MNX mice contain 
nuclear DNA from one strain of mouse and mitochondrial DNA 
from a different strain of mouse. Details regarding the methods 
used to generate MNX mice are provided below. However, the 
salient point is that micropipettes were used to physically extract 
and replace pronuclei of one mouse strain as one-cell embryos and 
replacing them with pronuclei from another strain. This methodol-
ogy, which eliminates mutagen exposure and backcrossing, can be 
applied, in theory, to any mouse strains. To date, MNX mouse 
strains that have been generated from different strain combina-
tions, are stable, and are successfully bred through many genera-
tions for more than a decade. 

The methodology we developed allows for the efficient intro-
duction of transferred pronuclei into the enucleated zygote using 
the membrane fusion machinery of the Sendai virus. This technique 
is distinguished from other nuclear transfer methods, which use 
direct microinjection of pronuclei for transfer into enucleated 
zygotes. Although the two methodologies have not been rigor-
ously compared, the Sendai virus fusion method described here 
may be gentler to increase survival and may also reduce the likeli-
hood of transfer of perinuclear mitochondria from the karyoplast 
donor strain. With appropriate technical skill and robust assessment 
of homoplasmy, mice derived from these reconstituted embryos can 
be identified in which the associated cytoplasmically localized mito-
chondria from the first strain constitute the sole mitochondrial 
population.
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1.3 Mitochondrial 

Genetics in Cancer 

Metastasis 

Our focus has been to study the role of mtDNA in cancer, specifi-
cally cancer metastasis using MNX mice [26–31]. However, MNX 
mice have already proven useful for studying the role(s) of the 
mitochondrial genome in other diseases [32–35], development 
[36], and aging [29] as well. 

The rationale for exploring the contributions of the mitochon-
drial genome in cancer metastasis stemmed from an elegant study 
by Hunter et al. who discovered metastatic susceptibility loci in a 
genetic screen crossing MMTV-PyMT on the FVB/HeN genetic 
background with different mouse strains resulting in F1 progeny 
with different primary tumor latencies and metastatic potentials 
[37]. His lab subsequently identified nDNA-encoded metastasis 
modifier genes and, using comparative genomic analyses, showed 
inheritance of metastasis susceptibility [38–45]. However, the 
experimental design—male transgenic mice crossed with females 
of other strains—left open the possibility that maternal mtDNA 
inheritance was contributing to the observed changes in metastatic 
behavior. 

To address the possibility that differences in metastatic effi-
ciency were due to differences in mtDNA, we mated MNX mice 
with PyMT mice, keeping the nuclear genome constant 
(FVB/HeN) but crossing hemizygous PyMT sires with MNX 
females with wild-type (FVB/HeN), C57BL/6J, or BALB/cJ 
mtDNA. Because of maternal inheritance, the only experimental 
variable using this design is the mtDNA. The results obtained using 
MNX mice were nearly superimposable for primary tumor latency 
and metastasis [26]. 

The experiment was extended by testing the impact of mtDNA 
on tumor development and metastasis with a different oncogenic 
driver (HER2) [27]. Similar changes in metastasis were observed, 
but the results showed that mtDNA is a quantitative trait locus that 
alters efficiency of tumorigenicity and metastasis in a driver-
dependent manner. Further, simply aging MNX mice for more 
than 2 years did not develop spontaneous tumors at different 
rates compared to parental strains [29]; but metastatic potentials 
with C57BL/6J mtDNA consistently developed fewer, less aggres-
sive tumors, regardless of nDNA composition [31]. Critically, male 
MNX crossed with MMTV–Her2 (mtDNA is rarely paternally 
transmitted) F1 progeny did not cause a change in tumorigenicity 
or metastasis [27]. 

To provide further confidence that the pronuclear manipula-
tions were not responsible for the phenotypic changes observed, we 
recently replicated many of the non-cell autonomous studies utiliz-
ing conplastic backcrosses (>10 generations) and showed identical 
patterns of metastasis. No significant differences in mitochondrial 
mass, development of heteroplasmy, and transmission of mtDNA 
were observed (C.J. Vivian and D.R. Welch, unpublished 
observations).
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Recognizing that genetic crosses of transgenic with MNX mice 
also changes mtDNA in host (stromal) cells as well, we asked 
whether wild-type tumor cells behaved differently when injected 
into nDNA-matched (i.e., histocompatible) MNX mice. Syngeneic 
mammary and melanoma tumor cells were injected into wild-type 
or age-matched MNX mice, and lung colonization was measured. 
Interestingly, whenever host cells contained C57BL/6J mtDNA, 
metastasis was inhibited; whenever stromal cells had C3H/HeN 
mtDNA, metastasis was promoted [31]. These findings showed 
that mitochondrial signals from the stroma could directly or indi-
rectly alter tumor cell behavior. 

We assessed several possible mechanisms for mtDNA exerting 
effects on the phenotypes above. C3H/HeN mtDNA consistently 
produced higher reactive oxygen species than C57BL/6J mtDNA. 
Metastasis increased with higher ROS levels, and scavenging ROS 
with MitoTEMPO resulted in fewer metastases [27]. Recognizing 
that ROS is commonly used by immune cells for killing, we also 
asked whether baseline immune profiles differ in MNX mice com-
pared to their nDNA-matched wild-type counterparts and whether 
there were differences in immune cell infiltrates into lung metas-
tases [30]. Although still under investigation, in healthy MNX 
mice, the immune compositions indeed differed, and the number 
and polarization states of myeloid populations infiltrating metas-
tases were significantly different [30]. 

Because mitochondria are central to metabolism, we reasoned 
that mtDNA SNP might change metabolomic profiles. Using the 
Metabolon platform, we examined >5000 metabolites from mam-
mary gland and lung compared in wild-type and MNX mice. As 
expected, MNX mice clustered differently from wild-type. How-
ever, specific metabolites corresponding to changing metastatic 
potential have not yet been identified, consistent with previous 
reports from our lab [27, 32] and other laboratories [46–49]. 

Recognizing that metastasis requires coordinated expression of 
multiple genes, we asked whether mtDNA changed nDNA expres-
sion patterns by altering DNA methylation and/or histone marks 
[28]. Using age- and sex-matched samples, we showed that there 
were selective changes in the transcriptomes of MNX mice [28] that 
corresponded with sites of cytosine methylation in a whole-genome 
analysis as well as histone methylation and histone acetylation/ 
methylation using ChIP-Seq. 

Lastly, since mitochondria are thought to have evolved from 
ancient bacteria [50] and since bacterial ecosystems form when 
microbes communicate with each other [51–53], we reasoned 
that mitochondria could retain the ability to communicate with 
some bacteria. If so, we reasoned that selective communication 
would result in promotion/inhibition of some bacterial species, 
resulting in a change in the microbiome. Deep sequencing of gut 
microbiota identified selective changes (8–17 bacterial species) in



the gut microbiome associated with mtDNA content and clear 
differences in microbiota depicted by principal component analysis 
(manuscript in preparation). Fostering pups with mothers with 
different mtDNA content did alter the microbiomes, but the 
underlying genetic changes were largely maintained. These data 
are presented as additional evidence of the specificity of mtDNA 
signals. 
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Collectively, these data show that the MNX mouse is a power-
ful, relatively new tool to study the contributions of mitochondrial 
DNA to physiological homeostasis and pathogenesis of disease. 

2 Materials 

1. Five prepubertal embryo donor female mice of the first desired 
strain (e.g., C57BL/6J) (see Notes 1 and 2). 

2. Five prepubertal embryo donor female mice of the second 
desired strain (e.g., FVB/HeN). 

3. Five sexually mature stud male mice of the first desired strain 
(C57BL/6J), individually housed. 

4. Five sexually mature stud male mice of the second desired strain 
(FVB/HeN), individually housed. 

5. Pregnant mares’ serum gonadotropin (PMSG), reconstituted 
to 50 IU/mL in sterile PBS. Aliquot and store at -20 °C. 
Avoid repeated freezing and thawing. 

6. Human chorionic gonadotropin (hCG), reconstituted to 
50 IU/mL in sterile PBS. Aliquot and store at -20 °C until 
use. Avoid repeated freezing and thawing. 

7. 1 cc insulin syringes with attached 28-gauge needles. 

8. M2 HEPES-buffered embryo handling medium, available 
commercially. 

9. KSOM bicarbonate-buffered embryo culture medium, avail-
able commercially (see Note 3). 

10. Light mineral oil or liquid paraffin. 

11. Hyaluronidase, reconstituted to 10 mg/mL in sterile PBS. 
Make 100 μL aliquots and store at -20 °C until use. 

12. Sterile plastic petri dishes, 35 mm and 60 mm. 

13. Surgical instruments, including watchmakers’ forceps (4 pair), 
4″ straight scissors, micro-scissors. 

14. Glass transfer capillary and pipetting apparatus. 

15. Stereomicroscope with transmitted light, 8–80× magnification. 

16. Micromanipulation assembly, including an inverted micro-
scope with 40–400× magnification, a pair of manipulators, a
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micrometer (CellTram Air or equivalent), a SAS air syringe or 
equivalent, and an XYClone laser objective or equivalent (e.g., 
Piezo drill). 

17. Fire-polished glass-holding pipettes, pulled on a needle puller 
and polished on a microforge. Alternatively, holding pipettes 
are available commercially. 

18. TransferTips (ES) or other embryonic stem cell injection 
needle. 

19. Demecolcine added to M2 medium, final concentration 
0.1 μg/mL. 

20. Cytochalasin B added to M2 with demecolcine, final concen-
tration 5 μg/mL. 

21. Sendai fusion virus (HVJ-E), resuspended to working concen-
tration at manufacturer’s suggestion, 50 μL aliquots stored at
-80° (see Note 4). 

22. Incubator at 37 °C, 6% CO2, and 5% O2. 

3 Methods 

3.1 Collection of 

Presumptive Zygotes 

1. Thaw a 1 mL aliquot of PMSG at RT or by rolling between 
your hands (do not heat in a water bath). Administer 5 IU 
(0.1 cc) PMSG by intraperitoneal injection to donor females 
3 days prior to scheduled procedure between 12:00 and 2: 
00 pm. 

2. Forty-six to forty eight hours later, administer 5 IU (0.1 cc) 
human chorionic gonadotropin (hCG) and mate females to 
individually housed stud males of their respective strain. 

3. Check copulation plugs the following morning. 

4. Prepare two 35 mm petri dishes with 3 mL M2, two dishes with 
3 mL M2 plus 100 μL aliquot of 10 mg/mL hyaluronidase 
(final concentration ~ 300 μg/mL), and two dishes with three 
100 μL drops of M2 overlaid with oil. 

5. Euthanize females according to your IACUC-approved Animal 
Care and Use Protocol. 

6. Lay females on their back and spray abdomen with 70% ETOH. 

7. Lift the skin over the abdomen and make a transverse incision 
with the straight scissors. Pull the skin apart and lift the skin 
toward the head of each mouse. 

8. With clean instruments, lift the body wall of one mouse, and 
cut the tissue open to expose the intestines. 

9. Locate the reproductive tract lying along the back wall. The 
ovaries will lie beneath the kidneys.
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10. Grasp one of the uterine horns with forceps just below the 
oviduct, and cut away the connective tissue with the spring 
micro-scissors. Pull gently to separate the oviduct from the 
ovary and cut. With the forceps still at the bottom of the 
oviduct, cut beneath the forceps to separate the oviduct from 
the uterine horn. Place the dissected oviduct in the dish of M2. 

11. Repeat the procedure for the contralateral oviduct in the same 
female, then repeat steps 8–10 for the remaining four donor 
C57BL/6J females until all oviducts have been collected for 
that strain. Repeat the procedure, collecting the ten oviducts 
from the FVB donor females, and place in a second dish. 

12. Working with one strain at a time, pick up an oviduct with clean 
forceps, and transfer to a dish of M2 with hyaluronidase. 

13. With a pair of watchmakers’ forceps, pin the oviduct to the 
bottom of the dish. With a second pair of forceps, tear open the 
ampulla and release the cumulus mass containing the presump-
tive embryos (see Note 5). Repeat the procedure for the 
remaining oviducts from that strain. 

14. Allow embryos to drop out of the cumulus cells. Pick up clean 
embryos with a transfer pipette and your pipetting apparatus 
(mouth pipette), and wash through two drops of M2 (without 
hyaluronidase). Hold in a drop of M2 overlaid with oil, or place 
in a drop of KSOM and hold in the incubator at 37 °C, 6% 
CO2, and 5% O2. 

15. Repeat steps 12–14 for the oviducts from the second strain (see 
Note 6). 

3.2 Zona Drilling 1. Place a dish of embryos in M2 overlaid with oil on the inverted 
microscope, and remove the lid of the dish. (If embryos were 
held in KSOM in the incubator, move back to a drop of M2 
with oil.) 

2. Locate the embryos on low magnification and swirl the dish to 
collect the embryos in the center of the drop. 

3. Rotate the XYClone objective (either 20× or 40×) into posi-
tion, turn on the computer, and open the laser software. 

4. Focus the laser on the zona of one embryo, at a point where the 
gap between the plasma membrane of the embryo and the zona 
is the greatest. 

5. Activate the laser to cut a hole in the zona. 

6. Move around the dish slowly, lasering one hole in the zona of 
each embryo (see Note 7). 

7. Repeat the entire process for the dish containing embryos of 
the second strain.
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3.3 Pronuclear 

Exchange 

1. Prepare a manipulation dish by placing two 100 μL drops of 
M2 with demecolcine and cytochalasin B in the middle of a 
low-profile 60 mm petri dish in a north/south orientation. 
Thaw an aliquot of Sendai fusion virus, and place a 50 μL 
drop in close proximity but east of the drops of M2. Overlay 
with oil (Fig. 1). 

2. Load the lasered C57BL/6J zygotes into the center of the 
southern drop of M2. 

3. Load the lasered FVB zygotes into the center of the northern 
drop of M2. 

4. Move the dish to the stage of the inverted microscope. Lower 
the holding pipette attached to the CellTram Air into the 
northern drop (FVB) of M2 from the left side. Adjust the 
height with the micromanipulators until the holding pipette 
is almost touching the bottom, but it does not scrape the 
bottom. 

5. Insert a TransferTip (ES) into the capillary holder attached to 
the SAS air syringe on the right side of the microscope. Lower 
the needle into the northern drop of M2 while observing with 
the 4× objective through the binoculars of the microscope. 
Stop when the injection needle is in focus with the holding 
pipette. Both capillaries should be near the group of FVB 
embryos.

Fig. 1 Construction of MNX embryos: C57BL/6J karyoplast to FVB cytoplast. Two 
100 μL drops of M2 medium with demecolcine (0.1 μg/mL) and cytochalasin B 
(5 μg/mL) are placed in the center of a 60 mm dish in a north/south orientation. A 
50 μL drop of Sendai cell fusion virus (HVJ-E) is placed just east of the drops of 
M2. Approximately 30 FVB zygotes are placed in the northern drop; 
approximately 20 C57BL/6J zygotes are placed in the southern drop (both 
groups possess a lasered opening in the zona). An ES cell injection needle is 
used to enucleate, then the B6 karyoplast is washed through Sendai cell fusion 
virus before transfer under the zona of the FVB cytoplast
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6. Increase magnification to 200× (or 400× if more comfortable). 

7. Pick up an FVB embryo while applying gentle suction with the 
holding pipette. Bring the two pronuclei of the one-cell 
embryo into focus. Rotate the embryo until the lasered hole 
in the zona is at approximately 2 o’clock position. 

8. Focus on one pronucleus until the pronuclear membrane is 
sharp and the interior appears rather clear. Adjust the height 
of the needle until the tip of the needle is focused on the same 
plane as the pronuclear membrane. 

9. Propel the needle forward until it passes through the lasered 
hole. This will give you some indication as to whether you have 
adjusted the needle to the middle of the embryo in the z plane. 
If you are too high or too low, you will likely roll the embryo. 

10. After the needle is within the perivitelline space, focus again on 
the pronucleus and adjust the height of the needle. Move the 
needle forward until it is in contact with the plasma membrane 
near the pronucleus. When you are very close to the pronu-
cleus, provide very gentle suction via the SAS air syringe to 
draw the pronucleus into the needle. Minimize the amount of 
cytoplasm that you withdraw. Move to the next pronucleus and 
repeat the procedure. When both pronuclei have been aspi-
rated, withdraw the needle. 

11. Move the enucleated cytoplast to the bottom of the drop. 
Expel the pronuclei in the needle at the top of the drop. 
Likewise, move any lysed embryos or cytoplasts to the top of 
the M2 drop, return to the center, pick up another embryo, 
and repeat the enucleation process. 

12. When all FVB embryos have been enucleated, raise the capil-
laries slightly, and move the stage of the microscope to the 
southern drop of C57BL/6 J zygotes at low magnification (see 
Note 7). 

13. Lower both capillaries into the drop, increase magnification, 
and immobilize an embryo on the holding pipette. Enucleate 
the C57BL/6J embryo in the same manner, being especially 
careful to minimize the amount of cytoplasm withdrawn with 
the pronuclei (see Note 8). 

14. With the C57BL/6J pronuclei still in the needle, move the 
stage so that the capillaries move to the drop of virus. Expel the 
pronuclei into the drop of fusion virus, then draw the pronuclei 
back into the needle. 

15. Move the stage again so that the capillaries move into the 
northern drop of FVB cytoplasts. Secure an enucleated FVB 
cytoplast onto the holding pipette and rotate until the lasered 
hole is in the 2 o’clock position. Insert the needle into the 
lasered hole, and deposit the C57BL/6J pronuclei in the
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Fig. 2 MNX embryo after reconstruction. A reconstructed MNX embryo is 
pictured. The tip of the holding pipette can be seen to the left, and the tip of 
the ESC needle is evident on the right. The FVB cytoplast contains no pronuclei, 
and the two C57BL/6J pronuclei have been transferred to the perivitelline space 
through the hole lasered in the zona of the FVB cytoplast 

Fig. 3 Reconstructed embryos. (a) Some of the transferred karyoplasts have not yet fused with the cytoplasts. 
(b) The C57BL/6J karyoplasts have fused with the FVB cytoplasts in all but one of the reconstructed embryos

perivitelline space of the FVB cytoplast (Fig. 2). Move the 
reconstituted embryo to the side of the drop. 

16. Move back to the southern drop of C57BL/6J embryos and 
repeat steps 13–15. When all C57BL/6J karyoplasts have 
been transferred to the FVB cytoplasts, remove the reconsti-
tuted embryos, and transfer to a drop of KSOM with oil and 
incubate overnight. It is already possible at this point to see 
that the karyoplasts and cytoplasts have fused (Fig. 3). 

17. Score MNX embryos for development to the two-cell stage 
(Fig. 4). Transfer two-cell embryos to 0.5 dpc pseudopregnant 
recipient females, 10 to 15 per recipient (see Note 9). 
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Fig. 4 MNX embryo development to pups. (a) Reconstructed embryos cultured O/N in KSOM have developed 
normally to the two-cell stage. MNX embryos are transferred to recipient females at this point with FVB control 
embryos. (b) A CD-1 recipient female is shown with her litter of pups that resulted from transfer of MNX 
embryos in the presence of carrier FVB control embryos. The MNX pups are black, as they contain C57BL/6J 
nuclear DNA; the FVB control pups are albino 

Fig. 5 Confirmation of homoplasmy by SNP analysis. Homoplasmic mitochondrial background of the MNX pups 
were confirmed using restriction fragment length polymorphism (RLFP) analysis of the PCR products using the 
9461 single-nucleotide polymorphism (SNP) that is distinguishable between the FVB/NJ and C57BL/6J mouse 
strains. PCR is performed followed by restriction digest with BclI. FVB and B6 mtDNA are distinguishable by a 
C to T mutation at position 9461. MNX containing B6 mtDNA will not have a PCR product digested with BclI, 
resulting in a 204 bp product. MNX containing the FVB mtDNA will have BclI digested product resulting in 
166 bp and 38 bp products. Top row BclI digest, bottom row 9461 PCR. Lanes 1 and 2 are wild-type B6, lanes 
9 and 10 are FVB controls, lanes 3–8 are MNX pups 

3.4 Genotyping 1. Mitochondrial DNA homoplasmy was confirmed by RFLP 
(restriction fragment length polymorphism) analysis of PCR 
products using SNP (single-nucleotide polymorphism) that are 
distinguishable between mouse strains (Fig. 5). Mouse DNA 
extraction was performed using REDExtract-N-Amp Tissue 
PCR kit. Mouse DNA was subjected to 35–40 cycles of PCR 
using primers that span the SNP of interest. PCR products 
were then digested with a restriction enzyme. Both PCR prod-
uct and restriction digested PCR product were run on 
agarose gel.
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4 Notes 

1. The strains of choice for creating an MNX mouse are 
completely dependent upon the research needs of the investi-
gator. This protocol depicts transferring C57BL/6J karyo-
plasts to FVB/HeN cytoplasts, but other strain combinations 
are certainly possible. It is also important to note that the 
similarly named mouse strains from different vendors (Jax, 
Charles River, Envigo, Taconic, etc.) are not genetically 
identical. 

2. Mouse strains differ in their response to superovulatory hor-
mones according to their age and weight [54]. C57BL/6J 
females superovulate well between 3 and 4 weeks of age, 
whereas FVB females superovulate best between 8 and 
10 weeks. 

3. Rather than using two different media (one HEPES buffered 
for handling embryos in air and one bicarbonate buffered for 
culture in a CO2 incubator), there are now commercially avail-
able media can be used for both environments. 

4. Alternatively, fusion between the transferred karyoplast and 
recipient cytoplast can be accomplished by electrical pulse, if 
the equipment is available to accomplish this. 

5. Scoring of the oviduct near the ampulla (the swollen and clear 
area of the oviduct) is an efficient means of isolating the cumu-
lus mass. The cumulus mass will be visible in the ampulla, and 
you need only to nick the oviduct to create an opening; the 
cumulus mass will ooze out on its own. 

6. Collecting presumptive zygotes from two different strains is 
more complicated than collecting from one strain, and 
embryos derived from different strains are virtually indistin-
guishable via microscopic examination. Above all else, be cer-
tain to maintain identity of the embryos with which you are 
working. It is possible to sacrifice the females from both strains 
and collect oviducts sequentially, but one should not try to 
process both groups through hyaluronidase at the same time. 
Begin by processing one group of oviducts from one strain 
through hyaluronidase, collect the denuded embryos, wash 
through M2 without enzyme and hold in M2 or KSOM 
under oil, then return and process the oviducts from the second 
strain. 

7. The procedure of creating an opening in the zona by laser may 
require practice—both for focusing the laser and for scaling the 
intensity of the pulse. This procedure may be practiced on 
denuded presumptive zygotes that do not display pronuclei 
and will only be discarded. Alternatively, an opening in the 
zona can be created with a Piezo drill.
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8. Mitochondria tend to cluster around pronuclei; therefore, by 
minimizing the amount of cytoplasm withdrawn with each 
pronucleus, the number of mitochondria transferred to the 
recipient cytoplast can be minimized, thus avoiding artificial 
heteroplasmy, unless this is an intended experimental outcome. 
It is possible to actually “brush off” extra cytoplasm by holding 
the enucleated pronucleus at the edge of the needle and brush-
ing against the opening of the holding pipette. However, this 
will require some practice, as the pronuclei will tend to lyse if 
performed too aggressively. Critically, all mice generated from 
this procedure must be tested for homoplasmy for the desired 
mitochondrial genotype. If heteroplasmy is detected using 
PCR, then the mouse should be discarded if homoplasmy is 
desired. 

9. Due to the technically challenging aspects of this procedure, it 
may not result in a large number of surviving MNX embryos, 
which may not be a sufficient number of embryos for transfer 
to pseudopregnant females to maintain pregnancy. It is sug-
gested that carrier embryos also be transferred to pseudopreg-
nant female hosts to assist in establishing the pregnancy. 
Embryos that have been lasered but not enucleated are suitable 
carriers for this process. If reconstructing FVB/HeN cytoplasts 
with C57BL/6J karyoplasts, then transfer five to 10 FVB 
embryos with the MNX embryos (Fig. 4). After confirmation 
of mitochondrial homoplasmy in the MNX pups, the line must 
only be propagated and maintained by mating MNX females to 
wild-type males of the nuclear strain. Similarly, the line should 
be cryopreserved by freezing embryos collected from MNX 
females mated to wild-type males. 
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Chapter 5 

3D-Autologous Culture Method for Precision Oncology 

Qian Xu, Meiling Yan, and Yao Tang 

Abstract 

The 3D-autologous culture method (3D-ACM) for patient-derived cancer samples utilizes a patient’s own 
body fluid or serum to prepare a 3D scaffold and for the culture medium. 3D-ACM enables tumor cells 
and/or tissues from an individual patient to proliferate in vitro, in a microenvironment that is very similar to 
their original, in vivo surroundings. The purpose is to maximally preserve in culture the native biological 
properties of a tumor. This technique has been employed for two models: (1) cells isolated from malignant 
ascites or pleural effusions (body fluids) and (2) solid tissues from biopsies or surgically removed cancers. 
Here we describe the detailed procedures for these 3D-ACM models. 

Key words Autologous culture, Patient-derived cancers, Malignant ascites, Pleural effusion, Solid 
tumor tissue, Microenvironment 

1 Introduction 

Three-dimensional (3D) in vitro cell/tissue culture models bridge 
the gap between traditional 2D culture models and native tissue 
systems and are widely used in routine laboratory research—includ-
ing organoid studies [1, 2]. The major difference between previous 
3D culture techniques and the 3D-autologous culture method 
(3D-ACM) described here is that to grow patient-derived cancer 
samples, 3D-ACM utilizes the patient’s own body fluid or serum to 
prepare a 3D scaffold and as the culture medium, rather than a 
foreign substance like fetal bovine serum (FBS) [3, 4]. Furthermore, 
it is not necessary to add any commercial reagents (e.g., growth 
factors, cytokines, chemokines) or specialized media (e.g., special 
serum-free media or artificially modified culture media) to 
3D-ACM cultures [3]. 
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3D-ACM can be employed to culture cancer cells freshly 
isolated from malignant body fluids (Subheadings 2.1 and 3.1) 
and small pieces of solid tumor tissues directly removed from cancer 
patients (Subheadings 2.2 and 3.2). To retain the native biochemi-
cal microenvironment, cancer cells/tissues from samples are 
prepared physically, instead of chemically. Gradient centrifugation 
is used for body fluid cultures to remove red blood cells while 
saving all other cells, including tumor cells, mesenchymal cells, 
and possible white blood cells. Physical dissection methods are 
employed for biopsies or surgically removed samples, without 
enzyme digestion. With these methods, almost all cellular compo-
nents and tissue structures in the original samples are preserved in 
the in vitro 3D-ACM cultures. In addition, the native growth 
patterns are protected by replicating the in vivo environment of a 
tumor; the cells isolated from body fluids are seeded onto 3D gels 
that resemble the smooth surface of pleural or abdominal cavities, 
while the solid tumor pieces are embedded into 3D scaffolds. 
Cells/tissues that we grew in 3D-ACM showed faster proliferation 
relative to traditional 3D-FBS culture methods and the ability to 
self-organize to form new tissues. In addition, the original histopa-
thology, immunophenotypes and cytokine production were well-
preserved [3, 4]. 

2 Materials 

Consent for the use of blood, body fluids, and surgical/biopsy 
samples is required from the patients and/or their families. 
Tumor donors must not have had chemotherapy, targeted therapy, 
or radiation treatment for at least 3 months prior to sample collec-
tion. The preparation and use of the experiment materials should be 
performed at 4 °C, unless indicated otherwise. All equipment 
(dishes, plates, pipettes, tubes/bottles, etc.) used in these cultures 
needs to be cooled overnight at -20 °C. Biological waste disposal 
regulations should be closely followed. 

2.1 Liquid Samples 

(Ascites or Pleural 

Effusions) 

1. Clinical sample: Fresh ascites or pleural effusions (≤5 h old) 
from a patient with malignant cancer. 

2. Autologous medium (AM): 

(a) Centrifuge the fresh ascites or pleural effusion at 
2000 rpm for 10 min to precipitate cells (these cells are-
further processed and used for the cell culture; see 
Subheading 3.1 step 2). 

(b) Gently remove the supernatant to a new container, then 
centrifuge at 10,000 rpm for 20 min to remove impurities 
in the liquid sample (e.g., cell debris).
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(c) Transfer the supernatant to the upper chamber of a sterile 
vacuum bottle with 0.45 μm pole size (we used the one 
with PES membrane from the Thermo Fisher company), 
then turn on a laboratory vacuum pump to filter the body 
fluid (see Note 1). 

(d) Add the selected antibiotic in an appropriate concentra-
tion (we used cefoperazone at a final concentration of 
20 μg/mL), then store the AM at 4 °C. 

3. Autologous Matrigel (AM-Matrigel): Slowly dissolve the 
Matrigel (stored at -20 °C) by seat it in an ice box overnight 
in a 4 °C refrigerator, and then mix it well with AM at a 1:1 ratio 
just before use. Adjust the antibiotic to the right concentration 
(we used cefoperazone, final concentration of 20 μg/mL). 

4. Antibiotics solution: Follow the pharmaceutical company’s 
directions to make a stock solution that is ready for use in the 
final concentration at different steps (e.g. culture media). 

2.2 Solid Tissue 

Samples 

1. Clinical sample: put the fresh solid tumor tissue (≥5 mm3 in 
size), obtained from either surgical operation or clinical biopsy, 
in a container with cold antibiotics-prepared PBS (we used 
cefoperazone at 40 μg/mL). Store the sample at 4 °C no longer 
than 2 h before use. 

2. Autologous medium (AM): 

(a) To avoid the effect of anesthesia in blood serum, before 
surgery, withdraw at least 15 mL peripheral venous blood 
from the cancer donor into an anticoagulant-free tube, 
and leave it at room temperature until clotting is 
complete. 

(b) Centrifuge the blood sample at 3000 rpm for 10 min, 
then gently transfer the serum into a new tube. 

(c) Centrifuge again at 16,900 g for 5 min to remove any 
debris in the serum. 

(d) Pass the serum through a 0.22 μm filter, then add the 
selected antibiotic in an appropriate concentration 
(we used cefoperazone at a final concentration of 
20 μg/mL). 

(e) Based on the available volume of patient’s blood, the AM 
could be 100% autologous serum, or ≥50% autologous 
serum complemented with culture medium (we used 
RPMI-1640). 

3. Autologous Matrigel (AM-Matrigel): Slowly dissolve the 
Matrigel (stored at -20 °C) by seat it in an ice box overnight 
in a 4 °C refrigerator, and then mix it well with cold autologous 
serum at a 1:1 ratio. Adjust the antibiotic to an appropriate
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concentration (we used cefoperazone at a final concentration of 
20 μg/mL). 

4. Antibiotics solution: Follow the pharmaceutical company’s 
directions to make a stock solution that is ready to use in the 
final concentration at different steps. 

3 Methods 

3.1 Cell Culture for 

Liquid Samples 

1. Coating culture dishes/plates: The numbers and the sizes of 
culture dishes/plates depend on the yield of cells obtained 
(we usually use 100 mm tissue culture dishes). 

(a) Coat dishes/plates with AM-Matrigel (see Subheading 2.1 
item 3) to evenly cover the bottom (about 1 mm 
thickness). 

(b) Let the gel polymerize in a 37 °C incubator for 
20–30 min. 

2. Cell preparation: 

(a) After washing cells (from Subheading 2.1 item 2-a) with 
cold PBS once (see Note 2), resuspend the cells in cold, 
serum-free, regular culture medium (we used RPMI-
1640). 

(b) Slowly load the cell suspension onto Ficoll solution (see 
Note 3). Centrifuge at 400 g with a descent speed of zero 
for 35 min at 20 °C. 

(c) Carefully pipette out the layer that contains most of the 
cells (Fig. 1), and transfer it to a new tube. 

(d) Wash the cells with cold PBS again; using the Trypan blue 
method to count the total yield of live cells (Fig. 2). The 
counting of cells should focus on those ≥10 μm in diame-
ter, to exclude lymphocytes and cell debris from the yield. 

3. Cell Culture 

(a) Warm the AM in a 37 °C water bath. 

(b) Resuspend the cells at a concentration of 1 × 105 /mL.

Fig. 1 Cells (except red blood cells) isolated by Ficoll solution (yellow arrow)
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Fig. 2 Trypan blue stain for cell counting. Red arrow, live cells; black arrow, dead 
cells 

Fig. 3 Tissue-like structures formed in liquid samples. Microscopy: ACM cultures of single cell suspension 
isolated from body fluids of cancer patients. (A) Gastric cancer (ascites), (B) Breast ductal carcinoma (pleural 
effusion), and (C) Lung adenocarcinoma (pleural effusion)

(c) Seed the cells onto the surface of the polymerized 
AM-Matrigel (we used a 10 mL/dish for 1 × 106 cells). 

(d) Refresh the AM every 3–4 days. Under microscope, cell 
migration and self-organization may be observed as early 
as 1–2 days. Cell conflation over 80% usually occurs after 
4–5 days in the culture dish, at which tissue-like structures 
may form in the plate (Fig. 3; Supplementary Video 1) (see 
Note 4). 

(e) Cell passage can be done based on the experiment’s 
design. When cells conflate over 80–90% in a culture 
dish/well, gently wash the dish/well with PBS once, 
then add TrypLE™ Express Enzyme following the com-
pany’s directions. Use an autologous Matrigel-coated 
plate (as described in Subheading 3.1 step 1) to continue 
the culture. Drug-sensitivity assay can be performed dur-
ing the culture period (see Notes 5 and 6).



66 Qian Xu et al.

3.2 Cell Culture for 

Solid Tissue Samples 

1. Coat the plate: 

(a) Cover the bottom of a culture well with AM-Matrigel 
(1–2 mm in thickness). 

(b) Let the gel polymerize for 20–30 min in a 37 °C 
incubator. 

2. Prepare the sample: 

(a) Wash the fresh clinical tissue samples with cold antibiotics-
prepared PBS five times (we used cefoperazone at a con-
centration of 40 μg/mL). 

(b) Using scalpel and scissors, cut the tissue into small pieces 
(about 0.5–1.0 mm in diameter), avoiding necrotic areas. 

3. Set up the 3D culture 

(a) Place three pieces per well on top of the pre-polymerized 
AM-Matrigel (tissues prepared as described in Subheading 
3.2 step 2), positioning them to be 3–5 mm apart  (Fig.  4a). 
Cover these pieces with additional AM-Matrigel (the same 
used for coating the well). 

(b) Let the gel polymerize in a 37 °C incubator for another 
30 min to allow the tissues to become well-embedded in 
the AM-Matrigel. 

(c) Add pre-warmed AM into the culture well (we used a 
24-well culture plate; the AM was 0.3 mL/well). 

(d) Refresh the AM every 3–4 days. Expect new tissues to grow 
out from the implants and cover the bottom of the culture 
well after 10–20 days (Fig. 4b). Under microscope or even 
with the naked eye, migration of tumor and matrix cells 
from the implanted tumor pieces may be observed as early 
as 3–5 days; these cells self-organize into tissue-like struc-
tures based on the characteristics of the original tumor 
(Fig. 5; Supplementary Video 2) (see Notes 4 and 6). 

Fig. 4 Solid tissue in culture well. (a) Three pieces of fresh tumor tissue (red 
arrow) were put on the 3D AM-Matrigel. (b) Solid tumor sample in ACM culture 
for 10 days. Newly grown tissues surrounded the breast cancer implants (red 
arrowhead) and spread in the culture well
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Fig. 5 Tissue-like growth in solid tumor samples. Microscopy: after 10–20 days in ACM culture, self-organized 
tissue-like structures formed and grown out of the implanted tumor tissues (IP). (A) Breast ductal carcinoma. 
(B and C) Lung adenocarcinomas from two different patients 

4 Notes 

1. Passing body fluids through the 0.45 μm filter bottle could 
cause a blockage; for a large amount of body fluid, new filter 
units may be needed to complete this step. 

2. If there are many red blood cells in the cellular pellet (bloody 
body fluids), RBC lysis buffer will need to be used following 
the company’s directions. 

3. Ficoll graduation solution can be purchased from different 
companies and should be used following the company’s 
directions. 

4. Self-organizations can be observed 1–2 days in body fluid 
samples (Supplementary Video 1) and 3–4 days in solid 
tumor cultures (Supplementary Video 2). 

5. Drug-sensitivity assay for a body fluid sample can be performed 
during the culture period (We used CCK-8 kit to compare the 
cellular viabilities of drug-treated cells and the negative con-
trols) [3]. Drug-sensitivity tests for solid tumors have not been 
well established; they will require appropriate measurement 
tools or reagents. 

6. All cultured tissues can be harvested for further studies. For 
immunohistochemistry (IHC), different sample types require 
different harvest procedures: 

(a) For liquid samples. Wash the cultured tissues gently with 
PBS, then fix them with 4% paraformaldehyde for 1 h. 
Scrape the cells from the bottom of the well, and transfer 
them to a 1.5 mL tube containing PBS buffer, then cen-
trifuge them at 1500 rpm for 5 min. Remove the superna-
tant; carefully transfer the sediment to a MG tissue paper
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(also called Sydney paper), then enfold the paper to cover 
the cells. Follow routine pathology procedures for tissue 
dehydration and paraffin embedding. 

(b) For solid tissue samples. Wash the cultured tissues gently 
with PBS, then fix them with 4% paraformaldehyde over-
night. Wash the fixed tissues with PBS three times, then 
pour 4% dissolved agarose into the well. Take the poly-
merized agarose with the cultured tissues (embedded in 
the agar gel) together from the well, then perform the 
routine procedures of dehydration and paraffin 
embedding. 
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Chapter 6 

High-Plex Spatial Profiling of RNA and Protein Using Digital 
Spatial Profiler 

Nan Wang, Xia Li, and Zhiyong Ding 

Abstract 

The rapid emergence of spatial multi-omics technologies in recent years has revolutionized biomedical 
research. Among these, the Digital Spatial Profiler (DSP, commercialized by nanoString) has become one of 
the dominant technologies in spatial transcriptomics and proteomics and has assisted in deconvoluting 
complex biological questions. Based on our practical experience in the past 3 years with DSP, we share here 
a detailed hands-on protocol and key handling notes that will allow the broader community to optimize 
their work procedure. 

Key words Spatial biology, Transcriptomics, Proteomics, Formalin-fixed paraffin-embedded (FFPE) 
specimens, Digital Spatial Profiler (DSP), Whole Transcriptome Atlas (WTA), Cancer Transcriptome 
Atlas (CTA), Companion diagnostics (CDs), Next-generation sequencing (NGS)-based barcode 

1 Introduction 

Digital Spatial Profiler (DSP) was introduced in 2019 as a break-
through technology to map the spatial expression of mRNA and 
proteins designed for formalin-fixed paraffin-embedded (FFPE) 
specimens [1]. Its usage has extended across broad research fields, 
with particularly significant applications in oncology [2–5]. User 
guides are available from the manufacturer delineating DSP’s 
experimental procedures [6, 7]. In addition, we and others have 
provided experimental designs, including sample selection criteria, 
morphological selection strategies, region-of-interest (ROI) selec-
tion, choices of segmentation, and data analysis methodologies 
applied under the setting of the cancer medicine field 
[8–11]. DSP also has the potential as a clinical pathological tool 
to provide value in companion diagnostics (CDs) [12–14]. DSP 
now allows a broad spectrum of target profiling from 1,800 genes
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(Cancer Transcriptome Atlas, CTA) to more than 18,000 genes 
(Whole Transcriptome Atlas, WTA). In addition, more than 
140 proteins can be profiled simultaneously on a parallel-sectioned 
slide.

70 Nan Wang et al.

An early protocol describing DSP workflow for low-plex 
mRNA and protein measurement allows only up to ~90 targets to 
be quantified in one assay [6]. A recent protocol described RNA 
profiling in high-plex mode showcasing the principles of the DSP 
technology but is less detailed [7]. Although there are standard 
workflows for DSP experimentation, user-experience-based proto-
cols detailing both high-plex RNA and protein profiling, as well as 
key technical notes, are still lacking. Here, we present a fully opti-
mized step-by-step working procedure for DSP using next-genera-
tion sequencing (NGS)-based barcode counting for both high-plex 
RNA and protein profiling on FFPE tissues. 

2 Materials 

Conducting DSP experiments requires a complicated setup, and 
the entire workflow can be divided into three parts: (1) sample 
processing, (2) DSP work procedure, and (3) post-collection pro-
cedure. Careful planning is required before experiments, including 
tissue conditions, choices of antibodies for morphological markers, 
and analytes of interest, all of which are directly linked to materials 
and DSP panel selection strategies. Depending on the analytes type 
(RNA or protein), sample processing methods vary significantly 
and require different assay setups. A schematic workflow chart is 
depicted in Fig. 1. 

2.1 Equipment and 

Hardware 

GeoMx DSP Instrument. 

Pressure cooker (BioSB 7008 or equivalent). 

Staining jars. 

TTissue baking 
Rehydration 

Antigen Retrieval 
High temp/low pressure 

DSP RNA workflow 

DSP Protein workflow 

RNA exposure 
Fixation 
WTA hybridization 

Morphological staining 

Visualization 
ROI selection 

Oligo collection 
Library preparation 

NGS sequencing 

Antibody incubation 
Morphological staining 

Fixation 
Nuclear staining 

Antigen Retrieval 
High temp/High pressure 

Fig. 1 Overview of the DSP workflow for protein and RNA profiling using the NGS method
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Humidity chamber. 

Drying oven. 

Centrifuges (Eppendorf 5810R or equivalent, RCF ≥ 2000 g). 

Microfuges (compatible with EP microtubes). 

Thermocycler (Bio-Rad C1000 Touch or equivalent). 

Vortexer. 

Icebox. 

Heat Sealer (Thermo ALPS 50 V, recommended). 

Magnetic stand (Thermo or equivalent). 

Water bath. 

Hybridization chamber (Boekel 240200-2, recommended). 

Thermo Qubit. 

Bio-analyzer (Qsep100 or equivalent). 

Clean hood. 

NGS sequencer (preferably NovaSeq 6000 at a yield of 800 Giga-
bytes per lane). 

2.2 Reagents Xylene. 

Ethanol absolute. 

DEPC water (PCR grade, nuclease-free). 

RNase AWAY (Thermo Scientific 7002). 

Proteinase K (Thermo Scientific AM2548). 

10× Tris–EDTA (pH 9.0). 

10× PBS (pH 7.4, dilute with DEPC water to the working 
concentration). 

10% neutral buffered formalin (NBF). 

100% deionized formamide (Thermo Scientific AM9342). 

Tris–base. 

Glycine. 

20× saline sodium citrate (SCC) buffer (Sigma S6639). 

10% Tween-20 (Teknova T0710). 

GeoMx DSP RNA Slide Prep Kit for FFPE. 

GeoMx Morphology Kit – Human RNA compatible (can be 
replaced with custom-developed antibodies). 

GeoMx Whole Transcriptome Atlas – Human RNA for NGS 
(-80 °C). 

DSP collection plates. 

GeoMx Seq Code Primer Plates. 

Fluoromount-G Mounting Medium (Southern Biotech 0100-01).
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Purification beads (Beckman AMPure XPA63881, recommended). 

Elution buffer (Qiagen Lot No. 163049988). 

Additional or alternative reagents for DSP protein assay. 

Tween-20 (Sigma P1379). 

10× Citrate buffer (pH 6.0) (Sigma C9999). 

10× TBS. 

10× TBST. 

16% formamide (dilute with PBS to 4%) (Thermo 28908/10). 

GeoMx DSP Protein Slide Prep Kit for FFPE. 

GeoMx Morphology Kit for Protein. 

GeoMx Core and Module Kits for NGS readout. 

2.3 Consumables 

and Accessories 

Pipettes for 5–1000 μL. 
1.5 mL RNase-free EP tubes. 

RNase-free Tips (10 μL, 20 μL, 200 μL). 
96-well deep-well PCR plates. 

AeraSeal PCR films (Sigma A9224). 

Easy pierce heat sealing foil (Thermo Scientific AB-0559). 

Aluminum foils. 

Dust-free wipes. 

Heat protective glove. 

Disposable gloves and masks. 

Hydrophobic PAP pen. 

Coverslips. 

Scalpels. 

Scissors. 

3 Methods 

3.1 Morphological 

Marker Validation on 

Tissues 

Careful evaluation of morphological markers is pivotal for DSP and 
has a significant impact on the data per se. For commercially 
provided morphological markers (CD45, pan-cytokeratin, S100B, 
amyloid-beta, Iba1 co-stained with SYTO13), it may not be neces-
sary to perform pre-experimental validation on tissues. However, as 
antibody performance varies across different tissue types and for 
tissues that are preserved longer than 2 years, optimization of the 
morphological antibody staining is recommended. Although other 
antibody information is provided on the nanoString website and in 
literature, morphological optimization is still indispensable based 
on our experience. We also suggest performing a parallel



hematoxylin–eosin (HE) staining of tissues to allow better patho-
logical evaluation of histological features of interest. Apart from 
nuclear staining, the DSP instrument has three additional fluores-
cent channels to allow multiplex staining of up to three antibodies. 
When starting a DSP experiment, we strongly recommend a mor-
phological marker checklist detailing the antibody names, product 
details, clone numbers, species, and labeling details (direct conju-
gation or secondary antibody). 
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Recommended testing concentration for antibody optimiza-
tion is typically 1:100 for DSP protein assay and 1:50 for DSP 
RNA assay. However, if no official dilution is provided, we suggest 
increasing the concentration to 1:20 for the DSP RNA assay and 
then optimizing after the first-round evaluation. In most cases, if an 
antibody underperforms for three rounds, it is not likely to work 
with the DSP procedure, so one shall source alternative antibodies. 
If no antibodies are available for the target of interest, researchers 
may consider RNA-Scope as an alternative method. 

3.2 Tissue 

Processing 

For both RNA and protein assays, ensure the working environment 
and all equipment are free of nuclease using RNase AWAY, and 
prepare all working solutions with DEPC water where necessary. 

3.3 RNA-Based 

Profiling (WTA and 

CTA) 

1. Prepare ethanol with DEPC water to 95% (500 mL), and store 
at room temperature (RT). 

2. Prepare ethanol with DEPC water to 70% (50 mL), and store 
at RT. 

3.3.1 Working Solution 

Preparation 3. Prepare 80% ethanol for NGS library construction (made fresh 
on need). 

4. Prepare 1× PBS with DEPC water (500 mL), and store at RT. 

5. Dilute 2.5 μL proteinase K (20 mg/mL) in 50 mL 1× PBS (1: 
2000, 1 μg/mL) (Note: make fresh on need). 

6. Prepare 1 L of 4×/2× SSC from the 20× SSC stock solution, 
store at RT. 

7. 2× SSC-T buffer: Add 10% Tween-20 (stock solution) to 2× 
SSC, store at RT. 

8. NBF stop buffer: dissolve 24.5 g Tris base and 15 g glycine in 
DEPC water to a final volume of 2 L, store at RT. 

9. Prepare 1× Tris–EDTA pH 9.0 from 10× Tris–EDTA pH 9.0 
with DEPC water, and store at RT for antigen retrieval. 

10. Stringent wash solution: Bring 4× SSC and formamide back to 
RT and mix 1:1 to a total of 100 mL, store at 37 °C in a water 
bath (Note: prepare on day two before use). 
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3.3.2 Tissue Baking and 

Rehydration 

1. Bake FFPE tissue slides in an oven at 60 °C for 30–60 min 
(prolonged baking time may apply depending on the tissue 
conditions). 

2. Immerse tissues in xylene for 5 min, and repeat twice with fresh 
xylene each for 5 min. 

3. Rehydrate tissues in ethanol absolute for 5 min, and change 
fresh again for 5 min. 

4. Rehydrate tissues in 95% ethanol for 5 min. 

5. Rehydrate tissues in 1× PBS for 5 min, and change fresh again 
until the next step. 

3.3.3 Antigen Retrieval 1. Add water into the pressure cooker (BioSB), and also add 1× 
Tris–EDTA (pH 9.0) into one staining jar and DEPC water 
into another jar. Bring the cooker up to 100 °C and open the 
valve. Continue boiling for another 30 min until solutions in 
both staining jars reach 100 °C. 

2. Put tissue slides into the preheated DEPC water for 10 s, and 
then transfer immediately to the preheated Tris–EDTA 
(pH 9.0). 

3. Close the cooker with the valve open to allow antigen retrieval 
under low-pressure and high-temperature condition (represen-
tative retrieval times for different tissue types are listed below 
and for other tissue types, use 15 min to start the 
optimization). 

sue type Target retrieval in Tris–EDTA 

ast 20 min 

ll pellets 5 min 

lorectal 20 min 

lanoma 20 min 

CLC 20 min 

state tumor 20 min 

nsil 15 min 

Tis 

Bre 

Ce 

Co 

Me 

NS 

Pro 

To 

4. After antigen retrieval, transfer slides immediately into 1× PBS 
at RT for 5 min. 

3.3.4 RNA Target 

Exposure 

Pour proteinase K working solution into a tub, warm up in a 37 °C 
water bath, and then immerse the slides into the buffer. For differ-
ent tissue types, refer to the chart below, and for other types of 
tissues, start with 1 μg/mL for 15 min for optimization.



1. Soak tissues in 10% NBF for 5 min.

2. Transfer to NBF stop buffer for 5 min and repeat one

3. Transfer to 1 PBS for 5 min.

4. Defrost the WTA probes at RT, gentle pipette to remix, and

5. Bring Buffer R (in the GeoMxDSP RNA Slide Prep Kit) to RT.

6. Wipe the hybridization chamber ((Boekel 240200-2) thor-

7. Prepare hybridization solutions according to the following

8. Wet dust-free wipes with 2 SSC (Note: remove extra dripping

9. Remove the residual solution on the tissue slide, and place the

10. Shut the chamber and incubate at 37 C overnight (16 24 h).
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Tissue type Proteinase K digest 

Breast 0.1 μg/mL for 15 min 

Cell pellets 1 μg/mL for 5 min 

Colorectal 1 μg/mL for 15 min 

Melanoma 1 μg/mL for 15 min 

NSCLC 1 μg/mL for 15 min 

Prostate tumor 1 μg/mL for 15 min 

Tonsil 1 μg/mL for 15 min 

After digestion, immerse the tissues in 1× PBS for 5 min, and 
proceed immediately to the next step. 

3.3.5 Tissue Fixation and 

in Situ WTA Probe 

Hybridization more time. 

× 

store at 4 °C until use. 

oughly with DEPC water and RNase AWAY to prevent RNA 
degradation or cross contamination (Note: this step is essen-
tial, so do it with extra care). 

chart (n represents the number of slides); Note: Here, we 
only consider the situation without adding custom spike-in 
DSP probes for custom-designed genes. 

× 
water), and place underneath the slide stand in the hybridiza-
tion chamber. 

slides on the slide holding stand. Apply 200 μL of hybridization 
solution onto each slide and cover carefully with coverslips. To 
make sure no bubbles are introduced, touch place the cover 
from one side and lower down gently (use pipette tips to help). 

° –



SYTO13 Buffer W Total volume 
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3.3.6 Removal of Extra 

Probes, Blocking, and 

Morphological Staining 

1. Bring 100% formamide to RT before opening and preheat 
stringent wash solution to 37 °C. 

2. Hand-hold the slides, immerse in 2× SSC, and move up and 
down gently until the coverslips fall off; if coverslips do not fall 
off within 5 min, then use 2× SSC-T to help dislodge the 
coverslips (Note: avoid force lift the cover manually). 

3. Soak slides in stringent wash solution at 37 °C for 25 min and 
repeat once. 

4. Soak in 2× SSC for 2 min and repeat once. 

5. Bring the SYTO13 (nuclear stain) to RT, vortex, and pulse spin 
for 1 min (Note: pipette up and down if necessary). 

6. Add 200 μL of buffer W (in the GeoMx DSP RNA Slide Prep 
Kit), and block 30 min in the humidity chamber at RT (Note: 
to avoid dry-out, use clean tips to spread the blocking reagent 
to cover the entire tissue area). 

7. Prepare staining solution according to the chart below (Note: 
avoid touching the bottom of the SYTO13 stock solution 
when pipetting, and n represents the number of slides): 

Morphological 
marker 1 

Morphological 
marker 2 

Other 
markers 

22 μL × n 5.5 μL × n 5.5 μL × n 5.5 μL × n 187 μL × n ~220 μL × n 

Note: Here, commercial morphological markers are used for 
demonstration purposes, and custom antibody dilutions may 
vary; refer to 3.1 for details 

8. Remove buffer W, apply 200 μL staining solution onto the 
slides, and incubate for 60 min in the humidity chamber at RT. 

9. Immerse the slides in 2× SSC and repeat once. Cover the tub 
with aluminum foils before proceeding to scanning on DSP. 

3.3.7 Post-collection 

Process and Library 

Preparation 

1. Mount the slides with Fluoromount-G Mounting Medium for 
temporary storage at 4 °C in the dark (Note: usually, slides can 
be re-scanned for fluorescence imaging within a month). 

2. For immediate processing, use permeable membrane (AeraSeal 
PCR films) to seal the collection plates containing UV-cleaved 
oligos. (Note: plates can be stored for less than 24 h at 4 °C 
before processing or up to30 days at -20 °C, or more than 
30 days at -80 °C). 

3. Heat-dry the sealed plate at 65 °C for 60 min in a thermocycler 
(Bio-Rad C1000 Touch) until wells are thoroughly 
dried down.



C 15 s 18

C 60 s

C 30 s

1
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4. Add 10 μL of PCR grade DEPC water into each well and 
pipette five times, and then seal the plate with PCR films to 
prevent contamination. Keep steady at RT for 10 min, and 
quick spin down to ensure all liquid goes to the bottom. 

5. Clean the workstation with RNase AWAY, and conduct all 
PCR-related work within a clean hood. All procedures, includ-
ing thawing reagents, must be carried out on the ice. 

6. Select the correct GeoMx Seq Code Primer Plate 
corresponding to lab worksheet generated from each DSP 
run (Note: seq codes can be pooled for sequencing given no 
identical seq code indices are mixed in one library). 

7. Set up PCR reaction cocktails for each well as follows: 

Volume (μL) 

PCR master mix 2 μL 

mer mix (F & R, 2.5 μM each) 4 μL 

P aspirate 4 μL 

tal volume per reaction 10 μL 

PC R amplification reaction components

5× 

Pri 

DS 

To 

8. In a deep-well PCR plate, add 2 μL of PCR Master Mix first and 
then 4 μL of primers followed by 4 μL of templates. Mix by 
pipetting (Note: well indices must be fully matched between 
the collection plate and PCR plate). 

9. Heat seal the PCR plate with PCR films (easy pierce heat 
sealing foils) using the heat sealer, quick spin, and load onto 
the thermocycler (Bio-Rad C1000 Touch) with the lid heated 
to 100 °C. 

10. Program in the cycling conditions as below: 

Step Temp Time Cycles 

UDG incubation 37 °C 30 min 1× 

UDG deactivation 50 °C 10 min 1× 

Initial denaturation 95 °C 3 min 1× 

Denaturation 95 ° × 

Anneal 65 ° 

Extend 68 ° 

Final extension 68 °C 5 min 1× 

Hold 4 °C 1× 

Note: PCR products can be stored at 4 °C for 24 h or -20 °C 
for up to 72 h
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3.3.8 Library Purification 

and Quality Control (QC) 

1. Perform all purification steps on the bench, and bring the 
AMPure XP beads to RT for 20 min to maximize their working 
efficiency. 

2. Upon finishing PCR, quick centrifuge the PCR products and 
transfer 4 μL from individual wells, and mix into a 1.5 mL 
EP tube. 

3. Calculate the total volume within the tube and add 1.2× bead-
to-sample ratio of AMPure XP beads, pipette ten times to mix, 
and quick centrifuge. 

4. Incubate for 5 min on the bench, place on the magnetic stand 
for 5 min to pellet beads, and remove clear supernatant with 
care (Note: avoid direct disturbing the beads). 

5. Add 200 μL fresh made 80% ethanol to wash beads and incu-
bate 30 s on the stand. 

6. Remove supernatant and repeat once (Note: remove residue 
ethanol thoroughly when possible). 

7. Air-dry the pellet beads on the stand for 5 min at maximum. 

8. Remove the tube from the stand, and add 54 μL of elution 
buffer and pipette gently to resuspend. 

9. Place the tube back to the magnetic stand for 5 min to pellet 
the beads. 

10. Extract 50 μL of supernatant to a fresh tube and add 60 μL of  
AMPure XP beads, pipette ten times to mix, and quick 
centrifuge. 

11. Incubate for 5 min on the bench, place on the magnetic stand 
for 5 min, and remove clear supernatant with care (Note: avoid 
direct touch with the beads). 

12. Add 200 μL fresh made 80% ethanol to wash beads and incu-
bate 30 s on the stand. 

13. Remove supernatant and repeat once (Note: remove residue 
ethanol thoroughly when possible). 

14. Air-dry on the stand for 5 min at maximum. 

15. Remove the tube from the stand and add elution buffer accord-
ing to the reference below, and pipette gently to resuspend: 

Number of reactions Elution buffer volume (μL) 

96 48 μL 

48 24 μL 

24 16 μL 

12 12 μL 

16. Incubate at RT for 5 min, and transfer to the magnetic stand 
for 5 min to completely separate the beads.



High-Plex Spatial Profiling Using Digital Spatial Profiler 79

17. Carefully transfer supernatants to a new 1.5 mL EP tube, and 
this is ready for library QC. 

18. Use the bioanalyzer (Qsep) for library QC, and make sure to 
perform separate QC for No Template Control (NTC) well. 
An ideal library is shown in Fig. 2. 
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F
U
 

Fig. 2 Representative plots of the capillary electrophoresis using Qsep for library 
quality control. The upper plot shows a successfully constructed library with a 
single peak at around 172 bp. The lower plot is the No Template Control (NTC) 
negative control without templates
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3.4 Protein-Based 

Profiling 

Here we only describe steps specific to the DSP–protein NGS 
workflow, and the rest of the steps are the same as the DSP–RNA 
workflow. 

3.4.1 Working Solution 

Preparation 

1. Prepare ethanol with DEPC water to 95% (500 mL), and store 
at RT. 

2. Prepare ethanol with DEPC water to 70% (50 mL), and store 
at RT. 

3. Prepare 80% ethanol for NGS library construction (made fresh 
on need). 

4. Prepare 1× citrate buffer (pH 6) from 10× citrate buffer (pH 6) 
with DEPC water (Note: make fresh on need). 

5. Prepare 1× TBS with DEPC water (1000 mL), and store at RT. 

6. Prepare 1× TBST by mixing 500 mL 1× TBS with 500 μL 
Tween-20, store at RT. 

7. Prepare 50 mL of 4% formamide by diluting 16% formamide 
with PBS, and store at RT. 

3.4.2 Tissue Baking and 

Rehydration 

1. Bake FFPE tissue slides in the oven at 60 °C for 30–60 min 
(Note: prolonged baking time may apply depending on the 
tissue conditions). 

2. Immerse tissues in xylene for 5 min, and repeat twice with fresh 
xylene each for 5 min. 

3. Rehydrate tissues in ethanol absolute for 5 min, and change 
fresh again for 5 min. 

4. Rehydrate tissues in 95% ethanol for 5 min and one more time. 

5. Rehydrate tissues in dd H2O for 5 min, and change fresh again 
until the next step. 

3.4.3 Antigen Retrieval 1. Add 1× citrate buffer into one staining jar and water to the 
pressure cooker. Make sure the water level does not submerge 
or float the staining jar. 

2. Put tissue slides into the staining jar. 

3. Close the cooker with the valve shut to allow antigen retrieval 
under the high pressure and temperature condition (Note: 
refer to DSP–RNA protocols above for tissue optimization 
process). 

4. After retrieval, transfer slides onto the bench, remove the lid, 
and cool down for 25 min to RT. 

5. Immerse the slides in 1× TBST for 5 min. 

6. Remove residue liquid, mark with a PAP pen on the tissues, and 
ensure the distance to tissue areas is around 5 mm.
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3.4.4 Tissue Blocking 

and Antibody Incubation 

1. Place the slides in the humidity chamber, add 200 μL buffer W 
(in the GeoMx DSP Protein Slide Prep Kit), and incubate at RT 
for 1 h with the lid on. 

2. Defrost GeoMx Core and Module Kits for NGS readout on ice, 
and quick spin down. 

3. Aliquot the above antibody reagent into 2/4 slides per assay 
run depending on the situation (Note: reagents can only be 
freeze-thaw twice before use). Standard morphological panels 
are stored at 4 °C. 

4. Make the protein and morphological antibody mix with the 
following chart, and apply it onto the slides. Top up to 200 μL 
with buffer W (n represents the number of slides). 

Core 
panel 
(1:25) 

Module 
1 (1:25) 

Module 
2 (1:25) 

Additional 
modules 

Morphological 
marker 1 

Morphologica 
marker 2 

l Other 
marker 

Buffer 
W 

Total 
volume 

8 μL × n 8 μL × n 8 μL × n . . . 5 μL × n 5 μL × n . . . Up to 
200 μL 

200 μL 
× n 

5. After blocking, remove all solutions, add 200 μL of antibody 
mix on each slide, and incubate in the humidity chamber at 
4 °C overnight in the dark. 

3.4.5 Tissue Fixation and 

Nuclear Staining 

1. Immerse the slides in 1× TBST for 10 min, and repeat with 
fresh TBST twice. 

2. Wipe off residue liquid, place the slides in the humidity cham-
ber, and add 200 μL of 4% formamide to fix the tissues for 
30 min at RT. 

3. Immerse in 1× TBST for 5 min and repeat. 

4. Thaw SYTO13 to RT and quick centrifuge for 1 min. 

5. Dilute SYTO13 1:10 to a working concentration of 500 nM, 
apply 200 μL to each slide, and incubate for 15 min in a 
humidity chamber. 

6. Wash twice with 1× TBST, scrape off the PAP pen marks using 
scalpels, and leave in the TBST with aluminum foil before 
scanning to DSP (Note: do not let the slides and immerse 
with TBST intermittently when needed). 

3.4.6 Post-collection 

Processes 

All post-collection processes remain identical to the DSP–RNA 
assay, and the only difference is to resuspend the dry-down oligos 
with 80 μL of DEPC water instead of 10 μL due to the higher 
concentration of oligos in the collection plates (Note: refer to 
Subheading 3.3.7 step 3).
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4 Notes from Our Experience 

1. Keep all types of DSP assays (WTA/CTA/protein) in separate 
spaces as possible to avoid cross-contamination. 

2. A thorough clean is always needed when performing a DSP 
experiment, and use RNase AWAY preferably. 

3. Once start processing the RNA probe mix, change gloves after 
completion of the first step to reduce potential contamination. 

4. In case of viscosity, warm the RNA probe mix at RT, briefly 
vortex, and pulse centrifuge to improve the pipetting accuracy. 
Unused probes can be stored at 4 °C for up to 6 months with 
up to five circles of freeze-and-thaw. 

5. For Seq-Code plates, used plates can be stored at 4 °C for up to 
3 months with one circle of freeze-and-thaw. 

6. In case of DSP instrument errors, contact the official remote 
support team to open the front lid and remove the slides. Store 
RNA slides in 2× SSC at 4 °C for up to 48 h and protein slides 
in 1× TBST at 4 °C for up to 72 h. Once fixed, restart the 
scanning to complete the rest of the experiment. 

7. Make sure to prepare 80% ethanol with DEPC water for library 
construction freshly before use. 

8. Due to the significant variation of RNA profiles inter-tissue and 
intra-tissue, the library concentration may vary significantly. We 
can simply evaluate the quality by comparing the PCR product 
(a clear band) with NTC (blank) side by side. 

9. The most cost-efficient NGS method so far for DSP is the S4 
flowcell on Illumina NovaSeq 6000 with a maximum data 
output (around 850 GB) on a single lane, which is the pre-
ferred way in our laboratory. 
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Chapter 7 

Integration of Single-Cell RNA-Sequencing and Network 
Analysis to Investigate Mechanisms of Drug Resistance 

Stephanie The, Patricia M. Schnepp, Greg Shelley, Jill M. Keller, 
Arvind Rao, and Evan T. Keller 

Abstract 

Innate resistance and therapeutic-driven development of resistance to anticancer drugs is a common 
complication of cancer therapy. Understanding mechanisms of drug resistance can lead to development 
of alternative therapies. One strategy is to subject drug-sensitive and drug-resistant variants to single-cell 
RNA-seq (scRNA-seq) and to subject the scRNA-seq data to network analysis to identify pathways 
associated with drug resistance. This protocol describes a computational analysis pipeline to study drug 
resistance by subjecting scRNA-seq expression data to Passing Attributes between Networks for Data 
Assimilation (PANDA), an integrative network analysis tool that incorporates protein–protein interactions 
(PPI) and transcription factor (TF)-binding motifs. 

Key words Single-cell RNA-sequencing, Drug resistance network, Data integration, Protein–protein 
interactions, Transcription factor-binding motifs, Passing Attributes between Networks for Data 
Assimilation, Gene set enrichment analysis, Connectivity map analysis 

1 Introduction 

Drug resistance is a frequent therapeutic challenge when attempt-
ing to treat cancer patients. Many cancer studies have attempted to 
identify other drugs and therapies to overcome drug resistance and 
increase the chance of survival in various cancer patients [1]. The 
majority of these studies tend to focus on a few genes and examine 
their change in expression due to drug resistance [1]. Furthermore, 
they tend to only look at one data type or multiple data types 
separately. This limits the ability to fully understand the mechan-
isms underlying drug resistance. To increase the possibility to 
determine how drug resistance develops and subsequently identify 
alternative therapies, gene regulatory network modeling, which can 
integrate multiple data types, should be considered. Passing Attri-
butes between Networks for Data Assimilation (PANDA) is an
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integrative network analysis tool, which uses a message-passing 
model to iterate over multiple data types to predict regulatory 
relationships [2, 3]. Specifically, PANDA integrates gene expres-
sion, protein–protein interactions (PPI), gene co-regulation, and 
transcription factor (TF)-binding motif data. Single-cell RNA-seq 
(scRNA-seq) is a powerful technique that allows us to study the 
transcriptome of variable and heterogenous cell populations on a 
single-cell level, which cannot be examined with traditional bulk 
sequencing [1]. Incorporating scRNA-seq data into PANDA may 
lead to an enhanced understanding of mechanisms of drug resis-
tance and identify new, alternative therapies to overcome this resis-
tance. The described protocol will provide a general analysis 
pipeline to identify regulatory networks and pathways associated 
with these regulatory networks and discover alternative drugs that 
could potentially overcome drug resistance. This general pipeline 
(Fig. 1) was composed and used with previous studies [1, 4].
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Fig. 1 General network analysis pipeline. Sensitive and resistant samples are subjected to scRNA-seq, 
followed by subjecting the scRNA-seq data in combination with transcription factor (TF) motifs and protein– 
protein interactions (PPI), derived from established databases to PANDA analysis. This will lead to identifica-
tions of a generalized drug resistance network which can then be subjected to gene set enrichment analysis 
(GSEA) and connectivity map analysis (CMAP) to identify drug resistance pathways and candidate drugs, 
respectively 

2 Materials 

2.1 Software (see 

Note 1) 

1. R. 

(a) R is an open-source programming coding language 
mainly used for statistical analysis and graphics [5]. 

(b) Information on and download R here: https://www.r-
project.org/

https://www.r-project.org/
https://www.r-project.org/
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(c) Additional packages needed: 

(i) Seurat (https://satijalab.org/seurat/). 

1. Seurat is an R package used to analyze quality con-
trol (QC) and exploration of scRNA-seq data [6]. 

(ii) 

1. 

wordcloud2 (https://github.com/lchif fon/  
wordcloud2), 

wordcloud2 is an R package used to create word 
clouds for data visualizations [7]. 

2. Passing Attributes between Networks for Data Assimilation 
(PANDA) [2]. 

(a) Download the bash version here: http://sourceforge.net/ 
projects/panda-net/files/Version2/Version2.tgz/ 
download. 

(b) Read the “README.txt” to compile the C++ scripts, and 
run the commands PANDA and AnaPANDA. Also, read 
this file to find more information on how the input files 
need to be structured. 

3. Find Individual Motif Occurrences (FIMO). 

(a) FIMO is a program used to search and extract sequences 
that match independent motifs provided [8]. 

(b) Download the MEME suite, which contains FIMO, here: 
https://meme-suite.org/meme/doc/download.html. 

(c) Install the MEME suite. You can find installation 
instructions here: https://meme-suite.org/meme/doc/ 
install.html?man_type=web. 

(d) To run FIMO, you can find the manual here: https:// 
meme-suite.org/meme/doc/fimo.html. 

4. Gene set enrichment analysis (GSEA). 

(a) GSEA is a computation method that is commonly used for 
pathway analysis. It determines if a set of genes that are 
different between two biological states is statistically sig-
nificant for a set of pathways [9, 10]. 

(b) Download and install GSEA here: https://www.gsea-
msigdb.org/gsea/doc/GSEAUserGuideTEXT.htm#_ 
Starting_GSEA. 

(c) The link above also contains the manual to run GSEA 
both on command line and GUI program. 

2.2 Datasets 1. Gene expression dataset. 

(a) General structure: 

(i) Gene expression, done with scRNA-seq, from at least 
two cell lines is required. Each cell line requires at least 
two conditions (e.g., sensitive vs. resistant). In total,

https://satijalab.org/seurat/
https://github.com/lchiffon/wordcloud2
https://github.com/lchiffon/wordcloud2
http://sourceforge.net/projects/panda-net/files/Version2/Version2.tgz/download
http://sourceforge.net/projects/panda-net/files/Version2/Version2.tgz/download
http://sourceforge.net/projects/panda-net/files/Version2/Version2.tgz/download
https://meme-suite.org/meme/doc/download.html
https://meme-suite.org/meme/doc/install.html?man_type=web
https://meme-suite.org/meme/doc/install.html?man_type=web
https://meme-suite.org/meme/doc/fimo.html
https://meme-suite.org/meme/doc/fimo.html
https://www.gsea-msigdb.org/gsea/doc/GSEAUserGuideTEXT.htm#_Starting_GSEA
https://www.gsea-msigdb.org/gsea/doc/GSEAUserGuideTEXT.htm#_Starting_GSEA
https://www.gsea-msigdb.org/gsea/doc/GSEAUserGuideTEXT.htm#_Starting_GSEA
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there should be at least four samples (two cell lines, 
each with a sensitive and resistant variant). 

(ii) The counts in the gene expression dataset from every 
sample should be normalized. 

(iii) Since the dataset will have multiple single cells per 
sample, the normalized counts should be combined 
into “pseudo-bulk” counts for each gene for each 
sample for the dataset to work in PANDA. Some 
methods to combine the normalized single-cell counts 
per condition are by averaging, summation, scoring, 
etc. These “pseudo-bulk” counts will then be used in 
PANDA. 

(iv) This new matrix must be structured as genes (as rows) 
by samples (as columns) and exported as tab delimited 
.txt file. 

(b) Example: 

(i) Raw counts can be found here: https://www.ncbi.nlm. 
nih.gov/geo/query/acc.cgi?acc=GSE140440. 

(ii) The example expression gene dataset used for this 
protocol is based on another previous study we pub-
lished [11]. Briefly, this dataset contains gene expres-
sion of single cells from two prostate cancer (PCa) cell 
lines, Du145 (DU145), and PC-3 (PC3). There was a 
parental (docetaxel-sensitive) and docetaxel-resistant 
variant for each cell line. In the end, there was four 
conditions: sensitive DU145, resistant DU145, sensi-
tive PC3, and resistant PC3. For more information 
about the experiment and sequencing, please refer to 
this study’s paper [11] (see Note 2). 

(iii) The single-cell counts from all conditions were nor-
malized together using the log normalization method 
(NormalizeData) in Seurat. The normalized counts 
were then aggregated into “pseudo-bulk” counts per 
condition. In this example, the matrix had genes as 
rows and conditions as columns, which there were four 
columns. 

2. TF motif prior dataset. 

(a) General structure: 

(i) A TF motif dataset needs to be downloaded that 
matches the species of the gene expression dataset (see 
Note 3). For example, if the gene expression dataset is 
from Mus musculus, then you will need a TF motif 
dataset specific to Mus musculus. This dataset will con-
tain all the motifs found in this species.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140440
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140440
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(ii) The full TF motif dataset needs to be filtered for TFs 
found in the gene expression dataset. FIMO can be 
used to get these motifs. 

1. A sequence file is needed (in fasta format) for the 
dataset’s species to run FIMO. 

2. To run FIMO, refer to the link in Subheading 2.1 
item 3d. 

(b) Example: 

(i) The Homo sapiens TF motif dataset was downloaded 
from the. This dataset contains all the TF motifs found 
in Homo sapiens (see Note 4). 

(ii) A sequence file (in .fasta format) was also downloaded. 
For this study, the human genome assembly dataset 
GRCh37 (also called hg19) was used (https:// 
genome.ucsc.edu/cgi-bin/hgTables). 

(iii) The TF motifs position weight matrices were mapped 
to using FIMO. 

(iv) A TF motif prior specific to the expression dataset was 
created by only using the TFs found in the expression 
dataset. There was 240 TFs in this example TF motif 
prior dataset. 

3. PPI files. 

(a) General structure: 

(i) A PPI dataset needs to be downloaded that contains 
interaction scores. 

(ii) The interaction scores need to be between 0 and 1. The 
scores will need to be transformed if they are not 
already in this format. Any self-interactions need to be 
set equal to one. 

(b) Example: 

(i) The example PPI dataset that contains interaction 
scores was downloaded from StringDb v10.5 (see 
Note 4). This dataset contains interactions from all 
data sources in StringDb. 

(ii) The interaction scores were then divided by 1000 for 
the scores to be between 0 and 1. The self-interactions 
were set equal to one.

https://genome.ucsc.edu/cgi-bin/hgTables
https://genome.ucsc.edu/cgi-bin/hgTables
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3 Methods 

Subheadings 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6 are delineated in Fig. 2. 

3.1 Constructing 

PANDA Regulatory 

Networks 

1. Create a TF regulatory network for each condition using the 
TF motif prior, PPI, and the expression dataset from Material 
section. A code example is: 

./Version2/PANDA -e express_data/DU145_sen.txt -m motif_data/ 

TF_motif.txt -p PPI_data/PPI.txt -o networks/DU145_sen 

From this command, you should have four FinalNetwork. 
pairs files. 

3.2 Compare PANDA 

Networks 

1. Within each cell line, compare networks in the FinalNetwork. 
pairs files from Subheading 3.1 with PANDA with the example 
code below: 

./Version2/AnalyzePANDA_v0/AnalyzePANDA -a DU145_resist_Fi-

nalNetwork.pairs -b DU145_sen_FinalNetwork.pairs -P 0.8 -o 

DU_resist_vs_sen 

From this command, there should be two sets of five 
comparison network files. In this example, there was one com-
paring resistant and sensitive cells from the DU145 cell line, 
and another comparing resistant and sensitive cells from the 
PC3 cell line. Each set should have a FinalNetwork.pairs, 
RankedList_for_GSEA.rnk, Gene_degree_comparison.txt, 
TF_degree_comparison.txt, and Subnetworks.pairs files. 

Sensitive DU145 

Gene 
expression 

TF motifs 

PPI 

PANDA – 
PANDA 

Sensitive DU145 
.pairs file 

Resistant DU145 
.pairs file 

DU145 
comparison.pairs 

file 

PANDA – 
AnalyzePANDA 

Find enriched edges 

Find enriched TF 
and gene nodes 

DU145 key nodes 
and edges 

Fig. 2 Overview of steps for generating a key network for one cell line. This figure describes Subheadings 3.1, 
3.2, 3.3, 3.4, 3.5, and 3.6 of the protocol. Details are found within the protocol text. TF, transcription factor; 
PPI, protein–protein interactions
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3.3 Finding Enriched 

Edges 

1. Over all the networks (all), calculate the median (med) and 
IQR for each edge weight (w) between each TF (t) and gene (g) 
from the FinalNetwork.pairs files from Subheading 3.1. 

2. For each edge weight in each network (n), calculate a specificity 
score (s). In general, we compare the weight to the median and 
IQR for each TF-gene found in the last step. The equation to 
calculate scores is shown below [4]: 

s 
cð Þ  
tg = w 

cð Þ  
tg -med w 

allð Þ  
tg

� �� �
=IQR w 

allð Þ  
tg

� �

3. Determine enriched edges. An edge is enriched for a network if 
s > N where N is a threshold for a specificity score over all 
networks. N was found through calculating the specificity score 
for each individual gene and comparing those scores to the 
median and IQR across all networks. The specificity score can 
vary between 0 and 1. For this study, we found that N = 0.4 
where half of the genes were enriched. 

3.4 Finding Enriched 

TF Nodes which is the sum of enriched edges connected to a TF node. 
The enriched edges are from the TF_degree_comparison.txt files 
from Subheading 3.2. 

2. Calculate p-values to test differences of in-degree values for 
each TF node between conditions in either cell line using a 
hypergeometric distribution. In this example, p-values were 
calculated between sensitive and resistant cells in either 
DU145 or PC3 cell lines. 

3. Calculate the edge weight fold change using the in-degree 
value for each node between the two networks. 

4. Determine enriched TF nodes. In this example, these were 
determined as enriched for a cell line if they had a p-value 
than 0.05 (p < 0.05). 

3.5 Finding Enriched 

Gene Nodes 

1. The process is the same as finding enriched TF nodes in Sub-
heading 3.4, except using the Gene_degree_comparison.txt files 
from Subheading 3.2. 

3.6 Finding Key TF 

and Gene Node 

1. We followed the following criteria to find key TF and gene 
nodes: 

(a) The node must have a p-value (found in Subheading 3.4 
or 3.5) less than 0.05 (p < 0.05) for both cell line network 
comparisons. In this example, a specific node must both 
have p < 0.05 in both DU145 and PC3 cell lines. 

(b) The node must have an edge weight fold change (found in 
Subheading 3.4 or 3.5) in the same direction for both cell 
line network comparisons, for instance, the fold change
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Fig. 3 Overview of process for generating a generalized key network and further downstream analysis. This 
figure describes Subheadings 3.7, 3.8, and 3.9 of the protocol. Details are found within the protocol text. 
GSEA, gene set enrichment analysis; CMAP, connectivity map 

must be positive in both comparisons. In this example, a 
specific node must have an edge weight fold change in the 
same direction in both DU145 and PC3 cell lines. 

Subheadings 3.7, 3.8, and 3.9 are delineated in Fig. 3. 

3.7 Creating a 

Generalized Network 

1. Combine common key edges and nodes that were identified 
from Subheading 3.6 to create a generalized network. For this 
study, this network represents prostate cancer response to doc-
etaxel treatment between DU145 and PC3 cell lines. 

3.8 GSEA of TF 

Specific-Targeted 

Genes 

1. Create a pre-ranked gene list using the specificity scores of each 
TF that was calculated in Subheading 3.4. 

2. Run pre-ranked GSEA on GO terms with the pre-ranked gene 
list. Pathways that were considered as enriched if they had a 
false discovery rate (FDR) less than 0.05 (FDR < 0.05). 

3. Cluster the significant pathways using hierarchical clustering. 

4. For each cluster, calculate the frequency of each word that 
appeared in the GO terms. 

5. Calculate p-values to test word enrichment using a hypergeo-
metric probability. P-values were scaled by using -log10, 
which the most statistically relevant words would be the largest. 

6. Create word clouds for each cluster with the words from the 
pathway names. The size of the words is determined by the -
log10(p) values. 

3.9 Connectivity Map 

(CMAP) Analysis 

1. Go to the CMAP website here: https://portals.broadinstitute. 
org/cmap (see Note 5 before going to website) [12]. 

2. Label the gene nodes as a certain condition based on their edge 
weight fold change found in Subheading 3.6. In this example, 
the gene nodes were labeled as either sensitive or resistant.

https://portals.broadinstitute.org/cmap
https://portals.broadinstitute.org/cmap
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3. Run the gene nodes list from the last step in CMAP to predict 
response in various drugs. These drugs should either upregu-
late sensitive gene nodes or downregulate resistant gene nodes. 
In this example, drugs with positive enrichment would mean 
that these drugs had the highest potential to reverse docetaxel 
resistance in PCa. 

4 Notes 

1. The tools used in this protocol can be run on multiple different 
platforms and coding languages. Alternative versions or coding 
languages are acceptable to use. Please use the most up-to-date 
software for all tools mentioned. 

2. The scRNA-seq method to create the example expression data-
set is very old. However, the analysis pipeline explained in this 
protocol can be used with current scRNA-seq methods. 

3. You can find motif datasets in Catalog of Inferred Sequencing 
Bind Preferences (CIS-BP), MEME (https://meme-suite.org/ 
meme/db/motifs), etc. 

4. The PPI and TF motif datasets used as examples are older 
versions of what can be found today. Please use the most up-
to-date datasets. 

5. The CMAP website used for this analysis is not available any-
more. The CMAP dataset has moved here: https://clue.io/. 
For information about the algorithm, please refer to [12]. 
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Chapter 8 

Combination of Tissue Microarray Profiling and Multiplexed 
IHC Approaches to Investigate Transport Mechanism 
of Nucleoside Analog Drug Resistance 

Debasis Nayak, Brenna Weadick, and Rajgopal Govindarajan 

Abstract 

Nucleoside analogs (NAs) are an established class of anticancer agents being used clinically for the 
treatment of diverse cancers, either as monotherapy or in combination with other established anticancer 
or pharmacological agents. To date, nearly a dozen anticancer NAs are approved by the FDA, and several 
novel NAs are being tested in preclinical and clinical trials for future applications. However, improper 
delivery of NAs into tumor cells because of alterations in expression of one or more drug carrier proteins 
(e.g., solute carrier (SLC) transporters) within tumor cells or cells surrounding the tumor microenviron-
ment stands as one of the primary reasons for therapeutic drug resistance. The combination of tissue 
microarray (TMA) and multiplexed immunohistochemistry (IHC) is an advanced, high-throughput 
approach over conventional IHC that enables researchers to effectively investigate alterations to numerous 
such chemosensitivity determinants simultaneously in hundreds of tumor tissues derived from patients. In 
this chapter, taking an example of a TMA from pancreatic cancer patients treated with gemcitabine (a NA 
chemotherapeutic agent), we describe the step-by-step procedure of performing multiplexed IHC, imaging 
of TMA slides, and quantification of expression of some relevant markers in these tissue sections as 
optimized in our laboratory and discuss considerations while designing and carrying out this experiment. 

Key words Nucleoside analogs, Tissue microarray, Immunohistochemistry, Multiplexing, Solute 
carrier (SLC) transporters, Nucleoside transporter (NT), Equilibrative nucleoside transporter 
(ENT), Concentrative nucleoside transporters (CNT), Heat-induced antigen retrieval (HIER), Pan-
creatic cancer 

1 Introduction 

Nucleoside analogs (NAs) are the cornerstones of cancer chemo-
therapy in many solid tumors including pancreatic and lung adeno-
carcinoma as well as in hematologic malignancies such as acute 
myeloid leukemia (AML) and chronic lymphocytic leukemia 
(CML) [1, 2]. They include purine analogs (fludarabine, clofara-
bine, nelarabine, 5-mercaptopurine, 6-thioguanine), pyrimidine
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analogs (cytarabine, troxacitabine), azidopyrimidines (azacitidine, 
decitabine) and fluoropyrimidines (gemcitabine, capecitabine, fluo-
rouracil, tegafur/uracil). A majority of these agents are established 
chemotherapeutic drugs being used clinically either as monother-
apy or in combination with other therapeutic agents for the treat-
ment of diverse cancers, whereas a fraction of them including 
troxacitabine and guadecitabine are now in clinical trials being 
tested in patients with AML and CML [3–5]. Mechanistically, NA 
anticancer agents act as antimetabolites, which when translocated 
by the nucleoside transporters into the cytoplasm get phosphory-
lated by the intracellular enzymes (e.g., deoxycytidine kinase, dCK) 
into active metabolites and incorporated into newly synthesized 
DNA (s-phase of cell cycle) leading to inhibition of DNA synthesis 
and loss of cell proliferation [6, 7]. Additionally, the azidopyrimi-
dine class of anticancer drugs are also called DNA hypomethylating 
agents since they affect DNA methylation by covalently interacting 
and inhibiting the enzyme DNA methyl transferase (DNMT) after 
incorporation into the newly synthesized DNA, thus reducing 
tumor cell proliferation. The two DNMT inhibitors (azacytidine 
and decitabine) achieved significant success in clinic for the treat-
ment of myelodysplastic syndrome and AML [5, 8].
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Despite of the proven anticancer activities of NAs in vitro, in 
preclinical murine models, and in patients with primary grade 
tumors to locally advanced cancers, their clinical utilities are limited 
in advanced stage cancers because of development of resistance to 
these drugs by cancer cells [9–11]. One of the primary mechanisms 
of drug resistance to NAs is the lack of entry of these drugs into 
cancer cells, which is the first rate-limiting step that undermines 
their treatment efficacy. For instance, loss of expression or function 
(s) of some specific drug carrier proteins that transport NAs leads to 
drug resistance. Since NAs are hydrophilic in nature, they need 
certain carrier proteins called solute carrier (SLC) transporters for 
their delivery into the cellular compartments. Depending on the 
NA, a specific SLC or a combination of SLCs are involved in their 
tumor entry. Two families of SLC transporters that are involved in 
the transport of NAs across the cell membrane and across intracel-
lular compartments: equilibrative nucleoside transporters (ENTs, 
also called SLC29A) and concentrative nucleoside transporters 
(CNTs, also called SLC28A). There are three members from each 
of these two families ENT1, ENT2, ENT3, CNT1, CNT2, and 
CNT3, which are substantially studied for their role in the trans-
port of endogenous nucleosides and NAs; depending on the physi-
cochemical characteristics of the cargos, individual ENTs and/or 
CNTs participate in drug transport [7, 12, 13]. This methodology 
article focuses on procedures to evaluate acquired drug resistance 
due to aberrations in nucleoside transporter (NT) expressions and 
localization. Although there are numerous other mechanisms that



can contribute to nucleoside analog drug resistance in cancer (e.g., 
changes in metabolic enzymes such as deoxycytidine kinase, ribo-
nucleotide reductase, cytidine deaminase, etc.), those are not dealt 
here, but the described technique can be easily adapted for studying 
those determinants as well. 
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1.1 Tissue 

Microarray (TMA) and 

IHC Multiplexing 

Tissue microarray (TMA) is a valuable tool in oncology that allows 
researchers to study hundreds of patient tissue samples simulta-
neously under identical experimental conditions. Common applica-
tions include immunohistochemistry (IHC), in situ hybridization 
(ISH), and in situ PCR to evaluate the expression of diagnostic and 
prognostic markers in cancer. IHC multiplexing is commonly used 
for simultaneously visualizing multiple target antigens within a 
single tissue section. The development of multiplexed IHC coupled 
with multispectral imaging in recent years has enabled researchers 
to precisely study the complexities of the tumor microenvironment 
that expresses a wide array of biomarkers including various tumor 
cell, stromal cell, and immunological markers [14, 15]. Our paper 
will focus on the classical laboratory technique of IHC (monoplex-
ing and/or multiplexing) to represent a high-throughput method 
for the simultaneous assessment of protein expression in hundreds 
of tumor samples of various grades and stages of cancer progres-
sion. This powerful technique can be particularly useful for evalu-
ating the expression of NTs which are the first rate-limiting step 
required for NA drug action. Furthermore, many NTs are aber-
rantly localized in cancer cells, e.g., translocation of ENT1 and 
CNT1 from plasma membrane to cytoplasm in different cell types 
of pancreatic cancer and cholangiocarcinoma and aberrant localiza-
tion of ENT3 in some intracellular organelles in human fibrosar-
coma cells, which resulted in reduced responses to chemotherapy 
[13, 16–18]. Thus, this technique allows for the visualization of 
NTs at the plasma membrane and different subcellular compart-
ments, providing valuable information about transporter function, 
and, prospectively, NA drug efficacy. 

1.2 ENT1 as a 

Candidate for 

Evaluating Drug 

Resistance in 

Pancreatic Cancer 

ENT1 is a broadly specific NT that contributes to the transport of 
an array of purine and pyrimidine NAs in diverse cancers. Expres-
sion of ENT1 is correlated with improved drug efficacy and 
increased survival in pancreatic ductal adenocarcinoma (PDAC) 
and other solid tumors [17, 19–21]. In contrast, ENT1 becomes 
intracellular in some aggressive PDAC with high epithelial–mesen-
chymal transition (EMT) characteristics and loses its ability to 
transport a mainline treatment agent for PDAC called gemcitabine, 
as demonstrated by our group [16]. Mechanistic studies showed 
ENT1 cell surface localization may require different cell adhesion 
molecules such as EpCAM and the opposing effects of epithelial 
and neuronal cadherins. Therein the evaluation of ENT1



expression and its associated partner proteins (EpCAM) compos-
itely have diagnostic, prognostic, and therapeutic values since those 
determine the overall plasma membrane levels and therefore the 
functionality of ENT1 in cancer cells. Utilizing the example that 
ENT1 acts as a prototypic transporter for evaluation of drug resis-
tance to NAs, here we present the methodology and laboratory 
protocol for TMA multiplexing of ENT1 with the cell adhesion 
molecule EpCAM for evaluation of their expression in tumor and 
stromal compartments of PDAC. 
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2 Materials 

2.1 Equipment 

Needed for IHC 

Processing of the TMA 

Slides 

(a) Opal slide processing jars (Akoya Biosciences); (b) microwave 
oven (GE Appliances); (c) orbital shaker (VWR); (d) ImmEdge 
hydrophobic barrier pen (Vector Laboratories); (e) Falcon tubes, 
15 mL; (f) Falcon tubes, 50 mL; (g) microcentrifuge tubes, 
1.5 mL; (h) laboratory fume hood, (i) Borosil glass bottles, 1 L; 
(j) Borosil glass bottles, 250 mL; (k) sterile pipettes, 10 mL; 
(l) accu-jet pipette controller; (m) adjustable micropipettes 
(0.5–10 μL, 20–200 μL, and 100–1000 μL); (n) sterile micropi-
pette tips; (o) IHC slide storage boxes; (p) Kimwipes; (q) Vectra 
automated multispectral imaging system (PerkinElmer) and 
(r) inForm advanced image analysis software (PerkinElmer). 

2.2 Chemicals, 

Reagents, and 

Antibodies 

Chemicals and reagents should be of analytical grade for obtaining 
better-quality IHC staining and for avoiding issues related to purity 
of the chemicals. Xylene solvent (cat# 534056), absolute ethanol 
(cat# E7023), Tris base (cat# T1503), and hydrogen peroxide (cat# 
323381) were procured from Sigma-Aldrich (St. Louis, MO). 
Phosphate-buffered saline (PBS) tablets (cat# 6501), Tween-20 
(cat# 9480), and NaCl (cat# 7710) were purchased from Omni-
Pur/MilliporeSigma (Burlington, MA). Normal goat serum (cat# 
PCN5000) and 10% neutral buffered formalin (cat# 5701) were 
obtained from Thermo Fisher Scientific. 

Anti-hENT1 rabbit polyclonal antibody was described earlier 
[22, 23]. Two other ENT1 antibodies: anti-ENT1 rabbit poly-
clonal antibody (cat# ANT-051) and anti-ENT1 rabbit polyclonal 
antibody (cat# ab48607), were obtained from Alomone Labs (Jer-
usalem, Israel) and Abcam (Cambridge, UK), respectively. Anti-
pan-Cytokeratin mouse monoclonal antibody (cat# 914202) was 
obtained from BioLegend (San Diego, CA). Anti-EpCAM mouse 
monoclonal antibody (cat# 2929) was purchased from Cell Signal-
ing Technology (Danvers, MA), and anti-N-cadherin mouse 
monoclonal antibody (cat# 610920) was procured from BD Bios-
ciences (San Jose, CA). Antigen retrieval buffer, pH 6 (AR6) (cat# 
AR600125ML), was obtained from Akoya Biosciences



(Marlborough, MA). Opal 4 Color Manual Staining Kit (cat# 
NEL810001KT) was purchased from PerkinElmer (Waltham, 
MA). This kit includes Opal fluorophores 520 (green), 570 (red), 
690 (cyan), and DAPI (blue) that allows staining and detection of 
multiple target proteins simultaneously in various cellular 
compartments. 
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2.3 Stock and 

Working Solutions 

Prepare all the solutions using ultrapure deionized water and ana-
lytical grade reagents. 

Xylene: This is a ready-to-use solvent available commercially 
from Fisher Scientific and other suppliers. Place and use this solvent 
underneath a fume hood. 

Ethanol gradient: Prepare 200 mL volume each of 100%, 95%, 
and 70% ethanol solutions by diluting absolute analytical grade 
ethanol in ultrapure deionized water. 

PBS: For making a 1× solution, dissolve 10 PBS tablets in 1 liter 
of ultrapure deionized water, filter the solution to sterilize. 

Antigen retrieval buffer: Dilute the antigen retrieval AR6 
buffer at 1:10 dilutions in water in a slide processing jar directly 
prior to the experiment. 

Wash buffer (TBS, 10× stock solution): Dissolve 24.2 g Tris base 
and 80 g NaCl in 900 mL of ultrapure water. Then adjust pH to 
7.6, and make up the volume to 1 liter by adding ultrapure water. 

Wash buffer (TBST, 1× working solution): Dilute 100 mL of 
10× TBS stock solution in 900 mL of ultrapure water, and then add 
0.5 mL of Tween-20 into it. Mix well using magnetic stirrer. 

Blocking solution: 5% normal goat serum in PBS plus 0.1% 
detergent (Tween-20). For preparing 5 mL of blocking solution, 
add 250 μL of normal goat serum in 4.5 mL of PBS, and then add 
50 μL of 10% Tween-20 and mix well. This could be used as the 
antibody diluent as well for preparing primary and secondary anti-
body solutions. 

1° antibody solution: Dilute the abovementioned primary anti-
bodies in a ratio of 1:500 for ENT1, 1:100 for each of N-cadherin 
and EpCAM, and 1:75 for PanCK in the antibody diluent or 
blocking solution. These dilutions of the mentioned antibodies 
are optimized based on several pilot IHC experiments conducted 
in our laboratory on human normal and tumor tissue samples. 

2° antibody solution: Opal Polymer HRP Ms + Rb detection 
reagent supplied with the Opal 4 Color Manual Staining Kit was 
used in this procedure. This is a ready-to-use IHC detection 
reagent that can react with primary antibodies raised in mouse 
and rabbit, which provides other advantages including less incuba-
tion time (~10 min) and minimal background interference as well 
as signal amplification.



3.2 Deparaf-

finization,

Rehydration, and
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3 Methods 

3.1 TMA 

Construction 

The TMA used in this described protocol was prepared from tumor 
samples collected from 114 patients with pancreatic cancer admit-
ted to The Ohio State University Comprehensive Cancer Center, 
Columbus, OH. These patients were treated with surgical resection 
with or without postoperative gemcitabine-based chemotherapy. 
The procedures for the sample collection, ethical approval, and 
TMA construction and characterization are provided in our pub-
lished article [16]. Information about the patient demographics, 
clinicopathological characteristics, and clinical outcomes for each 
patient was also developed and maintained in a clinically annotated 
database and described in the abovementioned article by Weadick 
et al. (2021) [16]. 

Deparaffinization of the TMA slides is necessary before staining to 
remove the paraffin surrounding the tissue sections. Immerse the 
TMA slides in xylene in slide processing jars twice for a total 
duration of 15–20 min, and visually confirm removal of paraffin. 
Repeat this step in fresh xylene if necessary. Next, the tissue sections 
are rehydrated by immersing the slides in a decreasing ethanol 
concentration gradient. The deparaffinization/rehydration and fix-
ation steps are summarized below: 

Fixation of the TMA 

Slides 

1. Bake the paraffin-embedded TMA slides to be stained at 65 °C 
for at least 1 h or overnight by placing the slides in an oven or 
BOD incubator. If slides are baked, tilt up to allow for the 
drainage of paraffin, the movement of this drainage can poten-
tially tear or fold the delicate TMA cores, so baking the slides 
flat is recommended. 

2. Remove slides from the oven and immerse in xylene for 10 min. 
Use separate slide processing jars for each solvent or solution in 
which the TMA slides are to be immersed, and label it accord-
ingly (Fig. 1). This step is repeated for a second time in fresh 
xylene to make sure all traces of paraffin are removed from the 
slides. 

Fig. 1 Slide processing jars placed in a fume hood are labeled for different solutions required for the 
deparaffinization and rehydration of the TMA slides
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3. Place the slides in 100% ethanol for 10 min. 

4. Place the slides in 95% ethanol for 10 min. 

5. Place the slides in 70% ethanol for 10 min. 

6. Rinse the slides in TBST washing buffer. 

7. Rinse the slides in Milli-Q water. 

8. Immerse the slides in 10% neutral buffered formalin for 20 min 
for fixation. 

9. Rinse the slides in TBST washing buffer. 

10. Rinse the slides in Milli-Q water. 

3.3 Antigen Retrieval 

(AR) of the TMA 

Frozen tissue sections do not require an AR step; however, most 
formalin-fixed or paraffin-embedded tissue sections require an AR 
step prior to the IHC staining to expose the epitope that will bind 
the primary antibody. This is because formalin fixation forms meth-
ylene bridges that cross-link proteins which can mask their epitopes 
or antigenic sites. AR helps disrupt the methylene bridges, thus 
exposing the epitopes for the binding of antibodies. Heat-induced 
antigen retrieval (HIER) is the most used method for AR in IHC. 
This can be achieved by placing the TMA slides in AR buffer and 
heating in a microwave or incubating the slides in AR buffer over-
night in a water bath raising the temperature to 60 °C. The follow-
ing steps were optimized for this protocol: 

1. In an Opal slide processing jar, dilute the AR buffer 1:10 (each 
jar holds 100 mL of buffer). Select the buffer with the appro-
priate pH, usually pH 6 for the first antigen to be detected. 
However, for some other antibody targets, pH 9 AR buffer 
gives a better result (Table 1). 

2. Take the slides from the last step (rinsing with water), and place 
them in the appropriate AR buffer required for the target 
protein. 

Table 1 
Examples of target proteins and their suitable antigen retrieval (AR) 
buffers optimized in our laboratory 

Targets AR buffer 

ENT1 AR6 

EpCAM AR6 

N-cadherin AR6 

E-cadherin AR6 

SLC22A15 AR6 

CD20 AR9
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3. Microwave for ~45 s on high power until the buffer just boils. 
Then, reduce the power to 10% and microwave for an addi-
tional 15 min. (In the microwave mentioned in the Equipment 
section above, enter the time, 15:00, and then press power, and 
1, which will set the power to 10%). Place the jar toward the 
outside border of the carousel to ensure even heating. 

4. Remove the jar from the microwave and allow to cool at room 
temperature (RT) for at least 15 min. Optional overnight 
stopping point: at this step, the slides can be left in AR buffer 
at RT for overnight. 

5. Rinse the slides by immersing in Milli-Q water in a slide 
processing jar. 

6. Rinse the slides in TBST buffer. 

7. An optional quenching step is performed here in many IHC 
experiments to quench the endogenous peroxidases by 
immersing the slides in 0.3% freshly prepared hydrogen perox-
ide solution for 10–15 min. However, this step was omitted for 
the TMA staining protocol described here. 

3.4 Blocking, 

Probing with Primary 

and Secondary 

Antibodies, and 

Fluorescent Labeling 

with OPAL System 

In IHC, blocking of the tissue samples with an appropriate block-
ing solution is an essential step to perform prior to the incubation 
with primary antibodies. This is to prevent the nonspecific binding 
of the antibodies to tissues or FC receptors that gives nonspecific or 
background signals. Normal serum (1–5%, diluted in the washing 
buffer/TBST) matching to the species of the secondary antibody is 
recommended to be used as a blocking solution in IHC. Following 
steps were adopted in this procedure: 

1. Partially dry the slides by wiping the perimeter of the tissue 
section(s) with a Kimwipe, or filter paper cut into small trian-
gles, be careful to avoid disturbing the delicate tissue. 

2. Encircle the section with a hydrophobic barrier pen. This forms 
a contained area that helps retain the blocking solution within 
the borders during incubation of the tissue with each solution. 
The barrier may need to be touched up with the pen to main-
tain its integrity, especially following multiple wash steps. 

3. Apply the blocking solution provided in the Opal 4 Color 
Manual Staining Kit to each section quickly to avoid drying, 
and incubate the slides for 10 min at RT. Note that 
100–150 μL of blocking solution is sufficient to cover up the 
entire tissue section on one slide. If not using the kit, then 
prepare the blocking solution fresh on the same day (recipe 
described above), add to the sections, and incubate for 30 min 
at RT. This is an optional overnight stopping point; you can 
also incubate the slides in 4 °C refrigerator or in a cold room by 
adding the blocking solution.
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Table 2 
List of primary antibodies and their working dilutions used in this protocol 

Primary antibodies Dilutions 

Anti-ENT1 1:500 

Anti-EpCAM 1:100 

Anti-N-cadherin 1:100 

Anti-pan-cytokeratin 1:75 

4. Dilute the primary antibody in an appropriate antibody diluent 
solution. In this procedure we diluted the antibodies in the 
antibody diluent provided with the Opal kit (#ARD1001EA). 
However, primary antibodies can be diluted in freshly prepared 
5% normal serum (blocking solution) described above. The 
dilutions of various primary antibodies were tested producing 
the optimal signal intensity in our experimental set up 
(Table 2). 

5. Cut the Whatman filter papers into small triangles. Tilt the slide 
to allow solution covering the section to collect on one side, 
and gently absorb with the filter paper. 

6. Apply 100–150 μL of primary antibody solution (anti-EpCAM 
or anti-N-cadherin at the above dilutions) to the tissue sections 
by adding gently in a dropwise manner. Rapid addition of any 
of the solutions to the slide could potentially damage the tissue 
sections, so use care at each step. 

7. Incubate the slides for 1 h at RT in a humidified chamber to 
avoid drying up of the liquid. This can be prepared in a pipette 
tip box by pouring 10–20 mL of water to the lower chamber of 
the box and placing the slides in the upper chamber. This is an 
optional overnight stopping point. If longer incubation time 
with the primary antibody is required, the slide(s) can be 
incubated in a refrigerator at 4 °C or inside a cold room for 
overnight by placing them in the humidified chambers. 

8. Rinse the slides gently once with TBST. Wash the slides for 
three times (2 min each) in TBST with agitation by putting the 
slides in the white circular slide processing jars (Fig. 1) placed 
on a benchtop orbital shaker at speed setting 3. These slide 
processing jars can hold up to five slides at once. 

9. Remove excess liquid from the tissue sections by tilting the 
slides and absorbing the liquid with cut filter papers from one 
side of the section. 

10. Gently add 100–150 μL of Opal HRP polymer supplied with 
the kit to each section and incubate the slides for 10 min at RT.
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11. Rinse the slides once with TBST, and subsequently wash the 
slides for three times (2 min each) by putting them in the slide 
processing jars and agitating them as described above. 

12. Dilute the appropriate Opal fluorophore in Opal amplification 
diluent. Do not dilute lower than 1:50, average concentration 
is 1:100. 

13. Remove excess liquid from the tissue sections using filter 
papers as described above. 

14. Incubate the tissue sections with Opal 520 fluorophore sup-
plied in the kit (diluted 1:100) for 10 min at RT. 

15. Rinse once with TBST, and then wash with TBST three times 
for 2 min each. 

3.5 Staining for 

Additional Markers 

and Final Processing 

of the TMA Slides 

After incubating the tissue with Opal fluorophore for the primary 
antibody applied first, a microwave treatment by immersing the 
slide in AR buffer strips away any unbound antibodies. Because 
the fluorophores are covalently bound to the antibodies, they 
remain largely unaffected by microwave treatment. Then the pro-
cess is repeated using the next primary antibody and a different 
fluorophore starting with the blocking step. For each target protein 
to be detected, a different fluorophore should be used. The follow-
ing steps describe probing and labeling additional targets: 

1. At this point, the process was repeated starting with the micro-
wave treatment in an appropriate AR buffer as described above 
to strip the unbound antibodies, blocking and the next primary 
antibody anti-pan-Cytokeratin were applied to the tissue sec-
tion at 1:75 dilution for 1 h. Subsequently the secondary 
antibody Opal HRP polymer was applied as described above, 
and then tissue sections were incubated with Opal 690 fluoro-
phore for 10 min. 

2. Microwave treatment was performed again in AR buffer to 
strip any unbound antibodies, and all the steps up to blocking 
were repeated. The blocking step was performed to prevent 
nonspecific antibody binding. Tissue sections were then 
probed with anti-ENT1 primary antibody at 1:500 dilution 
for 1 h. Secondary antibody and Opal 570 fluorophore at 1: 
100 dilution were applied subsequently for 10 min each. 

3. After all the antibodies are applied, the final microwave treat-
ment should be performed with AR 6 buffer. 

4. Rinse the slides with water. 

5. Rinse once in TBST. 

6. Prepare DAPI working solution by diluting spectral DAPI 
provided in the Opal kit in TBST (1 drop of DAPI in 500 μL 
of TBST).
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7. Remove excess liquids from the tissue sections using filter 
papers as described above. 

8. Incubate the sections with DAPI working solution for 
1–2 min. 

9. Wash with TBST for 2 min. 

10. Wash with water for 2 min. 

11. Remove excess liquids from the tissue sections using filter 
papers as described above, and allow the sections to air dry. 

12. Mount with coverslip using fluorescent mounting media with-
out DAPI. Use glass coverslips sufficient to cover all of the 
TMA cores to avoid seams between multiple coverslips. 

13. Store slides at -20 °C for imaging at a late time. The Opal 
fluorophores are photostable and retain signal for at least 
1 year. 

3.6 Imaging of the 

Multiplexed TMA 

Slides 

We used Vectra 2.0 multispectral imaging system (Perkin Elmer) to 
image the multiplexed IHC slides (Fig. 2). This is an automated 
and multimodal imaging system that not only captures high-quality 
images of the entire tissue section or within the regions of interest 
but also allows to study the morphometric and biochemical orga-
nization of an intact tissue section both qualitatively and quantita-
tively. Its multiplexing capability can separate up to eight markers/ 
fluorophores within the field of view in a single tissue section. For 
more information on how to use the latest version of the micro-
scope, please find the user manual from the manufacturer in 
this link: https://resources.perkinelmer.com/corporate/content/ 
lst_software_downloads/vectra-user-manual-3-0-3.pdf. 

Vectra 2.0 multispectral imaging system scans the multiplexed TMA 
slides and captures images at 4x magnification 

User trains Vectra 2.0 by manually drawing regions of interest (ROI) 
within the specimen on a few training images 

Vectra 2.0 uses pattern-recognition algorithm to segment the 
entire tissue section 

Vectra 2.0 acquires multispectral images at 20x magnification 
for analysis based on the tissue segmentations 

inForm software segments 20x fields and scores the intensity 
of expression of markers in various cellular compartments 

Fig. 2 Schematic workflow of multiplexed TMA imaging and quantification using 
Vectra 2.0 multispectral imaging system and inForm analysis software

https://resources.perkinelmer.com/corporate/content/lst_software_downloads/vectra-user-manual-3-0-3.pdf
https://resources.perkinelmer.com/corporate/content/lst_software_downloads/vectra-user-manual-3-0-3.pdf
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The following steps represent an overview of using the instru-
ment for imaging of the IHC multiplexed TMAs. Note that these 
steps are specific for the Vectra 2.0 multispectral imaging system 
(Perkin Elmer) installed at The Ohio State University Comprehen-
sive Cancer Center: 

1. Switch on each of the associated devices sequentially. First, turn 
on the computer connected to the microscope, and let win-
dows to start. After a minute turn on the microscope module 
controller box to supply power to the microscope, and then 
switch on the fluorescence illuminator since the goal is to 
perform the multispectral imaging. Finally, turn on the Vectra 
stage controller module to input power to the automated 
microscope stage. 

2. Double-click on the Vectra software icon on the desktop to 
start. It approximately takes 30 s to initialize the software, and 
adjust the hardwares including objective lenses. After initializa-
tion, the software’s home page opens that allows to access 
through different options. 

3. Load a slide on to the stage, and then use the stage control 
joystick to move the stage in different directions. This is needed 
to focus the objectives/lenses on the field of interest and to 
optimize the exposure time for the fluorescent tissue samples. 
Advanced version of this microscope also allows to load multi-
ple slides in cassettes into a slide loader, and the Vectra micro-
scope can automatically recognize the slide position and image 
the samples in sequence. 

4. Click on file and then load protocol, in case you have a 
pre-optimized imaging protocol saved earlier in the instru-
ment. You can also create or edit a protocol according to 
your experiment by setting up the fluorophore wavelengths, 
name, exposure time, etc. 

5. Click setup, then HP imaging, and then 20× (magnification). 

6. Set up the order of the Opal fluorophores to be imaged. This is 
based on the relative brightness of the fluorophore in Vectra 
2.0 (e.g., 1, Opal 520; 2, Opal 690; 3, Opal 570). 

7. Correct exposure of the saturated fields and press “open shut-
ter.” If the field looks saturated, then reduce the exposure or 
select “auto-exposure,” and then press “accept” and “auto-
expose.” 

8. Press “Take one” and then “acquire” to capture an image of the 
selected field. 

If your experimental goal is to detect only one antigen with a 
single fluorophore (e.g., if you are interested to look at the mem-
branous expression of ENT1 in your samples tagged with the Opal 
570 fluorophore) and you would like to capture the images from 
multiple random fields, then the following steps would apply:
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9. Start the Vectra software as described above, and then open 
through your lab ID or an already saved protocol for the same. 
Otherwise, click on “WT1” and then “monochrome imaging.” 

10. Click on “setup” then “settings” then “monochrome imag-
ing” and then “scan area.” 

11. Adjust the scan area on the sample by moving the specimen 
through using joystick. Then click on “find specimen” and 
“select all.” 

12. Select the “LP imaging option,” then “select filed,” and then 
click on “HP imaging.” 

13. After you chose the fluorophore (Opal 570) and DAPI, adjust 
the exposure as described above, then click on “acquire” to 
capture the images from the random fields. 

14. Check your data storage location in the computer drive for the 
captured image files. Vectra usually stores the files in the .im3 
format, which can be later imported into the inForm image 
analysis software for quantification and analysis, and the files 
can be converted into .tiff images. 

3.7 Quantification 

and Analysis of the 

Acquired Multiplexed 

IHC Images 

We used Vectra multispectral imaging system 2.0 coupled with 
inForm image analysis software, which helps in automated quanti-
tation of expression of various markers within the tissue sections. 
inForm is equipped with pattern recognition algorithm and uses 
machine learning approaches, which enables users to teach the 
software to identify and segment areas within the tissue section 
automatically. This capability of the software also helps to accurately 
measure the protein expression in various cellular and subcellular 
compartments (e.g., cytoplasmic, nuclear, and membranous) of the 
TMA sections. Following steps represent an overview of working 
with inForm image analysis software for quantifying/analyzing 
multispectral images: 

1. Open the inForm software after you switch on the computer in 
which it is installed. You need the .im3 images saved in this 
computer, which are already captured using Vectra 2.0. If you 
are using inForm in the same computer connected to Vectra 
2.0, you do not need to turn on the Vectra 2.0 microscope, the 
microscope module controller box, or the fluorescence illumi-
nator during the image analysis. 

2. Click on file, open, and then open the .im3 images from the 
raw file folder. Then choose the sample format as fluorescence. 

3. Click on the spectral library source and inForm, and then select 
the fluorescence individually from an already saved library 
(in this case, Opal 520, Opal 570, Opal 690, and DAPI from 
User’s library) or create a library according to the 
fluorophore used.
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4. Click on configure, find features, cell segmentation, and score, 
and then configure. 

5. Click on prepare, spectral library source (inForm), then the 
saved library (e.g., Brenna’s library). Select “all fluorophores” 
that applies (Opal 520, Opal 570, Opal 690, and DAPI), then 
“prepare all.” 

6. Click on advance, segment cells, and select nuclei, cytoplasm, 
and membrane. 

7. Uncheck the edge rules, select the general appearance as 
“counter stain based,” and choose the “nuclear counterstain 
DAPI.” 

8. Click on cytoplasm, any component, and then membrane. 
Select all fluorophores (Opal 520, Opal 570, and Opal 690), 
then “auto” and then “segment all.” 

9. After inForm segments the cells and cellular compartments, 
manual drawing of pattern or tailoring is needed to train this 
software to score/quantify accordingly. Here you can zoom in 
and out of the images to inspect the segmentation. The soft-
ware also shows colored buttons matching to the color of the 
fluorophores, which allows to turn on and off the staining of 
one fluorophore and to look at another fluorophore separately. 

10. Look at nuclei by unchecking other fluorophores. Shrink the 
nuclei if necessary and click on segment image. 

11. Select the fluorophore for the membrane compartment 
(Opal 520). 

12. Scoring can be done based on the % positivity of the staining 
intensity (from low to high) into four bins (0+, 1+, 2+, and 
3+). 

13. Set the threshold by checking the positively stained cells for a 
particular compartment (membrane), and then press “score 
all.” 

14. inForm scores the membrane staining in the entire image based 
on the set threshold for the positively stained cells and gives the 
values as histoscores (H-scores). 

3.8 Statistical 

Analysis of the Data 

from Multiplexed TMA 

1. TMA slides procured from commercial sources such as biomax. 
us usually come up with data for patient demographic and 
clinical characteristics for each core/sample of TMA. These 
data were analyzed using descriptive statistics and continuous 
variables expressed as mean (standard deviation) or median 
(range). Categorical data such as sample size can be presented 
as count (n) and frequency (%). Comparisons can be made 
using either chi-square test, Student’s t test, or one-way 
ANOVA.
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2. Pearson’s correlation tests were applied to correlate between 
the percentages of plasma membrane expression of ENT1-
positive and EpCAM-positive cells, plasma membrane N-
cadherin-positive and cytoplasmic ENT1-positive, ENT1 plus 
EpCAM double-positive, and ENT1 plasma membrane posi-
tive cells. 

3. Kaplan–Meier survival analysis was employed to determine the 
median overall survival times of patients and survival curves 
were compared using log–rank test. 

4. Univariate and multivariate survival analyses were performed to 
assess the potential associations between tumor grade, T stage, 
N stage, adjuvant chemotherapy treatment, H-scores of mar-
kers, and median overall survival. Multivariate analysis used 
proportional hazard regression model of Cox. 

5. Two-sided p values of p < 0.05 were considered statistically 
significant in all cases except where analysis was performed on a 
very limited sample size. 

6. Statistical analyses of the TMA were performed using SAS 9.4 
(the SAS Institute, Cary, NC), and survival analysis was per-
formed using R3.5.0 (R Foundation for Statistical 
Computing). 

4 Notes 

1. While transferring the slides from one slide processing jar to 
another with a different liquid, try to drain the liquid 
completely from the slides or wipe the slides with Kimwipes 
to ensure liquids from one bath do not mix with the next bath. 

2. The staining process should be continuous, and care should be 
taken to avoid drying of the tissue sections while transferring 
the slides from one bath to another or any time during the 
procedure. 

3. Handle the tissue sections and especially the TMA cores with 
utmost care to minimize peeling or folding of the samples. 
Forceps can be used to handle the slides by gripping the label 
to transfer the slides between the washes. 

4. The antibodies specified for IHC usually have the method for 
AR mentioned on the datasheets of those antibodies. However, 
it is recommended to optimize the best AR buffer and condi-
tions for a specific antibody by doing test experiments. Also, see 
the humanproteinatlas.org for antibody validations that often 
describe antigen retrieval used.

http://humanproteinatlas.org
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5. If appropriate blocking solution is not used or blocking is 
performed for inadequate period, the detection reagents may 
bind to numerous nonspecific binding sites and produce back-
ground signals, which often mask up the specific antigen–anti-
body reactivity signals. 

6. The primary antibodies should be diluted in the antibody 
diluent accurately. Commercially available primary antibodies 
recommended for IHC usually suggest the appropriate anti-
body dilution to be used. However, it varies depending on the 
expression of the target protein in the tissue type being stained. 
Therefore, it is better to optimize the dilution of the primary 
antibody to be used in your final experiment by running two to 
three trial experiments with varying antibody dilutions and 
testing which dilution of the antibody gives the best signal 
intensity. 

7. Temperature during incubation of the tissue section with pri-
mary antibody also plays an important role. High temperature 
promotes binding but decreases specificity. Lower antibody 
dilutions at low temperatures over a long period of time gener-
ally provide the most specific signal. 

8. You may want to remove the pen markings at the end of the 
procedure before adding the coverslip, as it is autofluorescent, 
but it is not necessary, and there is a risk of disturbing the 
tissue. To remove the barrier pen markings, use a Kimwipe 
and ethanol. 

9. The best place to find in-depth information about the Opal kit 
is from Akoya Bioscience’s Assay Development guide https:// 
www.akoyabio.com/phenopticstm/resources. 

5 Loss of ENT1 During EMT Process Opal Panel: A Working Example 

The study by Weadick et al. (2021) demonstrates that loss of plasma 
membrane ENT1 occurs when the epithelial pancreatic cancer cells 
undergo EMT and attain mesenchymal phenotypes, which also 
correlate with altered expression of cell–cell adhesion molecules 
including EpCAM, N-cadherin, and E-cadherin. Loss of ENT1 
resulted in reduced efficacy of nucleoside analog gemcitabine in 
mesenchymal subtypes of pancreatic cancer cells. The following 
steps describe how the TMA multiplexing experiment was designed 
and optimized to address the question(s) in this study. 

Question: In human PDAC samples, does loss of ENT1 correlate 
with EpCAM, or N-cadherin? 

(a) Panel design 

ENT1: Nucleoside transporter protein with membranous and 
cytoplasmic expression.

https://www.akoyabio.com/phenopticstm/resources
https://www.akoyabio.com/phenopticstm/resources
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Table 3 
List of Opal fluorophores used for different target antigens showing their color and multiplexing order 

Fluorophore Relative brightness (Vectra 2.0) Antigen Color Multiplex order 

Opal 520 Medium EpCAM, 
N-cadherin 

Green 1 

Opal 690 Lowest Pan-cytokeratin Cyan 2 

Opal 570 Highest ENT1 Red 3 

EpCAM and N-cadherin: Cell cell adhesion molecules, mem-
branous expression of which alters during EMT (based on 
the published reports and our preliminary studies). 

Pan-Cytokeratin: marker to differentiate epithelial tumors 
from surrounding stroma. 

DAPI: Nuclear counterstain. 

Step 1: Assign an Opal fluorophore based on predicted relative 
expression. For image analysis, it is important that signals 
are basically balanced in intensity for accurate unmixing. 
Also, decide which order each target will be detected in 
the final multiplexed experiment. This may require opti-
mization, as some antigens will become more or less 
accessible after multiple rounds of microwave treatment 
(see Table 3). 

(b) Make library slides 

1. The key to the Opal multiplexing IHC assay is accurate 
unmixing of multiple colors. Library slides provide a pure 
spectrum for each fluorophore to be used for image 
analysis. 

2. Library slides are created in control tissues with a highly 
expressed marker (we considered CD20 expression in ton-
sil tissues) and can likely be used in multiple studies, 
although it may be a good idea to capture new library 
images as the fluorescent bulb ages. 

3. Library slides are made for each fluorophore and processed 
as usual with no DAPI. 

4. One slide is made for DAPI only. 

5. One slide of representative sample tissue is processed and 
left without DAPI or Opal fluorophore to collect an auto-
fluorescence signal. 

6. Image library slides by setting the capture settings for the 
same exposure time (i.e., 150 ms) for every channel. Select 
the option to correct for saturation, before capturing 
images.
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In InForm software, import the .im3 files for each fluorophore, 
and extract the spectra for each under “build libraries” tab on the 
left side of the initial page. Save the name and color for each 
fluorophore to use for future studies. Additionally, capture an 
autofluorescence image for the tissue of interest in which the final 
staining will be done. Draw a region in InForm around the auto-
fluorescence image, and apply it to the library slide images. 

(c) Perform IHC monoplex optimization experiments 
If the lab has not previously performed IHC experiments 

with the antibody of interest, then follow general suggestions 
below: 

1. 
tissue. 

The antibody manufacturer or the human protein atlas 
can provide general information in most cases about where 
to start with determining antibody dilution. If no informa-
tion is available, try 1:100 dilution of primary antibody. To 
find an appropriate positive control, consult the literature 
or human protein atlas tissue expression section. Human 
tissue slides, formalin-fixed, paraffin-embedded (FFPE) can 
be purchased from several sources including Biomax.com 
and novusbio.com. Alternatively, slides can be created in 
lab or obtain by collaborating with the Veterinary Pathol-
ogy Department at your University. 

2. Determine optimal conditions in target tissue. 
Once you have established that the antibody is work-

ing, test it in the tissue to be used in your final experiments. 
For example, if you validated the antibody in normal pan-
creas tissue, now you can try in pancreatic cancer samples. 

A. Consider number of microwave steps that will be used 
in final experiment:

• These monoplex experiments should incorporate the 
correct number of microwave treatments for the 
panel you have designed. Try changing the multiplex 
order if needed. 

B. Consider changing primary antibody concentration 
first:

• Optimize by trying serial dilutions. 

C. Consider changing primary antibody incubation time:

• Optimize by shortening or lengthening incubation 
time and temperature. Higher concentration of anti-
body requires shorter incubation time but can con-
tribute to background.

http://biomax.com
http://novusbio.com
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D. Consider changing Opal fluorophore dilution as a last 
resort:

• Dilution should never be lower than 1:50 and ideally 
at 1:100 or above. Lowering the dilution of Opal 
fluorophore can increase signal strength if necessary. 

Multiple trial experiments are needed to optimize the appro-
priate antibody, dilution, incubation time, and the ideal Opal fluor-
ophore for that target antigen. Figure 3 shows examples of 
monoplexed IHC images from the trial experiments, which did 
not produce optimal staining pattern/intensity. 

Question: How do I know if my signal is optimal to move forward 
to multiplexing?

• When capturing images with Vectra, aim for autoexposure times 
between 25 ms and 250 ms. 

Fig. 3 Examples of monoplexed IHC staining images that did not work well during 
our experimental optimization. (a, b) Opal monoplex images of human pancreatic 
tumor tissues probed with anti-ENT1 primary antibodies procured from Alomone 
Labs and Abcam respectively used at 1:2500 dilution each, incubated for 
overnight at 4 °C and stained with Opal 570 fluorophore (red). (c, d) Opal 
monoplexed IHC images of human pancreatic tumor tissues probed with anti-
N-cadherin and Anti-pan-Cytokeratin primary antibodies, respectively, used at 1: 
2500 dilution each, incubated for 2 h at RT, and stained with Opal 520 (green) 
and Opal 690 (turquoise), respectively. DAPI staining of nuclei is blue. Images 
were captured at 20× magnification. Scale bars, 50 μm
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Fig. 4 Identifying real signal versus autofluorescence. (a) Monoplexed IHC image of a human pancreatic tumor 
tissue probed with the in-house anti-ENT1 primary antibody, stained with Opal 570 fluorophore (red), and 
counterstained with DAPI; image autoexposure time: 25 ms. (b, c) Images of the same stained tissue shows 
autofluorescence in the green and turquoise color filter as well at higher exposure time (2000 ms). Images 
were captured at 20× magnification. Scale bars, 50 μm 

Fig. 5 Monoplexed IHC images of the human pancreatic tumor tissues stained for various markers. (a) Anti-
ENT1 primary antibody (1:2500 dilution) incubated overnight at 4 °C, Opal 570 fluorophore (color: red), image 
autoexposure time 24 ms. (b) Anti-EpCAM primary antibody (1:2500 dilution) incubated overnight at 4 °C, Opal 
520 fluorophore (color: green), image autoexposure time 82 ms. (c) Anti-pan-Cytokeratin primary antibody (1: 
2500 dilution) incubated overnight at 4 °C, Opal 690 fluorophore (color: turquoise), image autoexposure time 
30 ms. DAPI staining of the nuclei is blue. Images were captured at 20× magnification. Scale bars, 50 μm 

• After preparing the images in inForm, determine Opal intensity 
by hovering over each cell. Acceptable range is between 3 and 
30. Signal should ideally be 10× greater than background. This 
may or may not be achievable considering the relative abun-
dance of the target.

• Within a panel, it is best if intensity levels are within twofold of 
one another. 

Also, it is critical to distinguish between the real signal intensity 
and autofluorescence (Fig. 4) and to avoid capturing the autofluor-
escence signals. Figure 5 shows examples of monoplexed IHC 
images from an optimized experiment in which human pancreatic 
tumor tissues were stained for the expression of ENT1, EpCAM, 
and Pan Cytokeratin.
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Fig. 6 Optimization: examples of multiplexed IHC images of a normal human 
pancreatic tissue (left) and a human pancreatic tumor tissue (right) probed with 
anti-ENT1 primary antibody (Opal 570 fluorophore, red), anti-EpCAM primary 
antibody (Opal 520 fluorophore, green), and anti-pan-Cytokeratin primary anti-
body (Opal 690 fluorophore, turquoise). DAPI staining of the nuclei is blue. 
Images were captured at 20× magnification. Scale bars, 50 μm 

(d) Multiplex experiment 

Now you are ready to move forward and incorporate all the 
optimized monoplex conditions. Perform multiplexing experi-
ments in a few normal human tissues and tumor tissues prior to 
the TMA staining. Figure 6 shows an example of multiplexed IHC 
staining images of normal human pancreas and pancreatic tumor 
tissues stained for ENT1, EpCAM, and pan-Cytokeratin expres-
sion. Follow the Opal workflow, applying a microwave treatment 
step before every new primary antibody to strip unbound antibody 
and fluorophore. Ensure that all signals are balanced at the multi-
plex level before moving on to the final experiment. Few represen-
tative images of the different tumor tissues from a pancreatic cancer 
TMA stained for the expression of ENT1 (red), EpCAM (green), 
and Pan Cytokeratin (turquoise) are presented in Fig. 7. 

Following points summarize how the expression of various 
markers were segmented and quantified in the multiplexed TMA 
described in the study by Weadick et al. [16]. 

1. Random fields were imaged from each core of the multiplexed 
TMA slides using Vectra 2.0 multispectral imaging system. 

2. inForm analysis software was used to determine the %positive 
cells for various markers in different subcellular compartments. 

3. Cell segmentation was performed based on the DAPI nuclear 
stain that differentiated nuclear and cytoplasmic 
compartments. 

4. Cell segmentation also distinguished pancreatic tumor cells 
from stromal cells based on pan-Cytokeratin expression.
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Fig. 7 Examples of multiplexed IHC images of different human pancreatic tumor 
tissues from a TMA stained with the in-house anti-ENT1 primary antibody (Opal 
570 fluorophore, red), anti-EpCAM primary antibody (Opal 520 fluorophore, 
green), and anti-pan-Cytokeratin primary antibody (Opal 690 fluorophore, tur-
quoise). The image on the upper left panel is without pan-Cytokeratin stained. 
Counter staining with DAPI showing nuclei in blue color. Images were captured 
at 20× magnification. Scale bars, 50 μm 

5. Percent positive cells for either EpCAM or N-cadherin and the 
double-positive cells for both these markers were quantified in 
the epithelial tumor cells. 

6. ENT1 expression on the plasma membrane was quantified 
using inForm by distributing the fluorescent signal intensity 
into four bins as mentioned above. 

7. H-scores of ENT1 plasma membrane expression for each 
image were calculated using the formula (1 × (% cells 1+) +2 
× (% cells 2+) +3 × (% cells 3+)). 

Figure 8 shows example of an IHC image of the human pan-
creatic TMA stained with anti-EpCAM antibody (green fluores-
cence) and segmented to study the membranous expression of 
EpCAM.
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Fig. 8 Example of an IHC image of a human pancreatic tumor tissue from a TMA 
stained with anti-EpCAM antibody and DAPI. Cell segmentation was performed 
using inForm image analysis software showing EpCAM-membrane positive cells 
in green boundaries. Magnification, 20×. Scale bar, 50 μm. 

6 Investigating Drug Resistance by Exploiting Multiplexed TMA 

The combination of tissue microarray with IHC multiplexing 
together presents a powerful tool for the next generation oncology 
and other biomedical research, since it enables researchers for the 
high-throughput analysis of proteins of interest in hundreds to 
thousands of tissue samples from patients. The discovery of 
advanced imaging and quantification technology such as Vectra 
2.0 coupled with inForm analysis software has further empowered 
this technique by allowing scientists for studying expression of 
multiple markers (up to ~7 or 8) simultaneously in a single tissue 
section. The alterations in expression of various markers of the 
tumor microenvironment (oncogenes, tumor suppressor genes, 
and immune markers) in response to certain chemotherapy and 
further consequences on drug efficacy can be studied effectively in 
patient tissue samples using multiplexed TMA. This information 
can also be correlated with patient demographical characteristics 
such as age, gender, and race to derive inference about influence of 
these factors on cellular expression of markers determining drug 
resistance. Additionally, this technique facilitates comparative anal-
ysis of expression of these markers both qualitatively and quantita-
tively between normal versus cancer tissues and among different 
grades and stages of tumor progression in patients undergoing 
neoadjuvant chemotherapy and their impact on survival outcomes 
including overall survival and disease-free survival [11, 24, 25]. 

Multiplexed TMA analysis is helping substantially to under-
stand the molecular mechanism(s) of drug resistance, thus



providing valuable information about how and when to target such 
molecular aberrations for overcoming the issues of drug resistance. 
For instance, by utilizing multiplexed IHC approaches in a TMA 
comprised of n = 114 patient-derived PDAC samples and n = 25 
adjacent normal pancreatic tissues, our earlier study by Weadick 
et al. demonstrated that coexpression of EpCAM and ENT1 pre-
vails in epithelial primary tumors from pancreatic cancer patients. In 
EpCAM-positive cells, ENT1 expression was distinctly visible over 
the plasma membrane, whereas no plasma membrane expression or 
cytosolic expression of ENT1 was evident in N-cadherin-positive 
tumor cells [16]. This was studied both qualitatively and quantita-
tively by applying cell segmentation feature of Vectra 2.0 and 
subsequent inForm analysis that allowed distribution of the 
tumor cells in each image into membrane and cytoplasmic com-
partments as ENT1-single positive, EpCAM-single positive, N-
cadherin-single positive, ENT1 and EpCAM plasma membrane 
coexpression as double-positive, and N-cadherin-plasma mem-
brane plus ENT1-cytoplasmic expression double-positive, and 
finally quantification of intensity of expression into H-scores. Addi-
tionally, univariate survival analysis considering the H-scores of 
ENT1 plasma membrane expression demonstrated that high 
ENT1 expression on the cell surface positively correlated with 
median overall survival times in gemcitabine-treated patients, 
whereas multivariate survival analysis suggested that ENT1 mem-
brane H-score, gemcitabine-based chemotherapy, and tumor N 
stage (nearby lymph nodes having cancer) were independently 
associated with overall patient survival [16]. These data not only 
uncover the importance of expression of various cell–cell adhesion 
molecules that determine ENT1 cell surface expression and gemci-
tabine/NA drugs accumulation in tumor cells but also provide 
valuable information such as absence of lymph node metastasis 
and improved overall survival in patients with ENT1 cell surface 
dominating pancreatic cancer who are receiving this chemotherapy. 
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7 Future of TMA Multiplexing in Studying Anticancer Drug Resistance 

In comparison to the conventional IHC, multiplexing of the TMAs 
has tremendous potential for use in clinical and translational 
research, especially in the era of cancer immunotherapy. This multi-
plexing approach can be successfully applied for the rapid detection 
and differentiation of rare malignant cells from the infiltrating 
immune cell, e.g., T- and B-lymphocytes and subsets [15]. In the 
context of NA chemotherapy, the approach can be utilized to study 
the immune modulation (T-cell activation, alterations to PD-1 and 
PD-L1) in response to such therapy and their correlation with 
chemosensitivity. The technique can be successfully designed and 
performed to study alterations to markers in the tumor



microenvironment (TME) and their consequences on lymph node 
metastasis in response to NA and other chemotherapeutic drugs. 
Previous studies demonstrate that expression of nucleoside meta-
bolizing enzymes such as uridine–cytidine kinase (UCK) and deox-
ycytidine kinase (dCK) greatly influences the efficacy of nucleoside 
analog chemotherapeutic drugs (azacitidine, decitabine) in hema-
tological malignancies [26]. Alterations to such nucleoside meta-
bolizing enzymes in TMAs from patient samples can be studied 
effectively with the help of IHC multiplexing to ascertain a more 
complete picture on drug resistance. Moreover, this tool can be 
efficiently utilized for visualizing and quantifying the expression of 
any NA chemosensitivity determinants including the NA-activating 
enzymes (dCK, deoxyguanosine kinase (dGK)) [27, 28] and 
NA-deactivating enzymes (5′-nucleotidases and cytidine deami-
nase) [29, 30] in patient samples, which may be important to 
overcome the issues of drug resistance in specific cancer subtypes. 
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Chapter 9 

In Situ Proximity Ligation Assay to Visualize Protein–Protein 
Interactions in Tumor Specimens 

Yasuhiro Miki, Erina Iwabuchi, and Takashi Suzuki 

Abstract 

Protein–protein interactions (PPI) are the basis of various biological phenomena, such as intracellular signal 
transduction, gene transcription, and metabolism. PPI are also considered to be involved in the pathogen-
esis and development of various diseases, including cancer. PPI phenomenon and their functions have been 
elucidated by gene transfection and molecular detection technologies. On the other hand, in histopatho-
logical analysis, although immunohistochemical analyses provide information pertaining to protein expres-
sion and their localization in pathophysiological tissues, it has been difficult to visualize the PPI of these 
proteins. An in situ proximity ligation assay (PLA) was developed as a microscopic visualization technique 
for PPI in formalin-fixed, paraffin-embedded (FFPE) tissues as well as in cultured cells and frozen tissues. 
PLA using histopathological specimens enables cohort studies of PPI, which can clarify the significance of 
PPI in pathology. We have previously shown the dimerization pattern of estrogen receptors and significance 
of HER2-binding proteins using breast cancer FFPE tissues. In this chapter, we describe a methodology for 
the visualization of PPI using PLA in pathological specimens. 

Key words In situ proximity ligation assay, Protein–protein interaction, Formalin-fixed, paraffin-
embedded tissues, Cultured cells, Frozen tissues, Immunohistochemistry, Antibody, Pathology, 
Histology 

1 Introduction 

Imaging and serodiagnosis are used for the diagnosis of cancer; 
however, the final definitive diagnosis is usually based on the histo-
logical diagnosis in pathology. Lymph node status, tumor size, and 
histological grade, also known as the Nottingham Grading System, 
are the main factors that contribute to the prognosis of breast 
cancer patients [1]. Histological grade is assessed based on the 
morphological characteristics of invasive breast cancer, that is, the 
degree of differentiation of the tumor. Pathological specimens are 
used not only for the diagnosis but also for devising therapeutic 
strategies for the patients based on immunohistochemical analysis 
of estrogen receptor (ER) and HER2 [2]. Both, gene expression
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analysis techniques, such as PCR, and protein expression analysis 
techniques, such as western blotting, are often selected for several 
types of cancer research. The histopathological specimen used for 
the diagnosis is usually a formalin-fixed, paraffin-embedded (FFPE) 
tissue. Therefore, molecular biological analysis employing histo-
pathological specimens used for diagnosis is well-known to be 
limited, and therefore, unfixed frozen tissues are required for such 
analyses [3]. However, when nucleic acids and proteins are 
extracted by homogenizing the entire frozen tissue, it becomes 
impossible to determine which cell type constituting the tumor 
tissue, including normal epithelial, carcinoma, and fibroblastic stro-
mal cells, is predominantly expressed in the cancer 
microenvironment [4].
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One of the mechanisms by which proteins exert their functions 
involves interaction of a protein with the same or different proteins 
and is known as protein–protein interactions (PPI). The analysis of 
PPI has been advanced by in vitro techniques, such as BRET/ 
FRET assays and co-immunoprecipitation; however, PPI have 
been considered difficult to analyze using FFPE tissues 
[5, 6]. The advantages of using FFPE are as described above, and 
visualization of PPI in FFPE tissue is expected to lead to further 
developments in the fields of cancer research and treatment. In 
addition, large retrospective cohort studies are conducted using 
archival FFPE tissues. An in situ proximity ligation assay (PLA) 
was developed as an immunohistochemical tool that combines the 
specificity of antigen–antibody reaction with the sensitivity of PCR 
[7, 8]. PLA can help in visualizing PPI in archival FFPE tissues, 
revealing the constituent cells in which PPI occur in the cancer 
microenvironment. Furthermore, by evaluating the amount of PPI 
signal, the relationship between PPI and various pathological fac-
tors, including prognosis, can be statistically clarified. We have 
visualized the dimeric pattern of ER subtypes [9, 10] and 
ER-binding proteins [11–13] by PLA and have elucidated their 
significance in the pathophysiology of breast cancer. Furthermore, 
we found a novel HER2-binding protein that has been shown to 
modify the function of HER2 in breast cancer [14]. In this chapter, 
we will explain in details the PLA procedure using FFPE tissues. We 
will also describe PLA for breast cancer cell lines. 

2 Principle of PLA 

Figure 1 shows a conceptual scheme of PLA [15, 16]. PLA can 
detect PPI in immunohistochemistry-ready samples (cell lines, 
fresh, frozen, formalin-fixed, paraffin-embedded tissue, etc.). 
First, primary antibodies specific to different targets, viz., “α pro-
tein” and “β protein,” are allowed to react. Secondary antibody 
probes with characteristic oligonucleotides are then allowed to



react with the respective primary antibodies. When these two 
probes are within 40 nm of each other, they are ligated by DNA 
ligase, which joins the 3′-end of one probe with the 5′-end of the 
other probe to form a unique target DNA reporter strand. Rolling 
circle amplification using these reporter strands amplifies the pro-
ducts quantified by real-time PCR. A fluorescence-labeled probe 
that specifically binds to this amplified product is allowed react, and 
the intratisular localization of PPI between “α” and “β” proteins is 
detected under a microscope. 
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Fig. 1 Schema of proximity ligation assay. (A) Primary antibodies (anti-α and anti-β antibodies) specifically 
bind to two different proteins (α and β). (B) A secondary antibody for each primary antibody binds. These are 
characteristic secondary antibodies, namely, PLA probes (PLUS and MINUS) with attached oligonucleotides. 
(C) When the α and β proteins are in close proximity (<40 nm), they are bridged by hybridization of an 
oligonucleotide that forms a circular structure between the PLA PLUS and MINUS probes. (D) The circular DNA 
functions as a template for in situ rolling circle amplification. (E) Amplified DNA products are detected by 
complementary binding of the fluorescently labeled oligonucleotide probes 

3 Materials and Methods 

3.1 Specimens In the case of human tissues, FFPE tissue that has been surgically 
resected and subjected to pathological diagnosis is used for PLA. If 
the FFPE tissue has been used for immunohistochemical diagnosis, 
it is considered that there are no issues in the preparation process, 
such as overfixation. In our laboratory, we were able to obtain good 
PLA staining using archival FFPE tissues stored at room tempera-
ture for over 10 years. In the case of tissues collected for experi-
ments (humans and experimental animals), it is necessary to 
immerse the tissues in a fixative solution as soon as possible after

3.1.1 Tissue Specimens



their excision. Formalin-based fixatives (see Note 1) are best for 
PLA, and alcohol-based fixatives solutions may not yield good PLA 
staining. During the preparation of specimens for PLA, FFPE tissue 
is sectioned to 3 μm thickness and mounted on slides for immuno-
histochemical analysis (see Note 2).
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3.1.2 Cultured Cells Cells should be cultured onto microscopic glassware (e.g., chamber 
slides or glass bottom dishes) and fixed in formalin-based solution 
for 10–15 min (see Note 1). Since antibodies cannot permeate cell 
membranes, membrane permeabilization with a surfactant is to be 
performed as necessary (see Note 3). Samples are washed with 
phosphate-buffered saline without calcium and magnesium (PBS) 
and then subjected to PLA. 

3.2 Primary 

Antibodies 

When considering the primary antibodies to be employed for PLA, 
it is necessary to set the conditions to obtain specific staining during 
immunohistochemical analysis. In immunohistochemical condi-
tions, antigen retrieval, and antibody dilution concentration set-
tings are important [17]. Antigen retrieval can be performed using 
one of the following two methods: epitope retrieval by heating and 
enzyme digestion [18]. Enzyme treatments and heat treatments 
along with buffers used for antigen retrieval are summarized in 
Table 1. In some cases, better staining can be obtained without 
treatment than with treatment (see Note 4). It is indeed possible 
that the analytical conditions for immunohistochemistry for each of 
these two antibodies might be different. In such cases, stronger 
antigen retrieval (e.g., using autoclave rather than microwave and 
pH 9 buffer rather than citrate buffer) should be attempted first. If 
possible, fluorescent double immunohistochemistry with two anti-
bodies should be attempted. 

PLA probes are oligonucleotides linked to secondary antibo-
dies, and secondary antibodies obtained from different animal spe-
cies with negative and positive strands are used (details are provided 
in the next section). Therefore, to detect PPI between “α protein” 
and “β protein,” it is necessary to prepare primary antibodies 
obtained from different species against each protein. Since anti-
mouse, anti-rabbit, anti-goat, and antihuman secondary antibodies 
are used as PLA probes, it is necessary to select primary antibodies 
obtained from these species. If the antibodies against “α” and “β” 
proteins from different species mentioned above are not available, 
use a PLA kit that ligates oligonucleotides directly to the primary 
antibodies (see Note 5). 

3.3 PLA Protocol This section describes the PLA detection in pathological tissues 
using Duolink® In Situ Detection Reagents (Merck, Darmstadt, 
Germany). The following is the reference URL: https://www. 
sigmaaldrich.com/JP/en/technical-documents/protocol/pro 
tein-biology/protein-and-nucleic-acid-interactions/duolink-fluo 
rescence-user-manual.

https://www.sigmaaldrich.com/JP/en/technical-documents/protocol/protein-biology/protein-and-nucleic-acid-interactions/duolink-fluorescence-user-manual
https://www.sigmaaldrich.com/JP/en/technical-documents/protocol/protein-biology/protein-and-nucleic-acid-interactions/duolink-fluorescence-user-manual
https://www.sigmaaldrich.com/JP/en/technical-documents/protocol/protein-biology/protein-and-nucleic-acid-interactions/duolink-fluorescence-user-manual
https://www.sigmaaldrich.com/JP/en/technical-documents/protocol/protein-biology/protein-and-nucleic-acid-interactions/duolink-fluorescence-user-manual
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Table 1 
Enzymes, heat treatments, and buffers for antigen retrieval for immunohistochemistry 

Enzymes 

0.1% trypsin Trypsin 

Dissolve in 0.05 M Tris–HCl buffer (pH 7.6) (containing 0.1% CaCl2) 

37 °C, 30 min 

0.4% pepsin Pepsin 

Dissolve in 0.01 N HCl 

37 °C, 30 min 

0.05% protease Protease 

Dissolve in 0.05 M Tris–HCl buffer (pH 7.6) 

Room temperature, 10 min 

Heating 

Autoclave 121 °C, 5 min 

Microwave 500 W, 20 min 

Buffer for heating 

Citrate buffer 2 mM citric acid, 9 mM trisodium citrate dehydrate (pH 6.0) 

EDTA buffer 1 mM EDTA with 0.05% tween 20 (pH 8.0) 

H buffer Instant antigen retrieval H (neutral) (LSI Medience, Tokyo, Japan) 

pH 9 buffer Antigen Retrieval solution, pH 9 (Nichirei biosciences, Tokyo, Japan) 

EDTA ethylenediaminetetraacetic acid 

3.3.1 Specimen 

Preparation 

Slides with sliced FFPE tissue are deparaffinized and rehydrated in a 
xylene–ethanol series. Slides are optionally treated for antigen 
retrieval (see Subheading 3.2). Treated slides are kept in PBS until 
further procedure. Drying of the tissue on the slide leads to non-
specific reactions; therefore, such drying must be avoided in the 
subsequent operations. 

3.3.2 Blocking Initial blocking in immunohistochemistry is carried out to mini-
mize nonspecific reactions resulting in background or false-positive 
staining. Blocking in PLA is facilitated using a blocking reagent, 
which is a component of the PLA kit (Duolink® Blocking Solu-
tion). If immunohistochemical procedure for primary antibody 
selection employs skim milk or normal serum as the blocking 
reagent, they are not used in the PLA procedure. Tap off the PBS 
by absorbing it with filter paper or wiping paper, and wipe off excess 
PBS (see Note 6). The tissue should be loaded with the blocking 
reagent and incubated at 37 °C for 30 min in a humid chamber (see 
Note 7).
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3.3.3 Reaction Using 

Primary Antibodies 

Dilute the antibodies to the appropriate concentration using an 
antibody diluent (Duolink® Antibody Diluent). Tap off the block-
ing reagent. Washing with PBS is not required. Primary antibodies 
against two targeted proteins are to be simultaneously loaded onto 
the tissue on the slide. The slides are placed in a humidified cham-
ber and incubated overnight at 4 °C. 

3.3.4 Reaction Using 

Secondary Antibodies (PLA 

Probes) 

Dilute PLUS PLA probe (×5) and MINUS PLA probe (×5) to 1:5 
dilution using antibody diluent (Duolink® Antibody Diluent). 
Diluted PLA probes are to be used after further dilution in the 
following ratio: PLUSprobe/MINUSprobe/antibody diluent=1: 
1:2. Tap off the primary antibodies mixture from the tissue slide, 
and wash with the wash buffer (1× Wash Buffer A) for 5 min at 
room temperature; this washing step is to be performed twice. After 
wiping off the wash buffer, add a mixture of MINUS and PLUS 
PLA probes to each slide. The slides should then be placed in a 
humidified chamber and incubated at 37 °C for 60 min. 

3.3.5 Ligation Reaction Dilute 5× Duolink® Ligation Buffer to 1:5 dilution with high-
purity water. Mix the ligase included in the PLA kit with the diluted 
Ligation Buffer (×1) in 1:40 ratio. Tap off the PLA probes mixture 
from the tissue slide, and wash with the wash buffer (1× Wash 
Buffer A) for 5 min at room temperature; this washing step is to 
be performed twice. After wiping off the wash buffer, add the 
ligation mixture onto each slide. The slides should then be placed 
in a humidified chamber and incubated at 37 °C for 30 min. 

3.3.6 Amplification Since light-sensitive reagents are used in the subsequent experi-
ments, these experiments should be performed under light-
shielding conditions. The amplification buffer contains fluorescent 
dyes. Table 2 shows the types of fluorescent dyes and the associated 
information. The fluorescent dyes to be employed should be 
selected based on the type of laser available with the fluorescence 
microscope for detection. Reagents for bright-field detection are 
also available, allowing observations under a nonfluorescent light 
microscope (see Note 8). 

Dilute 5× amplification buffer to 1:5 dilution using high-purity 
water. Tap off the ligation solution from the slides, and wash the 
slides with 1× wash buffer A for 5 min at room temperature; this 
washing step is to be performed twice. During the washing step, 
add the polymerase provided in the PLA kit at 1:80 dilution in 1× 
amplification buffer. After wiping off the wash buffer, add the 
amplification mixture onto each slide. The slides should then be 
placed in a humidified chamber and incubated at 37 °C for 
100 min.
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Table 2 
Fluorescent dyes for detection using in situ proximity ligation assay 

Dye Excitation Excitationa Emission Filter 

Red 594 532, 561 624 Texas red 

Green 495 488 527 FITC 

Orange 554 532, 561 576 Cy3 

Far-red 644 638, 640, 642 669 Cy5 

FITC fluorescein isothiocyanate, cy cyanine; a wavelength of the laser installed in a general 
fluorescence microscope; unit, nm 

3.3.7 Nuclear Staining 

and Mounting 

Tap off the amplification solution from the slides and wash with 1× 
Wash Buffer B for 10 min at room temperature; this washing step is 
to be performed twice. Additionally, wash the slides with 0.01× 
Wash Buffer B for 1 min at room temperature. Nuclei are stained 
with Duolink® In Situ Mounting Media with DAPI, a water-
soluble mounting medium. Tap off the wash buffer from the slides, 
and add a drop of the mounting medium. Mount the slide with a 
coverslip, and seal all four sides with clear nail polish. Nail polish 
sealing can be omitted when using a hardening mounting medium. 
The slides thus prepared can be stored at 4 °C for about a week and 
at -20 °C for several months. 

4 Results 

Figure 2 shows PLA of ERα homodimers in a breast cancer tissue 
and breast cancer cell line. ERα homodimers were detected as red 
fluorescent dots in breast carcinoma cells (Fig. 2A). ERα homo-
dimers were detected in MCF-7 cell line upon the addition of its 
ligand estradiol (Fig. 2B). Figure 3 shows the PPI between cell 
membrane antigens HER2 and CEACAM in a breast cancer cell 
line. Figure 4 shows PPI of HER2 and CEACAM detected using a 
bright field microscope; red particles indicating PPI of both pro-
teins were detected in breast cancer cells. 

5 Conclusion 

The key to the success of PLA is antibody specificity in immuno-
histochemistry. Antibodies employed in pathological diagnosis, 
such as anti-ERα and anti-HER2 antibodies in breast cancer diag-
nosis, are well validated and suggest efficiency and success when 
used in PLA. ERα is well suited for use in PLA due to the use of 
monoclonal antibodies from different species, including rabbit 
SP-1 and mouse 6F11, for clinicopathological diagnosis. On the



other hand, for nondiagnostic proteins, antibodies against various 
types of proteins have become commercially available; however, it is 
also true that only a few antibodies have been validated for immu-
nohistochemical analysis. Even for those antibodies advertised for 
use in immunohistochemistry in the datasheets or in previous 
reports, pilot studies to standardize experimental conditions are 
essential in the lab. We spent a considerable amount of time for 
selecting antibodies and setting conditions for immunohistochem-
istry to detect PPI of structurally similar proteins, viz., CEACAM6 
and CEACAM8 [19]. Even with similar proteins, PLA is successful 
only when the antigen recognition is accurate. 
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Fig. 2 Fluorescence PLA of ERα homodimers in breast cancer tissue and breast cancer cell line. The following 
primary antibodies were used: ERα, mouse monoclonal antibody clone 6F11 (Leica, HE, Germany), and rabbit 
monoclonal antibody clone SP-1 (Abcam, Cambridge, UK). (A)  ERα homodimers in breast carcinoma tissue. (B) 
ERα homodimers in MCF-7 breast cancer cell line
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Fig. 3 Fluorescence PLA of HER2-CEACAM1 interactions in breast cancer tissue. The following primary 
antibodies were used: HER2, rabbit polyclonal antibody (Dako, Agilent Technologies, Santa Clara, CA, USA) 
and CEACAM1, mouse monoclonal antibody clone 4D1/C2 (Merck Millipore, Burlington, MA, USA). BT-474 
breast cancer cell line was used 

Fig. 4 Bright-field PLA of HER2-CEACAM6 interactions in breast carcinoma tissue. The following primary 
antibodies were used: HER2, mouse monoclonal antibody, clone 3B5 (Abcam) and CEACAM6, rabbit polyclonal 
antibody (Aviva Systems Biology, San Diego, CA, USA)
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6 Notes 

1. Aldehyde-based fixatives: Various aldehyde-based fixatives, 
including formaldehyde, paraformaldehyde, and glutaralde-
hyde, are available. Formaldehyde is commercially available as 
formaldehyde solution (37%; stabilized with methanol). For 
PLA, 10–20% formaldehyde solution that is commonly used 
in histochemistry works well. We often use the commercially 
available 10% formalin neutral buffer solution for our experi-
ments. A 4% paraformaldehyde/phosphate buffer solution is 
more suitable for fixing tissues and cultured cells. As for 
alcohol-based fixatives, ethanol or methanol is commonly 
used for fixation of cultured cells; however, both are not pref-
erable because they lower the stainability during 
immunostaining. 

2. Glass slides: In immunohistochemistry, the adhesion of the 
tissue sections to glass slides is affected by heat treatment 
with microwaves or autoclaving as well as by treatment with 
high pH buffers. Therefore, the glass slides used for PLA also 
require coating on the glass surface, as that performed for 
immunohistochemical analyses. It is necessary to use slides 
that are commercially available from various companies for 
immunohistochemistry, and it is necessary to confirm that the 
attached tissue sections will not be detached during the experi-
mental procedure. 

3. Cell membrane permeabilization: Triton X-100 (0.1–0.4% in 
PBS, 10–15 min) is commonly used for this treatment. Digito-
nin is also used for this purpose, but care should be taken as 
digitonin does not alter the permeability of the nuclear 
membrane. 

4. Antigen retrieval: Cultured cells and frozen tissues are thought 
to retain antigens better than FFPE tissues, and, therefore, 
antigen retrieval step can be omitted for these samples. In 
addition, because the adhesion of frozen sections and cultured 
cells to glass slides is weaker than that of FFPE tissue sections, 
these tissue sections may get detached during the antigen 
retrieval treatment. 

5. As for the primary antibodies used for PLA, it is necessary to 
prepare monoclonal antibodies against “α protein” and “β 
protein” that are obtained from different animal species. Prep-
aration of “monoclonal antibodies from different species” is 
one of the main obstacles in performing PLA. In such situa-
tions, the PLA probe is conjugated directly with the primary 
antibodies (Duolink® In Situ Probemaker PLUS and MINUS). 
Commercially available antibodies often contain salts, such as 
sodium azide, and, hence, desalting is required for conjugation 
of the probe with the primary antibody. Because antibody loss
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occurs during the desalting process, it is necessary to prepare 
for that loss. 

6. First, place one side of the glass slide on an absorbent paper 
(e.g., Kim towel) to absorb the solution (Fig. 5). Then, absorb 
excess solution around the tissue section by wiping the glass 
using a piece of filter paper of approximately 5 cm2 (Fig. 5). 
Note that the filter paper or absorbent paper may damage or 
wipe off the tissue section on the glass slide. 

7. A sample humidifier chamber is shown in Fig. 6. 

8. PLA bright-field detection: Quenching of endogenous peroxi-
dase is to be performed before “2. Blocking” step. Tap off the 
PBS in step 1, and add hydrogen peroxide provided in the PLA 
kit. Place the slides in a humidified chamber, and incubate for 
5 min at room temperature. Tap off the hydrogen peroxide, 
and wash with the wash buffer (1× Wash Buffer A) for 5 min at 
room temperature; this washing step is to be performed twice. 
Proceed to step “2. Blocking.” 

After step “6. Amplification,” the bright field detection reagent 
is reacted. Tap off the amplification mixture, and wash with the 
wash buffer (1× Wash Buffer A) for 2 min at room temperature; this 
washing step is to be performed twice. During the wash, dilute the 
5× bright-field detection stock to 1:5 dilution with high-purity 
water. Tap off the wash solution and add the detection reagent. 
Place the slides in a humidified chamber and incubate at 37 °C. 
Incubation times vary depending on antigen retrieval: 120 min for 
heat treatment, 60 min for enzymatic treatment. 

After the reaction with the detection reagent, the substrate is 
allowed to be reacted. Tap off the detection reagent and wash with 
the wash buffer (1× Wash Buffer A) for 2 min at room temperature; 
this washing step is to be performed twice. During the wash, dilute 
substrate reagents A (1:70), B (1:100), C (1:100), and D (1:50) 
with high-purity water to make the substrate solution. The time 
required for the color development varies depending on the tissue 
and antigen. Place the slides in a humidified chamber and incubate 
at room temperature; however, the time required for the color 
development (a few minutes to 30 min) would vary for different 
tissues and antigens. While checking the color development with a 
microscope, if a dot-shaped signal is confirmed, the process is 
deemed complete. 

Finally, counterstaining and mounting are performed. Tap off 
the substrate solution and wash with the wash buffer (1× Wash 
Buffer A) for 2 min at room temperature. Add nuclear stain (PLA 
kit) and incubate for 2 min at room temperature. Wash off the 
nuclear stain for 10 min using running deionized water. The tissue 
is dehydrated and permeated by immersing the entire glass slide in 
ethanol/xylene series. Cover the tissue with a water-insoluble 
mounting medium, and place the coverslip.
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Fig. 5 Tap off the solution from the glass slide. (A) Absorb the solution on the slide glass with an absorbent 
paper (e.g., Kim towel). (B) Wipe off excess solution on the slide with a piece of filter paper (cut into 5 × 5 cm). 
(C) Add reagents. A blue solution has been used in this figure for clarity 

Fig. 6 Humidified chamber. (A) Left, plastic light-shielding chamber (10 slides) (Cosmo Bio, Tokyo, Japan); 
middle, plastic chamber (not light-shielding, 20 slides) (Cosmo Bio); right, stainless steel light-shielding 
chamber (12 slides) (Kenis, Osaka, Japan). (B) Each chamber is lined with filter paper that are soaked with 
distilled water
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Chapter 10 

Integration of Metabolomic and Proteomic Data to Uncover 
Actionable Metabolic Pathways 

Christian Heckendorf, Benjamin C. Blum, Weiwei Lin, Matthew L. Lawton, 
and Andrew Emili 

Abstract 

Mass spectrometry (MS) is an important tool for biological studies because it is capable of interrogating a 
diversity of biomolecules (proteins, drugs, metabolites) not captured via alternate genomic platforms. 
Unfortunately, downstream data analysis becomes complicated when attempting to evaluate and integrate 
measurements of different molecular classes and requires the aggregation of expertise from different 
relevant disciplines. This complexity represents a significant bottleneck that limits the routine deployment 
of MS-based multi-omic methods, despite the unmatched biological and functional insight the data can 
provide. To address this unmet need, our group introduced Omics Notebook as an open-source framework 
for facilitating exploratory analysis, reporting and integrating MS-based multi-omic data in a way that is 
automated, reproducible and customizable. By deploying this pipeline, we have devised a framework for 
researchers to more rapidly identify functional patterns across complex data types and focus on statistically 
significant and biologically interesting aspects of their multi-omic profiling experiments. This chapter aims 
to describe a protocol which leverages our publicly accessible tools to analyze and integrate data from high-
throughput proteomics and metabolomics experiments and produce reports that will facilitate more 
impactful research, cross-institutional collaborations, and wider data dissemination. 

Key words Omics Notebook interface, Omics Notebook R package, Graphical user interface (GUI), 
Proteomics, Metabolomics, Mass spectrometry, Proteomics search engines, Automated pipeline, 
Multi-omics data integration, Biological functional modules, Principal component analysis (PCA), 
Pathway enrichment, Systems biology 

1 Introduction 

The complexity of high-dimensional omics data creates an increas-
ing computational burden in the interrogation of dynamic 
biological systems compounded by rapid technological advance-
ments in instrumentation. The effect of this bottleneck is to limit 
the degree to which global profiling is generated for different 
molecular layers [1]. While next-generation genomics 
sequencing-based technologies are leading the way in terms of
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scaling up sample size and throughput, mass spectrometry (MS)-
based global profiling of the proteome and metabolome is also 
rapidly gaining in popularity due to the unique and complementary 
functional information they provide [2]. Integrative analysis of the 
resulting multi-omic data is complicated by the disparate require-
ments and nuances of each discrete data type, however, which can 
only be effectively addressed using new computational tools and 
integrative frameworks to automate analysis and reveal emergent 
functional insights from combining the underlying complex multi-
omic data layers.
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While advanced bioinformatic workflows have succeeded in 
accelerating proteomics and metabolomics research [3, 4], tools 
leveraging the integration of the two data streams remain relatively 
uncommon despite the potential for gaining novel biological 
insight into core cellular systems such as metabolic pathways 
[5]. Of the publicly available tools created for this approach, few 
meet the practical logistical requirements of a typical research cen-
ter needing automated, reproducible, and shareable high-
throughput data analysis, while maintaining intuitive usability for 
researchers with limited computational experience. Existing 
packages such as ActivePathways [6] and MOMENTA [7] succeed 
in providing a powerful integrated pathway analysis framework but 
require knowledge of R to implement them into computational 
workflows. Packages and RStudio provide a convenient basis for 
sharing custom analyses to improve reproducibility and extend the 
utility of existing studies [8, 9], without requiring the recipient to 
be experienced with programming languages. The use of containers 
or workflow managers for software development and deployment 
also solves reproducibility challenges inherent in R packages or 
other library dependencies [10, 11]. Therefore, a multi-omic data 
analysis pipeline presented as an RStudio project and R package that 
makes use of containerization could facilitate code sharing, the 
integration of different leading R packages, and automation to 
deliver reproducible exploratory analyses for high volume core 
labs and specialized research centers. This protocol describes how 
to perform integrative analysis of MS-based multi-omics data using 
Omics Notebook [12], an open-source framework with expandable 
modules for performing exploratory analysis and visualizing 
MS-based data. 

1.1 Omics Notebook The main Omics Notebook interface is formatted as an R script (see 
Note 1) with additional code that automates an analysis pipeline 
incorporating leading bioinformatics R packages. The underlying 
code is completely customizable, by editing or adding onto the R 
code or interacting directly with the Omics Notebook R package, 
but the software comes with many built-in features and a graphical 
user interface (GUI) for analysis configuration. For example, users 
can input particular features of interest (see documentation), which



are then highlighted in the output plots. The software is primarily 
designed for analyzing stable isotope (e.g., tandem mass tag)-
labeled or label-free protein and peptide/phosphosite data result-
ing from MaxQuant/Andromeda [13] or other proteomics search 
engines. Additionally, the software can handle untargeted metabo-
lomic data from tools such as XCMS [14] and automates explor-
atory analysis and reporting on local computers or shared 
computing resources. Omics Notebook is distinguished from 
other similar tools (e.g., Perseus [15] and MSstats [16]) through 
its automated pipeline and options triggered based on the input 
data, which is invaluable for MS research centers with many high-
throughput projects and collaborations. The output includes 
exploratory reporting of significantly altered pathways when com-
paring across sample groups (e.g., case vs control cohorts), multi-
omic data integration (e.g., combination of proteomics plus meta-
bolics performed on same sample sets), and biological functional 
modules (e.g., multi-protein complexes). Additional omics data can 
be integrated, such as transcriptomics, which are analyzed using 
standard tabular data formats, as described in the supporting docu-
mentation we provide via GitHub (https://github.com/cnsb-
boston/Omics_Notebook). This platform creates a seamless and 
practical laboratory notebook for browsing, interpreting, and 
visualizing omics data by making use of R markdown to generate 
concise reports and summary plots for a project and easy sharing of 
the analysis results among a collaborating team of biologists to 
accelerate biomedical research. 
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2 Installation 

1. Download the Omics Notebook source code: 
git clone https://github.com/cnsb-boston/Omics_Notebook.git. 
Or download and extract: https://github.com/cnsb-

boston/Omics_Notebook/archive/refs/heads/main.zip. 

2. Install R on the host system to run the GUI and notebook (see 
Note 2) 

The R installer can be found at: https://cran.r-project.org/. 

3. Build a container or manually install the required software 
dependencies natively. Choose the option that best suits your 
needs: 

3a. Docker can be used either by building from the Dockerfile 
bundled with the Omics Notebook source code or using 
the Docker Hub pre-built image: 

docker pull cnsbboston/omicsnotebook:latest 

3b. Singularity, which is commonly used in HPC environ-
ments because of its portable containers and ability to 
run without special user privileges, can also be used (see 
Note 3):

https://github.com/cnsb-boston/Omics_Notebook
https://github.com/cnsb-boston/Omics_Notebook
https://github.com/cnsb-boston/Omics_Notebook.git
https://github.com/cnsb-boston/Omics_Notebook/archive/refs/heads/main.zip
https://github.com/cnsb-boston/Omics_Notebook/archive/refs/heads/main.zip
https://cran.r-project.org/
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singularity build ON.simg docker://cnsbboston/omics-
notebook:latest 

3c. Omics Notebook can be run natively, though perhaps with 
more difficulty, as follows (read docs/README.md page 
for current requirements): 

Install R 4.1, then in an R session, run the following 
commands to install the Omics Notebook R library and its 
dependencies: 

install.packages(“remotes”) 
remotes::install_github(“cnsb-boston/Omics_Notebook”) 

3 Prepare Input Files 

Example input files can be found at: https://github.com/cnsb-
boston/Omics_Notebook_Docs. 

3.1 Search Result 

Input Formatting 

Proteomics analysis in this method is geared toward analyzing 
label-free or stable isotope (e.g., tandem mass tag)-labeled protein, 
peptide, and phosphosite data generated from the MaxQuant/ 
Andromeda search engine. Other proteomics software/search 
engines (e.g., MSFragger [17]) can be used if the data can be 
coerced into an appropriate tabular format similar to MaxQuant’s 
proteinGroups.txt or modification Sites.txt (e.g., Phospho (STY)-
Sites.txt) format. If wishing to interpret search results other than 
from MaxQuant, this is the minimal set of columns that will be 
required for the analysis: protein, gene, and the sample quantifica-
tion data referenced in the Annotation File (Fig. 1 Subheading 5). 

Emulating MaxQuant modification site files can be done using 
these same columns as a starting point, but the software requires 
additional columns to filter the results and run an enrichment tool, 
such as kinase–substrate enrichment analysis (KSEA) [18]: 
“Sequence.window,” “Amino.acid,” “Position,” “Diagnostic. 
peak,” and “Localization.prob.” 

Metabolomics data analysis is done on tabular feature (m/z, 
RT) lists or compound identification results files in a tab or comma 
separated table format (i.e., .tsv / .csv) containing the following 
quantitative columns: identifier, rt., and mz. If “identifier” is omit-
ted, the first column will be used to identify features in the Omics 
Notebook results. In addition to these, a column for each sample 
should be present containing the measured abundance, analogous 
to those in the proteomics files which should be referenced in the 
Annotation File (Subheading 3.2.1 step 5). Since metabolites are 
commonly analyzed by MS in both positive and negative ionization 
modes, these results can be input as separate input files using the 
appropriate file formats (Subheading 3.2.1 step 4) and optionally 
combined automatically during the analysis (Subheading 4 step 6).

https://github.com/cnsb-boston/Omics_Notebook_Docs
https://github.com/cnsb-boston/Omics_Notebook_Docs
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Fig. 1 The annotation file provides a standard way to read in experimental data. The top section has 
information about what differential analyses to perform (1), what group each sample belongs to (2), and the 
sample names for each sample (3). Dataset names, “type” and filename should be specified in the bottom left, 
with no empty rows (4). Each row in the lower section is a different omics dataset. For a given row, the 
columns next to SampleName should correspond to the quantitative information related to the associated 
samples in the data (5). Other columns will be kept as annotation information 

3.2 Annotation File Parts of Annotation File Main Sheet: 

3.2.1 Sheet One 1. Contrast This row is the only row that stands alone and doesn’t 
map to columns in rows below. Include one instance of group 
names in this row if they should be included in the differential 
analysis. Include at least one group name; even if differential 
analysis is not being run, do not leave it empty. The order of the 
groups impacts the directionality of differential analysis. In the 
example above, the contrasts will be Group2–Group1, 
Group3–Group1, and Group3–Group2. If, for example, 
there is a pool or standard group you don’t want to include 
in the differential analysis, do not include it in this row. 

2. Group This row labels each sample in the row below with a 
group name, either from the row above or a new name if that 
group won’t be included in the differential analysis. Samples in 
the same group should have identical names in this row. 

3. SampleName Sample names provide short, easy to read names 
for the samples in the data specified below. In many instances, 
the columns in the input data may have longer or harder to read 
headers. The sample names here should be concise since they 
will be used as labels in many of the plots. 

4. Data File Information should be provided here about the input 
data. Data Type/Name is a short name that is easy to read to 
label the dataset in filenames and plots. File format is a drop 
down list that maps to specific data format inputs so the soft-
ware will know how to handle formatting. File name specifies 
the name of the file in the Analysis Directory and should 
include the file extension (.txt or .csv). 

5. Sample Quantification columns specify the name of the column 
in the accompanied data file in that row for that column’s
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sample, specified above in Sample Names, which provide quan-
titative information. Additional rows (Fig. 1, Subheadings 4 
and 5) are available for multi-omic data analysis, following the 
same procedure for additional results files. 

3.2.2 Sheet Two In the second sheet of the annotation file, the sample names are 
repeated. Additional rows can specify additional annotation infor-
mation. A couple will control additional functionality.

• Batch: if Batch is found, the row will be used to try to perform 
batch correction. The default is to use ComBat. Care should be 
taken not to overfit data.

• ColorsHex: if ColorsHex is used and the row has functional 
hexadecimal (hex) color values corresponding to “Group,” 
these colors will be used in figures where possible.

• Group2: if Group2 is used, this will specify shapes in the PCA 
plot (see Note 4).

• TimeSeries: if a numeric value, will run limma as for a time series 
analysis. Will only work with two groups (see Note 4). If there is 
only one group, enter the time point as “Group.”

• Pairs: if Pairs is found, will try to run differential analysis 
accounting for paired samples. This list can be extended for 
custom analysis. 

4 Running the Omics Notebook 

1. Run one of the following commands (see Note 5) based on 
your installation method to start the Omics Notebook GUI 
(Figs. 2 and 3): 

Native: Rscript Notebook.R 
Docker: Rscript Notebook.R Docker 
Singularity (see Note 3): Rscript Notebook.R Singularity -c 

ON.simg 

2. Provide a custom name for the analysis, if desired. Output will 
automatically be labeled with a timestamp, so this is useful if 
running multiple analyses on the same day (e.g., with different 
parameters, see Note 6). Additionally, provide the Analysis 
Directory where the data is and output will be saved (requires 
write permissions) and may be different from Notebook (soft-
ware) directory. Finally, specify the annotation file for the anal-
ysis (see Note 7). 

3. Option to run the differential analysis (checked is True). If 
there are many conditions/groups, it may make analysis more 
manageable to run all groups compared to the first condition
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Fig. 2 The Omics Notebook analysis configuration GUI showing the default set of parameters. Highlighted 
sections are numbered according to the associated step in the protocol 

(i.e., a control group). This should correspond to the first 
group listed in the contrast row in the annotation file. 

4. Options (checked is true) to query UniProt over the Internet 
for selected feature annotation information (works with Uni-
Prot protein IDs, like those provided in MaxQuant searches 
based on UniProt databases with correct formatting), to gen-
erate an excel output file for sharing normalized data and 
feature level annotation, to generate interactive outputs (heat-
maps and volcano). 

5. Options to run enrichment analysis based on Enrichr, Active-
Pathways, and GSEA. Enable MOMENTA (15) for protein– 
metabolite enrichment and network analysis (see Note 8). 

6. Enabling “Combined Metabolomics” will create an extra set of 
plots and files by stacking positive and negative mode metabo-
lomics rows into the same output. This may be a useful visuali-
zation option for some publications. 

7. Normalization parameters specifying method, log transforma-
tion, and fraction of nonzero values required to retain as a 
feature. 

8. Additional analysis parameters to specify species (used for some 
enrichment analysis), the desired heatmap color scale, and cut-
offs for significant value plots (see Note 9). 

9. If analyzing MaxQuant data, the entire txt output folder can be 
provided in the working directory, which will be analyzed using 
the PTXQC R package for quality control information. 

10. When finished with the configuration, press the button labeled 
Enter to begin the analysis. 
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Fig. 3 A sampling of figures generated by the Omics Notebook using the MB-231 breast cancer cell line 
dataset published by Blum et al. [7], showing changes in biomolecular activity under glucose starvation. (a) 
Phosphoprotein intensity distributions across samples before and after quantile normalization, shown as 
boxplots and kernel density estimates. (b) PCA plots for the proteomics and metabolomics datasets. (c) 
volcano plot for the proteomics differential analysis. (d) heatmap of the top 1% differential features detected in 
the metabolomics data. (e) selection of enriched metabolic pathways from the MOMENTA integrated analysis 
visualized with the Cytoscape EnrichmentMap module [25]
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5 Interpreting Results 

By creating standardized outputs and figures, Omics Notebook 
allows researchers to more quickly orient to and understand the 
analysis of new results. Standard output from the Omics Notebook 
pipeline includes visualizations for quality control and to aid in the 
optimization of normalizations. Normalized data and plots are 
exported in standardized file formats and provide frequently used 
visualizations, such as principal component analysis (PCA), in order 
to globally represent and assess data. To assist data visualization, the 
results from differential analysis, performed using the limma R 
package [19], are presented as volcano plots and heatmaps, 
among other standardized annotations. Statistical enrichment anal-
ysis is useful for functional interpretation, but different methods 
may be better suited to different datasets. Therefore, several meth-
ods are routinely implemented to provide optimal in-depth func-
tional exploratory analysis. Enrichr and gene set enrichment 
analysis (GSEA) are two standard yet powerful methods used to 
provide pathway enrichments for gene-based data (annotated with 
gene symbols) [20–22]. For phosphoproteomics (phosphosite) 
data (e.g., MaxQuant Phosphosite files), KSEA is also included, as 
is metabolomic pathway enrichment analysis using MetaboAna-
lystR (version 3.2) [23], when metabolomic data is input. 

The outputs of Omics Notebook have been designed to shift 
the bottleneck from analysis to biological interpretation. For exam-
ple, an excel file summary of all data types is generated with key 
annotation information and statistical results to easily share data 
with collaborators and avoid common pitfalls [24]. File outputs 
with the prefix “Network_” aid in the overlay of experimental data 
onto network analysis tools, such as Cytoscape. These files also 
represent examples of how the Notebook can be customized to 
produce outputs for specific downstream purposes. Pathway 
enrichments are formatted in standardized tables that also enable 
subsequent network analysis and clustering of pathways to find 
functional themes [22]. 

Integrative analysis occurs across datasets in several ways. First, 
for studies that include multiple ‘omics data types with gene anno-
tation (e.g., proteomics and phosphoproteomics), enrichment is 
performed with a combined ranked list, where the most signifi-
cantly altered instance of a gene is retained (noted as “_combined” 
in enrichment result files). These combined analyses are useful 
where gene sets may have been annotated from sources where 
different kinds of changes influence a pathway change, such as 
protein abundance of one gene and phosphorylation of another. 
At the pathway level, integrative analysis is performed across data 
types with gene annotation using ActivePathways, where multiple 
ranked lists (one for each dataset) are input together and a



combined statistical test is used to test for enrichment of a pathway 
in all datasets at once. 
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Integration of gene annotated data (such as proteomic data) 
and metabolomic data is inherently more challenging since the data 
do not share a common set of IDs. To address this challenge, we use 
multiple sources of pathway information annotated with both pro-
tein and metabolites from MetaboAnalyst [23, 18]. First, for gene-
based analysis, we perform enrichment with metabolic pathway 
subnetworks [7] to identify metabolic pathways that are implicated 
as being altered through changes in functionally associated pro-
teins. This permits comparison and integration at the pathway level 
based on enrichment results obtained for metabolomic data since 
the enrichments are performed on the same underlying pathway 
model. If metabolomics data is provided together with gene-based 
proteomic data, a combined enrichment using MOMENTA will 
also report metabolic pathways using the integrated gene and 
metabolite feature pathway definitions. By automating multiple 
integrative analysis approaches, functional patterns appearing 
across disparate data types can be identified and prioritized more 
rapidly. 

6 Notes 

1. While the Omics Notebook’s main interface is an R script and 
GUI, options exist for manually running specific functions 
through RStudio or using the Omics Notebook R package 
directly. 

2. R can be ignored as a requirement in a completely headless 
automated setup relying on Docker or Singularity. In this case 
you’ll need to have a way of generating an appropriate Para-
meters.R file (which would otherwise be done by the GUI) and 
mimic one of the commands in Notebook.R to run the actual 
Notebook. Alternatively, if the container can be configured to 
display windows to the host system, the container’s version of 
R can be used to run the notebook GUI. 

3. The Singularity image can be stored anywhere you like. Replace 
the name ON.simg according to your preferences. You may 
need superuser/administrator permissions to build images, but 
you can typically run them as any user. If you intend on running 
the Omics Notebook on a machine where you don’t have 
permission to build, you can simply build the image on a 
personal computer and copy the image to the destination 
machine. 

4. More functionality may be added by the Omics Notebook 
developers later, but the code may also be edited by end users 
for custom analyses.
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5. There are a variety of ways of installing and running R com-
mands and scripts. Common methods are to use a GUI-based 
development environment (IDE) such as RStudio or simply to 
use the built-in tools found in the default R installation: Rterm. 
exe or R on Windows or macOS/Linux, respectively, for typing 
commands, and Rscript (via the command prompt or terminal) 
for running scripts. Consult the R documentation for your 
platform for more information. 

6. The GUI will always write the parameters as Parameters.R. 

7. Make sure the annotation file and all omics results files are 
present in the same directory selected in step 2. 

8. Disabling GSEA will also disable MOMENTA, which depends 
on it. 

9. Many features will be bypassed internally when analyzing non-
human samples due to lack of organism-specific infrastructure 
embedded in the notebook. 
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Chapter 11 

Linking Expression of Cell-Surface Receptors 
with Transcription Factors by Computational Analysis 
of Paired Single-Cell Proteomes and Transcriptomes 

April Sagan, Xiaojun Ma, Koushul Ramjattun, 
and Hatice Ulku Osmanbeyoglu 

Abstract 

Complex signaling and transcriptional programs control the development and physiology of specialized cell 
types. Genetic perturbations in these programs cause human cancers to arise from a diverse set of specialized 
cell types and developmental states. Understanding these complex systems and their potential to drive 
cancer is critical for the development of immunotherapies and druggable targets. Pioneering single-
cell multi-omics technologies that analyze transcriptional states have been coupled with the expression of 
cell-surface receptors. This chapter describes SPaRTAN (Single-cell Proteomic and RNA-based Transcrip-
tion factor Activity Network), a computational framework, to link transcription factors with cell-surface 
protein expression. SPaRTAN uses CITE-seq (cellular indexing of transcriptomes and epitopes by sequenc-
ing) data and cis-regulatory sites to model the effect of interactions between transcription factors and cell-
surface receptors on gene expression. We demonstrate the pipeline for SPaRTAN using CITE-seq data from 
peripheral blood mononuclear cells. 

Key words Single-cell Proteomic and RNA-based Transcription factor Activity Network (SPaRTAN), 
Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), Droplet-based scRNA-
seq, Antibody-derived tags (ADTs), scADT-seq, Affinity regression (AR), Python package, Jupyter 
notebook, scVerse and Scanpy ecosystems, pySPaRTAN package, DoRothEA database 

1 Introduction 

The development of specialized cell types and their functions are 
controlled by external signals that initiate and propagate cell type-
specific transcriptional programs. Activation or repression of genes 
by key combinations of signaling-regulated transcription factors 
(TFs) drives these transcriptional programs and controls cellular 
characteristics and functions. For example, ectopic expression of 
the TF factors Oct4, Sox2, Klf4, and c-Myc reprograms fibroblasts 
into induced pluripotent stem cells [1]. Conversely, disruption of
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TF activity causes a broad range of diseases, including cancer. 
Hence, identifying cell-specific signaling-regulated TFs is impor-
tant in understanding human health and treating disease.
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Single-cell technologies can now measure RNA, protein, and 
chromatin states in individual cells [2–5]. However, each technol-
ogy measures distinct aspects of TF activity with strengths and 
weaknesses in the identification of cell-specific TFs. Single-cell 
RNA-sequencing (scRNA-seq) characterizes the transcriptomes of 
cells only partially. With a bias for highly expressed genes, it misses 
many TFs with modest levels of transcription. Moreover, cellular 
processes depend on the expression levels and activities of proteins, 
notably signaling receptors and TFs, which may differ from mRNA 
levels. Recent innovations such as CITE-seq (cellular indexing of 
transcriptomes and epitopes by sequencing) [2] have coupled the 
relatively sparse scRNA-seq signal with robust detection of highly 
abundant and well-characterized surface proteins using index sort-
ing [6] and barcoded antibodies [2, 3], providing better cell type 
discrimination. During CITE-seq, barcoded antibodies—the sec-
ond set of barcodes—are incubated with the single-cell suspension 
using a droplet-based scRNA-seq protocol. These barcodes, which 
have polyA tails, are linked to the barcodes with beads at the same 
time as mRNAs are linked. Reads containing barcodes associated 
with each bead are separated by cell. Then, reads that align to 
transcripts are used to quantify mRNA levels, while those from 
barcoded antibodies (antibody-derived tags [ADTs]) are used to 
quantify protein levels. 

To date, these single-cell genomics datasets have not been used 
to link surface proteins to TFs in individual cells. Recently, we 
developed the first computational framework, SPaRTAN (Single-
cell Proteomic and RNA-based Transcription factor Activity Net-
work), to exploit single-cell proteomic (scADT-seq) and 
corresponding scRNA-seq datasets, both obtained using CITE-
seq, to link the expression of surface proteins with inferred TF 
activities [7] (Fig. 1). SPaRTAN provides a conceptually novel 
and mechanistically inspired approach for integrating cell-specific 
transcriptomic and proteomic data with regulatory genomics 
resources, providing a significant advance in the modeling of cell-
specific signaling and gene regulatory programs. The cell-surface 
phenotype is well-known to immunologists through flow cytome-
try, but the signaling downstream of cell-surface receptors/co-
receptors drives transcriptional and chromatin state changes. 
Thus, it is important to connect the “cell-surface phenotype” to 
downstream transcriptional programs and resulting transcriptomic 
phenotypes. SPaRTAN models this flow of information at single-
cell resolution.
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Fig. 1 Integrative computational model linking cell-surface receptors to TFs. Our integrative model (SPaRTAN, 
Single-cell Proteomic and RNA-based Transcription factor Activity Network) infers the flow of information from 
cell-surface receptors to transcription factors (TFs) to target genes by learning the interactions between cell-
surface receptors and TFs that best predict target gene expression. (Created with BioRender.com) 

Our model uses the expression of surface proteins as a proxy for 
their activities. Signaling via these proteins converges on particular 
TFs, whose activities, in turn, regulate the expression of their target 
genes. Formally, we use a regularized bilinear regression algorithm 
called affinity regression (AR) [8–10], which provides a statistical 
framework when the observed data can be explained as interactions 
between two kinds of inputs. Here, AR establishes an interaction 
matrix between surface proteins and TFs that predicts target gene 
expression. We use curated TF-target gene interactions [11] t  
determine the set of TFs that potentially regulates each gene. The 
model captures statistical relationships between surface proteins, 
TFs, and gene expression. We use the trained interaction matrix to 
evaluate different views of a CITE-seq dataset, e.g., to predict TF 
activity from a cell’s surface protein expression profile or to predict 
surface protein expression from a cell’s gene expression profile. 
Intuitively, information flows down from observed surface protein 
levels through the learned interaction matrix to infer TF activities 
and observed mRNA expression levels or propagates up through 
the TF-target gene edges and interaction network to infer surface 
protein expression. We can use inferred TF activities and surface 
protein expression to gain insights into the transcriptional pro-
grams. We applied SPaRTAN to peripheral blood mononuclear 
cells (PBMC) and malignant mesothelioma CITE-seq datasets to 
predict the coupling of signaling receptors with context-specific 
TFs. We validated predictions by prior knowledge, flow cytometry, 
and immunohistochemical analyses. SPaRTAN greatly enhanced 
the utility of CITE-seq datasets to reveal TF and cell-surface recep-
tor relationships in diverse cellular states. 

In this chapter, we explain how to use SPaRTAN to link cell-
surface receptors to TFs using CITE-seq data. A typical SPaRTAN 
analysis consists of four steps: (1) loading data and preprocessing,

http://biorender.com


(2) building cell type-specific TF surface protein models, (3) infer-
ring TF activities, and (4) downstream analysis (e.g., computing 
correlations between TF activities and surface protein expression) 
(Fig. 2). Our model pipeline, including preprocessing and down-
stream analysis, is done in the Python programming language and is 
compatible with the scVerse and Scanpy ecosystems. We demon-
strate the pipeline using publicly available PBMC CITE-seq data. 
The Python package is open source and available on GitHub, along 
with a Jupyter notebook containing the demonstration analysis 
shown in this chapter. 
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Fig. 2 General SPaRTAN workflow for CITE-seq, as described in detail in the text, starting from data 
preprocessing, building cell type-specific SPaRTAN models, inferring TF activities based on the model and 
downstream analysis (e.g., computing correlation between TF activities and surface protein expression). 
(Created with BioRender.com) 

2 Materials 

2.1 Python Packages Python version 3.7 or higher must be installed, along with the 
package pySPaRTAN. Our package can be installed using the pip 
package installer: 

pip install pySPaRTAN 

Alternatively, the package can be installed from the source code 
in the GitHub repository as follows: 

git clone https://github.com/osmanbeyoglulab/SPaRTAN.git 

cd SPaRTAN/ 

Python setup.py build_ext --inplace 

Python setup.py install --user

http://biorender.com


Computational Analysis of Paired Single-Cell Proteomes and Transcriptomes 153

In addition to the pySPaRTAN package, our pipeline depends 
on the following Python packages: 

Scanpy 

AnnData 

SciPy 

NumPy 

pandas 

statsmodels 

Cython 

To visualize results, we use seaborn and matplotlib. For repro-
ducibility, we recommend using a Jupyter notebook for the entire 
pipeline [12]. The example in this chapter is included as a Jupyter 
notebook on the pySPaRTAN GitHub page (https://github.com/ 
osmanbeyoglulab/SPaRTAN). 

2.2 Input Files The input files are a gene expression (mRNA) matrix, cell-surface 
receptor expression (ADT) matrix, and TF-target gene prior matrix 
(Fig. 2). Specifically, SPaRTAN requires jointly measured mRNA 
and surface protein count data from single cells. Raw sequencing 
data must first be aligned to a reference genome, and the ADT 
counts are obtained using separate tools, such as CellRanger and 
CITE-seq-count. In this chapter, we will demonstrate the pipeline 
for the SPaRTAN model using PBMC CITE-seq data, which are 
publicly available on the 10×Genomics website. The sample dataset 
contains 5527 cells with an average of 30,853 mRNA reads per cell 
and counts for 46 antibodies measuring cell-surface protein expres-
sion (Table 1). 

Because our model is specific for each cell type, we also require 
cell-type assignments for each cell in the dataset. For the PBMC 
data used in our demonstration, we compute a neighborhood 
graph for the cells using both surface protein and gene expression

Table 1 
Links to online resources 

PBMC CITE-seq data https://www.10xgenomics.com/resources/datasets/5-k-peripheral-
blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-with-cell-
surface-proteins-next-gem-3-1-standard-3-1-0 

DoRothEA TF-target gene 
interaction database 

https://github.com/saezlab/dorothea 

pySPaRTAN GitHub https://github.com/osmanbeyoglulab/SPaRTAN 

pySPaRTAN Jupyter notebook https://github.com/osmanbeyoglulab/SPaRTAN/blob/main/ 
notebooks/pbmc_spartan_tutorial.ipynb

https://github.com/osmanbeyoglulab/SPaRTAN
https://github.com/osmanbeyoglulab/SPaRTAN
https://www.10xgenomics.com/resources/datasets/5-k-peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-with-cell-surface-proteins-next-gem-3-1-standard-3-1-0
https://www.10xgenomics.com/resources/datasets/5-k-peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-with-cell-surface-proteins-next-gem-3-1-standard-3-1-0
https://www.10xgenomics.com/resources/datasets/5-k-peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-with-cell-surface-proteins-next-gem-3-1-standard-3-1-0
https://github.com/saezlab/dorothea
https://github.com/osmanbeyoglulab/SPaRTAN
https://github.com/osmanbeyoglulab/SPaRTAN/blob/main/notebooks/pbmc_spartan_tutorial.ipynb
https://github.com/osmanbeyoglulab/SPaRTAN/blob/main/notebooks/pbmc_spartan_tutorial.ipynb


� �

and cluster the cells using the Leiden algorithm. Cell types are 
assigned to the clusters based on known marker genes and surface 
proteins. A full tutorial on the process we used for this dataset can 
be found in the Scanpy documentation [13].
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Several approaches can be used to construct the prior TF-target 
gene matrix. For this demonstration, we use a gene set resource 
containing TF-target gene interactions from DoRothEA 
[11]. Those interactions were collected and curated from several 
types of evidence, such as curated literature resources, chromatin 
immunoprecipitation (ChIP)-seq peaks, TF binding site motifs, 
and interactions inferred directly from gene expression. This prior 
TF-target gene matrix (D) defines a candidate set of associations 
between TFs and target genes. The DoRothEA database contains 
20,244 genes and 1395 TFs, with 486,676 interactions between 
them. We filtered out TFs that were not expressed across all cell 
types. The database is available on GitHub at https://github.com/ 
saezlab/dorothea and is available in the pySPaRTAN package 
(Table 1). 

3 Methods 

Let nc, ng, np, nt denote the number of cells, genes, surface pro-
teins, and TFs. Denote the matrix of gene expression with ng rows 
and nc columns as Y, the matrix of protein expression with nc rows 
and np columns as P, and the binary matrix for indicating which 
genes and TFs are known to interact with ng rows and nt columns as 
D. The model relates TFs to proteins to predict gene expression 
using an interaction matrix W with nt rows and np columns: 

Y � DWPT 

We solve for W by the convex optimization problem with L1 
and L2 norm regularizers as: 

argminW DWPT -Y
� �2 

F 
þ λ1 Wk k1 þ λ2 Wk k2 F 

The parameters λ1 and λ2 can be specified, or the optimal 
choices can be estimated using grid search and cross-fold validation. 
In practice, we use an approximation of this problem which can be 
solved much faster (see Note 1). 

The pySPaRTAN package and the pipeline outlined in this 
chapter are designed around the Scanpy/scVerse ecosystem, 
which stores data as AnnData objects. An AnnData object contains 
a data matrix with columns (observations) as cells and rows (vari-
ables) as genes or ADTs. The object has dataframes .obs and . 
var. containing information on each cell and each gene, respec-
tively. Additionally, the fields .obsm and .varm can store addi-
tional dataframes with features describing the cells and genes. For 
example, we will store the surface protein count matrix in .obsm.

https://github.com/saezlab/dorothea
https://github.com/saezlab/dorothea
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3.1 Importing and 

Preprocessing CITE-

seq Data 

1. We first import all the packages used in the pipeline: 

import scanpy as sc 

import seaborn as sns 

import pandas as pd 

from matplotlib import pyplot as plt 

import numpy as np 

import pySPaRTAN 

2. We load CITE-seq data into memory using one of Scanpy’s i/o 
functions. In this case, the counts for mRNA and protein ADTs 
are stored in the same .h5 file, so we use the sc.read_10x_h5 
function. Refer to the Scanpy documentation for other for-
mats, such as h5ad, loom, csv, or excel files. After the data are 
loaded into an AnnData object, the var_names_make_uni-
que function appends a number to the end of gene names that 
are not unique: 

path="../data/cite-seq/5k_pbmc_protein_v3_nextgem_filtere 

d_feature_bc_matrix.h5" 

adata=sc.read_10x_h5(path, gex_only=False) 

adata.var_names_make_unique() 

We separate the gene expression counts from the ADT 
counts. Variables are annotated as either “Antibody Capture” 
or “Gene Expression” in the adata.var["feature_ 
types"] field. We move the proteomics data (“Antibody Cap-
ture”) to a separate data frame. 

protein=adata[:,adata.var["feature_types"]=="Antibody Capt 

ure"].copy() 

protein=protein[:,[x for x in protein.var_names if "control" 

not in x]] 

adata.obsm["protein_raw_counts"]=protein.to_df() 

adata = adata[:, adata.var["feature_types"] == "Gene 

Expression"] 

adata.layers["raw_counts"] = adata.X.copy() 

3. Some cells have a sequencing depth that is too low for our 
analysis. We recommend filtering out cells with fewer than 
1,000 or greater than 5,000 unique gene sequences and cells 
in which more than 30% of genes are mitochondrial genes. The
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functionsc.pp.filter_genes removes genes that are not 
present in at least 3% of cells, and sc.pp.calculate_qc_ 
metrics computes the metrics used to filter cells and stores 
the results in adata.obs and adata.var: 

sc.pp.filter_genes(adata, min_cells=0.03*adata.n_obs) 

gene_list=adata.var_names 

sc.pp.filter_cells(adata, min_genes=1000) 

adata.var[’mt’] = adata.var_names.str.startswith(’MT-’) 

sc.pp.calculate_qc_metrics(adata, 

qc_vars=[’mt’], 

percent_top=None, 

log1p=False, 

inplace=True) 

adata=adata[adata.obs.query( 

"n_genes_by_counts < 5000 and pct_counts_mt<30").index] 

We also remove all mitochondrial genes from the dataset: 

adata=adata[:, adata.var[’mt’]==False] 

We use the sc.pp.normalize_total function to scale the 
raw count data to a sum of 104 for each cell. Then, we use sc.pp. 
log1p to log-transform the data to a form more suitable for a linear 
model. We. Store the normalized log-transformed counts in 
adata.layers["log1p"]: 

adata.X=sc.pp.normalize_total(adata, 

target_sum=10000, 

layer="raw_counts", 

inplace=False)[’X’] 

sc.pp.log1p(adata) 

adata.layers["log1p"]= pySPaRTAN.pp.normalize( 

np.array(adata.X.todense()), 

axis=1 

) 

We limit our analysis to the top 5,000 most highly variable 
genes. Genes that are not highly variable are of less interest as they 
give less insight into intercellular heterogeneity:



sc.pp.highly_variable_genes( 

adata, 

n_top_genes=5000, 

subset=True, 

flavor=’seurat_v3’) 
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4. For the protein count data, we use the center log ratio (CLR) 
transform using the clr function in pySPaRTAN. The CLR 
transform scales the data by the geometric mean of each cell, 
and then log-transforms the data: 

adata.obsm["protein"]=pySPaRTAN.pp.clr( 

adata.obsm["protein_raw_counts"].T).T 

adata.obsm["protein"].loc[:]=pySPaRTAN.pp.normalize( 

adata.obsm["protein"], 

axis=1) 

5. SPaRTAN performs best when it models data from different 
cell types separately. There are several models for cell-type 
assignments from CITE-seq data. For this demonstration, we 
used the Leiden algorithm to cluster the data using both gene 
and protein expression. Then we manually mapped the clusters 
to cell types based on the mean expression of the marker genes 
and proteins for each cluster. This process is omitted here but is 
available on the SPaRTAN GitHub repository and the Scanpy 
documentation. We use the marker genes and surface proteins 
shown in Table 2 to assign cell types to each cluster. 

After cell types are assigned, the results are stored in a csv 
file with two columns, one for the cell’s barcode and another 
for its cell type. Then we read in the data and store it in the field 
adata.obs["cell_types"]: 

ct_df=pd.read_csv("cell_types_PBMC.csv",index_col=0) 

adata=adata[np.intersect1d(adata.obs_names, ct_df.index)] 

adata.obs["cell_types"] = ct_df.loc[adata.obs_names] 

It is important to note the number of cells for each cell 
type, which can be found using the .value_counts() func-
tion as shown below. The SPaRTAN model will take more time 
and memory for cell types that have more than approximately 
600 cells:
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Table 2 
Marker genes used to assign cell types to clusters 

Cell type Marker genes Marker proteins 

CD8+ CD8A, CD8B, FCER1G CD8a, CD4 

Naive CD4+ T IL7R, CCR7, CD3E CD45RA, CD4 

Memory CD4+ IL7R, S100A4, CD3E CD45RO, CD4 

NK GNLY, NKG7 CD56 

DC FCER1A, CST3 

CD14+ Mono CD14, LYZ CD14 

FCGR3A+/CD16+ Mono FCGR3A, MS4A7 CD16 

B MS4A1 CD20, CD19 

adata.obs["cell_types"].value_counts() 

CD14+MONO 1201 

CD4nav 907 

CD4mem 702 

NK 352 

B 332 

CD8 318 

CD16+MONO 140 

DC 100 

Name: cell_types, dtype: int64 

We recommend down-sampling for cell types that have more 
than 1000 cells when fitting the model becomes intractable: 

adata=pySPaRTAN.pp.subsample_celltype( 

adata, 

obs_name="cell_types", 

n_cells=600 

) 

adata.obs["cell_types"].value_counts() 

CD14+MONO 600 

CD4mem 600 

CD4nav 600 

NK 352 

B 332 

CD8 318 

CD16+MONO 140 

DC 100 

Name: cell_types, dtype: int64
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6. A dataframe that shows interactions between TFs and genes is 
loaded and stored in the AnnData object as follows. The data-
frame has a column for each TF and a row for each gene. An 
entry is zero if there is no interaction or one if a TF and gene 
interact. We use an abridged version of the database that filters 
out TFs and genes with few interactions. Additionally, we filter 
TFs that are not present in mRNA data, referencing the gene_-
list variable defined prior to filtering non-highly variable genes: 

tf_gene=pySPaRTAN.datasets.load_dorthea() 

tf_names=np.intersect1d(tf_gene.columns, gene_list) 

tf_gene=tf_gene[tf_names] 

We store the dataframe in our AnnData object, keeping only 
the genes present in both the TF-gene interaction matrix and 
the CITE-seq dataset. The dataframe is stored in the AnnData 
object as adata.varm["tf_gene"]: 

common_genes=np.intersect1d(tf_gene.index, 

adata.var_names) 

tf_gene=tf_gene.loc[common_genes] 

adata= adata[:, common_genes] 

tf_gene.loc[:]=pySPaRTAN.pp.normalize(tf_gene) 

adata.varm["tf_gene"]=tf_gene 

3.2 Fitting SPaRTAN 

Models for Each Cell 

Type 

To recap, after successfully completing part 1, we have an AnnData 
object with the following fields:

• adata.layers["log1p"]

• adata.obsm["protein"]

• adata.varm["tf_gene"]

• adata.obs["cell_type"] 

The prerequisite can be verified by printing the AnnData object 
and seeing each field present in the output: 

print(adata) 

AnnData object with n_obs × n_vars = 3042 × 2851 

obs: ’n_genes’, ’n_genes_by_counts’, ’total_counts’, ’to-

tal_counts_mt’, ’pct_counts_mt’, ’cell_types’ 

var: ’gene_ids’, ’feature_types’, ’genome’, ’n_counts’, 

’mt’, ’n_cells_by_counts’, ’mean_counts’, ’pct_dropout_by_ 

counts’, ’total_counts’, ’highly_variable’, ’highly_variable_ 

rank’, ’means’, ’variances’, ’variances_norm’ 

uns: ’hvg’, ’log1p’ 

obsm: ’protein_raw_counts’, ’protein’



varm: ’tf_gene’ 

layers: ’raw_counts’, ’log1p’ 

160 April Sagan et al.

1. To evaluate the model’s performance, we train the model using 
80% of all cells in the dataset. The remaining 20% can be used 
for testing the ability of the model to predict gene expression 
based on surface protein expression: 

adata.obs["training"]= np.random.rand(adata.n_obs) < 0.8 

2. Because transcriptional regulation and intercellular signaling 
are highly dependent on the cell type, we train SPaRTAN 
separately on each cell type. For example, for CD8+ T cells, 
we extract two subsets from the entire dataset, one for training 
the CD8+ T cell model and one for evaluating the model: 

adata_cd8=adata[(adata.obs["cell_types"] == "CD8")] 

adata_cd8_training=adata[(adata.obs["cell_types"] == 

"CD8") 

& (adata.obs["training"]  ==  

True)] 

adata_cd8_testing=adata[(adata.obs["cell_types"] == "CD8") 

& (adata.obs["training"]  ==  

False)] 

3. The SPaRTAN class in pySPaRTAN can cross-validate, fit the 
model, make predictions, infer TF activities, and estimate the 
correlation between surface proteins and TFs. The algorithm 
used to fit the model approximates the matrix P by a truncated 
singular value decomposition, using the number of singular 
vectors that capture 70% of the full spectrum (see Note 2). 

The model has two parameters for regularization: lamda 
(the Greek letter “λ” is intentionally misspelled to avoid 
conflicting with built-in python syntax) to specify the regulari-
zation coefficient and alpha as the trade-off between the l1 
and l2 regularizer. Setting alpha=0 will train the model using 
only the l1 regularizer, alpha=1 will use only the l2 regularizer, 
and alpha=0.5 will weigh the l1 and l2 regularizers equally. 

To use cross-validation and grid search to find the optimal 
values of lamda between 1e-5 and 10 and alpha between 
0 and 1, we initialize the model specifying a range for lamda 
and alpha as follows: 

model_cd8= pySPaRTAN.SPaRTAN(lamda=[0.0001,10], 

alpha=[0,1], 

spectrum=0.7)
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4. The simplest way to fit the model is by calling the .fit() 
function and providing the AnnData object containing the 
training data: 

model_cd8.fit(adata_cd8_training) 

Alternatively, we can fit the model without using an 
AnnData structure by directly providing the three matrices 
needed: the gene expression (Y), the protein expression (P), 
and the TF-target gene matrix (D): 

gene_expression=adata_cd8_training.layers["log1p"] 

protein=adata_cd8_training.obsm["protein"] 

tf_gene_matrix=adata_cd8_training.varm["tf_gene"] 

model_cd8.fit(Y=gene_expression, 

P=protein, 

D=tf_gene_matrix) 

5. We evaluate the performance using the .score function, 
which predicts gene expression for each cell in the testing set 
using the surface protein data and compares this value to the 
true gene expression based on correlation analysis. Because the 
model is fit using an approximation of the AR problem, a 
correction is made during the prediction process (see Note 3): 

model_cd8.score(adata_cd8_testing) 

0.7606217426058479 

As with fitting the data, predictions and performance eval-
uation can be done without using an AnnData object, as 
follows: 

protein_test=adata_cd8_testing.obsm["protein"] 

gene_expression_test=np.asarray( 

adata_cd8_testing.layers["log1p"]) 

model_cd8.score(P=protein_test.to_numpy(),Y=gene_express 

ion_test) 

0.7606217426058479 

Once we have evaluated the model and verified that it fits 
the held-out testing data well, we retrain the model with the 
entire dataset: 

model_cd8.fit(adata_cd8)
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6. We repeat the process for each cell type in a loop, storing the 
models in a dictionary. Note that, as before, the accuracy of the 
model is verified by fitting a subset of the data and testing with 
the remaining data before the model is fit using the entire 
dataset: 

models=dict() 

for ct in np.unique(adata.obs["cell_types"]): 

adata_ct =adata[(adata.obs["cell_types"] == ct)] 

adata_training=adata[(adata.obs["cell_types"] == ct) 

& (adata.obs["training"] == True)] 

adata_testing =adata[(adata.obs["cell_types"] == ct) 

& (adata.obs["training"] == False)] 

models[ct]= pySPaRTAN.SPaRTAN(lamda=[0.0001, 10], 

alpha=[0.01,1], 

spectrum=0.7 

) 

models[ct].fit(adata_training) 

print("R2 value for "+ct+" cells: \t" 

+str(models[ct].score(adata_testing))) 

models[ct].fit(adata_training) 

R2 value for B cells: 0.7752362355217464 

R2 value for CD14+MONO cells: 0.6283707877952782 

R2 value for CD16+MONO cells: 0.817826164720477 

R2 value for CD4mem cells: 0.6175386479974388 

R2 value for CD4nav cells: 0.6404709873661867 

R2 value for CD8 cells: 0.7604804395513874 

R2 value for DC cells: 0.8454503278598255 

R2 value for NK cells: 0.7139027245066331 

3.3 Inferring TF 

Activities 

1. From the fitted model, TF activity is inferred from protein 
expression by calculating WPT . TF activity for every CD8+ T 
cell is calculated by the get_TF_activity function, using 
only the protein expression as input: 

tf = model_cd8.get_TF_activity(adata_cd8.obsm["protein"]) 

2. The significance of the inferred TF activity is assessed using a 
permutation test. We generate the distribution for an empirical 
null hypothesis by shuffling the genes for each cell (randomly 
permuting the rows of Y) a specific number of times (typically, 
1000), refitting the model, and calculating TF activity. For each 
TF in each cell, we compare the inferred TF activity to the



Computational Analysis of Paired Single-Cell Proteomes and Transcriptomes 163

empirical null distribution of 1000 inferred TF activities and 
calculate a p-value. The p-value is the proportion of values in 
the null distribution that is higher in absolute value than the 
true inferred TF activity and has a minimum value inversely 
proportional to the number of trials (1/1000, typically). 

For each cell, p-values are corrected using the Bonferroni 
procedure for multiple hypothesis testing, which is implemen-
ted as part of the statsmodel package (statsmodels.stats. 
multitest.multipletests). We use an adjusted p-value of 
0.15 in this example. The permutation test is done using the 
get_TF_activites function, this time specifying the num-
ber of permutations to use for the null distribution: 

tf, tf_p_val = model_cd8.get_TF_activity( 

adata_cd8.obsm["protein"], 

n_trials=1000, 

verbose=True 

) 

To identify TFs that are important in CD8+ T cells, we look 
for TFs that have a p-value of less than 0.15 in a high propor-
tion of cells: 

prop_sig=(tf_p_val<0.15).mean() 

prop_sig.sort_values(ascending=False).head(20) 

HMBOX1 1.000000 

FOSL1 1.000000 

SOX6 1.000000 

MEIS1 1.000000 

MAF 1.000000 

MYC 1.000000 

ELF1 1.000000 

ATF7 1.000000 

SSRP1 1.000000 

PKNOX1 1.000000 

E2F7 1.000000 

TP73 1.000000 

RFX5 1.000000 

ZNF263 0.990566 

HOXB13 0.886792 

NCOA1 0.883648 

TCF25 0.751572 

IRF2 0.726415 

E2F2 0.566038 

FOS 0.553459 

dtype: float64
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The inferred TF activity and corresponding p-values are 
stored in the AnnData object: 

adata_cd8.obsm["tf_activity"]=tf 

adata_cd8.obsm["tf_p_val"]=tf_p_val 

3. Repeat the process for each cell type, and create a dataframe 
with the proportion of cells for each cell type where each TF is 
significant: 

tf=dict() 

tf_p_val=dict() 

for ct in np.unique(adata.obs["cell_types"]): 

print("Calculating TF activities for "+ct+" cells") 

tf[ct], tf_p_val[ct] =models[ct].get_TF_activity( 

adata[adata.obs["cell_types"] == ct].obsm["prot 

ein"], 

n_trials=1000, 

verbose=True 

) 

adata.obsm["tf"]=pd.concat(tf.values(), 

axis=0) 

adata.obsm["tf_p_val"]=pd.concat(tf_p_val.values(), 

axis=0) 

adata.obsm[’tf_sig’]=adata.obsm[’tf_p_val’]<0.15 

4. Using the TF activities, we calculate and plot the t-distributed 
stochastic neighbor embedding (tSNE) for all cells in the data-
set, coloring the cells by cell type. The output is shown in 
Fig. 3a: 

sc.tl.tsne(adata, use_rep="tf") 

sc.pl.tsne(adata, color="cell_types") 

5. We create a dot plot of the importance of TFs across cell types 
using seaborn. We plot only the top five TFs that are most 
important in the transcriptional program for each cell type. The 
output is shown in Fig. 3b: 

pySPaRTAN.pl.tf_dotplot(adata, 

tfs_to_plot=5, 

group="cell_types" 

)
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Fig. 3 Inferred TF activities in PBMCs. (a) Plot of tSNE embedding of TF activities for each cell in the PBMC 
dataset. Each dot corresponds to a cell and is colored by cell type. (b) Dot plot showing inferred TF activities 
for each cell type. Sizes correspond to the proportion of cells in each cell type in which the TF activity is 
significant, and dots are colored according to the z-scored mean TF activity for each cell type 

3.4 Identifying TF-

Surface Protein 

Relationships 

1. The matrix W in the model can be interpreted as the interac-
tions between TFs and surface proteins. However, because 
different proteins are expressed on different scales for each 
cell type, we instead look at the correlations between protein 
expressions (P) and the inferred TF activity (WPT ). The 
get_tf_protein_cor is used to compute the correlation 
matrix using all cells in the training data. The function returns 
a dataframe with TFs as columns and surface proteins as rows: 

protein_tf=model_cd8.get_tf_protein_cor() 

protein_tf.head() 

2. We visualize the results using a clustermap, using only the top 
15 most significant TFs: 

tfs_to_plot=(adata_cd8.obsm["tf_p_val"]<0.15).mean(). 

sort_values(ascending=False).head(15).index.tolist()



sns.clustermap( 

protein_tf.loc[tfs_to_plot], 

cmap="bwr",vmin=-1, vmax=1 

).fig.suptitle(’CD8+ T Cells’, y=1.05,fontsize=20) 
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We also create a scatter plot of TF-protein correlations with the 
function pySPaRTAN.tf_protien_line_plot(). The cluster-
map and scatter plots are shown in Fig. 4: 

pySPaRTAN.pl.tf_protien_line_plot(protein_tf, "CD27", 

title="CD27 - TF correlations in CD8+ T Cells") 

pySPaRTAN.pl.tf_protien_line_plot(protein_tf, "TIGIT", 

title="TIGIT - TF correlations in CD8+ T Cells") 

3. We repeat the process for each cell type and store the results in a 
dictionary: 

protein_tf=dict() 

for ct in np.unique(adata.obs["cell_types"]): 

protein_tf[ct]=models[ct].get_tf_protein_cor() 

4. A clustermap can be made for any cell type in the dictionary as 
follows: 

ct="B" 

plt.figure(dpi=400, figsize=(10,10)) 

tfs_to_plot=(adata[adata.obs["cell_types"] 

==ct].obsm["tf_p_val"]<0.15).mean().sort_values(ascendin 

g=False).head(15).index.tolist() 

sns.clustermap( 

protein_tf[ct].loc[tfs_to_plot], 

cmap="bwr",vmin=-1, vmax=1 

).fig.suptitle(ct+ ’ Cells’, y=1.05,fontsize=20) 

4 Notes 

1. The system of equations used to find the optimal TF-surface 
protein interaction matrix, W, can become prohibitively large 
in practice. The AR problem can be compressed by left multi-
plying the system of equations by YT , greatly reducing the
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Fig. 4 Relationships between inferred TF activities and surface receptor proteins. (a) Clustered heatmap 
showing the correlation between TF activities and surface protein expression in CD8+ T cells. (b) and (c) 
Sorted correlation plots for CD27 and TIGIT surface proteins in CD8+ T cells, showing the strongest positive 
and negative correlations. TFs are labeled 

number of equations. The model now relates the 
measurements as: 

YT D
� �

W PT � YT Y 

With this transformation, we are now using the sum of the gene 
expression for each TF-target and the expression level of each 
protein to predict the similarity between cells. 

2. AR can be solved by the following convex optimization prob-
lem, which uses the Kronecker product to reformulate the 
bilinear optimization problem into a form more suitable for 
standard optimization solvers: 

argmin 
~W 

P⨂YT D
� �

vec ~W
� �

- vec YT Y
� ��� ��2 

F 
þ λ2 ~W

�� ��2 
F 
þ λ1 ~W

�� ��
1 
: 

For large data sets, the Kronecker product (P⨂ YT D) becomes 
prohibitively large to compute and store in memory. The size 
problem can be drastically reduced by computing the truncated 
singular value decomposition (tSVD) of P:
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UP ,SP ,VP
� �

= svdt P:ð Þ  
We use the tSVD to approximate the matrix multiplication in 

the objective function as follows: 

YT D W  PT ≈YT D W  VP SP UPT
� �

We use the Kronecker product to reformulate this as a standard 
quadratic program, this time using the substitution ~W=WVP : 

vec YT D W  PT
� �

= UB⨂DT Y
� �

vec WVP SP
� �

= UB⨂DT Y
� �

vec ~W
� �

The problem can now be solved using any elastic net solver: 

argmin 
~W 

UB⨂DT Y
� �

vec ~W
� �

- vec YT Y
� ��� ��2 

F 
þ λ2 ~W

�� ��2 
F 
þ λ1 ~W

�� ��
1 

Finally, we obtain the solution to the original problem by the 
following transformation: 

W = ~W SP
� �-1 

VPT : 

3. Once the model has been trained using a subset of the data, we 
can predict gene expression from any cell type, without further 
training, using only the surface protein expression of the cell. 
We calculate an initial estimate of the predicted gene 
expression as: 

ypred =D W  pT test 

The model was trained to predict similarities in gene expres-
sion, not gene expression itself. To account for the bias introduced 
by this difference, we project the initial prediction onto the span of 
the gene expression matrix used to train the model. 

Acknowledgments 

This study was funded by support from the National Institutes of 
Health (R00 CA207871 and R35GM146989 to H.U.O., T15 
LM007059-35 to A.S.) and the Innovation in Cancer Informatics 
Funds (to H.U.O.). Figures 1 and 2 were created with BioRender. 
com.

http://biorender.com
http://biorender.com


Computational Analysis of Paired Single-Cell Proteomes and Transcriptomes 169

References 

1. Takahashi K, Yamanaka S (2006) Induction of 
pluripotent stem cells from mouse embryonic 
and adult fibroblast cultures by defined factors. 
Cell 126:663–676. https://doi.org/10.1016/ 
j.cell.2006.07.024 

2. Stoeckius M, Hafemeister C, Stephenson W 
et al (2017) Simultaneous epitope and tran-
scriptome measurement in single cells. Nat 
Methods 14:865–868. https://doi.org/10. 
1038/nmeth.4380 

3. Peterson V, Zhang K, Kumar N et al (2017) 
Multiplexed quantification of proteins and 
transcripts in single cells. Nat Biotechnol 35: 
936–939. https://doi.org/10.1038/nbt. 
3973 

4. Buenrostro J, Wu B, Litzenburger U et al 
(2015) Single-cell chromatin accessibility 
reveals principles of regulatory variation. 
Nature 523:486–490. https://doi.org/10. 
1038/nature14590 

5. Cusanovich DA, Daza R, Adey A et al (2015) 
Multiplex single cell profiling of chromatin 
accessibility by combinatorial cellular indexing. 
Science 348:910–914. https://doi.org/10. 
1126/science.aab1601 

6. Baron CS, Barve A, Muraro MJ et al (2019) 
Cell type purification by single-cell transcrip-
tome-trained sorting. Cell 179:527–542.e19. 
https://doi.org/10.1016/j.cell.2019.08.006 

7. Ma X, Somasundaram A, Qi Z et al (2021) 
SPaRTAN, a computational framework for 
linking cell-surface receptors to transcriptional 

regulators. Nucleic Acids Res 49:9633–9647. 
https://doi.org/10.1093/nar/gkab745 

8. Pelossof R, Singh I, Yang J et al (2015) Affinity 
regression predicts the recognition code of 
nucleic acid-binding proteins. Nat Biotechnol 
33:1242–1249. https://doi.org/10.1038/ 
nbt.3343 

9. Osmanbeyoglu HU, Pelossof R, Bromberg JF, 
Leslie CS (2014) Linking signaling pathways to 
transcriptional programs in breast cancer. 
Genome Res 24:1869–1880. https://doi. 
org/10.1101/gr.173039.114 

10. Osmanbeyoglu HU, Toska E, Chan C, 
Baselga J, Leslie CS (2017) Pancancer model-
ling predicts the context-specific impact of 
somatic mutations on transcriptional pro-
grams. Nat Commun 8:14249. https://doi. 
org/10.1038/ncomms14249 

11. Garcia-Alonso L, Holland CH, Ibrahim MM, 
Turei D, Saez-Rodriguez J (2019) Benchmark 
and integration of resources for the estimation 
of human transcription factor activities. 
Genome Res 29:1363–1375. https://doi. 
org/10.1101/gr.240663.118 

12. Rule A, Birmingham A, Zuniga C et al (2019) 
Ten simple rules for writing and sharing 
computational analyses in Jupyter notebooks. 
PLoS Comput Biol 15:e1007007. https://doi. 
org/10.1371/journal.pcbi.1007007 

13. Virshup I (2022) Analyzing CITE-seq data. 
<https://scanpy-tutorials.readthedocs.io/en/ 
latest/cite-seq/pbmc5k.html>

https://doi.org/10.1016/j.cell.2006.07.024
https://doi.org/10.1016/j.cell.2006.07.024
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1038/nbt.3973
https://doi.org/10.1038/nbt.3973
https://doi.org/10.1038/nature14590
https://doi.org/10.1038/nature14590
https://doi.org/10.1126/science.aab1601
https://doi.org/10.1126/science.aab1601
https://doi.org/10.1016/j.cell.2019.08.006
https://doi.org/10.1093/nar/gkab745
https://doi.org/10.1038/nbt.3343
https://doi.org/10.1038/nbt.3343
https://doi.org/10.1101/gr.173039.114
https://doi.org/10.1101/gr.173039.114
https://doi.org/10.1038/ncomms14249
https://doi.org/10.1038/ncomms14249
https://doi.org/10.1101/gr.240663.118
https://doi.org/10.1101/gr.240663.118
https://doi.org/10.1371/journal.pcbi.1007007
https://doi.org/10.1371/journal.pcbi.1007007
https://scanpy-tutorials.readthedocs.io/en/latest/cite-seq/pbmc5k.html%3e
https://scanpy-tutorials.readthedocs.io/en/latest/cite-seq/pbmc5k.html%3e


Chapter 12 

Mass Spectrometry-Based Tissue Imaging of the Tumor 
Microenvironment 

Tyler Risom, Patrick Chang, Sandra Rost, and James Ziai 

Abstract 

Multiplex ion beam imaging (MIBI) and imaging mass cytometry (IMC) enable highly multiplexed 
antibody (40+) staining of frozen or formalin fixed, paraffin-embedded (FFPE) human or murine tissues 
through detection of metal ions liberated from primary antibodies by time-of-flight mass spectrometry 
(TOF). These methods make detection of more than 50 targets theoretically possible while maintaining 
spatial orientation. As such, they are ideal tools to identify the multiple immune, epithelial, and stromal cell 
subsets in the tumor microenvironment and to characterize spatial relationships and tumor-immune status 
in either murine models or human samples. This chapter summarizes methods for antibody conjugation 
and validation, staining, and preliminary data collection using IMC or MIBI in both human and mouse 
pancreatic adenocarcinoma samples. These protocols are intended to facilitate use of these complex plat-
forms in not only tissue-based tumor immunology studies but also tissue-based oncology or immunology 
studies more broadly. 

Key words Multiplexing, Imaging mass cytometry (IMC), Multiplex ion beam imaging (MIBI), 
Metal-conjugated antibodies (MCA), Regions of interest (ROI), Frozen or formalin fixed, Paraffin-
embedded (FFPE) tissues, Tumor microenvironment (TME), Pancreatic adenocarcinoma (PDAC), 
Genetically engineered mouse models (GEMM) 

1 Introduction 

Multiplexed immunohistochemistry makes possible the simulta-
neous visualization of multiple proteins with spatial context in a 
single tissue section. Primary antibodies conjugated either to 
enzymes or fluorophores can be applied to tissue slides with devel-
opment of chromogenic products or fluorescence by introduction 
of organic compounds or light excitation, respectively. Alterna-
tively, cyclic application of primary or secondary antibodies fol-
lowed by imaging can be performed to enable higher levels of 
multiplexing as well as amplification [1–3]. However, in practice, 
these methods are limited by spectral overlap of chromogens or
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fluorophores and can require multiple time-consuming rounds of 
staining, imaging, and deconvolution.
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Table 1 
Mass cytometry imaging platform specifications 

Imaging mass cytometry Multiplex ion beam imaging 

Tissue ablation method Ultraviolet laser Primary xenon ion beam 

Sample types Human (FFPE, frozen), mouse 
(FFPE, frozen) 

Human (FFPE, frozen), mouse 
(FFPE, froze) 

Slides required Standard glass Gold-coated 

Maximum resolution 1000 nm 260 nm 

Maximum no. targets per section 
(published) 

40+ 40+ 

Scan rate 1 mm2 / 1.5 h 800 × 800 um / 36 min 
@750 nm res. 

800 × 800 um / 2.4 h @550 nm 
res. 

800 × 800 um / 4.6 h @350 nm 
res. 

Recent chemistry has enabled design of metal-chelating poly-
mers that can be conjugated to primary antibodies [4] which can 
then be applied to tissues. Subsequently, metal ions can be liberated 
by ablation and detected by time-of-flight (TOF) mass spectrome-
try enabling highly multiplexed staining of tissues in comparatively 
short time. Two platforms for this exist: multiplexed ion beam 
imaging (MIBI, Ionpath Inc.) and imaging mass cytometry 
(IMC, Standard BioTools). Both use TOF to detect secondary 
ions liberated from primary metal-conjugated antibodies (MCAs) 
but differ in certain technical components and capabilities 
(Table 1). Of note, MIBI employs a tunable ion beam that can be 
adjusted to vary tissue acquisition depth enabling multiple scans of 
the same area. Spot size can also be tuned to allow subcellular 
resolution or, with lower resolution, faster acquisition of regions 
of interest (ROI) or an entire tissue section. IMC and MIBI thus 
make possible acquisition of spatial data for a large number of 
proteins at single cell resolution and, in the case of MIBI, subcellu-
lar resolution. As such, the population and topography of tissue 
microenvironments can be more fully characterized to provide 
novel biological and, potentially, therapeutic insights in refractory 
disease indications. 

Traditional chemotherapies [5], targeted therapies [6–8], and 
immunotherapies [9–11] have largely failed to significantly 
improve outcomes in pancreatic ductal adenocarcinoma (PDAC). 
Accordingly, increased focus has been placed on the stromal com-
position of PDAC as well as composition and location of immune
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(continued)

cells within the tumor and stroma. Vimentin, a-SMA, and collagen 
I have been associated with epithelial–mesenchymal transition or 
progression of malignancy [12]. As well, prevalence of intratumoral 
CD4 and CD8 T cells has been associated with improved outcome 
[13, 14], but multiple immunosuppressive populations including 
cancer-associated fibroblasts (CAFs) and macrophages [15] and 
regulatory T cells [16, 17] must be accounted for to fully charac-
terize a tumor’s immune status and inform potential therapeutic 
combinations. 
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Here we describe development of a highly multiplexed immu-
nohistochemistry panel for IMC and MIBI including antibody 
validation, staining, and data collection methods. The panel is 
comprised of 20 markers (Table 2) to identify major components 
of the tumor microenvironment in pancreatic cancer: T cells, B 
cells, tumor-associated macrophages, monocytes, dendritic cells, 
vasculature, stromal smooth muscle, fibroblasts, and tumor cells. 
While demonstrated here in the context of pancreatic cancer, the 
staining methods and markers are applicable to a wide array of 
tissue and tumor types as well as pure immunology indications. 

Table 2 
Human and mouse tumor microenvironment profiling panel for PDAC 

Human panel Mouse panel 

Conc. MIBI; IMC 
(ug/mL or ×) 

Conc. MIBI; IMC 
(ug/mL or ×) 

89Y SMA SP171 1; 7 SMA SP171 1; 5 

113In COL1A1 E68AE 3; 7 COL1A1 E68AE 3; 5 

115In DsDNA 35I9 2 (MIBI only) DsDNA 35I9 2 (MIBI only) 

115In HH3 D1H2 2× (MIBI only) HH3 D1H2 2× (MIBI only) 

142Nd 

143Nd CD4 EPR6855 1×; 2× CD4 RM4-5 2×; 2× 

144Nd CD11c EP1347Y 1×; 1× CD11c D1V9Y 1×; 1× 

145Nd CD21 SP186 1; 5 CD21 SP186 1; 5 

151Eu CD49b EPR17338 1×; 1× 

152Sm CD31 EP3095 1×; 1× CD31 D8V9E 1×; 1× 

153Eu Ki67 D2H10 1×; 1× Ki-67 SP6 1×; 1× 

154Sm CD14 D7A2T 1×; 2× 

155Gd CD11b EPR1344 1×; 2× 

156Gd CD68 D4B9C 1×; 2× F4/80 D2S9R 1×; 1×



Table 2

Channel Target Clone Target Clone
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(continued)

Human panel Mouse panel 

Conc. MIBI; IMC 
(ug/mL or ×) 

Conc. MIBI; IMC 
(ug/mL or ×) 

158Gd CD8 C8/ 
144B 

1×; 2× 

159 Tb CD3 MRQ-39 1×; 2× CD3e EPR22667-
12 

2×; 2× 

160Gd PNAd-biotin MECA79 0.5; 5 PNAd-biotin MECA79 0.5; 5 

160Gd Anti-biotin 1D4-C5 1; 5 Anti-biotin 1D4-C5 1; 5 

162Dy CD44 E7K2Y 0.5; 7 CD44 E7K2Y 0.5; 5 

163Dy Vimentin D21H3 1×; 1× Vimentin D21H3 1×; 1× 

164Er CD163 D6U1J 1; 7 

165Ho PanCK AE1/ 
AE3 

1×; 2× PanCK AE1/AE3 1×; 2× 

167Er CD20 L26 1×; 7× B220 RA3-6B2 1×; 2× 

170Er CD90 EPR3132 1; 13 CD90 EPR3132 1; 10 

171Yb CD45 D3F8Q 0.5; 5 

172Yb HLA-DR EPR3692 1×; 1× 

174Yb CK17 D12E5 1; 10 CK17 D12E5 1; 10 

175Lu CD45 2B11 and 
PD7/ 
26 

1×; 1× 

176Yb NaK ATPase EP1845Y 1×; 1× NaK ATPase EP1845Y 1×; 1× 

191Ir, 
193Ir 

Cell-ID 
intercalator 

1:1000 (IMC 
only) 

Cell-ID 
intercalator 

1:1000 (IMC 
only) 

2 Materials 

2.1 Tissue Slides 1. Tissue blocks—Archival FFPE tissue blocks of mouse and 
human pancreatic ductal adenocarcinoma (PDAC) tumors, as 
well as control tissues for marker validation: 

(a) LSL-KRASG12D-Pdx1-Cre-tg-p16INK4a-p19ARF 
murine PDAC model tumors (n = 2). 

(b) Human PDAC Tumor Resections (n = 2). 

2. Tissue slides for sectioning 
MIBI—specially formulated high-purity gold-coated slides 

(Ionpath). 
IMC and chromogenic IHC—Standard positively charged 

glass slides (Epredia).
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2.2 Tissue 

Processing 

1. Histopathology oven. 

2. Xylene. 

3. Ethanol (200 proof). 

4. Heat-induced epitope retrieval (HIER) solution. 
MIBI—Target Retrieval Solution pH 9 (Dako). 
IMC—EZ AR1 Elegance RTU (BioGenex) & EZ AR2 

Elegance RTU (BioGenex). 

5. HIER module. 
MIBI—LabVision PT Module (Thermo). 
IMC—EZ-Retriever System (BioGenex). 

6. Block. 
MIBI—0.1% Fish Gelatin (Sigma-Aldrich) + 0.1% Triton X 

(Sigma-Aldrich) + 2% Normal Donkey Serum (Sigma-Aldrich) 
in TBST (Cell Marque). 

IMC—3% Bovine Serum Albumin (BSA, Cell Signaling 
Technology) in Maxpar PBS (Standard BioTools). 

2.3 MCA Conjugation 1. Nanodrop 2000 microvolume spectrophotometer (Thermo 
Fisher). 

2. MIBItag conjugation kit (for MIBI, Ionpath) or Maxpar Anti-
body Labeling Kit (for IMC, Standard BioTools). 

3. Antibody Stabilizer (Candor). 

2.4 Metal-

Conjugated Antibody 

Cocktail 

1. Antibody diluent. 
MIBI—3% Normal Donkey Serum (Sigma-Aldrich) in 

TBST (Cell Marque). 
IMC—0.5% Bovine Serum Albumin (BSA, Cell Signaling 

Technology) in Maxpar PBS (Standard BioTools). 

2. Wash. 
MIBI: TBST (Cell Marque). 
IMC: Maxpar Water (Standard BioTools) and Maxpar PBS 

(Standard BioTools). 

3. Counterstain. 
MIBI: None. 
IMC: Cell ID Intercalator-Ir (Standard BioTools). 

4. Shandon Sequenza Staining Rack (Epredia). 

5. Shandon Sequenza Coverplates (Epredia). 

2.5 Tissue 

Preservation 

1. 2% Glutaraldehyde solution (Electron Microscopy Sciences). 

2. Barium-free PBS rinse. 

3. TBS pH 8.5 rinse (Sigma-Aldrich). 

4. Dehydration. 
MIBI: TBS ×3, H20 ×2, 70% EtOH, 80% EtOH, 95% 

EtOH ×2, 100% EtOH ×2. 
IMC: Maxpar Water (Standard BioTools), air-dry.
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2.6 Mass Cytometry 

Imaging Platforms 

1. Standard BioTools Hyperion Imaging System. 

2. Ionpath MIBIscope. 

3 General Methods 

In this section we first present general methods regarding tissue 
selection, panel design, antibody conjugation, and MCA validation 
that are common to both the MIBI and IMC workflows (Figs. 1, 2, 
and 3). Adhering to these design principles will expedite panel 
design and workup and ensure the accuracy of mass spectrometry 
signal to antigen abundance. Step-by-step protocols for each plat-
form will follow in the subsequent sections. 

3.1 Tissue Selection Tissue quality is one of the most influential factors on the robust-
ness and uniformity of imaging results by MIBI and IMC. Like 
other immunohistochemical techniques, it is critical that cold ische-
mia times are minimalized in tissue harvesting and that fixation 
protocols are optimized for tissue density and size. While issues 
regarding overfixation such as autofluorescence are negligible in 
mass spectrometry imaging, issues regarding under-fixation are of

3.1.1 Tissue Quality 

Fig. 1 Workflow for metal-conjugated antibody validation. Schematic of the antibody conjugation and 
validation process. New carrier-free antibodies are first tested for IgG concentration using a spectrophotome-
ter (1), where large derivations from the advertised concentration may indicate BSA contamination. Chromo-
genic IHC is then performed to assess antibody specificity and robustness (2). Antibodies are then conjugated 
to a metal-loaded polymer (3) and reassessed on a spectrophotometer for concentration post conjugation 
(4) to assess yield and to guide dilution in antibody stabilizer. MCA is then reassessed by chromogenic IHC 
(5) and by MIBI/IMC to ensure both chromogenic and MIBI/IMC signal replicates the unconjugated antibody
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Fig. 2 Tissue processing and imaging workflow. Schematic of the human and mouse PDAC tissue processing, 
staining, preservation, and imaging workflow for MIBI and IMC 

Fig. 3 MIBI and IMC images of the PDAC tumor microenvironment. Representative images of the human and 
mouse tumor microenvironment of pancreatic adenocarcinoma by MIBI and IMC. The major cell lineage 
markers of PanCK (cyan, tumor), CD45 (yellow, immune), CD31 (green, endothelium), VIM (red, mesenchyme), 
SMA (pink, fibroblasts) are overlaid with nuclear markers (HH3 for MIBI, white, and 191-Iridium intercalator for 
IMC)



critical concern. Reduced fixation at the core of large specimens 
results in significant reductions in antigen preservation and resul-
tant staining. Accordingly, dissection of tissue to uniform pieces 
prior to fixation can improve the uniformity of formalin fixation 
and subsequent MCA signal. ROI selection should consider 
regional tissue quality to produce the best results.
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3.1.2 Control Tissue 

Sourcing 

The high plexing of these systems often demands a diverse array of 
tissue controls for marker validation by pathologists. While tonsil, 
lymph node, and other lymphatic organs can often help to validate a 
majority of markers, particularly immune cell lineage markers, tis-
sue- or disease-specific markers often require the sourcing and 
inclusion of more exotic tissue specimens for marker validation. 
For this reason, the generation of project-specific marker validation 
tissue microarrays (TMAs) can combine a large array of diverse 
tissues that capture marker positivity and can expedite validation 
efforts. 

3.2 Panel Design Panel design in mass cytometry imaging refers to the placement of 
markers in the ~40 detected metal isotope positions in the mass 
spectrum. Considerations of marker abundance need to be weighed 
against machine sensitivity, organic interference, and produced 
organic metal adducts during ionization that result in predictable 
false-positive signal. 

3.2.1 Machine Sensitivity MIBIscope and Hyperion IMC systems have highest TOF detec-
tion sensitivity in the 140–150 amu range of metals, including the 
142–146, 148, and 150 neodymium isotopes, and 147 and 
149 samarium isotopes. Low-abundance markers should be con-
sidered to be conjugated to these isotopes in order to take advan-
tage of the highest TOF sensitivity. Similarly, when placing markers 
in positions outside of this maximal sensitivity window, one must 
consider the most robust antigens for positions like 89 yttrium, 
113 and 155 indium, and 171–176 ytterbium, such as high-
abundance nuclear antigens (HH3, DsDNA), highly expressed 
intermediate filaments (PanCytokeratin, vimentin), or highly abun-
dant cell surface markers (HLA1, Na/K ATPase). 

3.2.2 Organic 

Interference 

While we are most focused on the ionization and detection of the 
isotopic metals from our metal-conjugated antibodies, the ion 
beam or laser used to raster the sample in these technologies 
liberates a panoply of organic ions (e.g., H, O, OH) from the tissue 
as well as gold and tantalum from the coated slide in MIBI. These 
ions result in nonspecific noise that accumulates unequally across 
the mass spectrum. Channels that experience higher organic noise 
include 113/115In (MIBI), 141Pr, 157Gd, and 170Yb, and 
robust markers should be considered for placement in these loca-
tions as well.
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3.2.3 Organic Metal 

Adducts 

In addition to the nonspecific organic noise detailed above, the 
liberated metal ions from antibodies can interact with organic 
molecules including hydrogen, oxygen, and hydroxides to produce 
organic metal adducts, which will produce false-positive signal of 
the seed marker in the +1, +16, and +17, respectively (e.g., histone 
H3 signal from 149Sm will make a false signal in 150Nd, 175Lu, 
and 176Yb). In panel design, one must consider this and place 
bright, robust markers in positions where the organic-adduct signal 
falls outside of the detected spectrum or falls in +1/+16/+17 
channels where spatially distinct marker expression is found (e.g., 
tumor marker vs stromal marker) so that this false signal can be 
easily addressed in analysis. The +1 false signal is the most profound 
and is akin to signal “bleed” in immunofluorescence staining; in 
line with the design principle previously mentioned, markers 
should be alternated in the panel by which tissue compartment 
they mark, as to avoid false signal from overlaying with real signal 
(e.g., tumor marker on 171, immune marker on 172, stromal 
marker on 173, repeat). 

3.2.4 Overnight Versus 

Day 2 Panel 

Most MCAs will provide optimal staining if incubated overnight at 
4 °C; however, some very highly expressed antigens (e.g., DsDNA, 
HH3) have optimal detection when stained with an MCA for 1 h at 
4 °C. In addition, secondary staining strategies such as PNAd-
biotin + anti-biotin160Gd require the secondary antibody in the 
Day 2 stain. 

3.3 Antibody 

Sourcing 

Metal-conjugated antibodies can either be sourced directly from 
the two companies that developed these platforms, Ionpath (MIBI) 
and Standard BioTools (IMC), or generated in house through the 
metal conjugation process (see Subheading 3.4). The available 
commercial conjugates include antibody clones that have been 
rigorously validated in past publications and by Ionpath/Standard 
BioTools pathologists and represent important resources to quickly 
build a high-plex panel. 

3.3.1 Commercial MCAs 

3.3.2 Unconjugated 

Antibodies 

For the selection of antibodies for in-house metal conjugation 
efforts, it is advantageous to similarly look for IHC-validated clones 
with a strong publication history of robust staining in FFPE tissue. 
Critical to the clone and vendor selection process is ensuring that 
the antibody is available carrier-free. Commercial antibodies almost 
ubiquitously contain antibody stabilizer to ensure shelf-life, and the 
most common stabilizer is Bovine Serum Albumin (BSA), a large 
protein often existing in high concentration. Due to this, executing 
the metal conjugation protocol on stabilized antibody solution 
results in metal conjugation of the BSA, not your target IgG 
molecule. Accordingly, purchasing carrier-free antibodies is critical 
to the generation of an in-house MCA library. Nowadays, many 
companies are aware of the growing demand for carrier-free



antibodies and advertise specific “carrier-free” or “BSA- and azide-
free” formulations of favorite antibody clones. In the case that 
one’s favorite clone is not available as a carrier-free formulation, 
establishing a relationship with a company representative can usu-
ally help you source aliquots of the clone in a carrier-free format. 
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3.4 Antibody 

Conjugation 

The conjugation process to generate MCAs relies on sourcing 
carrier-free antibodies, determining their concentration, and input-
ting the purified IgG into the conjugation kit protocols provided by 
Ionpath (MIBItag Conjugation Kit) or Standard BioTools (Maxpar 
X8 Antibody Labeling Kits). 

Please refer to the “MIBItag Conjugation Kit User Guide” 
(Ionpath) or “Maxpar Antibody Labeling User Guide” (Standard 
BioTools) for specific step-by-step instructions for antibody conjuga-
tion. Common steps are discussed below. 

3.4.1 Establishing Input 

Material 

Carrier-free antibody concentration is first established using a 
Nanodrop 2000 microvolume spectrophotometer (Thermo 
Fisher). Concentration should match what is advertised by the 
distributor on the tube, usually 1 mg/mL, and large deviations 
from this value may indicate BSA contamination (see Notes 6.1). 

3.4.2 Antibody 

Purification 

The recommended 100 or 200 ug of input IgG is then purified in a 
50 kDa centrifugal filter tube through numerous washes. 

3.4.3 Antibody Reduction The purified antibody is then reduced with TCEP (Sigma-Aldrich) 
in order to break cysteines in the FC domain and expose free thiol 
groups. The reduced antibody is then washed. 

3.4.4 Antibody: Metal 

Polymer Conjugation 

The reduced antibody is then incubated with a solution of metal-
loaded polymer (MIBItag from Ionpath; Maxpar X8 polymer from 
Standard BioTools) with a maleimide group at the linkage site that 
reacts with the free thiol groups on the reduced antibody. For the 
Standard BioTools Maxpar kit, metal has to be previously loaded 
into the polymer, whereas MIBItags come ready for conjugation 
and only require solubilization. 

3.4.5 MCA Purification, 

Measurement, and 

Stabilization 

Following conjugation, the now metal-conjugated antibody is 
washed and purified in the same centrifugal filter. Following wash-
ing, MCA concentration is determined using a Nanodrop 2000 
microvolume spectrophotometer (Thermo Fisher). The MCA is 
then diluted to 500 or 200 ug/mL using antibody stabilizer (Can-
dor) and is ready for long-term storage.
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3.5 Marker 

Validation 

For the metal-conjugated antibodies sold and QC’ed by a third 
party, skip step 1. 

1. Qualitative assessment of the chromogenic IHC staining of the 
carrier-free version of the antibody clone is done against an 
internally validated clone for the same marker. Move forward 
with the clones that match or exceed the validated clone in 
specificity and sensitivity. 

2. After the metal conjugation (see Subheading 3.3) or when using 
purchased metal-conjugated antibodies, perform the same 
qualitative assessment for specificity and sensitivity using chro-
mogenic IHC staining again with the internal validated clone. 

3. Finally and most critically, test the MCA on the MIBI or IMC 
platform, and work with a pathologist to compare the imaging 
mass spectrometry detected signal with the chromogenic IHC 
staining from 1 to 2. 

4 Methods for Multiplexed Ion Beam Imaging 

4.1 Tissue 

Preparation (See Notes 

6.2) 

1. Bake slides at 70 °C for 10 min laying nearly flat, with the label 
end slightly elevated, then bake for 10 min standing up. 

2. Take slides out and let cool to room temperature (RT), 
laying flat. 

3. Submerge tissue on slides in xylene for 5 min. 

4. Slides are then run through a deparaffinization and rehydration 
sequence of xylenes, alcohol, and water in a linear stainer 
(ST4200, Leica) for 30 s, 20 dips, each reagent as follows: 
xylene, xylene, xylene, 100% EtOH, 100% EtOH, 95% 
EtOH, 95% EtOH, 80% EtOH, 70% EtOH, H2O, H2O. 

5. Antigen retrieval is performed using a pH 9 heat-induced 
epitope retrieval solution (DAKO), slides are submerged in 
1× solution and incubated at 97 °C for 40 m, after which 
they are left to cool to 65 °C. 

6. Slides are next mounted into the Sequenza Staining Rack 
(Epredia), alternatively, a PAP pen (Fisher) border can be 
made around the tissue to contain staining reagents. 

7. Slides are then washed 2× with TBST Wash Buffer (Cell 
Marque). 

8. Slides are then blocked with MIBI block containing diluted fish 
gelatin (Sigma-Aldrich) and normal donkey serum (NDS, 
Sigma-Aldrich) for 1 h RT.
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4.2 Antibody 

Staining 

1. Prepare the overnight MCA cocktail by first adding 100 uL of 
3% NDS to a low binding 1.5 mL tube. 

2. For each tissue slide, 150 uL of MCA cocktail will be gener-
ated, add each MCA to the tube according to total volume and 
MCA titer. 

3. After addition of each MCA, adjust total volume by adding 
more 3% NDS. 

4. Add 130 uL of the overnight MCA cocktail to each slide in the 
Sequenza rack, ensure the lid is on and place rack at 4 °C 
overnight. 

5. The next morning, generate the Day 2 staining cocktail. Add 
100 uL to a low binding tube and add the appropriate amount 
of each Day 2 MCA. 

6. Wash slides 1× with TBST wash buffer (Cell Marque). 

7. Add 130 uL day 3 cocktail to each slide and incubate 4 °C for 
1 h.  

8. Wash slides 2× with TBST wash buffer (Cell Marque). 

4.3 Tissue 

Preservation 

1. Remove slides from Sequenza rack and place slides in a ST4200 
Linear Stainer rack. 

2. Submerge slides in PBS pH 7.5 for 1 min RT. 

3. Submerge slides in a 2% Glutaraldehyde (EMS) in PBS pH 7.5 
solution for 5 min RT. 

4. Slides are then run through a dehydration sequence on the 
ST4200 Linear Stainer for 30 s, 20 dips, each reagent as 
follows: TBS pH 8.5, TBS pH 8.5, TBS pH 8.5, H2O, H2O, 
70% EtOH, 80% EtOH, 95% EtOH, 95% EtOH, 100% EtOH, 
100% EtOH. 

5. Remove the rack of slides from the linear stainer track, and 
place in an open area in the chemical hood to ensure even 
evaporation, allow to air dry for 1 h RT. 

6. Slides can now be stored in a vacuum chamber, nitrogen cabi-
net, or alternative low-oxidation environment until ready to 
image. 

5 Methods for Imaging Mass Cytometry 

5.1 Tissue 

Preparation (See Notes 

6.3) 

1. Bake the slides in a slide rack for 30 min or longer at 70 °C in  
the slide oven to ensure that all visible wax is removed. 

2. Slides are then run through a deparaffinization and rehydration 
sequence of xylenes, alcohol, and water in a autostainer (Leica) 
for 2 min, eight dips, each reagent as follows: xylene, xylene,
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xylene, 100% EtOH, 100% EtOH, 95% EtOH, 95% EtOH. 
And then leave in water until retrieved from the stainer. 

3. Antigen retrieval is performed using the EZ-Retriever® System 
(BioGenex). The slides are first submerged in EZ-AR2 solution 
and incubated at 107 °C for 10 min. The slides are then moved 
to preheated EZ-AR1 solution and incubated at 107 °C for 
another 10 min. After that, slides are left in EZ-AR1 solution at 
room temperature for approximately 20 min to cool down to 
about 74 °C. 

4. Wash the slides in Maxpar Water for 10 min. 

5. Use a PAP pen to encircle the samples on the slide to conserve 
reagents. 

6. Slides are blocked with freshly made 3% BSA in Maxpar PBS 
solution for 45 minutes at room temperature. 

5.2 Antibody 

Staining 

1. Prepare overnight MCA cocktail by adding calculated volume 
of antibodies at concentrations specific for the assay and bring 
volume up to 150 uL per slide in 0.5% BSA in Maxpar PBS. 

2. Discard the blocking solution by tapping the slides on a kim-
wipe and absorb as much residual solution off the slides as 
possible using the tip of a kimwipe. Incubate overnight with 
MCA cocktail mix at 4 °C in a hydration chamber. 

3. For secondary antibody incubation, take out slides and sub-
merge into a slide mailer with Maxpar PBS for 8 min at room 
temperature after the overnight incubation. Prepare 5 ug/mL 
of secondary antibodies in 0.5% BSA in Maxpar PBS. Incubate 
the slides with the secondary antibody solution for 30 min at 
room temperature. 

5.3 Counter Staining 1. After the incubation of primary antibodies (or secondary anti-
bodies), prepare 0.2% Triton X-100 in Maxpar PBS, and use it 
to wash the slides for 8 min at room temperature. 

2. Wash the slides in Maxpar PBS for 8 min with gentle agitation 
at room temperature twice. 

3. Thaw Intercalator-Ir aliquot and dilute in Maxpar PBS (1: 
1000). Spin the Intercalator-Ir aliquot down briefly before use. 

4. Incubate slides in Intercalator-Ir for 30 min at room 
temperature. 

5.4 Tissue 

Preservation 

1. Wash the slides in Maxpar Water for 5 min at room 
temperature. 

2. Air-dry the slides overnight at room temperature. 

3. Keep slides in slide mailers with desiccants for long-term 
storage.
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6 Notes 

6.1 Antibody 

Conjugation Notes 

1. If BSA contamination is suspected, you can run the antibody 
solution on an SDS PAGE gel and use anti-BSA antibodies to 
evaluate BSA presence in that lane. 

2. BSA can be cleaned from contaminated antibodies using 
BSA-removal kits, however significant antibody input is 
required to get a robust yield of purified IgG. 

6.2 MIBI Methods 

Notes 

1. Try to use fresh-cut tissue sections, and maintain cut slides in 
oxygen-free, desiccated environment. 

2. For heat-induced epitope retrieval, slides can be incubated in 
the HIER buffer in slide mailers, restricting total volume to 
25 mL and conserving buffer. 

3. When adding the Sequenza Coverplate to each slide, fill a 
reagent reservoir halfway with wash buffer, fully wet the slide 
and coverplate, then combine the two, pinching the two 
together according to instructions and keeping an eye on the 
formed liquid interface, ensuring it is uniform before loading 
into the rack. 

4. Ensure no bubbles form in the coverplate/slide interface, 
remove slide and coverplate, rewet, and recombine as noted 
above if bubbles are observed. 

5. After the dehydration series, set the slides in an area with high 
air circulation to ensure quick evaporation and to prevent 
reagent crystallization. 

6. Once fixed and dried, slides have a >1 year shelf life if main-
tained in a low-oxygen, dry environment, enabling rescanning 
with equal yield. 

7. Generate an H&E slide on a serial section to guide ROI selec-
tion, geographical landmarks can be identified in the MIBI-
scope run setup to ensure accurate ROI capture. 

6.3 IMC Methods 

Notes 

1. Try to use fresh-cut tissue sections because tissue integrity and 
antigen stability for pre-cut sections may degrade over time. 

2. For antigen retrieval in BioGenex microwave, when the micro-
wave alarm goes off indicating the end of the first cycle, open 
the microwave door directly (alarm will stop), set the slide 
holder aside, pour the EZ-AR2 solution from the bucket with 
sensor space into a third bucket, pour the heated EZ-AR1 from 
the second bucket into the bucket with sensor space, emerge 
the slides into EZ-AR1 (bucket with sensor space), put both 
buckets with solutions into the microwave, and start the second 
cycle.
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3. When preparing the antibody cocktail, add a small volume of 
individual antibodies into a larger volume of diluent. Spin 
down the antibodies with table top centrifuge briefly and 
pipette from the top of the tube to avoid antibody aggregates. 
Put the antibody cocktail mix on ice, and add it to samples 
within 2 h of preparation for best results. 
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Chapter 13 

Multiplexed Immunoassay Using Quantum Dots to Monitor 
Proteins Secreted from Single Cells at Near-Single Molecule 
Resolution 

Veena Y. Naveen, Tingwei Deng, Vanessa Herrera, and Jered B. Haun 

Abstract 

Single-cell secretion studies find important applications in molecular diagnostics, therapeutic target identi-
fication, and basic biology research. One increasingly important area of research is non-genetic cellular 
heterogeneity, a phenomenon that can be studied by assessing secretion of soluble effector proteins from 
single cells. This is particularly impactful for immune cells, as secreted proteins such as cytokines, chemo-
kines, and growth factors are the gold standard for identifying phenotype. Current methods that rely upon 
immunofluorescence suffer from low detection sensitivity, requiring thousands of molecules to be secreted 
per cell. We have developed a quantum dot (QD)-based single-cell secretion analysis platform that can be 
used in different sandwich immunoassay formats to dramatically lower detection threshold, such that only 
one to a few molecules need be secreted per cell. We have also expanded this work to include multiplexing 
capabilities for different cytokines and employed this platform to study macrophage polarization under 
different stimuli at the single-cell level. 

Key words Quantum dot, Multiplexing, Immunoassay, Single cell-secreted proteins, Cytokines, 
Macrophage polarization heterogeneity 

1 Introduction 

Single-cell analysis methods are important tools used in studies of 
phenotypic heterogeneity within cell populations [1, 2]. Such het-
erogeneity has implications on how cells respond to microenviron-
mental stimuli and is hence crucial in informing diagnostic 
decisions and therapeutic strategies. Immune cells, in particular, 
are known to exhibit a large degree of response heterogeneity [3– 
6]. Soluble effector proteins are markers of immune cell pheno-
types, as well as driving factors of varied responses to stimuli [7– 
9]. Characterizing the secretion of cytokines from immune cells 
would give useful insight into the molecular regulators of 
non-genetic phenotypic variability and in turn provide knowledge
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on how these phenotypes can be induced and modulated in vivo 
[10, 11]. However, there are many challenges to monitoring secre-
tion directly from single cells. Ideally, a platform for monitoring 
protein secretion from single cells would be one that can detect a 
large panel of proteins with high sensitivity, using standard meth-
odologies that can be implemented easily by many research labs.
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Enzyme-linked immunosorbent assays (ELISAs) are the gold 
standard for detecting secretion of soluble proteins, but these are 
bulk assays whose averaged results mask the heterogeneity within 
the populations being characterized. Microwell chamber platforms 
have been used for isolating single cells and interrogating protein 
secretion in sandwich immunofluorescence-based platforms [12– 
14]. However, detection threshold has historically been limited to
�10 pM (or �3000 molecules per cell), which is two orders of 
magnitude higher than that of standard bulk ELISAs. Nanomater-
ial probes exhibit properties that confer numerous advantages to 
immunoassays over organic fluorophores. For example, quantum 
dots (QDs) emit a highly photostable luminescence signal, exhibit 
broad excitation and narrow emission spectra, and are negligibly 
susceptible to photobleaching [15, 16]. Moreover, QDs can be 
imaged using standard fluorescence microscopy with only slight 
modification with an appropriate filter cube that enables ultraviolet 
excitation. While QD-based assays have been reported that reached 
detection thresholds as low as 25 fM, these are bulk assays [17] and 
hence have the same limitations as standard ELISAs. Moreover, 
they failed to leverage the full suite of advantageous properties of 
QDs to further reduce detection thresholds or to explore the use of 
QDs in single-cell secretion assays. 

Previously, we developed a QD-based sandwich immunoassay 
capable of characterizing secretion of the cytokine TNF-α from 
single macrophages at a resolution of�180 aM, which corresponds 
to <1 molecule per cell in a standard microwell array [18]. The 
platform consisted of a polydimethylsiloxane (PDMS) microwell 
array in which single macrophage cells were isolated in picoliter 
microwells. Protein secretion was detected by overlaying the micro-
well arrays with a glass detection slide containing immobilized 
antibodies. The detection slides were then incubated with QD 
immunoconjugates (QD ICs) and secretion was quantified by fluo-
rescence microscopy. QD ICs consist of tetrazine-modified quan-
tum dots conjugated with TCO-modified detection antibodies. 
Detection sensitivity was enhanced by amplifying binding of pro-
tein molecules to the QD ICs. This was achieved by employing a 
novel bioconjugation method in which the detection antibody is 
modified with trans-cyclooctene (TCO), which is first used to label 
cells. Tetrazine-modified QDs can then be covalently reacted rap-
idly and specifically via the catalyst-free bioorthogonal cycloaddi-
tion reaction between TCO and tetrazine. This results in multiple 
QDs attaching each detection antibody, thereby enhancing



detection sensitivity. A schematic representation of the sandwich 
construct is shown in Fig. 1. The performance of the assay was 
assessed and compared against that of a standard immunofluores-
cence assay that used an organic fluorophore. The results of this 
analysis are displayed in Fig. 2. 
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Fig. 1 Schematic representation of the sandwich detection schemes used for detecting TNF-α (red). (Top) 
Standard immunoconjugate (IC) format in which the detection antibody (blue) is first attached to the 
QD. (Bottom) Chemical amplification (ChemAmp) technique in which the detection antibody is modified with 
trans-cyclooctene (TCO), bound to TNF-α, and covalently reacted with tetrazine-modified QDs via bioortho-
gonal cycloaddition reaction. (Reprinted with permission from Reference [18]. Copyright 2019 Royal Society of 
Chemistry) 

Subsequently, we developed a multiplexed version of this 
immunoassay using a multicolored QD panel [19]. This was 
achieved by adapting the previously described bioconjugation 
method to three additional targets, allowing the characterization 
of secretion of TNF-α, MCP-1, TGF-β, and IL-10 (Fig. 3). The 
multiplexed assay was evaluated by conducting a similar study in 
which single macrophages were divided into three populations that 
were induced toward three different stimulation conditions: no 
stimulation, pro-inflammatory, and pro-healing. The performance 
indicators of the multiplexed assay are shown in Fig. 4. Finally, we 
used the Seurat pipeline to cluster single macrophages based on 
secretion profiles, resulting in seven primary groups (Fig. 5). We 
also performed principal component analysis and found that the



clusters could be divided into primarily pro-inflammatory (clusters 
1–3), pro-healing (clusters 4 and 5), or mixed (clusters 6 and 7) 
cytokine secretion profiles. However, the mixed profiles were pre-
dominantly associated with the pro-healing phenotype. 
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Fig. 2 (a) ELISA results performed using biotinylated detection antibody, avidin-HRP, and TMB substrate. 
Detection threshold, defined as the lowest TNF-α concentration at which signal was significantly above 
background, was�5 pg/mL, or 300 fM. (b) Standard immunofluorescence assay performed using rhodamine-
labeled detection antibody (TMR), with detection threshold at �300 pg/mL, or 18 pM. (c) QD results for an IC, 
as well as the ChemAmp technique using TCO and PEG-TCO modified detection antibodies. (Reprinted with 
permission from Reference [18]. Copyright 2019 Royal Society of Chemistry) 

2 Materials 

All chemicals and reagents were purchased from Sigma-Aldrich 
(St Louis, MO) unless otherwise noted. 

2.1 Antibody 

Conjugation 

1. Monoclonal mouse capture/detection antibody pairs [BioLe-
gend (San Diego, CA)]: 

(a) Human MCP-1 (capture: IgG1κ clone 2H5, detection: 
IgG1κ clone 5D3-F7). 

(b) Human TGF-β (capture: IgG1κ clone TW7-7H4, detec-
tion: IgG1κ clone TW46H10).
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Fig. 3 Multiplexed detection of soluble proteins using QDs. (a) Absorbance and (b) emission spectra for the 
four QDs in the detection panel. The same excitation window, from 400 to 450 nm (blue), was used for each 
QD. Emission filter windows are overlaid to indicate spectral overlap. (c) Schematic of single-cell secretion 
and detection assays. Inflammatory cytokines are MCP-1 (green, 525 nm QD) and TNF-α (dark red, 655 nm 
QD). Healing/repair cytokines are TGF-β (orange, 565 nm QD) and IL-10 (red, 605 nm QD). (Reprinted with 
permission from Reference [19]. Copyright 2022 American Chemical Society) 

(c) Human IL-10 (capture: IgG1κ clone JES3-9D7, detec-
tion: IgG1κ clone JES312G8). 

(d) Human TNF-α (capture: IgG1κ clone MAb1, detection: 
IgG1κ clone MAb11). 

2. NanoDrop 2000 spectrophotometer (Thermo Scientific). 

3. Gyromini Nutating Mixer (LabNet International, Inc., NJ). 

2.1.1 Biotinylated 

Capture Antibodies 

1. Capture antibodies (see above). 

2. Sulfo-NHS-LC-Biotin. 

3. 1× Phosphate-buffered saline (PBS). 

4. 0.1 M sodium bicarbonate (pH 8.4). 

5. Zeba Spin desalting columns (Thermo Fisher, MA). 

2.1.2 TCO-Modified 

Detection Antibodies 

1. Detection antibodies (see above). 

2. NHS-TCO (Click Chemistry Tools, AZ). 

3. Dimethylformamide (DMF). 

4. 1× PBS.
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Fig. 4 Characterization of immunoassays using different QDs. (a) Representative images at different protein 
concentrations for (i) MCP-1/525 QD, (ii) TGF-β/565 QD, (iii) IL-10/605 QD, and (iv) TNFalpha/655 QD 
immunoassays. (b) Mean intensity for all QD immunoassays, after background subtraction. (c) Average 
intensity in the low-concentration range of 1100 fM, along with controls. Detection sensitivity was 1 fM for 
the MCP-1/525 QD, TGF-β/565 QD, and IL-10/605 QD cases, and 10 fM for TNF-α/655 QD. Error bars 
represent the standard error from at least three independent experiments. # denotes p < 0.05 and * denotes 
p < 0.01 when compared to control samples. Scale bars are 30 μm. (Reprinted with permission from 
Reference [19]. Copyright 2022 American Chemical Society) 

2.2 Tetrazine-

Modified Quantum 

Dots 

1. Primary amine-terminated QDs (Qdot 525, 565, 605, and 
655 ITK Amino PEG) (Thermo Fisher Scientific, Waltham, 
MA). 

2. Tetrazine-NHS. 

3. DMF. 

4. 1× PBS. 

5. 0.01 M sodium bicarbonate. 

6. Amicon Ultra-4 centrifugal filtration systems with 100 kD 
MWCO (EMD Millipore). 

2.3 QD 

Immunoconjugates 

1. Tz-modified QDs. 

2. TCO-modified detection antibodies. 

3. PBS containing 1% bovine serum albumin (PBS+). 

4. Sephacryl S-400 gel filtration media (GE Healthcare). 

5. AKTA Pure FPLC system (GE Healthcare). 

6. Amicon Ultra-15 centrifugal filtration systems with 100 kD 
MWCO (EMD Millipore).



x
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Fig. 5 Bioinformatic analysis of secretion profiles. (a) UMAP projection showing the sizes and distribution of 
seven distinct clusters. (b) Violin plots showing secretion levels across clusters. The shape of the violin plot 
shows the probability density of expression levels for (i) MCP-1, (ii) TGF-β, (iii) IL-10, and (iv) TNF-α. (c) 
Heatmap showing sizes and secretion profiles arranged by cluster. (Reprinted with permission from Reference 
[19]. Copyright 2022 American Chemical Society) 

2.4 Fabrication of 

PDMS Microwell 

Arrays 

1. 3″ silicon wafer (University Wafer, MA). 

2. SU-8 50 photoresist (MicroChem, MA). 

3. Transparency mask containing clear rectangles (90 μm  
90 μm). 

4. UV light (AB & M UV Flood Lamp Exposure System). 

5. SU-8 developer. 

6. Polydimethylsiloxane (PDMS) and curing agent (Dow Sili-
cones, MI). 

7. (Tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (Gelest, 
PA). 

8. 70% ethanol.
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2.5 Preparation of 

Detection Slides 

1. Glass microscope slides (25 mm × 75 mm). 

2. Staining dish. 

3. Sulfo-SMCC [sulfosuccinimidyl 4-(N-maleimidomethyl)cyclo-
hexane-1-carboxylate]. 

4. NeutrAvidin (Thermo Fisher Scientific, Waltham, MA). 

5. Piranha solution (3% H2O2 and concentrated H2SO4 at a 1: 
2 volume ratio). 

6. Double-deionized water (dH2O). 

7. 4% (3-mercapto-propyl)-trimethoxysilane solution in 100% 
ethanol. 

8. 100% ethanol. 

9. PBS+. 

10. Biotinylated capture antibodies. 

2.5.1 Calibration 

Detection Slides 

1. 50 microwell silicone gasket (Grace Bio-Labs). 

2.5.2 Single-Cell Assay 

Detection Slides 

1. Grease pen. 

2.6 Calibration 

Experiments 

1. Calibration detection slides. 

2. Recombinant human monocyte chemoattractant protein 
1 (MCP-1), transforming growth factor β (TGF-β), interleukin 
10 (IL-10), and tumor necrosis factor α (TNF-α). 

3. PBS+. 

2.7 U-937 Cell 

Culture and Single-Cell 

Secretion Assays 

1. Single-cell assay detection slides. 

2. Pro-monocytic, human myeloid leukemia cell line U-937 
(ATCC, Manassas, VA). 

3. 4% Trypsin EDTA (Thermo Fisher Scientific, MA). 

4. Phorbol 12-myristate 13-acetate (PMA). 

5. RPMI 1640 medium supplemented with 2 mM L-glutamine, 
10 nM HEPES, 1 mM sodium pyruvate, 4.5 g/L glucose, 
1.5 g/L sodium bicarbonate, and 10% fetal bovine serum 
(Thermo Fisher, MA). 

6. Lipopolysaccharide (LPS). 

7. Interleukin 4 (IL-4). 

2.8 Imaging and 

Analysis 

1. Olympus X83 inverted microscope. 

2. QD filter sets: 

(a) 400–450 nm single band exciter for all filter cubes.
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(b) 510–540 nm for QD525 and 590–620 nm for QD605 
(Chroma, VT). 

(c) 550–580 nm for QD565 and 640–670 nm for QD655 
(Semrock, NY). 

3. 40× oil–immersion objective (NA 1.3, Olympus). 

4. Orca–R2 CCD camera (Hamamatsu Photonics). 

5. MManager control software. 

6. ImageJ software with the Fiji package. 

2.9 Phenotypic 

Analysis 

1. R software environment with Seurat v3 installation. 

3 Methods 

3.1 Antibody 

Conjugations 

1. React capture antibodies with 5 molar equivalents of sulfo-
NHS-LC-Biotin in PBS and 0.1 M sodium bicarbonate: 

3.1.1 Biotinylated 

Capture Antibodies 

(a) Prepare the reaction solution (total volume: 1250 μL) by 
first combining 1000 μL capture antibody, 125 μL sodium 
bicarbonate, and 121.3 μL PBS in a 1.5 mL microcentri-
fuge tube. Briefly vortex the solution. 

(b) Add 3.7 μL sulfo-NHS-LC-Biotin to the solution. Briefly 
vortex the solution. 

(c) Incubate the reaction solution on a GyroMini for 3 h. 
Cover the tube with aluminum foil to minimize light 
exposure. 

2. Purify the modified antibodies using a 5 mL Zeba Spin Desalt-
ing Column (7 K MWCO): 

(a) Buffer-exchange the column with 1× PBS and purify the 
sample according to the manufacturer’s instructions. 

(b) Transfer the purified sample to a new 1.5 mL microcen-
trifuge tubes. Determine antibody concentration by 
absorption measurement using a NanoDrop 2000 
spectrophotometer. 

(c) Store modified antibodies at 4 °C. 

3.1.2 TCO-Modified 

Detection Antibodies 

1. React detection antibodies with 30 molar equivalents of 
NHS-TCO in PBS containing 10% DMF and 0.1 M sodium 
bicarbonate: 

(a) Prepare the reaction solution (total volume: 1000 μL) by 
first combining 500 μL capture antibody, 100 μL sodium 
bicarbonate, and 300 μL PBS in a 1.5 mL microcentrifuge 
tube. Briefly vortex the solution. 

(b) Add 98.66 μL DMF and 1.34 μL NHS-TCO. Briefly 
vortex the solution.
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(c) Incubate the reaction solution on a GyroMini for 3 h. 
Cover the tube with aluminum foil to minimize light 
exposure. 

2. Purify the modified antibodies using a 5 mL Zeba Spin Desalt-
ing Column (7 K MWCO): 

(a) Buffer-exchange the column with 1× PBS and purify the 
sample according to the manufacturer’s instructions. 

(b) Transfer the purified sample to a new 1.5 mL microcen-
trifuge tubes. Determine antibody concentration by 
absorption measurement using a NanoDrop 2000 
spectrophotometer. 

(c) Store modified antibodies at 4 °C. 

3.2 Tetrazine-

Modified Quantum 

Dots 

1. Vortex the QD stock solution. In subsequent steps, cover tubes 
containing QDs with aluminum foil to minimize light 
exposure. 

2. Buffer-exchange and concentrate the QDs in PBS using an 
Amicon Ultra-4 centrifugal filtration system (100 kD 
MWCO): 

(a) Add 50 μL of QD stock solution and 3 mL of PBS to the 
Amicon filter. 

(b) Centrifuge at 4000 RCF for 7 min. Remove the liquid 
that passes through the filter. Mix the solute inside the 
filter using a pipette (to withdraw the particles settled at 
the bottom). 

(c) Repeat step 2 (b) 2–3 times (until the volume of the 
concentrated solute inside the filter is approximately 
60 μL). 

3. React 0.15 nmole of QDs with 500 molar equivalents of 
NHS-tetrazine in PBS containing 5% DMF and 0.01 M sodium 
bicarbonate: 

(a) Add 790 μL of PBS to the concentrated QDs inside the 
Amicon filter. Mix the QD solution by pipetting inside the 
filter. Transfer the solution to a 1.5 mL 
microcentrifuge tube. 

(b) Prepare the reaction solution (total volume: �1 mL) by 
first adding 100 μL of 0.01 M sodium bicarbonate to the 
tube. Briefly vortex the solution. 

(c) Add 7.52 μL Tz-NHS and 42.48 μL DMF. Briefly vortex 
the solution. 

(d) Incubate the reaction at room temperature for 3 h on a 
GyroMini. 

(e) Centrifuge at 4000 RCF for 7 min. Remove the liquid 
that passes through the filter. Mix the solute inside the 
filter using a pipette (to withdraw the particles settled at 
the bottom).
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Table 1 
Sample calibration measurements for Qdot 605. Absorption was measured at 3 wavelengths near the 
peak of the excitation spectrum. The dilution of the sample was determined by taking the mean of the 
dilutions obtained from the three linear fits 

Absorption (y) 

Dilution (x) 580 nm 590 nm 600 nm 

0.5 0.12133 0.16767 0.154333 

0.25 0.062 0.085 0.075 

0.125 0.032 0.042 0.036 

0.0625 0.017 0.02 0.016 

0.03125 0.01 0.012 0.01 

Linear fit y = 0.238× + 0.0023 y = 0.3349× + 0.0004 y = 0.3116×–0.0021 

(f) Repeat step 3 (e) 3 times. 

(g) Transfer the purified Tz-modified QDs to a new 1.5 mL 
microcentrifuge tube. 

(h) Determine the concentration of QDs by absorption mea-
surements using a NanoDrop 2000 spectrophotometer 
and calibration using the QD stock solution. Sample cali-
bration measurements for Qdot 605 are shown in Table 1. 

3.3 QD 

Immunoconjugates 

1. React 0.15 nmole of Tz-QDs with 200 g of TCO-modified 
detection antibody in PBS+: 

(a) Calculate required volumes of Tz-QD and TCO-modified 
detection antibody using the respective sample concentra-
tions and combine them in a 1.5 mL 
microcentrifuge tube. 

(b) Add PBS+ up to a final volume of 1 mL. Briefly vortex the 
solution. 

(c) Incubate the solution at room temperature for 3 h on a 
GyroMini. 

2. Purify QD ICs using Sephacryl S-400 gel filtration media on an 
AKTA Pure FPLC system: 

(a) Immediately before purifying QD ICs, prepare the col-
umn by running a method with the following settings:

• Column selection. 

– Show by technique: Gel Filtration. 

– Column type: Any. 

– Column volume: 80.000 mL. 

– Pressure limit pre-column: 1.00 MPa.
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• Flow rate: 1.000 mL/min.

• Select “Control the flow to avoid overpressure”.

• Inlet A: A1 (buffer: ultrapure water).

• Inlet B: B2 (buffer: 100% ethanol).

• Unit selection. 

– Method Base Unit: CV. 

– Flow Rate Unit: mL/min.

• Monitor settings. 

– UV variable wavelengths. 

– UV 1: 280 nm. 

(b) To purify QD immunoconjugates, run a method with the 
same settings as in 3.3.2.(a), but with the following 
modifications: 

• Column selection. 

– Column volume: 120.637 mL. 

– Pressure limit pre-column: 0.50 MPa.

• Inlet A: A2 (buffer: 1× PBS).

• Inlet B: B1 (buffer: 20% ethanol).

• Monitor settings. 

– UV variable wavelengths. 

– UV 1: 280 nm. 

– UV 2: 400 nm (for Qdots). 

(c) Collect fractions eluted when peaks of both A280nm and 
A592nm/A545nm/A510nm/A640nm appear on the chro-
matogram at the same time. 

(d) Immediately after purifying QD ICs, clean the column by 
running a method with the same settings as in 3.3.2. 

3. Concentrate the purified QD ICs using an Amicon Ultra-15 
centrifugal filtration system: 

(a) Transfer the fractions collected in step 2 (c) to the Ami-
con filter. 

(b) Centrifuge at 4000 RCF for 7 min. Remove the liquid 
that passes through the filter. Mix the solute inside the 
filter using a pipette (to withdraw the particles settled at 
the bottom). 

(c) Repeat step 3 (b) Until the solute inside the filter appears 
colored when visually inspected.
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4. Transfer the concentrated QD ICs to a new 1.5 mL microcen-
trifuge tube. Determine antibody and QD concentrations by 
absorption measurement using a NanoDrop 2000 spectropho-
tometer and the same calibration curve used in step 3.2.3. (h). 

5. Store QD ICs at 4 °C. 

3.4 Fabrication of 

PDMS Microwell 

Arrays 

1. Fabricate the silicon wafer: 

(a) Spin-coat a SU-8 50 photoresist onto a 3″ silicon wafer to 
get a uniform 80 mm thick layer. Bake at 95 °C for 2 h. 

(b) Position the wafer under the transparency mask and 
expose it to UV light, following MicroChem protocol. 

(c) After 10 min of post-exposure bake at 95 °C, immerse the 
wafer in SU-8 developer for 5 min to wash off unpolymer-
ized photoresist. 

(d) Bake the clean and dried wafer at 200 °C for 30 min to 
allow SU-8 to cross-link completely. 

2. Silanize the silicon wafer with 10 μL of (tridecafluoro-1,1,2,2-
tetrahydrooctyl)trichlorosilane: 

(a) Place the wafer into a desiccator and add 10 μL of (tride-
cafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane into the 
desiccator equally on the top, bottom, left, and right sides. 

(b) Seal the desiccator, apply vacuum, and let the wafer sit for 
at least 6 h. 

3. Prepare the polymer mixture: 

(a) Mix the PDMS and curing agent in a 10:1 ratio. 

(b) De-gas the mixture in a dessicator for at least 20 min. 

4. Place the silicon wafer inside a dish and pour the polymer 
mixture onto it until it covers the wafer completely. 

5. Cure the polymer overnight in an oven at 65 °C overnight. 

6. Carefully remove the arrays from the silicon wafer by peeling 
them off using tweezers. 

7. Sterilize the arrays by sonicating in 70% ethanol for 10 min. 

8. Bake the arrays in an oven overnight to dry them. 

3.5 Preparation of 

Detection Slides 

1. Wash glass slides with Piranha solution (perform this step 
inside a fume hood): 

(a) Place the slides on a slide rack holder. Place the holder 
inside a staining dish. 

(b) Pour Piranha solution into the staining dish and slowly 
shake the dish. Incubate at room temperature for 15 min. 

(c) Briefly shake the rack slowly and incubate for another 
15 min. 

(d) Transfer the slide rack to a new clean staining dish.
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(e) Rinse the slides 10 times with dH2O. 

(f) Dry the slides in an oven for 1 h at 100 °C. 

2. Silanize the glass slides: 

(a) Transfer the staining dish containing the slides to a 
chemical hood. 

(b) Pour the (3-mercapto-propyl)-trimethoxysilane solution 
into the staining dish until the slides are immersed. Incu-
bate for 1 h at room temperature. 

(c) Rinse the slides with 100% ethanol. 

(d) Transfer the slides to a clean staining dish and incubate for 
30 min in an oven at 100 °C. 

(e) Transfer the slides to a polystyrene holder and store it in a 
dessicator. 

3. Modify NeutrAvidin with maleimide using 10 molar equiva-
lents of sulfo-SMCC: 

(a) Prepare a 1 mg/mL NeutrAvidin solution in PBS accord-
ing to the manufacturer’s instructions. 

(b) Prepare a 10 M solution of sulfo-SMCC in ultrapure water 
according to the manufacturer’s instructions. 

(c) Combine 1 mL of 1 mg/mL NeutrAvidin solution with 
50 μL of 10 M sulfo-SMCC solution. 

3.6 Calibration 

Experiments 

1. Place a silicon gasket on the silanized slide. 

2. Add 5 μL of 1 mg/mL maleimide-modified NeutrAvidin to 
each well. Incubate at room temperature for 2 h. 

3. Wash the wells by adding 7 μL PBS to each well for 15 min. 
After this step, the slide can be stored overnight at 4 °C. If 
storing overnight and resuming later, then repeat this step 
before resuming. 

4. Incubate antibodies at 2.5 g/mL: add 6 μL of biotinylated 
capture antibody to each well (one at a time for single-protein 
assay or all four together for multiplexed assay). 

5. Incubate for 2 h at room temperature. 

6. Wash the wells 3 times with 7 μL PBS. 
7. Add 6 μL of purified protein in PBS+ (one at a time for single-

protein assay or all four together for multiplexed assay) to each 
well at concentrations ranging from 1 fM to 100,000 
fM. Incubate for 2 h at room temperature. Figure 6 shows a 
sample layout of protein concentrations in wells of a calibration 
experiment slide. 

8. Incubate at room temperature for 30 min. 

9. Wash 3 times with ice-cold PBS+.
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Fig. 6 (a) Sample layout of a calibration experiment slide. (b) Table showing protein concentrations 
corresponding to wells labeled 1–10 on the slide 

10. Outline the region containing the wells at the bottom of the 
slide using a marker. 

11. Carefully remove the gasket while ensuring that the region of 
the slide that contained the gasket does not get contaminated. 

12. Incubate the slide with QD immunoconjugates at a final con-
centration of 20 nM (anti-IL-10 and anti-TNF-α) or 100 nM 
(anti-MCP-1 and anti-TGF-β) for 30 min. 

13. Wash 3 times with 7 μL PBS. 
14. Cover the marked region of the slide with PBS+ and mount a 

cover slip. Blot away the excess PBS+. 

15. Store the slides at 4 °C. Image them within 1 week. 

3.7 U-937 Cell 

Culture and Single-Cell 

Secretion Assays 

1. Outline a 2 cm × 2 cm square region on the silanized glass 
slides using a grease pen. 

2. Incubate the region in 125 μL of maleimide-modified NeutrA-
vidin for 2 h at room temperature. 

3. Rinse the slide and block with 200 μL of PBS+ for 15 min at 
room temperature. 

4. Incubate with 125 μL of biotinylated capture antibodies for 2 h 
at room temperature and wash with PBS+. 

5. Differentiate U-937 Cells with 50 ng/mL PMA: 

(a) Culture U-937 cells as recommended in the supplemen-
ted RPMI 1640 medium. 

(b) Prepare a cell solution at a density of 500,000 cells/mL. 
Transfer 2 mL of the culture to each well of the well plate. 

(c) Prepare a 0.01 mg/mL PMA solution. Add 10 μL of the 
solution to each well. Place the cells in an incubator for 
48 h. 

(d) Replace the PMA-containing media with fresh media. 
Place the cells in an incubator to rest for 24 h.
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6. Seed differentiated U-937 cells onto PDMS microwells: 

(a) Remove the cells from the incubator. Warm the medium 
to room temperature and thaw the trypsin solution. 

(b) Remove the media from the cell culture, and wash the 
adherent cells twice with 1 mL of PBS. 

(c) Add 0.5 mL of trypsin to each well. The amount of trypsin 
will depend on the size of the wells. In general, add the 
minimum amount of trypsin required to completely cover 
the surface of the culture. 

(d) Incubate the culture at room temperature for 3–5 min. 
Check if the cells detach after incubation. If they do not 
detach, first tap the plate and gently pipette inside the well 
to help dislodge the cells. If cells are still attached, use a 
cell scraper to gently scrape the cells off. 

(e) Add 0.5 mL of media to neutralize the trypsin. For other 
types of well plates, add enough media for a 1:1 ratio of 
media to trypsin. 

(f) Collect the cell solution and centrifuge it at 120–130 RCF 
for 5 min. 

(g) Resuspend cells in media, and prepare the seeding solu-
tion at a density of 25,000 cells/mL. 

(h) Place the PDMS microwell arrays at the bottom of the 
wells of a 12-well plate, with the microwells facing 
up. Seed 1.5 mL of cells in each well. 

(i) Spin the plate at 700 rpm for 5 min to facilitate seeding. 
Incubate for 1 h to allow the cells to adhere to the bottom 
of the microwells. 

(j) After 1 h, use the cell scraper to remove cells outside of the 
microwells. 

7. Stimulate the cells with 100 ng/mL LPS or 100 ng/mL inter-
leukin 4 (IL-4): 

(a) Prepare a 400 ng/mL solution of LPS/IL-4. Add 0.5 mL 
of the solution to the plate wells containing microwell 
arrays with differentiated cells. 

(b) Briefly pipette directly over the microwells to ensure that 
the solution enters the wells. 

(c) Incubate the cells at room temperature for 10 min. Then 
aspirate the media. 

8. Wet the detection slides slightly with LPS/IL-4-containing 
media from the well plate. 

9. Gently remove the microwell arrays from the well plate using 
tweezers. Invert the arrays onto the marked region of the 
detection slides.
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10. Place another glass slide on the exposed side of the microwell 
arrays. Seal the sandwich construct inside an acrylic housing. 
Perform this step gently and slowly to ensure proper cell 
viability. 

11. Place the housing in a box and cover it with a damp paper towel 
to create a humidified chamber. 

12. Incubate the setup for 24 h at 37 °C prior to imaging. After 
24 h, carefully remove the sandwich construct from the 
housing. 

13. Carefully separate the microwell arrays from the detection 
slides within an ice-cold bath of PBS+. 

14. Incubate the slides with QD ICs at a final concentration of 
20 nM (anti-IL-10 and anti-TNF-α) or 100 nM (anti-MCP-1 
and anti-TGF-β) for 30 min. 

15. Wash 3 times with ice-cold PBS+. 

16. Cover the marked region of the slide with PBS+ and mount a 
cover slip. Blot away the excess PBS+. 

17. Store the slides at 4 °C. Image them within 1 week. 

3.8 Imaging and 

Analysis 

1. Image the glass slides using the Olympus X83 inverted micro-
scope, 40× oil-immersion objective, and single–band QD 
filter sets. 

2. Set the exposure time to 500 ms and capture images using the 
Orca–R2 CCD camera and MManager control software for at 
least five fields of view per sample. 

3. Quantify mean fluorescence intensity using ImageJ software. 

(a) For single-cell studies, stitch the complete series of bright-
field (cells), or fluorescence (protein) images were stitched 
together using the Fiji package and the grid/collection 
stitching plug-in. 

(b) Define microwell locations in the stitched fluorescence 
images by aligning with the stitched bright-field images 
using the built-in mask, selection, and ROI manager 
tools. 

(c) Manually select wells containing zero (empty wells), one 
(single-cell wells), or multiple cells, and store their ROIs. 

(d) Superimpose the defined ROIs for empty and single-cell 
wells on the fluorescence images from the detection glass 
slides. 

(e) Obtain mean intensity for each ROI using the built-in 
multimeasure tool in ImageJ.
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4. Determine the detection limit by determining the intensity two 
standard deviations above the mean intensity for the empty 
wells. 

5. Calibrate protein secretion for the positive population from 
intensity measurements obtained using purified proteins. 

3.9 Phenotypic 

Analysis 

The R commands that were used to perform each step listed under 
this method are shown below the respective subsection. The com-
ments preceding each line indicate the step to which it corresponds. 

1. Format the dataset into a Seurat counts matrix: 

(a) Import the Seurat package. Read in the file containing 
calibrated single-cell secretion data for M(-) cells as a 
dataframe. 

(b) Create an array of unique “IDs” for each cell, such that the 
ID keeps track of the cell’s stimulation condition. 

(c) Append the array of IDs to the dataframe. 

(d) Repeat steps 1. (a)-(c) for M(LPS) and M(LPS + IL-
4) data. 

(e) Combine the three dataframes for the three stimulation 
conditions. 

(f) Remove the non-secretor cells from the combined 
dataframes. 

(g) Convert the concentrations from fM to pM. 

# 1 (a) data_NS <- read.csv("IC_NS.csv", header = T) # 

M(-) 

# 1 (b) 

IDs <- as.data.frame(1:length(data1[,1])) 

IDs_NS <- apply(IDs, 1, function(x){paste("sc_NS_", 

x, sep = “)}) # 

M(-) 

# 1 (c) 

data_NS[,1] <- IDs 

# 1 (d) Repeat 1 (a)-(c) for M(LPS) and M(LPS+IL4) 

# 1 (e) 

data_combined <- rbind(data_NS, data_LPS, data_LPS 

+IL-4) 

# 1 (f) 

data_combined_secretors <- data_combined[rowSums(df) 

==0,] 

# 1 (g) 

data_combined_secretors_pM <- data_combined_secre-

tors*0.001
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2. Perform the analysis: 

(a) Create the Seurat object by using the dataframe obtained 
after step 1. (g) as the counts matrix. 

(b) Perform principal component and cluster analysis by fol-
lowing vignettes provided by Butler et al. in (10). 

# 2 (a) 

library(Seurat) library(ggplot2) 

obj <- CreateSeuratObject(counts = t(data_combined_-

secretors_pM)) 

4 Notes 

1. For sufficient protein recovery, ensure that the cap of the Zeba 
Spin Desalting Column is loosened before placing it in the 
centrifuge, as described in the manufacturer’s instruction 
manual. 

2. When preparing QD ICs, ensure that the molar ratio of detec-
tion antibodies to QDs in the reaction is at least 4:1. Excess 
antibodies are preferred to enable good binding, and a smaller 
ratio of antibodies to QDs favors multivalent binding. Further-
more, too few antibodies can cause QD-QD cross-linking. 

3. QD ICs will be eluted from the gel filtration column after 
approximately 30–40% of the total column volume has been 
eluted. 

4. Obtaining a very low concentration purified QD ICs may be a 
result of excessive aggregation due to cross-linking between 
TCO groups. One way to reduce aggregation is to reduce the 
molar ratio of NHS-TCO to antibody in the conjugation pro-
tocol. Aggregation can also be reduced by attaching TCO via 
PEG linkers. Finally, the molar ratio of antibody to QD can also 
be increased, as discussed in Note 2. 

5. During the washing steps in the calibrations and single-cell 
secretion experiments, aspirate out the liquid by placing the 
glass tip gently on its side at the edge of the gasket wells or 
microwells. 

6. To help seal the cover slip onto the glass slide, the cover slip can 
be outlined with transparent nail polish after it is placed on the 
slide, and the excess PBS+ is blotted away with a Kim-wipe or 
other absorbent material.
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7. When seeding cells into the PDMS microwell arrays, the con-
centration of the seeding solution depends on the size of the 
wells. For larger wells, use a lower concentration to ensure 
good single-cell loading. 

8. When selecting single-cell wells on the ROI manager in Ima-
geJ, be sure to look for cells that are sitting on the sides of wells, 
as well as lysed cells. Lysed cells can be selected, if the well 
contained only a single cell. 
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Chapter 14 

Isolation and Identification of Plasma Extracellular Vesicles 
Protein Biomarkers 

Michelle V. Lihon, Marco Hadisurya, Xiaofeng Wu, Anton Iliuk, 
and W. Andy Tao 

Abstract 

Extracellular vesicles (EVs) have emerged as a valuable source for disease biomarkers and an alternative drug 
delivery system due to their ability to carry cargo and target specific cells. Proper isolation, identification, 
and analytical strategy are required for evaluating their potential in diagnostics and therapeutics. Here, a 
method is detailed to isolate plasma EVs and analyze their proteomic profiling, combining EVtrap-based 
high-recovery EV isolation, phase-transfer surfactant method for protein extraction, and mass spectrometry 
qualitative and quantitative strategies for EV proteome characterization. The pipeline provides a highly 
effective EV-based proteome analysis technique that can be applied for EV characterization and evaluation 
of EV-based diagnosis and therapy. 

Key words Extracellular vesicles (EVs), Exosomes, Plasma, Extracellular vesicles total recovery and 
purification (EVtrap), Mass spectrometry, Data-dependent acquisition (DDA), Data-independent 
acquisition (DIA), Automatic gain control (AGC) strategy, Gas-phase fractionated (GPF) spectral 
library, Spectronaut Pulsar search, Parallel reaction monitoring (PRM), Isobaric labeling, Tandem 
mass tag labeling (TMT labeling), Quantitative proteomics, Pharmacokinetics 

1 Introduction 

EVs are small lipid bilayer-enclosed particles, classified into two 
primary categories exosomes and microvesicles [1]. EVs are 
released by almost every cell type and are present in body fluids, 
including plasma, urine, and saliva [1]. Their primary role is intra-
cellular communication by transporting various active biomole-
cules from producer cells to recipient cells [1, 2]. EVs are 
enriched in nucleic acids, lipids, and proteins that reflect the parent 
cell’s current state, providing valuable real-time information on 
cellular proteome changes [3, 4]. Since there is evidence of EVs 
involved in several diseases like cardiovascular disease, cancer, auto-
immune, neurodegenerative diseases, etc., their informational
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cargo possesses diagnostic potential [5–8]. Due to EV’s abundance 
in biofluids and its potential as a disease biomarker, there has been 
increased interest in exploring EVs as liquid biopsies to assess the 
therapeutic efficacy of a drug [9, 10]. Therefore, the proper isola-
tion, identification, and quantitative strategy of EV proteome are 
required to characterize EVs further and explore their potential as 
disease biomarkers.
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Proteomics profiling is a powerful tool to monitor and quantify 
changes in the proteome or specific disease biomarkers and discover 
novel disease biomarkers. There are two experimental proteomics 
methods for data acquisition and quantification, data-dependent 
acquisition (DDA) and data-independent acquisition (DIA). DDA 
selects N most abundant peptides for fragmentation, generating 
peptide-specific MS2 spectra. The DDA generated spectra are typi-
cally used for protein library generation and identification based on 
search engine algorithms applied to an existing protein database. In 
contrast, the DIA method is a powerful alternative to the DDA 
method for adequate qualitative and quantitative proteomics stud-
ies, perfect for monitoring and discovering disease biomarkers 
[11, 18]. DIA method consists of the fragmentation of all peptides 
resulting in complex MS2 fragmentation spectra that generate a 
spectral library to extract information from the highly rich data and 
allow for quantification at the MS2 level [11, 12]. Gas-phase frac-
tionated (GPF) library is a DIA strategy for data acquisition, which 
has the advantage of generating an up-to-date protein library that is 
experiment-specific [13]. Like parallel reaction monitoring (PRM), 
GPF also provides targeted quantitative proteomics data for all 
peptides inside the scanning range, which helps produce a more 
comprehensive profile of the proteome. 

Here is a method and strategy to isolate plasma EVs and analyze 
them by proteomic profiling. For the EV isolation, our group 
developed a novel chemical affinity magnetic bead-based (non-anti-
body) method called extracellular vesicles total recovery and purifi-
cation (EVtrap). This method was designed to be fully compatible 
with LC-MS-based EV proteome analysis, providing high recovery 
and purity levels necessary for successful EV proteome analysis 
[14, 15]. For EV proteome quantification, we used mass spectrom-
etry DDA and isobaric labeling (TMT labeling) to quantify changes 
in EV protein content (i.e., samples from individuals or cellular 
states). As an alternative to the DDA method, we also provide an 
optimized DIA label-free quantitative proteomic method that can 
increase coverage, sensitivity, and reproducibility for EV characteri-
zation [18]. In this chapter, we detail the procedure for effective 
plasma EV proteome analysis using EVtrap, phase-transfer surfac-
tant-based EV lysis, protein extraction, and DDA and DIA mass 
spectrometry analysis (see Fig. 1 for the overall workflow).
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Fig. 1 Workflow overview of DDA and DIA plasma EV proteomics analysis procedure 

2 Materials 

1. EVtrap EV enrichment beads (Tymora Analytical). 

2. EVtrap elution solution (200 mM TEA in water) (Note 1. This 
solution is recommended to be prepared fresh). 

3. 500 mM Tris-HCl stock buffer, pH 8.5. To prepare 100 mL, 
dissolve 6.05 g of Tris base in 80 mL of ultrapure water, then 
adjust pH to 8.5 with 5 M hydrochloric acid. Bring to a final 
volume of 100 mL by adding ultrapure water. Stock buffer can 
be stored at room temperature. 

4. 120 mM SDC (sodium deoxycholate) stock solution. To pre-
pare 10 mL, dissolve 500 mg of SDC in 10 mL ultrapure water. 
Stock solution can be stored at room temperature for up to 
6 months. 

5. 120 mM SLS (sodium lauroyl sarcosinate) stock solution. To 
prepare 10 mL, dissolve 352 mg of SLS in 10 mL of ultrapure 
water. Stock solution can be stored at room temperature for up 
to 6 months.
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6. 200 mM TCEP (Tris(2-carboxyethyl)phosphine hydrochlo-
ride) stock solution. To prepare 100 μL, dissolve 6 mg of 
TECP in 100 μL of ultrapure water. Stock solution can be 
prepared ahead of time and stored for up to 6 months at -
20 °C. Freeze–thaw is not recommended; discard any remain-
ing TCEP stock solution. 

7. 300 mM CAA (chloroacetamide) stock solution. To prepare 
100 μL, dissolve 3 mg of CAA in 100 μL of 50 mM TEAB. The 
stock solution must be prepared fresh and used immediately. 

8. PTS lysis solution. To prepare 100 μL of PTS lysis solution, add 
the following stock solutions in that order below to 54 μL of  
ultrapure water immediately before use. Vortex after each 
added ingredient. 

10 μL 500 mM Tris–HCl stock solution, pH 8.5. 

10 μL 120 mM SDC (sodium deoxycholate) stock solution. 

10 μL 120 mM SLS (sodium lauroyl sarcosinate) stock 
solution. 

5 μL 200 mM TCEP (Tris(2-carboxyethyl)phosphine hydro-
chloride) stock solution. 

10 μL 300 mM CAA (chloroacetamide) stock solution 

9. 50 mM TEAB (triethylammonium bicarbonate). To prepare 
10 mL of 50 mM TEAB, dilute 500 μL 1 M TEAB stock and 
bring to a final volume of 10 mL by adding ultrapure water. 

10. Bicinchoninic acid (BCA) protein assay kit (Life Technologies, 
Millipore-Sigma). 

11. Proteomics grade trypsin (Millipore-Sigma, Promega). 

12. Lys-C—lysyl endopeptidase (Wako Chemicals USA). 

13. Acetonitrile. 

14. Ethyl acetate. 

15. Trifluoroacetic acid (TFA). 

16. C18 loading solution (0.1% TFA, 3% acetonitrile in water). 

17. Loading solution can be stored at room temperature for up to 
6 months. 

18. C18 elution solution (0.1% TFA, 50% acetonitrile in water). 

19. Loading solution can be stored at room temperature for up to 
6 months. 

20. LC-MS loading solution (0.05% TFA, 3% acetonitrile or 0.1% 
formic acid, 3% acetonitrile in water). 

21. 1.7 mL and 0.6 mL nonstick microfuge tubes. 

22. Centrifuge capable of 16,000 × g speed. 

23. Thermal shaker capable of reaching 95 °C.
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24. Microplate reader for visible spectrum range (BioTek, Fisher 
Scientific). 

25. Sep-Pak C18 column (Waters) or Top-Tip C18 tips (GlyGen). 

26. Centrifugal vacuum concentrator (Labconco). 

27. Magnetic separator rack (Promega, VWR). 

28. Anhydrous acetonitrile (ACN, Thermo Fisher Scientific). 

29. Perseus or MSStats software. 

30. Optional: Tandem Mass Tag Reagent (Thermo Fisher 
Scientific). 

31. Optional: Q-Exactive HF-X mass spectrometer (Thermo 
Fisher Scientific). 

32. Optional: Ultracentrifuge capable of 100,000 × g speed. 

3 Methods 

3.1 Enrichment of 

Extracellular Vesicles 

(EVs) 

1. Thaw the EV-containing plasma sample of interest (Note 2. 
We found that the minimum volume necessary for successful 
EV proteome analysis starts at 5–10 μL of plasma or serum. If 
possible, larger volumes of samples should be used. Alternative 
approach: If DIA analysis is going to be performed, an addi-
tional minimum of 3 μL per sample is needed for the GPF DIA 
library generation. The GPF DIA library sample needs to be 
combined as a sample pool to proceed to the next step). 

2. Centrifuge plasma samples at 2500 × g for 10 min at room 
temperature and carefully collect the supernatant. This step is 
essential to remove platelets and apoptotic bodies from the 
plasma sample. 

3. Dilute the supernatant (cleared plasma) 20-fold with the 
EVtrap plasma dilution buffer. 

4. Add the EVtrap magnetic beads to the diluted supernatant 
(4 μL beads per 10 μL of original plasma) and incubate end-
over-end for 30 min to 1 h. 

5. Use a magnetic separator to separate the beads and remove the 
solution. The EVs will be bound to the EVtrap magnetic beads. 

6. Wash the beads with the EVtrap plasma dilution buffer by 
vortexing the beads for 3–5 s. Then remove the wash solution 
using a magnetic separator. 

7. Wash the beads with 1XPBS by vortexing the beads for 3–5 s.  
Then remove the wash solution using a magnetic separator. 

8. Add 100–400 μL of EVtrap elution solution (200 mM TEA in 
water) to the beads (the elution volume should be enough to 
fully resuspend the beads and allow for efficient interaction, at 
least 3–5× original beads volume). Incubate for 10 min by 
vigorous shaking.
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9. Collect the eluted sample (contains EVs) and dry the eluted 
sample completely in a vacuum centrifuge. It helps to freeze the 
eluted sample at -80 °C for 5–10 min before drying (Note 3. 
Ultracentrifugation is an alternative method for EVs isolation. 
Take the centrifuge pre-cleared plasma from step 2 and centri-
fuge at 100,000 × g for 2 h at 4 °C. Remove and discard 
supernatant without disturbing the EV pellet. Add 1 mL of 
cold 1XPBS and to wash the EV pellet. Centrifuge the sample 
again at 100,000 × g for 2 h at 4 °C. Remove and discard the 
supernatant and use the pellet for EV lysis, as detailed in 
Subheading 3.2). 

3.2 EV Lysis 1. Prepare fresh PTS lysis solution (Note 4. 100 μL of this solu-
tion per sample is enough for most EV samples). 

2. Add the appropriate volume of lysis solution (e.g., 100 μL) to 
the EV pellet and resuspend the pellet by vortexing for several 
seconds. 

3. Incubate at 95 °C for 5 min in the dark to lyse the EVs. 

4. Cool the sample to room temperature and dilute it fivefold 
with fresh 50 mM TEAB or 50 mM ammonium bicarbonate 
(ensure pH is ~7.8–8.2 by using pH paper). 

5. Prepare protein concentration standards following the BCA 
protein assay kit’s instructions. 

6. For each sample prepared in steps 1–4, prepare one nonstick 
microfuge tube to test the protein concentration, plus an extra 
tube for the blank sample. 

7. Add 10 μL of each sample to the clean 0.6 mL tube. Also, add 
10 μL of the PTS lysis solution diluted fivefold with 50 mM 
TEAB to the blank tube. 

8. Prepare the protein concentration assay solution by mixing 
1.25 mL of BCA assay reagent A with 25 μL of BCA assay 
reagent B (50:1 mix). 

9. Add 200 μL of the BCA assay mix from step 8 into each 
concentration assay sample and blank tube. Vortex the samples. 

10. Put all the assay tubes in a 37 °C water bath or a shaker for 
30 min. 

11. Transfer 200 μL of each protein concentration standards assay 
and samples into a microplate. Measure protein concentration 
of the EV lysate using the microplate reader at 562 nm. Sub-
tract the reading from the blank tube and compare it to stan-
dards to calculate the lysate concentration.
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3.3 Protein Digestion 

and Surfactant 

Removal 

1. Add the appropriate amount of Lys-C (as suggested by the 
manufacturer) to the diluted sample and incubate at 37 °C 
for 3 h. 

2. Add trypsin into the sample at a 1:50 ratio of trypsin to protein 
w/w (e.g., 1 μg trypsin per 50 μg protein to be digested). 
Digest overnight at 37 °C (best to digest 12–16 h). 

3. Acidify the sample with 10% TFA to pH <3 (e.g., ~1% final 
TFA concentration) and vortex the sample. 

4. Add equal parts of ethyl acetate according to the sample vol-
ume, and shake the sample vigorously for 2 min. Then spin 
down the sample at max speed (~16,000 × g) for 3 min. 

5. Carefully pipette out the organic phase on top and discard it 
(Note 5. Ensure not to disturb the intermediate, which con-
tains a portion of the peptides). 

6. Dry the sample completely using a centrifugal vacuum concen-
trator to remove any remaining organic solvent. 

3.4 Peptide 

Desalting 

1. The sample can be desalted with a disposable Sep-Pak C18 
column (Waters) or a disposable Top-Tip C18 tip (GlyGen). 

2. Condition the column or the tip with one column volume of 
0.1% TFA in 80% acetonitrile, followed by two volumes of 0.1% 
TFA in 3% acetonitrile. All conditioning steps can be done 
quickly by pushing the solution through the column using a 
pipette bulb or a tip. 

3. Load the acidified sample onto the column/tip with a slow drip 
(see manufacturer’s instructions) by letting gravity load the 
sample or by slow spin down in a centrifuge. 

4. Wash column/tip thrice with 0.1% TFA in 3% acetonitrile each 
time. This step should be done quickly by pushing the solution 
through. 

5. Elute the sample with one column volume of 0.1% TFA in 50% 
acetonitrile into a 1.7 mL nonstick microfuge tube. Do this 
step with a slow drip or low-speed centrifugation and collect 
the eluent. 

6. Dry the sample completely using a centrifugal vacuum concen-
trator before proteome analysis (Note 6. To dry the sample 
faster, freeze the eluted samples at -80 °C for 5–10 min, and 
then place the sample in the centrifugal vacuum. Alternatively, 
the sample can be dried by using a lyophilizer). 

3.5 Tandem Mass 

Tag (TMT) Labeling 

1. Dissolve TMT reagents in anhydrous acetonitrile according to 
the manufacturer’s instructions (e.g., dissolve 800 μg of label-
ing reagent in 41 μL of anhydrous acetonitrile).
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2. To the dry desalted samples, resuspend in 25 μL in 50 m  
TEAB and corresponding 50 μg of TMT reagent (Note 7. 
Apply the first channel of reporter ion at m/z 126 to the 
experimental control. The other channels can be occupied by 
experimental samples, e.g., samples corresponding to different 
individuals or different time points). 

3. Incubate samples for 1 h at 25 °C. After incubation, quench the 
reaction by adding hydroxylamine and incubating for 15 min at 
25 °C. 

4. Combine all samples in a nonstick microfuge tube. Dry the 
sample completely using a centrifugal vacuum. Then desalt the 
sample following the steps described above in Subheading 3.4. 

5. The desalted sample is ready for LC-MS analysis via data-
dependent acquisition (DDA) (optimal resuspension solution 
is 0.05% TFA in 3% acetonitrile or 0.1% formic acid in 3% 
acetonitrile). 

3.6 Alternative 

Approach: Mass Spec 

Analysis Via Data-

Independent 

Acquisition (DIA) 

1. The desalted sample is ready for LC-MS analysis (optimal 
resuspension solution is 0.05% TFA in 3% acetonitrile or 0.1% 
formic acid in 3% acetonitrile) running a linear 85-min gradient 
of 5–35% buffer B at a flow rate of 300 nL/min. 

2. A Q-Exactive HF-X mass spectrometer (Thermo Fisher Scien-
tific) was used for analysis. The mobile phase buffer consists of 
0.1% formic acid in HPLC grade water (buffer A) and an 
eluting buffer containing 0.1% formic acid in 80% (vol/vol) 
acetonitrile (buffer B). 

3. For each individual sample, utilize the mass spec in the data-
independent mode, in which a full-scan MS (polarity, positive; 
scan range 390 to 1010 m/z with the resolution of 60,000; 
automatic gain control target (AGC), 1E6, maximum injection 
time, 60 ms; spectrum data type, centroid) followed by 
MS/MS with 8.0 m/z staggered-isolation windows schemes 
(polarity, positive; 15,000 resolution; normalized collision 
energy, 27%; AGC, 1E6, maximum injection time, 20 ms; 
loop count, 75; spectrum data type, centroid). 

4. For the pooled sample, run the mass spec in the data-
independent mode using the same setting as above with modi-
fication at the MS1 scan ranges (n = 6), 395–505, 495–605, 
595–705, 695–805, 795–905, and 895–1005 m/z followed 
by MS/MS with 4 m/z staggered-isolation windows 
schemes [11]. 

5. Convert all RAW files into HTRMS files and enable MS2 
demultiplexing using the HTRMS Converter for a faster Spec-
tronaut search (Biognosys, v15, Switzerland) [21]. The effec-
tive isolation window is only 2 m/z after demultiplexing.
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6. Generate the GPF spectra library from the pooled sample 
(n = 6) using Spectronaut Pulsar search with a default setting. 
Set the iRT reference strategy to the empirical iRT database 
with deep learning-assisted iRT regression as a backup. 

7. Search the DIA data using the direct DIA or the GPF spectral 
library in Spectronaut (Biognosys) using a default setting. 

8. Perform statistical analysis in Perseus [16] or MSStats 
software [17]. 

4 Additional Notes 

1. There might not be a visible pellet if performing ultracentrifu-
gation as an alternative to EVtrap for EV isolation. For this 
reason, leave at least 20–30 μL of solution from the bottom 
fraction when removing the supernatant. 

2. PTS lysis solution might appear cloudy after the addition of 
TCEP. This seems to be expected; therefore, after adding 
TCEP vortexed solution immediately, the sample will become 
clear again. 

3. To determine EV protein concentration accurately, it is essen-
tial to account for any interference from PTS components on 
the BSA assay. Use PTS lysis solution diluted fivefold with 
50 mM TEAB as a blank and prepare protein concentration 
standards using diluted PTS (to mimic EV sample matrix). 
Also, to reduce interference of the sample, dilute the sample 
fivefold with 50 mM TEAB before the BCA assay. 

4. After removing the ethyl acetate-based surfactant (see Subhead-
ing 3.3, step 6), it is not necessary to dry the sample; however, 
removing at least 80% of the volume guarantees a good sample 
recovery after the desalting step. 

5. To improve digestion efficiency and higher protein/peptide 
identification number, use sequential digestion using Lys-C 
and trypsin. 

6. Only proteomics-grade trypsin should be used for all proteo-
mics experiments since it does not undergo autolytic activity 
(self-digestion) and has greater proteolytic specificity. There-
fore, using lower-grade trypsin can be ineffective for proteomic 
studies. 

7. If performing DIA workflow, direct DIA is an alternative strat-
egy to GPF-DIA that does not require the preparation and 
processing of pooled sample for building an experimental-
specific library, significantly reducing the instrument analysis 
time. For direct DIA analysis, mass spectrometer parameters 
can be set as described [19], full-scan MS (polarity, positive;
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scan range 390 to 1010 m/z with the resolution of 60,000; 
automatic gain control target (AGC), 1E6, maximum injection 
time, 60 ms; spectrum data type, centroid), followed by 
MS/MS with 8.0 m/z staggered-isolation windows schemes 
(polarity, positive; 15,000 resolution; normalized collision 
energy, 27%; AGC, 1E6, maximum injection time, 20 ms; 
loop count, 75; spectrum data type, centroid). 

8. For DIA data analysis, there is multiple software available, 
including Spectronaut [21], which you would have to pur-
chase, or MaxDIA [20], which is free, among others. 
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Chapter 15 

Discovery of a Hidden Proinflammatory Signaling Proteome 
Using a Large-Scale, Targeted Antibody Microarray Platform 

Catherine Jozwik, Ofer Eidelman, and Meera Srivastava 

Abstract 

Dynamic post-translational processes regulate protein expression in eukaryotic cells. However, the pro-
cesses are difficult to assess on a proteomic scale because protein levels actually reflect the sum of individual 
biosynthesis and degradation rates. These rates are presently hidden from the conventional proteomic 
technologies. We present here a novel and dynamic, antibody microarray-based time-resolved approach to 
simultaneously measure not only the total protein changes but also the rates of biosynthesis of low 
abundance proteins in the proteome of lung epithelial cells. In this chapter, we describe the feasibility of 
this technique by investigating the complete proteomic kinetics of 507 low abundance proteins in cultured 
cystic fibrosis (CF) lung epithelial cells using 35 [S] methionine or 32 [P] and the consequences of repair by 
gene therapy with [wildtype] CFTR. This novel antibody microarray-based technology identifies relevant, 
hidden proteins whose regulation by the CF genotype would never have been detected by simple measure-
ments of total proteomic masses. 

Key words Proteomics, Antibody microarray, Antibodies, Epithelial cells, Biomarkers, Bioinformatics 

1 Introduction 

In eukaryotic cells, there is a profound disconnect between geno-
mic and proteomic information when samples are collected at one 
time point. In yeast, Gygi et al. [1] were among the first to docu-
ment the lack of sufficient correlation between quantitative mRNA 
data and cognate protein expression. In a study on gal mutants in 
yeast, the overlap in mRNA and protein expression for hundreds of 
identified genes and proteins is only 10–15% [2]. Greenbaum et al. 
[3] found considerable overlap between categories of mRNA and 
proteins in yeast, but not for specific genes. This disparity is also 
found in mammalian systems. For example, in a myeloid cell sys-
tem, Lian et al. [4] report that at single time points, mRNA and 
cognate proteins are not well correlated. Even in human platelets, 
which as anucleate cells have mRNA and protein synthetic machin-
ery in the same compartment, there is almost no correlation
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between the order of abundance for messages and cognate proteins 
[5]. Our own experience with CF lung epithelial cells is consistent 
with these general conclusions. The simplest interpretation of these 
data is that the regulation of protein expression in eukaryotic cells is 
to a large extent post-translational. We therefore need to have an 
analytic system that is sufficiently sensitive and flexible to permit 
identification of changes in post-translational regulation of proteins 
on a massively parallel scale.
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There are a number of useful methods available to detect the 
relative abundance of different proteins in two samples. For high 
abundance proteins, conventional 2-D gels can be stained with 
either silver or a fluorescent dye such as Sypro-Ruby and compared 
side-by-side. Silver has a low dynamic range and needs 108 mole-
cules in a spot for detection. A variant is the DIGE (dye-in-gel 
electrophoresis) method in which samples from the two conditions 
are labeled with different fluorescent dyes and combined for analy-
sis in a single 2-D gel [6]. These dyes are only somewhat more 
sensitive than Sypro-Ruby or Silver but have a better dynamic 
range. Another method is the use of stable isotope dilution with 
either 15 [N] or 13 [C], in which cells are labeled to equilibrium and 
mixed together for 2-D gel separation and analysis by mass spec-
trometry [7]. Sensitivity is a problem here, too, since a “rule of 
thumb” is that to be detectable by mass spectrometry, the protein 
has to be seen by silver. Recently, the proteomes of both Caenor-
habditis elegans and Drosophila melanogaster have been quantita-
tively compared in terms of relative abundance using metabolic 
incorporation of stable isotopes [8]. Finally, cells from two different 
conditions have been differentially labeled on SH groups with a 
reagent containing either deuterium or hydrogen atoms and then 
mixed together for isolation and measurement in the mass spec-
trometer [1]. This elegant method, called ICAT (isotope-coded 
affinity tag), permits one to measure relative total amounts of a 
given protein in complex mixtures, either directly as peptides in the 
mass spectrometer, or with intervening 2-D gel or free flow elec-
trophoreses steps. 

As alluded to above, a limitation to these methods, as conven-
tionally practiced, is that one can learn only ratios rather than 
absolute amounts of a given protein in a sample. Furthermore, 
detection is limited by the sensitivity and resolution of the mass 
spectrometer. Many low abundance proteins such as transcription 
factors, ion channels, and signaling molecules were beyond the 
limit of detection. The incorporation of a radiolabel, with a 
known specific activity, as described by the Pulse-Chase Proteomics 
paradigm, can be a robust solution to these limitations if the system 
can be labeled to equilibrium. The dynamic range of 35 [S], for 
example, is five logs and is substantially more sensitive than avail-
able mass labels. However, to detect whether a given protein in a



proteome is synthesized or degraded at a different rate, simple mass 
spectrometry will not suffice. It is clear that some kind of “pulse-
chase” method is needed. 
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The new antibody microarray technology is the key enabling 
platform for Pulse-Chase Proteomic analysis of low abundance 
signaling pathway proteins. This technology is intrinsically robust 
and dependable, since it is built on years of experience with 
antibody-based detection systems. Antibody microarrays, consist-
ing of hundreds or thousands of antibodies on one slide, simply 
build up this mature technology into a massively parallel system. 
For detection, the technique employs the same optical instrumen-
tation originally designed for detection of genomic microarrays [9– 
11]. The arrays have actually been used for a variety of purposes. 
One of the first uses was for high-throughput screening of phage 
display libraries [12]. Antibody microarrays have also been used to 
capture intact leukemia cells expressing specific antigens [13]. The 
whole proteome from yeast has been analyzed on an antibody 
microarray, with special attention paid to signal validation 
[14]. Nielson et al. [15] used antibody microarrays to profile the 
signaling pathway driven by the ErbB receptor tyrosine kinase. This 
particular application is of particular relevance to our intention to 
study the NFκB signaling pathway in CF cells. 

To subject this new technology to a vigorous and biologically 
relevant test, we have examined the global kinetics of protein 
expression following gene therapy of cystic fibrosis (CF) lung epi-
thelial cells with [wildtype] CFTR. This strategy allows for the 
rapid, sensitive, and specific identification and quantification of 
total amounts of all 509 proteins (antibody microarrays commer-
cially available from Clontech (BD Biosystems)) recognized by the 
arrayed antibodies and for the simultaneous measurement of cog-
nate rates of biosynthesis and degradation. We have also developed 
an internal standard-based approach to quantitation, which has 
reduced the average error for most proteins to less than 5%. The 
use of these microarrays for binding radiolabeled proteins has not 
been published previously and represents an important technical 
advance on our part. The key technical problem has been how to 
ratio the radiolabel measurement to the mass of the cognate pro-
tein. Our solution has been to label the cold protein with either 
Cy3 or Cy5 (two colors) and to label the radiolabeled protein with 
Cy2. This step yielded two more colors, one imaging the radiolabel 
on a phosphorimager and the other using Cy2 as a reference mass. 
By combining both experiments on two slides, and imaging in four 
colors, the data we get consists of the ratio of antigens in two 
conditions and the ratio of radiolabeled protein to cognate mass 
in the two conditions. 

We have recently shown that theΔF508-mutation in the CFTR 
gene, the principal cause of cystic fibrosis (CF), has profound 
effects on the rates of 35 [S]methionine-based biosynthesis of



ca. 15% of 194 proteins in the high abundance proteome of CF 
lung epithelial cells using 2-D gel electrophoresis and/or mass 
spectrometry [16]. Importantly, we found that the static expression 
levels were unaffected for most of these biosynthetically distin-
guished proteins [16]. We concluded from this initial study that a 
much larger-scale proteomic analysis, extending to the low abun-
dance signaling proteome, might lead to a functionally relevant, 
comprehensive disease-specific CF proteome. Reaching the low 
abundance signaling proteome is of particular importance in CF 
because the disease phenotype includes an intrinsically hyperacti-
vated TNFα/NFκB signaling pathway in the CF lung. However, 
extending the analysis to the low abundance signaling proteome, 
involving many hundreds of proteins associated with inflammation, 
clearly required that we develop and apply a much more sensitive, 
quantitative, and larger scale proteomic strategy. Our approach to 
this solution has been to perform pulse-chase experiments with 
35 [S] methionine or 32 [P] and to use an antibody microarray plat-
form to interrogate the system [8–13, 17, 18]. This strategy allows 
for the rapid, sensitive, and specific identification and quantification 
of total amounts of all proteins recognized by the arrayed antibo-
dies and for the simultaneous measurement of cognate rates of 
biosynthesis and degradation. 
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2 Materials 

2.1 Radioactively 

Labeled Cultured Cells 

1. 100 mm tissue culture dishes. 

2. Appropriate tissue culture medium (complete, methionine-
free, or phosphate-free). 

3. In vitro translation grade 35 [S]-methionine, 1000 Ci/mmol or 
[32 P]-orthophosphoric acid in water. 

4. Phosphate-buffered saline. 

5. Cell scrapers. 

6. Lysis buffer (7 M urea, 4% CHAPS, 30 mM Tris-Cl, pH 8.5). A 
protease inhibitor like complete Protease Inhibitor (Roche 
Applied Science/MilliporeSigma, Burlington, MA) should be 
included (see Notes 4.1.1–4.1.3). 

2.2 Protein Labeling 1. Cy2, Cy3, and Cy5 Monoreactive Dye Packs (Cytiva, Millipor-
eSigma, Burlington, MA). 

2. High-quality anhydrous dimethylformamide (MilliporeSigma, 
Burlington, MA). 

3. 10 mM L-lysine (MilliporeSigma, Burlington, MA). 

4. BCA protein assay (Thermo Fisher Scientific, Waltham, MA).
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5. Pierce Dextran Desalting Spin Columns (Thermo Fisher Sci-
entific, Waltham, MA). 

6. Internal control extract (see Notes 4.2.1–4.2.5). 

2.3 Antibody 

Microarray 

1. Ab 500 Microarray (Takara Bio USA, Mountain View, CA) or 
other antibody microarray (see Note 4.3.1). 

2. Ab Microarray Express Buffer Kit (Takara Bio USA, Mountain 
View, CA). 

3. SecureSeal Incubation Chambers (Grace Bio-Labs, Bend, OR; 
the SA200 just fit the Clontech arrays, if you are unsure about 
your ability to center the incubation chamber over the array, 
use the larger SA500). 

4. Fluorescent scanner with Cy2, Cy3, and Cy5 filter sets (Axon 
GenePix 4000B; Molecular Devices, Sunnyvale, CA). 

5. Phosphorimager and phosphorimaging cassettes. 

2.4 Bioinformatic 

Analysis of Antibody 

Microarrays 

1. Fluorescent scanner analysis program (GenePix 6.0; Molecular 
Devices, Sunnyvale, CA). 

2. Microsoft Excel or other spreadsheet program. 

3 Methods 

3.1 Radioactive 

Labeling 

1. Plate cells in 100 mm tissue culture dishes and grow to 80% 
confluency in complete culture medium. 

3.1.1 35 [S]-Methionine 

Radioactive Labeling 

2. Aspirate medium and wash with 10 mL methionine-free cul-
ture medium. 

3. Aspirate wash medium and add 3 mL methionine-free medium 
to dishes. 

4. Incubate in CO2 incubator for 30 min. 

5. Add 200 μCi in vitro translation grade 35 [S]-methionine, mix. 

6. Incubate in CO2 incubator for 1 h, swirling dish to mix at after 
30 min. 

7. Aspirate radioactive medium. Wash with 10 mL complete cul-
ture medium. 

8. Aspirate wash medium and add 10 mL complete medium. 
Incubate for desired “chase” times, processing samples as 
below at desired intervals (see Note 4.1.1). 

9. Aspirate medium and wash with 10 mL PBS. Aspirate and 
repeat PBS wash. Aspirate final wash. 

10. Add 400 μL lysis buffer. Scrape cells with cell scraper and 
transfer lysate to a microcentrifuge tube (see Note 4.1.2).
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11. Incubate at 4 °C with end-over-end mixing for 10 min. 

12. If lysate is viscous, sonicate in 5 s bursts with small tip until 
viscosity is eliminated. 

13. Centrifuge lysates at 12,000 × g for 10 min. Transfer superna-
tant to new microcentrifuge tube. 

14. Measure protein concentration using the protein assay of 
choice (see Note 4.1.3). 

15. Store lysates at -80 °C. 

3.1.2 32 [P]-

Orthophosphate 

Radioactive Labeling 

1. Plate cells in 100 mm tissue culture dishes and grow to 80% 
confluency in complete culture medium. 

2. Aspirate medium and wash with 10 mL phosphate-free culture 
medium. 

3. Aspirate wash medium and add 3 mL phosphate-free medium 
to dishes. 

4. Incubate in CO2 incubator for 30 min. 

5. Add 750 μCi 32 [P]-orthophosphate, mix. 

6. Incubate in CO2 incubator for 15–90 min, swirling dish to mix 
at 30 min intervals. Process plates as below at desired times (see 
Note 4.1.1). 

7. Aspirate medium. Wash with 10 mL PBS. Aspirate and repeat 
PBS wash. Aspirate final wash solution. 

8. Add 400 μL lysis buffer (see Note 4.1.2). Scrape cells with cell 
scraper and transfer lysate to a microcentrifuge tube. 

9. Incubate at 4 °C with end-over-end mixing for 10 min. 

10. If lysate is viscous, sonicate in 5 s bursts with small tip until 
viscosity is eliminated. 

11. Centrifuge lysates at 12,000 × g for 10 min. Transfer superna-
tant to new microcentrifuge tube. 

12. Measure protein concentration using the protein assay of 
choice (see Note 4.1.3). 

13. Store lysates at -80 °C. 

3.2 Protein Labeling 1. Reconstitute the Cy3 and Cy5 dyes by adding anhydrous DMF 
according to manufacturer’s instructions. 

2. Confirm that cell lysate pH is ~8.5 by spotting a small amount 
on pH paper. If the pH is not 8.5, adjust the pH of the sample 
(see Note 4.2.1). 

3. Add 100 μg each unlabeled experimental sample (or pooled 
sample; see Note 4.2.2) to microcentrifuge tubes. 

4. Add 100 μg each radioactively labeled sample (or pooled sam-
ple; see Note 4.2.2) to microcentrifuge tubes.
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5. Add enough of the internal standard extract for all arrays 
(100 μg per array) to a microcentrifuge tube (see Notes 4.2.3 
and 4.2.4). 

6. Add 800 pmol Cy3/100 μg of protein to the internal standard 
tube, 800 pmol Cy5/100 μg to each experimental sample tube, 
and 800 pmol Cy2/100 μg to each radiolabeled sample tube. 

7. Mix vigorously by pipetting. 

8. Briefly spin the sample in a microcentrifuge and incubate on ice 
for 30 min, in the dark. 

9. Add 2 μL 10 mM lysine/100 μg protein to each tube to stop 
reaction. 

10. Mix vigorously by pipetting. Briefly spin the sample in a 
microcentrifuge. 

11. Incubate on ice for 10 min, in the dark. 

12. Remove unbound dye using a Protein Desalting Spin Column. 

(a) Prepare needed amount of 1× desalting buffer. 

(b) Centrifuge columns (attached to 1.5 mL microcentrifuge 
tubes) at 1500 × g for 2 min to remove storage buffer. 

(c) Add 400 μL 1× desalting buffer to each column and 
centrifuge at 1500 × g for 2 min. Discard flow-through. 

(d) Repeat step C. 

(e) Attach a clean microcentrifuge tube to each column. 

(f) Apply the labeled protein extract to the column. Allow 
sample to penetrate the column. 

(g) Centrifuge at 1500 × g for 2 min. 

(h) Detach and store the collection tubes on ice. 

13. Measure the protein concentration using the BCA assay. Sub-
tract the absorption of Cy2, Cy3, and Cy5 dyes at 562 nm by 
preparing a tube that contains the labeled sample in place of the 
BCA reagent. Calculate ΔOD562 = [OD562{protein sample} – 
OD562{protein blank}]. Use this value as the blank when calculat-
ing the protein concentration. 

14. Estimate the average number of dye molecules covalently 
attached to each protein. 

(a) Measure Cy2, Cy3, and Cy5 absorbance at 510, 552, and 
650 nm, respectively. Use the Cy2, Cy3, and Cy5 molar 
extinction coefficients (Cy2 λ510 = 150,000 M-1 cm-1 ; 
Cy3 λ552 = 150,000 M-1 cm-1 ; Cy5 λ650 = 250,000 M-

1 cm-1 ) to calculate the micromolar concentration of 
Cy2, Cy3, and Cy5. 

(b) Determine micromolar concentration of protein. Assume 
an average molecular weight in extracts of 60 kDa.
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(c) Calculate the average number of dye molecules per pro-
tein. The dye/protein ratio should be less than 6, ideally 
between 2 and 4 (see Note 4.2.5). 

3.3 Antibody 

Microarray 

1. Set up incubation tray (one four-chambered tray per two arrays 
with an incubation and wash chamber for each array). Add 
5 mL incubation buffer to each incubation chamber. 

2. Combine each labeled sample with the appropriate amount of 
labeled internal standard in a microcentrifuge tube. 

3. Transfer labeled protein from the tubes to the appropriate 
incubation chamber. 

4. Incubate the tray at room temperature for 10 min with gentle 
rocking. 

5. Decant storage buffer from antibody microarrays contained in 
green-capped shipping/storage tubes. 

6. Add 30 mL stock incubation buffer. Invert tube 10 times. 

7. Decant the stock incubation buffer. Add 20 mL incubation 
buffer. Invert tube 10 times and decant buffer. 

8. Record slide lot numbers and assign arrays to samples. 

9. Remove arrays from storage tube and place, face-up, in the 
appropriate incubation chamber that contains the labeled sam-
ple and internal standard. 

10. Incubate the arrays at room temperature for 40 min with gentle 
rocking. Every 10 min, pry up one end of the slide with a 
pipette tip and rock the tray gently. 

11. Add 5 mL Wash Buffer A to each wash chamber. Transfer slides 
to wash chambers. 

12. Incubate the tray at room temperature for 5 min with gentle 
rocking. 

13. Decant wash buffer and add 5 mL Wash Buffer B. 

14. Incubate the tray at room temperature for 5 min with gentle 
rocking. 

15. Decant wash buffer and add 5 mL Wash Buffer C. 

16. Incubate the tray at room temperature for 5 min with gentle 
rocking. 

17. Transfer each slide (slide label facing down) to a 50 mL conical 
tube filled with dH2O. 

18. Decant dH2O. 

19. Transfer slides to clean green-capped vial supplied with arrays. 

20. Centrifuge slides at 1000 × g for 5 min at room temperature. 

21. Remove slides from vial and protect from light until scanning.



Hidden Signaling Proteome Using Antibody Microarrays 227

22. Scan slides within 24 h of drying. GenePix 4000B recom-
mended settings: Cy3 532 nm, PMT = 550 V, laser 
power = 33%; Cy5 635 nm, PMT = 670 V, laser power = 33%. 
Use BSA control spots to adjust scanner settings. BSA should 
fluoresce at 2500–30,000 fluorescence units (FU). If the con-
trol spots are greater than 50,000 FU, adjust PMT and laser 
power to obtain a signal within 2500–30,000 FU. 

23. Use phosphorimager and cassettes to detect radioactive signals 
after scanning for CyDye signal (see Note 4.3.1). 

3.4 Bioinformatic 

Analysis of Antibody 

Microarray 

1. Use array analysis software program to determine the intensity 
of each spot. 

2. Download the Ab500 Microarray workbook (an Excel file) that 
corresponds to the microarray lot number from the “Online 
Tools” at www.clontech.com. Please note that this number 
differs from the lot number of the kit; the slide lot number is 
found on the label affixed to the slide. This workbook contains 
the names and coordinates for the antibodies on the microarray 
(see Note 4.4.1). 

3. Cut and paste the fluorescence data intensity for each antibody 
into the workbook. 

4. Flag all spots with a signal-to-noise ratio (SNR) <2 or those 
that are below background (see Notes 4.4.2 and 4.4.3). 

5. Determine a cohort of good spots (i.e., those spots not flagged 
in all of the arrays to be compared; see Note 4.4.4). 

6. Calculate the median for the cohort on each array. 

7. Normalize all spots on the array regardless of cohort inclusion 
by dividing the spot intensity by the cohort median for the 
respective array. 

8. Correct for inter-array variability by dividing the Cy5 (experi-
mental samples) values obtained for each spot in step 6 by the 
Cy3 (internal standard) values obtained in step 6. 

9. Calculate the average ratio for each antibody and experimental 
group using the ratios obtained in step 6. 

10. Use these average ratios for each antibody to identify differen-
tially expressed proteins in the experimental groups. 

11. Calculate specific activity of radioactively labeled spots by 
dividing 35 [S]methionine or 32 P counts by Cy2 levels. Specific 
activity corresponds to cpm/mg protein (see Note 4.4). 

12. Calculate synthesis rates for each spot as 35 [S] methionine 
counts/unit time at the end of the pulse. Calculate degradation 
rates in units of h-1 as the logarithmic slope of the time 
dependence of the specific activity at each given time divided

http://www.clontech.com


228 Catherine Jozwik et al.

Comparison of Protein Totals 

L
o

g
 P

ro
te

in
 T

o
ta

l i
n

 IB
3-

1 

Log Protein Total in IB3-S9 

0.6 

0.4 

0.2

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2
-1.2 -1.0 

y = 1.015x - 0.005 
R2 = 0.98

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 

0.0 

0.6 

Fig. 1 Comparison of protein totals in IB3-1 CF lung epithelial cells and in the 
wt-CFTR corrected IB3-S9 cells. Values on both axes are relative to the respec-
tive median. Each spot depicts the average ± SEM of 6 fluorescent determina-
tions for each one of the cells. The red line represents the linear regression of 
the data 

by the specific activity at the end of the pulse (see Note 4.4.3 
and Figs. 1 and 2). 

13. Test for statistical significance (e.g., Student’s t-test, SAM, etc.; 
see Note 4.4.4). 

14. Identify differentially expressed/modified proteins. 

15. Correlate differentially expressed/modified proteins with 
affected pathways and cellular processes using gene ontology 
and pathway analysis programs (see Note 4.4.5). 

16. Validate differentially expressed proteins. 

4 Notes 

4.1 Radioactive 

Labeling 

4.1.1. “Chase” times for metabolic labeling using 35 [S] can and 
should be tailored to the expected half-life of the proteins 
recognized by the microarray. We typically “pulse” with 
35 [S] for 1–12 h, taking samples every 3 h. Likewise, 
“pulse” times should be tailored to fit expected modifica-
tion time of the pathways of interest. We typically “pulse” 
with [32 P] for 15–90 min, taking samples at 15, 30, 60, and 
90 min.
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Fig. 2 Kinetics of expressed protein and of labeled protein for two example proteins on the microarray. Top: 
Total protein levels for the two example proteins, cyclin D2 (a), which shows little variability during the 9 h 
chase; and caspase 7 (b), which shows a pronounced decrease. Error bars are standard errors of the mean for 
6 determinations. Total and labeled protein levels were measured in CF lung epithelial line IB3-1 (blue filled 
symbols) and in the wt-CFTR corrected IB3-S9 cells (red open symbols). Bottom: Protein degradation rates 
were determined for cyclin D2 (c) and caspase 7 (d) by following the time course of the remaining fractions of 
[35 S] methionine-labeled of the respective protein. Data from duplicate spots are shown on logarithmic scale. 
Dotted lines depict linear regressions for each case 

4.1.2. Alternate lysis buffers may be used. However, it is impor-
tant to avoid primary amines and reducing agents in prepa-
ration of the samples as these can interfere with dye 
attachment. 

4.1.3. Ideally, lysates should be between 1 and 20 mg/mL but 
5–10 mg/mL is optimal. 

4.2 CyDye Labeling 4.2.1. Sample pH can be increased through the careful addition of 
lysis buffer (pH 9.5 instead of 8.5) or 50 mM NaOH. 

4.2.2. Experimental samples of the same type (controls, treated, 
etc.) may also be pooled to reduce the number of arrays 
needed.
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4.2.3. Antibody microarray results are usually given in terms of 
ratios between two samples (e.g., “experiment” and “con-
trol”). However, given the printing and calibration issues 
inherent with antibody microarrays, this ratio’ing approach 
precludes statistically valid inter-array comparisons of the 
individual protein concentrations. We have developed a 
different strategy to control for inter-array variability. We 
use a benchmark mixture that is applied to every array as an 
internal standard; this corrects for any differences in anti-
body activities as well as printing imperfections. The 
amount of protein bound to each spot is determined rela-
tive to the respective protein in the internal standard. Since 
all samples in the study are compared to the same internal 
standard, this semi-quantitative approach permits the com-
parison of multiple samples. All data for the same antibody 
on multiple arrays can then be used to calculate the average 
and standard deviation for a given population (such as 
patients or control groups) in a parallel fashion. The com-
position of the internal standard is not important. Ideally, it 
would be a mixture of all proteins on the array at a known 
concentration. However, this is not practical, so the inter-
nal standard should consist of a protein sample that con-
tains all of the proteins represented on the microarray. We 
use the same combination of cell culture and tissue extracts 
for every array run in our laboratory. 

4.2.4. This tube should contain enough internal standard extract 
for all of the arrays. 

4.2.5. A ratio higher than 6 can interfere with antibody binding. 

4.3 Antibody 

Microarray 

4.3.1. Available antibody microarrays are constantly changing. 
Check out commercially available arrays on the web or 
recent review articles such as the recent review by Chen 
et al. [19] or consider printing your own. Use the micro-
array buffers recommended by the manufacturer. 

4.4 Bioinformatic 

Analysis 

4.4.1. This workbook also contains an analysis worksheet that 
identifies differentially expressed proteins using the con-
ventional approach using reciprocal CyDye labeling. In this 
approach, two samples are labeled with either Cy3 or Cy5 
and mixed together for multiplex binding to a given anti-
body feature on the microarray. If there is more Cy3- or 
Cy5-labeled protein in the mixed sample, the spot will be 
either green or red, respectively. If the samples are present 
in equal amounts, the mixture will show as yellow. How-
ever, because of protein-specific differences in quantum 
yields and labeling efficiencies for Cy 3 and Cy5, a parallel
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set of two samples must be labeled reciprocally with the 
opposite dye. The geometric average of the two relative 
levels of Cy3 and Cy5 occurring at a given feature under 
the two conditions are then averaged, and the ratio is then 
used to express the relative abundance of the given protein 
in the two conditions. This strategy, while logical on its 
face, yields data that is intrinsically noisy. This approach 
also carries with it the limitation that the data are always 
ratios. In addition to statistical issues with ratios, this also 
means that one cannot easily compare one assay with 
another assay performed the next day or the next year. 
This is especially critical when trying to establish statistical 
differences between patient and control groups in clinical 
samples where each patient and each control may be differ-
ent from the group as a whole. We believe that in using one 
dye for an internal standard, we circumvent the issues with 
ratios while also correcting for printing irregularities. 
Therefore, we only use the workbook to obtain the coor-
dinates/names for the antibodies on the array. A compli-
mentary approach, which we believe has significant 
advantages, is to treat each dye signal as an independent 
variable (rank order method). Rank order methods, either 
rank-sum or rank-product tests, are frequently used in 
clinical studies. 

4.4.2. GenePix calculates SNR, otherwise SNR ~ net counts/SD 
of the background. 

4.4.3. The simplest representation for the relationship between 
synthesis and degradation rates for a given protein “n” at  
any time T is as follows: 

Pn Tð Þ½ �= 
ZT 

0 

Sn-Dn � Pn tð Þf g � dt ð1Þ

where Sn is the rate of biosynthesis; Dn is the rate of 
degradation; and Pn(t) is the concentration of protein 
“n” at time t. If the total protein is changing over time, 
this equation becomes: 

d 
dt 

Pn Tð Þ½ �= Sn -Dn � Pn Tð Þ ð2Þ

However, if that protein’s concentration does not change 
over time, then: 

Sn =Dn � Pn ð3Þ
which implies that there should be a (protein-dependent) 
correlation between the measured synthesis rate and the 
degradation rate. Thus, the difference between the



synthesis rates in IB3-1 and IB3-S9 should be correlated 
with the respective difference in degradation rates. In par-
ticular, at least for those proteins for which the concentra-
tions in both cell types are the same (see Fig. 1), the sign of 
the difference in synthesis rate should be the same as the 
sign of the difference in degradation rate, so that such 
points should all be in either the first or third quadrants. 
Conversely, points in the second and fourth quadrants 
might arise from protein whose total mass change with 
time or which have different total mass in the two cell 
types. 
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4.4.4. Recently, it has become apparent that reliance on the clas-
sical t-test for determining significance of a difference is 
misleading when dealing with microarray data. The statis-
tical problem is associated with the need for the number of 
experimental replicates on the same order as the number of 
spots on the microarray. However, the individual microar-
rays are expensive, and it is experimentally impossible to do 
so many experiments in the first place. Tusher et al. [20], 
building on the concept of a false discovery rate, have 
suggested an alternative strategy in the statistical analysis 
of microarrays (SAM) algorithm. Their strategy has been to 
take data associated with each condition and to calculate 
statistical parameters based on many permutations of the 
data. The result is the ability to calculate the statistical 
validity of the difference based on a local false discovery 
rate (FDR) and an associated q-statistic. The q-value gives 
an estimate of the probability of falsely identifying a protein 
as “significant” within all the group of proteins that have q-
values lower than that for the protein in question. The local 
FDR gives a measure of the probability that a given feature 
is identified as significant by random chance. The apparent 
advantage of combining non-parametric inference from 
rank orders and the random permutation steps in the 
SAM algorithm have been interpreted as an example of 
“borrowed power,” because the resultant study seems to 
be more locally powered than might have been calculated 
from a the standard approach. 

4.4.5. There are many excellent online resources for gene ontol-
ogy analysis and the identification of functional protein 
classes. These include NAIAD DAVID (http://niaid.abcc. 
ncifcrf.gov/home.jsp) and NCI GOMiner (http://dis 
cover.nci.nih.gov/gominer/). Unfortunately, the best 
pathway analysis software must be purchased (Ingenuity, 
GeneGO).

http://niaid.abcc.ncifcrf.gov/home.jsp
http://niaid.abcc.ncifcrf.gov/home.jsp
http://discover.nci.nih.gov/gominer/
http://discover.nci.nih.gov/gominer/
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Chapter 16 

Multiplex Fluorescent Immunohistochemistry 
for Preservation of Tumor Microenvironment Architecture 
and Spatial Relationship of Cells in Tumor Tissues 

Jake J. McGue, Jacob J. Edwards, Brian D. Griffith, 
and Timothy L. Frankel 

Abstract 

The tumor microenvironment (TME), composed of immune cells, antigens, and local soluble factors, is 
integral to cancer development and progression. Traditional techniques such as immunohistochemistry, 
immunofluorescence, or flow cytometry limit the analysis of spatial data and cellular interactions within the 
TME, as they are restricted to colocalization of a small number of antigens or the loss of tissue architecture. 
Multiplex fluorescent immunohistochemistry (mfIHC) allows for detection of multiple antigens within a 
single tissue sample, providing a more comprehensive description of tissue composition and spatial inter-
actions within the TME. This technique utilizes antigen retrieval, application of primary and secondary 
antibodies, followed by a tyramide-based chemical reaction to covalently bind a fluorophore to an epitope 
of interest and, eventually, stripping of the antibodies. This allows for multiple rounds of antibody 
application without concern for species cross-reactivity, as well as signal amplification which abrogates the 
autofluorescence that frequently plagues analysis of fixed tissues. As such, mfIHC can be used to quantify 
multiple cellular populations and their interactions, in situ, unlocking key biologic data that was previously 
unavailable. This chapter provides an overview of the experimental design, staining, and imaging strategies 
using a manual technique in formalin-fixed paraffin-embedded tissue sections. 

Key words Immunofluorescence (IF), Multiplex fluorescent immunohistochemistry (mfIHC), Mul-
tispectral imaging, Spatial relationships in situ, Tumor microenvironment architecture, Cellular inter-
actions, Cellular engagement, Tumor microenvironment (TME), Tumor immunology, The AKOYA 
OPAL system 

1 Introduction 

The tumor microenvironment (TME) is composed of tumor cells 
and stroma, consisting of non-tumor cells and soluble factors such 
as cytokines and chemokines, all of which work to shape the biology 
of cancer. Each tumor has a unique immune signature, where the 
balance of proinflammatory and immunosuppressive signaling
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influences the overall immune state of the tumor [1]. This tumor 
immune microenvironment is integral in shaping tumor biology 
including progression, metastasis, and response to treatment [2–4].
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Prior techniques used to describe cells within the TME, includ-
ing immunohistochemistry (IHC), immunofluorescence (IF), and 
flow cytometry, have significant limitations with regard to assessing 
spatial cellular relationships. IHC, long considered the standard for 
diagnosis of tumor pathology, uses formalin-fixed paraffin-embed-
ded (FFPE) tissue sections stained typically with a single antibody, 
followed by horseradish peroxidase (HRP) bound secondary anti-
body and chemical reaction to identify an antigen within the visible 
spectrum [5]. Limitations of IHC include colocalization of only 
one or two antigens given significant overlap within the visible 
spectrum, low sensitivity for poorly antigenic targets and high 
inter-observer variability [5–8]. IF allows for better detection and 
colocalization of a wide variety of antigens due to its use of the 
non-visible spectrum and can identify more difficult to detect anti-
gens. However, as each antibody typically is attached to a single 
fluorophore, IF sensitivity is limited by tissue autofluorescence, as 
well as significant spectral overlap, cross species reactivity, and 
photobleaching [9]. Flow cytometry, often considered the gold 
standard for describing the immune microenvironment, involves 
processing fresh tissue into a single cell suspension with labeled 
fluorescent antibodies. Limitations of this technique include the 
need for significant compensation of signals and most importantly 
loss of tissue architecture and spatial information during processing 
[10, 11]. 

Multiplex fluorescent immunohistochemistry (mfIHC) is a 
technique that utilizes multispectral imaging analysis and signal 
amplification to allow for detection of multiple antigens in a single 
tissue sample while subtracting noisy autofluorescence. This 
approach allows for a comprehensive overview of tissue composi-
tion, subpopulation densities, and cellular interactions, as the mul-
tispectral image produced can identify multiple cellular populations 
and their spatial relationships, in situ [12]. During mfIHC, FFPE 
tissue is adhered to a charged slide and after antigen retrieval, 
undergoes staining with a primary antibody to the antigen of 
interest, followed by a secondary antibody with an HRP chemical 
tag, similar to traditional IHC. After each single round of staining, 
a tyramide-based chemical reaction covalently binds multiple fluor-
ophores to the antigen of interest amplifying the signal [7]. Subse-
quently, heating of the slide removes the previously applied primary 
and secondary antibody, leaving the fluorescent tag bound to the 
epitope, allowing for additional rounds of antibody application 
without concern for cross-reactivity [7, 13]. Panel design using 
multiple fluorophores with minimal spectral overlap limits the 
need for manual compensation. Additionally, the strength of 
antigen-specific fluorescence after fluorophore signal amplification



allows for subtraction of autofluorescence. Current mfIHC systems 
allow for analysis of up to eight antigens and a nuclear counterstain, 
and programs designed to analyze large data sets allow for assess-
ment of cell locations and interactions among multiple cellular 
phenotypes, providing crucial spatial context to cells in the TME 
[12, 14, 15]. However, mfIHC can be limited by considerable time 
needed for optimization and decreased specificity as overactive 
tyramide deposits may lead to off target staining [12]. Similarly, 
as multiple systems and protocols exist for mfIHC, variability in 
procedures can limit reproducibility [12, 16]. Herein is a detailed 
methodology of experimental design, staining, and imaging strate-
gies for mfIHC to aid analysis of spatial context of cellular interac-
tions using a manual technique for FFPE tissue using the AKOYA 
OPAL system. 
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2 Materials 

2.1 Wash Buffers 1. Tris-buffered saline (TBS;10×): 1.5 M NaCl, 0.1 M Tris-HCL, 
pH 7.4. 

2. 1× TBS containing 0.1% Tween-20 (TBST). 

2.2 Antigen Retrieval 1. AR6 buffer: prepare working 1× AR6 buffer from stock solu-
tion using deionized water. Store at room temperature (see 
Note 1). 

2. AR9 buffer: prepare working 1× AR9 buffer from stock solu-
tion using deionized water. Store at room temperature (see 
Note 1). 

2.3 Staining 

Reagents 

1. Primary antibody: Dilute primary antibodies in antibody dilu-
tant according to company IHC-P recommendations. Store at 
4 °C. 

2. 1× Opal polymer anti-Ms + Rb HRP secondary antibody. 

3. Opal fluorophore stocks (480, 520, 570, 620, 690, 780, TSA 
DIG): Reconstitute all Opal stocks except 780 by adding 75 μL 
DMSO to the lyophilized Opal fluorophores. Vortex and allow 
the lyophilizate to dissolve for 10 to 15 min at room tempera-
ture. Vortex again and centrifuge the Opal fluorophore stock at 
10 × g for 10 s at room temperature. Store in the dark at -20 ° 
C. Reconstitute 780 in the same way as described above instead 
using 300 μL of deionized water in place of DMSO. 

4. 4′,6-Diamidino-2-phenylindole (DAPI): Add 3 drops of DAPI 
to 1 mL of TBS. Vortex and store in the dark at 4 °C. 

5. Fluorophore dilutant. 

6. Antibody dilutant.
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2.4 Special 

Equipment 

1. Heat-resistant slide containers (10 total recommended). 

2. Plastic slide holder. 

3. Immunohistochemistry staining tray (humidified chamber). 

4. Micro hybridization oven. 

5. Microwave equipped with inverter technology. 

6. Vacuum with glass pipette attachment. 

3 Methods 

3.1 Slide Preparation 

and Antibody 

Optimization 

1. Prepare formalin-fixed, paraffin-embedded (FFPE) tissue onto 
charged slides 

(a) Cut blocks of FFPE tissue to 5 μm and adhere to charged 
slides (see Note 2). 

(b) Allow the slides to dry overnight at 37 °C. Keep the slides 
flat with the tissue side up. 

(c) Store the slides in a slide box at 4 °C until ready for use. 

2. Determine the optimal antibody concentrations for multiplex 
by conventional immunohistochemistry (IHC): 

(a) Perform the IHC on tissue with an abundance of cells 
specific for each antibody evaluated. 

(b) Complete the experiment with the company recom-
mended antibody concentration, as well as dilutions 
above and below the recommended concentration. 

(c) Visualize slides and note the most specific and sensitive 
concentration. This is the optimal antibody concentration 
to be used for the multiplex. 

3.2 Staining 

Preparation 

1. Preparation of wash buffer and antigen retrieval solutions 

(a) Prepare 0.1% TBST wash buffer by diluting 1 L of 10× 
Tris-buffered saline (TBS) in 9 L of deionized water. Add 
10 mL Tween 20 and mix well. 

(b) Prepare antigen retrieval solutions (pH 6 and pH 9) by 
diluting to 1× with deionized water. 

2. Preparation of FFPE slides 

(a) Deparaffinize slides in a hybridization oven. Bake slides at 
60 °C for 1 h lying flat or vertically in a heat-resistant slide 
rack. Remove slides from the oven and allow to cool for at 
least 10 min. 

(b) Rehydrate slides through the following series: xylene in 
triplicate, followed by a single submersion in 100% etha-
nol, 95% ethanol, and 70% ethanol. Submerge the slides 
for 10 min during each step of the series.
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(c) Wash the slides for 2 min in deionized water, followed by 
30 min in neutral buffered formalin. Complete the rehy-
dration by washing slides in deionized water for another 
2 min (see Note 3). 

3. Antigen retrieval 

(a) Place the slide rack into a heat-resistant box filled with 
either pH 6 or pH 9 antigen retrieval buffer (see Note 4). 

(b) Triple fold plastic wrap and cover the heat resistant box, 
secure tightly with a rubber band. 

(c) Insert the heat-resistant box at the edge of the microwave 
plate. Microwave the slides for 45 s at 100% power, fol-
lowed by 15 min at 20% power (see Note 5). 

(d) Remove the heat-resistant box from the microwave and 
use the box cover to vent about 1/3 of the opening. Allow 
slides to cool for at least 20 min (see Note 6). 

4. Preparation of primary antibody and Opal fluorophore work-
ing solutions 

(a) Use the optimal antibody concentration determined by 
IHC. Dilute the primary antibody in antibody dilutant, 
approximately 150 μL per slide (see Note 7). 

(b) Prepare the Opal fluorophores in the following manner: 
(see Note 8).

• Opal 480, 520, 570, 620, and 690: Dilute stock solu-
tions 1:50 to working concentration with AMP 
dilutant.

• Opal 780: Dilute stock solution 1:25 to working con-
centration with antibody dilutant.

• TSA Dig: Dilute stock solution 1:100 to working con-
centration with AMP dilutant. 

3.3 Slide Staining 1. Washing and peroxidase blocking 

(a) Wash the slides in a slide box for 2 min with deionized 
water followed by TBST for 2 min in a separate slide box. 

(b) Remove one slide at a time and dry around the tissue 
using a delicate task wipe. Trace around the outside of 
the tissue with a hydrophobic barrier pen. Place the slide 
in a humidified chamber and use a disposable pipette to 
transfer TBST onto the tissue to avoid tissue drying. Be 
careful not to touch the tissue with the hydrophobic pen 
or delicate task wipe. Repeat for the remaining slides. 

(c) Gently vacuum the TBST off the tissue on each slide by 
placing the vacuum tip at the edge of the hydrophobic 
barrier. Quickly apply 3 to 4 drops of peroxidase blocking



solution to the tissue and incubate for 10 min at room
temperature.
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2. Primary antibody application 

(a) Vacuum the blocking solution off the tissue and quickly 
add approximately 150 μL of working primary antibody 
solution per slide. Incubate in the humidified chamber for 
1 h at room temperature. 

(b) Take each slide and remove the primary antibody solution 
by tapping the side of the slide against a stack of paper 
towels. Place the slides into a slide box with fresh TBST 
for 2 min for three washes (see Note 9). 

3. Secondary antibody application 

(a) Omitting the hydrophobic pen step, load the humidified 
chamber as detailed in Subheading 3.3, step 1(b). 

(b) Gently vacuum the TBST off the tissue on each slide and 
quickly add 3 to 4 drops of secondary antibody (mixture 
of rabbit and mouse secondary HRP-conjugated antibo-
dies). Incubate in the humidified chamber for 10 min at 
room temperature (see Note 10). 

(c) Remove excess secondary antibody by tapping slides onto 
a stack of fresh paper towel and place slides into a slide box 
with fresh TBST. Wash three times for 2 min each. 

4. Fluorophore application 

(a) Load slides into the humidified chamber. 

(b) Apply approximately 100 μL of fluorophore working solu-
tion and incubate in the humidified chamber for 10 min at 
room temperature. 

(c) Remove excess fluorophore solution and wash slides with 
fresh TBST for 2 min in triplicate. 

5. Antibody removal 

(a) Microwave the slides as detailed in Subheading 3.2, step 3 
for removal of antibodies and in preparation of the next 
primary antibody staining. 

(b) At this point, the protocol may be paused by leaving the 
slides submerged in antigen retrieval buffer overnight at 
room temperature. Cover the slide box to prevent 
evaporation. 

(c) After determining multiplex positions as detailed in Sub-
heading 3.4, repeat Subheading 3.3, steps 1–5 for the 
remaining antibody–fluorophore pairs in the appropriate 
positions. 

6. DAPI Application and Mounting 

(a) Prepare the 4′,6-diamidino-2-phenylindole (DAPI) 
working solution by adding three drops of DAPI into
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1 mL of TBS. Vortex to ensure homogenization and store 
in the dark at 4 °C. 

(b) Remove the final antibody application with pH 6 antigen 
retrieval buffer. Wash slides in deionized water for 2 min, 
followed by TBS for 2 min. 

(c) Load slides into the humidified chamber and apply 
approximately 150 μL of working DAPI solution to each 
slide. Incubate for 10 min at room temperature. 

(d) Remove excess DAPI by tapping slides onto a stack of 
fresh paper towel. Place slides into a slide box with fresh 
TBS for 2 min, followed by deionized water for 2 min. 

(e) Place slides in fresh xylene for no longer than 2 min to 
remove the hydrophobic barrier. 

(f) Mount coverslips with an antifade mountant. Be careful 
not to trap air bubbles over the tissue and allow slides to 
dry overnight. 

3.4 Multiplex 

Workflow 

1. Complete monoplexes with each primary antibody to deter-
mine the best position (order) for the multiplex 

(a) Prepare an equal number of tissues slides as the number of 
antibodies in the anticipated multiplex. For example, if 
staining for three antibodies in the multiplex, prepare 
three slides for each of the individual antibodies. Each 
slide should contain tissue with an ample amount of epi-
tope for each optimized primary antibody. 

(b) For each individual antibody, perform a monoplex stain 
with the antibody in a unique position, following the 
staining procedures outline in Subheading 3.3, steps 1– 
6. For instance, if using three antibodies, each slide would 
have one primary antibody applied in one of the three 
unique positions. Use antibody and fluorophore dilutant 
on slides that do not require working solutions for that 
round (Fig. 1). 

2. Image and analyze the monoplex 

(a) Images may be captured using any fluorescent microscope 
capable of recording emission at the appropriate wave-
length for the fluorophores used. Often analysis software 
is dependent on the machine used for capture, so this 
should be considered. 

(b) Evaluate each monoplex slide by looking at the fluores-
cent intensity of the stained marker and the anticipated 
cells of interest. 

(c) Compare the intensity of the antigen of interest to the 
background. Positions in which the intensity is at least



5–10 times higher than the background can be considered
for inclusion in the final monoplex.
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Fig. 1 Workflow of a position test. In this example of a position test of a primary antibody for a multiplex 
examining three antibodies total, the primary antibody of interest is at position 1 in slide A, position 2 in 
slide B, and position 3 in slide C. (Adapted from Lazarus J et al (2019) J Vis Exp 149:10.3791/59915. doi: 
10.3791/59915) 

(d) Refer to Fig. 2 for examples of completed monoplex 
position tests. 

3. Perform the multiplex stain (Fig. 3) 

(a) Acquire slides of interest and one additional slide to serve 
as a blank for autofluorescence subtraction after imaging 
(see Note 11). 

(b) Chose the appropriate order for each antibody based on 
monoplex staining as described in Subheading 3.4, step 2.
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Fig. 2 STAT3 monoplex position test on normal pancreatic tissue in four unique positions. (a) Staining at 
position 1 with Opal 520 fluorophore (green). Optimal position for multiplex with strong, specific cell staining. 
(b) Staining at position 3 with Opal 620 fluorophore (red). Intermediate quality stain with suboptimal cell 
specificity and signal strength. (c) Staining at position 2 with Opal 570 fluorophore (yellow). Poor staining 
quality evidenced by non-specific staining and low signal intensity. (d) Staining at position 4 with Opal 
690 fluorophore (red). Poor staining quality evidenced by strong background autofluorescence and low signal 
intensity 

Assign a fluorophore to each primary antibody (see 
Note 12). 

(c) Stain the multiplex as described in Subheading 3.3, steps 
1–6. The blank slide does not receive any primary anti-
body, fluorophore, or DAPI. Instead, use antibody dilu-
tant, fluorophore dilutant, and TBS, respectively. 

(d) Refer to Fig. 4 for an example of a completed multiplex 
stain. 

4 Notes 

1. Fresh buffer should be made prior to each net project. 

2. Tissue dislodgement from slides during the multiple rounds of 
heating is a frequent problem so methods to ensure slide 
adherence should be utilized.
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Fig. 3 Multiplex fluorescent immunohistochemistry (mfIHC) workflow. Overview of the staining workflow for an 
mfIHC experiment after determining the appropriate order and position of primary antibodies. (Adapted from 
Lazarus J et al (2019) J Vis Exp 149:10.3791/59915. doi: 10.3791/59915) 

3. For proper adherence and mounting of tissue, it is important to 
use distilled water. 

4. The choice of pH 6 or pH 9 antigen retrieval may vary with 
epitope. However, we recommend starting with pH 9 for 
nuclear epitopes and pH 6 for membrane and cytoplasmic 
epitopes. 

5. Microwave treatment may need optimization depending on 
the microwave being used. Moreover, the microwave must be 
equipped with inverter technology for even heating. 

6. After adding the first fluorophore, it is best to limit ambient 
light exposure to minimize autofluorescence. Venting allows 
the slides to both cool down and maintain shielding from the 
light. 

7. The amount of working solution per slide can vary depending 
on the tissue area, generally ranging from 100 to 200 μL. Be
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Fig. 4 Example multiplex with six antibodies in normal pancreatic tissue. (a) Pathview image of CD3 stain in 
position 1 with Opal 480 fluorophore. (b) Pathview image of CD8 stain in position 2 with Opal 520 fluorophore. 
(c) Pathview image of CD163 stain in position 3 with Opal 570 fluorophore. (d) Pathview image of Arg1 stain in 
position 4 with Opal 620 fluorophore. (e) Pathview image of pancytokeratin stain in position 5 with Opal 
690 fluorophore. (f) Pathview image of FoxP3 stain in position 6 with Opal 780 fluorophore. (g) Full multiplex 
composite image (CD3 = green, CD8 = yellow, CD163 = orange, Arg1 = red, pancytokeratin = white, 
FoxP3 = red) 

sure to conserve the recommended concentrations when pre-
paring working solutions. 

8. Fluorophore concentrations may need to be optimized 
depending on the antibody. Additionally, it is recommended 
to prepare the working fluorophore solution the day it will be 
used. Fluorophore solutions should be stored in the dark and 
are stable for 24 to 48 h when stored at 4 °C. 

9. Fresh TBST will help ensure a cleaner image. Be sure to prepare 
a large amount of fresh TBST in advance. Furthermore, gently 
agitate slides at the start of each TBST submersion to ensure 
thorough washing. 

10. Care must be taken to ensure that secondary antibodies are 
specific for the species of the primary antibody. When possible,
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HRP conjugated secondary antibodies should be used and 
incubated at RT for 10 min. Optimization of incubation time 
may be needed for the secondary. Use of unconjugated sec-
ondary antibodies will add a step and may require unique 
optimization. 

11. It is recommended to use the same tissue type as the slides of 
interest to subtract autofluorescence. 

12. Fluorophore assignments may require optimization. In gen-
eral, use brighter fluorophores for less abundant antibody 
markers. Similarly, epitopes that colocalize should be matched 
with fluorophores at far spectrums to avoid spectral overlap. 
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Chapter 17 

Circle Damage Sequencing for Whole-Genome Analysis 
of DNA Damage 

Seung-Gi Jin, Jennifer Johnson, and Gerd P. Pfeifer 

Abstract 

There are many sources of endogenous and exogenous DNA damage. Damaged bases represent a threat to 
genome integrity and may interfere with normal cellular processes such as replication and transcription. To 
understand the specificity and biological consequences of DNA damage, it is essential to employ methods 
that are sensitive enough to detect damaged DNA bases at the level of single nucleotide resolution and 
genome-wide. Here we describe in detail a method we developed for this purpose, circle damage sequenc-
ing (CD-seq). This method is based on the circularization of genomic DNA that contains damaged bases 
and conversion of the damaged sites into double-strand breaks using specific DNA repair enzymes. Library 
sequencing of the opened circles yields the precise positions of the DNA lesions that are present. CD-seq 
can be adopted to various types of DNA damage as long as a specific cleavage scheme can be designed. 

Key words Circle damage sequencing (CD-seq), CD-seq sequencing library, Whole-genome, Circu-
larization of genomic DNA, DNA damage, Double strand break 

1 Introduction 

One important goal in cancer research is to identify DNA lesions 
and the associated mutational processes that may explain muta-
tional signatures of cancer genomes [1, 2]. Many DNA damaging 
agents are characterized by a unique spectrum of DNA lesions they 
produce in exposed cells or in tissues. These exposures can some-
times be linked to a cancer mutational spectrum. Mapping of DNA 
damage at the nucleotide level of resolution has been possible 
within specific genes using a method based on ligation-mediated 
PCR [3–5]. Today, it is of great interest to develop methodology 
that can be used to map DNA damage at single base resolution and 
genome-wide. Several such methods exist but all have certain lim-
itations. At a lower level of resolution, antibodies against DNA 
lesions can be used in immunoprecipitation reactions followed by
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sequencing of the collected DNA fragments [6, 7]. However, these 
methods do not achieve single-base resolution, as it would be 
required for interpreting mutational spectra.
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One method is based on the release of small oligonucleotides 
surrounding a damaged DNA site by the nucleotide excision repair 
(NER) process. These oligonucleotides are collected and 
sequenced using high-throughput DNA sequencing (XR-seq) 
[8]. This method is very useful but is limited to DNA lesions that 
are processed by NER and cannot detect smaller base lesions. Other 
methods rely on the ligation of oligonucleotides into a DNA strand 
break, either a single-strand or a double-strand break [9, 10]. A 
somewhat related method is called CPD-seq [11, 12], in which 
ligation of oligonucleotides first to sonicated DNA ends and then 
to endonuclease-generated breaks is used for signal detection. 
Another method called HS-damage-seq uses ligation to sonicated 
ends, immunoprecipitation of the damaged molecules, and blocked 
primer extension at the lesion sites followed by ligation of a second 
primer before PCR [13]. 

As an alternative approach, we have been developing a new 
method, initially taking clues from an approach used for 
CRISPR/Cas9 off target identification [14]. We named this 
method circle-damage-sequencing (or CD-seq). 

In step 1 of the procedure (Fig. 1), DNA is isolated from cells 
that either contain endogenous base modifications (e.g., 
N6-methyladenine), endogenous DNA damage, or have been trea-
ted with a DNA damaging agent. 

In step 2, the DNA is then cleaved to produce DNA molecules 
with average fragment sizes of 300 to 400 base pairs. Initially, we 
used a four-base cutter restriction enzyme, such as NlaIII (5′
CATG), which leaves a 4-base overhang. The ends that are pro-
duced by these enzymes are easy to ligate. However, we found that 
such enzyme treatment produces a rather substantial genome bias 
so that genomic regions in which the cleavage sites are underrepre-
sented will drop out from the analysis. To have a less biased distri-
bution of fragments, we now use sonication. 

After sonication and end cleaning to produce blunt ends, we 
then proceed to ligate the DNA into circles using diluted DNA 
solutions (step 3, Fig. 1). Remaining non-circularized DNA is 
removed with an exonuclease cocktail (Plasmid-Safe DNase). Cir-
cularized DNA is purified, but only a fraction of these circles will 
contain the DNA modification of interest. 

During step 4 of the procedure, the modified base within the 
circles is then cleaved with specific enzymes to create a double-
strand break at the lesion sites. Depending on the type of lesion, 
different repair enzymes or combinations of repair enzymes will be 
used. The rings are now opened and contain phosphate groups at 
both 5′ends.
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Fig. 1 Outline of the circle-damage-sequencing method 

In the subsequent step 5, we ligate Illumina sequencing linkers 
to the ends using standard procedures and proceed to library 
preparation and DNA sequencing using a high-throughput system 
(see step 6). We conduct paired-end 150 bp DNA sequencing of the 
library and align the reads to the genome. 

When the nature of the damaged DNA base(s) is known, for 
example, a dipyrimidine sequence after UV irradiation or an oxi-
dized guanine after exposure of cells to oxidative stress, we can 
directly infer the DNA strand on which the damage has occurred. 
Please note that according to this procedure, theoretically only 
cleaved and initially DNA damage-containing fragments will be 
sequenced, which dramatically reduces the complexity of the library 
being sequenced. 

We have initially tested the CD-seq method for detecting and 
mapping UV-induced cyclobutane pyrimidine dimers (CPDs) in 
human cells [15]. These dimers occur at the positions of any two



pyrimidines and may contain thymine, cytosine, or 
5-methylcytosine [16]. To provide an example of the method 
used in this protocol, we exposed mouse embryo fibroblasts 
(MEFs) to a dose of 1000 J/m2 of UVB light. We then proceeded 
to analyze CPDs in these UVB-irradiated cells and followed the 
scheme shown in Fig. 1. 
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These pyrimidine dimer DNA adducts are recognized and 
cleaved by the UV damage-specific DNA glycosylase T4 endonu-
clease V (T4-PDG). The dimerized pyrimidine bases are still pres-
ent after T4-PDG cleavage and need to be reverted to monomers 
with E. coli photolyase under UVA light to create clean, ligatable 
DNA ends (Fig. 1). Mono-functional DNA glycosylases remove 
only the damaged or mismatched base leaving an apurinic/apyri-
midinic (AP) site. Bifunctional DNA glycosylases (such as T4 
endonuclease V) contain an additional AP lyase activity that also 
cleaves the sugar-phosphate backbone. AP endonuclease 1 (APE1) 
is employed to achieve further cleavage at DNA glycosylases-AP-
lyase-incised AP sites. After processing of the 3′ends containing in 
some cases a sugar-derived aldehyde residue using APE1, we can 
then cleave the opposite strand of the nicked single base gap con-
taining DNA with single-strand specific S1 nuclease (see step 4; 
Fig. 1). These combined treatments create a double-strand break 
at the sites of the lesion whereby the one base representing the 
damaged nucleotide will be missing. 

After sequencing and alignment to the mouse mm10 genome, 
we expect to see divergent DNA reads from the paired-end DNA 
sequencing because they emanate from the same lesion-dependent 
DNA strand break and ligation processes. Figure 2 shows examples 
of genome browser snapshots with such divergent reads. From the 
known specificity of CPD formation, we expect that the first base of 
the read (after adapter trimming) would be a pyrimidine, and after 
genome alignment, the next base in the 5′ direction should also be 
a pyrimidine. A bioinformatics pipeline is used to visualize and 
quantitate the damaged bases genome-wide. Further downstream 
analysis is also possible and depends on the questions being 
addressed. For example, one can derive consensus sequences for 
the damaged DNA bases, as we have done for UVB-induced CPDs 
and their deaminated derivatives [15] and for oxidized guanines 
and thymines [17]. When appropriate, these sequence patterns can 
then be used for comparison with mutational spectra found in 
specific types of cancer [15, 17]. In addition, the general genomic 
patterns of the DNA damage can be established to show whether 
certain genome compartments are highly susceptible or less sensi-
tive to the DNA damaging agents. As a cautionary note, while 
CD-seq is in principle suitable to study DNA repair, it can only be 
used to aggregate DNA repair rates over defined genomic features, 
for example, promoters or gene bodies. The method could also 
aggregate repair rates over individual specific genes by summing up



all DNA damage sites over a time course along that gene. In such 
experiments, spike in DNA samples derived from a heterogeneous 
source (e.g., UV-irradiated lambda phage DNA) would need to be 
included in each time course sample. However, what the method 
cannot do at the present time, at least for any reasonably sized 
laboratory budget, is to quantify DNA damage and repair at every 
single possible position of a mammalian genome because extremely
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Fig. 2 Examples of CD-seq results after genome alignment. CPD lesions at dipyrimidine sequences induced 
into the MEF genome by irradiation with 1000 J/m2 of UVB light were visualized after filtering out divergent 
paired-end reads from ~100 million paired-end sequencing reads aligned to the mm10 mouse reference 
genome. (a) Snapshot of the IGV viewer displays the characteristic divergent paired reads (shown in lavender 
and purple colors for the forward and reverse reads, respectively) with single nucleotide gaps. The gaps 
indicate the positions of UVB-induced CPDs at single-base resolution (chr19: 4,265,680–4,265,748). Green 
arrows indicate the damage sites (T or C) on the (+) strand, and yellow arrows indicate the damage sites 
occurring on the (-) strand. (b) Snapshot of the IGV viewer shows CPD sites mapped by CD-seq for an 8.4 kb 
window (chr19:4,261,270-4,269,631; Ssh3) of the mouse genome that includes the Ssh3 gene



high read depth would need to be applied to achieve sufficient 
coverage.
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Circle-damage-seq has several advantages over other high-
throughput DNA damage mapping methods. For example, the 
exact cleavage site at the damaged DNA base is directly indicated 
by the gap of the same two divergent paired reads emanating from 
the single break position. In other words, we are sequencing from 
the same position in two directions, and not just one, which should 
give added specificity. Also, DNA molecules that are not circular-
ized are not sequenced, and background from ligatable single 
strand breaks should be removed during circular ligation. The 
method represents damage-specific sequencing because 
non-damaged molecules are not sequenced resulting in lower back-
ground and lower sequencing cost. 

CD-seq is compatible with different types of DNA damage. We 
have so far used DNA glycosylases which recognize base lesions. To 
detect 8-oxoguanine, a major DNA damage type produced by 
oxidative stress, we used the Fpg protein, but OGG1 could also 
be used [17]. For mapping of oxidized thymines, we used EndoIII 
and NEIL1 [17]. 

To detect alkylated DNA bases, one could use repair DNA 
glycosylases such as AAG [18], which recognize alkylated purines 
preferentially. For larger, bulky-type DNA adducts, the nucleotide 
excision repair complex in the form of E. coli UvrABC [19, 20] 
could be used. We believe that the CD-seq method has consider-
able versatility so that many different types of modified DNA bases 
should be detectable. 

2 Materials 

Buffer components and other reagents used in the CD-seq proce-
dure must be molecular biology grade fine chemicals and be 
prepared fresh before use. Avoid multiple freezing and thawing 
cycles. 

2.1 Genomic DNA 

Preparation and 

Formation of DNA 

Double-Strand Breaks 

1. Quick DNA Miniprep Plus kit (Zymo research, D4074). 

2. Sonicator (e.g., Covaris E220 evolution sonicator). 

3. Covaris 8 microTUBE Strip V1 (130 μL volume) (Covaris, 
520053). 

4. DNA Clean & Concentrator-5 (Zymo research, D4013). 

5. DNase/RNase free, DNA LoBind 2.0 mL microcentrifuge 
tubes (e.g., Eppendorf). 

6. DNase/RNase free, 0.2 mL 8-strip PCR-tubes. 

7. 10 mM Tris–HCl, pH 8.0. 

8. Nuclease-free water.
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9. PCR thermocycler. 

10. PCR-grade dNTPs (10 mM). 

11. T4 DNA polymerase (3 U/μL) (NEB, M0203S). 

12. T4 polynucleotide kinase (T4 PNK) (10 U/μL) (NEB, 
M0201S). 

13. RNase H (5 U/μL) (NEB, M0297S). 

14. NEB T4 DNA ligase reaction buffer (NEB, B0202S): (1×) 
50 mM Tris–HCl, pH 7.5, 10 mM MgCl2, 1 mM ATP  
10 mM DTT. 

15. NEB T4 DNA ligase (400 U/μL) (NEB, M0202S). 

16. NEBuffer 2 buffer (NEB; B7002): (1×) 10 mM Tris–HCl, 
pH 7.9, 50 mM NaCl, 10 mM MgCl2, and 1 mM DTT. 

17. Plasmid-Safe ATP-Dependent DNase (10 U/μL) (Lucigen, 
E3101K) (see Note 1). 

18. Plasmid-Safe reaction buffer: (1×) 33 mM Tris–HCl, pH 7.5, 
66 mM potassium acetate, 10 mM magnesium acetate, 
0.5 mM DTT, and 1 mM ATP. 

19. AMPure XP beads (Beckman Coulter, 10136224). 

20. T4-PDG (T4 pyrimidine dimer glycosylase) (100 U/μL) 
(NEB, M0308S). 

21. APE1 (100 U/μL) (NEB, M0282S). 

22. NEBuffer 4 buffer (NEB; B7004): (1×) 20 mM Tris–HCl, 
pH 7.9, 50 mM potassium acetate, 10 mM magnesium acetate, 
0.5 mM DTT, supplemented with 100 μg/mL BSA. 

23. PhrB photolyase (0.25 mg/mL) (Novus Biologicals, NBP2-
22657). 

24. PhrB photolyase reaction buffer: (1×) 50 mM Tris–HCl, 
pH 7.0, 50 mM NaCl, 10 mM DTT. 

25. UVP 3UV lamp (Thermo Fisher Scientific) for UVA or UVB 
irradiation. 

26. S1 nuclease (100 U/μL) (Thermo Fisher Scientific). 

27. S1 nuclease reaction buffer: (1×) 40 mM sodium acetate, 
pH 4.5, 300 mM NaCl, 2 mM ZnSO4. 

28. Benchtop thermal mixer. 

29. Magnetic separation rack for 0.2 mL tubes. 

30. Qubit fluorometer and Qubit dsDNA HS assay kit (Thermo 
Fisher Scientific).
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2.2 CD-seq Library 

Preparation 

1. Klenow fragment (3′ → 5′ exo-) (5 U/μL) (NEB, M0212S). 

2. NEBNext dA-tailing reaction buffer (NEB, B6059S): (1×) 
10 mM Tris–HCl, pH 7.9, 10 mM MgCl2, 50 mM NaCl, 
1 mM DTT, 0.2 mM dATP. 

3. NEBNext Ultra II Ligation Module (NEB, E7595). This mod-
ule includes NEBNext Ultra II Ligation Master Mix and NEB-
Next Ligation Enhancer. 

4. Hairpin adaptors for Illumina sequencing: 5′-/5Phos/GATC 
GGAAGAGCACACGTCTGAACTCCAGTC /ideoxyU/ 
ACACTCTTT CCTACACGACGCTCTTCCGATC*N-3′
(* represents phosphorothioate linkage) (see Note 2). 

5. USER (Uracil-Specific Excision Reagent) Enzyme (1 U/μL) 
(NEB, M5505). 

6. 6. Index primers for library amplification: i5 index primer; 5′-
-AATGATACGGCGACCACCGAGATCTACAC-i5 index 
(8 bp)-ACACTCTTTCCCTACACGACGCTCTTCCGAT*C-
3′, i7 index primer; 5′-CAAGCAGAAGACGGCATACGAGAT-
i7 index (8 bp)-GTGACTGGAGTTCAGACGTGTGCTCT 
TCCGAT*C-3′ (* represents phosphorothioate linkage). 
These index primers were modified from NEBNext Dual Index 
Primers (NEB, E7600) and can be synthesized by IDT. 

7. NEBNext Ultra II Q5 Master Mix (NEB, M0544). 

8. Agilent 2100 Bioanalyzer High Sensitivity DNA Kit (Agilent 
Technologies). 

9. 2100 Bioanalyzer instrument (Agilent Technologies). 

10. KAPA Library Quantification kit (Kapa Biosystems, KK4824). 

2.3 Data Analysis The following software is required: 

1. FastQC https://www.bioinformatics.babraham.ac.uk/pro 
jects/fastqc/. 

2. Trim Galore https://www.bioinformatics.babraham.ac.uk/pro 
jects/trim_galore/. 

3. BWA MEM https://sourceforge.net/projects/bio-bwa/files/ 
. 

4. SAMtools https://sourceforge.net/projects/samtools/. 

5. IGV https://software.broadinstitute.org/software/igv/ 
home. 

3 Methods 

The following methods have been optimized for 1 μg of input 
DNA and are described for mapping of UVB-induced cyclobutane 
pyrimidine dimers (CPDs) in mouse embryonic fibroblast (MEF)

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://sourceforge.net/projects/bio-bwa/files/
https://sourceforge.net/projects/samtools/
https://software.broadinstitute.org/software/igv/home
https://software.broadinstitute.org/software/igv/home
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3.1 Preparation of 

Circularized Genomic 

DNA 

1. Seed mouse embryonic fibroblast (MEF) cells on 10 cm culture 
plates. 

2. Wash the cells with 1× phosphate buffered saline (PBS) and add 
5 mL  of 1× PBS to the plates. 

3.1.1 Introduction of DNA 

CPD Adducts 3. Irradiate the MEF cells with UVB (e.g., at a dose of 1000 J/ 
m2 ) when the cells are at 80 to 90% confluence using a UVB 
lamp that has a peak spectral emission at or near 302 nm (see 
Note 3). 

3.1.2 Genomic DNA 

(gDNA) Isolation and 

Fragmentation 

1. Harvest control (non-treated) cells and UVB-302 nm-irra-
diated MEF cells immediately after irradiation. Pelleted cells 
can be stored at -80 °C after freezing them using dry ice or 
liquid nitrogen until further use. 

2. Isolate gDNAs from the pelleted cells using Quick DNA Mini-
prep Plus kit according to the manufacturer’s instruction man-
ual (see Note 4). 

3. Quantify the eluted gDNA concentrations using a NanoDrop 
spectrophotometer. 

4. Prepare 1 μg of gDNA per sample in TE buffer, pH 8.0, in a 
total volume of 130 μL and transfer the liquid to a Covaris 
microTUBE. 

5. Shear the gDNAs using a E220 Covaris sonicator 
(or equivalent device) with the following settings, for obtaining 
a 300 bp average fragment size: Peak incident power (W); 
140, duty factor; 10%, cycles per burst; 200, time; 80 s (see 
Note 5). 

6. Clean up the sheared DNAs with DNA Clean & Concentrator-
5 according to the manufacturer’s instructions. 

7. Elute the sheared DNAs in 42 μL of 10 mM Tris–HCl, pH 8.0. 

8. To prepare end-repaired (blunt-ended) DNA fragments, pre-
pare the following components in 0.2 mL nuclease-free PCR 
tubes (final volume 50 μL): 41 μL of sheared genomic DNA, 
5 μL of T4 DNA ligase buffer (10×), 1 μL of 10 mM dNTPs, 
1 μL of T4 DNA polymerase (3 U/μL), 1 μL of T4 PNK 
(10 U/μL), and 1 μL of RNase H and mix by pipetting fol-
lowed by a quick spin. 

9. Incubate the solution at 24 °C for 30 min. 

10. Clean up the end-repaired DNAs with DNA Clean & 
Concentrator-5 according to the manufacturer’s protocol (see 
Note 6). 

11. Elute the DNAs in 50 μL of 10 mM Tris–HCl, pH 8.0.
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3.1.3 Intramolecular 

Circularization of DNA 

Fragments 

1. Prepare the following components in 0.2 mL nuclease-free 
PCR tubes (final volume 200 μL): 40 μL (0.5–1 μg) of sheared 
and blunt-ended genomic DNA, 20 μL of T4 DNA ligase 
buffer (10×), 4 μL of T4 DNA ligase (400 U/μL), and 
136 μL of nuclease-free water and mix gently by pipetting. 

2. Incubate at 16 °C in a thermocycler for overnight (15 h). 

3. Clean up the DNAs with DNA Clean & Concentrator-5 
according to the manufacturer’s protocol. 

4. Elute the DNAs in 42 μL of 10 mM Tris–HCl, pH 8.0. 

5. To remove non-circularized linear DNAs from the circularized 
DNA pool, add 1 μL (10 U/μL) of Plasmid-Safe ATP-Depen-
dent DNase, 5 μL of Plasmid-Safe Reaction Buffer (10×), and 
2 μL of ATP (25 mM) to the ligase-treated DNA in a final 
volume of 50 μL. 

6. Transfer the mixture to 0.2 mL PCR tubes and incubate at 37 ° 
C in a thermocycler for 30 min. 

7. Clean up the circularized DNA with 90 μL of AMPure XP 
beads (1.8:1 ratio of beads to sample) according to the manu-
facturer’s instruction manual. 

8. Elute the DNAs in 42 μL of 10 mM Tris–HCl, pH 8.0. 

3.2 Introduction of 

Double-Strand Breaks 

at CPD Sites 

1. To specifically incise DNAs at CPD positions and to generate 
nicked DNAs, prepare the following components in 0.2 mL 
nuclease-free PCR tubes (final volume 50 μL): 41.5 μL of the 
circularized DNAs, 5 μL of NEBuffer 4 reaction buffer (10×), 
0.5 μL of BSA (20 mg/mL), 1 μL of T4-PDG (10 U/μL), and 
1 μL of APE1 (10 U/μL) (see Note 7). 

3.2.1 Cleavage of DNA at 

CPD Sites 

2. Mix gently by pipetting and incubate at 37 °C in a thermocycler 
for 30 min. 

3. Clean up the DNA with 90 μL of AMPure XP beads (1.8:1 
ratio of beads to sample) and elute in 23 μL of 10 mM Tris– 
HCl, pH 8.0. 

3.2.2 Reversion of the 

Dimerized Pyrimidines 

1. To revert the dimerized pyrimidine bases remaining at the 5′
ends after T4-PDG incision, prepare the following components 
in 0.2 mL nuclease-free PCR tubes (final volume 50 μL), 23 μL 
of the T4-PDG treated DNA samples, 25 μL of phrB photo-
lyase reaction buffer (2×), and 2 μL of  E. coli phrB photolyase 
(0.25 μg/μL), and mix gently by pipetting. 

2. Place the reaction tubes under a glass plate at a distance of 
15 cm from a UVA lamp (UVP 3UV lamp) that has a peak 
spectral emission at 365 nm. 

3. Incubate the samples under UVA illumination for 60 min at 
room temperature to induce photolyase activity.
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2. Incubate the solution at 37 °C in a thermocycler for 30 min,
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4. Clean up the DNAs with 90 μL of AMPure XP beads (1.8:1 
ratio of beads to sample) and elute the DNA in 32 μL of 10mM  
Tris–HCl, pH 8.0. 

3.2.3 Generation of 

Double-Strand Breaks 

1. To cleave the opposite strand of the nicked DNA and to 
generate ligatable DNA breaks within the circularized DNA, 
prepare the following components in 0.2 mL nuclease-free 
PCR tubes (final volume 40 μL): 31 μL of the nicked DNAs, 
8 μL of S1 nuclease reaction buffer (5×), and 1 μL of S  
nuclease (5 U/μL) diluted in 1× S1 nuclease reaction buffer. 

2. Mix gently by pipetting and incubate for 4 min at room tem-
perature (see Note 8). 

3. Stop the reactions by adding 2 μL of 0.5 M EDTA and 1 μL of  
1 M Tris–HCl, pH 8.0 to the reaction tubes followed by 
further incubation at 70 °C in a thermocycler for 10 min. 

4. Clean up the DNAs with 72 μL of AMPure XP beads (1.8:1 
ratio of beads to sample) and elute in 48 μL of 10 mM Tris– 
HCl, pH 8.0. 

5. Quantify the concentrations of the eluted DNAs using Qubit 
dsDNA HS Assay kit. Typically, we obtained 50 ng to 200 ng of 
double-strand cleaved DNA to be used for the downstream 
procedures of CD-seq library preparation and sequencing. 

3.3 Preparation of 

the CD-seq 

Sequencing Library 

1. Prepare the following components in 0.2 mL nuclease-free 
PCR tubes (final volume 55 μL): 47.5 μL of the S1 nuclease 
treated DNAs, 5.5 μL of NEBNext dA-tailing reaction buffer 
(10×), and 2 μL (5 U/μL) of Klenow fragment (3′ → 5′ exo-) 
and mix gently by pipetting. 3.3.1 End-Preparation 

and Adaptor Ligation 

and then heat-inactivate the enzymes by further incubation at 
70 °C for 30 min and then hold the samples at 4 °C. 

3. To perform adaptor ligation, add the following components to 
the end-prep reaction tubes: 30 μL of NEBNext Ultra II 
Ligation Master Mix, 1 μL of NEBNext Ligation Enhancer, 
3 μL of 1.5 μM T-overhang hairpin adaptor [or NEBNext 
adaptors for Illumina sequencing (NEB, E7601A)], and 3 μL 
of 1.5 μM C-overhang hairpin adaptor (see Note 9). 

4. Mix gently by pipetting and incubate the samples at 20 °C in  a  
thermocycler for 15 min, and then hold at 4 °C. 

5. Add 3 μL of USER enzyme (1 U/μL) to the reaction mixtures 
and mix gently by pipetting. 

6. Incubate at 37 °C in a thermocycler for 20 min.
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7. Clean up the libraries with 95 μL of AMPure XP beads (1:1 
ratio of beads to sample) and elute the DNA in 30 μL of 10mM  
Tris–HCl, pH 8.0. 

8. Quantify the concentration of the eluted libraries using Qubit 
dsDNA HS Assay kit. 

3.3.2 CD-seq Library 

Amplification by PCR 

1. Prepare the following components in 0.2 mL nuclease-free 
PCR tubes (final volume 50 μL), 20 μL of the CD-seq library, 
25 μL of NEBNext Ultra II Q5 Master mix (2×), 2.5 μL of  
10 μM i5 index primer, and 2.5 μL of  10  μM i7 index primer 
(NEB), and mix gently by pipetting (see Note 10). 

2. Perform PCR amplification reactions under the following con-
ditions in a thermocycler: incubation at 98 °C for 30 s, and 
then 11 cycles of PCR at 98 °C for 10 s and 65 °C for 75 s, 
followed by a final extension step at 65 °C for 5 min (see Note 
11). 

3. Purify the amplified libraries with 50 μL of AMPure XP beads 
(1:1 ratio of beads to sample) and elute the DNA samples in 
30 μL of 10 mM Tris–HCl, pH 8.0 

3.3.3 Quantification of 

the CD-seq Library 

1. Quantify the concentration of the purified libraries using Qubit 
dsDNA HS Assay kit. 

2. Determine the size distributions of the CD-seq libraries using 
Bioanalyzer (Agilent) and estimate the average fragment sizes 
of the libraries (see Note 12). 

3. Repeat cleanup of the libraries with 30 μL of AMPure XP beads 
(1:1 ratio of beads to sample) and elute in 25 μL of 10 mM  
Tris–HCl, pH 8.0 (see Note 13). 

4. Optional: The CD-seq libraries can be further quantified using 
KAPA Library Quantification kit (Kapa Biosystems) according 
to the manufacturer’s instruction. 

5. Calculate the concentration of libraries and pool the libraries 
using the Pooling Calculator from the Illumina website 
(https://support.illumina.com/help/pooling-calculator/ 
pooling-calculator.htm). 

6. Store the library at -20 °C until sequenced on an Illumina 
sequencer instrument (see Note 14). We aim to obtain in the 
order of 100 million total reads for a standard DNA damage 
mapping experiment of which about 20% will be single base 
gapped divergent reads for UVB damage after alignment, 
removal of duplicates, and trimming processes. For pilot 
experiments, lower numbers in the range of 10–20 million 
total reads are sufficient. If very deep coverage is desired, we 
recommend one to two billion reads per sample.

https://support.illumina.com/help/pooling-calculator/pooling-calculator.htm
https://support.illumina.com/help/pooling-calculator/pooling-calculator.htm
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3.4 Data Analysis Raw data resulting from the Illumina sequencing is generally fastq 
formatted with 2 × 50 to 2 × 150 nucleotide read length depending 
on the sequencing platform used. 

In paired-end sequencing, the index sequences from each index 
primer allows the reads to be de-multiplexed into paired fastq files 
with Read 1 and Read 2 for each library generated from CD-seq. 

1. Trim low-quality reads and adaptor sequences with default 
parameters, and to generate FastQC reports on the trimmed 
reads, use the –fastqc option. The quality reports can be 
checked using MultiQC (https://github.com/ewels/ 
MultiQC). 

$ trim_galore --illumina --paired --phred33 --fastqc -o $OUT_-

DIR $FQ1 $FQ2 

2. If the length of raw reads (fastq) is more than 100 bp, hard-clip 
from the 3′ end to 2 × 80 nucleotide length using Trim_Galore 
with default parameters as follows (e.g., with 2 × 150 bp read 
length): 

$ trim_galore --illumina --paired --phred33 --fastqc --three_-

prime_clip_R1 70 --three_prime_clip_R2 70 -o $OUT_DIR $FQ1 

$FQ2 

3. Align the trimmed fastq files to the mm10 mouse reference 
genome using BWA-MEM version 0.7.17 with default para-
meters and remove duplicate alignments with the ‘removeD-
ups’ SAMBLASTER version 0.1.26 option. Then, remove 
reads with low mapping quality (MAPQ <20) and sort reads 
by genomic coordinates using SAMtools version 1.11. 

$ bwa mem -t 10 $mm10_ref $R1 $R2 | $ samblaster -r -d 

$DISC_OUT -u $UNMAP_OUT -s $SPLIT_OUT | $ samtools sort -0 

BAM -o $BAM_OUT -@ 4 | $ samtools index $BAM_OUT 

4. To identify divergently aligned read pairs (pairs facing away 
from each other) with a single nucleotide gap between reads 
representing the positions of DNA adduct bases in CD-seq, 
select SAM records with TLEN of 3 and save as bam files for 
downstream analyses using samtools view (see Note 15).

https://github.com/ewels/MultiQC
https://github.com/ewels/MultiQC
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5. To visualize the reads, use the Integrative Genomics Viewer 
(IGV) version 2.8.9 with bam files produced by selecting SAM 
records with TLEN of 3. Display the tracks across the mm10 
mouse genome with a “view as pairs” option to show pairs 
together with a line joining the ends (Fig. 2). 

4 Notes 

1. Exonuclease V is functionally equivalent to Plasmid-Safe ATP--
dependent DNase and can be used to selectively remove liner 
double-stranded DNAs. 

2. The T-overhang hairpin adaptor is available from the NEBNext 
Multiplex Oligos for Illumina (Dual Index Primers) (NEB, 
E7600) as NEBNext Adaptor for Illumina (NEB, E7601A), 
and A-, G-, C-overhang hairpin adaptors can be synthesized by 
Integrated DNA Technologies (IDT). 

3. The UVB dose can be determined using a UVX radiometer 
with a UVB probe. 

4. To increase yield of gDNA at the final step from the gDNA 
prep procedures, we used 100 μL of elution buffer prewarmed 
to 55 °C and incubated at least 10 min at room temperature, 
and then eluted. 

5. If a Covaris sonicator is not used, shear the gDNAs to an 
average length of 300 to 400 bp fragments using another 
appropriate DNA shearing system. We obtained best circulari-
zation results from that size range of DNA fragments. 

6. Alternatively, after incubation, the reaction mixture can be 
heat-inactivated at 70 °C for 20 min and be directly used for 
downstream reaction (circularization) without further 
purification. 

7. T4-PDG and APE1 have 100% activity in NEBuffer 4 (NEB) 
and 75% activity in NEBuffers 1–3 (NEB). 

8. We observed increased 3′ to 5′ exonuclease events from the 
nicked bases with longer incubation of the S1 nuclease reaction 
mixture (more than 5 min), causing the increased appearance 
of multi-base gaps at the DNA adduct sites. 

9. We observed that S1 nuclease prefers to cleave at the 5′ side of 
the single-stranded base gaps in steps 1 and 2 from Subheading 
3.2.3 and may leave a 3′ overhang at an adducted position that 
is not converted to blunt-ends by Klenow fragment (3′ → 5′
exo-). T4-PDG and S1 nuclease cleavage can generate A- or 
G-overhangs at the 5′ pyrimidine of CPD dimer sites within the 
broken circularized DNAs, and here, T- and C-overhang hair-
pin adaptors are used to ligate adaptors to the DNAs.
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10. To add barcode sequences to each library and to pool libraries 
for Illumina sequencing, the combinatorial indexing of 
CD-seq libraries is prepared by using i5 and i7 index 
primer sets. 

11. We generally perform 10–13 cycles of PCR amplification to 
avoid over-amplification and to obtain a high enough amount 
of library for quality measurement and sequencing. 

12. We typically observed an average range of fragments between 
550 and 575 bp from Bioanalyzer runs. 

13. If there is no excessive adapter dimer peak at 130–150 bp in the 
sample run, step 3 from Subheading 3.3.3 can be skipped. 

14. Paired-end Illumina sequencing is required to create the diver-
gently aligned read pairs with a single nucleotide gap between 
mated reads representing the positions of DNA adduct bases 
on each circularized DNA fragment. 

15. TLEN field in SAM file equals the distance between the 
mapped end of the template and the mapped start of the 
template. Records with TLEN = 3 represent divergently 
aligned reads with one nucleotide between mates. 
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Chapter 18 

CRISPR-Directed Gene Editing as a Method to Reduce 
Chemoresistance in Lung Cancer Cells 

Natalia Rivera-Torres, Pawel Bialk, and Eric B. Kmiec 

Abstract 

We are advancing a novel strategy for the treatment of solid tumors by employing CRISPR-directed gene 
editing to reduce levels of standard of care required to halt or reverse the progression of tumor growth. We 
intend to do this by utilizing a combinatorial approach in which CRISPR-directed gene editing is used to 
eliminate or significantly reduce the acquired resistance emerging from chemotherapy, radiation therapy, or 
immunotherapy. We will utilize CRISPR/Cas as a biomolecular tool to disable specific genes involved in the 
sustainability of resistance to cancer therapy. We have also developed a CRISPR/Cas molecule that can 
distinguish between the genome of a tumor cell in the genome of a normal cell, thereby conferring target 
selectivity onto this therapeutic approach. We envision delivering these molecules by direct injection into 
solid tumors for the treatment of squamous cell carcinomas of the lung, esophageal cancer, and head and 
neck cancer. We provide experimental details and methodology for utilizing CRISPR/Cas as a supplement 
to chemotherapy to destroy lung cancer cells. 

Key words Gene editing, CRISPR/Cas9, Chemoresistance, Squamous cell carcinoma of the lung 

1 Introduction 

The American Cancer Society estimates there will be almost 
600,000 deaths due to cancer in the United States this year, as 
well as a total of almost two million new cancer diagnoses. These 
new cases will be treated with a regimen consisting of a combina-
tion of chemotherapy, immunotherapy, radiation, and surgery. As 
with any medical treatment, all these therapies have their own risks 
and complications. In fact, many patients are not able to tolerate 
their full chemotherapy course due to side effects. Immunotherapy 
is the newest tool in the box and can have less frequency of side 
effects than chemotherapy, but when they do occur they have been 
reported to be more severe. Even with all these treatment options, 
there are many types of common cancers that still exhibit poor
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survival. The overall 5-year survival rate for some of the more 
common cancers (lung, liver, pancreas, and esophageal) is still less 
than 20%, with minimal improvement from the survival in the 
1970s.
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We intend to develop a CRISPR/Cas [1, 2] gene editing 
therapeutic to disable genes functioning to promote or enable 
resistance to standard of care therapy, most prominently chemo-
therapy, for solid tumors [3, 4]. Our initial targets are based on 
foundational molecular biology information describing the activity 
of critical genes that promote chemoresistance, etc. [5]. Our first 
genetic target is the gene NRF2, but other targets are emerging 
including EGFR and KRAS [6]. Critical endpoints include halting 
the progression of tumor growth, inducing tumor cell death, and 
reducing tumor size to facilitate surgical resection. 

1.1 Significance and 

Therapeutic 

Methodological Goals 

In developing CRISPR/Cas technology as a treatment for solid 
tumors, we aim to add another tool to the therapeutic armament. 
While a primary endpoint for cancer trials is overall survival or 
progression-free survival, we also envision including an endpoint 
to measure a reduction in the amount of chemotherapy needed for 
treatment. In other words, if we can help to reduce side effects from 
the primary treatment, then in addition to prolonging survival and 
enhancing the potential to complete the treatment regimen, we 
may also help their quality of life. A separate goal may be to allow 
more patients to become surgical candidates due to the reduction 
in tumor size by CRISPR-directed gene editing. We do not plan 
initially to use CRISPR as a stand-alone drug but are hoping that 
we can incorporate it to optimize the standard therapy. 

1.2 The NRF2 Gene 

as the Target 

NRF2 is a global transcriptional regulator that functions to activate 
genes in response to cellular stress [6]. Under normal growth 
conditions, stress emerges during metabolic processes including 
cell division and expansion. But, when heat, radiation, or any type 
of oxidative stress are present in the environment, the Nrf2 protein 
functions to hyper-activate stress response pathways. This response 
appears to be evolutionary in nature, and under normal conditions, 
it ensures continual well-being and survival of the cell. If the cell is 
transformed, however, and oncogenesis progresses, the NRF2 gene 
exhibits its dark side and enables the cell to resist standard of care 
strategies designed precisely to destroy it. These strategies include 
chemotherapy, radiation therapy, and now, even immunotherapy. 
Since this gene engages a naturally occurring pathway, a brief 
knockdown by molecular tools such as RNAi, siRNA, or even 
antisense therapy will simply delay the inevitable tumor progres-
sion. Our objective is to use CRISPR-directed gene editing to 
disable NRF2 functions so that the cancer cell becomes sensitive 
to the standard of care therapy. Our preliminary work both in cell 
culture and in xenograft animal models confirms our belief that this



gene is a viable target for a gene editing tool to be used in thera-
peutic approaches to solid tumors [7]. In the protocol detailed 
below, we outline the experimental strategies we have used to 
determine the preliminary efficacy of CRISPR-directed gene edit-
ing as a supplemental approach to the killing of lung cancer cells. 
We describe the use of a nonviral (CRISPRMax) delivery mode to 
introduce the CRISPR/Cas payload into mammalian cells. While a 
great deal of activity has surrounded the use of viral vectors for 
therapeutic purposes, it is now believed that non-viral vectors 
including the use of lipo-nanoparticles (LNPs) may provide a 
more safe and more cost-effective way to introduce biologically 
relevant molecules into human cells. The pioneering work of the 
biotechnology company, Intellia [8], has helped guide our think-
ing, and we continue to explore possibilities of utilizing nonviral 
delivery strategies. 
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2 Methods and Protocols 

2.1 Cell Line and 

Culture Conditions 

Human lung squamous cell carcinoma NCI-H1703 [H1703] cells 
(#CRL-5889, passage number 1–12) were purchased from ATCC 
(Manassas, VA, USA). NCI-H1703 cells were grown in RPMI 
1640 medium (ATCC) supplemented with 10% fetal bovine 
serum (FBS) (ATCC). Cells were grown at 37 °C in 5% CO2. 
Cells were tested for Mycoplasma upon thawing and before use in 
experiments using the MycoScope PCR Mycoplasma Detection Kit 
(Genlantis, Cat. MY01100). 

2.2 NFR2 R34G Cell 

Line Engineering 

The NRF2 gene-coding sequence was analyzed on SnapGene 
and the following gRNAs were selected for targeting exon 
2: (1) 5′- TGGAGGCAAGATATAGATCT-3′, (2) 5′- GATATAG 
ATCTTGCAGTATC-3′. Synthetic single gRNAs and recombinant 
spCas9 protein were ordered from Synthego (Menlo Park, Califor-
nia, USA). The sgRNA and SpCas9 protein were mixed at a 5:1 
ratio (250:50 pmol) and set to incubate at room temperature for 
20 min before transfections. Alt-R repair templates were ordered 
from Integrated DNA Technologies (Coralville, Iowa, USA): (1) 
5′- TTAAAAAACATGAGCTCTCTCCTTCCTTTTTTTGTCT 
TAAACATAGGACATGGATTTGATTGACATACTTTGGAGGC 
AAGATATAGATCTTGcAGTAtcTgGAGAAGTATTTGACTTCA 
GTCAGCGACGGAAAGAGTATGAGCTGGAAAAACAGAAAA 
AACTTGAAAAGGAAAGACAAGAACAACTCCAAAAGGAGC 
AAG-3′, (2) 5′- TTAAAAAACATGAGCTCTCTCCTTCCTTTT 
TTTGTCTTAAACATAGGACATGGATTTGATTGACATACTT 
TGGAGGCAAGATATAGATCTTGGAGTAAGTgGAGAAGTAT 
TTGACTTCAGTCAGCGACGGAAAGAGTATGAGCTGGAAA 
AACAGAAAAAACTTGAAAAGGAAAGACAAGAACAACTCC 
AAAAGGAGCAAG-3′.



To develop the R34G cell line, we developed a two-step approach 
to achieve the mutation of interest through CRISPR/Cas9 gene 
editing. H1703 cells were seeded 24 h before transfection and 
allowed to reach 60–80% confluency. On the day of the transfec-
tion, cells were harvested by trypsinization and neutralized with 
media. Cells were resuspended at a concentration of 1 × 106 
cells/100 μL in SF/supplement solution. 5 μL of RNP complex 
1 and 6 uL of repair template 1 were added. Lonza program C 
M-130 was used, and after 15 min of rest, cells were transferred to a 
T-25 flask for 48 h before sorting. Transfected cells were sorted in 
96-well plates with the Namocell Hana (Namocell, Mountain View, 
CA, USA). Clones were expanded and transferred to larger plates as 
the individual clones reached confluence. At the 24-well stage, 
clonal cells were screened by genomic DNA isolation to identify 
the mutation of interest and expanded for the second step of 
transfection. Clone 44 (homozygous knock-in of repair template 
1) was later transfected and sorted similarly, but with 5 uL of RNP 
complex 2 and 3 uL of repair template 2 included in the transfec-
tion solution. The appropriate clones from this transfection (homo-
zygous knock-in of repair template 2 – Clones 44–25 and 44–8) 
were banked for use. 
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2.3 NRF2 R34G 

Targeting with LNP 

2.3.1. Seed 0.4 × 105 adherent cells in each well of a 24-well plate 
in complete media (RPMI 1640 + 10% FBS). 

2.3.2. Label two tubes: Tube 1 and Tube 2. 

2.3.3. In Tube 1, add the following components in the given 
volumes (mix Cas9 nuclease/sgRNA solution with Cas9 
Plus reagent). Mix well. 

Component (Tube 1) Volume/concentration 

Opti-MEM I medium 25 μL 

spCas9 10 pmol 

sgRNA 10 pmol 

Cas9 plus reagent 2.5 μL 

2.3.4. In Tube 2, add the following components in the given 
volumes (dilute CRISPRMAX Reagent in Opti-MEM I 
medium). Mix well. 

Component (Tube 2) Volume/concentration 

Opti-MEM I medium 25 μL 

CRISPRMAX reagent 1.5 μL
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2.3.5. Immediately add solution from Tube 1 and Tube 2, and 
then mix well. This will allow the formation of the Cas9 
nuclease/gRNA/transfection reagent complex. 

2.3.6. Incubate complex for 10 min at room temperature. (Note: 
Do not incubate for >30 min). 

2.3.7. Aspirate the cell media to the well of the 24-well plate. 
Replace with 500 μL of complete media (RPMI 
1640 + 10% FBS). 

2.3.8. Add the Cas9 nuclease/gRNA/transfection reagent com-
plex (~50 μL) to the cells in the well. 

2.3.9. Incubate cells with the Cas9 nuclease/gRNA/transfection 
reagent complex for 72 h. 

2.3.10. After incubation, remove the culture medium and rinse 
cells with 50–500 μL PBS. Cells can now be used for 
downstream analysis. 

2.4 Gene Editing 

Analysis 

Cellular genomic DNA was isolated from each clonal cell line using 
the DNeasy Blood and Tissue Kit (Qiagen, Cat. 69506). The 
region surrounding the CRISPR target site was PCR amplified 
using the Q5 High-Fidelity 2X Master Mix (New England Bio-
Labs, Cat. M0492) (Exon 2 – FWD primer 5′-
-CACCATCAACAGTGGCATAATGTGAA-3′, REV primer 
5′-AACTCAGGTTAGGTACTGAACTCATCA-3′). The PCR 
reaction was purified using the QIAquick PCR Purification Kit 
(Qiagen, Cat. 28106) and Big Dye Terminator PCR was performed 
using Big Dye Terminator v3.1 (Thermofisher). PCR products 
were purified once more using the Big Dye Xterminator kit 
(Thermo Fisher) and then sequenced using the SeqStudio Genetic 
Analyzer (Applied Biosystems). Clonal allelic analysis was con-
ducted using the software program, DECODR, available at 
https://decodr.org/analyze. 

2.5 Chemosensitivity 

Testing 

Cell viability after drug exposure was evaluated using the CellTiter 
96 Aqueous Non-Radioactive Cell Proliferation Assay (Promega, 
Madison, WI). R34G cell lines were plated in quadruplicate at 4 × 
103 cells per well and allowed to culture for 24 h. The cells were 
then treated with cisplatin at increasing concentrations for 3 days. 
The cell media was aspirated, the cells washed with PBS, and then 
exposed to the MTS reagent for 3 h. After 3 h of MTS 
bio-reduction by proliferating cells, the formazan product’s absor-
bance was measured using a 450 nm filter on an Infinite 2000 PRO 
microplate reader (Tecan, Mannadorf, Switzerland). Each experi-
ment was conducted twice, and the data was normalized and aver-
aged for each clone at each concentration. The standard error of the 
mean was calculated using the normalized value of all eight data 
points for each clone at each concentration.

https://decodr.org/analyze


3 Results
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To provide further guidance on the protocol and to outline our 
workflow and predicted results, we have provided three figures 
performed as described above. In Fig. 1, our routine and standar-
dized experimental flow is described. H1703 cells containing the 
NRF2 R34G mutation, propagated in culture, were freshly plated 
24 h prior to the introduction of the CRISPR/Cas payload. To 
deliver the bioactive molecules, we employed the nonviral liposo-
mal formulation CRISPRMax at the optimized ratios (see above) 
and allowed the cells to incubate for 72 h. It is important to note 
that the transformation of established cell lines by any bioactive 
molecule requires significant levels of optimization. We have found 
that the length of time that cells are cultured and passaged in a 
continual line can affect this efficiency. It is also important to 
establish the optimal density for the transformation and transfec-
tion of any molecule into cultured cells. Serum levels in media 
constituents are also determining factors in the efficiency of uptake, 
especially in the case of viral delivery modes. Importantly, optimi-
zation of successful transfection must include an analysis of the level 
of active molecules introduced into the nucleus, not just the cell. 
We also monitor the health of the cell during this period to ensure 
that at least 80–90% of the cells are remaining intact and viable. 
Transfection under any conditions is a harsh cellular process, and 
the cells need a period to recover prior to executing the intended 
molecular outcome. After 72 h, the level of gene editing is assessed 
by using a sample from the treated cell culture. We recommend this 
quick look-in at the progress of the gene editing activity prior to the 
addition of anticancer therapy, in this case, chemotherapeutic 
drugs. This allows for an early analysis of the efficiency of the 
gene editing activity which can help troubleshoot field experiments 
obtained after cell viability measurements. Once completed, the

Time: -24hr      0hr       24hr        48hr          72hr 

gDNA 
Analysis 

CRISPR 
Max RNP 
Delivery 

Plate  
cells 

Time:   0hr         24hr       48hr            72hr 

Plate cells 
in Cisplatin media 

MTT 
Analysis 

Fig. 1 NRF2 R34G targeting and cisplatin treatment. Experimental CRISPR/Cas9 
RNP delivery workflow for targeting NRF2 R34G cell lines (see text for details)



targeted cells are then plated in the presence of the desired chemo-
therapeutic reagent, in this case, cisplatin. Incubation continues for 
another 72 h, and viability testing completes the experimental 
protocol.
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44-25: 
Indel: 67.2% 

Frameshi�: 45.5% 

44-58: 
Indel: 76.6% 

Frameshi�:47.8%  

Fig. 2 Genomic analyses of R34G cell lines after CRISPR targeting. Genomic DNA from R34G cell lines, 44–25 
and 44–58, was isolated and amplified across exon 2 of the NRF2 gene. Amplicons were Sanger sequenced 
and analyzed for indels at the CRISPR target site. Raw sequence files were aligned using the software 
program, DECODR, to display the NRF2 allele-specific indel pattern (listed as INDEL and %) 

Figure 2 illustrates a standard analysis and profile of an experi-
ment carried out using the protocol described above. Here the 
sequence files are aligned to demonstrate the efficiency of genetic 
disruption caused by the CRISPR/Cas complex as well as the 
revelation of the categories of indels created in each allele. The 
software program DECODR [9] is the best analytical tool for 
deciphering the outcome of CRISPR-directed gene editing using 
Sanger sequencing. Here, two clonal cell lines were examined, and 
each cell line shows to have gene editing executed at a frequency of 
over 60%. Overall indel formation above 60–70% is an excellent 
outcome but more importantly, frameshift mutations at approxi-
mately 50% ensure the generation of clonal populations that have a 
disrupted target gene. We consider the frameshift mutation fre-
quency to be the standard by which we judge genetic knockout 
activity. In some cases, deletions or point mutation changes that do 
not lead to frameshift mutations can often result in the generation 
of truncated proteins or enable genetic rearrangements such as 
exon skipping. 

Figure 3 depicts the corresponding phenotypic readout of gene 
editing by measuring the increased sensitivity of targeted cells to 
cisplatin. A standard viability assay is used to assess the overall effect 
of genetic disruption at several concentrations of cisplatin. It is 
important to assess the sensitivity range of cells to chemotherapeu-
tic drugs independent of genetic manipulation prior to the begin-
ning of this assay. In our case, we are utilizing concentrations of 
cisplatin that are known to enable cell viability at lower levels. 
Several important observations are instructive in this figure. First, 
CRISPR-directed gene editing is effective in reducing the growth 
of tumor cells in response to cisplatin. Second, clonal isolates from 
the same cell line bearing similar genetic disruption patterns exhibit 
slightly different sensitivity to the chemotherapeutic agent. The 
second observation is a key to developing effective anticancer stra-
tegies since solid tumors are composed of a mosaic of genetic
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signatures, and thus the correct range of chemotherapeutic treat-
ment must be assessed carefully. And, as the mutated phenotype 
within tumor cells expands, changes in response to varying doses of 
chemotherapy can change rapidly. Our data suggest that the com-
binatorial treatment of CRISPR-directed gene editing with chemo-
therapy can overcome a significant degree of chemoresistance in 
tumor cells. Furthermore, more effective cell killing is observed at 
lower concentrations of chemotherapy, an important clinical out-
come for the development of safer and more tolerable anticancer 
therapies. 
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Fig. 3 Chemosensitivity testing in response to NRF2 R34G targeting. Chemosensitivity was measured via 
bio-reduction of MTS to a formazan product. Cells were treated with increasing concentrations of cisplatin for 
72 h and then evaluated for cell proliferation. The average relative proliferation of cells in response to cisplatin 
is graphed above 

4 Discussion and Conclusion 

Chemotherapy remains an important option in the treatment of 
lung cancer, but issues involving chemoresistance and toxicity are 
often problematic with extended care. A clear demonstration that 
the genetic knockout of NRF2 improves the efficacy of chemother-
apy would provide foundational information to the field at large 
and potentially introduce a new weapon in the anticancer treatment 
armament [3, 4, 6]. Because we are embedded in a community 
cancer center, we embrace the development of innovative therapies 
for lung cancer as the research focus of our laboratory. This method 
provides foundational information for workers in the gene editing 
field to establish a reliable and robust assay system to analyze the 
effect of genetic knockout of key genes involved in the develop-
ment of resistance to standard of care. For example, oncogenic 
KRAS mutations are found in approximately 25% of non-small 
cell lung cancers and are associated with resistance to standard 
platinum-based chemotherapy, associated with a poor overall prog-
nosis. This unique population of patients with KRAS-mutated 
non-small cell lung cancers with chemotherapy-resistant tumors is 
the ideal initial target population for this type of innovative combi-
natorial therapy. They have limited options and have shown to be 
refractory to most forms of currently practiced treatments.



7. 

CRISPR-Directed Gene Editing and Chemosensitivity 271

Although multiple breakthroughs in cancer management have 
been clinically approved and have significantly improved the quality 
of life in patients with cancers, the sad fact is that only 10–20% of 
cancer patients in almost every type of cancer remain or develop 
resistance to any type of treatment [10, 11]. Therefore, the devel-
opment of novel therapeutics is critical. With the advancement of 
next-generation sequencing, there now is a growing list of tumor 
driver mutations in NRF2, EGFR, KRAS, TP53, ERBB2 (HER2/ 
neu), and BRAF that have provided information detailing genetic 
signatures expanding its clinical applications in cancer diagnosis, 
prognosis, and therapeutic decisions by becoming more readily 
accessible to clinicians and translational scientists. The mutations 
of these genes often lead to the accumulation of functionally altered 
proteins within the tumor cells and constitutively enable resistance 
to treatment. At present, there are few effective therapeutics capa-
ble of removing the mutated proteins within the tumor cells; 
therefore, CRISPR/Cas9-mediated precision targeting of tumor 
driver mutations would be an ideal intervention through the dis-
ruption of genes that code for these proteins. Ultimately, integrat-
ing effective chemotherapy, targeted drugs, immunotherapy, and 
now gene editing should give these patients the best chance at 
longer disease control and improve quality of life. 
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Chapter 19 

Integrated In Silico Analysis of Proteogenomic and Drug 
Targets for Pancreatic Cancer Survival 

Alakesh Bera, Digonto Chatterjee, Jack Hester, and Meera Srivastava 

Abstract 

Pancreatic cancer remains a major health concern, being among the deadliest forms of cancer with over 80% 
of the patients presenting with metastatic disease. According to the American Cancer Society, for all stages 
of pancreatic cancer combined, the 5-year survival rate is less than 10%. Genetic research on pancreatic 
cancer has generally been focused on familial pancreatic cancer, which is only 10% of all pancreatic cancer 
patients. This study focuses on finding genes that impact the survival of pancreatic cancer patients which can 
be used as biomarkers and potential targets to develop personalized treatment options. We used cBioPortal 
platform using NCI-initiated The Cancer Genome Atlas (TCGA) dataset to find genes that were altered 
differently in different ethnic groups which can serve as potential biomarkers and analyzed the genes’ 
impact on patient survival. MD Anderson Cell Lines Project (MCLP) and genecards.org were also utilized 
to identify potential drug candidates that can target the proteins encoded by the genes. The results showed 
that there are unique genes that are associated with each race category which may influence the survival 
outcomes of patients, and their potential drug candidates were identified. 

Key words Proteogenomics, Proteomics, Genomics, Survival outcomes, Drug targets, cBioPortal, 
The Cancer Genome Atlas (TCGA), MD Anderson Cell Lines Project (MCLP), Copy number 
alterations (CNAs), Socioeconomic status (SES), Disease-free survival (DFS), Overall survival (OS), 
Pancreatic cancer 

1 Introduction 

Pancreatic cancer is among the deadliest forms of cancer. It is the 
seventh most common cancer, yet it is the second leading cause of 
cancer deaths in the United States [1]. It is estimated that in 2021, 
48,220 patients will die from pancreatic cancer. Risk factors for 
pancreatic cancer include smoking, diabetes, obesity, chronic pan-
creatitis, and family history [2]. Over 80% of the patients present 
with metastatic disease. Despite advances in chemotherapy, the 
average survival remains less than 5 years even after surgery [3]. 
Genetic testing has been primarily focused on familial pancreatic 
cancer, which only accounts for ten percent (10%) of all pancreatic
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cancers. A study on non-familial pancreatic cancer patients revealed 
six genes, namely, CDKN2A, TP53, MLH1, BRCA2, ATM, and 
BRCA1, with significant associations between pancreatic cancer 
and mutations in these genes [4]. A previous study has shown 
that patient survival was associated with mutations in KRAS, 
CDKN2A, SMAD4, and TP53 [5].
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Similar to other common malignancies, pancreatic cancer is 
associated with disparities by socioeconomic status (SES), ethnic 
minority status, and insurance [6, 7]. In contrast to other types of 
cancer (breast, colon) where screening can detect early-stage dis-
ease, no screening modality exists for pancreatic cancer. Thus, 
disparities in outcomes for pancreatic cancer do not result from 
lack of screening [8]. There are currently limited data on the 
genetic susceptibility of pancreatic cancer survival based on race 
or ancestral origin. The association of driver gene alterations based 
on racial category and their association with patient outcomes has 
not been clearly established. Therefore, we performed a quantita-
tive genomic analysis to find genes associated with patient survival 
for the pancreatic cancer patients based on their racial categories. In 
this current study, we tried to establish a method to identify the 
genetic basis of racial disparities in cancer survival. We tried to 
determine whether White, African American/Black, and Asian 
patients have different gene alterations and whether or not they 
can be diagnosed and managed based on their specific signature 
profile. Identification, prevention, and management of factors 
based on race may help find effective strategies for clinical manage-
ment of pancreatic cancer. 

2 Clinical Data from cBioPortal 

cBioPortal was utilized to access and analyze the public database on 
cancer tissues generated by the TCGA project (https://www. 
cancer.gov/tcga). The Cancer Genome Atlas (TCGA) is an 
NCI-initiated and established cancer genomic database which is 
publicly available. There are over thirty thousand tumor samples 
that have already been sequenced from over twenty different types 
of cancer. The cBioPortal allows users to question datasets across 
data types including genes and clinical samples, providing an oppor-
tunity to investigate several different biologically and/or clinically 
relevant hypotheses. For this study, all datasets for pancreatic cancer 
were selected particularly for patient’s survival with genetic signa-
ture. Data also included the specific patient’s number and their 
contributions from different studies. Customized datasets were 
created from Pancreatic Cancer Studies in cBioPortal along with 
age, race, and sex distributions of patients (Fig. 1). Datasets that 
did not provide race information were not included in this analysis.

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
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Fig. 1 Different studies included in this analysis to study the pancreatic cancer patient’s survival with genetic 
signature in particular. (a, b) Data also included the specific patient’s number and their contributions from 
different studies. (c, d) Customized dataset created from Pancreatic Cancer Studies in cBioPortal. (c) Data 
indicated the age distributions of patients. (d) Male vs female ratio 

3 Methods 

3.1 Copy Number 

Alterations 

Copy number alteration data was analyzed in each of three racial 
categories, (1) White, (2) African American and Black, and 
(3) Asian with customized datasets. Within those separate virtual 
studies, the genes that were amplified in the most patients in terms 
of CNA (copy number alterations) were recorded and compared 
among the different virtual datasets. 

3.2 Survival Curves Genes that were altered differently in the racial groups were 
selected to analyze the genes’ impact on patient survival. Both 
overall survival (OS) and disease-free survival (DFS) curves were 
computed. This was done by utilizing the inbuilt statistical analysis



tools available within the cBioPortal platform. The data was tested 
for significance using a log-rank test to compare the survival dis-
tributions between two samples. This was done automatically using 
cBioPortal [9, 10]. 
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3.3 Protein Drug 

Analysis 

MD Anderson Cell Lines Project (MCLP) and genecards.org were 
utilized to find protein drug interactions using the genes found in 
this study as drug targets [11, 12]. 

3.4 Pancreatic 

Cancer Categories 

More than 1200 patient data spanning ten [10] different pancreatic 
cancer clinical studies were analyzed. The disease types were (1) aci-
nar cell carcinoma of the pancreas, (2) cystic tumor of the pancreas, 
(3) five pancreatic adenocarcinoma studies, and (4) three pancreatic 
neuroendocrine tumor studies (Fig. 1). The data were stratified 
according to three race categories self-identified by patients: 
(1) White, (2) African American or Black, and (3) Asian. There 
were only two samples that were identified as Hispanic; therefore 
the Hispanic category was not included in our study. A total of 
436 patient samples were customized based on three (3) race cate-
gories. The samples were from three pancreatic adenocarcinoma 
studies. For our analysis, Black or African American and Black were 
taken together. The number of samples for White patients was 
394, 22 for Asian, and 19 for Black and African American. There 
are several studies pursued to determine the racial disparities in 
cancer survival. However, it is not clear whether the disparity is 
related to biological differences or consequences of social, eco-
nomic, or cultural environments. Given the challenges associated 
with race and ethnicity definition and disease-linked biological 
observations in this context, results from our study need to be 
independently validated in larger patient population with ancestry 
information. 

3.5 Data Analysis The analysis began with an investigation of copy number alterations 
(CNA) at the genomic DNA level for pancreatic cancer samples. 
Copy number alterations (CNAs) refer to changes in the number of 
copies of a genetic region caused by deletion or duplication events 
in the genome. Recent technological advances have enabled the 
identification of CNAs across the entire genome, associating cancer 
with the alteration rates of various genes in cancer [8]. 

3.5.1 Copy Number 

Alterations Based on Race 

Categories 

CBioPortal was utilized, which contains comprehensive geno-
mic and transcriptomic data from various cancer studies 
[13]. Focusing on the customized pancreatic cancer datasets cre-
ated based on race categories as mentioned in the above section, 
genes with the highest frequency of copy number alterations 
(CNA) in each race category were determined. A few unique 
genes specific to each race category that had copy number amplifi-
cations were found (Table 1). The altered genes’ locations are in 
different cytobands for each race category. As previously reported,

http://genecards.org


Race Cytoband 

CDKN2A was deleted in 30% of patients in every race category [5], 
confirming our data analysis approach. Most genes that had deep 
deletions in copy number were common among the different race 
categories and therefore were not included in further investigation 
and analysis. 
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Table 1 
Genes with copy number alterations unique to each race category 

Genes with copy number alterations 
(AMP) 

Alteration frequency 
(%) 

White GATA6, RECQL4, MIB1 18q11.2 (GATA5, MIB1) 
8q24.3 (RECQL4) 

14.8 (GATA6) 
14.0(RECQL4) 
12.8%(MIB1) 

Black PKDL1, GARS1, NEUROD3 7p12.3(PKDL1) 
7p14.3(GA RS1, 
NEUROD3) 

28.6 

Asian FGFR3, ABCA11P, UVSSA (etc.) 4p16.3 27.3 

3.5.2 Association of CNA 

Amplification with Survival 

Outcome 

An evaluation was carried out between the association of the gene 
alterations unique to each category and most frequently amplified 
in each race category with survival outcome. The most frequently 
altered genes in each category were found to have a direct associa-
tion with patient survival. Kaplan–Meyer curves for overall survival 
(OS) and disease-free survival (DFS) were generated using the 
cBioPortal platform for each gene in the specific race categories. 
P-values were generated by cBioPortal using the log-rank test for 
survival between 2 samples. This was compared to a significance 
level of 0.05. The survival was calculated in median months, and 
the 95% confidence interval was given as well. 

Figure 2 shows representative Kaplan–Meier curves for disease-
free survival (DFS) outcomes associated with alterations of genes in 
patients from different race categories. The P-values are 0.0031 for 
White patients, 0.0516 for Asian patients, and 0.8680 for African 
American and Black patients. 

The results showed that there are unique genes that are asso-
ciated with each race category which have an effect on the survival 
outcomes of patients. For patients that had expression of these 
genes, the median month of survival was less compared to those 
who did not have amplified expression. 

White Patients For the genes amplified in the White race category, 
the effect on OS was minimal while the DFS was significantly worse 
than in patients where there was no amplification with a p-value of 
0.0031. The genes amplified in the White race category were from 
the cytoband 18p11.2 (GATA6, MIB1) and 8q24.3 (RECQL4). It 
is notable that the genes that were from the same cytoband showed 
nearly identical data.



Genes altered 
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Fig. 2 Kaplan–Meyer curves for disease-free survival in each race category. Statistical values (P-value) are 
included in the figure 

Table 2 
Survival outcomes (in months) associated with altered genes in each race category 

Race 
category

Overall 
Survival 
(OS) unaltered 

Overall 
Survival 
(OS) altered 

Disease Free 
Survival (DFS)-
unaltered 

Disease Free 
Survival (DFS)-
altered 

GATA6 20.17 20.35 20.4 12.43 

White RECQL4 20.35 15.11 20.37 9.57 

MIB1 20.19 20.34 23.52 12.42 

African 
American 
& black 

PKDIL1. 
GARS1, 
NEUROD6 

17.03 2.01 NA NA 

Asian FGFR3. 
ABCA11P, 
UVSSA. (etc.) 

66.89 11.61 12.32 49.68 

Asian Patients For genes amplified in the Asian race category, the 
survival outcomes for patients with amplified genes was signifi-
cantly worse for both overall survival and disease-free survival com-
pared to patients who did not have amplified genes with a p-value of 
0.0516. The genes in the Asian race category were all from the same 
cytoband (4p16.3), and while only 3 were listed in Table 2, there 
were 39 genes from the cytoband which were all amplified and 
showed the same survival outcomes. 

African American and Black Patients For genes amplified in the 
African American and Black race category, the effect on overall 
survival for patients that had amplified genes in the 7p cytoband 
had significantly poor outcomes (2 months) with alterations in the 
genes PKD1L1, GARS1, and NEUROD6 compared to patients 
with no amplification (17 months). There was no data for disease-



Drug candidates 

free survival due to the limited number of samples. However, it is 
notable to mention that data for the African American and Black 
categories were limited (African American/Black, n = 19) and were 
not statistically significant. 
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Table 3 
Role of the genes in cancers and as potential drug candidates 

Genes/race 
categories 

Role in 
pancreatic 
cancer 

Role in other cancers (prognostic 
value)

GATA6 
(White) 

No Renal (unfavorable) (detected in 
many) 

Spautin.l; parbendazole 

RECQL4 
(White) 

No Liver (unfavorable) (detected in all) Rec 15/2615 dihydrochloride 

MIB1 (White) No None (detected in all) SIB 1893 

PKD1L1 
(Black) 

No None (detected in many) JKC 363; HS 014 

GARS1 
(Black) 

NA NA MRS 1220; RS 100329 
hydrochloride 

NEUROD6 
(Black) 

No None (not detected) SB 224289 hydrochloride; 
Pancuronium dibromide 

FGFR3 
(Asian) 

No Endometrial (unfavorable) 
(detected in many) 

PD 173074 

ABCA11P 
(Asian) 

NA NA Bobcat339, TBCA 

UVSSA 
(Asian) 

No Renal (unfavorable) urothelial 
(favorable) detected in all 

Iressa, ASB 14780 

3.5.3 Protein Expression 

and Protein–Drug 

Interaction 

Using the Protein Atlas, protein–drug interaction from MD Ander-
son Cancer-Cell Lines Project (MCLP) dataset [11, 12] and 
genecards.org data, an analysis of the role of the genes in cancers 
that are the focus of our study was done, and drug candidates that 
can target the proteins encoded by the genes were determined. 
Potential drug candidates that can be further tested in clinical trials 
to provide gene and race specific therapeutic options for pancreatic 
cancer patients were proposed. Table 3 shows the role of the genes 
in cancers, their role as prognostic markers, and drugs that can be 
used to target these genes. The top-ranked 2 drugs targeting each 
gene were included.

http://genecards.org
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4 Notes 

1. This study demonstrates that there are unique sets of genes 
commonly associated with self-identified race. 

2. Alterations in these genes are associated with patient outcomes 
in patients with pancreatic cancer. 

3. These data if validated in large population with ancestry infor-
mation may serve as potential biomarkers for specific race 
groups to predict patient outcomes. 

4. Additionally, several potential drug candidates proposed in our 
study targeting the specific proteins encoded by the genes 
specific to the individual race categories can be further studied 
in clinical settings to develop more personalized race-based 
therapeutic options. 

5. Besides, understanding the molecular events and mechanisms 
that determine patient outcomes has the potential to develop 
new and improved treatment approaches for patients with 
pancreatic cancer. 

6. These results are correlated by other studies, as GATA6 is now 
a known oncogene [14], meaning it has the potential to cause 
cancer. Similarly, studies have shown copy number alterations 
in the cytoband 8q24.3 having a role in cancer [15–17]. 

7. The role of genes and their respective cytobands from the Black 
and African American as well as Asian race category was more 
novel. Of the genes found to be amplified in these two race 
categories, only FGFR3 is known to be an oncogene [18]. 

8. It is notable that the cytoband 4p16.3 which was amplified 
frequently in the Asian race category, showing 39 genes all 
with frequent alteration, causes Wolf–Hirschhorn syndrome 
when deleted [19]; however, there has been little investigation 
on its amplification and no study on its unique amplification in 
the Asian race category or pancreatic cancer. 

9. The biggest shortcoming was that the sample size was low, 
especially for the Black and African American and Asian race 
categories. Despite this, the results can be used as a good 
starting point for further, more robust investigation. 

10. Future goals include developing new and improved treatment 
for patients with pancreatic cancer, potentially by targeting the 
genes that were noted in this study.
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11. Another potential goal would be to do statistical modeling and 
larger population study to determine if these genes can be used 
for diagnosis of pancreatic cancer, which would be especially 
noteworthy as pancreatic cancer is known to be hard to diag-
nose early. 

12. Furthermore, the specific role of each cytoband that was largely 
amplified and its association with pancreatic cancer can be 
investigated. 
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Chapter 20 

Advanced Computational Methods to Evaluate Vascular 
Heterogeneity in Tumor Tissue Based on Single Plane 
Illumination Microscopy 

Felix T. Kurz and Artur Hahn 

Abstract 

During tumor growth, the complex composition of vasculature is prone to dynamic changes due to 
mechanic and biochemical challenges. Perivascular invasion of tumor cells to co-opt existing vasculature, 
but also formation of de-novo vasculature and other effects on the vascular network, may lead to altered 
geometric vessel properties as well as changes in vascular network topology, which is defined by vascular 
multifurcations and connections between vessel segments. The intricate organization and heterogeneity of 
the vascular network can be analyzed with advanced computational methods to uncover vascular network 
signatures that may allow differentiating between pathological and physiological vessel regions. Herein, we 
present a protocol to evaluate vascular heterogeneity in whole vascular networks, using morphological and 
topological measures. The protocol was developed for single plane illumination microscopy images of mice 
brain vasculature but can be applied to any vascular network. 

Key words Single plane illumination microscopy (SPIM), Perivascular invasion, Vascular heterogene-
ity, Vascular network analysis, Vascular network topology, Vasculotome, Vasculature-alterating thera-
pies, Glioblastoma 

1 Introduction 

Vascular networks are highly complex entities that not only ensure 
nutrient and oxygen supply to biological tissue but also show a 
remarkable adaptability to environmental challenges such as 
changes in vascular flow, e.g., due to atherosclerosis, or to secure 
tissue homeostasis in regulating ion transit across vessel walls 
[1]. These changes can occur on largely different time scales: 
while tissue homeostasis regulation may be immediate and 
vascular-based thermoregulation fast, adaptation to an increasing 
infiltration of tumor cells that co-opt existing and build new vessels 
to supply tumor tissue typically occurs in weeks to months 
[2]. Microvascular proliferation is especially important in the
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pathophysiology of the aggressive and common brain tumor glio-
blastoma [3] and its inhibition in the form of anti-angiogenic 
therapy with vascular endothelial growth factor inhibitor bevacizu-
mab, to prolong overall survival [4]. However, anti-angiogenic 
therapy may also impact supply of conventional, cytostatic therapy 
agents, leading to a decreased clinical efficacy [5, 6]. It is therefore 
important to find measures of vascular architecture and vascular 
changes that may allow differentiating between therapy responders 
and non-responders, e.g., using magnetic resonance imaging in a 
clinical setting [7, 8], or using tissue clearing and selective single 
plane illumination microscopy (SPIM) in an experimental 
setting [9].
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While changes in geometric properties between tumor vascula-
ture and healthy vasculature such as radii or vessel densities may be 
less pronounced [10], other descriptors of vasculature become 
more important, including functional measures such as vascular 
topology, which considers the distribution of intervascular connec-
tions [11, 12]. Specifically, glioblastoma vascular topology was 
found to significantly differ to that of healthy vasculature and 
more so than simple geometric properties averaged over voxels 
the size of an MR imaging voxel [11, 13]. This functional vascular 
organization may result from scaling of glioblastoma microenviron-
ment interactions; however, it is mainly these vascular architecture 
characteristics, together with changes in local tumor cell density, 
that potentially impact the quantification of diagnostic biomarkers 
in routine diagnostic imaging, including the machine-learning 
based detection of pathological image signatures [14, 15]. 

The protocol described herein applies to the quantification of 
vascular heterogeneity in tumor tissue, based on a procedure that 
was developed to describe differences between whole vascular net-
works of glioblastoma and healthy tissue [11, 16]. The procedure 
was used on SPIM images of tissue-cleared mice brain, where 
vessels were marked with fluorescent lectin [9] (see also Fig. 1), 
but it can be applied to any vascular network. We provide a detailed 
step-by-step procedure from vascular segmentation to vascular net-
work topology analysis, to obtain a range of vascular parameters 
that may aid in differentiating pathological vasculature from 
healthy vasculature. 

2 Materials 

2.1 Experimental 

Agents 

1. U-87MG glioblastoma or GL261 glioma cells are available 
from ATCC® and the National Cancer Institute NCI, 
Bethesda, MD, USA. 

2.1.1 Selective Plane 

Illumination Microscopy on 

Healthy Mice Brain and 

Mice Injected with 

Glioblastoma/Glioma 

Tumor Cells 

2. Nine-week-old, male NOD Scid Gamma mice (for U87-MG 
glioblastoma cell implantation), or 6–8-week-old, female C57 
BL/6J mice (for GL261 glioma cell implantation; Charles 
River Laboratories, Sulzfeld, Germany).
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Fig. 1 Vascular architecture acquisition and processing. Upper panel: Illustration of the experimental 
procedure to image whole vascular networks. From left to right: mice brain are injected with tumor cells; 
after sufficient tumor growth, mice are injected with a fluorescent vessel marker (lectin-FITC). The subse-
quently resected brain is cleared using the FluoClearBaBB protocol and imaged using selective single plane 
illumination microscopy (SPIM) with an in-plane resolution of approximately 3 μm × 3 μm. Middle panel: The 
resulting high-resolution stacks (left) are skeletonized (right). Lower panel: This allows obtaining quantifiable 
measures on vessel geometry and topology, such as mean vessel segment radii or vessel segment surface 
(left), and vascular communities in a vascular network representation (right). (Adapted from Fig. 1 in Ref. [11], 
with permission from Ref. [11]. Copyright 2019) 

3. Lectin-FITC (Sigma-Aldrich, St. Louis, MO, USA) to provide 
selective vessel fluorescence. 

4. Ultramicroscope II setup (LaVision Biotec, Bielefeld, 
Germany). 

2.2 Image 

Processing and 

Analysis Software 

1. Brain microvasculature can be processed and analyzed using 
the open-source software interactive learning and segmenta-
tion toolkit ilastik [17], the open-source software Fiji 2.0.0-rc-
43/1.51r or higher [18], and Matlab R2016b (MathWorks, 
Natick, MA, USA) or higher.
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3 Methods 

3.1 Experimental 

Methods 

1. Use 7.5 · 104 U-87MG cells or 105 GL261 glioma cells. 

2. Check biweekly for mycoplasma contamination. 

3.1.1 Tumor Cell 

Injection (Example for 

Glioblastoma and Glioma 

Cells) 

3. Dilute cells in 5 μL sterile phosphate and buffer in saline (PBS, 
Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany). 

4. Inject cells in the striatum of the right hemisphere of 9-week-
old, male NOD Scid Gamma mice (U-87MG cells) or in 6–8-
week-old, female C57 BL/6J mice (GL261 cells). Inject 2 mm 
lateral and 2 mm ventral of the bregma. 

3.1.2 Lectin Injection, 

Mouse Sacrifice, and 

Clearing Protocol for 

Selective Plane Illumination 

Microscopy 

1. After 21 days post tumor cell implantation for mice injected 
with U87 cells, and 28 days post tumor cell implantation for 
mice injected with GL261 cells: inject intravenously 300 μL 
lectin-FITC (Sigma-Aldrich, St. Louis, MO, USA) with con-
centration 1 mg/mL. 

2. Sacrifice mice after 3 min of incubation by a ketamine/xylazine 
overdose. 

3. Perfuse sacrificed mice transcardially with 20 mL PBS and 
20 mL 4% paraformaldehyde solution. 

4. Explant and optically clear mice brain with the FluoClearBaBB 
protocol [19]. 

5. Use SPIM to image the microvasculature of the entire brain, 
using lectin fluorescence. Resolution: 3.25 × 3.25 μm in-plane 
and 5 μm inter-plane. 

Image with the following parameters on the 
Ultramicroscope II: Andor camera exposure time of 686.35 ms, 
100% laser power, 5 μm stepsize, dynamic focus on 5–10 steps, 
16-bit low noise gain, left and right light sheet together. 

3.2 Vascular 

Segmentation and 

Image Post-

Processing 

1. Draw binary mask manually over each imaging data set to 
identify tumor volume. Use only regions with sufficiently sup-
pressed blurring. Exclude the ventricular system (that may 
exhibit false lectin fluorescence). 

3.2.1 Tumor Volume 

Segmentation 

2. Binarize tumor cores based on the transition from a dense 
outer vasculature to a less dense vascularized center within 
the tumor segmentation. 

3.2.2 Vessel 

Segmentation Using Ilastik 

1. Before loading the image data set into ilastik, convert your raw 
image data to hdf5/h5 format (e.g., using the Fiji plugin 
“HDF5”). 

2. Load image file/stack in ilastik and use the “Feature Selection” 
tab to select vessels with different standard deviations of the 
Gaussian smoothing kernel.
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3. Use the “Training” tab to add about 4–5 classes of objects 
(e.g., background, foreground, specific vessel type, etc.) to 
begin multi-class segmentation, making also use of the zoom 
function to zoom into imaging data. The ilastik guidelines 
recommend labeling individual pixels or short lines instead of 
large areas. Label classes in different areas of the image. 

4. Use the “Live Update” functionality to overlay your image 
with class probability maps based on your current labeling. 
Segmentation layers can be turned on and off during the 
process. 

5. Correct labels in places where the segmentation failed, always 
controlling with the “Live Update” function. 

Tipp: use the “Uncertainty” map to show areas where the 
algorithm has problems making a good prediction; this can be 
very helpful for refinement. 

6. Once an adequate vessel segmentation is accomplished, export 
the segmentation data using all labels. 

7. Use the “Transpose to Axis Order” command with the “xyzc” 
option (alternatively, the “xyc” option), to export images with 
the same orientation as the imported raw image. The export 
imaging data can be controlled with the “Prediction 
Export” tab. 

8. Save the ilastik project and use the “Batch processing” tab to 
process new imaging data sets with the same segmentation 
routine. Several image data sets can also be trained 
simultaneously. 

3.2.3 Vascular 

Segmentation Post-

Processing 

1. Use the “Gaussian Blur 3D” plugin in Fiji to reduce noise with 
a 3D-Gaussian filter with isotropic standard deviation of 
1 voxel unit. 

2. Binarize the segmentation volume again with an intensity 
threshold at half of the maximum voxel value. 

3. Remove noise using Matlab’s bwconncomp function: remove all 
6-connected voxel structures whose volume is smaller than 
spheres with a radius of 6 μm. 

4. Use Matlab imfill function to fill holes in the vascular structures 
(with imfill(binary image, ‘holes’))—this concerns holes as a 
set of background voxels that cannot be reached by filling in the 
background from the edge of the image. 

5. Fill big holes with Matlab’s bwareaopen function, using 20.000 
voxels as a cutoff. 

6. Check if big holes are left with Matlab’s bwconncomp function.
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3.2.4 Vascular 

Skeletonization 

1. Use Fiji to skeletonize image data sets using the “Skeletonize 
(2D/3D)” plugin (without the pruning option). 

2. Subsequently run the “Analyze Skeleton (2D/3D)” plugin in 
Fiji to obtain a tagged skeleton on the segmented vascular 
structure. This assigns a tag to each skeleton voxel that identi-
fies vascular endpoints (skeleton voxels with only one neigh-
boring skeleton voxel), slab or segment voxels (skeleton voxels 
with exactly two neighboring voxels), and junctions (skeleton 
voxels with more than two neighboring voxels). The skeletons 
can then be used for labeling of vessels and nodes and determi-
nation of vascular connectivity. 

3.2.5 Vascular Thinning 

Due to Lectin Fluorescence 

Overexposure 

1. To compensate for effects of fluorescent overexposure in the 
segmentation of vascular structures, where vessels tend to 
appear thicker since background voxels next to vascular struc-
tures are illuminated as well, vessels need to undergo a thinning 
procedure. We use Matlab bwperim function to thin vessels 
around their respective skeleton segment by a 1 voxel layer. 

3.3 Vascular 

Geometry Analysis 

1. Determine the fraction of blood-filled vascular structures in a 
tiling-box approach that quantifies a fractional vessel volume 
on cubic subvolumes with side length of 500 μm as the quo-
tient of the number of vascular voxels versus voxels in the cubic 
subvolume. 

2. Determine the microvascular density as the quotient of the 
number of individual vessel segments per cubic subvolume 
versus (500 μm)3 . 

3. Determine the vessel length density as the total vessel length, 
i.e., the sum of all vessel skeleton segment lengths, per cubic 
subvolume. 

4. Determine the vascular surface density as the lumen surface 
area per cubic subvolume. Lumen surface is determined for 
each vessel segment using Matlab’s null function to create an 
orthonormal basis with each vascular segments’ start and end 
voxel. Then, calculate the intersection of that plane with the 
respective cubic subvolume to determine the binarized voxels 
in that plane. Finally, for each vessel segment voxel and its 
respective orthogonal plane, use Matlab’s bwperim function 
to determine the vascular perimeter voxels within the orthog-
onal plane. The sum of all perimeter voxels for one vascular 
segment yields the vessel segment lumen surface per segment. 
The lumen surface per cubic subvolume is then determined as 
the sum of all lumen surfaces within one cubic subvolume.
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5. In the same orthogonal planes as above, for each vessel seg-
ment voxel, determine the average voxel-specific vascular diam-
eter with Matlab’s regionprops function and option 
‘EquivDiameter’. Define the voxel-specific radius as half of 
the voxel-specific vascular segment diameter. Determine the 
vascular segment radius as the weighted sum of all voxel-
specific vascular radii along one vascular segment. 

3.4 Vascular 

Network Topology 

The vascular network topology is modeled as an undirected net-
work with nodes being vessel branchings or multifurcations that are 
interconnected by vessel segments as network edges. Connectivity 
properties of the vascular topology can then be extracted with 
graph theory. 

Using the vascular skeleton, vascular nodes are assigned to 
junction and end-point voxels, see Subheading 3.2.4, while vascu-
lar edges are assigned to skeleton segment voxels. 

3.4.1 Scale-Free and 

Basic Topological 

Characteristics of the 

Vascular Network 

If a vascular network is scale-free, the occurrence of a vascular hub 
with a lot of branchings increases the probability of another hub 
with many branchings in its vicinity. Such behavior has been 
observed in healthy and pathological vascular networks [11, 20], 
but also in neuronal networks [21] or in mitochondrial networks 
[22, 23]. Specifically, in GL261 tumors, the peripheral vascular 
network architecture was found to be highly scale-free, when com-
pared to U87 tumors or healthy brain vasculature [11]. 

1. To evaluate scale-free properties of the vascular network, deter-
mine the degree k of every node as the number of attached 
vessel branches, i.e., the number of directly neighboring skele-
ton voxels at junction voxels. 

2. Using logarithmic scales, visualize relative frequencies of nodes 
with degree k versus degree k, see also Fig. 2a in [11]. Model 
the resulting curve with a power law P(k) / k-γ , with degree 
exponent γ, using Matlab’s polyfit function for linear fits in log 
space. Use k ∈ [3, 20] to fit power law. 

3. Determine the average clustering coefficient of the vascular 
network, C, as the average of the clustering coefficients Ci of 
each vascular node i with ni neighboring (i.e., directly to node 
i connected) nodes and Ei connections between these neigh-
boring nodes as Ci = 2Ei 

ni ni -1ð Þ  . Then, C = ∑iCi/∑i . Clustering 
coefficients measure the network propensities toward nodes 
that tend to be surrounded by well-interconnected nodes. 
Increased clustering has been observed in tumor vasculature 
compared to healthy brain vasculature, especially in the tumor 
core [11].
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Fig. 2 Community unfolding in a modular network structure. Healthy mouse brain hemisphere with segmented 
vasculature (upper panel on left) and glioblastoma vasculature in the same species (lower panel on left), based 
on SPIM imaging. The community unfolding process is visualized on both networks, whereby each level of 
partitioning represents a local maximum in network modularity (for details see text) for increasing vascular 
network communities. The clustering scheme (second-to-last on the right-hand-side) is obtained at global 
maximum modularity in a slice of the original SPIM image: communities are shown in blue spheres, where the 
size of the sphere is proportional to the respective cluster size, while the weight of a connection between 
clusters (or the number of intercommunity vessel segments) is shown in red with varying edge thickness and 
brightness according to weight value. Right-hand side: Community affiliations at global maximum modularity. 
(Adapted from Figs. 1 and 3 in Ref. [11], with permission from Ref. [11]. Copyright 2019) 

4. The characteristic vascular network path length is determined 
as the average number of edges on a geodesic that links any two 
nodes that are connected by a path on the graph. To determine 
the characteristic path length, use Johnson’s algorithm for the 
shortest paths problem with MatlabBGL library version 4.0 
from function johnson_all_sp [24]. 

5. Likewise, determine the network diameter as the greatest sepa-
ration between a pair of nodes, given by the maximum of all 
shortest paths. Such a diameter is a measure of the linear size of 
the graph that characterizes the network. 

3.4.2 Community 

Measures on the Vascular 

Network 

Communities within a network represent sets of densely 
interconnected nodes that are potentially overlapping. This trans-
lates into vessels that tend to be more interconnected, when they 
are in the same vascular community. For example, for tumor vascu-
lar networks in brain tumors, communities tend to be much smaller 
than in healthy vasculature, especially in GL261 tumors [11], giv-
ing rise to the assumption that tumor cell invasion leads to a 
re-organization of the formerly healthy vasculature that lead to 
smaller and interspersed vascular communities.
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The propensity of networks to have nodes organized in such 
communities or modules can be measured with the network mod-
ularity, Q. The modularity takes values between -0.5 and 1 to 
measure the density of vascular connections inside a vascular com-
munity compared to vascular connections between communities. 

To uncover an optimal community structure, one needs to 
apply the Louvain community unfolding algorithm [25, 26]. 

1. First, assume that each node represents its own community ci. 

2. Determine the adjacency matrix A that holds the number of 
edges between nodes i and j at A(i, j). 

3. Determine m= 1 2 
P 

ijA i, jð Þ  as the sum of all edges within the 
original network graph. 

4. For every node i, determine the number ni of edges attached 
to it. 

5. Determine the network modularity as Q = 
1 
2 

P 
ij Aij-

ninj 

2

� �
δ ci, cj
� �

. 

6. Then, assign a node i to a neighboring node j while removing it 
from its own position. 

7. Calculate the new number of edges between nodes, consider-
ing that nodes may now have more than one (undirected) edge 
between each other. 

8. Determine the modularity of the new network with steps 2–5. 

9. Determine the change in modularity toward the original 
network. 

10. Repeat steps 6–9 for each neighboring node j to find the 
greatest change in modularity. If no increase in modularity is 
found, node i remains in its own community. Otherwise, place 
node i into the community of node j with the greatest mod-
ularity change. 

11. Repeat steps 6–10 for all nodes until modularity does not 
increase anymore. 

12. Define new graph with new nodes as the resulting node com-
munities from the previous steps. Links between nodes of the 
previous network, which are in the same community, are then 
self-loops on the new community node. Repeat steps 2–11. 

13. Repeat steps 2–12 until no further reassignments can increase 
the network modularity. 

3.4.3 Community 

Structure and Connectivity 

To study the resulting community structure from above and its 
relevance for vascular architecture, one can assign spatial coordi-
nates to each community as the centroid from all spatial coordinates 
of its inherent nodes (Fig. 2).
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1. Determine the size of each community as the mean distance 
between a community node’s spatial position and the commu-
nity centroid’s spatial position. 

2. Determine the number of vessel segments within each vascular 
community or cluster to obtain another measure of 
community size. 

3. Determine the community’s topological perimeter as the num-
ber of connecting vessel segments of a community to other 
communities, which reflects a connectivity measure or the 
vascular community’s supply situation. 

4. Determine the degree of a community as the sum of twice the 
number of vessel segments within each community and the 
topological perimeter. This measure conveys the relevance of 
a community as a supply entity within the vascular network. 

5. Determine network properties from steps 1 to 5 in Subheading 
3.4.1 for each community and determine averages of these 
measures across communities. 

6. Determine the shortest path between communities by the 
physical separation of their centroids. 

4 Notes 

1. The program ilastik does not have an “Undo” button, meaning 
that labels cannot simply be undone if new labels make the 
segmentations worse. Then, labels must be erased manually 
with the “Eraser” function [27]. 

2. Too many labels in ilastik lead to worse segmentation results. 

3. The SPIM imaging procedure only images perfused vessels, 
which may impact the results of the vascular geometry analysis, 
but not those of the vascular topology analysis [11]. 

4. Irregular surfaces and vessel segment boundaries may cause 
voxel stubs in the skeletonization process that have a degree 
of 2. These nodes do not contribute to the vascular topology; 
however, they may impact topology measures involving node 
degrees. Pruning may help to eliminate such nodes [28]. 

5. Consecutive branching points in a vessel segment may combine 
to vascular nodes of a high degree if imaging resolution is not 
sufficiently high [11].
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5 Conclusion 

SPIM imaging of tissue-cleared brains allows a morphological and 
topological analysis of whole vascular networks, using advanced 
vascular segmentation and network theoretical analysis methods. 
These tools may uncover collective changes within the “vasculo-
tome” that are otherwise concealed in local analyses. They provide 
the means to study functional vascular relations regarding vascular 
supply properties, to extract and grade pathological vascular net-
work segments, or to develop and evaluate vasculature-alterating 
therapies. 
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Chapter 21 

Illuminating DEPDC1B in Multi-pronged Regulation of Tumor 
Progression 

Howard E. Boudreau, Jennifer Robinson, and Usha N. Kasid 

Abstract 

DEPDC1B (aliases BRCC3, XTP8, XTP1) is a DEP (Dishevelled, Egl-1, Pleckstrin) and Rho-GAP-like 
domains containing predominately membrane-associated protein. Earlier, we and others have reported that 
DEPDC1B is a downstream effector of Raf-1 and long noncoding RNA lncNB1, and an upstream positive 
effector of pERK. Consistently, DEPDC1B knockdown is associated with downregulation of ligand-
stimulated pERK expression. We demonstrate here that DEPDC1B N-terminus binds to the p85 subunit 
of PI3K, and DEPDC1B overexpression results in decreased ligand-stimulated tyrosine phosphorylation 
of p85 and downregulation of pAKT1. Collectively, we propose that DEPDC1B is a novel cross-regulator 
of AKT1 and ERK, two of the prominent pathways of tumor progression. Our data showing high levels of 
DEPDC1B mRNA and protein during the G2/M phase have significant implications in cell entry into 
mitosis. Indeed, DEPDC1B accumulation during the G2/M phase has been associated with disassembly of 
focal adhesions and cell de-adhesion, referred to as a DEPDC1B-mediated de-adhesion mitotic checkpoint. 
DEPDC1B is a direct target of transcription factor SOX10, and SOX10-DEPDC1B-SCUBE3 axis has been 
associated with angiogenesis and metastasis. The Scansite analysis of the DEPDC1B amino acid sequence 
shows binding motifs for three well-established cancer therapeutic targets CDK1, DNA-PK, and aurora 
kinase A/B. These interactions and functionalities, if validated, may further implicate DEPDC1B in 
regulation of DNA damage–repair and cell cycle progression processes. Finally, a survey of the publicly 
available datasets indicates that high DEPDC1B expression is a viable biomarker in breast, lung, pancreatic 
and renal cell carcinomas, and melanoma. Currently, the systems and integrative biology of DEPDC1B is 
far from comprehensive. Future investigations are necessary in order to understand how DEPDC1B might 
impact AKT, ERK, and other networks, albeit in a context-dependent manner, and influence the actionable 
molecular, spatial, and temporal vulnerabilities within these networks in cancer cells. 

Key words DEPDC1B, CRAF/Raf-1, lncNB1, ERK, p85/PI3K, AKT1, G2/M phase, Cell entry 
into mitosis, SOX10, SCUBE3, Multi-pronged regulation, Tumor progression, Breast cancer, Lung 
cancer, Pancreatic cancer, Renal cell carcinoma, Melanoma 

1 Introduction 

DEPDC1B (aliases BRCC3, XTP8, XTP1) is a DEP (Dishevelled, 
Egl-1, Pleckstrin) domain containing protein. DEPDC1B gene was 
discovered by mRNA expression profiling of human breast cancer
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cells. Treatment of MDA-MB-231 breast cancer cells with c-raf-1 
antisense oligodeoxynucleotide (AS-raf-ODN) resulted in knock-
down of Raf-1 and concomitant decrease in DEPDC1B mRNA and 
protein expression (Fig. 1) [1–5]. Genomic DEPDC1B is localized 
at the human chromosome 5q12.1. Sequence homology search of 
the chromosome 5 genomic DNA revealed several CCAAT-boxes 
and E-boxes (CANNTG) within the putative DEPDC1B promoter 
region (Fig. 2a). The CCAAT boxes are potential binding sites of 
transcription factor NF-Y, whereas E-boxes have been shown to 
bind upstream stimulatory factors (USFs) [6, 7]. Similar to Cyclin 
B, DEPDC1B mRNA is likely to be regulated by transcriptional 
enhancer CCAAT/E-box motifs in a cell cycle-dependent manner. 
DEPDC1B transcript (3.0 kb) was detected in just a few adult 
human normal tissues (testes, bone marrow, placenta) and in 
most of the human cancer cell lines tested (Fig. 2b and c). In 
other studies, RNA sequencing of MYCN amplified and 
non-amplified human neuroblastoma cell lines led to identification 
of a long noncoding RNA lncNB1 as an overexpressed transcript in 
MYCN amplified neuroblastoma cells. Here, lncNB1 was shown to
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Fig. 1 Knockdown of Raf-1 expression is associated with downregulation of DEPDC1B mRNA and protein 
expression. (a) Experimental scheme to identify mRNA expression profile of Raf-1 knockdown MDA-MB-231 
breast cancer cells. (b) Antisense knockdown of Raf-1 protein expression. MDA-MB-231 cells were treated 
with 2 μM AS-raf-ODN (50-TCC-CGC-CTG-TGA-CAT-GCA-TT-30) for 48 h as described earlier [5], followed by 
sequential Western blotting with anti-Raf-1 and anti-GAPDH antibodies. (c) DEPDC1B mRNA expression in 
Raf-1 knockdown MDA-MB-231 cells. Northern blot was probed with a radiolabeled DEPDC1B cDNA and 
re-probed with a radiolabeled GAPDH cDNA probe. (d) DEPDC1B protein expression in Raf-1 knockdown cells. 
MDA-MB-231 cells were treated with 2 μM of mismatch oligodeoxynucleotide (Mismatch ODN) (50-TCC-CGC-
GCA-CTT-GAT-GCA-TT-30) or AS-raf-ODN (50-TCC-CGC-CTG-TGA-CAT-GCA-TT-30) for 48 h as in panel 
b. Western blot analysis was performed using rabbit polyclonal antibody generated against a DEPDC1B-
specific custom peptide PFQPFRTRSFRM [5]. The blot was subsequently reprobed with anti-Raf-1 and anti-
GAPDH antibodies (left panel), and the signals were quantified using ImageQuant software and normalized 
against GAPDH (right panel). Data shown are mean s.d. from two independent experiments



bind to the ribosomal protein RPL35, leading to enhanced synthe-
sis of E2F1 protein which, in turn, promotes DEPDC1B gene 
transcription and tumorigenesis [8]. More recently, an in silico 
approach led to identification of five consensus binding motifs of 
a neural crest lineage transcription factor SOX10 within the 
DEPDC1B promoter region. Consistently, DEPDC1B is a direct 
downstream target of SOX10 in melanoma cells [9]. Together 
these data suggest context-dependent regulation of DEPDC1B 
mRNA expression in cancer cells by Raf-1, lncNB1, and SOX10.
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Fig. 2 Genomic DEPDC1B and DEPDC1B mRNA expression analyses. (a) Schematic of DEPDC1B exon and 
intron regions and putative promoter within human chromosome 5. DEPDC1B cDNA sequence (GenBank 
accession #BC019075) was blasted against a human chromosome 5 clone (GenBank accession #AC109133). 
Approximately 3000 bp upstream of the 50-end of DEPDC1B mRNA were selected as a putative promoter 
region and searched using TransFac database for putative transcription factor binding site(s). (b) Northern blot 
analysis of DEPDC1B mRNA in normal human adult tissues. (c) Northern blot analysis of DEPDC1B mRNA in 
human cancer cell lines. Northern blots shown in panels b and c were probed with a radiolabeled DEPDC1B 
cDNA and re-probed with a radiolabeled β-Actin as described earlier [5] 

Full-length DEPDC1B open reading frame (529 amino acids) 
codes for a ~ 60 kDa predominately membrane-associated protein 
[4, 5]. GEPIA2 tool was used to generate the isoform structure of 
two protein coding variants of DEPDC1B, DEPDC1B-001 
(529 amino acids), and DEPDC1B-002 (467 amino acids). Both 
isoforms contain a DEP domain (green, amino acids 24–108) and a 
Rho-GAP-like domain (orange, amino acids 201–393) (Fig. 3). 
The Rho-GAP family of GTPase activating proteins have important 
implications in cancer progression [10, 11]. DEPDC1B Rho-GAP 
domain lacks the arginine finger residue critical for its Rho GTPase 
activity. However, it may bind to a target Rho protein and influence 
activity of cognate Rho GTPase [12]. The Scansite search showed 
potential interactions of DEPDC1B with the p85 regulatory sub-
unit of membrane lipid kinase PI3K (at P111 and P116) and DNA



double-strand break repair enzyme DNA protein kinase (DNA-PK) 
(at S139 and S448). Additional predicted binding motifs present 
are for CRK SH2 at Y104, CDK1 at S110, and aurora kinase A/B 
at S160 (Fig. 3b and c). If validated, any one or more these inter-
actions are likely to shed new insights into DEPDC1B-mediated 
mechanisms of tumor progression and therapy response. 
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expression in human cancer cell lines using custom generated anti-DEPDC1B antibody as stated in legend to 
Fig. 1d. HEK293T T.T., HEK293T cells transiently transfected with Myc-tagged DEPDC1B 

2 High DEPDC1B Expression During the G2/M Phase Promotes Disassembly of Focal 
Adhesion, De-adhesion, and Cell Entry into Mitosis 

Earlier, we investigated the DEPDC1B mRNA and protein expres-
sion throughout the cell cycle. MDA-MB-231 human breast cancer 
cells were enriched in G1 phase by treatment with aphidicolin, 
followed by incubation in aphidicolin-free medium for various 
times. We found that DEPDC1B mRNA and protein levels were 
elevated in G2/M phase [4, 5]. Similar results were observed in 
MDA-MB-435 melanoma cells (Table 1) [5]. 

High expression of DEPDC1B during the G2/M phase has 
been shown to promote progression of cells into mitosis via disas-
sembly of focal adhesions leading to detachment of cells (i.e., 
de-adhesion), referred to as a DEPDC1B-mediated de-adhesion 
mitotic checkpoint [13, 14]. Mechanistically, cell de-adhesion, a

http://gepia2.cancer-pku.cn/#isoform
https://scansite4.mit.edu/#scanProtein


Cells Treatment 
G1 
(%cells) 

S 
(%cells) 

G2/M 
(%cells) 

requisite for mitotic entry, is achieved by DEPDC1B accumulation 
during G2 phase, DEPDC1B-mediated inhibition of the small 
GTPase RhoA via competitive binding of DEPDC1B to protein 
tyrosine phosphatase receptor type, F (PTPRF), and preventing 
GEF-H1-mediated activation of RhoA (DEPDC1B-RhoA-
PTPRF axis). DEPDC1B silencing has been associated with 
delayed mitotic entry and delayed activation of mitosis promoting 
factors. DEPDC1B amino acid sequence shows a CDK1 binding 
motif (S110) (Fig. 2c). Whether DEPDC1B influences CDK1 
activity is unknown. In a recent report, under reduced growth 
factor signaling conditions, DEPDC1B seems to promote focal 
adhesion disassembly by the membrane lipid phosphatidylinositol-
3,4-bisphosphate (PtdIns(3,4)P2)-dependent inactivation of 
RhoA. In this scenario, a synergism between DEPDC1B and pro-
tein kinase N2 (PKN2) results in synthesis of the PtdIns(3,4)P2 by 
class II PI3K-C2β, and PtdIns(3,4)P2, in turn, inactivates RhoA 
through recruitment of the ARAP3 GAP [15]. In summary, 
DEPDC1B high expression in the G2/M phase is critical to inacti-
vation of RhoA, disassembly of focal adhesions, and cell 
de-adhesion, thereby leading cell entry into mitosis. 
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Table 1 
Enhanced expression of DEPDC1B protein during G2/M phase of cell cyclea 

DEPDC1B 
Expression 
(Increase in G2/M 
vs untreated) 

MDA-MB-435 Untreated 39% 47% 13% 

Aphidicolin 52% 47% 0% 

12 h post Aphidicolin 24% 23% 52% Fivefold 

Nocodazole 4% 24% 71% 3.4-fold 

HeLa Untreated 60% 26% 13% 

Nocodazole 0% 10% 90% Fourfold 

a Cells were synchronized at the G1/S phase with aphidicolin (4 μg/mL, 24 h), followed by incubation in aphidicolin-free 

medium for 12 h. Alternatively, cells were enriched in G2/M phase by treatment with nocodazole (100 ng/mL, 16 h) [5] 

3 DEPDC1B Is a Positive Upstream Effector of pERK 

The MAPK canonical signaling pathway (RAS-CRAF/Raf-1-
MEK-ERK) is activated in a majority of cancers, and CRAF/Raf-
1 and MEK have been extensively investigated as promising drug-
gable targets [16–21]. Raf-1-induced transcriptional changes are



dependent, in part, on phosphorylation and activation of ERK. 
However, regulation of pERK via Raf-1 transcriptome is unclear. 
Earlier we have reported that siRNA knockdown of Raf-1 in 
MDA-MB-231 cells resulted in decreased expression of DEPDC1 
and pERK; and siRNA knockdown of DEPDC1B in MDA-MB-
231 cells was associated with decrease in pERK expression [5]. We 
have also demonstrated that transient or stable expression of 
Myc-tagged DEPDC1B in COS-1, HEK293T, and MCF-7 cells 
led to increased pERK levels compared to vector control [5]. In 
addition to the enhanced basal levels of pERK, DEPDC1B expres-
sion also seems to correlate with IGF1-stimulated expression of 
pERK. In this context, our data shows that siRNA knockdown of 
DEPDC1B is associated with reduced IGF1-induced pERK expres-
sion in MCF-7 breast cancer cells (Fig. 4). DEPDC1B expression 
has also been correlated with enhanced pERK expression in neuro-
blastoma cells [8]. Together these data suggest that DEPDC1B, a 
component of Raf-1 transcriptome, is a positive upstream effector 
of both the constitutive and ligand-stimulated pERK expression. 
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Fig. 4 DEPDC1B knockdown is associated with decreased induction of pERK in response to IGF1 in MCF-7 
cells. (a) Validation of siRNA knockdown of DEPDC1B. Cells were treated with 50 nM DEPDC1B siRNA 
(DEPDC1B Stealth siRNA #1, #2, or #3, Invitrogen) for 72 h, followed by sequential Western blot analysis as 
shown. (b) Decreased IGF1-mediated induction of pERK in DEPDC1B knockdown MCF-7 cells. Cells were 
treated with 50 nM DEPDC1B Stealth siRNA #2 for 72 h, followed by IGF1 treatment as shown. Whole cell 
lysates were analyzed by sequential Western blotting using anti-pERK(E10), anti-ERK, and anti-GAPDH 
antibodies 

4 DEPDC1B Is a Novel Binding Partner of the p85 Subunit of PI3K, and DEPDC1B 
Expression Correlates with Downregulation of Insulin-Stimulated Tyrosine 
Phosphorylation of p85 and pAKT1 Expression 

As mentioned above, DEPDC1B amino acid sequence shows puta-
tive binding motifs of the p85 subunit of PI3K at P111 and P116 
(Fig. 3). Here we have verified this interaction by reciprocal 
co-immunoprecipitation using whole cell lysates from HEK293T



cells transfected with Myc-DEPDC1B. Interestingly, the interac-
tion was found to be reduced in response to insulin. In addition, 
insulin-stimulated tyrosine phosphorylation of p85 was negated in 
cells expressing Myc-DEPDC1B as compared to vector control 
(Fig. 5a). DEPDC1B appears to also bind to insulin receptor 
(IRβ), and this binding was also decreased in the presence of insulin 
(Fig. 5b). However, in contrast to p85, insulin-stimulated tyrosine 
phosphorylation of IRβ was unaffected in DEPDC1B overexpres-
sing HEK293T cells. Transient transfection experiments using the 
N-terminus deletion construct (DEPDC1B-NT) or the 
C-terminus deletion construct (DEPDC1B-CT) of
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Fig. 5 DEPDC1B constitutively interacts with the p85 subunit of PI3K, and the interaction and tyrosine 
phosphorylated p85 level are reduced in insulin-treated HEK293T cells. (a) The Myc-tagged full-length 
DEPDC1B cDNA was amplified by PCR using the forward primer containing BglII restriction site (bold), 
Kozak sequence, translation initiation codon, and the Myc epitope (underlined) 50-GAGATCTGCCATGGAGCA-
GAAACTCATCTCTGAAGAGGACCTGATGGAGCATCGCATCGTGGGG-30, and the reverse primer containing Mlu1 
restriction site (bold) 50 - GACGCGTCTAGCACCTGTTGCTGTGGAAG-30, and cloned into the pCR3.1 plasmid 
(Myc-DEPDC1B) as detailed earlier [5]. Left panel, cells were transiently transfected with pCR3.1 vector or 
pCR3.1 Myc-DEPDC1B. Thirty-six hours after transfection, the cells were serum-starved for 16 h and then 
stimulated with insulin as shown. Whole cell lysates were pre-cleared with protein A/G beads for 1 h at 4 �C. 
The pre-cleared lysates, 750 μg of protein, were subjected to immunoprecipitation (IP) with anti-p85 
antibody-conjugated agarose beads for 24 h. The immunoprecipitated proteins were analyzed by Western 
blotting as shown. Middle panel, cells were transiently transfected and treated with insulin as above. The 
pre-cleared whole cell lysates (750 μg of protein) were used for IP with anti-Myc antibody-conjugated agarose 
beads, followed by sequential immunoblotting with anti-p85 and anti-Myc antibodies. (b) Left panel, cells 
were transfected and treated as in panel a. The pre-cleared cell lysates (750 μg of protein) were used for IP 
with anti-Insulin Receptorβ subunit (IRβ) antibody-conjugated agarose beads, followed by Western blotting 
with anti-pTyr, anti-IRβ (C-19), and anti-Myc antibodies. (a and b) Right panels, Western blots using 1/10 
(75 μg) the amount of protein from IP experiments for input references



Myc-DEPDC1B and co-immunoprecipitation showed that 
N-terminus of DEPDC1B containing the p85 binding motifs and 
not the C-terminus of Myc-DEPDC1B interacts with p85, IRS-1, 
and insulin receptor (Fig. 6). These data demonstrate direct and 
constitutive interaction between DEPDC1B and the p85 subunit 
of PI3K and suggest that DEPDC1B may also associate with IRS1 
and IRβ. We conclude that the N-terminal portion of DEPDC1B 
contains at least one bona fide p85 binding motif required for its 
binding to the p85 subunit of PI3K.
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Fig. 7 Exogenous DEPDC1B expression is associated with decreased insulin-induced p-AKT via PI3K in 
HEK293T cells. (a) Cells were transiently transfected with either pCR3.1 vector or Myc-DEPDC1B using 
LipofectAmine 2000. Twenty-four hours after transfection, the cells were serum-starved overnight and then 
treated with insulin as shown. Whole cell lysates were analyzed by sequential Western blotting with anti-pAKT 
(S473), anti-AKT, and anti-GAPDH antibodies. (b) The Western blot signals in panel a were quantified using 
ImageQuant software, and pAKT expression was normalized against GAPDH signal. Data shown are represen-
tative of three independent experiments. (c) Cells were seeded in 60mm2 tissue culture dishes (5� 105 cells/ 
dish) in DMEM supplemented with 10% FBS. The next day, the medium was switched to 2 mL OPTI-MEM 
medium containing scrambled siRNA (200 nM) or DEPDC1B siRNA (200 nM) (siGENOME, Dharmacon) for 72 h, 
and whole cell lysates were analyzed by sequential immunoblotting with anti-DEPDC1B and anti-GAPDH 
antibodies. (d) Cells were treated with scrambled siRNA (200 nM) or DEPDC1B siRNA (200 nM) for 48 h, 
followed by serum starvation for 16 h. Cells were then treated with insulin, and the cell lysates were analyzed 
by sequential immunoblotting as shown. (e) Cells were transiently transfected as in panel a, followed by serum 
starvation for 16 h, and treatment with wortmannin (Wm., 100 nM) for 15 min, and then with human 
recombinant insulin as indicated. The whole cell lysates were subjected to sequential immunoblotting with 
anti-pAKT(S473), anti-AKT, anti-Myc (9E10), and anti-Actin antibodies 

Insulin binding to the insulin receptor tyrosine kinase 
(IR) induces autophosphorylation of the receptor and activation 
of the IR-IRS1-PI3K pathway. Activated class I PI3K phosphory-
lates PtdIns-4,5P2 to PtdIns-3,4,5P3. PtdIns-3,4,5P3 interacts 
with the Pleckstrin homology domain of AKT1 (PKBα), recruiting 
AKT1 to the membrane where it is phosphorylated at T308 and 
S473 by PDK1 and mTORC2, respectively [22–25]. As shown in 
Fig. 7a and b, Myc-DEPDC1B expression in HEK293T cells cor-
related with a substantial reduction of insulin-induced pAKT 
(S473) level compared to vector control. Conversely, siRNA knock-
down of endogenous DEPDC1B was associated with relatively 
higher levels of insulin-stimulated pAKT versus scrambled siRNA 
control (Fig. 7c and d). To verify that DEPDC1B-mediated nega-
tive regulation of pAKT1 indeed occurs downstream of PI3K, 
HEK293T cells were treated with wortmannin, a PI3K-specific



�

inhibitor, prior to insulin stimulation. As shown in Fig. 7e, insulin-
stimulated pAKT(S743) levels were (1) significantly inhibited 
within 30 min of insulin treatment in Myc-DEPDC1B transfected 
cells as compared to control vector and (2) completely inhibited in 
the presence of wortmannin in both the Myc-DEPDC1B trans-
fected cells and control vector transfectants versus no wortmannin 
control counterparts. Furthermore, using a combination of the 
immunoprecipitation and immunoblotting assays, overexpression 
of DEPDC1B was found to suppress insulin-induced phosphoryla-
tion of AKT1 (S473) (Fig. 8a). DEPDC1B overexpression in 
HEK293T cells also attenuated the cell viability in insulin-treated 
cells at 72 h after transfection compared to vector control (Fig. 8b). 
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Fig. 8 Exogenous expression of DEPDC1B is associated with reduced insulin-stimulated pAKT1 expression and 
cell proliferation in HEK293T cells. (a) Cells were transiently transfected with pCR3.1 vector or Myc-DEPDC1B 
(10 μg plasmid/100 mm dish), serum-starved overnight, and treated with insulin as shown. The whole cell 
lysates (1 mg protein) were subjected to immunoprecipitation (IP) using anti-AKT1 antibody. Immunoprecipi-
tated proteins were analyzed by Western blotting sequentially with anti-pAKT(S473) and anti-AKT1 antibodies. 
(b) Cells (5 � 105 ) were transiently transfected with 2 μg of Myc-DEPDC1B (hatched) or empty vector (black) 
and seeded at 1 � 104 per well in a 96-well plate for 36 h. Cells were then serum-starved and treated with 
100 nM insulin for 16 h. Cell viability was assayed at 24, 48, and 72 h by WST-1 assay. Data presented are the 
mean +/ s.d. of two independent experiments, each performed in triplicate. *, p < 0.001 

Insulin receptor substrates (IRS1, IRS2) are known positive 
scaffolding adaptors linking the insulin and IGF1 receptors to 
activation of PI3K/AKT. DEPDC1B appears to function as a 
newly discovered negative adaptor in this pathway, further exposing 
AKT1 as a targetable vulnerability in cancer cells. Previously, 
pAKT1-mediated inhibition of invasion and migration has been 
reported [26]. In MCF-10A cells, knockdown of AKT1 was 
shown to enhance ERK activation and cell migration in response 
to IGFI or EGF [27]. Other reports suggest cell context-
dependent cross-regulation of AKT1 and ERK signaling pathways. 
Specifically, activated AKT1-mediated phosphorylation of cRAF/ 
Raf-1 (S259) has been shown to inhibit Raf-1 activity [28, 29]. It 
remains to be determined whether modulation of DEPDC1B



influences Raf-1 activity and the outcome of Raf-1/MEK-targeted 
therapies. Nonetheless, we conclude that DEPDC1B is central to 
cross-regulation of the AKT1 and ERK pathways. 
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5 DEPDC1B Is Implicated in Other Protein–Protein Interactions and Tumor 
Progression 

Several other cell context-dependent mechanisms of DEPDC1B-
mediated oncogenesis, angiogenesis, and metastasis have been 
reported. For instance, while DEPDC1B expression had no effect 
on RHOA-GTP/RAC1-GTP levels or WNT/β-catenin signaling 
in melanoma cells, activation of SOX10-DEPDC1B-SCUBE3 axis 
was found to promote melanoma angiogenesis and metastasis 
[9]. In this study, DEPDC1B was identified as a direct downstream 
target of transcription factor SOX10 and shown to interact with 
ubiquitin ligase CDC16, thereby preventing degradation of 
SCUBE3, a member of the SCUBE family of secreted glycopro-
teins. In contrast, DEPDC1B seems to enhance cell migration and 
invasion in non-small cell lung carcinoma through activation of 
Wnt/β-catenin signaling [30]. In a predicted 3D model of 
DEPDC1B, amino acid residues interacting with Rac-1 have been 
identified, and DEPDC1B has been shown to promote cell migra-
tion and invasion through the Rac1/PAK1-LIMK1-Cofilin1 sig-
naling pathway in pancreatic cancer cells [31, 32]. In prostate 
cancer cells, DEPDC1B was shown to bind to Rac1, activating 
the Rac1-PAK1 signaling pathway and inducing epithelial- mesen-
chymal transition [33]. 

STRING protein–protein interaction network analysis shows a 
number of predicted DEPDC1B interacting proteins (Fig. 9). 
These are Rho GTPase activating protein 11a (ARHGAP11A), 
mitotic checkpoint serine/threonine (BUB1), cyclin-dependent 
kinase-1 (CDK1), centrosomal protein of 55 kDa (CEP55), disk 
large-associated protein 5 (DLGAP5), hyaluronan-mediated 
motility receptor (HMMR), kinesin-like protein-15 (KIF15), 
kinesin-like protein-2C (KIF2C), LMBR1 domain-containing pro-
tein-2 (LMBRD2), and exportin-7 (XPO7). Many of these inter-
actions, if validated, are likely to expand the repertoire of 
DEPDC1B-centric networks implicated in regulation of tumor 
progression and therapy response. 

High expression of DEPDC1B has been demonstrated in sev-
eral cancer types [9, 30, 32–34]. Moreover, a survey of publicly 
available datasets showed significantly high DEPDC1B expression 
in breast, lung, and pancreatic carcinoma and melanoma compared 
to matched benign specimens (Fig. 10a). Furthermore, high 
DEPDC1B expression has been correlated with decreased proba-
bility of survival in patients with breast cancer, lung cancer, pancre-
atic adenocarcinoma, and renal cell carcinoma (Fig. 10b). Thus, 
DEPDC1B is a viable target in a clinical setting.
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Fig. 9 STRING protein–protein interaction network-based identification of 
DEPDC1B interacting proteins. The network is composed of nodes, which are 
the proteins, and the color-coded edges provide the association each node has 
with another node. The empty nodes are proteins of unknown 3D structure and 
filled nodes are proteins with predicted or known 3D structure. The pink and blue 
edges are known interactions either experimentally determined or from curated 
databases. The green, red, and blue edges are predicted interactions based on 
gene neighborhood, gene fusions, or gene co-occurrence, respectively. Proteins 
shown were identified as known or predicted to interact with DEPDC1B. 
DEPDC1B STRING (Version 11.5 August 2022) data can be found at https:// 
version-11-5.string-db.org/cgi/network?networkId¼bFZBQ7CtAKS3(DEPDC1B 
protein (human) - STRING interaction network (string-db.org) 

6 Conclusions and Future Perspectives 

Molecular targets functioning at the interface of multiple signaling 
pathways are likely to engage a broad spectrum of downstream 
effectors and thereby contribute to plasticity of both the canonical 
pathways and genome-wide networks, two of the major challenges 
in tackling tumor evolution and therapy response. While our under-
standing of the DEPDC1B systems and integrative biology as yet is 
rudimentary, several reports to date and new data presented here 
provide an evidence of DEPDC1B as a model target with multi-
pronged influence on the tumor systems biology (Fig. 11). Current 
highlights of this area of research are listed as follows (1). 
DEPDC1B is a new binding partner of the p85 subunit of PI3K 
(2). DEPDC1B cross-regulates AKT and ERK pathways through 
downregulating the ligand-stimulated tyrosine phosphorylation of 
p85 and expression of pAKT1 and promoting pERK, a hallmark of 
tumor progression. (3) High DEPDC1B expression during the

https://version-11-5.string-db.org/cgi/network?networkId=bFZBQ7CtAKS3
https://version-11-5.string-db.org/cgi/network?networkId=bFZBQ7CtAKS3
https://version-11-5.string-db.org/cgi/network?networkId=bFZBQ7CtAKS3
https://version-11-5.string-db.org/cgi/network?taskId=bF5lyMNxwtBB&sessionId=bFf2dDYeGb3l
https://version-11-5.string-db.org/cgi/network?taskId=bF5lyMNxwtBB&sessionId=bFf2dDYeGb3l
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G2/M phase is a cell de-adhesion mitotic checkpoint, a prerequisite 
for cell entry into mitosis (4). DEPDC1B mRNA expression is 
upregulated via expression of Raf-1 and long noncoding RNA 
lncNB1, and DEPDC1B is a direct target of transcription factor 
SOX10. DEPDC1B prevents SCUBE3 degradation, and SOX10-
DEPDC1B-SCUBE3 axis promotes angiogenesis and metastasis. 
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Fig. 10 DEPDC1B is a viable cancer biomarker. (a) DEPDC1B gene expression in tumor (T) and adjacent normal 
(N) tissues from TCGA and the Genotype Tissue Expression (GTEx) datasets. BRCA breast invasive carcinoma, 
LUAD lung adenocarcinoma, LUSC lung squamous cell carcinoma, PAAD pancreatic adenocarcinoma, and 
SKCM skin cutaneous melanoma. Tumor, red box; normal, black box. The p value cutoff was 0.01. Expression 
shown is -log2(TPM + 1) (Transcripts Per Million), GEPIA2 (2018) box plots: http://gepia2.cancer-pku.cn/ 
#analysis. (b) Relationship between DEPDC1B expression and survival probability in cancer patients. Survival 
curves were generated with The KMplotter (July 2022). Pan-cancer online datasets and the breast cancer 
datasets are linked as: https://kmplot.com/analysis/index.php?p background 

Future investigations are necessary to (a) address whether 
DEPDC1B functions to integrate, albeit in a context-dependent 
manner, the AKT and ERK networks and known feedback mechan-
isms and (b) identify the actionable molecular, spatial, and temporal 
vulnerabilities within the DEPDC1B-guided versions of the 
integrated AKT and ERK networks in cancer cells. In addition, 
DEPDC1B amino acid sequence shows binding motifs for three 
clinically relevant therapeutic targets CDK1, DNA-PK, and aurora 
kinase A/B. These partnerships and functionalities, if validated, are 
likely to further implicate DEPDC1B in regulation of DNA 
damage–repair and cell cycle progression processes critical to dis-
ease prognosis and therapy response.

http://gepia2.cancer-pku.cn/#analysis
http://gepia2.cancer-pku.cn/#analysis
https://kmplot.com/analysis/index.php?p=background
https://kmplot.com/analysis/index.php?p=background
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Fig. 11 Partnership between DEPDC1B, a downstream effector of Raf-1/lncNB1/SOX10, and the p85 subunit of 
PI3K: A paradigm of interception of ligand-induced PI3K-mediated activation of pAKT1 and promotion of pERK 
activity. Green arrows indicate upregulation of DEPDC1B mRNA expression. GF Growth factor, RTK Receptor 
tyrosine kinase. (See text for details) 

Acknowledgements 

The authors thank Doug Joubert, Coordinator, The National 
Institutes of Health (NIH) Library Bioinformatics Support Pro-
gram, for assistance with bioinformatic tools and resources, and 
their laboratory colleagues for contributions during the initial 
phase of this project. This work was supported, in part, by grants 
from the National Institutes of Health (CA58984, CA65012, 
CA68322, CA74175) and NeoPharm, Inc. Portion of the work 
presented in this chapter was carried out by HEB toward his Ph.D. 
dissertation. UNK and HEB are co-inventors of the Georgetown 
University DEPDC1B (BRCC3) patented technology “Gene 
BRCC-3 and Diagnostic and Therapeutic Uses Thereof” US patent 
7,442,520 B2. HEB is currently a Staff Scientist at National Insti-
tutes of Health, NIAID/LCIM/MDS, Bethesda, MD, USA. Sev-
eral cell lines were obtained from the Tissue Culture Shared 
Resource of the Georgetown Lombardi Comprehensive Cancer 
Center. All shared resources were supported by the NIH grant 
P30-CA51008.



DEPDC1B and Tumor Progression 309

References 

1. Gokhale PC, Zhang C, Newsome J, Pei J, 
Ahmad I, Rahman A, Dritschilo A, Kasid U 
(2002) Pharmacokinetics, toxicity, and efficacy 
of ends-modified raf antisense oligodeoxyribo-
nucleotide encapsulated in a novel cationic 
liposome (LErafAON). Clin Cancer Res 8: 
3611–3621 

2. Rudin CM, Marshall JL, Huang CH, Kindler 
HL, Zhang C, Kumar D, Gokhale PC, 
Steinberg J, Wanaski S, Kasid UN, Ratain MJ 
(2004) Delivery of a liposomal c-raf-1 anti-
sense oligonucleotide by weekly bolus dosing 
in patients with advanced solid tumors: a phase 
I study. Clin Cancer Res 10(21):7244–7251 

3. Dritschilo A, Huang CH, Rudin CM, 
Marshall J, Collins B, Dul JL, Zhang C, 
Kumar D, Gokhale PC, Ahmad A, Ahmad I, 
Sherman JW, Kasid UN (2006) Phase I study 
of liposome-encapsulated c-raf antisense oligo-
deoxyribonucleotide infusion in combination 
with radiation therapy in patients with 
advanced malignancies. Clin Cancer Res 12: 
1251–1259 

4. Boudreau HE, Broustas CG, Gokhale PC, 
Mewani RR, Ahmad I, Kasid U (2006) Inhibi-
tion of Raf-1 in human breast cancer cells is 
associated with decreased expression of 
BRCC3, a novel cell cycle regulated molecule. 
97th annual American Association of Cancer 
Research Meeting, Washington, DC., Abstract 
No. 2586 

5. Boudreau HE, Broustas CG, Gokhale PC, 
Kumar D, Mewani RR, Rone JD, Haddad 
BR, Kasid U (2007) Expression of BRCC3, a 
novel cell cycle regulated molecule, is asso-
ciated with increased phospho- ERK and cell 
proliferation. Int J Mol Med 19:29–39 

6. Roy AL, Meisterernst M, Pognonec P, Roeder 
RG (1991) Cooperative interaction of an 
initiator-binding transcription initiation factor 
and the helix-loop-helix activator USF. Nature 
354:245–248 

7. Wasner M, Haugwitz U, Reinhard W et al 
(2003) Three CCAAT-boxes and a single cell 
cycle genes homology region (CHR) are the 
major regulating sites for transcription from 
the human cyclin B2 promoter. Gene 312: 
225–237 

8. Liu PY, Tee AE, Milazzo G et al (2019) The 
long noncoding RNA lncNB1 promotes 
tumorigenesis by interacting with ribosomal 
protein RPL35. Nat Commun 5:5026 

9. Hu F, Fong KO, Cheung MPL et al (2022) 
DEPDC1B promotes melanoma angiogenesis 
and metastasis through sequestration of 

ubiquitin ligase CDC16 to stabilize secreted 
SCUBE3. Adv Sci (Weinh) 9(10):e2105226 

10. Kreider-Letterman G, Carr NM, Garcia-Mata 
R (2022) Fixing the GAP: the role of Rho-
GAPs in cancer. Eur J Cell Biol 101(2):151209 

11. Schaefer A, Der CJ (2022) RHOA takes the 
RHOad less traveled to cancer. Trends Cancer 
8:655–669 

12. Amin E, Jaiswal M, Derewenda U et al (2016) 
Deciphering the molecular and functional basis 
of RHOGAP family proteins: a systematic 
approach toward selective inactivation of 
RHO family proteins. J Biol Chem 29: 
20353–20371 

13. Marchesi S, Montani F, Deflorian G et al 
(2014) DEPDC1B coordinates de-adhesion 
events and cell-cycle progression at mitosis. 
Dev Cell 31:420–433 

14. Garcia-Mata R (2014) Arrested detachment: a 
DEPDC1B-mediated de-adhesion mitotic 
checkpoint. Dev Cell 31:387–389 

15. Posor Y, Kampyli C, Bilanges B et al (2022) 
Local synthesis of the phosphatidylinositol-
3,4-bisphosphate lipid drives focal adhesion 
turnover. Dev Cell 57:1694–1711 

16. Karreth FA, Frese KK, DeNicola GM, 
Baccarini M, Tuveson DA (2011) C-Raf is 
required for the initiation of lung cancer by 
K-Ras G12D. Cancer Discov 1:128–136 

17. Kasid U, Pfeifer A, Brennan T, Beckett M, 
Weichselbaum RR, Dritschilo A, Mark GE 
(1989) Effect of antisense c-raf-1 on tumorige-
nicity and radiation sensitivity of a human squa-
mous carcinoma. Science 243:1354–1356 

18. Klomp JE, Klomp JA, Der CJ (2021) The ERK 
mitogen-activated protein kinase signaling net-
work: the final frontier in RAS signal transduc-
tion. Biochem Soc Trans 49:253–267 

19. Yaeger R, Corcoran RB (2019) Targeting 
alterations in the RAF–MEK pathway. Cancer 
Discov 9:329–341 

20. Karoulia Z, Gavathiotis E, Poulikakos PI 
(2017) New perspectives for targeting RAF 
kinase in human cancer. Nat Rev Cancer 17: 
676–691 

21. Kasid U, Suy S, Dent P, Ray S, Whiteside TL, 
Sturgill TW (1996) Activation of Raf by ioniz-
ing radiation. Nature 382:813–816 

22. Hoxhaj G, Manning BD (2020) The PI3K-
AKT network at the interface of oncogenic 
signalling and cancer metabolism. Nat Rev 
Cancer 20:74–88 

23. Vanhaesebroeck B, Guillermet-Guibert J, 
Graupera M, Bilanges B (2010) The emerging



29. 

310 Howard E. Boudreau et al.

mechanisms of isoform-specific PI3K signaling. 
Nat Rev Mol Cell Biol 11:329–341 

24. Vanhaesebroeck B, Perry MWD, Brown JR, 
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Chapter 22 

Single-Cell and Spatial Analysis of Emergent Organoid 
Platforms 

Aditi Kumar, Shuangyi Cai, Mayar Allam, Samuel Henderson, 
Melissa Ozbeyler, Lilly Saiontz, and Ahmet F. Coskun 

Abstract 

Organoids have emerged as a promising advancement of the two-dimensional (2D) culture systems to 
improve studies in organogenesis, drug discovery, precision medicine, and regenerative medicine applica-
tions. Organoids can self-organize as three-dimensional (3D) tissues derived from stem cells and patient 
tissues to resemble organs. This chapter presents growth strategies, molecular screening methods, and 
emerging issues of the organoid platforms. Single-cell and spatial analysis resolve organoid heterogeneity to 
obtain information about the structural and molecular cellular states. Culture media diversity and varying 
lab-to-lab practices have resulted in organoid-to-organoid variability in morphology and cell compositions. 
An essential resource is an organoid atlas that can catalog protocols and standardize data analysis for 
different organoid types. Molecular profiling of individual cells in organoids and data organization of the 
organoid landscape will impact biomedical applications from basic science to translational use. 

Key words Organoid heterogeneity, Organoid atlas, Organogenesis, Single-cell and spatial analysis, 
Three-dimensional (3D) tissues, Pluripotent stem cells (PSCs), Adult stem cells (ASCs), Embryonic 
stem cells (ESCs), Induced pluripotent stem cells (iPSC), Extracellular matrix (ECM), Light-sheet 
fluorescence microscopy (LSFM), Epi-illumination selective-plane illumination microscope (eSPIM), 
Open-top light-sheet (OTLS) microscopes, Single-cell RNA-sequencing (scRNA-seq), Multivariate-
barcoded mass cytometry (MC), High-dimensional immunophenotyping, Imaging mass cytometry 
(IMC), Multiplexed error-robust fluorescence in situ hybridization (MERFISH), Sequential fluores-
cence in situ hybridization (seqFISH), Cyclic immunofluorescence (CycIF), Matrix-assisted laser 
desorption/ionization (MALDI), Time-of-flight secondary ion mass spectrometry (TOF-SIMS), 
Patient-derived xenograft (PDX), Regenerative medicine, Precision medicine 

1 Introduction 

Regenerative medicine has identified organoids as a promising 
alternative to traditional 2D culture systems with the ability to 
shorten the gap in translational research. Organoids allow studying 
how to control spatio-temporal self-renewal and differentiation in 
cells. The key promises in organoids are the growth of organs
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in vitro and the ability to complement preclinical research as the 
organoids can be grown from either stem cells or patient-derived 
cells [1]. The first demonstration of organoids dates back to the late 
twentieth century when primary keratinocytes from human were 
co-cultured with 3T3 cells to proliferate stratified squamous epi-
thelial colonies to recreate the epidermis; this demonstration links 
the study of the 3D organization of cells into tissues and then 
organs from a 2D surface [2]. The ability to grow hepatocytes 
from rat tail collagen while integrating the secretion of cytochrome 
P450 showed how organoids could retain tissues’ typical character-
istics [3]. Improvements in understanding extracellular matrix and 
cell suspension methods laid the foundation for 3D culture systems 
[4]. Alveolus-like structures from a 3D laminin matrix created 
mammary epithelial cells with the ability to secrete milk, demon-
strating earlier examples of organoids [3–5].

312 Aditi Kumar et al.

After the initial establishment of the organoid platform, plurip-
otent stem cells guided fundamental advances in organoid research. 
Embryonic stem cell (ESC) retinal epithelium with epithelial vesi-
cles formed the optic cup via intrinsic self-organization [6]. Addi-
tionally, intestinal stem cells created an epithelial structure similar 
to a gut [7]. Organ-specific stem cells and progenitor cells from the 
stomach, bladder, and lung can be grown as organoids and utilized 
in disease modeling and clinical translation. For example, organoids 
can guide treatment for patients with rare diseases such as cystic 
fibrosis via drug screening [3]. The initial focus was on growing 
stem cell-derived organoids and studying their ability to self-
organize and differentiate, mimicking in vivo organs. The defini-
tion of an organoid was previously associated with a 3D complex 
structure, derived from stem cells, that self-organizes. Patient-
derived cells have recently been used to produce organoids from 
cancerous and normal tissues [8]. Established protocols developed 
for patient-derived organoids, also referred to as tissue-derived 
organoids, can be applied for drug screening [9]. The current 
formation procedure of a patient-derived organoid is a tumor cell 
culture from a patient that can be expanded and retain morpholog-
ical and genetic features of the tumor, yielding a predictive tool for 
treatment options [10]. 

Along with expanding organoid derivations, a growing body of 
research has utilized single-cell analysis for organoid screening. 
Single-cell details capture the heterogeneity of cell populations, 
previously not obtained in sequencing and spectrometry experi-
ments. It can help understand the organoid-to-organoid variability 
in individual cells at high throughput. For example, single-cell 
RNA sequencing (scRNA-seq) and accessible chromatin profiling 
enable understanding of organoid development and explore how 
gene expression varies from one cell to another [11]. Organoids 
and organs typically contain multiple cell types and states in their 
microenvironments. Combining single-cell analysis and spatial



single-cell profiling would locate different cell types and elucidate 
the structural heterogeneity, leading to advances in organoid 
research and benefiting disease modeling. 
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In this perspective, we discuss how organoids can be derived 
and successful organoid advancements from the significant classes 
of organoids. An overview of the preparation of organoids, 
emerging single-cell analysis techniques, and the potential applica-
tions of organoids is provided (Fig. 1). We highlight the technical 
challenges with organoid development, administrative concerns 
with organoids, along with the translational research potential to 
showcase future research areas. Notably, the diversity of culture 
media compositions for growing organoids can be attributed to a 
lack of lab-to-lab standardization. The lack of native tissue com-
partments such as vasculature in organoid systems hinders multi-
cellular assemblies’ formation [15, 16]. The shapes of diverse orga-
noid types and the related cell types are presented to provide a visual 
representation of the differences within each organoid type. 
Emerging single-cell analysis, spatial single-cell profiling of the 
cell-cell interactions, and signaling of the heterogeneous cell types 
in organoids can improve organoid screening and bridge the gap 
between in vitro and in vivo screening [17]. 

2 Emergence and Construction of Organoids 

Organoids serve as in vitro 3D tissue models, derived from stem 
cells and normal or diseased tissues. In organoids, cells are self-
assembled during differentiation events under the influence of 
exogenous and endogenous signals. Simultaneously, cell types 
assemble at the micro-level based on the physical cell interactions 
and at the macro-level through the alterations in morphological 
architecture via contraction or expansion [4] . Organoids typically 
contain multiple cell types and are co-cultured with target or effec-
tor cells in unique growth conditions [18]. Typical 2D cell lines 
cannot capture 3D interactions of multiple cell types, but multicel-
lular organoids can bridge that gap. Organoids preserve the native 
tissue specimens’ microenvironment and recapitulate the varying 
cell states [19]. Multicellular organoids create a complex model to 
include 3D cellular components using ample cell types such as 
epithelial cells, immune cells, and cancer-associated fibroblasts. 
For example, the enteric nervous system can be incorporated into 
the human intestinal organoid for disease modeling of the gut, 
blood, and neural crosstalk [20]. 

2.1 Emergence of 

Organoids 

Organoids are 3D cultures grown from pluripotent stem cells 
(PSCs), adult stem cells (ASCs), and patient-derived tissues. The 
PSCs mainly used in organoid research are ESCs and induced 
pluripotent stem cells (iPSC). PSCs create the three germ layers 
(endoderm, ectoderm, and mesoderm). Organoids are produced
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Fig. 1 Building, deciphering, and leveraging organoids. This figure presents an overview of the process of 
harvesting and co-culturing organoids with different cell types, both patient-derived and stem cell-derived, for 
single-cell analysis. An intestinal organoid is illustrated here, but this process applies to all types of organoids. 
After the organoid is initially established and assembled in a spatial scaffold, it is prepared for single-cell 
analysis. These organoids can become multicellular with different cell types by using an effector cell. 
Alternatively, organoids can be co-cultured with cancer-associated fibroblasts (CAF), neurons, immune 
cells, or vascular cells to resemble their desired organ; post co-culture, the organoid is prepared for analysis 
[12, 13]. Popular single-cell analysis techniques involve single-cell sequencing, mass cytometry light-sheet 
microscopy, and spatial profiling. These imaging techniques allow for the different cell types present in an 
organoid to be studied and comprehend how the cellular level affects the organoid development. Some 
potential applications of organoids are highlighted here. Drugs can be developed and tested on organoids to 
ensure better translational research; drugs can be screened on the patient-derived organoid before adminis-
tration and allow the personalization of the drug to the patient. Biobanking stores patients’ diseased samples 
for future organoid use and treatment; it captures the disease’s complexity. CRISPR-Cas9 technology used in 
conjunction with organoids allows the study of human genetics and tests the CRISPR-Cas9 gene therapy’s 
applicability in organoids. A proposed solution to the lack of lab-to-lab standardization of protocols is creating 
an organoid atlas in which organoid pioneers can crowdsource their protocols and organoid shapes. Organoid 
atlas enables efficient testing protocols for each type of organoid. An online atlas platform can be generated as 
a list of the different types of organoids available to share the corresponding protocols and images to each 
shape. Experts can then judge the best protocols based on the available data or decide to lead more guided 
efforts in elucidating the best protocol [14]



either by manipulating the patterning or letting the cell differenti-
ate independently with a scaffold, e.g., hydrogel, Matrigel, colla-
gen, extracellular matrix (ECM), and other membrane matrices, 
which will be referred to in the subsequent organoid culture pro-
tocols [21, 22]. ASCs are isolated from human tissues and currently 
established via epithelial tissues, while using them in non-epithelial 
tissue platforms is possible [21, 23]. Patient-derived organoids can 
maintain the morphological and phenotypic characteristics of their 
original tissues, allowing them to capture the sensitivity to drugs 
and the tissue heterogeneity [24]. Patient-derived tissues can be 
both tumor and non-diseased tissues to aid in understanding 
organogenesis.
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Organoids created from iPSCs can help model infectious dis-
eases. For example, an iPSC-derived brain organoid demonstrated 
that the Zika virus effectively destroys early-stage organoids repre-
senting a first-trimester fetal brain [25]. IPSC-derived lung orga-
noids are also used in studying the pathogenesis of COVID-19 and 
can serve as a model for candidates of COVID-19 inhibitors 
[26]. Furthermore, iPSCs can be beneficial at studying genetic 
diseases and disease modeling. For instance, CRISPR/Cas9 
genome editing on iPSC-derived lung organoids showed that 
amending the most common mutation that causes cystic fibrosis 
can cure the disease [27]. Thyroids and lungs derived from ESCs 
capture the developmental landmarks and can help identify poten-
tial treatments for diseases commonly affecting these organs 
[28]. Differentiated iPSCs can create biobanks to screen for 
drugs’ efficacy and toxicity to complement animal testing [29]. 

ASC-derived organoids are particularly useful when determin-
ing how tissue or tumor will respond to particular drugs [30], 
especially for testing whether specific tumors acquire resistance 
during treatment. A biobank of organoids derived from ASCs 
would have a wide range of genetic mutations to collect human-
specific data for drugs. ASCs can help create a new class of drugs for 
diseases that have too small of a market to get tested in a clinical 
setting and can be used to test the efficacy and toxicity of treatment. 
ASCs can also be leveraged for genetic manipulations such as 
CRISPR/Cas9 or lentivirus treatments on human specimens to 
see the effects on tissue without having to experiment with a 
patient [23]. 

Similar to ASCs, patient-derived organoids are also harvested 
through the human body. Patient-derived organoids, specifically 
cancer cell-derived organoids, are used in research to elucidate the 
best cancer treatments. In particular, patient-derived organoids 
have a variety of analysis techniques. Genomic profiling allows the 
identification of drug targets and where resistance to treatment can 
occur. Survival assays, flow cytometry, staining, and optical imaging 
test the treatment efficacy [31]. For example, when ovarian cancer 
cell organoids were compared to 2D cell culture to show the drugs’ 
effect on various patients’ genomes, the genomic differences were



only captured in organoids. This experiment demonstrated the 
potential of using patient-derived organoids to design cancer treat-
ments with greater efficiency and in a personalized manner 
[32]. Growing normal (non-diseased) organoids is possible for 
studying development of human tissues. For example, comparative 
analysis of normal and tumor colon and rectal tissue-derived orga-
noids showed the effect of vitamin D on these 3D assemblies 
[33]. This study showed that vitamin D upregulated genes related 
to stemness, such as LGR5 and LRIG1, and downregulated differ-
entiation marker genes such as TFF2 and MUC2. A similar patient-
derived organoid model of head and neck squamous cell carcinoma 
with its corresponding normal wild-type organoid (harvested from 
normal tissues next to the tumor tissues) provided comparisons of 
epidermal growth factor receptor (EGFR) expression levels 
between the normal and diseased organoids [34]. Comparative 
studies of normal organoids with their tumor counterparts have 
great potential to elucidate molecular regulation patterns. Thus, 
biobanks of patient-derived normal and tumor organoids would 
create a library to study cellular disease mechanisms in tissue biop-
sies that are typically convenient to retrieve, making them a suitable 
derivation method for organoids [31]. 
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Stem cell-derived organoids and patient-derived organoids can 
be applied to multiple types of organoids. Table 1 highlights differ-
ent organoid platforms, their origins, and the advantages and dis-
advantages associated with each platform. For example, an 
organoid platform with the brain that consists of a serum-free 
floating culture of embryoid body-like aggregates with quick reag-
gregation demonstrates that the central nervous system develops 
from neuroectoderm (the outermost layer in the embryo). For 
instance, the neuroectoderm develops to the spinal cord with 
stem cells that can divide both symmetrically to increase in number 
and asymmetrically to drive the differentiation in a specific direction 
[35]. Another use of organoids to model the brain’s function is 
through mini-brain development, where stem cell aggregates are 
embedded into the laminin-rich extracellular matrix and can 
develop distinct brain regions upon activation of distinct growth 
factors [47]. A similar model developed other organoids such as the 
retina and the olfactory pulp using the neurons [36]. Besides, the 
same approach facilitated the growth of different organs in the 
human digestive tract, originating from the same stem cells of the 
stomach, liver, and salivary glands, upon the activation of the 
corresponding growth factors [37, 39, 42]. 

Organoids model crucial organs in living conditions outside 
the human body. Specifically, the study of the lungs is modeled 
through an air–liquid interface to develop a deeper understanding 
of rare diseases, including cystic fibrosis [38]. Previously, there was 
a gap in knowledge on the human kidney pathology and its in vivo 
function. ESCs induced ureteric buds and metanephric
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mesenchyme to create a nephron in vitro through self-organization 
[40]. The ability to create renal tissue via pluripotent resources 
exhibits various implications such as tissue-based nephrotoxicity 
screens, disease modeling, and bioengineering of transplantable 
organs. Analysis of the gastrointestinal epithelial organoid gave 
insight into the disease physiology of cystic fibrosis [48].
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2.2 2D and 3D 

Culture Models 

Traditional cell monocultures lack the ability to initiate critical cell 
signaling pathways. Tissue explants rapidly lose their phenotype 
and cannot last as long as organoids despite their cell organization. 
Various 2D and 3D culture models have decreased discrepancies 
between cell cultures and a patient’s microenvironment. 2D cell 
culture methods involving sandwich cultures are composed of two 
layers of an extracellular matrix and collagen with a layer of cells 
between. This is especially useful when modeling liver cells because 
hepatocytes are similarly surrounded by extracellular matrices. This 
culture method also allows for longer lasting cultures that maintain 
their functionality better than traditional 2D cultures. 3D cultures, 
aside from organoids and spheroids, include the cell sheet method 
that utilizes multiple layers of 2D cell cultures that together create a 
3D culture and are able to vascularize when implanted into mice 
[49]. In contrast to these 2D models, spheroids and organoids are 
commonly used 3D culture models [50]. Organoids, spheroids, 
and 3D culture are interchangeably used, but the organoids pri-
marily indicate aggregation of cells that grow in 3D to create units 
and mimic organs in their structures and functions [3]. Both 3D 
models can model a tumor microenvironment with accompanying 
cell-to-cell interactions. 

3 Structural and Molecular Analysis of Organoids 

Stem cells in 2D and 3D structures, bioprinting of human cells, and 
organ-on-a-chip platforms are useful tools in modeling human 
organ development and mimicking the organs’ ability to recapitu-
late the development and tissue organization [51]. To shed light on 
similarities of synthetic organoids and native organs, cellular imag-
ing and molecular analysis technologies can be used to determine 
the biochemical, genetic, and metabolic features of organoids. 
Analyzing the structure and formation of organoids at the single-
cell level has the potential to reveal the underlying biology of 
human organ development and organ regeneration, creating 
opportunities for potential therapeutic and diagnostic solutions 
[14]. To this end, emerging single-cell and spatial analysis methods 
help decipher morphology and cellular compositions.
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3.1 Structural 

Heterogeneity of 

Organoids 

Organoids exhibit intrinsic features, self-organization capabilities, 
and diverse structural composition. Therefore, organoids contain 
diverse cell types [22]. Diverse organoids are engineered based on 
three different signal types that include secreted soluble signals, 
modular ECM signals, and non-modular extracellular matrix sig-
nals. Using a membrane matrix as an extracellular matrix (ECM) 
supports cell growth and cell adhesion, which leads stem cells to 
form into structures with organized groups of cells. The composi-
tion of extracellular matrix, including the macromolecules and 
minerals, including collagen, glycoproteins, and hydroxyapatite, 
can heavily influence the final characteristics of the organoids. In 
particular, the composition of ECM can influence chemical screen-
ing and genetic screening of organoids. Therefore, it is important 
to fully define what materials are in the ECM, as they affect the 
organoid culture [14]. In these 3D assemblies, cells often convene 
into heterogeneous organoids regarding viability, size, and shape. 
Various organoid types, variations of shape patterns within each 
organoid type, and the markers associated with each organoid type 
are shown (Fig. 2 and Table 2). Sixteen different types of organoids 
with five different images of each type show key differences in their 
shapes. Primary cell types for each organoid and distinct marker sets 
utilized to express primary cells in each organoid are presented. 
Organoid types resemble targeted organs in their structures, 
shapes, and cell compositions [22]. 

3.2 Single-Cell and 

Spatial Analysis of 

Organoids 

Single-cell studies reveal the specific features related to human 
organoids’ development by identifying distinct cell types, cell 
states, and the heterogeneity of individual cells within the organoid 
model (Fig. 3)  [143]. The traditional 2D imaging for analyzing 
sectioned tissues has limitations in characterizing the complex 3D 
architecture of the organoids [139]. 3D characterization reveals the 
cellular fate decisions, cell–cell interactions, and cellular composi-
tions, and the high-throughput image-based profiling provides a 
window into cellular dynamics and morphologies in a multicellular 
microenvironment [8, 139]. For example, noninvasive optical sec-
tioning microscopy methods, including confocal microscopy and 
light-sheet fluorescence microscopy (LSFM), make it possible to 
visualize the spatial complexity and 3D characterization of intact 
organoids at a single-cell level [139]. Both confocal microscopy and 
LSFM visualize the finer details of the cellular structure and com-
position. LSFM as a technique for imaging 3D structure of rela-
tively transparent specimens has the advantages of high imaging 
speed and reduced photobleaching over other imaging methods 
[140]. However, conventional immunofluorescence is limited by 
the number of colors used per imaging cycle and the LSFM cap-
tures images at lower resolution, posing challenges for accurate data 
analysis of cell–cell interactions [139, 144]. Also, traditional LSFM 
uses capillary containing both the sample and light-sheet
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Fig. 2 Morphological and cell-type survey of organoids. (a) Organoids: bladder, brain, breast, inner ear, kidney, 
large intestine, liver, and lung are shown. (b) Organoids: esophageal, retinal, ovarian, pancreas, prostate, small 
intestine, stomach, and thyroid are shown. Here 16 different types of organoids and 5 different images for each to 
observe the shapes, sizes, and structures are presented. In the first column, the type of organoid and a 
representative image of it is shown. The subsequent columns (2–6) include different images of each organoid. 
Most of these organoids generally range from 200 μm up to 500 μm, while the sizes of brain and kidney organoids 
can even go up to 1.5 m, 2 mm, and 2.5 mm. These structures resemble miniature organs and are composed of 
many different cell types. The first column includes major cell types of each corresponding organoid. (Bladder, 
basal and urothelial cells; brain, neuronal and glial cells; breast, luminal and basal cells; inner ear, sensory hair 
cells; intestinal, enterocytes, entero-endocrine, paneth, and goblet cells; kidney, nephrons and podocytes cells; 
liver, hepatocytes and cholangiocytes cells; lung, goblet and basal cells; esophageal, keratinocyte and basal cells; 
retinal, retinal ganglion, horizontal, and amacrine cells; ovarian, secretory and ciliated cells; pancreas, ductal and 
acinar cells; prostate, basal, luminal, and neuroendocrine cells; stomach, mucous and endocrine cells; thyroid, 
thyrocytes and follicular cells [47, 52–123]



Organoid Platforms for Precision Medicine 323

ESOPHAGEAL 

SMALL 
INTESTINE 

THYROID 

basal, 

keratinocyte 

retinal ganglion, 

horizontal, 

secretory, 

ciliated 

ductal, 

acinar 

basal, luminal,  

neuroendocrine 

enteroendocrine, 

paneth, goblet 

thyrocytes, 

follicular 

mucous, 

endocrine 

B 

Fig. 2 (continued)



324 Aditi Kumar et al.

Table 2 
Analysis of structural and molecular compositions of different types of organoids is summarized here 
in this table. The table lists different organoid types on the first column and cell types of each 
organoid with the specific markers utilized for their expressions on the second column 

Organoid types Cell types with markers 

Bladder [116] Basal: Keratin 5, p63, Keratin 20, UpkIII, CD44 
Urothelial 

Brain [124] Neuronal: TUJ1, NeuN, MAP2 
Glial: GFAP, S100β 

Breast [88, 125] Luminal: Trop2, CD271, CD49f, EpCAM, Keratin 8, GATA3 
Basal: CD49f, EpCAM, Keratin 14, SMA 

Inner ear [69, 126] Sensory hair: Sox2, BMP4, Myo7a, CtBP2, F-actin-positive, Atoh1, EpCAM, 
CD271 

Kidney [127] Nephrons: GATA3 
Pedocytes: NPHS1, SYNPO 

Intestinal [128] Epithelial cell: EpCAM 
Enterocytes: VILLIN 
Goblet: MUC2 
Enteroendocrine: CHGA 
Paneth: Lysozyme 

Liver [129] Hepatocytes: Tbx3, Sox9, EpCAM 
Cholangiocytes: FGF10, Activin A 

Lung [108, 130] Goblet: MUC5AC, MUC5B 
Basal: Trp63, Keratin 5, Itga6, Pdpn 

Esophageal [131] Basal: Keratin 5, Keratin 14, p63, Sox2 
Keratinocyte: Keratin 5, Keratin 14, p63, Sox2 

Retinal [132] Ganglion: SLC17A6 
Horizontal: LHX1, ONECUT1 
Amacrine: GAD1 and TFAP2A 

Ovarian [117] Secretory: Pax8, Keratin 8 
Ciliated: Dnali1, Foxj1, Cytokeratin 8, Pax8 

Pancreas 
[133, 134] 

Ductal: Sox9, Keratin 19, CFTR 
Acinar: AMY, Chymotrypsin C, Sox9, PDX1 

Prostate 
[135, 136] 

Basal: P63, Keratin 5, ERβ, CD49f 
Luminal: Keratin 8, Keratin 18, AR, ER β, CD26 
Neuroendocrine: Chromogranin A, Synaptophysin 

Stomach [37, 137] Mucous: MUC5AC, MUC6, TFF2 
Endocrine: GAST, GHRL, SST, 5-HT 

Thyroid [138] Thyrocytes: Nkx2-1, Pax8, Tg, Tsh-r, Nis, and Tpo 
Follicular: Nkx2-1
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Fig. 3 Single-cell analysis methods for organoids. (b) Schematic overview of widefield, confocal, light-sheet 
microscopy, and open-top light-sheet microscopy. Organoids are recovered from their 3D matrix, and the 
sample is fixed, blocked, and cleaned before immunolabeling with antibodies. The 3D rendering of images is 
performed with imaging analysis [139, 140]. (b) Schematic overview of scRNA-seq. scRNA-seq examines the
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embedding solution, and the sample is exposed by pushing down 
the solution. However, this may result in specimen contamination 
and undesired dilution of reagents. To improve the specimen qual-
ity and ease-of-use of LSFM, open-top light-sheet microscopes 
(OTLS) have been developed with both illumination and collection 
objectives orientating 45 degrees with respect to the vertical axis. 
Also, the specimen is placed above the objective lenses. The design 
of OTLS makes it function as an inverted fluorescence microscope 
and eliminates the need of immersing the sample in medium by 
using a typical slide holder [140]. To solve the problem of limited 
resolution and sensitivity, people have designed a single-objective 
oblique epi-illumination selective-plane illumination microscope 
(eSPIM). eSPIM system utilizes a water-immersion objective with 
high numerical aperture and utilizes the index mismatch between 
the working media of an air objective and a second water-
immersion objective. This microscope design builds on the existing 
inverted fluorescent microscopes, and it provides a platform for 
screening the sample with high spatial-temporal resolution 
[145]. The rise of live imaging enables both spatial and temporal 
analysis of the organoids. Some considerations for selecting the 
microscope for live imaging include phototoxicity, speed of imag-
ing, sensitivity, and spatial/temporal resolution. Hof et al. designed 
the time-resolved live LSF, which allows the observations of the 
dynamics of the formation in a single organoid. The single-cell 
resolution pipeline achieves the tracking and extraction of single-
cell features within individual organoids [146]. Confocal spinning 
disk has been used for live imaging to visualize the biological 
processes of organoids. The spinning disk with multiple pinholes 
enables the light illuminated at multiple points of the sample simul-
taneously, increasing the speed of image acquisition [147]. Also, 
the laser scanning confocal microscope can achieve time-lapse 3D 
live cell imaging of fluorescently labeled chromatin. The signals 
distinguish live and dead cells. The quantification of organoid 3D 
volume, surface area, and the number of live/dead cells provides 
means to study the tumor cell growth and drug responses within 
organoids [148].
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Fig. 3 (continued) individual cells to identify cell type and reveal cell differences via sequencing using Drop-
seq [11, 141]. (c) Schematic overview of mass cytometry workflow. The organoids can be labeled with 
elemental isotopes staining. Mass cytometry allows cell-type identification and high-throughput characteri-
zation [17]. (d) Schematic overview of spatial barcoded assays. After labeling with a metal-based barcoding 
approach, the organoids are pooled for efficient embedding and cutting. Sections from the organoids can be 
imaged using IMC to study the spatial multiplexity, including the cell state, neighborhood, and global 
environment [142]
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Another single-cell screening method, single-cell RNA-
sequencing (scRNA-seq), achieves the genomic measurements of 
organoids without spatial details. The combination of scRNA-seq 
and accessible chromatin profiling reveals gene expression hetero-
geneity in human cerebral organoid development [149]. Although 
scRNA-sequencing could reveal the cell types within the organoids, 
it fails to describe the cell–cell interactions in the organoids’ signal-
ing networks. Also, most scRNA-seq methods achieve the sequenc-
ing of transcriptome by lysing the cells. To preserve the complex 
cell diversity in organoids, people have used the Drop-Seq method 
based on droplet microfluidics to enable sequencing over 
thousands of cells from whole-brain organoids by barcoding 
RNAs without physically isolating the cells. However, one of the 
drawbacks of scRNA-seq is the limitation of sequencing certain 
regions of the transcriptome, since only the 3′ or 5′ of the RNA is 
sequenced [141]. Smits et al. were able to use the Drop-seq 
method to sequence the different neuronal cells of human midbrain 
organoids. Although scRNA-seq enables high-throughput analysis 
of cells within the organoids, the difficulties of dissociating the 3D 
complexity of the organoids into single cells may hinder the identi-
fication and quantification of cell types [150]. Also, since most 
scRNA-seq methods require physically capturing a small volume 
of cells, the low number of cells pose another challenge in revealing 
the complexity of the organoids. 

The development of the multivariate-barcoded mass cytometry 
(MC) method provides the window for demonstrating the single-
cell signaling interactions in organoids [17]. MC is an approach 
used to study the high-dimensional immunophenotyping of post-
transcriptional modifications, using heavy-metal conjugated anti-
bodies to detect more than 35 proteins in single cells. The multi-
variate-barcoded mass cytometry method reveals the growth and 
characterization of cells [17]. To achieve high-throughput analysis 
of the cellular phenotypes under different microenvironment and 
cell states, an imaging mass cytometry (IMC) method was devel-
oped to leverage metal-barcoded antibodies for capturing the loca-
tions of cells in organoids. For example, IMC quantified the 
interplay of environment, neighborhood, and cell state on pheno-
typic variability by dozens of phenotypic features in up to 240 spher-
oids. This method provides a model for large-scale studies on any 
3D microtissues [142]. The schematic workflow of the four single-
cell analysis approaches, confocal and LSFM microscopy, scRNA-
seq, MC, and IMC, is shown (Fig. 3), and the detailed examples of 
organoid analysis using different technologies are presented 
(Table 3). These high-throughput imaging-based approaches 
have contributed to the characterization of organoids’ complex 
cellular compositions and the analysis of phenotypic features in 
cells. Analyzing the organoids’ heterogeneity under different 
microenvironments and internal signals provides insights into the 
screening and identifying potential molecular candidates [8].
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Table 3 
The applications of different single-cell analysis approaches in studying organoids are displayed in 
the table. These eight techniques apply to different types of organoids. The table also summarizes the 
number of markers studied using the techniques and whether the technique shows spatial 
multiplexity 

Spatial 
multiplexity 

Mass 
cytometry 

Study cell type-specific and 
cell state-specific 
signaling networks in 
organoids [17] 

Measure 28 signaling post-
translational 
modifications across six 
cell types in >1million 
fixed single cells in small 
intestinal organoids 

Small intestine No 

Study the growth and 
characterization of 
multiple normal 
mammary epithelial cell 
lineages in a single 
culture and expression 
patterns of mammary 
markers [125] 

38 markers Mammary 
epithelial cells 

No 

Flow 
cytometry 

Analyze the proximal 
differentiated airway 
organoids to predict the 
infectivity of influenza 
viruses [151] 

Four cell types of airway 
epithelial cells 

Differentiated 
human airway 
organoids 

No 

Analyze the stem cell 
surface markers of 
colorectal cancer liver 
metastases organoids 
[152] 

8 markers Colorectal 
cancer liver 
metastases 
organoids 

No 

Confocal IF Validate cell type markers 
and markers used to 
annotate specific cell 
clusters [127] 

3 markers/case, total 
11 markers 

Human iPSC-
derived 
kidney 
organoids 

No 

Validate different types of 
markers in brain 
organoids [153] 

3 markers/case, total 
16 markers 

Brain No 

Light-sheet 
fluorescence 
microscopy 

Capture 3D organoids in 
full and quantify the 
expression of marker 
[139] 

2–4 markers human airway, 
colon, kidney, 
liver, and 
breast tumor 
organoids 

No 

Track cell fates using a 
image analysis pipeline 
[154] 

Four features as possibly 
linked to tumor 
formation 

Breast 
organoids 

No
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(continued)

Spatial 
multiplexity 

IHC Validate pluripotency 
markers of human and 
chimpanzee cerebral 
organoids [149] 

4 markers Human and 
chimpanzee 
cerebral 
organoids 

No 

Identify the morphological 
types and sizes of 
organoid structures 
[155] 

4 markers and 
4 morphological types 

human colon 
cancer stem 
cell 

No 

Hematoxylin 
and eosin 
(H&E) 
staining 

Identify the morphology of 
organoids [156] 

Complex internal folding 
structures—morphology 

Fallopian tube No 

Identify organoids’ 
morphology and 
organoid diameters 
[157] 

Detect monolayer of 
polarized columnar 
epithelial cells— 
morphology 

Gastrointestinal 
organoid 

No 

scRNA-seq Identify the specific cell 
types and differentiation 
routes by comparing 
human cortical brain 
organoids to fetal brain 
[143] 

Five clusters of cells across 
190,022 single cells 

Multiple brain 
organoids and 
fetal brain 

No 

Identify cell types in initial 
tissue explants during 
organoid formation [11] 

Three cell types across 
4391 cells 

Primary gastric 
organoid 
model 

No 

Quantitative 
PCR 

Study intestinal drug 
metabolism and toxicity 
[158] 

26 genes Intestinal crypt 
organoid 

No 

Characterize the cerebral 
organoids [159] 

14 genes Human 
Cerebral 
Organoids 

No 

The emerging spatially resolved, multiplexed imaging technol-
ogies clarify organoids’ complexity and heterogeneity while analyz-
ing cell functions and cell types. Imaging-based transcriptomic 
approaches such as multiplexed error-robust fluorescence in situ 
hybridization (MERFISH) and sequential fluorescence in situ 
hybridization (seqFISH) have achieved the simultaneous quantifi-
cation of RNA expression profiles and spatial distribution of RNAs 
in subcellular compartments [160, 161]. These approaches reveal 
the transcriptionally distinct cell states and subregions by analyzing 
many transcriptomic features relating to molecular factors, subcel-
lular localization, and cell morphology. The integrated study in 
phenotypic states such as different cell-cycle phases and microenvi-
ronment could advance the understanding of the interplay between



microenvironment and gene regulation [160–162]. For proteo-
mics analysis, co-detection by indexing (CODEX) is an emerging 
multiplexed cytometric imaging technique that is used to visualize 
the fluorescence-labeled and DNA-barcoded antibodies for quan-
tification of more than 50 markers at the single-cell level 
[163]. Cyclic immunofluorescence (CycIF) is another highly multi-
plexed imaging approach for deciphering the expression profiles 
and spatial patterning of proteins within cells [164]. By imaging the 
markers in an iterative process, CycIF can be used to quantify 
signaling cascades and to determine the cell phenotypes, morphol-
ogy, and the cell states [164, 165]. To gather the information about 
the inorganic and organic molecules within the cells, matrix-
assisted laser desorption/ionization (MALDI) and time-of-flight 
secondary ion mass spectrometry (TOF-SIMS) can achieve depth 
profiling of the molecular architecture in a high spatial resolution, 
including the subcellular localization of various lipid compounds. 
In general, MALDI and TOF-SIMS can be used to investigate the 
metabolite distribution in different cell stages within organoids 
[166, 167]. 
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4 Applications of Organoid Platforms 

Organoids ease the translational process from research to medicine 
and serve as the stepping stone between 3D cell culture and in vivo 
models. The translational drug development process with and 
without the use of organoids is illustrated (Fig. 4). Organoids can 
model the human body’s response more effectively than 2D human 
cell cultures and give the ability to test potential drug candidates 
without in vivo research on mice. The 3D cell culture of organoids 
mimics the body more effectively because (1) they have biomimetic 
tissue models that are more physiologically relevant and more 
structurally complex and (2) they can maintain homeostasis for 
longer time. These characteristics make organoids more predictive 
than 2D cell cultures for drug screening [171]. Furthermore, 3D 
cell cultures allow for the creation of complex systems linked by 
microfluidics that can provide more accuracy regarding how differ-
ent macromolecules interact using organs-on-a-chip platforms 
[172]. This ability to integrate fluid flow enables learning about 
how cells respond through differentiation and metabolic adapta-
tion to facilitate testing of separate organ compartments by over-
coming barrier tissues [172]. Since 2D cell cultures are inexpensive, 
they can still be used for translational drug development process as 
a preliminary step to organoid testing by initially screening drug 
candidates. Organoids fail to replace the in vivo models because the 
full physiological systems of a human body are lacking. In vivo 
testing in organoids identifies key drugs from a large library with 
in vivo models to reduce total cost as a decision-making step in
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Fig. 4 Translational path of organoid platforms. (a) The left panel shows a simplified model of drug 
development’s translational process without organoids, using single-layer lung cell cultures (blue cells). In 
this model, research starts by identifying possible therapeutics for a disease, investigating the disease 
mechanism and functionality in a single layer culture, and testing promising treatment options in diseased 
cells of single layer culture [168]. Flow cytometry is used for analysis, after which translational drug 
development moves onto clinical applications or goes onto in vivo testing. This path then shifts to clinical 
applications [168, 169]. The process without organoids differs from (b) the translational process with 
pancreatic organoids (yellow cells). The process with organoids also starts with identifying possible
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clinical trials. This combination of using (1) 2D cell cultures as a 
preliminary drug screening step, (2) moving onto organoid screen-
ing, and (3) then onto in vivo testing may increase the efficacy of 
drug candidates during clinical trials to potentially improve the 
current 86% failure rate of drug treatments [173].
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A comparison of the translational process is demonstrated 
using single-layer cell cultures with conventional flow cytometry 
and the emergence of analysis methods for organoids using spatial 
single-cell analysis (Fig. 4). Flow cytometry is a useful method of 
rapidly profiling the cellular composition of a tissue sample to study 
diseases such as cancers. For example, flow cytometry quantified

Fig. 4 (continued) 

Fig. 4 (continued) therapeutics for a disease, investigating the disease mechanism and functionality with 
organoids, and testing a potential treatment on diseased cells in a single-layer culture [168]. After these steps, 
the translational process diverges, and the stem cells or patient-derived cells can be harvested for treatment 
testing on organoids [168]. In this process, single-cell spatial analysis and flow cytometry can be performed 
on the organoids after which drug screening mechanisms move onto in vivo testing and then clinical trials or 
just straight to clinical trials [168, 170]. (c) Organoids derived from stem cells and patient tissues have various 
potential applications, mainly in the pharmaceutical and regenerative medicine field. Through molecular and 
structural analysis, major technical challenges and practical issues can be addressed. Here, organoids are 
shown as a promising 3D culture with their biomedical applications and areas of growth



measurable residual disease in biopsy samples of adults with acute 
myeloid leukemia before and after hematopoietic cell transplanta-
tion [174]. While flow cytometry is useful in understanding a 
patient’s disease, spatial analysis is key to obtain cell–cell interac-
tions in organoids for enhancing personalized treatments. Even a 
simple spatial analysis with confocal microscopy is advantageous 
when analyzing how a pathogen can affect multiple cell types. 
This approach analyzed the effect of Zika viruses on brain orga-
noids [175]. In the meantime, single-cell RNA sequencing helped 
find treatment options specific to the genetic information that was 
measured in brain organoids [176]. The combination of flow cyto-
metry and spatial analysis will be powerful for deciphering the tissue 
complexity of the organoids.
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Organoids have played a role in expanding and improving the 
utility of personalized medicine using ASCs [23]. Personalized 
medicine benefits from the large-scale deployment of the patient-
derived organoids [133, 177, 178]. For instance, iPSC-derived 
pancreatic organoids helped screen drugs with an mRNA-mediated 
gene supplementation with cystic fibrosis patients, showing that 
cystic fibrosis patients have normal pancreatic functions until the 
fetal stage [178]. Furthermore, the growth of pancreatic cancer 
organoids from patient-derived cells helped confirm cancer-
associated fibroblast heterogeneity in pancreatic ductal adenocarci-
noma tumor biology [177]. These applications provide insights 
into the field of personalized medicine abetted by organoid tech-
nology development. 

One benefit to using organoids in medical research is the 
increased complexity of a self-organizing 3D culture, which allows 
for a microenvironment similar to that of the patient. Patient-
derived xenograft (PDX) collects, cultures, and implants human-
derived tissue samples into mice [179]. Despite complexity of 
implantation, the PDX model with organoid cultures is important 
for in vivo mechanistic studies of disease formation. The organoids 
can also be extensively genetically modified using a large target 
libraries, whereas PDX models are limited to genetic modifications 
of a few targets [44]. Thus, the use of a patient’s samples in 
organoid-PDX models allows for a systematic approach to mecha-
nistic exploration of treatment options with an increased accuracy. 

Organoids have the potential to be used in the creation of 
synthetic organs. For instance, synthetic livers for patients were 
created due to the shortage of donor organs. One of the challenges 
is that organs have many different cell types and functions. To 
recapitulate the functionalities of an entire organ, the majority of 
cell functions must be replicated in organoid platforms. For exam-
ple, an important factor in creating patient-derived liver organoids 
was to make sure harvested cells express the leucine-rich repeat-
containing G coupled protein receptor 5 (Lgr5) [180]. Interest-
ingly, although healthy liver cells lack this Lgr5 receptor, it is 
present near bile ducts in diseased and injured livers. The presence



of Lgr5 indicates a differentiation possibility, and specifically, liver 
cells with Lgr5 have the potential to differentiate into hepatocytes 
and cholangiocytes in organoids, an important function of the liver 
organs. Additionally, liver organoids’ cell cultures can divide rap-
idly, another key feature of organoids to give rise to the transplan-
table organs [180]. Therefore, patient-derived organoids are 
preferred in synthetic organ fabrication as the original tissue’s 
functionality are better preserved compared to stem cell-derived 
organoids. 
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5 Challenges and Practical Issues of Organoids 

5.1 Technical 

Challenges 

The development of organoids has provided a 3D tissue culture 
platform to study human organs’ underlying biology. However, 
there are still challenges for growing organoids. As an ex vivo 3D 
tissue culture model, organoids can either self-assemble or be con-
structed under specific organogenesis cues [51]. Organoids use 
secreted growth factor signals, and ECM-instructed cues via mem-
brane matrices to assemble [15, 51]. A decisive component for 
organoid development is the culture media for growing stem 
cells. The critical compositions of organoid culture media formula-
tions are essential growth factors that include epidermal growth 
factor (EGF), R-spondins, and Noggin or Gremlin 1. The current 
approaches to the growth factor production are based on eukary-
otic expression systems, which are essential for correct disulfide 
bond formation and protein folding. However, the culture media 
containing these essential growth factors are not widely available 
and present batch-to-batch variance. Also, producing growth fac-
tors from specific pathways may contaminate the media and affect 
organoid growth. People have developed a precise and cost-
effective protocol for producing highly pure recombinant Gremlin 
1 and R-spondins from the bacterial expression for organoid cul-
ture media [15]. An associated challenge with including growth 
factors in the media is that oncogenes often lose their function in a 
growth factor-rich environment. Using hydrogels, devoid of 
growth factors, post-successful differentiation to maintain the cul-
ture of the organoids addresses this loss of function [43]. 

Another challenge to current organoid systems is their inability 
to construct a vascular system [16]. The vasculature plays a critical 
role in organ interactions, soluble factors, nutrients, and cells. It can 
function as a transport barrier while regulating homeostasis and 
tissue regeneration [181]. However, in brain organoid systems, 
depletion of nutrients and oxygen inside the organoid constrains 
development due to the limited diffusion through dense tissue 
[16]. Organoid systems typically grow different organoid types by 
excluding vascular and immune cells, which explains the missing 
component of a vascular system within the organoid platform [19] .



Current solutions involve generating flow in culture systems using 
tilting and rotary elements and developing microfluidic devices 
incorporated into 3D spheroid cultures for organoids. Generating 
flow decreases the variability in culture and increases the organoid’s 
growth, while the microfluidic device intends to increase nutrient 
diffusion. To improve the organoid culture conditions for long-
term live imaging, the reaction chamber facilitates the organoids’ 
culturing, using microfluidics as inspiration; this ensures efficient 
nutrient diffusion [16]. A 3D bioprinting method fabricates engi-
neered tissue-constructs, embedding vasculature, multiple types of 
cells, and ECM; hydrogel and polydimethylsiloxane (PDMS) build 
the 3D architecture. While further research needs to be done on 
optimizing scaffold build time, this method is scalable and can lead 
to the rapid manufacturing of tissues and organoids [182]. Addi-
tionally, people used a new 3D stamping technique to build a stable 
biodegradable scaffold with a built-in branching microchannel net-
work to achieve vasculature in 3D culture [183]. However, inte-
grating these techniques in organoids may interfere with the 
organoid’s cell organization, which limits the incorporation of 
vasculature in organoids. Therefore, further research needs to 
determine the effects of endogenous vasculature generation on 
brain organoid growth and survival [52]. 
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Another critical challenge in organoid use is the high variability 
between organoid samples. Since the organoids are cultured 
in vitro, the variation between samples is considerable due to the 
variation in biochemical media conditions and the sample’s initial 
state. The variation in media composition from different protocols 
results in the heterogeneity of cultured organoids; the initial exper-
imental condition across different protocols is poorly controlled. 
The effects of media composition need to be identified for the 
differentiation protocols, where the initial conditions, including 
the organoid size, shape, and composition on organoid assembly, 
would be used as optimization criteria [16]. Furthermore, the 
current methods for growing organoids lack feedback for develop-
ment and network formation. In brain organoids, the biochemical 
inputs and feedback interact with each other to form the signaling 
network. However, this interaction failed to be recapitulated in 
organoid cultures. Therefore, advances in high-throughput imag-
ing and techniques achieving synthetic vascular scaffolds are needed 
to understand organoid development further [16]. 

5.2 Practical 

Challenges 

Another practical issue that comes with the use of organoids is 
animal testing. PDX that are derived from organoids are implanted 
into mice to test the efficacy of treatments and drugs. This implan-
tation leads to the debate on animal testing, which includes the 
anatomical and physiological differences in humans and other ani-
mals [184]. Testing via traditional 2D cell cultures cannot account 
for microenvironmental factors or accurately represent the



appropriate cellular responses, so 2D cultures are implanted into 
animals like mice to address these concerns [179]. To create an 
accurate environment, PDX, derived from organoids, uses its ability 
to self-organize into a 3D structure and implant into the mice 
[44]. Despite these solutions having greater accuracy, the differ-
ences in the physiology of and diseases’ consequences on humans 
and mice lead to inaccurate preclinical results. Additionally, the 
synthetic laboratory environment can cause physiological differ-
ences in mice due to increased stress, causing further inaccuracies 
in test results [184]. The combination of PDX and organoids can 
increase accuracy in treatment testing; implanting this combination 
into mice can better demonstrate cell-to-cell communication with a 
more accurate microenvironment. 
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6 Conclusion 

This chapter gives a biological overview of organoids, their applica-
tions, the need for molecular and structural analysis in this field, and 
the technical and practical challenges that arise with organoid tech-
nology. Organoids are 3D tissue models that self-organize. They 
can be derived from PSCs, ASCs, and patient-derived cells and 
tissues. Organoids can be made up of multiple cell types and are 
often co-cultured with different cell types or mixed with growth 
factors to mimic the tissue or tumor microenvironment. This paper 
highlights the necessity of structural and molecular analysis in 
organoids. Varying culture conditions, absence of vasculature, and 
other factors contribute to the lack of standardization in growing 
and maintaining organoids. This lack of standardization is shown in 
the variability of shape within the same organoid type. Along with 
shape variations, each organoid type has different markers that are 
best suited to observe their expression. Through molecular analysis, 
specifically via single-cell analysis and spatial profiling, the distinct 
cell types, cell states, and heterogeneity between individual cells can 
be observed through high-throughput screening. This information 
provides better insights into drug screenings, organogenesis, and 
gene therapies. Furthermore, growth in organoid technology can 
lead to better drug discovery methods, disease modeling, and 
precision medicine. Organoids can decrease the translational gap 
from in vitro to in vivo and replace animal research in the pharma-
ceutical field. Organoids derived from patient-derived cells and 
tissues, used in combination with PDX or by themselves, can be 
used to create personalized treatment plans and to understand 
disease progression. Additionally, synthetic organs can be poten-
tially produced through the organoid platform and transplanted as 
organs.
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Organoid variability remains a concern at each level, and it is 
crucial to identify techniques to alleviate it. Variability could be 
between diverse starting cell lines, organoids with the same origins, 
or several organoids within the same culture [22]. Single-cell anal-
ysis can reveal the heterogeneity in these organoid models. This 
variability leads to problems in translational research, such as drug 
screening. With high variability, it is not easy to ascertain the effects 
of the drug. Organoids also vary in how much of the organ’s 
complexity and its structure are captured. Additionally, iPSCs do 
not always mature into ASCs, which decreases their use in adult 
tissue biology. Current research solutions attempt to increase nutri-
ent availability via bioreactors and employment of vascular net-
works to address this problem of variability. Other solutions 
attempt to regulate self-organization or organoid communication 
through microstructured scaffolds, spatial positioning, and organ-
on-chip technologies [4]. Another way to understand organoid-to-
organoid variability would be to create a crowdsourced resource 
atlas to which pioneers in the organoid field contribute. As different 
organoids and protocols are generated and refined, the shapes of 
each organoid type and their accompanying protocols can be 
uploaded to a cloud server, creating an organoid atlas. With this 
information, progress can be made in increasing lab-to-lab standar-
dization to decrease variability. Single-cell analysis can also support 
the development of an organoid atlas in understanding organoids’ 
shortcomings by comparing organoid cell types to their in vivo 
counterparts [14]. Organoids hold the potential to (1) improve 
the translation from in vitro to in vivo, (2) reduce the use of 
animals, (3) with bioengineering tools, can better model diseases, 
(4) become transplantable organs, and (5) impact precision 
medicine. 
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117. Lõhmussaar K, Kopper O, Korving J et al 
(2020) Assessing the origin of high-grade 
serous ovarian cancer using CRISPR-
modification of mouse organoids. Nat Com-
mun 11:2660 

118. Nanki Y, Chiyoda T, Hirasawa A et al (2020) 
Patient-derived ovarian cancer organoids cap-
ture the genomic profiles of primary tumours 
applicable for drug sensitivity and resistance 
testing. Sci Rep 10(1):12581 

119. Maenhoudt N, Defraye C, Boretto M et al 
(2020) Developing organoids from ovarian 
cancer as experimental and preclinical models. 
Stem Cell Reports 14(4):717–729 

120. Rothschild D, Srinivasan T, Aponte-Santiago 
L et al (2016) The ex vivo culture and pattern 
recognition receptor stimulation of mouse 
intestinal organoids. J Vis Exp. https://doi. 
org/10.3791/54033 

121. Lee SH, Hu W, Matulay JT et al (2018) 
Tumor evolution and drug response in 
patient-derived organoid models of bladder 
cancer. Cell 173(2):515–528 

122. Eldred KC, Hadyniak S E, Hussey KA et al 
(2018) Thyroid hormone signaling specifies 
cone subtypes in human retinal organoids. 
bioRxiv. https://doi.org/10.1101/359950 

123. Drost J, Karthaus WR, Gao D et al (2016) 
Organoid culture systems for prostate epithe-
lial and cancer tissue. Nat Protoc 11(2): 
347–358 

124. Yakoub AM (2019) Cerebral organoids 
exhibit mature neurons and astrocytes and 
recapitulate electrophysiological activity of 
the human brain. Neural Regen Res 14(5): 
757–761 

125. Rosenbluth JM, Schackmann RCJ, Gray GK 
et al (2020) Organoid cultures from normal 
and cancer-prone human breast tissues pre-
serve complex epithelial lineages. Nat Com-
mun 11(1):1711 

126. Roccio M, Edge ASB (2019) Inner ear orga-
noids: new tools to understand neurosensory 
cell development, degeneration and regenera-
tion. Development 146(17):dev177188 

127. Subramanian A, Sidhom EH, Emani M et al 
(2019) Single cell census of human kidney 
organoids shows reproducibility and dimin-
ished off-target cells after transplantation. 
Nat Commun 10:5462 

128. Yoshida S, Miwa H, Kawachi T et al (2020) 
Generation of intestinal organoids derived 
from human pluripotent stem cells for drug 
testing. Sci Rep 10(1):5989 

129. Akbari S, Arslan N, Senturk S, Erdal E (2019) 
Next-generation liver medicine using orga-
noid models. Front Cell Dev Biol 7. https:// 
doi.org/10.3389/fcell.2019.00345 

130. Barkauskas CE, Chung MI, Fioret B et al 
(2017) Lung organoids: current uses and 
future promise. Development 144(6): 
986–997 

131. Whelan KA, Muir AB, Nakagawa H (2018) 
Esophageal 3D culture systems as modeling 
tools in esophageal epithelial pathobiology 
and personalized medicine. Cell Mol Gastro-
enterol Hepatol 5(4):461–478 

132. Cowan CS, Renner M, De Gennaro M et al 
(2020) Cell types of the human retina and its 
organoids at single-cell resolution. Cell 
182(6):1623–1640 

133. Hohwieler M, Illing A, Hermann PC et al 
(2017) Human pluripotent stem cell-derived 
acinar/ductal organoids generate human 
pancreas upon orthotopic transplantation 
and allow disease modelling. Gut 66(3): 
473–486 

134. Moreira L, Bakir B, Chatterji P et al (2017) 
Pancreas 3D organoids: current and future 
aspects as a research platform for personalized 
medicine in pancreatic cancer. Cell Mol Gas-
troenterol Hepatol 5(3):289–298 

135. Elbadawy M, Abugomaa A, Yamawaki H et al 
(2020) Development of prostate cancer

https://doi.org/10.3389/fmed.2019.00334
https://doi.org/10.3389/fmed.2019.00334
https://doi.org/10.3389/fendo.2015.00056
https://doi.org/10.3389/fendo.2015.00056
https://doi.org/10.3791/54033
https://doi.org/10.3791/54033
https://doi.org/10.1101/359950
https://doi.org/10.3389/fcell.2019.00345
https://doi.org/10.3389/fcell.2019.00345


Organoid Platforms for Precision Medicine 343

organoid culture models in basic medicine 
and translational research. Cancers 12:777 

136. McCray T, Richards Z, Marsili J et al (2019) 
Handling and assessment of human primary 
prostate organoid culture. Vis Exp JoVE. 
https://doi.org/10.3791/59051 

137. Seidlitz T, Merker SR, Rothe A et al (2019) 
Human gastric cancer modelling using orga-
noids. Gut 68(2):207–217 

138. Kurmann AA, Serra M, Hawkins F et al 
(2015) Regeneration of thyroid function by 
transplantation of differentiated pluripotent 
stem cells. Cell Stem Cell 17(5):527–542 

139. Dekkers JF, Alieva M, Wellens LM et al 
(2019) High-resolution 3D imaging of fixed 
and cleared organoids. Nat Protoc 14(6): 
1756–1771 

140. Glaser AK, Reder NP, Chen Y et al (2019) 
Multi-immersion open-top light-sheet micro-
scope for high-throughput imaging of cleared 
tissues. Nat Commun 10(1):2781 

141. Brazovskaja A, Treutlein B, Camp JG (2019) 
High-throughput single-cell transcriptomics 
on organoids. Curr Opin Biotechnol 55: 
167–171 

142. Zanotelli VR, Leutenegger M, Lun XK et al 
(2020) A quantitative analysis of the interplay 
of environment, neighborhood, and cell state 
in 3D spheroids. Mol Syst Biol 16(12):e9798 

143. Tanaka Y, Cakir B, Xiang Y, Sullivan GJ, Park 
IH (2020) Synthetic analyses of single-cell 
transcriptomes from multiple brain organoids 
and fetal brain. Cell Rep 30(6):1682–1689 

144. Andilla J, Jorand R, Olarte O et al (2017) 
Imaging tissue-mimic with light sheet micros-
copy: a comparative guideline. Sci Rep 7: 
44939 

145. Yang B, Chen X, Wang Y et al (2019) 
Epi-illumination SPIM for volumetric imag-
ing with high spatial-temporal resolution. Nat 
Methods 16(6):501–504 

146. Hof L, Moreth T, Koch M et al (2020) Long-
term live imaging of epithelial organoids and 
corresponding multiscale analysis reveal high 
heterogeneity and identifies core regulatory 
principles. bioRxiv 2020.07.12.199463 

147. Bolhaqueiro ACF, van Jaarsveld RH, Pon-
sioen B et al (2018) In Methods Cell Biol 
(Eds: H Maiato, M Schuh), Academic Press, 
pp. 91–106 

148. Kim S, Choung S, Sun RX et al (2020) Com-
parison of cell and organoid-level analysis of 
patient-derived 3D organoids to evaluate 
tumor cell growth dynamics and drug 
response. SLAS Discov Adv Sci Drug Discov 
25:744 

149. Kanton S, Boyle MJ, He Z et al (2019) Orga-
noid single-cell genomic atlas uncovers 
human-specific features of brain develop-
ment. Nature 574(7778):418–422 

150. Smits LM, Magni S, Kinugawa K et al (2020) 
Single-cell transcriptomics reveals multiple 
neuronal cell types in human midbrain-
specific organoids. Cell Tissue Res 382(3): 
463–476 

151. Zhou J, Li C, Sachs N et al (2018) Differen-
tiated human airway organoids to assess infec-
tivity of emerging influenza virus. Proc Natl 
Acad Sci U S A 115:6822 

152. Buzzelli JN, Ouaret D, Brown G et al (2018) 
Colorectal cancer liver metastases organoids 
retain characteristics of original tumor and 
acquire chemotherapy resistance. Stem Cell 
Res 27:109–120 

153. Velasco S, Kedaigle AJ, Simmons SK et al 
(2019) Individual brain organoids reproduc-
ibly form cell diversity of the human cerebral 
cortex. Nature 570:523–527 

154. Alladin A, Chaible L, Reither S et al (2019) 
Tracking the cells of tumor origin in breast 
organoids by light sheet microscopy. bioRxiv. 
https://doi.org/10.1101/617837 

155. Fujii E, Yamazaki M, Kawai S et al (2018) A 
simple method for histopathological evalua-
tion of organoids. J Toxicol Pathol 31(1): 
81–85 

156. Xie Y, Park ES, Xiang D, Li Z (2018) Long-
term organoid culture reveals enrichment of 
organoid-forming epithelial cells in the fim-
brial portion of mouse fallopian tube. Stem 
Cell Res 32:51–60 

157. Pastuła A, Middelhoff M, Brandtner A et al 
(2016) Three-dimensional gastrointestinal 
organoid culture in combination with nerves 
or fibroblasts: a method to characterize the 
gastrointestinal stem cell niche. Stem 
Cells Int:3710836 

158. Lu W, Rettenmeier E, Paszek M et al (2017) 
Crypt organoid culture as an in vitro model in 
drug metabolism and cytotoxicity studies. 
Drug Metab Dispos 45(7):748–754 

159. Yakoub AM, Sadek M (2018) Development 
and characterization of human cerebral orga-
noids: an optimized protocol. Cell Transplant 
27(3):393–406 

160. Xia C, Fana J, Emanuel G et al (2019) Spatial 
transcriptome profiling by MERFISH reveals 
subcellular RNA compartmentalization and 
cell cycle-dependent gene expression. Proc 
Natl Acad Sci 116:19490 

161. Shah S, Lubeck E, Zhou W, Cai L (2016) In 
situ transcription profiling of single cells

https://doi.org/10.3791/59051
https://doi.org/10.1101/617837


173. 

344 Aditi Kumar et al.

reveals spatial organization of cells in the 
mouse hippocampus. Neuron 92(2): 
342–357 

162. Mayr U, Serra D, Liberali P (2019) Exploring 
single cells in space and time during tissue 
development, homeostasis and regeneration. 
Development 146(12):dev176727 

163. Schürch CM, Bhate SS, Barlow GL et al 
(2020) Coordinated cellular neighborhoods 
orchestrate antitumoral immunity at the colo-
rectal cancer invasive front. Cell 182(5): 
1341–1359 

164. Lin JR, Fallahi-Sichani M, Chen JY, Sorger 
PK (2016) Cyclic Immunofluorescence 
(CycIF), A highly multiplexed method for 
single-cell imaging. Curr Protoc Chem Biol 
8(4):251–264 

165. Lin JR, Izar B, Wang C et al (2018) Highly 
multiplexed immunofluorescence imaging of 
human tissues and tumors using t-CyCIF and 
conventional optical microscopes. elife 7: 
e31657 
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Chapter 23 

Analysis of Phase-Separated Biomolecular Condensates 
in Cancer 

Wei Li and Hao Jiang 

Abstract 

Phase-separated biomolecular condensates play important roles in virtually all cellular processes, and their 
dysregulation is associated with many pathological processes including cancer. Here we concisely review 
some basic methodologies and strategies to analyze the phase-separated biomolecular condensates in 
cancer, including physical characterization of phase separation for the protein of interest, functional 
demonstration of this property in cancer regulation, as well as mechanistic studies on how phase separation 
regulates the protein’s function in cancer. 

Key words Liquid–liquid phase separation (LLPS), Protein of interest (POI), Biomolecular conden-
sates, Intrinsically disordered regions (IDRs), Cancer 

1 Introduction 

Many macromolecules in cells, especially proteins, contain 
sequence features that allow them to engage in weak and multiva-
lent intermolecular interactions, which effectively separate these 
molecules from the solvent phase, a process called liquid–liquid 
phase separation (LLPS) [1]. This process drives the formation of 
membraneless micro-compartments, also termed biomolecular 
condensates [2], which enrich specific molecules. This property 
plays an important role in the spatiotemporal regulation of these 
molecules in cellular space and biochemistry. Homotypic and het-
erotypic interactions of both structured domains and intrinsically 
disordered regions (IDRs) on proteins as well as other biomole-
cules (RNA and DNA) can all contribute to the formation of the 
phase-separated biomolecular condensates. Moreover, biomolecu-
lar condensates can adopt very wide ranges of different material and 
compositional properties, which can profoundly impact the 
biological processes that these condensates are associated with [2]. 
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Alterations in biomolecular phase separation can lead to dysre-
gulated biological processes and disease [3–5]. Reports over the 
past few years have started to experimentally demonstrate the role 
of biomolecular condensates in cancer [6–19]. Instead of providing 
detailed experimental protocols, here we briefly review some of the 
basic methodologies used in the published studies for the analysis 
of protein condensates in cancer. We start from the basic character-
ization of LLPS of a protein of interest (POI) at different levels, and 
direct readers to excellent and detailed reviews on methods and 
guidelines for characterization of biomolecular condensates and 
their physicochemical properties using specialized assays 
[20, 21]. We then summarize some of the key strategies used to 
establish the functional importance of LLPS in cancer regulation 
and then use a couple of published examples to discuss the mecha-
nistic studies of how LLPS regulates cancer. 

2 Does it Happen? Analysis of Phase Separation for the Protein of Interest 

2.1 In Silico Over the past few years, a number of computational programs have 
been developed that aim to predict the proteins and/or protein 
regions with phase separation capacities. Many of these programs 
are based on protein sequence features thought to drive phase 
separation [22]. Some programs use algorithms trained on datasets 
containing experimentally validated phase-separating protein 
sequences [23–25]. While these programs can be helpful in the 
initial stages of studying phase separation in a specific biological 
setting (such as cancer), it is important to recognize that the in 
silico approaches are limited by our incomplete understanding of 
the molecular interactions underlying LLPS, the biased datasets, 
and the context-dependent nature of this process. In addition, 
computational simulations can help predict and understand molec-
ular mechanisms of LLPS, especially IDR-driven LLPS 
[26, 27]. The in silico approaches are complementary to the exper-
imental approaches discussed below. 

2.2 In Vitro By in vitro, we mean biomolecules outside cellular structures. 
Cellular factors and structures can have profound effects on 
whether and how a protein from phase-separated condensates. 
Without in vitro studies, it is difficult to determine if a protein 
forms condensates in cells because of its own LLPS capacity driven 
by its own sequence features or because it mere gets passively 
incorporated into other pre-formed condensates. In vitro assays 
allow perturbation of LLPS by changes of experimental conditions, 
including protein and salt concentrations, temperature, etc., as well 
as many other factors that may regulate LLPS of POI. Reconstitu-
tion of the in vitro system that can recapitulate the in vivo conden-
sation is highly valuable in revealing what are sufficient in mediating

2.2.1 Why In Vitro?



LLPS of POI, and the differences seen between the in vitro system 
and in vivo behavior would suggest future research directions to 
identify cellular factors that regulate POI LLPS. Moreover, in vitro 
assays allow the identification of key sequence features in driving 
LLPS, which then allows perturbation of LLPS through mutagen-
esis and functional assays to show the role of LLPS in a specific 
biological process, such as cancer, as discussed in sections below.
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2.2.2 Reconstituted 

Systems with Purified 

Molecules 

In vitro protein condensates can be shown without purification 
when they are produced from cell-free expression systems or in 
cell extracts. However, this approach has a number of drawbacks, 
including unclear protein concentrations, difficulty in changing 
protein concentrations, and difficulty in distinguishing the intrinsic 
ability versus effects from other cellular factors. Therefore, when-
ever possible, it is highly recommended to purify the POI before 
proceeding to LLPS assays in vitro. 

The POI can be recombinantly expressed and purified from 
bacterial, insect, or mammalian cells. One potential challenge is that 
many LLPS-prone proteins tend to aggregate and have low solubil-
ity. Readers are directed to guidelines and protocols from experts in 
the LLPS field for purification of LLPS-prone proteins [28]. Once 
purified to a certain level of homogeneity, many different methods 
can be used to characterize the protein phase behavior. As these 
different methods all have their unique advantages and disadvan-
tages, a combination of multiple methods should be used. In all 
these methods, the purified proteins need to be stored in non-LLPS 
conditions and then switched to conditions that allow LLPS to 
occur. This can be achieved by storing the protein at a high salt 
concentration or non-native pH level that prevents LLPS and then 
switching to the physiological salt concentration and pH level, or 
expressing the protein with soluble tags (e.g., Maltose-binding 
protein) which can be cleaved off by specific proteases. 

Proteins undergoing LLPS often exhibit visible turbidity that 
can be quantitatively measured for the optical density (typically at 
wavelengths of 600 nm or 340 nm). However, this often requires a 
relatively high concentration of the protein that may be higher than 
the endogenous concentration and provides little information of 
the biophysical status of the condensates. 

Physical centrifugation can be used to show LLPS. Proteins in 
the condensed phase can be spun down into a pellet while the 
proteins in the diffuse phase remain in the supernatant. The resul-
tant pellet and supernatant fractions as well as the total proteins 
before centrifugation can be resolved by SDS-PAGE and detected 
by Coomassie staining or immunoblotting, thus allowing quantita-
tively determination of the partition percentage of the protein. As 
we do not know for sure the sedimentation limit of the condensates 
in a specific centrifugation process, one can always argue whether 
the proteins in the supernatant are truly not in any forms of



condensates (similar arguments are made for the imaging-based 
methods). However, it is useful in comparing the relative LLPS 
capacity of different protein samples. In addition, this method can 
be used to test the in vitro activity of the molecules in the separated 
phases by recovering each fraction after centrifugation. 
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Light microscopy-based imaging is the primary method to 
characterize protein LLPS [28]. It provides multi-aspect informa-
tion of LLPS, including whether the protein forms condensates, 
the size, number, morphology, mobility, fusion of the condensates, 
and the quantitative partition coefficient based on the signal inten-
sities in and out of the condensates. We note that while the mor-
phological features (e.g., roundness of the droplets) can provide the 
first line of information on the material properties of the conden-
sates, in our experience they can be sometimes misleading and not 
consistent with the molecular dynamics and liquidity of the con-
densates as more rigorously measured by other biophysical 
assays [20]. 

2.2.3 How to 

Demonstrate that the POI 

Forms Condensates 

Instead of Just 

“Aggregates”? 

Condensates are a type of aggregates in a broad sense. But in this 
question, the term “aggregates” usually refers to solid assemblies 
formed in an irreversible process by misfolded proteins that have 
lost their biological activities and thus no longer subjects of mean-
ingful studies. On the contrary, biomolecular condensates usually 
have certain levels of liquidity, can be dissolved and reformed, and 
most importantly, are biologically active—and often need to be in 
condensates to be optimally active. These descriptions may not 
apply to certain non-dynamic condensates that serve specific 
biological purposes [29], although in those cases the inactivity 
can be viewed as their required biological activity. Therefore, it is 
important to perform assays to determine fluidity (through fluores-
cence recovery after photobleaching [FRAP], observing droplet 
fusion, etc.), reversibility (through change experimental conditions 
including salt concentration, pH, temperature), and biological 
activity (sections below), of the condensates. 

2.3 In Cells Protein condensation in live cells can be studied by expression of 
the POI fused with a fluorescent protein. As the easiest method in 
cells, transient transfection leads to overexpression in certain cells, 
and its high protein concentration facilitates formation of protein 
condensates. Such non-physiological protein concentration is, of 
course, also the major caveat of the method. However, when com-
bined with other methods described below to show intracellular 
condensation of proteins near endogenous levels, it remains a useful 
and convenient method in demonstrating the relative differences in 
condensation to bring out the importance of sequence or structural 
elements in the protein.
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Stable and inducible cell lines can be established to allow the 
expression of the transgene encoding POI fused with a fluorescent 
protein to be near its endogenous level. The most rigorous way to 
demonstrate endogenous protein condensation in live cells requires 
knock-in of a fluorescent protein tag to a terminus of the coding 
sequence of the endogenous gene. Genomic editing to delete or 
mutate the key region or residues for endogenous protein conden-
sation can be performed. The resultant cells can be used to demon-
strate the effects on condensation of the endogenous protein and 
functional studies for LLPS (below). For example, UTX core IDR 
was deleted from the endogenous locus by CRISPR/Cas9-
mediated approach in mouse embryonic stem cells, and the mutant 
UTX that lacks core IDR but has mEGFP tag exhibits reduced 
condensation [7]. Moreover, the stem cells harboring such muta-
tion show impaired differentiation capacity similar to UTX knock-
out cells [7]. These genomic engineering assays are thus very 
helpful in studying both the condensation properties and the func-
tional role of condensation of the endogenous protein. 

A key question here is how to demonstrate that the POI under-
goes LLPS in live cells? This is very difficult, as we have very limited 
ways to manipulate the experimental conditions in cells without 
eliciting indirect effects. Our opinion is that one should try the best 
to rigorously demonstrate LLPS of the POI in vitro, identify key 
residues for LLPS in vitro, and then demonstrate that the in vivo 
condensation of the protein is equally dependent on the same 
residues. This will suggest that the in vivo and in vitro condensation 
are likely to be governed by the same nature of molecular 
underpinnings. 

3 Is it Important? Functional Analysis of LLPS in Cancer 

After showing that the POI indeed undergoes LLPS in physiologi-
cal conditions, the next important question would be: is its LLPS 
required or functionally important for its role in cancer regulation? 
This is a crucial question most researchers face, yet not sufficiently 
discussed in many review articles. 

As in any approach to addressing the “requirement” question, 
one will need to specifically perturb LLPS and examine the 
biological outcomes. In cancer research, this can include cancer-
related activity assays involving cultured cells or live animals and 
in vitro functional assays on a molecular activity that is important 
for cancer. The central challenge here is how to SPECIFICALLY 
perturb LLPS without (or minimally) affecting other molecular 
properties, as most proteins have multiple molecular properties 
that together confer the biological function.
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3.1 LLPS 

Perturbation by 

Protein-Extrinsic 

Factors and Conditions 

For in vitro functional assays, it is possible to use specific reagents 
and conditions to perturb LLPS and show effects on the activities. 
Salt concentration, temperature, as well as crowding agents can be 
changed to affect LLPS. 1,6-hexanediol is the most commonly 
used reagent [30]. Sometimes, other biomolecules that are 
known to bind to the POI and also have LLPS capacity may be 
used to show the effects. However, all of these treatments can 
potentially affect other known and unknown molecular activities 
of the POI, making it difficult to conclude specifically on the role of 
LLPS on the POI function measured in the in vitro assays. 

For functional assays based on cultured cells or animal models, 
it is more difficult to use these treatments for the purpose of 
specifically perturbing LLPS, although certain treatments may be 
performed on cultured cells as a supplementary approach. Intracel-
lular condensation of engineered proteins can be controlled by light 
or chemical activation methods [31] and employed to show the 
functional capability of the induced condensation of the POI. 
These methods can be used in combination with the methods 
discussed below to better demonstrate the functional relevance of 
the POI LLPS in a biological or pathological process. 

3.2 LLPS 

Perturbation by 

Changing Protein 

Sequences 

The most important approach to the functional demonstration of 
LLPS in a biological process is through specific alterations of the 
POI sequences that control its LLPS properties. This would need 
to start by mapping the region(s) on the POI that are important for 
its LLPS in vitro and in cells. Careful examination of the sequence 
of the required region can be helpful to reveal features known to 
promote LLPS, including aromatic residues, oppositely charged 
clusters, as well as highly enriched residues. These residues can be 
mutated. The mutants are then subject to assays for condensation 
in vitro and in vivo, biochemical activities, and biological functions. 
Importantly, these mutants need to be tested for other known 
properties, which often include binding to other molecules that 
are involved in the function of the POI. Ideally, the mutants should 
not affect other known molecular properties. If this is not true, 
further mutagenesis of narrower residues should be pursued to 
allow separation of effects on condensation from effects on other 
properties. This may be challenging for certain proteins whose 
condensation properties are functionally associated with other 
known properties. For example, LLPS of certain proteins may be 
driven by heterotypic interactions with other proteins or may be 
important for the other properties. In these scenarios, deeper 
mechanistic dissections can aid to enhance the confidence level of 
the role of LLPS in the specific biological processes. 

IDR-driven LLPS is often not sensitive to mutation of a single 
or just a few amino acid residues, due to the weak and multivalency 
nature of the molecular interactions underlying this process. Most 
published studies on IDR-driven LLPS thus mutate multiple



residues (of the same or different amino acids) to show effects on 
LLPS. One would rightly question whether the mutation of the 
multiple residues would affect known or unknown properties other 
than LLPS. This concern can never be formally excluded as one can 
never demonstrate an unknown (but possible) property and is 
exacerbated by the often large number of residues mutated. 
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To alleviate this concern, one can replace the LLPS-responsible 
IDR in the POI with LLPS-promoting IDRs from a number of 
unrelated proteins and test the function of the resultant chimeric 
proteins. The rationale behind this approach is that, if these ran-
domly selected foreign IDRs can maintain the function of the POI 
(while the IDR-deleted mutant cannot), they should share some 
key properties, in this case, LLPS. The chance that these unrelated 
protein IDRs may also have a specific non-LLPS property (such as 
binding to a protein that the POI binds to) that drives the func-
tional readout is small. Therefore, the more unrelated the proteins 
are to the POI, and the larger number of such proteins can be 
shown to maintain function, the higher confidence one has in 
stating that the primary role of the IDR of POI is to mediate 
LLPS and thus the effects of its mutations are mainly through 
LLPS. It is important to note that failure of certain foreign IDR 
to maintain function does not necessarily mean LLPS is not 
involved, as these unrelated protein IDRs may harbor different 
properties that could interfere with the POI function. Moreover, 
different physicochemical properties of condensates formed from 
different IDRs can affect the function of the chimeric proteins. To 
build an even stronger case, one could mutate the key residues in 
the foreign IDRs and show the effects on the function of the 
chimeric proteins [12, 14]. 

3.3 Analysis of 

Cancer-Associated 

Mutations and 

Variations 

Cancer-associated mutations are highly meaningful in functional 
demonstration if these mutations alter LLPS or the physicochemi-
cal properties of condensates. Most reports involve larger genetic 
alterations, including fusion proteins that acquire aberrant LLPS 
[8, 9, 13–15, 32–34] or impair LLPS [10] and truncating muta-
tions that alter LLPS properties [7]. Because these alterations often 
involve change of the large regions with different domains, further 
and more focused mutations (discussed in the section above) within 
the altered regions are usually necessary in order to functionally link 
the altered LLPS properties to cancer. Missense mutations or 
in-frame alterations have also been shown to affect LLPS and 
cancer [11, 16, 18], but these are mostly limited to structured 
domains instead of IDRs. While missense mutations in IDRs have 
been hypothesized to regulate cancer through LLPS [35], and 
some cancer-associated IDR missense mutations have been shown 
to alter LLPS or condensate properties [7], little experimental data 
have been shown to demonstrate their causal effect in cancer devel-
opment. This is consistent with the relatively low conservation of



IDR at the sequence level. Another likely reason is that the cancer 
models used to show the effects of missense mutations are likely 
insufficient to recapitulate the complex and long process of cancer 
development in human patients. 
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Natural variations of proteins may also link altered LLPS to 
pathologies including cancer. Mainly due to the sequence feature 
variations in the IDR, the chromatin modulator UTY (on Y chro-
mosome) has a higher propensity to form condensates with 
reduced liquidity and molecular diffusion rate than its X chromo-
somal homolog, UTX. The altered condensate properties likely 
account for the impaired tumor-suppressive activity of UTY and 
may contribute to the higher cancer incidence in men [7]. Similarly, 
the IDR of the RNA helicase DDX3Y also has a stronger LLPS 
capacity than that of its X chromosomal homolog, DDX3X, leading 
to enhanced repression of mRNA translation, and promotes stron-
ger aggregation of FUS and TDP-43 [36]. These sexually dimor-
phic properties in LLPS may contribute to sex bias in human 
disease. 

It is challenging to rigorously demonstrate the causality of 
LLPS in cancer (or other biological or pathological processes), 
but we think that the collective evidence of the approaches dis-
cussed above can provide a reasonably strong support. Moreover, 
revelation of mechanisms, as discussed below, also greatly boosts 
the confidence for causality. 

4 How Does it Work? Mechanistic Studies on how Phase-Separated Biomolecular 
Condensates Regulate Cancer 

From the perspective of LLPS biology, the roadmap laid by Rosen 
and colleagues should be helpful for understanding the functions of 
biomolecular condensates across different size scales and organiza-
tion levels [37]. From the perspective of cancer biology, one needs 
to connect the condensates functions at the molecular scale (e.g., 
enhancing biochemical reaction rates) to the pathways in cancer. 
Cancer can result from dysregulation of many different pathways 
and molecular mechanisms, and dysregulated LLPS may contribute 
to the aberrance of many of these mechanisms [6]. It is thus not 
realistic to discuss in details all the different mechanistic studies on 
how LLPS dysregulation causes cancer. Rather, we will dissect 
mechanistic studies into two major cancer-related pathways, signal 
transduction and gene regulation, to exemplify some strategies to 
address a central question: “How does the mechanism generate 
unique insight that would not be possible without the concept of 
LLPS?” Another way to ask the question is, “How does unique 
biology arise from the phase-separated biomolecular condensates 
that drives the process in the study”?
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A prime example is the discovery that the disease (including 
cancer)-associated SHP2 mutations drive aberrant LLPS to pro-
mote MAPK activation [11]. SHP2 is a non-receptor protein tyro-
sine phosphatase that positively regulates the Ras-MAPK signaling 
pathway. A longstanding perplex regarding SHP2 is why its enzy-
matically activating and inactivating mutations cause disease with 
overlapping clinical manifestations. The authors show that these 
mutations promote SHP2 LLPS driven by electrostatic interactions 
mediated by the folded phosphatase domain through transitioning 
to more open conformations. The authors engineered a set of 
mutations on charged residues to demonstrate the functional 
importance of the electrostatic interaction-driven LLPS in stimu-
lating the SHP2 enzymatic activity and the RAS-MAPK signaling. 
LLPS of the SHP2 disease mutants locally concentrate both the 
enzyme itself and the substrate into the condensates, thereby 
enhancing the reaction rates. However, this simplistic mechanism 
cannot support the elevated MAPK signaling by those catalytically 
inactivated SHP2 mutants. To understand the mechanistic basis for 
how LLPS can solve this perplex, the authors studied the effect of 
LLPS on the wild-type copy of SHP2 given the heterozygous 
nature of the mutations. They found that, while the catalytically 
inactivated SHP2 mutants still cannot be sufficiently activated by 
LLPS, they recruit the wild-type SHP2 into the condensates to 
promote their enzymatic activity, resulting in the overall enhanced 
MAPK signaling in the cell. 

This work is inspirational on how methods can be designed to 
demonstrate the unique importance and mechanistic insight of 
LLPS in the involved biological process that goes awry. The enigma 
of the SHP2 mutations would not be solved without introducing 
the concept of LLPS here. LLPS can almost be viewed as another, 
unknown, functional dimension of SHP2, as opposed to the enzy-
matic activity dimension of the affected protein itself we are nor-
mally fixated on. An important bonus from this work is the finding 
that allosteric inhibitors of SHP2 can inhibit its LLPS and enzy-
matic activity and may be used for treating SHP2-associated disease 
including cancer. 

In another example, LLPS was found to be a missing property 
that solves a puzzle of an important tumor suppressor. 
UTX/KDM6A, a histone H3K27 demethylase, is known to sup-
press cancer often in a demethylase-independent manner. It was 
recently shown that UTX undergoes IDR-dependent LLPS, which 
underlies its activity in suppressing cancer and regulating embry-
onic stem cell differentiation [7]. The LLPS property of UTX is lost 
in the most frequent UTX cancer mutation, as it truncates the core 
IDR important for LLPS. To show the functional importance of 
the IDR-mediated LLPS for the tumor-suppressive activity of 
UTX, the authors mutated key residues in the core IDR and 
showed that those mutations that abolished UTX LLPS also



abolished the tumor-suppressive activity and those that hardened 
the condensates greatly impaired the tumor-suppressive activity. 
Moreover, replacing its IDR with IDRs from unrelated proteins 
effectively maintained the tumor-suppressive activity. The authors 
then used a number of different experimental approaches including 
biochemical, biophysical, and cell-based assays to study the 
mechanisms by which UTX LLPS regulates tumor suppression. 
Both biochemical reconstitution and optogenetic assays show that 
UTX forms co-condensates with and enrich the enzymatic activities 
of KMT2D/MLL3 and p300, two important histone modifiers 
that function mainly at enhancers. Genomic assays in cells show 
that UTX condensation orchestrates a tumor-suppressive transcrip-
tional program through regulating genomic histone modifications 
and higher-order chromatin interactions. Certain cancer-associated 
IDR mutations in UTX as well as IDR sequence alterations in UTY 
enhance the LLPS activity but reduce the molecular dynamics in 
the condensates and impairs the tumor-suppressive activity. These 
data suggest that UTX IDR appears to have evolved to adopt 
sequence features to support an optimal LLPS ability and material 
state of the condensates [7]. In this study, the concept of LLPS here 
is crucial in unveiling the underlying mechanisms for the tumor-
suppressive activity of a chromatin modulator that is mainly viewed 
as an epigenetic enzyme. 
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5 Concluding Remarks 

Over the past few years, physical characterization of phase-
separated condensates has been extensively reported. Yet we are 
just in the very beginning of studying the complex nature, proper-
ties, regulation, function, and molecular mechanisms of the native 
cellular condensates in biological and pathological processes 
including cancer. New methods are needed to specifically probe 
and control (induce, dissolve, or tune) the endogenous conden-
sates. These methods will allow better understanding of how the 
cellular condensates regulate cancer and make it possible to develop 
novel strategies to fight cancer based on these condensates. While 
we hope that the basic approaches and methodologies (mainly 
based on published works) sketched here are helpful to readers, it 
is rather not the intention of the authors that this essay restrict the 
creativity of the researchers in developing novel methods for this 
very young field that has enormous potential for unexpected 
findings.



Phase-Separated Biomolecular Condensates 355

Acknowledgements 

Work in the authors’ laboratory is supported by the National 
Institute of Health (1 R01 CA259573-01, 1 R21 CA257936-
01), Department of Defense (BC190343), American Cancer Soci-
ety Research Scholar Award (128609-RSG-15-166-01-DMC), and 
the Leukemia and Lymphoma Society Scholar Award. 

References 

1. Hyman AA, Weber CA, Julicher F (2014) 
Liquid-liquid phase separation in biology. 
Annu Rev Cell Dev Biol 30:39–58 

2. Banani SF, Lee HO, Hyman AA, Rosen MK 
(2017) Biomolecular condensates: organizers 
of cellular biochemistry. Nat Rev Mol Cell 
Biol 18(5):285–298 

3. Jiang S, Fagman JB, Chen C, Alberti S, Liu B 
(2020) Protein phase separation and its role in 
tumorigenesis. eLife 9. https://doi.org/10. 
7554/eLife.60264 

4. Alberti S, Dormann D (2019) Liquid-liquid 
phase separation in disease. Annu Rev Genet 
53:171–194 

5. Boija A, Klein IA, Young RA (2021) Biomo-
lecular condensates and cancer. Cancer Cell 
39(2):174–192 

6. Mehta S, Zhang J (2022) Liquid-liquid phase 
separation drives cellular function and dysfunc-
tion in cancer. Nat Rev Cancer 22(4):239–252 

7. Shi B, Li W, Song Y et al (2021) UTX conden-
sation underlies its tumour-suppressive activity. 
Nature 597(7878):726–731 

8. Qin Z, Sun H, Yue M et al (2021) Phase sepa-
ration of EML4-ALK in firing downstream sig-
naling and promoting lung tumorigenesis. Cell 
Discov 7:33. https://doi.org/10.1038/ 
s41421-021-00270-5 

9. Tulpule A, Guan J, Neel DS et al (2021) 
Kinase-mediated RAS signaling via membrane-
less cytoplasmic protein granules. Cell 
184(10):2649–2664.e18 

10. Zhang JZ, Lu TW, Stolerman LM et al (2020) 
Phase separation of a PKA regulatory subunit 
controls cAMP compartmentation and onco-
genic signaling. Cell 182(6):1531–1544.e15 

11. Zhu G, Xie J, Kong W et al (2020) Phase 
separation of disease-associated SHP2 mutants 
underlies MAPK hyperactivation. Cell 183(2): 
490–502.e18 

12. Esposito M, Fang C, Cook KC et al (2021) 
TGF-β-induced DACT1 biomolecular con-
densates repress Wnt signalling to promote 
bone metastasis. Nat Cell Biol 23(3):257–267 

13. Boulay G, Sandoval GJ, Riggi N et al (2017) 
Cancer-specific retargeting of BAF complexes 
by a prion-like domain. Cell 171(1): 
163–178.e19 

14. Ahn JH, Davis ES, Daugird TA et al (2021) 
Phase separation drives aberrant chromatin 
looping and cancer development. Nature 
595(7868):591–595 

15. Chandra B, Michmerhuizen NL, Shirnekhi HK 
et al (2021) Phase separation mediates NUP98 
fusion oncoprotein leukemic transformation. 
Cancer Discov 12:1152. https://doi.org/10. 
1158/2159-8290.cd-21-0674 

16. Wan L, Chong S, Xuan F et al (2020) Impaired 
cell fate through gain-of-function mutations in 
a chromatin reader. Nature 577(7788): 
121–126 

17. Li W, Hu J, Shi B, Palomba F et al (2020) 
Biophysical properties of AKAP95 protein con-
densates regulate splicing and tumorigenesis. 
Nat Cell Biol 22(8):960–972 

18. Bouchard JJ, Otero JH, Scott DC et al (2018) 
Cancer mutations of the tumor suppressor 
SPOP disrupt the formation of active, phase-
separated compartments. Mol Cell 72(1): 
19–36.e8 

19. Cheng Y, Xie W, Pickering BF et al (2021) N 
(6)-Methyladenosine on mRNA facilitates a 
phase-separated nuclear body that suppresses 
myeloid leukemic differentiation. Cancer Cell 
39(7):958–972.e8 

20. Mitrea DM, Chandra B, Ferrolino MC et al 
(2018) Methods for physical characterization 
of phase-separated bodies and membrane-less 
organelles. J Mol Biol 430(23):4773–4805 

21. Alberti S, Gladfelter A, Mittag T (2019) Con-
siderations and challenges in studying liquid-
liquid phase separation and biomolecular con-
densates. Cell 176(3):419–434 

22. Vernon RM, Forman-Kay JD (2019) First-
generation predictors of biological protein 
phase separation. Curr Opin Struct Biol 58: 
88–96

https://doi.org/10.7554/eLife.60264
https://doi.org/10.7554/eLife.60264
https://doi.org/10.1038/s41421-021-00270-5
https://doi.org/10.1038/s41421-021-00270-5
https://doi.org/10.1158/2159-8290.cd-21-0674
https://doi.org/10.1158/2159-8290.cd-21-0674


356 Wei Li and Hao Jiang

23. van Mierlo G, Jansen JRG, Wang J, Poser I, van 
Heeringen SJ, Vermeulen M (2021) Predicting 
protein condensate formation using machine 
learning. Cell Rep 34(5):108705 

24. Chu X, Sun T, Li Q et al (2022) Prediction of 
liquid-liquid phase separating proteins using 
machine learning. BMC Bioinform 23(1):72. 
https://doi.org/10.1186/s12859-022-
04599-w 

25. Hardenberg M, Horvath A, Ambrus V, 
Fuxreiter M, Vendruscolo M (2020) Wide-
spread occurrence of the droplet state of pro-
teins in the human proteome. Proc Natl Acad 
Sci USA 117(52):33254–33262 

26. Dignon GL, Zheng W, Mittal J (2019) Simula-
tion methods for liquid-liquid phase separation 
of disordered proteins. Curr Opin Chem Eng 
23:92–98 

27. Shea JE, Best RB, Mittal J (2021) Physics-
based computational and theoretical 
approaches to intrinsically disordered proteins. 
Curr Opin Struct Biol 67:219–225 

28. Alberti S, Saha S, Woodruff JB, Franzmann 
TM, Wang J, Hyman AA (2018) A user’s 
guide for phase separation assays with purified 
proteins. J Mol Biol 430(23):4806–4820 

29. Woodruff JB, Hyman AA, Boke E (2018) 
Organization and function of non-dynamic 
biomolecular condensates. Trends Biochem 
Sci 43(2):81–94 

30. Kroschwald S, Maharana S, Simon A (2017) 
Hexanediol: a chemical probe to investigate 
the material properties of membrane-less 

compartments. Matters. https://doi.org/10. 
19185/matters.201702000010 

31. Bracha D, Walls MT, Brangwynne CP (2019) 
Probing and engineering liquid-phase orga-
nelles. Nat Biotechnol 37(12):1435–1445 

32. Owen I, Yee D, Wyne H et al (2021) The 
oncogenic transcription factor FUS-CHOP 
can undergo nuclear liquid-liquid phase sepa-
ration. J Cell Sci 134(17). https://doi.org/10. 
1242/jcs.258578 

33. Davis RB, Kaur T, Moosa MM, Banerjee PR 
(2021) FUS oncofusion protein condensates 
recruit mSWI/SNF chromatin remodeler via 
heterotypic interactions between prion-like 
domains. Protein Sci 30(7):1454–1466 

34. Davis RB, Moosa MM, Banerjee PR (2022) 
Ectopic biomolecular phase transitions: fusion 
proteins in cancer pathologies. Trends Cell Biol 
32:681. https://doi.org/10.1016/j.tcb.2022. 
03.005 
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Abstract 

Traditionally, disease causal mutations were thought to disrupt gene function. However, it becomes more 
clear that many deleterious mutations could exhibit a “gain-of-function” (GOF) behavior. Systematic 
investigation of such mutations has been lacking and largely overlooked. Advances in next-generation 
sequencing have identified thousands of genomic variants that perturb the normal functions of proteins, 
further contributing to diverse phenotypic consequences in disease. Elucidating the functional pathways 
rewired by GOF mutations will be crucial for prioritizing disease-causing variants and their resultant 
therapeutic liabilities. In distinct cell types (with varying genotypes), precise signal transduction controls 
cell decision, including gene regulation and phenotypic output. When signal transduction goes awry due to 
GOF mutations, it would give rise to various disease types. Quantitative and molecular understanding of 
network perturbations by GOF mutations may provide explanations for ‘missing heritability” in previous 
genome-wide association studies. We envision that it will be instrumental to push current paradigm toward 
a thorough functional and quantitative modeling of all GOF mutations and their mechanistic molecular 
events involved in disease development and progression. Many fundamental questions pertaining to 
genotype–phenotype relationships remain unresolved. For example, which GOF mutations are key for 
gene regulation and cellular decisions? What are the GOF mechanisms at various regulation levels? How do 
interaction networks undergo rewiring upon GOF mutations? Is it possible to leverage GOF mutations to 
reprogram signal transduction in cells, aiming to cure disease? To begin to address these questions, we will 
cover a wide range of topics regarding GOF disease mutations and their characterization by multi-omic 
networks. We highlight the fundamental function of GOF mutations and discuss the potential mechanistic 
effects in the context of signaling networks. We also discuss advances in bioinformatic and computational 
resources, which will dramatically help with studies on the functional and phenotypic consequences of GOF 
mutations. 
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1 Gain-of-Function Mutations in Cancer 

How variants of a genomic sequence alter biological functions and 
molecular activities has long been a key question of molecular 
biology [1, 2]. Past research in genomics has emphasized the 
importance of loss-of-function (LOF) and gain-of-function 
(GOF) mutations in understanding mutational effects on gene 
expression, protein activity, and phenotypic plasticity [3]. For 
instance, in protein-coding genes, LOF mutations disrupt or 
reduce protein functions compared to their wild-type counterparts 
[4]. On the other hand, GOF mutations produce mutant proteins 
that exhibit either new or overactive functions that would not 
usually exist [4, 5]. 

The field of oncology has continuously focused on identifying 
LOF and GOF mutations that may lead to many different types of 
cancers. Significantly, these mutations are usually identified in cancer 
patients, reflecting their clinical relevance. LOF mutations, usually 
involving tumor suppressor genes, can cause loss of protein function 
essential for inhibiting cancer-causing factors. These proteins typically 
suppressing cell growth or promoting cell death are now unable to 
function at the level they normally would, thereby promoting cancer 
growth. Meanwhile, GOF mutations in proto-oncogenes have the 
capacity to become neomorphic [4, 6], or produce new protein 
functions, and create other changes to cellular systems that favor 
overactive, uncontrolled cell growth. Compared to research on 
LOF cancer mutations, research regarding GOF mutations on cancer 
is largely limited as LOF mutations are more easily identifiable 
[7]. This reviewwill predominantly serve to informon recent research 
advances highlighting GOF mutations in cancer genomics with a 
focus on covering this gap in knowledge. Meanwhile, GOF mutant 
effects in neurodegenerative diseases will be briefly discussed as well. 

While all generally serve the same effect, GOF mutations often 
come in different forms. Such mutations may be categorized into 
two main areas of interest: protein-coding mutations and noncod-
ing mutations. The majority of GOF mutations studied are limited 
to the coding regions of the genome and directly affect the makeup 
of proteins. The mutant proteins may further impact biological 
features, such as protein–protein interactions and enzymatic activ-
ity, to affect cell growth or other influences on the phenotype. 
Furthermore, recent literature has brought attention to significant 
GOF mutation changes in epigenetics and noncoding regions of 
the genome affecting tumor growth as well. These notable muta-
tions affect cancer cell hallmarks through a variety of distinct 
molecular mechanisms. Identifying all types of mutations impli-
cated in cancer progression is imperative for developing new ways 
of early detection and therapeutic interventions in cancer. In this 
review, the latest functional implications of both coding and non-
coding mutations in cancer will be highlighted.



Gain-of-Function Variomics and Multi-omics Network Biology 359

2 Epigenetic Regulation 

The relationship between cancer-associated GOF mutations and 
epigenetic regulation has not been thoroughly studied, introducing 
a rather unexplored branch in cancer research. Without affecting 
DNA sequences, epigenetic GOF changes may create tumorigenic 
activity by influencing the physical structure of DNA or associated 
co-factors/modifiers instead (Fig. 1a). These changes may be 
induced by a diverse range of signals yet all similarly function to 
activate oncogenic transcriptional programs. 

Fig. 1 (a) Nucleosome consisting of histones H2A, H2B, H3, and H4 wrapped by DNA; (b) process of epigenetic 
regulation via histone acetylation and methylation. Histone acetyltransferases (HATs) act by acetylating 
histones, causing them to lose positive charge which loosens their interaction with negatively charged 
DNA. This enables RNA polymerase to better access to DNA, enabling more transcriptional activity. Histone 
methylation may either increase or decrease the association of histones and DNA. Depending on context, 
histone methylation may therefore increase or decrease transcriptional activity
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2.1 Histone 

Acetylation and 

Methylation 

A major area of research on epigenetic regulation looks at the GOF 
changes toward histone acetylation and methylation. These 
biological processes are catalyzed by three subcategories of tools: 
writers, readers, and erasers. Writers are enzymes capable of mod-
ifying base pairs in DNA and histone proteins, erasers are enzymes 
capable of reversing the work of writers, and readers are protein 
domains capable of identifying epigenetic changes and mediating 
them [8]. Catalyzed by the writer, histone acetyltransferase, histone 
acetylation loosens the interaction of DNA with histones and sub-
sequently increases transcriptional activity. On the other hand, 
histone methylation, carried out by the writer histone methyltrans-
ferases, can either repress or increase transcriptional activity 
depending on where in the histone they methylate (Fig. 1b). 

Research has revealed the role of GOF mutations in histone 
methyltransferase and histone acetyltransferase genes, modifying 
their binding potential to histone tails and changing levels of meth-
ylation and acetylation. For example, GOF variants in G9a histone 
methyltransferase were found to increase WNT signaling through 
the inhibition of DKK1, implicating it as a possible cause for 
melanoma [9]. GOF mutations in CREB-binding protein and 
p300, two homologous lysine acetyltransferases, were also found 
responsible for amplifying DNA replication through multiple 
non-transcriptional and transcriptional processes [10]. Interest-
ingly, another study discovered mutant-enhanced self-association 
of a histone acetylation reader, leading to increased chromatin 
occupancy and gene activation contributing toward pediatric kid-
ney cancer [11]. Several studies have also found GOF mutations in 
PRC2, affecting a complex which methylates histone 3 on lysine 
27 [12, 13]. Such mutations interfering with the role and function 
of PR2C have been implicated in multiple cancers, such as myeloid 
malignancies and malignant peripheral nerve sheath tumors among 
many more aggressive cancers [14, 15]. Another study found his-
tone deacetylase inhibition to reduce GOF effects of p53, high-
lighting how an eraser too may be implicated in tumorigenesis 
[16]. A separate finding determined a GOF mutation in IDH1 to 
depend heavily on HDAC in order to promote glioma [17]. 

A GOF mutation (E1099K) in the NSD2 histone methyltrans-
ferase specific for histone 3 lysine 36 (H3K36), results in altered 
enzyme substrate binding and increased level of H3K36 dimethyla-
tion (transcription activation mark) and decreased level of H3K27 
trimethylation (repressive mark) specifically at H3.1. H3K36me2 is 
normally found at the 5′ end of genes near transcriptional start 
sites, and mutant NSD2 plays an important role in proliferation and 
progression of acute lymphocytic leukemia. Further, in vivo studies 
suggest that the mice which are xenografted with NSD2WT/E1099K 

survive shorter in comparison to mice xenografted with wild-type 
NSD2 [18]. Chromosomal translocation is another example of 
GOF events which occur in 10–20% multiple myeloma cases and



r

places NSD2 under the control of immunoglobulin heavy chain 
promoter [19]. This results in overexpression of NSD which leads 
to an increase in H3K36me2 and a reduced H3K27me2 mark. The 
increased H3K36me2 level results in aberrant gene activation, 
promoting the cancer cell growth and tumor progression [20– 
22]. Additionally, Y641 mutation in EZH2 increases the level of 
H3K27me3 and reduces the level of H3K27 monomethylation and 
dimethylation in B-cell lymphomas, follicular lymphomas, and met-
astatic skin melanoma. The cells with GOF mutation Y641 undergo 
enhanced motility and significant growth advantage compared to 
wild-type cells [23–25]. 
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Together, these mutations reflect important areas of consider-
ation for drug targeting. Herein lies evidence of epigenetic GOF 
changes promoting tumorigenesis. Showcasing the importance of 
uncovering GOF effects in histone modifying proteins, these exam-
ples highlight a significant area of interest for future research in 
cancer biology. 

3 Transcription Factors 

GOF mutations can also influence transcription factor binding sites 
as another way outside of coding regions of the genome to produce 
oncogenic effects. Recent research highlights tumor suppressor 
gene TP53 for exhibiting multiple GOF mutant properties, includ-
ing those affecting transcription factors. In recognizing genes 
encoding cell cycle-dependent proteins cyclin A and CHK1, GOF 
p53 mutants are able to localize to their regulatory regions, accel-
erating their transcription by inducing origin firing, protecting 
replication forks, and promoting micronuclei formation 
[26]. Other research highlights separate novel mutations affecting 
transcriptional control through neomorphic, GOF transcription 
factor interactions. A mutation resulting in an N-terminally 
truncated variant of a transcription factor named C/EBPα, o  
p30, was discovered to be implicated in leukemogenesis by binding 
to upstream enhancers of NT5E. NT5E regulates the expression of 
CD73, promoting cell proliferation and stopping apoptosis in leu-
kemia cells [27]. Taken together, changes to and interactions 
among transcription factors, impacting noncoding regions of the 
genome, are shown to play a significant role in gene expression. 

4 Noncoding Elements 

Elements of the noncoding genome, such as promoters and 
enhancers, also play important roles in oncogenesis and cancer 
progression.
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4.1 Enhancers and 

Promoters 

The role of enhancers in gene regulation came into picture in early 
80s, before that binding of regulatory proteins with DNA was 
known as only a factor involved in gene regulation. Genome-wide 
association studies show that, many mutations in cis-regulatory 
regions are also associated with disease (PMID: 25261935). A 
single nucleotide variation (SNV) in the α-globin cluster creates 
an entirely new promoter region which causes decreased α-globin 
expression leading to α-thalassaemia. The hinderance in gene 
expression is caused by the newly formed regulatory region which 
lies in between the α-globin gene and their associated super enhan-
cers in an orientation dependent manner (PMID: 
34155213). Another study shows that the mutation in the pro-
moter region of the telomerase reverse transcriptase (TERT), 
encoding a catalytic subunit of the telomerase, as the most abun-
dant (71%) type of mutations occurring in melanomas examined in 
the study [30]. This mutation, when studied with reporter assays, 
exhibited upregulated transcription of TERT (PMID: 
23348506). Genome-wide analysis of mutations in noncoding 
regions showed that mutations in regulatory regions such as pro-
moters and 5’ UTR are more frequent than mutations in 3’ UTR 
and distal enhancer regions. The study reported that these muta-
tions are recurrent in the promoter regions of PLEKHS1, WDR74 
and SDHD as well as previously reported TERT which are further 
associated with different types of cancers (PMID: 25261935). 

5 Protein–Protein Interactions 

Protein–protein interactions (PPIs) are characterized by the physi-
cal association of proteins to mediate cellular processes and are also 
influenced by GOF mutations. Depending on the protein functions 
and the type of interactions, such acquired interactions may pro-
duce oncogenic effects in several unique ways [32]. 

Recent discoveries have shown various new GOF PPIs as a 
result of mutant protein p53. One mechanism in which p53 was 
shown to be implicated in cancer progression was through facilitat-
ing DNA replication. A recent study investigating GOF effects in 
mutant protein p53 found that p53 has the capacity to recruit 
MCM and PARP1 proteins on replicating DNA to promote repli-
cation upon DNA damage. This, in turn, causes tumorigenesis by 
allowing uncontrolled replication [33]. p53 was also discovered to 
mediate other PPIs enabling cancer progression as well. p53 
mutants enhancing STAT3 activation by binding to STAT3 and 
displacing SHP2 were found to promote the growth of tumor cells 
in colorectal cancer [34]. Furthermore, another recent study elu-
cidated the role of mutant p53 PPIs in suppressing the immune 
system to promote cancer cell proliferation. According to the study, 
p53 is able to bind to TANK-binding protein kinase 1, preventing



the formation of a protein complex required for the activation of 
the innate immune response [35]. Taken together, these recent 
studies reveal a large number of neomorphic gain-of-PPI mutations 
in one gene alone. Further studies will elucidate the diverse role of 
p53 in creating neomorphic, oncogenic PPIs [36]. 
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6 Post-translational Regulation 

Enzymatic activity takes on a critical role in the activation and 
inactivation of proteins. This becomes immediately apparent 
when reviewing the significance of signaling pathways and kinase 
activation on cancer. Kinase activation works by a phosphorylation 
cascade creating eventual cellular response through a chain of 
events. GOF mutations can play a role in changing these pathways, 
creating phenotypic behaviors through altered steps in the chain of 
reactions. 

Notably, tyrosine kinases are important for a cell to grow, 
move, differentiate, and undergo metabolism [37]. As such, 
changes to tyrosine kinases are frequent triggers for the onset of 
cancer, proving to be an active area of GOF research. Focal adhe-
sion kinase (FAK) is a cytoplasmic non-receptor tyrosine kinase that 
has been linked to driving invasion and metastasis in many cancer 
types. A recent study interrogated a GOF mutation in the GTPase 
RHOA and its biochemical relation toward inducing the activity of 
FAK and promoting diffuse gastric cancer [38]. Other GOF muta-
tions promote separate kinase pathways, some of which related to 
FAK, such as one involving mutant PI3K, a kinase involved in the 
PI3K/AKT/mTOR pathway which is important in cell growth and 
proliferation. Another study determined that WWP1 was found to 
inactivate PTEN, a tumor suppressor gene, and contribute toward 
overactive PI3K signaling, causing heightened cell growth [39]. A 
different study interrogated the ineffectiveness of a HER2 tyrosine 
kinase inhibitor due to high HER2/HER3 heterodimer catalytic 
activity. It was shown that high HER2/HER3 heterodimer activity 
leads to strong activation of the PI3K/AKT/mTOR pathway and 
eventually promotes cell growth, invasiveness, and drug resistance 
[40]. As demonstrated by these recent discoveries, multiple modes 
of action may be at play upon hyperactivation of tyrosine kinase 
signaling pathways. 

Other work has recently explored areas of inhibiting oncogenic 
KRAS involved in an effector pathway which promotes cell survival 
and proliferation. KRAS mutants are implicated in approximately 
30% of cancers. A frequent GOF KRAS mutation in lung cancer 
impairs the intrinsic GTPase function of KRAS, causing constitu-
tive downstream signaling of multiple kinase pathways 
[41, 42]. Efforts in the past three decades have been made to 
develop therapies for patients carrying KRAS mutations but to



no avail [43]. However, new research highlights the significant 
discovery of the KRAS-G12C variant with a druggable pocket. 
Current research is evaluating inhibitors targeting this variant for 
treatment of non-small cell lung cancer [44]. 
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A majority of other oncogenic GOF mutations described in 
current literature further investigates other kinase pathways, high-
lighting the significance toward understanding GOF kinase activity 
for drug targeting. GOF mutations in the RET (rearranged during 
transfection) gene which encodes a receptor tyrosine kinase impor-
tant for several physiological functions drive tumor growth and 
proliferation in several types of cancers [45]. GOF mutations in 
BRAF, one of the most frequently found oncogenes in multiple 
cancer types, lead to overactivation of the MEK/ERK signaling 
pathway, promoting metastasis [46]. GOF mutations in JAK2, 
CALR, and MPL constitutively activate the JAK/STAT pathway, 
giving rise to myeloproliferative neoplasms, polycythemia vera, 
essential thrombocytosis, and primary myelofibrosis from pluripo-
tent hematopoietic stem cells [47–49]. GOF mutations constitu-
tively activating RAS and RAC1 proteins involved in the Ras signal 
transduction pathway promote cell proliferation, giving rise to 
cancers such as juvenile myelomonocytic leukemia and malignant 
melanoma [50–52]. GOF KIT mutations lead to kinase activation 
found in systemic mastocytosis, which is a myeloproliferative neo-
plasm that expands abnormal mast cells in many types of tissues. 
For example, gastrointestinal stromal tumors were demonstrated to 
have GOF mutations in KIT, exemplifying the apparent role of KIT 
in promoting cancer [53, 54]. Altogether, these diverse and abun-
dant kinase GOF mutations showcase the wide array of kinase 
pathways which may be implicated in causing cancer. As such, 
further study on GOF mutations in proteins affecting kinase activ-
ity is significant and holds promising potential for innovative drug 
discovery. 

7 Gain-of-Function Mutations in Other Diseases 

Study of GOF mutations is not just limited to understanding 
cancer, but also to the development of other diseases as well. 
Notably, recent research has also highlighted neurodegenerative 
and inflammatory diseases influenced by GOF mutations, although 
not as well studied as in cancer. 

7.1 Neurological 

Diseases 

Neurodegenerative diseases, affecting nerve cells that cause debili-
tation, have been shown to be influenced in part by GOF muta-
tions. GOF in kinase activity has been identified to contribute 
toward neurodegeneration. A recent study related GOF activity in 
protein kinase C (PKC) isozymes to unique neurodegenerative 
diseases. GOF mutations in PKCα were linked to Alzheimer’s



disease, and GOF mutations in PKCγ were linked to spinocerebel-
lar ataxia type 14 [55]. Another study related GOF mutations in 
pro-inflammatory gene TBK1, or TANK binding kinase 1, to an 
increased risk in developing normal tension glaucoma [56]. Apart 
from kinase activity, recent study on Huntington’s disease has 
shown that expanded CAG repeats may produce toxic truncated 
polyQ-containing huntingtin proteins, illuminating a new GOF 
mechanism [57]. Further, mutations in several different kinds of 
ion channels have been reported to be associated with neurodeve-
lopmental, neurological, and/or psychiatric disorders. The patients 
with GOF mutation in KCNA2, which encodes for the potassium 
channel Kv1.2 exhibit severe phenotypic conditions in terms of 
epilepsy, ataxia, and intellectual disability (PMID: 25751627). 
Cav1.2 and Cav1.3 are two isoforms encoding calcium channels 
present in the brain. Mutations in these lead to several neurological 
abnormalities. A GOF mutation in Cav1.2 causes a rare multiorgan 
disorder Timothy syndrome and autism (PMID: 15454078). On 
the other hand, a GOF mutation in CACNA1D forming α1-sub-
unit of Cav1.3 causes aldosteronism with seizures, neurologic 
abnormalities, and intellectual disability and might be the cause of 
autism spectrum disorder (ASD) in the patients (PMID: 
25620733). In their next study, they found that the GOF mutation 
in CACNA1D is recurrent in patients and epilepsy (PMID: 
28472301). Further, GOF mutations in CACNA1G, CACNA1H 
and CACNA1I encoding different subunits of Cav3 calcium chan-
nel, are associated with cerebellar atrophy, primary aldosteronism 
and epilepsy, respectively (PMIDs: 24277868; 17397049; 
33704440). A GOF mutation in a Transient receptor potential 
gene, TRPA1 leads to a neuropathy disorder known as familial 
episodic pain syndrome (PMID: 20547126). 
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Current efforts at therapeutic strategies look to lowering hun-
tingtin levels in order to counteract such GOF mechanisms 
[58]. As new research continues to investigate the significance of 
GOF effects in neurodegenerative diseases, they prove to be an 
invaluable endeavor for more effective therapeutics. 

7.2 Inflammatory 

Diseases 

Inflammatory diseases, characterized by harm from one’s own over-
inflammatory immune system, have also been linked to GOF 
mutations. Cryopyrin-associated periodic syndrome, an autoin-
flammatory disorder characterized by inflammation throughout 
multiple bodily tissues, was recently linked to GOF in NLRP3, 
resulting in an over-release of inflammatory cytokines 
[59]. NLRP3 GOF has also been implicated in contributing toward 
several other inflammatory and autoimmune diseases such as 
inflammatory bowel disease [60]. Another autoinflammatory 
disease, familial Mediterranean fever (FMF), was recently linked 
to GOF mutations in the MEFV gene which encodes pyrin, a 
protein involved in regulating the innate immune system



[61]. Also notable, GOF mutations in the cGAS-STING signaling 
pathway, key to inflammation in infection, cellular stress, and tissue 
damage, has been shown to contribute toward a severe pediatric 
autoinflammatory syndrome called STING-associated vasculopa-
thy (SAVI) [62]. GOF mutations in STING, a signaling molecule 
in cytosolic DNA sensing pathway, is a novel cause of familial 
chilblain lupus, which is a monogenic form of cutaneous lupus 
erythematosus (PMID: 27566796). Together, GOF mutations 
play a significant role in dysregulating the immune system as well 
as in inflammatory disease pathogenesis. 
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8 Protein Aggregation and Liquid–Liquid Phase Separation 

Protein misfolding and aggregation lead to severe human diseases, 
such as Parkinson’s disease, Alzheimer’s disease, and amyotrophic 
lateral sclerosis. However, not only the neurodegenerative diseases 
but also cancer has been recently shown to be affected by aggrega-
tion, particularly by the aggregation of mutant variants of the 
tumor suppressor protein p53, which are present in more than 
50% of malignant tumors. Mostly the effective therapeutic strate-
gies for all these diseases are focused on the prevention of these 
aggregation processes. The aggregation of large amorphous or 
amyloid fibrils terminates a pathway and includes the formation of 
intermediate oligomeric species and protofibrils. Prior to the for-
mation of more stable aggregate species, several proteins involved 
in neurodegenerative diseases tend to undergo phase separation 
and form biomolecular condensates usually by transiting from 
liquid-like to gel-like and solid-like states. This transition is partic-
ularly applicable for several nuclear proteins that associate with 
RNAs and DNAs to generate membraneless organelles, such as 
the nucleolus. 

Mutant p53 tends to form aggregates with amyloid properties, 
especially amyloid oligomers inside the nucleus, which are believed 
to cause oncogenic GOFs. DNA-binding domain of p53 (p53C) 
undergoes liquid–liquid phase separation on the pathway to aggre-
gation under various conditions. Similarly, mutant p53C (M237I 
and R249S) undergoes phase separation, evolved to solid-like bio-
molecular condensates than that in the case of wild-type 
p53C (PMID: 34163823). Live cell microscopic data indicated 
that transfection of mutant full-length p53 into the cells results in 
phase separation in the nuclear compartments, which is likely the 
cause of the GOF effects (Fig. 2). 

Considering phase separated conformers as a crucial missing 
link of many fundamental biological processes, these transient bio-
molecular condensates may be assigned to have their own function 
to contribute. Just like the previous example, there are a few exam-
ples on involvement of mutant proteins in different phase separated



condensates. p62 assembles into condensates together with mutant 
KEAP1 proteins and the transcription factor NRF2, thereby affect-
ing NRF2-driven transcription (PMID: 30126895). Although not 
determined, it is speculated that p62 condensates are involved in 
the formation and autophagy-mediated disposal of various cellular 
condensates that promote or inhibit tumorigenesis. Stress granule 
(SG) formation was found to be induced in cancerous cells expres-
sing mutant KRAS, and this was shown to be dependent on the 
secretion of a lipid that inactivates the eukaryotic initiation factor 
eIF4A (PMID: 27984728). Thus, mutant KRAS establishes a 
more stress-resistant cellular condition through SG assembly, and 
this confers a fitness advantage to cancer cells and presumably also 
resistance to chemotherapeutics. Taken together, more systematic 
profiling of GOF mutants in a large set of disease-associated genes 
is needed to correlate the current theme based on phase separation 
and protein aggregation. 
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Fig. 2 (Scenario 1) Mutant p53 (M237I and R249S) forms on-pathway liquid–liquid phase separation, followed 
by solid-like condensates which eventually leads to formation of pathological aggregates, an example of direct 
oncogenic GOF. (Scenario 2) Mutant KEAP1 assembles with p62 and NRF2 into off-pathway phase-separated 
condensates, which affects the function of NRF2 driven transcription. Cancer cells expressing mutant KRAS 
induce the formation of SG assembly which confers fitness advantage to the cells. Here both mutants are 
involved in phase separated assembly to accomplish an off-pathway function. So, those can be considered as 
example of indirect GOFs
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9 Computational Resources for Predicting GOF Mutations (See Table 1) 

Table 1 
Computational prediction tools for GOF mutations. 

Tools Description Web Ref 

OncoLnc Explores survival correlations using clinical data and 
expression data for mRNAs, miRNAs, or lncRNAs 

http://www.oncolnc. 
org/ 

[63] 

OncodriveC 
LUST 

Identifies genes with a bias toward mutations which 
cluster within a protein sequence 

http://bg.upf.edu/ 
oncodriveclust 

[64] 

Kin-driver Human protein kinase database for driver mutations http://kin-driver.leloir. 
org.ar/ 

[65] 

KinMutRF Identifies pathogenic variants in human kinases https://github.com/ 
Rbbt-Workflows/ 
KinMut2 

[66] 

OncoVar Database and analysis platform for oncogenic driver 
mutations 

https://oncovar.org/ [67] 

OncoKB Annotates oncogenic effects and the prognostic and 
predictive importance of mutations 

http://oncokb.org/ [68] 

CHASM Computational method which prioritizes missense 
mutations likely to cause functional changes that 
enhance cell proliferation 

https://karchinlab.org/ 
apps/appChasm.html 

[69] 

MEME 
Suite 

Portal for online analysis and identification of sequence 
motifs representing transcription factors 

http://meme.nbcr.net/ [70] 

RegulomeD 
B 

Analyzes regulatory variants in the human genome https://regulomedb. 
org/regulome-search/ 

[71] 

VEST Scoring tool that predicts functional significance of 
missense mutations based on possibility of 
pathogenicity 

http://www.cravat.us/ 
CRAVAT/ 

[72] 

10 Conclusion 

Together, this review leads to an emerging area in molecular biol-
ogy and is becoming an important area of research in the future. 
The area is innovative because it will provide unique insights in 
prioritizing functional GOF disease mutations and uncovering 
individualized molecular mechanisms. It is also significant because 
it will greatly facilitate the functional annotation of a large number 
of GOF mutations, providing a fundamental link between genotype 
and phenotype in human disease.

http://www.oncolnc.org/
http://www.oncolnc.org/
http://bg.upf.edu/oncodriveclust
http://bg.upf.edu/oncodriveclust
http://kin-driver.leloir.org.ar/
http://kin-driver.leloir.org.ar/
https://github.com/Rbbt-Workflows/KinMut2
https://github.com/Rbbt-Workflows/KinMut2
https://github.com/Rbbt-Workflows/KinMut2
https://oncovar.org/
http://oncokb.org/
https://karchinlab.org/apps/appChasm.html
https://karchinlab.org/apps/appChasm.html
http://meme.nbcr.net/
https://regulomedb.org/regulome-search/
https://regulomedb.org/regulome-search/
http://www.cravat.us/CRAVAT/
http://www.cravat.us/CRAVAT/
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Since the introduction of next-generation sequencing meth-
ods, genomics research has taken a large step forward and revealed 
the importance of GOF mutations in contributing toward disease. 
Increasingly, more GOF mutations affecting cancer in the coding 
regions of the genome, changing PPIs and enzymatic activity, have 
been identified. Additionally, other novel GOF mutations in the 
noncoding regions of the genome, affecting transcriptional con-
trol, have also increasingly been identified and explored. 
Continuing forward, these GOF mutations prove to be important 
toward understanding both the pathogenesis of cancer and other 
(e.g., neurodegenerative and inflammatory) diseases. Furthermore, 
genomics study of GOF mutations helps elucidate potential targets 
for drug therapy, aiding in the combat against lethal diseases. 
Looking ahead, further research in GOF mutations seems 
promising and may bring large potential for effective treatment of 
various lethal diseases. 
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