

Jürgen Wolf

HTML and CSS
The Comprehensive Guide

Imprint

This e-book is a publication many contributed to, specifically:

Editor Meagan White
Acquisitions Editor Hareem Shafi
German Edition Editor Patricia Schiewald
Translation Winema Language Services, Inc.
Copyeditor Julie McNamee
Cover Design Graham Geary
Photo Credit Shutterstock: 1670310505/© Paul Aparicio;
iStockphoto: 1447894700/© olaser
Production E-Book Graham Geary
Typesetting E-Book SatzPro, Germany

We hope that you liked this e-book. Please share your feedback with
us and read the Service Pages to find out how to contact us.

The Library of Congress has cataloged the printed edition as
follows:
Names: Wolf, Jürgen, 1974- author.
Title: HTML and CSS : the comprehensive guide / by Jürgen Wolf.
Description: 1st edition. | Bonn ; Boston : Rheinwerk Publishing,
2023. |
Includes index.
Identifiers: LCCN 2023003226 | ISBN 9781493224227 | ISBN
9781493224234
(ebook)

Subjects: LCSH: HTML (Document markup language) | Cascading
style sheets. |
Web site development.
Classification: LCC QA76.76.H94 W64 2023 | DDC 005.7/2--
dc23/eng/20230127
LC record available at https://lccn.loc.gov/2023003226

ISBN 978-1-4932-2422-7 (print)
ISBN 978-1-4932-2423-4 (e-book)
ISBN 978-1-4932-2424-1 (print and e-book)

© 2023 by Rheinwerk Publishing Inc., Boston (MA)
1st edition 2023
4th German edition published 2021 by Rheinwerk Verlag, Bonn,
Germany

Dear Reader,

It’s estimated that the average American spends 6–7 hours a day
online. While some of that time may be spent on mobile apps,
internet-connected gaming, and all the other ways we whittle away
the hours, it cannot be denied how much time we spend on web
pages. Web development has exploded over the last two decades
and shows no signs of slowing down anytime soon.

Expert author Jürgen Wolf has set out to make sure that you have all
the information you need to start building websites with HTML and
CSS—and in my humble opinion, succeeded! This book has
everything: detailed, step-by-step instructions, example code,
practical models, a thorough grounding in the basics for beginners,
and more advanced techniques for those who already have some
experience. Not to mention, Jürgen provides downloadable
examples and projects so that you can learn by doing.

What did you think about HTML and CSS: The Comprehensive
Guide? Your comments and suggestions are the most useful tools to
help us make our books the best they can be. Please feel free to
contact me and share any praise or criticism you may have.

Thank you for purchasing a book from Rheinwerk Publishing!

Meagan White
Editor, Rheinwerk Publishing

meaganw@rheinwerk-publishing.com
www.rheinwerk-computing.com

mailto:meganf@rheinwerk-publishing.com
http://www.rheinwerk-computing.com/

Rheinwerk Publishing • Boston, MA

Notes on Usage

This e-book is protected by copyright. By purchasing this e-book,
you have agreed to accept and adhere to the copyrights. You are
entitled to use this e-book for personal purposes. You may print and
copy it, too, but also only for personal use. Sharing an electronic or
printed copy with others, however, is not permitted, neither as a
whole nor in parts. Of course, making them available on the internet
or in a company network is illegal as well.

For detailed and legally binding usage conditions, please refer to the
section Legal Notes.

This e-book copy contains a digital watermark, a signature that
indicates which person may use this copy:

Notes on the Screen Presentation

You are reading this e-book in a file format (EPUB or Mobi) that
makes the book content adaptable to the display options of your
reading device and to your personal needs. That’s a great thing; but
unfortunately not every device displays the content in the same way
and the rendering of features such as pictures and tables or
hyphenation can lead to difficulties. This e-book was optimized for
the presentation on as many common reading devices as possible.

If you want to zoom in on a figure (especially in iBooks on the iPad),
tap the respective figure once. By tapping once again, you return to
the previous screen. You can find more recommendations on the
customization of the screen layout on the Service Pages.

Table of Contents

Dear Reader
Notes on Usage
Table of Contents

Preface

1 Introduction to the HTML
Universe

1.1 Is This Book Even Intended for Me?
1.2 Different Types of Websites

1.2.1 Web Presence
1.2.2 Blog/Online Magazine/Portfolio
1.2.3 E-Commerce Websites: Stores without Opening
Hours
1.2.4 Landing Page/Microsite
1.2.5 Web Platform: Building Your Own Social Network
1.2.6 Web Apps

1.3 Dynamic and Static Websites
1.3.1 Static Websites
1.3.2 Dynamic Websites

1.4 Languages for Designing and Developing
on the Web

1.4.1 HTML: Text-Based Hypertext Markup Language
1.4.2 CSS: Design Language
1.4.3 JavaScript: Client-Side Scripting Language of the
Web Browser
1.4.4 Server-Side Scripting Languages and Databases

1.5 What Do I Need to Get Started?
1.5.1 HTML Editor for Writing HTML Documents
1.5.2 Web Browser for Displaying the Website
1.5.3 Step by Step: Creating a Web Page and Viewing It
in the Web Browser
1.5.4 Checking Written HTML
1.5.5 Good Reasons for Validating the HTML Code
Anyway

1.6 Conventions Used in This Book

1.7 Summary

2 Basic Structure of HTML and
HTML Documents

2.1 Syntax and Structure of HTML and HTML
Documents

2.1.1 How to Structure a Document in HTML
2.1.2 Viewing the Tree Structure Using the Document
Object Model Inspector
2.1.3 HTML Tags and HTML Elements
2.1.4 Nesting HTML Elements and the Hierarchical
Structure
2.1.5 Avoiding Incorrect Nesting of HTML Elements
2.1.6 Omitting the End Tag of an HTML Element
2.1.7 Standalone HTML Tags without End Tags
2.1.8 Additional HTML Attributes for HTML Elements
2.1.9 Using Comments in HTML Documents

2.2 A Simple HTML Document Framework
2.2.1 HTML Document Type: <!doctype>
2.2.2 Beginning and Ending an HTML Document: <html>
2.2.3 Head of an HTML Document: <head>
2.2.4 Visible Part of an HTML Document: <body>

2.3 Summary

3 Head Data of an HTML
Document

3.1 Overview of HTML Elements for the Head
3.2 <title>: Heading of the HTML Page
3.3 Related Topic: Naming Convention and
Referencing

3.3.1 Valid and Good File Names for an HTML Document
3.3.2 Valid Directory Names and Meaningful Directory
Structures
3.3.3 Writing a Reference to a Data Source

3.4 Defining the Base URL of a Web Page
Using <base>
3.5 Referencing an External Document via
<link>
3.6 Writing Document-Wide CSS Styles Using
<style>
3.7 Including Scripts in Web Pages Using
<script>
3.8 Metadata for the Document Using <meta>

3.8.1 The Most Commonly Used Metadata
3.8.2 Setting the Viewport
3.8.3 Specifying Useful Metadata for a Web Crawler
3.8.4 Useful Metadata for Search Engines
3.8.5 Useful Metadata for the Web Browser

3.8.6 Using General Metadata
3.8.7 My Recommendation: This Metadata Belongs in the
Basic HTML Framework
3.8.8 HTML Attributes for the <meta> Element

3.9 Summary

4 The Visible Part of an HTML
Document

4.1 HTML Elements for Structuring Pages
4.1.1 Using <body>: The Displayable Content Section of
an HTML Document
4.1.2 Introducing the Section Elements of HTML
4.1.3 Using Headings with the HTML Elements from <h1>
to <h6>
4.1.4 Creating a Header Using <header> and a Footer
Using <footer>
4.1.5 Marking Contact Information Using <address>

4.2 HTML Elements for Structuring Text
4.2.1 Adding Text Paragraphs Using <p>
4.2.2 Forcing Line Breaks Using

4.2.3 Adding Optional Line Breaks Using <wbr>
4.2.4 Forcing Spaces and Preventing Wrapping Using
" "
4.2.5 Adding a Topic-Based Separation Using <hr>
4.2.6 Adding Paragraphs or Citations Using <blockquote>
4.2.7 Defining a General Section Using <div>
4.2.8 Using <main>: An HTML Element for the Main
Content
4.2.9 Labeling Content Separately Using <figure> and
<figcaption>

4.2.10 Creating Unordered Lists Using and
4.2.11 Creating Ordered Lists Using and
4.2.12 Reversing the Numbering of an Ordered List
4.2.13 Changing the Numbering of an Ordered List
4.2.14 Nesting Lists within Each Other
4.2.15 Creating a Description List Using <dl>, <dt>, and
<dd>

4.3 Using Semantic HTML
4.3.1 HTML without a Precise Structure
4.3.2 Generic Structuring Using <div>
4.3.3 Semantic Structuring Using the Elements Provided
in HTML
4.3.4 What’s the Use of Those Semantic HTML
Elements?

4.4 HTML Elements for Text Markups
4.4.1 Marking Up Abbreviations or Acronyms Using
<abbr>
4.4.2 Marking Up Text as the Source of a Working Title
Using <cite>
4.4.3 Marking Up Computer Code Representation Using
<code> and <pre>
4.4.4 Keyboard Input Using <kbd> and Program Output
Using <samp>
4.4.5 Marking Up Text as a Definition Using <dfn>
4.4.6 Marking Up Text as a Variable Using <var>
4.4.7 Changing the Text Direction Using <bdo> and <bdi>
4.4.8 Emphasizing Text Using , , <i>, and

4.4.9 Highlighting Text Using <mark>
4.4.10 Placing Text between Quotes Using <q>
4.4.11 Underlining or Crossing Out Text Using <u> and
<s>
4.4.12 Marking Changes of Text Using <ins> and
4.4.13 Displaying Text as Superscript or Subscript Using
<sup> and <sub>
4.4.14 Marking Dates and Times Using <time>
4.4.15 Marking the Small Print Using <small>
4.4.16 Using <ruby>, <rp>, and <rt> for Annotations
about Pronunciation
4.4.17 Grouping Ranges of Individual Text Passages
Using

4.5 Related Topic: Character Encoding
4.5.1 From Bytes to Character Encoding
4.5.2 From ASCII to ISO-8859
4.5.3 Beyond the Byte Boundary with Unicode

4.6 Character Entities in HTML
4.6.1 Structure of a Character Entity in HTML

4.7 Summary

5 Tables and Hyperlinks

5.1 Structuring Data in a Table
5.1.1 A Simple Table Structure Using <table>, <tr>, <td>,
and <th>

5.1.2 Combining Columns or Rows Using “colspan” or
“rowspan”
5.1.3 HTML Attributes for the Table Elements
5.1.4 Structuring Tables Using <thead>, <tbody>, and
<tfoot>
5.1.5 Grouping Columns of a Table Using <colgroup> and
<col>
5.1.6 Labeling Tables Using <caption> or <figcaption>

5.2 Electronic References (Hyperlinks) Using
<a>

5.2.1 Inserting Links to Other HTML Documents on Your
Own Website
5.2.2 Inserting Links to Other Websites
5.2.3 Opening Links with the “target” Attribute in a New
Window
5.2.4 Email Links with “href=mailto: . . .”
5.2.5 Setting Links to Other Types of Content
5.2.6 Adding Download Links Using the “download”
Attribute
5.2.7 Setting Links to Specific Parts of a Web Page
5.2.8 Creating Links to Phone Numbers
5.2.9 HTML Attributes for the HTML Element <a>

5.3 Summary

6 Graphics and Multimedia

6.1 Embedding Images Using
6.1.1 Adding Images to an HTML Document
6.1.2 Specifying the Height and Width of a Graphic
6.1.3 Labeling Images Using <figure> and <figcaption>
6.1.4 HTML Attributes for the HTML Element

6.2 Creating Link-Sensitive Graphics (Image
Maps)

6.2.1 Use HTML Attributes for the HTML Element <area>
6.2.2 Referencing Defined Areas of the HTML Element
<area>
6.2.3 HTML Attributes of <area>

6.3 Loading the Appropriate Image Using
<picture>

6.3.1 HTML Attributes of <source>
6.3.2 Multiple Image Sources with the HTML Attribute
“srcset”

6.4 Adding an Icon for the Website (Favicon)
6.5 Using Vector Graphics in HTML
Documents

6.5.1 Adding SVG as a Graphic Reference Using
6.5.2 Embedding SVG Directly into the Web Page Using
<svg>
6.5.3 SVG Tags for Vector Graphics
6.5.4 Overview of Graphical SVG Elements
6.5.5 Further Notes on Using SVG
6.5.6 Mathematical Formulas Using MathML

6.6 Drawing Graphics Using <canvas>

6.7 Playing Videos Using the HTML Element
<video>

6.7.1 HTML Attributes for the HTML Element <video>
6.7.2 Adding Subtitles to a Video Using <track>
6.7.3 Playing Videos via YouTube

6.8 Playing Audio Files Using the HTML
Element <audio>

6.8.1 HTML Attributes for the HTML Element <audio>
6.9 Including Other Active Content

6.9.1 HTML Element <embed>
6.9.2 HTML Element <object>
6.9.3 HTML Element <iframe>

6.10 Summary

7 HTML Forms and Interactive
Elements

7.1 Defining a Space for Forms
7.2 HTML Input Fields for Forms

7.2.1 A Single-Line Text Input Field Using <input
type="text">
7.2.2 A Password Input Field Using <input
type="password">
7.2.3 A Multiline Text Input Field Using <textarea>
7.2.4 A Selection List or Dropdown List Using <select>

7.2.5 Creating a Group of Radio Buttons Using <input
type="radio">
7.2.6 Adding a Text Label Using <label>
7.2.7 Using Checkboxes via <input type="checkbox">
7.2.8 Using Fields for File Uploads via <input type="file">
7.2.9 Overview of Various Buttons
7.2.10 Using a Hidden Input Field via <input
type="hidden">
7.2.11 Writing Form Fields outside of <form>...</form>
7.2.12 Multiple Submit Buttons for Different URLs

7.3 Special Types of Input Fields
7.3.1 An Input Field for Colors Using <input type="color">
7.3.2 An Input Field for a Date Using <input type="date">
7.3.3 An Input Field for a Time Using <input type="time">
7.3.4 Input Fields for Date and Time
7.3.5 Input Fields for the Month and the Week
7.3.6 An Input Field for Searches Using <input
type="search">
7.3.7 An Input Field for Email Addresses Using <input
type="email">
7.3.8 An Input Field for a URL Using <input type="url">
7.3.9 An Input Field for Phone Numbers Using <input
type="tel">
7.3.10 An Input Field for Numbers Using <input
type="number">
7.3.11 An Input Field for Numbers of a Certain Range
7.3.12 Outputting Values and Calculations Using
<output>

7.4 The HTML Attributes for Input Fields
7.4.1 Setting the Input Focus Using the HTML Attribute
“autofocus”
7.4.2 (De)activating Autocompletion Using the
“autocomplete” Attribute
7.4.3 A List of Suggestions for Using the HTML Attribute
“list” and <datalist>
7.4.4 Specifying Minimum and Maximum Values and the
Step Size
7.4.5 Selecting or Entering Multiple Values Using
“multiple”
7.4.6 Regular Expressions for Input Fields Using “pattern”
7.4.7 A Placeholder for an Input Field Using “placeholder”
7.4.8 Defining an Input as Required Using the “required”
Attribute
7.4.9 Controlling Error Messages for Input Fields

7.5 Other Useful Helpers for Input Fields
7.5.1 Disabling Form Elements Using the HTML Attribute
“disabled”
7.5.2 Permitting Read-Only for Input Fields Using the
“readonly” Attribute
7.5.3 Useful Keyboard Shortcuts and Tab Sequence for
Input Fields
7.5.4 Grouping Form Elements Using <fieldset> and
<legend>
7.5.5 Progress Display via <progress>
7.5.6 Visualizing Values Using <meter>

7.6 Sending Form Data Using PHP

7.6.1 Transferring the Data from the Web Browser for
Further Processing
7.6.2 The “POST” Method
7.6.3 The “GET” Method
7.6.4 Processing the Data Using a PHP Script

7.7 Interactive HTML Elements
7.7.1 Expanding/Collapsing Content Using <details> and
<summary>
7.7.2 A Dialog Box via <dialog>

7.8 Summary

8 Introduction to Cascading Style
Sheets

8.1 The Story of CSS
8.2 The Basic Principle of Using CSS

8.2.1 Structure of a CSS Rule
8.2.2 Declaring a Selector
8.2.3 Using Comments for CSS Code
8.2.4 A Few Notes on Formatting CSS Code

8.3 Integrating CSS into HTML
8.3.1 Style Statements Directly in the HTML Tag Using
the HTML Attribute “style”
8.3.2 Style Statements in the Document Head Using the
HTML Element <style>

8.3.3 Integrating Style Statements from an External CSS
File Using <link>
8.3.4 Combining CSS Rules in the Head Section and in
External CSS Files
8.3.5 Recommendation: You Should Separate HTML and
CSS
8.3.6 Testing Alternate Stylesheets during Development
8.3.7 Integrating Style Statements from an External CSS
File Using “@import”
8.3.8 Media-Specific Stylesheets for Specific Output
Devices
8.3.9 Media-Specific Stylesheets with CSS

8.4 Analyzing CSS in the Web Browser
8.5 Summary

9 The Selectors of CSS

9.1 The Simple Selectors of CSS
9.1.1 Addressing HTML Elements Using the Type
Selector
9.1.2 Addressing HTML Elements Using a Specific Class
or ID
9.1.3 Universal Selector: Addressing All Elements in a
Document
9.1.4 Addressing Elements Based on Attributes Using the
Attribute Selector

9.1.5 An Attribute Selector for Attributes with a Specific
Value
9.1.6 Attribute Selector for Attributes with a Specific
Partial Value
9.1.7 CSS Pseudo-Classes: The Selectors for Specific
Features
9.1.8 The Convenient Structural Pseudo-Classes in CSS
9.1.9 Other Useful Pseudo-Classes
9.1.10 Pseudo-Elements: The Selectors for Nonexistent
Elements

9.2 Combinators: Concatenating the Selectors
9.2.1 The Descendant Combinator (E1 E2)
9.2.2 The Child Combinator (E1 > E2)
9.2.3 The Adjacent Sibling Combinator (E1 + E2)
9.2.4 The General Sibling Combinator (E1 ~ E2)

9.3 Recommendation: How to Use Efficient and
Simple CSS

9.3.1 How to Write Well Performing CSS
9.3.2 Recommendation: Keep the CSS Code as Simple
as Possible

9.4 Summary

10 Inheritance and Cascading

10.1 The Principle of Inheritance in CSS
10.1.1 Be Cautious When Using Relative Properties

10.1.2 Not Everything Gets Inherited
10.1.3 Enforcing Inheritance Using “inherit”
10.1.4 Restoring the Default Value of a CSS Feature
(“initial”)
10.1.5 Forcing Inheritance or Restoring a Value ("unset")
10.1.6 Forcing Inheritance or Restoring Values for All
Properties

10.2 Understanding the Control System for
Cascading

10.2.1 The Origin of a Stylesheet
10.2.2 Increasing the Priority of a CSS Feature Using
“!important”
10.2.3 Sorting by Importance and Origin
10.2.4 Sorting by Weighting the Selectors (Specificity)
10.2.5 Summary of the Cascading Rules System
10.2.6 Analyzing the Cascading in the Browser

10.3 Related Topic: Passing Values to CSS
Features

10.3.1 Different Units of Measurement in CSS
10.3.2 Character Strings and Keywords as Values for
CSS Features
10.3.3 Many Ways of Using a Color in CSS
10.3.4 Angular Dimensions in CSS
10.3.5 Passing Values via Short Notation to a CSS
Feature

10.4 Summary

11 The Box Model of CSS

11.1 Classic Box Model of CSS
11.1.1 Specifying the Content Area Using “width” and
“height”
11.1.2 Specifying the Inner Spacing Using “padding”
11.1.3 Creating the Border Using “border”
11.1.4 Setting Up the Outer Margin Using “margin”
11.1.5 Collapsing Margins
11.1.6 Determining the Total Width and Total Height of a
Box

11.2 Newer Alternate Box Model of CSS
11.2.1 Using the “box-sizing” Box Model
11.2.2 Using the Alternate Box Model

11.3 Analyzing the Box Model in the Browser
11.4 Box Model for Inline Elements
11.5 Designing Boxes

11.5.1 Adding and Designing a Border Using the “border”
Property
11.5.2 Setting a Background Color Using “background-
color”
11.5.3 Using Background Images
11.5.4 Making Boxes Transparent
11.5.5 Adding a Gradient
11.5.6 Adding a Shadow Using the “box-shadow” Feature

11.5.7 Adding Round Corners Using the CSS Feature
“border-radius”

11.6 Related Topic: Web Browser Prefixes
(CSS Vendor Prefixes)
11.7 Summary

12 CSS Positioning

12.1 Positioning via CSS Feature “position”
12.1.1 Normal Positioning (“position: static”)
12.1.2 Positioning Elements Using “top”, “right”, “bottom”,
and “left”
12.1.3 Relative Positioning (“position: relative”)
12.1.4 Absolute Positioning (“position: absolute”)
12.1.5 Fixed Positioning (“position: fixed”)
12.1.6 Sticky Positioning (“position: sticky”)

12.2 Controlling Stacking Using “z-index”
12.3 Floating Boxes for Positioning via “float”

12.3.1 Terminating the Float
12.3.2 Combining Floats into One Entity

12.4 Flexible Boxes of CSS
12.4.1 Aligning the Flexbox
12.4.2 Setting the Flexibility of the Flexbox
12.4.3 Determining the Order of the Boxes

12.5 Summary

13 Creating Responsive Layouts
with CSS

13.1 Basic Theoretical Knowledge of
Responsive Web Design

13.1.1 Using Specific Media Types
13.1.2 Media Queries for Media Features
13.1.3 Integrating and Applying Media Queries for Media
Features
13.1.4 Basic Structure of a Media Feature Query
13.1.5 Which Media Features Can Be Queried?
13.1.6 Crucially Important: The Viewport for Mobile
Devices
13.1.7 Use “em” Instead of Pixels for a Layout Break in
Media Queries
13.1.8 Layout Breaks (Breakpoints)
13.1.9 No More Math Games Thanks to "box-sizing:
border-box;"
13.1.10 What Happens to Web Browsers That Don’t
Understand Media Queries?

13.2 Let’s Create a Simple Responsive Layout
13.2.1 Let’s Create the Basic Framework Using HTML
13.2.2 Setting General CSS Features
13.2.3 What Should I Use as a Basic Version without
Media Queries: Mobile First?
13.2.4 Setting the Layout Break (Breakpoint)

13.2.5 Adding More Layout Breaks
13.2.6 Customizing the Main Content

13.3 Even More Flexible Elements
13.3.1 Use Relative Font Sizes instead of Pixels
13.3.2 Making Images Responsive
13.3.3 Flexible Images in Maximum Possible Width
13.3.4 Hiding Images Entirely
13.3.5 Loading the Right Image for the Screen Width:
<picture>
13.3.6 Using Area-Covering Images

13.4 CSS Grid Layout
13.4.1 Creating a Grid for the Content
13.4.2 Placing Elements in the Grid
13.4.3 Layout Changes Made Easy
13.4.4 Spacing between Grid Lines
13.4.5 Checking the Grid in the Web Browser

13.5 Changing the Behavior of HTML Elements
Using “display”

13.5.1 “display: block”, “display: inline”, and “display:
inline-block”
13.5.2 Hiding Elements Using “display:none”
13.5.3 Further Values for “display”

13.6 Calculations Using CSS and the “calc()”
Function
13.7 Summary

14 Styling with CSS

14.1 Designing Texts with CSS
14.1.1 Selecting Fonts via “font-family”
14.1.2 Providing Fonts via Web Fonts: “@font-face”
14.1.3 Using Icons via Icon Fonts
14.1.4 Setting the Font Size Using “font-size”
14.1.5 Italic and Bold Fonts via “font-style” and “font-
weight”
14.1.6 Creating Small Caps Using “font-variant”
14.1.7 Defining Line Spacing via “line-height”
14.1.8 A Short Notation for Font Formatting Using “font”
14.1.9 Specifying Letter and Word Spacing via “letter-
spacing” and “word-spacing”
14.1.10 Setting the Text Alignment Using “text-align”
14.1.11 Setting the Vertical Alignment via “vertical-align”
14.1.12 Indenting Text Using “text-indent”
14.1.13 Underlining Text and Striking Text Through Using
“text-decoration”
14.1.14 Uppercase and Lowercase Text via “text-
transform”
14.1.15 Adding Shadow to Text via “text-shadow”
14.1.16 Splitting Text into Multiple Columns Using
“column-count”

14.2 Designing Lists with CSS
14.2.1 Customizing Bullet Points Using “list-style-type”
14.2.2 Using Images as Bullets via “list-style-image”
14.2.3 Positioning Bulleted Lists via “list-style-position”
14.2.4 Short Notation “list-style” for Designing Lists
14.2.5 Creating Navigation and Menus via Lists

14.3 Designing Appealing Tables with CSS
14.3.1 Creating Fixed-Width Tables
14.3.2 General Recommendation: Designing Appealing
Tables with CSS
14.3.3 Collapsing Borders for Table Cells Using “border-
collapse”
14.3.4 Setting the Spacing between Cells via “border-
spacing”
14.3.5 Displaying Empty Table Cells Using “empty-cells”
14.3.6 Positioning Table Captions via “caption-side”

14.4 Adjusting Images and Graphics Using
“width” and “height”
14.5 Transforming Elements with CSS

14.5.1 Scaling HTML Elements via “transform: scale()”
14.5.2 Rotating HTML Elements Using “transform:
rotate()”
14.5.3 Skewing HTML Elements Using “transform:
skew()”
14.5.4 Moving HTML Elements Using “transform:
translate()”
14.5.5 Combining Different Transformations
14.5.6 Other HTML Elements

14.6 Creating Transitions with CSS
14.7 Styling HTML Forms with CSS

14.7.1 Neatly Structuring an HTML Form
14.7.2 Aligning Form Elements with CSS
14.7.3 Designing Form Elements with CSS

14.8 Summary

15 Testing and Organizing

15.1 Web Browser Tests: What’s Possible?
15.1.1 Validating HTML and CSS
15.1.2 Which Browsers Are Visitors Currently Using?
15.1.3 CSS Web Browser Test
15.1.4 HTML5 Web Browser Test
15.1.5 Can I Use That?
15.1.6 Feature Query Using the “@supports” Rule

15.2 Viewing Websites in Different Sizes
15.3 Setting Up a Central Stylesheet

15.3.1 Combining Everything Back into One File to
Shorten the Load Time

15.4 CSS Reset or Normalization?
15.4.1 Built-In Style Presets of the Web Browser and
CSS Reset
15.4.2 Normalization: The Alternative to CSS Reset

15.5 Summary

16 The CSS Preprocessor Sass
and SCSS

16.1 Sass or SCSS Syntax
16.2 From Sass/SCSS to CSS

16.3 Installing and Setting Up Sass
16.3.1 Online CSS Preprocessor without Installation
16.3.2 Setting Up Sass Using Visual Studio Code
16.3.3 Installing Sass for the Command Line

16.4 Using Variables with Sass
16.5 Nesting with Sass
16.6 Mixins (“@mixin”, “@include”)
16.7 Extend (“@extend”)
16.8 Media Queries and “@content”
16.9 Operators
16.10 Adjusting Colors and Brightness
16.11 Sass Control Structures
16.12 Functions “@function”
16.13 “@import”
16.14 Comments
16.15 Summary

17 A Brief Introduction to
JavaScript

17.1 JavaScript in Web Development
17.2 Writing and Executing JavaScript
Programs

17.2.1 Integrating a JavaScript File in an HTML File
17.2.2 Writing JavaScript within HTML

17.2.3 Position of JavaScript and Its Execution in the
HTML Document
17.2.4 Attributes for Manipulating the Load Behavior of
JavaScript (“async”, “defer”)
17.2.5 The <noscript> Element for No JavaScript

17.3 JavaScript Output
17.3.1 Standard Dialogs (and Input Dialog)
17.3.2 Outputting to the Console
17.3.3 Outputting to the Website
17.3.4 Running JavaScript without a Web Browser
17.3.5 Annotating JavaScript Code with Comments

17.4 Using Variables in JavaScript
17.4.1 Defining Constants
17.4.2 Strict Mode Using “"use strict"”

17.5 Overview of JavaScript Data Types
17.5.1 Number Data Type (Numbers)
17.5.2 String Data Types (Strings)
17.5.3 Template Strings
17.5.4 Boolean Data Type
17.5.5 Undefined and Null Data Types
17.5.6 Objects
17.5.7 Converting Data Types

17.6 Arithmetic Operators for Calculation Tasks
in JavaScript
17.7 Conditional Statements in JavaScript

17.7.1 “true” or “false”: Boolean Truth Value
17.7.2 Using the Various Comparison Operators in
JavaScript

17.7.3 Using the “if” Branch
17.7.4 Using the Selection Operator
17.7.5 Logical Operators
17.7.6 Multiple Branching via “switch”

17.8 Multiple Repetitions of Program
Statements via Loops

17.8.1 Increment and Decrement Operators
17.8.2 The Header-Controlled “for” Loop
17.8.3 The Header-Controlled “while” Loop
17.8.4 The Footer-Controlled “do-while” Loop
17.8.5 Ending the Statement Block Using “break”
17.8.6 Jumping to the Start of the Loop via “continue”

17.9 Summary

18 Arrays, Functions, and
Objects in JavaScript

18.1 Functions in JavaScript
18.1.1 Different Ways to Define a Function in JavaScript
18.1.2 Calling Functions and Function Parameters
18.1.3 Return Value of a Function
18.1.4 The Scope of Variables in a Function
18.1.5 Defining Functions in Short Notation (Arrow
Functions)
18.1.6 Using a Function in a Web Page

18.2 Arrays

18.2.1 Accessing the Individual Elements in the Array
18.2.2 Multidimensional Arrays
18.2.3 Adding or Removing New Elements in an Array
18.2.4 Sorting Arrays
18.2.5 Searching within Arrays
18.2.6 Additional Methods for Arrays

18.3 Strings and Regular Expressions
18.3.1 Useful Functions for Strings
18.3.2 Applying Regular Expressions to Strings

18.4 Object-Oriented Programming in
JavaScript

18.4.1 What Exactly Are Objects?
18.4.2 Creating Objects via Constructor Functions
18.4.3 Creating Objects via the Class Syntax
18.4.4 Accessing the Object Properties and Methods:
Setters and Getters
18.4.5 The Keyword “this”

18.5 Other Global Objects
18.5.1 The Top Object “Object”
18.5.2 Objects for the Primitive Data Types: Number,
String, and Boolean
18.5.3 “Function” Object
18.5.4 “Date” Object
18.5.5 “Math” Object
18.5.6 “Map” Object
18.5.7 “Set” Object

18.6 Summary

19 Changing Web Pages
Dynamically

19.1 Introduction to the DOM of an HTML
Document
19.2 The “document” Object
19.3 DOM Programming Interface
19.4 Accessing Elements in the DOM

19.4.1 Finding an HTML Element with a Specific “id”
Attribute
19.4.2 Finding HTML Elements with a Specific Tag Name
19.4.3 Finding HTML Elements with a Specific “class”
Attribute
19.4.4 Finding HTML Elements with a Specific “name”
Attribute
19.4.5 Using “querySelector()” and “querySelectorAll()”
19.4.6 Other Object and Property Collections

19.5 Changing an HTML Element, an Attribute,
or the Style

19.5.1 Changing the Content of HTML Elements Using
“innerHTML”
19.5.2 Changing the Value of an HTML Attribute
19.5.3 Changing the Style (CSS) of an HTML Element

19.6 Responding to JavaScript Events

19.7 Handling the Events Using the Event
Handler

19.7.1 Setting Up an Event Handler as an HTML Attribute
in the HTML Element
19.7.2 Setting Up Event Handlers as a Property of an
Object
19.7.3 Setting Up an Event Handler via
“addEventListener()”

19.8 Overview of Common JavaScript Events
19.8.1 The JavaScript Events of the UI (Window Events)
19.8.2 JavaScript Events That Can Occur in Connection
with the Mouse
19.8.3 JavaScript Events for Devices with a Touchscreen
19.8.4 JavaScript Events That Occur in Connection with
the Keyboard
19.8.5 JavaScript Events for HTML Forms
19.8.6 JavaScript Events for the Web APIs

19.9 More Information about Events with the
“event” Object
19.10 Suppressing the Default Action of Events
19.11 The Event Flow (Event Propagation)

19.11.1 More about the Bubbling Phase
19.11.2 Canceling Bubbling via the “stopPropagation()”
Method
19.11.3 Intervening in the Event Flow during the
Capturing Phase
19.11.4 Additional Information on the Capturing and
Bubbling Phases

19.12 Adding, Changing, and Removing HTML
Elements

19.12.1 Creating and Adding a New HTML Element and
Content
19.12.2 Targeting HTML Elements Even More Exactly in
the DOM Tree
19.12.3 Adding a New HTML Element Even More
Targeted to the DOM Tree
19.12.4 Deleting an Existing HTML Element from the
DOM Tree
19.12.5 Replacing an HTML Element in the DOM Tree
with Another One
19.12.6 Cloning a Node or Entire Fragments of the DOM
Tree
19.12.7 Different Methods to Manipulate the HTML
Attributes
19.12.8 The <template> HTML Tag

19.13 HTML Forms and JavaScript
19.13.1 Reading Text Input Fields with JavaScript
19.13.2 Reading Selection Lists with JavaScript
19.13.3 Reading Radio Buttons and Checkboxes with
JavaScript
19.13.4 Intercepting Buttons with JavaScript
19.13.5 Controlling the Progress Indicator <progress>
with JavaScript

19.14 Summary

20 An Introduction to Ajax

20.1 An Introduction to Ajax Programming
20.1.1 A Simple Ajax Example in Execution
20.1.2 Creating the “XMLHttpRequest” Object
20.1.3 Making a Request to the Server
20.1.4 Sending Data
20.1.5 Determining the Status of the “XMLHttpRequest”
Object
20.1.6 Processing the Response from the Server
20.1.7 The Ajax Example during Execution
20.1.8 A More Complex Ajax Example with XML and
DOM
20.1.9 The JSON Data Format with Ajax

20.2 Summary

The Author

Index
Service Pages
Legal Notes

Preface

The first questions you’ll probably ask yourself about a book of this
scope is whether it’s a book for you at all and what you’ll learn from
it. The title already indicates that HTML and CSS are covered here.
If you’ve flipped through the book a bit or skimmed the table of
contents, you’ll have noticed that it contains much more than HTML
and CSS. Just a few years ago, an author could leave it at simply
writing a book on HTML with a little CSS. Then, with the new
standard HTML version, the demands for creating websites have
increased.

The focus of the book is still on HTML and CSS. Thus, in the first
seven chapters, you’ll get to know the basics of HTML. Since HTML
is the basic language for website development, this book is also
attractive to newcomers because it starts from scratch. Even if you’re
still familiar with the old HTML school (i.e., you’ve already dealt with
HTML before the time of HTML5), you should approach this book as
a newcomer and definitely read through the first seven chapters to
give yourself an update of your probably outdated HTML knowledge.

Web design and the layout of websites are nowadays implemented
via Cascading Style Sheets (CSS), which are described very
extensively in nine chapters of this book. While the book doesn’t
intend to be a replacement for pure CSS books or web design
books, you’ll definitely learn many important and useful basics about
web design and website layout here. If you’re interested in this and

haven’t had any experience with it yet, you’ll find this book a great
companion to start with.

Because many of the innovations of the HTML standard can be
addressed via JavaScript (application programming interfaces
[APIs]), it’s obvious that JavaScript must also be treated as a web
programming language. In this context, you should be aware that
you’ll only get a brief and simple introduction to JavaScript, which is
necessary to at least use and understand the Document Object
Model (DOM) manipulations in practice. The scope of JavaScript
alone would fill an entire book. I mention this here only to avoid
raising any false hopes. In addition, if you’ve never dealt with a
programming language before, JavaScript will probably be your first
real programming language. But if you already do have experience
with another programming language, JavaScript won’t cause you
any problems.

What’s not covered in this book are web programming languages
such as PHP, Python, or Java. While PHP is used in a few examples
in the book, it’s only used in passing to demonstrate specific
examples to you. For web programming with PHP and MySQL, you
should definitely get other literature if you want to dive deeper into it.
However, a prerequisite for PHP and MySQL for programming
dynamic websites is again a good knowledge of HTML and CSS,
which is another good reason to read and work through this book.
So, if you’re drawn to dynamic web programming, this book is an
ideal first building block for that.

Website or Web Page?

A web page is a single page of an internet site. The website, on
the other hand, is the complete internet presence. As a rule,
therefore, a website usually consists of several individual web

pages. I’ll explain these two terms here right at the beginning so
that you understand the difference when we talk about a web page
or website, because it tends to cause confusion.

Book Resources
All listings from the book are available for you to download from the
website for this book: www.rheinwerk-computing.com/5695. Click on
the Resources tab. You’ll see the downloadable files along with a
brief description of the file content. Click the Download button to
start the download. Depending on the size of the file (and your
internet connection), it may take some time for the download to
complete.

HTML5 and the “Living Standard”
To avoid misunderstandings about HTML as a hypertext markup
language, HTML5, and HTML as a living standard, these terms will
be clarified at the beginning of the book. At the beginning, I briefly
referred to HTML5. After the invention of the web, there were
different phases in which a standard for HTML was created. Initially,
only the W3C as a body took care of the standardization of HTML,
which hasn’t always been smooth with regard to the browser
manufacturers. As the web was rapidly moving from a pure hypertext
system to a platform for web applications, the W3C attempted to
promulgate a new XML-based standard, XHTML, although browser
vendors preferred to continue development based on HTML.

As a result, Apple, Opera, and Mozilla founded a new group, Web
Hypertext Application Technology Working Group (WHATWG), which

http://www.rheinwerk-computing.com/5695

was then joined by Google and Microsoft to continue working on the
HTML standard independently of the W3C. When the W3C wasn’t
able to enforce the change to XML, the focus returned to the further
development of HTML. This gave rise to the HTML5 standard
together in cooperation with the WHATWG. Yet, the harmony
between W3C and WHATWG didn’t last long. While the W3C stuck
to versioning, the WHATWG wanted to make it a living standard
without a number.

Again, however, the W3C has joined the WHATWG, and, as of May
28, 2019, HTML is a living standard without a version number.
Accordingly, there will probably never be an HTML6. Related
information on this topic is available at the following:

https://html.spec.whatwg.org: HTML living standard

https://www.w3.org: The World Wide Web Consortium (W3C)

Target Group
HTML and CSS are the main focus of the book as they cover about
85% of the entire scope. The remaining 15% of the book is
dedicated to somewhat more complex but also essential topics such
as JavaScript, DOM manipulations, and Ajax—the very topics or
technologies you’re going to encounter sooner or later when creating
websites and for which at least basic knowledge will be useful. If you
count yourself among the following groups, this book can definitely
be an asset to you:

Newcomers
Due to its didactic structure, the book will provide you with a
comprehensive introduction to the world of HTML, CSS, and a
little bit of JavaScript.

https://html.spec.whatwg.org/
https://www.w3.org/

Returners
You already had the pleasure of working with an older HTML
version (e.g., HTML 4.01) and want to refresh your old knowledge
base? Then this book is also for you. In any case, you should read
through the chapters on HTML, because the way of using HTML
for websites has changed a tiny bit. Besides, the days of bringing
HTML into play for styling, layout, and color are well and truly over
as nowadays only CSS is used for those purposes. And if you still
remember JavaScript as a gimmick or a language for rascal
pranks, this book will prove you wrong.

Web authors, bloggers
If you’re a web author or blogger and use HTML and a little CSS
for your daily work, this book will provide you with a companion to
maintain your web pages on a web-based level and structure the
content properly. Even if you only use ready-made content
management systems (CMS), good HTML and CSS skills are an
advantage.

Frontend, backend, and full stack developers and
programmers
As a developer and programmer, it’s hard to avoid dealing a little
with web applications, for example, to output data in the web
browser as an HTML document. Of course, this depends on the
programming language. If you’re purely interested in web
development with PHP and databases such as MySQL, a good
knowledge of HTML and CSS is almost a must.

How Should I Read through the Book?
The structure of the book is very didactic, and the topics build on
each other, so you should be able to handle it well as a newcomer if

you work through the book from cover to cover. At the same time, if
you’re a returner, web author, blogger, developer, or programmer,
you can always jump to the topic you want to cross-read or read up
on.

For you to better understand the examples, I recommend that you
also at least test them in practice and experiment with them a little.
Ideally, you should try to create the examples yourself. You can find
all the examples used in the book on the bonus website for the book
(www.rheinwerk-computing.com/5695) or at https://html-examples.
pronix.de/.

It takes a bit of patience and perseverance to work through a self-
study book like this. And it’s not always quantity that matters, that is,
reading and learning as much as possible in as little time as
possible. Even though it’s uncommon today, take your time when
learning the new skills, and remember that it really starts after you’ve
finished reading the book. This book will give you a good foundation
to build on. But after finishing it, you’ll have to gain experience in real
life yourself.

Completing the book doesn’t mean you’re done. You shouldn’t stop
learning. HTML isn’t a stagnant standard but is constantly evolving,
with new technologies being added all the time. Stay up to date and
inform yourself regularly about innovations.

Written for You, the Reader
The topics around HTML are now extremely diverse and extensive,
so it isn’t easy to fit the right mixture into one book. However, I think
I’ve managed to combine an interesting collection of traditional and
contemporary topics in the book. I’m aware that not everything can

http://www.rheinwerk-computing.com/5695
https://html-examples.pronix.de/

be described comprehensively in a book like this. Especially about
JavaScript, one could write an entirely separate book. Likewise,
there are topics that aren’t covered at all here.

I’m also aware that such a book isn’t written for self-interest, but for
you, the readers. If you miss any topics that you’d like to learn more
about, I’d be very happy to hear from you. The same goes for things
you didn’t like so much or where you think it could be done better.
Even if you like this book, I’ll be even more pleased with your
feedback because it lets me know that I’m on the right track with this
work.

Acknowledgments
A book like this isn’t made by just one person, and I’m always
impressed by how many people are involved behind the scenes and
have work to do with it. While you’re often in the spotlight as an
author, many other smaller and larger gearwheels are necessary to
ultimately realize such a book. The larger cogs definitely include the
editors who coordinate the entire process. For this edition, Hareem
Shafi and Meagan White were at my side. Likewise, it was a great
pleasure for me that Philip Ackermann took over the expert opinion
for the book. Philip’s experience as a software developer and web
designer—he’s a book author himself—put the finishing touches on
the book. In addition, there’s proofreading, production, layout, cover
design, typesetting, and printing—tasks that many other people have
taken care of. A special thanks to Elisa, for all the inspiration that
pushed me to achieve my goals.

I’d like to thank all the people who have directly and indirectly
contributed to this book.

Now I wish you a lot of fun and success with this book!

Jürgen Wolf

1 Introduction to the HTML
Universe

Whether you’re a beginner, developer, programmer, or blogger
—as a reader you’ll have certain expectations of this book.
This chapter is first of all about clarifying some formalities that
concern (or are necessary for) this book and to elaborate on
what you can expect before you start the actual practice.

You surely have already skimmed the table of contents of this book
and may have noticed that its focus is on HTML and CSS. With
HTML, you’ll learn the markup language for creating websites,
whereas with CSS, you’ll learn how to design and style websites. In
addition, it also covers web programming with JavaScript, which has
become indispensable.

This chapter is still taking it slow, and here’s what you’ll learn:

The types of websites that exist, what technologies are used for
them, and the knowledge required

The difference between dynamic and static websites

The basic languages you should know and be able to use as a
web developer

What you need to create an HTML document and display it in a
web browser

How to check the HTML document for errors

1.1 Is This Book Even Intended for Me?
This book is aimed at beginners who are simply looking to create
their own website or familiarize themselves with basic web
technologies at first, as well as web authors looking for a
comprehensive read on the hot topics of HTML, CSS, and
JavaScript.

In addition, future developers and programmers of web applications
for web templates or dynamic websites can no longer get around a
sound knowledge of HTML. Even bloggers or online sellers—who
often use a platform where they can enter the content in a form
without any special knowledge and generate a web presentation for
the viewer—can benefit from deeper knowledge to align or
customize the content more neatly or, if necessary, according to their
own needs.

If you don’t yet know which group you want to belong to, you’re at
least interested in web development (otherwise, you wouldn’t be
holding this book in your hands). With the background knowledge
around HTML, a lot of doors will open for you.

Should I Read the Chapters in Order?

For newcomers to this subject, I recommend working through the
book from cover to cover. Where possible, the individual chapters
in this book are structured to anticipate later chapters as little as
possible. Of course, this can’t be completely avoided when you
explain a topic.

Returning or more experienced readers can read the chapters of
the book in any order and flip to individual topics as needed. For
this reason, this book can also be used as a reference work.

1.2 Different Types of Websites
At this point, I want to provide a brief overview of what common
types of websites exist today and how they are created. Separating
the website types isn’t that easy at first because they also depend on
the goal and the technology approach, and some types overlap each
other. Leaving aside the technology approach, the types can be
roughly divided into six categories:

Web presence (homepage/corporate website)

Blog/magazine/portfolio

E-commerce website

Web platform (social media websites)

Landing page/microsite

Web app

1.2.1 Web Presence

A web presence can either be a private website or a web presence
of companies, associations, authorities, business people, and so on.
In the case of companies, cities, and nonprofit organizations, the
term corporate website (also informational website) is often used.
Especially in the business world of smaller companies or self-
employed people, it’s good form to be present on the web with
information, offers, contact options, and so on with a web address.
Even in times of social networks such as Facebook, many private
individuals still create and maintain their own homepage. Most of the
time, you can find more details about the person and their interests

there. However, at the moment, especially among younger people,
the private website is going out of fashion and is being replaced by
Facebook, Instagram, and Twitter. Larger companies, associations,
lawyers, artists, restaurants, doctors, craftsmen, authors, and so on
are often represented on Facebook in addition to a web presence.
As a rule, the primary purpose of such websites is to provide
information to visitors.

Required Knowledge for a Web Presence

To create private websites or web presences for companies,
associations, and so on, a good knowledge of HTML, CSS, and
JavaScript is useful if you want to create the website manually.
Especially when it comes to the web presence of smaller
companies or public figures such as artists, lawyers, and so on,
the code should definitely be free of errors. As mentioned, this is
predominantly only true if you create a static website. Corporate
websites of companies in particular contain dynamic elements
such as news or contact forms in addition to static content. Now,
many companies and individuals use ready-made (dynamic)
content management systems (CMSs) such as WordPress for
their web presence. Once such a system is set up, more in-depth
knowledge isn’t necessarily required because web-based software
is used and formatting can be implemented in a similar way to a
Microsoft Office application. However, HTML and CSS knowledge
is useful and helpful here as well.

1.2.2 Blog/Online Magazine/Portfolio

Blog, derived from the combination of web and log, is a website with
entries that are usually sorted chronologically and separated from

each other. The person who runs the blog is often referred to as a
blogger.

Often, a blog is also the homepage of a web presence, where
visitors can read the latest posts and up-to-date information about a
particular topic, company, and so on. Likewise, moderated
comments and discussions for and with visitors or sharing of posts
on social media are possible. This category also includes so-called
magazine websites, which usually also contain many current articles,
photos, and videos, in addition to being informative and educational.
What the magazine industry used to be, online magazines are now.

Here, the terms web presence and blog are often mixed up with
each other. Many companies or individuals often use a ready-made
system such as WordPress or Drupal for their web presence. In
addition to a blog, you can also find the usual information on these
websites, such as contact options, offers, and much more. However,
such blog systems aren’t suitable for every company. Thus, in more
discreet professions such as those of lawyers and doctors, you’re
more likely to find a simple web presence. Many smaller businesses,
such as handicraft companies or private individuals, don’t have the
time required to maintain a blog on a regular basis. It doesn’t look
good when you visit the website of a company whose last blog entry
is already a year old. This makes people wonder whether the
company still exists at all.

By the way, blog culture (or net culture) isn’t a trivial topic that can be
dealt with here in a few lines. For example, blogs can still be divided
into different typologies and then again into different operators
(individuals, corporations, artists, etc.). The official blog of a
company, for example, is referred to as a corporate blog (corporate
website). Even Twitter has coined its own term with microblogging.

However, blogs and online magazines essentially differ from web
presences or corporate websites in that they not only inform visitors
about the company or the individual but also regularly present new
and relevant content with added value. To create a blog or magazine
website, you have two options: install blog software on a server or
web space, or use a ready-made hosted solution. Installing blog
software such as WordPress on a server or web space is much more
flexible because here you can extend the blog with many more
existing modules and templates. If there’s no suitable module
available, you can program one yourself.

This category also includes portfolio websites for designers,
photographers, artists, and creatives, where they can present their
work visually. This often involves installing website themes with
minimalist designs for blog software (e.g., WordPress). The amount
of text is often significantly reduced on such websites.

What Are PHP and MySQL?

PHP is a scripting language whose syntax is similar to that of the
C programming language and is mainly used for creating dynamic
websites and web applications.

MySQL is a relational database management system that’s mostly
used for dynamic web presences on the internet in connection with
the Apache web server and the PHP scripting language.

For the installations, however, certain requirements must be met on
the server or web space (e.g., access to PHP and a MySQL
database), and a basic knowledge of this is an advantage if things
don’t work out right away with the installation. With a hosted solution
such as www.blogger.com or www.tumblr.com, you don’t have to

http://www.blogger.com/
http://www.tumblr.com/

bother much about this and can usually start blogging right away
after a quick signup and template selection.

Required Knowledge for a Blog

Here, too, knowledge of HTML, CSS, and JavaScript is
advantageous to be able to take various fine details into your own
hands. CSS knowledge especially is extremely helpful because
you can often change the complete web design with it. Generally,
the posts of such blogs are created using web-based software.
This is a web application that runs in the browser and is usually
quite easy to use, like an office application for text creation. With
such blog systems, you only have to worry about the content. The
layout, saving, adding, and archiving of blog articles is done for
you by the blog system. If you’re already a developer and familiar
with PHP and MySQL, for example, or if you want to learn
programming in the future to write your own modules, you’ll
definitely need more in-depth knowledge of HTML, CSS, and
JavaScript.

1.2.3 E-Commerce Websites: Stores without Opening
Hours

As online shopping is becoming increasingly popular, it’s no surprise
that many companies want to be represented with a web store. The
advantages are quite obvious: open around the clock, less personnel
costs, no costs and rent for the store and the facility, and a couple
more reasons.

In practice, ready-made software is used for a web store because it
requires much less effort to update or maintain the product catalog,

for example. Even more importantly this web store software has
already been tried and tested many times and is therefore much
more secure, which is particularly important when it comes to the
payment process.

Thanks to ready-made web shop software, such an online store can
be set up quite quickly by anyone. However, there’s a long list of
legal requirements here that you must follow strictly for the store to
be legally valid. This starts with the obligation to publish legal data,
general terms and conditions (GTC) must be present, the
cancellation policy mustn’t be missing, correct information on
delivery time and prices and much more. If you’re a layman setting
up an online store, you might still want to consider a lawyer for
advice.

Depending on the functionality of the web shop, software can be
quite expensive (e.g., for an online store). In this context, you need
to assess what’s worthwhile for you. The solutions range from
complete solutions offered by hosting providers to professional web
store software for installation on a server or web space. Here, prices
vary from free to five-figure amounts. Often, specialized software
such as Shopify, Magento, or WooCommerce is used for this
purpose.

Required Knowledge for a Web Store

The web store is usually operated via an access-protected user
interface (UI; usually via the web browser), which is similar to a
CMS for a blog. For this reason, the same applies here as for a
blog: knowledge of HTML and CSS isn’t absolutely necessary, but
it’s an advantage if you want to present the product in a better
way.

If, on the other hand, you want to create an e-commerce website
yourself, then in addition to HTML, CSS and JavaScript, working
knowledge of a server-side language such as PHP or Ruby on
Rails is necessary. The handling of databases must also be
mastered here.

It isn’t suitable and doesn’t make sense for everyone to set up and
open their own web store right away. This depends on what you
want to sell and the size of the business. For those who only want to
sell a handful of products and are new to the e-commerce world, it
may be sufficient to offer their products at www.ebay.com, for
example. You should keep in mind that once the web store has been
set up and a lot of money has been invested, you first need visitors
to your online store. However, a visitor alone is far from being a
buyer.

1.2.4 Landing Page/Microsite

A landing page usually consists of only one web page, which is
aimed at a specific goal of having visitors perform a specific action
(call to action). This would be, for example, starting a test phase for
a product, buying a product, or simply contacting us. The goal of
such a landing page is to present visitors with all the elements of a
product on one page so that they become potential customers.
Furthermore, such pages are highly optimized for search engines in
order to reach targeted audiences via social media campaigns or
search engine advertising.

Often the term microsite is also used as a synonym for a landing
page, but that isn’t quite correct, as a microsite is rather an
informational website, which consists of a few pages and deals
exclusively with a specific topic. This concept is frequently used by

http://www.ebay.com/

companies to specifically promote a single product on a separate
domain, rather than placing the product within an extensive
corporate website.

Required Knowledge for a Landing Page/Microsite

You can theoretically create a landing page/microsite using HTML
and CSS. But here, too, there are web construction kits, special
plug-ins, and themes for a CMS available that do all the work for
you. However, JavaScript technologies such as React or Angular
also represent viable solutions for developing a landing
page/microsite.

1.2.5 Web Platform: Building Your Own Social Network

Web platform can be used generically for the other types of
websites. I use it here for websites that registered users not only can
read but also to which they can add their own content online via a
web browser. The functionality is often provided by a CMS. Typical
social networking platforms such as Facebook, Myspace, and so on
or wiki software (e.g., as used by https://en.wikipedia.org) are also
included. Particularly in the commercial sector, such platforms can
achieve much better customer-oriented support and, in smaller to
larger companies, also a fruitful exchange of experience and
knowledge beyond departmental boundaries.

The basic idea of such a web platform is usually that the content is
enhanced with texts, images, graphics, and more through the
collaborative work of registered users to provide a collection of
useful information. Even if the content is created by other users, a
moderator is indispensable for managing and reviewing the content.

https://en.wikipedia.org/

Required Knowledge for Web Platforms

The same applies here as before for the web store and the blog. In
addition, the required knowledge depends on whether you’re a
user or a moderator of such a web platform. With HTML
knowledge, you can better structure the content to your own liking
and design it using CSS. However, that depends on the platform
you use. Some platforms allow the use of HTML elements only
under certain conditions. If you plan to develop your own web
platform, the knowledge of HTML alone is no longer sufficient.
Then more extensive knowledge of development in a server-side
web programming language such as PHP, Ruby, Python, or
JavaScript technologies (now also possible server-side) such as
React or Angular is required.

1.2.6 Web Apps

Web apps are basically ordinary web applications that resemble
desktop applications. These are internet applications with many
interaction options, such as you would find in an ordinary desktop
application. Such applications don’t necessarily have to run in a web
browser. The benefits of such applications over classic web
applications include improved usage and, with appropriate
technology, faster performance.

Required Knowledge for Rich Internet Applications

In the past, external technologies in the form of third-party plug-
ins, such as Flash Player, Java Virtual Machine (JVM), Silverlight,
AIR, and Flex, were the preferred solutions for creating such web
apps. Meanwhile, web apps can also be created using classic web

technologies such as HTML, CSS, JavaScript, and Ajax without
any plug-ins. Ready-made HTML/JavaScript-based frameworks
and libraries, such as Angular, React, Ext JS, and Google Web
Toolkit, are available for this purpose.

1.3 Dynamic and Static Websites
In the preceding section, we often referred to the terms content
management systems (CMSs) and blog systems. Well-known
representatives of such systems include WordPress, Joomla!,
Drupal, Contao, and TYPO3. Once such systems have been
installed on a server or web space, hardly any further knowledge is
required in principle, but, as always, it’s still pretty useful. CMSs are
run on the server side, are programmed with modern web
programming languages (mostly PHP, Ruby, and Python), and often
also require a server-side database (e.g., MySQL or PostgreSQL).
This assumes that appropriate resources (PHP, Ruby, Python, and/or
MySQL) are available on the server and may be used. Such CMSs
create dynamic websites. For this purpose, the difference between
static and dynamic websites should first be explained.

1.3.1 Static Websites

In a static website, all content (e.g., text and image information) is
stored unchangeably in individual files on the web server. The
content of such a file is created using HTML. When you make
changes to static websites, the file in question usually needs to be
changed manually on the local machine and then uploaded back to
the web server. The use of static websites is therefore likely to be
worthwhile for smaller web presences where changes are needed
relatively infrequently.

Potential advantages of static websites include the following:

The cost of web hosting is cheaper because no special features
such as databases or scripting languages are needed. Note,

however, that the professional features no longer cost a fortune
with the larger web hosts.

Page load and load time may be faster because the page can be
returned immediately from the web server in response to the
request.

Developing static websites can be easier and less expensive.
However, this depends on the scope of the project and your skills.

Possible disadvantages of static websites include the following:

A good knowledge of HTML is required to update the website. If
you plan to create a web presence for someone using static web
pages, you should be aware that you’ll have to make the changes
yourself most of the time.

The initial creation of many individual files for the static website
can become very time-consuming.

Changing the design of the website can be quite expensive. In the
worst-case scenario, you need to change every single file. Ideally,
however, the web design of a static website is based on CSS, so
only this CSS file would need to be changed.

In Figure 1.1, you can see a simplified representation of how a static
web page is returned. Here, the web browser first sends a request
for a web page to the web server that hosts the website. The web
server finds this page and sends it back to the web browser as a
response. If this web page isn’t found on the web server, it returns an
error message (usually with error code 404) stating that the resource
couldn’t be found on the server.

Figure 1.1 Request from the Web Browser and Return of a Static Web Page Stored on a
Web Server

1.3.2 Dynamic Websites

For dynamic websites, a CMS usually generates the web pages.
This usually involves keeping the content, such as text and images,
separate from the technical elements, such as the layout or scripts.
When a visitor visits the website, the content and technical elements
on the web server are read from a database and dynamically
assembled into a web page before being returned to the visitor.

In any case, such a CMS must be installed and reside in a web
server environment where, depending on the CMS, different scripting
languages (e.g., PHP or Python) and mostly databases (e.g.,
MySQL or PostgreSQL) must be present before you can install/use
the CMS.

Potential advantages of dynamic websites include the following:

Updating and adding new content can be done much faster via a
web-based UI. As a rule, you no longer have to bother about data
storage (where and how).

Design modifications and design changes can be made in one
central location. Often there are many ready-made templates

available. Design changes affect all existing web pages at the
same time.

Such systems can be maintained without HTML and other
programming skills and can even be managed by several people.
New functionalities can be added at any time thanks to many
existing modules/plug-ins (e.g., search feature, sitemap, online
store, and forum).

Possible disadvantages of a dynamic website include the following:

Web hosting incurs higher costs due to the need for special
features such as scripting languages and databases. However,
the costs are no longer significantly higher than for a static
website, which they still were a few years ago.

If you need to create your own or special modules or plug-ins,
knowledge of programming with scripting languages becomes
necessary. This could make the development take a little longer
and be more expensive.

Figure 1.2 shows a very simplified representation of how a web page
is dynamically generated. A web browser makes a request for a web
page to a web server by entering a web address. The web server
searches for and finds the page and then passes it to the application
server. The application server searches the found page for
commands and completes the web page. Additionally, statements for
a database query can be included here. In this case, such a query to
the database (more precisely, the database driver) is started. The
database driver then returns the requested record (also called
recordset) to the application server, where this data is inserted into
the web page. The dynamic web page thus created on the web
server gets sent to the web browser as a response.

Figure 1.2 Simplified Representation of How a Web Page Is Assembled and Returned
after a Web Browser Request on the Web Server

Web Server, Application Server, Database

Admittedly, I’ve thrown around a lot of terms here, so they should
be explained briefly. While you won’t have much to do with
dynamic websites in this book, it can still be helpful to know these
terms a little better.

Web server
This is a computer on which web server software (and usually
nothing else) is installed. Such a web server is typically used to
make documents available locally, on an intranet, or over the
internet, as well as to transmit them to clients such as a web
browser. The most important web servers are probably the
Apache HTTP Server and Microsoft Internet Information
Services (IIS). By the way, the location of the web server can be
anywhere in the world.

Application server
An application server provides an environment for client-server
applications and a web server. For example, in a web
application, the web browser represents the client part of the
application. The application server provides certain services
(e.g., access to databases and authentication).

Database
A database is used to store a large amount of data as efficiently
as possible and make it available on demand. Usually, a
database consists of a database management system and the
data itself. The management system of a database takes care
of the structured storage and accesses to the data. Database
systems provide their own database language for managing and
querying the data. There are many different database systems,
with MySQL and PostgreSQL currently having the largest
market shares on the web.

1.4 Languages for Designing and
Developing on the Web
Now that we’ve covered the different types of websites, this section
gives you an overview of the languages you need to know as a web
developer and will learn about in this book:

HTML
You’ll use this language to create the content of a website.

CSS
You’ll use this language to create the layout of the website.

JavaScript
You’ll use this language to program the behavior of the website.

1.4.1 HTML: Text-Based Hypertext Markup Language

HTML is a purely text-based markup language for the structured
representation of text, graphics, and hyperlinks in HTML documents.
HTML documents can be displayed by any web browser and are
therefore also considered the basis for the internet. Because HTML
is a purely text-based language (plain text format), HTML documents
can be edited and saved with any text editor. In addition to the data
displayed in the web browser, an HTML document can contain other
meta information. Occasionally you hear that websites are
programmed with “HTML commands.” However, it’s wrong to speak
of HTML as a programming language because in a programming
language, certain tasks are solved by a sequence of commands.
HTML doesn’t have any commands or statements, but instead uses
markers (also referred to as tags). These markers are used to

structure the individual sections of an HTML document. Even though
there will still be talk of “programming HTML,” you should try to
remain technically correct here because HTML isn’t programmed,
but written.

Meta Information

Meta information (or metadata) is data that’s not usually displayed
but contains information about the characteristics of the data (in
this case, the HTML document), such as the language or author of
the document.

1.4.2 CSS: Design Language

Although over the years elements were added to HTML that dealt
with the visual design of a document, fortunately the decision was
made to separate structuring and layout by defining them with CSS.
Thus, in common practice, HTML is used only for the logical
structuring of web pages.

Figure 1.3 Usually, HTML Code for Semantic Structuring Is in One File, and the CSS
Code for Styling and Laying Out Is in Another

It’s of course possible to display HTML in the browser without CSS
specifications. For example, if you use heading text in the h1 element
(e.g., <h1>heading</h1>), this text is displayed larger than the rest of
the text in the HTML document between <h1> and </h1>. If you use
HTML elements for tables, they are visibly structured as a table.
Texts can also be displayed in bold or italics in HTML. The way in
which these HTML elements (without CSS) are ultimately displayed
in the web browser is determined by the web browser provider. The
HTML specification only contains recommendations on what such a
default setting might look like in the browser. HTML is only used to
semantically structure an HTML document with the HTML elements
and should be used exclusively for this purpose in practice. CSS is
used for layout and styling.

By separating HTML and CSS, content and layout are separated
from each other. In practice, the HTML code (for structuring) is
usually in one file, and the CSS code (for formatting and styling) in
another. If you apply this separation consistently to all web pages,
you can change the complete layout of all web pages with just one
CSS file. The HTML files don’t need to be changed. For this reason,
you ideally control the visual presentation and styling of the HTML
elements via CSS. CSS can be edited with a plain text editor just like
HTML.

1.4.3 JavaScript: Client-Side Scripting Language of the
Web Browser

Client-side scripting languages are referred to as web-based scripts
that are executed on the local computer, usually by the web browser.
In common practice, JavaScript is the most significant client-side
scripting language. JavaScript allows you to extend the limited
capabilities of HTML with user interactions, for example, to evaluate,
dynamically modify, and create content. Nowadays, no modern
website can do without JavaScript.

Unfortunately, JavaScript has been abused for all sorts of mischief in
the past, so the reputation of this programming language hasn’t
necessarily been the best. In addition, there was a browser dispute
between Netscape and Internet Explorer, in which Microsoft wanted
to push through its own JavaScript language, JScript.

By now, the tide has turned in favor of JavaScript on one hand due
to the World Wide Web Consortium (W3C) with the introduction of a
Document Object Model (DOM), which was gradually adopted by
web browser manufacturers, and on the other hand to the many
JavaScript frameworks. Much of the innovation in standard HTML

has nothing to do with ordinary HTML elements, but rather with
JavaScript APIs.

Even if you get to know JavaScript in this book primarily as a way to
extend HTML and CSS, you can already find this language outside
of web browsers for mobile applications and desktop applications or
on servers or microcontrollers.

1.4.4 Server-Side Scripting Languages and Databases

Server-side scripting languages aren’t directly covered in this book,
but should be mentioned briefly anyway because only with server-
side scripting languages can web pages be generated dynamically.
I’ve already briefly explained dynamic websites in Section 1.3.2.
Well-known and common server-side scripting languages are PHP,
Python, and Ruby. These scripting languages can be used to
implement blogs, forums, form mails, guestbooks, and wikis, for
example. Most larger websites today are equipped with server-side
techniques and often use a database connection to MySQL or
PostgreSQL as well.

Many larger blogs or CMSs such as WordPress, Drupal, TYPO3,
Contao, and Joomla! are based on such server-side scripting
languages with database connectivity. Most of the time, these
systems are based on PHP as the scripting language and MySQL as
the database.

It can be quite helpful if you have basic knowledge of a scripting
language such as PHP to be able to create form mails, guest books,
and surveys for smaller web presences, for example. Dealing with
databases such as MySQL is also quite useful. Once you’re familiar
with HTML, CSS, and JavaScript after reading this book, nothing can
stop you from moving on to a scripting language such as PHP and a

database such as MySQL to dive even deeper into web
development.

1.5 What Do I Need to Get Started?
Beginners often wonder what is needed to create web pages and
learn HTML. Basically, you wouldn’t need anything at all because
everything is on board your operating system by default. Strictly
speaking, you only need a plain text editor to create web pages and
a web browser to display them.

1.5.1 HTML Editor for Writing HTML Documents

As a text editor, you could theoretically use the editor installed on the
system. For Microsoft Windows, this is Microsoft Editor (original
name: Notepad). The TextEdit editor on the Mac also gets along
splendidly with HTML. For Linux systems, the default editor depends
on the distribution used. Often gedit is used here, which is also best
suited for creating HTML pages.

In practice, hardly any ambitious web developer uses the operating
system’s standard editors; instead, they use real HTML editors (or at
least universal text editors). The advantage of such special HTML
editors is that you have syntax highlighting and many other helpful
features at hand for creating web pages. There are a lot of free and
commercial HTML editors on the market. Office word-processing
programs such as Microsoft Word are less well suited, if at all, for
creating pure HTML code because they often add unnecessary
ballast to the HTML source code (when the files are saved in HTML
format).

If you haven’t decided on a particular editor yet or maybe don’t quite
know what you want to use, here are my brief recommendations, all

of which are available for Windows, Linux, and macOS (free of
charge):

Visual Studio Code (https://code.visualstudio.com)
The editor comes from Microsoft and has become the standard
tool for many web developers. It’s also my editor of choice and
makes a developer’s life much easier with countless extensions
and language support.

Adobe Brackets (https://brackets.io)
Brackets was designed by Adobe as a community project purely
for web application development.

Sublime Text (https://sublimetext.com)
Before there were countless editors on the market, Sublime Text
was often the preferred editor for web developers. However,
Sublime Text isn’t free of charge, even though you can test this
editor without any time limit.

Figure 1.4 Visual Studio Code from Microsoft Is the Editor I Prefer to Use in My Daily
Work

WYSIWYG Editor

https://code.visualstudio.com/
https://brackets.io/
https://sublimetext.com/

What You See Is What You Get (WYSIWYG) editors are also
available. With these editors, you can format and “click together” a
web page virtually like with an office program for word processing.
The WYSIWYG editor generates ready-to-use HTML code in the
form of a file. The best-known representatives are Dreamweaver
from Adobe or Google Web Designer
(https://webdesigner.withgoogle.com). Such editors are certainly
helpful if you want to work quickly or if you have more experience,
but they are less suitable for learning HTML at first, even if these
programs also have a text editor available. However, these
environments require some training time and good web
development skills before you can effectively design websites with
them.

1.5.2 Web Browser for Displaying the Website

To view the HTML document created in the HTML editor of your
choice, you need a web browser. As a website developer, you
shouldn’t settle for just one web browser, but use as many as
possible for testing, as there are many small differences between
different web browsers and their respective versions. It’s also
advisable to view a website on different devices. When you view
modern websites on devices with different screen sizes, such as a
desktop computer, a laptop, a tablet, and a smartphone, you’ll notice
that they often display differently. This is because such websites
ideally adapt to the environment in which they are displayed. This
adaptability is called responsive web design. The adjustment doesn’t
happen automatically, but it’s the responsibility of the web designer.
I’ll go into greater detail about this separately in this book.

https://webdesigner.withgoogle.com/

Figure 1.5 The Same Website Is Tested Here on “https://ui.dev/amiresponsive” for
Different Devices

The main web browsers are currently Google Chrome, Mozilla’s
Firefox, Apple’s Safari, and Microsoft’s Edge, with Google Chrome
currently having the largest market share. There are also many other
browsers, such as Vivaldi, Opera, and Brave, but they only have a
small market share. The manufacturers often supply their own
browsers for mobile devices as well. For example, the Samsung
internet browser is particularly strong on Samsung devices.

The heart of any browser is the HTML renderer (often called the
browser engine), which converts (renders) the source code coming
from the web server into a visible web page. The HTML renderers
current at printing time are listed in Table 1.1.

Renderer Browser

Quantum Firefox

WebKit Safari and all web browsers on iOS

Blink Chrome, Edge, Samsung Internet, Vivaldi, Opera,
Brave, and so on

Table 1.1 Different Web Browsers and the HTML Rendering Engine They Use

The fact that many browser vendors use Blink, provided by Google,
as their HTML renderer makes things a little easier for you when it
comes to testing: You can assume that a web page that looks good
in one browser with Blink as the renderer will usually look good in the
others. The same is true for Apple’s WebKit.

1.5.3 Step by Step: Creating a Web Page and Viewing It
in the Web Browser

To get you prepared for the rest of the book, I’ll now show you in four
steps how to create a single web page using an editor (of your
choice) and view it in your web browser.

1. Open a text or HTML editor (Section 1.5.1), and create a new
empty text document. Mostly this should be accessible via the
menu path File • New File.

2. Type the HTML code into the editor. For demonstration
purposes, the following basic structure is used for this example
(don’t worry about the meaning of the individual lines yet):
<!doctype html>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <title>Window Title</title>
 </head>
 <body>
 <h1>A headline</h1>
 <p>Here is an ordinary body text.</p>
 </body>
</html>

Listing 1.1 /examples/chapter001/index.html

Figure 1.6 Here I’ve Written the HTML Code in Microsoft’s Visual Studio Code
Editor on Windows

3. Save the HTML code. Ideally, you want to create a separate
directory for this purpose. Most editors provide the File • Save
or File • Save As command. There are two things to consider
here, namely the file extension and the encoding of the file: you
must save this web page with the .htm or .html file extension and
make sure that the file is really saved as a plain text file, that is,
without any vendor-specific formatting. Concerning the
encoding, UTF-8 is always a good choice (but you can also use
ANSI at first). With most editors, you don’t have to worry about
this and often find the file extension available for selection.

Using the “.htm” or “.html” File Extension

The web browser doesn’t care whether you use page.htm or
page.html as the file extension. The fact that there are two
names at all has historical reasons that go back to the DOS
world, where file could only be named according to the 8+3 rule,
that is, eight characters for the file name and three characters
for the file extension. As already mentioned, it’s entirely up to
you which file extension you use. However, I recommend that

you commit to one version and always use it in the future. I’ve
chosen to use the .html extension in this book.

Depending on the system, the HTML document with the
extension .html or .htm is displayed in the file browser with a
corresponding icon of the installed default web browser.

4. Double-click the file to view it in the web browser.

Figure 1.7 The Saved HTML Document index.html in Google Chrome on Windows

1.5.4 Checking Written HTML

To check whether the HTML code is correct and to learn from
mistakes, it’s worth validating the HTML code or the web page. The
easiest way to do this is to use the online tool from the W3C, which
you can find at http://validator.w3.org.

Validation with Editors and IDEs

In many HTML editors or integrated development environments
(IDEs), functions for validating HTML are often already available or
can be integrated subsequently as an extension. For example,
Visual Studio Code provides the extension HTMLHint for this
purpose.

http://validator.w3.org/

On this website, you can validate an existing web page (Validate by
URI), upload an existing HTML document (Validate by File Upload)
and have it validated, or simply copy and paste an HTML code
(Validate by Direct Input) and then validate it.

Because you’ll probably still be testing simple HTML documents on
the local computer in the beginning, uploading or simply copying and
pasting is a good option. In the example, the latter will be briefly
demonstrated (see Figure 1.8). For this reason, you should select
Validate by Direct Input (or
http://validator.w3.org/#validate_by_input), copy the HTML code you
entered in the editor to the clipboard, and paste it into the text box
under Enter the Markup to validate.

Figure 1.8 HTML Code for Validation Has Been Inserted Here

When you click the Check button afterwards, the validation will be
performed. If the HTML code was error-free, you’ll get a green bar
indicating that the HTML document was OK, which is shown in
Figure 1.9.

http://validator.w3.org/#validate_by_input

Figure 1.9 HTML Code Has Passed the Test and Is Valid

If the check was invalid, the error(s) will be listed with a message
and marked in the HTML code, as you can see in Figure 1.10. You
can read the warnings and error messages if you scroll down a little.
Feel free to experiment with your HTML code and intentionally
include some typos or simply remove a line in the code. As a
beginner, you probably won’t be able to do much with the error
messages at this point.

Figure 1.10 This Check Resulted in Errors, as You Can See from the Error Message
Output

By the way, an error output doesn’t mean that the web page can’t be
displayed. Web browsers are relatively fault-tolerant and also have
their own rules. Nevertheless, in the worst-case scenario, the web
page may not be displayed properly in a particular web browser or—
even worse—not at all.

Validation Tip

Enter some web addresses of larger websites under Validate by
URI. It will probably surprise you that there are hardly any
websites with 100% valid code. Some larger websites may well
display between 100 and 400 errors. This will surely make you
wonder what’s the point of writing HTML-compliant code if not
even the creators of large websites adhere to it. I’ll briefly describe
this in the next section.

1.5.5 Good Reasons for Validating the HTML Code
Anyway

Validating a web page or HTML code has many advantages as
follows:

Display in any browser
Probably the weightiest argument is the display of the website in
any web browser. Errors in the HTML source code can cause the
web page not to be displayed or not to be displayed correctly in
some browsers. While web browsers are fairly fault-tolerant,
especially on mobile devices, less powerful error-correction
routines are included in the web browser being used.

Search engines
The search engines look for text and keywords. What good is the

most beautiful website if the search engine can do nothing with
the document and the site is therefore not found on the web?

Accessible websites
People with a physical limitation such as a severe visual
impairment are dependent on special preparations of the web
offer that go beyond the usual presentation. Faulty web pages
with poor or incorrect text markup can cause the read-aloud
software, for example, to function incorrectly or incompletely. This
is a shortcoming, by the way, of some CMSs, as they often
generate code that’s less accessible to people with disabilities.

Validation
Validation is enormously important, especially for beginners, to
avoid starting with the wrong things right away. Precisely because
HTML is so fault-tolerant, it’s easy to be tempted to write messy
code. A validation provides initial feedback to beginners.

Quality assurance
In addition, proper code ensures quality assurance, which means
that the website will still work in future browser versions, when
they may not be as fault-tolerant.

Professionalism
Proper code also shows that you’re a professional developer who
cares about delivering decent work.

There are certainly other reasons for paying attention to clean HTML
code. As you’ll get to know HTML (and CSS) in this book, you should
always keep HTML validation somewhat in mind. Even if you’re a
budding developer and programmer planning to develop your own
web applications or even your own CMS in the future, clean HTML
code should always remain your focus. The unfortunate fact is that
dynamically created web pages often contain less clean code. The
same is true for WYSIWYG editors. Again, the code isn’t always

validated as clean HTML, but with HTML validation, you can always
rework the code manually (if you know how to do that).

More Tools for Validation

You don’t have to go to http://validator.w3.org every time to
validate your HTML code or web page. In this regard, too, there
are suitable extensions for every web browser available that can
be installed later. For other browsers, you can find favelets at
http://validator.w3.org/favelets.html. Some HTML editors also
provide a basic validation of the code. Favelets are small snippets
of JavaScript embedded in a bookmark URL that allow bookmarks
in browsers to perform various advanced tasks.

http://validator.w3.org/
http://validator.w3.org/favelets.html

1.6 Conventions Used in This Book
The following conventions apply to the examples used in this book: If
you find the ellipsis points (...) there, then the code has been
shortened for space reasons. The complete and unabridged
example, on the other hand, can be found on the website for the
book (www.rheinwerk-computing.com/5695/) and at https://html-
examples.pronix.de. The listing caption corresponds to the exact
path within the ZIP file. Parts in the listing that have been highlighted
in bold are particularly relevant in the example.
...
<html>
 <head>
 <meta charset="UTF-8">
 <title>Window Title</title>
 </head>
 <body>
 ...
 </body>
</html>

Listing 1.2 /path_to_example/sample_name.html

http://www.rheinwerk-computing.com/5695/
https://html-examples.pronix.de/

1.7 Summary
In this chapter, you learned about different types of websites and
what’s behind terms such as web presence, blog, web store, landing
page, and web platform. You now know what dynamic and static
websites are. In addition, you’ve read that HTML, CSS, and
JavaScript should be the basic languages of a web developer and
that you’ll get to know all three in this book. Last but not least, you
learned how to create, save, and display an HTML document in a
web browser, as well as how to check the HTML code for errors.

2 Basic Structure of HTML and
HTML Documents

This chapter introduces you to the basic syntax and structure
of HTML as a language, as well as the individual components
that make up a classic HTML document.

You’ll also learn how an HTML document is generally structured. At
this point, it’s not yet important that you understand the examples
and the individual HTML elements. At the end of the chapter, you’ll
know what HTML tags and HTML elements are and into which
sections an HTML document is basically divided, which is sufficient
for the time being.

You’ll learn about the following important aspects in this chapter:

How to implement a structure using HTML

What HTML tags and HTML elements are

How to correctly nest HTML elements

What HTML attributes (properties of HTML tags) are

How to use comments in an HTML document

How an HTML document is structured

How to set the document type to <!doctype>

2.1 Syntax and Structure of HTML and
HTML Documents
This section describes the basic grammar of HTML and the basic
structure of HTML documents. You certainly can use HTML without
knowing the grammar, but if you really want to learn and use valid
HTML, you should know and follow the rules.

2.1.1 How to Structure a Document in HTML

HTML is structured in the same way as you know it from other media
or applications. When you look at this book, a newspaper, or even a
document in a word processor (e.g., Word), you’ll always find some
kind of structure. In this book, for example, each chapter contains a
heading followed by text with paragraphs and occasionally some
pictures. Here and there, you’ll also come across some tables. In
some sections, subheadings are used at different hierarchical levels.
In the same way, an HTML document is structured via HTML
elements.

For demonstration purposes, let’s take a look at an HTML document
with a simple HTML page structure, which will then be explained:
<!doctype html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Window Title</title>
 </head>
 <body>
 <h1>The main heading</h1>
 <p>Here is an ordinary paragraph text.</p>
 <h2>A subheading</h2>
 <p>Another paragraph with text.</p>
 </body>
</html>

Listing 2.1 /examples/chapter002/2_1_1/index.html

When you load this HTML document into your web browser, you
should see a display similar to Figure 2.1.

Figure 2.1 A Structured HTML Document in the Web Browser (Google Chrome)

Figure 2.2 shows the basic elements of the page structure of an
HTML document and their meaning. The main focus is on the HTML
code and its elements for structured presentation. You’ll learn more
about the actual basic framework and the individual HTML elements
in detail in the course of the next chapters.

Figure 2.2 Basic Page Structure of an HTML Document

Everything you see here between <html> and </html> is the HTML
code for the HTML document. For this reason, the html element is
often referred to as the root element of an HTML file. There can be
only one such root element in an HTML file. This element also

summarizes the header data between <head> and </head>. The part
visible in the web browser is written between <body> and </body>. In
this example, you’ll find a first-order heading between <h1> and
</h1>, followed by plain paragraph text between <p> and </p>. This is
followed by another second-order heading between <h2> and </h2>,
followed by another paragraph text between <p> and </p>.

Figure 2.2 also shows you that the individual elements are nested as
in a rectangular container, and the HTML document is structured
with the HTML elements. Strictly speaking, in this figure, the area
between <html> and </html> should be drawn a bit wider (outside the
display area) because it also contains elements that aren’t displayed
in the web browser.

If you think web pages are assembled from rectangular elements,
you’re right. Web pages consist of rectangular boxes that are
arranged in the browser below each other, next to each other, and
inside each other. In Figure 2.3, I made these rectangular boxes
visible using CSS. Later in the book, you’ll learn how to design such
boxes with CSS.

Figure 2.3 The Rectangular Boxes That Make Up a Web Page Have Been Made Visible

2.1.2 Viewing the Tree Structure Using the Document
Object Model Inspector

The HTML code of an HTML document consists of pure text. Only a
web browser creates a model from this HTML document in the form
of a tree structure of objects such as HTML elements, attributes, and
text. This model is referred to as the Document Object Model (DOM).
Each object in this DOM tree is referred to as a node and can be
manipulated via a public interface using JavaScript.

If you want to view or examine this tree structure of HTML elements
in your web browser, you can do so with a DOM inspector. All major
browser manufacturers provide such web developer tools along with
the web browser.

In Figure 2.4, you can see the DOM inspector of the Google Chrome
web browser in use. When you look at an example with such a tool,
you can clearly see the nested tree structure of HTML. The
hierarchical DOM view was called using the DOM Inspector of the
Google Chrome web browser (via More Tools • Developer Tools).

Figure 2.4 Hierarchical DOM View

2.1.3 HTML Tags and HTML Elements

In the previous section, you saw how different HTML elements such
as <h1>...</h1>, <h2>...</h2>, and <p>...</p> were used to
describe the page structure. A complete HTML element usually
consists of an opening HTML tag, a closing HTML tag, and
everything in between. For example, the following line represents a
complete HTML element:
<tagname>Text within the HTML element</tagname>

Instead of tagname, real HTML keywords describing different parts of
a web page are used for this purpose. For example, you can
represent a first-order heading using the following line:
<h1>HTML element as heading</h1>

An HTML element is usually the completely displayable element
such as a heading, paragraph text, or an entire hyperlink. The HTML
elements, in turn, are marked by HTML tags.

The HTML tags (also called HTML markup tags) are keywords
surrounded by angle brackets, such as <p>. Most HTML tags come
as a pair, such as <p> and </p>. The first tag of the pair is the start
tag, and the second one is the end tag. In practice, these tags are
also called opening tag (= start tag) and closing tag (= end tag). Both
tags have the same tag name, except that the closing tag is
terminated by a forward slash (e.g., </p>).

Figure 2.5 A Complete HTML Element with Its Individual Components (Start Tag,
Element Content, and End Tag)

2.1.4 Nesting HTML Elements and the Hierarchical
Structure

Most HTML elements can be nested and contain other HTML
elements. Such nesting creates a hierarchical structure. The
following example demonstrates such a simple nesting of HTML
elements:
<!doctype html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Window Title</title>
 </head>
 <body>
 <p>This is an ordinary paragraph text.</p>
 </body>
</html>

Listing 2.2 /examples/chapter002/2_1_4/index.html

Here, another HTML element has been nested within the paragraph
text between <p> and </p>. The b element makes sure that the text is
displayed in bold font (b = bold). In the example, the HTML element
from to is actually the child element of the HTML element
from <p> to </p>. Strictly speaking, the HTML element from <p> to
</p> is again just a child element of the HTML element from <body>
to </body>. This creates a fairly structured markup. Complex HTML
documents therefore often contain deep nesting.

When you take a look at the DOM inspector in Figure 2.6, you’ll see
the structured markup from the parent <html> element, through the
child <body> element, and the child-child <p> element, to the
innermost HTML element, the child-child element.

Figure 2.6 A DOM Inspector Lists the Hierarchical Structure Very Clearly

2.1.5 Avoiding Incorrect Nesting of HTML Elements

It’s important to always ensure that a child element is completely
contained within the parent element. This means that you have to
write an end tag of a child element within the parent element, that is,
before the end tag of the parent element. In this context, you should
take a look at the following erroneous example:
...
<body>
 <p>This is a common paragraph text.</p>
</body>
...

When you validate this HTML code, three error messages get
returned at once, as you can see in Figure 2.7. First, it’s noted that
an end tag </p> was used, although it still contains open elements
(here, only). Then the start tag is also noted as not having
been closed. Finally, the end tag is described as invalid at the
end because no start tag was found in the corresponding scope
here.

Figure 2.7 Incorrect Nesting Is Immediately Detected by Means of Validation

You can fix the error by writing the end tag into the section,
which in this case is between <p> and </p>, because the start tag
is also in it. You must always close the innermost elements first and
only then the outer ones. The correct notation of the preceding
example looks as follows:
...
<body>
 <p>This is a common paragraph text.</p>
</body>
...

2.1.6 Omitting the End Tag of an HTML Element

In HTML, there are some optional tags—that is, HTML tags—that
you could omit. For example, under certain conditions, you can omit
the end tag, as shown in the following code snippet:
...
 <body>
 <p>This is an ordinary paragraph text.
 <p>This is another paragraph text.
 </body>
...

Here, the closing end tags </p> have been omitted, which works and
is permitted in most web browsers. In addition, it’s possible to omit
the <html> start tag and </html> end tag or even <body> and </body>
under certain conditions. Missing tags are inserted in the right places
by the web browser when the DOM tree gets generated. When you
use the DOM inspector and look at an HTML element with a missing
end tag and the same one without a missing end tag, you’ll notice
that the web browser always ends up generating the same HTML
code from the document.

However, omitting tags requires that you know and follow the rules
defined for doing so. For example, it isn’t possible to omit an end tag
just like that for all HTML elements. Many HTML elements produce
an unexpected result or error when the end tag is missing. You can,
for instance, omit the end tag for p, ul, or li elements, but not for div
elements. These somewhat inconsistent requirements make it
harder rather than being helpful, especially for beginners. For this
reason, theoretically and practically, you can write the example
/examples/chapter002/2_1_4/index.html without the html and body
tags as follows, and still the web browser would create the same
DOM tree from it as shown earlier in Figure 2.6.
<!doctype html>
<meta charset="UTF-8">
<title>Window Title</title>
<p>This is a common paragraph text.</p>

Listing 2.3 /examples/chapter002/2_1_6/index.html

More Information Online

For an overview of the circumstances under which you can omit
specific tags, see
https://html.spec.whatwg.org/multipage/syntax.html#optional-tags.

https://html.spec.whatwg.org/multipage/syntax.html#optional-tags

2.1.7 Standalone HTML Tags without End Tags

Some HTML elements are standalone tags (or void tags) that have
no content and therefore don’t require an end tag. An example of
such a tag without contents is
, which causes a line break:
<p>A line break
The next line</p>

However, the HTML element
 shouldn’t be misused to increase
the spacing between two lines. For this purpose, we can use either
CSS (e.g., with the margin feature) or the p element.

Case Sensitivity of HTML Tags

In HTML, you can capitalize and lowercase the names of the tags
as they aren’t case-sensitive: <h1> and <H1> mean the same thing.
We use lowercase throughout this book.

2.1.8 Additional HTML Attributes for HTML Elements

The HTML elements can contain additional attributes (sometimes
also referred to as properties) that you can use to specify additional
information about an element. You can use attributes only for the
start tags and the standalone tags. The attribute details are specified
in an attribute name-value manner such as name="value". Let’s take
a look at some simple examples:
...
<body>
 <p lang="en">
 Please click here.
 </p>
 <p>

 </p>
</body>
...

Listing 2.4 /examples/chapter002/2_1_8/index.html

You can use the lang="en" attribute to specify the language used in
the p element. lang stands for language and en for English. The a
element allows you to define a hyperlink to another page. Without
the href attribute, the HTML element wouldn’t make any sense at all
here as it specifies the URL of the page (here, http://rheinwerk-
computing.com/) to which the link should go when the user clicks on
the text written between <a> and . The same applies to the
standalone img element, where you specify the URL to an image
(here, cover.png) via the src attribute. In addition, for an img element,
you must specify the alt attribute for an alternative text (here: Book
cover).

The img element shows that you can use more than one attribute for
HTML elements. The order in which you note the attributes in the
HTML element is arbitrary. For example, for the img element, you
could specify the alt attribute first and then the src attribute. When
you use multiple attributes, there must be at least one space
between an attribute name-value pair. It’s recommended to write the
values of attributes between quotation marks, for example, "value".
Most of the time, double quotes are used for this, although single
quotes (e.g., 'value') are also permitted. The reason for this
recommendation is the downward compatibility.

Figure 2.8 HTML Elements Can Contain Additional Attributes

It’s probably unnecessary to mention that certain attributes can only
be used for certain elements. For example, you can’t use the href
attribute in a p element. Nevertheless, there are also global attributes

http://rheinwerk-computing.com/

in HTML, such as lang, which you can use in almost all HTML
elements.

2.1.9 Using Comments in HTML Documents

If you want to comment on an HTML code at any place, you can
introduce such a comment via the <!-- string and conclude it with
the --> string. Everything you write between <!-- and --> will be
suppressed by the web browser and won’t be displayed. Here’s a
simple example with comments:
...
<body>
 <!-- Find a meaningful header -->
 <h1>Header</h1>
 <!--
 Think about what fits
 into the paragraph for this heading.
 -->
 <p>A lot of text</p>
 <!-- <p>A second paragraph with text</p> -->
</body>
...

The lines in bold are comments, which are suppressed and won’t be
displayed by the web browser. As you can see, this also applies to
HTML elements such as the p element in the example. Here, the
complete p element has been commented out so that it gets ignored
by the web browser for rendering.

Warning: Comments Can Be Viewed in the Source Code

Comments are quite useful to add annotations at certain places in
the HTML code or information about the creation date or other
credits. However, even if the comments aren’t displayed in the
web browser, they remain in the source code. This means you

should always think twice about what kind of comments you write
because every visitor can see the source code.

2.2 A Simple HTML Document Framework
The basic framework of an HTML document roughly consists of
three parts, as you can see in Figure 2.9:

 The HTML document type specifies the HTML version used.
 The header area usually contains the nondisplayable

information about the document.
 The document body contains the displayable content for the

web browser.

Figure 2.9 The Subdivision of an HTML Document

2.2.1 HTML Document Type: <!doctype>

1

2

3

The <!doctype> declaration must be the first specification in an
HTML document, before the <html> tag. The <!doctype> isn’t an
HTML tag, but an instruction for the web browser about the HTML
version in which the web page was created.

In the old HTML 4.01 or XHTML 1.0, this <!doctype> declaration still
required a document type definition (DTD) based on standard
generalized markup language (SGML). This DTD specified the rules
for the markup language so that web browsers could correctly render
the content according to the DTD.

The current HTML is no longer based on SGML, and thus no
<!doctype> declaration would be needed at all, so you can write the
following here:
<!doctype html>

This line is used by the web browsers that require the presence of a
<!doctype> declaration. That version is understood by all web
browsers, even those that don’t know the current HTML at all. As a
result, this <!doctype html> is only used to ensure downward
compatibility with older web browsers. By the way, the <!doctype>
declaration isn’t case-sensitive, and you could also use <!DOCTYPE
html>.

2.2.2 Beginning and Ending an HTML Document:
<html>

After <!doctype html> follows the root element, html, which informs
the web browser that the page has been written in HTML code. The
root element encloses all other elements between the <html> start
tag and the </html> end tag—you could also say the html element is
the container for all other HTML elements.

Even if you don’t need to, in practice, you can declare the attribute of
the website’s language right away (e.g., lang="en" for English).
Users who use a screen reader will be grateful to you.

Specifying the Language

The specification of the language via the HTML attribute lang is a
global attribute and specifies the content language of the element.
Thus, the attribute isn’t limited to html and can be used in almost
all HTML elements. The speech markup helps screen readers use
the correct speech output and helps search engines match the
content. The web browser can use this specification to correctly
display typical special characters of a language, for example. Such
speech codes can consist of two parts. In addition to the primary
language code, you can specify an optional subcode. For
example, via lang="en-UK", you can use the UK version of English.

As direct child elements of the html element, only the elements head
and body are allowed.

Figure 2.10 Below <html>, You’ll Find <head> and <body>

2.2.3 Head of an HTML Document: <head>

The head area between <head> and </head> defines various things
that, with the exception of the title element, aren’t used directly for
display in the web browser. In that area, you can specify information
that gets evaluated by the web browser and search engines. This
can involve the insertion of scripts, instructions for the web browser
on where to find a stylesheet, and various kinds of metadata with
information about the HTML document itself. I’ll go into more detail
about the individual elements that can be used in the head area
between <head> and </head> of an HTML document in Chapter 3.

2.2.4 Visible Part of an HTML Document: <body>

The displayable document body is specified in HTML between
<body> and </body>. Everything in between those two tags—such as
text, hyperlinks, images, and tables—gets displayed in the web
browser. Thus, unlike the head element, the body element is the
displayable area of an HTML document.

2.3 Summary
This chapter was of a more theoretical nature, but it’s imperative that
you know about the basic structure of HTML and an HTML
document. Following are the most important aspects of this chapter
that you should definitely understand:

HTML tags and HTML elements

HTML attributes

Correct nesting of HTML elements

Document type <!doctype html>

Head area and displayable area basic sections of an HTML
document

3 Head Data of an HTML
Document

The head data between <head> and </head> contains important
information and data about an HTML document that’s used by
web browsers or search engines. In this chapter, you’ll get to
know the HTML elements for the head data of an HTML
document in more detail.

In the head of the HTML document between <head> and </head>, you
can insert various HTML elements that enable you to control the
content and the display of a web page. You can also establish the
relationships between the web browser and other pages or
documents here. The content you write in the head element doesn’t
get displayed by the web browser, except for the title element. An
overview of the different HTML elements, which you can write in the
head section between <head> and </head>, is followed by the
description of the individual HTML elements.

This chapter may not be spectacular and exciting, but even the
nonvisible parts in the head of an HTML document are part of the
essential basics of HTML. If you’re in a rush, I recommend that you
at least take a look at the sections on the <meta> elements
(Section 3.8.1, specifically the character encoding) and <title>
(Section 3.2). For the time being, these two headers are the most
important elements for the next chapters. For all other HTML

elements for head data, you can always look them up here if
needed.

3.1 Overview of HTML Elements for the
Head
You must write the head element with the head data of an HTML
document directly after the opening <html> tag and before the
document body with the body element. You can use the elements
from Table 3.1 or Figure 3.1 between <head> and </head> (the order
doesn’t matter). Of the elements listed in Table 3.1, you must specify
at least the title element.

HTML
Element

Meaning

<title>...
</title>

Contains the title of the HTML document.

<base> Sets base URLs/targets for all relative URLs in a web
page.

<link> Sets logical links of the HTML document to other files
to be included.

<style> Sets the local stylesheet rules for the HTML
document.

<script> Integrates the client-side scripts. The script element
isn’t restricted to the HTML document header and
may also appear (multiple times) in the document
body.

<meta> Sets the metadata such as keywords, descriptions, or
the character set for the HTML document.

Table 3.1 Elements That Can Be Used in the HTML Document Head between <head>
and </head>

Figure 3.1 In the Head Element between the <head> and </head> Tags, You Can Use
the <title>, <base>, <link>, <style>, <script>, and <meta> Elements

3.2 <title>: Heading of the HTML Page
In every HTML document, you should use a title that gets displayed
in the header of the web browser. You can write such a title between
the <title> and </title> tags within the head element. If no title is
used, what appears here depends on the web browser. Often, you’ll
then find a title such as Untitled Document or Untitled, for
example. You can use only one title element in total for an HTML
document.

In Figure 3.2, you can see the title element used in the following
example being rendered:
<!doctype html>
<html lang="en">
 <head>
 <title>—The Heading of the HTML Page</title>
 <meta charset="UTF-8">
 </head>
...

Listing 3.1 /examples/chapter003/3_2/index.html

Figure 3.2 The Title Is Usually Displayed in the Header Bar and/or Tab of the Web
Browser

Invalid HTML

If you omit the title element, an error message displays when
you check the validity of the HTML code (e.g., at

http://validator.w3.org). This means a title element must exist in
every HTML document for it to be valid HTML. In addition, no
other HTML elements are allowed in between <title> and
</title>.

Besides the display in the header bar or tabs of the web browser,
there are two much more important reasons to use the title
element: first, this title is used as a name suggestion by the web
browser when setting bookmarks (favorites), and second—and even
more importantly—the title has a high significance with the search
engines on the web. As you can see in Figure 3.3, the title is often
the first thing your visitors see when your website is listed in a
search engine. You can create such a search result yourself for
testing purposes with a SERP snippet generator (e.g.,
www.serpsimulator.com). It often occurs that the title is also a
clickable link to your website. In addition, the title is important for the
hit list and for the rank of the page in the hit index of the search
engine.

Figure 3.3 For Search Engines, the Importance of the <title> Element Shouldn’t Be
Ignored

Titles for Search Engines

The topic of search engine optimization (SEO) can’t be described
in a few paragraphs and encompasses many subareas. It isn’t
possible either to make a general statement about when exactly
something is “optimal.” Even the SEO experts often disagree on
this. Nevertheless, it’s safe to say that the title is very important in
search engines. It’s often recommended to use one or two

http://validator.w3.org/
http://www.serpsimulator.com/

keywords, followed by a slogan and perhaps the web
address (e.g., Keyword 1, Keyword 2—A short heading—
www.domain.com). In practice, for example, the following title
would make sense: Smartphones, Cell Phones—buy cheap
smartphones—www.domain.com. In addition, the title shouldn’t be
too long, otherwise it will be truncated when listed in the search
engine. The common recommendation ranges between 60 and 70
characters.

3.3 Related Topic: Naming Convention and
Referencing
At this point, it’s necessary to go into the naming conventions for
files, directories, and directory structures when referencing other
content because you’ll make use of them repeatedly in the following
sections and throughout this book. Mind you, this isn’t yet about the
HTML elements or HTML tags you can use to link a web page, but
only about how to write such a link to the target. If you’re already
familiar with terms such as full URL or absolute or relative path, you
can skip this section or just skim through it.

3.3.1 Valid and Good File Names for an HTML
Document

The use of file names for web pages has become quite flexible.
Nevertheless, here are some guidelines and recommendations you
can follow: Use only lowercase letters a–z, digits 0–9, hyphens, and
underscores if possible. The dot is usually used only to separate the
file extension. Whether you use uppercase letters in the file name is
a matter of taste, but you should keep in mind that some systems
are case sensitive while others aren’t.

Good Names for the Search Engine

The file names can also be used to place keywords in them for the
search engines. Instead of using the relatively meaningless
domain.com/page01.html, you should choose a better name such
as domain.com/smartphones.html. If there are several keywords in
a file name, you should separate them with a hyphen. The

underscore as a separator, on the other hand, is usually not
evaluated by search engines as a word separator. Instead of
domain.com/smartphonesandcellphones.html, where the
keywords aren’t recognized, it’s better to use
domain.com/smartphones-and-cellphones.html.

3.3.2 Valid Directory Names and Meaningful Directory
Structures

The same thing I just wrote for file names applies to the use of
directory names. In addition to a meaningful directory name, a
meaningful directory structure is also important. Again, you may
have the advantage that this structure with good directory names will
have a positive effect on your page ranking with the search engines.
For example, the following is a useful directory structure:
/smartphones
/smartphones/apple
/smartphones/android
/apps/apple
/apps/android
...

Thanks to a directory structure based on different topics and coupled
with a good file name, you could, for example, call an HTML
document named buy-ramsung-xyz.html as follows:
domain.com/smartphones/android/buy-ramsung-xyz.html

On the other hand, you should refrain from using directory names
that don’t carry much meaning for visitors or search engines, such as
the following:
/html
/html/pages
/contents/
/contents/pages
...

3.3.3 Writing a Reference to a Data Source

Without the functionality to reference other content, the internet
wouldn’t be what it is today. In addition to classic hyperlinks to other
content, such referencing is also used for many other things,
including images, external scripts, CSS files, or video resources. For
this reason, this section describes several ways to create a
reference to other content.

Simple Structure of Addresses on the Internet (URL)

There’s no comprehensive treatise at this point, but you should at
least know the basic form of an address on the internet, also referred
to as a Uniform Resource Locator (URL). Only thanks to this URL is
it possible to use an address on the internet in a readable format and
to access directories and documents. A classic URL looks like this:
http://www.domain.com/path/file.html.

If you decompose this address, you’ll get the individual components
listed in Table 3.2.

Protocol Host Name Path File

http:// www.domain.com path file.html

Table 3.2 Rough Structure of an Internet Address

You can use the protocol (or scheme) to specify how the resource
should be used. http:// is the protocol for hypertext documents
(HTTP). Other well-known representatives are https:// for a secured
data transfer, ftp:// for a file transfer (FTP), or file:// for the access to
local files. With www.domain.com, you have a host name that’s
converted to an IP address via the Domain Name System (DNS). It’s
followed by the path specification, whose components are separated

http://www.domain.com/path/file.html

from each other by a /. Finally, the file name (here, file.html) of the
document you want to call is often specified as well.

The www of www.domain.com is part of the host name and
conveniently chosen to give an indication of the host’s intended use,
for example, as a WWW or FTP server. However, this isn’t a
prerequisite. The name of a WWW server doesn’t necessarily have
to start with www. You can select the service running on the server
with the protocol and port on which the service is listening, for
example, port 80 for WWW or port 21 for FTP.

In this example, with the host name www.domain.com, it’s a WWW
domain name for a network server, where the ISO country code com
is the top-level domain. The top-level domain is sorted either
thematically (e.g., com, org, net) or geographically by country (e.g.,
de, at, ch). domain is the second-level domain and the actual name
of the server. Here, further subdomains (or sublevels) are possible,
which lie below another one in the hierarchy. example.domain.com
would thus be a subdomain of domain.com, for example.

Homepage: "index.html"

If you enter an internet address such as http://www.domain.com/ in
the address field of the web browser, you’ll still get a web page
displayed in the browser even though you haven’t explicitly
specified a path or file name there. This is because the web
servers return a default page, depending on the setting. Many web
servers return at least index.htm, index.html, or default.html if
there’s a corresponding file in the root directory. This usually works
with any other directory as well. For example, if you enter
http://www.domain.com/travel/ in the browser’s address bar and
there’s an index.html file in the /travel directory, that file will be
returned. However, as already mentioned, it depends on the

http://www.domain.com/travel/

settings of the web server what can be returned or done and how
this happens. Some web hosts also allow you to define your own
rules for this in .htaccess. The .htaccess file is a configuration file
that can be used to make various settings and specifications about
things such as access control, exclusion of addresses, error
messages, password protection, and alternative content, among
other things.

Using a Reference with Full URL to the Data Source

When something is referenced with a full URL, we’re talking about
the fully spelled out web address. You can use a full URL such as
http://www.domain.com/travel/index.html or
http://www.domain.com/pictures/foto.jpg if the data is located on a
different machine (host name/domain) than the HTML document.
You already learned how a complete URL looks in detail in the
previous section.

A Reference as an Absolute Path Specification Relative to the
Base URL

If you reference something with an absolute path, the desired data is
on the same computer as the HTML document. If a web page is
accessible via http://www.domain.com/travel/index.html,
/travel/index.html represents the absolute path specification relative
to the URL http://www.domain.com. Thus, you can use this path
specification for your web pages if the data is located within your
domain (or subdomain).

Root Directory

http://www.domain.com/travel/index.html
http://www.domain.com/pictures/foto.jpg
http://www.domain.com/

The root directory / (the highest directory to reach) of a domain
such as http://www.domain.com is often set as the document start
directory by the web server when the domain is configured. For
example, if you connect to an FTP client and want to upload your
web pages, this root directory can also be inside a directory
named www, htdocs, web, and so on. Nevertheless, the root
directory for http://www.domain.com is usually still / and not /www,
/htdocs, or /web. However, this again depends on the configuration
implemented by your web hosting provider, whom you should
contact in case of doubt.

Specifying a Reference with a Relative Path to the Data Source

You can use a relative path specification if you use the current
address as the reference address. For example, if you’re at the full
URL http://www.domain.com/travel/index.html, and there’s an image
named photo.jpg in the /travel directory, you can reference this file
with a relative path specification such as photo.jpg or ./photo.jpg.
Alternatively, you could use the absolute path specification with
/travel/photo.jpg or the absolute URL with
http://www.domain.com/travel/photo.jpg. The use of the absolute
URL is uncommon in such cases.

If photo.jpg or ./photo.jpg is specified as a relative path, it’s assumed
that the file is located in the same directory. If you want to reference
a file in a directory one level above, you can use ... For example, if
you want to access photo.jpg in the /travel directory from the full URL
http://www.domain.com/travel/california/index.html as a relative path,
you could do so by using ../photo.jpg. This way, you reference the
directory above the current directory.

http://www.domain.com/
http://www.domain.com/
http://www.domain.com/travel/index.html
http://www.domain.com/travel/photo.jpg
http://www.domain.com/travel/california/index.html

3.4 Defining the Base URL of a Web Page
Using <base>
The base element allows you to define a base URL or destination for
all files referenced in the HTML document. By defining such a base
URL, you can use a relative or absolute address to the file in the
document as if this file were located on the same host or computer
as the HTML document.

It sounds more complicated than it actually is. For this reason, let’s
take a look at the following simple example that demonstrates the
base element in practice:
<!doctype html>
<html lang="en">
 <head>
 <title>Defining a Base URL</title>
 <base href="https://static.sap-press.com/img/"
 target="_blank">
 <meta charset="UTF-8">
 </head>
 <body>

 </body>
</html>

Listing 3.2 /examples/chapter003/3_4/index.html

By specifying href="https://static.sap-press.com/img/", the web
browser will replace all URLs that weren’t fully referenced with
https:// with the base URL https://static. sap-press.com/img/. In this
example, the image source of src (here with rheinwerk-sappress-
logo-header.svg) is therefore supplemented by https://static.sap-
press.com/img/rheinwerk-sappress-logo-header.svg in the line that
contains the img element, so that the Rheinwerk Publishing logo gets
displayed in the web browser, which you can see in Figure 3.4.

https://static.sap-press.com/img/
https://static.sap-press.com/img/rheinwerk-sappress-logo-header.svg

Figure 3.4 Thanks to the Base URL Defined in <base> in the “href” Attribute, the Image
File That’s Not Fully Referenced Is Supplemented by the Base URL of the Browser and
Displayed

Internet Connection Required for Local Testing

For the example shown in Figure 3.4 to work on the local
computer, you need a connection to the internet because when the
file (here, rheinwerk-sappress-logo-header.svg) is called, an
attempt is always made to fetch the file from the base URL (here,
https://static.sap-press.com/img/). Thus, when you use the base
element, it isn’t possible to test a website offline on a local
computer. If there’s no connection to the internet in the example
just shown, only the alternative text of the alt attribute gets
displayed in the img element (here, "Logo").

The target attribute, on the other hand, enables you to specify the
target where each reference should be opened and displayed. The
_blank value allows you to make sure in this example that a new
window or tab is addressed. In our example, this has no effect
because only one image is displayed. For other possible values for
the target attribute, see Table 3.3.

There can be only one base element in an HTML document, and it
must be written between <head> and </head>. If you define multiple
base elements nevertheless, the web browser will usually use only

https://static.sap-press.com/img/

the first href and the first target attribute. All the others will be
ignored. However, the HTML validity check would return an error if
more than one base element was used. Furthermore, you must
define the href, the target attribute, or both in the base element.

In old HTML 4.01, the attribute value of target was a name or
keyword for a frame. In current HTML, it’s now the keyword for a
browsing context, which can be a browser window, a browser tab, or
even an inline frame (iframe).

Attribute Description
href Defines the base URL. This URL is used by the web

browser as the base address for relative or absolute
path specifications in the document and is
supplemented with this base URL.

target Specifies the target window in which the link target
should be displayed. Possible values and their meaning
are as follows:

_self: Opens the reference in the current window.
This is the default setting if target hasn’t been used.
_blank: Opens the reference in a new window or tab.
_parent: Opens the reference in the parent window.
The parent window is the window from which the
current window was opened. If there’s no parent
window, this option behaves like _self.
_top: Loads the reference of the file in the window
that’s highest in the hierarchy. If there’s no higher
parent window at all, this option behaves like _self.

Table 3.3 Attributes for the <base> Element

Frames and Framesets

A frame is a section of an HTML page into which another HTML
page can be included. The combination of multiple frames used to
be referred to as a frameset. Framesets with the old HTML
element <frameset>...</frameset> are no longer supported in the
current HTML and are obsolete. Alternatives include inline frames
with the iframe element, CSS, or other server-side techniques.

3.5 Referencing an External Document via
<link>
The link element is a standalone tag for the head of the HTML
document between <head> and </head>, which you can use to create
a relationship between the current document and an external
document. In practice, the link element is often used to include an
external CSS file in the current document. The <link> tag can be
used more than once in the head element to include multiple
resources in the current document. The type or purpose of the
relationship depends on the value of the rel attribute used (see
Table 3.4 for the attributes of the link element).

Even though the tag here is <link>, this standalone element has
nothing in common with the familiar hypertext links, which are
underlined and allow the user to navigate to other websites by
clicking on this underlined text.

The following example shows you how you can include an external
CSS file in the HTML document by using the link element.
<!doctype html>
<html lang="en">
 <head>
 <title>Logical linking via link</title>
 <link rel="stylesheet" type="text/css" href="style.css">
 <meta charset="UTF-8">
 </head>
 <body>
 <p>A simple paragraph text!</p>
 </body>
</html>

Listing 3.3 /examples/chapter003/3_5/index.html

You can specify the relationship between the document and the
external document via the HTML attribute rel. Possible values for

this attribute are listed in Table 3.4. In the example, the document is
linked to an external stylesheet file. When using this tag, you should
also make sure to specify the MIME type, which I’ve done here with
the type attribute and the text/css value. However, the most
important attribute that you must always use along with the link
element is the href attribute, which specifies the URL of the linked
resource. By specifying style.css, I assumed the stylesheet file is in
the same directory as the HTML document.

Figure 3.5 Thanks to the Logical Link to the External CSS File, the <p> Element Was
Formatted Here in This Example

Specifying a Base URL via the <base> Element

If you want to set the resources from another URL using the base
element, you still need to put <base> before <link> in the head
area between <head> and </head>. Example:
...
<head>
 <title>Logical linking via link</title>
 <base href="https://css.sap-press.com/">
 <link rel="stylesheet" type="text/css" href="rheinwerk.css">
 <meta charset="UTF-8">
</head>
...

Here in <base>, https://css.sap-press.com/ was defined as the
base URL for the references, so the reference to the CSS file
https://css.sap-press.com/rheinwerk.css is added and used in

<link>. If the base element were located behind the link element,
the rheinwerk.css file would again be expected in the same
directory as the current document, which may well be intentional.
For this reason, you should pay attention to where you define the
base element because only those references that are located after
this element are extended with the base URL.

Regarding the rel attribute and its possible values, note that some of
these values are only of limited use in practice because how (and
whether) a logical link is displayed by the web browser isn’t
specified. Especially for links with the link types next, prev, first,
last, author, help, search, sidebar, and license, it’s therefore more
advisable (for the time being) to insert a corresponding button or text
for this yourself to create a hyperlink (see Chapter 5, Section 5.2).
The global title attribute enables you to define a caption here that
will be displayed if a web browser should support one of these links,
that is, the just-mentioned rel values such as next, prev, first, and
so on.

Attribute Meaning
href Specifies the URL to the resource to be linked. This

attribute must be used.
hreflang Defines the language of the resource to be linked.
media Specifies for which medium/device the target resource

in href has been optimized. For example, this attribute
is popular with stylesheets to define multiple styles for
different media types.

Attribute Meaning
rel Sets the relationship or relatedness (the type of link)

between the current document and the external
resource in href. Possible values are as follows:

alternate: Links to an alternative presentation form
of the current page. It’s used, for example, to link an
RSS or Atom feed to a page. Other similar values
are feed and feed alternate.
author: Links to another page with information about
the author of the current document. You can also use
another resource such as a mailto: link to an email
address of the author.
archives: links to a previous version of certain
documents, such as in a blog archive.
help: Links to a help document.
icon: Allows you to assign a favicon to the web page,
which will be displayed as a mini graphic in the
bookmarks or in the tabs of the browsers. In this
context, there are two Apple-specific values for the
iPhone or iPad available, apple-touch-icon and
apple-touch-startup-icon, which I’ll also explain in
Chapter 5, Section 5.2.

Attribute Meaning
rel

license: Links the current page to a page that
contains the usage rights for the contents of the
current page.
next, prev: Creates a link from the current page to
the next (next) or previous page (prev).
prefetch: Links an external web page, which
probably could be called next by the user, to the
current page. This could cause the browser to
already load this page into a cache even though the
user is still viewing the current page. When the user
then opens this page, it can load faster from the
cache.
pingback: Specifies the website of a pingback server,
which is very useful especially for blogs to handle
pingbacks for the current document.
search: Links the current document to another
document where a search across the whole website
is possible.
stylesheet: Probably the most often used and
common value for rel, as it links an external CSS file
to the current document.
tag: A simple tag as a linked resource that applies to
the current document.

size Specifies the size(s) for the resource to be linked.
Makes sense only if the attribute is rel="icon".
Example: size="16x16" (one size), size="16x16 32x32"
(two sizes), or size="any" (any size).

type Specifies the MIME type for the document to link to
(e.g., text/css for a CSS file).

Table 3.4 HTML Attributes for the <link> HTML Element

If you take a closer look at the rel values in Table 3.4, you might
notice that there are two different types of values here: (1) the
attribute values for pure hypertext links, and (2) values for links to
external resources. rel values to external resources are icon,
pingback, prefetch, and stylesheet. All other values are pure
hypertext links.

Confusion with the "rel" Attribute Values

Besides the rel attribute values shown here, you’ll probably come
across other values on the internet. It’s quite hard to keep track of
this as well as of what works and what doesn’t work on which web
browsers. But I’m sure there’ll be some movement in this regard in
the future. However, you should note that many of those values
you find on the web are merely suggestions. Going into this topic
in greater depth is beyond the scope of this chapter; however, you
can find a good overview and recommendations at
http://microformats.org/wiki/existing-rel-values. The W3C website
also provides a useful overview at
www.w3.org/TR/html5/links.html#sec-link-types.

http://microformats.org/wiki/existing-rel-values
http://www.w3.org/TR/html5/left.html#sec-link-types

3.6 Writing Document-Wide CSS Styles
Using <style>
You can use the style element to include style information (usually
CSS) within the HTML document. Between <style> and </style>,
you define how the web browser should display the HTML elements.
Each HTML document can contain multiple style elements.
Furthermore, since HTML 5, it’s valid to use this element within the
HTML document body between <body> and </body>.

Referring to the HTML document
/examples/chapter003/3_5/index.html from Section 3.5, instead of
using the link element, you could use the style element to write the
stylesheet information directly in the HTML document as follows:
<!doctype html>
<html lang="en">
 <head>
 <style type="text/css">
p {
 width:220px;
 padding:10px;
 border:5px solid blue;
 margin:0px;
 background-color:#e0ffff;
 text-align:center;
 }
</style>
 <title>The style element in use</title>
 <meta charset="UTF-8">
 </head>
 <body>
 <p>A simple paragraph text!</p>
 </body>
</html>

Listing 3.4 /examples/chapter003/3_6/index.html

As a result, you’ll obtain the same image as the one in Figure 3.5.
Basically, in this example, only the code from the external CSS file

style.css was embedded into the HTML document header within the
style element. The p element is again formatted with CSS
statements in the example. You don’t need to bother about these
CSS statements between <style> and </style> at this stage, as I’ll
describe CSS in detail later in this book.

Table 3.5 provides an overview of the HTML attributes for the style
element.

Attribute Meaning
media Specifies for which medium/device the target resource

in href has been optimized. This attribute is often used
with stylesheets to define multiple styles for different
media types.

type Specifies the MIME type for the stylesheet (here,
mostly with text/css for CSS file).

Table 3.5 Attributes for the <style> Element

3.7 Including Scripts in Web Pages Using
<script>
You can use the script element to embed or reference scripts (e.g.,
JavaScript) in an HTML document. You can either write the script
directly between <script> and </script>, or reference an external
script via the src attribute, the meaning of which is described in
Table 3.6. However, if you want to reference an external script using
the src attribute, the space between the <script> start tag and the
</script> end tag must be left empty. Unlike the other elements
presented here for the head data of an HTML document, you can
use the script element both in the head section and (multiple times)
in the document body.

Here’s a simple example of the script element, where a simple
JavaScript dialog box with the message A JavaScript! is displayed
on the screen. You can see the example being run in Figure 3.6.
<!doctype html>
<html lang="en">
 <head>
 <title>Using the script element</title>
 <script type="text/javascript">
 <!--
 window.onload=alert("A JavaScript!")
 // -->
 </script>
 <meta charset="UTF-8">
 </head>
 <body>
 <p>The first paragraph text!</p>
 </body>
</html>

Listing 3.5 /examples/chapter003/3_7/index.html

Figure 3.6 JavaScript (Here, a Simple Dialog Box) Is Executed before the Web Page
Gets Displayed

JavaScript Disabled

If the user has JavaScript disabled in the browser or the web
browser doesn’t support JavaScript at all, you have the option to
generate alternative output using <noscript>. Anything you write
between <noscript> and </noscript> will be used as an alternative
if the browser can’t run scripts. Although hardly anyone
deactivates JavaScript today and almost every smartphone is
perfectly capable of JavaScript, new media are constantly being
added that offer browsing the internet, but where only modest and
limited browser functionality is available. For example, the latest
generations of TVs often have internet features and a web
browser built in, but most of the time JavaScript doesn’t work.

Let me also describe the use of the script element to reference an
external JavaScript with the src attribute at this point:
...
 <head>
 <title>Using the script element</title>
 <script type="text/javascript" src="script.js"></script>
...
 </head>
...

Listing 3.6 /examples/chapter003/3_7/index2.html

This example is based on the assumption that a JavaScript named
script.js is located in the same directory as the HTML document. The
script here is usually executed immediately before the web browser
continues with the web page. For such external scripts, you can
affect the execution time via the async and defer attributes. Both
attributes will be described in greater detail in Table 3.6.

While it’s a bit too early for details in JavaScript, it’s still worth
mentioning here that a script code in the head section of an HTML
page can increase the loading time because the rest of the page is
blocked until the JavaScript has been executed. For this reason, it
usually makes more sense to use the script code at the end of the
HTML file, most conveniently before the closing <body> tag.

Table 3.6 provides an overview of the HTML attributes for the script
element.

Attribute Meaning
async If you use async, the script gets executed

asynchronously with the HTML document. The script is
executed while the HTML document is parsed. This
attribute can be used only for external scripts.

charset This attribute sets the character encoding for the
external script.

defer If you use this attribute, the website gets parsed first
and then the script is executed. This attribute can be
used only for external scripts.

src This attribute specifies the URL to the external script.
type This attribute enables you to specify the MIME type for

the stylesheet (here, mostly with text/javascript or
text/ecmascript).

Table 3.6 Attributes for the <script> Element

3.8 Metadata for the Document Using
<meta>
The meta element allows you to write additional information or data
about the HTML document in the head section between <head> and
</head>. These can be instructions for the web browser, the web
server, or a web crawler (also spider, searchbot, bot, or search
robot). Even though the use of those meta elements is optional, they
often get specified. It’s quite difficult, especially for beginners, to
keep track of the many existing HTML attributes and the possible
attribute values you can use with the meta element. Many of these
additional details aren’t standardized at all.

Web Crawler

A web crawler is an application that searches the internet and
analyzes entire websites. There are different types of web
crawlers on the go that collect different types of information.
Search engines also use a web crawler to analyze websites.
Basically, the principle is quite similar to web browsing, where
hyperlinks take you from one web page to other URLs. A web
crawler stores these URLs and visits these pages one by one. The
websites are evaluated via indexing to make searching for the
relevant data possible.

3.8.1 The Most Commonly Used Metadata

A meta element is usually composed of at least two attributes. Either
the attributes consist of a name/content combination or an http-

equiv/content combination. In addition, a special version exists for
character encoding.

“name/content” Combinations: Freely Definable Metadata

The meta element containing the HTML attribute name can basically
contain any information in the HTML attribute content. Theoretically,
you could assign any value to the contents of name yourself.
Nevertheless, some default metadata for the name attribute value has
been defined in HTML. However, these name/content combinations
aren’t intended for personal information, but should only contain
information about the HTML document. A simple example might look
as follows:
...
 <head>
 <title>Freely definable metadata</title>
 <meta name="author" content="John Doe">
 <meta name="keywords" content="metadata, meta, html">
 <meta charset="UTF-8">
 </head>
...

Here, you can see two typical name/content combinations. The first
example defines the author of the web page, while the second pair
defines keywords for the search engines. You could use any number
of other meta elements here.

“http-equiv/content” Combinations: HTTP Equivalents

The specifications with http-equiv (also called the pragma directive)
were intended for the web server to communicate. The web server
should read this information and then take the read information into
account when responding to the client (web browser) and use it in
the HTTP response header. However, web servers don’t actually

parse HTML documents, so again it’s up to the browser how this
information gets processed. Let’s look at a simple example:
<!doctype html>
<html lang="en">
 <head>
 <title>HTTP equivalents</title>
 <meta http-equiv="refresh" content="5">
 <meta charset="UTF-8">
 </head>
 <body>
 <p>Page gets refreshed every 5 seconds.</p>
 </body>
</html>

Listing 3.7 /examples/chapter003/3_8_1/index.html

The refresh value for the http-equiv attribute and the value 5 for the
content attribute allow you to make the web browser refresh the web
page every five seconds.

Setting the Character Encoding for the HTML Document

In addition to the name/content and http-equiv/content pairs, there’s
a third option that allows you to specify the character encoding (more
easily). Generally, you should use this information when creating a
web page that’s written in a language other than English. This is the
line with the meta element that you use in every example of the book:
<meta charset="UTF-8">

This will ensure that special characters such as German umlauts and
some other special characters are also displayed correctly, thanks to
the UTF-8 character set standard. Besides the internet, modern
operating systems also use UTF-8, and unless you have a reason to
use a different character set, you should always work with UTF-8.

3.8.2 Setting the Viewport

Let’s jump ahead to the viewport now, as a correct setting will
prevent a responsive website from being displayed in a small view
on the mobile device. The viewport is the area of the browser
window where the web content gets displayed. Without any special
precautions, web pages on a smartphone’s mobile browser would be
scaled down until they fit completely on the screen. This allows
visitors to keep an overview and zoom into the page.

If you want to create modern websites today, then taking into
account the different device sizes and a responsive web design is
part of the development process. When creating responsive web
pages, you must prevent this automatic downsizing. You can do this
via a meta element like the following:
<meta name="viewport" content="width=device-width">

It tells the browser to use the actual width of the device rather than
an imaginary width. You can see the result of this line in a
responsive web page in Figure 3.7, where the automatic resizing
function was implemented on the left-hand side and the viewport
with the meta tag was used on the right.

Figure 3.7 A Responsive Website: (Left) without a Meta Viewport and (Right) with a Meta
Viewport

I’ll describe the viewport and responsive web design separately in
Chapter 13. Without explaining it in more detail here, the following
meta element has become accepted for it in the meantime:
<meta name="viewport"
 content="width=device-width, initial-scale=1.0, shrink-to-fit=no">

By using initial-scale=1.0, you can make sure that the browser
displays the page with the normal zoom level, and with shrink-to-
fit=no, you instruct the Safari browser on the iPad not to shrink
even in split view.

3.8.3 Specifying Useful Metadata for a Web Crawler

This section provides a brief description of some metadata for
search engine robots (web crawlers). However, you must be aware

that this information is only a recommendation for the web crawlers.
Whether the search bots adhere to it is out of your hands. At least
these attribute values were partly (co)designed by Google, Yahoo,
and Microsoft, so these publishers will probably stick to them. If you
want to include information for the web crawler as metadata, you
must assign the robots value to the name attribute. In the content
attribute, you write (or suggest) what the web crawler has to do when
it visits the web page, for example:
<meta name="robots" content="index,follow">

This allows the search robot to include the web page in the search
engine index and to follow the hyperlinks on the page. However, you
can usually omit this information because this is the usual behavior
of a web crawler.

If you don’t want the page to be indexed or the hyperlinks to be
followed, you can use the attribute values noindex and/or nofollow in
content:
<meta name="robots" content="noindex">

Here, you indicate that your website shouldn’t be included in the
search engine index (noindex), so that the page can’t be found via a
search engine. If you want the page to be included in the search
engine index, but don’t want the hyperlinks to be followed, you
merely need to use the attribute value nofollow in content.

3.8.4 Useful Metadata for Search Engines

Especially for search engines, two name values are important, namely
keywords and description. However, the keywords value has lost
importance because it was misused in the past to feed search
engines with many misleading keywords (keyword stuffing) to be

listed as close to the top as possible in the search. In the meantime,
the search engines are again indexing the content of a website in a
more targeted manner and tend to leave the keywords unnoticed (or
less noticed). If you still want to specify keywords, you must separate
the individual keywords in content separated by commas, as the
following example shows:
<meta name="keywords" content="html, meta, keywords">

Here, for example, html, meta, and keywords were used as keywords
for the website.

What’s more interesting, however, is the description text of the
website. Although this text will probably not be considered directly in
the search results, the description is, in addition to the title, the first
thing a user sees listed in the search engine as information from
your website. You should keep the description as short and precise
as possible and use a maximum of 150 to 250 characters
(depending on the search engine). A text that’s too long will be
shortened.

Here’s an example of such a description:
...
 <head>
 <title>Description text for search engines</title>
 <meta charset="UTF-8">
 <meta name="description"
 content="A description should be as
 short and precise as possible. Here
 you should summarize in 2-3 sentences
 what this page is about. Characters
 exceeding the limit will be shortened.">
 </head>
 <body>
 ...
 </body>
...

In Google, for example, this description text is usually listed as
shown in Figure 3.8.

Figure 3.8 Along with the <title> Element, the Description Text Is Often One of the First
Features to Appear in a Search Engine

If you don’t specify a description with a meta element, this text will get
generated from the parts of the page content. However, it isn’t
possible to predict exactly what this description will look like and
what kind of text will be used for it. For this reason, you should
definitely take the description into your own hands instead of leaving
it up to the algorithm of a search engine.

The First Impression Is Important

Although it isn’t as important as it was in the early days of the
internet, metadata still plays a significant role in search engine
coverage. You should therefore always pay attention to the title
element and the description (name="description") because these
elements are often the first things that website visitors get in return
from search engines when the page is listed in a search.

3.8.5 Useful Metadata for the Web Browser

If you want to refresh the content of a web page after a certain time
or redirect it to another URL, you can use the http-equiv attribute
with the refresh value for this purpose. The content attribute enables
you to set the time by when the update or redirection should take
place.

You can force a refresh of the web page as follows:
<meta http-equiv="refresh" content="30">

This would refresh the currently loaded web page every 30 seconds.

The redirection to another website can be set up in a similar manner:
<meta http-equiv="refresh"
 content="5; URL=http://domain.com/">

This causes the browser to switch to the domain.com URL after five
seconds. You could also use zero seconds here, but this way, you
can at least let the user know in the HTML document body why they
are being redirected and where.

Stop Using the Automatic Redirection Feature

Automatic redirection can be helpful if the address of the web
project has changed. However, some browsers ignore this
redirection depending on their settings. In addition, you should
also note that the search engines ignore this redirection. In this
context, it’s often better to define a hyperlink with information in
the HTML document body to the new URL with an explanatory
note. In addition, when you use the time 0, it could be difficult for
the visitor of the page to use the back button of the browser
because this would throw them forward again and again.
Alternatively, a redirection can also be created on the server. For
example, if you have access to the configuration file .htaccess (for
Apache web server) or web.config (for IIS), you can configure
redirecting there. Automatic redirection has been classified as
deprecated by the W3C anyway, which is why you should refrain
from using it for future web projects. But because redirects are still
commonly used, I included the topic here.

http://domain.com/

As mentioned previously, you can also use the old character
encoding specification:
<meta http-equiv="content-type"
 content="text/html; charset=utf-8" />

This specification corresponds to the more recent specification
introduced in HTML:
<meta charset="UTF-8">

The additional use of the old specification has the advantage that it
will also be understood by older browsers that don’t know <meta
charset="UTF-8">.

3.8.6 Using General Metadata

In addition, there’s a considerable amount of general metadata, such
as the author of the HTML document or the date and time the
document was edited. This is helpful, for example, when several
people work on one HTML project. You can specify all this
information as a name/content combination. Let’s look at some
examples:
<meta name="author" content="John Doe">
<meta name="date" content=" 2021-01-15T12:00:00+01:00">

Here, the author of the web page (author) and the date of the last
change (date) were indicated. If you want to provide personal
information for the readers about the current HTML document, you
shouldn’t do that via metadata, but directly in the HTML document in
a readable manner. The metadata is only useful when someone
looks at the source code of the document or when it’s read by a
software. There’s also other general metadata such as generator,
which provides information on the software that was used to create
the website. Additionally, you can use application-name to make

special specifications if the web page belongs to a specific web
platform or if a specific web application is running in the web page.

Further Research on the Internet

An overview of the standard metadata can be found on the
following website: www. whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#standard-metadata-names.
Proposed or future metadata, if any, can be found on this website:
http://wiki.whatwg.org/wiki/MetaExtensions.

3.8.7 My Recommendation: This Metadata Belongs in
the Basic HTML Framework

As you’ve now been introduced to a number of different types of
metadata, you’ll probably wonder which type of metadata will be
useful for your own website. This is ultimately up to you, but
personally I always use at least the character encoding for UTF-8, a
page description, and the viewport in the head element:
...
<head>
 <title>German umlauts</title>
...
 <meta charset="UTF-8" />
 <meta name="description" content="A description should preferably be as
 short and precise as possible. Here
 you should summarize in 2-3 sentences
 what this page is about. Characters
 exceeding the limit will be shortened."/>
 <meta name="viewport"
 content="width=device-width,initial-scale=1.0, shrink-to-fit=no" />
</head>
...

Examples of the Book Remain Shortened

http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#standard-metadata-names
http://wiki.whatwg.org/wiki/MetaExtensions

In the examples for the book, I mostly used only the character
encoding to keep the source code clearer. The viewport is useful if
you create a responsive website, which is what you usually want.
The page description is important when you publish the website
and want search engines to use the text as a short summary of the
contents.

3.8.8 HTML Attributes for the <meta> Element

Table 3.7 provides an overview of the HTML attributes for the meta
element.

Attribute Meaning
content Passes the value associated with the attribute of http-

equiv or name.
charset Sets the character encoding for the HTML document.
http-
equiv

Used for the HTTP response header. For example, you
can use it to refresh a web page after a certain time or
redirect it to another URL. Possible values:

content-language

content-type

default-style

refresh

name Defines a name for the metadata. Some default values
are as follows:

application-name

author

description

generator

keywords

Table 3.7 Attributes for the <meta> Element

3.9 Summary
This chapter introduced all the elements you can write in the head of
the HTML document between <head> and </head>. To proceed to the
next chapter, it isn’t absolutely necessary to memorize all these
elements. You can return to some HTML elements at any time if
necessary. Following are the two most important elements in this
chapter:

title
Just for a valid HTML, you need the title element in the head
between <head> and </head> of the HTML document. The title
element gets displayed in the header bar or tabs of the web
browser. It’s also used as a suggested name when setting a
bookmark and is also listed by search engines as a clickable
reference. These arguments should suffice to convince you of the
importance of using the title element. For the sake of
completeness, it’s then also recommended to use the page
description with <meta name="description">.

<meta charset="UTF-8">

You can use the meta element to store additional details or data
about the HTML document, such as instructions for the web
browser, web server, or search engines. While you can use a lot of
different specifications here, probably the most important one is
the character encoding with <meta charset="UTF-8">. Without this
information you might run into problems with special characters.

Other elements you’ve learned about in this chapter include the
following:

The base element lets you specify a base URL for all files
referenced in the HTML document. By writing such a base URL,
you can access a relative or absolute address to the file in the
HTML document as if they were on the same computer.

The link element is often used to establish a relationship between
the current HTML document and an external document. In
practice, it’s frequently used, for example, to include a CSS file in
the HTML document.

The style element is used to include style information (usually
CSS) within the HTML document.

You can use the script element to embed or reference scripts
such as JavaScript in the document.

4 The Visible Part of an HTML
Document

This chapter describes the displayable elements of HTML that
you can use between <body> and </body>. For designing or
laying out websites, you should use CSS instead. Before you
learn how to make a website more beautiful, you need to have
the basic knowledge of how to create a single web page using
HTML and mark it up with the appropriate elements.

Even if you’ve already created web pages in HTML 4.01 (or even
earlier) and are already familiar with the handling of HTML elements,
it’s worth working through this chapter because semantic elements
have been added with the current HTML and many existing elements
have been given a different semantic meaning.

Here’s what you’ll learn in this chapter:

Splitting an HTML document into separate and meaningful
sections with new HTML elements such as <section>, <article>,
<aside>, or <nav>

Using headings in a certain order and implementing a header
and/or footer with the new <header> and <footer> elements

Splitting and grouping text content with HTML elements

Semantic tagging of text such as single letters, words, or parts of
sentences with HTML elements

Using and displaying unordered and ordered lists via and

4.1 HTML Elements for Structuring Pages
In this chapter, you’ll learn about the various HTML elements that
you can use to divide a web page into useful sections. If you’ve used
HTML 4.01 so far, you’ll find many new elements here, as the current
HTML also introduces a new content model to combat the rampant
use of div elements with class attributes.

HTML
Element

Meaning

<body> Displayable content section of the HTML document
<section> Subdivision of the HTML document into different

sections
<article> Subdivision of content into a self-contained topic-

specific block
<aside> Marginal information of a content such as a sidebar or

for additional information about an article
<nav> Element used to mark up navigation(s) such as a

sitemap or the main navigation of the website

<h1>,
<h2>,
<h3>,
<h4>,
<h5>,
<h6>

Headings of the first through sixth order

<header> Header of a content
<footer> Footer of a content

HTML
Element

Meaning

<address> Contact information for the author of the content

Table 4.1 Quick Overview of the Section Elements Covered Here

4.1.1 Using <body>: The Displayable Content Section
of an HTML Document

Everything you write between the opening <body> tag and the closing
</body> tag is referred to as the HTML document body. Between
<body> and </body>, you can write all HTML elements, such as text,
hypertext links, images, tables, and lists, to define the structure of
the web page. All elements written between <body> and </body> are
rendered by the web browser and displayed accordingly.
<!doctype html>
<html lang="en">
 <head>
 <title>Title of the document</title>
 <meta charset="UTF-8">
 </head>
 <body>
 This is the content of the document, which is to be
 rendered and displayed by the web browser.
 </body>
</html>

4.1.2 Introducing the Section Elements of HTML

The following sections introduce the section elements of HTML, that
is, <section>, <article>, <aside>, and <nav>. If you’re perhaps just
getting into HTML, using section elements is still a bit confusing or
disappointing at first because they change almost nothing visually.
Primarily, these elements only serve to divide the content into
semantic (i.e., meaningful) areas.

Even if these new elements don’t seem to make sense to you yet,
just remember that they aren’t of interest to the normal user of the
website, but are mainly used to give meaning to the content, which is
particularly useful for the developer, the search engines, and the
screen readers.

Dividing Content into Topic-Based Sections Using <section>

The <section> element allows you to divide the content of a
document into topic-based sections. This is helpful, for example, if
you want to divide a document into individual chapters or even
subchapters—just like this book was divided into individual sections.
Even on an ordinary homepage, you can use this element to create
individual content and sense sections, such as a section with the
description about the owner of the website, another section with
news, and one with contact information. Here’s a simple example,
the result of which you can see in Figure 4.1:
...
 <body>
 <section>
 <h1>Chapter 1</h1>
 <p>The first chapter</p>
 </section>
 <section>
 <h1>Chapter 2</h1>
 <p>The second chapter</p>
 <section>
 <h2>Chapter 2.1</h2>
 <p>A subchapter of Ch. 2</p>
 </section>
 </section>
 </body>
...

Listing 4.1 /examples/chapter004/4_1_3/index.html

In this example, the <section> element has been used to divide the
document into meaningful sections—in this case, Chapter 1 and

Chapter 2—with each chapter consisting of a heading <h1> and
paragraph text <p>. Furthermore, it’s possible to nest <section>
elements, as shown within the <section> element of Chapter 2,
Section 2.1.

Figure 4.1 Between <section> and </section>, You Can Divide the Content of a
Document into Meaningful and Logical Units

Dividing Content into a Self-Contained Block Using <article>

You should use the article element to summarize a piece of content
in a self-contained topic-specific block. The article element is in
itself quite similar to the <section> element, which you use to divide
the content into meaningful sections. However, it’s recommended
that you use the article element for a standalone composition,
which would be ideal for individual news items, blog or forum entries,
or comments on a blog post or news, for example.

Here’s an example of an HTML code snippet that shows you what
such a blog entry with the article element could look like. The result
is shown in Figure 4.2.
...
 <body>
 <h1>My Blog</h1>
 <p>Latest reports on HTML</p>
 <article>
 <header>
 <h2>New HTML elements on the horizon</h2>
 </header>
 <p>Published on <time>2023-05-05</time></p>
 <p>As already suspected ...</p>

 <footer>
 View comments ...
 </footer>
 </article>
 </body>
...

Listing 4.2 /examples/chapter004/4_1_4/index.html

Figure 4.2 The Example Shows a Meaningful and Logical <article> Composition of a
Blog Entry

Everything between <article> and </article> is the composition of
a self-contained block consisting of a heading, a timestamp, the
actual content section, and a footer. It’s up to you to decide which
HTML elements you want to use to create such a composition with
<article>, but the example shown here already makes sense
semantically.

What to Use: <article> or <section>?

You’re probably wondering which of the two elements you should
use for a semantic separation of content because the two are
somewhat similar in some respects. Nevertheless, the HTML
specification also makes a differentiation here and recommends
using <article> if certain semantics are to be used multiple times,
as is the case with a news or blog entry. Thus, <article> is a self-
contained block—a composition of repeatedly used content
following the same pattern—whereas <section> is suitable for a

separation into content sections, which should contribute to a
better overview of the entire document.

Adding Content with Additional Information Using <aside>

With <aside>, you can usually supplement or expand content with
additional information. Strictly speaking, you can use the aside
element for two different semantic things: a sidebar or an additional
piece of information (e.g., a citation) to a content item, for example,
within an article element.

Referring to the /examples/chapter004/4_1_4/index.html example
from Section 4.1.2.2, for example, you would use <aside> for a
separate logical section in the document:
...
 <body>
 <h1>My Blog</h1>
 <p>Latest reports on HTML</p>
 <article>
...
 </article>
 <aside>
 <h3>Partner websites</h3>

 Blog XY
 Magazine X
 Website Z

 </aside>
 </body>
...

Listing 4.3 /examples/chapter004/4_1_5/index.html

http://examples/chapter004/4_1_4/index.html

Figure 4.3 The <aside> Element Is Used as a Separate Logical Section in the HTML
Document

Note

The # character in HTML is a reference to a jump mark in the
same document, but it has no meaning yet in this example and
was used instead of a real destination address.

In addition to the option just shown, using <aside> as a sidebar
would also be suitable as additional information in the form of a
quote or within an article element. In the example that contains the
blog entry, it would be suitable within the article element for an
entry with further links to the blog entry.

Figure 4.4 The <aside> Element (Colored Here) Was Noted as Additional Information
inside an <article> Element

Let’s take a look at the following code snippet in this regard:
...
 <body>
...
 <article>
 <header>
 <h1>New HTML elements on the horizon</h1>
 </header>
 <p>Published on <time>2023-05-05</time></p>
 <p>As already suspected ...</p>
 <aside>
 <h3>Further links</h3>

 Website A
 Website B
 Website C

 </aside>
 <footer>
 View comments...
 </footer>
 </article>
 <aside>
...
 </aside>
 </body>
...

Listing 4.4 /examples/chapter004/4_1_5/index2.html

Declaring Content as a Page Navigation Bar Using <nav>

As you might guess from its name, the nav element enables you to
divide navigation elements into blocks. We’re not talking about web
link collections here, but about a list of links for a sitemap or the main
navigation of your own website. Like the aside element, you can use
the nav element for its own section or within another HTML element
to combine a group of links into a block.

To use the blog entry again as an example, the nav element would
be suitable for summarizing the main navigation or the list of related
links from similar articles within the same web page. In any case,
you should use the nav element for entire blocks of links. The

following code snippet demonstrates the nav element in a small
theoretical blog:
...
 <body>
 <nav>
 Blog |
 Links |
 About me |
 Legal Notes
 </nav>
 <h1>My Blog</h1>
 <p>Latest reports on HTML</p>
 <article>
...
 <aside>
 <h3>Similar articles</h3>
 <nav>

 HTML6 will not exist.
 W3C and WHATWG agree
 What comes after the Living Standard?

 </nav>
 </aside>
...
 </article>
 <aside>
 <h3>Sitemap</h3>
 <nav>

 Blog

 HTML
 CSS

 Links
 About me

 Bio
 Portfolio

 Legal Notes

 </nav>
 </aside>
 </body>
...

Listing 4.5 /examples/chapter004/4_1_6/index.html

Figure 4.5 The <nav> Element (Colored Here) Can Be Used to Divide a Separate
(Navigation) Section or to Group Blocks of Links within Other HTML Elements

In the first example, <nav> was used to define a main navigation as a
separate section of the HTML document. In the second example, the
nav element was used to link a block of links to similar articles on the
same web page. In the last example, a sitemap of the web page was
summarized via the nav element.

In addition, the last two examples were grouped within <aside> and
</aside>. In them, bulleted lists (ul and li elements) were used
within the nav element.

Using <nav> Only for Main Navigation?

The specification suggests using the nav element specifically for
the main navigation. That doesn’t include external additional links
or affiliate links to external websites. Likewise, it’s not
recommended to put legal stuff such as copyright, contact

information, and legal notes in the nav section; instead, use the
footer section for that purpose (see Section 4.1.4).

In the /examples/chapter004/4_1_6/index.html example, this
means you only have two main navigation points with Blog and
Links within the nav element and would write About me and Legal
Notes outside of it (e.g., in the footer). I don’t see any point in
separating this because there’s no difference between the first two
links (Blog and Links) and the other two links (About me and
Legal Notes) as both are linked to different websites, and both
belong to the internal website in this case. So, it’s up to you to
what extent you want to follow these recommendations. In any
case, you should refrain from using the nav element for external
links to third-party websites and, if possible, use it only selectively
and sensibly on your own website.

4.1.3 Using Headings with the HTML Elements from
<h1> to <h6>

The HTML element for headings of a certain order is <h1> to <h6>.
The number (1 to 6) represents the heading level. Thus, everything
you write between <h1> and </h1> is used as a top-level heading,
everything between <h2> and </h2> belongs to a second-level
heading, and so on down to the lowest level with <h6> and </h6> as a
sixth-level heading.

The HTML elements <h1> through <h6> should not be misused to
emphasize a text, but rather to define the content structure of a
document. Consider the following HTML structure:
...
 <h1>Heading 1</h1>
 <h2>Heading 1.1</h2>
 <h3>Heading 1.1.1</h3>

 <h2>Heading 1.2</h2>
 <h2>Heading 1.3</h2>
 <h3>Heading 1.3.1</h3>
 <h1>Heading 2</h1>
...

Based on this sequence of headings, the following content structure
(or document outline) will be mapped:
1. Heading 1
 1.1. Heading 1.1
 1.1.1. Heading 1.1.1
 1.2. Heading 1.2
 1.3. Heading 1.3
 1.3.1. Heading 1.3.1
2. Heading 2

Figure 4.6 This Is What the Web Browser Will Make of It

What Happens to the Headings in the Section Elements?

You’re probably wondering what happens to the content structure of
headings when you use the section elements from Section 4.1.2.
That question is well justified. If you use the <section>, <article>,
<aside>, or <nav> section elements, the content structure of the
headings will also be affected. Within each new section element, the
heading level count starts from the beginning, but always at a lower
hierarchy level. The following HTML code illustrates this:
...
 <body>
 <h1>My Blog</h1>
 <p>A simple blog ...</p>
 <section>
 <h1>News on HTML</h1>
 <article>
 <h1>A preview of the new HTML elements</h1>
 <p>It looks like ...</p>
 </article>
 </section>
 <section>
 <h1>News on CSS</h1>
 <article>
 <h1>New Styles at Last</h1>
 <p>After a long time of development ...</p>
 </article>
 </section>
 </body>
...

Listing 4.6 /examples/chapter004/4_1_7/index.html

Here, five <h1> headings of the first order were used. If you look at
the HTML code, you can see several sections. Next to the top
section with <body>, you can find two additional <section> elements,
each of which contains an <article> element in which headings of
the first order have also been defined.

This is a blog that’s been divided into two content sections with
<section> containing the topics HTML and CSS. Within these
sections, you can find the news articles included within <article>.

Figure 4.7 All Headings with <h1> Are Adjusted and Output Corresponds to the Section
due to the Section Elements of HTML That Are Based on the Outline Algorithm

Due to the use of the new HTML elements <article> and <section>,
the following content structure (or document outline) results:
1. My Blog
 1. News on HTML
 1. A preview of the new HTML elements
 2. News on CSS
 1. New Styles at Last

Document Outline for Advanced Users

The term outline or document outline refers to the structure of the
document, which can be generated and represented by the
headings, among other things—as in the case of the table of
contents of this book, for example. The document outline can be
quite useful. For example, the web browser might offer you a table of
contents, letting you jump from one heading to another. Search

engines can also use such a table of contents to create better page
previews or even improve search results. Screen reader users
probably have the biggest advantage here because they can be
guided through deeply nested hierarchies and sections.

In Figure 4.8, you can see the JavaScript HTML5 outliner (h5o) to
test the document outline during execution. Here, the document
outline is displayed in the upper-right corner, and you can jump to
the individual headings via hypertext links.

Figure 4.8 JavaScript h5o from Google during Execution

Section elements such as <section>, <article>, <aside>, and <nav>
allow you to refine the document outline even more, as you’ve seen
in the example, /examples/chapter004/4_1_7/index.html.

Even if not all web browsers support document outlines directly, it
won’t do any harm to pay attention to a proper outline of the HTML
document because basically that’s no extra work. Screen reader
users will thank you for it, and search engine robots may reward you
for it because a good document outline can improve a page index,
which in turn could mean a higher ranking in search results. Besides,
a neatly structured web page is easier to read than an unstructured
one.

Keeping Track of the Document Outline

When the website becomes more extensive and the document
contains many headings and perhaps different sections, it often isn’t
easy to keep track of whether the document outline still makes sense
and is neatly structured with regard to its contents. Outlining tools
that output the headline structure of the web page in the existing
structure can assist you here. For example, Google offers the
JavaScript h5o, mentioned in the previous section, at
https://h5o.github.io. Alternatively, you can find an online service at
http://gsnedders.html5.org/outliner/. Meanwhile, the validation
checker at https://validator.w3.org/nu/#textarea also provides an
outline option for HTML documents.

4.1.4 Creating a Header Using <header> and a Footer
Using <footer>

The <header> and <footer> are two additional semantic HTML
elements that you can use for implementing a header and footer in
an HTML document. Like section elements, these elements initially
have no visual effect on the HTML document apart from a line break.
Again, these are initially just elements that you can use to give a
piece of content a better and cleaner structure. The styling here is
usually done via CSS. However, unlike section elements such as
<section>, <article>, <aside>, or <nav>, these two elements don’t
affect the hierarchical structuring (or document outline) of the
document.

You should use the header element for introductory elements such as
a page heading, the name of the web page, or a navigation bar of
the HTML document. There may well be other HTML elements
between <header> and </header>. However, you mustn’t nest any

https://h5o.github.io/
http://gsnedders.html5.org/outliner/
https://validator.w3.org/nu/#textarea

other header elements in it. Although it seems obvious, <header>
doesn’t necessarily have to be in the header, and you can use it
more than once in the document.

Invalid Positions of <header>

A <header> tag mustn’t be used inside a footer, address, or
another header element.

The counterpart to the header element for the header section is the
footer element for the footer or also the footer section, which also
doesn’t necessarily have to be the last element in the document.
Useful content for the footer of a website is often legal information,
legal notes, or terms and conditions, but you can also use a sitemap
or a special navigation bar here. You can’t use any other <footer>
tag within a footer

Here’s an example that demonstrates the header and footer
elements in a meaningful structure:
...
 <body>
 <header>
 <hr /><small>Blog Version 1.0</small>
 <h1>My Blog</h1>
 <p>A simple blog...</p><hr />
 </header>
 <h2>News on HTML</h2>
 <article>
 <h3>A preview of the new HTML elements</h3>
 <p>It looks like ...</p>
 </article>
 <footer>
 <hr />Legal |
 Legal Notes |
 T&Cs |
 About me<hr />
 </footer>
 </body>
...

Listing 4.7 /examples/chapter004/4_1_8/index.html

Figure 4.9 The Header and Footer with the <header> and <footer> Elements (Shown in
Gray for Clarity)

Between <header> and </header>, you can find a summary of the
entire information for the header section of a web page. In the
example, this is the version of the blog, the headline, and a short
description of the website. This is followed by the articles of the blog.
Finally, the footer between <footer> and </footer> contains
forwarding hyperlinks with legal information and so on.

4.1.5 Marking Contact Information Using <address>

You should use the address element only for contact information
about the author of the HTML document or article. If the address
element is used within the body element, it should only contain the
contact information for the owner or author of the entire document or
article. If the address element is positioned inside an article
element, the contact information for the author of the document
should be written there. Usually, the web browser displays this text in
italics with a new line before and after the address element.

The best location for this contact information for the author, an
organization, or the person responsible for the document or article is

usually likely to be at the end of the article or at the end of the
document (e.g., between <footer> and </footer>).

Here’s an example in which the address element was used for
contact information about the author of an article at the end inside
the footer element. You can see the example at execution in
Figure 4.10.

Figure 4.10 Contact Information for the Author of the Article Has Been Placed at the End
of the Article between <footer> and </footer> Using the <address> Element

...
 <article>
 <h3>A preview of the new HTML elements</h3>
 <p>It looks like ...</p>
 <footer>
 <address>The article was created by:

 J. Doe

 1234 Sample Street

 Sample Town, 12345

 www.webaddress.com
 </address>
 </footer>
 </article>
...

Listing 4.8 /examples/chapter004/4_1_9/index.html

4.2 HTML Elements for Structuring Text
This section describes the HTML elements for grouping or
structuring plain text content, such as paragraph text or a line break.
This has nothing to do with dividing an HTML document into
individual sections or areas. You’ve previously learned how to do
that in Section 4.1.

HTML
Element

Meaning

<p> Text paragraph

 Forcing a line break
<wbr> Optional line break within a word
<hr> Topic-based separation at the paragraph level
<blockquote> Citation as a text paragraph
<div> Defining a general section
<main> Used for the main content area of a web page
<figure> Grouping or summarizing content for separate

description
<figcaption> Labeling content grouped via the figure element
 Unordered bulleted list
 Ordered list (mostly numbered)
 List element in a ul or ol list
<dl> Creating a description list using dt and dd
<dt> Expression to be described before the dd element

HTML
Element

Meaning

<dd> Description that follows the dt element

Table 4.2 Brief Overview of the Elements Covered Here for Grouping and Dividing
Content

4.2.1 Adding Text Paragraphs Using <p>

The p element (p = paragraph) is the classic element for text
paragraphs in a longer continuous text. Anything you write here
between the opening <p> and the closing </p> is treated as a text
paragraph. Within such a text paragraph you can use images,
videos, audio clips, or other text markup in addition to multiline body
text. However, you can’t use other group elements, headings(<h1> to
<h6>), or section elements within <p> and </p>.

The following example demonstrates two slightly longer paragraph
texts with the p element in use:
...
 <body>
 ...
 <h2>News on HTML</h2>
 <article>
 <h3>A preview of the new HTML elements</h3>.
 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing
 elit. Aenean commodo ligula eget dolor. Aenean massa.
 Cum sociis natoque penatibus et magnis dis parturient
 montes, nascetur ridiculus mus. Donec quam felis,
 ultricies nec, pellentesque eu, pretium quis, sem.
 Nulla consequat massa quis enim. Donec pede justo,
 fringilla vel, aliquet nec, vulputate eget, arcu. In
 enim justo, rhoncus ut, imperdiet a, venenatis vitae,
 justo.
 </p>
 <p>Nullam dictum felis eu pede mollis pretium. Integer
 tincidunt. Cras dapibus. Vivamus elementum semper
 nisi. Aenean vulputate eleifend tellus. Aenean leo
 ligula, porttitor eu, consequat vitae, eleifend ac,
 enim. Aliquam lorem ante, dapibus in, viverra quis,
 feugiat a, tellus.

 </p>
 </article>
 ...
 </body>
...

Listing 4.9 /examples/chapter004/4_2_1/index.html

Figure 4.11 Two Paragraphs with Body Text between <p> and </p> Displayed in the Web
Browser

Aligning and Formatting Paragraph Text Using CSS

Paragraph text with the p element can be formatted using CSS or
CSS features.

4.2.2 Forcing Line Breaks Using

If you try to insert a line break or a space in the body text of the
example just shown, /examples/chapter004/4_2_1/index.html, you’ll
notice that it doesn’t work. The point at which the line break is
supposed to be inserted is decided by the web browser based on a
space that separates words. Nevertheless, you can also force a line
break at a certain point in the text using
 (br = break).
 is a
standalone tag. Even though you can use multiple line breaks

simultaneously via
, you shouldn’t overuse it for separating
paragraphs.

The following example is commonly used to represent an address
neatly by means of forced line breaks (see Figure 4.12):
...
 Written by John

 <address>
 John Doe

 Sample Town

 www.address.com
 </address>
...

Listing 4.10 /examples/chapter004/4_2_2/index.html

Figure 4.12 You Can Force Line Breaks via the
 Element

4.2.3 Adding Optional Line Breaks Using <wbr>

If, on the other hand, you need an optional line break that only
occurs at a specific position when it’s necessary for an optimal
display in the web browser and to save the user from scrolling
sideways, you can use the standalone <wbr> (or <wbr /> in XHTML)
tag for this (wbr = word break). <wbr> can be quite useful if you want
to prevent the web browser from breaking a line in the wrong place.
A simple example follows:
<p>Taumatawhakatangi<wbr>
hangakoauauotamatea<wbr>
turipukakapikimaungah<wbr>
oronukupokaiwhen<wbr>
uakitanatahu</p>

Depending on how wide the display section is in the web browser,
the long word can be wrapped only at the places where <wbr> was
inserted.

Figure 4.13 An Extremely Long Word Wrapped at a Position Suggested by <wbr>

Line Break via <wbr>

The optional line break via <wbr> was added to the standard HTML
version at a later time, but it had been around since HTML 2.0.
The Netscape web browser had introduced this element a long
time ago, and other browser manufacturers had implemented it as
well.

Nevertheless, this word separation is unattractive because the line
gets broken without consideration of a grammatically correct
separation. As an alternative, the named entity ­ is suitable for a
conditional hyphen. Similar to <wbr>, this allows the web browser to
separate the word at this point if necessary. Unlike <wbr>, the web
browser adds a hyphen at the end of the wrapped word. The
alternative example looks as follows:
<p>Taumatawhakatangi­
hangakoauauotamatea­
turipukakapikimaungah­
oronukupokaiwhen­
uakitanatahu</p>

Figure 4.14 A Long Word Can Also Be Wrapped at the Position Suggested by “­”
but It Also Adds a Separator, Unlike <wbr>

4.2.4 Forcing Spaces and Preventing Wrapping Using
" "

If you want to insert multiple spaces between two words, you can
force this with the named character (= nonbreaking
space). Let’s take a look at a simple example:
<p>word1 word2</p>
<p>word3 word4</p>

Between word1 and word2, the named HTML entity character
has been written four times, resulting in four spaces between these
two words, which is also displayed by the web browser. In the
example with word3 and word4 the same was tried by pressing the
spacebar four times. Nevertheless, in this case, the web browser
displays only one space between the words.

In addition to forcing a space, you can also use the named entity
character to prevent a break between two words, which the
web browser automatically performs when there is insufficient space
at the end of a line. For example:
... word1 word2 ...

By placing this between word1 and word2, you can prevent the
two words from being split between two different lines by the web
browser if there’s a lack of space. word1 and word2 thus stick together
in the same line forever.

4.2.5 Adding a Topic-Based Separation Using <hr>

You can use <hr> to create a topic-based separation in an HTML
document, for example, to separate content more clearly. However,
even though <hr> is visualized as a separator in HTML by web
browsers, the element is also to be treated as a semantic element
and not a presentation element. For example, it isn’t valid HTML to
use the hr element between <p> and </p> or within a heading (<h1>
to <h6>), even though web browsers are quite fault-tolerant about
this.

The example shown in Figure 4.15 with a horizontal line can be
found under /examples/chapter004/4_2_5/index.html. You’ll see that
a separator line also creates a paragraph.

Figure 4.15 With <hr>, a Visual Topic-Based Separation Has Been Added as a Separator
Line behind the Paragraph Text

4.2.6 Adding Paragraphs or Citations Using
<blockquote>

Between <blockquote> and </blockquote>, you can quote a text from
another source. Most web browsers indent the text in a new
paragraph. Within such block quotes, you can use other HTML
elements besides text.

The blockquote element contains cite, an HTML attribute that allows
you to specify the source of the citation. With regard to books, this
can also be a link to the corresponding book page or to a store
where this book can be purchased. Unfortunately, no web browser
provides the option to somehow make this source visible or to call
the corresponding URL yet. So, to be on the safe side, you should
add the source, as I did in the following example; in Figure 4.16, you
can see the display in the web browser.
...
<blockquote cite="http://www.blindtextgenerator.com/">
 Nulla consequat massa quis enim. Donec pede justo,
 fringilla vel, aliquet nec, vulputate eget, arcu. In enim
 justo, rhoncus ut, imperdiet a, venenatis vitae, justo.
 <small> - http://www.blindtextgenerator.com/ - </small>
</blockquote>
...

Listing 4.11 /examples/chapter004/4_2_6/index.html

Figure 4.16 Text Quoted between <blockquote> and </blockquote> from the
www.blindtextgenerator.com Website

4.2.7 Defining a General Section Using <div>

Between <div> and </div> (div = division), you can define a general
section, which at first usually does nothing but create a new line.

This div element doesn’t have any meaning until CSS comes into
play, which is the main use of <div>: defining layout sections. In the
following example, the HTML attribute class was used, which you
can use to assign the div elements to a class that you can later
select with CSS (using a selector) and visually customize or style.
Here’s a familiar example that demonstrates such an application in
use:
...
 <body>
 <div class="header">
 <hr />
 <h1>My Blog</h1>
 <p>A simple blog ...</p>
 <hr />
 </div>
 <h2>News on HTML</h2>
 <div class="article">
 <h3>A preview of the new HTML elements</h3>
 <p>Lorem ipsum dolor ...</p>
 </div>
 <div class="footer">
 <hr />
 Legal |
 Legal Notes |
 T&Cs |
 About me
 <hr />
 </div>
 </body>
...

Listing 4.12 /examples/chapter004/4_2_7/index.html

For such examples, you should prefer semantic elements such as
<header>, <footer>, <article>, <nav>, and so on instead of the div
element.

Therefore, you should use the div element only if no other suitable
HTML element is available. You can find more information about this
in greater detail in Section 4.3. In regard to the
/examples/chapter004/4_2_7/index.html example, you should, as
previously described in the book, use the HTML elements <header>,

<article>, and <footer> that have been newly introduced in HTML
instead of the <div class="header">, <div class="article">, and
<div class="footer "> sections used in the previous example. The
corresponding example thus looks as follows (see Listing 4.13).

Figure 4.17 The Header and Footer of the HTML Document Appear in Gray

...
 <body>
 <header>
 <hr />
 <h1>My Blog</h1>
 <p>A simple blog ...</p>
 <hr />
 </header>
 <h2>News on HTML</h2>
 <article>
 <h3>A preview of the new HTML elements</h3>
 <p>Lorem ipsum dolor ... </p>
 </article>
 <footer>
 <hr />
 Legal |
 Legal Notes |
 T&Cs |
 About me
 <hr />
 </footer>
 </body>
...

Listing 4.13 /examples/chapter004/4_2_7/index2.html

4.2.8 Using <main>: An HTML Element for the Main
Content

I described the div element in the previous section, so it makes
sense to deal with the main element at this point. Where <div
id="main">...</div> was used in the past, you can use <main>...
</main> from now on. The id attribute identifies an element that
occurs only once within a document.

Like all other new HTML elements, you should use the main element
as sensibly as possible. In practice, you use it for the main content of
a website, which means it’s best not to place it inside <article>,
<aside>, <footer>, <nav>, or header elements.

In the web browser, the main element is rendered like the div element
with no special properties and only creates a line break. However,
unlike the div element, you should use the main element only once
(visibly) in an HTML document. In contrast to the <section> element,
the main element isn’t a section element, but a pure grouping
element. Thus, the use of such a section doesn’t affect the heading
structure (the document outline) of the HTML document.

Here’s an example of how you can group a section as the main
section of a web page:
...
 <body>
 <header>
 <h1>My Blog</h1>
 <p>A simple blog ...</p>
 </header>
 <main>
 <h2>News on HTML</h2>
 <article>
 <h3>A preview of the new HTML elements</h3>
 <p>Lorem ipsum dolor...</p>
 </article>
 </main>
 <footer>
 Legal |

 Legal Notes |
 T&Cs |
 About me
 </footer>
 </body>
...

Listing 4.14 /examples/chapter004/4_2_8/index.html

Using <main> Multiple Times?

<main> is intended to present the main content of an HTML
document and should therefore be included only once in a
document. If it’s used more than once, then this page won’t pass
the validation check. Nevertheless, there are single-page web
applications, that is, applications that consist of a single HTML
document and whose content is dynamically reloaded, where this
rule can become an issue. For this reason, the use of the main
element has been adjusted somewhat, and multiple main elements
can now be used. However, only one <main> element of those can
be visible at a time. All other main elements must be provided with
the hidden attribute. For example:
<main>...</main>
<main hidden>...</main>
<main hidden>...</main>

Although there are other ways in CSS to hide individual elements,
you can use only the hidden attribute with <main> for the HTML
document to be valid. All other options are invalid.

4.2.9 Labeling Content Separately Using <figure> and
<figcaption>

To set off or group certain content such as tables, images, listings,
videos, or other HTML elements from the usual body text, you can

use the figure element. If you want to link this section with an
(optional) caption, you should use the figcaption element. Like the
figure element, the figcaption element can contain other HTML
elements besides ordinary body text. Thus, the figure element
serves as the semantic parent for an element belonging to the page
content, such as an image, table, listing, or other content, and the
figcaption element encloses the subtitle to that element.

Here’s a simple example, the result of which is shown in Figure 4.18:
...
 <h2>HTML</h2>
 <article>
 <h3>figure and figcaption in use</h3>
 <p>The text before figure ...</p>
 <figure>

 <figcaption>Figure 1: Once upon a time ...</figcaption>
 </figure>
 <p>The text after figure</p>
 </article>
...

Listing 4.15 /examples/chapter004/4_2_9/index.html

If you want to place the (optional) caption with the figcaption
element before the content (above the image in the example), you
need to use the element right after the opening <figure>. However,
it’s only possible to use a figcaption element between <figure> and
</figure>, and <figcaption> must be the first or last element of the
figure element.

Figure 4.18 In the <article> Element between <figure> and </figure>, an Image Has
Been Inserted with the Element and a Caption with the <figcaption> Element

Between <figure> and </figure> you can also use more than one
content type (e.g., an image in the example). In the web browser, a
figure usually doesn’t get displayed separately. In addition to a
separate line, the content between <figure> and </figure> is often
displayed slightly indented. However, CSS is used for the design of
the figure element anyway.

4.2.10 Creating Unordered Lists Using and

An unordered list is basically nothing more than an unnumbered
bulleted list in which all list entries are given a bullet character. The
web browsers usually display this bullet with a bullet point.

You can introduce such a list with an opening (ul = unordered
list), followed by the actual bullet points, which you write between
 and . Each li element (li = list item) is a bullet point. At
the end, you must end the unordered bullet list with the closing
. Only li elements can be contained between and .
In between the li elements, you can also use other HTML elements
(except for section elements).

Here’s a simple example of an unordered list, the execution of which
you can see in Figure 4.19.
...
<article>
 <h2>Unordered bullet list with ul</h2>

 Lorem ipsum dolor sit amet
 Donec quam felis ultricies
 Nulla consequat massa quis
 Etiam ultricies nisi vel
 Donec vitae sapien ut libero

</article>
...

Listing 4.16 /examples/chapter004/4_2_10_15/index.html

Figure 4.19 Bulleted Lists with the Element Are Usually Displayed with a Bullet
Point

4.2.11 Creating Ordered Lists Using and

What you’ve just read about the ul element also applies to the ol
element (ol = ordered list). The only exception is that the ol element
is an ordered list—more precisely, a numbered list in which the
individual li elements are automatically numbered.

Here’s an example of an ordered list, the execution of which you can
see in Figure 4.20.

...
<article>
 <h2>Numbered bullet list with ol</h2>

 Lorem ipsum dolor sit amet
 Donec quam felis ultricies
 Nulla consequat massa quis
 Etiam ultricies nisi vel
 Donec vitae sapien ut libero

</article>
...

Listing 4.17 /examples/chapter004/4_2_10_15/index.html

Figure 4.20 The Numbered List with the Element Uses Arabic Numerals by Default

4.2.12 Reversing the Numbering of an Ordered List

With HTML, it’s also possible to reverse the order of numbering via
the HTML attribute reversed in the opening tag, so that the
numbering gets displayed in descending order. Based on the
preceding example, you only need to insert the following:
<ol reversed="reversed">
 ...

Besides <ol reversed="reversed">, you can also just use <ol
reversed> here because it’s a standalone attribute. But if you want to
be XHTML compliant, you must use the form <ol
reversed="reversed">. In HTML, you can use both versions.

Figure 4.21 The Numbering Order Was Reversed via the “reversed” Attribute

4.2.13 Changing the Numbering of an Ordered List

You can use the HTML attribute start to specify the start value of
the first li element in the opening tag. All values that follow the
first li element are incremented by the value 1. Even within an
opening tag, you can use the HTML attribute value to change
the numbering of the list entry. All subsequent entries are
incremented by the value 1 using the value specified in value.

The execution of the following example is shown in Figure 4.22.
...
<ol start="20">
 Lorem ipsum dolor sit amet
 Donec quam felis ultricies
 Nulla consequat massa quis
 <li value="101">Etiam ultricies nisi vel
 Donec vitae sapien ut libero

...

Figure 4.22 The Starting Numbering Was Set to 20 Right in the Opening Tag with
the Attribute “start” and Then Again in an Opening Tag with the Attribute “value” to 101

4.2.14 Nesting Lists within Each Other

You can nest both numbered lists and bulleted lists. Such nested
lists are used when, for example, you need a finer structuring of the
lists, such as a table of contents (e.g., at the beginning of this book).
A navigation with submenus is also often formulated by means of a
bulleted list.

Nesting lists can get a little messy, so if you have a deeper bulleted
hierarchy, you should use indentations and/or add a comment. When
nesting, the li elements aren’t nested inside each other, as might be
assumed, but a ul or ol element must be written again with the
nested li elements inside an opening parent tag. Only when
you close the opening tag with will this list be marked and
displayed as a child list.

The execution of the following code snippet is shown in Figure 4.23.
...
<h2>Nesting bullet lists ul</h2>

 Lorem ipsum dolor sit amet
 <!-- Start: 1. Nesting -->
 Donec quam felis ultricies
 Nulla consequat massa quis
 <!-- End: 1. Nesting -->

 Etiam ultricies nisi vel
 Donec vitae sapien ut libero

...
<h2>Nesting numbered lists ol</h2>

 Lorem ipsum dolor sit amet
 <!-- Start: 1. Nesting -->
 Donec quam felis ultricies
 Nulla consequat massa quis
 <!-- End: 1. Nesting -->

 Etiam ultricies nisi vel
 Donec vitae sapien ut libero

...

Listing 4.18 /examples/chapter004/4_2_10_15/index.html

Figure 4.23 The Nesting of Unnumbered Lists and Numbered Lists during Execution

Of course, you can nest the lists even deeper. Mixing unordered and
ordered lists is also possible without any problem. Unfortunately, it
isn’t possible to force automatic numbering such as 1.2, 1.3, 1.4, and
so on for the numbered sublists.

To illustrate this, the following is an example of a deeper and mixed
nesting, the result of which is shown in Figure 4.24.
...
<h2>Deeper nesting and mixing lists</h2>

 Lorem ipsum dolor sit amet
 <!-- Start: 1. Nesting -->
 Donec quam felis ultricies
 Nulla consequat massa quis
 <!-- Start: 2. Nesting -->

 Donec quam felis ultricies
 Nulla consequat massa quis
 <!-- End: 2. Nesting -->

 <!-- End: 1. Nesting -->

 Etiam ultricies nisi vel
 <!-- Start: 1. Nesting (bullet point) -->
 Donec quam felis ultricies
 Nulla consequat massa quis
 <!-- End: 1. Nesting (bullet point) -->

 Donec vitae sapien ut libero

...

Listing 4.19 /examples/chapter004/4_2_10_15/index.html

Figure 4.24 Further Nesting Depths and Mixing of Ordered and Unordered Lists

Omitting the Closing Tag from Lists

As you may remember from Chapter 2, Section 2.1.6, it’s possible
to omit the closing tags in some places. Especially if a list is
deeply and extensively nested, this may even be clearer and
easier than setting the closing tags. As mentioned earlier, this style
isn’t used in this book, and I’ve never used it in practice (yet).
Nevertheless, it should be pointed out here because the lists are
listed as a pro-argument, especially by the “omission faction.”

4.2.15 Creating a Description List Using <dl>, <dt>, and
<dd>

In HTML, there’s another type of list you can use—the description
list. This list is more of a name-value mapping list. Typical use cases
for the description list are glossaries or the listing of special
metadata and values; in other words, it’s simply a special list with
certain data in which a value or a description is assigned.

A description list gets summarized between <dl> and </dl> (dl =
description list). The dl element may only contain the dt and dd
elements described in the same way. The expression to be
described, that is, the name of the name-value mapping list, is
marked with <dt> and </dt> (dt = description term). The associated
description is written after the dt element between <dd> and </dd>
(dd = definition description). In turn, other HTML elements may be
used in dt and dd elements—except for grouping elements and
HTML elements for new sections (sectioning).

Here’s a simple example of a description list, the result of which is
shown in Figure 4.25. By default, web browsers display the
descriptions (<dd> elements) slightly indented compared to the
expression (<dt> elements). Here the description list was used for a
list of abbreviations in the web jargon.
...
<h3>Web lingo</h3>
<dl>
 <dt>4U</dt>
 <dd>For you</dd>
 <dt>ACK</dt>
 <dd>Acknowledgment</dd>
 <dt>ASAP</dt>
 <dd>As soon as possible</dd>
 <dt>FYI</dt>
 <dd>For your information</dd>
</dl>
...

Listing 4.20 /examples/chapter004/4_2_10_15/index.html

Figure 4.25 Descriptions (<dd> Elements) Slightly Indented Compared to the Expression
(<dt> Elements)

Such a name-value pair list can also be used within other HTML
elements such as between <aside> and </aside> or the new details
element, as shown in the following example:
...
<h3>Book launch</h3>
<img src="Computer stories.png"
alt="Computer stories">

<details>
 <summary>Book information:</summary>.
 <dl>
 <dt>Publisher</dt>
 <dd>Rheinwerk Verlag</dd>
 <dt>Author</dt>
 <dd>Juergen Wolf</dd>
 <dt>Scope</dt>
 <dd>400 pages</dd>
 <dt>Price</dt>
 <dd>$24.90</dd>
 <dt>ISBN</dt>
 <dd> ISBN 978-3-8362-7777-8 </dd>
 </dl>
</details>
...

Listing 4.21 /examples/chapter004/4_2_10_15/index.html

Figure 4.26 The Description List for an Image (a Book) Has Been Wrapped inside the
<details> Element, Allowing the Description to be Expanded and Collapsed

4.3 Using Semantic HTML
Now that you know the HTML elements for page structuring and text
structuring, you may be wondering how you can create a basic web
page with these HTML elements so that it makes sense
semantically. Specifically, this means that you can define the
different logical parts of a web page with HTML tags. By the way, the
semantic web isn’t just a fad, but helps search engines, for example,
better allocate the sheer flood of data on the internet. Search
engines such as Google even prefer semantic web pages and
searches HTML pages for semantic content.

Let’s take as a simple example the term goal, whose meaning in
hockey is different from that in business. The term gets its
assignment and meaning only if you provide the relevant context.
This is roughly how you can imagine the semantic web: you
contextualize the content with code so that machines can also
interpret and process it.

4.3.1 HTML without a Precise Structure

The first example is a classic HTML document that has no detailed
structure:
...
 <h1>My Blog</h1>
 <p>A blog with yummy recipes ...</p>
 <p>Navigation:
 Blog | Recipes |
 About me | Legal Notes
 </p>
 <h2>Old Posts</h2>

 Last Week
 Archive

 <h2>Tasty homemade vanilla sauce</h2>
 <p>Today I want to show you how ...</p>
 <h3>Similar recipes</h3>

 Chocolate sauce made from cocoa.
 Custard Made Easy

 <p>
 Contact | FAQs |
 About me | Legal Notes
 </p>
...

Listing 4.22 /examples/chapter004/4_3_1/index.html

There isn’t much to note about this example. The HTML code is valid
and can be used like that. You can see some headings, unordered
lists, navigation, and various paragraph texts. However, such code is
rarely used because it’s nearly unstructured and is relatively poorly
suited for styling or laying out via CSS.

Figure 4.27 /examples/chapter004/4_3_1/index.html When Displayed in the Web
Browser

4.3.2 Generic Structuring Using <div>

The first example didn’t contain any element to tell you where the
different sections of content were located. For this reason, we’ll now

use the div element to divide the content into separate sections.
Take a look at the same example again now, but this time it contains
the div elements:
...
 <div>
 <h1>My Blog</h1>
 <p>A blog with yummy recipes ...</p>
 </div>
 <div>
 <p>Navigation:
 Blog |
 Recipes |
 About me |
 Legal Notes
 </p>
 </div>
 <div>
 <h2>Old Posts</h2>

 Last Week
 Archive

 </div>
 <div>
 <h2>Tasty homemade vanilla sauce</h2>
 <p>Today I want to show you ... </p>
 <h3>Similar recipes</h3>

 Chocolate sauce made from cocoa.
 Custard Made Easy

 </div>
 <div>
 <p>
 Contact |
 FAQs |
 About me |
 Legal Notes
 </p>
 </div>
...

Listing 4.23 /examples/chapter004/4_3_2/index.html

This time, the content was separated by means of div elements.
Nevertheless, we still don’t see any semantic elements. Visually,
nothing changes here compared to the

/examples/chapter004/4_3_1/index.html example from the previous
section.

All that can be achieved by using the div element is to group a piece
of content together. Thus, it depends on the author of the web page
to assign meaning to the individual div elements. Before semantic
elements came into play, this was done via attributes in the opening
<div> tag. So, let’s now take a look at the next step and the next
example, in which the individual div elements get their meaning:
...
 <div id="header">
 <h1>My Blog</h1>
 <p>A blog with yummy recipes ...</p>
 </div>
 <div id="navigation">
 <p>Navigation:
 Blog |
 Recipes |
 About me |
 Legal Notes
 </p>
 </div>
 <div id="sidebar">
 <h2>Old Posts</h2>

 Last Week
 Archive

 </div>
 <div id="content">
 <h2>Tasty homemade vanilla sauce</h2>
 <p>Today I want to show you ...</p>
 <h3>Similar recipes</h3>

 Chocolate sauce made from cocoa.
 Custard Made Easy

 </div>
 <div id="footer">
 <p>
 Contact |
 FAQs |
 About me |
 Legal Notes
 </p>
 </div>
...

Listing 4.24 /examples/chapter004/4_3_2/index2.html

While nothing has changed in a purely visual sense, the div
elements have gained meaning thanks to the id attribute. We now
have a header, navigation, sidebar, content, and footer as it’s visually
represented in Figure 4.28. Using CSS, you can design and lay out
these areas individually. This way, you can virtually already achieve
a semantically correct structuring of the website, but not yet a
semantically unified structuring.

Figure 4.28 The Meaning for the Layout Areas Is Assigned via <div> and the “id”
Attribute

So why should you use semantic structuring at all when you can
work with div elements without any problem? There are several
reasons for this: Despite the use of IDs in the div element, you have
a semantically neutral element. It isn’t a standardized structuring, but
instead everyone can define what they want. For the machines,
there’s still no difference here. They can’t know what you really mean
by id="header" or id="content" and what’s behind it. You might as

well write id="head" or id="synopsis" or whatever in all the
languages of the world.

For example, imagine a smart screen reader reading the main
content of the web page to a visually impaired person. How would
the screen reader know what the main content is? One web
developer may write id="content", another may write id="main", and
you may write id="musings". In addition, some web developers don’t
mark up the main content at all.

The situation is the same with search engines. For search engines to
return a better result, it’s helpful if they know what belongs to the
main content of the web page. Again, the search engine faces
nonstandard class and ID names. Thus, it’s an advantage here if you
tell the web crawler on the next visit: this is the main content of my
site.

<div> Can Still Be Used in HTML

Using div elements and labeling the layout sections with the ID
and class names are by no means incorrect—they represent valid
HTML. In addition, the div element often helps you solve a
problem. Nevertheless, for future projects, you should use the new
semantically meaningful elements that were introduced especially
for this purpose.

4.3.3 Semantic Structuring Using the Elements
Provided in HTML

To write a semantically meaningful structure as HTML code for
machines, there are suitable elements in HTML that have already
been described in the book and are listed once again in Table 4.3.

HTML
Element

Meaning Section in This Chapter

header Header sections Section 4.1.4
nav Navigation

blocks
Section 4.1.2 and “Declaring Content
as a Page Navigation Bar Using
<nav>”

section Division into
content sections

“Dividing Content into Topic-Based
Sections Using <section>”

article Division into
self-contained
blocks

“Dividing Content into a Self-
Contained Block Using <article>”

aside Additional
Information

Section 4.1.2

footer Footer sections Section 4.1.4

Table 4.3 Semantic HTML Elements

Returning to our example /examples/chapter004/4_3_2/index2.html,
this HTML code should do without div elements and instead rely on
semantic HTML elements:
...
 <header>
 <h1>My Blog</h1>
 <p>A blog with yummy recipes ...</p>
 </header>
 <nav>
 <p>Navigation:
 Blog |
 Recipes |
 About me |
 Legal Notes
 </p>
 </nav>
 <aside>
 <h2>Old Posts</h2>

 Last Week
 Archive

 </aside>
 <article>
 <h2>Tasty homemade vanilla sauce</h2>
 <p>Today I want to show you ...</p>
 <h3>Similar recipes</h3>

 Chocolate sauce made from cocoa.
 Custard Made Easy

 </article>
 <footer>
 <p>
 Contact |
 FAQs |
 About me |
 Legal Notes
 </p>
 </footer>
...

Listing 4.25 /examples/chapter004/4_3_3/index.html

When you look at the HTML document with the semantic elements,
it’s probably already much easier to recognize at first glance what
has which meaning here. This is just a simple example. Here you
can immediately see the header, navigation, sidebar, main content,
and footer (see Figure 4.29). This way, the content could perhaps
also be placed inside the main element in which the individual articles
are then summarized using the article element.

Figure 4.29 Layout Areas Marked with HTML Semantic Elements

The point here isn’t at all where you can use exactly which HTML
element in detail, but rather that this semantic structuring makes
sense, even if you’ve never heard of new elements such as nav,
article, header, footer, and so on. The logic here is almost self-
evident. It’s much easier to see where the navigation, header, or
footer is written in this document.

The Main Content with <main>

If you still want to summarize the main content of the web page in
<main> in the example /examples/chapter004/4_3_3/index.html,
then you should choose the article element.

4.3.4 What’s the Use of Those Semantic HTML
Elements?

If you’ve carefully followed this section, you’ve seen that the
semantic HTML elements are very useful. Thus, probably one of
their advantages is that they make life easier for you as the
developer of the website.

For “normal” visitors, these semantic HTML elements don’t have
much value at first. On the contrary, those visitors won’t even be able
to distinguish in the web browser whether you’ve used div elements
or the semantic HTML elements. However, if, for example, a new
smart web browser provides special features that let you get to
navigation by clicking a button, the new semantics take on meaning
for normal visitors as well.

The situation is different, however, for visually impaired visitors who
use a screen reader. A good screen reader could “recognize” the
content of the web page based on the new semantic structure and
thus jump directly to the content or navigation.

Of course, you shouldn’t disregard the search engines at all. For
example, you could let the search engine know in a consistent and
standardized way where which content is located, so that it assigns a
higher ranking to the relevant content of a web page.

4.4 HTML Elements for Text Markups
You apply HTML elements for text markup within plain text for
individual letters, words, or parts of sentences. Thus, the described
elements don’t create a new paragraph or line break, but mark out
specific passages in a continuous text according to the semantics
defined for the element. You can find all text markups used here in
the HTML document /examples/chapter004/4_4/index.html.

Text Formatting via CSS

Even though many of the elements presented here cause a slight
visual change of the text in the web browser, you shouldn’t use
these HTML elements for text formatting. CSS is responsible for
text formatting. These HTML elements rather serve a clean
semantic text markup. Thanks to semantic text markup, you can
lay the foundation for later text formatting with CSS. If you use
sensible text markup in body text, you can later format your text
more easily and logically with CSS.

HTML
Element

Meaning

<abbr> Marking abbreviations or acronyms.
<cite> Marking text as source text of a working title.
<code> Marking up computer code within a paragraph of text.
<pre> Marking up preformatted text. All spaces and line

breaks get displayed as specified in the text.
<kbd> Marking up text as keyboard input.

HTML
Element

Meaning

<samp> Marking up text as screen output of a program.
<dfn> Defining a term.
<var> Marking up text as a variable.
<bdo> Changing the text direction for bidirectional text.
<bdi> Defining a section for bidirectional text.
 Highlighting text you would emphasize in spoken

language.
 Highlighting words or passages that are particularly

important in terms of content.
<i> Marking up words or passages with technical terms,

thoughts, and foreign words.
 Marking up meaningful names or keywords.
<mark> Highlighting text with a marker.
<q> Marking up words or passages as cited or spoken

text.
<u> Marking up text underlined as proper name or

incorrect words or passages.
<s> Marking up text as no longer valid or obsolete.
<ins> Marking up text as newly added in the revised sense.
 Marking up text as deleted in the revised sense.
<sub> Marking text as subscript.
<sup> Marking text as superscript.
<time> Marking up dates and times

HTML
Element

Meaning

<small> Marking up text as small print, such as for copyright
information, licensing information, or legal notes.

<ruby>,
<rp>, and
<rt>

Specifying Ruby annotations.

 Marking up a general section within a paragraph of
text.

Table 4.4 Brief Overview of the Elements Covered for Text Markups

4.4.1 Marking Up Abbreviations or Acronyms Using
<abbr>

The abbr element (abbr = abbreviation) can be used for
abbreviations or acronyms. It’s also helpful to use the global HTML
attribute title in which you write out the abbreviation or acronym so
that a web browser can display the full meaning when hovering over
it, as you can see in Figure 4.30. This reproduces the code snippet
of the following example:
...
<p>The <abbr title="world wide web">WWW</abbr> is teeming with
 abbreviations.
</p>
...

Figure 4.30 The Global “title” Attribute Displays the Meaning of the Abbreviation “WWW”
When You Hover the Mouse Cursor over the Word

Anyone who writes abbreviations between <abbr> and </abbr> is
passing useful information to the web browser, language-checking
software, translation systems, screen readers, or even the search
engines for indexing. The extent to which this information is useful
and actually used can’t always be predicted. Nevertheless, the abbr
element is very useful for logical text markup.

4.4.2 Marking Up Text as the Source of a Working Title
Using <cite>

You can use the cite element when you include the title of a book,
movie, painting, piece of music, exhibition, and so on in the body
text. However, you should only mark up the working title and not the
name or main character of the title. Again, you can usually still use
the global HTML attribute title to specify more information about
the working title when the user hovers over it with the mouse pointer.
Most web browsers display everything between <cite> and </cite>
in italics.
...
<p>According to the book <cite>HTML and CSS—The Comprehensive
 Handbook</cite> it should read:
</p>
...

Figure 4.31 In This Example, We Wrote the Working Title of a Book between <cite> and
</cite>

4.4.3 Marking Up Computer Code Representation
Using <code> and <pre>

You should use the code element to indicate computer code within
body text. Most web browsers often display this area using a
monospace font such as Courier, as shown in Figure 4.32, which
renders the following code snippet in the web browser:
...
<h2>Computer code with <code>code</code></h2>
<p>The <code>code</code> element does not contain any attributes.</p>
...

Figure 4.32 The <code> Element Is Suitable for Marking Up Language Elements or Parts
of a Source Code of a Particular Language

If you want to format multiple lines of computer code, you should
note the code elements in between <pre> and </pre>. The pre
element (pre = preformatted) represents preformatted text. In the
section between <pre> and </pre>, several whitespace characters
won’t get combined to one space, but everything is output as it was
entered in the editor. Because that section is output in a monospace
font, the pre element is very suitable for outputting source text
across multiple lines. This isn’t to say that <pre> is only suitable for
marking up source code. It’s therefore recommended that you
specify the content between <pre> and </pre> more precisely with
appropriate text markup. So, for source code, you should use <code>;
for keyboard input, <kbd>; and for displaying a program output,
<samp>.

In the following example, the text preformatted between <pre> and
</pre> is output as it was written. Specifying <code> and </code>
between <pre> and </pre> isn’t mandatory, but it makes the text
markup even more precise. You can see the following example at
execution in Figure 4.33:

...
<p>Here is a source code snippet of a C program:</p>
<pre><code>#include <stdio.h>

int main(void)
{
 puts("Hello World!");
 return 0;
}</code></pre>
...

Figure 4.33 The Text Preformatted between <pre> and </pre> Gets Output Exactly as It
Was Entered

The Masking Characters “<” and “>”

To display < or > characters in HTML that aren’t to be used as
HTML, the character entities < for < and > for > were used
here.

4.4.4 Keyboard Input Using <kbd> and Program Output
Using <samp>

The kbd element (kbd = keyboard) should be used to mark up
continuous text as keyboard input. The samp element, on the other
hand, should be used for the screen output of programs. Most often,
these two elements are also rendered in a monospace font (usually

Courier) in the web browser, as you can see in Figure 4.34, which
shows the following example running in the web browser:
...
<p>You can use <kbd>Strg</kbd> + <kbd>A</kbd> to mark up the entire text.</p>
<pre>term#1> <kbd>gcc -o Wall hello hello.c</kbd>
term#1> <kbd>./hello</kbd>
<samp>Hello World!</samp>
term#1></pre>
...

Figure 4.34 The Web Browsers Themselves Decide How to Display the Text Between
<kbd> and <kbd> for Input or <samp> and </samp>

In Figure 4.34, the kbd elements have been made bold, and the samp
elements have been made gray by using CSS to help you see what
has been used where.

4.4.5 Marking Up Text as a Definition Using <dfn>

Text that you write between <dfn> and </dfn> is supposed to
represent a definition. Usually, you mark up a word or a text
passage, which you then explain in the text that follows. However,
the dfn element shouldn’t mark up the definition itself, but the
defined term. Let’s take a look at a simple example:
...
<p>A <dfn>smartphone</dfn>—as opposed to a
 cell phone—provides more
 computer functionality and better connectivity.
</p>
...

Figure 4.35 In this Paragraph Text, the Term “Smartphone” Was Described, Which Is
Why It Was Placed between <dfn> and </dfn>

In common practice, you can also use another element such as
<abbr> inside <dfn> and </dfn>, as shown in the following example:
...
<p>A <dfn><abbr>smartphone<abbr></dfn>—as opposed to
 a cell phone—provides more
 computer functionality and better connectivity.
</p>
...

You can also use the global attribute title inside the opening <dfn>
tag. The value of title should be the same as the content of the dfn
element.

4.4.6 Marking Up Text as a Variable Using <var>

You can use the var element to mark up the text in between as a
variable. Such a variable can be, for example, part of an application,
a mathematical expression, or an identifier of a variable in a
programming language:
...
<p>The radius <var>r</var> is equal to
 half the diameter <var>d</var>.
</p>
...

4.4.7 Changing the Text Direction Using <bdo> and
<bdi>

The bdo element (bdo = bidirectional override) allows you to change
the text direction. This is useful, for example, when you want to

display text that is written from right to left (e.g., Hebrew or Arabic).
By default, the text is displayed from left to right. To change the text
direction, you must use the global HTML attribute dir. The attribute
value rtl makes the text run from right to left, whereas ltr makes it
run from left to right.

You don’t need to put every Hebrew or Arabic word between <bdo
dir="rtl"> and </bdo>. When you use Unicode in HTML, the text
direction is usually automatically taken into account according to the
language, provided you use a Unicode-capable web browser. You
should only use the bdo element if the correct text direction doesn’t
work.

To illustrate this, here’s a code snippet in which in the first paragraph
text—a palindrome for fun—was put between <bdo> and </bdo>, and
the text alignment was changed via the attribute dir into the value
rtl (right to left). The second paragraph, on the other hand, displays
the Hebrew word “shalom”, which usually doesn’t require changing
the text direction. You can see the result of these lines in
Figure 4.36:
<p><bdo dir="rtl">Never odd or even</bdo></p>

<p> </p>

Figure 4.36 Example Executed with <bdo>

The situation is different in the following HTML lines:

<p>1: (as-salaam alaykum)</p>

<p>2: (shalom)</p>
<p>Howdy: 3</p>

The first two examples would probably not lead to the desired result
here. Although as-salaam alaykum in Arabic and shalom in Hebrew are
correctly written from right to left, the following colon and number
have been given a different writing direction. Originally, this was
supposed to look like the third paragraph with Howdy.

Here, the writing behind the Arabic characters continued from right to
left, so that the colon and the number behind it also retained the
writing direction. Only the translation of the Arabic or Hebrew
meaning was reproduced in the correct place.

To be on the safe side, the bdi element (bdi = bidirectional isolation)
was introduced for this purpose. Using the bdi element, you can
mark up the boundaries of text direction changes in a Unicode-
enabled web browser more accurately. Thus, in the preceding
example, you only need to put the Arabic or Hebrew characters
between <bdi> and </bdi>.

After that, it looks as shown in Figure 4.37:

<p><bdi> </bdi>: 1 (as-salaam alaykum)</p>

<p><bdi> </bdi>: 2 (shalom)</p>
<p>Howdy: 3</p>

Figure 4.37 Thanks to the Containment of the Arabic and Hebrew Script between <bdi>
and </bdi>, the Colon and the Decimal Number Now Display after the Script

4.4.8 Emphasizing Text Using , , <i>, and

To emphasize text, you can use either the em element (em =
emphasis) or the strong element. The em element should be used for
words or passages that you would emphasize when speaking.

If you want to bring a word or passage more into focus, you should
use the strong element. In contrast to the em element, the strong
element is used to mark certain places in the text with a special
signal or warning effect. The strong element should definitely be
used for words or passages that are particularly important in terms of
content.

Let’s take a look at the following example:
...
<p>Bear! Who the hell is this Bear!</p>
<p>Caution! Bear could be standing behind you!</p>
<p>Delivery date in summer 2022</p>
...

In this example, it’s semantically clear from the emphasis on bear in
the first paragraph in Figure 4.38 that it isn’t the animal that is
referred to here, but a person with the surname “Bear”. In the second
paragraph, the word Caution! was marked with a special importance.
In the last paragraph, an em element was nested within a strong
element to emphasize summer 2022 more strongly in terms of content
in addition to its particular importance.

Figure 4.38 Different Ways to Emphasize or Highlight a Text Using and

Here, you could also still nest the same HTML elements to increase
the emphasis or importance of em or strong elements, at least

semantically.

Because web browsers usually render with italic and
with bold font, you shouldn’t make the mistake of replacing these
elements with <i> and , respectively, because these elements
(i.e., and <i> or and) are rendered quite similarly in
the web browser. As mentioned at the beginning, HTML isn’t used to
format the text, but these HTML elements are about giving the text a
meaningful significance.

The i element is recommended to mark special technical terms, a
thought, scientific names, or foreign language words. The b element,
on the other hand, should be used for meaningful names or
keywords to draw attention to something.

Using <i> and

Standard HTML recommends using the b or i elements only if no
other HTML tag fits to mark up the text or passage. The days
when these elements were used purely for formatting are over
because CSS is used for that purpose.

4.4.9 Highlighting Text Using <mark>

You should use the mark element to mark up words or passages in a
continuous text. The easiest way to compare such a markup is with a
highlighter. In practice, this HTML element should be suitable for
visually highlighting the search term found during a search. This
works only if the content is generated dynamically. The element is
also very suitable for highlighting code fragments of a source code.

The following code snippet demonstrates the mark element whose
execution is shown in Figure 4.39:
...
<p>In 2021, profits have increased by
 <mark>100 percent</mark>.
</p>
<p>Here is a source code snippet of a C program:</p>
<pre><code>#include <stdio.h>

int main(void)
{
 <mark>puts("Hello world!");</mark>
 return 0;
}</code></pre>
...

Figure 4.39 Web Browsers That Recognize the New Element Usually Mark the Text
Placed between <mark> and </mark> with Yellow Background Color

Even though the mark element predominantly applies yellow
background color to the text, you shouldn’t use it to apply a
background color to a text. You should rather use <mark> only if it
makes sense in terms of content and no other semantic HTML
element is suitable. If you want to format the text background, you
should use the span element (Section 4.4.17) with CSS instead.

4.4.10 Placing Text between Quotes Using <q>

While you can use the blockquote element to quote an entire
paragraph text, the q element allows you to quote something in the

middle of the text or mark it as spoken text. Text or passages you
insert between <q> and </q> should be placed between quotes by
the web browser. You shouldn’t use the q element if you simply want
to enclose a word or passage in quotation marks. That wouldn’t be
the semantic sense of the q element.

If you use a quote or spoken text from another source, you can use
the cite attribute with a URL to the source. Because the
implementation of the cite attribute is still poor in web browsers, you
may want to consider using a hypertext link.

You can also nest the q element. Such nested q elements usually get
another matching quotation mark. In this country, for example, the
outer quotation marks are double and the inner ones are single. This
is demonstrated in the following example, the execution of which you
can see in Figure 4.40:
...
<p>Wolf asked: <q cite="http://tom-bear.com/">
 Bear! Who the hell is this Bear!</q>
</p>
<p>Fox replied: <q>Caution! <q>Bear</q> could be
 standing behind you!</q>
</p>
...

As you can see in Figure 4.40, this example quoted spoken text in
the first paragraph. The second paragraph demonstrates the nesting
of q elements. The inner q element was placed between single
quotes and the outer one between double quotes.

Figure 4.40 Placing Text between Quotes Using the <q> Element

For Advanced Users: Setting Custom Quotation Marks

The problem with the q element is that the quotes set by the web
browser may not always be the ones you want. In this case, an
intervention with CSS is a good idea. Thus, the following CSS line
could be used to change the first and second nested characters of
the q element:
q {quotes: '»' '«' '›' '‹';}

Figure 4.41 The Quotes of the <q> Element Have Been Changed with CSS

4.4.11 Underlining or Crossing Out Text Using <u> and
<s>

Both the u element (u = underline) and the s element (s =
strikethrough) were marked as deprecated with HTML 4.01 and were
supposed to be removed from the standard. With the new HTML
standard, they have acquired a new semantic meaning and are thus
again an official part of HTML.

You should use the s element to mark content as obsolete or no
longer correct. The web browsers display the text between <s> and
</s> as strikethrough. If you want to display a document edit where
you want to mark a word or passage from the not yet finished
document as deleted, you should use the del element instead.

According to its new meaning, the u element is to be used for
underlining proper names, as is common, for example, in Chinese
writing (see http://en.wikipedia.org/wiki/Proper_name_mark). Most

http://en.wikipedia.org/wiki/Proper_name_mark

readers are unlikely to use Chinese proper names, so another
recommended example of the u element is to knowingly indicate
misspelled words or passages containing errors. Web browsers
usually display the u element with an underscore. In addition to the u
element, there’s the ins element, which is also rendered as
underlined but is intended to indicate newly inserted content
(Section 4.4.12).

Here’s a short example, the execution of which you can see in
Figure 4.42:
...
<p>You can place a text in the middle with
 <s><code><center></code> or</s> the
 CSS feature <code>text-align</code> and the value
 <var>center</var>.
</p>

<p>

<u>

</u> = I am from Germany.</p>
<p>Also, <u class="spell-checker">spellig errors</u>
 can be marked with it.
</p>
...>

As you can see in Figure 4.42, in the first paragraph text, the content
<center> or was crossed out. In the second paragraph text, a

Chinese proper name (Germany =) is underlined. Finally, in
the final paragraph, a spelling error was underlined with a red
dashed line. The color changes and the style of the underline were
adjusted with CSS in the example.

Figure 4.42 Underlining or Crossing Out Text Using <u> and <s>

In any case, it’s important that you use both elements for their
intended content and not for text decoration. If you want to underline
or strike through text for purely decorative reasons, you should use
CSS to do so.

4.4.12 Marking Changes of Text Using <ins> and

The ins element is rendered by web browsers similar to the u
element, while the del element is rendered similar to the s element.
Nevertheless, the semantic meaning of the two elements is different
and therefore not interchangeable.

The del element (del = delete) allows you to mark a content-related
(active) editing of a text as deleted in the revised sense. It’s used to
inform readers that this part has been revised or further developed.
Instead of removing the text completely, you want to make sure that
the previous versions of the text remain visible. The web browser
usually crosses out this text.

The ins element (ins = insert) is the counterpart of the del element
and should be used when something new gets inserted into the
document. Here again, you mark a further development of the
previous version of the text. The web browsers usually display this
text with an underscore.

You can see the execution of the following example with the
elements del and ins in Figure 4.43.
...

 <p>The singer performs on 1/1/2024 in the concert hall!</p>

<ins>
 <p>The concert was canceled,
 because the singer is sick!</p>

</ins>
...

Figure 4.43 The Element Used to Delete a Paragraph Text and Insert a New
Paragraph with a New Message between <ins> and </ins>

Again, you should use the del and ins elements only if they fit the
semantics. If you want to cross out or underline the text in a purely
decorative way, CSS should be the first choice.

Text Underline Can Be Confusing!

The frequent use of underscores with <ins> or <u> may confuse
the user because hypertext links with <a> are usually also
represented with an underscore. It’s therefore also recommended
to change the formatting with CSS, so that the individual elements
are displayed in a clearly distinguishable manner.

4.4.13 Displaying Text as Superscript or Subscript
Using <sup> and <sub>

These two markups are mainly used for simple mathematical and
chemical formulas to lower text with the sub element (sub = subscript)
and to raise it with the sup element (sup = superscript).

Here’s a code snippet as an example, the execution of which you
can see in Figure 4.44:
...
<p>^[1] Reaction scheme: 2 H₂O
 → 2 H₂ + O₂</p>

<p>^[2] Calculate circular area: A = π * r
 ²</p>
...

Figure 4.44 The <sub> and <sup> Elements Were Used Several Times for Superscript
and Subscript Numbers and Footnotes, Respectively

4.4.14 Marking Dates and Times Using <time>

The time element was introduced to mark up dates and times. When
displayed in a web browser, text placed between <time> and </time>
is usually not visually noticeable at all. The goal and purpose of the
time element is rather that date and time are uniquely coded for
machines and can also be displayed in a readable way for humans.
You can specify the machine-readable form in the HTML attribute
datetime, while the human-readable form is usually written between
<time> and </time>. Here’s a brief example:
...
<p>We met on my <time datetime="2023-11-12">
 44th birthday</time> at Bear’s place.
 <time datetime="20:00">at 8 pm.</time>
</p>
...

The specification 44th birthday can be any other text such as
Wednesday or November 12 as long as the value of datetime is a
precise date of the Gregorian calendar. The same applies to the time
at 8 pm.

Valid Machine-Readable Date and Time Information

A date readable by machines is specified as YYYY-MM-DD. YYYY
is the year (e.g., 2023), MM is the month (e.g., 11 for November),
and DD is the day in the month (e.g., 12). If you also want to note
the time, you must place a capital T between the date and the time
and then enter the time behind it in the form HH:MM where HH
stands for hours and MM for minutes. In a newer version of time,
this T can be omitted and a space can be used instead. Optionally,
you can specify the time zone offset from UTC (Coordinated
Universal Time). UTC is a designation for Universal Time. Here,
you must specify a + followed by HH:MM, for example:
2023-10-10T21:00+01:00

For this example, you enter October 10, 2023, as the date. The
time is exactly 9 pm, and the +01:00 at the end means UTC + 1
hour. Many other different forms of presentation are possible in
this context. For more information, you should visit
www.w3.org/TR/2011/WD-html5-20110525/text-level-
semantics.html#the-time-element. For further and future
developments of the time element, you may find the following
website useful: http://wiki.whatwg.org/wiki/Time_element.

Alternatively, you can specify the date, time, and time zone (if
needed) in datetime at once:
...
<p>We met on my
 <time datetime="2023-11-12T20:00+00:00">44th birthday
 </time> at Bear’s place at 8pm.
</p>
...

So, if you use a valid datetime attribute with the time element, you
can write whatever you want between <time> and </time>. Without

http://www.w3.org/TR/2011/WD-html5-20110525/text-level-semantics.html#the-time-element
http://wiki.whatwg.org/wiki/Time_element

specifying the datetime attribute, you must specify a valid date
format and/or a valid time format—that is, the machine-readable
version—between <time> and </time>, such as the following:
...
<p>We met on <time>2023-11-12</time> at Bear’s place
 at <time>20:00</time>
</p>
...

The time element has been improved and made much more flexible
over time after its first release. For example, the following
specifications are also possible:
...
<p>On every <time datetime="11-12">birthday</time>
 I got flowers.
</p>
...

This refers to November 12. Another option would be to specify the
following for datetime if you don’t remember the exact day of the
date:
<p>The concert in the photo was recorded sometime in
 <time datetime="2023-08">August</time>
 this year.
</p>

Here, a date in August 2023 is meant. It’s possible to use only the
year (e.g., datetime="2023").

Another improvement is that you can use a time duration. Here’s an
example of how such a duration is represented:
<p>the rock festival lasted <time datetime="P3D">3
 days</time>.
</p>

The letter P stands for period, the D for day, and the 3 for three days.
You can still specify a time period from a combination with H for

hours, M for minutes, and S for seconds (e.g., datetime="P1D5H10M" =
1 day, 5 hours, and 10 minutes).

Here’s What Doesn’t Work (Yet)!

It isn’t yet possible to specify a time before Christ (BC), neither can
you specify a time period based on two date ranges. For this
purpose, you still need to use two time elements.

What Should I Use <time> for in Practice?

If you use the time element, it will be easier for other programs to
index this data. For example, it’s easier for a script in blog articles to
extract the date using the time element, rather than using any other
techniques to look for and read this data. By having the date and/or
time information in a machine-readable form, there’s the advantage
for search engines to make use of it when searching for items of a
certain period or date.

If you then also use the datetime attribute, you can provide readers
with a reader-friendly alternate display between <time> and </time>.
Basically, you should put a (readable) date and/or time between
<time> and </time> because the web browser won’t display an
automatic value in between if you don’t put anything there.

Another possibility is that future web browsers provide the option to
enter a date into the calendar at the request of the visitor. In addition,
the web browser could convert the time used into the visitor’s time
zone if the appropriate value was specified with datetime. And he
could convert the season according to the Buddhist time calculation,
which is valid, for example, in Thailand or Laos.

In Figure 4.45, you can see again all time elements described and
used here. I underlined the places where <time> was used with a
dotted line using CSS for better visibility. Here, the date on which the
article was written was additionally indicated behind the article title.
To use the time element in a semantically correct way, the
specification of an exact time must be used and observed. For
example, you should avoid the following incorrect usage:

These are the results from <time>last week</time>.

Figure 4.45 To Clarify What Is between <time> and </time>, a Dotted Underline Has
Been Added

4.4.15 Marking the Small Print Using <small>

You should use the small element for words or text passages in
which you want to display some small print. This can be copyright
information, license information, legal notes, and so on.

Here’s a short code snippet with the small element; its execution is
shown in Figure 4.46.
...
<article>
 <header>
 <h2>Small print with small</h2>
 <small>© John Doe;

 <time datetime="2024-01-01">January 1, 2024</time></small>
 </header>
 <p>The shipment can be delivered in <time datetime="P2D">2 days</time>.
 <small>(Due to high demand
 it can also take longer (+1 day)).</small>
 </p>
</article>
...

Again, you should use this element only if it semantically fits the
content and not to make text look smaller. For visual adjustments,
you should use CSS.

Figure 4.46 A Copyright Was Placed in the Head of an Article as well as Small Printed
Information between <small> and </small>

4.4.16 Using <ruby>, <rp>, and <rt> for Annotations
about Pronunciation

The Ruby annotation is probably of little interest to most readers.
This is an annotation system in which the text appears with the
annotation in one line, as used in Japanese and Chinese texts. If you
want to know more about this notation, see
https://en.wikipedia.org/wiki/Ruby_character.

Here, we’ll only briefly describe the use of the Ruby annotation with
the existing HTML elements. For this purpose, here’s a simple
example in which Asian characters have been omitted:
...
<p>
 <ruby>
 LOL<rp> (</rp><rt>Laugh Out Loud</rt><rp>)</rp>
 </ruby>

https://en.wikipedia.org/wiki/Ruby_character

</p>
...

Figure 4.47 The Text between a Ruby Annotation Is Displayed as Text with Annotation in
One Line

The example features LOL with annotations (which is nonsense here,
of course). All characters, including annotations, are written between
<ruby> and </ruby>. Then the character is noted as element content
(here: LOL). The parentheses of the annotations are created with the
(optional) rp element (rp = Ruby parenthesis). The text is then
marked with the rt element (rt = Ruby text). Thus, the annotation is
written between <rt> and </rt>.

Figure 4.48 The Optional <rp> Element Is Used to Put Parentheses around the Ruby
Text (with the <rt> Element) for Web Browsers That Don’t Understand <ruby>

Web Browser Support for <ruby>

Web browser support in current web browsers is now quite good.
In some web browsers, however, an add-on may need to be
installed.

4.4.17 Grouping Ranges of Individual Text Passages
Using

While you can use the div element (Section 4.2.7) to group entire
groups into one block, you can use the span element to mark up
individual passages of text inside the body text with CSS. Visually,
text placed between and doesn’t change at all. In
addition, the span element in conjunction with a JavaScript is quite
useful when searching for global attributes used within it to directly
update the element content. Here’s a rather theoretical example:
<p>Current temperature 64 F</p>

Here, you could use a JavaScript to read the global id with the value
temp and further process or update the element content. Let me also
show you this CSS example:
<p>Formatting with
 CSS and the span element.</p>

Here, the text is preceded by a stroke that has been implemented via
style statements directly in the HTML tag span with the HTML
attribute style.

Figure 4.49 The Element Has No Default Formatting; Besides Designing with
CSS, It Can Also Be Used to Identify Unique Elements.

However, as with the div element, you should only use this element
if there’s no semantically more suitable HTML element available.

Example of All Text Markup Elements

Once again, note that you can find an example with all the text
markup elements demonstrated here on the web page for the
book (www.rheinwerk-computing.com/5695/) and at https://html-
examples.pronix.de/examples/chapter004/4_4/index.html.

http://www.rheinwerk-computing.com/5695/
https://html-examples.pronix.de/examples/chapter004/4_4/index.html

4.5 Related Topic: Character Encoding
What follows here isn’t a treatise on character encoding in general,
but rather in the context of HTML documents—especially on how
you can avoid special characters, such as German umlauts, from
getting displayed as cryptic characters. If you consider the following
two points, there shouldn’t be any problem:

In the HTML document, you need to specify the character
encoding of the document in the head data between <head> and
</head>, as we’ve been doing in the book so far with <meta
charset="UTF-8">. Unless you have a specific reason, you should
always use the UTF-8 value for the charset attribute.

However, it doesn’t suffice to specify the character encoding in the
HTML document as it must also be saved in this encoding using
the editor of your choice. Consequently, if you’ve specified UTF-8
as the character encoding in the HTML document, you must also
save the document with the UTF-8 encoding. With most editors,
you no longer have to bother about this. Nevertheless, it should be
briefly mentioned here.

4.5.1 From Bytes to Character Encoding

The smallest unit, the bit, will be skipped here because you don’t
need to go so deep into detail at this point. The byte unit is quite
sufficient for this purpose. When the computer reads a file or data
into the main memory, it’s basically just bytes that have a certain
value. The value of a single byte results from the states of the
individual bits. Let’s use a byte with the value 68 (incidentally, with
the bit value 1.000.100) as an example.

To create a human-readable character from this byte with the value
68, a convention is needed that describes which byte value
corresponds to which representable character. For this purpose, a
translation table (also referred to as encoding table) is used for
encoding bytes.

4.5.2 From ASCII to ISO-8859

You know that an encoding table is responsible for turning a byte into
a readable character. The first type of such a character set was
introduced with the ASCII encoding and the EBCDIC encoding, with
which 128 different states can be represented on 7 bits. ASCII
encoding has become established in common practice. In the ASCII
encoding table, the first 32 characters are pure control characters,
and the actual characters are stored in the character set between 32
and 127. A look at the ASCII encoding table shows that the value 68
corresponds to the capital letter D.

The 8th bit was initially used only for error-correction purposes
(parity bit) for communication lines or other control tasks. Because
there was no space left in the ASCII character set between the
values 32 and 127 for language-specific characters (e.g., umlauts),
the 8th bit was used to extend the character set. At this point, the
Babylonian character confusion also arose because different
developers wrote their own “8th-bit-codes.” IBM PCs and English
MS-DOS systems used codepage 435, for example. In Germany,
codepage 850 was used for Western European characters.

Newer standards such as ISO-8859 also use 8 bits. Here, several
character set tables were developed at once. For example, ISO-
8859-1 (or Latin-1) represents the Western European languages.
The first 127 characters were taken over from the ASCII encoding. In

the values between 128 and 255, many special characters and
important characters from different European languages were
implemented (with the German umlauts, the Spanish tilde character,
or the French accent characters).

So, theoretically, you can use the ISO-8859-1 character set for the
HTML document:
<meta charset="iso-8859-1">

While in theory, you can use any character set for charset, you
should keep in mind that not every web browser understands all
character sets. If you use a more widely used character set, you
have a better chance that a web browser in distant countries will be
able to do something with it.

Microsoft had also added its own variation to the ISO-8859-1
encoding with codepage 1252. After all, code page 1252 already
contained the euro sign. ISO-8859-1, on the other hand, doesn’t
recognize the euro sign because at the time this table was created,
the euro didn’t even exist. The euro sign was added by the ISO only
later with ISO-8859-15. Now the situation here is that ISO-8859-1
doesn’t recognize the euro sign, while ISO-8859-15 and codepage
1252 do know it, but the value in the encoding table is again
different. Fortunately, today you don’t need to deal with the different
character sets of a language. The description of the ISO 8859
standards here serves only as background information on the
subject.

The current HTML specification uses the Unicode UTF-8 character
set with charset="UTF-8".

4.5.3 Beyond the Byte Boundary with Unicode

The preceding provided a good impression of the confusion
regarding the different character encodings. Note, however, that this
was only about the Western European character set, and I haven’t
really gone into detail yet. The fact is that character encoding can be
relatively complex if you pack everything into a byte and then want to
use different characters from different cultures. To bring all
characters under one hood, the Unicode system was introduced.

The Unicode character set can be used to represent all human-made
characters. In purely theoretical terms, more than four billion
characters could be used with 32 bits per character—in practice,
Unicode is limited to about one million code points. UTF-8 is the 8-bit
encoding of Unicode, which is also backward compatible with ASCII
encoding. A character can contain between one and four 8-bit words.
UTF-8 is now a uniform standard. For example, many operating
systems use UTF-8 by default, and UTF-8 is also being used
increasingly in web development with HTML to represent language-
specific characters, where it more and more replaces the use of
HTML entities (Section 4.6).

More Information Online

I could write much more on this topic, especially Unicode, but this
would go beyond the scope of this book. For more information,
visit http://r12a.github.io/scripts/tutorial/ and
https://home.unicode.org/. You can also find the characters of the
Unicode encoding at www.unicode.org/charts/.

http://r12a.github.io/scripts/tutorial/
https://home.unicode.org/
http://www.unicode.org/charts/

4.6 Character Entities in HTML
While the importance of character entities in HTML has diminished
considerably with the gradual spread of Unicode (especially UTF-8),
I should still touch on them briefly here because there are always
reasons to use them. In Section 4.5, you learned about different
character sets, and, by now, you know how to specify the character
set used as a <meta> tag in the HTML document head with charset.
For example, if you’ve specified ISO-8859-1 or ISO-8859-15 as the

character set and want to use the word shalom (=) in
Hebrew characters, you’re likely to be unsuccessful:
<meta charset="iso-8859-1">
 ...

<p>Shalom: </p>

The output is likely to be a cluster of cryptic characters instead of

. The simplest solution would be to change the character
set to UTF-8 via
<meta charset="UTF-8">

There might also be a different problem with this example: How do

you type the word in your editor? If you don’t happen to
have a Hebrew keyboard in front of you or a virtual keyboard with
Hebrew characters, the simple and quick solution might be to use
the character entities of HTML. This is how you write the word
“Shalom” in Hebrew using character entities:
<p>Shalom: <bdo>םןלש</bdo></p>

4.6.1 Structure of a Character Entity in HTML

As you’ve seen before from the four Hebrew characters, an HTML
entity starts with the & character and ends with the semicolon. Now
you have two options to arrange the sign:

Numeric entities
You specify the form with &#nnn;. Here, nnn stands for the
encoding of the character. This form is used when it isn’t possible
to enter the character via the keyboard. The notation can also be
in the form of &#xhhh;, where xhhh is the hexadecimal value for the
character. The notation without x is the decimal notation.

Named entities
This is an easier-to-remember name that has been agreed on for
the character. You may have already seen examples with < (lt
= less than) or > (gt = greater than) where people prefer to use
these named entities. Alternatively, you can use the numeric entity
instead of the named entities. For example, with <, <, and
<, you would use the < sign (less-than sign) three times.

Masking HTML-Specific Characters

Especially if you use special characters in your body text that are
part of the HTML syntax, you should mask these characters by
using the appropriate entity. For example, the following line is
likely to cause display problems in a web browser:
<p>Mexico City<Tokyo and Mumbai>London</p>

The web browsers would only output Mexico City-London here,
because the area between < and > is considered an HTML
element (even if it’s wrong). Although you could solve this problem
with a blank line in between, you should use the appropriate entity

for this, to be on the safe side. This is where the named entity
comes in handy:
<p>Mexico City<Tokyo and Mumbai>London</p>

The ampersand character & belongs to it as well and should be
used via the string & in the continuous text.

In addition, if you want to use the double quote within HTML
attributes, you should replace " with ", such as the following:

In the alt attribute, " was used as a masking character for ".
If you used " instead of the named entity " here, the area in
between would probably be “swallowed” by the web browser.

More Unicode Numbers

You can find even more Unicode numbers for a desired character
at www.unicode.org/charts.

http://www.unicode.org/charts

4.7 Summary
In this chapter, you learned a lot about the semantic use of various
HTML elements. Roughly summarized, you’ve learned the following
in this chapter:

How to use the <section>, <article>, <aside>, and <nav> elements
to divide an HTML document into meaningful parts (or sections)

How to use headings with the elements <h1> to <h6> and the new
section elements <section>, <article>, <aside>, and <nav> to
affect the content structure of headings

How to use a header with <header> and a footer with <footer> in
an HTML document

How to use the <main> element to set the main content of a web
page

Which HTML elements are available to divide or group plain text
content into paragraphs

What semantic HTML is and how you can structure a semantic
web page

How to logically mark up text, individual letters, words, or parts of
sentences to give them semantic meaning

That the HTML elements for text markup aren’t used for formatting
web pages, but that this is done via CSS

5 Tables and Hyperlinks

This chapter introduces you to more HTML elements. More
specifically, you’ll learn how to add and use tables and
hyperlinks.

This chapter describe other essential HTML elements that haven’t
been dealt with up to now. In particular, you’ll learn more about the
following topics:

Tables
You’ll learn how to use tables to represent information or data in a
grid.

Hyperlinks
Every internet user is familiar with hyperlinks that allow them to
move from one website to another. You’ll learn how to link an
HTML document to other HTML documents.

5.1 Structuring Data in a Table
Tables are useful when you want to display data such as stock
quotes, financial information, travel schedules, train schedules, bus
schedules, travel reports, or sports scores in a grid of rows and
columns. HTML provides some viable options to structure such a
table, as listed in Table 5.1.

HTML Element Meaning

HTML Element Meaning
<table> Table
<tr> Table row
<td> Table cell
<th> Table header cell for heading
<thead> Table header area
<tbody> Table body
<tfoot> Table foot section
<colgroup> Group of table columns
<col> Table column
<caption> Table header/legend

Table 5.1 Brief Overview of the Table Elements Covered Here

Formatting with CSS

HTML is used only for semantic and structural logical markup, and
this is also true for tables in HTML. Tables in HTML don’t provide
any formatting options. All attributes for formatting from old HTML,
except for border, are no longer supported by the current standard
HTML version. For this reason, the same applies here: tables
should be formatted using CSS.

5.1.1 A Simple Table Structure Using <table>, <tr>,
<td>, and <th>

Every table in HTML is created between the elements <table> and
</table>. The contents of the table are written row by row. The

beginning of a row must contain an opening <tr>, while the row must
end with a closing </tr> (tr = table row). Within a table row between
<tr> and </tr>, you write the individual cells (or also columns) with
<td> and </td> (td = table data).

Figure 5.1 A Basic Table Structure in HTML

If you want to use cells or columns as headers of a table, you can
place the data between <th> and </th> (th = table heading). You can
use the th element in the same way as the td element, except that
web browsers usually highlight this element with a bold font centered
in the column. If it makes sense, you should use table headings, as
this is helpful for visitors with screen readers and, if applicable, for
search engines, which can index your website better with table
headings.

For this purpose, we want to create a simple example of a table in
which web browser statistics data from a website is summarized in a
grid and displayed in a clear overview:
...
 <table>
 <tr>
 <th>Browser</th>
 <th>Accesses</th>
 <th>Percent</th>
 </tr>

 <tr>
 <td>Chrome</td>
 <td>14478</td>
 <td>59.6%</td>
 </tr>
 <tr>
 <td>Firefox</td>
 <td>3499</td>
 <td>14.4%</td>
 </tr>
 <tr>
 <td>Safari</td>
 <td>1619</td>
 <td>6.6%</td>
 </tr>
 </table>
...

Listing 5.1 /examples/chapter005/5_1_1/index.html

As you can see in Figure 5.2, web browsers display the table without
any formatting. The height and width of a table are usually adjusted
to its contents.

Figure 5.2 The Structured Representation of a Basic Table in HTML

What Is Allowed in a Table Cell?

In a cell between <td> and </td>, you can use other HTML
elements in addition to text. Theoretically, you could insert another
complete table into it. If you want to use an empty cell without
content, you must still specify an empty <td></td> or <th></th>;
otherwise, the table won’t be displayed correctly. In old web
browsers, you can also write a forced space with the HTML entity

 in the cell to be on the safe side because there could be
problems with empty cells.

5.1.2 Combining Columns or Rows Using “colspan” or
“rowspan”

If you want to combine (or span) table entries across multiple cells,
you can do this using the HTML attributes colspan and rowspan.
Based on the numerical value you pass to these attributes, the
number of cells you want to merge is specified. As you might guess
from the attribute names, colspan is used to group columns together,
and rowspan is used to group rows together.

Here’s a simple example in which the daily schedule of a
photography seminar was summarized in a table:
...
 <table>
 <tr>
 <th></th>
 <th scope="col">Morning</th>
 <th scope="col">Noon</th>
 <th scope="col">Afternoon</th>
 </tr>
 <tr>
 <th scope="row">Monday</th>
 <td colspan="2">Photo shooting (outdoor)</td>
 <td>Image editing workshop</td>
 </tr>
 <tr>
 <th scope="row">Tuesday</th>
 <td>Street photography (city)</td>
 <td colspan="2">Photo shooting (portrait)</td>
 </tr>
 <tr>
 <th scope="row">Wednesday</th>
 <td>Nude photography</td>
 <td>Image editing workshop</td>
 <td>Closing ceremony</td>
 </tr>
 </table>
...

Listing 5.2 /examples/chapter005/5_1_2/index.html

As you can see in Figure 5.3, CSS was used to frame the table so
that the result of colspan is more visible.

Here, you can see how, on Monday, the Photo shooting (outdoor)
cell spans both the Morning and Noon columns thanks to colspan="2".
The same is true for Tuesday and the column Photo shooting
(portrait), where Noon to Afternoon has been combined.

When using colspan, you must keep in mind that you need to reduce
the number of cells if, for example, you combine a colspan across
two cells. In the Monday example, you thus only need to write two td
elements instead of three because the first td element already spans
two columns.

Figure 5.3 Merging Columns Using the “colspan” Attribute

By the way, there’s nothing against merging more than two columns.
Here, you must pay attention to the number of columns that are
actually present. As an example, on Tuesday, you could merge the
Photo shooting (portrait) across three columns:
...
 <tr>
 <th scope="row">Tuesday</th>
 <td colspan="3">Photo shooting (portrait)</td>
 </tr>
 <tr>
...

However, the Street photography (city) cell would then have to be
removed as well.

The "Scope" Attribute of <th>

In the example, the scope attribute was used with the th element.
This allows you to specify whether the table heading should apply
to a column (scope="col") or a row (scope="row").

Everything just described also applies if you want to combine table
entries across multiple rows using rowspan. For this purpose, here’s
the example again in which the daily schedule for the photo seminar
has been changed a bit because now Street photography (city)
takes place in the morning on Tuesday and Wednesday:
...
 <table>
 <tr>
 <th></th>
 <th scope="col">Morning</th>
 <th scope="col">Noon</th>
 <th scope="col">Afternoon</th>
 </tr>
...
 <th scope="row">Tuesday</th>
 <td rowspan="2">Street photography (city)</td>
 <td colspan="2">Photo shooting (portrait)</td>
 </tr>
 <tr>
 <th scope="row">Wednesday</th>
 <td>Image editing workshop</td>
 <td>Closing ceremony</td>
 </tr>
 </table>
...

Listing 5.3 /examples/chapter005/5_1_2/index2.html

In the last tr element, you need to remove the td element with Nude
photography because you’ve extended the Street photography (city)
entry above it downward using the rowspan attribute, which causes
that entry to take up space in the cell below it, as you can see in
Figure 5.4.

Figure 5.4 Merging Rows Using the “rowspan” Attribute

5.1.3 HTML Attributes for the Table Elements

For the table element, HTML supports only the border attribute to
indicate a border; the value can be "1" or "". CSS is recommended
as the better option here. For example, to copy border="1", you can
simply add the following CSS construct to the HTML document head:
...
<style>
 table, td, th { border: 1px solid gray }
<style>
...

There are no attributes for the table row with <tr>. You’ve already
learned about the attributes of <td> and <th> with colspan, rowspan,
and scope.

Layout with Tables?

You should no longer use tables to create the layout of a website.
This was done in the previous millennium. I only mention this here
because you may have already looked or will look at one or the
other source code of an older website, and there are still
numerous websites from that time that use a table to lay out or
align the document content. Most of the time, these are websites
that aren’t maintained, or they come from developers who are no
longer up to date. Today, you use CSS for the layout of a website.

5.1.4 Structuring Tables Using <thead>, <tbody>, and
<tfoot>

As an alternative to the basic table elements of HTML you can also
divide a table using the elements <thead>, <tbody>, and <tfoot> into
a head, data, and foot section, respectively.

The table head is enclosed between <thead> and </thead> (thead =
table head). It makes sense to use the th element for the individual
cells. You can mark the actual data for the table using <tbody> and
</tbody> (tbody = table body). If you want to write a range as a table
foot, you must enclose it with <tfoot> and </tfoot> (tfoot = table
foot).

Here’s an example that uses these three elements in a table:
...
 <table>
 <thead>
 <tr>
 <th>Month</th>
 <th>Visitors</th>
 <th>Bytes</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <th>Total</th>
 <th>23423</th>
 <th>3234 MB</th>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <td>January</td>
 <td>3234</td>
 <td>132 MB</td>
 </tr>
...
...
 <tr>
 <td>December</td>
 <td>7193</td>
 <td>894 MB</td>
 </tr>
 </tbody>

 </table>
...

Listing 5.4 /examples/chapter005/5_1_4/index.html

If you look at the HTML source code and the corresponding display
in Figure 5.5, you’ll notice that the web browser is able to reproduce
the order of the table correctly on its own. Although the foot section
was specified at the top in the source code, the web browser
displays it appropriately at the bottom.

Figure 5.5 A Longer Table with <thead>, <tbody>, and <tfoot> Elements in Use

Dividing a table into three different sections is optional and usually
doesn’t affect the display in the web browser. This is a purely
semantic representation. However, these elements are often used to
format the appearance of these areas with CSS.

Figure 5.6 Only with CSS Can You Visualize These Sections Separately

In addition, when printing long tables across multiple pages, the web
browser could use this division to print the table header and footer
on each page as well. This makes it easier to see which column
contains the individual data or what the data means. Another option
is to scroll only the body area between <tbody> and </tbody> for long
tables, while leaving the header and footer unchanged.
Unfortunately, no web browser supports these features yet, but you
may be able to do that yourself with CSS and JavaScript if
necessary.

5.1.5 Grouping Columns of a Table Using <colgroup>
and <col>

Just as you could divide the table rows into three sections using
<thead>, <tbody>, and <tfoot>, you can also divide the individual
columns into semantic and logical parts by means of the <colgroup>
and <col> elements, if that made sense. Grouping columns is useful,
for example, to apply specific CSS formatting to a particular column
or group of columns, rather than repeating the style for each cell in
the column.

You need to write the <colgroup> and <col> elements after the
opening table element and before any other elements such as tr,
thead, tfoot, or tbody. You can open a column group using
<colgroup> and close it with </colgroup> (colgroup = column group).
To group a column, you can use the standalone <col> tag. If you
want to combine several columns in one col element, you can do
this using the attribute span and the number of columns as the
attribute value.

Here’s a simple example that illustrates what has just been
described:
...
<table>
 <colgroup>
 <col span="2" style="background-color:lightgray;">
 <col style="background-color:snow;">
 </colgroup>
 <tr>
 <th>Browser</th>
 <th>Accesses</th>
 <th>Percent</th>
 </tr>
 <tr>
 <td>Chrome</td>
 <td>14478</td>
 <td>59.6%</td>
 </tr>
 ...
 ...
 </table>
...

Listing 5.5 /examples/chapter005/5_1_5/index.html

In Figure 5.7, the first two columns have been grouped together
using span="2" and highlighted in color with CSS for demonstration
purposes. The last column is a separate column group.

Figure 5.7 First Two Columns Have Been Grouped Together with Last Column as a
Separate Column Group

Figure 5.8 Semantic Division of Columns into Groups: Here, You Can See a Group with
Two Columns and a Group with One Column

If, on the other hand, you want to use a separate group for each
column, you can do this as follows:
 <table>
 <colgroup>
 <col style="background-color: lightgray;">
 <col style="background-color: snow;">
 <col style="background-color: lightgray;">
 </colgroup>
 <tr>
 <th>Browser</th>
 <th>Accesses</th>
 <th>Percent</th>
 </tr>
...

 </table>
...

Now each column has been grouped into its own col group. The
advantage doesn’t become apparent until you want to style columns
with CSS. The semantic division into three columns can be found in
Figure 5.9.

Figure 5.9 Semantic Division into Three Columns

5.1.6 Labeling Tables Using <caption> or <figcaption>

To assign a label to a table, you can either use the caption element,
which must be used immediately after the opening <table> tag, or
the new figure and figcaption elements.

Labeling a Table with <caption>

As mentioned previously, the caption element must follow
immediately after the opening <table> tag. In addition, only one label
can be used per table. Let’s look at a simple example:
...
 <table>
 <caption>Browser statistics 11/2023</caption>
 <tr>

 <th>Browser</th>
 <th>Accesses</th>
 <th>Percent</th>
 </tr>
 <tr>
 <td>Chrome</td>
 <td>14478</td>
 <td>59.6%</td>
 </tr>
 ...
 ...
 </table>
...

Listing 5.6 /examples/chapter005/5_1_6/index.html

Figure 5.10 The Caption Is Displayed Centered above the Table by Default

Formatting <caption> with CSS

The web browsers usually display the caption centered above the
table. With CSS, it’s no problem to use the CSS features text-
align and caption-side to align the table caption differently and
position it somewhere else.

If you want to add notes to a table caption, you can place the HTML
elements details and summary between <caption> and </caption>.

Figure 5.11 Expanding and Collapsing Information Thanks to the HTML Elements
<details> and <summary> (Example in /examples/chapter005/5_1_6/index2.html)

Labeling a Table Using <figcaption>

I already described the figcaption and figure elements in
Chapter 4, Section 4.2.9. It’s a good idea to position tables between
<figure> and </figure> and to insert a caption for this table at the
beginning after the opening <figure> or at the end before the closing
</figure>. Here’s an example of how you can label a table using the
new figure and figcaption elements:
...
 <article>
 <h1>Browser Statistics </h1>
 <figure>
 <table>
 <tr>
 <th>Browser</th>
 <th>Accesses</th>
 <th>Percent</th>
 </tr>
 <tr>

 <td>Chrome</td>
 <td>14478</td>
 <td>59.6%</td>
 </tr>
...
 </table>
 <figcaption>Table 1: Browser Statistics 04/2023</figcaption>
 </figure>
 </article>
...

Listing 5.7 /examples/chapter005/5_1_6/index3.html

Figure 5.12 Labeling Tables Using <figure> and <figcaption>

5.2 Electronic References (Hyperlinks)
Using <a>
Hyperlinks are probably one of the most important elements of
HTML because they make it possible to move from one website to
another. You’ll need hyperlinks, often just called links or references,
to structure your project and implement references to other content.
Starting from your main page, you often need links to other
subpages and perhaps also links that return you to the main page.
Only if you link multiple files does your website become a
meaningfully usable website. Besides linking your own content, you
can create links to other websites or other documents located
elsewhere on the internet.

You can create a link in HTML using the a element (a = anchor). The
text you write between <a> and is called link text or reference
text and is activated by using the href attribute in the opening <a>
tag. The link text can be any text you want to write, but it isn’t always
helpful to simply write Please click here. A meaningful link text can
help your visitors get where they want to go faster, as well as help
visitors with screen readers. Elements other than text can be placed
between <a> and , such as a graphic as a link.

What Is Allowed between <a> and ?

As mentioned earlier, you can use other HTML elements besides
text, such as graphics between <a> and . You’re even allowed
to use grouping elements such as paragraphs, lists, articles, and
block sets. As a matter of fact, you can use almost anything
between <a> and , apart from interactive elements such as

links, form elements, and audio and video. That said, I recommend
you don’t put too much content into a single link between <a> and
. Screen readers will read the text aloud multiple times, and
visitors might be overwhelmed by this because they are used to
activating individual links in the traditional link style. Of course, this
depends on the content of the website. I don’t want to go into more
detail here, but you now know that more HTML elements are
available to you for links in HTML. If you’ve put an extreme
amount of content between <a> and and are no longer sure if
it’s still valid, you can validate the source code.

The most important attribute used with the a element is the href
attribute. You can use the href attribute to specify the link users will
be taken to when they click on the link text.

Figure 5.13 Classic Structure of a Hyperlink

A link text is commonly underlined by the web browser (usually in
blue). If the link has already been visited, it will have a different color
(usually purple). The color of links and visited links may vary
depending on the web browser used, so there is no standard link
color in this regard as each web browser has its own default
stylesheet. You can change both at any time with CSS. Usually,
when you move with the mouse pointer over the link, the cursor
changes its shape into a hand, with the index finger pointing to the
link. Most web browsers additionally display the address at the
bottom left where the browser would land after a mouse click on the
link.

If the link has been clicked, the web browser searches for the
address (also called URL) specified in the link, loads it into the
browser window, and replaces the old web page. If the address of
the specified link can’t be found, an error message will display, such
as 404 - web page not found. When the new web page has been
loaded into the browser window, you can use the Back button to go
back to the previous page.

Further Reading

I’ve already described the specification of terms; directory name;
directory structure; and full, absolute, and relative paths in
Chapter 3, Section 3.3. You can refer to that section if you have
problems with the terms used in the following sections.

5.2.1 Inserting Links to Other HTML Documents on
Your Own Website

When you create your website, these links are likely to be the first
links you use to structure the loose collections of HTML documents
into a coherent website—more precisely, to create the navigation of
the website. If you want to provide a link to another page on the
same website, you usually don’t need to include the full domain
name, but instead use a relative URL. The directory structure shown
in Figure 5.14 should serve as an example.

The linking for the start page, index.html, to the other pages,
links.html, about.html, and legalnotes.html, looks as follows:
...
 <nav>
 Blog |
 Links |
 About me |

 Legal Notes
 </nav>
 <h1>My Blog</h1>
 <p>Latest reports on HTML</p>
...

Listing 5.8 /examples/chapter005/5_2_1/index.html

Figure 5.14 Directory Structure for an Example of Links to Other Pages on the Same
Website

Figure 5.15 Thanks to Linking via a Relative URL, Any Page Can Be Visited and Viewed
within the Pages of the Same Website

Of course, you also need to adjust the links to the other pages, such
as links.html, about. html, and legalnotes.html, in this example.

When specifying the relative URL (see Figure 5.14), you must make
sure that the pages (in this example) are located in a subfolder
called pages. With regard to the links.html page, the specifications
for the href attribute would look as follows:
...
 <nav>
 Blog |
 Links |
 About me |
 Legal Notes
 </nav>
...

Listing 5.9 /examples/chapter005/5_2_1/pages/links.html

Figure 5.16 HTML Document links.html

Here you can see how to navigate from the pages subfolder (here
../index.html) with ../ to the parent folder in which index.html is
located. The other two files, about.html and legalnotes.html, are
located in the same folder as links.html, so it’s sufficient to specify
only the file name. Both the about.html and legalnotes.html files
need to be linked in the same way.

5.2.2 Inserting Links to Other Websites

Links to other websites must be written in the same way as the links
to the pages of the same website, the only difference being that you
must specify the complete address, that is, the absolute URL, to that

page in the href attribute. For this purpose, here’s a simple example
in which links to external pages are included (see Listing 5.10).

Figure 5.17 Many Web Browsers Display the Link’s Destination Address at the Bottom of
the Status Bar When You Hover over It

...
 <article>
 <header>
 <h2>Recommendation on HTML</h2>
 </header>
 <p>As previously reported, the
 World Wide Web Consortium
 has published

 a new recommendation for HTML,...
 </p>
 <aside>
 <h3>Further links</h3>
 <nav>

 HTML Recommendation
 W3C
 WHATWG

 </nav>
 </aside>
 </article>
...

Listing 5.10 /examples/chapter005/5_2_2/index.html

Figure 5.18 When You Activate the Link, the Destination Address Gets Loaded into the
Web Browser and Displayed

5.2.3 Opening Links with the “target” Attribute in a
New Window

You can use the HTML attribute target of the a element to open a
reference target in a new window or tab. To do so, you only need to
pass the attribute value _blank to target, for example:
<p>As previously reported, the
 W3C has
 published a new draft for HTML,...
</p>

If you activated the link text W3C in this example, the target address
(here, www.w3.org) is actually opened and loaded in a new window
or tab. The primary goal of using target="_blank" is, of course, to
avoid “losing” visitors to the page but to leave the page open so that
they’ll return to it when they have finished reading the page in the
newly opened window or tab.

http://www.w3.org/

In addition to the most commonly used attribute value _blank, you
can also use _self (= current window), _parent (= parent window),
_top (= top window level), and names of windows that can be
processed with JavaScript.

Using or Not Using the Attribute "target="_blank""?

Even though some websites are quite fond of using this attribute,
you shouldn’t open a new window for every link, come hell or high
water. In practice, you should leave it up to the user to decide
whether or not to open a new page for a link. Even though you
may be used to having countless tabs and multiple websites open
at the same time, you should think about the more inexperienced
visitors who just aren’t or don’t want to be that much into the World
Wide Web. Use the target="_blank" attribute sparingly, and, if
possible, let visitors know that a new window or tab will open when
they activate the link.

5.2.4 Email Links with “href=mailto: . . .”

You certainly also know the sort of links where the email application
opens with a specific email address when you activate it. These links
are also created via the a element and the href attribute. Those
email references start at href with mailto: and are followed by the
desired email address, for example:
...
 <footer>
 Send email
 </footer>
...

Listing 5.11 /examples/chapter005/5_2_4/index.html

Figure 5.19 When You Hover Your Mouse over the Link, You’ll Usually See the Email
Address Associated with That Link in the Status Bar

Figure 5.20 When You Activate the Link, the Email Application often Opens, an Email
Gets Created Automatically, and the Email Address Is Entered as the Recipient

The Functionality of a “mailto” Reference Isn’t Reliable

Unfortunately, there is no guarantee that a mailto link will actually
work. To make sure that it works, either the web browser must
support the email creation and dispatch, or a local email application
must be launched when a mailto reference is implemented. If a
visitor doesn’t use or hasn’t set up a local email application, but only
uses the classic webmail in the web browser, the mailto reference
will only work if the web browser has been configured accordingly. In
addition, there are web browsers that you can’t configure in this way
at all. It’s therefore useful and recommended to also provide the
email address in readable form, so that visitors who can’t execute
the mail reference can still send you an email.

Beware of Spam!

Due to the publication of email addresses on a website, you’ll
eventually have to face unsolicited commercial emails (spam)
because there are web crawlers that scan websites for email
addresses. You even have the obligation to name the email address
in the legal notes. The only protection in this regard consists of
avoiding mentioning the email address in the source code.

The first way to do that would be to include it as a graphic. However,
this would be leave out people who rely on screen readers, and,
furthermore, a “graphic email address” is also legally questionable.
Often, obfuscation versions are still in use, in which the @ sign is
replaced by (at) (e.g., webmaster (at) donald-bear.com). Likewise,
the dot is written out as (dot) (e.g., webmaster (at) donald-bear (dot)
com). Of course, this means the visitor has to enter the email
address manually.

JavaScript obfuscation is another solution. There are many
approaches to this. An interesting website with information about
how you can hide your email address with JavaScript, for example,
can be found at http://alistapart.com/article/gracefulemailobfuscation.

Google’s reCAPTCHA module, which ensures that the email address
gets displayed or forms are submitted by a human being, has also
proven useful. However, this also entails extra work for the website
visitor, who may have to type words or solve an image task. You can
find more information on this topic, including an introductory video, at
http://google.com/recaptcha/intro/index.html.

5.2.5 Setting Links to Other Types of Content

http://alistapart.com/article/gracefulemailobfuscation
http://google.com/recaptcha/intro/index.html

If you set links to other document types not commonly used on the
web, such as Word, Excel, or PDF documents, it depends on the
web browser to handle those document types further. As a web
developer, you have no influence on this. Here, the general
recommendation is first to use widely used formats. For example, a
link to a PDF document is more likely to cause the web browser to
launch a corresponding PDF reader and open the document within it
than if the content type link is a platform-dependent or vendor-
specific document (e.g., a Word document). Let’s look at a simple
example:
...
<h1>Reference to other content types</h1>
<p>Open a PDF document: PDF</p>
<p>Open a MOV movie: MOV</p>
<p>Open a Word document: <a href="worddocument.doc"
 type="application/msword">DOC</p>
...

Listing 5.12 /examples/chapter005/5_2_5/index.html

Figure 5.21 Three Links to Different Types of Content

What will happen with the three links used in the example can’t be
completely predicted as it depends on the web browser. The PDF
document shouldn’t be a problem because the web browser should
know how to handle it. It might be more difficult with the movie in
MOV format, because that usually requires a QuickTime plug-in from

Apple. Some web browsers offer the option to download and install
the appropriate plug-in; others, however, don’t.

The same applies to the Word document. If Word is installed on your
computer, the web browser often provides a dialog box to open the
document with Microsoft Word, or at least the option to select a
corresponding application with which you want to open this
document. Most of the time, however, only the option to download
the document is provided. This again depends on how you’ve set the
web browser.

Including the Content Type

For special types of content, you can provide the web browser with
the multipurpose internet mail extension (MIME) type in the type
attribute within the opening <a> tag, which is what I did in the
example with application/msword for a Word document. The
information is very useful for the web browser and also other web
clients. It almost always makes sense to specify the file format if the
link target isn’t an HTML document.

Inform Visitors about What Is behind a Link

If you use non-HTML documents, you should definitely inform the
visitor what is hiding behind the link and possibly how big the
specific file is. You can use the global title attribute in the
opening a element for this purpose, but it’s recommended to
mention more precise details directly with the link text. An example
of how you don’t want to do that looks like the following:
Annual Revenue 2020

The visitor will only see the link text Annual Revenue 2020 here and
may be confused about whether this link is to a PDF document
that may take a little longer to load. For this reason, it’s better to
write the following:
<a title="Opens the PDF file with the annual revenue in 2020"
 href="annual-revenue.pdf">
 Annual Revenue 2020 (PDF, 3.9 MB)

5.2.6 Adding Download Links Using the “download”
Attribute

You can also add links as download references irrespective of the
content type (i.e., MIME type) of the link target. For this purpose, you
want to use the download attribute in the opening <a> tag. Here, we
use the same HTML code from example
/examples/chapter005/5_2_5/index.html, but now all three files are
provided for download using the download attribute:
...
<h1>Reference to other content types</h1>
<p>Download a PDF document:
 PDF</p>
<p>Download a MOV movie:
 MOV</p>
<p>Download a Word document: <a href="worddocument.doc"
 download="worddocument.doc">DOC</p>
<p>Download an HTML document: <a href="website.html"
 download="website.html">HTML</p>
...

Listing 5.13 /examples/chapter005/5_2_6/index.html

The download attribute allows you to instruct a web browser to
provide this file for download, even if it could display the file itself or
knows the appropriate plug-in or add-on to do so, which it would
usually use for such a content type.

You can use the download attribute as a standalone attribute, as
shown in the first example with the PDF document. The name of the
file that gets downloaded matches the specification in href (here,
document.pdf). If the link in href doesn’t contain a meaningful name,
you can also assign a different name to the download attribute, as is
the case in the example with the MOV movie whose actual
document name is ganges.mov, but the download name of the file is
movie.mov. The example with the HTML document is only intended
to demonstrate that even typical web browser content types such as
an HTML document with the attribute download are really only
provided for download. Note, however, that this attribute only works if
you try the example online.

Informing Visitors about What Gets Downloaded

As is the case with linking to non-HTML documents, you should let
readers know what they are downloading and what they can use to
view or reuse the document. For example, if you provide Excel
spreadsheets with an annual revenue report for download, you
should inform the reader what software they need to view the
spreadsheet.

The same applies to ZIP archives. Here, too, you should add an
additional note on how to unpack such an archive or a link to the
relevant software. Keep in mind that many visitors don’t know what
to do with file extensions such as *.odt, *.xls, *.zip, *.tar.bz, and so
on. You mustn’t take this for granted just because you deal with
countless data formats every day. It’s recommended to include the
file size when downloading. You could thus note the download of a
large ZIP archive as follows:
...
<a title="Annual revenue in Excel format packed into a ZIP archive".
 href="archive.zip" download="annualrevenue2020.zip">

 Annual revenue 2020 (ZIP archive; 2.5 MB)
 <small>(To unpack the ZIP archive, you need a
 packing program such as 7-Zip. The annual revenue figures are
 maintained in Excel format and thus require
 software that can view Excel spreadsheets.)
 </small>
...

Next to the title attribute, I’ve specified the file format (here, a ZIP
archive) as well as the file size. In addition, I’ve written some small-
print information between <small> and </small>.

5.2.7 Setting Links to Specific Parts of a Web Page

Nothing can be more annoying for visitors than reading a long
scientific treatise of a specific topic on a web page and having to
scroll up and down for a long time to get to a specific section. For
those cases, you can set anchors with the global attribute id, which
you can jump to via an ordinary link in the a element. For an example
of such target anchors, view any Wikipedia page’s table of contents
of a topic. To link to a specific section of a web page, you only need
the following:

An anchor (jump marker) that you can create with the
id="anchorname" attribute, for example:
<h1 id="anchorname">Heading xyz</h1>

A link pointing to the anchor via href="#anchorname". For this
purpose, the hash character # is written in front of the anchor
name, for example:
Go to heading xyz

Here’s a simple example of how you can set and use such jump
markers in practice:
...
 <h1 id="top">Table of contents</h1>

 Introduction to HTML
 The Syntax of HTML
 Versions of HTML
 Techniques around HTML
 Getting Started

 <h1 id="intro">Introduction to HTML</h1>
 <p>Lorem ipsum dolor sit amet ... <p>
 <p>To Table of Contents</p>
 <h2 id="syntax">The Syntax of HTML</h2>
 <p>Lorem ipsum dolor sit amet ... <p>
 <p>To Table of Contents</p>
 <h2 id="versions">Versions of HTML</h2>
 <p>Lorem ipsum dolor sit amet ... <p>
 <p>To Table of Contents</p>
 <h2 id="techniques">Techniques around HTML</h2>
 <p>Lorem ipsum dolor sit amet ... <p>
 <p>To Table of Contents</p>
 <h2 id="practice">Getting Started</h2>
 <p>Lorem ipsum dolor sit amet ... <p>
 <p>To Table of Contents</p>
...

Listing 5.14 /examples/chapter005/5_2_7/index.html

Figure 5.22 shows the example in the web browser. Thanks to jump
markers, you can reach the desired section more quickly here.

Figure 5.22 Jump Markers Are Provided for Users to Reach Desired Sections Quickly

For example, if you activate the Techniques around HTML link, it
will jump directly to the corresponding section with the jump marker,
as you can see in Figure 5.23. Another link to jump back to the table
of contents has also been added below each section.

Figure 5.23 Clicking the “Techniques around HTML” Link Jumps the User Directly to the
Corresponding Section

Setting Anchors Using the “id” Attribute

Before you can create a link to a specific part within a web page, you
must set the jump marker (or an anchor) using the global id attribute
(id="anchorname") within an opening HTML tag. In the example, this
was done for the main headings <h1> and <h2> (e.g., <h2
id="techniques">). The attribute value of id must start with a letter or
an underscore (never a number) and mustn’t contain any spaces. It’s
also advisable to use a descriptive name to avoid losing track. You
shouldn’t use meaningless designations such as anchor1, anchor2,
and so on. Also note that this is case-sensitive.

Referencing an Anchor Using “#anchorname”

To use a link to the anchors, you need to specify the attribute value
for the anchor in href in the opening <a> tag. For example, if the
anchor is <h2 id="techniques">, you want to write the hash character
in front of the anchor name (here, "techniques"). With reference to
our example, you’d have to write this as follows:
Techniques around HTML

If you activate this link, the HTML document will jump to the element
where the value of the id attribute is "techniques". In this example,
that would be the h2 element with the heading Techniques around
HTML.

Creating Links to a Specific Section of Another Website

Likewise, you can create a link to a section of another HTML
document. This requires that the other HTML document contains a
corresponding anchor. If the anchor is in another document, you can
create a reference to it as follows:
Techniques around HTML

This would cause a jump to the section with the #techniques anchor
in another HTML document located in the same directory and whose
filename is tech.html.

If the file with the anchor is even on another website, you must
specify the complete URL there:
...

Of course, it’s also possible to use a link to parts of third-party
websites. However, it goes without saying that you can’t set an
anchor here, but only link existing anchors. For example, here’s a
link to an anchored section of a Wikipedia page:
...

Here, you’d jump directly to the Wikipedia page with the entry HTML to
the #Versions anchor. This is based on the assumption that the
anchor exists—which was still the case when the book went to
press, but could change at any time. If the anchor no longer exists or
is wrong, the website will be called, and the anchor will get ignored

as if #anchorname hadn’t been specified when linking to the a
element.

5.2.8 Creating Links to Phone Numbers

Because more and more users mostly go online with a mobile
device, you can also create a link to a phone number. When the user
taps on it, this number can be called directly from the website.
However, the respective web browser must also support this
function. This is shown in the following example:
…
<p>
 Customer Service Rheinwerk Publishing:
 +1.781.228.5070 Ext. 200
</p>
…

Listing 5.15 /examples/chapter005/5_2_8/index.html

The phone reference starts with tel: followed by the number. It’s
recommended to use the plus sign and the country code and to omit
the leading 0 in the area code. Spaces can be written as a period.
Because it depends on the web browser whether or not the number
gets dialed immediately, you should also list the phone number.

You can also set other services such as Skype as a link, which
allows you to start a Skype session with one click. The prerequisite
for this is, of course, that the user also uses Skype. A Skype
example is shown here:
…
<p>
 Start a Skype call:
 Skype: pronix74
</p>
…

Listing 5.16 /examples/chapter005/5_2_8/index.html

Again, there’s no guarantee that the web browser will start a Skype
session, so you should also list the appropriate data. The same
applies to FaceTime.

Automatic “tel:”

There are mobile web browsers, such as Safari, which
automatically recognize a phone number and generate a tel: link
from it. This is convenient, but perhaps not always desirable,
especially when the number in question isn’t a phone number at
all. There are meta tags available for this, which you can use to
instruct the web browser not to use this feature on the web page.

For Safari:
<meta name="format-detection" content="telephone=no">

For BlackBerry:
<meta http-equiv="x-rim-auto-match" content="none">

5.2.9 HTML Attributes for the HTML Element <a>

Finally, the HTML attributes for the links should be explained here,
which can be quite useful for search engines, among other things. In
Table 5.2, you can see an overview of all existing attributes for the a
element. You already know some of them.

Attribute Description
download This attribute indicates that you provide the referenced

target for download, even if the web browser could
display the target’s content type by itself.

Attribute Description
href This attribute specifies the URL of the page the link will

lead to when activated.
hreflang This attribute specifies the language of the linked

document. The usual language abbreviations are
permitted as specifications (e.g., de for Germany).

media This attribute allows you to specify information about
the media for which the link target has been optimized.
You can either enumerate media types, separate by
commas, or specify all for all media types.

Attribute Description
rel You already know the attribute from the link element

described in Chapter 3, Section 3.5.1 , which you can
refer to if you need more information. This attribute
allows you to determine the type of linking. Especially
for the a element, the rel attribute values bookmark,
external, nofollow, and noreferrer are of special
importance because they can only be used in the a
element:

rel="bookmark": This value enables you to specify
that the link target is a parent section (or document)
of the current document. It effectively represents a
link back to an extensive HTML document, as is the
case with scientific or technical documents. In
practice, this link type is also used for permalinks so
that visitors can view an older version of the current
document.
rel="external": This value indicates that the link
belongs to an external website. It often happens that
this attribute is separately formatted with CSS.
rel="nofollow": This value allows you to instruct the
web crawlers not to follow the link.
rel="noreferrer": This value instructs the visitor’s
web browser not to use a referrer address when
clicking on the link, which should prevent the
destination web server from receiving information
about where the visitor came from.

However, you can’t use the attribute values icon,
pingback, prefetch, and stylesheet for a elements.

Attribute Description
target This attribute enables you to enter where the link target

should be opened. Possible values are listed here:
_blank: New window/tab.
_parent: Parent window.
_self: Current window.
_top: Top window level.
framename: Name of the window opened with
JavaScript and also assigned in it.

type This attribute allows you to inform the web browser
about the MIME type (file format) to which the linked file
belongs. This specification is useful if the target isn’t an
HTML document.

Table 5.2 Attributes for Links with the <a> Element

5.3 Summary
In this chapter, you’ve learned about some essential HTML
elements. The most important elements you’ll probably find and use
on almost every website are the following:

The a element, which allows you to create hyperlinks

Tables that let you present related data and information in a grid of
rows and columns

6 Graphics and Multimedia

With HTML, you can add graphics, videos, and other
multimedia content to the HTML document.

The options to add multimedia content, such as graphics,
animations, video, or audio, to a website have become more
versatile and easier in HTML. For this reason, this chapter deals with
the following topics:

Images
Today, it’s hard to imagine a website without images, graphics, or
logos, so here you’ll learn how to add images to an HTML
document.

Link-sensitive graphics
You’ll learn how to embed multiple hypertext links within a graphic.

Flexible images
You can also load the appropriate image from multiple image
sources with HTML.

Favorites icons
Everyone knows those little icons in the address bar, tab, or
bookmarks. Here, I’ll explain how you can add such a favicon to a
website.

Vector graphics
If you want to use vector graphics for your website, you can read
here what options are available to you to do so.

Drawing graphics
With HTML, you can also draw something directly on a web page.
However, HTML only provides the canvas for this, which you’ll
learn how to create.

Video
Playing videos is also an issue and has become much easier
thanks to the video element. You’ll get to know which video
formats are supported. Likewise, you’ll learn how you can add a
video to your website via YouTube.

Audio
Playing music and sounds on web pages has also been simplified
significantly thanks to the audio element. You’ll learn how to insert
your own audio files into an HTML document.

Other active content
There’s a lot more other content, such as PDF documents, Flash
animations, and Java applets, for which there’s no special HTML
element available. But I’ll also describe how you can include such
active content in an HTML document.

Table 6.1 lists the HTML elements used with graphics and
multimedia.

HTML
Element

Meaning

 Including a graphic file in an HTML document

<map>,
<area>

Creating a link-sensitive graphic

<picture>,
<source>

Loading the appropriate image from several image
sources

<svg> Integrating a scalable vector graphic into the web page

HTML
Element

Meaning

<math> Including a formula written with MathML
<canvas> Providing a canvas for drawing graphics
<video> Playing video files without plug-ins
<audio> Playing audio files without plug-ins
<embed>
<object>
<iframe>

Embedding active elements such as PDF documents,
Flash animations, Java applets, Word documents, and
many others

Table 6.1 Brief Overview of the HTML Elements for Graphics and Multimedia Covered in
This Chapter

6.1 Embedding Images Using
The internet without graphics and images is hardly imaginable today.
There are several types of images that you can add to an HTML
document. These include logos, charts, photos, illustrations,
animations, and advertising banners, to name just a few examples.
You can embed such images using the standalone img element.

6.1.1 Adding Images to an HTML Document

You can add images to a web page via the standalone img element
(img = image). The graphic gets inserted at the position where you
write the img element in the HTML document. In addition, no line
break is used after the graphic if you use a graphic in the body text.

At least the HTML attributes src and alt must be present in the
 tag. You can use the src attribute to specify where the web

browser finds the image file. The alt attribute, on the other hand, is
used for an alternative description of the image in case the image
can’t be loaded or displayed, and it also helps people with visual
impairments because the text it contains is read aloud by screen
readers (and should describe what is shown in the image). While this
alternative text can be of almost any length, you should limit the text
to the essentials. A recommended limit is about 12 to 16 words or 75
to 125 characters.

Does the “alt” Attribute Necessarily Have to Be Used in the
 Element?

You don’t necessarily have to use the alt attribute in the img
element, but if the attribute is missing, the validation check will report
an error asking you to use it. This is confusing at first because it says
that the alt attribute must be used, whereas the attribute value isn’t
mandatory. If you don't want to use the alt attribute, then at least the
surrounding text should describe the image. For example, if there’s
no relevant content in a graphic (e.g., an empty graphic as a
placeholder), and a description with the alt attribute makes no
sense at all, it’s recommended to use an empty alt="".

Description Text in “alt” for Search Engines

The alt attribute is also important for search engines because a
web crawler can’t “see” what’s in an image. Thus, web crawlers
have to rely on a meaningful description with meaningful keywords
in the alt attribute. While there’s no official recommendation on
how much you should put into the alt attribute, you shouldn’t
overdo it here. However, the more data the web crawler has at its
disposal, the more positive the effect will be on the website’s
ranking. Thus, in addition to a meaningful alt attribute, it’s

advisable to provide a short description of the image in the
surrounding text.

The following example demonstrates the img element in use:
...
 <h1>Pushkar in India</h1>
 <p>

 </p>
 <p>
 A pilgrim in Pushkar. <img src="images/pilgrim.jpg"
 alt="Pilgrim in Pushkar"> He’s on his way to the ghats.
 </p>
...

Listing 6.1 /examples/chapter006/6_1_1/index.html

As you can see in Figure 6.1, images are left-aligned by default to
match the alignment of the text. The top two images are displayed
side by side if they fit the width of the browser window. This figure
also shows how to align an image between body text flush with the
font baseline.

Figure 6.1 Three Images Were Added to an HTML Document Using the Element

Using a Custom Folder for Images

For creating a website, it has proven useful to store all images in a
separate directory. Especially when the website becomes more
extensive, you can maintain a better overview of where the
individual files are stored. Graphics and images are often placed in
a directory named images or pictures. When you want to insert a
graphic into a web page, you’ll be grateful to simply use
src="/images/imagename.jpg" or similar, instead of also having to
bother about where the graphic is located and what the reference
to the image is.

Using the Global “title” Attribute for Images

The global title attribute is often used for images. The content of
the title attribute gets displayed when you hold the mouse cursor
over the image. The following figure shows an example with the
title attribute.

Using the title attribute to provide additional information about
images is fine here. If you use an image as a link to another page, it
would make more sense to use this title element to indicate what
happens when the user clicks on this image. For example, if an
enlarged version of the image displays in a new window, the
following use of the title attribute would make sense semantically:
...

 <img src="images/TongueOut.jpg" alt="Pilgrim in Pushkar"
 title="Opens this image in a larger version in a
 new window or tab.">

...

Figure 6.2 This Additional Piece of Information Was Added in the Tag with
“title="A classical singer in Pushkar (India)"”

As you can see in Figure 6.3, the image has been captioned with a
link to a larger version of the image. Accordingly, the description with
the title attribute was changed.

Figure 6.3 The “title” Attribute Allows You to Indicate That the Image Is Available in a
Larger Version, Which You Can Open via the Link

Adding an Image or Linking an Image to a Website?

Note that an image isn’t technically inserted into the HTML
document; instead, it’s linked to the HTML document. The
tag only creates the necessary space for the referenced content.

Figure 6.4 When the Visitor Clicks on the Image with the Link, the Larger Image Will Get
Displayed in a New Tab

6.1.2 Specifying the Height and Width of a Graphic

Other useful attributes are height and width, which you can use to
specify the height and width (in pixels) for the graphic. The purpose
of using this information is that loading images usually takes longer
than loading the HTML code to be displayed. This way, the web
browser can already build and display the complete HTML
document, leaving enough space for the images right away—more
precisely, a free space is displayed for the images that haven’t been
loaded yet. This avoids unsightly subsequent corrections and
rescreening with the graphics. Visitors with a fast internet connection
won’t even notice this loading process. However, if the internet
connection is slow, a mobile device is being used, or the page is
simply taking longer than usual to load, reading the content this way
while the images are still loading is easier because the entire content
doesn’t get repositioned with each reloaded image.

Here’s an example with the attributes height and width:
...
 <p>
 <img src="images/TongueOut.jpg" alt="Pilgrim in Pushkar"
 width="320" height="212">
 <img src="images/singer.jpg" alt="Singer in Pushkar"
 width="320" height="212">
 </p>
 <p>
 A pilgrim in Pushkar. <img src="images/pilgrim.jpg"
 alt="Pilgrim in Pushkar" width="320" height="212"> He is on
 his way to the Ghats.
 </p>
...

Listing 6.2 /examples/chapter006/6_1_2/index.html

Scaling Images in the Web Browser Using “height” and “width”

You can also scale the display size of images in the web browser
using the height and width specifications. This “trick” of scaling
images in the web browser is often used when an image is a little too
large, as shown in Figure 6.5.

Figure 6.5 The Image Is Too Large in Its Original Size of 800 × 526 Pixels to Be
Displayed Appropriately in the Window

You could scale this image down in the web browser using height
and width and by specifying the desired dimensions:

...
<img src="images/yafo.jpg" alt="Tel Aviv Yafo"
 width="320" height="210">
...

The original image with 800 × 526 pixels is scaled down to 320 ×
210 pixels by specifying width and height. The scaling process only
takes place in the web browser’s display and doesn’t change the file
size itself. Alternatively, you can specify only the width or the height
with reduced values and let the web browser adjust the other value
proportionally. You can see the result of scaling down in the web
browser from 800 × 526 to 320 × 210 pixels in Figure 6.6, where the
photo from Figure 6.5 is displayed smaller. Loading the file takes the
same amount of time as before because the file size is the same.
You can find the example in
/examples/chapter006/6_1_2/index2.html.

Figure 6.6 The Image Was Scaled Down by the Web Browser Using the “width” and
“height” Attributes

Scaling in the Web Browser versus Using an Image Editor

While scaling in the web browser using width and height is
possible and allowed, you should use an image editor in practice
to scale the images to the actual size if possible for two reasons:
you reduce the amount of data (traffic), and you don’t run the risk

of ugly and rough shrinkage of the graphic. After all, you’re relying
on your visitors’ web browsers to render the site, giving you a bit of
control over how the images are displayed.

6.1.3 Labeling Images Using <figure> and <figcaption>

The two HTML elements <figure> and <figcaption> (described in
Chapter 4, Section 4.2.9) are well suited for adding a caption to a
graphic. To do this, you just need to enclose the image, that is, the
img element, between <figure> and </figure> and then add the
figcaption element with the caption. If you write <figcaption>...
</figcaption> right after the opening <figure>, the caption will
appear above the image. If you write <figcaption>...</figcaption>
directly before the closing </figure>, the caption will appear below
the image. Figure 6.7 shows the following simple example in
execution:
...
<figure>
 <img src="images/painter.jpg" alt="Painter in Tel Aviv"
 width="400" height="256">

 <figcaption>The scenery in front of the old port of Yofa in
 Tel Aviv is just perfect for painting.</figcaption>
</figure>
...

Listing 6.3 /examples/chapter006/6_1_3/index.html

Figure 6.7 The Caption Has Been Formatted with CSS for Clarity, So That the <figure>
Element Can Be Seen More Clearly

Merging Multiple Images

You can also use the figure element to include multiple images or
different content. No matter how many elements you specify
between <figure> and </figure>, you can use only one figcaption
element for a caption. In addition, figcaption must be the first or
the last element of the figure element.

6.1.4 HTML Attributes for the HTML Element

Finally, the following table describes the attributes of the img
element, the most important of which you’ve already learned about.

Attribute Description

Attribute Description
alt You can specify alternative text to be displayed when

images or graphics can’t be displayed. This attribute is
also helpful for visitors with a visual impairment or for
search engines.

height You can specify the vertical extent (height) of the image
in pixels.

ismap You can use this Boolean value if the images are a
server-side image map. This server-side technique is
rarely used, so I won’t go into the detail here. I’ll
describe link-sensitive graphics (client-side technique)
in Section 6.2.

src You can specify the link destination to the image file. In
addition to the file name, you can specify a relative or
absolute path as well as an entire internet address. The
specification of this attribute is mandatory.

usemap You can specify the name of an image map to be
associated with the image. This is a client-side link-
sensitive graphic, which will be described in
Section 6.2.

width You can specify the size in the horizontal direction
(width) of the image in pixels.

Table 6.2 The HTML Attributes of the Element

6.2 Creating Link-Sensitive Graphics
(Image Maps)
Link-sensitive graphics (also called image maps) are just links
embedded within a graphic. Such an image map defined in HTML
consists of three parts:

Image
This is the actual image that’s added to the HTML document with
the img element. Additionally, within the tag, you must
specify the HTML attribute usemap with an anchor to a map element:

map element
You also need the map element with the anchor name you
specified earlier in the img element with the usemap attribute. The
anchor name in the map element must be specified without the
leading # in the name, unlike the img element. Between the
introductory <map name="mapname"> and the closing </map>, you can
define the link-sensitive sections for the graphic. It’s up to you to
decide where exactly you write the map element in the HTML
document. Thus, you can specify the map element before the img
element, for example. In practice, it’s recommended to position
the map element at the beginning or end of the document body.

Coordinates
You need the coordinates with the actual link-sensitive area for the
graphic. For this purpose, a separate area element is used
between <map> and </map> for each area. Within the <area> tag,
you can define square areas, circular areas, or areas with any

number of corners (polygon). For each area element, you define a
“clickable” area in the image.

HTML
Element

Meaning

 Inserting a graphic with an anchor in a map
element

<map> Defining an area for the link-sensitive graphic
<area> Defining a clickable area in the image

Table 6.3 Overview of the Necessary Elements for Link-Sensitive Graphics (Image Maps)

For this purpose, let’s first take a look at a simple example in which
four rectangular link-sensitive areas with 100 × 100 pixels were
defined in a rectangular graphic with 200 × 200 pixels. First, you
need to insert the popart.jpg graphic into the HTML document. For
the anchor name, we use the #mood value in the usemap attribute. Up
to this point, you have inserted just another ordinary graphic. You
can introduce the link-sensitive area with the map element and the
name of the image map (here, name="mood"). Between <map> and
</map>, you need to specify the coordinates for the links with the area
element. You’ll find more information about the area element after
the following example:
...
<p>Choose a color according to your mood:</p>
<p>
 <img src="images/popart.jpg" alt="Link-sensitive graphic"
 width="200" height="200" usemap="#mood">
</p>
...
 <map name="mood">
 <area shape="rect" coords="0,0,100,100"
 href="colors/cyan.html" alt="Cyan" title="Cyan">
 <area shape="rect" coords="0,100,100,200"
 href="colors/green.html" alt="Green" title="Green">
 <area shape="rect" coords="100,100,200,200"
 href="colors/yellow.html" alt="Yellow" title="Yellow">
 <area shape="rect" coords="100,0,200,100"

 href="colors/red.html" alt="Red" title="Red">
 </map>
...

Listing 6.4 /examples/chapter006/6_2/index.html

I think the connection between the image where you set the anchor
name with the usemap attribute and the map element that introduces
the link-sensitive area should now be clear to you. The area element
is somewhat more complex. For this reason, the following sections
provide a basic description of the area element.

Figure 6.8 Each of the Four Colored Areas Was Linked to a Special Page with Its Own
<area> Element; Select the Cyan-Colored Area and the HTML Document cyan.html Will Be
Called

Figure 6.9 When You Click on the Color, You’ll Get Corresponding Feedback on the
Selected Color

6.2.1 Use HTML Attributes for the HTML Element
<area>

To define the shape of the area type, you need to specify the desired
shape in the HTML attribute shape. For this purpose, you can use
rect (= rectangle), circle, and poly (= polygon). Besides specifying
the shape via shape, you also need to specify the coordinates of the
link-sensitive area with the HTML attribute coords (= coordinates).
Here, you use absolute values. You can separate multiple values
with a comma. With regard to our example, in the following, the
values refer to x1, y1, x2, and y2.
<area shape="rect" coords="100,0,200,100" ...>

You can use x1 and y1 to define the upper-left corner of the link-
sensitive area that extends to the lower-right corner, which you
specify with x2 and y2. In this example, we make an indentation by
100 pixels (x1) from the top corner of the graphic to the right and 0
pixels (y1) down to define the upper-left corner. For the bottom-right
corner, we move 200 pixels (x2) from the upper-left corner of the
image to the right and move 100 pixels (y2) down from that position
(see Figure 6.10).

If you use circle for shape, the coordinates are x, y, r
(coords="x,y,r"). For example, you would need to specify the
following coordinates in relation to Figure 6.10:
<area shape="circle" coords="100, 100, 50" ...>

This way, you move 100 pixels from the upper-left corner to the right
(x) and 100 pixels down (y), arriving at the center of the square.
From there, you would draw a link-sensitive area with a radius of 50
pixels, which would define a 100-pixel diameter circle from the center
as the link-sensitive area.

Figure 6.10 The Described Link-Sensitive Area

If, on the other hand, you use poly as the shape, you can define any
number of coordinates in coords with x1, y1, x2, y2 . . . xn, yn. This
enables you to define as many corners as you want. At the end, you
have to use the xy coordinates of the first element again to close the
polygon.

6.2.2 Referencing Defined Areas of the HTML Element
<area>

As with the a element, you need to specify the reference target in the
area element using the href attribute. Together with the href
attribute, you must also write the alt attribute in the area element.

Pixel Coordinates with a Graphics Program

For more complex link-sensitive areas, such as a map, you can
also use special software that allows you to create the link-
sensitive area in the corresponding graphic with the mouse and
just paste it into your HTML document. If you don’t want to install
special software for this purpose, you can find a good online
image map editor at www.maschek.hu/imagemap/imgmap, where
all you have to do is upload the image and use your mouse to
create the link-sensitive areas.

I added the link-sensitive areas in Figure 6.11 with the nine federal
states of Austria using GIMP software and linked them with the
official websites, including the website of the capital of the
corresponding federal state.

Figure 6.11 Link-Sensitive Areas Can Be More Complex, as in the Case of a
Geographical Map

6.2.3 HTML Attributes of <area>

Here’s a short overview of the attributes of <area>. You’ll notice that
the area element contains the same attributes as a hyperlink with the
a element.

Attribute Description

http://www.maschek.hu/imagemap/imgmap

Attribute Description
alt You must use the alternative text when you use the

href attribute.
coords Use this to define the coordinates for the link-sensitive

area.
download Use this to provide the referral target in href for

download.
href Use this attribute to specify the URL of the page

referenced by the link-sensitive area.
hreflang Use this to specify the language of the linked

document. For this purpose, you can use the typical
language abbreviations.

media Use this to specify information about the media for
which the link target has been optimized. You can
either enumerate media types, separate by commas, or
specify all for all media types. I’ll describe the
specification separately in Chapter 7, Section 7.3.7.

rel Return to Chapter 3, Section 3.5, where we already
discussed this attribute from the link element if you
need more information. However, the same applies to
the area element as to the a element, where the
bookmark, external, nofollow, and noreferrer elements
can also be used.

shape Use this to set the shape for the link-sensitive area.
Possible values are as follows:

rect: Rectangle
circle: Circle
poly: Polygon

Attribute Description
target Use this to specify where the link target should be

opened. Possible values for this are as follows:
_blank: New window/tab
_parent: Parent window
_self: Current window
_top: Top window level
framename: Name of the window that was opened
with JavaScript and also assigned in JavaScript

type Use this to inform the web browser about the
multipurpose internet mail extension (MIME) type (file
format) to which the linked file belongs. This
specification is useful if the target isn’t an HTML
document.

Table 6.4 The HTML Attributes of the <area> Element

Use Link-Sensitive Graphics?

Since link-sensitive graphics are not responsive, they are rarely
used in practice. As an alternative, you can use an SVG graphic
where you can specify the appearance of the linked areas with
CSS.

6.3 Loading the Appropriate Image Using
<picture>
In the past, it wasn’t always easy to provide a suitable image for all
display sizes. Frequently, quality or performance losses had to be
accepted in this regard. The picture element enables you to find an
HTML element that serves as a container element for multiple image
sources. The individual image sources must be specified using the
source element.

The following example demonstrates the use of these HTML
elements:
...
 <h1>The picture element in use</h1>
 <p>
 <picture>
 <source media="(min-width: 1024px)" srcset="images/HK-1024.jpg">
 <source media="(min-width: 640px)" srcset="images/HK-640.jpg">
 <source media="(min-width: 480px)" srcset="images/HK-480.jpg">
 <!-- Fallback for old browsers -->

 </picture>
 </p>
...

Listing 6.5 /examples/chapter006/6_3/index.html

Using the picture element is relatively simple. Between <picture>
and </picture>, you can position several source elements. Each
source element contains a query (i.e., media query) with the HTML
attribute media, which you can use to query information such as
viewport width, viewport height, and orientation. In addition, the
source element contains the HTML attribute srcset, which you use to
specify the image file to be loaded. At the end, you should use an

 as a fallback, in case web browsers can’t process the picture
element.

The sources of <source> within <picture> and </picture> will be read
from top to bottom, which means that the first match of the HTML
attribute media will be loaded. If the viewport is at least 1,024 pixels
(min-width: 1024px), the image HK-1024.jpg will get loaded. With a
viewport of at least 640 pixels (min-width: 640px), HK-640.jpg (see
Figure 6.12) will get loaded, and with at least 480 pixels (min-width:
480px), HK-480.jpg will get loaded. Web browsers that can’t handle
this will load the fallback, that is, (here, also HK-480.jpg).

These specifications in the HTML attribute media are the same as
those you use when creating queries in CSS. In addition to min-
width, you can also use max-width, max-height, min-height, or
orientation (for alignment). I’ll describe such CSS queries, also
referred to as media queries, separately in Chapter 13, Section 13.4.
This section covers only the basic principles of the HTML elements,
<picture> and <source>.

Figure 6.12 Here, the Screen Width Was at Least 640 Pixels, Which Is Why the Matching
Image HK-640.jpg Was Loaded

6.3.1 HTML Attributes of <source>

Here’s a listing of the HTML attributes for the source element before
you’ll see more examples about it.

Attribute Description
srcset You can specify the media source to be loaded. This

attribute can also contain multiple media sources. You
must separate the individual sources with a comma.
In addition to the URL that leads the visitor to the media
source itself, you can optionally specify the width with a
positive value followed by w, and also optionally specify
the pixel density followed by an x (e.g., 1x, 2x, 3x, etc.).

media You can specify the query (media query) for the media
sources to be loaded. The attribute can be used only in
the picture element. If the query specified in media is
correct, the corresponding source will be loaded into
srcset. You can learn more about such CSS media
queries separately in Chapter 13, Section 13.4.

type You can inform the web browser about the MIME type
(file format) to which the linked file belongs. In the
example of the picture element, for instance, this can
be useful if you want to use different file formats for
display.

sizes You can specify how wide or with which pixel density
the image should be displayed. It’s possible to specify
additional and more complex framework conditions.

Table 6.5 The HTML Attributes of the <source> Element

6.3.2 Multiple Image Sources with the HTML Attribute
“srcset”

You can also specify and reference multiple image sources with the
HTML attribute srcset. This can be useful if you want to provide an
alternative for high-resolution displays besides the ordinary image.
With regard to the /examples/chapter006/6_3/index.html example,
you could provide higher resolution images for retina displays with 2x
pixel density as follows:
...
 <picture>
 <source srcset="images/HK-1024.jpg, images/HK-1024-hd.jpg 2x"
 media="(min-width: 1024px)">
 <source srcset="images/HK-640.jpg, images/HK-640-hd.jpg 2x"
 media="(min-width: 640px)">
 <source srcset="images/HK-480.jpg, images/HK-480-hd.jpg 2x"
 media="(min-width: 480px)">
 <!-- Fallback for old browsers -->

 </picture>
...

Listing 6.6 /examples/chapter006/6_3_2/index.html

Using Different File Formats

It’s quite possible to use different file formats using <picture>. For
this purpose, you should use the type attribute in <source> to
define the MIME type of the image. For example, web browsers
such as Chrome or Opera can handle the WebP graphics format
(see https://en.wikipedia.org/wiki/WebP), which is supported as a
direct competitor of the JPEG format and requires considerably
less memory with comparable quality. Consider this example:
...
 <picture>
 <source srcset="images/HK-640-WebP.webp" type="image/webp">
 <source srcset="images/HK-640-jpg.jpg">
 <!-- Fallback for old browsers -->

 </picture>
...

https://en.wikipedia.org/wiki/WebP

You can find this example in
/examples/chapter006/6_3_2/index2.html. In Google Chrome and
Opera, the WebP graphic will be displayed. All other web browsers
will display the JPEG graphic. I haven’t specified the HTML
attribute media here, although you could use this attribute as well.

Figure 6.13 On High-Resolution Displays, the Image Is Loaded with a Higher Pixel
Density (Here, “2x”)

6.4 Adding an Icon for the Website
(Favicon)
You’ll certainly have noticed the small icons in the address bar, tab,
and/or among your favorites quite often. These icons are called
favicons (short for favorite icons). It’s no big deal to add such an icon
to the website. They work well as a (re)identifier for your website.
You can specify them in the header of your document using the link
element, which is described in detail in Chapter 3, Section 3.5.

To do this, you can use the HTML attribute rel with the value icon
and the location and name of the icon with href. Optionally, you can
use the sizes attribute. The size of a favicon is usually 16 × 16 and
sometimes 32 × 32 pixels. Moreover, favicons should be saved in
.ico format. If you use a different data format, you should specify the
corresponding MIME type with the type attribute (e.g., for PNG
format: type="image/png").

Additionally, you can add an icon for mobile devices such as iPhone,
iPad, and so on. For this purpose, you need to specify the value
apple-icon-touch for rel, and, correspondingly, the icon should be
larger than the favicon. There are various size suggestions for this,
such as 76 × 76 for iPhone, 120 × 120 for iPhone with Retina, or
180 × 180 pixels for iPad with Retina. If you use an image that’s too
large, it will be scaled accordingly on the device. The icon appears
on Apple mobile devices, for example, when you add a web page to
the home screen. The round corners are added by the operating
system itself.

Creating a Favicon

You can create icons or graphics for favicons using any image-
editing software. You can also find many online tools on the web
that allow you to create and download the icons in the web
browser. Websites http://ionos.de/tools/favicon-generator and
https://favicon.io are just two of a multitude of places to start.

Here’s an example where a favicon and an Apple icon have been
added to the header section of the HTML document using the link
element:
<head>
...
 <link rel="apple-touch-icon" sizes="180x180"
 href="images/apple-touch-icon.png" />
 <link rel="icon" type="image/png" sizes="16x16"
 href="images/favicon-16x16.png" />
</head>
...

Listing 6.7 /examples/chapter006/6_4/index.html

Figure 6.14 Here, You Can See the Favicon in the Top Left of the Table Bar

Figure 6.15 The Apple Touch Icon in the Right Side of an iPad

http://ionos.de/tools/favicon-generator
https://favicon.io/

Adding a Favicon to a Website without the <link> Element

Many web browsers are capable of displaying a favicon without
the link element if you name the files favicon.ico and apple-touch-
icon.png and place them in the web root directory.

6.5 Using Vector Graphics in HTML
Documents
If you want to use vector graphics on the web, the XML format called
Scalable Vector Graphics (SVG) is available for this purpose. The
advantage of SVG is that a graphic never loses quality when you
zoom in or out. For this reason, an SVG graphic can be printed in
high quality on a printer. Unlike other graphics in JPEG or PNG
format, for example, you can create and edit SVG files in a simple
text editor.

Because SVG is in plain text in an XML syntax and thus platform-
independent, you can also create such a graphic in PHP, change it
dynamically with JavaScript, or format it with CSS. In practice, this
format is very suitable for cartography and illustrations of all kinds,
such as logos, icons, scientific charts, program flow charts, technical
drawings, and graph visualizations, among others.

6.5.1 Adding SVG as a Graphic Reference Using

The easiest way to include an existing SVG graphic might be to use
it as a graphic reference with the tag and the src attribute. You
learned about the img element in detail in Section 6.1, and it works
with SVG graphics just as it does with ordinary JPEG, PNG, or GIF
images, except that you need to include an SVG resource instead.

For this purpose, here’s a simple HTML document to which an SVG
graphic has been added as a graphic reference with the tag:
...
<h1>SVG as graphic reference</h1>
<p>

</p>
...

Listing 6.8 /examples/chapter006/6_5_1/index.html

In the example and in Figure 6.16, you can see that the quality of the
SVG graphic always remains the same, even if you’ve scaled the
size of the display with the attributes width and height. Try it out for
yourself by setting the width to 4,000 pixels and the height to 2,000
pixels, for example. The original size of the SVG file logo.svg is
200 × 100 pixels.

Editors for Editing SVG Graphics

You can create SVG using applications such as Adobe Illustrator
(www.adobe.com/products/illustrator.html) or the free Inkscape
(https://inkscape.org). There are also tools online, such as SVG-
edit (https://github.com/SVG-Edit/svgedit), which I used to create
the SVG graphics for this book. Nevertheless, you can also write
and modify SVG completely manually, using an ordinary text
editor. After all, SVG is written with XML. Editors such as Inkscape
or SVG-edit are ideal for learning SVG because you can then view
the XML code in the text editor and thus better understand the
structure of the format.

http://www.adobe.com/products/illustrator.html
https://inkscape.org/
https://github.com/SVG-Edit/svgedit

Figure 6.16 SVG Added as a Graphic Reference via

6.5.2 Embedding SVG Directly into the Web Page Using
<svg>

With HTML, it’s also possible to embed SVG directly into the HTML
document. SVG itself provides different tags, for example, for circles,
ellipses, rectangles, polygons, lines, elements for paths, texts, and
animations.

You can write the HTML elements <svg>...</svg> anywhere in the
document body between <body> and </body>. The SVG syntax with
the SVG elements must be written between <svg> and </svg>. Taking
all of this into consideration, a simple example looks as follows:
...
<body>
<h1>Embedding SVG graphics directly</h1>
<p>
 <svg width="300" height="100">
 <ellipse ry="45" rx="140" cy="50" cx="150"

 fill="red" stroke-width="10" stroke="black"/>
 <text text-anchor="middle" font-size="60"
 y="67" x="150" fill="black">SVG</text>
 </svg>
</p>
</body>
...

Listing 6.9 /examples/chapter006/6_5_2/index.html

In this example, we describe an ellipse filled with red color and black
text with the SVG tags <ellipse ... /> and <text ... />. Figure 6.17
shows what it looks like in the web browser.

Figure 6.17 Here, an SVG Graphic Was Created That’s Directly Embedded in the HTML
Document

6.5.3 SVG Tags for Vector Graphics

In between <svg> and </svg>, you must follow the rules for XML
documents and keep in mind that the documents are case sensitive.
In addition, you must close the standalone SVG tags using the /
character, for example, <circle ... />). Unlike HTML, SVG syntax is
very precise, and an error will usually result in incorrect or even no
rendering at all of the SVG graphic.

6.5.4 Overview of Graphical SVG Elements

This section provides a brief overview of the graphical elements in
SVG. The goal here is just to show you how to include SVG
elements in an HTML document and use them with basic shapes.

Coordinate System

In an SVG graphic, the coordinate system has its origin at the top
left. Coordinate data with an x-axis thus points to the right, and
those with a y-axis point downward. You define the coordinate
system at the beginning in the opening <svg> tag via width and
height.

For all graphical SVG elements, you can specify an outline (stroke-
width; stroke; stroke-linecap; stroke-dasharray), transparency
(opacity), and fill color (fill) using the relevant attributes.

The graphic elements in SVG are as follows:

<path .../>
A path consists of a line described by various combinations of
elliptic arcs, quadratic and cubic curves, and various distances.

<circle .../>
Defines a circle described by a radius (r) and the position of the
center (cx, cy). Let’s take a look at a simple example:
<svg height="200" width="200">
 <circle cx="100" cy="100" r="90"
 stroke="black" stroke-width="3" fill="purple" />
</svg>

<ellipse .../>
Defines an ellipse with the two semi-axis radii, which, as with the
circle, are described by the position of the center point (cx, cy).
The radius is described with a horizontal (rx) and a vertical (ry)
radius:

<svg height="300" width="100">
 <ellipse cx="50" cy="150" rx="45" ry="140"
 style="fill:yellow;stroke:black;stroke-width:3" />
</svg>

<rect .../>
The name says it all. This element defines a rectangle over the
upper-left corner (x, y) with width and height. Rounded corners
are also possible. For example, for a simple rectangle you could
write the following:
<svg width="410" height="200">
 <rect x="5" y="5" width="390" height="150"
 style="fill:red;stroke-width:3;stroke:black" />
</svg>

By the way, the properties within style are different from those of
classic CSS.

<line .../>
Defines a simple straight line across the coordinates of two
endpoints (from x1, y1 to x2, y2). The following shows a simple
example:
<svg height="100" width="250">
 <line x1="0" y1="0" x2="250" y2="100"
 style="stroke:blue;stroke-width:3" />
</svg>

<polygon .../>
This element allows you to describe a polygon via the different
endpoints. You pass the individual x/y points to the point attribute.
If, on the other hand, you need a line with different points that
don’t connect at the end, <polyline .../> would be the right
choice for you. For example, you can implement a simple triangle
as follows:
<svg width="210" height="200">
 <polygon points="100,5 125,85 80,105"
 style="fill:yellow;stroke:black;stroke-width:5" />
</svg>

<text ...>...</text>
This element allows you to define a text. You specify the position
of the beginning of the text with x and y. Using font-family, you
can define the font, while font-size defines the size of the font.
Let’s take a look at a simple example:
<svg height="100" width="500">
 <text x="5" y="80" fill="red" font-size="60">
 A text with SVG
 </text>
</svg>

Units of Measurement and Color Values

By default, the unit of measurement is px for pixels if no other
specifications have been made. Nevertheless, you can force this
unit by writing pt (for point), pc (for pica), mm (for millimeters), cm
(for centimeters), in (for inches), em (relative unit of measure), or
ex (relative unit of measure) after the specified value.

When you specify the fill color via fill, the same color values
apply as with CSS, and you can use #FF00FF, rgb(100,0,100),
rgb(100%, 20%, 80%), or just the color name blue.

6.5.5 Further Notes on Using SVG

Besides the graphical elements, there’s much more you can
describe with SVG. For example, there’s the option to group multiple
graphical elements via <g> and </g>, which allows you to apply
transformations or styling to all elements grouped together.

You can style the elements either via the individual attributes or via
the style attribute, similar to CSS. A transformation is also available.

For example, you can use transform="rotate(...)" to rotate text
and any shapes. In addition, SVG also provides an animation model.

Furthermore, you’ll find filters that allow you to add various effects to
the SVG graphic. Thus, blurring, shadows, or illuminations are no
problem with SVG. Linear and radial color gradients can also be
defined and displayed.

6.5.6 Mathematical Formulas Using MathML

Mathematical formulas can be integrated directly into a web page
using HTML via MathML. The implementation of MathML works
similar to SVG and is put into effect using existing MathML tags to
describe a mathematical formula. The MathML tags need to be
written between and.

Unfortunately, support for MathML hasn’t really reached web
browsers yet (currently only Firefox and Safari), but using MathJax
(www.mathjax.org), you can fix the problem by writing the following
in the HTML document head:
...
<script
 src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_
 HTMLorMML">
</script>
...

Here’s a simple mathematical formula that demonstrates the use of
MathML in practice:
...
<head>
...
<script
 src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_
 HTMLorMML">
</script>
</head>
...

http://www.mathjax.org/

<h1>MathML for mathematical formulas</h1>
<p>
A simple mathematical formula:
 <math>
 <mrow>
 <msup><mi>a</mi><mn>2</mn></msup>
 <mo>+</mo>
 <msup><mi>b</mi><mn>2</mn></msup>
 <mo>=</mo>
 <msup><mi>c</mi><mn>2</mn></msup>
 </mrow>
 </math>
</p>
...

Listing 6.10 /examples/chapter006/6_5_6/index.html

You can see the example in Figure 6.18 during execution.

Figure 6.18 The Formula Was Formatted with MathML

I won’t go any deeper into MathML and the various tags available
because the topic is quite specialized. For a comprehensive
overview of MathML, see the W3C website at
www.w3.org/TR/MathML3/.

http://www.w3.org/TR/MathML3/

6.6 Drawing Graphics Using <canvas>
Originally, the term canvas meant work surface. In fact, such an
element is initially nothing more than a white area on which you can
draw something with the help of JavaScript. Some web developers
refer to this element as a programmable img element that you can fill
yourself pixel by pixel.

Applications and Games with <canvas>

The canvas element is being used extensively in the web
developer community. There are many interesting examples of
diagrams or libraries that include single effects up to entire games.
The best way to see for yourself is to visit
www.effectgames.com/demos/canvascycle/ to see what is already
made possible by <canvas>.

In the introductory <canvas> tag, you must use the HTML attribute id
to specify a document-wide unique name, width to specify the width
of the canvas, and height to specify the height of the canvas. The
use of a unique id is especially important for accessing the canvas
element with JavaScript. It’s also possible to use multiple canvas
elements in one HTML document.

For this purpose, here’s a simple example in which an empty canvas
drawing area with 400 × 200 pixels is displayed. For you to see this
drawing area in the example, I’ve also defined a simple frame
around the canvas element:
...
<h1>Creating a drawing area with canvas</h1>
<canvas id="myCanvas" width="400" height="200">
 Your browser does not support the canvas element.

http://www.effectgames.com/demos/canvascycle/

</canvas>
...

Listing 6.11 /examples/chapter006/6_6/index.html

With <canvas>, you initially provide merely an empty drawing area in
the HTML document. In this example, I’ve additionally inserted an
alternative text between <canvas> and </canvas>, which is only
displayed if the web browser doesn’t support <canvas> or the user
has JavaScript disabled. Another option is to use a pixel graphic
instead of text, if that makes sense.

Canvas Application Programming Interface

As mentioned at the beginning, the canvas element enables you to
provide only the drawing area in the HTML document. By means
of JavaScript and a corresponding interface (Canvas API), you
can fill this area. Here, I’ve only dealt with the HTML element
<canvas> as an introduction.

6.7 Playing Videos Using the HTML
Element <video>
The video element allows you to play a video in the web browser
without any special extension. All modern browsers can handle the
video element.

Currently, the three video formats MP4 (MPEG-4/H.264), WebM
(Web Media File), and OGG (Ogg Vorbis) are supported by the video
element. However, not every web browser can handle all three
formats, as there are discrepancies regarding the format licenses of
the web browser manufacturers. The most widely used format is
MP4, which is also the format most cameras and cell phones use for
recording purposes and which every modern web browser can
handle. The free formats, OGG and WebM, were intended for use on
the web; however, they aren’t supported by Safari and Internet
Explorer.

If you want to add a video file to the HTML document via the video
element, you can include it using the src attribute as follows:
...
<video width="720" src="Dancing.MP4" controls autoplay>
 Your web browser does not support the video tag.
</video>
...

Listing 6.12 /examples/chapter006/6_7/index.html

Web Browsers without <video>

Web browsers that don’t support the video element will display text
if you’ve written one between <video> and </video>. Alternatively,
you could provide a download link in that place.

The /examples/chapter006/6_7/index.html example is based on the
assumption that the web browser supports the MP4 format. If you
want to be on the safe side and provide additional formats in case of
nonsupport or have a certain format be used preferentially, then you
should include additional video files via the source element for this
purpose. In practice, you can do this as follows:
...
<video width="720" controls autoplay>
 <source src="Dancing.webm" type="video/webm">
 <source src="Dancing.MP4" type="video/mp4">
 <source src="Dancing.ogg" type="video/ogg">
 Your web browser does not support the video tag.
</video>
...

Listing 6.13 /examples/chapter006/6_7/index2.html

Figure 6.19 Playing a Video Is Hardly a Problem Anymore Thanks to the <video>
Element

Inside the video element in /examples/chapter006/6_7/index2.html,
you can insert video files via multiple source elements using the
standalone <source> tag. In <source>, you can use the src attribute to
note the video file you want to play. For src, the usual rules for
referencing in HTML apply. You can use the type attribute to indicate

the video format. For a list of media types for video formats, see
Table 6.6.

Depending on what video format the web browser can handle in the
source elements, it will play the first known video file. For example, if
a web browser knows all the video formats provided, the
Dancing.webm video will be played in this example. If you want to
prefer a video format, you must write it with the <source> tag in a
higher position between <video> and </video>.

File Format Media
Type

MP4: MPEG-4 with H264 video codec and AAC audio
codec

video/mp4

OGG: OGG with Theora video codec and Vorbis
audio codec

video/ogg

WebM: WebM with VP8 video codec and Vorbis audio
codec

video/webm

Table 6.6 Video Formats for <video> and the Corresponding Media Types

6.7.1 HTML Attributes for the HTML Element <video>

Most attributes of <video> are Boolean attributes and can be used by
means of attribute names. In the first example in this chapter, the
controls and autoplay attributes were used, which means that a
control (play, pause, volume, etc.) for the video gets displayed, and
the video starts automatically after loading. See Table 6.7 for an
overview of common HTML attributes you can use for the video
element.

Attribute Description

Attribute Description
autoplay Starts the video once it has been loaded:

<video autoplay ...>

controls Displays the controls for controlling the video (play,
pause, volume, etc.):
<video controls ...>

height Sets video height:
<video height="720" ...>

loop Sets video to play in a continuous loop, restarting as
soon as it reaches its end:
<video loop ...>

muted Sets video to play without sound:
<video muted ...>

poster Sets a reference to an image that will be displayed until
the video gets started:
<video poster="image.jpg" ...>

preload Specifies how the video should be loaded. With the
default setting preload="auto", the entire video is
loaded when the page loads. Alternatively, you can use
metadata to specify that only the metadata gets loaded,
whereas none makes sure that nothing at all gets
loaded along with the loading of the page:
<video preload="none" ...>

src Specifies the URL of the video file:
<video src="video.mp4" type="video/mp4"...>

type Allows you to indicate the video format. Possible values
can be found in Table 6.6.

width Sets the video width:
<video width="1080" ...>

Table 6.7 HTML Attributes for the <video> Element

Controlling a Video Using JavaScript

You can also control a video with JavaScript.

6.7.2 Adding Subtitles to a Video Using <track>

Now that HTML makes it possible to render a video consistently, you
may want to add more resources to the video. For this purpose,
HTML provides <track> as an option to define additional tracks.
These tracks don’t belong to the part of the video or audio track, but
simply represent separate text information you can deposit as video
subtitles at the exact time of the information contained there for
different languages (or for people with a hearing loss/impairment).

By the way, you can use such tracks not only for <video> but also for
<audio>, for instance, to fade in the currently playing soundtrack or
the lyrics to a song that’s being played. This allows you to provide
visitors with hearing loss/impairment with an easier access to the
video or audio material. (Note, however, that song lyrics by well-
known artists are often subject to copyright.)

The inclusion of additional tracks via the <track> tag can be
implemented as follows:
...
<video width="480" controls>
 <source src="video/Dancing.mp4" type="video/mp4">
 <source src="video/Dancing.ogg" type="video/ogg">
 <source src="video/Dancing.webm" type="video/webm">
 <track default src="subtitles/subtitles_en.vtt" kind="subtitles"
 srclang="en" label="English">
 <track src="subtitles/subtitles_de.vtt" kind="subtitles"
 srclang="de" label="German">
 Your web browser does not support the video tag.
</video>
...

Listing 6.14 /example/chapter006/6_7/index2_subtitles.html

When trying to reproduce the example, you should note that it won’t
work on a local machine, but must be run online on a web host. You
must write the standalone <track> tag inside a video or audio
element for which you want to use the additional track. Table 6.8
provides an overview of the individual attributes of <track> and their
meaning.

Attribute Description
default Allows you to declare a subtitle to be the default value.
src References the data with the subtitles for the additional

track. The data should be in the WebVTT (Web Video
Text Tracks) format, which is covered later in this
section.

kind Enables you to specify the type of additional track.
Possible values are as follows:

subtitles: Subtitles for spoken or sung content.
captions: Subtitles of dialogs or sound effects (for
people with hearing impairment).
chapters: Subheadings or subsections that can be
jumped to.
metadata: Descriptions of the data of the audio or
video file for scripts or search engines, for example.
description: Description of the video content (for
users with visual impairment).

srclang Sets the language of the text, which should be used for
kind="subtitles".

label Sets a title for the text information.

Table 6.8 HTML Attributes for <track>

You can see the example with English subtitles in Figure 6.20 during
execution.

Figure 6.20 A Video with Subtitles: You Can Choose from the Offered Languages
“German” and “English”

Here are a few lines about the WebVTT format, which is used to add
additional tracks to a video or audio resource. However, the topic is
only briefly touched on here so that you can add your own simple
subtitles to a video. For a comprehensive study of the WebVTT
format, you should refer to the documentation at
https://www.w3.org/TR/webvtt1/.

The WebVTT format is saved with the .vtt extension. The files can be
edited with a simple text editor and saved with UTF-8 character
encoding. For instance, the example containing subtitles.vtt looks as
follows:
WEBVTT

1
00:00:01.000 --> 00:00:05.000
The <i>first line</i> of text is displayed for the first 4 seconds.

2
00:00:06.000 --> 00:00:16.000
Now a second line gets

https://www.w3.org/TR/webvtt1/

displayed for 10 seconds.

3
00:00:17.000 --> 00:00:20.000
This is the final subtitle ...

Listing 6.15 /examples/chapter006/6_7/subtitle/subtitles.vtt

The first line contains WebVTT followed by a blank line. After that, you
can write the content of the file by means of cues. Each cue consists
of an identification number, a time, a text, and a blank line. The time
specification has the following format:
hh:mm:ss.mmm --> hh:mm:ss.mmm

This specifies that from the time hh:mm:ss.mmm to (-->) hh:mm:ss.mmm,
the insertion of the text following it takes place. The time
specifications must have a leading 0 if the specification is smaller
than 10. mmm represents a specification of milliseconds. The other
indications are hh for hours, mm for minutes, and ss for seconds.
Thus, the meaning of the following lines should be clear:
1
00:00:01.000 --> 00:00:05.000
The <i>first line</i> of text is displayed for the first 4 seconds.
...

From second 1 to second 5, the text following behind it is displayed,
as you can see in Figure 6.20. You can see from or <i> that you
can also design the text visually. Line breaks are also reproduced.
There are a lot of other ways to style the text, which I won’t go into
here. A comprehensive overview of the WebVTT format can be
found, as already mentioned, at https://www.w3.org/TR/webvtt1/.

6.7.3 Playing Videos via YouTube

Playing videos is no longer a problem thanks to the <video> HTML
element. But not everyone has the desire, time, or knowledge to

https://www.w3.org/TR/webvtt1/

convert a video into different formats and deploy it online. In addition,
there’s still the problem of the increasing volume of data. For
example, a video file of 100 MB can cause a lot of traffic if a large
number of visitors watch this video on your website. That can quickly
add up to a few gigabytes, and not everyone has a fast web host
with infinite data volumes.

In this regard, it’s a good idea to play the video from YouTube and
display it on your website. To do that, you just need to upload the
video to YouTube and include the HTML code or link you get from
YouTube in the HTML document. Here, you have the choice of using
the iframe element, the object element, or the standalone embed
element for this purpose. The following example shows all three
options in practice, but it only works live on a web server:
...
<iframe width="400" height="225"
 src="https://www.youtube-nocookie.com/embed/H8OYVuyBSNA" allowfullscreen>
</iframe>

<object width="400" height="225"
 data="https://www.youtube-nocookie.com/embed/H8OYVuyBSNA" ></object>

<embed width="400" height="225"
 src="https://www.youtube-nocookie.com/embed/H8OYVuyBSNA" >
...

Listing 6.16 /examples/chapter006/6_7_3/index.html

You can see the example at execution in Figure 6.21.

Pay Attention to GDPR When Embedding YouTube or Vimeo
Videos!

If you embed YouTube or Vimeo videos on your website, you
should definitely pay attention to data protection when doing so.
When a user starts the video, data is also passed to YouTube.
There are a few solutions on how to get around the problem. A

great overview of this can be found at
https://www.thomasvantuycom.com/writing/privacy-friendly-video-
embeds/.

Figure 6.21 Playing a YouTube Video: Examples with <iframe>, with <object>, and with
<embed>

https://www.thomasvantuycom.com/writing/privacy-friendly-video-embeds/

6.8 Playing Audio Files Using the HTML
Element <audio>
Basically, the HTML element <audio> works in the same way as
<video>, except that you use it to play audio files. Here, too, there
are currently three formats: MP3 (MPEG-1/MPEG-2 Audio Layer III),
OGG, and WAV (Waveform Audio File), which can be played without
additional software using <audio>.

All modern web browsers can handle the MP3 format, and it should
probably be the ideal choice apart from the OGG format. The WAV
format might be the worst choice for the web most of the time due to
the size of the file. If the browser doesn’t support the audio element,
you can write text between <audio> and </audio> that will be
displayed instead. As with <video>, you can provide all three formats
here via the source element.

An example in practice will make clear what I’ve just described in a
little more detail:
...
<audio controls>
 <source src="sound/Hello.ogg" type="audio/ogg">
 <source src="sound/Hello.mp3" type="audio/mpeg">
 This web browser does not support the audio tag.
<audio>
...

Listing 6.17 /examples/chapter006/6_8/index.html

You can specify multiple source elements with the desired audio files
between <audio> and </audio> to offer multiple formats. The web
browser uses the first format it supports. Otherwise, the same
applies to the source element as with the video element. For a list of

media types (for type), see Table 6.9. You can see the example in
Figure 6.22 during execution.

Figure 6.22 Playing an Audio File with the <audio> Element

File Format Media Type

MP3 audio/mpeg

OGG audio/ogg

WAV audio/wav

Table 6.9 Audio Formats for <audio>

6.8.1 HTML Attributes for the HTML Element <audio>

Most attributes of <audio> are Boolean attributes and can be used
with the attribute name. In the first example in Section 6.8, the
controls attribute was used, which means that a control (play,
pause, volume, etc.) is displayed for the audio to be played. See
Table 6.10 for an overview of the common attributes you can use for
the audio element.

Attribute Description
autoplay Starts the audio file as soon as it has been loaded:

<audio autoplay ...>

Attribute Description
controls Displays the controls for controlling the audio (play,

pause, volume, etc.):
<audio controls ...>

loop Sets the audio to play in a continuous loop, restarting
as soon as it reaches its end:
<audio loop ...>

muted Mutes the sound:
<audio muted ...>

preload Specifies how the audio file should be loaded. With the
default setting preload="auto", the entire audio file gets
loaded when the page loads. Alternatively, you can use
metadata to specify that only the metadata gets loaded,
whereas none makes sure that nothing at all gets
loaded along with the loading of the page:
<audio preload="none" ...>

type Allows you to indicate the audio format. Possible values
can be found in Table 6.9.

src Specifies the URL of the audio file:
<audio src="audio.mp3" type="audio/mp3"...>

Table 6.10 Attributes for the <audio> Element

Controlling Audio Using JavaScript

You can also control audio content with JavaScript.

6.9 Including Other Active Content
Now there’s <video> for video content, <audio> for audio content, and
 for images. But for a number of other types of content, no
special HTML element exists, for example, Excel files, AutoCAD, or
special movie formats such as QuickTime movies, which aren’t
provided directly by the web browser, but via an external extension
(plug-in) for the web browser. Those extensions aren’t integrated in
the web browser, and if such an extension is missing, the content
can’t be executed.

To embed active content in an HTML document that isn’t supported
by the web browser itself but via extensions, you have at least two
helpers available: the object element and the embed element.

What Can We Use <embed> and <object> For?

Most modern web browsers have removed or disabled direct
support for browser plug-ins. It’s therefore obvious that it isn’t
advisable to build a website based on the embed or object
elements if you want the regular visitor to be able to use the
website properly as well. Especially things such as Java applets,
ActiveX, or Flash, which have become obsolete, should be
completely avoided nowadays. For other elements, such as video,
audio, and images, the HTML elements <video>, <audio>, and
 can be used.

6.9.1 HTML Element <embed>

The standalone embed element has long been supported by all major
web browsers, but even so, it was a relatively late addition to
standard HTML. You can use the embed element for all possible
active elements, which usually requires an extension (browser plug-
in). <embed> enables you to integrate an object in the HTML
document. Because the embed element is a standalone element
without a closing tag, you can’t use alternative text here that gets
displayed if the web browser can’t handle the content because, for
example, no extension is available or installed for it.

Here’s a simple example using the embed element, where a
QuickTime movie has been embedded into the HTML document.
However, the movie will only play if the QuickTime plug-in for the
corresponding web browser has been installed:
...
<h1>Viewing a QuickTime movie</h1>
<embed type="video/quicktime" src="movie.mov" width="640" height="480">
...

You can reference the element to embed via the src attribute. In
practice, you should also specify the height (height) and width
(width) because web browsers can’t read this resource themselves.
Likewise, it’s recommended to specify the MIME type using the type
attribute, which is video/quicktime for a QuickTime movie.

6.9.2 HTML Element <object>

You can also use the object element to include active content in the
HTML document that isn’t supported by the web browser directly, but
via extensions. Because <object> has a closing tag, it’s possible with
this HTML element to write alternative content (e.g., text, graphic, or
downloadable content) between <object> and </object>, which will
be displayed if the content can’t be rendered.

Here’s an example of the object element:
...
 <h1>Playing a QuickTime movie</h1>
 <object width="640" height="480" type="video/quicktime" data="Drone.mov">
 QuickTime can’t be played back. Plug-in missing.

 Download movie
 </object>
...

Listing 6.18 /examples/chapter006/6_9_2/index.html

The example is basically equivalent to the example with the embed
element. However, unlike <embed>, <object> offers the advantage of
being able to provide replacement content or information if the
content can’t be executed. Nevertheless, it’s also better here to
avoid browser plug-ins for a general website if possible and to
always fall back on the original HTML solutions. This way, you can
ensure that any user with any web browser can view or operate the
content. Don’t make your website dependent on a browser plug-in
that users may need to install first or that may not even exist for a
specific web browser.

6.9.3 HTML Element <iframe>

The <iframe> element represents another possibility to embed
something into an HTML document. In practice, this element is
mainly used to embed external HTML documents into the current
HTML document. While <iframe> can be rendered by any web
browser, you can still specify alternative text between <iframe> and
</iframe>.

Here’s a simple example for the iframe element:
...
<h1>Using iframe</h1>
<iframe height="320" width="680"
 src="product-placement.html">

 Your web browser does not support iframe!

 Click here for the content:
 Product placement
<iframe>
...

Listing 6.19 examples/chapter006/6_9_3/index.html

Here’s the embedded HTML document product-placement.html:
<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>Product placement</title>
</head>
<body>
<div>

 <a href=" https://www.sap-press.com/javascript_5554/"
 target="_parent"> Begin your JavaScript journey...
</div>
</body>
</html>

Listing 6.20 examples/chapter006/6_9_3/product-placement.html

In this example with <iframe>, the HTML file product-placement.html
is embedded as an advertisement in the current HTML document.
You can reference the HTML file via the src attribute and specify a
size for the frame using the width and height attributes. You should
write the size specification in any case because the web browser
can’t know how big the embedded HTML document should be. You
can see the example in Figure 6.23 during execution.

Figure 6.23 An HTML Document Has Been Embedded within the Current HTML
Document Using <iframe>

<iframe>, <object>, or <embed>

Alternatively, you can achieve the same result by using <object>
or <embed>, and there’s basically nothing wrong with that. In
practice, however, you should rather prefer <object> to <embed>. I
personally use <iframe> to embed HTML documents because it
allows me to see more quickly what I want to do here. But that’s a
matter of personal taste. In addition, <iframe> has a few useful
attributes (especially sandbox) that you don’t have when using
<object>.

When you embed an external HTML document, it may be necessary
to restrict certain things for security reasons. Such a restriction is
available via the sandbox attribute. By using the sandbox="" attribute
in <iframe>, you can prevent scripts from running, links from going
out of the frame, plug-ins from being used, cookies from being
accessed, and forms from being submitted. You can remove
individual restrictions via the following values: allow-form, allow-
origin, allow-scripts, and allow-top-navigation.

Another standalone attribute of HTML is seamless, which not only
allows you to embed the specified resource but also to include it in
the src attribute. The resource included with seamless then behaves
as if it were a block-generating HTML element in the HTML
document, meaning, for example, that the stylesheet definitions also
affect the content of the iframe resource, which isn’t the case if you
don’t use seamless.

6.10 Summary
In this chapter, you learned about some essential HTML elements for
adding graphics, videos, and other multimedia content. You are now
familiar with the following:

The img element, which you can use to embed images and
graphics.

Link-sensitive graphics (image maps), with which you can embed
and use hyperlinks within a graphic.

How to provide alternative image sources for different viewports
using the <picture> container element and the <source> element it
contains.

How to add vector graphics as a graphic reference or embed them
directly into the web page using <svg>.

How to draw something on a web page yourself on the fly using
the HTML element <canvas> and JavaScript.

How to play videos with the HTML element <video> and audios
with the HTML element <audio>, as well as which formats are
possible in HTML. You also learned how to use JavaScript to
control the video or audio. Just in case, you also know how to add
a YouTube video to an HTML document.

The helpers, <embed> and <object>, with regard to content the web
browser isn’t able to process and that instead gets executed by
extensions (plug-ins). In addition, for embedding other HTML
documents into the current HTML document, you have met
another alternative to <embed> and <object>, namely <iframe>.

7 HTML Forms and Interactive
Elements

Nowadays, hardly any major web presence can do without
forms (also referred to as HTML forms or web forms), in which
visitors can fill out input fields or select something from a list of
specific entries, such as a survey form.

Common usage scenarios for HTML forms include contact forms,
surveys, signing up for a website or newsletter, guest books, order
forms, search functions, adding and uploading data, and more. For
such interactions, HTML provides you with various input fields such
as text input fields, dropdown lists, radio buttons, and simple buttons.

In this chapter, you’ll learn the following:

How to define and structure forms

Which input fields are available to you in HTML

Which HTML attributes exist for input fields and how you can use
them meaningfully

How to send data entered in an HTML form from the web browser
to the web server and process it with a PHP script

Which interactive HTML elements are available

HTML
Element

Description

HTML
Element

Description

<form> Defines a space for forms
<fieldset> Groups form elements
<legend> Defines a heading for a fieldset element
<label> Adds and links a text label to form elements such as

input fields, radio buttons, and checkboxes
<datalist> Provides a list of option values that can be used as a

suggestion list
<input> Requests data from the user via many different types
<button> Defines a clickable button to trigger actions
<select> Initiates a selection list for which you can create an

entry of using the option element
<optgroup> Allows you to group option elements of a selection list
<option> Defines an entry of a selection or dropdown list
<textarea> Defines an area for entering multiline text
<output> Defines an area for outputting values, and is the

counterpart of the input element
<progress> Allows you to define an area for the visual

representation of a progress
<meter> Visualizes the size of a value

Table 7.1 Quick Overview of the Elements Covered Here for HTML Forms

HTML Element Description
<details>
<summary>

Expands and collapses page content

HTML Element Description
<dialog> Displays a dialog box

Table 7.2 Quick Overview of the Interactive Elements Covered Here

7.1 Defining a Space for Forms
You mark an area for an HTML form with the opening <form> and
closing </form>. Everything you write in between the two tags will be
part of the form. In practice, various HTML input fields, such as text
input fields, selection lists, radio buttons, and labels can be used
here.

The basic structure of a typical HTML form could therefore look as
follows:
<form action="/php/feedback.php" method="post">
 <!--Form elements for the feedback-->
</form>

Here you see two typical attributes—action and method—which are
used quite often with HTML forms. The meaning of the individual
attributes is as follows:

action

Specify the URL that will be called upon submitting the form and
to which the entered data should be transferred. This is often a
PHP script that processes the transmitted data.

method

Specify the HTTP request method for how the data should be
transmitted to the server for processing. The default setting is
method="get", which causes the web browser to append the data
as a parameter to the end of the URL. You certainly know this kind
of URL, for example, http://domain.com/search.php?

search=HTML. For larger amounts of data, on the other hand,
method="post" is more commonly used, which transfers the data to
the body of the HTTP request rather than sending it via the URL.
I’ll cover the topic of processing forms separately in Section 7.6.2
and in Section 7.6.3.

You don’t necessarily need to use the two attributes action and
method in the <form> tag. The attributes are unnecessary, for
example, if you want to process the entered data in the form only
with JavaScript, for example, to perform simple calculations. For
such purposes, you don’t need a URL to be called or an HTTP
request method.

Note that the preceding listed attributes weren’t all the existing
attributes for the form element. Other attributes you should know are
listed here:

enctype

The default value is the multipurpose internet mail extension
(MIME type "application/x-www-form-urlencoded", which means
that characters that have a special meaning in a URL are masked
with a percentage coding (or URL encoding). For example, a
space can be passed as the string %20. If you want to upload files,
you should use the value "multipart/form-data". Likewise, the
value could be just "text/plain" for enctype, which would allow
you to send the form data to an email address right away with
action="mailto:1@woafu.com", but that doesn’t work very reliably
and isn’t recommended in practice.

accept-charset

Here you specify which character encoding you want to use to
send the data to the web server. With "utf-8", you can enforce
UTF-8 as character encoding, for example.

target

Here you can specify the target window in which the web server
should output its response. You can use the known values
"_blank", "_self", "_parent", "_top", or just the name of a window
you created with JavaScript. You already know the meaning of
these values from the HTML element <a> in Chapter 5,
Section 5.2.

7.2 HTML Input Fields for Forms
This section provides an overview of the various classic HTML input
fields and the most important attributes for them.

7.2.1 A Single-Line Text Input Field Using <input
type="text">

The standalone input element allows you to display a single-line text
field where users can enter data via the keyboard. Because you can
and will use the input element for many other field types, you should
provide it with the type="text" attribute for the single-line text field
for clarification (optional). A basic use of <input> for a single-line text
input field might look as follows:
...
<form>
Enter your name:
 <input type="text" name="aName" size="30" maxlength="40">
</form>
...

Listing 7.1 /examples/chapter007/7_2_1/index.html

You should use the HTML attribute name for an identifier for each
input field, because this name is needed by the PHP script when
processing the data to access the entered data of the text field. The
name is also very useful when you access the form data with
JavaScript. You can use the size attribute to specify the display
length in characters and maxlength to specify the actual internally
allowed length in characters. You can see the single-line text field in
use in Figure 7.1.

If you want to preset the single-line text field with a value and hence
visible text, you can do that via the value attribute (e.g., value="John
Doe").

Figure 7.1 A Single-Line Text Input Field

No Line Break

The input element doesn’t create a new paragraph, nor does it
break the body text, but gets positioned where you write it.

7.2.2 A Password Input Field Using <input
type="password">

If you want to create a single-line text field for passwords, you only
need to write type="password" instead of type="text" at the opening
<input> tag. This will display the entered characters as asterisks or
dots. In HTML, you can create a password field as follows:
...
<form>
 Enter password:
 <input name="pw" type="password" size="10" maxlength="10">
</form>
...

Listing 7.2 /examples/chapter007/7_2_2/index.html

Apart from that, everything that has already been described for the
text field applies here as well. You can see the single-line password

field in Figure 7.2.

Figure 7.2 A Single-Line Text Input Field for Passwords

Of course, you should be aware that a single-line password field
doesn’t get encrypted and can only serve as a protection against
screen readers. The entered password itself is transmitted over the
internet via HTTP without encryption in clear text. For encrypted
communication between the web browser and the web server,
HTTPS must be used, and the web server must support this
protocol.

7.2.3 A Multiline Text Input Field Using <textarea>

If you need a text field with multiple lines for messages, comments,
feedback, or similar, you can use <textarea>...</textarea> for that.
If you write text between <textarea> and </textarea>, the multiline
text field will be prepopulated with that text. If, on the other hand, you
don’t want any prepopulated text, you should leave the area in
between empty. With HTML, you can write such a multiline text field
as follows:
...
<form>
Your message:
 <textarea name="txt" rows="15" cols="50" maxlength="2500">
 Enter your message here ...
 </textarea>
</form>
...

Listing 7.3 /examples/chapter007/7_2_3/index.html

In addition, for the multiline text field, you should use the name
attribute for an identifier because this identifier is needed by the PHP
script to access the entered data for processing. The name is also
very useful for accessing this data with JavaScript. You can specify
the number of displayed rows of the multiline text field using the rows
attribute and the number of characters per row with the cols
attribute. It can also be useful to limit the number of characters to be
entered with the HTML attribute maxlength. You can see such a
multiline text input field in Figure 7.3.

By default, the text gets automatically wrapped at the end of the text
input field in the next line. The wrap is purely visual and doesn’t get
sent with the data, unless the user really pressed the (Enter) key.
You can change this behavior via the HTML attribute wrap. If you
change the default setting of the wrap="soft" attribute to
wrap="hard", the text will no longer wrap automatically. If the number
of characters entered is wider than cols, a crossbar will be inserted
to scroll sideways. Pressing (Enter) again will cause a line break.

Figure 7.3 A Multiline Text Input Field

7.2.4 A Selection List or Dropdown List Using <select>

You can formulate a selection list or dropdown list where users can
choose from different entries via <select>...</select>. The
individual options to be selected must be written between
<select>...</select> with <option>...</option>. Here’s an example
with three different selection lists:
...
<form>
 <p>
 Example 1:

 <select name="topic1">
 <option value="val1">HTML</option>
 <option value="val2" selected>CSS</option>
 <option value="val3">JavaScript</option>
 <option value="val4">React</option>
 </select>
 </p>
 <p>
 Example 2:

 <select multiple name="topic2" size="4">
 <option value="val5">HTML</option>
 <option value="val6" selected>CSS</option>
 <option value="val7">JavaScript</option>
 <option value="val8" selected>React</option>
 </select>
 </p>
 <p>
 Example 3:

 <select multiple name="topic3" size="6">
 <optgroup label="Group 1">
 <option value="val9">HTML</option>
 <option value="val10">CSS</option>
 </optgroup>
 <optgroup label="Group 2">
 <option value="val11">JavaScript</option>
 <option value="val12">React</option>
 </optgroup>
 </select>
 </p>
</form>
...

Listing 7.4 /examples/chapter007/7_2_4/index.html

You can see all three options in Figure 7.4. In the first example, a
classic dropdown list is displayed where one item is visible and can
be selected. In the second example, four entries are displayed at

once because of size="4". The default setting is size="1", which is
used to display a dropdown list like in the first example. The last
example also shows how to group entries by writing the
corresponding group via option elements between <optgroup
label="label">...</optgroup>. The label attribute contains the label
for the group.

Again, you should use the name attribute in the opening select
element for the selection lists. If you want to preselect an option, you
can do so using the HTML attribute selected. If you also want to
allow holding down the (Ctrl) or (Shift) key to select multiple
options, you need to write the HTML attribute multiple in the
opening select element. If you use a value for value, this value will
be transferred to the web server in the name-value pair. If, on the
other hand, you don’t use the value attribute in the option element,
the element content that you’ve written between <option> and
</option> will be transferred as the value.

Figure 7.4 Dropdown and Selection Lists in HTML

7.2.5 Creating a Group of Radio Buttons Using <input
type="radio">

Radio buttons can also be implemented via the input element. To do
this, you need to specify type="radio" in the opening <input> tag.

Here’s a small example of how you can use radio buttons in HTML:
...
<form>
 <p>Please select a room:</p>
 <p>
 <input type="radio" name="room" value="budget">Budget

 <input type="radio" name="room" value="standard" checked>Standard

 <input type="radio" name="room" value="deluxe">Deluxe
 </p>
</form>
...

Listing 7.5 /examples/chapter007/7_2_5/index.html

You should provide each radio button with the name attribute. The
radio buttons with the same name belong to a group from which the
user can select a value, which is usually the purpose of radio
buttons. You can use value to specify the value that will be sent to
the web server along with the name attribute. If you want to preselect
a selection, you can do so using the standalone attribute checked.

Figure 7.5 Radio Buttons in HTML

7.2.6 Adding a Text Label Using <label>

Between <label> and </label>, you can use a simple text label
without any special formatting. That’s nothing special at first, but you
can use a label element to make it easier for the user to operate
other elements such as radio buttons or checkboxes. For example, if
you’ve created a radio button as in Figure 7.5 and want to select it,

you have to click exactly on the small radio button. You can make
this a bit more comfortable and easier for the user by linking the for
attribute with the label element in the case of the radio button. This
allows you to select the radio button by clicking on the text label. In
practice, you can do this as follows:
...
<form>
 <p>Please select a room:</p>
 <p>
 <input type="radio" name="room" id="r1" value="budget">
 <label for="r1">Budget</label>

 <input type="radio" name="room" id="r2" value="standard">
 <label for="r2">Standard</label>

 <input type="radio" name="room" id="r3" value="deluxe">
 <label for="r3">Deluxe</label>
 </p>
</form>
...

Listing 7.6 /examples/chapter007/7_2_6/index.html

7.2.7 Using Checkboxes via <input type="checkbox">

Checkboxes can also be displayed via the input element if you use
type="checkbox". Unlike radio buttons, checkboxes allow you to
select more than one option. You can create such checkboxes in
HTML as follows:
...
<form>
 <p>Please select extra options:</p>
 <p>
 <input type="checkbox" name="extra" id="c1" value="breakf">
 <label for="c1">Breakfast</label>

 <input type="checkbox" name="extra" id="c2" value="lunch">
 <label for="c2">Lunch</label>

 <input type="checkbox" name="extra" id="c3" value="dinner">
 <label for="c3">dinner</label>
 </p>
</form>
...

Listing 7.7 /examples/chapter007/7_2_7/index.html

Again, each checkbox should have a name attribute with an internal
identifier name. You can use value to specify the value that will be
transferred to the web server when the form is submitted. Figure 7.6
shows the checkboxes in use.

Figure 7.6 The Checkboxes in Use

7.2.8 Using Fields for File Uploads via <input
type="file">

If you need a field for a file upload, the input element is again the
first choice. For this purpose, you must use type="file". The web
browser usually generates a button that, when clicked, displays the
local file selection dialog box. Here’s an HTML example of such a file
upload:
...
<form method="post" enctype="multipart/form-data">
 <p>Select file:
 <input type="file" name="image" accept="image/*">
 </p>
</form>
...

Listing 7.8 /examples/chapter007/7_2_8/index.html

If you want to determine not only the file name of the selected file,
but the entire file or the contents of the file, you must use

method=”post” and enctype=”multipart/form-data” with the form
element. Otherwise, you should also use the name attribute for an
identifier name here. You can also use the accept attribute to allow
only certain file types to be uploaded. In the example, image/* stands
for graphics. However, this is merely a filter for the file selection
dialog box. In practice, it’s still recommended to check the file format
on the web server because the accept specification isn’t strictly
followed by every web browser.

Figure 7.7 The File Upload Dialog Box during Execution

7.2.9 Overview of Various Buttons

Buttons can either be implemented via the button element (e.g.,
<button>name </button>), or you can use the two classic options with
the input element and type="reset" or type="submit". The reset
button (<input type="reset">) resets the contents of the form fields
within the form to the initial value it contained when the web page
was called. The submit button (<input type="submit">), on the other
hand, submits the form and sends the entered data to the URL

specified with the action attribute in the form element. Here’s a blank
HTML example that demonstrates all three forms of a button:
...
<form>
 Your message:

 <textarea name="txt" rows="15" cols="50" maxlength="2500">
 Enter your message here ...
 </textarea>

 <input type="submit" value="Submit" style="width: 80px;">
 <input type="reset" value="Cancel" style="width: 80px;">
 <button type="button">Clickable button</button>
</form>
...

Listing 7.9 /examples/chapter007/7_2_9/index.html

You can see the HTML buttons in Figure 7.8.

Figure 7.8 Buttons in HTML

It’s also possible to create the submit or reset button with the button
element instead of the input element by setting the corresponding
attributes there with type="submit" or type="reset", respectively.

Likewise, you can create a button for scripting with <input
type="button">. You must specify the name for the button with the
value attribute, as is the case with the Submit and Reset buttons.
The advantage of <button type="button">... </button> over the
standalone <input type="button> is that you can use other HTML
code between <button> and </button>, which can also be a graphic
link.

7.2.10 Using a Hidden Input Field via <input
type="hidden">

If you want to include data in a form that isn’t visible to users, you
can use hidden input fields for this purpose. This is quite useful, for
example, to send along additional information or values, or the data
calculated or added with JavaScript when sending. For this purpose,
too, you can use the input element with the type="hidden" attribute,
for example:
<input type="hidden" name="subtotal" value="399">

You can specify the data you want to send using the HTML attribute
value. The identifier for accessing this value of the hidden input field
on the web server must be passed along with the name attribute.

7.2.11 Writing Form Fields outside of <form>...</form>

You also can write the individual form fields that have been
combined into a related form not only inside the related boundary of
<form> and </form> but also outside the related form element. It
doesn’t take much to do that. You only need to use the global id
attribute in the opening form element. HTML input fields for forms
that you write outside of the associated <form> and </form> require

the form attribute along with the id name you wrote in the opening
form element.
...
<form id="form1" method="post" action="/test.php">
 Subject: <input type="text" name="subject">

 Your message:

 <textarea name="txt" rows="15" cols="50" maxlength="2500">
 Enter your message here ...
 </textarea>

</form>
...
<p>
 <input type="submit" value="Submit" style="width: 80px;"
 form="form1">
 <input type="reset" value="Cancel" style="width: 80px;"
 form="form1">
</p>
...

Listing 7.10 /examples/chapter007/7_2_11/index.html

7.2.12 Multiple Submit Buttons for Different URLs

It’s also possible to set up multiple submit buttons for a form, so that
the form can be submitted with different URLs. For these purposes,
two new attributes for input fields of type submit and image have
been added with formaction and formmethod, which override the
attributes action and method in the opening form element, if those
have been written there.

formaction allows you to specify the URL that will be called when the
submit button is pressed and to which the form data should be
submitted. formmethod is the HTTP request method that should be
used to send the data to the server for processing, that is, either GET
or POST. The meaning of the two attributes corresponds to the action
and method attributes in the opening form element, except that each
submit button may have its own formaction and formmethod attribute
with different values.

Here’s a simple theoretical example:
...
<form>
 <label for="email">Messages received: </label>
 <input type="email" name="mail" id="email" required>
 <input type="submit" value="for HTML"
 formaction="/scripts/subscribe-html.php"
 formmethod="post">
 <input type="submit" value="for CSS"
 formaction="/scripts/subscribe-css.php"
 formmethod="post">
</form>
...

Listing 7.11 /examples/chapter007/7_2_12/index.html

Instead of action and method in the opening form element, you’ve
written formaction and formmethod twice each in the input field of
type submit. If you enter an email address here, you can subscribe to
either a newsletter for HTML or for CSS news. Either of the two
buttons calls a different script.

Figure 7.9 Two Submit Buttons, Each Calling Different URLs

Other HTML Attributes

In addition to the HTML attributes formaction and formmethod for
the submit button, there are formenctype (corresponding to
enctype) for the encoding type and formtarget (corresponding to
target) for the target window. In addition, the HTML attribute
formnovalid (corresponding to novalidate) can be used as a
standalone attribute; this way, you can make sure the input fields
won’t get validated when submitted.

7.3 Special Types of Input Fields
HTML provides several field types for better input control by the web
browser, for example, to specify certain types of data or ranges of
values. All new input fields must be written using the <input> tag and
the corresponding type attribute. You already know <input
type="text"> as a single-line text field or <input type="password">,
which is also a single-line text field where the text is hidden.

Table 7.3 lists the HTML input fields in alphabetical order. An
example with all types can be found in
/examples/chapter007/7_3/index.html.

HTML Notation Description
<input type="color"> Displays a control field with a color

selection dialog
<input type="date"> Displays a control field for a date

specification
<input
type="datetime">

Displays a control field for the date, time,
and time zone

<input
type="datetime-
local">

Displays a control field for date and time
without the time zone

<input type="email"> Input field for an email address
<input type="month"> Field for entering year and month
<input
type="number">

Text field for the numbers

<input type="range"> Text field for a number within a specific
range

HTML Notation Description
<input
type="search">

Input field for the search

<input type="tel"> Input field for phone numbers
<input type="time"> Input field for the time
<input type="url"> Input field for URLs
<input type="week"> Input field for the year and calendar week

Table 7.3 HTML Field Types for Controlled Input

7.3.1 An Input Field for Colors Using <input
type="color">

If you use <input type="color">, a user can enter or select a color
value via a color selection dialog. To preset the color with a value,
you can use the HTML attribute value in the following way:
<input type="color" value="#FF0000">

This way, you’ve defined an input field for colors, which is preset with
red color (hex value: #FF0000 = red).

Figure 7.10 The Input Field for Colors in Windows with the Firefox Browser

The Presentation of the New Input Fields Can Vary

Note that the specification doesn’t dictate how web browsers
present the various input types. Thus, different web browsers and
different systems are likely to mostly use a slightly different user
interface of an input field for display.

7.3.2 An Input Field for a Date Using <input
type="date">

Finally, <input type="date"> allows you to take users by the hand to
query a date. On many websites, you can’t tell exactly whether you
should enter DD-MM-YYYY, MM-DD-YYYY, or even YYYY-MM-DD.
D stands for day, M for month, and Y for year. The new input type
date opens a selection from which the user can choose the date.

Here, too, you can preset the value with value and define the
minimum or maximum date specification with min or max. Write the
date in the form of YYYY-MM-DD, for example:
<input type="date" value="2023-11-12"
 min="2023-01-01" max="2024-12-30">

This sets an input field for a date that defaults to 11/12/2023. In
addition, you restrict a valid selection for the date from 1/1/2023 to
12/30/2024. All other entries are invalid.

Figure 7.11 The Input Field for a Date in the Chrome Browser

7.3.3 An Input Field for a Time Using <input
type="time">

Using <input type="time">, you can enter a time in 24-hour format,
which will also be validated. An entry such as 27:15 or 22:61 is thus
not possible and is recognized as invalid.

If you want to preset the field with a time, you can use the HTML
attribute value, just as you can use the HTML attributes min or max to
specify an earliest or latest possible time. This specification must be
in the format HH:MM, for example:
<input type="time" value="15:15" min="08:00" max="17:00">

In this example, you’ve set an input field for a time with 15:15. In
addition, you’ve limited the time with min and max to 8:00 am and to
5:00 pm, respectively. Everything else is invalid.

Figure 7.12 Input Field for the Time

7.3.4 Input Fields for Date and Time

You can create a combination of date and time using the input fields
<input type="datetime"> or <input type="datetime-local">, where
datetime is with time zone specification, and datetime-local is
without time zone specification.

You can preset a value here with the HTML attribute value in the
format YYYY-MM-DD followed by the capital letter T and the time in
the format HH:MM, for example:
<input type="datetime-local" value="2023-11-12T15:15">

This enables you to define an input field for date and time as well as
the default with 11/12/2023 at 3:15 pm.

The same is possible with the time zone specification if you set
datetime as type. You must define the time zone at the end with
either the capital letter Z (for Zulu time) or a specification such as

+0100 (Greenwich +1 hour) or -0230 (Greenwich –2.30 hours),
for example:
<input type="datetime" value="2023-11-12T15:15+0100">

7.3.5 Input Fields for the Month and the Week

Other date-related input fields are <input type="month"> or <input
type="week"> for the input of a month or a calendar week,
respectively, including the year. You can also use the HTML
attributes value, min, and/or max. You must specify a month in the
form YYYY-MM, for example:
<input type="month" value="2023-01">

This allows you to define an input field for a month and the year,
presetting the input field with January and 2023.

This works similarly for the input field for the week, where you must
use YYYY-WW. A year has a maximum of 52 or 53 calendar weeks,
and a week begins on Monday.

Figure 7.13 Input Fields for the Month and the Week in Use

7.3.6 An Input Field for Searches Using <input
type="search">

You can define an input field for a search term using <input
type="search">. Visually, such fields are rendered for searches such
as ordinary text fields (type="text").

Figure 7.14 Search Input Field

Only when the user starts typing something into the text field does a
small “x” appear on the right-hand side of the input field, which
enables the user to quickly delete the search term. However, the
exact display here also depends on the implementation in various
web browsers. In any case, you have a semantic solution for a
search input field: <input type="search">.

7.3.7 An Input Field for Email Addresses Using <input
type="email">

You can define an input field for email addresses via <input
type="email">. When you do this, the web browser will check if the
email address has a valid format. For example, you can style this

field with the CSS pseudo-classes :valid or :invalid to check
whether the entered email address is a valid one, for example:
...
<style>
 input:invalid { background: red; }
 input:valid { background: ivory; }
<style>
...
<input type="email" multiple requried>

In this example, the input field gets displayed in red color (:invalid)
if the field doesn’t contain a valid email address. If the entered
address is valid, the input field will be displayed in ivory (:valid).

The HTML attribute required is also used very often with this input
field because, without this option, an empty field could be submitted
to the web server. The HTML attribute multiple also makes it
possible to specify more than one email address in the field. The
individual email addresses are separated by commas.

Pseudo-Classes “:valid” and “:invalid”

The two pseudo-classes aren’t limited to type="email", but can
also be used with other input types. However, I’ve jumped the gun
here anyway with CSS regarding a topic I won’t go into more detail
until Chapter 8.

7.3.8 An Input Field for a URL Using <input type="url">

You can use <input type="url"> to define an input field for web
addresses. As with type="email", the web browser performs a
simplified validation of the URL. Other web browsers, on the other
hand, list the most recently visited web pages from the history here.

7.3.9 An Input Field for Phone Numbers Using <input
type="tel">

<input type="tel"> allows you to define an input field for a phone
number. However, no special format is recommended here, nor is
there any validation. You aren’t even restricted to enter only digits,
and you can also use typical additional characters as in +1-801-123-
4567. Smartphones that know this input field display the keyboard
for a phone number input at this point. If you really need a specific
validation, you must use the pattern attribute to implement it. A great
place to start with many ready-made pattern attributes can be found
at http://html5pattern.com.

7.3.10 An Input Field for Numbers Using <input
type="number">

For a manual input of numbers, you can use the input type <input
type="number">. Again, the web browser validates the input to see if
it’s a number or not. And again, you can style this field using the
CSS pseudo-classes :valid or:invalid, for example, to check
whether or not it’s a valid number. Many web browsers display this
input field with a spinbox and also the HTML attributes min, max, and
step are commonly used. The step attribute enables you to specify
by how much the value will increase when you use the rotation field.

Both positive and negative numbers are allowed for input. This also
applies to floating point numbers that must be used with a period as
the decimal point. The exponential notation with e+, E+, e-, or E- is
also allowed.

http://html5pattern.com/

Figure 7.15 An Input Field for Numbers

7.3.11 An Input Field for Numbers of a Certain Range

To implement a slider that can also be used for entering numbers,
you can use <input type="range">. Usually, the HTML attributes min,
max, and step are used to allow a value in a certain range.

Figure 7.16 A Slider for Entering Numbers

7.3.12 Outputting Values and Calculations Using
<output>

The HTML element <output> can be used to output values or the
result of a calculation and is something like the counterpart of
<input>. Here, we’ll demonstrate the element together with the slider
that has been defined using the input element (type="range"):
...
 Adjust slider:
 <input type="range" id="ival" value="50">
 <output id="oval" for="ival">50</output>
...

To demonstrate the output element in practice at all, I had to
anticipate a few things here. Without JavaScript, updating the output
element is impossible. For this purpose, I added the following
JavaScript:
…
 function synchOutput(ev) {
 document.getElementById('oval')
 .value = ev.target.value;
 }
 document.getElementById('ival')

 .addEventListener('input', synchOutput);
…

Via addEventListener(), we virtually listen at the input element with
the ID of ival and call the synchOutput() function when a change
occurs, as we set the value of the output element with the ID of oval
according to the slider. However, this description is strongly
abbreviated. JavaScript will be discussed separately later on in this
book.

Figure 7.17 The <output> Element Outputs the Current Value of the Slider

7.4 The HTML Attributes for Input Fields
You’ll also find HTML attributes for the input fields, which helps you
to avoid JavaScript validations and to give the user a helping hand
with the input. A first brief overview of the attributes can be found in
Table 7.4.

HTML
Attribute

Description

autofocus The field should receive the focus when loading.
autocomplete This (de)activates autocompletion of a field or a

complete form.
list This allows a list of predefined values to be used for

input fields.
max
min

This allows you to set a maximum or minimum
value for the input field.

multiple Multiple values can be specified in one field.
pattern This checks an input against a regular expression

passed to pattern.
placeholder A text is displayed as a placeholder until the user

clicks on the field.
required For this attribute, the input field must be filled out so

that it can get passed on by the web browser.
step This controls the step level for some input fields.

Table 7.4 Attributes for Input Fields

7.4.1 Setting the Input Focus Using the HTML Attribute
“autofocus”

If you pass the autofocus attribute to an input field, the field will
immediately receive focus when loaded, for example:
...
<form>
 Text 1 <input type="text" autofocus>

 Text 2 <input type="text">

 Text 3 <input type="text">
</form>
...

Listing 7.12 /examples/chapter007/7_4_1/index.html

When this form is loaded in the web browser, the focus is
immediately in the first input field, and the user can start typing
immediately. However, you should only provide one input field on a
web page with this attribute.

7.4.2 (De)activating Autocompletion Using the
“autocomplete” Attribute

Almost all current web browsers use some kind of autocompletion for
form data. You can use the autocomplete attribute to control whether
user input can be saved during the completion process. By default,
most web browsers have this service enabled (autocomplete="on").
With autocomplete="off", you can prevent saving the input. By the
way, passwords aren’t stored. Here you can either define the
attribute in <form>, and the elements it contains inherit the
autocomplete status, or you can use the autocomplete status for
individual input elements as well.

7.4.3 A List of Suggestions for Using the HTML
Attribute “list” and <datalist>

The list attribute for input fields allows you to suggest a list of
possible values for the input. You can define such a list in turn using
the datalist element. The datalist element gets the list value you
set in the input field as id. Let’s take a look at a simple example:
...
<form>
 Title <input list="mylist" name="title">

 <datalist id="mylist">
 <option value="Mr.">
 <option value="Mrs.">
 <option value="Professor">
 </datalist>
</form>
...

Listing 7.13 /examples/chapter007/7_4_3/index.html

Depending on the web browser, you’ll either find a small dropdown
menu on the right-hand side of the input field when the field where
the suggestions are listed gets the focus. Or a pattern matching the
list could be suggested below it during input if autocomplete hasn’t
been disabled.

Figure 7.18 A List of Suggestions for the <input> Field

7.4.4 Specifying Minimum and Maximum Values and
the Step Size

I’ve already described the HTML attributes min, max, and step several
times, for example, when entering numbers with type="number" or
the slider type="range", and I’d like to mention them again briefly
here. I’ve also shown you, when specifying date and time, that you
can use min and max for other values beyond ordinary numbers.

With min or max, you can define the permitted value range for the
input type. Thus, the form will never submit a value that’s less than
min and greater than max. The step attribute in turn is used to control
the step level of the input, for example:
<input type="number" value="50" min="0" max="100" step="5">

Only a value between 0 and 100 can be entered in this input field.
The rotating field is incremented or decremented by the value 5.

7.4.5 Selecting or Entering Multiple Values Using
“multiple”

The Boolean attribute multiple can be used with <input type="file"
multiple> and <input type="email" multiple>, allowing the user to
upload multiple files or enter multiple email addresses.

7.4.6 Regular Expressions for Input Fields Using
“pattern”

If you want to restrict input using regular expressions, you can do so
via the pattern attribute. A classic example is the entry of a five-digit
number, as is required in some countries for postal codes. You can
formulate such an input field with pattern as follows:

<input type="text" pattern="[0-9]{5}">

The input field is only filled in correctly and transmitted if the pattern
that gets entered consists of five digits.

Some input types, such as email, url, or number, already have
something like a built-in regular expression built; for them, the web
browser checks if the entered format matches the input type. For
more commonly used patterns for the HTML attribute pattern, visit
http://html5pattern.com.

7.4.7 A Placeholder for an Input Field Using
“placeholder”

Another help for the user is placeholder text, which enables you to
specify a hint in an input field that disappears when the input field
gets the focus, for example:
...
User <input type="text" placeholder="Username">

Password <input type="password" placeholder="Password">

...

Listing 7.14 /examples/chapter007/7_4_7/index.html

Many web browsers set the specified text as a gray placeholder, as
shown in Figure 7.19, for example.

Figure 7.19 The Placeholder in Use

http://html5pattern.com/

7.4.8 Defining an Input as Required Using the
“required” Attribute

The Boolean attribute required is used when an input field must be
completed. As long as no input has been made, the web browser
won’t submit the form.

7.4.9 Controlling Error Messages for Input Fields

Some HTML elements check for the validity of the input. For
example, if you enter an invalid email address for the email input
type, the data won’t be sent to the server. Let’s look at a simple
example:
...
<form>
 Email <input type="email" placeholder="Email" id="em">
 <label for="em"></label>
 <input type="submit">
</form>
...

Listing 7.15 /examples/chapter007/7_4_9/index.html

If, in this example, you enter an invalid email address and submit the
data using the Submit button, you may receive the error message
shown in Figure 7.20. However, this message depends on the web
browser and operating system and is difficult to change.

Figure 7.20 The Input Was Invalid

As I just demonstrated with the input type email, other input types
such as number, url, or pattern work as well. When the user enters
something into such input fields, the web browser recognizes
whether the input is valid or invalid. You can format this status using
the CSS pseudo-classes :valid and :invalid. In terms of the email
address, you could write the following with CSS:
...
<style>
 input[type='email']:invalid + label::after{
 color:red;
 content: " ×";
 }
 input[type='email']:valid + label::after{
 color: green;
 content: " ?";
 }
<style>
...

Listing 7.16 /examples/chapter007/7_4_9/index.html

In this very simple example, a small red “x” will display at the end of
the input field during input if the value of the entered email address is
still invalid. If the email address is valid, a green check mark will
display at the end of the input field. You could have used
input:invalid and input:valid here without the input type email, but
then all other input fields (if any) would be considered as well. In the
example, an empty label element was used to indicate behind the
input field with a green check mark or the red “x” whether the input is
correct or incorrect.

Figure 7.21 Invalid and Valid Email Addresses

The same happens if you’ve provided a field with the attribute
required. Again, the error message depends on the operating
system and web browser if you submit a form where an input field
with required hasn’t been filled out.

Figure 7.22 The Input Field Was Provided with the “required” Attribute

Again, you can use the CSS pseudo-class :required to style these
input fields separately with CSS. A simple example would be to put
an asterisk after each of these input fields with the indication that an
input in this field is required in any case, for example:
...
<style>
 input:required + label::after{ color: gray; content: " *"; }
<style>
...
<form>
 Text01 <input type="text" id="t1" required>
 <label for="t1"></label>

 Text02 <input type="email" id="t2">
 <label for="t2"></label>

 Text03 <input type="email" id="t3" required>
 <label for="t3"></label>

 <input type="submit"><input type="reset">
</form>
<p>(*) = Input required
...

Listing 7.17 /examples/chapter007/7_4_9/index2.html

Figure 7.23 An Asterisk Indicates Which Fields Require Input

Deactivating the Validation

It’s also possible to use the Boolean attribute novalidate to avoid a
validation for individual input fields.

7.5 Other Useful Helpers for Input Fields
This section introduces a few more useful HTML attributes and
elements for the input fields. For an initial overview, see Table 7.5.

Attribute Description
disabled Disables input elements
readonly Sets the input element as read only, not editable
tabindex Presets a tab order when the (Tab) key gets pressed
accesskey Determines a shortcut for a form element
<fieldset>
</fieldset>

Groups multiple form elements

Table 7.5 Useful HTML Attributes and an HTML Element for Input Fields

7.5.1 Disabling Form Elements Using the HTML
Attribute “disabled”

You can completely disable a form element using the Boolean HTML
attribute disabled. This element is usually displayed in gray or in a
paler font to make it clear that it can’t be clicked or edited. This
attribute can be used in all form elements such as input fields,
dropdown lists, buttons, and radio buttons. Let’s take a look at a
simple example:
...
<p>Please select extra options:</p>
<p>
 <input type="checkbox" name="extra" id="c1" value="breakf"
 checked disabled>
 <label for="c1">Breakfast</label>

 <input type="checkbox" name="extra" id="c2" value="lunch">
 <label for="c2">Lunch</label>

 <input type="checkbox" name="extra" id="c3" value="dinner">
 <label for="c3">dinner</label>
</p>
...

Listing 7.18 /examples/chapter007/7_5_1/index.html

In this example, the checkbox for breakfast has been deactivated.
This option isn’t available as an extra, but should still be visible and
can’t be deselected. The other two checkboxes, on the other hand,
are optional.

Figure 7.24 The Checkbox for “Breakfast” Has Been Deactivated

7.5.2 Permitting Read-Only for Input Fields Using the
“readonly” Attribute

The readonly attribute is also a Boolean standalone attribute and can
be used to mark an input field as read only. This attribute is useful for
input fields where users should see the content but can’t change it
(e.g., taxes, nationality, result of a calculation). This way, you virtually
turn an input field into an output field. Although users can no longer
edit the field, they can still select its contents and copy it to the
clipboard, for example.

7.5.3 Useful Keyboard Shortcuts and Tab Sequence for
Input Fields

You can also guide the user by means of the attributes tabindex and
accesskey. With the HTML attribute tabindex, you can use the (Tab)
key in the HTML form to jump to the individual form elements in the
order you specified via tabindex. The form element with the lowest
value is jumped to first, followed by the second lowest, and so on to
the form element with the highest tabindex value.

The HTML attribute accesskey allows you to specify a keyboard
shortcut the visitor can press to jump to a form element. However,
the keyboard shortcuts are usually different in each web browser.
For example, if you assign accesskey="a" to a form element, you can
jump to it by pressing (Alt) + (A) in some web browsers. Other web
browsers, in turn, require (Ctrl) + (Alt) + (A), (Ctrl) + (A), or
(Alt) + (Shift) + (A).

Let’s take a look at a simple example:
...
<form>
 <label>Text01</label>
 <input type="text" id="t1" placeholder="Name"
 tabindex="2" accesskey="n">

 <label>Text02</label>
 <input type="email" id="t2" placeholder="Email"
 tabindex="1" accesskey="e">

 <label>Text03</label>
 <input type="text" id="t3" placeholder="Country"
 tabindex="3" accesskey="c">

 <input type="submit" tabindex="4">
 <input type="reset" tabindex="5">
</form>
...

Listing 7.19 /examples/chapter007/7_5_3/index.html

Here, the (Tab) key would first jump to the second input field
because it has the lowest tabindex value. Pressing the (Tab) key
again would lead to the first input field with the tabindex value 2. By
pressing the (Tab) key again, you would continue with the third input
field, and so on.

You can also access the individual input fields via keyboard
shortcuts. With (N), you control the first; with (E), the second; and
with (C), the third input field. All of this is to be regarded in relation to
the corresponding key combination of your web browser, such as
(Ctrl) + (Alt) + (N) in Google Chrome.

7.5.4 Grouping Form Elements Using <fieldset> and
<legend>

It can also be very useful to group multiple form elements between
<fieldset> and </fieldset>. In between, you can combine multiple
form elements into one visual group. Many web browsers frame this
area with a line, for example, to make this group visually clear.
Nevertheless, the use of <fieldset> isn’t intended for visual
formatting, which, as we know, you should never do with HTML
elements, but purely for logical grouping. For visual formatting, you
should always use CSS. You can also set a heading for this group of
elements by using <legend> ... </legend>. Let’s take a look at a
simple example:
...
<form>
 <fieldset>
 <legend><h2>Your data</h2></legend>
 <label>Name</label>
 <input type="text" id="t1" placeholder="Name">

 <label>Email</label>
 <input type="email" id="t2" placeholder="Email">

 <label>Date of birth</label>
 <input type="date" id="t3">
 </fieldset>

 <fieldset>
 <legend><h2>Input</h2></legend>
 <input type="submit">
 <input type="reset">
 </fieldset>
</form>
...

Listing 7.20 /examples/chapter007/7_5_4/index.html

In Figure 7.25, you can see the grouping in the web browser.

Heading in <legend>

Previously, plain text had to be used within a legend element.
Since the release of HTML 5.2, heading elements (h1, h2, h3, etc.)
can also be placed here. This is useful when you use a group of
different sections in a form, which in turn is extremely useful for
users who depend on the document outline for navigation.

Figure 7.25 A Form with Grouped Form Elements

7.5.5 Progress Display via <progress>

You can use the progress element to define a progress indicator to
show the progress of an action such as downloading a file or filling
out an HTML form. Figure 7.26 shows such an indicator, which may
look different depending on the browser used.
...
<p>
 Progress bar:
 <progress value="33" max="100">Progress: 33%</progress>
</p>
...

Listing 7.21 /examples/chapter007/7_5_5/index.html

Figure 7.26 Progress Display via <progress>

In practice, you can use the progress element along with JavaScript
to visualize the state of a work via the progress bar accordingly. To
account for accessibility, the current state of the progress bar should
be written between <progress> and </progress>.

The HTML attribute value enables you to specify the number of
processed steps, while max indicates how many steps are possible at
maximum. The progress bar will be displayed according to these two
values. The value of value mustn’t be greater than that of max.

7.5.6 Visualizing Values Using <meter>

Another HTML element you can use to represent values visually is
the meter element. The element can be used, for example, to display
various measured values. Figure 7.27 shows the meter element in
use, which in turn can look different depending on the web browser
used.
...
<p>
 <meter value="12" max="100">12 of 100</meter> 12 of 100

 <meter value="0.33">33% of 100%</meter> 33% of 100%

 <meter value="10" min="0" low="25" high="75" max="100">
 20% of 100%
 </meter> 20% of 100%

 <meter value="80" min="0" low="50" optimum="25" high="75" max="100">
 80% of 100%
 </meter> 80% of 100%

</p>
...

Listing 7.22 /examples/chapter007/7_5_6/index.html

Figure 7.27 Display of Measured Values with <meter>

The meter element is often used together with JavaScript to adjust
and visualize a measured value accordingly. Again, for the sake of
accessibility, you should write the current measurement value
between <meter> and </meter>.

The value attribute enables you to define the current measured
value, while max indicates which maximum value is possible. The
measured value is visualized according to these two values. The
value of value mustn’t be greater than that of max. If no max value is
used, this attribute contains the default value 1. Via low, you can set
an upper limit of the lower measuring range. The counterpart, which
sets the lower limit of the upper measuring range, is high. You can
specify an optimum value with optimum; it must be between min and
max.

7.6 Sending Form Data Using PHP
Using a real example, I’ll now demonstrate how data from an HTML
form entered in a web browser gets sent to the web server and is
processed there. To do this, we’ll use a simple form mailer in PHP,
without me going into more detail about PHP here. I’ve deliberately
kept this section very simple, as I don’t presume that you have PHP
knowledge. My only concern is that you understand how the data
from an HTML form gets transferred to the web server for further
processing.

Styling Forms Using CSS

I’ve already styled the form we’ll be using in the following example
via CSS. To learn how to style forms yourself using CSS, see
Chapter 14, Section 14.7.

7.6.1 Transferring the Data from the Web Browser for
Further Processing

When a user fills in the input fields of an HTML form and clicks the
Submit button to send the data, the data is transferred to an
application on the web server for further processing. You’ve specified
which application that is via the action attribute in the opening
<form> tag. In practice, that’s often a script (usually in PHP), which is
able to process the form data transmitted by the web browser. To
avoid becoming too theoretical, let’s create a simple form mailer for
this purpose:
...
<form id="myForm" method="post" action="form-mail.php">

 <fieldset>

 <div>
 <label for="name">Name:</label>
 <input type="text" name="name" id="name"
 placeholder="Your name" required>
 <label id="error1"></label>
 </div>
 <div>
 <label for="mail">Email:</label>
 <input type="email" name="mail" id="mail"
 placeholder="Email address" required>
 <label for="mail" id="error2"></label>
 </div>
 <div>
 <label for="nachricht">Your message:</label>
 <textarea name="message" id="message"
 placeholder="Enter message here ..."
 rows="8" required></textarea>
 <label for="message" id="error3"></label>
 </div>
 <div>
 <input name="submit" type="submit" value="Submit">
 <input name="Reset" type="reset" value="Reset">
 </div>
 <div>
 <label for="gdpr" id="error4">GDPR consent:</label>
 <input type="checkbox" id="gdpr" name="gdpr" required />
 <label>This website may store the information submitted to respond to
 my request. (
 Privacy Policy).
 </label>
 </div>
 </fieldset>
</form>
...

Listing 7.23 /examples/chapter007/7_6/index.html

The data in this HTML form will be submitted to a PHP script named
form-mail.php, which in this example is located in the same directory
as the HTML file containing the HTML form on the web server.

Figure 7.28 A Simple HTML Form Mail

You can use the action attribute in the opening <form> tag to specify
where the form’s data should go. The web browser compiles an
HTTP request (a request variant) from the input in the form. Such a
request usually consists in a simplified way of the method name, the
path to the requested resource, and the HTTP version, for example:
GET http://address.com/script.php HTTP/1.1

In addition to the script to be called, you can also specify an HTTP
request method, if you send form elements via HTTP. The method
you use to submit this string to the web server is specified by the
method attribute in the opening <form> tag. If you don’t specify a
method, the default setting, that is, the GET method (method="get"),
will be used. There are several HTTP request methods, the most
important of which are GET and POST.

7.6.2 The “POST” Method

The POST method (method="post") is primarily used for larger
amounts of text. Here, when content is requested, the data is
transferred from the form in a data block of name-value pairs. Unlike
the GET method, this HTTP request method sends the message in

the separate body of the HTTP request and is therefore not visible in
the URL. In our form mailer, the POST method was used for the
method attribute. An advantage of POST is that the length of the data is
usually unlimited. And if you plan to upload files, this is also possible
only with the POST method.

7.6.3 The “GET” Method

With this HTTP request method, the web browser appends the form
data to the address specified via the HTML attribute action using a ?
character at the end as a query string. With regard to our example,
the URL looks as follows after sending with the GET method:
http://www.internetaddress.com/form-mail.php?name=Jason+Wolf&mail=wolf%40
pronix.com&message=Hello+Jason%21%0D%0A%0D%0AGreat+website%21%0D%0A%0D%0A
Greetings%0D%0AJohn&send=send&gdpr=on

What looks quite chaotic here at first has a structure after all. The
question mark separates the URL from the query string that contains
the data. An = in the query string separates the name from the
values, and an & separates the individual name-value pairs. If you
split the URL, including the query string, at these points, the whole
thing looks a bit clearer:
http://www.internetaddress.com/form-mail.php
name=Jason+Wolf
mail=wolf%40pronix.com
message=Hello+Jason%21%0D%0A%0D%0AGreat+website%21%0D%0A%0D%0ARegards%0D%0AJohn
send=send
gdpr=on

All other cryptic characters are just encodings. For example, a space
is replaced by + or %20. The @ sign is displayed as %40, and so on. If
you also decode these characters, you’ll get a full overview of the
name-value pairs that are transmitted with the form to the web server
as an HTTP request:

name=Jason Wolf
mail=wolf@pronix.com
message=Hello Jason!

Great website

Regards John
send=send
gdpr=on

The GET method is more commonly used for small amounts of data,
such as a search query. If the amount of data is more extensive or
you don’t want the GET parameters to be displayed in readable form
in the URL, you can use the POST method. In addition, the length of
the data is limited with GET. However, you can bookmark the event
page of a GET form because all the necessary information is available
in the URL and query string.

GDPR Consent

If you use a form mailer, then you should also add the GDPR
consent as a checkbox, as it was done in the example. The
European Union stipulates that users must actively agree to the
storage of the transmitted data. A link to the privacy policy should
also be added.

7.6.4 Processing the Data Using a PHP Script

In the example, the form data is transferred to the PHP script, form-
mail.php. Even though this book doesn’t cover programming with
PHP scripting, the corresponding listing is shown here with a brief
explanation. If you want to try this example on a web server or web
host, you need to make sure that the script is executable for users,
which is why you may need to adjust the execution permissions for

the form-mail.php file. Likewise, PHP must be usable on your web
host.
<?php
// Data for the configuration
$mailto = 'youraddress@address.com';
$mailFrom = 'form-mailer PHP script';
$mailSubject = 'Feedback from PHP form';
$returnPage = 'http://serveraddress/thankyou.html';
$returnError = 'http://serveraddress/error.html';
$mailContent = '';

// Read form data and create mail from it
if(isset($_POST)) {
 foreach($_POST as $name => $value) {
 $mailContent .= $name . " : " . $value . "\n";
 }
}
// Send email
$mailSent = mail($mailto, $mailSubject, $mailContent,
 "From: " . $mailFrom);
// Check email dispatch
if($mailSent === TRUE) {
 header("Location: " . $returnPage);
}
else {
 header("Location: " . $returnError);
}
exit();
?>

Listing 7.24 /examples/chapter007/7_6/form-mail.php

I intentionally kept the script very short. Initially, you should adjust
the data for the configuration. At the very least, you should assign
your email address to the $mailTo variable so that you can receive
the submitted form data. In the foreach loop, the script’s task is to
read the submitted POST data with the name-value pairs (here, with
$name and $value) and create content for the email with
$mailContent. This email is sent using the mail() function to the
address in the $mailTo variable, with the subject in $mailSubject and
the contents of the $mailContent variable with $mailFrom as the
sender.

Next, you want to check the return value of the mail() function you
saved in $mailSent. The value can be either TRUE (in case of
success) or FALSE (in case of an error). Depending on whether or not
the form was successfully sent, a corresponding redirection to the
address you specified in $returnPage or $returnError takes place.
It’s recommended to specify a full URL. For this purpose, the
thankyou.html file was added, which gets displayed if the form could
be sent successfully:
...
<form id="thankyou" action="http://serveraddress/">
 <fieldset>
 <legend>Thank you</legend>
 <div>
 <label>We have received your message!</label>

 <input type="submit" value="Back to home page">
 </div>
 </fieldset>
</form>
...

Listing 7.25 /examples/chapter007/7_6/thanks.html

The error.html file gets displayed if an error occurs after submitting
the form.
...
<form id="thankyou" action="index.html">
 <fieldset>
 <legend>Error during data transmission</legend>.
 <div>
 <label>The data could not
 be sent to us!</label>

 <input type="submit" value="Back to the form">
 </div>
 </fieldset>
</form>
...

Listing 7.26 /examples/chapter007/7_6/errors.html

Figure 7.29 The Form Has Been Successfully Submitted

Figure 7.30 An Error Occurred after Submitting the Form

This very simple example can also be used for other forms and is
suitable for any number of input fields. However, I haven’t
considered input fields here where multiple selections can be made
at the same time (e.g., <select multiple>). In addition, this script isn’t
suitable for uploading files because the submitted files would have to
be checked.

When using transmitted and security-critical data, you should also
include a check. For example, it would have been possible to use
$_POST['mail'] to pass the sender to $mailFrom right away without
any problem, but there are certainly users who could use this line to
manipulate the email header.

7.7 Interactive HTML Elements
HTML also provides elements for interactive content. Interactive
elements can be changed and adjusted by visitors or can be
interacted with in other ways.

7.7.1 Expanding/Collapsing Content Using <details>
and <summary>

The details element allows you to expand and collapse page
content. This can be useful if there’s too much detail and information
at once, and you don’t want to overwhelm visitors with it. They can
then expand and collapse the additional information by clicking on a
summary element. Until now, such a task had to be implemented with
JavaScript.

Let’s look at a simple example:
...

 Lorem ipsum dolor sit amet ...
 <details>
 <summary>More information</summary>
 <blockquote>Lorem ipsum dolor ... </blockquote>
 </details>
 <details open>
 <summary>Further information</summary>

 Link 1
 Link 2
 Link 3

 </details>

...

Listing 7.27 /examples/chapter007/7_7_1/index.html

We’ve written the section for expanding and collapsing between
<details> and </details>. You can specify the clickable area as a
heading, which is always displayed between <summary> and
</summary>. Clicking on this summary element will expand and
collapse the content. If you don’t use a summary element, the default
heading is usually just Details. In the example, you can therefore
use the headings More information and Further information to
expand and collapse the content hidden by them up to the end of the
details element.

In the example, I also used the standalone HTML attribute open for
the second details element, which you can use to specify that the
content of this details element is expanded upon loading of the web
page. By default, the content of the details element is always
collapsed. All current web browsers can handle the details element.
If the details element isn’t supported by a web browser, everything
will be completely expanded, and no further interaction will be
displayed.

Figure 7.31 Expandable and Collapsible Content with <details> and <summary>

7.7.2 A Dialog Box via <dialog>

Dialog boxes or on-the-fly popups have been and still are primarily
implemented using div elements. But there’s also a separate HTML

element available for this purpose: <dialog>. Let’s look at a simple
example:
...
 <dialog id="dialog1" open>
 <p>Exit dialog?

 <input type="button" value="Close"
 onclick="document.getElementById('dialog1').close()">
 </p>
 </dialog>
...

Listing 7.28 /examples/chapter007/7_7_2/index.html

You can define a dialog in the space between <dialog> and
</dialog>. The open attribute allows you to specify that this dialog
gets displayed immediately upon loading. By default, without open,
the dialog doesn’t display. Otherwise, the dialog element has no
further attributes and only becomes meaningful in interaction with
JavaScript. In the example, the dialog box can be closed via a button
when clicking (onclick). For this purpose, we’ve addressed the ID
name of the dialog with getElementById('dialog1') and closed it with
close().

In addition to close(), you can also use show() here to display the
dialog, or you can use showModal() to display it while everything else
is grayed out. Usually, these JavaScript methods are activated by
other elements because by default a dialog box without the open
attribute isn’t visible at all at first. But let’s not get too much into
JavaScript at this point.

Figure 7.32 A Simple Dialog Box with the HTML Element <dialog>

The Safari browser can’t handle the dialog element yet. In Firefox,
the element must be optionally enabled. Web browsers that can’t
handle the dialog element display the full content, and interaction
such as closing the dialog isn’t possible.

7.8 Summary
Admittedly, the chapter about HTML forms provides a lot of
information because here several worlds collide: HTML, CSS, often
also JavaScript, and a script language such as PHP.

You’ve learned the following in this chapter:

You know how to create basic forms.

You’re now familiar with the individual HTML input fields for forms.

Likewise, you’re now familiar with the special types of HTML input
fields for forms that can make life easier for you and users.

Thanks to the HTML attributes, many things can be implemented
more easily to guide users when filling out forms. In addition, you
also know how to do without JavaScript in the future to check
HTML input fields.

Based on a simple example, you’ve learned how the data in an
HTML form is transmitted from the web browser to the web server
and processed there via a PHP script.

How to use interactive HTML elements.

8 Introduction to Cascading
Style Sheets

In this first chapter on Cascading Style Sheets (CSS), I’ll
explain what CSS is exactly, as well as the principle of
applying CSS based on some simple examples.

In Figure 8.1, you can see a simple basic diagram showing the
components that make up a simple and ordinary modern website.
Above all, the content is simple. To prepare this content for the web,
you can use HTML, which gives the content a semantic meaning by
means of HTML elements. In addition, you can use other media files
such as images or videos, which are also embedded in the HTML
document. Furthermore, more and more often, you can find various
scripts for special actions. Finally, the particular focus of this figure
and of the entire chapter, is the stylesheet. Taken together, all these
basic components form a simple but modern website that gets
displayed in a web browser.

Figure 8.1 The Basic Composition of the Components of a Simple Website

The predominant role of CSS (or stylesheets) in creating websites is
the appearance. With CSS, you can create rules for how the content
of an HTML element should be displayed. At this point, it pays off to
have semantically meaningful notations of the individual HTML
elements in the HTML document.

CSS supports the separation of a document’s structure and design.
Ideally, the presenting aspects should be completely separated from
the content of the website, which means the following:

HTML defines the meaning or semantics of the content.

CSS defines the presentation of the content.

Without HTML, the content can’t be used by web browsers, and
without CSS, the content is less beautiful.

Barrier-Free Access and CSS

Thanks to the separation of the content of the HTML document
from the design with CSS, the barrier-free access for people with
limited abilities can be facilitated.

In this introductory chapter to CSS, I’ll cover the following topics:

The history of CSS

The principle by which CSS works in practice

The options involved in using CSS in an HTML document

8.1 The Story of CSS
Because CSS is now the standard stylesheet language for websites,
I’d like to describe its genesis here in a fast-forward mode:

1. The first version with CSS level 1
In the early days, there were several similar approaches besides
what is now known as CSS, but the inventors of the original
CSS, Håkon Wium Lie and Bert Bos, were the first to make the
idea public. They were just in the right place at the right time. In
1995, the W3C became aware of CSS during a presentation,
and at the end of 1996, the CSS Level 1 Recommendation was
published. The first version was mainly about the design of fonts
and color.

2. The second version with CSS level 2
The next version was released in 1998. Because there were
some inconsistencies and CSS Level 2 often caused problems
when used on the web due to different web browsers
implementing many things incompletely or incorrectly, this

version was revised in 2002 with an intermediate version—CSS
Level 2 Revision 1—in which some of these defects were fixed
or deleted. It took until 2011 before CSS 2.1 was published as a
Recommendation. This new version included the positioning of
elements.

3. CSS3
The third version of CSS has been in the works since 2000.
Unlike the Level 2 version, they no longer used a single
specification, but instead used CSS3 to split the various features
into different modules. Each module adds new capabilities and
extends the features defined in CSS 2.1 with it—keeping
everything backward compatible.

Today, CSS no longer has a version number and consists of
numerous modules that are developed independently at different
paces. CSS3 is really just a term for the modules that were added
after CSS 2.1. The individual modules, however, do have a version
number. As a result, a CSS4 version will probably never exist.

Overview of the CSS Specification

An overview of all modules in progress can be found at
www.w3.org/Style/CSS/current-work, which is maintained by co-
inventor Bert Bos. A snapshot of the current state of CSS can be
found periodically at http://w3.org/TR/CSS.

http://www.w3.org/Style/CSS/current-work
http://w3.org/TR/CSS

8.2 The Basic Principle of Using CSS
To use the CSS principle so that it makes sense, you should first
create the HTML document with logical and semantic HTML
elements. You’ve already learned in detail how to create a proper
HTML document with HTML elements in the previous chapters. With
CSS, you can use rules for the individual HTML elements to
determine their appearance. As an example (see Figure 8.2), we’ll
use a header element, which has been written as shown here in the
HTML document, index.html:
...
 <header>
 <h1>My cooking blog</h1>
 <p>A blog with delicious recipes ...</p>
 </header>
...

Listing 8.1 /examples/chapter008/8_2/index.html

You’ll assign a new style to this HTML element using CSS, which will
determine the formatting and appearance of the header element. In
this example, you can find this formatting rule described in the
external style.css file as follows:
/* File: style.css */
...
header {
 background: #add8e6;
 padding: 2px;
 text-align:center;
}
...

Listing 8.2 /examples/chapter008/8_2/style.css

At this point, it isn’t important to understand what is written in
style.css. The only important thing is that you can see here how to

apply CSS rules to an HTML element. In the example, you create the
rule in the style.css file with the header selector (i.e., type selector)
and the declarations between the curly brackets. For this CSS rule to
really affect index.html and the header elements it contains, the
HTML document must know where the CSS file (style.css) was
stored. In the example, you inform the web browser about this using
the link element.

Using this CSS rule in the style.css file for the header element(s) in
the index.html file, you specify that for the content between the
HTML tags <header> and </header>, the background color should be
blue (#add8e6). The inner spacing (padding) is 2 pixels, and the text
alignment (text-align) is center. But as I said, these declarations
aren’t yet really important in this example. Figure 8.2 demonstrates
this process.

If you apply the principle of CSS rules with selectors and
declarations to several HTML elements, the outer appearance will
change significantly, as you can see in Figure 8.3. This example
shown here can be found in /examples/chapter008/8_2/ with
index.html and style.css.

Figure 8.2 A CSS Rule Is Defined with a Selector and the Declarations It Contains

Figure 8.3 Several CSS Rules Have Been Applied to the Individual HTML Elements

8.2.1 Structure of a CSS Rule

As you’ve already learned, you can define a CSS rule with a selector
and a declaration. Selectors are an essential building block of CSS,
and there are many different types of them. In this section, I’m not
going to cover these selectors in detail yet, but you’ll learn how you
can construct such a CSS rule in general:

Selectors
You can use the selector to specify the HTML element to which
the CSS rule should be applied. It’s also possible to apply a rule to
multiple HTML elements by separating the individual HTML
elements with commas:
h1, h2, h3, p { color: blue; }

This sets the CSS rule that the font color is blue for the HTML
elements h1, h2, h3, and p at the same time.

Declarations
You can use the declarations to specify how you want to format
the HTML elements selected via the selector. The declaration
itself also consists of two parts, a property and a value. The
property is separated from the value by a colon.

In Figure 8.4, you can see the structure and the individual
components of a CSS rule.

Figure 8.4 Structure of a Simple CSS Rule (CSS Statement)

8.2.2 Declaring a Selector

The declaration inside the curly brackets of a CSS rule consists of at
least one property and one value, with a colon between the property
and the value. If you want to use several such property-value pairs,
you must close each pair with a semicolon:
h1 {
 font-family: "Arial";
 color: red;
 text-align: center;
}

h2, h3 {
 font-family: "Courier";
 color: blue;
}

Here, you specify that all h1 elements are displayed in Arial font, in
red text color, and centered. Furthermore, you set a CSS rule for h2
and h3 elements, which are to be displayed in Courier font and in
blue color. You can choose the order of the statements as you like.
For example, you can also define the color first and then the font.

You could omit the semicolon from the last (or only) property-value
pair, but common practice has shown that you usually add more

CSS features to a CSS rule, and people tend to forget the omitted
semicolon to separate two property-value pairs. A missing semicolon
between two property-value pairs is an error.

Let’s return to the two components of a CSS declaration:

Properties
You specify a CSS feature (e.g., color, font, alignment) that you
want to change for the HTML element selected with the selector.
CSS has a tremendous number of features, many of which you’ll
get to know throughout the book.

Values
You specify the value for the CSS feature used. Again, what you
can use here depends on the CSS feature you’re using. For
example, if the property is color, you can specify the value of a
color. In addition to CSS features, you’ll also learn about many
different possible value specifications.

8.2.3 Using Comments for CSS Code

If you maintain more CSS code and larger web projects, you should
comment your CSS code as clearly as possible so that even after a
few weeks, you’ll still know what it is and what you’ve done there.
You can introduce a comment via /* and close it with */. Everything
in between (including line breaks) will be ignored by the web
browser, for example:
/* Creates a circle */
/* Warning! Does not work with IE8 or older */
.circle {
 height: 50px;
 width: 50px;
 border-radius: 50px;
}

Such comments are also useful if you divide your stylesheets into
individual sections to be able to orient yourself more quickly in the
CSS code, for example:
/*------------------------------------*/
/* Header and footer area */
/*------------------------------------*/
...
CSS statements for header and footer
...
/*------------------------------------*/
/* Contents */
/*------------------------------------*/
...
CSS statements for the main content
...

8.2.4 A Few Notes on Formatting CSS Code

While formatting CSS code is a matter of personal taste, I’ll
nevertheless give you a few pointers on this. At the least, if you want
to change or fix something, you might have some problems finding
what you’re looking for quickly with the following formatting of the
CSS code:
/* All right, but very confusing */
h2,h3{font-family:"Courier";color:blue;text-align:center;}

A general recommendation for this is to use an extra line for each
declaration and indent it. You should put the closing bracket on a
separate line. The following is much better to read than the
previously shown formatting of the CSS code:
/* Much better to read */
h2,
h3 {
 font-family: "Courier";
 color: blue;
 text-align: center;
}

For CSS rules with only one declaration, on the other hand, you
could write everything in one line:
h1 { color: blue; }

As mentioned, everyone has their own style, which they develop and
continue to use over time.

8.3 Integrating CSS into HTML
There are several ways to associate CSS style statements with an
HTML document. Strictly speaking, you have three options at your
disposal:

Inline style
You write the CSS style specifications directly in the HTML
element.

Internal stylesheet
You specify the style statement internally in the header of the
HTML document in the style element.

External stylesheet
You use an external stylesheet file and link it to the HTML
document.

The following sections describe these three options in greater detail.

8.3.1 Style Statements Directly in the HTML Tag Using
the HTML Attribute “style”

This is the worst way to make a CSS statement: writing the style
statement(s) directly in the opening HTML tag using the global HTML
attribute style. Within the style attribute, the same syntax and
grammar applies to the value assignment as I described in
Section 8.2.2. Concerning the logic, a selector isn’t needed because
the HTML element is already specified in the opening tag to which
this CSS rule is applied. Here’s a code snippet that shows how you
can use such style statements within an opening HTML tag:

...
 <header style="background: #add8e6; padding: 2px;
 text-align: center;">
 <h1 style="font-family: Verdana;">My cooking blog</h1>
 <p style="font-family: Verdana;">A blog with delicious recipes...</p>
 </header>
 <nav style="text-align: center;">
 <p style="font-family: Verdana;">
 blog | recipes |
 About me | Legal notes
 </p>
 </nav>
...

Listing 8.3 /examples/chapter008/8_3_1/index.html

Right away, we can see that in this small example, you’ll lose the
overview if you insert the style statements of CSS directly into the
HTML element (also referred to as inline styles). Such a style
statement within an HTML tag applies only to the HTML element in
which that style statement was written. For example, statements
have to be repeated as shown here with the p element with font-
family, and if you keep adding style after style in this way and make
yet another mistake, it becomes very tedious and usually even more
error-prone. If you do this with all your web pages, you’ll have to
change all web pages when you want to implement any changes. In
addition, you would even have to customize every styled element in
every single web page.

Can Style Statements Be Used Directly in the HTML Tag So
That It Makes Sense?

The only—but also not very convincing—argument for the
possibility to use a style directly in an HTML tag could be for
testing or demonstration purposes, just to quickly see what
something looks like with CSS, or maybe if you want to apply a
style only at one specific place in the HTML document.
Nevertheless, in most cases, you’re better off with the other

options of including CSS in HTML because that reduces the
maintenance effort enormously and provides you with extreme
flexibility.

8.3.2 Style Statements in the Document Head Using the
HTML Element <style>

The second option to write CSS style statements is in the HTML
document head between <head> and </head>. When doing this, you
mark the area for the style statements with the CSS rules with
<style> and </style>.

Let’s take a look at a simple example:
<!doctype html>
<html lang="en">
 <head>
 <title>My cooking blog</title>
 <meta charset="UTF-8">
 <style>
body { margin: 0px; }
 h1 {
 font-family: "Verdana", "Geneva";
 font-size: 200%;
 text-align: center;
 }
 p { font-family: "Verdana", "Geneva"; }
 ...
<style>
 </head>
 <body>
 ...
 </body>
</html>

Listing 8.4 /examples/chapter008/8_3_2/index.html

The CSS rules with style statements that you write between <style>
and </style> apply to the entire HTML document and thus to each
HTML element for which you’ve written a selector. Here, you also

can write several of those style areas within the HTML document
head.

Meaningful Use for Style Statements in the HTML Document
Head

This variant is often used to learn CSS because you have
everything in one file, which makes it clearer for such purposes. In
practice, this option can still be useful if you want to apply or
restrict some CSS rules to only one HTML document. However,
this method is less suitable for large projects, because you’d have
to search and revise each document when changes or errors
occur.

8.3.3 Integrating Style Statements from an External
CSS File Using <link>

In most cases, when developing more extensive websites, the
complete separation of HTML and CSS into separate files is
probably the best solution. This is the only way to ensure that the
layout is consistent for a larger web project. It also means that you
usually have only one CSS file for several HTML documents, which
you include in the HTML document with the link element within the
HTML document head.

Type Description of a CSS File

Like an HTML document, a CSS file is a plain text file with the file
extension .css (e.g., mystyle.css).

Thus, if you combine the CSS rules for formatting in an external CSS
file, you only need to make changes in the one central location so
that they apply to all other HTML documents that have integrated
that CSS file and use the CSS rules.

Figure 8.5 By Consolidating CSS Rules in One Place, Design Changes Are Much Easier
and Faster to Implement

The following code snippet shows you how to include the CSS file
with the HTML element <link> in the HTML document:
<!doctype html>
<html lang="en">
 <head>
 <title>My cooking blog</title>
 <meta charset="UTF-8">
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 ...
 </body>
</html>

Listing 8.5 /examples/chapter008/8_3_3/index.html

Although I’ve already described the link element in Chapter 3,
Section 3.5, a few sentences should still be added here. You can use
the href attribute to reference the desired CSS file (here, style.css)
to be included in the HTML document. In the example, the file is
located in the same directory as the HTML document, index.html. If
this file is located in another directory or even on another server, you
must add the corresponding path or URL. Via rel, you can write the

relationship type of the element, which, with the attribute value
stylesheet, means that just a stylesheet is to be included.

The code for the CSS file can be found in
/examples/chapter008/8_3_3/style.css. The final result corresponds
to Figure 8.3, shown earlier.

8.3.4 Combining CSS Rules in the Head Section and in
External CSS Files

The question you’re probably asking yourself is which CSS rule
takes precedence when you reference an external CSS file with the
link element while using a range between <style> and </style>.
This is absolutely legitimate and can be used to combine the CSS
rules. Let’s take a look at a simple example:
<!doctype html>
<html lang="en">
 <head>
 <title>My cooking blog</title>
 <meta charset="UTF-8">
 <link rel="stylesheet" href="style.css">
 <style>
 p { text-align: center; }
 </style>
 </head>
 <body>
 <h1>A headline</h1>
 <p style="text-align: left;">First paragraph text ...</p>
 <p>Second paragraph text ...</p>

 </body>
</html>

Listing 8.6 /examples/chapter008/8_3_4/index.html

The external CSS file style.css contains only the following:
/* File: style.css */
p { text-align: right; color: gray; }

Listing 8.7 /examples/chapter008/8_3_4/style.css

If there’s a conflict of the same rules, the last rule written will take
precedence. For example, if the link element comes after the style
section, the CSS rule from the external CSS file will take
precedence. However, if you still write a style statement in the
opening HTML tag (as an inline style), then the CSS rule in the
opening HTML tag takes precedence. CSS features that don’t
overlap, such as the text color (gray) in the style.css file of the
example, are combined with the existing CSS rules.

For this reason, in the example, p elements are displayed in gray
color because there was no overlap with the color property. The first
paragraph text, on the other hand, is left-aligned because the most
local CSS rule in the HTML tag for the p element was written there
as an inline style. The second paragraph, in turn, uses center
alignment because the more local CSS rule for the p element was
defined in the style section the document head. The specification of
text-align: right; in the stylesheet file style.css, on the other hand,
doesn’t get executed at all because there are more local CSS rules
containing the text-align property for both p elements.

Figure 8.6 Result of Combining Style Statements within an HTML Tag in the <style>
Section of the Document Head and in a Separate CSS File

You can even reference multiple CSS files using the link element. In
that case, too, for the same HTML elements with different
declarations of CSS features, those files will be combined. If a
conflict exists between two CSS features that are the same but have

different values for an HTML element, the style sheet that’s
integrated at a later time overrides the specification of the previously
integrated one.

Cascade

Because style statements can be integrated and combined in
different ways, there must be a rule for this that decides which
property takes precedence when there are competing CSS rules.
The problem is solved in CSS by having the cascade calculate a
weighting (a points system) for the rules and properties that
determines the format applied to an element.

8.3.5 Recommendation: You Should Separate HTML
and CSS

The previous sections have described the options you have for using
CSS for websites. In the previous section, you may already have
noticed how confusing it can get when you distribute CSS all over
the HTML document. It’s obvious that when mixing these options,
the overview is gone. In our example, the listed examples and the
combination of different ways to use CSS served only to
demonstrate what is allowed and theoretically possible. In practice,
it’s recommended to write the CSS code in a separate file and
include it in the HTML document head via the link element. Some of
the advantages of using a central CSS file (refer to Figure 8.5) are
listed here:

You have a consistent layout even for larger projects. All format
properties that you defined in the central CSS file apply to all
HTML documents in which this CSS file is included.

The effort for maintenance or design changes is considerably
reduced because this work will be limited to the single CSS file,
and the changes of the central file will immediately be available for
all HTML documents.

The HTML documents will become smaller in size because they
consist only of HTML. This also reduces loading time because the
central stylesheet file only needs to be downloaded once and can
then get cached in the web browser.

8.3.6 Testing Alternate Stylesheets during
Development

Using the global title attribute, you can set up alternate style sheets
within the link or style elements. This could be useful for
development work in a team, for example, when you want to
compare and test different CSS themes. A simple example of this is
shown in Listing 8.8.
...<head>
 <title>Alternate CSS</title>
 <meta charset="UTF-8" />
 <link rel="stylesheet" href="normal.css" title="Bright mode" />
 <link rel="alternate stylesheet" href="dark.css" title="Dark mode" />
 <link rel="alternate stylesheet" href="light.css" title="Light" />
</head>
...

Listing 8.8 /examples/chapter008/8_3_5/index.html

In this example, three stylesheets with different color schemes are
provided. Because all three of them contain the title attribute, the
first element (title="Bright mode") is used for rendering. The other
stylesheets should be selectable by the web browser as an
alternative. For example, in Firefox, you can select an alternate

stylesheet specified in the title attribute from the View menu in the
Web Page Style submenu.

Figure 8.7 Selecting an Alternate Stylesheet in Firefox

As mentioned earlier, this feature can be very handy when you work
in a team of developers. However, because it isn’t supported by all
web browsers, you shouldn’t use it for public web projects. Firefox
has been able to handle this function since version 3. For other web
browsers, however, you need an extension. If you use multiple
alternate stylesheets, the following rules apply:

If alternate hasn’t been used with the rel attribute and no title
attribute has been used, the stylesheet will be preferred.

If a style has the title attribute and hasn’t been marked as
alternate, it will be used as the default stylesheet.

If a style has the title attribute and has been marked as
alternate, it will be listed in the menu list.

8.3.7 Integrating Style Statements from an External
CSS File Using “@import”

Besides the HTML syntax for integrating an external CSS file in an
HTML document using the link element, there’s a second possibility
in CSS: the @import rule. Here’s a simple example of how you can
reference an external CSS file with this rule:
...
 <head>
 <title>My cooking blog</title>
 <meta charset="UTF-8">
 <style>
 @import url("style.css");
 </style>
 </head>
...

Listing 8.9 /examples/chapter008/8_3_6/index.html

The @import rule must also be written in the HTML document head
between <head> and </head>. To be more precise, it must be written
in the style section between <style> and </style>. You can use
@import url("style.css"); to include the CSS file in the HTML
document. Again, the stylesheet file is assumed to be in the same
directory as the HTML document.

In practice, this example makes little sense compared to importing
via the link element and is only meant to illustrate the use of the
@import rule. More often, you’ll include a stylesheet via <link> and
import other stylesheets from that stylesheet via the @import rule.

The important aspect about this @import rule is that you write it at the
beginning of the style section. There must be no other CSS
statement before the @import rule in the style section. After that, on
the other hand, you can write CSS rules as you like. You can also
include other external CSS files with the @import rule.

8.3.8 Media-Specific Stylesheets for Specific Output
Devices

If you want to set stylesheets for a specific output medium, you can
do so by using the media attribute in the link element. This gives you
the option, for example, to apply a stylesheet only to certain output
media. The following example demonstrates how you can specify a
media-specific stylesheet for the screen and a different stylesheet for
the printer:
...
 <head>
 <title>My cooking blog</title>
 <meta charset="UTF-8">
 <link rel="stylesheet" type="text/css"
 media="screen" href="style.css">
 <link rel="stylesheet" type="text/css"
 media="print" href="print.css">
 </head>
...

Listing 8.10 /examples/chapter008/8_3_7/index.html

If the output device is a screen (media="screen"), then the HTML
document is formatted using style.css. If, on the other hand, the
output medium is a printer (media="print"), the document will be
formatted using print.css. Alternatively, you can use the @import rule
for this instead of linking the CSS files via the link element:
...
 <head>
 <title>My cooking blog</title>
 <meta charset="UTF-8">
 <style>
@import url("style.css") screen;
 @import url("print.css") print;
 <style>
 </head>
...

Table 8.1 provides an overview of the media-specific attribute values
you can use to assign media-specific stylesheets.

Attribute Value Output Device

Attribute Value Output Device
all All output devices (default value)
print Printer
screen Screen-oriented output devices

Table 8.1 Media-Specific Output Devices for Stylesheets That Can Be Assigned to the
“media” Attribute

Apart from that, there are other media types or device classes such
as aural, braille, embossed, handheld, projection, speech, tty or tv,
that have been classified as deprecated since Media Queries Level
4, so you should refrain from using them. However, you can also
assign multiple values separated by commas. If you don’t specify an
attribute value, the attribute value all will be used, which the
stylesheet is used with regardless of the output medium.

“@media” Statements within a Stylesheet

You don’t need to swap out the media-specific stylesheet
statements to a separate file; you can also use the @media rule
within a stylesheet to create individual CSS rules for specific
media. Here’s an example of how you can optimize the font size
specifically for printing:
p { font-size: 1.6em; }
@media print {
 p { font-size: 10pt; }
}

For the p element, you use 1.6em as the font size with em as the
unit of measure for a relative font size for all media except print.
For printing, on the other hand, you can use the @media rule and
print to use a pt (= point) unit of measure suitable for printing,
with 10pt as the font size. I’ll deal with the topic of units of

measure for fonts separately because it’s not relevant at this point.
This is just about using the @media rule.

8.3.9 Media-Specific Stylesheets with CSS

In addition to the options just shown, there are also media-specific
stylesheets (also called media queries) that play a key role in
responsive web design. For this purpose, logical operators (and, not)
have been introduced, allowing you to perform queries about a wide
variety of media properties, such as usable screen width or screen
orientation (portrait/landscape for tablets). For example, if you want
to provide a special stylesheet for a 1,080-pixel screen, you can do
so as follows:
<link rel="stylesheet" media="screen and (min-width: 1080px)"
 href="style1080.css">

This will include the CSS file style1080.css in the HTML document if
the media has a screen and and that screen is at least 1,080 pixels
wide (min-width: 1080px). Many more such media properties are
available for this, just like min-width here. But those media queries
will be described separately in this book. Before that, you’ll be
introduced to the basics of CSS.

8.4 Analyzing CSS in the Web Browser
The developer tools provided by each web browser represent good
learning and support tools. Besides analyzing HTML, they also
enable you to analyze the CSS, which is particularly useful if you
want to learn how other websites have designed a particular
element. In almost all web browsers you can access the developer
tools by pressing the (Ctrl) + (Shift) + (I) shortcut.

If, for example, you want to examine a styled HTML element, you
can select it as shown in Figure 8.8 with <header>; for this, you then
get the corresponding style (here, with Styles) displayed on the right
side. The highlight is that you can (de)activate the style there on a
test basis or change the values. The changes are only visual as the
files remain untouched. The value of user agent stylesheet is the
fixed stylesheet of the web browser.

Figure 8.8 The Developer Tools of Web Browsers Are Also Very Useful with Regard to
Analyzing and Learning CSS

8.5 Summary
In this chapter, you’ve learned about the basic principle of CSS. I’ll
go into the individual details of CSS more comprehensively in the
course of the next chapters. You also learned about the three ways
to include CSS in HTML.

9 The Selectors of CSS

The selectors are an essential and indispensable part of CSS.
You’ll find a comprehensive overview of the many types of
selectors in this chapter and also learn how to use them in
practice.

In Chapter 8, Section 8.2.1, you’ve already briefly and fundamentally
learned about the structure of a CSS rule and the use of a simple
selector, more precisely, a type selector.

Figure 9.1 The Structure of a Simple CSS Rule with a Selector and a Declaration

But let’s briefly summarize again the purpose of a selector. For the
format properties to be applied to a specific HTML element, you
must define a CSS rule with a selector and a declaration (or multiple
declarations). A selector is the part of a CSS rule that comes before
the curly brackets ({}) section, as shown in Figure 9.1. You can use
the selector to choose the element or elements to which the various
format properties declared between the subsequent curly brackets
should be applied. You can group several independent selectors for

the same declarations if you separate them with commas. A
theoretical example follows:
Selector {
 CSSProperty1: Value1;
 CSSProperty2: Value2;
 ...
}

Selector_01,
Selector_02,
Selector_03 {
 CSSProperty1: Value1;
 CSSProperty2: Value2;
 ...
}

Without such a selector, you wouldn’t be able to specify a pattern
match with which to address elements in the document tree. The
pattern determined by the selector ranges from a simple element
name to much more complex patterns. If the pattern matches a
particular element, the rule gets applied to the element with the
declaration. It’s absolutely possible to use no selector or only *, but,
in this case, the declarations will be applied to all elements in an
HTML document.

CSS Selector Test

If you want to know which selectors are implemented in the web
browser you’re currently using and which you can use accordingly,
you can find a corresponding test at http://css4-
selectors.com/browser-selector-test/. The level 1 to level 4
selectors are tested.

The goal of this chapter is to introduce you to the different types of
selectors so that you can form more complex pattern comparisons
using selectors. For this purpose, CSS provides many different
selectors, which should be categorized as follows:

http://css4-selectors.com/browser-selector-test/

Simple selectors
Simple selectors include the type selector, universal selector
(*),class selector (.class), ID selector (#id), attribute selector, and
several pseudo-classes.

Combinators
Combinators are two selectors concatenated by a greater-than
sign (E > F; child combinator), the plus sign (E + F; adjacent sibling
combinator), a tilde sign (E ~ F; general sibling combinator), or a
space (E F; descendant combinator).

A Note on Working through This Chapter

This chapter describes many types of selectors. However, the
subject is less spectacular and, in some places, more theoretical.
It isn’t absolutely necessary to work through this chapter selector
by selector. You can also use it just as a reference if a certain
selector is used in the book that you aren’t yet familiar with, or if
you ever get stuck on how to select a certain element or why a
different element was selected than expected.

9.1 The Simple Selectors of CSS
This section describes the simple selectors of CSS. These include
the universal selector, simple type selector, class selector, ID
selector, attribute selector, and pseudo-classes.

9.1.1 Addressing HTML Elements Using the Type
Selector

The type selector—sometimes also referred to as an HTML element
selector—is the simplest selector, which you’ve already used several
times in this book. Such a type selector addresses the HTML
elements directly with the element name. This rule gets applied to all
elements of the same type in the HTML document. It’s irrelevant
where in the HTML document these elements are written, to which
class they belong, or which identifier they have.

The following lines show the type selector in use in a separate CSS
file:
/* Black frame, centered text, 5 pixel distance from top
 */
header,
nav,
footer {
 text-align: center;
 border: 1px solid black;
 margin-top: 5px;
}

/* Gray text
 */
h1,
abbr { color: gray; }

/* Gray dotted frame
 */
p { border: 1px dotted gray; }

Listing 9.1 /examples/chapter009/9_1_1/css/style.css

First, for the HTML elements <header>, <nav>, and <footer>, you
cause the text to be center-aligned and a black border with a
thickness of 1 pixel is to be drawn around it. The distance to the
upper next element is 5 pixels for these elements. Then you set the
rule that all HTML elements <h1> and <abbr> are to be displayed in
gray color. At the end, each HTML element <p> in the HTML
document gets a gray dotted frame.

In the following example, you’ll add this CSS file, style.css, via the
link element to the HTML document head:
...
 <head>
 ...
 <link rel="stylesheet" href="css/style.css">
 </head>
 <body>
 <header>Header</header>
 <nav>Navigation</nav>
 <main>
 <h1>Type selectors</h1>
 <p>Such a type selector addresses the <abbr>HTML</abbr>
 elements directly via the element names. </p>
 <p> This rule will be applied to all elements of the same
 type in the HTML document. With</p>
 </main>
 <footer>Footer</footer>
 </body>
...

Listing 9.2 /examples/chapter009/9_1_1/index.html

As you can see in Figure 9.2, according to the CSS rules, the
individual HTML elements are selected using the corresponding type
selector and formatted according to the declarations of the rule.

Figure 9.2 The Individual HTML Elements Were Selected with the Appropriate Type
Selector and Formatted with CSS

Selector Name Selection HTML
Example

Selector Name Selection HTML
Example

element
{...}

Type
selector

HTML element named
element

<element>

Table 9.1 The Type Selector Has Been Around Since CSS Level 1

At this point, I have a quick note on how you can save yourself some
typing. Consider the following theoretical example:
h1 {
 font-family: Arial, Helvetica, sans-serif;
 font-size: 160%;
 color: blue;
}

h2 {
 font-family: Arial, Helvetica, sans-serif;
 font-size: 140%;
 color: blue;
}

h3 {
 font-family: Arial, Helvetica, sans-serif;
 font-size: 120%;
 color: blue;
}

If you take a closer look at these lines, you’ll see that for all three
HTML elements for the headings <h1>, <h2>, and <h3>, only the font-
size property is different. Accordingly, you can shorten these CSS
rules by grouping them as follows:
h1,
h2,
h3 {
 font-family: Arial, Helvetica, sans-serif
 color: blue;
}

h1 { font-size: 160%; }
h2 { font-size: 140%; }
h3 { font-size: 120%; }

First, you group the HTML elements <h1>, <h2>, and <h3> and set the
font family and color. Second, you set the font size for each of these
HTML elements.

9.1.2 Addressing HTML Elements Using a Specific
Class or ID

The type selector is ideal for styling specific HTML elements in an
HTML document. For example, if you want to display all HTML
elements <p> in blue font, you can address these elements quite
easily via the type selector p {color: blue;}. If you don’t want to
assign all HTML elements (here again, <p> as an example) in the
document the same style, you need to be more specific. For this
purpose, the class selector or the ID selector are suitable.

Class Selector: Addressing Elements with a Specific “class”
value

You can use the class selector to select the HTML elements that
belong to a particular class. In HTML, you can assign such a class
name using the global HTML attribute class for almost all elements,
for example:
<p class="note">A paragraph text ...</p>

Now you can address the HTML element with the class name note in
CSS via the class selector by placing a dot in front of the class
name, as follows:
.note { color: red; }

Using “class=""” or “id=""”?

This isn’t a crucial question, but nevertheless, especially as a
beginner, one stumbles over these two HTML attributes. You can
use the class attribute if you want to style multiple elements in
multiple places in the HTML document with it. The id attribute, on
the other hand, can be used only once in the HTML document for
an element.

You can also use multiple classes at once in HTML elements by
separating the individual classes with a space, for example:
<p class="bigfont note">...</p>

Here, the two classes note and bigfont are assigned to the p
element.

Here’s an example that demonstrates the class selectors in use.
First the CSS file:
...
/* Font family for all p elements, irrespective of the class.
 */
p { font-family: Verdana, Arial; }

/* Style for a note
 */
.note {
 margin-left: 50px;
 border-left: 10px solid green;
 padding-left: 5px;
}

/* Style for a warning
 */
.warning {
 border-left: 10px solid red;
 border-top: 2px solid red;
 border-right: 10px solid red;
 border-bottom: 2px solid red;
 text-align: center;
}

/* Font size to 140%; background color to gray
 */
.headfoot {
 font-size: 140%;

 background: #f5f5f5;
}

/* Font size to 130%
 */
.bigfont { font-size: 130%; }

Listing 9.3 /examples/chapter009/9_1_2/css/style.css

Here’s another simple HTML document that uses these class
selectors and demonstrates how to use them in practice:
...
 <head>
 ...
 <link rel="stylesheet" type="text/css" href="css/style.css">
 </head>
 <body>
 <header class="headfoot">Header</header>
 <nav class="bigfont">Navigation</nav>
 <main>
 <h1>class selector</h1>
 <p>The p element without a class.</p>
 <p class="note">The p element with the class
 <code>note</code></p>
 <p class="note warning">The p element with the
 classes <code>note warning</code></p>
 <p class="warning">The p element with the class
 <code>warning</code></p>
 <p class="note bigfont">The p element with the
 classes <code>note bigfont</code></p>
 </main>
 <footer class="headfoot">Footer</footer>
 </body>
...

Listing 9.4 /examples/chapter009/9_1_2/index.html

The first paragraph which contains the p element doesn’t use a
class, so only the type selector p with the font family customization is
applied to it here. The same font family is used for the other four
paragraphs. The second paragraph is formatted with the .note class
selector, indented by 50 pixels from the left and also adding a 10-
pixel green border to the left. The distance to the border is 5 pixels.
The third paragraph uses the class selectors .note and .warning,

where everything is formatted quite similarly to the second
paragraph. It should be added here that the .warning class inherits
the properties of .note, which thus also affects the indentation. The
fourth paragraph, which contains the .warning class, on the other
hand, contains no indentation because the properties of .note aren’t
known here. In the fifth paragraph, the class selectors .note and
.bigfont were also combined, so that in the example, in addition to
.note, the font was slightly enlarged.

Similarly, in the example, the HTML elements <header> and <footer>
were selected with the class selector .header and given a larger font
and a gray background. You can see the result of this example in
Figure 9.3.

Figure 9.3 This Is What the Example /examples/chapter009/9_1_2/index.html Looks Like
with the Class Selectors Written in CSS File style.css

You can also associate class selectors with other selectors to specify
more precisely which elements should be selected and customized.
For example, with regard to the example just shown,
/examples/chapter009/9_1_2/css/style.css, let’s suppose you had
written the style for the .warning class as follows:
...
.note.warning {
 border-left: 10px solid red;

 border-top: 2px solid red;
 border-right: 10px solid red;
 border-bottom: 2px solid red;
 text-align: center;
}
...

In that case, the fourth paragraph of the example would no longer be
formatted because no selector is defined for <p class="warning">
and .note.warning only addresses <p class="note warning">.

Likewise, you can connect the class selector to the type selector. For
example, you could use a definition such as p.note to make sure that
only p elements containing the class attribute note (<p class="note">)
will be styled. You wouldn’t be able to use the note class in any other
HTML element.

ID Selector: Addressing an Element with a Specific “id” Value

With the ID selector, similar to the class selector, you select the
HTML elements to which you’ve assigned a specific ID. You can
assign an ID to an HTML element using the general HTML attribute,
id. Unlike classes (with the class attribute), IDs are always unique
elements in an HTML document, so only one element in the entire
HTML document can be assigned this ID. The fact that an ID may
only occur once is also a reason why the id attribute has been
preferred over the class attribute, especially for div elements, to
create document-wide unique IDs such as content, header, and
navigation.

For this purpose, /examples/chapter009/9_1_2/index.html has been
slightly rewritten: the HTML elements have been removed; instead,
the individual sections have been written with the classic div element
and corresponding id attributes. Here’s an HTML approach to this:
...
 <body>

 <div id="header">Header</div>
 <div id="nav">Navigation</div>
 <div id="main">
 <h1>class selector</h1>
 <p>The p element without a class</p>
 ...
 ...
 </div>
 <div id="footer">Footer</div>
 </body>
...

Listing 9.5 /examples/chapter009/9_1_2/index2.html

To create a CSS rule for this, you can use the ID selector with the
name of the corresponding id attribute value in the HTML document.
Such an ID selector must be written with the hash character (#)
followed by the ID. The ID selector for <div id="header"> can thus be
written as follows:
#header { ... }

An ID may occur only once in the document, but this error doesn’t
prevent the web browser from styling other id attributes of the same
name with the ID selector as well. A validation immediately reveals
such erroneous circumstances.

To illustrate this, here’s the complete CSS file where you divide the
individual div elements into document-wide unique sections based
on their id attributes:
/* Black frame, centered text, 5 pixel distance from top
 */
#header,
#nav,
#footer {
 text-align: center;
 border: 1px solid black;
 margin-top: 5px;
 padding: 5px;
 font-family: Verdana, Arial;
}

/* Font size to 140%; background color to gray
 */

#header,
#footer {
 font-size: 140%;
 background: #f5f5f5;
}

/* 20 pixels distance from all other elements
 */
#main { margin: 20px; }
...

Listing 9.6 /examples/chapter009/9_1_2/css/style2.css

The result is exactly the same as the one with the class selector
before, shown previously in Figure 9.3.

Like class selectors, you can associate ID selectors with other
selectors. For example, you can use div#header to connect the type
selector to the ID selector. In the example, this would address the
div element where the id equals header (<div id="header">).
However, because an ID may only be used once anyway, you can
omit the type selector in this example and use #header as usual.

Mixing the ID Selector with a Class Selector

ID selectors can also be associated with class selectors. It’s
therefore possible to use a selector in the following form:
.classname#id and #id.classname. However, you should keep in
mind that an ID still remains unique across the entire document.

When to Use the Class Selector versus the ID Selector?

The class selector is the selector with the dot, while the ID selector is
the selector with the hash. Likewise, you should keep in mind that
while you can assign one or more classes to each HTML element,
you can generally assign only one ID. Unlike classes, IDs must be

unique in an HTML document. In addition, you can’t assign more
than one ID to an HTML element.

Permitted Characters for Selectors

For the name of the selector, you can only use uppercase and
lowercase letters (a-z; A‐Z), digits (0-9), and the hyphen (-) as well
as the underscore character (_). In addition, the name mustn’t
begin with a digit.

In your daily work, you should prefer to use class selectors for
specific properties or groups such as notes, warnings, or error
messages. You can use the ID selectors, on the other hand, to write
single or unique main areas of a web page such as #headarea,
#mainarea, or #footarea, although the range of HTML elements
available for those purposes is absolutely sufficient.

Using Meaningful Class Names and ID Names

The class names and ID names you use should be meaningful and
you shouldn’t choose any names that reflect the formatting. For
example, you should rather avoid a class name such as redframe
and use warning or error instead, if this should be the corresponding
function. A meaningful name will help you understand the meaning
more quickly during a later revision, and it will be easier for you to
assign this class or ID name to an HTML element when designing
the web pages. In general, styling details should be kept out of the
name.

Selector Name Selection HTML Example
.clname Class

selector
Element with the clname
class

<p
class="clname">

Selector Name Selection HTML Example
#elemid ID selector Element with ID elemid <p id="elemid">

Table 9.2 Class and ID Selectors

9.1.3 Universal Selector: Addressing All Elements in a
Document

You can use the universal selector to select all HTML elements in a
document at once. The universal selector must be written with an
asterisk (*).

Let’s take a look at the following example:
/* Black dotted frame;
 Distance to the next element: 5 pixels;
 Fill with 3 pixels and center text
 */

* {
 margin: 5px;
 padding: 3px;
 border: 1px dotted black;
 text-align: center;
}

Listing 9.7 /examples/chapter009/9_1_3/css/style.css

In this example, the universal selector * draws a black dotted frame
around all HTML elements. In addition, the spacing of each HTML
element was styled to 5 pixels in all directions, and the interior
spacing was styled to 3 pixels. The text is also center aligned.
Figure 9.4 shows the universal selector written in style.css applied to
/examples/chapter009/9_1_3/index.html.

Figure 9.4 The Universal Selector Applied to All Elements Used in the HTML Document

The universal selector can be used not only to select all elements
but also to select all elements within an element. Let’s again use the
HTML document and the CSS file from which Figure 9.4 was
created. Consider the following excerpt of the HTML document:
...
 <body>
 <header>Header</header>
 <nav>Navigation</nav>
 <main>
 <h1>Universal selector</h1>
 <p>A simple paragraph text</p>
 <p>A second paragraph text</p>
 </main>
 <footer>Footer</footer>
 </body>
...

Listing 9.8 /examples/chapter009/9_1_3/index.html

Your main focus should be on the main element. If you want to define
a CSS rule to put a special border around the main element, you can
do that using a type selector like the following, as you already know:
main { border: 2px solid black; }

You can see the result of this type selector in Figure 9.5.

Figure 9.5 A Solid Frame with a Thickness of 2 Pixels Was Drawn around HTML
Element <main>

If instead you want to draw the same frame around all HTML
elements written inside <main>, you can define that using the
universal selector as follows:
main * { border: 2px solid black; }

As you can see in Figure 9.6, thanks to the combination of a type
selector and the universal selector, all elements inside the main
element have now been selected and provided with the frame. Here,
I’ve preempted the descendant selector to demonstrate another
example to the universal selector.

Selector Name Selection Example
* Universal selector All elements <p>

Table 9.3 Universal Selector

Figure 9.6 A Combination of a Type Selector and the Universal Selector

9.1.4 Addressing Elements Based on Attributes Using
the Attribute Selector

The attribute selector can be used to select HTML elements by their
HTML attributes. This allows you to check the presence of an
attribute or the value it contains. In addition, you also have the
possibility of a partial matching of attribute values. Using the HTML
element <a> in Figure 9.7 as an example, these three attribute
selector options are explained in more detail.

If you want to address all HTML elements that have a specific HTML
attribute, you merely need to put the attribute name between square
brackets:
[attributname] { ... }

Figure 9.7 HTML Element <a> with Two HTML Attributes

For example, if you want to address all title attributes of an HTML
document, you can write the attribute selector for it as follows:
[title] { border: 1px solid black; }

This attribute selector will draw a frame within an HTML document
around any HTML element that has a title attribute.

The following HTML document is intended to serve as an example
and demonstrate the attribute selector in use:
...
<h1>Attribute selector</h1>
<p>Here’s the publisher's website for the book:
 <a href="https://www.sap-press.com/"
 title="Publisher’s website">Rheinwerk Publishing
</p>
<p title="A paragraph with title">This paragraph also has
 a title attribute.

</p>
...

Listing 9.9 /examples/chapter009/9_1_4/index.html

While the example won’t be awarded any esthetics prizes when
executed, as you can see in Figure 9.8, it nicely illustrates how the
attribute selector has drawn a frame around the a and p elements
because they both contain the title attribute.

Figure 9.8 The Attribute Selector Draws a Frame around the <a> and <p> Elements
Because Both Contain the “title” Attribute

Based on this example, you can see that specifying [attributname]
is the same as specifying the universal selector *[attributname]. If
you want to address special HTML elements with a specific attribute,
you need to connect the attribute selector with the type selector. For
example, if you want to style only the a elements with the title
attribute, you can use the following notation:
a[title] {
 text-decoration: none;
 color: gray;
 font-weight: bold;
}

In Figure 9.9, you can see that, thanks to the union of the type
selector and the attribute selector in the HTML document, only the
title attribute contained in HTML element <a> has been selected
and styled.

Figure 9.9 A Combination of a Type Selector and an Attribute Selector

You can also create such a combination of attribute selectors with
class selectors and ID selectors.

Selector Name Selection Example
[attr] Attribute

selector
(presence)

Any element that
contains the attr
attribute

<element
attr="...">

Table 9.4 Attribute Selector (Presence of an Attribute)

9.1.5 An Attribute Selector for Attributes with a Specific
Value

In addition to selecting attributes, it’s possible to address attributes
with a specific value using the attribute selector. Strictly speaking,
there are three ways to use an attribute selector to select a particular
value:

The simplest way is to address elements whose attributes contain
a certain value. You must write such an attribute selector between
square brackets as usual; there you put an equal sign after the
attribute name, followed by the attribute value to be selected:
[attributename=attributevalue]

The second option allows you to address elements whose
attributes contain a single word separated by at least one space.

To do so, you must write a tilde (~) between the attribute name
and the equal sign:
[attributename~=attributevalue]

The third option can be used to address elements whose attribute
value is at the beginning of a string that’s separated by a hyphen
(e.g., with a language definition of the hreflang or lang attribute).
Here, you must use the concatenation sign (|) between the
attribute name and the equal sign, as follows:
[attributename|=attributevalue]

For demonstration purposes, an HTML document with the attribute
selectors presented here gets selected and visually designed. First,
the CSS file:
/* Styling for all HTML elements where title
 has the attribute value deprecated
 */
[title=deprecated] {
 color: red;
 text-decoration: line-through;
}

/* Styling of HTML elements where title contains the
 the word "Rheinwerk" in the attribute value
 */
[title~=Rheinwerk] { font-weight: bold; }

/* Styling of HTML elements where hreflang
 begins with the attribute value en followed by
 a hyphen
 */
[hreflang|=en] { font-weight: bold; }

Listing 9.10 /examples/chapter009/9_1_5/style.css

You can test these attribute selectors using the following HTML
document:
...
<h1>[title=deprecated]</h1>
<p>The HTML element <code title="deprecated">center</code> has been
 declared deprecated and should be implemented by a CSS solution like

 <code>text-align: center</code>,
 for example.</p>
<h1>[title~=Rheinwerk]</h1>

 <a href=" https://www.sap-press.com/
 title=" To Rheinwerk-Publishing website">
 Rheinwerk Verlag
 <a href="http://de.wikipedia.org/wiki/Rheinwerk_Verlag"
 title="To the Wikipedia page of Rheinwerk">
 Rheinwerk at Wikipedia (German language)

<h1>[hreflang|=en]</h1>

 US English version

 UK English version

...

Listing 9.11 /examples/chapter009/9_1_5/index.html

The results are displayed in Figure 9.10. The attribute selector
[title=deprecated] can be used to select any HTML element in the
HTML document where the title attribute contains the value
deprecated. In the example, the selected text is marked with red
color and crossed out, as it is once included and demonstrated in the
HTML document with the HTML element <code title="deprecated">.

The second attribute selector [title~=Rheinwerk] selects all
elements in the document where the title attribute contains the
word Rheinwerk. Here, the word Rheinwerk can either be the sole
attribute value, which would thus correspond to [title=Rheinwerk],
or the word Rheinwerk stands alone, separated by spaces. In the
example, the first list item was therefore not selected and formatted
in bold because there’s no space at the end of Rheinwerk with
title="To Rheinwerk-Publishing website". The attribute value in the
second list item, on the other hand, fits the pattern perfectly with
title="To the Wikipedia page of Rheinwerk".

In the last example with [hreflang|=en], the first link in the list item is
selected because here the pattern matches and the beginning of
hreflang contains the text string en followed by the hyphen, which
isn’t the case in the second list item. In addition, an element would
still be selected if there was only hreflang="en".

Figure 9.10 The Attribute Selectors in Use

Attribute Values with a Digit and Attribute Values without a
Value

If the attribute value starts with a digit (e.g., [title=4u]), then you
must note such special characters between double quotes (e.g.,
[title="4u"]).

Furthermore, there are attributes that don’t need to be assigned a
value in HTML, such as the HTML form element for checking off or
selecting an option:
<input type="checkbox" checked>

If you use the checked attribute in this form, it will still get an empty
string, so you should write the attribute selectors in the following
way: [checked=""], [checked~=""], or [checked|=""].

Needless to say, you can also combine these attribute selectors with
the type selector to achieve an even more specific selection of
attribute values. For example, you can use a[title=Rheinwerk] to
select only a elements where the title attribute contains the value
Rheinwerk.

Selector Name Selection Example
[attr=value] Attribute

selector
(attribute
value)

Any element where the
attribute attr contains
the value value

<elem
attr="value">

[attr~=value] Attribute
selector
(attribute
value)

Any element with the
value value in the
attribute attr as a
standalone word

<elem
attr="abc
value xyz">

[attr|=valx] Attribute
selector
(attribute
value)

Any element that has
the value valx in the
attr attribute at the
beginning as a string
separated by a hyphen

<elem
attr="valx-
valy">

Table 9.5 Overview of Attribute Selectors (Attribute Value)

9.1.6 Attribute Selector for Attributes with a Specific
Partial Value

The attribute selector also provides an extended option to select
partial values. The following three attribute selectors are available for
this purpose:

To select an element where the value of the attribute starts with a
certain string, you only need to note the ^ character between the
attribute name and the equal sign:

[attributename^=partialvalue]

To achieve the counterpart of the attribute selector just mentioned,
you can write the dollar sign ($) instead of the circumflex character
(^) between the attribute name and the equal sign. Then all values
of the attribute ending with a certain string will be selected:
[attributename$=partialvalue]

To select an element where the value of the attribute is contained
as a character string, you need to write the asterisk (*) between
the attribute name and the equal sign:
[attributename*=partialvalue]

Again, the presented attribute selectors for selecting partial values in
attributes will be briefly demonstrated in use. First, the CSS file:
/*
 all a elements where the attribute href starts with http://
 */
a[href^="http://"] {
 text-decoration: none;
 border-bottom: 1px dotted blue; /* dotted blue. Underscore */
}

/*
 all a elements where the href attribute ends with .pdf
 */
a[href$=".pdf"] {
 text-decoration: none;
 color: black;
 padding: 1px;
 border: 2px dotted gray; /* gray frame around it */
}
/*
 a elements where the href attribute contains the text string,
 mydomain
 */
a[href*=mydomain] { font-weight: bold; } /* Boldface */

Listing 9.12 /examples/chapter009/9_1_6/style.css

You can test the CSS file style.css on the following HTML document:

...
<h1>Attribute selector (partial values)</h1>
For more information, go to
 the following website.</p>
<p>In addition, I have created a

 PDF document with interesting content
 for you.</p>
<p>And, of course, there are a few very interesting links: </p>

 Report No. 1

 Short report

 Best report

 Another report

...

Listing 9.13 /examples/chapter009/9_1_6/index.html

You can see the result of this example in Figure 9.11. The attribute
selector a[href^="http://"] is applied several times to a elements in
this HTML document where the attribute value of href starts with the
partial value http://, which means it’s an external link.

Figure 9.11 The Extended Attribute Selectors in Use

The second attribute selector a[href$=".pdf"] is used only once in
the document where, in the a element, the attribute value of the href
attribute ends with .pdf (and is thus a PDF document). And the last
attribute selector, which contains a[href*=mydomain], is also applied

to an a element where the attribute value of href contains the text
string mydomain; this is styled with boldface.

Selector Name Selection Example
[attr^=value] Attribute

selector
(partial
value)

Any element
where the attribute
attr starts with the
text string value

<elem
attr="valueless">

[attr$=value] Attribute
selector
(partial
value)

Any element
where the attribute
attr ends with the
text string value

<elem
attr="outvalue">

[attr*=value] Attribute
selector
(partial
value)

Any element
where the attribute
attr contains the
text string value

<elem
attr="misvalued">

Table 9.6 Attribute Selectors (Partial Value)

9.1.7 CSS Pseudo-Classes: The Selectors for Specific
Features

In HTML, there are elements you can’t access using ordinary
selectors. These include, for example, elements over which the
mouse pointer is currently located, or a hyperlink that has already
been visited or not. Many of those properties can be addressed via
pseudo-classes, which will be briefly described in the following
sections.

Pseudo-Classes for Visited and Nonvisited Hyperlinks

The pseudo-classes:link and :visited allow you to select and
specially mark unvisited and visited links, respectively. A simple
example might look as follows:
a:link { color: red; }
a:visited { color: green; }
...

Listing 9.14 /examples/chapter009/9_1_7/css/style.css

In this example, all a elements whose reference hasn’t been visited
yet are displayed in red, while the references that have already been
visited are displayed in green. You can find an example here:
/examples/chapter009/9_1_7/index.html.

Selector Name Selection Example
:link Link pseudo-

class
An unvisited
hyperlink

a:link{ color:
blue; }

:visited Link pseudo-
class

A visited
hyperlink

a:visited{ color:
gray; }

Table 9.7 Link Pseudo-Classes for Visited and Nonvisited Links

There’s also a newer pseudo-class, :any-link, which selects all
links, whether visited or not. This way, you can select all elements
that contain an href attribute, for example:
...
.articlestyle a:any-link { color: gray; }

Listing 9.15 /examples/chapter009/9_1_7/css/style.css

This will display all a elements contained in the articlestyle class in
gray.

Pseudo-Classes for User Interactions with Mouse and Keyboard

You can use the CSS pseudo-classes :hover, :active, and :focus to
respond to different user interactions. Using :hover, you can select
elements over which the mouse pointer is located. The pseudo-class
:focus selects the elements that receive focus (e.g., via the (Tab)
key), while :active selects elements that are currently clicked.
What’s also interesting in connection with the input element is the
pseudo-class :placeholder-shown, which enables you to address the
placeholder text of an input element.

Here’s a simple example that demonstrates all four pseudo-classes
in use:
input { background-color: lightgray; }
input:focus { background-color: white; }
input:hover { box-shadow: 0 0 3px blue; }
input:placeholder-shown { color: white; }
li { background-color: lightgray; }
li:hover { background-color: snow; }
li:active{ background-color: gray; }
a:link { text-decoration: none; color: blue; }
a:hover { font-weight: bold; }
a:active { color: red; }

Listing 9.16 /examples/chapter009/9_1_7/css/style2.css

...
 <h1>:hover and :focus</h1>

 Washington Post
 New York Times
 CNN

 <h2>:focus</h2>
 <form>
 Your name:
 <input type="text" name="name" id="name" placeholder="Your name" />
 </form>
...

Listing 9.17 /examples/chapter009/9_1_7/index2.html

Figure 9.12 shows the result of the HTML document with the
pseudo-classes in use. Here, for example, input:focus was used to

cause the input field containing the HTML element <input> to be
displayed with a white background when the text input field receives
focus. With input:hover, on the other hand, a blue frame is displayed
around the input field when you pause over it with the mouse cursor.
input:placeholder-shown, in turn, was used to display the
placeholder text in white color.

Figure 9.12 The Pseudo-Classes for an Interactive User Input in Use: Pseudo-Class
“:hover”

Pseudo-Classes for Form Elements

The styling of HTML forms will be described in Chapter 14,
Section 14.7, but it should be mentioned here that there are also
three dynamic pseudo-classes available for the form elements:
:enabled (selectable; enabled), :disabled (not selectable;
disabled), and :checked (checked). Strictly speaking, these are
user interface pseudo-classes.

You can use li:hover or a:hover to respond when a user hovers
over the HTML element or <a> by changing the background
color or font style to bold. With li:active and a:active, you respond
when a user activates or left-clicks the HTML elements and <a>,
respectively.

It’s important to maintain the order of the pseudo-class selectors,
that is :link, :visited, :hover, :focus, and :active (LVHFA);
otherwise, :visited will overwrite the :hover pseudo-class. If you
ever have problems with a dynamic pseudo-class not working as
intended, it’s probably because one pseudo-class has overridden
another. In that case, you should check the order of the pseudo-
classes. To help you remember the LVHFA order, you can use a
mnemonic such as Lord Vader Hates Furry Animals.

“:hover” and Tablets or Smartphones

While the pseudo-classes can now be used for any HTML
element, you should still keep in mind that there’s no :hover
available on smartphones or tablets—that is, that a mouse is
placed over an element.

Selector Name Selection Example
:hover Dynamic

pseudo-
class

The element is
being hovered
over by the user
moving the mouse
cursor over a
hyperlink or
element.

a:hover { color:
red; }

:focus Dynamic
pseudo-
class

The element has
the focus (e.g.,
input field with
active cursor).

input:focus{
background-color:
yellow; }

:active Dynamic
pseudo-
class

The element is
being activated
(e.g., clicked on
with the mouse).

a:active { color:
green; }

Selector Name Selection Example
:placeholder-
shown

Dynamic
pseudo-
class

The element is
used to address
the placeholder
text of an input
element.

input:placeholder-
shown { color:
white; }

Table 9.8 Dynamic Pseudo-Classes for Mouse and Keyboard Interaction

The “:target” Pseudo-Class for Reference Targets

Another pseudo-class is :target, which can be applied to elements
that are the target of a reference. The CSS rule that’s written with it
doesn’t become active until the reference target has been jumped to.
To activate the reference target, you can use an ID in addition to an
ordinary anchor (see Chapter 5, Section 5.2.7).

A simple example shows the :target pseudo-class in use:
:target { background: lightgray; }
div#show { display: none; }
div#show:target { display: block; }

Listing 9.18 /examples/chapter009/9_1_7/css/style3.css

...
<h1>:target-reference-targets</h1>

 Target No. 1
 Target No. 2
 Target No. 3
 Show note

<div id="show">Important note!!!</div>
<h2 id="target01">Target No. 1</h2>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing ... </p>
<h2>Target No. 2</h2>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing ... </p>
<p id="target03">Target No. 3: Lorem ipsum dolor sit amet ... </p>
...

Listing 9.19 /examples/chapter009/9_1_7/index3.html

Here, the pseudo element :target was used to display the reference
target that’s currently being jumped to in gray background color. In
the example, you’ve defined three reference targets: target01,
target02 and target03. The reference targets target01 and target02
are the h2 elements, while target03 is a p element that’s also grayed
out when you select the reference target. Another possible use of
:target can be found with div#show:target, where you first used
div#show and display: none; to hide the div element with the show ID
when loading the page. If the visitor selects the reference target
Show note, the text between <div> and </div> will show with the
Show ID and use display: block;. You can use the CSS feature
display to specify how an element should be displayed or change
the behavior of an element. The use of display: block; and display:
none; to show and hide HTML elements is a commonly cited
example.

Figure 9.13 The Pseudo-Class “:target” for “Target No. 2”, Resulting in the Heading Now
Being Displayed with a Gray Background

9.1.8 The Convenient Structural Pseudo-Classes in
CSS

The structural pseudo-classes allow you to select elements based on
their position in the document structure.

Addressing the Root of a Document via “:root” and Empty
Elements via “:empty”

The two structural pseudo-classes :root and :empty can be used to
select either the root of the document (:root) or empty elements
(:empty). Here’s a simple example that demonstrates these two
pseudo-classes in use:
:root { color: lightgray; }
:empty { background-color: yellow; padding: 10px; }
td:empty { background-color: green; }

Listing 9.20 /examples/chapter009/9_1_8/css/style.css

<!doctype html>
<html>
 <head>
...
 <link rel="stylesheet" href="css/style.css">
 </head>
 <body>
 <h1>:root and :empty</h1>
 <p>Lorem ipsum dolor sit amet, consectetuer ...</p>
 <p></p>
 <h2>:empty on table</h2>
 <table>
 <tbody>
 <tr><td>Value</td><td></td></tr>
 <tr><td></td><td>Value</td></tr>
 <tr><td></td><td></td></tr>
 </tbody>
 </table>
 </body>
</html>

Listing 9.21 /examples/chapter009/9_1_8/index.html

Compared to Figure 9.14, you can see that :root, for which a gray
text color was used, affects the entire document. Thus, the use of
the structural pseudo-class :root{} corresponds to that of the type

selector html{}, the only difference being that it has a higher
weighting. If your web browser doesn’t know :root, the text won’t be
formatted in gray.

The structural pseudo-class :empty, on the other hand, has an effect
on empty elements such as the empty paragraph <p></p>, which has
been formatted in yellow. More specifically, in conjunction with a type
selector, td:empty, the empty table cells have been styled with green
color.

However, :empty is limited to elements that contain nothing at all or
only one comment. If a whitespace such as a space, tab feed, or line
break gets included in the element, :empty will no longer access it.
For this purpose, you can use the structural pseudo-class :blank.
:blank works like :empty, except that it also selects empty elements
with whitespace characters. However, this structural pseudo-class
isn’t yet natively supported by any web browser. Only Firefox allows
you to test this pseudo-class by using the vendor prefix :-moz-only-
whitespace.

Figure 9.14 Effects of the Pseudo-Classes “:root” and “:empty” on the HTML Document

Structural Pseudo-Classes for Child Elements

The structural pseudo-classes :first-child, :last-child, :nth-
child(), :nth-last-child(), and :only-child allow you to select

specific child elements in the HTML document structure. A child
element (or descendant element) is an element below a given
element when you look at the Document Object Model (DOM) tree.

You can use the structural pseudo-class :first-child to select the
first child element of an HTML element. The counterpart to this,
:last-child, can be used to select the last child of a parent element
in the document structure.

Figure 9.15 shows an example with the pseudo-class selectors
:first-child and :last-child in use. The CSS code for this can be
found in the ZIP file located in
/examples/chapter009/9_1_8/css/style2.css and the corresponding
HTML document in /examples/chapter009/9_1_8/index2.html. The
selected :first-child elements were framed with a solid black line
for clarity, while :last-child elements were framed with a dotted
gray line. The example shows that body is also a :last-child
element of the html element. The first element of html is head.

The structural pseudo-class :nth-child(), on the other hand, allows
you to select the nth child element of a parent element. As an
argument, this selector expects an integer value or an arithmetic
calculation that returns an integer value. Possible arguments you
can use are the values odd (odd numbers) and even (even numbers).
The structural pseudo-class :nth-last-child() works in a similar
way, except that here the counting starts at the end. These pseudo-
classes can be used, for example, to alternately color table rows,
which greatly simplifies the readability of long tables:
...
tr:nth-child(odd) { background: lightgray; }
tr:nth-child(even) { background: gray; }
...

Listing 9.22 /examples/chapter009/9_1_8/css/style3.css

Figure 9.15 The Pseudo-Class Selectors “:first-child” and “:last-child” in Use

As you can see in Figure 9.16, each odd table row (tr element) is
styled with lightgray, and each even table row is styled with gray
color.

Figure 9.16 The Pseudo-Classes “:nth-child()” and “:nth-last-child()” in Use (HTML
Document Available in /examples/chapter009/9_1_8/index3.html)

Another structural pseudo-class is :only-child, which is used to
select only those elements in the HTML document which are the only
child element of a parent element. For example, for a list with HTML
element , this would be the case if there was only one li
element in the list.

Structural Pseudo-Classes for Specific Child Elements

The structural selectors :first-of-type, :last-of-type, :nth-of-
type(), :nth-last-of-type(), and :only-of-type apply only to
specific child elements. This is in contrast to the :...child
selectors, which can apply to all child elements.

Accordingly, you can use :first-of-type or :last-of-type to select
the first or last child element of a particular HTML element. Here’s a
simple example you couldn’t have implemented with :first-child or
:last-child:
article:first-of-type { border: 2px solid black; }
article:last-of-type { border: 2px dotted gray; }

Listing 9.23 /examples/chapter009/9_1_8/css/style4.css

 ...
 <link rel="stylesheet" href="css/style4.css">
 </head>
 <body>
 <header>Header</header>
 <article>
 <h1>Article 1</h1>
 <p>Text for article</p>
 </article>
 <article>
 <h1>Article 2</h1>
 <p>Text for article</p>
 </article>
 <article>
 <h1>Article 3</h1>
 <p>Text for article</p>
 </article>
 <footer>Footer</footer>

 </body>
</html>

Listing 9.24 /examples/chapter009/9_1_8/index4.html

In this example, article:first-of-type and article:last-of-type
select the first and last article elements respectively. Because of
the header and footer elements, in this case you can’t select the first
and last article elements with :first-child and :last-child,
respectively, and must use :first-of-type and :last-of-type
instead.

Figure 9.17 The Pseudo-Class Selectors “:first-of-type” and “:last-of-type” in Use

If you had wanted to select the second article in the example in
Figure 9.17, you would have done this with the following:
article:nth-of-type(2) {...}

Again, you would have to use the :nth-of-type() version instead of
the :nth-child() version because you would have used
article:nth-child(2) to select the first article element; the header
element would have been the first child in this example, and the first
article element would have been the second child. The counterpart
to :nth-of-type() is :nth-last-of-type(), except that the counting of
elements starts at the end.

Finally, the of-type counterpart to :only-child, that is, :only-of-
type, allows you to address an element if it’s the only element of the
type in the parent element. Let’s look at a simple example:
em:only-of-type { font-weight: bold; }

Listing 9.25 /examples/chapter009/9_1_8/css/style5.css

...
 <link rel="stylesheet" href="css/style5.css">
...
<body>
 <h1>:only-of-type</h1>
 <p>Bear! Who is this Bear?</p>
 <p>Caution! Bear could be standing behind.
 you!</p>
</body>
...

Listing 9.26 /examples/chapter009/9_1_8/index5.html

In this example, only the em element in the second paragraph is
selected with em:only-of-type because it’s the only em element in the
p element. The strong element isn’t important in such a case. With
the em:only-child version, no em element would have been selected
at all because there’s no only element in the two p elements.

Finally, here’s a table with an overview of the various structural
pseudo-classes that are available.

Selector Selects
:root Root element.
:empty Empty elements.
:first-
child

An element that is the first of its parent element.

:last-
child

An element that is the last of its parent element.

Selector Selects
:nth-
child(n)

An element that is the nth child element. For n, the
values odd (odd numbers) and even (even numbers) are
also possible.

:nth-
last-
child(n)

Like :nth-child(n), except that here the count starts at
the end.

:only-
child

An element that is the only child element in the parent
element.

:first-
of-type

An element that is the first child element of a given type.

:last-
of-type

An element that is the last child element of a given type.

:nth-of-
type(n)

An element that is the nth identical child element of a
parent element. For n, the values odd (odd numbers)
and even (even numbers) are also possible.

:nth-
last-of-
type(n)

Like :nth-of-type(n), except that the counting starts at
the end.

:only-
of-type

An element if it’s the only child of this type in the parent
element.

Table 9.9 Overview of the Structural Pseudo-Classes

9.1.9 Other Useful Pseudo-Classes

CSS provides some more pseudo-classes, which I’ll briefly describe
here. First, there’s the language pseudo-class :lang(), which you
can use to select elements you’ve provided with the lang attribute.
The corresponding element gets selected together with its
descendants. For example, if you want to style all elements written
with lang="en" in blue text color, you can do it as follows:

:lang(en) { color: blue; }

Another very useful pseudo-class is the negation pseudo-class
:not(), which allows you to select elements with which a selector
does not match. This pseudo-class expects a simple selector as an
argument. With the following simple example, you can make sure
that all elements which aren’t text paragraphs (i.e., not p elements)
get a gray text color:
:not(p) { color: gray; }

All this can be specified in more detail as follows:
#content:not(p) { color: gray; }

Now all child elements of the element with ID content that aren’t p
elements get a gray color. Such combinations can be expanded
even further, for example:
article:not(.news) { ... }

This selects all article elements whose elements don’t contain the
news class.

In the future, it will also be possible to use more than one selector as
an argument, for example:
p:not(.advertisment, .news) { color: gray; }

This way, you can style all p elements in gray font color. Elements
that are provided with the advertisement or news class are excluded
from this. At the time of printing this book, however, only the Safari
web browser was able to handle multiple selectors.

The counterpart of the pseudo-class :not() is :matches(). This
allows you to select multiple elements that match the selector, for
example:
p:matches(.advertisement, .news) { color: gray; }

This will gray out all p elements that contain the advertisement or
news class. When this book was printed, Safari could already use
this natively. In Chrome and Edge, you still need to use :-webkit-
any() for it.

Selector Name Description
:lang(xx) Language

pseudo-
class

Selects elements where the
language has been provided with the
lang="xx" attribute

:not(s) Negation
pseudo-
class

Selects elements to which selector s
doesn’t apply

:matches(s1,s2,
...)

Matches
pseudo-
class

Selects all elements to which
selectors s1 and s2 ... apply

Table 9.10 Language Pseudo-Class and Negation Pseudo-Class

9.1.10 Pseudo-Elements: The Selectors for Nonexistent
Elements

CSS pseudo-elements provide you with another group of selectors.
This allows you to address elements that aren’t directly present as
elements in the structure of the HTML document, but are still
resulting from the structure with HTML or are generated using the
CSS feature content.

Like pseudo-classes, pseudo-elements in CSS start with a colon
(:pseudo-element). However, they should be used with two colons
(::pseudo-element) to better distinguish them from CSS pseudo-
classes.

The Pseudo Elements “::first-letter” and “::first-line”

You can use ::first-letter to select and style the first character in
an HTML element. And as you might guess from the name, the CSS
pseudo-element ::first-line selects the first line in an HTML
element.

The Pseudo-Elements “::before” and “::after”

The CSS pseudo-elements ::before and ::after allow you to add
content to an existing content. These pseudo-elements are often
used in conjunction with the CSS feature content to add content
before (::before) or after (::after) the existing content.

The Pseudo-Element “::selection”

The CSS pseudo-element ::selection selects the text marked by
the user. This can be useful if the color scheme of the layout doesn’t
match the one used when selecting text, which is usually white on
blue. However, only some CSS features can be used with this
pseudo-element. These include color, background (background-
color, background-image), and text-shadow.

Here’s a simple example you can use to test some of the pseudo-
elements presented here:
p::first-line { font-weight: bold; }
p::first-letter{ font-size: xx-large; float: left; }
td.time::before { content: "ca. "; }
td.time::after { content: " minutes"; }

Listing 9.27 /examples/chapter009/9_1_10/css/style.css

...
 <link rel="stylesheet" href="css/style.css">
 </head>
 <body>
 <h1>:first-letter and :first-line</h1>

 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing.
 Aenean commodo ligula eget dolor. Aenean massa. ...</p>
 <h1>:before and :after</h1>
 <table>
 <tbody>
 <tr><td>from A to B</td><td class="time">55</td></tr>
 <tr><td>from A to C</td><td class="time">35</td></tr>
 <tr><td>from B to C</td><td class="time">20</td></tr>
 </tbody>
 </table>
 </body>
...

Listing 9.28 /examples/chapter009/9_1_10/index.html

You can use p::first-line to select the first line of the p element
that can be displayed in the web browser and output it in bold.
p::first-letter, on the other hand, allows you to select the first
letter in the p element and highlight it clearly with a larger font. Used
in this way, this applies to all p elements in the HTML document. On
the other hand, if you have a p element such as <p class="abc">, you
can also access it via p.abc::first-line, which is a composite of
type selector, class selector, and pseudo-element.

td.time::before enables you to insert the text "approx. " before the
content of a table cell that contains the time class by means of the
CSS feature content. In a similar way, you can use td.time::after,
except that here the content " minutes" is inserted at the end of the
content of the table cells. Figure 9.18 shows the example in use.

Figure 9.18 The Pseudo-Elements in Use

Selector DescriptionSelector Description
::first-letter Selects the first character in a line
::first-line Selects the first line in a paragraph
::before Inserts content before an element and formats it
::after Inserts content after an element and formats it

Table 9.11 Overview of the Pseudo-Elements

9.2 Combinators: Concatenating the
Selectors
A combinator is a character between two selectors that concatenates
these selectors. Here, the first selector represents the condition,
while the second selector forms the target to be selected if the
condition is true. In CSS, you have four such combinators, which in
turn you can concatenate with other combinators.

Combinator Name Meaning
E F Descendant

selector
(descendant
combinator)

F gets selected if it’s a descendant of
an E element.

E > F Child
selector
(child
combinator)

F gets selected only if it’s a direct
descendant of an E element.

E + F Adjacent
sibling
selector
(adjacent
sibling
combinator)

F gets selected only if it occurs
directly after E (in the same parent
element).

E ~ F General
sibling
selector
(general
sibling
combinator)

F gets selected only if it occurs after
E (in the same parent element).

Table 9.12 Quick Overview of the Different Combinators

For illustration purposes, all four combinators are used in a simple
way in the following example. In practice, of course, such
combinators can become far more complex in the way they are
used. In our example, simple type selectors are combined, but you
can also combine class or ID selectors, for example. Inside the
negation pseudo-class :not(), you can’t use any combinators.

Figure 9.19 Document Structure Tree of the Example

...
 <body>
 <header>Header</header>
 <article>
 <h1>Article 1</h1>
 <p>1. Paragraph text for article</p>

 List item 1
 List item 2

 <p>A paragraph text in the list item</p>

 <p>2. Paragraph text for article</p>
 </article>
 <p>1. Paragraph text after the article</p>
 <p>2. Paragraph text after the article</p>

 <footer>Footer</footer>
 </body>
...

Listing 9.29 /examples/chapter009/9_2/index.html

The goal in this example is to access the individual p elements. For
this purpose, the article element should be the condition and the p
element the target. For a better understanding, the document
structure tree is shown in Figure 9.19, which demonstrates this
source code a bit more clearly in the hierarchy of the individual
HTML elements.

9.2.1 The Descendant Combinator (E1 E2)

The descendant combinator is the oldest of all combinators and
connects two selectors with one space. It allows you to select all
children and children’s children of an element. With regard to the
/examples/chapter009/9_2/index.html example, the descendant
combinator should be used as follows:
article p { background: lightblue; }

Listing 9.30 /examples/chapter009/9_2_1/css/style.css

This code listing specifies that all p elements located within an
article element will be selected and assigned a light blue
background color. Figure 9.20 shows this process in the document
structure tree, and Figure 9.21 shows the example in actual use.

Figure 9.20 You Can Use the Descendant Combinator to Select All Child and Children’s
Children Elements That Were Specified as the Target (i.e., <p> Element)

Figure 9.21 The Example of the Descendant Combinator in use

Combinator Name Meaning
E F Descendant

selector
(descendant
combinator)

F gets selected if it’s a
descendant of an E element.

Table 9.13 The Descendant Combinator (E1 E2)

Warning: A Common Mistake!

A common error occurs when you separate multiple selectors with
or without commas. Let's look at an intentional notation such as
the following:
h2, p {...}

This addresses all h2 and p elements in an HTML document. If the
comma gets omitted by mistake such as the following:
h2 p {...}

Then, this expression receives a different meaning with the space
combinator, and theoretically only those p elements would be
selected that are located inside <h2> and </h2>, which doesn’t
make any sense in that case. Although for this purpose, the W3C
suggests for selectors (level 4) to use the >> character for the
descendant combinator (i.e., E >> F corresponds to E F), this hasn’t
been implemented by any browser vendor up to now.

9.2.2 The Child Combinator (E1 > E2)

The child combinator is represented by a closing angle bracket (>)
and connects two selectors. By connecting to the child combinator,
you select only elements that are direct descendants of the parent
element. Children’s children are no longer selected here. With regard
to the /examples/chapter009/9_2/index.html example, the child
combinator can be demonstrated as follows:
article > p { background: lightblue; }

Listing 9.31 /examples/chapter009/9_2_2/css/style.css

This way, you can select all p elements that are direct descendants
of the article element and style them with a light blue background.
Figure 9.22 shows this process in the document structure tree, while
Figure 9.23 shows the example in actual use.

Figure 9.22 You Can Use the Child Combinator (with “article > p {...}”) to Select Only the
Direct Child Elements

Figure 9.23 The Example of the Child Combinator in Use: Only the Direct Child Elements
Are Selected

Combinator Name Meaning

Combinator Name Meaning
E > F Child

selector
(child
combinator)

F gets selected only if it’s a direct
descendant of an E element.

Table 9.14 The Child Combinator (E1 > E2)

9.2.3 The Adjacent Sibling Combinator (E1 + E2)

In the adjacent sibling combinator, sometimes called a direct sibling
selector, two selectors can be connected with each other by means
of the plus sign (+). This way, you can only address elements that
are immediate neighbors on the same level (i.e., they have the same
parent element). Once again, we can use the
/examples/chapter009/9_2/index.html example to illustrate the
adjacent sibling combinator:
article + p { background: lightblue; }

Listing 9.32 /examples/chapter009/9_2_3/css/style.css

Here, only the p element is selected, which is a descendant of the
article element. The article and p elements have the same parent
element (the body element in the example). Figure 9.24 shows this
process in the document structure tree, and Figure 9.25 shows the
example in actual use.

Figure 9.24 With the Adjacent Sibling Combinator, Only Elements That Are Immediate
Neighbors on the Same Level (i.e., Have the Same Parent Element) Are Selected

Combinator Name Meaning
E + F Adjacent

sibling
selector
(adjacent
sibling
combinator)

F gets selected only if it occurs
directly after E (in the same parent
element).

Table 9.15 The Adjacent Sibling Combinator

Figure 9.25 The Example of the Adjacent Sibling Combinator in Use

9.2.4 The General Sibling Combinator (E1 ~ E2)

The (indirect) general sibling combinator allows you to connect two
selectors by means of the tilde character (~). This means it also
allows you to address elements that are neighbors on the same level
(= have the same parent element). In contrast to the adjacent sibling
combinator (+) (or direct sibling selector), these elements don’t need
to follow each other directly, and other elements can also be located
between them. This sounds more complex than it really is, which is
why the document /examples/chapter009/9_2/index.html is used
again here for illustration purposes:
article ~ p { background: lightblue; }

Listing 9.33 /examples/chapter009/9_2_4/css/style.css

This selects all p elements that follow an article element and are at
the same level in the document tree. Figure 9.26 shows this process
in the document structure tree, while Figure 9.27 shows the example
in actual use. The general sibling combinator selects all adjacent <p>
elements after the <article> element that are on the same level. It
doesn’t matter if there are other elements like <p> in between.

Figure 9.26 General Sibling Combinator Selects All Adjacent <p> Elements

Figure 9.27 The General Sibling Combinator in Use

Combinator Name Meaning
E ~ F (Indirect)

sibling
selector
(general
sibling
combinator)

F gets selected only if it occurs after
E (in the same parent element).

Table 9.16 Overview of the General Sibling Combinator

9.3 Recommendation: How to Use Efficient
and Simple CSS
This chapter has introduced a lot of different selectors. At this point,
beginners are probably asking themselves what they should use and
where. Basically, of course, you can use whatever you want, as long
as you achieve your goal. However, using CSS can also make your
life easier. In this section, I want to give you a little guide on how to
write the most efficient and simple CSS for your projects. Note that
this is just a little help to point you in the right direction, not a rule set
in stone.

9.3.1 How to Write Well Performing CSS

Modern web browsers can render an HTML document increasingly
faster, but that still doesn’t mean you shouldn’t bother about the
website code. This is also true with regard to selecting elements in
CSS by means of selectors. Not every selector can access its
element in the document structure equally fast.

Do without Combinators If Possible

Without getting too specific here, it can be stated that the simple
selectors are usually more efficient than a mixture of multiple
selectors with combinators. For example, take a look at the following
CSS rule:
.myarticle a { color: gray; }

Here, .myarticle a{...} was used as the descendant combinator.
The fact that this selector is slower is due to the way the web

browser processes it. If the web browser were to read the document
tree from left to right, it would first look for all elements that use the
myarticle class and then all a elements that are a child of it.

But now the web browser reads from right to left and first looks for all
a elements; it’s not until after that does it look if there’s a matching
parent element with the myarticle class. For a website with multiple
hyperlinks, the web browser would first search for all a elements and
then filter out again the matching a elements that are contained in
elements with the myarticle class. In that case, it’s absolutely
unnecessary to select all a elements of a website. So, what’s wrong
with giving the a elements in the HTML documents directly a class
(e.g.,), which you can then access using a
class selector such as .myarticle_a { color: gray; }?

I don’t mean to disparage the combinators here, as using them for
concatenation purposes is extremely powerful, and you can use
them to quickly and conveniently style the desired element.
However, the descendant combinator is often used unnecessarily in
practice. You should use these combinators with a little more care
because the web browser has to resolve long and complex
combinators first, and this costs the web browser response time
when rendering the website.

Admittedly, the selector performance of modern web browsers is
pretty good, and some might argue that optimization doesn’t play too
much of a role here anymore. Nevertheless, sometimes with some
thought, you can use a shorter and simpler selector to get where you
want to go. Here’s another negative example of multiple
concatenation of selectors using the descendant combinator:
.linklist ul li a { color: green; }

Here you’re looking for all a elements located in a li element, which
in turn is located in a ul element whose parent element contains the
.linklist class, just to put green font color on it. That’s quite some
work to be done by the web browser! You could have also written the
following:
.linklist a { color: green; }

This also depends on the HTML document. If there’s another
ordered list in the HTML document containing an ol element that
also contains li elements with a elements in it, you’d have to be
more specific, or—even simpler—you could formulate two
corresponding classes for it:
.linklist-ul { color: green; }
.linklist-ol { color: red; }

These optimizations depend on the web project and can’t be
generalized here. It’s just important to think a bit before you
implement CSS rules with deeply nested selectors using
combinators because there could be an easier way.

Selectors That Don’t Make Sense

Selectors are also often used that don’t make any sense, which can
be avoided with consideration. Here’s an example:
.myarticle #special a { color: gray; }

In this case, you can safely do without the class myarticle because
an ID selector can only occur once in an HTML document anyway.
Consequently, the example can be simplified as follows:
#special a { color: gray; }

However, again, I don’t like the fact that all a elements on the
website are searched for first, only to be filtered out again in the

element with the ID special. Again, I’d recommend simplifying this
and just using a class selector instead:
.special_a { color: gray; }

Attention with the Universal Selector

It’s probably unnecessary to mention that you should use the
universal selector * only in an emergency. After all, this selector
selects all elements of an HTML document. Such a negative
example could look like the following:
#special * { color: black; }

Because of the universal selector, all elements of the entire HTML
document are searched, and only then are all elements located in
#special.

But Does It Matter That Much?

Now you’ve learned how to write a better performing CSS code.
Considering the performance of modern web browsers and
computers today, some may say that it doesn’t matter if the CSS
code is fast or not. Unless you’re using a website with thousands of
elements, the web browser will barely bat an eye when loading a
website with inefficient CSS code, and you probably won’t notice
those few extra milliseconds it takes for the website to load. At this
point, one could discuss whether CSS contributes much or little to
the loading time of the website.

9.3.2 Recommendation: Keep the CSS Code as Simple
as Possible

You still have a guaranteed advantage if you write more efficient
CSS: the code will be much neater and simpler in the process, and
at the latest when you need to make subsequent changes, you’ll be
glad you wrote proper CSS. In the previous section, you may have
noticed that I’ve advised using CSS classes for almost every
possibility to write better performing CSS. Not only do more precise
specifications with multiple selectors act as brakes for the web
browser, but they also often lead to more complex CSS, which you
then feel in the negative sense when you want to override a
specification. In addition, using a type selector such as h1, p, or a
alone is often too imprecise and can entail problems when you want
to style more-specific elements with additional classes because
there are different weightings here. I’ll discuss this topic in the
following chapter.

For this reason, here’s a useful recommendation: work with CSS
classes! First of all, this gives you a neat and easy-to-edit CSS, and,
secondly, you usually don’t have to bother about performance issues
—killing two birds with one stone. Of course, this doesn’t mean that
you have to work exclusively with CSS classes, as there are
definitely cases where it makes sense to resort to special selectors
or combinations. However, if you pay a little more specific attention
to this before creating your website, you should never have much
trouble understanding your CSS code after a long time has passed.

9.4 Summary
First, you’ve learned about the simple selectors of CSS summarized
in Table 9.17.

Selector Name Selection HTML Example
element {...} Type

selector
HTML element
named element

<element>

.clname Class
selector

Element with the
clname class

<p class="clname">

#elemid ID selector Element with ID
elemid

<p id="elemid">

* Universal
selector

All elements <p>

[attr] Attribute
selector
(presence)

Any element that
contains the attr
attribute

<element
attr="...">

[attr^=value] Attribute
selector
(partial
value)

Any element
where the
attribute attr
starts with the
text string value

<elem
attr="valueless">

[attr$=value] Attribute
selector
(partial
value)

Any element
where the
attribute attr
ends with the
text string value

<elem
attr="outvalue">

Selector Name Selection HTML Example
[attr*=value] Attribute

selector
(partial
value)

Any element
where the
attribute attr
contains the text
string value

<elem
attr="overvalued">

[attr=value] Attribute
selector
(attribute
value)

Any element
where the
attribute attr
contains the
value value

<elem
attr="value">

[attr~=value] Attribute
selector
(attribute
value)

Any element
with the value
value in the
attribute attr as
a standalone
word

<elem attr="abc
value xyz">

[attr|=valx] Attribute
selector
(attribute
value)

Any element that
has the value
valx in the attr
attribute at the
beginning as a
string separated
by a hyphen

<elem attr="valx-
valy">

Table 9.17 Simple Selectors

For elements that can no longer be reached with simple selectors,
you’ve become acquainted with pseudo-classes. These include the
following CSS pseudo-classes :link, :visited, :hover, :active,
:focus, :placeholder-shown, :target, :root, :empty, :first-child,
:last-child, :nth-child(), :nth-last-child(), :only-child, :first-
of-type, :last- of-type, :nth-of-type(), :nth-last-of-type, :only-
of-type, :lang(), and :not().

The CSS pseudo-elements represent another group of selectors.
This allows you to address elements that aren’t directly present as
elements in the structure of the HTML document, but are still
resulting from the structure with HTML or are generated using the
CSS feature content. You should be somewhat familiar with the
following pseudo-elements: ::first-letter, ::first-line, ::before,
::after, and ::selection.

Finally, you’ve learned how to concatenate two or more selectors
together using combinators. Table 9.18 lists the four combinators
available in CSS and described in this chapter.

Combinator Name Meaning
E F Descendant

selector
(descendant
combinator)

F gets selected if it’s a descendant of
an E element.

E > F Child
selector
(child
combinator)

F gets selected only if it’s a direct
descendant of an E element.

E + F Adjacent
sibling
selector
(adjacent
sibling
combinator)

F gets selected only if it occurs
directly after E (in the same parent
element).

E ~ F General
sibling
selector
(general
sibling
combinator)

F gets selected only if it occurs after
E (in the same parent element).

Table 9.18 Various Combinators for Concatenating Selectors

10 Inheritance and Cascading

In this chapter, I’ll address two other important topics about
CSS: the inheritance principle, which refers to the details
around defining and passing on CSS features, and the
cascading principle, which refers to how a document can be
formatted from a variety of stylesheets and different sources.

In this chapter, you’ll get to know the details about inheritance in
CSS, which refers to how, when, and if a CSS feature gets defined
and passed on in a central location. In the process, you’ll also learn
how to force inheritance.

Besides inheritance, cascading is an indispensable topic in CSS;
after all, the C in CSS stands for Cascading. Once you understand
the principle of cascading, you can build one stylesheet on top of
another and save yourself a lot of typing. The chapter concludes with
a digression on how and which values you can pass to CSS
features.

10.1 The Principle of Inheritance in CSS
An important principle in CSS is inheritance, which makes it possible
to define various CSS features such as color, font, and font size
once in a central location instead of assigning the same properties to
each individual element again and again.

As you already know, an HTML document is built in a tree structure.
The various HTML elements have ancestors and descendants, that
is, the parent and child elements. Thanks to this relationship, the
subsequent child elements inherit many style properties from the
superordinate parent elements.

For a more understandable description of inheritance, you should
take a closer look at the following simple HTML document:
...
 <link rel="stylesheet" href="css/style.css">
...
 <body>
 <header>Header</header>
 <article>
 <h1>Inheritance</h1>
 <p>1. Paragraph text for article</p>

 List item 1
 List item 2
 List item 3

 <p>2. Paragraph text for article</p>
 </article>
 <p>1. Paragraph text after the article</p>
 <p>2. Paragraph text after the article</p>
 <footer>Footer</footer>
 </body>
...

Listing 10.1 /examples/chapter010/10_1/index.html

The body element contains a header element, an article element,
two p elements, and a footer element as direct descendants. This
makes the body element the parent element of all these elements.
Direct descendants of the article element, in turn, are the h1, p, and
ul elements. These direct descendants of article are the indirect
descendants (or children’s children) of the body element.

Related to this example, the following stylesheet should be applied
to the document:

body {
 background: gray;
 font-family: Arial, Verdana;
 color: white;
}
...

Listing 10.2 /examples/chapter010/10_1/css/style.css

Starting from the body element, due to inheritance, the CSS features
set here are inherited from element to element. All elements
contained between <body> and </body> get the font family Arial
(font-family) and a white font color (color), which was agreed on
with the type selector body {...}.

Background (Color) Doesn’t Get Inherited!

Even if it seems to be the case in Figure 10.2, the gray
background color (background: gray) doesn’t get inherited. The
fact that everything here is nevertheless assigned a gray
background color is due to the fact that the default value is
transparent (translucent). For this reason, the gray color of the
body element is displayed behind all elements. As a counter-
demonstration, you’re welcome to use the following universal
selector before the body selector to recolor all elements to black,
so that none of the HTML elements are transparent from scratch
anymore, but black:
* { background: black; }
body { ... }

Figure 10.1 Thanks to Inheritance, CSS Features Are Passed on to the Descendants

Figure 10.2 Due to Inheritance, the Text in This Example Is Displayed in White Arial
Font with Gray <body> Background

The CSS rule with type selector body {...} is extended with the
following CSS rule for demonstration purposes:
body {
 background: blue;
 font-family: Arial, Verdana;
 color: white;
}

article {
 background: lightblue;

 color: black;
}

Listing 10.3 /examples/chapter010/10_1/css/style.css

If, as in this example with the article selector, a new inheritable
CSS feature is assigned to an element, such as the text color here,
the element specified with the selector (here, article) and its
descendants no longer inherit the CSS features of the parent
element. In that case, the CSS features declared in the selector are
inherited by the descendants. For this reason, the descendants of an
article element now get a black text color. The font-family of the
body selector, on the other hand, wasn’t declared in the article type
selector, which is why the font family declared in the body selector
(here, Arial) is still inherited by article and its descendants. Again,
background is not passed on to the descendants by the article
selector, but because of the transparent default background of HTML
elements, they are also seen with a light blue background due to the
light blue background of the article element.

Figure 10.3 shows that the inheritance is valid from the parent
element and its descendants onward. The CSS features declared
with the body selector apply here from body to the next element, for
which new style properties may have been written that make this
element the parent of its descendants (as in the example with the
article selector).

Figure 10.3 Inheritance Applies from the Parent Element to Its Descendants

Default Values for CSS Features

If no specific value has been assigned to a CSS feature, the web
browser uses the default value specified for it in the CSS
specification when inheriting it.

Figure 10.4 With the “article” Selector, This Element Takes over the Parent Role for the
Included Descendants, Styling the Text Color Black

If this inheritance didn’t exist in CSS, you’d have to explicitly create a
CSS rule for each element. Inheritance can help you write a more
efficient and concise stylesheet. Often, for example, it’s sufficient to
set the font and other CSS features fairly early in the body element,
and the inheritance rule makes sure that you don’t have to repeat
those CSS features later for each element.

Use Inheritance as Much as Possible

If you master inheritance and use it consciously, you can do
without the odd selector or the multiple setting or changing of CSS
features. For example, if you’ve set the font with the CSS feature
font-family or the font size with font-size for body, this applies to
the entire document, and you don’t need to do that again
separately for p or li elements. Of course, this also has a positive
effect on performance.

10.1.1 Be Cautious When Using Relative Properties

The inheritance of relative units such as font-size with percentage
values (font-size: 90%) or em (font-size: 0.9em), surprising changes
may occur because some web browsers reapply this value for each
element if a font-size with percentages or em is also defined for
further elements. For example, let's say you set CSS rules like the
following:
body { font-size: 70%; }
...
p { font-size: 70%; }

This would result in the content of the p element displaying only a
font size of 49% due to the inheritance of the relative value from the
body element because such relative values would be applied

cumulatively to each element. It’s not the value defined in the
stylesheet that’s passed on, but the value calculated by the web
browser.

10.1.2 Not Everything Gets Inherited

Not all CSS features are inherited by the descendants, as you’ve
already experienced previously with the background property.
Especially with CSS features such as margin, width, padding, or
border it wouldn’t make much sense and more likely give you a
headache than help you. For example, if the CSS feature border (for
a border around an element) were passed on to each descendant,
you would have to deactivate this inheritance using border: none for
each descendant. In anticipation of this, here’s a brief list of some
characteristics that don’t get inherited. These common values aren’t
inherited:

background, border (see Chapter 11, Section 11.5)

width, height, padding, border, margin (see Chapter 11,
Section 11.1)

position, top, right, bottom, left (see Chapter 12, Section 12.1)

float and clear (see Chapter 12, Section 12.3)

10.1.3 Enforcing Inheritance Using “inherit”

As mentioned in the previous section, there are CSS features that
don’t get inherited. If the situation requires it, you can force
inheritance using the inherit keyword. To better demonstrate the
inherit keyword, let’s first look at an example without the keyword:
body {
 font-family: Arial, Verdana;

 color: white;
 background: gray;
}

article {
 border: 4px dotted black;
 background: lightblue;
 color: black;
}
...

Listing 10.4 /examples/chapter010/10_1_3/css/style.css

Based on this example, these few lines of CSS provide the following
picture:

Figure 10.5 Not the Result We Wanted

If, in this example, you want to force all p elements inside <article>
to also have the dotted black border, you can force this with inherit
by adding the following CSS rule:
...
article {
 border: 4px dotted black;
 background: lightblue;
 color: black;
}

p {
 border: inherit;
 background: lightgray;
}

Listing 10.5 /examples/chapter010/10_1_3/css/style.css

By assigning inherit to the CSS feature, you force all p descendants
following in the article element to inherit the border of the parent
element (here, article). The result is shown in Figure 10.6.

Here you can also see that the inheritance only affects the child
elements, so inherit really only changed the border values of p
elements whose parent element was an article element.
Consequently, no border was added to the other two p elements
outside the article element, but the background color was changed.
Thus, it’s important to understand that with inherit, a child element
can inherit only the values of the parent element.

Figure 10.6 Inheritance Forced via “inherit”

10.1.4 Restoring the Default Value of a CSS Feature
(“initial”)

When you assign the initial value to a CSS feature, the default
value (or starting point) of the property specified in the CSS
specification will be used. The value initial can be assigned to any
CSS feature. Referring to Figure 10.6, if you want to reset the font
color of the p elements to the default value of the web browser
(which is usually black), you can do it as follows:

...
p {
 border: inherit;
 background: unset;
 color: initial;
}
...

Listing 10.6 /examples/chapter010/10_1_4/css/style.css

Here, you can use color:initial; to make sure that the font color of
all p elements in the HTML document is reset to the default value of
the web browser.

10.1.5 Forcing Inheritance or Restoring a Value
("unset")

The unset keyword gives you a middle ground between inherit and
initial. When you use the keyword for a CSS feature, it behaves
like the inherit keyword and inherits the value for the corresponding
CSS feature of the parent element. If there’s no parent element here
with a set value for this CSS feature, this keyword behaves like
initial and resets a CSS feature to the default value given by the
CSS specification.

10.1.6 Forcing Inheritance or Restoring Values for All
Properties

Finally, there’s the property all, which is a short notation for
inheriting all CSS features of the parent element with inherit or
resetting them to the default value with initial. The unset value
described previously can also be used along with all. Consider the
following example:
...
 <p>1. Paragraph text after the article</p>

 <p class="p_outside">2. Paragraph text after the article</p>
 <footer>Footer</footer>
...

Listing 10.7 /examples/chapter010/10_1_6/index.html

With regard to our example, here I used a p_outside class for the
second p element. For demonstration purposes, I want to reset and
restyle this element with initial:
body {
 font-family: Arial, Verdana;
 color: white;
 background: gray;
}

article {
 border: 4px dotted black;
 background: lightblue;
 color: black;
}

p {
 border: inherit;
 background: lightgray;
 color: unset;
}

.p_outside {
 all: initial;
 display: block;
 margin: 5px;
 color: silver;
}

Listing 10.8 /examples/chapter010/10_1_6/css/style.css

Here, the paragraph text of the p element after the article element
was covered with a white font and light gray background. Because
the paragraph text with the p element above it should still remain in
this format, I wrapped the new style in a p_outside class, reset all
CSS features using all: initial;, and then began to restyle the
paragraph text.

Note, however, that the CSS feature all was used only for
demonstration purposes and isn’t intended for styling entire elements
without any further consideration, only to reset everything again. If
you happen to find yourself in the situation that you have to use this
feature more often than necessary, you may want to rethink the way
you use CSS.

Figure 10.7 Using a Class, I Set All the CSS Features for the Second <p> Element
outside the <article> Element to the Default Value with “all: initial;” and Restyled It

10.2 Understanding the Control System for
Cascading
The term cascading means that a document can be formatted not
only by one stylesheet, but from a variety of stylesheets that can
come from different sources. This makes it possible for one
stylesheet, if used correctly, to build on another, saving you a lot of
work. Now, the fact is that the many ways to include and combine
stylesheet statements can cause conflicts and contradictions. Such a
conflict arises when the same CSS feature has been assigned
different values in multiple statements. For such cases, there’s a
system of rules that decide which of the conflicting or competing
style statements will ultimately be applied to an element.

10.2.1 The Origin of a Stylesheet

A stylesheet can originate from three different sources—web
browser, user, and author—as described here:

Browser stylesheet
The default stylesheet of the web browser is used if no CSS
formatting is assigned to the HTML document. Every web browser
provides basic formatting for this purpose, with default values for
font sizes for headings, underlining for links, indentation for lists,
spacing for paragraphs, and much more. Each web browser
provides its own default setting, so there are usually slight
differences.

User stylesheet
Some web browsers allow users to include their own stylesheet
files directly or via extensions. If they include their own stylesheets

(user stylesheets, user styles), the corresponding properties of the
web browser will be overwritten.

Author stylesheet
This is the stylesheet you created and referenced or included with
the @import rule, which is usually used to override or combine
various CSS features of the default stylesheet—the browser
stylesheet)—and the user stylesheet, if applicable.

Among these three sources, the browser stylesheet has the lowest
priority. If a user stylesheet is used—which has a medium priority—
the browser stylesheet will be overwritten. The author stylesheet, on
the other hand, has the highest priority and overrides both the
browser and user stylesheets. Simply put, these three sources offer
you three ways to apply CSS features to an HTML element:

If no CSS feature is declared for an HTML element, then a check
is carried out if anything is inherited. If nothing is inherited, the
default value of the browser stylesheet will be used.

If the web browser finds exactly one declaration of a CSS feature
for a particular element, it uses the declaration to format the HTML
element.

On the other hand, if the web browser finds multiple identical and
competing declarations of a CSS feature for a given HTML
element, it sorts them according to their importance, specificity,
and order, and uses them accordingly.

Basically, this principle of three sources is kept relatively simple
here, and if the web browser finds no or only one CSS feature for an
HTML element, things are relatively clear. It gets more difficult when
several competing declarations coincide. You’ll learn how CSS
solves this problem on the following pages.

10.2.2 Increasing the Priority of a CSS Feature Using
“!important”

If you declare a CSS rule or CSS feature multiple times in the same
file, usually the last property declared gets the nod. Let’s take a look
at a simple example:
.m_article { border: 1px solid gray; }
...
.m_article { border: 1px dotted green; }

Here, an m_article class was initially formatted with a solid gray
border that has a thickness of 1 pixel. A bit further down there’s
another CSS rule for this, but now m_article is formatted with a
dotted green border whose thickness is 1 pixel. The last declaration
noted gets the deal.

With the CSS keyword !important, on the other hand, you can
increase the priority so that this property can’t be overridden by the
subsequent specifications. You can apply this keyword to the
example just shown as follows:
.m_article { border: 1px solid gray !important; }
...
.m_article { border: 1px dotted green; }

In this case, the declaration made last is no longer given preference.
In this example, the !important keyword draws a solid gray border
with a thickness of 1 pixel around the element containing the
m_article class.

10.2.3 Sorting by Importance and Origin

The !important keyword slightly changes the priority order, which
used to be author stylesheet before user stylesheet before browser

stylesheet. Sorting by importance can be written in the following
order of descending priority (importance):

1. User stylesheet with !important

2. Author stylesheet with !important

3. Author stylesheet

4. User stylesheet

5. Browser stylesheet

In practice, you’ll probably be dealing with your own author
stylesheet most of the time (without !important).

You might wonder why the user stylesheet with !important is
suddenly more important than the author stylesheet with !important
because without !important, it’s the other way around. Thus, if a
user marks a CSS feature with !important in the stylesheet, it has to
be accepted by the web browser, no matter what you’ve set there.

The reason that a user stylesheet with !important has a higher
importance than an author stylesheet with !important is that people
with a disability should be preferred, so that they may be able to
determine by themselves in what way the content should be
displayed. For example, a person with a visual impairment could
increase the paragraph font size using a custom stylesheet as
follows:
p { font-size: 200% !important; }

In practice, you shouldn’t expect every visitor with an impairment to
be familiar with CSS, let alone be able to create their own CSS
stylesheet. In that case, you could offer a suitable stylesheet for
download.

Integrating User Stylesheets

The integration of user stylesheets differs slightly from web
browser to web browser. In some web browsers, you’ll find this
option hidden in the submenus or settings, while other web
browsers ask for an extension to be installed first. An interesting
project related to this topic can be found at http://userstyles.org,
where you can install ready-made user stylesheets for Facebook,
Google, Tumblr, and other high-traffic websites using the Stylish
extension for the Firefox and Chrome web browsers.

Figure 10.8 demonstrates such a sorting according to the source and
its importance or simply the cascading flow for a p element, for
example.

Figure 10.8 Theoretical Example of Sorting by Importance

CSS Features for the Appropriate Media Type

I haven’t mentioned yet that in the first step, before sorting by
importance, the system checks whether CSS features have been
included for an HTML element that are also valid for the current
media type. The first step is to search for all declarations that
should be applied to the current output medium for the elements.

http://userstyles.org/

10.2.4 Sorting by Weighting the Selectors (Specificity)

Besides sorting the importance according to the origin of the
stylesheets, there’s also a priority rule among the selectors. This
type of sorting is used when there are equivalent specifications
within a stylesheet. In this process, a value is calculated for each
selector, indicating the weighting of the selector. That value is
referred to as the specificity. The specificity is expressed as a
numerical value, and the higher this numerical value, the more
important the selector, which then overrides any competing selector
with a lower value.

The specificities of a selector are divided into the following four
groups:

A (first digit: 1,0,0,0)
This value is set only if the HTML element uses inline styling via
the style attribute. Otherwise, this value remains at 0.

B (second digit: 0,1,0,0)
This group counts the number of ID attributes in a selector.

C (third digit: 0,0,1,0)
This group stores the number of attributes, classes, and pseudo-
classes selected by a selector.

D (fourth digit: 0,0,0,1)
The group with the lowest weighting contains the number of
element names (type selectors) and pseudo-elements.

Figure 10.9 Calculating the Specificity: If There’s a Conflict, the Web Browser Will Use
the Selector with the Higher Weighting

No Weighting for...

Universal selectors with * don’t get any weighting and behave
neutrally. The same applies to the combinator characters >, +, and
~, as well as the space between two selectors. The two selectors
do increase the weighting in group D by at least the value 2
(because there are two selectors), but the combinator characters
are also neutral here.

HTML elements or attributes classified as deprecated by the W3C
are also evaluated by current web browsers without a weighting.

In addition, the pseudo-class :not() doesn’t add any weighting.
For this purpose, the elements within the pseudo-class are
evaluated as prescribed.

Table 10.1 contains several examples of such calculations.

Selectors A B C D Specificity Description
* {...} 0 0 0 0 0,0,0,0 1 universal

selector
p {...} 0 0 0 1 0,0,0,1 1 type selector
ol li {...} 0 0 0 2 0,0,0,2 2 type selectors

Selectors A B C D Specificity Description
.note 0 0 1 0 0,0,1,0 1 class selector
*.note 0 0 1 0 0,0,1,0 1 universal

selector
1 class selector

*[type=checkbox]
{...}

0 0 1 0 0,0,1,0 1 universal
selector
1 attribute
selector

p:first-child
{...}

0 0 1 1 0,0,1,1 1 pseudo class
1 type selector

ul li.info {...} 0 0 1 2 0,0,1,2 2 type selectors
1 class selector

#content {...} 0 1 0 0 0,1,0,0 1 ID selector
#content p {...} 0 1 0 1 0,1,0,1 1 ID selector

1 type selector
#content
*:not(nav) li {...}

0 1 0 2 0,1,0,2 1 ID selector
1 universal
selector
2 type selectors
1 pseudo-class
(:not() doesn’t
count)

ul#nav li.hyper a
{...}

0 1 1 3 0,1,1,3 3 type selectors
1 class selector
1 ID selector

 1 0 0 0 1,0,0,0 1 inline style

Table 10.1 Some Sample Calculations of the Specificity of Selectors

When you look at the end result of specificity in Table 10.1, you
could also imagine a specificity such as 0,0,1,1 as decimal 11 or
specificity 0,1,1,3 as decimal 113.

Nevertheless, you should keep in mind that this is not the decimal
system with base 10. Consequently, a commonly heard explanation
such as “ID selector counts 100, class selector counts 10, and
normal element counts 1” isn’t correct. For example, if you have a
specificity such as 0,1,2,11 (exaggerated), this does not mean that
11 for category D results in the decimal value 131, as it would in the
decimal system with base 10. Admittedly, the value 11 for group D is
a bit exaggerated; this would be the case, for example, if you used
11 type selectors there.

Let’s look at a simple example:
...
<article>
 <h1>Inheritance</h1>
 <p>1. Paragraph text for article</p>
 <ul id="index">
 <li class="aclass">list item 1
 <li class="aclass">list item 2

</article>
...

Listing 10.9 /examples/chapter010/10_2_4/index.html

From this HTML code, the li element is to be selected using the
following CSS rules, all of which compete with each other:
.aclass { color: green; }
#index li.aclass { color: orange; }
li { color: red; }
li.aclass { color: blue; }
body article ul li { color: yellow; }
#index li { color: gray; }

Listing 10.10 /examples/chapter010/10_2_4/css/style.css

You’re now invited to try out for yourself in which color the li
element will eventually be displayed, or use the specificity of
selectors learned previously and calculate for yourself which CSS
rule has the highest weighting. The solution is shown in Table 10.2.

Selectors A B C D Specificity Description
.aclass 0 0 1 0 0,0,1,0 1 class selector
#index li.aclass 0 1 1 1 0,1,1,1 1 ID selector

1 type selector
1 class selector

li 0 0 0 1 0,0,0,1 1 type selector
li.aclass 0 0 1 1 0,0,1,1 1 type selector

1 class selector
body article ul li 0 0 0 4 0,0,0,4 4 type selectors
#index li 0 1 0 1 0,1,0,1 1 ID selector

1 type selector

Table 10.2 Calculating the Specificity of Selectors; in the Example, the Element Is
Shown in Orange

What about the Short Notation "h1, h2, h3, p {...}"?

If you separate multiple type selectors with commas, such as the
following:
h1, h2, h3, p { font-family: Arial; }

Those four selectors will only be counted in total with the value 1
in group D. This notation ultimately corresponds only to a shorter
notation:
h1 { font-family: Arial; }
h2 { font-family: Arial; }
h3 { font-family: Arial; }
p { font-family: Arial; }

Sorting with Equal Weighting

If two CSS rules have the same weight and are of the same origin,
then the rule that occurred last takes precedence. However, note
that CSS features declared with !important again take precedence.
The only way to override a CSS feature declared with !important is
to use another !important declaration. In terms of specificity, you
could imagine !important with the value 1,0,0,0—although this
category or group doesn’t exist in CSS.

10.2.5 Summary of the Cascading Rules System

Here’s another summarizing overview of how the cascading
sequence is processed in a web browser when it searches for
stylesheet specifications in a document:

1. Sorting by origin and importance in the following order:

User stylesheet with !important goes before author stylesheet
with !important.

Author stylesheet with !important has priority over author
stylesheet without !important.

Author stylesheet without !important takes preference over
user stylesheet without !important.

User stylesheet without !important takes preference over
browser stylesheets.

2. For equivalent specifications within stylesheets, in turn, the
specificity gets calculated and, according to the weighting, the
selector with a higher calculated value is used.

3. For specifications that contain an identical specificity, the most
recently occurred statement takes precedence.

10.2.6 Analyzing the Cascading in the Browser

Again, the developer tools of the web browser can be of great help.
In most web browsers, you open these tools via (Ctrl) + (Shift) +
(I). If you select the styled HTML element here on the left, the CSS
for it gets displayed in the Styles tab on the right. There you can see
which CSS features are inherited from the web browser (User agent
stylesheet) and which are inherited from other elements (Inherited
from). Elements that are crossed-out were overwritten by another
element. For example, in Figure 10.10 the CSS feature color of the
body element was overridden in the article element.

The analysis via the developer tool of the web browser is
indispensable for the design of a website and for finding an error if it
doesn’t work properly with the CSS of a certain element.

Figure 10.10 Indispensable for Analyzing the CSS Is the Developer Tool of the Web
Browser

10.3 Related Topic: Passing Values to CSS
Features
To conclude the chapter, you’ll learn a few things about passing values to
CSS features. I’ll limit the individual descriptions to what is most necessary.
More details about where you can use which value and how will be
described in the remaining CSS chapters when the respective CSS feature
is covered.

Further Online Reading

For more information on CSS value specifications and some other
allowed value types, visit the W3C website at www.w3.org/TR/css-
values-3/. At this point, I’ll only describe the most common types, which
you’ll encounter more frequently in the following chapters.

10.3.1 Different Units of Measurement in CSS

The specification of numerical values, for example, for font sizes, heights,
and widths or for distances, is often written in connection with a unit of
measurement (UoM) directly after the numerical value. In CSS, there are
many UoMs that can be used as either relative or absolute specifications.
For the number 0, the UoM doesn’t have to be specified. Here are some
examples of length specifications with different UoMs:
font-size: 12pt;
margin-left: 1em;
line-height: 125%;
border-width: 0.2in;

Specifying Numerical Values or Numbers

The numeric values in CSS can be integers and floating-point numbers.
The comma in the floating-point number is represented by a dot in CSS

http://www.w3.org/TR/css-values-3/

(e.g., font-size: 1.2em). There are also numbers in CSS that are used
without a UoM (e.g., z-index: 1 or opacity: 0.75). Negative values with a
minus sign can also be used if this seems reasonable (e.g., z-index: -2).
Negative values can’t be used for length specifications such as height
and width, or for padding.

See Table 10.3 for a list of common UoMs for CSS. In the further course of
the book, you’ll learn in more detail where you can or should use which
UoM.

UoM CSS
Name

Specification Description

Pixel px Absolute
relative

The display of pixels depends on
the pixel density of the output
device. With a high screen
resolution, the pixels become
smaller, which is why the display
appears smaller. It’s the same with
a low screen resolution, where the
pixels and hence the display
appear larger. A pixel is thus a
relative UoM on display devices
and an absolute UoM in relation to
the display or content.

Point pt Absolute This is a typographic UoM, and 1
point is equal to 1/72 inch,
for example:
font-size: 14pt;

Pica pc Absolute Pica is also a UoM widely used in
typography. A pica is 1/6 of an inch
and is therefore equivalent to 12
points, for example:
font-size: 1pc; /*= 12pt */

Centimeters cm Absolute A centimeter is the hundredth part
of a meter and corresponds to 10
mm, for example:
margin-left: 1.3cm;

UoM CSS
Name

Specification Description

Millimeters mm Absolute A millimeter is one-thousandth of a
meter or the tenth part of a
centimeter, for example:
padding: 2mm;

Inches in Absolute 1 inch is equal to 2.54 cm,
for example:
margin-top: 1in;

em quad em Relative An em represents the font size of
the element. If em is used for the
font size itself (font-size), then this
value refers to the font size of the
parent element, for example:
font-size: 1.3em;

x-height ex Relative An ex represents the height of the
lowercase x of the font used in this
element. Again, if ex is used for the
font-size, then this height refers to
the value of the lowercase x in the
parent element.

Percent % Relative Percentages can be used in a
variety of ways. It depends on the
CSS feature whether this value
refers to the element’s own size, to
that of the parent element, or to a
general context.

Root em rem Relative The rem (rem = root em) behaves in
the same way as em, except that
the rem value is based on the root
element and not on the font size of
the respective parent element. In
HTML, the root element is the body
or html element, for example:
font-size: 1.2rem;

UoM CSS
Name

Specification Description

Viewport
width

vw Relative 1vw corresponds to 1% or the
hundredth part of the width of the
display area (i.e.,viewport). Thus,
100vw corresponds to the complete
width of the display area. This UoM
allows you to adjust the font size to
the display area of the device or
the size of the browser window.

Viewport
height

vh Relative 1vh corresponds to 1% or the
hundredth part of the height of the
display area (i.e., viewport). Thus,
100vh corresponds to the total
height of the display area. This
UoM allows you to adjust the font
size to the display area of the
device or the size of the browser
window.

Table 10.3 Common Absolute and Relative Length Specifications in CSS

10.3.2 Character Strings and Keywords as Values for CSS
Features

CSS makes a strict distinction between keywords and strings. Strings are
enclosed between single or double quotes in CSS. Here’s an example with
strings in CSS:
content: " meter"; /* string */
content: '$ '; /* string */

The keywords in CSS, on the other hand, aren’t marked separately,
for example:
color: black;
width: auto;
display: inline-block;

You can’t just put keywords between single and double quotes. A
statement the following would have no effect:
color: "black"; /* !!! string !!! CSS error */

Here the color wouldn’t be set to black because you made it an ordinary
string by using double quotes. Strictly speaking, this is an invalid value
assignment, which a CSS validator would find fault with if you had this line
checked.

10.3.3 Many Ways of Using a Color in CSS

Colors generally represent an important design element. In CSS, you have
several options for writing color values. It should be noted right away that
none of the different color specifications has any advantages or
disadvantages in the display or execution of web pages. The only
advantages or disadvantages are probably more for the individual who
may not be familiar with hexadecimal notation and thus can use named
colors. Graphic designers who are familiar with RGB or HSL colors will find
these color specifications easier to use. Consequently, there’s something
for everyone.

Named Colors Using a Name as a Color Value

Even at the time CSS was introduced, it was possible to write color values
directly with a name. For this purpose, 16 VGA color names were initially
added to the CSS specification (later, orange was added). The advantage
of such color names is, of course, that you can easily remember and use
them (at least those of the basic colors), for example:
.p_article {
 background-color: blue;
 color: white;
}

Here, a CSS rule has been defined for a paragraph text with the <p>
element with blue background and white font. In Table 10.4, you’ll find
classic color names that have been part of CSS since its beginnings.

CSS Name Hexadecimal RGB Color
black #000000 rgb(0,0,0) Black
gray #808080 rgb(128,128,128) Gray
silver #C0C0C0 rgb(192,192,192) Silver
white #FFFFFF rgb(255,255,255) White
purple #800080 rgb(128,0,128) Purple
fuchsia #FF00FF rgb(255,0,255) Fuchsia
maroon #800000 rgb(128,0,0) Maroon
red #FF0000 rgb(255,0,0) Red
olive #808000 rgb(128,128,0) Olive
yellow #FFFF00 rgb(255,255,0) Yellow
green #008000 rgb(0,128,0) Green
lime #00FF00 rgb(0,255,0) Lime
navy #000080 rgb(0,0,128) Navy
blue #0000FF rgb(0,0,255) Blue
teal #008080 rgb(0,128,128) Teal
aqua #00FFFF rgb(0,255,255) Aqua
orange #FFA500 rgb(255,165,0) Orange

Table 10.4 Classic Named Colors

In the current CSS, additional color values have been added to these
named ones, which are now understood by all popular web browsers.
There should be 147 color names by now, although it’s also permitted to
write all color names containing the word gray with e (grey). You can also
find a list of color names, neatly sorted, at www.colors.
commutercreative.com.

http://www.colors.commutercreative.com/

Classic Hexadecimal Notation for the Color Specification

If you look at the HTML code of web pages, the use of hexadecimal
notation still seems to be the most commonly used notation for color
values. The specification starts with the # character, followed by the color
components for red, green, and blue in a range from 00 (for 0) to FF (for
255). The general notation of the hexadecimal notation is
#RRGGBB

Here R stands for the red portion, G for the green, and B for the blue one.
Let’s take a look at a simple example:
.p_article {
 background-color: #0000FF;
 color: #FFFFFF;
}

Here again, a CSS rule was defined for a paragraph text containing the <p>
element with a blue background and white font. Table 10.4 contains an
overview of different color specifications with the corresponding
hexadecimal values. In contrast to named color names, where you’re
limited to a certain number and fixed defaults of color names, with such
RGB mixing, you can theoretically reproduce 256 × 256 × 256 colors (over
16.7 million) colors.

Short Hexadecimal Notation

In CSS, you can abbreviate the hexadecimal notation if the first and
second digits of red, green, or blue are identical. The specification #0F0
thus corresponds to #00FF00, or the short notation #123 corresponds to
#112233. The web browser converts the #RGB value to the six-digit #RRGGBB
value, for example:
.p_article {
 background-color: #00F;
 color: #FFF;
}

This is identical to the following:

.p_article {
 background-color: #0000FF;
 color: #FFFFFF;
}

The FF value is the hexadecimal notation for the value 255. In contrast to
the decimal system with base 10, the hexadecimal system uses base 16.
Here, the characters A to F are used from the value 10 onward (see
Table 10.5).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 100 255

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 64 FF

Table 10.5 Comparison between the Counting of the Decimal System with Base 10 (Upper Row)
and the Hexadecimal System with Base 16

Mixing the Colors with Red, Green, and Blue (RGB Mixture)

You can also define an RGB color mixture using the CSS function,
rgb(Red, Green, Blue). You make the specifications for red, green, and blue
either with percentage values (0–100%) or with decimal numbers in the
range of 0–255. An example of using the rgb() function might look as
follows:
.p_article {
 background-color: rgb(0,0,255);
 color: rgb(255,255,255);
}

The following is an example as a percentage value:
.p_article {
 background-color: rgb(0%,0%,100%);
 color: rgb(100%,100%,100%);
}

Again, in both examples, you’ve used the class selector to define a CSS
rule for an HTML element of the p_article class with a blue background
and white font. In Table 10.4, you’ll find various color specifications with the
corresponding RGB mixtures for the rgb() function.

RGB Mixture with Transparency

Another CSS function is rgba(), which adds a fourth value—the alpha
value for transparency—to the ordinary rgb() function. This value allows
you to specify the transparency for the color. The value 0.0 represents full
transparency, while the value 1.0 stands for full opacity and corresponds to
the function, rgb().

With the following specifications, you specify that the paragraph text in
white color with 0.3 is exactly 30% visible and 70% transparent:
.p_article {
 background-image: url('background.jpg');
 background-repeat: no-repeat;

 color: rgba(255, 255, 255, 0.3);
}

Here, an image has also been inserted with background-image to
demonstrate how the image remains visible through the text thanks to the
rgba() function. You can fine-tune the transparency value even more and
use a second decimal place (hundredths) after the decimal point, for
example, 0.35.

Figure 10.11 Using “rgba()”

An example of this is shown in Figure 10.11. The paragraph text was
created over the top background image using the rgba() function in white

font with a transparency of 50%. In the paragraph text below, the familiar
rgb() function was used. The example can be found in
/examples/chapter010/10_3_3/index.html.

HSL Mixture: Mixing Colors with Hue, Saturation, and Lightness

Not everyone likes the RGB color mix with red, green, and blue, and not
everyone is familiar with it. For this purpose, as of Level 3 CSS, it provides
a mixture of Hue, Saturation, and Lightness (HSL), which is referred to as
hsl.

Many web designers find it more intuitive or easier to remember to specify
the hue with an integer value from 0 to 360. To illustrate this, you can
imagine a color circle from 0 to 359 degrees, where the value 0 or 360
stands for red, 120 for green, and 240 for blue.

The values of saturation and lightness are provided in percentages. The
more the saturation value is reduced from 100% to 0%, the more the hue
turns to gray. The normal lightness, on the other hand, is displayed via the
value 50%. A lightness of 100% is white, and a lightness of 0% is black.

Here’s a simple example of hsl():
.p_article {
 background-color: hsl(240, 100%, 50%);
 color: hsl(0,100%,100%);
}

As with the other examples, you use the class selector to define a CSS
rule for a paragraph text with the <p> element with a blue background and
white font.

HSL Mixture with Transparency

As with the RGB mixtures with the rgba() function, there’s an HSL
mixture with hsla (hue, saturation, lightness, opacity), where the
opacity can be specified as a fourth parameter with a floating-point

number from 0 (completely transparent) to 1 (no transparency). The a in
hsla stands for the alpha channel (opacity).

Color Selection Tools

If you want to know a specific color value on a website, Firefox provides a
color picker in the developer tools. If you select it and move the cursor to
the respective color, you’ll know the color value. If you click on it, the hex
value will be copied to the clipboard.

For Google Chrome, you can use the ColorZill a extension, and for
Microsoft Edge I recommend ColorFish Color Picker. The two extensions
provide more functions than just selecting the color. ColorZilla is also
available for Firefox.

Figure 10.12 Firefox Color Picker

In the Chrome, Edge, and Firefox web browsers, there’s also another
useful helper related to the color and CSS.

Figure 10.13 Developer Tools: Color Picker Where You Can Change the Colors of Individual
HTML Elements

Open the developer tools via (Ctrl)+(Shift)+(I), for example. Then
select the HTML element for which you want to see the stylesheet with the
color. In the color details of the stylesheet, you’ll find a color plate next to
the color value. When you move over it with the mouse pointer, you can
switch the different notations by holding the (Shift) key (hex value, color
name if available, hsl() value or rgb() value). If, on the other hand, you
click on the color plate, a color selection opens in which you can directly
change the color value and also determine it. This allows you to
experiment with the colors of a web page. The changes are only
temporary.

10.3.4 Angular Dimensions in CSS

CSS also defines some angular dimensions that you can use to write
rotations. If you use a negative value for these units, which are listed in
Table 10.6, the rotation is counterclockwise, converting the negative value
to its positive counterpart (-40deg would become 320deg). Positive values
are rotated clockwise.

UoM CSS
Name

Description

Degree deg Angle in degrees; a complete circle corresponds to 360
degrees, for example:
transform: rotate(90deg);

UoM CSS
Name

Description

Gradian grad Angle in gradian (grad), a complete circle corresponds
to 400 grad. 100 grad corresponds to a 90° turn,
for example:
transform: rotate(100grad);

Radian rad Angle in radian; a complete circle here corresponds to
2 pi = 6.2831853, for example:
transform: rotate(5.5rad);

Round
angle

turn A round angle is a circle rotation (0.25turn corresponds
to a 90° rotation; 1 turn = 360°). At the time this book
went to press, only Firefox was capable of working with
this unit. Example:
transform: rotate(0.25turn);

Table 10.6 Different Angular Dimensions in CSS

Time Data

You can also find two time specifications in the CSS specification. The
identifiers s for second and ms for millisecond are available for this
purpose. For example:
transition-delay: 2s;

10.3.5 Passing Values via Short Notation to a CSS Feature

You can use short notations in CSS to bundle some CSS features and
write them down in one go. Thus, take a specification such as the
following:
.my_article { margin: 25px; }

It is merely a short version of the following:
.my_article {
 margin-top: 25px; /* Top margin */
 margin-right: 25px; /* Right margin */
 margin-bottom: 25px; /* Bottom margin */

 margin-left: 25px; /* Left margin */
}

The CSS feature margin is used for an outer margin or distance between
the current element and its parent or adjacent element. We’ll return to that
later.

You can use this short notation not only for more than just four of the same
properties but also for specifying four different values in a shorter way:
.my_article { margin: 25px 10px 20px 5px; }

This shorter specification is identical to the following:
.my_article {
 margin-top: 25px; /* Top margin */
 margin-right: 10px; /* Right margin */
 margin-bottom: 20px; /* Bottom margin */
 margin-left: 5px; /* Left margin */
}

The only important thing about the short notation is that you know about
the clockwise order. Starting from 12 o’clock with top, the order in the clock
hand is top, right, bottom, and left.

If the values of left and right are the same, you can use the following:
article { margin: 25px 10px 20px; }

Because the fourth value (left) has been omitted, the value of right gets
used instead, making the value of the left and right margins 10 pixels. You
can do the same with top and bottom:
.my_article { margin: 20px 10px; }

Here, I’ve specified only two values, so that 20 pixels apply to top and
bottom and 10 pixels to right and left. You can also subsequently use the
top, bottom, left, or right versions to override the value of the general
CSS feature for all four sides, for example:
.my_article {
 margin: 25px; /* All four side 25 pixels margin */
 margin-left: 0px; /* Set left margin to 0 pixels */
}

Besides margin, there are other CSS features that are short notations of
several CSS features. I’ll describe the individual CSS features in the
following chapters, but want to present a few examples already at this
point. Without going into detail about the individual functions, the following
lines all contain short notations of multiple CSS features:
padding: 20px 30px 10px 20px;
border: 1px solid yellow;
background: orange url('background.jpg') no-repeat left top;
font: bold 16px Arial, Helvetica;
list-style: square inside url(bullet.png);
outline: blue dotted thick;

10.4 Summary
In this chapter, you learned how the principle of inheritance works in
CSS and how you can even force such inheritance. Likewise, you
now know what is meant by “cascading” in CSS, and thus what CSS
does in the event of a conflict, for example, if the same CSS feature
has been assigned different values in multiple statements. At the end
of the chapter, you learned in a short theoretical digression what
kinds of values with and without UoMs you can pass to CSS
features.

11 The Box Model of CSS

The basis for positioning elements and creating a layout in
CSS is the box model. In this chapter, you’ll learn about the
new and more intuitive box model of CSS in addition to the
classic box model.

You’ve probably noticed that elements on websites consist of
rectangular boxes or just boxes. Thanks to those rectangular boxes,
it’s possible to position elements with CSS or to create the layout of
websites.

Figure 11.1 Websites Consist of Rectangular Boxes (or Just Boxes), Which Were Made
Visible with CSS Here

In Figure 11.1, we used the universal selector to make all the
rectangular boxes of the HTML elements visible as follows:
...
* { border: 1px solid black; }
...

Listing 11.1 /examples/chapter011/11/index.html

In this chapter, you’ll learn everything you need to know about the
following:

Classic box model of CSS

Newer alternate box model of CSS

Styling of boxes with CSS

11.1 Classic Box Model of CSS
In Figure 11.1, you can see only a simple frame so that it seems that
such a rectangular box consists only of a height and a width. But the
box model also includes the following:

Actual content area (also content) of text and images, which is
specified by width and height

Internal spacing (padding), which is specified with padding

Frame, which is written using border

Outer margin, which is specified using margin

Thus, a box is composed of four boxes: a content box for the
content, a padding box for the padding, a border box for the border,
and a margin box for the margin. Each of these four boxes, in turn,
can be divided into top, right, bottom, and left. Figure 11.2 shows a
simple representation of the CSS box model.

Figure 11.2 Classic CSS Box Model

11.1.1 Specifying the Content Area Using “width” and
“height”

You can define the actual content area with the space for text and
images using the CSS features width and height (see also
Figure 11.2). If you don’t specify a special value for width, the HTML
element will be as wide as the surrounding element. If no height is
specified, all elements will be as high as the content is.

HTML Elements without “width” and “height”

There are elements, for example, strong, abbr, a, or em, where the
height and width are automatically determined by the extent of the
content. You can’t assign the CSS features width and height to
such elements.

For example, in Figure 11.3, two article elements were formatted
using the following CSS rules:
.article_01 { width: 300px; background: antiquewhite; }
.article_02 { width: 600px; background: antiquewhite; }
h_2 { background: sandybrown; }

Listing 11.2 /examples/chapter011/11_1/css/style.css

In Figure 11.3, you can see the example
/examples/chapter011/11_1_1/index.html with the CSS code
/examples/chapter011/11_1_1/css/style.css in use.

Figure 11.3 Two <article> Elements Were Each Defined via a Class Selector with a Fixed
Width (“width”): Top Article Is 300 Pixels Wide, and Bottom Article Is 600 Pixels Wide

At this point, it’s slightly confusing at first that specifying the width in
the classic box model with the CSS feature width doesn’t define the
actual width of the element, but only the area with the content
(width × height), as you can see in Figure 11.2.

You should also note that the height specification for height is only
an initial value. If the content of the encompassing element is larger
than the specified height, the content is still displayed and overflows
the box, as shown in Figure 11.4. You can find the example for this in
/examples/chapter011/11_1_1/index2.html.

Figure 11.4 Text No Longer Fits into the Dimensions Specified for “width” (230 Pixels)
and “height” (200 Pixels), Resulting in the Text “Flowing Out” of This Box

In real life, you’ll rarely define fixed values for the width (with width)
and the height (with height). Responsive web design tends to use
properties such as min-width (minimum width), min-height (minimum
height), or max-height (maximum height) to allow flexible limits to suit
the device or screen width.

CSS Feature “overflow”

If you want to prevent overflowing, you could use the CSS feature
overflow (e.g., with the value hidden), which, however, will no
longer display the oversized content.

11.1.2 Specifying the Inner Spacing Using “padding”

The inner padding (often only referred to as padding) of the box
between the contents and the frame is indicated by padding (see
Figure 11.2). This CSS feature assumes the background color of the
content area if you’ve used one there. The CSS feature padding
alone sets all four sides clockwise and is a short notation for
padding-top (top inner spacing), padding-right (right inner spacing),
padding-bottom (bottom inner spacing), and padding-left (left inner
spacing).

11.1.3 Creating the Border Using “border”

The border encloses the padding and has its own CSS features for
thickness (width), line style (style), and color (color). Similar to
padding, you can use border to address all four sides at once. Again,
you can access each of the four sides separately with border-top
(top border line), border-right (right border line), border-bottom
(bottom border line), and border-left (left border line).

Here’s another example, where you mark up two article elements,
each 600 pixels wide, with width. Both article elements also get a
border with a thickness of 10 pixels. To see the effects of padding
here, the second article element was given an internal spacing
(padding) of 50 pixels. Here are the corresponding CSS rules for
this:
.article01 {
 width: 600px;
 border: 10px solid sienna;
 background-color: antiquewhite;
}
.article02 {
 width: 600px;
 padding: 50px;
 border: 10px solid peru;
 background-color: antiquewhite;
}
.h_2 { background-color: sandybrown;}

Listing 11.3 /examples/chapter011/11_1_3/css/style.css

In Figure 11.5, you can see the example
/examples/chapter011/11_1_3/index.html with
/examples/chapter011/11_1_3/css/style.css in use. Both article
elements have a width of 600 pixels and a border of 10 pixels. For
the bottom article element, you’ve also set up a padding of 50
pixels in all four directions via padding. Here, you can see that the
padding also takes on the background color of the content area.

11.1.4 Setting Up the Outer Margin Using “margin”

At the very outside of the box model in Figure 11.2 you can see
another outer margin with margin, which can also be written with
margin-top (top outer margin), margin-right (right outer margin),
margin-bottom (bottom outer margin), and margin-left (left outer
margin) for all four directions individually. The outer margin has no
color, is completely transparent, and therefore takes on the
background color of the surrounding element.

Figure 11.5 A Frame with “border”: One Frame with “padding” and One Without

Figure 11.6 A <header> Element, Two <article> Elements, and One <footer> Element
Are Framed, While No Outer Space with “margin” Has Been Used Yet

The example /examples/chapter011/11_1_4/css/style.css from
Figure 11.7 can be found in
/examples/chapter011/11_1_4/index.html. It should also be
mentioned here that negative values are allowed for margin. The
question as to how negative values affect margin depends on
whether the elements are static, positioned, or floated.

Figure 11.7 The <article> Element Has Been Set with an Outer Margin of 10 Pixels to the
Top and Bottom (“margin: 10px 0px”)

11.1.5 Collapsing Margins

One initially somewhat confusing peculiarity of vertical margins must
definitely be mentioned at this point. It concerns the vertical margins
between two boxes placed one above the other. If the two margins
touch each other, they won’t be added up, as might be assumed, but
only the larger of the two margins will be used. The smaller margin
gets virtually “swallowed” by the larger one.

Figure 11.8 demonstrates this process a bit more clearly. Here, two
vertical boxes are on top of each other on the left-hand side, while
the two margins are touching each other. For the top box, a margin of
20 pixels to the bottom was specified with margin-bottom. In the
lower box, on the other hand, a margin of 10 pixels to the top was
specified with margin-top.

Figure 11.8 Vertical Margins That Touch Each Other Collapse into the Larger Value of
the Two Margins

You can see the result of these two boxes stacked on top of each
other on the right, where the two boxes collapse and the smaller of

the two margins has been removed.

Nothing would change if you set the margin-top value of the bottom
box to 19 pixels. Only if you set margin-top to 21 pixels would the
lower margin be swallowed because with 20 pixels, it would then be
the smaller margin.

Here’s a simple example that demonstrates how margin-bottom and
margin-top collapse:
.headfoot {
 width: 600px;
 padding: 5px;
 border: 5px solid peru;
 background-color: antiquewhite;
 margin-bottom: 20px;
 text-align: center;
}
.article01 {
 width: 600px;
 padding: 5px;
 border: 5px solid sienna;
 background-color: antiquewhite;
 margin: 10px 0px;
}

Listing 11.4 /examples/chapter011/11_1_5/css/style.css

...
 <header class="headfoot">Header</header>
 <article class="article01">
 <h1>Article 1</h1>
 <p> ... </p>
 </article>
...

Listing 11.5 /examples/chapter011/11_1_5/index.html

In this example, the header element, which you address via the
.headfoot class selector, and the article element, which is styled
using the .article01 class selector, are on top of each other. For the
header element, the margin is 20 pixels to the bottom (margin-bottom:
20px). For the article element, on the other hand, the margin to the
top is 10 pixels (margin: 10px 0px). In total, the margin between the

header and article elements is 20 pixels (rather than 30 pixels)
because of the collapsing margin, which is the larger of the two
values. The margin to the top of the article element is completely
omitted here (it’s swallowed, as mentioned earlier), as you can see
in Figure 11.9.

Figure 11.9 Two Collapsing Margins: Instead of the Mathematically Logical 30 Pixels, the
Distance Here Is 20 Pixels

Horizontal Margins Don’t Collapse

When boxes touch each other horizontally, the margins don’t
collapse but are added up normally.

The collapsing is intentional and serves to keep the spacing even for
texts that consist of multiple paragraphs. For example, you can
format a paragraph text with the following CSS rule:
p { margin: 1.2em; }

You then can obtain the following HTML structure, for example:
<h1>...</h1>
<p>1stParagraph</p>
<p>2ndParagraph</p>
<p>3rdParagraph</p>

In this way, you can be sure that the spacing of all three paragraphs
is 1.2em thanks to the collapsing margins. If the margins didn’t
collapse, the margin of <h1> to the first p element would still be 1.2em,
but the margin of the second p element to the first and to the third p
element would be 2.4em. Such giant gaps wouldn’t look nice at all.

So, when two vertical boxes touch each other on the outside, the
following rules apply when they collapse or even merge:

If both values are the same, only one of them will be taken over.

If the values differ, the larger value will be used.

Preventing Collapsing Margins

The nasty thing about these collapsing margins is that you don’t
even notice them as a problem at first, when the layout doesn’t
want to work that way. Especially for headings, paragraphs, lists,
or quotes, you can counteract this a bit by setting margin-top for
these elements to 0. You can now easily control the distance to the
next element with margin-bottom. In this way, the collapse almost
doesn’t occur. The CSS rule for this looks as follows:
h1, h2, h3, h4, h5, h6,
p, ul, ol, blockquote {
 margin-top: 0;
}

11.1.6 Determining the Total Width and Total Height of
a Box

Now that you know all the components of the classic box model, you
can calculate the total width or height of a box. As an example,
consider the following CSS code:

.headfoot {
 width: 600px;
 padding: 5px;
 border: 1px solid black;
 background-color: sandybrown;
 margin: 5px 0px;
 text-align: center;
}
.article01 {
 width: 600px;
 padding: 15px;
 border: 2px dotted sienna;
 background-color: antiquewhite;
}

Listing 11.6 /examples/chapter011/11_1_6/css/style.css

I’ve already pointed out that the width specification can be somewhat
confusing because width doesn’t correspond to the actual width of a
box. As you can clearly see in Figure 11.10 of
/examples/chapter011/11_1_6/index.html, the header and footer are
each shorter than the two articles, although in the example for all
elements in /examples/chapter011/11_1_6/css/style.css, the
specified width is 600 pixels (width: 600px).

Figure 11.10 Despite Identical Width Specifications with “width”, the Boxes Are Displayed
with Different Widths; To Adjust This Value, You Need to Calculate the Total Width

You can calculate the total width of a box by adding up width,
padding-right, padding-left, border-right-width, border-left-
width, margin-right, and margin-left. With regard to the two class
selectors .headfoot and .article01, you’ll obtain the calculation
listed in Table 11.1 as a result. This result shows that it can be
helpful to do some simple math if the boxes don’t fit. In this example,
the total width of the header and footer elements is 612 pixels. In
contrast, the total width of the two article elements is 634 pixels.

CSS Feature .headfoot .article
width 600 pixels 600 pixels
+ padding-right 5 pixels 15 pixels
+ padding-left 5 pixels 15 pixels
+ border-right-width 1 pixel 2 pixels
+ border-left-width 1 pixel 2 pixels
+ margin-right 0 0
+ margin-left 0 0

Total width 612 pixels 634 pixels

Table 11.1 If the Boxes Don’t Fit, a Simple Addition Exercise Can Be Useful

Thus, the difference in total width between the header and footer
elements and the article element is exactly 22 pixels (634 pixels –
612 pixels). At this point, you need to decide for yourself where to
add or remove these 22 pixels. For example, one solution could be
to set the width value for the .article01 class selector to 578px. You
can find the CSS example in
/examples/chapter011/11_1_6/css/style.css and the HTML document
for it in /examples/chapter011/11_1_6/index2.html.

11.2 Newer Alternate Box Model of CSS
Not everyone will like the classic box model, where you specify width
to determine the width of the content area and end up having to
consider padding, border, and margin for the total width. However, as
long as the specifications are made in terms of pixels, this is still a
cumbersome calculation, but you can always realize a neat layout
this way.

It gets a bit more complicated if you use different units for width,
padding, border, or margin. For example, if you’ve specified a column
with a width of 30% in a two-column layout and have written 5 pixels
each for padding and border, it will be difficult to tell exactly how
much space this column actually takes up in the layout. The problem
was solved by using an inner <div> inside the corresponding column
to specify padding, border, or margin there instead of in the actual
column. For the actual column, only the width specification was used
instead.

To make a long story short, with the newer alternate box model, you
don’t have this problem with the math or trickery of adding another
<div> inside a column for padding, border, or margin. With the new
box model border-box, the width and height are no longer specified
“only” for the content area, but these specifications also sensibly
take into account the padding and the border. The CSS features
width and height are the width and height from border-left to
border-right and from border-top to border-bottom, respectively, as
you can see in Figure 11.11.

Figure 11.11 The New Box Model “border-box” Makes Your CSS Life a Lot Easier

If you write a width specification with width in this box model, padding
and border will no longer have any influence on this specification and
are subtracted from this width. Figure 11.12 shows the difference
between the classic box model (top left) and the alternate box model
(bottom left and top right) in terms of the CSS features width and
height.

Figure 11.12 Top Left Shows the Classic Box Model; Bottom Left and Top Right Show
the New Box Model with “box-sizing” Compared to the Width and Height Specifications

11.2.1 Using the “box-sizing” Box Model

To use the alternate box model, you must assign the border-box
value to the CSS feature box-sizing. Possible values you can use
for box-sizing are listed here:

content-box

This corresponds to the behavior of the classic box model, where
the specification of the width and height corresponds to the
content of the element in the box.

border-box

As already described, in this specification, the value for width and
height corresponds to the value from border-left to border-right
and from border-top to border-bottom, respectively. Changing
padding and border won’t change the width or height of the
element anymore. You can see this box model in Figure 11.11 and
Figure 11.12.

inherit

This option allows you to adopt the value from the parent element.

11.2.2 Using the Alternate Box Model

Here’s an example to demonstrate the difference in use between the
classic model and the alternate box model. Again, a header and
footer (<header>, <footer>) and two articles (<article>) are styled,
respectively:
.headfoot {
 width: 70%;
 padding: 5px;
 border: 2px solid black;
 background-color: sandybrown;
 text-align: center;
}
.article01 {
 width: 70%;
 padding: 15px;
 border: 1px dotted sienna;

 background-color: antiquewhite;
}

Listing 11.7 /examples/chapter011/11_2/css/style.css

In Figure 11.13, you can see in
/examples/chapter011/11_2_2/index.html that despite the width
specification of 70% for the class selectors .headfoot and .article01
in /examples/chapter011/11_2_2/css/style.css, the boxes are
arranged differently because different specifications were made for
padding and border.

Figure 11.13 The Inconsistent Representation with the Classic Box Model

The problem with such a layout could be fixed relatively easily by
adjusting the values of padding and border, for example, or even
easier, by using the new box model with border-sizing: border-box;.
Here’s the CSS snippet of the example with the new box model:
.headfoot {
 box-sizing: border-box;
 width: 70%;
 padding: 5px;
 border: 2px solid black;
 background-color: sandybrown;
 text-align: center;
}
.article01 {

 box-sizing: border-box;
 width: 70%;
 padding: 15px;
 border: 1px dotted sienna;
 background-color: antiquewhite;
}

You can avoid this double use of the box model specification by
putting the new box model into a universal selector right at the
beginning of the stylesheet. The alternative to the example just
shown would look as follows:
* {
 box-sizing: border-box;
}
.headfoot {
 width: 70%;
 padding: 5px;
 border: 2px solid black;
 background-color: sandybrown;
 text-align: center;
}
.article01 {
 width: 70%;
 padding: 15px;
 border: 1px dotted sienna;
 background-color: antiquewhite;
}

Listing 11.8 /examples/chapter011/11_2/css/style2.css

As you can see in Figure 11.15 of
/examples/chapter011/11_2/index2.html, all boxes are displayed
consistently at 70%, no matter what values you used for padding and
border. By using the new box model with border-box, padding and
border get subtracted from the width and are no longer added.
Similarly, this applies to the height via height.

Figure 11.14 An Interactive Box Model

The new box model with box-sizing can indeed simplify CSS life
considerably. Its strengths come into play when you use percentage
values for width and pixel values for padding or border, for example,
when you mix different units. For example, if you’ve defined a
column with 30% width with box-sizing: border-box;, it doesn’t
matter what values and units you use for padding and border—it will
remain 30% for the total width of the column.

Figure 11.15 The Display with the New Box Model No Longer Causes Any Problems

Interactive Box Model Diagram

A great interactive box model, both with the classic and alternate
box model, can be found at
https://codepen.io/carolineartz/full/ogVXZj. Depending on the
selected box model, you can adjust the individual specifications
such as width, height, padding, border, and margin and see how
these settings will affect the box model. The interactive model also
helps immensely to get a feel for the box model in CSS.

https://codepen.io/carolineartz/full/ogVXZj

11.3 Analyzing the Box Model in the
Browser
In addition to the great interactive box model on the
https://codepen.io/carolineartz/full/ogVXZj website, web browsers
provide appropriate developer tools to visualize and analyze the box
model in the browser. If you call the developer tools, which you can
do via (Ctrl) + (Shift) + (I) in most web browsers, you’ll also find
the box model of the selected HTML element, including the pixel
values for margin, border, padding, and the content.

Figure 11.16 Visualizing and Analyzing the Box Model in the Web Browser

If you now move the mouse cursor over the content or one of the
margin, border, or padding areas in the visualized box model, this
area will be highlighted in the corresponding color of the selected
element in the web browser. Here you can determine if the element
matches what you intended with the CSS statements, detect errors,
or just get to know the box model of CSS. Furthermore, you can use
this box model to change the values on a test basis. To do this, you
double-click on the corresponding value, change it, and then

https://codepen.io/carolineartz/full/ogVXZj

immediately view this change live in the browser. The changes are
made only temporarily in the web browser.

11.4 Box Model for Inline Elements
You already know that everything consists of rectangular boxes in
HTML. This also applies to inline elements such as em, strong, or a.
There’s also a box model available for that, which of course differs
from the model described so far. For example, you can’t specify a
height or width for inline elements, and accordingly, of course, the
extended CSS features such as min-width, max-width, min-height, or
max-height have no effect on inline elements. Rather, the content
determines the height and width. You can manipulate the height via
font-size.

There are also differences in margin, border, and padding for the -top
and -bottom versions. While everything on the right and left can be
used as before, margin-top and margin-bottom have no effect on
inline elements. padding-top and padding-bottom as well as border-
top and border-bottom can be used, but this doesn’t change the line
height, which is why it can have a negative effect on the readability
of the text.

11.5 Designing Boxes
The topic of the box model also includes the styling of boxes. This
isn’t yet about the layout, but mainly about the visual design such as
the background or the frame of boxes. Specifically, you’ll learn the
following in this section:

How to design the frame

How to set the background color

How to use background images

How to use transparency

How to add a gradient

How to create a shadow

How to make the square boxes round

11.5.1 Adding and Designing a Border Using the
“border” Property

For each element, you can display a border and customize the
border color, line width, and type. Even though a border can be used
for all elements, the use of a border seems to make sense only for
HTML elements that create their own paragraph. To understand the
use of borders, you should be familiar with the box model, which I
covered in detail in Section 11.1 and Section 11.2.

Designing All Four Sides at Once with the Short Notation

Because there are many border properties, creating borders is
relatively flexible and versatile. In real life, you’ll often use the short
notation with border:
/* border: Border color Line width Line style */
border: black 1px solid;

This draws a solid black border with a line width of one pixel (1px)
around all four sides. You can define this short notation with three
CSS features:
border-color: black; /* Border color */
border-width: 1px; /* Line width */
border-style: solid; /* Line style */

This specifies the same properties as the short notation of border in
the previous example.

Four Styles for “border-style” and “border-color”

It’s possible to specify two, three, or four values for the two CSS
features border-style or border-color. Specify a value such as
the following:
border-color: black;

This will cause everything to apply as before to all four sides. On
the other hand, if you specify two values, such as the following:
border-color: red green;

This will cause the top and bottom borders to be colored red and
the left and right borders to be colored green. If you use three
values, the top border is styled with the first value, the right and
left borders with the second, and the bottom border with the third.
In addition, of course, you can still write all four sides individually:
border-color: red green blue yellow;

Here, the border colors are assigned clockwise starting with top.
Similarly, all this also applies to the border style with border-style.

Designing Each Side of the Border Individually

Similar to how the CSS feature border can be used as a bundle for
border-color, border-width, and border-style for all four sides,
border-top, border-right, border-bottom, and border-left each
have a CSS feature that you can use to access each side of the
border separately. For example, if you want to define only the upper
side of a border, you can do it as follows:
border-top: red 5px dotted;

This adds a dotted red border with a line width of 5 pixels to the top
of the box only. Again, this is ultimately a summarizing short notation
of the following:
border-top-color: red;
border-top-width: 5px;
border-top-style: dotted;

Similarly, there are summarizing properties with border-right,
border-bottom, and border-left for each individual side of the
border. Needless to say, these summarizing properties are also
available in a short notation in the form of border-...color,
border-...-width, and border-...-style for the respective sides
right, bottom, and left.

Using Different Border Styles

As you’ve already noticed, there are different styles of borders. You
can use solid to display a solid border. Table 11.2 contains an
overview of the different border styles you can use.

Value DescriptionValue Description
none Default value, no border
hidden Like none, no border
dotted Displays a dotted border
dashed Displays a dashed border
solid Displays a solid border
double Displays a double solid border
groove
ridge
inset
outset

Displays a 3D border, the effect also depends on the
border color

Table 11.2 Different Border Styles at a Glance

Experiment with the Different Features

Printing a comprehensive example here probably doesn’t make
much sense as the design of border with the many different border
properties is extremely diverse. So, I recommend you experiment
a bit with the example in
/examples/chapter011/11_5_1/css/style.css to get a feel for it. The
corresponding HTML document can be found in
/examples/chapter011/11_5_1/index.html.

Figure 11.17 Some Different Border Styles in Use (Example in
/examples/chapter011/11_5_1/index.html)

Creating a Decorative Border Using “border-image”

border-image allows you to easily insert an image for the border. For
this purpose, a pixel graphic or Scalable Vector Graphic (SVG) is
sufficient, in which the areas for the decorative border are located.
Let’s take a look at the following 150 × 150 pixel graphic in
Figure 11.18 with colored circles of 50 × 50 pixels in each. Because
a vector graphic can be scaled without quality restrictions and is also
much smaller than a pixel graphic, I used an SVG for this example.

Figure 11.18 The 150 × 150 Pixels Source Image myborder.svg for the Decorative
Border with “border-image”

The image with the decorative border can be added using CSS with
the following line:

...
border: 25px solid transparent;
border-image: url('../images/myborder.svg') 50 50 50 50 round;
...

Listing 11.9 /examples/chapter011/11_5_1/css/style2.css

Strictly speaking, border-image is again a summarizing property of
border-image-source (image source), border-image-slice (divides
the border image into nine parts), border-image-width (width of the
border), and border-image-repeat (determines how the image parts
are repeated in the side margins). Figure 11.19 shows the decorative
border with border-image and the myborder.svg graphic from
Figure 11.18 in use.

Figure 11.19 A Decorative Border with “border-image” (HTML Document Is in
/examples/chapter011/11_5_1/index2.html)

11.5.2 Setting a Background Color Using “background-
color”

In the previous examples, you defined the colors for the background
as follows:
background: lightblue;

You can also apply this to boxes. However, I haven’t mentioned yet
that background is again just a bundling of CSS features for the
background, where the first one is equal to background-color. Thus,

the definition just used leads to the same result as the specification
with background-color:
background-color: lightblue;

Figure 11.20 The Use of a Background Color within Boxes Can Be Noted Relatively
Simply with “background” or “background-color”

The example in Figure 11.20 can be found in
/examples/chapter011/11_5_2/index.html (HTML) and
/examples/chapter011/11_5_2/css/style.css (CSS).

11.5.3 Using Background Images

As you just learned in Section 11.5.2, when you set the background
color, background is just a bundling or short notation of several CSS
features for the background. The following properties are bundled via
the short notation, background:

background-color

Background color of the element.

background-image

Image as background of the element.

background-position

Position of the background image.

background-repeat

Repeats the background image along the vertical or horizontal
axis.

background-attachment

Here you can define whether the background can be scrolled or is
fixed.

The main focus in this section is on adding a background image
inside boxes. It’s important to distinguish whether you want to use an
image or a background graphic only for decoration. Images or logos
should still be added via the HTML element . Graphics for
design or decoration, on the other hand, can be added as
background images using CSS.

Even though it’s possible to use an image as the background graphic
of an element (here, e.g., as the background image of a p element),
as you can see in Figure 11.21, it can be confusing because you
would expect the HTML element rather than a CSS statement.
The example can be found in
/examples/chapter011/11_5_3/css/style-bg.css. The HTML
document for this is /examples/chapter011/11_5_3/index-bg.html.

Figure 11.21 It’s Possible, But Rather Untypical, to Use an Image as the Background
Graphic of an Element, as Shown Here

You can add a background graphic via background in the short
notation version or via background-image.

Where Do the Background Graphics Come From?

You can either create background graphics yourself or search for
ready-made background graphics on the internet. The choice of
ready-made background patterns is enormous. For our example, I
used a graphic from the website https://dinpattern.com.

This is how you insert a background graphic as a class selector for
an article element:
...
.article01 {
 width: 70%;
 background-image: url('../images/pattern.png');
 border-left: gray 1px dotted;
 border-right: gray 1px dotted;
 padding: 10px;
 background-color: #c4c4c4;
}
...

Listing 11.10 /examples/chapter011/11_5_3/css/style.css

In the example, the background graphic pattern.png is located in the
images directory of the HTML document. As you can see in
Figure 11.22 with /examples/chapter011/11_5_3/index.html and in
the corresponding CSS in
/examples/chapter011/11_5_3/css/style.css, the background graphic
also overlays the background color. Nevertheless, you should use a
background color that matches the font, as I have done here with
background-color: #c4c4c4; in case the graphic won’t get displayed
to a visitor because the user has disabled the graphic display.

https://dinpattern.com/

Figure 11.22 A Background Graphic That Overlays the Background Color Has Been
Added to the <article> Element (Background Pattern: https://dinpattern.com)

Tiling and Repeating Background Graphics

If you don’t specify anything, the background graphic will be
repeated (or tiled) vertically and horizontally as many times as there
is space available. This is very convenient if you have a suitable
background graphic. In Figure 11.23, the pattern was replaced with a
350 × 50 pixel gradient. Toward the bottom, tiling the graphic with a
gradient works great, but at the right-hand edge, the gradient doesn’t
look nice when the background graphic gets repeated.

However, you can restrict tiling to the vertical direction and set the
background color to be the color at the end of the gradient. For tiling
in the vertical direction, you just need to assign the repeat-y value to
the CSS feature background-repeat. You already know how to set the
background color. Figure 11.24 shows the result of this modification.
The example can be found in
/examples/chapter011/11_5_3/index2.html, while the corresponding
CSS file is located in /examples/chapter011/11_5_3/css/style2.css.

Figure 11.23 Tiling a Background Graphic Doesn’t Always Produce the Desired Result

Figure 11.24 Tiling in the Vertical Direction with “background-repeat: repeat-y”, and the
Matching Background Color Also Works with the Gradient

In total, you have three ways to tile a background graphic via the
CSS feature background-repeat:

background-repeat: repeat-y

Vertical tiling (y-axis).

background-repeat: repeat-x

Horizontal tiling (x-axis).

background-repeat: no-repeat

No tiles at all.

Positioning and Fixing a Background Graphic

You can use the CSS feature background-position to position the
background graphic in the HTML element. The positions available to
you are top, right, bottom, left, and center. If you use two values,
the first value is taken for the horizontal position and the second for
the vertical position.

In Figure 11.25, the pattern was positioned with background-position
right top and tiled with background-repeat along the y-axis (repeat-
y). If you were to use no-repeat here, the pattern would only be
displayed once in the top-right corner. The example can be found in
/examples/chapter011/11_5_3/index3.html, and the CSS for it is
located in /examples/chapter011/11_5_3/css/style3.css.

Figure 11.25 The Pattern Was Positioned via “background-position” at the Top Right
(“right top”) and Tiled with “background-repeat” along the Y-Axis (“repeat-y”)

The CSS feature background-attachment is used pretty rarely; you
can use it to fix a background graphic with the value fixed to the
display area of the page. When scrolling, the graphic remains in
place within the HTML element. You can find an example
demonstrating this interesting effect when scrolling down in
/examples/chapter011/11_5_3/index4.html with the corresponding
CSS in /examples/chapter011/11_5_3/css/style4.css. The default
value is scroll, which scrolls the background graphic along with the
element as usual.

The Short Notation for a Background Graphic with
“background”

Let’s now return to the short notation of background: you should have
no more trouble bundling the example from
/examples/chapter011/11_5_3/css/style4.css in the short notation, as
follows:
background: #e8f3ea url('../images/pattern.png') repeat-y right top;

This short version thus corresponds to the following:
background-image: url('../images/pattern.png');
background-repeat: repeat-y;
background-position: right top;
background-color: #e8f3ea;

You’ve already seen the corresponding result in Figure 11.25.

Stacking Multiple Background Graphics

The stacking of multiple background images can be implemented in
CSS as follows:
background: url(img01.jpg), url(img02.jpg), url(img03.jpg)
 #e8f3ea;

Here, three images are stacked on top of each other. img01.jpg is at
the top, followed by img02.jpg and img03.jpg. The background color
is set as the last value. The individual background images to be
stacked must be separated with commas.

Additionally, you can write the background-position and background-
repeat options. By default, the position is top left, and the tiles are
evenly distributed along the y-axis and x-axis. If the images are on
top of each other, the upper graphic will cover the one below. For this
reason, without a concrete specification of background-position and
background-repeat, only the top background images would be

displayed because it would get tiled by default and cover the images
below it.

You can implement two background images with different values, for
example, as follows:
background: url(img01.jpg) left top no-repeat,
 url(img02.jpg) right top repeat-y,
 #e8f3ea;

Here, the first background image img01.jpg is positioned on the top
left and not tiled. The second background image img02.jpg is
positioned at the top right and tiled down along the y-axis.

In Figure 11.26, with the new ability to stack multiple backgrounds,
an ornament was added to all four corners of the article element for
decoration. The HTML document for this can be found in
/examples/chapter011/11_5_3/index5.html. The CSS statement is as
follows:
...
background: url('../images/left-top.jpg') top left no-repeat,
 url('../images/right-top.jpg') top right no-repeat,
 url('../images/bottom-right.jpg') bottom right no-repeat,
 url('../images/bottom-left.jpg') bottom left no-repeat,
 white;
...

Figure 11.26 The Example after Stacking Multiple Background Images and Positioning
Them Accordingly without Tiles

Setting the Size of the Background Image

The CSS feature background-size allows you to specify the size of
the background image. This enables you to scale the background
image up or down, as it were. The information can be given either in
pixels or as a percentage. A percentage specification is relative to
the height and width of the parent element in which the background
image is to be displayed. Let’s take a look at the following example:
...
.article01 {
 width: 500px;
 padding: 20px 50px;
 background: white url('../images/pattern.png') left no-repeat;
 background-size: 100% 100%;
}
...

Listing 11.11 /examples/chapter011/11_5_3/css/style6.css

This makes sure that the background image pattern.png completely
fills the HTML element that uses the article01 class. Figure 11.27
shows the /examples/chapter011/11_5_3/index6.html example with
the CSS /examples/chapter011/11_5_3/css/style6.css; you can see
how the background image is stretched across the entire article
element.

Figure 11.27 A 189 × 229 pixel Background Image Has Been Stretched Entirely across
the <article> Element via “background-size”

It should be clear that upscaling or stretching pixel graphics doesn’t
necessarily look nice. There are also two options—contain and
cover—that you can assign to background-size:

background-size: contain

This will always display the background image completely inside
the box, even if it doesn’t fill the entire surface.

background-size: cover

This will always cover the entire area of the box with the image,
even if the image isn’t completely visible.

The Box Model in the Third Dimension

Because the background color and background image have now
been added to the box model in addition to the content, padding,
border and margin, it’s useful for your understanding to view this
box in a third dimension. John Hicks has designed such a 3D box
model at https://hicks.design/journal/3d-css-box-model.

Figure 11.28 The 3D Box Model by John Hicks

11.5.4 Making Boxes Transparent

https://hicks.design/journal/3d-css-box-model

To create transparent boxes, there are three options available to you.
You can use the CSS feature opacity, RGBA colors, or HSLA colors,
which you already got to know in Chapter 10, Section 10.3.3, with
the CSS functions rgba() and hsla().

As with RGBA or HSLA colors, the CSS feature opacity specifies
opacity as 0 for full transparency and 1 for full opacity. The
specification opacity: 0.5; means that 50% opacity is used.

The difference between opacity and the RGBA or HSLA colors is
that with opacity, the transparency applies to all elements within the
box. As you can see in Figure 11.29, where a transparent box with
opacity has been used in the top article element, the font has also
become transparent. For the lower article element, however, rgba()
was used, and here only the background becomes transparent.
Here’s the corresponding code snippet:
...
.article_01 {
 width: 90%;
 padding: 10px;
 background-color: white;
 border: black 1px dotted;
 opacity: 0.5;
}
.article_02 {
 width: 90%;
 padding: 10px;
 background-color: white;
 border: black 1px dotted;
 background-color: rgba(255, 255, 255, 0.5);
}
...

Listing 11.12 /examples/chapter011/11_5_4/css/style.css

The CSS feature opacity is therefore pretty useful for graphics and
images because transparency doesn’t work with RGBA or HSLA
colors. For boxes with text, you should use RGBA or HSLA colors if
you want to have a transparent background.

Figure 11.29 The /examples/chapter011/11_5_4/index.html Example with Transparent
Boxes: One with “opacity” and One with “rgba()”

11.5.5 Adding a Gradient

CSS also allows you to create and use a gradient without having to
insert a background image. You must create a linear gradient using
the CSS function linear-gradient() and assign it to the background
(or background-image) property. The easiest way to do this is as
follows:
background: linear-gradient(white, orange);

This displays a linear gradient from white to orange from top to
bottom (default setting).

To direct the gradient in a different direction, you just need to specify
the keyword to, followed by the direction bottom (top to bottom), top
(bottom to top), right (left to right), or left (right to left), for example:
background: linear-gradient(to right, white, orange);

This displays a linear gradient from white to orange, but this time, a
gradient from left to right has been defined via to right. You can
define diagonal directions via to right bottom (top left to bottom
right) and to left top (bottom right to top left). It’s also possible to
specify the position of the color break. A line without specifying a
color break appears as follows:

background: linear-gradient(to right, white, orange);

The specification for the color break with values for the gradient
looks as follows:
background: linear-gradient(to right, white 0%, orange 100%);

A line with the specification of a color break appears as follows:
background: linear-gradient(to right, white 30%, orange 70%);

You would therefore display a color gradient from left to right. The
first color break of white is performed after 30%. The second color
break of orange is performed after 70%. At each of these color
breaks, the corresponding color starts and continues until the next
color break (or until the end, if there’s no further color break). You
would therefore create a hard transition if both color breaks were in
the same place, as shown in the following example:
background: linear-gradient(to right, white 50%, orange 50%);

Here, the color transition is shown exactly after 50% with a hard
edge because both color breaks were specified there. If you combine
this information with background-size, you can create a pattern:
background: linear-gradient(to left, white 50%, orange 50%);
background-size: 50px 100px;

Figure 11.30 shows all the examples described here in use. Instead
of specifying color names, you can also use hex values, RGB/HSL
colors, or RGBA/HSLA colors.

In Figure 11.30, we also demonstrated the CSS function repeating-
linear-gradient(), which allows you to repeat a gradient. The
example snippet follows:
background: repeating-linear-gradient(40deg,
 white, white 25px, orange 25px, orange 50px);

Figure 11.30 Linear Gradients with “linear-gradient()” (Example in
/examples/chapter011/11_5_5/index.html, and CSS File in
/examples/chapter011/11_5_5/css/style.css)

In this example, you use a gradient at a 40-degree angle (40deg),
starting with white color and having a width of 25 pixels, while the
color orange also starts exactly at the position (25px), ending after 50
pixels. Then the gradient gets repeated.

Radial Gradients

In addition to the linear CSS gradients linear-gradient() and
repeating-linear-gradient() mentioned here, there are two
counterparts that enable you to create radial gradients from the
center point. The radial gradients can be created via the CSS
functions, radial-gradient() or repeating-radial-gradient(). You
can see examples of this in Figure 11.31. The corresponding
example files can be found in
/examples/chapter011/11_5_5/index2.html and
/examples/chapter011/11_5_5/css/style2.css.

Figure 11.31 The Example with Radial Color Gradients in Use

You can use several colors for the gradient. A linear or radial
gradient in a rainbow color can be created as follows:
...
background: linear-gradient(to left,
 purple, blue, green, yellow, red, purple);
background: radial-gradient(
 purple, blue, green, yellow, red, purple);
...

Listing 11.13 /examples/chapter011/11_5_5/css/style3.css

Creating Gradients with Online Tools

Those who find the manual creation of gradients with CSS a bit
too cumbersome should take a look at the online tool Ultimate
CSS Gradient Generator at www.colorzilla.com/gradient-editor/.
This online tool enables you to generate a color gradient like you
would with Photoshop. The tool generates the CSS code from this,
which you copy and paste into your project.

11.5.6 Adding a Shadow Using the “box-shadow”
Feature

In the past, if you wanted to add shadows to the elements, you had
to do it by means of graphics. For websites with a flexible width, that

http://www.colorzilla.com/gradient-editor/

was hardly useful. The CSS feature box-shadow makes adding
shadows a breeze. The simplest specification to create a shadow
with the CSS feature box-shadow is as follows:
box-shadow: 4px 4px gray;

This allows you to place a gray shadow around an element with a
horizontal and vertical offset of 4 pixels each. The first value is used
for the horizontal shift (offset-x) and the second value for the vertical
one (offset-y). A positive value shifts the shadow of the horizontal
shift to the right and the vertical shift down. The opposite happens
with negative values. Instead of a color name, you can also use a
hexadecimal color specification or the RGB(A) or HSL(A) color
specifications.

If you want to have a soft shadow, you only need to specify a third
value that defines the blur of the shadow. The higher the value, the
softer the shadow will be (default value is 0):
box-shadow: 4px 4px 4px gray;

If you still want to determine the radius or the spread of the shadow,
you can specify that with a fourth value:
box-shadow: 4px 4px 4px 4px gray;

The last value defines the color of the shadow, but it can also be in
front of the other values.

In Figure 11.32, you’ll see the shadows described here in actual use.
In addition, you can also see an example with an inner shadow that
you can define and use via inset as the first value of box-shadow.
The CSS code for this can be found in
/examples/chapter011/11_5_6/css/style.css.

Shadow Generator

If you don’t feel like creating the shadow manually, you can find
various generators on the web that do this work for you, such as
html-css-js.com/css/generator/box-shadow/.

It’s also possible to specify multiple shadows at once, separated by
commas, for one element, for example:
box-shadow: 4px 4px 4px red, -4px 4px 4px yellow,
 4px -4px 4px green, -4px -4px 4px blue;

In this example, four shadows are defined at once.

As you may recognize in Figure 11.32, a shadow doesn’t extend the
area around the elements in the way margin does. If the shadow is
extremely large, it can extend into the next element.

Figure 11.32 Adding Shadows for HTML Elements Becomes a Breeze Thanks to “box-
shadow” (Example in /examples/chapter011/11_5_6/index.html)

11.5.7 Adding Round Corners Using the CSS Feature
“border-radius”

http://html-css-js.com/css/generator/box-shadow/

For round corners of elements, you can use border-radius. This
CSS feature can be used independently of border. You don’t have to
draw an extra frame to round off corners. In turn, the use of border-
radius is a short notation of border-top-left-radius, border-top-
right-radius, border-bottom-right-radius, and border-bottom-left-
radius. For example, you can write a border-radius as follows:
border-radius: 20px;

This is a shortened notation of the following:
border-top-left-radius: 20px;
border-top-right-radius: 20px;
border-bottom-right-radius: 20px;
border-bottom-left-radius: 20px;

You can also specify two, three, or four values for border-radius.
Here’s an example with two values:
border-radius: 20px 10px;

The upper-left and lower-right corners get a radius of 20 pixels, and
the upper-right and lower-left corners get a radius of 10 pixels. The
order for using all four values is top left, top right, bottom right, and
bottom left, which is similar to the short notation of padding or margin,
that is, clockwise, starting at the top left.

In Figure 11.33, I’ve rounded off the top corners of the header with
the following information:
border-top-left-radius: 10px;
border-top-right-radius: 10px;

The article element in the middle, on the other hand, has been
rounded off with a simple border-radius of 20 pixels for all sides. In
the last example with the footer, I rounded off the bottom corners
with the following short notation:
border-radius: 0px 0px 10px 10px;

Instead of pixels (px), you can also use other units such as percent
(%), em, or rem.

border-radius can be applied nicely to images, as you can see in
Figure 11.34. The image on the left has a border-radius of 25 pixels.
The image on the right was shaped into an ellipse by setting the
border-radius to 50%. The example can be found in
/examples/chapter011/11_5_7/index2.html; the CSS code is
contained in /examples/chapter011/11_5_7/css/style2.css.

Figure 11.33 Round Corners Are Relatively Easy to Create (Example in
/examples/chapter011/11_5_7/index.html; CSS Is in
/examples/chapter011/11_5_7/css/style.css)

Figure 11.34 “border-radius” Applied to Images

You also have the option to specify different values for the horizontal
and vertical radius. To do that, you need to separate these two
values with a slash. As a result, you get corners with elliptical curves,
for example:
border-radius: 5px / 20px;

This sets an ellipse of 5 pixels × 20 pixels for all corners. Of course,
you can use the same as a percentage:
border-radius: 80% / 20%

If you want to set each corner individually, you can use border-top-
left-radius, border-top-right-radius, border-bottom-right-radius,
and border-bottom-left-radius as before. The short notation can
also be used here as follows:
border-radius: 5px 10px / 20px;

This notation corresponds to the following:
border-top-left-radius: 5px / 20px;
border-top-right-radius: 10px / 20px;
border-bottom-right-radius: 5px / 20px;
border-bottom-left-radius: 10px / 20px;

You can also use the short notation for all corners differently as
follows:
border-radius: 10px 20px 30px 40px / 5px 10px 5px 10px;

Figure 11.35 With “border-radius”, You Can Also Provide Elements with Elliptical Curves

Thus, you’ve achieved the same result as with the following notation:
border-top-left-radius: 10px / 5px;
border-top-right-radius: 20px / 10px;
border-bottom-right-radius: 30px / 5px;
border-bottom-left-radius: 40px / 10px;

You can see the example for this in Figure 11.35 and find it in
/examples/chapter011/11_5_7/index3.html; the CSS code is located
in /examples/chapter011/11_5_7/css/style3.css.

11.6 Related Topic: Web Browser Prefixes
(CSS Vendor Prefixes)
CSS, like HTML, is constantly evolving, and web browser vendors
are doing their best to release newer versions with new features at
ever-shorter intervals. As a web developer, this rapid progress also
benefits you because many web browser vendors like to implement
new experimental CSS features in the very early state of the
standard version.

With the help of a special web browser prefix or vendor prefix, you
can thus already use CSS features experimentally that are still in
draft or beta state. Once the corresponding CSS module is in the
final version, and the web browser fully supports the feature, you can
remove the web browser prefix. Alternatively, you can leave it in
place, allowing older web browsers to use this feature, if necessary,
if the CSS feature is already included in the final recommendation.

From Working Draft to Recommendation

The development process toward a finished W3C
Recommendation is divided into several stages. It all usually starts
with a working draft. Often, multiple working drafts are developed
and not all make it to the recommendation stage. The next stage is
the last call working draft, which is something like the last planned
working draft. Once the working drafts are done, the next stage is
the candidate recommendation, where technical details of the new
technology are already known. The next-to-last stage is the
proposed recommendation, where additional implementations can
be added to the existing ones. This stage is also the last stage at

which one can still influence the development process. If the
members finally agree to the recommendation proposal, the
proposal is given the final status of a recommendation.
Recommendations may be withdrawn for revision at any time.

As a simple example, we’ll use the CSS feature text-emphasis,
which is to be newly introduced in CSS selectors level 4 and can
only be used experimentally in some web browsers (at the time of
print) using web browser prefixes. This CSS feature allows you to
highlight the emphasis of text with a different color and style, for
example, with circles, points, or triangles. However, this isn’t about
the feature in detail, but about the browser prefixes. Here’s an
example:
h1 {
 text-emphasis: filled double-circle blue;
}

This is used to particularly highlight the h1 heading with blue double
circles if the web browser can handle the CSS feature text-
emphasis, which wasn’t the case when this book went into print.
However, because some web browsers have already implemented
this CSS feature experimentally, you can use and test browser
prefixes as follows:
...
h1 {
 -moz-text-emphasis: filled double-circle blue;
 -webkit-text-emphasis: filled double-circle blue;
 text-emphasis: filled double-circle blue;
}

Listing 11.14 /examples/chapter011/11_6/css/style.css

The procedure is relatively simple. You introduce such experimental
CSS features with a vendor-specific abbreviation (e.g., with -moz- for
Mozilla Firefox). Then you can test these CSS features and feed

your experience with them back to the web browser manufacturers, if
necessary. This vendor-specific CSS feature is understood only by a
particular web browser or web browser family.

If a web browser can’t do anything with the web browser prefix
features, you don’t need to bother about it because this feature gets
ignored anyway. The web browser itself picks out what it knows and
can do. And if a web browser doesn’t know text-emphasis at all,
nothing of the sort will be used, and you may need to provide an
alternative for such a web browser.

See Table 11.3 for a list of common web browser prefixes.

Code Vendor
-webkit- Chrome, Safari, Edge
-moz- Mozilla Firefox
-o- Opera

Table 11.3 List of Common Web Browsers and Their Prefixes

Regarding such examples, it should be noted that you’re
nevertheless responsible for compliance with the standard version
yourself. This means that a browser-specific CSS feature that you’ve
written with a web browser prefix can change again or perhaps be
deleted altogether.

Using or Not Using Web Browser Prefixes?

The web browser prefixes make the CSS code ugly and more
voluminous. Nevertheless, they’ve become a favorite tool of web
developers. It often happens that you don’t even know whether a
certain CSS module has already been fully implemented or not. It
isn’t always easy to keep track of everything, and there’s a risk

that the web browser hasn’t even fully implemented the feature
yet. However, you have the advantage of being able to use a
feature of the future standard version that isn’t yet complete. A
good overview of this is provided at http://caniuse.com. There
you’ll find tables about the current versions and about how far
certain web browsers support a certain CSS feature (and also
HTML feature) and/or from which version the web browser prefix
can or should be used.

http://caniuse.com/

11.7 Summary
This chapter was completely dedicated to rectangular boxes. You’ve
learned about the following:

The classic box model of CSS

The newer alternate border-box box model of CSS

How to design these boxes with features such as background
color, background graphic, transparency, gradient, shadow, and
round corners

12 CSS Positioning

You’re now familiar with the box model of CSS. However,
before you can start creating layouts with CSS, you’re still
missing one small important building block. The question is
how you can position HTML elements or the boxes with
CSS.

Until now, you’ve been used to HTML elements being positioned and
displayed in the flow of the HTML document. The elements are
displayed one after the other in the order in which they were noted in
the HTML code. However, you aren’t limited to such static
positioning and can manipulate this using CSS.

There are several ways to perform positioning tasks with CSS.
Here’s what you’ll learn in this chapter:

Positioning model
Positioning HTML elements using the CSS feature position.

Stacking model
Stacking HTML elements using z-index.

Float model
Floating HTML elements with the CSS feature float.

Flexbox model
Positioning HTML elements with flexible boxes.

12.1 Positioning via CSS Feature
“position”
The CSS feature position allows you to determine how and where
you position an element and what should happen to the elements
following it. In this context, a distinction is made between four
possible methods for positioning elements:

Static positioning (position: static;)
This is the default setting for all elements, and it gets used if you
haven’t written the CSS feature position at all. In the process, all
elements are arranged one after the other as usual, as they were
written in the HTML document.

Relative positioning (position: relative;)
This method places or moves an element relative to its current
position with the CSS features top, bottom, left, and right and
the corresponding value specifications. The other elements won’t
get affected by this; that is, the other elements remain in the same
position as if the moved element would remain in its original place.

Absolute positioning (position: absolute;)
You can use this method to drag the element out of the document
flow. Here, you can use the CSS features top, bottom, left, and
right to place the element absolutely in the nearest parent
element or web browser window, regardless of where the HTML
element was written in the HTML document. All other elements
then act as if the absolutely moved element no longer belongs to
the document flow, and any gap thus created is “filled” with the
element that follows next, or it moves up.

Fixed positioning (position: fixed;)
Initially, the fixed positioning behaves like the absolute positioning,
but with the clear difference that this fixed position is measured

absolutely to the upper-left edge of the web browser window. In
practice, unlike the absolute position, this means that a fixed
element no longer moves when the web browser window gets
scrolled.

Sticky positioning (position: sticky;)
This function is a hybrid of relative and fixed positioning. The
element will initially behave similar to relative positioning, until a
certain boundary such as the top or bottom of the screen is
reached, where the element will then “stick” and behave similar to
fixed positioning.

12.1.1 Normal Positioning (“position: static”)

Unless you’ve specified otherwise, the elements are arranged
according to the corresponding box type (block or inline) in the
document flow. Basically, you’ve always used the positioning with
position: static; in the book so far because this is the default
setting. When you use this method, the elements get displayed one
after the other in the document flow, that is, as they were written in
the HTML document.

Figure 12.1 Static Positioning with “position: static” as the Default Setting. Each New
Element Follows the Other as It Was Written in the HTML Document.

The document flow (often referred to as flow) for block elements (or
block boxes) usually starts as far to the top left as possible and is as
wide as the surrounding box. The next box starts in the next line.
The principle behind this scenario is shown in Figure 12.1. Inline
elements (or inline boxes), on the other hand, also start at the top
left, but become only as wide as the content. The next inline element
gets positioned to the right of it. If there isn’t enough space left on
the right-hand side, the element slides to the next line. The question
as to why the rather inappropriate keyword static was used here
instead of a more appropriate one like flow remains a mystery.

Here’s a simple code snippet for this:
...
.article01 {
 position: static;
 width: 300px;

 padding: 10px;
 border: 1px solid black;
 background-color: sandybrown;
}
.article02 {
 position: static;
 width: 300px;
 padding: 10px;
 border: 1px solid black;
 background-color: bisque;
}
...

Listing 12.1 /examples/chapter012/12_1/css/style.css

...
 <body>
 <header class="foothead">Header</header>
 <article class="article01">
 <h1>Article 1</h1>
 <p>Lorem ipsum dolor sit amet ...</p>
 </article>
 <article class="article02">
 <h1>Article 2</h1>
 <p>Lorem ipsum dolor sit amet ... </p>
 </article>
 ...
 <footer class="foothead">footer</footer>
 </body>
...

Listing 12.2 /examples/chapter012/12_1_1/index.html

In this example, you could have omitted the lines position: static;
because this is the default setting anyway. For this reason, there’s
nothing surprising in Figure 12.2: The individual elements are
displayed one after the other, as written in the document flow.

Figure 12.2 Default Static Arrangement according to the Document Flow with the Default
Setting “position: static;”

12.1.2 Positioning Elements Using “top”, “right”,
“bottom”, and “left”

Before we go into the details of relative, absolute, and fixed
positioning, I want to briefly describe the CSS features, top, right,
bottom, and left (also referred to as offset properties). As a matter
of fact, these four CSS features are also used for the CSS feature
position. This way, you can specify whether an absolutely or
relatively positioned element starts at the top, right, bottom, and/or
left. For a normal positioning with position: static;, specifications
with the CSS features top, right, bottom, and left have no effect. In
that case, the default orientation is always as far up on the left as
possible. Common units for the top, right, bottom, or left values are
pixel (px), percent (%), and em.

It makes sense to use one property each of the values top and
bottom or left and right. Specifications of top and bottom or left and
right are rarely useful in practice, and a second specification is
ignored if it doesn’t correspond to the (also allowed) negative value
of the first value.

The default value of all four CSS features is auto, which means that
the position of the corresponding edges depends on the surrounding
elements, or more simply, contains no special starting position.

12.1.3 Relative Positioning (“position: relative”)

Relative positioning moves an element from its current position. No
other elements are affected by this move and they remain in the
same place, as if the moved element were also still in the same
place. Because the other elements aren’t affected, relatively placed
elements can overlay other elements.

Figure 12.3 Relative Positioning Moves the Element Relative from the Static Position:
Subsequent Elements Behave as If the Element Hadn’t Been Positioned

For this purpose, the example from
/examples/chapter012/12_1/css/style.css is modified slightly to
demonstrate relative positioning:
...
.article01 {
 position: static;
 width: 300px;
 padding: 10px;
 border: 1px solid black;
 background-color: sandybrown;
}
.article02 {
 position: relative;
 top: -75px;

 left: 100px;
 width: 300px;
 padding: 10px;
 border: 1px solid black;
 background-color: bisque;
}
...

Listing 12.3 /examples/chapter012/12_1_3/css/style.css

Here, in the second class selector article02, you’ve set the position
to relative using the CSS feature position. This specification now
causes the element using this class with class=article02 to move
from the current position of top relatively 75 pixels up and from left
100 pixels to the right (see Figure 12.4).

In Figure 12.4, you can see how the paragraph text and all other
elements behind the Article 2 element do not get changed in their
position. All other elements behave as if the moved element was still
in its old place. The example can be found in
/examples/chapter012/12_1_3/index.html.

Figure 12.4 Relative Positioning with CSS Offsets the Element with “top”, “bottom”,
“right”, and “left” Relative to Itself, and the Gap in the Document Flow Remains

Positive values move the element inward from the corresponding
specified edge, while negative values move it outward. You could

have achieved the same position via the CSS features, bottom and
right:
...
bottom: 20px;
right: -50px;
...

12.1.4 Absolute Positioning (“position: absolute”)

When using absolute positioning, the element gets pulled out of the
ordinary document flow. In contrast to relative positioning, all other
elements react as if the absolutely shifted element didn’t exist at all.
As a result, there’s no longer a gap between the moved and the
following elements, as was previously the case with position:
relative;. Here, too, the position gets defined with top, bottom, left,
and right.

The absolute position here is the upper-left corner of the parent
element, which can be positioned using the absolute, fixed, or
relative method. If no parent element exists, the position information
refers to the top element in the document tree, which is <html>.

In Figure 12.5, you can see that with absolute positioning the
element has been moved relative to the enclosing parent element. If
there’s no parent element, the element is aligned relative to the
viewport, that is, the web browser window.

Figure 12.5 Absolute Positioning Moves the Element Relative to the Enclosing Parent
Element

In this case, the element is removed from the usual document flow,
so that the subsequent elements move up as if there had never been
anything in that position.

Take a look at the example with two articles, where the second
article element has been positioned via the absolute method:
...
.article01 {
 position: static;
 width: 300px;
 padding: 10px;
 border: 1px solid black;
 background-color: sandybrown;
}
.article02 {
 position: absolute;
 top: 0;
 left: 100px;
 width: 300px;
 padding: 10px;
 border: 1px solid black;
 background-color: bisque;
}
...

Listing 12.4 /examples/chapter012/12_1_4/css/style.css

By specifying absolute in the article02 class selector, the element
that uses this class with class=article02 gets completely lifted out of

the document flow and is effectively no longer available to the other
elements. In the example, the element was moved 0 pixels from the
top, that is, not at all, and 100 pixels from the left. The result in
Figure 12.6 shows the effect of 0 pixels from the top of the web
browser window (or more precisely, the html element) and 100 pixels
from the left-hand side of the web browser window.

In addition, you can see that the box is virtually free-floating over the
other elements of the web page. The other elements also ignore this
box entirely and fill the gap with the element following it in the
document flow. In the example, the gap was filled with the following
paragraph text by moving it up. The HTML document to run can be
found in /examples/chapter012/12_1_4/index.html.

Figure 12.6 The Absolutely Positioned Area Floats Completely Detached above the Web
Page

Attention with “position: absolute;” without Width
Specification!

If you don’t specify the width of a block and use position:
absolute; for positioning, this absolutely positioned element will
get displayed with the same width as the content.

In practice, absolute and relative positioning are often combined. A
commonly used scenario here is to place a caption over an image,
which can be easily done with <figcaption> as the child element and
<figure> as the parent element.
...
 <figure>

 <figcaption>Surfer on Snake River</figcaption>
 </figure>
...

Listing 12.5 /examples/chapter012/12_1_4/index2.html

First, you have to position the parent element <figure> relative to
position: relative;. This positioning has no effect yet.
<figcaption>, on the other hand, can be lifted out of the document
flow using position: absolute;. Once you do that, you can position
the caption within <figure> using left, right, bottom, or top—
depending on where you want the caption to go. I’ve set left and
top to 0 here, which places the caption at the top. If you want to
place it at the bottom, you just need to use bottom: 0 instead of top:
0. Here’s the CSS for that (see Listing 12.6).

Figure 12.7 Using the Combination of an Absolute and a Relative Position, the Image
Caption was Added Here Easily and Quickly

...
figure {
 position: relative;
 width: 400px;
 box-shadow: 4px 6px 22px 1px rgba(0, 0, 0, 0.75);
}

figcaption {
 position: absolute;
 left: 0;
 top: 0;
 width: 100%
 text-align: center;
 color: white;
 background: rgba(100, 28, 52, 0.7);
 padding: 0.75rem;
}
...

Listing 12.6 /examples/chapter012/12_1_4/css/style2.css

12.1.5 Fixed Positioning (“position: fixed”)

Fixed positioning corresponds to the principle of absolute positioning
with the absolute value described in the previous section, the only
difference being that here an element is fixed and thus no longer
scrolled. This way, you practically align the element rigidly to the web
browser window (viewport).

Again, you can see in Figure 12.8 how, in the case of fixed
positioning, the element is pulled out of the document flow and
positioned absolutely, that is, moved relative to the comprehensive
element, and the elements following it in the document flow move
up. Basically, everything reminds us of absolute positioning; the only
difference is that this repositioned element remains fixed and can no
longer be scrolled.

Figure 12.8 For Fixed Positioning, the Element Gets Pulled Out of the Document Flow
and Positioned Absolutely. The Only Difference Is That This Element Remains Fixed.

For this purpose, all you need to do is set the CSS feature position
from absolute to fixed in
/examples/chapter012/12_1_4/css/style.css from the previous
section:
...
.article02 {
 position: fixed;
 top: 0;
 left: 100px;
 width: 300px;
 padding: 10px;
 border: 1px solid black;
 background-color: bisque;
}
...

Listing 12.7 /examples/chapter012/12_1_5/css/style.css

At first glance, nothing has changed in Figure 12.9 compared to
Figure 12.6. But when you start scrolling the screen, the element set
with fixed for the CSS feature position stays in place and doesn’t
scroll, as you can see in Figure 12.10. The HTML document to run
can be found in /examples/chapter012/12_1_5/index.html.

Figure 12.9 At First, Everything Looks the Same with “position: fixed;”

Figure 12.10 When You Start Scrolling the Web Page, the Difference Becomes Obvious
Because the Element Won’t Move

In practice, such fixed positioning is suitable, for example, for
navigation areas, a fixed header or footer, or a fixed link to the top of
the page that is always present at the same position. Here’s a small
example, where a link to take visitors back to the top of the
document has been placed in a fixed position at the bottom right of
the web page:
.up {
 position: fixed;
 bottom: 20px;
 right: 20px;
 padding: 10px;
 border: black 1px solid;
 background-color: orange;
}

Listing 12.8 /examples/chapter012/12_1_5/css/style.css

...
 <body>
 <h1 id="start">Start of page</h1>
 Up
 <p> ... </p>
 <p> ... </p>
 <p> ... </p>
 </body>
...

Listing 12.9 /examples/chapter012/12_1_5/index2.html

Figure 12.11 With the Fixed Positioning of the “Up” Link at the Bottom Right, You Can
Jump Up to the Top of the Page at Any Time

12.1.6 Sticky Positioning (“position: sticky”)

Sticky positioning is a mixture of relative and fixed positioning. When
you load the web page, the element behaves like an ordinary
element. However, if you use it to hit the edge of the screen when
scrolling up or down, the element with position: sticky; will stick
there and then behave as with fixed positioning. Let’s look at a
simple example:
...
.sticky_h1 {
 position: -webkit-sticky;
 position: sticky;
 top: -1px;
 width: 100%
 background-color: black;

 color: white;
}

Listing 12.10 /examples/chapter012/12_1_6/css/style.css

...
 <body>
 <header class="foothead">Header</header>
 <article class="article01">
 <h1 class="sticky_h1">Article 1</h1>
 <p>Lorem ipsum dolor sit amet ... </p>
 </article>
 <article class="article02">
 <h1 class="sticky_h1">Article 2</h1>
 <p>Lorem ipsum dolor sit amet ... </p>
 </article>
 <footer class="foothead">footer</footer>
 </body>
...

Listing 12.11 /examples/chapter012/12_1_6/index.html

Here, a sticky_h1 class was created for the article headings in an
HTML document. The CSS feature position was passed the value
sticky. The actual positioning (here, top: -1px) applies once the top
of the screen is reached when scrolling down. In the example, you’ll
find two longer articles. If you scroll down during this process, the
heading will stick to the top of the screen (see Figure 12.13). This
continues until you come across the next heading, which in turn
makes it stick to the top (see Figure 12.14). This way, you always
have the headline of the current article in view. If you scroll the web
page all the way up again, this fixation comes off again.

Figure 12.12 The Web Page after Loading: The Headline Is Placed as Usual

Figure 12.13 When Scrolling Down, the Headline Will Stick to the Top of the Screen Due
to “position: sticky;”

A look at https://caniuse.com/#feat=css-sticky shows that at the time
this book went into print, support is still beset with some minor
problems. However, all modern web browsers can already handle it
quite well.

Figure 12.14 The Heading Will Stick until It Encounters Another Heading for Which
“position” Also Equals “sticky”

https://caniuse.com/#feat=css-sticky

12.2 Controlling Stacking Using “z-index”
In the previous examples with relative and absolute positioning,
you’ve already seen that overlapping of elements can occur if you
change elements absolute (or relative or fixed) in their position or
remove them from the document flow. You can see this again in
Figure 12.15.

Figure 12.15 With Relative or Absolute (or Even Fixed) Positioning, You Must Expect
Elements to Overlap

By default, the relative, absolute, and fixed elements are stacked in
the order they were written in the document flow of the HTML
document. The last element written is on top. You can change this
behavior using the CSS feature z-index. The CSS feature z-index is
effectively the third axis for an element. So far, you’ve only taken
care of the horizontal and vertical position (i.e., the x- and y-axis).
The third dimension is the z-axis, on which the elements are
superimposed, as Figure 12.16 shows more clearly.

Figure 12.16 Elements Whose CSS Feature “position” Differs from the Default Value
“static” Contain a Z-Axis in Addition to the X- and Y-Axis

Using the CSS feature z-index is very simple. The higher the noted
value of z-index, the higher the element is in the stack. The element
with the highest z-index value is thus at the top, and the element
with the lowest z-index value is at the bottom. In case of equal
values for z-index, the element that was last written in the document
flow is on top.

As you can see in Figure 12.15, the CSS code still looks as follows:
...
 .article01 {
 width: 300px;
 padding: 10px;
 border: 1px solid black;
 background-color: sandybrown;
 }
 .article02 {
 position: relative;
 top: -75px;
 left: 100px;

 width: 300px;
 padding: 10px;
 border: 1px solid black;
 background-color: bisque;
 }
...

Listing 12.12 /examples/chapter012/12_2/css/style.css

...
 <article class="article01">
 <h1>Article 1</h1>
 <p>Lorem ipsum dolor ... </p>
 </article>
 <article class="article02">
 <h1>Article 2</h1>
 <p>Lorem ipsum dolor ... </p>
 </article>
...

Listing 12.13 /examples/chapter012/12_2/index.html

In this example, the second article element, which was moved
relative to the article02 class selector, overlapped the first article
element.

If you now want the first article element to be placed on top of the
second article element, you can use the CSS feature z-index in
class selector article02. If you’ve used the CSS feature z-index in
the article02 class selector with any positive value that is lower than
the z-index value in the article01 class selector, you might be
confused at first to find that nothing has changed. This is because
stacking or using the CSS feature z-index has no effect on statically
positioned elements, as is the case in the example with the first
article element and the article01 class selector.

In our case, you can solve the problem by providing the first article
with the CSS feature position: relative; without using any values
for positioning. The element will then remain in place as before. In
the surrounding element, however, the element is considered to be
positioned. So here’s the solution to the problem, based on which

the first article element overlays the second article element using
the CSS feature z-index:
...
.article01 {
 position: relative;
 width: 300px;
 padding: 10px;
 border: 1px solid black;
 background-color: orange;
 z-index: 2;
}
.article02 {
 position: relative;
 top: -75px;
 left: 100px;
 width: 300px;
 padding: 10px;
 border: 1px solid black;
 background-color: yellow;
 z-index: 1;
}
...

Listing 12.14 /examples/chapter012/12_2/css/style2.css

...
 <article class="article01">
 <h1>Article 1</h1>
 <p>Lorem ipsum dolor ... </p>
 </article>
 <article class="article02">
 <h1>Article 2</h1>
 <p>Lorem ipsum dolor ... </p>
 </article>
...

Listing 12.15 /examples/chapter012/12_2/index2.html

In Figure 12.17 (as opposed to Figure 12.15), you can see how the
first article element is placed over the second article element in
the stack. This is due to the higher z-index value (here, 2), which is
used in the first article element with class selector article01. The
second z-index value (here, 1) in class selector article02 didn’t
necessarily have to be specified. But you’re welcome to increase the
value of the CSS feature z-index in class selector article02 to 3 in

order to see that the second article element will then be placed
over the first one again.

Figure 12.17 The CSS Feature “z-index” Can Be Used to Adjust the Order in the Stack of
Relative, Absolute, and Fixed Positioned Elements

Negative Values for “z-index”

You can also use negative values for the CSS feature z-index. Of
course, the rule here is still that elements with positive z-index
values get positioned above the elements with negative z-index
values.

12.3 Floating Boxes for Positioning via
“float”
Another important CSS feature for creating a layout with CSS is
float. This feature enables you to take an element out of the usual
document flow and place it on the right or left edge of the embracing
element. The subsequent elements (without float) flow around this
floated element. The CSS feature float was used for years to create
layouts for websites. You can certainly still use this technique today,
but there are now better techniques available for this, such as
flexboxes or the grid layout. The classic example, which is still often
used today to demonstrate the CSS feature float in use, is the
flowing of text around an image. Let’s first take a look at the following
HTML lines:
...
 <body>
 <h1>A report</h1>
 <figure>

 <figcaption>An image</figcaption>
 </figure> <p>Lorem ipsum dolor ... </p>
 <p>Lorem ipsum dolor ... </p>
 <p>Lorem ipsum dolor ... </p>
 </body>
...

Listing 12.16 examples/chapter012/12_3/index.html

As befits a standard static positioning, the individual elements are
arranged one below the other, as you can see in Figure 12.18.

If you apply the CSS feature float with the value left or right to the
image, in this case inside the figure element, the text will flow
around the image. You can do this via a simple type selector:

...
figure {
 float: left;
 margin: 0 1rem 0 0;
}
...

Listing 12.17 /examples/chapter012/12_3/css/style.css

Figure 12.18 The Typical Document Flow with Standard Positioning

This will cause the figure element to float to the left along with the
image and caption, while the subsequent elements, here the
paragraphs with the p element, flow around the image (see
Figure 12.19). The margin feature was only used here so that the text
won’t be “glued” too tightly to the image and there’s a small buffer in
between.

Figure 12.19 The Image Was Floated with “float: left” on the Left, While the Following
Paragraphs with the Text Flow around the Image

Besides left and right, you can use the values none (default) and
inherit for float. none allows you to specify that the element
shouldn’t be floated. With the inherit value, on the other hand, the
element inherits the float value of the parent element in which it
resides.

Figure 12.20 Here, the <figure> Element Has Been Set to the Value “right” Using “float”,
and Consequently the Image It Contains Is Right-Aligned

Floating elements work only horizontally. The elements can only flow
around to the left or to the right, whereas upward or downward
movements aren’t possible. In addition, only the elements after a

floated element flow around it. Elements that were written before the
floated element in the document flow won’t be affected.

Testing a Narrow Viewport

If you use floated boxes, you shouldn’t forget to test the result on a
narrower viewport such as a smartphone, especially to make sure
that the text is still present next to the image and not displayed as
one word per line. That doesn’t look nice, as you can see in
Figure 12.21. Here, it would be a good idea to use a smaller
image, or you could make the image responsive (which I’ll
describe in Chapter 13, Section 13.3.2).

Figure 12.21 Layout No Longer Looks Nice on a 320-Pixel-Wide Smartphone: In
Some Places, There’s Only One Word Left in the Line

At this point, it’s still important to know that only the text flows around
the image, but not the padding, border, margin, and background
features. They remain behind the floated image. You should know
this if, for example, you want to use margin on the text to adjust the
distance to the image and wonder why this won’t work.

Figure 12.22 The Proof: Only the Text from the “p” Paragraph Element Flows around the
“figure” Element with the Image; “padding”, “border”, “margin”, and “background” Remain

12.3.1 Terminating the Float

You’ve certainly noticed in the example with the floated element that
the next p element also flows around the image. This is convenient
because then you don’t have to worry about it, but that’s not always
desired. For example, if you want to start a new paragraph with a
new heading in the next paragraph, this will look messy.

Figure 12.23 The Next Paragraph with the “h2” Heading Also Flows around the Image

You can stop this floating around using the CSS feature clear. The
clear feature allows you to disable the floating behavior for the
subsequent elements. You can pass the values left, right, both, or
none to the CSS feature clear. A clear: left ends a float: left, a
clear: right ends a float: right, and a clear: both ends both. For
this reason, it isn’t wrong to always use clear: both. The value none
is the default value, which you can use if you want the elements to
flow around each other again

In the following example, I’ll terminate the float using clear: both;.
Because the image is floated around on the left, I could also have
used clear: left;.
...
.float-left {
 float: left;
 margin: 0 1rem 1rem 0;
}
.endfloat {
 clear: both;
}
...

Listing 12.18 /examples/chapter012/12_3/css/style2.css

In the sample document, I include the class to stop reflowing in the
h2 heading, which stops reflowing exactly at that point and for all
subsequent elements, as you can see in Figure 12.24.

Figure 12.24 From the h2 Heading Onward, the Flow around the Image Will End

Depending on the screen width, however, a gap opens up here.
...
 <h1>A report</h1>
 <figure class="float-left">

 <figcaption>An image</figcaption>
 </figure>
 <p>Lorem ipsum dolor ... </p>
 <h2 class="endfloat">Heading 2</h2>
 <p>Lorem ipsum dolor sit amet ... </p>
...

Listing 12.19 /examples/chapter012/12_3/index2.html

12.3.2 Combining Floats into One Entity

As already shown in Figure 12.22, only the text flows around the
image, and the padding, border, margin, and background features
remain behind the floated image in the document flow. In the

example, the image also protrudes from the parent element.
Because further text follows behind it in the example, that didn’t
bother me any further. It also isn’t recommended at first if you put
everything into a parent element, such as the following:
...
 <header class="head-foot">Header</header>.
 <article class="article-bg">
 <h1>An article</h1>
 <figure class="float-left">

 <figcaption>An image</figcaption>
 </figure>
 <p>Lorem ipsum dolor sit ... </p>
 </article>
 <footer class="head-foot">Footer</footer>
...

Listing 12.20 /examples/chapter012/12_3/index3.html

A clear: left; with the footer would fix the problem for now, but the
problem remains when styling the padding, border, margin, and
background features, as shown in Figure 12.26. There, a gray
background is used for the article element for the purpose of clarity.

There’s a solution to this with display: flow-root;, as this creates a
new block for the surrounding element via CSS. If you use display:
flow-root; for the article element, the elements it contains are
enclosed in a block, resulting in Figure 12.27. Now the thing is that
display: float-root; is available to all newer web browsers but not
to older browsers. For this purpose, the ancient trick with overflow:
hidden; is useful, which also encloses the content in a new block as
a side effect.

Figure 12.25 The Image Extends from the “article” Element beyond the “footer” Element

Figure 12.26 Stopping the Float Solves Only Part of the Problem: With the CSS Features
“padding”, “border”, “margin”, and “background”, the Image Remains Protruding

An elegant solution to this is the CSS feature query @supports(). It
allows you to check whether a browser can handle certain CSS
property-value combinations. With regard to our example, this could
be implemented as follows:
...
 .article-bg {
 background-color: lightgray;
 overflow: hidden;
 }

 @supports(display: flow-root) {
 .article-bg {
 display: flow-root;
 overflow: initial;

 background-color: lightgray;
 }
 }
...

Listing 12.21 /examples/chapter012/12_3/css/style3.css

First, you set the overflow: hidden; feature in the article-bg class. If
the browser doesn’t know the @supports() query, then it simply
continues. A browser that knows the @supports() query checks
whether it can handle display: flow-root, and, if so, it will use the
features inside the statement block where display: flow-root; is set
and overflow is provided with initial.

Figure 12.27 Now the Floated “figure” Element inside the “article” Element Has Been
Combined into a New Block with the “p” Element

12.4 Flexible Boxes of CSS
As the topic of responsive web design is becoming increasingly
important, the desire for a simpler and better alternative to
positioning according to the float principle is getting stronger as
well. One of these alternatives is the extremely promising flexbox
model. The CSS flexbox is perfect for arranging elements next to or
below each other. This is very useful for galleries or links of a
navigation, for example, because the CSS flexboxes provide even
more options, such as neatly arranging the elements next to each
other with a certain spacing, in a certain order, or in a certain size.

The principle of flexboxes is simple and can be quickly explained:
You need a parent element in which you set the CSS feature display
to flex. This feature affects all child elements contained in it. The
parent element that has been given the CSS feature display: flex is
also referred to as a flex container. The child items contained in it
are the flex items.

12.4.1 Aligning the Flexbox

The CSS feature flex-direction allows you to specify how to align
the elements within the flexbox. For a horizontal alignment, you can
use the row value, and for a vertical alignment, you can use the
column value. If you don’t use the CSS feature flex-direction, then
row is the default setting. Thus, the default orientation for the
elements of a flexbox is horizontal.

Here’s an example that demonstrates these basic features of
flexboxes in use:

 .myarticle {
 width: 300px;
 padding: 10px;
 margin: 0px 5px 5px 0px;
 border: 1px solid black;
 background-color: bisque;
 }
 .mymain {
 width: 90%;
 padding: 10px;
 background-color: sienna;

 display: flex;
 flex-direction: row;
 }

Listing 12.22 /examples/chapter012/12_4_1/css/style.css

...
 <main class="mymain">
 <article class="myarticle">
 <h1>Article 1</h1>
 <p>Lorem ipsum dolor sit amet ...</p>
 </article>
 <article class="myarticle">
 <h1>Article 2</h1>
 <p>Lorem ipsum dolor sit amet ...</p>
 </article>
 <article class="myarticle">
 <h1>Article 3</h1>
 <p>Lorem ipsum dolor sit amet ... </p>
 </article>
 </main>
...

Listing 12.23 /examples/chapter012/12_4_1/index.html

Here, only the mymain class selector was used to set the display type
of the parent element <main> to flex and the alignment of flex-
direction to row. You can also omit the specification with flex-
direction because display: flex is set up for this setting by default.
These two specifications cause all child elements contained in the
main element (here again, article elements) to be aligned
horizontally in the flexbox, which have been colored in gray here for
clarity, as you can see in Figure 12.28.

Figure 12.28 Flexbox in Horizontal Direction

If you use the column value for the CSS feature flex-direction
instead, the individual elements within the main element will be
vertically aligned, which is shown in Figure 12.29.

Sorting in Reverse Order

For the CSS feature flex-direction, you can use the values row-
reverse and column-reverse, which will sort and display the
contained elements in reverse order. With regard to our example,
Article 3 would be displayed first, then Article 2, and finally
Article 1. Just try these values out for yourself.

Figure 12.29 Flexbox in Vertical Orientation (/example/chapter012/12_4_1/index2.html)

Wrapping Elements in a Flexbox: “flex-wrap”

The unattractive aspect about the example in
/examples/chapter012/12_4_1/index.html is that it doesn’t look nice
beyond a certain window width, and the elements end up flowing
beyond the surrounding flexbox, as you can see in Figure 12.30.

Figure 12.30 At Some Point, the Flexibility of a Flexbox Also Comes to an End

If you want a behavior where the elements wrap to the next row, the
flexbox model provides the CSS feature flex-wrap for this purpose.
The default value nowrap prevents the elements in the flexbox from
wrapping. If you use the wrap value for this, the elements wrap into a
new row. Besides nowrap and wrap for the CSS feature flex-wrap,
there’s the wrap-reverse value, which you can use to wrap flexible
elements to the top.

Following is an example of flex-wrap:
...
.mymain {
 width: 95%;

 padding: 10px;
 background-color: sienna;
 display: flex;
 flex-direction: row;
 flex-wrap: wrap;
}

Listing 12.24 /examples/chapter012/12_4_1/css/style3.css

Figure 12.31 Thanks to “flex-wrap: wrap;” the Elements in a Flexbox Wrap into a New
Row (/examples/chapter012/12_4_1/index3.html)

“flex-flow”, the Short Notation for “flex-direction” and “flex-
wrap”

With flex-flow there’s a short notation available for flex-
direction and flex-wrap. It doesn’t matter in which order you write
the values. Let's look at an example specification:
flex-flow: row wrap;

This corresponds to the following notation:
flex-direction: row;
flex-wrap: wrap;

Arranging Elements along the Main Axis: “justify-content”

With reference to Figure 12.28 and the example in
/examples/chapter012/12_4_1/index. html, you can arrange the
individual elements with the CSS feature justify-content. Possible

values for this are flex-start, center, space-between, and space-
around, for example:
...
.mymain {
 ...
 display: flex;
 justify-content: center;
}

Listing 12.25 /examples/chapter012/12_4_1/css/style4.css

As you can see in Figure 12.32 for the example in
/examples/chapter012/12_4_1/index4. html, justify-content:
center; centers all child elements within class selector mymain.

Figure 12.32 You Can Use “justify-content: center;” to Center the Elements

Figure 12.33 “justify-content: flex-start;” Allows You to Arrange the Elements Left-
Justified

Figure 12.34 “justify-content: flex-end;” Enables You to Arrange the Elements Right-
Justified

Figure 12.35 “justify-content: space-between;” Makes Sure That the Elements Are
Arranged with Equal Spaces In Between: The First and Last Elements Are Located at the
Beginning and End of the Line, Respectively

Figure 12.36 “justify-content: space-around;” Ensures That All Elements Are Distributed
Evenly

Arranging Elements along the Cross Axis: “align-content”

If you want to arrange elements along the cross axis, you can use
the CSS feature align-content. The default value here is stretch. As
you can see in Figure 12.29, this distributes all elements evenly. The
other possible values for align-content are flex-start, flex-end,
center, space-between, and space-around. The meaning of these
values is the same as for justify-content, only for the cross-axis.
For example, flex-start places the elements at the top, flex-end at
the bottom, and center in the middle. space-between ensures an even
distribution, with the first element at the top and the last at the
bottom. space-around, on the other hand, distributes all elements
evenly without treating the first or last element separately. Consider
this example.
.myarticle {
 width: 500px;
 padding: 10px;
 margin: 0px 5px 5px 0px;
 border: 1px solid black;
 background-color: bisque;
}
.mymain {
 width: 95%;
 height: 500px;
 padding: 10px;
 background-color: sienna;
 display: flex;
 flex-wrap: wrap;
 align-content: space-between;
}

Listing 12.26 /examples/chapter012/12_4_1/css/style5.css

You can see the example from
/examples/chapter012/12_4_1/index5.html in Figure 12.37 during
execution. If you want to see the other values flex-start, flex-end,
or space-around in use, you just need to change the align-content
value in the /examples/chapter012/12_4_1/css/style5.css example
accordingly.

Figure 12.37 With “align-content: space-between;”, the Elements Are Evenly Distributed:
The First and Last Elements Are at the Top and Bottom, Respectively

Arranging Individual Elements Differently: “align-self”

If you want to assign a different property to individual elements in the
arrangement of flexible elements than the one specified in the parent
element, you can use the CSS feature align-self for this purpose.
As a default value (auto), the value is taken from the parent element.
Otherwise, you’ll also find the values stretch (evenly distribute),
center (center), flex-start (top), and flex-end (bottom) with the
same result in the arrangement as I described it for align-content. In
addition, you’ll find baseline as a possible value, which you can use
to align an element to the baseline.

Let’s look at a simple example: You are invited again to experiment
with the values of align-self:
.myarticle {
 ...
}
.mymain {

 ...
 display: flex;
 flex-wrap: wrap;
 justify-content: flex-start;
}
.bottom {
 align-self: flex-end;
}

Listing 12.27 /examples/chapter012/12_4_1/css/style6.css

...
 <main class="mymain">
 <article class="myarticle">
 <h1>Article 1</h1>
 <p>Lorem ipsum ... </p>
 </article>
 <article class="myarticle bottom">
 <h1>Article 2</h1>
 <p>Lorem ipsum ... </p>
 </article>
 <article class="myarticle">
 <h1>Article 3</h1>
 <p>Lorem ipsum ... </p>
 </article>
 </main>
...

Listing 12.28 /examples/chapter012/12_4_1/index6.html

Figure 12.38 Here I’ve Arranged the Middle Article with “align-self: flex-end;” at the
Bottom of the Flexbox

12.4.2 Setting the Flexibility of the Flexbox

To set the flexibility of the corresponding elements within the flexbox,
you can use the CSS feature flex. The property expects a numerical
value. The numbers behave relatively, which means that an element
with the specification flex: 4 is four times as flexible as an element
with the flex property: 1.

Short Notation for “flex-grow”, “flex-shrink”, and “flex-basis”

The CSS feature flex is a short notation for the other existing CSS
features of flexboxes—flex-grow, flex-shrink, and flex-base.
Strictly speaking, the specification corresponds to flex: 2 of the
specification flex-grow: 2. You can also use the other two values
for flex-shrink and flex-base. For example, take the following:
flex: 2 1 30%; /* flex-grow=2 flex-shrink=1 flex-basis=30% */

This specification is a short notation for the following:
flex-grow: 2;
flex-shrink: 1;
flex-basis: 30%;

Using flex-grow, you can control how flexibly the element grows
relative to the rest of the elements (when zoomed in). You can
specify how far the element shrinks relative to the other elements
(when shrinking) using flex-shrink, and you can specify the basic
width for the element via flex-basis. Besides percentages, you
can use pixels (px), em, or other units. The default value for flex-
basis is auto.

The default value of flex in general is 0 1 auto(flex: 0 1 auto).

Here’s an example that demonstrates the CSS feature flex in use:
...
.mymain {
 width: 90%;

 padding: 10px;
 background-color: sienna;

 display: flex;
}
.article01 { flex: 0 0 200px; }
.article02 { flex: 4 1 auto; }
.article03 { flex: 1 3 150px; }
...

Listing 12.29 /examples/chapter012/12_4_2/css/style.css

For the first article element with class selector article01, flex: 0 0
200px; causes the box to have zero flexibility relative to the other
elements in the main element when zoomed in and out, respectively.
The width of the box is initialized with 200 pixels and, because the
two preceding values are 0, can’t change when the window is
enlarged or reduced (see Figure 12.39 and Figure 12.40). The HTML
document for this can be found in
/examples/chapter012/12_4_2/index.html.

Figure 12.39 Different Values for Flexboxes

In the second article element with class selector article02, the box
is four times more flexible than the other boxes when enlarged.
When shrinking, the value was set to 1 and the basic width to auto.
You could have omitted the auto value because it’s the default value.
In Figure 12.39, you can see that this item is always relatively larger
than the other items when displayed wider. With a narrower viewport,
as in Figure 12.40, this ratio applies only to the third article because
the first article allows no flexibility and remains rigid at its 200 pixels.

Figure 12.40 Unlike Figure 12.39, a Small Device Was Used

In the last article element with class selector article03, the relative
flexibility on zooming was set to 1. When shrinking, on the other
hand, this box is three times more flexible than the other boxes. The
base value for the width was specified as 150 pixels. If you had used
auto here, you would immediately have noticed this threefold
flexibility when shrinking, which wouldn’t look nice. In Figure 12.39,
the base value of 150 pixels for the width still applies. Nevertheless,
the article is already relatively smaller than the second article. For
the smaller viewport in Figure 12.40, the effect of having three times
the flexibility of the other two items is relatively clear.

The Special Feature of “flex-grow” with Line Breaks

You’ll also find a very interesting and useful feature if you allow a line
break with flex-flow: wrap and set the flex-grow feature to 1, for

example:
...
.myarticle {
 width: 300px;
 ...
 flex-grow: 1;
}
.mymain {
 width: 95%;
 ...
 display: flex;
 flex-direction: row;
 flex-wrap: wrap;
}
...

Listing 12.30 /examples/chapter012/12_4_2/css/style2.css

If you run /examples/chapter012/12_4_2/index2.html here and use a
sufficiently large viewport, all article elements will be aligned side
by side in the flexbox. If the viewport is now made smaller and the
last article element slides down, the article element will take over
the full width of the next line thanks to flex-grow: 1.

Figure 12.41 If You Allow the Line Break and Use “flex-grow: 1”, the Flex Item Wrapped
to the Next Line Will Take the Complete Width of the Line

12.4.3 Determining the Order of the Boxes

Another very nice feature of flexboxes is that you can set the order
yourself using the CSS feature order. Here, too, you must use a
numerical value. Let’s look at an example:
...
.article01 { order: 2; }

.article02 { order: 3; }

.article03 { order: 1; }

...

Listing 12.31 /examples/chapter012/12_4_3/css/style.css

Here, by order: 1, the third article element becomes the first; due
to order: 2, the first article element becomes the second; and
order: 3 declares the second article element to be the third. In
Figure 12.42, you can see how the order has changed. The HTML
document for this can be found in
/examples/chapter012/12_4_3/index.html.

Figure 12.42 You Can Change the Order of the Elements in the Container Element via
the CSS Feature “order”

Additional Examples

When you’ve read this chapter, you’ll know the basics of using
flexboxes in practice. The main area of use for flexboxes is to
arrange elements as neatly as possible next to or below each
other. In practice, flexboxes are used for photo galleries, maps, or
aligning form elements such as navigation or a contact form,
among other things. Simple examples to study and test CSS
flexboxes can be found at
http://quackit.com/css/flexbox/examples/.

http://quackit.com/css/flexbox/examples/

12.5 Summary
In this chapter, you learned a lot about positioning HTML elements
with CSS. You also now know the following:

How to position HTML elements statically, relatively, and
absolutely using CSS feature position

How to stack HTML elements that overlap in a relative or absolute
positioning using the z-index

How to remove HTML elements from the document flow using
float and place them at the right or left edge of the embracing
element, as well as how to remove the flow around the elements
again via clear

Which options are provided by the flexboxes in CSS, due to which
the positioning of elements becomes almost a walk in the park

13 Creating Responsive
Layouts with CSS

When it comes to website layouts, the choice is likely to fall
mostly on the responsive variants because here you no
longer have to worry about the different screen sizes. This
chapter provides an introduction on how to create responsive
websites.

The way you should create your layouts isn’t set in stone, nor is
there a right or wrong here. Today, responsive layouts are used for
this purpose, which deliver a web page that fits the width of the
visitor’s device. This chapter describes what responsive layouts are
all about and how you can implement them.

Before we get started, here’s an overview of what you’ll learn in this
chapter:

The basic handling of media queries

The fundamentals of what is important in responsive web design

How to create a simple responsive layout

How to use the CSS grid for responsive web design

To temper expectations a bit here, it’s worth mentioning that you’ll
only learn the basics of what responsive layouts are and how you
can use them in practice. The examples in this chapter are kept
relatively simple. Responsive web design is a vast, ever-evolving

subject, and there’s a reason that entire books are devoted to it. Still,
by the end of the chapter, you’ll know what that’s all about and how
you can create responsive layouts.

13.1 Basic Theoretical Knowledge of
Responsive Web Design
The way we access the internet today has become very versatile.
Whereas a few years ago, a website was only viewed with a desktop
PC or laptop, today many other devices such as tablets,
smartphones, e-book readers, game consoles, or TV sets have
joined the ranks. The challenge here is to respond to the screen size
and screen resolution of each device with an appropriate layout.

Prior to the era of responsive web design, the appearance of a
website was quite dependent on the device used to view it. Websites
used to be optimized for the screen resolution of a desktop PC, but
nowadays you have to rethink a little due to the rapidly increasing
market share of smartphones and tablets. Standard smartphone
resolutions start at 320–480 pixels, tablets are often 768–1,024
pixels, and common desktop PCs start at 1,024 pixels. Offering
different mobile and desktop versions of a website is one way to
solve the problem. However, that would take a considerable effort,
and when a new tablet or smartphone format of the next generation
is due, another version of the layout would become necessary.

Most of the time, the mobile-only versions were just stripped-down
versions with reduced functionality of the desktop version, and they
were swapped out to a subdomain with a single-column layout with
m or mobile (e.g., mobile.mydomain.com). At the latest since the
introduction of mobile devices such as smartphones and tablets,

http://mobile.mydomain.com/

these slimmed-down mobile versions of a website are no longer
satisfactory. In addition, the web browsers on mobile devices were
and are technically on a very high level and at least equal to the
desktop variants. It would therefore be a shame to give away the
potential with a slimmed-down mobile version.

Mobile Dominates

Recent statistics confirm the trend that mobile devices are now the
most used devices when visitors are on the web.

Instead of creating and maintaining countless layout versions for the
same website, responsive web design or responsive layout is used.
This technique takes into account the characteristics of the end
device to adapt the website to achieve an optimal and user-friendly
display for the end device. The main criteria for such a customized
layout are the screen size (usually width) of the device and possibly
the available input methods (mouse or touch screen).

The meaning of responsive is something like reacting. This sounds
strange and is rather rarely used this way, but it sums things up quite
well because with this technique, the structural design and content of
a website reacts to the screen resolution of the users’ devices, and
the layout is output accordingly. So, when we talk about responsive
layouts, the website adapts to the users’ screens.

13.1.1 Using Specific Media Types

The idea of responding to specific media types has been around for
a long time in CSS, which I covered briefly in Chapter 8,
Section 8.3.8. In doing so, we’ve provided various separate

stylesheets for the different output media such as the screen
(media="screen") or the printer (media="print"):
...
<link href="css/screen.css" rel="stylesheet" media="screen">
<link href="css/print.css" rel="stylesheet" media="print">
...

Listing 13.1 /examples/chapter013/13_1_1/index.html

Using the link element, you can provide a version for the screen
(media="screen") and a specific version for the printer. You can see
the version for the screen with screen.css in Figure 13.1.

Figure 13.1 The Web Page Was Styled with the CSS Version for the Screen
(“media="screen"”)

The second version with print.css, also provided with the link
element, is intended for the printer (media="print") as the output
medium. Without going into the content of the CSS file here, color
has been omitted from this version, and borders have been
removed. In addition, the <header>, <nav>, <aside>, and <footer>
elements were hidden using display: none to print only the actual
content of the article elements. You can see the version for the
printer with print.css in Figure 13.2.

If, on the other hand, the media type isn’t defined, then the CSS
statements automatically apply to all output types; this corresponds
to media="all".

Figure 13.2 The print.css Version for the Printer (“media="print"”) in Use

The two CSS files, print.css and screen.css, for this example can be
found in /examples/chapter013/13_1_1/css/.

Defining Media-Specific Sections via CSS Rule “@media”

Within a CSS file, you can use @media [media type] to define the
CSS properties for different media types in curly brackets:
@media screen {
 /* CSS features for the screen */
}
@media print {
 /* CSS features for the printer */
}

You can also combine formatting in CSS with an @media rule within a
style element in the HTML document:
...
 <style>
@media screen {

 /* CSS features for the screen */
 ...
 }
 @media print {
 /* CSS features for the printer */
 ...
 }
 <style>
...

13.1.2 Media Queries for Media Features

In addition to media types, CSS can also be used to perform media
queries of media features. Such queries are at the same time the
heart of responsive web design. This allows you to make media
queries—for example, regarding the size of the device, screen
resolution, orientation (portrait or landscape), or input options
(mouse, touch, keyboard, speech)—and respond accordingly with an
appropriate design.

13.1.3 Integrating and Applying Media Queries for
Media Features

The media features can be integrated and used in different ways.
For example, you can write the use of such a media query in HTML
as follows:
...
<head>
 <link rel="stylesheet" href="css/basis.css">
 <link rel="stylesheet" media="screen and (max-width: 480px)"
 href="css/mobile.css">
</head>
...

Here, mobile.css is used only if the maximum screen width of 480
pixels doesn’t get exceeded. For devices with a higher resolution,
only basis.css will be used. Older web browsers that use this media

query (here, media="screen and (max-width: 480px)"), ignore this
query and always use basis.css—even if the screen is less than 480
pixels wide.

It’s also important to note that when using media queries, such as
the one with the link element, all existing stylesheets will be
downloaded, even if they don’t apply to the query at all, but they
won’t be executed. So, in the preceding example, base.css and
mobile.css are always loaded. The reason for this is to prevent a
possible delay due to reloading when the web browser window gets
resized or the orientation of the smartphone or tablet changes.

Integrating queries in the opening <style> tag is possible as follows:
...
<style type="text/css" media="screen and (max-width: 480px)">
 /* CSS statements for screen up to max. 480 pixels */
<style>
...

Besides the link and style elements, you can also write media
queries of features as @media rules within a stylesheet:
...
.mainarticle {
 background-color: yellow;
}
@media screen and (max-width: 480px) {
 .mainarticle {
 background-color: orange;
 }
}
...

Here, the @media rule to color the background of .mainarticle orange
is used only if the maximum screen size hasn’t exceeded 480 pixels.
Otherwise, the background of .mainarticle will be colored yellow.

Finally, the media feature queries can be used with the @import rule
as follows:
@import url('css/mobile_480.css') screen and (max-width: 480px);

Thus, you can use media feature queries in HTML with the link
element or in the style element, and in CSS with the @media or
@import rule.

13.1.4 Basic Structure of a Media Feature Query

Now that you know how to use media queries in HTML or in CSS,
let’s take a closer look at the structure of such a query. For this
purpose, we want to decompose the query screen and (max-width:
480px) into its individual components.

In Figure 13.3, you can see a media query and its individual
components. Such a query consists of a Media Type (or output
device) followed by a Link with and. Inside the Expression, a Media
Feature (or property) and a corresponding Value are written
between parentheses. I already described and listed the media types
or the output devices in Chapter 8, Section 8.3.8.

Figure 13.3 Individual Components of a Media Query

Linking the Media Features

The media feature gets linked via the keyword and. It’s quite possible
to link and process several and features. Linking can be done with
and without a media type. Accordingly, a theoretical example of
multiple links may look like the following:
@media screen and (min-width: 960px) {
 /* CSS statements for desktop */

}
@media screen and (min-width: 768px) and (max-width: 960px) {
 /* CSS statements for tablets and netbooks */
}
@media screen and (max-width: 480px) {
 /* CSS statements for smartphones */
}

In the second media query, the stylesheet in between is used only if
all expressions and criteria linked via and are satisfied. In the
example, the media type must be a screen, and the screen width
must be at least 768 pixels and no more than 960 pixels.

If you use a media type, you can add a specification with only in
front of the media type. With only, you make sure that older web
browsers can’t do anything with the media query. Sounds quite
pointless, but it isn’t. First, here’s an example without only:
...
@media screen and (max-width: 480px) {
 /* CSS statements for smartphones */
}
...

A very old web browser may not be able to do anything with and
(max-width: 480px) but is familiar with @media screen. To make sure
that the web browser will ignore the specification of and (max-width:
480px) so that the CSS statements for smartphones will also be used
on a desktop, you can put the keyword only in front of screen
because older web browsers then won’t know what to do with the
query:
...
@media only screen and (max-width: 480px) {
 /* CSS statements for smartphones */
}
...

If you’ve used a media type, you can also prefix not and thus negate
a query.

13.1.5 Which Media Features Can Be Queried?

The different output devices have many different features. Without a
doubt, the most frequently used feature that’s queried is the
minimum and maximum width of the display area. Table 13.1
contains an overview of the most important media features that can
be queried. An overview of all media features can be found at
www.w3.org/TR/mediaqueries-4/.

Media
Feature

Meaning Values

width
min-width
min-width
max-width

Width of the display area (viewport) of
the web browser. Possible values are
positive length values. Example: (min-
width: 480px)

px, %, em

height
min-height
min-height
max-height

Height of the display area (viewport)
of the web browser. Possible values
are positive length values. Example:
(max-height: 720px)

px, %, em

orientation This enables you to query the
orientation of the device. The
orientation can be portrait or
landscape. In portrait mode, the value
of height is higher than that of width.
In landscape format, it’s the other way
around. Example: (orientation:
landscape)

portrait,
landscape

aspect-
ratio
min-aspect-
ratio
min-aspect-
ratio
max-aspect-
ratio

Specifies the aspect ratio of width and
height to each other. A value of
1,280 × 720 corresponds to an aspect
ratio of 16:9, which you can address
with (aspect-ratio: 16/9). This
corresponds to the specification,
(aspect-ratio: 1280/720).

Width/height,
for example,
16/9,
1280/720

http://www.w3.org/TR/mediaqueries-4/

Media
Feature

Meaning Values

color
min-

color/max-
color

Query for the color depth of the
device. For black-and-white devices,
the value is color:0.

Integer value
(integer)

color-

index,
min-color-

index,
max-color-
index

Checks the use of indexed colors of
the output device.

Integer value
(integer)

monochrome,
min-

monochrome,
max-
monochrome

Checks if the output device is
monochrome. The value monochrome:0
wouldn’t be a monochrome device.

Integer value
(integer)

resolution
min-
resolution
min-
resolution
max-
resolution

Query for the pixel density of the
device, for example, (resolution:
72dpi)

dpi, dcm

Media
Feature

Meaning Values

pointer,
any-pointer

Tests if the output device provides a
mouse as an input device (or any
input device at all).

none (device
has only a
keyboard)
coarse

(device has
an input
device with
limited
precision
such as
touch)
fine (device
has an input
device with
high
accuracy
such as
mouse,
touchpad)

hover,
any-hover

Checks if the output device provides
hover effects with the primary input
device.

none, hover

Table 13.1 Some Common Media Features That Can Be Queried via Media Queries

The “min” and “max” Prefixes

Particularly for the media features for the display area, it’s usually
more useful to use the versions with the min or max prefixes
because one rarely knows the exact width of the user’s display.
For example, instead of using a media query where the exact
width is queried with width, you should prefer the min-width and/or

max-width version, which reacts even if the display width is at least
or at most equal to the passed value.

13.1.6 Crucially Important: The Viewport for Mobile
Devices

Especially in terms of querying media features from mobile devices,
the viewport plays an essential role in ensuring that responsive web
design works as intended there. Here, the viewport on desktop
computers and the viewport on mobile devices often cause some
confusion. The fact that high-resolution displays have an increasing
market share makes things even more complicated because a pixel
is suddenly no longer a pixel. A look at the website
http://screensiz.es/ will show you a collection of the many different
sizes of displays on different devices. In the collection, you’ll also
find different width specifications for "width" and "device-width",
which is due to the high-resolution displays just mentioned. I’ll keep it
as simple as possible at this point and won’t bother you with the
various viewport terms. Rather, I’ll show you how to solve the
problem with a single line.

In terms of desktop computers, the viewport is the inner area of the
browser window without the borders. When you reduce or enlarge
the browser window, the viewport gets reduced or enlarged too. You
can address this visual viewport with the media features, width and
height. On mobile devices such as a smartphone, the screens are
much smaller than on a desktop computer, but the viewport there is
often larger than on desktop screens. Therefore, without special
adaptations of the viewport for mobile devices, the website would be
displayed on these devices in the width of a typical desktop screen.

http://screensiz.es/

The viewport on mobile devices is often referred to as the layout
viewport.

In Figure 13.4, you can see the website www.nytimes.com on a
desktop screen, and, in Figure 13.5, you see the same website in the
Safari browser of an iPhone where the viewport hasn’t been adapted
for mobile devices. On the mobile device, the view has therefore
been automatically scaled to fit the entire screen, just like on a
desktop screen. Here, the layout viewport of the mobile device is
scaled to the visual viewport, so to speak. As a result, you get
unreadable text and everything in a thumbnail view that’s much too
small. To read the text and reports on the mobile device, you would
need to zoom in and then scroll up and down or right and left.

Figure 13.4 The New York Times Website on an Ordinary Desktop Screen

http://www.nytimes.com/

Figure 13.5 The New York Times Website without a Customized Viewport on a
Smartphone

The mobile issue can be easily fixed with the viewport metatag or
the CSS rule, @viewport. To do this, you need to add the following to
the head section of the HTML document:
<meta name="viewport" content="width=device-width, initial-scale=1.0">

You can use width=device-width to set the width of the layout
viewport to the width of the visual viewport. This line normalizes all
different layout viewports from different devices and adjusts them to
the current display size. You then don’t have to worry about the
different display sizes and can devote yourself to responsive web
design in peace. In addition to width, there’s the counterpart
height=device-height for the height, which you’ll rarely need in
practice. For the viewport setting width, you can also use pixel
values.

Another important viewport feature is initial-scale:1.0, which lets
you set the initial zoom value to 100% or 1:1. Here, you can also
define smaller or larger values as the initial zoom level.

In addition to initial-scale, there are further viewport features such
as minimum-scale or maximum-scale, which enable you to define the
minimum and maximum zoom level. user-scalable=no even allows
you to disable zooming completely. This may be convenient for web
apps, but for websites, zoom-level restrictions aren’t recommended.
You should keep in mind that there are website visitors who are
depending on a high zoom level, and you would exclude those
people from the website.

“@viewport” Rule

Going forward, the CSS rule @viewport will probably replace the
metatag. Currently, however, the browser support for it is still very
low (https://caniuse.com/#search=%40viewport). The advantage
of the CSS rule is that theoretically more options can be used with
it than with the viewport metatag, and thus it can be declared with
different specifications in different media queries. The following is
the equivalent counterpart to the preceding viewport metatag:
@viewport {
 width:device-width;
 zoom:1;
}

This specification corresponds to the following:
<meta name="viewport" content="width=device-width, initial-scale=1.0">

Of course, if you’ve customized the viewport on mobile devices, you
still need to provide a rendering of the website that has been
optimized for media queries. The viewport setting alone simply

https://caniuse.com/#search=%40viewport

ensures that you turn off the web browser’s automatic scaling and
take everything into your own hands from now on. You’ll learn how to
create the responsive layout for it in the following sections. With
regard to the website www.nytimes.com and the descriptions shown
earlier in Figure 13.5, the website looks as shown in Figure 13.6 with
the viewport adapted for mobile devices. Of course, the web
developers of www.nytimes.com also provided an extra version for
mobile devices via media queries, which I disabled in Figure 13.5 for
demonstration purposes.

Figure 13.6 The New York Times Website with Adapted Viewport for Mobile Devices

13.1.7 Use “em” Instead of Pixels for a Layout Break in
Media Queries

What’s also quite useful is to perform the media queries with the em
unit. This may seem weird at first glance because the screen is

http://www.nytimes.com/
http://www.nytimes.com/

actually measured in pixels. But the advantage here is that the
media query then works correctly even if the font size gets changed
via the operating system or the Zoom Text Only function in Firefox.
This ensures that when the fonts are displayed in a larger text size,
the next layout level will actually be triggered, and the layout won’t
collapse. For example, for the website in Figure 13.7, the text was
zoomed to the maximum using the Zoom Text Only feature in
Firefox. In Figure 13.8, you can see what happens when pixels are
used here instead of em. In Figure 13.9, however, em was used as the
unit for layout wrapping in the media queries, and now the layout
also reacts to the enlarged text display and selects the next layout
level. Again, of course, this is assuming that an appropriate layout
has been provided for it.

Figure 13.7 The Website after Loading in the Firefox Web Browser

Figure 13.8 Here, the “Zoom Text Only” Function Was Used, but Pixels Were Used for
the Layout Wrap in the Media Queries: The Layout Is Gone

Figure 13.9 This Is What It Should Look Like When the “Zoom Text Only” Function Is
Executed and the “em” Unit Is Used in the Layout Break of the Media Queries: The Mobile
Layout Is Now Executed Here

Consider the following media query:
@media screen and (min-width: 640px) {
 /* CSS statements for screens 640 pixels wide and larger */
}

Here, you’ve set up a layout break (also called breakpoint) for
screens of 640 pixels or more. All CSS statements between the curly
brackets are thus only executed from a screen width of 640 pixels.
With reference to the recommendation to use the em unit for such
layout breaks, you only need to divide the screen width by 16. The
default browser base font size is usually 16 (pixels) and is therefore
used as a reference size. As 640 pixels divided by 16 pixels/em
equals 40 em, you can use the following em specification for the layout
break of 640 pixels:
/* 640px / 16px/em = 40em */
@media screen and (min-width: 40em) {
 /* CSS statements for screens 640 pixels wide and larger */
}

13.1.8 Layout Breaks (Breakpoints)

In the previous section, I briefly mentioned a layout breakpoint. Such
layout breaks are essential for the flexibility of a website. With these
breaks, the layout gets changed. In practice, you provide different
layouts for different resolutions, which you can control by means of
media queries. Several such layout breaks using media queries can
be defined, for example, as follows:
/* CSS statements for screens up to 640 pixels wide */

/* 640px / 16px/em = 40em */
@media screen and (min-width: 40em) {
 /* CSS statements for screens 640 pixels wide and larger */
}
/* 1024px / 16px/em = 64em */
@media screen and (min-width: 64em) {
 /* CSS statements for screens 1024 pixels wide and larger */
}
/* 1280px / 16px/em = 80em */
@media screen and (min-width: 80em) {
 /* CSS statements for screens 1280 pixels wide and larger */
}

In this example, I’ve defined three common layout breaks using
media queries. The statements before the first layout break will be
executed in any case. Here, in addition to the basic CSS features,
you could also define the mobile layout for the smartphones right
away. Then you’ll find customized layouts for screen widths of 640
pixels (tablets), 1,024 pixels (desktop), and 1,280 pixels (extra-large
desktop) as recommended with the em unit. According to the window
width, the instructions are executed between the curly brackets.

However, the example isn’t intended to give the impression that you
need to define so many layout breaks. Thus, it’s quite common to
define only one layout for a mobile version and another layout for all
other screens.

13.1.9 No More Math Games Thanks to "box-sizing:
border-box;"

To avoid the embarrassment of having to recalculate later when
creating the layout, you should use the newer box model with
border-box right away. This means you don’t need to calculate width,
padding, and border, as I demonstrated in Chapter 11,
Section 11.1.6, and include this information at the same time.
Especially with responsive web design, this is a considerable relief.
I’ve already described the new box model in detail in Section 11.2.

For this reason, it’s recommended to set the following CSS
statements right at the beginning:
html {
 box-sizing: border-box;
}
*, *::before, *::after {
 box-sizing: inherit;
}

13.1.10 What Happens to Web Browsers That Don’t
Understand Media Queries?

Media queries are now understood by all mainstream web browsers.
If you still encounter old web browsers or other clients that aren’t
able to process media queries, then those web browsers will use the
base version of your website that you defined with a media query
before the first layout break. For example, if you’ve created a mobile
version as the base version, the web browsers that can’t process
media queries will get this mobile version. For this reason, it’s always
recommended to create a basic version with a media query before
the first layout breakpoint.

13.2 Let’s Create a Simple Responsive
Layout
Now that you know the necessary basics about media queries and
how to use them to query media features, it’s time to create a small
responsive layout. I won’t go into all the details here, which are also
important in responsive web design. This is purely about arranging
the content of a website for specific screen sizes. For demonstration
purposes, I’ll first use the classic method with float. In Section 13.4,
I’ll show you the modern way using the CSS grid.

13.2.1 Let’s Create the Basic Framework Using HTML

Before you can even begin to create the responsive layout with CSS,
you must first write the basic framework with HTML. For this
purpose, you can find a simple example in
/examples/chapter013/13_2_1/index.html, which contains basic
HTML elements such as <header>, <nav>, <main>, <aside>, and
<footer>. These five basic elements are then placed accordingly in
the responsive layout. First, the basic HTML framework is as follows:
...
 <body>
 <header> Responsive Web Design—Logo </header>
 <nav>

 Homepage
 Portfolio
 Blog
 Contact
 Legal Notes

 </nav>
 <main>
 <article>
 <h2>LR Classic and PS</h2>
 <p>Get the most out of ... </p>

 </article>
 <article>
 <h2>Capture One 11</h2>
 <p>You want to increase your image stock ... </p>
 </article>
 <article>
 <h2>macOS High Sierra</h2>
 <p>In this comprehensive guidebook ... </p>
 </article>
 <article>
 <h2>PSE 2018</h2>
 <p>Whether photo optimization, image retouching ... </p>
 </article>
 </main>
 <aside>
 <h3>About the author</h3>
 <p>Jurgen Wolf is ... </p>
 <p> ... </p>
 </aside>
 <footer> Footer—© 2023 </footer>
 </body>
...

Listing 13.2 /examples/chapter013/13_2_1/index.html

We’ll now add a responsive layout to the bare HTML framework in
the following sections. You can see the basic framework without CSS
in Figure 13.10 during execution.

Figure 13.10 HTML Framework for Our Responsive Layout

13.2.2 Setting General CSS Features

Before you start worrying about layouts for specific screen widths,
you should first write the general CSS features such as the box
model, font size, color, and so on. These should be CSS features
that don’t change when a layout breakpoint exists. You can either
write such general features in a separate CSS file that you add to the
HTML document header, or write everything in a single CSS file, as I
did in this example. As mentioned earlier, I’ll keep this example very
simple. Initially, I only activated the new box model via box-sizing
and set the font in body.

Resetting/Normalizing CSS

It often happens that the CSS is reset/normalized at the beginning
of the layout creation to bring the different basic browser settings
of the various manufacturers to a common basis. This ensures
that no differences exist between the different browsers. If you did
a complete reset of the CSS features at the beginning of the web
development, then usually the file normalize.css (from
https://necolas.github.io/normalize.css) will be used to have a
reasonable basis for the further use of CSS. Although I’ve omitted
this in our example, it needed to be mentioned here.

13.2.3 What Should I Use as a Basic Version without
Media Queries: Mobile First?

When you start creating the layout, you first need to think about what
you want to start with. Do you want to start with the desktop version
and then work your way down to the smaller versions for tablets and
then smartphones via layout breaks and media queries? Or do you
want to start with the mobile version for smartphones and then work

https://necolas.github.io/normalize.css

your way up to the desktop version? This is entirely up to you and
probably depends on the nature and content of your project.

Personally, I’ve come to prefer creating the mobile version first
because (1) these devices are the most common medium that users
use to get around the web, and (2) it forces you as a developer to
stick to the basics first. And the essential thing on the web is the
content. You could also say “Mobile first means content first.”
Furthermore, the desktop version also benefits from this because
you can extend the uncomplicated display to this layout width as
well, and the focus remains on the content.

Figure 13.11 shows the first draft of the mobile design planning. If
you look at the basic HTML framework in
/examples/chapter013/13_2_1/index.html and Figure 13.10, you’ll
see that with this basic framework, you practically already have the
mobile design. The only thing missing here is the styling with CSS.

Figure 13.11 Design for the Mobile Version

The following CSS file
(/examples/chapter013/13_2_3/css/layout.css) should therefore no
longer hold any special surprises. Once you’ve set box-sizing with
border-box to the new box model, you’ll find the styling of each area
for the mobile version.
@charset "UTF-8";
/* General basic settings */
html {
 box-sizing: border-box;
}
*, *::before, *::after {
 box-sizing: inherit;
}
body {
 color: #1d2731; /* Ivory Black*/
 background-color: #efefef; /* Neutral */
 font-family: Georgia;
}
ul {
 padding: 0;
}
.wrapper {
 background-color: #ff3b3f; /* Watermelon */
}
.header {
 text-align: center;
 padding: 1em;
 background-color: #07889b; /* Teal */
 color: #efefef; /* Neutral */
 border-bottom: 1px solid #efefef;
}
.aside {
 border-top: 1px solid #a9a9a9;
 padding-top: 0.5em;
}
.footer {
 background-color: #a9a9a9; /* Carbon */
 color: #efefef; /* Neutral */
 padding: 1em;
 text-align: center;
 border-top: 1px solid #efefef;
}
.nav-ul {
 background-color: #ff383f; /* Watermelon */
 margin:0;
}
.nav-li {
 list-style: none;
 margin-left: 0;

 border-bottom: 1px solid #efefef;
}
.nav-li-a {
 padding: 0.6em 2rem;
 display: block;
}
.nav-ul a:link {
 text-decoration: none;
}
.nav-ul a:link, .nav-ul a:visited {
 color: #fff; /* white*/
}
.nav-ul a:hover, .nav-ul a:focus, .nav-ul a:active {
 background-color: #000; /* Black */
 color: #efefef; /* Neutral */
}
.nav-active {
 color: #000; /* Black */
 background-color: #fff; /* White */
}
.container {
 background-color: #fff; /* white */
 padding: 2em 2rem;
}

Listing 13.3 /examples/chapter013/13_2_3/css/layout.css

Next, you can enter the individual classes in the basic HTML
framework. But before you do that, you should set the viewport
metatag and add the CSS file for the layout. The basic HTML
framework is thus already finished and won’t get changed in the
further course of this book. From now on, we’ll work exclusively on
the layout using the CSS file. Here’s the finished basic HTML
structure:
...
 <head>
 ...
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="css/layout.css">
 </head>
 <body>
 <div class="wrapper">
 <header class="header">Responsive Web Design—Logo</header>
 <nav>
 <ul class="nav-ul">
 <li class="nav-li">Homepage
 <li class="nav-li">Portfolio

 <li class="nav-li nav-active"><strong class="nav-li-a">Blog
 <li class="nav-li">Contact
 <li class="nav-li">Legal Notes

 </nav>
 <div class="container">
 <main class="content">
 <article class="article">
 <h2> Computer History </h2>
 <p>Zuse, IBM, Atari, browser war: ... </p>
 </article>
 <article class="article">
 <h2>Capture One 20</h2>
 <p>You want your ...</p>
 </article>
 <article class="article clear">
 <h2>Shell programming</h2>
 <p>Shell programming is ... </p>
 </article>
 <article class="article">
 <h2>Basic Course C</h2>
 <p>The compact introduction ... </p>
 </article>
 </main>
 <aside class="aside">
 <h3>About the author</h3>
 <p>Jurgen Wolf is ... </p>
 <p> ... </p>
 </aside>
 </div>
 <footer class="footer"> Footer - © 2023</footer>
 </div>
 </body>
</html>

Listing 13.4 /examples/chapter013/13_2_3/index.html

Without much effort, you’ve already created the layout for the mobile
version. The layout now extends to 100% of the layout viewport on
all devices. This mobile layout would also be used for (old) web
browsers that can’t do anything with media query layout breaks. At
this point, you’ll get the same layout on a tablet or desktop PC (see
Figure 13.12) as on smartphone (see Figure 13.13). On the desktop
computer, this single-column layout may not look spectacular, but it’s
clear, the content is rendered properly, and the website works.

Figure 13.12 The Basic Version without Media Queries on a Desktop Screen

Figure 13.13 The Basic Version on a Smartphone, Which Is What It Was Created For

13.2.4 Setting the Layout Break (Breakpoint)

Even though the basic version provides visitors with all the basic
functions of a website and the content gets displayed neatly, it’s
rather unusual to use this single-column layout for the tablet and
desktop version as well. For this reason, we now want to provide
another view of the layout, namely for tablets. With reference to our
example, this means the layout should have two columns. The
header, navigation, and footer can remain where they are. The main
content and the sidebar, on the other hand, will now be positioned
next to each other. Figure 13.14 shows the layout intended for a
tablet.

Figure 13.14 This Layout Is Intended for Tablets

First, you need to decide from which screen width onward you want
to set the first layout break (breakpoint). In the following example,
the breakpoint occurs at 640 pixels (= 40 em):
...
/* Tablet version from 640 pixels—640px / 16px/em = 40em */
@media screen and (min-width: 40em) {
 .header {
 padding: 1.5em;
 text-align: left;
 }
 .container {

 padding: 3rem 0;
 display: block;
 overflow: auto;
 }
 .content {
 display: block;
 float: left;
 width: 65%;
 padding: 0 1rem 0 2rem;
 }
 .aside {
 display: block;
 margin: 0 0 0 65%;
 width: 35%;
 padding: 0 2rem 0 2rem;
 border-top: none;
 }
 .nav-ul {
 padding: 0 2rem;
 overflow: hidden;
 }
 .nav-li {
 float: left;
 display: inline-block;
 border: none;
 width: auto;
 }
 .nav-li-a {
 padding: 0.7em 1.2rem;
 display: inline-block;
 }
}

Listing 13.5 /examples/chapter013/13_2_4/css/layout.css

To get the main content and sidebar next to each other here, we
provide the main content .content with a width of 65% and let the
sidebar .aside flow next to it for the remaining 35% thanks to
float:left; in .content. To prevent the other subsequent elements
from “flowing along,” we surround these two elements with a
container (.container) and resolve the flowing around of the
elements outside with overflow:auto; again. Here’s the
corresponding HTML part:
...
<div class="container">
 <main class="content">

 <article class="article">
 ...
 </article>
 ...
 </main>
 <aside class="aside">
 ...
 </aside>
</div>
...

Listing 13.6 /examples/chapter013/13_2_4/index.html

The layout break occurs from a viewport of 640 pixels onward. In
Figure 13.15 you can still see the layout on a viewport with less than
640 pixels on the left, whereas on the right, the layout break has
taken place because the screen width was more than 640 pixels.
This layout break will also be executed on smartphones if you switch
to landscape format and the width is more than 640 pixels in the
process.

Figure 13.15 Now the Basic Version Is Switched to the Next Layout Version from a
Screen Width of 640 Pixels

13.2.5 Adding More Layout Breaks

In our example, we could already be pretty happy with these two
versions—a mobile version for screens smaller than 640 pixels and a
second version for screens with a width of 640 pixels or more.
However, we still need to add two more breakpoints for a desktop
and an extra-wide desktop because on wider screens, the text lines
of the main content would otherwise become much too long. To fill
the space for a larger viewport, the navigation should now be added
as a third column, so that it gets positioned to the left of the main
content, while the sidebar is to the right of it. We’ll leave the header
and footer as they are. The design for desktop screen layout can be
found in Figure 13.16.

Figure 13.16 To Be Used for the Layout of Desktop Screens

We define the next layout break for screens with a wider viewport
than 1,024 pixels (64 em). Here is the corresponding CSS code:
...
/* Screens from 1024 pixels—1024px / 16px/em = 64em */
@media screen and (min-width: 64em) {
 .container {
 width: 85%;
 padding: 0;
 margin-left: 15%;
 }
 .content {
 width: 70%;
 padding: 1em 1.5em;

 }
 .aside {
 width: 30%;
 padding: 1em 1.5em;
 margin: 0 0 0 70%;
 }
 .nav-ul {
 width: 15%;
 float: left;
 margin: 1em 0;
 padding:0;
 }
 .nav-li {
 width: 100%;
 float: none;
 text-align: center;
 }
 .nav-li-a {
 padding: 0.5em 3rem;
 display: block;
 }
}

Listing 13.7 /examples/chapter013/13_2_5/css/layout.css

For the .container with the main content .content and the sidebar
.aside, 85% of the window width has been reserved now. Of this
85% within .container, the main content (.content) shares this
space with 70% and the sidebar .aside with 30%. The remaining
15% space is reserved for the navigation (.nav). For this purpose,
space was left free for the container .container with margin-left.
Due to float:left; at .nav, the container .container with its main
content and sidebar is placed to the right of it. The HTML document
with the corresponding passages is also shown in Listing 13.8 to
illustrate what has just been described:
...
<nav>
 <ul class="nav-ul">
 <li class="nav-li">Homepage
 ...

</nav>
<div class="container">
 <main class="content">
 <article class="article">

 ...
 </article>
 ...
 </main>
 <aside class="aside">
 ...
 </aside>
</div>
...

Listing 13.8 /examples/chapter013/13_2_5/index.html

In Figure 13.17, you can see the layout for the desktop starting at a
viewport width of 1,024 pixels during execution.

Figure 13.17 The Layout for the Desktop Version from a Viewport of 1,024 Pixels Wide

You should now define another breakpoint here for extra-large
screens because, otherwise, the lines there will again become too
long. Here, you can either decide that the complete layout must not
extend further beyond a certain screen width, or you can split the
articles of the main content. In the example, I’ve created a final
breakpoint for a screen width of 1,280 pixels (80 em) or wider, which
offers both solutions just mentioned. The .wrapper sets the max-width
feature to 1,280 pixels when the width exceeds 1,280 pixels so that
the website can’t expand any further. Furthermore, I reduced the
.article articles to 50% and arranged them next to each other via
float:left;. However, you can also use the .wrapper or .article

class alone for this example. Here’s the corresponding CSS code for
the last breakpoint:
...
/* Large screens (>1280 pixels)—1280px / 16px/em = 80em */
@media screen and (min-width: 80em) {
 .wrapper {
 margin: 0 auto;
 max-width: 80em;
 }
 .article {
 display: block;
 width: 50%;
 float:left;
 padding: 0 1rem 0 1rem;
 }
 .clear { clear: both; }
}

Listing 13.9 /examples/chapter013/13_2_5/css/layout.css

You can see the result with an extra-wide viewport from 1,280 pixels
in Figure 13.18.

Figure 13.18 This Layout Is for extra-Large Screens of 1,280 Pixels or Wider

The example created in this way now flexibly adapts to visitors’
devices thanks to the layout breaks with the media queries. You now
have used an easy method to create a simple version for
smartphones, a version for tablets, and another version for desktop
PCs.

Figure 13.19 Multiple Layout Breaks for Different Screen Resolutions Thanks to Media
Queries

13.2.6 Customizing the Main Content

Once you’ve created the responsive design, you can get to working
on the details. In the example, we still want to keep an eye on the
main content with the articles when the desktop width is extra large.
If, for example, an article on the left-hand side is longer than usual,
and you haven’t taken any precautions, the article after the next one
can’t slide to the left and remains attached to the overlong article.
Figure 13.20 shows such a case.

Figure 13.20 For Clarity, I’ve Highlighted the Articles with a Frame

In the /examples/chapter013/13_2_5/css/layout.css example, I wrote
a .clear class with clear:both; at the end for this. You only need to
add this class to the corresponding article as follows:

...
<article class="article clear">
 ...
</article>
...

Listing 13.10 /examples/chapter013/13_2_5/index.html

This solves the problem shown in Figure 13.20, and the “sticking”
article can “slide” back down, but this procedure is still quite tedious
when you change the website and add new articles. Instead, it
makes more sense to write a class for a row with articles that you
can use with <div class="row"> and that automatically includes a
clear:both; at the end of the line. In practice, you could implement
this as follows:
...
<main class="content">
 <div class="row">
 <article class="article">
 ...
 </article>
 <article class="article">
 ...
 </article>
 </div>
 <div class="row">
 <article class="article">
 ...
 </article>
 <article class="article">
 ...
 </article>
 </div>
</main>
...

Listing 13.11 /examples/chapter013/13_2_6/index.html

You’ve practically already defined the .row class for this at the layout
break of 1,280 pixels with the designation .clear. It makes sense
that it should be called .row here now. Here’s the CSS code for it:
...
@media screen and (min-width: 80em) {

 .wrapper {
 margin: 0 auto;
 max-width: 80em;
 }
 .article {
 display: block;
 width: 50%;
 float:left;
 padding: 0 1rem 0 1rem;
 }
 .row { clear: both; }
}

Listing 13.12 /examples/chapter013/13_2_6/css/layout.css

13.3 Even More Flexible Elements
With the fluid responsive layout you created on the previous pages,
the development of a responsive website is far from being complete.
The important topics that haven’t been considered yet are
typography, flexible image elements, and mobile navigation. This will
be briefly described here, so that you at least know what’s important
and what else you should consider.

13.3.1 Use Relative Font Sizes instead of Pixels

Text design is a very important topic in web design and is therefore
also covered separately in Chapter 14, Section 14.1. Nevertheless, I
want to make a few remarks about it at this point. As with the media
queries layout breaks, you should always use relative specifications
instead of pixels for the font sizes. When zooming an entire page
(page zoom), most web browsers have no problems if the
specifications are made in pixels or relative units.

Even on screens with a higher pixel density, fonts that are specified
with pixels are displayed relatively small. Although users could again
zoom in afterwards, a website should be rendered legibly right after
loading. For this reason, you should avoid font specifications in
pixels and use relative specifications such as em, rem, or percent.

Figure 13.21 If the Font Size Is Wrong, the Best Responsive Layout Is Useless

13.3.2 Making Images Responsive

If you’re going to add images to the responsive layout, you’ll also
want to make them responsive and not leave them rigid in width. In
Figure 13.22, you can see what happens with rigid images when the
screen becomes narrower.

Figure 13.22 Flowing around the Text When the Image Size Is Rigid Can Cause the Text
to Slip Away at the Bottom, and/or Individual Words Can Be Left at the Top If There Isn’t
Enough Space

Here, a few words may get stuck next to the image or slip away to
the bottom, which is a normal behavior of float, but not very
attractive. You can avoid this text wrapping by setting the maximum

width of the image accordingly as a percentage using the CSS
feature max-width, which allows you to define the maximum width of
an element. In the example, the image should be allowed to absorb
40% in the article element. The same should apply to the author
image in the aside element. For this purpose, I’ve extended the basic
version with the class selectors .img-art and .img-side:
...
.img-art {
 float: left;
 margin: 0 1em 0.2em 0;
 max-width: 40%;
 height: auto;
}
.img-side {
 float: left;
 margin: 0.1em 1em 0.2em 0.2em;
 max-width: 40%;
 height: auto;
}
...

Listing 13.13 /examples/chapter013/13_3_2/css/layout.css

In Figure 13.23, the images in the article and sidebar now adjust by
40% to the article width and the sidebar, respectively. Because these
selectors were written in the base version, these features apply to all
layout widths. In Figure 13.24, you can see the layout for extra-wide
desktops, and, in Figure 13.25, you can see the smartphone version.
Of course, there’s nothing that speaks against setting a separate
width for the images for each layout break by using max-width.

Figure 13.23 The Image Size Now Also Adapts to the Screen Width and Is Displayed
Relative to the <article> or <aside> Element in the Corresponding Size (here, 40%)

Figure 13.24 The 40% Image Width with an Extra-Wide Desktop

Figure 13.25 Responsive Images Also Pay Off on a Smartphone

In addition to using max-width for the width, you can use height to
specify the height. Here, I’ve set height to auto so that the web
browser automatically adjusts the height in proportion to the width.

You can simply add the classes in the HTML document as usual to
the tags of those images that should be responsive:
...
<div class="container">
 <main class="content">
 <article class="article">
 <h2>LR Classic and PS</h2>
 <p>... </p>
 </article>
 ...
 </main>
 <aside class="aside">
 <h3>About the author</h3>
 <p> ... </p>
 </aside>
</div>
...

Listing 13.14 /examples/chapter013/13_3_2/index.html

13.3.3 Flexible Images in Maximum Possible Width

If you want images to always stretch across the full width regardless
of the device and still leave them responsive, you can set max-width
to 100%. In that case, it depends on where you place these images
to make them responsive. As a matter of fact, setting max-width to
100% also means that an image won’t respond until the column in
which it has been defined is smaller than the image. This means that
an image with a width of 300 pixels doesn’t become responsive until
the width where it’s used is less than 300 pixels. So, setting an
image with max-width to 100% depends on the context in which the
image is used. Here’s an example where you insert a graphic with a
size of 1,280 × 150 pixels with into the header element of the
HTML document:
...
<header class="header">

</header>
...

Without any further preparations, the image would be displayed in
full size; on screens smaller than 1,280 pixels, the logo would be cut
off on the right, and a horizontal scroll bar would be displayed in the
browser, as in Figure 13.26.

Figure 13.26 If the Browser Width Is Too Small, the Image Gets Cut Off and a Horizontal
Scroll Bar Appears

Figure 13.27 Things Don’t Look Much Better in the Mobile Version

In this example, you can use CSS and max-width: 100% to respond
as follows:
...
.img-logo {
 max-width: 100%;

 height: auto;
}
...

Listing 13.15 /examples/chapter013/13_3/css/layout.css

You merely need to add the class to the img element:
<header class="header">

</header>

Listing 13.16 /examples/chapter013/13_3/index.html

In Figure 13.28, you can see how the image in the <header>
responds to the appropriate screen width and is made flexible.

Figure 13.28 The Width for the Image in the <header> Adjusts for Tablets (Left) and the
Width for the Image in the <header> Also Adjusts for Smartphones (Right)

Responsive Videos: <video>

Everything you can do with images, you can also do with videos
that you’ve integrated via <video> using the same CSS
instructions.

13.3.4 Hiding Images Entirely

If you look at Figure 13.28 with the logo in the header, it already
looks relatively small and lost in the header. I would completely omit
the logo in the header in this example for the smartphone version. To
remove it from the smartphone version, that is, the basic version,
you need to set display to none:
...
.img-logo {
 display: none;
}
...

Listing 13.17 /examples/chapter013/13_3_4/css/layout.css

Accordingly, for the other layout breaks, you should make the header
visible again via display:block and set max-width to 100%:
...
.img-logo {
 display: block;
 max-width: 100%;
 height: auto;
}
...

Listing 13.18 /examples/chapter013/13_3_4/css/layout.css

13.3.5 Loading the Right Image for the Screen Width:
<picture>

You now know how to make images responsive with max-width. The
disadvantage of this method is that small displays often load files
that are too large, which unnecessarily slows down performance and
increases the amount of data transfer. Furthermore, on small
displays, the images have to be scaled down again, which impacts
the image quality. High-resolution displays aren’t taken into
consideration at all. If you’ve read the book from the beginning, you

already know an alternative solution. In Chapter 6, Section 6.3, you
already learned how to specify alternate image sources for different
viewports using the HTML elements <picture> and <source> and
media queries with the media attribute.

The picture element is an HTML element that serves as a container
element for multiple image sources. You can specify the individual
image sources using the source element. In the following example,
we want to load an image source in the first article for the book cover
that matches the display. To distinguish when which image gets
loaded, I’ve added appropriate text to the graphics. High-resolution
displays are taken into account right away.
...
<header class="header">
<picture class="img-logo">
 <source media="(min-width: 1023px)"
 srcset="graphics/logo-desktop.jpg 1x,graphics/logo-desktop-HD.jpg 2x">
 <source media="(min-width: 639px)"
 srcset="graphics/logo-tablet.jpg 1x,graphics/logo-tablet-HD.jpg 2x">
 <source srcset="graphics/logo-smartphone.jpg 1x,graphics/logo-smartphone-HD.jpg
2x">
 <!-- Fallback for browsers that can't do <picture> -->

</picture>
</header>
...

Listing 13.19 /examples/chapter013/13_3_5/index.html

Between the HTML containers <picture> and </picture>, you can
use the source element to specify the individual image sources.
Depending on the media attribute, corresponding images will be
loaded. In the example, for displays with a width of 1,023 pixels and
above (min-width: 1023px), the logo-desktop.jpg image gets loaded
on ordinary displays with a single pixel density (1x). On the other
hand, logo-desktop-HD.jpg will be loaded for high-resolution displays
with double pixel density (2x).

For a screen width of less than 1,023 pixels, that is, from 1,022
pixels to 639 pixels (min-width:639px), either logo-tablet.jpg with
normal pixel density or logo-tablet-HD.jpg with double pixel density is
loaded as the image source. These image sources are intended for
tablets or smaller screens. If the display width is smaller than 638
pixels, the image source logo-smartphone.jpg or logo-smartphone-
HD.jpg (depending on the pixel density) for smartphones will be
loaded. For web browsers that aren’t able to process the picture
element, an alternative image source is specified in the img element
(here, logo.jpg), which is used instead.

Figure 13.29 The Logo for the Desktop Version from 1,023 Pixels Onwards Was Loaded

Figure 13.30 From a Display Width of 1,022 to 639 Pixels, a Smaller Image (Tablet) Is
Used for the Logo, and Below 639 Pixels, the Smallest Version (Smartphone) Is Used

13.3.6 Using Area-Covering Images

If you insert background images with background-image, you can
adjust the height and width using the CSS feature background-size.
For example, you can use the following:
...
.img-background {
 background-size: 100% 100%;
 background-image: url("../graphics/background.jpg");
 background-repeat: no-repeat;
}
...

This way, the background image always fills the corresponding
HTML element in which you use the class. You can also define an
image as a background image in the body element for the entire
HTML document. The first value represents the width, and the
second value represents the height. Depending on the HTML
element in which the image is used as a background, it will often be
distorted, as you can see in the comparison between the desktop
version in Figure 13.31 and the tablet version in Figure 13.32 with a
square 500 × 500 pixel background image in an article element.

Figure 13.31 The Distortion on a Desktop Screen with “background-size: 100% 100%;” Is
Still Acceptable Here

Figure 13.32 The Same Is Not True with a Smaller Screen Width: The Background
Image of the First Article Is Already Distorted Significantly and Doesn’t Look Nice Anymore

If you want the image to always be stretched by 100% in width and
proportionally adjusted in height, you can set the second value of
background-size to auto so that the height will be adjusted to the
aspect ratio, and the image no longer gets stretched out of
proportion:
...
background-size: 100% auto;
...

Now the image is only stretched in width, and the height is
automatically adjusted proportionally to it. When the HTML element
narrows, the height value is greater than the width, and you have
background-repeat set to no-repeat, a border without transitions will
become visible at the bottom.

In Figure 13.33, you can see this unsightly effect with the first article:
the background image is adjusted proportionally to the width, but in
portrait mode, either the image is repeated or, if the repetition has
been deactivated as in the example, the color of the background
appears (here, a white border). In this example, it’s not that dramatic
because part of the background image was white anyway, but still, it
doesn’t look quite right. Although this makes the tablet version look

better again, you’ll get a similar result as in Figure 13.33 on smaller
smartphones.

Figure 13.33 A White Border Remains at the Bottom of the First <article> Element

Calculating and adjusting with relative and absolute values with
background-size rarely leads to an ideal responsive solution. What
can help in this context are the two keywords contain and cover,
which you can assign to the CSS feature background-size.

When you use background-size: contain;, the background image
will always be displayed in its entirety. This “growing along” and
“shrinking” occurs proportionally. Because the image is always
visible, depending on the ratio of width and height, the background
image will never fill the entire area of the screen.

The value of cover, on the other hand, is different. This value makes
sure that the image is always displayed on the complete screen as
far as possible. If the aspect ratio is different, the image will be
cropped and not displayed completely. Let's look at the following
solution for our example:
...
background-size: cover;
...

This seems to provide the best result, as you can see in
Figure 13.34: The cover value was supposed to show the complete

background image if possible. If it doesn’t fit, it’s not distorted,
repeated, or truncated, but “clipped.”

Figure 13.34 You Can Always Use “background-size: cover” to Try and Show the Entire
Background Image If Possible

13.4 CSS Grid Layout
In the example you created in Section 13.2, it takes considerable
effort to implement a more complex layout or redesign it. Of course,
it’s also possible to do it this way, but you often can’t just move an
element up, down, right, or left without a lot of effort.

For this purpose, grid layouts are the ideal solution. Whereas
previously, you often created your own grid layout manually, CSS
provides real design grids via CSS grid layouts, which you’ll get to
know a bit better on the following pages. To avoid having to create a
completely new project, we’re going to rewrite the known example
from the previous sections for the grid layout. The complete example
can be found in /examples/chapter013/13_4/css/layout.css; the
HTML document for it is located in
/examples/chapter013/13_4/index.html.

13.4.1 Creating a Grid for the Content

The principle of a CSS grid is based on the fact that you create a
grid in a parent element, as you already know from responsive
layout, and position the child elements in it. To do that, you must
assign the grid value to the CSS feature display in the parent
element and then use the features grid-template-columns and grid-
template-rows to define the individual grid lines. Let’s take a look at
the following simple example:
.grid {
 display: grid;
 grid-template-rows: 150px auto auto 100px;
 grid-template-columns: 20% 20% 20% 20% 20%;
}

This would create a CSS grid with four rows and five columns. The
first row is 150 pixels high, while the last one is 100 pixels high. The
two middle rows are still adjusted according to the content using
auto. All five columns are also 20% wide. Besides the units in
percent or pixels, you can also use em or fr (e.g., 1fr or 2fr). The fr
unit stands for a flexible fragment (fraction), which you can think of
as the percentage of space left. Figure 13.35 shows the created
CSS grid layout.

Figure 13.35 A Grid Layout with “display:grid;” Can Be Created Quickly

Because the responsive layout from Section 13.2 has been revised
here and will be used for the grid layout, the grid created in
Figure 13.35 is a bit too narrow. Because five columns have been
defined with 20%, you can thus divide the content of the HTML
elements into areas of 20%, 40%, 60%, 80%, and 100%. For the
example, we want to divide the grid a bit finer in 10% steps and
therefore use the following grid layout:
...
.grid {
 display: grid;
 grid-template-rows: 150px auto auto auto 100px;
 grid-template-columns: repeat(10, 10%);
}
...

Listing 13.20 /examples/chapter013/13_4/css/layout.css

The grid gets defined here even before the first layout breaks occur
in the basic version. This way, you can define a grid layout with 5
rows and 10 columns. For the header and footer, we define a height
of 150 and 100 pixels, respectively. The three lines in between get
adjusted according to the content via auto. To avoid having to write
10% 10 times, the repeat() function was used here. The first value of
the function represents the number of repetitions of the second value
—here: 10 times 10%. Instead of the repeat() function, you could
have written the following:
...
.grid {
 display: grid;
 grid-template-rows: 150px auto auto auto 100px;
 grid-template-columns: 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%;
}
...

This sets a grid layout like the one shown in Figure 13.36.

Figure 13.36 The Grid Layout for the Example

To use the grid layout with the .grid class selector, you must use it in
the HTML document in the parent element whose child elements are
positioned in this grid. In the example, we do this right after the body
element and use a div element for it:
...
 <body>
 <div class="grid">
 <header class="header">...</header>
 <nav class="nav">...</nav>
 <main class="content">...</main>
 <aside class="aside">...</aside>
 <footer class="footer">... </footer>
 </div>
 </body>
...

Listing 13.21 /examples/chapter013/13_4/index.html

Inside the parent element div with the grid class, you can now
position the child elements <header>, <nav>, <main>, <aside>, and
<footer> in the grid cells shown in Figure 13.36.

13.4.2 Placing Elements in the Grid

Once you’ve specified the grid layout, you can easily specify where
you want to place the HTML elements in the grid using the CSS
features grid-row-start and grid-row-end or grid-column-start and
grid-column-end. When you take a look at the grid layout in
Figure 13.36, the values for grid-column-start and grid-column-end
range from 1 (0%) to 11 (100%), and the values for grid-row-start
and grid-row-end can be defined as 1 to 6. Thus, to make the
header in the first line extend to the full width, you need to write the
following:
...
.header {
 grid-column-start:1;
 grid-column-end:11;
 grid-row-start:1;

 grid-row-end:2;
 text-align: right;
 background-color: #07889b; /* Teal */
 color: #efefef; /* Neutral */
 border-bottom: 1px solid #efefef;
}
...

Figure 13.37 shows the result of these lines.

Figure 13.37 The <header> Element Was Added to the Grid Layout

This way, you can now define the start and end points of the other
HTML elements in the grid layout for the basic version:
...
.nav {
 grid-column-start:1;
 grid-column-end:11;
 grid-row-start:2;
 grid-row-end:3;
}
.content {
 grid-column-start:1;
 grid-column-end:11;
 grid-row-start:3;
 grid-row-end:4;
}
.aside {
 grid-column-start:1;
 grid-column-end:11;
 grid-row-start:4;

 grid-row-end:5;
}
.footer {
 grid-column-start:1;
 grid-column-end:11;
 grid-row-start:5;
 grid-row-end:6;
}
...

The result of our basic version in Figure 13.38 is now exactly the
same as the mobile version you’ve already created in the responsive
layout in Section 13.2.3.

Figure 13.38 The Basic Mobile Version for Our Layout with CSS Grid

Using Shorter Notations for Placing Elements in the Grid

For the grid-column-start and grid-column-end functions, you can
use the short notation grid-column, or instead of grid-row-start and
grid-row-end, you can use the version grid-row. Applied to the
example shown earlier with the nav element, you could therefore also
write the following:
...
.nav {

 grid-column: 1 / 11;
 grid-row: 2 / 3;
}
...

This version corresponds to the following notation:
...
.nav {
 grid-column-start:1;
 grid-column-end:11;
 grid-row-start:2;
 grid-row-end:3;
}
...

It even gets shorter if you use the grid-area feature. The order of the
start and end points is as follows:
grid-area: row-start / column-start / row-end / column-end;

Thus, you could also use the following third notation for positioning
the nav element, for example:
...
.nav {
 grid-area: 2 / 1 / 3 / 11;
}
...

Placing Elements in the Next Layout Break

Starting from the basic mobile layout version, little work is now
needed to respond with appropriate properties at the next layout
break for the tablet version:
...
@media screen and (min-width: 40em) {
 .content {
 grid-column: 1 / 8;
 grid-row: 3 / 4;
 }
 .aside {
 grid-column: 8 / 11;
 grid-row: 3 / 4;
 }

...
}
...

With regard to our grid, you’ve created the layout that had been
created in Figure 13.39 for the tablet version. You can see the
example in use in Figure 13.40.

Figure 13.39 The Layout for the Tablet Version with CSS Grid

Figure 13.40 The Tablet Version Was Created Using a CSS Grid

Finally, another version is to be created for the desktop version:

...
@media screen and (min-width: 64em) {
 .content {
 grid-column: 3 / 8;
 grid-row: 2 / 4;
 }
 .aside {
 grid-column: 8 / 11;
 grid-row: 2 / 4;
 }
 .nav {
 grid-column: 1 / 3;
 grid-row: 2 / 4;
 }
...
}

This way, you’ve allocated 20% space in width for the navigation,
50% for the main content, and 30% for the sidebar. This results in
the layout of the HTML elements in the grid shown in Figure 13.41.

Figure 13.41 The Desktop Version with the CSS Grid

Figure 13.42 The Desktop Version with the CSS Grid in Use

13.4.3 Layout Changes Made Easy

Thanks to the simplicity of positioning the elements completely freely
in the grid, it now becomes a breeze to redesign the layout. To do
that, you only need to adjust the positions of the rows and columns
in the grid for the HTML elements. For example, if you want to
change the desktop version so that the sidebar is on the left and the
navigation is on the right, you can simply change the values for grid-
column in our example as follows:
@media screen and (min-width: 64em) {
 .content {
 grid-column: 3 / 8;
 grid-row: 2 / 4;
 }
 .aside {
 grid-column: 8 / 11;
 grid-row: 2 / 4;
 }
 .nav {
 grid-column: 1 / 3;
 grid-row: 2 / 4;
 }
...
}

Figure 13.43 A Layout Change with a CSS Grid Can Be Done in a Few Seconds

13.4.4 Spacing between Grid Lines

If you want to add spaces between the columns or rows of a grid,
you can do this in the parent element via the grid-column-gap or
grid-row-gap commands or the short notation, grid-gap. The
distances are only created between the columns. No space is added
at the beginning and end of the column or row. Here’s an example:
.grid {
 display: grid;
 grid-template-rows: 150px auto auto auto 100px;
 grid-template-columns: repeat(10, 10%);
 grid-row-gap: 15px;
 grid-column-gap: 10px;
 /* or as short notation: grid-gap: 15px 10px; */
}

Aligning Elements in the CSS Grid

You can also specify the horizontal and vertical alignment of the
elements in the parent element using the CSS features align-
items for vertical behavior and justify-items for horizontal
behavior. The values start, end, stretch, and center are available
for that. For an individual alignment of a single grid cell, on the
other hand, you can use align-self and justify-self. The values
start, end, stretch, and center are also available here.

Figure 13.44 Adding Spacing between the Columns of a CSS Grid

13.4.5 Checking the Grid in the Web Browser

CSS grids are also worth taking a look in the developer tools (e.g.,
with (Ctrl)+(Shift)+(I)) of the web browser, which usually makes
them visible when you select the corresponding HTML element used
as a container for the grid. This visual view is very helpful when you
look for errors or check the grid layout.

Figure 13.45 The Grid Is Also Displayed in the Developer Tools of the Web Browser

13.5 Changing the Behavior of HTML
Elements Using “display”
You’ve used the CSS feature display many times in the examples,
so we’ll dedicate a few more paragraphs to it for a brief description.
As you’ve seen several times by now, you can use the CSS feature
display to change the behavior of an HTML element when it displays
in the web browser. For each HTML element, a box is specified that
describes the behavior of the element. Even simple HTML elements
inside a text line such as or <a> are boxes, and you can change
their default behavior via display. This has already been described
in greater detail.

You can change the behavior of an HTML element such as <p> by
using display: inline; which will no longer executes a line break or
paragraph break. Conversely, you can change the behavior of an
element such as <a> by using display: block; so that it performs a
line break or paragraph break. In addition to the common use of
display: block; and display: inline;, display: none; can also be
used; this way, you can hide an element so that it no longer takes up
any space in the HTML document.

13.5.1 “display: block”, “display: inline”, and “display:
inline-block”

display: block; allows you to display an element as a block that
contains a line break. This feature is often used in combination with
display: inline;, for example, elements for navigation are displayed
either with display: block; with a line break between them, or with

display: inline; in the same line without a line break from left to
right.

For demonstration purposes, the following CSS features will be
applied to several p elements in the HTML document:
p {
 display: block; /* Not necessary here, since <p> is display:block anyway */
 width: 150px;
 border: 1px solid black;
 background-color: white;
 padding: 1em;
}

Listing 13.22 /examples/chapter013/13_5_1/index.html

You could do without display: block; in this case because the p
element is a block element anyway. These lines of CSS are now to
be applied to four paragraph texts with the p element. An example of
this is shown in Figure 13.47.

The next example is to use display: inline; instead of display:
block;:
p {
 display: inline;
 width: 150px;
 border: 1px solid black;
 background-color: white;
 padding: 1em;
}

Listing 13.23 /examples/chapter013/13_5_1/index2.html

Figure 13.46 The Behavior You Know from the <p> Element

In Figure 13.47, you can already see that due to display: inline;,
the specification of width was ignored and has no effect here.
Although you can specify inner and outer spacing and borders as
usual, these specifications also have no effect on the line height.
Thus, an inline box absorbs only the width the content requires. In
Figure 13.48, you can see that an inline box can also extend across
multiple lines, which isn’t very nice to look at in this case.

Figure 13.47 The Behavior of the <p> Elements Was Set to “display: inline;”

Figure 13.48 “inline” Boxes Can Also Extend across Multiple Lines

Let’s now use the same example with inline block:

p {
 display: inline-block;
 width: 150px;
 border: 1px solid black;
 background-color: white;
 padding: 1em;
}

Listing 13.24 /examples/chapter013/13_5_1/index3.html

An inline-block box initially behaves like an inline box and runs
across one line (see Figure 13.49). Unlike the inline box, however,
an inline-block box doesn’t continue in the next line but is moved to
the next line, similar to float, when the box no longer fits in the
screen width, as you can see in Figure 13.50. Unlike inline boxes,
what’s also taken into account for inline-block boxes is the width
that you specify via width.

Figure 13.49 Here, I’ve Set the Behavior of the <p> Elements to “display:inline-block;”

Figure 13.50 An “inline-block” Box Can’t Be Split across Multiple Lines

13.5.2 Hiding Elements Using “display:none”

display: none; allows you to easily hide elements so that they are no
longer visible in the document. The web browser doesn’t create a

box for such elements, and all positioning statements are ignored.
Besides display: none;, you can also hide elements using
visibility: hidden;. Unlike display: none;, however, the box gets
preserved, and the element retains its effects on subsequent
elements. visibility: hidden; allows you to make the element
completely transparent.

13.5.3 Further Values for “display”

There are a few more values you can use to change the behavior of
elements with display. With display: flex;, you have an alternative
model for positioning elements in rows and columns. display: grid;,
on the other hand, is even more flexible and allows you to create a
more complex layout grid in which you can place any element you
want. I’ve already described flex and grid.

Another way to change the behavior of elements with display is
table and other table-* features. This allows you to arrange
elements as you would in a table and, in practice, theoretically create
a layout for a website. But there’s a much better alternative for that:
CSS-Grid (display:grid), which enables you to create a responsive
layout with only a few CSS rules.

Another value to mention here is list-item, which you can use to
represent the item as a list. It creates two boxes for one element.
One box is used for the list item and the other box for the list
element.

There are yet other values available for display, but those are used
rather rarely or were either not implemented properly or never. An
overview of the available display values can be found at
https://developer.mozilla.org/de/docs/Web/CSS/display.

https://developer.mozilla.org/de/docs/Web/CSS/display

13.6 Calculations Using CSS and the
“calc()” Function
Sometimes, it can be useful to have the individual specifications
calculated and displayed depending on the media feature. In CSS,
you can use the calc() function for this purpose, which allows you to
perform the basic arithmetic operations, addition (+), subtraction (-),
multiplication (*), and division (/). When doing that, you can also mix
units and, for example, multiply pixels by a percentage. It’s also
important to know that the plus and minus must be preceded and
followed by a space, which isn’t necessary for multiplication and
division operations.

To demonstrate the use of calc(), we’ll create a simple layout grid
with eight sections. In the standard version for screens larger than
640 pixels, four sections are to be distributed in a row (4 × 2). For
screens that are less than 640 pixels wide, a layout break is
supposed to be applied, with only two columns per row (2 × 4). At
each layout break the number of columns is recalculated to fit the
width. For this purpose, the .column class is used in the following
example. If the screen width is less than 480 pixels, one column per
line will be used (1 × 8). However, the example is only intended to
demonstrate calc() in practice, and should in no way be taken as a
recommendation for creating layouts. Flexboxes and CSS grids are
a much better solution for that. Here’s the corresponding example:
...
.column {
 float: left;
 padding: 10px;
 width: 90%; /* For browsers without calc() support */
 width: calc(100% / 4);
}

@media screen and (max-width: 40em) {
 .column {
 width: calc(100% / 2);
 }
}

@media screen and (max-width: 30em) {
 .column {
 width: 100%;
 }
}

Listing 13.25 /examples/chapter013/13_6/css/layout.css

The corresponding HTML code looks like the following:
...
<section class="column">…</section>
<section class="column">…</section>
<section class="column">…</section>
<section class="column">…</section>
<section class="column">…</section>
<section class="column">…</section>
<section class="column">…</section>
<section class="column">…</section>
...

Listing 13.26 /examples/chapter013/13_6/index.html

In the following figures, you can see how calc() is used to calculate
a new layout grid at each layout break. Only the .column class is
used here.

Figure 13.51 A Four-Column Layout with “width: calc(100% / 4);” for a Viewport of More
Than 640 Pixels

Figure 13.52 A Two-Column Layout with “width: calc(100% / 2);” for a Viewport of Less
Than 640 Pixels (Left) and a Single-Column Layout with “width: 100%;” for the Viewport of
Less Than 480 Pixels (Right)

Of course, the areas of application for calc() go far beyond this
example. For instance, it can also be used for absolute positioning
on the screen or automatic adjustment of individual elements within
the parent element. You can even calculate a flexible adjustment of
the font size using calc().

13.7 Summary
Although I’d like to provide even more detail on the topic of
responsive layout using CSS, this book isn’t a pure CSS manual or a
book on responsive web design. But you now know the basics about
responsive web design and are familiar with media queries. You also
know useful building blocks that enable you to get creative and
design simple layouts.

A few words about the examples in this chapter, which you should
understand as simple suggestions only. The possibilities of creating
layouts with CSS are extremely diverse and in practice often more
elaborate. But that’s the beauty of web development: you can be
creative and create something unique yourself. To create something
special, you need to gain experience, try as much as possible, and
work your way up step by step. There’s seldom a silver bullet along
the lines of “Do it this way, and it will be perfect!” because it all
depends on the needs (and also the knowledge) of each individual
and, of course, on what you want to create.

In addition, over the years, the technique of how to create CSS
layouts changes. Until recently, only the float feature was used for
layouts, but now, thanks to broad browser support, the CSS grid
layout and the flexbox are finally gaining more and more acceptance
as the current standard for layout creation. I still demonstrated the
float feature here for introducing and creating a layout, and later
showed you with the CSS grid layout how much easier it is to create
and especially rearrange a layout with it.

14 Styling with CSS

Welcome to the pleasure dome! Now that you’ve familiarized
yourself with the important basics of CSS, such as selectors,
the box model, positioning, and layout, you can turn your
attention in this chapter to things such as website design—
or, more simply—the CSS elements you can use to make
websites more beautiful.

This chapter covers other ways to make websites more beautiful or
readable that haven’t been described up to now. The main focus is
clearly on working with text at first, as text is usually the most
important thing on most websites. In addition, you may want to
design elements such as lists or tables with CSS. Likewise, I’ll briefly
describe the design of images and graphics with CSS. You’ll also
learn newer options such as moving and rotating or animating
elements using CSS. At the end of the chapter, I’ll briefly describe
how you can design HTML forms.

The following topics are covered in this chapter:

Designing texts with CSS

Styling ordered and unordered lists with CSS

Making tables more beautiful with CSS

Designing graphics and images with CSS

Transforming HTML elements with CSS

Creating smooth transitions with CSS

Styling HTML forms with CSS

14.1 Designing Texts with CSS
The purpose of most websites on the internet is to convey
information. Usually, the flow of information on websites consists of
text, images, and videos. The most important type of information flow
on the web is text. CSS provides an impressive amount of CSS
features for this purpose, which you can use to design or customize
texts for websites. I’ll describe these CSS features in more detail in
the following sections.

14.1.1 Selecting Fonts via “font-family”

You can use the CSS feature font-family to select the font for the
text within an element. As the value for this CSS feature, you can
pass the name of the font you want to use to format the text within
the HTML element, for example:
body { font-family: Arial; }

This sets the font between <body> and </body> to Arial.

A prerequisite for the corresponding font to be used for display is
that it must be installed on the local system of a visitor to the
website. In the case of the Arial font, this is probably pretty much the
case. Nevertheless, you can specify several alternatives separated
by commas—called a font stack. Here’s an example:
body { font-family: Arial, Verdana, sans-serif; }

In this case, the Arial font is used between the HTML elements
<body> and </body>. If the visitor doesn’t have this font installed on
his system, the web browser can use Verdana as an alternate font. If
that font also isn’t available on their system, you instruct the web
browser to select any sans-serif font on the system and use it to
display the text.

The list can be as long as you want, and the web browser will use
the first font installed on the system. Fonts that contain a space in
their name must be specified between quotation marks (e.g.,
"Courier New").

If No Suitable Font Is Available

If no specified font from font-family is available on the system,
the default font of the web browser will be used.

Overview of Generic Fonts

To be on the safe side, it’s recommended to specify a generic font
(or font class) in a list of different fonts at the end. There are five
different generic fonts listed in Table 14.1. In Figure 14.1, you can
see the different font classes printed for better distinction.

Font
Class

Meaning Known
Examples

serif In serif fonts, you’ll find small fine
lines or tick marks at the end of the
letter stroke across the base
direction.

Times
Times New Roman
Georgia
Bookman

Font
Class

Meaning Known
Examples

sans-
serif

These are sans-serif fonts where
the end of the stroke is straight.

Arial
Verdana
Helvetica
Lucida

monospace These are fonts with a fixed width,
where all letters have the same
width.

Courier
Courier New
Andale Mono
Fixed

cursive The name is somewhat confusing
because these are fonts that are
meant to give the impression of a
cursive script.

Comic Sans MS
Florence
Parkavenue
Monotype Corsiva

fantasy These are often decorative
ornamental fonts that can be used
for creative purposes and are less
suitable for entire passages of text.

Impact
Haettenschweiler
Oldtown
Brushstroke

Table 14.1 Various Generic Font Classes

Figure 14.1 The Five Different Generic Fonts: “serif”, “sans-serif”, “monospace”,
“cursive”, and “fantasy”

Of course, you could simply specify just a generic font such as a
sans-serif:
body { font-family: sans-serif; }

However, it can’t be predicted with certainty which sans-serif font will
then be used to display text.

Inheritance of Fonts

Fonts are inherited by the subordinate elements as long as no
custom font has been written in the subordinate elements. Often,
therefore, a font is defined for <body> that applies to the entire
document, for example:
body { font-family: Arial, Verdana, Helvetica, sans-serif; }

In Figure 14.2, you can see an HTML document
/examples/chapter014/14_1_1/index. html without font-family for
the body element, while in Figure 14.3, there’s one with the CSS
feature font-family for the body element.

Figure 14.2 An HTML Document with the Default Font of the Web Browser

Figure 14.3 The Same Document Again, but Now with the CSS Feature “font-family”:
Sans-Serif Font (Here, Arial) Was Used

I’ve slightly extended this example for demonstration purposes:
...
body { font-family: Arial, Verdana, Helvetica, sans-serif; }
.footer, .header {
 background-color: papayawhip;
 border: 1px solid black;
 padding: 2% 2%;
 text-align: center;
 font-family: cursive;
}

.article { font-family: Georgia, Times, serif; }

...

Listing 14.1 /examples/chapter014/14_1/css/style.css

We first use the body type selector to specify a sans-serif font such
as Arial, Verdana, Helvetica, or even a generic font for the entire
document. This font is used as the default font if no other font is
specified for an element. Then, for the footer and header elements,
we let the system select a cursive type with the generic font class
cursive, so the result here will probably look different on different
computers. For the text in the article elements themselves, we use
a serif font such as Georgia, Times, or any other serif font available
on the system. The results are displayed in Figure 14.4.

Figure 14.4 Multiple Different Fonts in Use

Number of Different Fonts

In practice, you should keep the number of different fonts on a
web page rather low. Too many fonts won’t necessarily make a
website look better. A good guideline should be to use no more
than three or four fonts. However, this also depends on the type of
website.

Benefits and Drawbacks of “font-family”

The drawback of using font-family to select the font is that a font
must be installed on the visitor’s computer. So you’re quite limited
in the choice of fonts. Mostly common fonts such as Times, Times
New Roman, Georgia, Helvetica, Arial, or Verdana are used.

The use of font-family does have one advantage: you don’t have
to worry about font licenses because you don’t share the font.

Analyzing Fonts in Firefox

At this point, I’d like to discuss the Fonts tab, which you can find in
the Developer Tools in the Firefox web browser. In addition to the
default settings of the web browser, you can also use it to determine
the fonts of other websites if you particularly like one of them. You
can also make adjustments to the font size, line height, character
spacing, or stroke width here to see in the browser what it would look
like with different settings. The matching values will then be
displayed inline in the HTML element.

Figure 14.5 You Can Analyze and Change the Font Used on a Web Page in Firefox,
Which Makes the Effects Visible in the Browser Window

14.1.2 Providing Fonts via Web Fonts: “@font-face”

@font-face allows you to use fonts that aren’t installed on visitors’
computers. To do this, you just need to specify a path from where the
font can be downloaded.

To add fonts to a website using the @font-face rule, you need the
following:

font-family

Specify the name of the font. You can then pass this name as a
value for the font-family feature.

src

Set the path or link to the font file. You can also provide different
versions of the font.

format

Specify the file format in which the font is available.

Here’s a theoretical example of how you can include such a
downloadable font for a website:
@font-face {
 font-family: 'A font name';
 src: url('path/to/my/font.ttf') format('truetype');
}

Again, you can use these web fonts in CSS via the CSS feature
font-family:
body { font-family: 'A font name', Times, Georgia, serif; }

As a fallback solution, you can specify a list of alternate fonts if the
font (here, 'A font name') couldn’t be downloaded and used.

Longer Loading Time

Logically, adding additional resources to your website, as you did
here with the web fonts, also means that the loading time will
increase. In addition, you often have no control over fonts that are
hosted and made available on another server.

Different File Formats for Web Fonts

The different file formats for the fonts seem a bit exotic at first. Not
everyone is familiar with font file abbreviations such as EOT
(Embedded Open Type; format('eot')), WOFF (Web Open Font
Format; format('woff')), TTF (TrueType; format('truetype')), OTF

(Open Type; format('opentype')), and SVG (SVG Fonts;
format('svg')).

Meanwhile, the WOFF format standardized by the W3C seems to be
gaining more and more acceptance. WOFF is a compressed TIFF
format with additional information such as the origin or license of the
font and is supported by the latest web browsers. The oldest of the
formats, EOT, on the other hand, was used by the older Internet
Explorer up to version 8. Other older web browsers, on the other
hand, used the TTF or OTF formats. The SVG format is popular for
displaying on the iPhone or iPad, but it’s also used by Safari.
However, you can do without SVG now because iPhone and iPad
also support the WOFF format. To provide the widest possible
support for the downloadable font, you can provide the fonts in
multiple formats.

In practice, this is how you reach almost all web browsers to provide
a font in a particular file format:
@font-face {
 font-family: 'A font name';
 src: url('path/to/font.eot'); /*IE9*/
 src: url('path/to/font.eot#iefix') format('eot'), /*IE5-8*/
 url('path/to/font.woff') format('woff'),
 url('path/to/font.ttf') format('truetype'),
 url('path/to/font.svg#svgFN') format('svg');
}

This way, you can include different formats for different web
browsers. If a web browser doesn’t support a certain format, it
chooses the next possible font format. You could do without
TrueType and SVG altogether in this example nowadays. The first
EOT file is used for the old Internet Explorer 9. The hash (#), in turn,
is a browser switch for even older Internet Explorer versions prior to
version 9. At this point, the web browser in question stops reading.
All other web browsers, however, read their preferred font format.

Having Fonts Converted to Different Formats

When you’ve found a font that you want to use, you often don’t
have all the necessary formats such as EOT, WOFF, TTF, or SVG
ready. For this purpose, the Font Squirrel website
(www.fontsquirrel.com/tools/webfont-generator) offers a free
service: you can upload a font file and have it converted to all
other formats. Then you download the different formats, and the
CSS rule with @font-face is included in an extra CSS file.
However, after embedding web fonts, you should always test the
rendering quality in different web browsers because the quality
can differ significantly between web browsers when rendering.

In addition, you can use the font-style, font-weight, and font-
stretch features in the @font-face rule, which is very useful when
the font exists in different files, for example:
@font-face {
 font-family: 'A font name';
 src: url('path/to/my/font.eot');
 src: url('path/to/my/font.eot#iefix') format('eot'),
 url('path/to/my/font.woff') format('woff'),
 url('path/to/my/font.ttf') format('truetype'),
 url('path/to/my/font.svg#svgFN') format('svg');
}

@font-face {
 font-family: 'A font name';
 src: url('path/to/my/font-it.eot');
 src: url('path/to/my/font-it.eot#iefix') format('eot'),
 url('path/to/my/font-it.woff') format('woff'),
 url('path/to/my/font-it.ttf') format('truetype'),
 url('path/to/my/font-it.svg#svgFN') format('svg');
 font-style: italic;
}

This allows you to use the italic font for styling purposes in addition
to the regular version of the font, for example:
...
p { font-family: 'A font name', Times, Georgia, serif; }

http://www.fontsquirrel.com/tools/webfont-generator

.it { font-style: italic; }

...
<p>Regular version of the embedded font</p>
<p class="it">Cursive version of the embedded font</p>.
...

Embedding Royalty-Free Fonts by Google into the Website

The easiest way might be to use a font from Google Fonts and
embed it into the website. However, “easy” doesn’t mean it’s “not
complicated” but rather refers to ease of getting the necessary
licenses. If you use fonts from the web for a custom project, you
really need to be sure that you have the permission to do so from the
font’s developer. Even a “free” font doesn’t always mean that it’s free
for all purposes. You can find the fonts from Google Fonts listed at
https://fonts.google.com.

On the upper-left side of the Google Fonts website, you’ll see a
magnifying glass icon to search with some filters to find the font you
need. For the category (Categories), you select the type of font
(Serif, Sans Serif, Display, Handwriting, or Monospace). You can
filter out other properties using Font properties with the thickness or
font width. Then, you can select the desired fonts via the preview.

Once you’ve clicked on a font, you can specify the styles. Useful
styles are regular, italic, and bold. Click + Select this style to add a
font style. The selected styles will be displayed in the Review tab on
the right.

https://fonts.google.com/

Figure 14.6 Fonts on https://fonts.google.com

Figure 14.7 I’ve Chosen the Roboto Font with a Regular, Italic, and Bold Font Style

Once you’re done with the selection, take a look at the Review tab
on the right side where you’ll find the code to embed the font on your
website under the text Use on the web. You can choose between a
link element, an @import rule, or a JavaScript. Copy and paste the
code to your website.

Figure 14.8 A <link> Element or an “@import” Statement Enables You to Add the Code
to the Website via Copy and Paste

In the following example, the Roboto font from Google Fonts was
embedded and used via @import:
@import url('https://fonts.googleapis.com/css2?
family=Roboto:ital,wght@0,400;0,700;1,400&display=swap');
body {
 font-family: 'Roboto', sans-serif;
}
...

Listing 14.2 /examples/chapter014/14_1_2/css/style.css

You can see the result with the HTML document
/examples/chapter014/14_1_2/index. html in Figure 14.9.

Figure 14.9 Here, the Roboto Font from Google Fonts Was Downloaded and Embedded

Google Fonts and the GDPR

If you offer fonts from a Google server on your website, you may
feel insecure about the General Data Protection Regulation
(GDPR) because data gets transferred between your website
visitors and Google. If you want to be on the safe side, you can
also offer Google Fonts “locally” in your own web space. For this
purpose, you’ll find the google-webfonts-helper tool at
https://gwfh.mranftl.com/fonts to pack up and download the
appropriate font formats.

https://gwfh.mranftl.com/fonts

Other Royalty-Free and Commercial Web Font Providers

Not everyone likes Google’s fonts, and if you’re looking for a special
font, there are other font hosting services as well. Many of these
services offer free fonts for private use or even entirely royalty-free
fonts. Others offer a mix of free and commercial fonts, and then
there are fee-only services. Here’s a short list of different hosting
services for fonts:

www.fontsquirrel.com

http://fontlibrary.org

http://fontsforweb.com

www.fontspring.com

https://fonts.adobe.com

Note that in the services where you can download the corresponding
fonts, you usually receive a text file with the license in addition to the
font file. Be sure to read them so you know under what conditions
you may use the fonts. If you buy a font, you should make sure you
have the license to use it as a web font (not just for the desktop).

Pros and Cons of “@font-face”

The advantage of @font-face is certainly that it allows you to finally
use fonts that aren’t installed on the computers of your website
visitors. However, this font needs to be downloaded beforehand,
which might slow down the loading of the website a bit. In addition,
here you need to know the license of the font used and whether
the distribution of the font is allowed or not. If you want to be
absolutely sure in this regard, you need to either create your own
fonts or use @font-face via a free or commercial service. In that

http://www.fontsquirrel.com/
http://fontlibrary.org/
http://fontsforweb.com/
http://www.fontspring.com/
https://fonts.adobe.com/

case, the service takes care of the licensing arrangements with the
font manufacturer.

14.1.3 Using Icons via Icon Fonts

Adding graphics to the website is basically no big deal anymore.
However, it gets somewhat more complicated if you want to insert an
icon in the middle of a text. And that’s particularly difficult when you
want the icon to look equally good on any device, from a small
screen such as a smartphone to a screen with an extremely high
resolution. Sure, you could make the icon responsive as a graphic
and scale it accordingly, but it won’t necessarily make the result
more attractive (blurry or pixelated). On the other hand, you could
also provide multiple versions of the graphic, and SVG as a graphic
format still comes to mind as a possible workaround.

However, you can save this effort right away and just use icon fonts
instead. The icon fonts name already suggests what it’s about, and
those who have a lot to do with word processing might know fonts
such as Wingdings from Microsoft, which use icons. You only need
to include the corresponding icon fonts via @font-face. This makes it
possible to treat these icons like an ordinary font. For example, you
can adjust the appropriate size with the CSS feature font-size.

There are several providers of attractive icon fonts. Here we’ll
introduce and use one of the arguably more popular icon fonts, Font
Awesome (https://fontawesome.com). A list of other popular icon
fonts can be found at the end of the section. To download icon fonts,
you need to create an account at fontawesome.com. However, it is
also possible to use the icon fonts via a CDN server. For more
details, please refer to the fontawesome.com website.

https://fontawesome.com/

If you’ve downloaded and unpacked Font Awesome, you’ll also find
other embedding options in the package, such as for the CSS
preprocessor Less, for example. For our purposes, the contents of
the css and webfonts folders, which are located below the webfonts-
with-css folder, are sufficient for now. The css folder contains all the
necessary CSS statements, while you can find the font icons in
webfonts. Both folders were copied to the directory of the sample
website.

Figure 14.10 Font Awesome Has Become a Favorite of Web Designers

In the first step, you don’t need to do anything but include the CSS
file all.css in the HTML document, which you can do using the link
element in the document header as follows:
...
<link href="css/all.css" rel="stylesheet">
...

That’s all it takes. The included CSS file from Font Awesome
handles the integration of the icon fonts with @font-face as an
additional font. The second step is to use Font Awesome’s font icons
anywhere in the HTML document using the <i> tag, but basically this
works with any other tag as well. For example, you can insert and
display a house icon in the HTML document as follows:
<i class="fas fa-home"></i>

You can adjust the size with font-size as you would with an ordinary
font because basically they are embedded font icons, for example:
<i class="fas fa-home" style="font-size:3em;"></i>

The font icons of Font Awesome have special classes included that
allow you to increase the icon size with fa-2x, fa-3x, fa-4x, and fa-
5x relative to their container, for example:
<i class="fas fa-home fa-2x"></i>

You can also customize colors as you would with an ordinary font
using the CSS feature color. For example, the following line uses
the Twitter logo in Twitter’s usual color:
<i class="fab fa-twitter fa-2x" style="color:#0084b4;"></i>

For symbols with a trade name or trademark, you must use the fab
prefix instead of fas. The b of fab stands for brand, and the s of fas
for solid. Font Awesome also offers a commercial version with even
more icons and different styles, where you can use far (for regular)
and fal (for light) as prefixes.

For an overview of Font Awesome’s icons, you can visit
https://fontawesome.com/icons?d=gallery. To find out what else you
can do with Font Awesome, go to https://fontawesome.com/start.

Here is a snippet of an HTML document with various font symbols
from Font Awesome in use:
...
 <head>
...
 <link href="css/all.css" rel="stylesheet">
 <style>
 ...
 <style>
 </head>
 <body>
 <header class="header">Use icon font</header>
 <nav>

https://fontawesome.com/icons?d=gallery
https://fontawesome.com/start

 Home page <i class="fas fa-home"></i>|
 Blog <i class="fas fa-book"></i> |
 Links <i class="fas fa-anchor"></i> |
 About <i class="fas fa-user"></i> |
 Contact <i class="fas fa-envelope"></i>

 </nav>
 <main>
 <article>
 <h1><i class="fab fa-css3 fa-2x"></i> Article 1</h1>
 <p>Lorem ipsum dolor sit ... </p>
 </article>
 <article>
 <h1><i class="fas fa-html5 fa-2x"></i> Article 2</h1>
 <p>Lorem ipsum dolor sit ... </p>
 <ul class="fa-ul">
 <i class="fa-li fas fa-check-circle"></i>
 Done
 <i class="fa-li fas fa-circle"></i>
 Not done
 <i class="fa-li fas fa-ban"></i>
 Not possible
 <i class="fa-li fas fa-spinner fa-spin"></i>
 In process

 </article>
 </main>
 <footer class="footer">© Name | Legal Notes

 <i class="fab fa-twitter fa-2x" style="color:#0084b4;"></i>
 <i class="fab fa-google-plus fa-2x" style="color:red;"></i>
 <i class="fab fa-facebook fa-2x" style="color:#3b5998;"></i>
 <i class="fab fa-skype fa-2x" style="color:#12A5F4;"></i>
 </footer>
 </body>
...

Listing 14.3 /examples/chapter014/14_1_3/index.html

You can see the example with the different icon fonts, including
social media icons, from Font Awesome in Figure 14.11.

Figure 14.11 Various Icons without Graphics in Use Thanks to Font Awesome Icon Fonts

Besides Font Awesome, there are many other providers of such font
icons, which can often be integrated and used in a similar way. Other
interesting icon fonts can be found on the following websites, among
others:

http://genericons.com

http://icomoon.io

http://fontello.com

http://glyphicons.com

http://www.entypo.com

Observing Licenses

The same applies here as with the downloadable fonts. Many of
these icon fonts are free, but still have some sort of license (GPL,
Creative Commons, etc.) that you should be sure to read through
before using and embedding icon fonts on your website. Others
are commercial and can be purchased.

http://genericons.com/
http://icomoon.io/
http://fontello.com/
http://glyphicons.com/
http://www.entypo.com/

14.1.4 Setting the Font Size Using “font-size”

The font size can be set using the CSS feature font-size. As a
matter of fact, you might think it should be trivial to set the font size.
But it already starts with the fact that the font size can be specified
with pixels, points, percentages, em, or rem. The ideal font size will
probably not exist anyway because there are too many different
settings in the operating system and different large and small
screens with different resolutions. In addition, the web browser
allows you to scale the websites in different zoom levels.

Different screen sizes and resolutions, settings in the operating
system or web browser, and different units of measure (UoM) make
it truly complicated for the web designer to use the right font size and
UoM. Nevertheless, in this chapter, you’ll learn what you can use
when and what you should not use.

No Specifications with “font-size”: The Browser Standard

If you don’t specify anything via font-size, the default value of the
web browser will be used, which is often 16 pixels (= 100%, 1em,
1rem, or 16pt) as the base font size. Because default fonts are
often displayed at different sizes, and users can change the size in
the web browser, you should take control of the font size and not
leave the display of text to chance.

Preset Keywords for the Font Size

CSS provides the predefined keywords small, x-small, xx-small,
medium, large, x-large, and xx-large, where medium is the base font
size. The other keywords decrease (small) or increase (large) the
value of medium by a factor of 1.2 each. These values are absolute

values. smaller and larger are two more keywords with relative
values. Relative here means relative to the parent element. I
personally have rarely made use of these keywords, as they allow
only limited control over the actual font size. For this reason, I won’t
go into detail about those values.

Relative Font Sizes with “em”

An easy way to adjust the font size for the entire document is to set
font-size for the body element. For example, if you set font-size for
the body element to 1em or 100%, you’d have effectively used the
default value of the web browser, which is the case in Figure 14.12.

If you want to increase the font size by 15% for the complete
document, you only need to set font-size in the body element to
1.15em or 115%. This will automatically increase the font size of the
other elements such as <h1> and <p> by 15%, and you don’t have to
worry about that. In Figure 14.13, compared to Figure 14.12, this is
exactly what was done: the font was increased by 15% via the body
element.

Due to the fact that a relative font size of the body element regulates
the font size for all elements of the web page through inheritance,
this option is widely used in practice to adjust the font size.

Figure 14.12 The Default Font Size Gets Preserved If You Set “font-size” to 100% or
“1em” for the <body> Element

Figure 14.13 Here, the Font Size Has Been Increased by 15% via the <body> Element

But it’s precisely this inheritance or, more accurately, cascading, that
can make adjusting font sizes a little more complex if you don’t act
with caution here. Consider the following theoretical example:
...
 body { font-size: 0.95em; /* or 95% */ }
 article { font-size: 0.8em; /* or 80% */ }
 p { font-size: 0.8em; /* or 80% */ }

...

Listing 14.4 /examples/chapter014/14_1_4/css/style.css

...
<body> <!-- 0.95em -->
...
 <article> <!-- 0.76em -->
 <h1> ... </h1>
 <p> <!-- 0.608em --> ... </p>
 </article>
...
</body>
...

Listing 14.5 /examples/chapter014/14_1_4/index.html

For <body>, we set a smaller font size of 0.95em (or 95%). As
mentioned earlier, this specification applies to the entire document,
which has the side effect of reducing the article element by another

0.8em (or 80%) of this 0.95em (or 95%), thus setting it to 0.76em, since
0.96 × 0.8 = 0.76em.

In the example, the p element is still used inside an article element,
which again reduces the set font size of 0.76em by 0.8em, so that a
text inside the p element in an article element is set only in the font
size 0.608em (0.76 × 0.8 = 0.608). The text in the p element would
thus be displayed extremely small.

Setting the Font Size Using “rem”

The problem with inheriting relative values that occur if you use em or
% for setting the font size can be avoided by using rem (rem = root
em). Basically, rem is also just an em, the only difference being that
when it inherits, it adheres to the highest root element, <html>,
instead of the font size of the corresponding parent element. Let’s
take a look at the same section as before, but this time we use rem:
...
 html { font-size: 100%; } /* Browser default */
 body { font-size: 0.9375rem; }
 article { font-size: 0.8125rem; }
 p { font-size: 0.8125rem; }
...

Listing 14.6 /examples/chapter014/14_1_4/css/style2.css

...
<body> <!-- 0.9375em -->
...
 <article> <!-- 0.8125em -->
 <h1> ... </h1>
 <p> <!-- 0.8125em --> ... </p>
 </article>
...
</body>
...

Listing 14.7 /examples/chapter014/14_1_4/index2.html

Here, you don’t need any more math like in the example before with
em because we’ve set the value of <html> to 100%, and on the basis
of <html>, the root em, you can be sure that the subsequent font
sizes with rem correspond to what has been written. Of course, the
relationship of body text such as <p> to headings such as <h1>, <h2>,
and so on will be preserved.

Fixed Defaults for the Font Size via Pixel and Point

For a long time, font sizes were specified in pixels. People were
familiar with this UoM from the screen, and they could avoid the
problem with the inheritance of relative values, as it was the case
with percentages or with em. In addition, pixels can be used to
implement a pixel-precise layout.

However, 12 pixels looks different on a 1,024 × 768 pixel 13-inch
screen than on a 27-inch screen with a resolution of 2,560 × 1,440
pixels. In addition, it’s no longer possible to say that a pixel is just a
pixel. The days of uniform pixel densities of 72 ppi or 96 ppi are over.
Newer devices such as smartphones often have 326 ppi, or various
screens like the Retina of the iMac have a pixel density of 104 ppi.
Without going too much into the complex details, this specifically
means that with a higher pixel density on an inch, the pixels
inevitably become smaller (and therefore the resolution becomes
sharper). We hardly notice the individual pixels on a smartphone due
to the high pixel density.

What about Points (“pt”) as a Unit for Font Size?

The point value (pt) is better suited for printers or typesetters in
the print sector. However, the different conversion factors of the
pixel densities from 72 ppi up to 326 ppi result in different displays.

The pt unit is more suitable for printing if you create a print version
with CSS. It should be mentioned here that a specification of cm
(for centimeters) is also possible. As with pt, it’s also true for cm
that it isn’t possible to say whether the conversion to pixels has
been performed correctly, and therefore the results of these
specifications are relatively unpredictable.

For this reason, if a smartphone actually used 12 pixels for a font
size at this high pixel density, you would have to use a magnifying
glass to find the text. As a result, such mobile web browsers convert
the device’s pixels into a kind of pixel for CSS. Consequently, 12
pixels aren’t always really 12 pixels. Thus, specifying pixels is rather
unreliable with the extremely different sizes and resolutions of
screens that exist today.

Responsive Units “vw” and “vh”

The font sizes with %, em, and especially rem are probably the most
common units at the moment. These specifications are relative to the
base font size or relative to the parent element. What’s still missing
here is a font size specification, which is relative to the screen
dimensions. For this purpose, the W3C has introduced the viewport
units, vw (for view width) and vh (for view height), which allow you to
assign a size to an element that’s calculated in relation to the width
and height of the viewport. For the width, you can use vw, and 1vw
corresponds to 1% of the width of the viewport. Similarly, the same
applies to the height where you can use vh, and 1vh corresponds to
1% of the height of the viewport. In addition, the units vmin and vmax
are available, which refer to the height or width, using the smaller or
larger value, respectively. Again, 1vmax corresponds to 1% of the
width or height of the viewport.

Here’s a simple example of how you can adjust the font size without
media queries based on the screen width with just a single
specification:
html { font-size: 3vw; }
...

Listing 14.8 /examples/chapter014/14_1_4/css/style3.css

If you now run the example
/examples/chapter014/14_1_4/index3.html on different devices or
scale the browser window, the font size will always be scaled by 3vw
according to the screen width. This can be converted as follows if,
for example, the screen width is 1,024 pixels:
1024px / 100 * 3vw = 30.72 pixels

This would have set the general font size of the web browser to
30.72 pixels for a screen width of 1,024 pixels. On a smaller screen
width with a 480-pixel viewport this would be as follows:
480px / 100 * 3vw = 14.4 pixels

The example shows very nicely how you can achieve extremely
responsive font specifications with the viewport unit, but in the
example with 3vw, the font size in the html element is now much too
large on large screens and barely legible on smaller screens.

Mike Riethmuller has found a solution to the problem (see
www.madebymike.com.au/writing/precise-control-responsive-
typography/), where he limits the scaling of the font size using
calc():
html { font-size: calc(100% + 0.5vw); }
...

Listing 14.9 /examples/chapter014/14_1_4/css/style4.css

http://www.madebymike.com.au/writing/precise-control-responsive-typography/

When you run the example with
/examples/chapter014/14_1_4/index4.html, you’ll notice that
everything is far from perfect, and the question remains how to
specifically adjust individual elements with the viewport units. Just
giving the vw or vh information seems to be too inaccurate. Further
calculations with calc() might make everything a little too
complicated. Probably the best solution is to set the viewport units
only in the html element and use em or rem for everything else relative
to it, as is also currently recommended by Zell Liew at
https://zellwk.com/blog/viewport-based-typography/.

This was just intended as a brief introduction to the newer viewport
units related to font sizes. We’ll probably encounter the new unit
more often in the future.

General Relative Length Measure

The units vw and vh aren’t limited to fonts, but were introduced as
a general length measure, which you can already conclude from
the names viewport width and viewport height. As mentioned
previously, 1vw corresponds to 1% width of the web browser
window. Thus, 100vw is the full browser width. This makes it easy,
for example, to make sure that an element is always a certain size,
no matter how big the screen is. Here’s an example:
.quarter {
 width: 50vw;
 height: 50vh;
}

The element with the .quarter class will now always cover a
quarter of the browser window, no matter how large the device’s
screen is or whether you scale the browser window afterward.

https://zellwk.com/blog/viewport-based-typography/

Overview of the Common Methods for “font-size”

Table 14.2 provides a brief overview of the common methods or units
you can apply to the CSS feature font-size.

Unit Example Description
em font-

size: 1em;
Relative to the font size of the parent
element

% font-
size:
100%;

Relative to the font size of the parent
element

px font-
size:
16px;

Absolute font size

rem font-
size:
1rem;

Relative to the font size of <html>

smaller,
larger

font-
size:
larger;

Slightly larger than the parent element

small-x,
medium,
…

font-
size:
small-x;

Uses exactly small-x (absolute font size)

vw font-
size: 3vw;

Adjusts the font size according to the width
of the viewport (see next section)

Table 14.2 Common Ways to Set the Font Size

Converting Pixels to “em” or “rem” with the 62.5% Trick

Richard Rutter’s 62.5% trick is frequently encountered in responsive
web design. Because most web browsers set the default font size to
16 pixels, and, based on that, 1 rem (or 1 em) always corresponds to
the base font size, it makes sense to set the base font size to 10

pixels so that you can more easily set the relative values via em or
rem. For example, if you want to set the text for an element to 18
pixels, you’d have to write a cumbersome specification such as
1.125em. You can find a table on this at http://pxtoem.com. Of course,
you can also calculate this with 18 px ÷ 16 px = 1.125 em, but this is
cumbersome in the long run. One option would be to use 1.8em right
away for an 18-pixel font size. To do that, you just need to write the
following definition:
body { font-size: 62.5%; /* base font size to 10 pixels */ }
h1 { font-size: 2.4em; /* = 24 pixels */ }
h2 { font-size: 1.9em; /* = 19 pixels */ }
…

14.1.5 Italic and Bold Fonts via “font-style” and “font-
weight”

You can assign an italic font style by assigning the value italic to
the CSS feature font-style. This will display the font in italic style. If
a font doesn’t have an italic style, the web browser will try to slant
it using oblique, which is another value you can assign to font-
style. The difference between italic and oblique isn’t apparent at
first glance, but italic uses real italics supplied by the font’s
manufacturer. With oblique, on the other hand, you can
subsequently slant the fonts so that they look like real italic fonts.
The default value of the CSS feature font-style is normal, with
which the font gets displayed normally upright.

The CSS feature font-weight enables you to define the weight of the
font. The term weight describes how thick or bold the letters will be
displayed. The bold value allows you to define a bold font style. The
default value of the normal font style is normal. In addition to bold,
there are other weights such as bolder (bolder than bold), lighter
(thinner than normal), and the numeric values 100, 200, and up to 900

http://pxtoem.com/

(in increments of 100), where 400 is normal and 700 is bold. The
question as to how strongly the font will be displayed with the values
100 to 900 depends on the computer platform and the web browser.

For Me, Only “bold” and “normal” with “font-weight” Works!

Most of the time, the web browser only recognizes the bold and
normal font styles. Values such as lighter, bolder, or 100 to 900
can only be used if the font has these gradations.

In Figure 14.14, you can see a trivial example that demonstrates the
CSS features font-style and font-weight for adjusting the font style
with CSS.

Figure 14.14 Changing the Font Style with “font-style” and “font-weight” (Example in
/examples/chapter014/14_1_5/index.html)

14.1.6 Creating Small Caps Using “font-variant”

With font-variant and the single value small-caps, you can turn a
letter into small caps. By means of a small cap, the text is converted
to all uppercase, while maintaining the size of the lowercase letters.
As a rule, true small caps, in which all letters have the same stroke
width, aren’t used unless the font used contains small caps. With the
help of @font-face and an appropriate font, it’s possible to use real
small caps.

Figure 14.15 The Difference between (Fake) Small Caps and Capital Letters (Example in
/examples/chapter014/14_1_6/index.html)

Capital Letters

If you want to convert a text to uppercase, you can do this by
using the CSS feature text-transform and the uppercase value
(Section 14.1.14).

14.1.7 Defining Line Spacing via “line-height”

The line spacing defines the distance from baseline to baseline and
can be set using the CSS feature line-height. Line spacing is
important for better readability of longer text passages. In practice,
the default value on the monitor is almost always too small because
this distance comes from the print area. For this reason, you’re well
advised to use a higher value. Most of the time, the following applies:
the longer the lines of a text are, the larger you should choose the
line spacing. A good value is often 120% (or 1.2em) up to 150% (or

1.5em). An increased line spacing helps your visitor “keep” the line
while reading.

Figure 14.16 Line Spacing Is the Distance from Baseline to Baseline

Line spacing is often confused with the optical bleed-through shown
in Figure 14.17.

Figure 14.17 Don’t Confuse the Optical Bleed-Through with Line Spacing

In Figure 14.18, you can see how different values for the CSS
feature line-height have a significant impact on the readability of
the body text. You can also clearly see that a value below 100%
reduces the line spacing and drastically worsens the readability of
the continuous text because you can no longer keep the line as
easily when reading.

Figure 14.18 Different Line Spacing Has a Drastic Effect on the Readability of the Text
(Example in /examples/chapter014/14_1_7/index.html)

14.1.8 A Short Notation for Font Formatting Using
“font”

The CSS feature font is a short notation for all the features
presented here in the order font-style, font-variant, font-weight,
font-size/line-height, and font-family. In practice, this short CSS
notation is preferably placed in the <body> tag, and for individual
elements such as headings or paragraph text, only the individual
adjustments are made for it. For example:
body { font: 1.125em/150% Arial, sans-serif; }
footer, header {
 ...
 font-size: 1.2em;
}
h1 { font-style: italic; }
article {
 font-family: Georgia, Times, serif;
 font-size: 1em;
}
...

Listing 14.10 /examples/chapter014/14_1_8/css/style.css

Here, the font size was set to 1.125em for the <body> tag, the line
height to 150%, and the font to Arial or any existing serif font using

the CSS feature font. By using this line, you’ve virtually defined the
font for the website. For all other variations, as you can see in the
example for the footer, header, h1, and article tags, you only need
to adjust the individual characteristics for that font.

As you can see with the CSS feature font, you don’t have to specify
all properties. At least the font-size and font-family features must
be present. In addition, if you use font-size and line-height, you
must separate the two with a slash, where the first value is for font-
size, and the second is for line-height. If only one value is used, it
will apply to font-size. Here’s a summary of the sequence that must
be followed when using all features:
font: font-style /* font style */
 font-variant /* font variant */
 font-weight /* font weight */
 font-size/line-height /* font size/line spacing */
 font-family; /* font family */

A complete example in which all font features have been combined
can look like the following:
p { italic normal bold 1.2em/120% Georgia, Times, serif; }

14.1.9 Specifying Letter and Word Spacing via “letter-
spacing” and “word-spacing”

If you want to control the spacing between the letters, you can do
this by using the CSS feature letter-spacing. In your daily work, you
shouldn’t use letter spacing in regular body text because it tends to
make the text less readable. This feature might be more useful for
headlines or for texts that are written entirely in capital letters.

What letter-spacing does with individual letters, the CSS feature
word-spacing can do with the spacing between individual words. By
default, this kind of spacing is usually 0.25em, but as always, it

depends on the default setting of the web browser. Here, too, a wider
specification tends to worsen the reading flow and should therefore
only be used sporadically.

In Figure 14.19, you can see the effects of word-spacing and letter-
spacing used after the heading for the corresponding paragraph text.
The headlines here were also styled using letter-spacing. The
example can be found in /examples/chapter014/14_1_9/index.html.

Figure 14.19 CSS Features “word-spacing” and “letter-spacing” in Use

Controlling the Width of the Individual Characters via “font-
stretch”

The font-stretch feature can be used to change the width of the
font by compressing or stretching the individual characters. However,
this feature can’t be applied to any font, but works only for fonts that
contain appropriate subsets for it. Possible values in ascending order
of font compression are semi-condensed, condensed, extra-condensed,
and ultra-condensed. Values that stretch the text, on the other hand,
are semi-expanded, expanded, extra-expanded, and ultra-expanded.
The default setting, which doesn’t change the font width, is normal.
There are fonts that can handle all nine values. Some fonts, on the
other hand, can only be compressed via condensed and stretched via
expanded. When this book went into print, all modern browsers were

able to handle this feature, except for Safari for iOS. For an example,
see /examples/chapter014/14_1_9/index2.html.

14.1.10 Setting the Text Alignment Using “text-align”

Another important aspect for a good reading flow of texts (and also
other inline elements) is the alignment—also referred to as font type
—which can be set to one of the following four values using the CSS
feature text-align:

left

This left-aligns the text, and is usually the default setting of the
web browser. In a left-justified text with ragged margins, the line
beginnings of all lines are in a perpendicular alignment to each
other. This left-justified alignment is most often used on websites
because texts can be read best that way.

right

This aligns the text to the right.

center

This value is used to align the text centered (also called axial
alignment). This is a uniform type setting in which the lines of a
text are aligned exactly along a central axis. For ordinary and
longer paragraph text, the center alignment is less suitable for
reading. Centered text, on the other hand, can be useful for
headlines, poems, or short texts.

justify

This aligns the text in justified type, with each line the same width
and flush left and right. Justification is mainly used in book and
newspaper typography. While justified text can look prettier than
left-justified text with ragged margins, it can result in unsightly
larger gaps between words because the web browser tries to keep

the text flush on the right and left, which disrupts the flow of
reading. CSS has introduced a hyphenation option via the CSS
feature hyphens, but currently not all web browsers (see
http://caniuse.com/css-hyphens) can handle it without any
problem.

In Figure 14.20, you can see the different effects of text-align on a
paragraph text; the best reading flow is achieved with a left-aligned
or justified alignment. Because justified text can result in unsightly
gaps, left justification is probably still the first choice for websites. For
short texts or headlines, a centered alignment can be interesting.
The example for this figure can be found in
/examples/chapter014/14_1_10/index.html.

Figure 14.20 Effects of “text-align” on Paragraph Text

14.1.11 Setting the Vertical Alignment via “vertical-
align”

The CSS feature vertical-align can be used for the vertical
alignment of inline elements and isn’t intended for block elements
such as <p> or <div>.

http://caniuse.com/css-hyphens

This makes it easy to align text or images in a table cell using a
baseline, for example. For table cells, you can use the values top,
middle, or bottom. In Figure 14.21, you can see these three values
when executed in table cells that have been vertically aligned with
the following rows:
...
 .vtop { vertical-align: top; }
 .vmiddle { vertical-align: middle; }
 .vbottom { vertical-align: bottom; }
 .vsuper { vertical-align: super; }
 .vsub { vertical-align: sub; }
 .vsub-05em { vertical-align: -0.5em; }
...

Listing 14.11 /examples/chapter014/14_1_11/css/style.css

Similarly, you can align inline elements in texts based on a baseline
relative to the text by using vertical-align. Here you align the text
with the value baseline on the baseline, with sub below it and with
super above the baseline. If aligning above or below the baseline
doesn’t suffice for you, you can use positive or negative values of
percent, (r)em, or pixels to set the elements even higher or even
lower. Here’s an example where the inline elements or
have been set higher or lower, respectively, via vertical-align,
which you can see in Figure 14.21:
...
<p>Lorem <em class="vsuper">ipsum
 dolor sit amet, consectetur adipisicing elit,
 <strong class="vsub">sed do eiusmod
 tempor incididunt ut labore et
 <strong class="vsub-05em ">dolore
 magna aliqua.
</p>
...

Listing 14.12 /examples/chapter014/14_1_11/index.html

You can also use the CSS feature vertical-align for images with
. Note that a vertical alignment of the image at the top edge

isn’t the same as a float. In contrast to float, the image with
vertical-align still occupies one line, as you can see clearly in
Figure 14.22.

Figure 14.21 Vertical Alignment of Text in Table Cells and of Inline Elements in Text on
the Baseline

Figure 14.22 If You Align an Image with “vertical-align: top;” to the Top Edge of the Text,
This Has Different Effects Than in the Lower Example with “float: left;”

14.1.12 Indenting Text Using “text-indent”

The CSS feature text-indent allows you to indent the first line of text
with a positive value or drag it outward with a negative value. Such
indentations are known mainly from books and the column
typesetting of magazines, where the first line of a paragraph is
indented to keep the reading flow smooth. On web pages, however,

this kind of indentation occurs rarely. Here, the spacing from one
paragraph to the next is more important, where the p element
defaults to sufficient space from one paragraph to the next, and you
can further adjust this using margin. In Figure 14.23, you can see
such indentation of two paragraphs implemented with the following
CSS statement:
...
.p-indent { text-indent: 1.2em; }
...

Listing 14.13 /examples/chapter014/14_1_12/css/style.css

Figure 14.23 You Can Implement Text Indentation via the CSS Feature “text-indent”

14.1.13 Underlining Text and Striking Text Through
Using “text-decoration”

To add an underscore to a text using CSS, you can use the CSS
feature text-decoration. This allows you to draw a line under,
above, or through the text. The values are underline, overline, and
line-through. By using none (default setting), you can remove this
decoration. Removing an underscore with text-decoration: none;
can also be used to remove the underscore of a link (<a> tag).

Figure 14.24 Underlining (or Undoing the Underlining) or Striking Text Through Using the
CSS Feature “text-decoration”

In Figure 14.24, you can see the use of text-decoration, where
body text was underlined using the span element and the author
information by means of text-decoration: underline;. In addition,
next to the author’s name, the underline for the link was removed via
text-decoration: none;, and text was struck through using the span
element in the body text via text-decoration: line-through.
...
.underline { text-decoration: underline; }
.a-no-underline { text-decoration: none; }
.line-through { text-decoration: line-through; }
...

Listing 14.14 /examples/chapter014/14_1_13/css/style.css

Underlining Using “border-bottom”

Because an underscore with text-decoration often crosses the
letters g and y, you can use border-bottom for an underscore of
texts that aren’t links. This means that the letters y and g won’t be
crossed.

14.1.14 Uppercase and Lowercase Text via “text-
transform”

You can use the CSS feature text-transform to control the case of
the text. For this purpose, you can use the values uppercase (for

uppercase letters), lowercase (for lowercase letters), and capitalize
(first letter as uppercase). Again, the default setting is none.

The capitalize value, which is used to represent each first letter of a
word as a capital letter, is usually used only in English for titles. In
languages such as German, for example, this value is less
interesting.

In Figure 14.25, you can see how the h1 heading is displayed entirely
in uppercase letters by means of text-transform: uppercase;. The
paragraph, on the other hand, was set completely in lowercase via
text-transform: lowercase;.

Figure 14.25 Uppercase and Lowercase Text via “text-transform”

...

.uppercase { text-transform: uppercase; }

.lowercase { text-transform: lowercase; }

...

Listing 14.15 /examples/chapter014/14_1_14/css/style.css

Small Caps

If you’re not looking for continuous uppercase letters, but small
caps, you should take a look at the CSS feature font-variant from
Section 14.1.6.

14.1.15 Adding Shadow to Text via “text-shadow”

A popular effect is to add a shadow to the text using the CSS feature
text-shadow. The use of text-shadow is also quite convenient:
 text-shadow: 5px /* Horizontal offset */
 5px /* Vertical offset */
 4px /* Gradient radius shadow */
 gray; /* Shadow color */

In Figure 14.26, you can see some variants of shadows used via the
following CSS statements for headings:
...
 .shadow-one { text-shadow: 3px 3px 5px gray; }
 .shadow-two {
 color: lightgray;
 text-shadow: 0px -2px 1px black;
 }
 .shadow-three {
 color: rgba(255, 0, 0, 0.7);
 text-shadow:
 15px -15px 5px green,
 -5px 15px 8px blue;
 }
...

Listing 14.16 /examples/chapter014/14_1_15/css/style.css

In the example, you can see that it’s possible to use several
shadows at once for one text (up to six). To do that, you simply need
to list the shadows separated by commas.

Figure 14.26 Different Variants of Shadows

14.1.16 Splitting Text into Multiple Columns Using
“column-count”

One very useful feature for typography is the ability to automatically
split a text into a multicolumn set using the CSS feature column-
count and without any manual work with JavaScript. This function is
especially useful for wide screens, so that lines which are too long
can be split up into columns, increasing the readability of the text.

Here’s how you can set up a two-column layout for the element used
with .column:
.column {
 column-count: 2;
 column-gap: 1.5rem;
}

You can use column-gap to control the gap between the columns. In
Figure 14.27, you can see the effect of these lines on an article
element as a container with multiple p elements.

Figure 14.27 The Multicolumn Set Has Been Applied to an <article> Element as a
Container

Instead of column-count, you can also use column-width and specify
a width for a column. Depending on the value you specify for the
width, this will automatically create as many columns as there is
space in the viewport of the web browser. When the web browser
can no longer split the columns in width, it will make one single
column out of it, for example:
.column {
 column-width: 250px;
 column-gap: 1.5rem;
}

In Figure 14.28, the web browser has split the text into three
columns of 250 pixels. In Figure 14.29, on the other hand, the
browser window was reduced in size, and it was no longer possible
to split the text into at least two columns of 250 pixels, so the text is
now displayed in one column.

There’s also a short notation available for the two properties column-
width and column-count of the CSS feature columns:
.column {
 columns: 20em 2;
 column-gap: 1.5rem;
}

This way, you specify that two columns with a width of at least 20 em
(320 pixels) should be used. If two columns of 20 em will no longer fit
in the browser window, only one column will be used. This would be
the case in the example if the viewport is less than 40 em or less
than 640 pixels.

Other properties related to the multicolumn set are column-rule,
which enables you to draw a line in the gap between columns, and
column-span, which lets individual elements span multiple columns.

Figure 14.28 Three Columns with 250 pixels

Figure 14.29 If Two Columns No Longer Fit into the Width Specified with the CSS
Property “column-width”, Only One Column Will Be Displayed

14.2 Designing Lists with CSS
You already know how to create lists in HTML from Chapter 4,
Section 4.2. Now you’ll learn how to manipulate those lists using
CSS. Strictly speaking, you can apply the CSS features list-style-
type, list-style-image, and list-style-position to or for
this purpose. A short notation for all three CSS features with list-
style also exists. In the following sections, I’ll go into a little more
detail about these CSS features for styling lists.

14.2.1 Customizing Bullet Points Using “list-style-type”

The CSS feature list-style-type allows you to specify the bullet
selection of unordered lists with and the type of numbering
ordered lists with .

For unordered lists with , the following values are available:

none

No bullet.

disc

Filled circle, also called bullet character, default setting.

circle

Empty circle as bullet character.

square

Square bullet sign.

For ordered lists with the following values are available, among
others:

decimal

Numbering in the form 1., 2., 3., 4., 5., 6., and so on.

decimal-leading-zero

Numbering in the form 01., 02., 03., 04., and so on.

lower-alpha and lower-latin
Numbering in the form a., b., c., and so on.

upper-alpha and upper-latin
Numbering in the form A., B., C., and so on.

lower-roman

Numbering in the form i., ii., iii., iv., v., and so on.

upper-roman

Numbering like I., II., III., IV., V., and so on.

none

No numbering.

Numbering in Other Languages

There are other numberings in other languages such as Armenian
(armenian), Hebrew (hebrew), Georgian (georgian), or Japanese
(hiragana).

In Figure 14.30, you can see how a square bullet (square) was used
instead of the filled circle (with disc) for an unordered list, and
alphabetical numbering in capital letters was used instead of decimal
numbering (decimal) for the ordered list. Only the following two lines
were used as CSS statements:
...
 ul { list-style-type: square; }
 ol { list-style-type: upper-alpha; }
...

Listing 14.17 /examples/chapter014/14_2_1/css/style.css

Feel free to experiment with the values for and listed
previously.

Figure 14.30 Designing Bullets with “list-style-type”

14.2.2 Using Images as Bullets via “list-style-image”

You can use the CSS feature list-style-image to add a custom
graphic as an enumeration icon. The value you need to specify is
url(path) with the path to a graphic.

In Figure 14.31, you can see such an example, where a simple
graphic was used for the ul elements. The graphic was added with
the following CSS line:
...
 ul { list-style-image: url("../graphic/stern.png"); }
...

Listing 14.18 /examples/chapter014/14_2/css/style.css

Figure 14.31 You Can Use a Graphic as a Bullet Point with the CSS Feature “list-style-
image”

Using a Special Character Instead of a Graphic

As an alternative, you can also use a special character instead of
a graphic. To do that, you simply need to set list-style-type to
none and define a special character as a list icon via li:before
using content:
...
.myul { list-style-type: none; }
.myul li:before { content: '\2713'; color: green; }
...

If you want to know what is represented by the character '\2713',
you should test this code (or look in
/examples/chapter014/14_2/index2.html). The advantage of using
special characters instead of graphics is that you can adjust the
size and color more easily.

14.2.3 Positioning Bulleted Lists via “list-style-
position”

You can use the CSS feature list-style-position to set whether the
bullet should be inside or outside the box that contains the entries.
The default behavior can be set using the outside value, which
places the bullet point to the left of the text block. The counterpart to

this value is inside, which places the bullet point inside the text
block.

It’s best to look at Figure 14.32, where you can see the difference
between outside and inside. In the example, the box with the
tag was assigned a gray background color. The CSS statements for
that were written as follows:
...
.outside { list-style-position: outside; }
.inside { list-style-position: inside; }
...

Listing 14.19 /examples/chapter014/14_2_3/css/style.css

Figure 14.32 You Can Use “list-style-position” to Define Whether the Bullet Points Should
Be outside (Default Setting) or inside the Box with the Entries

14.2.4 Short Notation “list-style” for Designing Lists

As is the case with several other CSS features, list-style is a short
notation for the list-style-type, list-style-image, and list-style-
position features, so you may be able to specify the shape, the
graphic, and/or the bullet position in one go.

You can use any order and also enter only one or two entries. If you
specify a graphic (list-style-image) with url(), the shape (list-
style-type) will always be overwritten. list-style-type will only be
used as an alternative if the graphic couldn’t be loaded. Even if the
order is arbitrary, it’s recommended to maintain the order, as follows:
list-type: list-style-type list-style-position list-style-image;

This can simplify any troubleshooting work. Here’s another example
to clarify this:
ul { list-style: disc url(mybullet.png) inside; }

This short notation corresponds to the following entries:
ul {
 list-style-type: disc;
 list-style-image: url(mybullet.png);
 list-style-position: inside;
}

14.2.5 Creating Navigation and Menus via Lists

To create a navigation with CSS, lists are commonly used. In this
section, I’ll describe a simple way to implement a navigation using
lists and CSS. The following HTML code with a list is used for this
purpose:
...
<nav>
 <ul class="menu">
 <li class="logo">
 <li class="menu-item">Home page
 <li class="menu-item">News
 <li class="menu-item">About me
 <li class="menu-item">Contact
 <li class="menu-item">Privacy
 <li class="menu-item button">Sign in

</nav>
...

Listing 14.20 /examples/chapter014/14_2_5/index.html

The result of the list completely without styling is shown in
Figure 14.33.

Figure 14.33 The Pure HTML Representation of the Navigation as a List

In Figure 14.34, on the other hand, I’ve already added basic styling
to the individual elements in
/examples/chapter014/14_2_5/css/style.css. With regard to the lists,
I’ve set list-style-type to none so that no bullet gets displayed.
...
ul {
 list-style-type: none;
}
...

Listing 14.21 /examples/chapter014/14_2_5/css/style.css

Figure 14.34 The List after a First Basic Styling

Creating the Mobile Navigation for the Smartphone

First of all, it’s recommended to create the mobile navigation for
smartphones. I chose a flexbox for this purpose because it allows
me to lay out the menu and menu items without much effort. The
important CSS lines for the mobile layout are as follows:
...
.menu {
 display: flex;
 flex-wrap: wrap;
 justify-content: space-between;
 align-items: center;
}

.menu-item.button {
 order: 1;
}

.menu-item {
 width: 100%;
 text-align: center;
 order: 2;

}
...

Listing 14.22 /examples/chapter014/14_2_5/css/style.css

By using display: flex, you make the ul element a flex container,
while align-items: center allows you to center the li elements
(here, .menu-item) vertically on the cross axis. order enables you to
sort the order of the flexbox elements. In the mobile version, I can
thus position the button (order:1) in front of the navigation elements
of the menu (order: 2). You can extend the individual li menu items
across the entire width using width: 100%. You can see the mobile
version of the vertical navigation menu with lists in Figure 14.35.

Figure 14.35 The Mobile Smartphone Version of the Vertical Navigation Menu with Lists

Creating the Vertical Navigation Menu for Tablets

I didn’t change much for the vertical navigation menu for tablets. The
logo can be extended using flex: 1. The button next to it, on the
other hand, only gets as much space as it needs (width: auto). The
other menu items remain at width: 100%, as in the smartphone
version and thus still extend across the entire width, placing each
element in its own line.
...
@media all and (min-width: 37.5em) {
 .logo {
 flex: 1;
 }
 .menu-item.button {
 width: auto;
 border-bottom: 0;
 }
}
...

Listing 14.23 /examples/chapter014/14_2_5/css/style.css

Figure 14.36 The Tablet Version of the Vertical Navigation with List Items

Expandable Menu with JavaScript for Mobile Versions

I didn’t include an expandable menu for the mobile versions here
because I would have had to anticipate JavaScript at this point.
Instead, I created the example using a very simple expandable
menu with jQuery, which you can find in
/examples/chapter014/14_2_5/index2.html.

Figure 14.37 A Simple Expandable Menu with jQuery

Creating the Vertical Navigation Menu for Desktops

For the desktop version, I keep it very simple and set all menu items
to width: auto, making them share the space behind the logo, which
still uses flex: 1. If you want to provide all elements with equal
space in the horizontal navigation, you could do this by setting the
CSS feature flex to 1 in the menu-item class as well.
...
@media all and (min-width: 60em) {
 .menu-item {

 width: auto;
 }
 .logo {
 order: 0;
 }
 .menu-item {
 order: 1;
 }
 .button {
 order: 2;
 }
 .menu li.button {
 padding-right: 0;
 }
}

Listing 14.24 /examples/chapter014/14_2_5/css/style.css

Figure 14.38 The Desktop Version of the Vertical Navigation with List Elements

14.3 Designing Appealing Tables with CSS
Tables are commonly used to present data in a clear way. Thanks to
CSS, you can make a boring HTML table more attractive and
appealing. You already know many CSS features for designing a
table from other sections (but not yet in connection with tables). At
this point, I only want to mention the CSS features that are
particularly useful in the context of tables. To demonstrate this, we’ll
style the timetable shown in Figure 14.39 from pure HTML with CSS
in the following sections.

Figure 14.39 A Boring Table in Pure HTML

14.3.1 Creating Fixed-Width Tables

From Chapter 5, Section 5.1, you know that if width is too small, the
contents of table cells without special specifications will take up the
space they just need to get displayed. It doesn’t matter if you want to
reduce the table width explicitly via width to 500px, 300px, or 50px, the
result will always look as shown in Figure 14.39 because the table
always tries to fit to the content.

It’s still possible to use the CSS feature table-layout to assign a
specified and fixed width to the table elements. The default value of
table-layout is auto and provides the view you’re used to. If, on the
other hand, you use the value fixed for the CSS feature table-

layout, then exactly the width you specified via width will be used. If
the content doesn’t fit into the table cell anymore, it will be wrapped,
truncated (depending on the value of the overflow feature), or just
written beyond the cell boundary. For example, with reference to
Figure 14.39, I’ve limited the width of the table to 500 pixels and
fixed the table layout as follows:
...
.table-fixed {
 table-layout: fixed;
 width: 500px;
}
...

Listing 14.25 /examples/chapter014/14_3_1/css/style.css

You can see the (not really appealing) result of this fixation in
Figure 14.40.

Figure 14.40 When You Use “table-layout: fixed;”, Then No More Consideration Is Given
to the Content

14.3.2 General Recommendation: Designing Appealing
Tables with CSS

Because you may also look in this book for a general recipe for
formatting a table properly with CSS, I’ll discuss this briefly here and
give you a few tips on how I would go about it. I summarize a table in
HTML as usual. Then the table is assigned a width via width. I

format the table header differently from the rest of the table cells. For
a better overview, I color the individual table rows alternately with
two different colors. Almost all table cells get padding by means of
padding. When it makes sense, I use the CSS pseudo-class :hover,
which highlights a table row when the user hovers over it with the
mouse. In summary, a basic layout of a table with CSS usually looks
like this in my case:
...
table {
 width: 700px;
}
th {
 padding: 0.5em;
 text-transform: uppercase;
 border-top: 1px solid black;
 border-bottom: 1px solid black;
 text-align: left;
}
tr:nth-child(even) { background: lightgray; }
td:nth-child(1) {
 font-weight: bold;
 width: 100px;
}
td { padding: 0.5em; }
tr:hover {
 background: darkblue;
 color: white;
}
...

Listing 14.26 /examples/chapter014/14_3_2/css/style.css

You can see the result of these few lines of CSS used to design a
complete table in Figure 14.41.

Figure 14.41 The Basic Formatting of an HTML Table with CSS Is Done with a Few
Lines

14.3.3 Collapsing Borders for Table Cells Using
“border-collapse”

The CSS feature border-collapse allows you to specify whether the
borders of individual cells are displayed separately (border-
collapse: separate;, default setting) or collapsed (border-collapse:
collapse;). In Figure 14.42, you can see the use of the separate
value, and in Figure 14.43 the use of collapse.

Figure 14.42 Frames of Adjacent Elements Are Displayed Separately with “border-
collapse: separate;” (= default setting)

Figure 14.43 Due to “border-collapse: collapse;”, the Borders of the Adjacent Elements
Collapse (Example in /examples/chapter014/14_3_3/index.html)

14.3.4 Setting the Spacing between Cells via “border-
spacing”

If the CSS feature of border-collapse isn’t equal to collapse, you
can set the spacing of adjacent cells by using border-spacing. The
specification for this is mostly in pixels, and you can also specify

separately the values for a horizontal and vertical spacing.
Compared to Figure 14.42, for the example in Figure 14.44, we used
border-spacing: 5px 10px;, where the spacing in horizontal direction
is 5 pixels and in the vertical direction 10 pixels to the adjacent table
element.

“border-spacing: 0px;”

If you set border-spacing to 0, the borders won’t collapse as they
do with border-collapse: collapse;, but the cells will be positioned
exactly next to each other.

Figure 14.44 You Can Adjust the Spacing between the Table Cells via “border-spacing”
(Example in /examples/chapter014/14_3_4/index.html)

14.3.5 Displaying Empty Table Cells Using “empty-
cells”

If you have an empty table cell, you can use the CSS feature empty-
cells to specify whether or not you want to draw a border around it.
By default, the web browser usually displays a border around an
empty table cell, as shown in Figure 14.45, which corresponds to the
value show (empty-cells: show;).

Figure 14.45 Showing Borders for Empty Cells Is the Default Setting, Which Can Also Be
Written as “empty-cells: show;”

If you don’t want a border to be drawn around a table cell with no
content, you just need to assign the hide value to the empty-cells
feature, as was done in the example in Figure 14.46. If you use the
collapse value and not separate for the CSS feature border-
collapse, the empty-cells: hide; specification will be ignored.

Empty Cells

A line feed, space, or tab feed is considered invisible content. On
the other hand, if you write an enforced blank space with in
the table cell, this will be considered visible content, and a border
will be drawn around it if you’ve used empty-cells: hide;.

Figure 14.46 If You Want to Hide the Border for Empty Cells, You Can Do This by Using
“empty-cells: hide;” (Example in /examples/chapter014/14_3_5/index.html)

14.3.6 Positioning Table Captions via “caption-side”

As you may already recognize from the title of the CSS feature
caption-side, this feature sets the position of the table caption you
used with the caption element. The default is usually a display
above the table, which corresponds to the top value for caption-
side. By means of bottom, you can position the caption below the
table, as I did in Figure 14.47.

Figure 14.47 The Table Caption with <caption> Has Been Moved to the Bottom with
“caption-side: bottom;” (Example in /examples/chapter014/14_3_6/index.html)

14.4 Adjusting Images and Graphics Using
“width” and “height”
Basically, you already know the CSS features you can use to
customize images and graphics with CSS if you’ve read the book
from the beginning. You can also set the size of the images using the
CSS features, width and height. For example:
...
.large {
 width: 325px;
 height: 267px;
}

.medium {
 width: 225px;
 height: 184px;
}

.small {
 width: 125px;
 height: 103px;
} }

Listing 14.27 /examples/chapter014/14_4_1/css/style.css

For example, with these three classes, you can conveniently output
the same image in three different sizes. Instead of width and height,
you just need to specify the corresponding class name for the img
elements. You can see the result of the following HTML lines in
Figure 14.48:
...

...

Listing 14.28 /examples/chapter014/14_4_1/index.html

You already know how to align images, namely by giving the CSS
feature float the value left or right. If you also want to center an
image, you merely need to make a block element out of the img
element via display: block;, then you can use margin: 0px auto; or
text-align: center; to center-align the image. Here are three more
classes you can use to align or center images with CSS:
...
 img.align-left {
 float: left;
 margin: 0 0.6em 0.3em 0;
 }
 img.align-right {
 float: right;
 margin: 0 0 0.3em 0.6em;
 }
 img.align-center {
 display: block;
 margin: 0px auto;
 }

Listing 14.29 /examples/chapter014/14_4_1/css/style2.css

Figure 14.48 One and the Same Image Was Put into a Class with the CSS Features
“width” and “height” and Used in Different Sizes

You can combine the classes created in this way with the classes for
the appropriate size and have the images output in the appropriate
size and orientation for your website in no time at all. You can view
the result of the following HTML code in Figure 14.49:
...
 <p>
 <img src="cover.png" alt="Computer History"

 class="align-left medium">
 Lorem ipsum ...
 </p>
 <p>
 <img src="cover.png" alt="Computer History"
 class="align-right small">
 Lorem ipsum ...
 </p>
 <p>
 <img src="cover.png" alt="Computer History"
 class="small align-center">
 Lorem ipsum ...
 </p>
...

Listing 14.30 /examples/chapter014/14_4_1/index2.html

Figure 14.49 Graphics Resized and Aligned with CSS

14.5 Transforming Elements with CSS
With CSS, it’s also possible to change the position of HTML
elements using the CSS feature transform. The possible actions are
movements via translate(), an enlargement or reduction using
scale(), a rotation by means of rotate(), the skewing of elements
via skew(), and a distortion with matrix(). These transformations are
supported by all currently available web browsers.

Although these transformations can be applied to other HTML
elements as well, for demonstration purposes, we’ll use images that
have been placed side by side using a flexbox. You can see the
starting point for the planned transformations in Figure 14.50.
...
<h1>Transforming images with CSS</h1>

...

...

Listing 14.31 /examples/chapter014/14_5/index.html

Figure 14.50 These Images Are Supposed to Be Transformed When Users Hover over
Them (“:hover”)

14.5.1 Scaling HTML Elements via “transform: scale()”

You can enlarge (or reduce) elements using the CSS feature
transform and the CSS function scale(). A value of scale(1.0) has
no effect. If you use scale(1.25), the element will be enlarged by a
factor of 1.25. Similarly, if you specify scale(0.75), an image will be
scaled down by a factor of 0.75. The surrounding elements aren’t
affected by an enlargement or reduction and remain firmly in
position.

Here’s an example in which an image is to be enlarged by a factor of
1.25 when hovering. The results of the following CSS lines are
shown in Figure 14.51:
...
img:hover {
 transform: scale(1.25);
}

Listing 14.32 /examples/chapter014/14_5_1/css/style.css

Figure 14.51 The Images Are Enlarged by a Factor of 1.25 When You Move the Cursor
over Them (“:hover”)

14.5.2 Rotating HTML Elements Using “transform:
rotate()”

When you use rotate(), the respective element gets rotated by a
specified number of degrees. The specification is in the form of
rotate(15deg), which rotates the element clockwise by 15 degrees.
A negative value rotates the element counterclockwise. You can see
the result of the following CSS lines in Figure 14.52.
...
.trans a img:hover {
 transform: rotate(15deg);
}

Listing 14.33 /examples/chapter014/14_5_2/css/style.css

Figure 14.52 A Rotation on Mouseover Using “transform: rotate()”

14.5.3 Skewing HTML Elements Using “transform:
skew()”

The skew() function can be used to skew an HTML element around
the x-axis and y-axis. Here, too, two values are expected as
degrees. The first value indicates the skew around the x-axis and the
second one around the y-axis. For example, you can use skew(5deg,
10deg) to rotate the element 5 degrees around the x-axis and 10
degrees around the y-axis. You can view the results of the following
CSS lines in Figure 14.53.
...
.trans a img:hover {
 transform: skew(5deg, 10deg);
}

Listing 14.34 /examples/chapter014/14_5_3/css/style.css

Figure 14.53 Skewing HTML Elements via “transform: skew()”

Additional Functions via “skewX()” and “skewY()”

If you want to skew an HTML element only around the x-axis or y-
axis, the corresponding functions for these actions are skewX()
and skewY(), respectively.

14.5.4 Moving HTML Elements Using “transform:
translate()”

The translate() function enables you to move elements. For this
purpose, you also need to specify two values to indicate by how
much you want to move the element along the x-axis and y-axis. A
specification such as translate(10px, 20px) moves the element 10
pixels to the right along the x-axis and 20 pixels down along the y-
axis. Negative values move the element in the other direction. The
following CSS snippet causes the movement shown in Figure 14.54
when you halt the mouse cursor on the image:
...
#trans a img:hover {
 transform: translate(30px, 20px);
}

Listing 14.35 /examples/chapter014/14_5_4/css/style.css

Figure 14.54 Moving HTML Elements via “transform: translate()”

14.5.5 Combining Different Transformations

It’s possible to combine several functions for the purpose of
transforming. To do that, you only need to specify the respective

functions separated by a space. Here’s a simple example of this, in
which an element gets enlarged by a factor of 1.25 and rotated
clockwise by 10 degrees (see Listing 14.36).

Figure 14.55 The Element Was Enlarged and Rotated

...

.trans a img:hover {
 transform: scale(1.25) rotate(10deg);
}

Listing 14.36 /examples/chapter014/14_5_5/css/style.css

14.5.6 Other HTML Elements

By the way, the transform functions presented here aren’t limited to
images or graphics and can be used for other HTML elements as
well. Likewise, you can transform the HTML elements at any time
and don’t need to use hovering with the mouse to do so, although
this is what people tend to prefer.

In Figure 14.56, for example, the articles were rotated or skewed via
the rotate() and skew() functions. Of course, this isn’t always useful,
but my point is to show that these functions can be applied to other
HTML elements too.

Figure 14.56 Other HTML Elements Can Also Be Transformed. Here, <article> Elements
Were Rotated or Skewed (Example in /examples/chapter014/14_5_6/index.html)

Other Functions for Transforming

I haven’t mentioned transform-origin(x, y) yet, which allows you
to move the origin point from the element to be transformed.

14.6 Creating Transitions with CSS
In the examples with mouse hovering and using transform, the
transition of the effects was a bit messy after all. For example, in
/examples/chapter014/14_5_5/index.html, which is shown in
Figure 14.55, if you place the mouse cursor over the image, the
graphic gets immediately scaled up and rotated, just like a light
switch, and then immediately returned to its normal position when
you move the mouse somewhere else. If you find this transition a bit
too abrupt, you can soften it using the CSS feature transition. This
doesn’t require much effort at all, as shown in the following CSS
snippet:
...
img {
 max-height: 100%;
 min-width: 100%;
 object-fit: cover;
 vertical-align: bottom;
 transition: all 1s ease;
}

img:hover {
 transform: scale(1.25) rotate(10deg);
 border: 4px white solid;
 transition: all 1s ease;
}

Listing 14.37 /examples/chapter014/14_6/css/style.css

This example corresponds to the one in Figure 14.55, except that the
image gets rotated and enlarged slowly (here exactly within 1
second) while you hover the mouse cursor over it. To ensure that the
image gets moved back to the normal position just as slowly and not
abruptly, the normal position was also defined using the same
transition statement. More actions weren’t necessary so that now
there’s no longer a jerky effect in conjunction with transform when

you hover over the image. The best thing to do is to try out this
example for yourself.

When looking at the transition feature, you’ll notice that three
values have been used here: all, 1s, and ease. Strictly speaking,
transition is a short notation of the following features:

transition-property

Allows you to specify the property to be animated during the
transition. With all, you can specify that all properties are
animated. You can also specify only individual properties here,
such as background for animating.

transition-duration

This specifies the duration of the transition in seconds. You can
also determine the fraction of a second with, for example, 0.2s,
which is two tenths of a second.

transition-timing-function

This specification is a kind of temporal course of the transition. For
example, the ease specification used here means that the
transition starts slowly, speeds up a bit in the middle, and ends
slowly again. There are several such temporal progressions such
as linear, ease-in, ease-out, or ease-in-out, which you can try for
yourself.

Optionally, you could use transition-delay, which adds a delay at
the start of the transition. Consequently, you could alternatively write
the short notation of transition used previously as follows:
...
img:hover {
 ...
 transition-property: all;
 transition-duration: 1s;
 transition-timing-function: ease;
}
...

Examples and Overview of “transition”

For some great demonstrations and examples of transitions using
transition, you can visit
http://css3.bradshawenterprises.com/transitions/.

http://css3.bradshawenterprises.com/transitions/

14.7 Styling HTML Forms with CSS
While you’ve seen HTML forms in action, I haven’t yet described
how to design forms with CSS. The following isn’t meant to be the
ultimate way, but rather a creative suggestion on how you can go
about it. There are certainly countless ways to design a form with
CSS. Here, I’ll show you one of them.

Less Is More!

CSS now provides an extremely wide range of options for
designing forms, which are only briefly touched on here. After
these sections on forms, you should take a look at the many
examples of HTML forms on the internet.

Please keep in mind that, despite the wide range of design
options, forms are real functional elements of a website, and when
designing them, you want to make sure that these elements
remain recognizable as what they are intended for. A form is
usually used to submit entered data to the web server via a web
browser.

14.7.1 Neatly Structuring an HTML Form

The first step should be to create a structure with all necessary form
elements in HTML. I decided to use the example of a simple HTML
form that submits feedback or a simple message. Here’s the HTML
framework for it:
...
<form id="myForm" method="post">
 <fieldset>

 <div>
 <label for="name">Name:</label>
 <input type="text" name="name" id="name"
 placeholder="Your name">
 </div>
 <div>
 <label for="fname">First name:</label>
 <input type="text" name="fname" id="fname"
 placeholder="Your first name">
 </div>
 <div>
 <label for="mail">Email:</label>
 <input type="email" name="mail" id="mail"
 placeholder="Email address" required>
 <label for="mail"></label>
 </div>
 <div>
 <label for="born">Year of birth:</label>
 <input type="number" name="born" id="born"
 min="1920" max="2015" value="1990">
 </div>
 <div class="form_radio">
 <label>Gender:</label>
 <input type="radio" name="gender" id="male"
 value="male" class="nobreak">
 <label for="male" class="nobreak">Male</label>
 <input type="radio" name="gender" id="female"
 value="female" class="nobreak">
 <label for="female" class="nobreak">Female</label>
 </div>
 <div>
 <label for="nachricht">Your message:</label>
 <textarea name="message" id="message"
 placeholder="Enter message here..." rows="8"
 required>
 </textarea>
 <label for="message"></label>
 </div>
 <div>
 <input type="checkbox" name="reply" id="reply"
 value="reply" class="nobreak">
 <label for="reply" class="nobreak">
 GDPR consent (Privacy policy)
 </label>
 </div>
 <div>
 <input name="submit" type="submit" value="Submit" class="nobreak">
 <input name="Reset" type="reset" value="Reset" class="nobreak">
 </div>
 <p>(×) = Input required</p>
 </fieldset>
</form>
...

Listing 14.38 /examples/chapter014/14_7/index.html

There isn’t much more that needs to be said about this HTML form;
you learned about all the individual elements and attributes in detail
in Chapter 7.

If you want to make CSS life easier with HTML forms, you can place
all input fields with their associated labels between <div> and </div>
right away, as shown in the example. This will display the related
elements directly in one line; you can see the difference in
Figure 14.57 (without <div>) and in Figure 14.58 (with <div>).

Figure 14.57 The Form without the <div> Elements

Likewise, it can only be recommended to use <fieldset> and
<label> because these elements can be very useful for design tasks.

Between <fieldset> and </fieldset>, you can group logically
matching areas of form elements and at the same time have another
approach to use CSS to design this area.

Figure 14.58 Here’s the Form with the <div> Elements

The same applies to <label> because not only do you use it to
create a connection to the form element with the HTML attribute for,
which means that when you click on the label, you immediately
activate the form element, but you also get a kind of grid in which
elements are displayed next to each other as in a table by specifying
<label> and another form element such as <input>. Furthermore,
you could design a <label> with an ID or class separately, which is
more difficult with an empty text. Finally, screen readers help you
show the relationship between text and form elements.

14.7.2 Aligning Form Elements with CSS

Once you’ve created the basic HTML framework with the relevant
form elements, the first thing you should take care of is the alignment
of the individual form elements. At the moment, everything is still a
bit unordered (see Figure 14.58).

Just take a closer look at the figure: what you need first is a uniform
alignment and a width for the labels on the left of the HTML form.
You need to decide whether you want to display the labels next to
the form elements or above them. In this example, I decided to place
the labels next to the form elements, which I write in the following
CSS snippet:
...
 label {
 min-width: 8em;
 display: inline-block;
 text-align: left;
 }
...

Listing 14.39 /examples/chapter014/14_7/css/style.css

Here, I’ve used inline-block for display, which allows you to treat
an element like a block element and use the width and height
properties as well as margin without creating a paragraph (as would
be the case with block). If, on the other hand, you want to place the
labels above the form elements for input, you should use display:
block; instead.

Figure 14.59 After the First Alignment of the HTML Element <label> with CSS

The first alignment of the label element looks good (see
Figure 14.59). Next, you’ll probably want to write a uniform width for
the input input fields and the textarea field. Again, not much is
needed to do that, as the following CSS lines show:
...
input {
 width: 20em;
 padding : 0.7em;
 font-family: Arial;
 color: gray;
}
textarea {
 width: 24em;
 padding: 0.1em;
 font-family: Arial;
 color: gray;
}
...

Listing 14.40 /examples/chapter014/14_7/css/style.css

Because the radio buttons and the checkbox are input input fields as
well, and they would look strange with a width of 20em, we use an
extra selector for them. In the example, I’ve therefore written the
following:
...
 input[type="checkbox"], input[type="radio"] {
 width: auto;
 }
...

Listing 14.41 /examples/chapter014/14_7/css/style.css

This only cancels the length assignment of the input fields of type
radio and checkbox. Let’s take a quick look at Figure 14.60—the
interim result looks impressive, doesn’t it?

Figure 14.60 It’s Starting to Look Neatly Arranged

What still doesn’t look really appealing is the arrangement of the
label in front of the multiline text field, the position of the checkbox
below the text field, and the two buttons.

We should move the label in front of the multiline text field up as
follows:
...
 label:first-child { vertical-align: top; }

...

You can move the checkbox to the right by using a simple margin-
left, and you can do the same with the submit button:
...
 input[type="checkbox"], input[type="submit"] {
 margin-left: 12em;
 }
...

Finally, a width specification for the two buttons is missing, which you
can write as follows:
...
 input[type="submit"], input[type="reset"] {
 width: 12em;
 }
...

All in all, this completes the simple arrangement of the form
elements with CSS. The result in Figure 14.61 looks very nice.

Figure 14.61 Neatly Arranged Thanks to CSS

14.7.3 Designing Form Elements with CSS

After you’ve put everything in place, you can get down to styling the
form visually with CSS. From the outside to the inside, the first thing
to do is to design the fieldset and legend. In this example, I’ve used
the following styles:
...
fieldset {
 width: 90%;
 padding-top: 1.5em;
 padding-left: 1.5em;
 background: rgb(240, 240, 240);
}

...

This way, we’ve styled the area between <fieldset> and </fieldset>
by setting the width, a background color, and a border.

In addition to the visual design of form elements, you can also
include interactions for visitors, which will make the website not only
more beautiful, but easier to use. You can implement such
interactions using the CSS pseudo-class :hover or :active. Here are
some practical examples:
...
 input:hover, textarea:hover {
 background: #fffff0;
 border: 2px solid #efe816;
 box-shadow: 0 0 10px rgba(0,0,0,0.2);
 }
 input[type="submit"]:hover, input[type="reset"]:hover {
 background: #c9c9c9;
 border: 2px solid #6c6c6c;
 }
 input[type="submit"]:active, input[type="reset"]:active {
 background: #8f8f8f;
 }
...

If you now hover the mouse pointer over one of the input input fields
or the multiline textarea input field (:hover), this input field will be
displayed with a different color and a different border. The box-

shadow feature also gives the impression that this input field is
glowing.

Figure 14.62 Interaction Help When the Mouse Pointer Is over an Input Field

The buttons in this example were also designed separately with CSS
pseudo-classes, so that the background color changes when the
mouse hovers over the button (:hover) or if you click on it (:active).

Figure 14.63 Hover Effect for Buttons with CSS

At the end of the example, I’ve created a version for smaller
viewports. If the viewport width is less than 640 pixels, all label and
input elements that aren’t marked with the .nobreak class will be
converted to block elements via display:block; and thus displayed
one below the other. Here is the CSS for that:
...
/* Single column break at 640 pixels */
@media screen and (max-width: 40em) {
 label:not(.nobreak) { display: block; }
 label{ padding-bottom: 0.4em; }
 input:not(.nobreak) { display:block; }
 input[type="checkbox"], input[type="submit"], input[type="radio"] {
 margin-left: 0;
 }
}

At this point, I could demonstrate and explain countless more options
with CSS for HTML forms, but this would go beyond the scope of the
book. The complete example for this section can be found in
/examples/chapter014/14_7/index.html.

Figure 14.64 A Simple HTML Form Styled with CSS

14.8 Summary
In this chapter, you’ve learned about many useful topics related to
website styling. In detail, you should now be familiar with the
following topics:

How to style and customize ordinary text with CSS, as well as how
to add web fonts using the @font-face rule

How to style ordered and unordered lists with CSS, along with
how to create a convenient navigation bar with lists

How to style boring table data using CSS and make it much more
attractive

How to use special CSS features for tables

How to deal with a few peculiarities of designing images and
graphics with CSS

How to transform elements using the CSS feature transform

How to scale, rotate, skew, and move elements

How to incorporate smoother transitions between transformation
effects using the CSS feature transition

How to properly align and style HTML forms using CSS

15 Testing and Organizing

This chapter is more like a hodgepodge of different topics
related to CSS and HTML. You’ll learn specific things you
still need to know in regards to testing and organizing
websites.

In this chapter, you won’t learn much about new features, but rather
about techniques or tricks related to CSS and HTML that can be very
useful. The following topics are described in this chapter:

CSS and HTML are constantly evolving, and not every web
browser can handle all new features right away. Here, you’ll learn
how to find out what a particular web browser is already capable
of doing and what it isn’t.

Because there are more and more different devices and hence
different screen sizes, here you’ll learn how to test and view
websites in different sizes using online tools.

As projects get larger and longer, it can get confusing if you write
everything in one CSS file. So, in this section, you’ll learn how to
use a central stylesheet to keep track of large projects.

I’ll also describe the built-in style defaults of a web browser and
how to reset or normalize all CSS defaults.

15.1 Web Browser Tests: What’s Possible?

Today, most visitors are using modern web browsers. When this
book went into print, Google Chrome was enthroned at the top,
ahead of Safari. The remaining percentage points were shared
between web browsers such as Firefox, Edge and Internet Explorer,
Opera, and so on, although Firefox enjoys somewhat greater
popularity in Germany than in the rest of the world. If you’re serious
about building websites, you’ll be testing your work extensively in all
major web browsers and on different devices. At this point, the
question might arise which browsers you should use for testing and
which functionality a web browser actually brings along. You’ll get an
answer to these questions in the following sections.

15.1.1 Validating HTML and CSS

The first step in testing a website should always involve validation.
Many web browsers already provide a function for web developers to
perform validation. Plug-ins are also often available for various
browsers as well as HTML editors or development environments.
Aside from that, the W3C with its online validator for HTML is
available at https://validator.w3.org and for CSS at
https://jigsaw.w3.org/css-validator.

At this point, it’s important to mention that a valid website doesn’t
mean that it’s also perfect at the same time. Things like accessibility,
usability, or speed won’t get better just because the HTML or CSS is
valid. Consequently, those validators are also just another bunch of
tools for quality assurance.

https://validator.w3.org/
https://jigsaw.w3.org/css-validator

Figure 15.1 What’s Indispensable for Me Is a Validation of HTML and CSS during the
Writing Process of HTML and CSS, Like Here with Visual Studio Code from Microsoft

15.1.2 Which Browsers Are Visitors Currently Using?

First of all, you might be wondering which browsers you should use
for testing. Of course, it would be best to test with all browsers right
away, but this already raises the question of feasibility, especially
considering that most visitors are now using mobile devices. For this
reason, it makes sense to first look at a few statistics about which
browsers are most commonly used nowadays. You can find an
interesting overview of this, for example, on the following websites:
www.w3counter.com/trends, http://gs. statcounter.com, or
https://www.statista.com.

Of course, you mustn’t make the mistake of generalizing these kinds
of statistics. For example, if you put a website online that contains
mostly Apple articles, you’re also likely to have mostly visitors with a
Safari web browser. Then you’ll probably study the statistics
afterwards anyway, when the website has gone online, to see what
your visitors came to your website with.

http://www.w3counter.com/trends
http://gs.statcounter.com/
https://www.statista.com/

Figure 15.2 Web Browser Market in Germany

Figure 15.3 A Look at Your Own Statistics Then Reveals More Precisely What Your
Visitors Really Use to Visit the Website

15.1.3 CSS Web Browser Test

Fortunately, modern CSS support is very good in all modern web
browsers. To test the capabilities of the web browser with regard to
CSS, there are several test systems available on the web. The
advantage of those test systems should be that you can at least
weigh up during the development of your website whether you
should use a new CSS feature on your website at all or set up a
fallback for certain web browsers that can’t handle it.

A more specific test for CSS features was developed by Lea Verou.
You can perform this test online by entering the address
http://css3test.com in your web browser. The latest web browsers
currently manage around 50% to 67%, which isn’t bad at all. It’s also
useful that the test lists the results for each individual area as well.
Nice side effect of this test: you’ll discover many new CSS features
and also immediate links to the corresponding entries of the
specification.

Figure 15.4 On https://css3test.com, You Get a Nice List of What the Web Browser Can
and Can’t (Yet) Do in Detail

15.1.4 HTML5 Web Browser Test

As for CSS, you can find an interesting overview of what the web
browser can do and what it can’t do (yet) compared to other web
browsers in terms of HTML at https://html5test.com. Here, too, you’ll
find the latest HTML features linked to the corresponding
specification.

http://css3test.com/
https://html5test.com/

Figure 15.5 What the Web Browser Do in Terms of HTML

15.1.5 Can I Use That?

It’s not easy to keep track of the different web technologies and what
you can use of them with which web browser. Especially with newer
CSS and HTML features, it can become quite a tedious matter to
test what already works on which web browser without web browser
prefixes.

Figure 15.6 The Web Database www.caniuse.com Is Very Useful When It Comes to
Determining Which Web Techniques Can Be Used with Which Web Browser

The web database at www.caniuse.com specializes in such cases
and has proven its worth. The database takes into account the

http://www.caniuse.com/

currently popular web browsers.

The website also features a very helpful continuing list of issues,
notes, and resources on the topic you’re looking for. Searching for a
topic is comfortable and easy thanks to a dynamic search function.

15.1.6 Feature Query Using the “@supports” Rule

You can check whether a particular CSS feature is supported by a
web browser using the CSS rule @supports. This feature query is
also referred to as a CSS feature query. Here’s an example:
...
@supports(hyphens: auto) {
 p {
 text-align: justify;
 hyphens: auto;
 }
}
...

Listing 15.1 /examples/chapter015/15_1_6/css/style.css

Here, we use @supports to check if the web browser understands the
hyphens: auto feature. If that’s the case, the text in the p elements
will be justified, and the CSS feature hyphens will be set to auto.
You can use the CSS feature hyphens to enable the automatic
hyphenation function of the web browser.

As an alternative, you can use the @supports rule with the not
operator to check if the web browser doesn’t support a specific CSS
feature. For example:
@supports not(display: grid) {
 /* CSS features in case the browser does not know display: grid */
 float: right; /* e.g. float: right as alternative */
}

You can also combine multiple CSS features by using and and or.
Moreover, @media and @supports rules can be nested. Web browsers
that don’t understand the @supports rule will ignore anything inside
the curly brackets.

15.2 Viewing Websites in Different Sizes
In addition to testing websites in different web browsers and
validating CSS and HTML code, you should also view the website on
screens of different sizes. If you’ve developed a website that
responds to viewport width with media queries, you can also track a
layout break to the next smaller or next larger viewport using the
desktop browser by manually changing the browser width. In
practice, however, this is somewhat inconvenient and imprecise in
the long run.

For viewing websites in different sizes, almost all web browser
manufacturers now offer their own tools for viewing websites in
different sizes, some of which are integrated into the web browser:

Firefox
In Firefox, for example, you can find the Test Screen Sizes
command in the Tools • Web Developer menu or use the
keyboard shortcut (Ctrl) + (Shift) + (M) (Windows) or (Alt) +
(cmd) + (M) (Mac), which also allows you to view the current web
page in different screen sizes.

Chrome, Edge
You can also find a corresponding tool in Chrome and Edge via
the menu Display • More tools • Developer tools. Again, the
keyboard shortcut (Ctrl) + (Shift) + (M) (Windows) or (Alt) +
(cmd) + (M) (Mac) will get you there faster.

Safari
In Safari, you must first enable the Developer menu via Safari •
Preferences in the Advanced tab. Then, you’ll find the item

Switch to “Responsive Design” mode in the Developer menu.
The shortcut (Alt) + (cmd) + (R) will also get you there.

Figure 15.7 Testing Screen Sizes Using Google Chrome

My personal favorite tool to test a website on different devices and
with different screen resolutions is the commercial web browser Blisk
(https://blisk.io), which is completely based on Chromium. This
browser includes tools that make testing desktop and mobile
versions during development even more efficient.

Figure 15.8 The Blisk Web Browser Allows You to Test a Website on Different Devices
and Screen Sizes

https://blisk.io/

15.3 Setting Up a Central Stylesheet
You may have seen CSS files on the web that you thought were
pretty large. Especially if you’re actively developing a more extensive
website, it can be useful to initially distribute the various style
statements across multiple CSS files.

The principle is simple: You use a central stylesheet, which you
include in the HTML document as usual via the link element. In
Figure 15.9, style.css is the central stylesheet. However, this central
stylesheet doesn’t contain any ordinary CSS content, but again only
loads the other CSS files (e.g., reset.css, print.css, layout.css,
navi.css, and iebrowser. css in the example of the figure) by using
the @import rule. At first, this may sound a bit cumbersome, but
during the development of extensive web projects, it’s rather a relief
to divide the stylesheets into meaningful units such as layout of
header and footer, navigation, content, layout for printing, layout for
old web browsers and so on—here you must decide by yourself
according to sense and personal taste how (and if) you want to
divide the stylesheets.

Figure 15.9 A Central Stylesheet Helps to Keep an Overview during Development and to
Track Down Errors More Quickly

With reference to the example in Figure 15.9, such a central
stylesheet style.css could look like the following:
/* Example of a central stylesheet, style.css */

/* Instead of reset.css, normalize.css would also work,
 which often makes more sense than reset.css.
 For more information, see Section 15.4.2 */

@import url("reset.css");

/* Basic design */
@import url("layout.css");

/* Navigation */
@import url("navi.css");

/* Print version */
@import url("print.css");
...

CSS Files in a Separate Folder

In practice, it’s also recommended to store CSS files generally in a
separate directory. For this reason, you can often find the directory
name CSS.

15.3.1 Combining Everything Back into One File to
Shorten the Load Time

Keep in mind that the emphasis was on development. The
disadvantage of multiple individual CSS files is that multiple server
requests (one for each file) become necessary, which of course can
increase the load time of the website significantly. So, when you’re
done with the website and want to make it public, you should
combine the individual CSS files into one file for speed reasons. As
in Figure 15.9, you can leave it at style.css because this file was
included in the HTML document anyway.

Usually, you need to copy the style statements of each CSS file (as
in Figure 15.9 with reset.css, print.css, layout.css, and navi.css) to
the clipboard and paste them into style.css. However, if you use CSS
statements for old web browsers, as in the iebrowser.css example,
they should still be provided in a separate file.

If you want to avoid this kind of effort in the future and automate the
development process a little more, you should take a look at the
development tools Grunt (http://gruntjs.com) or Gulp
(http://gulpjs.com).

CSS Compression

To reduce the file size of the CSS file again a bit and thus improve
the load time, you could remove all superfluous lines of code with
white spaces, line breaks, and comments. For such tasks, there
are online tools available such as CSS Compressor
(https://cssminifier.com) or YUI Compressor (http://refresh-sf.com).
Before you do that, you should make a backup copy of your CSS
file, which you’ll need again if you want to change anything. The
CSS file is no longer pleasant to read and edit after a CSS
compression.

http://gruntjs.com/
http://gulpjs.com/
https://cssminifier.com/
http://refresh-sf.com/

15.4 CSS Reset or Normalization?
The goal and purpose of a reset or normalization is to put the
different basic browser settings on a common basis as much as
possible, so that the website contains as few differences as possible
in the different web browsers. To create such a CSS base, two ways
have been established: reset and normalization.

15.4.1 Built-In Style Presets of the Web Browser and
CSS Reset

When viewing the HTML document in different web browsers, you
may have noticed that the display differs slightly. This is because all
web browsers have built-in stylesheet defaults. One option would be
to override the defaults with a CSS reset, so that when you start
designing stylesheets, you’re virtually doing everything yourself from
the start.

Figure 15.10 For Example, This Is What the Built-In Stylesheet Looks Like in the Chrome
Web Browser

Figure 15.11 This Is What the Built-In Stylesheet Looks Like When You Use a CSS
Reset to Override the Built-In Stylesheet

In Figure 15.11, the built-in stylesheet of the web browser was reset
using the * selector (= universal selector) with the following CSS
statements:
* {
 margin: 0;
 padding: 0;
}

This removes all external and internal spacings and borders on all
elements. In practice, this will have to be done at many points in a
project anyway. Such a CSS reset is often a bit too radical because
here even the lists are without indentation, and you have to set
spacing again yourself for every smallest detail. However, because
of the lists, it wouldn’t be too much effort if you summarized the CSS
reset as follows:
...
/* Minimal version of a CSS reset */
* {
 margin: 0;
 padding: 0;
}
ul, ol {
 margin-left: 1em;
}
...

Listing 15.2 /examples/chapter015/15_4/css/reset.css

A much better and ready solution for a reset stylesheet by Eric
Meyer can be found at http://meyerweb.com/eric/tools/css/reset/.
You can copy and paste this CSS code to your project and modify it
if necessary.

15.4.2 Normalization: The Alternative to CSS Reset

The gentler and arguably better alternative to the hard CSS reset of
the web browser’s built-in stylesheet defaults is normalization.
Although normalization overrides many built-in stylesheet defaults of
the web browser, it does so while respecting useful CSS defaults.
Fortunately, you don’t have to start by thinking about what
constitutes useful defaults yourself because others have already
done that for you. You can find multiple normalization projects on the
internet, which you can download and include in your project. And if
you don’t like some of the defaults, you can and should modify them
and adapt them to your own needs.

Probably the most famous normalization project is normalize.css by
Nicolas Gallagher, which you can download from the website,
https://necolas.github.io/normalize.css/. What’s particularly nice
about this project is that it fixes several web browser bugs right
away.

The Evolution of Normalization: “sanitize.css”

From the normalization project with normalize.css, the sanitize.css
project by Jonathan Neal has emerged. Unlike normalize.css, the
project no longer takes into account older web browsers such as
Safari 8 or Internet Explorer 10 and instead introduces constructs

http://meyerweb.com/eric/tools/css/reset/
https://necolas.github.io/normalize.css/

from newer web browsers. The sanitize.css project can be found at
https://csstools.github.io/sanitize.css/.

CSS Reset, Normalization, or Leave Everything as It Is?

At this point, as with the central stylesheet setup, I should mention
that these are all mere suggestions. Depending on their
preferences, some web designers do a hard CSS reset and take
over all tasks themselves, leaving nothing to chance or default
settings, whereas others use one of the normalization projects and
adapt the template to their own needs. Still others aren’t fond of a
CSS reset or normalization at all and prefer to work with their own
styles.

There has been discussion about the need for a CSS reset for
some time. Many web developers question the sense of first
defining a complete CSS reset and then immediately overwriting it
with their own styles. You’ll come across a lot of pros and cons on
the web and will probably have to ultimately decide for yourself
what works best for you personally.

https://csstools.github.io/sanitize.css/

15.5 Summary
In this chapter, you’ve learned some useful things that can make
your life with CSS easier. If you’ve worked through the chapter, you
now know the following:

How to test a browser to see what it can and can’t do in terms of
CSS

How to view and test websites in different screen sizes with one
tool

How to organize large web projects more clearly with a central
stylesheet

How to completely reset or normalize the web browser defaults by
means of a CSS reset

16 The CSS Preprocessor Sass
and SCSS

A chapter on CSS preprocessors is almost mandatory in a
book on CSS these days. You can use a CSS preprocessor
to make writing CSS easier, for example, by eliminating
repetitive writing. Code handling can also be simplified with a
CSS preprocessor. This chapter contains a brief introduction
to this topic; for this purpose, I chose Sass as the CSS
preprocessor.

It may seem a bit inconvenient at first to pull another technology on
top of CSS, which ultimately generates just another CSS file. But
we’re talking about CSS preprocessors. Sass is just one of many
other CSS preprocessors that are now being used briskly by serious
web designers on a daily basis. A preprocessor is used to automate
tedious tasks and provide new functionality. A simple example is if,
when creating a website with CSS, you assign a red color countless
times to various CSS properties because that’s the color a customer
wants. However, the customer changes their mind and would rather
have a shade of blue, so you have to assign the blue color to all red
elements. This is where a CSS preprocessor such as Sass comes
into play. Instead of constantly changing repetitive values, you can
implement the change at only one central point according to the DRY
principle (don’t repeat yourself).

Other well-known representatives of CSS preprocessors are, for
example, Less or Stylus. The special case or difference of Sass and
SCSS will be explained in the following sections of this chapter. If
you compare the CSS preprocessors with each other, you’ll find that
many things are pretty similar. I chose Sass because I use it a lot
myself, and Sass is probably the CSS preprocessor with the biggest
community.

The goal of this chapter is to familiarize you with the basics of Sass.
The examples are therefore usually very simple and shorter in
nature. But the advantage of using a CSS preprocessor to develop
CSS code may not be immediately apparent to you. However, this
will change significantly when you use Sass in more extensive
projects.

16.1 Sass or SCSS Syntax
Because Sass and SCSS are often mentioned at the same time, it’s
beginners in particular who wonder whether these are two different
CSS preprocessors. The answer is yes and no because both are
Syntactically Awesome Style Sheet (Sass) after all. The difference
between the two is that they’re two different grammars. The original
syntax was Sass syntax, and the syntax that was introduced
afterward was Sassy CSS (SCSS). In this book, I use the newer
SCSS syntax, which uses curly brackets and semicolons, unlike the
Sass syntax. The following example in Table 16.1 is intended to
briefly explain the difference between the two syntaxes without going
into too much detail.

SCSS Syntax (style.scss) Sass Syntax (style.sass)

SCSS Syntax (style.scss) Sass Syntax (style.sass)
$but-size: 100%;
$color1: #fcfcfc;
$color2: #fafafa;
$spacing-p: 1em;
$spacing-m: 0.5em;

.button-form {
 width: $but-size;
 padding: $spacing-p;
 margin: $spacing-m;
 background-color: $color1;
 &:hover {
 background-color: $color2;
 color: $color1;
 }
}

$but-size: 100%
$color1: #fcfcfc
$color2: #fafafa
$spacing-p: 1em
$spacing-m: 0.5em

.button-form
 width: $but-size
 padding: $spacing-p
 margin: $spacing-m
 background-color: $color1
 &:hover
 background-color: $color2
 color: $color1

Table 16.1 Differences between SCSS Syntax and Sass Syntax

The Sass syntax is always a bit shorter because, as already
mentioned, it doesn’t use curly brackets and semicolons. In Sass,
nesting is done by means of indentation.

16.2 From Sass/SCSS to CSS
Of course, for styling purposes, the web browser can’t do anything
with the SCSS file shown on the left in Table 16.2. A file with the
SCSS syntax has the extension *.scss (for the Sass syntax, it’s
*.sass). For this purpose, the CSS preprocessor must first convert
(compile) the SCSS file into a CSS file, which you then also use for
the web browser. On the right-hand side in Table 16.2, you can see
the result of the SCSS file after the CSS preprocessor run as a CSS
file.

SCSS File (style.scss) CSS File (style.css)
$but-size: 100%;
$color1: #fcfcfc;

.button-form {
 width: 100%;

$color2: #fafafa;
$spacing-p: 1em;
$spacing-m: 0.5em;

.button-form {
 width: $but-size;
 padding: $spacing-p;
 margin: $spacing-m;
 background-color: $color1;
 &:hover {
 background-color: $color2;
 color: $color1;
 }
}

 padding: 1em;
 margin: 0.5em;
 background-color: #fcfcfc;
}

.button-form:hover {
 background-color: #fafafa;
 color: #fcfcfc;
}

Table 16.2 From an SCSS File to a CSS File after the CSS Preprocessor Run

16.3 Installing and Setting Up Sass
Now that you know you need a CSS preprocessor that compiles a
CSS file from the SCSS file, let’s take a brief look at some possible
options.

16.3.1 Online CSS Preprocessor without Installation

If you want to get started right away and aren’t yet sure if you want to
use Sass, or don’t feel like installing and setting up an environment,
you can take a look at the Sassmeister website
(www.sassmeister.com). There you’ll find an online compiler that
compiles an SCSS syntax (and also the Sass syntax) to CSS.

Figure 16.1 The Sassmeister Website Provides an Online CSS Preprocessor

16.3.2 Setting Up Sass Using Visual Studio Code

My favorite solution is to set up Sass with Visual Studio Code. First,
it can be done with a few clicks, and second, the Visual Studio
development environment is available on all common systems and
enjoys great popularity.

http://www.sassmeister.com/

To install Sass with Visual Studio Code, you want to click on the icon
with Extensions on the left. In the search bar, enter “Sass compiler”,
and select Live Sass Compiler. Then click Install in the description
window. Restart Visual Studio Code.

Figure 16.2 Finding and Installing Live Sass Compiler in Visual Studio

Next, I created a new folder in which I created an index.html file and
a styles folder with the style.scss file in it. I’ve deliberately kept the
index.html file simple.
...
<head>
 <title>Sass during execution</title>
 <meta charset="UTF-8">
 <link rel="stylesheet" href="styles/style.css">
</head>

<body>
 <article class="my-article">
 <h1>Article 1</h1>
 <p>Lorem ipsum dolor … </p>
 </article>
 <article class="my-article">
 <h1>Article 2</h1>
 <p>Lorem ipsum dolor … </p>
 </article>
</body>
...

Listing 16.1 /examples/chapter016/16_3_2/index.html

In the index.html file, I’ve already included the CSS file style.css,
which doesn’t exist yet. We now want to style the my-article class
using Sass. In the style.scss file, I wrote the following content:
$color1: #6d6d6d;
$color2: #fff;

.my-article {
 width: 30rem;
 background-color: $color1;
 color: $color2;
 padding: 2rem;
}

Listing 16.2 /examples/chapter016/16_3_2/style/style.scss

For the CSS preprocessor Sass to automatically make a CSS file
named style.css out of it, all you need to do is enable the Watch
Sass option at the bottom of the Visual Studio Code development
environment. This enables a live translation from Sass or SCSS to
CSS. Voilà, you’ve now created the CSS file from the SCSS file.
That’s all it took.

Figure 16.3 “Watch Sass” Allows You to Turn the SCSS File into a CSS File

No More Changes to the CSS File!

If you use Sass and have enabled the Watch Sass option, you
shouldn’t make any changes to the CSS file because you’ve now

given the CSS preprocessor Sass control over it with the SCSS
file. The changes to the CSS document would be overwritten when
the Sass preprocessor is active and the SCSS file gets
recompiled.

The great thing now is that as long as you have Watch Sass
enabled, you don’t have to worry about updating the CSS file. As
soon as you make changes in the SCSS file, the CSS file will be
automatically adjusted as well. You can recognize the active live
translation when the Watch Sass label is replaced by the Watching
label. The translation of the SCSS file takes place as soon as you
save that file again.

16.3.3 Installing Sass for the Command Line

Of course, you can also install Sass from the command line.
However, I’ll only briefly describe this here. Before you can install
Sass, you need Ruby on the computer. On macOS, Ruby is already
integrated. On Windows, you must download and install the Ruby
Installer from https://rubyinstaller.org/. On Linux, the following
command on the command line is sufficient to install Ruby:
$ sudo apt-get install ruby

Once Ruby has been installed, you need to open the command line.
On Windows, you open the Start menu and select Start Command
Prompt with Ruby. On macOS and Linux, you want to launch the
terminal. Then you must enter the following into the command line:
$ gem install sass

You may need to use sudo on macOS and Linux (sudo gem install
sass). Then enter “sass -v” in the command line. If a version number
gets displayed, you can be sure that Sass has been installed.

https://rubyinstaller.org/

To compile a SCSS file, you need to change in the command line to
the directory where you’ve saved the Sass file with the extension
*.scss. Then you can use the following command to compile the
SCSS file to get a CSS file:
$ sass style.scss:style.css

In this example, you compile the SCSS file style.scss and get the
CSS file style.css.

In addition to the compilation of Sass files, you can also set up a
monitoring service for files or directories in the command line, so that
once a change has been saved in the SCSS file, it automatically gets
compiled, as described in the preceding section with Visual Studio
Code and the Watch Sass function. To monitor a single file, you
need to use the following command in the command line:
$ sass --watch style.scss:style.css

This makes sure that when the SCSS file style.scss gets changed, it
will automatically be compiled and the result will be saved in the
CSS file, style.css.

You can monitor an entire folder via the following command:
$ sass --watch styles:styles

This will monitor all SCSS files in the styles directory and compile
and save them as a CSS file in the same directory when a (saved)
change occurs. For example, with an SCSS file named layout.scss,
you would find a layout.css file in the styles directory after
compilation. If you like it a bit neat, you can also create an scss
folder and a css folder. In the scss folder, you store all SCSS files.
Now, to save the CSS files in the css directory when compiling these
SCSS files, you need to enter the following command:
$ sass --watch stylesheets/scss:stylesheets/css

Setting Output Styles for the CSS

You can also specify the output style for the CSS that Sass is
supposed to create from the SCSS file. With the default value
nested, everything is neatly nested. There are also expanded
(indented), compact (everything in one line), and compressed
(without spaces and line breaks) available. You can specify these
output styles using --style. Here’s how you can create a
compressed style that’s best suited for performance optimization:
$ sass --watch --style compressed stylesheets/scss:stylesheets/css

16.4 Using Variables with Sass
When you look at a larger CSS project, you’ll notice that many values of CSS features,
such as colors, spacing, dimension, and so on, are constantly repeated. If one wants to
change these values afterward, an extensive search and replace of the values is often
started. With variables in Sass, you can save yourself this work. They allow you to set a
value for a CSS feature as a variable and then use it anywhere in the SCSS document.
After compiling the SCSS file, these variables are replaced with the actual values in the
CSS file.

You introduce a variable with the dollar sign ($). This is followed by the name of the
variable without spaces in between. You can assign a value to the variable via a colon
and end the line with a semicolon—basically the same way you assign a value to a CSS
feature. The corresponding syntax looks as follows:
$variable-name: value;

Real-life examples could look like the following:
$color-primary: #5f5f5f;
$color-primary-font: #fff;
$font: 'Franklin Gothic','Arial Narrow',Arial,sans-serif;
$spacing-std: 1em;

You can then pass the variables defined in this way to a CSS feature using $variable-
name. You’re free to choose the name of the variable. Note, however, that you can’t use
any special characters. It’s recommended to use a meaningful designation. A name like
$heaven-blue isn’t ideal because you might decide later to change the color from blue to
yellow. Thus, a label like $color-primary is more appropriate. If you define a variable
multiple times in the code, the last definition made always wins the deal when it comes to
assigning a value to a CSS feature. You already know this from CSS as well.

Here’s an example and what the CSS preprocessor makes of it.

SCSS File CSS File

SCSS File CSS File
$color-primary: #5f5f5f;
$color-primary-font: #fff;
$font: 'Franklin Gothic',
 'Arial Narrow',Arial, sans-serif;
$spacing-std: 1em;

* {
 margin-top: 0;
}

body {
 font-family: $font;
}

.my-article {
 width: 30rem;
 background-color: $color-primary;
 color: $color-primary-font;
 padding: $spacing-std;
 margin-bottom: $spacing-std;
}

* {
 margin-top: 0;
}

body {
 font-family: "Franklin Gothic",
 "Arial Narrow", Arial, sans-serif;
}

.my-article {
 width: 30rem;
 background-color: #5f5f5f;
 color: #fff;
 padding: 1em;
 margin-bottom: 1em;
}

SCSS file:
/examples/chapter016/16_4/style/style.scss

CSS file:
/examples/chapter016/16_4/style/style.css

Table 16.3 The SCSS File and the CSS File after Compilation

The HTML file used is again /examples/chapter016/16_3_2/index.html from
Section 16.3.2.

Figure 16.4 The HTML File /examples/chapter016/16_4/index.html during Execution

16.5 Nesting with Sass
An enormous relief when writing SCSS documents is the use of a nesting of selectors
(selector nesting), as they occur in the HTML document. However, it’s important to keep the
nesting within limits to avoid overloading the specificity of CSS, which can lead to a
performance brake. I recommend a nesting of two to maximum three levels here. Here’s a
simple example of what such a nesting of selectors looks like and what the CSS
preprocessor makes of it. Here, the selectors p and h1 are written inside the my-article
class.

SCSS File CSS File
...
.my-article {
 width: 30rem;
 background-color: $color-primary;
 color: $color-primary-font;
 padding: 0.1em;
 margin-bottom: $spacing-std;
 border-radius: 5px;
 h1 {
 padding-left: 0.5em;
 }
 p {
 background-color: $color-secondary;

...

.my-article {
 width: 30rem;
 background-color: #5f5f5f;
 color: #fff;
 padding: 0.1em;
 margin-bottom: 1em;
 border-radius: 5px;
}

.my-article h1 {
 padding-left: 0.5em;
}

 color: $color-secondary-font;
 padding: 1em;
 }
}

.my-article p {
 background-color: #fff;
 color: #000;
 padding: 1em;
}

SCSS file:
/examples/chapter016/16_5/style/style.scss

CSS file:
/examples/chapter016/16_5/style/style.css

Table 16.4 The SCSS File and the CSS File after the Preprocessor Run

I think this kind of nesting significantly facilitates my work and also the overview in the
SCSS document. The HTML example is the same as in the previous sections and now
looks as shown in Figure 16.5.

Figure 16.5 The HTML File /examples/chapter016/16_5/index.html during Execution

Nesting is also useful for CSS properties (property nesting), which are grouped under a
short name. For example, for the padding group, there are the individual properties padding-
top, padding-bottom, padding-left, and padding-right. You know the same from other CSS
properties such as background-, margin-, border-, font-, and more. Returning to the
padding example, you can implement this CSS property group as a nested property in
SCSS as follows.

SCSS File CSS File
.my-article {
...
 h1 {
 padding: {
 left: 0.5em;
 top: 0.1em;
 bottom: 0.1em;
 }
 }
...
}

...

.my-article h1 {
 padding-left: 0.5em;
 padding-top: 0.1em;
 padding-bottom: 0.1em;
}
...

/examples/chapter016/16_5/style/style2.scss /examples/chapter016/16_5/style/style2.css

Table 16.5 The SCSS File and the CSS File after the Preprocessor Run

16.6 Mixins (“@mixin”, “@include”)
Besides variables, mixins represent the most commonly used feature of Sass. Mixins are
entire blocks of CSS features you can reuse as a whole at any time. Creating and using
them is just as easy. To define a mixin, you want to follow these steps:
@mixin mixin-name {
 ...
}

As usual, you need to write your CSS features between curly brackets. Then, you can use
@include to access this code block at any time:
@include mixin-name;

For this purpose, we’ll use our previous example from this chapter with mixins (see
Table 16.6).

SCSS File CSS File
...
@mixin article-style {
 background-color: $color-primary;
 color: $color-primary-font;
 padding: 0.1em;
 margin-bottom: $spacing-std;
 border-radius: 5px;
}

...

.my-article {
 width: 35rem;
 background-color: #5f5f5f;
 color: #fff;
 padding: 0.1em;
 margin-bottom: 1em;
 border-radius: 5px;
}

@mixin article-content {
 background-color: $color-secondary;
 color: $color-secondary-font;
 padding: 2em;
}
...
.my-article {
 width: 35rem;
@include article-style;
 h1 {
 padding-left: 0.5em;
 }
 p {
@include article-content;
 }
}

.my-article h1 {
 padding-left: 0.5em;
}

.my-article p {
 background-color: #fff;
 color: #000;
 padding: 2em;
}

SCSS file:
/examples/chapter016/16_6/style/style.scss

CSS file:
/examples/chapter016/16_6/style/style.css

Table 16.6 The SCSS File and the CSS File after the Preprocessor Run

Those mixins are perfect for entire blocks of code that you use over and over again. As you
can see in the example, the mixins also work with the variables of Sass. In the context of
the variables, the desire quickly arises to make the mixins themselves a bit more flexible,

for example, to use a mixin code block with different color combinations or other different
values such as the text size. This isn’t a problem with mixins because you can use them
with arguments. Such arguments must be written inside parentheses with variables. An
example will demonstrate the mixins with arguments (see Table 16.7).

In the example, you can see that you can pass values for the arguments as Sass variables
or also with valid CSS values. The HTML file /examples/chapter016/16_6/index2. html has
been adapted in the corresponding position as follows:
...
 <article class="my-article">
 <h1>Article 1</h1>
 <p class="p1">Lorem ipsum ... </p>
 </article>
 <article class="my-article">
 <h1>Article 2</h1>
 <p class="p2">Lorem ipsum ... </p>
 </article>
...

Listing 16.3 /examples/chapter016/16_6/index2.html

SCSS File CSS File
...
@mixin article-content(
 $bg-color, $txt-color, $spacing) {
 background-color: $bg-color;
 color: $txt-color;
 padding: $spacing;
}
...
.my-article {
...
 .p1 {
 @include article-content(
 $color-secondary,
 $color-secondary-font,
 $spacing-std);
 }
 .p2 {
 @include article-content(
 yellow,
 $color-secondary-font,
 0.5em);
 }
}

...

.my-article .p1 {
 background-color: #fff;
 color: #000;
 padding: 1em;
}

.my-article .p2 {
 background-color: yellow;
 color: #000;
 padding: 0.5em;
}

SCSS file:
/examples/chapter016/16_6/style/style2.scss

CSS file:
/examples/chapter016/16_6/style/style2.css

Table 16.7 The SCSS File and the CSS File after the Preprocessor Run

What’s missing now are mixins with default values for the arguments to still be able to call
and use the mixin without special values. You can do this by writing the default value after
the variable separated by a colon:
...
@mixin article-content($bg-color:$color-secondary,

 $txt-color:$color-secondary-font,
 $spacing:$spacing-std) {
 background-color: $bg-color;
 color: $txt-color;
 padding: $spacing;
}
...
.my-article {
...
 .p1 {
 @include article-content;
 }
 .p2 {
 @include article-content(yellow, $color-secondary-font, 0.5em);
 }
}

Listing 16.4 /examples/chapter016/16_6/style/style3.scss

In the example, I’ve used Sass variables as default values, which I can then adjust as
needed. You can also just use a valid CSS value here. Now you can use the mixin with
arguments and default values with and without values. If you don’t set any values, the
default values will be used. Here it’s also possible that you call the mixin with one or two
values. In that case, the default value will be used for the second and/or third value. For
example, the following is also possible thanks to the default values:
@include article-content(green);
@include article-content(blue, yellow);

16.7 Extend (“@extend”)
In addition to mixins, there’s another way to avoid unnecessary repetitions, namely
extends. It often happens with many selectors that they differ only by a few properties.
The extends can be used in two different ways. First, I’ll show you how to use @extend to
split the CSS features of a selector and override or extend the necessary features in the
new selector. In the example, we create the .my-article class selector as the base class
for the other two class selectors, .my-article-top and .my-article-std, where we only
change or override the color of the base class. Of course, you could also expand the two
new classes. The extension is made here via @extends selector name. Any type of
selector such as class selector, ID selector, element selector, and so on can be used as
selector name.

SCSS File CSS File
...
.my-article {
 width: 35rem;
 background-color: $color-primary;

.my-article,

.my-article-top,

.my-article-std {
 width: 35rem;

 color: $color-primary-font;
 padding: 0.1em;
 margin-bottom: $spacing-std;
 border-radius: 5px;
 h1 {
 padding-left: 0.5em;
 }
 p {
 background-color: $color-secondary;
 color: $color-secondary-font;
 padding: 2em;
 }
}

.my-article-top {
@extend .my-article;
 background-color: darkslategray;
}

.my-article-std {
@extend .my-article;
 background-color: darkred;
}

 background-color: #5f5f5f;
 color: #fff;
 padding: 0.1em;
 margin-bottom: 1em;
 border-radius: 5px;
}

.my-article h1,

.my-article-top h1,

.my-article-std h1 {
 padding-left: 0.5em;
}

.my-article p,

.my-article-top p,

.my-article-std p {
 background-color: #fff;
 color: #000;
 padding: 2em;
}

.my-article-top {
 background-color: darkslategray;
}

.my-article-std {
 background-color: darkred;
}

SCSS file:
/examples/chapter016/16_7/style/style.scss

CSS file:
/examples/chapter016/16_7/style/style.css

Table 16.8 The SCSS File and the CSS File after the Preprocessor Run

Especially in an example like this one, you can see very clearly that with the help of
@extend, the code in the SCSS document remains very clear, in contrast to the generated
code in the CSS document. This is immensely useful in development. In the HTML
document, the two classes .my-article-top and .my-article-std are used as follows:
...
 <article class="my-article-top">
 <h1>Article 1</h1>
 <p>Lorem ipsum ...</p>
 </article>
 <article class="my-article-std">
 <h1>Article 2</h1>
 <p>Lorem ipsum ...</p>
 </article>
...

Listing 16.5 /examples/chapter016/16_7/index.html

Because the base class .my-article doesn’t appear at all in this example, we could have
done without this selector because it unnecessarily inflates the CSS code. This takes us
to the second option of using @extend.

Instead of defining a selector that won’t be used at all and would only serve the
extension with @extend, you can also use a placeholder. You introduce such a
placeholder with %. Here again is the same example, but now my-article is degraded to
a placeholder and no longer appears in the CSS code. This requires only one change in
the code.

SCSS File CSS File
...

%my-article {
 width: 35rem;
 background-color: $color-primary;
 color: $color-primary-font;
 padding: 0.1em;
 margin-bottom: $spacing-std;
 border-radius: 5px;
 h1 {
 padding-left: 0.5em;
 }
 p {
 background-color: $color-secondary;
 color: $color-secondary-font;
 padding: 2em;
 }
}

.my-article-top {
@extend %my-article;
 background-color: darkslategray;
}

.my-article-top,

.my-article-std {
 width: 35rem;
 background-color: #5f5f5f;
 color: #fff;
 padding: 0.1em;
 margin-bottom: 1em;
 border-radius: 5px;
}

.my-article-top h1,

.my-article-std h1 {
 padding-left: 0.5em;
}

.my-article-top p,

.my-article-std p {
 background-color: #fff;
 color: #000;
 padding: 2em;
}

SCSS File CSS File
.my-article-std {
@extend %my-article;
 background-color: darkred;
}

.my-article-top {
 background-color: darkslategray;
}

.my-article-std {
 background-color: darkred;
}

SCSS file:
/examples/chapter016/16_7/style/style.scss

CSS file:
/examples/chapter016/16_7/style/style.css

Table 16.9 The SCSS File and the CSS File after the Preprocessor Run

In contrast to the preceding example, the class selector .my-article no longer appears.

“@mixin or” and “@extend”

Now that you know about two techniques to make code more modular and reusable
with mixins and extends, the question is which of the two is the better choice. As for
the use in the SCSS file, both are very suitable. However, the CSS code which gets
created from it is also likely to be decisive. Especially with mixins, the code gets
significantly inflated if there are a lot of repetitions. However, if you want to pass
arguments, then you’ll prefer mixins over extends. My recommendation is to use
@extend for SCSS code without arguments and to use @mixin for SCSS code with
arguments. However, there are many different opinions on this. There are also
developers who rely exclusively on mixins. This may also explain why mixins, along
with variables, are often mentioned in an introduction to Sass, while the extends aren’t
mentioned at all. Again, the following also applies here: There isn’t just one way of
doing it. You now know two approaches.

16.8 Media Queries and “@content”
So that the mixins aren’t too much overshadowed after the extend section, I still want to
bring the media queries into play here, for which mixins with arguments are again
perfect: You can define the breakpoints as variables and adjust them at any time. It’s
also useful that you can use inline media queries with Sass, which is an enormous help
especially with extensive projects. The following example is intended to show how you
can use media queries in Sass.

In this example, a mobile version (30em) and a desktop version (60em) were created. In
the mobile version, the articles are displayed one below the other in the flexbox and side
by side in the desktop version. In the created CSS code for the inline media query of
Sass, you can also see that these media queries were created after compiling for each
selector. This indeed means that there are a few more lines of code in the CSS file. But
measured against the simplification and time saving of writing such media queries within
the selector, the few bytes more than pay for themselves.

Besides the inline media queries, the use of variables with the mixins is also very useful,
allowing you to customize the breakpoints quite comfortably. In addition, you can also
apply arithmetic operators to the variables. I’ll go into this separately.

You can also see in this example at display: flexbox that Sass also takes care of the
browser prefixes.

SCSS File CSS File

SCSS File CSS File
...
$mq-mobile: 30em;
$mq-desktop: 60em;
@mixin breakpoint($mq-width) {
 @media screen and (
 min-width: $mq-width) {
 @content;
 }
}

.flex-container {
 display: flex;
 flex-flow: row wrap;
}

.my-article {
 font-family: $font;
 font-size: 1em;
 padding: 1em;
 ...

@include breakpoint($mq-mobile) {
 font-size: 1.125em;
 width: 90%;
 }

 @include breakpoint($mq-desktop) {
 font-size: 1.25em;
 width: 40%;
 }
}

.flex-container {
 display: -webkit-box;
 display: -ms-flexbox;
 display: flex;
 -webkit-box-orient: horizontal;
 -webkit-box-direction: normal;
 -ms-flex-flow: row wrap;
 flex-flow: row wrap;
}

.my-article {
 font-family: "Franklin Gothic",
 "Arial Narrow", Arial, sans-serif;
 font-size: 1em;
 padding: 1em;
}

@media screen and (min-width: 30em) {
 .my-article {
 font-size: 1.125em;
 width: 90%;
 }
}

@media screen and (min-width: 60em) {
 .my-article {
 font-size: 1.25em;
 width: 40%;
 }
}

h1 {
 margin-top: 0;

@include breakpoint($mq-mobile) {
 font-size: 1.25em;
 }

@include breakpoint($mq-desktop) {
 font-size: 1.5em;
 }
}

h1 {
 margin-top: 0;
}

@media screen and (min-width: 30em) {
 h1 {
 font-size: 1.25em;
 }
}

@media screen and (min-width: 60em) {
 h1 {
 font-size: 1.5em;
 }
}

SCSS file:
/examples/chapter016/16_8/style/style.scss

CSS file:
/examples/chapter016/16_8/style/style.css

Table 16.10 The SCSS File and the CSS File after the Preprocessor Run

In the example with the mixin breakpoint, I still smuggled in @content, which works a bit
like magic here:
...
@mixin breakpoint($mq-width) {
 @media screen and (

 min-width: $mq-width) {
 @content;
 }
}
...

As the name @content already describes, you can insert a content (into a mixin) with it.
This instructs the CSS preprocessor to insert the contents of the subsequent SCSS code
block at this point when compiling.

Figure 16.6 Example in Execution: The Mobile Version and the Desktop Version in the Blisk Web Browser

16.9 Operators
As briefly mentioned in the previous section, you can also use the calculation operators
+, -, *, /, and % (modulo) with Sass. It can be quite useful to have the values calculated
during the design and layout. Here’s an example that demonstrates a few ways you can
use operators in Sass. I used this example in the context of media queries and adjusted
a few properties with simple calculations.

SCSS File CSS File
...
$article-width: 80%;
$font-increase: 0.125em;
$base-size: 1;
...
.my-article {
 font-family: $font;
font-size: $base-size * 1em;
padding: $base-size * 1em;
 background-color: lightgray;
 margin: 1em;
 @include breakpoint($mq-mobile) {
font-size: $base-size +
 $font-increase;

.my-article {
 font-family: "Franklin Gothic",
 "Arial Narrow", Arial, sans-serif;
 font-size: 1em;
 padding: 1em;
 background-color: lightgray;
 margin: 1em;
}

@media screen and (min-width: 30em) {
 .my-article {
 font-size: 1.125em;
 width: 80%;
 }
}

 width: $article-width;
 }
 @include breakpoint($mq-desktop) {
font-size: $base-size +
 ($font-increase * 2);
width: $article-width / 2;
 }
}

@media screen and (min-width: 60em) {
 .my-article {
 font-size: 1.25em;
 width: 40%;
 }
}

SCSS file:
/examples/chapter016/16_9/style/style.scss

CSS file:
/examples/chapter016/16_9/style/style.css

Table 16.11 The SCSS File and the CSS File after the Preprocessor Run

These examples don’t really need much more description. The usual rules such as
“multiplication and division before addition and subtraction” apply here as well. You may
be a bit surprised by the notation $base-size * 1em because it only calculates 1 × 1. This
is necessary here because the $base-size variable has no unit, and this way we set the
unit em. This wasn’t necessary for $base-size + $font-increase because $font-increase
was assigned the unit em.

16.10 Adjusting Colors and Brightness
Colors can be specified in Sass as usual in CSS with rgb(), rgba(), hsl(), hsla(), #fff,
#ffffff, and of course the CSS keywords for color such as green, gray, red, and so on. In
addition, Sass contains functions to adjust the brightness and saturation of colors. I’ve listed
some of these functions for you in Table 16.12.

Syntax Example Description
lighten(color,
[n]%)

background:lighten($color,
10%);

Lightens the color by n%

darken(color,
[n]%)

background:darken($color,
10%);

Darkens the color by n%

desaturate(color,
[n]%)

background:desaturate($color,
30%);

Reduces the color saturation by
n%

saturate(color,
[n]%)

background:saturate($color,
30%);

Increases the color saturation by
n%

adjust-hue(color,
[n]%)

background:adjust-hue($color,
-90%);

Changes the hue of the color by
n%

invert(color) background:invert($color); Inverts the color
complement(color) background:complement($color); Creates the complementary color

to the specified color
grayscale(color) background:grayscale($color); Converts the specified color to

grayscale

Table 16.12 Some Useful Sass Functions for Manipulating Colors

The functions are relatively easy to use. To give you an impression, I want to create an
example with buttons. In it, I’ll just define a color for the button and adjust the rest using the
Sass color-manipulation functions. This way, you only need to change that one color, while
you’ve created an entire theme system for a simple button.

The effort of the SCSS example seems at first more extensive than necessary when looking
at the CSS code. However, now you’ve also created a great template here that you can use
to generate many more buttons in different colors. You just need to create more classes in
the style of .my-btn. Especially helpful in this example are the functions for color
manipulation when the hover effect is applied and when the button is deactivated. When
hovering, the color is merely darkened (darken()) and desaturated (saturate()). If the
button gets disabled, it will be lightened (lighten()).

SCSS File CSS File

SCSS File CSS File
$btn-default: #3196cb;
$btn-color: white;

@mixin btn($btn-color:orange) {
 background: $btn-color;
 border-color: darken($btn-color, 10%);
}

@mixin btn-hover($btn-color:orange) {
$hover-color: saturate($btn-color, 10%);
 $hover-color: darken($hover-color, 10%);
 background: $hover-color;
border-color: darken($btn-color, 20%);
}

.my-btn {
 margin-bottom: 1em;
 font-size: 14px;
 text-align: center;
 vertical-align: middle;
 cursor: pointer;
 padding: 0.5em 1em;
 border-radius: 4px;
 display: inline-block;
 border: 1px solid;
 color: white;
}

.my-btn {
 background: #3196cb;
 border-color: #2778a2;
}

@mixin btn-disabled($btn-color:orange) {

 background: lighten($btn-color, 20%);
border-color: lighten($btn-color, 10%);
}

%button-basic {
 margin-bottom: 1em;
 font-size: 14px;
 text-align: center;
 vertical-align: middle;
 cursor: pointer;
 padding: 0.5em 1em;
 border-radius: 4px;
 display: inline-block;
 border: 1px solid;
 color: $btn-color;
}

.my-btn {
 @extend %button-basic;
 @include btn($btn-default);
 &:hover {
 @include btn-hover($btn-default);
 }
 &.disabled,
 &.disabled:hover {
 cursor: not-allowed;
 opacity: .65;
 @include btn-disabled($btn-default);
 }
}

.my-btn:hover {
 background: #1d7bac;
 border-color: #1d5979;
}

.my-btn.disabled, .my-btn.disabled:hover
{
 cursor: not-allowed;
 opacity: .65;
 background: #81c0e1;
 border-color: #58abd7;
}

SCSS file:
/examples/chapter016/16_10/style/style.scss

CSS file:
/examples/chapter016/16_10/style/style.css

Table 16.13 The SCSS File and the CSS File after the Preprocessor Run

In addition to the color manipulations, the ampersand character & was also placed in front of
:hover, .disabled, and .disabled.hover in this example within the selector. The & is very
useful when you use a nesting selector. For example, let's look at the following:

.my-btn {
 &.:hover {}
}

The CSS preprocessor turns this into the following:
.my-btn:hover {}

Without the ampersand character &, the CSS preprocessor would do the following:
.my-btn :hover {}

With this, the hover effect would not work. So, if you use the ampersand character inside a
nested Sass selector, that selector will be appended to the parent selector instead of getting
nested under it. This is especially popular in conjunction with the pseudo-class selectors
such as :hover or ::after because they need to be linked to a selector. With the & you can
easily reference the parent selectors.

Figure 16.7 The HTML File /examples/chapter016/16_10/index.html during Execution

16.11 Sass Control Structures
In the previous example, you created a kind of Sass template for buttons. Using control
structures such as loops, you can automate the generation of CSS code for buttons in
different colors. In the example, I want to use the @each loop for this purpose. This loop
makes it possible to process a list of elements. With regard to the buttons, a list of color
values should be used in the form of CSS keywords. This way you can create different
buttons in different color schemes quite comfortably and with very little effort. Of course,
this can be applied to any other element as well. I’ve highlighted in bold the changes to the
/examples/chapter016/16_10/style/style.scss file from the previous section.

SCSS File CSS File
$btn-list: blue, darkred, darkgreen;
...
...
@each $btn-default in $btn-list {
 .my-btn-#{$btn-default} {
 @extend %button-basic;
 @include btn($btn-default);

.my-btn-blue,

.my-btn-darkred,

.my-btn-darkgreen {

...
}
.my-btn-blue {
...

 &:hover {
 @include btn-hover($btn-default);
 }
 &.disabled,
 &.disabled:hover {
 cursor: not-allowed;
 opacity: .65;
 @include btn-disabled($btn-default);
 }
 }
}

}
.my-btn-blue:hover {
...
}
.my-btn-blue.disabled,
.my-btn-blue.disabled:hover {
...
}
.my-btn-darkred {
...
}
.my-btn-darkred:hover {
...
}
.my-btn-darkred.disabled,
.my-btn-darkred.disabled:hover {
...
}
.my-btn-darkgreen {
...
}
.my-btn-darkgreen:hover {
...
}
.my-btn-darkgreen.disabled,
.my-btn-darkgreen.disabled:hover {
...
}

SCSS file:
/examples/chapter016/16_11/style/style.scss

CSS file:
/examples/chapter016/16_11/style/style.css

Table 16.14 The SCSS File and the CSS File after the Preprocessor Run

The shortened CSS file demonstrates in a clear manner how further selectors for buttons
with the different color schemes .my-btn-blue, .my-btn-darkred, and .my-btn-darkgreen,
along with the hover and disable versions, were generated from the color specifications in
the list. The comma-separated list $btn-list is passed through in the @each loop. The $btn-
default variable is a placeholder and contains the respective color name of the $btn-list.
On the first pass, $btn-default stands for blue, on the second pass for darkred, and on the
third pass for darkgreen.

To ensure that the CSS color names are also attached to the selector, the $btn-default
specification was interpolated with #{}. On the first pass, .my-btn-#{$btn-default}
becomes .my-btn-blue, on the second pass .my-btn-darkred, and on the last pass .my-
btn-darkgreen.

Figure 16.8 The HTML File /examples/chapter016/16_11/index.html with the Different Button Color Schemes during
Execution

Admittedly, at this point, the example looks a bit more complex for starters, but it does
nicely demonstrate that you can be extremely productive with Sass the deeper you get into
it. Besides the @each loop, Sass provides other control structures as well.

In addition to the list-based loop @each, you’ll find the classic loop @for in Sass, which
allows you to specify a certain number of repetitions for the code. The @for loop comes in
two flavors:
for $counter from 1 through 10 {
 // Code which gets executed 10 times
 .my-class-#{$counter} {
 ...
 }
}

The loop is executed 10 times here. The current loop pass is stored in $counter. Due to the
interpolation with #{}, 10 selectors (.my-class-1, .my-class-2, etc.) are generated here.
Besides the option @for $ from [start] through [end], you can also use @for $ from [start]
to [end] end here. With through, the final value is still executed, and, with to, the loop
execution stops before it.

The @while loop is also available in Sass: such a loop is executed until the condition is
false. However, you must be careful not to create an endless loop. Here’s a pseudo-code
for that:

$counter: 1;
$reply: 5;

@while $counter <= $reply {
 // Code that is executed until the condition is false, here 1<= 5
 // Increasing the $counter variable by 1
 $counter: $counter + 1;
}

Here, the loop is repeated as long as $counter is less than or equal to the value of $reply.
Increasing the $counter variable at the end is very important because otherwise you would
have an infinite loop.

Besides loops, there’s also @if, which you can use to check a condition. The CSS
preprocessor compiles a particular code only if the condition is true. To check conditions
you can use different operators such as == (equal), != (unequal), > (greater than), < (less
than), >= (greater than or equal), and <= (less than or equal).

In the following example, I’ve changed the btn-hover mixin. Optionally, you can now have
buttons created without a hover effect if you pass a value other than 1 as a second
parameter in addition to the color.
...
@mixin btn-hover($btn-color:orange, $hover-effect: 1) {
 @if $hover-effect==1 {
 $hover-color: saturate($btn-color, 10%);
 $hover-color: darken($hover-color, 10%);
 background: $hover-color;
 border-color: darken($btn-color, 20%);
 }
}
...
 @include btn-hover($btn-default, 0);
...

In this example, a CSS code block such as .my-btn-blue:hover {...} is only generated if
$hover-effect is 1, which is the default value here.

Of course, there’s also an alternative @else branch that gets executed when the @if
condition doesn’t apply. With regard to our example just shown, in the case of a disabled
hover effect, the cursor should be changed to a stop symbol when you halt over the button
with it. For example, you can use it to symbolize that this button can’t be pressed.
...
@mixin btn-hover($btn-color:orange, $hover-effect: 1) {
 @if $hover-effect==1 {
 ...
 }
 @else {
 cursor: not-allowed;
 }
}
...

16.12 Functions “@function”
Sass also provides a way to create real functions by using
@function. Unlike mixins, which output a section of code, functions
return a return value. Different data types such as numeric values
(20, 1.125, 1.5em), strings ("text", 'text', text), colors (#fff,
#ffffff, rgba (255, 255, 0, 0.75)), CSS value lists (1em, 1.5em,
"Arial Narrow", Arial, sans-serif;), Boolean values (false, true), or
even a null value (null) can be returned. A function is introduced
with @function followed by the name of the function. The arguments
of the function must be written between parentheses. Curly brackets
must contain the code of the function, while @return will return a
value. Here’s a simple example that converts a pixel value to an em
value:
$base-font-size: 16px;

@function px-to-em($px-val) {
 @return ($px-val / $base-font-size) * 1em;
}

You can use this function in the SCSS file as follows:
.my-article {
 width: px-to-em(960px);
 font-size: px-to-em(20px);
}

Then, the CSS preprocessor makes the following out of it:
.my-article {
 width: 60em;
 font-size: 1.25em;
}

Besides calculations, you can, of course, return other values from a
function too. The following example uses a preferred color scheme

such as Twitter or Facebook to return the color code. The list can be
extended by any other color scheme.
@function select-color($color:#fff) {
 @if $color == facebook {
 @return #3b5998;
 }
 @if $color == twitter {
 @return #00acee;
 }

 @else {
 @return $color;
 }
}

I recommend you try out such mini samples directly in
www.sassmeister.com. It’s the ideal playground to learn Sass without
immediately using the individual techniques in a project.

Figure 16.9 Sassmeister Is Perfect for Learning Sass without Having to Use It in the
Project Right Away

http://www.sassmeister.com/

16.13 “@import”
When the projects become more extensive, it isn’t advisable to write
everything in an SCSS file. As with CSS, in Sass, you can split
SCSS files into meaningful sections such as reset, setup, layout,
navigation, and so on; import them via @import; and compile all the
spun-off sections into SCSS files to create a CSS file. As a web
designer, you can still keep track of everything thanks to the
individual SCSS files. For example, I personally use a style.scss file
into which I import all other SCSS files. Here’s an example of using
@import:
@import "reset";
@import "layout";
@import "basic";

Listing 16.6 /examples/chapter016/16_13/style/style.scss

When importing with @import, the file name between "" is sufficient.
In this example, the SCSS files _reset.scss, _layout.scss and
_basic.scss are compiled, and the entire content is written to the
CSS file, style.css. The underscore at the start of the individual
SCSS file names is important so that they don’t get compiled directly.
If you didn’t use an underscore, you would have generated the
reset.css, layout.css, and basic.css files in addition to the style.css
CSS file. However, this is superfluous here and can be bypassed
quite elegantly with the underscore before the file name. Of course,
you can also specify the full file name when importing (even if it isn’t
necessary):
// File: style.scss -> style.css
@import "_reset.scss";
@import "_layout.scss";
@import "_basic.scss";

The order in which you write the SCSS documents when importing
them is also of enormous importance, especially if you use variables
that you also use in other documents. For a variable to be assigned
correctly, it must also be known. For this purpose, it can be useful,
for example, to write the variables in an extra SCSS file and import
that file right at the beginning:
@import "reset";
@import "setup"; // All variables go here
@import "layout";
@import "basic";

16.14 Comments
Finally, I want to share a few words about comments in Sass.
Especially if the code becomes more extensive, you’ll probably want
to use comments. Here you can proceed like you would in CSS and
add a comment like the following in the SCSS file:
/* I am a comment */

The CSS preprocessor will also include this comment in the CSS file.
In addition, Sass still provides the option to write a comment as
follows:
// I am a comment

However, this comment can only span one line. Furthermore, this
comment won’t be added to the CSS file by the CSS preprocessor. I
find this useful as a method to separate comments that are
significant for Sass from general comments for CSS.

16.15 Summary
In this chapter, you learned the basics of Sass and SCSS. Of course,
that’s not all this CSS preprocessor has to offer. I therefore
recommend that you first familiarize yourself somewhat with what
you’ve learned and gain a little practical experience. Often, you’ll
have your “aha” experience when you see what kind of CSS code
the CSS preprocessor generates. For beginners, I’d recommend to
limit yourself to basic things such as variables, mixins, and extends
for the time being.

If you want to delve deeper into the subject, then
http://thesassway.com is a good source. In addition, as you get more
involved with Sass, you’ll quickly realize that there are many
extensions available for it. One of the most popular representatives
here is Compass (http://compass-style.org).

http://thesassway.com/
http://compass-style.org/

17 A Brief Introduction to
JavaScript

JavaScript, Ajax, and jQuery are often mentioned in the
same breath in the context of web development. For
beginners, it’s often frustrating to be confronted with many
different terms. In this chapter, you’ll first get to know some
basics about JavaScript as a programming language.

When it comes to web development, JavaScript has become
indispensable. While you can use HTML to create the content of
your website and CSS to design the layout and formatting, you’re still
missing a way to dynamically influence the behavior of a website
within the web browser. JavaScript enables you to perform
Document Object Model (DOM) manipulations such as changing
HTML elements, HTML attributes, and HTML styles, as well as
checking entered data in HTML forms for correctness. Let’s not
forget the now numerous JavaScript application programming
interfaces (APIs; also called web APIs) in HTML. Even for the use of
many frameworks, such as React, Angular, or Vue.js, you can’t get
around sound JavaScript knowledge.

This chapter is intended to give you a basic and simple introduction
to the world of JavaScript. To avoid raising false hopes here, I should
mention that this chapter will only introduce you to JavaScript as a
scripting language. JavaScript is a programming language that can’t
be described quickly in its entirety within one chapter. The

introduction to JavaScript in this book only goes so far as to let you
use JavaScript for client-side applications of the DOM, the interfaces
between HTML, and dynamic JavaScript—more specifically—you’ll
learn how to write programs that run in the web browser.

Not only is JavaScript now suitable for client-side applications, as
described in this book, but the language has become very versatile.
For example, JavaScript is also used today for server-side
applications, desktop applications, mobile applications, and even
embedded applications. Even games and 3D applications can now
be developed with JavaScript. However, this is only mentioned here
in passing to show you that, with JavaScript, you learn a fairly
ubiquitous language that can be used not only in the web browser.

For the professional handling of JavaScript I recommend you read
JavaScript (SAP PRESS, 2022) by Philip Ackermann, who was also
an expert reviewer for this book.

17.1 JavaScript in Web Development
The JavaScript language has been around since 1995 and has been
constantly evolving ever since. In the beginning, language was seen
more as a toy that could be used for all kinds of mischief. JavaScript
only really got going as years passed. With Ajax, the language
experienced a real boom, and there were first meaningful
applications that would have been impossible without JavaScript on
the client side.

JavaScript is a genuine and ubiquitous programming language, and
if you’ve never programmed in another language such as PHP, Java,
or C++ before, this is probably your first real programming language

that you’ll learn here. If you already have experience in another
programming language, this chapter will be easy for you.

JavaScript Is an Interpreted Programming Language

JavaScript is an interpreted programming language where the
source code is executed by an interpreter on the computer. The
interpreter, in turn, converts the source code into machine code,
statement by statement. Usually, you don’t have to worry about
anything. You can write the source code with any text editor, and
the interpreter is provided and executed in the web browser.

The counterpart to an interpreted programming language is the
compiled programming language. Here, the source code is
translated into machine code by a compiler. You can then run the
programs created in this way on the operating system for which
you compiled it, without any further tools (e.g., an interpreter).
Examples of a compiled language include C, C++, or Swift.

With interpreted programming languages such as JavaScript, the
program can thus be executed directly and doesn’t need to be
recompiled each time. However, this also means that a syntax
error in interpreted languages is often detected only at program
runtime. The performance of compiled programming languages is
usually somewhat better because no more source code has to be
converted at runtime. However, with interpreted programming
languages, a just-in-time compiler (JIT) is used, which converts
frequently executed source code into machine code that is then
executed faster.

JavaScript allows you to access the HTML document displayed in
the web browser and respond to user input, for example. In response
to user input (e.g., a button has been pressed), you can make

content or presentation-specific changes to the HTML document.
The change applies only to the HTML document in the memory while
the HTML file on the web server remains untouched. This dynamic
read access to the HTML document is provided by the DOM.

Here are a few lines about where JavaScript fits in between HTML
and CSS in modern web design. As you already know, HTML is used
for structured content. CSS is responsible for the presentation.
HTML is thus the foundation for web development on top of which
CSS is built. And in the same way as CSS is built on top of HTML,
you can view JavaScript. JavaScript is also built on top of HTML (in
web development) and is responsible for the behavior of the website
(more precisely, the interaction). JavaScript extends HTML in the
sense of bringing dynamics to websites. To avoid any
misunderstanding, JavaScript doesn’t extend the HTML language.
Where CSS improves the presentation of the website and thus the
overview, JavaScript aims to improve the usability of the document
with a specific behavior on an interaction.

LiveScript, JavaScript, JScript ECMAScript, ECMA

JavaScript was developed by Netscape under the name LiveScript
for Netscape Navigator 2 and only later was renamed to
JavaScript. In what’s referred to as the web browser war between
Netscape and Microsoft at the time, Microsoft also designed a
similar scripting language to JavaScript: JScript. With two scripting
languages now in circulation—JavaScript and JScript—it was time
for JavaScript to be standardized. This standard was quickly found
and called ECMAScript. Today, the ECMA (European Computer
Manufacturers Association) defines the core of the JavaScript
specification. The versions were numbered from 1 (ECMAScript 1)
to 6 (ECMAScript 6) until 2015. Since 2015, the year gets

appended to the name (ECMAScript 2015). When this book went
into print, ECMAScript 2022 was the latest version. We can
probably expect ECMAScript 2023 in the summer of 2023.

In Figure 17.1, you can see a basic model on the basis of which
modern websites are created. Apart from HTML for structuring
content, the other techniques aren’t mandatory for a website to work.
So, you can create websites that contain only HTML and CSS, just
as you can create websites that use only HTML and JavaScript. In
common practice, you’ll mainly use a combination of all three web
techniques with HTML as the base and CSS and JavaScript as add-
ons, but you can also use HTML on its own. Web developers also
talk about the three layers: Content layer (HTML), presentation layer
(CSS), and behavior layer (JavaScript).

Figure 17.1 Building Blocks of a Modern Website

Like HTML and CSS, JavaScript is readable in plain text and can be
written in an ordinary text editor. The JavaScript runtime is already
built into every web browser, so you don’t need any additional tools.

JavaScript Engine

While you’ll be using the web browser as the runtime environment
for your JavaScripts in this book anyway, I still want to make you a
little more aware of the topic so that you don’t perceive JavaScript
as just an ordinary part of a web browser. As you can guess,
different browser vendors use their own runtime environment for
JavaScript. For example, Google uses a V8 engine written in C++,
which is used in Google Chrome. The latest Microsoft Edge now
also uses Google’s V8 engine. Firefox, on the other hand, uses a
JavaScript runtime written in C called SpiderMonkey. Based on the
SpiderMonkey runtime environment, additional modules have
been added over time, primarily to improve performance. Apple
also uses its own runtime environment, JavaScriptCore (also
called Nitro), which is used in the Safari web browser, for example.

17.2 Writing and Executing JavaScript
Programs
In this section, I’ll show you how to write and run JavaScript in web
development. The JavaScript code itself isn’t yet the focus at this
point. As a tool for development, I recommend that you use an editor
that can highlight JavaScript syntax and also detect syntax errors in
the source code. This is enormously useful when you develop
JavaScript code. I also use Microsoft’s Visual Studio Code for that,
which is available for all platforms. But there are other exciting
alternatives, such as Sublime Text (http://sublimetext. com),
Notepad++ (https://notepad-plus-plus.org), or Nova 2
(https://nova.app).

Figure 17.2 For the Reusability of Longer JavaScript Code, It’s Recommended to Store It
in a Separate JavaScript File in Addition to a CSS and HTML File

When writing JavaScript code, it’s also advisable to separate the
individual layers, that is, save HTML, CSS, and JavaScript in a

http://sublimetext.com/
https://notepad-plus-plus.org/
https://nova.app/

separate file. This way, you can reuse the same JavaScript source
code in different HTML files.

17.2.1 Integrating a JavaScript File in an HTML File

The first example in JavaScript will simply output a tip box with the
text “Hello JavaScript”. The goal of the example is initially just to
show you how to use JavaScript in HTML files. I usually prepare a
folder named js or scripts for this, where I store the JavaScript
source code.

Figure 17.3 A Clean Folder Structure Helps You Keep Track of More Extensive Projects

Here’s a simple listing, which I’ll call hello.js, and store in the js
directory. The recommended file extension for JavaScripts is .js.
Although you can use other endings here, editors and browsers will
know right away what the content is about.
function showHello() {
 alert('Hello JavaScript!');
}

// Call showHello() function
showHello();

Listing 17.1 /examples/chapter017/17_2_1/hello.js

The example defines a function with the identifier showHello that calls
a JavaScript built-in function alert with the text “Hello JavaScript!”.

The showHello function alone wouldn’t have any effect and must be
called somewhere in the JavaScript, which is done here at the end of
the example with showHello();. The alert function prints the text
passed between the parentheses in a tip dialog.

I already briefly mentioned in Chapter 3, Section 3.7 that you can
integrate a JavaScript in an HTML document by means of the script
element. You can use this script element in the head (head element)
and in the displayable body (body element) of the HTML document.
Most of the time, it’s better to include the JavaScript right before the
closing body element because then the entire DOM is loaded before
the JavaScript starts running. You can either write the JavaScript
code directly between the opening <script> and the closing
</script>, or—the recommended variant—the script element
remains empty and you use the src attribute to reference an external
file with a JavaScript code:
<script src="js/hello.js"></script>

To do this, you now want to create an HTML file named index.html
and include the JavaScript hello.js before the end of the body tag as
follows:
<!doctype html>
<html>
<head>
 <title>A JavaScript during execution</title>.
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <link rel="stylesheet" href="styles/style.css">
</head>
<body>
 <main>
 <article>
 <h1>Hello JavaScript!</h1>
 <p>Lorem ipsum ... </p>
 </article>
 </main>
 <script src="js/hello.js"></script>
</body>
</html>

Listing 17.2 /examples/chapter017/17_2_1/index.html

Once you’ve loaded index.html into the web browser, the tip dialog
appears, which you can confirm via the OK button. The dialog looks
different from web browser to web browser.

Figure 17.4 The JavaScript “hello.js” during Execution (Here, Microsoft Edge)

Integrating Multiple JavaScript Files in the HTML Document

You can integrate additional JavaScript files in an HTML file at any
time. To do this, you just need to use a separate script element
for each file.

17.2.2 Writing JavaScript within HTML

As mentioned earlier, you can also write the JavaScript code directly
between the opening <script> and closing </script> in an HTML
document as follows:
<script>
// JavaScript code;
...
</script>

However, you should use this method only in rare exceptional cases
because this approach mixes JavaScript code and HTML code in

one file. This may not really matter for a short JavaScript, but
JavaScript source code can also become quite extensive. What is
more, the JavaScript code can then not really be reused.

But anyway, here’s the HTML file index.html again with directly
written JavaScript code between the opening <script> tag and the
closing </script> tag. The example does the same as the one
before and outputs a tip dialog that reads “Hello JavaScript!”.
<!doctype html>
<html>
<head>
 <title>A JavaScript during execution</title>.
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <link rel="stylesheet" href="styles/style.css">
</head>
<body>
 <main>
 <article>
 <h1>Hello JavaScript!</h1>
 <p>Lorem ipsum ... </p>
 </article>
 </main>
 <script>
 function showHello() {
 alert('Hello JavaScript!');
 }
 // Call showHello() function
 showHello();
 </script>
</body>
</html>

Listing 17.3 /examples/chapter017/17_2/index.html

Integrating a JavaScript and Source Code between <script>
and </script>

You can’t simultaneously include a JavaScript with src and write
JavaScript code between <script> and </script>. If you do that,
the source code between <script> and </script> will be ignored,
and the integrated JavaScript will be executed.

17.2.3 Position of JavaScript and Its Execution in the
HTML Document

I need to discuss the position of the JavaScript in the HTML
document because, in the past, this file was often included in the
head section. You might expect it there too because you also include
linked CSS files there, for example. By the way, there’s nothing
fundamentally wrong with including the JavaScript in the header of
the HTML document. To understand why you should still prefer to
include a JavaScript at the end of the HTML document, you need to
know how script elements are executed in an HTML document.

When a web browser receives the HTML document from the web
server, it usually starts processing the HTML code with a parser to
create a certain structure, the DOM, from it. When this parser
encounters a script element, it stops processing, and the JavaScript
code inside the script element gets executed. After executing the
JavaScript code, the parser continues to process the rest of the
HTML document. The following is the result of this way of processing
JavaScript code in HTML documents:

Slow page load due to external scripts
The fact that embedded scripts are executed while the HTML
document is being read usually also slows down the page load
when larger JavaScript files have to be downloaded from the web
server. You can avoid the problem by writing the script elements
at the end of the document before the closing <body> tag, if
possible. Although the JavaScript must still be downloaded before
execution, the fact that the HTML page is already displayed in the
web browser means that it takes less time to build the web page.

Access only to loaded elements
Because a JavaScript interrupts the execution of the parser and
has access to the DOM tree, JavaScript can only access this
DOM tree as far as the parser has already processed. You can’t
use the JavaScript to access elements in the DOM tree that have
yet to be processed by the parser. Again, it’s important at which
position you place the script element. You can use JavaScript to
access only those elements that precede the written script
element in the document. Everything else further down in the
HTML document doesn’t yet exist for the JavaScript. In addition,
the DOMContentLoad event should be mentioned here, which is
triggered when the DOM has been completely loaded.

Access to previously included resources
As you already know, you can use multiple script elements in the
HTML document. You can mix external JavaScript files and code
written in the document as you like. Because the script elements
are executed in the order in which you wrote them down, you
could write different scripts that build on each other. Thus, scripts
included later via the script element could use previous
resources (e.g., variables, objects, or functions) from scripts
previously included with the script element.

17.2.4 Attributes for Manipulating the Load Behavior of
JavaScript (“async”, “defer”)

At this point, the standalone attributes async and defer for the script
element should be mentioned, which enable youto manipulate the
load behavior. Both attributes make sense only if you include a
JavaScript with src.

async

This attribute ensures that the download of the JavaScript file is
asynchronous. This means that the processing of the HTML code
doesn’t pause. However, it also makes sure that the JavaScript
code is executed directly as soon as the JavaScript file has been
downloaded. For this reason, this attribute is only suitable for
scripts that work independently of the HTML document.

defer

This attribute also ensures that the processing of the HTML code
doesn’t pause. However, with defer, unlike async, the JavaScript
code won’t get executed until the HTML code has been
completely processed. Only then will the JavaScript code be
executed. The attribute was often avoided because older web
browsers weren’t able to handle it. However, defer is no longer a
problem for current web browsers.

17.2.5 The <noscript> Element for No JavaScript

If the visitor has JavaScript disabled or if the web browser doesn’t
support JavaScript, you can place a special note between
<noscript> and </noscript>. Here’s a simple example of this:
...
 <noscript>
 JavaScript is not available or is disabled.

 For optimal use of this website it is recommended
 to use a browser with JavaScript or
 to enable JavaScript in your browser.
 </noscript>
...

Listing 17.4 /examples/chapter017/17_2_5/index.html

You shouldn’t overload your website unnecessarily with the noscript
element, but use it only to inform visitors about the options that are

available to them when JavaScript is enabled. If you need to use a
lot of noscript elements, you should rethink the structure of your
website. The most important information on your website should be
accessible without JavaScript. Using JavaScript, you simply add
additional functionality to the web page that may improve its
operation. Many web developers make little use of the noscript
element unless it’s a web page that was written as a pure JavaScript
application and requires a JavaScript-enabled web browser to
function.

17.3 JavaScript Output
Previously, you used a standard alert() dialog for JavaScript output.
In addition to that dialog, there are other ways to generate output. In
this section, you’ll learn what other options you have and where you
can use them.

17.3.1 Standard Dialogs (and Input Dialog)

In addition to the standard dialog alert(), there are two more
dialogs: confirm() and prompt(). The confirm() dialog is the classic
OK-cancel dialog with two buttons, while prompt() serves as a dialog
for entering text. However, these standard JavaScript dialogs are
rarely used in practice because their layout depends on the
underlying web browser, and the options to apply them are rather
limited. Furthermore, the standard dialogs have the disadvantage
that the web browser can ignore them if they are displayed
repeatedly. You can find an example of the two dialogs confirm()
and prompt() in /examples/chapter017/17_3_1/index.html.

Figure 17.5 The Standard Dialog confirm() (in Google Chrome)

Figure 17.6 The Standard Dialog prompt() (in Google Chrome)

In practice, it’s better to use ready-made JavaScript libraries or
frameworks that provide dialogs which match the design.

Figure 17.7 The Dialog Was Created Using the jQuery UI Library and Looks the Same in
any Web Browser

17.3.2 Outputting to the Console

The easiest way to write something in the web console is to use the
console object provided by the runtime environments of the web
browsers you use. Although the console object isn’t included in the
standard ECMAScript, it’s supported by any JavaScript runtime
environment.

log(), which is a function (or method) of the console object, allows
you to generate a simple console output. However, such a log output
in the console isn’t intended for the users, but should help you as a

JavaScript developer to understand the course of individual program
sections or to track down errors. Here’s a simple example that
demonstrates the log() method in use.
function showConsole() {
 console.log('Hello JavaScript Console!');
}
showConsole();

Listing 17.5 /examples/chapter017/17_3_2/js/helloConsole.js

You include the JavaScript as usual in the HTML document by using
the script element. When you call the web page, basically nothing
happens because the JavaScript uses the console as output. For
this reason, you need to open the console of the corresponding web
browser. You can find it among the developer tools or development
tools of the web browser, which you can often call via (Ctrl) +
(Shift) + (I). There, you’ll usually also find the Console tab with
the output of the JavaScript.

Figure 17.8 The Output of the JavaScript to the Console of the Web Browser

You can do more than just check the output of JavaScripts in the
web browser console. You can also make entries. For example, for
testing, you can also type the showConsole() function and manually
execute this function from helloConsole.js. Of course, this also
requires the web page to be running and the JavaScript to be

loaded. From this point of view, the console window is an important
tool for web developers, so I recommended studying it a bit more.

Figure 17.9 The Console Is Often Used during Development for Quick Outputs

Logging Outputs Only during Development!

You should only use the output via the console object during
development. Even though visitors usually don’t see these outputs
anyway, you should stop using outputs to the console when the
website is finished. For this reason, many web developers use
special logging libraries, which can be used to switch logging
information on or off at any time with the appropriate configuration.

Many runtime environments provide other categories of output
besides console. log(). However, not all runtime environments
provide all functions. Nevertheless, in addition to console.log(),
console.info(), console.warn(), and console.error() are often
available. All functions can be used like console.log(), except that
the output in the web console often changes style, which can be
useful if you want to filter out (error) messages depending on the
category. You can also type the examples directly into the console
for testing purposes:
console.log('A log message');
console.warn('A warning message');
console.info('An information');
console.error('An error message');

Figure 17.10 The Individual Outputs in the Console Usually Differ Visually

17.3.3 Outputting to the Website

The output with standard dialogs isn’t really elegant, and the output
via the console object is only for web developers. In practice,
therefore, you’ll often generate output for users of the website. In
that case, there’s no way around the HTML elements or attributes.
For example, you can do anything from a classic input/output directly
into a text field to a DOM manipulation where you dynamically
modify a web page or parts of it at runtime to produce output. How
you can do this with JavaScript is covered separately in Chapter 18.

The JavaScript in Listing 17.6, included in the HTML document in
Listing 17.7, shows such an example. As soon as you click the
button via the button element, a click event gets triggered,
whereupon the JavaScript with the changeText() function gets
executed via onClick="changeText()". The function changes the
content of the first p element it finds and replaces the text in between
with "The button was pressed! (1x)", where the value of counter is
increased by 1 after each new confirmation:
let counter = 1;
function changeText() {
 document.querySelector('p').innerHTML =
 "The button was pressed! (" + counter + "x)";
 counter++;
}

Listing 17.6 /examples/chapter017/17_3_3/js/pushButton.js

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>JavaScript test</title>
</head>

<body>
 <h1>A JavaScript during execution</h1>
 <p>Test JavaScript</p>
 <button type="button" onclick="changeText()">
 Press button
 </button>
 <script src="js/pushButton.js"></script>
</body>
</html>

Listing 17.7 /examples/chapter017/17_3_3/index.html

At this point, you don’t have to worry about the JavaScript code and
how to use it in the HTML document. This example simply
demonstrates a classic web development process of using
JavaScript to access HTML elements to customize output for users.

Figure 17.11 The HTML Document with a Button

Figure 17.12 When the Button Is Pressed, a JavaScript Gets Executed That Manipulates
the Content of the First <p> Element It Finds

17.3.4 Running JavaScript without a Web Browser

In the following sections and the next chapter, you’ll mainly use pure
JavaScript code to learn the language. The output is predominantly
done by using console.log(). Instead of using an HTML document
here where you include the JavaScript with the script element for
execution, only to then view the output in the console, there’s a more
convenient way to run JavaScript without a web browser. For this
purpose, you need to install Node.js (from https://nodejs.org) on your
machine. Once you’ve installed Node.js, you can execute a
JavaScript in the command line using the node command as follows:
$ node script.js

Figure 17.13 Node.js Allows You to Run JavaScripts without the Web Browser

Prerequisite for this example: The file name is script.js, and you’re in
the JavaScript script.js directory in the command line. Of course, it
can even be more convenient if you use Node.js in conjunction with
Visual Studio Code, where you can find the terminal and the code
editor right under the same hood.

No DOM with Node.js

Logically, there is no DOM available with Node.js either because
unlike JavaScript in the web browser, you aren’t dealing with a
web page here.

https://nodejs.org/

Figure 17.14 The Perfect Duo for Writing JavaScript: Node.js + Visual Studio Code

17.3.5 Annotating JavaScript Code with Comments

In practice, it can be useful and sometimes necessary to add
comments to the JavaScript code or to comment out a JavaScript
code completely. You have the option to write a one-line or a
multiline comment.

A one-line comment must be introduced with //. Everything after the
// characters up to the end of the line will be ignored and used as a
comment. This is also true if you write a JavaScript statement after
//:
// I am a comment
// console.log('I am commented out');

If your comment spans multiple lines or you want to comment out a
multiline block of JavaScript code, you need to introduce that
multiline comment with /* and end it with */. Let’s take a look at an
example:
/*
 This is a comment,
 which can spreads across
 several lines.
*/

17.4 Using Variables in JavaScript
As is the case in almost any other programming language,
JavaScript allows you to create and use variables. You need
variables if you want to further process values or data in your script
that have been entered by a user via an HTML form or read from a
database, for example. Such a variable has a fixed memory address
in the memory, which the JavaScript interpreter can access when
needed.

JavaScript isn’t a statically typed programming language, but a
weakly typed or dynamic programming language, so such a variable
can be of any type such as a string (string, text) or a number
(integer, floating-point number). A variable can also store more
complex forms of types and be an array (field of certain types) or
even an object.

Term Definition: Statement(s)

A statement is almost any line of a script that ends with a
semicolon. Consequently, statements are also the declaration and
initialization of variables or the calling of functions.

In JavaScript, variables can be declared using either the let or var
keyword. You can also initialize a variable name with values right at
the declaration by using the = character. Such a variable initialization
is similar to what happens in algebra:
let width = 5; // Number
let pi = 3.14; // Number
let aText = "Message"; // String
let userName = 'John Doe'; // String
let bigNum = 123456789; // Number

Instead of the keyword let you can also use var here. You’ll get to
know the difference when we come to the scope of variables.
Generally, however, you should use the keyword let for the
definition of variables.

The variable name (also called identifier) can be almost any name.
However, it must begin with a letter and mustn’t contain any spaces
or special characters. The only special character you can use is the
underscore at the beginning or inside the variable identifier. The $
character is theoretically allowed here at the beginning or within the
name. In addition, you mustn’t use JavaScript keywords as variable
names. It’s also important to know that there’s a distinction between
uppercase and lowercase. With var01 and Var01, you have two
different variables (variable names).

Table 17.1 contains a list of JavaScript keywords; these can’t be
used as variable names.

JavaScript Keywords
async await break case class catch

const continue debugger default delete do

else enum export extends finally for

function if implements import in interface

instanceof let new package private protected

public return static super switch this

throw try typeof var void while

with yield

Table 17.1 Reserved Keywords in JavaScript

As mentioned at the beginning, unlike strictly typed programming
languages such as C++ or Java, JavaScript doesn’t require a type to

be specified. JavaScript determines the type dynamically when a
value is assigned to the variable. Although you should avoid it, it’s
theoretically possible to change the type at program runtime.

Everything you put between single or double quotation marks will be
recognized by the interpreter as a string (text), for example:
let aText01 = "I am a string."; // String
let aText02 = 'I am also a string.'; // String

If, on the other hand, you assign a numeric value to a variable name
without enclosing this value in single and double quotation marks,
the interpreter will recognize this as a numeric value:
let width = 5; // Number
let pi = 3.14; // Number
let textnumber = "12345"; // Caution! String

Terminating Statements with a Semicolon

In JavaScript, each statement is terminated with a semicolon. If
you don’t use a semicolon at the end of a statement, and the line
break is located at this position, JavaScript tries to insert the
semicolon itself. Although you can omit the semicolon at the end
of a statement, it’s recommended to end even individual
commands or a sequence of commands with a semicolon. This
also applies when you assign values to a variable name.

Because there’s frequent talk about initializing and assigning values,
we’ll briefly explain what this means here. You can create a variable
with the keyword let as follows:
let myname; // Agreement on a variable
console.log(myname); // Output: undefined

Such an empty agreed variable without an assigned value has a
value called undefined. After creating an empty variable, you can

assign a value to it at any time using the assignment operator
(again):
let myname;
myname = "Sample name"; // Value assignment
console.log(myname); // Output: Sample name

You can initialize a variable with a value along with the agreement.
Such a variable initialization looks as follows:
let myname = "Sample name";
console.log(myname); // Output: Sample name

Similarly, you can arrange more than one variable at the same time
or in one statement separated by commas:
let myname, myfname, myage;

Of course, you can do the initialization right here when agreeing on
multiple variables:
let myname = "Doe", myfname = "John", myage = 40;
console.log(myname + "," + myfname + "," + myage); // Output: 'Doe, John',

Likewise, once you’ve assigned a value to a variable, you can assign
a new value to it. In the following example, myname first receives the
value "Doe" and is then assigned the value "Deer":
let myname = "Doe";
console.log(myname); // Output: Doe
myname = "Deer";
console.log(myname); // Output: Deer

17.4.1 Defining Constants

JavaScript also allows you to define constants. The keyword const is
available for this purpose. You can’t change the value of such a
constant after initialization. In practice, constants are usually written
in capital letters at the beginning of the code, for example:

const TVAL = 'Test output'; // Create constant
console.log(TVAL); // Output: Test output
TVAL = 'New test output'; // Error! The order can no longer be changed.
console.log(TVAL);

If you try to change the value of a constant, the web console usually
displays an error message. However, the behavior also depends on
the runtime environment. Some of them simply ignore this
assignment without throwing an error.

Figure 17.15 Google Chrome Returns an Error Message in the Console When Trying to
Change a Constant Variable

17.4.2 Strict Mode Using “"use strict"”

A JavaScript is executed in default mode without any further
precautions. You can use a strict mode where certain restrictions
exist. This sounds a bit negative at first, but it’s actually pretty useful
because JavaScript behaves much more strictly in this mode than in
standard mode. Some constructs that can be executed without
problems in standard mode will result in an error in strict mode. For
example, erroneous or problematic code that’s accepted in standard
mode will result in an error message in strict mode. Outdated
JavaScript language constructs also trigger an error message. When
using strict mode, it’s sufficient to write the following statement at the
beginning of the JavaScript program:
"use strict";

The following example reports an error because there’s no let, var,
or const in front of the variable myval, which isn’t necessarily an

error, but it implicitly creates a global variable, which you shouldn’t
do:
"use strict";
myval = "A text"; // Error in strict mode
console.log(myval);

Figure 17.16 Thanks to Strict Mode, the JavaScript Reports an Error Here

The problem with a global variable without let is that this variable is
implicitly defined as a property of the global object, which is, for
example, the window object in the web browser. Such global variables
could override properties of the global object.

The strict mode makes sure that the use of error-prone features of
JavaScript is simply not allowed. This leads to a script abort for
previously ignored errors (without "use strict").

17.5 Overview of JavaScript Data Types
As you already know, unlike other languages such as C++ or Java,
you don’t have to specify a data type when declaring variables
because this is determined at runtime in JavaScript based on the
value that has been passed.

JavaScript defines multiple data types. The primitive types are
string, number, boolean, and symbol, and the special types include
undefined and null. In addition to the primitive data types, JavaScript
also has the composite data type object for objects.

You can determine the type of a variable using the typeof operator.
Possible return values are string, number, boolean, object, function,
symbol, and undefined.

17.5.1 Number Data Type (Numbers)

In JavaScript, there’s no difference between integers and floating-
point numbers. According to the ECMAScript standard, there’s no
specific data type for integers, and all data types for numbers are
represented internally by JavaScript as 64-bit floating-point values.
For example:
let integerValue = 12345;
console.log(typeof integerValue); // Output: number
let floatingPointValue = 123.123;
console.log(typeof floatingPointValue); // Output: number

If a value doesn’t correspond to a correct numerical value, NaN (NaN =
not a number) will be used as the value. If the value range has been
exceeded or fallen below, Infinity or ‐Infinity will be used as the
value. For this reason, there are two constants:

Number.POSITIVE_INFINITY and Number.NEGATIVE_INFINITY. If you
want to determine the smallest or largest possible number you can
use, the Number.MIN_VALUE and Number.MAX_VALUE constants are
useful:
console.log(Number.MIN_VALUE); // Output: 5e-324
console.log(Number.MAX_VALUE); // Output: 1.7976931348623157e+308
console.log(Number.NEGATIVE_INFINITY); // Output: -Infinity
console.log(Number.POSITIVE_INFINITY); // Output: Infinity

When specifying floating-point values, you must use a period instead
of a comma. For higher or smaller floating-point values, you can use
the E notation. For example, a specification of 5e-3 corresponds to
0.005. With -3, the decimal point is shifted to the left by as many
digits as are indicated after the E character. The same is true for
54321e3, which moves the decimal point three places to the right
because the number after E is positive. Thus, 1.2e4 corresponds to
the value 12,000:
let floatingPointValue1 = 5e-3;
console.log(floatingPointValue1); // Output: 0.005
let floatingPointValue2 = 1.2e4;
console.log(floatingPointValue2); // Output: 12000

17.5.2 String Data Types (Strings)

Strings are used to represent text and consist of a string of zero or
more 16-bit characters according to the UCS-2 encoding for letters,
digits, and punctuation marks. You can insert such string literals in
JavaScript by placing a text between single or double quotes. In
JavaScript, there are no primitive data types for a single character as
there are in other programming languages.

Let’s take a look at a simple example:
let aText1 = "String in JavaScript";
console.log(typeof aText1); // Output: string
let aText2 = 'Also a string in JavaScript';

console.log(typeof aText2); // Output: string
let aText3 = "12345";
console.log(typeof aText3); // Output: string

Whether you use single or double quotation marks is up to you. A
good style is to choose one version and then use it consistently.
What’s more convenient about using single quotes is that you can
use special characters within the string without an escape sequence,
which is an advantage especially because double quotes are often
used in some countries. For example:
let aText4 = "Quotation marks in \"text\""; // escape sequence needed
console.log(aText4); // Output: Quotation marks in "text"
let aText5 = 'Quotation marks in "text"'; // without escape sequence
console.log(aText5); // Output: Quotation marks in "text"

Escape sequences are control characters that you can insert into
strings as variable values. Such control characters are preceded by
the character \ followed by the letter marking the control character.
For example, you can insert a line break using the control character
\n, or you can insert a tab feed via \t:
let aText6 = "Insert a line break\n"; // line break at the end
let aText7 = "The text will be output in the next line.\n";
let aText8 = "\tThe text will be indented.\n";
console.log(aText6 + aText7 + aText8);

Figure 17.17 The Example with a Line Break and a Tab Feed during Execution

The most important control characters that are relevant in JavaScript
applications are listed in Table 17.2.

Control
Characters

Meaning

Control
Characters

Meaning

\' Outputs a single quote character inside the string.
\" Outputs a double quote character inside the string.
\\ Outputs the backslash character inside the string.
\n Outputs a line break. However, the line break applies

only to the console or the standard JavaScript tip
dialogs. For a line break on web pages, of course,
you use
 instead of \n.

\t Outputs the tab character, which means an
indentation to the right. This control character also
affects only the console or a standard message
dialog.

\uXXX This enables you to add a Unicode symbol. For this
purpose, hexadecimal values are used. A
specification such as \u00A9 adds the © character to
the string.

Table 17.2 Control Characters for Strings

Term Definition: Literals

One term you may come across more often is “literal,” which
simply refers to the value that’s fixed in the code behind a string or
a number. Values such as 56, "Doe", 3.1415, 'Are you sure?", or
2016 represent literals that literally occur as shown in the code:
let year = 2016; // 2016 is a literal.
let name = "Doe"; // "Doe" is a literal.
let query = 'Are you sure?'; // 'Are you sure?' is a literal.
let pi = 3.1415; // 3.1415 is a literal.

If you want to link individual strings together, you can do this using
the + operator:
let text1 = "to be ";
let text2 = "not ";
let text3 = text1 + "or " + text2 + text1;
console.log(text3); // Output: to be or not to be

let text4 = "The value is: " + 123.123 + 100;
console.log(text4); // Output: The value is: 123.123100

When you mix numbers and strings with the + operator, the result will
always be a string, as you can see in the example with "The value
is: " + 123,123 + 100.

17.5.3 Template Strings

Template strings are string symbols that may span multiple lines and
also allow embedded JavaScript expressions. Such template strings
are enclosed between two grave accents (`) instead of between
double or single quotes. This allows you to do without line breaks
using the \n sequence. For example:
let text1 = "Last line";
console.log("First line\n" + "Second line\n" + text1);
// First line
// Second line
// Last line

You can write the same with the template strings as follows:
...
console.log(`First line
Second line
${text1}
`);

I think this looks much clearer because you can enter the text as you
want it to be displayed. To insert JavaScript expressions into the

strings, you can use the notation ${expression}. In the example, the
value of the variable text1 was used as an expression.

17.5.4 Boolean Data Type

The Boolean data type can have only two values with the literals
true and false. A Boolean value is a truth value and usually
expresses the validity of a condition or expression. In addition,
conditions that contain the value 0, an empty string, NaN, undefined,
or null are interpreted as false. All other values are true. There’s
nothing more to say about this at the moment. Nevertheless, here
are a few simple string and number comparisons for testing:
let val1 = 123;
let val2 = 234;

let isAdmin = false;
let isUser = true;

console.log(val1 > val2); // Output: false
console.log(val1 < val2); // Output: true

You’ll use the Boolean values even more often in practice when it
comes to branching within a JavaScript.

17.5.5 Undefined and Null Data Types

A variable that hasn’t yet been assigned a value has the value
undefined. In addition, a nonexistent object property or nonexistent
function parameters have the value undefined. For example:
let myname;
console.log(name); // Output: undefined
myname = "Wolfe";
console.log(myname); // Output: Wolfe

With the datatype null, on the other hand, you represent an empty
object. In the following example, I anticipate the objects theme and
create a mname object from last name and first name. I’ll then assign
the value null to the mname object, which deletes the contents of the
object. This specifies that the object variable hasn’t been assigned
any values, that is, it’s an empty object.
let mname = {
 lname: 'Wolfe',
 fname: 'Jason'
};
console.log(mname); // Output: {lname: "Wolfe", fname: "Jason"}
mname = null;
console.log(mname); // Output: null

Unlike undefined, null is a JavaScript keyword. The type null was
listed as a data type, but a typeof null returns the type object.
Variables you’ve initialized with null are thus of the type object. An
uninitialized variable, on the other hand, is undefined. Unlike null,
undefined isn’t meant to be assigned to a variable. The value
undefined simply indicates that a variable hasn’t yet been initialized
with a value. null, on the other hand, is an empty object.

17.5.6 Objects

Objects are a collection of properties and methods, where a method
is a function, and a property is a value or set of values of an object.
In addition to browser objects and predefined objects, you can also
create and use your own objects in JavaScript. The topic is quite
important in JavaScript, so we won’t just cover it here in a
subsection. The objects would also come too early at this point
because you still need some basics in JavaScript itself for that. You
can learn more about objects in JavaScript in Chapter 18.

17.5.7 Converting Data Types

Because JavaScript is very flexible and dynamic when it comes to
data types, and because you can convert data types automatically
during execution, I’ll get a little more specific about type conversion
here. The following example shows what is meant by dynamic
typing:
let val = 123;
console.log(typeof val); // Output: number
val = "Now a string";
console.log(typeof val); // Output: string

While such an example isn’t intended to form a precedent, it shows
how the variable val is first used as a numerical value, and after it
was assigned a string, the data type got converted into a string.

You’ve already seen something similar when you added a string with
a numerical value using the + operator, whereupon the number was
converted to a string:
let text = 5 + " You should be friends";
console.log(typeof text); // Output: string

However, this only applies to the + operator in conjunction with
strings, which is used to link them together. On the other hand, if you
use other operators such as -, *, or /, JavaScript no longer converts
the numbers to strings, but tries to convert the strings to numbers.
Consider this example:
let text1 = "100" - 44; // 56
console.log(typeof text1); // Output: number
let text2 = "100" + 44; // "10044"
console.log(typeof text2); // Output: string
console.log("10" / "2"); // Output: 5

For "100" - 44, the string "100" is converted to the number 100. The
reason is that the arithmetic minus operator expects two numbers as
operands. The same would happen if you were to calculate "100" -

"44". Both strings would be implicitly converted to numbers. You can
see the example here with "10" / "2". With "100" + 44, however, a
string "10044" would be created because this is the standard
behavior when the + operator is used in connection with strings.

After all, JavaScript can’t know which data type you need at any
given moment. If you want to perform an addition operation on an
example such as “100” + 44, you must explicitly convert the string
“100” to a number. For such purposes, JavaScript provides the
functions parseInt() and parseFloat(). You can use parseInt() to
convert a string to an integer and parseFloat() to convert a string to
a floating-point number. Here’s an example with parseInt():
let iVal = parseInt("100") + 44; // 144
console.log(typeof iVal); // Output: number

In this example, the string "100" was first converted to an integer
with parseInt(). Because the two operands to the right and left of
the + operator are numbers, an addition is performed, and a number
is passed to iVal as the result. For such conversions from a string to
a number, you must check that the conversion was done properly
and that the number isn’t NaN afterwards. Often the data doesn’t
come as a simple literal as in the examples, but is entered by a user
or read from a database. For this purpose, you can use, for example,
the function isNaN(), which returns true if the number is invalid.
Otherwise, it returns false. Let’s take a look at the following
example:
let notANumber = "100 elements" - 50;
console.log(typeof notANumber); // Output: number
console.log(notANumber); // Output: NaN
console.log(isNaN(notANumber)); // Output: true

The arithmetic calculation of "100 elements" - 50 doesn’t provide a
meaningful value. Although typeof returns number here, the output of
the variable notANumber confirms that no valid value was calculated

and stored here, which is why the result is NaN. The check using the
isNaN() function confirms this too. The isNaN() function is therefore
needed because it isn’t possible to check the value for NaN with ==.

17.6 Arithmetic Operators for Calculation
Tasks in JavaScript
Like any other programming language, JavaScript has all the
common arithmetic operators for numerical calculations on board.
Table 17.3 provides an overview of the arithmetic operators in
JavaScript.

Operator Meaning Example
+ Addition a = b + c;

- Subtraction a = b – c;

* Multiplication a = b * c;

/ Division a = b / c;

% Remainder of a division a = b % c;

Table 17.3 Overview of the Arithmetic Operators

The use of arithmetic operators is relatively simple, as the following
example shows:
let val1 = 101 + 202;
console.log(val1); // Output: 303
console.log(88 - 22); // Output: 66
let val2 = val1 * 3;
console.log(val2); // Output: 909
console.log(val2 / 4); // Output: 227.25
console.log(val2 % 4); // Output: 1

As usual in mathematics, when multiple operators are used, the rule
applies that multiplication and division tasks are done before addition
and subtraction tasks. Thus, in an expression such as 15 – 2 * 5, 2 is
first multiplied by 5, then the result of the expression 2 * 5 is
subtracted from 15, resulting in 5. Thus, the highest priority

arithmetic operators are *, /, and %. Only then do + and – follow and
finally the assignment operator =. Except for the assignment
operator, arithmetic operators of the same rank are evaluated from
left to right.

Consider this example:
let val3 = 100 / 2 - 5 * 4;
console.log(val3); // Output: 30

In this example, the subexpressions 100 / 2 (= 50) and 5 * 4 (= 20)
are calculated first, and then the result of these subexpressions is
subtracted (50 – 20), resulting in 30. If you don’t want to perform a
calculation according the preceding rule, you can use parentheses.
The use of parentheses has the highest priority and, if nested, gets
evaluated from the inside out. Here’s an example:
let val4 = 5 + 6 * 2; // = 17
let val5 = (5 + 6) * 2; // = 22

In the first example, 6 * 2 (= 12) is first calculated as usual and then
5 is added, which leads to the result 17. In the second example
because of the higher priority of parentheses over operators, the
expression between the parentheses, 5 + 6, is calculated first (= 11)
and then multiplied by 2 (= 22). Often the use of parentheses is
helpful because it makes the code more readable. For example, a
calculation such as (100 / 2) - (5 * 4) reads better than 100 / 2 – 5 *
4.

Furthermore, in JavaScript, in addition to the ordinary assignment
operator =, you can find arithmetic compound assignment operators
such as +=, -=, *=, /=, and %=. Again, the meaning is the same as
listed in Table 17.3. With the arithmetic assignment operators,
instead of a calculation like valA=valA+valB;, you can just write
valA+=valB; quickly and briefly. The same applies to the other
versions. However, when using compound assignment operators,

there must be a variable on the left. In terms of priority, these
operators are on the same level as the assignment operator.

Mathematical Functions

In JavaScript, there’s a Math object that allows you to use various
mathematical functions. In general, you should use Math if you
need mathematical calculations without rounding errors. For
example, Math.random() returns a random number. There are also
more complex mathematical methods such as Math.sqrt(x), which
returns the square root of x.

17.7 Conditional Statements in JavaScript
Conditional statements or branches allow you to influence the flow of
the program by defining a condition and thus deciding at which point
the program should be continued. The following options are available
to you:

You can use if to branch to a block of statements that are
executed only if the condition in the parentheses of if() equals
true. This is also called a conditional branch.

You can use else with a block of statements that will be executed
only if the previously checked if condition was equal to false.

else if can be used with a block of statements to test another
condition if the preceding if was equal to false. After a preceding
if, you can use multiple else if conditions. Alternatively, you can
use switch() for such a multiple branch.

In your daily work, you’ll probably use conditional branching with if
and the alternative else most often. Here’s the syntax of such an if-
else construct:
if (condition==true) {
 // statements if condition is true
}
else {
 // statements if condition is false
}

As a condition itself, you can use any expression that can be
evaluated to a Boolean truth value. I’ll describe the Boolean truth
value in the next section. At this point, it should be noted that the
alternative else branch is optional here.

Statement Blocks

You already know a block with statements (or statement block)
from the functions; that is, several statements are combined in one
block. Such a block starts with an opening curly bracket ({) and
ends with a closing curly bracket (}). JavaScript doesn’t require a
semicolon at the end of the curly bracket.

17.7.1 “true” or “false”: Boolean Truth Value

A Boolean truth value is specified as true or false in JavaScript.
Simply put, it can be said that anything containing a true value
equals true, and anything without a true value is false.
Nevertheless, JavaScript isn’t limited to the Boolean values true and
false. There are also values that are considered false (also called
falsy), such as undefined, null, 0, or "". Such falsy values are
treated as false. Other values that aren’t falsy, on the other hand,
are considered true and are truthy. Thus, objects (without
properties), functions, or arrays (with length 0) are truthy. This means
that "" is equal to falsy, and " " is truthy. Arrays are described
separately in Chapter 18, Section 18.2.

Real values and therefore true are the following examples:
1234
1.234
-1
"A text"
5 + 1 * 2

Here’s an example for demonstration purposes:
let mytext = 'A text';
if (mytext) {
 console.log('"mytext" is a valid value.'); // <- Output
} else {

 console.log('"mytext" is an invalid value.');
}

Here, the if condition equals true, so mytext is a valid value, which
is why the corresponding output is executed in the curly brackets
following it.

The following examples have no real values and therefore are
always false:
0 // The number 0 is false.
"" // An empty string is false.
var val01; // Empty variable is undefined and therefore false.
var val02 = false;
100 / "text" // is NaN (= Not a Number), therefore false
null // null is always false.
NaN // Not a Number, no number is false.

Here’s another example:
let mytext = "A text";
let val01 = 100;
if (val01 / mytext) {
 console.log('Calculation successful');
} else {
 console.log('NaN -> no valid value.');
}

Here the statements would be executed in the alternate else block
because the if condition returns false. The division of 100 / "A text"
results in the symbolic value NaN (NaN = not a number) and is
therefore invalid and false.

17.7.2 Using the Various Comparison Operators in
JavaScript

Besides the possibility to check whether a value is valid and equals
true or just an invalid value and thus returns false, you can compare
variables and values using the various comparison operators.
Depending on whether the comparison is true or false, true or false

will be returned here as well. To perform comparisons, JavaScript
provides the comparison operators listed in Table 17.4.

Operator Description Example (x=6; y=5)
== Same as x==5; // false

!= Unequal to x != 5; // true

=== Same value and type x === y; // false
x === 6; // true

!== Different value or different type x !== y; // true
x !== 6; // false

> Greater than x > y; // true

< Less than x < y; // false

>= Greater than or equal to x >= y; // true
x >= 6; // false

<= Less than or equal to x <= y; // false
x <=6; // true

Table 17.4 Comparison Operators in JavaScript

17.7.3 Using the “if” Branch

With the background knowledge of Boolean truth values and the
comparison operators, you’ll be able to apply the if branches in
practice. Let’s take a look at a simple example:
let age = prompt('How old are you: ');
if (age >= 18) {
 console.log("Access granted")
} else {
 console.log("Access denied");
}

When you run the example, the prompt() method opens a dialog in
the browser window with an input field and an OK and Cancel

button. The value you enter here in the input field is returned by
prompt() and assigned to the variable age in the example. The if
statement then checks whether the value of the variable age is
greater than or equal to 18. If this condition is true, a corresponding
output will appear in the console. If the condition is false, the
statement is executed in the alternate else branch.

At this point, I’d like to share a few words about the comparison
operators === and !==. These are necessary because with
comparison operators, an implicit type conversion is performed
before the comparison so that these values can be compared. In the
following example, a string is compared to an integer:
let strVal = "1234"; // number
let iVal = 1234; // string
if (strVal == iVal) { // true because type conversion
 console.log("Both values are equal");
} else {
 console.log("Values are different")
}

In this example, the comparison of "1234"==1234 returns true due to
a type conversion. For such purposes, the operators === and !== are
available, which compare not only the value but also the type. So, if
you replace the == operator with the === operator in the example,
true will no longer be returned because the value is the same but
the type isn’t.

17.7.4 Using the Selection Operator

You can shorten an if-else construct with the selection operator.
This is very useful, for example, if you want to assign a specific value
to a variable depending on the condition. The structure of the
operator is as follows:
let val = condition ? value1 : value2;

Here the value1 value is assigned to the variable val if condition is
true. If condition is false, the value2 will be assigned to val. With
regard to the if-else construct, this roughly corresponds to the
following:
let val;
if (condition) {
 val = value1;
} else {
 val = value2;
}

The else branch can be omitted if val is initialized with false at the
beginning. However, this is also more about demonstrating the
counterpart of the selection operator.

Here’s an example of the selection operator, where prompt() is used
to query a pseudo password, and according to the input, true or
false gets assigned to the isAdmin variable:
let pwd = prompt('Enter password: ');
let isAdmin = pwd == 12345678 ? true : false;
console.log(isAdmin);

17.7.5 Logical Operators

The logical operators in JavaScript are && (AND), || (OR), and !
(NOT). Logical operators are used with truth values. If you use
numbers, they will be implicitly converted to a truth value before they
are linked with &&, ||, or !.

Operator Meaning
&& Expressions linked with the AND operator return true

only if all expressions are true. Example:
if (ival1 > 0 && ival2 > 0) {
 // Both expressions are true = true.
}

Operator Meaning
|| Expressions combined with the logical OR operator

return true if at least one of the expressions is true.
Example:
if (ival1 > 0 || ival2 > 0) {
 // At least one expression is true = true.
}

! You can use the logical NOT operator to negate an
expression. So, you can turn “true” into “false” and vice
versa. Example:
if(!(ival > 0)) {
 console.log("ival is not greater than 0");
}

Table 17.5 The Logical Operators in JavaScript

Here’s a simple example in which you’re again supposed to enter a
value between 1 and 100 via the prompt of a prompt() dialog:
let val = prompt('Enter a value from 1 - 100: ');
if (val >= 1 && val <= 100) {
 console.log("The value matches the requirements.")
} else {
 console.log("Wrong input: " + val);
}

Using the logical AND, the expressions of whether the entered value
val is equal to or greater than 1 AND equal to or less than 100 have
been linked here, and true will only be returned if both expressions
are true.

If you had used the logical OR operator || instead, true would always
be returned if the entered value is greater than or equal to 1 because
the second expression wouldn’t have been checked at all. However,
if the value is negative or 0, the OR operator in the example also
evaluates the second expression. In the case of a link with the
logical OR, the check aborts at the first true because the condition is
that at least one link is true.

Linking More Expressions Together

Of course, you can link more than two expressions together or mix
the && and || operators. However, you should keep in mind the
readability of the source code.

17.7.6 Multiple Branching via “switch”

If you want to check multiple cases, you can theoretically use
multiple if queries in a row, or you can use the case distinction,
switch. In JavaScript, switch supports values with any type. It’s even
possible to have values determined dynamically first via function
calls. In many other programming languages, these values must be
constants. For this purpose, here’s a theoretical construct of a switch
case distinction:
switch(expression) {
 case label_1:
 statements;
 [break];
 case label_2:
 statements;
 [break];
...
 default:
 statements;
}

In this case distinction, a matching value in case is searched for the
expression in switch. If a case marker matches the switch
evaluation, the program execution takes place after this case marker.
If no case marker matches the switch evaluation, you can use an
optional default marker, which will be executed as an alternative. Of
particular importance in a switch case distinction are the break
statements at the end of a case marker. You can use break to instruct
the program to jump out of the switch block and continue with the

program execution after. If you don’t use a break statement, all
further statements (including the case markers after them) in the
switch block will be executed until the next break statement or the
end of the block has been reached.

Here’s a simple example to demonstrate switch in use:
switch (new Date().getDay()) {
 case 0:
 console.log("Today is Sunday");
 break;
 case 6:
 console.log("Today is Saturday");
 break;
 default:
 console.log("Today is an ordinary weekday");
}

Here, a Date object is created in switch, which is why the getDay()
method is called. The getDay() method returns a day of the week as
a number. 0 is returned for Sunday, 1 for Monday, and so on to 6 for
Saturday. In the example, the return value is compared with case
markers 0 (for Sunday) and 6 (for Saturday). If one of the markers
matches, a corresponding output will occur in the JavaScript
console. If none of the case markers apply, the return value is 1, 2, 3,
4, or 5, and it’s a normal weekday, so that no case marker will be
used here anymore but default.

17.8 Multiple Repetitions of Program
Statements via Loops
Loops are very suitable if you want to repeat certain statements
multiple times. JavaScript supports several types of loops, which I’ll
briefly describe in the following sections.

17.8.1 Increment and Decrement Operators

An increment or decrement increases or decreases the value of a
variable by 1. These two operators are predominantly used with
loops. The operators are written in JavaScript as follows:

Operator Meaning
++ Increment operator; variable is incremented by 1.
-- Decrement operator; variable is decremented by 1.

Table 17.6 Increment and Decrement Operators

There are two possibilities for the use of these two operators: postfix
notation and prefix notation.

Usage Meaning
val++ Postfix notation; increments the value of val, still passes

the old value to the current expression
++val Prefix notation; increments the value of val and passes it

immediately to the current expression
val-- Postfix notation; reduces the value of val, still passes the

old value to the current expression

Usage Meaning
--val Prefix notation; reduces the value of val and passes it

immediately to the current expression

Table 17.7 Postfix and Prefix Notations

Here’s a simple example to demonstrate the increment operator (++)
in more detail. The same applies to the decrement operator (--).
let iVal = 1;
console.log("iVal = " + iVal); // Output: iVal = 1
iVal++;
console.log("iVal = " + iVal); // Output: iVal = 2
console.log("iVal = " + iVal++); // Output: iVal = 2
console.log("iVal = " + iVal); // Output: iVal = 3
console.log("iVal = " + ++iVal); // Output: iVal = 4

The first time the increment operator is used, the old value is still
passed to the current expression. Because the increment is standing
alone here, this is also the current expression. The next line of
output, on the other hand, is the next expression, which is why the
value of iVal is 2 in this case. You’ll understand it better if you run
iVal++ inside console.log() in the next line. Here the output is still 2
because the increment is executed within the current expression.
The current expression ends at the semicolon where the late
increment (and, if used, decrement) takes effect. The next
expression in the next line has the expected value 3. If you want to
increment the value of a variable immediately within an expression,
you must use the prefix notation instead of the postfix notation, as I
did in the last line with ++iVal.

17.8.2 The Header-Controlled “for” Loop

You’ll probably want to use the flexible for loop most often. The
syntax for this loop looks as follows:

for (initialization; condition; increment/decrement) {
 // statement block that will be executed
}

Initialization is executed only once when the loop is started and is
usually used to set a count variable for the loop. Condition, on the
other hand, usually represents the condition for the statements in the
statement block of the loop to be executed. As long as the condition
in Condition equals true, the loop will be executed again. If false,
the loop terminates, and program execution continues after the
statement block of the for loop. As a condition, it’s often checked
whether the count variable corresponds to a certain value.
Increment/Decrement, on the other hand, is always executed when
the statements in the statement block have been executed. Most of
the time, you want to change the count variable of the loop here.

A simple use of the for loop could look as follows:
for (let i = 0; i < 3; i++) {
 console.log(i + 1 + "-th loop pass");
}

For demonstration purposes, the loop was output to the console. In
the process, the statement was executed three times in the loop.
The count variable i was first set to 0, the condition i<3 was checked
and then the statement block after it was executed. The output in the
JavaScript console shows how many times the loop has been
executed. Next, the loop variable is incremented by 1 with i++, and
the condition i<3 is checked again, which (i=1) is still true. The
process gets repeated until the value of i equals 3 and thus the
condition i < 3 returns false.

The output of the example in the console looks as follows:
1st loop pass
2nd loop pass
3rd loop pass

All Three Expressions in the “for” Loop Are Optional

All three expressions in the for loop are optional and can be
omitted. In any case, you must use the two semicolons in the for
loop. Theoretically, for(;;) would be a valid for loop. Note,
however, that if you omit the second expression, you’ll create an
infinite loop, which could crash the browser sooner or later. If you
use an infinite loop, you should use a break inside this loop. Such
a break can be used to jump out of the loop.

17.8.3 The Header-Controlled “while” Loop

The while loop is a header-driven loop and is executed as long as
the condition in while returns true. Here’s the syntax:
while (condition) {
 // statement block that will be executed
}

In practice, you can loop through a block of statements using the
while loop as follows:
let i = 0; // Initialize counter variable
while (i < 3) { // Check condition
 console.log(i + 1 + "-th loop pass");
 i++; // Increment count variable
}

You know the example from the for loop, except that here you’ve
initialized the count variable before the loop pass, and you increment
the loop variable itself at the end of the statement block. The danger
in this case, in contrast to the example with the for loop, might be
that you forget to increment the variable for the loop condition. In
practice, a while(condition) corresponds to a for(;condition;).

17.8.4 The Footer-Controlled “do-while” Loop

In the do-while loop, as opposed to the while loop, the condition isn’t
checked until the end, when the statement block has been executed.
Thus, in the do-while loop, the statement block of the loop is
executed at least once before the condition gets checked. Here’s the
syntax for the do-while loop:
do{
 // statement block that will be executed
} while (condition);

Here’s an example in which a loop pass occurs three times:
let i = 0;
do {
 console.log(i + 1 + "-th loop pass");
 i++;
} while (i < 3);

17.8.5 Ending the Statement Block Using “break”

A statement that can be very useful within a loop is the break
statement. If you use a simple break inside a statement block of the
loop, it will jump out of the loop execution, and the script will continue
after the loop. Here’s a short code snippet:
let i = 0;
while (i < 10) {
 console.log(i + 1 + "-th loop pass");
 i++;
 if (i === 5) {
 console.log("End loop with break");
 break;
 }
}

As a matter of fact, this loop should be run 10 times according to the
condition in while. However, this loop runs only 5 times because
then the if condition i==5 returns true so that the break statement
ensures that the loop terminates prematurely.

17.8.6 Jumping to the Start of the Loop via “continue”

With continue, you end a loop pass and jump back to the beginning
of the loop. This is useful if you don’t want to execute the further loop
pass due to a condition. Let’s take a look at a simple example:
let i = 0;
while (i < 10) {
 i++;
 if (i % 2 === 1) {
 continue;
 }
 console.log("Value divisible by 2: " + i);
}

In the example, a loop is incremented from 1 to 10 and passed
through. Each loop pass checks whether the value of i % 2 (i modulo)
results in a remainder. If the condition is true, continue jumps back
to the beginning of the loop. If the condition is false, it’s a number
divisible by two or an even value, and the number is output.

17.9 Summary
This chapter was just a little roundabout way to introduce you to how
you can use the basic JavaScript techniques. In the next chapter,
you’ll expand this knowledge to include objects, arrays, and
functions before slowly moving on to developing JavaScript
applications that run directly in the web browser. You’re now familiar
with the following basic JavaScript programming techniques, among
others:

Write and run JavaScript programs.

Create an output.

Handle variables and values.

Work with the basic data types of JavaScript.

Use branches and loops.

18 Arrays, Functions, and
Objects in JavaScript

Objects and object-oriented programming are particularly
important in JavaScript. Objects are the main data types in
JavaScript. Much of JavaScript is somehow an object. For
JavaScript, a web page is virtually already an object. Arrays
and functions are also essential topics that you have to deal
with every day in JavaScript development.

Because you’ll be dealing a lot with arrays, functions, and objects in
web programming, you should at least know the basics. However,
you won’t find a comprehensive treatise in this book. If you’re
already familiar with another object-oriented language, you’ll have an
easier time reading into the chapter, but you’ll find that much is a bit
different in JavaScript.

This chapter deals with the following topics:

Functions
You’ll learn how to use recurring statements in JavaScript in
functions (also called subroutines) and thus be able to reuse them
at any time.

Arrays
It can become quite cumbersome to always put data into a single
variable of primitive data types when the data size gets larger.

This is where arrays come into play, which can be used to store
entire lists of different variables.

Objects
As mentioned earlier, JavaScript is a language that supports and
lives the object-oriented paradigm. Even functions are objects in
JavaScript. For this reason, objects must also be addressed in this
chapter.

18.1 Functions in JavaScript
Functions in JavaScript are subroutines with recurring JavaScript
statements that you group together in a block and call using the
function name and optional arguments. Optionally, such a function
returns a value to the caller of the function.

If you come from a different programming language, it may be useful
to know at this point that functions in JavaScript are real objects (i.e.,
first-class objects) and can therefore be assigned to variables.
Likewise, functions can be used as parameters or return values of
functions. If JavaScript is your first programming language, you
shouldn’t pay much attention to this information yet, but keep it in
mind.

18.1.1 Different Ways to Define a Function in
JavaScript

In JavaScript, there are several ways to use functions (i.e., function
objects), which I’ll describe in more detail in the following sections.

Defining Functions: Function Declaration

A JavaScript function must be introduced via the keyword function.
This is followed by an identifier (the function name) and the
parentheses (()). The name of the function is subject to the same
restrictions as the variable names. Inside the parentheses, you can
optionally write a list of formal parameters. Multiple parameters must
be separated with a comma. The actual code or statement, also
referred to as the function body, must be written between curly
brackets ({}). Here’s the complete syntax of a function in JavaScript:
function sum(parameter1, parameter2) {
 // Code for the function
 let sum = parameter1 + parameter2;
 return sum;
}
let val1 = 200, val2 = 100;
let total = sum(val1, val2); // Function call
console.log("Result=" + total); // Output: Result=300

Listing 18.1 /examples/chapter018/18_1/script.js

The code inside the function gets executed when the function with
sum() and the arguments (here, 200 and 100) is called. Optionally,
such a function can also return a value to the caller with return if the
caller of the function needs to continue working with that value. If you
don’t want to return a value from a function, you can omit the return
statement. JavaScript doesn’t require a semicolon at the end of the
curly brackets of the function block.

Formal Parameters and Arguments

We refer to a formal parameter when we define the parameters in
the program code. The arguments (or actual parameters) are the
values we use in a function call.

Defining a Function: Function Expression

In addition to a function declaration, you can also create a function
as a function expression in JavaScript. This works quite similar to the
function declaration in the previous example, except that you assign
the function to a variable, which makes this reference variable
subsequently refer to the function object and can be used like an
ordinary function:
let sum = function(parameter1, parameter2) {
 return parameter1 + parameter2;
}
let val1 = 100,
 val2 = 200;
let total = sum(val1, val2); // Function call
console.log("Result=" + total); // Output: Result=300

Listing 18.2 /examples/chapter018/18_1/script2.js

In a function expression, you don’t use a function name, which
makes this function an anonymous function.

Constructor functions

Up until now, I haven’t mentioned the more complex use of
creating a function with the constructor because this is part of the
programming of objects. The function is prefixed with the keyword
new.

Use Function Declarations or Function Expressions?

For function declarations, you must give the function a name, while
that’s optional for function expressions. As a result, in function
declarations, you can call the function using the function name. In
function expressions, this is done via the variable assigned to the
function.

With function declarations, the interpreter can process the function at
any time, even if the function declaration is written in the JavaScript
code after the function call. For example, the following code can be
executed without any problem:
let total = sum(100, 200); // Function call
function sum(parameter1, parameter2) { // Function declaration
 return parameter1 + parameter2;
}

With function expressions, however, this isn’t possible. The
interpreter processes function expressions only if the corresponding
statements exist; that is, the JavaScript code of the function
expression must precede the function call. The following code would
therefore not work with function expressions:
let total = sum(100, 200); // !!! Incorrect function call !!!
let sum = function(parameter1, parameter2) { // Function expression
 return parameter1 + parameter2;
}

18.1.2 Calling Functions and Function Parameters

If the function has been defined, you can call it by the function name.
In the previous example, you’ve already done this by using
sum(val1, val2). Using this function call, you pass the two values of
val1 and val2 as arguments to the function sum(). In the example,
these two values were added together in the function, parameter1 +
parameter2, and returned.

Parameters and Arguments

Parameters are understood to be the signature specified in the
function definition. The arguments, on the other hand, are what
you pass to the function as a value when you call it.

If a function expects parameters, you can group them between
parentheses. The individual parameters must be separated by a
comma. You must also use parentheses () after a function call if the
function doesn’t contain a parameter.

In JavaScript, it isn’t an error if you call a function with fewer or more
arguments than you specified parameters in the function declaration.
If you’ve used too few arguments in the call, the missing arguments
will be initialized with the default value undefined. For example:
function simpleFunc(param1) {
 console.log(param1); // Output: undefined
}
simpleFunc();

In this example, the simpleFunc() function was called without an
argument, so the value of the parameter param1 in the function was
initialized with the default value undefined. However, such an
example should not set a precedent. The responsibility here is on
you to decide what should happen if fewer or no arguments have
been used. For example, you can respond to that in the following
way:
function simpleFunc(param1) {
 if (param1 === undefined) { // Has an argument been passed?
 console.log("simpleFunc(): No argument received!")
 } else {
 console.log(param1);
 }
}

The question as to how you should respond when a function with
multiple parameters is called with fewer arguments, depends, of
course, on the function itself. If multiple values are expected for a
mathematical function, you’ll probably have to issue a warning or
error message.

As an alternative, you can continue using a function if you use
default values for omitted arguments. JavaScript knows the principle

of default parameters, where the default value is used if no
corresponding argument was passed to the function. Here’s a simple
example you can use to create a user from first name and last name.
Thanks to the default parameters you can call this function with
none, one, or two arguments:
function userTemplate(fname = "John", lname = "Doe") {
 let user = {
 userfname: fname,
 userlname: lname
 }
 return user;
}

let user1 = userTemplate();
console.log(user1.userfname); // Output: John
console.log(user1.username); // Output: Doe
let user2 = userTemplate("Jason");
console.log(user2.userfname); // Output: Jason
console.log(user2.username); // Output: Doe
let user3 = userTemplate("Jason", "Wolfe");
console.log(user3.userfname); // Output: Jason
console.log(user3.userlname); // Output: Wolfe

Listing 18.3 /examples/chapter018/18_1_2/script.js

When you call a function with arguments, you can access them in
the function via the arguments object. The arguments object is an
array-like object with arguments[n], where n represents the number
of arguments. The first argument starts with arguments[0]. You can
determine the number of arguments passed to the function using
arguments. length. The following example demonstrates the use of
arguments:
function sumAll() {
 let sum = 0;
 if (arguments.length === 0) { // Have no arguments been passed?
 return 0; // ... then end function with 0
 }
 for (let i = 0; i < arguments.length; i++) {
 sum += arguments[i];
 }
 return sum;
}

let sum = sumAll(100, 200, 123, 300, 55);
console.log("Result=" + sum); // Output: Result=778

Listing 18.4 /examples/chapter018/18_1_2/script2.js

In this example, all values passed to the sumAll() function are added
using the arguments object. Before that, a check is run to see if any
arguments have been passed at all. However, in practice, such tasks
are now more likely to be implemented using the rest parameter.

The rest parameter also allows you to use a function with any
number of function parameters. The rest parameter is a real array.
The following function demonstrates the rest parameter:
function sumAll(iVal, ...myargs) {
 let sum = iVal;
 myargs.forEach(function(val) {
 sum += val;
 });
 return sum;
}
console.log(sumAll(100, 200, 300, 400)); // Output: 1000

Listing 18.5 /examples/chapter018/18_1_2/script3.js

The first parameter in this example—iVal—is still an ordinary
parameter with the value 100. The remaining parameters are defined
using ...myargs and stand for the rest (here, the values 200, 300, and
400). We implement the access to the remaining parameters of the
myargs array in the example via the forEach() method, which calls
the function written in it for each value of the myargs array. In each
case, the current value is passed to val as a parameter to the
function written in it. In the example, each value in the myargs array is
added to the sum variable and returned at the end.

This function can be made somewhat clearer if we use the arrow
function notation:
let sumAll = (iVal, ...myargs) => {
 let sum = iVal;

 myargs.forEach((val) => sum += val);
 return sum;
}

The syntax of the arrow function notation will be explained in more
detail in Section 18.1.5.

18.1.3 Return Value of a Function

If you want to return a value from a function, you must use a return
statement. You can use the return statement to specify the value to
be returned. Functions without a return statement use a default
value, which is again undefined in most cases. After a return
statement in a function, the execution returns to the caller, where
often the return value of a variable is assigned. You’ve already seen
and used multiple examples of this.

It’s not an error to use a function without parentheses when calling it
because a function can be passed or referenced to a variable in this
way. For example:
let isDebug = true;

function debugMessage() {
 if (isDebug) {
 return 'Debug mode is active';
 }
 return 'Debug mode disabled';
}

let msg = debugMessage; // Assign function to variable
console.log(typeof msg); // function
let txt = msg(); // call debug_message()
console.log(txt); // Output: Debug mode is active
isDebug = false;
console.log(msg()); // Output: Debug mode disabled

Listing 18.6 /examples/chapter018/18_1_3/script.js

In this example, the debug_message function was passed to the msg
variable, rather than calling the debug_message function and passing

the return value to msg, as might have been expected. In this
assignment, you’ve created a msg variable that references the
debug_message function object and, like debug_message(), can be
called explicitly as a function by using msg().

18.1.4 The Scope of Variables in a Function

At this point, I need to mention an indispensable topic, namely the
scope or visibility of variables. At the same time, I’ll also solve the
mystery about let and var before variables. Each function creates a
new scope, but at first that’s not a block scope, as is the case in
other programming languages. The following example will
demonstrate what that means:
let iVal = 111; // Global vriable

function simple(param1) {
 if (param1) {
 var sVal = 222;
 }
 return sVal + iVal; // Okay, thanks to variable hoisting
}

let sumUp = simple(true);
console.log(sumUp);
console.log(sVal + iVal); // Error: sVal unknown

The iVal variable is a global variable and visible everywhere in the
entire script. Consequently, this variable can be used both within a
function and outside of it. I don’t think that’s a big surprise to anyone.
The sVal variable, on the other hand, is only visible inside the
simple() function, which is why using it outside of the function, as is
done at the end of the example with console.log(sVal + iVal), leads
to the error message that sVal is unknown. This is the scope
JavaScript creates for each function. However, JavaScript doesn’t
create a block scope within the if block here, as is usually the case

in other programming languages. JavaScript uses variable hoisting
and interprets the example as follows:
function simple(param1) {
 var sVal;
 if (param1) {
 sVal = 222;
 }
 return sVal + iVal;
}

Therefore, the sVal variable is visible within the entire function. This
behavior—that a variable is declared via var inside a statement block
within a function and is also visible outside the block inside the
function—isn’t always desirable and can entail errors. In addition, it
often makes it harder to understand the code. For this reason, the
better alternative is the let keyword, which should be used instead
of var. A variable created with let gets a block scope and is thus
only visible in the current code block. In our example, you can
implement a block scope as follows:
…
function simple(param1) {
 if (param1) {
 let sVal = 222; // Block scope with let
 console.log(sVal); // sVal now only valid inside the if block
 }
 return sVal + iVal; // Error: sVal now also unknown here
}
…

The let keyword enables you to restrict the scope of a variable to
individual code blocks, as is the case by default in many other
programming languages.

If you had used neither let nor var before the sVal variable in this
example, you’d have defined a global variable you could have
accessed from anywhere, even from outside the function. Usually
you don’t want this at all, and it can be avoided even with strict mode

by always writing a "use strict"; at the beginning of the JavaScript
code.

Strict Mode for Functions

It’s also possible to switch only one function and not the entire
JavaScript to strict mode. To do that, you only need to specify the
corresponding "use strict"; (or 'use strict';) statement within
the function as the first statement. For example:
function simple() {
 "use strict";
 // Code for the simple() function
}

In JavaScript, you can also define functions within functions so that
they’re only visible and valid within the function. The following
example calls a function to divide two values. Inside the function,
normalize() is called, which checks if one of the values is 0, and in
that case makes it a 1. The reason is that a division by 0 makes no
sense. Calling the normalize() function outside the divide() function
would result in an error because it isn’t visible there. Here’s the
example:
function divide(x, y) {
 return normalize(x) / normalize(y);

 function normalize(val) {
 if (val == 0) {
 return 1;
 }
 return val;
 }
}
console.log(divide(4, 0));

Listing 18.7 /examples/chapter018/18_1_4/script.js

18.1.5 Defining Functions in Short Notation (Arrow
Functions)

A more modern way to define functions with relatively little effort is
available with arrow functions. In addition to the more compact
notation, the main advantage of arrow functions is that the this
keyword within the function refers to the context in which the function
was defined, and not, as in a normal function, to the context in which
the function is executed. For this purpose, here’s a simple example
first:
let double = val => val * 2;
console.log(double(100)); // Output: 200

If you use multiple parameters with the arrow function notation, you
must put the parameters in parentheses:
let sum = (param1, param2) => param1 + param2;
console.log(sum(100, 300)); // Output: 400

You already know the shorter version of the function from the
introduction:
let sum = function(param1, param2) {
 return param1 + param2;
}

Surely, you’ve noticed that the function body has been omitted in the
arrow functions. This is possible as long as there’s only one
statement in the function. If you use multiple statements, you must
also use curly brackets here, for example:
let debug = msg => {
 console.log("Debug output -> ");
 console.log(msg);
 console.log("<- Debug output")
}

let val = 1234;
debug("Current value val (" + val + ")");

The same applies to the return statement, which you can omit in a
short form of the arrow function without a function body. The
following principle applies here: once the function consists of multiple
lines, you must use a return statement, for example:
let multiplication = (param1, param2) => {
 console.log("Multiplication is being executed");
 return param1 * param2;
}
console.log(multiplication(10, 5));

The only thing missing is the syntax for a function without
parameters, where you have to use the empty function parentheses
(). For example:
let simple = () => console.log("Function without parameters");
simple();

18.1.6 Using a Function in a Web Page

To make sure that this chapter doesn’t get too theoretical, we’ll
demonstrate how you can call a function within a web page. A few
things are anticipated here, but I figure this simple example is still
comprehensible. In the example, you can enter two values each via
HTML form elements and either add them together via a button or
multiply them.

An event listener (document.addEventListener()) intercepts which
button was clicked (click event), and then a corresponding
JavaScript function gets called—calculateSum() for an addition and
calculateMul() for a multiplication. In the function itself, the
corresponding values of the input element are read, calculated, and
passed to the JavaScript function showResult() for output of the
calculation to a separate text field. The JavaScript code for this is
shown in Listing 18.8, and part of the HTML code is printed in
Listing 18.9. You can see the website in use in Figure 18.1.

document.addEventListener('DOMContentLoaded', function() {
 let button1 = document.getElementById('button-calculate-sum');
 button1.addEventListener('click', calculateSum);
 let button2 = document.getElementById('button-calculate-mul');
 button2.addEventListener('click', calculateMul);
});

function calculateSum() {
 let x = parseInt(document.getElementById('field1').value);
 let y = parseInt(document.getElementById('field2').value);
 let result = x + y;
 showResult(result);
}

function calculateMul() {
 let x = parseInt(document.getElementById('field1').value);
 let y = parseInt(document.getElementById('field2').value);
 let result = x * y;
 showResult(result);
}

function showResult(result) {
 let resultField = document.getElementById('result');
 resultField.value = result;
 console.log(result);
}

Listing 18.8 /examples/chapter018/18_1_6/js/calc.js

…
<body>
 <div>
 <label for="field1">Value 1: </label>
 <input id="field1" type="text" value="5">
 </div>
 <div>
 <label for="field2">Value 2:</label>
 <input id="field2" type="text" value="5">
 </div>
 <div>
 <label for="result">Result: </label>
 <input id="result" type="text">
 </div>
 <div>
 <button id="button-calculate-sum">Calculate sum</button>
 <button id="button-calculate-mul">Multiply</button>
 </div>
 <script src="js/calc.js"></script>
</body>

Listing 18.9 /examples/chapter018/18_1_6/index.html

Figure 18.1 JavaScript Functions When Executed within a Web Page

18.2 Arrays
If you want to store multiple values in one variable, you can do this
with an array. You create an array by assigning comma-separated
values to a variable in square brackets. This notation is also referred
to as array literal notation. Let’s look at a simple example:
let user = ["John", "Frank", "Steven"];

This way, you can create an array with the identifier user and assign
it three strings with user names. Surely, in this case, you could also
use individual variables instead, as follows:
let user01 = "John";
var user02 = "Frank";
var user03 = "Steven";

In practice, using single variables is more complex and cumbersome
than using an array. For example, what happens if you want to loop
through multiple names to select a single name? And what do you
do when you need 100 user names instead of 3? Here, you’re much
better off with an array because you can manage many values with
only one identifier.

If there are many entries in the array, it’s useful to write each entry in
one line. This makes the array clearer. In practice, therefore, the
following notation would be recommended:
let user = [
 "John",
 "Frank",
 "Steven",
 "Peter",
 "Jay"
];

Unlike other programming languages, arrays in JavaScript can also
contain entries with different data types. Thanks to loose typing, an
array is also allowed as follows:
let user = [
 "Wolfe",
 46,
 "email@email.com",
 false
];

You can create an empty array as follows:
let user = []; // An empty array

Besides the array literal notation, you can also create an array using
a constructor function via new:
let user = new Array(); // An empty array

You can also create an array with a specific size right away. For
example, you create an array with 10 elements as follows:
let user = new Array(10); // 10 undefined elements

However, specifying the size of an array isn’t really necessary with
arrays because an array can grow dynamically at runtime. Watch out
when you create an array as follows:
let vals = new Array(10, 50); // 2 elements vals[0]:10, vals[1]:50

In that case, you create an array with two occupied elements. You
can specify the length of the array only if you call the constructor
function of Array() with a single decimal value as an argument.

Likewise, in the constructor function notation, you can already pass
values directly as arguments:
let user = new Array("John", "Frank", "Steven");

For the arrays with Array(), you can also omit the keyword new. In
practice, you’ll have to deal a lot with arrays in the future. Whether
you prefer to use the array literal notation or the constructor function
notation is up to you. I personally prefer the shorter array literal
notation with the square brackets.

18.2.1 Accessing the Individual Elements in the Array

You can access the individual elements of an array using the square
brackets and the corresponding index number. The first element in
an array always has index [0], the second element index [1], and so
on. For example:
let user = [
 "John", // [0]
 "Frank", // [1]
 "Steven" // [2]
];
console.log(user[1]); // Output: Frank
let name01 = user[0]; // name01 = "John"
console.log(name01); // Output: John
user[2] = "Steve"; // "Steve" gets overwritten
console.log("user[0] = " + user[0]); // Output: user[0] = John
console.log("user[1] = " + user[1]); // Output: user[1] = Frank
console.log("user[2] = " + user[2]); // Output: user[2] = Steve

Listing 18.10 /examples/chapter018/18_2_1/script.js

Here’s a simple example of how to get the current day of the week
by name using an array with all the days of the week, the Date
object, and the getDay() method:
let date = new Date();
let day = date.getDay();
let wd = [
 "Sunday", // wd[0]
 "Monday", // wd[1]
 "Tuesday", // wd[2]
 "Wednesday", // wd[3]
 "Thursday", // wd[4]
 "Friday", // wd[5]
 "Saturday" // wd[6]

];
console.log("Today is " + wd[day]);

Listing 18.11 /examples/chapter018/18_2_1/script2.js

You’ve already learned about the Date object and the getDay()
method. In this example, you’ve added a wd array with all seven days
of the week as individual strings. The order from Sunday with the
value 0 to Saturday with the value 6 was kept just as the method
getDay() returns a corresponding value from 0 to 6 of the day. If the
example is executed on a Wednesday, the day variable is assigned
the value 3 from date.getDay(), so using wd[day] in this case is
equivalent to wd[3] and therefore uses the string "Wednesday" from
the array.

18.2.2 Multidimensional Arrays

You can also use an array within another array, which is very useful,
for example, if you need to manage data records that are always the
same. You already know this principle from a spreadsheet. For
example, the following data is given for a user administration:
let user = [
 "pronix74", // Nickname
 46, // Age
 "wolfe@pronix.com", // Email
 false // Administrator rights
];

Object or Array?

Such structures are usually not represented as arrays, but as
objects.

Here, you have an array for a user, including nickname, age, email,
and whether this user has admin rights. If you now want to create

multiple users with the same data, you can do this using a
multidimensional array as follows:
let user = [
 ["pronix74", // [0][0]
 46, // [0][1]
 "wolfe@pronix.com", // [0][2]
 false // [0][3]
],
 ["halwa66", // [1][0]
 51, // [1][1]
 "halwa@pronix.com", // [1][2]
 false // [1][3]
],
 ["woafu", // [2][0]
 46, // [2][1]
 "1@woafu.com", // [2][2]
 true // [2][3]
]
];

Now you’ve created a multidimensional array with three users. The
access works with the usual one-dimensional array over the index.
With the first dimension, you specify the user as index (here, 0, 1, or
2), and with the second dimension, you access the desired value.
For example, to access the data of the second user in the user array,
you can do the following:
...
console.log(user[1][0]); // Output: halwa66
console.log(user[1][1]); // Output: 51
console.log(user[1][2]); // Output: halwa@pronix.com
console.log(user[1][3] ? "Admin" : "User"); // Output: User

Listing 18.12 /examples/chapter018/18_2/script.js

18.2.3 Adding or Removing New Elements in an Array

For adding and removing elements in an array, there are useful
methods that make your life easier. Of course, it’s also possible to
operate quite conventionally with the index operator on an array, but

this also creates the risk that you produce undefined holes in the
array. Here’s an example of the Spartan way:
let user = [
 "John", // [0]
 "Jason", // [1]
 "Ben" // [2]
];

user[3] = "Tom";
user[5] = "Jay";
user[2] = undefined; // Delete value

for (let i = 0; i < user.length; i++) {
 console.log(user[i]);
}

Listing 18.13 /examples/chapter018/18_2_3/script.js

In the example, holes were created for the elements user[2] and
user[4]. The content of these elements is undefined. Of course, you
can check in a loop where empty space exists (= undefined) and
then insert the element there, but it’s much easier to keep the array
without holes right away. In the example, the for loop pass also uses
the length property, which contains the number of elements in an
array.

Traversing Arrays Conveniently Using “for ... in” and “for ... of”

Instead of fiddling with the length property, however, you can use the
for ... in or for ... of loop to run through the individual elements of
an array. In the following example, you can see the for ... in loop in
use, which outputs all elements from the user array:
let user = [
 "John", // [0]
 "Jason", // [1]
 "Ben" // [2]
];

for (let n in user) {

 console.log(user[n]);
}

The for ... of loop is a little more comfortable. It allows you to run
only through the property values of the iterable properties and to
omit a cumbersome user[n]. Here’s the same example again, but
now with for ... of:
let user = [
 "John", // [0]
 "Jason", // [1]
 "Ben" // [2]
];

for (let n of user) {
 console.log(n);
}

A Brief Overview of Common Methods for Adding and
Removing Elements in the Array

For adding and removing elements, JavaScript provides specific
methods. Table 18.1 contains a list of some common methods that
are often used for this purpose.

Method Description
pop() Removes the last element in the array
push() Inserts a new element at the end of the array
shift() Removes the first element of an array
unshift() Inserts an element at the beginning of the array
slice() Removes elements from an array
splice() Adds, replaces, or deletes element(s) at any position in

the array

Table 18.1 Common Methods of Arrays

Adding and Removing Elements at the End: “push()” and
“pop()”

To add elements at the end of the array, you can call the push()
method, while the pop() method enables you to remove the last
element. The argument you need to pass to the push() method is the
element that is to be added, or you can pass several elements at
once. The push() method returns the length of the array. Its
counterpart pop(), on the other hand, doesn’t need an argument and
always removes the last element in the array. As a return value,
pop() returns the removed element or undefined if there’s no element
left in the array. Here’s a simple example to demonstrate push() and
pop() in use:
let user = []; // Empty array

user.push("pronix74");
user.push("halwa66");
console.log(user.length); // Output: 2
let size = user.push("root01", "scotty33", "anonymus");
console.log(size) // Output: 5

for (let n of user) {
 console.log(n);
} // Output: pronix74, halwa66, root01, scotty33, anonymus

let n = user.pop(); // Remove last element -> anonymus
console.log(n + " was removed")
user.pop(); // Remove last element again
console.log(user.length); // Output: 3

for (let n of user) {
 console.log(n);
} // Output: pronix74, halwa66, root01

Listing 18.14 /examples/chapter018/18_2_3/script2.js

Using an Array as a Stack

In programming, the push() and pop() methods are often used to
use an array as a stack according to the last in, first out (LIFO)

principle, which means that the last element placed on the stack
with push()is always removed first with pop(). This can be used,
for example, to implement the Undo function, which can be used
to undo the last user action.

Adding and Remove Elements at the Beginning

The counterparts of push() and pop() are unshift() and shift() for
adding and removing elements at the beginning of the array. The
unshift() method works basically the same as push(), except that
the element or elements are added at the beginning. This method
also returns the new length of the array. The counterpart shift(), on
the other hand, removes the first element in the array and returns it
as a return value. Here’s a simple example to show these two
methods in practice:
let user = []; // Empty array

user.unshift("pronix74");
user.unshift("halwa66");
console.log(user.length); // Output: 2
let size = user.unshift("root01", "scotty33", "anonymus");
console.log(size) // Output: 5

for (let n of user) {
 console.log(n);
} // Output: root01, scotty33, anonymus, halwa66, pronix74

let n = user.shift(); // Remove first element -> root01
console.log(n + " was removed")
user.shift(); // Remove first element again
console.log(user.length); // Output: 3

for (let n of user) {
 console.log(n);
} // Output: anonymus, halwa66, pronix74

Listing 18.15 /examples/chapter018/18_2_3/script3.js

Using an Array as a Queue

A queue is a data structure based on the first in, first out (FIFO)
principle, where the first element in the queue is always returned,
and new elements are added at the end. It’s the classic principle of
a queue at the checkout. In practice, this data structure can be
implemented by using the push() method to add the new elements
at the end and the shift() method to return and remove the first
element from the array. Of course, you can also write a queue the
other way around, using pop() and unshift() instead of push()
and shift(). A classical method for applying a queue are
message queues, that is, queues for messages that are
transmitted from the sender to a receiver.

Inserting and Removing Elements at Any Position in the Array:
“splice()”

To add, remove, or replace elements from an array, you can use the
splice() methods. The method allows for multiple arguments to be
passed to it. The first argument is the relevant position where the
new element should be added, removed, or replaced. As a second
argument, you can specify the number of elements to be deleted
from this position. If you want to only insert elements, you can use 0.
The remaining arguments represent the elements you want to insert
or replace in the array. The following example demonstrates all three
options of splice() in use:
let user = [
 "pronix74",
 "halwa66",
 "root01"
];
user.splice(2, 0, "anonymus"); // Insert at user[2].

for (let n of user) {
 console.log(n);
} // Output: pronix74, halwa66, anonymus, root01

let del = user.splice(1, 2); // delete [1]&[2]
console.log(del + " were deleted!");
user.splice(1, 0, "woafu86", "john123"); // insert 2 elements
user.splice(0, 1, "pronix1974") // replace user[0] with pronix1974

for (let n of user) {
 console.log(n);
} // Output: pronix74, woafu86, john123, root01

Listing 18.16 /examples/chapter018/18_2_3/script4.js

18.2.4 Sorting Arrays

The sort() method allows you to sort arrays. The advantage of this
method is that you can use it to write your own function that sets the
sorting criteria. You can define the comparison function with two
parameters that are called internally in pairs for the values of the
array when sort() is called. With an appropriate return of -1, 1, or 0,
the sort() method then takes care of sorting the array. Return -1 if
the value is greater than the second value. The opposite is true if
you return 1. With a return value of 0, both values are equal.

The comparison function that sorts two strings (also works with
numeric values) by their size (alphabet) looks as follows:
function compare(val1, val2) {
 if (val1 < val2) {
 return -1; // va1 is less than val2
 } else if (val1 > val2) {
 return 1; // val1 is greater than val2
 } else {
 return 0; // val1 and val2 are identical
 }
}

“localCompare()”

I recommend that you use the localCompare() function for strings.
This is part of the ECMAScript standard and compares the strings
depending on the country-specific settings of the system.

A special feature in JavaScript is that you can pass this comparison
function to the sort() method as an argument. This isn’t possible in
all programming languages. I’ll get back to that momentarily. You can
sort an array of strings alphabetically using the sort() method and
the compare() function as follows:
...
let user = [
 "halwa66",
 "pronix74",
 "conrad22",
 "anton43",
 "beta88"
];
user.sort(compare);
for (let n of user) {
 console.log(n);
} // Output: anton43, beta88, conrad22, halwa66, pronix74

Because functions are also objects in JavaScript, they can be used
as arguments or even return values just like variables, as you’ve
seen with the sort(compare) function. With regard to the previous
examples, you can also use this to implement the loop pass with the
output of the individual elements as a function. For this, too, the
arrays in JavaScript provide a useful and simple option: the
forEach() method. The passed argument with this method gets
output with each element. You can use it to output each element of
an array via a function with forEach():
...
function printUser(item) {
 console.log(item);
}
let user = [
 "halwa66",
 "pronix74",
 "conrad22",
 "anton43",
 "beta88"
];
user.sort(compare);
user.forEach(printUser);

Listing 18.17 /examples/chapter018/18_2_4/script.js

18.2.5 Searching within Arrays

Before you write a function to search for a specific element in the
array, let me introduce you to two functions for that as well. There’s
nothing wrong with doing the following:
...
for (let n in user) {
 if (user[n] === "anton43") {
 console.log("Found at position: " + n);
 }
}
...

But for this purpose, JavaScript provides indexOf(), which enables
you to search directly in the array for a specific element. You can
specify the element to search for as an argument. Alternatively, you
can use a second argument that determines from which index the
search should be started. If -1 is returned, then the element isn’t
contained in the array. For example:
console.log(user.indexOf("anton43"));
let pos = user.indexOf("hilary");
if (pos === -1) {
 console.log("Could not find hilary!")
}

The indexOf() method starts searching at the beginning of the array.
But if you want to start the search at the end of the array, you can
use the lastIndexOf() method instead. The method is used in the
same way as indexOf(). Other suitable methods such as find() and
findIndex() should also be mentioned here. The find() method
either returns the value of the element of an array that fulfills the
condition of a provided test function, or it returns undefined. The
findIndex() method either returns the index of the first element in
the array that satisfies the provided test function, or it returns –1.

18.2.6 Additional Methods for Arrays

With the methods presented here, you should be very well equipped
to get started with JavaScript for now. However, there are a lot of
other methods available to you. I’ve listed some other useful
methods in Table 18.2.

Method Description
concat() Allows you to append elements or arrays to

another array.
copyWithin() Allows you to copy elements within the array.
find() Allows you to search for elements according to

search criteria. The search criteria are passed
as an argument. The element which is found
gets returned.

findIndex() Like find(), except that it returns the index of
the first occurrence.

filter() Allows you to sort out elements from the array
according to certain filter criteria. Here, too, you
pass the filter criteria in the form of a function
as an argument.

join() Converts an array into a string.
reverse() Sorts the elements in the array into the reverse

order.
slice() Allows you to cut out individual elements from

an array.
toString()
toLocaleString()
valueOf()

Enable you to convert arrays into strings.

Table 18.2 Other Useful Methods to Work with Arrays

18.3 Strings and Regular Expressions
You’ve already gotten to know the strings in the data types. If you’re
a web developer using JavaScript, strings are usually the most
common type of data you’ll use. For this reason, I’ll devote a few
sections to them here.

The internal structure of strings isn’t unlike that of arrays. The first
character of a string also starts with the index 0. The string “Hello
world” is internally constructed as shown in Figure 18.2.

Figure 18.2 The Internal Structure of a String

18.3.1 Useful Functions for Strings

You’ll often want to check the length of an input string in an input
field of a web form. For this purpose, the string data type provides
the length property, which contains exactly the number of characters
in a string. Here’s an example:
let hello = "Hello world";
console.log(hello.length); // Output: 11

For searching, you can also use the indexOf() and lastIndexOf()
methods for the string data type. The first occurrence of a searched
character or string will be returned. As with the array, the indexOf()
method starts at the beginning of the string, while lastIndex Of()
starts at the end of the string. Let’s look at a simple example:
let hello = "Hello world";
console.log(hello.indexOf("lo")); // Output: 3

console.log(hello.indexOf(" ")); // Output: 5
console.log(hello.indexOf("World")); // Output: -1

The substring() and substr() methods are available for extracting
strings. Both methods expect the start index from where the string
should be extracted as the first argument. If you don’t specify a
second argument, the extraction will be performed from the start
index to the end. If you do specify a second argument, then for
substring(), it should be the index up to which to extract. With
substr(), on the other hand, the second argument must be the
number of characters to be extracted from the starting index. Here’s
another simple example:
let hello = "Hello world";
let pos1 = hello.indexOf(" ");
console.log(hello.substring(pos1 + 1)); // Output: world
console.log(hello.substr(3, 2)); // Output: lo
console.log(hello.substring(0, pos1)); // Output: Hello

Other useful methods are toLowerCase() and toUpperCase() to
convert all characters of a string to lowercase and uppercase,
respectively.

18.3.2 Applying Regular Expressions to Strings

Regular expressions are used to describe a pattern of strings to
formulate a search expression. A regular expression is a formal
language that can be used to describe a (sub)set of strings and that
can be used, for example, in search and/or replace operations.

Regular expressions are objects of the RegExp type and can be
created either as a constructor function with new RegExp() or as a
literal notation. Let’s look at a simple example:
let txt = "This text is being searched";
let regEx01 = /Text/; // Literal notation
let regEx02 = new RegExp(/will/); // Constructor function
let n01 = txt.search(regEx01); // Search for "text" in txt

console.log('"text" found at pos. ' + n01);
let n02 = txt.search(regEx02); // Search for "will" in txt
console.log('"will" found at pos. ' + n02);
let newText = txt.replace(regEx01, "paragraph"); // Search and replace
console.log(newText); // Output: The search takes place in this paragraph.

For regular expressions in JavaScript, there are of course many
more options available besides the properties and methods shown
here.

18.4 Object-Oriented Programming in
JavaScript
To better understand the principle of objects in JavaScript, it’s
probably best to start by learning how to create your own objects.
Once you understand the underlying concept, you won’t have any
more problems with the predefined objects or the browser objects.
Of course, it should be noted here that this is only an introduction to
object-oriented programming (OOP) in JavaScript.

18.4.1 What Exactly Are Objects?

Simply put, objects in JavaScript are basically nothing more than
complex and compound variables with properties and methods. The
properties of an object are also called attributes or properties and the
methods are sometimes also referred to as object methods. The
object provides you with access to all properties and methods.
Based on what we’ve learned so far about JavaScript in this book,
we can also say that properties are the data and methods are the
functions of an object. Take a look at the following JavaScript code
as an example:
function print(usr) {
 console.log("Nickname : " + usr[0]);
 console.log("Age : " + usr[1]);
 let admin = usr[2] ? "Yes" : "No";
 console.log("Admin rights : " + admin);
}

let user = [
 "pronix74", // Nickname
 46, // Age
 false // Admin rights
];
print(user);

In this example, the variables and the function for the output were
used separately. The disadvantage of such somewhat unstructured
scripts is that they use a loose collection of global variables and
functions. Such scripts are difficult to adapt or extend later. As the
amount of data and functions grows, it will become confusing over
time.

With very little effort, you can create or encapsulate a template for an
object with properties and methods from these global variables and
functions, and you only need one global object through which the
rest of the data and functions can then be accessed. The following
adapted example is intended to show you how easy it is to apply
OOP in JavaScript:
let user = {
 nickname: "pronix74", // Nickname
 age: 46, // Age
 admin: false, // admin rights
 print: function() { // "function()" is optional
 console.log("Nickname : " + this.nickname);
 console.log("Age : " + this.age);
 console.log("Admin : " + this.isAdmin());
 },
 isAdmin: function() {
 return this.admin ? "Yes" : "No";
 }
};
user.print();

Listing 18.18 /examples/chapter018/18_4_1/script.js

In this example, you can see one of several ways to create an object
with JavaScript using the object literal notation. Here, you can see
that objects in JavaScript are implemented using key-value pairs.
Key and value are separated by a colon. You can use the key to
access the corresponding values. A value itself can in turn be a
literal, a function, or some other object. The key is the identifier for
the property or method of the object.

Everything after the assignment to let user between the curly
brackets is the content of the object. In the example, there are three
data properties, that is, nickname, alter, and admin, and two
methods, print and isAdmin. In JavaScript, methods are also
introduced with the keyword function. Since ES6, however, the
keyword can also be omitted. You must separate the individual
properties and methods of an object with commas, and the value of
a property or method must be written after a colon.

The Keyword “this”

I’ll describe the keyword this separately later on. Within the
methods print() and isAdmin(), it represents the object on which
the method is executed. Without this, access within the methods
to the properties wouldn’t work.

18.4.2 Creating Objects via Constructor Functions

Alternatively, you can define a constructor function and create a new
object using the new keyword. Unlike the object literal notation, the
constructor function allows you to create any number of copies of the
object. In JavaScript itself, there’s no constructor for creating
instances, as are available in other OOP languages, which is why a
function is used as a constructor function here. Basically, the
appearance of a constructor function doesn’t differ from a normal
function. To distinguish it from a normal function, it’s recommended
to capitalize the first letter in constructor functions.

Here’s a constructor function from which you can subsequently
create any number of objects:
function User(nickname, age, admin) {
 this.nickname = nickname;

 this.alter = age;
 this.admin = admin;
 this.printUser = function() {
 console.log("Nickname : " + this.nickname);
 console.log("Age : " + this.age);
 console.log("Admin : " + this.isAdmin());
 }
 this.isAdmin = function() {
 return this.admin ? "Yes" : "No";
 }
};

let user01 = new User("pronix74", 46, false);
let user02 = new User("halwa66", 52, true);
user01.printUser();
user02.printUser();

Listing 18.19 /examples/chapter018/18_4_2/script.js

To turn a function into a constructor function, you must first call it
using the keyword new. The function then creates a new object and
returns it. You don’t need to use return for a constructor function
because the new object gets returned implicitly. The properties and
methods within the constructor function are accessed via the
keyword this.

18.4.3 Creating Objects via the Class Syntax

Because objects in particular take some getting used to for those
switching from another object-oriented language to JavaScript,
ECMAScript 6 (2015) introduced a class syntax that’s quite similar to
that of Java or C++, for example. If you come from these
programming languages, you’ve implemented such object types
using classes. JavaScript doesn’t know classes, but uses constructor
functions and prototypes for this purpose.

For this reason, the class keyword was introduced to define the
“class”, while the function keyword (optional since ES6 anyway) is
no longer needed for the methods.

Here’s the User example in a class syntax:
class User {
 constructor(nickname, age, admin) {
 this.nickname = nickname;
 this.alter = age;
 this.admin = admin;
 }
 print() {
 console.log("Nickname : " + this.nickname);
 console.log("Age : " + this.age);
 console.log("Admin : " + this.isAdmin());
 }
 isAdmin() {
 return this.admin ? "Yes" : "No";
 }
};

let user01 = new User("pronix74", 46, false);
let user02 = new User("halwa66", 52, true);
user01.print();
user02.print();

Listing 18.20 /examples/chapter018/18_4_3/script.js

The constructor() method is called implicitly when you create a new
object instance of the corresponding class. Basically, the
constructor() method corresponds to the constructor function from
the previous section. Again, no return is required because the object
instance is returned implicitly. Apart from that, creating a new object
works the same way as with the constructor function with new, which
implicitly calls the constructor() method of the class.

18.4.4 Accessing the Object Properties and Methods:
Setters and Getters

To access object properties and methods, we usually use the dot
notation, as you’ve already seen in the examples before. Consider
this example:
...
let user01 = new User("pronix74", 46, false);

// Dot notation:
user01.print();
console.log(user01.nickname); // Output: pronix74

Besides the dot notation, you can also write the property and method
in square brackets between single or double quotes. Here’s the
alternative option:
...
let user01 = new User("pronix74", 46, false);
// Bracket notation:
user01["print"]();
console.log(user01["nickname"]); // Output: pronix74

You can use the dot notation or the bracket notation as you like. The
only thing I’d recommend is that you keep it consistent. I personally
prefer the dot notation. Nevertheless, there are individual cases in
which you must use the bracket notation. This happens when
properties or methods contain a hyphen, for example. Without the
square bracket notation an error would occur because the minus
sign would be interpreted as a subtraction operator.

In this way, you could now also change the properties of an object
directly. If you want to change the nickname, for example, this could
be done as follows:
user01.nickname = "woafu1974";
user01.age = "I won't tell";
user01.admin = "root";

You can already see from the example that it would now also be
possible to enter any nonsense. In OOP, setter methods are usually
used to change individual properties, while getter methods are used
to retrieve individual properties. Especially with the setter methods,
you can then still check the passed value for its validity.

JavaScript provides the keywords set (for setter methods) and get
(for getter methods). You must place the keyword before the method.
For example, to change the nickname, you must use set. To retrieve

individual properties, on the other hand, you would use get.
However, you aren’t forced to implement both versions. Here’s the
example with the setter and getter methods in use:
class User {
 constructor(nickname, age, admin) {
 this._nickname = nickname;
 this._age = age;
 this._admin = admin;
 }

 isAdmin() {
 return this._admin ? "Yes" : "No";
 }
 set nickname(name) {
 if (typeof name === "string") {
 this._nickname = name;
 } else {
 console.log("Error: no string!")
 }
 }
 get nickname() {
 return this._nickname;
 }
 set age(age) {
 if (typeof age === "number") {
 this._age = age;
 } else {
 console.log("Error: Not an integer!")
 }
 }
 get age() {
 return this._age;
 }
 set admin(adm) {
 if (typeof adm === "boolean") {
 this._admin = adm;
 } else {
 console.log("Error: true oder false!")
 }
 }
 get admin() {
 return this._admin;
 }
};

let user01 = new User("pronix74", 46, false);
// Setter methods in use
user01.nickname = "woafu1974"; // -> set nickname("woafu1974")
user01.age = 47; // -> set age(47)
user01.admin = true; // -> set admin(true)
// Getter methods in use

console.log(user01.nickname); // -> get nickname()
console.log(user01.age); // -> get age()
console.log(user01.admin); // -> get admin();

Listing 18.21 /examples/chapter018/18_4/script.js

To avoid naming conflicts between the properties and methods here,
it’s common practice to have the properties begin with an
underscore. Thanks to this data encapsulation, you now also have
the properties better protected against access from outside, although
it’s still possible to address the properties directly from outside with
an underscore (e.g., user01._nickname).

18.4.5 The Keyword “this”

You’ve already used the keyword this quite a bit, so I’ll briefly go into
some more detail here. In simple terms, this is a kind of property
which, when called, is assigned the value of the object with which it’s
called. In other words, it’s virtually a reference to itself. this is
therefore an implicit parameter that is automatically available.

this is a keyword whose value is resolved and usually references an
object. However, the actual value of this again depends on the
execution context in which it was called.

In the following example, this is written in a class, a global function,
and the global environment. Within the class, this refers to the
instantiated SimpleClass object itself. For the global function, the
execution context is undefined in strict mode. Without strict mode, it
would be the window object when the JavaScript is executed in the
web browser. When using this globally, on the other hand, the global
window object is used by default, but only if the program is run in a
web browser.
...
class SimpleClass {

 simple() {
 console.log(this); // Output: SimpleClass
 }
};

function simpleFunction() {
 console.log(this); // Output: Window (in browser)
 // Output: undefined (with Node.js)
}

let val1 = new SimpleClass();
val1.simple();
simpleFunction();
console.log(this); // Output in web browser: window

Listing 18.22 /examples/chapter018/18_4_5/script.js

this is thus a reference to the owner of the object, which is
necessary because there can be and are more instances of an
object. Especially within methods of a created object, this is very
important because only in this way can you make sure that with
several instances of the same objects also the stored properties of
the individual instance can be accessed. After all, each individual
instance of an object has its own properties and doesn’t share them
with any other instance.

18.5 Other Global Objects
Predefined objects are the native objects that JavaScript provides as
part of the language. These ready-made objects provided by
JavaScript include Array, Boolean, Date, Function, Map, Set, Math,
Number, RegExp, String, and Object. You already got to know some of
them in the previous sections. In the following sections, I’ll briefly
describe the objects of JavaScript that haven’t been mentioned yet.

18.5.1 The Top Object “Object”

This is the object from which all other objects in JavaScript are
derived. Every object in JavaScript is of the Object type in any case
and may belong to more specific types (e.g., String) as well. The
Object object provides properties and methods that are available for
all other objects to work with. Basically, an object of the Object type
is just a container for data such as strings or numbers, but you can
also place function objects into it. You can create an object in the
long notation using new Object as follows:
let data = new Object();
data.name = "John Doe";
data.account number = 34234123;
data.aba = 7200032123;

Or you can just write it as usual as an object literal:
let data = {
 name: "John Doe",
 Account number: 34234123,
 ABA: 7200032123
};

18.5.2 Objects for the Primitive Data Types: Number,
String, and Boolean

You’ve already used the primitive data types for numbers, strings,
and truth values regularly in this book. Example:
let iVal = 1234;
console.log(typeof iVal); // Output: number
let str = "string";
console.log(typeof str); // Output: string
let bool = false;
console.log(typeof bool); // Output: Boolean

In JavaScript, there are also full-fledged object versions for the
primitive data types, for which appropriate methods are provided for
the type. Here’s an example with the object versions for the primitive
data types:
let iOVal = new Number(1234);
console.log(typeof iOVal); // Output: object
let oStr = new String("String");
console.log(typeof oStr); // Output: object
let oBool = new Boolean(false);
console.log(typeof oBool); // Output: object

In practice, however, it’s recommended not to use the object version
of the primitive data types, but to leave it at the primitive form. The
object version only makes the code more complicated and slows
down the execution speed of the script. Things get more complicated
when you compare a variable with the primitive data type and an
object version. For example:
let iVal = 1234;
let iOVal = new Number(1234);

if (iVal == iOVal) {
 console.log("The value of iVal is equal to iOVal.");
}
else {
 console.log("The value of iVal is not equal to iOVal.");
}

if (iVal === iOVal) {
 console.log("The value and type of iVal is equal to iOVal.");

}
else {
 console.log("The value and type of iVal is not equal to iOVal.");
}

Listing 18.23 /examples/chapter018/18_5_2/script.js

When comparing with the == operator, true gets returned because
JavaScript performs an automatic conversion here. A comparison
with the === operator, on the other hand, returns false because the
value is the same, but the type is different. In practice, it’s
recommended to use the === operator in JavaScript for a direct
comparison because, in most cases, you don’t want to have
automatic type conversion. Usually, you want to have a strict
comparison of two values, taking type and value into account.

If you want to use the methods of String, Number, or Boolean objects
that are provided, you don’t need to create a String, Number, or
Boolean object manually via String(), Number(), or Boolean()
because as soon as you call a method with the primitive data types,
the primitive data type will get converted into a corresponding object.
For example:
let str = "string";
console.log("Number of characters: " + str.length); // 12
console.log(str.toUpperCase()); // CHARACTER STRING

let iVal = 1234;
console.log("1234 as dual number : " + iVal.toString(2)); // 10011010010
console.log("1234 as hexadecimal number : " + iVal.toString(16)); // 4d2
console.log("1234 as octal number : " + iVal.toString(8)); // 2322

Due to the automatic type conversion, JavaScript converts the
primitive data types into a transient object here. The str variable
temporarily becomes a String object, and iVal temporarily becomes
a Number object when the corresponding methods for String and
Number objects are called, respectively.

18.5.3 “Function” Object

I’ve already mentioned that functions in JavaScript are also objects.
All functions in JavaScript are based on Function. By using the
Function object, you can access useful properties and some
methods. In practice, you could theoretically also create a function
using the constructor function via new Function(), but this form is
relatively rarely used and needed.

18.5.4 “Date” Object

The Date object provides you with an extensive set of methods for
different calculations of date and time. To use the Date object, you
need to create a new object via the constructor function, new Date().
Internally, JavaScript uses the milliseconds that have elapsed since
January 1, 1970, at 00:00:00 as the unit. Let’s take a look at a simple
example:
let date = new Date();
console.log(date); // 2023-02-25T17:01:17.952Z
console.log(Date.parse(date)); // ms since 1/1/1970; 00:00

Note that the system time refers to the time at the user whose web
browser or general runtime environment is running the script. The
current system time of the server computer isn’t determined here.

18.5.5 “Math” Object

For various types of calculations, the Math object is available with
useful features and methods. In practice, you don’t need to create a
Math object via the constructor function new Math(), but you can use
the features and methods directly via Math.Property or
Math.Method(). Take a look at this example.

console.log("Constant for Pi : " + Math.PI); // 3.141592653589793
let r = 12;
let a = r * r * Math.PI; // calculate circular area
console.log(a);
console.log(Math.random()); // generate pseudo-random number between 0 and 1

18.5.6 “Map” Object

Map allows you to create ordered lists from key-value pairs. Such a
map is often referred to as an associative array. In this context, the
keys and the values can consist of any data type. There are many
useful methods available to use the entries. The following example
demonstrates a map using zip codes:
let zip = new Map([
 [97217, "Portland"],
 [60647, "Chicago"],
 [02114, "Boston"],
 [77007, "Houston"]
]);

let zipTmp = zip.get(97217);
console.log(zipTmp); // Output: Portland
// Add key-value pair
zip.set(94112, "San Francisco");

Listing 18.24 /examples/chapter018/18_5_6/script.js

18.5.7 “Set” Object

A Set object is a collection of values of any type that are stored in the
order in which they are added. The highlight is that each value is
unique in a Set. An algorithm internally checks for equality before
adding. You can add individual elements using add(). If you use
has(), you can check if an element already exists in the set. You can
determine the number of elements via size(). For this purpose,
here’s a simple example with the different methods related to Set:
let mySet = new Set([1, 3, 5]);
mySet.add(7); // Added at the end

mySet.add(3); // Will not be added, already exists
mySet.add("some text"); // Add to the end

// Check
console.log(mySet.has(5)); // = true
console.log(mySet.has(9)); // = false
console.log(mySet.size); // = 5

// Iterate through a Set and output
for (let item of mySet) console.log(item);

// Delete element
mySet.delete(3);
mySet.delete("some text");

Listing 18.25 /examples/chapter018/18_5_7/script.js

18.6 Summary
The focus of this chapter was completely on functions, arrays, and
objects in JavaScript. You now know how you can write your own
routines by using functions and how to manage multiple values at
the same time by using arrays. As for OOP in JavaScript, you’ve
learned what objects are and how to create your own objects with
properties and methods in JavaScript. In addition to the objects
you’ve created yourself, you also have become familiar with the
predefined objects provided by JavaScript as a language.

19 Changing Web Pages
Dynamically

Once a web page has been loaded, the web browser
generates the Document Object Model (DOM) from the
page. This enables you to dynamically generate HTML using
JavaScript, which is a good reason to look into the topic of
DOM and DOM manipulation.

The Document Object Model (DOM) allows you to access all HTML
elements of the document via JavaScript. This, in turn, enables you
to use JavaScript to manipulate all HTML elements, the HTML
attributes, and even all CSS styles of a web page. Additionally, you
can add new HTML elements or attributes and remove existing ones.
Likewise, the DOM makes it possible to respond to all existing HTML
events of a web page.

In a nutshell, here’s what you’ll learn in this chapter:

How to search for specific HTML elements

How to change the content of an HTML element

How to change the stylesheet of HTML elements

How to respond to events of the DOM

How to add new HTML elements to the document

How to change or even remove existing elements

How to access the individual values of a form element with
JavaScript

19.1 Introduction to the DOM of an HTML
Document
You already know from HTML that the HTML elements of a
document are composed into a hierarchical tree structure. At the top
of the tree, you’ll find the document object, followed by the root of the
tree, which is usually the html element. Below the html element,
you’ll find the head and body elements.

In Figure 19.1, you can see the diagram of such a hierarchical tree
structure. There you can see in a family tree how HTML documents
are logically represented. All individual elements of this family tree
are nodes and are related to each other. For example, the head
element has two children: the title and meta elements.

Because the title and meta elements are the descendants of the
same parent element, they are also referred to as siblings. The same
is true for the descendants of the body element, where in the figure,
the header, nav, article, and footer elements have the same parent
element (body) and are thus also siblings.

Figure 19.1 Diagram of a DOM Tree with Objects

It’s not only the HTML elements that represent a node in a DOM
tree. The HTML attributes and the contents of the HTML elements
themselves are also nodes of a DOM tree that can be accessed
using JavaScript. The following simple HTML construct shows all
three important node types:
<p lang="en">The paragraph text ...</p>

Figure 19.2 The Representation of the Tree Structure in the DOM Inspector of the Web
Browser

Here, you have the HTML element node with the p element.
Additionally included is the HTML attribute node with lang="en". In
addition, the content (here, The paragraph text ...) of the p element
is a genuine node (also called a text node) that can be accessed in
the DOM tree using JavaScript.

Due to this division into node objects, where all HTML elements,
HTML attributes, and the content represent a node, and these nodes
are related to each other in the tree by parent, child or sibling
relationships, it’s possible to access each of these nodes using
various DOM methods and DOM properties. On the following pages,
you’ll learn how this works.

19.2 The “document” Object
As you can see in Figure 19.1, the document object is the topmost
object of the DOM tree. This document object enables you to access
all elements of the HTML document with JavaScript and change
them under certain circumstances. In this context, the document
object represents the complete web page and is the owner of all
other nodes of the web page. If you want to address an element in
an HTML document, for example, you can do that via the document
object and the querySelector() method as follows:
let element = document.querySelector('body');

If you need access to other objects (nodes) of the web page, you
need to start at the top with the document object.

19.3 DOM Programming Interface
As you’ve already learned, you can use JavaScript to access the
individual nodes of the DOM. For this, DOM provides various
methods and properties for each object in the DOM tree. Here’s a
short example that demonstrates the interaction of the programming
interface of the DOM with a method and a property. First the HTML
code:
<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>DOM interfaces</title>
</head>
<body>
 <h1>The DOM interface</h1>
 <p>The paragraph text</p>

 <script src="js/script.js"></script>
</body>
</html>

Listing 19.1 /examples/chapter019/19_3/index.html

And here’s the JavaScript code:
let text = document.querySelector('p').innerHTML;
if (text) {
 text += " " + "has been extended!";
 document.querySelector('p').innerHTML = text;
}

Listing 19.2 /examples/chapter019/19_3/js/script.js

In this example, querySelector() is a method and innerHTML is a
property of the document object. The querySelector() method is used
to get access to an HTML element. The innerHTML property, on the
other hand, can be used to read the content of the HTML element or
replace it with new content.

In this example, you search for the first p element in the current
HTML document using the querySelector() method and assign the
content contained in the innerHTML property to the text variable.
After this assignment, text contains the string, "The paragraph text".
In the second line, you expand the contents of text so that the
complete string is "The paragraph text has been extended!". In the
last line of the script, you change the content (text node) of the p
element and pass or replace the old content with the newly extended
content using the innerHTML property with the text string. You can
see the example during execution in Figure 19.3.

Figure 19.3 The Content of a <p> Element Was Manipulated Using the “querySelector()”
Method and the “innerHTML” Property

19.4 Accessing Elements in the DOM
JavaScript is commonly used to read, modify, or extend elements in
the DOM. For those types of access to the DOM and its element
nodes, the document object provides several methods.

Method Description
document.getElementById() Finds an element based on

the id attribute
document.getElementsByTagName() Finds all elements with a

specific tag name
document.getElementsByClassName() Finds all elements of a given

CSS class
document.getElementsByName() Finds HTML elements with a

specific “name” attribute
document.querySelector(s) Returns the first element

(and only this one) that
corresponds to the specified
CSS selector s

document.querySelectorAll(s) Returns a list with all
elements that match the
specified CSS selector s

Table 19.1 Methods for Finding HTML Elements

Although there are several methods available to you to access
individual elements with JavaScript, in practice, the two still
somewhat newer methods querySelector() and querySelectorAll()
are usually sufficient. They are also much easier to use because you

can use them to search for the usual CSS selectors such as
elements, classes, and IDs, as well as other attributes.

19.4.1 Finding an HTML Element with a Specific “id”
Attribute

The old way to access a node in the document object is to search for
a specific id attribute of an element using the getElementById(id)
method. This method returns a reference to the element object if
successful, or it returns null if no element with this id attribute
exists. Here’s the same example again, but this time with an if
check that queries whether the element was found.

First, here’s the important HTML part:
...
<h1>The DOM interface</h1>
<p id="msg">The paragraph text</p>

<script src="js/script.js"></script>
...

Listing 19.3 /examples/chapter019/19_4_1/index.html

Then, here’s the JavaScript code:
let elem = document.getElementById('msg');
if (elem) {
 let text = elem.innerHTML;
 text += " " + "has been extended!";
 elem.innerHTML = text;
} else {
 console.log("Element with ID msg was not found!");
}

Listing 19.4 /examples/chapter019/19_4_1/index.html

In this example, if() is first used to check the condition as to
whether a corresponding ID (here, msg) is contained in the HTML
document at all. If that’s true, the element will be manipulated. If it

isn’t true, the else branch will be executed, and a corresponding
error message will be output to the console.

As briefly indicated at the beginning, this method of accessing
elements with the IDs and JavaScript is somewhat outdated. In the
past, one simply used as many id attributes as possible, which then,
together with the class names for the presentation, made for a rather
extensive and confusing HTML document. You can avoid inflating
the HTML document with IDs and classes for JavaScript by simply
using the appropriate (semantic) elements.

In addition, accessing the element via getElementById() is quite
cumbersome and could be done right away using the querySelector
method as the better alternative:
...
 let elem = document.querySelector('#msg');
...

Listing 19.5 /examples/chapter019/19_4_1/js/script-2.js

The use of querySelector('#msg') shown here corresponds to that
with getElementById('msg'). In addition, querySelector() also makes
it much clearer to access the common CSS selectors, such as #msg,
for an ID here.

19.4.2 Finding HTML Elements with a Specific Tag
Name

If you’re looking for HTML elements with a specific tag name, you
can do this by using the getElementsByTagName() method. From the
method name in the plural (getElements), you can probably already
guess that not only will one element in the HTML document be
returned but also a collection of all nodes with a corresponding tag
name. You can access the individual nodes via square brackets and

the corresponding index value. The number of elements found will
be returned by the length property.

“getElementsByTagName()” Doesn’t Return an Array

Although it may seem so, getElementsByTagName() doesn’t return
an array, but a node list (live NodeList), which you can read with a
loop. You can’t call array-type methods such as forEach() directly
on a node list.

Here’s a simple example that demonstrates how you can use
getElementsByTagName(). First of all, here’s the HTML document
again:
...
<article id="lead">
 <h2>The DOM interface</h2>
 <p>First paragraph text in the article</p>
 <p>Second paragraph text in the article</p>
</article>

<p>First paragraph text outside the article</p>
<p>Second paragraph text outside the article</p>

 <h2>Output:</h2>
 <output></output>
 <script src="js/script.js"></script>

...

Listing 19.6 /examples/chapter019/19_4_2/index.html

And here’s the JavaScript code for it:
let plainText = "";
let pElements = document.getElementsByTagName('p');
for (let i = 0; i < pElements.length; i++) {
 plainText += pElements[i].innerHTML + '\n';
}
console.log(plainText); // Output for demonstration

let htmlText = "p elements in document: " + pElements.length + "
";
let articleElements = document.getElementById('lead');
let articlePElements;

if (articleElements) {
 articlePElements = articleElements.getElementsByTagName('p');
 htmlText += "Of which contained in the article element: " +
 articlePElements.length + "
";
}
htmlText += "The second paragraph in the article is: " +
articlePElements[1].innerHTML;
document.querySelector('output').innerHTML = htmlText;

Listing 19.7 /examples/chapter019/19_4_2/js/script.js

At the beginning, after calling let pElements =
document.getElementsByTagName('p');, all found p elements of the
HTML document are contained in pElements. pElements.length
contains the number of p elements in a for loop, and the length
property as a termination condition allows you to use console.log()
to output the individual elements found with the index in the square
brackets and the innerHTML property to the JavaScript console for
demonstration. Then, we still incorporate this information into the
htmlText string with the number of p elements found in the HTML
document.

You use let articleElements = document.getElementById('lead'); to
search for an element where the attribute value of id is equal to
lead. The returned node gets saved in articleElements. Using the
node, you can search with articlePElements =
articleElements.getElementsByTagName('p'); for all p elements that
are inside the node. In the example, the attribute value id='lead' is
used for the article element. Thus, in articlePElements, you’ll find
all p elements that are contained within the article element. You
also append this information to the htmlText string. Last but not
least, we’ll demonstrate how you can access the individual contents
directly using the index (here, with articlePElements[1].innerHTML).
This text was also added to the end of the htmlText string. You can
see the result of the example during execution in Figure 19.4.

Figure 19.4 Demonstrates the “getElementsByTagName()” Method, Which Returns All
Nodes of a Certain Tag Name (Here, “p”)

If you look at the following JavaScript lines in the example, you’ll
probably agree that this is a relatively awkward solution after all:
...
let articleElements = document.getElementById('lead');
let articlePElements;
if (articleElements) {
 articlePElements = articleElements.getElementsByTagName('p');
 htmlText += "Of which contained in the article element: " +
 articlePElements.length + "
";
}
...

Listing 19.8 /examples/chapter019/19_4_2/js/script.js

First, getElementById() is used to search for an element with the ID
lead and, in case of a find within if(), getElementsByTagName() is
used to search for the individual p elements. Of course, you could
just give the p elements a class name and then search for them, but
again, querySelectorAll() provides a method that makes searching
for the right elements a breeze. querySelectorAll() works like
querySelector(), but this method returns a list of found elements.
querySelector(), on the other hand, returns only the first element
found that matches the CSS selector. Thus, the preceding lines can
be simplified as follows by using querySelectorAll():

...
let articlePElements = document.querySelectorAll('#lead p');
if (articlePElements) {
 htmlText += "Of which contained in the article element: " +
 articlePElements.length + "
";
}
...

Listing 19.9 /examples/chapter019/19_4_2/js/script-2.js

This has the same effect as the preceding example and returns all p
elements that are within the ID #lead.

19.4.3 Finding HTML Elements with a Specific “class”
Attribute

If you’re looking for an HTML element with a specific CSS class
name assigned with the HTML attribute class, you can use the
getElementsByClassName() method to do so:
let myc = document.getElementsByClassName('aClass');

Like getElementsByTagName(), this method returns all found nodes in
the HTML document with the class name aClass. Because
getElementsByClassName() works just like getElementsByTagName(),
except that it searches for nodes with a specific class attribute value,
we don’t need an extra example here.

Here, too, it’s now convenient to use the much more universal
querySelectorAll() method in the following way to find all CSS
classes:
let myc = document.querySelectorAll('.aClass');

19.4.4 Finding HTML Elements with a Specific “name”
Attribute

The getElementsByName() method is the version to search for nodes
in the HTML document that contain the HTML attribute name with a
specific value. Again, all found nodes are stored in a list, which you
can access again with the corresponding index in square brackets.
The name attribute is mainly used in form elements and can be used,
for example, to evaluate related radio buttons. Take a look at the
following example. First, the HTML document:
...
<input name="color" type="radio" value="Red">Red
<input name="color" type="radio" value="Blue">Blue
<input type="button" onclick="getColor()" value="Choose color">

<output></output>

<script src="js/script.js"></script>
...

Listing 19.10 /examples/chapter019/19_4_4/index.html

And here’s the JavaScript for it:
function getColor() {
 let colors = document.getElementsByName('color');
 let htmlText = "Colors to choose from : " + colors.length +
 "
You have chosen :";
 if (colors[0].checked) {
 htmlText += "Red";
 } else if (colors[1].checked) {
 htmlText += "Blue";
 } else {
 htmlText += "None";
 }
 document.querySelector('output').innerHTML = htmlText;
}

Listing 19.11 /examples/chapter019/19_4_4/js/script.js

In the example, the event handler onclick is used as an HTML
attribute in the HTML tag and will execute the event function
getColor() when the element (here, the button) is clicked. I’ll
describe event handlers separately, but you can already see that
they’re an important link between HTML and JavaScript.

The statement let colors=document.getElementsByName("color"); in
getColor() makes sure that all nodes are found where name="color"
is written and stored in colors. You can use the if conditions
(colors[i].checked) to check whether the corresponding radio button
has been activated (= true) or not activated (= false). You’ll learn
more about HTML forms with JavaScript later in this chapter. The
example during execution is shown in Figure 19.5.

Figure 19.5 Evaluation of Radio Buttons Using the “getElementsByName()” Method

You’ll certainly ask yourself now whether that’s also possible with
querySelectorAll(). And indeed, instead of getElementsByName(),
you can use the querySelectorAll() method here as well, as follows:
...
let colors = document.querySelectorAll('[name="color"]');
...

Listing 19.12 /examples/chapter019/19_4_4/js/script-2.js

19.4.5 Using “querySelector()” and
“querySelectorAll()”

If you’ve read everything from the beginning up to this point, you
should already have noticed that, in practice, you really only need
querySelector() and querySelectorAll() to select elements based
on CSS selectors. Not only are these two methods more flexible than
the getElementById() and getElementsByTagName() methods, they’re
also faster. The querySelector() method returns the first element

found, while querySelectorAll() returns a list of all elements found
in a NodeList.

Because you can select the elements using CSS selectors with
querySelector() and querySelectorAll(), even more complex
accesses can be implemented relatively easily. Let’s take a look at
the following example:
...
 <article>
 <h2>Article Heading 1</h2>
 <p>The 1st paragraph text</p>
 </article>
 <article>
 <h2>Article Heading 2</h2>
 <p>The 2nd paragraph text</p>
 </article>
 <article>
 <h2>Article Heading 3</h2>
 <p>The 3rd paragraph text</p>
 </article>
 <article>
 <h2>Article Heading 4</h2>
 <p>The 4th paragraph text</p>
 </article>

 <h2>Heading 5 (no article)</h2>
 <p>The 5th paragraph text</p>

 <script src="js/script.js"></script>
...

Listing 19.13 /examples/chapter019/19_4_5/index.html

If, in this example, you want to alternate the article elements with
special background color, this is easier than you might think if you
use querySelectorAll(). Here’s the corresponding example:
let elem = document.querySelectorAll('article:nth-child(odd)');
for (let i = 0; i < elem.length; i++) {
 elem[i].style.backgroundColor = "wheat";
}
...

Listing 19.14 /examples/chapter019/19_4_5/js/script.js

As you can see in Figure 19.6, each article element has been
styled with a wheat-colored background color if it’s an odd element
(nth-child(odd)) of the parent element. Thus, in this example, the
first, third, fifth, seventh, and so on element would be styled. On the
other hand, if you want to additionally style all even elements, you
just need to use article:nth-child(even) instead. The fifth heading
with the paragraph text wasn’t styled because it isn’t an article
element. Here, you could also see how easy it is to change the style
of an HTML element via DOM. To learn more about changing the
style of an HTML element via DOM, see Section 19.5.3.

Figure 19.6 The “querySelector()” and “querySelectorAll()” Methods Provide a Flexible
Way to Access DOM Elements

19.4.6 Other Object and Property Collections

In addition, ready-made object collections and properties are
available to help you find HTML elements. An overview of this is
shown in Table 1.2. But in a small example, you’ll first see how you
can use these ready-made collections:
let evaluation = document.querySelector('output');
if (evaluation) {
 evaluation.innerHTML = "Content of the title element: " + document.title;
}

Listing 19.15 /examples/chapter019/19_4_6/js/script.js

The example returns the content of the title element with
document.title, as you can see in Figure 19.7.

Figure 19.7 You Can Use “document.title” to Determine the Content of the <title>
Element

Of course, the object and property collection is only a convenience
over the other ways of locating an HTML element described earlier.
To access the content of the title element, you could just as well
have used on of the following two options instead of document.title:
document.querySelector('title').innerHTML
document.querySelector('title').textContent

“innerHTML” versus “textContent”

The textContent property contains only the text content of an
HTML element and all child elements. With the innerHTML property,
on the other hand, the HTML code is used in addition to the text
content.

Other object collections, in turn, return an entire list of values. The
following example returns all links of the HTML document.

Figure 19.8 Finding All Hypertext Links in an HTML Document

The HTML code for this follows:
...
<p>A link to
 Rheinwerk Publishing
</p>
<p>Another link to the
 homepage
</p>

<output></output>
<script src="js/script-2.js"></script>
...

Listing 19.16 /examples/chapter019/19_4_6/index-2.html

Here’s the corresponding JavaScript:
let hyperlinks = document.links;
let text = "";
for (let i = 0; i < hyperlinks.length; i++) {
 text += i + 1 + ". Link: " + hyperlinks[i].innerHTML + "
";
}
document.querySelector('output').innerHTML = text;

Listing 19.17 /examples/chapter019/19_4_6/js/script-2.js

Table 19.2 contains an overview of all object and property collections
that can make your life with DOM easier with regard to searching for
HTML elements.

Method Description

Method Description
document.baseURI Returns the absolute base URI of the

HTML document.
document.body Returns the body element.
document.cookie Returns all cookies of the document.
document.doctype Returns the doctype of the document.
document.documentElement Returns the html element.
document.documentURI Returns the URI of the document.
document.domain Returns the domain name from the

document server.
document.domConfig Returns the DOM configuration.
document.embeds Returns a list of all embed elements.
document.forms Returns a collection of all form

elements.
document.head Returns the head element.
document.images Returns a collection with all images.
document.implementation Returns the DOM implementation.
document.inputEncoding Returns the character set (encoding)

of the document.
document.lastModfied Returns the date and time when the

document was last modified.
document.links Returns a collection of all links with the

a and area element that contain a
value in the href attribute.

document.readyState Returns the load status of the
document.

Method Description
document.referrer Returns the URI of the linking

document. This assumes that the
document to be linked has been
accessed via a link. If an address was
selected directly or via a bookmark,
document.referrer is empty.

document.scripts Returns a list with all script elements.
document.title Returns the title element.
document.URL Returns the complete URL of the

document.

Table 19.2 Overview of Ready-Made Object and Property Collections

19.5 Changing an HTML Element, an
Attribute, or the Style
Several properties are available to change the content of an HTML
element. Table 19.3 contains a brief overview of these properties or
methods, which will be described separately later in this chapter.

Method or Property Description
element.innerHTML= Changes the content of an

HTML element
element.attribute= Changes the value of an HTML

attribute
element.setAttribute(attr,val) Changes the value of an HTML

attribute
element.style.property= Changes the style (CSS) of an

HTML element

Table 19.3 Various Properties and a Method for Changing HTML Elements

19.5.1 Changing the Content of HTML Elements Using
“innerHTML”

You can change the content of HTML elements using the innerHTML
property, which is something you’ve already done numerous times in
this book. All HTML elements, except those without opening and
closing HTML tags (e.g.,), have this innerHTML property. In the
following example, the content of an h1 and a p element is again
manipulated using innerHTML:
...
<h1>Heading</h1>

<p>Paragraph text</p>

<button onclick="changeContent()">
 Change with innerHTML
</button>

<script scr="js/script.js"></script>

...

Listing 19.18 /examples/chapter019/19_5_1/index.html

Here’s the JavaScript for it:
function changeContent() {
 document.querySelector('h1').innerHTML = "New Heading!";
 let elem = document.querySelector('p');
 elem.innerHTML = "New content for the paragraph text";
}

Listing 19.19 /examples/chapter019/19_5_1/js/script.js

In this HTML document, you’ll find an h1 element and a p element.
You can search for both elements using the querySelector()
method. Then, you can change the content of these elements using
innerHTML. Here, I’ll also present two different ways to access the
content of HTML elements: one directly without and one indirectly by
using a variable.

Figure 19.9 shows the example in its original state, and Figure 19.10
shows the example after changing the content of the h1 and p
elements with innerHTML by clicking the button and calling the
JavaScript function changeContent() you wrote yourself.

Figure 19.9 The HTML Document in Its Original State

Figure 19.10 The Example after Changing the Content of the <h1> and <p> Elements
with “innerHTML”

Setting HTML Tags in “innerHTML”

Besides the option to simply put a text with innerHTML into an
HTML element, you can also use HTML tags. The trick is that
these tags will also be rendered as elements in the HTML
document. For example, with regard to the example shown here, if
you want to highlight the New Content text string, you can do so
using the strong element as follows:
elem.innerHTML = "New Content for the paragraph text";

To prevent a cross-site scripting attack, HTML5 provides that a
<script> tag inserted in innerHTML must not be executed. Because
you can still run JavaScript without a script element, you
shouldn’t use innerHTML for strings that are beyond your control.

19.5.2 Changing the Value of an HTML Attribute

You can also change the value of HTML attributes. First you need to
search for the corresponding HTML element as usual and change
the relevant attribute in it. Here’s a simple example where you

change the src and alt attributes of an img element to change the
picture. First, the HTML document:
...
<h1>Change picture</h1>
<p></p>
<button onclick="changePicture()">Change picture</button>
<script src="js/script.js"></script>

...

Listing 19.20 /examples/chapter019/19_5_2/index.html

And here’s the JavaScript for it:
let xchange = true;

function changePicture() {
 let current = document.querySelector('.pic');

 if (xchange) {
 current.src = "images/image-02.png";
 current.old = "JavaScript Handbook";
 xchange = false;
 } else {
 current.src = "images/image-01.png";
 current.old = "HTML Handbook";
 xchange = true;
 }
}

Listing 19.21 /examples/chapter019/19_5_2/index.html

In this example, you start the JavaScript function changePicture()
every time the user clicks the Change picture button. First, you
search the HTML document for an element with class="pic" using
querySelector() and assign the element to the current variable. The
if check and else branch are only needed to enable you to
exchange the image again and again when the button has been
clicked by checking the global variable xchange and setting it again in
the corresponding branch according to the change. The actual
modification of the src and old attributes takes place with
current.src and current.old, respectively, and the assignment of a

different image and text, respectively. You can also change the value
of an attribute in one go as follows:
document.querySelector('.pic').src = "images/image-02.png";
document.querySelector('.pic').old = "JavaScript Handbook";

The principle works exactly as shown here with all other HTML
attributes. Let’s take a look at the example in Figure 19.11.

Figure 19.11 In This Example, the “src” and “old” Attributes of the Element Are
Changed So the Image Gets Replaced

19.5.3 Changing the Style (CSS) of an HTML Element

Changing the style of an HTML element is relatively easy once the
relevant element has been found. The following example changes
the style of the p element. The h1 element can be changed by
clicking the button, whereupon the self-written JavaScript function

changeColor() gets called and does its work. Here’s the
corresponding basic HTML structure:
...
<h1 class="headline">Change HTML style</h1>
<p class="p-style">A simple paragraph text ...</p>
<button onclick="changeColor()">Change color</button>
<script src="js/script.js"></script>

...

Listing 19.22 /examples/chapter019/19_5_3/index.html

Here’s the corresponding JavaScript code:
let element = document.querySelector('.p-style');
element.style.color = "navy";
element.style.background = "snow";
element.style.font = "1.2em Arial";

function changeColor() {
 let headline = document.querySelector('.headline');
 headline.style.color = "gray";
 headline.style.font = "2.5em serif";
 headline.style.fontStyle = "italic";

}

Listing 19.23 /examples/chapter019/19_5_3/js/script.js

In this example, you first search for the HTML element (here, via
querySelector()) and change the corresponding HTML element via
.style.cssProperty by assigning a valid CSS value. The p element
was given a blue font color (color="navy") and a snow-white
background (background="snow"). In addition, the font size was set to
1.2em and the font to Arial.

Camel Case

You may be a little puzzled about fontStyle in the
/examples/chapter019/19_5_3/js/script.js example and wonder
why font-style wasn’t used, which is the actual name of the CSS

property. In JavaScript, the hyphens are used for the minus sign,
which is why the hyphen isn’t used here, and the first letter after a
hyphen is capitalized. A CSS property such as border-color
becomes borderColor in JavaScript, or border-top-right-radius
becomes borderTopRightRadius. This notation for CSS properties
is referred to as a camel case.

The style of the h1 element, on the other hand, doesn’t change until
the user clicks the button (onclick event). When the button is
clicked, the font color of the h1 element will be formatted to gray, and
the font style will be italic via 2.5em and a serif font. You can see the
example during execution in Figure 19.12.

Figure 19.12 Changing the Style of an HTML Element

19.6 Responding to JavaScript Events
You can make your websites truly interactive using JavaScript
events. Typical examples include the changing of images when the
mouse is hovering over an HTML element or checking an input in
forms.

Figure 19.13 Classic Principle of Events and Event Handling

The principle is relatively simple: In the web browser, an event gets
triggered when an action is performed in the document, in the web
browser, or on a specific HTML element. For example, the web
browser generates an event when the web page is fully loaded, the
mouse is moved, or a button gets clicked. The triggered event is
then enqueued in an event queue to ensure that an event which was
triggered first is also handled first—the classic first in, first out
principle. An event loop continuously checks whether a new event is
present in the event queue and passes the event to an event
handler. If you’re interested in a specific event here, you can register
an event handler function for it, which will be executed when an
event of that type gets triggered.

You don’t need to worry about the event types themselves, that is,
which event has occurred. These are already included in JavaScript

and applicable via special keywords. The number of available events
in JavaScript is quite extensive, and you’ll first learn about only the
most common ones in this section. JavaScript provides events to the
following areas:

User interface (UI) events of the window (e.g., onload, onunload,
onresize, onscroll, onerror, and onabort)

Mouse events (e.g., onclick, ondblclick, onmousedown,
onmousemove, onmouseover, onemouseout, and onmouseup)

Keyboard events (e.g., onkeypress, onkeydown, and onkeyup)

Form events (e.g., onblur, onchange, onfocus, onreset, onselect,
and onsubmit)

Touch events (e.g., touchstart, touching, touchcancel, touchleave,
and touchmove)

Events for playing video and audio (e.g., onplay, oncanplay,
onpause, oncanplaythrough, onplaying, ondurationchange,
onvolumechange, and onended)

Drag-and-drop events (e.g., ondrag, ondragend, ondragenter,
ondragleave, ondragover, ondragstart, and ondrop)

Animation events for CSS animations (e.g., animationstart,
animationend, animationcancel, and animationiteration)

As you can see, the range of event types is enormous. In this
chapter, you’ll only learn about classic events of a UI, such as mouse
and keyboard events.

In addition to the type of event, you need an event target to which
the event is linked. For example, if you want to handle a click event
for a button, you must also use that button as the event target, which
is usually a button element.

In addition to the event target that’s to be monitored and upon which
you want to respond to an event, and the event type, you also need
a callback function, which is supposed to be called when the event
for the event target has occurred. This callback function can be set
up using an event handler for a specific object and event type.
Strictly speaking, a distinction is made here between event handlers,
which are defined via the properties (e.g., onclick), and event
listeners, which are defined via the addEventListener() method. The
difference is that only one event handler can be defined on an
element per event, but multiple event listeners can be defined.

When an event of the specified type is triggered at the specified
target, the web browser calls the event handler so that you can take
care of it with a JavaScript bounce function and respond accordingly.
When the event handler is called for an object, this also often refers
to the web browser having “triggered” the event.

19.7 Handling the Events Using the Event
Handler
An event handler is a JavaScript statement or function that gets
executed when a specific JavaScript event is triggered (or fired). It’s
relatively easy to set up an event handler for an event, and you have
three options for doing so, which I’ll describe in the following three
sections.

19.7.1 Setting Up an Event Handler as an HTML
Attribute in the HTML Element

You’ve already seen several times in this chapter how you can set
up an event handler as an HTML attribute. The principle is simple
and clear, and the script can be called when the HTML document
gets loaded, if the HTML element has already been loaded.

In the following line, event handler changeColor() has been set up for
HTML element <button> for event onclick. This means that when the
button gets clicked (onclick), function changeColor() will be called.
...
<button onclick="changeColor()">Change color</button>
...
<script src="js/script.js"></script>
...

Listing 19.24 /examples/chapter019/19_5_3/index.html

function changeColor() {
 ...
}

Listing 19.25 /examples/chapter019/19_5_3/js/script.js

However, the disadvantage of this method is that only one event
handler can be registered. The addEventListener() method, on the
other hand, can be used to register multiple event listeners.

19.7.2 Setting Up Event Handlers as a Property of an
Object

To intercept the event, you need an HTML element that catches the
event and assigns the event handler to this element. In practice, this
could look as follows:
...
// Element which should catch the event
let element = document.querySelector('selector');
// Event to be intercepted and event handler
element.onmouseover = function() { ... };
...

Because functions are full-fledged objects in JavaScript, it’s no
problem to assign them to a property as we did here.

You can write the entire process in one go as follows:
document.querySelector('selector').onmouseover = function() { ... };

Here’s a real-world example in which an event handler is set up as a
property of an object:
...
<h1>Change HTML style</h1>
<p class="p-style">A simple paragraph text ...</p>

<button id="button01">Change color</button>
<script src="js/script.js"></script>

...

Listing 19.26 /examples/chapter019/19_7_2/index.html

document.querySelector('#button01').onclick = function() {
 document.querySelector('.p-style').style.color = "navy";

 document.querySelector('.p-style').style.font = "1.2em Arial";
}

Listing 19.27 /examples/chapter019/19_7_2/js/script.js

In this example, you assign a function as an event handler to an
HTML element where the value of id is equal to button01 (again, the
button in this case). This event handler will be executed when the
button gets clicked (onclick). As an effect, the font color, size, and
type of the p element are changed in this example. The event
handler can be removed again using element.onclick=null;. Each
object can thus be assigned only one event handler for a specific
event. If you add another event handler to an event, the previous
event handler will be overwritten.

19.7.3 Setting Up an Event Handler via
“addEventListener()”

Similar to assigning the event handler as a property of an object, you
can use the addEventListener() method to associate an HTML
element with an event handler when a specific event occurs. Unlike
assigning the event handler directly as a property to an object, you
can use the addEventListener() method to add an event handler to
an HTML element without overwriting an event you had already
linked. This allows you to add multiple event handlers to an element
and the same event.

Here’s an example that demonstrates the addEventListener()
method:
...
<h1>Change HTML style</h1>
<p class="p-style">A simple paragraph text ...</p>

<button id="button01">Change color</button>
<script src="js/script.js"></script>

...

Listing 19.28 /examples/chapter019/19_7_3/index.html

let element = document.querySelector('#button01');
if (element) {
 element.addEventListener("click", changeColor);
 element.addEventListener("click", changeText);
 element.addEventListener("mouseover", myborder);
 element.addEventListener("mouseout", noborder);
} else {
 console.log("Error: Could not set up event handler!")
}

function changeColor() {
 document.querySelector('.p-style').style.color = "navy";
 document.querySelector('.p-style').style.font = "1.2em Arial";
}

function changeText() {
 document.querySelector('.p-style').innerHTML = "New Text";
}

function myborder() {
 document.querySelector('.p-style').style.border = "1px solid black";
}

function noborder() {
 document.querySelector('.p-style').style.border = "0px solid black";
}

Listing 19.29 /examples/chapter019/19_7_3/js/script.js

Admittedly, I went a bit overboard and assigned four event handlers
to the HTML element with id="btton01", that is, the button. Two
event handlers will be executed when the button gets clicked (click
event), and one event handler will be executed each when the user
keeps the mouse cursor on the button (mouseover) and when the
user leaves the button again with the mouse cursor (mouseout).

You’ll notice here that the prefix on is no longer used in the
addEventListener() method. For example, instead of onclick, only
click is used.

Anonymous Wrapper Function

If you need an event handler with a parameter, you can write an
anonymous wrapper function, for example:
...
function changeText(newTxt) {
 document.querySelector('.update').innerHTML = newTxt;
}
...
let txt = "Text was changed";
element.addEventListener("click", () => {changeText(txt)});
...

Here, if the click event gets triggered at the element associated
with element, you can call the changeText() function with the txt
parameter inside an anonymous function.

If you want to remove an event handler from the list, you can do so
by using the removeEventListener() method as follows:
...
element.removeEventListener("click", changeColor);
...

19.8 Overview of Common JavaScript
Events
You’ve already learned that there’s a large set of JavaScript events
for which you can set up an event handler for elements in the HTML
document. This section provides a brief overview of the various
events.

19.8.1 The JavaScript Events of the UI (Window
Events)

Table 19.4 contains an overview of common JavaScript events that
are primarily related to the web browser UI and that you can respond
to with an event handler. After listing these events, I’ll describe how
you can use onload and onunload separately.

JavaScript
Event

The Event Occurs When . . .

error An error occurred while a document or image was
loaded.

load The document or frameset has been loaded.
resize The document window has changed in size, that is,

has been enlarged or reduced.
scroll The document was scrolled.
unload The web browser removes a document from the

window or frameset (or the web browser gets closed).

Table 19.4 Events in the Web Browser UI

Using the JavaScript Events “onload” and “onunload”

The onload event occurs when an object has been loaded, so it’s
common to use it in the body element to execute a script when the
entire web page has been loaded with images, scripts, CSS, and so
on. You’ll often find the following line in the body element:
<body onload="haveACookie()">

Once the entire web page has been loaded, the event handler
haveACookie() will be executed. Besides that, there’s a pure
JavaScript version that you can write as follows:
...
 window.onload=function() {
 // JavaScript code
 }

...

The counterpart of the onload event is the onunload event, which can
be used when a user leaves the page, for example, by clicking a link,
submitting a form, or closing the window in the web browser. The
onunload event is also called when the user reloads the web page.
However, in that case, the onload event will also be executed. Again,
the usage is mainly in the body element, and the syntax is also the
same as for the onload event:
<body onload="haveACookie()" onunload="setACookie()">

A JavaScript version can be used as follows:
...
 window.onunload=function() {
 // JavaScript code
 }

...

“DOMContentLoaded” versus “load”

I’ve already briefly mentioned the DOMContentLoaded event once in
this book. The event gets triggered once the complete DOM tree of a
web page has been loaded. You’re probably wondering what the
difference is between the events load and DOMContentLoaded. As
described previously, you can define an event listener as follows, for
example:
function initJS() {
 // JavaScript code
}
window.addEventListener('load', initJS);

You can do almost the same with the DOMContentLoaded event as
follows:
function initJS() {
 // JavaScript code
}
document.addEventListener('DOMContentLoaded', initJS);

The difference between the two versions is that with load, the event
is only triggered when the complete document (the DOM tree),
including all external resources such as JavaScript files, CSS files,
or images, has been loaded. With the DCOMContentLoaded event, on
the other hand, the event gets triggered if only the entire DOM tree
of the web page has been loaded. In your daily work, I recommend
you use DOMContentLoaded instead of load because it avoids waiting
for external resources to load.

19.8.2 JavaScript Events That Can Occur in
Connection with the Mouse

Many events can occur in connection with the mouse. Table 19.5
contains an overview of the different mouse events.

JavaScript
Event

The Result Occurs When . . .JavaScript
Event

The Result Occurs When . . .

click An element has been clicked.
dblclick An element has been double-clicked.
mousedown The mouse button is pressed over an element.
mousemove The mouse pointer is placed over an element and

is then moved.
mouseover The mouse pointer is over the element.
mouseout The mouse pointer gets moved away from an

element.
mouseup The pressed mouse button is released again.

Table 19.5 Various Mouse Events to Which You Can Respond

Here’s a simple example that demonstrates some of the mouse
events in action:
...
<h1>Mouse events</h1>
<p class="p-style">Mouse pointer here</p>
<script src="js/script.js"></script>
...

Listing 19.30 /examples/chapter019/19_8_2/index.html

let element = document.querySelector('.p-style');
element.addEventListener("mouseover", mymouseover);
element.addEventListener("mousedown", mymousedown);
element.addEventListener("mouseup", mymouseup);
element.addEventListener("mouseout", mymouseout);

function mymouseover() {
 element.innerHTML = "Mouse pointer over HTML element";
}

function mymousedown() {
 element.innerHTML = "Mouse button pressed";
}

function mymouseup() {
 element.innerHTML = "Mouse button released";
}

function mymouseout() {
 element.innerHTML = "Exit HTML element";
}

Listing 19.31 /examples/chapter019/19_8_2/js/script.js

In this example, different event handlers have been set up for the
mouseover, mousedown, mouseup, and mouseout events for the HTML
element with class="p-style" using the addEventListener() method.
Depending on which mouse event setup with an event handler is
currently occurring, a note about it will display.

Figure 19.14 Responding to Events

19.8.3 JavaScript Events for Devices with a
Touchscreen

Besides mouse events, you also need to consider touch events
because an increasing number of devices are controlled with
touchscreens instead of a mouse. The click event is the same for
both mouse operation and touchscreens, and it can be used for both
a mouse click on the desktop and the touchscreen on mobile
devices. All other mouse events can also be used by mobile
browsers on touch devices. Thus, you probably won’t need to use
special touch events in most cases.

If you write mobile-only applications, it makes sense to replace
mouse events with touch events. For an overview of JavaScript
events for devices with touchscreens, take a look at Table 19.6. As
an alternative, you can use a library that directly supports all events
and use the relevant event depending on the end device.

JavaScript
Event

The Event Occurs When . . .

touchstart The surface of the touchscreen gets touched.
Corresponds to a mousedown.

touchend The finger is lifted from the surface of the
touchscreen. Corresponds to a mouseup.

touchcancel The finger leaves the area.
touchmove The finger slides across the touchscreen’s surface.

Corresponds to a mousemove.

Table 19.6 Various Events for Devices with Touchscreen

More Information Online

If you want to deal specifically with the processing of touch events
on mobile devices, this isn’t as trivial as it may seem. I won’t go
into a comprehensive description here. But you can find more
information about touchscreens in an excellent documentation at
https://developer.mozilla.org/en-US/docs/Web/API/Touch_events.

19.8.4 JavaScript Events That Occur in Connection
with the Keyboard

You can also respond to keyboard events such as pressing, holding
down, and releasing keys. Strictly speaking, when a key is pressed

https://developer.mozilla.org/en-US/docs/Web/API/Touch_events

and released, three JavaScript events get triggered in the order
keydown (press), keypress (keep pressed), and keyup (release).
Table 19.7 contains an overview of the existing keyboard events.

JavaScript
Event

The Event Occurs When . . .

keydown A key on the keyboard gets pressed.
keyup A depressed key of the keyboard gets

released.
keypress A key gets pressed and held down.

Table 19.7 Various Keyboard Events to Which You Can Respond

19.8.5 JavaScript Events for HTML Forms

For the HTML forms I covered in Chapter 7, you can also find the
available events in Table 19.8.

JavaScript
Event

The Event Occurs When . . .

blur A form element loses its focus.
change The content of a form element such as <input>,

<select>, or <textarea> has changed.
focus An element such as <label>, <input>, <select>,

<textarea>, or <button> gets the focus.
reset The form gets reset.
select A text has been marked in an input field such as

<input> or <textarea>.
submit The form gets submitted.

Table 19.8 Events That Can Occur in Connection with HTML Forms

19.8.6 JavaScript Events for the Web APIs

Due to the large number of Web application programming interfaces
(APIs) that exist, there are also many more events. Especially for
playing audio and video files with the <audio> and <video> elements,
you’ll find an extensive list of event types. In addition, the new drag-
and-drop API for dragging and dropping elements defines event
types. Furthermore, there are various events for the Web APIs such
as for the creation of offline web applications or for asynchronous
communication.

19.9 More Information about Events with
the “event” Object
What you’ve probably wondered about JavaScript events like
keyboard events (e.g., a keystroke) is whether it’s somehow possible
to determine which key triggers an event. Yes, this is possible, and
this information is even already provided as a property of the
respective event.

Events are themselves objects that have a variety of properties and
methods, which is a typical feature of JavaScript. More precisely, the
event object gets passed to the function to be called. To access it,
you must explicitly pass the event object to the function as the first
parameter. Here’s a simple example that demonstrates this process:
...
<h1>Properties of events</h1>
<p onmousedown="showPos(event)" class="p-style">
 Click here!
</p>
<p>Keystroke: <input type="text" onkeydown="keyPressed(event)"></p>
<output></output>
<script src="js/script.js"></script>

...

Listing 19.32 /examples/chapter019/19_9/index.html

function showPos(ev) {
 let x = ev.clientX;
 let y = ev.clientY;
 let text = "Pos-X: " + x + " / Pos-Y: " + y;
 if (ev.shiftKey == true) {
 text += " / (Shift) key was pressed!";
 } else {
 text += " / (Shift) key was not pressed!";
 }
 text += " -> Mouse button: " + ev.button;
 document.querySelector('output').innerHTML = text;
 console.log(ev);
}

function keyPressed(ev) {
 let text = "Key code: " + ev.keyCode + "=" + String.fromCharCode(ev.keyCode);
 document.querySelector('output').innerHTML = text;
}

Listing 19.33 /examples/chapter019/19_9/js/script.js

You can see here how the event object is used as a parameter for
the event handler to establish a link to the event’s properties. Within
the function, you can access the values or properties of the event
object, which was done here via clientX and clientY, returning the
horizontal and vertical coordinate position, respectively, relative to
the current window in which the corresponding event (in the
example: onmousedown) was triggered. Likewise, it was tested here
whether the shiftKey property equals true, which means that the
(Shift) key was pressed at the same time the mouse was pressed.

In addition, console.log(ev) provides a convenient way to get all the
information about the event object output to the JavaScript console,
which is why you should open the JavaScript console.

I then set up something similar for the keyboard by using onkeydown,
where the event object is used to output the keyboard code (keyCode)
and, if possible, the corresponding character for it.

Figure 19.15 The “event” Object Can Also Be Used to Access Further Information about
an Event

Besides the clientX, clientY, or shiftKey properties of an event
object presented in the example, there are many more properties,
some of which you can find listed in Table 19.9.

Property DescriptionProperty Description

altKey,
ctrlKey,
shiftKey

Returns whether or not the (Alt), (Ctrl), or
(Shift) key was held down when the event
occurred.

bubbles Indicates whether an event can ascend or not—
more precisely, whether an event also applies to
the parent element and can ascend in the DOM
tree. This is referred to as bubbling.

button Contains a value that indicates which mouse
button was pressed. 0 stands for the left, 1 for the
center, and 2 for the right mouse button.

clientX
clientY

Contains the horizontal (clientX) and vertical
(clientY) pixel value with the mouse cursor
position relative to the upper-left corner of the
window.

cancelable Returns whether the default action of an event can
be prevented or not.

currentTarget Returns the element whose event listener
triggered the event.

keyCode Contains the keyboard code of the last key
pressed. You can determine the character using
String.fromCharCode(event.keyCode).

metaKey Indicates whether the meta key was pressed when
the event occurred. In practice, this is the (cmd)
key on a Mac.

screenX
screenY

Contains the horizontal (screenX) and vertical
(screenY) pixel value with the mouse pointer
position relative to the upper-left corner of the
screen.

target Returns the element that triggered the event.

Property Description
type Returns the name of the event.

Table 19.9 Overview of Some Properties of JavaScript Events

19.10 Suppressing the Default Action of
Events
HTML elements such as a simple link or a button to submit a form
perform the intended actions when events occur, even without
JavaScript. For example, clicking on a link triggers a click event,
which usually causes the web browser to load a new web page.
Clicking a Submit button on a form also triggers a submit event,
which submits the form to the web server.

Certain events, as just mentioned, are handled by the web browser
in such a way that it executes a default action without the need to set
up a special event handler function in JavaScript.

Here’s a simple example that demonstrates this:
A link

Now, if you want to take control of JavaScript yourself and, instead of
following the link and loading a new web page, do something else,
you need to suppress the default action of the element. For this
purpose, you can use the preventDefault()method of the event
object:
event.preventDefault();

You can use this method to suppress the intended default action.
This process is also referred to as an event cancellation.

Here’s a complete example that demonstrates how you can
suppress the default action of the click event for a link. In the
example, only the default action of following the link and loading the
website is suppressed, and a message gets displayed instead in the
console indicating that the default action has been suppressed:

...
document.querySelector('.aLink').onclick = function(event) {
 if (event.preventDefault) {
 event.preventDefault();
 }
 // Write the actual JavaScript code here, which states
 // what is supposed to happen when the link gets clicked on
 console.log("Default action prevented");
}
...

Listing 19.34 /examples/chapter019/19_10/js/script.js

19.11 The Event Flow (Event Propagation)
Based on what you know so far, you register an event handler for a
specific event and target element that you want to monitor and
respond to. If the corresponding event occurs on the target element,
the event handler will be triggered and executed. However, this
description of the event flow is a bit vague. For this reason, we’ll
briefly describe the event flow at this point, that is, how an event
moves through the DOM tree when an event gets triggered. This
event flow is also referred to as event propagation and takes place in
three phases:

1. Capturing phase
The event descends from the topmost document node in the
DOM tree to the target element of the event. The phase starts
with the intercepting handlers of the window object, through those
of the document object and the body object, down to those of the
event target’s parents. Due to this descent to the target element,
it becomes possible to look more closely at the events before
they reach their destination. For example, an intercepting event
handler can be used to suppress certain events, as we did
earlier in the chapter with the preventDefault() method.

2. Target phase
When the event reaches its target element, the corresponding
event handlers get triggered (i.e., on the target element), which
were registered for the corresponding event type, and the
bubbling phase is initiated.

3. Bubbling phase
Starting from the target element, the event now rises back up
the element hierarchy of the DOM tree. This rising is called

bubbling. It ensures that the registered handlers of the target
element are also executed in its parent element, its grandparent
element, and so on up to the document object and then the
window object. In other words, the event triggered on the target
element rises up the DOM tree, where it triggers the event
handlers/event listeners registered for that event on those
elements.

19.11.1 More about the Bubbling Phase

It may sound relatively pointless at first that in the capturing phase,
everything in the DOM tree initially descends from the top down to
the target element, only to ascend back up again in the bubbling
phase. If you look at the following HTML code and the explanation
that follows, you’ll quickly understand the meaning of bubbling:
...
 <article>
 <h1>Demonstrates bubbling</h1>
 <p onmousedown="getMouse()">Lorem ipsum dolor sit amet, adipiscing elit.
 <mark>Aenean commodo ligula eget dolor.</mark>
 </p>
 </article>
 <output></output>

 <script>
 function getMouse() {
 var text = "Mouse button was pressed!"
 var pos = document.querySelector('output');
 if (pos) {
 pos.innerHTML = text;
 pos.style.background = "lightgray";
 }
 }
 </script>
...

Listing 19.35 /examples/chapter019/19_11_1/index.html

In the example, the handler function getMouse() has been set up for
the p element in the article element, which is executed when you

press the mouse button in the p element. If you press the left mouse
button in the p element, corresponding information is output in the
output element. The same thing happens if you click on the mark
element within the p element or on the strong element one level
further down in the hierarchy. This occurs due to bubbling. For
example, if the event is triggered on the mark element, the event will
rise, and the handler in the p element will be executed. This way, you
can avoid registering handlers for individual elements and instead
register a single handler for a common ancestor object and respond
to the event there.

While most event types ascend via the bubbling phase, there are
some that don’t go up and trigger a corresponding handler in the
ancestor object. For some event types such as the focus, blur, and
scroll events, ascending in this way wouldn’t be very useful.

Figure 19.16 Thanks to Bubbling, the Event That Triggers on the Element or
<mark> Element Will Rise, Which Will Execute the Handler of the <p> Element

19.11.2 Canceling Bubbling via the “stopPropagation()”
Method

The process of rising in the bubbling phase isn’t always desired and
can therefore be prevented via the stopPropagation() method. Take

a look at the following HTML code, where bubbling is more annoying
than useful:
...
<article onmousedown="getMouseArticle()">
 <h1>Demonstrates bubbling</h1>
 <p onmousedown="getMouseP()">Lorem ipsum dolor ... </p>
</article>
<script src="js/script.js"></script>

...

Listing 19.36 /examples/chapter019/19_11_2/index.html

let text = "";
function getMouseP() {
 alert("Mouse button was pressed in p!");
}
function getMouseArticle() {
 alert("Mouse button was pressed in article!");
}

Listing 19.37 /examples/chapter019/19_11_2/js/script.js

Here, two nested elements—the p element and article element—
monitor the same event (mousedown). If you click on the p element
inside the article element, the handler function getMouseP() will be
executed. Because of bubbling, the event rises to the top and, upon
reaching the article element, executes the getMouseArticle()
handler function registered for the same event (mousedown) there as
well.

You can stop this rising of nested elements by using the
stopPropagation() method. Here’s the corresponding example:
...
<article onmousedown="getMouseArticle()">
 <h1>Demonstrates bubbling</h1>
 <p onmousedown="getMouseP(event)">Lorem ipsum dolor ... </p>
</article>
<script src="js/script-2.js"></script>

...

Listing 19.38 /examples/chapter019/19_11_2/index-2.html

function getMouseP(ev) {
 alert("Mouse button was pressed in p!");
 if (ev.stopPropagation) {
 ev.stopPropagation();
 }
}

function getMouseArticle() {
 alert("Mouse button was pressed in article!");
}

Listing 19.39 /examples/chapter019/19_11_2/js/script-2.js

When the left mouse button in the p element gets pressed, the
getMouseP(ev) handler function set up for this purpose will be called
with the event object as a parameter. In the handler function, it’s first
checked whether the stopPropagation method exists, and if it does, it
will be executed. By using stopPropagation(), you’ve stopped
bubbling for the event type mousedown, and the type no longer gets
passed up to the article element.

19.11.3 Intervening in the Event Flow during the
Capturing Phase

If you want to intervene in the event flow in the capturing phase, that
is, when it runs from top to bottom, you can only do that by using the
addEventListener() method. Using <element
onevent="handlerFunc()"> as HTML attribute (Section 19.7.1) or
element. onevent = handlerFunc as a property of an object
(Section 19.7.2), you can register the handler only for the bubbling
phase. In the description of addEventListener() in Section 19.7.3, I
withheld from you the third parameter where you can specify the
Boolean value true or false. If you set the value to true in that
parameter, you register the event handler or event listener for the

capturing phase. By default, the third parameter is set to false and
therefore doesn’t need to be explicitly specified in that case either.

Here’s an example that shows how you can set up a handler for the
capturing phase:
...
 <p class="my-p">Lorem ipsum dolor... </p>
 <script src="js/script.js"></script>

...

Listing 19.40 /examples/chapter019/19_11_3/index.html

let id = document.querySelector('.my-p');
if (id) {
 id.addEventListener("mousedown", getMouseP, true);
} else {
 alert("No element with id=myId found!");
}

function getMouseP() {
 alert("Mouse button was pressed in p!");
}

Listing 19.41 /examples/chapter019/19_11_3/js/script.js

This way, you can edit nonascending events already on an ancestor
element, for example. In addition, if you call the stopPropagation
method of the event object already in the capturing phase, the target
and bubbling phases won’t get executed at all, and thus the event
type won’t reach its target element.

19.11.4 Additional Information on the Capturing and
Bubbling Phases

Now that you know the difference between the descending capturing
phase to the target element and the ascending bubbling phase,
here’s some more useful information. If nonascending event types
such as load, focus, blur, mouseenter, mouseleave, or submit get

triggered, an intervention in the capturing phase via
addEventListener("event-type", handler, true) enables you to
monitor such types at a central position and thus process the higher-
level elements during their descent. Unlike the bubbling phase, you
can be sure that every event has a capturing phase.

In addition, if you register an event handler with addEventListener()
for the capturing phase and that handler was called in that phase,
you can be sure that it won’t be called again in the bubbling phase.
For this reason, a registration can only be made for the capturing
phase or the bubbling phase, not for both at the same time.

19.12 Adding, Changing, and Removing
HTML Elements
The term node comes up quite often in connection with the DOM and
always causes confusion. The principle is simple: At the top of the
DOM tree, there’s the document object, followed by the root of the
DOM tree, which is usually the html element. The head and body
elements follow below that. The html element is the parent element
for the head and body elements. The head and body elements contain
other child elements. You already know the principle. All these
elements are referred to as nodes in the DOM. Not only are the
HTML elements nodes for the JavaScript in the DOM, but the HTML
attributes and text contents are also connected and are real nodes in
the DOM tree.

Regardless of the node type, all nodes in the document tree have
basic properties and methods of the node object. This node object is
an interface that allows you to access the individual nodes in the
entire document tree, so it’s the central interface in the DOM.
Therefore, in this section, you’ll get to know some basic properties
and methods of the node interface.

So far, you’ve primarily only learned about and used manipulation via
innerHTML. This is relatively easy in practice, but it has the
disadvantage that an element must be present that can be replaced
or changed. In the following sections, you’ll learn how to use the
DOM methods that allow you to directly intervene in the DOM of an
HTML document using the node interface.

You’ll learn how to navigate through the individual nodes of the tree.
Likewise, you’ll learn how to add new nodes (HTML elements) to the

tree or remove or replace existing nodes. In particular, this includes
DOM manipulation.

At the beginning of this chapter (Section 19.1), you already learned
about the HTML DOM tree and that all nodes in a tree have a certain
relationship to each other. You also know from Section 19.2 that the
document object is always the topmost object in the DOM tree. The
document object is also a kind of start element where you can begin
to target the nodes of a DOM tree. For this purpose, the document
object provides the getElementById(), getElementsByTagName(),
getElementsByClassName(), getElementsByName(), querySelector(),
and querySelectorAll() methods that allow you to search for
elements by ID, a specific tag name, a class name, a CSS selector,
or a name attribute. I already covered this in Section 19.4.

We should also mention two options that allow you to access the
entire document:

document.body

Access to the entire body element in the HTML document.

document.documentElement

Access to the entire HTML document, that is, the head and body
parts.

Paste the following into your HTML document to see what’s
contained in document.body and/or document.documentElement:
...
<script>
 console.log(document.body.innerHTML);
 console.log(document.documentElement.innerHTML);
</script>
...

19.12.1 Creating and Adding a New HTML Element and
Content

Creating a new node or HTML element isn’t difficult. To do this, you
just need to create a new HTML element in the document object using
the createElement() method. Text content, on the other hand, can be
created using the createTextNode() method. A new node created in
this way is initially not yet connected to the HTML document. You still
need to explicitly append the created node to the DOM tree using
appendChild(). Here’s a simple example, which I’ll explain in more
detail afterward:
...
<body>
<article class="article-01">
 <h1>Add node</h1>
 <p>First paragraph text</p>
 <p>Second paragraph text</p>
</article>

<button id="new-p">New paragraph</button>
<script src="js/script.js"></script>

</body>
...

Listing 19.42 /examples/chapter019/19_12_1/index.html

document.querySelector('#new-p').onclick = function() {
 let pNew = document.createElement("p");
 let tNew = document.createTextNode("A new paragraph");
 pNew.appendChild(tNew); // <p>A new paragraph</p>

 document.querySelector('.article-01').appendChild(p_new);
}

Listing 19.43 /examples/chapter019/19_12_1/js/script.js

When you click the button in the example, you create a new p
element via createElement("p"). Then you create another text

content with createTextNode(), and position the text content into the
p element with p_new.appendChild(tNew), creating the following:
<p>A new paragraph</p>

Finally, you need to paste the entire construct in pNew into the HTML
document. Therefore, in this example, you look for an element where
the value of class is equal to article-01, and append the created
element with appendChild(pNew) in the article element after the
second paragraph text as the third paragraph, as you can see in
Figure 19.17.

Figure 19.17 A Newly Created Paragraph Text Was Added

19.12.2 Targeting HTML Elements Even More Exactly in
the DOM Tree

To do more than just look up the position in the DOM tree based on a
root element and append newly created elements at the end, as you
did in the previous section, you need to be able to navigate through
the DOM tree. For this purpose, several DOM properties are
available, which are listed in Table 19.10.

Property Description

Property Description
parentNode Returns the parent node. This access is useful

when an element can be found unambiguously,
but not the parent element.

childNodes[n] Returns an array with all child nodes.
firstChild Returns the first child node.
lastChild Returns the last child node.
nextSibling Returns the next node on the same level, that is,

the sibling node.
previousSibling Returns the preceding node on the same level

(sibling node).

Table 19.10 Properties You Use to Navigate through the DOM Tree

With these properties, you could already dare a small climb in the
DOM tree, but it’s not really reliable yet. Because, for example, line
breaks are also read as new nodes and are virtually regarded as text
elements within an HTML element, you can’t avoid checking the
nodes. For this purpose, Table 19.11 contains additional properties
that allow you to analyze the individual nodes.

Property Description

Property Description
nodeType Returns the type of the node; it’s arguably one of

the most important analysis functions when
navigating and manipulating the DOM tree due to
different DOM implementations of web browsers. A
numerical code from 1 to 12 is returned, of which
the values 1 and 3 are most frequently required: 1
gets returned for an element node and 3 for a text
node. There are also constants defined in the
DOM API for the values you can use instead:
1: ELEMENT_NODE, 2: ATTRIBUTE_NODE, 3: TEXT_NODE,
4: CDATA_SECTION_NODE, 7:
PROCESSING_INSTRUCTION_NODE, 8: COMMENT_NODE, 9:
DOCUMENT_NODE, 10: DOCUMENT_TYPE_NODE, 11:
DOCUMENT_FRAGMENT_NODE

The values and constants for 5, 6, and 12 are
obsolete and will therefore not be mentioned any
further here.

nodeName Returns the name of the node as a string. For an
HTML element, this is a tag name (usually
capitalized), whereas for an attribute it’s the
attribute name. The text node simply returns #text,
and the document node returns #document.

nodeValue Returns the content of a text node (e.g., innerHTML)
or the value of the attribute node. If the node is an
HTML element, the value is undefined.

hasChildNodes Allows you to check whether a node has other
child nodes (= true) or not (= false).

Table 19.11 Properties for Analyzing Nodes

Here’s a somewhat more complex example that searches for a node,
traverses the included individual elements, and outputs their
properties:

...
<body>
<article class="article-01">
 <h1>Article 1: Traverse node</h1>
 <p>First paragraph text</p>
 <p>Second paragraph text</p>
</article>
...
<script src="js/script.js"></script>

</body>
...

Listing 19.44 /examples/chapter019/19_12_2/index.html

let root = document.querySelector('.article-01');
if (root) {
 let traverse = root.childNodes;
 let text = traverse.length + " Elements are " +
 root.nodeName + " contained in:" + "";
 for (let i = 0; i < traverse.length; i++) {
 text += "" + "nodeName: " + traverse[i].nodeName +
 "; nodeType: " + traverse[i].nodeType;
 if (traverse[i].firstChild !== null) {
 text += "; nodeValue: " + traverse[i].firstChild.nodeValue;
 }
 text += '';
 }
 text += "" + "Parent node: " + root.parentNode.nodeName;
 document.querySelector('#result').innerHTML = text;
} else {
 alert("No child nodes available!!!");
}

Listing 19.45 /examples/chapter019/19_12_2/js/script.js

After first checking whether the root node with the class of value
article-01 could be found at all, you pass a list of child nodes
root.childNodes to the traverse variable if successful. The first
information you put into the text string is the number of elements
found and the name of the root node. In the subsequent for loop, all
nodes are traversed and the information of each node gets
appended to the string text.

Checking a traverse[i].firstChild node for non-zero was done
because a line break is also considered a text node, and we don’t
really want that information. Otherwise, if it isn’t a line break, you’ll
find the contents of the text node in traverse[i].firstChild.
nodeValue.

You can see the example during execution in Figure 19.18, and
you’ll notice that a total of seven nodes were found where the parent
element had the class attribute that equals article-01. Look a little
closer at the following HTML lines:
...
<article class="article-01">
 <h1>Article 1: Traverse node</h1>
 <p>First paragraph text</p>
 <p>Second paragraph text</p>
</article>
...

You’ll notice that there should actually only be three nodes. The
nodes where nodeName equals #text and the value of nodeType equals
3 are again line breaks. You can see that it’s very important to check
the nodes to see if they are an element node or a text node. In
practice, you can use getElementsByTagName() for this, which usually
returns element nodes.

Figure 19.18 Traversing a Root Node

You can entirely omit such empty line breaks from the analysis when
going through the individual elements:
let root = document.querySelector('.article-01');
if (root) {
 let traverse = root.childNodes;
 let text = "The following element nodes are "
 + root.nodeName + " contained in:" + "";
 for (let i=0; i<traverse.length; i++) {
 if (traverse[i].firstChild !== null) {
 text += "" + "Node name: " + traverse[i].nodeName + "; "
 + "Content: " + traverse[i].firstChild.nodeValue + "";
 }
 }
 text += "" + "Parent node: " + root.parentNode.nodeName;
 document.querySelector('#result').innerHTML = text;
}
else {
 alert("No child nodes available!!!");
}

Listing 19.46 /examples/chapter019/19_12_2/js/script-2.js

You can see the changed example during execution in Figure 19.19.

Figure 19.19 Rewritten Version for Traversing the Root Node, Which Doesn’t Take into
Account the Line Breaks in the Output in the Dialog Box

19.12.3 Adding a New HTML Element Even More
Targeted to the DOM Tree

You can use the appendChild() method to add a new node as the
last child node of the root element. If you want to insert the new node

at any position, the insertBefore(new, old) method is useful, which
inserts a new node before old below the root node.

The following example shows how you can insert a new node (here,
a new paragraph text) right after an h1 heading using the
insertBefore() method:
...
<article class="article-01">
 <h1>Article 1: Place node in between</h1>
 <p>First paragraph text</p>
 <p>Second paragraph text</p>
</article>
<button id="add">Insert node</button>
<script src="js/script.js"></script>

...

Listing 19.47 /examples/chapter019/19_12_3/index.html

document.querySelector('#add').onclick = function() {
 let pNew = document.createElement("p");
 let tNew = document.createTextNode("A new paragraph");
 p_new.appendChild(tNew);

 let root = document.querySelector('.article-01');
 if (root) {
 let traverse = root.childNodes;
 for (let i = 0; i < traverse.length; i++) {
 if (traverse[i].nodeName.toUpperCase() === "H1") {
 root.insertBefore(pNeu, traverse[i].nextSibling);
 break; // end loop
 }
 }
 }
}

Listing 19.48 /examples/chapter019/19_12_3/js/script.js

First, you look for the root node again by using class="article-01".
Then, in a for loop, you go through the child nodes of the root node
you’ve found. If you then find a node in nodeName that contains the h1
element, you insert the newly created node (here, pNew) after the h1
element. To make sure that the new paragraph doesn’t get inserted
before the h1 heading, you must also use nextSibling, which

positions the new node as the next node (i.e., after the h1 element)
on the same layer. You can see the example during execution in
Figure 19.20.

Figure 19.20 Positioning the New Node in a Targeted Manner. Here, a New <p> Element
Was Inserted after the <h1> Heading

19.12.4 Deleting an Existing HTML Element from the
DOM Tree

If you want to remove an already existing child node from the DOM
tree, you can do this by using the removeChild(child) method. The
node to be deleted can be an entire fragment with further nodes,
which also deletes all subnodes, or a child node standing alone. In
the example, when a button is clicked, the first paragraph with the p
element is supposed to be deleted.
...
<article class="article-01">
 <h1>Article 1: Remove node</h1>
 <p>First paragraph text</p>
 <p>Second paragraph text</p>
</article>
<script src="js/script.js"></script>

...

Listing 19.49 /examples/chapter019/19_12_4/index.html

document.querySelector('#remove').onclick = function() {
 let root = document.querySelector('.article-01');
 if (root) {
 let traverse = root.childNodes;
 for (let i = 0; i < traverse.length; i++) {
 if (traverse[i].nodeName.toUpperCase() === "P") {
 root.removeChild(traverse[i]);
 break; // end loop
 }
 }
 }
}

Listing 19.50 /examples/chapter019/19_12_4/js/script.js

Here, you first search for the root node using class="article-01"
and then traverse its child nodes. In this process, you remove the p
element via removeChild() right after the first occurrence. If, on the
other hand, you want to delete all p elements at once, you only need
to remove the break statement in the example.

Figure 19.21 A <p> Element Has Been Removed

19.12.5 Replacing an HTML Element in the DOM Tree
with Another One

You can replace a node by using the replaceChild(new, old)
method, which replaces the old node with the new node. In the
process, the replaced node gets deleted. Again, you can replace
entire fragments with many child nodes or a standalone child node.

In the following example, each time the button is clicked, the heading
gets replaced. To keep track of how many times this replacement
has been performed or how many times the button has been clicked,
a global variable is used that counts and is included in the heading
when the replacement is made. Here’s the corresponding example:
...
<article class="article-01">
 <h1>Article 1: Replace node</h1>
 <p>First paragraph text</p>
 <p>Second paragraph text</p>
</article>

<button id="replace">Replace node</button>
<script src="js/script.js"></script>

...

Listing 19.51 /examples/chapter019/19_12_5/index.html

let counter = 0;
document.querySelector('#replace').onclick = function() {
 let hNew = document.createElement("h1");
 let tNew = document.createTextNode("Article " + ++counter + ": New heading");
 hNew.appendChild(tNew); // <p>A new paragraph</p>.

 let root = document.querySelector('.article-01');
 if (root) {
 let traverse = root.childNodes;
 for (let i = 0; i < traverse.length; i++) {
 if (traverse[i].nodeName.toUpperCase() === "H1") {
 root.replaceChild(h_new, traverse[i]);
 break; // end loop
 }
 }
 }
}

Listing 19.52 /examples/chapter019/19_12_5/js/script.js

You can see the example during execution in Figure 19.22.

Figure 19.22 Replacing Nodes: The Heading Has Already Been Changed for the 11th
Time

19.12.6 Cloning a Node or Entire Fragments of the
DOM Tree

If you want to copy an entire fragment of a DOM tree, you’re better
off using the cloneNode() method than creating individual elements
via createElement(). You can use the cloneNode() method to create
an exact copy of the node. Depending on whether you set the
parameter of cloneNode(val) to true or false, all child nodes will
either be cloned as well (= true) or not (= false). Here’s an example
that shows how an entire fragment can be cloned:
...
<article class="article-01">
 <h1>Article 1: Clone node</h1>
 <p>First paragraph text</p>
 <p>Second paragraph text</p>
</article>
<button id="clone">Clone node</button>
<script src="js/script.js"></script>

...

Listing 19.53 /examples/chapter019/19_12_6/index.html

document.querySelector('#clone').onclick = function() {
 let root = document.querySelector('.article-01');
 if (root) {
 let new_root = root.cloneNode(true);

 new_root.setAttribute("class", "article-02");
 let button = document.querySelector('#clone');
 root.parentNode.insertBefore(new_root, button);
 button.parentNode.removeChild(button);
 }
}

Listing 19.54 /examples/chapter019/19_12_6/js/script.js

You can see the example during execution in Figure 19.23. Here,
you clone the entire node whose class is equal to article-01, which
is the article element, along with its child nodes <h1> and the two
<p> elements. Before you can place the node somewhere else, in
this example, the class was changed to article-02 with the method
setAttribute() because, otherwise, you would have two elements
with class="article-01", which isn’t wrong but something you might
not want. This depends on your specific project, of course, but I
wanted to demonstrate the setAttribute() method here. In the
example, the cloned node gets inserted after the previous article and
before the button. The button got deleted at the end.

Figure 19.23 A Second Article Was Cloned from the First Article

19.12.7 Different Methods to Manipulate the HTML
Attributes

As you’ve already seen in the previous section with the
setAttribute() method, it’s possible to change the attributes of the
nodes. Table 19.12 contains a brief overview of the existing
methods, of which setAttribute() and getAttribute() are probably
most commonly used in practice.

Method Description
getAttribute(name) Returns a string with the value of the

name attribute. If no such attribute
exists, null will be returned.

setAttribute(name,value) This method sets the name attribute to
the value value. If an attribute with
name already exists in an element, the
value will be changed to value. If the
attribute doesn’t exist yet, it will be
created.

removeAttribute(name) Removes the name attribute from an
element.

hasAttribute(name) Checks whether an element node
contains the name attribute.

Table 19.12 Methods That Can Be Used to Work with the Attributes of Nodes

Here’s an example that demonstrates these methods in practice.
.demo {
 background: black;
 color: white;
 padding: 1em;
 margin-bottom: 1em;
 border: 1px solid red;
}

.default {
 border: 1px solid black;
 background: silver;
 padding: 1em;
 margin-bottom: 1em;
}

Listing 19.55 /examples/chapter019/19_12_7/css/style.css

...
<article id="article-01" class="default">
 <h1>Article 1: Manipulate attributes</h1>
 <p>First paragraph text</p>
 <p>Second paragraph text</p>
</article>
<article id="article-02">
 <h1>Article 2: Manipulate attributes</h1>
 <p>First paragraph text</p>
 <p>Second paragraph text</p>
</article>
<button id="set">Set attribute</button>
<button id="copy">Copy attribute</button>
<button id="remove">Delete attribute</button>
<script src="js/script.js"></script>

...

Listing 19.56 /examples/chapter019/19_12_7/index.html

document.querySelector('#set').onclick = function() {
 let root = document.querySelector('#article-01');
 if (root) {
 root.setAttribute("class", "demo");
 }
}

document.querySelector('#copy').onclick = function() {
 let root1 = document.querySelector('#article-01');
 if (root1) {
 let art01_style = root1.getAttribute("class");
 if (art01_style != null) {
 let root2 = document.querySelector('#article-02');
 if (root2) {
 root2.setAttribute("class", art01_style);
 }
 }
 }
}

document.querySelector('#remove').onclick = function() {
 let root1 = document.querySelector('#article-01');
 if (root1) {
 root1.removeAttribute("class");
 }
 let root2 = document.querySelector('#article-02');
 if (root2) {
 root2.removeAttribute("class");
 }
}

Listing 19.57 /examples/chapter019/19_12_7/js/script.js

Three event handler functions have been written here, all of which
are executed when the button gets clicked. The first function
changes or sets the class of an article (via id="article-01") to the
value demo using the setAttribute() method and the class
attribute, resulting in class="demo". The original default
class="default" is overwritten.

The second function gets the value of the class attribute using the
getAttribute() method of the first article (id="article-01") and sets
this value also for the second article (id="article-02") using
setAttribute(). The last function deletes the class attribute for the
first (id="article-01") and the second article (id="article-02") via
the remove Attribute() method. All three functions can be performed
using the three buttons shown in Figure 19.24. Of course, you can
apply and execute these methods on any other HTML attribute as
well.

Figure 19.24 Manipulating the Attributes of an Element Node

19.12.8 The <template> HTML Tag

For recurring repetitions on a website, such as lines of a table, list
elements, or images, templates are often used. The processing of
such templates was mostly done on the server side. PHP

programmers use template systems such as Plates or Twig for this
purpose. Because JavaScript itself doesn’t provide a template
system, it’s often necessary to create and assemble HTML elements
by using createElement(). A solution to this is the template HTML
element. For example:
<!-- Rows template -->
<template id="template-row">
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</template>

All elements between the <template> tag don’t display and aren’t part
of the HTML document. In addition, this element can’t be accessed
via document.getElementById(). The content of the <template> tag
won’t get used until the fragment has been added to the DOM.

The following example demonstrates the implementation using a
table by adding new rows to a table via the <template> tag:
...
<h1>Scheduling overview</h1>
<table id="mytable">
<thead>
<tr>
<td>Time</td>
<td>Day</td>
<td>Date</td>
</tr>
</thead>
<tbody>

<!-- The rows are added here -->

</tbody>
</table>

<!-- Rows template -->
<template id="template-row">
<tr>
<td></td>
<td></td>
<td></td>

</tr>
</template>
...

Listing 19.58 /examples/chapter019/19_12_8/index.html

So, without further ado, the template element of a table row with
three columns is inactive, and nothing gets displayed yet. To use this
template now, you need to clone it and add it to the DOM. The
corresponding JavaScript code follows:
...
<script>
let data = [
 ['12pm','Monday','Photography Workshop in Munich'],
 ['7pm', 'Monday', 'Dinner with customer X'],
 ['9am', 'Tuesday', 'Meeting with Y'],
 ['12pm', 'Tuesday', 'Lunch with Y at the Ritz'],
 ['3pm', 'Wednesday', 'Self-Development (Seminar)']
];

let t = document.querySelector('#template-row');
td = t.content.querySelectorAll('td');

data.forEach (function(dataRow) {
 td[0].textContent = dataRow[0];
 td[1].textContent = dataRow[1];
 td[2].textContent = dataRow[2];

 let tb = document.querySelector('tbody');
 let clone = document.importNode(t.content, true);
 tb.appendChild(clone);
});
</script>
...

Listing 19.59 /examples/chapter019/19_12_8/index.html

The data for the rows in the table here comes from the data array
with five rows and three columns. Then querySelector() is used to
select the template with the template-row ID, and thereupon all td
elements are put into td. Via data.forEach(), the data in data is
processed row by row and inserted column by column as child
elements in the tbody element. You can see the result of this process
in Figure 19.25.

Figure 19.25 The Data of the Table Was Inserted into the DOM Using the <template>
Element and JavaScript

19.13 HTML Forms and JavaScript
Although HTML input types and attributes now do most of the work
that you would have had to do with JavaScript some time ago, there
are always reasons to get your hands dirty to check entries that have
been made or options selected. For this reason, this section will
describe how you can access the individual values of a form element
using JavaScript.

Basically, evaluating form elements with JavaScript is quite simple. If
a certain event occurs, you can respond to it accordingly. For
example, with a single-line input field, you can respond appropriately
when the field loses focus and the user moves to the next field. To
do that, you only need to respond to onblur using an event handler.
With regard to selection lists, on the other hand, reading only makes
sense if they’ve been changed, which is why you can respond to
onchange with an event handler and with multiline text fields. Radio
buttons and checkboxes are usually grouped, so you can respond
with an event handler for a click event (onclick), and then you
should check all elements that belong to the group.

19.13.1 Reading Text Input Fields with JavaScript

You can get the value of a text input field such as <input
type="text"> directly from the value attribute. To respond to
changes, an event handler is useful for the JavaScript event onblur,
which gets triggered when the input field loses its focus. This is the
case when the user clicks on another input field or changes the field
using the (Tab) key. That’s the moment to use JavaScript and check
the text input field. Let’s take a look at a simple example:

...
<form>
 <label>Name</label>
 <input type="text" placeholder="Your name" id="lname">

 <input type="submit">
</form>
<p></p>
<script src="js/script.js"></script>
...

Listing 19.60 /example/chapter019/19_13_1/index.html

document.querySelector('#lname').onblur = function() {
 let txt = "Your input: " + this.value;
 // Check saved value of text field in txt
 document.querySelector('p').innerHTML = txt;
};

Listing 19.61 /Beispiel/Kapitel019/19_13_1/js/script.js

In this example, if you enter text in the input field with lname as the ID
and press the (Tab) key or click outside the text input field, causing
the input field to lose focus, the entered text gets output below it. In
practice, you perform a check at this point or continue processing the
input that has been entered instead of just outputting the text here.
this is the object that just called the JavaScript function.

Figure 19.26 Reading the Content of an “input” Input Field “type="text"” with JavaScript

19.13.2 Reading Selection Lists with JavaScript

For the select selection lists, you also get the value of the option
element via the HTML attribute value. By default, the text between
<option> and </option> or else that of the value attribute in the
opening <option> tag will get returned if it was used instead. Here,

it’s useful to respond to the JavaScript event onchange, which
responds when the select selection list changes. Here’s another
short example:
...
<form>
 <label>Your selection</label>
 <select id="chapter">
 <option value> ... Select chapter ... </option>
 <option>HTML5—Introduction</option>
 <option value="Page 324">CSS3—Introduction</option>
 <option value="Page 498">JavaScript—Introduction</option>.
 </select>
</form>
<p></p>
<script src="js/script.js"></script>
...

Listing 19.62 /examples/chapter019/19_13_2/index.html

document.querySelector('#chapter').onchange = function() {
 let txt = "Your selection: " + this.value;
 // Check saved value of text field in txt
 document.querySelector('p').innerHTML = txt;
};

Listing 19.63 /examples/chapter019/19_13_2/js/script.js

In this example, as soon as you change the value of the dropdown
list (onchange), the new value between <option> and </option> or, if
specified, the value of the attribute value in the opening <option>
tag, will be output underneath it in the p element.

“onchange” Also for <textarea>

The JavaScript event onchange is usually also used for multiline
text between <textarea> and </textarea> to check if the content
has been changed once the textarea element has lost its focus.

19.13.3 Reading Radio Buttons and Checkboxes with
JavaScript

The reading of the values of a radio button (type="radio") and a
checkbox (type="checkbox") must be evaluated using the JavaScript
event onclick. For each input field of a group with radio buttons or a
group with checkboxes, you need to check whether it was selected
via a click event.

A related group of radio buttons or checkboxes usually has a
common name attribute and can also be addressed in a group using
JavaScript. Unlike radio buttons, checkboxes can have more than
one field selected, so here you must use JavaScript and the checked
property to verify that a field in the group is active or checked.

Here’s an example that demonstrates how you can use JavaScript to
determine the values of a group of radio buttons or checkboxes
when something has been changed:
...
<form>
 <p>Please select a room:</p>
 <p>
 <input type="radio" name="room" value="budget">Budget

 <input type="radio" name="room" value="standard"
 checked>Standard

 <input type="radio" name="room" value="deluxe">Deluxe
 </p>
 <p id="printRoom"></p>
 <p>
 <input type="checkbox" name="extra" id="c1"
 value="breakfast">
 <label for="c1">Breakfast</label>

 <input type="checkbox" name="extra" id="c2" value="lunch">
 <label for="c2">Lunch</label>

 <input type="checkbox" name="extra" id="c3" value="dinner">
 <label for="c3">Dinner</label>
 </p>
 <p class="output"></p>
</form>
<script src="js/script.js"></script>
...

Listing 19.64 /examples/chapter019/19_13_3/index.html

// Evaluate radio buttons
let roomType = document.querySelectorAll('input[name="room"]');
for (let i = 0; i < roomtyp.length; i++) {
 roomType[i].onclick = function() {
 let txt = "Selected for room : " + this.value;
 document.querySelector('.output').innerHTML = txt;
 }
}

// Evaluate checkboxes
let formPack = document.querySelectorAll('input[name="extra"]');
for (let i = 0; i < formPack.length; i++) {
 formPack[i].onclick = function() {
 let msg = "Selected : ";
 for (let j = 0; j < formPack.length; j++) {
 if (formPack[j].checked) {
 msg += formPack[j].value + " ";
 }
 }
 document.querySelector('.output').innerHTML = msg;
 }
}

Listing 19.65 /examples/chapter019/19_13_3/js/script.js

Figure 19.27 Reading Radio Buttons and Checkboxes with JavaScript

19.13.4 Intercepting Buttons with JavaScript

If you want to prevent the user from submitting the entered form data
in the web browser to the server by clicking a button, you can use an
event listener (Section 19.7.3) to respond to the submit event and
have another script executed. Let’s take a look at a simple example:

...
<form>
 Text01 <input type="text" id="t1">
 <label for="t1"></label>

 Text02 <input type="email" id="t2">
 <label for="t2"></label>

 Text03 <input type="date" id="t3">
 <label for="t3"></label>

 <input type="submit"><input type="reset">
</form>
<p></p>
<script src="js/script.js"></script>

...

Listing 19.66 /examples/chapter019/19_13_4/index.html

document.querySelector('form').addEventListener(
 'submit', checkInput);
document.querySelector('form').addEventListener(
 'reset', checkReset);

function checkInput() {
 let x = confirm("Are you sure you want to submit the data?");
 if (x) {
 /* Submit data */
 } else {
 /* Do not submit */
 event.preventDefault();
 }
}

function checkReset(event) {
 let x = confirm("Do you want to reset the fields?");
 if (x) {
 /* Reset */
 document.querySelector('p').innerHTML = "Fields reset";
 } else {
 /* Do not reset */
 event.preventDefault();
 document.querySelector('p').innerHTML = "Reset canceled";
 }
}

Listing 19.67 /examples/chapter019/19_13_4/js/script.js

Figure 19.28 You Can Also Respond to “submit” and “reset” Buttons with JavaScript

19.13.5 Controlling the Progress Indicator <progress>
with JavaScript

You’ve already come across the progress display with the progress
element in Chapter 7, Section 7.5.5. With reference to an HTML
form, this element is useful for showing the progress of form element
input. The following example shows such an adjustment of the
progress bar in accordance with the filled input fields. Let’s look at a
simple example:
...
<form onchange="progress()">
 Text01 <input type="text" id="t1">

 Text02 <input type="email" id="t2">

 Text03 <input type="date" id="t3">

 <input type="submit"><input type="reset">
</form>
<p>Progress: <progress id="bar" value="0" max="3">Progress</progress></p>
<script src="js/script.js"></script>

...

Listing 19.68 /examples/chapter019/19_13_5/index.html

function progress() {
 let fields = 0;
 for (let i = 0; i < document.forms[0].elements.length; i++) {
 if (document.forms[0].elements[i].value !== '') {
 fields++;
 }
 }
 document.querySelector('#bar').value = fields;
 document.querySelector('#bar').innerHTML="Progress (" + fields + " of 3): ";
}

Listing 19.69 /examples/chapter019/19_13_5/js/script.js

The example checks each change in the form (onchange) and then
calls the handler function progressive(). The individual elements will
be traversed, and a check will be performed for each element as to
whether the content (value) is or isn’t an empty string. No empty
string in the example means that this text field has already been
filled in, and therefore the count variable fields is incremented with
each filled text field. This value is used at the end in the progress bar
for value of the progress element, where we’ve set the maximum
value to 3. In the example, we also rely on bubbling and don’t set up
the same handler for the event type onchange in each input element
within the form individually. In Figure 19.29, you can see the
example during execution.

Figure 19.29 Controlling the Progress Bar from the <progress> Element with JavaScript

19.14 Summary
In this chapter, you’ve learned a lot about the DOM and DOM
manipulation. The abundance of information in such a small space
might have been a bit overwhelming. For this reason, here’s a brief
summary of the most important information you’ve learned and
should know:

You know how to search for a specific element in a DOM tree
starting from the document object using the following methods
querySelector(), querySelectorAll(), getElementById(),
getElementsByTagName(), getElementsByClassName(), and
getElementsByName().

You know the innerHTML property, which you can use to access or
modify the contents of an HTML element. In addition, you know
other properties or methods that you can use to change the value
of an attribute (attribute, setAttribute) or the style
(style.property) of an HTML element.

You know what JavaScript events are and how to respond to and
handle such events with event handlers. Likewise, you’re now
familiar with many common events.

You’ve learned how to traverse a DOM tree, adding, modifying, or
deleting new elements.

You’ve gotten to know the HTML tag <template> as a way to
implement templates on the client side in HTML and JavaScript.

You’ve learned how to use JavaScript to access the individual
values of form elements.

20 An Introduction to Ajax

If you’ve studied JavaScript in more detail, you’ll inevitably
come across the concept of asynchronous data transfer with
Ajax. Ajax is an important and useful technology in building
websites, so I’ll cover the basics here.

To understand this technology, knowledge of JavaScript, HTML, and
CSS is required. This chapter describes what Ajax is and how you
can use this technology in your projects. Ajax is not a new
technology or programming language, but rather a programming
concept. Strictly speaking, it is just JavaScript, server calls, and an
intervention in the DOM via JavaScript. In short, it's just using
existing technologies in a particular way—sounds more complicated
than it is!

20.1 An Introduction to Ajax Programming
The often scary and cryptic Asynchronous JavaScript and XML
(Ajax) is used to transfer data asynchronously between a web
browser and a web server.

XML

As if everything weren’t already extensive enough, XML is added
here as a technology or as a further markup language. Like HTML,

XML is a markup language in which the data is hierarchically
structured as human-readable text data. XML is widely used for
exchanging data between different computer systems, in particular
over the internet. Although the x in Ajax stands for XML,
JavaScript Object Notation (JSON) is increasingly used in practice
when a web server sends complete data, while the use of XML is
waning.

Though all this sounds quite complex, it’s actually just a way to
refresh individual parts of a web page without reloading the entire
web page, which is usually what happens without Ajax.
Consequently, you can create faster dynamic web pages by using
Ajax. This reduces the amount of data transfer and also saves the
nerves of website visitors thanks to shorter loading times.

In the context of Ajax, the term asynchronous means that script
execution continues when an HTTP request is made, as this request
to the web server is executed in the background, and the web page
is still available to the user. Usually, that is, without Ajax, such an
operation runs synchronously, which means that the script execution
is paused until the requested data has returned from the web server.
There are definitely situations where you need to use a synchronous
operation even with Ajax and just do one thing at a time. Figure 20.1
represents a synchronous operation, while Figure 20.2 represents an
asynchronous operation.

Figure 20.1 The Synchronous Process Flow of a Classic Web Application

Figure 20.2 The Asynchronous Process Flow of a Web Application with Ajax

Another advantage of Ajax is that Ajax applications are independent
of the web browser and operating system, and just about any web
browser can handle them. Simply put, an Ajax application often
consists of a combination of the following components:

The HTTP request with the XMLHttpRequest object to exchange the
data with the server asynchronously

JavaScript/DOM for displaying and interacting with the information
and data

XML as the format for data transfer (in addition to XML, methods
such as JSON have also become established for asynchronous
data transfer)

CSS for designing the data

20.1.1 A Simple Ajax Example in Execution

It might be easiest to try out a small Ajax example for yourself in
practice. In doing so, you’ll discover that Ajax isn’t rocket science.
Because you can’t test the example offline, you should run it on a
real web server. Either you upload the files to your web host for this
purpose, or you’ve set up your own web server locally. As always,
you can test the example online at https://html-examples.pronix.de/.
For this purpose, here’s the complete HTML document shown in

https://html-examples.pronix.de/

Figure 20.3 during execution. I’ll go into the details of the example
later.
<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>Simple Ajax example</title>.
 <script src="js/getServerTime.js"></script>

</head>
<body onload="timestamp()">
 <p id="refreshtime">
 Ajax is used to output the time of the server.
 </p>
 <button type="button" onclick="changeContent()">
 Renew time
 </button>
 <p id="timestamp"></p>
</body>
</html>

Listing 20.1 /examples/chapter020/20_1/index.html

function changeContent() {
 let xmlhttp = null;
 if (window.XMLHttpRequest) {
 xmlhttp = new XMLHttpRequest();
 }
 if (xmlhttp === null) {
 console.log("Error creating an XMLHttpRequest object");
 }
 xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState === 4 && xmlhttp.status === 200) {
 document.querySelector('#refreshtime').innerHTML = xmlhttp.responseText;
 }
 }
 xmlhttp.open("GET", "php/server-time.php", false);
 xmlhttp.send();
}

function timestamp() {
 let today = new Date();
 document.querySelector('#timestamp').innerHTML = today;
}

Listing 20.2 /examples/chapter020/20_1/js/getServerTime.js

Here is the code for the PHP script server-time.php, which, in this
example, should be placed in the same directory as index.html:
<?php
 echo date('l jS \of F Y h:i:s A');
?>

Listing 20.3 /examples/chapter020/20_1/server-time.php

Figure 20.3 This Is What the Example Looks Like

First, here’s the HTML part of the Ajax example:
...
<body onload="timestamp ()">
 <p id="refreshtime">
 Ajax is used to output the time of the server.
 </p>
 <button type="button" onclick="changeContent()">
 Renew time
 </button>
 <p id="timestamp"></p>
</body>
...

Listing 20.4 /examples/chapter020/20_1/index.html

The short Ajax example contains a p element with the ID refreshtime
and a button button that calls a function named changeContent().
After the element with the button, there’s another p element with the
ID timestamp. When loading the web page (onload), the timestamp()
function gets executed too, which was written in the body element. All
in all, the entire thing looks like an ordinary HTML file that wants to
use various JavaScript functions as event handlers.

20.1.2 Creating the “XMLHttpRequest” Object

The key to an Ajax application is the use of an XMLHttpRequest
object. All modern web browsers are capable of doing this. You need
this XMLHttpRequest object to exchange data with a web server and
thus refresh individual parts of a web page without having to reload
the entire web page. Here’s the section with the creation of the
XMLHttpRequest object:
...
function changeContent() {
 let xmlhttp;

 if (window.XMLHttpRequest) {
 xmlhttp = new XMLHttpRequest();
 }

...
}

...

Listing 20.5 /examples/chapter020/20_1/js/getServerTime.js

Before you can create an XMLHttpRequest object, you should first
verify that the web browser does actually support XMLHttpRequest
objects. All modern web browsers will create a new XMLHttpRequest
object using the new syntax variable=new XMLHttpRequest().

20.1.3 Making a Request to the Server

With the generated XMLHttpRequest object, you can make a request
to the server to exchange data with it. To make such a request, you
need to connect to the target page using the open() method and
specify the parameters of the XMLHttpRequest object via send(). In
the preceding example, you made this request to the server with the
following lines:
...
 xmlhttp.open("GET", "server-time.php", true);
 xmlhttp.send();
...

Listing 20.6 /examples/chapter020/20_1/js/getServerTime.js

The open() method has the following syntax:
open(method, url, async)

You can use method to specify the method of the request (HTTP
request method), which is usually GET or POST.

You use url to specify the path or URL to the file on the server to be
accessed. By the way, this can be any file, and it doesn’t necessarily
have to be an executable script on the server, like a PHP script in
our example.

You can use async to specify whether the request should be
executed asynchronously (true) or synchronously (false). In
practice, the asynchronous transfer is usually recommended, that is,
setting the value to true, which is what Ajax—Asynchronous
JavaScript and XML—stands for. The advantage of an asynchronous
data transfer with Ajax is that a JavaScript no longer has to wait for
the server’s response and can meanwhile execute other scripts or
process the response if it’s available. With a synchronous transfer,
on the other hand, a JavaScript doesn’t get executed any further
until the response from the server is available. If the server is slow or
busy, the application would stop with async=false and remain in a
waiting state until the response from the server arrives. Here’s a
short summary:

async=true stands for asynchronous and makes sure that the
script continues to run while the HTTP request is being executed
in the background.

async=false stands for synchronous and causes the script
execution to stop until the data has returned from the server.

The send() method, on the other hand, allows you to send the
request along with the data to the server.

20.1.4 Sending Data

Although in this example, no data gets sent to the script, it should be
briefly mentioned here how you can do this with GET or POST. If you’ve
used GET as a method, you can write the parameters directly into the
URL. In the following code snippet, a few parameters are passed to
a script:
...
 xmlhttp.open("GET","test.php?name=wolfe&zip=97217",true);
 xmlhttp.send();
...

By using POST, on the other hand, you can specify the data in the
send() method of the XMLHttpRequest object. In addition, you must
send a special HTTP header with POST. You can do this via the
setRequestHeader() method. The required HTTP header is Content
type, and the corresponding value is "application/x-www-form-
urlencoded". This multipurpose internet mail extension (MIME) type
is used for form data. For JSON, the MIME type would again look
different. So, here’s what you can do with POST to pass the data to
the script:
...
 xmlhttp.open("POST","test.php", true);
 xmlhttp.setRequestHeader("Content type",
 "application/x-www-form-urlencoded");
 xmlhttp.send("name=wolfe&zip=97217");
...

20.1.5 Determining the Status of the
“XMLHttpRequest” Object

Now that you know how to make a connection and request to the
server, you’re still missing an important component without which the
asynchronous data transfer wouldn’t work properly. It’s a callback
function that’s still missing, which gets called when results come
back from the web server. You pass the callback function that is
called in the process to the XMLHttpRequest property
onreadystatechange. In this example, you use an anonymous
function for this purpose:
xmlhttp.onreadystatechange = function() { ... };

You can also pass a function name as a reference as follows, if
required:
function aFunction() { ... }
...
xmlhttp.onreadystatechange = aFunction;

It should be noted here that the readystatechange event gets
triggered whenever the state of the XMLHttpRequest object changes.

In this callback function, you first check the state of the
XMLHttpRequest object via the readyState property. There are five
different states, as listed in Table 20.1.

Value Status Description
0 UNSENT The open() function hasn’t been called

yet.
1 OPENED The send() function hasn’t been called

yet.
2 HEADERS_RECEIVED The send() function has already been

called, and the headers and status are
available.

3 LOADING The download is in progress, but the
responseText isn’t yet complete.

Value Status Description

4 DONE The process has been fully completed.

Table 20.1 You Can Determine the Status of a Request via the “readyState” Attribute

In addition to the status of the XMLHttpRequest object, the status of
the response to the request is significant; for example, the value 200
will be returned if the request was successful. For example, the
classic value 404 will be returned if the requested page couldn’t be
found.

Status
Code

Message Meaning

200 Ok The request was successfully processed and
the result of the response was transmitted.

400 Bad
Request

The request message was incorrect.

403 Forbidden The request could not be performed because
no authorization for it exists.

404 Not Found The requested resource wasn’t found on the
web server.

Table 20.2 List of Common HTTP Status Codes for “status”

Here’s the snippet that is used to check the state of the
XMLHttpRequest object:
...
 xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState === 4 && xmlhttp.status === 200) {
 document.querySelector('#refreshtime').innerHTML =
 xmlhttp.responseText;
 }
 }
...

Listing 20.7 /examples/chapter020/20_1/js/getServerTime.js

You use the onreadystatechange property to pass the callback
function to be called when the server response is available. This
function is called whenever the state of the readyState property has
changed. In this example, you insert the text in responseText of the
XMLHttpRequest object in the HTML document at the HTML element
with ID dynamic01 if readyState is 4 and the status of the response in
status is 200. The responseText attribute contains the web server’s
response to the request as text or null if the request was
unsuccessful.

Other Properties of the “XMLHttpRequest” Object

In addition to the onreadystatechange, readyState, status, and
responseText properties presented here, there are a number of
other attributes the XMLHttpRequest object brings with it, which
won’t be described any further here. For more information, you
should visit
https://developer.mozilla.org/de/docs/DOM/XMLHttpRequest.

20.1.6 Processing the Response from the Server

The response from the server can be found in the responseText or
responseXML property of the XMLHttpRequest object. The data
contained therein can then be processed further. You can use the
following lines to insert the returned text as new text in the HTML
element. The ID is dynamic01:
...
document.querySelector('#refreshtime').innerHTML =
 xmlhttp.responseText;
...

Listing 20.8 /examples/chapter020/20_1/js/getServerTime.js

https://developer.mozilla.org/de/docs/DOM/XMLHttpRequest

If the return from the server isn’t XML, you should always use the
responseText property, where the returned data is an ordinary string.
If, on the other hand, the return from the server is XML-encoded and
you want to parse this data as an XML object, you should use the
responseXML property instead.

20.1.7 The Ajax Example during Execution

Based on the preceding descriptions, you should have understood
the example printed at the beginning:
/examples/chapter020/20_1/js/getServerTime.js. For this example,
you’re still missing the PHP script server-time.php, which was kept
quite short and basically only returns an indication of the date and
time of the web server:
<?php
 echo date('l jS \of F Y h:i:s A');
?>

Listing 20.9 /examples/chapter020/20_1/php/server-time.php

When you run the example, you’ll find the view shown in Figure 20.4
in your web browser. The first paragraph with the text With Ajax, the
time ... is supposed to change using the XMLHttpRequest object
when the user clicks the button. The timestamp after the button has
already been set using the JavaScript function timestamp() when the
web page gets loaded in the body element via onload.

In Figure 20.5, the button was clicked and the time of the web server
was displayed above it. For the entire process, Ajax was used along
with the XMLHttpRequest object. You can click the button as many
times as you want, and every time the time output above the button
will be updated accordingly.

In this case, however, the website never gets completely reloaded,
but only individual information or components of the website are
updated. In the example, therefore, only the web server time above
the button gets updated all the time. A complete reload of the page
would also update the time below the button. The following two
figures shows this process.

Figure 20.4 The Web Page Was Loaded

Figure 20.5 Our First Ajax Application during Execution

20.1.8 A More Complex Ajax Example with XML and
DOM

Now you’ll create a slightly more complex example using XML and
DOM. You'll also use Ajax to create a more interactive application. In
the following example, you’ll see how a web page can communicate
with the web server while the user is typing something into an input
field via the keyboard. By the way, Google does this similarly by
providing suggestions while you’re typing something into the search
box, but that’s much more complex, of course.

For this example, the following input field is created:
...
<h1>Unit conversion</h1>
<form>

<fieldset>
<legend>Convert meters to miles and yards</legend>.
 <label>Meters</label>
 <input type="number" id="meters" placeholder="Value in meters"
 onkeyup="recalculate(this.value);"> m

<label>Miles</label>
 <input type="number" id="miles"
 placeholder="conversion to miles" readonly >mi

<label>Yards</label>
 <input type="number" id="yards"
 placeholder="Conversion to yards" readonly> yds
</fieldset>
</form>
...

Listing 20.10 /examples/chapter020/20_1_8/index.html

In this user input, users can make a numerical input in meters. After
each keystroke (= onkeyup), you send the value with the event
handler recalculate() via Ajax to the web server.

Figure 20.6 Users Can Enter a Numerical Value in Meters

Here’s the code for recalculate(), which takes care of the remaining
tasks:
let xmlhttp = null;

function recalculate(str) {
 if (window.XMLHttpRequest) {
 xmlhttp = new XMLHttpRequest();
 }
 if (xmlhttp === null) {
 console.log("Error creating an XMLHttpRequest object");
 }
 xmlhttp.open("GET", "php/calculate.php?meters=" + str, true);

 xmlhttp.onreadystatechange = parseRecalculate;
 xmlhttp.send();
}

function parseRecalculate() {
 if (xmlhttp.readyState === 4 && xmlhttp.status === 200) {
 let xml = xmlhttp.responseXML;
 let miles_response = xml.querySelector('miles');
 let yards_response = xml.querySelector('yards');

 document.querySelector('#miles').value =
 miles_response.firstChild.nodeValue;
 document.querySelector('#yard').value = yard_response.firstChild.nodeValue;
 } else {
 document.querySelector('#miles').value = 0;
 document.querySelector('#yards').value = 0;
 }
}

Listing 20.11 /examples/chapter020/20_1_8/js/convert.js

There isn’t really much new in recalculate(str) itself. First, you
create a new XMLHttpRequest object. Then you asynchronously
transfer the entered value to the web server via Ajax after each
keystroke. This request was still made with the GET method because
it’s only a value. You assemble the entered value in str directly after
the URL of the open() method. For example, if the user has entered
1000, the URL looks as follows:
calculate.php?meters=1000

Instead of an anonymous function, this example assigned a
reference to an existing function as a callback function named
onreadystatechange with parseRecalculate. This function will take
care of everything else once the request has been sent using send()
and the response from the web server is available. Here’s the PHP
script calculate.php for that, which calculates the passed value in
meters on the web server and responds with an XML-coded
calculation:
<?php
 header("Content type: text/xml");
 $meters = $_REQUEST['meters'];

 $miles = $meters * 0.0006213711922373339;
 $yards = $meters * 1.0936133;
 echo "<?xml version=\"1.0\" encoding=\"utf-8\"?>";
?>

<conversion>
 <meters><?php echo $meters; ?></meters>
 <miles><?php echo $miles; ?></miles>
 <yards><?php echo $yards; ?></yards>
</conversion>

Listing 20.12 /examples/chapter020/20_1_8/php/calculate.php

You can retrieve the passed value using $_REQUEST['meters'] and
pass it to the $meters variable. Then you convert the value into miles
and yards and store these two values in the $miles and $yards
variables, respectively. After that, you create the return XML-
encoded document as a response. For example, if you’ve entered
the value 1000 for meters, the following XML-encoded output will be
generated in response:
<?xml version="1.0" encoding="UTF-8"?>
<conversion>
 <meters>1000</meters>
 <miles>0.62137119223733</miles>
 <yards>1093.6133</yards>
</conversion>

You then evaluate this returned XML document using the
parseRecalculate() callback function you had set up using
onreadystatechange. Here’s the section with the parseRecalculate()
function:
...
function parseRecalculate() {
 if (xmlhttp.readyState === 4 && xmlhttp.status === 200) {
 // Response from the server
 let xml = xmlhttp.responseXML;
 let miles_response =
 xml.querySelector('miles');
 let yards_response =
 xml.querySelector('yards');
 // Write results
 document.querySelector('#miles').value =
 miles_response.firstChild.nodeValue;

 document.querySelector('#yards').value =
 yards_response.firstChild.nodeValue;
 }
 else { // In case of an error
 document.querySelector('#miles').value = 0;
 document.querySelector('#yards').value = 0;
 }
}
...

Listing 20.13 /examples/chapter020/20_1_8/js/convert.js

This function has a relatively logical structure as well. First, you use
readyState and status to check if the response from the server is
ready. If so, you’ll find the response in responseXML of the
XMLHttpRequest object because the response is now XML-encoded.
Because you’re using an XML file here, you can immediately
evaluate the response using the Document Object Model (DOM). In
this case, you want to get the value of the node with the tag miles
and the other node with the tag yards. You can read these values via
DOM as follows:
let miles_response=xml.querySelector('miles');
let yards_response=xml.querySelector('yards');

Here, you can see that you can access the DOM methods directly by
using responseXML. Finally, you write the values in miles_response
and yards_response that have been read from the XML document via
DOM into the appropriate form fields as follows:
document.querySelector('#miles').value =
 miles_response.firstChild.nodeValue;
document.querySelector('#yards').value =
 yards_response.firstChild.nodeValue;

Admittedly, this example is considerably more complex because in
addition to JavaScript and server-side script programming, XML and
DOM have been added. Nevertheless, the example gives you a first
impression of what can be done with Ajax and that it can be
worthwhile to deal with it more comprehensively.

Figure 20.7 The Ajax Application during Execution

20.1.9 The JSON Data Format with Ajax

In the previous example, you performed a data exchange using
XML. At the beginning, I mentioned that Ajax also has other data
formats for exchanging information between server and client. A very
popular and simpler alternative to XML is JSON, which is probably
now more widely used than XML. For this reason, here’s a short
introduction to this data format.

JSON enables you to specify objects and arrays as ordinary strings,
just as you know it from JavaScript. The process is referred to as
serialization.

You can specify an array between square brackets:
["text1", "text2", "text3", "text4"]

Objects are placed in curly brackets:
{"property1" : "value", "property2" : "value" }

Even though JSON uses a JavaScript syntax, like XML, this data
format is independent of the language. The data format can be read
by any programming language.

Here’s a JSON example in which you create a directory object with
three entries of zip codes from a combination of city-zip code pairs:
{"directory":[
 {"city":"Portland", "zipCode":97217},
 {"city":"San Francisco", "zipCode":94104},
 {"city":"Philadelphia", "zipCode":19099}
]}

By the way, JSON requires that the property names (e.g., "city" and
"zipCode") be enclosed in double quotes. In addition to objects (in
curly brackets) and arrays (in square brackets), you can use a
number (integer and floating point), a string (in double quotes), a
Boolean value (true or false), and the null value (null) as data
types.

Because JSON uses JavaScript syntax, it’s easy to create such an
array of objects. In JavaScript, all you need to do is the following:
let directory = [
 {"city":"Portland", "zipCode":97217},
 {"city":"San Francisco", "zipCode":94104},
 {"city":"Philadelphia", "zipCode":19099}
];

Here’s a simple example that demonstrates how you can access the
individual entries using JavaScript:
let directory = [
 { "city": "Portland", "zipCode": 97217 },
 { "city": "San Francisco", "zipCode": 94104 },
 { "city": "Philadelphia", "zipCode": 19099 }
];

document.querySelector('#output').innerHTML = "" +
 "" + directory[0].city + " = " + directory[0].zipCode + "" +
 "" + directory[1].city + " = " + directory[1].zipCode + "" +
 "" + directory[2].city + " = " + directory[2].zipCode +
 "";

Listing 20.14 /examples/chapter020/20_1_9/js/plz.js

Let’s look at an access such as the following:

directory[0].city + " = " + directory[0].zipCode

This returns the following in this example:
Portland = 97217

Similarly, you can also modify the data as follows:
directory[0].city = "Houston"; // Portland becomes Houston

Usually, you use a for loop for traversing each element in the JSON
data format, which might look like the following:
...
let txt = "";
for (let i = 0; i<directory.length; i++) {
 txt += "" + directory[i].city + " = "
 + directory[i].zipCode + "";
}
txt += "";
document.querySelector('#output').innerHTML = txt;
...

In practice, you’ll use the JSON data format pretty often to read data
from a web server to display it on a web page. This returns us to
Ajax, which is what this chapter is about. The following data.json file
is located on the web server and is supposed to be read and output
on the web page:
[
 {
 "url":"http://www.portland.com/",
 "city":"Portland",
 "zipCode":97217
 },
 {
 "url":"http://www.sanfrancisco.com/",
 "city":"San Francisco",
 "zipCode":94104
 },
 {
 "url":"http://www.philadelphia.com/",
 "city":"Philadelphia",
 "zipCode":19099
 }
]

Listing 20.15 /examples/chapter020/20_1_9/json/data.json

You’re probably wondering how to convert this text (i.e., the JSON
string), which, if everything goes right, is contained in responseText
of the XMLHttpRequest object, into a JavaScript object. For this
purpose, JavaScript provides the JSON.parse() method:
let obj = JSON.parse(text);

You can use the JSON.parse() method to convert a JSON text into a
JavaScript object.

Other Ways to Parse JSON

For older web browsers that don’t support JSON.parse(), you could
use the eval() function to convert a JSON string into a JavaScript
object:
let obj = eval ("(" + text + ")");

However, the use of eval() isn’t without problems because it can
be used to execute any JavaScript code. If the data comes from
your own web server, this can still be okay, but you should never
use data from an external URL with it. It’s therefore safer to use
one of the many JavaScript frameworks that have their own JSON
parser integrated.

Here is the Ajax example where you read this file from the web
server using a JSON string, parse it, and output it to a web page:
...
<h1>JSON example with Ajax</h1>
<p id="output"></p>
<script src="js/plzJSON.js"></script>

...

Listing 20.16 /examples/chapter020/20_1_9/index2.html

let xmlhttp = new XMLHttpRequest();
let url = "json/data.json";

xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState === 4 && xmlhttp.status === 200) {
 let myArr = JSON.parse(xmlhttp.responseText);
 makeOutput(myArr);
 }
}
xmlhttp.open("GET", url, true);
xmlhttp.send();

function makeOutput(arr) {
 let out = '';
 for (let i = 0; i < arr.length; i++) {
 out += '' + '' +
 arr[i].city + '' + " = " + arr[i].zipCode + '';
 }
 out += '';
 document.querySelector('#output').innerHTML = out;
}

Listing 20.17 /examples/chapter020/20_1_9/js/plzJSON.js

Here, you connect to the server and make an HTTP request for the
data.json file. If the request was successful, you can parse the string
into JSON and create an object:
let myArr = JSON.parse(xmlhttp.responseText);

You pass this data to the myOutput() function, where the content for
the web page gets compiled and displayed in HTML. You can see
the example during execution in Figure 20.8.

Figure 20.8 The Content of the JSON File data.json Was Read, Parsed, and Displayed
on the Web Page Using Ajax

This example is kept simple to give you some understanding of how
to use the JSON and Ajax data formats.

Fetch API

By the way, in practice, you don’t have to take the complex way
via the XMLHttpRequest object. For Ajax requests, for example, the
Fetch application programming interface (API) at
https://fetch.spec.whatwg.org is a good choice. It’s much easier to
use and simplifies sending Ajax-based requests.

https://fetch.spec.whatwg.org/

20.2 Summary
In this chapter, you got to know Ajax, a technology that enables you
to transfer data asynchronously between the web browser and the
web server. You now know how to make HTTP requests while an
HTML web page is displayed in order to modify that page without
having to reload it.

Having read this chapter, you’ll know the basic principles of
implementing and using Ajax in practice.

The Author

Jürgen Wolf is a web and software developer and the author of
several seminal works about programming and photography.

Index

↓A ↓B ↓C ↓D ↓E ↓F ↓G ↓H ↓I ↓J ↓K ↓L ↓M ↓N ↓O ↓P ↓Q
↓R ↓S ↓T ↓U ↓V ↓W ↓X ↓Y ↓Z

" [→ Section 4.6]

!important [→ Section 10.2]

@font-face [→ Section 14.1]

@import (CSS rule) [→ Section 8.3] [→ Section 13.1]
[→ Section 15.3]

@media (CSS rule) [→ Section 8.3] [→ Section 13.1]
[→ Section 13.1]

@supports() [→ Section 12.3] [→ Section 15.1]

@viewport [→ Section 13.1]

 [→ Section 4.2] [→ Section 4.2] [→ Section 5.1]

­ [→ Section 4.2]

#anchorname [→ Section 5.2]

< [→ Section 4.6]

<!-- string [→ Section 2.1]

<noscript> [→ Section 17.2]

, list-style-type [→ Section 14.2]

<th>email address</th> [→ Section 5.2] [→ Section 7.3]

> [→ Section 4.6]

62.5% trick [→ Section 14.1]

::first-letter (pseudo-element) [→ Section 9.1]

::first-line (pseudo-element) [→ Section 9.1]

::selection (pseudo-element) [→ Section 9.1]

:active (pseudo-class) [→ Section 9.1] [→ Section 14.7]

:any-link (pseudo-class) [→ Section 9.1]

:blank (pseudo-class) [→ Section 9.1]

:empty (pseudo-class) [→ Section 9.1]

:first-child (pseudo-class) [→ Section 9.1]

:first-of-type (pseudo-class) [→ Section 9.1]

:focus (pseudo-class) [→ Section 9.1]

:hover (pseudo-class) [→ Section 9.1] [→ Section 9.1]
[→ Section 14.7]

:invalid (pseudo-class) [→ Section 7.3] [→ Section 7.4]

:lang() (pseudo-class) [→ Section 9.1]

:last-child (pseudo-class) [→ Section 9.1]

:last-of-type (pseudo-class) [→ Section 9.1]

:link (pseudo-class) [→ Section 9.1]

:matches() (pseudo-class) [→ Section 9.1]

:not() (pseudo-class) [→ Section 9.1]

:nth-child() (pseudo-class) [→ Section 9.1]

:nth-last-child() (pseudo-class) [→ Section 9.1]

:nth-last-of-type() (pseudo-class) [→ Section 9.1]

:nth-of-type() (pseudo-class) [→ Section 9.1]

:only-of-type (pseudo-class) [→ Section 9.1]

:placeholder-shown (pseudo-class) [→ Section 9.1]

:required (pseudo-class) [→ Section 7.4]

:root (pseudo-class) [→ Section 9.1]

:target (pseudo-class) [→ Section 9.1]

:valid (pseudo-class) [→ Section 7.3] [→ Section 7.4]

:visited (pseudo-class) [→ Section 9.1]

A ⇑
a (tag) [→ Section 5.2]

#anchorname [→ Section 5.2]
download [→ Section 5.2] [→ Section 5.2]
href [→ Section 5.2] [→ Section 5.2]
href=mailto [→ Section 5.2]
hreflang [→ Section 5.2]
media [→ Section 5.2]
phone number [→ Section 5.2]
rel [→ Section 5.2]

Skype [→ Section 5.2]
target [→ Section 5.2] [→ Section 5.2]
title [→ Section 5.2]
type [→ Section 5.2] [→ Section 5.2]

abbr (tag) [→ Section 4.4]
title [→ Section 4.4]

accesskey [→ Section 7.5]

addEventListener() [→ Section 19.7]

address (tag) [→ Section 4.1]

Adobe Brackets [→ Section 1.5]

Ajax [→ Section 20.1]
callback function [→ Section 20.1]
determining the status [→ Section 20.1]
DOM [→ Section 20.1]
example [→ Section 20.1]
HTTP request [→ Section 20.1]
HTTP response [→ Section 20.1]
JSON [→ Section 20.1]
onreadystatechange [→ Section 20.1] [→ Section 20.1]
open() [→ Section 20.1]
readyState [→ Section 20.1]
responseText [→ Section 20.1]
responseXML [→ Section 20.1] [→ Section 20.1]
send() [→ Section 20.1]

status [→ Section 20.1]
XMLHttpRequest object [→ Section 20.1]

align-content [→ Section 12.4]

align-items [→ Section 13.4]

align-self [→ Section 12.4] [→ Section 13.4]

all [→ Section 10.1]

Anchor [→ Section 5.2]

and (media query) [→ Section 13.1]

Angular dimensions [→ Section 10.3]

any-hover [→ Section 13.1]

any-pointer [→ Section 13.1]

appendChild() [→ Section 19.12] [→ Section 19.12]

Application server [→ Section 1.3]

area (tag) [→ Section 6.2]
alt [→ Section 6.2]
coords [→ Section 6.2] [→ Section 6.2]
download [→ Section 6.2]
href [→ Section 6.2] [→ Section 6.2]
hreflang [→ Section 6.2]
media [→ Section 6.2]
rel [→ Section 6.2]
shape [→ Section 6.2] [→ Section 6.2]
target [→ Section 6.2]

type [→ Section 6.2]

Array [→ Section 18.1]

Array literal notation [→ Section 18.2]

article (tag) [→ Section 4.1] [→ Section 4.3]

ASCII encoding [→ Section 4.5]

aside (tag) [→ Section 4.1] [→ Section 4.3]

aspect-ratio [→ Section 13.1]

audio (tag) [→ Section 6.8]
autoplay [→ Section 6.8]
controls [→ Section 6.8]
loop [→ Section 6.8]
muted [→ Section 6.8]
preload [→ Section 6.8]
src [→ Section 6.8]
type [→ Section 6.8] [→ Section 6.8]

Author stylesheet [→ Section 10.2]

Autocompletion [→ Section 7.4]

Automatic redirection [→ Section 3.8]

B ⇑
b (tag) [→ Section 4.4]

background [→ Section 11.5]
background-attachment [→ Section 11.5] [→ Section 11.5]

background-color [→ Section 11.5] [→ Section 11.5]
background-image [→ Section 11.5] [→ Section 11.5]
[→ Section 13.3]
background-position [→ Section 11.5] [→ Section 11.5]
background-repeat [→ Section 11.5] [→ Section 11.5]
background-size [→ Section 11.5] [→ Section 13.3]
linear-gradient() [→ Section 11.5]
radial-gradient() [→ Section 11.5]
repeating-linear-gradient() [→ Section 11.5]
repeating-radial-gradient() [→ Section 11.5]

Background color [→ Section 11.5]

Background graphic [→ Section 11.5]
fixing [→ Section 11.5]
positioning [→ Section 11.5]
tiling [→ Section 11.5]

Background image [→ Section 11.5]

base (tag) [→ Section 3.4]
href [→ Section 3.4] [→ Section 3.4]
target [→ Section 3.4] [→ Section 3.4]

bdi (tag) [→ Section 4.4]

bdo (tag) [→ Section 4.4]
dir [→ Section 4.4]

Blisk [→ Section 15.2]

blockquote (tag) [→ Section 4.2]

cite [→ Section 4.2]

Blog [→ Section 1.2]

body (tag) [→ Section 2.2] [→ Section 4.1]

Boolean [→ Section 18.5]

Boolean data type, JavaScript [→ Section 17.5]

Border [→ Section 11.5]

border [→ Section 11.1]
decorative border [→ Section 11.5]

border (tag) [→ Section 11.5]

border-bottom [→ Section 11.1]

border-box [→ Section 13.1]

border-collapse [→ Section 14.3]

border-color feature [→ Section 11.5]

border-image (tag) [→ Section 11.5]

border-image-slice (tag) [→ Section 11.5]

border-image-source (tag) [→ Section 11.5]

border-image-width (tag) [→ Section 11.5]

border-left [→ Section 11.1]

border-radius [→ Section 11.5]
border-bottom-left-radius [→ Section 11.5]
border-top-left-radius [→ Section 11.5]
border-top-right-radius [→ Section 11.5]

border-right [→ Section 11.1]

border-spacing [→ Section 14.3]

border-style feature [→ Section 11.5]

border-top [→ Section 11.1]

border-width feature [→ Section 11.5]

Box model [→ Section 11.1]
alternate [→ Section 11.2]
box-sizing:border-box [→ Section 11.2]
classic [→ Section 11.1]

box-shadow [→ Section 11.5]

box-sizing [→ Section 11.2] [→ Section 13.1]
border-box [→ Section 11.2]
content-box [→ Section 11.2]

br (tag) [→ Section 4.2]

break, JavaScript [→ Section 17.8]

Breakpoint [→ Section 13.1]

Browser stylesheet [→ Section 10.2]

Bullet point [→ Section 4.2]

button (tag) [→ Section 7.2]

C ⇑
calc() [→ Section 13.6] [→ Section 14.1]

Camel case [→ Section 19.5]

canvas (tag) [→ Section 6.6]

Capital letters [→ Section 14.1]

caption (tag) [→ Section 5.1]

caption-side [→ Section 14.3]

Cascade [→ Section 8.3]

Cascading [→ Section 10.1] [→ Section 10.2]

Cascading Style Sheets → see [CSS]

Centimeters [→ Section 10.3]

Central stylesheet [→ Section 15.3]

Character encoding [→ Section 3.8] [→ Section 4.5]

Character entity [→ Section 4.6]

charset [→ Section 4.5]

Chrome [→ Section 15.2]

circle (SVG) [→ Section 6.5]

cite (tag) [→ Section 4.4]
title [→ Section 4.4]

cite, q (tag) [→ Section 4.4]

Class [→ Section 18.4]
class selector [→ Section 9.1]

clear [→ Section 13.2]
both [→ Section 12.3]

left [→ Section 12.3]
none [→ Section 12.3]
right [→ Section 12.3]

cloneNode() [→ Section 19.12]

code (tag) [→ Section 4.4]

col (tag) [→ Section 5.1]

colgroup (tag) [→ Section 5.1]

Collapsing margins [→ Section 11.1]

Color [→ Section 10.3]

color [→ Section 13.1]
hexadecimal notation [→ Section 10.3]
HSL mixture [→ Section 10.3]
named [→ Section 10.3]
selecting [→ Section 7.3]
selection dialog [→ Section 7.3]

Color detail [→ Section 10.3]
named colors [→ Section 10.3]
RGB mixture [→ Section 10.3]
transparency [→ Section 10.3]

color-index [→ Section 13.1]

ColorZilla [→ Section 10.3]

column-count [→ Section 14.1]

column-gap [→ Section 14.1]

columns [→ Section 14.1]

column-width [→ Section 14.1]

Combinator [→ Section 9.1] [→ Section 9.2]

Comment [→ Section 2.1]
CSS [→ Section 8.2]

Comparison operators, JavaScript [→ Section 17.7]

Conditional statements, JavaScript [→ Section 17.7]

console object [→ Section 17.3]

Console, JavaScript [→ Section 17.3]

const [→ Section 17.4]

Content area [→ Section 11.1]

continue, JavaScript [→ Section 17.8]

Corporate website [→ Section 1.2]

createElement() [→ Section 19.12]

createTextNode() [→ Section 19.12]

CSS [→ Section 1.4] [→ Section 8.1]
alternate stylesheet [→ Section 8.3]
cascade [→ Section 8.3]
cascading [→ Section 10.2]
code formatting [→ Section 8.2]
commenting code [→ Section 8.2]
compression [→ Section 15.3]

in web browser [→ Section 8.4]
inheritance [→ Section 10.1]
integrating in HTML [→ Section 8.3]
level 1 (CSS 1) [→ Section 8.1]
level 2 (CSS 2) [→ Section 8.1]
level 3 (CSS3) [→ Section 8.1]
manipulating [→ Section 19.5]
media query [→ Section 8.3]
rule [→ Section 8.2] [→ Section 8.2] [→ Section 8.3]
selectors [→ Section 8.2] [→ Section 9.1]
style attribute [→ Section 8.3]

CSS feature
!important [→ Section 10.2]
angular dimensions [→ Section 10.3]
background [→ Section 11.5]
background-repeat [→ Section 11.5]
bottom [→ Section 12.1]
color details [→ Section 10.3]
content [→ Section 9.1]
default value [→ Section 10.1]
forcing inheritance [→ Section 10.1]
height [→ Section 11.1]
inheritance [→ Section 10.1]
keyword (value) [→ Section 10.3]
left [→ Section 12.1]

margin [→ Section 11.1]
named colors [→ Section 10.3]
opacity [→ Section 11.5]
order [→ Section 12.4]
position [→ Section 12.1]
restoring the default value [→ Section 10.1]
right [→ Section 12.1]
short notation [→ Section 10.3]
string (value) [→ Section 10.3]
top [→ Section 12.1]
unit of measurement [→ Section 10.3]
width [→ Section 11.1]
z-index [→ Section 12.2]

CSS preprocessor [→ Section 16.1] [→ Section 16.2]
installing [→ Section 16.3]
online [→ Section 16.3]

CSS pseudo-class [→ Section 9.1]
:active [→ Section 9.1]
:any-link [→ Section 9.1]
:blank [→ Section 9.1]
:checked [→ Section 9.1]
:disabled [→ Section 9.1]
:empty [→ Section 9.1]
:enabled [→ Section 9.1]
:first-child [→ Section 9.1]

:first-of-type [→ Section 9.1]
:focus [→ Section 9.1]
:hover [→ Section 9.1] [→ Section 14.3]
:invalid [→ Section 7.3] [→ Section 7.3] [→ Section 7.4]
:lang() [→ Section 9.1]
:last-child [→ Section 9.1]
:last-of-type [→ Section 9.1]
:link [→ Section 9.1]
:matches() [→ Section 9.1]
:not() [→ Section 9.1]
:nth-child() [→ Section 9.1] [→ Section 9.1]
:nth-last-child() [→ Section 9.1] [→ Section 9.1]
:nth-last-of-type() [→ Section 9.1]
:nth-of-type() [→ Section 9.1]
:only-child [→ Section 9.1] [→ Section 9.1]
:placeholder-shown [→ Section 9.1]
:required [→ Section 7.4]
:root [→ Section 9.1]
:target [→ Section 9.1]
:valid [→ Section 7.3] [→ Section 7.3] [→ Section 7.4]
:visited [→ Section 9.1]

CSS pseudo-element [→ Section 9.1]
:\ [→ Section 9.1] [→ Section 9.1] [→ Section 9.1]
[→ Section 9.1] [→ Section 9.1]

CSS reset [→ Section 15.4]

normalization [→ Section 15.4]

CSS web browser test [→ Section 15.1]

D ⇑
Data type, JavaScript [→ Section 17.5]

Database [→ Section 1.3]

datalist (tag) [→ Section 7.4]

DCOMContentLoaded [→ Section 19.8]

dd (tag) [→ Section 4.2]

Declaration [→ Section 8.2]
components [→ Section 8.2]

Decrement operator, JavaScript [→ Section 17.8]

default, track (tag) [→ Section 6.7]

Degree [→ Section 10.3]

del (tag) [→ Section 4.4]

Designing a border [→ Section 11.5]

details (tag) [→ Section 5.1] [→ Section 7.7]
open [→ Section 7.7]

dfn (tag) [→ Section 4.4]

dialog (tag) [→ Section 7.7]

Directory name [→ Section 3.3]

Directory structure [→ Section 3.3]

display [→ Section 13.3] [→ Section 13.5]
block [→ Section 13.5] [→ Section 14.7]
flex; [→ Section 12.4]
grid [→ Section 13.4]
inline [→ Section 13.5]
inline-block [→ Section 13.5] [→ Section 14.7]
none [→ Section 13.5]
none (CSS element) [→ Section 13.1]

div (tag) [→ Section 4.2] [→ Section 4.3] [→ Section 14.7]

dl (tag) [→ Section 4.2]

doctype (tag) [→ Section 2.2]

document object [→ Section 19.2]

Document Object Model → see [DOM]

Document outline [→ Section 4.1] [→ Section 4.1] [→ Section
4.1]

document.body [→ Section 19.12]

document.documentElement [→ Section 19.12]

DOM [→ Section 19.1] [→ Section 19.1]
Ajax [→ Section 20.1]
document object [→ Section 19.2]

DOM functions, setAttribute() [→ Section 19.5]

DOM inspector [→ Section 2.1] [→ Section 2.1] [→ Section
19.1]

DOM manipulation [→ Section 19.1] [→ Section 19.12]

DOM method [→ Section 19.3]

DOM object collection [→ Section 19.4] [→ Section 19.4]
baseURI [→ Section 19.4]
body [→ Section 19.4]
cookie [→ Section 19.4]
doctype [→ Section 19.4]
documentElement [→ Section 19.4]
documentURI [→ Section 19.4]
domain [→ Section 19.4]
domConfig [→ Section 19.4]
embeds [→ Section 19.4]
forms [→ Section 19.4]
head [→ Section 19.4]
images [→ Section 19.4]
implementation [→ Section 19.4]
inputEncoding [→ Section 19.4]
lastModified [→ Section 19.4]
links [→ Section 19.4]
readyState [→ Section 19.4]
referrer [→ Section 19.4]
scripts [→ Section 19.4]
title [→ Section 19.4]
URL [→ Section 19.4]

DOM property [→ Section 19.3] [→ Section 19.12]

childNodes [→ Section 19.12]
firstChild [→ Section 20.1]
nodeValue [→ Section 20.1]

DOM tree [→ Section 2.1] [→ Section 19.1]

do-while loop, JavaScript [→ Section 17.8]

Download link [→ Section 5.2]

dt (tag) [→ Section 4.2]

Dynamic website [→ Section 1.3]

E ⇑
ECMAScript [→ Section 17.1]

E-commerce website [→ Section 1.2]

ellipse (SVG) [→ Section 6.5]

em (tag) [→ Section 4.4]

em quad [→ Section 10.3]

embed (tag) [→ Section 6.7] [→ Section 6.9]

empty-cells [→ Section 14.3]

Event [→ Section 19.6]

Event handler [→ Section 19.7] [→ Section 19.7]
addEventListener() [→ Section 19.7]

Event object [→ Section 19.9]
altKey [→ Section 19.9]

bubbles [→ Section 19.9]
button [→ Section 19.9]
cancelable [→ Section 19.9]
clientX [→ Section 19.9]
clientY [→ Section 19.9]
ctrlKey [→ Section 19.9]
currentTarget [→ Section 19.9]
keyCode [→ Section 19.9]
metaKey [→ Section 19.9]
preventDefault() [→ Section 19.10]
screenX [→ Section 19.9]
screenY [→ Section 19.9]
shiftKey [→ Section 19.9]
target [→ Section 19.9]
type [→ Section 19.9]

Event propagation [→ Section 19.11]

F ⇑
false, JavaScript [→ Section 17.5]

Favicon [→ Section 6.4]

favicon.ico [→ Section 6.4]

Feature query [→ Section 15.1]

fieldset (tag) [→ Section 7.5] [→ Section 14.7] [→ Section
14.7]

figcaption (tag) [→ Section 4.2] [→ Section 5.1] [→ Section
6.1]

figure (tag) [→ Section 4.2] [→ Section 5.1] [→ Section 6.1]

File name [→ Section 3.3]

Firefox [→ Section 15.2]

firstChild [→ Section 19.12]

flex [→ Section 12.4]

flex-basis [→ Section 12.4]

Flexbox [→ Section 12.4] [→ Section 14.2]
order [→ Section 12.4]

flex-direction
column [→ Section 12.4]
column-reverse [→ Section 12.4]
row [→ Section 12.4]
row-reverse [→ Section 12.4]

flex-flow [→ Section 12.4]

flex-grow [→ Section 12.4]

flex-shrink [→ Section 12.4]

flex-wrap [→ Section 12.4]

float [→ Section 12.3]
inherit [→ Section 12.3]
left [→ Section 12.3]
none [→ Section 12.3]

right [→ Section 12.3]

flow-root, display [→ Section 12.3]

font [→ Section 14.1]

Font Awesome [→ Section 14.1]

Font class [→ Section 14.1]

Font formatting [→ Section 14.1]

Font size [→ Section 14.1]
em [→ Section 14.1]
keyword [→ Section 14.1]
pixels [→ Section 14.1]
points [→ Section 14.1]
relative (em) [→ Section 14.1]
rem [→ Section 14.1]

Font stack [→ Section 14.1]

Font style
bold [→ Section 14.1]
italic [→ Section 14.1]

font-family [→ Section 14.1]
web fonts [→ Section 14.1]

Fonts [→ Section 14.1]
royalty-free [→ Section 14.1]
web font [→ Section 14.1]

font-size [→ Section 14.1]

font-stretch [→ Section 14.1]

font-style [→ Section 14.1]

font-variant [→ Section 14.1]

font-weight [→ Section 14.1]

footer (tag) [→ Section 4.1] [→ Section 4.3]

for loop, JavaScript [→ Section 17.8]

Form [→ Section 7.1]
autocomplete [→ Section 7.4]
button [→ Section 7.2]
checkbox [→ Section 7.2]
color selection dialog [→ Section 7.3]
date input field [→ Section 7.3]
defining a space [→ Section 7.1]
disabling elements [→ Section 7.5]
dropdown list [→ Section 7.2]
email input field [→ Section 7.3]
entering date and time [→ Section 7.3]
error during input [→ Section 7.4]
file upload [→ Section 7.2]
grouping element [→ Section 7.5]
hidden input field [→ Section 7.2]
input fields [→ Section 7.3]
keyboard shortcut [→ Section 7.5]
mailer [→ Section 7.6]

month input field [→ Section 7.3]
multiline text input field [→ Section 7.2] [→ Section 7.2]
multiple submit buttons [→ Section 7.2]
number input field [→ Section 7.3]
password input field [→ Section 7.2]
phone number input field [→ Section 7.3]
PHP [→ Section 7.6]
radio buttons [→ Section 7.2]
read only [→ Section 7.5]
regular expressions [→ Section 7.4]
search input field [→ Section 7.3]
selection list [→ Section 7.2]
setting the input focus [→ Section 7.4]
slider [→ Section 7.3]
tab sequence [→ Section 7.5]
text input field [→ Section 7.2]
text label [→ Section 7.2]
time input field [→ Section 7.3]
URL input field [→ Section 7.3]
using placeholders [→ Section 7.4]
week input field [→ Section 7.3]

form (tag) [→ Section 7.1] [→ Section 7.2]
accept-charset [→ Section 7.1]
action [→ Section 7.1] [→ Section 7.6] [→ Section 7.6]
enctype [→ Section 7.1]

id [→ Section 7.2]
method [→ Section 7.1]
method=\ [→ Section 7.6]
target [→ Section 7.1]

Forms, JavaScript [→ Section 19.13]

fr [→ Section 13.4]

Function [→ Section 18.1]

G ⇑
g (SVG) [→ Section 6.5]

GDPR consent [→ Section 7.6]

General Data Protection Regulation (GDPR) [→ Section 14.1]

GET method [→ Section 7.6]

getAttribute() [→ Section 19.12]

getElementById() [→ Section 19.4]

getElementsByClassName() [→ Section 19.4]

getElementsByName() [→ Section 19.4]

getElementsByTagName() [→ Section 19.4]

Google Fonts [→ Section 14.1]

Gradian [→ Section 10.3]

Gradient [→ Section 11.5]

Graphic

embedding [→ Section 6.1]
link-sensitive [→ Section 6.2]

grid [→ Section 13.4]

grid (layout) [→ Section 13.4]

grid-area [→ Section 13.4]

grid-column [→ Section 13.4]

grid-column-end [→ Section 13.4]

grid-column-gap [→ Section 13.4]

grid-column-start [→ Section 13.4]

grid-gap [→ Section 13.4]

grid-row [→ Section 13.4]

grid-row-end [→ Section 13.4]

grid-row-gap [→ Section 13.4]

grid-row-start [→ Section 13.4]

grid-template-columns [→ Section 13.4]

grid-template-rows [→ Section 13.4]

Grouping columns [→ Section 5.1]

H ⇑
h1 (tag) [→ Section 4.1]

h2 (tag) [→ Section 4.1]

h3 (tag) [→ Section 4.1]

h4 (tag) [→ Section 4.1]

h5 (tag) [→ Section 4.1]

h6 (tag) [→ Section 4.1]

hasAttribute() [→ Section 19.12]

hasChildNodes [→ Section 19.12]

head (tag) [→ Section 2.2] [→ Section 3.1]

header (tag) [→ Section 4.1] [→ Section 4.3]

Heading [→ Section 4.1]

Height [→ Section 11.1]

height [→ Section 13.1] [→ Section 14.4]

hidden, main (tag) [→ Section 4.2]

hover [→ Section 13.1]

hr (tag) [→ Section 4.2]

href, area (tag) [→ Section 6.2]

hsl() [→ Section 10.3]

hsla() [→ Section 10.3]

HTML [→ Section 1.1]
adding CSS [→ Section 8.3]
head data [→ Section 2.2]
input fields [→ Section 7.2]
markup language [→ Section 1.4]
page elements [→ Section 2.1]

validating [→ Section 1.5]

html (tag) [→ Section 2.2]

HTML attribute [→ Section 2.1]
datetime [→ Section 4.4]
height [→ Section 6.5]
id [→ Section 6.6]
manipulating [→ Section 19.5] [→ Section 19.12]
meta element [→ Section 3.8]
table elements [→ Section 5.1]
type [→ Section 6.9]
width [→ Section 6.5]

HTML document [→ Section 17.1]
body [→ Section 4.1]
framework [→ Section 2.2]
in browser [→ Section 2.1]
structure [→ Section 2.1]

HTML element [→ Section 2.1]
<iframe> [→ Section 6.9]
<source> [→ Section 6.8]
head [→ Section 3.1]
incorrect nesting [→ Section 2.1]
interactive [→ Section 7.7]
nesting [→ Section 2.1]
omitting tag [→ Section 2.1]

structuring pages [→ Section 4.1]
structuring text [→ Section 4.2]

HTML form [→ Section 7.1]

HTML tag [→ Section 2.1]

HTML5 web browser test [→ Section 15.1]

HTTP request [→ Section 7.6]
method [→ Section 7.1]

Hyperlink [→ Section 5.1] [→ Section 5.2]

Hyphen ­ [→ Section 4.2]

I ⇑
i (tag) [→ Section 4.4]

Icon [→ Section 6.4] [→ Section 14.1]

Icon font [→ Section 14.1]

ID selector [→ Section 9.1]

if branch, JavaScript [→ Section 17.7]

iframe (tag) [→ Section 6.7]
sandbox [→ Section 6.9]
seamless [→ Section 6.9]

Image
embedding [→ Section 6.1]
hiding [→ Section 13.3]
labeling [→ Section 6.1]

responsive [→ Section 13.3]
scaling [→ Section 6.1]
scaling with CSS [→ Section 14.4]

Image map [→ Section 6.2]

img (tag) [→ Section 6.1]
alt [→ Section 6.1] [→ Section 6.1] [→ Section 6.1]
height [→ Section 6.1] [→ Section 6.1]
hiding [→ Section 13.3]
ismap [→ Section 6.1]
making responsive [→ Section 13.3]
name [→ Section 6.2]
scaling with CSS [→ Section 14.4]
src [→ Section 6.1] [→ Section 6.1]
src (SVG) [→ Section 6.5]
SVG [→ Section 6.5]
title [→ Section 6.1]
usemap [→ Section 6.1] [→ Section 6.2]
width [→ Section 6.1] [→ Section 6.1] [→ Section 6.1]

Inches [→ Section 10.3]

Increment operator, JavaScript [→ Section 17.8]

inherit [→ Section 10.1]

Inheritance [→ Section 10.1]
CSS [→ Section 10.1]
inherit [→ Section 10.1]

initial [→ Section 10.1]

initial-scale [→ Section 13.1]

Inline style [→ Section 8.3]

innerHTML [→ Section 19.5]

input (tag)
accept [→ Section 7.2]
accesskey [→ Section 7.5]
autocomplete [→ Section 7.4]
autofocus [→ Section 7.4]
checked [→ Section 7.2]
disabled [→ Section 7.5]
enctype [→ Section 7.2]
for [→ Section 7.2]
formaction [→ Section 7.2]
formmethod [→ Section 7.2]
formnovalid [→ Section 7.2]
formtarget [→ Section 7.2]
input type=\ [→ Section 7.2] [→ Section 7.2]
JavaScript [→ Section 19.13] [→ Section 19.13]
list [→ Section 7.4]
max [→ Section 7.4]
maxlength [→ Section 7.2]
min [→ Section 7.4]
multiple [→ Section 7.3] [→ Section 7.4]

name [→ Section 7.2] [→ Section 7.2] [→ Section 7.2]
[→ Section 7.2]
novalidate [→ Section 7.4]
pattern [→ Section 7.3] [→ Section 7.4]
placeholder [→ Section 7.4]
readonly [→ Section 7.5]
required [→ Section 7.3] [→ Section 7.4] [→ Section 7.4]
size [→ Section 7.2]
step [→ Section 7.4]
tabindex [→ Section 7.5]
type= [→ Section 7.2] [→ Section 7.2] [→ Section 7.2]
[→ Section 7.3] [→ Section 7.3] [→ Section 7.3]
[→ Section 7.3] [→ Section 7.3] [→ Section 7.3]
[→ Section 7.3] [→ Section 7.3] [→ Section 7.3]
[→ Section 7.3] [→ Section 7.3] [→ Section 7.3]
[→ Section 7.3]
type=checkbox [→ Section 7.2]
type=radio [→ Section 7.2]
value [→ Section 7.2] [→ Section 7.2] [→ Section 7.2]
[→ Section 7.2] [→ Section 7.3] [→ Section 19.13]

ins (tag) [→ Section 4.4]

insertBefore() [→ Section 19.12]

ISO-8859-1 [→ Section 4.5] [→ Section 4.5]

J ⇑
JavaScript [→ Section 1.4] [→ Section 17.1] [→ Section 17.1]

-- [→ Section 17.8]
++ [→ Section 17.8]
<noscript> [→ Section 17.2]
=== operator [→ Section 18.5]
alert() [→ Section 17.3]
arguments object [→ Section 18.1]
arithmetic operator [→ Section 17.6]
array [→ Section 18.2]
array (multidimensional) [→ Section 18.2]
arrow functions [→ Section 18.1]
bool [→ Section 17.5]
Boolean [→ Section 18.5]
break [→ Section 17.8]
canvas (tag) [→ Section 6.6]
class [→ Section 18.4]
class syntax [→ Section 18.4]
comments [→ Section 17.3]
comparison operators [→ Section 17.7]
conditional statement [→ Section 17.7]
confirm() [→ Section 17.3]
console [→ Section 17.3]
console.log() [→ Section 17.3]
const [→ Section 17.4]
constant [→ Section 17.4]
constructor function [→ Section 18.4]

continue [→ Section 17.8]
converting data types [→ Section 17.5]
customizing the load behavior [→ Section 17.2]
data type [→ Section 17.5]
Date [→ Section 18.5]
Date object [→ Section 18.2]
decrement operator [→ Section 17.8]
default parameter [→ Section 18.1]
defining functions [→ Section 18.1]
disabled [→ Section 3.7]
do-while loop [→ Section 17.8]
false [→ Section 17.5] [→ Section 17.7]
for ... in (loop) [→ Section 18.2]
for ... of (loop) [→ Section 18.2]
for loop [→ Section 17.8]
forms [→ Section 19.13]
Function [→ Section 18.5]
function [→ Section 18.1] [→ Section 18.1]
function expression [→ Section 18.1]
function parameter [→ Section 18.1]
get [→ Section 18.4]
getter [→ Section 18.4]
if branch [→ Section 17.7]
increment operator [→ Section 17.8]
indexOf() [→ Section 18.2]

input dialog [→ Section 17.3]
integration in HTML [→ Section 17.2]
isNaN() [→ Section 17.5]
length [→ Section 18.3]
let [→ Section 17.4] [→ Section 18.1]
logical operator [→ Section 17.7]
loop [→ Section 17.8]
Map object [→ Section 18.5]
Math [→ Section 18.5]
Math object [→ Section 17.6]
multiple branching [→ Section 17.7]
null [→ Section 17.5]
number [→ Section 18.5]
numbers [→ Section 17.5]
object [→ Section 18.4] [→ Section 18.5]
object-oriented programming [→ Section 18.4]
output [→ Section 17.3]
parseFloat() [→ Section 17.5]
parseInt() [→ Section 17.5]
pop() [→ Section 18.2]
position [→ Section 17.2]
prompt() [→ Section 17.3]
push() [→ Section 18.2]
queue [→ Section 18.2]
regular expression [→ Section 18.3]

rest parameter [→ Section 18.1]
return statement [→ Section 18.1]
return value (function) [→ Section 18.1]
scope (variables) [→ Section 18.1]
selection operator [→ Section 17.7]
set [→ Section 18.4]
Set object [→ Section 18.5]
setter [→ Section 18.4]
shift() [→ Section 18.2]
sort() [→ Section 18.2]
splice() [→ Section 18.2]
stack [→ Section 18.2]
standard dialog [→ Section 17.3]
strict mode [→ Section 17.4]
string [→ Section 17.5] [→ Section 18.3] [→ Section 18.5]
substr() [→ Section 18.3]
substring() [→ Section 18.3]
switch [→ Section 17.7]
this [→ Section 18.4] [→ Section 18.4]
traversing arrays [→ Section 18.2]
true [→ Section 17.5] [→ Section 17.7]
typeof [→ Section 17.5]
undefined [→ Section 17.5]
unshift() [→ Section 18.2]
use strict [→ Section 17.4]

var [→ Section 17.4] [→ Section 18.1]
variables [→ Section 17.4]
while loop [→ Section 17.8]
within HTML [→ Section 17.2]

JavaScript engine [→ Section 17.1]

JavaScript event [→ Section 19.6]
blur [→ Section 19.8]
bubbling phase [→ Section 19.11]
capturing phase [→ Section 19.11]
change [→ Section 19.8]
click [→ Section 19.8]
dblclick [→ Section 19.8]
default action [→ Section 19.10]
DOMContentLoaded [→ Section 19.8]
error [→ Section 19.8]
event handler [→ Section 19.7]
event propagation [→ Section 19.11]
focus [→ Section 19.8]
keydown [→ Section 19.8]
keypress [→ Section 19.8]
keyup [→ Section 19.8]
load [→ Section 19.8]
mousedown [→ Section 19.8]
mousemove [→ Section 19.8]
mouseout [→ Section 19.8]

mouseover [→ Section 19.8]
mouseup [→ Section 19.8]
onclick [→ Section 19.13]
onkeyup [→ Section 20.1]
onload [→ Section 19.8] [→ Section 20.1]
onunload [→ Section 19.8]
preventing the default action [→ Section 19.10]
properties [→ Section 19.9]
reset [→ Section 19.8]
resize [→ Section 19.8]
scroll [→ Section 19.8]
select [→ Section 19.8]
submit [→ Section 19.8]
touchcancel [→ Section 19.8]
touchend [→ Section 19.8]
touchmove [→ Section 19.8]
touchstart [→ Section 19.8]
unload [→ Section 19.8]

JavaScript objects
Date [→ Section 18.5]
Function [→ Section 18.5]
Map [→ Section 18.5]
Math [→ Section 18.5]
Set [→ Section 18.5]

JSON [→ Section 20.1]

JSON.parse() [→ Section 20.1]

Jump marker [→ Section 5.2]

justify-content [→ Section 12.4]

justify-items [→ Section 13.4]

justify-self [→ Section 13.4]

K ⇑
kbd (tag) [→ Section 4.4]

L ⇑
label (tag) [→ Section 7.2] [→ Section 14.7]

Landing page [→ Section 1.2]

lang (attribute) [→ Section 2.2]

lastChild [→ Section 19.12]

legend (tag) [→ Section 7.5]

let [→ Section 17.4]

letter-spacing [→ Section 14.1] [→ Section 14.1]

li (tag) [→ Section 4.2] [→ Section 4.2]

line (SVG) [→ Section 6.5]

Line break

 [→ Section 4.2]
<wbr> [→ Section 4.2]
preventing [→ Section 4.2]

Line spacing [→ Section 14.1]

linear-gradient() [→ Section 11.5]

line-height [→ Section 14.1]

Link [→ Section 5.2]
email [→ Section 5.2]
insert [→ Section 5.2]
media [→ Section 13.1]
text [→ Section 5.2]

link (tag) [→ Section 3.5] [→ Section 8.3]
href [→ Section 3.5] [→ Section 8.3]
hreflang [→ Section 3.5]
media [→ Section 3.5] [→ Section 8.3]
rel [→ Section 3.5] [→ Section 3.5]
rel=\ [→ Section 6.4] [→ Section 8.3]
size [→ Section 3.5]
sizes [→ Section 6.4]
type [→ Section 3.5]

Link-sensitive graphics [→ Section 6.2] [→ Section 6.2]

List
designing [→ Section 14.2]
graphics as bullets [→ Section 14.2]

List display
changing the numbering [→ Section 4.2]
description list [→ Section 4.2]

nesting [→ Section 4.2]
numbered [→ Section 4.2]
ordered [→ Section 4.2]
reversing the numbering [→ Section 4.2]
unordered [→ Section 4.2]

list-style [→ Section 14.2]

list-style-image [→ Section 14.2]

list-style-position [→ Section 14.2]

list-style-type [→ Section 14.2]

log(), JavaScript [→ Section 17.3]

Logical operator, JavaScript [→ Section 17.7]

Loop, JavaScript [→ Section 17.8]

M ⇑
main (tag) [→ Section 4.2]

hidden [→ Section 4.2]

Main content <main> [→ Section 4.2]

map (tag) [→ Section 6.2]

margin (tag) [→ Section 11.1]

margin-bottom (tag) [→ Section 11.1]

margin-left (tag) [→ Section 11.1]

margin-right (tag) [→ Section 11.1]

margin-top (tag) [→ Section 11.1]

mark (tag) [→ Section 4.4]

Marker [→ Section 1.4]

Masking HTML characters [→ Section 4.6]

math (tag) [→ Section 6.5]

MathML [→ Section 6.5]

max-aspect-ratio [→ Section 13.1]

max-color [→ Section 13.1]

max-color-index [→ Section 13.1]

max-height [→ Section 13.1]

max-monochrome [→ Section 13.1]

max-resolution [→ Section 13.1]

max-width [→ Section 13.1]

Media query [→ Section 13.1] [→ Section 13.1]

Menu bar [→ Section 14.2]

meta (tag) [→ Section 3.8]
charset [→ Section 3.8] [→ Section 4.5]
charset=\ [→ Section 3.8]
content [→ Section 3.8] [→ Section 3.8] [→ Section 3.8]
http-equiv [→ Section 3.8] [→ Section 3.8]
http-equiv=\ [→ Section 3.8]
name [→ Section 3.8] [→ Section 3.8]

name=\ [→ Section 3.8] [→ Section 3.8] [→ Section 3.8]

meta viewport [→ Section 3.8] [→ Section 13.1]

Metadata [→ Section 1.4] [→ Section 3.8] [→ Section 3.8]

meter (tag) [→ Section 7.5]

Microblogging [→ Section 1.2]

Microsite [→ Section 1.2]

Microsoft Editor [→ Section 1.5]

Millimeters [→ Section 10.3]

MIME type [→ Section 5.2]

min-aspect-ratio [→ Section 13.1]

min-color [→ Section 13.1]

min-color-index [→ Section 13.1]

min-height [→ Section 13.1]

min-monochrome [→ Section 13.1]

min-resolution [→ Section 13.1]

min-width [→ Section 13.1]

Model border-box [→ Section 11.2]

monochrome [→ Section 13.1]

Multiple branching, JavaScript [→ Section 17.7]

MySQL [→ Section 1.2]

N ⇑

Named colors [→ Section 10.3]

Named entity [→ Section 4.2] [→ Section 4.6]

Naming convention [→ Section 3.3]

nav (tag) [→ Section 4.1] [→ Section 4.3]

Navigation bar [→ Section 14.2]

Navigation, flexbox [→ Section 14.2]

new [→ Section 18.4]

nextSibling [→ Section 19.12]

nodeName [→ Section 19.12]

nodeType [→ Section 19.12]

nodeValue [→ Section 19.12]

Normalization (CSS) [→ Section 15.4]

normalize.css [→ Section 15.4]

noscript (tag) [→ Section 3.7]

not (media query) [→ Section 13.1]

null, JavaScript [→ Section 17.5]

Number [→ Section 18.5]

Numeric entity [→ Section 4.6]

O ⇑
Object [→ Section 18.1] [→ Section 18.5]

object (tag) [→ Section 6.7] [→ Section 6.9]

ol (tag) [→ Section 4.2] [→ Section 14.2]
reversed [→ Section 4.2]
start [→ Section 4.2]
value [→ Section 4.2]

onblur [→ Section 19.13]

onchange [→ Section 19.13]

Online magazine [→ Section 1.2]

Online store [→ Section 1.2]

only (media query) [→ Section 13.1]

onsubmit [→ Section 19.13]

optgroup (tag) [→ Section 7.2]
label [→ Section 7.2]

option (tag) [→ Section 7.2]
JavaScript [→ Section 19.13]
selected [→ Section 7.2]
value [→ Section 7.2] [→ Section 19.13]

orientation [→ Section 13.1]

Outline [→ Section 4.1] [→ Section 4.1]

output (tag) [→ Section 7.3]

P ⇑
p (tag) [→ Section 4.2]

padding [→ Section 11.1]

padding-bottom [→ Section 11.1]

padding-left [→ Section 11.1]

padding-right [→ Section 11.1]

padding-top [→ Section 11.1]

Paragraph text <p> [→ Section 4.2]

parentNode [→ Section 19.12]

path (SVG) [→ Section 6.5]

Percent [→ Section 10.3]

PHP [→ Section 1.2]

PHP form mailer [→ Section 7.6]

Pica [→ Section 10.3]

picture (tag) [→ Section 6.3] [→ Section 13.3]

Pixel [→ Section 10.3]

Placeholder [→ Section 7.4]

Plain text format [→ Section 1.4]

Playing an audio file [→ Section 6.8]

Playing MP3 [→ Section 6.8]

Point [→ Section 10.3]

pointer [→ Section 13.1]

polygon (SVG) [→ Section 6.5]

Portfolio website [→ Section 1.2]

position [→ Section 12.1]
absolute [→ Section 12.1]
fixed [→ Section 12.1]
relative [→ Section 12.1]
static (tag) [→ Section 12.1]
sticky [→ Section 12.1]

Positioning [→ Section 12.1]
absolute [→ Section 12.1]
fixed [→ Section 12.1]
float [→ Section 12.3]
relative [→ Section 12.1]
static [→ Section 12.1] [→ Section 12.1]

POST method [→ Section 7.6]

pre (tag) [→ Section 4.4]

Preprocessor [→ Section 16.1]

preventDefault() [→ Section 19.10]

previousSibling [→ Section 19.12]

progress (tag) [→ Section 7.5]
JavaScript [→ Section 19.13]

Protocol [→ Section 3.3]

Q ⇑
q (tag) [→ Section 4.4]

cite [→ Section 4.4]

Query [→ Section 1.3]

Query string [→ Section 7.6]

querySelector() [→ Section 19.4]

querySelectorAll() [→ Section 19.4]

R ⇑
radial-gradient() [→ Section 11.5]

Radian [→ Section 10.3]

radius, border-bottom-right-radius [→ Section 11.5]

reCAPTCHA [→ Section 5.2]

Recommendation [→ Section 11.6]

Recordset [→ Section 1.3]

rect (SVG) [→ Section 6.5]

Reference text [→ Section 5.2]

Referencing [→ Section 3.3]

Regular expression [→ Section 7.4]

Relative URL [→ Section 5.2]

rem [→ Section 14.1]

removeAttribute() [→ Section 19.12]

removeChild() [→ Section 19.12]

removeEventListener() [→ Section 19.7]

repeat() [→ Section 13.4]

repeating-linear-gradient() [→ Section 11.5]

repeating-radial-gradient() [→ Section 11.5]

replaceChild() [→ Section 19.12]

Request [→ Section 1.3]

resolution [→ Section 13.1]

Response [→ Section 1.3]

Responsive web design [→ Section 13.1]

RGB mixture [→ Section 10.3]
transparency [→ Section 10.3]

rgb() [→ Section 10.3]

rgba() [→ Section 11.5]

Root directory [→ Section 3.3]

Root em [→ Section 10.3]

rotate() [→ Section 14.5]

Round angle [→ Section 10.3]

Round corners [→ Section 11.5]

rp (tag) [→ Section 4.4]

rt (tag) [→ Section 4.4]

ruby (tag) [→ Section 4.4]

Ruby annotation [→ Section 4.4]

S ⇑

s (tag) [→ Section 4.4]

Safari [→ Section 15.2]

samp (tag) [→ Section 4.4]

sanitize.css [→ Section 15.4]

Sass [→ Section 16.1]
@content [→ Section 16.8]
@each [→ Section 16.11]
@else [→ Section 16.11]
@extend [→ Section 16.7]
@for [→ Section 16.11]
@function [→ Section 16.12]
@import [→ Section 16.13]
@include [→ Section 16.6]
@media [→ Section 16.8]
@mixin [→ Section 16.6]
@return [→ Section 16.12]
@while [→ Section 16.11]
& (ampersand character) [→ Section 16.10]
adjusting brightness [→ Section 16.10]
color [→ Section 16.10]
comments [→ Section 16.14]
control structure [→ Section 16.11]
function [→ Section 16.12]
installing [→ Section 16.3]

media query [→ Section 16.8]
mixins [→ Section 16.6]
nesting [→ Section 16.5]
operator [→ Section 16.9]
property nesting [→ Section 16.5]
selector nesting [→ Section 16.5]
variable [→ Section 16.4]
Visual Studio Code [→ Section 16.3]

scale() [→ Section 14.5]

scope, th (tag) [→ Section 5.1]

script (tag) [→ Section 3.7]
async [→ Section 3.7] [→ Section 17.2]
charset [→ Section 3.7]
defer [→ Section 3.7] [→ Section 17.2]
JavaScript [→ Section 17.2]
src [→ Section 3.7]
type [→ Section 3.7]

SCSS → see [Sass]

Search engine optimization (SEO) [→ Section 3.2]

section (tag) [→ Section 4.1] [→ Section 4.3]

Section element [→ Section 4.1]

select (tag) [→ Section 7.2]
JavaScript [→ Section 19.13]
multiple [→ Section 7.2]

name [→ Section 7.2]

Selection operator, JavaScript [→ Section 17.7]

Selector [→ Section 8.2] [→ Section 9.1]
adjacent sibling combinator [→ Section 9.2]
attribute selector (attribute value) [→ Section 9.1]
attribute selector (partial value) [→ Section 9.1]
attribute selector (presence) [→ Section 9.1]
child combinator [→ Section 9.2]
class selector [→ Section 9.1]
combinator [→ Section 9.2]
descendant combinator [→ Section 9.2]
general sibling combinator [→ Section 9.2]
grouping [→ Section 9.1]
ID selector [→ Section 9.1]
negation pseudo-class [→ Section 9.1]
pattern [→ Section 9.1]
pseudo-class [→ Section 9.1]
structural pseudo-class [→ Section 9.1]
type selector [→ Section 9.1]
universal selector [→ Section 9.1]
user interface pseudo-classes [→ Section 9.1]
weighting [→ Section 10.2]

Semantic HTML [→ Section 4.3]

setAttribute() [→ Section 19.12] [→ Section 19.12]

Shadow [→ Section 14.1]
adding [→ Section 11.5]

Simple selector [→ Section 9.1]

skew() [→ Section 14.5]

small (tag) [→ Section 4.4]

Small caps [→ Section 14.1]

source (tag) [→ Section 6.3] [→ Section 13.3]
audio (tag) [→ Section 6.8]
media [→ Section 6.3]
sizes [→ Section 6.3]
src [→ Section 6.7]
srcset [→ Section 6.3] [→ Section 6.3]
type [→ Section 6.3] [→ Section 6.7]

Space [→ Section 4.2] [→ Section 7.1]

Spam [→ Section 5.2]

span (tag) [→ Section 4.4]

Specificity [→ Section 10.2]

Stacking [→ Section 12.2]

Standalone tag [→ Section 2.1]

Static website [→ Section 1.3]

stopPropation() [→ Section 19.11]

Strikethrough [→ Section 14.1]

String [→ Section 18.3] [→ Section 18.5]
JavaScript [→ Section 17.5]

strong (tag) [→ Section 4.4]

Style [→ Section 19.5]

style (HTML attribute) [→ Section 8.3]

style (tag) [→ Section 3.6] [→ Section 8.3]
media [→ Section 3.6]
title [→ Section 8.3]
type [→ Section 3.6]

sub (tag) [→ Section 4.4]

Sublime Text [→ Section 1.5]

submit [→ Section 19.13]

Subtitles for video and audio [→ Section 6.7]

summary (tag) [→ Section 5.1] [→ Section 7.7]

sup (tag) [→ Section 4.4]

svg (tag) [→ Section 6.5]
circle [→ Section 6.5]
ellipse [→ Section 6.5]
line [→ Section 6.5]
path [→ Section 6.5]
polygon [→ Section 6.5]
rect [→ Section 6.5]
text [→ Section 6.5]

SVG element, <polyline .../> [→ Section 6.5]

SVG format [→ Section 6.5]
img (tag) [→ Section 6.5]
svg (tag) [→ Section 6.5]

SVG tag [→ Section 6.5]

switch, JavaScript [→ Section 17.7]

T ⇑
tabindex [→ Section 7.5]

Table [→ Section 5.1]
caption [→ Section 14.3]
cell [→ Section 5.1]
fixed width [→ Section 14.3]
labeling [→ Section 5.1]
structuring [→ Section 5.1]
structuring data [→ Section 5.1]

table (tag) [→ Section 5.1]
border [→ Section 5.1]

table-layout [→ Section 14.3]

tables [→ Section 14.3]

Target anchor [→ Section 5.2]

tbody (tag) [→ Section 5.1]

td (tag) [→ Section 5.1]

colspan [→ Section 5.1]
rowspan [→ Section 5.1]

template (tag) [→ Section 19.12]

Template string [→ Section 17.5]

Test [→ Section 15.1]

Text
design [→ Section 14.1]
indenting [→ Section 14.1]
subscript <sub> [→ Section 4.4]
superscript <sup> [→ Section 4.4]

text (SVG) [→ Section 6.5]

Text alignment [→ Section 14.1]
vertical [→ Section 14.1]

Text markup [→ Section 4.4]

Text underline [→ Section 4.4]

text-align [→ Section 14.1]

textarea (tag) [→ Section 7.2] [→ Section 7.2] [→ Section
19.13]

cols [→ Section 7.2]
maxlength [→ Section 7.2]
name [→ Section 7.2]
rows [→ Section 7.2]
wrap [→ Section 7.2]

textContent [→ Section 19.4]

text-decoration [→ Section 14.1]

TextEdit [→ Section 1.5]

text-indent [→ Section 14.1]

text-shadow [→ Section 14.1]

text-transform [→ Section 14.1] [→ Section 14.1]

tfoot (tag) [→ Section 5.1]

th (tag) [→ Section 5.1]
scope [→ Section 5.1]

thead (tag) [→ Section 5.1]

time (tag) [→ Section 4.4]

Time data [→ Section 10.3]

title (tag) [→ Section 3.2]

tr (tag) [→ Section 5.1]

track (tag) [→ Section 6.7]
kind [→ Section 6.7]
label [→ Section 6.7]
src [→ Section 6.7]
srclang [→ Section 6.7]

transform [→ Section 14.5]

Transform
skewing [→ Section 14.5]

Transformation [→ Section 14.5]
moving [→ Section 14.5]
rotating [→ Section 14.5]
scaling [→ Section 14.5]

Transition [→ Section 14.6]

transition [→ Section 14.6]
transition-delay [→ Section 14.6]
transition-duration [→ Section 14.6]
transition-property [→ Section 14.6]
transition-timing-function [→ Section 14.6]

translate() [→ Section 14.5]

Transparency [→ Section 11.5]

true, JavaScript [→ Section 17.5]

typeof, JavaScript [→ Section 17.5]

U ⇑
u (tag) [→ Section 4.4]

ul (tag) [→ Section 4.2] [→ Section 14.2]

undefined, JavaScript [→ Section 17.5]

Underline [→ Section 14.1]

Unicode [→ Section 4.5]

Unit of measurement [→ Section 10.3]

Universal selector

weighting [→ Section 10.2]

unset [→ Section 10.1]

URL [→ Section 3.3]

use strict [→ Section 17.4]

User stylesheet [→ Section 10.2]

UTF-8 [→ Section 3.8] [→ Section 4.5] [→ Section 4.5]

V ⇑
Validating

HTML [→ Section 1.5]

Validation [→ Section 15.1]

var [→ Section 17.4]

var (tag) [→ Section 4.4]

Vector graphic [→ Section 6.5]
img (tag) [→ Section 6.5]
svg (tag) [→ Section 6.5]

vertical-align [→ Section 14.1]

vh [→ Section 14.1]

Video
playing [→ Section 6.7]
YouTube [→ Section 6.7]

video (tag) [→ Section 6.7]
autoplay [→ Section 6.7]

controls [→ Section 6.7]
height [→ Section 6.7]
loop [→ Section 6.7]
muted [→ Section 6.7]
poster [→ Section 6.7]
preload [→ Section 6.7]
src [→ Section 6.7]
type [→ Section 6.7]
width [→ Section 6.7]

Viewport [→ Section 3.8] [→ Section 13.1]
height [→ Section 10.3]
width [→ Section 10.3]

Viewport unit [→ Section 14.1]

visibility [→ Section 13.5]

Visual Studio Code [→ Section 1.5]

vw [→ Section 14.1]

W ⇑
wbr (tag) [→ Section 4.2]

Web app [→ Section 1.2]

Web browser [→ Section 1.5] [→ Section 15.1]
default stylesheet [→ Section 10.2]

Web browser prefix [→ Section 11.6]

Web crawler [→ Section 3.8] [→ Section 3.8]

Web font [→ Section 14.1]

Web form [→ Section 7.1]

Web page
create [→ Section 1.5]

Web platform [→ Section 1.2]

Web presence [→ Section 1.2]

Web server [→ Section 1.3]

Weblink [→ Section 5.2]

Weblog [→ Section 1.2]

WebVTT format [→ Section 6.7]

Weighting [→ Section 10.2]

while loop, JavaScript [→ Section 17.8]

Width [→ Section 11.1]

width [→ Section 13.1] [→ Section 14.4]
viewport [→ Section 13.1]

Word spacing [→ Section 14.1]

word-spacing [→ Section 14.1]

Working draft [→ Section 11.6]

WYSIWYG editor [→ Section 1.5]

X ⇑

x-height [→ Section 10.3]

XMLHttpRequest object [→ Section 20.1]

Y ⇑
YouTube [→ Section 6.7]

Z ⇑
z-index [→ Section 12.2]

Service Pages

The following sections contain notes on how you can contact us. In
addition, you are provided with further recommendations on the
customization of the screen layout for your e-book.

Praise and Criticism
We hope that you enjoyed reading this book. If it met your
expectations, please do recommend it. If you think there is room for
improvement, please get in touch with the editor of the book:
Meagan White. We welcome every suggestion for improvement but,
of course, also any praise! You can also share your reading
experience via Twitter, Facebook, or email.

Supplements
If there are supplements available (sample code, exercise materials,
lists, and so on), they will be provided in your online library and on
the web catalog page for this book. You can directly navigate to this
page using the following link: https://www.rheinwerk-
computing.com/5695. Should we learn about typos that alter the
meaning or content errors, we will provide a list with corrections
there, too.

mailto:meaganw@rheinwerk-publishing.com
https://www.rheinwerk-computing.com/5695

Technical Issues
If you experience technical issues with your e-book or e-book
account at Rheinwerk Computing, please feel free to contact our
reader service: support@rheinwerk-publishing.com.

Please note, however, that issues regarding the screen presentation
of the book content are usually not caused by errors in the e-book
document. Because nearly every reading device (computer, tablet,
smartphone, e-book reader) interprets the EPUB or Mobi file format
differently, it is unfortunately impossible to set up the e-book
document in such a way that meets the requirements of all use
cases.

In addition, not all reading devices provide the same text
presentation functions and not all functions work properly. Finally,
you as the user also define with your settings how the book content
is displayed on the screen.

The EPUB format, as currently provided and handled by the device
manufacturers, is actually primarily suitable for the display of mere
text documents, such as novels. Difficulties arise as soon as
technical text contains figures, tables, footnotes, marginal notes, or
programming code. For more information, please refer to the section
Notes on the Screen Presentation and the following section.

Should none of the recommended settings satisfy your layout
requirements, we recommend that you use the PDF version of the
book, which is available for download in your online library.

Recommendations for Screen Presentation
and Navigation

mailto:support@rheinwerk-publishing.com

We recommend using a sans-serif font, such as Arial or Seravek,
and a low font size of approx. 30–40% in portrait format and 20–30%
in landscape format. The background shouldn’t be too bright.

Make use of the hyphenation option. If it doesn't work properly,
align the text to the left margin. Otherwise, justify the text.

To perform searches in the e-book, the index of the book will reliably
guide you to the really relevant pages of the book. If the index
doesn't help, you can use the search function of your reading device.

Since it is available as a double-page spread in landscape format,
the table of contents we’ve included probably gives a better
overview of the content and the structure of the book than the
corresponding function of your reading device. To enable you to
easily open the table of contents anytime, it has been included as a
separate entry in the device-generated table of contents.

If you want to zoom in on a figure, tap the respective figure once.
By tapping once again, you return to the previous screen. If you tap
twice (on the iPad), the figure is displayed in the original size and
then has to be zoomed in to the desired size. If you tap once, the
figure is directly zoomed in and displayed with a higher resolution.

For books that contain programming code, please note that the
code lines may be wrapped incorrectly or displayed incompletely as
of a certain font size. In case of doubt, please reduce the font size.

About Us and Our Program
The website https://www.rheinwerk-computing.com provides detailed
and first-hand information on our current publishing program. Here,
you can also easily order all of our books and e-books. Information

https://www.rheinwerk-computing.com/

on Rheinwerk Publishing Inc. and additional contact options can also
be found at https://www.rheinwerk-computing.com.

https://www.rheinwerk-computing.com/

Legal Notes

This section contains the detailed and legally binding usage
conditions for this e-book.

Copyright Note
This publication is protected by copyright in its entirety. All usage and
exploitation rights are reserved by the author and Rheinwerk
Publishing; in particular the right of reproduction and the right of
distribution, be it in printed or electronic form.
© 2023 by Rheinwerk Publishing Inc., Boston (MA)

Your Rights as a User
You are entitled to use this e-book for personal purposes only. In
particular, you may print the e-book for personal use or copy it as
long as you store this copy on a device that is solely and personally
used by yourself. You are not entitled to any other usage or
exploitation.

In particular, it is not permitted to forward electronic or printed copies
to third parties. Furthermore, it is not permitted to distribute the e-
book on the internet, in intranets, or in any other way or make it
available to third parties. Any public exhibition, other publication, or
any reproduction of the e-book beyond personal use are expressly

prohibited. The aforementioned does not only apply to the e-book in
its entirety but also to parts thereof (e.g., charts, pictures, tables,
sections of text).

Copyright notes, brands, and other legal reservations as well as the
digital watermark may not be removed from the e-book.

Digital Watermark
This e-book copy contains a digital watermark, a signature that
indicates which person may use this copy.

If you, dear reader, are not this person, you are violating the
copyright. So please refrain from using this e-book and inform us
about this violation. A brief email to info@rheinwerk-publishing.com
is sufficient. Thank you!

Trademarks
The common names, trade names, descriptions of goods, and so on
used in this publication may be trademarks without special
identification and subject to legal regulations as such.

All products mentioned in this book are registered or unregistered
trademarks of their respective companies.

Limitation of Liability
Regardless of the care that has been taken in creating texts, figures,
and programs, neither the publisher nor the author, editor, or
translator assume any legal responsibility or any liability for possible
errors and their consequences.

mailto:info@rheinwerk-publishing.com

The Document Archive

The Document Archive contains all figures, tables, and footnotes, if
any, for your convenience.

Figure 1.1 Request from the Web Browser and Return of a
Static Web Page Stored on a Web Server

Figure 1.2 Simplified Representation of How a Web Page
Is Assembled and Returned after a Web Browser Request on
the Web Server

Figure 1.3 Usually, HTML Code for Semantic Structuring Is
in One File, and the CSS Code for Styling and Laying Out Is
in Another

Figure 1.4 Visual Studio Code from Microsoft Is the Editor I
Prefer to Use in My Daily Work

Figure 1.5 The Same Website Is Tested Here on
“https://ui.dev/amiresponsive” for Different Devices

Figure 1.6 Here I’ve Written the HTML Code in Microsoft’s
Visual Studio Code Editor on Windows

Figure 1.7 The Saved HTML Document index.html in
Google Chrome on Windows

Figure 1.8 HTML Code for Validation Has Been Inserted
Here

Figure 1.9 HTML Code Has Passed the Test and Is Valid

Figure 1.10 This Check Resulted in Errors, as You Can
See from the Error Message Output

Figure 2.1 A Structured HTML Document in the Web
Browser (Google Chrome)

Figure 2.2 Basic Page Structure of an HTML Document

Figure 2.3 The Rectangular Boxes That Make Up a Web
Page Have Been Made Visible

Figure 2.4 Hierarchical DOM View

Figure 2.5 A Complete HTML Element with Its Individual
Components (Start Tag, Element Content, and End Tag)

Figure 2.6 A DOM Inspector Lists the Hierarchical
Structure Very Clearly

Figure 2.7 Incorrect Nesting Is Immediately Detected by
Means of Validation

Figure 2.8 HTML Elements Can Contain Additional
Attributes

Figure 2.9 The Subdivision of an HTML Document

Figure 2.10 Below <html>, You’ll Find <head> and <body>

Figure 3.1 In the Head Element between the <head> and
</head> Tags, You Can Use the <title>, <base>, <link>,
<style>, <script>, and <meta> Elements

Figure 3.2 The Title Is Usually Displayed in the Header Bar
and/or Tab of the Web Browser

Figure 3.3 For Search Engines, the Importance of the
<title> Element Shouldn’t Be Ignored

Figure 3.4 Thanks to the Base URL Defined in <base> in
the “href” Attribute, the Image File That’s Not Fully
Referenced Is Supplemented by the Base URL of the
Browser and Displayed

Figure 3.5 Thanks to the Logical Link to the External CSS
File, the <p> Element Was Formatted Here in This Example

Figure 3.6 JavaScript (Here, a Simple Dialog Box) Is
Executed before the Web Page Gets Displayed

Figure 3.7 A Responsive Website: (Left) without a Meta
Viewport and (Right) with a Meta Viewport

Figure 3.8 Along with the <title> Element, the Description
Text Is Often One of the First Features to Appear in a Search
Engine

Figure 4.1 Between <section> and </section>, You Can
Divide the Content of a Document into Meaningful and
Logical Units

Figure 4.2 The Example Shows a Meaningful and Logical
<article> Composition of a Blog Entry

Figure 4.3 The <aside> Element Is Used as a Separate
Logical Section in the HTML Document

Figure 4.4 The <aside> Element (Colored Here) Was
Noted as Additional Information inside an <article> Element

Figure 4.5 The <nav> Element (Colored Here) Can Be
Used to Divide a Separate (Navigation) Section or to Group
Blocks of Links within Other HTML Elements

Figure 4.6 This Is What the Web Browser Will Make of It

Figure 4.7 All Headings with <h1> Are Adjusted and
Output Corresponds to the Section due to the Section
Elements of HTML That Are Based on the Outline Algorithm

Figure 4.8 JavaScript h5o from Google during Execution

Figure 4.9 The Header and Footer with the <header> and
<footer> Elements (Shown in Gray for Clarity)

Figure 4.10 Contact Information for the Author of the
Article Has Been Placed at the End of the Article between
<footer> and </footer> Using the <address> Element

Figure 4.11 Two Paragraphs with Body Text between <p>
and </p> Displayed in the Web Browser

Figure 4.12 You Can Force Line Breaks via the

Element

Figure 4.13 An Extremely Long Word Wrapped at a
Position Suggested by <wbr>

Figure 4.14 A Long Word Can Also Be Wrapped at the
Position Suggested by “­” but It Also Adds a Separator,
Unlike <wbr>

Figure 4.15 With <hr>, a Visual Topic-Based Separation
Has Been Added as a Separator Line behind the Paragraph
Text

Figure 4.16 Text Quoted between <blockquote> and
</blockquote> from the www.blindtextgenerator.com Website

Figure 4.17 The Header and Footer of the HTML
Document Appear in Gray

Figure 4.18 In the <article> Element between <figure> and
</figure>, an Image Has Been Inserted with the
Element and a Caption with the <figcaption> Element

Figure 4.19 Bulleted Lists with the Element Are
Usually Displayed with a Bullet Point

Figure 4.20 The Numbered List with the Element
Uses Arabic Numerals by Default

Figure 4.21 The Numbering Order Was Reversed via the
“reversed” Attribute

Figure 4.22 The Starting Numbering Was Set to 20 Right
in the Opening Tag with the Attribute “start” and Then
Again in an Opening Tag with the Attribute “value” to 101

Figure 4.23 The Nesting of Unnumbered Lists and
Numbered Lists during Execution

Figure 4.24 Further Nesting Depths and Mixing of
Ordered and Unordered Lists

Figure 4.25 Descriptions (<dd> Elements) Slightly
Indented Compared to the Expression (<dt> Elements)

Figure 4.26 The Description List for an Image (a Book)
Has Been Wrapped inside the <details> Element, Allowing
the Description to be Expanded and Collapsed

Figure 4.27 /examples/chapter004/4_3_1/index.html When
Displayed in the Web Browser

Figure 4.28 The Meaning for the Layout Areas Is Assigned
via <div> and the “id” Attribute

Figure 4.29 Layout Areas Marked with HTML Semantic
Elements

Figure 4.30 The Global “title” Attribute Displays the
Meaning of the Abbreviation “WWW” When You Hover the
Mouse Cursor over the Word

Figure 4.31 In This Example, We Wrote the Working Title
of a Book between <cite> and </cite>

Figure 4.32 The <code> Element Is Suitable for Marking
Up Language Elements or Parts of a Source Code of a
Particular Language

Figure 4.33 The Text Preformatted between <pre> and
</pre> Gets Output Exactly as It Was Entered

Figure 4.34 The Web Browsers Themselves Decide How
to Display the Text Between <kbd> and <kbd> for Input or
<samp> and </samp>

Figure 4.35 In this Paragraph Text, the Term
“Smartphone” Was Described, Which Is Why It Was Placed
between <dfn> and </dfn>

Figure 4.36 Example Executed with <bdo>

Figure 4.37 Thanks to the Containment of the Arabic and
Hebrew Script between <bdi> and </bdi>, the Colon and the
Decimal Number Now Display after the Script

Figure 4.38 Different Ways to Emphasize or Highlight a
Text Using and

Figure 4.39 Web Browsers That Recognize the New
Element Usually Mark the Text Placed between <mark> and
</mark> with Yellow Background Color

Figure 4.40 Placing Text between Quotes Using the <q>
Element

Figure 4.41 The Quotes of the <q> Element Have Been
Changed with CSS

Figure 4.42 Underlining or Crossing Out Text Using <u>
and <s>

Figure 4.43 The Element Used to Delete a
Paragraph Text and Insert a New Paragraph with a New
Message between <ins> and </ins>

Figure 4.44 The <sub> and <sup> Elements Were Used
Several Times for Superscript and Subscript Numbers and
Footnotes, Respectively

Figure 4.45 To Clarify What Is between <time> and
</time>, a Dotted Underline Has Been Added

Figure 4.46 A Copyright Was Placed in the Head of an
Article as well as Small Printed Information between <small>
and </small>

Figure 4.47 The Text between a Ruby Annotation Is
Displayed as Text with Annotation in One Line

Figure 4.48 The Optional <rp> Element Is Used to Put
Parentheses around the Ruby Text (with the <rt> Element)
for Web Browsers That Don’t Understand <ruby>

Figure 4.49 The Element Has No Default
Formatting; Besides Designing with CSS, It Can Also Be
Used to Identify Unique Elements.

Figure 5.1 A Basic Table Structure in HTML

Figure 5.2 The Structured Representation of a Basic Table
in HTML

Figure 5.3 Merging Columns Using the “colspan” Attribute

Figure 5.4 Merging Rows Using the “rowspan” Attribute

Figure 5.5 A Longer Table with <thead>, <tbody>, and
<tfoot> Elements in Use

Figure 5.6 Only with CSS Can You Visualize These
Sections Separately

Figure 5.7 First Two Columns Have Been Grouped
Together with Last Column as a Separate Column Group

Figure 5.8 Semantic Division of Columns into Groups:
Here, You Can See a Group with Two Columns and a Group
with One Column

Figure 5.9 Semantic Division into Three Columns

Figure 5.10 The Caption Is Displayed Centered above the
Table by Default

Figure 5.11 Expanding and Collapsing Information Thanks
to the HTML Elements <details> and <summary> (Example
in /examples/chapter005/5_1_6/index2.html)

Figure 5.12 Labeling Tables Using <figure> and
<figcaption>

Figure 5.13 Classic Structure of a Hyperlink

Figure 5.14 Directory Structure for an Example of Links to
Other Pages on the Same Website

Figure 5.15 Thanks to Linking via a Relative URL, Any
Page Can Be Visited and Viewed within the Pages of the
Same Website

Figure 5.16 HTML Document links.html

Figure 5.17 Many Web Browsers Display the Link’s
Destination Address at the Bottom of the Status Bar When
You Hover over It

Figure 5.18 When You Activate the Link, the Destination
Address Gets Loaded into the Web Browser and Displayed

Figure 5.19 When You Hover Your Mouse over the Link,
You’ll Usually See the Email Address Associated with That
Link in the Status Bar

Figure 5.20 When You Activate the Link, the Email
Application often Opens, an Email Gets Created
Automatically, and the Email Address Is Entered as the
Recipient

Figure 5.21 Three Links to Different Types of Content

Figure 5.22 Jump Markers Are Provided for Users to
Reach Desired Sections Quickly

Figure 5.23 Clicking the “Techniques around HTML” Link
Jumps the User Directly to the Corresponding Section

Figure 6.1 Three Images Were Added to an HTML
Document Using the Element

Figure 6.2 This Additional Piece of Information Was
Added in the Tag with “title="A classical singer in
Pushkar (India)"”

Figure 6.3 The “title” Attribute Allows You to Indicate That
the Image Is Available in a Larger Version, Which You Can
Open via the Link

Figure 6.4 When the Visitor Clicks on the Image with the
Link, the Larger Image Will Get Displayed in a New Tab

Figure 6.5 The Image Is Too Large in Its Original Size of
800 × 526 Pixels to Be Displayed Appropriately in the Window

Figure 6.6 The Image Was Scaled Down by the Web
Browser Using the “width” and “height” Attributes

Figure 6.7 The Caption Has Been Formatted with CSS for
Clarity, So That the <figure> Element Can Be Seen More
Clearly

Figure 6.8 Each of the Four Colored Areas Was Linked to
a Special Page with Its Own <area> Element; Select the
Cyan-Colored Area and the HTML Document cyan.html Will
Be Called

Figure 6.9 When You Click on the Color, You’ll Get
Corresponding Feedback on the Selected Color

Figure 6.10 The Described Link-Sensitive Area

Figure 6.11 Link-Sensitive Areas Can Be More Complex,
as in the Case of a Geographical Map

Figure 6.12 Here, the Screen Width Was at Least 640
Pixels, Which Is Why the Matching Image HK-640.jpg Was
Loaded

Figure 6.13 On High-Resolution Displays, the Image Is
Loaded with a Higher Pixel Density (Here, “2x”)

Figure 6.14 Here, You Can See the Favicon in the Top Left
of the Table Bar

Figure 6.15 The Apple Touch Icon in the Right Side of an
iPad

Figure 6.16 SVG Added as a Graphic Reference via

Figure 6.17 Here, an SVG Graphic Was Created That’s
Directly Embedded in the HTML Document

Figure 6.18 The Formula Was Formatted with MathML

Figure 6.19 Playing a Video Is Hardly a Problem Anymore
Thanks to the <video> Element

Figure 6.20 A Video with Subtitles: You Can Choose from
the Offered Languages “German” and “English”

Figure 6.21 Playing a YouTube Video: Examples with
<iframe>, with <object>, and with <embed>

Figure 6.22 Playing an Audio File with the <audio>
Element

Figure 6.23 An HTML Document Has Been Embedded
within the Current HTML Document Using <iframe>

Figure 7.1 A Single-Line Text Input Field

Figure 7.2 A Single-Line Text Input Field for Passwords

Figure 7.3 A Multiline Text Input Field

Figure 7.4 Dropdown and Selection Lists in HTML

Figure 7.5 Radio Buttons in HTML

Figure 7.6 The Checkboxes in Use

Figure 7.7 The File Upload Dialog Box during Execution

Figure 7.8 Buttons in HTML

Figure 7.9 Two Submit Buttons, Each Calling Different
URLs

Figure 7.10 The Input Field for Colors in Windows with the
Firefox Browser

Figure 7.11 The Input Field for a Date in the Chrome
Browser

Figure 7.12 Input Field for the Time

Figure 7.13 Input Fields for the Month and the Week in
Use

Figure 7.14 Search Input Field

Figure 7.15 An Input Field for Numbers

Figure 7.16 A Slider for Entering Numbers

Figure 7.17 The <output> Element Outputs the Current
Value of the Slider

Figure 7.18 A List of Suggestions for the <input> Field

Figure 7.19 The Placeholder in Use

Figure 7.20 The Input Was Invalid

Figure 7.21 Invalid and Valid Email Addresses

Figure 7.22 The Input Field Was Provided with the
“required” Attribute

Figure 7.23 An Asterisk Indicates Which Fields Require
Input

Figure 7.24 The Checkbox for “Breakfast” Has Been
Deactivated

Figure 7.25 A Form with Grouped Form Elements

Figure 7.26 Progress Display via <progress>

Figure 7.27 Display of Measured Values with <meter>

Figure 7.28 A Simple HTML Form Mail

Figure 7.29 The Form Has Been Successfully Submitted

Figure 7.30 An Error Occurred after Submitting the Form

Figure 7.31 Expandable and Collapsible Content with
<details> and <summary>

Figure 7.32 A Simple Dialog Box with the HTML Element
<dialog>

Figure 8.1 The Basic Composition of the Components of a
Simple Website

Figure 8.2 A CSS Rule Is Defined with a Selector and the
Declarations It Contains

Figure 8.3 Several CSS Rules Have Been Applied to the
Individual HTML Elements

Figure 8.4 Structure of a Simple CSS Rule (CSS
Statement)

Figure 8.5 By Consolidating CSS Rules in One Place,
Design Changes Are Much Easier and Faster to Implement

Figure 8.6 Result of Combining Style Statements within
an HTML Tag in the <style> Section of the Document Head
and in a Separate CSS File

Figure 8.7 Selecting an Alternate Stylesheet in Firefox

Figure 8.8 The Developer Tools of Web Browsers Are Also
Very Useful with Regard to Analyzing and Learning CSS

Figure 9.1 The Structure of a Simple CSS Rule with a
Selector and a Declaration

Figure 9.2 The Individual HTML Elements Were Selected
with the Appropriate Type Selector and Formatted with CSS

Figure 9.3 This Is What the Example
/examples/chapter009/9_1_2/index.html Looks Like with the
Class Selectors Written in CSS File style.css

Figure 9.4 The Universal Selector Applied to All Elements
Used in the HTML Document

Figure 9.5 A Solid Frame with a Thickness of 2 Pixels Was
Drawn around HTML Element <main>

Figure 9.6 A Combination of a Type Selector and the
Universal Selector

Figure 9.7 HTML Element <a> with Two HTML Attributes

Figure 9.8 The Attribute Selector Draws a Frame around
the <a> and <p> Elements Because Both Contain the “title”
Attribute

Figure 9.9 A Combination of a Type Selector and an
Attribute Selector

Figure 9.10 The Attribute Selectors in Use

Figure 9.11 The Extended Attribute Selectors in Use

Figure 9.12 The Pseudo-Classes for an Interactive User
Input in Use: Pseudo-Class “:hover”

Figure 9.13 The Pseudo-Class “:target” for “Target No. 2”,
Resulting in the Heading Now Being Displayed with a Gray
Background

Figure 9.14 Effects of the Pseudo-Classes “:root” and
“:empty” on the HTML Document

Figure 9.15 The Pseudo-Class Selectors “:first-child” and
“:last-child” in Use

Figure 9.16 The Pseudo-Classes “:nth-child()” and “:nth-
last-child()” in Use (HTML Document Available in
/examples/chapter009/9_1_8/index3.html)

Figure 9.17 The Pseudo-Class Selectors “:first-of-type”
and “:last-of-type” in Use

Figure 9.18 The Pseudo-Elements in Use

Figure 9.19 Document Structure Tree of the Example

Figure 9.20 You Can Use the Descendant Combinator to
Select All Child and Children’s Children Elements That Were
Specified as the Target (i.e., <p> Element)

Figure 9.21 The Example of the Descendant Combinator
in use

Figure 9.22 You Can Use the Child Combinator (with
“article > p {...}”) to Select Only the Direct Child Elements

Figure 9.23 The Example of the Child Combinator in Use:
Only the Direct Child Elements Are Selected

Figure 9.24 With the Adjacent Sibling Combinator, Only
Elements That Are Immediate Neighbors on the Same Level
(i.e., Have the Same Parent Element) Are Selected

Figure 9.25 The Example of the Adjacent Sibling
Combinator in Use

Figure 9.26 General Sibling Combinator Selects All
Adjacent <p> Elements

Figure 9.27 The General Sibling Combinator in Use

Figure 10.1 Thanks to Inheritance, CSS Features Are
Passed on to the Descendants

Figure 10.2 Due to Inheritance, the Text in This Example Is
Displayed in White Arial Font with Gray <body> Background

Figure 10.3 Inheritance Applies from the Parent Element to
Its Descendants

Figure 10.4 With the “article” Selector, This Element Takes
over the Parent Role for the Included Descendants, Styling
the Text Color Black

Figure 10.5 Not the Result We Wanted

Figure 10.6 Inheritance Forced via “inherit”

Figure 10.7 Using a Class, I Set All the CSS Features for
the Second <p> Element outside the <article> Element to the
Default Value with “all: initial;” and Restyled It

Figure 10.8 Theoretical Example of Sorting by Importance

Figure 10.9 Calculating the Specificity: If There’s a
Conflict, the Web Browser Will Use the Selector with the
Higher Weighting

Figure 10.10 Indispensable for Analyzing the CSS Is the
Developer Tool of the Web Browser

Figure 10.11 Using “rgba()”

Figure 10.12 Firefox Color Picker

Figure 10.13 Developer Tools: Color Picker Where You
Can Change the Colors of Individual HTML Elements

Figure 11.1 Websites Consist of Rectangular Boxes (or
Just Boxes), Which Were Made Visible with CSS Here

Figure 11.2 Classic CSS Box Model

Figure 11.3 Two <article> Elements Were Each Defined
via a Class Selector with a Fixed Width (“width”): Top Article
Is 300 Pixels Wide, and Bottom Article Is 600 Pixels Wide

Figure 11.4 Text No Longer Fits into the Dimensions
Specified for “width” (230 Pixels) and “height” (200 Pixels),
Resulting in the Text “Flowing Out” of This Box

Figure 11.5 A Frame with “border”: One Frame with
“padding” and One Without

Figure 11.6 A <header> Element, Two <article> Elements,
and One <footer> Element Are Framed, While No Outer
Space with “margin” Has Been Used Yet

Figure 11.7 The <article> Element Has Been Set with an
Outer Margin of 10 Pixels to the Top and Bottom (“margin:
10px 0px”)

Figure 11.8 Vertical Margins That Touch Each Other
Collapse into the Larger Value of the Two Margins

Figure 11.9 Two Collapsing Margins: Instead of the
Mathematically Logical 30 Pixels, the Distance Here Is 20
Pixels

Figure 11.10 Despite Identical Width Specifications with
“width”, the Boxes Are Displayed with Different Widths; To
Adjust This Value, You Need to Calculate the Total Width

Figure 11.11 The New Box Model “border-box” Makes Your
CSS Life a Lot Easier

Figure 11.12 Top Left Shows the Classic Box Model;
Bottom Left and Top Right Show the New Box Model with
“box-sizing” Compared to the Width and Height Specifications

Figure 11.13 The Inconsistent Representation with the
Classic Box Model

Figure 11.14 An Interactive Box Model

Figure 11.15 The Display with the New Box Model No
Longer Causes Any Problems

Figure 11.16 Visualizing and Analyzing the Box Model in
the Web Browser

Figure 11.17 Some Different Border Styles in Use
(Example in /examples/chapter011/11_5_1/index.html)

Figure 11.18 The 150 × 150 Pixels Source Image
myborder.svg for the Decorative Border with “border-image”

Figure 11.19 A Decorative Border with “border-image”
(HTML Document Is in
/examples/chapter011/11_5_1/index2.html)

Figure 11.20 The Use of a Background Color within Boxes
Can Be Noted Relatively Simply with “background” or
“background-color”

Figure 11.21 It’s Possible, But Rather Untypical, to Use an
Image as the Background Graphic of an Element, as Shown
Here

Figure 11.22 A Background Graphic That Overlays the
Background Color Has Been Added to the <article> Element
(Background Pattern: https://dinpattern.com)

Figure 11.23 Tiling a Background Graphic Doesn’t Always
Produce the Desired Result

Figure 11.24 Tiling in the Vertical Direction with
“background-repeat: repeat-y”, and the Matching Background
Color Also Works with the Gradient

Figure 11.25 The Pattern Was Positioned via “background-
position” at the Top Right (“right top”) and Tiled with
“background-repeat” along the Y-Axis (“repeat-y”)

Figure 11.26 The Example after Stacking Multiple
Background Images and Positioning Them Accordingly
without Tiles

Figure 11.27 A 189 × 229 pixel Background Image Has
Been Stretched Entirely across the <article> Element via
“background-size”

Figure 11.28 The 3D Box Model by John Hicks

Figure 11.29 The /examples/chapter011/11_5_4/index.html
Example with Transparent Boxes: One with “opacity” and One
with “rgba()”

Figure 11.30 Linear Gradients with “linear-gradient()”
(Example in /examples/chapter011/11_5_5/index.html, and
CSS File in /examples/chapter011/11_5_5/css/style.css)

Figure 11.31 The Example with Radial Color Gradients in
Use

Figure 11.32 Adding Shadows for HTML Elements
Becomes a Breeze Thanks to “box-shadow” (Example in
/examples/chapter011/11_5_6/index.html)

Figure 11.33 Round Corners Are Relatively Easy to Create
(Example in /examples/chapter011/11_5_7/index.html; CSS Is
in /examples/chapter011/11_5_7/css/style.css)

Figure 11.34 “border-radius” Applied to Images

Figure 11.35 With “border-radius”, You Can Also Provide
Elements with Elliptical Curves

Figure 12.1 Static Positioning with “position: static” as the
Default Setting. Each New Element Follows the Other as It
Was Written in the HTML Document.

Figure 12.2 Default Static Arrangement according to the
Document Flow with the Default Setting “position: static;”

Figure 12.3 Relative Positioning Moves the Element
Relative from the Static Position: Subsequent Elements
Behave as If the Element Hadn’t Been Positioned

Figure 12.4 Relative Positioning with CSS Offsets the
Element with “top”, “bottom”, “right”, and “left” Relative to
Itself, and the Gap in the Document Flow Remains

Figure 12.5 Absolute Positioning Moves the Element
Relative to the Enclosing Parent Element

Figure 12.6 The Absolutely Positioned Area Floats
Completely Detached above the Web Page

Figure 12.7 Using the Combination of an Absolute and a
Relative Position, the Image Caption was Added Here Easily
and Quickly

Figure 12.8 For Fixed Positioning, the Element Gets Pulled
Out of the Document Flow and Positioned Absolutely. The
Only Difference Is That This Element Remains Fixed.

Figure 12.9 At First, Everything Looks the Same with
“position: fixed;”

Figure 12.10 When You Start Scrolling the Web Page, the
Difference Becomes Obvious Because the Element Won’t
Move

Figure 12.11 With the Fixed Positioning of the “Up” Link at
the Bottom Right, You Can Jump Up to the Top of the Page at
Any Time

Figure 12.12 The Web Page after Loading: The Headline
Is Placed as Usual

Figure 12.13 When Scrolling Down, the Headline Will Stick
to the Top of the Screen Due to “position: sticky;”

Figure 12.14 The Heading Will Stick until It Encounters
Another Heading for Which “position” Also Equals “sticky”

Figure 12.15 With Relative or Absolute (or Even Fixed)
Positioning, You Must Expect Elements to Overlap

Figure 12.16 Elements Whose CSS Feature “position”
Differs from the Default Value “static” Contain a Z-Axis in
Addition to the X- and Y-Axis

Figure 12.17 The CSS Feature “z-index” Can Be Used to
Adjust the Order in the Stack of Relative, Absolute, and Fixed
Positioned Elements

Figure 12.18 The Typical Document Flow with Standard
Positioning

Figure 12.19 The Image Was Floated with “float: left” on
the Left, While the Following Paragraphs with the Text Flow
around the Image

Figure 12.20 Here, the <figure> Element Has Been Set to
the Value “right” Using “float”, and Consequently the Image It
Contains Is Right-Aligned

Figure 12.21 Layout No Longer Looks Nice on a 320-
Pixel-Wide Smartphone: In Some Places, There’s Only One
Word Left in the Line

Figure 12.22 The Proof: Only the Text from the “p”
Paragraph Element Flows around the “figure” Element with
the Image; “padding”, “border”, “margin”, and “background”
Remain

Figure 12.23 The Next Paragraph with the “h2” Heading
Also Flows around the Image

Figure 12.24 From the h2 Heading Onward, the Flow
around the Image Will End

Figure 12.25 The Image Extends from the “article” Element
beyond the “footer” Element

Figure 12.26 Stopping the Float Solves Only Part of the
Problem: With the CSS Features “padding”, “border”,
“margin”, and “background”, the Image Remains Protruding

Figure 12.27 Now the Floated “figure” Element inside the
“article” Element Has Been Combined into a New Block with
the “p” Element

Figure 12.28 Flexbox in Horizontal Direction

Figure 12.29 Flexbox in Vertical Orientation
(/example/chapter012/12_4_1/index2.html)

Figure 12.30 At Some Point, the Flexibility of a Flexbox
Also Comes to an End

Figure 12.31 Thanks to “flex-wrap: wrap;” the Elements in
a Flexbox Wrap into a New Row
(/examples/chapter012/12_4_1/index3.html)

Figure 12.32 You Can Use “justify-content: center;” to
Center the Elements

Figure 12.33 “justify-content: flex-start;” Allows You to
Arrange the Elements Left-Justified

Figure 12.34 “justify-content: flex-end;” Enables You to
Arrange the Elements Right-Justified

Figure 12.35 “justify-content: space-between;” Makes Sure
That the Elements Are Arranged with Equal Spaces In
Between: The First and Last Elements Are Located at the
Beginning and End of the Line, Respectively

Figure 12.36 “justify-content: space-around;” Ensures That
All Elements Are Distributed Evenly

Figure 12.37 With “align-content: space-between;”, the
Elements Are Evenly Distributed: The First and Last Elements
Are at the Top and Bottom, Respectively

Figure 12.38 Here I’ve Arranged the Middle Article with
“align-self: flex-end;” at the Bottom of the Flexbox

Figure 12.39 Different Values for Flexboxes

Figure 12.40 Unlike Figure 12.39, a Small Device Was
Used

Figure 12.41 If You Allow the Line Break and Use “flex-
grow: 1”, the Flex Item Wrapped to the Next Line Will Take
the Complete Width of the Line

Figure 12.42 You Can Change the Order of the Elements
in the Container Element via the CSS Feature “order”

Figure 13.1 The Web Page Was Styled with the CSS
Version for the Screen (“media="screen"”)

Figure 13.2 The print.css Version for the Printer
(“media="print"”) in Use

Figure 13.3 Individual Components of a Media Query

Figure 13.4 The New York Times Website on an Ordinary
Desktop Screen

Figure 13.5 The New York Times Website without a
Customized Viewport on a Smartphone

Figure 13.6 The New York Times Website with Adapted
Viewport for Mobile Devices

Figure 13.7 The Website after Loading in the Firefox Web
Browser

Figure 13.8 Here, the “Zoom Text Only” Function Was
Used, but Pixels Were Used for the Layout Wrap in the Media
Queries: The Layout Is Gone

Figure 13.9 This Is What It Should Look Like When the
“Zoom Text Only” Function Is Executed and the “em” Unit Is
Used in the Layout Break of the Media Queries: The Mobile
Layout Is Now Executed Here

Figure 13.10 HTML Framework for Our Responsive Layout

Figure 13.11 Design for the Mobile Version

Figure 13.12 The Basic Version without Media Queries on
a Desktop Screen

Figure 13.13 The Basic Version on a Smartphone, Which
Is What It Was Created For

Figure 13.14 This Layout Is Intended for Tablets

Figure 13.15 Now the Basic Version Is Switched to the
Next Layout Version from a Screen Width of 640 Pixels

Figure 13.16 To Be Used for the Layout of Desktop
Screens

Figure 13.17 The Layout for the Desktop Version from a
Viewport of 1,024 Pixels Wide

Figure 13.18 This Layout Is for extra-Large Screens of
1,280 Pixels or Wider

Figure 13.19 Multiple Layout Breaks for Different Screen
Resolutions Thanks to Media Queries

Figure 13.20 For Clarity, I’ve Highlighted the Articles with a
Frame

Figure 13.21 If the Font Size Is Wrong, the Best
Responsive Layout Is Useless

Figure 13.22 Flowing around the Text When the Image
Size Is Rigid Can Cause the Text to Slip Away at the Bottom,
and/or Individual Words Can Be Left at the Top If There Isn’t
Enough Space

Figure 13.23 The Image Size Now Also Adapts to the
Screen Width and Is Displayed Relative to the <article> or
<aside> Element in the Corresponding Size (here, 40%)

Figure 13.24 The 40% Image Width with an Extra-Wide
Desktop

Figure 13.25 Responsive Images Also Pay Off on a
Smartphone

Figure 13.26 If the Browser Width Is Too Small, the Image
Gets Cut Off and a Horizontal Scroll Bar Appears

Figure 13.27 Things Don’t Look Much Better in the Mobile
Version

Figure 13.28 The Width for the Image in the <header>
Adjusts for Tablets (Left) and the Width for the Image in the
<header> Also Adjusts for Smartphones (Right)

Figure 13.29 The Logo for the Desktop Version from 1,023
Pixels Onwards Was Loaded

Figure 13.30 From a Display Width of 1,022 to 639 Pixels,
a Smaller Image (Tablet) Is Used for the Logo, and Below 639
Pixels, the Smallest Version (Smartphone) Is Used

Figure 13.31 The Distortion on a Desktop Screen with
“background-size: 100% 100%;” Is Still Acceptable Here

Figure 13.32 The Same Is Not True with a Smaller Screen
Width: The Background Image of the First Article Is Already
Distorted Significantly and Doesn’t Look Nice Anymore

Figure 13.33 A White Border Remains at the Bottom of the
First <article> Element

Figure 13.34 You Can Always Use “background-size:
cover” to Try and Show the Entire Background Image If
Possible

Figure 13.35 A Grid Layout with “display:grid;” Can Be
Created Quickly

Figure 13.36 The Grid Layout for the Example

Figure 13.37 The <header> Element Was Added to the
Grid Layout

Figure 13.38 The Basic Mobile Version for Our Layout with
CSS Grid

Figure 13.39 The Layout for the Tablet Version with CSS
Grid

Figure 13.40 The Tablet Version Was Created Using a
CSS Grid

Figure 13.41 The Desktop Version with the CSS Grid

Figure 13.42 The Desktop Version with the CSS Grid in
Use

Figure 13.43 A Layout Change with a CSS Grid Can Be
Done in a Few Seconds

Figure 13.44 Adding Spacing between the Columns of a
CSS Grid

Figure 13.45 The Grid Is Also Displayed in the Developer
Tools of the Web Browser

Figure 13.46 The Behavior You Know from the <p>
Element

Figure 13.47 The Behavior of the <p> Elements Was Set
to “display: inline;”

Figure 13.48 “inline” Boxes Can Also Extend across
Multiple Lines

Figure 13.49 Here, I’ve Set the Behavior of the <p>
Elements to “display:inline-block;”

Figure 13.50 An “inline-block” Box Can’t Be Split across
Multiple Lines

Figure 13.51 A Four-Column Layout with “width:
calc(100% / 4);” for a Viewport of More Than 640 Pixels

Figure 13.52 A Two-Column Layout with “width: calc(100%
/ 2);” for a Viewport of Less Than 640 Pixels (Left) and a
Single-Column Layout with “width: 100%;” for the Viewport of
Less Than 480 Pixels (Right)

Figure 14.1 The Five Different Generic Fonts: “serif”,
“sans-serif”, “monospace”, “cursive”, and “fantasy”

Figure 14.2 An HTML Document with the Default Font of
the Web Browser

Figure 14.3 The Same Document Again, but Now with the
CSS Feature “font-family”: Sans-Serif Font (Here, Arial) Was
Used

Figure 14.4 Multiple Different Fonts in Use

Figure 14.5 You Can Analyze and Change the Font Used
on a Web Page in Firefox, Which Makes the Effects Visible in
the Browser Window

Figure 14.6 Fonts on https://fonts.google.com

Figure 14.7 I’ve Chosen the Roboto Font with a Regular,
Italic, and Bold Font Style

Figure 14.8 A <link> Element or an “@import” Statement
Enables You to Add the Code to the Website via Copy and
Paste

Figure 14.9 Here, the Roboto Font from Google Fonts Was
Downloaded and Embedded

Figure 14.10 Font Awesome Has Become a Favorite of
Web Designers

Figure 14.11 Various Icons without Graphics in Use
Thanks to Font Awesome Icon Fonts

Figure 14.12 The Default Font Size Gets Preserved If You
Set “font-size” to 100% or “1em” for the <body> Element

Figure 14.13 Here, the Font Size Has Been Increased by
15% via the <body> Element

Figure 14.14 Changing the Font Style with “font-style” and
“font-weight” (Example in
/examples/chapter014/14_1_5/index.html)

Figure 14.15 The Difference between (Fake) Small Caps
and Capital Letters (Example in
/examples/chapter014/14_1_6/index.html)

Figure 14.16 Line Spacing Is the Distance from Baseline to
Baseline

Figure 14.17 Don’t Confuse the Optical Bleed-Through
with Line Spacing

Figure 14.18 Different Line Spacing Has a Drastic Effect
on the Readability of the Text (Example in
/examples/chapter014/14_1_7/index.html)

Figure 14.19 CSS Features “word-spacing” and “letter-
spacing” in Use

Figure 14.20 Effects of “text-align” on Paragraph Text

Figure 14.21 Vertical Alignment of Text in Table Cells and
of Inline Elements in Text on the Baseline

Figure 14.22 If You Align an Image with “vertical-align:
top;” to the Top Edge of the Text, This Has Different Effects
Than in the Lower Example with “float: left;”

Figure 14.23 You Can Implement Text Indentation via the
CSS Feature “text-indent”

Figure 14.24 Underlining (or Undoing the Underlining) or
Striking Text Through Using the CSS Feature “text-
decoration”

Figure 14.25 Uppercase and Lowercase Text via “text-
transform”

Figure 14.26 Different Variants of Shadows

Figure 14.27 The Multicolumn Set Has Been Applied to an
<article> Element as a Container

Figure 14.28 Three Columns with 250 pixels

Figure 14.29 If Two Columns No Longer Fit into the Width
Specified with the CSS Property “column-width”, Only One
Column Will Be Displayed

Figure 14.30 Designing Bullets with “list-style-type”

Figure 14.31 You Can Use a Graphic as a Bullet Point with
the CSS Feature “list-style-image”

Figure 14.32 You Can Use “list-style-position” to Define
Whether the Bullet Points Should Be outside (Default Setting)
or inside the Box with the Entries

Figure 14.33 The Pure HTML Representation of the
Navigation as a List

Figure 14.34 The List after a First Basic Styling

Figure 14.35 The Mobile Smartphone Version of the
Vertical Navigation Menu with Lists

Figure 14.36 The Tablet Version of the Vertical Navigation
with List Items

Figure 14.37 A Simple Expandable Menu with jQuery

Figure 14.38 The Desktop Version of the Vertical
Navigation with List Elements

Figure 14.39 A Boring Table in Pure HTML

Figure 14.40 When You Use “table-layout: fixed;”, Then No
More Consideration Is Given to the Content

Figure 14.41 The Basic Formatting of an HTML Table with
CSS Is Done with a Few Lines

Figure 14.42 Frames of Adjacent Elements Are Displayed
Separately with “border-collapse: separate;” (= default setting)

Figure 14.43 Due to “border-collapse: collapse;”, the
Borders of the Adjacent Elements Collapse (Example in
/examples/chapter014/14_3_3/index.html)

Figure 14.44 You Can Adjust the Spacing between the
Table Cells via “border-spacing” (Example in
/examples/chapter014/14_3_4/index.html)

Figure 14.45 Showing Borders for Empty Cells Is the
Default Setting, Which Can Also Be Written as “empty-cells:
show;”

Figure 14.46 If You Want to Hide the Border for Empty
Cells, You Can Do This by Using “empty-cells: hide;”
(Example in /examples/chapter014/14_3_5/index.html)

Figure 14.47 The Table Caption with <caption> Has Been
Moved to the Bottom with “caption-side: bottom;” (Example in
/examples/chapter014/14_3_6/index.html)

Figure 14.48 One and the Same Image Was Put into a
Class with the CSS Features “width” and “height” and Used in
Different Sizes

Figure 14.49 Graphics Resized and Aligned with CSS

Figure 14.50 These Images Are Supposed to Be
Transformed When Users Hover over Them (“:hover”)

Figure 14.51 The Images Are Enlarged by a Factor of 1.25
When You Move the Cursor over Them (“:hover”)

Figure 14.52 A Rotation on Mouseover Using “transform:
rotate()”

Figure 14.53 Skewing HTML Elements via “transform:
skew()”

Figure 14.54 Moving HTML Elements via “transform:
translate()”

Figure 14.55 The Element Was Enlarged and Rotated

Figure 14.56 Other HTML Elements Can Also Be
Transformed. Here, <article> Elements Were Rotated or
Skewed (Example in
/examples/chapter014/14_5_6/index.html)

Figure 14.57 The Form without the <div> Elements

Figure 14.58 Here’s the Form with the <div> Elements

Figure 14.59 After the First Alignment of the HTML
Element <label> with CSS

Figure 14.60 It’s Starting to Look Neatly Arranged

Figure 14.61 Neatly Arranged Thanks to CSS

Figure 14.62 Interaction Help When the Mouse Pointer Is
over an Input Field

Figure 14.63 Hover Effect for Buttons with CSS

Figure 14.64 A Simple HTML Form Styled with CSS

Figure 15.1 What’s Indispensable for Me Is a Validation of
HTML and CSS during the Writing Process of HTML and
CSS, Like Here with Visual Studio Code from Microsoft

Figure 15.2 Web Browser Market in Germany

Figure 15.3 A Look at Your Own Statistics Then Reveals
More Precisely What Your Visitors Really Use to Visit the
Website

Figure 15.4 On https://css3test.com, You Get a Nice List of
What the Web Browser Can and Can’t (Yet) Do in Detail

Figure 15.5 What the Web Browser Do in Terms of HTML

Figure 15.6 The Web Database www.caniuse.com Is Very
Useful When It Comes to Determining Which Web
Techniques Can Be Used with Which Web Browser

Figure 15.7 Testing Screen Sizes Using Google Chrome

Figure 15.8 The Blisk Web Browser Allows You to Test a
Website on Different Devices and Screen Sizes

Figure 15.9 A Central Stylesheet Helps to Keep an
Overview during Development and to Track Down Errors
More Quickly

Figure 15.10 For Example, This Is What the Built-In
Stylesheet Looks Like in the Chrome Web Browser

Figure 15.11 This Is What the Built-In Stylesheet Looks
Like When You Use a CSS Reset to Override the Built-In
Stylesheet

Figure 16.1 The Sassmeister Website Provides an Online
CSS Preprocessor

Figure 16.2 Finding and Installing Live Sass Compiler in
Visual Studio

Figure 16.3 “Watch Sass” Allows You to Turn the SCSS
File into a CSS File

Figure 16.4 The HTML File
/examples/chapter016/16_4/index.html during Execution

Figure 16.5 The HTML File
/examples/chapter016/16_5/index.html during Execution

Figure 16.6 Example in Execution: The Mobile Version and
the Desktop Version in the Blisk Web Browser

Figure 16.7 The HTML File
/examples/chapter016/16_10/index.html during Execution

Figure 16.8 The HTML File
/examples/chapter016/16_11/index.html with the Different
Button Color Schemes during Execution

Figure 16.9 Sassmeister Is Perfect for Learning Sass
without Having to Use It in the Project Right Away

Figure 17.1 Building Blocks of a Modern Website

Figure 17.2 For the Reusability of Longer JavaScript Code,
It’s Recommended to Store It in a Separate JavaScript File in
Addition to a CSS and HTML File

Figure 17.3 A Clean Folder Structure Helps You Keep
Track of More Extensive Projects

Figure 17.4 The JavaScript “hello.js” during Execution
(Here, Microsoft Edge)

Figure 17.5 The Standard Dialog confirm() (in Google
Chrome)

Figure 17.6 The Standard Dialog prompt() (in Google
Chrome)

Figure 17.7 The Dialog Was Created Using the jQuery UI
Library and Looks the Same in any Web Browser

Figure 17.8 The Output of the JavaScript to the Console of
the Web Browser

Figure 17.9 The Console Is Often Used during
Development for Quick Outputs

Figure 17.10 The Individual Outputs in the Console
Usually Differ Visually

Figure 17.11 The HTML Document with a Button

Figure 17.12 When the Button Is Pressed, a JavaScript
Gets Executed That Manipulates the Content of the First <p>
Element It Finds

Figure 17.13 Node.js Allows You to Run JavaScripts
without the Web Browser

Figure 17.14 The Perfect Duo for Writing JavaScript:
Node.js + Visual Studio Code

Figure 17.15 Google Chrome Returns an Error Message in
the Console When Trying to Change a Constant Variable

Figure 17.16 Thanks to Strict Mode, the JavaScript
Reports an Error Here

Figure 17.17 The Example with a Line Break and a Tab
Feed during Execution

Figure 18.1 JavaScript Functions When Executed within a
Web Page

Figure 18.2 The Internal Structure of a String

Figure 19.1 Diagram of a DOM Tree with Objects

Figure 19.2 The Representation of the Tree Structure in
the DOM Inspector of the Web Browser

Figure 19.3 The Content of a <p> Element Was
Manipulated Using the “querySelector()” Method and the
“innerHTML” Property

Figure 19.4 Demonstrates the “getElementsByTagName()”
Method, Which Returns All Nodes of a Certain Tag Name
(Here, “p”)

Figure 19.5 Evaluation of Radio Buttons Using the
“getElementsByName()” Method

Figure 19.6 The “querySelector()” and “querySelectorAll()”
Methods Provide a Flexible Way to Access DOM Elements

Figure 19.7 You Can Use “document.title” to Determine
the Content of the <title> Element

Figure 19.8 Finding All Hypertext Links in an HTML
Document

Figure 19.9 The HTML Document in Its Original State

Figure 19.10 The Example after Changing the Content of
the <h1> and <p> Elements with “innerHTML”

Figure 19.11 In This Example, the “src” and “old”
Attributes of the Element Are Changed So the Image
Gets Replaced

Figure 19.12 Changing the Style of an HTML Element

Figure 19.13 Classic Principle of Events and Event
Handling

Figure 19.14 Responding to Events

Figure 19.15 The “event” Object Can Also Be Used to
Access Further Information about an Event

Figure 19.16 Thanks to Bubbling, the Event That Triggers
on the Element or <mark> Element Will Rise, Which
Will Execute the Handler of the <p> Element

Figure 19.17 A Newly Created Paragraph Text Was
Added

Figure 19.18 Traversing a Root Node

Figure 19.19 Rewritten Version for Traversing the Root
Node, Which Doesn’t Take into Account the Line Breaks in
the Output in the Dialog Box

Figure 19.20 Positioning the New Node in a Targeted
Manner. Here, a New <p> Element Was Inserted after the
<h1> Heading

Figure 19.21 A <p> Element Has Been Removed

Figure 19.22 Replacing Nodes: The Heading Has Already
Been Changed for the 11th Time

Figure 19.23 A Second Article Was Cloned from the First
Article

Figure 19.24 Manipulating the Attributes of an Element
Node

Figure 19.25 The Data of the Table Was Inserted into the
DOM Using the <template> Element and JavaScript

Figure 19.26 Reading the Content of an “input” Input Field
“type="text"” with JavaScript

Figure 19.27 Reading Radio Buttons and Checkboxes with
JavaScript

Figure 19.28 You Can Also Respond to “submit” and
“reset” Buttons with JavaScript

Figure 19.29 Controlling the Progress Bar from the
<progress> Element with JavaScript

Figure 20.1 The Synchronous Process Flow of a Classic
Web Application

Figure 20.2 The Asynchronous Process Flow of a Web
Application with Ajax

Figure 20.3 This Is What the Example Looks Like

Figure 20.4 The Web Page Was Loaded

Figure 20.5 Our First Ajax Application during Execution

Figure 20.6 Users Can Enter a Numerical Value in Meters

Figure 20.7 The Ajax Application during Execution

Figure 20.8 The Content of the JSON File data.json Was
Read, Parsed, and Displayed on the Web Page Using Ajax

	Dear Reader
	Notes on Usage
	Table of Contents
	Preface
	Book Resources
	HTML5 and the “Living Standard”
	Target Group
	How Should I Read through the Book?
	Written for You, the Reader
	Acknowledgments

	1 Introduction to the HTML Universe
	1.1 Is This Book Even Intended for Me?
	1.2 Different Types of Websites
	1.2.1 Web Presence
	1.2.2 Blog/Online Magazine/Portfolio
	1.2.3 E-Commerce Websites: Stores without Opening Hours
	1.2.4 Landing Page/Microsite
	1.2.5 Web Platform: Building Your Own Social Network
	1.2.6 Web Apps

	1.3 Dynamic and Static Websites
	1.3.1 Static Websites
	1.3.2 Dynamic Websites

	1.4 Languages for Designing and Developing on the Web
	1.4.1 HTML: Text-Based Hypertext Markup Language
	1.4.2 CSS: Design Language
	1.4.3 JavaScript: Client-Side Scripting Language of the Web Browser
	1.4.4 Server-Side Scripting Languages and Databases

	1.5 What Do I Need to Get Started?
	1.5.1 HTML Editor for Writing HTML Documents
	1.5.2 Web Browser for Displaying the Website
	1.5.3 Step by Step: Creating a Web Page and Viewing It in the Web Browser
	1.5.4 Checking Written HTML
	1.5.5 Good Reasons for Validating the HTML Code Anyway

	1.6 Conventions Used in This Book
	1.7 Summary

	2 Basic Structure of HTML and HTML Documents
	2.1 Syntax and Structure of HTML and HTML Documents
	2.1.1 How to Structure a Document in HTML
	2.1.2 Viewing the Tree Structure Using the Document Object Model Inspector
	2.1.3 HTML Tags and HTML Elements
	2.1.4 Nesting HTML Elements and the Hierarchical Structure
	2.1.5 Avoiding Incorrect Nesting of HTML Elements
	2.1.6 Omitting the End Tag of an HTML Element
	2.1.7 Standalone HTML Tags without End Tags
	2.1.8 Additional HTML Attributes for HTML Elements
	2.1.9 Using Comments in HTML Documents

	2.2 A Simple HTML Document Framework
	2.2.1 HTML Document Type: <!doctype>
	2.2.2 Beginning and Ending an HTML Document: <html>
	2.2.3 Head of an HTML Document: <head>
	2.2.4 Visible Part of an HTML Document: <body>

	2.3 Summary

	3 Head Data of an HTML Document
	3.1 Overview of HTML Elements for the Head
	3.2 <title>: Heading of the HTML Page
	3.3 Related Topic: Naming Convention and Referencing
	3.3.1 Valid and Good File Names for an HTML Document
	3.3.2 Valid Directory Names and Meaningful Directory Structures
	3.3.3 Writing a Reference to a Data Source

	3.4 Defining the Base URL of a Web Page Using <base>
	3.5 Referencing an External Document via <link>
	3.6 Writing Document-Wide CSS Styles Using <style>
	3.7 Including Scripts in Web Pages Using <script>
	3.8 Metadata for the Document Using <meta>
	3.8.1 The Most Commonly Used Metadata
	3.8.2 Setting the Viewport
	3.8.3 Specifying Useful Metadata for a Web Crawler
	3.8.4 Useful Metadata for Search Engines
	3.8.5 Useful Metadata for the Web Browser
	3.8.6 Using General Metadata
	3.8.7 My Recommendation: This Metadata Belongs in the Basic HTML Framework
	3.8.8 HTML Attributes for the <meta> Element

	3.9 Summary

	4 The Visible Part of an HTML Document
	4.1 HTML Elements for Structuring Pages
	4.1.1 Using <body>: The Displayable Content Section of an HTML Document
	4.1.2 Introducing the Section Elements of HTML
	4.1.3 Using Headings with the HTML Elements from <h1> to <h6>
	4.1.4 Creating a Header Using <header> and a Footer Using <footer>
	4.1.5 Marking Contact Information Using <address>

	4.2 HTML Elements for Structuring Text
	4.2.1 Adding Text Paragraphs Using <p>
	4.2.2 Forcing Line Breaks Using

	4.2.3 Adding Optional Line Breaks Using <wbr>
	4.2.4 Forcing Spaces and Preventing Wrapping Using " "
	4.2.5 Adding a Topic-Based Separation Using <hr>
	4.2.6 Adding Paragraphs or Citations Using <blockquote>
	4.2.7 Defining a General Section Using <div>
	4.2.8 Using <main>: An HTML Element for the Main Content
	4.2.9 Labeling Content Separately Using <figure> and <figcaption>
	4.2.10 Creating Unordered Lists Using and
	4.2.11 Creating Ordered Lists Using and
	4.2.12 Reversing the Numbering of an Ordered List
	4.2.13 Changing the Numbering of an Ordered List
	4.2.14 Nesting Lists within Each Other
	4.2.15 Creating a Description List Using <dl>, <dt>, and <dd>

	4.3 Using Semantic HTML
	4.3.1 HTML without a Precise Structure
	4.3.2 Generic Structuring Using <div>
	4.3.3 Semantic Structuring Using the Elements Provided in HTML
	4.3.4 What’s the Use of Those Semantic HTML Elements?

	4.4 HTML Elements for Text Markups
	4.4.1 Marking Up Abbreviations or Acronyms Using <abbr>
	4.4.2 Marking Up Text as the Source of a Working Title Using <cite>
	4.4.3 Marking Up Computer Code Representation Using <code> and <pre>
	4.4.4 Keyboard Input Using <kbd> and Program Output Using <samp>
	4.4.5 Marking Up Text as a Definition Using <dfn>
	4.4.6 Marking Up Text as a Variable Using <var>
	4.4.7 Changing the Text Direction Using <bdo> and <bdi>
	4.4.8 Emphasizing Text Using , , <i>, and
	4.4.9 Highlighting Text Using <mark>
	4.4.10 Placing Text between Quotes Using <q>
	4.4.11 Underlining or Crossing Out Text Using <u> and <s>
	4.4.12 Marking Changes of Text Using <ins> and
	4.4.13 Displaying Text as Superscript or Subscript Using <sup> and <sub>
	4.4.14 Marking Dates and Times Using <time>
	4.4.15 Marking the Small Print Using <small>
	4.4.16 Using <ruby>, <rp>, and <rt> for Annotations about Pronunciation
	4.4.17 Grouping Ranges of Individual Text Passages Using

	4.5 Related Topic: Character Encoding
	4.5.1 From Bytes to Character Encoding
	4.5.2 From ASCII to ISO-8859
	4.5.3 Beyond the Byte Boundary with Unicode

	4.6 Character Entities in HTML
	4.6.1 Structure of a Character Entity in HTML

	4.7 Summary

	5 Tables and Hyperlinks
	5.1 Structuring Data in a Table
	5.1.1 A Simple Table Structure Using <table>, <tr>, <td>, and <th>
	5.1.2 Combining Columns or Rows Using “colspan” or “rowspan”
	5.1.3 HTML Attributes for the Table Elements
	5.1.4 Structuring Tables Using <thead>, <tbody>, and <tfoot>
	5.1.5 Grouping Columns of a Table Using <colgroup> and <col>
	5.1.6 Labeling Tables Using <caption> or <figcaption>

	5.2 Electronic References (Hyperlinks) Using <a>
	5.2.1 Inserting Links to Other HTML Documents on Your Own Website
	5.2.2 Inserting Links to Other Websites
	5.2.3 Opening Links with the “target” Attribute in a New Window
	5.2.4 Email Links with “href=mailto: . . .”
	5.2.5 Setting Links to Other Types of Content
	5.2.6 Adding Download Links Using the “download” Attribute
	5.2.7 Setting Links to Specific Parts of a Web Page
	5.2.8 Creating Links to Phone Numbers
	5.2.9 HTML Attributes for the HTML Element <a>

	5.3 Summary

	6 Graphics and Multimedia
	6.1 Embedding Images Using
	6.1.1 Adding Images to an HTML Document
	6.1.2 Specifying the Height and Width of a Graphic
	6.1.3 Labeling Images Using <figure> and <figcaption>
	6.1.4 HTML Attributes for the HTML Element

	6.2 Creating Link-Sensitive Graphics (Image Maps)
	6.2.1 Use HTML Attributes for the HTML Element <area>
	6.2.2 Referencing Defined Areas of the HTML Element <area>
	6.2.3 HTML Attributes of <area>

	6.3 Loading the Appropriate Image Using <picture>
	6.3.1 HTML Attributes of <source>
	6.3.2 Multiple Image Sources with the HTML Attribute “srcset”

	6.4 Adding an Icon for the Website (Favicon)
	6.5 Using Vector Graphics in HTML Documents
	6.5.1 Adding SVG as a Graphic Reference Using
	6.5.2 Embedding SVG Directly into the Web Page Using <svg>
	6.5.3 SVG Tags for Vector Graphics
	6.5.4 Overview of Graphical SVG Elements
	6.5.5 Further Notes on Using SVG
	6.5.6 Mathematical Formulas Using MathML

	6.6 Drawing Graphics Using <canvas>
	6.7 Playing Videos Using the HTML Element <video>
	6.7.1 HTML Attributes for the HTML Element <video>
	6.7.2 Adding Subtitles to a Video Using <track>
	6.7.3 Playing Videos via YouTube

	6.8 Playing Audio Files Using the HTML Element <audio>
	6.8.1 HTML Attributes for the HTML Element <audio>

	6.9 Including Other Active Content
	6.9.1 HTML Element <embed>
	6.9.2 HTML Element <object>
	6.9.3 HTML Element <iframe>

	6.10 Summary

	7 HTML Forms and Interactive Elements
	7.1 Defining a Space for Forms
	7.2 HTML Input Fields for Forms
	7.2.1 A Single-Line Text Input Field Using <input type="text">
	7.2.2 A Password Input Field Using <input type="password">
	7.2.3 A Multiline Text Input Field Using <textarea>
	7.2.4 A Selection List or Dropdown List Using <select>
	7.2.5 Creating a Group of Radio Buttons Using <input type="radio">
	7.2.6 Adding a Text Label Using <label>
	7.2.7 Using Checkboxes via <input type="checkbox">
	7.2.8 Using Fields for File Uploads via <input type="file">
	7.2.9 Overview of Various Buttons
	7.2.10 Using a Hidden Input Field via <input type="hidden">
	7.2.11 Writing Form Fields outside of <form>...</form>
	7.2.12 Multiple Submit Buttons for Different URLs

	7.3 Special Types of Input Fields
	7.3.1 An Input Field for Colors Using <input type="color">
	7.3.2 An Input Field for a Date Using <input type="date">
	7.3.3 An Input Field for a Time Using <input type="time">
	7.3.4 Input Fields for Date and Time
	7.3.5 Input Fields for the Month and the Week
	7.3.6 An Input Field for Searches Using <input type="search">
	7.3.7 An Input Field for Email Addresses Using <input type="email">
	7.3.8 An Input Field for a URL Using <input type="url">
	7.3.9 An Input Field for Phone Numbers Using <input type="tel">
	7.3.10 An Input Field for Numbers Using <input type="number">
	7.3.11 An Input Field for Numbers of a Certain Range
	7.3.12 Outputting Values and Calculations Using <output>

	7.4 The HTML Attributes for Input Fields
	7.4.1 Setting the Input Focus Using the HTML Attribute “autofocus”
	7.4.2 (De)activating Autocompletion Using the “autocomplete” Attribute
	7.4.3 A List of Suggestions for Using the HTML Attribute “list” and <datalist>
	7.4.4 Specifying Minimum and Maximum Values and the Step Size
	7.4.5 Selecting or Entering Multiple Values Using “multiple”
	7.4.6 Regular Expressions for Input Fields Using “pattern”
	7.4.7 A Placeholder for an Input Field Using “placeholder”
	7.4.8 Defining an Input as Required Using the “required” Attribute
	7.4.9 Controlling Error Messages for Input Fields

	7.5 Other Useful Helpers for Input Fields
	7.5.1 Disabling Form Elements Using the HTML Attribute “disabled”
	7.5.2 Permitting Read-Only for Input Fields Using the “readonly” Attribute
	7.5.3 Useful Keyboard Shortcuts and Tab Sequence for Input Fields
	7.5.4 Grouping Form Elements Using <fieldset> and <legend>
	7.5.5 Progress Display via <progress>
	7.5.6 Visualizing Values Using <meter>

	7.6 Sending Form Data Using PHP
	7.6.1 Transferring the Data from the Web Browser for Further Processing
	7.6.2 The “POST” Method
	7.6.3 The “GET” Method
	7.6.4 Processing the Data Using a PHP Script

	7.7 Interactive HTML Elements
	7.7.1 Expanding/Collapsing Content Using <details> and <summary>
	7.7.2 A Dialog Box via <dialog>

	7.8 Summary

	8 Introduction to Cascading Style Sheets
	8.1 The Story of CSS
	8.2 The Basic Principle of Using CSS
	8.2.1 Structure of a CSS Rule
	8.2.2 Declaring a Selector
	8.2.3 Using Comments for CSS Code
	8.2.4 A Few Notes on Formatting CSS Code

	8.3 Integrating CSS into HTML
	8.3.1 Style Statements Directly in the HTML Tag Using the HTML Attribute “style”
	8.3.2 Style Statements in the Document Head Using the HTML Element <style>
	8.3.3 Integrating Style Statements from an External CSS File Using <link>
	8.3.4 Combining CSS Rules in the Head Section and in External CSS Files
	8.3.5 Recommendation: You Should Separate HTML and CSS
	8.3.6 Testing Alternate Stylesheets during Development
	8.3.7 Integrating Style Statements from an External CSS File Using “@import”
	8.3.8 Media-Specific Stylesheets for Specific Output Devices
	8.3.9 Media-Specific Stylesheets with CSS

	8.4 Analyzing CSS in the Web Browser
	8.5 Summary

	9 The Selectors of CSS
	9.1 The Simple Selectors of CSS
	9.1.1 Addressing HTML Elements Using the Type Selector
	9.1.2 Addressing HTML Elements Using a Specific Class or ID
	9.1.3 Universal Selector: Addressing All Elements in a Document
	9.1.4 Addressing Elements Based on Attributes Using the Attribute Selector
	9.1.5 An Attribute Selector for Attributes with a Specific Value
	9.1.6 Attribute Selector for Attributes with a Specific Partial Value
	9.1.7 CSS Pseudo-Classes: The Selectors for Specific Features
	9.1.8 The Convenient Structural Pseudo-Classes in CSS
	9.1.9 Other Useful Pseudo-Classes
	9.1.10 Pseudo-Elements: The Selectors for Nonexistent Elements

	9.2 Combinators: Concatenating the Selectors
	9.2.1 The Descendant Combinator (E1 E2)
	9.2.2 The Child Combinator (E1 > E2)
	9.2.3 The Adjacent Sibling Combinator (E1 + E2)
	9.2.4 The General Sibling Combinator (E1 ~ E2)

	9.3 Recommendation: How to Use Efficient and Simple CSS
	9.3.1 How to Write Well Performing CSS
	9.3.2 Recommendation: Keep the CSS Code as Simple as Possible

	9.4 Summary

	10 Inheritance and Cascading
	10.1 The Principle of Inheritance in CSS
	10.1.1 Be Cautious When Using Relative Properties
	10.1.2 Not Everything Gets Inherited
	10.1.3 Enforcing Inheritance Using “inherit”
	10.1.4 Restoring the Default Value of a CSS Feature (“initial”)
	10.1.5 Forcing Inheritance or Restoring a Value ("unset")
	10.1.6 Forcing Inheritance or Restoring Values for All Properties

	10.2 Understanding the Control System for Cascading
	10.2.1 The Origin of a Stylesheet
	10.2.2 Increasing the Priority of a CSS Feature Using “!important”
	10.2.3 Sorting by Importance and Origin
	10.2.4 Sorting by Weighting the Selectors (Specificity)
	10.2.5 Summary of the Cascading Rules System
	10.2.6 Analyzing the Cascading in the Browser

	10.3 Related Topic: Passing Values to CSS Features
	10.3.1 Different Units of Measurement in CSS
	10.3.2 Character Strings and Keywords as Values for CSS Features
	10.3.3 Many Ways of Using a Color in CSS
	10.3.4 Angular Dimensions in CSS
	10.3.5 Passing Values via Short Notation to a CSS Feature

	10.4 Summary

	11 The Box Model of CSS
	11.1 Classic Box Model of CSS
	11.1.1 Specifying the Content Area Using “width” and “height”
	11.1.2 Specifying the Inner Spacing Using “padding”
	11.1.3 Creating the Border Using “border”
	11.1.4 Setting Up the Outer Margin Using “margin”
	11.1.5 Collapsing Margins
	11.1.6 Determining the Total Width and Total Height of a Box

	11.2 Newer Alternate Box Model of CSS
	11.2.1 Using the “box-sizing” Box Model
	11.2.2 Using the Alternate Box Model

	11.3 Analyzing the Box Model in the Browser
	11.4 Box Model for Inline Elements
	11.5 Designing Boxes
	11.5.1 Adding and Designing a Border Using the “border” Property
	11.5.2 Setting a Background Color Using “background-color”
	11.5.3 Using Background Images
	11.5.4 Making Boxes Transparent
	11.5.5 Adding a Gradient
	11.5.6 Adding a Shadow Using the “box-shadow” Feature
	11.5.7 Adding Round Corners Using the CSS Feature “border-radius”

	11.6 Related Topic: Web Browser Prefixes (CSS Vendor Prefixes)
	11.7 Summary

	12 CSS Positioning
	12.1 Positioning via CSS Feature “position”
	12.1.1 Normal Positioning (“position: static”)
	12.1.2 Positioning Elements Using “top”, “right”, “bottom”, and “left”
	12.1.3 Relative Positioning (“position: relative”)
	12.1.4 Absolute Positioning (“position: absolute”)
	12.1.5 Fixed Positioning (“position: fixed”)
	12.1.6 Sticky Positioning (“position: sticky”)

	12.2 Controlling Stacking Using “z-index”
	12.3 Floating Boxes for Positioning via “float”
	12.3.1 Terminating the Float
	12.3.2 Combining Floats into One Entity

	12.4 Flexible Boxes of CSS
	12.4.1 Aligning the Flexbox
	12.4.2 Setting the Flexibility of the Flexbox
	12.4.3 Determining the Order of the Boxes

	12.5 Summary

	13 Creating Responsive Layouts with CSS
	13.1 Basic Theoretical Knowledge of Responsive Web Design
	13.1.1 Using Specific Media Types
	13.1.2 Media Queries for Media Features
	13.1.3 Integrating and Applying Media Queries for Media Features
	13.1.4 Basic Structure of a Media Feature Query
	13.1.5 Which Media Features Can Be Queried?
	13.1.6 Crucially Important: The Viewport for Mobile Devices
	13.1.7 Use “em” Instead of Pixels for a Layout Break in Media Queries
	13.1.8 Layout Breaks (Breakpoints)
	13.1.9 No More Math Games Thanks to "box-sizing: border-box;"
	13.1.10 What Happens to Web Browsers That Don’t Understand Media Queries?

	13.2 Let’s Create a Simple Responsive Layout
	13.2.1 Let’s Create the Basic Framework Using HTML
	13.2.2 Setting General CSS Features
	13.2.3 What Should I Use as a Basic Version without Media Queries: Mobile First?
	13.2.4 Setting the Layout Break (Breakpoint)
	13.2.5 Adding More Layout Breaks
	13.2.6 Customizing the Main Content

	13.3 Even More Flexible Elements
	13.3.1 Use Relative Font Sizes instead of Pixels
	13.3.2 Making Images Responsive
	13.3.3 Flexible Images in Maximum Possible Width
	13.3.4 Hiding Images Entirely
	13.3.5 Loading the Right Image for the Screen Width: <picture>
	13.3.6 Using Area-Covering Images

	13.4 CSS Grid Layout
	13.4.1 Creating a Grid for the Content
	13.4.2 Placing Elements in the Grid
	13.4.3 Layout Changes Made Easy
	13.4.4 Spacing between Grid Lines
	13.4.5 Checking the Grid in the Web Browser

	13.5 Changing the Behavior of HTML Elements Using “display”
	13.5.1 “display: block”, “display: inline”, and “display: inline-block”
	13.5.2 Hiding Elements Using “display:none”
	13.5.3 Further Values for “display”

	13.6 Calculations Using CSS and the “calc()” Function
	13.7 Summary

	14 Styling with CSS
	14.1 Designing Texts with CSS
	14.1.1 Selecting Fonts via “font-family”
	14.1.2 Providing Fonts via Web Fonts: “@font-face”
	14.1.3 Using Icons via Icon Fonts
	14.1.4 Setting the Font Size Using “font-size”
	14.1.5 Italic and Bold Fonts via “font-style” and “font-weight”
	14.1.6 Creating Small Caps Using “font-variant”
	14.1.7 Defining Line Spacing via “line-height”
	14.1.8 A Short Notation for Font Formatting Using “font”
	14.1.9 Specifying Letter and Word Spacing via “letter-spacing” and “word-spacing”
	14.1.10 Setting the Text Alignment Using “text-align”
	14.1.11 Setting the Vertical Alignment via “vertical-align”
	14.1.12 Indenting Text Using “text-indent”
	14.1.13 Underlining Text and Striking Text Through Using “text-decoration”
	14.1.14 Uppercase and Lowercase Text via “text-transform”
	14.1.15 Adding Shadow to Text via “text-shadow”
	14.1.16 Splitting Text into Multiple Columns Using “column-count”

	14.2 Designing Lists with CSS
	14.2.1 Customizing Bullet Points Using “list-style-type”
	14.2.2 Using Images as Bullets via “list-style-image”
	14.2.3 Positioning Bulleted Lists via “list-style-position”
	14.2.4 Short Notation “list-style” for Designing Lists
	14.2.5 Creating Navigation and Menus via Lists

	14.3 Designing Appealing Tables with CSS
	14.3.1 Creating Fixed-Width Tables
	14.3.2 General Recommendation: Designing Appealing Tables with CSS
	14.3.3 Collapsing Borders for Table Cells Using “border-collapse”
	14.3.4 Setting the Spacing between Cells via “border-spacing”
	14.3.5 Displaying Empty Table Cells Using “empty-cells”
	14.3.6 Positioning Table Captions via “caption-side”

	14.4 Adjusting Images and Graphics Using “width” and “height”
	14.5 Transforming Elements with CSS
	14.5.1 Scaling HTML Elements via “transform: scale()”
	14.5.2 Rotating HTML Elements Using “transform: rotate()”
	14.5.3 Skewing HTML Elements Using “transform: skew()”
	14.5.4 Moving HTML Elements Using “transform: translate()”
	14.5.5 Combining Different Transformations
	14.5.6 Other HTML Elements

	14.6 Creating Transitions with CSS
	14.7 Styling HTML Forms with CSS
	14.7.1 Neatly Structuring an HTML Form
	14.7.2 Aligning Form Elements with CSS
	14.7.3 Designing Form Elements with CSS

	14.8 Summary

	15 Testing and Organizing
	15.1 Web Browser Tests: What’s Possible?
	15.1.1 Validating HTML and CSS
	15.1.2 Which Browsers Are Visitors Currently Using?
	15.1.3 CSS Web Browser Test
	15.1.4 HTML5 Web Browser Test
	15.1.5 Can I Use That?
	15.1.6 Feature Query Using the “@supports” Rule

	15.2 Viewing Websites in Different Sizes
	15.3 Setting Up a Central Stylesheet
	15.3.1 Combining Everything Back into One File to Shorten the Load Time

	15.4 CSS Reset or Normalization?
	15.4.1 Built-In Style Presets of the Web Browser and CSS Reset
	15.4.2 Normalization: The Alternative to CSS Reset

	15.5 Summary

	16 The CSS Preprocessor Sass and SCSS
	16.1 Sass or SCSS Syntax
	16.2 From Sass/SCSS to CSS
	16.3 Installing and Setting Up Sass
	16.3.1 Online CSS Preprocessor without Installation
	16.3.2 Setting Up Sass Using Visual Studio Code
	16.3.3 Installing Sass for the Command Line

	16.4 Using Variables with Sass
	16.5 Nesting with Sass
	16.6 Mixins (“@mixin”, “@include”)
	16.7 Extend (“@extend”)
	16.8 Media Queries and “@content”
	16.9 Operators
	16.10 Adjusting Colors and Brightness
	16.11 Sass Control Structures
	16.12 Functions “@function”
	16.13 “@import”
	16.14 Comments
	16.15 Summary

	17 A Brief Introduction to JavaScript
	17.1 JavaScript in Web Development
	17.2 Writing and Executing JavaScript Programs
	17.2.1 Integrating a JavaScript File in an HTML File
	17.2.2 Writing JavaScript within HTML
	17.2.3 Position of JavaScript and Its Execution in the HTML Document
	17.2.4 Attributes for Manipulating the Load Behavior of JavaScript (“async”, “defer”)
	17.2.5 The <noscript> Element for No JavaScript

	17.3 JavaScript Output
	17.3.1 Standard Dialogs (and Input Dialog)
	17.3.2 Outputting to the Console
	17.3.3 Outputting to the Website
	17.3.4 Running JavaScript without a Web Browser
	17.3.5 Annotating JavaScript Code with Comments

	17.4 Using Variables in JavaScript
	17.4.1 Defining Constants
	17.4.2 Strict Mode Using “"use strict"”

	17.5 Overview of JavaScript Data Types
	17.5.1 Number Data Type (Numbers)
	17.5.2 String Data Types (Strings)
	17.5.3 Template Strings
	17.5.4 Boolean Data Type
	17.5.5 Undefined and Null Data Types
	17.5.6 Objects
	17.5.7 Converting Data Types

	17.6 Arithmetic Operators for Calculation Tasks in JavaScript
	17.7 Conditional Statements in JavaScript
	17.7.1 “true” or “false”: Boolean Truth Value
	17.7.2 Using the Various Comparison Operators in JavaScript
	17.7.3 Using the “if” Branch
	17.7.4 Using the Selection Operator
	17.7.5 Logical Operators
	17.7.6 Multiple Branching via “switch”

	17.8 Multiple Repetitions of Program Statements via Loops
	17.8.1 Increment and Decrement Operators
	17.8.2 The Header-Controlled “for” Loop
	17.8.3 The Header-Controlled “while” Loop
	17.8.4 The Footer-Controlled “do-while” Loop
	17.8.5 Ending the Statement Block Using “break”
	17.8.6 Jumping to the Start of the Loop via “continue”

	17.9 Summary

	18 Arrays, Functions, and Objects in JavaScript
	18.1 Functions in JavaScript
	18.1.1 Different Ways to Define a Function in JavaScript
	18.1.2 Calling Functions and Function Parameters
	18.1.3 Return Value of a Function
	18.1.4 The Scope of Variables in a Function
	18.1.5 Defining Functions in Short Notation (Arrow Functions)
	18.1.6 Using a Function in a Web Page

	18.2 Arrays
	18.2.1 Accessing the Individual Elements in the Array
	18.2.2 Multidimensional Arrays
	18.2.3 Adding or Removing New Elements in an Array
	18.2.4 Sorting Arrays
	18.2.5 Searching within Arrays
	18.2.6 Additional Methods for Arrays

	18.3 Strings and Regular Expressions
	18.3.1 Useful Functions for Strings
	18.3.2 Applying Regular Expressions to Strings

	18.4 Object-Oriented Programming in JavaScript
	18.4.1 What Exactly Are Objects?
	18.4.2 Creating Objects via Constructor Functions
	18.4.3 Creating Objects via the Class Syntax
	18.4.4 Accessing the Object Properties and Methods: Setters and Getters
	18.4.5 The Keyword “this”

	18.5 Other Global Objects
	18.5.1 The Top Object “Object”
	18.5.2 Objects for the Primitive Data Types: Number, String, and Boolean
	18.5.3 “Function” Object
	18.5.4 “Date” Object
	18.5.5 “Math” Object
	18.5.6 “Map” Object
	18.5.7 “Set” Object

	18.6 Summary

	19 Changing Web Pages Dynamically
	19.1 Introduction to the DOM of an HTML Document
	19.2 The “document” Object
	19.3 DOM Programming Interface
	19.4 Accessing Elements in the DOM
	19.4.1 Finding an HTML Element with a Specific “id” Attribute
	19.4.2 Finding HTML Elements with a Specific Tag Name
	19.4.3 Finding HTML Elements with a Specific “class” Attribute
	19.4.4 Finding HTML Elements with a Specific “name” Attribute
	19.4.5 Using “querySelector()” and “querySelectorAll()”
	19.4.6 Other Object and Property Collections

	19.5 Changing an HTML Element, an Attribute, or the Style
	19.5.1 Changing the Content of HTML Elements Using “innerHTML”
	19.5.2 Changing the Value of an HTML Attribute
	19.5.3 Changing the Style (CSS) of an HTML Element

	19.6 Responding to JavaScript Events
	19.7 Handling the Events Using the Event Handler
	19.7.1 Setting Up an Event Handler as an HTML Attribute in the HTML Element
	19.7.2 Setting Up Event Handlers as a Property of an Object
	19.7.3 Setting Up an Event Handler via “addEventListener()”

	19.8 Overview of Common JavaScript Events
	19.8.1 The JavaScript Events of the UI (Window Events)
	19.8.2 JavaScript Events That Can Occur in Connection with the Mouse
	19.8.3 JavaScript Events for Devices with a Touchscreen
	19.8.4 JavaScript Events That Occur in Connection with the Keyboard
	19.8.5 JavaScript Events for HTML Forms
	19.8.6 JavaScript Events for the Web APIs

	19.9 More Information about Events with the “event” Object
	19.10 Suppressing the Default Action of Events
	19.11 The Event Flow (Event Propagation)
	19.11.1 More about the Bubbling Phase
	19.11.2 Canceling Bubbling via the “stopPropagation()” Method
	19.11.3 Intervening in the Event Flow during the Capturing Phase
	19.11.4 Additional Information on the Capturing and Bubbling Phases

	19.12 Adding, Changing, and Removing HTML Elements
	19.12.1 Creating and Adding a New HTML Element and Content
	19.12.2 Targeting HTML Elements Even More Exactly in the DOM Tree
	19.12.3 Adding a New HTML Element Even More Targeted to the DOM Tree
	19.12.4 Deleting an Existing HTML Element from the DOM Tree
	19.12.5 Replacing an HTML Element in the DOM Tree with Another One
	19.12.6 Cloning a Node or Entire Fragments of the DOM Tree
	19.12.7 Different Methods to Manipulate the HTML Attributes
	19.12.8 The <template> HTML Tag

	19.13 HTML Forms and JavaScript
	19.13.1 Reading Text Input Fields with JavaScript
	19.13.2 Reading Selection Lists with JavaScript
	19.13.3 Reading Radio Buttons and Checkboxes with JavaScript
	19.13.4 Intercepting Buttons with JavaScript
	19.13.5 Controlling the Progress Indicator <progress> with JavaScript

	19.14 Summary

	20 An Introduction to Ajax
	20.1 An Introduction to Ajax Programming
	20.1.1 A Simple Ajax Example in Execution
	20.1.2 Creating the “XMLHttpRequest” Object
	20.1.3 Making a Request to the Server
	20.1.4 Sending Data
	20.1.5 Determining the Status of the “XMLHttpRequest” Object
	20.1.6 Processing the Response from the Server
	20.1.7 The Ajax Example during Execution
	20.1.8 A More Complex Ajax Example with XML and DOM
	20.1.9 The JSON Data Format with Ajax

	20.2 Summary

	The Author
	Index
	Service Pages
	Legal Notes

