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PREFACE

The Handbook of Ordinary Differential Equations for Scientists and Engineers, is a

unique reference for scientists and engineers, which contains over 7,000 ordinary differ-

ential equations with solutions, as well as exact, asymptotic, approximate analytical, nu-

merical, symbolic, and qualitative methods for solving and analyzing linear and nonlinear

equations. First-, second-, third-, fourth- and higher-order ordinary differential equations

and systems of equations are considered. A number of new nonlinear equations, exact solu-

tions, transformations, and methods are described. Equations arising in various applications

(in the theory of heat and mass transfer, nonlinear mechanics, elasticity, hydrodynamics,

theory of nonlinear oscillations, combustion theory, chemical engineering science, etc.)

are considered. Analytical formulas for the effective construction of solutions are given.

Special attention is paid to equations of general form that depend on arbitrary functions.

Almost all other equations contain one or more arbitrary parameters (i.e., in fact, this book

deals with whole families of ordinary differential equations), which can be fixed by the

reader at will. A number of specific examples where the methods described in the book are

used are considered. Statements of existence and uniqueness theorems as well as theorems

of stability and instability of solutions are given as well. Boundary-value problems and

eigenvalue problems are described. Significant attention is given to Cauchy problems with

blow-up solutions as well as the important questions of nonexistence and nonuniqueness of

solutions to nonlinear boundary-value problems. Elements of bifurcation theory, Lie group

and discrete-group methods for ODEs, and the factorization principle are discussed. Sym-

bolic and numerical methods for solving ODEs problems with Maple, Mathematica, and

MATLABr are considered.

All in all, the handbook contains much more ordinary differential equations, problems,

methods, solutions, and transformations than any other book currently available. It essen-

tial that symbolic computation systems, even the most powerful ones such as Maple or

Mathematica, can provide no more than 40–50% of the exact analytical solutions to ODEs

given in this book (Chapters 13 through 18).

The main material is followed by a number of supplements, which present tables of

integrals, finite and infinite series, and integral transforms as well as a brief description of

the basic properties of elementary and special functions (Bessel, modified Bessel, hyperge-

ometric, Legendre, etc.).

New material compared to Handbook of Exact Solutions for Ordinary Differential

Equations, 2003:

• The total volume of the new handbook has almost doubled (increased by nearly 700

pages).

• Some first-, second-, and third-order nonlinear ODEs with solutions.

• Some analytical methods (including new methods) and standard numerical methods.

• Special numerical methods (including new methods) for solving problems with qual-

itative features or singularities.

• Symbolic and numerical methods with Maple, Mathematica, and MATLAB.

xxiii
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• Many new problems, illustrative examples, and figures.

• Elementary theory of using invariants for solving equations.

• Methods for the construction of particular solutions (including the method of differ-

ential constraints).

• Systems of coupled ordinary differential equations with solutions.

• Equations defined parametrically or implicitly (exact and numerical methods and

exact solutions) as well as overdetermined systems of ODEs and underdetermined

ODEs.

For the convenience of a wide audience with varying mathematical backgrounds, the

authors tried to do their best to avoid special terminology whenever possible. Therefore,

some of the methods are outlined in a schematic and somewhat simplified manner, with

necessary references made to books where these methods are considered in more detail.

Many sections were written so that they could be read independently (moreover, many top-

ics do not require special mathematical background for their understanding and successful

practical application). This allows the reader to get to the heart of the matter quickly.

The handbook consists of parts, chapters, sections, subsections, and paragraphs. The

material within sections is arranged in increasing order of complexity. An extensive table

of contents and detailed index provides rapid access to the desired equations.

Isolated sections of the book can be used by university and college lecturers in practical

courses and lectures on ordinary differential equations for graduate and postgraduate stu-

dents. Furthermore, the second part of the book (Chapters 13–18) can be used as a database

of test problems for numerical, approximate analytical, and symbolic methods for solving

ordinary differential equations.

We would like to express our keen gratitude to Alexei Zhurov for fruitful discussions

and valuable remarks. We are very thankful to Inna Shingareva and Carlos Lizárraga-

Celaya, who wrote three chapters (19–21) of the book at our request. Also, we would like

to express our deep gratitude to Vladimir Nazaikinskii for translating several chapters of

this handbook.

The authors hope that the handbook will prove helpful for a wide audience of re-

searchers, university and college teachers, engineers, and students in various fields of math-

ematics, physics, mechanics, control, chemistry, economics, and engineering sciences.

Andrei D. Polyanin

Valentin F. Zaitsev

MATLABr is a registered trademark of The MathWorks, Inc. For product information, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA, 01760-2098 USA

Tel.: 508-647-7000

Fax: 508-647-7001

E-mail: info@mathworks.com

Web: www.mathworks.com

www.mathworks.com
mailto:info@mathworks.com
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BASIC NOTATION AND REMARKS

Brief Notation for Derivatives and Operators

1. Throughout this book, in the original equations, the independent variable is denoted

by x, and the dependent one is denoted by y. In the given solutions, the symbols C , C0,

C1, C2, . . . stand for arbitrary integration constants. Solutions are often represented in

parametric form (e.g., see Sections 13.3.1 and 14.3.1).

2. Notation for derivatives:

y′x =
dy

dx
, y′′xx =

d2y

dx2
, y′′′xxx =

d3y

dx3
, y′′′′xxxx =

d4y

dx4
; y(n)x =

dny

dxn
with n ≥ 5.

3. Brief notation for partial derivatives:

fx =
∂f

∂x
, fy =

∂f

∂y
, fxx =

∂2f

∂x2
, fxy =

∂2f

∂x∂y
, where f = f(x, y).

4. In some cases, we use the operator notation
(
f
d

dx

)n
g, which is defined by the

recurrence relation

(
f(x)

d

dx

)n
g(x) = f(x)

d

dx

[(
f(x)

d

dx

)n−1
g(x)

]
.

5. Brief operator notation corresponding to partial derivatives: ∂x =
∂

∂x
, ∂y =

∂

∂y
.

Special Functions

Ai(x) = 1
π

∫∞
0 cos

(
1
3 t

3 + xt
)
dt Airy function;

Ai(x) = 1
π

(
1
3x
)1/2

K1/3

(
2
3x

3/2
)

Ce2n+p(x, q) =
∞∑
k=0

A2n+p
2k+p cosh[(2k+p)x] Even modified Mathieu functions, where

p = 0, 1; Ce2n+p(x, q) = ce2n+p(ix, q)

ce2n(x, q) =
∞∑
k=0

A2n
2k cos 2kx Even π-periodic Mathieu functions; these

satisfy the equation y′′+(a−2q cos 2x)y=0,

where a = a2n(q) are eigenvalues

ce2n+1(x, q) =
∞∑
k=0

A2n+1
2k+1 cos[(2k+1)x] Even 2π-periodic Mathieu functions; these

satisfy the equation y′′+(a−2q cos 2x)y=0,

where a = a2n+1(q) are eigenvalues

Dν = Dν(x) Parabolic cylinder function; it satisfies the

equation y′′ +
(
ν + 1

2 − 1
4x

2
)
y = 0

erf x = 2√
π

∫ x
0 exp

(
−ξ2

)
dξ Error function

erfc x = 2√
π

∫∞
x exp

(
−ξ2

)
dξ Complementary error function

Hn(x) = (−1)nex2 dn

dxn

(
e−x2)

Hermite polynomial

xxvii
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H
(1)
ν (x) = Jν(x) + iYν(x) Hankel function of first kind, i2 = −1

H
(2)
ν (x) = Jν(x)− iYν(x) Hankel function of second kind, i2 = −1

F (a, b, c;x) = 1 +
∞∑
n=1

(a)n(b)n
(c)n

xn

n! Hypergeometric function,

(a)n = a(a+ 1) . . . (a+ n− 1)

Iν(x) =
∞∑
n=0

(x/2)ν+2n

n! Γ(ν+n+1) Modified Bessel function of first kind

Jν(x) =
∞∑
n=0

(−1)n(x/2)ν+2n

n! Γ(ν+n+1) Bessel function of first kind

Kν(x) =
π
2
I−ν(x)−Iν(x)

sin(πν) Modified Bessel function of second kind

Ls
n(x) =

1
n!x

−sex dn

dxn

(
xn+se−x

)
Generalized Laguerre polynomial

Pn(x) =
1

n! 2n
dn

dxn (x
2 − 1)n Legendre polynomial

Pm
n (x) = (1− x2)m/2 dm

dxm Pn(x) Associated Legendre functions

Se2n+p(x, q) =
∞∑
k=0

B2n+p
2k+p sinh[(2k+p)x] Odd modified Mathieu functions, where

p = 0, 1; Se2n+p(x, q) = −i se2n+p(ix, q)

se2n(x, q) =
∞∑
k=0

B2n
2k sin 2kx Odd π-periodic Mathieu functions; these

satisfy the equation y′′+(a−2q cos 2x)y =
0, where a = b2n(q) are eigenvalues

se2n+1(x, q) =
∞∑
k=0

B2n+1
2k+1 sin[(2k+1)x] Odd 2π-periodic Mathieu functions; these

satisfy the equation y′′+(a−2q cos 2x)y =
0, where a = b2n+1(q) are eigenvalues

Yν(x) =
Jν(x) cos(πν)−J−ν(x)

sin(πν) Bessel function of second kind

γ(α, x) =
∫ x
0 e

−ξξα−1 dξ Incomplete gamma function

Γ(α) =
∫∞
0 e−ξξα−1 dξ Gamma function

Φ(a, b;x) = 1 +
∞∑
n=1

(a)n
(b)n

xn

n! Degenerate hypergeometric function,

(a)n = a(a+ 1) . . . (a+ n− 1)

Miscellaneous Remarks

1. Throughout the book, unless explicitly specified otherwise, all parameters, variables,

and functions occurring in the equations considered are assumed to be real numbers.

2. If a formula or a solution contains derivatives of some functions, then the functions

are assumed to be differentiable.

3. If a formula or a solution contains finite or definite integrals, then the integrals are

supposed to exist and to be convergent.

4. If a relation contains an expression like
f(x)

a− 2
, it is often not stated that the as-

sumption a 6= 2 is adopted.

5. In solutions, expressions like ϕn(x) =
1

n+ 1
xn+1 can usually be defined so as to

cover the case n = −1 in accordance with the rule ϕ−1(x) = ln |x|. This is accounted
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for by the fact that such expressions arise from the integration of the power-law function

ϕn(x) =

∫
xn dx.

6. The order symbol O is used to compare two functions, f = f(ε) and g= g(ε), where

ε is a small parameter. So f = O(g) means that |f/g| is bounded as ε→ 0, or f and g are

of the same order of magnitude as ε→ 0.

7. In Chapters 13–18, when referring to a particular equation, we use notation like

14.1.2.35, which denotes Eq. 35 in Section 14.1.2.

8. The handbooks by Kamke (1977), Murphy (1960), Zaitsev and Polyanin (1993,

2001), Polyanin and Zaitsev (1995, 2003) were extensively used in compiling this book;

references to these sources are frequently omitted.

9. In some sections (e.g., see 13.3, 14.3–14.6, 15.2–15.3), for the sake of brevity, so-

lutions are represented as several formulas containing terms with the signs “±” and “∓.”

Two formulas are meant—one corresponds to the upper sign and the other to the lower

sign. For example, the solution of equation 13.3.1.16 is written in the parametric form

x = af−1 exp(∓τ2), y = af−1
[
exp(∓τ2)± 2τf

]
,

where

f =

∫
exp(∓τ2) dτ − C, A = ∓2a2.

This is equivalent so that the solutions of equation 13.3.1.16 are given by the two formulas:

x = af−1 exp(−τ2), y = af−1
[
exp(−τ2) + 2τf

]
,

where

f =

∫
exp(−τ2) dτ − C, A = −2a2

(for the upper signs) and

x = af−1 exp(τ2), y = af−1
[
exp(τ2)− 2τf

]
,

where

f =

∫
exp(τ2) dτ − C, A = 2a2

(for the lower signs).

10. To highlight portions of the text, the following symbols are used throughout the

book:

◮ marks the beginning of a small section of the fourth level; such sections are referred to

as paragraphs;

◆ indicates important information pertaining to a group of equations (Chapters 13–18);

⊙ indicates the literature used in the preparation of the text in subsections, paragraphs,

and specific equations.
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Chapter 1

Methods for First-Order
Differential Equations

1.1 General Concepts. Cauchy Problem.

Uniqueness and Existence Theorems

1.1.1 Equations Solved for the Derivative

◮ Form of equations. General and particular solutions.

A first-order ordinary differential equation solved for the derivative has the form†

y′x = f(x, y). (1.1.1.1)

In what follows, we often call an ordinary differential equation a “differential equation” or,

even shorter, an “equation.”

Sometimes equation (1.1.1.1) is represented in terms of differentials as dy= f(x, y) dx.

A solution of a differential equation is a function y(x) that, when substituted into the

equation, turns it into an identity. The general solution of a differential equation is the set

of all its solutions. In some cases, the general solution can be represented as a function

y = ϕ(x,C) that depends on one arbitrary constant C; specific values of C define specific

solutions of the equation (particular solutions). In practice, the general solution more

frequently appears in implicit form, Φ(x, y, C) = 0, or parametric form, x = x(t, C),
y = y(t, C).

Geometrically, the general solution (also called the general integral) of an equation is

a family of curves in the xy-plane depending on a single parameter C; these curves are

called integral curves of the equation. To each particular solution (particular integral) there

corresponds a single curve that passes through a given point in the plane.

For each point (x, y), the equation y′x = f(x, y) defines a value of y′x, i.e., the slope

of the integral curve that passes through this point. In other words, the equation generates

a field of directions in the xy-plane. From the geometrical point of view, the problem of

†Unless otherwise specified, we assume here and henceforth that y = y(x) and f = f(x, y) are real-valued

functions of real arguments.

3
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D
α

y

x
x

y

0

0

O

Figure 1.1: The direction field of a differential equation and the integral curve passing

through a point (x0, y0).

solving a first-order differential equation involves finding the curves, the slopes of which at

each point coincide with the direction of the field at this point.

Figure 1.1 depicts the tangent to an integral curve at a point (x0, y0); the slope of

the integral curve at this point is determined by the right-hand side of equation (1.1.1.1):

tanα = f(x0, y0). The little lines show the field of tangents to the integral curves of the

differential equation (1.1.1.1) at other points.

◮ Equations integrable by quadrature.

To integrate a differential equation in closed form is to represent its solution in the form

of formulas written using a predefined bounded set of allowed functions and mathematical

operations. A solution is expressed as a quadrature if the set of allowed functions consists

of the elementary functions and the functions appearing in the equation and the allowed

mathematical operations are the arithmetic operations, a finite number of function compo-

sitions, and the indefinite integral. An equation is said to be integrable by quadrature if its

general solution can be expressed in terms of quadratures.

◮ Cauchy problem. Uniqueness and existence theorems.

The Cauchy problem (or the initial value problem): find a solution of equation (1.1.1.1)

that satisfies the initial condition

y = y0 at x = x0, (1.1.1.2)

where y0 and x0 are some numbers.

The geometrical meaning of the Cauchy problem is as follows: find an integral curve

of equation (1.1.1.1) that passes through the point (x0, y0); see Fig. 1.1.

Condition (1.1.1.2) is alternatively written y(x0) = y0 or y|x=x0 = y0.

EXISTENCE THEOREM (PEANO). Let the function f(x, y) be continuous in an open

domain D of the xy-plane. Then there is at least one integral curve of equation (1.1.1.1)

that passes through each point (x0, y0) ∈ D; each of these curves can be extended at both

ends up to the boundary of any closed domain D0 ⊂ D such that (x0, y0) belongs to the

interior of D0.
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UNIQUENESS THEOREM. Let the function f(x, y) be continuous in an open domain D
and have in D a bounded partial derivative with respect to y (or the Lipschitz condition

holds: |f(x, y) − f(x, z)| ≤ K|y − z|, where K is some positive number, called the

Lipschitz constant). Then there is a unique solution of equation (1.1.1.1) satisfying con-

dition (1.1.1.2).

◮ Comments on the uniqueness and existence theorems.

The violence of a condition stated in the existence and uniqueness theorems may result

in the existence of one, several, or infinitely many solutions or even no solutions at all.

Below we give a few simple illustrative examples for the case where the right-hand side of

equation (1.1.1.1) has a singularity at the boundary of the domain.

Example 1.1. Consider the Cauchy problem

y′x = y1/3 (x > 0), y(0) = 0. (1.1.1.3)

Since the right-hand side of the equation is a continuous function, the existence theorem states

that there is a solution, at least for x close to 0. It is easy to verify that problem (1.1.1.3) two

solutions: y1 = 0 and y2 =
(
2
3x
)3/2

. Furthermore, the problem has infinitely many solutions (a

one-parameter family) of the form

y(x) =

{
0 if 0 ≤ x ≤ a,
[
2
3 (x− a)

]3/2
if x ≥ a,

(1.1.1.4)

where a > 0 is an arbitrary constant. Function (1.1.1.4) is differentiable everywhere, even at x = a,

and it satisfies both the differential equation and the initial condition (1.1.1.3).

The uniqueness is violated here due to the fact that the derivative of the right-hand side of the

equation with respect to y becomes infinite at x = 0, by virtue of the initial condition.

Example 1.2. Consider the Cauchy problem

y′x =
1

2y
(x > 0), y(0) = 0. (1.1.1.5)

Here the right-hand side of the equation becomes infinite at x= 0 by virtue of the initial conditions.

Problem (1.1.1.5) has two solutions: y1 = −√x and y2 =
√
x.

Example 1.3. Consider the Cauchy problem

y′x =
1√
y

(x > 0), y(0) = 0. (1.1.1.6)

The right-hand side of the equation becomes infinite at x = 0 by virtue of the initial condition.

Problem (1.1.1.6) has one solution: y =
(
3
2x
)2/3

.

Example 1.4. In the Cauchy problem

y′x =
2y

x
(x > 0), y(0) = 0, (1.1.1.7)

the right-hand side of the equation has a fixed singularity at the boundary (becomes infinite at x=0).

Problem (1.1.1.7) has infinitely many (a one-parameter family) smooth solutions: y = ax2,

where a is an arbitrary constant.
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Example 1.5. In the Cauchy problem

y′x = − 1

2y
(x > 0), y(0) = 0, (1.1.1.8)

the right-hand side of the equation becomes infinite at x = 0 by virtue of the initial condition.

Equation (1.1.1.8) has the general integral

y2 = −x+ C, (1.1.1.9)

where C is an arbitrary constant. Using the initial condition y(0) = 0, we get C = 0. With C = 0,

the left-hand side of (1.1.1.9) is positive (nonnegative), while the right-hand side is negative for

x > 0. Hence, the Cauchy problem (1.1.1.8) does not have a real solution.

Remark 1.1. Cauchy problems in which the right-hand side of equation (1.1.1.1) has a singu-

larity in the interior of the domain are treated in Sections 1.7.3 and 1.7.4.

◮ Theorems on smoothness and parametric continuity of solutions.

THEOREM ON SMOOTHNESS OF SOLUTIONS. Let the function f(x, y) have n continuous

derivatives in either argument. Then any solution y= y(x) to equation (1.1.1.1) has contin-

uous derivatives up to the (n+1)st order inclusive. If f(x, y) is analytic, then all solutions

y = y(x) are also analytic.

THEOREM ON PARAMETRIC CONTINUITY OF SOLUTIONS TO THE CAUCHY PROB-

LEM. Let in the initial value problem

y′x = f(x, y,λ), y(x0) = y0(λ), (1.1.1.10)

the differential equation and/or the initial condition depend continuously on one or more

parameters λ = (λ1, . . . , λk). Then the solution y = y(x,λ) (which is assumed to exist

and be unique) depends continuously upon the parameters.

◮ Point transformations.

In the general case, a point transformation is defined by

x = F (X,Y ), y = G(X,Y ), (1.1.1.11)

where X is the new independent variable, Y = Y (X) is the new dependent variable, and

F and G are some (prescribed or unknown) functions.

The derivative y′x under the point transformation (1.1.1.11) is calculated by

y′x =
GX +GY Y

′
X

FX + FY Y ′
X

,

where the subscripts X and Y denote the corresponding partial derivatives.

Transformation (1.1.1.11) is invertible if FXGY − FYGX 6= 0.

Point transformations are used to simplify equations and reduce them to known equa-

tions. Sometimes a point transformation enables the reduction of a nonlinear equation to a

linear one.
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Example 1.6. The simplest point transformations are

x = X +A, y = Y +B translation transformation;

x = AX, y = BY scaling transformation,

where A and B are arbitrary constants.

Example 1.7. The hodograph transformation is an important example of a point transformation.

It is defined by x = Y , y =X , which means that y is taken to be the independent variable and x the

dependent one. In this case, the derivative is expressed as

y′x =
1

X ′
Y

.

Other examples of point transformations can be found in Sections 1.2 and 1.4–1.6.

1.1.2 Equations Not Solved for the Derivative

◮ Form of equations not solved for the derivative. Existence theorem.

A first-order differential equation not solved for the derivative can generally be written as

F (x, y, y′x) = 0. (1.1.2.1)

EXISTENCE AND UNIQUENESS THEOREM. There exists a unique solution y = y(x)
of equation (1.1.2.1) satisfying the conditions y|x=x0 = y0 and y′x|x=x0 = t0, where t0 is

one of the real roots of the equation F (x0, y0, t0) = 0 if the following conditions hold in a

neighborhood of the point (x0, y0, t0):

1. The function F (x, y, t) is continuous in each of the three arguments.

2. The partial derivative Ft exists and is nonzero.

3. There is a bounded partial derivative with respect to y, |Fy| ≤ K .

The solution exists for |x− x0| ≤ a, where a is a (sufficiently small) positive number.

◮ Singular solutions.

1◦. A point (x, y) at which the uniqueness of the solution to equation (1.1.2.1) is violated

is called a singular point. If conditions 1 and 3 of the existence and uniqueness theorem

hold, then

F (x, y, t) = 0, Ft(x, y, t) = 0 (1.1.2.2)

simultaneously at each singular point. Relations (1.1.2.2) define a t-discriminant curve in

parametric form. In some cases, the parameter t can be eliminated from (1.1.2.2) to give

an equation of this curve in implicit form, Ψ(x, y) = 0. If a branch y = ψ(x) of the curve

Ψ(x, y) = 0 consists of singular points and, at the same time, is an integral curve, then this

branch is called a singular integral curve and the function y = ψ(x) is a singular solution

of equation (1.1.2.1).

2◦. The singular solutions can be found by identifying the envelope of the family of integral

curves, Φ(x, y, C) = 0, of equation (1.1.2.1). The envelope is part of the C-discriminant

curve, which is defined by the equations

Φ(x, y, C) = 0, ΦC(x, y, C) = 0.

The branch of the C-discriminant curve at which
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(a) there exist bounded partial derivatives, |Φx| < M1 and |Φy| < M2, and

(b) |Φx|+ |Φy| 6= 0

is the envelope.

⊙ Literature for Section 1.1: E. L. Ince (1956), G. M. Murphy (1960), L. E. El’sgol’ts (1961), P. Hartman

(1964), N. M. Matveev (1967), I. G. Petrovskii (1970), G. F. Simmons (1972), E. Kamke (1977), G. Birkhoff

and Rota (1978), A. N. Tikhonov, A. B. Vasil’eva, and A. G. Sveshnikov (1985), D. Zwillinger (1997),

C. Chicone (1999), G. A. Korn and T. M. Korn (2000), V. F. Zaitsev and A. D. Polyanin (2001), A. D. Polyanin

and V. F. Zaitsev (2003), W. E. Boyce and R. C. DiPrima (2004), A. D. Polyanin and A. V. Manzhirov (2007).

1.2 Equations Solved for the Derivative. Simplest

Techniques of Integration∗

1.2.1 Equations with Separable Variables and Related Equations

◮ Equations with separated variables.

An equation with separated variables (a separated equation) has the form

f(y)y′x = g(x). (1.2.1.1)

Equivalently, the equation can be rewritten as f(y) dy = g(x) dx (the right-hand side de-

pends on x alone and the left-hand side on y alone). The general solution can be obtained

by termwise integration: ∫
f(y) dy =

∫
g(x) dx + C,

where C is an arbitrary constant.

◮ Equations with separable variables.

An equation with separable variables (a separable equation) is generally represented by

f1(y)g1(x)y
′
x = f2(y)g2(x). (1.2.1.2)

Dividing the equation by f2(y)g1(x), one obtains a separated equation. Integrating yields

∫
f1(y)

f2(y)
dy =

∫
g2(x)

g1(x)
dx+ C.

Remark 1.2. In termwise division of the equation by f2(y)g1(x), solutions corresponding to

f2(y) = 0 can be lost.

◮ Related equation.

Consider an equation of the form

y′x = f(ax+ by). (1.2.1.3)

The substitution z = ax+ by brings it to a separable equation, z′x = bf(z) + a.

∗This section deals with equations of fairly general form involving arbitrary functions.
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1.2.2 Homogeneous and Generalized Homogeneous Equations

◮ Homogeneous equations and equations reducible to them.

1◦. A homogeneous equation remains the same under simultaneous scaling (dilatation) of

the independent and dependent variables in accordance with the rule x → αx, y → αy,

where α is an arbitrary constant (α 6= 0). Such equations can be represented in the form

y′x = f
( y
x

)
. (1.2.2.1)

The substitution u= y/x brings a homogeneous equation to a separable one, xu′x = f(u)−
u; see Section 1.2.1.

2◦. The equations of the form

y′x = f
( a1x+ b1y + c1
a2x+ b2y + c2

)
(1.2.2.2)

can be reduced to a homogeneous equation. To this end, for a1x + b1y 6= k(a2x + b2y),
one should use the change of variables ξ = x − x0, η = y − y0, where the constants x0
and y0 are determined by solving the linear algebraic system

a1x0 + b1y0 + c1 = 0,

a2x0 + b2y0 + c2 = 0.

As a result, one arrives at the following equation for η = η(ξ):

η′ξ = f

(
a1ξ + b1η

a2ξ + b2η

)
.

On dividing the numerator and denominator of the argument of f by ξ, one obtains a ho-

mogeneous equation whose right-hand side is dependent on the ratio η/ξ only:

η′ξ = f

(
a1 + b1η/ξ

a2 + b2η/ξ

)
.

For a1x+ b1y = k(a2x+ b2y), we have an equation of the type 1.2.1.3.

◮ Generalized homogeneous equations and equations reducible to them.

1◦. A generalized homogeneous equation (a homogeneous equation in the generalized

sense) remains the same under simultaneous scaling of the independent and dependent

variables in accordance with the rule x → αx, y → αky, where α 6= 0 is an arbitrary

constant and k is some number. Such equations can be represented in the form

y′x = xk−1f(yx−k). (1.2.2.3)

The substitution u = yx−k brings a generalized homogeneous equation to a separable

equation, xu′x = f(u)− ku; see Section 1.2.1.
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Example 1.8. Consider the equation

y′x = ax2y4 + by2. (1.2.2.4)

Let us perform the transformation x = αx̄, y = αk ȳ and then multiply the resulting equation

by α1−k to obtain

ȳ′x̄ = aα3(k+1)x̄2ȳ4 + bαk+1ȳ2. (1.2.2.5)

It is apparent that if k = −1, the transformed equation (1.2.2.5) is the same as the original one,

up to notation. This means that equation (1.2.2.4) is generalized homogeneous of degree k = −1.

Therefore the substitution u = xy brings it to a separable equation: xu′x = au4 + bu2 + u.

2◦. The equations of the form

y′x = yf(eλxy)

can be reduced to a generalized homogeneous equation. To this end, one should use the

change of variable z = ex and set λ = −k.

1.2.3 Linear Equation and Bernoulli Equation

◮ Linear equation.

A first-order linear equation is written as

y′x + f(x)y = g(x). (1.2.3.1)

The solution is sought in the product form y = uv, where v = v(x) is any function that

satisfies the “truncated” equation v′x + f(x)v = 0 [as v(x) one takes the particular solution

v = e−F , where F =
∫
f(x) dx]. As a result, one obtains the following separable equation

for u = u(x): v(x)u′x = g(x). Integrating it yields the general solution:

y(x) = e−F
(∫

eF g(x) dx + C
)
, F =

∫
f(x) dx, (1.2.3.2)

where C is an arbitrary constant.

◮ Bernoulli equation.

A Bernoulli equation has the form

y′x + f(x)y = g(x)yβ , β 6= 0, 1. (1.2.3.3)

(For β = 0 and β = 1, it is a linear equation.) The substitution z = y1−β brings it to a linear

equation, z′x + (1− β)f(x)z = (1− β)g(x). With this in view, one can obtain the general

integral:

y1−a = CeF +(1−β)eF
∫
e−F g(x) dx, where F = (β− 1)

∫
f(x) dx, (1.2.3.4)

and C is an arbitrary constant.

Example 1.9. Let us look at the Cauchy problem for the Bernoulli equation

y′x = −f(x)y + g(x)y2 (x > 0), y(0) = a > 0. (1.2.3.5)

Using formula (1.2.3.4) with β = 2 and considering the initial condition, we can write the solution

to problem (1.2.3.5) as

y =
ae−F (x)

1− aG(x) , F (x) =

∫ x

0

f(x) dx, G(x) =

∫ x

0

e−F (x)g(x) dx. (1.2.3.6)

This solution does not have singularities if g(x) ≤ 0. If g(x) > 0, two scenarios are possible.
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1◦. Let limx→∞G(x) ≤ 1/a. Then there is a solution for all x > 0.

2◦. Let limx→∞G(x)>1/a. Then there exists a critical point, x∗, satisfying the conditionG(x∗)=
1/a, which makes the denominator in (1.2.3.6) vanish. In this case, there is a solution, in the limited

range 0 < x < x∗, that increases indefinitely as x → x∗. Such solutions are known as blow-up

solutions.

If the equation coefficients are constant, f(x) = b and g(x) = c, we have

y =
ab

ac+ (b− ac)ebx . (1.2.3.7)

The condition ac/b > 1 corresponds to a blow-up solution existing on the interval 0 ≤ x < x∗,

where x∗ = − 1
b ln
(
1− b

ac

)
.

By letting b→ 0 in (1.2.3.7), we get

y =
a

1− acx .

If c > 0, this is a blow-up solution with x∗ = 1/(ac).

◮ A related equation.

Consider an equation of the form

y′x = f(x) + g(x)eλy (λ 6= 0).

The substitution u = e−λy brings it to the linear equation u′x + λf(x)u+ λg(x) = 0.

1.2.4 Darboux Equation and Other Equations

◮ Darboux equation.

A Darboux equation can be represented as

[
f
( y
x

)
+ xah

( y
x

)]
y′x = g

( y
x

)
+ yxa−1h

( y
x

)
. (1.2.4.1)

Using the substitution y = xz(x) and taking z to be the independent variable, one obtains

a Bernoulli equation

[
g(z) − zf(z)

]
x′z = xf(z) + xa+1h(z),

which is considered in Section 1.2.3.

◮ Other equations.

1◦. Consider an equation of the form

xy′x = y + f(x)g(y/x).

The substitution u = y/x brings it to a separable equation, x2u′x = f(x)g(u); see Sec-

tion 1.2.1.
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2◦. Consider a more complex equation

y′x = −ϕ
′
x

ϕ
y + f(x)g(ϕy), ϕ = ϕ(x). (1.2.4.2)

The substitution w = ϕ(x)y brings it to a separable equation, w′
x = ϕ(x)f(x)g(w).

Example 1.10. The equation

y′x = −y + f(x)g(exy).

is a special case of Eq. (1.2.4.2) with ϕ = ex. Therefore, the substitution w = exy brings it to a

separable equation, w′
x = exf(x)g(v).

◆ Some other first-order equations integrable by quadrature are treated in Chapter 13.

⊙ Literature for Section 1.2: D. M. Sintsov (1913),E. L. Ince (1956), V. V. Stepanov (1958), G. M. Mur-

phy (1960), L. E. El’sgol’ts (1961), P. Hartman (1964), N. M. Matveev (1967), I. G. Petrovskii (1970),

G. F. Simmons (1972), E. Kamke (1977), G. Birkhoff and Rota (1978), M. Tenenbaum and H. Pollard (1985),

A. N. Tikhonov, A. B. Vasil’eva, and A. G. Sveshnikov (1985), R. Grimshaw (1991), M. Braun (1993),

D. Zwillinger (1997), C. Chicone (1999), G. A. Korn and T. M. Korn (2000), V. F. Zaitsev and A. D. Polyanin

(2001), A. D. Polyanin and V. F. Zaitsev (2003), W. E. Boyce and R. C. DiPrima (2004), A. D. Polyanin and

A. V. Manzhirov (2007), V. F. Zaitsev and L. V. Linchuk (2015).

1.3 Exact Differential Equations. Integrating Factor

1.3.1 Exact Differential Equations

An exact differential equation has the form

f(x, y) dx+ g(x, y) dy = 0, where
∂f

∂y
=
∂g

∂x
. (1.3.1.1)

The left-hand side of the equation is the total differential of a function of two variables

U(x, y).
The general integral, U(x, y) = C , where C is an arbitrary constant and the function U

is determined from the system:

∂U

∂x
= f,

∂U

∂y
= g.

Integrating the first equation yields U =
∫
f(x, y) dx + Ψ(y) (while integrating, the vari-

able y is treated as a parameter). On substituting this expression into the second equation,

one identifies the function Ψ (and hence, U ). As a result, the general integral of an exact

differential equation can be represented in the form

∫ x

x0

f(ξ, y) dξ +

∫ y

y0

g(x0, η) dη = C, (1.3.1.2)

where x0 and y0 are any numbers.

Example 1.11. Consider the equation

(ayn + bx)y′x + by + cxm = 0, or (by + cxm) dx+ (ayn + bx) dy = 0,
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defined by the functions f(x, y) = by + cxm and g(x, y) = ayn + bx. Computing the derivatives,

we have
∂f

∂y
= b,

∂g

∂x
= b =⇒ ∂f

∂y
=
∂g

∂x
.

Hence the given equation is an exact differential equation. Its solution can be found using formula

(1.3.1.2) with x0 = y0 = 0:

a

n+ 1
yn+1 + bxy +

c

m+ 1
xm+1 = C.

1.3.2 Integrating Factor

An integrating factor for the equation

f(x, y) dx+ g(x, y) dy = 0

is a function µ(x, y) 6≡ 0 such that the left-hand side of the equation, when multiplied by

µ(x, y), becomes a total differential, and the equation itself becomes an exact differential

equation.

An integrating factor satisfies the first-order partial differential equation,

g
∂µ

∂x
− f ∂µ

∂y
=

(
∂f

∂y
− ∂g

∂x

)
µ,

which is not generally easier to solve than the original equation.

Table 1.1 lists some special cases where an integrating factor can be found in explicit

form.

⊙ Literature for Section 1.3: G. M. Murphy (1960), N. M. Matveev (1967), E. Kamke (1977), D. Zwillinger

(1997), G. A. Korn and T. M. Korn (2000), A. D. Polyanin and V. F. Zaitsev (2003), A. D. Polyanin and

A. V. Manzhirov (2007).

1.4 Riccati Equation

1.4.1 General Riccati Equation. Simplest Integrable Cases.
Polynomial Solutions

◮ General Riccati equation.

A Riccati equation has the general form

y′x = f2(x)y
2 + f1(x)y + f0(x). (1.4.1.1)

If f2 ≡ 0, we have a linear equation (1.2.3.1), and if f0 ≡ 0, we have a Bernoulli equation

(1.2.3.3) with a = 2, whose solutions were given previously. For arbitrary f2, f1, and f0,

the Riccati equation is not integrable by quadrature.

◮ Simplest integrable cases.

Listed below are some special cases where the Riccati equation (1.4.1.1) is integrable by

quadrature.
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TABLE 1.1

An integrating factor µ = µ(x, y) for some types of ordinary differential equations f dx+ g dy = 0, where

f = f(x, y) and g = g(x, y). The subscripts x and y indicate the corresponding partial derivatives

No. Conditions for f and g Integrating factor Remarks

1 f = yϕ(xy), g = xψ(xy) µ = 1
xf−yg

xf − yg 6≡ 0;

ϕ(z) and ψ(z) are any functions

2 fx = gy, fy = −gx µ = 1
f2+g2

f + ig is an analytic function

of the complex variable x+ iy

3
fy−gx

g
= ϕ(x) µ = exp

[∫
ϕ(x) dx

]
ϕ(x) is any function

4
fy−gx

f
= ϕ(y) µ = exp

[
−
∫
ϕ(y) dy

]
ϕ(y) is any function

5
fy−gx
g−f

= ϕ(x+ y) µ = exp
[∫
ϕ(z) dz

]
, z = x+ y ϕ(z) is any function

6
fy−gx
yg−xf

= ϕ(xy) µ = exp
[∫
ϕ(z) dz

]
, z = xy ϕ(z) is any function

7
x2(fy−gx)

yg+xf
= ϕ

(
y
x

)
µ = exp

[
−
∫
ϕ(z) dz

]
, z = y

x
ϕ(z) is any function

8
fy−gx
xg−yf

= ϕ(x2 + y2) µ = exp
[
1
2

∫
ϕ(z) dz

]
, z = x2+y2 ϕ(z) is any function

9 fy − gx = ϕ(x)g − ψ(y)f µ = exp
[∫
ϕ(x) dx+

∫
ψ(y) dy

]
ϕ(x) and ψ(y) are any functions

10
fy−gx

gωx−fωy
= ϕ(ω) µ = exp

[∫
ϕ(ω) dω

] ω = ω(x, y) is any function

of two variables

1◦. The functions f2, f1, and f0 are proportional, i.e.,

y′x = ϕ(x)(ay2 + by + c),

where a, b, and c are constants. This equation is a separable equation; see Section 1.2.1.

2◦. The Riccati equation is homogeneous:

y′x = a
y2

x2
+ b

y

x
+ c.

See Section 1.2.2, Eq. (1.2.2.1) with f(z) = az2 + bz + c.

3◦. The Riccati equation is generalized homogeneous:

y′x = axny2 +
b

x
y + cx−n−2.

See Eq. (1.2.2.3) with k = −n − 1. The substitution z = xn+1y brings it to a separable

equation: xz′x = az2 + (b+ n+ 1)z + c.

4◦. The Riccati equation has the form

y′x = ax2ny2 +
m− n
x

y + cx2m.

By the substitution y=xm−nz, the equation is reduced to a separable equation: x−n−mz′x=
az2 + c.
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◆ Some other Riccati equations integrable by quadrature are treated in Chapter 13 (see

equations 13.2.2.1 to 13.2.9.14).

◮ Polynomial solutions of the Riccati equation.

Let f2 = 1, f1(x), and f0(x) be polynomials. If the degree of the polynomial

∆ = f21 − 2(f1)
′
x − 4f0

is odd, the Riccati equation cannot possess a polynomial solution. If the degree of ∆ is

even, the equation involved may possess only the following polynomial solutions:

y = − 1
2

(
f1 ±

[√
∆
])
,

where
[√

∆
]

denotes an integer rational part of the expansion of
√
∆ in decreasing powers

of x (for example,
[√
x2 − 2x+ 3

]
= x− 1).

1.4.2 Use of Particular Solutions to Construct the General Solution

◮ One particular solution is known.

Let y0 = y0(x) be a particular solution of equation (1.4.1.1). Then the substitution y =
y0 + 1/w leads to a linear equation for w = w(x):

w′
x +

[
2f2(x)y0(x) + f1(x)

]
w + f2(x) = 0.

The general solution of the Riccati equation (1.4.1.1) can be written as

y = y0(x) + Φ(x)
[
C −

∫
Φ(x)f2(x) dx

]−1
, (1.4.2.1)

where C is an arbitrary constant and

Φ(x) = exp
{∫ [

2f2(x)y0(x) + f1(x)
]
dx
}
. (1.4.2.2)

To the particular solution y0(x) there corresponds C =∞.

◮ Two particular solutions are known.

Let y1 = y1(x) and y2 = y2(x) be two different particular solutions of equation (1.4.1.1).

Then the general solution can be calculated by

y =
Cy1 + U(x)y2
C + U(x)

, where U(x) = exp
[∫

f2(y1 − y2) dx
]
.

To the particular solution y1(x), there corresponds C =∞; and to y2(x), there corresponds

C = 0.
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◮ Three particular solutions are known.

Let y1 = y1(x), y2 = y2(x), and y3 = y3(x) be three distinct particular solutions of equa-

tion (1.4.1.1). Then the general solution can be found without quadrature:

y − y2
y − y1

y3 − y1
y3 − y2

= C.

This means that the Riccati equation has a fundamental system of solutions.

1.4.3 Some Transformations

◮ Nonlinear transformation reduces the Riccati equation to a Riccati equation.

The transformation (ϕ, ψ1, ψ2, ψ3, and ψ4 are arbitrary functions)

x = ϕ(ξ), y =
ψ4(ξ)u+ ψ3(ξ)

ψ2(ξ)u+ ψ1(ξ)

reduces the Riccati equation (1.4.1.1) to a Riccati equation for u = u(ξ).

◮ Reduction of the Riccati equation to a second-order linear equation.

The substitution

u(x) = exp
(
−
∫
f2y dx

)

reduces the general Riccati equation (1.4.1.1) to a second-order linear equation:

f2u
′′
xx −

[
(f2)

′
x + f1f2

]
u′x + f0f

2
2u = 0,

which often may be easier to solve than the original Riccati equation.

◮ Reduction of the Riccati equation to the canonical form.

The general Riccati equation (1.4.1.1) can be reduced with the aid of the transformation

x = ϕ(ξ), y =
1

F2
w − 1

2

F1

F2
+

1

2

(
1

F2

)′

ξ

, where Fi(ξ) = fi(ϕ)ϕ
′
ξ , (1.4.3.1)

to the canonical form

w′
ξ = w2 +Ψ(ξ). (1.4.3.2)

Here the function Ψ is defined by the formula

Ψ(ξ) = F0F2 −
1

4
F 2
1 +

1

2
F ′
1 −

1

2
F1
F ′
2

F2
− 3

4

(
F ′
2

F2

)2

+
1

2

F ′′
2

F2
;

the prime denotes differentiation with respect to ξ.

Transformation (1.4.3.1) depends on a function ϕ = ϕ(ξ) that can be arbitrary. For a

specific original Riccati equation, different functions ϕ in (1.4.3.1) will generate different

functions Ψ in equation (1.4.3.2). In practice, transformation (1.4.3.1) is most frequently

used with ϕ(ξ) = ξ.
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1.4.4 Special Riccati Equation

1◦. A special Riccati equation has the form

y′x + ay2 = bxm. (1.4.4.1)

For m 6= −3, the transformation

y =
1

x2η
+

1

ax
, x = ξ

1
m+3 (1.4.4.2)

brings equation (1.4.4.1) to a similar equation

η′ξ + a1η
2 = b1ξ

−m+4
m+3 , a1 =

b

m+ 3
, b1 =

a

m+ 3
.

The essential parameter m changes by the rule

m −→ −m+ 4

m+ 3
. (1.4.4.3)

(The parameters a and b are inessential, as they can be made equal to one by changing the

scale of x and y.) Repeating the above transformation k times, we arrive at a special Riccati

equation with the exponent

mk = − (2k − 1)m0 + 4k

km0 + 2k + 1
, (1.4.4.4)

where m0 = m.

2◦. Let us now discuss the integrability of the special Riccati equation.

For m= 0, it becomes separable. This equation is linked to other quadrature-integrable

special Riccati equations through transformations of the form (1.4.4.2) whose exponents

are obtained by substituting m0 = 0 in (1.4.4.4):

mk = − 4k

2k + 1
, (1.4.4.5)

where k is an arbitrary integer.

For m = −2, the equation becomes generalized homogeneous; with the substitution

y = 1/z, it is reduced to the homogeneous equation z′x = a− b(z/x)2.

THEOREM (LIOUVILLE). The values

m = − 4k

2k + 1
(k is any integer) and m = −2 (1.4.4.6)

exhaust all quadrature-integrable cases of the special Riccati equation.

3◦. If the exponent m in (1.4.4.1) is different from the values of (1.4.4.6), the solutions can

be expressed in terms of special functions. The substitution y(x) = z′x/(az) reduces the

special Riccati equation to the second-order equation

z′′xx = abxmz, (1.4.4.7)
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whose solutions can be written as

z =
√
x

[
C1J 1

m+2

(
2
√
−ab

m+ 2
x

m+2
2

)
+ C2Y 1

m+2

(
2
√
−ab

m+ 2
x

m+2
2

)]
if b < 0,

z =
√
x

[
C1I 1

m+2

(
2
√
ab

m+ 2
x

m+2
2

)
+ C2K 1

m+2

(
2
√
ab

m+ 2
x

m+2
2

)]
if b > 0,

where Jν(z) and Yν(z) are Bessel functions of the first and second kind, respectively,

while Iν(z) and Kν(z) are modified Bessel functions. If m = −2, equation (1.4.4.7) is the

Euler equation. The values (1.4.4.5) give us the set of orders ν of the Bessel functions and

modified Bessel functions at which they are expressible in terms of elementary functions.

This occurs at half-integer orders:

ν =
2k + 1

2
.

⊙ Literature for Section 1.4: G. M. Murphy (1960), N. M. Matveev (1967), W. T. Reid (1972), E. Kamke

(1977), D. Zwillinger (1997), G. A. Korn and T. M. Korn (2000), A. D. Polyanin and V. F. Zaitsev (2003),

A. D. Polyanin and A. V. Manzhirov (2007).

1.5 Abel Equations of the First Kind

1.5.1 General Form of Abel Equations of the First Kind. Simplest
Integrable Cases

◮ General form of Abel equations of the first kind.

An Abel equation of the first kind has the general form

y′x = f3(x)y
3 + f2(x)y

2 + f1(x)y + f0(x), f3(x) 6≡ 0. (1.5.1.1)

In the degenerate case f2(x) = f0(x) = 0, we have a Bernoulli equation (1.2.3.3) with

a = 3. The Abel equation (1.5.1.1) is not integrable in closed form for arbitrary fn(x).

◮ Simplest integrable cases.

Listed below are some special cases where the Abel equation of the first kind is integrable

by quadrature.

1◦. If the functions fn(x) (n = 0, 1, 2, 3) are proportional, i.e., fn(x) = ang(x), then

(1.5.1.1) is a separable equation (see Section 1.2.1).

2◦. The Abel equation is homogeneous:

y′x = a
y3

x3
+ b

y2

x2
+ c

y

x
+ d.

See Section 1.2.2, Eq. (1.2.2.1) with f(z) = az3 + bz2 + cz + d.

3◦. The Abel equation is generalized homogeneous:

y′x = ax2n+1y3 + bxny2 +
c

x
y + dx−n−2.

See Eq. (1.2.2.3) with k = −n − 1. The substitution w = xn+1y leads to a separable

equation: xw′
x = aw3 + bw2 + (c+ n+ 1)w + d.
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4◦. The Abel equation

y′x = ax3n−my3 + bx2ny2 +
m− n
x

y + dx2m

can be reduced with the substitution y = xm−nz to a separable equation: x−n−mz′x =
az3 + bz2 + c.

5◦. Let f0 ≡ 0, f1 ≡ 0, and (f3/f2)
′
x = af2 for some constant a. Then the substitution

y = f2f
−1
3 u leads to a separable equation: u′x = f22 f

−1
3 (u3 + u2 + au).

6◦. If

f0 =
f1f2
3f3

− 2f32
27f23

− 1

3

d

dx

f2
f3
, fn = fn(x),

then the solution of equation (1.5.1.1) is given by

y(x) = E
(
C − 2

∫
f3E

2 dx
)−1/2

− f2
3f3

, where E = exp

[∫ (
f1 −

f22
3f3

)
dx

]
.

◆ For other solvable Abel equations of the first kind, see Section 13.4.1.

1.5.2 Some Transformations

◮ Reduction of the Abel equation of the first kind to the canonical form.

The transformation

y = U(x)η(ξ)− f2
3f3

, ξ =

∫
f3U

2 dx, where U(x) = exp

[∫ (
f1 −

f22
3f3

)
dx

]
,

brings equation (1.5.1.1) to the canonical (normal) form

η′ξ = η3 +Φ(ξ).

Here the function Φ(ξ) is defined parametrically (x is the parameter) by the relations

Φ =
1

f3U3

(
f0 −

f1f2
3f3

+
2f32
27f23

+
1

3

d

dx

f2
f3

)
, ξ =

∫
f3U

2 dx.

◮ Reduction to an Abel equation of the second kind.

Let y0 = y0(x) be a particular solution of equation (1.5.1.1). Then the substitution

y = y0 +
E(x)

z(x)
, where E(x) = exp

[ ∫
(3f3y

2
0 + 2f2y0 + f1) dx

]
,

leads to an Abel equation of the second kind:

zz′x = −(3f3y0 + f2)Ez − f3E2.

For equations of this type, see Section 1.6.

⊙ Literature for Section 1.5: G. M. Murphy (1960), E. Kamke (1977), A. D. Polyanin and V. F. Zaitsev

(2003), A. D. Polyanin and A. V. Manzhirov (2007).
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1.6 Abel Equations of the Second Kind

1.6.1 General Form of Abel Equations of the Second Kind. Simplest
Integrable Cases

◮ General form of Abel equations of the second kind.

An Abel equation of the second kind has the general form

[y + g(x)]y′x = f2(x)y
2 + f1(x)y + f0(x), g(x) 6≡ 0. (1.6.1.1)

The Abel equation (1.6.1.1) is not integrable for arbitrary fn(x) and g(x). Given be-

low are some special cases where the Abel equation of the second kind is integrable by

quadrature.

◮ Simplest integrable cases.

1◦. If g(x) = const and the functions fn(x) (n = 0, 1, 2) are proportional, i.e., fn(x) =
ang(x), then (1.6.1.1) is a separable equation (see Section 1.2.1).

2◦. The Abel equation is homogeneous:

(y + sx)y′x =
a

x
y2 + by + cx.

See Section 1.2.2. The substitution w = y/x leads to a separable equation.

3◦. The Abel equation is generalized homogeneous:

(y + sxn)y′x =
a

x
y2 + bxn−1y + cx2n−1.

See Eq. (1.2.2.3) with for k = n. The substitution w = yx−n leads to a separable equation:

x(w + s)w′
x = (a− n)w2 + (b− ns)w + c.

4◦. The Abel equation

(y + a2x+ c2)y
′
x = b1y + a1x+ c1

is a special case of equation (1.2.2.2) with f(w) = w and b2 = 1.

5◦. The unnormalized Abel equation

[(a1x+ a2x
n)y + b1x+ b2x

n]y′x = c2y
2 + c1y + c0

can be reduced to the form (1.6.1.1) by dividing it by (a1x+ a2x
n). Taking y to be the in-

dependent variable and x= x(y) to be the dependent one, we obtain the Bernoulli equation

(c2y
2 + c1y + c0)x

′
y = (a1y + b1)x+ (a2y + b2)x

n.

See Eq. (1.2.3.3).
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6◦. The general solution of the Abel equation

(y + g)y′x = f2y
2 + f1y + f1g − f2g2, fn = fn(x), g = g(x),

is given by

y = −g + CE + E

∫
(f1 + g′x − 2f2g)E

−1 dx, where E = exp
(∫

f2 dx
)
.

7◦. If f1 = 2f2g − g′x, the general solution of the Abel equation (1.6.1.1) has the form

y = −g ± E
[
2

∫
(f0 + gg′x − f2g2)E−2 dx+ C

]1/2
, where E = exp

(∫
f2 dx

)
.

◆ For other solvable Abel equations of the second kind, see Section 13.3.

1.6.2 Some Transformations

◮ Reduction of the Abel equation of the second kind to the canonical form.

1◦. The substitution

w = (y + g)E, where E = exp
(
−
∫
f2 dx

)
, (1.6.2.1)

brings equation (1.6.1.1) to the simpler form

ww′
x = F1(x)w + F0(x), (1.6.2.2)

where

F1 = (f1 − 2f2g + g′x)E, F0 = (f0 − f1g + f2g
2)E2.

2◦. In turn, equation (1.6.2.2) can be reduced, by the introduction of the new independent

variable

z =

∫
F1(x) dx, (1.6.2.3)

to the canonical form

ww′
z − w = R(z). (1.6.2.4)

Here the function R(z) is defined parametrically (x is the parameter) by the relations

R =
F0(x)

F1(x)
, z =

∫
F1(x) dx.

Substitutions (1.6.2.1) and (1.6.2.3), which take the Abel equation to the canonical form,

are called canonical.

Remark 1.3. The transformation w = aŵ, z = aẑ + b brings (1.6.2.4) to a similar equation,

ŵŵ′
ẑ − ŵ = a−1R(aẑ + b). Therefore the function R(z) in the right-hand side of the Abel equa-

tion (1.6.2.4) can be identified with the two-parameter family of functions a−1R(az + b).

Remark 1.4. Any Abel equations of the second kind related by linear (in y) transformations of

the form

x̃ = ϕ1(x), ỹ = ϕ2(x)y + ϕ3(x)

have identical canonical forms, up to the two-parameter family of functions specified in Remark 1.3.
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◮ Reduction to an Abel equation of the first kind.

The substitution y + g = 1/u leads to an Abel equation of the first kind:

u′x + (f0 − f1g + f2g
2)u3 + (f1 − 2f2g + g′x)u

2 + f2u = 0.

For equations of this type, see Section 1.5.

1.6.3 Use of Particular Solutions to Construct Self-Transformations
and the General Solution

◮ Use of particular solutions to construct self-transformations.

1◦. Let a particular solution y0 = y0(x) of an Abel equation of the second kind (1.6.1.1)

be known. Then the substitution U = 1/(y − y0) leads to a similar Abel equation:

(
U +

1

y0 + g

)
U ′
x =

y′0 − f1 − 2f2y0
y0 + g

U2 − f2
y0 + g

U. (1.6.3.1)

If f0 ≡ 0, equation (1.6.1.1) has the trivial particular solution y0 = 0. In this case, the

change of variable U = 1/y leads to an Abel equation of the form (1.6.3.1) with y0 = 0.

2◦. Given a particular solution y0 = y0(x) of the Abel equation of the second kind

yy′x = f1(x)y + f0(x), (1.6.3.2)

the substitution

w =
H(x)y

y20(y0 − y)
, where H(x) = exp

(∫
f1
y0
dx

)
, (1.6.3.3)

brings (1.6.3.2) to another, similar Abel equation:

ww′
x = F1(x)w + F0(x). (1.6.3.4)

Here, the functions F1 = F1(x) and F0 = F0(x) are defined by

F1 =
(f1y0 + 3f0)H

y40
, F0 =

f0H
2

y60
.

It is not difficult to verify by direct substitution that equation (1.6.3.4) has a particular

solution:

w0(x) = −
H(x)

y20(x)
. (1.6.3.5)

The transformation based on the particular solution (1.6.3.5) brings the Abel equation

(1.6.3.4) to the original equation (1.6.3.2) with f1 having the opposite sign.

Remark 1.5. In general, the canonical forms of equations (1.6.1.1) and (1.6.3.1) and also those

of equations (1.6.3.2) and (1.6.3.4) are different. See Section 1.6.2.

Remark 1.6. Given k distinct particular solutions yk of equation (1.6.3.2), k distinct Abel equa-

tions of the second kind related to (1.6.3.2) by known substitutions of the form (1.6.3.3) can be

constructed.
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◮ Use of particular solutions to construct the general solution.

For some Abel equations of the second kind, the general solution can be found if n of its

distinct particular solutions yk = yk(x), k = 1, . . . , n, are known.

Below we consider Abel equations of the canonical form

yy′x − y = R(x), (1.6.3.6)

whose general solutions can be represented in the special form:

n∏

k=1

|y − yk(x)|mk = C. (1.6.3.7)

Here, the particular solutions yk = yk(x) correspond to C = 0 (if mk > 0) and C =∞ (if

mk < 0).

The logarithmization of (1.6.3.7), followed by the differentiation of the resulting ex-

pression and rearrangement, leads to the equation

n∑

j=1

[
mj(y

′
x − y′j)

n∏

k=1
k 6=j

(y − yk)
]
≡ y′x

n−1∑

s=1

Φsy
s +

n−1∑

s=1

Ψsy
s = 0, (1.6.3.8)

where y′j = (yj)
′
x. We require that equation (1.6.3.8) be equivalent to the Abel equa-

tion (1.6.3.6). To this end, we set:

Ψν = −Φν , Ψν−1 = −R(x)Φν and equate the other Φi and Ψi with zero.

Selecting different values ν = 1, 2, . . . , n − 1, we obtain n − 1 systems of differential-

algebraic equations; only one of the systems, corresponding to mk 6= 0 for all k = 1, . . . , n
and yi 6= yj for i 6= j, leads to a nondegenerate solution of the form (1.6.3.7). Consider

the Abel equations (1.6.3.6) corresponding to the simplest solutions of the form (1.6.3.7)

in more detail.

1◦. Case n = 2. The system of differential-algebraic equations has the form:

m1 +m2 =M,

m1y2 +m2y1 = 0,

m1y
′
1 +m2y

′
2 =M,

m1y
′
1y2 +m2y1y

′
2 = −MR(x),

(1.6.3.9)

where M is an arbitrary constant. It follows from the second and third equations that

y1 =
m1

m2
1 −m2

2

(Mx+N), y2 = −
m2

m2
1 −m2

2

(Mx+N),

where N is an arbitrary constant. Introducing the new constants

A =
m1m2(m1 +m2)

(m1 −m2)2
M, B =

m1m2(m1 +m2)

(m1 −m2)2
N,

we find from the last relation in (14) that

R(x) = Ax+B, (1.6.3.10)
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which means that for n = 2 the right-hand side of the Abel equation is a linear function

of x (see equation 13.3.1.2).

The particular solutions y1, y2, and the corresponding exponents m1, m2 in the gen-

eral integral (1.6.3.7), are expressed in terms of the coefficients A, B on the right-hand

side (1.6.3.10) of the Abel equation (1.6.3.6) as follows:

y1 =
1 +
√
4A+ 1

2A
(Ax+B), m1 = 2A+ 1 +

√
4A+ 1,

y2 = −
1 +
√
4A+ 1

2A+ 1 +
√
4A+ 1

(Ax+B), m2 = 2A.

2◦. Case n = 3. Equation (1.6.3.8) with n = 3 leads to the Abel equation (1.6.3.6) with

the right-hand side

R(x) = − 2
9x+A+Bx−1/2 (1.6.3.11)

(see equation 13.3.1.3).

The particular solutions and the exponents in the general integral (1.6.3.7) are expressed

as:

ys =
2

3
x+

2

3
λsx

1/2 +
3B

λs
, ms =

2A

3(2λ2s − 3A)
,

where the λs are roots of the cubic equation

λ3 − 9
2Aλ− 9

2B = 0, s = 1, 2, 3.

3◦. Case n = 4. Equation (1.6.3.8) with n = 4 leads to the Abel equation (1.6.3.6) with

the right-hand side

R(x) = − 3
16x+Ax−1/3 +Bx−5/3

(see equation 13.3.3.61).

The particular solutions and the exponents in (1.6.3.7) are expressed as:

y1,2 =
3
4x±

√
3A+ 3

2

√
−3B x1/3 +

√
−3B x−1/3, m1,2 = ∓

(
2A−

√
−3B

)
,

y3,4 =
3
4x±

√
3A− 3

2

√
−3B x1/3 −

√
−3B x−1/3, m3,4 = ±

√
4A2 + 3B.

4◦. Case n> 4. The equations for ys are algebraic equations of degree n and, in the general

case, are not soluble in radicals. The right-hand side of equation (1.6.3.6) is expressed as

R(x) = −n− 1

n2
x+Q(x),

with the function Q(x) bounded as x→∞ (Q can be specified in parametric form).

⊙ Literature for Section 1.6: B. M. Koyalovich (1894), G. M. Murphy (1960), E. Kamke (1977), V. F. Za-

itsev and A. D. Polyanin (1993, 1994, 2001) A. D. Polyanin and V. F. Zaitsev (2003), A. D. Polyanin and

A. V. Manzhirov (2007).
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1.7 Classification and Specific Features of Some Classes

of Solutions

◆ The uniqueness and existence theorems stated in Section 1.1 do not say anything about

qualitative features of solutions arising in specific problems. This section deals with cer-

tain classes of problems and solutions that have important distinguishing features or show

pronounced unusual properties (as a rule, such problems cannot be solved with standard

numerical methods).

1.7.1 Stable and Unstable Solutions. Equilibrium Points

◮ Stable, asymptotically stable, and unstable solutions.

In many applications, the independent variable x plays the role of time.

Let ȳ(x) be a solution of equation (1.1.1.1) with initial condition (1.1.1.2) and let ỹ(x)
be a solution of the equation with initial condition y(x0) = ỹ0.

1◦. A solution ȳ(x) is called (Lyapunov) stable if for any sufficiently small ε > 0, there

exists a δ > 0 such that any solution ỹ(x) that is close to ȳ(x) initially, |y0 − ỹ0| < δ,
remains close to it at all times: |ȳ(x)− ỹ(x)| < δ for all x ≥ x0.

Any solution that is not stable is called unstable.

2◦. A solution ȳ(x) is called asymptotically stable if it is stable and, in addition, there

exists a δ0 > 0 such that whenever |y0 − ỹ0| < δ0, we have |ȳ(x)− ỹ(x)| → 0 as x→∞.

Remark 1.7. In stability analysis, it is normally assumed, without loss of generality, that x0 =0.

(This can be achieved with the substitution X = x− x0.) Further, with the change of variable

Y = y − ȳ(x),

the stability analysis of any solution is reduced to that of the zero solution, Y = 0.

◮ Equilibrium points. An example.

Simplest solutions of the form y = ẙ, where ẙ = const, are called equilibrium points (or

stationary points). Equilibrium points (if they exist) make the right-hand side of equation

(1.1.1.1) zero for any x. For simplicity and clarity, we will discuss equilibrium points of

autonomous equations, whose right-hand side is independent explicitly of x,

y′x = f(y). (1.7.1.1)

Equilibrium points are roots of the algebraic (or transcendental) equation f(ẙ) = 0.

Example 1.12. Consider the logistic differential equation

y′x = ky(1− y), k > 0. (1.7.1.2)

It is one of the simplest nonlinear population mathematical models in which y denotes the dimen-

sionless number of individuals. Solving the quadratic equation f (̊y) = ẙ − ẙ2 = 0 gives two

equilibrium points: ẙ1 = 0 and ẙ2 = 1.
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The general solution of the separable equation (1.7.1.2) is

y =
Cekx

1 + Cekx
, (1.7.1.3)

where C is an arbitrary constant. At C = 0 and C =∞, we get the equilibrium points ẙ1 and ẙ2.

The solution to equation (1.7.1.2) satisfying the initial condition y(0) = a corresponds to C =
y0

1−y0
in (1.7.1.3) and is expressed as

y =
aekx

1− a+ aekx
. (1.7.1.4)

The initial value in the logistic equation (1.7.1.2), describing model population dynamics, is

assumed to be positive, a > 0. For small initial values, a ≪ 1, the solution initially rises expo-

nentially as aekx, which corresponds to the Malthusian population model with unlimited resources.

However, as x increases, the rate of rise decreases gradually and the solution levels off tending to

an equilibrium.

The first equilibrium solution ẙ1 = 0 is unstable, since all nearby solutions go away from it

rapidly with an exponential rate. The second equilibrium solution ẙ2 = 1 is asymptotically stable,

since any solution (1.7.1.4) with a > 0 tends exponentially to the equilibrium value, y(x)→ ẙ2 as

x→∞.

◮ Theorems on stability or instability of equilibrium points. An example.

For the autonomous equation (1.7.1.1), there is a simple criterion for determining stability

or instability of an equilibrium, which is stated below.

THEOREM 1 (ON STABILITY/INSTABILITY OF EQUILIBRIA). Let ẙ be an equilibrium

point of the autonomous differential equation (1.7.1.1). If f ′y(ẙ) < 0, then ẙ is asymptoti-

cally stable. If f ′y(ẙ) > 0, then ẙ is unstable.

Example 1.13. Consider the differential equation

y′x = y − y3.
Solving the cubic equation f (̊y) = ẙ− ẙ3 = 0 gives three equilibrium points: ẙ1 = −1, ẙ2 = 0, and

ẙ3 = 1.

Using Theorem 1, we calculate the derivative, f ′
y(y) = 1− 3y2, and its values at the equilibria:

f ′
y(−1) = −2 < 0, f ′

y(0) = 1 > 0, f ′
y(1) = −2 < 0.

This suggests that equilibrium points ẙ1 = −1 and ẙ3 = 1 are both stable, while ẙ2 = 0 is unstable.

Theorem 1 does not answer the question whether the equilibria with f ′y(ẙ) = 0 are

stable or unstable. In this situation, the following additional criterion can be used.

THEOREM 2 (ON ASYMPTOTIC STABILITY OF EQUILIBRIA). An equilibrium point

ẙ of the autonomous differential equation (1.7.1.1) is asymptotically stable if and only if

f(y) > 0 for ẙ− δ < y < ẙ and f(y)< 0 for ẙ < y < ẙ+ δ, where δ is a sufficiently small

positive number.

◮ Supplementary remarks, examples, and theorems.

1◦. A solution to an ODE, y = y(x), is said to be indefinitely extensible to the right if it

exists for any x ∈ [x0,∞), where x0 is the value appearing in the statement of the Cauchy

problem. A solution that is not indefinitely extensible to the right will reach the bound of

the existence range at a final x = x∗.
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Example 1.14. The domain of definition of the equation

y′x =
(
1−

√
1− ax2y2

)
f(x, y) (1.7.1.5)

with a > 0 and 0 < f(x, y) <∞ is given by x2y2 ≤ 1/a. Equation (1.7.1.5) has an equilibrium at

y = 0. The Cauchy problem solutions for this equation with the initial condition y(0) = y0 behave

differently depending on the sign of y0: if y0 < 0, the solutions are indefinitely extensible to the

right, while if y0 > 0, these reach the bound of the existence range at a finite x and so are not

indefinitely extensible to the right. The equilibrium y = 0 is unstable, since there is an inextensible

solution in any of its neighborhoods.

Remark 1.8. Numerical solutions of the Cauchy problem for equation (1.7.1.5) with a = 1 and

f(x, y) ≡ 1 and various initial conditions are presented in Section 19.4.3 (see Fig. 19.7).

2◦. The definition of stability involves the initial point x0, which is further treated as the

initial time. The question arises whether the property of stability is dependent on the choice

of the initial time.

THEOREM. If an equilibrium of an equation (or system of equations) is stable for an

initial time x= x0, it is also stable for any subsequent time x= x1 >x0 taken as the initial.

3◦. Let us now discuss whether the property of stability of a solution is preserved under

transformations of the class of equations (or system of equations) in question. In general,

this property in not preserved.

Example 1.15. Consider the Cauchy problem

y′x = 1, y(0) = y0, (1.7.1.6)

whose solution is given by

y = y0 + x. (1.7.1.7)

Let us investigate the stability of this solution.

If the initial condition is perturbed, y(0) = y0+ δ, we get the perturbed solution ỹ = y0+ δ+x.

The difference between the perturbed and original solutions, |ỹ − y| = δ, is indefinitely small for

small δ and any y0.

Changing in (1.7.1.6) to the new dependent variable z = y2, we obtain the problem

z′x = 2
√
z, z(0) = y20 . (1.7.1.8)

Then, solution (1.7.1.7) becomes

z = (y0 + x)2.

With the perturbed initial condition, z(0) = y20 + δ, the solution of the transformed problem is given

by

z̃ =
(√

y20 + δ + x
)2
.

The difference

|z̃ − z| = 2
(√

y20 + δ − y0
)
x+ δ

is unbounded as x→∞ no matter how small the initial perturbation δ was.

One can see that, in this problem, the solution stable with respect to the original variable y
became unstable with respect to the new variable z.

4◦. For the stability analysis to be correct, one has to understand clearly the variables

by which the stability is assessed. Furthermore, if the analysis of the problem requires

changing to new variables, one must guarantee the equivalence of the stability properties in

terms of the original and new variables.

Transformations of variables that preserve the properties of stability between solutions

are called allowable.
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THEOREM ON ALLOWABLE TRANSFORMATIONS. Let y ≡ 0 be a stable solution of

the equation y′x = f(x, y) and let the transformation y = ϕ(x, z) with ϕ(x, 0) ≡ 0 satisfy

the conditions:

(i) the partial derivative ϕz is nondegenerate in a neighborhood of z = 0;

(ii) the functions ϕ and ϕ−1 are uniformly continuous in x at z = 0.

Then the solution z ≡ 0 of the equation z′x = ϕ−1
z

[
f(x, ϕ)−ϕx

]
is stable. Otherwise, it is

unstable.

1.7.2 Blow-Up Solutions

◮ Blow-up solutions with a power-law singularity. An example.

There are Cauchy problems whose solution tends to infinity at a certain finite value, x= x∗,

which does not appear in the equation explicitly and is unknown in advance. Such solutions

exist on a limited interval, denoted x0 ≤ x < x∗ throughout this section, and are called

blow-up solutions.

In general, a blow-up solution with a power-law singularity at a singular point x∗ can

be represented as

y ≈ A(x∗ − x)−µ, µ > 0, (1.7.2.1)

where A is some constant. So we have |y(x∗)| =∞.

Example 1.16. Consider a model Cauchy problem for a separable ODE:

y′x = 1
2 by

3 (x > 0), y(0) = 1. (1.7.2.2)

The exact solution to this problem is

y =
1√

1− bx
. (1.7.2.3)

If b ≤ 0, the solution exists and is bounded for all x > 0. If b > 0, the solution is only defined on a

limited interval, 0 ≤ x < x∗, where x∗ = 1/b is a singular point, at which the solution is infinite.

This is a blow-up solution, which does not exist for x > x∗. One cannot see in advance from the

statement of the problem (1.7.2.2) that the solution has a singularity.

Remark 1.9. In problems where the independent variable x plays the role of time, the critical

value x∗ is often called the blow-up time.

◮ Blow-up solutions with a logarithmic singularity. An example.

There are blow-up problems whose solution has a singularity other than (1.7.2.1). In par-

ticular, blow-up solutions with a logarithmic singularity at a point x∗ can be represented

as

y ≈ A ln
[
B(x∗ − x)

]
,

where A and B > 0 are some constants. We have |y(x∗)| =∞.

Example 1.17. Consider a model Cauchy problem for a separable ODE:

y′x = bey (x > 0), y(0) = a (1.7.2.4)

with a ≥ 0 and b > 0. The exact solution is

y = − ln(e−a − bx). (1.7.2.5)

It has a logarithmic singularity at x∗ = e−a/b and does not exist for x > x∗.
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◮ Autonomous equation.

Let us look at the Cauchy problem for the autonomous equation (1.7.1.1) subject to the

initial condition y(0) = a > 0. We assume that f(y) > 0 is a continuous function defined

for all y ≥ a. The solution to the Cauchy problem for x > 0 can be written in implicit form

as

x =

∫ y

a

dξ

f(ξ)
. (1.7.2.6)

This is a blow-up solution if and only if the definite integral (1.7.2.6) is finite for y = ∞.

The critical value x∗ is evaluated as:

x∗ =
∫ ∞

a

dξ

f(ξ)
. (1.7.2.7)

Sufficient criterion for the existence of a blow-up solution. Suppose that the above

conditions hold as well as the limiting relation

lim
y→∞

f(y)

y1+σ
= s, 0 < s ≤ ∞, (1.7.2.8)

for some σ > 0. Then the solution to the Cauchy problem is a blow-up solution. If f(y) is

differentiable, then (1.7.2.8) can be replaced with the equivalent criterion

lim
y→∞

[
y−σf ′y(y)

]
= s1, 0 < s1 ≤ ∞ (σ > 0).

Example 1.18. Consider the Cauchy problem for the power-law autonomous ODE

y′x = byk, y(0) = a, (1.7.2.9)

where a > 0 and b > 0. The solution is given by formula (1.7.2.6), which can be solved for the

unknown function and rewritten explicitly as

y =
[
a1−k − b(k − 1)x

]− 1
k−1 .

It is apparent that the problem has a blow-up solution if k > 1. The critical value x∗ is given by

x∗ =
1

ak−1b(k − 1)
.

We use criterion (1.7.2.8) in order to determine, without solving problem (1.7.2.9), the value of

the parameter k corresponding to the blow-up solution. To do so, σ in (1.7.2.8) can be chosen in the

form σ = k − 1 to give s = b. Since the condition σ > 0 must hold, we get k > 1.

◮ Nonautonomous equations. Some estimates.

Consider the Cauchy problem for the general equation (1.1.1.1) subject to the initial condi-

tion (1.1.1.2) with x0 = 0. Suppose the conditions

f(x, y) ≥ g(y) > 0 for all y ≥ y0 > 0 and x ≥ 0, (1.7.2.10)

hold and the finite integral

Ig =

∫ ∞

y0

dξ

g(ξ)
<∞ (1.7.2.11)
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exists. Then the solution y = y(x) of the Cauchy problem (1.1.1.1)–(1.1.1.2) is a blow-up

solution, with the critical value x∗ satisfying the inequality

x∗ ≤ Ig. (1.7.2.12)

This estimate follows from the inequality (see Theorem 1 in Section 1.12.1)

y(x) ≥ yg(x), (1.7.2.13)

where y(x) is the solution of the Cauchy problem (1.1.1.1)–(1.1.1.2), while yg(x) is the

solution of the auxiliary Cauchy problem

y′x = g(y) (x > 0), y(0) = y0. (1.7.2.14)

Example 1.19. Consider the Cauchy problem for the Riccati equation

y′x = y2 + h(x) (x > 0); y(0) = a > 0. (1.7.2.15)

If h(x) ≥ 0 for x ≥ 0, then the following inequality holds:

f(x, y) ≡ y2 + h(x) ≥ g(y) ≡ y2 > 0 for all y = y0 > a.

Evaluating the integral (1.7.2.11) with g(y) = y2 and y0 = a, we get

Ig =

∫ ∞

a

dξ

ξ2
=

1

a
<∞. (1.7.2.16)

Hence, the solution to the Cauchy problem (1.7.2.15) with h(x) ≥ 0 is a blow-up solution, with

x∗ ≤ 1/a.

Remark 1.10. In the Cauchy problem for the more complex Riccati equation

y′x = y2 + f1(x)y + f0(x) (x > 0); y(0) = a > 0,

one can obtain, apart from the obvious conditions f1(x)≥0 and f0(x)≥0, more complex conditions

for the existence of a blow-up solution:

a+ 1
2 f1(0) > 0, f0(x) ≥ 1

4 f
2
1 (x) − 1

2 f
′
1(x) for x ≥ 0.

This can be proved by substituting u = y + 1
2 f1(x) into the equation and taking into account the

results obtained in Example 1.19.

Consider two cases in which the estimate (1.7.2.12) can be improved. We use the

notation:

I1 =

∫ ∞

y0

dξ

f(0, ξ)
, I2 =

∫ ∞

y0

dξ

f(I1, ξ)
. (1.7.2.17)

1◦. Suppose the integral I1 in (1.7.2.17) exists and is finite. Suppose also that the condi-

tions

f(x, y) > 0 and fx(x, y) ≥ 0 for all 0 ≤ x ≤ I1 and y ≥ y0 > 0 (1.7.2.18)

hold. Then, the integral I2 exists and we get

f(0, y) ≤ f(x, y) ≤ f(I1, y) for 0 ≤ x ≤ I1 (1.7.2.19)



“K16435’ — 2017/9/28 — 15:05 — #57

1.7. Classification and Specific Features of Some Classes of Solutions 31

and

y1(x) ≤ y(x) ≤ y2(x) for 0 ≤ x ≤ I2 ≤ I1. (1.7.2.20)

Here, y(x) is the solution to the Cauchy problem (1.1.1.1)–(1.1.1.2), while y1(x) and y2(x)
are the respective solutions of the auxiliary Cauchy problems

y′x = f(0, y) (x > 0), y(0) = y0; (1.7.2.21)

y′x = f(I1, y) (x > 0), y(0) = y0. (1.7.2.22)

The solutions y1(x) and y2(x) can be represented in implicit form as

x =

∫ y

y0

dξ

f(0, ξ)
and x =

∫ y

y0

dξ

f(I1, ξ)
. (1.7.2.23)

The critical value x∗ satisfies the bilateral estimate

I2 ≤ x∗ ≤ I1. (1.7.2.24)

2◦. Suppose the integrals I1 and I2 defined in (1.7.2.17) exist and are finite. Suppose also

that the conditions

f(x, y) > 0 and fx(x, y) ≤ 0 for all 0 ≤ x ≤ I2 and y ≥ y0 > 0 (1.7.2.25)

hold. Then, we get

f(I1, y) ≤ f(x, y) ≤ f(0, y) for 0 ≤ x ≤ I2 (1.7.2.26)

and

y2(x) ≤ y(x) ≤ y1(x) for 0 ≤ x ≤ I1 ≤ I2, (1.7.2.27)

where y(x) is the solution to the Cauchy problem (1.1.1.1)–(1.1.1.2), while y1(x) and y2(x)
are the respective solutions of two auxiliary Cauchy problems (1.7.2.21) and (1.7.2.22).

The last two solutions can be represented in the implicit form (1.7.2.23). The critical value

x∗ satisfies the bilateral estimate

I1 ≤ x∗ ≤ I2. (1.7.2.28)

Example 1.20. Let us look at the Cauchy problem for the Riccati equation (1.7.2.15) once again.

1◦. Suppose h(x) ≥ 0 and h′x(x) ≥ 0. In this case, the first auxiliary Cauchy problem (1.7.2.21)

becomes

y′x = y2 + h(0) (x > 0), y(0) = a. (1.7.2.29)

Its solution is determined explicitly by the first relation in (1.7.2.23) with y0 = a and f(0, y) =
y2 + h(0). By a simple rearrangement, this solution can be rewritten in explicit form as

y =
√
b
a cos(

√
b x) +

√
b sin(

√
b x)√

b cos(
√
b x)− a sin(

√
b x)

, b = h(0). (1.7.2.30)

The singular point of this solution, I1, is equal to the first integral in (1.7.2.17) with y0 = a and

f(0, y) = y2 + h(0), is given by

I1 =
1√
b

arctan

√
b

a
, b = h(0).
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The solution to the second auxiliary Cauchy problem (1.7.2.22) can be obtain from formula

(1.7.2.30) by formally replacing h(0) with h(I1). This results in the following bilateral estimate for

the critical value x∗:

I2 ≤ x∗ ≤ I1, I1 =
1√
h(0)

arctan

√
h(0)

a
, I2 =

1√
h(I1)

arctan

√
h(I1)

a
. (1.7.2.31)

In the limit case h(0)→ 0, we get

I1 = 1/a, I2 =
1√

h(1/a)
arctan

√
h(1/a)

a
.

If h(x) = const > 0, then inequalities (1.7.2.31) give the exact result x∗ = I1 = I2.

In particular, if a=1 and h(x) =xm withm> 0 in (1.7.2.15), we have I1 =1 and I2 = arctan 1.

Hence, 0.785 ≤ x∗ ≤ 1.

2◦. Let h(x) ≥ 0 and h′x(x) ≤ 0. In this case, the solution to the first auxiliary Cauchy problem

(1.7.2.29) is also given by formula (1.7.2.30), while that to the second auxiliary Cauchy problem is

obtained from (1.7.2.30) by formally replacing h(0) with h(I1). This gives the following bilateral

estimate for the critical value x∗:

I1 ≤ x∗ ≤ I2,
where the integrals I1 and I2 are defined by (1.7.2.31).

Remark 1.11. It is noteworthy that, in case 2◦, it does not matter how the function f(x, y) and

its derivative fx(x, y) behave for x > I2; in particular, the right-hand side of equation (1.1.1.1) can

be negative for x > I2.

◮ An approximate method for determining the critical value x∗.

The material below describes an approximate (engineering) method for evaluating the crit-

ical value x∗ in blow-up problems. Consider the recursive sequence of integrals

In+1 =

∫ ∞

y0

dξ

f(In, ξ)
, n = 0, 1, 2, . . . (1.7.2.32)

The first two terms coincide with the integrals (1.7.2.17) in which I0 =0. Going to the limit

in (1.7.2.32) as n→∞, we arrive at an approximate transcendental equation for x ≈ x̂∗,

x̂∗ =
∫ ∞

y0

dξ

f(x̂∗, ξ)
, x̂∗ = lim

n→∞
In. (1.7.2.33)

For autonomous equations, those with f(x, y) = f(y), formula (1.7.2.33) gives the exact

result.

Equation (1.7.2.33) can be used for rough (engineering) estimates of the critical value

x∗ ≈ x̂∗ in blow-up problems in which f(x, y)> 0 and maxx≥0 f(x, y)/minx≥0 f(x, y) =
O(1) for all y ≥ y0.

Example 1.21. In the Cauchy problem from example 1.20, the recursive sequence of integrals

is

In+1 =
1√
h(I1)

arctan

√
h(In)

a
.

Going to the limit as n→∞, we get an approximate transcendental equation for x̂∗,

x̂∗ =
1√
h(x̂∗)

arctan

√
h(x̂∗)

a
, x̂∗ = lim

n→∞
In. (1.7.2.34)

If h(x) = const, equation (1.7.2.34) provides the exact result.



“K16435’ — 2017/9/28 — 15:05 — #59

1.7. Classification and Specific Features of Some Classes of Solutions 33

In particular, if a = 1 and h(x) = x2 in (1.7.2.15), we get x̂∗ ≈ 0.8336.

Remark 1.12. For the numerical integration of problems with blow-up solutions, see Sec-

tion 1.14.4.

1.7.3 Space Localization of Solutions

◮ Preliminary remarks. An example of a spatially localized solution.

There are Cauchy problems whose solution is bounded and changes only on a finite interval,

x0 < x ≤ x∗, while being constant, y = ẙ = const, for x > x∗, where ẙ is an equilibrium

point (if y = ẙ the right-hand side of equation (1.1.1.1) is zero). The critical value x∗ does

not appear in the equation and is unknown in advance.

Example 1.22. Consider a model Cauchy problem for a separable ODE:

y′x = − 3
2 y

1/3 (x > 0), y(0) = a,

where a > 0. Its exact solution is

y(x) =

{
(a2/3 − x)3/2 if 0 ≤ x ≤ a2/3,
0 if x > a2/3.

(1.7.3.1)

This solution is nonnegative and decreases monotonically from the initial value a, at x = 0, to zero,

at x∗ = a2/3, and then remain constant for x > x∗. Solution (1.7.3.1) is smooth (it has a continuous

first derivative for all x ≥ 0, including the point x = x∗).

◮ Autonomous equations.

1◦. Let us look at a more general, than in example 1.22, Cauchy problem for an equation

with a power-law nonlinearity:

y′x = −byµ (x > 0), y(0) = a. (1.7.3.2)

If the conditions

a > 0, b > 0, 0 < µ < 1

hold, problem (1.7.3.2) has a spatially localized solution:

y(x) =





[
a1−µ − b(1− µ)x

] 1
1−µ if 0 ≤ x ≤ x∗,

0 if x > x∗,
x∗ =

a1−µ

b(1 − µ) . (1.7.3.3)

Remark 1.13. If a > 0, b > 0, and µ > 1, the solution to problem (1.7.3.2) is strictly mono-

tonically decreasing for all x > 0 and the limit relation limx→∞ y = 0 holds (so the solution is not

spatially localized).

2◦. Consider the Cauchy problem for a general autonomous equation

y′x = −f(y) (x > 0), y(0) = a. (1.7.3.4)

Let the conditions

a > 0, f(0) = 0, f(y) > 0 for 0 < y ≤ a
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hold and let there exist a µ from the interval 0 < µ < 1 such that

lim
y→0

[y−µf(y)] = s, 0 < s <∞.

Then, problem (1.7.3.4) has a spatially localized solution, which can be written in a mixed

explicit/implicit form:
{
x = Φ(y, a) if 0 ≤ x ≤ x∗,
y = 0 if x > x∗,

Φ(y, a) =

∫ a

y

dξ

f(ξ)
, x∗ = Φ(0, a). (1.7.3.5)

◮ Nonautonomous equations. Some estimates.

1◦. Consider the Cauchy problem for a general nonautonomous equation∗

y′x = −f(x, y) (x > 0), y(0) = a. (1.7.3.6)

Suppose the conditions

a > 0, f(x, 0) = 0, f(x, y) > 0 and fx(x, y) ≥ 0 for x > 0 and 0 < y ≤ a
(1.7.3.7)

hold and there exists a µ from the interval 0 < µ < 1 such that

lim
y→+0

[y−µf(x, y)] = s(x), 0 < s(x) <∞. (1.7.3.8)

Using the notation

I1 =

∫ a

0

dξ

f(0, ξ)
, I2 =

∫ a

0

dξ

f(I1, ξ)
, (1.7.3.9)

we get

f(0, y) ≤ f(x, y) ≤ f(I1, y) (1.7.3.10)

and

y2(x) ≤ y(x) ≤ y1(x). (1.7.3.11)

Here, y(x) is the solution of the Cauchy problem (1.1.1.1)–(1.1.1.2), while y1(x) and y2(x)
are the respective solutions of the two auxiliary Cauchy problems

y′x = −f(0, y) (x > 0), y(0) = a; (1.7.3.12)

y′x = −f(I1, y) (x > 0), y(0) = a. (1.7.3.13)

The solutions y1(x) and y2(x) can be represented, respectively, in implicit form as

x =

∫ a

y

dξ

f(0, ξ)
and x =

∫ a

y

dξ

f(I1, ξ)
. (1.7.3.14)

The critical value x∗ is estimated as

I2 ≤ x∗ ≤ I1. (1.7.3.15)

∗The right-hand sides of equations (1.1.1.1) and (1.7.3.6) differ in sign.
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2◦. Consider the Cauchy problem (1.7.3.6). Suppose the conditions

a > 0, f(x, 0) = 0, f(x, y) > 0 and fx(x, y) ≤ 0 for x > 0, 0 < y ≤ a (1.7.3.16)

hold and there exists a µ from the interval 0 < µ < 1 such that the limit relation (1.7.3.8)

holds. Then, we have

f(0, y) ≥ f(x, y) ≥ f(I1, y) (1.7.3.17)

and

y1(x) ≤ y(x) ≤ y2(x), (1.7.3.18)

where I1 is defined in (1.7.3.9), y(x) is the solution of the Cauchy problem (1.1.1.1)–

(1.1.1.2), while y1(x) and y2(x) are the respective solutions of the auxiliary Cauchy prob-

lems (1.7.3.12)–(1.7.3.13). The last two solutions can be represented in implicit form with

formulas (1.7.3.14). The critical value x∗ is estimated as

I1 ≤ x∗ ≤ I2. (1.7.3.19)

Example 1.23. Consider the Cauchy problem

y′x = −b√y − h(x)y (x > 0), y(0) = a, (1.7.3.20)

where a > 0, b > 0, and h(x) ≥ 0.

This is a special case of problem (1.7.3.6) with f(x, y) = b
√
y + h(x)y. Conditions (1.7.3.16)

and (1.7.3.8) hold if h′x(x) ≤ 0 and µ = 1
2 . Using formulas (1.7.3.9), we evaluate the integrals

I1 =
2

I0
ln

(
1 +

√
a

b
I0

)
, I2 =

2

I1
ln

(
1 +

√
a

b
I1

)
, I0 = h(0). (1.7.3.21)

In view of (1.7.3.19), the critical value x∗ can be estimated as

2

I0
ln

(
1 +

√
a

b
I0

)
≤ x∗ ≤

2

I1
ln

(
1 +

√
a

b
I1

)
. (1.7.3.22)

Since the equation in question is a Bernoulli equation, problem (1.7.3.20) admits the exact

solution

y = E2(x)

[√
a− 1

2
b

∫ x

0

dξ

E(ξ)

]2
, E(x) = exp

[
− 1

2

∫ x

0

h(ξ) dξ

]
, (1.7.3.23)

which is valid in the range 0 ≤ x ≤ x∗, where x∗ is the root of the equation
∫ x∗

0

dξ

E(ξ)
=

2
√
a

b
. (1.7.3.24)

For x > x∗, we get y = 0.

In the special case h(x) = h0 = const, the root of equation (1.7.3.24) is given by

x∗ =
2

h0
ln

(
1 +

√
a

b
h0

)
. (1.7.3.25)

Let us dwell on the special case of problem (1.7.3.20) with a = b = 1 and h(x) = 2/(1 + x).
Using (1.7.3.21), we find that I1 = ln 3 ≈ 1.099 and I2 = 2

ln 3 ln(1 + ln 3) ≈ 1.349. Hence,

1.099 < x∗ < 1.349.

The exact value of x∗ is determined by relation (1.7.3.24), in which E(x) = 1/(1 + x). It follows

that x∗ =
√
5− 1 ≈ 1.136, which is the positive root of the quadratic equation x2∗ + 2x∗ − 4 = 0.
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◮ An approximate method for calculating the critical value x∗.

Below is an approximate (engineering) method for calculating the critical value x∗ in spatial

localization problems. Consider the recursive sequence of integrals

In+1 =

∫ a

0

dξ

f(In, ξ)
, n = 0, 1, 2, . . . (1.7.3.26)

The first two terms coincide with the integrals (1.7.3.9) with I0 = 0. Going to the limit in

(1.7.3.26) as n→∞, we arrive at the following transcendental equation for x ≈ x̂∗:

x̂∗ =
∫ a

0

dξ

f(x̂∗, ξ)
, x̂∗ = lim

n→∞
In. (1.7.3.27)

For autonomous equations, with f(x, y) = f(y), equation (1.7.3.27) provides an exact

result.

1.7.4 Cauchy Problems Admitting Non-Unique Solutions

This section discusses a few Cauchy problems that have a unique solution at sufficiently

small deviations form the initial value of the independent variable, x0 ≤ x ≤ x0 + δ, while

for x>x∗≥ δ, where x∗ is a critical value, the desired function y= y(x) can be non-unique.

◮ An example of a problem with a non-unique solution.

Example 1.24. Let us look at the model Cauchy problem

y′x = −|y|1/2 (x > 0), y(0) = 1. (1.7.4.1)

If 0 ≤ y < 1, the equation is equivalent to y′x = −y1/2. Then the solution coincides with solution

(1.7.3.3) of problem (1.7.3.2) with a = b = 1 and µ = 1
2 :

y(x) = 1
4 (2− x)

2, 0 ≤ x ≤ x∗ = 2. (1.7.4.2)

At x = 2, the function y(x) and its derivative y′x(x) both become zero. Therefore, arguing as in

Section 1.7.3, one can construct a spatially localized solution by extending solution (1.7.4.2) with

zero to obtain

y(x) =

{
1
4 (2− x)2 if 0 ≤ x ≤ 2,

0 if x ≥ 2.
(1.7.4.3)

This extension is not unique. Specifically, the one-parameter family of smooth functions

y(x) =





1
4 (2− x)2 if 0 ≤ x ≤ 2,

0 if 2 ≤ x ≤ c,
− 1

4 (x − c)2 if x ≥ c,
(1.7.4.4)

where c is an arbitrary number such that c ≥ x∗ = 2, is also a solution. This means that the Cauchy

problem (1.7.4.1) admits infinitely many smooth solutions.

The spatially localized solution (1.7.4.3) is unique if the additional condition y ≥ 0 is imposed.

Alternatively, problem (1.7.4.1) can be treated as a boundary-value problem with the additional

condition

y(b) = −k
with b ≥ 2 and k > 0. This problem has a unique solution given by (1.7.4.4) with c = b− 2

√
k.
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◮ Autonomous and nonautonomous equations.

1◦. Consider a more general Cauchy problem than in Example 1.24:

y′x = −b|y|µ (x > 0), y(0) = a. (1.7.4.5)

Under the conditions

a > 0, b > 0, 0 < µ < 1

problem (1.7.4.5) has a one-parameter family of smooth solutions

y(x) =





[
a1−µ − b(1− µ)x

] 1
1−µ if 0 ≤ x ≤ x∗,

0 if x∗ ≤ x ≤ c,

−
[
b(1− µ)(x− c)

] 1
1−µ if x ≥ c,

x∗ =
a1−µ

b(1− µ) ,

where c is an arbitrary number such that c ≥ x∗.

2◦. The autonomous Cauchy problem

y′x = −|y|µg(y) (x > 0), y(0) = a

has a non-unique solution under the conditions

a > 0, 0 < µ < 1, 0 < g(y) <∞ for 0 ≤ y ≤ a.

3◦. The nonautonomous Cauchy problem

y′x = −|y|µg(x, y) (x > 0), y(0) = a

has a non-unique solution under the conditions

a > 0, 0 < µ < 1, 0 < g(x, y) <∞ for x > 0 and 0 ≤ y ≤ a. (1.7.4.6)

⊙ Literature for Section 1.7: R. Meyer-Spasche (1998), A. Goriely and C. Hyde (2000), V. F. Zhuravlev

(2001), P. J. Olver (2012).

1.8 Equations Not Solved for the Derivative

and Equations Defined Parametrically

1.8.1 Method of “Integration by Differentiation” for Equations Not
Solved for the Derivative

In the general case, a first-order equation not solved for the derivative,

F (x, y, y′x) = 0, (1.8.1.1)

can be rewritten in the equivalent form

F (x, y, t) = 0, t = y′x. (1.8.1.2)
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We look for a solution in parametric form: x = x(t), y = y(t). In accordance with the first

relation in (1.8.1.2), the differential of F is given by

Fx dx+ Fy dy + Ft dt = 0. (1.8.1.3)

Using the relation dy = t dx, we eliminate successively dy and dx from (1.8.1.3). As a

result, we obtain the system of two first-order ordinary differential equations:

dx

dt
= − Ft

Fx + tFy
,

dy

dt
= − tFt

Fx + tFy
. (1.8.1.4)

By finding a solution of this system, one thereby obtains a solution of the original equa-

tion (1.8.1.1) in parametric form, x = x(t), y = y(t).

Remark 1.14. The application of the above method may lead to loss of individual solutions

(satisfying the condition Fx + tFy = 0); this issue should be additionally investigated.

Remark 1.15. One of the differential equations of system (1.8.1.4) can be replaced by the al-

gebraic equation F (x, y, t) = 0; see equation (1.8.1.2). This technique is used subsequently in

Section 1.8.2.

1.8.2 Equations Not Solved for the Derivative. Specific Equations

◮ Equations of the form y = f(y′x).

This equation is a special case of equation (1.8.1.1), with F (x, y, t) = y − f(t). The

procedure described in Section 1.8.1 yields

dx

dt
=
f ′(t)
t

, y = f(t). (1.8.2.1)

Here the original equation is used instead of the second equation in system (1.8.1.4); this is

valid because the first equation in (1.8.1.4) does not depend on y explicitly.

Integrating the first equation in (1.8.2.1) yields the solution in parametric form,

x =

∫
f ′(t)
t

dt+ C, y = f(t).

◮ Equations of the form x = f(y′x).

This equation is a special case of equation (1.8.1.1), with F (x, y, t) = x − f(t). The

procedure described in Section 1.8.1 yields

x = f(t),
dy

dt
= tf ′(t). (1.8.2.2)

Here the original equation is used instead of the first equation in system (1.8.1.4); this is

valid because the second equation in (1.8.1.4) does not depend on x explicitly.

Integrating the second equation in (1.8.2.1) yields the solution in parametric form,

x = f(t), y =

∫
tf ′(t) dt+ C.
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◮ Clairaut’s equation y = xy′x + f(y′x).

Clairaut’s equation is a special case of equation (1.8.1.1), with F (x, y, t) = y− xt− f(t).
It can be rewritten as

y = xt+ f(t), t = y′x. (1.8.2.3)

This equation corresponds to the degenerate case Fx+ tFy ≡ 0, where system (1.8.1.4)

cannot be obtained. One should proceed in the following way: the first relation in (1.8.2.3)

gives dy = x dt + t dx + f ′(t) dt; performing the substitution dy = t dx, which follows

from the second relation in (1.8.2.3), one obtains

[x+ f ′(t)] dt = 0.

This equation splits into dt = 0 and x + f ′(t) = 0. The solution of the first equation is

obvious: t = C; it gives the general solution of Clairaut’s equation,

y = Cx+ f(C), (1.8.2.4)

which is a family of straight lines. The second equation generates a solution in parametric

form,

x = −f ′(t), y = −tf ′(t) + f(t), (1.8.2.5)

which is a singular solution and is the envelope of the family of lines (1.8.2.4).

Remark 1.16. There are also “compound” solutions of Clairaut’s equation; they consist of part

of curve (1.8.2.5) joined with the tangents at finite points; these tangents are defined by formula

(1.8.2.4).

◮ Lagrange’s equation y = xf(y′x) + g(y′x).

Lagrange’s equation is a special case of equation (1.8.1.1), with F (x, y, t) = y − xf(t)−
g(t). In the special case f(t) ≡ t, it coincides with Clairaut’s equation.

The procedure described in Section 1.8.1 yields

dx

dt
+

f ′(t)
f(t)− t x =

g′(t)
t− f(t) , y = xf(t) + g(t). (1.8.2.6)

Here the original equation is used instead of the second equation in system (1.8.1.4); this is

valid because the first equation in (1.8.1.4) does not depend on y explicitly.

The first equation of system (1.8.2.6) is linear. Its general solution has the form x =
ϕ(t)C + ψ(t); the functions ϕ and ψ are defined in Section 1.2.3 (see formula (1.2.3.2)).

Substituting this solution into the second equation in (1.8.2.6), we obtain the general solu-

tion of Lagrange’s equation in parametric form,

x = ϕ(t)C + ψ(t), y =
[
ϕ(t)C + ψ(t)

]
f(t) + g(t).

Remark 1.17. With the above method, solutions of the form y = tkx + g(tk), where the tk
are roots of the equation f(t) − t = 0, may be lost. These solutions can be particular or singular

solutions of Lagrange’s equation.
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1.8.3 Equations Defined Parametrically and Differential-Algebraic
Equations

In general, first-order ordinary differential equations defined parametrically is written using

two coupled equations of the form

F1(x, y, y
′
x, t) = 0, F2(x, y, y

′
x, t) = 0, (1.8.3.1)

where y = y(x) is an unknown function, t = t(x) is a functional parameter, F1(. . . ) and

F2(. . . ) are given functions of their arguments.

In what follows, it will be assumed that the derivative y′x can be isolated from one of

the equations (1.8.3.1) to get y′x = G(x, y, t). By eliminating the derivative from the other

equation, one can rewrite the original parametric equation in the canonical form

F (x, y, t) = 0, y′x = G(x, y, t). (1.8.3.2)

Below we deal with the general case where the parameter t cannot be eliminated from the

equations (1.8.3.2).

In the theory of differential-algebraic equations, equations of the form (1.8.3.2) are

called systems of semi-explicit DAEs or systems of ODEs with constraints. The standard

way of reducing such equations to an ordinary system of ODEs for y = y(x) and t = t(x)
is to differentiate the first equation in (1.8.3.2) with respect to x. However, there is an

alternative system of ODEs for y= y(t) and x= x(t) which is more convenient for seeking

exact solutions to semi-explicit DAEs. This system is derived below.

By taking the full differential of the first equation, we can rewrite system (1.8.3.2) as

Fx dx+ Fy dy + Ft dt = 0, dy = G(x, y, t) dx, (1.8.3.3)

where Fx, Fy, and Ft are the respective partial derivatives of the function F = F (x, y, t).
The parametric equation (1.8.3.2) can be integrated in three ways, which are outlined below.

1◦. Eliminating dx from (1.8.3.3) yields a first-order ODE for y = y(t):

(Fx +GFy)y
′
t +GFt = 0. (1.8.3.4)

In conjunction with the first relation in (1.8.3.2), equation (1.8.3.4) may be simpler than the

original parametric equation, in which case these can be used to seek solutions in parametric

form.

2◦. Eliminating dy from (1.8.3.3) yields a first-order ODE for x = x(t):

(Fx +GFy)x
′
t + Ft = 0. (1.8.3.5)

Equation (1.8.3.5) in conjunction with the first relation in (1.8.3.2) can be simpler than the

original equation, in which case these can be used to seek solutions in parametric form.

3◦. With the second relation in (1.8.3.3), we eliminate dy and then dx from the first relation

in (1.8.3.3) to arrive at the system of two ODEs

x′t = −
Ft

Fx +GFy
, y′t = −

GFt

Fx +GFy
. (1.8.3.6)

If found, a solution to this system will be a solution to the original equation (1.8.3.2) in

parametric form.
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Remark 1.18. With the above techniques, isolated solutions, satisfying Fx +GFy = 0, may be

lost; this issue calls for further analysis (see also Example 1.27).

Example 1.25. Consider the following first-order ODE defined in parametric form:

x = f(t), y′x = g(t), (1.8.3.7)

where t is the parameter, while f(t) and g(t) are given, sufficiently arbitrary functions.

It is a special case of equation (1.8.3.3) with F = x− f(t) and G = g(t). We have

Fx = 1, Fy = 0, Ft = −f ′
t(t). (1.8.3.8)

Substituting (1.8.3.8) into (1.8.3.4) gives the separated equation y′t− g(t)f ′
t(t) = 0. Integrating this

equation and taking into account the first relation in (1.8.3.7), we arrive at the general solution to

equation (1.8.3.7) in parametric form

x = f(t), y =

∫
f ′
t(t)g(t) dt+ C, (1.8.3.9)

where C is an arbitrary constant.

For solution (1.8.3.9) to exit, it suffices that the function f(t) is continuously differentiable and

the integral exists.

Remark 1.19. In the special case g(t) = t, ODE (1.8.3.7) is equivalent to x= f(y′x); its general

solution can be found in Section 1.8.2.

Example 1.26. Consider the following first-order ODE defined in parametric form:

y = f(t), y′x = g(t). (1.8.3.10)

It is a special case of equation (1.8.3.3) with F = y − f(t) and G = g(t). We have

Fx = 0, Fy = 1, Ft = −f ′
t(t). (1.8.3.11)

Substituting (1.8.3.11) into (1.8.3.5) yields the separated equation g(t)y′t − f ′
t(t) = 0. In view of

(1.8.3.10), its solution gives the general solution to equation (1.8.3.10) in parametric form

x =

∫
f ′
t(t)

g(t)
dt+ C, y = f(t), (1.8.3.12)

where C is an arbitrary constant.

Remark 1.20. In the special case g(t)= t, ODE (1.8.3.10) is equivalent to y= f(y′x); its general

solution can be found in Section 1.8.2.

Example 1.27. Consider the equation

F (x, y, t) = 0, y′x = −Fx

Fy
, (1.8.3.13)

which corresponds to the degenerate case G = −Fx/Fy and Fx + GFy ≡ 0 (see Remark 1.18).

Eliminating dy from (1.8.3.3) gives

Ft dt = 0.

This equation splits into dt = 0 and Ft = 0. The solution of the first equation is obvious: t = C; it

gives the general solution to the original equation in implicit form:

F (x, y, C) = 0.

The second equation generates a singular solution, which is defined by two algebraic (or transcen-

dental) coupled equations:

F (x, y, t) = 0, Ft(x, y, t) = 0.
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◮ Transformation of standard differential equations to parametric equations.

The standard first-order ODE

y′x = f(x, y) (1.8.3.14)

can be rewritten as a parametric ODE defined by two relations

f(x, y)− t = 0, y′x = t. (1.8.3.15)

This equation is a special case of equation (1.8.3.2) with F (x, y, t) = f(x, y) − t and

G(x, y, t) = t. It can be reduced to a standard system of first-order ODEs:

(fx + tfy)x
′
t = 1, (fx + tfy)y

′
t = t. (1.8.3.16)

The system is obtained by substituting F = f − t and G = t in the equations of (1.8.3.6).

System (1.8.3.16) is convenient for the numerical integration of Cauchy problems with

blow-up or square-root singularity, in which the solution, y = y(x), or its first derivative

become infinite at a finite value x = x∗ (the number x∗ is unknown in advance and is to

be determined in solving the problem). In such problems, the critical value x = x∗ for

equation (1.8.3.14) corresponds to t → ±∞ for system (1.8.3.16). See Sections 1.14.4

and 1.14.5 for the usage of system (1.8.3.16) in the numerical integration of equations of

the form (1.8.3.14).

⊙ Literature for Section 1.7: G. M. Murphy (1960), N. M. Matveev (1967), E. Kamke (1977), K. E. Bre-

nan, S. L. Campbell, and L. R. Petzold (1996), A. D. Polyanin and V. F. Zaitsev (2003), A. D. Polyanin and

A. V. Manzhirov (2007), A. D. Polyanin and A. I. Zhurov (2016a, 2016b, 2017a, 2017b).

1.9 Contact Transformations

1.9.1 General Form of Contact Transformations.
Method for the Construction of Contact Transformations

◮ General form of contact transformations.

A contact transformation has the form

x = F (X,Y, Y ′
X ),

y = G(X,Y, Y ′
X ),

(1.9.1.1)

where the functions F (X,Y,U) and G(X,Y,U) are chosen so that the derivative y′x does

not depend on Y ′′
XX :

y′x =
y′X
x′X

=
GX +GY Y

′
X +GUY

′′
XX

FX + FY Y ′
X + FUY ′′

XX

= H(X,Y, Y ′
X). (1.9.1.2)

The subscripts X, Y , and U after F and G denote the respective partial derivatives (it is

assumed that FU 6≡ 0 and GU 6≡ 0).

It follows from (1.9.1.2) that the relation

∂G

∂U

( ∂F
∂X

+ U
∂F

∂Y

)
− ∂F

∂U

( ∂G
∂X

+ U
∂G

∂Y

)
= 0 (1.9.1.3)
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holds; the derivative is calculated by

y′x =
GU

FU
, (1.9.1.4)

where GU/FU 6≡ const.

The application of contact transformations preserves the order of differential equations.

The inverse of a contact transformation can be obtained by solving system (1.9.1.1) and

(1.9.1.4) for X, Y , Y ′
X .

◮ Method for the construction of contact transformations.

Suppose the function F = F (X,Y,U) in the contact transformation (1.9.1.1) is specified.

Then relation (1.9.1.3) can be viewed as a linear partial differential equation for the second

function G. The corresponding characteristic system of ordinary differential equations (see

Polyanin, Zaitsev, and Moussiaux, 2002),

dX

1
=
dY

U
= − FU dU

FX + UFY
,

admits the obvious first integral:

F (X,Y,U) = C1, (1.9.1.5)

where C1 is an arbitrary constant. It follows that, to obtain the general representation of the

function G = G(X,Y,U), one has to deal with the ordinary differential equation

Y ′
X = U, (1.9.1.6)

whose right-hand side is defined in implicit form by (1.9.1.5). Let the first integral of

equation (1.9.1.6) have the form

Φ(X,Y,C1) = C2.

Then the general representation of G = G(X,Y,U) in transformation (1.9.1.1) is given by

G = Ψ(F, Φ̃),

with Ψ(F, Φ̃) representing an arbitrary function of two variables, F = F (X,Y,U) and

Φ̃ = Φ(X,Y, F ).

1.9.2 Examples of Contact Transformations

◮ Contact transformations linear in the derivative.

Example 1.28. Legendre transformation:

x = Y ′
X , y = XY ′

X − Y, y′x = X (direct transformation);

X = y′x, Y = xy′x − y, Y ′
X = x (inverse transformation).

This transformation is used for solving some equations. In particular, the nonlinear equation

(xy′x − y)af(y′x) + yg(y′x) + xh(y′x) = 0

can be reduced by the Legendre transformation to a Bernoulli equation: [Xg(X) + h(X)]Y ′
X =

g(X)Y − f(X)Y a (see Section 1.2.3).
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Example 1.29. Contact transformation (a 6= 0):

x = Y ′
X + aY, y = beaXY ′

X , y′x = beaX (direct transformation);

X =
1

a
ln
y′x
b
, Y =

1

a

(
x− y

y′x

)
, Y ′

X =
y

y′x
(inverse transformation).

Remark 1.21. It is apparent from this example that a contact transformation that is linear in the

derivative can have a nonlinear inverse, which is also a contact transformation.

Table 1.2 presents some other contact transformations linear in the derivative.

TABLE 1.2

Some contact transformations linear in the derivative

No. Contact transformations Notations and remarks

1

x = Y ′
X +

a

X
Y , y = Xa+1Y ′

X −XaY , y′x = Xa+1;

X = (y′x)
1

a+1 , Y =
1

a+ 1
(xy′x − y)(y′x)

− a
a+1 , Y ′

X =
xy′x + ay

(a+ 1)y′x

a 6= −1

2 x = fY ′
X + gY , y = (fY ′

X + gY )

∫
ϕ

f
dX − ϕY , y′x =

∫
ϕ

f
dX

f = f(X) and g = g(X)
are arbitrary functions,

ϕ = exp
[∫

(g/f) dX
]

3 x = Y ′
X+ fY + g, y = IY ′

X+ (fI − eF )Y + gI −
∫
geF dX , y′x = I

f = f(X) and g = g(X)
are arbitrary functions,

F =
∫
f dX , I =

∫
eF dX

◮ Contact transformations nonlinear in the derivative.

Example 1.30. Contact transformation (a 6= 0):

x = Y ′
X + aX, y = 1

2 (Y
′
X)2 + aY, y′x = Y ′

X (direct transformation);

X =
1

a

(
x− y′x

)
, Y =

1

2a

[
2y − (y′x)

2
]
, Y ′

X = y′x (inverse transformation).

Example 1.31. Contact transformation (ab 6= 0):

x = a(Y ′
X)2 − bX, y = 2a(Y ′

X)3 − 3bY, y′x = 3Y ′
X (direct transformation);

X =
a

9b
(y′x)

2 − 1

b
x, Y =

2a

81b
(y′x)

3 − 1

3b
y, Y ′

X =
1

3
y′x (inverse transformation).

Table 1.3 presents some other contact transformations nonlinear in the derivative.

⊙ Literature for Section 1.8: D. Zwillinger (1997), A. D. Polyanin and V. F. Zaitsev (2003), A. D. Polyanin

and A. V. Manzhirov (2007).

1.10 Pfaffian Equations

1.10.1 Preliminary Remarks

A Pfaffian equation is an equation of the form

P (x, y, z) dx +Q(x, y, z) dy +R(x, y, z) dz = 0. (1.10.1.1)
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TABLE 1.3

Some contact transformations nonlinear in the derivative

No. Contact transformations

1

x = Y ′
X +

1

X
Y , y = X2(Y ′

X)2 − Y 2, y′x = 2X2Y ′
X (direct transformation)

X = ± 1

x

√
xy′x − y, Y = ± xy′x − 2y

2
√
xy′x − y

, Y ′
X =

x2y′x
2(xy′x − y)

(inverse transformation)

2

x = eX(Y ′
X − Y ), y = (Y ′

X)2 − Y 2, y′x = 2e−XY ′
X (direct transformation)

X = ln
( ±x√

xy′x − y

)
, Y = ± 2y − xy′x

2
√
xy′x − y

, Y ′
X = ± xy′x

2
√
xy′x − y

(inverse transformation)

3 x = (Y ′
X)2 − Y 2, y = Y ′

X coshX − Y sinhX , y′x =
coshX

2Y ′
X

(direct transformation)

4 x = (Y ′
X)2 + Y 2, y = Y ′

X cosX + Y sinX , y′x =
cosX

2Y ′
X

(direct transformation)

5

x = X − Y Y ′
X , y = −Y

√
(Y ′

X)2 − 1, y′x =
Y ′
X√

(Y ′
X)2 − 1

(direct transformation)

X = x− yy′x, Y = y
√

(y′x)2 − 1, Y ′
X = − y′x√

(y′x)2 − 1
(inverse transformation)

6

x = X − aY ′
X√

(Y ′
X)2 + 1

, y = Y +
a√

(Y ′
X)2 + 1

, y′x = Y ′
X (direct transformation)

X = x+
ay′x√

(y′x)2 + 1
, Y = y − a√

(y′x)2 + 1
, Y ′

X = y′x (inverse transformation)

7

x = a(Y ′
X)k − bX , y = ak(Y ′

X)k+1 − b(k + 1)Y , y′x = (k + 1)Y ′
X (direct transformation)

X =
a(y′x)

k

b(k + 1)k
− x

b
, Y =

ak(y′x)
k+1

b(k + 1)k+2
− y

b(k + 1)
, Y ′

X =
y′x
k + 1

(inverse transformation)

Here ab 6= 0 and k 6= −1

Equation (1.10.1.1) always has a solution x = x0, y = y0, z = z0, where x0, y0, and z0
are arbitrary constants. Such simple solutions are not considered below.

We will distinguish between the following two cases:

1. Find a two-dimensional solution to the Pfaffian equation, when the three variables

x, y, z are connected by a single relation (a certain condition must hold for such a solution

to exist).

2. Find a one-dimensional solution to the Pfaffian equation, when the three variables

x, y, z are connected by two relations.

1.10.2 Completely Integrable Pfaffian Equations

◮ Condition for integrability of the Pfaffian equation by a single relation.

Let a solution of the Pfaffian equation be representable in the form z = z(x, y), where z
is the unknown function and x, y are independent variables. From equation (1.10.1.1) we
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find the expression for the differential:

dz = −P
R
dx− Q

R
dy. (1.10.2.1)

On the other hand, since z = z(x, y), we have

dz =
∂z

∂x
dx+

∂z

∂y
dy. (1.10.2.2)

Equating the right-hand sides of (1.10.2.1) and (1.10.2.2) to each other and taking into

account the independence of the differentials dx and dy, we obtain an overdetermined

system of equations of the form

zx = −P/R, zy = −Q/R. (1.10.2.3)

In the general case, system (1.10.2.3) is unsolvable. To derive a necessary consis-

tency condition for the system, let us differentiate the first equation with respect to y and

the second with respect to x. Equating the expressions of the second derivatives zxy and

zyx to each other and then eliminate the first derivatives from the resulting relations using

(1.10.2.3), we obtain a necessary condition for consistency of system (1.10.2.3):

P (Qz −Ry) +Q(Rx − Pz) +R(Py −Qx) = 0. (1.10.2.4)

If condition (1.10.2.4) is satisfied identically, the Pfaffian equation (1.10.1.1) is inte-

grable by one relation of the form

U(x, y, z) = C, (1.10.2.5)

where C is an arbitrary constant. In this case, the Pfaffian equation is said to be completely

integrable. The left-hand side of a completely integrable Pfaffian equation (1.10.1.1) can

be represented in the form

P (x, y, z) dx +Q(x, y, z) dy +R(x, y, z) dz ≡ µ(x, y, z) dU(x, y, z),

where µ(x, y, z) is an integrating factor.

◮ Solution methods for completely integrable Pfaffian equations. Examples.

There are two main methods for the solution of completely integrable Pfaffian equations.

These methods are outlined below.

First method. An integrable Pfaffian equation can be solved by the direct solution of

the overdetermined system (1.10.2.3).

Example 1.32. Consider the Pfaffian equation

aey−z dx+ (bey−z + 1) dy − dz = 0. (1.10.2.6)

In this case, we have P = aey−z , Q= bey−z+1, andR=−1; the consistency condition (1.10.2.4)

is satisfied identically. System (1.10.2.3) has the form

zx = aey−z, zy = bey−z + 1. (1.10.2.7)

To solve the first equation, let us make the change of variable w = ez to obtain the linear

equation wx = aey. Its general solution has the form w = aeyx+ ϕ(y), where ϕ(y) is an arbitrary
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function. Going back to the original variable, we find the general solution of the first equation of

system (1.10.2.7):

z = ln[aeyx+ ϕ(y)]. (1.10.2.8)

Substituting this solution into the second equation of system (1.10.2.7), we obtain a linear first-order

equation for ϕ = ϕ(y):
ϕ′
y = ϕ+ bey.

Its general solution is ϕ = (by + C)ey , where C is an arbitrary constant. Substituting this solution

into (1.10.2.8), we obtain the following solution of system (1.10.2.7):

z = ln[aeyx+ (by + C)ey] = y + ln(ax+ by + C).

It is the solution of the Pfaffian equation (1.10.2.6).

Second method. For solving a completely integrable Pfaffian equation, the following

technique can also be used: it is first assumed that x = const in equation (1.10.1.1), which

corresponds to dx = 0. Then the resulting ordinary differential equation is solved for

z = z(y), where x is treated as a parameter, and the constant of integration is regarded as

an arbitrary function of x: C = ϕ(x). Finally, by substituting the resulting solution into the

original equation (1.10.1.1), one finds the function ϕ(x).

Example 1.33. Consider the Pfaffian equation

y(xz + a) dx+ x(y + b) dy + x2y dz = 0. (1.10.2.9)

The integrability condition (1.10.2.4) is satisfied identically. Let us set dx= 0 in equation (1.10.2.9)

to obtain the ordinary differential equation

(y + b) dy + xy dz = 0. (1.10.2.10)

Treating x as a parameter, we find the general solution of the separable equation (1.10.2.10):

z = − 1

x
(y + b ln |y|) + ϕ(x), (1.10.2.11)

where ϕ(x) is the constant of integration, dependent on x. On substituting (1.10.2.11) into the

original equation (1.10.2.9), we arrive at a linear ordinary differential equation for ϕ(x):

x2ϕ′
x + xϕ+ a = 0.

Its general solution is expressed as

ϕ(x) = − a
x
ln |x|+ C

x
,

where C is an arbitrary constant. Substituting this ϕ(x) into (1.10.2.11) yields the solution of the

Pfaffian equation (1.10.2.9):

z = − 1

x
(y + a ln |x|+ b ln |y| − C).

This solution can be equivalently represented in the form of an integral (1.10.2.5) as

xz + y + a ln |x|+ b ln |y| = C.

◮ Geometric interpretation.

Let us introduce the vector F = {P,Q,R}. Then the condition of complete integrability

(1.10.2.4) of the Pfaffian equation (1.10.1.1) can be written in the dot product form: F ·
curl F = 0. Solution (1.10.2.5) represents a one-parameter family of surfaces orthogonal

to F.
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1.10.3 Pfaffian Equations Not Satisfying the Integrability Condition

Consider now Pfaffian equations that do not satisfy the condition of integrability by one re-

lation. In this case, relation (1.10.2.4) is not satisfied identically and there are two different

methods for the investigation of such equations.

First method. Relation (1.10.2.4) is treated as an algebraic (transcendental) equation

for one of the variables. For example, solving it for z, we get a relation z = z(x, y).∗ The

direct substitution of this solution into (1.10.1.1), with x and y regarded as independent

variables, answers the question whether it is a solution of the Pfaffian equation. The thus

obtained solutions (if any) do not contain a free parameter.

Second method. One-dimensional solutions are sought in the form of two relations.

One relation is prescribed, for example, in the form

z = f(x), (1.10.3.1)

where f(x) is an arbitrary function. Using it, one eliminates z from the Pfaffian equation

(1.10.1.1) to obtain an ordinary differential equation for y = y(x):

Q(x, y, f(x))y′x + P (x, y, f(x)) +R(x, y, f(x))f ′x(x) = 0.

Suppose the general solution of this equation has the form

Φ(x, y, C) = 0, (1.10.3.2)

where C is an arbitrary constant. Then formulas (1.10.3.1) and (1.10.3.2) define a one-

dimensional solution of the Pfaffian equation in the form of two relations involving one

arbitrary function and one free parameter.

Example 1.34. Consider the Pfaffian equation

y dx+ dy + x dz = 0. (1.10.3.3)

Substituting P = y, Q = 1, and R = x into the left-hand side of condition (1.10.2.4), we find that

x+ 1 6≡ 0. Therefore, equation (1.10.3.3) is not integrable by one relation.

Let us look for one-dimensional solutions by choosing one relation in the form (1.10.3.1). Con-

sequently, we arrive at the ordinary differential equation

y′x + y + xf ′
x(x) = 0.

Its general solution has the form

y = Ce−x − e−x

∫
exxf ′

x(x) dx, (1.10.3.4)

where C is an arbitrary constant. Formulas (1.10.3.1) and (1.10.3.4) represent a one-dimensional

solution of the Pfaffian equation (1.10.3.3) involving an arbitrary function f(x) and an arbitrary

constant C.

Remark 1.22. For equations that are not completely integrable, the first relation can be chosen

in a more general form than (1.10.3.1):

z = f(x, y),

where f(x, y) is an arbitrary function of two arguments. Using it to eliminate z from the Pfaffian

equation, we obtain an ordinary differential equation for y = y(x). However, it is impossible to

find the general solution of this equation in closed form even for very simple equations, including

equation (1.10.3.3).

⊙ Literature for Section 1.9: G. A. Korn and T. M. Korn (2000), A. D. Polyanin and V. F. Zaitsev (2012).

∗There may be several such relations, and even infinitely many.
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1.11 Approximate Analytic Methods for Solution of ODEs

1.11.1 Method of Successive Approximations (Picard Method)

◮ Description of the method.

The method of successive approximations consists of two stages. At the first stage, the

Cauchy problem

y′x = f(x, y) (equation), (1.11.1.1)

y(x0) = y0 (initial condition) (1.11.1.2)

is reduced to the equivalent integral equation:

y(x) = y0 +

∫ x

x0

f(t, y(t)) dt. (1.11.1.3)

Then a solution of equation (1.11.1.3) is sought using the formula of successive approxi-

mations:

yn+1(x) = y0 +

∫ x

x0

f(t, yn(t)) dt; n = 0, 1, 2, . . . (1.11.1.4)

The initial approximation y0(x) can be chosen arbitrarily; the simplest way is to take the

number y0 that appears in the initial condition (1.11.1.2). The iterative process converges

as n →∞, provided the conditions of the theorems in Section 1.1.1 are satisfied (see also

below).

◮ Estimates of the convergence range and error of approximation.

Suppose that the function f(x, y) is continuous in the rectangle

|x− x0| ≤ a, |y − y0| ≤ b, (1.11.1.5)

and satisfies the Lipschitz condition y:

|f(x, y1)− f(x, y2)| ≤ K|y1 − y2|, K = const, (1.11.1.6)

with respect to y for |x− x0| ≤ a.

Remark 1.23. The Lipschitz condition (1.11.1.6) holds, in particular, if f = f(x, y) has a

bounded derivative fy such that |fy| ≤ K .

Since the function f(x, y) is continuous in the closed region (1.11.1.5), it is bounded in

this region: |f(x, y)| ≤ M . Under the above conditions, a solution to problem (1.11.1.1)–

(1.11.1.2) exists and is unique on the interval

|x− x0| ≤ c, c = min(a, b/M);

the solution can be found as the limit of successive approximations defined by formula

(1.11.1.4).

The estimate

|y(x)− yn(x)| ≤
M

K

(Kc)n

n!
(1.11.1.7)

holds true; however, the bound is greatly overestimated. In practice, the successive approx-

imations should be stopped at an n at which yn and yn+1 coincide to within a selected error

threshold.
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Example 1.35. Consider the Cauchy problem

y′x = αyp + βxq , y(0) = 0, (1.11.1.8)

where p, q, α, and β are free parameters, with p > 0 and q > −1.

Let us choose y0(x) = 0 to be the initial approximation. The recurrence formula (1.11.1.4)

gives the first and second approximations

y1(x) =

∫ x

0

βtq dt =
β

q + 1
xq+1,

y2(x) =

∫ x

0

[
αβp

(q + 1)p
xp(q+1) + βtq

]
dt =

αβp

(q + 1)p(pq + p+ 1)
xpq+p+1 +

β

q + 1
xq+1.

Let us focus on the special case p = q = 2 and α = β = 1. The corresponding first three

approximations are

y1(x) =
1
3x

3,

y2(x) =
1
3x

3 + 1
63x

7, (1.11.1.9)

y3(x) =

∫ x

0

[
( 13 t

3 + 1
63 t

7)2 + t2
]
dt = 1

3x
3 + 1

63x
7 + 2

2079x
11 + 1

59535x
15.

In the rectangle |x| ≤ 1, |y|< 1, which corresponds to x0 = y0 = 0 and a= b = 1 in (1.11.1.5),

the approximations y2(x) and y3(x) are quite close to each other:
∣∣y3(x)− y2(x)

∣∣ =
∣∣ 2
2079x

11 + 1
59535x

15
∣∣ ≤ 2

2079 + 1
59535 < 10−3.

Hence, we can set

y(x) ≃ 1
3x

3 + 1
63x

7. (1.11.1.10)

To assess the accuracy of the estimate (1.11.1.7), we evaluate the constant K appearing in the

Lipschitz condition (1.11.1.6) with f = y2+x2 in the rectangle |x| ≤ 1, |y|< 1 (which corresponds

to x0 = y0 = 0 and a = b = 1 in (1.11.1.5)):

K = max
|x|≤1, |y|<1

|fy| = max
|x|≤1, |y|<1

|2y| = 2.

We also evaluate the constants

M = max
|x|≤1, |y|<1

|f | = 2, c = min
a=b=1

(a, b/M) = 1
2 .

Substituting these values into (1.11.1.7) with n = 3 yields

|y(x)− y3(x)| ≤ 1
3! < 0.17. (1.11.1.11)

This estimate will be shown later on to be quite rough, two orders of magnitude worse than the true

error (see Example 1.36).

1.11.2 Newton–Kantorovich Method

◮ Description of the method.

Suppose there is a not-too-rough initial approximation of the solution to a problem. In

a nutshell, the Newton–Kantorovich method serves to construct more and more accurate

successive approximations each obtained by solving a linear ODE.

Suppose there is an approximate solution ȳ to problem (1.11.1.1)–(1.11.1.2) that satis-

fies the condition

y − ȳ = ε, (1.11.2.1)
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where |ε|≪ 1 (here and henceforth, we omit the argument x of the function ε). Substituting

y = ȳ + ε into the right-hand side of equation (1.11.1.1), expanding it in the Taylor series

in powers of ε, and retaining only the first two terms, we obtain

y′x = f(x, ȳ + ε) =⇒ y′x = f(x, ȳ) + fy(x, ȳ)ε+ o(ε). (1.11.2.2)

Omitting terms of the order of o(ε), we replace ε with the left-hand side of (1.11.2.1) and

rearrange to obtain

y′x − fy(x, ȳ)y = f(x, ȳ)− fy(x, ȳ)ȳ. (1.11.2.3)

The approximate relation (1.11.2.3) forms the basis of the Newton–Kantorovich method.

Specifically, given an approximation yn = yn(x), one finds the next approximation yn+1 =
yn+1(x) as the solution of the linear equation

y′n+1 − fy(x, yn)yn+1 = f(x, yn)− fy(x, yn)yn (1.11.2.4)

satisfying the initial condition (1.11.1.2). The recursive sequence of equations (1.11.2.4) is

obtained from (1.11.2.3) by the formal substitutions y = yn+1 and ȳ = yn.

The first-order ODE (1.11.2.4) subject to the initial condition (1.11.1.2) has the solution

yn+1(x) = En(x)

[
y0 +

∫ x

x0

gn(z)

En(z)
dz

]
, (1.11.2.5)

where

En(x) = exp

[∫ x

x0

fy(t, yn(t)) dt

]
, gn(x) = f(x, yn(x)) − fy(x, yn(x))yn(x).

◮ Convergence condition and error estimate of the approximate method.

Suppose the function f = f(x, y) and its partial derivatives fy and fyy are all continuous

in the rectangle (1.11.1.5); hence, these are bounded:

|fy(x, y)| ≤M1, |fyy(x, y)| ≤M2. (1.11.2.6)

We assume that the initial approximation y0(x) is defined for |x−x0| ≤ a and satisfies the

inequality |y0(x)− y0| ≤ b. Denote

ρ = max
|x−x0|≤a

∣∣∣∣y0(x)− y0 −
∫ x

x0

f(t, y0(t)) dt

∣∣∣∣. (1.11.2.7)

If the initial approximation is close to the exact solution, then ρ must be small. We set

γ = aM2ρe
2aM1 (1.11.2.8)

and assume that the inequalities

γ ≤ 1

2
and

2ρ

1 +
√
1− 2γ

≤ b (1.11.2.9)

hold. Then the subsequent approximations (1.11.2.5) obtained by the Newton–Kantorovich

method satisfy the inequality |yn(x)− y0| ≤ b and, hence, are uniformly convergent to the
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exact solution of problem (1.11.1.1)–(1.11.1.2) on the interval |x − x0| ≤ a. The rate of

convergence is estimated by

|y(x)− yn(x)| ≤
1

2n−1
(2γ)2

n−1ρ. (1.11.2.10)

The inequality

|y(x)− y0(x)| ≤
2ρ

1 +
√
1− 2γ

(1.11.2.11)

enables one to assess the proximity of the initial approximation to the exact solution.

◮ Error estimates of approximate solutions obtained by other methods.

It is important that the inequality (1.11.2.11) can also be used to assess the accuracy of solu-

tions obtained by other approximate analytical or asymptotic methods (or obtained empiri-

cally from physical or other considerations). To this end, the approximate solution we wish

to test should be taken to be the initial approximation y0(x) in the Newton–Kantorovich

method. Then one evaluates the constants M1, M2, ρ, and γ appearing in (1.11.2.6)–

(1.11.2.8) and checks whether the inequalities (1.11.2.8) hold (these inequalities can be

satisfied by varying the parameters a and b defining the size of the domain (1.11.1.5)).

Example 1.36. Let us use the Newton–Kantorovich methods to assess the accuracy of the ap-

proximate solution to problem (1.11.1.8) with p = q = 2 and α = β = 1. The solution will be

constructed on the interval |x| ≤ 1. We take

y0(x) =
1
3x

3 + 1
63x

7 (1.11.2.12)

as the initial approximation; it satisfies the initial condition and corresponds to the second successive

approximation (see second formula in (1.11.1.9)).

Taking into account that f(x, y) = y2 + x2, we find M1, M2, ρ, and γ appearing in (1.11.2.6)–

(1.11.2.8):

M1 =M2 = 2,

ρ = max
|x|≤1

∣∣∣∣ 13x
3 + 1

63x
7 −

∫ x

0

(
t2 + 1

9 t
6 + 2

189 t
10 + 1

3969 t
14
)
dt

∣∣∣∣ = 2
2079 + 1

59535 < 0.001,

γ = 2ρe4 < 0.110.

The right-hand side of (1.11.2.11) is evaluated as

2ρ

1 +
√
1− 2γ

<
2× 0.001

1 +
√
1− 0.220

< 0.00107.

It follows that the solution to the problem, y = y(x), exists and is confined, for |x| ≤ 1, within the

bounds ∣∣y − 1
3x

3 + 1
63x

7
∣∣ < 0.00107. (1.11.2.13)

It is noteworthy that the estimate (1.11.2.13) is two orders of magnitude more precise than the

estimate (1.11.1.11) obtained in Example 1.35 by the method of successive approximations.

Remark 1.24. In this example, by evaluating the maximum discrepancy using the formula

δ = max
|x|<1

∣∣y′0(x)− y20(x) − x2
∣∣,

where y0(x) is the initial approximation (1.11.2.12), we obtain δ = 2
3×63 + 1

(63)2 < 0.011, which

is an order of magnitude more precise than the estimate of the maximum deviation of the above

approximation from the exact solution (1.11.2.13).
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One possible way of employing inequality (1.11.2.11) is to look for the approximate

solution y0(x) as a finite polynomial (satisfying the initial condition (1.11.1.2)) with free

coefficients, which are to be determined by minimizing the right-hand side of (1.11.2.7).

Apart from polynomials, one can use sums of exponential, trigonometric, or other func-

tions with undetermined coefficients. For convenience, the square of the right-hand side of

(1.11.2.7) can be minimized.

1.11.3 Method of Series Expansion in the Independent Variable

◮ Method of Taylor series expansion in the independent variable.

Let the right-hand side of equation (1.11.1.1) be an infinitely differentiable function in both

arguments. Then the solution of the Cauchy problem (1.11.1.1)–(1.11.1.2) can be sought

in the form of the Taylor series in powers of (x− x0):

y(x) = y(x0) + y′x(x0)(x− x0) +
y′′xx(x0)

2!
(x− x0)2 + · · ·+

y
(n)
x (x0)

n!
(x− x0)n + · · · .

(1.11.3.1)

The first coefficient y(x0) in solution (1.11.3.1) is defined by the initial condition (1.11.1.2).

The values of the derivatives of y(x) at x = x0 are determined from equation (1.11.1.1)

and its derivative equations (obtained by successive differentiation), taking into account

the initial condition (1.11.1.2). In particular, setting x = x0 in (1.11.1.1) and substitut-

ing (1.11.1.2), one obtains the value of the first derivative:

y′x(x0) = f(x0, y0). (1.11.3.2)

Further, differentiating equation (1.11.1.1) yields

y′′xx = fx(x, y) + fy(x, y)y
′
x. (1.11.3.3)

On substituting x = x0, as well as the initial condition (1.11.1.2) and the first deriva-

tive (1.11.3.2), into the right-hand side of this equation, one calculates the value of the

second derivative:

y′′xx(x0) = fx(x0, y0) + f(x0, y0)fy(x0, y0).

Likewise, one can determine the subsequent derivatives of y at x = x0.

Solution (1.11.3.1) obtained by this method can normally be used in only some suffi-

ciently small neighborhood of the point x = x0.

Example 1.37. Consider the Cauchy problem for the equation

y′x = ey + cosx (1.11.3.4)

with the initial condition y(0) = 0.

Since x0 =0, we will be constructing a series in powers of x. Differentiating equation (1.11.3.4)

sequentially, we find the following three derivatives:

y′′xx = eyy′x − sinx,

y′′′xxx = eyy′′xx + ey(y′x)
2 − cosx, (1.11.3.5)

y′′′′xxxx = eyy′′′xxx + 3eyy′xy
′′
xx + ey(y′x)

3 + sinx.
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Using equation (1.11.3.4), the initial condition y(0) = 0, and formulas (1.11.3.5), we evaluate

the derivatives at zero:

y′x(0) =
[
ey + cosx

]
x=y=0

= 2,

y′′xx(0) =
[
eyy′x − sinx

]
x=y=0, y′

x=2
= 2,

y′′′xxx(0) =
[
eyy′′xx + ey(y′x)

2 − cosx
]
x=y=0, y′

x=y′′

xx=2
= 5,

y′′′′xxxx(0) =
[
eyy′′′xxx + 3eyy′xy

′′
xx + ey(y′x)

3 + sinx
]
x=y=0, y′

x=y′′

xx=2, y′′′

xxx=5
= 25.

Substituting the values of the derivatives into series (1.11.3.1) with x = 0, we obtain the desired

series representation of the solution:

y = 2x+ x2 + 5
6x

3 + 25
24x

4 + · · · .

◮ Equations with integrable singularities admitting the application of Taylor’s

method.

There are differential equations (including those with integrable singularities) that cannot

be directly treated with the method of Taylor series expansion but can be transformed to

enable the application of this method.

1◦. Consider the equation with fractional powers of the argument

y′x = x−1/2f1(x, y) + f2(x, y) + x1/2f3(x, y), (1.11.3.6)

where fj(x, y) (j = 1, 2, 3) infinitely differentiable functions in both arguments for x≥ 0.

If f1(0, y) 6= 0, the right-hand side of equation (1.11.3.6) has an integrable singularity at

x = 0. The equation cannot be solved in terms of the Taylor series (1.11.3.1) with x0 = 0.

However, if one makes the change of variable x = t2, equation (1.11.3.6) becomes

y′t = 2f1(t
2, y) + 2tf2(t

2, y) + 2t2f3(t
2, y).

This equation already enables the application of the method of Taylor series expansion. It

is important to note that if f1(0, y) 6≡ 0, equation (1.11.3.6) has a singularity at x = 0.

2◦. Equation (1.11.3.6) is a special case of the equation

y′x = x−pf1(x
q, y) + f2(x

q, y) + xpf3(x
q, y), (1.11.3.7)

where p=m/n, q=k/n;m, n, and k are positive integers withm<n; fj(ξ, y) (j=1, 2, 3)

are infinitely differentiable functions in both arguments for x ≥ 0. The change of variable

x = zn reduces this equation to

y′z = nzn−m−1f1(x
k, y) + nzn−1f2(x

k, y) + nzn+m−1f3(x
k, y).

This equation does not have singularities and so is treatable with the method of Taylor

series expansion.

3◦. Consider the equation

y′x = xν−1f1(x
ν , y) + x2ν−1f2(x

ν , y) + x3ν−1f3(x
ν , y) (1.11.3.8)

where 0 < ν < 1, with rational or irrational values of ν allowed. If f1(0, y) 6≡ 0, equation

(1.11.3.8) has an integrable singularity at x = 0. With the change of variable t = xν , it can

be reduced to an equation without a singularity

νy′t = f1(t, y) + tf2(t, y) + t2f3(t, y),

which is treatable with the method of Taylor series expansion; as previously, the functions

fj(t, y) are assumed to be infinitely differentiable.
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◮ Equations involving fractional powers and untreatable with Taylor’s method.

In general, equations involving fractional powers of the independent variable cannot be

reduced to equations treatable using the method of Taylor series expansion. A local solution

to such equations in the neighborhood of x = 0 can be sought in the form

y =

m∑

j=0

Ajx
σj + o(xσj ),

with the coefficients σj and Aj to be determined successively in the analysis after substi-

tuting the series into the equation; it is assumed that σj < σj+1.

Example 1.38. Consider the equation with an integrable singularity

y′x = x−ν(a0 + a1x+ a2y) + f(x, y), 0 < ν < 1, (1.11.3.9)

where f(x, y) is an analytic function expandable in a series at x = y = 0:

f(x, y) = b0 + b1x+ b2y + · · · . (1.11.3.10)

We look for an approximate solution to equation (1.11.3.9) satisfying the initial condition

y(0) = 0 in the form

y = c1x
α + c2x

β + c3x
γ + o(xγ), 0 < α < β < γ, (1.11.3.11)

for small positive x. Substituting (1.11.3.11) into (1.11.3.9) and taking into account (1.11.3.10), we

obtain

c1αx
α−1 + c2βx

β−1 + c3γx
γ−1

= a0x
−ν + b0 + a2c1x

α−ν + b2c1x
α + a1x

1−ν + a2c2x
β−ν + · · · . (1.11.3.12)

The leading terms of the expansion are underlined on both sides (it is assumed that a0 6= 0). We see

that

α = 1− ν, c1 = a0/α. (1.11.3.13)

Substituting (1.11.3.13) into (1.11.3.12) yields

c2βx
β−1 + c3γx

γ−1 = b0 + a2c1x
1−2ν + (a1 + b2c1)x

1−ν + a2c2x
β−ν + · · · . (1.11.3.14)

Now, depending on the value of ν, a few different cases are possible, which are considered in order

below.

1◦. Let 0 < ν < 1
2 and b0 6= 0. The first term on the right is leading for small x. By matching up

the terms on the left- and right-hand sides of (1.11.3.14), we find that

β = 1, γ = 2(1− ν), c2 = b0, c3 = a2c1/γ (a2 6= 0). (1.11.3.15)

The coefficients c1 and α are defined by formulas (1.11.3.13).

2◦. Let 1
2 < ν < 1 and a2 6= 0. The second term on the right in (1.11.3.14) is leading for small x.

By matching up the respective terms on the left- and right-hand sides, we obtain

β = 2(1− ν), γ = 1, c2 = a2c1/β, c3 = b0 (b0 6= 0). (1.11.3.16)

3◦. Let ν = 1
2 . Then β = 1 and γ = 3

2 , and the original equation (1.11.3.9) becomes a special

case of equation (1.11.3.6), to which the method of Taylor series expansion will be applied after

substituting x = t2.
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1.11.4 Method of Regular Expansion in the Small Parameter

Consider a general first-order ordinary differential equation with a small parameter ε:

y′x = f(x, y, ε). (1.11.4.1)

Suppose the function f is representable as a series in powers of ε:

f(x, y, ε) =

∞∑

n=0

εnfn(x, y). (1.11.4.2)

One looks for a solution of the Cauchy problem for equation (1.11.4.1) with the initial

condition (1.11.1.2) as ε → 0 in the form of a regular expansion in powers of the small

parameter:

y =
∞∑

n=0

εnYn(x). (1.11.4.3)

Relation (1.11.4.3) is substituted in equation (1.11.4.1) taking into account (1.11.4.2). Then

one expands the functions fn into a power series in ε and matches the coefficients of like

powers of ε to obtain a system of equations for Yn(x):

Y ′
0 = f0(x, Y0), (1.11.4.4)

Y ′
1 = g(x, Y0)Y1 + f1(x, Y0), g(x, y) =

∂f0
∂y

. (1.11.4.5)

Only the first two equations are written out here. The prime denotes differentiation with

respect to x. The initial conditions for Yn can be obtained from (1.11.1.2) taking into

account (1.11.4.3):

Y0(x0) = y0, Y1(x0) = 0.

Success in the application of this method is primarily determined by the possibility of

constructing a solution of equation (1.11.4.4) for the leading term in the expansion of Y0.

It is significant that the remaining terms of the expansion, Yn with n ≥ 1, are governed by

linear equations with homogeneous initial conditions.

Example 1.39. Consider the following Cauchy problem for a nonlinear equation with a small

parameter:

y′x + y = εy2, y(0) = 1. (1.11.4.6)

The solution is sought in the form (1.11.4.3) while retaining the first three terms in the expan-

sion:

y = Y0 + εY1 + ε2Y2 + o(ε2), Yn = Yn(x). (1.11.4.7)

Substituting (1.11.4.7) into (1.11.4.6) and collecting the terms with like powers of ε yields

Y ′
0 + Y0 + ε(Y ′

1 + Y1 − Y 2
0 ) + ε2(Y ′

2 + Y2 − 2Y0Y1) + o(ε2) = 0. (1.11.4.8)

Similarly, substituting (1.11.4.7) into the original condition (1.11.4.6) gives

Y0(0)− 1 + εY1(0) + ε2Y2(0) + o(ε2) = 0. (1.11.4.9)

Now equating the terms with like powers of ε in (1.11.4.8) and (1.11.4.9) to zero, we arrive at the

following sequence of simple linear problems:

Y ′
0 + Y0 = 0, Y0(0) = 1;

Y ′
1 + Y1 = Y 2

0 , Y1(0) = 0;

Y ′
2 + Y2 = 2Y0Y1, Y2(0) = 0.
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Integrating these equations sequentially yields

Y0 = e−x,

Y1 = e−x − e−2x = e−x(1− e−x),

Y2 = e−x − 2e−2x + e−3x = e−x(1 − e−x)2.

Substituting these expressions into (1.11.4.7), we obtain the desired solution in the form

y = e−x
[
1 + ε(1− e−x) + ε2(1− e−x)2

]
+ o(ε2). (1.11.4.10)

Let us compare the asymptotic solution to problem (1.11.4.6) with the exact solution

y =
e−x

1− ε(1− e−x)
. (1.11.4.11)

By expanding expression (1.11.4.11) in a series in powers of the small parameter ε and retaining

the terms up to the second order inclusive, we arrive at the expression of the asymptotic solu-

tion (1.11.4.10).

Remark 1.25. Section 3.6.2 gives an example of solving a Cauchy problem by the method

of regular expansion for a second-order equation and also discusses characteristic features of the

method.

Remark 1.26. The methods of scaled coordinates, two-scale expansions, and matched asymp-

totic expansions are also used to solve problems defined by first-order differential equations with

a small parameter. The basic ideas of these methods and illustrative examples are given in Sec-

tions 3.6.3, 3.6.5, and 3.6.6.

⊙ Literature for Section 1.10: L. V. Kantorovich and G. P. Akilov (1959), G. M. Murphy (1960), S. G. Mikh-

lin and Kh. L. Smolitskii (1965), A. H. Nayfeh (1973, 1981), G. A. Korn and T. M. Korn (2000), E. Kamke

(1977), D. Zwillinger (1997), A. D. Polyanin and V. F. Zaitsev (2003), A. D. Polyanin and A. V. Manzhirov

(2007).

1.12 Differential Inequalities and Solution Estimates

1.12.1 Two Theorems on Solution Estimates

THEOREM 1. Let y = y(x) and u = u(x) be solutions to the differential equations

y′x = f(x, y), u′x = g(x, u) (1.12.1.1)

satisfying the condition

y(x0) ≥ u(x0) (1.12.1.2)

for some x0. If the functions f(x, y) and g(x, y) are continuous in some domain G and

f(x, y) > g(x, y), (1.12.1.3)

then the inequalities

y(x) > u(x) if x > x0, y(x) < u(x) if x < x0 (1.12.1.4)

hold in this domain.

Remark 1.27. If at least one of the functions f or g satisfies the conditions of the uniqueness

theorem from Section 1.1, then the sign > in (1.12.1.3) can be replaced with≥; moreover, the strict

inequalities in (1.12.1.4) must be replaced with non-strict ones.
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Example 1.40. Consider the special case where the right-hand side of the second equation in

(1.12.1.1) has the form

g(x, u) = buγ with b > 0 and γ > 1

and the initial conditions for both equations are the same: y(0) = u(0) = a > 0. Then the inequality

y(x)>u(x) holds for x> 0. In this case, u(x) is unbounded and exists on a finite interval 0≤x<x∗
(blow up; see also Section 1.14.4); it is given by formula (1.14.4.21) in which u must be replaced

with y. It follows that whenever the conditions

f(x, y) ≥ byγ with b > 0 and γ > 1

hold, the Cauchy problem for the equation y′x = f(x, y) with the initial condition y(0) = a > 0 also

has a blow-up solution.

THEOREM 2. Let the functions f(x, y) and g(x, y) be continuous in a domain G and

let the inequalities

|f(x, y1)− f(x, y2)| ≤ K|y1 − y2|,
|f(x, y)− g(x, y)| ≤ ε, (1.12.1.5)

the first being the Lipschitz condition, hold in G. Then the estimate

|y(x)− u(x)| ≤ ε

K

(
eK|x−x0| − 1

)
(1.12.1.6)

holds for the solutions y = y(x) and u = u(x) of the differential equations (1.12.1.1) that

share the same initial condition:

y(x0) = u(x0). (1.12.1.7)

This theorem enables one to obtain approximate solutions to nonlinear differential equa-

tions through the analysis of suitable simpler equations.

1.12.2 Chaplygin’s Theorem and Its Applications (Bilateral Estimates
of the Cauchy Problem Solution)

◮ Chaplygin’s theorem. An illustrative example.

Consider the Cauchy problem for equation (1.11.1.1) with the initial condition (1.11.1.2).

Suppose the conditions of the uniqueness theorem in Section 1.1.1 are satisfied and y=y(x)
is a solution to the problem.

Theorem (Chaplygin). Suppose there are two functions, u = u(x) and v = v(x), that

satisfy the same initial conditions as in (1.11.1.2),

u(x0) = v(x0) = y0, (1.12.2.1)

and also satisfy the differential inequalities

u′x − f(x, u(x)) < 0,

v′x − f(x, v(x)) > 0
(1.12.2.2)

for x0 < x ≤ x1. Then the inequalities

u(x) < y(x) < v(x) (1.12.2.3)

hold for x0 < x ≤ x1.
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Chaplygin’s theorem enables one to make estimates for solutions to Cauchy problems.

In order to choose the auxiliary functions u(x) and v(x) appearing in the statement of

the theorem, one should take a test function w=w(x,k) involving one or more parameters,

k= {k1, . . . , km}, and satisfying the initial condition w(x0,k) = y0. Then, one introduces

the discrepancy

δ = [y′x − f(x, y)]y=w

and selects two values of the parameter vector, k = k1 and k = k2, such that δ < 0 and

δ > 0, respectively, in the range of the argument. One chooses w(x,k1) to be u(x), which

gives a lower estimate, and w(x,k2) to be v(x), which gives an upper estimate.

Example 1.41. Consider the Cauchy problem

y′x = y2 + x4, y(0) = 0, (1.12.2.4)

and estimate its solution on the interval 0 < x ≤ 1.

Let us take w=w(x, k) = kx5 as the test function with parameter k to be varied in the analysis.

Introducing the discrepancy

δ = [y′x − (y2 + x2)]y=w = x4(5k − 1− k2x6),
we get

x4(5k − 1− k2) < δ < x4(5k − 1). (1.12.2.5)

For the lower estimate, we take k= k1 =
1
5 , which makes the right-hand side of inequality (1.12.2.5)

zero, to obtain u(x) = w(x, k1) = 1
5x

5. For the upper estimate, we take the least root of the

quadratic equation 5k − 1 − k2 = 0, which makes the left-hand side of inequality (1.12.2.5) zero,

k2 = 5
2 −

√
21
2 ≈ 0.2087, to obtain v(x) = w(x, k2) = 0.2087 x5. This suggests that, by virtue

of Chaplygin’s theorem, the solution of the Cauchy problem (1.12.2.4) on the interval 0 < x < 1
satisfies the inequalities

1
5x

5 < y(x) < 0.2087 x5.

Remark 1.28. In the statement of Chaplygin’s theorem, the initial data in (1.12.2.1) can be

replaced with the inequalities

u(x0) ≤ y0 ≤ v(x0). (1.12.2.6)

The functions u(x) and v(x) are called, respectively, a lower and an upper solution of the Cauchy

problem (1.11.1.1)–(1.11.1.2).

◮ First method for successive refinement of estimates.

Suppose we have a suitable pair of functions, u(x) and v(x), that satisfy inequalities

(1.12.2.2). Is it possible to improve the bilateral estimate?

Let the second derivative fyy retain its sign in a rectangular domain (1.11.1.5). Let us

look at the surface z = f(x, y) in the three-dimensional space (x, y, z) and focus on the

curves along which the surface intersects with planes x = const. These curves are either

concave upward, if fyy>0, or concave downward, if fyy<0. On the curve z= f(x, y)with

x= const, let us choose an arc segment defined by the values of y such that u(x)≤ y≤ v(x)
and write the equations of the tangent line at y = u(x) and the chord connecting the points

y = u(x) and y = v(x):

z = f(x, u(x)) + fy(x, u(x))(y − u(x)) ≡M(x)y +N(x),

z = f(x, u(x)) +
f(x, v(x)) − f(x, u(x))

v(x)− u(x) (y − u(x)) ≡ Q(x)y +R(x).
(1.12.2.7)
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The curve z = f(x, y) lies between the tangent and the chord, and hence the function

f(x, y) is lies between the functions f1 =M(x)y+N(x) and f2 = Q(x)y+R(x), which

are linear in y. To be specific, we assume that fyy > 0. Then the curve is above the tangent

and below the chord:

M(x)y +N(x) < f(x, y) < Q(x)y +R(x).

Consider two auxiliary Cauchy problems for the first-order linear differential equations

(u1)
′
x =M(x)u1 +N(x), (v1)

′
x = Q(x)v1 +R(x) (1.12.2.8)

subject to the initial conditions (1.12.2.1). The solutions of these problems, u1 = u1(x)
and v1 = v1(x), are straightforward to obtain. One can easily prove that the inequalities

u(x) < u1(x) < y(x) < v1(x) < v(x) (1.12.2.9)

hold, which suggests that the new functions u1(x) and v1(x) provide more accurate ap-

proximations of the desired function y(x). In a similar fashion, starting from u1(x) and

v1(x), one can obtain further, even more accurate approximations, u2(x) and v2(x), and so

on. The process is rapidly converging, so that

vn(x)− un(x) ≤
A

22n
, (1.12.2.10)

where A is a positive constant independent of x and n.

Example 1.42. Consider the Cauchy problem

y′x = y2 + x2, y(0) = 0. (1.12.2.11)

Its solution will be sought in the range 0 < x ≤
√
2
2 ≈ 0.7071.

We see that f ′′
yy = 2 > 0. Let us show that the initial functions u(x) and v(x) can be taken in

the form

u(x) = 1
3x

3, v(x) = 11
30x

3.

Indeed,

u′x − u2(x)− x2 = − 1
9x

6 < 0,

v′x − v2(x)− x2 = 1
10x

2 − 121
900x

6 = x2
(

1
10 − 121

900x
4
)
≥ x2

(
1
10 − 121

900 × 1
4

)
> 0.06 x2 > 0.

Calculating M(x), N(x), Q(x), and R(x) by formulas (1.12.2.7), we get

M(x) = 2
3x

3, N(x) = x2 − 1
9x

6; Q(x) = 7
10x

3, R(x) = x2 − 11
90x

6.

Equations (1.12.2.8) for the next approximation are written as

(u1)
′
x = 2

3x
3u1 + x2 − 1

9x
6, (v1)

′
x = 7

10x
3v1 + x2 − 11

90x
6.

Their solutions satisfying the initial conditions u(0) = v(0) = 0 are

u1(x) = exp( 16x
4)

∫ x

0

(t2 − 1
9 t

6) exp(− 1
6 t

4) dt,

v1(x) = exp( 7
40x

4)

∫ x

0

(t2 − 11
90 t

6) exp(− 7
40 t

4) dt.
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Now by expanding the exponentials into power series and retaining only the terms up to x11 and

t11, we obtain

u1(x) ≃ ū1(x) = 1
3x

3 + 1
63x

7 + 2
2079x

11,

v1(x) ≃ v̄1(x) = 1
3x

3 + 1
63x

7 + 1
990x

11.

Let us show that the functions ū1 and v̄1 are also upper and lower bounds of the desired solution:

(ū1)
′
x − ū21(x)− x2 = −

[(
1

632 + 4
3×2079

)
x14 + 4

63×2079x
18 + 4

20792 x
22
]
< 0,

(v̄1)
′
x − v̄2(x)− x2 = 1

9x
10
{

1
210 −

[(
1

212 + 1
165

)
x4 + 2

7×990x
8 + 1

3302 x
12
]}
.

The derivative of the expression in braces is negative for 0 ≤ x ≤
√
2
2 ; hence, the expression attains

its minimum at the right endpoint of the range, x =
√
2
2 . Consequently,

(v̄1)
′
x − v̄2(x)− x2 ≥ 1

9x
10
{

1
210 −

[
( 1
441 + 1

165

)
1
4 + 2

7×990 × 1
16 + 1

3302 × 1
64

]}
> 0.

It follows that

1
3x

3 + 1
63x

7 + 2
2079x

11 < y(x) < 1
3x

3 + 1
63x

7 + 1
990x

11, 0 < x ≤
√
2
2 .

If either function ū1(x) or v̄1(x) is taken to be an approximate solution to problem

(1.12.2.11), then the approximation error does not exceed
(

1
990 − 2

2079

)
x11 ≤

(
1

990 − 2
2079

)
2−11/2 ≈ 10−6.

◮ Second method for successive refinement of estimates.

Below we outline another method for successive refinement of the approximations u(x) and

v(x), which does not require the assumption that the second derivative fyy is sign invariant.

Let K be the Lipschitz constant appearing in the first inequality in (1.12.1.5). It can be

shown that the functions

u1(x) = u(x) +

∫ x

x0

eK(x−t)
[
f(t, u(t))− u′t(t)

]
dt,

v1(x) = v(x)−
∫ x

x0

eK(x−t)
[
v′t(t)− f(t, v(t))

]
dt

(1.12.2.12)

satisfy the initial conditions 1.12.2.1 and inequalities (1.12.2.9) hold for x > x0. By re-

peated application of formulas 1.12.2.12, one can obtain a sequence of more and more

refined approximations un(x) and vn(x). It can be proven that un(x) and vn(x) converge

uniformly to the solution y(x) are n→∞; however, the rate of convergence is lower than

that provided by formula (1.12.2.10).

⊙ Literature for Section 1.12: I. S. Berezin and N. P. Zhidkov (1960), S. G. Mikhlin and Kh. L. Smolitskii

(1965), E. Kamke (1977).

1.13 Standard Numerical Methods for Solving Ordinary

Differential Equations

1.13.1 Single-Step Methods. Runge–Kutta Methods

◮ Preliminary remarks.

1◦. The classes of differential equations that allow for exact general solutions (in closed

form), using exact methods developed so far, are quite narrow and cover only a small
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portion of practical problems. For this reason, numerical methods are commonly used

nowadays, which apply to wide classes of equations and enable one to obtain particular

solutions to specific problems.

2◦. Consider the Cauchy problem for the first-order differential equation

y′x = f(x, y) (x > x0) (1.13.1.1)

with the initial condition

y(x0) = y0. (1.13.1.2)

Our aim is to construct an approximate solution y = y(x) of this equation on an interval

[x0, x∗].
Difference solution methods for problem (1.13.1.1)–(1.13.1.2) will be understood as

numerical methods based on the replacement of the differential equation (1.13.1.1) for the

continuously differentiable function y = y(x) with an approximate equation (or equations)

for functions of discrete argument, which are defined at a discrete set of points from the

interval [x0, x∗]. This makes us look at difference equations of integer argument, which are

a special case of functional equations.

3◦. Let us split the interval [x0, x∗] into n equal segments of length h = (x∗ − x0)/n. Let

y1, . . . , yn denote the approximate values of the function y(x) at the partitioning points

x1, . . . , xn = x∗. The discrete set of points Xh = {x0, x1, . . . , xn} is called a mesh, the

individual points xk are mesh nodes, and h is a mesh increment or step size. The collection

of values of the desired quantity is called a mesh function and denoted y(h) = {yk, k =
0, 1, . . . , n}.

Statement of a numerical problem: given an initial value y0 = y(x0) and a sufficiently

small h, find approximate values of the unknown function, yk = y(xk), at the points xk =
x0 + kh, k = 1, . . . , n.

◮ Order of approximation of a numerical method.

It is convenient to represent equation (1.13.1.1) in the short operator form

L[y] = f. (1.13.1.3)

Likewise, the corresponding numerical (difference) scheme approximating (1.13.1.3)

can be represented as

Lh[y
(h)] = f (h), (1.13.1.4)

with the same initial value y0 as in (1.13.1.2). It is assumed that for any smooth function

u = u(x), the limiting relations

lim
h→0

Lh[u] = L[u] ≡ u′x, lim
h→0

f (h)|y=u = f |y=u

hold. Specific numerical schemes (1.13.1.4) will be outlined below.

Let Yh denote the space of mesh functions defined on the mesh Xh with norm∗

‖y(h)‖Y = max
0≤k≤n

|yk|. (1.13.1.5)

∗This norm is a difference analogue of the norm in the space of continuous functions.
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Let Fh denote the space of mesh functions of two arguments with norm

‖f (h)‖F = max
0≤k≤n

|fk|, fk = f(xk, yk).

Suppose the difference problem (1.13.1.4) has a unique solution. If the mesh function

y
(h)
e coinciding with the exact solution at the mesh nodes is substituted in (1.13.1.4) for

y(h), the resulting discrepancy,

δf (h) = Lh[y
(h)
e ]− f (h)e ,

will generally be nonzero.

Definition. The difference scheme (1.13.1.4) will be said to approximate the differential

problem (1.13.1.3) on the closed interval [x0, x∗] if ‖δf (h)‖F → 0 as h→ 0. If, in addition,

the inequality

‖δf (h)‖F ≤ C1h
m (1.13.1.6)

holds, where C1 and m are some positive constants, then the difference scheme will be said

to have approximation of order m with respect to the step size h; the quantity m is also

called the global order of approximation.

Remark 1.29. Suppose that the exact value of y = y(x) at x = xk+1, which corresponds to

h → 0, differs from the approximate value yk+1 by a quantity of the order of O
(
hml

)
. Then the

number ml is called the local order of approximation of the numerical method in question. The

local and global orders of approximations are related to each other simply as ml = m+ 1.

Remark 1.30. Suppose one looks at a boundary value problem of the second or third kind for a

second or higher order equation, where a solution derivative is involved in the boundary condition.

When the problem is replaced with a suitable difference scheme, the error in approximating the

boundary conditions will affect the order of approximation of the difference problem.

◮ Single-step methods.

In general, a single-step method is a numerical method that provides successively an ap-

proximation of the exact solution, yk+1, at the point xk+1 based on the known approxima-

tion yk at the point xk.

Explicit single-step methods for solving the Cauchy problem for equation (1.13.1.1) are

defined by formulas of the form

yk+1 = Φ(f, xk, yk, xk+1). (1.13.1.7)

For simplicity, the dependence of Φ on h is not specified.

More complex, implicit single-step methods are defined by

yk+1 = Φ(f, xk, yk, xk+1, yk+1), (1.13.1.8)

with the unknown yk+1 appearing on both the left- and right-hand side of (1.13.1.8). The

values yk+1 can be found using, for example, iterative methods that are suitable for solving

algebraic (generally transcendental) equations. Implicit methods are usually more prefer-

able than explicit ones because of greater stability.
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◮ Euler Method of polygonal lines. Implicit Euler method.

1◦. Suppose that the Cauchy problem for equation (1.13.1.1) is solved at the points x0, x1,

. . . , xk to obtain the set of values y0, y1, . . . , yk. By integrating equation (1.13.1.1) over

the interval [xk, xk+1], we get

y(xk+1) = y(xk) +

∫ xk+1

xk

f(x, y(x)) dx. (1.13.1.9)

Many numerical methods are based on various approximations of the integrand in

(1.13.1.9).

2◦. For a given initial value y0 = y(x0) the values yk = y(xk) at the other points xk =
x0 + kh are calculated successively by the formula

yk+1 = yk + hf(xk, yk) (Euler polygonal line), (1.13.1.10)

where k = 0, 1, . . . , n− 1.

The Euler method is the simplest explicit single-step method providing a first-order

approximation (with respect to the step size h). It is obtained from formula (1.13.1.9) by

the replacement of the integrand with a constant, f(x, y) ≈ f(xk, yk).
The Euler method is of little or no practical use, since its accuracy is usually very low.

3◦. If the integrand in (1.13.1.9) is replaced with a constant, f(x, y) ≈ f(xk+1, yk+1), this

will result in the following algebraic (transcendental) equation for yk+1:

yk+1 = yk + hf(xk+1, yk+1). (1.13.1.11)

This equation defines the implicit Euler method with the first order of accuracy. In general,

the nonlinear equation (1.13.1.11) is solved numerically using a suitable iterative method

(e.g., Newton’s method).

◮ Single-step methods with a second-order approximation.

1◦. There is a modification of the Euler method of polygonal lines known as the modified

Euler method that provides a second-order approximation and so is more accurate. With

the modified Euler method, one first calculates the intermediate values

xk+ 1
2
= xk +

1
2h, yk+ 1

2
= yk +

1
2hf(xk, yk)

and then calculates yk+1 by the formula

yk+1 = yk + hf
(
xk+ 1

2
, yk+ 1

2

)
≡ yk + hf

(
xk +

1
2h, yk +

1
2hfk), (1.13.1.12)

where fk = f(xk, yk) and k = 0, 1, . . . , n− 1.

2◦. Another second-order single-step method for solving the Cauchy problem is defined

by the recurrence formula

yk+1 = yk +
1
2h
[
f(xk, yk) + f(xk+1, yk + fkh)

]
. (1.13.1.13)

This method is sometimes called Heun’s method.
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Example 1.43. In the simple special case where the right-hand side of the equation is indepen-

dent of y, or f(x, y) = f(x), the maximum error εm of the approximate solution (1.13.1.13) is

estimated as

εm ≤
L

12
max |f ′′

xx(x)|h2,

where L = x∗ − x0 is the length of the interval where the solution is looked for (x0 ≤ x ≤ x∗).

3◦. Apart from formulas (1.13.1.12) and (1.13.1.13), the equation

yk+1 = yk +
1
2h
[
f(xk, yk) + f(xk+1, yk+1)

]
(1.13.1.14)

is sometimes used. It determines an approximate solution in implicit form, since yk+1

appears in both the left- and right-hand side of Eq. (1.13.1.14).

◮ Runge–Kutta fourth-order methods.

1◦. The unknown values yk are successively found by the formulas

yk+1 = yk +
1
6h(ϕ1 + 2ϕ2 + 2ϕ3 + ϕ4), (1.13.1.15)

where
ϕ1 = f(xk, yk), ϕ2 = f(xk +

1
2h, yk +

1
2hϕ1),

ϕ3 = f(xk +
1
2h, yk +

1
2hϕ2), ϕ4 = f(xk + h, yk + hϕ3).

This is one of the most common methods providing fourth-order approximation.

Remark 1.31. When saying the “Runge–Kutta method” without further specifications, one usu-

ally means the classical fourth-order Runge–Kutta method defined above.

For a rough estimate of the local accuracy of formula (1.13.1.15), it is quite useful to

evaluate the quantity

ε = h(3fk+1 + ϕ1 − 2ϕ3 − 2ϕ4).

Example 1.44. In the simple special case f(x, y) = f(x), meaning that the right-hand side of

equation is independent of y), the maximum error εm of the approximate solution (1.13.1.15) can

be estimated as

εm ≤
L

2880
max |f ′′′′(x)|h4, (1.13.1.16)

where L= x∗−x0 is the length of the interval on which the solution is looked for (x0 ≤ x≤ x∗). It

is apparent that, apart from rapid decrease of the error as h→ 0, the right-hand side of (1.13.1.16)

contains a very small numerical coefficient, L/2880. This is one of the causes of the high accuracy

of the method.

The above scheme has the convenience that the step size h can be changed starting

from any k (e.g., it can be decreased where the desired functions are rapidly changing or

increased where these change slowly). In practice, the step size can be controlled using the

following simple technique. For each k, one evaluates the parameter

θ =

∣∣∣∣
ϕ2 − ϕ3

ϕ1 − ϕ2

∣∣∣∣.

While θ is of the order of a few hundredths, the computation should be carried out with the

same step size. If θ is greater than one tenth, the step size can be decreased. If θ is less than

one hundredth, the step size can be increased.
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2◦. Although much less common, the following formula provides a fourth-order approxi-

mation and can also be efficiently used in computations:

yk+1 = yk +
1
8h(ϕ1 + 3ϕ2 + 3ϕ3 + ϕ4), (1.13.1.17)

where
ϕ1 = f(xk, yk), ϕ2 = f(xk +

1
3h, yk +

1
3hϕ1),

ϕ3 = f(xk +
2
3h, yk − 1

3hϕ1 + hϕ2),

ϕ4 = f(xk + h, yk + hϕ1 − hϕ2 + hϕ3).

◮ Runge–Kutta methods. General scheme.

1◦. All explicit numerical methods outlined above are special cases of the general ap-

proach, known the family of explicit Runge–Kutta methods, whose main ideas are outlined

below. For a detailed description of this approach, see the monographs listed at the end of

the current section.

The value yk+1 = y(xk + h) is approximated using the formula

y(xk + h) ≈ ξ(xk, h) = y(xk) +

p∑

n=1

Ansn(h), (1.13.1.18)

where sn = sn(h) is the set of functions defined as

s1 = hf(xk, yk),

s2 = hf(xk + α2h, yk + β2,1s1),

s3 = hf(xk + α3h, yk + β3,1s1 + β3,2s2),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sp = hf(xk + αph, yk + βp,1s1 + · · · + βp,p−1sp−1).

The unknown parameters An, αn, and βn,m (0<m<n≤ p) are chosen from the conditions

δ(0) = δ′(0) = δ′′(0) = · · · = δ(r)(0) = 0. (1.13.1.19)

The function δ(h) = y(xk+h)− ξ(xk, h) shows the discrepancy between the approximate

solution ξ(xk, h) and exact solution y(xk + h).

In the family of Runge–Kutta schemes defined by formula (1.13.1.18), one can make

the approximation error indefinitely small by increasing the parameter p. The value p = 1
corresponds the Euler method (1.13.1.10), while p= 4 results in the more accurate formula

(1.13.1.15).

2◦. The computation error of formula (1.13.1.18) can be estimated using Runge’s rule

ye − yk+1,h/2 ≈
yk+1,h/2 − yk+1,h

2p+1 − 1
,

where ye is the exact solution, yk+1,h is the approximate solution corresponding to the step

size h, and yk+1,h/2 is the approximate solution corresponding to the step size h/2.
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◮ Qualitative features of the Runge–Kutta schemes.

The Runge–Kutta schemes outlined above offer a number of important advantages:

(i) All of them are stable and provide high accuracy (except for Euler’s method of

polygonal lines).

(ii) In explicit schemes, the value yk+1 is calculated from the values obtained at previ-

ous steps using fixed formulas and a number of operations.

(iii) All of the schemes allow for straightforward generalizations to utilize variable step

sizes, hk =xk−xk−1; starting from any point (any k), the step size can be decreased, where

the function is rapidly changing, or increased, where the function changes slowly.

(iv) No use of further methods is required (unlike, for example, the multistep methods

discussed below).

The Runge–Kutta schemes are easy to extend from a single equation to a system of

first-order differential equations with the formal change of the variables y, f(x, y) to y,

f(x, y) (see Section 7.4 below).

The errors of the Runge–Kutta schemes are determined by the maxima of the absolute

values of derivatives. If the function f(x) on the right-hand side of equation (1.13.1.1)

is continuous and bounded together with its fourth derivatives (as long as they are not

too large in magnitude), then the fourth-order scheme (1.13.1.15) provides good results

due to the very small coefficient in the remainder and rapid increase in the accuracy as

the step size decreases. If f(x) does not have the required derivatives (or they are un-

bounded), it is more reasonable to use lower-order schemes, whose order is determined by

the highest continuous and bounded derivative available; for example, the simple scheme

(1.13.1.12) or (1.13.1.13) can be used for the twice continuously differentiable right-hand

side in (1.13.1.1).

◮ Remarks on the choice of the step size.

Remark 1.32. In practice, calculations are performed on the basis of any of the above recurrence

formulas with two different steps h, 1
2h and an arbitrarily chosen small h. Then one compares the

results obtained at common points. If these results coincide within the given order of accuracy, one

assumes that the chosen step h ensures the desired accuracy of calculations. Otherwise, the step

is halved and the calculations are performed with the steps 1
2h and 1

4h, after which the results are

compared again, etc. (Quite often, one compares the results of calculations with steps varying by

ten or more times.)

Remark 1.33. For schemes with a variable step size, hk = xk − xk−1, intended for the solution

of equation (1.13.1.1), the formula

hk =
h

1 + α|f(xk−1, yk−1)|
(1.13.1.20)

can be used to select the step size automatically, with α being a positive numeric parameter whose

value can be chosen depending on the problem (schemes with a constant step size correspond to

α = 0). The step size should be decreased when the function is rapidly changing and increased

when it changes slowly.

Instead of |f(xk−1, yk−1)| in the denominator in (1.13.1.20), one can also use |f(xk− 1
2
, yk− 1

2
)|,

where xk− 1
2
= xk−1 +

1
2h and yk− 1

2
= yk−1 +

1
2hf(xk−1, yk−1).
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1.13.2 Multistep Methods

◮ Preliminary remarks. General scheme.

1◦. Multistep numeric methods are those in which the unknown yk+1 at xk+1 is calculated

based on a number of known values, yk−m+1, yk−m+2, . . . , yk, at several previous points,

xk−m+1, xk−m+2, . . . , xk. In practice, three to five points usually suffice, which suggests

that m = 3, 4, or 5, with m = 1 corresponding to single-step methods.

2◦. In the implementation of multistep methods, the problem arises of how to start the

method, since the values of the unknown quantity at x1, . . . , xm−1 must already be known.

This can be done with any single-step method by using the initial condition y=y0 at x=x0.

Sometimes, on the initial segment, one uses a truncated Taylor series (see Section (1.11.3))

with sufficiently many terms retained.

Remark 1.34. The values of the unknown at the initial points x1, . . . , xm−1 must be evaluated

with an accuracy at least several times higher than it is required for the entire solution; in the Runge–

Kutta method used to calculate the initial values, the step size h should be taken much smaller than

in the multistep method used for subsequent values.

◮ Adams methods.

1◦. Extrapolation methods. In the explicit Adams method, to calculate the integral appear-

ing in (1.13.1.9), one replaces the integrand with an interpolation polynomial of degree

m−1, Pm−1(x), whose values coincide with the those of f(x, y(x)) at the points xk−m+1,

xk−m+2, . . . , xk. In particular, with a polynomial of degree 0 (e.g., with the integrand

replaced with its value at the left endpoint of the interval at xk), one obtains the explicit

Euler method.

With a cubic interpolation polynomial determined by the last four points of the in-

tegrand, one obtains a formula representing the Adams–Bashforth method of the fourth

order:

yk+1 = yk +
1

24

(
55fk − 59fk−1 + 37fk−2 − 9fk−3

)
h, (1.13.2.1)

where fs = f(xs, ys).

2◦. Interpolation methods. In the implicit Adams method, to calculate the integral ap-

pearing in (1.13.1.9), one replaces the integrand with an interpolation polynomial of degree

m−1,Qm−1(x), whose values coincide with the those of f(x, y(x)) at the points xk−m+2,

xk−m+3, . . . , xk+1.

In particular, the four-step Adams–Moulton implicit formula is

yk+1 = yk +
1

24

(
9fk+1 + 19fk − 5fk−1 + fk−2

)
h. (1.13.2.2)

It is apparent that (1.13.2.2) is an equation for yk+1, which appears on both sides of the

equation. However, one usually avoids solving this equation by replacing fk+1 on the

right-hand side with a value calculated by an explicit formula (e.g., the Adams–Bashforth

formula). This approach underlies predictor-corrector methods, which are discussed below

in Section 1.13.3.
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◮ Milne method.

The multistep Milne method of the fourth order can be implemented in two different ways:

yk+1 = yk−3 +
4

3

(
2fk − fk−1 + 2fk−2

)
(first way),

yk+1 = yk−2 +
3

8

(
7fk − 3fk−1 + 5fk−2

)
(second way).

To start the computation, four initial points are requited.

◮ Nyström method.

The multistep Nyström method of the fourth order results in the formula

yk+1 = yk−1 +
1

3

(
8fk − 5fk−1 + 4fk−2 − fk−3

)
h.

The method requires four initial points.

◮ General scheme. Concluding remarks.

1◦. In general, multistep methods are based on the following approximation of the deriva-

tive at the point xk:

y′x ≈
1

h

s∑

i=0

aiy(xk+1−i). (1.13.2.3)

The right-hand side of the differential equation (1.13.1.1) at xk is approximated as

f
(
x, y(x)

)
≈

s∑

i=0

bif
(
xk+1−i, y(xk+1−i)

)
. (1.13.2.4)

The numeric coefficients ai (a0 6= 0) and bi are independent of h.

This results in finite-difference schemes of the form

s∑

i=0

aiyk+1−i − h
s∑

i=0

bifk+1−i = 0. (1.13.2.5)

Explicit schemes correspond to b0 = 0, while implicit schemes correspond to b0 6= 0.

If scheme (1.13.2.5) is obtained with the approximations (1.13.2.3) and (1.13.2.4), then

the coefficients ai and bi must satisfy three relations

s∑

i=0

ai = 0,

s∑

i=0

(k + 1− i)ai = 1,

s∑

i=0

bi = 1.

Remark 1.35. When writing specific schemes, it is customary to set the coefficient of yk+1

equal to one, which is equivalent to dividing all coefficients ai and bi by a0.

The error of a scheme is determined by the leading term in the expansion of the left-hand

side of (1.13.2.5) as h → 0. In the expansion, one must take into account the dependence

of yk = y(xk) and fk = f(xk, yk) on h, since xk = x0 + kh.
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2◦. The difference scheme (1.13.2.5) is associated with a characteristic polynomial

P (µ) =

s∑

i=0

aiµ
s−i, (1.13.2.6)

which is obtained by substituting yk = µk into the truncated equation (1.13.2.5) with h =
0. The roots of the characteristic polynomial, which are determined from the algebraic

equation P (µ) = 0, will be denoted µj , where j = 1, . . . , s.
Difference schemes of the form (1.13.2.5) must satisfy the α-condition: all roots of the

characteristic polynomial (1.13.2.6) must lie in the unit circle (|µj| ≤ 1), with no multiple

roots on the circumference.

For any difference scheme that does not meet the α-condition, there exists an equation

of the form (1.13.1.1) with a smooth right-hand side whose difference solution does not

converge to the differential solution (obtained without rounding) as the step size of the

mesh decreases.

Let m be the order of approximation of the difference scheme (1.13.2.5). Then the

following theorem holds.

THEOREM. In the cases that

the scheme is explicit and m > k,

the scheme is implicit, s is odd, and m > k + 1,

the scheme is implicit, s is even, and m > k + 2,

there is a at least one root, among all roots of the characteristic polynomial (1.13.2.6),

whose absolute value exceeds unity.

This theorem states that schemes of the form (1.13.2.5) with a sufficiently high order of

approximation do not satisfy the α-condition.

3◦. Apart from the problem of solution initiation in multistep methods, one faces the prob-

lem of step size change in the course of the solution. This problem requires nonstandard

actions; it is easily solved in single-step methods. With the same accuracy, the Runge–

Kutta method allows one to use 4–6 times larger step sizes than the Adams method. For

this reason, the Adams and Milne methods are much less common in practice than the

Runge–Kutta methods.

1.13.3 Predictor–Corrector Methods

◮ Adams type predictor–corrector method.

This method combines the explicit and implicit four-step Adams method and makes it pos-

sible to increase the accuracy of the Adams method by computing the value of f(x, y)
twice when determining yk+1 in each new step with respect to x. The following actions are

performed:

(i) Predictor step. Starting from the values at xk−3, xk−2, xk−1, xk, one calculates an

initial guess value ỹk+1 at xk+1 using Adams’s formula (1.13.2.1).

(ii) Intermediate step. One calculates the intermediate value of f at the new point:

f̃k+1 = f(xk+1, ỹk+1).
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(iii) Corrector step. Using the fourth-order Adams method and the values of y at xk−2,

xk−1, xk, xk+1, one calculates a refined value at xk+1:

yk+1 = yk +
1

24

(
9f̃k+1 + 19fk − 5fk−1 + fk−2

)
h. (1.13.3.1)

The truncation error of this method is of the order of O(h4). If the refined value does

not deviate from the guess value by the allowed computational error, |ỹk+1 − yk+1| ≤ ε,
the step size h is considered acceptable.

◮ Milne predictor–corrector method.

The following actions are performed:

(i) Predictor step. Starting from the values of y at xk−3, xk−2, xk−1, xk, one calculates

an initial guess value at xk+1 by the formula

ỹk+1 = yk−3 +
4

3

(
2fk − fk−1 + 2fk−2

)
h. (1.13.3.2)

(ii) Intermediate step. One calculates the intermediate value of f at the new point:

f̃k+1 = f(xk+1, ỹk+1).

(iii) Corrector step. The refined value is calculated by the corrector formula

yk+1 = yk−1 +
1

3

(
f̃k+1 + 4fk + fk−1

)
h. (1.13.3.3)

The truncation error of the Milne method is O(h5).
The computational error can be estimated as

ε = 1
29 |yk+1 − ỹk+1|. (1.13.3.4)

If the maximum allowed error equals δ, then condition δ ≤ ε must be checked at each step.

If this condition does not hold, the step size should be decreased h.

◮ Hamming predictor–corrector method.

In fact, the Hamming method has four steps: calculation of a prediction ỹi+1 followed by

an improvement δyi+1 and then calculation of a correction y∗i+1 followed by its refinement

yi+1. The prediction and its improvement are performed using not only nodal values of

the derivative of f(x, y(x)) but also nodal values of the desired function y(x) as well as

auxiliary quantities.

The four steps are expressed by the formulas

ỹk+1 =
1

3
(2yk−1 + yk−2) +

1

72
(191fk − 107fk−1 + 109fk−2 − 25fk−3)h,

δyk+1 = ỹk+1 −
707

750
(ỹk − y∗k),

y∗k+1 =
1

3
(2yk−1 + yk−2) +

1

72

[
25f(xk+1, δyk+1) + 91fk + 43fk−1 + 9fk−2

]
h,

yk+1 = y∗k+1 +
43

750
(ỹk+1 − y∗k+1).

The truncation error of this method is O(h6).



“K16435’ — 2017/9/28 — 15:05 — #98

72 METHODS FOR FIRST-ORDER DIFFERENTIAL EQUATIONS

1.13.4 Modified Multistep Methods (Butcher’s Methods)

Just like multistep methods, the modified multistep methods use several preceding values of

the unknown, yk−i, to compute the current value yk; moreover, just as in the Runge–Kutta

methods, they also calculate the right-hand side several times at each step. Two examples

are given below.

1◦. Formulas providing an accuracy of O(h6):

yk− 1
2
= yk−2 +

1
8 (9fk−1 + 3fk−2)h,

y◦k = 1
5 (28yk−1 − 23yk−2) +

1
15 (32fk− 1

2
− 60fk−1 − 26fk−2)h,

yk = 1
31 (32yk−1 − yk−2) +

1
93 (64fk− 1

2
+ 15f◦k + 12fk−1 − fk−2)h,

where f◦k = f(xk, y
◦
k).

2◦. Formulas providing an accuracy of O(h8):

yk− 1
2
= 1

128 (−225yk−1 + 200yk−2 + 153yk−3) +
1

128 (225fk−1 + 300fk−2 + 45fk−3)h,

y◦k = 1
31 (540yk−1 − 297yk−2 − 212yk−3)

+ 1
155 (384fk− 1

2
− 1395fk−1 − 2130fk−2 − 309fk−3)h,

yk = 1
617 (783yk−1 − 135yk−2 − 31yk−3)

+ 1
3085 (2304fk− 1

2
+ 465f◦k − 135fk−1 − 495fk−2 − 39fk−3)h.

1.13.5 Stability and Convergence of Numerical Methods

◮ Stability.

Definition 1. The difference scheme (1.13.1.4) is called stable, if there are positive numbers

hm and δ such that for any h < hm and any mesh function of arguments, ε(h), that satisfies

the inequality ‖ε(h)‖F < δ, the difference problem

Lh[z
(h)] = f (h) + ε(h), (1.13.5.1)

obtained from (1.13.1.4) by adding the perturbation ε(h) to the right-hand side, has a unique

solution z(h) and the relation holds

‖z(h) − y(h)‖Y ≤ C2‖ε(h)‖F , (1.13.5.2)

where C2 is a constant independent of h.

This definition is quite general; it is valid even if Lh is nonlinear. Inequality (1.13.5.2)

suggests that a small perturbation on the right-hand side of the difference scheme (1.13.1.4)

causes a uniformly small (with respect to h) disturbance of the solution.

In the above case, the operator Lh is linear and the definition of stability is equivalent

to the following.

Definition 2. The difference scheme (1.13.1.4) with the linear operator Lh is said to

be stable if for any f (h) ∈ Fh equation (1.13.1.4) has a unique solution y(h) ∈ Yh and the

inequality

‖y(h)‖Y ≤ C2‖f (h)‖F
holds; C2 is a constant independent of h.
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Remark 1.36. Stability is an intrinsic property of the difference scheme; it is not related to the

original differential problem.

◮ Convergence. Lax theorem.

Definition. A solution y(h) of the difference equation (1.13.1.4) is said to be convergent,

as h→ 0, to a solution y = y(x) of the differential equation (1.13.1.1), both subject to the

same initial condition (1.13.1.2)), if

‖y(h)e − y(h)‖Y → 0 at h→ 0, (1.13.5.3)

where y
(h)
e is a mesh function coinciding with the solution y at the mesh nodes.

The relationship between approximation, stability, and convergence is set by the fol-

lowing theorem.

LAX THEOREM. Let the difference scheme (1.13.1.4) provide an hm approximation

of the differential equation (1.13.1.1) on the solution y and be stable. Then the solution

y(h) of the difference equation (1.13.1.4) converges to y
(h)
e and the estimate

‖y(h)e − y(h)‖Y ≤ C1C2h
m (1.13.5.4)

holds true; C1 and C2 are the constant appearing in the estimates (1.13.1.6) and (1.13.5.2).

To prove this theorem, let us set ε(h) ≡ δf (h) and y
(h)
e ≡ z(h) in (1.13.5.2). The we get

the estimate ‖y(h)e − y(h)‖Y ≤ C2‖δf (h)‖F . In view of (1.13.1.6), we immediately arrive

at the required inequality (1.13.5.4).

1.13.6 Well- and Ill-Conditioned Problems

Numerical methods can only be applied to well-conditioned problems, in which small

changes in the initial data (or the right-hand side of the equation) lead to small changes

in the solution. Otherwise, for ill-conditioned problems, small perturbations in the ini-

tial conditions (or the right-hand side of the equation) or equivalent errors inherent in the

numerical method can significantly change the solution.

Example 1.45. Consider the ordinary differential equation

y′x = ay − a2x (0 < x ≤ 100) (1.13.6.1)

with a free parameter a and subject to the initial condition

y(0) = 1. (1.13.6.2)

The general solution to (1.13.6.1) is

y = 1 + ax+ Ceax, (1.13.6.3)

where C is an arbitrary constant.

In view of the initial condition (1.13.6.2), we get C = 1 and then

y = 1 + ax, (1.13.6.4)

Now consider equation (1.13.6.1) with a slightly changed initial condition:

y(0) = 1 + ε, (1.13.6.5)

where ε is a small positive number.

Substituting (1.13.6.3) into (1.13.6.5) yields the solution of problem (1.13.6.1), (1.13.6.5):

yε = 1 + ax+ εeax. (1.13.6.6)

Solution (1.13.6.6) shows a qualitatively different behavior depending on the value of the pa-

rameter a. Let us look at possible situations.
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1◦. If a < 0, the exponential εeax in (1.13.6.6) decays as x→∞. The difference between solutions

(1.13.6.6) and (1.13.6.3), equal to εeax, tends to zero as ε→ 0 for all x≥ 0. If a= 0, the difference

between the solutions is also a small quantity equal to ε. Hence, the values a ≤ 0 correspond to a

well-conditioned problem (1.13.6.1)–(1.13.6.2), with respect to changes in the initial data, so that

|yε − y| ≤ ε.
2◦. If a > 0, the difference between solutions (1.13.6.6) and (1.13.6.3) increases exponentially

without bound as x → ∞. In this case, for any ε > 0 solutions (1.13.6.3) and (1.13.6.6) diverge

indefinitely far as x→∞. Hence, problem (1.13.6.1)–(1.13.6.2) is ill-conditioned for a > 0.

In particular, if a = 1, ε= 10−6≪ 1, and x = 102, we get y = 101 and yε ≈ 2.7× 1037, which

show that the solution has changed dramatically (yε − y ≫ 1).

Remark 1.37. If a > 0, the solution to the equation

y′x = ay − a2x+ ε (ε≪ 1) (1.13.6.7)

subject to the initial condition (1.13.6.2) is

yε = 1− ε

a
+ ax+

ε

a
eax. (1.13.6.8)

In this case, the difference between solutions (1.13.6.8) and (1.13.6.3) increases exponentially with-

out bound as x → ∞. This means that problem (1.13.6.1)–(1.13.6.2) is ill-conditioned for a > 0
with respect to small perturbations of the right-hand side.

⊙ Literature for Section 1.13: M. Abramowitz and I. A. Stegun (1964), J. C. Butcher (1965), C. W. Gear

(1971), N. S. Bakhvalov (1973), J. D. Lambert (1973), E. Kamke (1977), N. N. Kalitkin (1978), A. N. Tikhonov,

A. B. Vasil’eva, and A. G. Sveshnikov (1985), J. C. Butcher (1987), E. Hairer, C. Lubich, and M. Roche

(1989), M. Stuart and M. S. Floater (1990), E. Hairer, S. P. Norsett, and G. Wanner (1993), W. E. Schiesser

(1994), R. E. Mickens (1994), L. F. Shampine (1994), K. E. Brenan, S. L. Campbell, and L. R. Petzold (1996),

J. R. Dormand (1996), E. Hairer and G. Wanner (1996), D. Zwillinger (1997), U. M. Ascher and L. R. Petzold

(1998), R. Meyer-Spasche (1998), G. A. Korn and T. M. Korn (2000), S. S. Gaisaryan (2002), P. J. Rabier and

W. C. Rheinboldt (2002), A. D. Polyanin and A. V. Manzhirov (2007), S C. Chapra and R. P. Canale (2010),

P. G. Dlamini and M. Khumalo (2012).

1.14 Special Numerical Methods for Solving Problems

with Qualitative Features or Singularities

1.14.1 Special Methods Based on Auxiliary Equations

◮ Preliminary remarks.

Certain problems require the use of special methods devised for fairly narrow classes of

equations; these methods usually become unsuitable for other classes of equations.

The majority of special methods for equations of the form y′x = f(x, y) are based on

seeking an auxiliary equation u′x = g(x, u) such that its solution is expressed in terms of el-

ementary functions in a simple way, with the approximate relation y(x)≈ u(x) being valid

on a sufficiently large interval for the argument. In other words, one seeks an approximate

solution having a fairly simple form.

Outlined below are three techniques for the construction of numerical schemes under

the assumption that a suitable auxiliary solution, u = u(x), has been obtained.
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◮ First technique.

This approach is especially suitable for solutions changing their sign. One looks at the

difference w(x) = y(x) − u(x). Subtracting the auxiliary equation for the original one

leads to the equation for the difference

w′
x = f(x, u(x) + w)− g(x, u(x)), (1.14.1.1)

where, by assumption, u(x) is a known function. If u(x) approximates the solution suffi-

ciently well, then w=w(x) is fairly small in magnitude or subject to weak changes; hence,

equation (1.14.1.1) should be easily integrable with customary numerical methods (e.g.,

Runge–Kutta methods).

Example 1.46. Let us look at a problem defined on the semi-infinite interval [0,∞). Suppose

the asymptotic behavior of its solution, y≃ϕ(x) as x→∞, is known; ϕ(x) is a (rapidly) oscillating

function. Then

u(x) =
δx

1 + δx
ϕ(x), (1.14.1.2)

with δ ≪ 1 being a sufficiently small positive number, can be used as the auxiliary function. For

small and moderate values of x, we have |u(x)| ≪ 1, while for large x, the function u(x) is asymp-

totically equivalent to ϕ(x). As g in equation (1.14.1.1), one should take the derivative u′x(x).
On the right-hand side of (1.14.1.2), δx can be replaced with δs(x), where s(x) ≥ 0 is a mono-

tonically increasing function that tends to infinity as x→∞.

◮ Second technique.

This approach is especially suitable for solutions that keep a constant sign and increase

exponentially of by a power law. One looks at the ratio w(x) = y(x)/u(x). It is not

difficult to verify that the ratio satisfies the equation

w′
x =

1

u(x)

[
f(x, u(x)w)− wg(x, u(x))

]
, (1.14.1.3)

where u(x) is a known approximate solution. Just like in the previous case, this equation

should be easy to integrate using standard numerical methods.

Remark 1.38. Both of the above techniques allow the application of high-order Runge–Kutta

schemes; however, the remainder may not necessarily be small, since the solutions y(x) and u(x)
can significantly differ and the right-hand sides of equations (1.14.1.1) and (1.14.1.3) can be large

in magnitude. Nevertheless, both techniques can be applied locally to a short interval of the mesh

(see the third technique below); in this way, one can construct special high-order schemes with a

small remainder.

◮ Third technique.

Instead of a large interval, the auxiliary equation is constructed for a single mesh step,

xk≤x≤xk+1, which is a small interval of length h=xk+1−xk. One takes an approximate

solution, un(x), satisfying the initial condition un(xn) = yn ≈ y(xn). Since the step

size is small, the approximate solution will be close to the exact one, so that we can set

yn(xn+1) ≈ yn+1 = u(xn+1). Difference schemes based on this technique are intended
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to ensure that the auxiliary equation is solved exactly, while the original equation is solved

approximately with a small error.

In some cases, to construct an approximate solution for a single-step interval, one can

first solve the autonomous equation

v′x = f(σ, v) (1.14.1.4)

with parameters σ = const and then use u(x) = v(x, σ), where v is the solution of this

equation, as the auxiliary function. Equation (1.14.1.4) can be obtained from (1.13.1.1) by

formally replacing f(x, y) with f(σ, y) and y with v.

Example 1.47. Let us look at the nonlinear equation

y′x = −
[
y2 + ρ(x)

]
, ρ(x) > 0, (1.14.1.5)

which arises in differential sweep problems. If one sets ρ(x) ≈ const = ρk+ 1
2

on the interval

xk ≤ x ≤ xk+1, then the auxiliary equation becomes

u′x = −(u2 + ρ), ρ = const.

This is a separable equation; it is easy to integrate in terms of elementary functions. As a result, we

obtain

arctan
uk+1√
ρ
− arctan

uk√
ρ
= −h√ρ.

This relation can be explicitly solved for uk+1 ≈ yk+1 to give the following special numerical

scheme:

yk+1 =
√
ρk+ 1

2

yk −√ρk+ 1
2
tan
(
h
√
ρk+ 1

2

)
√
ρk+ 1

2
+ yk tan

(
h
√
ρk+ 1

2

) , ρk+ 1
2
= ρ(xk + 1

2h). (1.14.1.6)

This scheme can be simplified under the assumption that the step size is sufficiently small, h
√
ρ≪1,

to give

yk+1 =
yk − hρk+ 1

2

1 + hyk
. (1.14.1.7)

Schemes (1.14.1.6) and (1.14.1.7) ensure fairly good results even in the cases where the sweep

stability condition is not satisfied and the exact solution of the problem for equation (1.14.1.5) has

poles.

Remark 1.39. With the third technique, one often succeeds in constructing first- or second-order

schemes with a sufficiently small remainder.

1.14.2 Numerical Integration of Equations That Contain
Fixed Singular Points

◮ Preliminary remarks.

A solution can be singular at isolated points of the domain in question; this can happen if

the right-hand side of equation (1.13.1.1) or its derivative becomes infinite. Let us assume

that the initial point, x = 0, is singular. There are three main techniques for the numerical

integration of such equations. These will be outlined below by looking at the example

problem

y′x = f(x, y) + bx−1/2, y(0) = 0, (1.14.2.1)

where f(x, y) is a smooth function without singularities and b 6= 0 is a free parameter. The

right-hand side of equation (1.14.2.1) has an integrable singularity of the order of x−1/2 as

x→ 0.
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◮ First technique.

One looks for a change of variables that converts the original equation into one without

singularities. In this case, it suffices to use the substitution x= t2; then the singular problem

(1.14.2.1) reduces to the problem without singularities

y′t = 2tf(t2, y) + 2b, y(0) = 0. (1.14.2.2)

Remark 1.40. The substitution x = t2 can be used as a transformation preceding numerical

integration of equations with a fixed singularity of the form

y′x = f1(x
1/2, y) + x−1/2f2(x

1/2, y),

where f1,2(z, y) are smooth functions, with f2(0, y) 6≡ 0. For the numerical solution of the more

general class of equations with a singularity

y′x = x2ν−1f1(x
ν , y) + xν−1f2(x

ν , y), 0 < ν < 1,

one should use the change of variable t = xν , which will lead to a singularity-free equation.

◮ Second technique.

In a small neighborhood of the singular point, one makes an asymptotic expansion of the

solution (while retaining only a few terms) or constructs an equivalent approximate solution

as x → 0. Suppose the function f(x, y) is expandable in a double Taylor series about

x = y = 0. Then, near the singular point x = 0, the solution of equation (1.14.2.1) can be

represented as a series in integer powers of z = x1/2:

y = a1x
1/2 + a2x+ a3x

3/2 + a3x
2 + · · · ,

a1 = 2b, a2 = f(0, 0), a3 =
4
3 bfy(0, 0).

(1.14.2.3)

Let us look at a point x̄ close to the singular point and compute the solution at x̄ using

the first few terms of the series (1.14.2.3). The point x̄ is not singular; it can be taken as

the first node of the difference mesh and used as the starting point of the computation with

standard numerical methods.

Remark 1.41. It is noteworthy that if x̄ is close to the singular point x = 0, the right-hand side

of the equation and its partial derivatives can be quite large at x̄ and, hence, the standard numerical

methods may give a significant error near this point. It is therefore desirable to choose x̄ as close as

possible to x = 0. But then, to ensure a high accuracy of y(x̄), one has to use a sufficiently good

approximate solution involving more terms of the asymptotic expansion.

For more details on the methods of series expansion of solutions in the independent

variable in a neighborhood of the singular point, see Section 1.11.3.

◮ Third technique.

This approach is based on developing a problem-specific scheme that allows the numerical

integration to start directly from the singular point.
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1◦. Equation (1.14.2.1) can be integrated over a single step interval of the mesh to obtain

yk+1 = yk +

∫ xk+1

xk

[
f(ξ, y(ξ)) + bξ−1/2

]
dξ

≈ yk + hf(xk, yk) + 2b(
√
xk + h−

√
xk ), xk+1 = xk + h. (1.14.2.4)

The first term in the integrand has been integrated approximately using the rectangle rule

based on the left endpoint of the interval, while the second term has been integrated exactly.

The explicit scheme (1.14.2.4) is constructed in a similar way to first-order schemes; it

becomes the Euler scheme of polygonal lines at b = 0.

2◦. For equation (1.14.2.1), it is possible to construct more accurate numerical schemes

similar to Runge–Kutta schemes by using more accurate approximations of the integral of

the first term in (1.14.2.4). In particular, one can use the scheme

yk+1 = yk + hf
(
xk+ 1

2
, yk+ 1

2

)
+ 2b(

√
xk + h−

√
xk ), (1.14.2.5)

xk+ 1
2
= xk +

1
2h, yk+ 1

2
= yk +

1
2hf(xk, yk) + 2b

(√
xk +

1
2h−

√
xk
)
,

which becomes the modified second-order Euler scheme (1.13.1.12) at b = 0.

◮ Some generalizations.

1◦. Let us look at a more general problem than (1.14.2.1),

y′x = f(x, y) +
m∑

j=1

ϕj(x)gj(y), y(0) = 0, (1.14.2.6)

assuming that f(x, y) and gj(y) are smooth functions without singularities and the ϕj(x)
are functions with integrable singularities at x = 0 (so that ϕj(0) =∞).

Integrating equation (1.14.2.5) over a small interval [xk, xk+1] yields

y(xk+1) = y(xk) +

∫ xk+1

xk

f(x, y(x)) dx+

m∑

j=1

∫ xk+1

xk

ϕj(x)gj(y(x)) dx. (1.14.2.7)

Replacing the integrand of the first integral with f(xk, y(xk)), we get
∫ xk+1

xk

f(x, y(x)) dx ≈ hf(xk, y(xk)),

where h = xk+1 − xk. The remaining integrals, which contain singularities, can approxi-

mately be calculated as follows:
∫ xk+1

xk

ϕj(x)gj(y(x)) dx ≈
∫ xk+1

xk

ϕj(x)gj(y(xk)) dx

= gj(yk)

∫ xk+1

xk

ϕj(x) dx = [Φj(xk+1)− Φj(xk)]gj(yk),

where Φj(x) =
∫ x
0 ϕj(x) dx and yk = y(xk). This results in the difference scheme

yk+1 = yk + hf(xk, yk) +

m∑

j=1

[Φj(xk+1)− Φj(xk)]gj(yk). (1.14.2.8)
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If ϕj(x) ≡ 0 (j = 1, . . . , m), it becomes Euler’s scheme of polygonal lines of the first

order of accuracy.

One can construct more accurate numerical schemes analogous to Runge–Kutta meth-

ods by using more accurate approximations of the integrals (e.g., see Item 2◦ below for an

example).

2◦. As a further generalization, let us look at the problem

y′x = f(x, y) +

m∑

j=1

ϕj(x)gj(x, y), y(0) = 0, (1.14.2.9)

where f(x, y) and gj(x, y) are singularity-free smooth functions satisfying the conditions

gj(0, y) 6≡ 0, while the ϕj(x) are functions with integrable singularities at x = 0 (so that

ϕj(0) =∞).

A simple Euler-type difference scheme for equation (1.14.2.9) is

yk+1 = yk + hf(xk, yk) +

m∑

j=1

[Φj(xk+1)−Φj(xk)]gj(xk, yk). (1.14.2.10)

Remark 1.42. Note that the order of accuracy of schemes (1.14.2.4), (1.14.2.5), (1.14.2.8),

and (1.14.2.10) is unknown in advance, since the derivatives of the right-hand sides of (1.14.2.1),

(1.14.2.6), and (1.14.2.9) are unbounded; this question calls for further investigation and is not

discussed here.

1.14.3 Numerical Integration of Equations Defined Parametrically or
Implicitly

◮ Numerical integration of equations defined parametrically.

Consider the Cauchy problem for an equation defined parametrically using two relations

(see Section 1.8.3):

F (x, y, t) = 0, y′x = G(x, y, t) (equation); (1.14.3.1)

y = y0 at x = x0 (initial condition). (1.14.3.2)

Let us look at the general case where the parameter t cannot be eliminated from equa-

tions (1.14.3.1). Below we describe the main ideas of two methods for the solution of such

problems.

First method. We start from equations (1.14.3.1). Let yF = yF (x, t) denote a solution

of the first equation (which is algebraic or transcendental) and let yG = yG(x, t) denote a

solution of the second (differential) equation subject to the initial condition (1.14.3.2). We

also use the notation

∆(x, t) = yG(x, t)− yF (x, t). (1.14.3.3)

By fixing a value of the parameter, t = tk, and finding the corresponding solutions

yF (x, tk) and yG(x, tk) (for example, yF can be constructed by the iterative Newton method

and yG by the Runge–Kutta method). Further, by varying x, we find an xk such that the

right-hand side of (1.14.3.3) becomes zero, ∆(xk, tk) = 0. To this xk there corresponds
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the value of the desired function yk = yF (xk, tk) = yG(xk, tk). Thus, each value tk in the

(x, y) plane is associated with the point (xk, yk) at which the curves yF = yF (x, tk) and

yG = yG(x, tk) intersect. By taking another value of the parameter, tk+1, we find a differ-

ent point (xk+1, yk+1). The combination of discrete points (xk, yk) with k = 0, 1, 2, . . .
determines an approximate solution y = y(x) to problem (1.14.3.1)–(1.14.3.2). The initial

value of the parameter, t = t0, is found from the algebraic (or transcendental) equation

F (x0, y0, t0) = 0, (1.14.3.4)

where x0 and y0 are the quantities appearing in the initial condition (1.14.3.2).

This method is especially easy to use if the first equation is explicitly solvable for y
or x.

Second method. Using the method outlined in Section 1.8.3, we reduce equation

(1.14.3.1) to a standard system of first-order differential equations for x=x(t) and y= y(t)
(see system (1.8.3.6)):

x′t = −
Ft

Fx +GFy
, y′t = −

GFt

Fx +GFy
. (1.14.3.5)

Suppose that Fx +GFy 6= 0. Then system (1.14.3.5) with the initial conditions

x(t0) = x0, y(t0) = y0, (1.14.3.6)

where t0 is found from the algebraic (or transcendental) equation (1.14.3.4), can be solved

numerically with, for example, the Runge–Kutta method (see Section 7.4.1 for relevant for-

mulas). The solution will simultaneously be a solution to the original problem (1.14.3.1)–

(1.14.3.2) in parametric form.

This method is much more effective than the first one.

Remark 1.43. The algebraic (or transcendental) equation (1.14.3.4) can generally have more

than one different root. Then the original system (1.14.3.1)–(1.14.3.2) will have the same number

of different solutions.

Remark 1.44. Sometimes, it is more convenient to replace the second equation in (1.14.3.1)

with the equivalent equation y′x =G1(x, y, t), whereG1(x, y, t) =G(x, y, t)+F (x, y, t)H(x, y, t)
and H(x, y, t) is some function.

◮ Numerical integration of equations defined implicitly.

Let us look at the Cauchy problem for the equation defined implicitly as

F (x, y, y′x) = 0 (1.14.3.7)

subject to the initial conditions (1.14.3.2).

The substitution y′x = t reduces equation (1.14.3.7) to the parametric equation

F (x, y, t) = 0, y′x = t (1.14.3.8)

and initial conditions (1.14.3.2).

Problem (1.14.3.8), (1.14.3.2) is a special case of problem (1.14.3.1)–(1.14.3.2) with

G(x, y, t) = t; it can be solved using the numerical methods described above.
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Remark 1.45. For special forms of equation (1.14.3.7), it may be more convenient to change

the definition of the parameter t. For example, in the implicit equation

F (y, y′x + f(x, y)) = G(x, y),

the parameter can be introduced as t = y′x + f(x, y). This will result in the parametric equation

F (y, t)−G(x, y) = 0, t = y′x + f(x, y).

◮ Differential-algebraic equations.

Parametrically defined nonlinear differential equations of the form (1.14.3.1) are a special

class of coupled (DAEs for short). For numerical methods for DAEs other than those

described above, see the books by Hairer, Lubich, and Roche (1989), Schiesser (1994),

Hairer and Wanner (1996), Brenan, Campbell, and Petzold (1996), Ascher and Petzold

(1998), an Rabier and Rheinboldt (2002).

1.14.4 Numerical Solution of Blow-Up Problems

◮ Preliminary remarks. Blow-up solutions with a power-law singularity.

There are problems whose solution tends to infinity at some finite value of the indepen-

dent variable, x = x∗, which is unknown in advance. Such solutions exist only on the

bounded interval x0 ≤ x < x∗ and are called blow-up solutions. A practically important

question arises in treating such problems: How can one determine the singular point x∗
with numerical methods?

Example 1.48. Let us look at the model Cauchy problem for a separable ODE

y′x = y2 (x > 0), y(0) = a, (1.14.4.1)

where a > 0. The exact solution of this problem is

y =
a

1− ax . (1.14.4.2)

It has a power-law singularity (a pole) at x∗ = 1/a and does not exist for x > x∗.

If we solve problem (1.14.4.1) using, for example, the first-order Euler method of polygonal

lines with a constant step size h, we obtain a numerical solution which is positive, monotonically

increases, and exists for arbitrarily large xk. By the form of the numerical solution, it is impossible

to conclude that the exact solution has a pole—it looks like the exact solution rapidly increases and

exists for any x > 0. The same qualitative behavior is given by explicit high-order Runge–Kutta

schemes. Furthermore, the standard implicit schemes also fail to determine the right qualitative

behavior of solutions in such case.

In general, blow-up solutions with a power-law singularity can be represented in the

vicinity of the singular point x∗ as

y ≈ A(x∗ − x)−µ, µ > 0,

where A is some constant. For blow-up solutions, we get y(x∗) =∞.

Below we outline a few numerical methods for solving problems of the form (1.13.1.1)–

(1.13.1.2) having blow-up solutions. We assume that f(x, y)> 0 for x≥x0 and y≥ y0> 0.
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◮ Method based on the hodograph transformation.

For monotonic blow-up solutions, having performed the hodograph transformation, we will

be solving the following Cauchy problem for x = x(y):

x′y =
1

f(x, y)
(y > y0), x(y0) = x0. (1.14.4.3)

The computations will be carried out using the explicit fourth-order Runge–Kutta scheme.

The existence of an asymptote x = x∗ can be numerically established at large y.

Example 1.49. In the model problem (1.14.4.1), the hodograph transformation results in the

exact solution

x =
1

a
− 1

y
.

It satisfies the initial condition x(a) = 0, does not have singularities, monotonically increases for

y > a, and tends to the limit value x∗ = limy→∞ x(y) = 1/a.

Remark 1.46. This method is also suitable for the numerical integration of higher-order equa-

tions when dealing with Cauchy problems having blow-up solutions.

◮ Method based on the use of the differential variable t = y′x.

Suppose that f(x, y) ≥ 0. Let us introduce the auxiliary differential variable t = y′x and

rewrite problem (1.13.1.1)–(1.13.1.2) in parametric form:

f(x, y)− t = 0, y′x = t (t > t0); (1.14.4.4)

x(t0) = x0, y(t0) = y0, t0 = f(x0, y0). (1.14.4.5)

Using the results of Section 1.14.3, we treat these equations as system (1.14.3.5) with

F = f(x, y)− t and G = t to obtain the Cauchy problem for the system of two first-order

equations

x′t =
1

fx + tfy
, y′t =

t

fx + tfy
(t > t0) (1.14.4.6)

subject to the initial conditions (1.14.4.5).

Assuming that the conditions fx + tfy > 0 at t0 < t < ∞ hold, we solve problem

(1.14.4.6), (1.14.4.5) numerically with, for example, the Runge–Kutta method (for the rel-

evant formulas, see Section 7.4.1) or other standard numerical methods. In this case, no

blow-up related difficulties will occur, since x′t rapidly tends to zero as t→∞. The result-

ing solution will also be a solution to the original parametric problem (1.13.1.1)–(1.13.1.2).

The upper bound of the existence domain of the solution, x=x∗, is determined numerically

for sufficiently large t.

Example 1.50. In the model problem (1.14.4.1), the introduction of the new differential variable

t = y′x leads to the following Cauchy problem for a system of equations:

x′t =
1

2ty
, y′t =

1

2y
;

x(t0) = 0, y(t0) = a, t0 = a2.
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The exact solution of this problem is

x =
1

a
− 1√

t
, y =

√
t (t ≥ a). (1.14.4.7)

It does not have singularities; the function x = x(t) monotonically increases for t > a and tends to

the desired limit value x∗ = limt→∞ x(t) = 1/a, while y = y(t) monotonically increases without

limit.

Example 1.51. In the more general Cauchy problem

y′x = yk, y(0) = a,

where a > 0 and k > 1, the introduction of the new variable t= y′x leads to a system whose solution

is expressed as

x =
1

k − 1

(
a1−k − t

1−k
k
)
, y = t

1
k (t ≥ ak). (1.14.4.8)

Its behavior is qualitatively similar to that of solution (1.14.4.7).

Remark 1.47. Solutions (1.14.4.7) and (1.14.4.8) approach their asymptotic value x → x∗ as

t→∞ quite slowly. To speed up the process, one can substitute exp(λτ) for t, with λ > 0, which

is equivalent to introducing the new variable τ = 1
λ ln y′x.

◮ Method based on the arc length transformation and its modification.

In problems with a blow-up solution, y = y(x), the right-hand side of equation (1.13.1.1),

equal to f(x, y) and determining the derivative y′x, tends to infinity as x→ x∗. The fact that

f(x, y) becomes infinite at a finite value of the independent variable, x∗, which is unknown

in advance, is the main reason for the failure of standard numerical methods.

1◦. This issue can be avoided by replacing the original problem for a single equation

(1.13.1.1)–(1.13.1.2) with an equivalent problem for a system of two equations:

x′s =
1√

1 + f2(x, y)
, y′s =

f(x, y)√
1 + f2(x, y)

;

x(0) = x0, y(0) = y0.

(1.14.4.9)

Problem (1.14.4.9), unlike (1.13.1.1)–(1.13.1.2), does not have singularities. As x →
x∗, we have f(x, y(x))→∞, and hence, x′s→ 0 and y′s→ 1. When obtained, the solution

x = x(s), y = y(s) determines the solution of the original problem in parametric form.

Problem (1.14.4.9) can be solved numerically using, for example, the Runge–Kutta

method (for the relevant formula, see Section 7.4.1).

Remark 1.48. The auxiliary variable s appearing in the autonomous system (1.14.4.9) is ex-

pressed in terms of the solution to the original problem as follows:

s =

∫ x

x0

√
1 + f2(x, y(x)) dx =

∫ x

x0

√
1 + [y′x(x)]

2 dx. (1.14.4.10)

It has a clear geometrical meaning; specifically, s is the arc length of the desired curve y = y(x) in

the (x, y) plane, counted off from the initial point (x0, y0). The following limit property holds true:

s→∞ as x→ x∗.

Relation (1.14.4.10) is called the arc length transformation.
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a b

Figure 1.2: a, numerical solution x = x(ξ), y = y(ξ) of the Cauchy problem (1.14.4.11)

with the scale factor ν = 30; b, exact solution (1.14.4.2) with a = 1, solid line; numerical

solution of problem (1.14.4.11), open circles.

Example 1.52. In the model problem (1.14.4.1) with a = 1, the equivalent problem for the

system of equations (1.14.4.9) takes the form

x′ξ =
1√

1 + y4
, y′ξ =

y2√
1 + y4

; x(0) = 0, y(0) = 1. (1.14.4.11)

The second equation of this system is a separable equation whose solution is not expressed in terms

of elementary functions.

Figure 1.2 shows a numerical solution of the Cauchy problem (1.14.4.11) in parametric form

and compares the numerical solution with the exact solution (1.14.4.2).

2◦. The above method allows various modifications. For the numerical solution, one can

use, for example, the following simpler problem instead of (1.14.4.9):

x′τ =
1

1 + |f(x, y)| , y′τ =
f(x, y)

1 + |f(x, y)| ;

x(0) = x0, y(0) = y0.

(1.14.4.12)

It is equivalent to the original problem (1.13.1.1)–(1.13.1.2). (The modulus sign in the de-

nominators is used for generality, since problem (1.14.4.12) can also be used in the case of

f < 0 for the numerical investigation of problems having solutions with roots singularities;

see Section 1.14.5.)

Example 1.53. In the model problem (1.14.4.1) with a = 1, the equivalent problem for the

system of equations (1.14.4.12) results in the parametric solution

x = 1 + 1
2 τ − 1

2

√
τ2 + 4, y = 1

2 τ +
1
2

√
τ2 + 4 (τ ≥ 0).

This solution satisfies the initial conditions x(0) = 0 and y(0) = 1 and does not have singu-

larities. The function x(τ) monotonically increases and tends to the desired limit value x∗ =
limτ→∞ x(τ) = 1. The function y(τ) monotonically increases and tends to infinity as τ → ∞;

moreover, limτ→∞ y(τ)/τ = 1.
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◮ Method based on nonlocal transformations.

Introducing a new nonlocal variable by the formula

ξ =

∫ x

x0

g(x, y) dx, y = y(x), (1.14.4.13)

leads the Cauchy problem for one equation (1.13.1.1)–(1.13.1.2) to the equivalent problem

for the autonomous system of equations

x′ξ =
1

g(x, y)
, y′ξ =

f(x, y)

g(x, y)
(ξ > 0);

x(0) = x0, y(0) = y0.

(1.14.4.14)

The regularizing function g = g(x, y) must satisfy the following conditions:

g > 0 if x ≥ x0, y ≥ y0; g →∞ as y →∞; f/g = k as y →∞, (1.14.4.15)

where k = const > 0 (and the limiting case k = ∞ is also allowed); otherwise the func-

tion g can be chosen rather arbitrarily. It follows from (1.14.4.13) and the second condi-

tion (1.14.4.15) that x′ξ → 0 as ξ →∞.

A blow-up problem of the form (1.13.1.1)–(1.13.1.2) can be solved using the equivalent

system (1.14.4.14). With this equivalent system, the unknown singular point, x = x∗,

of the solution to the original problem (1.13.1.1)–(1.13.1.2) becomes the known point at

infinity ξ = ∞ of system (1.14.4.14). The Cauchy problem (1.14.4.14) can be integrated

numerically by applying the Runge–Kutta method or another standard numerical method.

Here are a few possible ways of how the regularizing function g in system (1.14.4.14)

can be chosen.

1◦. The special case g = f is equivalent to the hodograph transformation with an addi-

tional translation of the dependent variable, which gives ξ = y − y0.

2◦. We can take g=
(
c+|f |s

)1/s
with c> 0 and s> 0. In this case, k=1 in (1.14.4.15).

For c = 1 and s = 2, we get the method of arc length transformation.

3◦. We can take g = f/y, which corresponds to k =∞ in (1.14.4.15).

4◦. For problems with non-monotonic blow-up solutions, a nonlocal transformation

with g = (1 + |f |)1/2 is more efficient than transformations with the functions of Item 2◦;

this regularizing function can be used for solutions having a pole of integer order at the

blow-up point.

Remark 1.49. It follows from Items 1◦ and 2◦ that the method based on the hodograph trans-

formation and the method of arc length transformation are special cases of the method based on a

nonlocal transformation of general form.

Example 1.54. For the model problem (1.14.4.1), in which f = y2, we take g = f/y = y (see

Item 3◦ above). By substituting these functions into (1.14.4.14), we arrive at the equivalent Cauchy

problem

x′ξ =
1

y
, y′ξ = y (ξ > 0);

x(0) = 0, y(0) = a.
(1.14.4.16)

Its exact solution is

x =
1

a

(
1− e−ξ

)
, y = aeξ (ξ ≥ 0). (1.14.4.17)
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a b

Figure 1.3: a, numerical solution x = x(ξ), y = y(ξ) of the Cauchy problem (1.14.4.16)

with a = 1 (ν = 30); b, exact solution (1.14.4.2) with a = 1, solid squares; numerical

solution of the Cauchy problem (1.14.4.16), open circles.

This solution does have singularities. The function x = x(ξ) monotonically increases for ξ > 0 and

tends rapidly to the desired limit value x∗ = limξ→∞ x(ξ) = 1/a, while y = y(ξ) monotonically

exponentially increases with ξ.

Figure 1.3 shows a numerical solution of the Cauchy problem (1.14.4.16) in parametric form

and compares the numerical solution with the exact solution (1.14.4.2).

Remark 1.50. The method based on the use of the special case of system (1.14.4.14) with

g = f/y (see Item 3◦) is more efficient than the methods based on the hodograph transformation,

arc length transformation, and differential variable t = y′x.

◮ Method based on a special Rosenbrock scheme.

Another useful method for the numerical analysis of blow-up solutions is based on the

one-parameter Rosenbrock scheme, which is defined by the formulas

yk+1 = yk + hReϕk, [1− αhfy(xk+ 1
2
, yk)]ϕk = f(xk+ 1

2
, yk), (1.14.4.18)

where α is a numerical (generally complex) parameter, fy is the partial derivative of f with

respect to y, xk+ 1
2
= xk +

1
2h, and Reϕk is the real part of ϕk.

There is a special complex scheme from the family (1.14.4.18) that corresponds to α =
1
2 (1+i) with i2 =−1,∗ which possesses some unique properties. The scheme is of second-

order approximation in h; it is stable and monotonic on all linear problems, allows a simple

generalization to systems of nonlinear ODEs (and PDEs), shows high reliability, and is

suitable for stiff problems.

In explicit form, the special scheme (1.14.4.18) with α = 1
2 (1 + i) is written as

yk+1 = yk + h
2f(xk+ 1

2
, yk)[2 − hfy(xk+ 1

2
, yk)]

[2− hfy(xk+ 1
2
, yk)]2 + h2f2y (xk+ 1

2
, yk)

. (1.14.4.19)

∗This is a little-known scheme proposed by Rosenbrock (1963) and employed by Alshina, Kalitkin, and

Koryakin (2005), whose results are used here (see also Kalitkin, Alshin, Alshina, and Rogov (2005)).
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Example 1.55. Let us look at the more general differential equation than (1.14.4.1)

y′x = byγ . (1.14.4.20)

For b > 0 and γ > 1, the exact solution of this equation has a pole:

y = A(x∗ − x)−β , A = (β/b)β , β =
1

γ − 1
> 0. (1.14.4.21)

If the solution is to satisfy the initial condition y(0) = a, the position of the pole is given by

x∗ = (a/A)1−γ = (a/A)−1/β .

For equation (1.14.4.20), the special scheme (1.14.4.21) becomes

yk+1 = yk + 2hbyγk
2− hbγyγ−1

k

(2− hbγyγ−1
k )2 + (hbγyγ−1

k )2
. (1.14.4.22)

Scheme (1.14.4.22) possesses the following properties:

Property 1. There is a value y∗ = [2/(hbγ)]
1

γ−1 at which the numerical solution remains the

same when it goes to the next step: yk = yk+1 = y∗.

Property 2 (attraction property). If yk+1>y∗, the increment of the function is negative (yk+1−
yk < 0) and, conversely, if yk+1 < y∗, the increment of the function is positive (yk+1 − yk > 0);

this suggests that whatever yk is, the special scheme (1.14.4.21) makes the next step toward the

equilibrium y∗ = [2/(hbγ)]
1

γ−1 .

Property 3. If 1 < γ ≤ 2, the numerical solution tends to its limit value y∗ monotonically.

For γ > 2, a nonmonotonicity near y∗ is possible; however, each subsequent yk comes closer and

closer to y∗. On the whole, for γ > 1 and b > 0, the numerical solution obtained with the special

Rosenbrock scheme tends to the limit y∗.

A solution obtained with the special scheme increases until it reaches the pole and then levels off

at a constant value. The smaller the mesh increment the larger the height of the plateau. The scheme

allows one to determine the position of the singular point x∗ with a high accuracy. The article by

Alshina, Kalitkin, and Koryakin (2005) also shows how to determine the degree of singularity β of

the singular point numerically.

Remark 1.51. It is noteworthy that the qualitative behavior of a numerical blow-up solution to

an equation of the form (1.14.4.20) with b > 0 and γ > 1 differs significantly between explicit and

implicit Runge–Kutta schemes (explicit schemes of the first to fourth order were tested as well as the

implicit Euler scheme). All explicit schemes give monotonically increasing solutions; the higher the

order of approximations of the scheme, the faster the solution increases. Soon after the point x∗ at

which the solution has a pole is passed, arithmetic overflow occurs and further computation becomes

impossible. This kind of qualitative behavior is extremely annoying, especially because it is uneasy

to identify the cause of the overflow.

Implicit schemes have a different problem. At first, the solution increases and then, immediately

before the pole, rapidly drops and becomes negative. In this situation, the calculation of the right-

hand side of (1.14.4.20) for fractional γ becomes impossible, since raising a negative number in a

fractional power is undefined.

Remark 1.52. Example 1.40 describes a much wider class of equations admitting blow-up so-

lutions than (1.14.4.20).

Remark 1.53. Other numerical methods for blow-up solutions with their domains of applicabil-

ity are discussed, for example, in Stuart and Floater (1990), Hirota and Ozawa (2006), and Dlamini

and Khumalo (2012).

◮ Numerical solution of blow-up problems with logarithmic singularity.

There are blow-up problems that have a logarithmic singularity at the point x∗.
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Example 1.56. Let us look at the model Cauchy problem for the separable ODE

y′x = ey (x > 0), y(0) = a, (1.14.4.23)

where a > 0. Its exact solution is

y = ln
ea

1− eax . (1.14.4.24)

It has a logarithmic singularity at the point x∗ = e−a and does not exist for x > x∗.

Problems with logarithmic singularities can usually be treated with the same methods as

described above. Below are brief comments on the use of these methods for such problems.

Method based of the hodograph transformation. This method suggests that the original

Cauchy problem (1.13.1.1)–(1.13.1.2) for y = y(x) is replaced with the Cauchy problem

(1.14.4.3) for x = x(y).

Example 1.57. In the model problem (1.14.4.23), the hodograph transformation leads to the

solution

x = e−a − e−y,

which satisfies the initial condition x(a) = 0, does not have singularities, and monotonically in-

creases for y > a while tending to the desired limit value x∗ = limy→∞ x(y) = e−a.

Method based on the use of the differential variable t = y′x. This method suggests the

use of the new auxiliary variable t= y′x and replacement of the original problem (1.13.1.1)–

(1.13.1.2) with the Cauchy problem for the system of two first-order equations (1.14.4.6)

subject to the initial conditions (1.14.4.5).

Example 1.58. In the model problem (1.14.4.23), the introduction of the variable t = y′x leads

to the following Cauchy problem for a system of two equations:

x′t = e−y/t, y′t = e−y;

x(t0) = 0, y(t0) = a, t0 = ea.
(1.14.4.25)

The exact solution of this problem is

x =
1

ea
− 1

t
, y = ln t (t ≥ ea).

It does not have singularities; the function x = x(t) monotonically increases for t > ea and tends

to the desired limit value x∗ = limt→∞ x(t) = e−a, while y = y(t) increases monotonically and

unboundedly with t.

Methods based on the arc length transformation or nonlocal transformations. These

methods suggest that the original problem (1.13.1.1)–(1.13.1.2) is replaced with the equiv-

alent Cauchy problem for the system of two first-order equations (1.14.4.9), (1.14.4.12), or

(1.14.4.14).

Example 1.59. To the model problem (1.14.4.23) there corresponds the equivalent Cauchy prob-

lem (1.14.4.14) with f(x, y) = ey and g = f/y = ey/y:

x′t = ye−y, y′t = y;

x(0) = 0, y(0) = a.

Its exact solution is

x = e−a − exp(−aet), y = aet (t ≥ 0).

It does not have singularities; x = x(t) monotonically increases for t > 0 and tends rapidly to

the desired limit value x∗ = limt→∞ x(t) = e−a, while y = y(t) increases monotonically and

exponentially with t.
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Method based on using the special Rosenbrock scheme. Scheme (1.14.4.19) can be

used for the numerical analysis of blow-up solutions with logarithmic nonlinearity. Solu-

tions obtained with this scheme level out (nonmonotonically) at y∗ = ln(h/2), where h is

the mesh increment.

Remark 1.54. The qualitative behavior of a numerical solution with a logarithmic nonlinearity

is significantly different between explicit and implicit Runge–Kutta schemes in a similar way to that

of solutions with a pole. Computation using explicit schemes results in overflow shortly after x∗,

while computation based on implicit schemes is characterized by a sign change of the numerical

solution.

1.14.5 Numerical Solution of Problems with Root Singularity

◮ Preliminary remarks. Solutions with a root singularity.

There are problems whose solutions exist, although limitedly, on a finite interval x0 ≤ x ≤
x∗, where x∗ is unknown in advance and |y′x(x∗)| = ∞. In studying such problems, a

practical question arises on how to determine, with numerical methods, the endpoint x∗ as

well as the solution near it.

Example 1.60. Let us look at the model Cauchy problem for the separable ODE

y′x = − 1

2y
(x > 0), y(0) = a, (1.14.5.1)

where a > 0. Its exact solution is

y =
√
a2 − x. (1.14.5.2)

It is nonnegative and monotonically decreases from the initial value a at x = 0 to zero at x∗ = a2

and does not exist for x> x∗ (since the radicand becomes negative). Furthermore, very importantly,

solution (1.14.5.2) has an infinite derivative at the finite point x∗.

If problem (1.14.4.1) is solved, for example, using the Euler method of polygonal lines, the

resulting numerical solution will, at first, be positive and monotonically decreasing and then will

become negative. The same qualitative behavior gives explicit Runge–Kutta schemes of high orders.

The large errors of these methods near x∗ are due to the infinite derivative at the endpoint x∗ and

the absence of solution for x > x∗.

In general, we will say that a solution has a root singularity at x = x∗ if the following

approximate relation holds near this point:

y ≈ A(x∗ − x)µ, 0 < µ < 1, (1.14.5.3)

where A is some constant. For solutions with root singularities, we have y′x(x∗) =∞.

Example 1.61. The model equation (1.14.4.20) has solutions with a root singularity if the in-

equalities

b < 0, −∞ < γ < 0

hold. In this case, the root singularity index µ in (1.14.5.3) is linked to the parameter γ in (1.14.4.20)

by the simple relation

µ =
1

1− γ .
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Below we briefly describe a few numerical methods for problems of the form (1.13.1.1)–

(1.13.1.2) having solutions with a root singularity. To be specific, we assume that f(x, y)≤
0 and y0 > 0. Suppose that there are reasons to believe that the solution to the problem

in question has a root singularity (for example, if there were strange problems with using

explicit schemes).

◮ Method based on the hodograph transformation.

By making the hodograph transformation x = x(y) followed by the change of variable

z = y0 − y, one reduces the Cauchy problem (1.14.4.3) to the form

x′z = −
1

f(x, y0 − z)
(z > 0), x(0) = x0. (1.14.5.4)

The computation is carried out using, for example, a fourth-order explicit Runge–Kutta

scheme. Problem (1.14.5.4) is solved starting from z = 0 and up until z = y0. The endpoint

of the existence domain is obtained as

x|z=y0 = x∗. (1.14.5.5)

Example 1.62. In the model problem (1.14.5.1), the hodograph transformation followed by the

change of variable z = a− y leads to the Cauchy problem

x′z = 2(a− z) (z > 0), x(0) = 0.

Its exact solution is

x = 2az − z2.
The function x = x(z) does not have singularities, is infinitely differentiable, and increases mono-

tonically for 0 ≤ z < a. The endpoint of the existence domain is determined by formula (1.14.5.5),

x∗ = x|z=a = a2.

Remark 1.55. This method is also suitable for higher-order equations when integrating Cauchy

problems having solutions with a root singularity.

◮ Method based on the introduction of the new independent variable t = −y′x.

Let f(x, y)≤ 0. We introduce the auxiliary variable t=−y′x and substitute it into problem

(1.13.1.1)–(1.13.1.2) to obtain

f(x, y) + t = 0, y′x = −t (t > t0); (1.14.5.6)

x(t0) = x0, y(t0) = y0, t0 = −f(x0, y0). (1.14.5.7)

Then, taking advantage of the results of Section 1.14.3, we consider problem (1.14.3.5)

with F = f(x, y) + t and G = −t to arrive at the Cauchy problem for the system of two

first-order equations

x′t = −
1

fx − tfy
, y′t =

t

fx − tfy
(t > t0) (1.14.5.8)

subject to the initial conditions (1.14.5.7). Further, we solve problem (1.14.5.8), (1.14.5.7)

numerically using, for example, the Runge–Kutta method (see Section 7.4.1 for relevant

formulas). The resulting solution is a solution to the original problem (1.13.1.1)–(1.13.1.2)

represented in parametric form. The endpoint of the existence domain of the solution,

x = x∗, is determined numerically at sufficiently large t.



“K16435’ — 2017/9/28 — 15:05 — #117

1.14. Special Numerical Methods 91

Example 1.63. In the model problem (1.14.5.1) with a = 1, the introduction of the variable

t = −y′x leads to the following Cauchy problem for a system of equations:

x′t = 2y2/t, y′t = −2y2 (t > t0);

x(t0) = 0, y(t0) = 1, t0 = 1
2 .

Its exact solution is

x = 1− 1

4t2
, y =

1

2t
(t ≥ 1

2 ). (1.14.5.9)

It does not have singularities; x = x(t) monotonically increases for t > 1
2 and tends to the de-

sired limit value x∗ = limt→∞ x(t) = 1, while y = y(t) monotonically decreases with t so that

limt→∞ y(t) = 0.

Example 1.64. In the more general Cauchy problem

y′x = −y−k, y(0) = a,

where a > 0 and k > 0, the introduction of the new variable t= −y′x leads to a system of equations

whose solution is given by

x =
1

k + 1

(
ak+1 − t−

k+1
k
)
, y = t−

1
k (t ≥ a−k). (1.14.5.10)

This solution has a similar qualitative behavior to that of solution (1.14.5.9).

◮ Method based on the use of an equivalent system of equations.

In problems having solutions y = y(x) with a root singularity, the right-hand side of equa-

tion (1.13.1.1), equal to f(x, y) and determining the derivative y′x, tends to infinity as

x → x∗. The fact that f(x, y) becomes infinite at an unknown finite value of the inde-

pendent variable, x∗, is the main reason of failure of the standard numerical methods in

solving problems whose solutions have a root singularity, just as in solving problems with

blow-up solutions.

1◦. This situation can be avoided if one replaces the original problem (1.13.1.1)–(1.13.1.2)

with the equivalent Cauchy problem for the system of two first-order equations (1.14.4.9)

or (1.14.4.12). It should be reminded that the computation must be carried out with respect

to the new independent variable, s or τ , until y = 0, where the right-hand side of equation

(1.13.1.1) becomes infinite.

Example 1.65. In the model problem (1.14.5.1) with a= 1, the equivalent problem for a system

of equations (1.14.4.12) results in the parametric solution

x = τ + 1
2

√
9− 4τ − 3

2 , y = 1
2

√
9− 4τ − 1

2 (0 ≤ τ ≤ 2).

This solution satisfies the initial conditions x(0) = 0 and y(0) = 1 and does not have singularities

for 0 ≤ τ ≤ 2. The function y(τ) monotonically increases and tends to the desired limit value

x∗ = limτ→2 x(τ) = 1.

2◦. Apart from system (1.14.4.9) or (1.14.4.12), a number of other equivalent systems can

be used to solve problems of the form (1.13.1.1)–(1.13.1.2) with a root singularity. In

particular, if f(x, y) < 0 and y(0) > 0, the following Cauchy problem for a system of

equations can be helpful:

x′t = −
y

f(x, y)
, y′t = −y (t > 0);

x(0) = x0, y(0) = y0.
(1.14.5.11)
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The unknown singular point x = x∗ of the solution to the original problem (1.13.1.1)–

(1.13.1.2) becomes the known point at infinity t =∞ of system (1.14.5.11), with y = 0 at

t =∞.

Example 1.66. To the model problem (1.14.5.1) there corresponds the equivalent Cauchy prob-

lem (1.14.5.11) with f(x, y) = −(2y)−1:

x′t = 2y2, y′t = −y;
x(0) = 0, y(0) = a.

Its exact solution is

x = a2(1− e−2t), y = ae−t (t ≥ 0).

This solution does not have singularities; x = x(t) monotonically increases for t > 0 and tends

rapidly to the desired limit value x∗ = limt→∞ x(t) = a2, while y = y(t) monotonically exponen-

tially decreases with t so that limt→∞ y(t) = 0.

◮ Method based on the use of a special Rosenbrock scheme.

The special Rosenbrock scheme (1.14.4.19) can also help in the solution of problems with

root singularities. When used with a small step size, this scheme can cause oscillatory

nonmonotonicity of the solution x∗, with the first local minimum, y1m approximately de-

termining the endpoint of the existence domain: y(x∗) ≈ y1m. The article by Alshina,

Kalitkin, and Koryakin (2005) describes a technique that allows finding the index of the

root singularity numerically.

Remark 1.56. Numerical solutions obtained with explicit Runge–Kutta schemes intersects the

tangent at the singular point x∗ (coinciding with the asymptote of the derivative) at a y > 0 and,

immediately after x∗, the computation breaks down to negative values. Computations using the

implicit Euler scheme also fail resulting in negative values, after which the computation becomes

impossible.

⊙ Literature for Section 1.14: H. H. Rosenbrock (1963), N. N. Kalitkin (1978), S. Moriguti, C. Okuno, R.

Suekane, M. Iri, and K. Takeuchi (1979), M. Stuart and M. S. Floater (1990), U. M. Ascher and L. R. Petzold

(1998), G. Acosta, G. Durán, and J. D. Rossi (2002), E. A. Alshina, N. N. Kalitkin, and P. V. Koryakin (2005),

N. N. Kalitkin, A. B. Alshin, E. A. Alshina, and B. V. Rogov (2005), C. Hirota and R. Ozawa (2006), P. G.

Dlamini and M. Khumalo (2012), A. Takayasu, K. Matsue, T. Sasaki, K. Tanaka, M. Mizuguchi, and S. Oishi

(2017), A. D. Polyanin and A. I. Zhurov (2017b), A. D. Polyanin and I. K. Shingareva (2017a,b,c,d,e).
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Chapter 2

Methods for Second-Order
Linear Differential Equations

2.1 Homogeneous Linear Equations

2.1.1 Formulas for the General Solution. Wronskian Determinant

◮ General form of a homogeneous linear equation.

Consider a second-order homogeneous linear equation in the general form

f2(x)y
′′
xx + f1(x)y

′
x + f0(x)y = 0. (2.1.1.1)

The trivial solution, y = 0, is a particular solution of the homogeneous linear equation.

◮ Two particular solutions are known.

Let y1(x), y2(x) be a fundamental system of solutions (nontrivial linearly independent

particular solutions) of equation (2.1.1.1). Then the general solution is given by

y = C1y1(x) + C2y2(x), (2.1.1.2)

where C1 and C2 are arbitrary constants.

◮ One particular solution is known.

Let y1 = y1(x) be any nontrivial particular solution of equation (2.1.1.1). Then its general

solution can be represented as

y = y1

(
C1 + C2

∫
e−F

y21
dx

)
, where F =

∫
f1
f2
dx. (2.1.1.3)

◮ General solution of an equation of the canonical form.

Consider the equation

y′′xx + f(x)y = 0,

93
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which is written in the canonical form; see Section 2.1.2 for the reduction of equations to

this form. Let y1 = y1(x) be any nontrivial partial solution of this equation. The general

solution can be constructed by formula (2.1.1.3) with F = 0 or formula (2.1.1.2) in which

y2(x) = y1

∫
[f(x)− 1][y21 − (y′1)

2]

[y21 + (y′1)
2]2

dx+
y′1

y21 + (y′1)
2
.

Here the prime denotes differentiation with respect to x. The last formula is suitable where

y1 vanishes at some points.

◮ Special properties of some solutions.

1◦. Suppose y = C1f(x)[g(x)]
a + C2f(x)[g(x)]

b is the general solution of the homoge-

neous linear equation with a 6= b, where a and b are free parameters. Then the function

y = C1f(x)[g(x)]
a + C2f(x)[g(x)]

a ln g(x) will be the general solution of this equation

with a = b.

2◦. Suppose a particular solution of a homogeneous linear equation is obtained in the

closed form y = [f(x)]a, with this formula valid for f(x) ≥ 0. If the equation makes

sense in a range of x where f(x) < 0, then the function y = |f(x)|a will be a particular

solution of the equation in that range.

◮ Constant-coefficient linear equation.

The second-order constant-coefficient linear equation

y′′xx + ay′x + by = 0 (2.1.1.4)

has the following fundamental system of solutions:

y1(x)=exp
(
− 1

2 ax
)

sinh
(
1
2x
√
a2−4b

)
, y2(x)=exp

(
− 1

2 ax
)

cosh
(
1
2x
√
a2−4b

)
if a2>4b;

y1(x)=exp
(
− 1

2 ax
)
sin
(
1
2x
√
4b−a2

)
, y2(x)=exp

(
− 1

2 ax
)
cos
(
1
2x
√

4b−a2
)

if a2<4b;

y1(x)=exp
(
− 1

2 ax
)
, y2(x)=x exp

(
− 1

2ax
)

if a2=4b.

◮ Euler equation.

The Euler equation

x2y′′xx + axy′x + by = 0

is reduced by the change of variable x=ket (k 6=0) to the second-order constant-coefficient

linear equation y′′tt + (a− 1)y′t + by = 0, see Eq. (2.1.1.4).

◆ Solutions to some other second-order linear equations can be found in Section 14.1.

◮ Wronskian determinant and Liouville’s formula.

The Wronskian determinant (or Wronskian) is defined by

W (x) =

∣∣∣∣
y1(x) y2(x)
y′1(x) y′2(x)

∣∣∣∣ ≡ y1(y2)
′
x − y2(y1)′x,

where y1(x), y2(x) is a fundamental system of solutions of equation (2.1.1.1).
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Liouville’s formula:

W (x) =W (x0) exp

[
−
∫ x

x0

f1(t)

f2(t)
dt

]
.

2.1.2 Factorization and Some Transformations

◮ Factorization.

1◦. Let y1 = y1(x) be any nontrivial particular solution of equation (2.1.1.1). Then the

equation can be factored as

L2L1y = 0, (2.1.2.1)

where

L1 = y1
d

dx
− y′1, L2 =

1

y1

(
d

dx
+
f1
f2

)
.

2◦. Equation (2.1.1.1) also admits a more general factorization in the form (2.1.2.1) with

L1 =
1

ψ

(
d

dx
− y′1
y1

)
, L2 = ψ

(
d

dx
+
y′1
y1

+
ψ′

ψ
+
f1
f2

)
,

where y1 = y1(x) is any nontrivial particular solution of the equation and ψ = ψ(x) is an

arbitrary function (the special case ψ = 1/y1 coincides with Item 1◦).

Remark 2.1. The factorization (2.1.2.1) of equation (2.1.1.1), with L1 and L2 being some first-

order differential operators, is equivalent in complexity to seeking a nontrivial particular solution of

the equation.

◮ Reduction to the canonical form.

1◦. The substitution

y = u(x) exp

(
− 1

2

∫
f1
f2
dx

)
(2.1.2.2)

brings equation (2.1.1.1) to the canonical (or normal) form

u′′xx + f(x)u = 0, where f =
f0
f2
− 1

4

(
f1
f2

)2

− 1

2

(
f1
f2

)′

x

. (2.1.2.3)

2◦. The substitution (2.1.2.2) is a special case of the more general transformation (ϕ is an

arbitrary function)

x = ϕ(ξ), y = u(ξ)
√
|ϕ′

ξ(ξ)| exp
(
− 1

2

∫
f1(ϕ)

f2(ϕ)
dϕ

)
,

which also brings the original equation to the canonical form.

◮ Reduction to the Riccati equation.

The substitution u = y′x/y brings the second-order homogeneous linear equation (2.1.1.1)

to the Riccati equation:

f2(x)u
′
x + f2(x)u

2 + f1(x)u+ f0(x) = 0,

which is discussed in Section 1.4.
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◮ Reduction to a constant-coefficient equation (a special case).

Let f2 = 1, f0 6= 0, and the condition

1

|f0|
d

dx

√
|f0|+

f1√
|f0|

= a = const

be satisfied. Then the substitution ξ =

∫ √
|f0| dx leads to a constant-coefficient linear

equation,

y′′ξξ + ay′ξ + y sign f0 = 0.

⊙ Literature for Section 2.1: G. M. Murphy (1960), E. Kamke (1977), D. Zwillinger (1997), S. Yu. Do-

brokhotov (1998), C. Chicone (1999), G. A. Korn and T. M. Korn (2000), A. D. Polyanin and V. F. Zaitsev

(2003), W. E. Boyce and R. C. DiPrima (2004), A. D. Polyanin and A. V. Manzhirov (2007).

2.2 Nonhomogeneous Linear Equations

2.2.1 Existence Theorem. Kummer–Liouville Transformation

◮ Existence and uniqueness theorem.

A second-order nonhomogeneous linear equation has the form

f2(x)y
′′
xx + f1(x)y

′
x + f0(x)y = g(x). (2.2.1.1)

EXISTENCE AND UNIQUENESS THEOREM. On an open interval a < x < b, let the

functions f2, f1, f0, and g be continuous and f2 6= 0. Also let

y(x0) = A, y′x(x0) = B

be arbitrary initial conditions, where x0 is any point such that a < x0 < b, and A and B are

arbitrary prescribed numbers. Then a solution of equation (2.2.1.1) exists and is unique.

This solutions is defined for all x ∈ (a, b).

◮ Kummer–Liouville transformation.

The transformation

x = α(t), y = β(t)z + γ(t), (2.2.1.2)

where α(t), β(t), and γ(t) are arbitrary sufficiently smooth functions (β 6≡ 0), takes any

linear differential equation for y(x) to a linear equation for z = z(t). In the special case

γ ≡ 0, a homogeneous equation is transformed to a homogeneous one.

Special cases of transformation (2.2.1.2) are widely used to simplify second- and higher-

order linear differential equations.

2.2.2 Formulas for the General Solution

◮ Representation of the general solution as the sum of two solutions.

The general solution of the nonhomogeneous linear equation (2.2.1.1) is the sum of the

general solution of the corresponding homogeneous equation (2.1.1.1) and any particular

solution of the nonhomogeneous equation (2.2.1.1).
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◮ Two particular solutions are known.

Let y1 = y1(x), y2 = y2(x) be a fundamental system of solutions of the corresponding

homogeneous equation, with g ≡ 0. Then the general solution of equation (2.2.1.1) can be

represented as

y = C1y1 + C2y2 + y2

∫
y1
g

f2

dx

W
− y1

∫
y2
g

f2

dx

W
, (2.2.2.1)

where W = y1(y2)
′
x − y2(y1)′x is the Wronskian determinant.

◮ One particular solution is known.

Given a nontrivial particular solution y1= y1(x) of the homogeneous equation (with g≡ 0),

a second particular solution y2 = y2(x) can be calculated from the formula

y2 = y1

∫
e−F

y21
dx, where F =

∫
f1
f2
dx, W = e−F . (2.2.2.2)

Then the general solution of equation (2.2.1.1) can be constructed by (2.2.2.1).

◮ A property of nonhomogeneous linear ODEs.

Let ȳ1 and ȳ2 be respective solutions of the nonhomogeneous linear differential equations

L [ȳ1] = g1(x) and L [ȳ2] = g2(x), which have the same left-hand side but different right-

hand sides, where L [y] is the left-hand side of equation (2.2.1.1). Then the function ȳ =
ȳ1 + ȳ2 is a solution of the equation L [ȳ] = g1(x) + g2(x).

⊙ Literature for Section 2.2: G. M. Murphy (1960), E. Kamke (1977), D. Zwillinger (1997), C. Chicone

(1999), G. A. Korn and T. M. Korn (2000), A. D. Polyanin and V. F. Zaitsev (2003), W. E. Boyce and

R. C. DiPrima (2004), A. D. Polyanin and A. V. Manzhirov (2007).

2.3 Representation of Solutions as a Series

in the Independent Variable

2.3.1 Equation Coefficients are Representable in the Ordinary Power
Series Form

Let us consider a homogeneous linear differential equation of the general form

y′′xx + f(x)y′x + g(x)y = 0. (2.3.1.1)

Assume that the functions f(x) and g(x) are representable, in the vicinity of a point

x = x0, in the power series form,

f(x) =
∞∑

n=0

An(x− x0)n, g(x) =
∞∑

n=0

Bn(x− x0)n, (2.3.1.2)
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on the interval |x − x0| < R, where R stands for the minimum radius of convergence of

the two series in (2.3.1.2). In this case, the point x = x0 is referred to as an ordinary point,

and equation (2.3.1.1) possesses two linearly independent solutions of the form

y1(x) =
∞∑

n=0

an(x− x0)n, y2(x) =
∞∑

n=0

bn(x− x0)n. (2.3.1.3)

The coefficients an and bn are determined by substituting the series (2.3.1.2) into equa-

tion (2.3.1.1) followed by extracting the coefficients of like powers of (x− x0).∗

2.3.2 Equation Coefficients Have Poles at Some Point

Assume that the functions f(x) and g(x) are representable, in the vicinity of a point x=x0,

in the form

f(x) =
∞∑

n=−1

An(x− x0)n, g(x) =
∞∑

n=−2

Bn(x− x0)n, (2.3.2.1)

on the interval |x − x0| < R. In this case, the point x = x0 is referred to as a regular

singular point.

Let λ1 and λ2 be roots of the quadratic equation

λ2 + (A−1 − 1)λ+B−2 = 0, (2.3.2.2)

where A−1 and B−2 are the leading terms in formulas (2.3.2.1) at x→ x0. There are three

cases, depending on the values of the exponents of the singularity.

1◦. Case λ1 6= λ2 and λ1 − λ2 is not an integer.

Equation (2.3.1.1) has two linearly independent solutions of the form

y1(x) = |x− x0|λ1

[
1 +

∞∑

n=1

an(x− x0)n
]
,

y2(x) = |x− x0|λ2

[
1 +

∞∑

n=1

bn(x− x0)n
]
.

(2.3.2.3)

2◦. Case λ1 = λ2 = λ.

Equation (2.3.1.1) possesses two linearly independent solutions:

y1(x) = |x− x0|λ
[
1 +

∞∑

n=1

an(x− x0)n
]
,

y2(x) = y1(x) ln |x− x0|+ |x− x0|λ
∞∑

n=0

bn(x− x0)n.
(2.3.2.4)

3◦. Case λ1 = λ2 +N , where N is a positive integer.

∗Prior to that, the terms containing the same powers (x− x0)
k, k = 0, 1, . . ., should be collected.
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Equation (2.3.1.1) has two linearly independent solutions of the form

y1(x) = |x− x0|λ1

[
1 +

∞∑

n=1

an(x− x0)n
]
,

y2(x) = ky1(x) ln |x− x0|+ |x− x0|λ2

∞∑

n=0

bn(x− x0)n,
(2.3.2.5)

where k is a constant to be determined (it may be equal to zero). If k 6= 0, then we can set

k = 1 without loss of generality.

To construct the solution in each of the three cases, the following procedure should be

performed: substitute the above expressions of y1 and y2 into the original equation (2.3.1.1)

and equate the coefficients of (x−x0)n and (x−x0)n ln |x−x0| for different values of n to

obtain recurrence relations for the unknown coefficients. From these recurrence relations

the solution sought can be found.

Example 2.1. The Bessel equation

x2y′′xx + xy′x + (x2 − ν2)y = 0 (2.3.2.6)

is a special case of equation (2.3.1.1) with the functions of the form (2.3.2.1), where

f(x) =
1

x
, g(x) = − ν

2

x2
+ 1, x0 = 0.

ThereforeA−1 = 1 and B−2 = −ν2, and the quadratic equation (2.3.2.2) has the form

λ2 − ν2 = 0. (2.3.2.7)

The roots of the equation are λ1 = ν and λ2 = −ν.

1◦. If λ1−λ2 = 2ν is not an arbitrary integer, then equation (2.3.2.6) has two linearly independent

solutions of the form (2.3.2.3).

2◦. If ν = λ1 = λ2 = 0, then equation (2.3.2.6) has two linearly independent solutions of the form

(2.3.2.4).

3◦. If λ1 − λ2 = 2ν is an arbitrary integer, then there are two cases, depending on the values ν.

3.1. Case ν is an arbitrary integer (i.e., λ1−λ2 is an even number). Then equation (2.3.2.6) has

two linearly independent solutions of the form (2.3.2.5) with k = 1.

3.2. Case ν = n + 1
2 , where n = 0, 1, 2, . . . (i.e., λ1 − λ2 is an odd number). Then equa-

tion (2.3.2.6) has two linearly independent solutions of the form (2.3.2.5) with k = 0.

For more detailed information on solutions to the Bessel equation (2.3.2.6), see also Sec-

tion 14.1.2 (Eq. 126) and Section S4.6.

⊙ Literature for Section 2.3: G. M. Murphy (1960), E. Kamke (1977), D. Zwillinger (1997), G. A. Korn and

T. M. Korn (2000), A. D. Polyanin and V. F. Zaitsev (2003).

2.4 Asymptotic Solutions

This section presents asymptotic solutions, as ε→ 0 (ε > 0), of some second-order linear

ordinary differential equations containing arbitrary functions (sufficiently smooth), with

the independent variable being real.
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2.4.1 Equations Not Containing y′

x

◮ Leading asymptotic terms.

Consider the equation

ε2y′′xx − f(x)y = 0 (2.4.1.1)

on a closed interval a ≤ x ≤ b.
Case 1. With the condition f 6= 0, the leading terms of the asymptotic expansions of

the fundamental system of solutions, as ε→ 0, are given by the formulas

y1 = f−1/4 exp
(
− 1

ε

∫ √
f dx

)
, y2 = f−1/4 exp

( 1
ε

∫ √
f dx

)
if f > 0,

y1 = (−f)−1/4 cos
( 1
ε

∫ √
−f dx

)
, y2 = (−f)−1/4 sin

( 1
ε

∫ √
−f dx

)
if f < 0.

Case 2. Discuss the asymptotic solution of equation (2.4.1.1) in the vicinity of the point

x= x0, where function f(x) vanishes, f(x0) = 0 (such a point is referred to as a transition

point). We assume that the function f can be presented in the form

f(x) = (x0 − x)ψ(x), where ψ(x) > 0.

In this case, the fundamental solutions, as ε→ 0, are described by three different formulas:

y1 =





1

|f(x)|1/4 sin
[ 1
ε

∫ x

x0

√
|f(x)| dx+

π

4

]
if x− x0 ≥ δ,

√
π

[εψ(x0)]1/6
Ai(z) if |x− x0| ≤ δ,

1

2[f(x)]1/4
exp
[
− 1

ε

∫ x0

x

√
f(x) dx

]
if x0 − x ≥ δ,

y2 =





1

|f(x)|1/4 cos
[ 1
ε

∫ x

x0

√
|f(x)| dx+

π

4

]
if x− x0 ≥ δ,

√
π

[εψ(x0)]1/6
Bi(z) if |x− x0| ≤ δ,

1

[f(x)]1/4
exp
[ 1
ε

∫ x0

x

√
f(x) dx

]
if x0 − x ≥ δ,

where Ai(z) and Bi(z) are the Airy functions of the first and second kind, respectively (see

Section S4.8), z = ε−2/3[ψ(x0)]
1/3(x0 − x), and δ = O(ε2/3).

◮ Two-term asymptotic expansions.

The two-term asymptotic expansions of the solution of equation (2.4.1.1) with f > 0, as

ε→ 0, on a closed interval a ≤ x ≤ b, has the form

y1 = f−1/4 exp
(
− 1

ε

∫ x

x0

√
f dx

){
1− εI(x) +O(ε2)

}
,

y2 = f−1/4 exp
( 1
ε

∫ x

x0

√
f dx

){
1 + εI(x) +O(ε2)

}
,

I(x) =

∫ x

x0

[ 1
8

f ′′xx
f3/2

− 5

32

(f ′x)
2

f5/2

]
dx,

(2.4.1.2)
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where x0 is an arbitrary number satisfying the inequality a ≤ x0 ≤ b.
The asymptotic expansions of the fundamental system of solutions of equation

(2.4.1.1) with f < 0 are derived by separating the real and imaginary parts in either formula

(2.4.1.2).

◮ Equations of the special form.

Consider the equation

ε2y′′xx − xm−2f(x)y = 0 (2.4.1.3)

on a closed interval a≤ x≤ b, where a< 0 and b > 0, under the conditions that m is a posi-

tive integer and f(x) 6=0. In this case, the leading term of the asymptotic solution, as ε→ 0,

in the vicinity of the point x = 0 is expressed in terms of a simpler model equation, which

results from substituting the function f(x) in equation (2.4.1.3) by the constant f(0) (the

solution of the model equation is expressed in terms of the Bessel functions of order 1/m).

We specify below formulas by which the leading terms of the asymptotic expansions of

the fundamental system of solutions of equation (2.4.1.3) with a < x < 0 and 0 < x < b
are related (excluding a small vicinity of the point x = 0). Three different cases can be

extracted.

1◦. Let m be an even integer and f(x) > 0. Then,

y1 =





[f(x)]−1/4 exp
[ 1
ε

∫ x

0

√
f(x) dx

]
if x < 0,

k−1[f(x)]−1/4 exp
[ 1
ε

∫ x

0

√
f(x) dx

]
if x > 0,

y2 =





[f(x)]−1/4 exp
[
− 1

ε

∫ x

0

√
f(x) dx

]
if x < 0,

k[f(x)]−1/4 exp
[
− 1

ε

∫ x

0

√
f(x) dx

]
if x > 0,

where f = f(x), k = sin
( π
m

)
.

2◦. Let m be an even integer and f(x) < 0. Then,

y1 =





|f(x)|−1/4 cos
[
− 1

ε

∫ x

0

√
|f(x)| dx+

π

4

]
if x < 0,

k−1|f(x)|−1/4 cos
[ 1
ε

∫ x

0

√
|f(x)| dx− π

4

]
if x > 0,

y2 =





|f(x)|−1/4 cos
[
− 1

ε

∫ x

0

√
|f(x)| dx− π

4

]
if x < 0,

k|f(x)|−1/4 cos
[ 1
ε

∫ x

0

√
|f(x)| dx+

π

4

]
if x > 0,

where f = f(x), k = tan
( π

2m

)
.

3◦. Let m be an odd integer. Then,

y1 =





|f(x)|−1/4 cos
[
− 1

ε

∫ x

0

√
|f(x)| dx+

π

4

]
if x < 0,

1

2
k−1[f(x)]−1/4 exp

[ 1
ε

∫ x

0

√
f(x) dx

]
if x > 0,
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y2 =





|f(x)|−1/4 cos
[
− 1

ε

∫ x

0

√
|f(x)| dx− π

4

]
if x < 0,

k[f(x)]−1/4 exp
[
− 1

ε

∫ x

0

√
f(x) dx

]
if x > 0,

where f = f(x), k = sin
( π

2m

)
.

◮ Equation coefficients are dependent on ε.

Consider an equation of the form

ε2y′′xx − f(x, ε)y = 0 (2.4.1.4)

on a closed interval a ≤ x ≤ b under the condition that f 6= 0. Assume that the following

asymptotic relation holds:

f(x, ε) =

∞∑

k=0

fk(x)ε
k, ε→ 0.

Then the leading terms of the asymptotic expansions of the fundamental system of solutions

of equation (2.4.1.4) are given by the formulas

y1 = f
−1/4
0 (x) exp

[
− 1

ε

∫ √
f0(x) dx+

1

2

∫
f1(x)√
f0(x)

dx
][
1 +O(ε)

]
,

y2 = f
−1/4
0 (x) exp

[ 1
ε

∫ √
f0(x) dx+

1

2

∫
f1(x)√
f0(x)

dx
][
1 +O(ε)

]
.

2.4.2 Equations Containing y′

x

◮ Equations of a special form.

1◦. Consider an equation of the form

εy′′xx + g(x)y′x + f(x)y = 0

on a closed interval 0 ≤ x ≤ 1. With g(x) > 0, the asymptotic solution of this equation,

satisfying the boundary conditions y(0) = C1 and y(1) = C2, can be represented in the

form

y = (C1 − kC2) exp
[
−ε−1g(0)x

]
+ C2 exp

[∫ 1

x

f(x)

g(x)
dx
]
+O(ε),

where k = exp
[∫ 1

0

f(x)

g(x)
dx
]
.

2◦. Now let us take a look at an equation of the form

ε2y′′xx + εg(x)y′x + f(x)y = 0 (2.4.2.1)

on a closed interval a ≤ x ≤ b. Assume

D(x) ≡ [g(x)]2 − 4f(x) 6= 0.
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Then the leading terms of the asymptotic expansions of the fundamental system of solutions

of equation (2.4.2.1), as ε→ 0, are expressed by

y1 = |D(x)|−1/4 exp
[
− 1

2ε

∫ √
D(x) dx− 1

2

∫
g′x(x)√
D(x)

dx
][
1 +O(ε)

]
,

y2 = |D(x)|−1/4 exp
[ 1

2ε

∫ √
D(x) dx− 1

2

∫
g′x(x)√
D(x)

dx
][
1 +O(ε)

]
.

◮ Equations of the general form.

The more general equation

ε2y′′xx + εg(x, ε)y′x + f(x, ε)y = 0

is reducible, with the aid of the substitution y = w exp
(
− 1

2ε

∫
g dx

)
, to an equation of

the form (2.4.1.4),

ε2w′′
xx + (f − 1

4 g
2 − 1

2 εg
′
x)w = 0,

which can be solved using the asymptotic formulas given above.

⊙ Literature for Section 2.4: W. Wasov (1965), F. W. J. Olver (1974), A. H. Nayfeh (1973, 1981), M. V. Fe-

doryuk (1993), A. D. Polyanin and V. F. Zaitsev (2003).

2.5 Boundary Value Problems. Green’s Function

2.5.1 First, Second, Third, and Some Other Boundary Value
Problems

We consider the second-order nonhomogeneous linear differential equation

f2(x)y
′′
xx + f1(x)y

′
x + f0(x)y = g(x) (2.5.1.1)

on a bounded interval x1 < x < x2. We assume that f2(x) 6= 0.

◮ First boundary value problem.

Statement of the problem: Find a solution of equation (2.5.1.1) satisfying the first-type

boundary conditions (or Dirichlet conditions)

y = a1 at x = x1, y = a2 at x = x2. (2.5.1.2)

(The values of the unknown are prescribed at two distinct points x1 and x2.)

◮ Second boundary value problem.

Statement of the problem: Find a solution of equation (2.5.1.1) satisfying the second-type

boundary conditions (or Neumann boundary conditions)

y′x = a1 at x = x1, y′x = a2 at x = x2. (2.5.1.3)

(The values of the derivative of the unknown are prescribed at two distinct points x1
and x2.)
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◮ Third boundary value problem.

Statement of the problem: Find a solution of equation (2.5.1.1) satisfying the third-type

boundary conditions (or Robin boundary conditions)

y′x − k1y = a1 at x = x1,

y′x + k2y = a2 at x = x2.
(2.5.1.4)

◮ Mixed boundary value problems.

Statement of the problem: Find a solution of equation (2.5.1.1) satisfying the mixed-type

boundary conditions

y = a1 at x = x1, y′x = a2 at x = x2. (2.5.1.5)

(The unknown itself is prescribed at one point, and its derivative at another point.)

Other mixed boundary value problem: Find a solution of equation (2.5.1.1) satisfying

the boundary conditions

y′x = a1 at x = x1, y = a2 at x = x2. (2.5.1.6)

Boundary conditions (2.5.1.2), (2.5.1.3), (2.5.1.4), (2.5.1.5) and (2.5.1.6) are called

homogeneous if a1 = a2 = 0.

◮ Problems with boundary conditions involving the values of the unknown (or/and

its derivative) at both endpoints of the interval.

Sometimes, one has to deal with problems whose boundary conditions involve the values

of the unknown (or/and its derivative) at both ends of the interval.

Example 2.2. Here are two examples of such boundary conditions:

y(x1) = a1, y(x2) + ky′x(x1) = a2

and

y(x1) + ky(x2) = a1, y′x(x2) = a2.

◮ Problems with a nonlocal condition.

Statement of the problem: Find a solution of equation (2.5.1.1) satisfying a boundary con-

dition of the first kind at x1 (see the first boundary condition in (2.5.1.2)) and the nonlocal

condition ∫ x2

x1

h(x)y(x) dx = b, (2.5.1.7)

where h(x) is a given function and b is a given number.

Condition (2.5.1.7) can be interpreted as a conservation law (with weight h) for the

unknown. In particular, if

h(x) =
1

x2 − x1
= const

condition (2.5.1.7) defines the integral mean of the unknown.

The nonlocal condition (2.5.1.7) can be set together with a boundary condition of the

second or third kind at one of the ends of the interval where the solution is sought.



“K16435’ — 2017/9/28 — 15:05 — #131

2.5. Boundary Value Problems. Green’s Function 105

◮ Boundary value problems with a degeneration at the boundary.

Let us look at the situation where the coefficient of the highest derivative in (2.5.1.1) be-

comes zero at the left endpoint:

f2(x1) = 0, f21 (x1) + f20 (x1) 6= 0.

In this case, one of the solutions to equation (2.5.1.1) may tend to infinity as x → x1; in

order to establish this fact, one has to find the leading asymptotic terms of the fundamental

system of solutions as x → x1). If one of the solutions is unbounded as x → x1, then for

the problem to be well-posed, a boundedness condition for the solution needs to be set at

the left endpoint:

|y| 6=∞ at x = x1. (2.5.1.8)

The boundary at the other end, x = x2, can be any of the those listed above.

Example 2.3. Suppose the coefficients of equation (2.5.1.1) can be expanded in a Taylor series

about x = x1, so that

f2(x) ≃ (x− x1), f1(x) ≃ b 6= 0, f0(x) ≃ c (x→ x1). (2.5.1.9)

In view of (2.5.1.9), the leading asymptotic term of the (potentially) singular solution to equation

(2.5.1.1) as x→ x1 will be sought in the form

y ≃ (x− x1)λ. (2.5.1.10)

(By virtue of the linearity of the equation, the solutions are determined up to a constant factor).

Substituting (2.5.1.10) into ODE (2.5.1.1), taking into account (2.5.1.9), and dividing by (x−x1)λ,

we obtain λ(λ− 1+ b)(x−x1)−1 +O(1) = 0. For the left-hand side of this relation to be bounded

as x→ x1, we must set

λ(λ− 1 + b) = 0. (2.5.1.11)

The zero root λ = 0 corresponds to a regular solution to equation (2.5.1.1), which does not have a

singularity at x = x1 and is expandable in a Taylor series in powers of x− x1. The other root of the

quadratic equation (2.5.1.11) is

λ = 1− b. (2.5.1.12)

If b > 1, then λ < 0; hence, the solution with the asymptotic behavior (2.5.1.10) is unbounded as

x → x1. In this case, the boundedness condition (2.5.1.8) should be set at the left endpoint. If

b = 1, equation (2.5.1.11) has a double root λ = 0, which determines a solution with a logarithmic

singularity; in this case, a boundedness condition should also be set at the left endpoint of the

interval [x1, x2].

◮ Boundary value problems on an unbounded interval.

Consider equation (2.5.1.1) on the unbounded interval x1 < x <∞ (i.e., x2 =∞). Let one

of the fundamental solutions of the equation tend to zero and be bounded as x→∞ and let

the modulus of the other solution increase without bound. Then, a boundedness condition

has to be set at the right end of the interval:

|y| 6=∞ as x→∞. (2.5.1.13)

The boundary condition at the left endpoint, x = x1, can be any of those listed previously.
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Remark 2.2. If the bounded fundamental solution is monotonic for sufficiently large x, the

equivalent condition

y′x → 0 as x→∞ (2.5.1.14)

can be used instead of (2.5.1.13).

Example 2.4. Let the coefficients of equation (2.5.1.1) be expandable in Taylor series as x→∞
and tend to constant quantities:

f2(∞) = a, f1(∞) = b, f0(∞) = c. (2.5.1.15)

Then the qualitative behavior of the fundamental system of equations as x → ∞ is determined by

the roots of the characteristic equation

aλ2 + bλ+ c = 0,

which is obtained by substituting y = eλx into equation (2.5.1.1), whose coefficients are replaced

with their leading asymptotic terms (2.5.1.15).

Condition (2.5.1.14) (or (2.5.1.13)) must be set if either (i) ac < 0 or (ii) c = 0 and ab > 0.

2.5.2 Simplification of Boundary Conditions. Self-Adjoint Form of
Equations

◮ Simplification of boundary conditions.

Nonhomogeneous boundary conditions of the first-, second-, third-, and mixed kinds set at

the endpoints of a bounded interval [x1, x2] can be reduced to homogeneous ones by the

change of variable

z = A2x
2 +A1x+A0 + y,

with the constants A2, A1, and A0 selected using the method of undetermined coefficients.

Table 2.1 gives examples of such transformations.

TABLE 2.1

Simple transformations of the form z = A2x
2 + A1x + A0 + y

that lead to homogeneous boundary conditions (x1 ≤ x ≤ x2)

No Problem Boundary conditions Transformation

1
First boundary

value problem

y = a1 at x = x1

y = a2 at x = x2

z = y − a2 − a1
x2 − x1

(x− x1)− a1

2
Second boundary

value problem

y′x = a1 at x = x1

y′x = a2 at x = x2

z = y +
a1 − a2

2(x2 − x1)
x2 +

a2x1 − a1x2

x2 − x1
x

3
Mixed boundary

value problem

y = a1 at x = x1

y′x = a2 at x = x2

z = y − a2x+ a2x1 − a1

4
Mixed boundary

value problem

y′x = a1 at x = x1

y = a2 at x = x2

z = y − a1x+ a1x2 − a2
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◮ Reduction of a bounded interval to a unit interval.

The interval x1 ≤ x ≤ x2 on which a boundary problem is defined can be reduced with

the change of variable x = x1 + (x2 − x1)x̄ to the unit interval 0 ≤ x̄ ≤ 1. Homogeneous

boundary conditions of the first-, second-, third-, and mixed kinds remain homogeneous

under this transformation.

◮ Self-adjoint form of equations.

On multiplying by p(x) = exp

[∫
f1(x)

f2(x)
dx

]
, one reduces equation (2.5.1.1) to the self-

adjoint form:

[p(x)y′x]
′
x + q(x)y = r(x), (2.5.2.1)

where q(x) = f0(x)p(x)/f2(x) and r(x) = g(x)(x)p(x)/f2(x).

Hence, without loss of generality, we can further deal with equation (2.5.2.1) instead

of (2.5.1.1). We assume that the functions p, p′x, q, and r are continuous on the interval

x1 ≤ x ≤ x2, and p is positive.

2.5.3 Green’s and Modified Green’s Functions. Representation
Solutions via Green’s or Modified Green’s Functions

◮ Green’s function. Linear problems for nonhomogeneous equations.

A Green’s function of the first boundary value problem for equation (2.5.2.1) with homo-

geneous boundary conditions (2.5.1.2) is a function of two variables G(x, ξ) that satisfies

the following conditions:

1◦. G(x, ξ) is continuous in x for fixed ξ, with x1 ≤ x ≤ x2 and x1 ≤ ξ ≤ x2.

2◦. G(x, ξ) is a solution of the homogeneous equation (2.5.2.1), with r = 0, for all x1 <
x < x2 exclusive of the point x = ξ.

3◦. G(x, ξ) satisfies the homogeneous boundary conditions G(x1, ξ) = G(x2, ξ) = 0.

4◦. The derivative G′
x(x, ξ) has a jump of 1/p(ξ) at the point x = ξ, that is,

G′
x(x, ξ)

∣∣
x→ξ, x>ξ

−G′
x(x, ξ)

∣∣
x→ξ, x<ξ

=
1

p(ξ)
.

For the second, third, and mixed boundary value problems, the Green’s function is de-

fined likewise except that in 3◦ the homogeneous boundary conditions (2.5.1.3), (2.5.1.4),

and (2.5.1.5), with a1 = a2 = 0, are adopted, respectively.

The solution of the nonhomogeneous equation (2.5.2.1) subject to appropriate homoge-

neous boundary conditions is expressed in terms of the Green’s function as follows:∗

y(x) =

∫ x2

x1

G(x, ξ)r(ξ) dξ. (2.5.3.1)

∗The homogeneous boundary value problem—with r(x) = 0 and a1 = a2 = 0—is assumed to have only

the trivial solution.
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◮ Representation of the Green’s function in terms of particular solutions.

1◦. We consider the first boundary value problem. Let y1 = y1(x) and y2 = y2(x) be

linearly independent particular solutions of the homogeneous equation (2.5.2.1), with r=0,

that satisfy the conditions

y1(x1) = 0, y2(x2) = 0. (2.5.3.2)

(Each of the solutions satisfies one of the homogeneous boundary conditions.)

The Green’s function is expressed in terms of solutions of the homogeneous equation

as follows:

G(x, ξ) =





y1(x)y2(ξ)

p(ξ)W (ξ)
for x1 ≤ x ≤ ξ,

y1(ξ)y2(x)

p(ξ)W (ξ)
for ξ ≤ x ≤ x2,

(2.5.3.3)

where W (x) = y1(x)y
′
2(x)− y′1(x)y2(x) is the Wronskian determinant.

2◦. Formula (2.5.3.3) can also be used to construct Green’s functions for the second, third,

and mixed boundary value problems. To this end, one should find two linearly independent

solutions, y1 = y1(x) and y2 = y2(x), of the homogeneous equation with r = 0; the

former satisfies the corresponding homogeneous boundary condition at x=x1 and the latter

satisfies the one at x = x2 (see also the paragraph “Modified Green’s function” below).

3◦. The solution of the nonhomogeneous equation (2.5.2.1) subject to the second, third,

and mixed homogeneous boundary conditions is also expressed in terms of an appropriate

Green’s function by formula (2.5.3.1).

4◦. Table 2.2 contains the simplest examples of Green’s functions G(x, ξ) for some linear

boundary value problems for ODEs of the form (2.5.2.1). In all these examples, G(x, ξ) =
G(ξ, x), and therefore the Green’s function is specified only in the domain x ≤ ξ. For

equations with the operator L[y] = [f(x)y′x]
′
x, it is assumed that f(x) > 0 and ϕ(x) =∫ x

0

dt

f(t)
.

5◦. Formula (2.5.3.3) can also be used to construct the Green’s functions for boundary

value problems when the equation has a singular point at the boundary (i.e., when p(x)
becomes zero at x = x1 or/and x = x2 or when q(x) becomes infinite at these point). In

such cases, the relevant boundary condition must be replaced with a boundedness condition

at the singular point (see rows 7, 8, and 9 of Table 2.2 for examples).

◮ Modified Green’s function. Representation in terms of particular solutions.

Now let us look at equation (2.5.1.1) subject to homogeneous boundary conditions of the

general form

m1y
′
x + k1y = 0 at x = x1,

m2y
′
x + k2y = 0 at x = x2.

(2.5.3.4)

With suitably selected coefficients kn and mn, these conditions cover the first, second,

third, and mixed boundary conditions are special cases (see Section 2.5.1).
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TABLE 2.2

Green’s function for some boundary value problems for linear second-order ODEs L[y] = r(x)

No. Differential operator, L[y] Boundary conditions Green’s function, G(x, ξ)

1 y′′xx y(0) = y(a) = 0 x
( ξ
a
− 1

)

2 y′′xx y(0) = y′x(a) = 0 −x

3 y′′xx y′x(0) = y(a) = 0 ξ − a

4 y′′xx
y(0) = 0,

y(a) + ky′x(a) = 0
x(ξ − a− k)

a+ k

5 y′′xx + k2y y(0) = y(1) = 0 − sin(kx) sin[k(1− ξ)]

k sin k

6 y′′xx − k2y y(0) = y(1) = 0 − sinh(kx) sinh[k(1− ξ)]

k sinh k

7 xy′′xx + y′x ≡ (xy′x)
′
x y(0) 6= ∞, y(a) = 0 ln

ξ

a

8 (xy′x)
′
x − n2

x
y

(Bessel’s operator)
y(0) 6= ∞, y(a) = 0 − 1

2n

( x
a

)n

+
(xξ)n

2na2n
(n = 1, 2, . . . )

9
[(1− x2)y′x]

′
x − n2

1− x2
y

(Legendre’s operator)

y(−1) 6= ∞, y(1) 6= ∞ − 1

2n

(
1 + x

1− x
· 1− ξ

1 + ξ

)n/2

(n = 1, 2, . . . )

10 [f(x)y′x]
′
x y(0) = y(a) = 0 −ϕ(x) + ϕ(x)ϕ(ξ)

ϕ(a)

11 [f(x)y′x]
′
x y(0) = y′x(a) = 0 −ϕ(x)

12 [f(x)y′x]
′
x

y(0) = 0,

y(a) + ky′x(a) = 0
−ϕ(x) + f(a)ϕ(x)ϕ(ξ)

f(a)ϕ(a) + k
(k > 0)

The solution of the nonhomogeneous equation (2.5.1.1) subject to homogeneous bound-

ary conditions (2.5.3.4) is∗

y(x) =

∫ x2

x1

G(x, ξ)g(ξ) dξ, (2.5.3.5)

where G(x, ξ) is the modified Green’s function

G(x, ξ) =





y1(x)y2(ξ)

f2(ξ)W (ξ)
for x1 ≤ x ≤ ξ,

y1(ξ)y2(x)

f2(ξ)W (ξ)
for ξ ≤ x ≤ x2,

(2.5.3.6)

where y1 = y1(x) and y2 = y2(x) are linearly independent particular solutions of the

∗The homogeneous boundary value problem, with g(x) = 0, is assumed to have only the trivial solution.
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homogeneous equation (2.5.1.1), with g = 0, that satisfy the conditions

m1(y1)
′
x + k1y1 = 0 at x = x1,

m2(y2)
′
x + k2y2 = 0 at x = x2,

(2.5.3.7)

and W (x) = y1(x)y
′
2(x)− y′1(x)y2(x) is the Wronskian determinant.

Example 2.5. Consider the equation

y′′xx + ay′x = g(x) (2.5.3.8)

with the homogeneous mixed boundary conditions

y(0) = 0, y′(1) = 0. (2.5.3.9)

The general solution of equation (2.5.3.8) with g(x) = 0 is

y = C1 + C2e
−ax, (2.5.3.10)

where C1 and C2 are arbitrary constants. Linearly independent particular solutions y1 = y1(x) and

y2 = y2(x) that satisfy the homogeneous conditions y1(0) = 0 and y′2(1) = 0 are

y1(x) = 1− e−ax, y2(x) = 1. (2.5.3.11)

Substituting (2.5.3.11) into (2.5.3.6) and taking into account that f2(x) = 1, we find the modified

Green’s function

G(x, ξ) =





− 1

a
eaξ(1 − e−ax) for x1 ≤ x ≤ ξ,

− 1

a
eax(1− e−aξ) for ξ ≤ x ≤ x2,

(2.5.3.12)

The solution to the boundary value problem (2.5.3.8)–(2.5.3.9) is defined by formulas (2.5.3.5)

and (2.5.3.12).

⊙ Literature for Section 2.5: L. E. El’sgol’ts (1961), E. Kamke (1977), A. N. Tikhonov, A. B. Vasil’eva,

and A. G. Sveshnikov (1980), G. A. Korn and T. M. Korn (2000), A. D. Polyanin and V. F. Zaitsev (2003),

A. D. Polyanin and A. V. Manzhirov (2008).

2.6 Eigenvalue Problems

2.6.1 Sturm–Liouville Problem

Consider the second-order homogeneous linear differential equation

[p(x)y′x]
′
x + [λs(x)− q(x)]y = 0 (2.6.1.1)

subject to linear boundary conditions of the general form

α1y
′
x + β1y = 0 at x = x1,

α2y
′
x + β2y = 0 at x = x2.

(2.6.1.2)

It is assumed that the functions p, p′x, s, and q are continuous, and p and s are positive on

an interval x1 ≤ x ≤ x2. It is also assumed that |α1|+ |β1| > 0 and |α2|+ |β2| > 0.

The Sturm–Liouville problem: Find the values λn of the parameter λ at which problem

(2.6.1.1), (2.6.1.2) has a nontrivial solution. Such λn are called eigenvalues and the corre-

sponding solutions yn = yn(x) are called eigenfunctions of the Sturm–Liouville problem

(2.6.1.1), (2.6.1.2).
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2.6.2 General Properties of the Sturm–Liouville Problem (2.6.1.1),
(2.6.1.2)

1◦. There are infinitely (countably) many eigenvalues. All eigenvalues can be ordered so

that λ1 < λ2 < λ3 < · · · . Moreover, λn →∞ as n→∞; hence, there can only be a finite

number of negative eigenvalues. Each eigenvalue has multiplicity 1.

2◦. The eigenfunctions are defined up to a constant factor. Each eigenfunction yn(x) has

precisely n− 1 zeros on the open interval (x1, x2).

3◦. Any two eigenfunctions yn(x) and ym(x), n 6=m, are orthogonal with weight s(x) on

the interval x1 ≤ x ≤ x2:∫ x2

x1

s(x)yn(x)ym(x) dx = 0 if n 6= m.

4◦. An arbitrary function F (x) that has a continuous derivative and satisfies the bound-

ary conditions of the Sturm–Liouville problem can be decomposed into an absolutely and

uniformly convergent series in the eigenfunctions

F (x) =

∞∑

n=1

Fnyn(x),

where the Fourier coefficients Fn of F (x) are calculated by

Fn =
1

‖yn‖2
∫ x2

x1

s(x)F (x)yn(x) dx, ‖yn‖2 =
∫ x2

x1

s(x)y2n(x) dx.

5◦. If the conditions

q(x) ≥ 0, α1β1 ≤ 0, α2β2 ≥ 0 (2.6.2.1)

hold true, there are no negative eigenvalues. If q ≡ 0 and β1 = β2 = 0, the least eigenvalue

is λ1 = 0, to which there corresponds an eigenfunction y1 = const. In the other cases where

conditions (2.6.2.1) are satisfied, all eigenvalues are positive.

6◦. The following asymptotic formula is valid for eigenvalues as n→∞:

λn =
π2n2

∆2
+O(1), ∆ =

∫ x2

x1

√
s(x)

p(x)
dx. (2.6.2.2)

Sections 2.6.3 through 2.6.6 will describe special properties of the Sturm–Liouville

problem that depend on the specific form of the boundary conditions.

Remark 2.3. Equation (2.6.1.1) can be reduced to the case where p(x) ≡ 1 and s(x) ≡ 1 by the

change of variables

ζ =

∫ √
s(x)

p(x)
dx, u(ζ) =

[
p(x)s(x)

]1/4
y(x).

In this case, the boundary conditions are transformed to boundary conditions of similar form.

Remark 2.4. The second-order linear equation

ϕ2(x)y
′′
xx + ϕ1(x)y

′
x + [λ+ ϕ0(x)]y = 0

can be represented in the form of equation (2.6.1.1) where p(x), s(x), and q(x) are given by

p(x) = exp

[ ∫
ϕ1(x)

ϕ2(x)
dx

]
, s(x) =

1

ϕ2(x)
exp

[ ∫
ϕ1(x)

ϕ2(x)
dx

]
,

q(x) = −ϕ0(x)

ϕ2(x)
exp

[ ∫
ϕ1(x)

ϕ2(x)
dx

]
.

(2.6.2.3)
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2.6.3 Problems with Boundary Conditions of the First Kind

Let us note some special properties of the Sturm–Liouville problem that is the first bound-

ary value problem for equation (2.6.1.1) with the boundary conditions

y = 0 at x = x1, y = 0 at x = x2. (2.6.3.1)

1◦. For n → ∞, the asymptotic relation (2.6.2.2) can be used to estimate the eigenval-

ues λn. In this case, the asymptotic formula

yn(x)

‖yn‖
=

[
4

∆2p(x)s(x)

]1/4
sin

[
πn

∆

∫ x

x1

√
s(x)

p(x)
dx

]
+O

( 1
n

)
, ∆ =

∫ x2

x1

√
s(x)

p(x)
dx

holds true for the eigenfunctions yn(x).

2◦. If q ≥ 0, the following upper estimate holds for the least eigenvalue (Rayleigh–Ritz

principle):

λ1 ≤

∫ x2

x1

[
p(x)(z′x)

2 + q(x)z2
]
dx

∫ x2

x1

s(x)z2 dx

, (2.6.3.2)

where z = z(x) is any twice differentiable function that satisfies the conditions z(x1) =
z(x2) = 0. The equality in (2.6.3.2) is attained if z = y1(x), where y1(x) is the eigen-

function corresponding to the eigenvalue λ1. One can take z = (x − x1)(x2 − x) or

z = sin
[π(x− x1)
x2 − x1

]
in (2.6.3.2) to obtain specific estimates.

It is significant to note that the left-hand side of (2.6.3.2) usually gives a fairly precise

estimate of the first eigenvalue (see Table 2.3).

TABLE 2.3

Example estimates of the first eigenvalue λ1 in Sturm–Liouville problems with boundary conditions of the first

kind y(0) = y(1) = 0 obtained using the Rayleigh–Ritz principle [the right-hand side of relation (2.6.3.2)]

Equation Test function λ1, approximate λ1, exact

y′′xx + λ(1 + x2)−2y = 0 z = sin πx 15.337 15.0

y′′xx + λ(4− x2)−2y = 0 z = sin πx 135.317 134.837

[(1 + x)−1y′x]
′
x + λy = 0 z = sin πx 7.003 6.772

(√
1 + x y′x

)′
x
+ λy = 0 z = sin πx 11.9956 11.8985

y′′xx + λ(1 + sinπx)y = 0
z = sin πx
z = x(1− x)

0.54105π2

0.55204π2
0.54032π2

0.54032π2

3◦. The extension of the interval [x1, x2] leads to decreasing in eigenvalues.

4◦. Let the inequalities

0 < pmin ≤ p(x) ≤ pmax, 0 < smin ≤ s(x) ≤ smax, 0 < qmin ≤ q(x) ≤ qmax
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be satisfied. Then the following bilateral estimates hold:

pmin

smax

π2n2

(x2 − x1)2
+
qmin

smax
≤ λn ≤

pmax

smin

π2n2

(x2 − x1)2
+
qmax

smin
.

5◦. In engineering calculations for eigenvalues, the approximate formula

λn =
π2n2

∆2
+

1

x2 − x1

∫ x2

x1

q(x)

s(x)
dx, ∆ =

∫ x2

x1

√
s(x)

p(x)
dx (2.6.3.3)

may be quite useful. This formula provides an exact result if p(x)s(x) = const and

q(x)/s(x) = const (in particular, for constant equation coefficients, p = p0, q = q0, and

s = s0) and gives a correct asymptotic behavior of (2.6.2.2) for any p(x), q(x), and s(x).
In addition, relation (2.6.3.3) gives two correct leading asymptotic terms as n → ∞ if

p(x) = const and s(x) = const [and also if p(x)s(x) = const].

6◦. Suppose p(x) = s(x) = 1 and the function q = q(x) has a continuous derivative.
The following asymptotic relations hold for eigenvalues λn and eigenfunctions yn(x) as
n→∞:
√
λn =

πn

x2−x1
+

1

πn
Q(x1, x2)+O

( 1

n2

)
,

yn(x) = sin
πn(x−x1)
x2−x1

− 1

πn

[
(x1−x)Q(x, x2)+(x2−x)Q(x1, x)

]
cos

πn(x−x1)
x2−x1

+O
( 1

n2

)
,

where

Q(u, v) =
1

2

∫ v

u
q(x) dx. (2.6.3.4)

7◦. Let us consider the eigenvalue problem for the equation with a small parameter

y′′xx + [λ+ εq(x)]y = 0 (ε→ 0)

subject to the boundary conditions (2.6.3.1) with x1 = 0 and x2 = 1. We assume that

q(x) = q(−x).
This problem has the following eigenvalues and eigenfunctions:

λn = π2n2−εAnn+
ε2

π2

∑

k 6=n

A2
nk

n2−k2 +O(ε3), Ank = 2

∫ 1

0
q(x) sin(πnx) sin(πkx) dx;

yn(x) =
√
2 sin(πnx)−ε

√
2

π2

∑

k 6=n

Ank

n2−k2 sin(πkx)+O(ε2).

Here the summation is carried out over k from 1 to ∞. The next term in the expansion

of yn can be found in Nayfeh (1973).

2.6.4 Problems with Boundary Conditions of the Second Kind

Let us note some special properties of the Sturm–Liouville problem that is the second

boundary value problem for equation (2.6.1.1) with the boundary conditions

y′x = 0 at x = x1, y′x = 0 at x = x2.

1◦. If q > 0, the upper estimate (2.6.3.2) is valid for the least eigenvalue, with z = z(x)
being any twice-differentiable function that satisfies the conditions z′x(x1) = z′x(x2) = 0.

The equality in (2.6.3.2) is attained if z = y1(x), where y1(x) is the eigenfunction corre-

sponding to the eigenvalue λ1.
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2◦. Suppose p(x) = s(x) = 1 and the function q = q(x) has a continuous derivative.

The following asymptotic relations hold for eigenvalues λn and eigenfunctions yn(x) as

n→∞:
√
λn =

π(n− 1)

x2 − x1
+

1

π(n− 1)
Q(x1, x2) +O

( 1

n2

)
,

yn(x) = cos
π(n− 1)(x− x1)

x2 − x1
+

1

π(n− 1)

[
(x1 − x)Q(x, x2)

+ (x2 − x)Q(x1, x)
]
sin

π(n− 1)(x− x1)
x2 − x1

+O
( 1

n2

)
,

where Q(u, v) is given by (2.6.3.4).

2.6.5 Problems with Boundary Conditions of the Third Kind

We consider the third boundary value problem for equation (2.6.1.1) subject to condi-

tion (2.6.1.2) with α1 = α2 = 1. We assume that p(x)= s(x)=1 and the function q= q(x)
has a continuous derivative.

The following asymptotic formulas hold for eigenvalues λn and eigenfunctions yn(x)
as n→∞:

√
λn =

π(n− 1)

x2 − x1
+

1

π(n− 1)

[
Q(x1, x2)− β1 + β2

]
+O

( 1

n2

)
,

yn(x) = cos
π(n− 1)(x− x1)

x2 − x1
+

1

π(n− 1)

{
(x1 − x)

[
Q(x, x2) + β2

]

+ (x2 − x)
[
Q(x1, x)− β1

]}
sin

π(n− 1)(x− x1)
x2 − x1

+O
( 1

n2

)
,

where Q(u, v) is defined by (2.6.3.4).

2.6.6 Problems with Mixed Boundary Conditions

Let us note some special properties of the Sturm–Liouville problem that is the mixed

boundary value problem for equation (2.6.1.1) with the boundary conditions

y′x = 0 at x = x1, y = 0 at x = x2.

1◦. If q ≥ 0, the upper estimate (2.6.3.2) is valid for the least eigenvalue, with z = z(x)
being any twice-differentiable function that satisfies the conditions z′x(x1) = 0 and z(x2) =
0. The equality in (2.6.3.2) is attained if z = y1(x), where y1(x) is the eigenfunction

corresponding to the eigenvalue λ1.

2◦. Suppose p(x) = s(x) = 1 and the function q = q(x) has a continuous derivative.

The following asymptotic relations hold for eigenvalues λn and eigenfunctions yn(x) as

n→∞:
√
λn =

π(2n− 1)

2(x2 − x1)
+

2

π(2n − 1)
Q(x1, x2) +O

( 1

n2

)
,

yn(x) = cos
π(2n − 1)(x − x1)

2(x2 − x1)
+

2

π(2n − 1)

[
(x1 − x)Q(x, x2)

+ (x2 − x)Q(x1, x)
]
sin

π(2n − 1)(x− x1)
2(x2 − x1)

+O
( 1

n2

)
,
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where Q(u, v) is defined by (2.6.3.4).

⊙ Literature for Section 2.6: L. Collatz (1963), E. Kamke (1977), A. G. Kostyuchenko and I. S. Sargsyan

(1979), V. A. Marchenko (1986), B. M. Levitan and I. S. Sargsyan (1988), V. A. Vinokurov and V. A. Sadov-

nichii (2000), A. D. Polyanin (2002), A. D. Polyanin and V. F. Zaitsev (2003).

2.7 Theorems on Estimates and Zeros of Solutions

2.7.1 Theorem on Estimates of Solutions

Let fn(x) and gn(x) (n = 1, 2) be continuous functions on the interval a ≤ x ≤ b.
THEOREM. Let the following inequalities hold:

0 ≤ f1(x) ≤ f2(x), 0 ≤ g1(x) ≤ g2(x).

If yn = yn(x) are some solutions to the linear equations

y′′n = fn(x)yn + gn(x) (n = 1, 2)

and y1(a) ≤ y2(a) and y′1(a) ≤ y′2(a), then y1(x) ≤ y2(x) and y′1(x) ≤ y′2(x) on each

interval a ≤ x ≤ a1, where y2(x) > 0.

2.7.2 Sturm Comparison Theorem on Zeros of Solutions

Consider the equation

[f(x)y′]′ + g(x)y = 0 (a ≤ x ≤ b), (2.7.2.1)

where the function f(x) is positive and continuously differentiable, and the function g(x)
is continuous.

COMPARISON THEOREM (STURM). Let yn = yn(x) be nonzero solutions of the linear

equations

[fn(x)y
′
n]

′ + gn(x)yn = 0 (n = 1, 2)

and let the inequalities f1(x) ≥ f2(x) > 0 and g1(x) ≤ g2(x) hold. Then the function y2
has at least one zero lying between any two adjacent zeros, x1 and x2, of the function y1
(it is assumed that the identities f1 ≡ f2 and g1 ≡ g2 are not satisfied on any interval

simultaneously).

COROLLARY 1. If g(x) ≤ 0 or there exists a constant k1 such that

f(x) ≥ k1 > 0, g(x) < k1

(
π

b− a

)2

,

then every nontrivial solution to equation (2.7.2.1) has no more than one zero on the interval

[a, b].

COROLLARY 2. If there exists a constant k2 such that

0 < f(x) ≤ k2, g(x) > k2

(
πm

b− a

)2

, where m = 1, 2, . . . ,

then every nontrivial solution to equation (2.7.2.1) has at least m zeros on the interval [a, b].
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2.7.3 Qualitative Behavior of Solutions as x → ∞
Consider the equation

y′′ + f(x)y = 0, (2.7.3.1)

where f(x) is a continuous function for x ≥ a.

1◦. For f(x) ≤ 0, every nonzero solution has no more than one zero, and hence y 6= 0 for

sufficiently large x.

If f(x) ≤ 0 for all x and f(x) 6≡ 0, then y ≡ 0 is the only solution bounded for all x.

2◦. Suppose f(x) ≥ k2 > 0. Then every nontrivial solution y(x) and its derivative y′(x)
have infinitely many zeros, with the distance between any adjacent zeros remaining finite.

If f(x)→ k2 > 0 for x→∞ and f ′ ≥ 0, then the solutions of the equation for large x
behave similarly to those of the equation y′′ + k2y = 0.

3◦. Let f(x) → −∞ for |x| → ∞. Then every nonzero solution has only finitely many

zeros, and |y′/y|→∞ as |x|→∞. There are two linearly independent solutions, y1 and y2,

such that y1→ 0, y′1→ 0, y2→∞, and y′2→−∞ as x→−∞, and there are two linearly

independent solutions, ȳ1 and ȳ2, such that ȳ1 → 0, ȳ′1 → 0, ȳ2 → ∞, and ȳ′2 → ∞ as

x→∞.

4◦. If the function f in equation (2.7.3.1) is continuous, monotonic, and positive, then the

amplitude of each solution decreases (resp., increases) as f increases (resp., decreases).

⊙ Literature for Section 2.7: E. Kamke (1977), A. D. Polyanin and A. V. Manzhirov (2007).

2.8 Numerical Methods

Linear problems can be solved using the numerical methods outlined in Section 3.8, which

are designed for solving more complex, nonlinear problems. Due to their specific proper-

ties, linear problems are easier and more efficient to solve with special methods described

below.

In the numerical methods discussed below, the second derivative is approximated with

the following finite-difference expression:

y′′xx ≈
yk+1 − 2yk + yk−1

h2
,

where yk = y(xk), xk = x0 + kh (x0 ≤ x ≤ x∗), and h is the mesh increment.

2.8.1 Numerov’s Method (Cauchy Problem)

The Cauchy problem for linear differential equations of the form

y′′xx + f(x)y = g(x) (2.8.1.1)

can be solved using the recurrence formula

uk+1 = 2uk − uk−1 +
[
−fkyk + gk +

1
12 (gk+1 − 2gk + gk−1)

]
h2, (2.8.1.2)

where

uk = yk
(
1 + 1

12 fkh
2
)
, fk = f(xk), gk = g(xk).
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2.8.2 Modified Shooting Method (Boundary Value Problems)

Let us look at the linear boundary value problem defined by the equation

y′′xx + f1(x)y
′
x + f0(x)y = g(x) (2.8.2.1)

and general homogeneous boundary conditions of the third kind

a1y
′
x + b1y = 0 at x = 0, (2.8.2.2)

a2y
′
x + b2y = 0 at x = l. (2.8.2.3)

We assume that a solution to problem (2.8.2.1)–(2.8.2.3) exists and is unique.

First, we find an auxiliary function y1 = y1(x) that solves the first auxiliary Cauchy

problem for the nonhomogeneous equation (2.8.2.1) with the initial conditions

y = a1 at x = 0; y′x = −b1 at x = 0. (2.8.2.4)

By virtue of (2.8.2.1), the function y1= y1(x) satisfies the left boundary condition (2.8.2.2).

Then, we find an auxiliary function y0 = y0(x) that solves the second auxiliary Cauchy

problem for the homogeneous equation (2.8.2.1) with g(x) = 0 and the boundary con-

ditions (2.8.2.4). By virtue of the linearity of the problem and homogeneous boundary

conditions, the function Cy0(x) is also a solution to equation (2.8.2.1) satisfying the left

boundary condition (2.8.2.2). Therefore, the solution of the original boundary value prob-

lem (2.8.2.1)–(2.8.2.3) can be sought as the sum

y(x) = y1(x) + Cy0(x). (2.8.2.5)

The constant C is determined from the requirement that function (2.8.2.5) must satisfy the

right boundary condition (2.8.2.3):

a2y
′
1(l) + b2y1(l) + C[a2y

′
0(l) + b2y0(l)] = 0. (2.8.2.6)

Thus, solving the original boundary value problem is reduced to solving two auxiliary

Cauchy problems; this can be done using, for example, the Runge–Kutta method (see Sec-

tion 3.8). The case of nonhomogeneous boundary condition can be considered likewise.

Example 2.6. Let us look at the special case of equation (2.8.2.1)

y′′xx + f(x)y = g(x) (2.8.2.7)

subject to the nonhomogeneous boundary conditions of the first kind

y = a at x = 0; y = b at x = l. (2.8.2.8)

The mesh version of the above shooting method for this problem is as follows. By setting the initial

values∗

y10 = a, y11 = β1; y00 = 0, y01 = β2, (2.8.2.9)

we successively find y12 , . . . , y1n and y02 , . . . , y0n from the difference equations

y1k+1 − 2y1k + y1k−1

h2
+ fky

1
k = gk,

y0k+1 − 2y0k + y0k−1

h2
+ fky

0
k = 0,

where fk = f(xk), gk = g(xk), and h is the mesh increment. Then, we find C from the equation

y1n + Cy0n = b and set yk = y1k + Cy0k; the function yk is the desired solution.

∗The numbers β1 and β2 6= 0 can generally be any; in particular, we can set β1 = a and β2 = h.
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2.8.3 Sweep Method (Boundary Value Problems)

Below we outline the sweep method for the following system of difference equations:

Akyk−1 − Ckyk +Bkyk+1 = Dk, k = 1, . . . , n− 1, (2.8.3.1)

y0 = αy1 + β, yn = γyn−1 + δ. (2.8.3.2)

Relation (2.8.3.1) approximates a linear differential equation, while relations (2.8.3.2) rep-

resent boundary conditions of the third kind (or the first kind if α = γ = 0).

Provided that all of the conditions

Ak > 0, Bk > 0, Ck > 0; Ck ≥ Ak +Bk; 0 ≤ α < 1; 0 ≤ γ < 1 (2.8.3.3)

hold true, problem (2.8.3.1)–(2.8.3.2) is solvable and has a unique solution.

Remark 2.5. Problem (2.8.2.7)–(2.8.2.8) is approximated by the difference equation (2.8.3.1)

and boundary conditions (2.8.3.2) with

Ak = Bk = 1, Ck = 2− h2fk, Dk = h2gk, α = γ = 0, β = a, δ = b.

We will look for numbers αk and βk, called sweep coefficients, such that for all k =
1, 2, . . . , n the relations

yk−1 = αkyk + βk (2.8.3.4)

hold. Substituting (2.8.3.4) into (2.8.3.1) yields

(Akαk −Ck)yk +Bkyk+1 +Akβk −Dk = 0.

By expressing yk in terms of yk+1 using formula (2.8.3.4), we obtain
[
(Akαk −Ck)αk+1 +Bk

]
yk+1 +

[
(Akαk − Ck)βk+1 +Akβk −Dk

]
= 0.

Equating the expressions in square brackets with zero for all k=1, 2, . . . , n−1, we arrive

at recurrence relations to determine the coefficients αk+1 and βk+1 once α=α1 and β=β1
are known (forward sweep):

αk+1 =
Bk

Ck −Akαk
, βk+1 =

Akβk −Dk

Ck −Akαk
. (2.8.3.5)

If conditions (2.8.3.3) hold, the numerators in formulas (2.8.3.5) are positive and 0≤ αk <
1.

From formula (2.8.3.4) with k = n and the second boundary condition in (2.8.3.2) we

find the last value of the unknown:

yn =
γβn + δ

1− γαn
, (2.8.3.6)

where 1 − γαn > 0. Now, by formula (2.8.3.4), we can successively determine the un-

knowns yk−1 with k = n, n− 1, . . . , 1 (backward sweep).

Remark 2.6. In the above sweep method, the coefficients are first determined starting from the

left boundary condition and then the solution is recovered from right to left by formula (2.8.3.4).

Quite similarly, the reverse scheme can be used where the coefficients are first determined starting

from the right boundary condition and then the solution is recovered with the sweep from left to

right.
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2.8.4 Method of Accelerated Convergence in Eigenvalue Problems

Consider the Sturm–Liouville problem for the second-order nonhomogeneous linear equa-

tion

[f(x)y′x]
′
x + [λg(x) − h(x)]y = 0 (2.8.4.1)

with linear homogeneous boundary conditions of the first kind

y(0) = y(1) = 0. (2.8.4.2)

It is assumed that the functions f, f ′x, g, h are continuous and f > 0, g > 0.

First, using the Rayleigh–Ritz principle, one finds an upper estimate for the first eigen-

value λ01 [this value is determined by the right-hand side of relation (2.6.3.2)]. Then, one

solves numerically the Cauchy problem for the auxiliary equation

[f(x)y′x]
′
x + [λ01g(x)− h(x)]y = 0 (2.8.4.3)

with the boundary conditions

y(0) = 0, y′x(0) = 1. (2.8.4.4)

The function y(x, λ01) satisfies the condition y(x0, λ
0
1) = 0, where x0 < 1. The criterion of

closeness of the exact and approximate solutions, λ1 and λ01, has the form of the inequality

|1−x0| ≤ δ, where δ is a sufficiently small given constant. If this inequality does not hold,

one constructs a refinement for the approximate eigenvalue on the basis of the formula

λ11 = λ01 − ε0f(1)
[y′x(1)]

2

‖y‖2 , ε0 = 1− x0, (2.8.4.5)

where ‖y‖2 =

∫ 1

0
g(x)y2(x) dx. Then the value λ11 is substituted for λ01 in the Cauchy

problem (2.8.4.3)–(2.8.4.4). As a result, a new solution y and a new point x1 are found;

and one has to check whether the criterion |1− x1| ≤ δ holds. If this inequality is violated,

one refines the approximate eigenvalue by means of the formula

λ21 = λ11 − ε1f(1)
[y′x(1)]

2

‖y‖2 , ε1 = 1− x1, (2.8.4.6)

and repeats the above procedure.

Remark 2.7. Formulas of the type (2.8.4.5) are obtained by a perturbation method based on a

transformation of the independent variable x (see Section 3.6.3). If xn > 1, the functions f , g, and h
are smoothly extended to the interval (1, ξ], where ξ ≥ xn.

Remark 2.8. The algorithm described above possesses the property of accelerated convergence,

εn+1 ∼ ε2n, which ensures that the relative error of the approximate solution becomes 10−4 to 10−8

after two or three iterations for ε0 ∼ 0.1. This method is quite effective for high-precision calcula-

tions, is fail-safe, and guarantees against accumulation of roundoff errors.

Remark 2.9. In a similar way, one can compute subsequent eigenvalues λm, m = 2, 3, . . . (to

that end, a suitable initial approximation λ0m should be chosen).

Remark 2.10. A similar computation scheme can also be used in the case of boundary condi-

tions of the second and the third kinds, periodic boundary conditions, etc. (see the reference below).
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Example 2.7. The eigenvalue problem for the equation

y′′xx + λ(1 + x2)−2y = 0

with the boundary conditions (2.8.4.2) admits an exact analytic solution and has eigenvalues λ1 =
15, λ2 = 63, . . . , λn = 16n2 − 1.

According to the Rayleigh–Ritz principle, formula (2.6.3.2) for z = sin(πx) yields the approx-

imate value λ01 = 15.33728. The solution of the Cauchy problem (2.8.4.3)–(2.8.4.4) with f(x) = 1,

g(x) = λ(1 + x2)−2, h(x) = 0 yields x0 = 0.983848, 1 − x0 = 0.016152, ‖y‖2 = 0.024585,

y′x(x0) = −0.70622822.

The first iteration for the first eigenvalue is determined by (2.8.4.5) and results in the value

λ11 = 14.99245 with the relative error ∆λ/λ11 = 5× 10−4.

The second iteration results in λ21 = 14.999986 with the relative error ∆λ/λ21 < 10−6.

Example 2.8. Consider the eigenvalue problem for the equation

(
√
1 + x y′x)

′
x + λy = 0

with the boundary conditions (2.8.4.2).

The Rayleigh–Ritz principle yields λ01 = 11.995576. The next two iterations result in the values

λ11 = 11.898578 and λ21 = 11.898458. For the relative error we have ∆λ/λ21 < 10−5.

2.8.5 Well-Conditioned and Ill-Conditioned Problems

Numerical methods can only be applied to well-conditioned linear problems, in which small

perturbations in the initial data (or the right-hand side of the equation, which determines its

nonhomogeneity) lead to small changes in the solution. Otherwise, when the problem is ill-

conditioned, small perturbations in the initial data (or the right-hand side of the equation)

or equivalent small errors of the numerical method can significantly distort the solution.

Example 2.9. Let us look at the linear second-order ordinary differential equation

y′′xx + (1 + a)y′x + ay = 0 (2.8.5.1)

subject to the initial conditions

y(0) = 1, y′x(0) = −1, (2.8.5.2)

where a is a free parameter (a 6= 1).
The solution of problem (2.8.5.1)–(2.8.5.2) is

y = e−x. (2.8.5.3)

Now let us suppose that the boundary conditions of equation (2.8.5.1) are slightly changed:

y(0) = 1 + ε, y′x(0) = −1, (2.8.5.4)

where ε is a small positive number.

The solution of problem (2.8.5.1), (2.8.5.4) is

yε =

(
1− aε

1− a

)
e−x +

ε

1− a e
−ax. (2.8.5.5)

Solution (2.8.5.5) behaves qualitatively differently depending on the value of the parameter a.

Consider the possible situations.

If a > 0, solution (2.8.5.5) decays exponentially as x→ ∞. The difference between solutions

(2.8.5.3) and (2.8.5.5) vanishes as ε → 0 for all x ≥ 0. If a = 0, the difference between solutions

(2.8.5.3) and (2.8.5.5) is a small constant quantity equal to ε. If a ≥ 0, problem (2.8.5.1)–(2.8.5.2)

is well-conditioned.
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Remark 2.11. For 0< a< 1 and fixed ε > 0, the second term in solution (2.8.5.5), proportional

to e−ax, dominates as x→∞ and the relative disturbance, |yε− y|/y, due to the small perturbation

in the initial conditions, tends to infinity.

If a < 0, solution (2.8.5.5) increases without bound as x → ∞. In this case, for any ε > 0,

solutions (2.8.5.3) and (2.8.5.5) diverge indefinitely far apart as x→∞. If a< 0, problem (2.8.5.1)–

(2.8.5.2) is ill-conditioned.

Remark 2.12. It is easy to show that for a < 0, the solution to the equation

y′′xx + (1 + a)y′x + ay = ε (ε≪ 1)

subject to the initial conditions (2.8.5.2) increases indefinitely as x→∞. This means that for a< 0,

problem (2.8.5.1)–(2.8.5.2) is ill-conditioned with respect to perturbations of the right-hand side.

For more details about iteration and numerical methods, see the list of references given

below.

⊙ Literature for Section 2.8: J. D. Lambert (1973), N. N. Kalitkin (1978), A. N. Tikhonov, A. B. Vasil’eva,

and A. G. Sveshnikov (1985), J. C. Butcher (1987), W. E. Schiesser (1994), L. F. Shampine (1994), L. D. Aku-

lenko and S. V. Nesterov (1996, 1997, 2005), G. A. Korn and T. M. Korn (2000), A. D. Polyanin and A. V. Man-

zhirov (2007), S. C. Chapra and R. P. Canale (2010).
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Chapter 3

Methods for Second-Order
Nonlinear Differential Equations

3.1 General Concepts. Cauchy Problem.

Uniqueness and Existence Theorems

3.1.1 Equations Solved for the Derivative. General Solution

A second-order ordinary differential equation solved for the highest derivative has the form

y′′xx = f(x, y, y′x). (3.1.1.1)

A solution of a differential equation is a function y(x) that, when substituted into the

equation, turns it into an identity. The general solution of a differential equation is the set

of all its solutions.

The general solution of this equation depends on two arbitrary constants, C1 and C2.

In some cases, the general solution can be written in explicit form, y = ϕ(x,C1, C2), but

more often implicit or parametric forms of the general solution are encountered.

3.1.2 Cauchy Problem. Existence and Uniqueness Theorem

Cauchy problem: Find a solution of equation (3.1.1.1) satisfying the initial conditions

y(x0) = y0, y′x(x0) = y1. (3.1.2.1)

(At a point x = x0, the value of the unknown function, y0, and its derivative, y1, are

prescribed.)

EXISTENCE AND UNIQUENESS THEOREM. Let f(x, y, z) be a continuous function in

all its arguments in a neighborhood of a point (x0, y0, y1) and let f have bounded par-

tial derivatives fy and fz in this neighborhood, or the Lipschitz condition is satisfied:

|f(x, y, z)− f(x, ȳ, z̄)| ≤K
(
|y− ȳ|+ |z− z̄|

)
, where K is some positive number. Then a

solution of equation (3.1.1.1) satisfying the initial conditions (3.1.2.1) exists and is unique.

⊙ Literature for Section 3.1: E. L. Ince (1956), G. M. Murphy (1960), L. E. El’sgol’ts (1961), P. Hartman

(1964), N. M. Matveev (1967), I. G. Petrovskii (1970), G. F. Simmons (1972), E. Kamke (1977), G. Birkhoff

and Rota (1978), A. N. Tikhonov, A. B. Vasil’eva, and A. G. Sveshnikov (1985), D. Zwillinger (1997),

123
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C. Chicone (1999), G. A. Korn and T. M. Korn (2000), V. F. Zaitsev and A. D. Polyanin (2001), A. D. Polyanin

and V. F. Zaitsev (2003), W. E. Boyce and R. C. DiPrima (2004), A. D. Polyanin and A. V. Manzhirov (2007).

3.2 Some Transformations. Equations Admitting

Reduction of Order

3.2.1 Equations Not Containing y or x Explicitly. Related Equations

◮ Equations not containing y explicitly.

In the general case, an equation that does not contain y implicitly has the form

F (x, y′x, y
′′
xx) = 0. (3.2.1.1)

Such equations remain unchanged under an arbitrary translation of the dependent variable:

y → y + const. The substitution y′x = z(x), y′′xx = z′x(x) brings (3.2.1.1) to a first-order

equation: F (x, z, z′x) = 0.

◮ Equations not containing x explicitly (autonomous equations).

In the general case, an equation that does not contain x implicitly has the form

F (y, y′x, y
′′
xx) = 0. (3.2.1.2)

Such equations remain unchanged under an arbitrary translation of the independent vari-

able: x → x + const. Using the substitution y′x = w(y), where y plays the role of the

independent variable, and taking into account the relations y′′xx = w′
x = w′

yy
′
x = w′

yw, one

can reduce (3.2.1.2) to a first-order equation: F (y,w,ww′
y) = 0.

Example 3.1. Consider the autonomous equation

y′′xx = f(y),

which often arises in the theory of heat and mass transfer and combustion. The change of variable

y′x = w(y) leads to a separable first-order equation: ww′
y = f(y). Integrating yields

w2 = 2F (w) + C1, where F (w) =

∫
f(w) dw.

where C1 is an arbitrary constant. Solving for w and returning to the original variable, we obtain

the separable equation y′x = ±
√
2F (w) + C1. Its general solution is expressed as

∫
dy√

2F (w) + C1

= ±x+ C2,

or [∫
dy√

F (w) + c1

]2
= 2(x+ c2)

2,

where C2, c1, and c2 are arbitrary constants.

Remark 3.1. The equation y′′xx = f(y + ax2 + bx + c) is reduced by the change of variable

u = y + ax2 + bx+ c to an autonomous equation, u′′xx = f(u) + 2a.
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◮ Related equations.

Consider equations of the form

F (ax+ by, y′x, y
′′
xx) = 0.

Such equations are invariant under simultaneous translations of the independent and depen-

dent variables in accordance with the rule x→ x+ bc, y→ y − ac, where c is an arbitrary

constant.

For b = 0, see equation (3.2.1.1). For b 6= 0, the substitution bw = ax + by leads to

equation (3.2.1.2): F (bw,w′
x − a/b,w′′

xx) = 0.

3.2.2 Homogeneous Equations

◮ Equations homogeneous in the independent variable.

The equations homogeneous in the independent variable remain unchanged under scaling

of the independent variable, x → αx, where α is an arbitrary nonzero number. In the

general case, such equations can be written in the form

F (y, xy′x, x
2y′′xx) = 0. (3.2.2.1)

The substitution z(y) = xy′x leads to a first-order equation: F (y, z, zz′y − z) = 0.

◮ Equations homogeneous in the dependent variable.

The equations homogeneous in the dependent variable remain unchanged under scaling of

the variable sought, y → αy, where α is an arbitrary nonzero number. In the general case,

such equations can be written in the form

F (x, y′x/y, y
′′
xx/y) = 0. (3.2.2.2)

The substitution z(x) = y′x/y leads to a first-order equation: F (x, z, z′x + z2) = 0.

◮ Equations homogeneous in both variables.

The equations homogeneous in both variables are invariant under simultaneous scaling

(dilatation) of the independent and dependent variables, x→ αx and y → αy, where α is

an arbitrary nonzero number. In the general case, such equations can be written in the form

F (y/x, y′x, xy
′′
xx) = 0. (3.2.2.3)

The transformation t = ln |x|, w = y/x leads to an autonomous equation

F (w,w′
t + w,w′′

tt + w′
t) = 0,

see Section 3.2.1.

Example 3.2. The homogeneous equation

xy′′xx − y′x = f(y/x)

is reduced by the transformation t = ln |x|, w = y/x to the autonomous form: w′′
tt = f(w) + w.

For the solution of this equation, see Example 3.1 in Section 3.2.1 (the function on the right-hand

side has to be changed there).
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3.2.3 Generalized Homogeneous Equations

◮ Equations of a special form.

The generalized homogeneous equations remain unchanged under simultaneous scaling of

the independent and dependent variables in accordance with the rule x→ αx and y→ αky,

where α is an arbitrary nonzero number and k is some number. Such equations can be

written in the form

F (x−ky, x1−ky′x, x
2−ky′′xx) = 0. (3.2.3.1)

The transformation t=lnx,w=x−ky leads to an autonomous equation (see Section 3.2.1):

F
(
w,w′

t + kw,w′′
tt + (2k − 1)w′

t + k(k − 1)w
)
= 0.

◮ Equations of the general form.

The most general form of representation of generalized homogeneous equations is as fol-

lows:

F(xnym, xy′x/y, x2y′′xx/y) = 0. (3.2.3.2)

The transformation z = xnym, u = xy′x/y brings this equation to the first-order equation

F
(
z, u, z(mu + n)u′z − u+ u2

)
= 0.

Remark 3.2. For m 6= 0, equation (3.2.3.2) is equivalent to equation (3.2.3.1) in which k =
−n/m. To the particular values n= 0 andm= 0 there correspond equations (3.2.2.1) and (3.2.2.2)

homogeneous in the independent and dependent variables, respectively. For n = −m 6= 0, we have

an equation homogeneous in both variables, which is equivalent to equation (3.2.2.3).

3.2.4 Equations Invariant under Scaling–Translation
Transformations

◮ Equations of the fist type.

The equations of the form

F (eλxy, eλxy′x, e
λxy′′xx) = 0 (3.2.4.1)

remain unchanged under simultaneous translation and scaling of variables, x → x + α
and y → βy, where β = e−αλ and α is an arbitrary number. The substitution w = eλxy
brings (3.2.4.1) to an autonomous equation: F (w, w′

x−λw, w′′
xx−2λw′

x+λ
2w) = 0 (see

Section 3.2.1).

◮ Equations of the first type. Alterative representation.

The equation

F (eλxyn, y′x/y, y
′′
xx/y) = 0 (3.2.4.2)

is invariant under the simultaneous translation and scaling of variables, x → x + α and

y → βy, where β = e−αλ/n and α is an arbitrary number. The transformation z = eλxyn,

w = y′x/y brings (3.2.4.2) to a first-order equation: F
(
z, w, z(nw + λ)w′

z + w2
)
= 0.
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◮ Equations of the second type.

The equation

F (xneλy, xy′x, x
2y′′xx) = 0 (3.2.4.3)

is invariant under the simultaneous scaling and translation of variables, x → αx and

y → y + β, where α= e−βλ/n and β is an arbitrary number. The transformation z=xneλy ,

w = xy′x brings (3.2.4.3) to a first-order equation: F
(
z, w, z(λw + n)w′

z − w
)
= 0.

3.2.5 Exact Second-Order Equations

The second-order equation

F (x, y, y′x, y
′′
xx) = 0 (3.2.5.1)

is said to be exact if it is the total differential of some function, F = ϕ′
x, where ϕ =

ϕ(x, y, y′x). If equation (3.2.5.1) is exact, then we have a first-order equation for y:

ϕ(x, y, y′x) = C, (3.2.5.2)

where C is an arbitrary constant.

If equation (3.2.5.1) is exact, then F (x, y, y′x, y
′′
xx) must have the form

F (x, y, y′x, y
′′
xx) = f(x, y, y′x)y

′′
xx + g(x, y, y′x). (3.2.5.3)

Here f and g are expressed in terms of ϕ by the formulas

f(x, y, y′x) =
∂ϕ

∂y′x
, g(x, y, y′x) =

∂ϕ

∂x
+
∂ϕ

∂y
y′x. (3.2.5.4)

By differentiating (3.2.5.4) with respect to x, y, and p= y′x, we eliminate the variable ϕ
from the two formulas in (3.2.5.4). As a result, we have the following test relations for f
and g:

fxx + 2pfxy + p2fyy = gxp + pgyp − gy,
fxp + pfyp + 2fy = gpp.

(3.2.5.5)

Here the subscripts denote the corresponding partial derivatives.

If conditions (3.2.5.5) hold, then equation (3.2.5.1) with F of (3.2.5.3) is exact. In this

case, we can integrate the first equation in (3.2.5.4) with respect to p = y′x to determine

ϕ = ϕ(x, y, y′x):

ϕ =

∫
f(x, y, p) dp + ψ(x, y), (3.2.5.6)

where ψ(x, y) is an arbitrary function of integration. This function is determined by sub-

stituting (3.2.5.6) into the second equation in (3.2.5.4).

Example 3.3. The left-hand side of the equation

yy′′xx + (y′x)
2 + 2axyy′x + ay2 = 0 (3.2.5.7)

can be represented in the form (3.2.5.3), where f = y and g = p2+2axyp+ay2. It is easy to verify

that conditions (3.2.5.5) are satisfied. Hence, equation (3.2.5.7) is exact. Using (3.2.5.6), we obtain

ϕ = yp+ ψ(x, y). (3.2.5.8)
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Substituting this expression into the second equation in (3.2.5.4) and taking into account the relation

g= p2+2axyp+ay2, we find that 2axyp+ay2=ψx+pψy. Sinceψ=ψ(x, y), we have 2axy=ψy

and ay2 = ψx. Integrating yields ψ = axy2 + const. Substituting this expression into (3.2.5.8) and

taking into account relation (3.2.5.2), we find a first integral of equation (3.2.5.7):

yp+ axy2 = C1, where p = y′x.

Setting w = y2, we arrive at the first-order linear equation w′
x + 2axw = 2C1, which is easy to

integrate. Thus, we find the solution of the original equation in the form:

y2 = 2C1 exp
(
−ax2

) ∫
exp
(
ax2
)
dx+ C2 exp

(
−ax2

)
.

3.2.6 Nonlinear Equations Involving Linear Homogeneous
Differential Forms

Consider the nonlinear differential equation

F
(
x,L1[y],L2[y]

)
= 0, (3.2.6.1)

where the Ln[y] are linear homogeneous differential forms,

Ln[y] =

2∑

m=0

ϕ
(n)
m (x)y(m)

x , n = 1, 2.

Let y0 = y0(x) be a common particular solution of the two linear equations

L1[y0] = 0, L2[y0] = 0.

Then the substitution

w = ψ(x)
[
y0(x)y

′
x − y′0(x)y

]
(3.2.6.2)

with an arbitrary function ψ(x) reduces by one the order of equation (3.2.6.1).

Example 3.4. Consider the second-order nonlinear equation

y′′xx = f(x)g(xy′x − y).

It can be represented in the form (3.2.6.1) with

F (x, u, w) = w − f(x)g(u), u = L1[y] = xy′x − y, w = L2[y] = y′′xx.

The linear equations Ln[y] = 0 are

xy′x − y = 0, y′′xx = 0.

These equations have a common particular solution y0 = x. Therefore, the substitutionw= xy′x−y
(see formula (3.2.6.2) with ψ(x) = 1) leads to a first-order equation with separable variables:

w′
x = xf(x)g(w).

For the solution of this equation, see Section 1.2.1.
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3.2.7 Reduction of Quasilinear Equations to the Normal Form

Consider the quasilinear equation

y′′xx + f(x)y′x + g(x)y = Φ(x, y) (3.2.7.1)

with linear left-hand side and nonlinear right-hand side. Let y1(x) and y2(x) form a fun-

damental system of solutions of the truncated linear equation corresponding to Φ ≡ 0. The

transformation

ξ =
y2(x)

y1(x)
, u =

y

y1(x)
(3.2.7.2)

brings equation (3.2.7.1) to the normal form:

u′′ξξ = Ψ(ξ, u), where Ψ(ξ, u) =
y31(x)

W 2(x)
Φ
(
x, y1(x)u

)
.

Here, W (x) = y1y
′
2 − y2y′1 is the Wronskian of the truncated equation; and the variable x

must be expressed in terms of ξ using the first relation in (3.2.7.2).

Transformation (3.2.7.2) is convenient for the simplification and classification of equa-

tions having the form (3.2.7.1) with Φ(x, y) = h(x)yk , thus reducing the number of func-

tions from three to one: {f, g, h} =⇒ {0, 0, h1}.
Example 3.5. Consider the equation

y′′xx − y′x = e2xf(y). (3.2.7.3)

A fundamental system of solutions of the truncated linear equation with f(y) ≡ 0 are y1(x) = 1
and y2(x) = ex. The transformation

ξ = ex, u = y

brings equation (3.2.7.3) to the normal form:

u′′xx = f(u).

For solution of this autonomous equation, see Example 3.1 in Section 3.2.1.

3.2.8 Equations Defined Parametrically and Differential-Algebraic
Equations

◮ Preliminary remarks.

In fluid dynamics, one often employs von Mises or Crocco type transformations to lower the

order of boundary layer equations (and also some reduced equations that follow from the

Navier–Stokes equations). Such transformations use suitable first- or second-order partial

derivatives as new independent variables. The resulting equations sometimes admit exact

solutions that are represented in implicit or parametric form. This leads to the problem: how

to obtain exact solutions of the original hydrodynamic equations using these intermediate

solutions.

To solve this problem, one has to be able to solve nonlinear ordinary differential equa-

tions defined parametrically. Due to their unusual form, such non-classical ODEs have

been given very little attention.
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◮ General form of equations defined parametrically. Some examples.

In general, second-order ordinary differential equations defined parametrically are defined

by two coupled equations of the form

F1(x, y, y
′
x, y

′′
xx, t) = 0, F2(x, y, y

′
x, y

′′
xx, t) = 0, (3.2.8.1)

where y = y(x) is an unknown function, t = t(x) is a functional parameter, F1(. . . ) and

F2(. . . ) are given functions of their arguments. Below we consider two cases.

1◦. Degenerate case. We assume that the derivative y′′xx can be eliminated from the equa-

tions (3.2.8.1) and the resulting equation can be solved for y′x to obtain y′x = F (x, y, t).
Using this expression, we eliminate the first derivative from one of the equations (3.2.8.1)

to get F3(x, y, y
′′
xx, t) = 0 and then solve this equation for y′′xx. The outlined procedure

reduces the original equation (3.2.8.1) to the canonical form

y′x = F (x, y, t), y′′xx = G(x, y, t). (3.2.8.2)

Note that parametrically defined nonlinear differential equations (3.2.8.2) form a special

class of coupled differential-algebraic equations.

Below we give a description of a method for integrating such equations and list a few

simple equations of this kind whose general solutions can be obtained in parametric form;

we deal with the general case where the parameter t cannot be eliminated from the equa-

tions (3.2.8.2).

On differentiating the first equation in (3.2.8.2) with respect to t, we obtain (y′x)
′
t =

Fxx
′
t + Fyy

′
t + Ft. Taking into account the relations y′t = Fx′t and (y′x)

′
t = x′ty

′′
xx, we find

that

x′ty
′′
xx = Fxx

′
t + FFyx

′
t + Ft. (3.2.8.3)

Eliminating the second derivative y′′xx with the help of equation (3.2.8.2), we arrive at the

first-order equation

(G− Fx − FFy)x
′
t = Ft. (3.2.8.4)

Taking into account that y′t = Fx′t, we rewrite (3.2.8.4) in the form

(G− Fx − FFy)y
′
t = FFt. (3.2.8.5)

Equations (3.2.8.4) and (3.2.8.5) represent a system of first-order equations for x=x(t)
and y = y(t). If we manage to solve this system, we thus obtain a solution to the original

equation (3.2.8.2) in parametric form.

In some cases, it may be more convenient to use one of the equations (3.2.8.4) or

(3.2.8.5) and the first equation (3.2.8.2).

Remark 3.3. With the above manipulations, isolated solutions may be lost, which satisfy the

relation G− Fx − FFy = 0 (this issue requires a further analysis).

Let us look at two special cases.

1◦. If

G = Fx + FFy + a(t)b(x)Ft,
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where a(t), b(x), and F = F (x, y, t) are arbitrary functions, the variables in equation

(3.2.8.4) separate, thus resulting in the solution
∫
b(x) dx =

∫
dt

a(t)
+ C1

with C1 is an arbitrary constant.

2◦. If

G = Fx + FFy + a(t)b(y)FFt,

where a(t), b(y), and F = F (x, y, t) are arbitrary functions, the variables in equation

(3.2.8.5) separate, thus resulting in the solution
∫
b(y) dy =

∫
dt

a(t)
+ C1

with C1 is an arbitrary constant.

Below are a few simple equations of the form (3.2.8.2) whose general solution can be

obtained in parametric form.

Example 3.6. Consider the second-order parametric ODE

y′x = ϕ(t), y′′xx = ψ(t), (3.2.8.6)

where t is the parameter, while ϕ(t) and ψ(t) are given, sufficiently arbitrary functions.

In this case,

F = ϕ(t), G = ψ(t).

Substituting these expressions into (3.2.8.4) gives the equation ψ(t)x′t = ϕ′
t(t), whose general

solution is

x =

∫
ϕ′
t(t)

ψ(t)
dt+ C1, (3.2.8.7)

where C1 is an arbitrary constant. Expression (3.2.8.7) together with the first equation (3.2.8.6)

represent a first-order parametric ODE of the form (1.8.3.7) with

f(t) =

∫
ϕ′
t(t)

ψ(t)
dt+ C1, g(t) = ϕ(t). (3.2.8.8)

Substituting (3.2.8.8) into (1.8.3.9) yields the general solution to ODE (3.2.8.6) in parametric form:

x =

∫
ϕ′
t(t)

ψ(t)
dt+ C1, y =

∫
ϕ(t)ϕ′

t(t)

ψ(t)
dt+ C2, (3.2.8.9)

where C1 and C2 are arbitrary constants.

Example 3.7. Consider equation (3.2.8.2) with

F = f(x)g(y)h(t), G = f2(x)g(y)g′y(y)h
2(t)− f ′

x(x)g(y)λ(t), (3.2.8.10)

where f(x), g(y), h(t), and λ(t) are arbitrary functions. Equation (3.2.8.4) now becomes

f ′
x(x)

[
h(t) + λ(t)

]
x′t = −f(x)h′t(t), (3.2.8.11)

and its general solution is expressed as

f(x) = C1E(t), E(t) = exp

[
−
∫

h′t(t) dt

h(t) + λ(t)

]
, (3.2.8.12)
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where C1 is an arbitrary constant. Substituting expressions (3.2.8.10) and (3.2.8.12) into the first

equation (3.2.8.2), we arrive at the separable first-order equation

y′t = −g(y)
f2(x)

f ′
x(x)

h(t)h′t(t)

h(t) + λ(t)
, (3.2.8.13)

in which x must be expressed via t using the integral (3.2.8.12).

In particular, if f(x) = x, the general solution to equation (3.2.8.13) is
∫

dy

g(y)
= −C2

1

∫
h(t)h′t(t)E

2(t)

h(t) + λ(t)
dt+ C2. (3.2.8.14)

Formulas (3.2.8.12) and (3.2.8.14), where C1 and C2 are arbitrary constants, define the general

solution to equation (3.2.8.2), (3.2.8.10) with f(x) = x.

Example 3.8. Consider a special case of equation (3.2.8.2) with

G = Fx + FFy, (3.2.8.15)

where F =F (x, y, t) is an arbitrary function. In this case, the expressions in parentheses in (3.2.8.4)

and (3.2.8.5) vanish and equation (3.2.8.2) admits the first integral

y′x = F (x, y, C1),

where C1 is an arbitrary constant. In addition, there is a singular solution which is described by the

parametric first-order equation

y′x = F (x, y, t), Ft(x, y, t) = 0.

2◦. Degenerate case. Suppose one of the two equations in (3.2.8.1) does not contain deriva-

tives. If the other equation can be solved for y′′xx, we obtained a parametrically defined

equation of the form

F (x, y, t) = 0, y′′xx = G(x, y, y′x, t). (3.2.8.16)

By differentiation of the first relation, such equations can be reduced to a nonlinear

system of second-order equations. Without writing out this system, we give an example of

such an equation whose solution can be obtained in parametric form.

Example 3.9. Consider the following second-order ODE defined parametrically:

y = ϕ(t), y′′xx = ψ(t). (3.2.8.17)

Its solution is sought in the parametric form

x =

∫
f(t) dt+A, y = ϕ(t). (3.2.8.18)

The derivatives are expressed as

y′x =
y′t
x′t

=
ϕ′
t

f
, y′′xx = (y′x)

′
x =

(y′x)
′
t

x′t
=

(ϕ′
t/f)

′
t

f
. (3.2.8.19)

By comparing the second derivatives in (3.2.8.17) and (3.2.8.19), we obtain a first-order equation

for f = f(t):
(ϕ′

t/f)
′
t = ψf. (3.2.8.20)

The differentiation with respect to t in (3.2.8.20) results in a Bernoulli equation, whose general

solution is expressed as

f(t) = ±ϕ′
t(t)

[
2

∫
ψ(t)ϕ′

t(t) dt+B

]−1/2

, (3.2.8.21)

where B is an arbitrary constant. Formulas (3.2.8.18) and (3.2.8.21) define the general solution to

to equation (3.2.8.17) in parametric form.
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◮ Reduction of standard differential equations to parametric differential equations

A standard second-order ODE of the form

y′′xx = G(x, y, y′x) (3.2.8.22)

can be represented as a parametric ODE defined by two relations

y′x = t,

y′′xx = G(x, y, t).
(3.2.8.23)

This equation is a special case of equation (3.2.8.2) with F (x, y, t) = t; it can be reduced

to the standard system of first-order ODEs

G(x, y, t)x′t = 1,

G(x, y, t) y′t = t.
(3.2.8.24)

This system is obtained by substituting F = t into equations (3.2.8.4)–(3.2.8.5).

System (3.2.8.24) is useful for the numerical solution of blow-up Cauchy problems or

problems with a root singularity, in which the solution y = y(x) or its derivative become

infinite at a finite value x=x∗ (the value x∗ is unknown in advance and has to be determined

in the solution of the problem). In such and similar problems, the critical value x = x∗ for

equation (3.2.8.22) corresponds to t → ±∞ for system (3.2.8.24). For how one can use

system (3.2.8.24) for the numerical integration of equations of the form (3.2.8.22) in blow-

up problems, see Section 3.8.7.

⊙ Literature for Section 3.2: E. L. Ince (1956), G. M. Murphy (1960), L. E. El’sgol’ts (1961), P. Hartman

(1964), N. M. Matveev (1967), I. G. Petrovskii (1970), G. F. Simmons (1972), E. Kamke (1977), G. Birkhoff

and Rota (1978), M. Tenenbaum and H. Pollard (1985), A. N. Tikhonov, A. B. Vasil’eva, and A. G. Svesh-

nikov (1985), R. Grimshaw (1991), M. Braun (1993), D. Zwillinger (1997), C. Chicone (1999), G. A. Korn

and T. M. Korn (2000), V. F. Zaitsev and A. D. Polyanin (2001), A. D. Polyanin and V. F. Zaitsev (2003),

W. E. Boyce and R. C. DiPrima (2004), A. D. Polyanin and A. V. Manzhirov (2007), A. D. Polyanin (2016),

A. D. Polyanin and A. I. Zhurov (2016a, 2016b).

3.3 Boundary Value Problems. Uniqueness and

Existence Theorems. Nonexistence Theorems

◆ Nonlinear boundary value problems for ODEs are much more complex for mathematical

analysis than initial value problems. This is because initial value problems (with well-

behaved functions) have unique solutions (i.e., are “well-posed”), whereas boundary value

problems (even with well-behaved functions) may have one solution, several solutions, or

no solution at all. This section highlights characteristic features of different classes of

nonlinear boundary value problem, states useful theorems on existence or nonexistence of

solutions, and discusses examples of specific problems having nonunique solutions.
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3.3.1 Uniqueness and Existence Theorems for Boundary Value
Problems

◮ Preliminary remarks.

◮ First boundary value problems. Existence theorems.

We will be looking at boundary value problems for second-order nonlinear differential

equations of the form

y′′xx = f(x, y, y′x) (3.3.1.1)

defined on the unit interval 0 ≤ x ≤ 1 (as shown in Section 2.5.2, any finite interval for the

independent variable can reduced to a unit interval) and subject to the first-type boundary

conditions∗

y(0) = A, y(1) = B. (3.3.1.2)

EXISTENCE THEOREMS. The first boundary value problem (3.3.1.1)–(3.3.1.2) has at

least one solution if the function f = f(x, y, z) is continuous in the domain Ω = {0 ≤ x ≤
1, −∞ < y, z <∞} and any of the following four assumptions holds:

1. f(x, y, z) is bounded;

2. For sufficiently large |y|, the inequality f(x, y, z) < k|y| holds, where k <
√
3π3 ≈

9.645;

3.
f(x, y, z)

|y|+ |z| → 0 uniformly on the interval 0 ≤ x ≤ 1 as |y|+ |z| → ∞; in addition,

on each finite interval, f satisfies the Lipschitz condition

|f(x, y, z)− f(x, ȳ, z̄)| ≤ K|y − ȳ|+ L|z − z̄|, (3.3.1.3)

where K and L are some positive numbers (Lipschitz constants);

4. f satisfies the Lipschitz condition (3.3.1.3) and has the form f=ϕ(x, y)+ψ(x, y, z),

where ϕ is continuous and monotonically increasing with respect to y, and
ψ(x, y, z)

|y|+ |z| → 0

uniformly on the interval 0 ≤ x ≤ 1 as |y|+ |z| → ∞.

UNIQUENESS AND EXISTENCE THEOREMS.

1. Let the function f = f(x, y, z) be continuous in the domain Ω= {0≤ x≤ 1, −∞<
y, z <∞} and satisfy the Lipschitz condition (3.3.1.3). Then problem (3.3.1.1)–(3.3.1.2)

has one and only one solution if the inequality 1
8K + 1

2L < 1 holds, where K and L are

Lipschitz constants.

2. Let the function f =f(x, y, z) be continuous in the domain ΩN ={0≤x≤1, −N ≤
y ≤ N, −4N ≤ z ≤ 4N} and satisfy the Lipschitz condition (3.3.1.3) in ΩN . In addition,

let

m = max
0≤x≤1

|f(x, 0, 0)|, M = max
x,y,z∈ΩN

|f(x, y, z)|.

Then if

α = 1
8K + 1

2L < 1

∗First-, second-, third-, and mixed-type boundary conditions for second-order nonlinear differential equa-

tions are stated in exactly the same way as for linear equations; see Section 2.5.1.
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and any of the two inequalities

(i) m ≤ 8N(1− α),
(ii) M ≤ 8N

hold, then problem (3.3.1.1)–(3.3.1.2) has one and only one solution y = y(x) such that

|y| ≤ N, |y′x| ≤ 4N (0 ≤ x ≤ 1).

Remark 3.4. Under certain conditions, the unique solution to problem (3.3.1.1)–(3.3.1.2) can

be obtained with Picard’s method of successive approximations by solving the equations

y′′n = f(x, yn−1, y
′
n−1),

where each yn is chosen so as to satisfy the boundary conditions (3.3.1.2); the desired solution

is y = limn→∞ yn. For the iterative process to converge, it suffices that the Lipschitz conditions

(3.3.1.3) hold.

EXISTENCE THEOREMS (FOR EQUATIONS OF A SPECIAL FORM). The first boundary

value problem

y′′xx = f(x, y); y(0) = A, y(1) = B (3.3.1.4)

has at least one solution if f = f(x, y) is continuous in the domain Ω= {0≤ x≤ 1, −∞<
y <∞} and any of the following two assumptions holds:

1. The function f is monotonically increasing (nondecreasing) with respect to y and

satisfies the Lipschitz condition |f(x, y)− f(x, ȳ)| ≤ K
∣∣y − ȳ| on each finite interval (or

if fy is bounded on each finite interval).

2. If A = B = 0 and the inequality

∫ y

0
f(x, t) dt ≥ −c1y2 − c0

holds, where c0 ≥ 0 and 0 < c1 <
1
2π

2.

Remark 3.5. Problem (3.3.1.4) has a unique solution if f = f(x, y) is continuous in the domain

Ω and satisfies the Lipschitz condition with the Lipschitz constantK < π2.

◮ First boundary value problems. Lower and upper solution. Nagumo theorem.

Definition 1. Twice differentiable functions u = u(x) and v = v(x) are said to be a lower

and an upper solution to the boundary value problem (3.3.1.4) if the following inequalities

hold:

u′′xx − f(x, u) ≥ 0 at 0 < x < 1;

v′xx − f(x, v) ≤ 0 at 0 < x < 1; (3.3.1.5)

u(0) ≤ A ≤ v(0), u(1) ≤ B ≤ v(1).

Here, u(0) = limx→0 u(x); the values v(0), u(1), and v(1) are defined likewise.

NAGUMO-TYPE THEOREM (FOR EQUATIONS OF A SPECIAL FORM). Let the bound-

ary value problem (3.3.1.4) have a lower solution u= u(x) and an upper solution v= v(x),
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with u(x) ≤ v(x) for 0 ≤ x ≤ 1. In addition, let f(x, y) be continuous and satisfy the Lip-

schitz condition on 0≤ x≤ 1 with u(x) ≤ y ≤ v(x). Then there exists a solution y = y(x)
to problem (3.3.1.4) satisfying the inequalities

u(x) ≤ y ≤ v(x) (0 ≤ x ≤ 1). (3.3.1.6)

This theorem allows one to effectively determine the domain of existence of solutions

to some classes of nonlinear boundary value problems. The linear functions u= C1+D1x
and v=C2+D2x can be used as lower and upper solutions, with the coefficients Ci and Di

chosen so as to satisfy the inequalities (3.3.1.5).

Example 3.10. Consider the first boundary value problem for the Emden–Fowler equation

y′′xx = xnym; y(0) = A, y(1) = B. (3.3.1.7)

Let n≥ 0,m> 1,A≥ 0, andB > 0. In this case, u(x)≡ 0 is a lower solution. Any constantC
such that C ≥ max[A,B] can be taken to be the upper solution, v(x) = C. Then, by the Nagumo-

type theorem, there is a nonnegative solution to the boundary value problem (3.3.1.7) satisfying the

inequalities

0 ≤ y(x) ≤ max[A,B].

Example 3.11. Consider the first boundary value problem for the equation with a cubic nonlin-

earity

y′′xx = y[y + g(x)][y − h(x)]; y(0) = A, y(1) = B, (3.3.1.8)

where g(x) > 0 and h(x) > 0 are continuous functions in the domain 0 ≤ x ≤ 1.

Let A ≥ 0 and B > 0. In this case, u(x) ≡ 0 is a lower solution. Let hmax = max
0≤x≤1

h(x).

We will show that any constant C such that C ≥ max[A,B, hmax] can be taken as the upper

solution, v(x) = C. Indeed, we have f(x, v) ≥ 0 and, therefore, v′′xx − f(x, v) ≤ 0. Then, by the

Nagumo-type theorem, there exists a nonnegative solution to the boundary value problem (3.3.1.8)

satisfying the inequalities

0 ≤ y(x) ≤ max[A,B, hmax]. (3.3.1.9)

The estimate (3.3.1.9) can be improved. To this end, the lower solution can be taken in the

form u = δ > 0, where δ ≤ min[A,B, hmin] with hmin = min
0≤x≤1

h(x). The upper solution will be

left unchanged. It follows that there exists a nonnegative solution to the boundary value problem

(3.3.1.8) satisfying the inequalities

min[A,B, hmin] ≤ y(x) ≤ max[A,B, hmax].

Definition 2. The function f(x, y, z) will be said to belong to the class of Nagumo

functions on a set (x, y) ∈ D if there is a positive continuous function ϕ(z) satisfying the

following two conditions:

(i) |f(x, y, z)| ≤ ϕ(|z|) for all (x, y) ∈ D and −∞ < z <∞;

(ii)

∫ ∞

0

z dz

ϕ(z)
=∞.

NAGUMO THEOREM. Let u(x) be a lower solution and v(x) an upper solution to the

first boundary value problem (3.3.1.1)–(3.3.1.2) such that

1. The inequality u(x) < v(x) holds for 0 ≤ x ≤ 1.

2. The function f(x, y, z) belongs to the class of Nagumo functions on the set D =
{0 ≤ x ≤ 1, u(x) < y < v(x)}.
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3. The function f(x, y, z) is continuous in x and continuously differentiable with re-

spect to y and z in the domain 0 ≤ x ≤ 1, u(x) < y < v(x), −∞ < z <∞.

Then there exists at least one twice continuously differentiable solution y = y(x) to

problem (3.3.1.1)–(3.3.1.2) satisfying the inequalities

u(x) < y < v(x) (0 ≤ x ≤ 1).

◮ Third boundary value problems.

Let us consider the equation (3.3.1.1) with third-type boundary conditions

α0y − α1y
′
x = A at x = 0, (3.3.1.10)

β0y − β1y′x = B at x = 1, (3.3.1.11)

where α0, α1, β0, and β1 are nonnegative constants with α0 + α1 > 0, β0 + β1 > 0, and

α0 + β0 > 0.

EXISTENCE AND UNIQUENESS THEOREM. There exists a unique solution y = y(x) of

the boundary value problem (3.3.1.1), (3.3.1.11) if the following conditions hold:

1. The function f(x, y, z) is continuous on the set Ω= {0≤ x<∞, −∞<y, z <∞}.
2. There exists an M > 0 such that |f(x, y, z2)− f(x, y, z1)| ≤M |z2 − z1|, on Ω.

3. The function f(x, y, z) is nondecreasing with respect to y on the set Ω.

3.3.2 Reduction of Boundary Value Problems to Integral Equations.
Integral Identity. Jentzch Theorem

◮ Reduction of boundary value problems to integral equations.

We will be looking at boundary value problems for second-order nonlinear differential

equations of the form∗

y′′xx + λf(x, y, y′x) = 0 (3.3.2.1)

with parameter λ and homogeneous boundary conditions of a different kind on the unit

interval 0 ≤ x ≤ 1.

Assuming f(x, y(x), y′x(x)) to be a known function of x and using formula (2.5.3.1)

with r(x) = −λf(x, y(x), y′x(x)) as well as suitable Green’s functions for the operator

L[y] = y′′xx (see the first four rows of Table 2.2 with a = 1), we can represent boundary

value problems for equation (3.3.2.1) subject to boundary conditions of the first or mixed

kind as a nonlinear integral equation with constant limits of integration:

y(x) = λ

∫ 1

0
|G(x, ξ)|f(ξ, y(ξ), y′ξ(ξ)) dξ. (3.3.2.2)

The modulus of the Green’s function is used to stress that the kernel of the integral operator

is positive.

Table 3.1 lists a few Green’s functions |G(x, ξ)|, which appear in the integral equa-

tion (3.3.2.2), for several boundary value problems on the unit interval 0 ≤ x ≤ 1. Note

that Table 3.1 contains a new Green’s function (for the third boundary value problem) as

compared to Table 2.2.

∗Note that equations (3.3.1.1) and (3.3.2.1) differ in form.



“K16435’ — 2017/9/28 — 15:05 — #164

138 METHODS FOR SECOND-ORDER NONLINEAR DIFFERENTIAL EQUATIONS

TABLE 3.1

Kernel of the integral operator G(x, ξ) = |G(x, ξ)| appearing on the right-hand side

of equation (3.3.2.2) for some boundary value problems (0 ≤ x ≤ 1, 0 ≤ ξ ≤ 1)

No. Boundary value problem Boundary conditions Green’s function, G(x, ξ)

1 First y(0) = y(1) = 0
x(1− ξ) if x ≤ ξ
ξ(1− x) if ξ ≤ x

2 Mixed y(0) = y′x(1) = 0
x if x ≤ ξ
ξ if ξ ≤ x

3 Mixed y′x(0) = y(1) = 0
1− ξ if x ≤ ξ
1− x if ξ ≤ x

4 Mixed

y(0) = 0,

y(1) + ky′x(1) = 0
(with k 6= −1)

x(k + 1− ξ)

k + 1
if x ≤ ξ

ξ(k + 1− x)

k + 1
if ξ ≤ x

5 Third

αy(0)− βy′x(0) = 0,

γy(1) + δy′x(1) = 0
(with α, β, γ, δ ≥ 0 and

ρ = αγ + αδ + βγ > 0)

1

ρ
(β + αx)(γ + δ − γξ) if x ≤ ξ

1

ρ
(β + αξ)(γ + δ − γx) if ξ ≤ x

POSITIVE PROPERTY SOLUTIONS. If λ > 0 and f > 0 (f can be zero at isolated points

x = xk) and a boundary value problem for the nonlinear ODE (3.3.2.1) from Table 3.1 has

a solution, then the right-hand side of the integral equation (3.3.2.2) is positive, and hence,

the desired function y = y(x) (on the left-hand side) is positive in the domain 0 < x < 1.

◮ Integral identity.

Let us multiply the differential equation (3.3.2.1) by a test function u = u(x) and then

integrate with respect to x from 0 to 1 while using the identity uy′′xx = (uy′x)
′
x − (yu′x)

′
x +

yu′′xx to obtain

u(1)y′x(1)− y(1)u′x(1)− u(0)y′x(0) + y(0)u′x(0)

+

∫ 1

0
y(x)u′′xx(x) dx + λ

∫ 1

0
u(x)f(x, y(x), y′x(x)) dx = 0. (3.3.2.3)

By choosing different test functions u = u(x) in (3.3.2.3), we will be analyzing impor-

tant qualitative features of some nonlinear boundary value problems in subsequent para-

graphs.

◮ Properties of integral equations with positive kernel. Jentzch theorem.

A number σ is called a characteristic value of the linear integral equation

u(x)− σ
∫ b

a
K(x, t)u(t) dt = f(x)
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if there exist nontrivial solutions of the corresponding homogeneous equation (with f(x)≡
0). The nontrivial solutions themselves are called the eigenfunctions of the integral equation

corresponding to the characteristic value σ.

A kernel K(x, t) of an integral operator I[u] =
∫ b
a K(x, ξ)u(ξ) dξ is said to be positive

definite if for all functions ϕ(x) that are not identically zero we have

∫ b

a

∫ b

a
K(x, ξ)ϕ(x)ϕ(ξ) dx dξ > 0,

and the above quadratic functional vanishes for ϕ(x) = 0 only. Such a kernel has positive

characteristic values only. It is allowed that the kernel may vanish at isolated points (on a

set of zero measure) of the domain a ≤ x, t ≤ b.
GENERALIZED JENTZCH THEOREM. If a continuous or polar kernel K(x, t) is posi-

tive, then its characteristic values σ0 with the smallest modulus is positive and simple, and

the corresponding eigenfunction u0(x) does not change sign on the interval a ≤ x ≤ b.

3.3.3 Theorem on Nonexistence of Solutions to the First Boundary
Value Problem. Theorems on Existence of Two Solutions

◮ Theorem on nonexistence of solutions to the first boundary value problem.

KEY ASSUMPTIONS:

1◦. Let λ > 0 and f(x, y, z) > 0 be a continuous function in the domain 0 < x < 1,

−∞ < y, z <∞ (f can be zero at finitely many isolated points x = xk).

2◦. Suppose that Assumption 1 holds and the function appearing in equation (3.3.2.1)

possesses the property

f(x, y, z) > ay, where a > 0, y > 0. (3.3.3.1)

Consider the nonlinear boundary value problem for equation (3.3.2.1) with the homo-

geneous boundary conditions of the first kind

y(0) = 0, y(1) = 0. (3.3.3.2)

We assume that the problem has at least one solution. Let us take

u(x) = sin(πx) (3.3.3.3)

to be the test function, which possesses the properties

u(0) = u(1) = 0, u(x) > 0 for 0 < x < 1, u′′xx(x) = −π2u(x). (3.3.3.4)

By virtue of conditions (3.3.3.2) and (3.3.3.4), the first line of the integral identity

(3.3.2.3) is zero. Using the last relation from (3.3.3.4), we rewrite (3.3.2.3) in the form

∫ 1

0
y(x)u′′xx(x) dx+ λ

∫ 1

0
u(x)f(x, y(x), y′x(x)) dx

=

∫ 1

0
u(x)

[
λf(x, y(x), y′x(x))− π2y(x)

]
dx = 0. (3.3.3.5)
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Using the key assumptions above, we obtain the estimate
∫ 1

0
u(x)

[
λf(x, y(x), y′x(x))− π2y

]
dx >

∫ 1

0
(λa− π2)u(x)y(x) dx. (3.3.3.6)

Since u(x) and y(x) are both positive on 0 < x < 1 (see the positive property solutions

at the end of Section 3.3.2 and (3.3.3.4)), the second integral in (3.3.3.6) must also be

positive, provided that λ > π2/a. On the other hand, if the first integral in (3.3.3.6) is zero,

the second integral must be negative. This contradiction, obtained under the assumption

that the problem has a solution, allows us to state the following theorem.

NONEXISTENCE THEOREM (FIRST BOUNDARY VALUE PROBLEM). If the key as-

sumptions (see the beginning of this section) are valid and λ is a sufficiently large number

such that

λ > π2/a, (3.3.3.7)

the first boundary value problem for equation (3.3.2.1) subject to the boundary conditions

(3.3.3.2) does not have solutions.

Examples of mixed boundary value problems that do not have solutions can be found

in Section 3.3.4.

◮ On the evaluation of the constant a appearing in condition (3.3.3.1).

Let us look at the nonlinear boundary value problem for the autonomous equation

y′′xx + λf(y) = 0 (3.3.3.8)

subject to the boundary conditions of the first kind (3.3.3.2). Note that equation (3.3.3.8)

coincides, up to notation, with the autonomous equation considered in Example 3.1, which

admits order reduction and is easy to integrate.

We assume that the conditions

f > 0 for −∞ < y <∞, f ′y ≥ 0 for y ≥ 0, lim
y→∞

f ′y =∞

hold. The constant a appearing in (3.3.3.1) can be evaluated as

a = min
0≤y<∞

f(y)

y
. (3.3.3.9)

Differentiating f(y)/y with respect to y yields an algebraic (transcendental) equation for

the minimum point y◦:

f(y◦)− y◦f ′y(y◦) = 0. (3.3.3.10)

Then a can be found using either formula

a =
f(y◦)
y◦

or a = f ′y(y
◦). (3.3.3.11)

Example 3.12. In the first boundary value problem for the equation

y′′xx + λ(α+ β|y|k) = 0, α, β > 0, k > 1,

subject to the boundary conditions (3.3.3.2), the constant a appearing in (3.3.3.1) is found as

a = βk
[ α

β(k − 1)

] k−1
k
.
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◮ Theorems on existence of two solutions for the first boundary value problem.

Let us look at the nonlinear boundary value problem with homogeneous boundary condi-

tions of the first kind

y′′xx + f(x, y) = 0 (0 < x < 1); y(0) = y(1) = 0. (3.3.3.12)

Let the function f(x, y)≥ 0 be continuous in the domain Ω= {0≤ x≤ 1, 0≤ y <∞}
and let f(x, y) 6≡ 0 on any subinterval of 0 ≤ x ≤ 1 for y > 0. We use the notation:

‖y‖ = sup0≤x≤1 |y(x)|.
ERBE–HU–WANG THEOREM 1 (A SPECIAL CASE). Suppose the following two as-

sumptions are valid:

1. The limits relations

lim
y→0

min
0≤x≤1

f(x, y)

y
= lim

y→∞
min

0≤x≤1

f(x, y)

y
=∞ (3.3.3.13)

hold.

2. There is a constant p > 0 such that

f(x, y) ≤ 6p for 0 ≤ x ≤ 1, 0 ≤ y ≤ p. (3.3.3.14)

Then the first boundary value problem (3.3.3.12) has at least two positive solutions,

y1 = y1(x) and y2 = y2(x), such that

0 < ‖y1‖ < p < ‖y2‖.
Example 3.13. Consider the first boundary value problem

y′′xx + 1 + y2 = 0 (0 < x < 1); y(0) = y(1) = 0. (3.3.3.15)

Condition (3.3.3.13) for this equation holds. Condition (3.3.3.14) becomes

1 + y2 ≤ 6p for 0 ≤ y ≤ p.
The maximum allowed value of p is determined from the quadratic equation p2−6p+1= 0, which

gives pm = 3+2
√
2≈ 5.828. Hence, by virtue of the Erbe–Hu–Wang theorem (see above), problem

(3.3.3.12) has at least two positive solutions y1 and y2 such that 0 < ‖y1‖ < pm < ‖y2‖.

ERBE–HU–WANG THEOREM 2 (A SPECIAL CASE). Let the following two assump-

tions be valid:

1. The limits relations

lim
y→0

max
0≤x≤1

f(x, y)

y
= lim

y→∞
max
0≤x≤1

f(x, y)

y
= 0 (3.3.3.16)

hold.

2. There is a constant q > 0 such that

f(x, y) ≥ 32
3 q for 1

4 ≤ x ≤ 3
4 ,

1
4 q ≤ y ≤ q. (3.3.3.17)

Then the boundary value problem (3.3.3.12) has at least two positive solutions y1 = y1(x)
and y2 = y2(x) such that

0 < ‖y1‖ < q < ‖y2‖.
Remark 3.6. The above Erbe–Hu–Wang theorems are special cases of more general theorems

for boundary value problems of the third kind, which are stated below in Section 3.3.7.
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3.3.4 Examples of Existence, Nonuniqueness, and Nonexistence of
Solutions to First Boundary Value Problems

Below we exemplify the above qualitative features of nonlinear boundary value problems

with boundary conditions of the first kind by looking at a few specific problems admitting

exact analytical solutions.

◮ A nonlinear boundary value problem arising in combustion theory.

Example 3.14. Consider the nonlinear boundary value problem described by the equation

y′′xx + λey = 0 (3.3.4.1)

subject to the homogeneous boundary conditions of the first kind (3.3.3.2). Equation (3.3.4.1) arises

in combustion theory, when the Frank-Kamenetskii approximation is used for the kinetic function,

with y denoting dimensionless excess temperature, x dimensionless distance, and λ ≥ 0 is the

dimensionless rate of reaction. Equation (3.3.4.1) is a special case of equation (3.3.3.8).

Let us analyze the qualitative features of problem (3.3.4.1), (3.3.3.2) for different values of the

determining parameters λ, which is assumed positive.

Equation (3.3.4.1) is a special case of the autonomous second-order equation considered in

Example 3.1, which admits order reduction and is easy to integrate. With λ> 0, the general solution

to equation (3.3.4.1) is

y = ln

[
2c2

λ cosh2(cx+ b)

]
, (3.3.4.2)

where b and c are arbitrary constants. From the boundary conditions (3.3.3.2), we obtain a system

of transcendental equations for b and c,

2c2 = λ cosh2 b, 2c2 = λ cosh2(c+ b),

which is convenient to rewrite in the equivalent form

λ =
8b2

cosh2 b
, c = −2b. (3.3.4.3)

The first equation serves to determine b, after which the evaluation of c is elementary.

The function p(b) = 8b2/ cosh2 b is positive if b 6= 0, it tends to zero as b→ 0 and b→∞, and

it has the only maximum equal to λ∗f = max p(b) = 3.5138. It follows that if

λ > λ∗f ,

the first equation in (3.3.4.3) has no solution; hence, the original boundary value problem (3.3.4.1),

(3.3.3.2) has no solution either (the critical value λ = λ∗f corresponds to a thermal explosion). For

0 < λ < λ∗f , the first equation in (3.3.4.3) has two distinct positive roots, b1 and b2, which generate

two different solutions of the original boundary value problem (3.3.4.1), (3.3.3.2). When λ = λ∗f ,

the roots b1 and b2 become the same, b1 = b2 = b∗f ≈ 1.1997, to give a single solution to the original

problem.

Let us assess the accuracy of the critical value λ∗f by using the above theorem on nonexistence

of solutions to the first boundary value problem. In this case, f(x, y, y′x) = ey. It is not difficult to

show that ey ≥ ey for y > 0, which suggests that a= e. Substituting this value into (3.3.3.7) gives an

approximate estimate for the boundary of the nonexistence domain with respect to the parameter λ:

λ > λap

f = π2/e ≈ 3.6311.

This value, provided by the nonexistence theorem, differs from the exact value λ∗f by only 3.3%

(which is a very high accuracy for a qualitative analysis).
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Now let us estimate the boundaries of the existence domain for the two solutions using Erbe–

Hu–Wang theorem 1. The first condition of the theorem, (3.3.3.13), clearly holds, since

lim
y→0

(ey/y) = lim
y→∞

(ey/y) =∞.

The second condition, (3.3.3.14), can be rewritten in the form

λ ≤ 6pe−y for 0 ≤ y ≤ p.

It follows that λ ≤ 6pe−p. The left-hand side of this inequality attains a maximum at p = 1; hence,

the condition λ ≤ 6/e ≈ 2.207 must hold to ensure that the two solutions exist. This estimate is

lower than the exact boundary of the existence domain of two solutions by 37.2%.

Remark 3.7. The second boundary value problem for equation (3.3.4.1) subject to the boundary

conditions y′x(0) = y′x(1) = 0 for any λ > 0 has no solution. This is easy to see from the general

solution (3.3.4.2).

◮ A problem on an electron beam passing between two electrodes.

Example 3.15. Consider the autonomous equation

y′′xx = λy−1/2 (0 < x < 1) (3.3.4.4)

subject to the nonhomogeneous boundary conditions

y(0) = 1, y(1) = 1. (3.3.4.5)

The following notation is used here: y is dimensionless potential, x is dimensionless distance, and

λ ≥ 0 is dimensionless electric current density (Zinchenko, 1958).

Remark 3.8. Problem (3.3.4.4)–(3.3.4.5) is quite interesting because it can be reduced, with the

change of variable u = 1− y, to a problem of the form (3.3.3.8), (3.3.3.2) for which the conditions

of the theorems stated in Section 3.3.3 do not hold.

Problem (3.3.4.4)–(3.3.4.5) is symmetric about the mid-point x = 1/2. Therefore, it reaches

a maximum at x = 1/2, with y′x(1/2) = 0. With this in mind, we integrate equation (3.3.4.4)

multiplied by 2y′x from x to 1/2 to obtain

(y′x)
2 = 4λ

(√
y − C

)
, (3.3.4.6)

where C =
√
y|x=1/2 is an arbitrary constant. Integrating again from x to 1/2 and rearranging, we

arrive at the solution in implicit form

(
√
y − C)(√y + 2C)2 = 9

64λ(2x− 1)2. (3.3.4.7)

Formula (3.3.4.7) describes a family of third-order curves with respect to
√
y. The constant C

depends on λ and satisfies the cubic equation

(1− C)(1 + 2C)2 = 9
64λ, (3.3.4.8)

which is obtained by inserting the boundary conditions (3.3.4.5) into equation (3.3.4.7) (both bound-

ary conditions result in the same equation for C).

Since λ ≥ 0, it follows from equation (3.3.4.8) that C ≤ 1. On the other hand, from the first

integral (3.3.4.6) we get C =
√
y

min
≥ 0. In the range 0 ≤ C ≤ 1, the maximum of the left-hand

side of equation (3.3.4.8) is attained at C = 1
2 , which gives λmax = 128

9 ≈ 14.22. Hence, problem

(3.3.4.4)–(3.3.4.5) has no solution for λ > λmax.

A more detailed analysis of the curve (3.3.4.7) shows that three different situations are possible

depending on the value of λ:
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(i) If 0 ≤ λ < λ∗ (λ∗ = 64
9 ≈ 7.11), problem (3.3.4.4)–(3.3.4.5) has only one solution, which

corresponds to the only root of the cubic equation (3.3.4.8) in the domain
√
3
2 <C ≤ 1. For small λ,

equation (3.3.4.8) provides the asymptotic behavior

C = 1− 1
64λ+ o(λ) (λ→ 0).

(ii) If λ∗ ≤ λ < 2λ∗ = λmax ≈ 14.22, problem (3.3.4.4)–(3.3.4.5) has two solutions, which

correspond to two distinct roots of the cubic equation (3.3.4.8) in the domain 0≤ C ≤
√
3
2 ≈ 0.866.

For the upper curve, which has a physical meaning (the other solution has no physical meaning),

the value of C gradually decreases as λ increases. When λ= λmax, which corresponds to C1,2 =
1
2 ,

the two solutions become the same.

(iii) If λ > λmax, the problem has no solution.
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Figure 3.1: Solutions to problem (3.3.4.4)–(3.3.4.5) for different values of λ.

Figure 3.1 displays solutions to problem (3.3.4.4)–(3.3.4.5) for different values of the parameter:

λ= 6, 10, 14; the dashed lines correspond to the second solution (which has no physical meaning).

Figure 3.2 shows the dependence of the rootsC1,2 of the cubic equation (3.3.4.8) on the parameter λ
(the root C1 corresponds to the solution having a physical meaning).
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Figure 3.2: Dependence of the roots of the cubic equation (3.3.4.8) on the parameter λ (the

root C1 corresponds to the solution having a physical meaning).

Remark 3.9. For λ < 0, the boundary value problem (3.3.4.4)–(3.3.4.5) has no solution.
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◮ A model boundary value problem with the modulus of the unknown.

Example 3.16. Consider the nonlinear boundary value problem

y′′xx + k2|y| = 0 (0 < x < a); (3.3.4.9)

y(0) = 0, y(a) = −b, (3.3.4.10)

where a, b, and k are all positive numbers.

Depending on the sign of y, the nonlinear equation (3.3.4.9) reduces to two linear equations,

y′′xx ± k2y = 0, whose solutions are expressed in terms of trigonometric and hyperbolic functions.

For ak > π, problem (3.3.4.9) has two solutions:

y1 = − b

sinh(ka)
sinh(kx); (3.3.4.11)

y2 =





b

sinh(ka− π) sin(kx) if 0 ≤ x ≤ π/k,

− b

sinh(ka− π) sinh(kx− π) if π/k ≤ x ≤ a.
(3.3.4.12)

Here, y1 = y1(x) is a monotonically decreasing function such that y1(x) ≤ 0. The function

y2 = y2(x) monotonically increases for 0 ≤ x < π/(2k), attains a maximum at x = π/(2k)
and monotonically decreases for π/(2k) < x ≤ a. It is positive for 0 < x < π/k, becomes zero at

x = π/k, and is negative for x > π/k. For all 0 < x < a, the inequality y2 > y1 holds.

◆ See also Section 8.3.3.

3.3.5 Theorems on Nonexistence of Solutions for the Mixed Problem.
Theorems on Existence of Two Solutions

◮ Theorems on nonexistence of solutions for the mixed problem.

Let us look at the nonlinear boundary value problem for equation (3.3.2.1) subject to ho-

mogeneous mixed boundary conditions of the form

y′x(0) = 0, y(1) = 0. (3.3.5.1)

It is assumed to have at least one solution.

Suppose that the key assumptions stated at the beginning of Section 3.3.3 are valid.

This means that the function appearing in equation (3.3.2.1) has the property (3.3.3.1). Just

as previously, we use the integral identity (3.3.2.3). We take

u(x) = cos
(
π
2 x
)

(3.3.5.2)

as the test function; it possesses the properties

u′x(0) = u(1) = 0, u(x) > 0 for 0 < x < 1, u′′xx(x) = − 1
4π

2u(x). (3.3.5.3)

By virtue of conditions (3.3.5.1) and (3.3.5.3), the first line of the integral identity

(3.3.2.3) is zero. Now using the last relation in (3.3.5.3), we rewrite (3.3.2.3) in the form
∫ 1

0
y(x)u′′xx(x) dx+ λ

∫ 1

0
u(x)f(x, y(x), y′x(x)) dx

=

∫ 1

0
u(x)

[
λf(x, y(x), y′x(x)) − 1

4π
2y(x)

]
dx = 0. (3.3.5.4)
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In view of inequality (3.3.3.1), it follows that

∫ 1

0
u(x)

[
λf(x, y(x), y′x(x))− 1

4π
2y
]
dx >

∫ 1

0
(λa− 1

4π
2)u(x)y(x) dx. (3.3.5.5)

Since u(x) and y(x) are both positive on 0<x<1 (see positive property solutions at the end

of Section 3.3.2 and (3.3.3.4)), the second integral in (3.3.5.5) must be positive, provided

that λ > 1
4π

2/a. On the other hand, the first integral in (3.3.5.5) is zero, suggesting that the

second integral must be negative. This contradiction, obtained under the assumption that

the problem has at least one solution, allows one to state the following theorem.

NONEXISTENCE THEOREM 1 (MIXED BOUNDARY VALUE PROBLEM). If the key as-

sumptions from Section 3.3.3 are valid and λ is a sufficiently large number such that

λ > 1
4π

2/a, (3.3.5.6)

the mixed boundary value problem for equation (3.3.2.1) with the boundary conditions

(3.3.5.1) has no solution.

See Section 3.3.6 for examples of mixed boundary value problems having no solution.

◮ Generalization of nonexistence theorem 1 for the mixed problem.

Suppose that the function f(x, y, z) appearing in (3.3.2.1) satisfies the inequality

f(x, y, z) ≥ ϕ(x)y (0 < x < 1, y > 0), (3.3.5.7)

where ϕ(x) > 0 is a continuous function.

To be specific, we will consider a boundary value problem for equation (3.3.2.1) subject

to the mixed boundary conditions

y′x(0) = y(1) = 0. (3.3.5.8)

The problem is assumed to have at least one solution. Let us impose conditions on the test

function u(x) such that the first line of the integral identity (3.3.2.2) is zero. These are

u(0) = u′x(1) = 0. (3.3.5.9)

As a result, equation (3.3.2.3) becomes

∫ 1

0
y(x)u′′xx(x) dx+ λ

∫ 1

0
u(x)f(x, y(x), y′x(x)) dx = 0. (3.3.5.10)

Let u = u(x) satisfy the linear equation

u′′xx + σϕ(x)u = 0. (3.3.5.11)

where ϕ(x) is the function appearing in inequality (3.3.5.7) and σ is some (spectral) param-

eter. The boundary value problem (3.3.5.11), (3.3.5.9) is equivalent to the integral equation

u(x) = σ

∫ 1

0
|G2(x, ξ)|ϕ(ξ)u(ξ) dξ, (3.3.5.12)
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where |G2(x, ξ)| is the modulus of the Green’s function shown in the second row of Ta-

ble 3.1.

Since the kernel of the integral operator (3.3.5.12) is positive, it follows from the Jentzch

theorem (see Section 3.3.2) that the least eigenvalue is positive, σ0> 0, and the correspond-

ing eigenfunction u0(x) does not change its sign on 0 ≤ x ≤ 1. In equations (3.3.5.10)

and (3.3.5.11), we first set u = u0(x) and σ = σ0 and then eliminate the second derivative

(u0)
′′
xx from (3.3.5.10) with the help of (3.3.5.11). The resulting expression can be written

as

σ0
λ

=

∫ 1
0 u0(x)f(x, y(x), y

′
x(x)) dx∫ 1

0 u0(x)ϕ(x)y(x) dx
. (3.3.5.13)

Since, by assumption, inequality (3.3.5.7) holds, it follows from (3.3.5.13) that σ0/λ ≥ 1.

However, for sufficiently large λ > σ0, this estimate cannot be ensured. For such values

of λ, the boundary value problem (3.3.2.1), (3.3.2.1) surely has no solution. In the class

of boundary value problems concerned, there is a critical value of the parameter, λ∗, that

delimits the domains of existence and nonexistence of solutions. For λ > λ∗ with λ∗ < σ0,

there are no solutions (σ0 provides an upper estimate for the critical value λ∗ beyond which

there are no solutions).

These results allow us to state the following theorem on nonexistence of solutions to

the mixed problem.

NONEXISTENCE THEOREM 2 (MIXED BOUNDARY VALUE PROBLEM). If inequalities

(3.3.5.7) hold and λ is sufficiently large, λ > λ∗ > 0, the mixed boundary value problem

for equation (3.3.2.1) subject to the boundary conditions (3.3.5.8) has no solution. The

critical value satisfies the inequality λ∗ < σ0, where σ0 is the least eigenvalue of the linear

eigenvalue problem (3.3.5.11), (3.3.5.9).

Remark 3.10. The nonexistence theorem can be elaborated further if the boundary value prob-

lem is for a nonlinear equation of the special form

y′′xx + λ
[
ϕ(x)g(y) + h(x, y, y′x)

]
= 0

with the initial conditions (3.3.5.8). If the conditions

ϕ(x) > 0, g(y) > 0, lim
y→∞

g′y(y) =∞, h(x, y, y′x) ≥ 0 (0 < x < 1, y > 0)

hold, the problem has no solution for sufficiently large λ > λ∗ > 0.

◮ Theorems on existence of two solutions for the mixed boundary value problem.

Let us look at the nonlinear boundary value problem with homogeneous boundary condi-

tions of the first kind

y′′xx + f(x, y) = 0 (0 < x < 1); y(0) = y′x(1) = 0. (3.3.5.14)

Let the function f(x, y)≥ 0 be continuous in the domain Ω= {0≤ x≤ 1, 0≤ y <∞}
and f(x, y) 6≡ 0 on any subinterval of 0 ≤ x ≤ 1 for y > 0. We use the notation: ‖y‖ =
sup0≤x≤1 |y(x)|.
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ERBE–HU–WANG THEOREM 1 (A SPECIAL CASE). Let the following two assump-

tions hold:

1. lim
y→0

min
0≤x≤1

f(x, y)

y
= lim

y→∞
min

0≤x≤1

f(x, y)

y
=∞.

2. There is a constant p > 0 such that

f(x, y) ≤ 2p for 0 ≤ x ≤ 1, 0 ≤ y ≤ p.

Then the first boundary value problem (3.3.5.14) has at least two positive solutions, y1 =
y1(x) and y2 = y2(x), such that

0 < ‖y1‖ < p < ‖y2‖.

ERBE–HU–WANG THEOREM 2 (A SPECIAL CASE). Let the following two assump-

tions hold:

1. lim
y→0

max
0≤x≤1

f(x, y)

y
= lim

y→∞
max
0≤x≤1

f(x, y)

y
= 0.

2. There is a constant q > 0 such that

f(x, y) ≥ 32
7 q for 1

4 ≤ x ≤ 3
4 ,

1
4 q ≤ y ≤ q.

Then boundary value problem (3.3.5.14) has at least two positive solutions, y1 = y1(x) and

y2 = y2(x), such that

0 < ‖y1‖ < q < ‖y2‖.
Remark 3.11. The above Erbe–Hu–Wang theorems are special cases of more general theorems

for boundary value problems of the third kind, which are stated below in Section 3.3.7.

3.3.6 Examples of Existence, Nonuniqueness, and Nonexistence of
Solutions to Mixed Boundary Value Problems

In this section, we exemplify the above qualitative features of nonlinear boundary value

problems with mixed boundary conditions by looking at a few specific problems admitting

exact analytical solutions.

◮ Plane problem I arising in combustion theory (Frank-Kamenetskii approxima-

tion).

Example 3.17. Consider a one-dimensional problem on thermal explosion in a plane channel

described by equation (3.3.4.1) subject to the mixed boundary conditions (3.3.5.1):

y′′xx + λey = 0; y′x(0) = y(1) = 0, (3.3.6.1)

where y = y(x) is dimensionless excess temperature.

We proceed from the general solution to the equation, which is given by formula (3.3.4.2).

Using the boundary conditions, we get the equations for the constants b and c:

b = 0, λ =
2c2

cosh2 c
. (3.3.6.2)

The function q(c) = 2c2/cosh2 c is positive for c 6= 0, it tends to zero as c→ 0 and c→∞, and

it has the only maximum equal to λ∗m = max q(c) ≈ 0.8785. Consequently, if

λ > λ∗m,
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the second equation in (3.3.6.2) has no solution; it follows that the original boundary value problem

(3.3.6.1) has no solution either. For 0 < λ < λ∗m, the second equation in (3.3.6.2) has two distinct

roots, c1 and c2, which determine two different solutions of problem (3.3.6.1). If λ = λ∗m, the roots

c1 and c2 merge to become one, c1 = c2 = c∗m ≈ 1.1997, which corresponds to a single solution of

the problem. The critical value λ = λ∗m corresponds to a heat explosion.

By comparing the critical values of the parameter λ determining the boundary of a nonexistence

domain for solutions to the first and mixed boundary value problems, we obtain the simple relation

λ∗f = 4λ∗m.

This relation is exact; it follows from the equation p(b) = 4q(b), which is valid for all b.
The maximum value of the dimensionless excess temperature is attained at x = 0; it is given

by the formula y(0) = ln(2c2/λ), which is derived from (3.3.4.2) and (3.3.6.2). The critical values

λ∗m and c∗m correspond to a thermal explosion. Substituting these values in the formula for the

temperature at x=0 yields the critical temperature y∗(0)≈ 1.1868 leading to the thermal explosion.

Now let us assess the accuracy of the critical value λap

f provided by theorem 1 on nonexistence

of solutions (see the previous section). In this case, f(x, y, y′x) = ey. So we have ey ≥ ey for y > 0;

hence, a = e. Substituting this value into (3.3.5.6) yields an approximate estimate for the boundary

of nonexistence of solutions with respect to λ:

λ > λap

f = 1
4π

2/e ≈ 0.9077.

One can see that, in this problem, the difference between λap

f , estimated using the nonexistence

theorem, and the exact value λ∗f is just over 3%.

◮ Plane problem II arising in combustion theory (Arrhenius law-based model).

Example 3.18. Let us look at a more realistic model of thermal explosion than that considered in

Example 3.17, in which the kinetic function describing heat release is now bounded and determined

by the Arrhenius law. In terms of suitable dimensionless variables, the corresponding nonlinear

boundary value problem is

y′′xx + λ exp
( y

1 + σy

)
= 0; y′x(0) = y(1) = 0, (3.3.6.3)

where λ ≥ 0 and σ > 0.

The general solution to the equation of (3.3.6.3) can be obtained by quadrature (e.g., using

formulas from Example 3.1); however, this solution cannot be expressed in terms of elementary

functions. In the limit case of σ = 0, problem (3.3.6.3) becomes (3.3.6.1).

It can be shown that, for σ > 0, problem (3.3.6.3) has at least one solution for any λ ≥ 0.

Furthermore, for sufficiently small σ, there is a domain of λ with three solutions (the curve y0 =
y0(λ), with y0 = y(0), has an S-shaped portion).

A numerical analysis of problem (3.3.6.3) shows that at σ = 0.2, there are two critical values,

λ∗1 ≈ 0.877 and λ∗2 ≈ 1.162, called hysteresis parameters, such that

(i) there is only one solution for 0 < λ1 and λ > λ2,

(ii) there are three solutions for λ1 < λ < λ2, and

(iii) there are two solutions for λ = λ1 and λ = λ2.

◮ An axisymmetric problem arising in combustion theory (Frank-Kamenetskii ap-

proximation).

Example 3.19. Now consider the one-dimensional problem on thermal explosion in a cylindri-

cal vessel described by the following equation and mixed boundary conditions:

y′′xx +
1

x
y′x + λey = 0; y′x(0) = y(1) = 0, (3.3.6.4)

where x is a dimensional radial coordinate.
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Problem (3.3.6.4) is solved explicitly in terms of elementary functions:

y = −2 ln
[
b+ (1− b)x2

]
,

λ = 8b(1− b), b = e−y0/2, y0 = y(0).
(3.3.6.5)

One can see that for 0<λ<λ∗m =2, there are two solutions corresponding to two distinct values

of y0 (the solution having a physical meaning must satisfy the condition 0 ≤ y0 < y∗m ≈ 1.3863).

When λ = λ∗m, the two solution merge to become one. For λ > λ∗m, there are no solutions. The

critical value λ = λ∗m = 2 corresponds to thermal explosion.

◮ A problem on bending of a flexible electrode in an electrostatic field.

Example 3.20. Consider the nonlinear boundary value problem on the interval 0 ≤ x ≤ 1 with

mixed boundary conditions

y′′xx +
λ

(1− y)2 = 0; y′x(0) = y(1) = 0. (3.3.6.6)

This problem describes the shape of a flexible electrode bending under the action of electrostatic

forces due to potential difference between electrodes, with y denoting dimensionless deflexion of the

electrode, x denoting dimensionless distance, and λ being a dimensionless parameter proportional

to the squared potential difference between electrodes.

The equation of (3.3.6.6) is a special case of the autonomous second-order equations considered

in Example 3.1, which admits order reduction and so is easy to integrate. The solution to problem

(3.3.6.6) can be written in implicit form as

x =
1

ϕ(a)

[√
(1 − a)(a− y) + (1− a) ln

√
1− y +√a− y√

1− a

]
,

λ =
1

2
(1− a)ϕ2(a), ϕ(a) =

√
a+ (1− a) ln 1 +

√
a√

1− a ,
(3.3.6.7)

where a = y(0), 0 ≤ a < 1, 0 ≤ y ≤ a, and λ > 0.

The function y = y(x) is convex; at x = 0, it has a maximum equal to a and monotonically

decreases with x to zero at x = 1. An analysis of formula (3.3.6.7) shows that for 0 < λ < λ∗m,

there are two solutions corresponding to two distinct values of a; the physically realizable (stable)

solution corresponds to 0 < a < y∗m ≈ 0.3883. When λ = λ∗m, the two solutions merge to become

one. For λ > λ∗m, there are no solutions.

◮ A model problem having three solutions.

Example 3.21. Let us look at the nonlinear boundary value problem

y′′xx + λ
sinh(ky)

cosh3(ky)
= 0; y′x(0) = y(1) = 0, (3.3.6.8)

where k > 0 and λ > 0. The function f(y) = sinh(ky)/ cosh3(ky) is nonmonotonic and it changes

sign; it vanishes ar y=0 and tends to zero as y→±∞. Its extrema are at the points ym =±0.6585/k
and are equal to fm = ± 2

3
√
3
≈ ±0.3849.

Problem (3.3.6.8) admits the trivial solution y = 0 for any λ.

If y is a solution to problem (3.3.6.8), then−y is also a solution to the problem.

The positive solution is determined implicitly by the formula

arcsin

[
sinh(ky)

sinh(ka)

]
=
π

2
(1− x), λ =

π2

4k
cosh2(ka), (3.3.6.9)
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where a = y(0) > 0 and y > 0 for 0 < x < 1. This solution can be represented in the explicit form

y =
1

k
arsinh

{
sinh(ka) sin

[
π

2
(1− x)

]}
, λ =

π2

4k
cosh2(ka), (3.3.6.10)

where arsinh z = ln
(
z +
√
z2 + 1

)
.

The negative solution to problem (3.3.6.8) is given by formula (3.3.6.10) where a must be

replaced with −a.

◆ See also Section 8.3.3.

3.3.7 Theorems on Existence of Two Solutions for the Third
Boundary Value Problem

◮ Statement of the problem. Initial assumptions.

Consider a boundary value problem for the nonlinear equation

y′′xx + f(x, y) = 0 (0 < x < 1) (3.3.7.1)

subject to the boundary conditions of the third kind

αy(0)− βy′x(0) = 0,

γy(1) + δy′x(1) = 0.
(3.3.7.2)

The following conditions will be assumed to hold throughout this section:

(i) The function f(x, y)≥ 0 is continuous in the domain Ω= {0≤ x≤ 1, 0≤ y <∞}
with f(x, y) 6≡ 0 on any subinterval of 0 ≤ x ≤ 1 for y > 0.

(ii) The coefficients α, β, γ, δ ≥ 0 and ρ = αγ + αδ + βγ > 0.

◮ Erbe–Hu–Wang theorems on nonuniqueness of a solution to the boundary value

problem.

THEOREM 1. Let conditions (i) and (ii) hold and the following assumptions be valid:

(iii) lim
y→0

min
0≤x≤1

f(x, y)

y
= lim

y→∞
min

0≤x≤1

f(x, y)

y
=∞.

(iv) There is a constant p > 0 such that

f(x, y) ≤ ηp for 0 ≤ x ≤ 1, 0 ≤ y ≤ p,

where η =
[∫ 1

0 G(ξ, ξ) dξ
]−1

= 6ρ
αγ+3αδ+3βγ+6βδ . (Here G(x, ξ) is the Green’s function

for the equation y′′xx = 0 with respect to the boundary conditions (3.3.7.2); the expression

of this Green’s function can be found at the end of Table 3.1.)

Then the boundary value problem (3.3.7.1)–(3.3.7.2) has at least two positive solutions,

y1 = y1(x) and y2 = y2(x), such that

0 < ‖y1‖ < p < ‖y2‖.

Here ‖y‖ = sup
0≤x≤1

|y(x)|.
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THEOREM 2. Let conditions (i) and (ii) hold and the following assumptions be valid:

(v) lim
y→0

max
0≤x≤1

f(x, y)

y
= lim

y→∞
max
0≤x≤1

f(x, y)

y
= 0.

(vi) There is a constant q > 0 such that

f(x, y) ≥ µq for 1
4 ≤ x ≤ 3

4 , σq ≤ y ≤ q,

where µ =
[∫ 3/4

1/4
G( 12 , ξ) dξ

]−1
= 32ρ

3αγ+7αδ+7βγ+16βδ and σ = min
[ α+4β
4(α+β) ,

γ+4δ
4(γ+δ)

]
.

Then the boundary value problem (3.3.7.1)–(3.3.7.2) has at least two positive solutions,

y1 = y1(x) and y2 = y2(x), such that

0 < ‖y1‖ < q < ‖y2‖.

3.3.8 Boundary Value Problems for Linear Equations with Nonlinear
Boundary Conditions

◮ Statements of problems. Solution procedure.

In this section, we consider a few boundary value problems for linear homogeneous second-

order differential equations

y′′xx + f1(x)y
′
x + f0(x)y = 0 (3.3.8.1)

subject to a nonlinear boundary condition

y′x = ϕ(y) at x = x1 (3.3.8.2)

and a linear homogeneous boundary condition at x = x2.

Such problems are solved successively in a few stages. First, one obtains the general

solution to equation (3.3.8.1). Then, one finds a particular solution y = ȳ(x), satisfying the

boundary condition at the right end, x = x2. Finally, one seeks the solution to the problem

in the form

y = Aȳ(x), (3.3.8.3)

where A is a constant determined from the algebraic (transcendental) equation

Aȳ′x(x1) = ϕ(Aȳ(x1)), (3.3.8.4)

obtained by substituting (3.3.8.3) into the nonlinear boundary condition at the left end

(3.3.8.2).

◮ Qualitative features of some problems with nonlinear boundary conditions.

Solutions to boundary value problems for linear equations satisfying nonlinear boundary

conditions can significantly differ from those satisfying linear boundary conditions.

Example 3.22. Consider a boundary value problem for a linear equation subject to a nonlinear

boundary condition at x = 0 and a homogeneous linear condition of the first kind at x = a:

y′′xx + k2y = 0; (3.3.8.5)

y′x = ϕ(y) at x = 0, y = 0 at x = a. (3.3.8.6)
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The general solution of the linear equation with constant coefficients (3.3.8.5) is given by

y = C1 sin(kx) + C2 cos(kx), (3.3.8.7)

whereC1 andC2 are arbitrary constants. In order to find a particular solution ȳ satisfying the second

boundary condition (3.3.8.6), we can set C1 = − cos(ak) and C2 = sin(ak) in (3.3.8.7) to obtain

ȳ = − cos(ak) sin(kx) + sin(ak) cos(kx) = sin[k(a− x)].
The solution to problem (3.3.8.5)–(3.3.8.6) is sought in the form

y = Aȳ = A sin[k(a− x)]. (3.3.8.8)

For any A, this solution satisfies equation (3.3.8.5) and the second boundary condition (3.3.8.6).

Substituting (3.3.8.8) into the first boundary condition (3.3.8.6) yields an algebraic (or transcenden-

tal) equation for A:

Ak cos(ak) + ϕ(A sin(ak)) = 0. (3.3.8.9)

Let us dwell on the first boundary condition (3.3.8.6) having a power-law nonlinearity

ϕ(y) = bym. (3.3.8.10)

Equation (3.3.8.9) then becomes

Ak cos(ak) + bAm sinm(ak) = 0. (3.3.8.11)

For any m > 0, this equation has the trivial solution A = 0 (or k = 0). Let us look at different

special cases.

1◦. To get a linear boundary condition of the third kind, one should set m = 1 in (3.3.8.10)–

(3.3.8.11). The corresponding eigenvalue problem gives solution (3.3.8.8) withA being an arbitrary

constant and a and k linked to each other by the discrete relations

ak =
π

2
− θ0 + πn, θ0 = arctan

b

k
, n = 0, 1, 2, . . . (3.3.8.12)

To boundary conditions of the first and second kind there correspond the limit cases b=∞ (θ0 =
π
2 )

and b = 0 (θ0 = 0).

2◦. In the case of a quadratic nonlinearity, with m = 2, equation (3.3.8.11) has a nontrivial

solution

A = − k cos(ak)
b sin2(ak)

for any a, b, and k (abk 6= 0)

3◦. In the case of a cubic nonlinearity, m = 3, equation (3.3.8.11) can have two nontrivial

solutions or no solutions at all depending on the sign of the expression bk tan(ak):

A1,2 = ±
[
− k cos(ak)
b sin3(ak)

]1/2
if bk tan(ak) < 0,

no nontrivial solutions if bk tan(ak) > 0.

4◦. In the case of a fractional nonlinearity with m = 1
2 , equation (3.3.8.11) can have one

nontrivial solution or no solution at all depending on the sign of the expression bk tan(ak):

A =
b2 sin(ak)

k2 cos2(ak)
if bk tan(ak) < 0,

no nontrivial solutions if bk tan(ak) > 00.

It is apparent from Items 1◦–4◦ that the solutions to boundary value problems with linear and

nonlinear boundary conditions can significantly differ from each other; specifically, in linear prob-

lems, for nontrivial solutions to exist, the parameters a and k must be connected with each other

by discrete relations of the form (3.3.8.11) with A being an arbitrary number, while in nonlinear

problems, a and k can change independently from each other, with A expressed via them (under

certain conditions, several nontrivial solutions can exist or a nontrivial solution can be absent at all).
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◮ A problem of convective mass transfer with a heterogeneous chemical reaction.

Consider the equation

y′′xx + axny′x = 0 (3.3.8.13)

subject to the boundary condition

y′x = −kΦ(y) at x = 0, y → 0 as x→∞. (3.3.8.14)

Problem (3.3.8.13)–(3.3.8.14), written in terms of dimensionless variables, describes

convective mass transfer about the critical point of a drop (for n= 1) or a solid particle (for

n = 2) with a heterogeneous chemical reaction on the surface. In (3.3.8.13) and (3.3.8.14),

y is concentration, Φ(y) is the kinetic function, satisfying the condition Φ(1) = 0, k is the

rate of chemical reaction, and a is a positive constant. For a reaction of order m, we have

Φ(y) = (1 − y)m. To the limit case k → ∞ there corresponds the diffusion mode of the

surface reaction with y(0) = 1.

The solution to equation (3.3.8.13) satisfying the second boundary condition (3.3.8.14)

is given by

y = A

∫ ∞

x
exp

(
− a

n+ 1
ξn+1

)
dξ, (3.3.8.15)

where A is a constant. Substituting (3.3.8.15) into the first boundary condition (3.3.8.14)

yields an algebraic (or transcendental) equation for A:

A = kΦ(Ac), (3.3.8.16)

where

c =

∫ ∞

0
exp
(
− a

n+ 1
ξn+1

)
dξ = a

− 1
n+1 (n+ 1)

− n
n+1 Γ

( 1

n+ 1

)

and Γ(z) is the gamma function. In particular, for a reaction with the fractional order

m = 1/2, we have Φ(y) = (1 − y)1/2; hence, the solution to equation (3.3.8.16) is A =

− 1
2 ck

2 +
√

1
4 c

2k4 + k2.

⊙ Literature for Section 3.3: K. Akô (1967, 1968), P. B. Bailey, L. F. Shampine, and P. E. Waltman (1968),

J. Bebernes and R. Gaines (1968), E. Kamke (1977), L. K. Jackson and P. K. Palamides (1984), D. A. Frank-

Kamenetskii (1987), V. F. Zaitsev and A. D. Polyanin (1993, 1994), L. H. Erbe, S. Hu, and H. Wang (1994),

L. H. Erbe and H. Wang (1994), S.-H. Wang (1994), W.-C. Lian, F.-H. Wong, and C.-C. Yen (1996), P. Korman

and Y. Li (1999, 2010), P. Korman, Y. Li, and T. Ouyang (2005), A. B. Vasil’eva and H. H. Nefedov (2006),

S. I. Faddeev and V. V. Kogan (2008), G. L. Karakostas (2012).

3.4 Method of Regular Series Expansions with Respect

to the Independent Variable. Padé Approximants

3.4.1 Method of Expansion in Powers of the Independent Variable

A solution of the Cauchy problem

y′′xx = f(x, y, y′x), (3.4.1.1)

y(x0) = y0, y′x(x0) = y1 (3.4.1.2)
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can be sought in the form of a Taylor series in powers of the difference (x−x0), specifically:

y(x)= y(x0)+y
′
x(x0)(x−x0)+

y′′xx(x0)
2!

(x−x0)2+
y′′′xxx(x0)

3!
(x−x0)3+· · · . (3.4.1.3)

The first two coefficients y(x0) and y′x(x0) in solution (3.4.1.3) are defined by the initial

conditions (3.4.1.2). The values of the subsequent derivatives of y at the point x = x0
are determined from equation (3.4.1.1) and its derivative equations (obtained by succes-

sive differentiation of the equation) taking into account the initial conditions (3.4.1.2). In

particular, setting x = x0 in (3.4.1.1) and substituting (3.4.1.2), we obtain the value of the

second derivative:

y′′xx(x0) = f(x0, y0, y1). (3.4.1.4)

Further, differentiating (3.4.1.1) yields

y′′′xxx = fx(x, y, y
′
x) + fy(x, y, y

′
x)y

′
x + fy′x(x, y, y

′
x)y

′′
xx. (3.4.1.5)

On substituting x = x0, the initial conditions (3.4.1.2), and the expression of y′′xx(x0)
of (3.4.1.4) into the right-hand side of equation (3.4.1.5), we calculate the value of the third

derivative:

y′′′xxx(x0) = fx(x0, y0, y1) + fy(x0, y0, y1)y1 + f(x0, y0, y1)fy′x(x0, y0, y1).

The subsequent derivatives of the unknown are determined likewise.

The thus obtained solution (3.4.1.3) can only be used in a small neighborhood of the

point x = x0.

Example 3.23. Consider the following Cauchy problem for a second-order nonlinear equation:

y′′xx = yy′x + y3; (3.4.1.6)

y(0) = y′x(0) = 1. (3.4.1.7)

Substituting the initial values of the unknown and its derivative (3.4.1.7) into equation (3.4.1.6)

yields the initial value of the second derivative:

y′′xx(0) = 2. (3.4.1.8)

Differentiating equation (3.4.1.6) gives

y′′′xxx = yy′′xx + (y′x)
2 + 3y2y′x. (3.4.1.9)

Substituting here the initial values from (3.4.1.7) and (3.4.1.8), we obtain the initial condition for

the third derivative:

y′′′xxx(0) = 6. (3.4.1.10)

Differentiating (3.4.1.9) followed by substituting (3.4.1.7), (3.4.1.8), and (3.4.1.10), we find that

y′′′′xxxx(0) = 24. (3.4.1.11)

On substituting the initial data (3.4.1.7), (3.4.1.8), (3.4.1.10), and (3.4.1.11) into (3.4.1.3), we arrive

at the Taylor series expansion of the solution about x = 0:

y = 1 + x+ x2 + x3 + x4 + · · · . (3.4.1.12)

This geometric series is convergent only for |x| < 1.
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3.4.2 Padé Approximants

Suppose the k+1 leading coefficients in the Taylor series expansion of a solution to a differ-

ential equation about the point x=0 are obtained by the method presented in Section 3.4.1,

so that

yk+1(x) = a0 + a1x+ · · · + akx
k. (3.4.2.1)

The partial sum (3.4.2.1) pretty well approximates the solution at small x but is poor for

intermediate and large values of x, since the series can be slowly convergent or even diver-

gent. This is also related to the fact that yk →∞ as x→ ∞, while the exact solution can

well be bounded.

In many cases, instead of the expansion (3.4.2.1), it is reasonable to consider a Padé ap-

proximant PN
M (x), which is the ratio of two polynomials of degree N and M , specifically,

PN
M (x) =

A0 +A1x+ · · · +ANx
N

1 +B1x+ · · ·+BMxM
, where N +M = k. (3.4.2.2)

The coefficients A1, . . . , AN and B1, . . . , BM are selected so that the k + 1 leading terms

in the Taylor series expansion of (3.4.2.2) coincide with the respective terms of the expan-

sion (3.4.2.1). In other words, the expansions (3.4.2.1) and (3.4.2.2) must be asymptotically

equivalent as x→ 0.

In practice, one usually takes N = M (the diagonal sequence). It often turns out that

formula (3.4.2.2) pretty well approximates the exact solution on the entire range of x (for

sufficiently large N ).

Example 3.24. Consider the Cauchy problem (3.4.1.6)–(3.4.1.7) again. The Taylor series ex-

pansion of the solution about x = 0 has the form (3.4.1.12). This geometric series is convergent

only for |x| < 1.

The diagonal sequence of Padé approximants corresponding to series (3.4.1.12) is

P 1
1 (x) =

1

1− x , P 2
2 (x) =

1

1− x , P 3
3 (x) =

1

1− x . (3.4.2.3)

It is not difficult to verify that the function y(x) =
1

1− x is the exact solution of the Cauchy

problem (3.4.1.6)–(3.4.1.7). Hence, in this case, the diagonal sequence of Padé approximants re-

covers the exact solution from only a few terms in the Taylor series.

Example 3.25. Consider the Cauchy problem for a second-order nonlinear equation:

y′′xx = 2yy′x; y(0) = 0, y′x(0) = 1. (3.4.2.4)

Following the method presented in Section 3.4.1, we obtain the Taylor series expansion of the

solution to problem (3.4.2.4) in the form

y(x) = x+ 1
3x

3 + 2
15x

5 + 17
315x

7 + · · · . (3.4.2.5)

The exact solution of problem (3.4.2.4) is given by y(x) = tanx. Hence it has singularities at

x = ± 1
2 (2n + 1)π. However, any finite segment of the Taylor series (3.4.2.5) does not have any

singularities.

With series (3.4.2.5), we construct the diagonal sequence of Padé approximants:

P 2
2 (x) =

3x

3− x2 , P 3
3 (x) =

x(x2 − 15)

3(2x2 − 5)
, P 4

4 (x) =
5x(21− 2x2)

x4 − 45x2 + 105
. (3.4.2.6)
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Figure 3.3: Comparison of the exact solution to problem (3.4.2.4) with the approximate

truncated series solution (3.4.2.5) and associated Padé approximants (3.4.2.6).

These Padé approximants have singularities (at the points where the denominators vanish):

x ≃ ±1.732 for P 2
2 (x),

x ≃ ±1.581 for P 3
3 (x),

x ≃ ±1.571 and x ≃ ±6.522 for P 4
4 (x).

It is apparent that the Padé approximants are attempting to recover the singularities of the exact

solution at x = ±π/2 and x = ±3π/2.

In Fig. 3.3, the solid line shows the exact solution of problem (3.4.2.4), the dashed line corre-

sponds to the four-term Taylor series solution (3.4.2.5), and the dot-and-dash line depicts the Padé

approximants (3.4.2.6). It is evident that the Padé approximant P 4
4 (x) gives an accurate numerical

approximation of the exact solution on the interval |x| ≤ 2; everywhere the error is less than 1%,

except for a very small neighborhood of the point x = ±π/2 (the error is 1% for x = ±1.535 and

0.84% for x = ±2).

⊙ Literature for Section 3.4: A. H. Nayfeh (1973, 1981), G. A. Baker (Jr.) and P. Graves–Morris (1981),

D. Zwillinger (1997), A. D. Polyanin and V. F. Zaitsev (2003), A. D. Polyanin and A. V. Manzhirov (2007).

3.5 Movable Singularities of Solutions of Ordinary

Differential Equations. Painlevé Equations

3.5.1 Preliminary Remarks. Singular Points of Solutions

◮ Fixed and movable singular points of solutions to ODEs.

Singular points of solutions to ordinary differential equations can be fixed or movable. The

coordinates of fixed singular points remain the same for different solutions of an equation.∗

∗Solutions of linear ordinary differential equations can only have fixed singular points, and their positions

are determined by the singularities of the equation coefficients.
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The coordinates of movable singular points vary depending on the particular solution se-

lected (i.e., they depend on the initial conditions).

Listed below are simple examples of first-order ordinary differential equations and their

solutions having movable singularities:

Equation Solution Solution’s singularity type

y′z = −y2 y = 1/(z − z0) movable pole

y′z = 1/y y = 2
√
z − z0 algebraic branch point

y′z = e−y y = ln(z − z0) logarithmic branch point

y′z = −y ln2 y y = exp[1/(z − z0)] essential singularity

Algebraic branch points, logarithmic branch points, and essential singularities are called

movable critical points.

◮ Classification of second-order ODEs. Painlevé equations.

The Painlevé equations arise from the classification of the following second-order differen-

tial equations over the complex plane:

y′′zz = R(z, y, y′z),

where R = R(z, y, w) is a function rational in y and w and analytic in z. It was shown

by P. Painlevé (1897–1902) and B. Gambier (1910) that all equations of this type whose

solutions do not have movable critical points (but are allowed to have fixed singular points

and movable poles) can be reduced to 50 classes of equations. Moreover, 44 classes out of

them are integrable by quadrature or admit reduction of order. The remaining 6 equations

are irreducible; these are known as the Painlevé equations, and their solutions are known

as the Painlevé transcendental functions or Painlevé transcendents.

Remark 3.12. The Painlevé equations are sometimes referred to as the Painlevé transcendents,

but in this section this term will be used only for their solutions.

The canonical forms of the Painlevé equations are given below in Sections 3.5.2 through

3.5.7. Solutions of the first, second, and fourth Painlevé equations have movable poles (no

fixed singular points). Solutions of the third and fifth Painlevé equations have two fixed

logarithmic branch points, z = 0 and z = ∞. Solutions of the sixth Painlevé transcendent

have three fixed logarithmic branch points, z = 0, z = 1, and z =∞.

It is significant that the Painlevé equations often arise in mathematical physics.

3.5.2 First Painlevé Equation

◮ Form of the first Painlevé equation. Solutions in the vicinity of a movable pole.

The first Painlevé equation has the form

y′′zz = 6y2 + z. (3.5.2.1)

The solutions of the first Painlevé equation are single-valued functions of z.
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The solutions of equation (3.5.2.1) can be presented, in the vicinity of a movable

pole zp, in terms of the series

y =
1

(z − zp)2
+

∞∑

n=2

an(z − zp)
n,

a2 = − 1
10 zp, a3 = − 1

6 , a4 = C, a5 = 0, a6 =
1

300 z
2
p ,

where zp and C are arbitrary constants; the coefficients aj (j ≥ 7) are uniquely defined in

terms of zp and C .

Remark 3.13. The first Painlevé equation (3.5.2.1) is invariant under scaling of variables, z =
λz̄, y = λ3ȳ, where λ5 = 1.

◮ Solutions in the form of a Taylor series.

In a neighborhood of a fixed point z = z0, the solution of the Cauchy problem for the first

Painlevé equation (3.5.2.1) can be represented by the Taylor series (see Section 3.4.1):

y = A+B(z − z0) + 1
2 (6A

2 + z0)(z − z0)2 + 1
6 (12AB + 1)(z − z0)3

+ 1
2 (6A

3 +B2 +Az0)(z − z0)4 + · · · ,

where A and B are initial data of the Cauchy problem, so that y|z=z0 =A and y′z|z=z0 =B.

Remark 3.14. The solutions of the Cauchy problems for the second and fourth Painlevé equa-

tions can be expressed likewise (fixed singular points should be excluded from consideration for the

remaining Painlevé equations).

◮ Asymptotic formulas and some properties.

1◦. There are solutions of equation (3.5.2.1) such that

y(x) = −
(
1
6 |x|

)1/2
+ a1|x|−1/8 sin

[
φ(x)− b1

]
+ o
(
|x|−1/8

)
as x→−∞, (3.5.2.2)

where

φ(x) = (24)1/4
(
4
5 |x|

5/4 − 5
8a

2
1 ln |x|

)
,

and a1 and b1 are some constants (there are also solutions such that a1 = 0).

2◦. For given initial conditions y(0) = 0 and y′x(0) = k, with k real, y(x) has at least one

pole on the real axis. There are two special values, k1 ≈−0.45143 and k2 ≈ 1.85185, such

that:

(a) If k < k1, then y(x) > 0 for xp < x < 0, where xp is the first pole on the negative

real axis.

(b) If k1 < k < k2 then y(x) oscillates about, and is asymptotic to, −
(
1
6 |x|

)1/2
as

x→ −∞ (see formula (3.5.2.2)).

(c) If k2 < k then y(x) changes sign once, from positive to negative, as x passes from

xp to 0.
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3◦. For large values of |z| → ∞, the following asymptotic formula holds:

y ∼ z1/2℘
(
4
5 z

5/4 − a2; 12, b2
)
,

where the elliptic Weierstrass function ℘(ζ; 12, b2) is defined implicitly by the integral

ζ =

∫
d℘√

4℘3 − 12℘− b2
,

and a2 and b2 are some constants.

3.5.3 Second Painlevé Equation

◮ Form of the 2nd Painlevé equation. Solutions in the vicinity of a movable pole.

The second Painlevé equation has the form

y′′zz = 2y3 + zy + α. (3.5.3.1)

The solutions of the second Painlevé equation are single-valued functions of z.

The solutions of equation (3.5.3.1) can be represented, in the vicinity of a movable

pole zp, in terms of the series

y =
m

z − zp

+

∞∑

n=1

bn(z − zp)
n,

b1 = − 1
6mzp, b2 = − 1

4 (m+ α), b3 = C, b4 =
1
72 zp(m+ 3α),

b5 =
1

3024

[
(27 + 81α2 − 2z3p )m+ 108α − 216Czp

]
,

where zp andC are arbitrary constants, m=±1, and the coefficients bn (n≥6) are uniquely

defined in terms of zp and C .

◮ Relations between solutions. Bäcklund transformations.

For fixed α, denote the solution by y(z, α). Then the following relation holds:

y(z,−α) = −y(z, α), (3.5.3.2)

while the solutions y(z, α) and y(z, α − 1) are related by the Bäcklund transformations:

y(z, α− 1) = −y(z, α) + 2α− 1

2y′z(z, α) − 2y2(z, α) − z ,

y(z, α) = −y(z, α− 1)− 2α − 1

2y′z(z, α− 1) + 2y2(z, α − 1) + z
.

(3.5.3.3)

Therefore, in order to study the general solution of equation (3.5.3.1) with arbitrary α, it is

sufficient to construct the solution for all α out of the band 0 ≤ Reα < 1
2 .

Three solutions corresponding to α and α± 1 are related by the rational formulas

yα+1 = −
(yα−1 + yα)(4y

3
α + 2zyα + 2α+ 1) + (2α− 1)yα

2(yα−1 + yα)(2y2α + z) + 2α − 1
,

where yα stands for y(z, α).
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The solutions y(z, α) and y(z,−α− 1) are related by the Bäcklund transformations:

y(z,−α − 1) = y(z, α) +
2α + 1

2y′z(z, α) + 2y2(z, α) + z
,

y(z, α) = y(z,−α− 1)− 2α+ 1

2y′z(z,−α − 1) + 2y2(z,−α − 1) + z
.

◮ Rational particular solutions.

For α = 0, equation (3.5.3.1) has the trivial solution y = 0. Taking into account this

fact and relations (3.5.3.2) and (3.5.3.3), we find that the second Painlevé equation with

α = ±1, ±2, . . . has the rational particular solutions

y(z,±1) = ∓ 1

z
, y(z,±2) = ±

( 1
z
− 3z2

z3 + 4

)
,

y(z,±3) = ±
[

3z2

z3 + 4
− 6z2(z3 + 10)

z6 + 20z3 − 80

]
,

y(z,±4) = ±
[
− 1

z
+

6z2(z3 + 10)

z6 + 20z3 − 80
− 9z5(z3 + 40)

z9 + 60z6 + 11200

]
, . . .

◮ Solutions in terms of Bessel functions.

For α = 1
2 , equation (3.5.3.1) admits the one-parameter family of solutions:

y(z, 12 ) = −
w′
z

w
, where w =

√
z
[
C1J1/3

(√
2
3 z

3/2
)
+C2Y1/3

(√
2
3 z

3/2
)]
. (3.5.3.4)

(Here the function w is a solution of the Airy equation, w′′
zz +

1
2 zw = 0.)

It follows from (3.5.3.2)–(3.5.3.4) that the second Painlevé equation for all α = n + 1
2

with n = 0, ±1, ±2, . . . has a one-parameter family of solutions that can be expressed in

terms of Bessel functions.

◮ Asymptotic formulas and some properties with α = 0.

1◦. Any nontrivial real solution of (3.5.3.1) with α=0 that satisfies the boundary condition

y → 0 as x→ +∞
is asymptotic to kAi(x), for some nonzero real k, where Ai denotes the Airy function (see

Section S.4.8).

Conversely, for any nonzero real k, there is a unique solution yk(x) of (3.5.3.1) with

α = 0 that is asymptotic to kAi(x) as x→ +∞. The asymptotic behavior of this solution

as x→ −∞ depends on |k|; three possible situations are highlighted below.

If |k| < 1, then

yk(x) = b|x|−1/4 sin
[
φ(x)− c

]
+ o
(
|x|−1/4

)
as x→ −∞,

where

φ(x) = 2
3 |x|

3/2 − 3
4 b

2 ln |x|, b = − 1
π ln(1− k2),

with c is a real constant.
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If |k| = 1, then

yk(x) ∼
(
1
2 |x|

)1/2
sign k as x→ −∞.

If |k| < 1, then yk(x) has a pole at a finite point x = xp, dependent on k, and

yk(x) ∼
sign k

x− xp

at x→ x+p .

2◦. Replacement of y by iy in (3.5.3.1) with α = 0 gives the modified second Painlevé

equation

y′′zz = −2y3 + zy. (3.5.3.5)

Any nontrivial real solution of (3.5.3.5) satisfies

y(x) = b|x|−1/4 sin
[
φ(x)− c

]
+O

(
|x|−5/4

)
as x→ −∞,

where

φ(x) = 2
3 |x|

3/2 + 3
4 b

2 ln |x|,
with b 6= 0 and c are real constants.

3.5.4 Third Painlevé Equation

◮ Form of the third Painlevé equation.

The third Painlevé equation has the form

y′′zz =
(y′z)

2

y
− y′z

z
+

1

z
(αy2 + β) + γy3 +

δ

y
. (3.5.4.1)

In terms of the new independent variable ζ defined by z = eζ , the solutions of the trans-

formed equation will be single-valued functions of ζ .

In some special cases, equation (3.5.4.1) can be integrated by quadrature.

If γδ 6=0 in (3.5.4.1), then set γ=1 and δ=−1, without loss of generality, by rescaling

y and z if necessary. If γ = 0 and αδ 6= 0 in (3.5.4.1), then set α = 1 and δ = −1, without

loss of generality. Lastly, if δ = 0 and βγ 6= 0, then set β = −1 and γ = 1, without loss of

generality.

◮ Rational particular solutions.

Let y = y(z, α, β, γ, δ) be a solution of equation (3.5.4.1). Then special rational solutions

of the third Painlevé equation are

y(z, µ,−µk2, λ,−λk4) = k,

y(z, 0,−µ, 0, µk) = kz,

y(z, 2k + 3,−2k + 1, 1,−1) = z + k

z + k + 1
,

where k, λ, and µ are arbitrary constants.
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In the general case γδ 6= 0, we may set γ = 1 and δ = −1. Then equation (3.5.4.1) has

rational solutions iff

α± β = 4n,

where n is integers. These solutions have the form y = Pm(z)/Qm(z), where Pm(z) and

Qm(z) are polynomials of degree m, with no common zeros. For examples see Milne et

al. (1997) and Clarkson (2003).

◮ Elementary nonrational particular solutions I.

Elementary nonrational solutions of equation (3.5.4.1) are

y(z, µ, 0, 0,−µk3) = kz1/2,

y(z, 0,−2k, 0, 4kµ − λ2) = z(k ln2 z + λz + µ),

y(z, ν2λ, 0, ν2(λ2 − 4kµ), 0) =
zν−1

kz2ν + λzν + µ
,

where k, λ, µ, and ν are arbitrary constants.

Let γ = 0 and αδ 6= 0. In this case we assume α = 1 and δ = −1 (without loss of

generality). Then equation (3.5.4.1) has algebraic solution iff

β = 2n, n ∈ Z.

These are rational solutions in ζ = z1/3 of the form

y = Pn2+1(ζ)/Qn2(ζ),

where Pn2+1(ζ) and Qn2(ζ) are polynomials of degree n2 + 1 and n2, respectively, with

no common zeros. Similar results hold when δ = 0 and βγ 6= 0.

◮ Elementary nonrational particular solutions II.

In some special cases, equation (3.5.4.1) can be integrated by quadrature. Rewrite equa-

tion (3.5.4.1) in the form of integro-differential relations in two ways:

( y′ζ
y

)2
+
( δ
y2
− γy2

)
e2ζ + 2

( β
y
− αy

)
eζ= 2

∫ [( δ
y2
− γy2

)
e2ζ +

(β
y
− αy

)
eζ
]
dζ;

(3.5.4.2)

y′ζ
y

=

∫ [( δ
y2

+ γy2
)
e2ζ +

(β
y
+ αy

)
eζ
]
dζ, z = eζ . (3.5.4.3)

It is obvious from (3.5.4.2) that for α = β = γ = δ = 0, the general solution has the

form: y = C1z
C2 .

Adding (3.5.4.3) multiplied by 2 to (3.5.4.2), we obtain

( y′ζ
y

)2
+ 2

y′ζ
y

+
( δ
y2
− γy2

)
e2ζ + 2

( β
y
− αy

)
eζ = 4

∫
δe2ζ + βeζy

y2
dζ. (3.5.4.4)

Subtracting (3.5.4.3) times 2 from (3.5.4.2) yields

( y′ζ
y

)2
−2

y′ζ
y

+
( δ
y2
−γy2

)
e2ζ +2

( β
y
−αy

)
eζ =−4

∫
(γe2ζy2+αeζy) dζ. (3.5.4.5)
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Substituting δ = β = 0 into equation (3.5.4.4) and γ = α = 0 into equation (3.5.4.5), we

arrive at

( y′ζ
y

)2
+ 2

y′ζ
y
− 2αyeζ − γy2e2ζ = C1, (3.5.4.6)

( y′ζ
y

)2
− 2

y′ζ
y

+
δ

y2
e2ζ +

2β

y
eζ = C2. (3.5.4.7)

Equations (3.5.4.6) and (3.5.4.7) are integrable by elementary functions. Substituting y =
e−ζ/v into (3.5.4.6), we obtain an autonomous equation:

(v′ζ)
2
= 2αv + γ + (1 + C1)v

2. (3.5.4.8)

As a result, we find:

y =





2α

z(α2 ln2 z + 2αC ln z + C2 − γ)
if C1 = −1, β = δ = 0;

1

z
(√
γ ln z + C

) if C1 = −1, α = β = δ = 0;

zm−1

C2z2m +K1zm +K2
if C1 6= −1, β = δ = 0,

where C2 6= 0, K1 = −
α

C1 + 1
, K2 =

α2 − γ(1 + C1)

4C2(1 + C1)2
, m2 = 1 + C1.

Accordingly, equation (3.5.4.7) is reduced to equation (3.5.4.8) with the substitution

y = veζ .

If β = −α and δ = −γ, the substitution y = e−iw brings equation (3.5.4.1) to the

following form: w′′
zz +

1

z
w′
z =

2α

z
sinw + 2γ sin 2w.

◮ A solution in terms of Bessel functions.

Any solution of the Riccati equation

y′z = ky2 +
α− k
kz

y + c, (3.5.4.9)

where k2= γ, c2=−δ, kβ+c(α−2k)=0, is a solution of equation (3.5.4.1). Substituting

z = λτ , y = − u
′
z

ku
, where λ2 =

1

kc
, into (3.5.4.9), we obtain a linear equation

u′′ττ +
k − α
kτ

u′τ + u = 0,

whose general solution is expressed in terms of Bessel functions:

u = τ
α
2k

[
C1J α

2k
(τ) + C2Y α

2k
(τ)
]
.

◮ Asymptotic formulas and some properties.

Let α = −β = 2ν (ν ∈ R) and γ = −δ = 1. Then

y(x)− 1 ∼ −c12−2νΓ
(
ν + 1

2

)
x−(2ν+1)/2e−2x as x→ +∞, (3.5.4.10)



“K16435’ — 2017/9/28 — 15:05 — #191

3.5. Movable Singularities of Solutions of Ordinary Differential Equations. Painlevé Equations 165

where c1 is an arbitrary constant such that −1/π < c1 < 1/π, and

y(x) ∼ c2xσ at x→ 0, (3.5.4.11)

where c2 and σ are constants such that c2 6= 0 and |Reσ| < 1. The connection formulas

relating (3.5.4.10) and (3.5.4.11) are

σ =
2

π
arcsin(πc1), c2 = 2−2σ Γ

2
(
1
2 − 1

2σ
)
Γ
(
1
2 + 1

2σ + ν
)

Γ2
(
1
2 + 1

2σ
)
Γ
(
1
2 − 1

2σ + ν
) .

3.5.5 Fourth Painlevé Equation

◮ Form of the fourth Painlevé equation. Solutions in the vicinity of a movable pole.

The fourth Painlevé equation has the form

y′′zz =
(y′z)

2

2y
+

3

2
y3 + 4zy2 + 2(z2 − α)y + β

y
. (3.5.5.1)

The solutions of the fourth Painlevé equation are single-valued functions of z.

The Laurent-series expansion of the solution of equation (3.5.5.1) in the vicinity of a

movable pole zp is given by

y =
m

z − zp

− zp −
m

3
(z2p + 2α− 4m)(z − zp) + C(z − zp)

2 +

∞∑

j=3

aj(z − zp)
j ,

where m = ±1; zp and C are arbitrary constants; and the aj (j ≥ 3) are uniquely defined

in terms of α, β, zp, and C .

Remark 3.15. Equation (3.5.5.1) is invariant under the transformation y=λȳ, z=λz̄, α= ᾱλ2,

β = β̄, where λ4 = 1.

◮ Rational particular solutions.

Let y = y(z, α, β) be a solution of equation (3.5.5.1). Then special rational solutions of the

fourth Painlevé equation are

y1(z,±2,−2) = ±1/z, y2(z, 0,−2) = −2z, y3(z, 0,− 2
9 ) = − 2

3 z.

There are also three more complex families of solutions of equation (3.5.5.1) of the

form

y1(z, α1, β1) = P1,n−1(z)/Q1,n(z),

y2(z, α2, β2) = −2z +
[
P2,n−1(z)/Q2,n(z)

]
,

y3(z, α3, β3) = − 2
3 z +

[
P3,n−1(z)/Q3,n(z)

]
,

where Pj,n−1(z) and Qj,n(z) are polynomials of degrees n − 1 and n, respectively, with

no common zeros.
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Some rational particular solutions:

y(z,−m,−2(m− 1)2) = −H
′
m−1(z)

Hm−1(z)
, m = 1, 2, 3, . . . ,

y(z,−m,−2(m+ 1)2) = −2z + H ′
m(z)

Hm(z)
, m = 0, 1, 2, . . . ,

where Hm(z) are the Hermite polynomials.

In general, equation (3.5.5.1) has rational solutions iff either

α = m, β = −2(1 + 2n−m)2,

or

α = m, β = −2( 13 + 2n−m)2,

with m,n ∈ Z.

◮ Relation between solutions of two equations. Bäcklund transformations.

Two solutions of equation (3.5.5.1) corresponding to different values of the parameters α
and β are related to each other by the Bäcklund transformations:

ỹ =
1

2sy
(y′z − q − 2szy − sy2), q2 = −2β,

y = − 1

2sỹ
(ỹ′z − p+ 2szỹ + sỹ2), p2 = −2β̃,

2β = −(α̃s− 1− 1
2 p)

2
, 4α = −2s− 2α̃− 3sp,

where y = y(z, α, β), ỹ = ỹ(z, α̃, β̃), and s is an arbitrary parameter.

◮ A solution in terms of solutions of the Riccati equation.

If the condition

β = −2(1 + ǫα)2 with ǫ = ±1
is satisfied, then every solution of the Riccati equation

y′z = ǫy2 + 2ǫzy − 2(1 + ǫα) (3.5.5.2)

is simultaneously a solution of the fourth Painlevé equation (3.5.5.1). The general solution

of equation (3.5.5.2) can be expressible in terms of parabolic cylinder functions.

For α = 1 and ǫ = −1, equation (3.5.5.2) has a solution

y =
2exp(−z2)√
π (C − erfc z)

,

where C is an arbitrary constant and erfc z is the complementary error function.

Remark 3.16. In general, equation (3.5.5.2) has solutions expressible in terms of parabolic

cylinder functions iff either

β = −2(2n+ 1 + ǫα)2 or β = −2n2,

with n ∈ Z and ǫ = ±1.
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◮ Symmetric forms.

Let

f ′1 + f1(f2 − f3) + 2µ1 = 0,

f ′2 + f2(f3 − f1) + 2µ2 = 0,

f ′3 + f3(f1 − f2) + 2µ2 = 0,

where µ1, µ2, µ3 are constants, f1, f2, f3 are functions of z (the prime denotes differentia-

tion with respect to z), with

µ1 + µ2 + µ3 = 1,

f1 + f2 + f3 = −2z.

Then the function y = f1(z) satisfies equation (3.5.5.1) with

α = µ3 − µ2, β = −2µ21.

3.5.6 Fifth Painlevé Equation

◮ Form of the fifth Painlevé equation. Relations between solutions.

The fifth Painlevé equation has the form

y′′zz =
3y − 1

2y(y − 1)
(y′z)

2 − y′z
z

+
(y − 1)2

z2

(
αy +

β

y

)
+ γ

y

z
+
δy(y + 1)

y − 1
. (3.5.6.1)

If we pass on to the new independent variable z = eζ , the solutions are single-valued

functions of ζ .

Solutions of the fifth Painlevé equation (3.5.6.1) corresponding to different values of

parameters are related by:

y(z, α, β, γ, δ) = y(−z, α, β,−γ, δ),

y(z, α, β, γ, δ) =
1

y(z,−β,−α,−γ, δ) .

◮ Rational particular solutions.

Let y = y(z, α, β, γ, δ) be a solution of equation (3.5.6.1). Then special rational solutions

of the fourth Painlevé equation are

y(z, 12 ,− 1
2µ

2, 2k − kµ,− 1
2k

2) = kz + µ,

y(z, 12 , k
2µ, 2kµ, µ) = k/(k + z),

y(z, 18 ,− 1
8 ,−kµ, µ) = (k + z)/(k − z),

where k and µ are arbitrary constants.

If δ 6= 0 in (3.5.6.1), then set δ = 1/2, without loss of generality. In this case the fifth

Painlevé equation has a rational solution iff one of the following holds with m,n ∈ Z and

ǫ± 1:
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(a) α = 1
2 (m + ǫγ)2 and β = − 1

2n
2, where n > 0, n +m is odd, and α 6= 0 when

|m| < n.

(b) α = 1
2n

2 and β = − 1
2 (m + ǫγ)2, where n > 0, n +m is odd, and β 6= 0 when

|m| < n.

(c) α = 1
2a

2, β = − 1
2 (a+ n)2, and γ =m, where n+m is even, and a is an arbitrary

constant.

(d) α = 1
2 (b+ n)2, β = − 1

2 b
2, and γ = m, where n+m is even, and b is an arbitrary

constant.

(e) α = 1
8 (2m + 1)2, β = − 1

8 (2n + 1)2, and γ 6∈= Z. These rational solutions have

the form

y = λz + µ+
Pn−1(z)

Qn(z)
,

where Pn−1(z) and Qn(z) are polynomials of degrees n − 1 and n, respectively, with no

common zeros.

◮ Elementary nonrational particular solutions.

Elementary nonrational solutions of the fifth Painlevé equation are

y(z, µ,− 1
8 ,−k

2µ, 0) = 1 + kz1/2,

y(z, 0, 0, µ,− 1
2µ

2) = k exp(µz),

where k and µ are arbitrary constants.

Equation (3.5.6.1), with δ = 0, has algebraic solutions if either

α = 1
2µ

2, β = − 1
8 (2n − 1)2, γ = −1,

or

α = 1
8 (2n − 1)2, β = − 1

2µ
2, γ = 1,

with n ∈ Z. These are rational solutions in ζ = z1/2 of the form

y = Pn2−n+1(ζ)/Qn2−n(ζ),

where Pn2−n+1(ζ) and Qn2−n(ζ) are polynomials of degrees n2 − n + 1 and n2 − n,

respectively, with no common zeros.

◮ Cases when the fifth Painlevé equation are solvable by quadrature.

1◦. Equation (3.5.6.1), with γ = δ = 0, has a first integral

z2(y′z)
2 = (y − 1)2(2αy2 + Cy − 2β),

which is solvable by quadrature (C is an arbitrary constant).

2◦. On setting z = et in (3.5.6.1), we obtain

y′′tt =
3y − 1

2y(y − 1)
(y′t)

2
+ (y − 1)2

(
αy +

β

y

)
+ γyet +

δy(y + 1)

y − 1
e2t. (3.5.6.2)

If γ = δ = 0, equation (3.5.6.2) is reduced, by integration, to a first-order autonomous

equation:

y′t = (y − 1)
√

2αy2 + Cy − 2β,

which is readily integrable by quadrature.
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◮ Solutions in terms of Whittaker functions.

If δ 6= 0 in (3.5.6.1), then set δ = 1/2, without loss of generality. Then the fifth Painlevé

equation has solutions expressible in terms of Whittaker functions, only in the following

three cases:

(a) a+ b+ ǫ3γ = 2n+ 1, (3.5.6.3)

(b) a = n, (3.5.6.4)

(c) b = n, (3.5.6.5)

where n ∈ Z, a = ǫ1
√
2α, and b = ǫ2

√−2β, with ǫj = ±1, j = 1, 2, 3, independently.

In the case when n = 0 in (3.5.6.3), any solution of the Riccati equation

zy′z = ay2 + (b− a+ ǫ3z)y − b (3.5.6.6)

is simultaneously a solution of the fifth Painlevé equation (3.5.6.1). If a 6= 0, then equa-

tion (3.5.6.6) has the solution

y = −zφ′z(z)/φ(z),
where

φ(z) = ζ−k exp
(
1
2 ζ
)[
C1Mk,µ(ζ) + C2Wk,µ(ζ)

]
,

with ζ = ǫ3z, k = 1
2 (a − b + 1), µ = 1

2 (a + b); C1 and C2 are arbitrary constants, and

Mk,µ(ζ) and Wk,µ(ζ) are Whittaker functions.

3.5.7 Sixth Painlevé Equation

◮ Form of the sixth Painlevé equation. Relations between solutions.

The sixth Painlevé equation has the form

y′′zz =
1

2

( 1
y
+

1

y − 1
+

1

y − z
)
(y′z)

2 −
( 1
z
+

1

z − 1
+

1

y − z
)
y′z

+
y(y − 1)(y − z)
z2(z − 1)2

[
α+ β

z

y2
+ γ

z − 1

(y − 1)2
+ δ

z(z − 1)

(y − z)2
]
. (3.5.7.1)

In equation (3.5.7.1), the points z = 0, z = 1, and z = ∞ are fixed logarithmic branch

points.

Solutions of the sixth Painlevé equation (3.5.7.1) corresponding to different values of

parameters are related by:

y(z, −β, −α, γ, δ) = 1

y
( 1
z
, α, β, γ, δ

) ,

y(z, −β, −γ, α, δ) = 1− 1

y
( 1

1− z , α, β, γ, δ
) ,

y
(
z, −β, −α, −δ + 1

2
, −γ +

1

2

)
=

z

y(z, α, β, γ, δ)
.

The successive application of these relations yields 24 equations of the form (3.5.7.1) with

different values of parameters related by known transformations.
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◮ Rational particular solutions.

Let y = y(z, α, β, γ, δ) be a solution of equation (3.5.7.1). Then special rational solutions

of the sixth Painlevé equation are

y(z, µ,−k2µ, 12 ,− 1
2 − µ(k − 1)2) = kz,

y(z, 0, 0, 2, 0) = kz2,

y(z, 0, 0, 12 ,− 3
2 ) = k/z,

y(z, 0, 0, 2,−4) = k/z2,

y(z, 12 (k + µ)2,− 1
2 ,

1
2 (µ− 1)2, 12k(2− k)) = z/(k + µz),

where k and µ are arbitrary constants.

In the general case, the sixth Painlevé equation has rational solutions if

a+ b+ c+ d = 2n+ 1, n ∈ Z,

a = ǫ1
√
2α, b = ǫ2

√
−2β, c = ǫ3

√
2γ, d = ǫ4

√
1− 2δ,

where ǫj = ±1, j = 1, 2, 3, 4, independently, and at least one of numbers a, b, c or d is an

integer.

◮ Solutions in terms of the elliptic function.

1◦. If α = β = γ = δ = 0, the general solution of equation (19) has the form:

y = E(C1ω1 + C2ω2, z),

where E(u, z) is the elliptic function, defined by the integral

u =

∫ E

0

dy√
y(y − 1)(y − z)

, (3.5.7.2)

with periods 2ω1 and 2ω2, which are functions of z.

2◦. If α = β = γ = 0, δ = 1
2 , the general solution of equation (3.5.7.1) has the form:

y = E(w + C1ω1 + C2ω2, z),

where w 6≡ 0 is any particular solution of the linear equation

z(z − 1)w′′
zz + (2z − 1)w′

z +
1
4w = 0

and E(u, z) is the elliptic function defined by formula (3.5.7.2).

◮ Solutions in terms of hypergeometric functions.

Equation (3.5.7.1) has solutions expressible in terms of hypergeometric functions iff

a+ b+ c+ d = 2n+ 1, n ∈ Z,

a = ǫ1
√
2α, b = ǫ2

√
−2β, c = ǫ3

√
2γ, d = ǫ4

√
1− 2δ,

(3.5.7.3)

with ǫj = ±1, j = 1, 2, 3, independently.
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If n = 1 in (3.5.7.3), then every solution of the Riccati equation

z(z − 1)y′z = ay2 + [(b+ c)z − a− c]y − bz, (3.5.7.4)

is simultaneously a solution of equation (3.5.7.1). If a 6= 0, then (3.5.7.4) has the solution

y =
ζ − 1

a

φ′ζ(ζ)

φ(ζ)
, ζ =

1

1− z ,

where

φ(ζ) = C1F (b,−a, b + c; ζ) + C2ζ
1−b−cF (1− a− b− c, 1 − c, 2− b− c; ζ),

C1 and C2 are arbitrary constants, and F (α, β, γ; ζ) is the hypergeometric function.

◆ For more details about Painlevé equations (including of some illustrative figures of

Painlevé transcendental functions), see the list of references given below.

⊙ Literature for Section 3.5: P. Painlevé (1900), B. Gambier (1910), V. V. Golubev (1950), A. S. Fokas and

M. J. Ablowitz (1982), A. R. Its and V. Yu. Novokshenov (1986), V. I. Gromak and N. A. Lukashevich (1990),

R. Conte (1999), A. R. Chowdhury (2000), V. F. Zaitsev and A. D. Polyanin (2001), V. I. Gromak (2002),

P. A. Clarkson (2003, 2006), A. D. Polyanin and V. F. Zaitsev (2003), A. D. Polyanin and A. V. Manzhirov

(2007), F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (2010).

3.6 Perturbation Methods of Mechanics and Physics

3.6.1 Preliminary Remarks. Summary Table of Basic Methods

Perturbation methods are widely used in nonlinear mechanics and theoretical physics for

solving problems that are described by differential equations with a small parameter ε.
The primary purpose of these methods is to obtain an approximate solution that would be

equally suitable at all (small, intermediate, and large) values of the independent variable as

ε→ 0.

Equations with a small parameter can be classified according to the following:

(i) the order of the equation remains the same at ε = 0;

(ii) the order of the equation reduces at ε = 0.

For the first type of equations, solutions of related problems∗ are sufficiently smooth (little

varying as ε decreases). The second type of equation is said to be degenerate at ε = 0,

or singularly perturbed. In related problems, thin boundary layers usually arise whose

thickness is significantly dependent on ε; such boundary layers are characterized by high

gradients of the unknown.

All perturbation methods have a limited domain of applicability; the possibility of using

one or another method depends on the type of equations or problems involved. The most

commonly used methods are summarized in Table 3.2 (the method of regular series expan-

sions is set out in Section 3.6.2). In subsequent paragraphs, additional remarks and specific

examples are given for some of the methods. In practice, one usually confines oneself to a

few leading terms of the asymptotic expansion.

In many problems of nonlinear mechanics and theoretical physics, the independent

variable is dimensionless time t. Therefore, in this subsection we use the conventional t
(0 ≤ t <∞) instead of x.

∗Further on, we assume that the initial and/or boundary conditions are independent of the parameter ε.
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TABLE 3.2

Perturbation methods of nonlinear mechanics and theoretical physics

(the third column gives n leading asymptotic terms with respect to the small parameter ε).

Method

name

Examples of problems

solved by the method

Form of the solution

sought
Additional

conditions and remarks

Method

of scaled

parameters

(0≤ t<∞)

One looks for periodic

solutions of the equation

y′′tt+ω
2
0y=εf(y, y

′
t);

see also Section 3.6.3

y(t)=
n−1∑
k=0

εkyk(z),

t=z
(
1+

n−1∑
k=1

εkωk

)

Unknowns: yk and ωk;

yk+1/yk=O(1);
secular terms are eliminated

through selection

of the constants ωk

Method

of strained

coordinates

(0≤ t<∞)

Cauchy problem:

y′t=f(t, y, ε); y(t0)=y0
(f is of a special form);

see also the problem in the

method of scaled parameters

y(t)=
n−1∑
k=0

εkyk(z),

t=z+
n−1∑
k=1

εkϕk(z)

Unknowns: yk and ϕk;

yk+1/yk=O(1),
ϕk+1/ϕk=O(1)

Averaging

method

(0≤ t<∞)

Cauchy problem:

y′′tt+ω
2
0y=εf(y, y

′
t),

y(0)=y0, y
′
t(0)=y1;

for more general problems

see Section 3.6.4

y=a(t) cosϕ(t),
the amplitude a and phase ϕ

are governed by the equations
da
dt

=− ε
ω0
fs(a),

dϕ
dt

=ω0− ε
aω0

fc(a)

Unknowns: a and ϕ;

fs=
1
2π

∫ 2π

0
sinϕF dϕ,

fc=
1
2π

∫ 2π

0
cosϕF dϕ,

F =f(a cosϕ,−aω0 sinϕ)

Krylov–

Bogolyubov–

Mitropolskii

method

(0≤ t<∞)

One looks for periodic

solutions of the equation

y′′tt+ω
2
0y=εf(y, y

′
t);

Cauchy problem for this

and other equations

y=a cosϕ+
n−1∑
k=1

εkyk(a,ϕ),

a and ϕ are determined

by the equations

da
dt

=
n∑

k=1

εkAk(a),

dϕ
dt

=ω0+
n∑

k=1

εkΦk(a)

Unknowns: yk, Ak, Φk;

yk are 2π-periodic

functions of ϕ;

the yk are assumed

not to contain cosϕ

Method

of two-scale

expansions

(0≤ t<∞)

Cauchy problem:

y′′tt+ω
2
0y=εf(y, y

′
t),

y(0)=y0, y
′
t(0)=y1;

for boundary value problems

see Section 3.6.5

y=
n−1∑
k=0

εkyk(ξ, η), where

ξ=εt, η= t
(
1+

n−1∑
k=2

εkωk

)
,

d
dt

=ε ∂
∂ξ

+
(
1+ε2ω2+· · · ) ∂

∂η

Unknowns: yk and ωk;

yk+1/yk=O(1);
secular terms are

eliminated through

selection of ωk

Multiple

scales

method

(0≤ t<∞)

One looks for periodic

solutions of the equation

y′′tt+ω
2
0y=εf(y, y

′
t);

Cauchy problem for this

and other equations

y=
n−1∑
k=0

εkyk, where

yk=yk(T0, T1, . . . , Tn), Tk=ε
kt

d
dt

= ∂
∂T0

+ε ∂
∂T1

+· · ·+εn ∂
∂Tn

Unknowns: yk;

yk+1/yk=O(1);
for n=1, this method

is equivalent to

the averaging method

Method of

matched

asymptotic

expansions

(0≤x≤b)

Boundary value problem:

εy′′xx+f(x, y)y
′
x=g(x, y),

y(0)=y0, y(b)=yb
(f assumed positive);

for other problems

see Section 3.6.6

Outer expansion:

y=
n−1∑
k=0

σk(ε)yk(x), O(ε)≤x≤b;
inner expansion (z=x/ε):

ỹ=
n−1∑
k=0

σ̃k(ε)ỹk(z), 0≤x≤O(ε)

Unknowns: yk, ỹk, σk, σ̃k;

yk+1/yk=O(1),
ỹk+1/ỹk=O(1);

the procedure of matching

expansions is used:

y(x→0)= ỹ(z→∞)

Method of

composite

expansions

(0≤x≤b)

Boundary value problem:

εy′′xx+f(x, y)y
′
x=g(x, y),

y(0)=y0, y(b)=yb
(f assumed positive);

boundary value problems

for other equations

y=Y (x, ε)+Ỹ (z, ε),

Y =
n−1∑
k=0

σk(ε)Yk(x),

Ỹ =
n−1∑
k=0

σ̃k(ε)Ỹk(z), z=
x

ε
;

here, Ỹk→0 as z→∞

Unknowns: Yk, Ỹk, σk, σ̃k;

Y (b, ε)=yb,

Y (0, ε)+Ỹ (0, ε)=y0;
two forms for the equation

(in terms of x and z)

are used to obtain solutions
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3.6.2 Method of Regular (Direct) Expansion in Powers of the Small
Parameter

We consider an equation of general form with a parameter ε:

y′′tt + f(t, y, y′t, ε) = 0. (3.6.2.1)

We assume that the function f can be represented as a series in powers of ε:

f(t, y, y′t, ε) =
∞∑

n=0

εnfn(t, y, y
′
t). (3.6.2.2)

Solutions of the Cauchy problem and various boundary value problems for equation

(3.6.2.1) with ε→ 0 are sought in the form of a power series expansion:

y =
∞∑

n=0

εnyn(t). (3.6.2.3)

One should substitute (3.6.2.3) into equation (3.6.2.1) taking into account (3.6.2.2). Then

the functions fn are expanded into a power series in the small parameter and the coefficients

of like powers of ε are collected and equated to zero to obtain a system of equations for yn:

y′′0+f0(t, y0, y
′
0) = 0, (3.6.2.4)

y′′1+F (t, y0, y
′
0)y

′
1 +G(t, y0, y

′
0)y1 + f1(t, y0, y

′
0) = 0, (3.6.2.5)

F =
∂f0
∂y′

, G =
∂f0
∂y

.

Here only the first two equations are written out. The prime denotes differentiation with

respect to t. To obtain the initial (or boundary) conditions for yn, the expansion (3.6.2.3) is

taken into account.

The success in the application of this method is primarily determined by the possibility

of constructing a solution of equation (3.6.2.4) for the leading term y0. It is significant to

note that the other terms yn with n≥ 1 are governed by linear equations with homogeneous

initial conditions.

Example 3.26. The Duffing equation

y′′tt + y + εy3 = 0 (3.6.2.6)

with initial conditions

y(0) = a, y′t(0) = 0

describes the motion of a cubic oscillator, i.e., oscillations of a point mass on a nonlinear spring.

Here, y is the deviation of the point mass from the equilibrium and t is dimensionless time.

For ε → 0, an approximate solution of the problem is sought in the form of the asymptotic

expansion (3.6.2.3). We substitute (3.6.2.3) into equation (3.6.2.6) and initial conditions and expand

in powers of ε. On equating the coefficients of like powers of the small parameter to zero, we obtain

the following problems for y0 and y1:

y′′0 + y0 = 0, y0 = a, y′0 = 0;

y′′1 + y1 = −y30 , y1 = 0, y′1 = 0.
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The solution of the problem for y0 is given by

y0 = a cos t.

Substituting this expression into the equation for y1 and taking into account the identity cos3 t =
1
4 cos 3t+ 3

4 cos t, we obtain

y′′1 + y1 = − 1
4 a

3(cos 3t+ 3 cos t), y1 = 0, y′1 = 0.

Integrating yields

y1 = − 3
8 a

3t sin t+ 1
32a

3(cos 3t− 3 cos t).

Thus the two-term solution of the original problem is given by

y = a cos t+ εa3
[
− 3

8 t sin t+
1
32 (cos 3t− 3 cos t)

]
+O(ε2).

Remark 3.17. The term t sin t causes y1/y0 → ∞ as t → ∞. For this reason, the solution

obtained is unsuitable at large times. It can only be used for εt≪ 1; this results from the condition

of applicability of the expansion, y0 ≫ εy1.

This circumstance is typical of the method of regular series expansions with respect to the small

parameter; in other words, the expansion becomes unsuitable at large values of the independent

variable. This method is also inapplicable if the expansion (3.6.2.3) begins with negative powers

of ε. Methods that allow avoiding the above difficulties are discussed below in Sections 3.6.3

through 3.6.5.

Remark 3.18. Growing terms as t → ∞, like t sin t, that narrow down the domain of applica-

bility of asymptotic expansions are called secular.

3.6.3 Method of Scaled Parameters (Lindstedt–Poincaré Method)

We illustrate the characteristic features of the method of scaled parameters with a specific

example (the transformation of the independent variable we use here as well as the form of

the expansion are specified in the first row of Table 3.2).

Example 3.27. Consider the Duffing equation (3.6.2.6) again. On performing the change of

variable

t = z(1 + εω1 + · · · ),
we have

y′′zz + (1 + εω1 + · · · )2(y + εy3) = 0. (3.6.3.1)

The solution is sought in the series form

y = y0(z) + εy1(z) + · · · .
Substituting it into equation (3.6.3.1) and matching the coefficients of like powers of ε, we arrive at

the following system of equations for two leading terms of the series:

y′′0 + y0 = 0, (3.6.3.2)

y′′1 + y1 = −y30 − 2ω1y0, (3.6.3.3)

where the prime denotes differentiation with respect to z.

The general solution of equation (3.6.3.2) is given by

y0 = a cos(z + b), (3.6.3.4)

where a and b are constants of integration. Taking into account (3.6.3.4) and rearranging terms, we

reduce equation (3.6.3.3) to

y′′1 + y1 = − 1
4 a

3 cos
[
3(z + b)

]
− 2a

(
3
8a

2 + ω1

)
cos(z + b). (3.6.3.5)
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For ω1 6= − 3
8 a

2, the particular solution of equation (3.6.3.5) contains a secular term proportional to

z cos(z+ b). In this case, the condition of applicability of the expansion y1/y0 = O(1) (see the first

row and the last column of Table 3.2) cannot be satisfied at sufficiently large z. For this condition

to be met, one should set

ω1 = − 3
8a

2. (3.6.3.6)

In this case, the solution of equation (3.6.3.5) is given by

y1 = 1
32a

3 cos
[
3(z + b)

]
. (3.6.3.7)

Subsequent terms of the expansion can be found likewise.

With (3.6.3.4), (3.6.3.6), and (3.6.3.7), we obtain a solution of the Duffing equation in the form

y = a cos(ωt+ b) + 1
32 εa

3 cos
[
3(ωt+ b)

]
+O(ε2),

ω =
[
1− 3

8 εa
2 +O(ε2)

]−1
= 1 + 3

8 εa
2 +O(ε2).

3.6.4 Averaging Method (Van der Pol–Krylov–Bogolyubov Scheme)

◮ Averaging method for equations of a special form.

1◦. The averaging method involved two stages. First, the second-order nonlinear equation

y′′tt + ω2
0y = εf(y, y′t) (3.6.4.1)

is reduced with the transformation

y = a cosϕ, y′t = −ω0a sinϕ, where a = a(t), ϕ = ϕ(t),

to an equivalent system of two first-order differential equations:

a′t = −
ε

ω0
f(a cosϕ,−ω0a sinϕ) sinϕ,

ϕ′
t = ω0 −

ε

ω0a
f(a cosϕ,−ω0a sinϕ) cosϕ.

(3.6.4.2)

The right-hand sides of equations (3.6.4.2) are periodic in ϕ, with the amplitude a being

a slow function of time t. The amplitude and the oscillation character are changing little

during the time the phase ϕ changes by 2π.

At the second stage, the right-hand sides of equations (3.6.4.2) are being averaged with

respect to ϕ. This procedure results in an approximate system of equations:

a′t = −
ε

ω0
fs(a),

ϕ′
t = ω0 −

ε

ω0a
fc(a),

(3.6.4.3)

where

fs(a) =
1

2π

∫ 2π

0
sinϕf(a cosϕ,−ω0a sinϕ) dϕ,

fc(a) =
1

2π

∫ 2π

0
cosϕf(a cosϕ,−ω0a sinϕ) dϕ.

System (3.6.4.3) is substantially simpler than the original system (3.6.4.2)—the first equa-

tion in (3.6.4.3), for the oscillation amplitude a, is a separable equation and, hence, can

readily be integrated; then the second equation in (3.6.4.3), which is linear in ϕ, can also

be integrated.

Note that the Krylov–Bogolyubov–Mitropolskii method (the fourth row in Table 3.2)

generalizes the above approach and allows obtaining subsequent asymptotic terms as ε→0.
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◮ General scheme of the averaging method.

Below we outline the general scheme of the averaging method. We consider the second-

order nonlinear equation with a small parameter:

y′′tt + g(t, y, y′t) = εf(t, y, y′t). (3.6.4.4)

Equation (3.6.4.4) should first be transformed to the equivalent system of equations

y′t = u,

u′t = −g(t, y, u) + εf(t, y, u).
(3.6.4.5)

Suppose the general solution of the “truncated” system (3.6.4.5), with ε = 0, is known:

y0 = ϕ(t, C1, C2), u0 = ψ(t, C1, C2), (3.6.4.6)

where C1 and C2 are constants of integration. Taking advantage of the method of variation

of constants, we pass from the variables y, u in (3.6.4.5) to Lagrange’s variables x1, x2
according to the formulas

y = ϕ(t, x1, x2), u = ψ(t, x1, x2), (3.6.4.7)

where ϕ and ψ are the same functions that define the general solution of the “truncated”

system (3.6.4.6). Transformation (3.6.4.7) enables the reduction of system (3.6.4.5) to the

standard form

x′1 = εF1(t, x1, x2),

x′2 = εF2(t, x1, x2).
(3.6.4.8)

Here the prime denotes differentiation with respect to t and

F1 =
ϕ2f(t, ϕ, ψ)

ϕ2ψ1 − ϕ1ψ2
, F2 = −

ϕ1f(t, ϕ, ψ)

ϕ2ψ1 − ϕ1ψ2
; ϕk =

∂ϕ

∂xk
, ψk =

∂ψ

∂xk
,

ϕ = ϕ(t, x1, x2), ψ = ψ(t, x1, x2).

It is noteworthy that system (3.6.4.8) is equivalent to the original equation (3.6.4.4).

The unknowns x1 and x2 are slow functions of time.

As a result of averaging, system (3.6.4.8) is replaced by a simpler, approximate au-

tonomous system of equations:

x′1 = εF1(x1, x2),

x′2 = εF2(x1, x2),
(3.6.4.9)

where

Fk(x1, x2) =
1

T

∫ T

0
Fk(t, x1, x2) dt if Fk is a T -periodic function of t;

Fk(x1, x2) = lim
T→∞

1

T

∫ T

0
Fk(t, x1, x2) dt if Fk is not periodic in t.

Remark 3.19. The averaging method is applicable to equations (3.6.4.1) and (3.6.4.4) with non-

smooth right-hand sides.

Remark 3.20. The averaging method has rigorous mathematical substantiation. There is also a

procedure that allows finding subsequent asymptotic terms. For this procedure, e.g., see the books

by Bogolyubov and Mitropolskii (1974), Zhuravlev and Klimov (1988), and Arnold, Kozlov, and

Neishtadt (1993).
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3.6.5 Method of Two-Scale Expansions (Cole–Kevorkian Scheme)

◮ Method of two-scale expansions for a specific example (Van der Pol equation).

We illustrate the characteristic features of the method of two-scale expansions with a spe-

cific example. Thereafter we outline possible generalizations and modifications of the

method.

Example 3.28. Consider the Van der Pol equation

y′′tt + y = ε(1− y2)y′t. (3.6.5.1)

The solution is sought in the form (see the fifth row in Table 3.2):

y = y0(ξ, η) + εy1(ξ, η) + ε2y2(ξ, η) + · · · ,
ξ = εt, η =

(
1 + ε2ω2 + · · ·

)
t.

(3.6.5.2)

On substituting (3.6.5.2) into (3.6.5.1) and on matching the coefficients of like powers of ε, we

obtain the following system for two leading terms:

∂2y0
∂η2

+ y0 = 0, (3.6.5.3)

∂2y1
∂η2

+ y1 = −2 ∂
2y0

∂ξ∂η
+ (1− y20)

∂y0
∂η

. (3.6.5.4)

The general solution of equation (3.6.5.3) is given by

y0 = A(ξ) cos η +B(ξ) sin η. (3.6.5.5)

The dependence of A and B on the slow variable ξ is not being established at this stage.

We substitute (3.6.5.5) into the right-hand side of equation (3.6.5.4) and perform elementary

manipulations to obtain

∂2y1
∂η2

+ y1 =
[
−2B′

ξ +
1
4B(4−A2 −B2)

]
cos η +

[
2A′

ξ − 1
4A(4−A

2 −B2)
]
sin η

+ 1
4 (B

3 − 3A2B) cos 3η + 1
4 (A

3 − 3AB2) sin 3η. (3.6.5.6)

The solution of this equation must not contain unbounded terms as η→∞; otherwise the necessary

condition y1/y0 = O(1) is not satisfied. Therefore the coefficients of cos η and sin η must be set

equal to zero:

−2B′
ξ +

1
4B(4 −A2 −B2) = 0,

2A′
ξ − 1

4A(4 −A
2 −B2) = 0.

(3.6.5.7)

Equations (3.6.5.7) serve to determine A = A(ξ) and B = B(ξ). We multiply the first equation

in (3.6.5.7) by −B and the second by A and add them together to obtain

r′ξ − 1
8 r(4 − r

2) = 0, where r2 = A2 +B2. (3.6.5.8)

The integration by separation of variables yields

r2 =
4r20

r20 + (4− r20)e−ξ
, (3.6.5.9)

where r0 is the initial oscillation amplitude.

On expressing A and B in terms of the amplitude r and phase ϕ, we have A = r cosϕ and

B = −r sinϕ. Substituting these expressions into either of the two equations in (3.6.5.7) and

using (3.6.5.8), we find that ϕ′
ξ = 0 or ϕ = ϕ0 = const. Therefore the leading asymptotic term can

be represented as

y0 = r(ξ) cos(η + ϕ0),

where ξ = εt and η = t, and the function r(ξ) is determined by (3.6.5.9).
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◮ General scheme of the method of two-scale expansions.

The method of two-scale expansions can also be used for solving boundary value problems

where the small parameter appears together with the highest derivative as a factor (such

problems for 0 ≤ x ≤ a are indicated in the seventh row of Table 3.2 and in Section 3.6.6).

In the case where a boundary layer arises near the point x = 0 (and its thickness has an

order of magnitude of ε), the solution is sought in the form

y = y0(ξ, η) + εy1(ξ, η) + ε2y2(ξ, η) + · · · ,
ξ = x, η = ε−1

[
g0(x) + εg1(x) + ε2g2(x) + · · ·

]
,

where the functions yk = yk(ξ, η) and gk = gk(x) are to be determined. The derivative

with respect to x is calculated in accordance with the rule

d

dx
=

∂

∂ξ
+ η′x

∂

∂η
=

∂

∂ξ
+

1

ε

(
g′0 + εg′1 + ε2g′2 + · · ·

) ∂
∂η
.

Additional conditions are imposed on the asymptotic terms in the domain under consider-

ation; namely, yk+1/yk = O(1) and gk+1/gk = O(1) for k = 0, 1, . . ., and g0(x)→ x as

x→ 0.

Remark 3.21. The two-scale method is also used to solve problems that arise in mechanics and

physics and are described by partial differential equations.

3.6.6 Method of Matched Asymptotic Expansions

◮ Method of matched asymptotic expansions for a specific example.

We illustrate the characteristic features of the method of matched asymptotic expansions

with a specific example (the form of the expansions is specified in the seventh row of

Table 3.2). Thereafter we outline possible generalizations and modifications of the method.

Example 3.29. Consider the linear boundary value problem

εy′′xx + y′x + f(x)y = 0, (3.6.6.1)

y(0) = a, y(1) = b, (3.6.6.2)

where 0 < f(0) <∞.

At ε = 0 equation (3.6.6.1) degenerates; the solution of the resulting first-order equation

y′x + f(x)y = 0 (3.6.6.3)

cannot meet the two boundary conditions (3.6.6.2) simultaneously. It can be shown that the condi-

tion at x = 0 has to be omitted in this case (a boundary layer arises near this point).

The leading asymptotic term of the outer expansion, y=y0(x)+O(ε), is determined by equation

(3.6.6.3). The solution of (3.6.6.3) that satisfies the second boundary condition in (3.6.6.2) is given

by

y0(x) = b exp

[∫ 1

x

f(ξ) dξ

]
. (3.6.6.4)

We seek the leading term of the inner expansion, in the boundary layer adjacent to the left

boundary, in the following form (see the seventh row and third column in Table 3.2):

ỹ = ỹ0(z) +O(ε), z = x/ε, (3.6.6.5)
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where z is the extended variable. Substituting (3.6.6.5) into (3.6.6.1) and extracting the coefficient

of ε−1, we obtain

ỹ′′0 + ỹ′0 = 0, (3.6.6.6)

where the prime denotes differentiation with respect to z. The solution of equation (3.6.6.6) that

satisfies the first boundary condition in (3.6.6.2) is given by

ỹ0 = a− C + Ce−z. (3.6.6.7)

The constant of integrationC is determined from the condition of matching the leading terms of the

outer and inner expansions:

y0(x→ 0) = ỹ0(z →∞). (3.6.6.8)

Substituting (3.6.6.4) and (3.6.6.7) into condition (3.6.6.8) yields

C = a− be〈f〉, where 〈f〉 =
∫ 1

0

f(x) dx. (3.6.6.9)

Taking into account relations (3.6.6.4), (3.6.6.5), (3.6.6.7), and (3.6.6.9), we represent the ap-

proximate solution in the form

y =




be〈f〉 +

(
a− be〈f〉

)
e−x/ε for 0 ≤ x ≤ O(ε),

b exp
[∫ 1

x

f(ξ) dξ
]

for O(ε) ≤ x ≤ 1.
(3.6.6.10)

It is apparent that inside the thin boundary layer, whose thickness is proportional to ε, the solution

rapidly changes by a finite value, ∆ = be〈f〉 − a.

To determine the function y on the entire interval x ∈ [0, 1] using formula (3.6.6.10), one has

to “switch” at some intermediate point x = x0 from one part of the solution to the other. Such

switching is not convenient and, in practice, one often resorts to a composite solution instead of

using the double formula (3.6.6.10). In similar cases, a composite solution is defined as

y = y0(x) + ỹ0(z)−A, A = lim
x→0

y0(x) = lim
z→∞

ỹ0(z).

In the problem under consideration, we have A = be〈f〉 and hence the composite solution be-

comes

y =
(
a− be〈f〉

)
e−x/ε + b exp

[∫ 1

x

f(ξ) dξ
]
.

For ε≪ x ≤ 1, this solution transforms to the outer solution y0(x) and for 0 ≤ x≪ ε, to the inner

solution, thus providing an approximate representation of the unknown over the entire domain.

◮ General scheme of the method of matched asymptotic expansions. Some remarks.

We now consider an equation of the general form

εy′′xx = F (x, y, y′x) (3.6.6.11)

subject to boundary conditions (3.6.6.2).

For the leading term of the outer expansion y = y0(x) + · · · , we have the equation

F (x, y0, y
′
0) = 0.

In the general case, when using the method of matched asymptotic expansions, the

position of the boundary layer and the form of the inner (extended) variable have to be

determined in the course of the solution of the problem.
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First we assume that the boundary layer is located near the left boundary. In (3.6.6.11),

we make a change of variable z = x/δ(ε) and rewrite the equation as

y′′zz =
δ2

ε
F
(
δz, y,

1

δ
y′z
)
. (3.6.6.12)

The function δ = δ(ε) is selected so that the right-hand side of equation (3.6.6.12) has a

nonzero limit value as ε→ 0, provided that z, y, and y′z are of the order of 1.

Example 3.30. For F (x, y, y′x) = −kxλy′x + y, where 0 ≤ λ < 1, the substitution z = x/δ(ε)
brings equation (3.6.6.11) to

y′′zz = − δ
1+λ

ε
kzλy′z +

δ2

ε
y.

In order that the right-hand side of this equation has a nonzero limit value as ε→ 0, one has to set

δ1+λ/ε = 1 or δ1+λ/ε = const, where const is any positive number. It follows that δ = ε
1

1+λ .

The leading asymptotic term of the inner expansion in the boundary layer, y = ỹ0(z) + · · · , is

determined by the equation ỹ′′0 + kzλỹ′0 = 0, where the prime denotes differentiation with respect

to z.

If the position of the boundary layer is selected incorrectly, the outer and inner expan-

sions cannot be matched. In this situation, one should consider the case where an arbitrary

boundary layer is located on the right (this case is reduced to the previous one with the

change of variable x = 1− z). In Example 3.30 above, the boundary layer is on the left if

k > 0 and on the right if k < 0.

There is a procedure for matching subsequent asymptotic terms of the expansion (see

the seventh row and last column in Table 3.2). In its general form, this procedure can be

represented as

inner expansion of the outer expansion (y-expansion for x→ 0)

= outer expansion of the inner expansion (ỹ-expansion for z →∞).

Remark 3.22. The method of matched asymptotic expansions can also be applied to construct

periodic solutions of singularly perturbed equations (e.g., in the problem of relaxation oscillations

of the Van der Pol oscillator).

Remark 3.23. Two boundary layers can arise in some problems (e.g., in cases where the right-

hand side of equation (3.6.6.11) does not explicitly depend on y′x).

Remark 3.24. The method of matched asymptotic expansions is also used for solving equations

(in semi-infinite domains) that do not degenerate at ε = 0. In such cases, there are no boundary

layers; the original variable is used in the inner domain, and an extended coordinate is introduced

in the outer domain.

Remark 3.25. The method of matched asymptotic expansions is successfully applied for the

solution of various problems in mathematical physics that are described by partial differential equa-

tions; in particular, it plays an important role in the theory of heat and mass transfer and in hydro-

dynamics.

⊙ Literature for Section 3.6: M. Van Dyke (1964), G. D. Cole (1968), G. E. O. Giacaglia (1972), A. H. Nayfeh

(1973, 1981), N. N. Bogolyubov and Yu. A. Mitropolskii (1974), J. Kevorkian and J. D. Cole (1981, 1996),

P. A. Lagerstrom (1988), V. Ph. Zhuravlev and D. M. Klimov (1988), J. A. Murdock (1991), V. I. Arnold,

V. V. Kozlov, and A. I. Neishtadt (1993), V. F. Zaitsev and A. D. Polyanin (2001), A. D. Polyanin and V. F. Za-

itsev (2003), A. D. Polyanin and A. V. Manzhirov (2007).
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3.7 Galerkin Method and Its Modifications

(Projection Methods)

3.7.1 Approximate Solution for a Boundary Value Problem

◮ Approximate solution is linear with respect to unknown coefficients.

Consider a boundary value problem for the equation

F[y]− f(x) = 0 (3.7.1.1)

with linear homogeneous boundary conditions∗ at the points x= x1 and x= x2 (x1 ≤ x≤
x2). Here, F is a linear or nonlinear differential operator of the second order (or a higher

order operator); y = y(x) is the unknown function and f = f(x) is a given function. It is

assumed that F[0] = 0.

Let us choose a sequence of linearly independent functions (called basis functions)

ϕ = ϕn(x) (n = 1, 2, . . . , N) (3.7.1.2)

satisfying the same boundary conditions as y = y(x). According to all methods that will

be considered below, an approximate solution of equation (3.7.1.1) is sought as a linear

combination

yN =
N∑

n=1

Anϕn(x), (3.7.1.3)

with the unknown coefficients An to be found in the process of solving the problem.

The finite sum (3.7.1.3) is called an approximation function. The remainder term

RN obtained after the finite sum has been substituted into the left-hand side of equation

(3.7.1.1),

RN = F[yN ]− f(x). (3.7.1.4)

If the remainder RN is identically equal to zero, then the function yN is the exact

solution of equation (3.7.1.1). In general, RN 6≡ 0.

◮ General form of an approximate solution.

Instead of the approximation function (3.7.1.3), which is linear in the unknown coeffi-

cients An, one can look for a more general form of the approximate solution:

yN = Φ(x,A1, . . . , AN ), (3.7.1.5)

where Φ(x,A1, . . . , AN ) is a given function (based on experimental data or theoretical

considerations suggested by specific features of the problem) satisfying the boundary con-

ditions for any values of the coefficients A1, . . . , AN .

∗For second-order ODEs, nonhomogeneous boundary conditions can be reduced to homogeneous ones by

the change of variable z =A2x
2+A1x+A0+y (the constantsA2,A1, and A0 are selected using the method

of undetermined coefficients).
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3.7.2 Galerkin Method. General Scheme

In order to find the coefficients An in (3.7.1.3), consider another sequence of linearly inde-

pendent functions

ψ = ψk(x) (k = 1, 2, . . . , N). (3.7.2.1)

Let us multiply both sides of (3.7.1.4) by ψk and integrate the resulting relation over the

region V = {x1 ≤ x ≤ x2}, in which we seek the solution of equation (3.7.1.1). Next,

we equate the corresponding integrals to zero (for the exact solutions, these integrals are

equal to zero). Thus, we obtain the following system of linear algebraic equations for the

unknown coefficients An:

∫ x2

x1

ψkRN dx = 0 (k = 1, 2, . . . , N). (3.7.2.2)

Relations (3.7.2.2) mean that the approximation function (3.7.1.3) satisfies equation

(3.7.1.1) “on the average” (i.e., in the integral sense) with weights ψk. Introducing the

scalar product 〈g, h〉 =
∫ x2

x1

gh dx of arbitrary functions g and h, we can consider equa-

tions (3.7.2.2) as the condition of orthogonality of the remainder RN to all weight func-

tions ψk.

The Galerkin method can be applied not only to boundary value problems, but also to

eigenvalue problems (in the latter case, one takes f = λy and seeks eigenfunctions yn,

together with eigenvalues λn).

Mathematical justification of the Galerkin method for specific boundary value problems

can be found in the literature listed at the end of Section 3.7. Below we describe some other

methods that are in fact special cases of the Galerkin method.

Remark 3.26. Most often, one takes suitable sequences of polynomials or trigonometric func-

tions as ϕn(x) in the approximation function (3.7.1.3).

3.7.3 Bubnov–Galerkin, Moment, and Least Squares Methods

◮ Bubnov–Galerkin method.

The sequences of functions (3.7.1.2) and (3.7.2.1) in the Galerkin method can be chosen

arbitrarily. In the case of equal functions,

ϕk(x) = ψk(x) (k = 1, 2, . . . , N), (3.7.3.1)

the method is often called the Bubnov–Galerkin method.

◮ Moment method.

2◦. The moment method is the Galerkin method with the weight functions (3.7.2.1) being

powers of x,

ψk = xk. (3.7.3.2)
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◮ Least squares method.

Sometimes, the functions ψk are expressed in terms of ϕk by the relations

ψk = F[ϕk] (k = 1, 2, . . . ),

where F is the differential operator of equation (3.7.1.1). This version of the Galerkin

method is called the least squares method.

3.7.4 Collocation Method

In the collocation method, one chooses a sequence of points xk, k=1, . . . , N , and imposes

the condition that the remainder (3.7.1.4) be zero at these points,

RN = 0 at x = xk (k = 1, . . . , N). (3.7.4.1)

When solving a specific problem, the points xk, at which the remainder RN is set equal

to zero, are regarded as most significant. The number of collocation points N is taken equal

to the number of the terms of the series (3.7.1.3). This enables one to obtain a complete

system of algebraic equations for the unknown coefficients An (for linear boundary value

problems, this algebraic system is linear).

Note that the collocation method is a special case of the Galerkin method with the

sequence (3.7.2.1) consisting of the Dirac delta functions:

ψk = δ(x− xk).

In the collocation method, there is no need to calculate integrals, and this essentially

simplifies the procedure of solving nonlinear problems (although usually this method yields

less accurate results than other modifications of the Galerkin method).

Example 3.31. Consider the boundary value problem for the linear variable-coefficient second-

order ordinary differential equation

y′′xx + g(x)y − f(x) = 0 (3.7.4.2)

subject to the boundary conditions of the first kind

y(−1) = y(1) = 0. (3.7.4.3)

Assume that the coefficients of equation (3.7.4.2) are smooth even functions, so that f(x) =
f(−x) and g(x) = g(−x). We use the collocation method for the approximate solution of problem

(3.7.4.2)–(3.7.4.3).

1◦. Take the polynomials

yn(x) = x2n−2(1 − x2), n = 1, 2, . . . N,

as the basis functions; they satisfy the boundary conditions (3.7.4.3), yn(±1) = 0.

Let us consider three collocation points

x1 = −σ, x2 = 0, x3 = σ (0 < σ < 1) (3.7.4.4)

and confine ourselves to two basis functions (N = 2), so that the approximation function is taken in

the form

y(x) = A1(1 − x2) +A2x
2(1 − x2). (3.7.4.5)
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Figure 3.4: Comparison of the numerical solution of problem (3.7.4.2), (3.7.4.3), (3.7.4.7)

with the approximate analytical solution (3.7.4.5), (3.7.4.8) obtained with the collocation

method.

Substituting (3.7.4.5) in the left-hand side of equation (3.7.4.2) yields the remainder

R(x) = A1

[
−2 + (1 − x2)g(x)

]
+A2

[
2− 12x2 + x2(1 − x2)g(x)

]
− f(x).

It must vanish at the collocation points (3.7.4.4). Taking into account the properties f(σ) = f(−σ)
and g(σ) = g(−σ), we obtain two linear algebraic equations for the coefficientsA1 and A2:

A1

[
−2 + g(0)

]
+ 2A2 − f(0) = 0 (at x = 0),

A1

[
−2 + (1− σ2)g(σ)

]
+A2

[
2− 12σ2 + σ2(1− σ2)g(σ)

]
− f(σ) = 0 (at x = ±σ).

(3.7.4.6)

2◦. To be specific, let us take the following functions entering equation (3.7.4.2):

f(x) = −1, g(x) = 1 + x2. (3.7.4.7)

On solving the corresponding system of algebraic equations (3.7.4.6), we find the coefficients

A1 =
σ4 + 11

σ4 + 2σ2 + 11
, A2 = − σ2

σ4 + 2σ2 + 11
. (3.7.4.8)

In Fig. 3.4, the solid line depicts the numerical solution to problem (3.7.4.2)–(3.7.4.3), with the

functions (3.7.4.7), obtained by the shooting method (see Section 3.8.5). The dashed lines 1 and 2

show the approximate solutions obtained by the collocation method using the formulas (3.7.4.5),

(3.7.4.8) with σ = 1
2 (equidistant points) and σ =

√
2
2 (Chebyshev points, see Section 4.5), re-

spectively. It is evident that both cases provide good coincidence of the approximate and numerical

solutions; the use of Chebyshev points gives a more accurate result.

Remark 3.27. The theorem of convergence of the collocation method for linear boundary value

problems is given in Section 4.5, where nth-order differential equations are considered.

3.7.5 Method of Partitioning the Domain

The domain V = {x1 ≤ x ≤ x2} is split into N subdomains: Vk = {xk1 ≤ x ≤ xk2},
k = 1, . . . , N . In this method, the weight functions are chosen as follows:

ψk(x) =

{
1 for x ∈ Vk,
0 for x 6∈ Vk.
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The subdomains Vk are chosen according to the specific properties of the problem under

consideration and can generally be arbitrary (the union of all subdomains Vk may differ

from the domain V , and some Vk and Vm may overlap).

3.7.6 Least Squared Error Method

Sometimes, in order to find the coefficients An of the approximation function (3.7.1.3), one

uses the least squared error method based on the minimization of the functional:

Φ =

∫ x2

x1

R2
N dx→ min . (3.7.6.1)

For given functions ϕn in (3.7.1.3), the integral Φ is a function with respect to the co-

efficients An. The corresponding necessary conditions of minimum in (3.7.6.1) have the

form
∂Φ

∂An
= 0 (n = 1, . . . , N).

This is a system of algebraic (transcendental) equations for the coefficients An.

⊙ Literature for Section 3.7: L. V. Kantorovich and V. I. Krylov (1962), M. A. Krasnosel’skii, G. M. Vai-

nikko, et al. (1969), B. A. Finlayson (1972), G. A. Korn and T. M. Korn (2000), A. D. Polyanin and V. F. Zaitsev

(2003), A. D. Polyanin and A. V. Manzhirov (2007).

3.8 Iteration and Numerical Methods

3.8.1 Method of Successive Approximations (Cauchy Problem)

The method of successive approximations is implemented in two steps. First, the Cauchy

problem

y′′xx = f(x, y, y′x) (equation), (3.8.1.1)

y(x0) = y0, y′x(x0) = y′0 (initial conditions) (3.8.1.2)

is reduced to an equivalent system of integral equations by the introduction of the new

variable u(x) = y′x. These integral equations have the form

u(x) = y′0 +
∫ x

x0

f
(
t, y(t), u(t)

)
dt, y(x) = y0 +

∫ x

x0

u(t) dt. (3.8.1.3)

Then the solution of system (3.8.1.3) is sought by means of successive approximations

defined by the following recurrence formulas:

un+1(x)= y
′
0+

∫ x

x0

f
(
t, yn(t), un(t)

)
dt, yn+1(x)= y0+

∫ x

x0

un(t) dt; n=0, 1, 2, . . .

As the initial approximation, one can take y0(x) = y0 and u0(x) = y′0.

Remark 3.28. If the right-hand side of equation (3.8.1.1) is independent of the derivative, i.e.,

f(x, y, y′x) = f(x, y), the equation can simply be differentiated twice taking into account the initial

conditions without reducing it to system (3.8.1.3). In doing so, we arrive at the integral equation

y = y0 + y′0x+

∫ x

0

(x− t)f
(
t, y(t)

)
dt.
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The solution of problem (3.8.1.1)–(3.8.1.1) (3.8.1.3) is sought using successive approximations

defined by the recurrence formulas

yn+1(x) = y0 + y′0x+

∫ x

0

(x− t)f
(
t, yn(t)

)
dt; n = 0, 1, 2, . . .

As the initial approximation, one can take y0(x) = y0 + y′0x.

3.8.2 Runge–Kutta Method (Cauchy Problem)

For the numerical integration of the Cauchy problem (3.8.1.1)–(3.8.1.2), one often uses the

Runge–Kutta method of the fourth-order approximation.

Let the mesh increment h be sufficiently small. We introduce the following notation:

xk = x0 + kh, yk = y(xk), y′k = y′x(xk), fk = f(xk, yk, y
′
k); k = 0, 1, 2, . . .

The desired values yk and y′k are successively found by the formulas

yk+1 = yk + hy′k +
1
6h

2(ϕ1 + ϕ2 + ϕ3),

y′k+1 = y′k +
1
6h(ϕ1 + 2ϕ2 + 2ϕ3 + ϕ4),

where
ϕ1 = f

(
xk, yk, y

′
k

)
,

ϕ2 = f
(
xk +

1
2h, yk +

1
2hy

′
k, y

′
k +

1
2hϕ1

)
,

ϕ3 = f
(
xk +

1
2h, yk +

1
2hy

′
k +

1
4h

2ϕ1, y
′
k +

1
2hϕ2

)
,

ϕ4 = f
(
xk + h, yk + hy′k +

1
2h

2ϕ2, y
′
k + hϕ3

)
.

In practice, the step ∆x is determined in the same way as for first-order equations (see

Remark 1.32 in Section 1.13.1).

3.8.3 Reduction to a System of Equations (Cauchy Problem)

The Cauchy problem (3.8.1.1)–(3.8.1.2) for a single second-order equation can be reduced

with the new variable z = y′x to the Cauchy problem for a system of two first-order equa-

tions:
y′x = z, z′x = f(x, y, z) (equations),

y(x0) = y0, z(x0) = y′0 (initial conditions).

This problem can be numerically integrated using the methods described in Section 7.4.

3.8.4 Predictor–Corrector Methods (Cauchy Problem)

◮ Second-order equation of the general form.

We look at equation (3.8.1.1).

(i) Predictor step. With the values at xk−3, xk−2, xk−1, and xk, one uses the formula

ỹ ′k+1 = y′k−3 +
4
3h(2fk − fk−1 + 2fk−2)

to compute an initial guess value of the derivative at xk+1.
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(ii) Corrector step. One improves the initial guess by computing the value of y and its

derivative at xk+1 using the formulas

yk+1 = yk−1 +
1
3h(ỹ

′
k+1 + 4y′k + y′k−1),

y′k+1 = y′k−1 +
1
3h(f̃k+1 + 4fk + fk−1),

where f̃k+1 = f(xk+1, yk+1, ỹ
′
k+1).

◮ Second-order equation of a special form.

If the right-hand side of equation (3.8.1.1) is independent of the derivative, i.e., f = f(x, y),
one can use the predictor formula

ỹk+1 = 2yk−1 − yk−3 +
4
3h

2(fk + fk−1 + fk−2)

and then use Stoermer’s rule as the corrector:

yk+1 = 2yk − yk−1 +
1
12h

2(f̃k+1 + 10fk + fk−1).

3.8.5 Shooting Method (Boundary Value Problems)

The key idea of the shooting method is to reduce the solution of the original boundary

value problem for a given differential equation to multiple solutions of auxiliary Cauchy

problems for the same differential of equation.

◮ Boundary problems with first, second, third and mixed boundary conditions.

1◦. Suppose that one deals with a boundary value problem, in the domain x1 ≤ x ≤ x2,

for equation (3.8.1.1) subject to the simple boundary conditions of the first kind

y(x1) = a, y(x2) = b, (3.8.5.1)

where a and b are given numbers.

Let us look at an auxiliary Cauchy problem for equation (3.8.1.1) with the initial con-

ditions

y(x1) = a, y′x(x1) = λ. (3.8.5.2)

For any λ, the solution to this Cauchy problem satisfies the first boundary condition in

(3.8.5.1) at the point x = x1 (the solution can be obtained by the Runge–Kutta method or

any other suitable numerical method). The original problem will be solved if we find a

value λ = λ∗ such that the solution y = y(x, λ∗) coincides at the point x = x2 with the

value required by the second boundary condition in (3.8.5.1):

y(x2, λ∗) = b.

First, we set an arbitrary number λ = λ1 (e.g., λ1 = 0) and solve the Cauchy problem

(3.8.1.1), (3.8.5.2) numerically. The solution results in the number

∆1 = y(x2, λ1)− b. (3.8.5.3)
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Then, we choose a different value λ = λ2 and compute

∆2 = y(x2, λ2)− b. (3.8.5.4)

Suppose that λ2 has been chosen so that ∆1 and ∆2 have different signs (perhaps, a few

tries will be required to choose a suitable λ2). By virtue of the continuity of the solution

in λ, the desired value λ∗ will lie between λ1 and λ2. Then, we set, for example, λ3 =
1
2 (λ1 +λ2) and solve the Cauchy problem to obtain ∆3. Out of the two previous values λj
(j = 1, 2), we keep the one for which ∆j and ∆3 have different signs. The desired λ∗ will

be between the λj and λ3. Further, by setting λ4 =
1
2 (λj +λ3), we find ∆4 and so on. The

process is repeated until we find λ∗ with a required accuracy.

Remark 3.29. The above algorithm can be improved by using, instead of bisections, the follow-

ing formulas:

λ3 =
|∆2|λ1 + |∆1|λ2
|∆2|+ |∆1|

, λ4 =
|∆3|λj + |∆j |λ3
|∆3|+ |∆j |

, . . .

2◦. Table 3.3 lists the initial conditions that should be used in the auxiliary Cauchy problem

to numerically solve boundary value problems for the second-order equation (3.8.1.1) with

different linear boundary conditions at the left endpoint. The parameter λ in the Cauchy

problem is selected so as to satisfy the boundary condition at the right endpoint.

TABLE 3.3

Initial conditions in the auxiliary Cauchy problem used to solve

boundary value problems by the shooting method (x1 ≤ x ≤ x2)

No Problem Boundary condition

at the left end
Initial conditions

1 First boundary value problem y(x1) = a y(x1) = a, y′x(x1) = λ

2 Second boundary value problem y′x(x1) = a y(x1) = λ, y′x(x1) = a

3 Third boundary value problem y′x(x1)− ky(x1) = a y(x1) = λ, y′x(x1) = a+ kλ

Importantly, nonlinear boundary value problems can have one solution, several solu-

tions, or no solutions at all (see Examples 3.14 and 3.17, which illustrate all these scenarios

based on exact analyses of two one-parameter problems from combustion theory). There-

fore, special care is required when treating nonlinear problems; after finding a suitable

λ = λ1, one should look for other possible allowable values in a wider range of λ. If one

fails to find a suitable λ1, one should consider the possibility that the problem may simply

have no solution.

◮ Problems with more complex linear or nonlinear boundary conditions.

In a similar way, one constructs the solution of the boundary value problem with nonlinear

boundary conditions of the form

y′x = ϕ(y) at x = x1, (3.8.5.5)

ψ(y, y′x) = 0 at x = x2. (3.8.5.6)
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The first boundary condition is a generalization of a linear nonhomogeneous boundary

condition of the third kind. This condition can arise, for example, in mass transfer problems

with a heterogeneous reaction, where g(y) defines the rate of the chemical reaction. The

second boundary condition is quite general.

Consider an auxiliary Cauchy problem for equation (3.8.1.1) with the initial conditions

y(x1) = λ, y′x(x1) = ϕ(λ). (3.8.5.7)

For any λ, the solution to this Cauchy problem will satisfy the first boundary condition

(3.8.5.5).

We set an arbitrary value λ = λ1 and solve the Cauchy problem (3.8.1.1), (3.8.5.5)

numerically to obtain the number

∆1 = ψ(y, y′x)|λ=λ1, x=x2 . (3.8.5.8)

Then we set a different value λ = λ2 and compute

∆2 = ψ(y, y′x)|λ=λ2, x=x2 . (3.8.5.9)

We assume that λ2 is chosen so that ∆1 and ∆2 have different signs. The desired value

λ = λ∗, for which the boundary condition (3.8.5.6) is satisfied exactly, will lie between λ1
and λ2. The subsequent procedure of numerical solution coincides with that outlined above

for equation (3.8.1.1) with the simple linear boundary conditions of the first kind (3.8.5.1).

Remark 3.30. In a similar way, one can solve the boundary value problem described by equation

(3.8.1.1), boundary condition (3.8.5.5), and the nonlocal linear condition

∫ x2

x1

h(x)y(x) dx = c, (3.8.5.10)

where h(x) is a given function and c is a given number. To this end, one solves the Cauchy problem

(3.8.1.1), (3.8.5.5) numerically with two different values λ = λ1 and λ = λ2 such that

∆1 =

∫ x2

x1

h(x)y(x, λ1) dx− c and ∆2 =

∫ x2

x1

h(x)y(x, λ2) dx− c

have different signs. The subsequent procedure of numerical solution completely coincides with the

one outlined above for equation (3.8.1.1) with the boundary conditions of the first kind (3.8.5.1).

Remark 3.31. One should bear in mind that the boundary value problem (3.8.1.1), (3.8.5.5),

(3.8.5.6) can have two or more solutions, corresponding to different values λ∗i.

In a similar way, one can solve the boundary value problem described by equation

(3.8.1.1), boundary condition (3.8.5.5), and the general nonlocal nonlinear condition

∫ x2

x1

Φ(x, y(x)) dx = c,

where Φ(x, y) is a given function. In particular, this condition with the quadratic function

Φ(x, y) = y2, independent of x, represents a normalization condition (which arises, for

example, in quantum mechanics).
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3.8.6 Numerical Methods for Problems with Equations Defined
Implicitly or Parametrically

◮ Numerical solution of the Cauchy problem for parametrically defined equations.

In this paragraph, we outline the ideas of two numerical methods for solving the Cauchy

problem for the second-order equation represented in parametric form using two relations

(see Section 3.2.8)

y′x = F (x, y, t), y′′xx = G(x, y, t) (3.8.6.1)

with the initial conditions (3.8.1.2).

First method. We start directly from equations (3.8.6.1). Consider two auxiliary Cauchy

problems

y′x = F (x, y, t), y(x0) = y0 (first problem); (3.8.6.2)

y′′xx = G(x, y, t), y(x0) = y0, y
′
x(x0) = y′0 (second problem). (3.8.6.3)

Let yF = yF (x, t) and yG = yG(x, t) be their respective solutions. Introduce the difference

of the two solutions

∆(x, t) = yG(x, t)− yF (x, t). (3.8.6.4)

Now we fix a value of the parameter, t = tk, and find numerical solutions yF (x, tk) and

yG(x, tk) using, for example, the Runge–Kutta method. Further, by varying x, we find

an xk at which the right-hand side of equation (3.8.6.4) vanishes: ∆(xk, tk) = 0. To

this xk there corresponds the value of the desired function yk = yF (xk, tk) = yG(xk, tk).
Thus, to each tk there corresponds a point (xk, yk) in the (x, y) plane at which the curves

yF = yF (x, tk) and yG = yG(x, tk) intersect. On taking another value of the parameter,

t = tk+1, we find a new point (xk+1, yk+1). The combination of discrete points (xk, yk)
with k = 0, 1, 2, . . . defines an approximation to the solution y = y(x) of the original

problem (3.8.6.1), (3.8.1.2).

The initial value t = t0 is determined from the algebraic (or transcendental) equation

y′0 = F (x0, y0, t0), (3.8.6.5)

where x0, y0, and y′0 are the values appearing in the initial conditions (3.8.6.2)–(3.8.6.2),

obtained from (3.8.1.2)).

Second method. With the method outlined in Section 3.2.8, we reduce the parametric

equation (3.8.6.1) to a standard system of first-order differential equations for x= x(t) and

y = y(t) (see equations (3.2.8.4) and (3.2.8.5)):

x′t =
Ft

G− Fx − FFy
, y′t =

FFt

G− Fx − FFy
. (3.8.6.6)

Suppose that G− Fx − FFy 6= 0. Then system (3.8.6.6) subject to the initial conditions

x(t0) = x0, y(t0) = y0, (3.8.6.7)

where t0 is found from the algebraic (or transcendental) of equation (3.8.6.5), is solved

numerically using, for example, the Runge–Kutta method (see Section 7.4.1 for relevant

formulas). This solution will also solve the original parametric problem (3.8.6.1), (3.8.1.2).

Remark 3.32. In general, the algebraic (or transcendental) equation (3.8.6.5) can have several

different roots, in which case the original problem (3.8.6.1), (3.8.1.2) will have the same number of

different solutions.
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◮ First boundary value problem. Numerical solution procedure.

Let us look at the first boundary value problem for the parametric second-order ODE

(3.8.6.1) in the range x1 ≤ x ≤ x2 with the boundary conditions

y(x1) = y1, y(x2) = y2. (3.8.6.8)

Below we present the main idea of a numerical procedure to solve this kind of problem.

Consider two auxiliary Cauchy problems for the equation (see the second equation in

Eq. (3.8.6.1))

y′′xx = G(x, y, t) (3.8.6.9)

subject to the initial conditions

y(x1) = y1, y′x(x1) = F (x1, y1, t) (problem 1); (3.8.6.10)

y(x2) = y2, y′x(x2) = F (x2, y2, t) (problem 2). (3.8.6.11)

By choosing a specific value of the parameter, t = tk, we solve the auxiliary Cauchy

problems numerically (e.g., by the Runge–Kutta method) to obtain y1 = y1(x, tk) and

y2 = y2(x, tk), respectively (the superscripts indicate the problem number). To any tk there

corresponds a point (xk, yk) in the (x, y) plane at which the curves corresponding to the

solutions y1 = y1(x, tk) and y2 = y2(x, tk) intersect. By choosing a different value, tk+1,

we find another point, (xk+1, yk+1). The discrete set of points (xk, yk) with k=0, 1, 2, . . .
defines an approximation to the solution y = y(x) of the original boundary value problem

(3.8.6.1), (3.8.6.8).

◮ Numerical integration of equations defined implicitly.

Let us look at the Cauchy problem for the implicit equation

y′x = F (x, y, y′′xx) (3.8.6.12)

subject to the initial condition (3.8.1.2).

The substitution y′′xx = t reduces equation (3.8.6.12) to the parametric equation

y′x = F (x, y, t), y′′xx = t (3.8.6.13)

with the initial conditions (3.8.1.2).

Problem (3.8.6.13), (3.8.1.2) is a special case of problem (3.8.6.1), (3.8.1.2) in which

G(x, y, t)= t, and hence, it can be solved with the numerical methods described previously.

◮ Differential-algebraic equations.

Parametrically defined nonlinear differential equations of the form (3.8.6.1) are a special

class of coupled (DAEs for short). Numerical methods for DAEs other than those discussed

above can be found in the books by Hairer, Lubich, and Roche (1989), Schiesser (1994),

Hairer and Wanner (1996), Brenan, Campbell, and Petzold (1996), Ascher and Petzold

(1998), and Rabier and Rheinboldt (2002).
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3.8.7 Numerical Solution Blow-Up Problems∗

◮ Preliminary remarks. Blow-up solutions with a power-law singularity.

Below, we will be concerned with blow-up problems, whose solution tends to infinity as the

independent variable approaches a finite value x = x∗, which is unknown in advance. The

important question arises as to how one can determine the singular point x∗ with numerical

methods.

Example 3.32. Consider the model Cauchy problem for the nonlinear second-order ODE

y′′xx = 2y3 (x > 0), y(0) = 1, y′x(0) = 1. (3.8.7.1)

Its exact solution is given by

y =
1

1− x (3.8.7.2)

and has a power-law singularity (a pole) at x∗ = 1. For x > x∗, there is no solution.

If one solves problem (3.8.7.1) using, for example, explicit Runge–Kutta methods of different

order of accuracy, one obtains a numerical solution which is positive, monotonically increases, and

exists for arbitrarily large xk . From the form of the solution, one cannot conclude that the exact

solution has a pole (it appears that the exact solution rapidly increases and exists for any x > 0).

Note that the standard explicit schemes do not work well either is similar situations.

Below we outline a few numerical methods for blow-up problems. We assume that the

preliminary numerical (or analytical) analysis has caused a suspicion that the problem may

have a blow-up solution.

◮ Method based on the hodograph transformation.

For monotonic blow-up solutions, having made the hodograph transformation, we can solve

the Cauchy problem for x = x(y) rather than y = y(x). Since yx = 1/x′y and y′′xx =
−x′′yy/(x′y)3, problem (3.8.1.1)–(3.8.1.2) becomes

x′′yy = −(x′y)3f(x, y, 1/x′y) (y > y0),

x(y0) = x0, x′y(y0) = 1/y′0.
(3.8.7.3)

The computation can be carried out using, for example, the explicit fourth-order Runge–

Kutta scheme. For sufficiently large y, we find the asymptote x = x∗ numerically.

Example 3.33. The hodograph transformation reduces the model problem (3.8.7.1) to

x′′yy = −2y3(x′y)3 (y > 1); x(1) = 0, x′y(1) = 1.

The solution of this problem is given by

x = 1− 1

y
;

it does not have singularities and monotonically increases for y > 1 and tends to the desired limit

value x∗ = limy→∞ x(y) = 1.

∗Prior to reading this section, the reader should refer to Section 1.14.4, which discusses blow-up problems

for first-order equations.
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◮ Method based on the use of the differential variable t = y′x.

First, assuming the inequalities f(x, y, y′x) > 0 for y > y0 > 0 and y′x > y′0 > 0 to hold,

we rewrite problem (3.8.1.1)–(3.8.1.2) in the parametric form

y′x = t y′′xx = f(x, y, t) (t > t0); (3.8.7.4)

x(t0) = x0, y(t0) = y0, t0 = y′0. (3.8.7.5)

Then, relying on the results of Section 3.8.6, we change to system (3.8.6.6) with F = t and

G = f(x, y, t) to arrive at the Cauchy problem for a system of two first-order equations

x′t =
1

f(x, y, t)
, y′t =

t

f(x, y, t)
(t > t0) (3.8.7.6)

subject to the initial conditions (3.8.7.5) . Further, we solve problem (3.8.7.6), (3.8.7.5) nu-

merically using, for example, the Runge–Kutta methods (see Section 7.4.1 for relevant for-

mulas). The resulting solution is also a solution to the original problem (3.8.1.1)–(3.8.1.2)

in parametric form. The boundary of the existence domain, x = x∗, is determined numeri-

cally for sufficiently large t.

Example 3.34. In the model problem (3.8.7.1), the introduction of the auxiliary variable t =
y′x followed by the substitution of f(x, y, t) = 2y3 into (3.8.7.4)–(3.8.7.6) results in the Cauchy

problem for a system of two equations

x′t =
1

2y3
, y′t =

t

2y3
(t > 1);

x(1) = 0, y(1) = 1 (t0 = 1).

The exact solution to this problem is

x = 1− 1√
t
, y =

√
t (t ≥ 1).

It does not have singularities; the function x = x(t) monotonically increases for t > 1 and tends

to the desired limit value x∗ = limt→∞ x(t) = 1, while y = y(t) monotonically increases without

bound.

◮ Method based on nonlocal transformations. Monotonic blow-up solutions.

First, equation (3.8.1.1) can be represented as a system of two equations

y′x = t, t′x = f(x, y, t),

and then we introduce a nonlocal variable of general form by the formula

ξ =

∫ x

x0

g(x, y, t) dx, y = y(x), t = t(x), (3.8.7.7)

where g = g(x, y, t) is a regularizing function which can be varied. As a result, the Cauchy

problem (3.8.1.1)–(3.8.1.2) can be transformed to the following equivalent problem for an

autonomous system of three equations:

x′ξ =
1

g(x, y, t)
, y′ξ =

t

g(x, y, t)
, t′ξ =

f(x, y, t)

g(x, y, t)
(ξ > 0);

x(0) = x0, y(0) = y0, t(0) = y1.

(3.8.7.8)
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With a suitably chosen function g = g(x, y, t) (subject to not-very-restrictive conditions),

the Cauchy problem (3.8.7.8) can be numerically integrated using standard numerical meth-

ods, without the fear of getting blow-up solutions.

Here are a few possible ways of how the regularizing function g in system (3.8.7.8) can

be chosen.

1◦. The special case g = t is equivalent to the hodograph transformation with an addi-

tional translation in the dependent variable, which gives ξ = y − y0.

2◦. We can take g =
(
c + |t|s + |f |s

)1/s
with c ≥ 0 and s > 0. The case c = 1 and

s = 2 corresponds to the method of arc length transformation.

3◦. By taking g = f in (3.8.7.8), after the integration of the third equation, we arrive at

system (3.8.7.6). It follows that the method based on the nonlocal transformation (3.8.7.7)

is a generalization of the method based on the differential variable.

4◦. Also, we can take g = f/y, g = f/t, or g = t/y (in the last two cases, sys-

tem (3.8.7.8) is simplified, since one of its equations is directly integrated).

Remark 3.33. It follows from Items 1◦, 2◦, and 3◦ that the method based on the hodograph

transformation, the method of arc length transformation, and the method based on the differential

variable are special cases of the method based on a nonlocal transformation of general form.

Remark 3.34. One does not have to compute integrals of the form (3.8.7.7) to apply nonlocal

transformations.

Example 3.35. For the test problem (3.8.7.1), in which f = 2y3, we set g = t/y (see Item 4◦

with g = t/y). Substituting these functions into (3.8.7.8), we arrive at the Cauchy problem

x′ξ =
y

t
, y′ξ = y, t′ξ =

2y4

t
(ξ > 0);

x(0) = 0, y(0) = a, t(0) = a2.
(3.8.7.9)

The exact solution of this problem is

x =
1

a

(
1− e−ξ

)
, y = aeξ, t = a2e2ξ.

One can see that the unknown x = x(ξ) exponentially tends to the asymptotic value x = x∗ = 1/a
as ξ →∞.

Figure 3.5 displays a numerical solution of the Cauchy problem (3.8.7.9) in parametric form

and compares the numerical solution with the exact solution (3.8.7.2).

Remark 3.35. The method based on the use of the special case of system (3.8.7.8) with g =
t/y (see Item 4◦ with g = t/y above) is more efficient as compared to the methods based on the

hodograph transformation, arc length transformation, and differential variable.

◮ Problems with non-monotonic blow-up solutions.

For problems with non-monotonic blow-up solutions, it is reasonable to choose regularizing

functions of the form

g = G(|t|, |f |), (3.8.7.10)

where f = f(x, y, t) is the right-hand side of equation (3.8.1.1) and t= y′x. We impose the

following conditions on the function G = G(u, v):

G > 0; Gu ≥ 0, Gv ≥ 0, G→∞ as u+ v →∞, (3.8.7.11)
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a b

Figure 3.5: (a) numerical solution t = t(ξ), x = x(ξ), y = y(ξ) of the Cauchy prob-

lem (3.8.7.9) with a = 1 (ν = 30); (b) exact solution (3.8.7.2) with a = 1, solid dots;

numerical solution of the Cauchy problem (3.8.7.9), open circles.

where u ≥ 0, v ≥ 0. By selecting a suitable function G, we can ensure that the Cauchy

problem (3.8.7.8) has no blow-up singularity on the half-line 0 ≤ ξ <∞; this problem can

be solved by applying standard fixed-step numerical methods.

Example 3.36. Consider a three-parameter Cauchy problem for the nonlinear second-order au-

tonomous ODE:

y′′xx − 3yy′x − 2λy′x + y3 + 2λy2 + (β2 + λ2)y = 0; (3.8.7.12)

y(0) = bβ, y′x(0) = 2bβλ+ b2β2. (3.8.7.13)

The exact solution of the problem is

y =
b[λ sin(βx) + β cos(βx)]

e−λx − b sin(βx) . (3.8.7.14)

This solution can change the sign and, for certain values of the parameters, is a non-monotonic

blow-up solution.

For problem (3.8.7.12)–(3.8.7.13), we choose a regularizing function in the form g=(1+|t|)1/3.

Substituting it into (3.8.7.8), we arrive at the Cauchy problem

x′ξ =
1

(1 + |t|+ |f |)1/3 , y′ξ =
t

(1 + |t|+ |f |)1/3 , t′ξ =
f

(1 + |t|+ |f |)1/3 ;

x(0) = 0, y(0) = bβ, t(0) = 2bβλ+ b2β2,

(3.8.7.15)

where f = 3yt+ 2λt− y3 − 2λy2 − (β2 + λ2)y.

The numerical solutions of problem (3.8.7.15) obtained using two sets of parameters, b = 0.9,

β = 8, λ = 0.3 and b = 0.5, β = 5, λ = 0.1, and the fourth-order Runge–Kutta method with the

fixed step size h = 0.01 are shown by open circles in Fig. 3.6a and Fig. 3.6b. For this step size,

the maximum difference between the exact solution (3.8.7.14) and the numerical solution of the

Cauchy problem for system (3.8.7.15) at y = 50 was found to be 0.0002500% for the first set of

parameters and 0.0011033% for the second set. The solution for the first set of parameters exists

in a finite region 0 ≤ x < x∗ = 0.9112959, while that for the second set of parameters displays a

pronounced non-monotonic sawtooth behavior with six local maxima and exists in a finite region

0 ≤ x < x∗ = 7.7730738 (see Fig. 3.6b).
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Figure 3.6: The exact solution (3.8.7.14) of the original problem (3.8.7.12)–(3.8.7.13)

(solid line) and the numerical solution of the transformed problem (3.8.7.15) (open cir-

cles) for two sets of parameters: (a) b = 0.9, β = 8, λ = 0.3 and (b) b = 0.5, β = 5,

λ = 0.1.

Table 3.4 compares the efficiency of various functions g used in the numerical integration of

the transformed problem (3.8.7.8) in order to solve the original problem (3.8.7.12)–(3.8.7.13) with

b= 0.5, β = 5, and λ= 0.1. The maximum allowed error was set to be 0.01% at y= 100. The main

integration parameters (largest interval 0 ≤ ξ ≤ ξmax, step size h, and number of grid points N )

used to achieve the required accuracy are specified in the table.

TABLE 3.4

A comparison of the efficiency of various regularizing functions g in the transformed problem

(3.8.7.8), used for the numerical solution of the original problem (3.8.7.12)–(3.8.7.13), with the

prescribed maximum error 0.01% at y = 100, for b = 0.5, β = 5, and λ = 0.1 (x∗ = 7.7730738)

No. Regularizing function ξmax Step size h N

1 g = (1 + t2)1/2 274.050 0.0029000000 94,500

2 g = (1 + t2 + f2)1/2 11,742.300 0.1800000000 65,235

3 g = (1 + |t|)1/2 35.764 0.0029593683 12,085

4 g = 1
2
(1 + |t|)1/3 + 1

2
(1 + |f |)1/3 28.442 0.0090899000 3,129

5 g = (1 + |t|+ |f |)1/3 39.702 0.0185090000 2,145

⊙ Literature for Section 3.8: M. Abramowitz and I. A. Stegun (1964), S. K. Godunov and V. S. Ryaben’kii

(1973), J. D. Lambert (1973), H. B. Keller (1976), N. S. Bakhvalov (1977), N. N. Kalitkin (1978), S. Moriguti,

C. Okuno, R. Suekane, M. Iri, and K. Takeuchi (1979), A. N. Tikhonov, A. B. Vasil’eva, and A. G. Svesh-

nikov (1985), J. C. Butcher (1987), E. Hairer, C. Lubich, and M. Roche (1989), M. Stuart and M. S. Floater

(1990), W. E. Schiesser (1994), V. F. Zaitsev and A. D. Polyanin (1993), L. F. Shampine (1994), K. E. Brenan,

S. L. Campbell, and L. R. Petzold (1996), J. R. Dormand (1996), E. Hairer and G. Wanner (1996), D. Zwillinger

(1997), U. M. Ascher and L. R. Petzold (1998), G. A. Korn and T. M. Korn (2000), G. Acosta, G. Durán, and

J. D. Rossi (2002), P. J. Rabier and W. C. Rheinboldt (2002), A. D. Polyanin and V. F. Zaitsev (2003), H. J. Lee

and W. E. Schiesser (2004), A. D. Polyanin and A. V. Manzhirov (2007), S. C. Chapra and R. P. Canale (2010),

M. Mizuguchi, and S. Oishi (2017), A. D. Polyanin and A. I. Zhurov (2017b), A. D. Polyanin and I. K. Shin-

gareva (2017a,b,c,d,e).
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Chapter 4

Methods for Linear ODEs
of Arbitrary Order

4.1 Linear Equations with Constant Coefficients

4.1.1 Homogeneous Linear Equations. General Solution

An nth-order homogeneous linear equation with constant coefficients has the general form

y(n)x + an−1y
(n−1)
x + · · ·+ a1y

′
x + a0y = 0. (4.1.1.1)

The general solution of this equation is determined by the roots of the characteristic

equation

P (λ) = 0, where P (λ) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0. (4.1.1.2)

The following cases are possible:

1◦. All roots λ1, λ2, . . . , λn of the characteristic equation (4.1.1.2) are real and distinct.

Then the general solution of the homogeneous linear differential equation (4.1.1.1) has the

form

y = C1 exp(λ1x) + C2 exp(λ2x) + · · ·+ Cn exp(λnx).

2◦. There are m equal real roots λ1 = λ2 = · · · = λm (m≤ n), and the other roots are real

and distinct. In this case, the general solution is given by

y = exp(λ1x)(C1 + C2x+ · · ·+ Cmx
m−1)

+ Cm+1 exp(λm+1x) +Cm+2 exp(λm+2x) + · · ·+ Cn exp(λnx).

3◦. There are m equal complex conjugate roots λ = α± iβ (2m ≤ n), and the other roots

are real and distinct. In this case, the general solution is

y = exp(αx) cos(βx)(A1 +A2x+ · · · +Amx
m−1)

+ exp(αx) sin(βx)(B1 +B2x+ · · ·+Bmx
m−1)

+ C2m+1 exp(λ2m+1x) +C2m+2 exp(λ2m+2x) + · · · +Cn exp(λnx),

where A1, . . . , Am, B1, . . . ,Bm, C2m+1, . . . , Cn are arbitrary constants.

197
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4◦. In the general case, where there are r different roots λ1, λ2, . . . , λr of multiplicities

m1, m2, . . . , mr, respectively, the left-hand side of the characteristic equation (4.1.1.2)

can be represented as the product

P (λ) = (λ− λ1)m1(λ− λ2)m2 . . . (λ− λr)mr ,

where m1 +m2 + · · ·+mr = n. The general solution of the original equation is given by

the formula

y =

r∑

k=1

exp(λkx)(Ck,0 + Ck,1x+ · · ·+ Ck,mk−1x
mk−1),

where Ck,l are arbitrary constants.

If the characteristic equation (4.1.1.2) has complex conjugate roots, then in the above

solution, one should extract the real part on the basis of the relation exp(α ± iβ) =
eα(cos β ± i sin β).

Example 4.1. Find the general solution of the linear third-order equation

y′′′ + ay′′ − y′ − ay = 0.

Its characteristic equation is λ3 + aλ2 − λ− a = 0, or, in factorized form,

(λ+ a)(λ− 1)(λ+ 1) = 0.

Depending on the value of the parameter a, three cases are possible.

1. Case a 6= ±1. There are three different roots, λ1 = −a, λ2 = −1, and λ3 = 1. The general

solution of the differential equation is expressed as y = C1e
−ax + C2e

−x + C3e
x.

2. Case a = 1. There is a double root, λ1 = λ2 = −1, and a simple root, λ3 = 1. The general

solution of the differential equation has the form y = (C1 + C2x)e
−x + C3e

x.

3. Case a= −1. There is a double root, λ1 = λ2 = 1, and a simple root, λ3 = −1. The general

solution of the differential equation is expressed as y = (C1 + C2x)e
x + C3e

−x.

Example 4.2. Consider the linear fourth-order equation

y′′′′xxxx − y = 0.

Its characteristic equation, λ4 − 1 = 0, has four distinct roots, two real and two pure imaginary,

λ1 = 1, λ2 = −1, λ3 = i, λ4 = −i.

Therefore the general solution of the equation in question has the form (see Item 3◦)

y = C1e
x + C2e

−x + C3 sinx+ C4 cosx.

4.1.2 Nonhomogeneous Linear Equations. General and Particular
Solutions

1◦. An nth-order nonhomogeneous linear equation with constant coefficients has the gen-

eral form

y(n)x + an−1y
(n−1)
x + · · ·+ a1y

′
x + a0y = f(x). (4.1.2.1)

The general solution of this equation is the sum of the general solution of the cor-

responding homogeneous equation with f(x) ≡ 0 (see Section 4.1.1) and any particular

solution of the nonhomogeneous equation (4.1.2.1).
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If all the roots λ1, λ2, . . . , λn of the characteristic equation (4.1.1.2) are different,

equation (4.1.2.1) has the general solution:

y =

n∑

ν=1

Cνe
λνx +

n∑

ν=1

eλνx

P ′
λ(λν)

∫
f(x)e−λνx dx (4.1.2.2)

(for complex roots, the real part should be taken).

In the general case, if the characteristic equation (4.1.1.2) has multiple roots, the solu-

tion to equation (4.1.2.1) can be constructed using formula (4.2.2.2).

2◦. Table 4.1 lists the forms of particular solutions corresponding to some special forms of

functions on the right-hand side of the linear nonhomogeneous equation.

TABLE 4.1

Forms of particular solutions of the constant-coefficient nonhomogeneous linear equation

y
(n)
x + an−1y

(n−1)
x + · · ·+ a1y

′
x + a0y = f(x) that correspond to some special forms of the function f(x)

Form of the

function f(x)
Roots of the characteristic equation

λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = 0

Form of a particular

solution y = ỹ(x)

Zero is not a root of the

characteristic equation (i.e., a0 6= 0)
P̃m(x)

Pm(x)
Zero is a root of the

characteristic equation (multiplicity r)
xrP̃m(x)

α is not a root of the

characteristic equation
P̃m(x)eαx

Pm(x)eαx

(α is a real constant) α is a root of the

characteristic equation (multiplicity r)
xrP̃m(x)eαx

iβ is not a root of the

characteristic equation
P̃ν(x) cos βx
+ Q̃ν(x) sin βxPm(x) cos βx

+Qn(x) sin βx iβ is a root of the

characteristic equation (multiplicity r)
xr[P̃ν(x) cos βx
+ Q̃ν(x) sin βx]

α+ iβ is not a root of the

characteristic equation
[P̃ν(x) cos βx
+ Q̃ν(x) sin βx]e

αx
[Pm(x) cos βx

+Qn(x) sin βx]e
αx

α+ iβ is a root of the

characteristic equation (multiplicity r)
xr[P̃ν(x) cos βx
+ Q̃ν(x) sin βx]e

αx

Notation: Pm andQn are polynomials of degrees m and nwith given coefficients; P̃m,

P̃ν , and Q̃ν are polynomials of degrees m and ν whose coefficients are determined

by substituting the particular solution into the basic equation; ν = max(m, n); and

α and β are real numbers, i2 = −1.

3◦. Consider the Cauchy problem for equation (4.1.2.1) subject to the homogeneous initial

conditions

y(0) = y′x(0) = · · · = y(n−1)
x (0) = 0. (4.1.2.3)
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Let y(x) be the solution of problem (4.1.2.1), (4.1.2.3) for arbitrary f(x) and let u(x) be

the solution of the auxiliary, simpler problem (4.1.2.1), (4.1.2.3) with f(x) ≡ 1, so that

u(x) = y(x)|f(x)≡1. Then the formula

y(x) =

∫ x

0
f(t)u′x(x− t) dt

holds. It is called the Duhamel integral.

⊙ Literature for Section 4.1: G. M. Murphy (1960), L. E. El’sgol’ts (1961), N. M. Matveev (1967), A. N.

Tikhonov, A. B. Vasil’eva, and A. G. Sveshnikov (1980), D. Zwillinger (1997), G. A. Korn and T. M. Korn

(2000), A. D. Polyanin and V. F. Zaitsev (2003), A. D. Polyanin and A. V. Manzhirov (2007).

4.2 Linear Equations with Variable Coefficients

4.2.1 Homogeneous Linear Equations. General Solution. Order
Reduction. Liouville Formula

◮ Structure of the general solution.

The general solution of the nth-order homogeneous linear differential equation

fn(x)y
(n)
x + fn−1(x)y

(n−1)
x + · · ·+ f1(x)y

′
x + f0(x)y = 0 (4.2.1.1)

has the form

y = C1y1(x) + C2y2(x) + · · ·+ Cnyn(x). (4.2.1.2)

Here y1(x), y2(x), . . . , yn(x) is a fundamental system of solutions (the yk are linearly

independent particular solutions, yk 6≡ 0); C1, C2, . . . , Cn are arbitrary constants.

◮ Utilization of particular solutions for reducing the order of the equation.

1◦. Let y1= y1(x) be a nontrivial particular solution of equation (4.2.1.1). The substitution

y = y1(x)

∫
z(x) dx

results in a linear equation of order n− 1 for the function z(x).

2◦. Let y1 = y1(x) and y2 = y2(x) be two nontrivial linearly independent solutions of

equation (4.2.1.1). The substitution

y = y1

∫
y2w dx− y2

∫
y1w dx

results in a linear equation of order n− 2 for w(x).

3◦. Suppose that m linearly independent solutions y1(x), y2(x), . . . , ym(x) of equation

(4.2.1.1) are known. Then one can reduce the order of the equation to n−m by successive

application of the following procedure. The substitution y = ym(x)

∫
z(x) dx leads to an

equation of order n− 1 for the function z(x) with known linearly independent solutions:

z1 =
( y1
ym

)′
x
, z2 =

( y2
ym

)′
x
, . . . , zm−1 =

( ym−1

ym

)′
x
.
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The substitution z = zm−1(x)

∫
w(x) dx yields an equation of order n−2. Repeating this

procedure m times, we arrive at a homogeneous linear equation of order n−m.

◮ Wronskian determinant and Liouville formula.

The Wronskian determinant (or simply, Wronskian) is the function defined as

W (x) =

∣∣∣∣∣∣∣∣

y1(x) · · · yn(x)
y′1(x) · · · y′n(x)
· · · · · · · · ·

y
(n−1)
1 (x) · · · y

(n−1)
n (x)

∣∣∣∣∣∣∣∣
, (4.2.1.3)

where y1(x), . . . , yn(x) is a fundamental system of solutions of the homogeneous equa-

tion (4.2.1.1); y
(m)
k (x) =

dmyk
dxm

, m = 1, . . . , n− 1; k = 1, . . . , n.

The following Liouville formula holds:

W (x) =W (x0) exp

[
−
∫ x

x0

fn−1(t)

fn(t)
dt

]
.

4.2.2 Nonhomogeneous Linear Equations. General Solution.
Superposition Principle

◮ Construction of the general solution.

1◦. The general nonhomogeneous nth-order linear differential equation has the form

fn(x)y
(n)
x + fn−1(x)y

(n−1)
x + · · ·+ f1(x)y

′
x + f0(x)y = g(x). (4.2.2.1)

The general solution of the nonhomogeneous equation (4.2.2.1) can be represented as the

sum of its particular solution and the general solution of the corresponding homogeneous

equation (4.2.1.1).

2◦. Let y1(x), . . . , yn(x) be a fundamental system of solutions of the homogeneous equa-

tion (4.2.1.1), and let W (x) be the Wronskian determinant (4.2.1.3). Then the general

solution of the nonhomogeneous linear equation (4.2.2.1) can be represented as

y =
n∑

ν=1

Cνyν(x) +
n∑

ν=1

yν(x)

∫
Wν(x) dx

fn(x)W (x)
, (4.2.2.2)

where Wν(x) is the determinant of the matrix (4.2.1.3) in which the νth column is replaced

by the column vector with the elements 0, 0, . . . , 0, g.

◮ Superposition principle.

The solution of a nonhomogeneous linear equation

L[y] =

m∑

k=1

gk(x), L[y] ≡ fn(x)y(n)x + fn−1(x)y
(n−1)
x + · · ·+ f1(x)y

′
x + f0(x)y
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is determined by adding together the solutions,

y =
m∑

k=1

yk,

of m (simpler) equations,

L[yk] = gk(x), k = 1, 2, . . . , m,

corresponding to respective nonhomogeneous terms in the original equation.

◮ Euler equation.

1◦. The nonhomogeneous Euler equation has the form

xny(n)x + an−1x
n−1y(n−1)

x + · · ·+ a1xy
′
x + a0y = f(x).

The substitution x = bet (b 6= 0) leads to a constant-coefficient linear equation of the

form (4.1.2.1).

2◦. Particular solutions of the homogeneous Euler equation [with f(x) ≡ 0] are sought in

the form y = xk. If all k are real and distinct, its general solution is expressed as

y(x) = C1|x|k1 + C2|x|k2 + · · · + Cn|x|kn .

Remark 4.1. To a pair of complex conjugate values k = α ± iβ there corresponds a pair of

particular solutions: y = |x|α sin(β|x|) and y = |x|α cos(β|x|).

4.2.3 Nonhomogeneous Linear Equations. Cauchy Problem.
Reduction to Integral Equations

◮ Cauchy problem. Cauchy formula.

Let y(x, σ) be the solution to the Cauchy problem for the homogeneous equation (4.2.1.1)

with nonhomogeneous initial conditions at x = σ:

y(σ) = y′x(σ) = · · · = y(n−2)
x (σ) = 0, y(n−1)

x (σ) = 1,

where σ is an arbitrary parameter. Then a particular solution of the nonhomogeneous linear

equation (4.2.2.1) with homogeneous boundary conditions

y(x0) = y′x(x0) = · · · = y(n−1)
x (x0) = 0

is given by the Cauchy formula

ȳ(x) =

∫ x

x0

y(x, σ)
g(σ)

fn(σ)
dσ.
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◮ Reduction of the Cauchy problem for ODEs to integral equations.

1◦. Integral equations play an important role in the theory of ordinary differential equa-

tions. The reduction of Cauchy and boundary value problems to integral equations allows

for the application of iteration and finite-difference methods of solving integral equations.

These methods are, as a rule, substantially simpler than those used for solving differential

equations. Moreover, many delicate proofs and qualitative results of the theory of dif-

ferential equations have been obtained by the investigation of the corresponding integral

equations.

2◦. Consider the Cauchy problem for nth order ODE (4.2.2.1) with the homogeneous ini-

tial conditions at the point x = a:

y(a) = y′x(a) = · · · = y(n−1)
x (a) = 0. (4.2.3.1)

Introducing a new unknown function by

y(x) =
1

(n− 1)!

∫ x

a
(x− t)n−1u(t) dt (4.2.3.2)

and differentiating (4.2.3.2) n times, we get

y(k)x (x) =
1

(n− k − 1)!

∫ x

a
(x− t)n−k−1u(t) dt, k = 1, . . . , n− 1;

y(n)x (x) = u(x).

(4.2.3.3)

Obviously, the function (4.2.3.2) satisfies the initial conditions (4.2.3.1). By substituting

(4.2.3.3) into the left-hand side of equation (4.2.2.1), we obtain

fn(x)u(x) +

∫ x

a
K(x, t)u(t) dt = g(x), (4.2.3.4)

where

K(x, t) = fn−1(x) + fn−2(x)
x− t
1!

+ · · ·+ f0(x)
(x − t)n−1

(n− 1)!
. (4.2.3.5)

Thus, the Cauchy problem (4.2.2.1)–(4.2.3.1) has been reduced to the integral equation

(4.2.3.4)–(4.2.3.5), which is a Volterra equation of the second kind. Finding the function

u(x) from (4.2.3.4) and using formula (4.2.3.2) we obtain the desired solution y(x).

The solution of the integral equation (4.2.3.4) can be obtained using, for example, the

method of successive approximations with the recurrence relation

um+1(x) +
1

fn(x)

∫ x

a
K(x, t)um(t) dt =

g(x)

fn(x)
, (4.2.3.6)

where m = 0, 1, 2, . . . The function u0(x) = 0 can be taken as the zeroth approximation;

then u1(x) = g(x)/fn(x).

For more efficient numerical methods for integral equations of the form (4.2.3.4), see

the book by Polyanin & Manzhirov (2008).
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Remark 4.2. The Cauchy problem for equation (4.2.2.1) with nonhomogeneous boundary con-

ditions

y(a) = b0, y′x(a) = b1, . . . , y(n−1)
x (a) = bn−1

can be reduced to a Cauchy problem with homogeneous boundary conditions for another function

w(x) with the help of the substitution

y(x) = w(x) +

n−1∑

k=1

bk
(x − a)k

k!
.

⊙ Literature for Section 4.2: G. M. Murphy (1960), L. E. El’sgol’ts (1961), N. M. Matveev (1967), E. Kamke

(1977), A. N. Tikhonov, A. B. Vasil’eva, and A. G. Sveshnikov (1980), D. Zwillinger (1997), G. A. Korn and

T. M. Korn (2000), A. D. Polyanin and V. F. Zaitsev (2003), A. D. Polyanin and A. V. Manzhirov (2007, 2008).

4.3 Laplace Transform and the Laplace Integral.

Applications to Linear ODEs

4.3.1 Laplace Transform and the Inverse Laplace Transform

◮ Laplace transform.

The Laplace transform of an arbitrary (complex-valued) function f(x) of a real variable x
(x ≥ 0) is defined by

f̃(p) =

∫ ∞

0
e−pxf(x) dx, (4.3.1.1)

where p = s+ iσ is a complex variable.

The Laplace transform exists for any continuous or piecewise-continuous function sat-

isfying the condition |f(x)| < Meσ0x with some M > 0 and σ0 ≥ 0. In the following,

σ0 often means the greatest lower bound of the possible values of σ0 in this estimate; this

value is called the growth exponent of the function f(x).
For any f(x), the transform f̃(p) is defined in the half-plane Re p > σ0 and is analytic

there.

For brevity, we shall write formula (4.3.1.1) as follows:

f̃(p) = L
{
f(x)

}
.

◮ Inverse Laplace transform.

Given the transform f̃(p), the function f(x) can be found by means of the inverse Laplace

transform

f(x) =
1

2πi

∫ c+i∞

c−i∞
f̃(p)epx dp, i2 = −1, (4.3.1.2)

where the integration path is parallel to the imaginary axis and lies to the right of all singu-

larities of f̃(p), which corresponds to c > σ0.

The integral in inversion formula (4.3.1.2) is understood in the sense of the Cauchy

principal value: ∫ c+i∞

c−i∞
f̃(p)epx dp = lim

ω→∞

∫ c+iω

c−iω
f̃(p)epx dp.
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In the domain x < 0, formula (4.3.1.2) gives f(x) ≡ 0.

Formula (4.3.1.2) holds for continuous functions. If f(x) has a (finite) jump disconti-

nuity at a point x = x0 > 0, then the left-hand side of (4.3.1.2) is equal to 1
2 [f(x0 − 0) +

f(x0 + 0)] at this point (for x0 = 0, the first term in the square brackets must be omitted).

For brevity, we write the Laplace inversion formula (4.3.1.2) as follows:

f(x) = L−1
{
f̃(p)

}
.

There are tables of direct and inverse Laplace transforms (see Sections S3.1 and S3.2,

which are handy in solving linear differential and integral equations.

4.3.2 Main Properties of the Laplace Transform. Inversion Formulas
for Some Functions

◮ Main properties of the Laplace transform.

1◦. The main properties of the correspondence between functions and their Laplace trans-

forms are gathered in Table 4.2.

2◦. The Laplace transforms of some functions are listed in Table 4.3; for more detailed

tables see Section S3.1 and the list of references at the end of this section.

TABLE 4.2

Main properties of the Laplace transform

No. Function Laplace transform Operation

1 af1(x) + bf2(x) af̃1(p) + bf̃2(p) Linearity

2 f(x/a), a > 0 af̃(ap) Scaling

3
f(x− a),

f(ξ) ≡ 0 for ξ < 0 e−apf̃(p)
Shift of

the argument

4 xnf(x); n = 1, 2, . . . (−1)nf̃ (n)
p (p)

Differentiation

of the transform

5
1

x
f(x)

∫ ∞

p

f̃(q) dq Integration

of the transform

6 eaxf(x) f̃(p− a)
Shift in

the complex plane

7 f ′
x(x) pf̃(p)− f(+0) Differentiation

8 f (n)
x (x) pnf̃(p)−

n∑
k=1

pn−kf (k−1)
x (+0) Differentiation

9 xmf (n)
x (x), m = 1, 2, . . . (−1)m

dm

dpm

[
pnf̃(p)−

n∑
k=1

pn−kf (k−1)
x (+0)

]
Differentiation

10
dn

dxn

[
xmf(x)

]
, m ≥ n (−1)mpn

dm

dpm
f̃(p) Differentiation

11

∫ x

0

f(t) dt f̃(p)

p
Integration

12

∫ x

0

f1(t)f2(x− t) dt f̃1(p)f̃2(p) Convolution
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TABLE 4.3

The Laplace transforms of some functions

No. Function, f(x) Laplace transform, f̃(p) Remarks

1 1 1/p

2 xn n!

pn+1
n = 1, 2, . . .

3 xa Γ(a+ 1)p−a−1 a > −1

4 e−ax (p+ a)−1

5 xae−bx Γ(a+ 1)(p+ b)−a−1 a > −1

6 sinh(ax)
a

p2 − a2

7 cosh(ax)
p

p2 − a2

8 ln x − 1

p
(ln p+ C) C = 0.5772 . . .

is the Euler constant

9 sin(ax)
a

p2 + a2

10 cos(ax)
p

p2 + a2

11 erfc

(
a

2
√
x

)
1

p
exp

(
−a√p

)
a ≥ 0

12 J0(ax)
1√

p2 + a2
J0(x) is the Bessel function

◮ Inverse transforms of rational functions.

Consider the important case in which the transform is a rational function of the form

f̃(p) =
R(p)

Q(p)
, (4.3.2.1)

where Q(p) and R(p) are polynomials in the variable p and the degree of Q(p) exceeds

that of R(p).
Assume that the zeros of the denominator are simple, i.e.,

Q(p) ≡ const (p− λ1)(p − λ2) . . . (p − λn).

Then the inverse transform can be determined by the formula

f(x) =

n∑

k=1

R(λk)

Q′(λk)
exp(λkx), (4.3.2.2)

where the primes denote the derivatives.

If Q(p) has multiple zeros, i.e.,

Q(p) ≡ const (p− λ1)s1(p − λ2)s2 . . . (p− λm)sm ,

then

f(x) =

m∑

k=1

1

(sk − 1)!
lim
p→sk

dsk−1

dpsk−1

[
(p− λk)sk f̃(p)epx

]
. (4.3.2.3)
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Example 4.3. The transform

f̃(p) =
b

p2 − a2 (a, b real numbers)

can be represented as the fraction (4.3.2.1) with R(p) = b and Q(p) = (p − a)(p + a). The

denominatorQ(p) has two simple roots, λ1 = a and λ2 = −a. Using formula (4.3.2.2) with n = 2
and Q′(p) = 2p, we obtain the inverse transform in the form

f(x) =
b

2a
eax − b

2a
e−ax =

b

a
sinh(ax).

Example 4.4. The transform

f̃(p) =
b

p2 + a2
(a, b real numbers)

can be written as the fraction (4.3.2.1) with R(p) = b and Q(p) = (p− ia)(p+ ia), i2 = −1. The

denominator Q(p) has two simple pure imaginary roots, λ1 = ia and λ2 = −ia. Using formula

(4.3.2.2) with n = 2, we find the inverse transform:

f(x)=
b

2ia
eiax− b

2ia
e−iax=− bi

2a

[
cos(ax)+i sin(ax)

]
+
bi

2a

[
cos(ax)−i sin(ax)

]
=
b

a
sin(ax).

Example 4.5. The transform

f̃(p) = ap−n,

where n is a positive integer, can be written as the fraction (.2.2.1) with R(p) = a and Q(p) = pn.

The denominatorQ(p) has one root of multiplicity n, λ1 = 0. By formula (.2.2.3) with m = 1 and

s1 = n, we find the inverse transform:

f(x) =
a

(n− 1)!
xn−1.

◆ Detailed tables of inverse Laplace transforms can be found in Section S3.2.

4.3.3 Limit Theorems. Representation of Inverse Transforms
as Convergent Series and Asymptotic Expansions

◮ Limit theorems.

THEOREM 1. Let 0 ≤ x <∞ and f̃(p) = L
{
f(x)

}
be the Laplace transform of f(x). If

a limit of f(x) as x→ 0 exists, then

lim
x→0

f(x) = lim
p→∞

[
pf̃(p)

]
.

THEOREM 2. If a limit of f(x) as x→∞ exists, then

lim
x→∞

f(x) = lim
p→0

[
pf̃(p)

]
.

◮ Representation of inverse transforms as convergent series.

THEOREM 1. Suppose the transform f̃(p) can be expanded into series in negative powers

of p,

f̃(p) =
∞∑

n=1

an
pn
,
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convergent for |p| > R, where R is an arbitrary positive number; note that the transform

tends to zero as |p| → ∞. Then the inverse transform can be obtained by the formula

f(x) =

∞∑

n=1

an
(n − 1)!

xn−1,

where the series on the right-hand side is convergent for all x.

THEOREM 2. Suppose the transform f̃(p), |p| > R, is represented by an absolutely

convergent series,

f̃(p) =

∞∑

n=0

an
pλn

, (4.3.3.1)

where {λn} is any positive increasing sequence, 0<λ0<λ1< · · ·→∞. Then it is possible

to proceed termwise from series (4.3.3.1) to the following inverse transform series:

f(x) =

∞∑

n=0

an
Γ(λn)

xλn−1, (4.3.3.2)

where Γ(λ) is the Gamma function. Series (4.3.3.2) is convergent for all real and complex

values of x other than zero (if λ0 ≥ 1, the series is convergent for all x).

◮ Representation of inverse transforms as asymptotic expansions as x → ∞.

1◦. Let p = p0 be a singular point of the Laplace transform f̃(p) with the greatest real part

(it is assumed there is only one such point). If f̃(p) can be expanded near p = p0 into an

absolutely convergent series,

f̃(p) =

∞∑

n=0

cn(p− p0)λn (λ0 < λ1 < · · · → ∞) (4.3.3.3)

with arbitrary λn, then the inverse transform f(x) can be expressed in the form of the

asymptotic expansion

f(x) ∼ ep0x
∞∑

n=0

cn
Γ(−λn)

x−λn−1 as x→∞. (4.3.3.4)

The terms corresponding to nonnegative integer λn must be omitted from the summation,

since Γ(0) = Γ(−1) = Γ(−2) = · · · =∞.

2◦. If the transform f̃(p) has several singular points, p1, . . . , pm, with the same greatest

real part, Re p1 = · · · = Re pm, then expansions of the form (4.3.3.3) should be obtained

for each of these points and the resulting expressions must be added together.

◮ Post–Widder formula.

In applications, one can find f(x) if the Laplace transform f̃(t) on the real semiaxis is

known for t = p ≥ 0. To this end, one uses the Post–Widder formula

f(x) = lim
n→∞

[
(−1)n
n!

(n
x

)n+1
f̃
(n)
t

(n
x

)]
. (4.3.3.5)

Approximate inversion formulas are obtained by taking sufficiently large positive integer n
in (4.3.3.5) instead of passing to the limit.
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4.3.4 Solution of the Cauchy Problem for Constant-Coefficient Linear
ODEs. Applications to Integro-Differential Equations

◮ Cauchy problem for constant-coefficient linear ODEs.

Consider the Cauchy problem for equation (4.1.2.1) with arbitrary initial conditions

y(0) = y0, y′x(0) = y1, . . . , y(n−1)
x (0) = yn−1, (4.3.4.1)

where y0, y1, . . . , yn−1 are given constants.

Problem (4.1.2.1), (4.3.4.1) can be solved using the Laplace transform based on the

formulas (for details, see Section 4.3.1)

ỹ(p) = L
{
y(x)

}
, f̃(p) = L

{
f(x)

}
, where L

{
f(x)

}
≡
∫ ∞

0
e−pxf(x) dx.

To this end, let us multiply equation (4.1.2.1) by e−px and then integrate with respect to x
from zero to infinity. Taking into account the differentiation rule

L
{
y(n)x (x)

}
= pnỹ(p)−

n∑

k=1

pn−ky(k−1)
x (+0)

and the initial conditions (4.3.4.1), we arrive at a linear algebraic equation for the trans-

form ỹ(p):

P (p)ỹ(p)−Q(p) = f̃(p), (4.3.4.2)

where

P (p) = pn + an−1p
n−1 + · · · + a1p+ a0, Q(p) = bn−1p

n−1 + · · ·+ b1p+ b0,

bk = yn−k−1 + an−1yn−k−2 + · · · + ak+2y1 + ak+1y0, k = 0, 1, . . . , n− 1.

The polynomial P (p) coincides with the characteristic polynomial (4.1.1.2) at λ = p.

The solution of equation (4.3.4.2) is given by the formula

ỹ(p) =
f̃(p) +Q(p)

P̃ (p)
. (4.3.4.3)

On applying the Laplace inversion formula (4.3.1.2) to (4.3.4.3), we obtain a solution to

problem (4.1.2.1), (4.3.4.1) in the form

y(x) =
1

2πi

∫ c+i∞

c−i∞

f̃(p) +Q(p)

P̃ (p)
epx dp. (4.3.4.4)

Since the transform ỹ(p) (4.3.4.3) is a rational function, the inverse Laplace transform

(4.3.4.4) can be obtained using the formulas from Section 4.3.2 or the tables of Sec-

tion S3.2.

Remark 4.3. In practice, the solution method for the Cauchy problem based on the Laplace

transform leads to the solution faster than the direct application of general formulas like (4.1.2.2),

where one has to determine the coefficients C1, . . . , Cn.
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Example 4.6. Consider the following Cauchy problem for a homogeneous fourth-order equa-

tion:

y′′′′xxxx + a4y = 0; y(0) = y′x(0) = y′′′xxx(0) = 0, y′′xx(0) = b.

Using the Laplace transform reduces this problem to a linear algebraic equation for the ỹ(p):
(p4 + a4)ỹ(p)− bp = 0. It follows that

ỹ(p) =
bp

p4 + a4
.

In order to invert this expression, let us use the table of inverse Laplace transforms (see Sec-

tion S3.2.2, row 52) and take into account that a constant multiplier can be taken outside the trans-

form operator to obtain the solution to the original Cauchy problem in the form

y(x) =
b

a2
sin
( ax√

2

)
sinh

( ax√
2

)
.

◮ Cauchy problem for integro-differential equations.

The Laplace transform can also be effective in solving some linear integro-differential

equations. This is illustrated below with a specific example:

Example 4.7. Consider the Cauchy problem for the linear integro-differential equation

dy

dx
+

∫ x

0

K(x− t)y(t) dt = f(x) (0 ≤ x <∞) (4.3.4.5)

with the initial condition

y = a at x = 0. (4.3.4.6)

Multiply equation (4.3.4.5) by e−px and then integrate with respect to x from zero to infinity.

Using properties 7 and 12 of the Laplace transform (Table 4.2) and taking into account the initial

condition (4.3.4.6), we obtain a linear algebraic equation for the transform ỹ(p):

pỹ(p)− a+ K̃(p)ỹ(p) = f̃(p).

It follows that

ỹ(p) =
f̃(p) + a

p+ K̃(p)
.

By the inversion formula (4.3.1.2), the solution to the original problem (4.3.4.5)–(4.3.4.6) is found

in the form

y(x) =
1

2πi

∫ c+i∞

c−i∞

f̃(p) + a

p+ K̃(p)
epx dp, i2 = −1. (4.3.4.7)

Consider the special case of a = 0 and K(x) = cos(bx). From row 10 of Table 4.3 it follows

that K̃(p) =
p

p2 + b2
. Rearrange the integrand of (4.3.4.7):

f̃(p)

p+ K̃(p)
=

p2 + b2

p(p2 + b2 + 1)
f̃(p) =

(
1

p
− 1

p(p2 + b2 + 1)

)
f̃(p).

In order to invert this expression, let us use the convolution theorem (see formula 16 of Sec-

tion S3.2.1) as well as formulas 1 and 28 for the inversion of rational functions, Section S3.2.2.

As a result, we arrive at the solution in the form

y(x) =

∫ x

0

b2 + cos
(
t
√
b2 + 1

)

b2 + 1
f(x− t) dt.
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4.3.5 Solution of Linear Equations with Polynomial Coefficients
Using the Laplace Transform

◮ Solution of equations using the Laplace transform. General description.

1◦. Some classes of equations (4.2.1.1) or (4.2.2.1) with polynomial coefficients

fk(x) =

sk∑

m=0

akmx
m

may be solved using the Laplace transform (see Sections 4.3.1, 4.3.2, and S3.1). To this

end, one uses the following formula for the Laplace transform of the product of a power

function and a derivative of the unknown function:

L
{
xmy(n)x (x)

}
= (−1)m dm

dpm

[
pnỹ(p)−

n∑

k=1

pn−ky(k−1)
x (+0)

]
. (4.3.5.1)

The right-hand side contains initial data y
(m)
x (+0), m = 0, 1, . . . , n − 1 (specified in the

Cauchy problem). As a result, one arrives at a linear ordinary differential equation, with

respect to p, for the transform ỹ(p); the order of this equation is equal to max
1≤k≤n

{sk}, the

highest degree of the polynomials that determine the equation coefficients. In some cases,

the equation for ỹ(p) turns out to be simpler than the initial equation for y(x) and can be

solved in closed form. The desired function y(x) is found by inverting the transform ỹ(p)
using the formulas from Section 4.3.2 or the tables from Section S3.2.

◮ Application to the Laplace equation.

Consider the Laplace equation

(an+bnx)y
(n)
x +(an−1+bn−1x)y

(n−1)
x + · · ·+(a1+b1x)y

′
x+(a0+b0x)y=0, (4.3.5.2)

whose coefficients are linear functions of the independent variable x. The application of

the Laplace transform, in view of formulas (4.3.5.1), brings it to a linear first-order ordinary

differential equation for the transform ỹ(p).

Example 4.8. Consider a special case of equation (4.3.5.2):

xy′′xx + y′x + axy = 0. (4.3.5.3)

Denote y(0)=y0 and y′x(0)=y1. Let us apply the Laplace transform to this equation using formulas

(4.3.5.1). On rearrangement, we obtain a linear first-order equation for ỹ(p):

−(p2ỹ − y0p− y1)′p + (pỹ − y0)− aỹ ′
p = 0 =⇒ (p2 + a)ỹ ′

p + pỹ = 0.

Its general solution is expressed as

ỹ =
C√
p2 + a

, (4.3.5.4)

where C is an arbitrary constant. Applying the inverse Laplace transform to (4.3.5.4) and taking

into account formulas 19 and 20 from Section S3.2.3, we find a solution to the original equation

(4.3.5.3):

y(x) =

{
CJ0(x

√
a ) if a > 0,

CI0(x
√
−a ) if a < 0,

(4.3.5.5)
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where J0(x) is the Bessel function of the first kind and I0(x) is the modified Bessel function of the

first kind.

In this case, only one solution (4.3.5.5) has been obtained. This is due to the fact that the other

solution goes to infinity as x→ 0, and hence formula (4.3.5.1) cannot be applied to it; this formula

is only valid for finite initial values of the function and its derivatives.

4.3.6 Solution of Linear Equations with Polynomial Coefficients
Using the Laplace Integral

◮ Solution of equations using the Laplace integral. General description.

Solutions to linear differential equations with polynomial coefficients can sometimes be

represented as a Laplace integral in the form

y(x) =

∫

K
epxu(p) dp. (4.3.6.1)

For now, no assumptions are made about the domain of integration K; it could be a segment

of the real axis or a curve in the complex plane.

Let us exemplify the usage of the Laplace integral (4.3.6.1) by considering equation

(4.3.5.2). It follows from (4.3.6.1) that

y(k)x (x) =

∫

K
epxpku(p) dp,

xy(k)x (x) =

∫

K
xepxpku(p) dp =

[
epxpku(p)

]
K
−
∫

K
epx

d

dp

[
pku(p)

]
dp.

Substituting these expressions into (4.3.5.2) yields

∫

K
epx
{ n∑

k=0

akp
ku(p)−

n∑

k=0

bk
d

dp

[
pku(p)

]}
dp+

n∑

k=0

bk

[
epxpku(p)

]
K
= 0. (4.3.6.2)

This equation is satisfied if the expression in braces vanishes, thus resulting in a linear

first-order ordinary differential equation for u(p):

u(p)

n∑

k=0

akp
k − d

dp

[
u(p)

n∑

k=0

bkp
k
]
= 0. (4.3.6.3)

The remaining term in (4.3.6.2) must also vanish:

[ n∑

k=0

bke
pxpku(p)

]
K
= 0. (4.3.6.4)

This condition can be met by appropriately selecting the path of integration K. Consider

the example below to illustrate the aforesaid.

◮ Application to the second-order Laplace equation of the special form.

Consider the linear variable-coefficient second-order equation

xy′′xx + (x+ a+ b)y′x + ay = 0 (a > 0, b > 0), (4.3.6.5)
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that is a special case of equation (4.3.5.2) with n=2, a2=0, a1=a+b, a0=a, b2= b1=1,

and b0 = 0. On substituting these values into (4.3.6.3), we arrive at an equation for u(p):

p(p+ 1)u′p − [(a+ b− 2)p + a− 1]u = 0.

Its solution is given by

u(p) = pa−1(p + 1)b−1. (4.3.6.6)

It follows from condition (4.3.6.4), in view of formula (4.3.6.6), that

[
epx(p+ p2)u(p)

]β
α
=
[
epxpa(p+ 1)b

]β
α
= 0, (4.3.6.7)

where a segment of the real axis, K = [α, β], has been chosen to be the path of integration.

Condition (4.3.6.7) is satisfied if we set α = −1 and β = 0. Consequently, one of the

solutions to equation (4.3.6.5) has the form

y(x) =

∫ 0

−1
epxpa−1(p+ 1)b−1 dp. (4.3.6.8)

Remark 4.4. If a is noninteger, it is necessary to separate the real and imaginary parts in

(4.3.6.8) to obtain real solutions.

Remark 4.5. By setting α = −∞ and β = 0 in (4.3.6.7), one can find a second solution to

equation (4.3.6.5) (at least for x > 0).

⊙ Literature for Section 4.3: G. Doetsch (1950, 1956, 1974), H. Bateman and A. Erdélyi (1954), G. M. Mur-

phy (1960), V. A. Ditkin and A. P. Prudnikov (1965), J. W. Miles (1971), F. Oberhettinger and L. Badii (1973),

E. Kamke (1977), W. R. LePage (1980), R. Bellman and R. Roth (1984), A. P. Prudnikov, Yu. A. Brychkov,

and O. I. Marichev (1992a,b), M. Ya. Antimirov (1993), D. Zwillinger (1997), G. A. Korn and T. M. Korn

(2000), A. D. Polyanin and V. F. Zaitsev (2003), A. D. Polyanin and A. V. Manzhirov (2007).

4.4 Asymptotic Solutions of Linear Equations

This section presents asymptotic solutions, as ε → 0 (ε > 0), of some higher-order linear

ordinary differential equations containing arbitrary functions (sufficiently smooth), with

the independent variable being real.

4.4.1 Fourth-Order Linear Differential Equations

◮ Binomial equation.

1◦. Consider the equation

ε4y′′′′xxxx − f(x)y = 0

on a closed interval a≤x≤ b. With the condition f > 0, the leading terms of the asymptotic

expansions of the fundamental system of solutions, as ε→ 0, are given by the formulas

y1 = [f(x)]−3/8 exp

{
− 1

ε

∫
[f(x)]1/4 dx

}
, y2 = [f(x)]−3/8 exp

{
1

ε

∫
[f(x)]1/4 dx

}
,

y3 = [f(x)]−3/8 cos

{
1

ε

∫
[f(x)]1/4 dx

}
, y4 = [f(x)]−3/8 sin

{
1

ε

∫
[f(x)]1/4 dx

}
.
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◮ Trinomial equation.

Now consider the “biquadratic” equation

ε4y′′′′xxxx − 2ε2g(x)y′′xx − f(x)y = 0. (4.4.1.1)

Introduce the notation

D(x) = [g(x)]2 + f(x).

In the range where the conditions f(x) 6= 0 and D(x) 6= 0 are satisfied, the leading terms

of the asymptotic expansions of the fundamental system of solutions of equation (4.4.1.1)

are described by the formulas

yk = [λk(x)]
−1/2[D(x)]−1/4 exp

{
1

ε

∫
λk(x) dx−

1

2

∫
[λk(x)]

′
x√

D(x)
dx

}
; k= 1, 2, 3, 4,

where

λ1(x) =
√
g(x) +

√
D(x), λ2(x) = −

√
g(x) +

√
D(x),

λ3(x) =
√
g(x) −

√
D(x), λ4(x) = −

√
g(x) −

√
D(x).

4.4.2 Higher-Order Linear Differential Equations

◮ Binomial equation.

Consider an equation of the form

εny(n)x − f(x)y = 0

on a closed interval a≤x≤ b. Assume that f 6=0. Then the leading terms of the asymptotic

expansions of the fundamental system of solutions, as ε→ 0, are given by

ym =
[
f(x)

]− 1
2 + 1

2n exp

{
ωm

ε

∫ [
f(x)

] 1
n dx

}[
1 +O(ε)

]
,

where ω1, ω2, . . . , ωn are roots of the equation ωn = 1:

ωm = cos
( 2πm

n

)
+ i sin

( 2πm
n

)
, m = 1, 2, . . . , n.

◮ More complex equation.

Now consider an equation of the form

εny(n)x + εn−1fn−1(x)y
(n−1)
x + · · ·+ εf1(x)y

′
x + f0(x)y = 0 (4.4.2.1)

on a closed interval a ≤ x ≤ b. Let λm = λm(x) (m = 1, 2, . . . , n) be the roots of the

characteristic equation

P (x, λ) ≡ λn + fn−1(x)λ
n−1 + · · · + f1(x)λ+ f0(x) = 0.

Let all the roots of the characteristic equation be different on the interval a ≤ x ≤ b, i.e.,

the conditions λm(x) 6= λk(x), m 6= k, are satisfied, which is equivalent to the fulfillment
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of the conditions Pλ(x, λm) 6= 0. Then the leading terms of the asymptotic expansions of

the fundamental system of solutions of equation (4.4.2.1), as ε→ 0, are given by

ym = exp

{
1

ε

∫
λm(x) dx − 1

2

∫
[λm(x)]′x

Pλλ

(
x, λm(x)

)

Pλ

(
x, λm(x)

) dx

}
,

where

Pλ(x, λ)≡
∂P

∂λ
=nλn−1+(n−1)fn−1(x)λ

n−2+· · ·+2λf2(x)+f1(x),

Pλλ(x, λ)≡
∂2P

∂λ2
=n(n−1)λn−2+(n−1)(n−2)fn−1(x)λ

n−3+· · ·+6λf3(x)+2f2(x).

⊙ Literature for Section 4.4: W. Wasov (1965), M. V. Fedoryuk (1993), A. D. Polyanin and V. F. Zaitsev

(2003).

4.5 Collocation Method

4.5.1 Statement of the Problem. Approximate Solution

1◦. Consider the linear boundary value problem defined by the equation

Ly ≡ y(n)x +fn−1(x)y
(n−1)
x + · · ·+f1(x)y′x+f0(x)y = g(x), −1<x< 1, (4.5.1.1)

and the boundary conditions

n−1∑

j=0

[
αijy

(j)
x (−1) + βijy

(j)
x (1)

]
= 0, i = 1, . . . , n. (4.5.1.2)

2◦. We seek an approximate solution to problem (4.5.1.1)–(4.5.1.2) in the form

ym(x) = A1ϕ1(x) +A2ϕ2(x) + · · ·+Amϕm(x),

where ϕk(x) is a polynomial of degree n + k − 1 that satisfies the boundary conditions

(4.5.1.2). The coefficients Ak are determined by the linear system of algebraic equations
[
Lym − g(x)

]
x=xi

= 0, i = 1, . . . ,m, (4.5.1.3)

with Chebyshev nodes xi = cos
( 2i− 1

2m
π
)

, i = 1, . . . , m.

4.5.2 Convergence Theorem

THEOREM. Let the functions fj(x) (j = 0, . . . , n − 1) and g(x) be continuous on the

interval [−1, 1] and let the boundary value problem (4.5.1.1)–(4.5.1.2) have a unique so-

lution, y(x). Then there exists an m0 such that system (4.5.1.3) is uniquely solvable for

m ≥ m0; and the limit relations

max
−1≤x≤1

∣∣y(k)m (x)− y(k)(x)
∣∣ ≤ cEm

(
y(n)

)
→ 0, k = 0, 1, . . . , n− 1;

{∫ 1

−1

∣∣y(n)m (x)− y(n)(x)
∣∣2

√
1− x2

dx

}1/2
≤ cEm

(
y(n)

)
→ 0



“K16435’ — 2017/9/28 — 15:05 — #242

216 METHODS FOR LINEAR ODES OF ARBITRARY ORDER

hold for m→∞. Here c = const and

Em(v) = min
b0,...,bm−1

max
−1≤x≤1

∣∣∣∣v(x)−
m−1∑

j=0

bjx
j

∣∣∣∣.

Remark 4.6. A similar result holds true if the nodes are roots of some orthogonal polynomials

with some weight function. If the nodes are equidistant, the method diverges.

⊙ Literature for Section 4.5: R. D. Russell and L. F. Shampine (1972), C. de Boor and B. Swartz (1993),

Mathematical Encyclopedia (1979, p. 951), A. D. Polyanin and A. V. Manzhirov (2007).
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Chapter 5

Methods for Nonlinear ODEs
of Arbitrary Order

5.1 General Concepts. Cauchy Problem.

Uniqueness and Existence Theorems

5.1.1 Equations Solved for the Derivative. General Solution

◮ Equations solved for the highest derivative. Structure of the general solution.

An nth-order differential equation solved for the highest derivative has the form

y(n)x = f(x, y, y′x, . . . , y
(n−1)
x ). (5.1.1.1)

A solution of a differential equation is a function y(x) that, when substituted into the

equation, turns it into an identity. The general solution of a differential equation is the set

of all its solutions.

The general solution of this equation depends on n arbitrary constants C1, . . . , Cn. In

some cases, the general solution can be written in explicit form as

y = ϕ(x,C1, . . . , Cn). (5.1.1.2)

◮ Cauchy problem. Existence and uniqueness theorem.

The Cauchy problem: find a solution of equation (5.1.1.1) with the initial conditions

y(x0) = y0, y′x(x0) = y
(1)
0 , . . . , y(n−1)

x (x0) = y
(n−1)
0 . (5.1.1.3)

(At a point x0, the values of the unknown function y(x) and all its derivatives of orders

≤ n− 1 are prescribed.)

EXISTENCE AND UNIQUENESS THEOREM. Let the function f(x, y, z1, . . . , zn−1) be

continuous in all its arguments in a neighborhood of the point (x0, y0, y
(1)
0 , . . . , y

(n−1)
0 )

and have bounded derivatives with respect to y, z1, . . . , zn−1 in this neighborhood. Then a

solution of equation (5.1.1.1) satisfying the initial conditions (5.1.1.3) exists and is unique.

217
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5.1.2 Some Transformations

◮ Construction of a differential equation by a given general solution.

Suppose a general solution (5.1.1.2) of an unknown nth-order ordinary differential equation

is given. The equation corresponding to the general solution can be obtained by eliminating

the arbitrary constants C1, . . . , Cn from the identities

y = ϕ(x,C1, . . . , Cn),

y′x = ϕ′
x(x,C1, . . . , Cn),

. . . . . . . . . . . . . . . . . . . . . . . . . .

y(n)x = ϕ(n)
x (x,C1, . . . , Cn),

obtained by differentiation from formula (5.1.1.2).

◮ Reduction of an nth-order equation to a system of n first-order equations.

The differential equation (5.1.1.1) is equivalent to the following system of n first-order

equations:

y′1 = y2, y′2 = y3, . . . , y′n−1 = yn, y′n = f(x, y1, y2, . . . , yn), (5.1.2.1)

where the notation y1 ≡ y is adopted.

The initial conditions (5.1.1.3) for equation (5.1.1.1) become the initial conditions

y1(x0) = y0, y2(x0) = y
(1)
0 , . . . , yn(x0) = y

(n−1)
0 (5.1.2.2)

for system (5.1.2.1).

Remark 5.1. For the numerical integration of equation (5.1.1.1) and system (5.1.2.1), see Sec-

tions 7.4.2 and 5.4.1.

⊙ Literature for Section 5.1: G. M. Murphy (1960), L. E. El’sgol’ts (1961), N. M. Matveev (1967), I. G. Pet-

rovskii (1970), E. Kamke (1977), A. N. Tikhonov, A. B. Vasil’eva, and A. G. Sveshnikov (1985), D. Zwill-

inger (1997), G. A. Korn and T. M. Korn (2000), A. D. Polyanin and V. F. Zaitsev (2003), W. E. Boyce and

R. C. DiPrima (2004), A. D. Polyanin and A. V. Manzhirov (2007).

5.2 Equations Admitting Reduction of Order

5.2.1 Equations Not Containing y or x Explicitly

◮ Equations not containing y, y′x, . . . , y
(k)
x explicitly.

An equation that does not explicitly contain the unknown function and its derivatives up to

order k inclusive can generally be written as

F
(
x, y(k+1)

x , . . . , y(n)x

)
= 0 (1 ≤ k + 1 < n). (5.2.1.1)

Such equations are invariant under arbitrary translations of the unknown function, y →
y + const (the form of such equations is also preserved under the transformation u(x) =
y+ akx

k + · · ·+ a1x+ a0, where the am are arbitrary constants). The substitution z(x) =

y
(k+1)
x reduces (5.2.1.1) to an equation whose order is by k + 1 lower than that of the

original equation, F
(
x, z, z′x, . . . , z

(n−k−1)
x

)
= 0.



“K16435’ — 2017/9/28 — 15:05 — #245

5.2. Equations Admitting Reduction of Order 219

◮ Equations not containing x explicitly (autonomous equations).

An equation that does not explicitly contain x has in the general form

F
(
y, y′x, . . . , y

(n)
x

)
= 0. (5.2.1.2)

Such equations are invariant under arbitrary translations of the independent variable, x →
x+ const. The substitution y′x = w(y) (where y plays the role of the independent variable)

reduces by one the order of an autonomous equation. Higher derivatives can be expressed

in terms of w and its derivatives with respect to the new independent variable, y′′xx = ww′
y ,

y′′′xxx = w2w′′
yy + w(w′

y)
2, . . .

◮ Related equations.

Equations of the form

F
(
ax+ by, y′x, . . . , y

(n)
x

)
= 0

are invariant under simultaneous translations of the independent variable and the unknown

function, x→ x+ bc and y → y − ac, where c is an arbitrary constant.

For b = 0, see equation (5.2.1.1). For b 6= 0, the substitution w(x) = y + (a/b)x leads

to an autonomous equation of the form (5.2.1.2).

5.2.2 Homogeneous Equations

◮ Equations homogeneous in the independent variable.

Equations homogeneous in the independent variable are invariant under scaling of the in-

dependent variable, x → αx, where α is an arbitrary constant (α 6= 0). In general, such

equations can be written in the form

F
(
y, xy′x, x

2y′′xx, . . . , x
ny(n)x

)
= 0.

The substitution z(y) = xy′x reduces by one the order of this equation.

◮ Equations homogeneous in the unknown function.

Equations homogeneous in the unknown function are invariant under scaling of the un-

known function, y→ αy, where α is an arbitrary constant (α 6= 0). Such equations can be

written in the general form

F
(
x, y′x/y, y

′′
xx/y, . . . , y

(n)
x /y

)
= 0.

The substitution z(x) = y′x/y reduces by one the order of this equation.

◮ Equations homogeneous in both variables.

Equations homogeneous in both variables are invariant under simultaneous scaling (dilata-

tion) of the independent and dependent variables, x → αx and y → αy, where α is an

arbitrary constant (α 6= 0). Such equations can be written in the general form

F
(
y/x, y′x, xy

′′
xx, . . . , x

n−1y(n)x

)
= 0.

The transformation t = ln |x|, w = y/x leads to an autonomous equation considered in

Section 5.2.1 (see Eq. (5.2.1.2)).
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5.2.3 Generalized Homogeneous Equations

◮ Equations of a special form.

Generalized homogeneous equations (equations homogeneous in the generalized sense) are

invariant under simultaneous scaling of the independent variable and the unknown function,

x→ αx and y→ αky, where α 6= 0 is an arbitrary constant and k is a given number. Such

equations can be written in the general form

F
(
x−ky, x1−ky′x, . . . , x

n−ky(n)x

)
= 0.

The transformation t = lnx, w = x−ky leads to an autonomous equation considered in

Section 5.2.1 (see Eq. (5.2.1.2)).

◮ Equations of the general form.

The most general form of generalized homogeneous equations is

F
(
xnym, xy′x/y, . . . , x

ny(n)x /y
)
= 0.

The transformation z = xnym, u = xy′x/y reduces the order of this equation by one.

5.2.4 Equations Invariant under Scaling-Translation Transformations

◮ Equations of the first type.

The equations of the form

F
(
eλxym, y′x/y, y

′′
xx/y, . . . , y

(n)
x /y

)
= 0

are invariant under the simultaneous translation and scaling of variables, x→ x+ α and

y → βy, where β = exp(−αλ/m) and α is an arbitrary constant. The transformation

z = eλxym, w = y′x/y leads to an equation of order n− 1.

◮ Equations of the second type.

The equations of the form

F
(
xmeλy, xy′x, x

2y′′xx, . . . , x
ny(n)x

)
= 0

are invariant under the simultaneous scaling and translation of variables, x → αx and

y → y + β, where α = exp(−βλ/m) and β is an arbitrary constant. The transformation

z = xmeλy , w = xy′x leads to an equation of order n− 1.

5.2.5 Other Equations

◮ Equations of the form F
(
x, xy′x − y, y′′xx, . . . , y

(n)
x

)
= 0.

The substitution w(x) = xy′x − y reduces the order of this equation by one.

This equation is a special case of the equation

F
(
x, xy′x −my, y(m+1)

x , . . . , y(n)x

)
= 0, where m = 1, 2, . . . , n− 1. (5.2.5.1)

The substitution w(x) = xy′x −my reduces by one the order of equation (5.2.5.1).
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◮ Nonlinear equations involving linear homogeneous differential forms.

Consider the nonlinear differential equation

F
(
x,L1[y], . . . ,Lk[y]

)
= 0, (5.2.5.2)

where the Ls[y] are linear homogeneous differential forms,

Ls[y] =

ns∑

m=0

ϕ(s)
m (x)y(m)

x , s = 1, . . . , k.

Let y0 = y0(x) be a common particular solution of the linear equations

Ls[y0] = 0 (s = 1, . . . , k).

Then the substitution

w = ψ(x)
[
y0(x)y

′
x − y′0(x)y

]
(5.2.5.3)

with an arbitrary function ψ(x) reduces by one the order of equation (5.2.5.2).

Example 5.1. Consider the third-order equation

y′′′xxx = y + f(y′x − y).
It can be represented in the form (5.2.5.2) with

k = 2, F (x, u, w) = u− f(w), u = L1[y] = y′′′xxx − y, w = L2[y] = y′x − y.
The linear equations Lk[y] = 0 are

y′′′xxx − y = 0, y′x − y = 0.

These equations have a common particular solution y0 = ex. Therefore, the substitution w =
y′x − y (see formula (5.2.5.3) with ψ(x) = e−x) leads to a second-order autonomous equation:

w′′
xx + w′

x + w = f(w).

Example 5.2. Consider the other third-order equation

xy′′′xxx = f(xy′x − 2y).

It can be represented in the form (5.2.5.2) with

k = 2, F (x, u, w) = xu− f(w), u = L1[y] = y′′′xxx, w = L2[y] = xy′x − 2y.

The linear equations Lk[y] = 0 are

y′′′xxx = 0, xy′x − 2y = 0.

These equations have a common particular solution y0 = x2. Therefore, the substitution w =
xy′x − 2y (see formula (5.2.5.3) with ψ(x) = 1/x) leads to a second-order autonomous equation:

w′′
xx = f(w). For the solution of this equation, see Example 3.1 in Section 3.2.1.

Example 5.3. The 2nth-order equation

y(2n)x = f(x, y′′xx − y) + y (5.2.5.4)

can be represented in the form (5.2.5.2) with

k = 2, F (x, u, w) = u− f(x,w), L1[y] = y(2n)x − y, L2[y] = y′′xx − y.
Consider the linear equations

L1[y] ≡ y(2n)x − y = 0, L2[y] ≡ y′′xx − y = 0. (5.2.5.5)

There are two cases.
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1◦. Equations (5.2.5.5) have a common particular solution, y0 = ex. Therefore, the substitution

w = y′x − y (see formula (5.2.5.3) with ϕ(x) = e−x) takes Eq. (5.2.5.4) to an (n − 1)st-order

equation.

2◦. Equations (5.2.5.5) also have another common particular solution, y0 = e−x. Therefore, the

substitution w = y′x + y (see formula (5.2.5.3) with ϕ(x) = ex) leads Eq. (5.2.5.4) to an (n− 1)st-

order equation.

Both of the above cases can be combined together. Specifically, the substitution u = y′′xx − y
reduces Eq. (5.2.5.4) to an (n− 2)nd-order equation.

In particular, a fourth-order equation of the form

y(4)x = f(y′′xx − y) + y

can be reduced with the substitution u = y′′xx − y to the second-order autonomous equation u′′xx =
f(u)− u, whose general solution can be represented in implicit form (see Example 3.1).

⊙ Literature for Section 5.2: G. M. Murphy (1960), N. M. Matveev (1967), E. Kamke (1977), D. Zwillinger

(1997), G. A. Korn and T. M. Korn (2000), A. D. Polyanin and V. F. Zaitsev (2003), A. D. Polyanin and

A. V. Manzhirov (2007).

5.3 Method for Construction of Solvable Equations

of General Form

5.3.1 Description of the Method

Consider a function

y = f(x,C1, C2, . . . , Cn+1) (5.3.1.1)

depending on n+1 free parameters Ck. Differentiating relation (5.3.1.1) n times, we obtain

the following sequence of equations:

y(k)x = f (k)x (x,C1, C2, . . . , Cn+1), k = 1, 2, . . . , n. (5.3.1.2)

Treating relations (5.3.1.1), (5.3.1.2) as an algebraic (transcendental) system of equations

for the parameters C1, C2, . . . , Cn+1 and solving this system, we obtain

Ck = ϕk

(
x, y, y′x, . . . , y

(n)
x

)
, k = 1, 2, . . . , n+ 1. (5.3.1.3)

Consider a general nth-order equation of the form

F (ϕ1, ϕ2, . . . , ϕn+1) = 0, (5.3.1.4)

where F is an arbitrary function of (n + 1) variables and ϕk = ϕk

(
x, y, y′x, . . . , y

(n)
x

)
are

the functions from (5.3.1.3). Equation (5.3.1.4) is satisfied by the function (5.3.1.1), where

the (n+ 1) arbitrary parameters C1, C2, . . . , Cn+1 are related by a single constraint:

F (C1, C2, . . . , Cn+1) = 0.

Remark 5.2. Equation (5.3.1.4) may also have singular solutions depending on a smaller num-

ber of arbitrary constants. In order to examine these solutions, one should differentiate equation

(5.3.1.4); see Example 5.4.

Remark 5.3. Instead of (5.3.1.4), one can consider a more general equation

F (ψ1, ψ2, . . . , ψn+1) = 0, where ψk = ψk(ϕ1, ϕ2, . . . , ϕn+1).
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Remark 5.4. The original expression (5.3.1.1) can be specified in an implicit form.

Remark 5.5. The original expression (5.3.1.1) can be written as an mth-order differential equa-

tion (m<n) with n−m+1 free parametersCk. The solution of the nth-order differential equation

obtained in this way can be expressed in terms of the solution of an mth-order differential equation

(see Example 5.7).

5.3.2 Illustrative Examples

Example 5.4. Consider the function

y = −C1e
−x + C2. (5.3.2.1)

By differentiation we obtain

y′x = C1e
−x. (5.3.2.2)

Let us solve equations (5.3.2.1)–(5.3.2.2) for the parameters C1 and C2. We have

C1 = exy′x, C2 = y′x + y.

Using the above method, we construct an equation in accordance with (5.3.1.4):

F
(
exy′x, y

′
x + y

)
= 0. (5.3.2.3)

This equation admits a solution of the form (5.3.2.1) with constants C1 and C2 related by the con-

straint F (C1, C2) = 0.

Singular solution. Differentiating equation (7) with respect to x, we get

(y′′xx + y′x)(e
xFu + Fv) = 0, (5.3.2.4)

where the subscripts u and v indicate the respective partial derivatives of the function F = F (u, v).
Equating the first factor in (5.3.2.4) to zero, we obtain solution (5.3.2.1). Equating the second factor

to zero, we obtain an expression which, combined with equation (5.3.2.3), yields a singular solution

in parametric form:

F (u, v) = 0, exFu + Fv = 0, where u = ext, v = t+ y.

One should eliminate t = y′x from these expressions.

Example 5.5. Consider the function

y = C1x
2 + C2x+ C3. (5.3.2.5)

Differentiating this function twice, we get

y′x = 2C1x+ C2,

y′′xx = 2C1.
(5.3.2.6)

Solving (5.3.2.5)–(5.3.2.6) for the parameters Ck, we find that

C1 = 1
2 y

′′
xx, C2 = y′x − xy′′xx, C3 = y − xy′x + 1

2x
2y′′xx.

These relations lead to a second-order equation of general form:

F
(
1
2 y

′′
xx, y

′
x − xy′′xx, y − xy′x + 1

2x
2y′′xx

)
= 0,

which has a solution of the type (5.3.2.5) with the three constants C1, C2, and C3 related by the

constraint F (C1, C2, C3) = 0.
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Example 5.6. In Example 5.5, one can choose the functions ψk of the form (see Remark 5.3)

ψ1 = 2ϕ1, ψ2 = −ϕ2, ψ3 = 4ϕ1ϕ3 − ϕ2
2,

where ϕ1 =
1
2 y

′′
xx, ϕ2 = y′x−xy′′xx, ϕ3 = y−xy′x+ 1

2x
2y′′xx. As a result, we obtain the differential

equation:

F
(
y′′xx, xy

′′
xx − y′x, 2yy′′xx − (y′x)

2
)
= 0.

Its solution is given by (5.3.2.5) with three constants C1, C2, and C3 related by a single constraint

F(2C1,−C2, 4C1C3 − C2
3 ) = 0.

Example 5.7. Consider the autonomous equation

y′′xx = C1y
−a + C2. (5.3.2.7)

Its solution can be represented in implicit form (see Example 3.1 and Eq. 14.9.1.1). Differentiating

(5.3.2.7), we obtain

y′′′xxx = −aC1y
−a−1y′x. (5.3.2.8)

Let us solve equations (5.3.2.7)–(5.3.2.8) for the parameters C1 and C2:

C1 = −ya+1 y
′′′
xxx

ay′x
, C2 = y′′xx + y

y′′′xxx
ay′x

.

Taking ψ1 = −aϕ1 and ψ2 = aϕ2 (see Remark 5.3), we obtain the equation:

F

(
ya+1 y

′′′
xxx

y′x
, y

y′′′xxx
y′x

+ ay′′xx

)
= 0.

This equation is satisfied by the solutions of a second-order autonomous equation of the form

(5.3.2.7), where the constants C1 and C2 are related by the constraint F (−aC1, aC2) = 0.

⊙ Literature for Section 5.3: A. D. Polyanin and V. F. Zaitsev (2003).

5.4 Numerical Integration of n-order Equations

5.4.1 Numerical Solution of the Cauchy Problem for n-order ODEs

The Cauchy problem for the nth-order equation (5.1.1.1) subject to the initial conditions

(5.1.1.3) is solved numerically in two stages. First, equation (5.1.1.1) is reduced to the

equivalent system of n first-order equations (5.1.2.1) with the initial conditions (5.1.2.2).

In the second stage, the resulting system (5.1.2.1) is integrated numerically with standard

methods outlined in Section 7.4.2.

5.4.2 Numerical Solution of Equations Defined Implicitly or
Parametrically

◮ Numerical integration of equations defined parametrically.

Below we describe a numerical method for solving the Cauchy problem for the n-order

equation represented in parametric form by two relations

y(m)
x = F (x, y, y′x, . . . , y

(m−1)
x , t), y(n)x = G(x, y, y′x, . . . , y

(n−1)
x , t), m < n,

(5.4.2.1)

subject to the initial conditions (5.1.1.3), with t being a functional parameter.
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We start directly from equations (5.4.2.1). Consider two auxiliary Cauchy problems

y(m)
x = F (x, y, y′x, . . . , y

(m−1)
x , t),

y(x0) = y0, y
′
x(x0) = y

(1)
0 , . . . , y(m−1)

x (x0) = y
(m−1)
0 (1st problem); (5.4.2.2)

y(n)x = G(x, y, y′x, . . . , y
(n−1)
x , t),

y(x0) = y0, y
′
x(x0) = y

(1)
0 , . . . , y(n−1)

x (x0) = y
(n−1)
0 (2nd problem). (5.4.2.3)

Let yF = yF (x, t) and yG = yG(x, t) denote their respective solutions. Introduce the

difference of these solutions

∆(x, t) = yG(x, t)− yF (x, t). (5.4.2.4)

By fixing a value of the parameter, t= tk, we compute the solutions yF (x, tk) and yG(x, tk)
using, for example, the Runge–Kutta method. Further, by varying x, we find a xk at which

the right-hand side of equation (5.4.2.3) becomes zero: ∆(xk, tk) = 0. To this xk there

corresponds the value yk = yF (xk, tk) = yG(xk, tk). Thus, to each tk there corresponds a

point (xk, yk) in the (x, y) plane. By choosing a different value tk+1, we find a new point

(xk+1, yk+1). The combination of discrete points (xk, yk) with k=0, 1, 2, . . . determines

an approximation to the solution y = y(x) of the original problem (5.4.2.1), (5.1.1.3).

The initial value of the parameter, t= t0, is determined from the algebraic (or transcen-

dental) equation

y
(m)
0 = F (x0, y0, y

(1)
0 , . . . , y

(m−1)
0 , t0), (5.4.2.5)

where x0, y0, y
(1)
0 , . . . , y

(m)
0 are the values appearing in the initial conditions (5.4.2.2)–

(5.4.2.3), obtained from (5.1.1.3)).

Remark 5.6. In general, the algebraic (or transcendental) equation (5.4.2.5) can have one, two,

or more different roots, in which case the original problem (5.4.2.1), (5.1.1.3) will have the same

number of different solutions.

◮ Numerical integration of equations defined implicitly.

Consider the Cauchy problem for the implicitly defined equation

y(m)
x = F (x, y, y′x, . . . , y

(n−1)
x , y(n)x ), m < n (5.4.2.6)

subject to the initial conditions (5.1.1.3).

The substitution y
(n)
x = t reduces equation (5.4.2.6) to the parametric equation

y(m)
x = F (x, y, y′x, . . . , y

(n−1)
x , t), y(n)x = t (5.4.2.7)

with the initial conditions (5.1.1.3).

Problem (5.4.2.7), (5.1.1.3) is a special case of problem (5.4.2.1), (5.1.1.3) in which

G(. . . ) = t; hence, the above method is suitable for its solution.

⊙ Literature for Section 5.4: N. N. Kalitkin (1978), J. C. Butcher (1987), E. Hairer, C. Lubich, and M. Roche

(1989), W. E. Schiesser (1994), L. F. Shampine (1994), K. E. Brenan, S. L. Campbell, and L. R. Petzold (1996),

J. R. Dormand (1996), E. Hairer and G. Wanner (1996), D. Zwillinger (1997), U. M. Ascher and L. R. Petzold

(1998), G. A. Korn and T. M. Korn (2000), P. J. Rabier and W. C. Rheinboldt (2002), S. C. Chapra and

R. P. Canale (2010), A. D. Polyanin (2016b).
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Chapter 6

Methods for Linear Systems
of ODEs

6.1 Systems of Linear Constant-Coefficient Equations

6.1.1 Systems of First-Order Linear Homogeneous Equations.
General Solution

1◦. In general, a homogeneous linear system of constant-coefficient first-order ordinary

differential equations has the form

y′1 = a11y1 + a12y2 + · · · + a1nyn,

y′2 = a21y1 + a22y2 + · · · + a2nyn,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y′n = an1y1 + an2y2 + · · ·+ annyn,

(6.1.1.1)

where a prime stands for the derivative with respect to x. In the sequel, all the coeffi-

cients aij of the system are assumed to be real numbers.

The homogeneous system (6.1.1.1) has the trivial particular solution y1 = y2 = · · · =
yn = 0.

Superposition principle for a homogeneous system: any linear combination of particular

solutions of system (6.1.1.1) is also a solution of this system.

The general solution of the system of differential equations (6.1.1.1) is the sum of its n
linearly independent (nontrivial) particular solutions multiplied by an arbitrary constant.

System (6.1.1.1) can be reduced to a single homogeneous linear constant-coefficient

nth-order equation; see Section 7.1.3.

2◦. For brevity (and clearness), system (6.1.1.1) is conventionally written in vector-matrix

form:

y′ = ay, (6.1.1.2)

where y = (y1, y2, . . . , yn)
T is the column vector of the unknowns and a = (aij) is the

matrix of the equation coefficients. The superscript T denotes the transpose of a matrix or

a vector. So, for example, a row vector is converted into a column vector:

(y1, y2)
T ≡

(
y1
y2

)
.

227
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The right-hand side of equation (6.1.1.2) is the product of the n× n square matrix a by the

n× 1 matrix (column vector) y.

Let yk = (yk1, yk2, . . . , ykn)
T be linearly independent particular solutions∗ of the ho-

mogeneous system (6.1.1.1), where k = 1, 2, . . . , n; the first subscript in ykm = ykm(x)
denotes the number of the solution and the second subscript indicates the component of

the vector solution. Then the general solution of the homogeneous system (6.1.1.2) is ex-

pressed as

y = C1y1 + C2y2 + · · · + Cnyn. (6.1.1.3)

A method for the construction of particular solutions that can be used to obtain the general

solution by formula (6.1.1.3) is presented below.

6.1.2 Systems of First-Order Linear Homogeneous Equations.
Particular Solutions

Particular solutions to system (6.1.1.1) are determined by the roots of the characteristic

equation

∆(λ) = 0, where ∆(λ) ≡

∣∣∣∣∣∣∣∣

a11 − λ a12 . . . a1n
a21 a22 − λ . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann − λ

∣∣∣∣∣∣∣∣
. (6.1.2.1)

The following cases are possible:

1◦. Let λ = λk be a simple real root of the characteristic equation (6.1.2.1). The corre-

sponding particular solution of the homogeneous linear system of equations (6.1.1.1) has

the exponential form

y1 = A1e
λx, y2 = A2e

λx, . . . , yn = Ane
λx, (6.1.2.2)

where the coefficients A1, A2, . . . , An are determined by solving the associated homoge-

neous system of algebraic equations obtained by substituting expressions (6.1.2.2) into the

differential equation (6.1.1.1) and dividing by eλx:

(a11 − λ)A1 + a12A2 + · · · + a1nAn = 0,

a21A1 + (a22 − λ)A2 + · · · + a2nAn = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1A1 + an2A2 + · · ·+ (ann − λ)An = 0.

(6.1.2.3)

The solution of this system is unique to within a constant factor.

If all roots of the characteristic equation λ1, λ2, . . . , λn are real and distinct, then the

general solution of system (6.1.1.1) has the form

y1 = C1A11e
λ1x + C2A12e

λ2x + · · ·+ CnA1ne
λnx,

y2 = C1A21e
λ1x + C2A22e

λ2x + · · ·+ CnA2ne
λnx,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yn = C1An1e
λ1x + C2An2e

λ2x + · · · +CnAnne
λnx,

(6.1.2.4)

∗This means that the condition det |ymk(x)| 6= 0 holds.
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where C1, C2, . . . , Cn are arbitrary constants. The second subscript in Amk indicates a

coefficient corresponding to the root λk.

2◦. For each simple complex root, λ = α ± iβ, of the characteristic equation (6.1.2.1),

the corresponding particular solution is obtained in the same way as in the simple real root

case; the associated coefficients A1, A2, . . . , An in (6.1.2.2) will be complex. Separating

the real and imaginary parts in (6.1.2.2) results in two real particular solutions to system

(6.1.1.1); the same two solutions are obtained if one takes the complex conjugate root,

λ̄ = α− iβ.

3◦. Let λ be a real root of the characteristic equation (6.1.2.1) of multiplicity m. The

corresponding particular solution of system (6.1.1.1) is sought in the form

y1 = P 1
m(x)eλx, y2 = P 2

m(x)eλx, . . . , yn = Pn
m(x)eλx, (6.1.2.5)

where the P k
m(x) =

m−1∑
i=0

Bkix
i are polynomials of degree m− 1. The coefficients of these

polynomials result from the substitution of expressions (6.1.2.5) into equations (6.1.1.1);

after dividing by eλx and collecting like terms, one obtains n equations, each representing

a polynomial equated to zero. By equating the coefficients of all resulting polynomials

to zero, one arrives at a linear algebraic system of equations for the coefficients Bki; the

solution to this system will contain m free parameters.

4◦. For a multiple complex, λ = α + iβ, of multiplicity m, the corresponding particular

solution is sought, just as in the case of a multiple real root, in the form (6.1.2.5); here

the coefficients Bki of the polynomials P k
m(x) will be complex. Finally, in order to obtain

real solutions of the original system (6.1.1.1), one separates the real and imaginary parts

in formulas (6.1.2.5), thus obtaining two particular solutions with m free parameters each.

The two solutions correspond to the complex conjugate roots λ = α± iβ.

5◦. In the general case, where the characteristic equation (6.1.2.1) has simple and multi-

ple, real and complex roots (see Items 1◦–4◦), the general solution to system (6.1.1.1) is

obtained as the sum of all particular solutions multiplied by arbitrary constants.

Example 6.1. Consider the homogeneous system of two linear differential equations

y′1 = y1 + 4y2,

y′2 = y1 + y2.

The associated characteristic equation,
∣∣∣∣
1− λ 4
1 1− λ

∣∣∣∣ = λ2 − 2λ− 3 = 0,

has two distinct real roots:

λ1 = 3, λ2 = −1.
The system of algebraic equations (6.1.2.3) for solution coefficients becomes

(1 − λ)A1 + 4A2 = 0,

A1 + (1− λ)A2 = 0.
(6.1.2.6)

Substituting the first root, λ = 3, into system (6.1.2.6) yields A1 = 2A2. We can set A1 = 2
and A2 = 1, since the solution is determined to within a constant factor. Thus the first particular

solution of the homogeneous system of linear ordinary differential equations (6.1.2.6) has the form

y1 = 2e3x, y2 = e3x. (6.1.2.7)
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The second particular solution, corresponding to λ = −1, is found in the same way:

y1 = −2e−x, y2 = e−x. (6.1.2.8)

The sum of the two particular solutions (6.1.2.7), (6.1.2.8) multiplied by arbitrary constants,

C1 and C2, gives the general solution to the original homogeneous system of linear ordinary differ-

ential equations:

y1 = 2C1e
3x − 2C2e

−x, y2 = C1e
3x + C2e

−x.

Example 6.2. Consider the system of ordinary differential equations

y′1 = −y2,
y′2 = 2y1 + 2y2.

(6.1.2.9)

The characteristic equation,

∣∣∣∣
−λ −1
2 2− λ

∣∣∣∣ = λ2 − 2λ+ 2 = 0

has complex conjugate roots:

λ1 = 1 + i, λ2 = 1− i.
The algebraic system (6.1.2.3) for the complex coefficients A1 and A2 becomes

−λA1 −A2 = 0,

2A1 + (2− λ)A2 = 0.

With λ = 1 + i, one nonzero solution is given by A1 = 1 and A2 = −1 − i. The corresponding

complex solution to system (6.1.2.9) has the form

y1 = e(1+i)x, y2 = (−1− i)e(1+i)x.

Separating the real and imaginary parts, taking into account the formulas

e(1+i)x = ex(cos x+ i sinx) = ex cosx+ iex sinx,

(−1− i)e(1+i)x = −(1 + i)ex(cosx+ i sinx) = ex(sinx− cosx) − iex(sinx+ cosx),

and making linear combinations from them, one arrives at the general solution to the original system

(6.1.2.9):

y1 = C1e
x cosx+ C2e

x sinx,

y2 = C1e
x(sin x− cosx) − C2e

x(sinx+ cosx).

Remark 6.1. Systems of two homogeneous linear constant-coefficient second-order differential

equations are treated in detail in Section 6.1.8.

6.1.3 Nonhomogeneous Systems of Linear First-Order Equations

1◦. In general, a nonhomogeneous linear system of constant-coefficient first-order ordinary

differential equations has the form

y′1 = a11y1 + a12y2 + · · ·+ a1nyn + f1(x),

y′2 = a21y1 + a22y2 + · · ·+ a2nyn + f2(x),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y′n = an1y1 + an2y2 + · · · + annyn + fn(x).

(6.1.3.1)
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For brevity, the conventional vector notation will also be used:

y′ = ay + f(x),

where f(x) = (f1(x), f2(x), . . . , fn(x))
T.

The general solution of this system is the sum of the general solution to the correspond-

ing homogeneous system with fk(x) ≡ 0 [see system (6.1.1.1)] and any particular solution

of the nonhomogeneous system (6.1.3.1).

System (6.1.3.1) can also be reduced to a single nonhomogeneous linear constant-

coefficient nth-order equation; see Section 7.1.3.

2◦. Let ym = (Dm1(x),Dm1(x), . . . ,Dmn(x))
T represent particular solutions to the ho-

mogeneous linear system of constant-coefficient first-order ordinary differential equations

(6.1.1.1) that satisfy the special initial conditions

ym(0) = 1, yk(0) = 0 if k 6= m; m, k = 1, . . . , n.

Then the general solution to the nonhomogeneous system (6.1.3.1) is expressed as

yk(x) =

n∑

m=1

∫ x

0
fm(t)Dmk(x− t) dt+

n∑

m=1

CmDmk(x), k = 1, . . . , n. (6.1.3.2)

Alternatively, the general solution to the nonhomogeneous linear system of equations

(6.1.3.1) can be obtained using the formulas from Section 6.2.2.

The solution of the Cauchy problem for the nonhomogeneous system (6.1.3.1) with

arbitrary initial conditions,

y1(0) = y◦1 , y2(0) = y◦2 , . . . , yn(0) = y◦n, (6.1.3.3)

is determined by formulas (6.1.3.2) with Cm = y◦m, m = 1, . . . , n.

6.1.4 Homogeneous Linear Systems of Higher-Order Differential
Equations

An arbitrary system of homogeneous linear systems of constant-coefficient ordinary dif-

ferential equations consists of n equations, each representing a linear combination of un-

knowns, yk, and their derivatives, y′k, y
′′
k , . . . , y

(mk)
k , k = 1, 2, . . . , n.

The general solution of such systems is a linear combination of particular solutions

multiplied by arbitrary constants. In total, such a system has m1 +m2 + · · ·+mn linearly

independent particular solutions (the system is assumed to be consistent and nondegenerate,

so that the constituent equations are linearly independent).

Particular solutions of the system are sought in the form (6.1.2.2). On substituting these

expressions into the differential equations and dividing by eλx, one obtains a homogeneous

linear algebraic system for coefficients A1, A2, . . . , An. For this system to have nontrivial

solutions, the determinant of the system must vanish. This results in an algebraic equation

for the exponent λ; in physics, this equation is called a dispersion equation. To differ-

ent roots of the dispersion equation there correspond different particular solutions of the

original system of equations. For simple real and complex-conjugate roots, the procedure

of finding particular solutions is the same as in the case of a linear system of first-order

equations (6.1.1.1).
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Example 6.3. Consider the linear system of constant-coefficient second-order equations

y′′1 + y′2 + ay2 = 0,

y′′2 + y′1 + ay1 = 0.
(6.1.4.1)

Particular solutions are sought in the form

y1 = A1e
λx, y2 = A2e

λx. (6.1.4.2)

Substituting (6.1.4.2) into (6.1.4.1) yields a homogeneous linear algebraic system for the coefficients

A1 and A2:
λ2A1 + (λ+ a)A2 = 0,

(λ+ a)A1 + λ2A2 = 0.
(6.1.4.3)

For this system to have nontrivial solutions, its determinant must vanish. This results in the disper-

sion equation ∣∣∣∣
λ2 λ+ a

λ+ a λ2

∣∣∣∣ = λ4 − (λ+ a)2 = 0.

Its roots are

λ1,2 = 1
2 ±

√
1
4 + a, λ3,4 = − 1

2 ±
√

1
4 − a. (6.1.4.4)

Let us confine ourselves to the simplest case of − 1
4 < a < 1

4 , where all roots of the dispersion

equation are real and distinct. It follows from the system of algebraic equations (6.1.4.3) that A1 =
λ + a and A2 = −λ2, where λ = λn. Substituting these values into (6.1.4.2) yields the particular

solutions y1n = (λn + a)eλnx, y2n = −λ2neλnx (n = 1, 2, 3, 4). A linear combination of the

particular solutions gives the general solution of system (6.1.4.1):

y1 = C1(λ1 + a)eλ1x + C2(λ2 + a)eλ2x + C3(λ3 + a)eλ3x + C4(λ4 + a)eλ4x,

y2 = −C1λ
2
1e

λ1x − C2λ
2
2e

λ2x − C3λ
2
3e

λ3x − C4λ
2
4e

λ4x,

where C1, C2, C3, and C4 are arbitrary constants, and the roots λn are determined by formulas

(6.1.4.4).

Remark 6.2. Section 6.1.7 (see Item 2◦) presents a method for the solution of systems of ar-

bitrary homogeneous linear constant-coefficients ordinary differential equations using the Laplace

transform.

6.1.5 Normal Coordinates and Natural Oscillations

Small undamped oscillations of mechanical or electrical systems are often described by a

system of n linear constant-coefficient ordinary differential equations of the second order

n∑

k=1

(
bjky

′′
k + ajkyk

)
= 0 (j = 1, 2, . . . , n). (6.1.5.1)

Both matrices, (ajk) and (bjk), are symmetric and positive definite; in addition, they have

the property that the characteristic equation, obtained by substituting a solution of the form

(6.1.2.2) into (6.1.5.1), has 2n different nonzero pure imaginary roots: ±iω1, ±iω2, . . . ,

±iωn.

System (6.1.5.1) can be simplified with so-called normal coordinates ȳ1, ȳ2, . . . , ȳn
using a linear transformation of the form

yk =
n∑

m=1

ckmȳm (k = 1, 2, . . . , n), (6.1.5.2)
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with the coefficients ckm chosen so as to reduce both matrices, (ajk) and (bjk), to a diagonal

form simultaneously. As a result, system (6.1.5.1) becomes

ȳ′′m + ω2
mȳm = 0 (m = 1, 2, . . . , n), (6.1.5.3)

where all of the equations are isolated and independent of one another. The general solution

of system (6.1.5.3) can be written as

ȳm = Am cos(ωmx) +Bm sin(ωmx) (m = 1, 2, . . . , n), (6.1.5.4)

where Am and Bm are arbitrary constants.

◆ Very often, normal coordinates have a clear physical meaning. For details of the method

for determining the coefficients ckm in the transformation (6.1.5.2), see, for example, the

handbooks by Korn & Korn (2000) and Polyanin & Cheroutsan (2011).

Example 6.4. Let us look at the system

y′′1 + ω2y1 + σ2(y1 − y2) = 0,

y′′2 + ω2y2 − σ2(y1 − y2) = 0.
(6.1.5.5)

It is not difficult to show that

ȳ1 = y1 + y2, ȳ2 = y1 − y2
are normal coordinates for this system. In terms of the normal coordinates, the system becomes

ȳ′′1 + ω2y1 = 0, ȳ′′2 + (ω2 + 2σ2)y2 = 0. (6.1.5.6)

Under the initial conditions

y1(0) = 1, y2(0) = 0, y′1(0) = y′2(0) = 0,

which are equivalent to

ȳ1(0) = ȳ2(0) = 1, ȳ′1(0) = ȳ′2(0) = 0

in the normal coordinates, the solution of (6.1.5.6) is

ȳ1 = cos(ωx), ȳ2 = cos
(√

ω2 + 2σ2 x
)
.

Consequently, the solution of the original system (6.1.5.5) is expressed as

y1 = 1
2 (ȳ1 + ȳ2) = cos(px) cos(qx), y2 = 1

2 (ȳ1 − ȳ2) = sin(px) sin(qx),

p = 1
2

(√
ω2 + 2σ2 + ω

)
, q = 1

2

(√
ω2 + 2σ2 − ω

)
.

6.1.6 Nonhomogeneous Higher-Order Linear Systems. D’Alembert’s
Method

Consider the system of two linear constant-coefficient mth-order differential equations

y
(m)
1 = a11y1 + a12y2 + f1(x),

y
(m)
2 = a21y1 + a22y2 + f2(x).

(6.1.6.1)

Let us multiply the second equation of system (6.1.6.1) by k and add it termwise to the

first equation to obtain, after rearrangement,

(y1 + ky2)
(m) = (a11 + ka21)

(
y1 +

a12 + ka22
a11 + ka21

y2

)
+ f1(x) + kf2(x). (6.1.6.2)
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Let us take the constant k so that
a12 + ka22
a11 + ka21

= k, which results in a quadratic equation

for k:

a21k
2 + (a11 − a22)k − a12 = 0. (6.1.6.3)

In this case, (6.1.6.2) is a nonhomogeneous linear constant-coefficient equation for z =
y1 + ky2:

z(m) = (a11 + ka21)z + f1(x) + kf2(x).

Integrating this equation yields

y1 + ky2 = C1ϕ1(x, k) + · · ·+ Cmϕm(x, k) + ψ(x, k).

It follows that if the roots of the quadratic equation (6.1.6.3) are distinct, we have two

relations,

y1 + k1y2 = C1ϕ1(x, k1) + · · ·+ Cmϕm(x, k1) + ψ(x, k1),

y1 + k2y2 = Cm+1ϕ1(x, k2) + · · ·+ C2mϕm(x, k2) + ψ(x, k2),

which represent a linear algebraic system of equations for the functions y1 and y2.

Remark 6.3. The above method for the solution of system (6.1.6.1) is known as D Alembert’s

method. The quantity z = y1 + ky2 in the above reasoning gives an example of an integrable

combination (see Section 7.2.1).

Remark 6.4. The more complicated system where y1 and y2 on the right-hand side are replaced

by the derivatives of the same order, y
(n)
1 and y

(n)
2 , can be treated likewise.

Remark 6.5. System (6.1.6.1) can be solved using the Laplace transform (see Section 6.1.7).

6.1.7 Usage of the Laplace Transform for Solving Linear Systems of
Equations

1◦. To solve the Cauchy problem for the nonhomogeneous linear system of differential

equations (6.1.3.1) with the initial conditions (6.1.3.3), one can use the Laplace transform,

based on the following formulas (for details, see Section 4.3):

ỹk(p) = L
{
yk(x)

}
, f̃k(p) = L

{
fk(x)

}
, where L

{
f(x)

}
≡
∫ ∞

0
e−pxf(x) dx.

To this end, one should multiply each equation in (6.1.3.1) by e−px and then integrate

with respect to x from zero to infinity. In view of the differentiation rule L
{
y′k(x)

}
=

pỹk(p)− yk(0) and the initial conditions (6.1.3.3), one arrives at a nonhomogeneous linear

system of algebraic equations for the transforms ỹk(p):

(a11 − p)ỹ1 + a12ỹ2 + · · ·+ a1nỹn = −f̃1(p)− y◦1 ,
a21ỹ1 + (a22 − p)ỹ2 + · · ·+ a2nỹn = −f̃2(p)− y◦2 ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1ỹ1 + an2ỹ2 + · · ·+ (ann − p)ỹn = −f̃n(p)− y◦n.

(6.1.7.1)

The solution of this system is obtained by Kramer’s rule and is given by

ỹk =
∆k(p)

∆(p)
; k = 1, . . . , n, (6.1.7.2)
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where ∆(p) is the determinant of the basic matrix of system (6.1.7.1), coinciding with the

determinant in (6.1.2.1) with λ = p, and ∆k(p) is the determinant of the matrix obtained

from the basic matrix by replacing its kth column with the column of free terms of sys-

tem (6.1.7.1).

On applying the Laplace inversion formula (see Section 4.3.1) to (6.1.7.2), one obtains

a solution to the Cauchy problem (6.1.3.1), (6.1.3.3) in the form

yk(x) =
1

2πi

∫ c+i∞

c−i∞

∆k(p)

∆(p)
epx dp; k = 1, . . . , n.

The formulas from Section 4.3.2 and tables from Section S3.2 can be used to find the

inverse Laplace transform of the function ∆k(p)/∆(p).

2◦. The Laplace transform is also suitable for the solution of systems of second- and

higher-order ordinary differential equations with constant coefficients.

Example 6.5. Consider the Cauchy problem for the nonhomogeneous linear system of constant-

coefficient second-order differential equations

n∑

k=1

(
amky

′′
k + bmky

′
k + cmkyk

)
= fm(x), m = 1, 2, . . . , n,

subject to the initial conditions

yk(0) = αk, y′k(0) = βk, k = 1, 2, . . . , n.

The Laplace transform reduces this problem to a linear system of algebraic equations for the trans-

form ỹk(p):

n∑

k=1

(
amkp

2 + bmkp+ cmk

)
ỹk(p) = f̃m(p) +

n∑

k=1

[
(amkp+ bmk)αk + βk

]
, m = 1, 2, . . . , n.

The solution to this system can be obtained using Kramer’s rule. By applying then the inverse

Laplace transform to the resulting expressions of ỹk(p), one obtains the solution to the Cauchy

problem.

6.1.8 Classification of Equilibrium Points of Two-Dimensional Linear
Systems

◮ Two linear constant-coefficient coupled equations. Characteristic equation.

Let us study the behavior of solutions near the equilibrium (also called stationary, steady-

state, or fixed) point x = y = 0 for the system of two homogeneous linear constant-

coefficient equations

x′t = a11x+ a12y,

y′t = a21x+ a22y.
(6.1.8.1)

By convention, for clearness and convenience of interpretation of the results, t will be used

to designate the independent variable and will be treated as time. A solution x = x(t),
y = y(t) of system (6.1.8.1) plotted in the plane x, y (the phase plane) is called a (phase)

trajectory of the system.
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A solution to system (6.1.8.1) will be sought in the form

x = k1e
λt, y = k2e

λt. (6.1.8.2)

On substituting (6.1.8.2) into (6.1.8.1), one obtains the characteristic equation for the ex-

ponent λ:
∣∣∣∣
a11 − λ a12
a21 a22 − λ

∣∣∣∣ = 0, or λ2 − (a11 + a22)λ+ a11a22 − a12a21 = 0. (6.1.8.3)

The coefficients k1 and k2 are found as

k1 = Ca12, k2 = C(λ− a11), (6.1.8.4)

where C is an arbitrary constant. To two different roots of the quadratic equation (6.1.8.3)

there correspond two pairs of coefficients (6.1.8.4).

◮ Discriminant of the characteristic equation. Classification of equilibrium points.

Denote the discriminant of the quadratic equation (6.1.8.3) by

D = (a11 − a22)2 + 4a12a21. (6.1.8.5)

Three situations are possible.

1◦. IfD>0, the roots of the characteristic equation (6.1.8.3) are real and distinct (λ1 6=λ2):

λ1,2 =
1
2 (a11 + a22)± 1

2

√
D.

The general solution of system (6.1.8.1) is expressed as

x = C1a12e
λ1t + C2a12e

λ2t,

y = C1(λ1 − a11)eλ1t + C2(λ2 − a11)eλ2t,
(6.1.8.6)

where C1 and C2 are arbitrary constants. For C1 = 0, C2 6= 0 and C2 = 0, C1 6= 0, the

trajectories in the phase plane x, y are straight lines. Four cases are possible here.

1.1. Two negative real roots, λ1 < 0 and λ2 < 0. This corresponds to a11 + a22 < 0
and a11a22−a12a21 > 0. The equilibrium point is asymptotically stable and all trajectories

starting within a small neighborhood of the origin tend to the origin as t→∞. To C1 = 0,

C2 6= 0 and C2 = 0, C1 6= 0 there correspond straight lines passing through the origin.

Fig. 6.1a depicts the arrangement of the phase trajectories near an equilibrium point called

a stable node (or a sink). The direction of motion along the trajectories with increasing t is

shown by arrows.

1.2. λ1 > 0 and λ2 > 0. This corresponds to a11 + a22 > 0 and a11a22 − a12a21 > 0.

The phase trajectories in the vicinity of the equilibrium point have the same pattern as in

the preceding case; however, the trajectories go in the opposite direction, away from the

equilibrium point; see Fig. 6.1b. An equilibrium point of this type is called an unstable

node (or a source).

1.3. λ1> 0 and λ2< 0 (or λ1< 0 and λ2> 0). This corresponds to a11a22−a12a21< 0.

In this case, the equilibrium point is also unstable, since the trajectory (6.1.8.6) with C2 =0
goes beyond a small neighborhood of the origin as t increases. If C1C2 6= 0, then the
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O

( )a

stable node
(sink)

λ < 0, λ < 01 2
( )b

O

unstable node
(source)

λ > 0, λ > 01 2

Figure 6.1: Phase trajectories of a system of differential equations near an equilibrium point

of the node type.

O

λ > 0, λ < 0
(λ < 0, > )λ 0

saddle

1

1

2

2

Figure 6.2: Phase trajectories of a system of differential equations near an equilibrium point

of the saddle type.

trajectories leave the neighborhood of the origin as t→ −∞ and t→∞. An equilibrium

point of this type is called a saddle (or a hyperbolic point); see Fig. 6.2.

1.4. λ1 = 0 and λ2 = a11 + a22 6= 0. This corresponds to a11a22 − a12a21 = 0. The

general solution of system (6.1.8.1) is expressed as

x = C1a12 + C2a12e
(a11+a22)t,

y = −C1a11 + C2a22e
(a11+a22)t,

(6.1.8.7)

where C1 and C2 are arbitrary constants. By eliminating time t from (6.1.8.7), one obtains

a family of parallel lines defined by the equation a22x − a12y = a12(a11 + a22)C1. To

C2 = 0 in (6.1.8.7) there corresponds a one-parameter family of equilibrium points that lie

on the straight line a11x+ a12y = 0.

(i) If λ2 < 0, then the trajectories approach the equilibrium point lying as t → ∞;

see Fig. 6.3. The equilibrium point x = y = 0 is stable (or neutrally stable)—there is no

asymptotic stability.

(ii) If λ2> 0, the trajectories have the same pattern as in case (i), but they go, as t→∞,

in the opposite direction, away from the equilibrium point. The point x= y =0 is unstable.

2◦. If D < 0, the characteristic equation (6.1.8.3) has complex-conjugate roots:

λ1,2 = α± iβ, α = 1
2 (a11 + a22), β = 1

2

√
|D|, i2 = −1.
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O x

y
λ = 0, λ < 0

a x a y+ = 0

1

11 12

2

Figure 6.3: Phase trajectories of a system of differential equations near a set of equilibrium

points located on a straight line.

O O

( )a

α < 0 α > 0

stable focus
(spiral sink)

( )bunstable focus
(spiral source)

stable focus
(spiral sink)

Figure 6.4: Phase trajectories of a system of differential equations near an equilibrium point

of the focus type.

The general solution of system (6.1.8.1) has the form

x = eαt[C1 cos(βt) + C2 sin(βt)],

y = eαt[C∗
1 cos(βt) + C∗

2 sin(βt)],
(6.1.8.8)

where C1 and C2 are arbitrary constants, and C∗
1 and C∗

2 are defined by linear combinations

of C1 and C2. The following cases are possible.

2.1. Forα<0, the trajectories in the phase plane are spirals asymptotically approaching

the origin of coordinates (the equilibrium point) as t → ∞; see Fig. 6.4a. Therefore the

equilibrium point is asymptotically stable and is called a stable focus (also a stable spiral

point or a spiral sink). A focus is characterized by the fact that the tangent to a trajectory

changes its direction all the way to the equilibrium point.

2.2. For α > 0, the phase trajectories are also spirals, but unlike the previous case they

spiral away from the origin as t→ ∞; see Fig. 6.4b. Therefore such an equilibrium point

is called an unstable focus (also an unstable spiral point or a spiral source).

2.3. At α = 0, the phase trajectories are closed curves, containing the equilibrium

point inside (see Fig. 6.5). Such an equilibrium point is called a center. A center is a stable

equilibrium point. Note that there is no asymptotic stability in this case.
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O

α = 0
center

Figure 6.5: Phase trajectories of a system of differential equations near an equilibrium point

of the center type.

unstable node
(source)

O O

( )a ( )b

λ = λ < 0

stable node
(sink)

1 2 λ = λ > 01 2

Figure 6.6: Phase trajectories of a system of differential equations near an equilibrium point

of the node type in the case of a double root, λ1 = λ2.

3◦. If D = 0, the characteristic equation (6.1.8.3) has a double real root, λ1 = λ2 =
1
2 (a11 + a22). The following cases are possible.

3.1. If λ1 = λ2 = λ < 0, the general solution of system (6.1.8.1) has the form

x = a12(C1 + C2t)e
λt,

y = [(λ− a11)C1 + C2 + C2(λ− a11)t]eλt,
(6.1.8.9)

where C1 and C2 are arbitrary constants.

Since there is a rapidly decaying factor, eλt, all trajectories tend to the equilibrium point

as t→∞; see Fig. 6.6a. ToC2 =0 there corresponds a straight line in the phase plane x, y.

The equilibrium point is asymptotically stable and is called a stable node (a sink). Such a

node is in intermediate position between a node from Item 1.1 and a focus from Item 2.1.

3.2. If λ1 = λ2 = λ > 0, the general solution of system (6.1.8.1) is determined by

formulas (6.1.8.9). The phase trajectories are similar to those from Item 3.1, but they go

in the opposite direction, as t → ∞, rapidly away from the equilibrium point. Such an

equilibrium point is called an unstable node (a source); see Fig. 6.6b.

3.3. If λ1 = λ2 = 0, which corresponds to

a11 + a22 = 0 and a11a22 − a12a21 = 0
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simultaneously, the general solution of system (6.1.8.1) is obtained by substituting λ = 0
into (6.1.8.9) and has the form

x = a12C1 + a12C2t,

y = C2 − a11C1 − a11C2t.

For a12 6= 0 all trajectories are parallel straight lines. As t→±∞, the trajectories go away

from the origin. The equilibrium point is unstable.

For clearness, the classification results for equilibrium points of systems of two linear

constant-coefficient differential equations (6.1.8.1) are summarized in Table 6.1.

TABLE 6.1

Classification of equilibrium points for systems of constant-coefficient equations (6.1.8.1);

the symbols ◦ and ∗ indicate stable and unstable equilibrium points, respectively, where not clearly stated

Discriminant,

formula

(6.1.8.5)

Roots of quadratic

equation (6.1.8.3),

λ1 and λ2

Conditions for coefficients aij
of homogeneous liner

ordinary differential equations (6.1.8.1)

Type of equilibrium

points or shape of

phase trajectories

D> 0

λ1< 0, λ2< 0, λ1 6=λ2

λ1> 0, λ2> 0, λ1 6=λ2

roots have unlike signs

λ1=0, λ2< 0
λ1=0, λ2> 0

a11+a22< 0, a11a22−a12a21> 0
a11+a22> 0, a11a22−a12a21> 0

a11a22−a12a21< 0
a11+a22< 0, a11a22−a12a21=0
a11+a22> 0, a11a22−a12a21=0

stable node

unstable node

saddle∗

parallel lines◦

parallel lines∗

D< 0

λ1,2=α±iβ, α> 0
λ1,2=α±iβ, α< 0

λ1,2=±iβ, imaginary roots

a11+a22< 0, (a11−a22)2+4a12a21< 0
a11+a22> 0, (a11−a22)2+4a12a21< 0
a11+a22=0, a11a22−a12a21> 0

stable focus

unstable focus

center◦

D=0

λ1=λ2< 0
λ1=λ2> 0
λ1=λ2=0

a11+a22< 0, (a11−a22)2+4a12a21=0
a11+a22> 0, (a11−a22)2+4a12a21=0
a11+a22=0, a11a22−a12a21=0

stable node

unstable node

saddle∗

parallel lines∗

Remark 6.6. For general definitions of a stable and an unstable equilibrium point, see Sec-

tion 7.3.1.

⊙ Literature for Section 6.1: G. M. Murphy (1960), V. A. Ditkin and A. P. Prudnikov (1965), G. A. Korn

and T. M. Korn (2000), E. Kamke (1977), A. N. Tikhonov, A. B. Vasil’eva, and A. G. Sveshnikov (1985),

D. Zwillinger (1997), G. A. Korn and T. M. Korn (2000), A. D. Polyanin and A. V. Manzhirov (2007).

6.2 Systems of Linear Variable-Coefficient Equations

6.2.1 Homogeneous Systems of Linear First-Order Equations

◮ Superposition principle for a homogeneous system.

In general, a homogeneous linear system of variable-coefficient first-order ordinary differ-

ential equations has the form

y′1 = f11(x)y1 + f12(x)y2 + · · ·+ f1n(x)yn,

y′2 = f21(x)y1 + f22(x)y2 + · · ·+ f2n(x)yn,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y′n = fn1(x)y1 + fn2(x)y2 + · · ·+ fnn(x)yn,

(6.2.1.1)
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where the prime denotes a derivative with respect to x. It is assumed further on that the

functions fij(x) are continuous of an interval a≤x≤ b (intervals are allowed with a=−∞
or/and b = +∞).

Any homogeneous linear system of the form (6.2.1.1) has the trivial particular solution

y1 = y2 = · · · = yn = 0.

Superposition principle for a homogeneous system: any linear combination of particular

solutions to system (6.2.1.1) is also a solution to this system.

◮ Wronskian determinant. General solution of the homogeneous system.

Let

yk = (yk1, yk2, . . . , ykn)
T, ykm = ykm(x); k, m = 1, 2, . . . , n (6.2.1.2)

be nontrivial particular solutions of the homogeneous system of equations (6.2.1.1). Solu-

tions (6.2.1.2) are linearly independent if the Wronskian determinant is nonzero:

W (x) ≡

∣∣∣∣∣∣∣∣∣

y11(x) y12(x) · · · y1n(x)
y21(x) y22(x) · · · y2n(x)

...
...

. . .
...

yn1(x) yn2(x) · · · ynn(x)

∣∣∣∣∣∣∣∣∣
6= 0. (6.2.1.3)

If condition (6.2.1.3) is satisfied, the general solution of the homogeneous system

(6.2.1.1) is expressed as

y = C1y1 + C2y2 + · · · + Cnyn, (6.2.1.4)

where C1, C2, . . . , Cn are arbitrary constants. The vector functions y1, y2, . . . , yn in

(6.2.1.4) are called fundamental solutions of system (6.2.1.1).

◮ Liouville formula.

Suppose condition (6.2.1.3) is met. Then the Liouville formula

W (x) =W (x0) exp

[∫ x

x0

( n∑

s=1

fss(t)

)
dt

]

holds.

COROLLARY. Particular solutions (6.2.1.2) are linearly independent on the interval

[a, b] if and only if there exists a point x0 ∈ [a, b] such that the Wronskian determinant

is nonzero at x0: W (x0) 6= 0.

◮ Reduction of the number of unknowns.

Suppose a nontrivial particular solution of system (6.2.1.1),

y1 = (u1, u2, . . . , un)
T, um = um(x), m = 1, 2, . . . , n,
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is known. Then the number of unknowns can be reduced by one. To this end, one considers

the auxiliary homogeneous linear system of n− 1 equations

z′k =
n∑

q=2

[
fkq(x)−

uk(x)

u1(x)
f1q(x)

]
zq, k = 2, . . . , n. (6.2.1.5)

Let

zp = (zp2, zp3, . . . , zpn)
T, zmk = zmk(x); p = 2, . . . , n,

be a fundamental system of solutions to system (6.2.1.5) and let

Zp=(0, zp2, zp3, . . . , zpn)
T, Fp(x)=

∫ (
1

u1(x)

n∑

s=2

f1s(x)zps(x)

)
dx, p=2, . . . , n,

the vector Zp having an additional component compared with zp. Then the vector functions

yp = Fp(x)y1+ zp (p = 2, . . . , n) together with y1 form a fundamental system of solutions

to the initial homogeneous system of equations (6.2.1.1).

6.2.2 Nonhomogeneous Systems of Linear First-Order Equations

◮ Nonhomogeneous linear systems. Existence and uniqueness theorem.

In general, a nonhomogeneous linear system of variable-coefficient first-order differential

equations has the form

y′1 = f11(x)y1 + f12(x)y2 + · · ·+ f1n(x)yn + g1(x),

y′2 = f21(x)y1 + f22(x)y2 + · · ·+ f2n(x)yn + g2(x),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y′n = fn1(x)y1 + fn2(x)y2 + · · · + fnn(x)yn + gn(x).

(6.2.2.1)

Alternatively, the system can be written in the short vector-matrix notation as

y′ = f(x)y + g(x),

with f(x) =
(
fij(x)

)
being the matrix of equation coefficients and g(x) =

(
g1(x), g2(x),

. . . , gn(x)
)T

being the vector function defining the nonhomogeneous part of the equations.

EXISTENCE AND UNIQUENESS THEOREM. Let the functions fij(x) and gi(x) be con-

tinuous on an interval a < x < b. Then, for any set of values x◦, y◦1, . . . , y◦n, where

a < x◦ < b, there exists a unique solution y1 = y1(x), . . . , yn = yn(x) satisfying the initial

conditions

y1(x
◦) = y◦1 , . . . , yn(x

◦) = y◦n,

and this solution is defined on the whole interval a < x < b.

◮ General solution.

Let

ȳ = (ȳ1, ȳ2, . . . , ȳn)
T, ȳk = ȳk(x); k = 1, 2, . . . , n,
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be a particular solution to the nonhomogeneous system of equations (6.2.2.1). The general

solution of this system is the sum of the general solution of the corresponding homogeneous

system (6.2.1.1), which corresponds to gk(x) ≡ 0 in (6.2.2.1), and any particular solution

of the nonhomogeneous system (6.2.2.1), or

y = C1y1 + C2y2 + · · ·+ Cnyn + ȳ, (6.2.2.2)

where y1, . . . , yn are linearly independent solutions of the homogeneous system (6.2.1.1).

◮ A particular solution.

Given a fundamental system of solutions ykm(x) (6.2.1.2) of the homogeneous system

(6.2.1.1), a particular solution of the nonhomogeneous system (6.2.2.1) is found as

ȳk =

n∑

m=1

ymk(x)

∫
Wm(x)

W (x)
dx, k = 1, 2, . . . , n,

whereWm(x) is the determinant obtained by replacing themth row in the Wronskian deter-

minant (6.2.1.3) by the row of free terms, g1(x), g2(x), . . . , gn(x), of equation (6.2.2.1).

The general solution of the nonhomogeneous system (6.2.2.1) is given by (6.2.2.2).

◮ Superposition principle for a nonhomogeneous system.

A particular solution, y= ȳ, of the nonhomogeneous system of linear differential equations,

y′ = f(x)y +

m∑

k=1

gk(x),

is given by the sum

y =

m∑

k=1

yk,

where the yk are particular solutions of m (simpler) systems of equations

y′k = f(x)yk + gk(x), k = 1, 2, . . . , m,

corresponding to individual nonhomogeneous terms of the original system.

6.2.3 Euler System of Ordinary Differential Equations

◮ Euler system of ODEs. Reduction to a constant-coefficient linear system.

A homogeneous Euler system is a homogeneous linear system of ordinary differential equa-

tions composed by linear combinations of the following terms:

yk, xy′k, x2y′′k , . . . , xmky
(mk)
k ; k = 1, 2, . . . , n.

Such a system is invariant under scaling in the independent variable (i.e., it preserves its

form under the change of variable x→ αx, where α is any nonzero number). A nonhomo-

geneous Euler system contains additional terms, given functions.

The substitution x = bet (b 6= 0) brings an Euler system, both homogeneous and non-

homogeneous, to a constant-coefficient linear system of equations.
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Example 6.6. In general, a nonhomogeneous Euler system of second-order equations has the

form

n∑

k=1

(
amkx

2 d
2yk
dx2

+ bmkx
dyk
dx

+ cmkyk

)
= fm(x), m = 1, 2, . . . , n. (6.2.3.1)

The substitutions x = ±et bring this system to a constant-coefficient linear system,

n∑

k=1

[
amk

d2yk
dt2

+ (bmk − amk)
dyk
dt

+ cmkyk

]
= fm(±et), m = 1, 2, . . . , n,

which can be solved using, for example, the Laplace transform (see Example 6.5 from Section 6.1.7).

◮ Particular solutions.

Particular solutions to a homogeneous Euler system (for system (6.2.3.1), corresponding to

fm(x) ≡ 0) are sought in the form of power functions:

y1 = A1x
σ, y2 = A2x

σ, . . . , yn = Anx
σ, (6.2.3.2)

where the coefficients A1, A2, . . . , An are determined by solving the associated homoge-

neous system of algebraic equations obtained by substituting expressions (6.2.3.2) into the

differential equations of the system in question and dividing by xσ. Since the system is

homogeneous, for it to have nontrivial solutions, its determinant must vanish. This results

in a dispersion equation for the exponent σ.

⊙ Literature for Section 6.2: G. M. Murphy (1960), E. Kamke (1977), A. N. Tikhonov, A. B. Vasil’eva,

and A. G. Sveshnikov (1985), D. Zwillinger (1997), G. A. Korn and T. M. Korn (2000), A. D. Polyanin and

A. V. Manzhirov (2007).
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Chapter 7

Methods for Nonlinear Systems
of ODEs

7.1 Solutions and First Integrals. Uniqueness and

Existence Theorems

7.1.1 Systems Solved for the Derivative. A Solution and the General
Solution

We will be dealing with a system of first-order ordinary differential equations solved for

the derivatives

y′k = fk(x, y1, . . . , yn), k = 1, . . . , n. (7.1.1.1)

Throughout the current chapter, the prime denotes a derivative with respect to the indepen-

dent variable x (unless otherwise stated).

A set of numbers x, y1, . . . , yn is convenient to treat as a point in the (n+1)-dimensional

space.

For brevity, system (7.1.1.1) is conventionally written in vector form:

y′ = f(x, y),

where y and f are the vectors defined as y = (y1, . . . , yn)
T and f = (f1, . . . , fn)

T .

A solution (also an integral or an integral curve) of a system of differential equations

(7.1.1.1) is a set of functions y1 = y1(x), . . . , yn = yn(x) such that, when substituted into

all equations (7.1.1.1), they turn them into identities. The general solution of a system of

differential equations is the set of all its solutions. In the general case, the general solution

of system (7.1.1.1) depends on n arbitrary constants.

7.1.2 Existence and Uniqueness Theorems

EXISTENCE THEOREM (PEANO). Let the functions fk(x, y1, . . . , yn) (k = 1, . . . , n) be

continuous in a domain G of the (n + 1)-dimensional space of the variables x, y1, . . . , yn.

Then there is at least one integral curve passing through every point M(x◦, y◦1 , . . . , y
◦
n)

in G. Each of such curves can be extended on both ends up to the boundary of any closed

domain completely belonging to G and containing the point M inside.

245



“K16435’ — 2017/9/28 — 15:05 — #272

246 METHODS FOR NONLINEAR SYSTEMS OF ODES

Remark 7.1. If there is more than one integral curve passing through the point M , there are

infinitely many integral curves passing throughM .

UNIQUENESS THEOREM. There is a unique integral curve passing through the point

M(x◦, y◦1 , . . . , y
◦
n) if the functions fk have partial derivatives with respect to all ym, con-

tinuous in x, y1, . . . , yn in the domain G, or if each function fk in G satisfies the Lipschitz

condition:

|fk(x, ȳ1, . . . , ȳn)− fk(x, y1, . . . , yn)| ≤ A
n∑

m=1

|ȳm − ym|,

where A is some positive number.

7.1.3 Reduction of Systems of Equations to a Single Equation or to
an Autonomous System of Equations

◮ Reduction of systems of equations to a single equation.

Suppose the right-hand sides of equations (7.1.1.1) are n times differentiable in all vari-

ables. Then system (7.1.1.1) can be reduced to a single nth-order equation. Indeed, using

the chain rule, let us differentiate the first equation of system (7.1.1.1) with respect to x to

get

y′′1 =
∂f1
∂x1

+
∂f1
∂y1

y′1 + · · ·+
∂f1
∂yn

y′n. (7.1.3.1)

Then change the first derivatives y′k in (7.1.3.1) to fk(x, y1, . . . , yn) [the right-hand sides

of equations (7.1.1.1)] to obtain

y′′1 = F2(x, y1, . . . , yn), (7.1.3.2)

where F2(x, y1, . . . , yn) ≡
∂f1
∂x1

+
∂f1
∂y1

f1 + · · · + ∂f1
∂yn

fn. Now differentiate equation

(7.1.3.2) with respect to x and replace the first derivatives y′k on the right-hand side of the

resulting equation by fk. As a result, we obtain

y′′′1 = F3(x, y1, . . . , yn),

where F3(x, y1, . . . , yn) ≡
∂F2

∂x1
+
∂F2

∂y1
f1 + · · · +

∂F2

∂yn
fn. Repeating this procedure as

many times as required, one arrives at the following system of equations:

y′1 = F1(x, y1, . . . , yn),

y′′1 = F2(x, y1, . . . , yn),

. . . . . . . . . . . . . . . . . . . . . . .

y
(n)
1 = Fn(x, y1, . . . , yn),

where

F1(x, y1, . . . , yn) ≡ f1(x, y1, . . . , yn),

Fk+1(x, y1, . . . , yn) ≡
∂Fk

∂x1
+
∂Fk

∂y1
f1 + · · ·+

∂Fk

∂yn
fn.
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Expressing y2, y3, . . . , yn from the n−1 first equations of this system in terms of x, y1, y′1,

. . . , y
(n−1)
1 and then substituting the resulting expressions into the last equation of system

(7.1.1.1), one finally arrives at an nth-order equation:

y
(n)
1 = Φ(x, y1, y

′
1, . . . , y

(n−1)
1 ). (7.1.3.3)

Remark 7.2. If (7.1.1.1) is a linear system of first-order differential equations, then (7.1.3.3) is

a linear nth-order equation.

Remark 7.3. Any equation of the form (7.1.3.3) can be reduced to a system on n first-order

equations (see the end of Section 5.1.2).

◮ Reduction of the nonautonomous system of equations to an autonomous system of

equations.

In general, the nonautonomous system (7.1.1.1), consisting of n equations, can be reduced

to the autonomous system

x′ξ = 1, (yk)
′
ξ = fk(x, y1, . . . , yn), k = 1, . . . , n, (7.1.3.4)

consisting of n+ 1 equations.

7.1.4 First Integrals. Using Them to Reduce System Dimension

1◦. A relation of the form

Ψ(x, y1, . . . , yn) = C, (7.1.4.1)

where C is an arbitrary constant, is called a first integral of system (7.1.1.1) if its left-

hand side Φ, generally not identically constant, is turned into a constant by any particular

solution, y1, . . . , yn, of system (7.1.1.1). In the sequel, we consider only continuously

differentiable functions Ψ(x, y1, . . . , yn) in a given domain of variation of its arguments.

THEOREM. An expression of the form (7.1.4.1) is a first integral of system (7.1.1.1) if

and only if the function Ψ = Ψ(x, y1, . . . , yn) satisfies the relation

∂Ψ

∂x
+

n∑

k=1

∂Ψ

∂yk
fk(x, y1, . . . , yn) = 0.

This relation may be treated as a first-order partial differential equation for Ψ.

Different first integrals of system (7.1.1.1) are called independent if the Jacobian of

their left-hand sides is nonzero.

System (7.1.1.1) admits n independent first integrals if the conditions of the uniqueness

theorem from Section 7.1.2 are met.

2◦. Given a first integral (7.1.4.1) of system (7.1.1.1), it may be treated as an implicit

specification of one of the unknowns. Solving (7.1.4.1), for example, for yn yields yn =
G(x, y1, . . . , yn−1). Substituting this expression into the first n − 1 equations of system

(7.1.1.1), one obtains a system in n− 1 variables with one arbitrary constant.

Likewise, given m independent first integrals of system (7.1.1.1),

Ψk(x, y1, . . . , yn) = Ck, k = 1, . . . ,m (m < n),

the system may be reduced to a system of n−m first-order equations in n−m unknowns.
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7.2 Integrable Combinations. Autonomous Systems

of Equations

7.2.1 Integrable Combinations

◮ Systems of first-order ordinary differential equations.

In some cases, first integrals of systems of differential equations may be obtained by finding

integrable combinations. An integrable combination is a differential equation that is easy

to integrate and is a consequence of the equations of the system under consideration. Most

commonly, an integrable combination is an equation of the form

dΨ(x, y1, . . . , yn) = 0 (7.2.1.1)

or an equation reducible by a change of variables to one of the integrable types of equations

in one unknown.

Example 7.1. Consider the nonlinear system

ay′1 = (b− c)y2y3, by′2 = (c− a)y1y3, cy′3 = (a− b)y1y2, (7.2.1.2)

where a, b, and c are some constants. Such systems arise in the theory of motion of a rigid body.

Let us multiply the first equation by y1, the second by y2, and the third by y3 and add together

to obtain

ay1y
′
1 + by2y

′
2 + cy3y

′
3 = 0 =⇒ d(ay21 + by22 + cy23) = 0.

Integrating yields a first integral:

ay21 + by22 + cy23 = C1. (7.2.1.3)

Now multiply the first equation of the system by ay1, the second by by2, and the third by cy3
and add together to obtain

a2y1y
′
1 + b2y2y

′
2 + c2y3y

′
3 = 0 =⇒ d(a2y21 + b2y22 + c2y23) = 0.

Integrating yields another first integral:

a2y21 + b2y22 + c2y23 = C2. (7.2.1.4)

If the case a = b = c, where system (7.2.1.2) can be integrated directly, does not take place,

the above two first integrals (7.2.1.3) and (7.2.1.4) are independent. Hence, using them, one can

express y2 and y3 in terms of y1 and then substitute the resulting expressions into the first equation

of system (7.2.1.2). As a result, one arrives at a single separable first-order differential equation

for y1.

In this example, the integrable combinations have the form (7.2.1.1).

Example 7.2. A specific example of finding an integrable combination reducible with a change

of variables to a simpler, integrable linear equation in one unknown can be found in Section 6.1.6.

◮ Systems of second-order ordinary differential equations.

In relatively few cases, integrals for systems of second-order ordinary differential equations

can be found. Let us look at a few examples.
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Example 7.3. Consider the Ermakov system

y′′xx + a(x)y = y−3f(z/y), (7.2.1.5)

z′′xx + a(x)z = z−3f(y/z), (7.2.1.6)

where a(x), f(ξ), and g(η) are arbitrary functions.

Multiplying (7.2.1.5) by z and (7.2.1.6) by−y, adding the results together, and using the idenity

zy′′xx − yz′′xx = (zy′x − yz′x)′x, we obtain

d(zy′x − yz′x) = [zy−3f(z/y)− yz−3g(y/x)] dx.

Multiplying this relation by (zy′x − yz′x) and integrating with respect to x, we find that

1

2
(zy′x − yz′x)2 =

∫
(zy′x − yz′x)zy−3f(z/y) dx−

∫
(zy′x − yz′x)yz−3g(y/x) dx+ C,

where C is an arbitrary constant. Using the change of variable ξ = z/y in the first integral and

η = y/z in the second integral, we arrive at the conservation law

1

2
(zy′x − yz′x)2 =

∫ z/y

ξf(ξ) dξ −
∫ y/z

ηg(η) dη + C,

which is independent of a(x).

Remark 7.4. System (7.2.1.5)–(7.2.1.6) admits a class of exact solutions of the form

y = y(x), z = ky(x),

where k is a root of the algebraic (or transcendental) equation f(k) = k2g(1/k) (to distinct roots

there correspond different solutions) and y= y(x) is a solution to the Ermakov (Yermakov) equation

y′′xx + a(x)y = f(k)y−3 (its general solution is expressed in terms of the solution to the truncated

linear equation with f ≡ 0, see Eq. 14.9.1.2).

7.2.2 Autonomous Systems and Their Reduction to Systems of
Lower Dimension

1◦. A system of equations is called autonomous if the right-hand sides of the equations do

not depend explicitly on x. In general, such systems have the form

y′k = fk(y1, . . . , yn), k = 1, . . . , n. (7.2.2.1)

If y(x) is a solution of the autonomous system (7.2.2.1), then the function y(x + C),
where C is an arbitrary constant, is also a solution of this system.

A point y◦ = (y◦1, . . . , y
◦
n) is called an equilibrium point (or a stationary point) of the

autonomous system (7.2.2.1) if

fk(y
◦
1 , . . . , y

◦
n) = 0, k = 1, . . . , n.

To an equilibrium point there corresponds a special, simplest particular solution when all

unknowns are constant:

y1 = y◦1, . . . , yn = y◦n, k = 1, . . . , n.

2◦. Any n-dimensional autonomous system of the form (7.2.2.1) can be reduced to an

(n − 1)-dimensional system of equations independent of x. To this end, one should select

one of the equations and divide the other n− 1 equations of the system by it.
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Example 7.4. The autonomous system of two first-order equations

y′x = f1(y, z), z′x = f2(y, z) (7.2.2.2)

is reduced by dividing the first equation by the second to a single equation for y = y(z):

y′z =
f1(y, z)

f2(y, z)
. (7.2.2.3)

If the general solution of equation (7.2.2.3) is obtained in the form

y = ϕ(z, C1), (7.2.2.4)

then z = z(x) is found in implicit form from the second equation in (7.2.2.2) by quadrature:∫
dz

f2(ϕ(z, C1), z)
= x+ C2. (7.2.2.5)

Formulas (7.2.2.4)–(7.2.2.5) determine the general solution of system (7.2.2.2) with two arbitrary

constants, C1 and C2.

Remark 7.5. The dependent variables y and z in the autonomous system (7.2.2.2) are often

called phase variables; the plane y, z they form is called a phase plane, which serves to display

integral curves of equation (7.2.2.3).

⊙ Literature for Section 7.2: E. Kamke (1977), J. R. Ray and J. L. Reid (1979), A. D. Polyanin and A. V. Man-

zhirov (2007).

7.3 Elements of Stability Theory

7.3.1 Lyapunov Stability. Asymptotic Stability. Unstable Solutions

1◦. In many applications, time t plays the role of the independent variable, and the associ-

ated system of differential equations is conventionally written in the following notation:

x′k = fk(t, x1, . . . , xn), k = 1, . . . , n. (7.3.1.1)

Here the xk = xk(t) are unknown functions that may be treated as coordinates of a moving

point in an n-dimensional space.

Let us supply system (7.3.1.1) with initial conditions

xk = x◦k at t = t◦ (k = 1, . . . , n). (7.3.1.2)

Denote by

xk = ϕk(t; t
◦, x◦1, . . . , x

◦
n), k = 1, . . . , n, (7.3.1.3)

the solution of system (7.3.1.1) with the initial conditions (7.3.1.2).

A solution (7.3.1.3) of system (7.3.1.1) is called Lyapunov stable if for any ε > 0 there

exists a δ > 0 such that if

|x◦k − x̃◦k| < δ, k = 1, . . . , n, (7.3.1.4)

then the following inequalities hold for t◦ ≤ t <∞:
∣∣ϕk(t; t

◦, x◦1, . . . , x
◦
n)− ϕk(t; t

◦, x̃◦1, . . . , x̃
◦
n)
∣∣ < ε, k = 1, . . . , n.

Any solution which is not stable is called unstable. Solution (7.3.1.3) is called unper-

turbed and the solution ϕk(t; t
◦, x̃◦1, . . . , x̃

◦
n) is called perturbed. Geometrically, Lyapunov

stability means that the trajectory of the perturbed solution stays at all times t ≥ t◦ within

a small neighborhood of the associated unperturbed solution.



“K16435’ — 2017/9/28 — 15:05 — #277

7.3. Elements of Stability Theory 251

2◦. A solution (7.3.1.3) of system (7.3.1.1) is called asymptotically stable if it is Lyapunov

stable and, in addition, with inequalities (7.3.1.4) met, satisfies the conditions

lim
t→∞

∣∣ϕk(t; t
◦, x◦1, . . . , x

◦
n)− ϕk(t; t

◦, x̃◦1, . . . , x̃
◦
n)
∣∣ = 0, k = 1, . . . , n. (7.3.1.5)

3◦. In stability analysis, it is normally assumed, without loss of generality, that t◦ = x◦1 =
· · · = x◦n = 0 (this can be achieved by shifting each of the variables by a constant value).

Further, with the changes of variables

zk = xk − ϕk(t; t
◦, x◦1, . . . , x

◦
n) (k = 1, . . . , n),

the stability analysis of any solution is reduced to that of the zero solution z1= · · ·= zn=0.

7.3.2 Theorems of Stability and Instability by First Approximation

◮ Statement of the problem.

In studying stability of the trivial solution x1 = · · ·= xn =0 of system (7.3.1.1) the follow-

ing method is often employed. The right-hand sides of the equations are approximated by

the principal (linear) terms of the expansion into Taylor series about the equilibrium point:

fk(t, x1, . . . , xn) ≈ ak1(t)x1 + · · · + akn(t)xn,

akm(t) =
∂fk
∂xm

∣∣∣∣
x1=···=xn=0

, k = 1, . . . , n.

Then a stability analysis of the resulting simplified, linear system is performed. The ques-

tion arises: Is it possible to draw correct conclusions about the stability of the original

nonlinear system (7.3.1.1) from the analysis of the linearized system? Two theorems stated

below give a partial answer to this question.

◮ Stability by first approximation.

THEOREM (STABILITY BY FIRST APPROXIMATION). Suppose in the system

x′k = ak1x1 + · · ·+ aknxn + ψk(t, x1, . . . , xn), k = 1, . . . , n, (7.3.2.1)

the functions ψk are defined and continuous in a domain t≥ 0, |xk| ≤ b (k = 1, . . . , n) and,

in addition, the inequality
n∑

k=1

|ψk| ≤ A
n∑

k=1

|xk| (7.3.2.2)

holds for some constant A. In particular, this implies that ψk(t, 0, . . . , 0) = 0, and therefore

x1 = · · · = xn = 0 (7.3.2.3)

is a solution of system (7.3.2.1). Suppose further that

n∑

k=1

|ψk|

n∑

k=1

|xk|
→ 0 as

n∑

k=1

|xk| → 0 and t→∞, (7.3.2.4)
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and the real parts of all roots of the characteristic equation

det |aij − λδij | = 0, δij =

{
1 if i = j,

0 if i 6= j
(7.3.2.5)

are negative. Then solution (7.3.2.3) is stable.

Remark 7.6. Necessary and sufficient conditions for the real parts of all roots of the character-

istic equation (7.3.2.5) to be negative are established by Hurwitz’s theorem, which allows avoiding

its solution.

Remark 7.7. In the above system, the aij , xk, and ψk may be complex valued.

◮ Instability by first approximation.

THEOREM (INSTABILITY BY FIRST APPROXIMATION). (instability by first approxima-

tion). Suppose conditions (7.3.2.2) and (7.3.2.4) are met and the conditions for the func-

tions ψk from the previous theorem are also met. If at least one root of the characteristic

equation (7.3.2.5) has a positive real part, then the equilibrium point (7.3.2.3) of system

(7.3.2.1) is unstable.

Example 7.5. Consider the following two-dimensional system of the form (7.3.2.1) with real

coefficients:
x′t = a11x+ a12y + ψ1(t, x, y),

y′t = a21x+ a22y + ψ2(t, x, y).
(7.3.2.6)

We assume that the functions ψ1 and ψ2 satisfy conditions (7.3.2.2) and (7.3.2.4).

The characteristic equation of the linearized system (obtained by setting ψ1 = ψ2 = 0) is given

by

λ2 − bλ+ c = 0, where b = a11 + a22, c = a11a22 − a12a21. (7.3.2.7)

1. Using the theorem of stability by first approximation and examining the roots of the quadratic

equation (7.3.2.7), we obtain two sufficient stability conditions for system (7.3.2.6):

b < 0, 0 < 1
4 b

2 < c (complex roots with negative real part);

b < 0, 0 < c < 1
4 b

2 (negative real roots).

The two conditions can be combined into one:

b < 0, c > 0, or a11 + a22 < 0, a11a22 − a12a21 > 0.

These inequalities define the second quadrant in the plane b, c; see Fig. 7.1.

2. Using the theorem of instability by first approximation and examining the roots of the

quadratic equation (7.3.2.7), we get three sufficient instability conditions for system (7.3.2.6):

b > 0, 0 < 1
4 b

2 < c (complex roots with positive real part);

b > 0, 0 < c < 1
4 b

2 (positive real roots);

c < 0, b is any (real roots with different signs).

The first two conditions can be combined into one:

b > 0, c > 0, or a11 + a22 > 0, a11a22 − a12a21 > 0.

The domain of instability of system (7.3.2.6) covers the first, third, and fourth quadrants in the plane

b, c (shaded in Fig. 7.1).
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Stability undecided

c

b

O

Domain of instability

Domain of instabilityDomain of stability

Stability undecided
I

IVIII

II

Figure 7.1: Domains of stability and instability of the trivial solution of system (7.3.2.6).

3. The conditions obtained above in Items 1 and 2 do not cover the whole domain of variation of

the parameters aij . Stability or instability is not established for the boundary of the second quarter

(shown by thick solid line in Fig. 7.1). This corresponds to the cases

b = 0, c ≥ 0 (two pure imaginary or two zero roots);

c = 0, b ≤ 0 (one zero root and one negative real or zero root).

Specific examples of such systems are considered below in Section 7.3.3.

Remark 7.8. When the conditions of Item 1 or 2 hold, the phase trajectories of the nonlinear

system (7.3.2.6) have the same qualitative arrangement in a neighborhood of the equilibrium point

x = y = 0 as that of the phase trajectories of the linearized system (with ψ2 = ψ1 = 0). A detailed

classification of equilibrium points of linear systems with associated arrangements of the phase

trajectories can be found in Section 6.1.8.

7.3.3 Lyapunov Function. Theorems of Stability and Instability

◮ Lyapunov function.

In the cases where the theorems of stability and instability by first approximation fail to

resolve the issue of stability for a specific system of nonlinear differential equations, more

subtle methods must be used. Such methods are considered below.

A Lyapunov function for system of equations (7.3.1.1) is a differentiable function V =
V (x1, . . . , xn) such that

1) V > 0 if

n∑

k=1

x2k 6= 0, V = 0 if x1 = · · · = xn = 0;

2)
dV

dt
=

n∑

k=1

fk(t, x1, . . . , xn)
∂V

∂xk
≤ 0 for t ≥ 0.

Remark 7.9. The derivative with respect to t in the definition of a Lyapunov function is taken

along an integral curve of system (7.3.1.1).
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◮ Theorems of stability and instability.

THEOREM (STABILITY, LYAPUNOV). Let system (7.3.1.1) have the trivial solution x1 =
x2 = · · · = xn = 0. This solution is stable if there exists a Lyapunov function for the

system.

THEOREM (ASYMPTOTIC STABILITY, LYAPUNOV). Let system (7.3.1.1) have the triv-

ial solution x1 = · · · = xn = 0. This solution is asymptotically stable if there exists a

Lyapunov function satisfying the additional condition

dV

dt
≤ −β < 0 with

n∑

k=1

x2k ≥ ε1 > 0, t ≥ ε2 ≥ 0,

where ε1 and ε2 are any positive numbers.

Example 7.6. Let us perform a stability analysis of the two-dimensional system

x′t = −ay − xϕ(x, y), y′t = bx− yψ(x, y),

where a > 0, b > 0, ϕ(x, y) ≥ 0, and ψ(x, y) ≥ 0 (ϕ and ψ are continuous functions).

A Lyapunov function will be sought in the form V = Ax2 +By2, where A and B are constants

to be determined. The first condition characterizing a Lyapunov function will be satisfied automati-

cally ifA> 0 andB > 0 (it will be shown later that these inequalities do hold). To verify the second

condition, let us compute the derivative:

dV

dt
= f1(x, y)

∂V

∂x
+ f2(x, y)

∂V

∂y
= −2Ax[ay + xϕ(x, y)] + 2By[bx− yψ(x, y)]

= 2(Bb−Aa)xy − 2Ax2ϕ(x, y)− 2By2ψ(x, y).

Setting here A = b > 0 andB = a > 0 (thus satisfying the first condition), we obtain the inequality

dV

dt
= −2bx2ϕ(x, y) − 2ay2ψ(x, y) ≤ 0.

This means that the second condition characterizing a Lyapunov function is also met. Hence, the

trivial solution of the system in question is stable.

Example 7.7. Let us perform a stability analysis for the trivial solution of the nonlinear system

x′t = −xy2, y′t = yx4.

Let us show that the V (x, y) = x4 + y2 is a Lyapunov function for the system. Indeed, both

conditions are satisfied:

1) x4 + y2 > 0 if x2 + y2 6= 0, V (0, 0) = 0 if x = y = 0;

2)
dV

dt
= −4x4y2 + 2x4y2 = −2x4y2 ≤ 0.

Hence the trivial solution of the system is stable.

Remark 7.10. No stability analysis of the systems considered in Examples 7.6 and 7.7 is possi-

ble based on the theorem of stability by first approximation.

THEOREM (INSTABILITY, CHETAEV). Suppose there exists a differentiable function

W =W (x1, . . . , xn) that possesses the following properties:

1. In an arbitrarily small domain R containing the origin of coordinates, there exists a

subdomain R+ ⊂ R in which W > 0, with W = 0 on part of the boundary of R+ in R.
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2. The condition
dW

dt
=

n∑

k=1

fk(t, x1, . . . , xn)
∂W

∂xk
> 0

holds inR+ and, moreover, in the domain of the variables where W ≥α> 0, the inequality
dW

dt
≥ β > 0 holds.

Then the trivial solution x1 = · · · = xn = 0 of system (7.3.1.1) is unstable.

Example 7.8. Perform a stability analysis of the nonlinear system

x′t = y3ϕ(x, y, t) + x5, y′t = x3ϕ(x, y, t) + y5,

where ϕ(x, y, t) is an arbitrary continuous function.

Let us show that the W = x4 − y4 satisfies the conditions of the Chetaev theorem. We have:

1. W > 0 for |x| > |y|, W = 0 for |x| = |y|.
2.

dW

dt
= 4x3[y3ϕ(x, y, t) + x5]− 4y3[x3ϕ(x, y, t) + y5] = 4(x8 − y8) > 0 for |x| > |y|.

Moreover, if W ≥ α > 0, we have
dW

dt
= 4α(x4 + y4) ≥ 4α2 = β > 0. It follows that the

equilibrium point x = y = 0 of the system in question is unstable.

7.4 Numerical Integration

7.4.1 Systems of Two Equations

◮ Preliminary remarks.

The majority of the numerical methods for single first-order equations discussed in Sec-

tion 1.13 generate analogous numerical methods for solving systems of first-order equa-

tions (7.1.1.1).

We illustrate this with the Cauchy problem described by the system of first-order dif-

ferential equations

y′x = f(x, y, z), z′x = g(x, y, z) (7.4.1.1)

with the initial conditions

y(x0) = y0, z(x0) = z0. (7.4.1.2)

It is required to find y = y(x) and z = z(x).

◮ Method of Euler polygonal lines.

The unknowns are calculated successively by the formulas

yk+1 = yk + hf(xk, yk, zk), zk+1 = zk + hg(xk, yk, zk),

where

xk = x0 + kh, yk = y(xk), zk = z(xk), k = 0, 1, 2, . . . .

The Euler method is the simplest explicit method of the first-order approximation (with

respect to the step size h).
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◮ Modified Euler method.

The modified Euler method is more accurate than the method of Euler polygonal lines. One

first calculates the intermediate quantities

xk+ 1
2
= xk +

1
2h, yk+ 1

2
= yk +

1
2hf(xk, yk, zk), zk+ 1

2
= zk +

1
2hg(xk, yk, zk)

and then finds yk+1 and zk+1 by the formulas

yk+1 = yk + hf
(
xk+ 1

2
, yk+ 1

2
, zk+ 1

2

)
, zk+1 = zk + hg

(
xk+ 1

2
, yk+ 1

2
, zk+ 1

2

)
.

The modified Euler method is of the second order of accuracy.

◮ Runge–Kutta method of the fourth-order approximation.

The unknown values yk and zk are successively found by the formulas

yk+1 = yk +
1
6h(ϕ1 + 2ϕ2 + 2ϕ3 + ϕ4), zk+1 = zk +

1
6h(ψ1 + 2ψ2 + 2ψ3 + ψ4),

where
ϕ1 = f(xk, yk, zk), ψ1 = g(xk, yk, zk),

ϕ2 = f(xk +
1
2h, yk +

1
2hϕ1, zk +

1
2hψ1),

ψ2 = g(xk +
1
2h, yk +

1
2hϕ1, zk +

1
2hψ1),

ϕ3 = f(xk +
1
2h, yk +

1
2hϕ2, zk +

1
2hψ2),

ψ3 = g(xk +
1
2h, yk +

1
2hϕ2, zk +

1
2hψ2),

ϕ4 = f(xk + h, yk + hϕ3, zk + hψ3),

ψ4 = g(xk + h, yk + hϕ3, zk + hψ3).

This scheme is convenient because the step size h can be changed (reduced if the un-

knowns change rapidly or increased otherwise) starting from any k. In practice, the choice

of the step size h can be controlled using the following simple technique. For each k, one

calculates the parameters

θ1 =

∣∣∣∣
ϕ2 − ϕ3

ϕ1 − ϕ2

∣∣∣∣, θ2 =

∣∣∣∣
ψ2 − ψ3

ψ1 − ψ2

∣∣∣∣.

If θi (i = 1, 2) are of the order of a few hundredths of unity, the calculations are continued

with the same step size. If they are over one tenth, the step size should be decreased. If

they are less that one hundredth, the step size can be increased to speed up the calculations.

◮ Numerical integration of problems with blow-up solutions.

In problems having a blow-up solution,∗ the right-hand side of at least one of the equations

(7.4.1.1), which determines the derivative y′x (or/and z′x), tends to infinity as x→ x∗. When

either or both of the functions f(x, y, z) and g(x, y, z) become infinite at a finite value of

the independent variable, x∗, unknown in advance, we see the main reason why standard

numerical methods fail to provide an acceptable solution for such problems.

∗Refer to Section 1.14.4 for details.
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Autonomous systems of equations. Consider the Cauchy problem for the autonomous

system of equations of general form, whose right-hand side is independent explicitly of x,

y′x = f(y, z), z′x = g(y, z) (x > x0), (7.4.1.3)

with the initial conditions (7.4.1.2).

Let us look at the equivalent autonomous system of equations

y′t =
f(y, z)√

f2(y, z) + g2(y, z)
, z′t =

g(y, z)√
f2(y, z) + g2(y, z)

(t > t0) (7.4.1.4)

with the initial conditions

y(t0) = y0, z(t0) = z0. (7.4.1.5)

The initial value t0 can be chosen arbitrarily (in particular, it is often convenient to set

t0 = 0).

Suppose we have found a solution y = y(t), z = z(t) to the Cauchy problem (7.4.1.4)–

(7.4.1.5). Then the formulas

x = x(t), y = y(t), z = z(t),

x(t) = x0 +

∫ t

t0

dτ√
f2(y(τ), z(τ)) + g2(y(τ), z(τ))

(7.4.1.6)

determine a solution to the original problem (7.4.1.3) in parametric form.

Unlike the original system (7.4.1.2), the right-hand sides of system (7.4.1.3) do not have

singularities, since the derivatives are always bounded: |y′t| ≤ 1 and |z′t| ≤ 1 (recall that,

for blow-up solutions, at least one of the derivatives y′x or z′x tends to infinity as x→ x∗).

A numerical solution to problem (7.4.1.4)–(7.4.1.5) can be obtained using, for example,

the Runge–Kutta method (see above). The desired value x∗, determining the point of sin-

gularity of the problem, is found by calculating the integral in (7.4.1.6): x∗ = limt→∞ x(t).
This method allows for various modifications and generalizations. For example, system

(7.4.1.4) can be replaced with the autonomous system

y′t =
f(y, z)

|f(y, z)| + |g(y, z)| , z′t =
g(y, z)

|f(y, z)|+ |g(y, z)| (t > t0). (7.4.1.7)

The modulus sign in the denominators is used for generality, to ensure that system (7.4.1.7)

can be used for the numerical solution of problems with root singularities even when f and

g have different signs.

If a solution y = y(t), z = z(t) to the Cauchy problem (7.4.1.7), (7.4.1.5) has been

found, the formulas

x = x(t), y = y(t), z = z(t),

x(t) = x0 +

∫ t

t0

dτ

|f(y(τ), z(τ))| + g|(y(τ), z(τ))|
(7.4.1.8)

define a solution to the original problem (7.4.1.3), (7.4.1.2) in parametric form.

The right-hand sides of system (7.4.1.7) do not have singularities, since the derivatives

are always bounded: |y′t| ≤ 1 and |z′t| ≤ 1. The desired point of singularity is determined

by calculating the integral in (7.4.1.8), x∗ = limt→∞ x(t).
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Example 7.9. Consider the model Cauchy problem for the autonomous system of equations

y′x = 1, z′x = z2 (x > 0);

y(0) = 0, z(0) = 1.
(7.4.1.9)

The problems has the exact solution

y = x, z =
1

1− x , (7.4.1.10)

which only exists on a bounded interval, 0 ≤ x < x∗ = 1, and corresponds to a blow-up mode. As

x→ x∗, we have z →∞ and z′x →∞.

Instead of system (7.4.1.9), we will solve the special case of system 7.4.1.7 with f(y, z) = 1
and g(y, z) = z2:

y′t =
1

1 + z2
, z′t =

z2

1 + z2
(t > 0);

y(t = 0) = 0, z(t = 0) = 1.

(7.4.1.11)

The old independent variable x is expressed in terms of t as

x =

∫ t

0

dτ

1 + z2(τ)
. (7.4.1.12)

The solution of problem (7.4.1.11) followed by the computation of the integral (7.4.1.12) allows

us to find a solution to the original problem (7.4.1.9) in parametric form

x = 1 + 1
2 t− 1

2

√
t2 + 4, y = 1 + 1

2 t− 1
2

√
t2 + 4, z = 1

2 t+
1
2

√
t2 + 4. (7.4.1.13)

One can see that solution (7.4.1.13) exists for all 0 ≤ t <∞ and does not have singularities (unlike

solution (7.4.1.10)). The functions x = x(t), y = y(t), and z = z(t) all monotonically increase

with t; moreover, the limit relations limt→∞ x(t) = limt→∞ y(t) = x∗ = 1 hold.

Nonautonomous systems of equations. In general, the Cauchy problem for nonau-

tonomous systems of two equations (7.4.1.1) subject to the initial conditions (7.4.1.2) re-

duces the autonomous system of three equations

x′ξ = 1, y′ξ = f(x, y, z), z′ξ = g(x, y, z) (7.4.1.14)

with the initial conditions

x(ξ0) = x0, y(ξ0) = y0, z(ξ0) = z0, (7.4.1.15)

where the initial value of the additional variable can be taken in the form ξ0 = 1.

The numerical solution of the blow-up problem (7.4.1.14)–(7.4.1.15) is carried out us-

ing the method described in Section 7.4.2.

◮ Numerical integration of problems with root singularity.

Systems (7.4.1.4) and (7.4.1.7) can also be used for the numerical analysis of Cauchy prob-

lems of the form (7.4.1.3), (7.4.1.2) having solutions with a root singularity.

Example 7.10. Consider the model Cauchy problem for the autonomous system equation

y′x = 1, z′x = − 1

2z
(x > 0);

y(0) = 0, z(0) = 1.
(7.4.1.16)
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It follows from the second initial condition that z = z(x) is positive and decreases with x. It is

fairly easy to verify that problem (7.4.1.16) admits the exact solution with a root singularity

y = x, z =
√
1− x, (7.4.1.17)

which only exists on a bounded interval, 0 ≤ x < x∗ = 1, since the radicand in (7.4.1.17) becomes

negative for x > x∗. As x→ x∗, we have |z′x| → ∞.

For numerical solution, instead of system (7.4.1.16), we will use the special case of system

7.4.1.7 with f(y, z) = 1 and g(y, z) = −(2z)−1:

y′t =
2z

1 + 2z
, z′t = −

1

1 + 2z
(t > 0);

y(t = 0) = 0, z(t = 0) = 1.
(7.4.1.18)

A solution to problem (7.4.1.18) is sought in the domain z > 0, where | − z| = z; it must stop at

z = 0, when the denominator of the right-hand side of the second equation in (7.4.1.16) becomes

zero.

The old independent variable x is expressed in terms of the new variable t as

x = 2

∫ t

0

z(τ) dτ

1 + 2z(τ)
. (7.4.1.19)

The solution of problem (7.4.1.18) followed by the computation of the integral (7.4.1.19) allows

us to find a solution to the original problem (7.4.1.16) in parametric form:

x = t+ 1
2

√
9− 4t− 3

2 , y = t+ 1
2

√
9− 4t− 3

2 , z = 1
2

√
9− 4t− 1

2 . (7.4.1.20)

Solution (7.4.1.20) only exists in a bounded domain, 0 ≤ t < 2, since z(2) = 0 (recall that

the solution is sought in the domain z > 0), and does not have singularities in this domain (unlike

solution (7.4.1.17)). The functions x= x(t) and y= y(t) both monotonically increase with t; more-

over, the relations limt→2 x(t) = limt→2 y(t) = x∗ = 1 hold. The function z = z(t) monotonically

decreases with t and vanishes at t = 2.

7.4.2 Systems Involving Three or More Equations

◮ Form of the system.

Consider the system of first-order equations of general form

y′m = fm(x, y1, y2, . . . , yn), m = 1, 2, . . . , n (7.4.2.1)

subject to the initial conditions

ym(x0) = ym0 with m = 1, 2, . . . , n. (7.4.2.2)

◮ Method of Euler polygonal lines.

The unknown quantities are calculated successively by the formulas

ymk+1 = ymk + hfm(xk, y
1
k, y

2
k, . . . , y

n−1
k ), m = 1, 2, . . . , n,

where

xk = x0 + kh, ymk = ym(xk), k = 0, 1, 2, . . . .
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◮ Modified Euler method.

First, one computes the intermediate quantities

xk+ 1
2
= xk +

1
2h, ym

k+ 1
2
= ymk + 1

2hfm(xk, y
1
k, y

2
k, . . . , y

n−1
k ).

Then, one finds the values ymk+1 by the formulas

ymk+1 = ymk + hfm
(
xk+ 1

2
, y1

k+ 1
2

, y2
k+ 1

2

, . . . , yn−1
k+ 1

2

)
.

◮ Fourth-order Runge–Kutta method.

The unknown values ymk are successively found by the formulas

ymk+1 = ymk + 1
6h(ϕ

m
1 + 2ϕm

2 + 2ϕm
3 + ϕm

4 ), m = 1, 2, . . . , n,

where
ϕm
1 = fm(xk, y

1
k, y

2
k, . . . , y

n−1
k ),

ϕm
2 = fm(xk +

1
2h, y

1
k +

1
2hϕ

1
1, y

2
k +

1
2hϕ

2
1, . . . , y

n
k + 1

2hϕ
n
1 ),

ϕm
3 = fm(xk +

1
2h, y

1
k +

1
2hϕ

1
2, y

2
k +

1
2hϕ

2
2, . . . , y

n
k + 1

2hϕ
n
2 ),

ϕm
4 = fm(xk + h, y1k + hϕ1

3, y
2
k + hϕ2

3, . . . , y
n
k + hϕn

3 ).

◮ A system of special type resulting from a single nth-order ODE.

Let us look at the system of first-order equations of the special form

y′1 = y2, y′2 = y3, . . . , y′n−1 = yn,

y′n = f(x, y1, y2, . . . , yn),
(7.4.2.3)

which is obtained from the single nth-order ODE

y(n)x = f(x, y, y′x, . . . , y
(n−1)
x ),

with y ≡ y1.

System (7.4.2.3) is a special case of system (7.4.2.1) with

fm(x, y1, y2, . . . , yn) ≡ ym+1, m = 1, 2, . . . , n− 1,

fn(x, y1, y2, . . . , yn) ≡ f(x, y1, y2, . . . , yn).

Hence, it is solvable using the numerical methods described previously in Section 7.4.2.

◮ Numerical integration of problems with blow-up solutions.

Autonomous systems of equations. Consider the Cauchy problem for the autonomous sys-

tem of equations of general form, whose right-hand side is independent explicitly of x,

dym
dx

= fm(y1, . . . , yn), m = 1, . . . , n (x > x0), (7.4.2.4)

with the initial conditions (7.4.2.2).
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In problems having blow-up solutions, the right-hand side of a least one of the equations

(7.4.2.4) tends to infinity as x→ x∗, with x∗ unknown in advance.

Instead of (7.4.2.4), we will be looking at the equivalent autonomous system of equa-

tions

dym
dt

=
fm(y1, . . . , yn)√∑n
j=1 f

2
j (y1, . . . , yn)

, m = 1, . . . , n, (t > t0) (7.4.2.5)

with the initial conditions

ym(t0) = ym0 with m = 1, 2, . . . , n. (7.4.2.6)

The initial value t0 can be chosen arbitrarily (in particular, it is often convenient to set

t0 = 0).

Suppose a solution ym = ym(t) (m = 1, . . . , n) to the Cauchy problem (7.4.2.5),

(7.4.2.6) has been found. Then the formulas

ym = ym(t), m = 1, . . . , n, x = x0 +

∫ t

t0

dτ√∑n
j=1 f

2
j (y1(τ), . . . , yn(τ))

define a solution to the original problem (7.4.2.4), (7.4.2.2) in parametric form.

Unlike system (7.4.2.4), the right-hand sides of system (7.4.2.5) do not have singular-

ities, since the derivatives are all bounded: |(ym)′t| ≤ 1 (m = 1, . . . , n); recall that, for

blow-up solutions, at least one of the derivatives (ym)′t tends to infinity as x→ x∗.

A numerical solution to problem (7.4.2.5)–(7.4.2.6) can be obtained using, for example,

the Runge–Kutta method (see above).

This presented method admits various modifications and generalizations. For example,

instead of (7.4.2.5), one uses the following autonomous system for numerical solution:

dym
dt

=
fm(y1, . . . , yn)∑n
j=1 |fj(y1, . . . , yn)|

, m = 1, . . . , n, (t > t0) (7.4.2.7)

If a solution ym = ym(t) (m = 1, . . . , n) to the Cauchy problem (7.4.2.7), (7.4.2.6) has

been obtained, the formulas

ym = ym(t), m = 1, . . . , n, x = x0 +

∫ t

t0

dτ∑n
j=1 |fj(y1(τ), . . . , yn(τ))|

define a solution to the original problem (7.4.2.4), (7.4.2.2) in parametric form.

The right-hand sides of system (7.4.2.7) do not have singularities, since the derivatives

are all bounded: |(ym)′t| ≤ 1 (m = 1, . . . , n).

Nonautonomous systems of equations. In general, the Cauchy problem for the nonau-

tonomous system of n equations (7.4.2.1) subject to the initial conditions (7.4.2.2) is first

reduced to an autonomous system of n + 1 equation (see Section 7.1.3). Then, one con-

structs a numerical solution to one of the two equivalent auxiliary systems described above.

◮ Numerical integrations of problem having solutions with root singularity.

The autonomous systems (7.4.2.5) and (7.4.2.7) can also be used for the numerical analysis

of Cauchy problems of the form (7.4.2.4), (7.4.2.2) having solutions with a root singularity

(see Section 7.4.1 for systems of two equations).
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The nonautonomous system of n equations of general form (7.4.2.1) subject to the ini-

tial conditions (7.4.2.2) is first reduced to an autonomous system consisting of n+ 1 equa-

tions (see Section 7.1.3) and then replaced with a suitable equivalent autonomous system

discussed above.

◮ Differential-algebraic equations.

Systems of differential-algebraic equations (DAEs for short) are systems in which one or

more dependent variables occur without their derivatives. Numerical methods for the so-

lution of DAEs can be found in the books by Hairer, Lubich, and Roche (1989), Schiesser

(1994), Hairer and Wanner (1996), Brenan, Campbell, and Petzold (1996), Ascher and

Petzold (1998), and Rabier and Rheinboldt (2002).

⊙ Literature for Section 7.4: N. S. Bakhvalov (1977), N. N. Kalitkin (1978), A. N. Tikhonov, A. B. Vasil’eva,

and A. G. Sveshnikov (1985), J. C. Butcher (1987), E. Hairer, C. Lubich, and M. Roche (1989), W. E. Schiesser

(1994), U. M. Ascher and L. R. Petzold (1998), G. A. Korn and T. M. Korn (2000), H. J. Lee and W. E. Schiesser

(2004).
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Chapter 8

Elements of Bifurcation Theory

8.1 Dynamical Systems. Rough and Nonrough Systems

8.1.1 Bifurcation. Dynamical Systems. Phase Portrait

◮ Preliminary remarks.

The term bifurcation is generally used to denote different qualitative structural changes or

transformations of various objects when some parameters characterizing the object change.

Mathematical bifurcation theory deals with changes in the qualitative or topological struc-

ture of a given family, such as the integral curves of a family of vector fields, the solutions

of a family of dynamical systems, and the solutions of a family of boundary value problems.

In the theory of dynamical systems, a bifurcation is a qualitative change in the prop-

erties of a system of differential equations due to an indefinitely small change in its pa-

rameters. The theory of nonlinear boundary value problems studies bifurcations associated

with branching of solutions (multiplicity of solutions) or nonexistence of solution at certain

values of the parameters of the problem.

◮ Dynamical systems described by ODEs. Phase portrait.

Dynamical systems with finitely many variables are described by autonomous systems of

first-order ordinary differential equations

x′
t = f(x,a), (8.1.1.1)

where x = (x1, . . . , xn) is the vector of unknowns, t is time, a = (a1, . . . , am) is the

vector of parameters, and f = (f1, . . . , fn) is a given vector function whose components

depend on the unknowns and parameters.

System (8.1.1.1) is associated with an n-dimensional phase space, whose coordinate

axes measure the values of the variables x1, . . . , xn, known as the phase variables. A

change in the state of system (8.1.1.1) in time corresponds to the motion of a point in the

phase space along a line called the phase trajectory. A combination of phase trajectories

forms a phase portrait of the dynamical system.

Phase trajectories of a dynamical system are described by a system of ODEs for the

phase variables consisting of n − 1 equations obtained from (8.1.1.1) by eliminating t.

263
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The system for the phase variables has the form dxm/dx1 = fm/f1 with m = 2, . . . , n
and, by the existence and uniqueness theorems for systems of ODEs (see Section 7.1.2),

it has a unique solution, provided that the initial data are not selected at stationary points.

Hence an important consequence follows that phase trajectories cannot intersect at regular

points. The impossibility of self-intersections and the existence of invariant manifolds

largely determines the structure of a phase portrait.

8.1.2 Topologically Equivalent Systems. Rough and Nonrough
Systems

◮ Topologically equivalent dynamical systems.

The set of properties of a dynamical system that remain unchanged under a continuous de-

formation of its phase portrait determine the system’s local topological (qualitative) struc-

ture.

A dynamical system I in a domain U1 ∈ R
n is said to be topologically equivalent to a

dynamical system II in a domain U2 ∈ R
n if there is a one-to-one mapping F : Rn → R

n,

F(U1) = U2, between them such that the mapping and its inverse are both continuous,

with F taking trajectories of the first system from U1 into trajectories of the second system

from U2 while preserving the time course. The phase portraits of topologically equivalent

systems are also called topologically equivalent. Note that the definition involves domains

U1 and U2 from R
n, which must meet the only condition: they cannot shrink indefinitely.

This defines local equivalence.

◮ Rough and nonrough dynamical systems.

The theory of bifurcations of dynamical systems studies changes in the qualitative pic-

ture of decomposition of the phase space depending on changes of a parameter (or a few

parameters).

Let ā ∈ Am, where Am is some domain of the m-dimensional Euclidean space. If

there is a δ > 0 such that the phase portraits of system (8.1.1.1) at a = ā and any a ∈ A
satisfying the condition ‖a− ā‖ < δ are topologically equivalent, then system (8.1.1.1) is

said to be rough at a = ā. A rough system is a system whose qualitative pattern of motions

remains unchanged under sufficiently small changes in parameters. Conservative systems

are not rough: for example, oscillations of a perfect frictionless pendulum are periodic (do

not decay), whereas periodicity is violated when there is even indefinitely small friction.

If at a = ā, system (8.1.1.1) is not rough, the vector ā is called a bifurcation set of

parameter values. The parameter, a change in which causes a bifurcation, is called a critical

parameter (bifurcation parameter), while the value at which the bifurcation occurs is called

a critical value. A point in the parametric space at which bifurcation occurs is called a

bifurcation point. A bifurcation point can be a source from which several solutions (stable

or unstable) may come out. The oscillation of a critical parameter about a critical point

causes a hysteresis (uncertainty) of the solution properties. A bifurcation point that is a

source of only stable solutions is called an attracting point (or an attractor).

Example 8.1. Consider the Malthus model

x′t = ax, (8.1.2.1)
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which describes the dynamics of population quantity x(t) under unlimited resources. The solution

satisfying the initial condition x(0)=x0 is x(t)=x0 exp(at). It is clear that if x0>0, the population

increases indefinitely for any positive value of a and dies out for any negative a (x(t) → 0 with

time). Hence, the solutions of close equations (corresponding to close values of the parameter) will

be qualitatively different near a = 0. Therefore, a bifurcations of equation (8.1.2.1) occurs when a
changes its sign (the equilibrium x = 0 changes from stable to unstable or vice versa).

⊙ Literature for Section 8.1: A. A. Andronov, E. A. Leontovich, and I. I. Gordon (1971), J. E. Marsden and

M. McCracken (1976), V. I. Arnold (1978), J. Guckenheimer and P. Holms (1983), A. D. Bazykin (1985),

R. Z. Sagdeev, D. A. Usikov, and G. M. Zaslavsky (1988), S. Wiggins (1988), G. M. Zaslavsky (1988),

J. D. Crawford (1991), G. Iooss and D. D. Joseph (1997), V. I. Arnold and V. S. Afraimovich (1999), T. Puu

(2000), Y. A. Kuznetsov (2004), E. M. Izhikevich (2007), A. S. Bratus, A. S. Novozhilov, and A. P. Platonov

(2009), A. A. Andronov, A. A. Vitt, and S. E. Khaikin (2011), A. Yu. Alexandrov, A. V. Platonov, V. N. Starkov,

and N. A. Stepenko (2016), E. G. Wiens (2016).

8.2 Bifurcations of Second-Order Dynamical Systems

8.2.1 Second-Order Dynamical Systems. Rough and
Nonrough Systems

◮ Classification of singular points of a linearized system.

Consider the autonomous system consisting of two differential equations

x′t = P (x, y,a),

y′t = Q(x, y,a).
(8.2.1.1)

Let us fix the set of parameters. Let (x0, y0) be an equilibrium point of system (8.2.1.1) for

the selected set of parameters. Denote

∆ =

∣∣∣∣∣
Px(x0, y0,a) Py(x0, y0,a)

Qx(x0, y0,a) Qy(x0, y0,a)

∣∣∣∣∣ , σ = Px(x0, y0,a) +Qy(x0, y0,a).

Then the characteristic polynomial of the matrix of system (8.2.1.1) linearized about the

point (x0, y0) has the form

ϕ(λ) = λ2 − σλ+∆. (8.2.1.2)

Depending on the values of ∆ and σ, the singular point (x0, y0) is classified as follows:

(a) ∆ > 0, σ2 − 4∆ ≥ 0: the point is a node (if σ2 − 4∆ = 0, the node is degenerate

of dicritical);

(b) ∆ < 0: saddle point;

(c) ∆ > 0, σ2 − 4∆ < 0, σ 6= 0: focus (spiral point);

(d) ∆ > 0, σ = 0: complex focus or center (depending on the nonlinear terms);

(e) ∆ = 0: complex (multiple) equilibrium.

In cases (a), (b), and (c), there are no roots with zero real part among the roots of the

characteristic polynomial (8.2.1.2). In case (d), there is a pair of purely imaginary complex

conjugate roots. In case (e), at least one of the roots is zero. If ∆ = 0, the equilibrium can

share features of a node, saddle point, and focus; for example, it can be a complex node,

complex saddle, saddle-node, etc. The equilibrium is rough if it falls into one of the cases

(a), (b), or (c).
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◮ Rough limit cycles.

Suppose that, for fixed values of the parameters, system (8.2.1.1) has a closed trajectory

(limit cycle). Such a trajectory corresponds to a periodic solution x(t), y(t). Let T denote

the period of this solution; that is, x(t + T ) = x(t) and y(t + T ) = y(t) for all t. The

number

h =
1

T

∫ T

0

[
Px(x(t), y(t),a) +Qy(x(t), y(t),a)

]
dt

is called the characteristic index of the closed trajectory. If h 6= 0, the limit cycle is called

rough; it is unstable for h > 0 and stable for h < 0.

◮ Rough and nonrough dynamical systems. Bifurcation values.

THEOREM ON ROUGHNESS OF DYNAMICAL SYSTEMS. System (8.2.1.1) is rough in a

closed domain G for a fixed set of values of the parameters if and only if the system has

neither nonrough equilibria or limit cycles nor separatrices coming from a saddle to a sad-

dle.

In general, the parameter space is divided into domains of rough systems separated by

surfaces of nonrough systems. Bifurcation theory studies changes of the qualitative picture

of a dynamical system when its parameters change continuously. In mechanical systems,

stationary motions (such as equilibria or relative equilibria) often depend on parameters.

The values of parameters at which the number of equilibria changes are bifurcation values.

The curves or surfaces representing equilibrium manifolds in the state space or parameter

space are called bifurcation curves or bifurcation surfaces. As a parameter passes its bifur-

cation value, the equilibrium properties usually change. Bifurcations of equilibria can be

accompanied with the birth or death of periodic or more complex motions.

Nonrough systems are classified by their degree of nonroughness depending on the

order of the terms that can turn a nonrough system (8.2.1.1) into another nonrough system

with a topologically nonequivalent phase portrait. Conservative systems may be treated as

having an infinite degree of nonroughness. These can only have simple equilibria such as a

center of a saddle point; closed trajectories in conservative systems cannot be isolated but

occupy entire domains.

8.2.2 Bifurcations in Systems of the First Degree of Nonroughness

◮ Systems of the first degree of nonroughness with one parameter.

Consider the simplest bifurcations arising in autonomous second-order systems of the first

degree of nonroughness with a single parameter (m=1). Suppose a value of the parameter,

a = ā, is bifurcation and all sufficiently close values a 6= ā correspond to rough systems.

Let the qualitative structures of the rough systems be different for a < ā and a > ā. We

assume that a = ā corresponds to a system of the first degree of nonroughness; that is,

there is only one of the nonrough special elements: a complex focus of the first order, a

saddle-node, a double limit cycle, a separatrix going from one saddle point to another, or a

separatrix forming a loop about a saddle point (for which σ 6= 0).
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Below we describe the simplest bifurcations in second-order dynamical systems with

one or more parameters.

◮ Bifurcations of a complex focus of the first order.

Two types of bifurcations of a complex focus of the first order (Andronov–Hopf bifurca-

tions) are possible:

1. For all a < ā (sufficiently close to ā), there is a rough stable focus with no closed

trajectories in its neighborhood. For a= ā, the focus becomes a stable complex focus of the

first order. As a passes the bifurcation value ā, with a > ā, the focus becomes rough and

unstable, with a single stable limit cycle arising about it, which gets bigger as a increases.

2. For a < ā, there is a rough stable focus surrounded by an unstable limit cycle. As

a→ ā− 0, the limit cycle shrinks and merges with the equilibrium at a = ā, becoming an

unstable complex focus of the first order. For a > ā, the focus becomes rough and unstable,

with no closed trajectories about it.

Example 8.2. Let us look at an example revealing the first type of bifurcations. Suppose the

equations (8.2.1.1) are

x′t = ax− 2y − x(x2 + y2),
y′t = 2x+ ay − y(x2 + y2),

(8.2.2.1)

where a is a scaler parameter. The origin of coordinates is an equilibrium of system (8.2.2.1) for

any a. The linearized system about this equilibrium is

x′t = ax− 2y,
y′t = 2x+ ay.

The eigenvalues of the matrix of this linear system are λ1,2 = a± 2i. It follows that the point (0, 0)
is a stable focus for a < 0 and unstable focus for a > 0. At a = 0, the eigenvalues are purely

imaginary (∆ > 0, σ = 0) and the equilibrium is a center. The bifurcation value is ā = 0.

For the nonlinear system (8.2.2.1), we get the following: (i) for a< 0, the phase portrait remains

the same, (ii) at a= 0, the point (0, 0) becomes an asymptotically stable complex focus, and (iii) for

a > 0, a stable limit cycle arises. Figure 8.1 displays the integral curves passing through the points

(1, 0) and (−1, 0) for different values of a, with the last graph also showing the integral curves

passing through (1, 1) and (−1,−1).

x

y a

x

y a

x

y a

Figure 8.1: Phase portraits of system (8.2.2.1) for a = −0.5, 0, and 1.
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◮ Bifurcation of a double saddle-node.

Two types of bifurcation are possible:

1. For a < ā, there are no equilibria; at a = ā, a saddle-node arises; and for a > ā, the

saddle-node splits into a rough saddle and a rough node.

2. For a < ā, there are two rough points of equilibrium, a saddle and a node; at a = ā,

these merge to form a saddle-node, which disappears for a > ā.

Example 8.3. Consider a system corresponding to the first type of bifurcation:

x′t = xy − a,
y′t = x− y. (8.2.2.2)

The bifurcation value is ā = 0. For a > 0, system (8.2.2.2) has two points of equilibrium: a saddle

point (
√
a,
√
a) and a stable node (−√a,−√a). At a = 0, these merge at the point (0, 0) to form a

saddle-node. For a < 0, the system has no equilibria.

x

y a

x

y a

x

y a

Figure 8.2: Phase portraits of system (8.2.2.2) for a = 1, 0, and −1.

Figure 8.2 displays the integral curves passing through (i) the regular points (1, 0), (1, 2), (2, 1),
and (0, 1) as well as the singular points (−1,−1) and (1, 1) at a = 1, (ii) the regular points (1, 0),
(1, 2), and (−1, 2) and singular point (0, 0) at a = 0, and (iii) the point (0, 0) at a = −1.

Example 8.4. Consider the dynamical system

x′t = x− xy

1 + αx
− βx2,

y′t = −γy
(
1− x

1 + αx

)
,

(8.2.2.3)

which is used to model the interaction between predator and prey populations taking into account

prey competition and predator saturation; Bazykin (1985) and Alexandrov, Platonov, Starkov, and

Stepenko (2016).

If β = 0, prey competition is not considered. In the first quadrant, an equilibrium only arises for

α < 1; it is always unstable. For α > 1, there is no nontrivial equilibrium (the predator population

is doomed to die out). Therefore, prey competition is a stabilizing factor; if it is too weak, stability

may be lost and self-oscillations may arise.

The equilibria in system (8.2.2.3) are determined by isoclines on which x′t = 0 and y′t = 0, that

is, by the lines x= 1/(1−α) and y = (1+αx)(1−βx). The condition for the isoclines to intersect

in the first quadrant is α+β < 1. Let us select the following regions on the parametric plane (α, β)
(see Fig. 8.3):
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I. α+ β > 1.

II. α+ β < 1, β > α(1− α)/(1 + α).
III. β < α(1 − α)/(1 + α).
In region II, there is a nontrivial stable equilibrium. At the boundary between regions II and III,

the equilibrium loses stability and, in region III, a stable limit cycle arises. The qualitative behavior

of system (8.2.2.3) is independent of the values of γ.

10.2 0.4 0.6 0.8

0.2

0

0.4

0.6

0.8

1

I

II

III

Figure 8.3: Regions determined by equilibrium isoclines of system (8.2.2.3).

◮ Bifurcation of a limit cycle.

Two types of bifurcation are also possible here:

1. For a < ā, there is a region with no limit cycle; at a = ā, a double limit cycle arises,

which for a > ā, splits into two rough limit cycles, stable and unstable.

2. For a < ā, there are two rough limit cycles, stable and unstable; at a= ā, they merge

to form a double limit cycle, which further disappears for a > ā.

Example 8.5. Consider a dynamical system corresponding to the first type of bifurcation:

x′t = y,
y′t = −x+ µ(ay + by3 − cy5). (8.2.2.4)

It arises in modeling power generation processes in vacuum tubes (Andronov, Leontovich, and

Gordon (1971)). Here, µ is a small parameter, while b and c are positive constants. The bifurcation

value is ā = −0.25.

Figure 8.4 shows phase portraits at µ = 1/10, b = 3/4, and c = 5/8 as well as a = −0.5,

−0.25, and −0.15. The first and second graphs present the integral curves passing through the

point (0.5, 0.5). The third graph displays the integral curves passing through the points (0.3, 0.3),
an unstable limit cycle, (0.63, 0.63), a stable limit cycle (shown by a solid line), and the points

(0.1, 0.1), (0.5, 0.5), and (1.2, 1.15) shown by a dashed line.

⊙ Literature for Section 8.2: A. A. Andronov, E. A. Leontovich, and I. I. Gordon (1971), J. E. Marsden and

M. McCracken (1976), V. I. Arnold (1978), J. Guckenheimer and P. Holms (1983), A. D. Bazykin (1985),

R. Z. Sagdeev, D. A. Usikov, and G. M. Zaslavsky (1988), S. Wiggins (1988), G. M. Zaslavsky (1988),

J. D. Crawford (1991), G. Iooss and D. D. Joseph (1997), V. I. Arnold and V. S. Afraimovich (1999), T. Puu

(2000), Y. A. Kuznetsov (2004), E. M. Izhikevich (2007), A. S. Bratus, A. S. Novozhilov, and A. P. Platonov

(2009), A. A. Andronov, A. A. Vitt, and S. E. Khaikin (2011), A. Yu. Alexandrov, A. V. Platonov, V. N. Starkov,

and N. A. Stepenko (2016), E. G. Wiens (2016).
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x

y a

x

y a

x

y a

Figure 8.4: Phase portraits of system (8.2.2.4) for a = −0.5, −0.25, and −0.15.

8.3 Bifurcations of Solutions to Boundary Value

Problems

8.3.1 Bifurcations of Solutions to Linear Boundary Value Problems

Let us look at the linear eigenvalue problem

L[u] = λu, Γ[u] = 0, (8.3.1.1)

where L is a linear differential operator, λ is a real number, and Γ[u] = 0 is a symbolic

representation of different linear boundary conditions (see Section 2.5 for the most common

types of boundary conditions).

For any λ, problem (8.3.1.1) has the trivial solution u = 0. Suppose that there is a set

of eigenvalues λ1 < λ2 < · · · and the corresponding normalized eigenfunctions u1, u2,

. . . such that Luj = λjuj , ‖uj‖ = 1, j = 1, 2, . . . . Then, if c is an arbitrary real number,

problem (8.2.2.3) has other solutions given by

u = cuj , j = 1, 2, . . . . (8.3.1.2)

It is clear that, for each eigenvalue λj , the solution u=0 splits into two branches: the u=0
branch and the (8.3.1.2) branch. It follows that λ = λj are bifurcation points of problem

(8.3.1.1).

8.3.2 Bifurcations in Solutions to Nonlinear Boundary Value
Problems

◮ Analysis of bifurcations in boundary value problems by linearization of equations.

Let (8.3.1.1) be a linearization of some nonlinear eigenvalue problem. Then the solution of

the linear problems determines bifurcation points of solutions to the nonlinear problem.

Example 8.6. Consider a thin rod with clamped ends, lying in the xz-plane, and prescribed

displacements of the ends in the x-direction. The shape of the rod is described by two functions,
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u = u(x) and w = w(x), which denote the dimensionless displacements along the x and z axes,

respectively. These functions satisfy the following differential equations and boundary conditions:

w′′
xx + λw = 0, 0 < x < 1, (8.3.2.1)

u′x + 1
2 (w

′
x)

2 = −βλ, 0 < x < 1, (8.3.2.2)

w(0) = w(1) = 0, (8.3.2.3)

u(0) = −u(1) = c > 0. (8.3.2.4)

The constant λ in (8.3.2.1) and (8.3.2.2) is proportional to the axial stress in the rod. The positive

constant c is proportional to the displacement of either end and is unknown. The quantity β > 0 is

a given constant.

First, let us look at the linearized problem by neglecting the rem 1
2 (w

′
x)

2 in (8.3.2.2). We have

u′x = −βλ, 0 < x < 1.

The solution to this equation satisfying the boundary condition (8.3.2.4) is

u = c(1− 2x), c = 1
2βλ. (8.3.2.5)

Problem (8.3.2.1), (8.3.2.3) has the following solution:

w = 0, λ is an arbitrary constant;

w = Anwn(x) ≡ An sinnπx, λ = λn ≡ (nπ)2, n = 1, 2, . . .
(8.3.2.6)

whereAn are arbitrary constants. It follows from (8.3.2.5) that, for c= cn ≡ 1
2βλn, the rod buckles

and acquires the shape defined by formulas (8.3.2.5) and (8.3.2.6) with undetermined amplitudeAn.

For c 6= cn, the rod remains rectilinear.

Now look at the nonlinear problem (8.3.2.1)–(8.3.2.4). The solutions to problem (8.3.2.1),

(8.3.2.3) remain the same, (8.3.2.6). The solution of equation (8.3.2.2) with λ = λn satisfying the

first boundary condition (8.3.2.4) is given by

u = un(x) ≡ c− βλn
(
1 +

A2
n

4β

)
x− nπA2

n

8
sin(2nπx). (8.3.2.7)

Substituting this expression into the second boundary condition (8.3.2.3) yields

c = cn

(
1 +

A2
n

4β

)
, cn =

1

2
βλn. (8.3.2.8)

Relation (8.3.2.8) expresses the link between the contraction at the end and the response of the

rod. It is clear that for c < c1, the solution is unique (zero) and stable. For c > c1, the uniqueness is

violated: for any c from the interval cn < c < cn+1, there are 2n+1 solutions (with each new point

cn, two more solutions are added, one corresponding to a positive An and the other corresponding

to a negative An; see Fig. 8.5). The solutions branch out from the unbuckled shape An = 0 at

the points cn. Hence, the solution of the linear problem determines the bifurcation points of the

nonlinear problem. Figure 8.5 displays the parabolas (8.3.2.8) with β = 1 and cn = 1, 2, 3.

Example 8.7. For a thin rod of unit length lying in the xz-plane, suppose that one of its ends,

x = 0, is fixed, while the other end, x = 1, lies freely on the x-axis. Both ends can turn freely

about the y-axis. The rod is loaded by a given axial compressive stress. The shape of the rod

is determined by the function ψ = ψ(x), the angle between the central line of the deformed rod

and the x-axis, as well as the functions u = u(x) and w = w(x), the displacements along the x-

and z-axis, respectively. The shape is determined from the boundary value problem of inextensible

elasticity

ψ′′
xx + λ sinψ = 0, 0 < x < 1, (8.3.2.9)

ψ′
x(0) = ψ′

x(1) = 0, (8.3.2.10)

u′x = cosψ − 1, w′
x = sinψ, 0 < x < 1, (8.3.2.11)

u(0) = w(0) = w(1) = 0. (8.3.2.12)
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c

An

Figure 8.5: Bifurcation points: intersections of the parabolas (8.3.2.8) with the abscissa

axis; β = 1 and cn = 1, 2, 3.

The constant λ is proportional to the load applied. The linearization of equation (8.3.2.9), (8.3.2.11)

about ψ = 0 leads to the eigenvalue problem

ψ′′
xx + λψ = 0, 0 < x < 1, ψ′

x(0) = ψ′
x(1) = 0,

u′x = 0, w′
x = ψ, u(0) = w(0) = w(1) = 0.

(8.3.2.13)

This problem has the following solutions:

λ = λn ≡ (nπ)2, n = 1, 2, . . . ,

ψ = An cosnπx, u = 0, w =
An

nπ
sinnπx,

(8.3.2.14)

where An are arbitrary constants.

It is clear that if ψ, u, w is a solution at some λ, then ±ψ + 2nπ, u, ±w are also solutions

for any integer n and the same λ (either upper or lower signs are take simultaneously). Therefore,

without loss of generality, we can assume that λ ≥ 0 and set

ψ(0) = α, 0 ≤ α ≤ π. (8.3.2.15)

A first integral of equation (8.3.2.9), in view of (8.3.2.10) and (8.3.2.15), has the form

(ψ′
x)

2 = 2λ(cosψ − cosα). (8.3.2.16)

From the continuity of the function ψ = ψ(x), condition (8.3.2.15), and nonnegativity of the right-

hand side of (8.3.2.16) it follows that |ψ| ≤ α.

If 0 < λ < λ1, then the constants ψ = 0 and ψ = π are unique solutions of problem (8.3.2.9)–

(8.3.2.12) satisfying condition (8.3.2.15).

For λ ≥ λ1, we introduce the new variable ϕ = ϕ(x) defined by the relations

k sinϕ = sin
ψ

2
, k = sin

α

2
. (8.3.2.17)

Then, it follows from (8.3.2.16) that

µ
dx

dϕ
= (1− k2 sin2 ϕ)−1/2, µ =

√
λ. (8.3.2.18)
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The range of ϕ(x) is determined by the equalities sinϕ(0) = 1 and sin2 ϕ(1) = 1, which follow

from (8.3.2.10), (8.3.2.16), and (8.3.2.17); hence,

ϕ(0) = ϕp ≡
4p+ 1

2
π, p = 0,±1,±2, . . . , (8.3.2.19)

ϕ(1) = ϕq ≡
2p+ 1

2
π, q = 0,±1,±2, . . . (8.3.2.20)

Integrating (8.3.2.18) using condition (8.3.2.19), we obtain the implicit solution

µx =

∫ ϕ(x)

ϕp

(1− k2 sin2 ϕ)−1/2 dϕ, p = 0,±1,±2, . . . , (8.3.2.21)

which involves Jacobi’s elliptic integral of the first kind. The integrand in (8.3.2.21) is periodic with

period π; it reaches a maximum, equal to (1 − k2)−1/2, at ϕ = ϕq and a minimum, equal to 1, at

ϕ = nπ, n = 0,±1, . . .. By setting x = 1 in (8.3.2.21), we get

µ =

∫ ϕq

ϕp

(1− k2 sin2 ϕ)−1/2 dϕ, p, q = 0,±1,±2, . . . (8.3.2.22)

The integrals on the right-hand side of (8.3.2.22) computed over one period are equal to 2K , with

K(k) =

∫ π/2

0

(1− k2 sin2 ϕ)−1/2 dϕ

being the complete elliptic integral of the first kind. The integrals in (8.3.2.22) are taken from any

ϕp to any ϕq and, hence, are expressed as

µ = µm ≡ 2mK(k), m = 1, 2, . . . .

Thus, for anym we get a characteristic of the rod, that is, a relation between the loading parameterµ
and deformation measure k = sin α

2 . Since K(0) = 1
2π, each curve branches out from k = 0,

µ = µm(0) =mπ, which represent square roots of the eigenvalues of the linear problem (8.3.2.13);

this means that a linear eigenvalue problem defines bifurcation points of a nonlinear problem.

8.3.3 Bifurcation Analysis of Boundary Value Problems without
Linearizing Equations

◮ A mixed boundary value problem. Bifurcation diagrams. Turning points.

Consider the mixed boundary value problem

y′′xx + λf(y) = 0; y′x(0) = 0, y(1) = 0 (8.3.3.1)

with λ > 0 and f(y) > 0.

We use the notation α = y|x=0. It can be shown that y > 0 and y′x ≤ 0 (0 ≤ x ≤ 1).

The parameter α can be treated as free; its value uniquely determines a value of λ
and a solution y = y(x) (by the uniqueness theorem for initial value problems). Hence,

any solution of problem (8.3.3.1) can be associated with a point of a curve in the (α, λ)
plane. It is customary to refer to these curves as bifurcation diagrams. The shape of any

bifurcation diagram is determined by the turning points (singular points).

The general solution to problem (8.3.3.1) can be represented in implicit form as

[∫ y

0

dτ√
F (α)− F (τ)

]2
= 2λ(1 − x)2, F (y) =

∫ y

0
f(y) dy, (8.3.3.2)
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with λ related to α by

λ =
1

2
J2(α), J(α) =

∫ α

0

dτ√
F (α)− F (τ)

. (8.3.3.3)

Formulas (8.3.3.2)–(8.3.3.3) follow from the results of Example 3.1.

The function λ= λ(α) (bifurcation diagram) passes the origin of coordinates λ(0) = 0;

extrema of this function determine turning points. A necessary condition for the existence

of an extremum is the equality λ′α = 0. Since λ′α = JJ ′
α, where J = J(α), the necessary

condition becomes J ′
α = 0.

The integral with the variable upper limit J(α) has an integrable singularity (the de-

nominator of the integrand vanishes at τ = α). Using the identity

1√
F (α)− F (τ)

≡ −2 d
dτ

[
1

f(τ)

√
F (α)− F (τ)

]
− 2

f ′τ (τ)
f2(τ)

√
F (α)− F (τ),

we rewrite the function J(α) in the form

J(a) =
2
√
F (α)

f(0)
− 2

∫ α

0

f ′τ (τ)
f2(τ)

√
F (α) − F (τ) dτ. (8.3.3.4)

The integral in (8.3.3.4) now has no singularity, which makes it more convenient for nu-

merical calculations.

The following theorem holds.

THEOREM (KORMAN–LI–OUYANG). A solution of the problem (8.3.3.1) with the

maximal value α = y(0) is singular if and only if

√
F (α)

∫ α

0

f(α)− f(τ)
[F (α) − F (τ)]3/2 dτ = 2. (8.3.3.5)

Example 8.8. For a plane problem of combustion theory, one should set f(y) = ey in (8.3.3.1).

Then, F (τ) = eτ − 1. After computing the integral, condition (8.3.3.5) leads to the transcendental

equation

ζ tanh ζ = 1, where ζ = (1− e−α)−1/2.

Numerical analysis gives ζ ≈ 1.19968 and α ≈ 1.1868, which coincides with the results obtained

in Example 3.17). The critical value α ≈ 1.1868 corresponds to a thermal explosion; the problem

has no solution for greater α.

◮ Extension to the case of a nonhomogeneous boundary condition.

Consider the mixed boundary value problem

y′′xx + λf(y) = 0; y′x(0) = 0, y(1) = β, (8.3.3.6)

which differs from (8.3.3.1) in the more general second boundary condition.

If, as before, we use the notation α = y|x=0, the solution to problem (8.3.3.6) can be

represented in the implicit form
[∫ y

β

dτ√
F (α)− F (τ)

]2
= 2λ(1 − x)2, F (y) =

∫ y

0
f(y) dy, (8.3.3.7)

with λ related to a and b by

λ =
1

2
J2(α, β), J(α, β) =

∫ α

β

dτ√
F (α) − F (τ)

. (8.3.3.8)
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Figure 8.6: Bifurcation curves described by formula (8.3.3.9) at β = −1, 0, 1.

Example 8.9. For f(y) = ey , the bifurcation diagram corresponding to problem (8.3.3.6) is

expressed as

λ = 1
2 e

−α
[
2 ln
(
eα/2 +

√
eα − eβ

)
− β

]2
. (8.3.3.9)

In the special case b = 0, this formula defines the bifurcation diagram for a plane problem of

combustion theory (see Example 3.17).

Figure. 8.6 displays the bifurcation curves described by formula (8.3.3.9) at β = −1, 0, 1.

◮ A first boundary value problem. Reduction to a mixed boundary value problem.

Consider the first boundary value problem on the interval [x1, x2] with equal boundary

values

y′′xx + λf(y) = 0; y(x1) = β, y(x2) = β. (8.3.3.10)

The substitution

z =
2

x2 − x1
x− x2 + x1

x2 − x1
, y = ȳ (8.3.3.11)

reduces problem (8.3.3.10) to a problem on the interval [−1, 1]:

ȳ′′zz + λ̄f(ȳ) = 0; ȳ(−1) = β, ȳ(1) = β; λ̄ = 1
4 (x2 − x1)

2λ. (8.3.3.12)

The solution to the first boundary value problem (8.3.3.12) is an even function, ȳ(x) =
ȳ(−x); in the domain [0, 1], it coincides with the solution to a mixed problem of the form

(8.3.3.6):

ȳ′′zz + λ̄f(ȳ) = 0; ȳ′z(0) = 0, ȳ(1) = β; λ̄ = 1
4 (x2 − x1)

2λ.

Therefore, the corresponding bifurcation diagram is described by formula (8.3.3.8), in

which λ must be replaced with λ̄.

◆ See also Sections 3.3.3–3.3.7.

⊙ Literature for Section 8.3: J. B. Keller (1960), J. Keller and S. Antman (1969), E. L. Reiss (1969),

T. Laetsch (1970), E. L. Reiss and B. J. Matkowsky (1971), S.-H. Wang (1994, 2007), P. Korman and Y. Li

(1999, 2010), P. Korman, Y. Li, and T. Ouyang (2005), P. Korman (2006).
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Chapter 9

Elementary Theory of Using
Invariants for Solving Equations

This chapter describes a simple scheme for the analysis of mathematical equations which

relies on using invariants and makes it possible to simplify algebraic equations, reduce

the order of ordinary differential equations (or integrate them), and find exact solutions of

nonlinear partial differential equations. Invariants are constructed by searching for trans-

formations that preserve the form of the equations; the notions and complex techniques

of symmetry analysis (see Chapter 9) are not used here. Numerous examples of solving

specific differential equations are given. It is significant that even with the simplest lin-

ear transformations of translation and scaling, as well as their compositions, the number

of solvable ordinary differential equations (or those admitting order reduction) that can be

described in a unified way is more than those discussed in the overwhelming majority of

available textbooks. For nonlinear equations of mathematical physics, this approach makes

it possible to find all of the most common invariant solutions. To use this simple method,

one does not have to have a strong mathematical background—what is required is to be

able to solve simple algebraic equations (and system of equations) and differentiate. To dis-

tinguish it from the classical group analysis method, the approach presented in this chapter

will be called the method of invariants.

9.1 Introduction. Symmetries. General Scheme of Using

Invariants for Solving Mathematical Equations

9.1.1 Symmetries. Transformations Preserving the Form of
Equations. Invariants

Symmetries of mathematical equations are understood as transformations that preserve the

form of equations. Given below are examples of specific equations that remain unchanged

under some simple transformations.

Example 9.1. Consider the biquadratic equation

x4 + ax2 + 1 = 0. (9.1.1.1)

277
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The change of variable

x = −x̄
results in exactly the same equation

x̄4 + ax̄2 + 1 = 0.

This means that equation (9.1.1.1) preserves its form under the transformation x = −x̄.

Two other transformations

x = ± 1

x̃

also preserve the form of equation (9.1.1.1), since multiplying by x̃4 gives

x̃4 + ax̃2 + 1 = 0.

Example 9.2. The form of the differential equation

y′′xx − y′x = 0 (9.1.1.2)

will not change if we make any of the transformations

x = x̄+ a, y = ȳ (a is any number);

x = x̄, y = ȳ + b (b is any number);

x = x̄, y = cȳ (c is any nonzero number),

since we obtain exactly the same equation

ȳ′′x̄x̄ − ȳ′x̄ = 0

for each of the three transformations.

It will be shown below that transformations preserving the form of equations enable us

to “multiply” solutions.

An invariant of a transformation is a nonconstant function that remains unchanged

under the action of the transformation. Invariants of transformations can depend on the

independent and dependent variables and their derivatives (when we deal with differential

equations). To clarify the concept of an invariant that preserves its form under a transfor-

mation, we consider a few simple examples.

Example 9.3. The transformation of simultaneous translation in two coordinate axes

x = x̄+ a, y = ȳ + a,

where a is any number, has the invariant

I = y − x = ȳ − x̄.
If x is the independent variable and y is the dependent one, then the derivatives

I2 = y′x = ȳ′x̄, I3 = y′′xx = ȳ′′x̄x̄, . . .

are also invariants of the transformation.

Example 9.4. The transformation of uniform scaling in two coordinate axes

x = ax̄, y = aȳ,

where a is any nonzero number, has the invariant

I1 =
y

x
=
ȳ

x̄
.

If x is the independent variable and y is the dependent one, then there are also more complicated

invariants that depend on derivatives and remain unchanged under the transformation. Examples are

I2 = y′x = ȳ′x̄, I3 = xy′′xx = x̄ȳ′′x̄x̄, . . . .
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9.1.2 General Scheme of Using Invariants for Solving Mathematical
Equations

Displayed below is a schematic diagram for the analysis of mathematical equations which

is based on searching for transformations that preserve the form of equations followed

by changing, in the equations, from the original variable to new ones—invariants of the

transformations.

Original equation

⇓
Searching for a transformation preserving the equation

⇓
Determining invariants that remain unchanged under the transformation

⇓
Rewriting the original equation in terms of invariants

Figure 9.1: General scheme of using invariants for solving mathematical equations.

Once the above steps have been completed, the equation is often simplified and reduced

to a solvable form. It is important to note that the above scheme can successfully be applied

to various types of mathematical equations (see Sections 9.2 and 9.3 below).

For better understanding and learning of the ideas of how to use invariants or solving

mathematical equations, we follow the approach “from simple to complex,” first parent-

ing results for algebraic equations, then for ordinary differential equations, and finally for

nonlinear partial differential equations.

⊙ Literature for Section 9.1: A. D. Polyanin (2008), A. D. Polyanin and V. F. Zaitsev (2012).

9.2 Algebraic Equations and Systems of Equations

9.2.1 Algebraic Equations with Even Powers

Consider the algebraic equation

a2nx
2n + a2n−2x

2n−2 + a2n−4x
2n−4 + · · · + a4x

4 + a2x
2 + a0 = 0, (9.2.1.1)

which only contains even powers of x. A biquadratic equation is a special case of equation

(9.2.1.1) with n = 2.

The change of variable

x = −x̄ (9.2.1.2)

leads to exactly the same equation for x̄; equation (9.2.1.1) is said to be invariant under

transformation (9.2.1.2). It follows that if x = x1 is a solution of equation (9.2.1.1), then

x = −x1 is also a solution of this equation.

By squaring (9.2.1.2), we get a simple algebraic function that is left unchanged by

transformation (9.2.1.2):

x2 = x̄2. (9.2.1.3)
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This function is an invariant of transformation (9.2.1.2). By taking the invariant (9.2.1.3) as

the new variable, z = x2, we can represent equation (9.2.1.1) of degree 2n as an equation

of degree n:

a2nz
n + a2n−2z

n−1 + a2n−4z
n−2 + · · ·+ a4z

2 + a2z + a0 = 0.

Thus, in this case, the change from the original variable x to the invariant z=x2 of transfor-

mation (9.2.1.3) enables us to simplify the original equation—its degree has been halved.

9.2.2 Reciprocal Equations

◮ Reciprocal equations of even degree.

A reciprocal (palindromic) polynomial equation of even degree has the form

a0x
2n + a1x

2n−1 + a2x
2n−2 + · · · + a2x

2 + a1x+ a0 = 0 (a0 6= 0). (9.2.2.1)

The left-hand side of this equation is called a reciprocal polynomial or palindromic poly-

nomial.

The change of variable

x =
1

x̄
(9.2.2.2)

transforms (9.2.2.1) into exactly the same equation (after multiplication by x̄2n). It follows

that if x = x1 is a root of equation (9.2.2.1), then x = 1/x1 is also a root of the equation.

The simplest reciprocal equation is a quadratic equation

a0x
2 + a1x+ a0 = 0.

Dividing it by x and grouping the first and last terms together, we get

a0

(
x+

1

x

)
+ a1 = 0.

The result is convenient to rewrite as a first-degree equation

a0z + a1 = 0,

where

z = x+
1

x
= x̄+

1

x̄
(9.2.2.3)

is the simplest invariant of transformation (9.2.2.2).

THEOREM (FOR THE RECIPROCAL EQUATION OF EVEN DEGREE). In the general

case, the reciprocal equation (9.2.2.1) of even degree 2n can be simplified with substi-

tution (9.2.2.3), resulting in an algebraic equation of degree n.

Example 9.5. Consider the quartic reciprocal equation

ax4 + bx3 + cx2 + bx+ a = 0.

Dividing it by x2 and grouping terms, we get

a
(
x2 +

1

x2

)
+ b
(
x+

1

x

)
+ c = 0. (9.2.2.4)

Taking into account that
(
x+

1

x

)2
= x2 + 2+

1

x2
=⇒ x2 +

1

x2
= z2 − 2

and using the change of variable (9.2.2.3), which is an invariant of transformation (9.2.2.2), we

reduce (9.2.2.4) to the quadratic equation

az2 + bz + c− 2a = 0.
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◮ Reciprocal equations of odd degree.

THEOREM (FOR THE RECIPROCAL EQUATION OF ODD DEGREE). In the general case, a

reciprocal equation of odd degree

P2n+1(x)= 0, where P2n+1(x)≡ a0x2n+1+a1x
2n+a2x

2n−1+· · ·+a2x2+a1x+a0,
has a root x = −1, and the left-hand side can be represented as

P2n+1(x) = (x+ 1)Q2n(x),

where Q2n(x) is a reciprocal polynomial of degree 2n.

Example 9.6. The cubic reciprocal equation

ax3 + bx2 + bx+ a = 0

can be represented in the form

(x+ 1)[ax2 + (b− a)x+ a] = 0.

It follows from Theorem 2 that a reciprocal equation of degree 2n + 1 can be reduced,

by dividing by (x+ 1) and introducing the new variable (9.2.2.3), to an algebraic equation

of degree n.

◮ Generalized reciprocal equations of even degree.

A generalized reciprocal polynomial equation of even degree has the form

a0x
2n + a1x

2n−1 + · · ·+ an−1x
n+1 + anx

n

+ λan−1x
n−1 + λ2an−2x

n−2 + · · · + λn−1a1x+ λna0 = 0 (a0 6= 0).
(9.2.2.5)

The first n + 1 terms (written in the first row) coincide with the respective terms of the

reciprocal equation (9.2.2.1) and the remaining terms (in the second row) differ from the

respective terms of equation (9.2.2.1) by factors λm. In the special case λ = 1, equation

(9.2.2.5) coincides with (9.2.2.1).

It is not difficult to verify that the transformation

x =
λ

x̄
(9.2.2.6)

leaves equation (9.2.2.5) unchanged, and the simplest invariant of transformation (9.2.2.6)

is written as

z = x+
λ

x
= x̄+

λ

x̄
. (9.2.2.7)

The introduction of the new variable (9.2.2.7) reduces (9.2.2.5) to an equation of degree n.

Example 9.7. Consider the quartic equation

ax4 + bx3 + cx2 − bx+ a = 0,

which is a special case of equation (9.2.2.5) with n = 2 and λ = −1. The change of variable

z = x− 1

x

leads to the quadratic equation

az2 + bz + 2a+ c = 0.
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9.2.3 Systems of Algebraic Equations Symmetric with Respect to
Permutation of Arguments

A bivariate polynomial P (x, y) is called symmetric if it does not change after the permuta-

tion of its arguments: P (x, y) = P (y, x).

Remark 9.1. In terms of transformations, a symmetric polynomial is defined as a polynomial

that is left unchanged by the transformation x = ȳ, y = x̄.

The simplest symmetric polynomials

u = x+ y, w = xy (9.2.3.1)

are called elementary. These polynomials are the simplest algebraic invariants to the per-

mutation of arguments. Any symmetric bivariate polynomial can be uniquely expressed in

terms of the elementary polynomials.

For the solution of systems of two algebraic equations

P (x, y) = 0, Q(x, y) = 0,

where P and Q are symmetric polynomials, it is helpful to use the elementary symmetric

polynomials (9.2.3.1) as the new variables. Such systems possess the following property:

if x = x0, y = y0 is a solution to the system, then x = y0, y = x0 is also a solution.

Example 9.8. Consider the nonlinear system of algebraic equations

x2 + axy + y2 = b,

x4 + cx2y2 + y4 = d.
(9.2.3.2)

It remains unchanged under the permutation of the variables.

In (9.2.3.2), by changing from x and y to the variables (9.2.3.1) and taking into account the

formulas

x2 + y2 = (x + y)2 − 2xy = u2 − 2w,

x4 + y4 = (x2 + y2)2 − 2x2y2 = (u2 − 2w)2 − 2w2 = u4 − 4u2w + 2w2,

we obtain
u2 − (a− 2)w = b,

u4 − 4u2w + (c+ 2)w2 = d.
(9.2.3.3)

Eliminating u, we arrive at the quadratic equation

(a2 + c− 2)w2 − 2abw + b2 − d = 0.

The further procedure of finding solutions is straightforward and omitted here.

Example 9.9. Consider the nonlinear system of algebraic equations

x2 + y2 = a,

x3 + y3 = b.
(9.2.3.4)

Changing to the variables (9.2.3.1) and taking into account that x3 + y3 = (x+ y)3 − 3xy(x+ y),
we get

u2 − 2w = a,

u3 − 3uw = b.
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Eliminating w yields the cubic equation

u3 − 3au+ 2b = 0. (9.2.3.5)

Note that the straightforward elimination of y from system (9.2.3.4) results in a much more

complex equation of degree 6:

(a− x2)3 = (b− x3)2 =⇒ 2x6 − 3ax4 − 2bx3 + 3a2x2 + b2 − a3 = 0.

⊙ Literature for Section 9.2: N. A. Kudryashov (1998), V. G. Boltyanskii and N. Ya. Vilenkin (2002),

A. D. Polyanin (2008), A. D. Polyanin and V. F. Zaitsev (2012).

9.3 Ordinary Differential Equations

9.3.1 Transformations Preserving the Form of Equations. Invariants

An ordinary differential equation

F (x, y, y′x, . . . , y
(n)
x ) = 0 (9.3.1.1)

is said to be invariant under an invertible transformation

x = ϕ(x̄, ȳ), y = ψ(x̄, ȳ) (9.3.1.2)

if the substitution of (9.3.1.2) into (9.3.1.1) leads to exactly the same equation

F (x̄, ȳ, ȳ′x̄, . . . , ȳ
(n)
x̄ ) = 0. (9.3.1.3)

The function F is the same in both equations (9.3.1.1) and (9.3.1.3).

Transformations that preserve the form of an equation can be used to “multiply” its

solutions. Indeed, suppose

y = g(x) (9.3.1.4)

is a particular solution to equation (9.3.1.1). Since equation (9.3.1.1) is left the same by the

change of variables (9.3.1.2), then

ȳ = g(x̄) (9.3.1.5)

is a solution to the transformed equation (9.3.1.3). In (9.3.1.5), changing back to the old

variables using (9.3.1.2) (the relations must be solved for x̄ and ȳ), we obtain a solution to

equation (9.3.1.1) that differs, in general, from the original solution (9.3.1.4).

Example 9.10. The third-order equation

y′′′xxx − y′x = 0 (9.3.1.6)

has a particular solution

y = ex.

The transformation

x = x̄+ a, y = ȳ + b (9.3.1.7)

leaves the equation unchanged, and therefore the transformed equation ȳ′′′x̄x̄x̄− ȳ′x̄ = 0 has a solution

ȳ = ex̄. Inserting the old variables, by inverting the formulas (9.3.1.7), we obtain a new solution to

equation (9.3.1.6):

y = Aex + b, A = e−a,

which involves two arbitrary constants A and b.
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A function I(x, y, y′x), other than a constant, is called an invariant of transformation

(9.3.1.2) if it remains unchanged under the transformation:

I(x, y, y′x) = I(x̄, ȳ, ȳ′x̄).

Remark 9.2. If I = I(x, y, y′x) is an invariant of transformation (9.3.1.2), then Ψ(I), where Ψ
is an arbitrary function, is also an invariant of the transformation.

9.3.2 Order Reduction Procedure for Equations with n ≥ 2
(Reduction to Solvable Form with n = 1)

Let us now consider in more detail the scheme outlined in Section M28.1 for using invari-

ants in the analysis of mathematical equations as applied to ordinary differential equations.

Given an nth-order equation (9.3.1.1), one should seek, at the first stage, a transforma-

tion

x = ϕ(x̄, ȳ; a), y = ψ(x̄, ȳ; a) (9.3.2.1)

that preserves the form of the equation. Transformation (9.3.2.1) must depend on a single

free parameter a ∈ [a1, a2]; the original equation (9.3.1.1) is independent of this parameter.

At the second stage, for second- and higher-order equations (n≥ 2), one constructs two

functionally independent invariants of transformation (9.3.2.1):

I1 = I1(x, y), I2 = I2(x, y, y
′
x). (9.3.2.2)

At the third stage, the invariants (9.3.2.2) are taken as the new variable for equation

(9.3.1.1) and the transformation

u = I2, z = I1, u = u(z)

is performed. This results in an (n − 1)st-order equation, so that the order of the original

equation is reduced by one.

For first-order equations (n = 1), one should make the change of variable

z = I1, z = z(x),

in (9.3.1.1) at the third stage. This results in a solvable (separable) equation.

9.3.3 Simple Transformations. Invariant Determination Procedure

In what follows, we will only use the simplest transformations

x = x̄+A, y = ȳ +B (translation);

x = Ax̄, y = Bȳ (scaling)

and their compositions

x = A1x̄+B1, y = A2ȳ +B2. (9.3.3.1)

Then the derivatives satisfy linear relations:

y′x =
A2

A1
ȳ′x̄, y′′xx =

A2

A2
1

ȳ′′x̄x̄, y(n)x =
A2

An
1

ȳ
(n)
x̄ . (9.3.3.2)
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The transformation coefficients A1, A2, B1, and B2 are determined from the invariance

condition for the equation; these coefficients must depend on a single free parameter a.

The following statement is true. Suppose transformation (9.3.3.1) preserves the form of

an equation that has a particular solution (9.3.1.4). Then

y = B2 +A2g

(
x−B1

A1

)

is also a solution of the equation.

The first invariant I1 is obtained by eliminating a from (9.3.3.1). The second invari-

ant I2 is obtained by eliminating a from one of the relations in (9.3.3.1) and the first relation

in (9.3.3.2).

9.3.4 Analysis of Some Ordinary Differential Equations. Useful
Remarks

Example 9.11. The second-order equation

y′′xx = F (x, y′x), (9.3.4.1)

which does not involve y explicitly, remains unchanged under an arbitrary translation in the depen-

dent variable: y=⇒ y+a (which corresponds to y = ȳ+a), where a is a free parameter. Moreover,

out of the three variables x, y, and y′x, two remain unchanged:

x, y′x.

These are invariants of equation (9.3.4.1); hence, I1 = x and I2 = y′x. These can be taken as the

new variables:

u = y′x, z = x, u = u(z).

As a result, we arrive at a first-order equation: u′x = F (x, u).

Example 9.12. The autonomous second-order equation

y′′xx = F (y, y′x), (9.3.4.2)

which does not involve x explicitly, remains unchanged under an arbitrary translation in the inde-

pendent variable: x =⇒ x+ a, where a is a free parameter. Out of the three variables x, y, and y′x,

two remain unchanged:

y, y′x.

These are invariants of equation (9.3.4.2); hence, I1 = y and I2 = y′x. We choose them as the new

variables:

u = y′x, z = y, u = u(z).

This results in a first-order equation: uu′y = F (y, u).

Example 9.13. The nonlinear second-order equation

y′′xx = yF

(
x,
y′x
y

)
(9.3.4.3)

does not change if the dependent variable is scaled: y =⇒ ay. Two combinations out of the three

variables x, y, and y′x do not change:

x,
y′x
y
.
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These are invariants of equation (9.3.4.3) and can be taken as the new variables:

u =
y′x
y
, z = x, u = u(z).

Differentiating u linear x yields

u′x =
y′′xx
y
−
(
y′x
y

)2
=
y′′xx
y
− u2.

Using this relation to eliminate y′′xx in (9.3.4.3), one arrives at the first-order equation

u′x = F (x, u)− u2.

Remark 9.3. For F (x, u) = g(x) + f(x)u, the original equation (9.3.4.3) is a general linear

homogeneous second-order equation. With the above transformation, it is reduced to a first-order

equation with a quadratic nonlinearity.

Example 9.14. Consider the nonlinear second-order equation

yy′′xx − (y′x)
2 = ky3eλx. (9.3.4.4)

We look for an invariant transformation of the form

x = x̄+ b, y = aȳ. (9.3.4.5)

Substituting (9.3.4.5) into (9.3.4.4) and canceling by a, we obtain

ȳȳ′′x̄x̄ − (ȳ′x̄)
2 = aeλbkȳ3eλx̄.

Requiring that this equation coincide with (9.3.4.4), we get the relation for determining the param-

eter b:

aeλb = 1 =⇒ b = − 1

λ
ln a. (9.3.4.6)

The parameter a remains free.

Substituting (9.3.4.6) into (9.3.4.5) and eliminating a from the second relation with the aid of

the first relation, we obtain

y = ȳeλ(x̄−x) =⇒ yeλx = ȳeλx̄.

Hence,

I1 = yeλx (9.3.4.7)

is an invariant of transformation (9.3.4.5)–(9.3.4.6). Another invariant can be found by calculating

the derivative

y′x = aȳ′x̄.

Eliminating a with the aid of the second relation in (9.3.4.5) yields

y′x
y

=
ȳ′x̄
ȳ

= I2. (9.3.4.8)

To reduce the order of the original equation, one should take the invariants (9.3.4.7)–(9.3.4.8)

as the new variables:

z = eλxy, u =
y′x
y
, u = u(z). (9.3.4.9)

On the one hand,

u′x =
y′′xx
y
−
(
y′x
y

)2

=
y′′xx
y
− u2; (9.3.4.10)
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on the other hand,

u′x = uzz
′
x = (λeλxy + eλxy′x)u

′
z =

(
λz + eλxy

y′x
y

)
u′z = (λz + zu)u′z. (9.3.4.11)

Equating (9.3.4.10) with (9.3.4.11), we get

y′′xx
y
− u2 = (λz + zu)u′z =⇒ y′′xx

y
= u2 + (λz + zu)u′z.

Inserting this into (9.3.4.4) and performing elementary rearrangements, we arrive at a separable

first-order equation:

(λ + u)u′z = k.

Remark 9.4. The more general, nonlinear second-order equation

y′′xx = yF

(
eλxy,

y′x
y

)

has similar properties. Transformation (9.3.4.9) reduces it to the first-order equation

u2 + (λz + zu)u′z = F (z, u).

Example 9.15. Now consider the nonlinear first-order equation

y′x = f

(
α1x+ β1y + γ1
α2x+ β2y + γ2

)
. (9.3.4.12)

Its left-hand side remains unchanged under transformations of the form

x = ax̄+ b, y = aȳ + c, (9.3.4.13)

where a, b, and c are arbitrary constants. Substituting (9.3.4.13) into the argument of the right-hand

side function of (9.3.4.12) gives

α1x+ β1y + γ1
α2x+ β2y + γ2

=
a(α1x̄+ β1ȳ) + α1b+ β1c+ γ1
a(α2x̄+ β2ȳ) + α2b+ β2c+ γ2

. (9.3.4.14)

For equation (9.3.4.12) to be invariant under transformation (9.3.4.13), one must set

α1b+ β1c+ γ1 = aγ1, α2b + β2c+ γ2 = aγ2 (9.3.4.15)

in (9.3.4.14). These relations can be viewed as a system of two linear algebraic equations for the

coefficients b and c; the coefficient a remains arbitrary. Thus, equation (9.3.4.12) is invariant under

transformation (9.3.4.13) subject to conditions (9.3.4.15). The argument of the right-hand side

function of (9.3.4.12) is an invariant of the transformation. Therefore, the change of variable

z =
α1x+ β1y + γ1
α2x+ β2y + γ2

, where z = z(x), (9.3.4.16)

should be made in equation (9.3.4.12). Solving (9.3.4.16) for y, differentiating with respect to x,

substituting y′x by f(z), which follows from (9.3.4.12) and (9.3.4.16), and performing elementary

rearrangements, one arrives at the separable equation

(α2β1 − α1β2)x+ β1γ2 − β2γ1
(β2z − β1)2

z′x = f(z) +
α2z − α1

β2z − β1
.

Table 9.1 lists some second-order ordinary differential equations that admit order re-

duction by using the simplest invariant transformations. For first-order equations, where

F (u, v, w) is independent of the third argument, the equations listed in Table M28.1 can be

solved by changing from y to the new dependent variable z = I1(x, y), where I1 is the first

invariant.

The results presented in Table 9.1 are easy to generalize to nonlinear equations of arbi-

trary order.
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TABLE 9.1

Some second-order ordinary differential equations that admit order reduction, and invariants

Equation Invariant transformation First invariant Second invariant

F (x, y′x, y
′′
xx)= 0 y= ȳ+a I1=x I2= y′x

F (y, y′x, y
′′
xx)= 0 x= x̄+a I1= y I2= y′x

F (αx+βy, y′x, y
′′
xx)= 0 x= x̄+aβ, y= ȳ−aα I1=αx+βy I2= y′x

F
(
x, y

′
x
y ,

y′′xx
y

)
=0 y= aȳ I1=x I2=

y′x
y

F (y, xy′x, x
2y′′xx)= 0 x= ax̄ I1= y I2=xy′x

F
(
eλxy, y

′
x
y ,

y′′xx
y

)
=0 x= x̄− 1

λ ln a, y= aȳ I1= eλxy I2=
y′x
y

F (eλxy, eλxy′x, e
λxy′′xx)= 0 x= x̄− 1

λ ln a, y= aȳ I1= eλxy I2= eλxy′x

F (xeλy, xy′x, x
2y′′xx)= 0 x= ax̄, y= ȳ− 1

λ ln a I1=xeλy I2=xy′x

F (xky, xk+1y′x, x
k+2y′′xx)= 0 x= ax̄, y= a−kȳ I1=xky I2=xk+1y′x

F
(
xnym, xy

′
x

y , x
2y′′xx
y

)
=0 x= amx̄, y= a−nȳ I1=xnym I2=

xy′x
y

Remark 9.5. The above method of invariants for the analysis of ordinary differential equations

takes advantage of the ideas of the group analysis method but is much simpler. To learn how to

apply the former method, one should only be able to solve simple algebraic equations (and systems)

and differentiate, whereas the application of the group analysis method requires, at intermediate

stages, the solution of partial differential equations (which leads beyond the standard courses of

ordinary differential equations). Other advantages of the simple method of invariants described

include the fact that there is no need to introduce new concepts, which are abundant in the group

analysis method, and that the number of solvable ordinary differential equations (or those admitting

order reduction) describable in a unified way is more than those discussed in the overwhelming

majority of available textbooks.

◆ The book by Polyanin and Zaitsev (2012, Section 28.4) gives examples of using the

elementary theory of invariants to construct exact solutions of nonlinear partial differential

equations.

⊙ Literature for Section 9.3: G. W. Bluman and J. D. Cole (1974), P. J. Olver (1995), N. A. Kudryashov

(1998), N. H. Ibragimov (1994, 1999), P. E. Hydon (2000), V. G. Boltyanskii and N. Ya. Vilenkin (2002),

A. D. Polyanin and V. F. Zaitsev (2003, 2012), A. D. Polyanin (2008).
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Chapter 10

Methods for the Construction
of Particular Solutions

10.1 Two Problems on Searching for Particular Solutions

to ODEs with Parameters

10.1.1 Preliminary Remarks. Traveling Wave Solutions

◮ Preliminary remarks.

In the theory of ordinary differential equations, it is customary to deal with methods† that

allow one to find general solutions. However, methods for seeking particular solutions to

nonlinear ODEs receive practically no attention. This hinders the development of related

methods of the theory of partial differential equations for finding exact solutions to non-

linear PDEs that can be expressed in terms of elementary function, special functions or

quadratures.

◮ Traveling wave solutions for nonlinear PDEs and their relation to ODEs.

The overwhelming majority of nonlinear equations of mathematical physics are of partial

differential equations of the form

Φ(w,wz , wt, wzz, wzt, wtt, . . . ) = 0, (10.1.1.1)

which do not explicitly involve the independent variable; for simplicity, we consider equa-

tions with two independent variables, t and z, where t can be treated as time or a space

coordinate.

In general, equation (10.1.1.1) admits solutions of the traveling wave type:

w = y(x), x = a1z + a2t, (10.1.1.2)

where a1 and a2 are arbitrary constants. Substituting (10.1.1.2) into (10.1.1.1) yields the

ordinary differential equation

Φ(y, a1y
′
x, a2y

′
x, a

2
1y

′′
xx, a1a2y

′′
xx, a

2
2y

′′
xx, . . . ) = 0. (10.1.1.3)

†Here and henceforth, we discuss exact methods for the integration of differential equations.

289
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Thus, the ordinary differential equation (10.1.1.3) describes exact solutions to the spe-

cial type of partial differential equations (10.1.1.1). Since the traveling wave solutions

(10.1.1.2) are the most common type of exact solution to nonlinear equations of mathe-

matical physics, it is of great importance to be able to find solutions to relevant ordinary

differential equations.

Apart from the free parameters a1 and a2, equation (10.1.1.3) can often involve other

parameters, which can also vary within certain ranges. In particular, for equations of the

form (10.1.1.1), which can be represented in the divergence form (as a conservation law)

∂

∂t
Φ1 +

∂

∂z
Φ2 = 0,

Φi = Φi(w,wz , wt, wzz, wzt, wtt, . . . ), i = 1, 2,
(10.1.1.4)

searching for traveling wave solutions (10.1.1.2) leads to the ordinary differential equation

a2Φ1 + a1Φ2 + a3 = 0,
Φi = Φi(y, a1y

′
x, a2y

′
x, a

2
1y

′′
xx, a1a2y

′′
xx, a

2
2y

′′
xx, . . . ),

(10.1.1.5)

involving three arbitrary constants: a1, a2, and a3.

Importantly, methods of generalized and functional separation of variables reduce non-

linear PDEs to ODEs or systems of ODEs, which can include many free parameters that

do not appear in the original equation. For relevant examples, see the literature cited at the

end of the current section.

10.1.2 Two Problems for ODEs with Parameters. Conditional
Capacity of Exact Solutions.

◮ Two problems for ODEs describing exact solutions to PDEs.

It follows from the above that there are a large number of equations in mathematical physics

whose solutions can be expressed in terms of ordinary differential equations∗

F (x, y, y′x, . . . , y
(n)
x ; a1, . . . , ak) = 0, (10.1.2.1)

containing a set of free parameters ai (i = 1, . . . , k), which are not involved in the original

partial differential equation. Below are two fundamentally different problems arising in

dealing with equation (10.1.2.1).

PROBLEM 1. Find the values of the parameters ai at which the general solution of equa-

tion (10.1.2.1) is possible (here and henceforth, we mean solutions that can be expressed in

terms of elementary or special functions).

PROBLEM 2. Find the values of the parameters ai at which the partial (exact) solutions

of equation (10.1.2.1) are possible.

◮ Conditional capacity of exact solutions to nonlinear PDEs.

For a comparative analysis of the results of solving problems 1 and 2, the following defini-

tions will be useful.

∗The form of these solutions can differ from (10.1.1.2).
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Definition. The conditional capacity of an exact solution of a nonlinear PDE is equal

to the number of arbitrary constants involved in the solution but not the original equation.

The conditional capacity of a solution will be denoted “cc.”

The practical sense of this definition is clear: the more arbitrary constants are involved

in a solution, the more important, interesting, and valuable the solution is (the generality of

a solution is determined by the number of arbitrary constants involved).

In problem 1, the general solution to the corresponding ordinary differential equation

(10.1.2.1) can be obtained in closed form in only relatively few specific values of the pa-

rameters ai or under certain limitations; in the latter case, there will be fewer free param-

eters, a1, . . . , ap, and the other parameters, ap+1, . . . , ak, will be dependent on them. The

conditional capacities of such solutions is calculated as

cc1 = p+ n, (10.1.2.2)

where n is the order of equation (10.1.2.1).

In problem 2, one often manages to obtain an exact solution to the ordinary differential

equation (10.1.2.1) under fewer constraints on the parameters ai, suggesting that more free

parameters, a1, . . . , aq, will remain than in problem 1 (q≥p). In addition, the exact solution

itself can depend on m constants of integration, with m ≤ n. The conditional capacity of

such solutions is evaluated as

cc2 = q +m. (10.1.2.3)

By comparing formulas (10.1.2.2) and (10.1.2.3), one can see that the conditional ca-

pacity of particular solutions to problem 2 can be lower than, equal to, or higher than that

of general solutions to problem 1. This suggests that solutions to problems 1 and 2 are, in

general, equally important with respect to the analysis of the original nonlinear PDEs.

Problem 1 is classical; it is solved using well-developed methods of integration of ordi-

nary differential equations.

Problem 2 is nonclassical; solution methods for this problem have not yet been suffi-

ciently well developed, which is primarily because problem 2 has not received much atten-

tion from the specialists in the area of ordinary differential equations. In the literature, there

are relatively few methods for solving such problems, which, in addition, often have a very

narrow area of application (these methods are most frequently used to treat autonomous

equations with power-law nonlinearity).

◮ Two problems for ODEs with parameters.

The statements of problems 1 and 2 above can be arrived at from completely different con-

siderations, without taking into account any relations between ordinary differential equa-

tions. For example, one can treat the ordinary differential equation (10.1.2.1) as dependent

on physical-chemical constants ai, which play an important role in applications and can

vary within wide ranges. In this case, the role of the constants of integration, appearing

in the general or particular solution to the equation, and the role of the physical-chemical

constants ai can be treated as equal; often, finding a particular solution to a wide class of

equations can be much more useful than finding the general solution to a narrow class of

equations.
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Subsequent sections outline methods for constructing particular solutions to nonlinear

ordinary differential equation with variable parameters without going into the physical or

other meaning of these parameters.

⊙ Literature for Section 10.1: A. D. Polyanin and V. F. Zaitsev (2003, 2012), V. A. Galaktionov and S. R.

Svirshchevskii (2006), A. D. Polyanin (2016).

10.2 Method of Undetermined Coefficients and Its

Special Cases

10.2.1 General Description of the Method of Undetermined
Coefficients

In general, the method of undetermined coefficients as applied to linear or nonlinear ordi-

nary differential equations suggests particular solutions should be sought in a preset form

dependent on a set of free (undetermined) parameters. On substituting the solution struc-

ture into the equation, one selects the values of the parameters so as to satisfy the equation

exactly. Particular solutions are usually sought in the form of a finite sum

y =
n∑

k=0

akϕk(x) (10.2.1.1)

where ϕk(x) are given elementary functions and ak are free (undetermined) parameters.

Most frequently, solutions are constructed using special cases of formulas (10.2.1.1):

y =

n∑

k=0

akϕ
k(λx) or y =

n∑

k=0

akϕ
mk(λx). (10.2.1.2)

These are based on a single generating function ϕ(z), which is present by the researcher.

The constants n, ak, mk, and λ are to be determined; the second formula in (10.2.1.2) can

include negative powers mk. As ϕ(z) in (10.2.1.2), one usually takes power-law, exponen-

tial, hyperbolic, or trigonometric functions (see Sections 10.2.2 and 10.2.3).

The determination of the constants n, ak,mk, and λ in (10.2.1.2) can often be simplified

with modern computer algebra systems such as Maple or Mathematica, which allow one to

perform a lot of cumbersome analytical calculations.

Remark 10.1. Seeking solutions using the first formula in (10.2.1.2) is equivalent to carrying out

two consecutive actions: (i) performing the change of variable ξ = ϕ(λx) in the original ODE and

(ii) searching for a solution to the transformed equation in the truncated series form y=
∑n

k=0 akξ
k.

This approach is technically simpler than the direct substitution of the first formula (10.2.1.2) into

the original equation.

One may succeed in searching for particular solutions in a more general form than

(10.2.1.1):

y = Φ(x; a0, . . . , an), (10.2.1.3)

where Φ(x; a0, . . . , an) is a given function and a0, . . . , an are free parameters.

A considerable limitation of such direct methods is that solutions are sought in explicit

form, while the overwhelming majority of known general solutions to nonlinear equations
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are in implicit or parametric form (this follows from a statistical analysis of the results

presented in the present handbook).

Most frequently, the method of undetermined coefficients is used to seek particular

solutions to linear nonhomogeneous ODEs with constant coefficients. Table 4.1 lists rec-

ommended solution structures for such equations for special forms of the right-hand side

(in particular, if the right-hand side of the equation is a polynomial, solutions are sought in

the polynomial form).

Remark 10.2. The special cases of the method of undetermined coefficients discussed below

in Sections 10.2.2 and 10.2.3 have become very common in searching for exact traveling-wave

solutions to nonlinear partial differential equations (such solutions are described by ODEs following

from the original PDEs).

10.2.2 Power-Law, Tanh-Coth, and Sine-Cosine Methods

◮ Methods based on power-law functions.

1◦. Power-law function method. The main idea of the method is the assumption that a

particular solution of the ODE can be expressed in terms of power-law functions, which

corresponds to ϕk(x) = xpk in (10.2.1.1), with the exponents pk to be determined. In the

special case pk = k, such a solution will be a polynomial of degree n.

Example 10.1. Consider the generalized Emden–Fowler equation

y′′xx = Axnym(y′x)
l. (10.2.2.1)

Its particular solution will be sought in the form of a power-law function

y = axp. (10.2.2.2)

Substituting (10.2.2.2) into (10.2.2.1) yields

ap(p− 1)xp−2 = Aam(ap)lxn+mp+l(p−1).

For this equation to be satisfied identically, one must set

p− 2 = n+mp+ l(p− 1), ap(p− 1) = Aam(ap)l.

On solving this system for a and p, we arrive at the constants determining solution (10.2.2.2):

p =
n− l + 2

1−m− l , a =

(
p− 1

Apl−1

) 1
m+l−1

with n− l+2 6= 0,m+ l− 1 6= 0, and n+m+1 6= 0. Furthermore, for l > 0, there is a degenerate

solution (10.2.2.2) with p = 0 and any a.

2◦. A modification. The following fact may be useful in searching for particular solutions.

PROPOSITION. Suppose one deals with a nonlinear differential equation for y = y(x),
which has been reduced with a change of variable y = f(x,w) to the equation

Φ(w′′
xx, . . . , w

(n)
x ) + (b1x

2 + b2x+ b3)(w
′′
xx)

2 + b4ww
′′
xx + (b5x

2 + b6x+ b7)w
′′
xx

+b8(w
′
x)

2 + (b9x+ b10)w
′
x + b11w + b12x

2 + b13x+ b14 = 0,
(10.2.2.3)
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where bi are some constants. Then the original equation admits solutions of the form

y = f(x,Ax2 +Bx+ C), (10.2.2.4)

where A, B, and C are determined from a system of three algebraic equations (omitted

here).

Remark 10.3. The above remains valid also for equations of the form (10.2.2.3), where bk =

bk(w
′′
xx, . . . , w

(n)
x ) are arbitrary functions. The functions Φ and bk can, in addition, depend on the

combination 2ww′′
xx − (w′

x)
2.

Example 10.2. Consider the second-order nonautonomous equation

y′′xx = aym + (b2x
2 + b1x+ b0)y

n, m 6= n. (10.2.2.5)

Let us see for which values of the parameters a, bj , m, and n this equation admits solutions of the

form (10.2.2.4).

Let us make the change of variable y = wp, with the exponent p to be determined, and multiply

the result by w2−p to obtain

pww′′
xx + p(p− 1)(w′

x)
2 − aw(m−1)p+2 − (b2x

2 + b1x+ b0)w
(n−1)p+2 = 0. (10.2.2.6)

For equation (10.2.2.6) to fall in the class of equations (10.2.2.3), one must set

(m− 1)p+ 2 = 1, (n− 1)p+ 2 = 0.

This results in the relation between the exponentsm and n and the desired expression of p:

n = 2m− 1, p =
1

1−m (m 6= 1 is an arbitrary). (10.2.2.7)

(The remaining parameters, a and bj , remain arbitrary for now.) Thus, for n = 2m− 1, the change

of variable y = w
1

1−m reduces equation (10.2.2.5) to

ww′′
xx + s(w′

x)
2 + a(m− 1)w + (m− 1)(b2x

2 + b1x+ b0) = 0, s =
m

1−m . (10.2.2.8)

An exact solution to this equation has the form of a quadratic polynomial:

w = Ax2 +Bx+ C (y = w
1

1−m ). (10.2.2.9)

Substituting (10.2.2.9) into (10.2.2.8) and rearranging, we obtain

[2(2s+ 1)A2 + a(m− 1)A+ b2(m− 1)]x2 + [2(2s+ 1)AB + a(m− 1)B + b1(m− 1)]x

+ [2A+ a(m− 1)]C + sB2 + b0(m− 1) = 0.

By equating the coefficients of the different powers of x to zero, we get the algebraic system of

equations

2(2s+ 1)A2 + a(m− 1)A+ b2(m− 1) = 0,

2(2s+ 1)AB + a(m− 1)B + b1(m− 1) = 0, (10.2.2.10)

[2A+ a(m− 1)]C + sB2 + b0(m− 1) = 0,

with s = m
1−m . The first quadratic equation of system (10.2.2.10) serves to determineA (it has two

distinct roots in a wide range of the parameters a, b2, and m). By multiplying the first equation in

(10.2.2.10) by B and the second by −A and add together to obtain the simple relation

b2B = b1A, (10.2.2.11)
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which allows us to express B via A, provided that b2 6= 0, to get B = (b1/b2)A. Now C is easily

determined from the last equation in (10.2.2.10).

For the autonomous equation (10.2.2.5) with b1 = b2 = 0, system (10.2.2.10) has the solution

A =
a(m− 1)2

2(m+ 1)
, B is an arbitrary constant; C =

m+ 1

2a

[
B2

(m− 1)2
− b0
m

]
. (10.2.2.12)

Let us focus on the special case of equation (10.2.2.5) with

a = b1 = b2 = 0, m = −1, n = −3.
It follows from system (10.2.2.10) that

A and B are arbitrary constants, C =
1

4A
(B2 + 4b0).

Thus, we have found that the second-order equation y′′xx = b0y
−3 has the exact solution y =√

Ax2 +Bx+ 1
4A (B2 + 4b0) involving two arbitrary constants. The general solution to this equa-

tion consists of two branches: y = ±
√
Ax2 +Bx+ 1

4A (B2 + 4b0).

Example 10.3. The equation with an exponential nonlinearity

y′′xx + ceλyy′x = aeλy + (b2x
2 + b1x+ b0)e

2λy (10.2.2.13)

can be reduced with the change of variable y = − 1
λ lnw to a special case of equation (10.2.2.3):

ww′′
xx − (w′

x)
2 + cw′

x + aλw + λ(b2x
2 + b1x+ b0) = 0.

Hence, equation (10.2.2.13) admits an exact solution of the form y = − 1
λ ln(Ax2 + Bx + C). In

particular, the autonomous equation y′′xx = aeλy + b0e
2λy , which is the special case of equation

(10.2.2.13) with c = b1 = b2 = 0 , has a particular solution

y = − 1

λ
ln

(
1

2
aλx2 +Bx+

B2

2aλ
− b0

2a

)
,

where B is an arbitrary constant.

◮ Tanh-coth and sinh-cosh methods.

1◦. Tanh-coth method. The main idea of the tanh-coth method is the assumption that a par-

ticular solution can be expressed in terms of the hyperbolic tangent or hyperbolic cotangent

functions, which corresponds to ϕ(z) = tanh z or ϕ(z) = coth z in (10.2.1.2).

Example 10.4. Consider the second-order nonlinear differential equation

y′′xx + by − cy3 = 0. (10.2.2.14)

We seek particular solutions of the equation in the form

y =

n∑

k=0

akz
k, z = tanh(λx), (10.2.2.15)

with ak, λ, and n to be determined. Differentiating (10.2.2.15) twice and taking into account that

z′x = λ/ cosh2(λx) = λ(1− z2), we obtain

y′x = y′zz
′
x =

( n∑

k=0

akkz
k−1

)
λ(1 − z2) = λ

n∑

k=0

akkz
k−1 − λ

n∑

k=0

akkz
k+1,

y′′xx = (y′x)zz
′
x = λ

( n∑

k=0

akk(k − 1)zk−2 − λ
n∑

k=0

akk(k + 1)zk
)
λ(1 − z2)

= λ2
n∑

k=0

akk(k − 1)zk−2 − 2λ2
n∑

k=0

akk
2zk + λ2

n∑

k=0

akk(k + 1)zk+2.

(10.2.2.16)
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From (10.2.2.15) and (10.2.2.16) it follows that the terms in equation (10.2.2.14) are represented as:

y′′xx is a linear combination of different powers of z up to zn+2 inclusive,

y is a linear combination of different powers of z up to zn inclusive,

y3 is a linear combination of different powers of z up to z3n inclusive.

For ODE (10.2.2.14) to be satisfied identically, the terms with highest power of z must be matched

up. Hence, the equality n+ 2 = 3n must hold, resulting in n = 1.

Substituting formulas (10.2.2.15) and (10.2.2.16) with n = 1 into (10.2.2.14) and rearranging,

we arrive at a cubic equation for z:

a1(2λ
2 − a21c)z3 − 3a0a

2
1cz

2 + a1(b − 2λ2 − 3a20c)z + a0(b− a20c) = 0.

Equating the coefficients of the different powers of z to zero results in the overdetermined system

of algebraic equations

a1(2λ
2 − a21c) = 0, a0a1c = 0, a1(b− 2λ2 − 3a20c) = 0, a0(b− a20c) = 0.

This system can be satisfied, for example, with a0 = 0, a1 = ±
√
b/c, and λ=±

√
b/2. As a result,

we get the following particular solutions to equation (10.2.2.14):

y = ±
√
b/c tanh(

√
b/2x). (10.2.2.17)

Remark 10.4. Since equation (10.2.2.14) is invariant to the translation transformation x =⇒
x + const, it also admits the solutions y = ±

√
b/c tanh(

√
b/2x + s), where s is an arbitrary

constant.

Remark 10.5. In a similar fashion, we can also obtain the following particular solutions to

equation (10.2.2.14): y = ±
√
b/c coth(

√
b/2x) and y = ±

√
b/c coth(

√
b/2x+ s).

2◦. Sinh-cosh method. The sinh-cosh method is based on the assumption that a particular

solution can be expressed in terms of the hyperbolic sine or hyperbolic cosine functions,

and corresponds to ϕ(z) = sinh z or ϕ(z) = cosh z in (10.2.1.2).

Example 10.5. Consider the fourth-order nonlinear differential equation

y′′′′xxxx = b1[yy
′′
xx − (y′x)

2] + b2y + b3. (10.2.2.18)

We seek particular solutions to the equation in the form

y = a0 + a1 sinh(λx). (10.2.2.19)

Substituting (10.2.2.19) into (10.2.2.18) and rearranging taking into account the identity cosh2 z −
sinh2 z = 1, we obtain

a1(λ
4 − a0b1λ2 − b2) sinh(λx) + a21b1λ

2 − a0b2 − b3 = 0.

For this equation to be satisfied identically for any x, one must set

λ4 − a0b1λ2 − b2 = 0, a21b1λ
2 − a0b2 − b3 = 0.

Solving these equations for a0 and a1 yields

a0 =
λ4 − b2
b1λ2

, a1 = ± 1

b1λ2

√
b1λ4 + b1b3λ2 − b22. (10.2.2.20)

Formulas (10.2.2.19) and (10.2.2.20) define particular solutions of equation (10.2.2.18) involving

one free parameter, λ, with the restrictions that λ 6= 0 and the radicand must be positive.

Remark 10.6. Likewise, one can obtain more general, two-parameter particular solutions to

equation (10.2.2.18):

y = a0 + a1 sinh(λx) + a2 cosh(λx),

a0 =
λ4 − b2
b1λ2

, a1 = ± 1

b1λ2

√
a22b

2
1λ

4 + b1λ
4 + b1b3λ

2 − b22,

where a2 and λ are arbitrary constants.
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◮ Sine-cosine and tan-cot methods.

1◦. Sine-cosine method. The sine-cosine method is based on the assumption that a partic-

ular solution can be expressed in terms of the sine or cosine function, which corresponds to

ϕ(z) = sin z or ϕ(z) = cos z in (10.2.1.2).

Example 10.6. Consider once again equation (10.2.2.18). We seek particular solutions of the

form

y = a0 + a1 sin(λx). (10.2.2.21)

Substituting (10.2.2.21) in (10.2.2.18) and rearranging while taking into account the identity cos2 z+
sin2 z = 1, we obtain

a1(λ
4 + a0b1λ

2 − b2) sin(λx) + a21b1λ
2 − a0b2 − b3 = 0.

For this equation to be satisfied identically for any x, one must set

λ4 + a0b1λ
2 − b2 = 0, a21b1λ

2 − a0b2 − b3 = 0.

Solving these equations for a0 and a1 gives

a0 =
b2 − λ4
b1λ2

, a1 = ± 1

b1λ2

√
b22 + b1b3λ2 − b1λ4. (10.2.2.22)

Formulas (10.2.2.19) and (10.2.2.22) define particular solutions to equation (10.2.2.18) involving

one free parameter, λ, with the restriction that λ 6= 0 and the radicand must be positive.

Remark 10.7. Since equation (10.2.2.18) is invariant to translation, x =⇒ x + const, it also

admits solutions of the form y = a0 + a1 sin(λx + c), where a0 and a1 are given by (10.2.2.22),

while c and λ are arbitrary constants.

2◦. Tan-cot method. The tan-cot method is based on the assumption that a particular solu-

tion can be expressed in terms of the tangent or cotangent functions, which corresponds to

ϕ(z) = tan z or ϕ(z) = cot z in (10.2.1.2).

Example 10.7. Consider equation (10.2.2.14) with b< 0 and c> 0. We seek particular solutions

of the form y =
∑n

k=0 akz
k with z = tan(λx), where ak, λ, and n are undetermined constants.

Arguing in the same way as in Example 10.4, we find that n = 1 and a0 = 0. As a result, we obtain

the particular solutions

y = ±
√
−b/c tan(

√
−b/2x).

Remark 10.8. Since equation (10.2.2.14) is invariant to translation, x =⇒ x + const, it also

admits the solutions y = ±
√
−b/c tan(

√
−b/2x+ s), where s is an arbitrary constant.

10.2.3 Exp-Function, Q-Expansion and Related Methods

◮ Exp-function method. The simplest version.

In the simplest case, the exp-function method is based on the assumption that a particular

solution can be expressed in terms of the exponential function, which corresponds toϕ(z)=
exp z in (10.2.1.2).

Importantly, the autonomous differential equation of arbitrary order with a quadratic

nonlinearity

n∑

k=1

Sk[w]w
(k)
x + b0 = 0, Sk[w] =

k∑

s=0

bksw
(s)
x , w(0)

x = w (10.2.3.1)
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admits particular solutions of the form

w = A+Beλx, (10.2.3.2)

provided that there is a single relation between the coefficients bks and b0. The constants A
and λ are to be determined, while B is arbitrary. Therefore, one should first try to reduce

the equation by a change of variable y = f(w) to an equation with a quadratic nonlinearity

(10.2.3.1) and then look for its particular solutions of the form (10.2.3.1).

Example 10.8. Consider the equation

y′′xx + (a1 + a2y
m−1)y′x = by + cym. (10.2.3.3)

First, we make the change of variable y = wp, with the exponent p to be determined. Then, on

multiplying the result by w2−p, we get

pww′′
xx + p(p− 1)(w′

x)
2 + p(a1w + a2w

(m−1)p+1)w′
x = bw2 + cw(m−1)p+2.

In order to obtain an equation with a quadratic nonlinearity, one must set p = 1
1−m . Thus, the

change of variable y = w
1

1−m reduces equation (10.2.3.3) to the form

ww′′
xx + s(w′

x)
2 + a1ww

′
x + a2w

′
x + b(m− 1)w2 + c(m− 1)w = 0, s =

m

1−m. (10.2.3.4)

Substituting (10.2.3.2) into (10.2.3.4) and rearranging, we obtain

B2[(s+ 1)λ2 + a1λ+ b(m− 1)]E2 +B{A[λ2 + a1λ+ 2b(m− 1)] + a2λ+ c(m− 1)}E
+ (m− 1)A(Ab + c) = 0, E = eλx, s =

m

1−m .

Equating the coefficients of the various powers of E to zero results in the algebraic system of

equations

(s+ 1)λ2 + a1λ+ b(m− 1) = 0,

A[λ2 + a1λ+ 2b(m− 1)] + a2λ+ c(m− 1) = 0, (10.2.3.5)

A(Ab + c) = 0.

The trivial cases of B = 0 (constant solution) and m = 1 (linear equation) have been discarded.

The first quadratic equation in system (10.2.3.5) serves to determine λ (in a wide range of the

parameters a1, b, and m, it has two distinct roots). From the last equation in (10.2.3.5) one can see

that there are two possibilities, A = 0 and A 6= 0, which need to be treated separately.

1. In the degenerate case of A = 0 and a2 6= 0, we get the solution

w = Beλx, λ =
c(1−m)

a2
,

which exists under the condition that

a2c
2 + a1a2c− a22b = 0.

2. In the nondegenerate caseA 6=0, the first and third equations in (10.2.3.5) give the parameters

of two particular solutions (10.2.3.2):

A = − c
b
, λ1,2 =

1

2
(m− 1)

(
a1 ±

√
a21 + 4b

)
.

The second equation of system (10.2.3.5), with A = −c/b and the value of λ1 (or A = −c/b and

λ2) inserted, determines the relationship between the coefficients of the original equation (10.2.3.3)

required for the existence of such a solution (the relationship is omitted).
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◮ Q-expansion and logistic function methods.

1◦. There is a more complex method based on the usage of exponential functions suggest-

ing that particular solutions to autonomous equations with polynomial nonlinearity should

be sought in the form

y =
n∑

k=0

akQ
k(λx), Q(z) =

1

1 + Cez
, (10.2.3.6)

where C is an arbitrary constant and the remaining constants, ak, λ, and n, are to be

determined.

Expression (10.2.3.6) is substituted into the ODE of interest and then, after multiplying

by Q−n and matching the coefficients of like powers of ekz, one arrives at a system of

algebraic equations for the unknowns ak, λ, and n as well as the coefficients involved in

the equation of interest.

The representation of solutions in form (10.2.3.6) with C = λ = 1 constitutes the Q-

expansion method and corresponds to ϕ(z) = (1 + ez)−1 in the first formula in (10.2.1.2).

In the special case C = 1 and λ = −1, the function Q(z) = (1 + e−x)−1 appearing in the

solution is called a logistic function (or the sigmoid function).

The function Q(z) in (10.2.3.6) can be represented equivalently in terms of hyperbolic

functions as follows:

Q(z) =
1

1 + ez+z0
=

1

2

[
1− tanh

(
z + z0

2

)]
, z0 = lnC, if C > 0; (10.2.3.7)

Q(z) =
1

1− ez+z0
=

1

2

[
1− coth

(
z + z0

2

)]
, z0 = ln |C|, if C < 0. (10.2.3.8)

The comparison of formulas (10.2.3.6), (10.2.3.7), and (10.2.3.6), (10.2.3.8) with for-

mula (10.2.1.2) at ϕ(z) = tanh z and ϕ(z) = coth z shows that the current modification of

the exp-function method allows one to cover all the solutions that can be obtained using the

tanh-coth methods. Furthermore, the representation of solutions in the form (10.2.3.6) is

more compact and is simpler as it does not require the knowledge of hyperbolic functions

or relations between them.

2◦. The current method admits an alternative and more economical usage based on the fact

that the function Q = Q(z) is the general solution of the Bernoulli equation

Q′
z = Q2 −Q. (10.2.3.9)

Differentiating (10.2.3.9) with respect to z and eliminating Q′
z with the help of (10.2.3.9),

we find successively

Q′′
zz = 2QQ′

z −Q′
z = 2Q3 − 3Q2 +Q,

Q′′′
zzz = (6Q2 − 6Q+ 1)Q′

z = 6Q4 − 12Q3 + 7Q2 −Q, (10.2.3.10)

Q′′′′
zzzz = (24Q3 − 36Q2 + 14Q− 1)Q′

z = 24Q5 − 60Q4 + 50Q3 − 15Q2 +Q.

In a similar fashion, we we can obtain the representation of the derivative Q
(k)
z as a poly-

nomial Pk+1(Q).
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Using formulas (10.2.3.9)–(10.2.3.10), we obtain

y′x = λy′z = λ

( n∑

k=0

akkQ
k−1

)
Q′

z = λ

n∑

k=0

akkQ
k+1 − λ

n∑

k=0

akkQ
k,

y′′xx = λ2
( n∑

k=0

akk(k + 1)Qk −
n∑

k=0

akk
2Qk−1

)
Q′

z (10.2.3.11)

= λ2
n∑

k=0

akk(k + 1)Qk+2 − λ2
n∑

k=0

akk(2k + 1)Qk+1 + λ2
n∑

k=0

akk
2Qk.

In a similar fashion, we can express the derivative y
(k)
x in terms of a polynomial P̃n+k(Q).

The degree n of the polynomial (10.2.3.6) is obtained as follows. We replace the terms

of the ODE under consideration by the rule

y(k)x =⇒ Qn+k, ym =⇒ Qnm (k,m = 0, 1, . . . ) (10.2.3.12)

and then match up the two (or more) terms with the largest powers of Q. As a result, we

obtain a simple equation for n. We can use this technique if n is a positive integer. In

the case of noninteger n, we have to use a transformation of the solution y = y(x). For

example, if we obtain n = 1
m , where m is an integer, we can transform the solution as

y = um, where u = u(x) is the new function.

On determining n, we substitute (10.2.3.6) into the differential equation of interest and

replace the derivatives Q
(k)
z with the expressions (10.2.3.9)–(10.2.3.10) to obtain an al-

gebraic equation for Q. Equating the coefficients of this equation to zero results in an

algebraic system for the coefficients ak and λ.

Example 10.9. Consider the nonlinear second-order equation with a quadratic nonlinearity∗

y′′xx + by′x + c(y − y3) = 0. (10.2.3.13)

We look for solutions to equation (10.2.3.13) as the sum (10.2.3.6). On replacing the terms of

the equation by the rule (10.2.3.12), we equate the exponents of the highest-order terms inQ (which

have the correspondence y′′xx =⇒ Qn+2 and y2 =⇒ Q3n) to obtain n = 1.

Using formulas (10.2.3.6) and (10.2.3.11) with n = 1, we get

y = a0 + a1Q,

y′x = λa1(Q
2 −Q),

y′′xx = λ2a1(2Q
3 − 3Q2 +Q).

Inserting these expressions into (10.2.3.13) yields a polynomial of degree 3 in Q. Equating its

coefficients of the different powers of Q to zero and dividing by a1 6= 0 and c 6= 0, we arrive at the

algebraic system equations

2λ2 − ca21 = 0, (10.2.3.14)

3λ2 − bλ+ 3a0a1c = 0, (10.2.3.15)

λ2 − bλ+ c− 3a20c = 0, (10.2.3.16)

a0(1− a20) = 0. (10.2.3.17)

∗This equation arises when one looks for exact solutions to the nonlinear Burgers–Huxley PDE ut =
uξξ + c(u− u3) in the form of a traveling wave, u = y(x) with x = ξ − bt, where b is an arbitrary constant.
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Subtracting equation (10.2.3.16) from (10.2.3.15) and eliminating λ2 with the help of (10.2.3.14),

we obtain the relation between a0 and a1:

3a20 + 3a0a1 + a21 − 1 = 0. (10.2.3.18)

The cubic equation (10.2.3.17) has three roots: a0 = 0, a0 = 1, and a0 = −1. To each a0 there cor-

respond two roots of the quadratic equation (10.2.3.18) for a1, and to each a1 there correspond two

roots of equation (10.2.3.14). Substituting a0, a1, and λ into equation (10.2.3.15) (or (10.2.3.16)),

we arrive at the relationship between the coefficients b and c that ensures the existence of a solution.

To sum up, there are the following possibilities:

(i) a0 = 0, a1 = 1, λ = ±
√
c/2, b = ±3

√
c/2;

(ii) a0 = 0, a1 = −1, λ = ±
√
c/2, b = ±3

√
c/2;

(iii) a0 = 1, a1 = −1, λ = ±
√
c/2, b = ∓3

√
c/2;

(iv) a0 = 1, a1 = −2, λ = ±
√
2c, b = 0;

(v) a0 = −1, a1 = 1, λ = ±
√
c/2, b = ∓3

√
c/2;

(vi) a0 = −1, a1 = 2, λ = ±
√
2c, b = 0.

It follows from equation (10.2.3.13) that if y is a solution, then−y is also a solution. The above

formulas for the coefficients determine three pairs of solutions of the form y = a0 +
a1

1 + Ceλx
,

which differ in sign.

3◦. Another convenient technique to seek particular solutions of the form (10.2.3.6) is

based on using the change of variable ξ =
1

1 + Ceλx
in the equation of interest followed by

representing solutions in the form of finite power series in ξ: y =
∑n

k=0 akξ
k (see Remark

10.1).

◮ Solutions in the form of the ratio of exponential polynomials.

Particular solutions to ODEs can also be sought in the form of the ratio of exponential

polynomials

y(x) =

∑s
k=−r ake

kz

∑q
j=−p bje

jz
=
a−re

−rz + · · ·+ ase
sz

b−pe−pz + · · ·+ bqeqz
, z = λx, (10.2.3.19)

where r, s, p and q are unknown positive integers to be determined and ak, bj , and λ
are unknown constants. Symbolic computations with computer algebra systems (such as

Maple or Mathematica) can often be very helpful in searching for such solutions.

For example, in the special case p = q = r = s = 1, (10.2.3.19) becomes

y(x) =
a−1e

−z + a0 + a1e
z

b−1e−z + b0 + b1ez
, z = λx.

By substituting this expression into the ODE and by matching the coefficients of like pow-

ers of ekz , we generate the system of algebraic equations for the unknowns a−1, a0, a1,

b−1, b0, b1, and λ as well as the coefficients involved in the equation.

⊙ Literature for Section 10.2: W. Malfliet (1992), W. Malfliet and W. Hereman (1996), E. Fan (2000),

A. M. Wazwaz (2004, 2007a, 2007b, 2008), D.-S. Wang, Y.-J. Ren, and H.-Q. Zhang (2005), J.-H. He and

X.-H. Wu (2006), A. Ebaid (2007), J.-H. He and M. A. Abdou (2007), S. Zhang (2007), A. Bekir (2008),

L. Wazzan (2009), N. A. Kudryashov (2010b, 2012, 2013, 2015), E. J. Parkes (2010), N. A. Kudryashov and

D. I. Sinelshchikov (2012), A. D. Polyanin and V. F. Zaitsev (2012), N. A. Kudryashov and A. S. Zakharchenko

(2014).
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10.3 Method of Differential Constraints

10.3.1 Preliminary Remarks. First-Order Differential Constraints and
Their Applications

The main idea of the method is that exact solutions to a complex (nonintegrable) equation

are sought by jointly analyzing this equation and an auxiliary simpler (integrable) equation,

called a differential constraint.∗

The order of a differential constraint is the order of the highest derivative involved.

Usually, the order of the differential constraint is less than that of the equation; first-order

differential constraints are simplest and most common. The equation and differential con-

straint must involve a set of free parameters (or even arbitrary functions) whose values are

chosen by ensuring that the equation and the constraint are consistent. After the consistency

analysis, all solutions obtained by integrating the differential constraint will be simultane-

ously solutions to the original equation. The method makes it possible to find particular

solutions to the original equation for some values of the determining parameters.

For simplicity, we first consider autonomous ordinary differential equations of the form

F (y, y′x, . . . , y
(n)
x ; a) = 0, (10.3.1.1)

which do not involve the independent variable x explicitly and depend on a vector of free

parameters a = {a1, . . . , ak}. For equations (10.3.1.1), one should take first-order differ-

ential constraints in the autonomous form

G(y, y′x;b) = 0, (10.3.1.2)

dependent on a vector of free parameters b = {b1, . . . , bs}.
By differentiating relation (10.3.1.2) successively several times, one can express higher-

order derivatives in terms of y and y′x: y
(k)
x = ϕk(y, y

′
x;b). Substituting these expressions

into the original equation (10.3.1.1), one arrives at a first-order equation

F(y, y′x; a,b) = 0. (10.3.1.3)

By eliminating the derivative y′x from (10.3.1.2) and (10.3.1.3), one obtains an algebraic/

transcendental equation

P (y; a,b) = 0. (10.3.1.4)

Further, one looks for the values of a and b at which equation (10.3.1.4) is satisfied iden-

tically for any y (this may result in some restrictions on the components of the vector a).

After this, one expresses the vector b in terms of a, so that b = b(a), and substitutes it

back into the differential constraint (10.3.1.2) to obtain a first-order ordinary differential

equation

g(y, y′x; a) = 0 (g = G|b=b(a)). (10.3.1.5)

∗The ideas of this method as applied to searching for exact solutions to nonlinear PDEs were first put

forward by Yanenko (1964). The studies by Galaktionov (1994), Olver and Vorob’ev (1996), Andreev,

Kaptsov, Pukhnachov, and Rodionov (1998), Kaptsov and Verevkin (2003), Polyanin and Zaitsev (2004, 2012),

Polyanin, Zaitsev, and Zhurov (2005) give a number of nontrivial examples of how to use this method to con-

struct exact solutions (other than traveling wave solutions) to different nonlinear PDEs of mathematical physics.



“K16435’ — 2017/9/28 — 15:05 — #329

10.3. Method of Differential Constraints 303

This equation is consistent with the original equation (10.3.1.1); in other words, the original

equation is a consequence of equation (10.3.1.5) and, therefore, inherits all of its solutions.

Finally, by solving for the derivative, equation (10.3.1.5) is reduced to a separable equation,

which is integrated to obtain a general solution. The general solution of equation (10.3.1.5)

is also an exact solution of the original equation (10.3.1.1).

Remark 10.9. If a first-order differential constraint is defined in explicit form, y′x = h(y; b), the

successive differentiation enables one to express the higher-order derivatives in terms of y, so that

y′′xx = (y′x)
′
yy

′
x = hh′y, y′′′xxx = (y′′xx)

′
yy

′
x = h(hh′y)

′
y, . . .

Using these expressions and the differential constraint to eliminate the derivatives from (10.3.1.1),

one immediately arrives at an algebraic/transcendental equation of the form (10.3.1.4).

Remark 10.10. Instead of y′x, one can eliminate the dependent variable y from (10.3.1.2) and

(10.3.1.3) to obtain an algebraic/transcendental equation for the derivative: Q(y′x; a, b) = 0.

The structure of the nonlinearity of the differential constraint (10.3.1.2) can often be

taken to be similar to that of the original equation (10.3.1.1) so as to have different deter-

mining parameters. This will be illustrated below by specific examples of second-, third-,

fourth-, and higher-order equations.

Example 10.10. Consider the second-order ordinary differential equation with a power-law non-

linearity

y′′xx − cy′x = ay + byn, (10.3.1.6)

which arises in the theory of chemical reactors, combustion theory, and mathematical biology.∗

Let us supplement equation (10.3.1.6) with the first-order differential constraint

y′x = αy + βym, (10.3.1.7)

which is a separable equation and is easy to integrate. The form of the right-hand side of (10.3.1.7)

has been chosen to be similar to that of the original equation (10.3.1.6).

The equation and differential constraint involve seven parameters: a, b, c, n, m, α, and β. The

further analysis aims at determining the parameters α, β, and m of the differential constraint so as

to express them in terms of a, b, c, and n. Simultaneously, restrictions on the equation parameters

will be found.

Differentiating (10.3.1.7) and replacing the first derivative with the right-hand side of (10.3.1.7),

we get

y′′xx = (α+mβym−1)y′x = (α+mβym−1)(αy + βym)

= α2y + αβ(m+ 1)ym +mβ2y2m−1. (10.3.1.8)

Eliminating the first and second derivatives from (10.3.1.6) using (10.3.1.7) and (10.3.1.8) and re-

arranging, we obtain

(α2 − αc− a)y + β[α(m + 1)− c]ym +mβ2y2m−1 − byn = 0.

For this equation to hold for all y, one must set

α2 − αc− a = 0,

α(m+ 1)− c = 0,

2m− 1 = n,

mβ2 − b = 0.

(10.3.1.9)

∗Equations (10.3.1.6) and (10.3.1.11) describe traveling-wave solutions of the Kolmogorov–Petrovskii–

Piskunov PDE, ut = uξξ − f(u), for some forms of the kinetic function f(u). In this case, we have u = y(x)
with x = ξ + ct.
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If conditions (10.3.1.9) hold, then solutions to equation (10.3.1.7) are also solutions to the more

complex equation (10.3.1.6). The determining system of four equations (10.3.1.9) contains seven

parameters a, b, c, n, m, α, and β. The three parameters b, c, and n of the original equation can be

regarded as arbitrary and the other parameters are expressed as follows:

a = − 2c2(n+ 1)

(n+ 1)2
, m =

n+ 1

2
, α =

2c

n+ 3
, β = ±

√
2b

n+ 1
. (10.3.1.10)

It is apparent that for equations (10.3.1.6) and (10.3.1.7) to be consistent, the original equation

parameter a must be connected with two other parameters, c and n. In this case, two families

of parameters (10.3.1.10) of equation (10.3.1.7) can be identified that determine two different one-

parameter solutions to equations (10.3.1.6) and (10.3.1.7); recall that equation (10.3.1.7) is separable

and is easy to integrate.

Example 10.11. The second-order equation with an exponential nonlinearity

y′′xx − cy′x = a+ beλy (10.3.1.11)

can be investigated in a similar manner. The equation will be considered in conjunction with the

first-order differential constraint

y′x = α+ βeµy . (10.3.1.12)

The analysis shows that three parameters of the original equation, b, c, and λ, can be regarded as

arbitrary and the other parameters are expressed as

a = − 2c2

λ
, α =

2c

λ
, β = ±

√
2b

λ
, µ =

λ

2
. (10.3.1.13)

It is apparent that for equations (10.3.1.11) and (10.3.1.12) to be consistent, the parameter a
must be related in a certain way to two other parameters of the equation, c and λ. In this case, two

families of parameters (10.3.1.13) of the differential constraint (10.3.1.12) can be identified, which

determine two different one-parameter solutions to equations (10.3.1.11) and (10.3.1.12). Equation

(10.3.1.12) is separable and is easy to integrate.

Example 10.12. Consider the nonlinear third-order equation

y′′′xxx = ay4 + by2 + c (10.3.1.14)

in conjunction with the first-order differential constraint

y′x = αy2 + β. (10.3.1.15)

Using (10.3.1.15), we find the derivatives

y′′xx = 2αyy′x = 2αy(αy2 + β) = 2α3y3 + 2αβy,

y′′′xxx = (6α2y2 + 2αβ)y′x = (6α2y2 + 2αβ)(αy2 + β) = 6α3y4 + 8α2βy2 + 2αβ2.

For the last equation to coincide with (10.3.1.14), the relations

a = 6α3, b = 8α2β, c = 2αβ2

must hold. On solving the first two equations for α and β and substituting the resulting expressions

into the last equation, we obtain

α =
( a
6

)1/3
, β =

( a
6

)−2/3 b

8
, c =

3b2

16a
. (10.3.1.16)

It follows that with this c, the third-order equation (10.3.1.14) has a particular solution resulting

from solving the first-order separable equation (10.3.1.15) whose parameters are connected with

those of the original equation by the first two relations in (10.3.1.16).
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Example 10.13. Consider the nonlinear fourth-order equation

y′′′′xxxx = ayn + by2n+3 (10.3.1.17)

in conjunction with the first-order differential constraint

(y′x)
2 = αym + β. (10.3.1.18)

Differentiating (10.3.1.18), we get the derivatives

y′′xx = 1
2αmy

m−1 (after canceling by y′x),

y′′′xxx = 1
2αm(m− 1)ym−2y′x,

y′′′′xxxx = 1
2αm(m− 1)ym−2y′′xx + 1

2αm(m− 1)(m− 2)ym−3(y′x)
2

= 1
2αβm(m− 1)(m− 2)ym−3 + 1

4α
2m(m− 1)(3m− 4)y2m−3.

(10.3.1.19)

Comparing the right-hand side of (10.3.1.17) and that of the last equation in (10.3.1.19) enables

us to draw the following conclusions about the consistency of (10.3.1.17) and (10.3.1.19).

1◦. For any values of the parameters of the original equation (10.3.1.17) except for n 6= −1, −2,

−3,− 5
3 and b 6= 0, one can calculate the parameters of the differential constraint (10.3.1.18) by the

formulas

m = n+ 3, α = ±2
√

b

(n+ 2)(n+ 3)(3n+ 5)
, β =

2a

α(n+ 1)(n+ 2)(n+ 3)
.

2◦. For b = 0 and n = − 5
3 , we have

m =
4

3
, β = − 27a

4α
, α 6= 0 is an arbitrary constant.

In this case, the solution to equation (10.3.1.18) will depend on two arbitrary constants (α plays the

role of an additional constant of integration).

Remark 10.11. For b= 0 and n=− 5
3 , one can find the general solution of equation (10.3.1.17)

(see Eq. 1 in Section 16.2.1).

Example 10.14. The fourth-order equation with an exponential nonlinearity

y′′′′xxxx = aeλy + b2λy (10.3.1.20)

can be analyzed using the differential constraint

(y′x)
2 = αeλy + β. (10.3.1.21)

Analysis shows that for any values of the parameters of the original equation (10.3.1.20) satis-

fying the condition bλ > 0, two families of parameters of the differential constraint (10.3.1.21) can

be found using the formulas

α = ± a

λ2

(
3λ

b

)1/2
, β = ± 2

λ

(
b

3λ

)1/2
.

Here, one takes either the upper or lower signs simultaneously.

Example 10.15. The nonlinear nth-order equation

y(n)x = aeλy

admits the first-order differential constraint

y′x = αeµy.

The successive differentiation of the differential constraint gives y
(n)
x = αnµn−1(n − 1)! enµy.

Comparing this expression with the equation yields λ = nµ and a = αnµn−1(n− 1)!, or

µ =
λ

n
, α =

[
ann−1

λn−1(n− 1)!

]1/n
.
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10.3.2 Differential Constraints of Arbitrary Order. General
Consistency Method for Two Equations

In general, a differential constraint is an ordinary differential equation of arbitrary order.

Therefore, it is necessary to be able to analyze overdetermined systems of two ordinary dif-

ferential equations for consistency. Outlined below is the general algorithm for the analysis

of such systems.

1◦. First, let us consider two ordinary differential equations of the same order

F1(x, y, y
′
x, . . . , y

(n)
x ) = 0, (10.3.2.1)

F2(x, y, y
′
x, . . . , y

(n)
x ) = 0; (10.3.2.2)

here and henceforth, it is assumed that the equations depend on free parameters, which are

omitted for brevity. We eliminate the highest derivative (by solving one of the equations

for y
(n)
x and substituting the resulting expression into the other equation) to obtain the

(n− 1)st-order equation

G1(x, y, y
′
x, . . . , y

(n−1)
x ) = 0. (10.3.2.3)

Differentiating (10.3.2.3) with respect to x and eliminating the derivative y
(n)
x from the

resulting equation using either of the equations (10.3.2.1) and (10.3.2.2), one arrives at

another (n− 1)st-order equation

G2(x, y, y
′
x, . . . , y

(n−1)
x ) = 0. (10.3.2.4)

Thus, the analysis of two nth-order equations (10.3.2.1) and (10.3.2.2) is reduced to the

analysis of two (n − 1)st-order equations (10.3.2.3) and (10.3.2.4). By reducing the order

of equations in a similar manner further, one ultimately arrives at a single algebraic/tran-

scendental equation (since two first-order differential equations are reducible to a single

algebraic equation). The analysis of the resulting algebraic equation presents no funda-

mental difficulties and is performed in the same way as previously in Section 10.3.1 for the

case of a first-order differential constraint.

2◦. Suppose there are two ordinary differential equations having different orders:

F1(x, y, y
′
x, . . . , y

(n)
x ) = 0, (10.3.2.5)

F2(x, y, y
′
x, . . . , y

(m)
x ) = 0, (10.3.2.6)

withm<n. Then, by differentiating (10.3.2.6) n−m times, one reduces system (10.3.2.5)–

(10.3.2.6) to a system of the form (10.3.2.1)–(10.3.2.2), in which both equations have the

same order n.

Example 10.16. Consider the fourth-order equation with a quadratic nonlinearity

y′′′′xxxx = a(y′′xx)
2 − by2 + c (10.3.2.7)

in conjunction with the second-order differential constraint

y′′xx = αy + β. (10.3.2.8)

Differentiating (10.3.2.8) twice gives y′′′′xxxx = α2y+αβ. Using this expression and the differential

constraint (10.3.2.8) to eliminate the derivatives from (10.3.2.7), one arrives at a quadratic equation

for y, which is satisfied identically if the conditions

aα2 − b = 0, α− 2aβ = 0, c = αβ − aβ2
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hold. Two parameters of the original equation, a and b, can be regarded as arbitrary and the third

parameter, c, with coefficients of differential constraint (10.3.2.8) are expressed in terms of them as

follows:

c =
b

4a2
, α = ±

√
b

a
, β = ± 1

2a

√
b

a
.

Example 10.17. The equation of order mn with a quadratic nonlinearity

y(mn)
x = a[y(n)x ]2 + byy(n)x + cy(n)x + dy2 + ky + p (m is positive integer),

which generalizes equation (10.3.2.7), can be investigated using the nth-order differential constraint

y(n)x = αy + β.

3◦. The general autonomous second-order differential constraint

y′′xx = f(y)

is equivalent to the autonomous first-order differential constraint

(y′x)
2 = F (y),

where F (y) = 2
∫
f(y) dy + C and C is an arbitrary constant. This is proved by differen-

tiating the latter relation and comparing with the original differential constraint.

With this in mind, the second-order differential constraint (10.3.2.8) in Example 10.16

could be replaced by the first-order constraint (y′x)
2 = αy2 + 2βy + γ, where γ is an

extra free parameter. However, the differential constraint (10.3.2.8) is linear and is easy to

integrate.

4◦. In principle, any differential constraint of arbitrary order (10.3.2.6) can be replaced by a

suitable first-order differential constraint. Indeed, the above algorithm for successive order

reduction of system (10.3.2.5)–(10.3.2.6) leads, in the nondegenerate case, to a system of

first-order equations, one of which can be treated as a first-order differential constraint.

10.3.3 Using Point Transformations in Combination with
the Method of Differential Constraints

◮ General description of the solution-seeking procedure.

1◦. In some cases, it is first useful to reduce the ODE of interest, with a point transfor-

mation, to another equation (simpler or more convenient for investigation), which can then

be analyzed using a suitable differential constraint. With this approach, solutions to the

autonomous equation (10.3.1.1) are sought in the form

y = G(w;b), (10.3.3.1)

whereG is a given function and w=w(x) is a function satisfying the first-order differential

equation (the differential constraint)

H(w,w′
x; c) = 0. (10.3.3.2)

The functions G andH in (10.3.3.1) and (10.3.3.2) depend on the vectors of free parameters

b and c.

The introduction of the new variable w defined by relation (10.3.3.1) reduces equation

(10.3.1.1) to a new ODE with one differential constraint (10.3.3.2); this creates the standard

situation discussed in Section 10.3.1).
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◮ Examples of constructing particular solutions.

Example 10.18. Let us look at the second-order ordinary differential equation with a power-law

nonlinearity of arbitrary degree

y′′xx − cy′x = ay + byn + dy2n−1, (10.3.3.3)

which generalizes equation (10.3.1.6) to the case of d 6= 0.

We choose the linking dependence (10.3.3.1) in the power-law form

y = wp, (10.3.3.4)

with the exponent p to be determined. Substituting (10.3.3.4) into (10.3.3.3) and multiplying

by w2−p, we obtain

pww′′
xx + p(p− 1)(w′

x)
2 − cpww′

x = aw2 + bwk+1 + dw2k, k = p(n− 1) + 1. (10.3.3.5)

Let us discuss a few possibilities for choosing p that allow one to find exact solutions.

Case 1. Suppose that

p =
1

1− n (k = 0). (10.3.3.6)

The change of variable (10.3.3.4), (10.3.3.6) converts the original equation (10.3.3.3) into the equa-

tion with a quadratic nonlinearity

ww′′
xx +

n

1− n (w
′
x)

2 − cwwx = a(1− n)w2 + b(1− n)w + d(1− n), (10.3.3.7)

which is more convenient for analysis.

1.1. Let us supplement equation (10.3.3.7) with the linear differential constraint

w′
x = αw + β. (10.3.3.8)

We use this relation to eliminate the derivatives in (10.3.3.7) to obtain a quadratic equation for w,

which is satisfied identically if the conditions (determining system of algebraic equations)

1

1− nα
2 − cα = a(1− n), 1 + n

1− nαβ − cβ = b(1− n), nβ2 = d(1− n)2

hold. The first and last equations give two pairs of solutions each,

α1,2 =
1

2
(1 − n)

(
c±

√
c2 + 4a

)
, β1,2 = ± 1

1− n

√
d

n
, (10.3.3.9)

which are then substituted into the second equation. As a result, for each pair αi, βj we obtain one

constraint (not written out here) that connects the parameters a, b, c, d, and n.

It is apparent from (10.3.3.9) that for a = 0, equation (10.3.3.7) admits a simple, degenerate

first-order differential constraint

w′
x = β = const.

1.2. For c = 0, equation (10.3.3.7) can be supplemented with the differential constraint

(w′
x)

2 = αw2 + βw + γ. (10.3.3.10)

A simple analysis shows that the constraint coefficients in (10.3.3.10) are expressed in terms of the

equation coefficients in (10.3.3.3) as follows:

α =
a(1− n)2
2− n , β = b(1− n)2, γ =

d(1− n)2
n

.

Remark 10.12. For a = c = 0, equation (10.3.3.7) admits a solution of the form w = Ax2 +
Bx+ C.
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Remark 10.13. For n = −1/3, a particular solution of equation (10.3.3.7) can be obtained with

the help of the differential constraint

w′
x = αw + β

√
w + γ.

Case 2. Suppose that

p =
1

n− 1
(k = 2). (10.3.3.11)

The change of variable (10.3.3.4), (10.3.3.11) converts the original equation (10.3.3.3) into the

equation with a nonlinearity of fourth degree

ww′′
xx +

2− n
n− 1

(w′
x)

2 − cwwx = a(n− 1)w2 + b(n− 1)w3 + d(n− 1)w4, (10.3.3.12)

We look for particular solutions to equation (10.3.3.7) using the quadratic differential constraint

w′
x = αw2 + βw + γ. (10.3.3.13)

We use this relation to eliminate the derivatives from (10.3.3.12) to obtain an equation of fourth

degree for w. Equating its coefficients to zero results in the algebraic system

nα2 = d(n− 1)2,

(n+ 1)αβ

n− 1
− cα = b(n− 1),

β2 + 2αγ

n− 1
− cβ = a(n− 1), (10.3.3.14)

γ

(
3− n
n− 1

β − c
)

= 0,

(2− n)γ2 = 0.

The cases γ = 0 and n= 2 need to be considered; these correspond to solutions of the last equation.

2.1. For γ = 0, we determine the original coefficients and a particular solution using the first,

second, and fourth equations of (10.3.3.14) as well as the differential constraint (10.3.3.13):

α = ±(n− 1)

√
d

n
, β =

n− 1

n+ 1

(
c± b

√
n

d

)
, γ = 0, w = − β

α+ Ce−βx
, (10.3.3.15)

where C is an arbitrary constant. The third equation of (10.3.3.14) defines a necessary relation

between the coefficients of the equation of interest:

a =
1

(n+ 1)2

(
c± b

√
n

d

)(
−nc± b

√
n

d

)
.

Either the upper or lower signs must be taken in the above formulas.

2.2. For n= 2, the coefficients of the differential constraint are determined from the first, third,

and fourth equations of (10.3.3.14):

α = ±
√
d/2, β = c, γ = ± a√

2d
. (10.3.3.16)

The second equation defined the relation between the equation coefficients: b = ±c
√
2d (either

the upper or lower signs must be taken in all formulas). The desired solution is determined by

integrating the separable equation (10.3.3.13) taking into account (10.3.3.16).

Case 3. On setting k = 3 in (10.3.3.5), we can look for a solution in the form w = a0 + a1Q+
a2Q

2 with Q′
x = b2Q

2 + b1Q+ b0.
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Example 10.19. Consider the second-order ordinary differential equation with an exponential

nonlinearity

y′′xx − cy′x = a+ beλy + de2λy. (10.3.3.17)

The linking dependence (10.3.3.1) will be taken in the logarithmic form

y =
k

λ
lnw, (10.3.3.18)

with the coefficient k to be determined. Substituting (10.3.3.18) into (10.3.3.17) and multiplying by

λw2, we obtain

kww′′
xx − k(w′

x)
2 − ckww′

x = aλw2 + bλwk+2 + dλw2k+2. (10.3.3.19)

Let us look at a few possibilities of choosing the coefficient k that allow us to find exact solu-

tions.

Case k=−1. The substitution (10.3.3.18) with k=−1 converts the original equation (10.3.3.17)

into the equation with a quadratic nonlinearity

ww′′
xx − (w′

x)
2 − cwwx = −aλw2 − bλw − d, (10.3.3.20)

which only differs from equation (10.3.3.7) in coefficients. The differential constraint (10.3.3.8)

allows one to find a particular solution to equation (10.3.3.20) (details are omitted).

Remark 10.14. For a = c = 0, equation (10.3.3.20) admits a solution of the form w = Ax2 +
Bx+ C.

Case k = 1. The substitution (10.3.3.18) with k = 1 converts the original equation (10.3.3.17)

into the equation with a quartic nonlinearity

ww′′
xx − (w′

x)
2 − cww′

x = aλw2 + bλw3 + dλw4, (10.3.3.21)

which only differs from equation (10.3.3.12) in coefficients. The differential constraint (10.3.3.13)

allows one to find a particular solution to equation (10.3.3.21) (details are omitted).

◮ Modification of the solution-seeking procedure.

If the differential constraint (10.3.3.2) can be solved for the derivative,

w′
x = h(w;b), (10.3.3.22)

then a different order of actions may be more convenient.

By differentiating relation (10.3.3.22) repeatedly and expressing the derivatives via w,

one obtains relations of the form w
(k)
x = ϕk(w;b). Then, on substituting (10.3.3.1) into the

equation of interest, one eliminates the derivatives with the help of (10.3.3.22).

Most frequently, one uses differential constraints of the form (10.3.3.22). These repre-

sent separable Riccati or Bernoulli equations.

Example 10.20. Example 10.9 considered previously demonstrates the work of this method for

the original equation taken in the form (10.2.3.13), relation (10.3.3.1) taken in the form of a finite

sum (10.2.3.6) with w ≡ Q, and the differential constraint (10.3.3.22) taken in the form of the

Bernoulli equation (10.2.3.9).
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10.3.4 Using Several Differential Constraints. G′/G-Expansion
Method and Simplest Equation Method

◮ Using several differential constraints.

In some situations, the equation under study is supplemented with several differential con-

straints containing additional unknown constants. To be specific, let us return to the nth-

order autonomous equation (10.3.1.1) and supplement it with two first-order differential

constraints

y = G(w,w′
x;b), (10.3.4.1)

H(w,w′
x; c) = 0, (10.3.4.2)

where b and c are vectors of free parameters. On substituting (10.3.4.1) into (10.3.1.1), one

obtains an (n+ 1)st-order equation for w = w(x):

F1(w,w
′
x, . . . , w

(n+1)
x ;b, c) = 0. (10.3.4.3)

This equation in conjunction with the differential constraint (10.3.4.2) is analyzed with the

method outlined in Sections 10.3.1 and 10.2.3. There is an insignificant distinction that the

order of equation (10.3.4.3) is higher than that of the original equation (10.3.1.1).

Remark 10.15. The differential constraints (10.3.4.1) and (10.3.4.2) can involve higher deriva-

tives of w with respect to x (see below).

◮ G′/G-expansion method.

With the G′/G-expansion method, one looks for particular solutions to autonomous equa-

tions using two differential constraints (10.3.4.1) and (10.3.4.2) of the special form

y =

n∑

k=0

bk

(
w′
x

w

)k
, (10.3.4.4)

w′′
xx − c1w′

x − c0w = 0. (10.3.4.5)

Remark 10.16. In the original papers by Wang, Li, and Zhang (2008) and subsequent publica-

tions, the notation w = G was used.

It was shown by Kudryashov (2010) that searching for particular solutions of an ODE

with the G′/G-expansion method based on the differential constraints (10.3.4.4)–(10.3.4.5)

with c21 + 4c0 > 0 leads to the same results as the tanh method (see Section 10.2.2). For

c21 + 4c0 < 0, the G′/G-expansion method is equivalent to the tan method.

For specific examples of how to use theG′/G-expansion method, see the list of literature

cited at end of this section.

◮ Simplest equation method.

The simplest equation method, devised by Kudryashov (2005) for seeking particular solu-

tions, is equivalent to using two differential constraints. In his papers, Kudryashov chose
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the differential constraint (10.3.4.2) in one of the following three forms:

wx + w2 − c1w − c2 = 0, (10.3.4.6)

(w′
x)

2 − 4w3 − c1w2 − c2w − c3 = 0, (10.3.4.7)

(w′
x)

2 − w4 − c1w3 − c2w2 − c3w − c4 = 0. (10.3.4.8)

The differential constraint (10.3.4.1) was chosen from the class of functions

y =
K∑

k=0

b1kw
k +w′

x

L∑

l=0

b2lw
l +

M∑

m=1

b3m

(
w′
x

w

)m
. (10.3.4.9)

For the differential constraint (10.3.4.6), it was assumed that K = M and b2l = 0 (l =
1, . . . , L) in (10.3.4.9). This resulted in a number of new exact solutions to nonlinear

second-, third-, and fourth-order equations.

Remark 10.17. All equations (10.3.4.6)–(10.3.4.8) are reduced to separable equations, whose

solutions are expressed in terms of elementary functions or/and integrals of elementary functions.

A solution to (10.3.4.7) can be expressed through the Weierstrass function ℘ = ℘(z, g2, g3). A

solution to equation (10.3.4.8) is expressed through the Jacobi elliptic function.

For specific examples of how to use the simplest equation method, see the articles cited

below.

⊙ Literature for Section 10.3: N. N. Yanenko (1994), V. A. Galaktionov (1994), P. J. Olver and E. M.Vorob’ev

(1996), V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, and A. A. Rodionov (1998), O. V. Kaptsov and

I. V. Verevkin (2003), A. D. Polyanin and V. F. Zaitsev (2004, 2012), A. D. Polyanin, V. F. Zaitsev, and

A. I. Zhurov (2005), N. A. Kudryashov (2005, 2008, 2010a, 2010b, 2014), A. Bekir (2008), N. A. Kudryashov

and N. V. Loguinova (2008), M. L. Wang, X. Li, J. Zhang (2008), J. Zhang, X. Wei, Y. Lu (2008), H. Zhang

(2009), E. M. E. Zayed (2009), E. M. E. Zayed and K. A. Gepreel (2009), N. K. Vitanov and Z. I. Dimitrova

(2010), N. K. Vitanov, Z. I. Dimitrova, and H. Kantz (2010), A. D. Polyanin (2016).
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Chapter 11

Group Methods for ODEs

11.1 Lie Group Method. Point Transformations

11.1.1 Local One-Parameter Lie Group of Transformations.
Invariance Condition

◮ Preliminary remarks.

The Lie group method for ordinary differential equations presents a routine procedure that

allows obtaining the following:

(i) transformations under which differential equations are invariant (such transforma-

tions bring the given equation to itself);

(ii) new variables (dependent and independent) in which differential equations become

considerably simpler (so that the resulting equation can be completely integrated or has a

lower order than the original equation).

Remark 11.1. The Lie group method for ordinary differential equations may be treated as a

significant extension of the method outlined in Section 9.3.

◮ Local one-parameter Lie group of transformations. Infinitesimal operator.

Here, we examine transformations of the ordinary differential equation

y(n)x = F
(
x, y, . . . , y(n−1)

x

)
. (11.1.1.1)

Consider the set of transformations

Tε =

{
x̄ = ϕ(x, y, ε), x̄|ε=0 = x,

ȳ = ψ(x, y, ε), ȳ|ε=0 = y,
(11.1.1.2)

where ϕ, ψ are smooth functions of their arguments and ε is a real parameter. The set Tε

is called a continuous one-parameter Lie group of point transformations if, for any ε1 and

ε2, the following relation holds:

Tε1 ◦ Tε1 = Tε1+ε2 , (11.1.1.3)

i.e., consecutive application of two transformations of the form (11.1.1.1) with parameters

ε1 and ε2 is equivalent to a single transformation of the same form with parameter ε1 + ε2.

313
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In what follows, we consider local continuous one-parameter Lie groups of point trans-

formations (briefly called point groups) corresponding to an infinitesimal transformation

(11.1.1.2) for ε→ 0. Taylor’s expansion of x̄ and ȳ in (11.1.1.2) with respect to the param-

eter ε about ε = 0 yields:

x̄ ≃ x+ ξ(x, y)ε, ȳ ≃ y + η(x, y)ε, (11.1.1.4)

where

ξ(x, y) =
∂ϕ(x, y, ε)

∂ε

∣∣∣
ε=0

, η(x, y) =
∂ψ(x, y, ε)

∂ε

∣∣∣
ε=0

.

At each point (x, y), the vector (ξ, η) is tangent to the curve described by the transformed

points (x̄, ȳ).

S. LIE THEOREM. Let the functions ϕ and ψ satisfy the group property (11.1.1.3)

and allow the expansion (11.1.1.4). Then, these are solutions to the system of first-order

ordinary differential equations (known as the Lie equations)

dϕ

dε
= ξ(ϕ,ψ),

dψ

dε
= η(ϕ,ψ) (11.1.1.5)

subject to the initial conditions (11.1.1.2). Conversely, for any smooth vector field (ξ, η), a

solution to the Cauchy problem (11.1.1.5), (11.1.1.2)), which exists and is unique, satisfies

the group property (11.1.1.3).

The first-order linear differential operator

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
(11.1.1.6)

corresponding to the infinitesimal transformation (11.1.1.4), is called the infinitesimal op-

erator (or infinitesimal generator) of the group.

By definition, the universal invariant (briefly, invariant) of the group (11.1.1.2) and the

operator (11.1.1.6) is a function I0(x, y), satisfying the condition

I0(x̄, ȳ) = I0(x, y).

Taylor’s expansion with respect to the small parameter ε yields the following linear partial

differential equation for I0:

XI0 = ξ(x, y)
∂I0
∂x

+ η(x, y)
∂I0
∂y

= 0. (11.1.1.7)

◮ Prolonged operator. Invariance condition andmth-order differential invariant.

Equation (11.1.1.1) will be treated as a relation for n+ 2 variables x, y, y′x, . . . , y
(n)
x with

the differential constraints

y(k+1)
x =

dy(k)

dx
. (11.1.1.8)

The space of these n + 2 variables is called the space of nth prolongation; and in order to

work with differential equations, one has to define the action of operator (11.1.1.6) on the



“K16435’ — 2017/9/28 — 15:05 — #341

11.1. Lie Group Method. Point Transformations 315

“new” variables y′x, . . . , y
(n)
x , taking into account the differential constraints (11.1.1.8). For

example, let us calculate the infinitesimal transformation of the first derivative. We have

dȳ

dx̄
=
Dx(y + ηε)

Dx(x+ ξε)
≃ y′x + (ηx + ηyy

′
x)ε

1 + (ξx + ξyy′x)ε
,

Dx =
∂

∂x
+ y′x

∂

∂y
+ y′′xx

∂

∂y′x
+ · · · ,

where Dx is called the operator of total derivative. Expanding the right-hand side into a

power series with respect to the parameter ε and preserving the first-order terms, we obtain

ȳ′x̄ ≃ y′x + ζ1(x, y, y
′
x)ε,

where

ζ1 = ηx + (ηy − ξx)y′x − ξy(y′x)2 = Dx(η) − y′xDx(ξ).

The action of the group on higher-order derivatives is determined by the recurrence for-

mula:

ζk+1 = Dx(ζk)− y(k+1)
x Dx(ξ).

To a prolonged group there corresponds a prolonged operator:

X
n
= ξ(x, y)

∂

∂x
+ η(x, y)

∂

∂y
+

n∑

k=1

ζk
(
x, y, y′, . . . , y(k)x

) ∂

∂y
(k)
x

. (11.1.1.9)

The ordinary differential equation (11.1.1.1) admits the group (11.1.1.2) if

X
n

[
y(n)x − F

(
x, y, y′x, . . . , y

(n−1)
x

)]∣∣
y
(n)
x =F

= 0. (11.1.1.10)

Relation (11.1.1.10) is called the invariance condition.

Remark 11.2. The invariant I0, which is a solution of equation (11.1.1.7), also satisfies the

equation X
n
I0 = 0.

By definition, an mth-order differential invariant of the operator X is a function Im =

Im
(
x, y, y′x, . . . , y

(m)
x

)
, satisfying the linear partial differential equation X

m
Im = 0 with the

operator X
m

defined by (11.1.1.9).

◮ Inverse problem.

In solving different modeling problems, it is required to construct a model equation that

satisfies certain a priori conditions, for example, symmetry laws. Two different statements

of the problem are possible here.

1◦. Suppose there is a preset symmetry defined by the operator (11.1.1.6), with the coordi-

nates ξ(x, y) and η(x, y) defined explicitly as specific functions. It is required to compute

a universal invariant I0(x, y) and a first differential invariant I1(x, y, y
′
x) of the operator

(11.1.1.6). The class of nth-order equations that admit the operator (11.1.1.6) is given by

the formula

Φ

(
I0, I1,

dI1
dI0

, . . . ,
dn−1I1
dn−1I0

)
= 0.

Thus, problem 1◦ is always solvable as long as two first invariants of the operator are

known, with this being also valid for nonpoint operators.
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2◦. Suppose there is a preset symmetry defined by the class of operators (11.1.1.6), with

the coordinates ξ(x, y) and η(x, y) being arbitrary functions. A solution to the inverse

problem is a class of equations of a given order that admit an arbitrary operator of the form

(11.1.1.6). The universal method is the use of the similarity principle of one-parameter Lie

groups of point transformations. Since any autonomous equation

y(n)x = F
(
y, y′x, . . . , y

(n−1)
x

)

admits translations along the x-axis (i.e., operator X = ∂x), the arbitrary invertible point

transformation x = f(t, u), y = g(t, u) produces a general class on nth-order equations

with two-functional arbitrariness that admit a certain point operator. See Section 11.1.2 for

examples.

11.1.2 Group Analysis of Second-Order Equations

◮ Structure of an admissible operator for second-order equations.

For second-order nonlinear equations

y′′xx = F (x, y, y′x), (11.1.2.1)

the invariance condition (11.1.1.10) is written in the form

ηxx + (2ηxy − ξxx)y′x + (ηyy − 2ξxy)(y
′
x)

2 − ξyy(y′x)3

= (2ξx − ηy + 3ξyy
′
x)F + ξFx + ηFy + [ηx + (ηy − ξx)y′x − ξy(y′x)2]Fy′x ,

where F =F (x, y, y′x). This condition is in fact a second-order partial differential equation

for two unknown functions ξ(x, y) and η(x, y). Since the unknown functions do not depend

on the derivative y′x, this equation can be represented (after F has been expanded in a power

series with respect to y′x, unless it is already a polynomial) in the form

∞∑

k=0

Φk(y
′
x)

k = 0, (11.1.2.2)

with the Φk independent of y′x. In order to ensure that condition (10) holds identically, one

should set Φk = 0, k = 0, 1, . . . Thus, the invariance condition for a second-order equation

can be “split” and represented as a system of equations (whose number can generally be

infinite).

◮ Illustrative examples.

Example 11.1. If F = F (x, y), i.e., the right-hand side of equation (11.1.2.1) does not depend

on y′x, then the determining equation can be “split” and represented as the system:

ξyy = 0,

ηyy − 2ξxy = 0,

2ηxy − ξxx − 3F (x, y)ξy = 0,

ηxx + (ηy − 2ξx)F (x, y) − Fx(x, y)ξ − Fy(x, y)η = 0.

From the first two equations we find that

ξ = a(x)y + b(x), η = a′(x)y2 + c(x)y + d(x),
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where a(x), b(x), c(x), and d(x) are arbitrary functions. Substituting these expressions into the

third and the fourth equations, we get

3a′′y + 2c′ − b′′ − 3F (x, y)a = 0,

a′′′y2 + c′′y + d′′ + (c− 2b′)F − (ay + b)Fx − (a′y2 + cy + d)Fy = 0.
(11.1.2.3)

In what follows, it is assumed that the function F (x, y) is nonlinear with respect to the second

argument. Then from the first equation in (11.1.2.3), we find that a = 0 and c = 1
2 b

′ + α, where α
is an arbitrary constant. The second equation in (11.1.2.3) becomes

1
2 b

′′′y + d′′ +
(
α− 3

2 b
′)F − bFx −

[(
1
2 b

′ + α
)
y + d

]
Fy = 0. (11.1.2.4)

Equation (11.1.2.4) enables us to solve two different problems.

1◦. If the function F (x, y) is given, then, splitting equation (11.1.2.4) with respect to powers of y
(the unknown functions b and d are independent of y), we obtain a new system, from which b, d,

and α can be found; i.e., we ultimately obtain an admissible operator.

2◦. Assuming that the functions b, d and the constant α are known but arbitrary, one can regard

relation (11.1.2.4) as an equation for the unknown function F (x, y). Solving this equation, we

obtain a class of equations admitting a point operator. Thus, problem 2◦ is stated as an inverse

problem.

Example 11.2. Let F (x, y) = Axnym, i.e., we are dealing with the Emden–Fowler equation

y′′xx = Axnym. Then equation (11.1.2.4) becomes

1
2 b

′′′y + d′′ +
(
α− 3

2 b
′)Axnym − bnAxn−1ym −

[(
1
2 b

′ + α
)
y + d

]
mAxnym−1 = 0.

This relation must be satisfied identically by any function y = y(x), and therefore, the coefficients

of different powers of y must be equal to zero. As a result, we obtain a new system whose structure

essentially depends on the value of m.

1◦. It was assumed above that F (x, y) is nonlinear in its second argument, and therefore, m 6= 0
and m 6= 1. Let m 6= 2. Then the system has the form:

d′′ = 0,

b′′′ = 0,

d = 0,[
α(1−m)− 1

2 (3−m)b′
]
x− nb = 0.

It follows that d = 0 and b(x) = b2x
2 + b1x+ b0, and the last equation of the system can be written

in the form

(m+ n+ 3)b2x
2 +

[
1
2 (m+ 2n+ 3)b1 + α(m− 1)

]
x+ nb0 = 0. (11.1.2.5)

To ensure relation (11.1.2.5), we equate all coefficients of this quadratic trinomial to zero to obtain

(m+ n+ 3)b2 = 0, 1
2 (m+ 2n+ 3)b1 + α(m− 1) = 0, nb0 = 0. (11.1.2.6)

Analysis of system (11.1.2.6) yields solutions of the determining system corresponding to three

different operators:

X1 = (m− 1)x∂x − (n+ 2)y∂y if n and m are arbitrary,

X2 = ∂x if n = 0,

X3 = x2∂x + xy∂y if m+ n+ 3 = 0.

2◦. Let m = 2. Then equation (11.1.2.4) becomes

d′′ +
(
1
2 b

′′′ − 2Adxn
)
y −

[(
5
2 b

′ + α
)
x+ nb

]
Axn−1y2 = 0.



“K16435’ — 2017/9/28 — 15:05 — #344

318 GROUP METHODS FOR ODES

Equating the term d′′ and the coefficient of y in parentheses to zero, we get

d(x) = d1x+ d0,

b(x) =
4ad1x

n+4

(n+ 2)(n+ 3)(n+ 4)
+

4ad0x
n+3

(n+ 1)(n+ 2)(n+ 3)
+ b2x

2 + b1x+ b0,

where n 6= −1,−2,−3,−4. The expression in square brackets (the coefficient of y2) can be split

with respect to powers of x and we obtain an algebraic system which, to within nonzero coefficients,

has the form:
(7n+ 20)d1 = 0,

(7n+ 15)d0 = 0,

(n+ 5)b2 = 0,

(2n+ 5)b1 + 2α = 0,

nb0 = 0.

The last three equations coincide with the corresponding equations of system (11.1.2.6), whose

solutions are already known. The first two equations yield two cases of prolongation of the admis-

sible group:

X1 = 343Ax8/7∂x + 4
(
49Ax1/7y − 3x

)
∂y if n = − 20

7 ,

X2 = 343Ax6/7∂x + 3
(
49Ax−1/7y + 4

)
∂y if n = − 15

7 .

Example 11.3. Let us look at the inverse problem of Item 2◦ in Example 11.1. The solution of

equation (11.1.2.4) is

F = b−3/2E

{
Φ(u) +

∫ [
1

2
bb′′′(u+ V ) + b1/2d′′E−1

]
dx

}
, (11.1.2.7)

where b(x) and d(x) are arbitrary functions, Φ is an arbitrary function of its argument,

u = b−1/2E−1y − V, V =

∫
b−3/2dE−1 dx, E = exp

(
α

∫
dx

b(x)

)
,

and α is an arbitrary constant. The integral in formula (11.1.2.7) can be expressed in terms of V
and E as

F = b−3/2E
[
Φ(u) + α2V

]
+

2bb′′ − (b′)2

4b2
y +

2bd′ − b′d+ 2αd

2b2
.

A similar method is always used to solve the inverse problem for the equation of arbitrary (nth)

order

y(n)x = F
(
x, y, y′x, . . . , y

(n−2)
x

)
,

provided that the right-hand side F does not contain the derivative y
(n−1)
x .

Example 11.4. Consider the problem from the previous example for the general second-order

equation

y′′xx = F (x, y, y′x). (11.1.2.8)

Obviously, the most general class of equations admitting the translation group along the x̃-axis is a

subclass of autonomous equations from the class (11.1.2.8); specifically,

ỹ′′x̃x̃ = F (ỹ, ỹ′x̃). (11.1.2.9)

The translation operator X = ∂x̃ can be converted into any operator of the form X = ξ(x, y) ∂x +
η(x, y) ∂y by the point transformation

x̃ = ϕ(x, y), ỹ = ψ(x, y), ϕxψy − ϕyψx 6= 0. (11.1.2.10)
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It is clear that the substitution of (11.1.2.10) into equation (11.1.2.9) results in a subclass of all

equations (11.1.2.8) admitting a point operator:

(ϕxψy − ψxϕy)y
′′
xx + (ϕyψyy − ψyϕyy)(y

′
x)

3 + (ϕxψyy − ψxϕyy+

+ 2ϕyψxy − 2ψyϕxy)(y
′
x)

2 + (ϕyψxx − ψyϕxx + 2ϕxψxy − 2ψxϕxy)y
′
x+

+ ϕxψxx − ψxϕxx = (ϕx + ϕyy
′
x)

3F

(
ψ,
ψx + ψyy

′
x

ϕx + ϕyy′x

)
.

11.1.3 Utilization of Local Groups for Reducing the Order
of Equations and Their Integration

Suppose that an ordinary differential equation (11.1.1.1) admits an infinitesimal operator X
of the form (11.1.1.6). Then the order of the equation can be reduced by one. Below we

describe two methods for reducing the order of ODEs.

◮ First method for reducing the order of equations.

The transformation

t = f(x, y), u = g(x, y), (11.1.3.1)

with f and g (g 6≡ 0) being arbitrary particular solutions of the first-order linear partial

differential equations

ξ(x, y)
∂f

∂x
+ η(x, y)

∂f

∂y
= k,

ξ(x, y)
∂g

∂x
+ η(x, y)

∂g

∂y
= 0,

(11.1.3.2)

reduces equation (11.1.1.1) to an autonomous equation (the constant k 6= 0 can be chosen

arbitrarily). The function g = g(x, y) is a universal invariant of the operator X.

Suppose that the general solution of the characteristic equation

dx

ξ(x, y)
=

dy

η(x, y)

has the form

U(x, y) = C,

where C is an arbitrary constant. Then the general solutions of equations (11.1.3.2) are

given by (see A. D. Polyanin, V. F. Zaitsev, and A. Moussiaux, 2002):

f = k

∫
dx

ξ(x,U)
+ Ψ1(U),

g = Ψ2(U), U = U(x, y),

where Ψ1(U) and Ψ2(U) are arbitrary functions, ξ
(
x,U(x, y)

)
≡ ξ(x, y), and U in the

integral is regarded as a parameter.

Example 11.5. The Emden–Fowler equation y′′xx = Ax−15/7y2 admits the operator (cf. the

operator X2 in Item 2◦ of Example 11.2):

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
, where ξ(x, y) = 343Ax6/7, η(x, y) = 147Ax−1/7y + 12.
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Equations (11.1.3.2) for k = 49A admit the particular solutions

f = x1/7, g = x−3/7y +
6

49A
x−2/7.

Solving (11.1.3.1) for x and y, we obtain the transformation

x = t7, y = t3u− 6

49A
t ,

which reduces the original equation to the autonomous equation

u′′tt = 49Au2,

which can easily be integrated by quadrature.

◮ Second method for reducing the order of equations.

Suppose that we know two invariants of the admissible operator X:

I0 = I0(x, y) (universal invariant), (11.1.3.3)

I1 = I1(x, y, y
′
x) (first differential invariant). (11.1.3.4)

Then the second differential invariant can be found by differentiation,

I2(x, y, y
′
x, y

′′
xx) =

dI1
dI0

, (11.1.3.5)

where dIm = (DxIm) dx. Using (11.1.3.4)–(11.1.3.5), let us eliminate the derivatives y′x
and y′′xx from the original equation and take into account relation (11.1.3.3). Thus we obtain

the first-order equation:
dI1
dI0

= G(I0, I1).

Example 11.6. The Emden–Fowler equation y′′xx = Ax−6y3 admits an operator whose first

prolongation has the form:

X
1
= x2∂x + xy∂y + (y − xy′)∂y′ .

This operator admits the invariants:

I0 = y/x, I1 = xy′x − y, (11.1.3.6)

which form an integral basis of the first-order linear partial differential equation

x2
∂I

∂x
+ xy

∂I

∂y
+ (y − xy′) ∂I

∂y′
= 0.

Using (11.1.3.5) and (11.1.3.6), we find the second invariant:

I2 =
dI1
dI0

=
x3y′′xx
xy′x − y

. (11.1.3.7)

Let us express the unknown function and its derivatives from (11.1.3.6)–(11.1.3.7) to obtain

y = ux, y′x =
ux+ w

x
, y′′xx =

ww′
u

x3
, where u = I0, w = I1.

Substituting these expressions into the original equation, we see that the variable x is canceled and

the equation takes the form

ww′
u = Au3,

i.e., it becomes a first-order separable equation.
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11.1.4 Seeking Particular Solutions

Particular solutions can be sought using Marius Sophus Lie’s method, since the admitted

group converts a solution of the equation into another solution. Therefore, a particular

solution that is not invariant under this group generates a one-parameter family of particular

solutions. Under the same condition, a particular solution to a first-order equation generates

the general solution as a function of the group parameter a, which can be treated as an

arbitrary constant.

Example 11.7. Consider the equation

y′′xx = Ax−15/7y2. (11.1.4.1)

Its general solution is written in parametric form as

x = αC7
1 τ

7, y = βC1τ(τ
2℘∓ 1), A = ± 6

49
α1/7β−1, (11.1.4.2)

where ℘ is the Weierstrass function (see also 14.3.1.20). Equation (11.1.4.1) can be integrated by

the classical group method, since it admits a two-dimensional point Lie algebra with operators

X1 = 7x∂x + y∂y, X2 = 343x6/7∂x + 3
(
49Ax−1/7y + 4

)
∂y.

The finite-group of transformations for the operator X2 is given by

x̃=
(
49Aa+x1/7

)7
, ỹ=

492A2
(
49Ay + 6x1/7

)

x3/7

(
a+

x1/7

49A

)3

−6

(
a+

x1/7

49A

)
. (11.1.4.3)

The Emden–Fowler equation, with (11.1.4.1) being its special case, has a particular solution in

the form of a power-law function:

y0 = − 6

49A
x1/7. (11.1.4.4)

Solution (11.1.4.4) is invariant under the group determined by the operator X1. However, it turns

out that the solution is also invariant under the transformations (11.1.4.3). Consequently, solution

(11.1.4.4) is unsuitable for multiplication.

Example 11.8. Note that equation (11.1.4.1) has the trivial (zero) solution y = 0. It is also

invariant under the operator X1, but not under the operator X2. This allows us to construct a one-

parameter family of particular solutions to equation (11.1.4.1) by applying transformation (11.1.4.3)

to y:

y =
6

49A

(
x3/7

(
49AC + x1/7

)2 − x
1/7

)
. (11.1.4.5)

The group parameter a has been replaced with the arbitrary constant C. It is noteworthy that the

family of algebraic functions (11.1.4.5) appears in the general solution (11.1.4.2), which is not

obvious.

Thus, there is a simple algorithm for seeking families of particular solutions to broad

classes of ordinary differential equations admitting a certain operator. As initial solutions,

it is the easiest to use simple solutions such as constants, which are easy to verify.

If a differential equation has the zero solution (y = 0) and admits the operator

X = ξ(x, y)∂x + η(x, y)∂y ,

the condition η 6= 0 must hold for the solution to be suitable for multiplication to obtain a

one-parameter family of particular solutions.
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Remark 11.3. Unfortunately, the above condition is not sufficient for the construction of a non-

trivial family of solutions. Indeed, any equation that does not involve the variable y explicitly admits

the operator X = ∂y . However, the zero solution (if any) generates the family y = C, which is too

obvious and does not make much sense.

Example 11.9. Consider the equation

(y − x)y′′xx − (y′x)
2 + (xy − x2 − 2)y′x − xy = 0.

It has the trivial solution and admits the operator

X = (y − x)−1∂y.

The finite group of transformations for the operator X has the form

x̃ = x, ỹ = x−
√
(y − x)2 + a.

On applying this transformation to y, we arrive at the nontrivial family of particular solutions

y = x−
√
x2 + C.

⊙ Literature for Section 11.1: G. W. Bluman and J. D. Cole (1974), L. V. Ovsiannikov (1982), J. M. Hill

(1982), P. J. Olver (1986), G. W. Bluman and S. Kumei (1989), H. Stephani (1989), N. H. Ibragimov (1994),

A. D. Polyanin and V. F. Zaitsev (2003), V. F. Zaitsev and L. V. Linchuk (2009, 2014).

11.2 Contact and Bäcklund Transformations. Formal

Operators. Factorization Principle

11.2.1 Contact Transformations

◮ Continuous one-parameter Lie group of tangential transformations.

The set of transformations

Tε =





x̄ = ϕ(x, y, y′x, ε), x̄|ε=0 = x,

ȳ = ψ(x, y, y′x, ε), ȳ|ε=0 = y,

ȳ′x̄ = χ(x, y, y′x, ε), ȳ′x̄|ε=0 = y′x

(11.2.1.1)

(here, ϕ, ψ, χ are smooth functions of their arguments and ε is a real parameter) is called a

continuous one-parameter Lie group of tangential transformations (or simply, a tangential

or contact group) if Tε1 ◦ Tε2 = Tε1+ε2 , i.e., if successive application of transformations

(11.2.1.1) with parameters ε1 and ε2 is equivalent to the same transformation with parame-

ter ε1 + ε2. The transformed derivative ȳ′x̄ depends only on the first derivative y′x and does

not depend on the second derivative. Thus, the functions ϕ and ψ in (11.2.1.1) cannot be

arbitrary but are related by (see Section 1.9.1):

∂ψ

∂y′x

( ∂ϕ
∂x

+ y′x
∂ϕ

∂y

)
− ∂ϕ

∂y′x

( ∂ψ
∂x

+ y′x
∂ψ

∂y

)
= 0,

where the function χ is defined by

χ =
∂ψ

∂y′x

/ ∂ϕ

∂y′x
.
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◮ Infinitesimal operator. Invariance condition.

Proceeding as in Section 11.1.1, we consider the Taylor expansions of x̄, ȳ, and ȳ′x̄ in

(11.2.1.1) with respect to the parameter ε about ε=0, preserving only the first-order terms.

We have

x̄ ≃ x+ ξ(x, y, y′x)ε, ȳ ≃ y + η(x, y, y′x)ε, ȳ′x̄ ≃ y′x + ζ(x, y, y′x)ε,

where

ξ(x, y, y′x) =
∂ϕ(x, y, y′x, ε)

∂ε

∣∣∣
ε=0

, η(x, y, y′x) =
∂ψ(x, y, y′x, ε)

∂ε

∣∣∣
ε=0

,

ζ(x, y, y′x) =
∂χ(x, y, y′x, ε)

∂ε

∣∣∣
ε=0

.

On the other hand,

ȳ′x̄ ≡
dȳ

dx̄
=
Dx(y + ηε)

Dx(x+ ξε)
≃ y′x + (ηx + ηyy

′
x + ηy′xy

′′
xx)ε

1 + (ξx + ξyy′x + ξy′xy
′′
xx)ε

. (11.2.1.2)

Expanding (11.2.1.2) with respect to ε and requiring that ζ be independent of y′′xx, we find

that the three functions ξ, η, and ζ are expressed in terms of a single function W (x, y, y′x)
as follows:

ξ = − ∂W
∂y′x

, η =W − y′x
∂W

∂y′x
, ζ =

∂W

∂x
+ y′x

∂W

∂y
. (11.2.1.3)

To an infinitesimal tangential transformation (11.2.1.1) there corresponds the infinitesimal

operator:

X = ξ(x, y, y′x)
∂

∂x
+ η(x, y, y′x)

∂

∂y
+ ζ(x, y, y′x)

∂

∂y′x
(11.2.1.4)

whose coordinates satisfy relations (11.2.1.3).

The action of the group on higher derivatives is determined by the recurrence formula:

ζk+1 = Dx(ζk)− y(k+1)
x Dx(ξ),

where ζ1 = ζ . The invariance condition and the algorithm of finding tangential opera-

tors (11.2.1.4) admitted by ordinary differential equations are similar to those for point

operators. The only difference is that the coordinates of the tangential operator depend on

the first derivative; therefore, the determining equation can be split and reduced to a system

only in the case of equations whose order is greater or equal to three.

Remark 11.4. There are no tangential transformations of finite order k > 1 other than prolonged

point transformations and contact transformations [these transformations are described by formulas

similar to (11.2.1.1) and, in addition to y′x, ȳ′x̄, contain higher derivatives of up to order k inclusive].

11.2.2 Bäcklund Transformations. Formal Operators and Nonlocal
Variables

◮ Lie–Bäcklund groups. Operator in canonical form.

1◦. If the coordinates of the infinitesimal operator are allowed to depend on the derivatives

of arbitrary (up to infinity) orders, we obtain Lie–Bäcklund groups (of tangential transfor-

mations of infinite order). However, on the manifold determined by an ordinary differential
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equation, all higher derivatives are expressed through finitely many lower derivatives, as

dictated by the structure of the equation itself and the differential relations obtained from

the equation. The substitution of the right-hand side of equation (11.2.1.1) into an infi-

nite series with derivatives usually results in very cumbersome formulas hardly suitable for

practical calculations. For this reason, the Lie–Bäcklund groups are widely used only for

the investigation of partial differential equations, whereas in the case of ordinary differen-

tial equations, a more effective approach is that based on the canonical form of an operator

and the notion of a formal operator.

2◦. The canonical form X̃ is defined by the relation

X̃ = X− ξ(x, y)Dx = [η(x, y)− ξ(x, y)y′x]
∂

∂y
,

where X = ξ(x, y) ∂
∂x + η(x, y) ∂

∂y is the infinitesimal operator of the group [see formula

(11.1.1.6) in Section 11.1.1], and Dx is the operator of total derivative. The operators X
and X̃ are equivalent in the sense that if one of them is admissible for the equation, then

the other is also admissible (the operator of total derivative is admissible for any ordinary

differential equation). The function I0(x, y)≡x is an invariant of any operator in canonical

form.

The action of the group on higher order derivatives for an operator in canonical form is

determined by the simple recurrence formula ζ̃k+1 =Dx(ζ̃k). The order of an equation that

admits an operator in canonical form can be reduced on the basis of the algorithm described

in Section 11.1.3 (see Paragraph “Second method”).

◮ Formal operators and nonlocal variables.

By definition, a formal operator is an infinitesimal operator of the form

X = Φ ∂y, (11.2.2.1)

where the function Φ depends on x, y, y′x, . . . , y
(k)
x (with k smaller than the order of the

equation under investigation) and auxiliary variables whose definition involves the symbol

of indefinite integral, for instance,
∫
ζ(x, y, y′x) dx

(the integration is with respect to the variable x which is involved both explicitly and im-

plicitly, through the dependence of y on x). Such auxiliary variables are called nonlocal,

in contrast to the coordinates of the prolonged space defined pointwise. The nonlocal vari-

ables depend on derivatives of arbitrarily high order, for instance,

∫
y dx =

∞∑

m=0

(−1)m xm+1

(m+ 1)!
y(m)
x .

This formula is obtained by successive integration by parts of its left-hand side. Thus, a

nonlocal variable can be represented as an infinite formal series; and this enables us to

express the coordinates of the Lie–Bäcklund operator in concise form.
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A formal operator is a far-reaching generalization of an operator in canonical form. The

function I0(x, y) ≡ x is an invariant of the formal operator (11.2.2.1) for any Φ.

When solving the direct problem, one usually prescribes the nonlocal operator in the

general form

X =
[
η1 exp

(∫
ζ dx

)
+ η2

]
∂y or X =

(
η1

∫
ζ dx+ η2

)
∂y, (11.2.2.2)

and then, in order to find an admissible operator, one uses a search algorithm similar to

that described in Section 11.1.2. The coordinates of the prolonged operator are found by

the formulas ζk = Dx(ζk−1), where ζ0 = Φ. In contrast to the method of finding a point

operator, in the present case, there are three unknown functions (η1, η2, ζ); and the splitting

procedure to obtain a system can be realized with respect to all “independent” variables, in

particular, the nonlocal variables.

Suppose that the differential equation

y(n)x = F
(
x, y, y′x, . . . , y

(n−1)
x

)
(11.2.2.3)

can be written in new variables x = I0, z = I1(x, y, y
′
x), z

′
x, z′′xx, . . . , z

(n−1)
x , where I0 and

I1 are invariants of an admissible operator of the form (11.2.2.1). Then the coordinate Φ of

this operator satisfies the equation

∂I1
∂y

Φ+
∂I1
∂y′x

Dx[Φ] = 0,

which is an analogue of a linear ordinary differential equation for a function of several

variables, since it involves the total derivative of the unknown function (exact differential

equation). Its solution has the form:

Φ = exp
(
−
∫

∂I1/∂y

∂I1/∂y′x
dx
)
, (11.2.2.4)

where the integral is taken with respect to x involved explicitly and implicitly (through

the dependence of y, y′x, . . . on x), which means that this representation of an operator

through a nonlocal variable is most universal. The function (11.2.2.4) generates a nonlocal

exponential operator of the form (11.2.2.1) [the class of nonlocal exponential operators is

specified by the first expression in (11.2.2.2) with η2 ≡ 0].

THEOREM 1. Any first-order equation

y′x = F (x, y) (11.2.2.5)

admits a unique formal operator (up to identical transformations on the manifold (11.2.2.5))

with coordinate explicitly independent of derivatives

X = exp

(∫
∂F

∂y
dx

)
∂y. (11.2.2.6)

Indeed, the invariance condition for equation (11.2.2.5) is

X
1

[
y′x − F (x, y)

]∣∣∣
[F ]

= 0.
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It follows that

Dx[Φ]−
∂F

∂y
Φ = 0,

and hence,

Φ = exp

(∫
∂F

∂y
dx

)
.

Remark 11.5. It follows from Theorem 1 that equation (11.2.2.5) is integrable by quadrature if

∂F

∂y
= DxΦ(x, y)

∣∣∣
y′

x=F (x,y)
, (11.2.2.7)

where Φ(x, y) is some function. Indeed, if condition (11.2.2.7) holds, (11.2.2.6) is a point operator.

Example 11.10. The equation

y′′xx = 0

admits two Lie–Bäcklund operators:

X1 = ξ(x, y, y′x)Dx, X2 =

∞∑

m=0

Dm
x

[
yg(y − xy′x, y′x) + h(y − xy′x, y′x)

] ∂

∂y
(m)
x

,

where ξ, g, h are arbitrary functions of their variables. The first operator is trivial (the operator of

total derivative is admissible for any differential equation), while the second operator determines

the maximal group of contact transformations admitted by the equation under consideration.

◮ Construction methods for Lie–Bäcklund operators admitted by ODEs.

A Lie–Bäcklund operator admitted by an ordinary differential equation can by found by

three methods:

(i) in the form of an infinite formal series;

(ii) by passing to an equivalent system of ordinary first-order differential equations:

y′1 = y2, y′2 = y3, . . . , y′n = F (x, y1, y2, . . . , yn),

and finding an admissible point group;

(iii) by its representation as a formal operator whose coordinates depend on nonlocal

variables (the general form of the operator is chosen by the investigator).

In all cases, the search algorithm amounts to solving the determining system which is con-

structed by a procedure similar to that of Section 11.1. From the standpoint of simplicity

and the possibility of integrating equations, the third method seems to be the most effective

if one takes into account that an equation admitting an operator can be written in terms

of new variables—invariants of the admissible operator—as a new ordinary differential

equation whose order is by one less than that of the original equation.

11.2.3 Factorization Principles

◮ Factorization principle: a special case.

The use of formal operators enables us to formulate universal principles for reducing the

order of an equation, independently of the specific structure of the operator (it can be a

point operator, a tangential or nonlocal operator, or a Lie–Bäcklund operator).
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THEOREM 1. An arbitrary nth-order differential equation (11.2.2.3) can be factorized

to a system of special form

z(n−1)
x = G

(
x, z, z′x, . . . , z

(n−2)
x

)
,

z = H(x, y, y′x),
(11.2.3.1)

if and only if equation (11.2.2.3) admits the nonlocal exponential operator:

X = exp
(
−
∫

Hy

Hy′x

dx
) ∂

∂y
. (11.2.3.2)

The function H(x, y, y′x) is the first differential invariant of the operator (11.2.3.2).

Therefore, having found an admissible operator (11.2.3.2) of the form

X = Φ
∂

∂y
, Φ ≡ exp

[∫
Q(x, y, y′x) dx

]
, (11.2.3.3)

we can calculate H by solving the first-order linear partial differential equation

Hy +QHy′x = 0.

The function Q(x, y, y′x) is found as a solution of the determining system obtained by

“splitting” the invariance condition for operator (11.2.3.3):

X
n

[
y(n)x − F

(
x, y, y′x, . . . , y

(n−1)
x

)]∣∣
y
(n)
x =F

= 0,

where

X
n
=

n∑

k=0

Φk
∂

∂y
(k)
x

, Φk = DxΦk−1, Φ0 = Φ,

Dx =
∂

∂x
+ y′x

∂

∂y
+ y′′xx

∂

∂y′x
+ · · · .

Theorem 1 generalizes the classical Lie algorithm, which is restricted to the case of

unconditional solvability of the second equation of system (11.2.3.1). On the other hand,

the introduction of the factor system (11.2.3.1) allows for two more cases, since the first

equation is independent of y. These cases are the following:

1◦. The first equation of system (11.2.3.1) allows for the reduction of the order or is

solvable.

2◦. The first equation of system (11.2.3.1) has some special properties, for instance,

admits a fundamental system of solutions.

Example 11.11. The equation

y′′xx = f(x)y + g′x(x)y
−1 − [g(x)]2y−3 (11.2.3.4)

for arbitrary functions f(x) and g(x) is the only equation of the form (its uniqueness is to within a

Kummer–Liouville equivalence transformation; see Section 2.2.1)

y′′xx = F (x, y)

admitting the nonlocal exponential operator:

X = exp
(∫

ζ dx
)
η
∂

∂y
= exp

[∫ (
ζ +

ηx + ηyy
′
x

η

)
dx
] ∂
∂y
, η = η(x, y), ζ = ζ(x, y).
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The second prolongation of the operator X has the form:

X
2
= exp

(∫
ζ dx

){
η∂y + (ηx + ηyy

′
x + ηζ)∂y′

x

+
[
ηxx + 2ζηx + ηζx + ζ2η + (2ηxy + 2ζηy + ηζy)y

′
x + ηyy(y

′
x)

2 + ηyy
′′
xx

]
∂y′′

xx

}
.

Applying this operator to the equation y′′xx = F (x, y) and replacing all instances of y′′xx by F =
F (x, y), we obtain the invariance condition in the form:

ηxx + 2ζηx + ηζx + ζ2η + ηyF − ηFy + (2ηxy + 2ζηy + ηζy)y
′
x + ηyy(y

′
x)

2 = 0.

Splitting this relation with respect to powers of the “independent” variable y′x, we obtain the fol-

lowing system of three equations for the functions η, ζ, and F :

ηyy = 0,

2ηxy + 2ζηy + ηζy = 0,

ηxx + 2ζηx + ηζx + ζ2η + ηyF − ηFy = 0.

From the first two equations it follows that

η = a(x)y + b(x),

ζ = − aa
′y2 + 2a′by + c(x)

(ay + b)2
,

where a = a(x), b = b(x), and c = c(x) are arbitrary functions. The third equation can be treated

as a first-order linear differential equation for the unknown function F = F (x, y):

dF

dy
− ηy

η
F =

1

η
(ηxx + 2ζηx + ηζx + ηζ2).

Substituting the above expressions of η and ζ into this relation and integrating the result, we obtain

F (x, y) = (ay + b)f(x) +
[aa′′ − 2(a′)2]b− (ab′′ − 2a′b′)a

a3

− [aa′′ − 3(a′)2]b2 + 2aa′bb′ − (ac′ − 2a′c)a

2a3(ay + b)
− (a′b2 − ac)2

4a3(ay + b)3
,

where f(x) is an arbitrary function.

The differential invariant z of the operator X satisfies the linear partial differential equation

η
∂z

∂y
+ (ηx + ηyy

′
x + ηζ)

∂z

∂y′x
= 0

(obtained after the division by exp(
∫
ζ dx)). Substituting the above η and ζ into this equation, we

pass to the characteristic equation

dw

dy
=

aw

ay + b
+

2aa′y2 + (3a′b+ ab′)y + bb′ + c

(ay + b)
,

where w = y′x. Integrating this equation, we find the differential invariant:

z =
y′x

ay + b
− a′b − ab′
a2(ay + b)

+
a′b2 − ac

2a2(ay + b)2
.

Having calculated the derivative z′x, one can find y′′xx and, taking into account the known struc-

ture of the function F (x, y), one obtains the factorization of the original equation:

z′x + az2 + (a′/a)z = f,

(ay + b)y′x = (ay + b)2z + a−2(a′b− ab′)(ay + b)− 1
2a

−2(a′b2 − ac).
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An equivalence transformation of the form ay + b→ y, combined with the corresponding transfor-

mation of the independent variable and changed notation, yields:

z′x + z2 = f(x),

y′x = zy + g(x)y−1.
(11.2.3.5)

The first equation of system (11.2.3.5) is a Riccati equation. Its general solution can be represented

in terms of a fundamental system of solutions of the “truncated” linear equation:

y′′xx = f(x)y, (11.2.3.6)

which coincides with (11.2.3.4) for g ≡ 0. The second equation of system (11.2.3.5) is a Bernoulli

equation. It can be integrated by quadrature for an arbitrary function z = z(x,C). Therefore,

the general solution of equation (11.2.3.4) can be expressed in terms of a fundamental system of

solutions of the linear equation (11.2.3.6). Note that in the general case, equation (11.2.3.4) admits

no point groups.

Theorem 1 can be made more general. Let the second-order ordinary differential equa-

tion

y′′xx = F (x, y, y′x), (11.2.3.7)

admit the exponential nonlocal operator

X =
[
ξ(x, y, y′x)∂x + η(x, y, y′x)∂y

]
Ω, Ω = exp

(∫
ζ(x, y, y′x) dx

)
. (11.2.3.8)

To describe all equations of the form (11.2.3.7) admitting factorization, it suffices to con-

sider the operator (11.2.3.8). Equation (11.2.3.7) is then factorized to the system

u̇t = G(t, u),

u(t) = H1(x, y, y
′
x),

t = H0(x, y),

(11.2.3.9)

where H0 and H1 are invariants of the operator (11.2.3.8). The last two equations in

(11.2.3.9) are essentially one equation determining the function u(t) in parametric form.

◮ Factorization principle: the general case.

If an operator admitted by equation (11.2.1.1) has no differential invariants of the first-

order, then it is possible to apply the general factorization principle.

THEOREM 2. An arbitrary nth-order differential equation (11.2.1.1) can be factorized

to the system of special structure

z(n−k)
x = G

(
x, z, z′x, . . . , z

(n−k−1)
x

)
,

z = H
(
x, y, y′x, . . . , y

(k)
x

)
,

∂z

∂y
(k)
x

6= 0,
(11.2.3.10)

provided that equation (11.2.2.3) admits a formal operator of the form (11.2.2.1) for which

H
(
x, y, y′x, . . . , y

(k)
x

)
is a lower-order differential invariant on the manifold defined by

(11.2.2.3). The coordinate Φ of this operator satisfies the linear equation with total deriva-

tives:

Φ
∂z

∂y
+Dx[Φ]

∂z

∂y′
+ · · ·+D(k)

x [Φ]
∂z

∂y(k)
= 0. (11.2.3.11)
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Equation (11.2.3.11) plays a crucial role in both the direct and inverse problems. It can

be regarded as an equation for the determination of the coordinate of the canonical operator

(if one knows the invariant z). It can also be regarded as an equation for the determination

of an invariant (if one knows the coordinate Φ). In the latter case, this is a first-order partial

differential equation.

Example 11.12. The third-order nonlinear equation

yy′′′xxx +
(
y′′xx
)2 − y′xy′′xx − f(x)y2 = 0 (11.2.3.12)

admits two operators

X1 = y ∂y, X2 =
(
y

∫
y−2 dx

)
∂y, (11.2.3.13)

which can be found with the help of the direct algorithm, if the structure of the operator is specified

by the second expression in (11.2.2.2). The first operator, X1, is the usual point operator of scal-

ing (the original equation is homogeneous) and provides the usual reduction of order of equation

(11.2.3.12) by one. The second operator, X2, is nonlocal.

Let us construct differential invariants of the operator X2. To this end, we should solve the

equations:

Φ
∂I1
∂y

+Dx[Φ]
∂I1
∂y′x

= 0, Φ = y

∫
y−2 dx,

Φ
∂I2
∂y

+Dx[Φ]
∂I2
∂y′x

+D2
x[Φ]

∂I2
∂y′′xx

= 0.

(11.2.3.14)

After differentiation with respect to Φ, the first equation in (11.2.3.14) becomes

(
y

∫
y−2 dx

) ∂I1
∂y

+
[
y−1 +

(
y′x

∫
y−2 dx

)] ∂I1
∂y′x

= 0.

Let us show that this equation admits no solutions depending only on x, y, y′x, and ∂I1/∂y
′
x 6= 0,

i.e., there are no first-order differential invariants. The nonlocal expression
∫
y−2 dx depends on

derivatives of arbitrarily high orders and can be regarded as an independent quantity. Therefore, the

first equation (11.2.3.14) can be split and we obtain the system:

y
∂I1
∂y

+ y′x
∂I1
∂y′x

= 0, y−1 ∂I1
∂y′x

= 0.

It follows that ∂I1/∂y
′
x = 0.

Let us find a second-order differential invariant. After differentiation with respect to Φ, the

second equation in (11.2.3.14) becomes

(
y

∫
y−2 dx

) ∂I2
∂y

+
[
y−1 +

(
y′x

∫
y−2 dx

)] ∂I2
∂y′x

+
(
y′′xx

∫
y−2 dx

) ∂I2
∂y′′xx

= 0.

Splitting this equation with respect to the nonlocal variable
∫
y−2 dx, we find that ∂I2/∂y

′
x = 0. In

the remaining equation, the nonlocal variable is canceled,

y
∂I2
∂y

+ y′′xx
∂I2
∂y′′xx

= 0.

It follows that I2 = z = y′′xx/y, and equation (11.2.3.12) is factorized to the system

z′x + z2 = f(x),

y′′xx − yz = 0.
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◮ Applications to third-order ODEs.

Consider the nonlocal nonexponential operator

X =
(
ξ(x, y) ∂x + η(x, y) ∂y

) ∫
ζ(x, y, y′x, y

′′
xx) dx (11.2.3.15)

(see the previous example). It can be used to factorize the third-order ODE

y′′′xxx = F (x, y, y′x, y
′′
xx). (11.2.3.16)

It is clear that the universal invariant of the operator (11.2.3.15) coincides with the invariant

of the point operator

X0 = ξ(x, y) ∂x + η(x, y) ∂y . (11.2.3.17)

The following theorem holds.

THEOREM 1. The third-order ODE (11.2.3.16) admitting the nonlocal operator

(11.2.3.15) always admits the point operator (11.2.3.17).

Consequently, one needs to look for the nonlocal operator (11.2.3.15) for equation

(11.2.3.16) only if the equation possesses a point symmetry. It may seem that this fact

reduces the value of operators of the form (11.2.3.15). In fact, there are a large number

of equations (in particular, third-order equations) for which no operators are known other

than a single point operator. Therefore, the presence of at least one operator, even though

a nonlocal one, admitted by the equation can significantly facilitate the integration and

investigation of the original equation.

1◦. Preliminary remarks. Consider the problem of seeking a class of third-order equations

admitting a nonlocal nonexponential operator of the form

X = η(x, y, y′x)

(∫
ζ(x, y, y′x) dx

)
∂y. (11.2.3.18)

By virtue of Theorem 1, we can restrict ourselves to the class of autonomous equations,

thus setting η ≡ y′ and looking for an operator in the form

X = y′x

(∫
ζ(x, y, y′x) dx

)
∂y. (11.2.3.19)

Then, we can find all such classes of equations by applying an arbitrary point transforma-

tion.

Let us find the prolongation of the operator (11.2.3.19). Let I denote the nonlocal

variable:

I =

∫
ζ(x, y, y′x) dx.

Since η̃ = y′xI , we get

η̃1 = Dxη̃ = y′′xxI + y′xζ,

η̃2 = D2
xη̃ = y′′′xxxI + 2y′′xxζ + y′x

(
ζx + ζyy

′
x + ζy′xy

′′
xx

)
,

η̃3 = D3
xη̃ = y

(4)
x I + 3y′′′xxxζ + 3y′′xx

(
ζx + ζyy

′
x + ζy′xy

′
x

)
+ y′x

[
ζxx + 2ζxyy

′
x

+ζyy(y
′
x)

2 + 2ζxy′xy
′′
xx + 2ζyy′xy

′
xy

′′
xx + ζy′xy′x

(
y′′xx
)2

+ ζyy
′′
xx + ζy′xy

′′′
xxx

]
.
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2◦. Equations of the form y′′′xxx = F (y). The invariance condition is written in the form

(
η̃3 − η̃

∂F

∂y

)∣∣∣∣
y′′′xxx=F (y)

= 0.

Replacing y′′′xxx and y
(4)
x with the help of the original equation and its differential conse-

quence y
(4)
x = y′xF

′(y) and splitting the remaining expression into powers of y′′xx and I , we

arrive at a system that only has the trivial solution (F ≡ 0 or F is any but ζ ≡ 0). Therefore,

the following statement holds.

THEOREM 2. There is no equation of the form y′′′xxx = F (y), other than the trivial

equation, admitting a nonlocal operator of the form (11.2.3.18).

3◦. Equations of the form y′′′xxx = F (y, y′x). Now consider the autonomous third-order

equation without the second derivative

y′′′xxx = F (y, y′x), (11.2.3.20)

admitting the nonlocal nonexponential operator (11.2.3.19). The invariance condition is

written as (
η̃3 − η̃

∂F

∂y
− η̃1

∂F

∂y′x

)∣∣∣∣
y′′′xxx=F (y,y′x)

= 0.

The determining system has the form

3ζy′x + y′xζy′xy′x = 0,

3ζx + 2y′x(ζxy′x + 2ζy + ζyy′xy
′
x) = 0,

(3ζ + y′xζy′x)F − y′xζFy′x + y′xζxx + 2ζxy(y
′
x)

2 + ζyy(y
′
x)

3 = 0.

THEOREM 3. Equation (11.2.3.20) admits the nonlocal nonexponential operator

(11.2.3.19) if and only if the right-hand side has the form

F (y, y′x) = y′x
[
C(y′x)

2 +G(y)
]
H(y)− 1

2C
G′′(y)y′x, (11.2.3.21)

with

ζ(x, y, y′x) = C +
G(y)

(y′x)2
, (11.2.3.22)

where G(y) and H(y) are arbitrary functions and C 6= 0 is an arbitrary constant.

Remark 11.6. The valueC =0 is possible only ifG′′(y)≡ 0. However, in this case, the original

equation is trivial and easy to integrate.

The operator (11.2.3.19) has no first differential invariant (more precisely, it has no in-

variant dependent on the first derivative alone). To compute the second differential invariant

of the operator

X = y′x

[∫ (
C +

G(y)

(y′x)2

)
dx

]
∂y, (11.2.3.23)

we have to solve the equation

η̃
∂Φ

∂y
+ η̃1

∂Φ

∂y′x
+ η̃2

∂Φ

∂y′′xx
= 0.



“K16435’ — 2017/9/28 — 15:05 — #359
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Inserting the coordinates of the operator (11.2.3.23) and splitting the equation in the non-

local variable I , we obtain the system of two equations

y′x

[
C +

G(y)

(y′x)2

]
∂Φ

∂y′x
+
(
2Cy′′xx +G′(y)

) ∂Φ
∂y′′xx

= 0,

y′x
∂Φ

∂y
+ y′′xx

∂Φ

∂y′x
+

[
y′x
(
C(y′x)

2 +G(y)
)
H(y)− 1

2C
G′′(y)y′x

]
∂Φ

∂y′′xx
= 0.

(11.2.3.24)

Note that in the second equation, the derivative y′′′xxx is replaced with the right-hand side

of equation (11.2.3.21); that is, the invariant is sought on the manifold of solutions of the

original equation. The solution of the first equation in (11.2.3.24) is

Ω

(
y,

2Cy′′xx +G′(y)
C(y′x)2 +G(y)

)
. (11.2.3.25)

Inserting (11.2.3.25) into the second equation of the system results in a first-order linear

partial differential equation for Ω:

∂Ω

∂y
+
[
H(y)− 2Cω2

] ∂Ω
∂ω

= 0, (11.2.3.26)

where ω is the second argument of the function Ω. The equation in characteristics for

(11.2.3.26) is a canonical Riccati equation, which is always reduced to a second-order

linear equation. In a large number of cases, the solution to (11.2.3.26) can be expressed

in closed form (in terms of elementary or special functions). The actual representation

significantly depends on the function H(y).

Example 11.13. If H(y) = yk or H(y) = ey, the second differential invariant is expressed in

terms of Bessel functions. In addition, in the case of the power-law function, we get a special Riccati

equation and if the fraction k+3
k+2 is a half-integer, the second differential invariant is an elementary

function. For example, if k = 0, we get

Ω =
√
2Cy − arth

(
2Cy′′xx +G′(y)√

2C (C(y′x)
2 +G(y))

)
.

By direct verification, one can see that Ω′
x = 0 by virtue of the original equation Ω′

x = 0, suggesting

the factorization

Ω′
x

∣∣∣
y′′′

xxx=F
= 0,

Ω =
√
2Cy − arth

(
2Cy′′xx +G′(y)√

2C (C(y′x)
2 +G(y))

)
.

Thus, the function Ω is an autonomous first integral of the original equation, while the symmetry is

analogous to variational symmetry (see Section 11.3).

Example 11.14. The equation

y′′′xxx = f(x)y + y−1(y′′xx)
2 + y−4(y3y′x + 2A)y′′xx +A2y−7

can be factorized to the system

z′x = z2 + f(x),

z =
y′′xx
y

+Ay−4.

The first equation is a Riccati equation and the second one is the Ermakov equation; therefore,

the solution to the original equation is here uniquely determined by two fundamental systems of

solutions of two linear second-order equations. Note that this system can be factorized further,

since the Ermakov equation always admits an exponential nonlocal operator.
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Apparently, it makes sense to perform a test for a nonexponential operator for any

third- or higher-order equation possessing a point symmetry. This test allows one to find an

additional nonexponential nonlocal operator admitted by the equation in order to facilitate

its subsequent integration or seek an unobvious first integral.

⊙ Literature for Section 11.2: R. L. Anderson and N. H. Ibragimov (1979), O. N. Pavlovskii and G. N. Yako-

venko (1982), N. H. Ibragimov (1985), P. J. Olver (1986), V. F. Zaitsev (2001), A. D. Polyanin and V. F. Zaitsev

(2003), V. F. Zaitsev and L. V. Linchuk (2014).

11.3 First Integrals (Conservation Laws)

11.3.1 Algorithm of Finding First Integrals of ODEs

A function P = P
(
x, y, y′x, . . . , y

(n−1)
x

)
is called a first integral (conservation law) of the

ordinary differential equation

y(n)x = F
(
x, y, . . . , y(n−1)

x

)
(11.3.1.1)

if the total derivative of the function P along the trajectories of equation (11.3.1.1) is zero

or, equivalently, if

Dx[P ] ≡M
(
x, y, y′x, . . . , y

(n−1)
x

)[
y(n)x − F

(
x, y, . . . , y(n−1)

x

)]
= 0, (11.3.1.2)

where M is an integrating factor. From this definition it is clear that M = ∂P

∂y
(n−1)
x

.

The algorithm of finding a first integral is similar to that of finding an admissible oper-

ator. It is necessary to prescribe the desired structure of the first integral (or the integrating

factor) and substitute it into the determining equation (11.3.1.2). Subsequent splitting with

respect to lower derivatives (assumed to be independent variables) leads to the determining

system.

Remark 11.7. An arbitrary function of first integrals is also a first integral of the same equation.

Therefore, having found a first integral depending on (y′x)
k, one has to make sure that it is nontrivial;

i.e., it cannot be represented as the product of first integrals depending on lower powers of the

derivative.

Remark 11.8. If the equation has k functionally independent first integrals, then its order can

be reduced by k by successively excluding higher derivatives (see Example 11.15).

◮ Direct method.

Rewriting equation (11.3.1.2) in expanded form, we get

Px + y′xPy + y′′xPy′x + . . . + y(n)x P
y
(n−1)
x

= −FM + y(n)x M. (11.3.1.3)

Substituting here the value of M gives the equation

Px + y′xPy + . . .+ y(n−1)
x Pyn−2

x
+ FP

y
(n−1)
x

= 0. (11.3.1.4)

No general solution to this homogeneous linear partial differential equation with respect to

x, y, y′, . . . , y(n−1) can usually be obtained (as this equation is equivalent to the original

one). However, it is quite likely that its particular solutions can be found with the splitting
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method by imposing certain conditions on the form of the desired first integral. For exam-

ple, this can be achieved by assuming that P (x, y, y′x, . . . , y
(n−1)
x ) is linear in the highest

derivative,

P = R
(
x, y, y′x, . . . , y

(n−2)
x

)
y(n−1)
x +Q

(
x, y, y′x, . . . , y

(n−2)
x

)
, (11.3.1.5)

or quadratic in the highest derivative,

P = R
(
x, y, y′x, . . . , y

(n−2)
x

)(
y(n−1)
x

)2
+Q

(
x, y, y′x, . . . , y

(n−2)
x

)
y(n−1)
x

+ S
(
x, y, y′x, . . . , y

(n−2)
x

)
. (11.3.1.6)

Substituting the structure of the first integral into (11.3.1.4) and splitting the resulting equa-

tion in powers of y
(n−2)
x , we obtain the determining system, whose solution gives us the

desired first integral.

Example 11.15. The equation

y′′′′xxxx = Ay−5/3 (11.3.1.7)

admits three first integrals:

P1 = y′xy
′′′
xxx − 1

2 (y
′′
xx)

2 + 3
2Ay

−2/3,

P2 = xP1 − 3
2 yy

′′′
xxx +

1
2 y

′
xy

′′
xx,

P3 = xP2 − 1
2x

2P1 +
3
2 yy

′′
xx − (y′x)

2.

Equating these expressions to independent constants C1, C2, C3 and eliminating y′′′xxx and y′′xx, we

obtain a first-order equation (see 4.2.1.1).

◮ Factorization method.

Let the nth-order equation (11.2.1.1) admit a (nonlocal) infinitesimal operator and let the

factor system (11.2.3.10) have the form

z′x = 0,

z = H
(
x, y, y′x, . . . , y

(n−1)
x

)
,

∂z

∂y
(n−1)
x

6= 0.
(11.3.1.8)

Then the function H
(
x, y, y′x, . . . , y

(n−1)
x

)
is a first integral equation (11.2.1.1) and, simul-

taneously, a differential invariant of the admitted operator by virtue of (11.2.1.1).

◮ Other methods.

There are methods for finding an integrating factor for ODEs, which generalize the well-

known approach to first-order equations. These use high-order Euler operators (see the

paragraph on Nöther’s theorem) and lead to results that are fundamentally the same as

those of the direct method (see the literature for the present chapter).
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11.3.2 Applications to Second-Order ODEs

For second-order equations

y′′xx = F (x, y, y′x), (11.3.2.1)

the determining equation (11.3.1.2) can be written in the form

∂P

∂x
+ y′x

∂P

∂y
+ F (x, y, y′x)

∂P

∂y′x
= 0. (11.3.2.2)

In this case, one can solve the direct problem (find P for the given equation), as well as

the inverse problem (find possible F for the given structure of the first integral).

Example 11.16. Let us find all equations of the form

y′′xx = F (x, y) (11.3.2.3)

admitting a first integral that is quadratic with respect to the first derivative:

P = R(x, y)(y′x)
2 + S(x, y)y′x +Q(x, y).

Then the left-hand side of the determining equation (11.3.2.2) is a cubic polynomial with respect to

y′x. The procedure of splitting with respect to powers of y′x yields the system of four equations:

Ry = 0,

Rx + Sy = 0,

Sx +Qy + 2RF = 0,

Qx + SF = 0.

The solution of this system for F is given by:

F (x, y) = R−3/2Ψ(z) +
1

2
R−2

[(
RR′′

xx −
1

2
R′2

x

)
y −Rϕ′

x +
1

2
R′

xϕ
]
,

z = R−1/2y +
1

2

∫
ϕR−3/2 dx,

where Ψ=Ψ(z),R=R(x), and ϕ=ϕ(x) are arbitrary functions. The class of equations obtained is

essentially a solution to the inverse problem for equation (11.3.2.3), having a quadratic first integral,

which is expressed as follows:

P = R(y′x)
2 − (R′

xy − ϕ)y′x +
1

4
R−1(R′

x)
2y2 − 1

2
R−1R′

xϕy +
1

4
R−1ϕ2 − 2

∫
Ψ(z)dz.

Example 11.17. Consider the equation

y′′xx = Axy−1/2.

Let us find its first integral, which is a cubic polynomial with respect to the first derivative:

P = R(x, y)(y′x)
3 + S(x, y)(y′x)

2 +Q(x, y)y′x + U(x, y).

In this case, the left-hand side of the determining equation (11.3.2.2) is a fourth-order polynomial

in y′x, and hence the determining system consists of five equations:

Ry = 0,

Rx + Sy = 0,

Sx +Qy + 3Axy−1/2R = 0,

Qx + Uy + 2Axy−1/2S = 0,

Ux +Axy−1/2Q = 0.

Solving this system, we obtain the first integral in the form:

P = (y′x)
3 − 6Axy1/2y′x + 4Ay3/2 + 2A2x3.



“K16435’ — 2017/9/28 — 15:05 — #363

11.3. First Integrals (Conservation Laws) 337

The factorization method allows one to formulate, for second-order equations, a more

rigorous result than in the general case. If equation (11.2.3.7) is factorized to system

(11.2.3.9), then two cases of order reduction are possible:

(i) If the second (inner) equation is integrable, we obtain the classical method of order

reduction, with the only difference that the application of exponential nonlocal operators

provides a significant generalization of the results obtained using point operators (the gen-

eralization of the Ermakov equation is a good example).

(ii) If the first (outer) equation is integrable, we obtain a first integral of the original

equation; this approach does not have classical analogues.

Example 11.18. The class of equations

y′′xx +
Ψ
(√

x2 + 2ay − x
)

√
x2 + 2ay

= 0,

where Ψ is an arbitrary function of its argument, admits the operator

X =
[
a∂x +

(√
x2 + 2ay − x

)
∂y

]
exp

∫
dx√

x2 + 2ay
.

Substituting its invariants

y′x = u(t),
√
x2 + 2ay − x = t (11.3.2.4)

yields the first-order equation

u̇t =
Ψ(t)

au− t ,

which is reduced, with the transformation au− t = −w(t), to an Abel equation of the second kind

wẇt − w = aΨ(t). (11.3.2.5)

If the general solution to equation (11.3.2.5) is known, the first integral of the original equation

is obtained in the (parametric) form (11.3.2.4).

11.3.3 Lie–Bäcklund Symmetries Generated by First Integrals

◮ Theorems on symmetries of first integrals.

1◦. First, we note an important property of symmetries of differential equations: if an

equation, having a first integral P , admits an operator X, the application of the operator X
to the first integral P generates a first integral again (which can possibly be trivial). The

following four cases are possible:

1. X(P ) = 0,
2. X(P ) = C, C = const,
3. X(P ) = F (P ),
4. X(P ) = P1.

The second case gives a trivial first integral, while the third case gives the already known

first integral; these cases are of no interest. The first case signifies that the first integral in-

herits the symmetry of the original equation, while the fourth case gives a new first integral,

which is functionally independent of the already known ones. These two cases allow us to

reduce the order of the original equation by two.
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2◦. Since any first integral of an ODE on the manifold of its solutions is a constant, the

point operator admitted by the equation is essentially an infinite-dimensional Lie–Bäcklund

algebra.

THEOREM 1. Let the equation

y(n) = F
(
x, y, yx, . . . , y

(n−1)
x

)
(11.3.3.1)

admit a Lie algebra Lk with basis {Xα}, Xα = ηα∂y , α=1, . . . , k, and have s independent

first integrals {Pσ}, σ = 1, . . . , s (s 6 n). Then, equation (11.3.3.1) admits an infinite-

dimensional Lie–Bäcklund algebra with operator

XB =

(
k∑

α=1

ηαFα

)
∂y, (11.3.3.2)

where Fα (α = 1, . . . , k) are arbitrary functions of s arguments P1, . . . , Ps.

Example 11.19. Equation (11.3.2.5) admits a three-dimensional point Lie algebra defined by

the operators

L3: X1 = y′x∂y, X2 =

(
xy′x −

3

2
y

)
∂y, X3 =

(
1

2
x2y′x −

3

2
xy

)
∂y.

Hence, the equation also admits the infinite-dimensional Lie–Bäcklund algebra defined by the op-

erator

XB =

[
y′F1 +

(
xy′x −

3

2
y

)
F2 +

(
1

2
x2y′x −

3

2
xy

)
F3

]
∂y, (11.3.3.3)

where Fi = Fi(P1, P2, P3), i = 1, 2, 3, are arbitrary functions and P1, P2, and P3 are first integrals

of equation (11.3.2.5).

It follows from the theorem that the knowledge of one lowest symmetry and one first

integral suffices to obtain an infinite-dimensional Lie–Bäcklund algebra.

Example 11.20. The equation y′′′xxx=Axy−5/4 admits the Lie–Bäcklund algebra defined by the

operator XB = [(9xy′x−16y)F (P )]∂y , where P = y(y′′xx)
2− 1

2 (y
′
x)

2y′′xx−2Axy−1/4y′x+
8
3Ay

3/4

is a first integral of the equation.

Example 11.21. The equation y′′′xxx = Ay−1 admits the Lie–Bäcklund algebra defined by the

operator XB = [y′xF1(P )+(2xy′x−3y)F2(P )]∂y , where P = yy′′xx− 1
2 (y

′
x)

2−Ax is a first integral

of the equation.

Remark 11.9. Theorem 1 does not guarantee the completeness of the Lie–Bäcklund algebra

obtained.

It is well known how an operator transforms when differential substitutions are used (in

particular, nonlocal can arise in order reduction); however, this is not so obvious with first

integrals. Some of the lowest symmetries may seem to disappear when a first integral is

used. Below we show that this disappearance is only apparent. Let us look at the symmetry

properties of first integrals.

THEOREM 2. Let equation (11.3.3.1) admit the Lie–Bäcklund algebra defined by the

operator (11.3.3.2). Then, for any Pν ∈ {Pσ}, σ = 1, . . . , s, the equation

Pν = Cν (11.3.3.4)

1) has s− 1 first integrals {P̃σ}, σ = 1, . . . , s, σ 6= ν, where P̃σ = Pσ |Pν=Cν ;

2) admits the Lie–Bäcklund algebra defined by an operator of the form (11.3.3.2) with

an arbitrariness of no less than k − 1 functions of s− 1 variables {P̃σ}.
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To construct the algebra admitted by first integrals, we take advantage of the property

mentioned at the beginning of this paragraph: the action of any admissible operator on a

first integral gives a first integral again (which may be trivial). Let us denote Xα[Pσ ] =Qασ

and construct the operator

XB =

(
k∑

α=1

ηαF̃α

)
∂y,

where F̃α, α = 1, . . . , k, are arbitrary functions of s − 1 arguments {P̃σ}, σ 6= ν. The

invariance condition is written as

X̃B [Pν − Cν ]
∣∣∣
Pν=Cν

=

k∑

α=1

F̃αXα[Pν ]
∣∣∣
Pν=Cν

=

k∑

α=1

F̃αQαν

∣∣∣
Pν=Cν

= 0. (11.3.3.5)

Since the arguments of the functions F̃α are the first integrals P̃σ, and the quantities Qαν

are also first integrals (or constants), the last equality in (11.3.3.5) allows us to express any

function F̃β in terms of the others (provided that Qβν 6= 0). The admissible operator is

XB =




k∑

α=1
α6=β

(
ηα −

Qαν

Qβν
ηβ

)
F̃α


 ∂y, Qβν 6= 0.

Remark 11.10. The arbitrariness of k functions of s− 1 variables is achieved only if Qαν = 0
for all α = 1, . . . , k, that is, if and only if equation (11.3.3.4) admits all {Xα}.

Example 11.22. The equation P1 = C1, where P1 is an integral of equation (11.3.2.5), so that

y′′′xxx =
1

2
(y′x)

−1
(
y′′xx
)2 − 3

2
Ay−2/3(y′x)

−1 + C1(y
′
x)

−1, (11.3.3.6)

admits the Lie–Bäcklund operator

X̃B =

{
y′xF̃1(P̃2, P̃3) +

[(
xy′x −

3

2
y

)
P̃2 + C1

(
1

2
x2y′x −

3

2
xy

)]
F̃3(P̃2, P̃3)

}
∂y,

where

P̃2 =
3

4
y(y′x)

−1
(
y′′xx
)2 − 1

2
y′xy

′′
xx −

9

4
Ay1/3(y′x)

−1 +
3

2
C1y(y

′
x)

−1 − C1x,

P̃3 =
3

4
xy(y′x)

−1
(
y′′xx
)2 − 1

2
(xy′x − 3y)y′′xx −

9

4
Axy1/3(y′x)

−1 +
3

2
C1xy(y

′
x)

−1 − 3

2
C1x

2

are first integrals of equation (11.3.3.6).

◮ Nöther’s theorem.

Definition 1. The operator

En =
n∑

i=0

(−Dx)
i∂

y
(i)
x

= ∂y −Dx∂y′x +D2∂y′′xx − · · ·+ (−Dx)
n∂

y
(n)
x
, (11.3.3.7)

where

D = ∂x + y′∂y + y′′∂y′ + · · ·+ y(n)∂y(n−1) + · · · ,
is called an Euler operator of order n.
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Let us look at the functional

S[y(x)] =

∫

V

L(x, y, y′x, . . . , y
(n)
x ) dx. (11.3.3.8)

Searching for extremals of a variation problem for the functional (11.3.3.8) is known to

reduce to solving the Euler–Lagrange equation

En

[
L(x, y, y′x, . . . , y

(n)
x )
]
= 0. (11.3.3.9)

What is of interest is the case where, among all symmetry groups admitted by the

Euler–Lagrange equation (11.3.3.9), there are also groups admitted by the Lagrangian

L(x, y, y′x, . . . , y
(n)
x ). Such symmetry groups are known as variational or Nötherian; they

play a major role in physics and mathematics, since they are closely related to conservation

laws. Obviously, the order of equation (11.3.3.9) is 2n.

Definition 2. The differential equation

F (x, y, y′x, . . . , y
(n)
x ) = 0,

∂F

∂
y
(n)
x

6≡ 0, (11.3.3.10)

has a variational formulation if its solutions y = Θ(x) in the domain V coincide with

extremals of the functional (11.3.3.8).

THEOREM 1. A 2nth-order differential equation has a variational formulation if and

only if it coincides with the Euler–Lagrange equation of a Lagrangian L(x, y, y′x, . . . , y
(n)
x ),

so that

F (x, y, y′x, . . . , y
(2n)
x ) = Em[L(x, y, y′x, . . . , y

(m)
x )]. (11.3.3.11)

Remark 11.11. Only even-order equations can have a variational formulation.

Definition 3. The functional S[y(x)] admits an infinitesimal operator X if its La-

grangian L is invariant under transformations of the group defined by the operator. The

admitted group is called variational.

THEOREM 2. If G is a group of variational symmetries of the function (11.3.3.8), then

it is also a group of symmetries of the Euler–Lagrange equation En(L) = 0. In this case,

the equation is said to admit the variational (Nötherian) symmetry.

THEOREM 3. Every admitted Nötherian group allows one to reduce the order of the

Euler–Lagrange equation by two.

The algorithm of order reduction for the Euler–Lagrange equation using a Nötherian

operator is quite clear. However, the implementation of this algorithm as applied to dif-

ferential equations causes certain difficulties: first, one has to find a suitable Lagrangian

L
(
x, y, y′x, . . . , y

(n)
x

)
, but there is no algorithm for obtaining it. The algorithm allowing or-

der reduction for the equation by two without finding a Lagrangian relies on the following

theorem.

EMMY NÖTHER’S THEOREM. A symmetry of an even-order equation is Nötherian if

the coordinate of its infinitesimal operator (in canonical form) coincides, up to a constant

factor, with an integrating factor of a first integral of the equation. Furthermore, this oper-

ator makes the first integral identically zero.
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◮ Analogues of variational symmetries. Inverse problems.

Variational symmetry is only defined for even-order equations. All attempts to introduce

a Hamiltonian structure for odd-order ODEs have failed so far (in terms of integrability).

Over time, the impression has been formed that there is no similar symmetry structure for

odd-order equations. However, this is not so. The following simple third-order equation is

a counterexample:

y′′′xxx = 2yy′x. (11.3.3.12)

It is autonomous and has an autonomous first integral

y′′xx = y2 + C. (11.3.3.13)

This means that the symmetry of equation (11.3.3.12) is perfectly analogous to variational

symmetry in the sense that the first integral (11.3.3.13) inherits it and allows the order of

the original equation to be reduced by two.

We will be looking for classes of third-order equations possessing an analogue of vari-

ational symmetry or, equivalently, classes of equations admitting a point operator and a

first integral inheriting this symmetry. From the viewpoint of integrability, this property is

a direct analogue of Nötherian symmetry. The solution of this inverse problem is directly

reduced to the simultaneous solution of three complicated determining systems: the invari-

ance condition for the original equation with respect to an arbitrary point symmetry, the

existence condition for a first integral with a set structure, and the invariance condition for

this first integral with respect to the same point symmetry. Except for the simplest cases,

the implementation of this algorithm is extremely difficult. Therefore, a different strategy

will be followed; specifically, we will use the principle of similarity of one-parameter point

groups in the plane and solve the problem for a selected simple symmetry (e.g., for an au-

tonomous equation admitting the operator X = ∂x), while indenting to extend the obtained

result to an arbitrary point symmetry.

1◦. Let us compute point groups of equivalence for some subclasses of third-order equa-

tions. Obviously, the group of equivalence for the whole class of third-order equations is

the set of arbitrary invertible point transformations

y = f(t, u), x = g(t, u) (11.3.3.14)

with a nonzero Jacobian

D =

∣∣∣∣
ft gt
fu gu

∣∣∣∣ = ftgu − fugt 6≡ 0. (11.3.3.15)

Assuming t in (11.3.3.14) to be the independent variable, we write out the formulas for

the transformation of the derivatives:

y′x =
ft + fuu̇t
gt + guu̇t

, (11.3.3.16)

y′′xx =
[
(gtfu − guft)ütt + (gufuu − guufu)(u̇t)3+

+ (gtfuu − guuft + 2guftu − 2gtufu)(u̇t)
2+

+ (guftt − gttfu + 2gtftu − 2gtuft)u̇t+

+ gtftt − gttft
]
(gt + guu̇t)

−3, (11.3.3.17)
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y′′′xxx =
{
(gt + guu̇t)(fugt − ftgu)

...
u ttt + 3gu(ftgu − fugt)(ütt)2+

+ 3
[
gt(fuugu − fuguu)− gu(ftugu − fugtu)− guu(fugt − ftgu)

]
(u̇t)

2ütt+

+ 3
[
gt(fuugt − ftguu)− gu(fttgu − fugtt)− 3gtu(fugt − ftgu)

]
u̇tütt+

+ 3
[
gt(ftugt − ftgtu)− gu(fttgt − ftgtt)− gtt(fugt − ftgu)

]
ütt+

+
[
gu(fuuugu − fuguuu)− 3guu(fuugu − fuguu)

]
(u̇t)

5+

+
[
gt(fuuugu − fuguuu) + gu(fuuugt − ftguuu + 3ftuugu − 3fugtuu)−

− 6gtu(fuugu − fuguu)− 3guu(fuugt − ftguu + 2ftugu − 2fugtu)
]
(u̇t)

4+

+
[
gt(fuuugt − ftguuu + 3fuutgu − 3fuguut)+

+ 3gu(fttugu − fugttu + ftuugt − ftgtuu)− 6gut(fuugt − ftguu + 2futgu − 2fugtu)−
− 3guu(fttgu − fugtt + 2futgt − 2ftgut)− 3gtt(fuugu − fuguu)

]
(u̇t)

3+

+
[
gu(ftttgu − fugttt + 3fttugt − 3ftgttu)+

+ 3gt(fttugu − fugttu + ftuugt − ftgtuu)− 6gtu(fttgu − fugtt + 2ftugt − 2ftgut)−
− 3gtt(fuugt − ftguu + 2ftugu − 2fugtu)− 3guu(fttgt − ftgtt)

]
(u̇t)

2+

+
[
gu(gtfttt − ftgttt) + gt(gufttt − fugttt + 3gtfttu − 3ftgttu)−

− 3gtt(guftt − fugtt + 2gtftu − 2ftgtu)− 6gtu(gtftt − ftgtt)
]
u̇t+

+ gt(gtfttt − gtttft) + 3gtt(ftgtt − fttgt)
}
(gt + guu̇t)

−5. (11.3.3.18)

Now, in order to find equivalence groups on a given subclass, we must find conditions

for the form of the subclass to be preserved by using relations (11.3.3.16)–(11.3.3.18). First,

let us find the equivalence group on the class of equations not involving the intermediate

derivatives explicitly,

y′′′xxx = F (x, y). (11.3.3.19)

So we look for transformations of the form

y′′′xxx = F (x, y) −→ ...
u ttt = G(t, u).

To this end, we require that the expression of the third derivative of the transformed vari-

able (11.3.3.18) does not contain intermediate derivatives. It is clear that a necessary con-

dition for that is gu ≡ 0, or g = g(t). By splitting expression (11.3.3.18) in powers of ü
and u̇, we obtain a determining system for the transformation elements (functions f and g):

gu = 0,

fuu = 0,

gtftu − gttfu = 0,

3g2t fttu − gtgtttfu − 6gtgttftu + 3g2ttfu = 0.

(11.3.3.20)

Solving the first three equations gives

x = g(t),

y = Cg′(t)u+ h(t),
(11.3.3.21)

where g(t) and h(t) are arbitrary functions of t and C is an arbitrary constant (C 6= 0). In

view of (11.3.3.21), the last equation in (11.3.3.20) becomes

2(g′)2g′′′ − 3g′(g′′)2 = 0.
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Its solution is

g =
C1

t+C2
+ C3.

Hence, the equivalence group for the class (11.3.3.19) consists of transformations of the

form

x =
C1

t+ C2
+ C3,

y =
C4u

(t+ C2)2
+ h(t),

(11.3.3.22)

where C1, . . . ,C4 are arbitrary constants and h(t) is an arbitrary function of t. Very similar

arguments lead to exactly the same result for the subclass of equations not involving the

first derivative:

y′′′xxx = F (x, y, y′′xx). (11.3.3.23)

THEOREM 1. An arbitrary equivalence point transformation for the subclasses of third-

order equations (11.3.3.19) and (11.3.3.23) has the form (11.3.3.22).

For the subclass

y′′′xxx = F (x, y, y′x), (11.3.3.24)

the equivalence group is much wider and has a functional arbitrariness. The last equation

in system (11.3.3.20) disappears and the solution to the system becomes (11.3.3.21).

THEOREM 2. An arbitrary equivalence point transformation for the subclasses of third-

order equations (11.3.3.24) has the form (11.3.3.21).

2◦. Let us focus on the problem, stated in the previous section, for the subclass of third-

order equations not involving intermediate derivatives, i.e., subclass (11.3.3.19). In view

of the known equivalence group, first integrals can be sought for the simplest autonomous

third-order equation

y′′′xxx = F (y). (11.3.3.25)

1. There is an autonomous first integral linear in the derivative y′′xx:

P = R(y, y′x)y
′
x +Q(y, y′x). (11.3.3.26)

THEOREM 3. There is a nontrivial equation (11.3.3.25), with F (y) 6= 0, having an

autonomous first integral of the form (11.3.3.26).

Remark 11.12. Theorem 3 does not prevent equation (11.3.3.25) from having linear first inte-

grals. A counterexample is the nontrivial equation

y′′′xxx = y−1.

It has the linear first integral

P = yy′′xx −
1

2
(y′x)

2 − x,

which is however not autonomous.

2. Now let us look, for equation (11.3.3.25), at the autonomous first integral quadratic

in y′′xx:

P = R(y, y′x)(y
′′
xx)

2 +Q(y, y′x)y
′′
xx + S(y, y′x). (11.3.3.27)
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THEOREM 4. The equation

y′′′xxx = (ay2 + by + c)−5/4, (11.3.3.28)

where a, b, and c are arbitrary constants, is the only equation from class (11.3.3.25) that

has an autonomous first integral quadratic in the second derivative.

3. Autonomous first integrals of equation (11.3.3.25) cubic the second derivative.

THEOREM 5. The equation

y′′′xxx = (ay + b)−5/2 (11.3.3.29)

is the only equation from class (11.3.3.25) that has a first integral cubic in the second

derivative.

3◦. Let us focus on inverse problems for the subclass (11.3.3.24). In this case, there are

equations that have a linear first integral. An example is equation (11.3.3.24) with

F =
R′′(y′x)

3 − 2S′y′x
2R

, (11.3.3.30)

where R and S are arbitrary functions of y. The first integral is given by

P = Ry′′xx −
1

2
R′(y′x)

2 + S.

We will now look for subclasses having a quadratic first integral (11.3.3.27). Applying

the direct method results in the determining system

Ry′x = 0,

Ryy
′
x +Qy′x = 0,

Qyy
′
x + Sy′x = −2RF,

Syy
′
x = −QF.

(11.3.3.31)

From the third and forth equations of system (11.3.3.31), we obtain the consistency condi-

tion(
T

y′x
− 1

2
Ryy

′
x

)
Fy′x−2RFy =

(
T

(y′x)2
+

5

2
Ry

)
F− 1

2
Ryyy(y

′
x)

3+Tyyy
′
x, (11.3.3.32)

which is a linear nonhomogeneous partial differential equation for F (y, y′). Solving this

equation leads to the following statement.

THEOREM 6. The subclass of equations

y′′′xxx = R−3/2y′xΦ(u) +
2RR′′ − (R′)2

8R2
(y′x)

3 − 2RT ′ −R′T
4R2

y′x, (11.3.3.33)

where u = R−1/2(y′x)
2 +

∫
TR−3/2 dy, R and T are arbitrary functions of y, and Φ is

an arbitrary function of u, is the only subclass of equations of class (11.3.3.24) having a

quadratic first integral in y′′xx:

P = R(y′′)2 +

[
− 1

2
R′(y′x)

2 + T (y)

]
y′′xx

+
1

16

(R′)2

R
(y′x)

4 −
∫

Φ(u) du− R′T
4R

(y′x)
2 +

1

4

T 2

R
. (11.3.3.34)
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Formula (11.3.3.33) gives all right-hand sides of equation (11.3.3.24) that possess the

given property; in the special case T ≡ 0, it becomes much simpler and

F = R−5/4Φ1

(
R−1/4y′x

)
+

2RR′′ −
(
R′)2

8R2
(y′x)

3. (11.3.3.35)

Remark 11.13. Of course, formula (11.3.3.33) contains (11.3.3.30), in which case the quadratic

first integral is a quadratic form of the linear first integral.

⊙ Literature for Section 11.3: P. J. Olver (1986), G. W. Bluman and S. C. Anco (2002), A. D. Polyanin and

V. F. Zaitsev (2003), N. H. Ibragimov (2010), V. F. Zaitsev and H. N. Huan (2013, 2014), V. F. Zaitsev and

L. V. Linchuk (2014, 2015).

11.4 Underdetermined Equations

11.4.1 Preliminary Remarks

Consider the differential relation

y(n)x = F
(
x, y, y′x, . . . , w,w

′
x, . . . , w

(n)
x

)
, (11.4.1.1)

where y(x) and w(x) are some (unknown) smooth functions of the independent variable x.

Relation (11.4.1.1) can be treated as an underdetermined differential equation or as a dif-

ferential constraint between y and w.

Underdetermined ordinary differential equations and systems of such equations arise

when one searches for exact solutions to nonlinear partial differential equations with the

methods of generalized or functional separation of variables as the original PDEs are re-

duced to an underdetermined system of ODEs. Monge seems to have been the first to

consider such systems when he was working on his geometric theory of PDEs (this is why

such equations are sometimes referred to as Monge equations). Below is an example that

illustrates such an ODE resulting from seeking generalized separable solutions to unsteady

Navier–Stokes equations.

Example 11.23. Consider the first-order equation

yw′
x − wy′x + k(y2 + w2) = 0 (11.4.1.2)

which relates y and w. We change to the new variables

y = ρ cos ξ, w = −ρ sin ξ,

where ρ = ρ(x) and ξ = ξ(x). As a result, we get the simple equation ξ′x = k. It follows that

y = ρ(x) cos(kx+ C), w = −ρ(x) sin(kx+ C), (11.4.1.3)

where ρ = ρ(x) is an arbitrary function and C is an arbitrary constant.

Interestingly, if w = w(x) in (11.4.1.2) was treated as a given function, the equation would be

a Riccati equation for y = y(x), whose general solution would be much more difficult to obtain. In

this case, the solution is given either in implicit form or by two relations

y2 + w2(x) = ρ2(x), w(x)/y = − tan(kx+ C),

which follow from (11.4.1.3).
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11.4.2 Factorization Principle

Let X be a linear operator of the form

X = Φ
(
x, y, w, y′x, w

′
x, . . .

) ∂

∂y
+Ψ

(
x, y, w, y′x, w

′
x, . . .

) ∂

∂w
. (11.4.2.1)

Operator (11.4.2.1) is a Lie–Bäcklund operator in the space of variables (x, y, w). The

functions Φ and Ψ, dependent on arbitrarily high-order derivatives, are called the coordi-

nates of this operator.

The operator

X
k
=

k∑

i=0

[
Di

x(Φ)
∂

∂y
(i)
x

+Di
x(Ψ)

∂

∂w(i)

]
, (11.4.2.2)

is called the kth prolongation of operator (11.4.2.1). Here, Dx is the total derivative opera-

tor defined by the formal series

Dx =
∂

∂x
+

∞∑

i=0

y(i+1)
x

∂

∂y
(i)
x

+

∞∑

i=0

w(i+1)
x

∂

∂w
(i)
x

.

The Lie–Bäcklund operator (11.4.2.1) is admitted by equation (11.4.1.1) if

X
n

[
y(n)x − F

(
x, y, w, y′x, w

′
x, . . . , y

(n−1)
x , w(n−1)

x , w(n)
x

)]∣∣
[y

(n)
x =F ]

= 0. (11.4.2.3)

The transformation Jk = Jk(x, y, w, . . . , y
(k)
x , w

(k)
x ) is called a kth-order differential

invariant of operator (11.4.2.1) by virtue of equation (11.4.1.1) if

X
k
[Jk]
∣∣
[y

(n)
x =F ]

= 0 (11.4.2.4)

and
∣∣∂Jk/∂y(k)x

∣∣+
∣∣∂Jk/∂w(k)

x

∣∣ 6= 0.

Let the underdetermined differential equation (11.4.1.1) admit operator (11.4.2.1) and

let Jk denote the set of functionally independent invariants of order not higher that k of

operator (11.4.2.1) by virtue of equation (11.4.1.1). The universal invariant is x = J0 ∈ Jk

for any k.

By definition, equation (11.4.1.1) is factorized to the system

G
(
x, z1, z

′
1x , . . . , z

(m1)
1x

, z2, z
′
2x , . . . , z

(m2)
2x

)
= 0,

zi = Hi

(
x, y, y′x, . . . , y

(r1)
x , w,w′

x, . . . , w
(r2)
x

)
, i = 1, 2,

(11.4.2.5)

with r1, r2,m1,m2 < n or the system

G
(
x, z, z′x, . . . , z

(m)
x

)
= 0,

z = H
(
x, y, y′x, . . . , y

(n−m)
x , w,w′

x, . . . , w
(n−m)
x

)
,

(11.4.2.6)

with 0 < m < n, if system (11.4.2.5) or (11.4.2.6) is a consequence of equation (11.4.1.1)

(in the sense that if y = y(x) and w = w(x) satisfy equation (11.4.1.1), they also satisfy

system (11.4.2.5) or (11.4.2.6)). These systems are called factor systems.

A factor system is a kind of Russian nesting doll in which the first equation is either

an ordinary differential equation of order < n (system (11.4.2.6)) or an underdetermined

differential equation of a reduced order (system (11.4.2.5)). The remaining equations of

system (11.4.2.5) and (11.4.2.6) also have a simpler structure than the original equation.
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THEOREM 1. Let the underdetermined differential equation (11.4.1.1) admit a Lie–

Bäcklund operator (11.4.2.1) having a low invariant

z = H
(
x, y, w, . . . , y(k)x , w(k)

x

)
∈ Jk (k 6 n).

1. If Dn−k
x (z)

∣∣
[y

(n)
x =F ]

∈ Jn−1, then equation (11.4.1.1) is factorized to the system of

two equations

z = H
(
x, y, w, . . . , y

(k)
x , w

(k)
x

)
,

z
(n−k)
x = G

(
x, z, . . . , z

(n−k−1)
x

)
.

2. If Dn−k
x (z)

∣∣
[y

(n)
x =F ]

∈ Jn \ Jn−1 and z∗ = H∗(x, y, w, . . . , y(n)x , w
(n)
x

)
is such that

z∗ ∈ Jn \ Jn−1 and the mappings x, z(0), . . . , z
(n−k)
x , z∗ are functionally indepen-

dent, then equation (11.4.1.1) reduces to the system of three equations

z = H
(
x, y, w, . . . , y

(k)
x , w

(k)
x

)
,

z∗ = H∗(x, y, w, . . . , y(n)x , w
(n)
x

)
,

z∗ = G
(
x, z, . . . , z

(n−k)
x

)
.

THEOREM 2. Let the underdetermined differential equation (11.4.1.1) admit a formal

operator (11.4.2.1) having two low invariants

zi = Hi

(
x, y, w, . . . , y(ki)x , w(ki)

x

)
∈ Jki , i = 1, 2,

of order ki 6 n. Then

1) if Dn−k1
x (z1)

∣∣
[y

(n)
x =F ]

∈ Jn−1

∣∣
[y

(n)
x =F ]

, then equation (11.4.1.1) can be represented

as the factor system

z1 = H1

(
x, y, w, . . . , y

(k1)
x , w

(k1)
x

)
,

z2 = H2

(
x, y, w, . . . , y

(k2)
x , w

(k2)
x

)
,

z
(n−k1)
1 = G

(
x, z1, . . . , z

(n−k1−1)
1x

, z2, . . . , z
(n−k2−1)
2x

)
,

for k2 < n,

z1 = H1

(
x, y, w, . . . , y

(k1)
x , w

(k1)
x

)
,

z
(n−k1)
1 = G

(
x, z1, . . . , z

(n−k1−1)
1x

)
,

for k2 = n;

2) if Dn−k1
x (z1)

∣∣
[y(n)=F ]

and Dn−k2
x (z2)

∣∣
[y(n)=F ]

∈ Jn \Jn−1, then equation (11.4.1.1)

is factorized to the system

z1 = H1

(
x, y, w, . . . , y

(k1)
x , w

(k1)
x

)
,

z2 = H2

(
x, y, w, . . . , y

(k2)
x , w

(k2)
x

)
,

z
(n−k1)
1 = G

(
x, z1, . . . , z

(n−k1−1)
1x

, z2, . . . , z
(n−k2)
2x

)
.

THEOREM 3. Let the underdetermined differential equation of order n (11.4.1.1)
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1) reduce to the ordinary differential equation

z
(n−k1)
1 = G

(
x, z1, z

′
1x , . . . , z

(m1)
1x

)

with the substitution

z1 = H1

(
x, y(x), w(x), . . . , y(k1)x (x), w(k1)

x (x)
)
, k1 < n,

where 0 6 m1 < n− k1;

2) reduce to the underdetermined differential equation

z
(n−k1)
1x

= G
(
x, z1, z

′
1x , . . . , z

(m1)
1x

, z2, z
′
2x , . . . , z

(m2)
2x

)

with a substitution of the form

z1 = H1

(
x, y(x), w(x), . . . , y

(k1)
x (x), w

(k1)
x (x)

)
, k1 < n,

z2 = H2

(
x, y(x), w(x), . . . , y

(k2)
x (x), w

(k2)
x (x)

)
, k2 < n,

∂z1

∂y
(k1)
x

6= 0, −1 < m1 < n− k1, 0 6 m2 6 n− k2.

Then the original equation admits a formal operator (11.4.2.1) such that all zi (i = 1, 2) are

its invariants: zi ∈ Jki .

11.4.3 Some Technical Elements. Examples

Consider the first-order underdetermined differential equation linear in the derivatives

y′x +G(x, y, w)w′
x + F (x, y, w) = 0 (11.4.3.1)

and let us look for a point infinitesimal operator admissible by equation (11.4.3.1) and

having the form

X = ξ(x, y, w) ∂x + η(x, y, w) ∂y + ζ(x, y, w) ∂w. (11.4.3.2)

Note that, unlike first-order ODEs, the invariance condition for underdetermined differen-

tial equations can be split into a system, because the independent variable w′
x arises.

The determining system consists of three equations, with the first one (the coefficient

of (w′
x)

2) satisfied identically and the other two expressed as

ηw − ηyG+G(ζw − ζyG) + F (ξw − ξyG) + ξGx + ηGy + ζGw = 0,

ηx − ηyF +G(ζx − ζyF ) + F (ξx − ξyF ) + ξFx + ηFy + ζFw = 0.

Let us require that the functions I1 = x and I2 = z = H(x, y, w) are invariants of operator

(11.4.3.2), so that the second invariant is independent of derivatives. To this end, we rewrite

operator (11.4.3.2) in the canonical form

X̃ = (η − ξy′x) ∂y + (ζ − ξw′
x) ∂w

and solve the characteristic equation

dy

η − ξy′x
=

dw

ζ − ξw′
x
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or, by virtue of the original equation (11.4.3.1),

dy

η + ξ(Gw′
x + F )

=
dw

ζ − ξw′
x

.

This equation must have the integral H(x, y, w) = C , so that Hy dy +Hw dw = 0. As a

result, the characteristic equation becomes

Hw(ξw
′
x − ζ) +Hy[η + ξ(Gw′

x + F )] = 0.

After splitting with respect to the independent variable w′
x, this equation gives two condi-

tions

Hw = GHy, η = ξF − ζG.

Substituting the second condition in both determining equations gives another condition

relating F and G:

Fw + FGy − FyG−Gx = 0.

This allows us to uniquely determine the coefficients of equation (11.4.3.1) in terms of the

invariant H:

F =
Hx

Hy
+

1

Hy
Φ(x,H), G =

Hw

Hy
. (11.4.3.3)

Thus, equation (11.4.3.1) is factorized to the system

z′x +Φ(x, z) = 0,

z = H(x, y, w),
(11.4.3.4)

if the coefficients of equation (11.4.3.1) satisfy conditions (11.4.3.3); furthermore, as one

can easily see, these conditions are necessary and sufficient.

If the first equation of system (11.4.3.4) has been integrated, the underdetermined dif-

ferential equation (11.4.3.1) reduces to a functional (not differential) equation, the second

equation of system (11.4.3.4).

It should be stressed once again that the obtained result is absolutely independent of

whether there are additional constraints between the variables y and w. One should only

bear in mind that if there is such a constraint, the quantity w′ must be replaced with its

value in terms of y and its derivatives.

Example 11.24. The underdetermined first-order differential equation

y′x +G(x)w′
x + f(x)y + g(x)w + h(x) = 0

with g(x) = G′(x) + f(x)G(x) admits the infinitesimal operator

X = G(x)∂y − ∂w

and is factorized to the system

z′x + f(x)z + h(x) = 0,

z = y +G(x)w.
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11.4.4 On Second-Order Equations

This section will look thoroughly into some of the results following from the general theo-

rems 1 to 3 as applied to second-order underdetermined differential equations.

THEOREM 4. For the canonical infinitesimal operator

X̂ =
[
η1(x, y, w) − ξ(x, y, w)y′x

]
∂y +

[
η2(x, y, w) − ξ(x, y, w)w′

x

]
∂w, (11.4.4.1)

admitted by the underdetermined second-order differential equation

y′′xx = F (x, y, w, y′x, w
′
x, w

′′
xx), (11.4.4.2)

to possess first-order differential invariants, it is necessary that

1) for ξ 6= 0, the equation be linear in the highest derivative of w, so that

F = f1w
′′
xx + f2, Fw′′

xx
6= 0, fi = fi(x, y, w, y

′
x, w

′
x), i = 1, 2, (11.4.4.3)

or

F = g1w
′
x + g2, Fw′

x
6= 0, gi = gi(x, y, w, y

′
x), i = 1, 2, (11.4.4.4)

with the last condition being also sufficient for the class of equations

y′′xx = F (x, y, w, y′x, w
′
x),

if the relation

η1g1x + (2η1 − ξy′x)y′xg1y + η2y
′
xg1w − η2g12+

+
[
η1x + (η1y − ξx)y′x − ξyy′x

2
]
y′xg1y′x +

(
η1x + η2wy

′
x + ξyy

′
x
2
)
g1+

+ (η1 − ξy′x)(g1y′xg2 − g1g2y′x − g2w)− ξg1g2 = 0 (11.4.4.5)

holds;

2) for ξ = 0, such invariants always exist.

However, as mentioned previously, what is important is not only the existence of differ-

ential invariants but also the dimensionality of the invariant basis admitted by the operator,

since it affects the structure of the system to which the original equation is reduced.

If the coordinate ξ in the operator (11.4.4.1) is zero, the invariant basis consists of

two universal invariants, including J0 = x, and one first-order differential invariant. If

the equation has the form (11.4.4.4) and condition (11.4.4.5) holds, the dimensionality

of the invariant basis admitted by operator (11.4.4.1) equals two, as the basis consists of

one invariant of the zeroth order J0 = x and one first-order differential invariant. This

case is remarkable because the factorization of the underdetermined differential equation

(11.4.4.1) reduces it to a first-order ordinary differential equation. If the structure of the

original equation satisfies condition (11.4.4.4), the invariant basis contains one universal

invariant J0 = x and no more than two first-order differential invariants; in addition, the

following theorem holds.
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THEOREM 5. For the canonical infinitesimal operator (11.4.4.1), with ξ 6= 0, admitted

by equation (11.4.4.2) to have two different first-order differential invariants, it is necessary

and sufficient that the right-hand side of equation (11.4.4.2) have the form (11.4.4.3) and

the functions f1 and f2 satisfy the relations

f1 =
η1 − ξy′x
η2 − ξw′

x

,

f1f2y′x + f2w′
x
− 2D(f1)

∣∣∣
y′′xx=f1w′′

xx+f2
= 0.

Significant restrictions on the structure of invariants of point operators lead one to con-

sider the Lie–Bäcklund operator; however, the algorithm for finding an admissible operator

becomes more complicated. In general, such an operator can be written as

X = exp

(∫
ζ1 dx

)
∂y + exp

(∫
ζ2 dx

)
∂w, (11.4.4.6)

where ζ1 and ζ2 can depend on x, y, and w and their derivatives of any order. For simplicity,

we will give the case ζi = ζi(x, y, w, y
′
x, w

′
x), i=1, 2, a detailed consideration. Let us write

out the determining equation for the underdetermined second-order differential equation

y′′xx = F (x, y, w, y′x, w
′
x, w

′′
xx) (11.4.4.7)

and operator (11.4.4.6):

[
ζ1x + y′xζ1y + w′ζ1w ++Fζ1y′x + w′′

xxζ1w′
x
+ ζ1

2 − ζ1Fy′x − Fy

]
−

−
[
(ζ2x + y′xζ2y + w′

xζ2w + Fζ2y′x + w′′
xxζ2w′

x
+ ζ2

2)Fw′′
xx
+

+ Fw′
x
ζ2 + Fw

]
exp

{∫
(ζ2 − ζ1) dx

}
= 0. (11.4.4.8)

In splitting equation (11.4.4.8), we must take into account the structure of the nonlocal

factor exp
{∫

(ζ2 − ζ1) dx
}

. If the integrand is a total derivative of some function, the

further reasoning is similar to that used in constructing the determining system for a point

operator. Otherwise, if the integrand is not a total derivative, equation (11.4.4.8) should first

be split with respect to the nonlocal variable. The invariant basis admitted by the operators

found in the latter case can be chosen so that each invariant depends on either x, y, y′ or

x,w,w′. The structure of the invariants of the basis affects the type of factorization of

equation (11.4.4.7).

Example 11.25. The underdetermined second-order differential equation

y′′xx = Cw′
x
2
+ (ψ1y + ψ2)y

′
x + (χ1w + χ2)w

′
x + 1

2 (ψ1
′ + ψ1α− ψ1ψ2)y

2+

+ (α′ + α2 − ψ2α)y + h(x,w), (11.4.4.9)

where ψ1, ψ2, χ1, χ2, and α are sufficiently smooth functions of x and C ∈ R, admits, under the

condition that 2Cw′
x + χ1w + χ2 6= 0, the Lie–Bäcklund operator

X = exp

[∫
(ψ1y + α)dx

]
∂y + exp

[
−
∫

χ2w
′
x + h2w

2Cw′
x + χ2w + χ3

dx

]
∂w.
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Apart from the universal invariant x, this operator has two low invariants (two first-order differential

invariants) using which, one can factorize the original equation to the system

z1 = y′x −
1

2
ψ1y

2 − αy,
z2 = Cw′

x
2 + χ1ww

′
x + χ2w

′ + h,

z1
′
x = (ψ2 − α)z1 + z2.

(11.4.4.10)

The outer equation in this system is an underdetermined first-order differential equation.

THEOREM 6. Equation (11.4.4.7) is factorized to the system

u = J1
1 (x, y, y

′
x),

v = J2
1 (x,w,w

′
x),

G(x, u, v, v′, u′) = 0,

where
∂J1

1 (x, y, y
′
x)

∂y′x
6= 0,

∂J2
1 (x,w,w

′
x)

∂w′
x

6= 0,

if and only if it admits operator (11.4.4.6) whose structural components ζ1 and ζ2 satisfy

the system

ζ1x + y′ζ1y + Fζ1y′x + (ζ1 − Fy′x)ζ1 − Fy = 0,

Fw′′
xx
ζ2x + Fw′′

xx
w′
xζ2w + Fw′′

xx
w′′
xxζ2w′

x
+ (Fw′

x
+ Fw′′

xx
ζ2)ζ2 + Fw = 0.

The nature of the admitted operator itself may suggest that, on the manifold in question,

the operator has only one first-order differential invariant and one universal invariant x.

Then, according to Item 1 of Theorem 1, the original equation reduces to a system of two

equations. It follows that the outer equation is surely a first-order ordinary differential

equation; on solving this equation, we are guaranteed to reduce the order of the original

equation by one.

Example 11.26. The underdetermined second-order differential equation

yy′′xx + w′′
xx + (y′x)

2 + (w′
x)

2 + (yy′x + w)w′
x = 0, (11.4.4.11)

admits the nonlocal operator

X =
∂

∂w
−
[
y−1

∫
(yy′x + w′

x + w) dx

]
∂

∂y
.

The factor system has the form

z = ew(yy′x + w′
x + w − 1),

z′x = 0.

Integrating the last equation yields a first integral of the original equation:

ew(yy′x + w′
x + w − 1) = C. (11.4.4.12)

It follows that any underdetermined second-order differential equation (11.4.4.11) can be reduced

to the underdetermined first-order equation (11.4.4.12).
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Example 11.27. Let us look at the underdetermined differential equation

y′′xx = C(y′x)
2 + (ψ1y − Cψ2w + ψ3)y

′
x + ψ2w

′
x +H1w +H0,

where C 6= 0, ψ1, ψ2, and ψ3 are sufficiently smooth functions of x, ψ2 6= 0, and H1 and H0 are

given by

H0 = − 1

C2α1
2

{
α2 exp(Cy) +

[
C(ψ1y + ψ3) + ψ1

]
(Cα3 + α1

′)α1

+
[
C(ψ1

′y + ψ3
′) + ψ1

′]α1
2 + C(α1

′′α1 + Cα1
′α3 + Cα1α3

′ + C2α3
2)
}
,

H1 =
ψ2α1

′ + ψ2
′α1 + Cψ2α3

α1
,

with αi =αi(x), i=1, 2, 3, and α1 6=0. Using the classical algorithm for solving a direct problem,

we find a family of admissible point operators whose canonical form is

X̂ =
(
η1 − ξy′x

)
∂y +

(
η2 − ξw′

x

)
∂w,

and the coordinates are

ξ = α1,

η1 = g exp(Cy) + α3,

η2 =
(g exp(Cy) + α3)Cψ2w −N − (H1w +H0)α1

ψ2
,

where N is given by

N =
1

α1

{[
(ψ1y + ψ3)α1g + α1

′g − α1g
′ + Cgα3

]
exp(Cy)

+ (ψ1y + ψ3)α1α3 + α1
′α3 − α1α3

′ + Cα3
2
}
,

and g = g(x). The basis of the zeroth- and first-order invariants consists (regardless of g and,

in particular, for g ≡ 0) of two functions: the universal invariant x and one differential invariant.

Therefore, the equation is factorized to the system

z =
C2α1(y

′
x − ψ2w) + Cψ1α1y + (ψ1 + Cψ3)α1 + C(Cα3 + α′

1)

C2α1 exp(Cy)
,

z′x +
α′
1 + Cα3

α1
z +

α2

C2α2
1

= 0.

The second equation involves only one dependent variable, z, with respect to which it is a first-order

linear differential equation, which is always solvable.

The admissible Lie algebra is infinite-dimensional, consisting of a one-dimensional subalge-

bra L1 and an infinite-dimensional subalgebra L∞ defined by the operators

X̂1 =
(
α3 − α1y

′
x

)
∂y +

[
(Cψ2w − ψ1y − ψ3)α1α3 − α′

1α3 + α1α
′
3 − Cα2

3

ψ2α1
−

− (H1w +H0)α1

ψ2
− α1w

′
x

]
∂w,

and

X̂∞ = g exp(Cy)∂y +

[
(Cψ2w − ψ1y − ψ3)α1g − α′

1g + α1g
′ − Cgα3

]
exp(Cy)

ψ2α1
∂w.
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The factorization obtained using the operator X̂1 is specified above. The invariant basis of the

second operator, X̂∞, consists, unlike X̂1, of three invariants: two universal invariants and one

differential invariant. The system to which the original equation is reduced has the form

z1 =
Cgy′x + g′

Cg exp(Cy)
,

z2 =
Cα1g(ψ1y − Cψ2w + ψ3) + ψ1α1g + C2α3g − Cα1g

′ + Cα′
1g

C2ψ2α1g exp(Cy)
,

z′1 + ψ2z
′
2 +

Cψ2α3 + ψ2α
′
1 + ψ′

2α1

α1
z1 +

Cα3 + α′
1

α1
z2 +

α2

C2α2
1

= 0.

With the change of variable z = z1 + ψ2z2, we can reduce the original equation to a first-order

ordinary differential equation, which is obtained by using the operator X̂1.

⊙ Literature for Section 11.4: L. V. Linchuk (2001), V. I. Elkin (2009, 2010), A. D. Polyanin and V. F. Zaitsev

(2012), V. F. Zaitsev and L. V. Linchuk (2014), A. D. Polyanin and A. I. Zhurov (2016c).
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Chapter 12

Discrete-Group Methods

12.1 Discrete Group Method for Point Transformations

12.1.1 Classes of ODEs with Parameters. Discrete Group of Point
Transformations

Consider transformations of the class of ordinary differential equations

y(n)x = F
(
x, y, . . . , y(n−1)

x , a
)
, (12.1.1.1)

whose elements are uniquely defined by a vector of essential parameters a.

Any set of invertible transformations

x = f(t, u), y = g(t, u) (ftgu − fugt 6= 0), (12.1.1.2)

mapping each equation of class (12.1.1.1) into some (other) equation of the same class

u
(n)
t = F

(
t, u, . . . , u

(n−1)
t ,b

)
, (12.1.1.3)

and containing the identical transformation is called a discrete point group of transfor-

mations admitted by the class (12.1.1.1). Transformation (12.1.1.2) maps any solution of

equation (12.1.1.1) to a solution of equation (12.1.1.3). Therefore, knowing the discrete

group of transformations for some class of equations and having a set of solvable equations

of this class, one can construct new solvable cases.

Point transformations (12.1.1.2) can be found by a direct method—namely, if one sub-

stitutes an arbitrary transformation of the form (12.1.1.2) into equation (12.1.1.1) and im-

poses condition (12.1.1.3), one arrives at a determining equation containing partial deriva-

tives up to order n of the unknown functions f and g and having variable coefficients

depending on x, y, y′x, . . . , y
(n−1)
x . Since the functions f and g do not depend on the deriva-

tives, the determining equation can be “split” with respect to the “independent” variables

y′x, . . . , y
(n−1)
x , and we obtain an overdetermined system which is nonlinear, in contrast to

that obtained by the Lie method (see Section 11.1.1).

12.1.2 Illustrative Examples

Example 12.1. For second-order equations

y′′xx = F (x, y, y′x, a), (12.1.2.1)

355
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the substitution of (12.1.1.2) into (12.1.2.1) yields

(ftgu − gtfu)u′′tt + (fuguu − gufuu)(u′t)3

+ (ftguu − gtfuu + 2fugut − 2gufut)(u
′
t)

2

+ (fugtt − guftt + 2ftgut − 2gtfut)u
′
t + ftgtt − gtftt

= (ft + fuu
′
t)

3F
(
f, g,

gt + guu
′
t

ft + fuu′t
, a
)
. (12.1.2.2)

Let us require that the transformed equation (12.1.2.2) belong to the class (12.1.2.1), i.e.,

u′′tt = F (t, u, u′t, b). (12.1.2.3)

Condition (12.1.2.3) imposed on the determining equation (12.1.2.2), i.e., the replacement of u′′tt by

the right-hand side of equation (12.1.2.3), leads us to the relation

(ftgu − gtfu)F (t, u, u′t, b) + (fuguu − gufuu)(u′t)3

+ (ftguu − gtfuu + 2fugut − 2gufut)(u
′
t)

2

+ (fugtt − guftt + 2ftgut − 2gtfut)u
′
t + ftgtt − gtftt

= (ft + fuu
′
t)

3F
(
f, g,

gt + guu
′
t

ft + fuu′t
, a
)
, (12.1.2.4)

which contains the “independent” variable u′t. Expanding the function F into a series in powers of

u′t, we can represent (12.1.2.4) in the form

∞∑

k=0

Pk

(
x, y, [f ], [g]

)
(u′t)

k = 0, (12.1.2.5)

where the symbols [f ] and [g] indicate dependence on the functions f , g and their partial derivatives

involved in (12.1.2.4). The sum in (12.1.2.5) is finite if F is a polynomial with respect to the third

variable [for a polynomial of degree n ≥ 4, both sides of the equation must be first multiplied by

(ft + fuu
′
t)

n−3]. Condition (12.1.2.5) is satisfied if the following equations hold:

Pk = 0, k = 0, 1, 2, . . .

Example 12.2. Consider a special case of equation (12.1.2.1) with the right-hand side indepen-

dent of the derivative y′x:

y′′xx = F (x, y, a). (12.1.2.6)

Relation (12.1.2.4) has the form:

(ftgu − gtfu)F (t, u, b) + (fuguu − gufuu)(u′t)3 + (ftguu − gtfuu + 2fugut − 2gufut)(u
′
t)

2

+ (fugtt − guftt + 2ftgut − 2gtfut)u
′
t + ftgtt − gtftt = (ft + fuu

′
t)

3F (f, g, a).

In this case, the sum (12.1.2.5) is finite and the determining system has the form:

fuguu − gufuu = f3
uF (f, g, a),

ftguu − gtfuu + 2fugut − 2gufut = 3ftf
2
uF (f, g, a),

fugtt − guftt + 2ftgut − 2gtfut = 3f2
t fuF (f, g, a),

ftgtt − gtftt + (ftgu − gtfu)F (t, u, b) = f3
t F (f, g, a).

(12.1.2.7)

It can be shown that for ftfugtgu 6= 0, solving system (12.1.2.7) is equivalent to solving the original

equation (12.1.2.6).

Consider the case fu = 0. In this case, the first equation of the system holds identically and the

system becomes

f ′
tguu = 0,

guftt − 2ftgut = 0,

ftgtt − gtftt + ftguF (t, u, b) = f3
t F (f, g, a).

(12.1.2.8)
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Since f ′
t 6= 0, the first two equations yield

g(t, u) = T (t)u+Θ(t), f ′
t = C[T (t)]2. (12.1.2.9)

Substituting (12.1.2.9) into the last equation of system (12.1.2.8) and “splitting” the resulting rela-

tion with respect to powers of the “independent” variable u, we obtain a new system of (ordinary)

differential equations. Solving this system, we find the unknown functions T and Θ, and finally, the

desired discrete group of transformations. In order to give calculation details, one has to know the

specific structure of the function F (x, y), for in the general case it was only shown that any discrete

point group of transformations of equation (12.1.2.6) for fu = 0 consists of Kummer–Liouville

transformations (12.1.2.9).

Example 12.3. Consider the generalized Emden–Fowler equation:

y′′xx = Axnym(y′x)
l. (12.1.2.10)

Here, a = {n, m, l} is the vector of essential parameters, and A is an unessential parameter (it can

be made equal to unity by scaling the independent variable and the unknown function).

1◦. First, we note that equation (12.1.2.10) admits a discrete group of transformations determined

by the hodograph transformation, i.e., by passing to the inverse function:

x = u, y = t, where u = u(t). (12.1.2.11)

This transformation is a consequence of the invariance of equation (12.1.2.10) with respect to the

transformation x←→ y, n←→m, l←→ 3− l,A←→−A (note that the hodograph transformation

changes the sign of the unessential parameterA). Denoting the transformation (12.1.2.11) by F , let

us schematically represent its action on the parameters of the equation as follows:

{n, m, l} ← − − → {m, n, 3− l} transformation F . (12.1.2.12)

Double application of the transformation F yields the original equation.

2◦. For l = 0, equation (12.1.2.10) is of the class (12.1.2.5), and the last equation of system (11)

becomes

[TT ′′
tt − 2(T ′

t)
2]u+ TΘ′′

tt − 2T ′
tΘ

′
t +BT 2tνuµ = AC2(Tu+Θ)mfn, (12.1.2.13)

where ν, µ, and B are the parameters of the transformed equation u′′tt = Btνuµ, and

f(t) = C

∫
[T (t)]2dt.

Letm, µ 6=0, 1, 2. Then relation (12.1.2.13) is possible only if Θ(t)≡ 0. Splitting with respect

to powers of u leads us to the system:

TT ′′
tt − 2(T ′

t)
2 = 0,

Btν = AC2Tm+3fn.
(12.1.2.14)

By integration we find that T = t−1, f = t−1 (to within unessential coefficients). Thus, we arrive

at the transformation

x = t−1, y = t−1u, where u = u(t). (12.1.2.15)

Denoting the transformation (12.1.2.15) by H, let us schematically represent its action on the pa-

rameters of the equation:

{n, m, 0} ←−−−−→ {−n−m− 3, m, 0} transformationH. (12.1.2.16)

Double application of the transformationH yields the original equation.
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3◦. Let l = 0 and m = 2. Then, µ = 2 and the splitting procedure for equation (12.1.2.13) yields

the system of three equations:

TT ′′
tt − 2(T ′

t)
2 = 2AC2T 6Θfn,

TΘ′′
tt − 2T ′

tΘ
′
t = AC2T 5Θ2fn,

Btν = AC2T 5fn.

Its solution gives us the transformation

x = tr, y = tku+ αts transformation of the variables, u = u(t);

{n, 2, 0} ←−−−−→ {ν, 2, 0} transformation of the vector of essential parameters;

where we use the notation:

r = (8n2 + 40n+ 49)−1/2, k =
r − 1

2
, ν =

1

2
[r(2n+ 5)− 5],

s = −r(n+ 2), α =
(n+ 2)(n+ 3)

A
.

(12.1.2.17)

Example 12.4. Likewise, for the more general class of equations

y′′xx = f(x)g(y)h(y′x)

we find two transformations of the variables:

F : {f, g, h} ← − − → {g, f, −(y′x)3h(1/y′x)} transformation (12.1.2.11);

H : {f, ym, 1} ←−−−−→ {t−m−3f(t−1), ym, 1} transformation (12.1.2.15).

⊙ Literature for Section 12.1: V. F. Zaitsev and A. D. Polyanin (1993, 1994), A. D. Polyanin and V. F. Zaitsev

(2003).

12.2 Discrete Group Method Based on RF-Pairs

12.2.1 General Description of the Method. First and Second RF-Pairs

The direct method (see Section 12.1) is unsuitable for finding nonpoint transformations of

second-order equations (i.e., transformations containing derivatives), since the determin-

ing equation cannot be split into equations forming an overdetermined system. There-

fore, instead of searching for Bäcklund transformations in the form of arbitrary functions

x = f(t, u, u′t), y = g(t, u, u′t), one uses the superposition of some “standard” transforma-

tion containing the derivative and a point transformation which can be found by the direct

method. The “standard” dependence on the derivative can be introduced by means of an

RF-pair, which amounts to a transformation of successively increasing and decreasing the

order of the equation (this transformation is not equivalent to the identity transformation).

An additional point-transformation is necessary, since the equation obtained by an RF-pair

is usually outside the original class.

1◦. Suppose that any equation of the original class can be solved for the independent vari-

able x:

F (y, y′x, y
′′
xx) = x.

Termwise differentiation of this equation with respect to x yields the following autonomous

equation:
∂F

∂y
y′x +

∂F

∂y′x
y′′xx +

∂F

∂y′′xx
y′′′xxx = 1,

whose order can be reduced with the substitution y′x = z(y). This pair of transformations

is called a first RF-pair.
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2◦. Suppose that any equation of the original class can be solved for the dependent vari-

able y:

F (x, y′x, y
′′
xx) = y.

Then, termwise differentiation of this equation with respect to x brings us to the following

equation which does not explicitly contain y:

∂F

∂x
+
∂F

∂y′x
y′′xx +

∂F

∂y′′xx
y′′′xxx = y′x.

The order of this equation can be reduced by means of the substitution y′x = z(x). This

pair of transformations is called a second RF-pair.

Table 12.1 lists the main Bäcklund transformations for second-order differential equa-

tions, which are useful in conjunction with point transformations in searching for an equa-

tion of a given class.

TABLE 12.1

Main Bäcklund transformations for second-order differential equations

No. Original equation
Algebraically transformed

(equivalent) equation,

differentiated w.r.t. x

New

variables
Resulting equation

1 F (x, y, y′x, y
′′
xx) = 0 Φ(y, y′x, y

′′
xx) = x w(y) = y′x w d

dy
Φ(y, w,ww′

y) = 1

2 F (x, y, y′x, y
′′
xx) = 0 Φ(x, y′x, y

′′
xx) = y w(x) = y′x

d
dx

Φ(x,w,w′
x) = w

3
F
(
xnym, xkys,

xy′

x
y
,
x2y′′

xx
y

)
= 0

1
xkys Φ

(
xnym,

xy′

x
y
,
x2y′′

xx
y

)
= 1

z = xnym

w =
xy′

x
y

z(mw + n) dΦ
dz

= (sw + k)Φ,

where Φ = Φ(z, w, v),
v = z(mw + n)w′

z + w2 − w

4
F
(
xneαy, xmeβy,

xy′x, x
2y′′xx

)
= 0

1
xmeβy Φ

(
xneαy,

xy′x, x
2y′′xx

)
= 1

z = xneαy

w = xy′x

z(αw + n) dΦ
dz

= (βw +m)Φ,

where Φ = Φ(z, w, v),
v = z(αw + n)w′

z − w

5
F
(
eαxyn, eβxym,

y′

x
y
,
y′′

xx
y

)
= 0

1
eβxym Φ

(
eαxyn,

y′

x
y
,
y′′

xx
y

)
= 1

z = eαxyn

w =
y′

x
y

z(nw + α) dΦ
dz

= (mw + β)Φ,

where Φ = Φ(z, w, v),
v = z(nw + α)w′

z + w2

Remark 12.1. To look for equations of a given class listed in Table 12.1, one can use the

Bäcklund transformations in conjunction with point transformations and contact transformations

described in Section 1.9; see Example 12.8 for a similar combination of transformations as well as

the Legendre transformation.

12.2.2 Illustrative Examples

Example 12.5. Consider transformations of the class of generalized Emden–Fowler equations:

y′′xx = Axnym(y′x)
l. (12.2.2.1)

This class will be briefly denoted by the vector of essential parameters {n, m, l}. Application of

the first RF-pair transforms this equation to

z′′yy = (l − 1)z−1(z′y)
2 +my−1z′y + nA

1
n y

m
n z

l−n−1
n (z′y)

n−1
n . (12.2.2.2)
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Now we have to find a point transformation that maps class (12.2.2.2) into class (12.2.2.1) (with

another vector of parameters):

u′′tt = Btνuµ(u′y)
λ. (12.2.2.3)

Note that in this case, the desired transformation does not map the given class into itself as in

Section 12.1, but is a mapping of the equation classes (12.2.2.2) −→ (12.2.2.1). Nevertheless, the

method for finding transformations

y = f(t, u), z = g(t, u) (ftgu − fugt 6= 0)

is completely the same and involves solving the determining equation:

(ftgu − gtfu)Btνuµ(u′t)λ + (fuguu − gufuu)(u′t)3 + (ftguu − gtfuu + 2fugut − 2gufut)(u
′
t)

2

+ (fugtt − guftt + 2ftgut − 2gtfut)u
′
t + ftgtt − gtftt =

l− 1

g
(ft + fuu

′
t)(gt + guu

′
t)

2

+
m

f
(ft + fuu

′
t)

2(gt + guu
′
t) + nA

1
n f

m
n g

l−n−1
n (ft + fuu

′
t)

2n+1
n (gt + guu

′
t)

n−1
n .

(12.2.2.4)

Following the procedure set out in Section 12.1, we omit the general case ftfugtgu 6=0 and consider

transformations for which at least one of the above partial derivatives is zero.

1◦. Case fu = 0, gt = 0. Equation (12.2.2.4) has the form

Bftgut
νuµ(u′t)

λ + ftguu(u
′
t)

2 − gufttu′t =
l − 1

g
ft(gu)

2(ut)
2

+
m

f
(ft)

2guu
′
t + nA

1
n f

m
n g

l−n−1
n (ft)

2n+1
n (gu)

n−1
n (ut)

n−1
n .

and for n 6= 0, −1, λ 6= 1, 2 can easily be solved by splitting,

f = t
1

m+1 , g = u
1

l−2 .

As a result, using an RF-pair, we obtain:

x = (u′t)
1
n , y = t

1
m+1 , y′x = u

1
2−l transformation of variables;

{n, m, l} 7−−−−−→
{
− m

m+ 1
,

1

l − 2
,
n− 1

n

}
transformation of parameters,

(12.2.2.5)

where u = u(t).

2◦. Case ft = 0, gu = 0. Similar calculations bring us to the formulas:

x = (u′t)
− 1

n , y = u
1

m+1 , y′x = t
1

2−l transformation of variables;

{n, m, l} 7−−−−−→
{ 1

1− l , −
n

n+ 1
,
2m+ 1

m

}
transformation of parameters.

(12.2.2.6)

Transformation (12.2.2.6) can be obtained by successive application of transformation (12.2.2.5)

and the hodograph transformation F (see Example 12.3, Item 1◦).

The inverse transformations have a similar structure. For instance, the inverse of transformation

(12.2.2.5) can be written (after changing notation) as follows:

x = u
1

n+1 , y = (u′t)
− 1

m , y′x = t
1

1−l , where u = u(t). (12.2.2.7)

Denoting the transformation (12.2.2.7) by G, let us schematically represent its action on the param-

eters of the equation:

{n, m, l} 7−−−−−→
{ 1

1− l , −
n

n+ 1
,
2m+ 1

m

}
transformation G. (12.2.2.8)
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Figure 12.1: Parameters of the original and the transformed equations of the form (12.2.2.1)

are obtained by superposition of the transformations G and F .

Applying the transformation G three times, we obtain the original equation.

It can be shown that all transformations which can be found from equation (12.2.2.4), without

additional restrictions on the parameters of the original and the transformed equations, are obtained

by superposition of the transformations G and F (see Example 12.3, Item 1◦), which form a group

of order 6. The parameters of these equations are given in Figure 12.1.

Example 12.6. Suppose that l = 0 in equation (12.2.2.1). Then, on the class of Emden–Fowler

equations

y′′xx = Axnym (briefly denoted by {n,m, 0} ), (12.2.2.9)

one can define the transformationH (see Example 12.3, Item 2◦). Therefore, in this case, the group

considered in the previous example is prolonged to a group of order 12 (see Figure 12.2).

This prolongation takes place each time the third component of the parameter vector becomes

equal to zero. This happens, for instance, if n = 1 in equation (12.2.2.9). In this case, the order of

the group is equal to 24 (see Figure 12.3).

Example 12.7. The class of second-order equations

y′′xx = f(x)g(y)h(y′x) (12.2.2.10)

admits a discrete group of transformations similar to that for the generalized Emden–Fowler equa-

tion. Most simply, this group can be obtained by inverting the transformation (12.2.2.6). Thus, we

seek the parameters of the transformation as functions of a single variable,

x = ϕ(u′t), y = ψ(u), y′x = χ(t).

Introducing a point generator F (see Example 12.3, Item 1◦), we find a discrete group of trans-

formations relating the equations shown in Figure 12.4. The functions f1(x1), g1(y1), h1(y
′
x1
)

determine the original equation, while the corresponding functions for the transformed equations,

fk(xk), gk(yk), hk(y
′
xk
) with k = 2, 3, are determined by the parametric formulas:

f2(x2) = w1, x2 =

∫
dw1

h1(w1)
,

g2(y2) =
1

f1(x1)
, y2 =

∫
f1(x1) dx,

h2(w2) = −
1

[g1(y1)]3
dg1
dy1

, w2 =
1

g1(y1)

(12.2.2.11)
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Figure 12.2: Parameters of the original equation (12.2.2.9) and the transformed general-

ized Emden–Fowler equations of the form (12.2.2.1) are obtained by superposition of the

transformations G, F , and H.

and

f3(x3) =
1

g1(y1)
, x3 =

∫
g1(y1) dy1,

g3(y3) =
1

w1
, y3 =

∫
w1 dw1

h1(w1)
,

h3(w3) =
df1
dx1

, w3 = f1(x1),

(12.2.2.12)

where wk = y′xk
, k = 1, 2, 3.

The above example enables us to eliminate “singular points” of the group of transformations

defined by (12.2.2.7) for n = −1, m = −1, l = 1, 2. For these values of the parameters, the form

(12.2.2.10) and the transformations (12.2.2.11), (12.2.2.12) should be used.

⊙ Literature for Section 12.2: V. F. Zaitsev and A. D. Polyanin (1993, 1994), A. D. Polyanin and V. F. Zaitsev

(2003), V. F. Zaitsev, L. V. Linchuk, and A. V. Flegontov (2014).
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Figure 12.3: Parameters of the original equation (12.2.2.9) with n = 1 and the transformed

Emden–Fowler equations of the form (12.2.2.1) are obtained by superposition of the trans-

formations G, F , and H.

Figure 12.4: Parameters of the original and the transformed equations of the form

(12.2.2.10) are obtained by superposition of the transformations G and F .
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12.3 Discrete Group Method Based on the Inclusion

Method

To construct generators admitted by a certain class of ODEs, one can take advantage of

the inclusion method. It was used above (Example 12.7) to extend the group admitted by

the class of generalized Emden–Fowler equations to a wider class (12.2.2.10). Let us look

at the reverse situation: suppose we study a class of equations DE1, admitting a discrete

group G1, which is enclosed in another class, DE2, admitting a known group G2 such that

part of its generators are not contained in G1. Then, there is a possibility (not guaranteed)

that some combination of the generators of G2 will be closed on class DE1.

Example 12.8. It is clear that the class of generalized Emden–Fowler equations is enclosed in

the four-parameter class

y′′xx = Axnym(y′x)
l
(
xy′x − y

)k
,

whose element will be denoted [n,m, l, k]. The generators F and H are closed on this class, but

the generator G is not. However, an additional generator L can be introduced using the tangential

Legendre transformation:

F : x = u, y = t, [n,m, l, k] −→ [m,n, 3−l−k, k],
H: x = 1/t, y = u/t, [n,m, l, k] −→ [−n−m−3,m, k, l],
L: x = u′t, y = tu′t − u, [n,m, l, k] −→ [−l,−k,−n,−m].

The structure of the group becomes obvious if we use the minimal group code (minimal basis of the

group) and introduce the new generator P = HL:

P : x =
1

u′t
, y =

tu′t − u
u′t

, [n,m, l, k] −→ [−k,−l, n+m+3,−m].

Then P6 = E and we obtain a group of order 12.

Obviously, for k=0 andm+n+3=0, the graph of the group will have two new vertices, which

correspond to generalized Emden–Fowler equations, with the transformationP3≡Q defining a new

partial generator on the class concerned:

Q: x = − u′t
tu′t − u

, y =
1

tu′t − u
, {−n−m−3,m, l} −→ {−l, l−3,m+3}.

⊙ Literature for Section 12.3: V. F. Zaitsev and A. D. Polyanin (1993, 1994), A. D. Polyanin and V. F. Zaitsev

(2003), O. V. Zaitsev and Z. N. Khakimova (2014), V. F. Zaitsev, L. V. Linchuk, and A. V. Flegontov (2014).
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Chapter 13

First-Order Ordinary
Differential Equations

13.1 Simplest Equations with Arbitrary Functions

Integrable in Closed Form

◆ No special cases of equations 13.1.1–13.1.5 for specific functions f , f0, f1, fn, and g
are discussed in this book; such cases can readily be recognized by the appearance of

equations investigated, and the solution can be obtained using the general formulas given

in Section 13.1.

13.1.1 Equations of the Form y′

x = f(x)

Solution:† y =

∫
f(x) dx+ C .

13.1.2 Equations of the Form y′

x = f(y)

Solution: x =

∫
dy

f(y)
+ C .

Particular solutions: y = Ak, where Ak are roots of the algebraic (transcendental) equation

f(Ak) = 0.

13.1.3 Separable Equations y′

x = f(x)g(y)

Solution:

∫
dy

g(y)
=

∫
f(x) dx+ C .

Particular solutions: y = Ak, where Ak are roots of the algebraic (transcendental) equation

g(Ak) = 0.

Remark 13.1. The equation of the form f1(x)g1(y)y
′
x = f2(x)g2(y) is reduced to the form

13.1.3 by dividing both sides by f1g1.

†Hereinafter we shall often use the term “solution” to mean “general solution.”

367
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13.1.4 Linear Equation g(x)y′

x = f1(x)y + f0(x)

Solution:

y = CeF + eF
∫
e−F f0(x)

g(x)
dx, where F (x) =

∫
f1(x)

g(x)
dx.

13.1.5 Bernoulli Equation g(x)y′

x = f1(x)y + fn(x)y
n

Here, n is an arbitrary number. The substitution w(x) = y1−n leads to a linear equation:

g(x)w′
x = (1− n)f1(x)w + (1− n)fn(x).

Solution:

y1−n = CeF + (1− n)eF
∫
e−F fn(x)

g(x)
dx, where F (x) = (1 − n)

∫
f1(x)

g(x)
dx.

13.1.6 Homogeneous Equation y′

x = f(y/x)

The substitution u(x) = y/x leads to a separable equation: xu′x = f(u)− u.

Solution:

∫
du

f(u)− u = ln |x|+ C .

Particular solutions: y=Akx, whereAk are roots of the algebraic (transcendental) equation

Ak − f(Ak) = 0.

13.2 Riccati Equation g(x)y′
x = f2(x)y

2+ f1(x)y+ f0(x)

13.2.1 Preliminary Remarks

For f2 ≡ 0, we obtain a linear equation (see Section 13.1.4); and for f0 ≡ 0, we have a

Bernoulli equation (see Section 13.1.5 with n= 2), whose solutions were given previously.

Below we discuss equations with f0f2 6≡ 0.

1◦. Given a particular solution y0 = y0(x) of the Riccati equation, the general solution can

be written as:

y=y0(x)+Φ(x)

[
C−
∫
Φ(x)

f2(x)

g(x)
dx

]−1

, Φ(x)=exp

{∫ [
2f2(x)y0(x)+f1(x)

] dx
g(x)

}
.

To the particular solution y0(x) there corresponds C =∞.

Often only particular solutions will be given for the specific equations presented below

in Sections 13.2.2–13.2.8. The general solutions of these equations can be obtained by the

above formulas.

2◦. The substitution

u(x) = exp
(
−
∫

f2
g
y dx

)

reduces the Riccati equation to a second-order linear equation:

f2g
2u′′xx + g

[
f2g

′
x − g(f2)′x − f1f2

]
u′x + f0f

2
2u = 0.

The latter often may be easier to solve than the original Riccati equation. Specific second-

order linear equations are outlined in Section 13.2.
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13.2.2 Equations Containing Power Functions

◮ Equations of the form g(x)y′x = f2(x)y
2 + f0(x).

1. y′x = ay2 + bx+ c.

For b = 0, we have a separable equation of the form 13.1.2. For b 6= 0, the substitution

bt = bx+ c leads to an equation of the form 13.2.2.4: y′t = ay2 + bt.

2. y′x = y2 − a2x2 + 3a.

Particular solution: y0 = ax− x−1.

3. y′x = y2 + ax2 + bx+ c.

This is a special case of equation 13.2.2.27 with α = 0 and β = 0.

4. y′x = ay2 + bxn.

Special Riccati equation, n is an arbitrary number.

Solution: y = − 1

a

w′
x

w
, where w(x) =

√
x
[
C1J 1

2k

( 1
k

√
ab xk

)
+ C2Y 1

2k

( 1
k

√
ab xk

)]
,

k = 1
2 (n+ 2); Jm(z) and Ym(z) are Bessel functions, n 6= −2. For the case n = −2, see

equation 13.2.2.13.

5. y′x = y2 + anxn−1 − a2x2n.

Particular solution: y0 = axn.

6. y′x = ay2 + bx2n + cxn−1.

For the case n = −1, see equation 13.2.2.13. For n 6= −1, the transformation ξ =
1

n+ 1
xn+1, η= yx−n leads to an equation of the form 13.2.2.38: ξη′ξ+aξη

2+
n

n+ 1
η=

bξ +
c

n+ 1
.

7. y′x = axny2 + bx−n−2.

Solution:
√
ab lnx =

∫
du

u2 + βu+ 1
+C , where u =

√
a

b
xn+1y, β =

n+ 1√
ab

.

8. y′x = axny2 + bxm.

1◦. For n 6=−1, the substitution ξ = xn+1 leads to a Riccati equation of the form 13.2.2.4:

y′ξ =
a

n+ 1
y2 +

b

n+ 1
ξ
m−n
n+1 .

2◦. For n = −1 and m 6= −1, the transformation ζ = xm+1, w = −1/y leads to a Riccati

equation of the form 13.2.2.4: w′
ζ =

b

m+ 1
w2 +

a

m+ 1
ζ −1.

3◦. For n = m = −1, the original equation is a separable equation. In this case we have

the solution: ln |x| =
∫

dy

ay2 + b
+ C .

9. y′x = y2 + k(ax+ b)n(cx+ d)−n−4.

The transformation ξ =
ax+ b

cx+ d
, u =

1

∆
[(cx+ d)2y + c(cx+ d)], where ∆ = ad− bc,

leads to an equation of the form 13.2.2.4: u′ξ = u2 + k∆−2ξn.
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10. y′x = axny2 + bmxm−1 − ab2xn+2m.

Particular solution: y0 = bxm.

11. y′x = (ax2n + bxn−1)y2 + c.

The substitution y =−1/w leads to an equation of the form 13.2.2.6: w′
x = cw2+ax2n+

bxn−1.

12. (a2x+ b2)(y
′

x + λy2) + a0x+ b0 = 0.

The substitution λy = u′x/u leads to a second-order linear equation of the form 14.1.2.108:

(a2x+ b2)u
′′
xx + λ(a0x+ b0)u = 0.

13. x2y′x = ax2y2 + b.

Solution: y =
λ

x
− x2aλ

( ax

2aλ+ 1
x2aλ + C

)−1
, where λ is a root of the quadratic

equation aλ2 + λ+ b = 0.

14. x2y′x = x2y2 − a2x4 + a(1 − 2b)x2 − b(b+ 1).

Particular solution: y0 = ax+ bx−1.

15. x2y′x = ax2y2 + bxn + c.

The substitution w = xy+A, where A is a root of the quadratic equation aA2−A+ c= 0,

leads to an equation of the form 13.2.2.35: xw′
x = aw2 + (1− 2aA)w + bxn.

16. x2y′x = x2y2 + ax2m(bxm + c)n +
1

4
(1 − n2).

The transformation ξ = bxm + c, w =
1

bm
x1−my +

1−m
2bm

x−m leads to an equation of

the form 13.2.2.4: w′
ξ = w2 + a(bm)−2ξn.

17. (c2x
2 + b2x+ a2)(y

′

x + λy2) + a0 = 0.

The substitution λy = u′x/u leads to a second-order linear equation of the form 14.1.2.179:

(c2x
2 + b2x+ a2)u

′′
xx + λa0u = 0.

18. x4y′x = −x4y2 − a2.

Solution: y =
1

x
+

a

x2
tan
( a
x
+ C

)
.

19. ax2(x− 1)2(y′x + λy2) + bx2 + cx+ s = 0.

The substitution λy = u′x/u leads to a second-order linear equation of the form 14.1.2.218:

ax2(x− 1)2u′′xx + λ(bx2 + cx+ s)u = 0.

20. (ax2 + bx+ c)2(y′x + y2) + A = 0.

The substitution y = u′x/u leads to a second-order linear equation of the form 14.1.2.234:

(ax2 + bx+ c)2u′′xx +Au = 0.

21. xn+1y′x = ax2ny2 + cxm + d.

The substitution w=xny+A, whereA is a root of the quadratic equation aA2−nA+d=0,

leads to an equation of the form 13.2.2.35: xw′
x = aw2 + (n− 2aA)w + cxm.
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22. (axn + b)y′x = by2 + axn−2.

Particular solution: y0 = −1/x.

23. (axn + bxm + c)(y′x − y2) + an(n− 1)xn−2 + bm(m− 1)xm−2 = 0.

Particular solution: y0 = −
anxn−1 + bmxm−1

axn + bxm + c
.

◮ Other equations.

24. y′x = ay2 + by + cx+ k.

The substitution y = −w
′
x

aw
leads to a second-order linear equation of the form 14.1.2.12:

w′′
xx = bw′

x − a(cx+ k)w.

25. y′x = y2 + axny + axn−1.

Particular solution: y0 = −1/x.

26. y′x = y2 + axny + bxn−1.

The substitution y = −u′x/u leads to a second-order linear equation of the form 14.1.2.45:

u′′xx − axnu′x + bxn−1u = 0.

27. y′x = y2 + (αx+ β)y + ax2 + bx+ c.

The substitution y = −u′x/u leads to a second-order linear equation of the form 14.1.2.31:

u′′xx − (αx+ β)u′x + (ax2 + bx+ c)u = 0.

28. y′x = y2 + axny − abxn − b2.

Particular solution: y0 = b.

29. y′x = −(n+ 1)xny2 + axn+m+1y − axm.

Particular solution: y0 = x−n−1.

30. y′x = axny2 + bxmy + bcxm − ac2xn.

Particular solution: y0 = −c.

31. y′x = axny2 − axn(bxm + c)y + bmxm−1.

Particular solution: y0 = bxm + c.

32. y′x = −anxn−1y2 + cxm(axn + b)y − cxm.

Particular solution: y0 = (axn + b)−1.

33. y′x = axny2 + bxmy + ckxk−1 − bcxm+k − ac2xn+2k.

Particular solution: y0 = cxk.

34. xy′x = ay2 + by + cx2b.

The transformation t = xb, w = x−by leads to a separable equation: bw′
t = aw2 + c.
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35. xy′x = ay2 + by + cxn.

The transformation ξ = xb, η = yx−b leads to the special Riccati equation of the form

13.2.2.4: η′ξ =
a

b
η2 +

c

b
ξm, where m =

n

b
− 2.

36. xy′x = ay2 + (n+ bxn)y + cx2n.

The substitution y = wxn leads to a separable equation: w′
x = xn−1(aw2 + bw + c).

37. xy′x = xy2 + ay + bxn.

The substitution y = −u′x/u leads to a second-order linear equation of the form 14.1.2.67:

xu′′xx − au′x + bxnu = 0.

38. xy′x + a3xy
2 + a2y + a1x+ a0 = 0.

The substitution a3y = u′x/u leads to a second-order linear equation of the form 14.1.2.64:

xu′′xx + a2u
′
x + a3(a1x+ a0)u = 0.

39. xy′x = axny2 + by + cx−n.

The substitution w = yxn leads to a separable equation: xw′
x = aw2 + (b+ n)w + c.

40. xy′x = axny2 +my − ab2xn+2m.

Particular solution: y0 = bxm.

41. xy′x = x2ny2 + (m− n)y + x2m.

Solution: y = xm−n tan
( xn+m

n+m
+C

)
.

42. xy′x = axny2 + by + cxm.

The transformation ξ = xn−b, η = yxb leads to a special Riccati equation of the form

13.2.2.4: (n+ b)η′ξ = aη2 + cξk, where k =
m− n− 2b

n+ b
.

43. xy′x = ax2ny2 + (bxn − n)y + c.

For n = 0, this is a separable equation. For n 6= 0, the solution is:

n

∫
dw

aw2 + bw + c
= xn + C, where w = yxn.

44. xy′x = ax2n+my2 + (bxn+m − n)y + cxm.

The substitution w = yxn leads to a separable equation: w′
x = xn+m−1(aw2 + bw + c).

45. (a2x+ b2)(y
′

x + λy2) + (a1x+ b1)y + a0x+ b0 = 0.

The substitution λy = u′x/u leads to a second-order linear equation of the form 14.1.2.108:

(a2x+ b2)u
′′
xx + (a1x+ b1)u

′
x + λ(a0x+ b0)u = 0.

46. (ax+ c)y′x = α(ay + bx)2 + β(ay + bx) − bx+ γ.

The substitution t = ay+ bx leads to a first-order linear equation with respect to x = x(t):
(αat2 + βat+ γa+ bc)x′t = ax+ c.
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47. 2x2y′x = 2y2 + xy − 2a2x.

Particular solution: y0 = a
√
x.

48. 2x2y′x = 2y2 + 3xy − 2a2x.

Particular solution: y0 = a
√
x− 1

2x.

49. x2y′x = ax2y2 + bxy + c.

The substitution w = xy leads to a separable equation: xw′
x = aw2 + (b+ 1)w + c.

50. x2y′x = cx2y2 + (ax2 + bx)y + αx2 + βx+ γ.

The substitution cy=−u′x/u leads to a second-order linear equation of the form 14.1.2.139:

x2u′′xx − x(ax+ b)u′x + c(αx2 + βx+ γ)u = 0.

51. x2y′x = ax2y2 + bxy + cxn + s.

The substitution ay=−u′x/u leads to a second-order linear equation of the form 14.1.2.132:

x2u′′xx − bxu′x + a(cxn + s)u = 0.

52. x2y′x = ax2y2 + bxy + cx2n + sxn.

The substitution ay=−u′x/u leads to a second-order linear equation of the form 14.1.2.133:

x2u′′xx − bxu′x + axn(cxn + s)u = 0.

53. x2y′x = cx2y2 + (axn + b)xy + αx2n + βxn + γ.

The substitution cy=−u′x/u leads to a second-order linear equation of the form 14.1.2.146:

x2u′′xx − (axn + b)xu′x + c(αx2n + βxn + γ)u = 0.

54. x2y′x = (αx2n + βxn + γ)y2 + (axn + b)xy + cx2.

The substitution y = −1/w leads to an equation of the form 13.2.2.53: x2w′
x = cx2w2 −

(axn + b)xw + αx2n + βxn + γ.

55. (x2 − 1)y′x + λ(y2 − 2xy + 1) = 0.

The substitution y =
2λ− 1

λ
x+

1− λ
λ

1

u(x)
leads to an equation of the same form:

(x2 − 1)u′x + (λ− 1)(u2 − 2xu+ 1) = 0.

If λ= n is a positive integer, then by using the above substitution, the original equation can

be reduced to an equation of the same form in which λ = 1, i.e., to an equation of the form

13.2.2.58 with a = 1, b = −1.

56. (ax2 + b)y′x + αy2 + βxy +
b

α
(a+ β) = 0.

Particular solution: y0 = −
a+ β

α
x.

57. (ax2 + b)y′x + αy2 + βxy + γ = 0.

The substitution y=− a+ β

α
x− 1

u(x)
leads to an equation of the same form: (ax2+b)u′x+

(
γ − a+ β

α
b
)
u2 + (2a+ β)xu+ α = 0.
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58. (ax2 + b)y′x + y2 − 2xy + (1 − a)x2 − b = 0.

Solution: y = x+
(∫ dx

ax2 + b
+ C

)−1
.

59. (ax2 + bx+ c)y′x = y2 + (2λx+ b)y + λ(λ− a)x2 + µ.

Particular solutions: y0 = −λx+A, where A = 1
2

(
−b±

√
b2 − 4µ − 4λc

)
.

60. (ax2 + bx+ c)y′x = y2 + (ax+ µ)y − λ2x2 + λ(b− µ)x+ λc.

Particular solution: y0 = λx.

61. (a2x
2 + b2x+ c2)y

′

x = y2 + (a1x+ b1)y − λ(λ+ a1 − a2)x
2 + λ(b2 −

b1)x+ λc2.

Particular solution: y0 = λx.

62. (a2x
2 + b2x+ c2)y

′

x = y2 + (a1x+ b1)y + a0x
2 + b0x+ c0.

Let λ and β be roots of the system of the quadratic equations

λ2 + λ(a1 − a2) + a0 = 0, β2 + βb1 + c0 − λc2 = 0,

where the first equation is solved independently (in the general case there are four roots).

If some roots satisfy the condition 2λβ + λb1 + βa1 + b0 − λb2 = 0, the original equation

possesses a particular solution: y0 = λx+ β.

63. (x− a)(x− b)y′x + y2 + k(y + x− a)(y + x− b) = 0.

To the case k = 0 there corresponds a separable equation. To k = −1 there corresponds a

linear equation. For k 6=−1 and k 6=0, with the aid of the substitution ku(x)= y+k(y+x),
we obtain the general solution:

y + k(y + x− a)
y + k(y + x− b)

( x− a
x− b

)k
= C if a 6= b,

1

y + k(y + x− a) +
1

x− a = C if a = b.

64. (c2x
2 + b2x+ a2)(y

′

x + λy2) + (b1x+ a1)y + a0 = 0.

The substitution λy = u′x/u leads to a second-order linear equation of the form 14.1.2.179:

(c2x
2 + b2x+ a2)u

′′
xx + (b1x+ a1)u

′
x + λa0u = 0.

65. x3y′x = ax3y2 + (bx2 + c)y + sx.

The substitution ay=−u′x/u leads to a second-order linear equation of the form 14.1.2.183:

x3u′′xx − (bx2 + c)u′x + asxu = 0.

66. x3y′x = ax3y2 + x(bx+ c)y + αx+ β.

The substitution ay=−u′x/u leads to a second-order linear equation of the form 14.1.2.186:

x3u′′xx − x(bx+ c)u′x + a(αx+ β)u = 0.

67. x(x2 + a)(y′x + λy2) + (bx2 + c)y + sx = 0.

The substitution λy = u′x/u leads to a second-order linear equation of the form 14.1.2.190:

x(x2 + a)u′′xx + (bx2 + c)u′x + λsxu = 0.
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68. x2(x+ a)(y′x + λy2) + x(bx+ c)y + αx+ β = 0.

The substitution λy = u′x/u leads to a second-order linear equation of the form 14.1.2.194:

x2(x+ a)u′′xx + x(bx+ c)u′x + λ(αx+ β)u = 0.

69. (ax2 + bx+ c)(xy′x − y) − y2 + x2 = 0.

Solution: ln
∣∣∣ y − x
y + x

∣∣∣ = C + 2

∫
dx

ax2 + bx+ c
.

70. x2(x2 + a)(y′x + λy2) + x(bx2 + c)y + s = 0.

The substitution λy = u′x/u leads to a second-order linear equation of the form 14.1.2.219:

x2(x2 + a)u′′xx + x(bx2 + c)u′x + λsu = 0.

71. a(x2 − 1)2(y′x + λy2) + bx(x2 − 1)y + cx2 + dx+ s = 0.

The substitution λy = u′x/u leads to a second-order linear equation of the form 14.1.2.227:

a(x2 − 1)2u′′xx + bx(x2 − 1)u′x + λ(cx2 + dx+ s)u = 0.

72. xn+1y′x = ax2ny2 + bxny + cxm + d.

The substitution w=xny+A, whereA is a root of the quadratic equation aA2−(b+n)A+
d = 0, leads to an equation of the form 13.2.2.35: xw′

x = aw2 + (n+ b− 2aA)w + cxm.

73. x(axk + b)y′x = αxny2 + (β − anxk)y + γx−n.

The transformation t=xny, z=x−k leads to a separable equation: [αt2+(β+bn)t+γ]z′t=
−k(bz + a).

74. x2(axn − 1)(y′x + λy2) + (pxn + q)xy + rxn + s = 0.

The substitution λy = u′x/u leads to a second-order linear equation of the form 14.1.2.254:

x2(axn − 1)u′′xx + (pxn + q)xu′x + λ(rxn + s)u = 0.

75. (axn + bxm + c)y′x = cy2 − bxm−1y + axn−2.

Particular solution: y0 = −1/x.

76. (axn + bxm + c)y′x = axn−2y2 + bxm−1y + c.

Particular solution: y0 = x.

77. (axn + bxm + c)y′x = αxky2 + βxsy − αλ2xk + βλxs.

Particular solution: y0 = −λ.

78. (axn + bxm + c)(xy′x − y) + sxk(y2 − λx2) = 0.

Particular solutions: y0 = ±x
√
λ.

13.2.3 Equations Containing Exponential Functions

◮ Equations with exponential functions.

1. y′x = ay2 + beλx.

The substitution t = eλx leads to an equation of the form 13.2.2.35: λty′t = ay2 + bt.
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2. y′x = y2 + aλeλx − a2e2λx.

Particular solution: y0 = aeλx.

3. y′x = σy2 + a+ beλx + ce2λx.

The substitution σy = −u′x/u leads to a second-order linear equation of the form 14.1.3.5:

u′′xx + σ(a+ beλx + ce2λx)u = 0.

4. y′x = σy2 + ay + bex + c.

The substitution σy=−u′x/u leads to a second-order linear equation of the form 14.1.3.10:

u′′xx − au′x + σ(bex + c)u = 0.

5. y′x = y2 + by + a(λ− b)eλx − a2e2λx.

Particular solution: y0 = aeλx.

6. y′x = y2 + aeλxy − abeλx − b2.

Particular solution: y0 = b.

7. y′x = y2 + ae2λx(eλx + b)n − 1

4
λ2.

The transformation ξ = eλx + b, w =
1

λ

(
e−λxy − λ

2
e−λx

)
leads to an equation of the

form 13.2.2.4: w′
ξ = w2 + aλ−2ξn.

8. y′x = y2 + ae8λx + be6λx + ce4λx − λ2.

The transformation ξ = e2λx, w = e−2λx
( y

2λ
− 1

2

)
leads to an equation of the form

13.2.2.3: w′
ξ = w2 + (2λ)−2(aξ2 + bξ + c).

9. y′x = aekxy2 + besx, k 6= 0.

The substitution t = ekx leads to an equation of the form 13.2.2.4: ky′t = ay2 + bts−k.

10. y′x = beµxy2 + aλeλx − a2be(µ+2λ)x.

Particular solution: y0 = aeλx.

11. y′x = aeλxy2 + by + ce−λx.

The substitution z = eλxy leads to a separable equation: z′x = az2 + (b+ λ)z + c.

12. y′x = aeµxy2 + λy − ab2e(µ+2λ)x.

Particular solution: y0 = beλx.

13. y′x = eλxy2 + aeµxy + aλe(µ−λ)x.

Particular solution: y0 = −λe−λx.

14. y′x = −λeλxy2 + aeµxy − ae(µ−λ)x.

Particular solution: y0 = e−λx.

15. y′x = aeµxy2 + abe(λ+µ)xy − bλeλx.

Particular solution: y0 = −beλx.
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16. y′x = aekxy2 + by + cesx + de−kx.

The substitution t= ekx leads to an equation of the form 13.2.2.51: kt2y′t = at2y2+ bty+
ct(k+s)/k + d.

17. y′x = ae(2λ+µ)xy2 + [be(λ+µ)x − λ]y + ceµx.

The substitution w = eλxy leads to a separable equation: w′
x = e(λ+µ)x(aw2 + bw + c).

18. y′x = aekxy2 + by + ceknx + dek(2n+1)x.

The substitution t= ekx leads to an equation of the form 13.2.2.52: kt2y′t = at2y2+ bty+
ctn+1 + dt2(n+1).

19. y′x = eµx(y − beλx)2 + bλeλx.

Particular solution: y0 = beλx.

20. (aeλx + beµx + c)y′x = y2 + keνxy −m2 + kmeνx.

Particular solution: y0 = −m.

21. (aeλx + beµx + c)(y′x − y2) + aλ2eλx + bµ2eµx = 0.

Particular solution: y0 = −
aλeλx + bµeµx

aeλx + beµx + c
.

◮ Equations with power and exponential functions.

22. y′x = y2 + axeλxy + aeλx.

Particular solution: y0 = −1/x.

23. y′x = aeλxy2 + be−λx.

Solution:

∫
dz

az2 + λz + b
= x+C , where z = eλxy.

24. y′x = aeλxy2 + bnxn−1 − ab2eλxx2n.

Particular solution: y0 = bxn.

25. y′x = eλxy2 + axny + aλxne−λx.

Particular solution: y0 = −λe−λx.

26. y′x = −λeλxy2 + axneλxy − axn.

Particular solution: y0 = e−λx.

27. y′x = aeλxy2 − abxneλxy + bnxn−1.

Particular solution: y0 = bxn.

28. y′x = axny2 + bλeλx − ab2xne2λx.

Particular solution: y0 = beλx.

29. y′x = axny2 + λy − ab2xne2λx.

Particular solution: y0 = beλx.
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30. y′x = axny2 − abxneλxy + bλeλx.

Particular solution: y0 = beλx.

31. y′x = −(k + 1)xky2 + axk+1eλxy − aeλx.

Particular solution: y0 = x−k−1.

32. y′x = axny2 − axn(beλx + c)y + bλeλx.

Particular solution: y0 = beλx + c.

33. y′x = axne2λxy2 + (bxneλx − λ)y + cxn.

The substitution w = eλxy leads to a separable equation: w′
x = xneλx(aw2 + bw + c).

34. y′x = aeλx(y − bxn − c)2 + bnxn−1.

Particular solution: y0 = bxn + c.

35. xy′x = aeλxy2 + ky + ab2x2keλx.

Solution: y = bxk tan
(
ab

∫
xk−1eλx dx+ C

)
.

36. xy′x = ax2neλxy2 + (bxneλx − n)y + ceλx.

Solution:

∫
dw

aw2 + bw + c
=

∫
xn−1eλx dx+ C , where w = xny.

37. y′x = y2 + 2aλxeλx
2 − a2e2λx

2
.

Particular solution: y0 = aeλx
2
.

38. y′x = ae−λx2
y2 + λxy + ab2.

Solution: y = beλx
2/2 tan

(
ab

∫
e−λx2/2 dx+ C

)
.

39. y′x = axny2 + λxy + ab2xneλx
2
.

Solution: y = beλx
2/2 tan

(
ab

∫
xneλx

2/2 dx+ C
)

.

40. x4(y′x − y2) = a+ b exp(k/x) + c exp(2k/x).

The transformation ξ=1/x, w=−x2y−x leads to a Riccati equation of the form 13.2.3.3:

w′
ξ = w2 + a+ bekξ + ce2kξ .

13.2.4 Equations Containing Hyperbolic Functions

◮ Equations with hyperbolic sine and cosine.

1. y′x = y2 − a2 + aλ sinh(λx) − a2 sinh2(λx).

Particular solution: y0 = a cosh(λx).

2. y′x = y2 + a sinh(βx)y + ab sinh(βx) − b2.

Particular solution: y0 = −b.
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3. y′x = y2 + ax sinhm(bx)y + a sinhm(bx).

Particular solution: y0 = −1/x.

4. y′x = λ sinh(λx)y2 − λ sinh3(λx).

Particular solution: y0 = cosh(λx).

5. y′x = [a sinh2(λx)− λ]y2 − a sinh2(λx) + λ− a.

Particular solution: y0 = coth(λx).

6. [a sinh(λx) + b]y′x = y2 + c sinh(µx) y − d2 + cd sinh(µx).

Particular solution: y0 = −d.

7. [a sinh(λx) + b](y′x − y2) + aλ2 sinh(λx) = 0.

Particular solution: y0 = −
aλ cosh(λx)

a sinh(λx) + b
.

8. y′x = αy2 + β + γ cosh x.

The transformation x = 2t, αy = −u′x/u leads to the modified Mathieu equation 2.1.4.9:

u′′tt − (a− 2q cosh 2t)u = 0, where a = −4αβ, q = 2αγ.

9. y′x = y2 + a cosh(βx)y + ab cosh(βx) − b2.

Particular solution: y0 = −b.

10. y′x = y2 + ax coshm(bx)y + a coshm(bx).

Particular solution: y0 = −1/x.

11. y′x = [a cosh2(λx)− λ]y2 + a+ λ− a cosh2(λx).

Particular solution: y0 = tanh(λx).

12. 2y′x = [a− λ+ a cosh(λx)]y2 + a+ λ− a cosh(λx).

Particular solution: y0 = tanh
(
1
2λx

)
.

13. y′x = y2 − λ2 + a coshn(λx) sinh−n−4(λx).

The transformation ξ = coth(λx), w = − 1

λ
sinh2(λx)y − sinh(λx) cosh(λx) leads to an

equation of the form 13.2.2.4: w′
ξ = w2 + λ−2ξn.

14. y′x = a sinh(λx)y2 + b sinh(λx) coshn(λx).

The transformation ξ = cosh(λx), w =
a

λ
y leads to an equation of the form 13.2.2.4:

w′
ξ = w2 + abλ−2ξn.

15. y′x = a cosh(λx)y2 + b cosh(λx) sinhn(λx).

The transformation ξ = sinh(λx), w =
a

λ
y leads to an equation of the form 13.2.2.4:

w′
ξ = w2 + abλ−2ξn.
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16. [a cosh(λx) + b]y′x = y2 + c cosh(µx) y − d2 + cd cosh(µx).

Particular solution: y0 = −d.

17. [a cosh(λx) + b](y′x − y2) + aλ2 cosh(λx) = 0.

Particular solution: y0 = −
aλ sinh(λx)

a cosh(λx) + b
.

◮ Equations with hyperbolic tangent and cotangent.

18. y′x = y2 + aλ− a(a+ λ) tanh2(λx).

Particular solution: y0 = a tanh(λx).

19. y′x = y2 + 3aλ− λ2 − a(a+ λ) tanh2(λx).

Particular solution: y0 = a tanh(λx)− λ coth(λx).

20. y′x = y2 + ax tanhm(bx)y + a tanhm(bx).

Particular solution: y0 = −1/x.

21. [a tanh(λx) + b]y′x = y2 + c tanh(µx) y − d2 + cd tanh(µx).

Particular solution: y0 = −d.

22. y′x = y2 + aλ− a(a+ λ) coth2(λx).

Particular solution: y0 = a coth(λx).

23. y′x = y2 − λ2 + 3aλ− a(a+ λ) coth2(λx).

Particular solution: y0 = a coth(λx)− λ tanh(λx).

24. y′x = y2 + ax cothm(bx)y + a cothm(bx).

Particular solution: y0 = −1/x.

25. [a coth(λx) + b]y′x = y2 + c coth(µx) y − d2 + cd coth(µx).

Particular solution: y0 = −d.

26. y′x = y2 − 2λ2 tanh2(λx) − 2λ2 coth2(λx).

Particular solution: y0 = λ tanh(λx) + λ coth(λx).

27. y′x = y2 + aλ+ bλ− 2ab− a(a+ λ) tanh2(λx)− b(b+ λ) coth2(λx).

Particular solution: y0 = a tanh(λx) + b coth(λx).

13.2.5 Equations Containing Logarithmic Functions

◮ Equations of the form g(x)y′x = f2(x)y
2 + f0(x).

1. y′x = a(lnx)ny2 + bmxm−1 − ab2x2m(lnx)n.

Particular solution: y0 = bxm.
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2. xy′x = ay2 + b lnx+ c.

The substitution x = et leads to an equation of the form 13.2.2.1: y′t = ay2 + bt+ c.

3. xy′x = ay2 + b lnk x+ c ln2k+2 x.

The substitution t = lnx leads to an equation of the form 13.2.2.6 with k = n − 1:

y′t = ay2 + btk + ct2k+2.

4. xy′x = xy2 − a2x ln2(βx) + a.

Particular solution: y0 = a ln(βx).

5. xy′x = xy2 − a2x ln2k(βx) + ak lnk−1(βx).

Particular solution: y0 = a lnk(βx).

6. xy′x = axny2 + b− ab2xn ln2 x.

Particular solution: y0 = b ln x.

7. x2y′x = x2y2 + a ln2 x+ b lnx+ c.

The transformation ξ = lnx, w = xy + 1
2 leads to an equation of the form 13.2.2.3:

w′
ξ = w2 + aξ2 + bξ + c− 1

4 .

8. x2y′x = x2y2 + a(b ln x+ c)n +
1

4
.

The transformation ξ = b lnx+c, w=
x

b
y+

1

2b
leads to an equation of the form 13.2.2.4:

w′
ξ = w2 + ab−2ξn.

9. x2 ln(ax)(y′x − y2) = 1.

Particular solution: y0 = −[x ln(ax)]−1.

◮ Equations of the form g(x)y′x = f2(x)y
2 + f1(x)y

′

x + f0(x).

10. y′x = y2 + a ln(βx)y − ab ln(βx)− b2.

Particular solution: y0 = b.

11. y′x = y2 + ax lnm(bx)y + a lnm(bx).

Particular solution: y0 = −1/x.

12. y′x = axny2 − abxn+1 ln x y + b ln x+ b.

Particular solution: y0 = bx ln x.

13. y′x = −(n+ 1)xny2 + axn+1(lnx)my − a(lnx)m.

Particular solution: y0 = x−n−1.

14. y′x = a(lnx)ny2 − abx(lnx)n+1y + b lnx+ b.

Particular solution: y0 = bx ln x.

15. y′x = a(lnx)k(y − bxn − c)2 + bnxn−1.

Particular solution: y0 = bxn + c.



“K16435’ — 2017/9/28 — 15:05 — #408

382 FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS

16. y′x = a(lnx)ny2 + b(lnx)my + bc(lnx)m − ac2(lnx)n.

Particular solution: y0 = −c.

17. xy′x = (ay + b ln x)2.

Solution: lnx =

∫
dz

az2 + b
+ C , where z = ay + b lnx.

18. xy′x = a lnm(λx)y2 + ky + ab2x2k lnm(λx).

Solution: y = bxk tan
[
ab

∫
xk−1 lnm(λx) dx + C

]
.

19. xy′x = axn(y + b ln x)2 − b.

Solution:
1

y + b lnx
+
a

n
xn = C .

20. xy′x = ax2n(lnx)y2 + (bxn lnx− n)y + c ln x.

Solution:

∫
dw

aw2 + bw + c
=

∫
xn−1 lnx dx+ C , where w = xny.

21. x2y′x = a2x2y2 − xy + b2 lnn x.

The substitution a2y=−u′x/u leads to a second-order linear equation of the form 14.1.5.27:

x2u′′xx + xu′x + (ab)2 lnn xu = 0.

22. (a ln x+ b)y′x = y2 + c(lnx)ny − λ2 + λc(lnx)n.

Particular solution: y0 = −λ.

23. (a ln x+ b)y′x = (ln x)ny2 + cy − λ2(lnx)n + cλ.

Particular solution: y0 = −λ.

13.2.6 Equations Containing Trigonometric Functions

◮ Equations with sine.

1. y′x = αy2 + β + γ sin(λx).

The substitution 2t = 2λx + π leads to an equation of the form 13.2.6.14: λy′t = αy2 +
β + γ cos t.

2. y′x = y2 − a2 + aλ sin(λx) + a2 sin2(λx).

Particular solution: y0 = −a cos(λx).

3. y′x = y2 + λ2 + c sinn(λx+ a) sin−n−4(λx+ b).

The transformation ξ =
sin(λx+ a)

sin(λx+ b)
, w =

sin2(λx+ b)

sin(b− a)
[ y
λ
+ cot(λx+ b)

]
leads to an

equation of the form 13.2.2.4: w′
ξ = w2 +Aξn, where A = c[λ sin (b− a)]−2.

4. y′x = y2 + a sin(βx)y + ab sin(βx)− b2.

Particular solution: y0 = −b.
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5. y′x = y2 + ax sinm(bx)y + a sinm(bx).

Particular solution: y0 = −1/x.

6. y′x = λ sin(λx)y2 + λ sin3(λx).

Particular solution: y0 = − cos(λx).

7. 2y′x = [λ+ a− a sin(λx)]y2 + λ− a− a sin(λx).

Particular solution: y0 = tan
(
1
2λx+ 1

4π
)
.

8. y′x = [λ+ a sin2(λx)]y2 + λ− a+ a sin2(λx).

Particular solution: y0 = − cot(λx).

9. y′x = −(k + 1)xky2 + axk+1(sinx)my − a(sinx)m.

Particular solution: y0 = x−k−1.

10. y′x = a sink(λx+ µ)(y − bxn − c)2 + bnxn−1.

Particular solution: y0 = bxn + c.

11. xy′x = a sinm(λx)y2 + ky + ab2x2k sinm(λx).

Solution: y = bxk tan
[
ab

∫
xk−1 sinm(λx)dx+ C

]
.

12. [a sin(λx) + b]y′x = y2 + c sin(µx) y − d2 + cd sin(µx).

Particular solution: y0 = −d.

13. [a sin(λx) + b](y′x − y2) − aλ2 sin(λx) = 0.

Particular solution: y0 = −
aλ cos(λx)

a sin(λx) + b
.

◮ Equations with cosine.

14. y′x = αy2 + β + γ cosx.

The transformation x=2t, αy=−u′x/u leads to a Mathieu equation of the form 14.1.6.29:

u′′tt + (a− 2q cos 2t)u = 0, where a = 4αβ, and q = −2αγ.

15. y′x = y2 − a2 + aλ cos(λx) + a2 cos2(λx).

Particular solution: y0 = a sin(λx).

16. y′x = y2 + λ2 + c cosn(λx+ a) cos−n−4(λx+ b).

The substitution λx = λz − π
2 leads to an equation of the form 13.2.6.3: y′z = y2 + λ2 +

c sinn(λz + a) sin−n−4(λz + b).

17. y′x = y2 + a cos(βx)y + ab cos(βx) − b2.

Particular solution: y0 = −b.

18. y′x = y2 + ax cosm(bx)y + a cosm(bx).

Particular solution: y0 = −1/x.
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19. y′x = λ cos(λx)y2 + λ cos3(λx).

Particular solution: y0 = sin(λx).

20. 2y′x = [λ+ a+ a cos(λx)]y2 + λ− a+ a cos(λx).

Particular solution: y0 = tan
(
1
2λx

)
.

21. y′x = [λ+ a cos2(λx)]y2 + λ− a+ a cos2(λx).

Particular solution: y0 = tan(λx).

22. y′x = −(k + 1)xky2 + axk+1(cosx)my − a(cosx)m.

Particular solution: y0 = x−k−1.

23. y′x = a cosk(λx+ µ)(y − bxn − c)2 + bnxn−1.

Particular solution: y0 = bxn + c.

24. xy′x = a cosm(λx)y2 + ky + ab2x2k cosm(λx).

Solution: y = bxk tan
[
ab

∫
xk−1 cosm(λx)dx +C

]
.

25. [a cos(λx) + b]y′x = y2 + c cos(µx) y − d2 + cd cos(µx).

Particular solution: y0 = −d.

26. [a cos(λx) + b](y′x − y2) − aλ2 cos(λx) = 0.

Particular solution: y0 =
aλ sin(λx)

a cos(λx) + b
.

◮ Equations with tangent.

27. y′x = y2 + aλ+ a(λ− a) tan2(λx).

Particular solution: y0 = a tan(λx).

28. y′x = y2 + λ2 + 3aλ+ a(λ− a) tan2(λx).

Particular solution: y0 = a tan(λx)− λ cot(λx).

29. y′x = ay2 + b tanx y + c.

The substitution ay=−u′x/u leads to a second-order linear equation of the form 14.1.6.53:

u′′xx − b tan xu′x + acu = 0.

30. y′x = ay2 + 2ab tanx y + b(ab− 1) tan2 x.

The substitution u = y + b tan x leads to a separable equation of the form 13.1.2: u′x =
au2 + b.

31. y′x = y2 + a tan(βx)y + ab tan(βx)− b2.

Particular solution: y0 = −b.

32. y′x = y2 + ax tanm(bx)y + a tanm(bx).

Particular solution: y0 = −1/x.
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33. y′x = −(k + 1)xky2 + axk+1(tanx)my − a(tanx)m.

Particular solution: y0 = x−k−1.

34. y′x = a tann(λx)y2 − ab2 tann+2(λx) + bλ tan2(λx) + bλ.

Particular solution: y0 = b tan(λx).

35. y′x = a tank(λx+ µ)(y − bxn − c)2 + bnxn−1.

Particular solution: y0 = bxn + c.

36. xy′x = a tanm(λx)y2 + ky + ab2x2k tanm(λx).

Solution: y = bxk tan
[
ab

∫
xk−1 tanm(λx)dx+ C

]
.

37. [a tan(λx) + b]y′x = y2 + k tan(µx) y − d2 + kd tan(µx).

Particular solution: y0 = −d.

◮ Equations with cotangent.

38. y′x = y2 + aλ+ a(λ− a) cot2(λx).

Particular solution: y0 = −a cot(λx).

39. y′x = y2 + λ2 + 3aλ+ a(λ− a) cot2(λx).

Particular solution: y0 = λ tan(λx)− a cot(λx).

40. y′x = y2 − 2a cot(ax)y + b2 − a2.

Particular solution: y0 = a cot(ax)− b cot(bx).

41. y′x = y2 + a cot(βx)y + ab cot(βx) − b2.

Particular solution: y0 = −b.

42. y′x = y2 + ax cotm(bx)y + a cotm(bx).

Particular solution: y0 = −1/x.

43. y′x = −(k + 1)xky2 + axk+1(cot x)my − a(cotx)m.

Particular solution: y0 = x−k−1.

44. y′x = a cotk(λx+ µ)(y − bxn − c)2 + bnxn−1.

Particular solution: y0 = bxn + c.

45. xy′x = a cotm(λx)y2 + ky + ab2x2k cotm(λx).

Solution: y = bxk tan
[
ab

∫
xk−1 cotm(λx)dx+ C

]
.

46. [a cot(λx) + b]y′x = y2 + c cot(µx) y − d2 + cd cot(µx).

Particular solution: y0 = −d.
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◮ Equations containing combinations of trigonometric functions.

47. y′x = y2 + λ2 + c sinn(λx) cos−n−4(λx).

This is a special case of equation 13.2.6.3 with a = 0 and b = π/2.

48. y′x = a sin(λx)y2 + b sin(λx) cosn(λx).

The transformation ξ = cos(λx), w = − a
λ
y leads to an equation of the form 13.2.2.4:

w′
ξ = w2 + abλ−2ξn.

49. y′x = λ sin(λx)y2 + a cosn(λx)y − a cosn−1(λx).

Particular solution: y0 = 1/ cos(λx).

50. y′x = a cos(λx)y2 + b cos(λx) sinn(λx).

The transformation ξ = sin(λx), w =
a

λ
y leads to an equation of the form 13.2.2.4:

w′
ξ = w2 + abλ−2ξn.

51. y′x = λ sin(λx)y2 + axn cos(λx)y − axn.

Particular solution: y0 = 1/ cos(λx).

52. sinn+1(2x)y′x = ay2 sin2n x+ b cos2n x.

The substitution z=y tann x leads to a separable equation: 2n sin(2x)z′x=az
2+n2n+1z+

b.

53. y′x = y2 − y tanx+ a(1 − a) cot2 x.

Particular solution: y0 = −a cot x.

54. y′x = y2 −my tanx+ b2 cos2m x.

Solution: y = −b cosm x cot
(
b

∫
cosm x dx+ C

)
.

55. y′x = y2 +my cot x+ b2(sin x)2m.

Solution: y = −b sinm x cot
(
b

∫
sinm x dx+ C

)
.

56. y′x = y2 − 2λ2 tan2(λx)− 2λ2 cot2(λx).

Particular solution: y0 = λ cot(λx)− λ tan(λx).
57. y′x = y2 + λa+ λb+ 2ab+ a(λ− a) tan2(λx) + b(λ− b) cot2(λx).

Particular solution: y0 = a tan(λx)− b cot(λx).

58. y′x = y2 − 1

2
λ2 − 3

4
λ2 tan2(λx) + a cos2(λx) sinn(λx).

The transformation ξ = sin(λx), w =
y

λ cos(λx)
+

sin(λx)

2 cos2(λx)
leads to an equation of

the form 13.2.2.4: w′
ξ = w2 + aλ−2ξn.

59. y′x = λ sin(λx)y2 + a sin(λx)y − a tan(λx).

Particular solution: y0 = 1/ cos(λx).
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13.2.7 Equations Containing Inverse Trigonometric Functions

◮ Equations containing arcsine.

1. y′x = y2 + λ(arcsinx)ny − a2 + aλ(arcsinx)n.

Particular solution: y0 = −a.

2. y′x = y2 + λx(arcsinx)ny + λ(arcsin x)n.

Particular solution: y0 = −1/x.

3. y′x = −(k + 1)xky2 + λ(arcsin x)n(xk+1y − 1).

Particular solution: y0 = x−k−1.

4. y′x = λ(arcsin x)ny2 + ay + ab− b2λ(arcsin x)n.

Particular solution: y0 = −b.

5. y′x = λ(arcsin x)ny2 − bλxm(arcsin x)ny + bmxm−1.

Particular solution: y0 = bxm.

6. y′x = λ(arcsin x)ny2 + βmxm−1 − λβ2x2m(arcsinx)n.

Particular solution: y0 = βxm.

7. y′x = λ(arcsin x)n(y − axm − b)2 + amxm−1.

Particular solution: y0 = axm + b.

8. xy′x = λ(arcsin x)ny2 + ky + λb2x2k(arcsin x)n.

Solution: y = bxk tan
[
λb

∫
xk−1(arcsin x)n dx+ C

]
.

9. xy′x = (ax2ny2 + bxny + c)(arcsinx)m − ny.

The substitution z = xny leads to a separable equation:

z′x = xn−1(arcsin x)m(az2 + bz + c).

◮ Equations containing arccosine.

10. y′x = y2 + λ(arccosx)ny − a2 + aλ(arccosx)n.

Particular solution: y0 = −a.

11. y′x = y2 + λx(arccosx)ny + λ(arccosx)n.

Particular solution: y0 = −1/x.

12. y′x = −(k + 1)xky2 + λ(arccosx)n(xk+1y − 1).

Particular solution: y0 = x−k−1.

13. y′x = λ(arccos x)ny2 + ay + ab− b2λ(arccos x)n.

Particular solution: y0 = −b.
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14. y′x = λ(arccos x)ny2 − bλxm(arccos x)ny + bmxm−1.

Particular solution: y0 = bxm.

15. y′x = λ(arccos x)ny2 + βmxm−1 − λβ2x2m(arccosx)n.

Particular solution: y0 = βxm.

16. y′x = λ(arccos x)n(y − axm − b)2 + amxm−1.

Particular solution: y0 = axm + b.

17. xy′x = λ(arccos x)ny2 + ky + λb2x2k(arccosx)n.

Solution: y = bxk tan
[
λb

∫
xk−1(arccos x)n dx+C

]
.

18. xy′x = (ax2ny2 + bxny + c)(arccosx)m − ny.

The substitution z = xny leads to a separable equation:

z′x = xn−1(arccos x)m(az2 + bz + c).

◮ Equations containing arctangent.

19. y′x = y2 + λ(arctan x)ny − a2 + aλ(arctan x)n.

Particular solution: y0 = −a.

20. y′x = y2 + λx(arctan x)ny + λ(arctan x)n.

Particular solution: y0 = −1/x.

21. y′x = −(k + 1)xky2 + λ(arctan x)n(xk+1y − 1).

Particular solution: y0 = x−k−1.

22. y′x = λ(arctan x)ny2 + ay + ab− b2λ(arctan x)n.

Particular solution: y0 = −b.

23. y′x = λ(arctan x)ny2 − bλxm(arctan x)ny + bmxm−1.

Particular solution: y0 = bxm.

24. y′x = λ(arctan x)ny2 + bmxm−1 − λb2x2m(arctan x)n.

Particular solution: y0 = bxm.

25. y′x = λ(arctan x)n(y − axm − b)2 + amxm−1.

Particular solution: y0 = axm + b.

26. xy′x = λ(arctan x)ny2 + ky + λb2x2k(arctan x)n.

Solution: y = bxk tan
[
λb

∫
xk−1(arctan x)n dx+ C

]
.

27. xy′x = (ax2ny2 + bxny + c)(arctan x)m − ny.

The substitution z = xny leads to a separable equation:

z′x = xn−1(arctan x)m(az2 + bz + c).
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◮ Equations containing arccotangent.

28. y′x = y2 + λ(arccot x)ny − a2 + aλ(arccot x)n.

Particular solution: y0 = −a.

29. y′x = y2 + λx(arccot x)ny + λ(arccot x)n.

Particular solution: y0 = −1/x.

30. y′x = −(k + 1)xky2 + λ(arccot x)n(xk+1y − 1).

Particular solution: y0 = x−k−1.

31. y′x = λ(arccot x)ny2 + ay + ab− b2λ(arccot x)n.

Particular solution: y0 = −b.

32. y′x = λ(arccot x)ny2 − bλxm(arccot x)ny + bmxm−1.

Particular solution: y0 = bxm.

33. y′x = λ(arccot x)ny2 + bmxm−1 − λb2x2m(arccot x)n.

Particular solution: y0 = bxm.

34. y′x = λ(arccot x)n(y − axm − b)2 + amxm−1.

Particular solution: y0 = axm + b.

35. xy′x = λ(arccot x)ny2 + ky + λb2x2k(arccot x)n.

Solution: y = bxk tan
[
λb

∫
xk−1(arccot x)n dx+ C

]
.

36. xy′x = (ax2ny2 + bxny + c)(arccot x)m − ny.

The substitution z = xny leads to a separable equation:

z′x = xn−1(arccot x)m(az2 + bz + c).

13.2.8 Equations with Arbitrary Functions

◆ Notation: f = f(x) and g = g(x) are arbitrary functions; a, b, n, and λ are arbitrary

parameters.

◮ Equations containing arbitrary functions (but not containing their derivatives).

1. y′x = y2 + fy − a2 − af .

Particular solution: y0 = a.

2. y′x = fy2 + ay − ab− b2f .

Particular solution: y0 = b.

3. y′x = y2 + xfy + f .

Particular solution: y0 = −1/x.
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4. y′x = fy2 − axnfy + anxn−1.

Particular solution: y0 = axn.

5. y′x = fy2 + anxn−1 − a2x2nf .

Particular solution: y0 = axn.

6. y′x = −(n+ 1)xny2 + xn+1fy − f .

Particular solution: y0 = x−n−1.

7. xy′x = fy2 + ny + ax2nf .

Solution: y =





√
a xn tan

(√
a

∫
xn−1f dx+ C

)
if a > 0,

√
|a|xn tanh

(
−
√
|a|
∫
xn−1f dx+C

)
if a < 0.

8. xy′x = x2nfy2 + (axnf − n)y + bf .

The substitution z = xny leads to a separable equation: z′x = xn−1f(x)(z2 + az + b).

9. y′x = fy2 + gy − a2f − ag.

Particular solution: y0 = a.

10. y′x = fy2 + gy + anxn−1 − axng − a2fx2n.

Particular solution: y0 = axn.

11. y′x = fy2 − axngy + anxn−1 + a2x2n(g − f).

Particular solution: y0 = axn.

12. y′x = aeλxy2 + aeλxfy + λf .

Particular solution: y0 = −
λ

a
e−λx.

13. y′x = fy2 − aeλxfy + aλeλx.

Particular solution: y0 = aeλx.

14. y′x = fy2 + aλeλx − a2e2λxf .

Particular solution: y0 = aeλx.

15. y′x = fy2 + λy + ae2λxf .

Solution: y =





√
a eλx tan

(√
a

∫
eλxf dx+ C

)
if a > 0,

√
|a| eλx tanh

(
−
√
|a|
∫
eλxf dx+ C

)
if a < 0.

16. y′x = fy2 − f(aeλx + b)y + aλeλx.

Particular solution: y0 = aeλx + b.

17. y′x = eλxfy2 + (af − λ)y + be−λxf .

The substitution z = eλxy leads to a separable equation: z′x = f(x)(z2 + az + b).



“K16435’ — 2017/9/28 — 15:05 — #417

13.2. Riccati Equation g(x)y′x = f2(x)y
2 + f1(x)y + f0(x) 391

18. y′x = fy2 + gy + aλeλx − aeλxg − a2e2λxf .

Particular solution: y0 = aeλx.

19. y′x = fy2 − aeλxgy + aλeλx + a2e2λx(g − f).

Particular solution: y0 = aeλx.

20. y′x = fy2 + 2aλxeλx
2 − a2fe2λx

2
.

Particular solution: y0 = aeλx
2
.

21. y′x = fy2 + λxy + afeλx
2
.

Solution: y =





√
a eλx

2/2 tan
(√

a

∫
eλx

2/2f dx+ C
)

if a > 0,

√
|a| eλx2/2 tanh

(
−
√
|a|
∫
eλx

2/2f dx+ C
)

if a < 0.

22. y′x = fy2 − a tanh2(λx)(af + λ) + aλ.

Particular solution: y0 = a tanh(λx).

23. y′x = fy2 − a coth2(λx)(af + λ) + aλ.

Particular solution: y0 = a coth(λx).

24. y′x = fy2 − a2f + aλ sinh(λx) − a2f sinh2(λx).

Particular solution: y0 = a cosh(λx).

25. xy′x = fy2 + a− a2f(lnx)2.

Particular solution: y0 = a ln x.

26. xy′x = f(y + a ln x)2 − a.

Solution:
1

y + a lnx
+

∫
f(x)

x
dx = C .

27. y′x = fy2 − ax lnxfy + a lnx+ a.

Particular solution: y0 = ax ln x.

28. y′x = −a lnx y2 + af(x ln x− x)y − f .

Particular solution: y0 =
1

a(x ln x− x) .

29. y′x = λ sin(λx)y2 + f cos(λx)y − f .

Particular solution: y0 = 1/ cos(λx).

30. y′x = fy2 − a2f + aλ sin(λx) + a2f sin2(λx).

Particular solution: y0 = −a cos(λx).
31. y′x = fy2 − a2f + aλ cos(λx) + a2f cos2(λx).

Particular solution: y0 = a sin(λx).

32. y′x = fy2 − a tan2(λx)(af − λ) + aλ.

Particular solution: y0 = a tan(λx).

33. y′x = fy2 − a cot2(λx)(af − λ) + aλ.

Particular solution: y0 = −a cot(λx).
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◮ Equations containing arbitrary functions and their derivatives.

34. y′x = y2 − f2 + f ′

x.

Particular solution: y0 = f .

35. y′x = fy2 − fgy + g′x.

Particular solution: y0 = g.

36. y′x = −f ′

xy
2 + fgy − g.

Particular solution: y0 = 1/f .

37. y′x = g(y − f)2 + f ′

x.

Particular solution: y0 = f .

38. y′x =
f ′

x

g
y2 − g′x

f
.

Particular solution: y0 = −g/f .

39. f2y′x − f ′

xy
2 + g(y − f) = 0.

Particular solution: y0 = f .

40. y′x = f ′

xy
2 + aeλxfy + aeλx.

Particular solution: y0 = −1/f .

41. y′x = fy2 + g′xy + afe2g.

Solution: y =





√
a eg tan

(√
a

∫
feg dx+ C

)
if a > 0,

√
|a| eg tanh

(
−
√
|a|
∫
feg dx+ C

)
if a < 0.

42. y′x = y2 − f ′′

xx

f
.

Particular solution: y0 = −f ′x/f .

13.2.9 Some Transformations

◆ Notation: f , g, and h are arbitrary composite functions of their argument, which is

written in parentheses following the function name (the argument is a function of x).

1. y′x = y2 + a2f(ax+ b).

The transformation ξ = ax+ b, u = y/a leads to the equation u′ξ = u2 + f(ξ).

2. y′x = y2 + x− 4f(1/x).

The transformation ξ = 1/x, w = −x2y − x leads to the equation w′
ξ = w2 + f(ξ).
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3. y′x = y2 +
1

(cx+ d)4
f
((
ax+ b

cx+ d

))
.

The transformation

ξ =
ax+ b

cx+ d
, w =

1

∆
[(cx+ d)2y + c(cx+ d)], where ∆ = ad− bc,

leads to a simpler equation: w′
ξ = w2 +∆−2f(ξ).

4. x2y′x = x4f(x)y2 + 1.

The substitution u = − 1

x2y
− 1

x
leads to the equation u′x = u2 + f(x).

5. x2y′x = x2y2 + x2nf(axn + b) +
1

4
(1− n2).

The transformation ξ = axn + b, w =
1

an
x1−ny+

1− n
2an

x−n leads to a simpler equation:

w′
ξ = w2 + (an)−2f(ξ).

6. y′x = f(x)y2 + g(x)y + h(x).

The substitution y=−1/w leads to an equation of the same form: w′
x=h(x)w

2−g(x)w+
f(x).

7. y′x = y2 + e2λxf(eλx) − 1

4
λ2.

The transformation ξ = eλx, u =
1

λ
e−λxy − 1

2
e−λx leads to a simpler equation: u′ξ =

u2 + λ−2f(ξ).

8. y′x = y2 − λ2

4
+

e2λx

(ceλx + d)4
f
((
aeλx + b

ceλx + d

))
.

The transformation

ξ =
aeλx + b

ceλx + d
, w =

(ceλx + d)2

∆λeλx
y +

c2e2λx − d2
2∆eλx

, where ∆ = ad− bc,

leads to a simpler equation: w′
ξ = w2 + (∆λ)−2f(ξ).

9. y′x = y2 − λ2 + sinh− 4(λx)f
((

coth(λx)
))
.

The transformation ξ= coth(λx), w=−λ−1 sinh2(λx)y− 1
2 sinh(2λx) leads to a simpler

equation: w′
ξ = w2 + λ−2f(ξ).

10. y′x = y2 − λ2 + cosh− 4(λx)f
((

tanh(λx)
))
.

The transformation ξ = tanh(λx), w = λ−1 cosh2(λx)y+ 1
2 sinh(2λx) leads to a simpler

equation: w′
ξ = w2 + λ−2f(ξ).

11. x2y′x = x2y2 + f(a lnx+ b) +
1

4
.

The transformation ξ = a lnx + b, w =
1

a
xy +

1

2a
leads to a simpler equation: w′

ξ =

w2 + a−2f(ξ).
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12. y′x = y2 + λ2 + sin− 4(λx)f(cot(λx)).

The transformation ξ = cot(λx), w = − sin2(λx)
[ y
λ
+cot(λx)

]
leads to a simpler equa-

tion: w′
ξ = w2 + λ−2f(ξ).

13. y′x = y2 + λ2 + cos− 4(λx)f
((
tan(λx)

))
.

The transformation ξ=tan(λx), w=cos2(λx)
[ y
λ
−tan(λx)

]
leads to a simpler equation:

w′
ξ = w2 + λ−2f(ξ).

14. y′x = y2 + λ2 + sin− 4(λx+ b)f
((
sin(λx+ a)

sin(λx+ b)

))
.

The transformation ξ =
sin(λx+ a)

sin(λx+ b)
, w =

sin2(λx+ b)

sin(b− a)
[ y
λ

+ cot(λx + b)
]

leads to a

simpler equation: w′
ξ = w2 + [λ sin(b− a)]−2f(ξ).

13.3 Abel Equations of the Second Kind

13.3.1 Equations of the Form yy′

x − y = f(x)

◮ Preliminary remarks. Classification tables.

For the sake of convenience, listed in Tables 13.1–13.4 are all the Abel equations discussed

in Section 13.3. Tables 13.1–13.3 classify Abel equations in which the functions f are of

the same form; Table 13.8 gives other Abel equations. In Table 13.1, equations are arranged

in accordance with the growth of the parameter m. In Table 13.2, equations are arranged

in accordance with the growth of the parameter p. In Table 13.3, equations are arranged

in accordance with the growth of the parameter s. The rightmost column of the tables

indicates the equation numbers where the corresponding solutions are written out.

TABLE 13.1

Solvable Abel equations of the form yy′x − y = sx + Axm, A is an arbitrary parameter

m s Equation m s Equation

arbitrary − 2(m+ 1)

(m+ 3)2
13.3.1.10 −1 0 13.3.1.16

−7 15/4 13.3.1.56 −1/2 −2/9 13.3.1.26

−4 6 13.3.1.54 −1/2 −4/25 13.3.1.22

−5/2 12 13.3.1.47 −1/2 0 13.3.1.32

−2 0 13.3.1.33 −1/2 20 13.3.1.55

−2 2 13.3.1.19 0 arbitrary 13.3.1.2

−5/3 −3/16 13.3.1.30 0 0 13.3.1.1

−5/3 −9/100 13.3.1.23 1/2 −12/49 13.3.1.53

−5/3 63/4 13.3.1.48 2 −6/25 13.3.1.45

−7/5 −5/36 13.3.1.27 2 6/25 13.3.1.46
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TABLE 13.2

Solvable Abel equations of the form yy′x − y = sx + αAxp + βA2xq , A is an arbitrary parameter

p q s α β Equation

−1 −3 arbitrary 1 −1 13.3.1.5

−1 −3 2m+ 1

4m2
1 −1 13.3.1.13

−1 −3 0 1 −1 13.3.1.7

−3/5 −7/5 −5/36 arbitrary arbitrary 13.3.1.62

−5/11 −13/11 −33/196 286A/3 −770A/9 13.3.1.69

−1/3 −5/3 −3/16 arbitrary arbitrary 13.3.1.61

−1/3 −5/3 −3/16 3 −12 13.3.1.40

−1/3 −5/3 −3/16 5 −12 13.3.1.15

−1/3 −5/3 15/4 6 −3 13.3.1.60

−1/5 −4/5 −10/49 13A/5 −7A/20 13.3.1.68

0 −1/2 −2/9 arbitrary arbitrary 13.3.1.3

2 3 4/9 2 2 13.3.1.14

Given below in this section are all solvable Abel equations known so far. The equa-

tions are arranged into groups, in which all solutions are expressed in terms of the same

functions. Notation is given before each group.

In most cases the solutions are presented in parametric form:

x = F1(τ, C), y = F2(τ, C),

where τ is the parameter and C is an arbitrary constant.

◮ Solvable equations and their solutions.

1. yy′x − y = A.

Solution: x = y −A ln |y +A|+ C .

2. yy′x − y = Ax+ B, A 6= 0.

Solution in parametric form:

x = C exp
(
−
∫

τ dτ

τ2 − τ −A
)
− B

A
, y = Cτ exp

(
−
∫

τ dτ

τ2 − τ −A
)
.

3. yy′x − y = − 2
9
x+A+Bx−1/2.

1◦. Solution in parametric form with A > 0:

x = a

[
(2k − 1)Cτk − (k − 2)τ − k − 1

Cτk + τ + 1

]2
, y = −6a (k − 1)2Cτk+1 + k2Cτk + τ

Cτk + τ + 1
,

where A = 2
3a(k

2 − k + 1), B = 2
3a

3/2(2k − 1)(k − 2)(k + 1).
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TABLE 13.3

Solvable Abel equations of the form yy′x − y = sx + σA(αx1/2 + βA + γA2x−1/2),
A is an arbitrary parameter

s σ α β γ Equation

arbitrary 6= 0 arbitrary 0 arbitrary 0 13.3.1.2

2(m−1)

(m−3)2
2

(m−3)2
m(m+3) 4m2+3m+9 3m(m+3) 13.3.1.12

−1/4 1/4 1 5 3 13.3.1.17

−30/121 3/242 21 35 6 13.3.1.29

−12/49 arbitrary arbitrary 0 0 13.3.1.53

−12/49 1/98 25 41 10 13.3.1.25

−12/49 6/49 1 8 5 13.3.1.38

−12/49 2/49 5 34 15 13.3.1.24

−12/49 4/49 −10 27 10 13.3.1.31

−12/49 1/49 5 262 65 13.3.1.52

−12/49 6/49 −3 23 12 13.3.1.28

−12/49 2/49 1 166 55 13.3.1.58

−12/49 1 3/49+3B 12/49−15B/2 15/196+75B/16 13.3.1.64

−6/25 2/25 2 19 6 13.3.1.20

−6/25 6/25 2 7 4 13.3.1.39

−28/121 2/121 5 106 15 13.3.1.51

−2/9 arbitrary 0 arbitrary arbitrary 13.3.1.3

−2/9 arbitrary 0 0 arbitrary 13.3.1.26

−2/9 6 0 1 2 13.3.1.11

−10/49 2/49 4 61 12 13.3.1.57

−4/25 arbitrary 0 0 arbitrary 13.3.1.22

−4/25 1/50 7 49 6 13.3.1.59

0 arbitrary 0 0 arbitrary 13.3.1.32

0 1 1 2 arbitrary 13.3.1.36

0 n+2 1 2(n+2) (n+1)(n+3) 13.3.1.34

0 n+2 1 2(n+2) 2n+3 13.3.1.35

0 1 −1 2 0 13.3.1.37

0 2 1 4 3 13.3.1.4

0 arbitrary 0 arbitrary 0 13.3.1.1

2 2 −10 19 30 13.3.1.50

2 2 10 31 30 13.3.1.49

20 arbitrary 0 0 arbitrary 13.3.1.55
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TABLE 13.4

Other solvable Abel equations of the form yy′x − y = f(x)

Function f(x) Equation

Axk−1 − kBxk + kB2x2k−1
13.3.1.6

(particular solution)

Ax2 − 9
625A

−1
13.3.1.44

3
4x− 3

2Ax
1/3 + 3

4A
2x−1/3 − 27

625A
4x−5/3 13.3.1.66

− 6
25x+ 7

5Ax
1/3 + 31

3 A
2x−1/3 − 100

3 A4x−5/3 13.3.1.67

− 6
25x+ ax1/3 + b+ cx−1/3 + dx−2/3

(coefficients a, b, c, and d are related by an equality)
13.3.1.65

− 21
100x+ 7

9A
2
(
123x−1/7 + 280Ax−5/7 − 400A2x−9/7

)
13.3.1.70

k√
Ax2 +Bx+ C

13.3.1.63

A√
x2 + 4A

13.3.1.18

− 3

32
x+

9a2 − 6x2

64
√
x2 + a2

13.3.1.43

3

8
x+

6x2 + 5a2

16
√
x2 + a2

13.3.1.21

3

8
x+

6x2 + 9A

16
√
x2 +A

13.3.1.41

9

32
x+

30x2 + 33A

64
√
x2 +A

13.3.1.42

A+B exp(−2x/A) 13.3.1.8

A[exp(2x/A) − 1] 13.3.1.9

a2λe2λx − a(bλ+ 1)eλx + b
13.3.1.73

(particular solution)

a2λe2λx + aλxeλx + beλx
13.3.1.74

(particular solution)

2a2λ sin(2λx) + 2a sin(λx)
13.3.1.75

(particular solution)

2◦. Solution in parametric form with A < 0:

x = ξ[2λe−λτ − (C1λ− 3C2ω) sinωτ − (3C1ω + C2λ) cosωτ ]
2,

y = 6ξ
{
(C2

1 + C2
2 )ω

2 − [C1(λ
2 − ω2)− 2C2ωλ]e

−λτ sinωτ

− [2C1ωλ+ C2(λ
2 − ω2)]e−λτ cosωτ

}
,
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where

ξ = a(e−λτ +C1 sinωτ+C2 cosωτ)
−2, A=− 2

3a(3ω
2−λ2), B = 4

9a
3/2λ(9ω2+λ2).

3◦. For the case A = 0, see equation 13.3.1.26.

4. yy′x − y = 2A(x1/2 + 4A+ 3A2x−1/2).

Solution in parametric form:

x = 1
4a(3± 2τL±)

2, y = ±aL±(R
2
±L± + τ), A = − 1

2a
1/2,

where

L+ =





∫
dτ

1 + τ2
= arctan τ − C, R+ =

√
1 + τ2,

∫
dτ

τ2 − 1
=

1

2
ln
∣∣∣ τ − 1

τ + 1

∣∣∣− C, R+ =
√
τ2 − 1,

L− =

∫
dτ

1− τ2 =
1

2
ln
∣∣∣ 1 + τ

1− τ
∣∣∣− C, R− =

√
1− τ2.

5. yy′x − y = Ax+ Bx−1 − B2x−3.

Solution in parametric form:

x =
( V
W

)−1/2
, y = (τ + 1)

( V
W

)−1/2
−B

( V
W

)1/2
.

Here,

V =





(τ2 + τ −A) exp
(

2√
−∆

arctan
2τ + 1√
−∆

)
if ∆ < 0,

(τ2 + τ −A) exp
(
− 2

2τ + 1

)
if ∆ = 0,

(τ2 + τ −A)
(
2τ + 1−

√
∆

2τ + 1 +
√
∆

) 1√
∆

if ∆ > 0,

W =





C + 2B

∫
exp

(
2√
−∆

arctan
2τ + 1√
−∆

)
dτ if ∆ < 0,

C + 2B

∫
exp

(
− 2

2τ + 1

)
dτ if ∆ = 0,

C + 2B

∫ (
2τ + 1−

√
∆

2τ + 1 +
√
∆

) 1√
∆
dτ if ∆ > 0,

where ∆ = 4A+ 1.

6. yy′x − y = Axk−1 − kBxk + kB2x2k−1.

Particular solution: y0 = x−Bxk − A

kB
.

7. yy′x − y = Ax−1 − A2x−3.

Solution in parametric form:

x = aτ−1(τ − ln |1 + τ | − C)1/2,

y = a
[ 1 + τ

τ
(τ − ln |1 + τ | − C)1/2 − 1

2
τ(τ − ln |1 + τ | − C)−1/2

]
,

where A = a2/2.
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8. yy′x − y = A+ Be−2x/A.

Solution in parametric form:

x = A ln

∣∣∣∣

√
τ2 +AB

A ln
∣∣τ +

√
τ2 +AB

∣∣+ C

∣∣∣∣, y = τ
A ln

∣∣τ +
√
τ2 +AB

∣∣+ C√
τ2 +AB

−A.

9. yy′x − y = A(e2x/A − 1).

Solution in parametric form:

x = A ln
∣∣∣ τ

2 + 1

τ
(arctan τ − C)

∣∣∣, y =
A

τ

[
τ + (τ2 − 1)(arctan τ − C)

]
.

◆ In the solutions of equations 10–15, the following notation is used:

Em, l =

∫
(1± τm+1)

1
l−2 dτ − C, Em = Em, 0 =

∫
(1± τm+1)−1/2 dτ − C,

Rm =
√

1± τm+1, Fm = RmEm − τ.

10. yy′x − y = − 2(m+ 1)

(m+ 3)2
x+ Axm.

Solution in parametric form:

x =
m+ 3

m− 1
aτE

2
m−1
m , y = aE

2
m−1
m

(
RmEm +

2

m− 1
τ
)
,

where A = ±m+ 1

2

(m− 1

m+ 3

)m+1
a1−m.

11. yy′x − y = − 2

9
x+ 6A2(1 + 2Ax−1/2), A > 0.

Solution in parametric form:

x = A2R−4E−2(R2E ± 6τ1/2)2, y = −12A2R−4E−2(R2E − 2τ),

where E = E−1/2, 3/2, R = R−1/2.

12. yy′x − y =
2(m− 1)

(m− 3)2
x

+
2A

(m− 3)2

[[
m(m+3)x1/2+(4m2+3m+9)A+3m(m+3)A2x−1/2

]]
.

Solution in parametric form:

x =
a

(m− 3)2
τ−2[(m− 3)RmEm + 3τ ]2,

y =
a

m− 3
τ−2Em[±(m− 1)τm+1Em − 2Em + 2τRm],

where A = − a1/2

m− 3
.
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13. yy′x − y =
2m+ 1

4m2
x+ Ax−1 − A2x−3.

Solution in parametric form:

x=
E1/2

aτ1/2R2
m

, y =
τ −

[
1∓ (2m+ 1)τm+1

]
R2

mE

2amτ1/2R2
mE

1/2
with a2 =−2mA, E =Em, 3/2.

14. yy′x − y =
4

9
x+ 2Ax2 + 2A2x3.

Solution in parametric form:

x =
1

3A
τ−1F3, y =

1

9A
τ−2E3(τR3 − E3 ± τ4E3).

15. yy′x − y = − 3

16
x+ 5Ax−1/3 − 12A2x−5/3.

Solution in parametric form:

x = aτ1/2E−3/2F 3/2, y = 1
4aτ

1/2E−3/2F−1/2(F 2 − 2τF − τ−2/3E2),

where A = 1
24 a

4/3, E = E−5/3, F = F−5/3.

◆ In the solutions of equations 16–18, the following notation is used:

f =

∫
exp(∓τ2) dτ − C, g = 2τ

[∫
exp(∓τ2) dτ −C

]
± exp(∓τ2).

16. yy′x − y = Ax−1.

Solution in parametric form:

x = af−1 exp(∓τ2), y = af−1
[
exp(∓τ2)± 2τf

]
, where A = ∓2a2.

17. yy′x − y = − 1

4
x+

1

4
A(x1/2 + 5A+ 3A2x−1/2).

Solution in parametric form:

x = 1
16 a
[
3± 8τf exp(±τ2)

]2
, y = af exp(±τ2)

[
(2τ2 ± 1)f exp(±τ2)± τ

]
,

where A = 1
4

√
a.

18. yy′x − y = ± 2a2

√
x2 ± 8a2

.

Solution in parametric form:

x = ±a(fg)−1(g2 ∓ 2f2), y = a(fg)−1[exp(∓τ2)g − 2f2].

◆ In the solutions of equations 19–21, the following notation is used:

E =
√
τ(τ + 1)− ln

∣∣C
(√
τ +
√
τ + 1

)∣∣, R =

√
τ + 1

τ
,

F = 1−
√
τ + 1

τ
ln
∣∣C
(√
τ +
√
τ + 1

)∣∣.
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19. yy′x − y = 2x+Ax−2.

Solution in parametric form:

x = 1
3aE

−2/3τ, y = aE−2/3
(
2
3 τ −RE

)
, where A = − 243

2 a3.

20. yy′x − y = − 6

25
x+

2

25
A(2x1/2 + 19A+ 6A2x−1/2).

Solution in parametric form:

x = aτ−2(5RE − 3τ)2, y = 5aτ−3E[(2τ + 3)E − 2τ2R], where A = −
√
a.

21. yy′x − y =
3

8
x+

3

8

√
x2 + a2 − a2

16
√
x2 + a2

.

Solution in parametric form:

x =
a

2
√
2

E2 − 2τ2F

τE
√
F

, y =
a

4
√
2

4τF 2 −E2

τE
√
F

.

◆ In the solutions of equations 22–25, the following notation is used:

P2 = ±(τ2 − 1), P3 = τ3 − 3τ + C, P4 = ±(τ4 − 6τ2 + 4Cτ − 3).

22. yy′x − y = − 4

25
x+Ax−1/2.

Solution in parametric form:

x = 5aP 2
2 P

−4/3
3 , y = 4aP

−4/3
3 (P 2

2 − τP3), where A = ± 4
5a
√
5a.

23. yy′x − y = − 9
100
x+Ax−5/3.

Solution in parametric form:

x = 10aP
3/2
3 P

−9/8
4 , y = 9aP

−1/2
3 P

−9/8
4 (P 2

3 −P2P4), where A = ±9a2(10a)2/3.

24. yy′x − y = − 12
49
x+ 2

49
A(5x1/2 + 34A+ 15A2x−1/2).

Solution in parametric form:

x=aP−4
2 (14τP3−9P 2

2 )
2, y=28aP−4

2 P3(4τ
2P3−3τP 2

2∓P2P3), where A=−3
√
a.

25. yy′x − y = − 12
49
x+ 1

98
A(25x1/2 + 41A+ 10A2x−1/2).

Solution in parametric form:

x= aP−4
3 (21P2P4−16P 2

3 )
2, y=21aP−4

3 P4(9P
2
2 P4∓P 2

4 −8P2P
2
3 ) with A=−8

√
a.

◆ In the solutions of equations 26–29, the following notation is used:

S1 = exp(
√
3 τ) + C sin τ, S2 = 2exp(

√
3 τ)− C sin τ +

√
3C cos τ,

S3 = 2exp(
√
3 τ)− C sin τ −

√
3C cos τ, S4 = 4S1S3 − S2

2 .

26. yy′x − y = − 2
9
x+ Ax−1/2.

Solution in parametric form:

x = 3aS−2
1 S2

2 , y = 2aS−2
1 (S2

2 − 2S1S3), where A = 16(3a)3/2.
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27. yy′x − y = − 5
36
x+ Ax−7/5.

Solution in parametric form:

x = 48aS
5/2
1 S

−5/4
4 , y = 5aS

−1/2
1 S

−5/4
4 (8S3

1 − S2S4), where A = (48a)2/5a2.

28. yy′x − y = − 12
49
x+ 6

49
A(−3x1/2 + 23A+ 12A2x−1/2).

Solution in parametric form:

x= aS−4
2 (7S1S3−2S2

2)
2, y=−7aS1S−4

2 (4S2
1S2−4S1S2

3+S
2
2S3), where A=

√
a/2.

29. yy′x − y = − 30
121
x+ 3

242
A(21x1/2 + 35A+ 6A2x−1/2).

Solution in parametric form:

x=aS−6
1 (11S2S4−64S3

1)
2, y=−11aS−6

1 S4(S
2
4−5S2

2S4+32S3
1S2) with A=−32

√
a.

◆ In the solutions of equations 30 and 31, the following notation is used:

T1 = tanh(τ + C) + tan τ, T2 = tanh(τ + C)− tan τ,

θ1 = cosh τ − sin(τ + C), θ2 = sinh τ + cos(τ + C), θ3 = sinh τ − cos(τ + C).

30. yy′x − y = − 3
16
x+ Ax−5/3.

1◦. Solution in parametric form with A < 0:

x = 8aT
−3/2
1 , y = 3aT

−3/2
1 (2− T1T2), where A = −12a8/3.

2◦. Solution in parametric form with A > 0:

x = 4aθ
3/2
1 θ

−3/2
2 , y = 3aθ

−1/2
1 θ

−3/2
2 (θ21 − θ2θ3), where A = 3a2(4a)2/3.

31. yy′x − y = − 12
49
x+ 4

49
A(−10x1/2 + 27A+ 10A2x−1/2).

1◦. Solution in parametric form with A < 0:

x = a(10 − 7T1T2)
2, y = 7aT1(T

3
1 + 3T1T

2
2 − 4T2), where A = −2

√
a.

2◦. Solution in parametric form with A > 0:

x = aθ−4
1 (7θ2θ3 − 5θ21), y = −7aθ−4

1 θ2(θ
3
2 − 3θ2θ

2
3 + 2θ21θ3), where A =

√
a.

◆ In the solutions of equations 32–43, the following notation is used:

Zν =

{
C1Jν(τ) + C2Yν(τ) for the upper sign,

C1Iν(τ) +C2Kν(τ) for the lower sign,

fν = τ(Zν)
′
τ + νZν , Z = Z1/3, U1 = τZ ′

τ +
1
3Z,

U2 = U2
1 ± τ2Z2, U3 = ± 2

3 τ
2Z3 − 2U1U2,

where Jν(τ) and Yν(τ) are Bessel functions, and Iν(τ) and Kν(τ) are modified Bessel

functions.

Remark 13.2. The solutions of equations 32–43 contain only the ratio Z ′
τ/Z , where the prime

denotes differentiation with respect to τ . Therefore, for symmetry, function Z is defined in terms of

two “arbitrary” constants C1 and C2 (instead, we can set, for instance, C1 = 1 and C2 = C).
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32. yy′x − y = Ax−1/2.

Solution in parametric form:

x = aτ−4/3Z−2U2
1 , y = aτ−4/3Z−2U2, where A = ∓ 1

3a
3/2.

33. yy′x − y = Ax−2.

Solution in parametric form:

x = 2aτ4/3Z2U−1
2 , y = ±3aτ−2/3Z−1U−1

2 U3, where A = −36a3.

34. yy′x − y = A(n+ 2)[x1/2 + 2(n+ 2)A+ (n+ 1)(n+ 3)A2x−1/2].

Solution in parametric form:

x = aZ−2
ν [fν − (ν + 1)Zν ]

2, y = aZ−2
ν (f2ν − 2νZνfν ± τ2Z2

ν ),

where A = ν
√
a, ν =

1

n+ 2
.

35. yy′x − y = A(n+ 2)[x1/2 + 2(n+ 2)A+ (2n+ 3)A2x−1/2].

Solution in parametric form:

x = af−2
ν [τ2Zν ± (2− ν)fν ]2, y = ±aτ2f−2

ν [f2ν + 2(1− ν)Zνfν ± τ2Z2
ν ],

where A = ∓ν√a, ν =
1

n+ 2
.

36. yy′x − y = Ax1/2 + 2A2 +Bx−1/2.

Solution in parametric form:

x = A2Z−2
ν (τZ ′

ν − Zν)
2, y = A2Z−2

ν [τ2(Z ′
ν)

2 − (ν2 ∓ τ2)Z2
ν ],

where B = (1− ν2)A3 and the prime denotes differentiation with respect to τ .

37. yy′x − y = 2A2 −Ax1/2.

Solution in parametric form:

x = a(Z ′
0)

−2(τZ0 ± 2Z ′
0)

2, y = ±aτ(Z ′
0)

−2[τ(Z ′
0)

2 + 2Z0Z
′
0 ± τZ2

0 ],

where A =
√
a and the prime denotes differentiation with respect to τ .

38. yy′x − y = − 12
49
x+ 6

49
A(x1/2 + 8A+ 5A2x−1/2).

Solution in parametric form:

x = 3aU−4
1 (5U2

1 − 7τ2Z2)2, y = 28aτ2Z2U−4
1 (3τ2Z2 − ZU1 − 3U2

1 ),

where A = 2
√
3a; Z and U1 are expressed in term of modified Bessel functions.
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39. yy′x − y = − 6
25
x+ 6

25
A(2x1/2 + 7A+ 4A2x−1/2).

Solution in parametric form:

x= aτ−4Z−6(U1U2−2U3)
2, y=5aτ−4Z−6U2(U

2
2 −U1U3), where A=−

√
a/2.

40. yy′x − y = − 3
16
x+ 3Ax−1/3 − 12A2x−5/3.

Solution in parametric form:

x =
af

3/2
3/2

τ3/2Z
3/2
3/2

, y =
3a

4

f23/2 − 2Z3/2f3/2 − τ2Z2
3/2

τ3/2Z
3/2
3/2f

1/2
3/2

,

where Z3/2 and f3/2 are expressed in terms of modified Bessel functions; A = 1
8a

4/3.

41. yy′x − y =
3

8
x+

3

8

√
x2 ± b2 ± 3b2

16
√
x2 ± b2

.

Solution in parametric form:

x = − 1
4aτ

−1Z−3/2U
−1/2
1 U−1

2 (2τ2Z3U1 ∓ 3U2
2 ),

y = ∓ 1
8aτ

−1Z−3/2U
−1/2
1 U−1

2 (3U2
2 − 12U2

1U2 ± 4τ2Z3U1),

where b2 = 3
2 a

2.

42. yy′x − y =
9

32
x+

15

32

√
x2 ∓ b2 ∓ 3b2

64
√
x2 ∓ b2

.

Solution in parametric form:

x = − 1
2aτ

−1Z−3/2U
−3/2
2 U

−1/2
3 (2τ2Z3U3 ± 3U3

2 ),

y = ± 1
4aτ

−1Z−3/2U
−3/2
2 U

−1/2
3 (3U3

2 ∓ τ2Z3U3 − 3U2
3 ),

where b2 = 6a2.

43. yy′x − y = − 3

32
x− 3

32

√
x2 + a2 +

15a2

64
√
x2 + a2

.

Solution in parametric form:

x = 1
2aU

−3/2
2 U−1

3 (U2
3 − U3

2 ), y = 1
24aU

−3/2
2 U−1

3 (3U2
3 − 12U3

2 ± 4τ2Z3U3).

◆ In the solutions of equations 44–52, the following notation is used:

E1 = τ3
√
±(4℘3 − 1) + 3τ2℘∓ 1, E2 = τ2℘∓ 1,

E3 =
√
±(4℘3 − 1)± 2τ℘2, E4 = τ

√
±(4℘3 − 1) + 2℘.

Here, the function ℘ = ℘(τ) is given implicitly as follows: τ =

∫
d℘√

±(4℘3 − 1)
−C2.

The upper sign in this formula corresponds to the classical elliptic Weierstrass function

℘ = ℘(τ + C2, 0, 1).
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44. yy′x − y = Ax2 − 9
625
A−1.

Solution in parametric form:

x = 5a
(
τ2℘∓ 1

2

)
, y = aτ2E4, where A = ± 6

125a
−1.

45. yy′x − y = − 6
25
x+ Ax2.

Solution in parametric form:

x = 5aτ2℘, y = aτ2E4, where A = ± 6
125a

−1.

46. yy′x − y = 6
25
x+Ax2.

Solution in parametric form:

x = 5aE2, y = aτ2E4, where A = ± 6
125a

−1.

47. yy′x − y = 12x+ Ax−5/2.

Solution in parametric form:

x = a℘−6/7E
−4/7
3 , y = a℘−6/7E

−4/7
3 (14℘2E4 − 3), where A = ∓147a7/2.

48. yy′x − y = 63
4
x+Ax−5/3.

Solution in parametric form:

x=2aE
3/2
3 E

−9/8
4 , y= aE

−1/2
3 E

−9/8
4 (9E2

3∓16℘E2
4 ), where A=− 128

3 a2(2a)2/3.

49. yy′x − y = 2x+ 2A(10x1/2 + 31A+ 30A2x−1/2).

Solution in parametric form:

x = a℘−2
[
τ
√
±(4℘3 − 1)− 3℘

]2
, y = −2aτ℘−2

[
℘
√
±(4℘3 − 1)± 2τ℘3 ± τ

]
,

where A =
√
a.

50. yy′x − y = 2x+ 2A(−10x1/2 + 19A+ 30A2x−1/2).

Solution in parametric form:

x = aE−2
2 (E1 − 6E2)

2, y = −2aE−2
2 (±6E3

2 − E2
1 + 7E1E2), where A = −

√
a.

51. yy′x − y = − 28
121
x+ 2

121
A(5x1/2 + 106A+ 15A2x−1/2).

Solution in parametric form:

x = a(22℘2E4 − 5)2, y = ±44a℘2E3(7℘E3 ∓ 2τ), where A = ±2
√
a.

52. yy′x − y = − 12
49
x+ 1

49
A(5x1/2 + 262A+ 65A2x−1/2).

Solution in parametric form:

x = aE−4
3 (28℘E2

4 ∓ 15E2
3)

2, y = 56aE−4
3 E2

4(6℘E2 + E4), where A = ∓3
√
a.

◆ In the solutions of equations 53–60, the following notation is used:

I =

∫
τd τ√
±(4τ3 − 1)

(incomplete elliptic integral of the second kind),

R =
√
±(4τ3 − 1), I1 = τ(2I ∓ τ−1R+C), I2 = τ−1(RI1 − 1), I3 = 4τI21 ∓ I22 .
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53. yy′x − y = − 12
49
x+ Ax1/2.

Solution in parametric form:

x = 7aτ2(I +C)−4, y = −2a(I +C)−4(IR+CR− 2τ2), where A = ± 12
49

√
7a.

54. yy′x − y = 6x+Ax−4.

Solution in parametric form:

x = aτ−3/5I
−2/5
1 , y = aτ−3/5I

−2/5
1 (5RI1 − 2), where A = ∓150a5.

55. yy′x − y = 20x+ Ax−1/2.

Solution in parametric form:

x = aI
−4/3
1 I22 , y = −4aI−4/3

1 (I22 ∓ 9τI21 ), where A = ±108a3/2.

56. yy′x − y = 15
4
x+Ax−7.

Solution in parametric form:

x = aI
1/2
1 I

−3/8
3 , y = 1

2aI
−3/2
1 I

−3/8
3 (I2I3 − 3I21 ), where A = ± 3

4a
8.

57. yy′x − y = − 10
49
x+ 2

49
A(4x1/2 + 61A+ 12A2x−1/2).

Solution in parametric form:

x = a(7RI1 − 3)2, y = 14aI1[±(10τ3 − 1)I1 −R], where A =
√
a.

58. yy′x − y = − 12
49
x+ 2

49
A(x1/2 + 166A+ 55A2x−1/2).

Solution in parametric form:

x= aI−4
2 (42τI21 ∓5I22 )

2, y=∓84aI21 I−4
2 (3τI22 +I2∓12τ2I21 ), where A=±

√
a.

59. yy′x − y = − 4
25
x+ 1

50
A(7x1/2 + 49A+ 6A2x−1/2).

Solution in parametric form:

x= aI−4
1 (5I2I3−16I21 )

2, y =−5aI−4
1 I3(±3I23 −I22I3+8I21I3), where A=8

√
a.

60. yy′x − y = 15
4
x+ 6Ax−1/3 − 3A2x−5/3.

Solution in parametric form:

x=2aτ3/2I
3/2
1 I

−3/4
2 , y=aτ−1/2I

−1/2
1 I

−3/4
2 (2τI22+I2−3τ2I21 ) with A=− 1

3a(2a)
1/3.

61. yy′x − y = − 3
16
x+ Ax−1/3 + Bx−5/3.

The substitution x = τ−3/2 leads to an equation

yy′τ = − 3
2 τ

−5/2y + 9
32 τ

−4 − 3
2Aτ

−2 − 3
2B,

coincident with equation 13.3.3.13 when n=−1/2, c= 0, b= 3/4, d=3A/2, a2 =−3B.
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62. yy′x − y = − 5
36
x+ Ax−3/5 − Bx−7/5, B > 0.

The transformation x=
(
w− 1

3

√
τ +A/B

)−5/4
, y = 5

6x+
(
5
3B
)1/2√

τ x1/5 leads to an

equation of the form 13.3.1.3:

ww′
τ − w = − 2

9
τ +

2A

3B
+
( 5

27B

)1/2 1√
τ
.

63. yy′x − y = k(Ax2 +Bx+ C)−1/2.

The transformation x =
4(b2w

2 + b1w + b0)

4A− w2
, y = ξ +

4(b2w
2 + b1w + b0)

4A− w2
, where pa-

rameters b2, b1, and b0 are found from the relations B = 4Ab2 − b0 and C = b21 − 4b0b2,

leads to a Riccati equation:

±kw′
ξ = (− 1

4 ξ + b2)w
2 + b1w +Aξ + b0.

For C > 0, we can set b2 = 0, b1 =
√
C, and b0 = −B.

In books by Zaitsev & Polyanin (1993, 1994) it is shown that the original equation is

reducible to the degenerate hypergeometric equation.

64. yy′x − y = − 12
49
x+ 3A( 1

49
+ B)x1/2

+ 3A2( 4
49

− 5
2
B) + 15

4
A3( 1

49
+ 5

4
B)x−1/2.

The substitution x = (ξ2 + 5
4A)

2 leads to an equation of the form 13.3.3.13 with n = 3,

a = 4/7, c = 0, b = A, and d = 12A( 27 −B):

yy′ξ = (4ξ2 + 5A)ξy −
[
48
49 ξ

4 + 12A
(
2
7 −B

)
ξ2 + 3A2

]
ξ3.

65. yy′x − y = − 6
25
x

+ 4
75
B2
[[
(2−A)x1/3− 3

2
B(2A+1)+B2(1−3A)x−1/3−AB3x−2/3

]]
.

The transformation x= w−3, y =
[
ξ+

B2(3− 2Bw)

5w(Bw + 1)

](
w+

1

B

)2
w−2 leads to a Riccati

equation:
(
2ξ2 − 2

5B
3ξ + 4

25AB
6
)
w′
ξ = Bξw2 +

(
ξ − 2

5B
3
)
w + 3

5B
2.

66. yy′x − y = 3
4
x− 3

2
Ax1/3 + 3

4
A2x−1/3 − 27

625
A4x−5/3.

The transformation

x=A3/2f −3/2, y=3A3/2
(
ξf2− 3

25 f
2− 1

2 f+
1
2

)
f −3/2, where f=w

(
ξ2− 6

25 ξ
)−1

,

leads to an equation of the form 13.3.1.46: ww′
ξ − w = 6

25 ξ − ξ2.

67. yy′x − y = − 6
25
x+ 7

5
Ax1/3 + 31

3
A2x−1/3 − 100

3
A4x−5/3.

Denote A = 7
100 a and perform the transformation

x = ξ3/2, y = 7
20

(
w + 8

7 ξ − 3
5a− 7

50a
2ξ−1

)√
ξ, where ξ = z − 3

10a.

As a result we obtain an equation of the form 13.3.4.30 with n = 1
7 , c = − 3

10 a:
[(
z − 3

10a
)
w + 8

7 z
2 − 9

7az +
1
7a

2
]
w′
z = − 1

2w
2 + 2zw.
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68. yy′x − y = − 10
49
x+ 13

5
A2x−1/5 − 7

20
A3x−4/5.

Denote A = 8a−2. The transformation

√
τ = a3

(
5

112x
3/5 − 1

16 yx
−2/5

)
, w = 4

7 τ + x−3/5 − 39
42 a

2

leads to an equation of the form 13.3.1.64 with B = −1/49:

ww′
τ − w = − 12

49 τ +
39
98a

2 − 15
784a

3τ−1/2.

69. yy′x − y = − 33
196
x+ 286

3
A2x−5/11 − 770

9
A3x−13/11.

Denote A = 8
5a

−2. The transformation

√
τ = 15

448 a
3
(
x8/11 − 14

11 yx
−3/11

)
, w = 3

7 τ + x−8/11 − 39
56 a

2

leads to an equation of the form 13.3.1.64 with B = −1/49:

ww′
τ − w = − 12

49 τ +
39
98a

2 − 15
784a

3τ−1/2.

70. yy′x − y = − 21
100
x+ 7

9
A2(123x−1/7 + 280Ax−5/7 − 400A2x−9/7).

Denote A = 1/a. The transformation

x = ξ−7/4, y = 35
3 a

−2
(
w + 4ξ + 7

5a+
3
50a

2ξ−1
)
ξ−3/4, where ξ = z − 21

20a,

leads to an equation of the form 13.3.4.30 with n = 3, c = − 21
20a:

[(
z − 21

20 a
)
w + 4z2 − 7az + 3a2

]
w′
z =

3
4w

2 + 2zw.

71. yy′x − y = ax+ bxm.

1◦. For m 6= 3, the transformation

τ = B2
[
(m− 3)

y

x
+ 1
]2
, w = 2(m− 3)B2

(
bxm−1 − y2

x2
+
y

x
+ a
)

leads to an equation

ww′
τ−w=

2(m−1)
(m−3)2

{
τ−mBτ1/2+[2m−3−a(m−3)2]B2+[2−m+a(m−3)2]B3τ−1/2

}
.

2◦. Let m 6= 1 and a > −1/4. Denote

a = − (n+ 2)(n +m+ 1)

(2n+m+ 3)2
, where n = n1, 2 =

1

2

(
± m− 1√

1 + 4a
−m− 3

)
.

Then the transformation

x = ξ
n+2
m−1w, y =

m− 1

2n +m+ 3
ξ

n+2
m−1

(
ξw′

ξ +
n+ 2

m− 1
w
)
, n = n1, 2

reduce the original equation to the classical Emden–Fowler equation w′′
ξξ=Aξ

nwm, where

A = b
( 2n+m+ 3

m− 1

)2
, which is discussed below in Section 14.3.
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72. yy′x − y = − m+ 1

(m+ 2)2
x+Ax2m+1 + Bx3m+1.

Denote A = − am

2(m+ 2)2b2
, B = − m2

2(m+ 2)3b2
. The transformation

√
τ = − (m+ 2)2

m
byx−m−1 +

m+ 2

m
bx−m, w =

2(m+ 1)

m+ 2
τ + xm +

m+ 2

m
a

leads to the equation

ww′
τ − w =

2m(m+ 1)

(m+ 2)2
τ + a+ bτ−1/2

(see Table 13.3 with α = 0 in Section 13.3.1).

73. yy′x − y = a2λe2λx − a(bλ+ 1)eλx + b.

Particular solution: y0 = aeλx − b.
74. yy′x − y = a2λe2λx + aλxeλx + beλx.

Particular solution: y0 = aeλx + x+
b

aλ
.

75. yy′x − y = 2a2λ sin(2λx) + 2a sin(λx).

Particular solution: y0 = −2a sin(λx).

76. yy′x − y = a2f ′

xf
′′

xx − (f + b)2

(f ′

x)3
f ′′

xx, f = f(x).

Particular solutions: y1 = af ′x +
f + b

f ′x
, y2 = −af ′x +

f + b

f ′x
.

13.3.2 Equations of the Form yy′

x = f(x)y + 1

1. yy′x = (ax+ b)y + 1.

The substitution ξ = y − 1
2ax

2 − bx leads to a Riccati equation with respect to x = x(ξ):
x′ξ =

1
2ax

2 + bx+ ξ.

2. yy′x = (ax+ b)−2y + 1.

The substitution aξ = −(ax + b)−1 leads to an equation of the form 13.3.1.33: yy′ξ =

y + (aξ)−2.

3. yy′x =
((
a− 1

ax

))
y + 1.

The substitution ξ = y − ax leads to a Bernoulli equation: ξx′ξ + aξx+ a2x2 = 0.

4. yy′x = (ax+ b)−1/2y + 1.

The substitution z=
2

a
(ax+b)1/2 leads to an equation of the form 13.3.1.2: yy′z= y+

1
2az.

5. yy′x = 3(ax3/2 + 8x)−1/2y + 1.

The substitution z = 12a−1(ax1/2 +8)1/2 leads to an equation of the form 13.3.1.10 with

m = 3: yy′z = y − 2
9 z +

1
5184 a

2z3.
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6. yy′x = (ax−2/3 − 2
3
a−1x−1/3)y + 1.

The transformation x=a3/2w3, y= ξ−w2 leads to a Riccati equation: 3a3/2ξw′
ξ = ξ−w2.

7. yy′x = aeλxy + 1.

The substitution ξ =
a

λ
eλx leads to an equation of the form 13.3.1.16: yy′ξ = y + (λξ)−1.

8. yy′x = (aeλx + be−λx)y + 1.

The transformation ξ = y +
b

λ
e−λx − a

λ
eλx, w = eλx leads to a Riccati equation: w′

ξ =

aw2 + λξw − b.

9. yy′x = ay cosh x+ 1.

This is a special case of equation 13.3.3.75 with b = 0 and c = 1.

10. yy′x = ay sinh x+ 1.

This is a special case of equation 13.3.3.76 with b = 0 and c = 1.

11. yy′x = a cos(λx) y + 1.

The transformation x = − 2

λ
arctan

4u

λ
, y = τ − 8au

16u2 + λ2
leads to a Riccati equation:

u′τ = −2τu2 + au− 1
8λ

2τ .

12. yy′x = a sin(λx) y + 1.

The substitution x = ξ +
π

2λ
leads to a similar equation of the form 13.3.2.11: yy′ξ =

a cos(λξ) y + 1.

13.3.3 Equations of the Form yy′

x = f1(x)y + f0(x)

◮ Preliminary remarks.

With the aid of the substitution ξ =

∫
f1(x) dx, these equations are reducible to the form

yy′ξ = y + f(ξ), where f(ξ) = f0(x)/f1(x), (1)

and by means of the substitution z =

∫
f0(x) dx, they can be reduced to the form

yy′z = g(z)y + 1, where g(z) = f1(x)/f0(x). (2)

Specific equations of the form (1) and (2) are outlined in Sections 13.3.1 and 13.3.2, re-

spectively.

◮ Solvable equations and their solutions.

1. yy′x = (ax+ 3b)y + cx3 − abx2 − 2b2x.

The substitution y = x2t + bx leads to a linear equation with respect to x = x(t):
(−2t2 + at+ c)x′t = tx+ b.
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2. yy′x = (3ax+ b)y − a2x3 − abx2 + cx.

The substitution y = xw + ax2 leads to a Bernoulli equation with respect to x = x(w):
(−w2 + bw + c)x′w = wx+ ax2.

3. 2yy′x = (7ax+ 5b)y − 3a2x3 − 2cx2 − 3b2x.

This is a special case of equation 13.3.3.11 with m = 3/2, k = 1/2.

4. yy′x = [(3 −m)x− 1]y + (m− 1)(x3 − x2 − ax).

The transformation x = w/z, y = −zm−1 + x2 − x − a leads to an equation ww′
z =

w + az + zm whose solvable cases are outlined in Section 13.3.1 (see Table 13.1).

5. yy′x + x(ax2 + b)y + x = 0.

The substitution z = − 1
2x

2 leads to an equation of the form 13.3.2.1 with respect to y =
y(z): yy′z = (−2az + b)y + 1.

6. yy′x + a(1 − x−1)y = a2.

Solution in parametric form:

x = −(τ + e−τE−1 + lnE), y = −a(τ + e−τE−1), where E =

∫
e−τ dτ

τ
+C.

7. yy′x − a(1 − bx−1)y = a2b.

Solution in parametric form:

x = 1
2 b exp(∓τ

2)f−1, y = ∓ 1
2abf

−1
[
2τ2f ± exp(∓τ2)

]
,

where f =

∫
exp(∓τ2) dτ

τ
+ C .

8. yy′x = xn−1[(1 + 2n)x+ an]y − nx2n(x+ a).

The transformation x =
w

z
, y = − 1

zn
+ xn+1 + axn leads to a separable equation:

w′
z = w−n − a.

9. yy′x = a(x− nb)xn−1y + c[x2 − (2n+ 1)bx+ n(n+ 1)b2]x2n−1.

The substitution ξ = axn
( x

n+ 1
− b
)

leads to an Abel equation of the form 13.3.1.2:

yy′ξ = y + (n+ 1)ca−2ξ.

10. yy′x = [a(2n+ k)xk + b]xn−1y + (−a2nx2k − abxk + c)x2n−1.

The substitution y = xn(w+axk) leads to a Bernoulli equation with respect to x= x(w):
(nw2 − bw − c)x′w = −wx− axk+1.

11. yy′x = [a(2m+ k)x2k + b(2m− k)]xm−k−1y

− (a2mx4k + cx2k + b2m)x2m−2k−1.

The transformation z = xk, y = xm(t + axk + bx−k) leads to a Riccati equation with

respect to z = z(t):

(−mt2 + 2abm− c)z′t = akz2 + ktz + bk. (1)
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The substitution z =
mt2 + c0

ak

w′
t

w
, where c0 = c − 2abm, reduces equation (1) to a

second-order linear equation:

(mt2 + c0)
2w′′

tt + (2m+ k)t(mt2 + c0)w
′
t + abk2w = 0. (2)

The transformation ξ =
t√

t2 + (c0/m)
, u = (1− ξ2)µ/2w, where µ = −m+ k

2m
, brings

equation (2) to the Legendre equation 2.1.2.226:

(1− ξ2)u′′ξξ − 2ξu′ξ + [ν(ν + 1)− µ2(1− ξ2)−1]u = 0,

where ν is a root of the quadratic equation ν2 + ν +
m2 − k2
4m2

− abk2

mc0
= 0.

12. yy′x = [(m+ 2l− 3)x+ n− 2l+ 3]x−ly

+ [(m+ l− 1)x2 + (n−m− 2l+ 3)x− n+ l− 2]x1−2l.

The transformation x=
ξ

w
w′
ξ , y=Aξn−l+2wm+l−1−x2−l+x1−l leads to the generalized

Emden–Fowler equation w′′
ξξ = Aξnwm(w′

ξ)
l, which is discussed in Section 14.5.

13. yy′x = [a(2n+ 1)x2+ cx+ b(2n− 1)]xn−2y

− (na2x4+ acx3+ dx2+ bcx+ nb2)x2n−3.

Here, a, b, c, d, and n are arbitrary numbers.

The substitution y = xnt + axn+1 + bxn−1 leads to a Riccati equation with respect

to x = x(t): (−nt2 + ct− d+ 2nab)x′t = ax2 + tx+ b.

14. yy′x = [a(n− 1)x+ b(2λ+ n)]xλ−1(ax+ b)−λ−2y

− [anx+ b(λ+ n)]x2λ−1(ax+ b)−2λ−3.

The substitution y =
[ 1
w

+
1

xn(ax+ b)

]
xλ+n(ax+ b)−λ leads to an equation of the form

13.3.4.5: (w + axn+1 + bxn)w′
x = [anxn + b(λ+ n)xn−1]w.

15. yy′x − a
[[
(m− 1)x+ 1

]]
x−1y = a2x−1(mx+ 1)(x− 1).

Solution in parametric form:

x =
(m− 1)(τm+1 + 1)

τ
E + ln

( τm+1 + 1

τ
E
)
, y = a

[
1 + (mτm − τ−1)E

]
,

where E =

∫
dτ

τm+1 + 1
+ C.

16. yy′x − a(1 − bx−1/2)y = a2bx−1/2.

Solution in parametric form:

x = ∓b2τ2Z−2(Z ′
τ )

2, y = ±ab2τ2Z−2
[
(Z ′

τ )
2 ± Z2

]
,

where

Z =

{
C1J0(τ) + C2Y0(τ) for the upper sign,

C1I0(τ) + C2K0(τ) for the lower sign,

J0(τ) and Y0(τ) are Bessel functions, and I0(τ) and K0(τ) are modified Bessel functions.
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17. yy′x = 3(ax+ b)−1/3x−5/3y + 3(ax+ b)−2/3x−7/3.

The substitution w =
1

xy
+

1

3

( ax+ b

x

)1/3
leads to a separable equation for w = w(x):

w′
x = x−1/3(ax+ b)−2/3( 19a− 3w3).

18. 3yy′x = (−7Ax+ 6s− 2λ)x−1/3y + 6(λsx− 1)x−2/3

+ 2(Ax+ 5λ)(−Ax+ 3s+ 4λ)x1/3, A = λs(3s+ 4λ).

The transformation x = (ξ + λs)−1, y = (w + 4λ+ 3s−Ax)x2/3 leads to an equation of

the form 13.3.4.10 with a= 1/3: [(ξ+λs)w+(4λ+3s)ξ]w′
ξ =

2
3w

2+2(3λ+ s)w+2ξ.

◆ In the solutions of equations 19 and 20, the following notation is used:

f =
√
τ(τ + 1)− ln

∣∣C
(√
τ +
√
τ + 1

)∣∣, g = 1−
√
τ + 1

τ
ln
∣∣C
(√
τ +
√
τ + 1

)∣∣.

19. yy′x + 1
2
a(6x− 1)x−1y = − 1

2
a2(x− 1)(4x− 1)x−1.

Solution in parametric form:

x = τf−2g2, y = a(1− τf−2g2 − τ2f−2g).

20. yy′x − 1
2
a(1 + 2bx−2)y = 1

16
a2(3x+ 4bx−1).

Solution in parametric form:

x = cτ−1fg−1/2, y = − 1
4acτ

−1f−1g−1/2(f2 − 4τg2), b = −c2.
◆ In the solutions of equations 21–23, the following notation is used:

E = exp(3τ), S1 = E + C sin(
√
3 τ), S2 = 2E − C sin(

√
3 τ) +

√
3C cos(

√
3 τ),

S3 = 2S1(S2)
′
τ − (S1)

′
τS2 − S1S2, S4 = 2S1(S3)

′
τ − 5(S1)

′
τS3 + S1S3.

21. yy′x + 1
14
a(13x− 20)x−9/7y = − 3

14
a2(x− 1)(x− 8)x−11/7.

Solution in parametric form:

x = 64S3
1S2S

−2
3 , y = a(4S1)

−6/7S
−2/7
2 S

−10/7
3 (S2

3 − 64S3
1S2 + 7S2

2S3).

22. yy′x + 5
56
a(23x− 16)x−9/7y = − 3

56
a2(x− 1)(25x− 32)x−11/7.

Solution in parametric form:

x = − 256
25 S

3
1S

−3
3 S4, y = a

(
256
25 S

3
1S4
)−2/7

S
−15/7
3

(
S3
3 + 7S2

4 +
256
25 S

3
1S4
)
.

23. yy′x + 1
26
a(19x+ 85)x−18/13y = − 3

26
a2(x− 1)(x+ 25)x−23/13.

Solution in parametric form:

x = −25S3
3S

−2
4 , y = a(25S3

3)
−5/13S

−16/13
4 (S2

4 + 25S3
3 − 208S3

1S4).

◆ In the solutions of equations 24–27, the following notation is used:

T1 = cosh(τ + C) cos τ, T2 = tanh(τ + C) + tan τ, T3 = tanh(τ + C)− tan τ,

θ1 = cosh τ − sin(τ + C), θ2 = sinh τ + cos(τ +C), θ3 = sinh τ − cos(τ + C),

T4 = 3T2T3, θ4 = 3θ2θ3 − 2θ21.
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24. yy′x + 1
15
a(13x− 18)x−7/5y = − 4

15
a2(x− 1)(x− 6)x−9/5.

1◦. Solution in parametric form with A < 0:

x = −12T−3
1 T2, y = a(12T2)

−2/5T
−9/5
1 (T 3

1 − 5T1T
2
2 + 12T2).

2◦. Solution in parametric form with A > 0:

x = 6θ21θ
−3
2 θ3, y = a(6θ21θ3)

−2/5θ
−9/5
2 (θ32 + 5θ2θ

2
3 − 6θ21θ3).

25. yy′x + 1
2
a(5x+ 1)x−1/2y = a2(1 − x2).

Solution in parametric form:

x = T 2
1 T

−2
2 , y = −aT−3

2 (T 3
1 − T1T 2

2 + 4T2).

26. yy′x + 3
35
a(19x− 14)x7/5y = − 4

35
a2(x− 1)(9x− 14)x9/5.

1◦. Solution in parametric form with A < 0:

x = − 28
9 T

4
1 T3, y = a

(
28
9 T

6
1 T3

)−2/5(
T 4
1 − 5

9T
2
3 + 28

9 T3
)
.

2◦. Solution in parametric form with A > 0:

x = 14
9 θ

2
1θ

4
2θ4, y =

(
14
9 θ

2
1θ4
)−2/5(

θ42 +
5
9 θ

2
4 − 14

9 θ
2
1θ4
)
.

27. yy′x + 3
10
a(3x+ 7)x−13/10y = − 1

5
a2(x− 1)(x+ 9)x−8/5.

1◦. Solution in parametric form with A < 0:

x = 9T 4
1 T

−2
3 , y = a(9T 4

1 )
−3/10T

−7/5
3 (T 2

3 − 20T3 − 9T 4
1 ).

2◦. Solution in parametric form with A > 0:

x = − 9
2 θ

4
2θ

2
4, y = −4a

(
9
2 θ

4
2

)−3/10
θ
−7/5
4

(
θ24 − 5θ21θ4 +

9
2 θ

4
2

)
.

◆ In the solutions of equations 28–30, the following notation is used:

P2 = ±(τ2 − 1), P3 = τ3 − 3τ + C, P4 = ±(τ4 − 6τ2 + 4Cτ − 3),

P6 = ±(τ6 − 15τ4 + 20Cτ3 − 45τ2 + 12Cτ − 8C2 + 27).

28. yy′x + 1
10
a(7x− 12)x−7/5y = − 1

10
a2(x− 1)(x− 16)x−9/5.

Solution in parametric form:

x = ±16P2P
2
3P

−2
4 , y = a(16P2P

2
3P

3
4 )

−2/5(P 2
4 ± 15P 2

2 P4 ∓ 16P2P
2
3 ).

29. yy′x + 3
20
a(13x− 8)x−7/5y = − 1

20
a2(x− 1)(27x− 32)x−9/5.

Solution in parametric form:

x = 32
27P

2
3 P

−3
4 P6, y = ±a(3P4)

−9/5P
−4/5
3 P

−2/5
6

(
5
4P

2
6 ∓ 8P 2

3 P6 ± 27
4 P

3
4

)
.

30. yy′x + 3
14
a(3x+ 11)x−10/7y = − 1

14
a2(x− 1)(x− 27)x−13/7.

Solution in parametric form:

x = ∓27P 3
4 P

−2
6 , y = ∓a(3P4)

−9/7P
−8/7
6 (P 2

6 ∓ 28P 2
3 P6 ± 27P 3

4 ).
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◆ In the solutions of equations 31–38, the following notation is used:

I =

∫
τdτ√

±(4τ3 − 1)
(incomplete elliptic integral of the second kind),

R =
√
±(4τ3 − 1), I1 = τ(2I ∓ C−1R+ C), I2 = τ−1(RI1 − 1),

I3 = 4τI21 ∓ I22 , I4 = I2I3 − 8I21 , I5 = 2R(I + C)− τ2.

31. yy′x − 1
2
a(x+ 1)x−7/4y = 1

4
a2(x− 1)(3x+ 5)x−5/2.

Solution in parametric form:

x = 1
6 τ

−3I−1
1 R, y = 1

3 a
(
1
6 τR

)−3/4
I
−1/4
1

[
(11τ3 − 2)I1 − 1

2R
]
.

The lower sign is taken in the notation adopted.

32. yy′x − 1
2
a(x+ 1)x−7/4y = 1

4
a2(x− 1)(x+ 5)x−5/2.

Solution in parametric form:

x = − 1
3 τ

−2I21I2, y = − 1
3a(τI1)

−1/2
(
1
3 I2
)−3/4

(2τI22 + I2 − 3τ2I21 ).

The lower sign is taken in the notation adopted.

33. yy′x − 1
14
a(4x+ 3)x−8/7y = − 1

14
a2(x− 1)(16x+ 5)x−9/7.

Solution in parametric form:

x = ± 3
16 I

−2
1 I−1

2 I23 , y = − 1
16a
(
13
16 I

12
1 I

6
2I

2
3

)−1/7
(3I23 ± 7I22I3 ∓ 16I21 I2).

34. yy′x + 1
6
a(13x− 3)x−2/3y = − 1

6
a2(x− 1)(5x− 1)x−1/3.

Solution in parametric form:

x = ∓I33I−2
4 , y = −aI3I−8/3

4 (I33 ± I24 ± 4I21I4).

35. yy′x − 1
28
a(8x− 1)x−8/7y = 1

28
a2(x− 1)(32x+ 3)x−9/7.

Solution in parametric form:

x = ∓I−2
1 I33I

−1
4 , y = − 1

32a
(

3
32 I

12
1 I

3
3I

6
4

)−1/7
(3I33 ± 7I24 ± 32I21I4).

36. yy′x − a(5x− 4)x−4y = a2(x− 1)(3x− 1)x−7.

Solution in parametric form:

x = ± 1
6 τ

−1(I + C)−1R, y = 36a(I + C)2R−3[(1± 2τ3)(I + C)− τ2R].

37. yy′x − 2
5
a(3x− 10)x−4y = 1

5
a2(x− 1)(8x− 5)x−7.

Solution in parametric form:

x = ± 5
24 τ

−1(I +C)−2I5, y = ± 576
125a(I + C)4I−3

5 [I25 + 5τ2I5 ∓ τ3(I + C)2].

38. yy′x + 1
42
a(39x− 4)x−9/7y = − 1

42
a2(x− 1)(9x− 16)x−11/7.

Solution in parametric form:

x = ±16τ3(I +C)2I−2
5 , y = 1

3 a[16τ
3(I +C)2I55 ]

−2/7[3I25 +7τ2I5 ∓ 48τ3(I +C)2].
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◆ In the solutions of equations 39–41, the following notation is used:

f =

∫
exp(∓τ2) dτ +C, g = 2τf ± exp(∓τ2).

39. yy′x + a(x− 2)x−1y = 2a2(x− 1)x−1.

Solution in parametric form:

x = τ exp(∓τ2)f, y = a
[
1∓ 2τ2 − τ exp(∓τ2)f−1

]
.

40. yy′x + a(3x− 2)x−1y = −2a2(x− 1)2x−1.

Solution in parametric form:

x = 1
2 exp(∓τ

2)f−2g, y = 1
2a
[
2− exp(∓τ2)f−2g ∓ f−2g−2

]
.

41. yy′x + a(1 − bx−2)y = a2bx−1.

Solution in parametric form:

x =
1√
∓2b

fg−1, y =
a√
∓8b

f−1g−1
[
g exp(∓τ2)− 2f2

]
.

◆ In the solutions of equations 42–52, the following notation is used:

E1 = τ3
√
±(4℘3 − 1) + 3τ2℘∓ 1, E2 = τ2℘∓ 1,

E3 =
√
±(4℘3 − 1)± 2τ℘2, E4 = τ

√
±(4℘3 − 1) + 2℘,

E5 = τ3
√
±(4℘3 − 1)− 4τ2℘± 6, E6 = τ

√
±(4℘3 − 1)− ℘.

Here the function ℘ = ℘(τ) is defined implicitly as follows: τ =

∫
d℘√

±(4℘3 − 1)
− C.

The upper sign in the above relations corresponds to the classical Weierstrass elliptic func-

tion ℘ = ℘(τ + C, 0, 1).

42. yy′x − 1
4
a(3x− 4)x−5/2y = 1

4
a2(x− 1)(x+ 2)x−4.

Solution in parametric form:

x = 2
3 τ

−2℘−2E6, y = − 1
2aτ

(
2
3E

3
6

)−1/2
(E2

6 + 2℘E6 − 3τ2℘3).

The upper sign is taken in the notation adopted.

43. yy′x + 1
30
a(33x+ 2)x−6/5y = − 1

30
a2(x− 1)(9x− 4)x−7/5.

Solution in parametric form:

x = 4τ2℘3E−2
6 , y = ± 1

3a(4τ
2℘3E8

6)
−1/5(3E2

6 + 5℘E6 ∓ 12τ2℘3).

44. yy′x − 1
8
a(x− 8)x−5/2y = − 1

8
a2(x− 1)(3x− 4)x−4.

Solution in parametric form:

x = 4
3E1E

−2
2 , y = 1

4a
(
4
3E

3
1

)−1/2
(E2

1 − 4E1E2 + 3E3
2 ).

The lower sign is taken in the notation adopted.
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45. yy′x + 1
30
a(17x+ 18)x−22/15y = − 1

30
a2(x− 1)(x+ 4)x−29/15.

Solution in parametric form:

x = ±4E−2
1 E3

2 , y = ±aE−16/15
1 (4E2)

−7/15(E2
1 − 5E1E2 ∓ 4E3

2 ).

46. yy′x − 1
13
a(6x− 13)x−5/2y = − 1

26
a2(x− 1)(x− 13)x−4.

Solution in parametric form:

x = 13
6 E

−2
2 E5, y = − 1

13a
(
13
6 E

3
5

)−1/2
(2E2

5 ± 13E2E5 − 6E3
2).

The upper sign is taken in the notation adopted.

47. yy′x + 1
30
a(24x+ 11)x27/20y = − 1

60
a2(x− 1)(9x+ 1)x−17/10.

Solution in parametric form:

x = 4E3
2E

−2
5 , y = 1

3a(4E
3
2)

−7/20E
−13/10
5 (3E2

5 + 20E2E5 − 12E3
2 ).

The upper sign is taken in the notation adopted.

48. yy′x − 2
5
a(3x+ 2)x−8/5y = 1

5
a2(x− 1)(8x+ 1)x−11/5.

Solution in parametric form:

x = ∓ 1
3℘

−1E−2
3 E4, y = ∓a(3℘E2

3)
−2/5E

−3/5
4 (3℘E2

3 ∓ ℘2E2
4 ±E4).

49. yy′x − 6
5
a(4x+ 1)x−7/5y = 1

5
a2(x− 1)(27x+ 8)x−9/5.

Solution in parametric form:

x = −E2E
2
3E

−3
4 , y = aE

−2/5
2 E

−3/5
3 E

−9/5
4 (E3

4 + E2E
2
3 − 10E2

2 ).

50. yy′x + 3
10
a(13x− 3)x−4/5y = − 1

10
a2(x− 1)(27x− 7)x−3/5.

Solution in parametric form:

x = 2E2
2E

−3
4 , y = a(4E−1

2 E9
4)

−2/5(2E3
4 − 5E2E

2
3 + 4E2

2 ).

51. yy′x − 1
5
a(x+ 4)x−8/5y = 1

5
a2(x− 1)(3x+ 7)x−11/5.

Solution in parametric form:

x = 1
3E

−1
3 ℘−3

√
±(4℘3 − 1),

y = − 1
6aE

−2/5
3

[
1
3℘

2
√
±(4℘3 − 1)

]−3/5[
14℘3E3 + 2

√
±(4℘3 − 1)

]
.

52. yy′x − a(2x− 1)x−5/2y = 1
2
a2(x− 1)(3x+ 1)x−4.

Solution in parametric form:

x = 1
6 τ

−1℘−2
√

4℘3 − 1, y = −a
[
6τ
(√

4℘3 − 1
)−3]1/2(

℘
√

4℘3 − 1 + 2τ℘3 − 2τ
)
.

The upper sign is taken in the notation adopted.
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◆ In the solutions of equations 53–55, the following notation is used:

Q1 = ±τ2 + Cτ − 1, Q2 = τ2 ± 1, Q3 = τ3 ± 3τ + C.

53. yy′x + 1
5
a(x− 6)x−7/5y = 2

5
a2(x− 1)(x+ 4)x−9/5.

Solution in parametric form:

x = ±3τQ2
2Q

−1
3 , y = a(3τQ2

2)
−2/5Q

−3/5
3

[
(1± 5τ2)Q3 ∓ 3τQ2

2

]
.

54. yy′x + 1
5
a(21x+ 19)x−7/5y = − 2

5
a2(x− 1)(9x− 4)x−9/5.

Solution in parametric form:

x = ±Q1Q
2
2Q

−2
3 , y = ±aQ−2/5

1 Q
−4/5
2 Q

−6/5
3 (Q2

3 ∓Q1Q
2
2 ±Q2

1).

55. yy′x − 3ax−7/4y = 1
4
a2(x− 1)(x− 9)x−5/2.

Solution in parametric form:

x = Q−2
1 Q2

3, y = −aQ−1/2
1 Q

−3/2
3 (Q2

3 +Q1Q
2
2 −Q2

1).

The lower sign is taken in the notation adopted.

◆ In the solutions of equations 56 and 57, the following notation is used:

hk =

∫
τ

k
k−2 exp(∓τ2) dτ + C.

56. yy′x − a
[[
(k+ 1)x− 1

]]
x−2y = a2(k+ 1)(x− 1)x−2.

Solution in parametric form:

x =
2

k + 1
τ
− 2

k+1 exp(±τ2)hβ, y = a
[ k + 1

2
τ

2
k+1 exp(∓τ2)h−1

β ± (k + 1)τ2 − 1
]
,

where β =
k − 1

k
.

57. yy′x − a[(k− 2)x+ 2k − 3]x−ky = a2(k− 2)(x− 1)2x1−2k.

Solution in parametric form:

x = ∓2τ
2

2−k exp(±τ2)hk,

y = a(∓2hk)1−k exp
[
∓(k − 2)τ2

][
τ
2(1−k)
2−k exp(∓τ2) +

( 2

2− k ± 4τ2
)
hk

]
.

58. yy′x − 1
2
a[(4k− 7)x− 4k + 5]x−ky = 1

2
a2(2k − 3)(x− 1)2x1−2k.

Solution in parametric form:

x = (τZ)2U−2, y = 1
2a(τZ)

−3/5U−7/5(2U2 + 5ZU − τ2Z2),

where Z = C1Iν(τ) + C2Kν(τ), U = τZ ′
τ + νZ , ν =

1− k
3− 2k

; Iν(τ) and Kν(τ) are

modified Bessel functions.
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◆ In the solutions of equations 59 and 60, the following notation is used:

Nn =

∫
dτ

τn + a
+ C.

59. yy′x −
[[
(2n− 1)x− an

]]
x−n−1y = n(x− a)x−2n.

1◦. Solution in parametric form:

x = τN−1
n , y = τ−nNn−1

n [(τn + a)Nn − τ ].

2◦. Particular solution: y0 = (a− x)x−n.

60. yy′x −
[[
(n+ 1)x− an

]]
xn−1(x− a)−n−2y = nx2n(x− a)−2n−3.

1◦. Solution in parametric form:

x = τN−1
n , y = (τ − aNn)

−n−1[τ − (τn + a)Nn].

2◦. Particular solution: y0 = −xn(x− a)−n−1.

61. yy′x − a
[[
(2k− 3)x+ 1

]]
x−ky = a2(k− 2)[(k− 1)x+ 1]x2(1−k).

Solution in parametric form:

x =
τ + 1

(1− k)(2 − k)E
k−2
[
(1− k)(2k − 3)(τ + 1)

1
1−k + (2− k)E

]
,

y =
a

1− k
[
τE − (1 − k)(τ + 1)

2−k
1−k

]
,

where E =

∫
1

τ
(τ + 1)

1
1−k dτ + C.

◆ In the solutions of equations 62–66, the following notation is used:

Rn =
√

1± τn+1, En =

∫ (
1± τn+1

)−1/2
dτ + C,

Fn = RnEn − τ, Enk =

∫ (
1± τn+1

) 1
k−2 dτ + C.

62. yy′x − a
[[
(n+ 2k − 3)x+ 3 − 2k

]]
x−ky

= a2
[[
(n+ k − 1)x2 − (n+ 2k − 3)x+ k − 2

]]
x1−2k.

Solution in parametric form:

x = τ−1EnkR
2

2−k
n , y = aτk−2E1−k

nk

(
±n+ 1

2− k τ
n+1Enk − EnkR

2
n + τR

2(1−k)
2−k

n

)
.

63. yy′x − a

n

[[
(n+2)x− 2

]]
x−

2n+1
n y =

a2

n

[[
(n+1)x2 − 2x−n+1

]]
x−

3n+2
n .

Solution in parametric form:

x = ±2E−1
n Rn, y = ±2−

n+1
n aE

1
n
n R

− n+1
n

n (En ± 2Rn).
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64. yy′x − a

n

((
n+ 4

n+ 2
x− 2

))
x−

2n+1
n y

=
a2

n(n + 2)

[[
2x2 + (n2 + n− 4)x− (n− 1)(n+ 2)

]]
x−

3n+2
n .

Solution in parametric form:

x = 2bτ−nE−2
n Fn, y = a(2b)−

1
nE

2
n
n F

− 1+n
n

n

(
− n

n+ 2
F 2
n − τFn +

1

bn
τn+1E2

n

)
,

where b = ±n+ 2

n+ 1
.

65. yy′x +
a

n+ 3

((
3n+ 5

2
x+

n− 1

n+ 1

))
x
−

n+4
n+3 y

= − a2

2(n + 3)

[[
(n+ 1)x2 − n2 + 2n+ 5

n+ 1
x+

4

n+ 1

]]
x
−

n+5
n+3 .

Solution in parametric form:

x= τn+1E2
nF

−2
n , y=aτ

− n+1
n+3E

− 2
n+3

n F
− 2(n+2)

n+3
n

[
F 2
n−τn+1E2

n+(±1)
1

n+3
n+ 3

n+ 1
τFn

]
.

66. yy′x − a
((
n+ 2

n
+ bxn

))
y = − a2

n
x
((
n+ 1

n
+ bxn

))
.

Solution in parametric form:

x = cτE
1/n
m1 , y = acE

1/n
n1

(
En1R

2
n +

1

n
τ
)
.

67. yy′x = (aex + b)y + ce2x − abex − b2.

The transformation x = lnw, y = tw+ b leads to a linear equation: (−t2 + at+ c)w′
t =

tw + b.

68. yy′x = [a(2µ+ λ)eλx + b]eµxy + (−a2µe2λx − abeλx + c)e2µx.

The substitution z = ex leads to an equation of the form 13.3.3.10:

yy′z = [a(2µ + λ)zλ + b]zµ−1y + (−a2µz2λ − abzλ + c)z2µ−1.

69. yy′x = (aeλx + b)y + c[a2e2λx + ab(λx+ 1)eλx + b2λx].

The substitution ξ =
a

λ
eλx + bx leads to an equation of the form 13.3.1.2: yy′ξ = y+ cλξ.

70. yy′x = eλx(2aλx+ a+ b)y − e2λx(a2λx2 + abx+ c).

The substitution y = eλx(ξ + ax) leads to a linear equation with respect to x = x(ξ):
(−λξ2 + bξ − c)x′ξ = ax+ ξ.

71. yy′x = eax(2ax2 + 2x+ b)y + e2ax(−ax4 − bx2 + c).

The substitution y = eax(ξ + x2) leads to a Riccati equation with respect to x = x(ξ):
(−aξ2 + bξ + c)x′ξ = x2 + ξ.
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72. yy′x + a(1 + 2bx)ebxy = −a2bx2e2bx.

Solution in parametric form:

x =
2

b
exp(±τ2)f, y = − a

2b
τ−2

[
2τ2 exp(±τ2)f ± 1

]
exp[2 exp(±τ2)f ],

where f =

∫
τ−1 exp(∓τ2)dτ + C.

73. yy′x−a
[[
1+2n+2n(n+1)x

]]
e(n+1)xy=−a2n(n+1)(1+nx)xe2(n+1)x.

Solution in parametric form:

x=
(
2nτnE+

1

n+ 1

)
exp
[
(n+1)τnE

]
, y = aτn

( τ

1± τn +nE
)
exp
[
(n+1)τnE

]
,

where E =

∫
(1± τn+1)−1/2dτ + C .

74. yy′x + a(1 + 2bx1/2) exp(2bx1/2)y = −a2bx3/2 exp(4bx1/2).

Solution in parametric form:

x = cτ−4Z−2U2, y = −acτ−4Z−2(U2 ± τ2Z2) exp(−2bτ−2Z−1U).

Here,

b = (∓c)−1/2, U = τZ ′
τ + Z, Z =

{
C1J1(τ) + C2Y1(τ) for the upper sign,

C1I1(τ) + C2K1(τ) for the lower sign,

where J1(τ) and Y1(τ) are Bessel functions, and I1(τ) and K1(τ) are modified Bessel

functions.

75. yy′x = (a cosh x+ b)y − ab sinhx+ c.

The transformation t = y − a sinh x, ξ = ex leads to a Riccati equation: 2(bt + c)ξ′t =
aξ2 + 2tξ − a.

76. yy′x = (a sinhx+ b)y − ab cosh x+ c.

The transformation t = y − a cosh x, ξ = ex leads to a Riccati equation: 2(bt + c)ξ′t =
aξ2 + 2tξ + a.

77. yy′x = (2 lnx+ a+ 1)y + x(− ln2 x− a ln x+ b).

The transformation x= ew, y= (ξ+w)ew leads to a linear equation: (−ξ2+aξ+b)w′
ξ =

w + ξ.

78. yy′x = (2 ln2 x+ 2 lnx+ a)y + x(− ln4 x− a ln2 x+ b).

The transformation x=ew, y=(z+w2)ew leads to a Riccati equation: (−z2+az+b)w′
z=

w2 + z.

79. yy′x = ax cos(λx2) y + x.

The substitution z = 1
2x

2 leads to an Abel equation of the form 13.3.2.11: yy′z =
a cos(2λz)y + 1.

80. yy′x = ax sin(λx2) y + x.

The substitution z = 1
2x

2 leads to an Abel equation of the form 13.3.2.12: yy′z =
a sin(2λz)y + 1.
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13.3.4 Equations of the Form
[g1(x)y + g0(x)]y

′

x = f2(x)y
2 + f1(x)y + f0(x)

◮ Preliminary remarks.

With the aid of the substitution

w =
(
y +

g0
g1

)
E, where E = exp

(
−
∫

f2
g1
dx
)
, (1)

these equations are reducible to a simpler form:

ww′
x = F1(x)w + F0(x), (2)

where

F1 =

[
d

dx

(
g0
g1

)
+
f1
g1
− 2

g0f2
g21

]
E, F0 =

(
f0
g1
− g0f1

g21
+
g20f2
g31

)
E2.

Specific Abel equations of the form (2) are outlined in Sections 13.3.1–13.3.3. In the

degenerate cases with F0 ≡ 0 or F1 ≡ 0, the variables in Eq. (2) are separable.

◮ Solvable equations and their solutions.

1. (Ay + Bx+ a)y′x + By + kx+ b = 0.

Solution: Ay2 + kx2 + 2(Bxy + ay + bx) = C .

2. (y + ax+ b)y′x = αy + βx+ γ.

The substitution y = u− ax− b leads to the equation

uu′x = (a+ α)u+ (β − aα)x+ γ − bα
which is separable with a = −α. For a 6= −α, the substitution u = (a + α)w leads to an

equation of the form 13.3.1.1 or 13.3.1.2:

ww′
x = w +∆−2(β − aα)x+∆−2(γ − bα), where ∆ = a+ α.

3. (y + akx2 + bx+ c)y′x = −ay2 + 2akxy +my + k(k+ b−m)x+ s.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[−az2 + (m− k)z + s− ck]x′z = akx2 + (b+ k)x+ z + c.

4. (y + Axn + a)y′x + nAxn−1y + kxm + b = 0.

Solution: y2 +
2k

m+ 1
xm+1 + 2(Axny + ay + bx) = C .

5. (y + axn+1 + bxn)y′x = (anxn + cxn−1)y.

The substitution y = xn(w − b) leads to a Bernoulli equation with respect to x = x(w):
[−nw2 + (bn+ c)w − bc]x′w = wx+ ax2.

6. xyy′x = ay2 + by + cxn + s.

The transformation ξ = x−a, w = − a
b
x−ay leads to an equation ww′

ξ = w+Aξ+Bξm,

where A = −ab−2s, B = −ab−2c, m = (a− n)/a (see Section 13.3.1).
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7. xyy′x = −ny2 + a(2n+ 1)xy + by − a2nx2 − abx+ c.

The substitution y = w + ax leads to a Bernoulli equation with respect to x = x(w):
(−nw2 + bw + c)x′w = wx+ ax2.

8. 2xyy′x = (1 − n)y2 + [a(2n+ 1)x+ 2n− 1]y − a2nx2 − bx− n.

The transformation x = ξ2, y = ξt+ aξ2 + 1 leads to a Riccati equation:

(−nt2 + 2an − b)ξ′t = aξ2 + tξ + 1.

9. (Axy − Aky +Bx− Bk)y′x = Cy2 +Dxy + (B −Dk)y.

The transformation x=w+k, y= ξw leads to a linear equation with respect to w=w(x):
[(C −A)ξ2 +Dξ]w′

ξ = Aξw +B.

10. [(3ax+ λs)y + (4λ+ 3s)x]y′x = 2ay2 + 2(3λ+ s)y + 2x.

The substitution w = ay2 + (3λ+ s)y + x leads to an Abel equation of the form 13.3.3.3:

2ww′
y = (7ay + 5b)w − 3a2y3 − 2cy2 − 3b2y, where b = s+ 2λ, c = 1

2 a(13λ+ 6s).

11. [(4ax+ λs)y + (4λ+ 3s)x]y′x = 3
2
ay2 + 2(3λ+ s)y + 2x.

The substitution w = 3
4ay

2+(3λ+ s)y+x leads to an Abel equation of the form 13.3.3.3:

2ww′
y = (7ay + 5b)w − 3a2y3 − 2cy2 − 3b2y, where b = s+ 2λ, c = 1

8a(60λ + 25s).

12. (2Axy+ ay+ bx+ c)y′x = Ay2 +Ak2x2 +my+ k(ak+ b−m)x+ s.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[Az2 + (m− ak)z + s− ck]x′z = 2Akx2 + (2Az + ak + b)x+ az + c.

13.
[[
2xy + (1 −m)Ay − 2(m+ 1)

m+ 3
x
]]
y′x =

1 −m

2
y2 +

m− 1

m+ 3
y + x.

The substitution w =
1−m

2
y2 +

m− 1

m+ 3
y + x leads to an equation of the form 13.3.3.4:

ww′
y = [(3−m)y−1]w+(m−1)(y3−y2−ay), where a=A−2(m+1)(m+3)−2 .

14. x(2ay + bx)y′x = a(2−m)y2 + b(1 −m)xy + cx2 +Axm+2.

The transformation z= y/x, w=−Axm+amz2+bmz−c leads to a separable equation:

ww′
z = m(2az + b)(amz2+ bmz − c).

15. (xy + x2 + a)y′x = y2 + xy + b.

Solution: (x+ y)2 + a+ b = C(bx− ay)2.

16. (2Axy + Bx2 + b)y′x = Ay2 + k(Ak +B)x2 + c.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

(Az2 + c− bk)x′z = (2Ak +B)x2 + 2Azx + b.

17. (Axy +Bx2 + kx)y′x = Dy2 + Exy + Fx2 + ky.

The substitution y = xz leads to a linear equation with respect to x = x(z):

[(D −A)z2 + (E −B)z + F ]x′z = (Az +B)x+ k.

18. (Axy +Bx2 + kx)y′x = Ay2 +Bxy + (Ab+ k)y +Bbx+ bk.

This is a special case of equation 13.3.4.22. Solutions: y =Cx−b and Ay+Bx+k= 0.
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19. (2Axy+Bx2 + kx)y′x = Ay2 +Cxy +Dx2 + ky−Cβx−Aβ2 − kβ.

The substitution y = ξx+ β leads to a linear equation with respect to x = x(ξ):

[−Aξ2 + (C −B)ξ +D]x′ξ = (2Aξ +B)x+ 2Aβ + k.

20. (Axy +Bx2 + kx)y′x = Ay2 +Cxy +Dx2 + (k−Aβ)y −Cβx− kβ.

The substitution y = ξx + β leads to a linear equation with respect to x = x(ξ):
[(C −B)ξ +D]x′ξ = (Aξ +B)x+Aβ + k.

21. (Axy +Aky + Bx2 +Bkx)y′x = Cy2 +Dxy + k(D − B)y.

The transformation x=w−k, y= ξw leads to a linear equation with respect to w=w(ξ):
[(C −A)ξ2 + (D −B)ξ]w′

ξ = (Aξ +B)w − kB.

22. (Axy +Bx2 + a1x+ b1y + c1)y
′

x = Ay2 +Bxy + a2x+ b2y + c2.

Jacobi equation.

1◦. With the help of the transformation x = x̄ + α, y = ȳ + β, where α and β are the

parameters which are determined by solving the algebraic system

Aαβ +Bα2 + a1α+ b1β + c1 = 0, Aβ2 +Bαβ + a2α+ b2β + c2 = 0,

we obtain the equation

(Ax̄ȳ +Bx̄2 + ā1x̄+ b̄1ȳ)ȳ
′
x̄ = Aȳ2 +Bx̄ȳ + ā2x̄+ b̄2ȳ,

where ā1 = 2Bα+Aβ + a1, ā2 = Bβ + a2, b̄1 = Aα+ b1, b2 = 2Aβ +Bα+ b2. The

transformation z = ȳ/x̄, ζ = 1/x̄ leads to a linear equation:

[b̄1z
2 + (ā1 − b̄2)z − ā2]ζ ′z = (b̄1z + ā1)ζ +Az +B.

2◦. The original equation can be also rewritten in the form

(xy′x − y)(n3x+m3y + k3)− y′x(n1x+m1y + k1) + n2x+m2y + k2 = 0.

The solution of this equation in parametric form can be obtained from the solution of the

following system of constant coefficient linear differential equations:

(x1)
′
t = n1x1 +m1x2 + k1x3,

(x2)
′
t = n2x1 +m2x2 + k2x3,

(x3)
′
t = n3x1 +m3x2 + k3x3,

using the formulas x(t) = x1/x3 and y(t) = x2/x3.

3◦. In the homogeneous coordinates x = x1/x3 and y = x2/x3, Equation 2◦ becomes

∣∣∣∣∣∣∣

dx1 dx2 dx3

x1 x2 x3

ax bx cx

∣∣∣∣∣∣∣
= 0, (13.3.4.1)
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where ax, bx, and cx are linear forms of the homogeneous coordinates ax = a1x1+a2x2+
a3x3, bx = b1x1 + b2x2 + b3x3, and cx = c1x1 + c2x2 + c3x3. The coefficients of these

forms depend on those of the original equations:

a1 = −n1 + k3 + k, a2 = −m1, a3 = −k1,
b1 = −n2, b2 = −m2 + k3 + k, b3 = −k2,
c1 = −n3, c2 = −m3, c3 = k,

where k is an arbitrary constant. To return from the homogeneous coordinates to the origi-

nal ones, x and y, it suffices to set x3 = 1.

Equation (13.3.4.1) has linear particular integrals of the form
∑

uixi ≡ u1x1 + u2x2 + u3x3 = 0, (13.3.4.2)

where u1, u2, and u3 are some constants satisfying the linear system




(a1 − λ)u1 + b1u2 + c1u3 = 0,

a2u1 + (b2 − λ)u2 + c2u3 = 0,

a3u1 + b3u2 + (c3 − λ)u3 = 0,

(13.3.4.3)

whose nonzero solutions are found from the cubic equation
∣∣∣∣∣∣∣

a1 − λ b1 c1

a2 b2 − λ c2

a3 b3 c3 − λ

∣∣∣∣∣∣∣
= 0. (13.3.4.4)

Since a cubic equation always has at least one real root, the Jacobi equation has at least one

linear particular integral (13.3.4.2).

Suppose we have found one real root of equation (13.3.4.4); the corresponding solution

to system (13.3.4.3) is the integral curve u1x1 + u2x2 + u3x3 = 0. If u3 6= 0, the changes

of variables x1 = ξ1, x2 = ξ2, and u1x1 + u2x2 + u3x3 = ξ3 (if, for example, u3 = 0 but

u1 6= 0, we set ux = ξ1, x2 = ξ2, and x3 = ξ3) lead to the equations
∣∣∣∣∣∣∣

dξ1 dξ2 dξ3

ξ1 ξ2 ξ3

αξ βξ γξ

∣∣∣∣∣∣∣
= 0.

It is clear that γξ = γ3ξ3. Changing to the Cartesian coordinates and setting ξ1 = ξ, ξ2 = η,

and ξ3 = 1, we obtain an equation of the form (1.2.2.2) (see also Section 13.1.6),

(γ3η − β1ξ − β2η − β3) dξ − (γ3ξ − α1ξ − α2η − α3) dη = 0,

which is integrable by quadrature. In some special cases, the form of the general solution

can be given in more detail.

1. All roots of equation (13.3.4.4) are real and distinct; then we get three integral

straight lines of the Jacobi equation

ux ≡ u1x1 + u2x2 + u3x3,

vx ≡ v1x1 + v2x2 + v3x3,

wx ≡ w1x1 + w2x2 + w3x3.

(13.3.4.5)
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We take these straight lines to be the axes of the new trilinear coordinate system (ξ1, ξ2, ξ3),
so that ξ1 = 0, ξ2 = 0, and ξ3 = 0 are solutions in this coordinate system:

∣∣∣∣∣∣∣

dξ1 dξ2 dξ3

ξ1 ξ2 ξ3

aξ bξ cξ

∣∣∣∣∣∣∣
= 0. (13.3.4.6)

Substituting ξ1 = 0, ξ2 = 0, and ξ3 = 0 and requiring that (13.3.4.6) is satisfied, we find

that aξ = a1ξ1, bξ = b2ξ2, and cξ = c3ξ3 in the new coordinates; hence, equation (13.3.4.6)

becomes ∣∣∣∣∣∣∣

dξ1 dξ2 dξ3

ξ1 ξ2 ξ3

a1ξ1 b2ξ2 c3ξ3

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

dξ1
ξ1

dξ2
ξ2

dξ3
ξ3

1 1 1

a1 b2 c3

∣∣∣∣∣∣∣
= 0,

or

(c3 − b2)
dξ1
ξ1

+ (a1 − c3)
dξ2
ξ2

+ (b2 − a1)
dξ3
ξ3

= 0.

Its general integral is

ξc3−b2
1 ξa1−c3

2 ξb2−a1
3 = C,

Inserting here the straight lines (13.3.4.5) and setting x3 = 1, we obtain the solution in the

Cartesian coordinates

(u1x+ u2y + u3)
α(v1x+ v2y + v3)

β(w1x+ w2y + w3)
γ = C, (13.3.4.7)

where α+ β + γ ≡ 0.

Example 13.1. Let us look at the equation

(7x+ 8y + 5) dx− (7x+ 8y) dy + 5(x− y)(y dx− x dy) = 0.

In the homogeneous coordinates, it becomes∣∣∣∣∣∣∣

dξ1 dξ2 dξ3

ξ1 ξ2 ξ3

−7x1 − 8x2 −7x1 − 8x2 − 5x3 5x1 − 5x2

∣∣∣∣∣∣∣
= 0.

The equation for λ is λ3 + 15λ2 − 25λ− 375 = 0; its roots are λ1 = −15, λ2 = −5, and λ3 = 5.

As a result, we get

ux = 2x1 + 3x2 + x3, vx = −x1 + x2 + x3, wx = x1 − x2 + x3.

Substituting the variables u, v, and w determined by these formulas into the equation yields du
u −

2 dv
v + dw

w = 0. Integrating this relation gives uw = Cv2. Hence, in terms of the original variables,

we get (2x+ 3y + 1)(x− y + 1) = C(−x+ y + 1)2.

To analyze the other special cases, we introduce the 3× 3 matrix

A =




a1 b1 c1
a2 b2 c2
a3 b3 c3


 .

2. Suppose equation (13.3.4.4) has three real roots with two of them being multiple,

λ2 = λ3. Then the form of the general solution depends on the quantity

ρ = rank (A− λ1E) + rank (A− λ2E),

where E is the 3× 3 unit matrix.
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2a. ρ=3. The matrix A has three eigenvectors and the solution of the original equation

is written in the form (13.3.4.7).

2b. ρ < 3. In this case, the matrix A has less than three eigenvectors, which leads us

to the general case 1.

3. Finally, if all three roots of equation (13.3.4.4) coincide, the form of the solution is

determined by value of ρ = rank (A− λE).
3a. ρ = 2. Again, this leads to the general case 1.

3b. ρ = 1. In this case, instead of an integral straight line, we get a bundle of integral

curves, since one equation is insufficient for determining two ratios, u1/u3 and u2/u3.

Expressing u3 in terms of u1 and u2 and substituting into the equation ux = 0, we obtain

the equation of the bundle, which contains one significant constant and, hence, is a general

integral of the Jacobi equation.

Example 13.2. In the homogeneous coordinates, the equation

(14x+ 13y + 6) dx+ (4x+ 5y + 3) dy + (7x+ 5y)(y dx − x dy) = 0

becomes ∣∣∣∣∣∣∣

dx1 dx2 dx3

x1 x2 x3

4x1 + 5x2 + 3x3 −14x1 − 13x2 − 6x3 7x1 + 5x2

∣∣∣∣∣∣∣
= 0.

The equation for λ is λ3 + 9λ2 + 27λ+ 27 = 0. It has three identical roots: λ1 = λ2 = λ3 = −3.

The equation of the bundle is u1(x1−x3)+u2(x2 +2x3) = 0. The general integral of the original

equation is x− 1 = C(y + 2).

⊙ Literature for equation 13.3.4.22: V. V. Stepanov (1958), V. F. Zaitsev and L. V. Linchuk (2015).

23. (Axy+Bx2+ay+bx+c)y′x = kAxy+kBx2+my+k(ak+b−m)x+s.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[(m− ak)z + s− ck]x′z = (Ak +B)x2 + (Az + ak + b)x+ az + c.

24. (2Axy+Bx2+ay+ bx+ c)y′x = Ay2 +k(Ak+B)x2+aky+ bkx+ s.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

(Az2 + s− ck)x′z = (2Ak +B)x2 + (2Az + ak + b)x+ az + c.

25. (2Axy − Akx2+ ay + bx+ c)y′x= Ay2+my + k(ak+ b−m)x+ s.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[Az2 + (m− ak)z + s− ck]x′z = Akx2 + (2Az + ak + b)x+ az + c.

26. (2Axy+Bx2+ay−akx+b)y′x =Ay2+k(Ak+B)x2+my−mkx+s.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[Az2 + (m− ak)z + s− bk]x′z = (2Ak +B)x2 + 2Azx+ az + c.

27. (2Axy+Bx2 +ay+ bx+ c)y′x = Ay2 + k(Ak+B)x2 + by+ak2x+ s.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[Az2 + (b− ak)z + s− ck]x′z = (2Ak +B)x2 + (2Az + ak + b)x+ az + c.
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28. [Axy + Bx2 + (k − 1)Aay − (Abk+ Ba)x]y′x
= Ay2 +Bxy − (Ab+Bak)y + (k− 1)Bbx.

This is a special case of equation 13.3.4.22. Solution in parametric form:

x =
at+ACtk

t+ C
, y =

bt−BCtk
t+ C

.

The solution can be presented in implicit form as well:

Ck(Ay +Bx)k + [A(b− y) +B(a− x)]k−1(ay − bx) = 0.

29. [(ax+ c)y + (1 − n)x2 + (2n− 1)x− n]y′x = 2ay2 + 2xy.

The substitution w = ay + x leads to an equation of the form 13.3.4.8:

2yww′
y =(1−n)w2+[a(2n+1)y+2n−1]w−a2ny2−by−n, where b=(2n−1)a−c.

30. [(x+ c)y + (n+ 1)x2 − a(2n+ 1)x+ a2n]y′x =
2n

3n− 1
y2 + 2xy.

The transformation z =
3n− 1

n− 1

1

y
, w =

3n− 1

n− 1

x

y
+

n

n− 1
leads to an equation of the

form 13.3.4.8:

2zww′
z =(1−n)w2+[a(2n+1)z+2n−1]w−a2nz2−bz−n, b=

(3n−1)c+an(2n+1)

n−1 .

31. x(2axy + b)y′x = −a(m+ 3)xy2 − b(m+ 2)y + cxm.

The transformation z = xy, w = −cxm+1 + a(m + 1)x2y2 + b(m + 1)xy leads to a

separable equation: ww′
z = (m+ 1)2(2az + b)(az2 + bz).

32. [(a2x
2 + a1x+ a0)y + b2x

2 + b1x+ b0]y
′

x = c2y
2 + c1y + c0.

This is a Riccati equation with respect to x = x(y).

The substitution x = − c2y
2 + c1y + c0
a2y + b2

w′
y

w
leads to a second-order linear equation:

f2w
′′
yy− [(f2)

′
y + f1f2]w

′
y + f0f

2
2w = 0, where fi =

aiy + bi
c2y2 + c1y + c0

; i= 1, 2, 3.

33. [(12a2x2 − 7ax+ 1)y + 4cx2 − 5bx]y′x = −2x(3a2y2 + 2cy + 3b2).

The substitution w = x(3a2y2+2cy+3b2) leads to an Abel equation of the form 13.3.3.3:

2ww′
y = (7ay + 5b)w − 3a2y3 − 2cy2 − 3b2y.

34. x[(m− 1)(Ax+B)y +m(Dx2 + Ex+ F )]y′x
= [A(1 − n)x−Bn]y2 + [D(2 − n)x2 + E(1− n)x− Fn]y.

Solution: Axy +Dx2 + Ex+By + F = Cxnym.

35. x2(2axy + b)y′x = −4ax2y2 − 3bxy + cx2 + k.

The transformation z = xy, w = 2ax2y2 +2bxy− cx2− k leads to a separable equation:

ww′
z = 2(2az + b)(2az2 + 2bz − k).
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36. (xy + axn + bx2)y′x = y2 + cxn + bxy.

The transformation t= y/x, z = xn−2 leads to a first-order linear equation: (c− at)z′t =
(n− 2)(az + t+ b).

37. x(2axny + b)y′x = −a(3n+m)xny2 − b(2n+m)y +Axm + cx−n.

The transformation z = xny, w =−Axn+m+(n+m)(az2+ bz)− c leads to a separable

equation: ww′
z = (n+m)2(2az + b)

(
az2 + bz − c

n+m

)
.

38. yy′x = −ny2 + a(2n+ 1)exy + by − a2ne2x − abex + c.

The transformation x = ln ξ, y = w + aξ leads to a Bernoulli equation with respect to

ξ = ξ(w): (−nw2 + bw + c)ξ′w = wξ + aξ2.

13.3.5 Some Types of First- and Second-Order Equations Reducible
to Abel Equations of the Second Kind

◆ Notation: f , g, h, p, ϕ, ψ, Φ, F , and G are arbitrary functions of their arguments.

◮ Quasi-homogeneous equations.

1◦. Let us consider a quasi-homogeneous equation of the form

f(xνy)xν+1y′x + g(xνy) +Axλ = 0.

In the special case λ = 0 this equation is homogeneous.

The transformation z = xνy, w = Axλ + g(z) − νzf(z) leads to an Abel equation:

ww′
z = [−(λ+ ν)f + g′z − νzf ′z]w + λf(g − νzf).

2◦. A quasi-homogeneous equation of the form

f(xνy)xν+1y′x + g(xνy) + xλ[h(xνy)xν+1y′x + p(xνy)] = 0

can be reduced by the transformation z = xνy, ζ = x−λ to an Abel equation:

{
[g(z) − νzf(z)]ζ + p(z)− νzh(z)

}
ζ ′z = λf(z)ζ2 + λh(z)ζ.

◮ Equations of the theory of chemical reactors and the combustion theory.

In the theory of chemical reactors and the combustion theory, one encounters equations of

the form

y′′xx − ay′x = f(y).

The substitution w(y) = y′x/a leads to the Abel equation ww′
y − w = a−2f(y), whose

solvable cases are given in Section 13.3.1.
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◮ Equations of the theory of nonlinear oscillations.

1◦. Let us consider equations of the theory of nonlinear oscillations of the form

y′′xx + ϕ(y)y′x + y = 0.

The substitution z(y) = y′x leads to the Abel equation

zz′y + ϕ(y)z + y = 0, (1)

which is reduced, with the aid of the substitution τ = 1
2 (a− y2), to the following form:

zz′τ = g(τ)z + 1, where g(τ) = ±ϕ
(
±
√
a− 2τ

)
√
a− 2τ

. (2)

Specific cases of Eq. (2) are outlined in Section 13.3.2.

2◦. An equation of the theory of nonlinear oscillations of the form

y′′xx +Φ(y′x) + y = 0

can be reduced by the transformation z = y′x, w = −y−Φ(y′x) to an Abel equation of the

form (1):

ww′
z +Φ′

z(z)w + z = 0.

◮ Second-order homogeneous equations of various types.

1◦. A homogeneous equation with respect to the independent variable has the form

x2y′′xx = xg(y)y′x + f(y).

The substitution w(y) = xy′x leads to an Abel equation: ww′
y = [g(y) + 1]w + f(y).

2◦. A generalized homogeneous equation

xy′′xx = g(yxk)y′x + x−k−1f(yxk)

can be reduced by the transformation t = yxk, u = xk(xy′x + ky) to an Abel equation:

uu′t = [g(t) + 2k + 1]u+ f(t)− ktg(t)− k(k + 1)t.

To the Emden–Fowler equation, discussed in Section 14.3, there correspond g(t) = 0,

f(t) = Atm, and k = n+2
m−1 .

3◦. A generalized homogeneous equation

y′′xx = xαyβF
( x
y
y′x
)
+ yx−2G

( x
y
y′x
)

can be reduced by the transformation η =
x

y
y′x, w = xα+2yβ−1 to an Abel equation:

[F (η)w +G(η) + η − η2]w′
η = [(β − 1)η + α+ 2]w.

To the generalized Emden–Fowler equation, discussed in Section 14.5, there correspond

α = n− l, β = m+ l, F (η) = Aηl, and G(η) = 0.



“K16435’ — 2017/9/28 — 15:05 — #457

13.4. Equations Containing Polynomial Functions of y 431

◮ Second-order equations invariant under some transformations.

1◦. An equation invariant under “dilatation–translation” transformation has the form

y′′xx = xαeβyf(xy′x) + x−2g(xy′x).

The transformation ζ = xy′x, u = xα+2eβy leads to an Abel equation:

[f(ζ)u+ g(ζ) + ζ]u′ζ = (βζ + α+ 2)u.

2◦. An equation invariant under “translation–dilatation” transformation has the form

y′′xx = eαxyβf
( y′x
y

)
+ yg

( y′x
y

)
.

The transformation ξ = y′x/y, w = eαxyβ−1 leads to an Abel equation:

[f(ξ)w + g(ξ)− ξ2]w′
ξ = [(β − 1)ξ + α]w.

13.4 Equations Containing Polynomial Functions of y

13.4.1 Abel Equations of the First Kind
y′

x = f3(x)y
3 + f2(x)y

2 + f1(x)y + f0(x)

◮ Preliminary remarks.

1◦. If y0 = y0(x) is a particular solution of the equation in question, the substitution y −
y0 = 1/w reduces it to an Abel equation of the second kind:

ww′
x = −(3f3y20 + 2f2y0 + f1)w

2 − (3f3y0 + f2)w − f3,

which is discussed in Section 13.3. For f0(x) ≡ 0, we can choose y0 ≡ 0 as a particular

solution.

2◦. The transformation

ξ =

∫
f3E

2 dx, u =
(
y +

f2
3f3

)
E−1, where E = exp

[∫ (
f1 −

f22
3f3

)
dx
]
,

brings the original equation to the normal form:

u′ξ = u3 +Φ(ξ), where Φ =
1

f3E3

[
f0 +

1

3

d

dx

( f2
f3

)
− f1f2

3f3
+

2f32
27f23

]
.

◮ Solvable equations and their solutions.

1. y′x = ay3 + bx−3/2.

This is a special case of equation 13.4.1.9 with n = −1/2.

2. y′x = −y3 + 3a2x2y − 2a3x3 + a.

The substitution y = 1/u + ax leads to an Abel equation of the form 13.3.2.1: uu′x =
3axu+ 1.
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3. y′x = −y3 + (ax+ b)y2.

The substitution y = −1/u leads to an Abel equation of the form 13.3.2.1: uu′x =
(ax+ b)u+ 1.

4. y′x = −y3 + (ax+ b)−2y2.

The substitution y = −1/u leads to an Abel equation of the form 13.3.2.2: uu′x =
(ax+ b)−2u+ 1.

5. y′x = −y3 + (ax+ b)−1/2y2.

The substitution y = −1/u leads to an Abel equation of the form 13.3.2.4: uu′x =
(ax+ b)−1/2u+ 1.

6. y′x = ay3 + 3abxy2 − b− 2ab3x3.

This is a special case of equation 13.4.1.10 with n = 0 and m = 1.

7. y′x = axy3 + by2.

The substitution u = xy leads to a separable equation: xu′x = au3 + bu2 + u.

8. y′x = axy3 + 3abx2y2 − b− 2ab3x4.

This is a special case of equation 13.4.1.10 with n = m = 1.

9. y′x = ax2n+1y3 + bx−n−2.

The substitution w = yxn+1 leads to a separable equation: xw′
x = aw3 + (n+ 1)w + b.

For a=− 1
3 (n+1)A−2 and b= 2

3A(n+1), the solution is written in parametric form:

x = exp
( F

n+ 1

)
, y = −A

(
1 +

1

τ

)
exp(−F ), where F = τ − 1

3 ln |τ + 1
3 |+C.

10. y′x = axny3 + 3abxn+my2 − bmxm−1 − 2ab3xn+3m.

The substitution w= y+bxm leads to a Bernoulli equation: w′
x = axnw3−3ab2xn+2mw.

11. y′x = axny3 +3abxn+my2 + cxky− 2ab3xn+3m + bcxm+k − bmxm−1.

The substitution u = y + bxm leads to a Bernoulli equation: u′x = axnu3 +
(cxk − 3ab2xn+2m)u.

12. 9y′x = −xm(ax1−m + b)2λ+1y3

− x−2m(9a+ 2 + 9bmxm−1)(ax1−m + b)−λ−2.

For λ=
1

3a(1 −m)
, the substitution y =

( 3

w
+

1

ax+ bxm

)(
ax1−m+ b

)−λ
leads to the

Abel equation ww′
x = w + ax+ bxm, which is discussed in Section 13.3.1.

13. xy′x = ax4y3 + (bx2 − 1)y + cx.

The substitution w = xy leads to a separable equation: w′
x = x(aw3 + bw + c).

14. xy′x = ay3 + 3abxny2 − bnxn − 2ab3x3n.

The substitution w= y+bxn leads to a Bernoulli equation: w′
x = ax−1w3−3ab2x2n−1w.
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15. xy′x = ax2n+1y3 + (bx− n)y + cx1−n.

The substitution w = yxn leads to a separable equation: w′
x = aw3 + bw + c.

16. xy′x = axn+2y3 + (bxn − 1)y + cxn−1.

The substitution w = xy leads to a separable equation: w′
x = xn−1(aw3 + bw + c).

17. x2y′x = y3 − 3a2x4y + 2a3x6 + 2ax3.

The transformation x = 1/ξ, y = ax2 + 1/w leads to an equation of the form 13.3.2.2:

ww′
ξ = 3aξ−2w + 1.

18. y′x = −(ax+ bxm)y3 + y2.

The substitution y=−1/w leads to an equation ww′
x =w+ax+bxm, which is discussed

in Section 13.3.1.

19. y′x = (Ax2 + Bx+ C)−1/2y3 + y2.

The substitution y = −1/w leads to an Abel equation of the form 13.3.1.63: ww′
x =

w − (Ax2 +Bx+ C)−1/2.

20. y′x = −x−16/9
((
ax− 6

25

))34/9
y3 + 2

27

((
9ax− 2

25

))
x−11/18

((
ax− 6

25

))
−61/18

.

Solution in parametric form:

x = ± 6

25a
τ2℘, y = ∓ 125a

108
(aE1)

−25/18τ7/9℘7/18E−1
1 E−1

2 (18℘E1 ± 5E2),

where

E1 = τ2℘∓ 1, E2 = τ
√
±(4℘3 − 1) + 2℘.

The function ℘=℘(τ) is defined implicitly by τ =

∫
d℘√

±(4℘3 − 1)
−C. The upper sign

in the formulas corresponds to the classical Weierstrass elliptic function ℘=℘(τ+C, 0, 1).

21. y′x = −y3 + aeλxy2.

The substitution y = −1/w leads to an Abel equation of the form 13.3.2.7: ww′
x =

aeλxw + 1.

22. y′x = −y3 + 3a2e2λxy − 2a3e3λx + aλeλx.

The substitution y =
1

w
+ aeλx leads to an Abel equation of the form 13.3.2.7: ww′

x =

3aeλxw + 1.

23. y′x = − 1
3
λ−1e2λxy3 + 2

3
λ2e−λx.

Solution in parametric form:

x =
F

λ
, y = −λ

(
1 +

1

τ

)
e−F , where F = τ − 1

3 ln |τ + 1
3 |+ C.

24. y′x = ae2λxy3 + beλxy2 + cy + de−λx.

The substitution y = ue−λx leads to a separable equation: u′x = au3+bu2+(c+λ)u+d.
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25. y′x = aeλxy3 + 3abeλxy2 + cy − 2ab3eλx + bc.

The substitution u= y+ b leads to a Bernoulli equation: u′x = aeλxu3 +(c− 3ab2eλx)u.

26. y′x = aeλxy3 + 3abe(λ+µ)xy2 − 2ab3e(λ+3µ)x − bµeµx.

The substitution u= y+beµx leads to a Bernoulli equation: u′x=ae
λxu3−3ab2e(λ+2µ)xu.

27. y′x = aeλxy3 + 3abe(λ+µ)xy2 + 2ab2e(λ+2µ)xy − bµeµx.

The substitution u= y+beµx leads to a Bernoulli equation: u′x = aeλxu3−ab2e(λ+2µ)xu.

28. y′x = aeλxy3 + 3abe(λ+µ)xy2 + µy − 2ab3e(λ+3µ)x.

The substitution u = y + beµx leads to a Bernoulli equation: u′x = aeλxu3 +[
µ− 3ab2e(λ+2µ)x

]
u.

29. y′x = aeλxy3 + 3abe(λ+µ)xy2 + [(3ab2 + c)e(λ+2µ)x + s]y

+ b(ab2 + c)e(λ+3µ)x + b(s− µ)eµx.

The substitution u=y+beµx leads to a Bernoulli equation: u′x=ae
λxu3+[ce(λ+2µ)x+s]u.

30. y′x = [a+ b exp(2x/a)]y3 + y2.

The substitution y = −1/u leads to an equation of the form 13.3.1.8: uu′x = u − a −
b exp(2x/a).

31. y′x = − 2
3
ax−1 exp(2ax2)y3 + (1 − 4

3
ax2) exp(−ax2).

The substitution y =
( 1

2au
+ x

)
exp(−ax2) leads to an equation of the form 13.3.1.16:

uu′x = u+ (6ax)−1.

32. y′x = −a exp(2ax3)y3 + (1 − 2ax3) exp(−ax3).

The transformation ξ = x2, y =
( 2

3au
+ x
)
exp(−ax3) leads to an equation of the form

13.3.1.32: uu′ξ = u± 2(9a)−1ξ−1/2.

33. y′x = −ax−2 exp(2ax3)y3 + 2x(1 − ax3) exp(−ax3).

The substitution y =
( 1

3au
+ x2

)
exp(−ax3) leads to an equation of the form 13.3.1.33:

uu′x = u+ (9a)−1x−2.

34. y′x =− 2
9
a−1x−1/2 exp(2ax3/2)y3+ 3

4
ax−1/2(2ax3/2−1) exp(−ax3/2).

Solution in parametric form:

x = bτ−4/3Z−2U2
1 , y = − 1

b
τ−2/3Z−1U−1

2 (τ2Z3 ∓ U1U2) exp
(
± 2

3 τ
−2Z−3U3

1

)
,

where
a = ∓ 2

3 b
−3/2, U1 = τZ ′

τ +
1
3Z, U2 = U2

1 ± τ2Z2,

Z =

{
C1J1/3(τ) + C2Y1/3(τ) for the upper sign,

C1I1/3(τ) +C2K1/3(τ) for the lower sign,

J1/3(τ) and Y1/3(τ) are Bessel functions, and I1/3(τ) and K1/3(τ) are modified Bessel

functions.
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35. y′x = −ax−3(x2 − a)4/3 exp
((
x2

3a

))
y3

+
1

27a2
x2(x2 − a)−13/6(2x4 − 9ax2 + 27a2) exp

((
− x2

6a

))
.

Solution in parametric form:

x =

√
2af

τ
, y = −

√
2f

3a2/3τ2/3(2f − τ2)7/6
4(τ + 1)f2 + 4τ2f − 3τ4

2(τ + 1)f − τ2 exp
(
− f

3τ2

)
,

where f = τ − ln |1 + τ |+ C.

36. y′x = ay3 + b cosh(λx)y2.

The transformation t =
1

y
+
b

λ
sinh(λx), w = eλx leads to a Riccati equation: 2aw′

t =

bw2 − 2λtw − b.

37. y′x = ay3 + b sinh(λx)y2.

The transformation t =
1

y
+
b

λ
cosh(λx), w = eλx leads to a Riccati equation: 2aw′

t =

bw2 − 2λtw + b.

38. y′x = −y3 + 3a2 cosh2 x y − 2a3 cosh3 x+ a sinhx.

The substitution y = a cosh x + 1/w leads to an Abel equation of the form 13.3.2.9:

ww′
x = 3a cosh xw + 1.

39. y′x = −y3 + 3a2 sinh2 x y − 2a3 sinh3 x+ a cosh x.

The substitution y = a sinh x + 1/w leads to an Abel equation of the form 13.3.2.10:

ww′
x = 3a sinh xw + 1.

40. y′x = −y3 + a cos(λx)y2.

The substitution y = −1/u leads to an Abel equation of the form 13.3.2.11: uu′x =
a cos(λx)u+ 1.

41. y′x = −y3 + a sin(λx)y2.

The substitution y = −1/u leads to an Abel equation of the form 13.3.2.12: uu′x =
a sin(λx)u+ 1.

42. y′x = −y3 + 3a2 cos2(λx)y + aλ sin(λx) + 2a3 cos3(λx).

The substitution y = −a cos(λx) + 1/w leads to an Abel equation of the form 13.3.2.11:

ww′
x = −3a cos(λx)w + 1.

43. y′x = −y3 + 3a2 sin2(λx)y + aλ cos(λx)− 2a3 sin3(λx).

The substitution y = a sin(λx) + 1/w leads to an Abel equation of the form 13.3.2.12:

ww′
x = 3a sin(λx)w + 1.

◆ In equations 44–47, the following notation is used: f = f(x), g = g(x), h = h(x).

44. y′x = afy3 +
((
bfg2 +

g′x

g

))
y + cfg3.

The substitution y = gw leads to a separable equation: w′
x = fg2(aw3 + bw + c).
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45. y′x = fy3 + 3fhy2 + (g + 3fh2)y + fh3 + gh− h′

x.

The substitution w = y + h(x) leads to a Bernoulli equation: w′
x = g(x)w + f(x)w3.

46. y′x =
g′x

f2(ag + b)3
y3 +

f ′

x

f
y + fg′x.

Solution:

∫
dw

w3 − aw + 1
+ C =

1

a
ln |ag + b|, where w =

y

f(ag + b)
.

47. y′x = (y − f)(y − g)
((
y − af + bg

a+ b

))
h+

y − g

f − g
f ′

x +
y − f

g − f
g′x.

Solution:

|y − f |a|y − g|b
∣∣∣y − af + bg

a+ b

∣∣∣
−a−b

= C exp
[ ab

a+ b

∫
(f − g)2hdx

]
.

13.4.2 Equations of the Form
(A22y

2+A12xy+A11x
2+A0)y

′

x =B22y
2+B12xy+B11x

2+B0

◮ Preliminary remarks. Some transformations.

1◦. For A22 = 0, this is an Abel equation (see Section 13.3.4). For B11 = 0, this is an Abel

equation with respect to x = x(y).

2◦. The transformation z = y/x, ζ = x−2 leads to an Abel equation of the second kind:

[(A0z −B0)ζ +A22z
3 + (A12 −B22)z

2 + (A11 −B12)z −B11]ζ
′
z

= 2A0ζ
2 + 2(A22z

2 +A12z +A11)ζ.

3◦. The transformation x = x̄+ α, y = ȳ + β, where α and β are parameters, which are

determined by solving the second-order algebraic system

A22β
2 +A12αβ +A11α

2 +A0 = 0, B22β
2 +B12αβ +B11α

2 +B0 = 0,

leads to the equation

[A22ȳ
2 +A12x̄ȳ +A11x̄

2 + (2A22β +A12α)ȳ + (2A11α+A12β)x̄)]ȳ
′
x̄

= B22ȳ
2 +B12x̄ȳ +B11x̄

2 + (2B22β +B12α)ȳ + (2B11α+B12β)x̄.

The transformation ξ = ȳ/x̄, w = 1/x̄ reduces this equation to an Abel equation of the

second kind:

{[a2ξ2 + (a1 − b2)ξ − b1]w +A22ξ
3 + (A12 −B22)ξ

2 + (A11 −B12)ξ −B11}w′
ξ

= (a2ξ + a1)w
2 + (A22ξ

2 +A12ξ +A11)w,

where a1 = 2A11α + A12β, b1 = 2B11α + B12β, a2 = 2A22β + A12α, and b2 =
2B22β +B12α.

4◦. The substitution y = t + εx, where parameter ε is determined by solving the cubic

equation

(A22ε
2 +A12ε+A11)ε−B22ε

2 −B12ε−B11 = 0,

leads to an Abel equation of the second kind with respect to x = x(t):

[Qtx+ (B22 −A22ε)t
2 +B0 −A0ε]x

′
t

= (A22ε
2 +A12ε+A11)x

2 + (2A22ε+A12)tx+A22t
2 +A0,

where Q = 2B22ε+B12 − ε(2A22ε+A12).
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◮ Solvable equations and their solutions.

1. (Ay2 + x2)y′x = −2xy + Bx2 + a.

Solution: Ay3 −Bx3 + 3(x2y − ax) = C .

2. (Ay2 + Bx2 − a2B)y′x = Cy2 + 2Bxy.

The transformation x=w+a, y= ξw leads to a linear equation: (−Aξ3+Cξ2+Bξ)w′
ξ=

(Aξ2 +B)w + 2aB.

3. (Ay2 + Bxy + Cx2)y′x = Dy2 + Exy + Fx2.

Homogeneous equation. The substitution z = y/x leads to a separable equation: xz′x =
(Az2 +Bz + C)−1[−Az3 + (D −B)z2 + (E −C)z + F ].

4. (Ay2 − 2Akxy +Bkx2)y′x = −By2 + 2Bkxy − Ak3x2 + a.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[−(Ak +B)z2 + a]x′z = k(B −Ak)x2 +Az2.

5. (Ay2 + 2Bxy + Ak2x2)y′x = By2 + 2Ak2xy + Bk2x2 + a.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[(B −Ak)z2 + a]x′z = 2k(Ak +B)x2 + 2(Ak +B)zx+Az2.

6. (Ay2 + Bxy + Cx2 + a)y′x = Aky2 + Bkxy + Ckx2 + b.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

(b− ak)x′z = (Ak2 +Bk + C)x2 + (2Ak +B)zx+Az2 + a.

7. (Ay2 + 2Bxy +Dx2 + a)y′x = −By2 − 2Dxy + Ex2 + b.

Solution: Ay3 − Ex3 + 3(Bxy2 +Dx2y + ay − bx) = C .

8. (Ay2 − 2Axy + Bx2 +A−B)y′x = −Ay2 + 2Bxy − Bx2 +A−B.

This is a special case of equation 13.4.2.21 with a = 1 and b = 1.

9. (Ay2 + 2Axy + Bx2 +A−B)y′x = Ay2 + 2Bxy +Bx2 −A+ B.

This is a special case of equation 13.4.2.21 with a = 1 and b = −1.

10. (Ay2−4Axy+Bx2+4A−B)y′x =−2Ay2+2Bxy−2Bx2+8A−2B.

This is a special case of equation 13.4.2.21 with a = 1 and b = 2.

11. (Ay2 +4Axy+Bx2 +4A−B)y′x = 2Ay2 +2Bxy+2Bx2 − 8A+2B.

This is a special case of equation 13.4.2.21 with a = 1 and b = −2.

12. (Ay2−6Axy+Bx2+9A−B)y′x =−3Ay2+2Bxy−3Bx2+27A−3B.

This is a special case of equation 13.4.2.21 with a = 1 and b = 3.

13. (Ay2+6Axy+Bx2+9A−B)y′x = 3Ay2+2Bxy+3Bx2−27A+3B.

This is a special case of equation 13.4.2.21 with a = 1 and b = −3.
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14. 2(Ay2 −Axy +Bx2 +A− 4B)y′x = −Ay2 + 4Bxy −Bx2 +A− 4B.

This is a special case of equation 13.4.2.21 with a = 2 and b = 1.

15. 2(Ay2+ Axy + Bx2+ A− 4B)y′x = Ay2+ 4Bxy + Bx2−A+ 4B.

This is a special case of equation 13.4.2.21 with a = 2 and b = −1.

16. (ay2− 2bxy + ax2+ ab2− a3)y′x = −by2+ 2axy − bx2+ b3− a2b.

This is a special case of equation 13.4.2.21 with A = 1 and B = 1.

17. (ay2− 2bxy − ax2+ ab2+ a3)y′x = −by2− 2axy + bx2+ b3+ a2b.

This is a special case of equation 13.4.2.21 with A = 1 and B = −1.

18. (ay2− 2bxy+2ax2+ab2− 2a3)y′x = −by2 +4axy− 2bx2+ b3 −2a2b.

This is a special case of equation 13.4.2.21 with A = 1 and B = 2.

19. (ay2− 2bxy− 2ax2+ab2+2a3)y′x = −by2 − 4axy+2bx2+ b3 +2a2b.

This is a special case of equation 13.4.2.21 with A = 1 and B = −2.

20. (Ay2 +Bxy + Cx2 + a)y′x
= Dy2 + k(2Ak+ B − 2D)xy + k(−Ak2 +Dk + C)x2 + b.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[(D −Ak)z2 + b− ak]x′z = (Ak2 +Bk + C)x2 + (2Ak +B)zx+Az2 + a.

21. (aAy2 − 2bAxy + aBx2 + ab2A− a3B)y′x
= −bAy2 + 2aBxy − bBx2 + b3A− a2bB.

The transformation x = w + a, y = ξw + b leads to a linear equation:

(−aAξ3 + bAξ2 + aBξ − bB)w′
ξ = (aAξ2 − 2bAξ + aB)w + 2a2B − 2b2A.

13.4.3 Equations of the Form (A22y
2+A12xy+A11x

2+A2y+A1x)y
′

x

= B22y
2 +B12xy +B11x

2 +B2y +B1x

◮ Preliminary remarks.

1◦. For A22 = 0, this is an Abel equation (see Section 13.3.4). For B11 = 0 this is an Abel

equation with respect to x = x(y).

2◦. The transformation ξ = y/x, w = 1/x leads to an Abel equation of the second kind:

{[A2ξ
2 + (A1 −B2)ξ −B1]w +A22ξ

3 + (A12 −B22)ξ
2 + (A11 −B12)ξ −B11}w′

ξ

= (A2ξ +A1)w
2 + (A22ξ

2 +A12ξ +A11)w.

3◦. In Item 3◦ of Section 13.4.4, another transformation is given which reduces the original

equation to an Abel equation of the second kind.
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4◦. Dynamical systems of the second-order

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (1)

which describe the behavior of simplest Lagrangian and Hamiltonian systems in mechanics,

are often reduced to equations of the type in question if

P (x, y) = f(x, y)(A22y
2 +A12xy +A11x

2 +A2y +A1x),

Q(x, y) = f(x, y)(B22y
2 +B12xy +B11x

2 +B2y +B1x),
(2)

where f = f(x, y) is an arbitrary function.

In particular, dynamical systems (1) with functions (2) and f ≡ 1 arise in analyzing

complex equilibrium states. In this case, the functions P and Q are substituted by their

Taylor-series expansions in the vicinity of the equilibrium state x = y = 0 with the first-

and second-order terms retained.

Whenever a solution of the ordinary differential equation

(A22y
2 +A12xy +A11x

2 +A2y +A1x)y
′
x = B22y

2 +B12xy +B11x
2 +B2y +B1x

is obtained in parametric form, x = x(u,C1), y = y(u,C1), the corresponding solution of

system (1), (2) is determined by

x = x(u,C1), y = y(u,C1), t =

∫
x′u du

P
(
x(u,C1), y(u,C1)

) + C2.

The last relation defines an implicit dependence of the parameter u on t, u = u(t, C1, C2),
and makes it possible to establish, with the aid of the first two formulas, the dependence of

x and y on t.

◮ Solvable equations and their solutions.

1. (y2 − x2 + ay)y′x = y2 − x2 + ax.

Solution in parametric form:

x = at+ C|t|−1e4t, y = −at+ C|t|−1e4t.

2. (y2 − x2 + ay)y′x = 2y2 − 2xy + ay.

Solution in parametric form:

x = t+ Ct2ea/t, y = Ct2ea/t.

3. (y2 − x2 + ay − ax)y′x = y2 − x2 − ay + ax.

Solution in parametric form:

x = at+Ce2t, y = −at+ Ce2t.

4. (y2 − x2 + ay + 2ax)y′x = y2 − x2 + 2ay + ax.

Solution in parametric form:

x = −at+ C|t|3e4t, y = at+ C|t|3e4t.
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5. (y2 − x2 + ay + 2ax)y′x = 2xy − 2x2 + ay + 2ax.

Solution in parametric form:

x = t+ Ct−2e−a/t, y = −2t+ Ct−2e−a/t.

6. (y2 − x2 + ay − 2ax)y′x = 4y2 − 6xy + 2x2 + ay − 2ax.

Solution in parametric form:

x = 1
3 t+ C|t|2/3ea/t, y = 2

3 t+ C|t|2/3ea/t.
7. (y2 − x2 + ay + 3ax)y′x = −y2 + 4xy − 3x2 + ay + 3ax.

Solution in parametric form:

x = 1
2 t+C|t|−1e−a/t, y = − 3

2 t+ C|t|−1e−a/t.

8. (y2 − xy + ay + ax)y′x = xy − x2 + ay + ax.

Solution in parametric form:

x = −t+ C|t|−1ea/t, y = t+ C|t|−1ea/t.

9. (y2 − xy + ay + ax)y′x = y2 − xy + 2ay.

Solution in parametric form:

x = −at+ Ct2et, y = Ct2et.

10. (y2 − xy + ay − 2ax)y′x = 3y2 − 5xy + 2x2 + ay − 2ax.

Solution in parametric form:

x = 1
2 t+ C|t|1/2ea/t, y = t+ C|t|1/2ea/t.

11. (y2 + xy − 2x2 + ay + ax)y′x = y2 + xy − 2x2 + 2ax.

Solution in parametric form:

x = at+ Ct−2e9t, y = −2at+ Ct−2e9t.

12. (y2 + xy − 2x2 + ay + ax)y′x = 2y2 − xy − x2 + ay + ax.

Solution in parametric form:

x = t+ C|t|3ea/t, y = −t+ C|t|3ea/t.
13. (y2 + xy − 2x2 + ay − ax)y′x = y2 + xy − 2x2 − 2ay + 2ax.

Solution in parametric form:

x = at+ Ce3t, y = −2at+ Ce3t.

14. (y2 + xy − 2x2 + ay − 2ax)y′x = 5y2 − 7xy + 2x2 + ay − 2ax.

Solution in parametric form:

x = 1
4 t+ C|t|3/4ea/t, y = 1

2 t+ C|t|3/4ea/t.
15. (y2 − 2xy + x2 + ay)y′x = ay.

Solution: x = y +
a

C − ln |y| .
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16. (y2 − 2xy + x2 + ay + ax)y′x = −y2 + 2xy − x2 + ay + ax.

Solution in parametric form:

x = − a

2 ln |t| + Ct, y =
a

2 ln |t| + Ct.

17. (y2 − 2xy + x2 + ay + 2ax)y′x = −2(y2 − 2xy + x2) + ay + 2ax.

Solution in parametric form:

x = − a

3 ln |t| + Ct, y =
2a

3 ln |t| + Ct.

18. (y2 − 2xy + x2 + ay − 2ax)y′x = 2(y2 − 2xy + x2) + ay − 2ax.

Solution in parametric form:

x =
a

ln |t| + Ct, y =
2a

ln |t| + Ct.

19. (y2 + 2xy + x2 + ay + 2ax)y′x = −y2 − 2xy − x2 + 2ay + ax.

Solution in parametric form:

x = C2
(
t1/3 +

4t2

5a

)
+ Ct, y = −C2

(
t1/3 +

4t2

5a

)
+Ct, a 6= 0.

20. (y2 + 2xy + x2 + ay − ax)y′x = −y2 − 2xy − x2 + ay − ax.

Solution in parametric form:

x = C3

√
1− 4t3

3a
+ C2t, y = −C3

√
1− 4t3

3a
+ C2t, a 6= 0.

21. (y2 + 2xy + x2 + ay − 2ax)y′x = −y2 − 2xy − x2 − 2ay + ax.

Solution in parametric form:

x = C2
(
t3 +

4t2

a

)
+ Ct, y = −C2

(
t3 +

4t2

a

)
+ Ct, a 6= 0.

22. (y2 + 2xy − 3x2 + ay + ax)y′x = 3y2 − 2xy − x2 + ay + ax.

Solution in parametric form:

x = 1
2 t+ Ct2ea/t, y = − 1

2 t+ Ct2ea/t.

23. (y2 + 2xy − 3x2 + ay + ax)y′x = y2 + 2xy − 3x2 − ay + 3ax.

Solution in parametric form:

x = at+ C|t|−1e8t, y = −3at+ C|t|−1e8t.

24. (y2 + 2xy − 3x2 + ay + 2ax)y′x = y2 + 2xy − 3x2 + 3ax.

Solution in parametric form:

x = at+ C|t|−3e16t, y = −3at+ C|t|−3e16t.
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25. (y2 − x2 + ay + bx)y′x = y2 − x2 + by + ax.

Solution in parametric form:

x = (a− b)t+ C|t|−
a+b
a−b e4t, y = (b− a)t+ C|t|−

a+b
a−b e4t, a 6= b.

26. (y2 − xy + ay + bx)y′x = y2 − xy + (a+ b)y.

Solution in parametric form:

x = −bt+ C|t|
a+b
b et, y = C|t|

a+b
b et, b 6= 0.

27. (y2 + xy − 2x2 + ay + bx)y′x = y2 + xy − 2x2 + (b− a)y + 2ax.

Solution in parametric form:

x = (2a− b)t+C|t|−
a+b
2a−b e9t, y = 2(b− 2a)t+ C|t|−

a+b
2a−b e9t, b 6= 2a.

28. (y2 − 2xy + x2 + ay − abx)y′x = b(y2 − 2xy + x2) + ay − abx.

Solution in parametric form:

x =
a

b− 1

1

ln |t| + Ct, y =
ab

b− 1

1

ln |t| + Ct, b 6= 1.

29. (y2+ 2xy − 3x2+ ay + bx)y′x = y2+ 2xy − 3x2+ (b− 2a)y + 3ax.

Solution in parametric form:

x = (3a− b)t+ C|t|−
a+b
3a−b e16t, y = 3(b− 3a)t+ C|t|−

a+b
3a−b e16t, b 6= 3a.

30. (y2− 3xy + 2x2+ ay + bx)y′x = y2− 3xy + 2x2+ (3a+ b)y − 2ax.

Solution in parametric form:

x = (2a+ b)t+C|t|
a+b
2a+b e−t, y = 2(2a + b)t+ C|t|

a+b
2a+b e−t, b 6= −2a.

31. (y2+ 3xy − 4x2+ ay + bx)y′x = y2+ 3xy − 4x2+ (b− 3a)y + 4ax.

Solution in parametric form:

x = (4a− b)t+ C|t|−
a+b
4a−b e25t, y = 4(b− 4a)t+ C|t|−

a+b
4a−b e25t, b 6= 4a.

32. [y2 + Axy − (A+ 1)x2 + by − 2bx]y′x
= (A+ 4)y2 − (A+ 6)xy + 2x2 + by − 2bx.

Solution in parametric form:

x =
t

A+ 3
+ C|t|

A+2
A+3 eb/t, y =

2t

A+ 3
+ C|t|

A+2
A+3 eb/t, A 6= −3.

33. (y2 − 2Axy +A2x2 + by − bx)y′x = Ay2 − 2A2xy + A3x2 + by − bx.

Solution in parametric form:

x = C3

√
1 +

2(A− 1)

3b
t3 + C2t, y = AC3

√
1 +

2(A− 1)

3b
t3 + C2t, b 6= 0.
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34. [y2−2Axy+(2A−1)x2+by−Abx]y′x=(2−A)y2−2xy+Ax2+by−Abx.

Solution in parametric form:

x =
t

1−A + Ct2eb/t, y =
At

1−A + Ct2eb/t, A 6= 1.

35. (y2 − 2Axy +A2x2 + ay + bx)y′x
= A(y2 − 2Axy + A2x2) + (aA+ a+ b)y − aAx.

Solution in parametric form:

x = C2

[
t
aA+b
a+b +

(1−A)2
(2−A)a+ b

t2
]
+Ct, y = AC2

[
t
aA+b
a+b +

(1−A)2
(2−A)a+ b

t2
]
+Ct,

where a+ b 6= 0 and (2−A)a+ b 6= 0.

36. [y2− (A+2)xy+(A+1)x2+by−Abx]y′x =−Axy+Ax2+by−Abx.

Solution in parametric form:

x =
t

1−A + C|t|Ae(A−1)b/t, y =
At

1−A + C|t|Ae(A−1)b/t, A 6= 1.

37. [Ay2+xy− (A+1)x2+ by+ bx]y′x = (A+1)y2−xy−Ax2+ by+ bx.

Solution in parametric form:

x = t+C|t|2A+1eb/t, y = −t+ C|t|2A+1eb/t.

38. (Ay2 +Bxy + Cx2 + kx)y′x = Dy2 + Exy + Fx2 + ky.

The substitution y = xz leads to a linear equation with respect to x = x(z):

[−Az3 + (D −B)z2 + (E − C)z + F ]x′z = (Az2 +Bz + C)x+ k.

39. (Ay2 +Bxy + Cx2 − αBy − αCx)y′x = Dy2 + Exy + α(C − E)y.

The transformation x = w + α, y = ξw leads to a linear equation:

[−Aξ3 + (D −B)ξ2 + (E −C)ξ]w′
ξ = (Aξ2 +Bξ + C)w + αC.

40. (Ay2+2Bxy+Ak2x2+ay+bx)y′x=By
2+2Ak2xy+Bk2x2+by+ak2x.

This is a special case of equation 13.4.3.57 with C = Ak2.

41. (Ay2+2Bxy+Ak2x2+ay+bx)y′x=By
2+2Ak2xy+Bk2x2+aky+bkx.

This is a special case of equation 13.4.3.62 with C = Ak2.

42. (Ay2 + 2Bxy +Ak2x2 + ay − akx)y′x
= By2 + 2Ak2xy +Bk2x2 +my −mkx.

This is a special case of equation 13.4.3.61 with C = Ak2.

43. (Ay2+2Bxy−Bkx2+ay+bx)y′x=By
2+2Ak2xy−Ak3x2+by+ak2x.

This is a special case of equation 13.4.3.58 with m = b.
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44. (Ay2+2Bxy−Bkx2+ay+bx)y′x=By
2+2Ak2xy−Ak3x2+aky+bkx.

This is a special case of equation 13.4.3.62 with C = −Bk.

45. (Ay2 + 2Bxy −Bkx2 + ay − akx)y′x
= By2 + 2Ak2xy −Ak3x2 +my −mkx.

This is a special case of equation 13.4.3.61 with C = −Bk.

46. (Ay2+2Akxy+Cx2+ay+bx)y′x=Aky
2+2Ak2xy+Ckx2+by+ak2x.

This is a special case of equation 13.4.3.57 with B = Ak.

47. (Ay2+2Akxy+Cx2+ay+bx)y′x=Aky
2+2Ak2xy+Ckx2+aky+bkx.

This is a special case of equation 13.4.3.62 with B = Ak.

48. (Ay2 + 2Akxy + Cx2 + ay − akx)y′x
= Aky2 + 2Ak2xy + Ckx2 +my −mkx.

This is a special case of equation 13.4.3.61 with B = Ak.

49. (Ay2 − 2Akxy + Bkx2 + ay + bx)y′x
= −By2 + 2Bkxy −Ak3x2 + by + ak2x.

This is a special case of equation 13.4.3.59 with m = b.

50. (Ay2 − 2Akxy + Bkx2 + ay + bx)y′x
= −By2 + 2Bkxy − Ak3x2 + aky + bkx.

This is a special case of equation 13.4.3.59 with m = ak.

51. [y2 + 2Axy + A2x2 + (A− 1)By − 2ABx]y′x
= −A(y2 + 2Axy +A2x2) − (A2 + 1)By + A(A− 1)Bx.

Solution in parametric form (A 6= 2, B 6= 0):

x = C2

[
tA +

A+ 1

(A− 2)B
t2
]
+ Ct, y = −AC2

[
tA +

A+ 1

(A− 2)B
t2
]
+ Ct.

52. [y2 − 2Axy + A2x2 + (B − 1)ky + (A−B)kx]y′x
= A(y2 − 2Axy +A2x2) + (AB − 1)ky −A(B − 1)kx.

Solution in parametric form (B 6= 2, k 6= 0):

x = C2

[
tB − A− 1

(B − 2)k
t2
]
+ Ct, y = AC2

[
tB − A− 1

(B − 2)k
t2
]
+ Ct.

53. [2y2 − (A+ 3)xy + (A+ 1)x2 + By − ABx]y′x
= (A+ 1)y2 − (3A+ 1)xy + 2Ax2 +By −ABx.

Solution in parametric form:

x =
t

1−A + C|t|−1e−B/t, y =
At

1−A + C|t|−1e−B/t, A 6= 1.
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54. [2y2 − (3A+ 1)xy + (3A− 1)x2 +By −ABx]y′x
= (3− A)y2 − (A+ 3)xy + 2Ax2 +By −ABx.

Solution in parametric form:

x =
t

1−A + C|t|3eB/t, y =
At

1−A + C|t|3eB/t, A 6= 1.

55. [A(y2 − 2xy + x2) −A(A− B)y +B(A−B)x]y′x
= B(y2 − 2xy + x2) − A(A−B)y + B(A−B)x.

Solution in parametric form:

x =
A

ln |t| + Ct, y =
B

ln |t| + Ct.

56. (Ay2 +Bxy + Cx2 + ay + bx)y′x
= Aky2 +Bkxy + Ckx2 + ny + (ak+ b− n)x.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

(n − ak)zx′z = (Ak2 +Bk + C)x2 + [(2Ak +B)z + ak + b]x+Az2 + az.

57. (Ay2 + 2Bxy + Cx2 + ay + bx)y′x
= By2 + 2Ak2xy + k(−Ak2 + Bk + C)x2 + by + ak2x.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[(B−Ak)z+ b− ak]zx′z = (Ak2 +2Bk+C)x2+ [2(Ak+B)z+ ak+ b]x+Az2 +az.

58. (Ay2 + 2Bxy −Bkx2 + ay + bx)y′x
= By2 + 2Ak2xy − Ak3x2 +my + k(ak+ b−m)x.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[(B −Ak)z +m− ak]zx′z = (Ak2 +Bk)x2 + [2(Ak +B)z + ak + b]x+Az2 + az.

59. (Ay2 − 2Akxy + Bkx2 + ay + bx)y′x
= −By2 + 2Bkxy − Ak3x2 +my + k(ak+ b−m)x.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[−(Ak +B)z +m− ak]zx′z = k(B −Ak)x2 + (ak + b)x+Az2 + az.

60. (Ay2 + 2Bxy +Ak2x2 + ay + bx)y′x
= By2 + 2Ak2xy + Bk2x2 +my + k(ak+ b−m)x.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[(B −Ak)z +m− ak]zx′z = 2k(Ak +B)x2 + [2(Ak +B)z + ak + b]x+Az2 + az.

61. (Ay2 + 2Bxy + Cx2 + ay − akx)y′x
= By2 + 2Ak2xy + k(−Ak2 + Bk + C)x2 +my −mkx.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[(B −Ak)z2 +m− ak]zx′z = (Ak2 + 2Bk + C)x2 + 2(Ak +B)zx+Az2 + az.
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62. (Ay2 + 2Bxy + Cx2 + ay + bx)y′x
= By2 + 2Ak2xy + k(−Ak2 +Bk + C)x2 + aky + bkx.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

(B −Ak)z2x′z = (Ak2 + 2Bk + C)x2 + [2(Ak +B)z + ak + b]x+Az2 + az.

63. {(A− 1)y2 + [2 −A(k + 1)]xy + (Ak− 1)x2 +By −Bkx}y′x
= (A− k)y2 + [2k −A(k + 1)]xy + (A− 1)kx2 + By − Bkx.

Solution in parametric form:

x =
t

1− k + C|t|AeB/t, y =
kt

1− k + C|t|AeB/t, k 6= 1.

64. [A(αy2 + βxy + γx2) + (2α− A2σ)y + (β −ABσ)x]y′x
+B(αy2 + βxy + γx2) + (β − ABσ)y + (2γ −B2σ)x = 0.

Solution: αy2 + βxy + γx2 −Aσy −Bσx+ σ = C exp(−Ay −Bx).

65. (A22y
2 + A12xy + A11x

2 + A2y + A1x)y
′

x

= B22y
2 + k(2A22k+ A12 − 2B22)xy + k(−A22k

2 +B22k+ A11)x
2

+ B2y + k(A2k +A1 −B2)x.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[(B22 −A22k)z +B2 −A2k]zx
′
z = (A22k

2 +A12k +A11)x
2

+ [(2A22k +A12)z +A2k +A1]x+A22z
2 +A2z.

◆ In equations 66–70, the following notation is used: ∆= Ab− aB 6= 0, δ = Ab+ aB.

66. (Aa2y2 − 2Aabxy +Ab2x2 − ∆Aay + ∆aBx)y′x
= a2By2 − 2aBbxy + Bb2x2 − ∆Aby + ∆Bbx.

Solution in parametric form:

x =
A

ln |t| + aCt, y =
B

ln |t| + bCt.

67. [kAa2y2 − kδaxy + kaBbx2 − lAay + (laB − ∆)x]y′x
= kAaby2 − kδbxy + kBb2x2 − (lAb+ ∆)y + lBbx.

Solution in parametric form:

x = At+ aC|t|l+1ek∆t, y = Bt+ bC|t|l+1ek∆t.

68. [kAa2y2 − a(kδ − ∆)xy + b(kaB − ∆)x2 + lAay − laBx]y′x
= a(kBb+ ∆)y2 − b(kδ + ∆)xy + kBb2x2 + lAby − lBbx.

Solution in parametric form:

x = At+ aC|t|k+1 exp
( l

∆t

)
, y = Bt+ bC|t|k+1 exp

( l

∆t

)
.
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69. (kA3y2 − 2kA2Bxy + kAB2x2 − a2y + abx)y′x
= kA2By2 − 2kAB2xy + kB3x2 − aby + b2x.

Solution in parametric form:

x = AC3
√

2
3k∆t

3 + 1 + aC2t, y = BC3
√

2
3k∆t

3 + 1 + bC2t.

70.
[[
kA3y2 − 2kA2Bxy + kAB2x2 + lAay − (lAb+ ∆)x

]]
y′x

= kA2By2 − 2kAB2xy + kB3x2 + (laB − ∆)y − lBbx.

Solution in parametric form (l 6= 1):

x = AC2
(
tl+1 +

k∆

l − 1
t2
)
+ aCt, y = BC2

(
tl+1 +

k∆

l − 1
t2
)
+ bCt.

13.4.4 Equations of the Form
(A22y

2 +A12xy +A11x
2 +A2y +A1x+A0)y

′

x

= B22y
2 +B12xy +B11x

2 +B2y +B1x +B0

◮ Preliminary remarks. Some transformations.

1◦. With A22 = 0, this is an Abel equation (see Section 13.3.4). With B11 = 0, this is an

Abel equation with respect to x = x(y).
See Section 13.4.2 for the case A2 = A1 = B2 = B1 = 0.

See Section 13.4.3 for the case A0 = B0 = 0.

2◦. The transformation x = x̄+ α, y = ȳ + β, where α and β are parameters, which are

determined by solving the second-order algebraic system

A22β
2 +A12αβ +A11α

2 +A2β +A1α+A0 = 0,

B22β
2 +B12αβ +B11α

2 +B2β +B1α+B0 = 0,

leads to the equation

(A22ȳ
2 +A12x̄ȳ+A11x̄

2 + a2ȳ+ a1x̄)ȳ
′
x̄ = B22ȳ

2 +B12x̄ȳ+B11x̄
2 + b2ȳ+ b1x̄, (1)

where
a2 = 2A22β +A12α+A2,

b2 = 2B22β +B12α+B2,

a1 = 2A11α+A12β +A1,

b1 = 2B11α+B12β +B1.

The transformation ξ = ȳ/x̄, w = 1/x̄ reduces Eq. (1) to an Abel equation of the second

kind:

{[a2ξ2 + (a1 − b2)ξ − b1]w +A22ξ
3 + (A12 −B22)ξ

2 + (A11 −B12)ξ −B11}w′
ξ

= (a2ξ + a1)w
2 + (A22ξ

2 +A12ξ +A11)w.

3◦. The substitution y = z+ εx, where the parameter ε is determined by solving the cubic

equation

(A22ε
2 +A12ε+A11)ε−B22ε

2 −B12ε−B11 = 0,

leads to an Abel equation of the second kind with respect to x = x(z):

[(Qz +R)x+ (B22 −A22ε)z
2 + (B2 −A2ε)z +B0 −A0ε]x

′
z

= (A22ε
2 +A12ε+A11)x

2 + [(2A22ε+A12)z +A2ε+A1]x+A22z
2 +A2z +A0,

where Q = 2B22ε+B12 − ε(2A22ε+A12), R = B2ε+B1 − ε(A2ε+A1).
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◮ Solvable equations and their solutions.

1. (ax+ by + c)2y′x = (αx+ βy + γ)2.

This is a special case of equation 13.7.1.6 with f(z) = z−2.

2. (Ay2 + Bxy − αBy + kx− αk)y′x = Cy2 +Dxy + (k − αD)y.

The transformation x = w + α, y = wξ leads to a linear equation:

[−Aξ3 + (C −B)ξ2 +Dξ]w′
ξ = (Aξ2 +Bξ)w + k.

3. (Ay2+2Axy+Bx2+A−B)y′x=Ay
2+2Bxy+Dx2+2(B−D)x+D−A.

The transformation x = w + 1, y = ξw − 1 leads to a linear equation:

(−Aξ3 −Aξ2 +Bξ +D)w′
ξ = (Aξ2 + 2Aξ +B)w + 2(B −A).

4. (Ay2−2Axy+Bx2+A−B)y′x=−Ay2+2Bxy+Cx2+2(B+C)x+A+C.

The transformation x = w − 1, y = ξw − 1 leads to a linear equation:

(−Aξ3 +Aξ2 +Bξ +C)w′
ξ = (Aξ2− 2Aξ +B)w + 2(A−B).

5. (Ay2+2Axy+Bx2+A−B)y′x=Ay
2+2Bxy+Cx2+2(C−B)x−A+C.

The transformation x = w − 1, y = ξw + 1 leads to a linear equation:

(−Aξ3−Aξ2 +Bξ +C)w′
ξ = (Aξ2 + 2Aξ +B)w + 2(A−B).

6. (Ay2−2Axy+Bx2+A−B)y′x=−Ay2+2Bxy+Cx2−2(B+C)x+A+C.

The transformation x = w + 1, y = ξw + 1 leads to a linear equation:

(−Aξ3 +Aξ2 +Bξ +C)w′
ξ = (Aξ2− 2Aξ +B)w + 2(B −A).

7. (Ay2 − 2Axy + Bx2 +A−B)y′x
= Cy2 + 2Bxy +Dx2 − 2(A+ C)y − 2(B +D)x+ 2A+ C +D.

The transformation x = w + 1, y = ξw + 1 leads to a linear equation:

[−Aξ3 + (2A+ C)ξ2 +Bξ +D]w′
ξ = (Aξ2 − 2Aξ +B)w + 2(B −A).

8. (2Ay2 − 2Axy + Bx2 + 2A− 4B)y′x
= −Ay2 + 2Bxy +Dx2 − 2(B + 2D)x+ A+ 4D.

This is a special case of equation 13.4.4.34 with α = 2, β = 1, and C = −A.

9. (Ay2 + 4Axy + Bx2 + 4A− B)y′x
= 2Ay2 + 2Bxy + Cx2 − 2(C − 2B)x+ C − 8A.

The transformation x = w + 1, y = ξw − 2 leads to a linear equation:

(−Aξ3 − 2Aξ2 +Bξ + C)w′
ξ = (Aξ2 + 4Aξ +B)w + 2B − 8A.

10. (Ay2 − 4Axy +Bx2 + 4A− B)y′x
= −2Ay2 + 2Bxy + Cx2 − 2(2B + C)x+ 8A+ C.

The transformation x = w + 1, y = ξw + 2 leads to a linear equation:

(−Aξ3 + 2Aξ2 +Bξ + C)w′
ξ = (Aξ2 − 4Aξ +B)w + 2B − 8A.
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11. (Ay2 + 4Axy +Bx2 + 4A− B)y′x
= Cy2 + 2Bxy + 2Bx2 + 4(C − 2A)y + 2B + 4C − 16A.

The transformation x = w + 1, y = ξw − 2 leads to a linear equation:

[−Aξ3 + (C − 4A)ξ2 +Bξ + 2B]w′
ξ = (Aξ2 + 4Aξ +B)w + 2B − 8A.

12. (2Ay2 + 2Axy +Bx2 + 2A− 4B)y′x
= Ay2 + 2Bxy +Dx2 + 2(B − 2D)x+ 4D −A.

This is a special case of equation 13.4.4.34 with α = 2, β = −1, and C = A.

13. (2Ay2 + 2Axy −Bx2 + 2A+ 4B)y′x
= Ay2 − 2Bxy −Dx2 + 2(B − 2D)x− A− 4D.

This is a special case of equation 13.4.4.34 with α = −2, β = 1, and C = −A.

14. (Ay2 + 2Bxy +Ak2x2 + ay + bx+m)y′x
= By2 + 2Ak2xy +Bk2x2 + by + ak2x+ s.

This is a special case of equation 13.4.4.27 with C = Ak2.

15. (Ay2 + 2Bxy +Ak2x2 + ay + bx+m)y′x
= By2 + 2Ak2xy +Bk2x2 + aky + bkx+ s.

This is a special case of equation 13.4.4.32 with C = Ak2.

16. (Ay2 + 2Bxy +Ak2x2 + ay − akx+ b)y′x
= By2 + 2Ak2xy +Bk2x2 +my −mkx+ s.

This is a special case of equation 13.4.4.31 with C = Ak2.

17. (Ay2 + 2Bxy −Bkx2 + ay + bx+ c)y′x
= By2 + 2Ak2xy −Ak3x2 + by + ak2x+ s.

This is a special case of equation 13.4.4.28 with m = b.

18. (Ay2 + 2Bxy −Bkx2 + ay + bx+m)y′x
= By2 + 2Ak2xy −Ak3x2 + aky + bkx+ s.

This is a special case of equation 13.4.4.32 with C = −Bk.

19. (Ay2 + 2Bxy −Bkx2 + ay − akx+ b)y′x
= By2 + 2Ak2xy −Ak3x2 +my −mkx+ s.

This is a special case of equation 13.4.4.31 with C = −Bk.

20. (Ay2 + 2Akxy + Cx2 + ay + bx+m)y′x
= Aky2 + 2Ak2xy + Ckx2 + by + ak2x+ s.

This is a special case of equation 13.4.4.27 with B = Ak.

21. (Ay2 + 2Akxy + Cx2 + ay + bx+m)y′x
= Aky2 + 2Ak2xy + Ckx2 + aky + bkx+ s.

This is a special case of equation 13.4.4.32 with B = Ak.
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22. (Ay2 + 2Akxy + Cx2 + ay − akx+ b)y′x
= Aky2 + 2Ak2xy + Ckx2 +my −mkx+ s.

This is a special case of equation 13.4.4.31 with B = Ak.

23. (Ay2 − 2Akxy + Bkx2 + ay + bx+ c)y′x
= −By2 + 2Bkxy −Ak3x2 + by + ak2x+ s.

This is a special case of equation 13.4.4.29 with m = b.

24. (Ay2 − 2Akxy + Bkx2 + ay + bx+ c)y′x
= −By2 + 2Bkxy −Ak3x2 + aky + bkx+ s.

This is a special case of equation 13.4.4.29 with m = ak.

25. (Ay2 + 2Bxy + Cx2 − 2Aβy + kx+ Aβ2)y′x
= By2 + Exy + Fx2 + ky − Eβx− Bβ2 − kβ.

The substitution w = y − β leads to an equation of the form 13.4.3.38:

(Aw2 + 2Bxw + Cx2 + k̄x)w′
x = Bw2 +Exw + Fx2 + k̄w, where k̄ = k + 2Bβ.

26. (Ay2 +Bxy + Cx2 + ay + bx+m)y′x
= Aky2 + Bkxy + Ckx2 + ny + k(ak+ b− n)x+ s.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[(n−ak)z+s−mk]x′z = (Ak2+Bk+C)x2+[(2Ak+B)z+ak+ b]x+Az2+az+m.

27. (Ay2 + 2Bxy + Cx2 + ay + bx+m)y′x
= By2 + 2Ak2xy + k(−Ak2 + Bk + C)x2 + by + ak2x+ s.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[(B −Ak)z2 + (b− ak)z + s−mk]x′z
= (Ak2 + 2Bk + C)x2 + [2(Ak +B)z + ak + b]x+Az2 + az +m.

28. (Ay2 + 2Bxy −Bkx2 + ay + bx+ c)y′x
= By2 + 2Ak2xy − Ak3x2 +my + k(ak+ b−m)x+ s.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[(B−Ak)z2+(m−ak)z+s−ck]x′z=(Ak2+Bk)x2+[2(Ak+B)z+ak+b]x+Az2+az+c.

29. (Ay2 − 2Akxy + Bkx2 + ay + bx+ c)y′x
= −By2 + 2Bkxy − Ak3x2 +my + k(ak+ b−m)x+ s.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[−(Ak +B)z2 + (m− ak)z + s− ck]x′z = k(B −Ak)x2 + (ak + b)x+Az2 + az + c.

30. (Ay2 + 2Bxy +Ak2x2 + ay + bx+ c)y′x
= By2 + 2Ak2xy + Bk2x2 +my + k(ak+ b−m)x+ s.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[(B−Ak)z2+(m−ak)z+s−ck]x′z=2k(Ak+B)x2+[2(Ak+B)z+ak+b]x+Az2+az+c.
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31. (Ay2 + 2Bxy + Cx2 + ay − akx+ b)y′x
= By2 + 2Ak2xy + k(−Ak2 + Bk + C)x2 +my −mkx+ s.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[(B−Ak)z2+(m−ak)z+s−bk]x′z =(Ak2+2Bk+C)x2+2(Ak+B)zx+Az2+az+b.

32. (Ay2 + 2Bxy + Cx2 + ay + bx+m)y′x
= By2 + 2Ak2xy + k(−Ak2 +Bk + C)x2 + aky + bkx+ s.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[(B−Ak)z2+s−mk]x′z =(Ak2+2Bk+C)x2+[2(Ak+B)z+ak+b]x+Az2+az+m.

33. [A(αy2 + βxy + γx2) + (Aδ + 2α)y + (Aε+ β)x+ Aσ + δ]y′x
+ B(αy2 + βxy + γx2) + (Bδ + β)y + (Bε+ 2γ)x+ Bσ + ε = 0.

Solution: αy2 + βxy + γx2 + δy + εx+ σ = C exp(−Ay −Bx).

34. (αAy2 − 2βAxy +Bx2 + αβ2A− α2B)y′x = Cy2 + 2Bxy

+Dx2 − 2β(βA+ C)y − 2(αD + βB)x+ α2D + β2(2βA+ C).

The transformation x = w + α, y = ξw + β leads to a linear equation:

[−αAξ3 + (2βA + C)ξ2 +Bξ +D]w′
ξ = (αAξ2 − 2βAξ +B)w + 2(αB − β2A).

35. (A22y
2 + A12xy + A11x

2 + A2y + A1x+A0)y
′

x

= B22y
2 + k(2A22k+ A12 − 2B22)xy + k(−A22k

2 +B22k+ A11)x
2

+B2y + k(A2k+ A1 − B2)x+ B0.

The substitution y = z + kx leads to a Riccati equation with respect to x = x(z):

[(B22 −A22k)z
2 + (B2 −A2k)z +B0 −A0k]x

′
z

= (A22k
2 +A12k +A11)x

2 + [(2A22k +A12)z +A2k +A1]x+A22z
2 +A2z +A0.

36. (A22y
2 + A12xy + A11x

2 + A2y + A1x+A0)y
′

x

= B22y
2 +B12xy +B11x

2 + B2y +B1x+ B0.

Here, Aij , Bij , and A1 are arbitrary parameters, and the other parameters are defined by

the relations:

A2 = −A12α− 2A22β,

A0 = −A11α
2 +A22β

2 −A1α,

B2 = (2A11 −B12)α+ (A12 − 2B22)β +A1,

B1 = −2B11α−B12β,

B0 = B11α
2 + (B12 − 2A11)αβ + (B22 −A12)β

2 −A1β

(α, β are arbitrary parameters).

The transformation x = w + α, y = ξw + β leads to a linear equation:

[−A22ξ
3 + (B22 −A12)ξ

2 + (B12 −A11)ξ +B11]w
′
ξ = (A22ξ

2 +A12ξ +A11)w + k,

where k = 2A11α+A12β +A1.
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13.4.5 Equations of the Form
(A3y

3 +A2xy
2 +A1x

2y +A0x
3 + a1y + a0x)y

′

x

= B3y
3 +B2xy

2 +B1x
2y +B0x

3 + b1y + b0x

1. (y3 − x2y + ay + bx)y′x = xy2 − x3 + by + ax.

Solution in parametric form (b 6= 0):

x = C−1t|t|
a−b
2b e−t + 1

2 bC|t|
− a−b

2b et, y = C−1t|t|
a−b
2b e−t − 1

2 bC|t|
− a−b

2b et.

2. (y3 − xy2 − x2y + x3 + ay)y′x = −y3 + xy2 + x2y − x3 + ax.

Solution in parametric form:

x = C−1 sign t e−1/t + 1
8aC|t|e1/t, y = C−1 sign t e−1/t − 1

8aC|t|e1/t.

3. (y3 + xy2 − x2y− x3 + ay+ bx)y′x = −y3 − xy2 + x2y+ x3 + by+ ax.

Solution in parametric form (a 6= −b):

x = t+ C|t|
b−a
b+a exp

(
− 4t2

a+ b

)
, y = t− C|t|

b−a
b+a exp

(
− 4t2

a+ b

)
.

4. (y3 +xy2 − 2x2y+2ay+ax)y′x = −y3 +xy2 +4x2y− 4x3 −ay+4ax.

Solution in parametric form:

x = C−1t−1e−1/t + 1
3aCt

2e1/t, y = C−1t−1e−1/t − 2
3aCt

2e1/t.

5. (y3 + xy2 − 5x2y + 3x3 + ay + ax)y′x
= −3y3 − 3xy2 + 15x2y − 9x3 − ay + 3ax.

Solution in parametric form:

x = C−1 sign t e−1/t + 1
32aC|t|e

1/t, y = C−1 sign t e−1/t − 3
32aC|t|e

1/t.

6. (y3+2xy2−x2y− 2x3+2ay+ax)y′x = 2xy2 +2x2y− 4x3−ay+4ax.

Solution in parametric form:

x = C−1t|t|e−1/t − 1
3aC|t|

−1e1/t, y = C−1t|t|e−1/t + 2
3aC|t|

−1e1/t.

7. (y3 − 3x2y + 2x3 + 2ay + ax)y′x = −2y3 + 6x2y − 4x3 − ay + 4ax.

Solution in parametric form:

x = C−1 sign t e−1/t + 1
9aC|t|e

1/t, y = C−1 sign t e−1/t − 2
9aC|t|e

1/t.

8. (y3 +3xy2 − 4x3 + ay+ bx)y′x = −2y3 − 6xy2 +8x3 + (b− a)y+2ax.

Solution in parametric form (a 6= −b):

x = t+ C|t|
b−2a
b+a exp

[
− 27 t2

2(a+ b)

]
, y = t− 2C|t|

b−2a
b+a exp

[
− 27 t2

2(a+ b)

]
.
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9. (y3 + 3xy2 − x2y − 3x3 + ay + bx)y′x
= −y3 + xy2 + 9x2y − 9x3 − (2a− b)y + 3ax.

Solution in parametric form (a 6= b):

x = C−1t|t|−
3a−b
2(a−b) e−t − 1

16 (a− b)C|t|
3a−b
2(a−b) et,

y = C−1t|t|−
3a−b
2(a−b) e−t + 3

16 (a− b)C|t|
3a−b
2(a−b) et.

10. (y3+3xy2+3x2y+x3−ay+ax)y′x=−y3−3xy2−3x2y−x3−ay+ax.

Solution in parametric form:

x = Ct± C2

√
a

√
2t4 + 1, y = Ct∓ C2

√
a

√
2t4 + 1.

11. (y3+3xy2+3x2y+x3+ay+bx)y′x=−y3−3xy2−3x2y−x3+by+ax.

Solution in parametric form (b 6= −2a):

x = Ct+C3
(
|t|

b−a
a+b +

4t3

2a+ b

)
, y = Ct− C3

(
|t|

b−a
a+b +

4t3

2a+ b

)
.

12. (y3−4xy2+4x2y+ay−ax)y′x=3y3−14xy2+20x2y−8x3+2ay−2ax.

Solution in parametric form:

x = t+ Ct2 exp
(
− a

2t2

)
, y = t+ 2Ct2 exp

(
− a

2t2

)
.

13. (y3 − 4xy2 + 5x2y − 2x3 + 2ay − 3ax)y′x
= 2y3 − 8xy2 + 10x2y − 4x3 + 3ay − 4ax.

Solution in parametric form:

x = C−1 sign t e−1/t + aC|t|e1/t, y = C−1 sign t e−1/t + 2aC|t|e1/t.
14. (y3 − 5xy2 + 7x2y − 3x3 + ay − 2ax)y′x

= 3y3 − 15xy2 + 21x2y − 9x3 + 2ay − 3ax.

Solution in parametric form:

x = C−1 sign t e−1/t + 1
8aC|t|e

1/t, y = C−1 sign t e−1/t + 3
8aC|t|e

1/t.

15. (y3 − 5xy2 + 8x2y − 4x3 + ay + bx)y′x
= 2y3 − 10xy2 + 16x2y − 8x3 + (3a+ b)y − 2ax.

Solution in parametric form (a 6= −b):

x = t+ C|t|
2a+b
a+b exp

[ t2

2(a + b)

]
, y = t+ 2C|t|

2a+b
a+b exp

[ t2

2(a+ b)

]
.

16. (y3 + 5xy2 + 3x2y − 9x3 + ay + bx)y′x
= −3y3 − 15xy2 − 9x2y + 27x3 + (b− 2a)y + 3ax.

Solution in parametric form (a 6= −b):

x = t+ C|t|
b−3a
b+a exp

(
− 32 t2

a+ b

)
, y = t− 3C|t|

b−3a
b+a exp

(
− 32 t2

a+ b

)
.
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17. (y3 − 6xy2 + 11x2y − 6x3 + ay + bx)y′x
= 2y3 − 11xy2 + 18x2y − 9x3 + (4a+ b)y − 3ax.

Solution in parametric form (a 6= − 1
2 b):

x = C−1t|t|−
3a+b
4a+2b e−t − (a+ 1

2 b)C|t|
3a+b
4a+2b et,

y = C−1t|t|−
3a+b
4a+2b e−t − 3(a+ 1

2 b)C|t|
3a+b
4a+2b et.

18. (y3 − 6xy2 + 12x2y − 8x3 − ay + ax)y′x
= 2y3 − 12xy2 + 24x2y − 16x3 − ay + ax.

Solution in parametric form (a > 0):

x = Ct± C2

2
√
a

√
2t4 + 1, y = Ct± C2

√
a

√
2t4 + 1.

19. (2y3 − 3xy2 + x2y + ay + bx)y′x = y3 − xy2 + (a+ b)y.

Solution in parametric form (a 6= −2b):

x = C−1t|t|−
b

a+2b e−t + (a+ 2b)C|t|
b

a+2b et, y = C−1t|t|−
b

a+2b e−t.

20. (2y3 + 3xy2 − 3x2y − 2x3 + ay + bx)y′x
= −y3 + 3xy2 + 6x2y − 8x3 − (a− b)y + 2ax.

Solution in parametric form (a 6= 2b):

x = C−1t|t|−
2a−b
a−2b e−t − 1

27 (a− 2b)C|t|
2a−b
a−2b et,

y = C−1t|t|−
2a−b
a−2b e−t + 2

27 (a− 2b)C|t|
2a−b
a−2b et.

21. (2y3 − 9xy2 + 13x2y − 6x3 + ay + bx)y′x
= 3y3 − 13xy2 + 18x2y − 8x3 + (3a+ b)y − 2ax.

Solution in parametric form (a 6= − 2
3 b):

x = C−1t|t|−
2a+b
3a+2b e−t − (3a + 2b)C|t|

2a+b
3a+2b et,

y = C−1t|t|−
2a+b
3a+2b e−t − 2(3a + 2b)C|t|

2a+b
3a+2b et.

22. (3y3 − xy2 − 3x2y + x3 + ay)y′x = −y3 + 3xy2 + x2y − 3x3 + ax.

Solution in parametric form:

x = C−1t−1e−1/t + 1
8aCt

2e1/t, y = C−1t−1e−1/t − 1
8aCt

2e1/t.

23. (3y3 + xy2 − 3x2y − x3 + ay)y′x = y3 + 3xy2 − x2y − 3x3 + ax.

Solution in parametric form:

x = C−1t|t|e−1/t − 1
8aC|t|

−1e1/t, y = C−1t|t|e−1/t + 1
8aC|t|

−1e1/t.
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24. (xy2−2kx2y+k2x3+ay−ax)y′x = y3 −2kxy2+k2x2y+kay−kax.

Solution in parametric form (k 6= 1):

x = t+ C|t| exp
[
− a

2(k − 1)t2

]
, y = t+ kC|t| exp

[
− a

2(k − 1)t2

]
.

25. (y3 − 3kxy2 + 3k2x2y − k3x3 − ay + ax)y′x
= ky3 − 3k2xy2 + 3k3x2y − k4x3 − ay + ax.

Solution in parametric form (a > 0, k 6= 1):

x = Ct± C2 k − 1

2
√
a

√
2t2 + 1, y = Ct± kC2 k − 1

2
√
a

√
2t2 + 1.

26. (y3 − 3kxy2 + 3k2x2y − k3x3 + ay + bx)y′x
= ky3 − 3k2xy2 + 3k3x2y − k4x3 + [(k+ 1)a+ b]y − kax.

Solution in parametric form (b 6= 1
2a(k − 3), k 6= 1):

x=Ct+C3
[
|t|

ka+b
a+b +

(k − 1)3

(k − 3)a− 2b
t3
]
, y=Ct+kC3

[
|t|

ka+b
a+b +

(k − 1)3

(k − 3)a− 2b
t3
]
.

27. [y3 − (k+ 2)xy2 + (2k + 1)x2y − kx3 + 2ay − (k + 1)ax]y′x
= ky3 − k(k+ 2)xy2 + k(2k + 1)x2y − k2x3 + (k+ 1)ay − 2kax.

Solution in parametric form (k 6= 1):

x = C−1 sign t e−1/t+
aC

(k−1)2
|t|e1/t, y = C−1 sign t e−1/t+

akC

(k−1)2
|t|e1/t.

28. [y3 − (k+ 2)xy2 − k(k− 4)x2y + k2(k − 2)x3 + ay − ax]y′x
= (2k − 1)y3 − k(4k− 1)xy2 + k2(2k+ 1)x2y − k3x3 + kay − kax.

Solution in parametric form (k 6= −1):

x = t+Ct2 exp
[
− a

2(k − 1)2t2

]
, y = t+ kCt2 exp

[
− a

2(k − 1)2t2

]
.

29. [y3 − (2k+ 1)xy2 + k(k+ 2)x2y − k2x3 + ay + bx]y′x
= ky3 − k(2k+1)xy2 + k2(k+2)x2y− k3x3 + [(k+1)a+ b]y− kax.

Solution in parametric form (a 6= −b, k 6= 1):

x = t+ C|t|
ka+b
a+b exp

[ (k − 1)3

2(a + b)
t2
]
, y = t+ kC|t|

ka+b
a+b exp

[ (k − 1)3

2(a + b)
t2
]
.

30. (Ay3+xy2−Ax2y−x3+ay+bx)y′x = y3+Axy2−x2y−Ax3+by+ax.

1◦. Solution in parametric form with b 6= 0:

x = C−1t|t|
a−b
2b |t+ 1|

bA−a
2b − 1

4 bC|t|
b−a
2b |t+ 1|

a−bA
2b ,

y = C−1t|t|
a−b
2b |t+ 1|

bA−a
2b + 1

4 bC|t|
b−a
2b |t+ 1|

a−bA
2b .
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2◦. Solution in parametric form with b = 0:

x = C−1t|t|
A−1
2 e−1/t − 1

8aC|t|
1−A
2 e1/t, y = C−1t|t|

A−1
2 e−1/t + 1

8aC|t|
1−A
2 e1/t.

31. (A3y
3 + A2xy

2 +A1x
2y + A0x

3 + ax)y′x
= B3y

3 +B2xy
2 +B1x

2y + B0x
3 + ay.

This is a special case of equation 13.7.1.13 with Rm(x, y)=a. The transformation t=y/x,

u = x2 leads to a linear equation:

[PB(t)− tPA(t)]u
′
t = 2PA(t)u+ 2a,

where PA(t) = A3t
3 +A2t

2 +A1t+A0 and PB(t) = B3t
3 +B2t

2 +B1t+B0.

32. [Ay3 + (A+ 2)xy2 − (A− 4)x2y − (A− 2)x3 + ay − ax]y′x
= −(A− 2)y3 − (A− 4)xy2 + (A+ 2)x2y + Ax3 − ay + ax.

Solution in parametric form:

x = t+ C|t|1−A exp
( a

8t2

)
, y = t− C|t|1−A exp

( a

8t2

)
.

33. [Ay3 + 3(A+ 1)xy2 + 12x2y − 4(A− 3)x3 + ay − ax]y′x
= −(2A− 3)y3 − 6(A− 2)xy2 + 12x2y + 8Ax3 − 2ay + 2ax.

Solution in parametric form:

x = t+ C|t|1−A exp
( a

18t2

)
, y = t− 2C|t|1−A exp

( a

18t2

)
.

13.5 Equations of the Form f(x, y)y′
x = g(x, y)

Containing Arbitrary Parameters

13.5.1 Equations Containing Power Functions

◮ Equations of the form y′x = f(x, y).

1. y′x = A
√
y + Bx−1/2.

The substitution w = 2A−1√y leads to an Abel equation of the form 13.3.1.32: ww′
x =

w + 2BA−2x−1/2.

2. y′x = A
√
y + Bx−1.

Let A = ±2a−1
√
b, B = ∓4b (b > 0). Solution in parametric form:

x= af(τ), y = b[2τ ± f(τ)]2, where f(τ) = exp(∓τ2)
[∫

exp(∓τ2) dτ +C
]−1

.

3. y′x = A
√
y + Bx−2.

The substitution w = 2A−1√y leads to an Abel equation of the form 13.3.1.33: ww′
x =

w + 2BA−2x−2.
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4. y′x = a
√
y + bx+ cxm.

The substitution w = 2a−1√y leads to the Abel equation ww′
x = w + 2a−2(bx+ cxm),

which is discussed in Section 13.3.1 (see Table 13.1).

5. y′x = ayn + bx
n

1−n .

Solution:

∫
dw

awn + 1
1−nw + b

= ln |x|+ C , where w = yx
1

n−1 .

6. y′x = Ays −Bxk.

The transformation x = (w′
z)

1/k , y = λ(w/z)1/s, where λ = (B/A)1/s, leads to the

generalized Emden–Fowler equation:

w′′
zz = −

λk

sB
z−

1
s w

1−s
s (w′

z)
k−1
k ,

which is discussed in Section 14.5 (in the classification table, one should search for the

equations satisfying the condition n+m+ 1 = 0).

7. y′x = (ax+ by + c)n.

This is a special case of equation 13.7.1.1 with f(ξ) = ξn.

8. y′x = axm−n−nmyn + bxm.

Solution:
∫

dw

wn−λw+1
+C=b

(a
b

)1/n
ln |x|, where w=

(a
b

)1/n
yx−m−1, λ=

m+1

b

( b
a

)1/n
.

9. y′x = axn−1ym+1 + bxnk−1ymk+1.

This is a generalized homogeneous equation of the form 13.7.1.3 with f(ξ) = aξ + bξk.

10. y′x = axky
√
y + bxmy + cxs√y.

This is a special case of equation 13.7.1.4 with f(x) = axk, g(x) = bxm, h(x) = cxs, and

n = 1/2.

11. y′x = axky1+n + bxmy + cxsy1−n.

This is a special case of equation 13.7.1.4 with f(x) = axk, g(x) = bxm, and h(x) = cxs.

12. y′x = xn−1y1−m(axn + bym)k.

This is a special case of equation 13.7.1.7 with f(ξ) = ξk.

◮ Other equations.

13. xy′x = ay + b
√
y2 + cx2.

The substitution w = y/x leads to a separable equation: xw′
x = (a− 1)w + b

√
w2 + c.

14. xy′x = y + axn−mym + bxn−kyk.

The substitution y = xw leads to a separable equation: w′
x = xn−2(awm + bwk).
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15. (ayn + bx)y′x = 1.

Solution: x = eby
(
C + a

∫
yne−by dy

)
.

16. x(xyn + a)y′x + by = 0.

Solution: nb− a = x
(
Cya/b + yn

)
.

17. x(aym +m)y′x = y
[[
bxn(λ−1)ymλ − n

]]
.

This is a special case of equation 13.7.1.16 with f(ξ) = aξ, g(ξ) = 1, h(ξ) = bξλ, and

k = n.

18. (axn + bx2 + cxy)y′x = kxn + bxy + cy2.

The transformation t = y/x, z = xn−2 leads to a linear equation with respect to z = z(t):
(k − at)z′t = (n− 2)(az + b+ ct).

19. (ayn + bx2 + cxy)y′x = kyn + bxy + cy2.

The transformation t = y/x, z = xn−2 leads to a linear equation with respect to z = z(t):
tn(k − at)z′t = (n− 2)(atnz + b+ ct).

20. (axn + byn + x)y′x = αxkyn−k + βxmyn−m + y.

The transformation t = y/x, z = xn−1 leads to a linear equation:

(αtn−k + βtn−m − btn+1 − at)z′t = (n− 1)(btn + a)z + n− 1.

21. (axn + byn +Ax2 + Bxy)y′x = αxkyn−k + βxmyn−m +Axy + By2.

The transformation t = y/x, z = xn−2 leads to a linear equation:

(αtn−k + βtn−m − btn+1 − at)z′t = (n − 2)(btn + a)z + (n− 2)(Bt+A).

22. [(ax+ by)n + bx]y′x = c(ax+ by)m − ax.

This is a special case of equation 13.7.1.14 with f(ξ) = ξn, g(ξ) = 1, and h(ξ) = cξm.

23. [(ax+ by)n + by]y′x = c(ax+ by)m − ay.

This is a special case of equation 13.7.1.15 with f(ξ) = ξn, g(ξ) = 1, and h(ξ) = cξm.

24. (αx+ βy + γ)ny′x = (ax+ by + c)n.

This is a special case of equation 13.7.1.6 with f(ξ) = ξn.

25. (axn + bym)y′x = xn−1y1−m.

This is a special case of equation 13.7.1.7 with f(ξ) = 1/ξ.

26. (aym + bxn + s)y′x + αxk + bnxn−1y + β = 0.

Solution:

aϕ(y) + αψ(x) + bxny + sy + βx = C,

where ϕ(y) =





ym+1

m+ 1
if m 6= −1,

ln |y| if m = −1,
ψ(x) =





xk+1

k + 1
if k 6= −1,

ln |x| if k = −1.
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27. (ax2yn + bxym + cyk)y′x = αyp + βyq + γ.

This is a Riccati equation with respect to x = x(y).

28. (axnym + x)y′x = bxkyn+m−k + y.

The transformation t= y/x, z = xn+m−1 leads to a linear equation: tm(btn−k−at)z′t =
(n+m− 1)(atmz + 1).

29. x(axnym + α)y′x + y(bxnym + β) = 0.

Solution:
(yaxb)A

A
+

(yαxβ)B

B
= C , where A =

mβ − nα
aβ − bα , B =

mb− na
aβ − bα .

30. x(anxkyn+k + s)y′x + y(bmxm+kyk + s) = 0.

Solution: akyn + bkxm − s(xy)−k = C .

31. (axnym + Ax2 +Bxy)y′x = bxkyn+m−k +Axy + By2.

The transformation t= y/x, z = xn+m−2 leads to a linear equation: tm(btn−k − at)z′t =
(n+m− 2)(atmz +Bt+A).

32. (amxnym−1 + byk)y′x + anxn−1ym + cxs = 0.

This is a special case of equation 13.7.1.19 with f(y) = byk and g(x) = cxs.

33. (axnym + bxyk)y′x = αys + β.

This is a Bernoulli equation with respect to x = x(y) (see Section 13.1.5).

34. x(axn−kym +m)y′x = y(bxλn−kyλm − n).

This is a special case of equation 13.7.1.16 with f(ξ) = aξ, g(ξ) = 1, and h(ξ) = bξλ.

35. x(axnym−k +m)y′x = y(bxλnyλm−k − n).

This is a special case of equation 13.7.1.17 with f(ξ) = aξ, g(ξ) = 1, and h(ξ) = bξλ.

36. (axn+1ym−1 + bxnk+1ymk−1)y′x = cxnsyms.

This is a special case of equation 13.7.1.3 with f(ξ) = cξs(aξ + bξk)−1.

37. (axn + bym)ky′x = cxn−1y1−m.

This is a special case of equation 13.7.1.7 with f(ξ) = cξ−k.

38.

((
e1
x+ a

r31
+ e2

x− a

r32

))
y′x − y

((
e1

r31
+

e2

r32

))
= 0,

where r21 = (x+ a)2 + y2, r22 = (x− a)2 + y2.

This is the equation of force lines corresponding to the Coulomb law in electricity.

Solution: e1
x+ a

r1
+ e2

x− a
r2

= C .

39. xy′x − y = (axk + byk)(yy′x + x).

This is a special case of equation 13.7.1.24 with f(u) = uk/2 and g(v,w) = avk + bwk.

40. xy′x − y = (axk + byk)(yy′x − x).

This is a special case of equation 13.7.1.25 with f(u) = uk/2 and g(v,w) = avk + bwk.

41. yy′x + x = (axk + byk)(xy′x − y).

This is a special case of equation 13.7.1.24 with f(u)=u−k/2 and g(v,w)=(avk+bwk)−1.
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13.5.2 Equations Containing Exponential Functions

◮ Equations with exponential functions.

1. y′x = aeλy + b.

Solution: y = − 1

λ
ln
(
Ce−bλx − a

b

)
.

2. y′x = aey + bex.

Solution: y = bex − ln
[
C − a

∫
exp(bex) dx

]
.

3. y′x = Aey+ax − a.

This is a special case of equation 13.7.1.2 with f(ξ) = Aeξ , n = 1, and b = 0.

4. y′x = aeνx+λy + beµx.

This is a special case of equation 13.7.2.5 with f(x) = aeνx and g(x) = beµx.

5. y′x = aeνx+λy + beµx−λy .

This is a special case of equation 13.7.2.8 with f(x) = aeνx, g(x) = 0, and h(x) = beµx.

6. y′x = ae2αx−βy + beαx + ceαx−βy .

This is a special case of equation 13.7.2.9 with f(ξ) = ξ + c.

7. y′x = aeαx+λy + beβx + ceγx−λy .

The substitution w = eλy leads to a Riccati equation: w′
x = aλeαxw2 + bλeβxw+ cλeγx.

8. (aey + bex)y′x = 1.

Solution: x = aey − ln
[
C − b

∫
exp(aey) dy

]
.

9. (beαy + c)y′x = eax+by − aeαy.

This is a special case of equation 13.7.2.13 with f(ξ) = c, g(ξ) = 1, and h(ξ) = eξ .

10. (aey+βx + b)y′x = c.

The substitution w(x) = y + βx leads to a separable equation: w′
x = β + c(aew + b)−1.

11. (aeαx + beβy)y′x = eαx−βy .

This is a special case of equation 13.7.2.9 with f(ξ) = ξ−1.

12. (eαx+γy + aβ)y′x + beνx+βy + aα = 0.

This is a special case of equation 13.7.2.15 with f(y) = eγy and g(x) = beνx.
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◮ Equations with power and exponential functions.

13. y′x = aey + bxn.

1◦. Solution in parametric form with n 6= −1:

x = τ
1

n+1 , y =
b

n+ 1
τ − ln

[
C − a

n+ 1

∫
τ
− n

n+1 exp
( bτ

n+ 1

)
dτ
]
.

2◦. Solution in parametric form with n = −1, b 6= −1:

x = eτ , y = − ln
(
Ce−bτ − a

b+ 1
eτ
)
.

3◦. Solution in parametric form with n = −1, b = −1:

x = eτ , y = −τ − ln(C − aτ).
14. y′x = ay−1 + bex.

Solution in parametric form:

x = ln(AE−1)∓ τ2, y = B[2± exp(∓τ2)E−1],

where a = ∓2B2, b = ±A−1B, E =

∫
exp(∓τ2) dτ + C .

15. y′x = aeνx+λy + bxn.

This is a special case of equation 13.7.2.5 with f(x) = aeνx and g(x) = bxn.

16. y′x = axneλy + beνx.

This is a special case of equation 13.7.2.5 with f(x) = axn and g(x) = beνx.

17. y′x = axneλy + bxm.

This is a special case of equation 13.7.2.5 with f(x) = axn and g(x) = bxm.

18. y′x = axneλy + bxme−λy .

This is a special case of equation 13.7.2.8 with f(x) = axn, g(x) = 0, and h(x) = bxm.

19. y′x = c(y + aeλx + b)n − aλeλx.

This is a special case of equation 13.7.2.10 with f(ξ) = cξn.

20. y′x = (aey + bx−k)1/k.

Solution in parametric form:

x=exp
{
τ− 1

k

[
f(τ)+C

]}
, y=f(τ)+C, where f(τ)=

∫
k dτ

k(b+ aekτ )−1/k + 1
.

21. y′x = (ayk + bex)1/k.

Solution in parametric form:

x=f(τ)+C, y=exp
{
τ+

1

k

[
f(τ)+C

]}
, where f(τ)=

∫
k dτ

k(a+ be−kτ )1/k − 1
.

22. y′x = axn−1eλny + bxm−1eλmy .

This is a special case of equation 13.7.2.2 with f(ξ) = aξn−1 + bξm−1.
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23. y′x = axn−1eαy + bxnm−1eαmy.

This is a special case of equation 13.7.2.4 with f(ξ) = aξ + bξm.

24. y′x = aeλnxyn+1 + be−λx.

This is a special case of equation 13.7.2.1 with f(ξ) = aξn+1 + b.

25. y′x = aeαxym+1 + beαnxynm+1.

This is a special case of equation 13.7.2.3 with f(ξ) = aξ + bξn.

26. y′x = aeλnxyn+1 + beλmxym+1.

This is a special case of equation 13.7.2.1 with f(ξ) = aξn+1 + bξm+1.

27. y′x = axnyk + bxneαxyk+1 − αy.

This is a special case of equation 13.7.2.7 with f(x) = xn, g(ξ) = a+ bξ, and m = 1.

28. y′x = aeλxy1+n + beµxy + ceνxy1−n.

This is a special case of equation 13.7.1.4 with f(x)= aeλx, g(x) = beµx, and h(x) = ceνx.

29. y′x = aeλxy1+n + beµxy + cxmy1−n.

This is a special case of equation 13.7.1.4 with f(x) = aeλx, g(x) = beµx, and h(x) = cxm.

30. y′x = axky1+n + beλxy + cxmy1−n.

This is a special case of equation 13.7.1.4 with f(x) = axk, g(x) = beλx, and h(x) = cxm.

31. y′x = aeλxy1+n + bxmy + ceµxy1−n.

This is a special case of equation 13.7.1.4 with f(x) = aeλx, g(x) = bxm, and h(x) = ceµx.

32. y′x = aeλxy1+n + bxmy + cxky1−n.

This is a special case of equation 13.7.1.4 with f(x) = aeλx, g(x) = bxm, and h(x) = cxk.

33. xy′x = axn+key + bxnm+kemy − n.

This is a special case of equation 13.7.2.6 with f(x) = xk−1 and g(ξ) = aξ + bξm.

34. (by + λ)y′x = ceax+by − ay.

This is a special case of equation 13.7.1.15 with f(ξ) = λ, g(ξ) = 1, and h(ξ) = ceξ .

35. xyy′x = axney − ny.

This is a special case of equation 13.7.2.11 with f(ξ) = aξ and α = 1.

36. xy2y′x = axney − ny2.

This is a special case of equation 13.7.2.12 with f(ξ) = aξ and α = 1.
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37. (ayn + bex)y′x = 1.

1◦. Solution in parametric form with n 6= −1:

x =
a

n+ 1
τ − ln

[
C − b

n+ 1

∫
τ
− n

n+1 exp
( aτ

n+ 1

)
dτ
]
, y = τ

1
n+1 .

2◦. Solution in parametric form with n = −1 and a 6= −1:

x = − ln
(
Ce−aτ − b

a+ 1
eτ
)
, y = eτ .

3◦. Solution in parametric form with n = −1 and a = −1:

x = −τ − ln(C − bτ), y = eτ .

38. (aey + bx)y′x = 1.

Solution in implicit form: x =




Ceby +

a

1− b e
y if b 6= 1,

ey(C + ay) if b = 1.

39. (aey + bx2)y′x = 1.

Solutions in parametric form:

x = − 1

2b
τ(lnZ)′τ , y = ln

( τ2
4ab

)
, Z = C1J0(τ) + C2Y0(τ)

and

x = − 1

2b
τ(lnZ)′τ , y = ln

(
− τ2

4ab

)
, Z = C1I0(τ) + C2K0(τ),

where J0(τ) and Y0(τ) are Bessel functions, and I0(τ) and K0(τ) are modified Bessel

functions.

40. (aey + bx−1)y′x = 1.

Let a = ±A/B, b = ∓2A2. Solution in parametric form:

x = A
[
2τ ± exp(∓τ2)f(τ)

]
, y = ln

[
Bf(τ)

]
∓ τ2,

where f(τ) =
[∫

exp(∓τ2) dτ + C
]−1

.

41. (eax+by + bx)y′x = ceax+by − ax.

This is a special case of equation 13.7.1.14 with f(ξ) = eξ , g(ξ) = 1, and h(ξ) = ceξ .

42. (eax+by + by)y′x = ceax+by − ay.

This is a special case of equation 13.7.1.15 with f(ξ) = eξ , g(ξ) = 1, and h(ξ) = ceξ .

43. (aeαxym + b)y′x = y.

This is a special case of equation 13.7.2.3 with f(ξ) = (aξ + b)−1.

44. (eαxyn + aβ)y′x + beνx+βy + aα = 0.

This is a special case of equation 13.7.2.15 with f(y) = yn and g(x) = beνx.
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45. (eαxyn + aβ)y′x + bxmeβy + aα = 0.

This is a special case of equation 13.7.2.15 with f(y) = yn and g(x) = bxm.

46. (eαxym +mx)y′x = y(beαnxynm − αx).

This is a special case of equation 13.7.2.17 with f(ξ) = ξ, g(ξ) = 1, and h(ξ) = bξn.

47. x(xneαy + αy)y′x = bxnmeαmy − ny.

This is a special case of equation 13.7.2.16 with f(ξ) = ξ, g(ξ) = 1, and h(ξ) = bξm.

48. (axneλy + bxeµy)y′x = eνy .

This is a Bernoulli equation with respect to x = x(y) (see Section 13.1.5).

49. (axneλy + bxym)y′x = eµy.

This is a Bernoulli equation with respect to x = x(y).

50. (axnym + bxeλy)y′x = yk.

This is a Bernoulli equation with respect to x = x(y).

51. (axnym + bxyk)y′x = eλy .

This is a Bernoulli equation with respect to x = x(y).

52. (amxnym−1 + b)y′x + anxn−1ym + ceλx = 0.

This is a special case of equation 13.7.1.19 with f(y) = b and g(x) = ceλx.

53. (amxnym−1 + beλy)y′x + anxn−1ym + c = 0.

This is a special case of equation 13.7.1.19 with f(y) = beλy and g(x) = c.

54. (amxnym−1 + byk)y′x + anxn−1ym + ceλx = 0.

This is a special case of equation 13.7.1.19 with f(y) = byk and g(x) = ceλx.

55. [(ax+ by)n + beαx]y′x = c(ax+ by)m − aeαx.

This is a special case of equation 13.7.2.14 with f(ξ) = ξn, g(x) = 1, and h(ξ) = cξm.

56. [(ax+ by)n + beαy]y′x = c(ax+ by)m − aeαy.

This is a special case of equation 13.7.2.13 with f(ξ) = ξn, g(x) = 1, and h(ξ) = cξm.

13.5.3 Equations Containing Hyperbolic Functions

1. y′x = a cosh(λy) + b cosh(νx).

This is a special case of equation 13.7.2.18 with f(x)=0, g(x)=a, and h(x)= b cosh(νx).

2. y′x = a sinh(λy) + b sinh(νx).

This is a special case of equation 13.7.2.18 with f(x)= a, g(x)= 0, and h(x)= b sinh(νx).

3. y′x = axn cosh(λy) + bxm.

This is a special case of equation 13.7.2.18 with f(x) = 0, g(x) = axn, and h(x) = bxm.
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4. y′x = axn sinh(λy) + bxm.

This is a special case of equation 13.7.2.18 with f(x) = axn, g(x) = 0, and h(x) = bxm.

5. y′x = ay1+n + by + c sinh(λx)y1−n.

This is a special case of equation 13.7.1.4 with f(x) = a, g(x) = b, and h(x) = c sinh(λx).

6. y′x = ay1+n + b sinh(λx)y + cy1−n.

This is a special case of equation 13.7.1.4 with f(x) = a, g(x) = b sinh(λx), and h(x) = c.

7. y′x = y cosh x (aynm sinhn−1 x+ bym).

This is a special case of equation 13.7.2.22 with f(ξ) = aξn + bξ.

8. y′x = y sinh x (aynm coshn−1 x+ bym).

This is a special case of equation 13.7.2.24 with f(ξ) = aξn + bξ.

9. xy′x = (axn cosh y + b) coth y.

This is a special case of equation 13.7.2.25 with f(ξ) = aξ + b.

10. xy′x = (axn sinh y + b) tanh y.

This is a special case of equation 13.7.2.23 with f(ξ) = aξ + b.

11. (aym cosh x+ b)y′x = ym+1 sinhx.

This is a special case of equation 13.7.2.24 with f(ξ) = ξ(aξ + b)−1.

12. (aym sinhx+ b)y′x = ym+1 cosh x.

This is a special case of equation 13.7.2.22 with f(ξ) = ξ(aξ + b)−1.

13. (axn + bx coshm y)y′x = yk.

This is a Bernoulli equation with respect to x = x(y) (see Section 13.1.5).

14. (axn + bx tanhm y)y′x = yk.

This is a Bernoulli equation with respect to x = x(y).

15. (axn + bx coshm y)y′x = coshk(λy).

This is a Bernoulli equation with respect to x = x(y).

16. (axn + bx tanhm y)y′x = tanhk(λy).

This is a Bernoulli equation with respect to x = x(y).

17. (amxnym−1 + b)y′x + anxn−1ym + c sinhk(λx) = 0.

This is a special case of equation 13.7.1.19 with f(y) = b and g(x) = c sinhk(λx).

18. (amxnym−1 + b)y′x + anxn−1ym + c tanhk(λx) = 0.

This is a special case of equation 13.7.1.19 with f(y) = b and g(x) = c tanhk(λx).

19. (axnym + bx)y′x = coshk(λy).

This is a Bernoulli equation with respect to x = x(y).
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20. (axnym + bx)y′x = tanhk(λy).

This is a Bernoulli equation with respect to x = x(y).

21. (axn coshm y + bx)y′x = sinhk(λy).

This is a Bernoulli equation with respect to x = x(y).

22. (axn tanhm y + bx)y′x = yk.

This is a Bernoulli equation with respect to x = x(y).

23. (amxnym−1 + b sinhk y)y′x + anxn−1ym + c = 0.

This is a special case of equation 13.7.1.19 with f(y) = b sinhk y and g(x) = c.

24. (amxnym−1 + b tanhk y)y′x + anxn−1ym + c = 0.

This is a special case of equation 13.7.1.19 with f(y) = b tanhk y and g(x) = c.

13.5.4 Equations Containing Logarithmic Functions

1. y′x = y(αx+m ln y + β).

This is a special case of equation 13.7.2.3 with f(ξ) = ln ξ + β.

2. y′x = axkn−1ykm+1(n ln x+m ln y).

This is a special case of equation 13.7.1.3 with f(ξ) = aξk ln ξ.

3. y′x = axny ln2 y + bxmy ln y + cxky.

This is a special case of equation 13.7.3.1 with f(x) = axn, g(x) = bxm, and h(x) = cxk.

4. xy′x = (αy + n lnx)m + β.

This is a special case of equation 13.7.2.4 with f(ξ) = lnm ξ + β.

5. xy′x = y(n lnx+m ln y).

This is a special case of equation 13.7.1.3 with f(ξ) = ln ξ.

6. mxy′x = axsyk(n ln x+m ln y) − ny.

This is a special case of equation 13.7.1.5 with f(x) =
a

m
xs−1 and g(ξ) = ln ξ.

7. (xa + b)y′x = yxa−1 + c(ln y − lnx).

This is a special case of equation 13.7.1.12 with f(ξ) = b, g(ξ) = c ln ξ, and h(ξ) = 1.

8. x(αy + β)y′x = n ln x+ (α− n)y.

This is a special case of equation 13.7.2.16 with f(ξ) = β, g(ξ) = 1, and h(ξ) = ln ξ.

9. x(a+mxk)y′x = y(bn ln x+ bm ln y − nxk).

This is a special case of equation 13.7.1.16 with f(ξ) = a, g(ξ) = 1, and h(ξ) = b ln ξ.

10. x(a+myk)y′x = y(bn lnx+ bm ln y − nyk).

This is a special case of equation 13.7.1.17 with f(ξ) = a, g(ξ) = 1, and h(ξ) = b ln ξ.
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11. (amxnym−1 + b)y′x + anxn−1ym + c lnk(λx) = 0.

This is a special case of equation 13.7.1.19 with f(y) = b and g(x) = c lnk(λx).

12. (a ln y + bx)y′x = 1.

Solution: x = eby
(
a

b

∫
e−by

y
dy + C

)
− a

b
ln y.

13. x(ln y)y′x = y(axnkyk + bxny) − ny ln y.

This is a special case of equation 13.7.3.7 with f(ξ) = aξk + bξ and m = 1.

14. x(a+m ln y)y′x = y(bxnym − n ln y + c).

This is a special case of equation 13.7.3.9 with f(ξ) = a, g(ξ) = 1, and h(ξ) = bξ + c.

15. (axn + bx lnm y)y′x = lnk(λy).

This is a Bernoulli equation with respect to x = x(y).

16. x(axnym +m lnx)y′x = y(bxnkymk − n lnx).

This is a special case of equation 13.7.3.10 with f(ξ) = aξ, g(ξ) = 1, and h(ξ) = bξk.

17. x(axnym +m ln y)y′x = y(bxnkymk − n ln y).

This is a special case of equation 13.7.3.9 with f(ξ) = aξ, g(ξ) = 1, and h(ξ) = bξk.

18. (amxnym−1 + b lnk y)y′x + anxn−1ym + c = 0.

This is a special case of equation 13.7.1.19 with f(y) = b lnk y and g(x) = c.

19. (axn lnm y + bx)y′x = lnk(λy).

This is a Bernoulli equation with respect to x = x(y).

20. (axn lnm y + bx lnk y)y′x = ys.

This is a Bernoulli equation with respect to x = x(y).

13.5.5 Equations Containing Trigonometric Functions

1. y′x = α cos(ay) + β cos(bx).

This is a special case of equation 13.7.4.11 with f(x)=α, g(x) = 0, and h(x) = β cos(bx).

2. y′x = sin(ax) cos(by) + cos(ax) sin(by).

This is a special case of equation 13.7.1.1 with f(ξ) = sin ξ and c = 0.

3. y′x = a tan(bxy).

The solution is given by the relation:

∫ w

0
exp
(
1
2 t

2
)
cos
(√
ab xt

)
dt = C exp

(
1
2abx

2
)
, where w = y

√
b

a
.

4. y′x = bxn cos(ay) + cxm.

This is a special case of equation 13.7.4.11 with f(x) = bxn, g(x) = 0, and h(x) = cxm.
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5. y′x = bxn sin(ay) + cxm.

This is a special case of equation 13.7.4.11 with f(x) = 0, g(x) = bxn, and h(x) = cxm.

6. y′x = y cos x (aynm sinn−1 x+ bym).

This is a special case of equation 13.7.4.4 with f(ξ) = aξn + bξ.

7. y′x = y sin x (aynm cosn−1 x+ bym).

This is a special case of equation 13.7.4.3 with f(ξ) = aξn + bξ.

8. y′x = a
sin2 y

cos2 x
+ b

cos2 y

sin2 x
.

This is a special case of equation 13.7.4.14 with f(ξ) = aξ + bξ−1.

9. y′x = ay1+n + by + c sin(λx)y1−n.

This is a special case of equation 13.7.1.4 with f(x) = a, g(x) = b, and h(x) = c sin(λx).

10. y′x = ay1+n + b sin(λx)y + cy1−n.

This is a special case of equation 13.7.1.4 with f(x) = a, g(x) = b sin(λx), and h(x) = c.

11. xy′x + a sin(bx+ cy) = 0.

The substitution w = x tan
bx+ cy

2
leads to a Riccati equation of the form 13.2.2.35 with

n = 2: 2xw′
x − bw2 + 2(ac − 1)w − bx2 = 0.

12. xy′x = ax2 tan(by) + y.

The substitution y = xw leads to an equation of the form 13.5.5.3: w′
x = a tan(bxw).

13. xy′x = axn cos2 y + b cos y sin y.

This is a special case of equation 13.7.4.8 with f(ξ) = 1
2 (aξ + b).

14. xy′x = axn sin2 y + b cos y sin y.

This is a special case of equation 13.7.4.7 with f(ξ) = 1
2 (aξ + b).

15. xy′x = axm sink y cos2−k y − n sin 2y.

This is a special case of equation 13.7.4.18 with f(x) = axm−2nk−1 and g(ξ) = ξk.

16. (1 + tan2 y)y′x = a tanm+1 y + b tan y + cxn tan1−m y.

This is a special case of equation 13.7.4.19 with f(x) = a, g(x) = b, and h(x) = cxn.

17. (amxnym−1 + b)y′x + anxn−1ym + c sink(λx) = 0.

This is a special case of equation 13.7.1.19 with f(y) = b and g(x) = c sink(λx).

18. (amxnym−1 + b)y′x + anxn−1ym + c tank(λx) = 0.

This is a special case of equation 13.7.1.19 with f(y) = b and g(x) = c tank(λx).

19. (axnym + bx)y′x = cosk(λy).

This is a Bernoulli equation with respect to x = x(y) (see Section 13.1.5).
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20. (axnym + bx)y′x = tank(λy).

This is a Bernoulli equation with respect to x = x(y).

21. (aym cos x+ b)y′x = ym+1 sin x.

This is a special case of equation 13.7.4.3 with f(ξ) = ξ(aξ + b)−1.

22. (aym sin x+ b)y′x = ym+1 cos x.

This is a special case of equation 13.7.4.4 with f(ξ) = ξ(aξ + b)−1.

23. (axn + bx cosm y)y′x = yk.

This is a Bernoulli equation with respect to x = x(y).

24. (axn + bx cosm y)y′x = cosk(λy).

This is a Bernoulli equation with respect to x = x(y).

25. (amxnym−1 + b cosk y)y′x + anxn−1ym + c = 0.

This is a special case of equation 13.7.1.19 with f(y) = b cosk y and g(x) = c.

26. (axn cosm y + bx)y′x = cosk(λy).

This is a Bernoulli equation with respect to x = x(y).

27. (axn + bx tanm y)y′x = yk.

This is a Bernoulli equation with respect to x = x(y).

28. (axn + bx tanm y)y′x = tank(λy).

This is a Bernoulli equation with respect to x = x(y).

29. (amxnym−1 + b tank y)y′x + anxn−1ym + c = 0.

This is a special case of equation 13.7.1.19 with f(y) = b tank y and g(x) = c.

30. (axn tanm y + bx)y′x = tank(λy).

This is a Bernoulli equation with respect to x = x(y).

13.5.6 Equations Containing Combinations of Exponential,
Hyperbolic, Logarithmic, and Trigonometric Functions

1. y′x = axneλy + b lnm x.

This is a special case of equation 13.7.2.5 with f(x) = axn and g(x) = b lnm x.

2. y′x = a lnn(νx)eλy + bxm.

This is a special case of equation 13.7.2.5 with f(x) = a lnn(νx) and g(x) = bxm.

3. y′x = aeλy(λy + ln x)m.

This is a special case of equation 13.7.2.2 with f(ξ) = a lnm ξ.

4. y′x = ae−λx(λx+ ln y)m.

This is a special case of equation 13.7.2.1 with f(ξ) = a lnm ξ.
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5. y′x = ay ln2 y + by ln y + ceλxy.

This is a special case of equation 13.7.3.1 with f(x) = a, g(x) = b, and h(x) = ceλx.

6. y′x = ay ln2 y + beλxy ln y + cy.

This is a special case of equation 13.7.3.1 with f(x) = a, g(x) = beλx, and h(x) = c.

7. y′x = aey sin x+ b tanx.

This is a special case of equation 13.7.5.6 with f(ξ) = aξ + b.

8. y′x = (aex sin y + b) tan y.

This is a special case of equation 13.7.5.4 with f(ξ) = aξ + b.

9. y′x = aex sin2 y + be−x cos2 y.

This is a special case of equation 13.7.5.8 with f(ξ) = 1
2 (aξ + b/ξ).

10. y′x = a cosn(µx)eλy + bxm.

This is a special case of equation 13.7.2.5 with f(x) = a cosn(µx) and g(x) = bxm.

11. y′x = axneλy + b cosm(µx).

This is a special case of equation 13.7.2.5 with f(x) = axn and g(x) = b cosm(µx).

12. y′x = axneλy + b tanm(µx).

This is a special case of equation 13.7.2.5 with f(x) = axn and g(x) = b tanm(µx).

13. y′x = a tann(µx)eλy + bxm.

This is a special case of equation 13.7.2.5 with f(x) = a tann(µx) and g(x) = bxm.

14. y′x = Aeλx cos(ay) + Beµx sin(ay) +Aeλx.

The substitution w = tan( 12ay) leads to a linear equation: w′
x = aBeµxw + aAeλx.

15. y′x = a sin(µx) sinh(λy) + b cos(µx) cosh(λy).

This is a special case of equation 13.7.2.18 with f(x) = a sin(µx), g(x) = b cos(µx), and

h(x) = 0.

16. y′x = ay ln2 y + by ln y + c sinn(λx)y.

This is a special case of equation 13.7.3.1 with f(x) = a, g(x) = b, and h(x) = c sinn(λx).

17. (1 + tan2 y)y′x = a tan1+m y + b tan y + ceλx tan1−m y.

This is a special case of equation 13.7.4.19 with f(x) = a, g(x) = b, and h(x) = ceλx.

18. (aex cos y + b)y′x = cot y.

This is a special case of equation 13.7.5.5 with f(ξ) = (aξ + b)−1.

19. (aex sin y + b)y′x = tan y.

This is a special case of equation 13.7.5.4 with f(ξ) = (aξ + b)−1.
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20. (aey cos x+ b)y′x = tanx.

This is a special case of equation 13.7.5.6 with f(ξ) = (aξ + b)−1.

21. (aey sin x+ b)y′x = cot x.

This is a special case of equation 13.7.5.7 with f(ξ) = (aξ + b)−1.

22. (eαxyn + aβ)y′x + beβy lnm x+ aα = 0.

This is a special case of equation 13.7.2.15 with f(y) = yn and g(x) = b lnm x.

23. (eαxyn + aβ)y′x + beβy cosm x+ aα = 0.

This is a special case of equation 13.7.2.15 with f(y) = yn and g(x) = b cosm x.

24. (eαx cosn y + aβ)y′x + beβy cosm(λx) + aα = 0.

This is a special case of equation 13.7.2.15 with f(y) = cosn y and g(x) = b cosm(λx).

13.6 Equations of the Form F (x, y, y′
x) = 0 Containing

Arbitrary Parameters

13.6.1 Equations of the Second Degree in y′

x

◮ Equations of the form f(x, y)(y′x)
2 = g(x, y).

1. (y′x)
2 = ay + bx2.

See equation 13.6.3.43.

2. (y′x)
2 = y + ax2 + bx+ c.

The substitution w=2
√
y + ax2 + bx+ c leads to an Abel equation of the form 13.3.1.2:

ww′
x − w = 4ax+ 2b.

3. (y′x)
2 = ay3 + by + c.

Solution: x = C ±
∫
(ay3 + by + c)−1/2 dy.

4. (y′x)
2 = ay + b

√
x.

See equation 13.6.3.26.

5. (y′x)
2 = ay + b

√
x+ c, a 6= 0.

The substitution aw = 2
√
ay + b

√
x+ c leads to an Abel equation of the form 13.3.1.32:

ww′
x − w = ba−2x−1/2.

6. (y′x)
2 = y + axm+1 − m+ 1

2(m+ 3)2
x2 + b.

The substitution w = 2
[
y + axm+1 − m+ 1

2(m+ 3)2
x2 + b

]1/2
leads to an Abel equation of

the form 13.3.1.10: ww′
x − w = − 2(m+ 1)

(m+ 3)2
x+ 2a(m+ 1)xm.
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7. (y′x)
2 = λy + ax2 + bxm+1 + c.

For λ 6= 0, the substitution λw = 2(λy+ ax2 + bxm+1 + c)1/2 leads to the Abel equation

ww′
x−w=4aλ−2x+2bλ−2(m+1)xm, which is outlined in Section 13.3.1 (see Table 13.1).

Special cases of the original equation are equations 13.6.1.1–13.6.1.6.

8. x(y′x)
2 = axy + b.

See equation 13.6.3.32.

9. x(y′x)
2 = axy + bx+ c, a 6= 0.

The substitution aw = 2
√
ay + b+ cx−1 leads to an Abel equation of the form 13.3.1.33:

ww′
x − w = −2ca−2x−2.

10. y2(y′x)
2 = ax2y2 + b.

See equation 13.6.3.34.

11. y2(y′x)
2 = ax−2/5y2 + b.

See equation 13.6.3.28.

12. (ay2 + bx)(y′x)
2 = 1.

See equation 13.6.3.44.

13. (ax2 + by)(y′x)
2 = x2y.

See equation 13.6.3.46.

14. (axy + b)(y′x)
2 = y.

See equation 13.6.3.33.

15. xy2(y′x)
2 = ay2 + bx.

See equation 13.6.3.45.

16. (ax2y2 + b)(y′x)
2 = x2.

See equation 13.6.3.35.

17. (a
√
y + bx)(y′x)

2 = 1.

See equation 13.6.3.27.

18. (ax2y3/5 + by)(y′x)
2 = x2y.

See equation 13.6.3.29.

19. (y′x)
2 = aey + b.

See equation 13.6.3.3 with k = 2.

20. (y′x)
2 = a+ bex.

See equation 13.6.3.4 with k = 2.

21. (y′x)
2 = ay2 + bex.

See equation 13.6.3.8 with k = 2.
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22. x2(y′x)
2 = ax2ey + b.

See equation 13.6.3.9 with k = 2.

23. (aey + bx2)(y′x)
2 = 1.

See equation 13.6.3.9 with k = −2.

24. (aexy2 + b)(y′x)
2 = y2.

See equation 13.6.3.8 with k = −2.

25. (y′x)
2 = ay + b lnx.

See equation 13.6.3.13.

26. (y′x)
2 = λy + a ln x+ b, λ 6= 0.

The substitution λw=2
√
λy + a lnx+ b leads to an Abel equation of the form 13.3.1.16:

ww′
x − w = 2aλ−2x−1.

27. (a ln y + bx)(y′x)
2 = 1.

See equation 13.6.3.14.

◮ Equations of the form f(x, y)(y′x)
2 = g(x, y)y′x + h(x, y).

28. (y′x)
2 + ay′x + by = 0.

Solution in parametric form:

bx = −2t− a ln t+ C, by = −t2 − at.

29. (y′x)
2 + ayy′x = bx+ c.

We differentiate the equation with respect to x, take y as the independent variable, and

assume ξ = y′x to obtain a linear equation with respect to y = y(ξ):

(aξ2 − b)y′ξ + aξy + 2ξ2 = 0.

30. (y′x)
2 + axy′x + by + cx2 = 0.

The transformation x= et, y = x2u leads to an autonomous equation:
(
u′t+2u+ 1

2 a
)2

=
1
4a

2− c− bu. Having extracted the root and carried over the terms 2u+ 1
2a from the left-

hand side to the right-hand side, we obtain a separable equation of the form 13.1.2.

31. y = xy′x + ax2 + b(y′x)
2 + cy′x + d, a 6= 0.

Differentiating with respect to x and changing to new variables t = y′x and w(t) = −2ax,

we arrive at an Abel equation of the form 13.3.1.2: ww′
t − w = −4abt− 2ac.

32. (y′x)
2 + (ax+ b)y′x − ay + c = 0, a 6= 0.

Solutions: y = (ax+ b)C + aC2 + ca−1 and 4ay = 4c− (ax+ b)2.

33. (y′x)
2 + (ay + bx)y′x + abxy = 0.

This equation can be factorized: (y′x + ay)(y′x + bx) = 0. Therefore, the solutions are:

y = Ce−ax and y = − 1
2 bx

2 + C .
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34. (y′x)
2 + ax2y′x + bxy = 0.

The transformation z = lnx, u = yx−3 leads to an equation independent implicitly of z:

(u′z)
2 + (a+ 6u)u′z + (3a + b + 9u)u = 0. Rewriting the latter equation to solve for u′z ,

we obtain a separable equation of the form 13.1.2.

35. a(y′x)
2 − yy′x − x = 0.

Solution in parametric form:

x =
t√

t2 + 1

[
C + a ln

(
t+

√
t2 + 1

)]
, y = at− x

t
.

36. x(y′x)
2 − ayy′x + b = 0.

1◦. For a 6= 1, the solution in parametric form is written as:

x = Ctk +
b

2a− 1
t2, aty = xt2 + b, where k =

1

a− 1
.

2◦. For a = 1, the solution is: y = Cx + b/C . There are two singular solutions: y =
±2
√
bx.

37. x(y′x)
2 + ayy′x + bx = 0.

1◦. For a 6= −1, the solution in parametric form is written as:

x = Ct|(a+ 1)t2 + b|−
a+2

2(a+1) , y = − x

at
(t2 + b).

There are two singular solutions: y = ±x
√
−b/(a+ 1).

2◦. For a = −1, the solution in parametric form is written as:

x = Ct exp
(
− t

2

2b

)
, y = x

(
t+

b

t

)
.

38. x(y′x)
2 − yy′x + ay = 0.

Solution in parametric form:

x = C(t− a) exp(−t/a), y = Ct2 exp(−t/a).
There is a singular solution: y = 0.

39. x(y′x)
2 − yy′x + ax2y′x + by′x + c = 0, a 6= 0.

We divide the equation by y′x and differentiate with respect to x. Passing to the new vari-

ables t = y′x and w(t) = −2ax, we arrive at an Abel equation of the form 13.3.1.33:

ww′
t − w = act−2.

40. y(y′x)
2 + axy′x + by = 0.

Solution in parametric form:

axt+ y(b+ t2) = 0, Cy(t2 + a+ b)m = tb/(a+b), where m =
a+ 2b

2(a+ b)
.

There two singular solutions y = ±x
√
−a− b corresponding to the limit C → ∞. In

addition, y = 0 is also a singular solution.
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41. x(y′x)
2 + (a− y)y′x + b = 0.

Solutions: C(Cx− y + a) + b = 0 and (y − a)2 = 4bx.

42. ax(y′x)
2 + (bx− ay + k)y′x − by = 0.

Solution: y = Cx+
kC

aC + b
. In addition, there is a singular solution which can be written

in parametric form as:

x = − bk

(at+ b)2
, y = xt+

kt

at+ b
.

43. ax(y′x)
2 − (ay + bx− a− b)y′x + by = 0.

Differentiating with respect to x and factorizing, we obtain

(2axy′x − ay − bx+ a+ b)y′′xx = 0.

Equating both factors to zero and integrating, we arrive at the solutions:

y = Cx+
C(a+ b)

aC − b and (ay + bx− a− b)2 − 4abxy = 0.

44. x(y′x)
2 + ayy′x + bxnym = 0.

The substitution x = et leads to an equation of the form 13.6.1.68: (y′t)
2 + ayy′t +

be(n+1)tym = 0.

45. x2(y′x)
2 − (2xy + a)y′x + y2 = 0.

Solutions: y = aC2x+ aC and y = − 1
4ax

−1.

46. ax2(y′x)
2 − 2axyy′x + y2 − a(a− 1)x2 = 0.

Solutions: y ±
√
y2 + ax2 = Cx1+k, where k =

√
(a− 1)/a.

47. (a2 − 1)x2(y′x)
2 + 2xyy′x − y2 + a2x2 = 0.

Solution in parametric form:

x = C(t2 + 1)−1/2
(
t+

√
t2 + 1

)−1/a
, y = xt+ ax

√
t2 + 1.

48. x2(y′x)
2 + (ax2y3 + b)y′x + aby3 = 0.

The equation can be factorized: (y′x + ay3)(x2y′x + b) = 0. Equating each of the factors

to zero, we obtain the solutions: y = ±(2ax+ C)−1/2 and y = b/x+ C .

49. (x2 − a)(y′x)
2 − 2xyy′x − x2 = 0.

Solving for y, differentiating with respect to x, and setting w(x) = y′x, we obtain a factor-

ized equation: (xw′
x − w)(x2w2 + x2 − aw2) = 0. Equating each of the factors to zero,

we arrive at the solutions:

y =
1

2C
(x2 − a−C2) and y2 + x2 = a (y 6= 0).

50. (x2 − a2)(y′x)
2 + 2xyy′x + y2 = 0.

The equation can be factorized: (xy′x + ay′x + y)(xy′x − ay′x + y) = 0. Equating each of

the factors to zero, we obtain the solutions: (x+ a)y = C and (x− a)y = C .
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51. (x2 + a)(y′x)
2 − 2xyy′x + y2 + b = 0.

Differentiating with respect to x, we obtain a factorized equation: [(x2+a)y′x−xy]y′′xx=0.
Therefore, the solutions of the original equation are:

y = C1x+ C2, where aC2
1 + C2

2 + b = 0; bx2 + ay2 + ab = 0.

52. x3(y′x)
2 + x2yy′x + a = 0.

Solutions: Cxy = C2x+ a and xy2 = 4a.

53. axy(y′x)
2 − (ay2 + bx2 + k)y′x + bxy = 0.

This differential equation represents an equation of curvature lines of a surface defined by

the relation Ax2+By2+Cz2=1, where a=AB(C−B), b=AB(A−C), k=C(B−A).
Solutions:

(aC − b)y2 = C(aC − b)x2 − kC and ay2 = bx2 ± 2x
√
−bk − k.

54. y2(y′x)
2 + 2axyy′x + (1− a)y2 + ax2 + (a− 1)b = 0.

Solutions:

y2 + ax2 − b = (a− 1)(x+ C)2 and y2 + ax2 − b = 0.

55. (a− b)y2(y′x)
2 − 2bxyy′x + ay2 − bx2 − ab = 0.

Solutions:

x2 + y2 = Cx+ b− a− b
4a

C2 and (a− b)y2 − bx2 = (a− b)b.

56. (ay − x2)(y′x)
2 + 2xyy′x − y2 = 0.

Solution: (Cy + x)2 = 4ay.

57. (y2 − a2x2)(y′x)
2 + 2xyy′x + (1− a2)x2 = 0.

Solution in parametric form:

x =
Ct√
t2 + 1

, y = aC − C√
t2 + 1

.

58. (ay − bx)2[a2(y′x)
2 + b2] − k2(ay′x + b)2 = 0.

We solve the equation for ay−bx and differentiate with respect to x. Setting w(x)= y′x, we

obtain a factorized equation with respect to w(x): (aw−b)[(a2w2+b2)3/2±abkw′
x] = 0.

Equating each of the factors to zero and integrating, we arrive at the solutions:

(bx− C)2 + (ay − C)2 = k2 and ay − bx = ±k
√
2.

59. (xy′x + a)2 − 2ay + x2 = 0, a 6= 0.

The substitution 2ay − x2 = u2 leads to the equation xuu′x − a(u − a) + x2 = 0. Fur-

ther assuming u − a = xw(x), we obtain (xw + a)w′
x + w2 + 1 = 0. Taking w to

be the independent variable, we arrive at a first-order linear equation whose solution is:

x = (w2 + 1)−1/2
[
C − a ln

(
w +
√
w2 + 1

)]
.
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60. (xy′x + ny)2 + axn+1y′x + b = 0.

Solution: y =
C2n2 + b

an
x−n + C .

61. (xy′x + ny)2 − ax2n+2(y′x)
2 − b = 0.

Solutions: y = Cx−n ±
√
aC2 + bn−2.

62. (yy′x + x)2 = a2(x2 + y2)k[(y′x)
2 + 1].

This equation splits into two equations of the form 13.8.1.4 with f(u) = ±auk/2:

yy′x + x = ±a(x2 + y2)k/2
√

(y′x)
2 + 1.

63. ax2n(xy′x +my)2 + bx2m(xy′x + ny)2 = 1.

Solution: y=C1x
−n+C2x

−m. Here, the constants C1 andC2 are related by the constraint

(aC2
1 + bC2

2 )(n−m)2 = 1.

64. (xy′x − y)2 = a2(x2 + y2)k(yy′x + x)2.

This equation splits into two equations of the form 13.7.1.20 with f(u) = ±auk/2:

xy′x − y = ±a(x2 + y2)k/2(yy′x + x).

65. (xy′x − y)2 = a2(x2 + y2)k[(y′x)
2 + 1].

This equation splits into two equations of the form 13.8.1.3 with f(u) = ±auk/2:

xy′x − y = ±a(x2 + y2)k/2
√

(y′x)
2 + 1.

66. (xy′x + y + 2ax)2 = 4(xy + ax2 + b).

The substitution u = xy + ax2 + b leads to a separable equation: u′x = ±2√u.

67. (a2x+ b2y + c2)(y
′

x)
2 + (a1x+ b1y + c1)y

′

x + a0x+ b0y + c0 = 0.

The Legendre transformation x = u′t, y = tu′t − u (y′x = t) leads to a linear equation:

[f(t) + tg(t)]u′t = g(t)u+ h(t),

where f(t) = a2t
2 + a1t+ a0, g(t) = b2t

2 + b1t+ b0, and h(t) = −c2t2 − c1t− c0.

68. (y′x)
2 + ayy′x + beλxym = 0.

1◦. With m 6= 2, solving for y′x and performing the substitution w = eλxym−2, we arrive

at a separable equation: w′
x = λw +

2−m
2

(
a±

√
a2 − 4bw

)
w (see Section 13.1.2).

2◦. With m = 2, solving the original equation for y′x, we obtain a separable equation:

2y′x = y
(
−a±

√
a2 − 4beλx

)
.

69. y′x + y = ae3x(y′x − y)2.

Solution: y = 1
2aC

2ex − 1
2Ce

−x.

70. y′x = (y′2x − y2)(aex + be−x).

This is a special case of equation 13.8.1.56 with f(u) = u.
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71. ae2λx(y′x + βy)2 + be2βx(y′x + λy)2 = 1.

Solution: y = C1e
−λx + C2e

−βx. Here, the constants C1 and C2 are related by the

constraint (aC2
1 + bC2

2 )(β − λ)2 = 1.

72. y′x = a(y′2x − y2) cosh x.

This is a special case of equation 13.8.1.58 with f(u) = au.

73. y′x = a(y′2x − y2) sinh x.

This is a special case of equation 13.8.1.59 with f(u) = au.

74. a(y′x cosh x− y sinhx)2 + b(y′x sinhx− y cosh x)2 = 1.

Solution: y = C1 sinh x + C2 coshx. Here, the constants C1 and C2 are related by the

constraint aC2
1 + bC2

2 = 1.

75. (y′x)
2 − xyy′x + y2 ln(ay) = 0.

Solutions: ay = exp(Cx− C2) and ay = exp( 14x
2).

76. y′x = a(y′2x + y2) cos x.

This is a special case of equation 13.8.1.64 with f(u) = au.

77. y′x = b(y′2x + y2) sin x.

This is a special case of equation 13.8.1.65 with f(u) = u and a = 0.

78. a(y′x cosx+ y sin x)2 + b(y′x sin x− y cosx)2 = 1.

Solution: y = C1 sinx + C2 cos x. Here, the constants C1 and C2 are related by the

constraint aC2
1 + bC2

2 = 1.

79. a(y′x cosh x− y sinhx)2 + b[(y′x)
2 − y2] + c = 0.

Solution: y = C1 sinh x + C2 cosh x. Here, the constants C1 and C2 are related by the

constraint aC2
1 + b(C2

1 − C2
2 ) + c = 0.

80. a(y′x cosx+ y sin x)2 + b[(y′x)
2 + y2] + c = 0.

Solution: y = C1 sinx + C2 cos x. Here, the constants C1 and C2 are related by the

constraint aC2
1 + b(C2

1 + C2
2 ) + c = 0.

13.6.2 Equations of the Third Degree in y′

x

◮ Equations of the form f(x, y)(y′x)
3 = g(x, y)y′x + h(x, y).

1. (y′x)
3 + ax+ by + c = 0.

This is a special case of equation 13.8.1.9 with f(w) = w3.

2. (ax+ by + c)(y′x)
3 = αx+ βy + γ.

Dividing both sides by ax + by + c and raising to the power 1/3, we finally arrive at an

equation of the form 13.7.1.6 with f(w) = w−1/3.



“K16435’ — 2017/9/28 — 15:05 — #505

13.6. Equations of the Form F (x, y, y′x) = 0 Containing Arbitrary Parameters 479

3. a(y′x)
3 + by′x = x.

This is a special case of equation 13.8.1.7 with f(w) = aw3 + bw.

4. a(y′x)
3 + by′x = y.

This is a special case of equation 13.8.1.8 with f(w) = aw3 + bw.

5. a(y′x)
3 + xy′x = y.

This is a special case of equation 13.8.1.10 with f(w) = aw3.

6. a(y′x)
3 + bxy′x = y.

This is a special case of equation 13.8.1.11 with f(w) = bw and g(x) = aw3.

7. (y′x)
3 − axy′x + x3 = 0, a 6= 0.

Solution in parametric form:

x =
at

t3 + 1
, y = C +

a2

6

4t3 + 1

(t3 + 1)2
.

8. (y′x)
3 − axyy′x + 2ay2 = 0.

Differentiating with respect to x and eliminating y, we obtain a factorized equation with

respect to w(x) = y′x: [2(w′
x)

2−axw′
x+aw](9w−ax2) = 0. Equating each of the factors

to zero and integrating, we find the solutions: y = 1
4aC(x− C)2 and y = 1

27ax
3.

9. ax(y′x)
3 + by′x = y.

This is a special case of equation 13.8.1.11 with f(w) = aw3 and g(w) = bw.

10. ax3/2(y′x)
3 + 2xy′x = y.

Solution: y = 2C
√
x+ aC3.

11. axn(y′x)
3 + xy′x = y.

This is a special case of equation 13.8.1.15 with f(w) = aw3.

12. ae3x(y′x)
3 + b(y′x + y) + c = 0.

Solution: y = Ce−x + (aC3 − c)b−1.

◮ Equations of the form f(x, y)(y′x)
3 = g(x, y)(y′x)

2 + h(x, y)y′x + r(x, y).

13. a(y′x)
3 + b(y′x)

2 = x.

This is a special case of equation 13.8.1.7 with f(w) = aw3 + bw2.

14. a(y′x)
3 + b(y′x)

2 = y.

This is a special case of equation 13.8.1.8 with f(w) = aw3 + bw2.

15. (y′x)
3 + a(y′x)

2 + by + abx+ d = 0.

Solution in parametric form:

2bx = −3t2 + 2at− 2a2 ln(t+ a) + C, by = −abx− t3 − at2 − d.

In addition, there is a singular solution: y = −ax− d/b.
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16. a(y′x)
3 + b(y′x)

2 + cy′x = y + d.

Solution in parametric form:

x = C + 3
2at

2 + 2bt+ c ln |t|, y = at3 + bt2 + ct− d.

17. a(y′x)
3 + bx(y′x)

2 = y.

This is a special case of equation 13.8.1.11 with f(w) = bw2 and g(w) = aw3.

18. ax(y′x)
3 + b(y′x)

2 = y.

This is a special case of equation 13.8.1.11 with f(w) = aw3 and g(w) = bw2.

19. (x2 − a2)(y′x)
3 + bx(x2 − a2)(y′x)

2 + y′x + bx = 0.

The equation can be factorized: (y′x + bx)[(y′x)
2(x2 − a2) + 1] = 0, whence we find the

solutions: y = − 1
2 bx

2 + C and y = ± arcsin(x/a) +C .

20. a(y′x + y)3 + be3x(y′x)
3 + c = 0.

Solution: y = C1 − C2e
−x. Here, the constants C1 and C2 are related by the constraint

aC3
1 + bC3

2 + c = 0.

21. (xy′x − y)3 + ay + bx = 0.

This is a special case of equation 13.8.1.16 with f(w) = 1, g(w) = a, h(w) = b, and n= 3.

22. (xy′x − y)3 + ayy′x + bx = 0.

This is a special case of equation 13.8.1.16 with f(w) = 1, g(w) = aw, h(w) = b, and

n = 3.

23. (xy′x − y)3 + axy′x + by = 0.

This is a special case of equation 13.8.1.16 with f(w) = 1, g(w) = b, h(w) = aw, and

n = 3.

24. a(y′x cosh x− y sinhx)3 + b(y′x sinhx− y cosh x)3 + c = 0.

Solution: y = C1 sinh x − C2 coshx. Here, the constants C1 and C2 are related by the

constraint aC3
1 + bC3

2 + c = 0.

25. a(y′x cosh x− y sinhx)3 + b(y′2x − y2) + c = 0.

Solution: y = C1 sinh x + C2 coshx. Here, the constants C1 and C2 are related by the

constraint aC3
1 + b(C2

1 − C2
2 ) + c = 0.

26. y′x(y
′

x cosh x− y sinhx)3 = b(y′2x − y2) cosh x.

This is a special case of equation 13.6.4.21 with n = 3 and m = 1.

27. y′x(y
′

x sinh x− y cosh x)3 = b(y′2x − y2) sinh x.

This is a special case of equation 13.6.4.22 with n = 3 and m = 1.

28. a(y′x cosx+ y sin x)3 + b(y′x sin x− y cosx)3 + c = 0.

Solution: y = C1 sinx − C2 cos x. Here, the constants C1 and C2 are related by the

constraint aC3
1 + bC3

2 + c = 0.
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29. a(y′x cosx+ y sin x)3 + b(y′2x + y2) + c = 0.

This is a special case of equation 13.6.4.24 with n = 3 and k = 1.

30. y′x(y
′

x cos x+ y sin x)3 = b(y′2x + y2) cos x.

This is a special case of equation 13.6.4.25 with n = 3 and m = 1.

31. y′x(y
′

x sin x− y cos x)3 = b(y′2x + y2) sin x.

This is a special case of equation 13.6.4.26 with n = 3 and m = 1.

13.6.3 Equations of the Form (y′

x)
k = f(y) + g(x)

◮ Some transformations.

1◦. In the general case, the equation

(y′x)
k = f(y) + g(x) (1)

can be reduced with the aid of the transformation t=

∫
[g(x)]1/k dx, u=

∫
[f(y)]−1/k dy

to the same form

(u′t)
k = F (u) +G(t), (2)

where functions F = F (u) and G = G(t) are defined parametrically by the following

formulas:

F (u) =
1

f(y)
, u =

∫
[f(y)]−1/k dy,

G(t) =
1

g(x)
, t =

∫
[g(x)]1/k dx.

2◦. Taking y as the independent variable, we obtain from Eq. (1) an equation of the same

class for x = x(y):
(x′y)

−k = g(x) + f(y).

3◦. The equation

y′x = a
√
y + g(x)

(
k = 1, f = a

√
y
)

can be reduced with the aid of the substitution w(x) = 2a−1√y to the Abel equation

ww′
x − w = 2a−2g(x), which is outlined in Section 13.3.1.

4◦. The equation

y′x = y−1 + g(x) (k = 1, f = y−1)

is an alternative form of representation of the Abel equation yy′x = g(x)y + 1, which is

outlined in Section 13.3.2.

5◦. The equation

y′x = ays + g(x)
(
k = 1, f = ays

)

can be reduced, with the aid of the substitution aw = y −
∫
g(x) dx followed by raising

both sides of the equation to the power of 1/s, to an equation of the class in question:

(w′
x)

1/s = aw +

∫
g(x) dx.
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6◦. The equation

(y′x)
2 = ay + g(x) (k = 2, f = ay, a 6= 0)

can be reduced with the aid of the substitution aw = 2
√
ay + g(x) to an Abel equation of

the second kind:

ww′
x = w + ϕ(x), where ϕ = 2a−2g′x(x),

which is outlined in Section 13.3.1.

7◦. The equation

(y′x)
1/2 = ay + g(x) (k = 1/2, f = ay)

can be reduced by squaring both sides and performing the substitution z = ay + g(x) to

the Riccati equation:

z′x = az2 + g′x.

For some specific functions g = g(x), the solutions of the latter equation are given in

Section 13.2.

8◦. The equation

(y′x)
1/2 = ay1/2 + g(x) (k = 1/2, f = ay1/2)

can be reduced by squaring both sides and performing the substitution y = exp(a2x)ξ2 to

an Abel equation of the second kind:

ξξ′x = a exp(− 1
2a

2x)gξ + 1
2 exp(−a

2x)g2

(see Section 13.3.3).

9◦. The equation

(y′x)
−1/2 = f(y) + ax (k = −1/2, g = ax)

can be reduced by squaring both sides and performing the substitution v = f(y) + ax to a

Riccati equation:

v′y = av2 + f ′y.

For some specific functions f = f(y), the solutions of the latter equation are given in

Section 13.2.

◮ Classification tables and exact solutions.

For the sake of convenience, Tables 13.5–13.9 given below list all the equations outlined in

Section 13.6.3. The five tables classify the equations in which functions f and g are of the

same form. The right-most column of a table indicates the numbers of the equations where

the corresponding solutions are given. After the tables follow the equations — they are

arranged into groups so that the solutions of the equations within each group are expressed

in terms of the functions indicated before the groups as a notation list.
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TABLE 13.5

Solvable equations of the form (y′x)
k = Ays + Bxr

k s r Equation k s r Equation

arbitrary
arbitrary

(s 6= k)
ks

k−s 13.6.3.7 −1 1 −1 13.6.3.23

arbitrary arbitrary 0 13.6.3.1 −1 1 1/2 13.6.3.42

arbitrary

(k 6=−1, 1)
k

1−k − k

1+k
13.6.3.6 −1/2 arbitrary

(s 6=−1, 0) 1 13.6.3.17

arbitrary 0 arbitrary 13.6.3.2 −1/2 −1 1 13.6.3.38

arbitrary 1 1 13.6.3.5 1/2 1
arbitrary

(r 6=−1, 0) 13.6.3.16

−2 −1 −2 13.6.3.46 1/2 1 −1 13.6.3.37

−2 −1 1 13.6.3.33 1 −1 −2 13.6.3.20

−2 −2/5 −2 13.6.3.29 1 −1 −1/2 13.6.3.39

−2 1/2 1 13.6.3.27 1 −1 1 13.6.3.22

−2 2 −2 13.6.3.35 1 1/2 −2 13.6.3.30

−2 2 1 13.6.3.44 1 1/2 −1 13.6.3.11

−1 arbitrary

(s 6=0)
1 13.6.3.10 1 1/2 −1/2 13.6.3.24

−1 arbitrary

(s 6=−2, 0) 2 13.6.3.15 1 1/2 1 13.6.3.41

−1 −2 −1 13.6.3.21 2 −2 −1 13.6.3.45

−1 −2 1/2 13.6.3.31 2 −2 −2/5 13.6.3.28

−1 −2 2 13.6.3.36 2 −2 2 13.6.3.34

−1 −1 1/2 13.6.3.12 2 1 −1 13.6.3.32

−1 −1/2 −1 13.6.3.40 2 1 1/2 13.6.3.26

−1 −1/2 1/2 13.6.3.25 2 1 2 13.6.3.43

1. (y′x)
k = Ays +B.

Solution: x =

∫
(Ays +B)−1/k dy + C .

2. (y′x)
k = A+ Bxr.

Solution: y =

∫
(A+Bxr)1/k dx+ C .
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TABLE 13.6

Solvable equations of the form

(y′x)
k = Aey + Bxr

k r Equation

arbitrary −k 13.6.3.9

arbitrary 0 13.6.3.3

−1 −1 13.5.2.40

−1 1 13.5.2.38

−1 2 13.5.2.39

−1/2 1 13.6.3.19

1 arbitrary 13.5.2.13

TABLE 13.8

Solvable equations of the form

(y′x)
k = Aey + Bex

k Equation

−1 13.5.2.8

1 13.5.2.2

TABLE 13.7

Solvable equations of the form

(y′x)
k = Ays + Bex

k s Equation

arbitrary k 13.6.3.8

arbitrary 0 13.6.3.4

−1 arbitrary 13.5.2.37

1/2 1 13.6.3.18

1 −1 13.5.2.14

TABLE 13.9

Solvable equations containing

logarithmic functions

Form of equation Equation

(y′x)
−2 = A ln y +Bx 13.6.3.14

(y′x)
−1 = A ln y +Bx 13.5.4.12

(y′x)
2 = Ay +B lnx 13.6.3.13

3. (y′x)
k = Aey + B.

Solution: x =

∫
(Aey +B)−1/k dy + C .

4. (y′x)
k = A+ Bex.

Solution: y =

∫
(A+Bex)1/k dx+ C .

5. (y′x)
k = Ay + Bx.

Solution in parametric form:

x =

∫
(Aτ1/k +B)−1 dτ + C, y =

1

A

[
τ −B

∫
(Aτ1/k +B)−1 dτ −BC

]
.

6. (y′x)
k = Ay

k
1−k +Bx

−
k

1+k , |k| 6= 1.

Solution in parametric form:

x = a

(∫
dτ

γτ1/k + β
+ C

) k+1
k
, y = b

(
τ − β

∫
dτ

γτ1/k + β
− βC

) k−1
k
,

where A = a
− k

1+k b
− k

1−k βB, B = a
k

1+k

[
b(k − 1)

a(k + 1)
γ

]k
.
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7. (y′x)
k = Ays +Bx

ks
k−s , k 6= s.

Solution in parametric form:

x = Ck−s exp

{∫ [
k − s
s

(
A+Bτ

ks
s−k

) 1
k − τ

]−1

dτ

}
,

y = Ck

{
τ exp

∫ [
k − s
s

(
A+Bτ

ks
s−k

) 1
k − τ

]−1

dτ

} k
k−s

.

8. (y′x)
k = Ayk + Bex.

Solution in parametric form:

x =

∫ [
(A+Be−kτ )1/k − 1

k

]−1
dτ + C,

y = exp
{
τ +

1

k

∫ [
(A+Be−kτ )1/k − 1

k

]−1
dτ +

C

k

}
.

9. (y′x)
k = Aey + Bx−k.

Solution in parametric form:

x = exp
{
τ − 1

k

∫ [
(B +Aekτ )−1/k +

1

k

]−1
dτ − C

k

}
,

y =

∫ [
(B +Aekτ )−1/k +

1

k

]−1
dτ + C.

10. (y′x)
−1 = Ays +Bx.

Solution: x = eBy
(
A

∫
yse−By dy + C

)
.

◆ In the solutions of equations 11–14, the following notation is used:

F =
[∫

exp(∓τ2) dτ +C
]−1

.

11. y′x = Ay1/2 +Bx−1.

Solution in parametric form:

x = aF exp(∓τ2), y = b[2τ ± F exp(∓τ2)]2, where A = ±2a−1b1/2, B = ∓4b.

12. (y′x)
−1 = Ay−1 + Bx1/2.

Solution in parametric form:

x= a[2τ ± F exp(∓τ2)]2, y = bF exp(∓τ2), where A= ∓4a, B = ±2a1/2b−1.

13. (y′x)
2 = Ay +B ln x.

Solution in parametric form:

x = aF exp(∓τ2), y = b
{
[2τ ± F exp(∓τ2)]2 ± 4 ln(aF )− 4τ2

}
,

where A = 4a−2b, B = ∓4bA.
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14. (y′x)
−2 = A ln y + Bx.

Solution in parametric form:

x = a
{
[2τ ± F exp(∓τ2)]2 ± 4 ln(bF )− 4τ2

}
, y = bF exp(∓τ2),

where A = ∓4aB, B = 4ab−2.

◆ In the solutions of equations 15–19, the following notation is used:

Z =

{
C1Jν(τ) + C2Yν(τ) for the upper sign,

C1Iν(τ) + C2Kν(τ) for the lower sign,

where Jν(τ) and Yν(τ) are Bessel functions, and Iν(τ) and Kν(τ) are modified Bessel

functions.

Remark 13.3. The solutions of equations 15–19 contain only the ratio Z ′
τ/Z = (lnZ)′τ . There-

fore, for the sake of symmetric appearance, two “arbitrary” constantsC1 andC2 are indicated in the

definition of function Z (instead, we can set, for instance, C1 = 1 and C2 = C).

15. (y′x)
−1 = Ays +Bx2, s 6= −2, s 6= 0.

Solution in parametric form:

x = aτ−2ν
[
τ(lnZ)′τ + ν

]
, y = bτ2ν ,

where ν =
1

s+ 2
, A = ∓ s+ 2

2
ab−1−s, B = − s+ 2

2
a−1b−1.

16. (y′x)
1/2 = Ay + Bxr, r 6= −1, r 6= 0.

Solution in parametric form:

x = aτ2ν , y = bτ2ν
[
τ(lnZ)′τ + ν ± r + 1

2r
τ2
]
,

where ν =
1

r + 1
, A = b−1

[
− (r + 1)b

2a

]1/2
, B = ∓ r + 1

2r
a−rbA.

17. (y′x)
−1/2 = Ays + Bx, s 6= −1, s 6= 0.

Solution in parametric form:

x = aτ2ν
[
τ(lnZ)′τ + ν ± s+ 1

2s
τ2
]
, y = bτ2ν ,

where ν =
1

s+ 1
, A = ∓ s+ 1

2s
ab−sB, B = a−1

[
− (s+ 1)a

2b

]1/2
.

18. (y′x)
1/2 = Ay + Bex.

Solution in parametric form:

x = ln(aτ2), y = b
[
τ(lnZ)′τ ± 1

2 τ
2
]
,

where ν = 0, A = b−1
(
− 1

2 b
)1/2

, B = ∓ 1
2a

−1bA.
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19. (y′x)
−1/2 = Aey + Bx.

Solution in parametric form:

x = a
[
τ(lnZ)′τ ± 1

2 τ
2
]
, y = ln(bτ2),

where ν = 0, A = ∓ 1
2ab

−1B, B = a−1
(
− 1

2a
)1/2

.

◆ In the solutions of equations 20–35, the following notation is used:

Z =

{
C1J1/3(τ) + C2Y1/3(τ) for the upper sign,

C1I1/3(τ) + C2K1/3(τ) for the lower sign,

where J1/3(τ) and Y1/3(τ) are Bessel functions, and I1/3(τ) and K1/3(τ) are modified

Bessel functions;

U1 = τZ ′
τ +

1
3Z, U2 = U2

1 ± τ2Z2, U3 = ± 2
3 τ

2Z3 − 2U1U2.

Remark 13.4. The solutions of equations 20–35 contain only the ratio Z ′
τ/Z = (lnZ)′τ . There-

fore, for the sake of symmetric appearance, two “arbitrary” constantsC1 andC2 are indicated in the

definition of function Z (instead, we can set, for instance, C1 = 1 and C2 = C).

20. y′x = Ay−1 +Bx−2.

Solution in parametric form:

x = aτ−4/3Z−2U2, y = bτ−2/3Z−1U−1
2 U3, where A = 2a−1b2, B = ∓ 2

3ab.

21. (y′x)
−1 = Ay−2 + Bx−1.

Solution in parametric form:

x = aτ−2/3Z−1U−1
2 U3, y = bτ−4/3Z−2U2, where A = ∓ 2

3ab, B = 2a2b−1.

22. y′x = Ay−1 +Bx.

Solution in parametric form:

x = aτ−2/3Z−1U1, y = bτ−4/3Z−2U2, where A = ∓ 2
3a

−1b2, B = 2a−2b.

23. (y′x)
−1 = Ay + Bx−1.

Solution in parametric form:

x = aτ−4/3Z−2U2, y = bτ−2/3Z−1U1, where A = 2a−2b, B = ∓ 2
3a

2b−1.

24. y′x = Ay1/2 +Bx−1/2.

Solution in parametric form:

x = aτ−4/3Z−2U2
1 , y = bτ−8/3Z−4U2

2 , where A = 2a−1b1/2, B = ∓ 2
3a

−1/2b.

25. (y′x)
−1 = Ay−1/2 +Bx1/2.

Solution in parametric form:

x = aτ−8/3Z−4U2
2 , y = bτ−4/3Z−2U2

1 , where A = ∓ 2
3ab

−1/2, B = 2a1/2b−1.

26. (y′x)
2 = Ay +Bx1/2.

Solution in parametric form:

x = aτ−4/3Z−2U2
1 , y = bτ−8/3Z−4

(
U2
2 ± 4

3 τ
2Z3U1

)
,

where A = 4a−2b, B = ∓ 4
3a

−1/2bA.
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27. (y′x)
−2 = Ay1/2 + Bx.

Solution in parametric form:

x = aτ−8/3Z−4(U2
2 ± 4

3 τ
2Z3U1), y = bτ−4/3Z−2U2

1 ,

where A = ∓ 4
3ab

−1/2B, B = 4ab−2.

28. (y′x)
2 = Ay−2 + Bx−2/5.

Solution in parametric form:

x = aτ−5/3Z−5/2U
5/2
1 , y = bτ−4/3Z−2(U2

2 ± 4
3 τ

2Z3U1)
1/2,

where A = ∓ 4
3a

−2/5b2B, B = 16
25a

−8/5b2.

29. (y′x)
−2 = Ay−2/5 +Bx−2.

Solution in parametric form:

x = aτ−4/3Z−2(U2
2 ± 4

3 τ
2Z3U1)

1/2, y = bτ−5/3Z−5/2U
5/2
1 ,

where A = 16
25 a

2b−8/5, B = ∓ 4
3a

2b−2/5A.

30. y′x = Ay1/2 +Bx−2.

Solution in parametric form:

x = aτ4/3Z2U−1
2 , y = bτ−4/3Z−2U−2

2 U2
3 , where A = ± 4

3a
−1b1/2, B = −4ab.

31. (y′x)
−1 = Ay−2 + Bx1/2.

Solution in parametric form:

x = aτ−4/3Z−2U−2
2 U2

3 , y = bτ4/3Z2U−1
2 , where A = −4ab, B = ± 4

3a
1/2b−1.

32. (y′x)
2 = Ay +Bx−1.

Solution in parametric form:

x=aτ4/3Z2U−1
2 , y=bτ−4/3Z−2U−2

2 (U2
3−4U3

2 ), where A= 16
9 a

−2b, B=4abA.

33. (y′x)
−2 = Ay−1 + Bx.

Solution in parametric form:

x=aτ−4/3Z−2U−2
2 (U2

3−4U3
2 ), y=bτ4/3Z2U−1

2 , where A=4abB, B= 16
9 ab

−2.

34. (y′x)
2 = Ay−2 + Bx2.

Solution in parametric form:

x = aτ2/3ZU
−1/2
2 , y = bτ−2/3Z−1U−1

2 (U2
3 − 4U3

2 )
1/2,

where A = 4a2b2B, B = 16
9 a

−4b2.
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35. (y′x)
−2 = Ay2 + Bx−2.

Solution in parametric form:

x = aτ−2/3Z−1U−1
2 (U2

3 − 4U3
2 )

1/2, y = bτ2/3ZU
−1/2
2 ,

where A = 16
9 a

2b−4, B = 4a2b2A.

◆ In the solutions of equations 36–46, the following notation is used:

R =





C1τ
ν + C2τ

−ν for the upper sign,

C1 sin(ν ln τ) + C2 cos(ν ln τ) for the lower sign,

C1 ln τ + C2 for ν = 0,

Q =





(1 + ν)C1τ
ν + (1− ν)C2τ

−ν for the upper sign,

(C1−νC2) sin(ν ln τ)+(C2+νC1) cos(ν ln τ) for the lower sign,

C1 ln τ +C1 + C2 for ν = 0.

Remark 13.5. The expressions of R and Q contain two “arbitrary” constants C1 an C2. One of

them can be fixed to set it equal to any nonzero number (for example, we can set C2 = ±1), while

the other constant remains arbitrary.

36. (y′x)
−1 = Ay−2 + Bx2.

Solution in parametric form:

x = aτ−2R−1Q, y = bτ2, ν =
√
|1− 4AB|,

where A = − 1∓ ν2
2

ab, B = − 1
2a

−1b−1.

37. (y′x)
1/2 = Ay + Bx−1.

Solution in parametric form:

x=aτ2, y=bτ−2
(
R−1Q− 1∓ν2

2

)
, where A=b−1

(
− b

2a

)1/2
, B=

1∓ν2
2

abA.

38. (y′x)
−1/2 = Ay−1 +Bx.

Solution in parametric form:

x=aτ−2
(
R−1Q− 1∓ ν2

2

)
, y= bτ2, where A=

1∓ ν2
2

abB, B=a−1
(
− a

2b

)1/2
.

39. y′x = Ay−1 +Bx−1/2.

Solution in parametric form:

x = aτ2R2, y = bτQ, where A = (−1± ν2) b
2

2a
, B = a−1/2b.

40. (y′x)
−1 = Ay−1/2 +Bx−1.

Solution in parametric form:

x = aτQ, y = bτ2R2, where A = ab−1/2, B = (−1± ν2) b
2

2a
.
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41. y′x = Ay1/2 +Bx.

Solution in parametric form:

x = aτR, y = bτ2Q2, where A = 2(−1± ν2)a−1b1/2, B = 4a−2b.

42. (y′x)
−1 = Ay + Bx1/2.

Solution in parametric form:

x = aτ2Q2, y = bτR, where A = 4ab−2, B = 2(−1± ν2)a1/2b−1.

43. (y′x)
2 = Ay +Bx2.

Solution in parametric form:

x= aτR, y= bτ2[Q2−(−1±ν2)R2], where A=16a−2b, B= (−1±ν2)a−2bA.

44. (y′x)
−2 = Ay2 + Bx.

Solution in parametric form:

x= aτ2[Q2−(−1±ν2)R2], y= bτR, where A= (−1±ν2)ab−2B, B=16ab−2.

45. (y′x)
2 = Ay−2 + Bx−1.

Solution in parametric form:

x=aτ2R2, y=bτ [Q2 − (−1± ν2)R2]
1/2
, where A=(−1±ν2)a−1b2B, B=a−1b2.

46. (y′x)
−2 = Ay−1 + Bx−2.

Solution in parametric form:

x=aτ [Q2 − (−1± ν2)R2]
1/2
, y=bτ2R2, where A=a2b−1, B=(−1±ν2)a2b−1A.

13.6.4 Other Equations

◮ Equations containing algebraic and power functions with respect to y′x.

1. y = xy′x + ax2 + b
√
y′x + c, a 6= 0.

Differentiating the equation with respect to x and changing to new variables t = y′x and

w(t) = −2ax, we arrive at an Abel equation of the form 13.3.1.32: ww′
t−w = −abt−1/2.

2. xy′x − x = (ax+ by)
√

(y′x)
2 + 1.

This is a special case of equation 13.8.1.5 with f(u, v) = au+ bv.

3. yy′x + x = (ax+ by)
√

(y′x)
2 + 1.

This is a special case of equation 13.8.1.6 with f(u, v) = au+ bv.

4. y = xy′x + a(y′x)
n.

Solution: y = Cx + aCn. In addition, there is a singular solution: y = Ax
n

n−1 , where

aAn−1nn = −(n− 1)n−1, n 6= 1.
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5. y = xy′x + axn(y′x)
m.

This is a special case of equation 13.8.1.15 with f(w) = awm.

6. y = axn(y′x)
2n + 2xy′x.

This is a special case of equation 13.8.1.51 with f(w) = awn.

7. y = xy′x + ax2 + b(y′x)
2 + c(y′x)

m+1 + d, a 6= 0.

Differentiating the equation with respect to x and passing to the new variables t = y′x and

w(t) = −2ax, we arrive at the Abel equation ww′
t −w = −4abt− 2ac(m+ 1)tm, whose

solvable cases are outlined in Section 13.3.1.

8. a(y′x)
n + b(y′x)

m = x.

1◦. Solution in parametric form with n 6= −1 and m 6= −1:

x = atn + btm, y = C +
an

n+ 1
tn+1 +

bm

m+ 1
tm+1.

2◦. Solution in parametric form with n = −1 and m 6= −1:

x =
a

t
+ btm, y = C + a ln |t|+ bm

m+ 1
tm+1.

9. a(y′x)
n + b(y′x)

m = y.

1◦. Solution in parametric form with n 6= 1 and m 6= 1:

x = C +
an

n− 1
tn−1 +

bm

m− 1
tm−1, y = atn + btm.

2◦. Solution in parametric form with n = 1 and m 6= 1:

x = C + a ln |t|+ bm

m− 1
tm−1, y = at+ btm.

10. ax(y′x)
n + by(y′x)

m + c(y′x)
k = 0.

This is a special case of equation 13.8.1.12 with f(u)=aun, g(u)= bum, and h(u)= cuk.

11. y′x = axn(xy′x − y)m.

The Legendre transformation x=w′
t, y = tw′

t−w (y′x = t) leads to a separable equation:

t = awm(w′
t)
n.

1◦. Solution in parametric form with m 6= −n and n 6= −1:

x =
( t
a

) 1
n
[
m+ n

n+ 1
t
( t
a

) 1
n
+ C

]− m
m+n

,

y =

[
1−m
1 + n

t
( t
a

) 1
n − C

][
m+ n

n+ 1
t
( t
a

) 1
n
+ C

]− m
m+n

.

2◦. Solution in parametric form with m = −n and n 6= −1:

x = C
( t
a

) 1
n
exp

[
n

n+ 1
t
( t
a

) 1
n
]
, y = C

[
t
( t
a

) 1
n − 1

]
exp

[
n

n+ 1
t
( t
a

) 1
n
]
.

3◦. Solution in parametric form with m 6= −n and n = −1:

x =
a

t

[
a(1−m) ln |t|+ C

] m
1−m , y = tx−

[
a(1 −m) ln |t|+ C

] 1
1−m .

4◦. Solution with m = 1 and n = −1: y = Cx
a

a−1 .
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12. y′x + y = aekx(y′x − y)k−1.

Solution: y = 1
2aC

k−1ex − 1
2Ce

−x.

13. axkn+k(y′x)
k + b(xy′x + ny)m + c = 0.

Solution: y = −C1x
−n + C2. Here, the constants C1 and C2 are related by the constraint

a(C1n)
k + b(C2n)

m + c = 0.

14. a1x
n1m1(xy′x +n2y)

m1 +a2x
n2m2(xy′x +n1y)

m2 + b= 0, n1 6= n2.

Solution: y =
C1

n2 − n1
x−n1 − C2

n2 − n1
x−n2 . Here, the constants C1 and C2 are related

by the constraint a1C
m1
1 + a2C

m2
2 + b = 0.

15. y′x(y
′

x + ax)n + b(y′2x + 2ay)m + c = 0.

The contact transformation X = y′x+ax, Y = (y′x)
2+2ay, Y ′

X =2y′x, where Y = Y (X),
leads to a separable equation: Y ′

X = −2X−n(bY m + c).
The inverse contact transformation: x = 1

2a
−1(2X − Y ′

X), y = 1
8a

−1[4Y − (Y ′
X)2],

y′x = 1
2Y

′
X .

16. a(y′x + y)n + bekx(y′x)
k + c = 0.

Solution: y = C1 − C2e
−x. Here, the constants C1 and C2 are related by the constraint

aCn
1 + bCk

2 + c = 0.

17. aekx(y′x − y)k + b[(y′x)
2 − y2]n + c = 0.

Solution: y = 1
2C1e

x − 1
2C2e

−x. Here, the constants C1 and C2 are related by the

constraint aCk
2 + b(C1C2)

n + c = 0.

18. aekβx(y′x + γy)k + benγx(y′x + βy)n + c = 0, β 6= γ.

Solution: y =
C1

γ − β e
−βx − C2

γ − β e
−γx. Here, the constants C1 and C2 are related by

the constraint aCk
1 + bCn

2 + c = 0.

19. a(y′x cosh x− y sinhx)n + b(y′x sinhx− y cosh x)k + c = 0.

Solution: y = C1 sinh x − C2 cosh x. Here, the constants C1 and C2 are related by the

constraint aCn
1 + bCk

2 + c = 0.

20. a(y′x cosh x− y sinhx)n + b(y′2x − y2)k + c = 0.

Solution: y = C1 sinh x + C2 cosh x. Here, the constants C1 and C2 are related by the

constraint aCn
1 + b(C2

1 − C2
2 )

k + c = 0.

21. y′x(y
′

x cosh x− y sinhx)n = b(y′2x − y2)m cosh x.

The contact transformation X=(y′x)
2−y2, Y =y′x coshx−y sinh x, Y ′

X = 1
2 cosh x(y′x)

−1

leads to a separable equation: 2bXmY ′
X = Y n.

22. y′x(y
′

x sinh x− y cosh x)n = b(y′2x − y2)m sinh x.

The contact transformation X=(y′x)
2−y2, Y =y′x sinh x−y cosh x, Y ′

X = 1
2 sinh x(y′x)

−1

leads to a separable equation: 2bXmY ′
X = Y n.



“K16435’ — 2017/9/28 — 15:05 — #519

13.6. Equations of the Form F (x, y, y′x) = 0 Containing Arbitrary Parameters 493

23. a(y′x cosx+ y sin x)n + b(y′x sin x− y cosx)k + c = 0.

Solution: y = C1 sinx − C2 cos x. Here, the constants C1 and C2 are related by the

constraint aCn
1 + bCk

2 + c = 0.

24. a(y′x cosx+ y sin x)n + b(y′2x + y2)k + c = 0.

Solution: y = C1 sinx + C2 cos x. Here, the constants C1 and C2 are related by the

constraint aCn
1 + b(C2

1 + C2
2 )

k + c = 0.

25. y′x(y
′

x cos x+ y sin x)n = b(y′2x + y2)m cos x.

The contact transformation X = (y′x)
2 + y2, Y = y′x cos x+ y sinx, Y ′

X = 1
2 cos x(y

′
x)

−1

leads to a separable equation: 2bXmY ′
X = Y n.

26. y′x(y
′

x sin x− y cos x)n = b(y′2x + y2)m sin x.

The contact transformation X = (y′x)
2 + y2, Y = y′x sinx− y cos x, Y ′

X = 1
2 sinx(y

′
x)

−1

leads to a separable equation: 2bXmY ′
X = Y n.

◮ Equations containing exponential and other functions with respect to y′x.

27. x = a exp(λy′x) + b exp(µy′x).

This is a special case of equation 13.8.1.7 with f(w) = a exp(λw) + b exp(µw).

28. y = a exp(λy′x) + b exp(µy′x).

This is a special case of equation 13.8.1.8 with f(w) = a exp(λw) + b exp(µw).

29. y = xy′x + axn exp(λy′x).

This is a special case of equation 13.8.1.15 with f(w) = a exp(λw).

30. y = ax exp(λy′x) + b exp(µy′x).

This is a special case of equation 13.8.1.11 with f(w)= a exp(λw) and g(w) = b exp(µw).

31. x = a sinh(λy′x) + b sinh(µy′x).

This is a special case of equation 13.8.1.7 with f(w) = a sinh(λw) + b sinh(µw).

32. y = a sinh(λy′x) + b sinh(µy′x).

This is a special case of equation 13.8.1.8 with f(w) = a sinh(λw) + b sinh(µw).

33. y = xy′x + axn sinhm(λy′x).

This is a special case of equation 13.8.1.15 with f(w) = a sinhm(λw).

34. y = ax sinh(λy′x) + b sinh(µy′x).

This is a special case of equation 13.8.1.11 with f(w)=a sinh(λw) and g(w)= b sinh(µw).

35. x = a cosh(λy′x) + b cosh(µy′x).

This is a special case of equation 13.8.1.7 with f(w) = a cosh(λw) + b cosh(µw).

36. y = a cosh(λy′x) + b cosh(µy′x).

This is a special case of equation 13.8.1.8 with f(w) = a cosh(λw) + b cosh(µw).
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37. y = xy′x + axn coshm(λy′x).

This is a special case of equation 13.8.1.15 with f(w) = a coshm(λw).

38. y = ax cosh(λy′x) + b cosh(µy′x).

This is a special case of equation 13.8.1.11 with f(w)=a cosh(λw) and g(w)= b cosh(µw).

39. ln y′x + xy′x + ay + b = 0.

1◦. Solution in parametric form with a 6= 0, a 6= −1:

x =
1

at
+ Ct

− 1
a+1 , y = − 1

a
(xt+ ln t+ b).

2◦. Solution in parametric form with a = 0:

x = − ln t+ b

t
, y = C + (b− 1) ln t+

1

2
(ln t)2.

3◦. Solutions with a = −1:

y = Cx+ lnC + b and y = ln(−1/x) + b− 1.

40. x+ ln y′x + a(y′x + y)k + b = 0.

This is a special case of equation 13.8.1.41 with F (u,w) = lnu+ awk + b.

41. y = xy′x + ax2 + b ln y′x + c, a 6= 0.

Differentiating the equation with respect to x and changing to new variables t = y′x and

w(t) = −2ax, we arrive at an Abel equation of the form 13.3.1.16: ww′
t −w = −2abt−1.

42. y = xy′x + axn lnm(λy′x).

This is a special case of equation 13.8.1.15 with f(w) = a lnm(λw).

43. x = a sin(λy′x) + b sin(µy′x).

This is a special case of equation 13.8.1.7 with f(w) = a sin(λw) + b sin(µw).

44. y = a sin(λy′x) + b sin(µy′x).

This is a special case of equation 13.8.1.8 with f(w) = a sin(λw) + b sin(µw).

45. y = xy′x + axn sinm(λy′x).

This is a special case of equation 13.8.1.15 with f(w) = a sinm(λw).

46. y = ax sin(λy′x) + b sin(µy′x).

This is a special case of equation 13.8.1.11 with f(w) = a sin(λw) and g(w) = b sin(µw).

47. x = a cos(λy′x) + b cos(µy′x).

This is a special case of equation 13.8.1.7 with f(w) = a cos(λw) + b cos(µw).

48. y = a cos(λy′x) + b cos(µy′x).

This is a special case of equation 13.8.1.8 with f(w) = a cos(λw) + b cos(µw).
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49. y = xy′x + axn cosm(λy′x).

This is a special case of equation 13.8.1.15 with f(w) = a cosm(λw).

50. y = ax cos(λy′x) + b cos(µy′x).

This is a special case of equation 13.8.1.11 with f(w) = a cos(λw) and g(w) = b cos(µw).

51. y = xy′x + axn tanm(λy′x).

This is a special case of equation 13.8.1.15 with f(w) = a tanm(λw).

13.7 Equations of the Form f(x, y)y′
x = g(x, y)

Containing Arbitrary Functions

◆ Notation: f , g, and h are arbitrary composite functions whose argument, indicated after

the function name, can depend on both x and y.

13.7.1 Equations Containing Power Functions

1. y′x = f(ax+ by + c).

In the case b = 0, we have an equation of the form 13.1.1. If b 6= 0, the substitution

u(x) = ax+ by + c leads to a separable equation: u′x = bf(u) + a.

2. y′x = f(y + axn + b) − anxn−1.

The substitution u = y + axn + b leads to a separable equation: u′x = f(u).

3. y′x =
y

x
f(xnym).

Generalized homogeneous equation. The substitution z = xnym leads to a separable

equation: xz′x = nz +mzf(z).

4. y′x = f(x)y1+n + g(x)y + h(x)y1−n.

The substitution w = yn leads to a Riccati equation: w′
x = nf(x)w2 + ng(x)w+ nh(x).

5. y′x = − n

m

y

x
+ ykf(x)g(xnym).

The substitution z=xnym leads to a separable equation: z′x=mx
n−nk
m f(x)z

k+m−1
m g(z).

6. y′x = f
((
ax+ by + c

αx+ βy + γ

))
.

1◦. For ∆ = aβ − bα 6= 0, the transformation x = u+
bγ − cβ

∆
, y = v(u) +

cα− aγ
∆

leads to an equation:

v′u = f
( au+ bv

αu+ βv

)
.

Dividing both the numerator and denominator of the fraction on the right-hand side by u,

we obtain a homogeneous equation of the form 13.1.6.
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2◦. For ∆= 0 and b 6= 0, the substitution v(x) = ax+by+c leads to a separable equation

of the form 13.1.2:

v′x = a+ bf
( bv

βv + bγ − cβ
)
.

3◦. For ∆ = 0 and β 6= 0, the substitution v(x) = αx+ βy + γ also leads to a separable

equation:

v′x = α+ βf
( bv + cβ − bγ

βv

)
.

7. y′x = xn−1y1−mf(axn + bym).

The substitution w= axn+bym leads to a separable equation: w′
x =xn−1[an+bmf(w)].

8. yny′x + axn + g(x)f(yn+1 + axn+1) = 0.

The substitution u=yn+1+axn+1 leads to a separable equation: u′x+(n+1)g(x)f(u)=0.

9. [xnf(y) + xg(y)]y′x = h(y).

This is a Bernoulli equation with respect to x = x(y) (see Section 13.1.5).

10. [x2 + xf(y) + g(y)]y′x = h(y).

This is a Riccati equation with respect to x = x(y) (see Section 13.2).

11. y′x = [f(x)y + g(x)]
√
(y − a)(y − b).

The substitution u2 = (y − a)/(y − b) leads to a Riccati equation:

±2u′x = [bf(x) + g(x)]u2 − af(x)− g(x).

12.
[[
f
((
y

x

))
+ xah

((
y

x

))]]
y′x = g

((
y

x

))
+ yxa−1h

((
y

x

))
.

The substitution y = xt leads to a Bernoulli equation with respect to x = x(t):
[g(t) − tf(t)]x′t = f(t)x+ h(t)xa+1.

13. [Pn(x, y) + xRm(x, y)]y′x = Qn(x, y) + yRm(x, y).

Darboux equation. Here, Pn and Qn are homogeneous polynomials of order n, and Rm is

a homogeneous polynomial of order m. Dividing the Darboux equation by xn leads to an

equation of the form 13.7.1.12.

14. [f(ax+ by) + bxg(ax+ by)]y′x = h(ax+ by) − axg(ax+ by).

The substitution t = ax + by leads to a linear equation with respect to x = x(t):
[af(t) + bh(t)]x′t = bg(t)x+ f(t).

15. [f(ax+ by) + byg(ax+ by)]y′x = h(ax+ by) − ayg(ax+ by).

The substitution t = ax + by leads to a linear equation with respect to y = y(t):
[af(t) + bh(t)]y′t = −ag(t)y + h(t).

16. x[f(xnym) +mxkg(xnym)]y′x = y[h(xnym) − nxkg(xnym)].

The transformation t= xnym, z = x−k leads to a linear equation with respect to z = z(t):
t[nf(t) +mh(t)]z′t = −kf(t)z − kmg(t).
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17. x[f(xnym) +mykg(xnym)]y′x = y[h(xnym) − nykg(xnym)].

The transformation t= xnym, z = y−k leads to a linear equation with respect to z = z(t):
t[nf(t) +mh(t)]z′t = −kh(t)z + kng(t).

18. x[sf(xnym) −mg(xkys)]y′x = y[ng(xkys) − kf(xnym)].

The transformation t=xnym, w= xkys leads to a separable equation: tf(t)w′
t=wg(w).

19. [f(y) + amxnym−1]y′x + g(x) + anxn−1ym = 0.

Solution:

∫
f(y) dy +

∫
g(x) dx + axnym = C .

20. xy′x − y = f(x2 + y2)(yy′x + x).

Setting x= r(t) cos t, y = r(t) sin t and integrating, we obtain a solution in implicit form:

t =

∫
r−1f(r2) dr + C .

⊙ Literature: G. W. Bluman, J. D. Cole (1974, page 100).

21. xy′x − y = f(x2 − y2)(yy′x − x).

Setting x = r(t) cosh t, y = r(t) sinh t and integrating, we obtain a solution in implicit

form: t = −
∫
r−1f(r2) dr + C .

22. [xf(x2 + y2) + yg(x2 + y2) + h(x2 + y2)](yy′x + x) = xy′x − y.

The transformation x = r cosϕ, y = r sinϕ leads to an equation of the form 13.7.4.11

with respect to ϕ = ϕ(r): ϕ′
r = f(r2) cosϕ+ g(r2) sinϕ+ r−1h(r2).

23. [xf(x2 − y2) + yg(x2 − y2) + h(x2 − y2)](yy′x − x) = xy′x − y.

1◦. For x > y, the transformation x = r coshϕ, y = r sinhϕ leads to an equation of the

form 13.7.2.18 with respect to ϕ= ϕ(r): ϕ′
r =−f(r2) coshϕ− g(r2) sinhϕ− r−1h(r2).

2◦. For x < y, the transformation x = z sinhψ, y = z coshψ leads to an equation of

the form 13.7.2.18 with respect to ψ = ψ(z): ψ′
z = −f(−z2) sinhψ − g(−z2) coshψ −

z−1h(−z2).

24. xy′x − y = f
((
x2 + y2

))
g

((
x

√
x2 + y2

,
y

√
x2 + y2

))
(yy′x + x).

Setting x = r(t) cos t, y = r(t) sin t and integrating, we obtain the solution:

∫
dt

g(cos t, sin t)
=

∫
f(r2)

r
dr + C.

25. xy′x − y = f
((
x2 − y2

))
g

((
x

√
x2 − y2

,
y

√
x2 − y2

))
(yy′x − x).

Setting x = r(t) cosh t, y = r(t) sinh t and integrating, we obtain the solution:

∫
dt

g(cosh t, sinh t)
+

∫
f(r2)

r
dr = C.
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26. f(x, y)y′x + g(x, y) = 0, where
∂f

∂x
=

∂g

∂y
.

Exact differential equation.

Solution:

∫ y

y0

f(x0, t) dt+

∫ x

x0

g(t, y) dt=C, where x0 and y0 are arbitrary numbers.

13.7.2 Equations Containing Exponential and Hyperbolic Functions

1. y′x = e−λxf(eλxy).

The substitution u = eλxy leads to a separable equation: u′x = f(u) + λu.

2. y′x = eλyf(eλyx).

The substitution u = eλyx leads to a separable equation: xu′x = λu2f(u) + u.

3. y′x = yf(eαxym).

This equation is invariant under the “translation–dilatation” transformation. The substitu-

tion z = eαxym leads to a separable equation: z′x = αz +mzf(z).

4. y′x =
1

x
f(xneαy).

This equation is invariant under the “dilatation–translation” transformation. The substitu-

tion z = xneαy leads to a separable equation: xz′x = nz + αzf(z).

5. y′x = f(x)eλy + g(x).

The substitution u = e−λy leads to a linear equation: u′x = −λg(x)u− λf(x).

6. y′x = −n

x
+ f(x)g(xney).

The substitution z = xney leads to a separable equation: z′x = f(x)zg(z).

7. y′x = − α

m
y + ykf(x)g(eαxym).

The substitution z = eαxym leads to a separable equation:

z′x = m exp
[ α
m

(1− k)x
]
f(x)z

k+m−1
m g(z).

8. y′x = f(x)eλy + g(x) + h(x)e−λy.

The substitution u = eλy leads to a Riccati equation: u′x = λf(x)u2 + λg(x)u + λh(x).

9. y′x = eαx−βyf(aeαx + beβy).

The substitution w= aeαx+beβy leads to a separable equation: w′
x = eαx[aα+bβf(w)].

10. y′x = f(y + aeλx + b) − aλeλx.

The substitution w = y + aeλx + b leads to a separable equation: w′
x = f(w).

11. y′x = − n

αx
+

f(xneαy)

xy
.

The substitution t=xneαy leads to a linear equation with respect to y= y(t): α2tf(t)y′t=
−ny + αf(t).
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12. y′x = − n

αx
+

f(xneαy)

xy2
.

The substitution t = xneαy leads to a Riccati equation: α2tf(t)y′t = −ny2 + αf(t).

13. [f(ax+ by) + beαyg(ax+ by)]y′x= h(ax+ by) − aeαyg(ax+ by).

The transformation t=ax+by, z=e−αy leads to a linear equation with respect to z=z(t):
[af(t) + bh(t)]z′t = −αh(t)z + αag(t).

14. [f(ax+ by) + beαxg(ax+ by)]y′x= h(ax+ by) − aeαxg(ax+ by).

The transformation t=ax+by, z=e−αx leads to a linear equation with respect to z=z(t):
[af(t) + bh(t)]z′t = −αf(t)z − αbg(t).

15. [eαxf(y) + aβ]y′x + eβyg(x) + aα = 0.

Solution:

∫
e−βyf(y) dy +

∫
e−αxg(x) dx − ae−αx−βy = C .

16. x[f(xneαy) + αyg(xneαy)]y′x = h(xneαy) − nyg(xneαy).

The substitution t = xneαy leads to a linear equation with respect to y = y(t):
t[nf(t) + αh(t)]y′t = −ng(t)y + h(t).

17. [f(eαxym) +mxg(eαxym)]y′x = y[h(eαxym)− αxg(eαxym)].

The substitution t = eαxym leads to a linear equation with respect to x = x(t):
t[αf(t) +mh(t)]x′t = mg(t)x+ f(t).

18. y′x = f(x) sinh(λy) + g(x) cosh(λy) + h(x).

The substitution u= eλy leads to a Riccati equation: 2u′x=λ(f+g)u2+2λhu+λ(g−f).

19. y′x = f(x) sinh2(λy) + g(x) cosh2(λy) + h(x) sinh(2λy) + s(x).

The substitution w = tanh(λy) leads to a Riccati equation: w′
x = λ(f + s)w2 + 2λhw +

λ(g − s).

20. y′x = f(x) sinh
((
λy + g(x)

))
.

The substitution w = λy + g(x) leads to an equation of the form 13.7.2.18: w′
x =

λf(x) sinhw + g′x(x).

21. y′x = f(x) cosh
((
λy + g(x)

))
.

The substitution w = λy + g(x) leads to an equation of the form 13.7.2.18: w′
x =

λf(x) coshw + g′x(x).

22. y′x = y coth x f(ym sinhx).

The transformation t = sinh x, z = ym leads to an equation of the form 13.7.1.3: tz′t =
mzf(tz).

23. y′x = x−1 tanh y f(xn sinh y).

The transformation t = xn, z = sinh y leads to an equation of the form 13.7.1.3: ntz′t =
zf(tz).
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24. y′x = y tanhx f(ym cosh x).

The substitution t = cosh x leads to an equation of the form 13.7.1.3: ty′t = yf(tym).

25. y′x = x−1 coth y f(xn cosh y).

The substitution z = cosh y leads to an equation of the form 13.7.1.3: xz′x = zf(xnz).

13.7.3 Equations Containing Logarithmic Functions

1. y′x = f(x)y ln2 y + g(x)y ln y + h(x)y.

The substitution u = ln y leads to a Riccati equation: u′x = f(x)u2 + g(x)u+ h(x).

2. y′x = x−1ym+1f(ym ln x).

The substitution t = lnx leads to an equation of the form 13.7.1.3: y′t =
y

t
[tymf(tym)].

3. y′x = x−n−1yf(xn ln y).

The substitution z = ln y leads to an equation of the form 13.7.1.3: z′x =
z

x

f(xnz)

xnz
.

4. y′x = x−1eyf(ey lnx).

The substitution t = lnx leads to an equation of the form 13.7.2.4: y′t =
1

t
[teyf(tey)].

5. y′x = ye−xf(ex ln y).

The substitution z = ln y leads to an equation of the form 13.7.2.3: z′x = z
f(exz)

exz
.

6. y′x = −nx−1y ln y + yf(x)g(xn ln y).

The substitution w(x) = xn ln y leads to a separable equation: w′
x = xnf(x)g(w).

7. y′x = − n

m

y

x
+

yf(xnym)

x ln y
.

The transformation t= xnym, z = ln y leads to a linear equation with respect to z = z(t):
m2tf(t)z′t = −nz +mf(t).

8. y′x = − n

m

y

x
+

yf(xnym)

x(ln y)2
.

The transformation t= xnym, z = ln y leads to a Riccati equation: m2tf(t)z′t =−nz2+
mf(t).

9. x[f(xnym) +m ln y g(xnym)]y′x = y[h(xnym) − n ln y g(xnym)].

The transformation t= xnym, z = ln y leads to a linear equation with respect to z = z(t):
t[nf(t) +mh(t)]z′t = −ng(t)z + h(t).

10. x[f(xnym) +m lnx g(xnym)]y′x = y[h(xnym)− n ln x g(xnym)].

The transformation t= xnym, z = lnx leads to a linear equation with respect to z = z(t):
t[nf(t) +mh(t)]z′t = mg(t)z + f(t).
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13.7.4 Equations Containing Trigonometric Functions

1. y′x = ym+1 sin xF (ym cos x).

This is an equation of the type 13.7.4.3 with f(ξ) = ξF (ξ).

2. y′x = ym+1 cos xF (ym sin x).

This is an equation of the type 13.7.4.4 with f(ξ) = ξF (ξ).

3. y′x = y tanx f(ym cos x).

The substitution t = cos x leads to an equation of the form 13.7.1.3: ty′t = −yf(tym).

4. y′x = y cot x f(ym sin x).

The substitution t = sinx leads to an equation of the form 13.7.1.3: ty′t = yf(tym).

5. y′x = x−1 tan y f(xn sin y).

The transformation t = xn, z = sin y leads to an equation of the form 13.7.1.3: ntz′t =
zf(tz).

6. y′x = x−1 cot y f(xn cos y).

The transformation t = xn, z = cos y leads to an equation of the form 13.7.1.3: ntz′t =
−zf(tz).

7. y′x = x−1 sin 2y f(xn tan y).

The transformation t = xn, z = tan y leads to an equation of the form 13.7.1.3: ntz′t =
2zf(tz).

8. y′x = x−1 sin 2y f(xn cot y).

The transformation t = xn, z = cot y leads to an equation of the form 13.7.1.3: ntz′t =
−2zf(tz).

9. y′x =
y

sin 2x
f(ym tanx).

The substitution t = tan x leads to an equation of the form 13.7.1.3: 2ty′t = yf(tym).

10. y′x =
y

sin 2x
f(ym cot x).

The substitution t = cot x leads to an equation of the form 13.7.1.3: 2ty′t = −yf(tym).

11. y′x = f(x) cos(ay) + g(x) sin(ay) + h(x).

The substitution u= tan(ay/2) leads to a Riccati equation: 2u′x = a(h− f)u2 +2agu+
a(f + h).

12. y′x = f(x) cos2(ay) + g(x) sin2(ay) + h(x) sin(2ay) + s(x).

The substitution u = tan(ay) leads to a Riccati equation: u′x = a(g + s)u2 + 2ahu +
a(f + s).

13. y′x = f(y + a tanx)− a tan2 x.

The substitution u = y + a tanx leads to a separable equation: u′x = a+ f(u).
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14. y′x =
sin 2y

sin 2x
f(tanx tan y).

The transformation t = tanx, z = tan y leads to an equation of the form 13.7.1.3: tz′t =
zf(tz).

15. y′x = cot x tan y f(sinx sin y).

The transformation t = sinx, z = sin y leads to an equation of the form 13.7.1.3: tz′t =
zf(tz).

16. y′x = − cot x tan y +
f(x)

cos y
g(sin x sin y).

The substitution w(x) = sinx sin y leads to a separable equation: w′
x = sinx f(x)g(w).

17. y′x = − sin 2y

sin 2x
+ cos2 y f(x)g(tanx tan y).

The substitution w(x) = tanx tan y leads to a separable equation: w′
x = tanx f(x)g(w).

18. y′x = −nx−1 sin 2y + cos2 y f(x)g(x2n tan y).

The substitution w(x) = x2n tan y leads to a separable equation: w′
x = x2nf(x)g(w).

19. (1 + tan2 y)y′x = f(x) tanm+1 y + g(x) tan y + h(x) tan1−m y.

The substitution u = tanm y leads to a Riccati equation: u′x = mf(x)u2 + mg(x)u +
mh(x).

20. y′x = f(x) sin
((
λy + g(x)

))
.

The substitution w = λy + g(x) leads to an equation of the form 13.7.4.11: w′
x =

λf(x) sinw + g′x(x).

21. y′x = f(x) cos
((
λy + g(x)

))
.

The substitution w = λy + g(x) leads to an equation of the form 13.7.4.11: w′
x =

λf(x) cosw + g′x(x).

22. y′x = f(x) sin2
((
λy + g(x)

))
.

The substitution w = λy + g(x) leads to an equation of the form 13.7.4.12: w′
x =

λf(x) sin2 w + g′x(x).

23. y′x = f(x) cos2
((
λy + g(x)

))
.

The substitution w = λy + g(x) leads to an equation of the form 13.7.4.12: w′
x =

λf(x) cos2 w + g′x(x).

13.7.5 Equations Containing Combinations of Exponential,
Logarithmic, and Trigonometric Functions

1. y′x = − sin 2y + cos2 y f(x)g(e2x tan y).

The substitution w(x) = e2x tan y leads to a separable equation: w′
x = e2xf(x)g(w).

2. y′x =
F (ex cos y)

ex sin y
.

This is an equation of the type 13.7.5.5 with f(ξ) = F (ξ)/ξ.
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3. y′x = ey cos xF (ey sin x).

This is an equation of the type 13.7.5.7 with f(ξ) = ξF (ξ).

4. y′x = tan y f(ex sin y).

The substitution z = sin y leads to an equation of the form 13.7.2.3: z′x = zf(exz).

5. y′x = cot y f(ex cos y).

The substitution z = cos y leads to an equation of the form 13.7.2.3: z′x = −zf(exz).

6. y′x = tanx f(ey cosx).

The substitution t = cos x leads to an equation of the form 13.7.2.4: ty′t = −f(tey).

7. y′x = cot x f(ey sin x).

The substitution t = sinx leads to an equation of the form 13.7.2.4: ty′t = f(tey).

8. y′x = sin 2y f(ex tan y).

The substitution z = tanx leads to an equation of the form 13.7.2.3: z′x = 2zf(exz).

9. y′x = sin 2y f(ex cot y).

The substitution z = cot x leads to an equation of the form 13.7.2.3: z′x = −2zf(exz).

10. y′x =
F (ex sin y)

ex cos y
.

This is an equation of the type 13.7.5.4 with f(ξ) = F (ξ)/ξ.

11. y′x = ey sin xF (ey cosx).

This is an equation of the type 13.7.5.6 with f(ξ) = ξF (ξ).

12. y′x =
f(ey tanx)

sin 2x
.

The substitution t = tan x leads to an equation of the form 13.7.2.4: 2ty′t = f(tey).

13. y′x =
f(ey cotx)

sin 2x
.

The substitution t = cot x leads to an equation of the form 13.7.2.4: 2ty′t = −f(tey).

14. y′x = e−λxf(λx+ ln y).

The substitution u = λx+ ln y leads to a separable equation: u′x = e−uf(u) + λ.

15. y′x = eλyf(λy + lnx).

The substitution u = λy + lnx leads to a separable equation: xu′x = λeuf(u) + 1.
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13.8 Equations Not Solved for the Derivative

and Equations Defined Parametrically

13.8.1 Equations Not Solved for the Derivative Containing Arbitrary
Functions

◮ Arguments of arbitrary functions depend on x and y.

1. (y′x)
2 + [f(x) + g(x)]y′x + f(x)g(x) = 0.

The equation can be factorized: [y′x + f(x)][y′x + g(x)] = 0, i.e., it falls into two simpler

equations y′x + f(x) = 0 and y′x + g(x) = 0. Therefore, the solutions are:

y +

∫
f(x) dx = C and y +

∫
g(x) dx = C.

2. (y′x)
2 + 2fyy′x + gy2 = (g − f2) exp

((
− 2

∫ x

a
f dx

))
.

Here, f = f(x), g = g(x). Solution:

y =





exp
(
−
∫ x

a
f dx

)
sin
(∫ x

a

√
g − f2 dx+ C

)
if g > f2,

C exp
(
−
∫ x

a
f dx

)
if g ≡ f2,

exp
(
−
∫ x

a
f dx

)
cosh

(∫ x

a

√
f2 − g dx+ C

)
if g < f2.

3. xy′x − y = f(x2 + y2)
√

(y′x)
2 + 1.

Raising the equation to the second power and applying the transformation x = r(t) cos t,
y = r(t) sin t, one arrives at the relation r4 = f2(r2)[(r′t)

2 + r2]. Solving it for r′t yields a

separable equation: f(r2)r′t = ±r
√
r2 − f2(r2).

4. yy′x + x = f(x2 + y2)
√

(y′x)
2 + 1.

Raising the equation to the second power and applying the transformation x = r(t) cos t,
y = r(t) sin t, one arrives at the relation r2(r′t)

2 = f2(r2)[(r′t)
2 + r2]. Solving it for r′t

yields a separable equation: r′t = ±
rf(r2)√
r2 − f2(r2)

.

⊙ Literature: G. W. Bluman, J. D. Cole (1974, page 100).

5. xy′x − y =
√
x2 + y2 f

((
x

√
x2 + y2

,
y

√
x2 + y2

))√
(y′x)

2 + 1.

Raising the equation to the second power and applying the transformation x = r(t) cos t,
y = r(t) sin t, one arrives at the relation r2 = f2(cos t, sin t)[(r′t)

2 + r2]. Solving it for r′t
yields a separable equation: f(cos t, sin t)r′t = ±r

√
1− f2(cos t, sin t).

6. yy′x + x =
√
x2 + y2 f

((
x

√
x2 + y2

,
y

√
x2 + y2

))√
(y′x)

2 + 1.

Raising the equation to the second power and applying the transformation x = r(t) cos t,
y = r(t) sin t, one arrives at the relation r2(r′t)

2 = f2(cos t, sin t)[(r′t)
2 + r2]. Solving it

for r′t yields a separable equation:
√

1− f2(cos t, sin t) r′t = ±rf(cos t, sin t).
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◮ Argument of arbitrary functions is y′x.

7. x = f(y′x).

Solution in parametric form:

x = f(t), y =

∫
tf ′t(t) dt+ C.

8. y = f(y′x).

Solution in parametric form:

x =

∫
f ′t(t)

dt

t
+ C, y = f(t).

9. f(y′x) + ax+ by + s = 0.

Solution in parametric form:

x = C −
∫

f ′t(t) dt
a+ bt

, by = −ax− s− f(t).

In addition, there is a particular solution y = αx + β, where α and β are determined by

solving the system of two algebraic equations:

a+ bα = 0, f(α) + bβ + s = 0.

10. y = xy′x + f(y′x).

The Clairaut equation. Solution: y = Cx+ f(C).

In addition, there is a singular solution, which may be written in the parametric form

as:

x = −f ′t(t), y = −tf ′t(t) + f(t).

11. y = xf(y′x) + g(y′x).

The Lagrange–d’Alembert equation. For the case f(t) = t, see equation 13.8.1.10. Having

differentiated with respect to x, we arrive at a linear equation with respect to x = x(t),
where t = y′x: [t− f(t)]x′t = f ′t(t)x+ g′t(t). See also 1.8.1.12.

12. xf(y′x) + yg(y′x) + h(y′x) = 0.

The Legendre transformation X = y′x, Y = xy′x − y, Y ′
X = x leads to a linear equation:

[f(X) +Xg(X)]Y ′
X − g(X)Y + h(X) = 0.

Inverse transformation: x = Y ′
X , y = XY ′

X − Y , y′x = X.

13. y = x2f(y′x) + xg(y′x) + h(y′x).

Having differentiated with respect to x, we arrive at an Abel equation with respect to

x = x(t), where t = y′x:

[
2f(t)x+ g(t)− t

]
x′t = −f ′t(t)x2 − g′t(t)x− h′t(t)

(see Section 13.3.4).
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14. x = y2f(y′x) + yg(y′x) + h(y′x).

Having differentiated with respect to x, we arrive at an Abel equation with respect to

y = y(t), where t = y′x:

[
2tf(t)y + tg(t)− 1

]
y′t = −tf ′t(t)y2 − tg′t(t)y − th′t(t)

(see Section 13.3.4).

15. y = xnf(y′x) + xy′x.

Differentiating with respect to x and denoting t = y′x, we obtain a Bernoulli equation for

x = x(t): nf(t)x′t − f ′t(t)x− x2−n = 0.

16. (xy′x − y)nf(y′x) + yg(y′x) + xh(y′x) = 0.

The Legendre transformation x = u′t, y = tu′t − u (y′x = t) leads to a Bernoulli equation:

[tg(t) + h(t)]u′t = g(t)u− f(t)un.

◮ Arguments of arbitrary functions are linear with respect to y′x.

17. y = a(y′x)
2 + f(x− 2ay′x).

Solution: y = f(C)+
1

4a
(x−C)2. In addition, there is a singular solution, which can be

represented in parametric form as:

x = t+ 2af ′t(t), y = f(t) + a[f ′t(t)]
2.

18. y′x = f(y′x + ax) + g(y′x + ax)(y′2x + 2ay).

The contact transformation X = y′x+ax, Y = 1
2 (y

′
x)

2+ay, Y ′
X = y′x, where Y = Y (X),

leads to a linear equation: Y ′
X = 2g(X)Y + f(X).

Inverse transformation: x = a−1(X − Y ′
X), y = 1

2a
−1[2Y − (Y ′

X)2], y′x = Y ′
X .

19. y′x = f(y′x + ax)(y′2x + 2ay) + g(y′x + ax)(y′2x + 2ay)k.

The contact transformation X = y′x+ax, Y = 1
2 (y

′
x)

2+ay, Y ′
X = y′x, where Y = Y (X),

leads to a Bernoulli equation: Y ′
X = 2f(X)Y + 2kg(X)Y k.

Inverse transformation: x = a−1(X − Y ′
X), y = 1

2a
−1[2Y − (Y ′

X)2], y′x = Y ′
X .

20. xneαy = f(xy′x).

The substitution y = lnw leads to an equation of the form 13.8.1.32: xnwα = f(xw′
x/w).

21. x = f(y′x)g(xy
′

x − y).

The Legendre transformation X = y′x, Y =xy′x−y, Y ′
X =x leads to a separable equation:

Y ′
X = f(X)g(Y ).

Inverse transformation: x = Y ′
X , y = XY ′

X − Y , y′x = X.

22. xf(xy′x − y)y′x + xg(xy′x − y)(y′x)
k = a.

The modified Legendre transformation X = xy′x − y, Y = y′x, Y ′
X = 1/x leads to a

Bernoulli equation: aY ′
X = f(X)Y + g(X)Y k.

Inverse transformation: x = (Y ′
X)−1, y = Y (Y ′

X)−1 −X, y′x = Y .
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23. x = f(xy′x + y)g(x2y′x).

The contact transformation X = xy′x + y, Y = x2y′x, Y ′
X = x, where Y = Y (X), leads

to a separable equation: Y ′
X = f(X)g(Y ).

Inverse transformation: x = Y ′
X , y = X − Y (Y ′

X)−1, y′x = Y (Y ′
X)−2.

24. x = f(xy′x + y) + x2y′xg(xy
′

x + y).

The contact transformation X = xy′x + y, Y = x2y′x, Y ′
X = x, where Y = Y (X), leads

to a linear equation: Y ′
X = g(X)Y + f(X).

Inverse transformation: x = Y ′
X , y = X − Y (Y ′

X)−1, y′x = Y (Y ′
X)−2.

25. xy′xf(xy
′

x + y) + x3(y′x)
2g(xy′x + y) = a.

The contact transformation X = xy′x + y, Y = x2y′x, Y ′
X = x, where Y = Y (X), leads

to a Bernoulli equation: aY ′
X = f(X)Y + g(X)Y 2.

Inverse transformation: x = Y ′
X , y = X − Y (Y ′

X)−1, y′x = Y (Y ′
X)−2.

26. f(yy′x + x) = y2(y′2x + 1).

Setting u(x) = yy′x + x and differentiating with respect to x, we obtain

u′x[f
′
u(u)− 2u+ 2x] = 0. (1)

Equating the first factor to zero, after integrating we find y2 =−(x−C)2+B. Substituting

the latter into the original equation yields B = f(C). As a result we obtain the solution:

y2 = f(C)− (x− C)2.

There is also a singular solution that corresponds to equating the second factor of (1) to

zero. This solution in parametric form is written as:

x = u− 1
2 f

′
u(u), y2 = f(u)− 1

4 [f
′
u(u)]

2.

27. yy′x = f(yy′x − x) + y2(y′2x − 1)g(yy′x − x).

The contact transformation x=Y Y ′
X−X, y=Y [(Y ′

X)2−1]1/2, y′x=Y ′
X [(Y ′

X)2−1]−1/2,

where Y = Y (X), leads to the equation Y Y ′
X = f(X) + Y 2g(X), which is linear in

W = Y 2.

Inverse transformation: X= yy′x−x, Y =−y[(y′x)2−1]1/2, Y ′
X =−y′x[(y′x)2−1]−1/2.

28. y′x =
1

x2
f
((
y′x +

y

x

))
+
((
y′x − y

x

))
g
((
y′x +

y

x

))
.

The contact transformation X = y′x + y/x, Y = x2(y′x)
2 − y2, Y ′

X = 2x2y′x leads to a

linear equation: XY ′
X = 2g(X)Y + 2Xf(X).

Inverse transformation:

x = ± 1

X

√
XY ′

X − Y , y = ± XY ′
X − 2Y

2
√
XY ′

X − Y
, y′x =

X2Y ′
X

2(XY ′
X − Y )

.

29. xa−1f
((
y′x − a

y

x

))
+
((
y′x − y

x

))
g
((
y′x − a

y

x

))
= b.

For a 6= 1, the contact transformation X = y′x− ay/x, Y = x1−ay′x− x−ay, Y ′
X = x1−a

leads to a linear equation: bY ′
X = g(X)Y + f(X).
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Inverse transformation:

x = (Y ′
X)

1
1−a , y =

1

1− a (XY
′
X − Y )(Y ′

X)
a

1−a , y′x =
XY ′

X − aY
(1− a)Y ′

X

.

30. xa+1f
((
y′x + a

y

x

))
= g(xa+1y′x − xay).

For a 6= −1, the contact transformation X = y′x+ ay/x, Y = xa+1y′x−xay, Y ′
X = xa+1

leads to a separable equation: f(X)Y ′
X = g(Y ).

Inverse transformation:

x = (Y ′
X)

1
a+1 , y =

1

a+ 1
(XY ′

X − Y )(Y ′
X)
− a

a+1 , y′x =
XY ′

X + aY

(a+ 1)Y ′
X

.

31. eαxyn = f(y′x/y).

The substitution x = ln t leads to an equation of the form 13.8.1.32: tαyn = f(ty′t/y).

32. xnym = f(xy′x/y).

We pass to a new variable w(x) = xy′x/y, divide both sides of the equation by xnym, and

differentiate with respect to x. As a result we arrive at a separable equation: xf ′w(w)w
′
x =

(mw + n)f(w).

Solution in parametric form:

ln |x| =
∫

f ′w(w) dw
(mw + n)f(w)

+ C, xnym = f(w).

In addition, there are singular solutions y =Akx
−n/m, where Ak are roots of the algebraic

equation Am
k − f(−n/m) = 0.

33. y′x = exf(exy′x) − y.

The contact transformation X = exy′x, Y = y′x + y, Y ′
X = e−x, where Y = Y (X), leads

to a separable equation: Y Y ′
X = f(X).

Inverse transformation: x = − lnY ′
X , y = Y −XY ′

X , y′x = XY ′
X .

34. exf(exy′x) − g(y′x + y) = 0.

The contact transformation X = exy′x, Y = y′x + y, Y ′
X = e−x, where Y = Y (X), leads

to a separable equation: g(Y )Y ′
X = −f(X).

Inverse transformation: x = − lnY ′
X , y = Y −XY ′

X , y′x = XY ′
X .

35. f(exy′x) + g(exy′x)(y
′

x + y) = ae−x.

The contact transformation X = exy′x, Y = y′x + y, Y ′
X = e−x, where Y = Y (X), leads

to a linear equation: aY ′
X = g(X)Y + f(X).

Inverse transformation: x = − lnY ′
X , y = Y −XY ′

X , y′x = XY ′
X .

36. f(exy′x) − g(y′x + y) = x.

This equation can be rewritten in the form 13.8.1.34:

exF (exy′x)−G(y′x + y) = 0, where f(u) = − lnF (u), g(v) = − lnG(v).
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37. y(y′x sin x− y cosx) = y′xf(y
′

x cosx+ y sin x).

The contact transformation

X =
1√

(y′x)
2 + y2

, Y =
y′x cosx+ y sinx√

(y′x)
2 + y2

, Y ′
X =

y

y′x
(y′x sinx− y cos x)

leads to the homogeneous equation: Y ′
X = f(Y/X).

38. F (xn+1y′x, xy
′

x + ny) = 0.

Solution: y = C1x
−n + C2. Here, the constants C1 and C2 are related by the constraint

F (−C1n,C2n) = 0.

39. F (x2y′x + 2xy, x3y′x + x2y) = 0.

Solution: y=C1x
−1+C2x

−2. Here, the constants C1 and C2 are related by the constraint

F (C1,−C2) = 0.

The singular solution can be represented in parametric form as:

F (u, v) = 0, Fu(u, v) + xFv(u, v) = 0, where u = x2t+2xy, v = x3t+ x2y.

The subscripts u and v denote the respective partial derivatives, and t is the parameter.

40. F (xn+1y′x +mxny, xm+1y′x + nxmy) = 0.

Solution: y=C1x
−n+C2x

−m. Here, the constants C1 and C2 are related by the constraint

F
(
C1(m− n), C2(n −m)

)
= 0.

41. F (exy′x, y
′

x + y) = 0.

Solution: y = C1e
−x + C2. Here, the constants C1 and C2 are related by the constraint

F (−C1, C2) = 0.

42. F (eαxy′x + βeαxy, eβxy′x + αeβxy) = 0.

Solution: y = C1e
−αx + C2e

−βx. Here, the constants C1 and C2 are related by the

constraint F
(
C1(β − α), C2(α− β)

)
= 0.

43. F (y′x cosh x− y sinhx, y′x sinhx− y cosh x) = 0.

Solution: y = C1 sinhx + C2 cosh x. Here, the constants C1 and C2 are related by the

constraint F (C1, −C2) = 0.

44. F (xy′x, y − xy′x ln x) = 0.

Solution: y = C1 lnx + C2. Here, the constants C1 and C2 are related by the constraint

F (C1, C2) = 0.

45. F
((
y′

x

y
, ln y − x

y
y′x

))
= 0.

Solution: y = C1 exp(C2x). Here, the constants C1 and C2 are related by the constraint

F (C2, lnC1) = 0.

46. F
((
xy′

x

y
, ln y − xy′

x

y
lnx

))
= 0.

Solution: y = C1x
C2 . Here, the constants C1 and C2 are related by the constraint

F (C2, lnC1) = 0.
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47. F (y′x cos x+ y sin x, y′x sin x− y cosx) = 0.

Solution: y = C1 sinx + C2 cos x. Here, the constants C1 and C2 are related by the

constraint F (C1, −C2) = 0.

48. F
((
y′

x

ϕ′

x

, y − ϕ

ϕ′

x

y′x

))
= 0, ϕ = ϕ(x).

Solution: y = C1ϕ(x) + C2. Here, the constants C1 and C2 are related by the constraint

F (C1, C2) = 0.

49. F
((
ψ′

xy − ψy′

x

ϕψ′
x − ψϕ′

x

,
ϕ′

xy − ϕy′

x

ϕψ′
x − ψϕ′

x

))
= 0, ϕ = ϕ(x), ψ = ψ(x).

Solution: y = C1ϕ(x) + C2ψ(x). Here, the constants C1 and C2 are related by the

constraint F (C1,−C2) = 0.

The singular solution can be represented in parametric form as:

F (u, v)=0, ψFu(u, v)+ϕFv(u, v)=0, where u=
ψ′
xy − tψ

ϕψ′
x − ψϕ′

x

, v=
ϕ′
xy − tϕ

ϕψ′
x − ψϕ′

x

.

The subscripts u and v denote the respective partial derivatives, and t is the parameter.

50. F
((
ϕx + ϕyy

′

x, ϕ− x(ϕx + ϕyy
′

x)
))
= 0.

Here, ϕ = ϕ(x, y), ϕx = ∂ϕ
∂x , ϕy = ∂ϕ

∂y . Differentiating with respect to x, we obtain

(ϕx + ϕyy
′
x)

′
x(Fu − xFv) = 0,

where Fu = ∂F
∂u and Fv =

∂F
∂v are partial derivatives of function F (u, v). Equating the first

factor to zero, we find the solution:

ϕ(x, y) = Cx+A, where F (C,A) = 0.

It remains to be checked whether the equation Fu − xFv = 0 possesses any solutions and

which of them satisfy the original equation.

◮ Arguments of arbitrary functions are nonlinear with respect to y′x.

51. y = f(xy′2x ) + 2xy′x.

Solution: [y − f(C)]2 = 4Cx.

52. y = 2a(y′x)
3 + f(x− 3ay′2x ).

This is a special case of equation 13.8.1.72 with n = 3.

Solution: y = f(C) + 2a
( x− C

3a

)3/2
. In addition, there is the following singular

solution written in parametric form:

x = t+ 3a[f ′t(t)]
2, y = f(t) + 2a[f ′t(t)]

3.

53. y′x = f(ay′2x − bx) + (2ay′3x − 3by)g(ay′2x − bx), b 6= 0.

The contact transformation X = a(y′x)
2 − bx, Y = 2a(y′x)

3 − 3by, Y ′
X = 3y′x leads to a

linear equation: Y ′
X = 3g(X)Y + 3f(X).

Inverse transformation: x = 1
9 b

−1[a(Y ′
X)2 − 9X], y = 1

81 b
−1[2a(Y ′

X)3 − 27Y ],
y′x = 1

3Y
′
X .
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54. y′x = f(y′x + ax)g( 1
2
y′2x + ay).

The contact transformation X = y′x+ax, Y = 1
2 (y

′
x)

2+ay, Y ′
X = y′x, where Y = Y (X),

leads to a separable equation: Y ′
X = f(X)g(Y ).

Inverse transformation: x = a−1(X − Y ′
X), y = 1

2a
−1[2Y − (Y ′

X)2], y′x = Y ′
X .

55. y′x(y
′

x − y) = f(y′2x − y2).

The contact transformation X = (y′x)
2 − y2, Y = ex(y′x − y), Y ′

X = 1
2 e

x(y′x)
−1 leads to

a linear (separable) equation: 2f(X)Y ′
X = Y .

56. y′x = f(y′2x − y2)(aex + be−x).

The contact transformation

X = (y′x)
2− y2, Y = y′x(ae

x + be−x)− y(aex− be−x), Y ′
X = 1

2 (ae
x + be−x)(y′x)

−1

leads to a separable equation: 2f(X)Y ′
X = 1.

57. y′x = exf(y′2x − y2)g(exy′x − exy).

The contact transformation X = (y′x)
2 − y2, Y = ex(y′x − y), Y ′

X = 1
2 e

x(y′x)
−1 leads to

a separable equation: 2f(X)g(Y )Y ′
X = 1.

58. y′x = f(y′2x − y2) cosh x.

The contact transformation X=(y′x)
2−y2, Y =y′x cosh x−y sinhx, Y ′

X = 1
2 coshx(y′x)

−1

leads to a separable equation: 2f(X)Y ′
X = 1.

59. y′x = f(y′2x − y2) sinhx.

The contact transformation X=(y′x)
2−y2, Y =y′x sinhx−y cosh x, Y ′

X = 1
2 sinhx(y′x)

−1

leads to a separable equation: 2f(X)Y ′
X = 1.

60. y′x = f(y′2x − y2)(a cosh x+ b sinhx).

The contact transformation

X = (y′x)
2 − y2, Y = y′x(a cosh x+ b sinh x)− y(a sinh x+ b cosh x),

Y ′
X =

a cosh x+ b sinh x

2y′x

leads to a separable equation: 2f(X)Y ′
X = 1.

61. y′x = f(y′2x − y2)g(y′x cosh x− y sinhx) cosh x.

The contact transformation X=(y′x)
2−y2, Y =y′x cosh x−y sinhx, Y ′

X = 1
2 coshx(y′x)

−1

leads to a separable equation: 2f(X)g(Y )Y ′
X = 1.

62. y′x = f(y′2x − y2)g(y′x sinhx− y cosh x) sinhx.

The contact transformation X=(y′x)
2−y2, Y =y′x sinhx−y cosh x, Y ′

X = 1
2 sinhx(y′x)

−1

leads to a separable equation: 2f(X)g(Y )Y ′
X = 1.

63. y′xf(y
′2
x − y2) + ay′2x cosh x− ayy′x sinhx = cosh x.

The contact transformation X=(y′x)
2−y2, Y =y′x cosh x−y sinhx, Y ′

X = 1
2 coshx(y′x)

−1

leads to a linear equation: 2Y ′
X = aY + f(X).
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64. y′x = f(y′2x + y2) cosx.

This is a special case of equation 13.8.1.65 with a = 1 and b = 0.

65. y′x = f(y′2x + y2)(a cosx+ b sinx).

The contact transformation

X = (y′x)
2 + y2, Y = y′x(a cos x+ b sinx) + y(a sinx− b cos x),

Y ′
X = 1

2 (a cos x+ b sinx)(y′x)
−1

leads to a separable equation: 2f(X)Y ′
X = 1.

66. y′x = f(y′2x + y2)g(y′x cos x+ y sin x) cosx.

The contact transformation X = (y′x)
2+ y2, Y = y′x cosx+ y sinx, Y ′

X = 1
2 cos x(y

′
x)

−1

leads to a separable equation: 2f(X)g(Y )Y ′
X = 1.

67. y′xf(y
′2
x + y2) + ay′2x cos x+ ayy′x sin x = cosx.

The contact transformation X = (y′x)
2+ y2, Y = y′x cosx+ y sinx, Y ′

X = 1
2 cos x(y

′
x)

−1

leads to a linear equation: 2Y ′
X = aY + f(X).

68. y′x = f(y′2x + y2)g(y′x sin x− y cos x) sinx.

The contact transformation X = (y′x)
2+ y2, Y = y′x sinx− y cos x, Y ′

X = 1
2 sinx(y

′
x)

−1

leads to a separable equation: 2f(X)g(Y )Y ′
X = 1.

69. x2y′x = f
((
y′x +

y

x

))
g(x2y′2x − y2).

The contact transformation X = y′x + y/x, Y = x2(y′x)
2 − y2, Y ′

X = 2x2y′x leads to a

separable equation: Y ′
X = 2f(X)g(Y ).

Inverse transformation:

x = ± 1

X

√
XY ′

X − Y , y = ± XY ′
X − 2Y

2
√
XY ′

X − Y
, y′x =

X2Y ′
X

2(XY ′
X − Y )

.

70. y′x = f(ay′2x − bx)g(2ay′3x − 3by), b 6= 0.

The contact transformation X = a(y′x)
2 − bx, Y = 2a(y′x)

3 − 3by, Y ′
X = 3y′x leads to a

separable equation: Y ′
X = 3f(X)g(Y ).

Inverse transformation: x = 1
9 b

−1[a(Y ′
X)2 − 9X], y = 1

81 b
−1[2a(Y ′

X)3 − 27Y ],
y′x = 1

3Y
′
X .

71. y = f(xy′nx ) +
n

n− 1
xy′x.

Solution: y = f(C n) +
nC

n− 1
x
n−1
n .

72. y = a(n− 1)(y′x)
n + f

((
x− an(y′x)

n−1
))
.

Differentiating with respect to x, we obtain a factorized equation:

[
1− an(n− 1)(y′x)

n−2y′′xx
][
y′x − f ′t(t)

]
= 0, (1)



“K16435’ — 2017/9/28 — 15:05 — #539

13.8. Equations Not Solved for the Derivative and Equations Defined Parametrically 513

where t=x−an(y′x)n−1. Equate the first factor to zero and integrate the obtained equation.

Substituting the expression obtained into the original equation, we find the solution:

y = f(C) + a(n− 1)
( x− C

an

) n
n−1

.

Equating the second factor in (1) to zero, we have another solution that can be written

in parametric form as:

x = t+ an[f ′t(t)]
n−1, y = f(t) + a(n− 1)[f ′t(t)]

n.

73. y′x = f
((
a(y′x)

k − bx
))
g
((
ak(y′x)

k+1 − b(k + 1)y
))
.

The contact transformation (ab 6= 0, k 6= −1)

X = a(y′x)
k − bx, Y = ak(y′x)

k+1 − b(k + 1)y, Y ′
X = (k + 1)y′x

leads to a separable equation: Y ′
X = (k + 1)f(X)g(Y ).

Inverse transformation:

x =
a(Y ′

X)k

b(k + 1)k
− X

b
, y =

ak(Y ′
X)k+1

b(k + 1)k+2
− Y

b(k + 1)
, y′x =

Y ′
X

k + 1
.

74. y′x = f
((
a(y′x)

k − bx
))
+
((
ak(y′x)

k+1 − b(k + 1)y
))
g
((
a(y′x)

k − bx
))
.

The contact transformation (ab 6= 0, k 6= −1)

X = a(y′x)
k − bx, Y = ak(y′x)

k+1 − b(k + 1)y, Y ′
X = (k + 1)y′x

leads to a linear equation: Y ′
X = (k + 1)g(X)Y + (k + 1)f(X).

Inverse transformation:

x =
a(Y ′

X)k

b(k + 1)k
− X

b
, y =

ak(Y ′
X)k+1

b(k + 1)k+2
− Y

b(k + 1)
, y′x =

Y ′
X

k + 1
.

75. F
((
yy′x + ax, y

√
y′2x + a

))
= 0.

Solution: y2 = −ax2 + 2C1x + C2. Here, the constants C1 and C2 are related by the

constraint

F
(
C1,

√
C2
1 + aC2

)
= 0 if y > 0,

F
(
C1, −

√
C2
1 + aC2

)
= 0 if y < 0.

76. F (exy′x − exy, y′2x − y2) = 0.

Solution: y = C1e
x + C2e

−x. Here, the constants C1 and C2 are related by the constraint

F (−2C2,−4C1C2) = 0.

77. F (y′x cosh x− y sinhx, y′2x − y2) = 0.

Solution: y = C1 sinh x + C2 cosh x. Here, the constants C1 and C2 are related by the

constraint F (C1, C
2
1 − C2

2 ) = 0.

78. F (y′x cos x+ y sin x, y′2x + y2) = 0.

Solution: y = C1 sinx + C2 cos x. Here, the constants C1 and C2 are related by the

constraint F (C1, C
2
1 + C2

2 ) = 0.
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13.8.2 Some Transformations of Equations Not Solved for
the Derivative

1. x = f(y, y′x).

Substituting t = y′x and differentiating both sides of the equation with respect to x, we

obtain an equation with respect to y = y(t):

[1− tfy(y, t)]y′t = tft(y, t), where ft =
∂f
∂t , fy = ∂f

∂y .

If y = y(t) is the solution of the latter equation, the solution of the original equation can be

represented in parametric form as:

x = f(y(t), t), y = y(t).

2. y = f(x, y′x).

Differentiating with respect to x and setting t = y′x, we obtain an equation with respect to

x = x(t):

[t− fx(x, t)]x′t = ft(x, t), where ft =
∂f
∂t , fx = ∂f

∂x .

If x= x(t) is the solution of the latter equation, the solution of the original equation can be

represented in parametric form as:

x = x(t), y = f(x(t), t).

3. xnym = f
((
xkys,

xy′

x

y

))
.

Set z = xkys and w =
xy′x
y

. Divide both sides of the equation by xnym and differentiate

with respect to x. As a result we arrive at the following equation with respect to w =w(z):

z(sw + k)(fz + fww
′
z) = (mw + n)f, where f = f(z, w),

which is usually simpler than the original equation, since it is readily solved for the deriva-

tive. If w = w(z) is the solution of the equation obtained, the solution of the original

equation is written in parametric form as:

xkys = z, xnym = f(z, w(z)).

4. xneαy = f(xmeβy, xy′x).

The substitution y = lnu leads to an equation of the form 13.8.2.3:

xnuα = f
(
xmuβ, xu′x/u

)
.

5. eαxyn = f(eβxym, y′x/y).

The substitution x=ln t leads to an equation of the form 13.8.2.3: tαyn= f
(
tβym, ty′t/y

)
.

6. f(x, xy′x − y, y′x) = 0.

The Legendre transformation x = u′t, y = tu′t − u (y′x = t), where u = u(t), leads to the

equation f(u′t, u, t) = 0. Inverse transformation: t = y′x, u = xy′x − y, u′t = x.
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7. (y′x)
2 = λy + f(x).

For λ 6=0, the transformation λw=2
√
λy + f(x) leads to an Abel equation of the second

kind,

ww′
x = w + ϕ(x), where ϕ = 2λ−2f ′x(x),

which is outlined in Section 13.3.1 for specific functions ϕ.

8. y = xy′x + ax2 + f(y′x), a 6= 0.

Differentiating the equation with respect to x and changing to new variables t = y′x and

w = −2ax, we arrive at an Abel equation of the second kind,

ww′
t = w + ϕ(t), where ϕ = −2af ′t(t),

which is outlined in Section 13.3.1 for specific functions ϕ.

◆ For information about contact transformations, see Section 1.9.

13.8.3 Equations Defined Parametrically Containing Arbitrary
Functions

1. x = f(t), y′x = g(t).

General solution in parametric form:

x = f(t), y =

∫
f ′t(t)g(t) dt + C,

where C is an arbitrary constant.

2. y = f(t), y′x = g(t).

General solution in parametric form:

x =

∫
f ′t(t)
g(t)

dt+ C, y = f(t),

where C is an arbitrary constant.

3. y = f(t)x, y′x = g(t).

General solution in parametric form:

x = C exp

[∫
f ′t(t) dt

g(t) − f(t)

]
, y = Cf(t) exp

[∫
f ′t(t) dt

g(t)− f(t)

]
,

where C is an arbitrary constant.

4. y = f(t)x+ g(t), y′x = h(t).

General solution in parametric form:

x = Cϕ(t) + ϕ(t)

∫
g′t(t) dt

ϕ(t)[h(t) − f(t)] , y = f(t)x+ g(t),

where C is an arbitrary constant and ϕ(t) = exp

[∫
f ′t(t) dt

h(t) − f(t)

]
.
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5. y = a(t)x+ b(t), y′x = c(t)x+ d(t).

Differentiating the first equation with respect to x, taking into account that y′x = y′t/x
′
t, and

eliminating y′x with the help of the second equation, we arrive at an Abel equation of the

second kind for x = x(t):
(cx+ d− a)x′t = a′tx+ b′t.

6. y = f(t)xk − g(t), y′x = kf(t)xk−1.

General solution:

y = f(C)xk − g(C),

where C is an arbitrary constant.

Singular solution in parametric form:

x =

[
g′t(t)
f ′t(t)

]1/k
, y = f(t)

g′t(t)
f ′t(t)

− g(t).

7. y = f(t)eλ(t)x, y′x = g(t)eλ(t)x.

General solution in parametric form:

x = CE(t) + E(t)

∫
f ′t(t) dt

E(t)[g(t) − f(t)λ(t)] , y = f(t)eλ(t)x,

E(t) = exp

[∫
f(t)λ′t(t) dt

g(t)− f(t)λ(t)

]
,

where C is an arbitrary constant.

8. y = f(x) + g(t), y′x = f ′

x(x) + h(t).

General solution in parametric form:

x =

∫
g′t(t)
h(t)

dt+ C, y = f(x) + g(t),

where C is an arbitrary constant.

9. y = f(t)xk+1 + g(t)x, y′x = (k + 1)f(t)xk + h(t).

This equation can be solved using the second technique described in Section 1.8.3. We get

dy =
[
(k + 1)fxk + g

]
dx+

(
f ′tx

k+1 + g′tx
)
dt,

dy =
[
(k + 1)fxk + h

]
dx.

The first relation is a differential consequence of the first equation (for brevity, the argu-

ments of the functions f , g, and h are omitted). Eliminating dy, we arrive at a Bernoulli

equation for x = x(t):
(h− g)x′t = f ′tx

k+1 + g′tx.

Integrating yields

x =

[
Cϕ+ kϕ

∫
f ′t dt

ϕ(g − h)

]−1/k

, ϕ = exp

(
k

∫
g′t dt
g − h

)
,

where C is an arbitrary constant. This formula and the expression y = f(t)xk+1 + g(t)x
determine the general solution to the original equation in parametric form.
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10. y = f(t)eλx + g(t), y′x = λf(t)eλx + h(t).

This equation can be solved using the second technique described in Section 1.8.3. We get

dy = λfeλx dx+
(
f ′te

λx + g′t
)
dt,

dy =
(
λfeλx + h

)
dx.

The first relation is a differential consequence of the first equation (for brevity, the argu-

ments of the functions f , g, and h are omitted). Eliminating dy, we arrive at an equation

for x = x(t):

hx′t = f ′te
λx + g′t.

The substitution u = e−λx reduces it to a linear equation. Integrating yields

x =

∫
g′t
h
dt− 1

λ
ln

(
C − λ

∫
f ′t
Eh

dt

)
, E = exp

(
−λ
∫

g′t
h
dt

)
,

where C is an arbitrary constant. This formula and the expression y = f(t)eλx + g(t)
determine the general solution to the original equation in parametric form.

11. y = f(t)g(x) + h(t), y′x = f(t)gx(x).

General solution:

y = f(C)g(x) + h(C),

where C is an arbitrary constant.

Also, there is a singular solution, which is defined parametrically as

g(x) = −h
′
t(t)

f ′t(t)
, y = − f(t)h

′
t(t)

f ′t(t)
+ h(t).

12. y = f(x, t), y′x = fx(x, t).

General solution:

y = f(x,C),

where C is an arbitrary constant.

13. y = f(x)g(x, y, t), y′x = h(x)g(x, y, t).

General solution:

y = C exp

[∫
h(x)

f(x)
dx

]
,

where C is an arbitrary constant.

The dependence t = t(x) is defined implicitly by the equation y = f(x)g(x, y, t).

14. f(y) = g(x, y, t), y′x = h(y)g(x, y, t).

General solution:

x =

∫
dy

f(y)h(y)
+ C,

where C is an arbitrary constant.

The dependence t = t(y) is defined implicitly by the equation f(y) = g(x, y, t).



“K16435’ — 2017/9/28 — 15:05 — #544

518 FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS

15. y = f1(x)f2(y)g(x, y, t), y′x = h1(x)h2(y)g(x, y, t).

General solution: ∫
f2(y) dy

yh2(y)
=

∫
h1(x)

f1(x)
dx+ C,

where C is an arbitrary constant. The dependence t = t(x, y) is defined implicitly by the

equation y = f1(x)f2(y)g(x, y, t).
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Chapter 14

Second-Order Ordinary
Differential Equations

14.1 Linear Equations

14.1.1 Representation of the General Solution through a Particular
Solution

A homogeneous linear equation of the second order has the general form

f2(x)y
′′
xx + f1(x)y

′
x + f0(x)y = 0. (1)

Let y0 = y0(x) be a nontrivial particular solution (y0 6≡ 0) of this equation. Then the

general solution of equation (1) can be found from the formula:

y = y0

(
C1 + C2

∫
e−F

y20
dx
)
, where F =

∫
f1
f2
dx. (2)

For specific equations described below in 14.1.2–14.1.9, often only particular solutions

are given, while the general solutions can be obtained with formula (2) (see also Sec-

tion 2.1.1).

Remark 14.1. Only homogeneous equations are considered in Sections 14.1.2 through 14.1.8;

the solutions of the corresponding nonhomogeneous equations can be obtained using formulas in

Section 2.2.2.

14.1.2 Equations Containing Power Functions

◮ Equations of the form y′′xx + f(x)y = 0.

1. y′′xx + ay = 0.

Equation of free oscillations.

Solution: y =





C1 sinh(x
√
|a| ) + C2 cosh(x

√
|a| ) if a < 0,

C1 + C2x if a = 0,

C1 sin(x
√
a ) + C2 cos(x

√
a ) if a > 0.

519
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2. y′′xx − (ax+ b)y = 0, a 6= 0.

The substitution ξ = a−2/3(ax+ b) leads to the Airy equation:

y′′ξξ − ξy = 0, (1)

which often arises in various applications. The solution of equation (1) can be written as:

y = C1 Ai(ξ) + C2 Bi(ξ),

where Ai(ξ) and Bi(ξ) are the Airy functions of the first and second kind, respectively.

The Airy functions admit the following integral representation:

Ai(ξ) =
1

π

∫ ∞

0
cos
(
1
3 t

3+ξt
)
dt, Bi(ξ) =

1

π

∫ ∞

0

[
exp
(
− 1

3 t
3+ξt

)
+sin

(
1
3 t

3+ξt
)]
dt.

The Airy functions can be expressed in terms of the Bessel functions and the modified

Bessel functions of order 1/3 by the relations:

Ai(ξ) = 1
3

√
ξ
[
I−1/3(z)− I1/3(z)

]
, Ai(−ξ) = 1

3

√
ξ
[
J−1/3(z) + J1/3(z)

]
,

Bi(ξ) =
√

1
3 ξ
[
I−1/3(z) + I1/3(z)

]
, Bi(−ξ) =

√
1
3 ξ
[
J−1/3(z)− J1/3(z)

]
,

where z = 2
3 ξ

3/2.

For large values of ξ, the leading terms of the asymptotic expansions of the Airy func-

tions are:

Ai(ξ) =
1

2
√
π
ξ−1/4 exp(−z), Ai(−ξ) = 1√

π
ξ−1/4 sin

(
z +

π

4

)
,

Bi(ξ) =
1√
π
ξ−1/4 exp(z), Bi(−ξ) = 1√

π
ξ−1/4 cos

(
z +

π

4

)
.

The Airy equation (1) is a special case of equation 14.1.2.7 with a = n = 1.

3. y′′xx − (a2x2 + a)y = 0.

Particular solution: y0 = exp
(
1
2ax

2
)
.

4. y′′xx − (ax2 + b)y = 0.

The Weber equation (two canonical forms of the equation correspond to a = ± 1
4 ).

1◦. The transformation z = x2
√
a, u = ez/2y leads to the degenerate hypergeometric

equation 14.1.2.70: zu′′zz +
( 1
2
− z
)
u′z −

1

4

( b√
a
+ 1
)
u = 0.

2◦. For a = k2 > 0, b = −(2n+1)k, where n = 1, 2, . . . , there is a solution of the form:

y = exp
(
− 1

2kx
2
)
Hn

(√
k x
)
, k > 0,

where Hn(z) = (−1)n exp
(
z2
) dn
dzn

exp
(
−z2

)
is the Hermite polynomial of order n.

See also Section S3.12.

⊙ Literature: H. Bateman and A. Erdélyi (1953, Vol. 2), M. Abramowitz and I. A. Stegun (1964).
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5. y′′xx + a3x(2 − ax)y = 0.

Particular solution: y0 = exp
(
− 1

2a
2x2 + ax

)
.

6. y′′xx − (ax2 + bx+ c)y = 0.

The substitution ξ = x+
b

2a
leads to an equation of the form 14.1.2.4:

y′′ξξ −
(
aξ2 + c− b2

4a

)
y = 0.

7. y′′xx − axny = 0.

1◦. For n=−2, this is the Euler equation 14.1.2.123, while for n=−4, this is the equation

14.1.2.211 (in both cases the solution is expressed in terms of elementary function).

2◦. Assume 2/(n + 2) = 2m+ 1, where m is an integer. Then the solution is:

y =





x(x1−2qD)m+1

[
C1 exp

(√
a

q
xq
)
+ C2 exp

(
−
√
a

q
xq
)]

if m ≥ 0,

(x1−2qD)−m

[
C1 exp

(√
a

q
xq
)
+ C2 exp

(
−
√
a

q
xq
)]

if m < 0,

where D =
d

dx
, q =

n+ 2

2
=

1

2m+ 1
.

3◦. For any n, the solution is expressed in terms of the Bessel functions and modified

Bessel functions of the first or second kind (see 14.1.2.126 and 14.1.2.127):

y =





C1

√
xJ 1

2q

(√−a
q

xq
)
+C2

√
xY 1

2q

(√−a
q

xq
)

if a < 0,

C1

√
x I 1

2q

(√
a

q
xq
)
+ C2

√
xK 1

2q

(√
a

q
xq
)

if a > 0,

where q = 1
2 (n+ 2).

8. y′′xx − a(ax2n + nxn−1)y = 0.

Particular solution: y0 = exp
( a

n+ 1
xn+1

)
.

9. y′′xx − axn−2(axn + n+ 1)y = 0.

Particular solution: y0 = x exp
(
axn/n

)
.

10. y′′xx + (ax2n + bxn−1)y = 0.

The substitution ξ=xn+1 leads to a linear equation of the form 14.1.2.108: (n+1)2ξy′′ξξ+
n(n+ 1)y′ξ + (aξ + b)y = 0.

◮ Equations of the form y′′xx + f(x)y′x + g(x)y = 0.

11. y′′xx + ay′x + by = 0.

Second-order constant coefficient linear equation. In physics this equation is called an

equation of damped vibrations.

Solution: y=





exp
(
− 1

2ax
)[
C1 exp

(
1
2λx

)
+C2 exp

(
− 1

2λx
)]

if λ2=a2−4b>0,

exp
(
− 1

2ax
)[
C1 sin

(
1
2λx

)
+C2 cos

(
1
2λx

)]
if λ2=4b−a2>0,

exp
(
− 1

2ax
)(
C1x+C2

)
if a2=4b.
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12. y′′xx + ay′x + (bx+ c)y = 0.

1◦. Solution with b 6= 0:

y = exp
(
− 1

2ax
)√

ξ
[
C1J1/3

(
2
3

√
b ξ3/2

)
+ C2Y1/3

(
2
3

√
b ξ3/2

)]
, ξ = x+

4c− a2
4b

,

where J1/3(z) and Y1/3(z) are Bessel functions.

2◦. For b = 0, see equation 14.1.2.11.

13. y′′xx + ay′x − (bx2 + c)y = 0.

The substitution y = w exp
(
1
2x

2
√
b
)

leads to a linear equation of the form 14.1.2.108:

w′′
xx + (2

√
b x+ a)w′

x + (a
√
b x− c+

√
b )w = 0.

14. y′′xx + ay′x + b(−bx2 + ax+ 1)y = 0.

Particular solution: y0 = exp
(
− 1

2 bx
2
)
.

15. y′′xx + ay′x + bx(−bx3 + ax+ 2)y = 0.

Particular solution: y0 = exp
(
− 1

3 bx
3
)
.

16. y′′xx + ay′x + b(−bx2n + axn + nxn−1)y = 0.

Particular solution: y0 = exp
(
− b

n+ 1
xn+1

)
.

17. y′′xx + ay′x + b(−bx2n − axn + nxn−1)y = 0.

Particular solution: y0 = exp
(
− b

n+ 1
xn+1 − ax

)
.

18. y′′xx + xy′x + (n+ 1)y = 0, n = 1, 2, 3, . . .

Solution: y =
dn

dxn

{
exp
(
− 1

2x
2
)[
C1 + C2

∫
exp
(
1
2x

2
)
dx
]}

.

19. y′′xx − 2xy′x + 2ny = 0, n = 1, 2, 3, . . .

Solution: y = exp(x2)
dn

dxn

{
exp(−x2)

[
C1 + C2

∫
exp(x2) dx

]}
.

For C1 = (−1)n and C2 = 0, this solution defines the Hermite polynomials.

20. y′′xx + axy′x + by = 0.

Solution:

y = C1Φ
(
1
2 a

−1b, 1
2 , − 1

2ax
2
)
+ C2Ψ

(
1
2a

−1b, 1
2 , − 1

2ax
2
)
,

where Φ(a, b;x) and Ψ(a, b;x) are the degenerate hypergeometric functions (see equation

14.1.2.70 and Section S4.9).

21. y′′xx + axy′x + bxy = 0.

Solution:

y = e−bx/a
[
C1Φ

(
1
2a

−3b2, 1
2 , − 1

2aξ
2
)
+ C2Ψ

(
1
2a

−3b2, 1
2 , − 1

2aξ
2
)]
, ξ = x− 2a−2b,

where Φ(a, b;x) and Ψ(a, b;x) are the degenerate hypergeometric functions (see equation

14.1.2.70 and Section S4.9).
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22. y′′xx + axy′x + (bx+ c)y = 0.

This is a special case of equation 14.1.2.108 with a2 = b1 = 0 and b2 = 1.

23. y′′xx + 2axy′x + (bx4 + a2x2 + cx+ a)y = 0.

This is a special case of equation 14.1.2.49 with n = 1 and m = 2.

24. y′′xx + (ax+ b)y′x + ay = 0.

Particular solution: y0 = exp
(
− 1

2ax
2 − bx

)
.

25. y′′xx + (ax+ b)y′x − ay = 0.

Particular solution: y0 = ax+ b.

26. y′′xx + (ax+ b)y′x + c(ax+ b− c)y = 0.

Particular solution: y0 = e−cx.

27. y′′xx + (ax+ 2b)y′x + (abx− a+ b2)y = 0.

Particular solution: y0 = xe−bx.

28. y′′xx + (ax+ b)y′x + (cx+ d)y = 0.

This is a special case of equation 14.1.2.108 with a2 = 0 and b2 = 1.

29. y′′xx + (ax+ b)y′x + c[(a− c)x2 + bx+ 1]y = 0.

Particular solution: y0 = exp
(
− 1

2 cx
2
)
.

30. y′′xx + 2(ax+ b)y′x + (a2x2 + 2abx+ c)y = 0.

The substitution u = y exp
(
1
2ax

2 + bx
)

leads to a constant coefficient linear equation of

the form 14.1.2.1: u′′xx + (c− a− b2)u = 0.

31. y′′xx + (ax+ b)y′x + (αx2 + βx+ γ)y = 0.

The substitution y = u exp(sx2), where s is a root of the quadratic equation 4s2 + 2as+
α = 0, leads to an equation of the form 14.1.2.108:

u′′xx + [(a+ 4s)x+ b]u′x + [(β + 2bs)x+ γ + 2s]u = 0.

32. y′′xx + (ax+ b)y′x + c(−cx2n + axn+1 + bxn + nxn−1)y = 0.

Particular solution: y0 = exp
(
− c

n+ 1
xn+1

)
.

33. y′′xx + a(x2 − b2)y′x − a(x+ b)y = 0.

Particular solution: y0 = x− b.

34. y′′xx + (ax2 + b)y′x + c(ax2 + b− c)y = 0.

Particular solution: y0 = e−cx.

35. y′′xx + (ax2 + 2b)y′x + (abx2 − ax+ b2)y = 0.

Particular solution: y0 = xe−bx.
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36. y′′xx + (2x2 + a)y′x + (x4 + ax2 + 2x+ b)y = 0.

The substitution u= y exp
(
1
3x

3
)

leads to a constant coefficient linear equation of the form

14.1.2.11: u′′xx + au′x + bu = 0.

37. y′′xx + (ax2 + bx)y′x + (αx2 + βx+ γ)y = 0.

1◦. This is a special case of equation 14.1.2.146 with n = 1.

2◦. Let α = 0, β = 3a, γ = 2b. Particular solution: y0 = x exp
(
− 1

3ax
3 − 1

2 bx
2
)
.

38. y′′xx + (abx2 + bx+ 2a)y′x + a2(bx2 + 1)y = 0.

Particular solution: y0 = (ax+ 1)e−ax.

39. y′′xx + (ax2 + bx+ c)y′x + x(abx2 + bc+ 2a)y = 0.

Particular solution: y0 = exp
(
− 1

3ax
3 − cx

)
.

40. y′′xx + (ax2 + bx+ c)y′x + (abx3 + acx2 + b)y = 0.

Particular solution: y0 = exp
(
− 1

2 bx
2 − cx

)
.

41. y′′xx + (ax3 + 2b)y′x + (abx3 − ax2 + b2)y = 0.

Particular solution: y0 = xe−bx.

42. y′′xx + (ax3 + bx)y′x + 2(2ax2 + b)y = 0.

Particular solution: y0 = x exp
(
− 1

4ax
4 − 1

2 bx
2
)
.

43. y′′xx + (abx3 + bx2 + 2a)y′x + a2(bx3 + 1)y = 0.

Particular solution: y0 = (ax+ 1)e−ax.

44. y′′xx + axny′x = 0.

This equation is encountered in the theory of diffusion boundary layer.

Solution: y = C1 + C2

∫
exp
(
− ax

n+1

n+ 1

)
dx.

45. y′′xx + axny′x + bxn−1y = 0.

For n = −1, we obtain the Euler equation 14.1.2.123. For n 6= −1, the substitution z =
xn+1 leads to an equation of the form 14.1.2.108: (n+1)2zy′′zz+(n+1)(az+n)y′z+by=0.

46. y′′xx + 2axny′x + a(ax2n + nxn−1)y = 0.

Particular solution: y0 = x exp
(
− a

n+ 1
xn+1

)
.

47. y′′xx + axny′x + (bx2n + cxn−1)y = 0.

The substitution ξ=xn+1 leads to a linear equation of the form 14.1.2.108: (n+1)2ξy′′ξξ+
(n+ 1)(aξ + n)y′ξ + (bξ + c)y = 0.

48. y′′xx + axny′x − b(axn+m + bx2m +mxm−1)y = 0.

Particular solution: y0 = exp
( b

m+ 1
xm+1

)
.
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49. y′′xx + 2axny′x + (a2x2n + bx2m + anxn−1 + cxm−1)y = 0.

The substitution w = y exp
( a

n+ 1
xn+1

)
leads to a linear equation of the form 14.1.2.10:

w′′
xx + (bx2m + cxm−1)w = 0.

50. y′′xx + (axn + b)y′x + c(axn + b− c)y = 0.

Particular solution: y0 = e−cx.

51. y′′xx + (axn + 2b)y′x + (abxn − axn−1 + b2)y = 0.

Particular solution: y0 = xe−bx.

52. y′′xx + (abxn + bxn−1 + 2a)y′x + a2(bxn + 1)y = 0.

Particular solution: y0 = (ax+ 1)e−ax.

53. y′′xx + (abxn + 2bxn−1 − a2x)y′x + a(abxn + bxn−1 − a2x)y = 0.

Particular solution: y0 = (ax+ 2)e−ax.

54. y′′xx + xn[ax2 + (ac+ b)x+ bc]y′x − xn(ax+ b)y = 0.

Particular solution: y0 = x+ c.

55. y′′xx + (axn + bxm)y′x − (axn−1 + bxm−1)y = 0.

Particular solution: y0 = x.

56. y′′xx + (axn + bxm)y′x + (anxn−1 + bmxm−1)y = 0.

Integrating yields a first-order linear equation: y′x + (axn + bxm)y = C.

57. y′′xx + (axn + bxm)y′x + [a(n+ 1)xn−1 + b(m+ 1)xm−1]y = 0.

Particular solution: y0 = x exp
(
− a

n+ 1
xn+1 − b

m+ 1
xm+1

)
.

58. y′′xx + (axn + bxm)y′x + c(axn + bxm − c)y = 0.

Particular solution: y0 = e−cx.

59. y′′xx + (axn + bxm)y′x + [abxm+n + b(m+ 1)xm−1 − axn−1]y = 0.

Particular solution: y0 = x exp
(
− b

m+ 1
xm+1

)
.

60. y′′xx + (axn + bxm + c)y′x + (abxm+n + bcxm + anxn−1)y = 0.

Particular solution: y0 = exp
(
− a

n+ 1
xn+1 − cx

)
.

◮ Equations of the form (ax+ b)y′′xx + f(x)y′x + g(x)y = 0.

61. xy′′xx + 1
2
y′x + ay = 0.

Solution: y =

{
C1 cos

√
4ax+ C2 sin

√
4ax if ax > 0,

C1 cosh
√

4|ax|+ C2 sinh
√

4|ax| if ax < 0.
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62. xy′′xx + ay′x + by = 0.

1◦. The solution is expressed in terms of Bessel functions:

y = x
1−a
2
[
C1Jν

(
2
√
bx
)
+ C2Yν

(
2
√
bx
)]
, where ν = |1− a|.

2◦. For a = 1
2 (2n + 1), where n = 0, 1, . . . , the solution is:

y =





C1
dn

dxn
cos
√
4bx+ C2

dn

dxn
sin
√
4bx if bx > 0,

C1
dn

dxn
cosh

√
4|bx|+ C2

dn

dxn
sinh

√
4|bx| if bx < 0.

63. xy′′xx + ay′x + bxy = 0.

1◦. The solution is expressed in terms of Bessel functions:

y = x
1−a
2
[
C1Jν

(√
b x
)
+ C2Yν

(√
b x
)]
, where ν = 1

2 |1− a|.

2◦. For a = 2n, where n = 1, 2, . . . , the solution is:

y =





C1

( 1
x

d

dx

)n
cos
(
x
√
b
)
+ C2

( 1
x

d

dx

)n
sin
(
x
√
b
)

if b > 0,

C1

( 1
x

d

dx

)n
cosh

(
x
√
−b
)
+ C2

( 1
x

d

dx

)n
sinh

(
x
√
−b
)

if b < 0.

64. xy′′xx + ay′x + (bx+ c)y = 0.

This is a special case of equation 14.1.2.108 with a2 = 1 and a1 = b2 = 0.

65. xy′′xx + ny′x + bx1−2ny = 0.

For n = 1, this is the Euler equation 14.1.2.123. For n 6= 1, the solution is:

y =





C1 sin

( √
b

n− 1
x1−n

)
+ C2 cos

( √
b

n− 1
x1−n

)
if b > 0,

C1 exp

( √−b
n− 1

x1−n

)
+ C2 exp

(−
√
−b

n− 1
x1−n

)
if b < 0.

66. xy′′xx + (1 − 3n)y′x − a2n2x2n−1y = 0.

Solution: y = C1(ax
n + 1) exp(−axn) + C2(−axn + 1) exp(axn).

67. xy′′xx + ay′x + bxny = 0.

If n = −1 and b = 0, we have the Euler equation 14.1.2.123. If n 6= −1 and b 6= 0, the

solution is expressed in terms of Bessel functions:

y = x
1−a
2

[
C1Jν

( 2
√
b

n+ 1
x
n+1
2

)
+ C2Yν

( 2
√
b

n+ 1
x
n+1
2

)]
, where ν =

|1− a|
n+ 1

.

68. xy′′xx + ay′x + bxn(−bxn+1 + a+ n)y = 0.

Particular solution: y0 = exp
(
− b

n+ 1
xn+1

)
.
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69. xy′′xx + axy′x + ay = 0.

Particular solution: y0 = xe−ax.

70. xy′′xx + (b− x)y′x − ay = 0.

The degenerate hypergeometric equation.

1◦. If b 6= 0, −1, −2, −3, . . . , Kummer’s series is a particular solution:

Φ(a, b;x) = 1 +

∞∑

k=1

(a)k
(b)k

xk

k!
,

where (a)k = a(a+1) . . . (a+ k− 1), (a)0 = 1. If b > a > 0, this solution can be written

in terms of a definite integral:

Φ(a, b;x) =
Γ(b)

Γ(a) Γ(b− a)

∫ 1

0
extta−1(1− t)b−a−1 dt,

where Γ(z) =

∫ ∞

0
e−ttz−1 dt is the gamma function.

Table S4.1 (see Section S4.9) gives some special cases where Φ is expressed in terms

of simpler functions.

If b is not an integer, then the general solution has the form:

y = C1Φ(a, b;x) + C2x
1−bΦ(a− b+ 1, 2− b; x).

The function Φ possesses the properties:

Φ(a, b;x) = exΦ(b− a, b; −x); dn

dxn
Φ(a, b;x) =

(a)n
(b)n

Φ(a+ n, b+ n; x).

The following asymptotic relations hold:

Φ(a, b;x) =
Γ(b)

Γ(a)
exxa−b

[
1 +O

( 1

|x|
)]

if x→ +∞,

Φ(a, b;x) =
Γ(b)

Γ(b− a) (−x)
−a
[
1 +O

( 1

|x|
)]

if x→ −∞.

2◦. The following function is a solution of the degenerate hypergeometric equation:

Ψ(a, b;x) =
Γ(1− b)

Γ(a− b+ 1)
Φ(a, b;x) +

Γ(b− 1)

Γ(a)
x1−bΦ(a− b+ 1, 2− b; x).

Calculate the limit as b→ n (n is an integer) to obtain

Ψ(a, n+ 1;x) =
(−1)n−1

n! Γ(a− n)

{
Φ(a, n+1;x) ln x

+

∞∑

r=0

(a)r
(n + 1)r

[
ψ(a+ r)− ψ(1 + r)− ψ(1 + n+ r)

]xr
r!

}

+
(n− 1)!

Γ(a)

n−1∑

r=0

(a− n)r
(1 − n)r

xr−n

r!
,
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where n=0, 1, 2, . . . (the last sum is omitted for n=0), ψ(z)= [ln Γ(z)]′z is the logarithmic

derivative of the gamma function:

ψ(1) = −γ, ψ(n) = −γ +
n−1∑

k=1

k−1, γ = 0.5772 . . . is the Euler constant.

Table S4.2 (see Section S4.9) gives some special cases where Ψ is expressed in terms

of simpler functions.

If b is a negative number, then the function Ψ can be expressed in terms of the one with

a positive second argument using the relation

Ψ(a, b;x) = x1−bΨ(a− b+ 1, 2− b; x),

which holds for any value of x.

3◦. For b 6= 0, −1, −2, −3, . . . , the general solution of the degenerate hypergeometric

equation can be written in the form:

y = C1Φ(a, b;x) + C2Ψ(a, b;x),

while for b = 0, −1, −2, −3, . . . , it can be represented as:

y = x1−b
[
C1Φ(a− b+ 1, 2− b; x) + C2Ψ(a− b+ 1, 2− b; x)

]
.

The functions Φ and Ψ are described in Section S4.9 in more detail; see also the books

by Abramowitz & Stegun (1964) and Bateman & Erdélyi (1953, Vol. 1).

71. xy′′xx + (ax+ b)y′x + c[(a− c)x+ b]y = 0.

Particular solution: y0 = e−cx.

72. xy′′xx + (2ax+ b)y′x + a(ax+ b)y = 0.

Solution: y =

{
e−ax(C1 + C2x

1−b) if b 6= 1,

e−ax(C1 + C2 ln |x|) if b = 1.

73. xy′′xx + [(a+ b)x+ n+m]y′x + (abx+ an+ bm)y = 0.

Here, n and m are positive integers; a 6= b or n 6= m.

Solution: y = C1e
−ax dm−1

dxm−1

[
x−ne(a−b)x

]
+ C2e

−bx dn−1

dxn−1

[
x−me(b−a)x

]
.

74. xy′′xx + (ax+ b)y′x + (cx+ d)y = 0.

This is a special case of equation 14.1.2.108.

75. xy′′xx − (ax+ 1)y′x − bx2(bx+ a)y = 0.

Particular solution: y0 = exp
(
− 1

2 bx
2
)
.

76. xy′′xx − (2ax+ 1)y′x + (bx3 + a2x+ a)y = 0.

Solution: y = eax
[
C1 sin

(
1
2x

2
√
b
)
+C2 cos

(
1
2x

2
√
b
)]

.
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77. xy′′xx + (ax+ b)y′x + cx(−cx2 + ax+ b+ 1) = 0.

Particular solution: y0 = exp
(
− 1

2 cx
2
)
.

78. xy′′xx − (2ax2 + 1)y′x + bx3y = 0.

Solution: y = C1 exp
[
1
2

(
a+
√
a2 − b

)
x2
]
+ C2 exp

[
1
2

(
a−
√
a2 − b

)
x2
]
.

79. xy′′xx + (abx2 + b− 5)y′x + 2a2(b− 2)x3y = 0.

Particular solution: y0 = (ax2 + 1) exp(−ax2).

80. xy′′xx + (ax2 + bx)y′x − [acx2 + (a+ bc+ c2)x+ b+ 2c]y = 0.

Particular solution: y0 = xecx.

81. xy′′xx + (ax2 + bx+ 2)y′x + by = 0.

Particular solution: y0 = a+ b/x.

82. xy′′xx + (ax2 + bx+ c)y′x + (2ax+ b)y = 0.

Integrating, we obtain a first-order linear equation: xy′x + (ax2 + bx+ c− 1)y = C.

83. xy′′xx + (ax2 + bx+ c)y′x + (c− 1)(ax+ b)y = 0.

Particular solution: y0 = x1−c.

84. xy′′xx + (ax2 + bx+ c)y′x + (Ax2 +Bx+ C)y = 0.

1◦. Let A = ak, B = k(b− k), C = ck, where k is an arbitrary number.

Particular solution: y0 = e−kx.

2◦. Let A = a(b+ k), B = a(c+ 1)− k(b+ k), C = −ck.

Particular solution: y0 = exp
(
− 1

2ax
2 + kx

)
.

3◦. Let A = a(b+ k), B = 2a− bk − k2, C = b(c− 1) + k(c− 2).
Particular solution: y0 = x1−c exp

(
− 1

2ax
2 + kx

)
.

4◦. Let A = −ak, B = a(c− 1)− k(b+ k), C = b(c− 1) + k(c− 2).
Particular solution: y0 = x1−cekx.

85. xy′′xx + (ax2 + bx+ 2)y′x + (cx2 + dx+ b)y = 0.

The substitution w = xy leads to a linear equation of the form 14.1.2.108:

w′′
xx + (ax+ b)w′

x + (cx+ d− a)w = 0.

86. xy′′xx + (ax3 + b)y′x + a(b− 1)x2y = 0.

Particular solution: y0 = x1−b.

87. xy′′xx + x(ax2 + b)y′x + (3ax2 + b)y = 0.

Particular solution: y0 = x exp
(
− 1

3ax
3 − bx

)
.

88. xy′′xx + (ax3 + bx2 + 2)y′x + bxy = 0.

Particular solution: y0 = a+ b/x.

89. xy′′xx + (abx3 + bx2 + ax− 1)y′x + a2bx3y = 0.

Particular solution: y0 = (ax+ 1)e−ax.
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90. xy′′xx + (ax3 + bx2 + cx+ d)y′x + (d− 1)(ax2 + bx+ c)y = 0.

Particular solution: y0 = x1−d.

91. xy′′xx + axny′x + (abxn − axn−1 − b2x+ 2b)y = 0.

Particular solution: y0 = xe−bx.

92. xy′′xx + (axn + 2)y′x + axn−1y = 0.

Particular solution: y0 = x−1.

93. xy′′xx + (xn + 1− n)y′x + bx2n−1y = 0.

1◦. For b 6= 1
4 , the solution has the form: y = C1 exp

(
β1x

n
)
+ C2 exp

(
β2x

n
)
. Here, β1

and β2 are roots of the quadratic equation: n2β2 + nβ + b = 0.

2◦. For b = 1
4 , the solution has the form: y = (C1 + C2x

n) exp
(
− 1

2n
−1xn

)
.

94. xy′′xx + (axn + b)y′x + anxn−1y = 0.

Particular solution: y0 = x1−b exp(−axn/n).

95. xy′′xx + (axn + b)y′x + a(b− 1)xn−1y = 0.

Particular solution: y0 = x1−b.

96. xy′′xx + (axn + b)y′x + a(b+ n− 1)xn−1y = 0.

Particular solution: y0 = exp(−axn/n).

97. xy′′xx + (axn + b)y′x + c(axn − cx+ b)y = 0.

Particular solution: y0 = e−cx.

98. xy′′xx + (abxn + b− 3n+ 1)y′x + a2n(b− n)x2n−1y = 0.

Particular solution: y0 = (axn + 1) exp(−axn).

99. xy′′xx + (axn + b)y′x + (cx2n−1 + dxn−1)y = 0.

This is a special case of equation 14.1.2.146 with γ = 0.

100. xy′′xx + (axn + bxn−1 + 2)y′x + bxn−2y = 0.

Particular solution: y0 = a+ b/x.

101. xy′′xx + (axn + bx)y′x + (abxn + anxn−1 − b)y = 0.

Particular solution: y0 = x exp(−axn/n).

102. xy′′xx + (abxn + bxn−1 + ax− 1)y′x + a2bxny = 0.

Particular solution: y0 = (ax+ 1)e−ax.

103. xy′′xx + (axn + bxm + c)y′x + (c− 1)(axn−1 + bxm−1)y = 0.

Particular solution: y0 = x1−c.

104. xy′′xx + (abxn+m + anxn + bxm + 1− 2n)y′x + a2bnx2n+m−1y = 0.

Particular solution: y0 = (axn + 1) exp(−axn).
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105. (x+ a)y′′xx + (bx+ c)y′x + by = 0.

Particular solution: y0 = exp
(
−
∫

bx+ c− 1

x+ a
dx
)

.

106. (a1x+ a0)y
′′

xx + (b1x+ b0)y
′

x −mb1y = 0.

If m = 1, 2, 3, . . . , a polynomial of order m in x is a particular solution of the equation,

which can be represented as: y0 =
m∑

k=0

(
− 1

b1

)k{
xmIx−m−1[(a1x+a0)D

2+ b0D]
}k
xm,

where D =
d

dx
, Ixν =

xν+1

ν + 1
with ν 6= −1.

107. (ax+ b)y′′xx + s(cx+ d)y′x − s2[(a+ c)x+ b+ d]y = 0.

Particular solution: y0 = esx.

108. (a2x+ b2)y
′′

xx + (a1x+ b1)y
′

x + (a0x+ b0)y = 0.

Let the function J (a, b;x) be an arbitrary solution of the degenerate hypergeometric equa-

tion xy′′xx + (b − x)y′x − ay = 0 (see 14.1.2.70), and the function Zν(x) be an arbitrary

solution of the Bessel equation x2y′′xx+xy
′
x+(x2−ν2)y=0 (see 14.1.2.126). The results

of solving the original equation are presented in Table 14.1.

TABLE 14.1

Solutions of equation 14.1.2.108 for different values of the determining parameters

Solution: y= ekxw(z), where z=
x−µ
λ

Constraints k λ µ w Parameters

a2 6=0,

a21 6=4a0a2

√
D−a1
2a2

− a2
2a2k+a1

− b2
a2

J (a, b; z) a=B(k)/(2a2k+a1),

b= (a2b1−a1b2)a−2
2

a2=0,

a1 6=0
− a0
a1

1 − 2b2k+b1
a1

J
(
a, 1

2 ;βz
2
) a=B(k)/(2a1),

β=−a1/(2b2)

a2 6=0,

a21 =4a0a2
− a1
2a2

a2 − b2
a2

zν/2Zν

(
β
√
z
) ν=1−(2b2k+b1)a

−1
2 ,

β=2
√
B(k)

a2 = a1=0,

a0 6=0
− b1
2b2

1
b21−4b0b2
4a0b2

z1/2Z1/3(βz
3/2)

see also 14.1.2.12
β=

2

3

( a0
b2

)1/2

Notation: D= a21−4a0a2, B(k)= b2k
2+b1k+b0

109. (x+ λ)y′′xx + (axn + bxm + c)y′x + (anxn−1 + bmxm−1)y = 0.

Particular solution: y0 = exp
(
−
∫

axn + bxm + c− 1

x+ λ
dx
)

.
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◮ Equations of the form x2y′′xx + f(x)y′x + g(x)y = 0.

110. x2y′′xx + ay = 0.

This is a special case of equation 14.1.2.123. The substitution x = et leads to a constant

coefficient linear equation: y′′tt − y′t + ay = 0.

111. x2y′′xx + (ax+ b)y = 0.

This is a special case of equation 14.1.2.132.

112. x2y′′xx + [a2x2 − n(n+ 1)]y = 0, n = 0, 1, 2, . . .

Solution: yxn+1 = (x3D)n
(C1 cos ax+ C2 sin ax

x2n−1

)
, where D =

d

dx
.

113. x2y′′xx − [a2x2 + n(n+ 1)]y = 0, n = 0, 1, 2, . . .

Solution: yxn+1 = (x3D)n
(C1e

ax + C2e
−ax

x2n−1

)
, where D =

d

dx
.

114. x2y′′xx − (a2x2 + 2abx+ b2 − b)y = 0.

Particular solution: y0 = xbeax.

115. x2y′′xx + (ax2 + bx+ c)y = 0.

The substitution y = xλu, where λ is a root of the quadratic equation λ2−λ+ c= 0, leads

to an equation of the form 14.1.2.108: xu′′xx + 2λu′x + (ax+ b)u = 0.

For a = − 1
4 , b = k, and c = 1

4 −m2, the original equation is referred to as Whittaker’s

equation.

116. x2y′′xx −
((
ax3 + 5

16

))
y = 0.

Particular solution: y0 = x−1/4 exp
(
2
3

√
a x3/2

)
.

117. x2y′′xx − [a2x4 + a(2b− 1)x2 + b(b+ 1)]y = 0.

Particular solution: y0 = x−b exp
(
− 1

2ax
2
)
.

118. x2y′′xx + (axn + b)y = 0.

This is a special case of equation 14.1.2.132.

119. x2y′′xx − [a2x2n + a(2b+ n− 1)xn + b(b− 1)]y = 0.

Particular solution: y0 = xb exp(axn/n).

120. x2y′′xx + (ax2n + bxn + c)y = 0.

This is a special case of equation 14.1.2.146.

121. x2y′′xx +
((
ax3n + bx2n + 1

4
− 1

4
n2
))
y = 0.

The transformation ξ = axn + b, w = yx
n−1
2 leads to an equation of the form 14.1.2.7:

w′′
ξξ + (an)−2ξw = 0.

122. x2y′′xx +
[[
ax2n(bxn + c)m + 1

4
− 1

4
n2
]]
y = 0.

The transformation ξ = bxn + c, w = yx
n−1
2 leads to an equation of the form 14.1.2.7:

w′′
ξξ + a(bn)−2ξmw = 0.
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123. x2y′′xx + axy′x + by = 0.

The Euler equation. Solution:

y =





|x|
1−a
2
(
C1|x|µ + C2|x|−µ

)
if (1− a)2 > 4b,

|x|
1−a
2 (C1 +C2 ln |x|) if (1− a)2 = 4b,

|x|
1−a
2
[
C1 sin(µ ln |x|) + C2 cos(µ ln |x|)

]
if (1− a)2 < 4b,

where µ = 1
2 |(1 − a)2 − 4b|1/2.

124. x2y′′xx + xy′x +
[[
x2 −

((
n+ 1

2

))2 ]]
y = 0, n = 0, 1, 2, . . .

This is a special case of equation 14.1.2.126.

Solution: y = xn+1/2
[( 1
x

d

dx

)n(
C1

sinx

x
+ C2

cos x

x

)]
.

125. x2y′′xx + xy′x −
[[
x2 +

((
n+ 1

2

))2 ]]
y = 0, n = 0, 1, 2, . . .

This is a special case of equation 14.1.2.127.

Solution: y = xn+1/2
[( 1
x

d

dx

)n(
C1

ex

x
+ C2

e−x

x

)]
.

126. x2y′′xx + xy′x + (x2 − ν2)y = 0.

The Bessel equation.

1◦. Let ν be an arbitrary noninteger. Then the general solution is given by:

y = C1Jν(x) + C2Yν(x), (1)

where Jν(x) and Yν(x) are the Bessel functions of the first and second kind:

Jν(x) =
∞∑

k=0

(−1)k(x/2)ν+2k

k! Γ(ν + k + 1)
, Yν(x) =

Jν(x) cos πν − J−ν(x)

sin πν
. (2)

Solution (1) is denoted by y = Zν(x) which is referred to as the cylindrical function.

The cylindrical functions possess the following properties:

2νZν(x) = x[Zν−1(x) + Zν+1(x)],

d

dx
[xνZν(x)] = xνZν−1(x),

d

dx
[x−νZν(x)] = −x−νZν+1(x).

The functions Jν(x) and Yν(x) can be expressed in terms of definite integrals (with

x > 0):

πJν(x) =

∫ π

0
cos(x sin θ − νθ) dθ − sin πν

∫ ∞

0
exp(−x sinh t− νt) dt,

πYν(x) =

∫ π

0
sin(x sin θ − νθ) dθ −

∫ ∞

0
(eνt + e−νt cosπν)e−x sinh t dt.

2◦. In the case ν = n + 1
2 , where n = 0, 1, 2, . . . , the Bessel functions are expressed in

terms of elementary functions:

Jn+ 1
2
(x) =

√
2

π
xn+

1
2

(
− 1

x

d

dx

)n sinx
x

, J−n− 1
2
(x) =

√
2

π
xn+

1
2

( 1
x

d

dx

)n cos x
x

,

Yn+ 1
2
(x) = (−1)n+1J−n− 1

2
(x).
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3◦. Let ν = n be an arbitrary integer. The following relations hold:

J−n(x) = (−1)nJn(x), Y−n(x) = (−1)nYn(x).
The solution is given by formula (1) in which the function Jn(x) is obtained by substitut-

ing ν = n into formula (2), while Yn(x) is found by taking the limit as ν → n and for

nonnegative n becomes

Yn(x) =
2

π
Jn(x) ln

x

2
− 1

π

n−1∑

k=0

(n− k − 1)!

k!

( 2
x

)n−2k

− 1

π

∞∑

k=0

(−1)k
( x
2

)n+2k ψ(k + 1) + ψ(n+ k + 1)

k! (n+ k)!
,

where ψ(1) = −C, ψ(n) = −C +
n−1∑
k=1

k−1, C = 0.5772 . . . is the Euler constant, ψ(x) =

[ln Γ(x)]′x is the logarithmic derivative of the gamma function.

For nonnegative integer n and large x, we can write
√
πx J2n(x) = (−1)n(cos x+ sinx) +O(x−2),

√
πxJ2n+1(x) = (−1)n+1(cos x− sinx) +O(x−2).

The function Jn(x) can be expressed in terms of a definite integral:

Jn(x) =
1

π

∫ π

0
cos(x sin t− nt) dt; n = 0, 1, 2, . . .

The Bessel functions are described in Section S4.6 in more detail; see also the books

by Abramowitz & Stegun (1964) and Bateman & Erdélyi (1953, Vol. 2).

127. x2y′′xx + xy′x − (x2 + ν2)y = 0.

The modified Bessel equation. It can be reduced to equation 14.1.2.126 by means of the

substitution x = ix̄ (i2 = −1).

Solution:

y = C1Iν(x) + C2Kν(x),

where Iν(x) and Kν(x) are modified Bessel functions of the first and second kind:

Iν(x) =
∞∑

k=0

(x/2)2k+ν

k! Γ(ν + k + 1)
, Kν(x) =

π

2

I−ν(x)− Iν(x)
sin πν

.

The modified Bessel function Iν(x) can be expressed in terms of the Bessel function:

Iν(x) = e−πνi/2Jν(xe
πi/2), i2 = −1.

The case ν = n+ 1
2 , where n = 0, 1, 2, . . . , is given in 14.1.2.125.

If ν = n is a nonnegative integer, we have

Kn(x) = (−1)n+1In(x) ln
x

2
+

1

2

n−1∑

m=0

(−1)m
(x
2

)2m−n(n−m− 1)!

m!

+
1

2
(−1)n

∞∑

m=0

( x
2

)n+2m ψ(n+m+ 1) + ψ(m+ 1)

m! (n+m)!
,
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where ψ(z) is the logarithmic derivative of the gamma function (see 14.1.2.126, Item 3◦);

for n = 0, the first sum is omitted.

As x→ +∞, the leading terms of the asymptotic expansion are:

Iν(x) ≃
ex√
2πx

, Kν(x) ≃
√
π√
2x
e−x.

The modified Bessel functions are described in Section S4.7 in more detail; see also the

books by Abramowitz & Stegun (1964) and Bateman & Erdélyi (1953, Vol. 2).

128. x2y′′xx + 2xy′x − (a2x2 + 2)y = 0.

Solution: x2y = C1(ax− 1)eax + C2(ax+ 1)e−ax.

129. x2y′′xx − 2axy′x + [b2x2 + a(a+ 1)]y = 0.

Solution: y =

{
|x|a(C1 sin bx+ C2 cos bx) if b 6= 0,

C1|x|a + C2|x|a+1 if b = 0.

130. x2y′′xx − 2axy′x + [−b2x2 + a(a+ 1)]y = 0.

Solution: y =

{
|x|a(C1e

bx +C2e
−bx) if b 6= 0,

C1|x|a + C2|x|a+1 if b = 0.

131. x2y′′xx + λxy′x + (ax2 + bx+ c)y = 0.

The substitution y= xku, where k is a root of the quadratic equation k2+(λ−1)k+c=0,

leads to an equation of the form 14.1.2.108: xu′′xx + (λ+ 2k)u′x + (ax+ b)u = 0.

132. x2y′′xx + axy′x + (bxn + c)y = 0, n 6= 0.

The case b = 0 corresponds to the Euler equation 14.1.2.123.

For b 6= 0, the solution is:

y = x
1−a
2

[
C1Jν

( 2
n

√
b x

n
2

)
+ C2Yν

( 2
n

√
b x

n
2

)]
,

where ν = 1
n

√
(1− a)2 − 4c; Jν(z) and Yν(z) are the Bessel functions of the first and

second kind.

133. x2y′′xx + axy′x + xn(bxn + c)y = 0.

The substitution ξ = xn leads to an equation of the form 14.1.2.108:

n2ξy′′ξξ + n(n− 1 + a)y′ξ + (bξ + c)y = 0.

134. x2y′′xx + (ax+ b)y′x + cy = 0.

The transformation x = z−1, y = zkezw, where k is a root of the quadratic equation

k2 + (1− a)k + c = 0, leads to an equation of the form 14.1.2.108:

zw′′
zz + [(2− b)z + 2k + 2− a]w′

z + [(1− b)z + 2k + 2− a− bk]w = 0.

135. x2y′′xx + ax2y′x + (bx2 + cx+ d)y = 0.

The substitution y = w exp
(
− 1

2ax
)

leads to a linear equation of the form 14.1.2.115:

x2w′′
xx + [( 14 a

2 + b)x2 + cx+ d]w = 0.
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136. x2y′′xx + (ax2 + b)y′x + c[(a− c)x2 + b]y = 0.

Particular solution: y0 = e−cx.

137. x2y′′xx + (ax2 + bx)y′x − by = 0.

Particular solution: y0 = x−be−ax.

138. x2y′′xx+(ax2+bx)y′x+[k(a−k)x2+(an+bk−2kn)x+n(b−n−1)]y=0.

Particular solution: y0 = x−ne−kx.

139. a2x
2y′′xx + (a1x

2 + b1x)y
′

x + (a0x
2 + b0x+ c0)y = 0.

The substitution y= xkw, where k is a root of the quadratic equation a2k
2+(b1−a2)k+

c0 = 0, leads to an equation of the form 14.1.2.108: a2xw
′′
xx + (a1x + 2a2k + b1)w

′
x +

(a0x+ a1k + b0)w = 0.

140. x2y′′xx + [ax2 + (ab− 1)x+ b]y′x + a2bxy = 0.

Particular solution: y0 = (ax+ 1)e−ax.

141. x2y′′xx − 2x(x2 − a)y′x + {2nx2 + [(−1)n − 1]a}y = 0.

For n = 0, 1, 2, . . . , particular solutions are polynomials, y0 = Pn(x), where

P0(x) = 1, P1(x) = x, P2(x) = 2x2 − 1− 2a, P3(x) = 2x3 − (3 + 2a)x, . . .

The polynomials contain only even powers of x for even n and only odd powers of x for

odd n.

142. x2y′′xx + x(ax2 + bx+ c)y′x + (Ax3 + Bx2 + Cx+D)y = 0.

1◦. The substitution y = xkw , where k is a root of the quadratic equation k2+(c−1)k+
D = 0 leads to an equation of the form 14.1.2.84 (see also 14.1.2.80–14.1.2.83):

xw′′
xx + (ax2 + bx+ c+ 2k)w′

x + [Ax2 + (B + ak)x+ C + bk]y = 0.

2◦. Let s and r be arbitrary parameters.

For A = ar, B = as + br − r2, C = bs + cr − 2rs, D = s(c − s − 1), a particular

solution is: y0 = x−se−rx.

For A = a(b− r), B = a(c− s+1)+ r(b− r), C = bs+ cr− 2rs, D = s(c− s− 1),
a particular solution is: y0 = x−s exp(− 1

2ax
2 − rx).

143. x2y′′xx + axny′x − (abxn + acxn−1 + b2x2 + 2bcx+ c2 − c)y = 0.

Particular solution: y0 = xcebx.

144. x2y′′xx + axny′x + (abxn+2m − b2x4m+2 + amxn−1 −m2 −m)y = 0.

Particular solution: y0 = x−m exp
(
− b

2m+ 1
x2m+1

)
.

145. x2y′′xx + x(axn + b)y′x + b(axn − 1)y = 0.

Particular solution: y0 = x−b.
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146. x2y′′xx + x(axn + b)y′x + (αx2n + βxn + γ)y = 0.

The transformation z = xn, w = yz−k, where k is a root of the quadratic equation

n2k2 + n(b − 1)k + γ = 0, leads to a linear equation of the form 14.1.2.108: n2zw′′
zz +

[naz + 2kn2 + n(n− 1 + b)]w′
z + (αz + kna+ β)w = 0.

147. x2y′′xx+x(2ax
n+b)y′x+[a2x2n+a(b+n−1)xn+αx2m+βxm+γ]y=0.

The substitution w = y exp(axn/n) leads to a linear equation of the form 14.1.2.146:

x2w′′
xx + bxw′

x + (αx2m + βxm + γ)w = 0.

148. x2y′′xx + (axn+2 + bx2 + c)y′x + (anxn+1 + acxn + bc)y = 0.

Particular solution: y0 = exp
(
− a

n+ 1
xn+1 − bx

)
.

◮ Equations of the form (ax2 + bx+ c)y′′xx + f(x)y′x + g(x)y = 0.

149. (1 − x2)y′′xx + n(n− 1)y = 0, n = 0, 1, 2, . . .

This equation is encountered in hydrodynamics when describing axially symmetric Stokes

flows.

1◦. For n ≥ 2, the solution is given by:

y = C1Jn(x) + C2Hn(x),

where Jn(x) and Hn(x) are the Gegenbauer functions which can be expressed in terms of

the Legendre functions of the first and second kind (see 14.1.2.153) as follows:

Jn(x) =
Pn−2(x)− Pn(x)

2n− 1
, Hn(x) =

Qn−2(x)−Qn(x)

2n− 1
.

2◦. For n = 0 and n = 1, the solution is: y = C1 + C2x.

150. (x2 − a2)y′′xx + by′x − 6y = 0.

Particular solution: y0 = (4x− b)|x+ a|
2a+b
2a |x− a|

2a−b
2a .

151. (x2 − 1)y′′xx + xy′x + ay = 0.

1◦. For a = k2 > 0, the solution is:

y =

{
C1 cos(k arccosh |x|) + C2 sin(k arccosh |x|) if |x| > 1,

C1 exp(k arccos x) + C2 exp(−k arccos x) if |x| < 1,

where arccosh x = ln
(
x+
√
x2 − 1

)
.

2◦. For a = −k2 < 0, the solution is:

y =

{
C1 exp(k arccosh |x|) + C2 exp(−k arccosh |x|) if |x| > 1,

C1 cos(k arccos x) + C2 sin(k arccos x) if |x| < 1.

3◦. For a = −n2, where n is a nonnegative integer, particular solutions are the Chebyshev

polynomials: Tn(x) = cos(n arccos x).



“K16435’ — 2017/9/28 — 15:05 — #564

538 SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS

152. (1 − x2)y′′xx − xy′x + n2y = 0, n = 0, 1, 2, . . .

This is a special case of equation 14.1.2.151 with a = −n2. Particular solution:

y0 = Tn(x) = cos(n arccos x) =
(−1)n
2n
(
1
2

)
n

√
1− x2 dn

dxn
[
(1− x2)n− 1

2
]

=
n

2

[n/2]∑

m=0

(−1)m (n−m− 1)!

m! (n− 2m)!
(2x)n−2m,

where Tn(x) is the Chebyshev polynomial of the first kind, (a)n = a(a+1) . . . (a+n−1),
and [b] stands for the integer part of a number b.

153. (1 − x2)y′′xx − 2xy′x + n(n+ 1)y = 0, n = 0, 1, 2, . . .

The Legendre equation.

The solution is given by:

y = C1Pn(x) + C2Qn(x),

where the Legendre polynomials Pn(x) and the Legendre functions of the second kind

Qn(x) are given by the formulas:

Pn(x) =
1

n! 2n
dn

dxn
(x2−1)n, Qn(x) =

1

2
Pn(x) ln

1 + x

1− x −
n∑

m=1

1

m
Pm−1(x)Pn−m(x).

The functions Pn = Pn(x) can be conveniently calculated by the recurrence relations:

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1), . . . ,

Pn+1(x) =
2n + 1

n+ 1
xPn(x)−

n

n+ 1
Pn−1(x).

Three leading functions Qn = Qn(x) are:

Q0(x) =
1

2
ln

1 + x

1− x , Q1(x) =
x

2
ln

1 + x

1− x − 1, Q2(x) =
3x2 − 1

4
ln

1 + x

1− x −
3

2
x.

All n zeros of the polynomial Pn(x) are real and lie on the interval −1 < x < 1; the

functions Pn(x) form an orthogonal system on the closed interval −1 ≤ x ≤ 1, with the

following relations taking place:

∫ 1

−1
Pn(x)Pm(x) dx =




0 if n 6= m,

2

2n + 1
if n = m.

154. (1 − x2)y′′xx − 2xy′x + ν(ν + 1)y = 0.

The Legendre equation; ν is an arbitrary number. The case ν = n where n is a nonnegative

integer is considered in 14.1.2.153.

The substitution z = x2 leads to the hypergeometric equation. Therefore, with |x| < 1
the solution can be written as:

y = C1F
(
− ν
2
,
1 + ν

2
,
1

2
; x2

)
+ C2xF

( 1− ν
2

, 1 +
ν

2
,
3

2
; x2

)
,

where F (α, β, γ;x) is the hypergeometric series (see 14.1.2.171).

In Section S4.11, the Legendre equation is discussed in more detail. See also the books

by Abramowitz & Stegun (1964), Bateman & Erdélyi (1953, Vol. 1), and Kamke (1977).
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155. (1 − x2)y′′xx − 3xy′x + n(n+ 2)y = 0, n = 1, 2, 3, . . .

Particular solution:

y0 = Un(x) =
sin[(n + 1) arccos x]√

1− x2
=

(−1)n(n+ 1)

2n+1
(
1
2

)
n+1

1√
1− x2

dn

dxn
[
(1− x2)n+ 1

2
]

=

[n/2]∑

m=0

(−1)m (n −m)!

m! (n− 2m)!
(2x)n−2m, (a)n = a(a+ 1) . . . (a+ n− 1),

where Un(x) is the Chebyshev polynomial of the second kind and [b] stands for the integer

part of a number b.

156. (x2−1)y′′xx+2(n+1)xy′x−(ν+n+1)(ν−n)y=0, n=1, 2, 3, . . .

Solution: y =
dn

dxn
yν(x), where yν(x) is the general solution of the Legendre equation

14.1.2.154.

157. (x2−1)y′′xx−2(n−1)xy′x−(ν−n+1)(ν+n)y=0, n=1, 2, 3, . . .

Solution: y = |x2 − 1|n dn

dxn
yν(x), where yν(x) is the general solution of the Legendre

equation 14.1.2.154.

158. (x2 − 1)y′′xx + (2a+ 1)xy′x − b(2a+ b)y = 0.

1◦. Particular solution:

y0 =
Γ(2a+ b)

Γ(b+ 1)Γ(2a)
F
(
2a+ b,−b, a+ 1

2 ;
1
2 − 1

2x
)
, (1)

where F (α, β, γ; z) is the hypergeometric function (see equation 14.1.2.171 and Section

S4.10).

2◦. For b = n, where n = 0, 1, . . . , the right-hand side of (1) defines the Gegenbauer

polynomials,

C(a)
n (x) =

Γ(2a+ n)

Γ(n+ 1)Γ(2a)
F
(
2a+ n,−n, a+ 1

2 ;
1
2 − 1

2x
)

=

n∑

k=0

Γ(a+ k)Γ(2a + n+ k)(x− 1)k

k! (n − k)! 2kΓ(a)Γ(2a + 2k)
.

159. (1−x2)y′′xx+(2a−3)xy′x+(n+1)(n+2a−1)y=0, n=0, 1, 2, . . .

Particular solution:

y0(x) = (1− x2)a−1/2C(a)
n (x) = (1− x2)a−1/2

n∑

k=0

Γ(a+ k)Γ(2a + n+ k)(x− 1)k

k! (n− k)! 2kΓ(a)Γ(2a + 2k)
,

where C
(a)
n (x) are the Gegenbauer polynomials.
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160. (1 − x2)y′′xx +
[[
β − α− (α+ β + 2)x

]]
y′x + n(n+ α+ β + 1)y = 0,

n = 0, 1, 2, . . .

Particular solution:

y0(x) = Pα,β
n (x) =

(−1)n
2nn!

(1− x)−α(1 + x)−β dn

dxn

[
(1− x)α+n(1 + x)β+n

]

= 2−n
n∑

m=0

Cm
n+αC

n−m
n+β (x− 1)n−m(x+ 1)m,

where Pα,β
n (x) are the Jacobi polynomials and Ca

b are binomial coefficients.

161. (1 − x2)y′′xx +
[[
α− β + (α+ β − 2)x

]]
y′x

+ (n+ 1)(n+ α+ β)y = 0, n = 0, 1, 2, . . .

Particular solution: y0(x) = (1 − x)α(1 + x)βPα,β
n (x), where Pα,β

n (x) are the Jacobi

polynomials (see 14.1.2.160).

162. (ax2 + b)y′′xx + axy′x + cy = 0.

The substitution z =

∫
dx√
ax2 + b

leads to a constant coefficient linear equation: y′′zz +

cy = 0.

163. (x2 + a)y′′xx + 2bxy′x + 2(b− 1)y = 0.

Particular solution: y0 = |x2 + a|1−b.

164. (x2 − a2)y′′xx + 2bxy′x + b(b− 1)y = 0.

Solution: y = C1|x− a|1−b +C2|x+ a|1−b.

165. (x2 + a2)y′′xx + 2bxy′x + b(b− 1)y = 0.

Solution:

y = C1

(
x2 + a2

) 1−b
2 sinϕ+ C2

(
x2 + a2

) 1−b
2 cosϕ, where ϕ = (1− b) arctan(a/x).

166. (ax2 + b)y′′xx + (2n+ 1)axy′x + cy = 0, n = 1, 2, 3, . . .

This equation can be obtained by differentiating n times an equation of the form 14.1.2.162:

(ax2 + b)u′′xx + axu′x + (c− an2)u = 0.

Solution: y = u(n)x .

167. (1 − x2)y′′xx − xy′x + (2ax2 + b)y = 0.

This is an algebraic form of the Mathieu equation. The substitution x = cos z leads to the

Mathieu equation 14.1.6.29: y′′zz + (a+ b+ a cos 2z)y = 0.

168. (1 − x2)y′′xx + (ax+ b)y′x + cy = 0.

1◦. The substitution 2z = 1 + x leads to the hypergeometric equation 14.1.2.171:

z(1 − z)y′′zz + [az + 1
2 (b− a)]y′z + cy = 0.

2◦. For a = −2m − 3, b = 0, and c = λ, the Gegenbauer functions are solutions of the

equation.
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3◦. In the special case a = −α− β − 2, b = β − α, and c = n(n+ α+ β + 1), solutions

of the equation are the Jacobi polynomials:

P (α,β)
n (x) = 2−n

n∑

m=0

Cm
n+αC

n−m
n+β (x− 1)n−m(x+ 1)m,

where Ca
b are binomial coefficients (see Section S4.1.1).

169. (ax2 + b)y′′xx + (cx2 + d)y′x + λ[(c− aλ)x2 + d− bλ]y = 0.

Particular solution: y0 = e−λx.

170. (ax2 + b)y′′xx + [λ(c+ a)x2 + (c− a)x+ 2bλ]y′x + λ2(cx2 + b)y = 0.

Particular solution: y0 = (λx+ 1)e−λx.

171. x(x− 1)y′′xx + [(α+ β + 1)x− γ]y′x + αβy = 0.

The Gaussian hypergeometric equation. For γ 6= 0, −1, −2, −3, . . . , a solution can be

expressed in terms of the hypergeometric series:

F (α, β, γ;x) = 1 +

∞∑

k=1

(α)k(β)k
(γ)k

xk

k!
, (α)k = α(α+ 1) . . . (α+ k − 1),

which, a fortiori, is convergent for |x| < 1.

For γ > β > 0, this solution can be expressed in terms of a definite integral:

F (α, β, γ;x) =
Γ(γ)

Γ(β) Γ(γ − β)

∫ 1

0
tβ−1(1− t)γ−β−1(1− tx)−α dt,

where Γ(β) is the gamma function.

If γ is not an integer, the general solution of the hypergeometric equation has the form:

y = C1F (α, β, γ;x) + C2x
1−γF (α− γ + 1, β − γ + 1, 2− γ; x).

In the degenerate cases γ = 0, −1, −2, −3, . . . , a particular solution of the hyper-

geometric equation corresponds to C1 = 0 and C2 = 1. If γ is a positive integer, another

particular solution corresponds to C1 = 1 and C2 = 0. In both these cases, the general

solution can be constructed by means of the formula given in 14.1.1.

Table S4.3 (see Section S4.10) presents some special cases where F is expressed in

terms of elementary functions.

Table 14.2 gives the general solutions of the hypergeometric equation for some values

of the determining parameters.

The function F possesses the following properties:

F (α, β, γ;x) = F (β, α, γ;x),

F (α, β, γ;x) = (1− x)γ−α−βF (γ − α, γ − β, γ; x),
F (α, β, γ;x) = (1− x)−αF (α, γ − β, γ; x

x− 1
),

dn

dxn
F (α, β, γ;x) =

(α)n(β)n
(γ)n

F (α+ n, β + n, γ + n; x).

The hypergeometric functions are discussed in the books by Abramowitz & Stegun

(1964) and Bateman & Erdélyi (1953, Vol. 1) in more detail; see also Section S4.10.
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TABLE 14.2

General solutions of the hypergeometric equation for some values of the determining parameters

α β γ Solution: y = y(x)

0 β γ C1+C2

∫
|x|−γ |x−1|γ−β−1 dx

α α+
1

2
2α+1 C1

(
1+
√
1−x

)−2α
+C2x

−2α
(
1+
√
1−x

)2α

α α− 1

2

1

2
C1

(
1+
√
x
)1−2α

+C2

(
1−
√
x
)1−2α

α α+
1

2

3

2

1√
x

[
C1

(
1+
√
x
)1−2α

+C2

(
1−
√
x
)1−2α

]

1 β γ |x|1−γ |x−1|γ−β−1
(
C1+C2

∫
|x|γ−2|x−1|β−γ dx

)

α β α |x−1|−β
(
C1+C2

∫
|x|−α|x−1|β−1 dx

)

α β α+1 |x|−α
(
C1+C2

∫
|x|α−1|x−1|−β dx

)

172. x(x+ a)y′′xx + (bx+ c)y′x + dy = 0.

The substitution x= −az leads to the hypergeometric equation 14.1.2.171: z(1− z)y′′zz +
[(c/a) − bz]y′z − dy = 0.

173. 2x(x− 1)y′′xx + (2x− 1)y′x + (ax+ b)y = 0.

The substitution x = cos2 ξ leads to the Mathieu equation 14.1.6.29:

y′′ξξ − (a+ 2b+ a cos 2ξ)y = 0.

174. (x2 + 2ax+ b)y′′xx + (x+ a)y′x −m2y = 0.

Solution: y = C1

(
x+ a+

√
x2 + 2ax+ b

)m
+ C2

(
x+ a+

√
x2 + 2ax+ b

)−m
.

175. (ax2 + bx+ c)y′′xx + (dx+ k)y′x + (d− 2a)y = 0.

Integrating yields a first-order linear equation: (ax2+bx+c)y′x+[(d−2a)x+k−b]y=C.

176. (ax2 + bx+ c)y′′xx + (kx+ d)y′x − ky = 0.

Particular solution: y0 = kx+ d.

177. (ax2 + 2bx+ c)y′′xx + (ax+ b)y′x + dy = 0.

The substitution ξ =

∫
dx√

ax2 + 2bx+ c
leads to a constant coefficient linear equation

of the form 14.1.2.1: y′′ξξ + dy = 0.
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178. (ax2 + 2bx+ c)y′′xx + 3(ax+ b)y′x + dy = 0.

The substitution w= y
√
|ax2 + 2bx+ c| leads to a linear equation of the form 14.1.2.177:

(ax2 + 2bx+ c)w′′
xx + (ax+ b)w′

x + (d− a)w = 0.

179. (a2x
2 + b2x+ c2)y

′′

xx + (b1x+ c1)y
′

x + c0y = 0.

Let λ1 and λ2 be roots of the quadratic equation a2λ
2 + b2λ+ c2 = 0.

1◦. For λ1 6= λ2, the substitution z =
x− λ1
λ2 − λ1

leads to the hypergeometric equation

14.1.2.171:

z(1 − z)y′′zz − (Az +B)y′z − Cy = 0,

where A =
b1
a2

, B =
b1λ1 + c1
a2(λ2 − λ1)

, C =
c0
a2

.

2◦. For λ1 = λ2 = λ, the transformation x = λ + ξ−1, y = ξku, where k is a root of

the quadratic equation a2k
2 + (a2 − b1)k + c0 = 0, leads to a linear equation of the form

14.1.2.108: a2ξu
′′
ξξ − [(c1 + λb1)ξ + b1 − 2a2(k + 1)]u′ξ − k(c1 + λb1)u = 0.

3◦. Let c0 = −a2n(n − 1) − b1n, where n is a positive integer. Then, among solutions

there exists a polynomial of degree ≤ n.

180. (ax2 + bx+ c)y′′xx − (x2 − k2)y′x + (x+ k)y = 0.

Particular solution: y0 = x− k.

181. (ax2 + bx+ c)y′′xx + (x3 + k3)y′x − (x2 − kx+ k2)y = 0.

Particular solution: y0 = x+ k.

◮ Equations of the form (a3x
3 + a2x

2 + a1x+ a0)y
′′

xx + f(x)y′x + g(x)y = 0.

182. x3y′′xx + (ax+ b)y = 0.

This is a special case of equation 14.1.2.132 with n = −1.

183. x3y′′xx + (ax2 + bx)y′x + cxy = 0.

The substitution x = 1/z leads to an equation of the form 14.1.2.139:

z2y′′zz + z(2 − a− bz)y′z + cy = 0.

184. x3y′′xx + (ax2 + bx)y′x + by = 0.

Particular solution: y0 = a− 2 + b/x.

185. x3y′′xx + (ax2 + bx)y′x + cy = 0.

The substitution x = 1/z leads to an equation of the form 14.1.2.108:

zy′′zz + (2− a− bz)y′z + cy = 0.

186. x3y′′xx + (ax2 + bx)y′x + (cx+ d)y = 0.

1◦. The substitution y = xku, where k = −d/b, leads to a linear equation of the form

14.1.2.134: x2u′′xx + [(a+ 2k)x+ b]u′x + [k(a+ k − 1) + c]u = 0.

2◦. If c = 0 and d = b(a− 2), a particular solution is: y0 = eb/x.
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187. x3y′′xx + (ax3 − x2 + abx+ b)y′x + a2bxy = 0.

Particular solution: y0 = (ax+ 1)e−ax.

188. x3y′′xx + x(axn + b)y′x − (axn − abxn−1 + b)y = 0.

Particular solution: y0 = x exp(b/x).

189. x(ax2 + b)y′′xx + 2(ax2 + b)y′x − 2axy = 0.

Particular solution: y0 = ax+ b/x.

190. x(x2 + a)y′′xx + (bx2 + c)y′x + sxy = 0.

The substitution az=−x2 leads to the hypergeometric equation 14.1.2.171: z(1−z)y′′zz+
1
2

[
1 + ca−1 − (1 + b)z

]
y′z − 1

4 sy = 0.

191. x2(ax+ b)y′′xx + [cx2 + (2b+ aλ)x+ bλ]y′x + λ(c− 2a)y = 0.

Particular solution: y0 = exp(λ/x).

192. x2(ax+ b)y′′xx − 2x(ax+ 2b)y′x + 2(ax+ 3b)y = 0.

Solution: y =
C1x

2 + C2x
3

ax+ b
.

193. x2(ax+ b)y′′xx + [a(2 − n−m)x2 − b(n+m)x]y′x
+ [am(n− 1)x+ bn(m+ 1)]y = 0.

Solution: y =





C1|x|n + C2|x|m+1

ax+ b
if m 6= n− 1,

|x|n(C1 + C2 ln |x|)
ax+ b

if m = n− 1.

194. x2(x+ a2)y
′′

xx + x(b1x+ a1)y
′

x + (b0x+ a0)y = 0.

The substitution y = xku, where k is a root of the quadratic equation a2k
2+k(a1−a2)+

a0 = 0, leads to a linear equation of the form 14.1.2.172:

x(x+ a2)u
′′
xx + [(2k + b1)x+ 2ka2 + a1]u

′
x + [k2 + k(b1 − 1) + b0]u = 0.

195. (ax3 + bx2 + cx)y′′xx + (αx2 + βx+ 2c)y′x + (β − 2b)y = 0.

Particular solution: y0 = 2a− α+ (2b− β)x−1.

196. (ax3 + bx2 + cx)y′′xx + (αx2 + βx+ 2c)y′x − (αx+ 2b− β)y = 0.

Particular solution: y0 = αx+ 2(β − b) + λ

x
, where λ =

cα+ (b− β)(2b − β)
α− a .

197. (ax3 + bx2 + cx)y′′xx + [−2ax2 − (b+ 1)x+ k]y′x + 2(ax+ 1)y = 0.

Particular solution: y0 = (ak + b− 1)x2 + (c+ k)(2x − k).

198. (ax3 + bx2 + cx)y′′xx + (nx2 +mx+ ck)y′x
+ (k − 1)[(n− ak)x+m− bk]y = 0.

Particular solution: y0 = x1−k.
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199. (ax3+bx2+cx)y′′xx+[(m−a)x2+(2cm−1)x−c]y′x+(−2mx+1)y=0.

Particular solution: y0 = (a+m)x2 + (2b+ 4cm− 1)(x + c).

200. (ax3 + bx2 + cx)y′′xx + (nx2 +mx+ k)y′x + [−2(a+ n)x+ 1]y = 0.

With the constraint

2(2a + n)(c+ k) + (2b+ 2m+ 1)[m+ 1 + 2k(a+ n)] = 0,

a particular solution has the form: y0 = (2a + n)x2 + (2b+ 2m+ 1)(x− k).
201. (ax3 + x2 + b)y′′xx + a2x(x2 − b)y′x − a3bxy = 0.

Particular solution: y0 = (ax+ 2)e−ax.

202. 2x(ax2 + bx+ c)y′′xx + (ax2 − c)y′x + λx2y = 0.

The substitution ξ =

∫ ( x

ax2 + bx+ c

)1/2
dx leads to a constant coefficient linear equa-

tion: 2y′′ξξ + λy = 0.

203. x(ax2 + bx+ 1)y′′xx + (αx2 + βx+ γ)y′x + (nx+m)y = 0.

The substitution y = x1−γw leads to an equation of the same form:

x(ax2 + bx+ 1)w′′
xx + [(α+ 2a− 2aγ)x2 + (β + 2b− 2bγ)x + 2− γ]w′

x

+
{
[n+ (1− γ)(α− aγ)]x+m+ (1− γ)(β − bγ)

}
w = 0.

204. x(x− 1)(x− a)y′′xx +
{{
(α+ β + 1)x2

− [α+ β + 1 + a(γ + δ) − δ]x+ aγ
}}
y′x + (αβx− q)y = 0.

Heun’s equation.

1◦. For |a| ≥ 1 and γ 6= 0, −1, −2, −3, . . . , a solution can be represented as the power

series:

F (a, q;α, β, γ, δ, x) =

∞∑

n=0

cnx
n,

where the coefficients are determined by the recurrence formulas:

c0 = 1, aγc1 = q,

a(n + 1)(γ + n)cn+1 =
[
a(γ + δ + n− 1) + α+ β − δ + n+

q

n

]
ncn

−
[
(n− 1)(n − 2) + (n− 1)(α + β + 1) + αβ

]
cn−1.

A fortiori, the series is convergent for |x| ≤ 1.

2◦. If γ is not an integer, the general solution of Heun’s equation can be presented as

follows:

y = C1F (a, q;α, β, γ, δ, x) + C2|x|1−γF (a, q1;α− γ + 1, β − γ + 1, 2− γ, δ, x),
where q1 = q + (α− γ + 1)(β − γ + 1)− αβ + δ(γ − 1).

Table 14.3 lists some transformations preserving the form of Heun’s equation. (When-

ever at least one of the indicated equations is integrable by quadrature with some values of

parameters, all the other equations are also integrable for those values of the parameters.)

⊙ Literature: H. Bateman and A. Erdélyi (1955, Vol. 3), E. Kamke (1977), S. Yu. Slavyanov, W. Lay, and

A. Seeger (1955), A. Ronveaux (1995).
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TABLE 14.3

Some transformations preserving the form of Heun’s equation

No New variables Parameters of transformed equation for w=w(ξ)

1∗ ξ= x, w= y a q α β γ δ

2 ξ=1−x, w= y 1−a αβ−q α β δ γ

3 ξ= x, w= |x|γ−1y a q1 α−γ+1 β−γ+1 2−γ δ

4 ξ=
x

a
, w= |x|γ−1y

1

a

q2
a

α−γ+1 β−γ+1 2−γ α+β−γ
−δ+1

5 ξ=
1

x
, w= |x|αy 1

a
q3 α α−γ+1 α−β+1 δ

6 ξ=
x

a
, w= y

1

a
q α β γ α+β−γ

−δ+1

7 ξ=1− x
a
, w= y 1− 1

a
q α β

α+β−γ
−δ+1

γ

8 ξ=
x

a
, w= |x|αy a q α−γ+1 α+γ−1 α−β+1

α+β−γ
−δ+1

9 ξ=
x−1

x
, w= |x|αy 1− 1

a
q α α−γ+1 δ α−β+1

10 ξ=
a(x−1)

x(a−1)
, w= |x|αy

a

a−1
q α α−γ+1 δ

α+β−γ
−δ+1

11 ξ=
x

x−1
, w= |x−1|αy a

a−1
q α α−δ+1 γ α−β+1

12 ξ=
x(a−1)

a(x−1)
, w= |x−1|αy 1− 1

a
q α α−δ+1 γ α+β−γ

−δ+1

Notation: q1 = q+(α−γ+1)(β−γ+1)−αβ+δ(γ−1), q2 = q1+aδ(1−γ),
q3 = qa−1+α(α−γ+1)+αa−1(δ−β)−aδ.

∗ This row refers to the original equation, while the others refer to the transformed equation for w=w(ξ).

205. (ax3 + bx2 + cx+ d)y′′xx − (x2 − λ2)y′x + (x+ λ)y = 0.

Particular solution: y0 = x− λ.

206. 2(ax3 + bx2 + cx+ d)y′′xx + (3ax2 + 2bx+ c)y′x + λy = 0.

The substitution ξ =

∫
dx√

ax3 + bx2 + cx+ d
leads to a constant coefficient linear equa-

tion: 2y′′ξξ + λy = 0.

207. 2(ax3+bx2+cx+d)y′′xx+3(3ax2+2bx+c)y′x+(6ax+2b+λ)y = 0.

This equation is obtained by differentiating the equation 14.1.2.206.

208. (ax3+ bx2+ cx+d)y′′xx+[αx2+(αγ+β)x+βγ]y′x− (αx+β)y = 0.

Particular solution: y0 = x+ γ.

209. (ax3 + bx2 + cx+ d)y′′xx + (x3 + λ3)y′x − (x2 − λx+ λ2)y = 0.

Particular solution: y0 = x+ λ.
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210. 2x(ax2 + bx+ c)y′′xx + [a(2− k)x2 + b(1− k)x− ck]y′x+λxk+1y = 0.

The substitution ξ =

∫
xk/2(ax2 + bx+ c)−1/2 dx leads to a constant coefficient linear

equation: 2y′′ξξ + λy = 0.

◮ Equations of the form (a4x
4+a3x

3+a2x
2+a1x+a0)y

′′

xx+f(x)y
′

x+g(x)y=0.

211. x4y′′xx + ay = 0.

The transformation z = 1/x, u= y/x leads to a constant coefficient linear equation of the

form 14.1.2.1: u′′zz + au = 0.

212. x4y′′xx + (ax2 + bx+ c)y = 0.

The transformation z = 1/x, u = y/x leads to a linear equation of the form 14.1.2.115:

z2u′′zz + (cz2 + bz + a)u = 0.

213. x4y′′xx − (a+ b)x2y′x + [(a+ b)x+ ab]y = 0.

Solution: y =

{
C1xe

−a/x + C2xe
−b/x if a 6= b,

(C1x+ C2)e
−a/x if a = b.

214. x4y′′xx + 2x2(x+ a)y′x + by = 0.

The substitution z=1/x leads to a constant coefficient linear equation: y′′zz−2ay′z+by=0.

215. x4y′′xx + axny′x − (axn−1 + abxn−2 + b2)y = 0.

Particular solution: y0 = xe−b/x.

216. x2(x− a)2y′′xx + by = 0.

Solution: y = C1|x|m|x−a|1−m+C2|x|1−m|x−a|m, where m is a root of the quadratic

equation m(m− 1)a2 = −b.

217. x2(x− a)2y′′xx + by = cx2(x− a)2.

Solution:

y = |x|m|x− a|1−m
(
C1 +

c

a(2m− 1)

∫
|x|1−m|x− a|m dx

)

+ |x|1−m|x− a|m
(
C2 −

c

a(2m− 1)

∫
|x|m|x− a|1−m dx

)
,

where m is a root of the quadratic equation m(m− 1)a2 = −b.

218. ax2(x− 1)2y′′xx + (bx2 + cx+ d)y = 0.

Let p and q be roots of the quadratic equations

ap(p− 1) + d = 0, aq(q − 1) + b+ c+ d = 0.

The substitution y = xp(x − 1)qw leads to the hypergeometric equation of the form

14.1.2.171: ax(x− 1)w′′
xx + 2a[(p + q)x− p]w′

x + (2apq − c− 2d)w = 0.
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219. x2(x2 + a)y′′xx + (bx2 + c)xy′x + dy = 0.

The substitution ξ = x2 leads to a linear equation of the form 14.1.2.194: 4ξ2(ξ+a)y′′ξξ+
2ξ[(b + 1)ξ + a+ c]y′ξ + dy = 0.

220. (x2 + 1)2y′′xx + ay = 0.

The Halm equation. Solution:

y =





√
x2 + 1

[
C1 cos(β arctan x) + C2 sin(β arctan x)

]
if a+ 1 = β2 > 0,√

x2 + 1
[
C1 cosh(β arctan x) + C2 sinh(β arctan x)

]
if a+ 1 = −β2 < 0,√

x2 + 1 (C1 + C2 arctan x) if a = −1.

221. (x2 − 1)2y′′xx + ay = 0.

Solution:

y =





√
|x2 − 1|

[
C1 cos

(
β ln |z|

)
+ C2 sin

(
β ln |z|

)]
if a− 1 = 4β2 > 0,

(x+ 1)
(
C1|z|(2β−1)/2 + C2|z|−(2β+1)/2

)
if a− 1 = −4β2 < 0,√

|x2 − 1|
(
C1 + C2 ln |z|

)
if a = 1,

where z = (x+ 1)/(x − 1).

222. (x2 ± a2)2y′′xx + b2y = 0.

This is the equation of bending of a double-walled compressed bar with a parabolic cross-

section.

1◦. For the upper sign (constricted bar), the solution is as follows:

y =
√
x2 + a2 (C1 cos u+ C2 sinu), where u =

√
1 + (b/a)2 arctan(x/a).

2◦. For the lower sign (bar with salients), the solution is given by:

y =
√
a2 − x2 (C1 cos u+C2 sinu), where u =

√
b2 − a2
2a

ln
a+ x

a− x ; |x| < a.

223. 4(x2 + 1)2y′′xx + (ax2 + a− 3)y = 0.

Solution:

y =

{
(x2 + 1)1/4(C1 cos ξ + C2 sin ξ) if a > 1,

(x2 + 1)1/4(C1 cosh ξ + C2 sinh ξ) if a < 1,

where ξ = 1
2

√
|a− 1| ln

(
x+

√
|x2 + 1|

)
.

224. (ax2 + b)2y′′xx + 2ax(ax2 + b)y′x + cy = 0.

The substitution ξ=

∫
dx

ax2 + b
leads to a constant coefficient linear equation: y′′ξξ+cy=0.

225. (x2 − 1)2y′′xx + 2x(x2 − 1)y′x − [ν(ν + 1)(x2 − 1) + n2]y = 0.

Here, ν is an arbitrary number and n is a nonnegative integer. This is a special case of

equation 14.1.2.226.

If n = 0, this equation coincides with the Legendre equation 14.1.2.154. Denote its

general solution by yν(x). If n= 1, 2, 3, . . . , the general solution of the original equation

is given by the formula: y = |x2 − 1|n/2 d
n

dxn
yν(x).
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226. (1 − x2)2y′′xx − 2x(1 − x2)y′x + [ν(ν + 1)(1 − x2) − µ2]y = 0.

The Legendre equation, ν and µ are arbitrary parameters.

The transformation x= 1−2ξ, y = |x2−1|µ/2w leads to the hypergeometric equation

14.1.2.171:

ξ(ξ − 1)w′′
ξξ + (µ + 1)(1 − 2ξ)w′

ξ + (ν − µ)(ν + µ+ 1)w = 0

with parameters α = µ− ν, β = µ+ ν + 1, γ = µ+ 1.

In particular, the original equation is integrable by quadrature if ν = µ or ν = −µ− 1.

In Section S4.11, the Legendre equation is discussed in more detail. See also the books

by Abramowitz & Stegun (1964) and Bateman & Erdélyi (1953, Vol. 1).

227. a(x2 − 1)2y′′xx + bx(x2 − 1)y′x + (cx2 + dx+ e)y = 0.

The transformation ξ = 1
2 (x+1), w = |x+1|−p|x−1|−qy, where p and q are parameters

that are determined by solving the second-order algebraic system

4aq(q − 1) + 2bq + c+ d+ e = 0, (p− q)[2a(p + q − 1) + b] = d,

leads to the hypergeometric equation 14.1.2.171 with respect to w = w(ξ).

228. (ax2 + b)2y′′xx + (2ax+ c)(ax2 + b)y′x + ky = 0.

The substitution ξ =

∫
dx

ax2 + b
leads to a constant coefficient linear equation of the form

14.1.2.11: y′′ξξ + cy′ξ + ky = 0.

229. (ax2 + b)2y′′xx + (ax2 + b)(cx2 + d)y′x + 2(bc− ad)xy = 0.

Particular solution: y0 = exp
(
−
∫

cx2 + d

ax2 + b
dx
)

.

230. (x2 + a)2y′′xx + bxn(x2 + a)y′x − (bxn+1 + a)y = 0.

Particular solution: y0 =
√
x2 + a.

231. (x2 + a)2y′′xx + bxn(x2 + a)y′x −m[bxn+1 + (m− 1)x2 + a]y = 0.

Particular solution: y0 = (x2 + a)m/2.

232. (x− a)2(x− b)2y′′xx − cy = 0, a 6= b.

The transformation ξ = ln
∣∣∣x− a
x− b

∣∣∣, y = (x − b)η leads to a constant coefficient linear

equation: (a− b)2(η′′ξξ − η′ξ)− cη = 0. Therefore, the solution is as follows:

y = C1|x− a|(1+λ)/2|x− b|(1−λ)/2 + C2|x− a|(1−λ)/2|x− b|(1+λ)/2,

where λ2 = 4c(a− b)−2 + 1 6= 0.

233. (x− a)2(x− b)2y′′xx + (x− a)(x− b)(2x+ λ)y′x + µy = 0.

Let k1 and k2 be roots of the quadratic equation (a− b)2k2+(a− b)(a+ b+λ)k+µ= 0.
Solution:

y =

{
C1|z|k1 + C2|z|k2 if k1 6= k2,

|z|k
(
C1 +C2 ln |z|

)
if k1 = k2 = k,

where z = (x− a)/(x − b).
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234. (ax2 + bx+ c)2y′′xx + Ay = 0.

The transformation ξ =

∫
dx

ax2 + bx+ c
, w =

y√
|ax2 + bx+ c|

leads to a constant

coefficient linear equation of the form 14.1.2.1: w′′
ξξ + (A+ ac− 1

4 b
2)w = 0.

235. (x2 − 1)2y′′xx + 2x(x2 − 1)y′x + [(x2 − 1)(a2x2 − λ) −m2]y = 0.

Equation for prolate spheroidal wave functions, m = 0, 1, . . . It arises when separating

variables in the wave equation written in the system of prolate spheroidal coordinates.

1◦. In applications, one usually looks for eigenvalues λ = λmn and eigenfunctions y =
ymn(x) that assume finite values at x = ±1. The following functions are solutions of the

eigenvalue problem:

S(1)
mn(a, x) =

∞∑

r=0,1

dmn
r (a)Pm

m+r(x) (prolate angular functions of the first kind),

S(2)
mn(a, x) =

∞∑

r=−∞
dmn
r (a)Qm

m+r(x) (prolate angular functions of the second kind),

where Pm
n (x) and Qm

n (x) are the associated Legendre functions of the first and second

kind. For −1 ≤ x ≤ 1, we have Pm
n (x) = (1 − x2)m/2 dm

dxm Pn(x). The summation is

performed over either even or odd values of r, depending on whether |n − m| is even or

odd, respectively.

2◦. The following recurrence relations for the coefficients dk = dmn
k (a) hold:

αkdk+2 + (βk − λmn)dk + γkdk−2 = 0,

where

αk =
a2(2m+ k + 1)(2m + k + 2)

(2m+ 2k + 3)(2m+ 2k + 5)
,

βk = (m+ k)(m+ k + 1) + a2
2(m+ k)(m+ k + 1)− 2m2 − 1

(2m+ 2k − 1)(2m + 2k + 3)
,

γk =
a2k(k − 1)

(2m+ 2k − 3)(2m+ 2k − 1)
.

3◦. For a→ 0, the eigenvalues are defined by:

λmn = n(n+ 1) +
1

2

[
1− (2m− 1)(2m+ 1)

(2n − 1)(2n + 3)

]
a2 +O

(
a4
)
.

4◦. For a→∞, we have:

λmn = aq+m2− 1
8 (q

2+5)− 1
64 q(q

2+11−32m2)a−1+O
(
a−2
)
, q = 2(n−m)+1.

⊙ Literature: H. Bateman and A. Erdélyi (1955, Vol. 3), M. Abramowitz and I. A. Stegun (1964).

236. (x2 + 1)2y′′xx + 2x(x2 + 1)y′x + [(x2 + 1)(a2x2 − λ) +m2]y = 0.

Equation of oblate spheroidal wave functions, m=0, 1, . . . The transformations x=±ix̃,

a = ∓iã lead to equation 14.1.2.235.

See the books by Bateman & Erdélyi (1955, Vol. 3) and Abramowitz & Stegun (1964)

for more information on this equation.
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237. (ax2 + bx+ c)2y′′xx + (2ax+ k)(ax2 + bx+ c)y′x +my = 0.

The substitution ξ =

∫
dx

ax2 + bx+ c
leads to a constant coefficient linear equation of the

form 14.1.2.11: y′′ξξ + (k − b)y′ξ +my = 0.

◮ Other equations.

238. x6y′′xx − x5y′x + ay = 0.

The transformation ξ = x−2, w = yx−2 leads to a constant coefficient linear equation of

the form 14.1.2.1: 4w′′
ξξ + aw = 0.

239. x6y′′xx + (3x2 + a)x3y′x + by = 0.

The substitution ξ = x−2 leads to a constant coefficient linear equation: 4y′′ξξ − 2ay′ξ +
by = 0.

240. y′′xx + y′x

3∑
n=1

bn(1 − αn − βn)

bnx− an

− y

(b1x− a1)(b2x− a2)(b3x− a3)

3∑
n=1

αnβn
∆n∆n−1

bnx− an
= 0.

Here
3∑

n=1
(αn + βn) = 1, |an| + |bn| > 0, ∆n = anbn+1 − an+1bn 6= 0, an+3 = an,

bn+3 = bn.

It is the Riemann equation. Denote this equation by:

{
a1 a2 a3
b1 b2 b3

∣∣∣∣
α1 α2 α3

β1 β2 β3

∣∣∣∣
x
y

}
= 0. (1)

For a1 = b2 = 0, a3 = b3 = 1, α1 = α3 = 0, α2 = α, β1 = 1 − γ, β2 = β, and

β3 = γ − α− β, equation (1) transforms into the hypergeometric equation 14.1.2.171.

The transformation

ξ =
Ax+B

Cx+D
, w =

|b1x− a1|r|b3x− a3|s
|b2x− a2|r+s

y, (2)

where AD −BC 6= 0, brings the original equation into an equation of similar form:

{
A1 A2 A3

B1 B2 B3

∣∣∣∣
α1 + r α2 − r − s α3 + s
β1 + r β2 − r − s β3 + s

∣∣∣∣
ξ
w

}
= 0, (3)

where An = Aan +Bbn, Bn = Can +Dbn.

In (2), assume r = −α1, s = −α3, A = b1/∆3, B = −a1/∆3, C = −b2/∆2, and

D = a2/∆2 to obtain the hypergeometric equation (3).

241. xny′′xx + c(ax+ b)n−4y = 0.

The transformation ξ =
x

ax+ b
, w =

y

ax+ b
leads to an equation of the form 14.1.2.7:

w′′
ξξ + cb−2ξ−nw = 0.
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242. xny′′xx + axy′x − (b2xn + 2bxn−1 + abx+ a)y = 0.

Particular solution: y0 = xebx.

243. xny′′xx + (ax+ b)y′x − ay = 0.

Particular solution: y0 = ax+ b.

244. xny′′xx + (axn−1 + bx)y′x + (a− 1)by = 0.

Particular solution: y0 = x1−a.

245. xny′′xx + (2xn−1 + ax2 + bx)y′x + by = 0.

Particular solution: y0 = a+ b/x.

246. xny′′xx + (axn + b)y′x + c[(a− c)xn + b]y = 0.

Particular solution: y0 = e−cx.

247. xny′′xx + (axn − xn−1 + abx+ b)y′x + a2bxy = 0.

Particular solution: y0 = (ax+ 1)e−ax.

248. xny′′xx + (axn+m + 1)y′x + axm(1 +mxn−1)y = 0.

Particular solution: y0 = exp
(
− a

m+ 1
xm+1

)
.

249. (axn + b)y′′xx + (cxn + d)y′x + λ[(c− aλ)xn + d− bλ]y = 0.

Particular solution: y0 = e−λx.

250. (axn + bx+ c)y′′xx = an(n− 1)xn−2y.

Particular solution: y0 = axn + bx+ c.

251. x(xn + 1)y′′xx + [(a− b)xn + a− n]y′x + b(1 − a)xn−1y = 0.

Particular solution: y0 = (xn + 1)b/n.

252. x(x2n + a)y′′xx + (x2n + a− an)y′x − b2x2n−1y = 0.

Solution: y = C1

(
xn +

√
x2n + a

)b/n
+ C2

(
xn +

√
x2n + a

)−b/n
.

253. x2(a2x2n−1)y′′xx+x[a
2(n+1)x2n+n−1]y′x−ν(ν+1)a2n2x2ny=0.

Solution: y = yν(ax
n), where yν(x) is the general solution of the Legendre equation

14.1.2.154.

254. x2(axn − 1)y′′xx + x(apxn + q)y′x + (arxn + s)y = 0.

Find the roots A1, A2 and B1, B2 of the quadratic equations

A2 − (q + 1)A − s = 0, B2 − (p− 1)B + r = 0

and define parameters c, α, β, and γ by the relations

c = A1, α = (A1 +B1)n
−1, β = (A1 +B2)n

−1, γ = 1 + (A1 −A2)n
−1.

Then the solution of the original equation has the form y = xcu(axn), where u = u(z) is

the general solution of the hypergeometric equation 14.1.2.171:

z(z − 1)u′′zz + [(α+ β + 1)z − γ]u′z + αβu = 0.

255. (xn + a)2y′′xx − bxn−2[(b− 1)xn + a(n− 1)]y = 0.

Particular solution: y0 = |xn + a|b/n.
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256. (axn + b)2y′′xx + (axn + b)(cxn + d)y′x + n(bc− ad)xn−1y = 0.

Particular solution: y0 = exp
(
−
∫

cxn + d

axn + b
dx
)

.

257. (xn + a)2y′′xx + bxm(xn + a)y′x − xn−2(bxm+1 + an− a)y = 0.

Particular solution: y0 = (xn + a)1/n.

258. (axn + b)2y′′xx + cxm(axn + b)y′x + (cxm − anxn−1 − 1)y = 0.

Particular solution: y0 = exp
(
−
∫

dx

axn + b

)
.

259. x2(axn + b)2y′′xx + (n+ 1)x(a2x2n − b2)y′x + cy = 0.

The substitution ξ =
1

nb
ln
( axn

axn + b

)
leads to a constant coefficient linear equation of

the form 14.1.2.11: y′′ξξ − b(n+ 2)y′ξ + cy = 0.

260. (axn+1 + bxn + c)y′′xx + (αxn + βxn−1 + γ)y′x
+ [n(α− a− an)xn−1 + (n− 1)(β − bn)xn−2]y = 0.

Particular solution: y0 = exp
[ ∫ (an+ a− α)xn + (bn− β)xn−1 − γ

axn+1 + bxn + c
dx
]
.

261. (axn + bxm + c)y′′xx + (λ− x)y′x + y = 0.

Particular solution: y0 = x− λ.

262. (axn + bxm + c)y′′xx + (λ2 − x2)y′x + (x+ λ)y = 0.

Particular solution: y0 = x− λ.

263. 2(axn + bxm + c)y′′xx + (anxn−1 + bmxm−1)y′x + dy = 0.

The substitution ξ =

∫
dx√

axn + bxm + c
leads to a constant coefficient linear equation:

2y′′ξξ + dy = 0.

264. (axn + b)m+1y′′xx + (axn + b)y′x − anmxn−1y = 0.

Particular solution: y0 = exp
[
−
∫

dx

(axn + b)m

]
.

265. xPn(x)y
′′

xx + [2Pn(x) + (ax2 + bx)Qn−2(x)]y
′

x + bQn−2(x)y = 0.

Here, Pn(x) and Qn−2(x) are arbitrary polynomials of degrees n and n− 2, respectively.

Particular solution: y0 = a+ b/x.

14.1.3 Equations Containing Exponential Functions

◮ Equations with exponential functions.

1. y′′xx + aeλxy = 0, λ 6= 0.

Solution: y=C1J0(z)+C2Y0(z), where z=2λ−1√a eλx/2; J0(z) and Y0(z) are Bessel

functions.
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2. y′′xx + (aex − b)y = 0.

Solution: y = C1J2
√
b

(
2
√
a ex/2

)
+ C2Y2

√
b

(
2
√
a ex/2

)
, where Jν(z) and Yν(z) are the

Bessel functions.

3. y′′xx + a(λeλx − ae2λx)y = 0.

Particular solution: y0 = exp
(
− a
λ
eλx
)

.

4. y′′xx − [a2e2x + a(2b+ 1)ex + b2]y = 0.

Particular solution: y0 = exp(aex + bx).

5. y′′xx − (ae2λx + beλx + c)y = 0.

The transformation z = eλx, w = z−ky, where k =
√
c/λ, leads to an equation of the

form 14.1.2.108: λ2zw′′
zz + λ2(2k + 1)w′

z − (az + b)w = 0.

6. y′′xx + (ae4λx + be3λx + ce2λx − 1
4
λ2)y = 0.

The transformation ξ = eλx, w = yeλx/2 leads to a linear equation of the form 14.1.2.6:

w′′
ξξ + λ−2(aξ2 + bξ + c)w = 0.

7. y′′xx + [ae2λx(beλx + c)n − 1
4
λ2]y = 0.

The transformation ξ = beλx + c, w = yeλx/2 leads to an equation of the form 14.1.2.7:

w′′
ξξ + a(bλ)−2ξnw = 0.

8. y′′xx + ay′x + be2axy = 0.

The transformation ξ = eax, u = yeax leads to a constant coefficient linear equation of

the form 14.1.2.1: u′′ξξ + ba−2u = 0.

9. y′′xx − ay′x + be2axy = 0.

The substitution ξ= eax leads to a constant coefficient linear equation of the form 14.1.2.1:

y′′ξξ + ba−2y = 0.

10. y′′xx + ay′x + (beλx + c)y = 0.

Solution:

y=e−ax/2
[
C1Jν

(
2λ−1

√
b eλx/2

)
+C2Yν

(
2λ−1

√
b eλx/2

)]
, where ν=λ−1

√
a2 − 4c;

Jν(z) and Yν(z) are Bessel functions.

11. y′′xx − y′x +
((
ae3λx + be2λx + 1

4
− 1

4
λ2
))
y = 0.

The substitution z = ex leads to a second-order linear equation of the form 14.1.2.121:

z2y′′zz +
(
az3λ + bz2λ + 1

4 − 1
4λ

2
)
y = 0.

12. y′′xx − y′x +
[[
ae2λx(beλx + c)n + 1

4
− 1

4
λ2
]]
y = 0.

The substitution z = ex leads to a second-order linear equation of the form 14.1.2.122:

z2y′′zz +
[
az2λ(bzλ + c)n + 1

4 − 1
4λ

2
]
y = 0.
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13. y′′xx + 2aeλxy′x + aeλx(aeλx + λ)y = 0.

Solution: y = exp
(
− a
λ
eλx
)
(C1 + C2x).

14. y′′xx + (a+ b)eλxy′x + aeλx(beλx + λ)y = 0.

Particular solution: y0 = exp
(
− a
λ
eλx
)

.

15. y′′xx + aeλxy′x − beµx(aeλx + beµx + µ)y = 0.

Particular solution: y0 = exp
( b
µ
eµx
)

.

16. y′′xx + 2keµxy′x + (ae2λx + beλx + k2e2µx + kµeµx + c)y = 0.

The substitution w = y exp
( k
µ
eµx
)

leads to a linear equation of the form 14.1.3.5:

w′′
xx + (ae2λx + beλx + c)w = 0.

17. y′′xx − (a+ 2beax)y′x + b2e2axy = 0.

Particular solution: y0 = exp
( b
a
eax
)

.

18. y′′xx + (ae2λx + λ)y′x − aλe2λxy = 0.

Particular solution: y0 = aeλx + λe−λx.

19. y′′xx + (aeλx − λ)y′x + be2λxy = 0.

The substitution ξ = eλx leads to a constant coefficient linear equation: λ2y′′ξξ + aλy′ξ +
by = 0.

20. y′′xx + (aeλx + b)y′x + c(aeλx + b− c)y = 0.

Particular solution: y0 = e−cx.

21. y′′xx + (a+ be2λx)y′x + λ(a− λ− be2λx)y = 0.

Particular solution: y0 = beλx + ae−λx.

22. y′′xx + (abeλx + b− 3λ)y′x + a2λ(b− λ)e2λxy = 0.

Particular solution: y0 = (aeλx + 1) exp(−aeλx).

23. y′′xx + (2aeλx − λ)y′x + (a2e2λx + ceµx)y = 0.

This is a special case of equation 14.1.3.28 with b = k = 0.

24. y′′xx + (2aeλx + b)y′x + [a2e2λx + a(b+ λ)eλx + c]y = 0.

The substitution w = y exp
( a
λ
eλx
)

leads to a constant coefficient linear equation of the

form 14.1.2.11: w′′
xx + bw′

x + cw = 0.

25. y′′xx + (aeλx + 2b− λ)y′x + (ce2λx + abeλx + b2 − bλ)y = 0.

The transformation ξ = eλx/λ, w = ebxy leads to a constant coefficient linear equation:

w′′
ξξ + aw′

ξ + cw = 0.
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26. y′′xx+(aex+b)y′x+[c(a−c)e2x+(ak+bc+c−2ck)ex+k(b−k)]y=0.

Particular solution: y0 = exp(−cex − kx).

27. y′′xx + (aeλx + b)y′x + (αe2λx + βeλx + γ)y = 0.

The substitution ξ = ex leads to an equation of the form 14.1.2.146:

ξ2y′′ξξ + (aξλ + b+ 1)ξy′ξ + (αξ2λ + βξλ + γ)y = 0.

28. y′′xx + (2aeλx − λ)y′x + (a2e2λx + be2µx + ceµx + k)y = 0.

The substitution w = y exp
( a
λ
eλx − λx

2

)
leads to a linear equation of the form 14.1.3.5:

w′′
xx +

(
be2µx + ceµx + k − 1

4λ
2
)
w = 0.

29. y′′xx + (2aeλx + b− λ)y′x + (a2e2λx + abeλx + ce2µx + deµx + k)y = 0.

The substitution w = y exp
( a
λ
eλx +

b− λ
2

x
)

leads to an equation of the form 14.1.3.5:

w′′
xx +

[
ce2µx + deµx + k − 1

4 (b− λ)2
]
w = 0.

30. y′′xx + (aeλx + beµx)y′x + aeλx(beµx + λ)y = 0.

Particular solution: y0 = exp
(
− a
λ
eλx
)

.

31. y′′xx + eλx(ae2µx + b)y′x + µ[eλx(b− ae2µx) − µ]y = 0.

Particular solution: y0 = aeµx + be−µx.

32. y′′xx + (aeλx + beµx + c)y′x + (aλeλx + bµeµx)y = 0.

Particular solution: y0 = exp
(
− a
λ
eλx − b

µ
eµx − cx

)
.

33. y′′xx + (aeλx + beµx + c)y′x + [abe(λ+µ)x + aceλx + bµeµx]y = 0.

Particular solution: y0 = exp
(
− b
µ
eµx − cx

)
.

34. y′′xx + (aeλx + 2beµx − λ)y′x
+ [abe(λ+µ)x + ce2λx + b2e2µx + b(µ− λ)eµx]y = 0.

1◦. If λ = 0, the equation transforms into 2.1.3.24, and if µ = 0, into 2.1.3.25.

2◦. For λµ 6= 0, the transformation ξ =
1

λ
eλx, w = y exp

( b
µ
eµx
)

leads to a constant

coefficient linear equation: w′′
ξξ + aw′

ξ + cw = 0.

35. y′′xx + [abe(λ+µ)x + aλeλx + beµx − 2λ]y′x + a2bλe(2λ+µ)xy = 0.

Particular solution: y0 = (aeλx + 1) exp(−aeλx).

36. y′′xx + a exp(bxn)y′x + c[a exp(bxn) − c]y = 0.

Particular solution: y0 = e−cx.

37. (aeλx + b)y′′xx − aλ2eλxy = 0.

Particular solution: y0 = aeλx + b.
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38. (a2e2λx + b)y′′xx − bλy′x − a2λ2k2e2λxy = 0.

Solution: y = C1

(
aeλx +

√
a2e2λx + b

)k
+ C2

(
aeλx +

√
a2e2λx + b

)−k
.

39. 2(aeλx + b)y′′xx + aλeλxy′x + cy = 0.

The substitution ξ =

∫
(aeλx + b)−1/2 dx leads to a constant coefficient linear equation

of the form 14.1.2.1: 2y′′ξξ + cy = 0.

40. (aeλx + b)y′′xx + (ceλx + d)y′x + k[(c− ak)eλx + d− bk]y = 0.

Particular solution: y0 = e−kx.

41. (aeλx + b)y′′xx + (ceλx + d)y′x + (neλx +m)y = 0.

For the case a = 0, see equation 14.1.3.27. For a 6= 0, the transformation ξ = aeλx,

w = yξ−k, where k is a root of the quadratic equation bλ2k2 + dλk +m = 0, leads to an

equation of the form 14.1.2.172:

aλ2ξ(ξ+ b)w′′
ξξ+λ[(2akλ+aλ+ c)ξ+a(2bkλ+ bλ+d)]w

′
ξ +(ak2λ2+ ckλ+n)w = 0.

42. (ex + k)y′′xx + (aeλx + beµx + c)y′x + (aλeλx + bµeµx − ex)y = 0.

Integrating yields a first-order linear equation: (ex+k)y′x+(aeλx+ beµx− ex+ c)y =C.

43. (aeλx + b)2y′′xx + ceλx(λb− ceλx)y = 0.

Particular solution: y0 = (aeλx + b)k, where k = − c

aλ
.

44. (aeλx + b)2y′′xx + σ(aeλx + b)y′x + ceλx(σ + λb− ceλx)y = 0.

Particular solution: y0 = (aeλx + b)k, where k = − c

aλ
.

45. (aeλx + b)2y′′xx + (aλeλx + c)(aeλx + b)y′x +my = 0.

The substitution ξ =

∫
dx

aeλx + b
leads to a constant coefficient linear equation of the

form 14.1.2.11: y′′ξξ + cy′ξ +my = 0.

46. (aeλx + b)2y′′xx + keµx(aeλx + b)y′x + ceλx(keµx − ceλx + λb)y = 0.

Particular solution: y0 = (aeλx + b)k, where k = − c

aλ
.

47. 4(aeλx + b)ny′′xx + [ke2λx(ceλx + d)n−4 − λ2(aeλx + b)n]y = 0.

The transformation ξ =
aeλx + b

ceλx + d
, w =

yeλx/2

ceλx + d
leads to an equation of the form

14.1.2.7: 4w′′
ξξ + k(∆λ)−2ξ−nw = 0, where ∆ = ad− bc.

◮ Equations with power and exponential functions.

48. y′′xx + aeλxy′x + b(axneλx − bx2n + nxn−1)y = 0.

Particular solution: y0 = exp
(
− b

n+ 1
xn+1

)
.
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49. y′′xx + 2aeλxy′x + (a2e2λx + aλeλx + bx2n + cxn−1)y = 0.

The substitution w = y exp
( a
λ
eλx
)

leads to a linear equation of the form 14.1.2.10:

w′′
xx + (bx2n + cxn−1)w = 0.

50. y′′xx + (ax+ b)eλxy′x − aeλxy = 0.

Particular solution: y0 = ax+ b.

51. y′′xx + (axeλx + 2b)y′x + (abxeλx − aeλx + b2)y = 0.

Particular solution: y0 = xe−bx.

52. y′′xx + x(aeλx + beµx)y′x − (aeλx + beµx)y = 0.

Particular solution: y0 = x.

53. y′′xx + (axn + beλx)y′x + (abxneλx + anxn−1)y = 0.

Particular solution: y0 = exp
(
− a

n+ 1
xn+1

)
.

54. y′′xx + (ax+ b) exp(λxn)y′x − a exp(λxn)y = 0.

Particular solution: y0 = ax+ b.

55. y′′xx + axn exp(bxm)y′x − axn−1 exp(bxm)y = 0.

Particular solution: y0 = x.

56. xy′′xx − (2ax2 + 1)y′x + 4bx3 exp(2λx2)y = 0.

Solution:

y = exp
(
1
2ax

2
)[
C1J a

2λ
(z) + C2Y a

2λ
(z)
]
, where z = λ−1

√
b exp

(
λx2

)
;

Jν(z) and Yν(z) are Bessel functions.

57. xy′′xx + axeλxy′x + aeλx(1 + λx)y = 0.

Particular solution: y0 = x exp
(
− a
λ
eλx
)

.

58. xy′′xx + axeλxy′x − [a(bx+ 1)eλx + b(bx+ 2)]y = 0.

Particular solution: y0 = xebx.

59. xy′′xx + (axeλx + b)y′x + a(b− 1)eλxy = 0.

Particular solution: y0 = x1−b.

60. xy′′xx + [a(bx+ 1)eλx + bx− 1]y′x + ab2xeλxy = 0.

Particular solution: y0 = (bx+ 1)e−bx.

61. xy′′xx + [(ax2 + bx)eλx + 2]y′x + beλxy = 0.

Particular solution: y0 = a+ b/x.

62. xy′′xx + (axn + beλx)y′x + axn−1(beλx + n− 1)y = 0.

Particular solution: y0 = exp(−axn/n).
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63. xy′′xx + (axeλx + bxn)y′x + [a(bxn − 1)eλx + bnxn−1]y = 0.

Particular solution: y0 = x exp(−bxn/n).

64. xy′′xx + [(axn + 1)eλx + anxn + 1 − 2n]y′x + a2nx2n−1eλxy = 0.

Particular solution: y0 = (axn + 1) exp(−axn).

65. xy′′xx + (aeλx + beµx)y′x + (aλeλx + bµeµx)y = 0.

Integrating, we obtain a first-order linear equation: xy′x + (aeλx + beµx − 1)y = C.

66. xy′′xx + [axn exp(bxm) + c]y′x + a(c− 1)xn−1 exp(bxm)y = 0.

Particular solution: y0 = x1−c.

67. (x+ a)y′′xx + (beλx + c)y′x + bλeλxy = 0.

Particular solution: y0 = exp
(∫ 1− c− beλx

x+ a
dx
)

.

68. 4x2y′′xx + [ax2n exp(bxn) + 1 − n2]y = 0.

The transformation ξ = bxn, w = yx
n−1
2 leads to a linear equation of the form 14.1.3.1:

4w′′
ξξ + a(bn)−2eξw = 0.

69. x2y′′xx + 2axy′x + [(b2e2cx − ν2)c2x2 + a(a− 1)]y = 0.

Solution: y = x−a
[
C1Jν(be

cx) + C2Yν(be
cx)
]
, where Jν(z) and Yν(z) are Bessel func-

tions.

70. x2y′′xx + axeλxy′x + b(aeλx − b− 1)y = 0.

Particular solution: y0 = x−b.

71. x2y′′xx + x(aeλx + 2b)y′x + [a(cx+ b)eλx − c2x2 + b(b− 1)]y = 0.

Particular solution: y0 = x−be−cx.

72. x4y′′xx + (e2/x − ν2)y = 0.

Solution: y = x
[
C1Jν(e

1/x)+C2Yν(e
1/x)

]
, where Jν(z) and Yν(z) are Bessel functions.

73. x4y′′xx + [a exp(2λ/x) + b exp(λ/x) + c]y = 0.

The transformation ξ = 1/x, w = y/x leads to a linear equation of the form 14.1.3.5:

w′′
ξξ + (ae2λξ + beλξ + c)w = 0.

74. x4y′′xx + ax2eλxy′x + [a(b− x)eλx − b2]y = 0.

Particular solution: y0 = x exp(b/x).

75. (x2 + a)2y′′xx + beλx(x2 + a)y′x − (bxeλx + a)y = 0.

Particular solution: y0 =
√
x2 + a.
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76. (xn + a)2y′′xx + b(xn + a)eλxy′x − xn−2(bxeλx + an− a)y = 0.

Particular solution: y0 = (xn + a)1/n.

77. (axn + b)2y′′xx + c(axn + b)eλxy′x + (ceλx − anxn−1 − 1)y = 0.

Particular solution: y0 = exp
(
−
∫

dx

axn + b

)
.

78. (aeλx + bx+ c)y′′xx − aλ2eλxy = 0.

Particular solution: y0 = aeλx + bx+ c.

79. [(ax+ b)eλx + c]y′′xx − cλ2y = 0.

Particular solution: y0 = ce−λx + ax+ b.

14.1.4 Equations Containing Hyperbolic Functions

◮ Equations with hyperbolic sine.

1. y′′xx + (a sinh2 x+ b)y = 0.

Applying the formula sinh2 x = 1
2 cosh 2x− 1

2 , we obtain the modified Mathieu equation

14.1.4.9: y′′xx +
(
b− 1

2a+
1
2a cosh 2x

)
y = 0.

2. y′′xx + a sinh(λx)y′x + b[a sinh(λx)− b]y = 0.

Particular solution: y0 = e−bx.

3. y′′xx + [a sinhn(λx) + c]y′x + ab sinhn(λx)y = 0.

Particular solution: y0 = e−bx.

4. y′′xx + (ax+ b) sinhn(λx)y′x − a sinhn(λx)y = 0.

Particular solution: y0 = ax+ b.

5. xy′′xx + (a sinhn x+ bxm+1)y′x + bxm(a sinhn x+m)y = 0.

Particular solution: y0 = exp
(
− b

m+ 1
xm+1

)
.

6. sinh2(ax)y′′xx − by = 0.

The substitution ax = ± ln
z√

z2 + 1
(z > 0) leads to a linear equation of the form

14.1.2.190: z(z2 + 1)y′′zz + (3z2 + 1)y′z − 4a−2bzy = 0.

7. y′′xx sinh2 x− [a2 sinh2 x+ n(n− 1)]y = 0, a 6= 0; n = 1, 2, 3, . . .

Solution: y = sinhn x
( 1

sinhx

d

dx

)n
(C1e

ax + C2e
−ax).

8. [a sinh(λx) + bx+ c]y′′xx − aλ2 sinh(λx)y = 0.

Particular solution: y0 = a sinh(λx) + bx+ c.
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◮ Equations with hyperbolic cosine.

9. y′′xx − (a− 2q cosh 2x)y = 0.

The modified Mathieu equation. The substitution x = iξ leads to the Mathieu equation

14.1.6.29:

y′′ξξ + (a− 2q cos 2ξ)y = 0.

For eigenvalues a = an(q) and a = bn(q), the corresponding solutions of the modified

Mathieu equation are:

Ce2n+p(x, q) = ce2n+p(ix, q) =

∞∑

k=0

A2n+p
2k+p cosh[(2k + p)x],

Se2n+p(x, q) = −i se2n+p(ix, q) =

∞∑

k=0

B2n+p
2k+p sinh[(2k + p)x],

where p can be either 0 or 1, and the coefficients A2n+p
2k+p and B2n+p

2k+p are specified in

14.1.6.29.

The modified Mathieu equation is discussed in the books by Abramowitz & Stegun

(1964), Bateman & Erdélyi (1955, vol. 3), and McLachlan (1947) in more detail.

10. y′′xx + (a cosh2 x+ b)y = 0.

Applying the formula cosh 2x = 2 cosh2 x− 1, we obtain the modified Mathieu equation

14.1.4.9: y′′xx +
(
1
2a+ b+ 1

2a cosh 2x
)
y = 0.

11. y′′xx + a cosh(λx)y′x + b[a cosh(λx) − b]y = 0.

Particular solution: y0 = e−bx.

12. y′′xx + [a coshn(λx) + c]y′x + ab cosn(λx)y = 0.

Particular solution: y0 = e−bx.

13. y′′xx + (ax+ b) coshn(λx)y′x − a coshn(λx)y = 0.

Particular solution: y0 = ax+ b.

14. y′′xx + axn coshm(λx)y′x − axn−1 coshm(λx)y = 0.

Particular solution: y0 = x.

15. xy′′xx + ax coshn(λx)y′x − [a(bx+ 1) coshn(λx) + b(bx+ 2)]y = 0.

Particular solution: y0 = xebx.

16. xy′′xx + [ax coshn(λx) + b]y′x + a(b− 1) coshn(λx)y = 0.

Particular solution: y0 = x1−b.

17. xy′′xx + [(ax2 + bx) coshn(λx) + 2]y′x + b coshn(λx)y = 0.

Particular solution: y0 = a+ b/x.

18. x2y′′xx + ax coshn(λx)y′x + b[a coshn(λx) − b− 1]y = 0.

Particular solution: y0 = x−b.
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19. (a cosh x+ b)y′′xx + (c cosh x+ d)y′x + λ[(c− aλ) cosh x+ d− bλ]y = 0.

Particular solution: y0 = e−λx.

20. cosh2(ax)y′′xx − by = 0.

The substitution x =
1

2a
ln

z

1− z (0 < z < 1) leads to the hypergeometric equation

14.1.2.171: z(z − 1)y′′zz + (2z − 1)y′z + a−2by = 0.

21. [a cosh(λx) + bx+ c]y′′xx − aλ2 cosh(λx)y = 0.

Particular solution: y0 = a cosh(λx) + bx+ c.

◮ Equations with hyperbolic tangent.

22. y′′xx + [a tanh(λx) + b]y = 0.

The transformation z =
1− tanh(λx)

1 + tanh(λx)
, w = yz−k/λ, where k is a root of the quadratic

equation 4k2 + b− a = 0, leads to a linear equation of the form 14.1.2.172:

4λ2z(z + 1)w′′
zz + 4λ(2k + λ)(z + 1)w′

z + (4k2 + a+ b)w = 0.

23. y′′xx − 4a2 tanh2(3ax)y = 0.

Particular solution: y0 = sinh(3ax)[cosh(3ax)]−1/3.

24. y′′xx + [aλ− a(a+ λ) tanh2(λx)]y = 0.

Particular solution: y0 = [cosh(λx)]−a/λ.

25. y′′xx + [3aλ− λ2 − a(a+ λ) tanh2(λx)]y = 0.

Particular solution: y0 = sinh(λx)[cosh(λx)]−a/λ.

26. y′′xx + ay′x − λ[λ+ a tanh(λx)]y = 0.

Particular solution: y0 = cosh(λx).

27. y′′xx + 2 tanhx y′x + ay = 0.

Solution: y cosh x =

{
C1 cos(bx) + C2 sin(bx) if a− 1 = b2 > 0,

C1 cosh(bx) + C2 sinh(bx) if a− 1 = −b2 < 0.

28. y′′xx + a tanh(λx)y′x + b[a tanh(λx) − b]y = 0.

Particular solution: y0 = e−bx.

29. y′′xx + 2 tanhx y′x + (ax2 + bx+ c)y = 0.

The substitution w= y coshx leads to a second-order linear equation of the form 14.1.2.6:

w′′
xx + (ax2 + bx+ c− 1)w = 0.

30. y′′xx + 2 tanhx y′x + (axn + 1)y = 0.

The substitution w = y cosh x leads to a linear equation of the form 14.1.2.7: w′′
xx +

axnw = 0.
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31. y′′xx + 2 tanhx y′x + (ax2n + bxn−1 + 1)y = 0.

The substitution w=y cosh x leads to a second-order linear equation of the form 14.1.2.10:

w′′
xx + (ax2n + bxn−1)w = 0.

32. y′′xx + (2 tanhx+ a)y′x + (a tanh x+ b)y = 0.

The substitution w= y cosh x leads to a constant coefficient linear equation: w′′
xx+aw

′
x+

(b− 1)w = 0.

33. y′′xx + a tanhn(λx)y′x − λ[λ+ a tanhn+1(λx)]y = 0.

Particular solution: y0 = cosh(λx).

34. y′′xx + [a tanhn(λx) + c]y′x + ab tann(λx)y = 0.

Particular solution: y0 = e−bx.

35. y′′xx + (ax+ b) tanhn(λx)y′x − a tanhn(λx)y = 0.

Particular solution: y0 = ax+ b.

36. y′′xx + axn tanhm(λx)y′x − axn−1 tanhm(λx)y = 0.

Particular solution: y0 = x.

37. xy′′xx + ax tanhn(λx)y′x − [a(bx+ 1) tanhn(λx) + b(bx+ 2)]y = 0.

Particular solution: y0 = xebx.

38. xy′′xx + [ax tanhn(λx) + b]y′x + a(b− 1) tanhn(λx)y = 0.

Particular solution: y0 = x1−b.

39. xy′′xx + [(ax2 + bx) tanhn(λx) + 2]y′x + b tanhn(λx)y = 0.

Particular solution: y0 = a+ b/x.

40. xy′′xx + (a tanhn x+ bxm+1)y′x + bxm(a tanhn x+m)y = 0.

Particular solution: y0 = exp
(
− b

m+ 1
xm+1

)
.

41. x2y′′xx + ax tanhn(λx)y′x + b[a tanhn(λx) − b− 1]y = 0.

Particular solution: y0 = x−b.

42. (a tanh x+ b)y′′xx + (c tanh x+ d)y′x + λ[(c− aλ) tanhx+ d− bλ]y = 0.

Particular solution: y0 = e−λx.

43. [a tanh(λx) + b]y′′xx + [c tanh(λx) + d]y′x + [n tanh(λx) +m]y = 0.

The transformation z =
1 + tanh(λx)

1− tanh(λx)
, w = yz−k/λ, where k is a root of the quadratic

equation 4(a − b)k2 + 2(c − d)k + n − m = 0, leads to a linear equation of the form

14.1.2.172:

4λ2z[(a+b)z+b−a]w′′
zz+2λ{[2(2k+λ)(a+b)+c+d]z +2(2k+λ)(b−a)+d−c}w′

z

+ [4(a + b)k2 + 2(c+ d)k + n+m]w = 0.
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◮ Equations with hyperbolic cotangent.

44. y′′xx + [a coth(λx) + b]y = 0.

The transformation z =
1− tanh(λx)

1 + tanh(λx)
, w = yz−k/λ, where k is a root of the quadratic

equation 4k2 + b− a = 0, leads to an equation of the form 14.1.2.172:

4λ2z(z − 1)w′′
zz + 4λ(2k + λ)(z − 1)w′

z + (4k2 + a+ b)w = 0.

45. y′′xx − 4a2 coth2(3ax)y = 0.

Particular solution: y0 = cosh(3ax)[sinh(3ax)]−1/3.

46. y′′xx + [aλ− a(a+ λ) coth2(λx)]y = 0.

Particular solution: y0 = [sinh(λx)]−a/λ.

47. y′′xx + [3aλ− λ2 − a(a+ λ) coth2(λx)]y = 0.

Particular solution: y0 = cosh(λx)[sinh(λx)]−a/λ.

48. y′′xx + a coth(λx)y′x + b[a coth(λx)− b]y = 0.

Particular solution: y0 = e−bx.

49. y′′xx + [a cothn(λx) + c]y′x + ab cothn(λx)y = 0.

Particular solution: y0 = e−bx.

50. y′′xx + (ax+ b) cothn(λx)y′x − a cothn(λx)y = 0.

Particular solution: y0 = ax+ b.

51. y′′xx + 2n coth x y′x + (n2 − a2)y = 0, n = 1, 2, 3, . . .

Solution: y =
( 1

sinh x

d

dx

)n
(C1e

ax + C2e
−ax).

52. [a+ b coth(λx)]y′′xx + [c+ d coth(λx)]y′x + [n+m coth(λx)]y = 0.

Multiply this equation by tanh(λx) to obtain equation 14.1.4.43.

◮ Equations containing combinations of hyperbolic functions.

53. y′′xx − a[a cosh2(bx) + b sinh(bx)]y = 0.

Particular solution: y0 = exp
[ a
b

sinh(bx)
]
.

54. y′′xx − a[a sinh2(bx) + b cosh(bx)]y = 0.

Particular solution: y0 = exp
[ a
b

cosh(bx)
]
.

55. y′′xx + (a cosh2 x+ b sinh2 x+ c)y = 0.

Apply the formulas 2 sinh2 x = cosh(2x)− 1 and 2 cosh2 x = cosh(2x) + 1 to obtain an

equation of the form 14.1.4.9: y′′xx +
[ a− b

2
+ c+

a+ b

2
cosh(2x)

]
y = 0.
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56. y′′xx + a sinh(λx)y′x − λ[λ+ a cosh(λx)]y = 0.

Particular solution: y0 = sinh(λx).

57. y′′xx + a cosh(λx)y′x − λ[λ+ a sinh(λx)]y = 0.

Particular solution: y0 = cosh(λx).

58. y′′xx − λ tanh(λx)y′x − a2 cosh2(λx)y = 0.

Solution: y = C1 exp
[ a
λ

sinh(λx)
]
+ C2 exp

[
− a
λ

sinh(λx)
]
.

59. y′′xx − tanh x y′x + a2 coth2 x (sinhx)2m−2y = 0.

Solution: y =
√

sinhx
[
C1J 1

2m

( a
m

sinhm x
)
+ C2Y 1

2m

( a
m

sinhm x
)]

, where Jν(z)

and Yν(z) are Bessel functions.

60. sinhn(λx)y′′xx + [a coshn−4(λx) − λ2 sinhn(λx)]y = 0.

The transformation ξ = tanh(λx), w=
y

cosh(λx)
leads to an equation of the form 14.1.2.7:

w′′
ξξ + aλ−2ξ−nw = 0.

61. coshn(λx)y′′xx + [a sinhn−4(λx) − λ2 coshn(λx)]y = 0.

The transformation ξ = coth(λx), w =
y

sinh(λx)
leads to an equation of the form 14.1.2.7:

w′′
ξξ + aλ−2ξ−nw = 0.

14.1.5 Equations Containing Logarithmic Functions

◮ Equations of the form f(x)y′′xx + g(x)y = 0.

1. y′′xx − (a2x2 ln2 x+ a ln x+ a)y = 0.

Particular solution: y0 = e−ax2/4xax
2/2.

2. y′′xx − (a2x2n ln2 x+ anxn−1 lnx+ axn−1)y = 0.

Particular solution: y0 = e−Fx(n+1)F , where F =
axn+1

(n+ 1)2
.

3. xy′′xx − (a2x ln2 x+ a)y = 0.

Particular solution: y0 = e−axxax.

4. xy′′xx − [a2x ln2n(bx) + an lnn−1(bx)]y = 0.

Particular solution: y0 = exp
[
a

∫
lnn(bx) dx

]
.

5. x2y′′xx + (a ln x+ b)y = 0.

The transformation ξ = a lnx + b − 1
4 , w = yx−1/2 leads to an equation of the form

14.1.2.2: w′′
ξξ + a−2ξw = 0.
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6. x2y′′xx + (a ln2 x+ b ln x+ c)y = 0.

The transformation ξ = lnx, w = yx−1/2 leads to an equation of the form 14.1.2.6:

w′′
ξξ + (aξ2 + bξ + c− 1

4 )w = 0.

7. x2y′′xx +
[[
a(b lnx+ c)n + 1

4

]]
y = 0.

The transformation ξ = b lnx + c, w = yx−1/2 leads to an equation of the form 14.1.2.7:

w′′
ξξ + ab−2ξnw = 0.

8. x2 ln(ax)y′′xx + y = 0.

Solution: y = C1 ln(ax) + C2 ln(ax)

∫
[ln(ax)]−2 dx.

9. x(ax lnx+ bx+ c)y′′xx − ay = 0.

Particular solution: y0 = ax ln x+ bx+ c.

10. x2(a ln x+ bx+ c)y′′xx + ay = 0.

Particular solution: y0 = a ln x+ bx+ c.

◮ Equations of the form f(x)y′′xx + g(x)y′x + h(x)y = 0.

11. y′′xx + a lnn(bx)y′x + c[a lnn(bx) − c]y = 0.

Particular solution: y0 = e−cx.

12. y′′xx + [a lnn(bx) + c]y′x + ac lnn(bx)y = 0.

Particular solution: y0 = e−cx.

13. y′′xx + (ax+ b) lnn(cx)y′x − a lnn(cx)y = 0.

Particular solution: y0 = ax+ b.

14. y′′xx + axn lnm(bx)y′x − axn−1 lnm(bx)y = 0.

Particular solution: y0 = x.

15. xy′′xx + ax ln x y′x + a(lnx+ 1)y = 0.

Particular solution: y0 = eaxx1−ax.

16. xy′′xx + (ax lnx+ b)y′x + (ab lnx+ a)y = 0.

Particular solution: y0 = eaxx−ax.

17. xy′′xx + (2ax ln x+ 1)y′x + (a2x ln2 x+ a lnx+ a)y = 0.

Solution: y = eaxx−ax(C1 + C2 lnx).

18. xy′′xx + ln x(ax+ b)y′x + a(b ln2 x+ 1)y = 0.

Particular solution: y0 = eaxx−ax.

19. xy′′xx + ax lnn(bx)y′x + an lnn−1(bx)y = 0.

Particular solution: y0 = exp
[
−a
∫

lnn(bx) dx
]
.
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20. xy′′xx + ax lnn xy′x + (a lnn x+ an lnn−1 x)y = 0.

Particular solution: y0 = x exp
(
−a
∫

lnn x dx
)

.

21. xy′′xx + (axn lnx+ 1)y′x − axn−1 y = 0.

Particular solution: y0 = lnx.

22. xy′′xx + (ax lnn x+ 1)y′x − a lnn−1 x y = 0.

Particular solution: y0 = lnx.

23. xy′′xx + (ax lnn x+ b)y′x + a(b− 1) lnn x y = 0.

Particular solution: y0 = x1−b.

24. xy′′xx + [(ax2 + bx) lnn(cx) + 2]y′x + b lnn(cx)y = 0.

Particular solution: y0 = a+ b/x.

25. xy′′xx + (axn + b lnm x)y′x + axn−1(b lnm x+ n− 1)y = 0.

Particular solution: y0 = exp(−axn/n).

26. xy′′xx + (axn + bx lnm x)y′x + [b(axn − 1) lnm x+ anxn−1]y = 0.

Particular solution: y0 = x exp(−axn/n).

27. x2y′′xx + xy′x + a lnn(bx)y = 0.

Solution:

y =
√

ln(bx)

[
C1J 1

2m

(√
a

m
lnm(bx)

)
+ C2Y 1

2m

(√
a

m
lnm(bx)

)]
, m =

1

2
(n+ 2),

where Jν(z) and Yν(z) are Bessel functions.

28. x2y′′xx + xy′x + (a ln2n x+ b lnn−1 x)y = 0.

The substitution ξ = lnx leads to an equation of the form 14.1.2.10:

y′′ξξ + (aξ2n + bξn−1)y = 0.

29. x2y′′xx + x(2a lnx+ 1)y′x + (x2 + a2 ln2 x+ b)y = 0.

The substitution y = w exp(− 1
2a ln

2 x) leads to the Bessel equation 14.1.2.126: x2w′′
ξξ +

xw′
ξ + (x2 + b− a)w = 0.

30. x2y′′xx + x(2 ln x+ a+ 1)y′x + (ln2 x+ a ln x+ b)y = 0.

The transformation ξ = lnx, w = y exp( 12 ln
2 x) leads to a constant coefficient linear

equation: w′′
ξξ + aw′

ξ + (b− 1)w = 0.

31. x2y′′xx + x(2 ln x+ a)y′x + [ln2 x+ (a− 1) ln x+ bxn + c]y = 0.

The substitution w = y exp( 12 ln
2 x) leads to a linear equation of the form 14.1.2.132:

x2w′′
xx + axw′

x + (bxn + c− 1)w = 0.
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32. x2y′′xx + ax lnn(bx)y′x + c[a lnn(bx)− c− 1]y = 0.

Particular solution: y0 = x−c.

33. x2y′′xx + x(axn + b lnx)y′x + b(axn lnx− ln x+ 1)y = 0.

Particular solution: y0 = exp
(
− 1

2 b ln
2 x
)
.

34. x(x+ a)y′′xx + x(b ln x+ c)y′x + by = 0.

Particular solution: y0 = exp
(
−
∫

b lnx+ c− 1

x+ a
dx
)

.

35. x4y′′xx + ax2 lnn(bx)y′x + [a(c− x) lnn(bx)− c2]y = 0.

Particular solution: y0 = x exp(c/x).

36. (a ln x+ b)y′′xx + (c lnx+ d)y′x + λ[(c− aλ) lnx+ d− bλ]y = 0.

Particular solution: y0 = e−λx.

37. x ln x y′′xx − ny′x − a2x(lnx)2n+1y = 0.

Solution: y = C1e
aF + C2e

−aF , where F =

∫
lnn x dx.

38. x ln(ax)y′′xx − [n ln(ax) +m]y′x − b2x2n+1 ln2m+1(ax)y = 0.

Solution: y = C1e
bF +C2e

−bF , where F =

∫
xn lnm(ax) dx.

39. x ln2 x y′′xx + (ax+ 1) lnx y′x + bxy = 0.

The substitution ξ =

∫
dx

lnx
leads to a constant coefficient linear equation: y′′ξξ + ay′ξ +

by = 0.

40. lnn(ax)y′′xx + (b2 − x2)y′x + (x+ b)y = 0.

Particular solution: y0 = x− b.

14.1.6 Equations Containing Trigonometric Functions

◮ Equations with sine.

1. y′′xx + a2y = b sin(λx).

Equation of forced oscillations.

Solution: y =





C1 sin(ax) +C2 cos(ax) +
b

a2 − λ2 sin(λx) if a 6= λ,

C1 sin(ax) +C2 cos(ax)−
b

2a
x cos(ax) if a = λ.

2. y′′xx + [a sin(λx) + b]y = 0.

Applying the substitution λx = 2ξ + 1
2π, we obtain the Mathieu equation 14.1.6.29:

y′′ξξ + (4aλ−2 cos 2ξ + 4bλ−2)y = 0.
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3. y′′xx + (a sin2 x+ b)y = 0.

Applying the formula 2 sin2 x = 1 − cos 2x, we obtain the Mathieu equation 14.1.6.29:

y′′xx + ( 12a+ b− 1
2a cos 2x)y = 0.

4. y′′xx + a sin(bx)y′x + c[axn sin(bx) − cx2n + nxn−1]y = 0.

Particular solution: y0 = exp
(
− c

n+ 1
xn+1

)
.

5. y′′xx + a sinn(bx)y′x + c[a sinn(bx) − c]y = 0.

Particular solution: y0 = e−cx.

6. y′′xx + [a sinn(bx) + c]y′x + ac sinn(bx)y = 0.

Particular solution: y0 = e−cx.

7. y′′xx + (ax+ b) sinn(cx)y′x − a sinn(cx)y = 0.

Particular solution: y0 = ax+ b.

8. y′′xx + axn sinm(bx)y′x − axn−1 sinm(bx)y = 0.

Particular solution: y0 = x.

9. y′′xx + axn sinm(bx)y′x + c[axn+k sinm(bx) − cx2k + kxk−1]y = 0.

Particular solution: y0 = exp
(
− c

k + 1
xk+1

)
.

10. xy′′xx + [(ax2 + bx) sinn(cx) + 2]y′x + b sinn(cx)y = 0.

Particular solution: y0 = a+ b/x.

11. xy′′xx + (axn+1 + b sinm x)y′x + axn(b sinm x+ n)y = 0.

Particular solution: y0 = exp
(
− a

n+ 1
xn+1

)
.

12. xy′′xx + (axn + bx sinm x)y′x + [b(axn − 1) sinm x+ anxn−1]y = 0.

Particular solution: y0 = x exp(−axn/n).

13. xy′′xx + axn sinm(bx) y′x − [a(cx+ 1)xn−1 sinm(bx) + c2x+ 2c]y = 0.

Particular solution: y0 = xecx.

14. xy′′xx + [axn sinm(bx) + c]y′x + a(c− 1)xn−1 sinm(bx)y = 0.

Particular solution: y0 = x1−c.

15. x2y′′xx + x(a sinn x+ 1)y′x + b(a sinn x− b)y = 0.

Particular solution: y0 = x−b.

16. x2y′′xx + x(a sinn x+ b)y′x + b(a sinn x− 1)y = 0.

Particular solution: y0 = x−b.

17. x2y′′xx + axn sinm(bx)y′x + c[axn−1 sinm(bx)− c− 1]y = 0.

Particular solution: y0 = x−c.
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18. x4y′′xx + [a sin(λ/x) + b]y = 0.

The transformation ξ = 1/x, w = y/x leads to a linear equation of the form 14.1.6.2:

w′′
ξξ + [a sin(λξ) + b]w = 0.

19. x4y′′xx + ax2 sinn(bx) y′x + [a(c− x) sinn(bx) − c2]y = 0.

Particular solution: y0 = x exp(c/x).

20. sin(2x) y′′xx − y′x + 2a2 sin2 x y = 0.

Solution: y = C1 sin(au) + C2 cos(au), where u =

∫ √
tanx dx.

21. sin2 x y′′xx + ay = 0.

This is a special case of equation 14.1.6.23.

22. sin2 x y′′xx − [a sin2 x+ n(n− 1)]y = 0, n = 1, 2, 3, . . .

Solution: y = sinn x
( 1

sinx

d

dx

)n(
C1e

x
√
a + C2e

−x
√
a
)
.

23. sin2 x y′′xx + (a sin2 x+ b)y = 0.

Set x = 2ξ. Applying the trigonometric formulas

sin 2ξ = 2 sin ξ cos ξ, b = b(sin2 ξ + cos2 ξ)2

and dividing both sides of the equation by sin2 x, we arrive at an equation of the form

14.1.6.131: y′′ξξ + (b tan2 ξ + b cot2 ξ + 4a+ 2b)y = 0.

24. sin2 x y′′xx−{[(a2b2−(a+1)2] sin2 x+a(a+1)b sin 2x+a(a−1)}y=0.

Particular solution: y0 = eabx sina x (cos x+ b sinx).

25. [a sin(λx) + bx+ c]y′′xx + aλ2 sin(λx) y = 0.

Particular solution: y0 = a sin(λx) + bx+ c.

26. sinn(ax) y′′xx + (x2 − b2)y′x − (x+ b)y = 0.

Particular solution: y0 = x− b.

27. (a sinn x+ b)y′′xx + (c sinn x+ d)y′x + λ[(c− aλ) sinn x+ d− bλ]y = 0.

Particular solution: y0 = e−λx.

◮ Equations with cosine.

28. y′′xx + a2y = b cos(λx).

Equation of forced oscillations.

Solution: y =





C1 sin(ax) +C2 cos(ax) +
b

a2 − λ2 cos(λx) if a 6= λ,

C1 sin(ax) +C2 cos(ax) +
b

2a
x sin(ax) if a = λ.
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29. y′′xx + (a− 2q cos 2x)y = 0.

The Mathieu equation.

1◦. Given numbers a and q, there exists a general solution y(x) and a characteristic index µ
such that

y(x+ π) = e2πµy(x).

For small values of q, an approximate value of µ can be found from the equation:

cosh(πµ) = 1 + 2 sin2
(
1
2π
√
a
)
+

πq2

(1− a)√a sin
(
π
√
a
)
+O(q4).

If y1(x) is the solution of the Mathieu equation satisfying the initial conditions y1(0) = 1
and y′1(0) = 0, the characteristic index can be determined from the relation:

cosh(2πµ) = y1(π).

The solution y1(x), and hence µ, can be determined with any degree of accuracy by means

of numerical or approximate methods.

The general solution differs depending on the value of y1(π) and can be expressed in

terms of two auxiliary periodical functions ϕ1(x) and ϕ2(x) (see Table 14.4).

TABLE 14.4

The general solution of the Mathieu equation 14.1.6.29 expressed

in terms of auxiliary periodical functions ϕ1(x) and ϕ2(x)

Constraint General solution y = y(x)
Period of

ϕ1 and ϕ2
Index

y1(π)> 1 C1e
2µxϕ1(x)+C2e

−2µxϕ2(x) π µ is a real number

y1(π)<−1 C1e
2ρxϕ1(x)+C2e

−2ρxϕ2(x) 2π
µ= ρ+ 1

2 i, i
2 =−1,

ρ is the real part of µ

|y1(π)|< 1
(C1 cos νx+C2 sin νx)ϕ1(x)+
+(C1 cos νx−C2 sin νx)ϕ2(x)

π
µ= iν is a pure

imaginary number,

cos(2πν) = y1(π)

y1(π) =±1 C1ϕ1(x)+C2xϕ2(x) π µ= 0

2◦. In applications, of major interest are periodical solutions of the Mathieu equation that

exist for certain values of the parameters a and q (those values of a are referred to as

eigenvalues). The most important solutions (the Mathieu functions) are listed in Table S4.6.

The main properties of the solutions are avilable in Section S4.16.

30. y′′xx + (a cos2 x+ b)y = 0.

Applying the formula 2 cos2 x = 1 + cos 2x, we obtain the Mathieu equation 14.1.6.29:

y′′xx + ( 12a+ b+ 1
2a cos 2x)y = 0.

31. y′′xx + a cosn(bx)y′x + c[a cosn(bx) − c]y = 0.

Particular solution: y0 = e−cx.
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32. y′′xx + [a cosn(bx) + c]y′x + ac cosn(bx)y = 0.

Particular solution: y0 = e−cx.

33. y′′xx + (ax+ b) cosn(cx)y′x − a cosn(cx)y = 0.

Particular solution: y0 = ax+ b.

34. y′′xx + axn cosm(bx)y′x − axn−1 cosm(bx)y = 0.

Particular solution: y0 = x.

35. y′′xx + axn cosm(bx)y′x + c[axn+k cosm(bx) − cx2k + kxk−1]y = 0.

Particular solution: y0 = exp
(
− c

k + 1
xk+1

)
.

36. xy′′xx + ax cosn(bx) y′x − [a(cx+ 1) cosn(bx) + c2x+ 2c]y = 0.

Particular solution: y0 = xecx.

37. xy′′xx + [(ax2 + bx) cosn(cx) + 2]y′x + b cosn(cx)y = 0.

Particular solution: y0 = a+ b/x.

38. xy′′xx + (axn+1 + b cosm x)y′x + axn(b cosm x+ n)y = 0.

Particular solution: y0 = exp
(
− a

n+ 1
xn+1

)
.

39. xy′′xx + [axn cosm(bx) + c]y′x + a(c− 1)xn−1 cosm(bx)y = 0.

Particular solution: y0 = x1−c.

40. xy′′xx + (axn + bx cosm x)y′x + [b(axn − 1) cosm x+ anxn−1]y = 0.

Particular solution: y0 = x exp(−axn/n).

41. x2y′′xx + x(a cosn x+ 1)y′x + b(a cosn x− b)y = 0.

Particular solution: y0 = x−b.

42. x2y′′xx + x(a cosn x+ b)y′x + b(a cosn x− 1)y = 0.

Particular solution: y0 = x−b.

43. x2y′′xx + axn cosm(bx)y′x + c[axn−1 cosm(bx) − c− 1]y = 0.

Particular solution: y0 = x−c.

44. x4y′′xx + ax2 cosn(bx) y′x + [a(c− x) cosn(bx)− c2]y = 0.

Particular solution: y0 = x exp(c/x).

45. cos2 x y′′xx − [a cos2 x+ n(n− 1)]y = 0, n = 1, 2, 3, . . .

Solution: y = cosn x
( 1

cos x

d

dx

)n(
C1e

x
√
a + C2e

−x
√
a
)
.

46. cos2 x y′′xx + (a cos2 x+ b)y = 0.

The substitution x = ξ+ 1
2π leads to a linear equation of the form 14.1.6.23: sin2 ξ y′′ξξ +

(a sin2 ξ + b)y = 0.
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47. [a cos(λx) + bx+ c]y′′xx + aλ2 cos(λx) y = 0.

Particular solution: y0 = a cos(λx) + bx+ c.

48. cosn(ax) y′′xx + (x2 − b2)y′x − (x+ b)y = 0.

Particular solution: y0 = x− b.

49. (a cosn x+ b)y′′xx +(c cosn x+ d)y′x +λ[(c−aλ) cosn x+ d− bλ]y = 0.

Particular solution: y0 = e−λx.

◮ Equations with tangent.

50. y′′xx + a[λ+ (λ− a) tan2(λx)]y = 0.

Particular solution: y0 = [cos(λx)]a/λ.

51. y′′xx + (a tan2 x+ b)y = 0.

The transformation z = sin2 x, u = y cosk x, where k is a root of the quadratic equation

k2 + k + a = 0, leads to the hypergeometric equation 14.1.2.171:

z(z − 1)u′′zz+ [(1− k)z − 1

2
]u′z −

1

4
(k + b)u = 0.

52. y′′xx + (a− λ) tan(λx)y′x + aλy = 0.

Particular solution: y0 = [cos(λx)]a/λ.

53. y′′xx + a tanx y′x + by = 0.

1◦. The substitution ξ=sinx leads to a linear differential equation of the form 14.1.2.168:

(ξ2 − 1)y′′ξξ + (1− a)ξy′ξ − by = 0.

2◦. Solution for a = −2:

y cos x =

{
C1 sin(kx) + C2 cos(kx) if b+ 1 = k2 > 0,

C1 sinh(kx) + C2 cosh(kx) if b+ 1 = −k2 < 0.

3◦. Solution for a = 2 and b = 3: y = C1 cos
3 x+C2 sinx(1 + 2 cos2 x).

54. y′′xx + a tanx y′x + (b tan2 x+ c)y = 0.

This is a special case of equation 14.1.6.131.

55. y′′xx − 2λ tan(λx) y′x + (ax2 + bx+ c)y = 0.

The substitution w= y cos(λx) leads to a second-order linear equation of the form 14.1.2.6:

w′′
xx + (ax2 + bx+ c+ λ2)w = 0.

56. y′′xx − 2λ tan(λx) y′x + (ax2n + bxn−1 − λ2)y = 0.

Substituting w = y cos(λx) yields a second-order linear equation of the form 14.1.2.10:

w′′
xx + (ax2n + bxn−1)w = 0.

57. y′′xx + a tann(bx) y′x + c[a tann(bx) − c]y = 0.

Particular solution: y0 = e−cx.
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58. y′′xx + a tann(λx) y′x + b[a tann+1(λx) + (λ− b) tan2(λx) + λ]y = 0.

Particular solution: y0 = [cos(λx)]b/λ.

59. y′′xx + a tann x y′x + (a tann+1 x− a tann−1 x+ 4)y = 0.

Particular solution: y0 = sinx cos x.

60. y′′xx + [a tann(bx) + c]y′x + ac tann(bx)y = 0.

Particular solution: y0 = e−cx.

61. y′′xx+tanx (a tann x+b−1)y′x+(ab tann+2 x−a tann x+2b+2)y=0.

Particular solution: y0 = sinx cosb x.

62. y′′xx + (ax+ b) tann(cx) y′x − a tann(cx)y = 0.

Particular solution: y0 = ax+ b.

63. y′′xx + axn tanm(bx) y′x − axn−1 tanm(bx)y = 0.

Particular solution: y0 = x.

64. y′′xx + axn tanm(bx) y′x + c[axn+k tanm(bx) − cx2k + kxk−1]y = 0.

Particular solution: y0 = exp
(
− c

k + 1
xk+1

)
.

65. xy′′xx − 2λx tan(λx) y′x + (ax+ b)y = 0.

Substituting w = y cos(λx) yields a second-order linear equation of the form 14.1.2.64:

xw′′
xx + [(a+ λ2)x+ b]w = 0.

66. xy′′xx + ax tann(bx) y′x − [a(cx+ 1) tann(bx) + c2x+ 2c]y = 0.

Particular solution: y0 = xecx.

67. xy′′xx + [(ax2 + bx) tann(cx) + 2]y′x + b tann(cx)y = 0.

Particular solution: y0 = a+ b/x.

68. xy′′xx + (axn+1 + b tanm x)y′x + axn(b tanm x+ n)y = 0.

Particular solution: y0 = exp
(
− a

n+ 1
xn+1

)
.

69. xy′′xx + (axn + bx tanm x)y′x + [b(axn − 1) tanm x+ anxn−1]y = 0.

Particular solution: y0 = x exp(−axn/n).

70. xy′′xx + [axn tanm(bx) + c]y′x + a(c− 1)xn−1 tanm(bx)y = 0.

Particular solution: y0 = x1−c.

71. x2y′′xx − 2λx2 tan(λx) y′x + (ax2 + bx+ c)y = 0.

The substitution w = y cos(λx) leads to an equation of the form 14.1.2.115: x2w′′
xx +

[(a+ λ2)x2 + bx+ c]w = 0.

72. x2y′′xx + x(1 − 2x tanx)y′x − (x tanx+ ν2)y = 0.

Solution: y cosx = C1Jν(x) + C2Yν(x), where Jν(x) and Yν(x) are Bessel functions.
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73. x2y′′xx − x(2x tanx+ k)y′x + (ax2 + bx+ c+ kx tanx)y = 0.

The substitution w=y cos x leads to a second-order linear equation of the form 14.1.2.131:

x2w′′
xx − kxw′

x + [(a+ 1)x2 + bx+ c]w = 0.

74. x2y′′xx + x(a tann x+ 1)y′x + b(a tann x− b)y = 0.

Particular solution: y0 = x−b.

75. x2y′′xx + x(a tann x+ b)y′x + b(a tann x− 1)y = 0.

Particular solution: y0 = x−b.

76. x2y′′xx + axn tanm(bx) y′x + c[axn−1 tanm(bx) − c− 1]y = 0.

Particular solution: y0 = x−c.

77. x4y′′xx + ax2 tann(bx) y′x + [a(c− x) tann(bx) − c2]y = 0.

Particular solution: y0 = x exp(c/x).

78. (a tann x+ b)y′′xx + (cx+ d)y′x − cy = 0.

Particular solution: y0 = cx+ d.

79. (a tann x+ b)y′′xx+(c tann x+d)y′x+λ[(c−aλ) tann x+d− bλ]y = 0.

Particular solution: y0 = e−λx.

◮ Equations with cotangent.

80. y′′xx + a[λ+ (λ− a) cot2(λx)]y = 0.

Particular solution: y0 = [sin(λx)]a/λ.

81. y′′xx + (a cot2 x+ b)y = 0.

The substitution x = ξ + π
2 leads to a linear equation of the form 14.1.6.51: y′′ξξ +

(a tan2 ξ + b)y = 0.

82. y′′xx + cot x y′x + ν(ν + 1)y = 0.

The substitution ξ=cos x leads to the Legendre equation 14.1.2.154: (ξ2−1)y′′ξξ+2ξy′ξ−
ν(ν + 1)y = 0.

83. y′′xx + 2a cot(ax) y′x + (b2 − a2)y = 0.

Particular solution: y0 =
cos(bx)

sin(ax)
.

84. y′′xx + (λ− a) cot(λx) y′x + aλy = 0.

Particular solution: y0 = [sin(λx)]a/λ.

85. y′′xx + a cot(λx) y′x + by = 0.

The substitution z = λx+ π
2 leads to a second-order linear equation of the form 14.1.6.53:

y′′zz − aλ−1 tan z y′z + bλ−2y = 0.
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86. y′′xx + a cot(λx) y′x + b[λ+ (λ− a− b) cot2(λx)]y = 0.

Particular solution: y0 = [sin(λx)]b/λ.

87. y′′xx + a cot x y′x + (b cot2 x+ c)y = 0.

This is a special case of equation 14.1.6.131.

88. y′′xx + 2λ cot(λx) y′x + (ax2 + bx+ c)y = 0.

The substitution w=y sin(λx) leads to a second-order linear equation of the form 14.1.2.6:

w′′
xx + (ax2 + bx+ c+ λ2)w = 0.

89. y′′xx + 2λ cot(λx) y′x + (ax2n + bxn−1 − λ2)y = 0.

Substituting w = y sin(λx) yields a second-order linear equation of the form 14.1.2.10:

w′′
xx + (ax2n + bxn−1)w = 0.

90. y′′xx + a cotn(bx) y′x + c[a cotn(bx) − c]y = 0.

Particular solution: y0 = e−cx.

91. y′′xx + [a cotn(bx) + c]y′x + ac cotn(bx)y = 0.

Particular solution: y0 = e−cx.

92. y′′xx + (ax+ b) cotn(cx) y′x − a cotn(cx)y = 0.

Particular solution: y0 = ax+ b.

93. y′′xx + axn cotm(bx) y′x − axn−1 cotm(bx)y = 0.

Particular solution: y0 = x.

94. y′′xx + axn cotm(bx) y′x + c[axn+k cotm(bx) − cx2k + kxk−1]y = 0.

Particular solution: y0 = exp
(
− c

k + 1
xk+1

)
.

95. xy′′xx + 2λx cot(λx) y′x + (ax+ b)y = 0.

Substituting w = y sin(λx) yields a second-order linear equation of the form 14.1.2.64:

xw′′
xx + [(a+ λ2)x+ b]w = 0.

96. xy′′xx + ax cotn(bx) y′x − [a(cx+ 1) cotn(bx) + c2x+ 2c]y = 0.

Particular solution: y0 = xecx.

97. xy′′xx + (axn+1 + b cotm x)y′x + axn(b cotm x+ n)y = 0.

Particular solution: y0 = exp
(
− a

n+ 1
xn+1

)
.

98. xy′′xx + (axn + bx cotm x)y′x + [b(axn − 1) cotm x+ anxn−1]y = 0.

Particular solution: y0 = x exp(−axn/n).

99. xy′′xx + [axn cotm(bx) + c]y′x + a(c− 1)xn−1 cotm(bx)y = 0.

Particular solution: y0 = x1−c.



“K16435’ — 2017/9/28 — 15:05 — #603

14.1. Linear Equations 577

100. x2y′′xx + 2λx2 cot(λx) y′x + (ax2 + bx+ c)y = 0.

Substituting w = y sin(λx) yields a second-order linear equation of the form 14.1.2.115:

x2w′′
xx + [(a+ λ2)x2 + bx+ c]w = 0.

101. x2y′′xx + x(2x cotx+ k)y′x + (ax2 + bx+ c+ kx cot x)y = 0.

The substitution w= y sinx leads to a second-order linear equation of the form 14.1.2.131:

x2w′′
xx + kxw′

x + [(a+ 1)x2 + bx+ c]w = 0.

102. x2y′′xx + x(a cotn x+ 1)y′x + b(a cotn x− b)y = 0.

Particular solution: y0 = x−b.

103. x2y′′xx + x(a cotn x+ b)y′x + b(a cotn x− 1)y = 0.

Particular solution: y0 = x−b.

104. x2y′′xx + axn cotm(bx) y′x + c[axn−1 cotm(bx) − c− 1]y = 0.

Particular solution: y0 = x−c.

105. x4y′′xx + ax2 cotn(bx) y′x + [a(c− x) cotn(bx) − c2]y = 0.

Particular solution: y0 = x exp(c/x).

106. (a cotn x+b)y′′xx+(c cotn x+d)y′x+λ[(c−aλ) cotn x+d−bλ]y = 0.

Particular solution: y0 = e−λx.

◮ Equations containing combinations of trigonometric functions.

107. y′′xx − a[a sin2(bx) + b cos(bx)]y = 0.

Particular solution: y0 = exp
[
− a
b
cos(bx)

]
.

108. y′′xx − a[a cos2(bx) + b sin(bx)]y = 0.

Particular solution: y0 = exp
[
− a
b
sin(bx)

]
.

109. y′′xx + (a sin x+ b)y′x + a(b sin x+ cos x)y = 0.

Particular solution: y0 = exp(a cos x).

110. y′′xx + (a sinn x+ b sin x)y′x + b(a sinn+1 x+ cosx)y = 0.

Particular solution: y0 = exp(b cos x).

111. y′′xx + (a cos x+ b)y′x + a(b cos x− sin x)y = 0.

Particular solution: y0 = exp(−a sinx).

112. y′′xx + (a cosn x+ b cos x)y′x + b(a cosn+1 x− sin x)y = 0.

Particular solution: y0 = exp(−b sinx).

113. sin x y′′xx + cosx y′x + ν(ν + 1) sin x y = 0.

The substitution ξ = cos x leads to the Legendre equation 14.1.2.154: (1 − ξ2)y′′ξξ −
2ξ y′ξ + ν(ν + 1)y = 0.
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114. sin x y′′xx + (2n+ 1) cosx y′x + (ν − n)(ν + n+ 1) sin x y = 0.

Here, ν is an arbitrary number and n is a positive integer. The substitution ξ = cosx leads

to an equation of the form 14.1.2.156: (ξ2−1)y′′ξξ+2(n+1)ξ y′ξ+(n−ν)(ν+n+1)y=0.

115. sin2 x y′′xx + sinx cosx y′x + [ν(ν + 1) sin2 x− n2]y = 0.

Here, ν is an arbitrary number and n is a nonnegative integer.

The transformation ξ = cosx, y=w sinn x leads to an equation of the form 14.1.2.156:

(ξ2 − 1)w′′
ξξ + 2(n+ 1)ξw′

ξ + (n− ν)(n+ ν + 1)w = 0.

116. sin2 x y′′xx + sinx(a cosx+ b)y′x + (α cos2 x+ β cosx+ γ)y = 0.

Set x = 2ξ. Applying the trigonometric formulas

sin(2ξ) = 2 sin ξ cos ξ, cos(2ξ) = cos2 ξ − sin2 ξ, b = b(sin2 ξ + cos2 ξ),

β = β(sin2 ξ + cos2 ξ), γ = γ(sin2 ξ + cos2 ξ)2,

and dividing all the terms by sin2 x, we arrive at an equation of the form 14.1.6.131:

y′′ξξ+[(b−a) tan ξ+(b+a) cot ξ]y′ξ+[(α−β+γ) tan2 ξ+(α+β+γ) cot2 ξ+2γ−2α]y=0.

117. cos2 x y′′xx + a sin(2x) y′x + [b cos(2x) + c]y = 0.

Dividing the equation by cos2 x and applying the formulas

sin(2x) = 2 sinx cos x, cos(2x) = cos2 x− sin2 x, c = c(sin2 x+ cos2 x),

we obtain an equation of the form 14.1.6.131:

y′′xx + 2a tan x y′x + [(c− b) tan2 x+ b+ c]y = 0.

118. cos2(ax) y′′xx + (n− 1)a sin(2ax) y′x
+ na2[(n− 1) sin2(ax) + cos2(ax)]y = 0.

Particular solution: y0 = cosn(ax).

119. cos2 x y′′xx + cos x (a sinx+ b)y′x + (α sin2 x+ β sin x+ γ)y = 0.

The substitution x= ξ+ π
2 leads to a second-order linear equation of the form 14.1.6.116:

sin2 ξy′′ξξ − sin ξ (a cos ξ + b)y′ξ + (α cos2 ξ + β cos ξ + γ)y = 0.

120. sin x cos2 x y′′xx + cos x (a sin2 x+ b)y′x + c sin x y = 0.

1◦. Dividing the equation by sinx cos2x and assuming

b = b(sin2x+ cos2x), c = c(sin2x+ cos2x),

we obtain equation 14.1.6.131: y′′xx + [(a+ b) tan x+ b cot x]y′x + c(tan2 x+ 1)y = 0.

2◦. Particular solutions:

y0 = cosa x if c = a(b+ 1),

y0 = tan1−b x if c = (a+ 2)(b − 1),

y0 = sin1−b x cosa+b−1 x if c = 2(a+ b− 1).

121. sin x cos2 x y′′xx + cos x (a sin2 x− 1)y′x + b sin3 x y = 0.

Solution: y = C1(cos x)
k1 + C2(cos x)

k2 , where k1 and k2 are roots of the quadratic

equation k2 − ak + b = 0.
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122. sin2 x cos2 x y′′xx + (a sin2 x+ b cos2 x+ c sin2 x cos2 x)y = 0.

Dividing the equation by sin2 x cos2 x and assuming

a = a(sin2 x+ cos2 x), b = b(sin2 x+ cos2 x),

we obtain equation 14.1.6.131: y′′xx + (a tan2 x+ b cot2 x+ a+ b+ c)y = 0.

123. sinn(λx) y′′xx + [λ2 sinn(λx) + a cosn−4(λx)]y = 0.

The transformation ξ = tan(λx), w =
y

cos(λx)
leads to an equation of the form 14.1.2.7:

w′′
ξξ + aλ−2ξ−nw = 0.

124. cosn(λx) y′′xx + [λ2 cosn(λx) + a sinn−4(λx)]y = 0.

The substitution λx = π
2 − λξ leads to an equation of the form 14.1.6.123.

125. y′′xx + n tanx y′x + a2(cosx)2ny = 0.

Solution: y = C1 sin(au) + C2 cos(au), where u =

∫
cosn x dx.

126. y′′xx + tanx y′x + a2 cos2 x(sinx)2n−2y = 0.

Solution: y =
√
sinx

[
C1J 1

2n

( a
n
sinn x

)
+ C2Y 1

2n

( a
n
sinn x

)]
, where Jν(z) and

Yν(z) are Bessel functions.

127. y′′xx + tanx y′x − a(a− 1) cot2 x y = 0.

Solution: y =

{
C1| sin x|a + C2| sinx|1−a if a 6= 1

2 ,√
| sinx| (C1 + C2 ln | sinx|) if a = 1

2 .

128. y′′xx − 2a cot(2ax) y′x − b2 sin2(2ax)y = 0.

Solution: y = C1 exp
[ b
a
sin2(ax)

]
+ C2 exp

[
− b
a
sin2(ax)

]
.

129. y′′xx − n cot x y′x + a2(sin x)2ny = 0.

Solution: y = C1 sin(au) + C2 cos(au), where u =

∫
sinn x dx.

130. y′′xx − 2 cot(2x) y′x + a tan2 x y = 0.

The substitution ξ = cos x leads to the Euler equation 14.1.2.123: ξ2y′′ξξ − ξy′ξ + ay = 0.

131. y′′xx + (a tanx+ b cot x)y′x + (α tan2 x+ β cot2 x+ γ)y = 0.

The transformation ξ = sin2 x, y = w sinn x cosm x, where n and m are roots of the

quadratic equations

n2 + (b− 1)n + β = 0, m2 − (a+ 1)m+ α = 0,

leads to the hypergeometric equation 14.1.2.171:

4ξ(ξ−1)w′′
ξξ+2[(2n+2m+2+b−a)ξ−2n−b−1]w′

ξ+(2nm+n+m+bm−an−γ)w=0.

132. sin(2x) y′′xx − 2ny′x + 2a2 sin2 x (tanx)2n−1y = 0.

Solution: y = C1 sin(au) + C2 cos(au), where u =

∫
tann x dx.
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14.1.7 Equations Containing Inverse Trigonometric Functions

◮ Equations with arcsine.

1. y′′xx + (ax+ b+ c arcsin x)y′x + [c(ax+ b) arcsin x+ a]y = 0.

Particular solution: y0 = exp(− 1
2ax

2 − bx).

2. y′′xx + b(arcsin x)ny′x + c[b(arcsin x)n − c]y = 0.

Particular solution: y0 = e−cx.

3. y′′xx + b(arcsin x)ny′x + a[bxm(arcsin x)n − ax2m +mxm−1]y = 0.

Particular solution: y0 = exp
(
− a

m+ 1
xm+1

)
.

4. y′′xx + (ax+ b)(arcsinx)ny′x − a(arcsin x)ny = 0.

Particular solution: y0 = ax+ b.

5. y′′xx + axn(arcsin x)my′x − axn−1(arcsin x)my = 0.

Particular solution: y0 = x.

6. xy′′xx + ax arcsin x y′x − [a(bx+ 1) arcsin x+ b(bx+ 2)]y = 0.

Particular solution: y0 = xebx.

7. xy′′xx + [a(bx+ 1) arcsin x+ bx− 1]y′x + ab2x arcsin x y = 0.

Particular solution: y0 = (bx+ 1)e−bx.

8. xy′′xx + [(ax2 + bx) arcsin x+ 2]y′x + b arcsin x y = 0.

Particular solution: y0 = a+ b/x.

9. xy′′xx + [ax(arcsinx)n + b]y′x + a(b− 1)(arcsin x)ny = 0.

Particular solution: y0 = x1−b.

10. xy′′xx + (axn+1 + b arcsin x)y′x + axn(b arcsin x+ n)y = 0.

Particular solution: y0 = exp
(
− a

n+ 1
xn+1

)
.

11. xy′′xx + (axn + bx arcsin x)y′x + [b(axn − 1) arcsin x+ anxn−1]y = 0.

Particular solution: y0 = x exp(−axn/n).

12. x2y′′xx + bx arcsin x y′x + a(b arcsin x− a− 1)y = 0.

Particular solution: y0 = x−a.

13. x2y′′xx + x(b arcsin x+ 2)y′x + [b(ax+ 1) arcsin x− a2x2]y = 0.

Particular solution: y0 = x−1e−ax.

14. (ax2 + b)y′′xx + c(ax2 + b)(arcsin x)ny′x − 2a[cx(arcsinx)n + 1]y = 0.

Particular solution: y0 = ax2 + b.
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15. x4y′′xx + ax2 arcsin x y′x + [a(b− x) arcsin x− b2]y = 0.

Particular solution: y0 = x exp(b/x).

16. (ax2 + b)2y′′xx + (cx+ d)(arcsin x)ny′x − c(arcsin x)ny = 0.

Particular solution: y0 = cx+ d.

17. (x2 + a)2y′′xx + b(x2 + a)(arcsinx)ny′x − [bx(arcsin x)n + a]y = 0.

Particular solution: y0 =
√
x2 + a.

18. (ax2+b)2y′′xx+c(ax
2+b)(arcsin x)ny′x+[c(arcsin x)n−2ax−1]y=0.

Particular solution: y0 = exp
(
−
∫

dx

ax2 + b

)
.

◮ Equations with arccosine.

19. y′′xx + (ax+ b+ c arccos x)y′x + [c(ax+ b) arccosx+ a]y = 0.

Particular solution: y0 = exp(− 1
2ax

2 − bx).

20. y′′xx + b(arccos x)ny′x + c[b(arccosx)n − c]y = 0.

Particular solution: y0 = e−cx.

21. y′′xx + b(arccos x)ny′x + a[bxm(arccos x)n − ax2m +mxm−1]y = 0.

Particular solution: y0 = exp
(
− a

m+ 1
xm+1

)
.

22. y′′xx + (ax+ b)(arccos x)ny′x − a(arccosx)ny = 0.

Particular solution: y0 = ax+ b.

23. y′′xx + axn(arccosx)my′x − axn−1(arccos x)my = 0.

Particular solution: y0 = x.

24. xy′′xx + ax arccos x y′x − [a(bx+ 1) arccosx+ b(bx+ 2)]y = 0.

Particular solution: y0 = xebx.

25. xy′′xx + [a(bx+ 1) arccos x+ bx− 1]y′x + ab2x arccosx y = 0.

Particular solution: y0 = (bx+ 1)e−bx.

26. xy′′xx + [(ax2 + bx) arccos x+ 2]y′x + b arccos x y = 0.

Particular solution: y0 = a+ b/x.

27. xy′′xx + [ax(arccosx)n + b]y′x + a(b− 1)(arccos x)ny = 0.

Particular solution: y0 = x1−b.

28. xy′′xx + (axn+1 + b arccos x)y′x + axn(b arccos x+ n)y = 0.

Particular solution: y0 = exp
(
− a

n+ 1
xn+1

)
.
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29. xy′′xx + (axn + bx arccosx)y′x + [b(axn − 1) arccosx+ anxn−1]y = 0.

Particular solution: y0 = x exp(−axn/n).

30. x2y′′xx + bx arccosx y′x + a(b arccosx− a− 1)y = 0.

Particular solution: y0 = x−a.

31. x2y′′xx + x(b arccos x+ 2)y′x + [b(ax+ 1) arccos x− a2x2]y = 0.

Particular solution: y0 = x−1e−ax.

32. (ax2 + b)y′′xx + c(ax2 + b)(arccosx)ny′x − 2a[cx(arccosx)n + 1]y = 0.

Particular solution: y0 = ax2 + b.

33. x4y′′xx + ax2 arccosx y′x + [a(b− x) arccos x− b2]y = 0.

Particular solution: y0 = x exp(b/x).

34. (ax2 + b)2y′′xx + (cx+ d)(arccosx)ny′x − c(arccosx)ny = 0.

Particular solution: y0 = cx+ d.

35. (x2 + a)2y′′xx + b(x2 + a)(arccosx)ny′x − [bx(arccos x)n + a]y = 0.

Particular solution: y0 =
√
x2 + a.

36. (ax2+b)2y′′xx+c(ax
2+b)(arccos x)ny′x+[c(arccosx)n−2ax−1]y=0.

Particular solution: y0 = exp
(
−
∫

dx

ax2 + b

)
.

◮ Equations with arctangent.

37. y′′xx + (ax+ b+ c arctan x)y′x + [c(ax+ b) arctan x+ a]y = 0.

Particular solution: y0 = exp(− 1
2ax

2 − bx).

38. y′′xx + b(arctan x)ny′x + c[b(arctan x)n − c]y = 0.

Particular solution: y0 = e−cx.

39. y′′xx + b(arctan x)ny′x + a[bxm(arctan x)n − ax2m +mxm−1]y = 0.

Particular solution: y0 = exp
(
− a

m+ 1
xm+1

)
.

40. y′′xx + (ax+ b)(arctan x)ny′x − a(arctan x)ny = 0.

Particular solution: y0 = ax+ b.

41. y′′xx + axn(arctan x)my′x − axn−1(arctan x)my = 0.

Particular solution: y0 = x.

42. xy′′xx + ax arctan x y′x − [a(bx+ 1) arctan x+ b(bx+ 2)]y = 0.

Particular solution: y0 = xebx.

43. xy′′xx + [a(bx+ 1) arctan x+ bx− 1]y′x + ab2x arctan x y = 0.

Particular solution: y0 = (bx+ 1)e−bx.
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44. xy′′xx + [(ax2 + bx) arctan x+ 2]y′x + b arctan x y = 0.

Particular solution: y0 = a+ b/x.

45. xy′′xx + [ax(arctan x)n + b]y′x + a(b− 1)(arctan x)ny = 0.

Particular solution: y0 = x1−b.

46. xy′′xx + (axn+1 + b arctan x)y′x + axn(b arctan x+ n)y = 0.

Particular solution: y0 = exp
(
− a

n+ 1
xn+1

)
.

47. xy′′xx + (axn + bx arctan x)y′x + [b(axn − 1) arctan x+ anxn−1]y = 0.

Particular solution: y0 = x exp(−axn/n).

48. xy′′xx + ax(arctann x+ b)y′x − a(arctann x+ b)y = 0.

Particular solution: y0 = x.

49. xy′′xx + b arctann x y′x + a(b arctann x− ax)y = 0.

Particular solution: y0 = e−ax.

50. xy′′xx + a(arctann x+ bx)y′x + ab arctann x y = 0.

Particular solution: y0 = e−bx.

51. xy′′xx + b arctann x y′x + ax(b arctann x− ax2 + 1)y = 0.

Particular solution: y0 = exp
(
− 1

2ax
2
)
.

52. x2y′′xx + bx arctan x y′x + a(b arctan x− a− 1)y = 0.

Particular solution: y0 = x−a.

53. x2y′′xx + x(b arctan x+ 2)y′x + [b(ax+ 1) arctan x− a2x2]y = 0.

Particular solution: y0 = x−1e−ax.

54. x2y′′xx + ax(arctann x+ b)y′x − a(arctann x+ b)y = 0.

Particular solution: y0 = x.

55. x2y′′xx + b arctann x y′x + a(b arctann x− ax2)y = 0.

Particular solution: y0 = e−ax.

56. x2y′′xx + a(arctann x+ bx2)y′x + ab arctann x y = 0.

Particular solution: y0 = e−bx.

57. x2y′′xx + x[(ax+ b) arctann x+ 2]y′x + b arctann x y = 0.

Particular solution: y0 = a+ b/x.

58. (x2 + 1)y′′xx − [a2(x2 + 1)(arctan x)2 + a]y = 0.

Particular solution: y0 = (x2 + 1)−a/2 exp(ax arctan x).

59. (ax2 + b)y′′xx + c(ax2 + b)(arctan x)ny′x − 2a[cx(arctan x)n + 1]y = 0.

Particular solution: y0 = ax2 + b.
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60. x4y′′xx + ax2 arctan x y′x + [a(b− x) arctan x− b2]y = 0.

Particular solution: y0 = x exp(b/x).

61. (x2 + 1)2y′′xx + [a(arctan x)2 + b arctan x+ c]y = 0.

The transformation ξ = arctan x, w =
y√

x2 + 1
leads to an equation of the form 14.1.2.6:

w′′
ξξ + (aξ2 + bξ + c+ 1)w = 0.

62. (x2 + 1)2y′′xx + [b(arctan x)n − 1]y = 0.

The transformation ξ = arctan x, w =
y√

x2 + 1
leads to an equation of the form 14.1.2.7:

w′′
ξξ + bξnw = 0.

63. (ax2 + b)2y′′xx + (cx+ d)(arctan x)ny′x − c(arctan x)ny = 0.

Particular solution: y0 = cx+ d.

64. (x2 + a)2y′′xx + b(x2 + a)(arctan x)ny′x − [bx(arctan x)n + a]y = 0.

Particular solution: y0 =
√
x2 + a.

65. (ax2+b)2y′′xx+c(ax
2+b)(arctan x)ny′x+[c(arctan x)n−2ax−1]y= 0.

Particular solution: y0 = exp
(
−
∫

dx

ax2 + b

)
.

◮ Equations with arccotangent.

66. y′′xx + (ax+ b+ c arccot x)y′x + [c(ax+ b) arccot x+ a]y = 0.

Particular solution: y0 = exp(− 1
2ax

2 − bx).

67. y′′xx + b(arccot x)ny′x + c[b(arccot x)n − c]y = 0.

Particular solution: y0 = e−cx.

68. y′′xx + b(arccot x)ny′x + a[bxm(arccot x)n − ax2m +mxm−1]y = 0.

Particular solution: y0 = exp
(
− a

m+ 1
xm+1

)
.

69. y′′xx + (ax+ b)(arccot x)ny′x − a(arccot x)ny = 0.

Particular solution: y0 = ax+ b.

70. y′′xx + axn(arccot x)my′x − axn−1(arccot x)my = 0.

Particular solution: y0 = x.

71. xy′′xx + ax arccot x y′x − [a(bx+ 1) arccot x+ b(bx+ 2)]y = 0.

Particular solution: y0 = xebx.

72. xy′′xx + [a(bx+ 1) arccot x+ bx− 1]y′x + ab2x arccot x y = 0.

Particular solution: y0 = (bx+ 1)e−bx.



“K16435’ — 2017/9/28 — 15:05 — #611

14.1. Linear Equations 585

73. xy′′xx + [(ax2 + bx) arccot x+ 2]y′x + b arccot x y = 0.

Particular solution: y0 = a+ b/x.

74. xy′′xx + [ax(arccot x)n + b]y′x + a(b− 1)(arccot x)ny = 0.

Particular solution: y0 = x1−b.

75. xy′′xx + (axn+1 + b arccot x)y′x + axn(b arccot x+ n)y = 0.

Particular solution: y0 = exp
(
− a

n+ 1
xn+1

)
.

76. xy′′xx + (axn + bx arccot x)y′x + [b(axn − 1) arccot x+ anxn−1]y = 0.

Particular solution: y0 = x exp(−axn/n).

77. x2y′′xx + bx arccot x y′x + a(b arccot x− a− 1)y = 0.

Particular solution: y0 = x−a.

78. x2y′′xx + x(b arccot x+ 2)y′x + [b(ax+ 1) arccot x− a2x2]y = 0.

Particular solution: y0 = x−1e−ax.

79. (ax2 + b)y′′xx + c(ax2 + b)(arccot x)ny′x − 2a[cx(arccot x)n + 1]y = 0.

Particular solution: y0 = ax2 + b.

80. x4y′′xx + ax2 arccot x y′x + [a(b− x) arccot x− b2]y = 0.

Particular solution: y0 = x exp(b/x).

81. (x2 + 1)2y′′xx + [a(arccot x)2 + b arccot x+ c]y = 0.

The transformation ξ = arccot x, w =
y√

x2 + 1
leads to an equation of the form 14.1.2.6:

w′′
ξξ + (aξ2 + bξ + c+ 1)w = 0.

82. (x2 + 1)2y′′xx + [b(arccot x)n − 1]y = 0.

The transformation ξ = arccot x, w =
y√

x2 + 1
leads to an equation of the form 14.1.2.7:

w′′
ξξ + bξnw = 0.

83. (ax2 + b)2y′′xx + (cx+ d)(arccot x)ny′x − c(arccot x)ny = 0.

Particular solution: y0 = cx+ d.

84. (x2 + a)2y′′xx + b(x2 + a)(arccot x)ny′x − [bx(arccot x)n + a]y = 0.

Particular solution: y0 =
√
x2 + a.

85. (ax2+b)2y′′xx+c(ax
2+b)(arccot x)ny′x+[c(arccot x)n−2ax−1]y = 0.

Particular solution: y0 = exp
(
−
∫

dx

ax2 + b

)
.
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14.1.8 Equations Containing Combinations of Exponential,
Logarithmic, Trigonometric, and Other Functions

1. y′′xx + aeλxy′x + b[b+ aeλx tan(bx)]y = 0.

Particular solution: y0 = cos(bx).

2. y′′xx + aeλxy′x + b[b− aeλx cot(bx)]y = 0.

Particular solution: y0 = sin(bx).

3. y′′xx + a coshn(λx) y′x + b[b+ a coshn(λx) tan(bx)]y = 0.

Particular solution: y0 = cos(bx).

4. y′′xx + a coshn(λx) y′x + b[b− a coshn(λx) cot(bx)]y = 0.

Particular solution: y0 = sin(bx).

5. y′′xx + a coshn(kx) y′x + beλx[a coshn(kx)− beλx + λ]y = 0.

Particular solution: y0 = exp
(
− b
λ
eλx
)

.

6. y′′xx + a sinhn(λx) y′x + b[b+ a sinhn(λx) tan(bx)]y = 0.

Particular solution: y0 = cos(bx).

7. y′′xx + a sinhn(λx) y′x + b[b− a sinhn(λx) cot(bx)]y = 0.

Particular solution: y0 = sin(bx).

8. y′′xx + a sinhn(kx) y′x + beλx[a sinhn(kx)− beλx + λ]y = 0.

Particular solution: y0 = exp
(
− b
λ
eλx
)

.

9. y′′xx + a tanhn(λx) y′x + b[b+ a tanhn(λx) tan(bx)]y = 0.

Particular solution: y0 = cos(bx).

10. y′′xx + a tanhn(λx) y′x + b[b− a tanhn(λx) cot(bx)]y = 0.

Particular solution: y0 = sin(bx).

11. y′′xx + a tanhn(kx) y′x + beλx[a tanhn(kx)− beλx + λ]y = 0.

Particular solution: y0 = exp
(
− b
λ
eλx
)

.

12. y′′xx + a cothn(λx) y′x + b[b+ a cothn(λx) tan(bx)]y = 0.

Particular solution: y0 = cos(bx).

13. y′′xx + a cothn(λx) y′x + b[b− a cothn(λx) cot(bx)]y = 0.

Particular solution: y0 = sin(bx).

14. y′′xx + a cothn(kx) y′x + beλx[a cothn(kx)− beλx + λ]y = 0.

Particular solution: y0 = exp
(
− b
λ
eλx
)

.
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15. y′′xx + a lnn(λx) y′x + b[b+ a lnn(λx) tan(bx)]y = 0.

Particular solution: y0 = cos(bx).

16. y′′xx + a lnn(λx) y′x + b[b− a lnn(λx) cot(bx)]y = 0.

Particular solution: y0 = sin(bx).

17. y′′xx + a lnn(kx) y′x + beλx[a lnn(kx)− beλx + λ]y = 0.

Particular solution: y0 = exp
(
− b
λ
eλx
)

.

18. y′′xx + a cosn(kx) y′x + beλx[a cosn(kx)− beλx + λ]y = 0.

Particular solution: y0 = exp
(
− b
λ
eλx
)

.

19. y′′xx + a sinn(kx) y′x + beλx[a sinn(kx)− beλx + λ]y = 0.

Particular solution: y0 = exp
(
− b
λ
eλx
)

.

20. y′′xx + a tann(kx) y′x + beλx[a tann(kx)− beλx + λ]y = 0.

Particular solution: y0 = exp
(
− b
λ
eλx
)

.

21. y′′xx + a cotn(kx) y′x + beλx[a cotn(kx)− beλx + λ]y = 0.

Particular solution: y0 = exp
(
− b
λ
eλx
)

.

22. y′′xx + (aeλx + b lnn x)y′x + aeλx(b lnn x+ λ)y = 0.

Particular solution: y0 = exp
(
− a
λ
eλx
)

.

23. y′′xx + (aeλx + b cos x)y′x + b(aeλx cosx− sin x)y = 0.

Particular solution: y0 = exp(−b sinx).

24. y′′xx + (aeλx + b cosn x)y′x + aeλx(b cosn x+ λ)y = 0.

Particular solution: y0 = exp
(
− a
λ
eλx
)

.

25. y′′xx + (aeλx + b cosn x)y′x + b cosn−1 x (aeλx cosx− n sin x)y = 0.

Particular solution: y0 = exp
(
−b
∫

cosn x dx
)

.

26. y′′xx + (aeλx + b sin x)y′x + b(aeλx sin x+ cosx)y = 0.

Particular solution: y0 = exp(b cos x).

27. y′′xx + (aeλx + b sinn x)y′x + aeλx(b sinn x+ λ)y = 0.

Particular solution: y0 = exp
(
− a
λ
eλx
)

.
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28. y′′xx + (aeλx + b sinn x)y′x + b sinn−1 x (aeλx sin x+ n cosx)y = 0.

Particular solution: y0 = exp
(
−b
∫

sinn x dx
)

.

29. y′′xx + (aeλx + b tanx)y′x + (b+ 1)(aeλx tanx+ 1)y = 0.

Particular solution: y0 = cosb+1 x.

30. y′′xx + (aeλx + b tann x)y′x + aeλx(b tann x+ λ)y = 0.

Particular solution: y0 = exp
(
− a
λ
eλx
)

.

31. y′′xx + (aeλx + b cot x)y′x + (b− 1)(aeλx cot x− 1)y = 0.

Particular solution: y0 = sin1−b x.

32. y′′xx + (aeλx + b cotn x)y′x + aeλx(b cotn x+ λ)y = 0.

Particular solution: y0 = exp
(
− a
λ
eλx
)

.

33. y′′xx + (a coshn x+ b cosx)y′x + b(a coshn x cos x− sin x)y = 0.

Particular solution: y0 = exp(−b sinx).

34. y′′xx + (a coshn x+ b cosm x)y′x
+ b cosm−1 x (a coshn x cosx−m sin x)y = 0.

Particular solution: y0 = exp
(
−b
∫

cosm x dx
)

.

35. y′′xx + (a coshn x+ b sinx)y′x + b(a coshn x sinx+ cosx)y = 0.

Particular solution: y0 = exp(b cos x).

36. y′′xx + (a coshn x+ b sinm x)y′x
+ b sinm−1 x (a coshn x sin x+m cosx)y = 0.

Particular solution: y0 = exp
(
−b
∫

sinm x dx
)

.

37. y′′xx + (a coshn x+ b tanx)y′x + (b+ 1)(a coshn x tanx+ 1)y = 0.

Particular solution: y0 = cosb+1 x.

38. y′′xx + (a coshn x+ b cotx)y′x + (b− 1)(a coshn x cot x− 1)y = 0.

Particular solution: y0 = sin1−b x.

39. y′′xx + (a sinhn x+ b cosx)y′x + b(a sinhn x cos x− sin x)y = 0.

Particular solution: y0 = exp(−b sinx).

40. y′′xx + (a sinhn x+ b cosm x)y′x
+ b cosm−1 x (a sinhn x cosx−m sin x)y = 0.

Particular solution: y0 = exp
(
−b
∫

cosm x dx
)

.
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41. y′′xx + (a sinhn x+ b sinx)y′x + b(a sinhn x sinx+ cosx)y = 0.

Particular solution: y0 = exp(b cos x).

42. y′′xx + (a sinhn x+ b sinm x)y′x
+ b sinm−1 x (a sinhn x sin x+m cosx)y = 0.

Particular solution: y0 = exp
(
−b
∫

sinm x dx
)

.

43. y′′xx + (a sinhn x+ b tanx)y′x + (b+ 1)(a sinhn x tanx+ 1)y = 0.

Particular solution: y0 = cosb+1 x.

44. y′′xx + (a sinhn x+ b cotx)y′x + (b− 1)(a sinhn x cot x− 1)y = 0.

Particular solution: y0 = sin1−b x.

45. y′′xx + (a tanhn x+ b cosx)y′x + b(a tanhn x cos x− sin x)y = 0.

Particular solution: y0 = exp(−b sinx).

46. y′′xx + (a tanhn x+ b cosm x)y′x
+ b cosm−1 x (a tanhn x cosx−m sin x)y = 0.

Particular solution: y0 = exp
(
−b
∫

cosm x dx
)

.

47. y′′xx + (a tanhn x+ b sin x)y′x + b(a tanhn x sin x+ cos x)y = 0.

Particular solution: y0 = exp(b cos x).

48. y′′xx + (a tanhn x+ b sinm x)y′x
+ b sinm−1 x (a tanhn x sin x+m cosx)y = 0.

Particular solution: y0 = exp
(
−b
∫

sinm x dx
)

.

49. y′′xx + (a tanhn x+ b tanx)y′x + (b+ 1)(a tanhn x tanx+ 1)y = 0.

Particular solution: y0 = cosb+1 x.

50. y′′xx + (a tanhn x+ b cot x)y′x + (b− 1)(a tanhn x cot x− 1)y = 0.

Particular solution: y0 = sin1−b x.

51. y′′xx + (a cothn x+ b cosx)y′x + b(a cothn x cosx− sin x)y = 0.

Particular solution: y0 = exp(−b sinx).

52. y′′xx + (a cothn x+ b cosm x)y′x
+ b cosm−1 x (a cothn x cosx−m sin x)y = 0.

Particular solution: y0 = exp
(
−b
∫

cosm x dx
)

.

53. y′′xx + (a cothn x+ b sinx)y′x + b(a cothn x sin x+ cosx)y = 0.

Particular solution: y0 = exp(b cos x).
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54. y′′xx + (a cothn x+ b sinm x)y′x
+ b sinm−1 x (a cothn x sin x+m cosx)y = 0.

Particular solution: y0 = exp
(
−b
∫

sinm x dx
)

.

55. y′′xx + (a cothn x+ b tanx)y′x + (b+ 1)(a cothn x tanx+ 1)y = 0.

Particular solution: y0 = cosb+1 x.

56. y′′xx + (a cothn x+ b cotx)y′x + (b− 1)(a cothn x cot x− 1)y = 0.

Particular solution: y0 = sin1−b x.

57. y′′xx + (a lnn x+ b cosx)y′x + b(a lnn x cosx− sin x)y = 0.

Particular solution: y0 = exp(−b sinx).

58. y′′xx+(a lnn x+b cosm x)y′x+b cos
m−1 x (a lnn x cos x−m sin x)y= 0.

Particular solution: y0 = exp
(
−b
∫

cosm x dx
)

.

59. y′′xx + (a lnn x+ b sin x)y′x + b(a lnn x sin x+ cosx)y = 0.

Particular solution: y0 = exp(b cos x).

60. y′′xx+(a lnn x+ b sinm x)y′x+ b sin
m−1 x (a lnn x sinx+m cos x)y = 0.

Particular solution: y0 = exp
(
−b
∫

sinm x dx
)

.

61. y′′xx + (a lnn x+ b tanx)y′x + (b+ 1)(a lnn x tanx+ 1)y = 0.

Particular solution: y0 = cosb+1 x.

62. y′′xx + (a lnn x+ b cot x)y′x + (b− 1)(a lnn x cot x− 1)y = 0.

Particular solution: y0 = sin1−b x.

63. y′′xx + aeλx cos(bx) y′x + b[b+ aeλx sin(bx)]y = 0.

Particular solution: y0 = cos(bx).

64. y′′xx + aeλx sin(bx) y′x + b[b− aeλx cos(bx)]y = 0.

Particular solution: y0 = sin(bx).

65. y′′xx + a cosh(bx) lnn(λx) y′x − b[b+ a sinh(bx) lnn(λx)]y = 0.

Particular solution: y0 = cosh(bx).

66. y′′xx + a cosh(bx) cosn(λx) y′x − b[b+ a sinh(bx) cosn(λx)]y = 0.

Particular solution: y0 = cosh(bx).

67. y′′xx + a coshn(λx) cos(bx) y′x + b[b+ a coshn(λx) sin(bx)]y = 0.

Particular solution: y0 = cos(bx).

68. y′′xx + a cosh(bx) sinn(λx) y′x − b[b+ a sinh(bx) sinn(λx)]y = 0.

Particular solution: y0 = cosh(bx).
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69. y′′xx + a coshn(λx) sin(bx) y′x + b[b− a coshn(λx) cos(bx)]y = 0.

Particular solution: y0 = sin(bx).

70. y′′xx + a cosh(bx) tann(λx) y′x − b[b+ a sinh(bx) tann(λx)]y = 0.

Particular solution: y0 = cosh(bx).

71. y′′xx + a cosh(bx) cotn(λx) y′x − b[b+ a sinh(bx) cotn(λx)]y = 0.

Particular solution: y0 = cosh(bx).

72. y′′xx + a sinh(bx) lnn(kx) y′x − b[b+ a cosh(bx) lnn(kx)]y = 0.

Particular solution: y0 = sinh(bx).

73. y′′xx + a sinh(bx) cosn(kx) y′x − b[b+ a cosh(bx) cosn(kx)]y = 0.

Particular solution: y0 = sinh(bx).

74. y′′xx + a sinhn(λx) cos(bx) y′x + b[b+ a sinhn(λx) sin(bx)]y = 0.

Particular solution: y0 = cos(bx).

75. y′′xx + a sinh(bx) sinn(kx) y′x − b[b+ a cosh(bx) sinn(kx)]y = 0.

Particular solution: y0 = sinh(bx).

76. y′′xx + a sinhn(λx) sin(bx) y′x + b[b− a sinhn(λx) cos(bx)]y = 0.

Particular solution: y0 = sin(bx).

77. y′′xx + a sinh(bx) tann(kx) y′x − b[b+ a cosh(bx) tann(kx)]y = 0.

Particular solution: y0 = sinh(bx).

78. y′′xx + a sinh(bx) cotn(λx) y′x − b[b+ a cosh(bx) cotn(λx)]y = 0.

Particular solution: y0 = sinh(bx).

79. y′′xx + a tanhn(λx) cos(bx) y′x + b[b+ a tanhn(λx) sin(bx)]y = 0.

Particular solution: y0 = cos(bx).

80. y′′xx + a tanhn(λx) sin(bx) y′x + b[b− a tanhn(λx) cos(bx)]y = 0.

Particular solution: y0 = sin(bx).

81. y′′xx + a cothn(λx) cos(bx) y′x + b[b+ a cothn(λx) sin(bx)]y = 0.

Particular solution: y0 = cos(bx).

82. y′′xx + a cothn(λx) sin(bx) y′x + b[b− a cothn(λx) cos(bx)]y = 0.

Particular solution: y0 = sin(bx).

83. y′′xx + a lnn(λx) cos(bx) y′x + b[b+ a lnn(λx) sin(bx)]y = 0.

Particular solution: y0 = cos(bx).

84. y′′xx + a lnn(λx) sin(bx) y′x + b[b− a lnn(λx) cos(bx)]y = 0.

Particular solution: y0 = sin(bx).
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85. y′′xx + (a+ be2λx) lnn(kx) y′x + λ[(a− be2λx) lnn(kx)− λ]y = 0.

Particular solution: y0 = beλx + ae−λx.

86. y′′xx + (a+ be2λx) cosn(kx) y′x + λ[(a− be2λx) cosn(kx)− λ]y = 0.

Particular solution: y0 = beλx + ae−λx.

87. y′′xx + (a+ be2λx) sinn(kx) y′x + λ[(a− be2λx) sinn(kx)− λ]y = 0.

Particular solution: y0 = beλx + ae−λx.

88. y′′xx + (a+ be2λx) tann(kx) y′x + λ[(a− be2λx) tann(kx)− λ]y = 0.

Particular solution: y0 = beλx + ae−λx.

89. y′′xx + (a+ be2λx) cotn(kx) y′x + λ[(a− be2λx) cotn(kx)− λ]y = 0.

Particular solution: y0 = beλx + ae−λx.

90. y′′xx + (a sn2 x+ b)y = 0.

The Lamé equation in the form of Jacobi; snx is the Jacobi elliptic function. See the books

by Whittaker & Watson (1952), Bateman & Erdélyi (1955, Vol. 3), and Kamke (1977) for

information on this equation.

91. y′′xx + [A℘(x) + B]y = 0.

The Lamé equation in the form of Weierstrass; ℘(x) is the Weierstrass function. See the

books by Whittaker & Watson (1952), Bateman & Erdélyi (1955, Vol. 3), and Kamke

(1977) for information on this equation.

92. xy′′xx + (ax lnx+ beλx)y′x + a(beλx lnx+ 1)y = 0.

Particular solution: y0 = eaxx−ax.

93. xy′′xx + (1− axeλx ln x)y′x + aeλxy = 0.

Particular solution: y0 = lnx.

94. xy′′xx + (ax lnx+ b coshn x)y′x + a(b coshn x ln x+ 1)y = 0.

Particular solution: y0 = eaxx−ax.

95. xy′′xx + (1− ax coshn x ln x)y′x + a coshn x y = 0.

Particular solution: y0 = lnx.

96. xy′′xx + (ax lnx+ b sinhn x)y′x + a(b sinhn x ln x+ 1)y = 0.

Particular solution: y0 = eaxx−ax.

97. xy′′xx + (1− ax sinhn x ln x)y′x + a sinhn x y = 0.

Particular solution: y0 = lnx.

98. xy′′xx + (ax lnx+ b tanhn x)y′x + a(b tanhn x ln x+ 1)y = 0.

Particular solution: y0 = eaxx−ax.
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99. xy′′xx + (1− ax tanhn x ln x)y′x + a tanhn x y = 0.

Particular solution: y0 = lnx.

100. xy′′xx + (ax ln x+ b cothn x)y′x + a(b cothn x ln x+ 1)y = 0.

Particular solution: y0 = eaxx−ax.

101. xy′′xx + (1− ax cothn x lnx)y′x + a cothn x y = 0.

Particular solution: y0 = lnx.

102. xy′′xx + (ax ln x+ b cosn x)y′x + a(b cosn x ln x+ 1)y = 0.

Particular solution: y0 = eaxx−ax.

103. xy′′xx + (1− ax cosn x ln x)y′x + a cosn x y = 0.

Particular solution: y0 = lnx.

104. xy′′xx + (ax ln x+ b sinn x)y′x + a(b sinn x lnx+ 1)y = 0.

Particular solution: y0 = eaxx−ax.

105. xy′′xx + (1− ax sinn x ln x)y′x + a sinn x y = 0.

Particular solution: y0 = lnx.

106. xy′′xx + (ax ln x+ b tann x)y′x + a(b tann x ln x+ 1)y = 0.

Particular solution: y0 = eaxx−ax.

107. xy′′xx + (1− ax tann x lnx)y′x + a tann x y = 0.

Particular solution: y0 = lnx.

108. xy′′xx + (ax ln x+ b cotn x)y′x + a(b cotn x ln x+ 1)y = 0.

Particular solution: y0 = eaxx−ax.

109. xy′′xx + (1− ax cotn x lnx)y′x + a cotn x y = 0.

Particular solution: y0 = lnx.

110. x2y′′xx + x(a ln x+ beλx)y′x + a(beλx lnx− ln x+ 1)y = 0.

Particular solution: y0 = exp(− 1
2a ln

2 x).

111. x2y′′xx + x(a ln x+ b coshn x)y′x + a(b coshn x ln x− lnx+ 1)y = 0.

Particular solution: y0 = exp(− 1
2a ln

2 x).

112. x2y′′xx + x(a ln x+ b sinhn x)y′x + a(b sinhn x ln x− lnx+ 1)y = 0.

Particular solution: y0 = exp(− 1
2a ln

2 x).

113. x2y′′xx + x(a ln x+ b tanhn x)y′x + a(b tanhn x lnx− lnx+ 1)y = 0.

Particular solution: y0 = exp(− 1
2a ln

2 x).

114. x2y′′xx + x(a ln x+ b cothn x)y′x + a(b cothn x ln x− lnx+ 1)y = 0.

Particular solution: y0 = exp(− 1
2a ln

2 x).
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115. x2y′′xx + x(a ln x+ b cosn x)y′x + a(b cosn x ln x− ln x+ 1)y = 0.

Particular solution: y0 = exp(− 1
2a ln

2 x).

116. x2y′′xx + x(a ln x+ b sinn x)y′x + a(b sinn x lnx− ln x+ 1)y = 0.

Particular solution: y0 = exp(− 1
2a ln

2 x).

117. x2y′′xx + x(a ln x+ b tann x)y′x + a(b tann x ln x− ln x+ 1)y = 0.

Particular solution: y0 = exp(− 1
2a ln

2 x).

118. x2y′′xx + x(a ln x+ b cotn x)y′x + a(b cotn x lnx− ln x+ 1)y = 0.

Particular solution: y0 = exp(− 1
2a ln

2 x).

119. sin2 x y′′xx + sinx (a+ beλx)y′x + a(beλx − cosx)y = 0.

Particular solution: y0 = cota
(
1
2x
)
.

120. sin2 x y′′xx + sinx (a+ b coshn x)y′x + a(b coshn x− cos x)y = 0.

Particular solution: y0 = cota
(
1
2x
)
.

121. sin2 x y′′xx + sinx (a+ b sinhn x)y′x + a(b sinhn x− cos x)y = 0.

Particular solution: y0 = cota
(
1
2x
)
.

122. sin2 x y′′xx + sinx (a+ b tanhn x)y′x + a(b tanhn x− cosx)y = 0.

Particular solution: y0 = cota
(
1
2x
)
.

123. sin2 x y′′xx + sinx (a+ b cothn x)y′x + a(b cothn x− cos x)y = 0.

Particular solution: y0 = cota
(
1
2x
)
.

124. sin2 x y′′xx + sinx (a+ b lnn x)y′x + a(b lnn x− cos x)y = 0.

Particular solution: y0 = cota
(
1
2x
)
.

125. cos2 x y′′xx + cos x (a+ beλx)y′x + a(beλx + sin x)y = 0.

Particular solution: y0 = cota
(
1
2x+ 1

4π
)
.

126. cos2 x y′′xx + cos x (a+ b coshn x)y′x + a(b coshn x+ sinx)y = 0.

Particular solution: y0 = cota
(
1
2x+ 1

4π
)
.

127. cos2 x y′′xx + cos x (a+ b sinhn x)y′x + a(b sinhn x+ sinx)y = 0.

Particular solution: y0 = cota
(
1
2x+ 1

4π
)
.

128. cos2 x y′′xx + cos x (a+ b tanhn x)y′x + a(b tanhn x+ sin x)y = 0.

Particular solution: y0 = cota
(
1
2x+ 1

4π
)
.

129. cos2 x y′′xx + cos x (a+ b cothn x)y′x + a(b cothn x+ sin x)y = 0.

Particular solution: y0 = cota
(
1
2x+ 1

4π
)
.

130. cos2 x y′′xx + cos x (a+ b lnn x)y′x + a(b lnn x+ sin x)y = 0.

Particular solution: y0 = cota
(
1
2x+ 1

4π
)
.
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14.1.9 Equations with Arbitrary Functions

◆ Notation: f = f(x) and g = g(x) are arbitrary functions; a, b, c, d, n, m, k, λ, α, β,

and γ are arbitrary parameters.

◮ Equations containing arbitrary functions (but not containing their derivatives).

1. y′′xx + ay = f .

Equation of forced oscillations without friction.

Solution:

y =





C1 cos(kx) + C2 sin(kx) + k−1

∫ x

x0

f(ξ) sin[k(x− ξ)] dξ if a = k2 > 0,

C1 cosh(kx) +C2 sinh(kx) + k−1

∫ x

x0

f(ξ) sinh[k(x− ξ)] dξ if a = −k2 < 0,

C1x+ C2 +

∫ x

x0

(x− ξ)f(ξ) dξ if a = 0,

where x0 is an arbitrary number.

2. y′′xx + ay′x + by = f .

Equation of forced oscillations with friction. The substitution y = w exp(− 1
2ax) leads to

an equation of the form 14.1.9.1: w′′
xx + (b− 1

4a
2)w = f exp( 12 ax).

3. y′′xx + fy′x = g.

Solution: y = C1 +

∫
e−F

(
C2 +

∫
eF g dx

)
dx, where F =

∫
f dx.

4. y′′xx + fy′x + a(f − a)y = 0.

Particular solution: y0 = e−ax.

5. y′′xx + fy′x + a(xnf − ax2n + nxn−1)y = 0.

Particular solution: y0 = exp
(
− a

n+ 1
xn+1

)
.

6. y′′xx + xfy′x − fy = 0.

Particular solution: y0 = x.

7. y′′xx + (f + axn + b)y′x + [(axn + b)f + anxn−1]y = 0.

Particular solution: y0 = exp
(
− a

n+ 1
xn+1 − bx

)
.

8. xy′′xx + xfy′x − [(ax+ 1)f + a(ax+ 2)]y = 0.

Particular solution: y0 = xeax.

9. xy′′xx + (xf + a)y′x + (a− 1)fy = 0.

Particular solution: y0 = x1−a.



“K16435’ — 2017/9/28 — 15:05 — #622

596 SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS

10. xy′′xx + [(ax+ 1)f + ax− 1]y′x + a2xfy = 0.

Particular solution: y0 = (ax+ 1)e−ax.

11. xy′′xx + [(ax2 + bx)f + 2]y′x + bfy = 0.

Particular solution: y0 = a+ b/x.

12. xy′′xx + (f + axn+1)y′x + axn(f + n)y = 0.

Particular solution: y0 = exp
(
− a

n+ 1
xn+1

)
.

13. xy′′xx + (xf + axn)y′x + [(axn − 1)f + anxn−1]y = 0.

Particular solution: y0 = x exp(−axn/n).

14. xy′′xx + [(axn + 1)f + anxn + 1 − 2n]y′x + a2nx2n−1fy = 0.

Particular solution: y0 = (axn + 1) exp(−axn).

15. x2y′′xx + αxy′x + βy = f .

The nonhomogeneous Euler equation. The substitution x = et leads to an equation of the

form 14.1.9.2: y′′tt + (α− 1)y′t + βy = f(et).

16. x2y′′xx + xy′x + (x2 − ν2)y = f .

The nonhomogeneous Bessel equation. The general solution is expressed in terms of Bessel

functions:

y = C1Jν(x) + C2Yν(x) +
1
2πYν(x)

∫
xJν(x)f(x) dx − 1

2πJν(x)

∫
xYν(x)f(x) dx.

17. x2y′′xx + xfy′x + a(f − a− 1)y = 0.

Particular solution: y0 = x−a.

18. x2y′′xx + x(f + 2a)y′x + [(bx+ a)f − b2x2 + a(a− 1)]y = 0.

Particular solution: y0 = x−ae−bx.

19. x2y′′xx + xfy′x + [(ax2n+1 + n)f − a2x4n+2 − n2 − n]y = 0.

Particular solution: y0 = x−n exp
(
− a

2n+ 1
x2n+1

)
.

20. (ax2 + bx+ c)y′′xx + (x+ k)fy′x − fy = 0.

Particular solution: y0 = x+ k.

21. x4y′′xx + x2fy′x + [(λ− x)f − λ2]y = 0.

Particular solution: y0 = x exp(λ/x).

22. x2(ax2 + b)y′′xx + x(ax2 + b)fy′x − [(ax2 − b)f + 2b]y = 0.

Particular solution: y0 = ax+ b/x.

23. (x2 + a)2y′′xx + (x2 + a)fy′x − (xf + a)y = 0.

Particular solution: y0 =
√
x2 + a.
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24. (x2 + a)2y′′xx + (x2 + a)fy′x −m[xf + (m− 1)x2 + a]y = 0.

Particular solution: y0 = (x2 + a)m/2.

25. (axn + b)y′′xx + (axn + b)fy′x − anxn−2(xf + n− 1)y = 0.

Particular solution: y0 = axn + b.

26. (axn+bx)y′′xx+(axn+bx)fy′x−[(anxn−1+b)f+an(n−1)xn−2]y=0.

Particular solution: y0 = axn + bx.

27. (xn + a)2y′′xx + (xn + a)fy′x − xn−2(xf + an− a)y = 0.

Particular solution: y0 = (xn + a)1/n.

28. (axn + b)2y′′xx + (axn + b)fy′x + (f − anxn−1 − 1)y = 0.

Particular solution: y0 = exp
(
−
∫

dx

axn + b

)
.

29. f(x)y′′xx + [ax2 + (ac+ b)x+ bc]y′x − (ax+ b)y = 0.

Particular solution: y0 = x+ c.

30. y′′xx + fy′x + aeλx(f − aeλx + λ)y = 0.

Particular solution: y0 = exp
(
− a
λ
eλx
)

.

31. y′′xx + (f + aeλx)y′x + aeλx(f + λ)y = 0.

Particular solution: y0 = exp
(
− a
λ
eλx
)

.

32. y′′xx + (a+ be2λx)fy′x + λ[(a− be2λx)f − λ]y = 0.

Particular solution: y0 = beλx + ae−λx.

33. (aeλx + b)2y′′xx + (aeλx + b)fy′x + ceλx(f − ceλx + λb)y = 0.

Particular solution: y0 =
(
aeλx + b

)− c
aλ .

34. y′′xx + f sinh(ax)y′x − a[a+ f cosh(ax)]y = 0.

Particular solution: y0 = sinh(ax).

35. y′′xx + f cosh(ax)y′x − a[a+ f sinh(ax)]y = 0.

Particular solution: y0 = cosh(ax).

36. xy′′xx + (1− fx lnx)y′x + fy = 0.

Particular solution: y0 = lnx.

37. xy′′xx + (f + ax ln x)y′x + a(f lnx+ 1)y = 0.

Particular solution: y0 = eaxx−ax.

38. x2y′′xx + 2x(lnx+ a)fy′x +
[[
1
4
− (lnx+ a+ 2)f

]]
y = 0.

Particular solution: y0 =
√
x (ln x+ a).



“K16435’ — 2017/9/28 — 15:05 — #624

598 SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS

39. x2y′′xx + x(f + a ln x)y′x + a(f ln x− lnx+ 1)y = 0.

Particular solution: y0 = exp(− 1
2a ln

2 x).

40. y′′xx + f sin(ax)y′x + a[a− f cos(ax)]y = 0.

Particular solution: y0 = sin(ax).

41. y′′xx + f cos(ax)y′x + a[a+ f sin(ax)]y = 0.

Particular solution: y0 = cos(ax).

42. y′′xx + (f + a sin x)y′x + a(f sin x+ cos x)y = 0.

Particular solution: y0 = exp(a cos x).

43. y′′xx + (f + a cos x)y′x + a(f cosx− sinx)y = 0.

Particular solution: y0 = exp(−a sinx).

44. y′′xx + (f + a cosn x)y′x + a cosn−1 x (f cosx− n sin x)y = 0.

Particular solution: y0 = exp
(
−a
∫

cosn x dx
)

.

45. y′′xx + (f + a sinn x)y′x + a sinn−1 x (f sin x+ n cos x)y = 0.

Particular solution: y0 = exp
(
−a
∫

sinn x dx
)

.

46. sin2 x y′′xx + sin x (f + a)y′x + a(f − cos x)y = 0.

Particular solution: y0 = cota
(
1
2x
)
.

47. cos2 x y′′xx + cosx (a+ f)y′x + a(f + sinx)y = 0.

Particular solution: y0 = cota
(
1
2x+ 1

4π
)
.

48. y′′xx + fy′x + a[λ+ f tan(λx) + (λ− a) tan2(λx)]y = 0.

Particular solution: y0 = [cos(λx)]a/λ.

49. y′′xx + (f + a tanx)y′x + (a+ 1)(f tanx+ 1)y = 0.

Particular solution: y0 = cosa+1 x.

50. y′′xx + tanx (f + a− 1)y′x + [(a tan2 x− 1)f + 2a + 2]y = 0.

Particular solution: y0 = sinx cosa x.

51. y′′xx + fy′x + a[λ− f cot(λx) + (λ− a) cot2(λx)]y = 0.

Particular solution: y0 = [sin(λx)]a/λ.

52. y′′xx + (f + a cot x)y′x + (a− 1)(f cot x− 1)y = 0.

Particular solution: y0 = sin1−a x.
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◮ Equations containing arbitrary functions and their derivatives.

53. y′′xx − (f2 + f ′

x)y = 0.

Particular solution: y0 = exp
(∫

f dx
)

.

54. y′′xx + fy′x − [a(a+ 1)f2 + af ′

x]y = 0.

Particular solution: y0 = exp
(
a

∫
f dx

)
.

55. y′′xx + 2fy′x + (f2 + f ′

x)y = 0.

Solution: y = (C2x+ C1) exp
(
−
∫
f dx

)
.

56. y′′xx + (1 − a)fy′x − a(f2 + f ′

x)y = 0.

Particular solution: y0 = exp
(
a

∫
f dx

)
.

57. y′′xx + fy′x + (fg − g2 + g′x)y = 0.

Particular solution: y0 = exp
(
−
∫
g dx

)
.

58. y′′xx + 2fy′x + (f2 + f ′

x + a)y = 0.

The substitution w= y exp
(∫

f dx
)

leads to a constant coefficient linear equation: w′′
xx+

aw = 0.

59. y′′xx + 2fy′x + (f2 + f ′

x + ax2n + bxn−1)y = 0.

The substitution w = y exp
(∫

f dx
)

leads to a linear equation of the form 14.1.2.10:

w′′
xx + a(x2n+ bxn−1)w = 0.

60. y′′xx + (2f + a)y′x + (f2 + af + f ′

x + b)y = 0.

The substitution w= y exp
(∫

f dx
)

leads to a constant coefficient linear equation: w′′
xx+

aw′
x + bw = 0.

61. y′′xx + (f + g)y′x + (fg + f ′

x)y = 0.

Particular solution: y0 = exp
(
−
∫
f dx

)
.

62. xy′′xx + xfy′x + (f + xf ′

x)y = 0.

Particular solution: y0 = x exp
(
−
∫
f dx

)
.

63. xy′′xx + (xf + a)y′x + (af + xf ′

x)y = 0.

Particular solution: y0 = exp
(
−
∫
f dx

)
.
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64. (x+ a)y′′xx + (f + b)y′x + f ′

xy = 0.

Particular solution: y0 = exp
(∫ 1− b− f

x+ a
dx
)

.

65. x2y′′xx + xfy′x + [xf ′

x + af − a(a+ 1)]y = 0.

Particular solution: y0 = xa+1 exp
(
−
∫
x−1f dx

)
.

66. x2y′′xx + 2xfy′x + (xf ′

x + f2 − f + ax2 + bx+ cx)y = 0.

The transformation w = y exp
(∫

x−1f dx
)

leads to an equation of the form 14.1.2.115:

x2w′′
xx + (ax2 + bx+ c)w = 0.

67. x2y′′xx + x(2f + 1)y′x + (f2 + xf ′

x + x2 − a)y = 0.

The substitution y = w exp
(
−
∫
x−1f dx

)
leads to the Bessel equation 14.1.2.126:

x2w′′
xx + xw′

x + (x2 − a)w = 0.

68. x2y′′xx + x(2f + a)y′x + [f2 + (a− 1)f + xf ′

x + bxn + c]y = 0.

The substitution w= y exp
(∫

x−1f dx
)

leads to a linear equation of the form 14.1.2.132:

x2w′′
xx + axw′

x + (bxn + c)w = 0.

69. x2y′′xx + 2x2fy′x + [x2(f ′

x + f2 + a) + b]y = 0.

The transformation w = y exp
(∫

f dx
)

leads to a linear equation of the form 14.1.2.115:

x2w′′
xx + (ax2 + b)w = 0.

70. x2y′′xx + x(2f + axn + b)y′x
+ [f2 + (axn + b− 1)f + xf ′

x + αx2n + βxn + γ]y = 0.

The substitution w= y exp
(∫

x−1f dx
)

leads to a linear equation of the form 14.1.2.146:

x2w′′
xx + (axn + b)xw′

x + (αx2n + βxn + γ)w = 0.

71. 2fy′′xx + f ′

xy
′

x + ay = 0.

The substitution ξ =

∫
f−1/2dx leads to a constant coefficient linear equation: 2y′′ξξ +

ay = 0.

72. fy′′xx − f ′

xy
′

x − af3y = 0.

Solution: y = C1e
u + C2e

−u, where u =
√
a

∫
f dx.
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73. fy′′xx − af ′

xy
′

x − bf2a+1y = 0.

Solution: y = C1e
u + C2e

−u, where u =
√
b

∫
fa dx.

74. fy′′xx − (f ′

x + af2)y′x + bf3y = 0.

Solution: y = C1 exp
(
λ1

∫
f dx

)
+C2 exp

(
λ2

∫
f dx

)
, where λ1 and λ2 are roots of

the quadratic equation λ2 − aλ+ b = 0.

75. fy′′xx − (f ′

x + af)y′x − bf2(a+ bf)y = 0.

Particular solution: y0 = exp
(
−b
∫
f dx

)
.

76. fy′′xx − (f ′

x + 2af)y′x + (af ′

x + a2f − b2f3)y = 0.

Particular solution: y0 = eax exp
(
b

∫
f dx

)
.

77. f2y′′xx + f(f ′

x + a)y′x + by = 0.

The substitution ξ =

∫
f−1dx leads to a constant coefficient linear equation: y′′ξξ+ay

′
ξ+

by = 0.

78. f2y′′xx + f(f ′

x + 2g + a)y′x + (fg′x + g2 + ag + b)y = 0.

The transformation ξ =

∫
f−1dx, u = y exp

(∫
f−1g dx

)
leads to a constant coefficient

linear equation: u′′ξξ + au′ξ + bu = 0.

79. fgy′′xx − (af ′

xg + bfg′x)y
′

x − λf2a+1g2b+1y = 0.

Solution: y = C1e
u + C2e

−u, where u =
√
λ

∫
fagb dx.

80. y′′xx + 2fy′x + (f2 + f ′

x + ae2λx + beλx + c)y = 0.

The substitution w = y exp
(∫

f dx
)

leads to a linear equation of the form 14.1.3.5:

w′′
xx + (ae2λx + beλx + c)w = 0.

81. y′′xx − f ′

xy
′

x + a2e2fy = 0.

Solution: y = C1 sin
(
a

∫
ef dx

)
+ C2 cos

(
a

∫
ef dx

)
.

82. y′′xx − f ′

xy
′

x − a2e2fy = 0.

Solution: y = C1 exp
(
a

∫
ef dx

)
+ C2 exp

(
−a
∫
ef dx

)
.

83. fy′′xx − f ′′

xxy = 0.

Solution: y = C1f + C2f

∫
f−2 dx.
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84. 4f2y′′xx − [2ff ′′

xx − (f ′

x)
2
+ a]y = 0.

Solution:

y =





C1

√
f exp

(
1
2

√
a

∫
f −1 dx

)
+ C2

√
f exp

(
− 1

2

√
a

∫
f −1 dx

)
if a > 0,

C1

√
f cos

(
1
2

√
|a|
∫
f −1 dx

)
+ C2

√
f sin

(
1
2

√
|a|
∫
f −1 dx

)
if a < 0,

C1

√
f + C2

√
f

∫
f −1 dx if a = 0.

85. y′′xx − f ′′

xx

f ′
x

y′x + a2(f ′

x)
2
f2n−2y = 0.

Solution: y =
√
f

[
C1J 1

2n

( a
n
fn
)
+ C2Y 1

2n

( a
n
fn
)]

, where Jm(z) and Ym(z) are

Bessel functions.

86. y′′xx +

((
ff ′

x

f2 + a
− f ′′

xx

f ′

x

))
y′x − b2(f ′

x)
2

f2 + a
y = 0.

Solution: y = C1

(
f +

√
f2 + a

)b
+ C2

(
f +

√
f2 + a

)−b
.

87. y′′xx −
[[
f ′′

xx

f ′

x

+ (2a− 1)
f ′

x

f

]]
y′x +

[[
(a2 − b2)

((
f ′

x

f

))2
+ (f ′

x)
2

]]
y = 0.

Solution: y = fa[C1Jb(f) + C2Yb(f)], where Jb(f) and Yb(f) are Bessel functions.

88. y′′xx +

[[
1

2

f ′′′

xxx

f ′

x

− 3

4

((
f ′′

xx

f ′

x

))2
+

((
1

4
− a2

))((
f ′

x

f

))2
+ (f ′

x)
2

]]
y = 0.

Solution: y =
√
f/f ′x [C1Ja(f) + C2Ya(f)], where Ja(f) and Ya(f) are Bessel func-

tions.

89. y′′xx +
f ′

x

f
y′x

+

[[
3

4

((
f ′

x

f

))2
− 1

2

f ′′

xx

f
− 3

4

((
g′′xx

g′x

))2
+

1

2

g′′′xxx

g′x
+

((
1

4
−a2

))((
g′x

g

))2
+(g′x)

2

]]
y=

0.

Solution: y =
√
fg/g′x [C1Ja(g) + C2Ya(g)], where Jb(g) and Yb(g) are Bessel func-

tions.

90. y′′xx −
((
2
f ′

x

f
+

g′′xx

g′x
− g′x

g

))
y′x

+

[[
f ′

x

f

((
2
f ′

x

f
+

g′′xx

g′x
− g′x

g

))
− f ′′

xx

f
− a2

((
g′x

g

))2
+ (g′x)

2

]]
y = 0.

Solution: y = f [C1Ja(g) + C2Ya(g)], where Jb(g) and Yb(g) are Bessel functions.

91. y′′xx −
((
g′′xx

g′x
+ (2a− 1)

g′x

g
+ 2

h′

x

h

))
y′x

+

[[
h′

x

h

((
g′′xx

g′x
+ (2a− 1)

g′x

g
+ 2

h′

x

h

))
− h′′

xx

h
+ (g′x)

2

]]
y = 0.

Solution: y = hga[C1Ja(g) + C2Ya(g)], where Jb(g) and Yb(g) are Bessel functions.
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14.1.10 Some Transformations

◆ Notation: f , g, and h are arbitrary composite functions of their arguments, which are

written in parentheses following the name of a function (the argument is a function of x).

1. y′′xx + x− 4f(1/x)y = 0.

The transformation ξ = 1/x, w = y/x leads to the equation w′′
ξξ + f(ξ)w = 0.

2. y′′xx + (cx+ d)− 4f
((
ax+ b

cx+ d

))
y = 0.

The transformation ξ =
ax+ b

cx+ d
, w =

y

cx+ d
leads to a simpler equation: w′′

ξξ +

∆−2f(ξ)w = 0, where ∆ = ad− bc.
3. x2y′′xx +

[[
x2nf(axn + b) + 1

4
− 1

4
n2
]]
y = 0.

The transformation ξ = axn + b, w = yx
n−1
2 leads to a simpler equation: w′′

ξξ +

(an)−2f(ξ)w = 0.

4. x2y′′xx + x(xf + a)y′x + (xg + b)y = 0, f = f(x), g = g(x).

The substitution y=xkw, where k is a root of the quadratic equation k2+(a−1)k+b=0,

leads to the equation xw′′
xx + (xf + a+ 2k)w′

x + (g + kf)w = 0.

5. xPn(x)y
′′

xx + Qn(x)y
′

x +Rn−1(x)y = 0,

Pn(x) =
n∑

m=0
amx

m, Qn(x) =
n∑

m=0
bmx

m, Rn−1(x) =
n−1∑
m=0

cmx
m.

The substitution y = xkw, where k = 1− b0/a0, leads to an equation of the same form:

xPn(x)w
′′
xx + [Qn(x) + 2kPn(x)]w

′
x + [Rn−1(x) + Fn−1(x)]w = 0,

where Fn−1(x) = kx−1[Qn(x) + (k − 1)Pn(x)].

6. x(x− 1)Pn−1(x)y
′′

xx +Qn(x)y
′

x +Rn−1(x)y = 0,

Pn−1(x) =
n−1∑
m=0

amx
m, Qn(x) =

n∑
m=0

bmx
m, Rn−1(x) =

n−1∑
m=0

cmx
m.

The transformation ξ =
x

x− 1
, w= |x−1|−ky, where k is a root of the quadratic equation

an−1k
2 + (bn − an−1)k + cn−1 = 0, leads to an equation of the same form:

ξ(ξ−1)P̂n−1(ξ)w
′′
ξξ+[2(1−k)ξP̂n−1(ξ)−Q̂n(ξ)]w

′
ξ+[k(k−1)P̂n−1(ξ)+Fn−1(ξ)]w=0,

where

P̂n−1(ξ)=

n−1∑

m=0

amξ
m(ξ−1)n−m−1, Q̂n(ξ)=

n∑

m=0

bmξ
m(ξ−1)n−m,

R̂n−1(ξ)=

n−1∑

m=0

cmξ
m(ξ−1)n−m−1, Fn−1(ξ)=

R̂n−1(ξ)+kQ̂n(ξ)+k(k−1)P̂n−1(ξ)

ξ−1 .

7. y′′xx +
[[
e2λxf(aeλx + b) − 1

4
λ2
]]
y = 0.

The transformation ξ=aeλx+b, w=yeλx/2 leads to the equation w′′
ξξ+(aλ)−2f(ξ)w=0.
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8. y′′xx + f(eλx)y′x + g(eλx)y = 0.

The substitution z = eλx leads to the equation λ2z2y′′zz + λz[f(z) + λ]y′z + g(z)y = 0.

9. y′′xx +
[[
− λ2 + sinh− 4(λx)f

((
coth(λx)

))]]
y = 0.

The transformation ξ = coth(λx), w =
y

sinh(λx)
leads to a simpler equation w′′

ξξ +

λ−2f(ξ)w = 0.

10. y′′xx +
[[
− λ2 + cosh− 4(λx)f

((
tanh(λx)

))]]
y = 0.

The transformation ξ = tanh(λx), w =
y

cosh(λx)
leads to a simpler equation w′′

ξξ +

λ−2f(ξ)w = 0.

11. y′′xx +

[[
− 1

4
λ2 +

e2λx

(ceλx + d)4
f
((
aeλx + b

ceλx + d

))]]
y = 0.

The transformation ξ =
aeλx + b

ceλx + d
, w =

yeλx/2

ceλx + d
leads to a simpler equation: w′′

ξξ +

(∆λ)−2f(ξ)w = 0, where ∆ = ad− bc.
12. fy′′xx + (2f tanhx+ g)y′x + (g tanh x+ h)y = 0,

f = f(x), g = g(x), h = h(x).

The substitution u = y cosh x leads to a simpler equation: fu′′xx + gu′x + (h− f)u = 0.

13. fy′′xx + (2f coth x+ g)y′x + (g coth x+ h)y = 0,

f = f(x), g = g(x), h = h(x).

The substitution u = y sinh x leads to a simpler equation: fu′′xx + gu′x + (h− f)u = 0.

14. x2y′′xx +
[[
f(a ln x+ b) + 1

4

]]
y = 0.

The transformation ξ = a lnx + b, w = yx−1/2 leads to a simpler equation: w′′
ξξ +

a−2f(ξ)w = 0.

15. (x2 − 1)2y′′xx + f
((
ln

ax− a

x+ 1

))
y = 0.

The transformation ξ = ln
ax− a
x+ 1

, w =
y√
|x2 − 1|

leads to a simpler equation: 4w′′
ξξ +

[f(ξ)− 1]w = 0.

16. x2f(lnx)y′′xx + xg(lnx)y′x + h(lnx)y = 0.

The substitution ξ = lnx leads to the equation f(ξ)y′′ξξ + [g(ξ) − f(ξ)]y′ξ + h(ξ)y = 0.

17. y′′xx + [λ2 + sin− 4(λx)f(cot(λx))]y = 0.

The transformation ξ = cot(λx), w =
y

sin(λx)
leads to a simpler equation: w′′

ξξ +

λ−2f(ξ)w = 0.

18. y′′xx +
[[
λ2 + cos− 4(λx)f

((
tan(λx)

))]]
y = 0.

The transformation ξ = tan(λx), w =
y

cos(λx)
leads to a simpler equation: w′′

ξξ +

λ−2f(ξ)w = 0.
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19. y′′xx +

[[
λ2 +

1

sin4(λx+ b)
f
((
sin(λx+ a)

sin(λx+ b)

))]]
y = 0.

The transformation ξ =
sin(λx+ a)

sin(λx+ b)
, w =

y

sin(λx+ b)
leads to a simpler equation:

w′′
ξξ + [λ sin(b− a)]−2f(ξ)w = 0.

20. fy′′xx + (g − 2f tanx)y′x + (h− g tanx)y = 0,

f = f(x), g = g(x), h = h(x).

The substitution u = y cos x leads to a simpler equation: fu′′xx + gu′x + (f + h)u = 0.

21. fy′′xx + (g + 2f cotx)y′x + (h+ g cot x)y = 0,

f = f(x), g = g(x), h = h(x).

The substitution u = y sinx leads to a simpler equation: fu′′xx + gu′x + (f + h)u = 0.

22. (x2 + 1)2y′′xx + f(arctan x+ b)y = 0.

The transformation ξ = arctan x + b, w =
y√

x2 + 1
leads to a simpler equation: w′′

ξξ +

[f(ξ) + 1]w = 0.

23. (x2 + 1)2y′′xx + f(arccot x+ b)y = 0.

The transformation ξ = arccot x+ b, w =
y√

x2 + 1
leads to a simpler equation: w′′

ξξ +

[f(ξ) + 1]w = 0.

24. y′′xx + f(x)y = 0.

The transformation x = ϕ(z), y = w
√
|ϕ′

z| leads to an equation of the same form:

w′′
zz +Φ(z)w = 0, where Φ(z) =

1

2

ϕ′′′
zzz

ϕ′
z

− 3

4

(ϕ′′
zz

ϕ′
z

)2
+ (ϕ′

z)
2f(ϕ).

14.2 Autonomous Equations y′′
xx = F (y, y′

x)

Preliminary remarks. Equations of this type often arise in different areas of mechanics,

applied mathematics, physics, and chemical engineering science.

1◦. The substitution w(y) = y′x leads to a first-order equation:

w′
y = w−1F (y,w). (1)

2◦. The solution of the original autonomous equation can be represented in implicit form:

x =

∫
dy

w(y,C1)
+ C2, (2)

where w = w(y,C1) is the solution of the first-order equation (1).

3◦. The solution of the original autonomous equation can be written in parametric form:

x =

∫
y′τ (τ, C1)

w(τ, C1)
dτ + C2, y = y(τ, C1), (3)

where y = y(τ, C1), w = w(τ, C1) is a parametric form of the solution of the first-order

equation (1). Formula (2) is a special case of formula (3) with y = τ .

4◦. For the special cases F = F (y) and F = F (y′x), see equations 14.9.1.1 and 14.9.4.35.
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14.2.1 Equations of the Form y′′

xx − y′

x = f(y)

Preliminary remarks. Equations of this type arise in the theory of combustion and the

theory of chemical reactors.

1◦. The substitution w(y) = y′x leads to the Abel equation ww′
y − w = f(y), which is

considered in Section 13.3.1 for some specific functions f .

2◦. The solution of the original autonomous equation can be written in the parametric

form (3), where y = y(τ, C1), w = w(τ, C1) is a parametric form of the solution to an

Abel equation of the second kind ww′
y − w = f(y).

1. y′′xx − y′x = − 2(m + 1)

(m+ 3)2
y ± m+ 1

2a2
ym, m 6= ±1, m 6= −3.

Solution in parametric form:

x =
m+ 3

m− 1
ln
(
aC1−m

1

m− 1

m+ 3

∫
dτ√

1± τm+1
+ C2

)
,

y = C2
1τ
(
aC1−m

1

m− 1

m+ 3

∫
dτ√

1± τm+1
+ C2

) 2
m−1

.

2. y′′xx − y′x = ±2a2y−1.

Solution in parametric form:

x=− ln
[
C1

∫
exp(±τ2) dτ +C2

]
, y = aC1 exp(±τ2)

[
C1

∫
exp(±τ2) dτ +C2

]−1
.

3. y′′xx − y′x = − 2
9
y + 16

9
a3/2y−1/2.

Solution in parametric form:

x = −3 ln
{
C1 exp(−τ)

[
exp(3τ) + C2 sin

(√
3 τ
)]}

,

y = a exp(2τ)

[
2 exp(3τ)− C2 sin

(√
3 τ
)
+
√
3C2 cos

(√
3 τ
)]2

[
exp(3τ) + C2 sin

(√
3 τ
)]2 .

4. y′′xx − y′x = − 9
100
y ± 9

100
a8/3y−5/3.

Solution in parametric form:

x = − 5
4 ln
[
±(τ4 − 6τ2 + 4C1τ − 3)

]
+ C2,

y = a(τ3 − 3τ + C1)
3/2
[
±(τ4 − 6τ2 + 4C1τ − 3)

]−9/8
.

5. y′′xx − y′x = − 3
16
y − 3

64
a8/3y−5/3.

Solution in parametric form:

x=C1−2 ln[sin τ cosh(τ+C2)+cos τ sinh(τ+C2)], y= a[tan τ+tanh(τ+C2)]
−3/2.

◆ In the solutions of equations 6–9, the following notation is used:

Z =

{
C1Jν(τ) + Yν(τ) for the upper sign,

C1Iν(τ) +Kν(τ) for the lower sign,

where Jν(τ) and Yν(τ) are Bessel functions, and Iν(τ) and Kν(τ) are modified Bessel

functions.
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6. y′′xx − y′x = Ay−1/2.

Solution in parametric form:

x = −2
∫
τ−1Z−1(τZ ′

τ +
1
3Z) dτ + C2, y = aτ−4/3Z−2[(τZ ′

τ +
1
3Z)

2 ± τ2Z2],

where ν = 1
3 , A = ∓ 1

3a
3/2.

7. y′′xx − y′x = Ay−2.

Solution in parametric form:

x=∓ 2
3

∫
τZ2

[
(τZ ′

τ+
1
3Z)

2±τ2Z2
]−1

dτ+C2, y=2aτ4/3Z2
[
(τZ ′

τ+
1
3Z)

2±τ2Z2
]−1

,

where ν = 1
3 , A = −36a3.

8. y′′xx − y′x = 2A2 −Ay1/2.

Solution in parametric form:

x = ±2
∫
τ−1(Z ′

τ )
−1(τZ ± 2Z ′

τ ) dτ + C2, y = a(Z ′
τ )

−2(τZ ± 2Z ′
τ )

2,

where ν = 0, A = a1/2.

9. y′′xx − y′x = Ay−1/2 + 2B2 + By1/2.

Solution in parametric form:

x = −2
∫
τ−1Z−1(τZ ′

τ − Z) dτ + C2, y = B2Z−2(τZ ′
τ − Z)2,

where A = (1− ν2)B3.

◆ In the solutions of equations 10–14, the function ℘ = ℘(τ) is defined in implicit form:

τ =

∫
d℘√

±(4℘3 − 1)
− C1.

The upper sign in this formula corresponds to the classical elliptic Weierstrass function

℘ = ℘(τ + C1, 0, 1).

10. y′′xx − y′x = Ay2 − 9
625
A−1.

Solution in parametric form:

x = 5 ln τ + C2, y = 5a(τ2℘∓ 1
2 ), where A = ± 6

125a
−1.

11. y′′xx − y′x = Ay2 − 6
25
y.

Solution in parametric form:

x = 5 ln τ + C2, y = 5aτ2℘, where A = ± 6
125 a

−1.

12. y′′xx − y′x = Ay2 + 6
25
y.

Solution in parametric form:

x = 5 ln τ + C2, y = 5a(τ2℘∓ 1), where A = ± 6
125a

−1.
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13. y′′xx − y′x = 12y +Ay−5/2.

Solution in parametric form:

x = ∓ 2
7

∫
℘−1

(
f ± 2τ℘2

)−1
dτ + C2, y = a℘−6/7

(
f ± 2τ℘2

)−4/7
,

where f =
√
±(4℘3 − 1), A = ∓147a7/2.

14. y′′xx − y′x = 63
4
y + Ay−5/3.

Solution in parametric form:

x = − 3
4

∫
(f ± 2τ℘2)(τf + 2℘)−1 dτ + C2, y = 2a

(
f ± 2τ℘2

)3/2
(τf + 2℘)−9/8,

where f =
√
±(4℘3 − 1), A = − 128

3 a2(2a)2/3.

◆ In the solutions of equations 15–18, the following notation is used:

I =

∫
τ dτ√
±(4τ3 − 1)

+ C1 (incomplete elliptic integral of the second kind ),

R =
√
±(4τ3 − 1), I1 = 2τI ∓R, I2 = τ−1(2τRI ∓R2 − 1).

15. y′′xx − y′x = Ay1/2 − 12
49
y.

Solution in parametric form:

x = −7
∫
τR−1I−1 dτ + C2, y = 7aτ2I−4, where A = ± 12

49 (7a)
1/2.

16. y′′xx − y′x = 6y + Ay− 4.

Solution in parametric form:

x = − 1
5

∫
τ−1R−1I−1

1 dτ + C2, y = aτ−3/5I
−2/5
1 , where A = ∓150a5.

17. y′′xx − y′x = 20y +Ay−1/2.

Solution in parametric form:

x = 1
3

∫
R−1I−1

1 I2 dτ + C2, y = aI
−4/3
1 I22 , where A = ±108a3/2.

18. y′′xx − y′x = 15
4
y + Ay−7.

Solution in parametric form:

x=

∫
R−1I1

(
4τI21∓I22

)−1
dτ+C2, y= aI

1/2
1

(
4τI21∓I22

)−3/8
, where A=± 3

4a
8.

19. y′′xx − y′x = Ay + By−1 − B2y−3.

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.1.5:

ww′
y − w = Ay +By−1 −B2y−3.
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20. y′′xx − y′x = − 3
16
y +Ay−1/3 + By−5/3.

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.1.61:

ww′
y − w = − 3

16 y +Ay−1/3 +By−5/3.

21. y′′xx − y′x = − 5
36
y +Ay−3/5 + By−7/5.

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.1.62:

ww′
y − w = − 5

36 y +Ay−3/5 +By−7/5.

22. y′′xx − y′x = 4
9
y + 2Ay2 + 2A2y3.

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.1.14:

ww′
y − w = 4

9 y + 2Ay2 + 2A2y3.

23. y′′xx − y′x = Ayk−1 − kByk + kB2y2k−1.

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.1.6:

ww′
y − w = Ayk−1 − kByk + kB2y2k−1.

24. y′′xx − y′x = ± 2a2

√
y2 ± 8a2

.

Solution in parametric form:

x = ∓
∫
E−1F−1(F 2 ± 2E2) dτ + C2, y = ±aE−1F−1(F 2 ∓ 2E2),

where E =

∫
exp(∓τ2) dτ + C1, F = 2τE ± exp(∓τ2).

25. y′′xx − y′x = A+ B exp(−2y/A).

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.1.8:

ww′
y − w = A+B exp(−2y/A).

26. y′′xx − y′x = a2λe2λy − a(bλ+ 1)eλy + b.

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.1.73:

ww′
y − w = a2λe2λy − a(bλ+ 1)eλy + b.

27. y′′xx − y′x = a2λe2λy + aλyeλy + beλy .

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.1.74:

ww′
y − w = a2λe2λy + aλyeλy + beλy.
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14.2.2 Equations of the Form y′′

xx + f(y)y′

x + y = 0

◮ Preliminary remarks.

Equation of this form are often encountered in the theory of nonlinear oscillations, where

x plays the role of time.

1◦. The transformation

z = − 1
2 y

2 + a, w = y′x
leads to an Abel equation:

ww′
z = g(z)w + 1, where g(z) = f(y)/y, y = ±

√
2(a− z),

whose special cases are outlined in Section 13.3.2.

2◦. For oscillatory systems with a weak nonlinearity

y′′xx + εF (y)y′x + y = 0,

two leading terms of the asymptotic solution, as ε→ 0, are described by the formula

y = A cos(x+B),

where the functions A = A(ξ) and B = B(ξ) depend on the slow variable ξ = εx; they

are determined from the autonomous system of first-order differential equations:

A′
ξ = −

A

2π

∫ 2π

0
F (A cosϕ) sin2 ϕdϕ, B′

ξ = −
1

2π

∫ 2π

0
F (A cosϕ) sinϕ cosϕdϕ.

The right-hand sides of these equations depend only on A. The system is solved consecu-

tively starting from the first equation.

◮ Solvable equations and their solutions.

1. y′′xx + ayy′x + y = 0.

Solution in parametric form:

x = −A
∫

dτ

τ(C1 + 2A2 ln |τ | − 2Aτ)1/2
+ C2, y = (C1 + 2A2 ln |τ | − 2Aτ)1/2,

where A = 1/a.

2. y′′xx − ε(1 − y2)y′x + y = 0.

Van der Pol oscillator.

1◦. Solution, as ε→ 0:

y = a cos(x− θ)− 1
32 εa

3 sin[3(x− θ)] +O(ε2),

where

a2 =
4

1 + (4C−2
1 − 1)e−εx

, θ =
1

8
ε ln a− 7

64
εa2 +

1

16
ε2x+ C2.

In applications, x plays the role of time, C1 is the initial oscillation amplitude, and C2 is

the initial phase with ε = 0.

2◦. As ε→+∞, the periodic solution of the Van der Pol equation consists of intervals with

fast and slow oscillations and describes damping oscillations with period T =(3−2 ln 2)ε+
O(ε−1/3).
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3. y′′xx + y(ay2 + b)y′x + y = 0.

1◦. The transformation z=− 1
2 y

2, w= y′x leads to an Abel equation of the form 13.3.2.1:

ww′
z = (−2az + b)w + 1.

2◦. Solution in parametric form with a < 0:

x = ∓ 2

3
k

∫
τ−1/3

[
± 4

3
k2τ−2/3Z−1

(
τZ ′

τ +
1

3
Z
)
− b

a

]−1/2
dτ + C2,

y =
[
± 4

3
k2τ−2/3Z−1

(
τZ ′

τ +
1

3
Z
)
− b

a

]1/2
, a = − 9

4
k−3,

where

Z =

{
C1J1/3(τ) + C2Y1/3(τ) for the upper sign,

C1I1/3(τ) + C2K1/3(τ) for the lower sign,

J1/3(τ) and Y1/3(τ) are Bessel functions, and I1/3(τ) and K1/3(τ) are modified Bessel

functions.

4. y′′xx + y(ay2 + b)−2y′x + y = 0.

The transformation z = − 1
2 y

2, w = y′x leads to an Abel equation of the form 13.3.2.2:

ww′
z = (−2az + b)−2w + 1.

5. y′′xx + y(ay2 + b)−1/2y′x + y = 0.

1◦. The transformation z=− 1
2 y

2, w= y′x leads to an Abel equation of the form 13.3.2.4:

ww′
z = (−2az + b)−1/2w + 1.

2◦. Solution in parametric form:

x = −aC1

∫ (
aC2

1E
2 − b

a

)−1/2 E dτ

τ2 − τ + a
+ C2, y =

(
aC2

1E
2 − b

a

)1/2
,

where E = exp
(
−
∫

τ dτ

τ2 − τ + a

)
.

6. y′′xx − y
((
2a+

1

ay2 + b

))
y′x + y = 0.

The transformation z = − 1

2
y2 − b

2a
, w = y′x leads to an Abel equation of the form

13.3.2.3:

ww′
z =

(
A− 1

Az

)
w + 1, where A = −2a.

7. y′′xx + ay exp(λy2)y′x + y = 0.

The transformation z = − 1
2 y

2, w = y′x leads to an Abel equation of the form 13.3.2.7:

ww′
z = a exp(−2λz)w + 1.

8. y′′xx + y[a exp(λy2) + b exp(−λy2)]y′x + y = 0.

The transformation z = − 1
2 y

2, w = y′x leads to an Abel equation of the form 13.3.2.8:

ww′
z = [b exp(2λz) + a exp(−2λz)]w + 1.
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9. y′′xx + 2ay exp[a(b− y2)]y′x + y = 0.

Solution in parametric form:

x = ∓2k
∫ (

b− 4k2τ2 − ln |kE−1
∓ |
)−1/2

dτ + C2, y =
(
b− 4k2τ2 − ln |kE−1

∓ |
)1/2

,

where a = ∓ 1
4k

−2, E∓ =

∫
exp(∓τ2) dτ + C1.

10. y′′xx +Ay cosh(λy2)y′x + y = 0.

This is a special case of equation 14.2.2.8 with a = b = 1
2A.

11. y′′xx +Ay sinh(λy2)y′x + y = 0.

This is a special case of equation 14.2.2.8 with a = −b = 1
2A.

12. y′′xx + 2Ayy′x

√
sinh2[A(B − y2)] + 2A−1 + y = 0.

Solution in parametric form:

x = 2a

∫
(F 2 + 2E2)G−1Q−1 dτ + C2, y = Q; A = 1

4a
−2,

where

E =

∫
exp(−τ2) dτ + C1, F = 2τE + exp(−τ2), G =

√
F 2 − 2E2 + 8E2F 2,

Q =
√
B − 4a2 arcsinh[aE−1F−1(F 2 − 2E2)], arcsinh z = ln

(
z +

√
z2 + 1

)
.

13. y′′xx − 2Ayy′x
√

cosh2[A(y2 − B)] − 2A−1 + y = 0.

Solution in parametric form:

x = 2a

∫
(F 2 − 2E2)G−1Q−1 dτ + C2, y = Q; A = 1

4a
−2,

where

E =

∫
exp(τ2) dτ + C1, F = 2τE − exp(τ2), G =

√
F 2 + 2E2 − 8E2F 2,

Q =
√
B + 4a2 arccosh[aE−1F−1(F 2 + 2E2)], arccosh z = ± ln

(
z +

√
z2 − 1

)
.

14. y′′xx +Ay cos(λy2)y′x + y = 0.

The transformation z = − 1
2y

2, w = y′x leads to an Abel equation of the form 13.3.2.11:

ww′
z = A cos(2λz)w + 1.

15. y′′xx +Ay sin(λy2)y′x + y = 0.

The transformation z = − 1
2y

2, w = y′x leads to an Abel equation of the form 13.3.2.12:

ww′
z = −A sin(2λz)w + 1.
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14.2.3 Lienard Equations y′′

xx + f(y)y′

x + g(y) = 0

◮ Preliminary remarks.

Equations of this form are encountered in various fields of applied mathematics, mechanics,

and physics.

1◦. For f(y) = 0, see equation 14.9.1.1.

2◦. The substitution w(y) = y′x leads to an Abel equation of the second kind:

ww′
y + f(y)w + g(y) = 0,

whose special cases are outlined in Section 13.3.3.

3◦. The transformation w(z) = y′x, z = −
∫
f(y) dy leads to an Abel equation of the

second kind:

ww′
z − w = ϕ(z), where ϕ(z) = g(y)/f(y),

whose special cases are outlined in Section 13.3.1.

◮ Solvable equations and their solutions.

1. y′′xx + y + ay3 = 0.

Duffing equation. This is a special case of equation 14.9.1.1 with f(y) = −y − ay3.

1◦. Solution:

x = ±
∫ (

C1 − y2 − 1
2ay

4
)−1/2

dy + C2.

The period of oscillations with amplitude C is expressed in terms of the complete elliptic

integral of the first kind:

T =
4√

1 + aC2
K
( aC2

2 + 2aC2

)
, where K(m) =

∫ π/2

0

dt√
1−m sin2 t

.

2◦. The asymptotic solution, as a→ 0, has the form:

y = C̃1 cos[(1 +
3
8aC̃

2
1 )x+ C̃2] +

1
32aC̃

3
1 cos[3(1 +

3
8aC̃

2
1 )x+ 3C̃2] +O(a2),

where C̃1 and C̃2 are arbitrary constants. The corresponding asymptotics for the period of

oscillations with amplitude C is described by the formula: T = 2π(1 − 3
8aC

2) +O(a2).

2. y′′xx + ayy′x + by3 + cy = 0.

The transformation w(z) = y′x, z=− 1
2ay

2 leads to an Abel equation of the form 13.3.1.2:

ww′
z − w = − 2b

a2
z +

c

a
.

3. y′′xx = (ay + 3b)y′x + cy3 − aby2 − 2b2y.

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.3.1:

ww′
y = (ay + 3b)w + cy3 − aby2 − 2b2y.
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4. y′′xx = (3ay + b)y′x − a2y3 − aby2 + cy.

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.3.2:

ww′
y = (3ay + b)w − a2y3 − aby2 + cy.

5. 2y′′xx = (7ay + 5b)y′x − 3a2y3 − 2cy2 − 3b2y.

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.3.3:

2ww′
y = (7ay + 5b)w − 3a2y3 − 2cy2 − 3b2y.

6. y′′xx = yn−1[(1 + 2n)y + an]y′x − ny2n(y + a).

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.3.8:

ww′
y = yn−1[(1 + 2n)y + an]w − ny2n(y + a).

7. y′′xx = a(y − nb)yn−1y′x + c[y2 − (2n+ 1)by + n(n+ 1)b2]y2n−1.

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.3.9:

ww′
y = a(y − nb)yn−1w + c[y2 − (2n + 1)by + n(n+ 1)b2]y2n−1.

8. y′′xx = [a(2n+ k)yk + b]yn−1y′x + (−a2ny2k − abyk + c)y2n−1.

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.3.10:

ww′
y = [a(2n + k)yk + b]yn−1w + (−a2ny2k − abyk + c)y2n−1.

9. y′′xx = [a(2m+ k)y2k + b(2m− k)]ym−k−1y′x
− (a2my4k + cy2k + b2m)y2m−2k−1.

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.3.11:

ww′
y = [a(2m+ k)y2k+ b(2m− k)]ym−k−1w − (a2my4k+ cy2k+ b2m)y2m−2k−1.

10. y′′xx = aeλyy′x + beλy .

Solution in parametric form:

x=−A
λ

∫
τ−1

(
C1+A

2 ln |τ |−Aτ
)−1

dτ+C2, y=
1

λ
ln
[
−λ
b
(C1+A

2 ln |τ |−Aτ)
]
,

where A = b/a.

11. y′′xx = (aey + b)y′x + ce2y − abey − b2.

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.3.67:

ww′
y = (aey + b)w + ce2y − abey − b2.

12. y′′xx = [a(2µ+ λ)eλy + b]eµyy′x + (−a2µe2λy − abeλy + c)e2µy.

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.3.68:

ww′
y = [a(2µ + λ)eλy + b]eµyw + (−a2µe2λy − abeλy + c)e2µy .
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13. y′′xx = (aeλy + b)y′x + c[a2e2λy + ab(λy + 1)eλy + b2λy].

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.3.69:

ww′
y = (aeλy + b)w + c[a2e2λy + ab(λy + 1)eλy + b2λy].

14. y′′xx = eλy(2aλy + a+ b)y′x − e2λy(a2λy2 + aby + c).

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.3.70:

ww′
y = eλy(2aλy + a+ b)w − e2λy(a2λy2 + aby + c).

15. y′′xx = eay(2ay2 + 2y + b)y′x + e2ay(−ay4 − by2 + c).

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.3.71:

ww′
y = eay(2ay2 + 2y + b)w + e2ay(−ay4 − by2 + c).

16. y′′xx = (a cosh y + b)y′x − ab sinh y + c.

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.3.75:

ww′
y = (a cosh y + b)w − ab sinh y + c.

17. y′′xx = (a sinh y + b)y′x − ab cosh y + c.

The substitution w(y) = y′x leads to an Abel equation of the form 13.3.3.76:

ww′
y = (a sinh y + b)w − ab cosh y + c.

18. y′′xx + a sin y = 0.

This is the equation of oscillations of the mathematical pendulum, where the variable x
plays the role of time, and y is the angle of deviation from the equilibrium state.

1◦. Solution:

x = ±
∫
(2a cos y + C1)

−1/2 dy + C2.

2◦. With a > 0 and the initial conditions y(0) = C > 0 and y′x(0) = 0, the oscillations of

the mathematical pendulum are described by

sin
y

2
= m sn

(√
a x
)
, m = sin

C

2
,

where sn = sn(z) is the Jacobi elliptic function defined parametrically by the following

relations:

sn(z) = sin β, z =

∫ β

0

dβ√
1−m2 sin2 β

.

3◦. The period of oscillations of the mathematical pendulum is expressed in terms of the

complete elliptic integral of the second kind:

T =
4√
a
K(m), where K(m) =

∫ π/2

0

dβ√
1−m2 sin2 β

.

At small amplitudes, as C → 0, the following asymptotic formula holds for the period:

T =
2π√
a

(
1 +

1

16
C2
)
+O(C4), C → 0.
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19. y′′xx + a sin(λy)y′x + b sin(λy) = 0.

Solution in parametric form:

x = −A
∫
t−1
(
b2 − λ2F 2

)−1/2
dt+C2, y =

1

λ
arccos

(λ
b
F
)
,

where A = b/a, F = At−A2 ln |t|+C1.

20. y′′xx + a cos(λy)y′x + b cos(λy) = 0.

The substitution λy = λu+ π
2 leads to an equation of the form 14.2.3.19:

u′′xx − a sin(λu)u′x − b sin(λu) = 0.

21. y′′xx + f ′

y(y)y
′

x =
a

f(y)
.

First integral:

(y′x)
2 + 2fy′x + f2 − 2a

∫
dy

f
− 2ax = C,

where C is an arbitrary constant. This equation has a singular solution,

x+
C

2a
= −

∫
dy

f(y)
, (1)

which is not a one-parameter family of solutions to the original equation, as the integrating

factor

R = 2
(
y′ + f(y)

)

vanishes on the integral curve (1).

⊙ Literature: L. V. Linchuk and V. F. Zaitsev (2015).

14.2.4 Rayleigh Equations y′′

xx + f(y′

x) + g(y) = 0

◮ Preliminary remarks. Some transformations.

Equations of this form arise in the theory of nonlinear oscillations.

1◦. Let us discuss the special case g(y) = y, which corresponds to the equation

y′′xx + f(y′x) + y = 0. (1)

Differentiating equation (1) with respect to x and substituting z(x) = y′x, we obtain the

equation of nonlinear oscillations:

z′′xx +Φ(z)z′x + z = 0, where Φ(z) = f ′z(z), (2)

which is considered in Section 14.2.2.

The solution of equation (1) can be written in parametric form:

x = x(τ, C1, C2), y = −f(z)− z′τ
x′τ
,

where x = x(τ, C1, C2), z = z(τ, C1, C2) is a parametric representation of the solution

of equation (2).
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2◦. The transformation

ξ = − 1
2 (y

′
x)

2 + a, w = −y − f(y′x),

reduces equation (1) to an Abel equation of the second kind:

ww′
ξ = H(ξ)w + 1, where H(ξ) = z−1Φ(z), z = ±

√
2(a− ξ), (3)

where function Φ = Φ(z) is defined above in equation (2). Specific equations of the

form (3) are outlined in Section 13.3.2.

3◦. The equation of the special form

y′′xx + a(y′x)
2 + g(y) = 0 (4)

is reduced, with the aid of the substitution w(y) = (y′x)
2, to the first-order linear equation

w′
y + 2aw + 2g(y) = 0. Therefore, the solution of equation (4) can be written in implicit

form:

x = C2 ±
∫ [

C1e
−2ay −G(y)

]−1/2
dy, where G(y) = 2e−2ay

∫
e2ayg(y) dy.

4◦. The equation of the special form

y′′xx + a(y′x)
4 + b(y′x)

2 + g(y) = 0 (5)

is reduced, with the aid of the substitution w(y) = (y′x)
2, to the Riccati equation w′

y +
2aw2 + 2bw + 2g(y) = 0, which is outlined in Section 13.2.

5◦. For the oscillatory systems with a weak nonlinearity

y′′xx + εF (y′x) + y = 0,

two leading terms of the asymptotic solution, as ε→ 0, are described by the formula

y = A cos(x+B),

where the functions A = A(ξ) and B = B(ξ) depend on the slow variable ξ = εx and

are determined from the autonomous system of first-order differential equations:

A′
ξ =

1

2π

∫ 2π

0
F (−A sinϕ) sinϕdϕ, AB′

ξ =
1

2π

∫ 2π

0
F (−A sinϕ) cosϕdϕ.

The right-hand sides of these equations depend only on A. The system is solved consecu-

tively starting from the first equation.

◮ Solvable equations and their solutions.

1. y′′xx + a(y′x)
2 + by = 0.

This equation describes small oscillations in the case where the drag force is proportional

to the speed squared.

Solution in implicit form: x = C2 ± a
∫ [

C1a
2e−2ay + b( 12 − ay)

]−1/2
dy.
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2. y′′xx + ε
[[
1
3
(y′x)

3 − y′x
]]
+ y = 0.

Van der Pol equation.

1◦. Differentiating the equation with respect to x and passing on to the new variable

w(x) = y′x, we arrive at an equation of the form 14.2.2.2: w′′
xx − ε(1 − w2)w′

x + w = 0.

2◦. Solution, as ε→ 0:

y =
2C1√

1− C2e−εx
cos x+

2
√

1− C2
1√

1− C2e−εx
sinx+O(ε2).

3. y′′xx + a(y′x)
4 + b(y′x)

2 + y = 0.

The transformation ξ = − 1
2 (y

′
x)

2, w = −y − a(y′x)4 − b(y′x)2 leads to an Abel equation

of the form 13.3.2.1: ww′
ξ = (−8aξ + 2b)w + 1.

4. y′′xx + (y′x)
2
[[
a(y′x)

2 + b
]]
−1

+ y = 0.

The transformation ξ = − 1
2 (y

′
x)

2, w = −y− (y′x)
2[a(y′x)

2 + b]−1 leads to an equation of

the form 13.3.2.2: ww′
ξ = 2b(b− 2aξ)−2w + 1.

5. y′′xx + A exp[λ(y′x)
2] + B + y = 0.

Differentiating the equation with respect to x and passing on to the new variable w(x)= y′x,

we arrive at an equation of the form 14.2.2.7: w′′
xx + 2Aλw exp(λw2)w′

x + w = 0.

6. y′′xx + A cosh[λ(y′x)
2] +B + y = 0.

Differentiating the equation with respect to x and passing on to the new variable w(x)= y′x,

we arrive at an equation of the form 14.2.2.11: w′′
xx + 2Aλw sinh(λw2)w′

x + w = 0.

7. y′′xx + A sinh[λ(y′x)
2] +B + y = 0.

Differentiating the equation with respect to x and passing on to the new variable w(x)= y′x,

we arrive at an equation of the form 14.2.2.10: w′′
xx + 2Aλw cosh(λw2)w′

x + w = 0.

8. y′′xx + a(y′x)
2 + b sin y = 0.

This equation describes the oscillations of the mathematical pendulum in the case where

the drag force is proportional to the speed squared.

Solution in implicit form: x=C2±
∫ [

C1e
−2ay+

2b

4a2 + 1
(cos y−2a sin y)

]−1/2
dy.

9. y′′xx + A cos[λ(y′x)
2] +B + y = 0.

Differentiating the equation with respect to x and passing on to the new variable w(x)= y′x,

we arrive at an equation of the form 14.2.2.15: w′′
xx − 2Aλw sin(λw2)w′

x + w = 0.

10. y′′xx +A sin[λ(y′x)
2] +B + y = 0.

Differentiating the equation with respect to x and passing on to the new variable w(x)= y′x,

we arrive at an equation of the form 14.2.2.14: w′′
xx + 2Aλw cos(λw2)w′

x + w = 0.
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14.3 Emden–Fowler Equation y′′
xx = Axnym

14.3.1 Exact Solutions

◮ Preliminary remarks. Classification table.

In this subsection, the value of the insignificant parameter A is in many cases defined in the

form of a function of two (one) auxiliary coefficients a and b,

A = ϕ(a, b), (1)

and the corresponding solutions are represented in parametric form,

x = f1(τ, C1, C2, a), y = f2(τ, C1, C2, b), (2)

where τ is the parameter, C1 and C2 are arbitrary constants, and f1 and f2 are some func-

tions.

Having fixed the auxiliary coefficient sign a > 0 (or b > 0), one should express the

coefficient b in terms of both A and a with the help of (1). As a result, one obtains:

b = ψ(A, a).

Substituting this formula into (2), we find a solution of the equation under consideration

(where the specific numerical value of the coefficient a can be chosen arbitrarily). The case

a < 0 (or b < 0), which may lead to another branch of the solution or to a different domain

of definition of the variables x and y in (2), should be considered in a similar manner.

One can also use a different approach by setting one of the auxiliary coefficients (e.g., a)

equal to ±1 in (1) and (2); then the other coefficients will be identically expressed in terms

of A by means of (1).

Table 14.5 presents all solvable Emden–Fowler equations whose solutions are outlined

in Section 14.3.1. The one-parameter families (in the space of the parameters n and m) and

isolated points are presented in a consecutive fashion. Equations are arranged in accordance

with the growth of m and the growth of n (for identical m). The number of the equation

sought is indicated in the last column in this table.

◮ Solvable equations and their solutions.

1. y′′xx = Axn.

Solution: y =





Axn+2

(n+ 1)(n + 2)
+C1x+ C2 if n 6= −1, n 6= −2;

−A ln |x|+ C1x+ C2 if n = −2;
A

∫
ln |x| dx+ C1x+C2 if n = −1.

2. y′′xx = Aym.

Solution: x =





±
∫ ( 2A

m+ 1
ym+1 + C1

)−1/2
dy + C2 if m 6= −1,

±
∫

(2A ln |y|+ C1)
−1/2 dy + C2 if m = −1.
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TABLE 14.5

Solvable cases of the Emden–Fowler equation y′′xx = Axnym

No m n Equation

One-parameter families

1 arbitrary 0 2.3.1.2

2 arbitrary −m− 3 2.3.1.3

3 arbitrary − 1
2 (m+ 3) 2.3.1.4

4 0 arbitrary 2.3.1.1

5 1 arbitrary 2.3.1.5

Isolated points

6 −7 1 2.3.1.15

7 −7 3 2.3.1.16

8 −5/2 −1/2 2.3.1.22

9 −2 −2 2.3.1.28

10 −2 1 2.3.1.27

11 −5/3 −10/3 2.3.1.10

12 −5/3 −7/3 2.3.1.8

No m n Equation

13 −5/3 −5/6 2.3.1.23

14 −5/3 −1/2 2.3.1.24

15 −5/3 1 2.3.1.7

16 −5/3 2 2.3.1.9

17 −7/5 −13/5 2.3.1.14

18 −7/5 1 2.3.1.13

19 −1/2 −7/2 2.3.1.12

20 −1/2 −5/2 2.3.1.6

21 −1/2 −2 2.3.1.26

22 −1/2 −4/3 2.3.1.17

23 −1/2 −7/6 2.3.1.18

24 −1/2 −1/2 2.3.1.25

25 −1/2 1 2.3.1.11

26 2 −5 2.3.1.19

27 2 −20/7 2.3.1.21

28 2 −15/7 2.3.1.20

Special cases.

1◦. In the case m = −1/2, the solution can be written in the parametric form:

x = aC3
1 (τ

3 − 3τ + C2), y = bC4
1 (τ

2 − 1)2, where A = ± 4
9a

−2b3/2.

2◦. In the case m = −4, the solution can be written in the parametric form:

x = aC5
1τ

−1
(
2τ

∫
τ dτ

R
+ C2τ ∓R

)
, y = bC2

1τ
−1,

where R =
√
±(4τ3 − 1), A = ∓6a−2b5.

3◦. In the case m = 2, the solution can be written in the parametric form:

x = aC−1
1 τ, y = bC2

1℘; A = ±6a−2b−1,

the function ℘ of the parameter τ is defined in implicit form:

τ =

∫
d℘√

±(4℘3 − 1)
− C2.

The upper sign in this formula corresponds to the classical elliptic Weierstrass function

℘ = ℘(τ + C2, 0, 1).

4◦. In the case m = −5/2, the solution can be written in the parametric form:

x = aC7
1℘

−2
[√
±(4℘3 − 1)± 2τ℘2

]
, y = bC4

1℘
−2, where A = ∓3a−2b7/2.

The function ℘ of the parameter τ is defined in the previous case.
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3. y′′xx = Ax−m−3ym.

1◦. Solution in parametric form with m 6= −1:

x=aCm−1
1

[∫
(1±τm+1)−1/2 dτ+C2

]−1
, y=bCm+1

1 τ
[∫

(1±τm+1)−1/2 dτ+C2

]−1
,

where A = ±m+ 1

2
am+1b1−m.

2◦. Solution in parametric form with m = −1:

x = C1

[∫
exp(∓τ2) dτ + C2

]−1
, y = b exp(∓τ2)

[∫
exp(∓τ2) dτ + C2

]−1
,

where A = ∓2b2.

4. y′′xx = Ax−
m+3

2 ym.

1◦. Solution in parametric form with m 6= −1:

x = aC2
2 exp

[
2

∫ ( 8

m+ 1
τm+1 + τ2 + C1

)−1/2
dτ
]
,

y = bC2τ exp
[∫ ( 8

m+ 1
τm+1 + τ2 + C1

)−1/2
dτ
]
,

where A =
( a
b2

)m−1
2

.

2◦. Solution in parametric form with m = −1:

x = aC2
2 exp

[
2

∫ (
8 ln |τ |+ τ2 + C1

)−1/2
dτ
]
,

y = bC2τ exp
[∫ (

8 ln |τ |+ τ2 + C1

)−1/2
dτ
]
,

where A = b2/a.

5. y′′xx = Axny.

For n 6= −2, see equation 14.1.2.7. For n = −2, see equation 14.1.2.123.

6. y′′xx = Ax−5/2y−1/2.

Solution in parametric form:

x=aC−3
1 (τ3−3τ+C2)

−1, y=bC1(τ
2−1)2(τ3−3τ+C2)

−1, where A=± 4
9a

1/2b3/2.

7. y′′xx = Axy−5/3.

Solution in parametric form:

x=±aC8
1 (τ

4−6τ2+4C2τ−3), y= bC9
1(τ

3−3τ+C2)
3/2, where A=± 9

64a
−3b8/3.

8. y′′xx = Ax−7/3y−5/3.

Solution in parametric form:

x=± aC−8
1

τ4 − 6τ2 + 4C2τ − 3
, y=± bC1(τ

3 − 3τ +C2)
3/2

τ4 − 6τ2 + 4C2τ − 3
, where A=± 9

64a
1/3b8/3.
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9. y′′xx = Ax2y−5/3.

1◦. Solution in parametric form with A < 0:

x = aC2
1 cos τ cosh(τ + C2)[tan τ + tanh(τ + C2)], y = bC3

1 [cos τ cosh(τ + C2)]
3/2,

where A = − 3
16a

−4b8/3.

2◦. Solution in parametric form with A > 0:

x = aC2
1 [sinh τ + cos(τ + C2)], y = bC3

1 [cosh τ − sin(τ + C2)]
3/2,

where A = 3
4a

−4b8/3.

10. y′′xx = Ax−10/3y−5/3.

1◦. Solution in parametric form with A < 0:

x = aC−2
1 [cos τ cosh(τ + C2)]

−1[tan τ + tanh(τ + C2)]
−1,

y = bC1[cos τ cosh(τ +C2)]
1/2[tan τ + tanh(τ + C2)]

−1,

where A = − 3
16a

4/3b8/3.

2◦. Solution in parametric form with A > 0:

x = aC−2
1 [sinh τ + cos(τ + C2)]

−1,

y = bC1[cosh τ − sin(τ + C2)]
3/2[sinh τ + cos(τ +C2)]

−1,

where A = 3
4a

4/3b8/3.

11. y′′xx = Axy−1/2.

Solution in parametric form:

x = aC1 exp(−τ)
[
exp(3τ) +C2 sin

(√
3 τ
)]
,

y = bC2
1 exp(−2τ)

[
2 exp(3τ)− C2 sin

(√
3 τ
)
+
√
3C2 cos

(√
3 τ
)]2

,

where A = 16a−3b3/2.

◆ In the solutions of equations 12–14, the following notation is used:

S1 = exp(3τ) + C2 sin
(√

3 τ
)
, S2 = 2exp(3τ) − C2 sin

(√
3 τ
)
+
√
3C2 cos

(√
3 τ
)
,

S3 = 2S1(S2)
′
τ − (S1)

′
τS2 − S1S2.

12. y′′xx = Ax−7/2y−1/2.

Solution in parametric form:

x = aC−1
1 exp(τ)S−1

1 , y = bC1 exp(−τ)S−1
1 S2

2 , where A = 16(ab)3/2.

13. y′′xx = Axy−7/5.

Solution in parametric form:

x = aC4
1 exp(−2τ)S3, y = bC5

1 exp
(
− 5

2 τ
)
S
5/2
1 , where A = 5

1024 a
−3b12/5.
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14. y′′xx = Ax−13/5y−7/5.

Solution in parametric form:

x = aC−4
1 exp(2τ)S−1

3 , y = bC1 exp
(
− 1

2 τ
)
S
5/2
1 S−1

3 , where A = 5
1024 a

3/5b12/5.

◆ In the solutions of equations 15–18, the following notation is used:

f = 2τI(τ) + C2τ ∓R, I(τ) =

∫
τ dτ

R
, R =

√
±(4τ3 − 1),

where I(τ) is the incomplete elliptic integral of the second kind in the form of Weierstrass.

15. y′′xx = Axy−7.

Solution in parametric form:

x = aC8
1 [4τf

2 ∓ τ−2(fR− 1)2], y = bC3
1f

1/2, where A = ± 3
64a

−3b8.

16. y′′xx = Ax3y−7.

Solution in parametric form:

x = aC8
1 [4τf

2 ∓ τ−2(fR− 1)2]−1, y = bC5
1f

1/2[4τf2 ∓ τ−2(fR− 1)2]−1,

where A = ± 3
64a

−5b8.

17. y′′xx = Ax−4/3y−1/2.

Solution in parametric form:

x = aC9
1f

3, y = bC4
1τ

−2(fR− 1)2, where A = ± 4
3a

−2/3b3/2.

18. y′′xx = Ax−7/6y−1/2.

Solution in parametric form:

x = aC9
1f

−3, y = bC5
1τ

−2f−3(fR− 1)2, where A = ± 4
3a

−5/6b3/2.

◆ In the solutions of equations 19–24, the function ℘= ℘(τ) is defined in implicit form:

τ =

∫
d℘√

±(4℘3 − 1)
− C2.

The upper sign in this formula corresponds to the classical elliptic Weierstrass function

℘ = ℘(τ + C2, 0, 1).

19. y′′xx = Ax−5y2.

Solution in parametric form:

x = aC1τ
−1, y = bC3

1τ
−1℘, where A = ±6a3b−1.
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20. y′′xx = Ax−15/7y2.

Solution in parametric form:

x = aC7
1τ

7, y = bC1τ(τ
2℘∓ 1), where A = ± 6

49a
1/7b−1.

21. y′′xx = Ax−20/7y2.

Solution in parametric form:

x = aC7
1τ

−7, y = bC6
1τ

−6(τ2℘∓ 1), where A = ± 6
49a

6/7b−1.

22. y′′xx = Ax−1/2y−5/2.

Solution in parametric form:

x = aC7
1℘

2
[√
±(4℘3 − 1)± 2τ℘2

]−1
, y = bC3

1

[√
±(4℘3 − 1)± 2τ℘2

]−1
,

where A = ∓3a−3/2b7/2.

23. y′′xx = Ax−5/6y−5/3.

Solution in parametric form:

x =
aC16

1[
τ
√
±(4℘3 − 1) + 2℘

]2 , y =
bC7

1

[√
±(4℘3 − 1)± 2τ℘2

]3/2
[
τ
√
±(4℘3 − 1) + 2℘

]2 ,

where A = − 1
6a

−7/6b8/3.

24. y′′xx = Ax−1/2y−5/3.

Solution in parametric form:

x = aC16
1

[
τ
√
±(4℘3 − 1) + 2℘

]2
, y = bC9

1

[√
±(4℘3 − 1)± 2τ℘2

]3/2
,

where A = − 1
6a

−3/2b8/3.

◆ In the solutions of equations 25–28, the following notation is used:

Z =

{
C1J1/3(τ) + C2Y1/3(τ) for the upper sign,

C1I1/3(τ) + C2K1/3(τ) for the lower sign,

where J1/3(τ) and Y1/3(τ) are Bessel functions, and I1/3(τ) and K1/3(τ) are modified

Bessel functions.

25. y′′xx = Ax−1/2y−1/2.

Solution in parametric form:

x = aτ2/3Z2, y = bτ−2/3
(
τZ ′

τ +
1
3Z
)2
, where A = 1

3 (∓b/a)
3/2.

26. y′′xx = Ax−2y−1/2.

Solution in parametric form:

x = aτ−2/3Z−2, y = bτ−4/3Z−2
(
τZ ′

τ +
1
3Z
)2
, where A = ∓ 1

3 b
3/2.
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27. y′′xx = Axy−2.

Solution in parametric form:

x = aτ−2/3
[(
τZ ′

τ +
1
3Z
)2 ± τ2Z2

]
, y = bτ2/3Z2, where A = − 9

2 (b/a)
3.

28. y′′xx = Ax−2y−2.

Solution in parametric form:

x = τ2/3
[(
τZ ′

τ +
1
3Z
)2 ± τ2Z2

]−1
, y = bτ4/3Z2

[(
τZ ′

τ +
1
3Z
)2 ± τ2Z2

]−1
,

where A = − 9
2 b

3.

14.3.2 First Integrals (Conservation Laws)

In this subsection, first integrals of the form

k∑

α=0

fα(x, y)(y
′
x)

α = C, where k = 2, 3, 4, 5,

for the Emden–Fowler equation y′′xx = Axnym are given.

◮ First integrals with k = 2.

1◦. For n = 0 and arbitrary m (m 6= −1),

(y′x)
2 − 2A

m+ 1
ym+1 = C.

2◦. For n = − 1
2 (m+ 3) and arbitrary m (m 6= −1),

x(y′x)
2 − yy′x −

2A

m+ 1
x−

m+1
2 ym+1 = C.

3◦. For n = −m− 3 and arbitrary m (m 6= −1),

x2(y′x)
2 − 2xyy′x + y2 − 2A

m+ 1
x−m−1ym+1 = C.

4◦. For n = − 20
7 , m = 2,

343
24 Ax

8/7(y′x)
2 −

(
49
3 Ax

1/7y − x
)
y′x − 343

36 A
2x−12/7y3 + 7

6Ax
−6/7y2 − y = C.

5◦. For n = − 15
7 , m = 2,

343
24 Ax

6/7(y′x)
2 −

(
49
4 Ax

−1/7y + 1
)
y′x − 343

36 A
2x−9/7y3 − 7

8Ax
−8/7y2 = C.
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◮ First integrals with k = 3.

1◦. For n = 0, m = − 1
2 ,

(y′x)
3 − 6Ay1/2y′x + 6A2x = C,

x(y′x)
3 − y(y′x)2 − 6Axy1/2y′x +

16
3 Ay

3/2 + 3A2x2 = C.

2◦. For n = 1, m = − 1
2 ,

(y′x)
3 − 6Axy1/2y′x + 4Ay3/2 + 2A2x3 = C.

3◦. For n = − 4
3 , m = − 1

2 ,

x(y′x)
3 − y(y′x)2 − 6Ax−1/3y1/2y′x − 9A2x−2/3 = C.

4◦. For n = − 5
2 , m = − 1

2 ,

x2(y′x)
3 − 2xy(y′x)

2 + (y2 − 6Ax−1/2y1/2)y′x +
2
3Ax

−3/2y3/2 − 3A2x−2 = C,

x3(y′x)
3 − 3x2y(y′x)

2 + 3(xy2 − 2Ax1/2y1/2)y′x − y3 + 6Ax−1/2y3/2 − 6A2x−1 = C.

5◦. For n = − 7
6 , m = − 1

2 ,

x2(y′x)
3 − 2xy(y′x)

2 + (y2 − 6Ax5/6y1/2)y′x + 6Ax−1/6y3/2 + 9A2x2/3 = C.

6◦. For n = − 7
2 , m = − 1

2 ,

x3(y′x)
3− 3x2y(y′x)

2+ 3(xy2− 2Ax−1/2y1/2)y′x − y3+ 2Ax−3/2y3/2− 2A2x−3= C.

◮ First integrals with k = 4.

1◦. For n = 1, m = − 5
3 ,

(y′x)
4 + 6Axy−2/3(y′x)

2 − 18Ay1/3y′x + 9A2x2y−4/3 = C,

x(y′x)
4 − y(y′x)3 + 6Ax2y−2/3(y′x)

2 − 27Axy1/3y′x +
81
4 Ay

4/3 + 9A2x3y−4/3 = C.

2◦. For n = 2, m = − 5
3 ,

(y′x)
4 + 6Ax2y−2/3(y′x)

2 − 36Axy1/3y′x + 9A2x4y−4/3 = C.

3◦. For n = 0, m = − 5
3 ,

x(y′x)
4 − y(y′x)3 + 6Axy−2/3(y′x)

2 − 9Ay1/3y′x + 9A2xy−4/3 = C,

x2(y′x)
4 − 2xy(y′x)

3 + (y2 + 6Ax2y−2/3)(y′x)
2

− 18Axy1/3y′x + 12Ay4/3 + 9A2x2y−4/3 = C.

4◦. For n = − 1
2 , m = − 5

3 ,

x(y′x)
4 − y(y′x)3 + 6Ax1/2y−2/3(y′x)

2 + 9A2y−4/3 = C.
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5◦. For n = − 4
3 , m = − 5

3 ,

x2(y′x)
4− 2xy(y′x)

3+(y2+6Ax2/3y−2/3)(y′x)
2+6Ax−1/3y1/3y′x+9A2x−2/3y−4/3= C,

x3(y′x)
4 − 3x2y(y′x)

3 + 3x(y2 + 2Ax2/3y−2/3)(y′x)
2

− (y3 + 3Ax2/3y1/3)y′x − 3Ax−1/3y4/3 + 9A2x1/3y−4/3 = C.

6◦. For n = − 7
3 , m = − 5

3 ,

x3(y′x)
4 − 3x2y(y′x)

3 + 3x(y2 + 2Ax−1/3y−2/3)(y′x)
2

− (y3 − 15Ax−1/3y1/3)y′x − 3
4Ax

−4/3y4/3 + 9A2x−5/3y−4/3 = C,

x4(y′x)
4 − 4x3y(y′x)

3 + 6x2(y2 +Ax−1/3y−2/3)(y′x)
2

− 2x(2y3 − 3Ax−1/3y1/3)y′x + y4 − 12Ax−1/3y4/3 + 9A2x−2/3y−4/3 = C.

7◦. For n = − 5
6 , m = − 5

3 ,

x3(y′x)
4 − 3x2y(y′x)

3 + 3x(y2 + 2Ax7/6y−2/3)(y′x)
2

− (y3 + 12Ax7/6y1/3)y′x + 6Ax1/6y4/3 + 9A2x4/3y−4/3 = C.

8◦. For n = − 10
3 , m = − 5

3 ,

x4(y′x)
4 − 4x3y(y′x)

3 + 6x2(y2 +Ax−4/3y−2/3)(y′x)
2

− 4x(y3 − 6Ax−4/3y1/3)y′x + y4 − 30Ax−4/3y4/3 + 9A2x−8/3y−4/3 = C.

9◦. For n = 1, m = −7,

x(y′x)
4 − y(y′x)3 + 2

3Ax
2y−6(y′x)

2 − 1
3Axy

−5y′x − 1
12Ay

−4 + 1
9A

2x3y−12 = C.

10◦. For n = 3, m = −7,

x3(y′x)
4 − 3x2y(y′x)

3 + 3x(y2 + 2
9Ax

5y−6)(y′x)
2 − y(y2 +Ax5y−6)y′x

+ 1
4Ax

4y−4 + 1
9A

2x9y−12 = C.

Remark 14.2. In the case k = 4 we omitted the first integrals of the form

αF 2 + βF + γ = C,

where function F = F (x, y, y′x) is the left-hand side of the above integrals for k = 2, and α, β,

and γ are some constants.

◮ First integrals with k = 5.

1◦. For n = 0, m = − 2
3 ,

(y′x)
5 − 15Ay1/3(y′x)

3 + 135
2 A2y2/3y′x − 135

2 A3x = C.

2◦. For n = − 7
3 , m = − 2

3 ,

x5(y′x)
5 − 5x4y(y′x)

4 + 5x3y(2y − 3Ax−1/3y−2/3)(y′x)
3

− 5x2y2(2y − 9Ax−1/3y−2/3)(y′x)
2 + 5x(y4 − 9Ax−1/3y7/3 + 27

2 A
2x−2/3y2/3)y′x

+ 15A(x−1/3y10/3 − 9
2Ax

−2/3y5/3 − 9
2A

2x−1) = C.
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14.3.3 Some Formulas and Transformations

1◦. With m 6= 1, the Emden–Fowler equation has a particular solution:

y = λx
n+2
1−m , where λ =

[ (n+ 2)(n +m+ 1)

A(m− 1)2

] 1
m−1

.

2◦. The transformation y = w/t, x = 1/t leads to the Emden–Fowler equation with the

independent variable raised to a different power:

w′′
tt = At−n−m−3wm.

3◦. Some more complicated transformations leading to the Emden–Fowler equation are

outlined in Section 14.5.3 (see also Example 10.6 with Fig. 10.2 and Fig. 10.3).

4◦. With m 6= 1 and m 6= −2n− 3, the transformation

ξ =
2n+m+ 3

m− 1
x

n+2
m−1 y, u = x

n+2
m−1

(
xy′x +

n+ 2

m− 1
y
)

leads to an Abel equation:

uu′ξ − u = − (n+ 2)(n +m+ 1)

(2n +m+ 3)2
ξ +A

( m− 1

2n+m+ 3

)2
ξm,

whose special cases are given in Section 13.3.1.

5◦. Some more complicated transformations leading to other Abel equations are outlined

in Section 14.5.3.

14.4 Equations of the Form y′′
xx = A1x

n1ym1 +A2x
n2ym2

See Section 14.3 for the special cases A1 = 0 and A2 = 0.

14.4.1 Classification Table

Table 14.6 presents all solvable equations of the form

y′′xx = A1x
n1ym1 +A2x

n2ym2 ,

whose solutions are outlined in Section 14.4.2. Two-parameter families (in the space of the

parameters m1, m2, n1, and n2), one-parameter families, and isolated points are presented

in a consecutive fashion. Equations are arranged in accordance with the growth of m1, the

growth ofm2 (for identical m1), the growth of n1 (for identical m1 andm2), and the growth

of n2 (for identical m1, m2, and n1). The number of the equation sought is indicated in the

last column in this table.
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TABLE 14.6

Solvable equations of the form y′′xx = A1x
n1ym1 + A2x

n2ym2

No m1 m2 n1 n2 A1 A2 Equation

1 arbitrary arbitrary 0 0 arbitrary arbitrary 14.4.2.1

2 arbitrary arbitrary −m1 − 3 −m2 − 3 arbitrary arbitrary 14.4.2.2

3 arbitrary arbitrary − 1
2 (m1 + 3) − 1

2 (m2 + 3) arbitrary arbitrary 14.4.2.3

4 arbitrary 0 0 0 arbitrary arbitrary 14.4.2.19

5 arbitrary 0 −m1 − 3 −3 arbitrary arbitrary 14.4.2.20

6 1 arbitrary −2 −2 − 2(m2 + 1)

(m2 + 3)2
arbitrary 14.4.2.4

7 1 arbitrary −2 −m2 − 1 − 2(m2 + 1)

(m2 + 3)2
arbitrary 14.4.2.5

8 1 −3 arbitrary

(n1 6= −2) 0 arbitrary arbitrary 14.4.2.83

9 −7 −7 4 3 arbitrary arbitrary 14.4.2.39

10 −5 −5 2 0 arbitrary arbitrary 14.4.2.16

11 −3 −7 0 1 arbitrary arbitrary 14.4.2.42

12 −3 −7 0 3 arbitrary arbitrary 14.4.2.43

13 −3 −4 0 0 arbitrary arbitrary 14.4.2.17

14 −3 −4 0 1 arbitrary arbitrary 14.4.2.18

15 −2 −3 −2 0 arbitrary arbitrary 14.4.2.88

16 −2 −3 1 0 arbitrary arbitrary 14.4.2.87

17 −2 −2 −1 −2 arbitrary arbitrary 14.4.2.28

18 − 5
3 − 5

3 − 7
3 − 10

3
arbitrary arbitrary 14.4.2.48

19 − 5
3 − 5

3 − 4
3 − 10

3
arbitrary arbitrary 14.4.2.49

20 − 5
3 − 5

3 − 4
3 − 7

3
arbitrary arbitrary 14.4.2.24

21 − 5
3 − 5

3 − 2
3 − 4

3
arbitrary arbitrary 14.4.2.90

22 − 5
3 − 5

3 0 − 2
3

arbitrary arbitrary 14.4.2.89

23 − 5
3 − 5

3 2 0 arbitrary arbitrary 14.4.2.47

24 − 5
3 − 5

3 2 1 arbitrary arbitrary 14.4.2.46

25 − 3
2 −2 − 3

2 −2 arbitrary arbitrary 14.4.2.81

26 − 3
2 −2 0 1 arbitrary arbitrary 14.4.2.80

27 − 7
5 − 7

5 − 8
5 − 13

5
arbitrary arbitrary 14.4.2.25

28 − 4
3 − 5

3 − 5
3 − 7

3
arbitrary arbitrary 14.4.2.102

29 − 4
3 − 5

3 0 1 arbitrary arbitrary 14.4.2.101
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TABLE 14.6 (Continued)

Solvable equations of the form y′′xx = A1x
n1ym1 + A2x

n2ym2

No m1 m2 n1 n2 A1 A2 Equation

30 − 3
5 − 7

5 − 12
5 − 13

5
arbitrary arbitrary 2.4.2.53

31 − 3
5 − 7

5 0 1 arbitrary arbitrary 14.4.2.52

32 − 1
2 − 1

2 − 5
2 − 7

2
arbitrary arbitrary 14.4.2.23

33 − 1
3 − 5

3 − 8
3 − 10

3
arbitrary arbitrary 14.4.2.55

34 − 1
3 − 5

3 − 8
3 − 7

3
arbitrary arbitrary 14.4.2.59

35 − 1
3 − 5

3 − 8
3 − 4

3
arbitrary arbitrary 14.4.2.57

36 − 1
3 − 5

3 0 0 arbitrary arbitrary 14.4.2.56

37 − 1
3 − 5

3 0 1 arbitrary arbitrary 14.4.2.58

38 − 1
3 − 5

3 0 2 arbitrary arbitrary 14.4.2.54

39 0 −2 −3 −2 arbitrary arbitrary 14.4.2.108

40 0 −2 0 1 arbitrary arbitrary 14.4.2.107

41 0 −1 −3 −2 arbitrary arbitrary 14.4.2.22

42 0 −1 0 0 arbitrary arbitrary 14.4.2.21

43 0 − 2
3 −3 − 7

3
arbitrary arbitrary 14.4.2.73

44 0 − 2
3 0 0 arbitrary arbitrary 14.4.2.72

45 0 − 1
2 −4 − 5

2
arbitrary arbitrary 14.4.2.96

46 0 − 1
2 −3 − 7

2
arbitrary arbitrary 14.4.2.51

47 0 − 1
2 −3 − 5

2
arbitrary arbitrary 14.4.2.45

48 0 − 1
2 −3 −2 arbitrary arbitrary 14.4.2.106

49 0 − 1
2 −3 − 1

2
arbitrary arbitrary 14.4.2.85

50 0 − 1
2 − 5

3 − 7
6

arbitrary arbitrary 14.4.2.41

51 0 − 1
2 − 3

2 − 5
2

arbitrary arbitrary 14.4.2.100

52 0 − 1
2 − 3

2 −2 arbitrary arbitrary 14.4.2.79

53 0 − 1
2 − 3

2 − 1
2

arbitrary arbitrary 14.4.2.78

54 0 − 1
2 − 3

2 0 arbitrary arbitrary 14.4.2.99

55 0 − 1
2 − 4

3 − 4
3

arbitrary arbitrary 14.4.2.40

56 0 − 1
2 0 −2 arbitrary arbitrary 14.4.2.86

57 0 − 1
2 0 − 1

2
arbitrary arbitrary 14.4.2.105

58 0 − 1
2 0 0 arbitrary arbitrary 14.4.2.44

59 0 − 1
2 0 1 arbitrary arbitrary 14.4.2.50

60 0 − 1
2 1 0 arbitrary arbitrary 14.4.2.95
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TABLE 14.6 (Continued)

Solvable equations of the form y′′xx = A1x
n1ym1 + A2x

n2ym2

No m1 m2 n1 n2 A1 A2 Equation

61 1
3 − 5

3 − 10
3 − 7

3
arbitrary arbitrary 14.4.2.98

62 1
3 − 5

3 0 1 arbitrary arbitrary 14.4.2.97

63 1 −7 −2 −2 15
4

arbitrary 14.4.2.35

64 1 −7 −2 6 15
4

arbitrary 14.4.2.36

65 1 −4 −2 −2 6 arbitrary 14.4.2.31

66 1 −4 −2 3 6 arbitrary 14.4.2.32

67 1 −3 −5 0 arbitrary arbitrary 14.4.2.84

68 1 −3 1 0 arbitrary arbitrary 14.4.2.82

69 1 − 5
2 −2 −2 12 arbitrary 14.4.2.64

70 1 − 5
2 −2 3

2 12 arbitrary 14.4.2.65

71 1 −2 −2 −2 2 arbitrary 14.4.2.6

72 1 −2 −2 1 2 arbitrary 14.4.2.7

73 1 − 5
3 −2 −2 − 3

16
arbitrary 14.4.2.26

74 1 − 5
3 −2 −2 − 9

100
arbitrary 14.4.2.10

75 1 − 5
3 −2 −2 3

4
arbitrary 14.4.2.12

76 1 − 5
3 −2 −2 63

4
arbitrary 14.4.2.66

77 1 − 5
3 −2 2

3 − 3
16

arbitrary 14.4.2.27

78 1 − 5
3 −2 2

3 − 9
100

arbitrary 14.4.2.11

79 1 − 5
3 −2 2

3
3
4

arbitrary 14.4.2.13

80 1 − 5
3 −2 2

3
63
4

arbitrary 14.4.2.67

81 1 − 7
5 −2 −2 − 5

36
arbitrary 14.4.2.29

82 1 − 7
5 −2 2

5 − 5
36

arbitrary 14.4.2.30

83 1 − 1
2 −2 −2 − 2

9
arbitrary 14.4.2.14

84 1 − 1
2 −2 −2 − 4

25
arbitrary 14.4.2.8

85 1 − 1
2 −2 −2 20 arbitrary 14.4.2.33

86 1 − 1
2 −2 − 1

2 − 2
9

arbitrary 14.4.2.15

87 1 − 1
2 −2 − 1

2 − 4
25

arbitrary 14.4.2.9

88 1 − 1
2 −2 − 1

2 20 arbitrary 14.4.2.34

89 1 0 −5 −3 arbitrary arbitrary 14.4.2.77

90 1 0 1 0 arbitrary arbitrary 14.4.2.76

91 1 1
2 −2 −2 − 12

49
arbitrary 14.4.2.37
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TABLE 14.6 (Continued)

Solvable equations of the form y′′xx = A1x
n1ym1 + A2x

n2ym2

No m1 m2 n1 n2 A1 A2 Equation

92 1 1
2 −2 − 3

2 − 12
49

arbitrary 14.4.2.38

93 2 0 −5 −4 arbitrary arbitrary 14.4.2.92

94 2 0 −5 −3 arbitrary arbitrary 14.4.2.69

95 2 0 − 20
7 − 13

7
arbitrary arbitrary 14.4.2.94

96 2 0 − 20
7 − 12

7
arbitrary arbitrary 14.4.2.71

97 2 0 − 15
7 − 9

7
arbitrary arbitrary 14.4.2.70

98 2 0 − 15
7 − 8

7
arbitrary arbitrary 14.4.2.93

99 2 0 0 0 arbitrary arbitrary 14.4.2.68

100 2 0 0 1 arbitrary arbitrary 14.4.2.91

101 2 1 −3 −2 arbitrary − 6
25 14.4.2.61

102 2 1 −3 −2 arbitrary 6
25 14.4.2.63

103 2 1 −2 −2 arbitrary − 6
25 14.4.2.60

104 2 1 −2 −2 arbitrary 6
25 14.4.2.62

105 3 1 −6 −5 arbitrary arbitrary 14.4.2.104

106 3 1 0 1 arbitrary arbitrary 14.4.2.103

107 3 2 − 18
5 − 14

5
arbitrary arbitrary 14.4.2.74

108 3 2 − 12
5 − 11

5
arbitrary arbitrary 14.4.2.75

14.4.2 Exact Solutions

1. y′′xx = A1y
m1 + A2y

m2, m1 6= −1, m2 6= −1.

1◦. Solution in parametric form:

x = a

∫
(C1 + τm1+1 ± τm2+1)−1/2 dτ + C2, y = bτ,

where A1 =
1
2a

−2b1−m1(m1 + 1), A2 = ± 1
2a

−2b1−m2(m2 + 1).

2◦. Solution in parametric form:

x = a

∫
(C1 − τm1+1 ± τm2+1)−1/2 dτ + C2, y = bτ,

where A1 = − 1
2a

−2b1−m1(m1 + 1), A2 = ± 1
2a

−2b1−m2(m2 + 1).

2. y′′xx = A1x
−m1−3ym1 +A2x

−m2−3ym2, m1 6= −1, m2 6= −1.

1◦. Solution in parametric form:

x= a

(∫
dτ√

C1+τm1+1±τm2+1
+C2

)−1

, y= bτ

(∫
dτ√

C1+τm1+1±τm2+1
+C2

)−1

,

where A1 =
1
2a

1+m1b1−m1(m1 + 1), A2 = ± 1
2a

1+m2b1−m2(m2 + 1).
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2◦. Solution in parametric form:

x= a

(∫
dτ√

C1−τm1+1±τm2+1
+C2

)−1

, y= bτ

(∫
dτ√

C1−τm1+1±τm2+1
+C2

)−1

,

where A1 = − 1
2a

1+m1b1−m1(m1 + 1), A2 = ± 1
2a

1+m2b1−m2(m2 + 1).

3. y′′xx = A1x
−

m1+3
2 ym1 +A2x

−
m2+3

2 ym2 .

1◦. Solution in parametric form with m1 6= −1 and m2 6= −1:

x = C2
1 exp

[∫ (
C2 +

1

4
τ2 +

2A1

m1 + 1
τm1+1 +

2A2

m2 + 1
τm2+1

)−1/2
dτ
]
,

y = C1τ exp
[ 1
2

∫ (
C2 +

1

4
τ2 +

2A1

m1 + 1
τm1+1 +

2A2

m2 + 1
τm2+1

)−1/2
dτ
]
.

2◦. Solution in parametric form with m1 6= −1 and m2 = −1:

x = C2
1 exp

[∫ (
C2 +

1

4
τ2 +

2A1

m1 + 1
τm1+1 + 2A2 ln |τ |

)−1/2
dτ
]
,

y = C1τ exp
[ 1
2

∫ (
C2 +

1

4
τ2 +

2A1

m1 + 1
τm1+1 + 2A2 ln |τ |

)−1/2
dτ
]
.

4. y′′xx = − 2(m + 1)

(m+ 3)2
x−2y +Ax−2ym, m 6= −3, m 6= −1.

Solution in parametric form:

x = C1

(∫ dτ√
1± τm+1

+ C2

)m+3
m−1

, y = bτ
(∫ dτ√

1± τm+1
+ C2

) 2
m−1

,

where A = ± (m+ 1)(m− 1)2

2(m+ 3)2
b1−m.

5. y′′xx = − 2(m + 1)

(m+ 3)2
x−2y +Ax−m−1ym, m 6= −3, m 6= −1.

Solution in parametric form:

x = C1

(∫ dτ√
1± τm+1

+ C2

)−m+3
m−1

, y = bC1τ
(∫ dτ√

1± τm+1
+ C2

)−m+1
m−1

,

where A = ± (m+ 1)(m− 1)2

2(m+ 3)2
b1−m.

6. y′′xx = 2x−2y + Ax−2y−2.

Solution in parametric form:

x = C1

[√
τ(τ + 1)− ln

(√
τ +
√
τ + 1

)
+ C2

]−1/3
,

y = bτ
[√

τ(τ + 1)− ln
(√
τ +
√
τ + 1

)
+ C2

]−2/3
,

where A = − 9
2 b

3.
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7. y′′xx = 2x−2y + Axy−2.

Solution in parametric form:

x = C1

[√
τ(τ + 1)− ln

(√
τ +
√
τ + 1

)
+ C2

]1/3
,

y = bC1τ
[√

τ(τ + 1)− ln
(√
τ +
√
τ + 1

)
+ C2

]−1/3
,

where A = − 9
2 b

3.

8. y′′xx = − 4
25
x−2y + Ax−2y−1/2.

Solution in parametric form:

x = C1(τ
3 − 3τ +C2)

−5/3, y = b(τ2 − 1)2(τ3 − 3τ + C2)
−4/3,

where A = ± 4
25 b

3/2.

9. y′′xx = − 4
25
x−2y + Ax−1/2y−1/2.

Solution in parametric form:

x = C1(τ
3 − 3τ + C2)

5/3, y = bC1(τ
2 − 1)2(τ3 − 3τ + C2)

1/3,

where A = ± 4
25 b

3/2.

10. y′′xx = − 9
100
x−2y + Ax−2y−5/3.

Solution in parametric form:

x=C1

[
±(τ4−6τ2+4C2τ−3)

]−5/4
, y=b(τ3−3τ+C2)

3/2
[
±(τ4−6τ2+4C2τ−3)

]−9/8
,

where A = ± 9
100 b

8/3.

11. y′′xx = − 9
100
x−2y + Ax2/3y−5/3.

Solution in parametric form:

x=C1[±(τ4−6τ2+4C2τ−3)]5/4, y= bC1(τ
3−3τ+C2)

3/2[±(τ4−6τ2+4C2τ−3)]1/8,
where A = ± 9

100 b
8/3.

12. y′′xx = 3
4
x−2y +Ax−2y−5/3.

Solution in parametric form:

x=C1(τ
3±3τ+C2)

−1/2, y= b(τ2±1)3/2(τ3±3τ+C2)
−3/4, where A=± 4

3 b
8/3.

13. y′′xx = 3
4
x−2y +Ax2/3y−5/3.

Solution in parametric form:

x=C1(τ
3±3τ+C2)

1/2, y= bC1(τ
2±1)3/2(τ3±3τ+C2)

−1/4, where A=± 4
3 b

8/3.

14. y′′xx = − 2
9
x−2y + Ax−2y−1/2.

Solution in parametric form:

x = C1(C1e
2kτ + C2e

−kτ sinω)
−3
, ω =

√
3 kτ,

y = bk2(C1e
2kτ+ C2e

−kτ sinω)
−2[

2C1e
2kτ+ C2e

−kτ
(√

3 cosω − sinω
)]2
,

where A = 16
9 bk

3.
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15. y′′xx = − 2
9
x−2y + Ax−1/2y−1/2.

Solution in parametric form:

x = C1(C1e
2kτ + C2e

−kτ sinω)
3
, ω =

√
3 kτ,

y = bk2C1(C1e
2kτ+ C2e

−kτsinω)
[
2C1e

2kτ+ C2e
−kτ
(√

3 cosω − sinω
)]2
,

where A = 16
9 bk

3.

16. y′′xx = A1x
2y−5 +A2y

−5.

Solution in parametric form:

x =
(A2

A1

)1/2
tan
[∫ (

C1 −
1

2A1A2
τ−4 − τ2

)−1/2
dτ + C2

]
,

y = A
1/2
2 τ

{
cos
[∫ (

C1 −
1

2A1A2
τ−4 − τ2

)−1/2
dτ + C2

]}−1
.

17. y′′xx = A1y
−3 + A2y

−4.

1◦. Solution in parametric form:

x = a
[∫

(C1 + τ−3 ± τ−2)
−1/2

dτ + C2

]
, y = bτ,

where A1 = ∓a−2b4, A2 = − 3
2a

−2b5.

2◦. Solution in parametric form:

x = a
[∫

(C1 − τ−3 ± τ−2)
−1/2

dτ + C2

]
, y = bτ,

where A1 = ∓a−2b4, A2 =
3
2a

−2b5.

18. y′′xx = A1y
−3 + A2xy

−4.

1◦. Solution in parametric form:

x=a
[∫

(C1+τ
−3±τ−2)−1/2 dτ+C2

]−1
, y= bτ

[∫
(C1+τ

−3±τ−2)−1/2 dτ+C2

]−1
,

where A1 = ∓a−2b4, A2 = − 3
2a

−3b5.

2◦. Solution in parametric form:

x=a
[∫

(C1−τ−3±τ−2)−1/2 dτ+C2

]−1
, y= bτ

[∫
(C1−τ−3±τ−2)−1/2 dτ+C2

]−1
,

where A1 = ∓a−2b4, A2 =
3
2a

−3b5.

19. y′′xx = A1y
m +A2, m 6= −1.

1◦. Solution in parametric form:

x = a
[∫

(C1 + τm+1 ± τ)−1/2
dτ + C2

]
, y = bτ,

where A1 =
1
2a

−2b1−m(m+ 1), A2 = ± 1
2a

−2b.

2◦. Solution in parametric form:

x = a
[∫

(C1 − τm+1 ± τ)−1/2
dτ + C2

]
, y = bτ,

where A1 = − 1
2a

−2b1−m(m+ 1), A2 = ± 1
2a

−2b.

3◦. For the case m = −1, see equation 14.4.2.21.
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20. y′′xx = A1x
−m−3ym +A2x

−3, m 6= −1.

1◦. Solution in parametric form:

x= a
[∫

(C1+τ
m+1±τ)−1/2

dτ +C2

]−1
, y= bτ

[∫
(C1+τ

m+1±τ)−1/2
dτ+C2

]−1
,

where A1 =
1
2a

1+mb1−m(m+ 1), A2 = ± 1
2ab.

2◦. Solution in parametric form:

x= a
[∫

(C1−τm+1±τ)−1/2
dτ +C2

]−1
, y= bτ

[∫
(C1−τm+1±τ)−1/2

dτ+C2

]−1
,

where A1 = − 1
2a

1+mb1−m(m+ 1), A2 = ± 1
2ab.

21. y′′xx = A1 + A2y
−1.

Solution: x =

∫
(C1 + 2A1y + 2A2 ln |y|)−1/2dy + C2.

22. y′′xx = A1x
−3 + A2x

−2y−1.

Solution in parametric form:

x =
[∫

(C1 + 2A1τ + 2A2 ln |τ |)−1/2 dτ +C2

]−1
,

y = τ
[∫

(C1 + 2A1τ + 2A2 ln |τ |)−1/2 dτ +C2

]−1
.

23. y′′xx = A1x
−5/2y−1/2 +A2x

−7/2y−1/2.

Solution in parametric form:

x =
1

F
, y =

k2

F

{
2C1e

2kτ + C2e
−kτ
[√

3 cos(ωτ)− sin(ωτ)
]}2

,

where F = C1e
2kτ + C2e

−kτ sin(ωτ)−A1/A2, A2 = 16k3, ω = k
√
3.

24. y′′xx = A1x
−4/3y−5/3 +A2x

−7/3y−5/3.

Solution in parametric form:

x = ( 1
36A2τ

4 + C1τ
3 + C2τ + C3)

−1,

y = ( 19A2τ
3 + 3C1τ

2 +C2)
3/2( 1

36A2τ
4 + C1τ

3 + C2τ + C3)
−1,

where the constants C1, C2, and C3 are related by the constraint 9C1C2 = A1 +A2C3.

25. y′′xx = A1x
−8/5y−7/5 +A2x

−13/5y−7/5.

Solution in parametric form:

x =
(
aC4

1F −
A1

A2

)−1
, y = bC5

1S
5/2
(
aC4

1F −
A1

A2

)−1
,

where S = C1e
2kτ+ C2e

−kτ sin(
√
3 kτ), F = (S′

τ )
2 − 2SS′′

ττ , A2 = −
5

1024

b12/5

a3k6
.
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26. y′′xx = − 3
16
x−2y +Ax−2y−5/3.

1◦. Solution in parametric form with A < 0:

x=C1[cosh(τ+C2) cos τ ]
−2[tanh(τ+C2)+tan τ ]−2, y= b[tanh(τ+C2)+tan τ ]−3/2,

where A = − 3
64 b

8/3.

2◦. Solution in parametric form with A > 0:

x=C1[sinh τ+cos(τ+C2)]
−2, y= b[cosh τ−sin(τ+C2)]

3/2[sinh τ+cos(τ+C2)]
−3/2,

where A = 3
16 b

8/3.

27. y′′xx = − 3
16
x−2y +Ax2/3y−5/3.

1◦. Solution in parametric form with A < 0:

x = C1[cosh(τ + C2) cos τ ]
2[tanh(τ + C2) + tan τ ]2,

y = bC1[cosh(τ + C2) cos τ ]
2[tanh(τ + C2) + tan τ ]1/2,

where A = − 3
64 b

8/3.

2◦. Solution in parametric form with A > 0:

x=C1[sinh τ+cos(τ+C2)]
2, y= bC1[cosh τ−sin(τ+C2)]

3/2[sinh τ+cos(τ+C2)]
1/2,

where A = 3
16 b

8/3.

28. y′′xx = A1x
−1y−2 + A2x

−2y−2.

Solution in parametric form:

x =
{
aC1τ

−2/3
[
(τZ ′

τ +
1
3Z)

2 ± τ2Z2
]
− A1

A2

}−1
,

y = bC1τ
2/3Z2

{
aC1τ

−2/3
[
(τZ ′

τ +
1
3Z)

2 ± τ2Z2
]
− A1

A2

}−1
,

where

Z =

{
C1J1/3(τ) + C2Y1/3(τ) for the upper sign,

C1I1/3(τ) + C2K1/3(τ) for the lower sign,

J1/3(τ) and Y1/3(τ) are Bessel functions, and I1/3(τ) and K1/3(τ) are modified Bessel

functions; A2 = − 9
2a

−3b3.

◆ In the solutions of equations 29 and 30, the following notation is used:

S1 = C1e
2kτ + C2e

−kτ sin
(√

3 kτ
)
,

S2 = 2kC1e
2kτ + kC2e

−kτ
[√

3 cos
(√

3 kτ
)
− sin

(√
3 kτ

)]
,

S3 = S2
2 − 2S1(S2)

′
τ .

29. y′′xx = − 5
36
x−2y +Ax−2y−7/5.

Solution in parametric form:

x = C1S
−3/2
3 , y = bS

5/2
1 S

−5/4
3 , where A = − 5

2304 b
12/5k−6.
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30. y′′xx = − 5
36
x−2y +Ax2/5y−7/5.

Solution in parametric form:

x = C1S
3/2
3 , y = bC1S

5/2
1 S

1/4
3 , where A = − 5

2304 b
12/5k−6.

◆ In the solutions of equations 31–39, the following notation is used:

R =
√
±(4τ3 − 1), I =

∫
τR−1 dτ, F1 = 2τI + C2τ ∓R, F2 = τ−1(RF1 − 1),

where I = I(τ) is the incomplete elliptic integral of the second kind in the form of Weier-

strass.

31. y′′xx = 6x−2y + Ax−2y−4.

Solution in parametric form:

x = C1τ
−1/5F

1/5
1 , y = bτ−3/5F

−2/5
1 , where A = ∓150b5.

32. y′′xx = 6x−2y + Ax3y−4.

Solution in parametric form:

x = C1τ
1/5F

−1/5
1 , y = bC1τ

−2/5F
−3/5
1 , where A = ∓150b5.

33. y′′xx = 20x−2y +Ax−2y−1/2.

Solution in parametric form:

x = C1F
1/3
1 , y = bF

−4/3
1 F 2

2 , where A = ±108b3/2.
34. y′′xx = 20x−2y +Ax−1/2y−1/2.

Solution in parametric form:

x = C1F
−1/3
1 , y = bC1F

−5/3
1 F 2

2 , where A = ±108b3/2.
35. y′′xx = 15

4
x−2y + Ax−2y−7.

Solution in parametric form:

x = C1(4τF
2
1 ∓ F 2

2 )
1/4
, y = bF

1/2
1 (4τF 2

1 ∓ F 2
2 )

−3/8
, where A = ± 3

4 b
8.

36. y′′xx = 15
4
x−2y + Ax6y−7.

Solution in parametric form:

x = C1(4τF
2
1 ∓ F 2

2 )
−1/4

, y = bC1F
1/2
1 (4τF 2

1 ∓ F 2
2 )

−5/8
, where A = ± 3

4 b
8.

37. y′′xx = − 12
49
x−2y +Ax−2y1/2.

Solution in parametric form:

x = C1(I + C2)
−7, y = bτ2(I + C2)

−4, where A = ± 12
49 b

1/2.

38. y′′xx = − 12
49
x−2y +Ax−3/2y1/2.

Solution in parametric form:

x = C1(I + C2)
7, y = bC1τ

2(I + C2)
3, where A = ± 12

49 b
1/2.

39. y′′xx = A1x
4y−7 +A2x

3y−7.

Solution in parametric form:

x =
[
aC8

1 (4τF
2
1 ∓ F 2

2 )−
A1

A2

]−1
, y = bC3

1F
1/2
1

[
aC8

1 (4τF
2
1 ∓ F 2

2 )−
A1

A2

]−1
,

where A2 = ± 3
64a

−3b8.
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◆ In the solutions of equations 40–43, the following notation is used:

R1=
√
C1+τ−3±τ−2, E1=

∫
dτ

R1
+C2, F1=τ−R1E1, H1=3τ3F 2

1+3(1±τ)E2
1,

R2=
√
C1−τ−3±τ−2, E2=

∫
dτ

R2
+C2, F2=τ−R2E2, H2=3τ3F 2

2+3(−1±τ)E2
2.

40. y′′xx = A1x
−4/3 + A2x

−4/3y−1/2.

Solutions in parametric form:

x = aτ−3E3
k , y = bF 2

k ,

where A1 = ∓ 2
9a

−2/3b, A2 =
1
3a

−2/3b3/2(−1)k; k = 1 and k = 2.

41. y′′xx = A1x
−5/3 + A2x

−7/6y−1/2.

Solutions in parametric form:

x = aτ3E−3
k , y = bτ3E−3

k F 2
k ,

where A1 = ± 2
9a

−1/3b, A2 =
1
3a

−5/6b3/2(−1)k+1; k = 1 and k = 2.

42. y′′xx = A1y
−3 + A2xy

−7.

Solutions in parametric form:

x = aτ−3Hk, y = bτ−1/2E
1/2
k ,

where A1 = ∓ 1
36a

−2b4, A2 = − 1
36a

−3b8; k = 1 and k = 2.

43. y′′xx = A1y
−3 + A2x

3y−7.

Solutions in parametric form:

x = aτ3H−1
k , y = bτ5/2E

1/2
k H−1

k ,

where A1 = ± 1
36a

−2b4, A2 = − 1
36a

−5b8; k = 1 and k = 2.

◆ In the solutions of equations 44 and 45, the following notation is used:

f1 =





C1e
kτ + C2e

−kτ − A2

A1
τ if A1 > 0,

C1 sin(kτ) + C2 cos(kτ)−
A2

A1
τ if A1 < 0,

f2 =





k(C1e
kτ − C2e

−kτ )− A2

A1
if A1 > 0,

k[C1 cos(kτ)− C2 sin(kτ)] −
A2

A1
if A1 < 0,

where k =
√

1
2 |A1|.

44. y′′xx = A1 + A2y
−1/2.

Solution in parametric form:

x = f1, y = f22 .
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45. y′′xx = A1x
−3 + A2x

−5/2y−1/2.

Solution in parametric form:

x = f−1
1 , y = f−1

1 f22 .

◆ In the solutions of equations 46 and 47, the following notation is used:

For A1 > 0,

T1 = C1e
kτ + C2e

−kτ + C3 sin(kτ), k = ( 43A1)
1/4,

T2 = k(C1e
kτ − C2e

−kτ ) + kC3 cos(kτ).

For A1 < 0,

T1 = esτ [C1 sin(sτ) + C2 cos(sτ)] + C3e
−sτ sin(sτ), s = (− 1

3A1)
1/4,

T2 = sesτ [(C1 − C2) sin(sτ) + (C1 + C2) cos(sτ)]− sC3e
−sτ [sin(sτ)− cos(sτ)].

46. y′′xx = A1x
2y−5/3 + A2xy

−5/3.

Solution in parametric form:

x = T1 −
A2

2A1
, y = T

3/2
2 ,

where the constants C1, C2, and C3 are related by the constraint

4C1C2 + C2
3 = 1

4A
−2
1 A2

2 if A1 > 0,

C1C3 =
1
16A

−2
1 A2

2 if A1 < 0.

47. y′′xx = A1x
2y−5/3 + A2y

−5/3.

Solution in parametric form:

x = T1, y = T
3/2
2 ,

where the constants C1, C2, and C3 are related by the constraint

4C1C2 + C2
3 = − 1

2A
−1
1 A2 if A1 > 0,

C1C3 = − 1
4A

−1
1 A2 if A1 < 0.

◆ In the solutions of equations 48 and 49, the following notation is used:

For A2 > 0,

T1 = C1e
kτ + C2e

−kτ + C3 sin(kτ), k = ( 43A2)
1/4,

T2 = k(C1e
kτ − C2e

−kτ ) + kC3 cos(kτ).

For A2 < 0,

T1 = esτ [C1 sin(sτ) + C2 cos(sτ)] + C3e
−sτ sin(sτ), s = (− 1

3A2)
1/4,

T2 = sesτ [(C1 − C2) sin(sτ) + (C1 + C2) cos(sτ)]− sC3e
−sτ [sin(sτ)− cos(sτ)].

48. y′′xx = A1x
−7/3y−5/3 +A2x

−10/3y−5/3.

Solution in parametric form:

x =
(
T1 −

A1

2A2

)−1
, y = T

3/2
2

(
T1 −

A1

2A2

)−1
,
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where the constants C1, C2, and C3 are related by the constraint

4C1C2 + C2
3 = 1

4A
2
1A

−2
2 if A2 > 0,

C1C3 =
1
16A

2
1A

−2
2 if A2 < 0.

49. y′′xx = A1x
−4/3y−5/3 +A2x

−10/3y−5/3.

Solution in parametric form:

x = T−1
1 , y = T−1

1 T
3/2
2 ,

where the constants C1, C2, and C3 are related by the constraint

4C1C2 + C2
3 = − 1

2A1A
−1
2 if A2 > 0,

C1C3 = − 1
4A1A

−1
2 if A2 < 0.

◆ In the solutions of equations 50–53, the following notation is used:

R1 = C1τ
k1 + C2τ

k2 + C3τ
k3 ,

R2 = (C1 + C2τ)e
kτ + C3e

ωτ ,

R3 = C1e
kτ + esτ (C2 sinωτ + C3 cosωτ),

Q1 = C1k1τ
k1 + C2k2τ

k2 + C3k3τ
k3 ,

Q2 = (kC1 + C2 + kC2τ)e
kτ + ωC3e

ωτ ,

Q3 = kC1e
kτ + esτ [(sC2 − ωC3) sinωτ + (sC3 + ωC2) cosωτ ],

S1 = τ(Q1)
′
τ , S2 = (Q2)

′
τ , S3 = (Q3)

′
τ ,

where k1, k2, and k3 (real numbers) or k and s± iω (one real and two complex numbers)

are roots of the cubic equation λ3 − 1
2B2λ − 1

2B1 = 0. The subscripts of the functions

Rm, Qm, and Sm (m = 1, 2, 3) are selected depending on the sign of the expression

∆ = 2B3
2 − 27B2

1 :

∆ > 0 subscript m = 1,

∆ = 0 subscript m = 2,

∆ < 0 subscript m = 3.

If 2B3
2 = 27B2

1 (subscript m = 2), then

k = ( 16B2)
1/2, ω = −2( 16B2)

1/2 if B1 < 0,

k = −( 16B2)
1/2, ω = 2( 16B2)

1/2 if B1 > 0.

Remark 14.3. The expressions for Rm, Qm contain three constants C1, C2, and C3. One

of them can be arbitrarily fixed to set it equal to any nonzero number (for example, we can set

C3 = ±1), and the other constants can be arbitrary.

50. y′′xx = A1 + A2xy
−1/2.

Solution in parametric form:

x = Rm, y = Q2
m, where A1 = B2, A2 = B1.
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51. y′′xx = A1x
−3 + A2x

−7/2y−1/2.

Solution in parametric form:

x = R−1
m , y = R−1

m Q2
m, where A1 = B2, A2 = B1.

52. y′′xx = A1y
−3/5 + A2xy

−7/5.

Solution in parametric form:

x = a(2Q2
m − 4RmSm +B2R

2
m), y = bR5/2

m ,

where A1 = −ab−4/5A2B2, A2 = − 5
32a

−3b12/5B−2
1 .

53. y′′xx = A1x
−12/5y−3/5 +A2x

−13/5y−7/5.

Solution in parametric form:

x = a(2Q2
m − 4RmSm +B2R

2
m)

−1
, y = bR5/2

m (2Q2
m − 4RmSm +B2R

2
m)

−1
,

where A1 =
5
32a

2/5b8/5B−2
1 B2, A2 = − 5

32a
3/5b12/5B−2

1 .

◆ In the solutions of equations 54 and 55, the following notation is used:

1◦. For A2 > 0, A1 6= 0:

T1 = C1e
kτ + C2e

−kτ + C3 sinωτ, T2 = k(C1e
kτ − C2e

−kτ ) + ωC3 cosωτ,

where k = { 23 [(A2
1+3A2)

1/2+A1]}1/2, ω = { 23 [(A2
1+3A2)

1/2−A1]}1/2; the constants

C1, C2, and C3 are related by the constraint 4k2C1C2 + ω2C2
3 = 0.

2◦. For −A2
1 < 3A2 < 0, A1 > 0:

T1=C1τ
k1+C2τ

−k1+C3τ
k2+C4τ

−k2 , T2=k1(C1τ
k1−C2τ

−k1)+k2(C3τ
k2−C4τ

−k2),

where k1 = { 23 [A1+(A2
1+3A2)

1/2]}1/2, k2 = { 23 [A1−(A2
1+3A2)

1/2]}1/2; the constants

C1, C2, and C3 are related by the constraint

(C1C2 + C3C4)(A
2
1 + 3A2)

1/2 + (C1C2 −C3C4)A1 = 0.

3◦. For −A2
1 < 3A2 < 0, A1 < 0:

T1 = C1 sinω1τ + C2 cosω1τ + C3 sinω2τ,

T2 = ω1(C1 cosω1τ − C2 sinω1τ) + ω2C3 cosω2τ,

where ω1 = {− 2
3 [A1 + (A2

1 + 3A2)
1/2]}1/2, ω2 = {− 2

3 [A1 − (A2
1 + 3A2)

1/2]}1/2; the

constants C1, C2, and C3 are related by the constraint ω2
1(C

2
1 + C2

2 )− ω2
2C

2
3 = 0.

4◦. For A2
1 + 3A2 = 0, A1 > 0:

T1 = (C1 + C2τ)e
kτ + (C3 +C4τ)e

−kτ ,

T2 = (kC1 + C2 + kC2τ)e
kτ − (kC3 − C4 + kC4τ)e

−kτ ,

where k = ( 23A1)
1/2; the constants C1, C2, and C3 are related by the constraint

C2C4 + (C1C4 −C2C3)(
1
6A1)

1/2 = 0.
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5◦. For A2
1 + 3A2 = 0, A1 < 0:

T1 = (C1 + C2τ) sinωτ + C3τ cosωτ,

T2 = (ωC1 + C3 + ωC2τ) cosωτ + (C2 − ωC3τ) sinωτ,

where ω = (− 2
3A1)

1/2; the constants C1, C2, and C3 are related by the constraint

C2
2 + C2

3 + C1C3(− 2
3A1)

1/2 = 0.

6◦. For 3A2 < −A2
1:

T1 = ekτ (C1 sinωτ +C2 cosωτ)+C3e
−kτ sinωτ,

T2 = ekτ [(kC2 +ωC1) cosωτ +(kC1−ωC2) sinωτ)]+C3e
−kτ (ω cosωτ − k sinωτ),

where k = { 13 [A1 +(−3A2)
1/2]}1/2, ω = { 13 [−A1 +(−3A2)

1/2]}1/2; the constants C1,

C2, and C3 are related by the constraint C2A1 + C1(−A2
1 − 3A2)

1/2 = 0.

54. y′′xx = A1y
−1/3 + A2x

2y−5/3.

Solution in parametric form:

x = T1, y = T
3/2
2 .

55. y′′xx = A1x
−8/3y−1/3 +A2x

−10/3y−5/3.

Solution in parametric form:

x = T−1
1 , y = T−1

1 T
3/2
2 .

◆ In the solutions of equations 56–59, the following notation is used:

T1 =

{
C1e

ωτ + C2e
−ωτ + C3τ if A1 > 0,

C1 sinωτ + C2 cosωτ + C3τ if A1 < 0,
where ω = | 43A1|1/2,

T2 =

{
ω(C1e

ωτ − C2e
−ωτ ) + C3 if A1 > 0,

ω(C1 cosωτ − C2 sinωτ) + C3 if A1 < 0,
where ω = | 43A1|1/2.

56. y′′xx = A1y
−1/3 + A2y

−5/3.

Solution in parametric form:

x = T1, y = T
3/2
2 ,

where the constants C1, C2, and C3 are related by the constraint

3(A1C
2
3 +A2) + 16A2

1C1C2 = 0 if A1 > 0,

3(A1C
2
3 +A2) + 4A2

1(C
2
1 + C2

2 ) = 0 if A1 < 0.

57. y′′xx = A1x
−8/3y−1/3 +A2x

−4/3y−5/3.

Solution in parametric form:

x = T−1
1 , y = T−1

1 T
3/2
2 ,

where the constants C1, C2, and C3 are related by the constraint

3(A1C
2
3 +A2) + 16A2

1C1C2 = 0 if A1 > 0,

3(A1C
2
3 +A2) + 4A2

1(C
2
1 + C2

2 ) = 0 if A1 < 0.
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58. y′′xx = A1y
−1/3 + A2xy

−5/3.

Solution in parametric form:

x = T1 −
A2

4A1
τ2, y =

(
T2 −

A2

2A1
τ
)3/2

,

where the constants C1, C2, and C3 are related by the constraint

3A1C
2
3 + 16A2

1C1C2 +
9
16A

−2
1 A2

2 = 0 if A1 > 0,

3A1C
2
3 + 4A2

1(C
2
1 + C2

2 ) +
9
16A

−2
1 A2

2 = 0 if A1 < 0.

59. y′′xx = A1x
−8/3y−1/3 +A2x

−7/3y−5/3.

Solution in parametric form:

x =
(
T1 −

A2

4A1
τ2
)−1

, y =
(
T1 −

A2

4A1
τ2
)−1(

T2 −
A2

2A1
τ
)3/2

,

where the constants C1, C2, and C3 are related by the constraint

3A1C
2
3 + 16A2

1C1C2 +
9
16A

−2
1 A2

2 = 0 if A1 > 0,

3A1C
2
3 + 4A2

1(C
2
1 + C2

2 ) +
9
16A

−2
1 A2

2 = 0 if A1 < 0.

◆ In the solutions of equations 60–67, the following notation is used:

f =
√
±(4℘3 − 1), τ =

∫
d℘√

±(4℘3 − 1)
− C2.

The function ℘ = ℘(τ) is defined implicitly in terms of the above elliptic integral of the

first kind. For the upper sign, ℘ coincides with the classical elliptic Weierstrass function

℘ = ℘(τ + C2, 0, 1). In the solution given below, one can take ℘ as the parameter instead

of τ and use the explicit dependence τ = τ(℘).

60. y′′xx = Ax−2y2 − 6
25
x−2y.

Solution in parametric form:

x = C1τ
5, y = bτ2℘, where A = ± 6

25 b
−1.

61. y′′xx = Ax−3y2 − 6
25
x−2y.

Solution in parametric form:

x = C1τ
−5, y = bC1τ

−3℘, where A = ± 6
25 b

−1.

62. y′′xx = Ax−2y2 + 6
25
x−2y.

Solution in parametric form:

x = C1τ
5, y = b(τ2℘∓ 1), where A = ± 6

25 b
−1.

63. y′′xx = Ax−3y2 + 6
25
x−2y.

Solution in parametric form:

x = C1τ
−5, y = bC1τ

−5(τ2℘∓ 1), where A = ± 6
25 b

−1.
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64. y′′xx = 12x−2y +Ax−2y−5/2.

Solution in parametric form:

x = C1℘
2/7(f ± 2τ℘2)

−1/7
, y = b℘−6/7(f ± 2τ℘2)

−4/7
, where A = ∓147 b7/2.

65. y′′xx = 12x−2y +Ax3/2y−5/2.

Solution in parametric form:

x=C1℘
−2/7(f ± 2τ℘2)

1/7
, y= bC1℘

−8/7(f ± 2τ℘2)
−3/7

, where A=∓147 b7/2.

66. y′′xx = 63
4
x−2y + Ax−2y−5/3.

Solution in parametric form:

x = C1(τf + 2℘)−1/4, y = b(τf + 2℘)−9/8(f ± 2τ℘2)
3/2
, where A = − 32

3 b
8/3.

67. y′′xx = 63
4
x−2y + Ax2/3y−5/3.

Solution in parametric form:

x=C1(τf + 2℘)1/4, y = bC1(τf + 2℘)−7/8(f ± 2τ℘2)
3/2
, where A=− 32

3 b
8/3.

◆ In the solutions of equations 68–73, the following notation is used:

f1 =
√
±4℘3

1 − 2℘1 − C2, τ =

∫
d℘1√

±4℘3
1 − 2℘1 − C2

− C1;

f2 =
√
±4℘3

2 + 2℘2 − C2, τ =

∫
d℘2√

±4℘3
2 + 2℘2 − C2

− C1.

The functions ℘1 = ℘1(τ) and ℘2 = ℘2(τ) are the inverses of the above elliptic integrals.

For the upper signs, they are the classical Weierstrass functions ℘1 = ℘(τ + C1, 2, C2)
and ℘2 = ℘(τ + C1, −2, C2).

68. y′′xx = A1y
2 +A2.

Solutions in parametric form:

x = aτ, y = b℘k,

where A1 = ±6a−2b−1, A2 = a−2b(−1)k; k = 1 and k = 2.

69. y′′xx = A1x
−5y2 +A2x

−3.

Solutions in parametric form:

x = aτ−1, y = bτ−1℘k,

where A1 = ±6a3b−1, A2 = ab(−1)k; k = 1 and k = 2.

70. y′′xx = A1x
−15/7y2 +A2x

−9/7.

Solutions in parametric form:

x = aτ7, y = bτ(τ2℘k ∓ 1),

where A1 = ± 6
49a

1/7b−1, A2 =
1
49a

−5/7b(−1)k; k = 1 and k = 2.



“K16435’ — 2017/9/28 — 15:05 — #672

646 SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS

71. y′′xx = A1x
−20/7y2 +A2x

−12/7.

Solutions in parametric form:

x = aτ−7, y = bτ−6(τ2℘k ∓ 1),

where A1 = ± 6
49a

6/7b−1, A2 =
1
49a

−2/7b(−1)k; k = 1 and k = 2.

72. y′′xx = A1 + A2y
−2/3.

Solutions in parametric form:

x = a[fk − (−1)kτ ], y = b℘3
k,

where A1 = ± 1
2a

−2b, A2 =
1
12a

−2b5/3(−1)k; k = 1 and k = 2.

73. y′′xx = A1x
−3 + A2x

−7/3y−2/3.

Solutions in parametric form:

x = a[fk − (−1)kτ ]−1, y = b℘3
k[fk − (−1)kτ ]−1,

where A1 = ± 1
2ab, A2 =

1
12 a

1/3b5/3(−1)k; k = 1 and k = 2.

◆ In the solutions of equations 74 and 75, the following notation is used:

E =

∫
(1± τ4)−1/2

dτ + C2, k2 = ±1.

The function E can be expressed in terms of elliptic integrals or lemniscate functions.

74. y′′xx = A1x
−18/5y3 +A2x

−14/5y2.

Solutions in parametric form:

x= aC5
1E

−5, y= bC4
1E

−4(τE−k), where A1=± 2
25a

8/5b−2, A2=± 6
25a

4/5b−1k.

75. y′′xx = A1x
−12/5y3 +A2x

−11/5y2.

Solutions in parametric form:

x= aC5
1E

5, y = bC1E(τE− k), where A1 = ± 2
25a

2/5b−2, A2 =± 6
25a

1/5b−1k.

◆ In the solutions of equations 76–81, the following notation is used:

f =

{
J1/3(τ) for the upper sign (Bessel function),

I1/3(τ) for the lower sign (modified Bessel function),

g =

{
Y1/3(τ) for the upper sign (Bessel function),

K1/3(τ) for the lower sign (modified Bessel function),

H = C1f + C2g + βω
(
g

∫
f dτ − f

∫
g dτ

)
, ω =

{
1
2π for the upper sign,

−1 for the lower sign.



“K16435’ — 2017/9/28 — 15:05 — #673

14.4. Equations of the Form y′′xx = A1x
n1ym1 +A2x

n2ym2 647

76. y′′xx = A1xy +A2.

Solutions in parametric form:

x = aτ2/3, y = τ1/3H, where A1 = ∓ 9
4a

−3, A2 =
9
4a

−2β.

77. y′′xx = A1x
−5y + A2x

−3.

Solutions in parametric form:

x = aτ−2/3, y = τ−1/3H, where A1 = ∓ 9
4a

3, A2 =
9
4aβ.

78. y′′xx = A1x
−3/2 + A2x

−1/2y−1/2.

Solutions in parametric form:

x = aτ2/3H2,

y = bτ−2/3(τH ′
τ +

1
3H)

2
,

where A1 = − 1
2a

−1/2bβ, A2 = ∓ 1
3a

−3/2b3/2.

79. y′′xx = A1x
−3/2 + A2x

−2y−1/2.

Solutions in parametric form:

x = aτ−2/3H−2,

y = bτ−4/3H−2(τH ′
τ +

1
3H)

2
,

where A1 = − 1
2a

−1/2bβ, A2 = ∓ 1
3 b

3/2.

80. y′′xx = A1y
−3/2 + A2xy

−2.

Solutions in parametric form:

x = aτ−2/3
[
∓τ2H2 + 2βτH − (τH ′

τ +
1
3H)

2]
,

y = bτ2/3H2,

where A1 = −ab−1/2βA2, A2 =
9
2a

−3b3.

81. y′′xx = A1x
−3/2y−3/2 +A2x

−2y−2.

Solutions in parametric form:

x = aτ2/3
[
∓τ2H2 + 2βτH − (τH ′

τ +
1
3H)

2]−1
,

y = bτ4/3H2
[
∓τ2H2 + 2βτH − (τH ′

τ +
1
3H)

2]−1
,

where A1 = − 9
2a

−1/2b5/2β, A2 =
9
2 b

3.
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◆ In the solutions of equations 82–88, the following notation is used:

Uν =

{
C1Jν(τ) for the upper sign (Bessel function),

C1Iν(τ) for the lower sign (modified Bessel function),

Vν =

{
C2Yν(τ) for the upper sign (Bessel function),

C2Kν(τ) for the lower sign (modified Bessel function),

Zν = α1Uν + α2Vν , Xν = β1Uν + β2Vν , Fν = τZ ′
ν + νZν , Gν = τX ′

ν + νXν ,

N =

{
ZνXν if ∆ = −(α1β2 − α2β1)

2,

αU2
ν + βUνVν + γV 2

ν if ∆ = 4αγ − β2,

N1 =

{
ZνGν +XνFν if ∆ = −(α1β2 − α2β1)

2,

τN ′ + 2νN if ∆ = 4αγ − β2,

N2 = N2
1 ± 4τ2N2 + ω2∆, ω =

{
2/π for the upper sign,

−1 for the lower sign.

The prime denotes differentiation with respect to τ .

82. y′′xx = A1xy +A2y
−3.

Solutions in parametric form:

x = aτ2/3, y = bτ1/3N1/2,

where ν = 1
3 , A1 = ∓ 9

4a
−3, A2 =

9
16a

−2b4ω2∆.

83. y′′xx = A1x
ny + A2y

−3, n 6= −2.

Solutions in parametric form:

x = aτ2ν , y = bτνN1/2,

where ν =
1

n+ 2
, A1 = ∓

1

4ν2
a−n−2, A2 =

1

16ν2
a−2b4ω2∆.

84. y′′xx = A1x
−5y + A2y

−3.

Solutions in parametric form:

x = aτ−2/3, y = bτ−1/3N1/2,

where ν = 1
3 , A1 = ∓ 9

4a
3, A2 =

9
16a

−2b4ω2∆.

85. y′′xx = A1x
−3 + A2x

−1/2y−1/2.

Solutions in parametric form:

x = aτ2/3N, y = bτ−2/3N−1N2
1 ,

where ν = 1
3 , A1 = −2abω2∆, A2 = ∓ 8

3a
−3/2b3/2.

86. y′′xx = A1 + A2x
−2y−1/2.

Solutions in parametric form:

x = aτ−2/3N−1, y = bτ−4/3N−2N2
1 ,

where ν = 1
3 , A1 = −2a−2bω2∆, A2 = ∓ 8

3 b
3/2.
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87. y′′xx = A1xy
−2 + A2y

−3.

Solutions in parametric form:

x = aτ−2/3N−1N2, y = bτ2/3N,

where ν = 1
3 , A1 = − 9

128a
−3b3, A2 =

9
64a

−2b4ω2∆.

88. y′′xx = A1x
−2y−2 + A2y

−3.

Solutions in parametric form:

x = aτ2/3NN−1
2 , y = bτ4/3N2N−1

2 ,

where ν = 1
3 , A1 = − 9

128 b
3, A2 =

9
64a

−2b4ω2∆.

◆ In the solutions of equations 89 and 90, the following notation is used:

∆ = C2
2 − 2C1, R = (36∆ + 54Bτ − 2τ3)1/2, z = 3

∫
τ−1R−1 dτ,

W (z) =





√
−∆
C1

tan
(
±
√
−∆ z

)
+
C2

C1
if ∆ < 0,

√
∆

C1
tanh

(
∓
√
∆ z
)
+
C2

C1
if ∆ > 0,

∓ 1

C1z
−
√
2√
|C1|

if ∆ = 0, C2 < 0,

∓ 1

C1z
+

√
2√
|C1|

if ∆ = 0, C2 > 0.

89. y′′xx = A1y
−5/3 + A2x

−2/3y−5/3.

Solutions in parametric form:

x = aτ−3/2(C1W
2 − 2C2W + 2)3/2,

y = bτ−9/4(C1W
2 − 2C2W + 2)3/4(6C1W − 6C2 ∓R)3/2,

where A1 = 24a−2b8/3C1, A2 = −36a−4/3b8/3B.

90. y′′xx = A1x
−2/3y−5/3 +A2x

−4/3y−5/3.

Solutions in parametric form:

x = aτ3/2(C1W
2 − 2C2W + 2)−3/2,

y = bτ−3/4(C1W
2 − 2C2W + 2)−3/4(6C1W − 6C2 ∓R)3/2,

where A1 = −36a−4/3b8/3B, A2 = 24a−2/3b8/3C1.

◆ In the solutions of equations 91–102, the following notation is used: The functions P1

and P2 are the general solutions of the four modifications of the first Painlevé equation:

P ′′
1 = ±6P 2

1 + τ, P ′′
2 = ±6P 2

2 − τ
(in the case of the upper sign, the equation for P1 is the canonical form of the first Painlevé

equation, see Section 3.4.2). In addition,

Q1=±6P 2
1 +τ, T1= τ2P1∓1, U1=(P ′

1)
2−2P1Q1±8P 3

1 , V1=P ′
1Q

′
1+P

′
1−Q2

1,

Q2=±6P 2
2 −τ, T2= τ2P2∓1, U2=(P ′

2)
2−2P2Q2±8P 3

2 , V2=P ′
2Q

′
2−P ′

2−Q2
2.

The prime denotes differentiation with respect to τ .
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91. y′′xx = A1y
2 +A2x.

Solutions in parametric form:

x = aτ, y = bPk,

where A1 = ±6a−2b−1, A2 = a−3b(−1)k+1; k = 1 and k = 2.

92. y′′xx = A1x
−5y2 +A2x

−4.

Solutions in parametric form:

x = aτ−1, y = bτ−1Pk,

where A1 = ±6a3b−1, A2 = a2b(−1)k+1; k = 1 and k = 2.

93. y′′xx = A1x
−15/7y2 +A2x

−8/7.

Solutions in parametric form:

x = aτ7, y = bτTk,

where A1 = ± 6
49a

1/7b−1, A2 =
1
49a

−6/7b(−1)k+1; k = 1 and k = 2.

94. y′′xx = A1x
−20/7y2 +A2x

−13/7.

Solutions in parametric form:

x = aτ−7, y = bτ−6Tk,

where A1 = ± 6
49a

6/7b−1, A2 =
1
49a

−1/7b(−1)k+1; k = 1 and k = 2.

95. y′′xx = A1x+A2y
−1/2.

Solutions in parametric form:

x = aPk, y = b(P ′
k)

2,

where A1 = ±24a−3b, A2 = 2a−2b3/2(−1)k+1; k = 1 and k = 2.

96. y′′xx = A1x
−4 + A2x

−5/2y−1/2.

Solutions in parametric form:

x = aP−1
k , y = bP−1

k (P ′
k)

2,

where A1 = ±24a2b, A2 = 2a1/2b3/2(−1)k+1; k = 1 and k = 2.

97. y′′xx = A1y
1/3 + A2xy

−5/3.

Solutions in parametric form:

x = aUk, y = bP
3/2
k ,

where A1 = ∓8ab−2A2, A2 = − 3
16a

−3b8/3; k = 1 and k = 2.

98. y′′xx = A1x
−10/3y1/3 + A2x

−7/3y−5/3.

Solutions in parametric form:

x = aU−1
k , y = bP

3/2
k U−1

k ,

where A1 = ∓8ab−2A2, A2 = − 3
16a

1/3b8/3; k = 1 and k = 2.
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99. y′′xx = A1x
−3/2 + A2y

−1/2.

Solutions in parametric form:

x = a(P ′
k)

2, y = bQ2
k,

where A1 =
1
2a

−1/2b(−1)k, A2 = ±6a−2b3/2; k = 1 and k = 2.

100. y′′xx = A1x
−3/2 +A2x

−5/2y−1/2.

Solutions in parametric form:

x = a(P ′
k)

−2, y = b(P ′
k)

−2Q2
k,

where A1 =
1
2a

−1/2b(−1)k, A2 = ±6a1/2b3/2; k = 1 and k = 2.

101. y′′xx = A1y
−4/3 +A2xy

−5/3.

Solutions in parametric form:

x = aVk, y = b(P ′
k)

3,

where A1 = ab−1/3A2(−1)k , A2 =
1
36a

−3b8/3; k = 1 and k = 2.

102. y′′xx = A1x
−5/3y−4/3 + A2x

−7/3y−5/3.

Solutions in parametric form:

x = aV −1
k , y = b(P ′

k)
3V −1

k ,

where A1 =
1
36a

−1/3b7/3(−1)k, A2 =
1
36 a

1/3b8/3; k = 1 and k = 2.

◆ In the solutions of equations 103–108, the following notation is used:

The functions P1 and P2 are the general solutions of the four modifications of the second

Painlevé equation (with parameter a = 0):

P ′′
1 = τP1 ± 2P 3

1 , P ′′
2 = −τP2 ± 2P 3

2 ,

where the primes denote differentiation with respect to τ . In the case of the upper sign,

the equation for P1 is the canonical form of the second Painlevé equation (with parameter

a = 0; see Section 3.4.3).

103. y′′xx = A1y
3 + A2xy.

Solutions in parametric form:

x = aτ, y = bPk,

where A1 = ±2a−2b−2, A2 = a3(−1)k+1; k = 1 and k = 2.

104. y′′xx = A1x
−6y3 + A2x

−5y.

Solutions in parametric form:

x = aτ−1, y = bτ−1Pk,

where A1 = ±2a4b−2, A2 = a3(−1)k+1; k = 1 and k = 2.
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105. y′′xx = A1 + A2x
−1/2y−1/2.

Solutions in parametric form:

x = aP 2
k , y = b(P ′

k)
2, P ′

k = (Pk)
′
τ ,

where A1 = ±2a−2b, A2 =
1
2a

−3/2b3/2(−1)k+1; k = 1 and k = 2.

106. y′′xx = A1x
−3 + A2x

−2y−1/2.

Solutions in parametric form:

x = aP−2
k , y = bP−2

k (P ′
k)

2, P ′
k = (Pk)

′
τ ,

where A1 = ±2ab, A2 =
1
2 b

3/2(−1)k+1; k = 1 and k = 2.

107. y′′xx = A1 + A2xy
−2.

Solutions in parametric form:

x = a[τP 2
k ± P 4

k − (P ′
k)

2], y = bP 2
k , P ′

k = (Pk)
′
τ ,

where A1 = ∓2a−2b(−1)k , A2 = 2a−3b3(−1)k+1; k = 1 and k = 2.

108. y′′xx = A1x
−3 + A2x

−2y−2.

Solutions in parametric form:

x = a
[
τP 2

k ± P 4
k − (P ′

k)
2
]−1

, y = bP 2
k

[
τP 2

k ± P 4
k − (P ′

k)
2
]−1

,

where A1 = ±2ab, A2 = 2b3; k = 1 and k = 2.

14.5 Generalized Emden–Fowler Equation

y′′
xx = Axnym(y′

x)
l

14.5.1 Classification Table

The case l = 0 corresponding to the classical Emden–Fowler equation is outlined in Sec-

tion 14.3. In this section, the case l 6= 0 is considered.

Table 14.7 presents all solvable equations of the form y′′xx = Axnym(y′x)
l whose solu-

tions are outlined in Section 14.5.2. Two-parameter families (in the space of the parameters

n, m, and l), one-parameter families, and isolated points are presented in a consecutive

fashion. Equations are arranged in accordance with the growth of l, the growth of m (for

identical l), and the growth of n (for identical m and l). The number of the equation sought

is indicated in the last column in this table.
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TABLE 14.7

Solvable cases of the generalized Emden–Fowler equation y′′xx = Axnym(y′x)
l

No l m n Equation

Two-parameter families

1 arbitrary arbitrary 0 14.5.2.1

2 arbitrary 0 arbitrary 14.5.2.2

3
2n+m+ 3

n+m+ 2

arbitrary

(m 6= −1)
arbitrary

(n 6= −1) 14.5.2.3

One-parameter families

4
arbitrary

(l 6= 1, 2)
−1 −1 14.5.2.6

5
arbitrary

(l 6= 3
2 )

− 1
2 − 1

2 14.5.2.97

6
3m+ 5

2m+ 3

arbitrary

(m 6= − 3
2 )

− 1
2 14.5.2.13

7
3m+ 5

2m+ 3

arbitrary

(m 6= − 3
2 )

1 14.5.2.10

8
3n+ 4

2n+ 3
− 1

2

arbitrary

(n 6= − 3
2 )

14.5.2.11

9
3n+ 4

2n+ 3
1

arbitrary

(n 6= − 3
2 )

14.5.2.12

10
3n+ 4

2n+ 3
−n− 3

arbitrary

(n 6= − 3
2 )

14.5.2.107

11 1
arbitrary

(m 6= −1, 0) −1 14.5.2.5

12 2 −1 arbitrary

(n 6= −1, 0) 14.5.2.4

13 3
arbitrary

(m 6= −2) 1 14.5.2.96

14 3 −n− 3 arbitrary 14.5.2.9

Isolated points

15 1
2 − 10

7 − 11
7 14.5.2.28

16 1
2 − 13

10 − 17
10 14.5.2.56

17 1
2 − 11

5 − 4
5 14.5.2.108

18 1
2 − 1

2 − 5
2 14.5.2.39

19 1
2 1 − 15

8 14.5.2.95

20 1
2 1 − 20

13 14.5.2.98

21 1
2 1 − 5

4 14.5.2.92
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TABLE 14.7 (Continued)

Solvable cases of the generalized Emden–Fowler equation y′′xx = Axnym(y′x)
l

No l m n Equation

22 1
2 1 0 14.5.2.90

23 2
3 − 1

2 − 7
6 14.5.2.65

24 3
4 − 11

6 − 2
3 14.5.2.113

25 4
5 − 5

2 − 1
2 14.5.2.88

26 1 −2 1 14.5.2.14

27 1 −1 −1 14.5.2.8

28 8
7 1 − 3

4 14.5.2.66

29 8
7 1 − 1

2 14.5.2.64

30 6
5 − 1

2 − 2
3 14.5.2.80

31 16
13 − 17

7 2 14.5.2.58

32 5
4 1 − 1

2 14.5.2.70

33 5
4 1 0 14.5.2.68

34 9
7 − 13

8 1 14.5.2.45

35 9
7 − 1

2 1 14.5.2.44

36 13
10 − 11

4 2 14.5.2.30

37 13
10 − 1

2 − 5
2 14.5.2.53

38 27
20 − 1

2 − 2
3 14.5.2.84

39 15
11 − 10

3 − 2
3 14.5.2.33

40 18
13 − 1

2 − 7
2 14.5.2.46

41 7
5 − 7

4 1 14.5.2.18

42 7
5 − 10

7 1 14.5.2.52

43 7
5 − 2

3 1 14.5.2.38

44 7
5 − 1

2 1 14.5.2.17

45 7
5 1 0 14.5.2.101

46 7
5 1 1 14.5.2.103

47 7
5 5 1 14.5.2.87

48 24
17 − 13

3 − 2
3 14.5.2.61

49 10
7 − 1

2 − 5
2 14.5.2.19

50 16
11 2 4 14.5.2.111

51 22
15 − 1

2 − 2
3 14.5.2.82

52 3
2 −2 − 1

2 14.5.2.124
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TABLE 14.7 (Continued)

Solvable cases of the generalized Emden–Fowler equation y′′xx = Axnym(y′x)
l

No l m n Equation

53 3
2 −2 1 14.5.2.117

54 3
2 − 1

2 −2 14.5.2.118

55 3
2 − 1

2 − 1
2 14.5.2.35

56 3
2 − 1

2 1 14.5.2.116

57 3
2 1 −2 14.5.2.123

58 3
2 1 − 1

2 14.5.2.121

59 23
15 − 2

3 − 1
2 14.5.2.96

60 17
11 4 2 14.5.2.110

61 11
7 − 5

2 − 1
2 14.5.2.27

62 27
17 − 2

3 − 13
3 14.5.2.60

63 8
5 0 1 14.5.2.85

64 8
5 1 − 7

4 14.5.2.26

65 8
5 1 − 10

7 14.5.2.54

66 8
5 1 − 2

3 14.5.2.41

67 8
5 1 − 1

2 14.5.2.24

68 8
5 1 1 14.5.2.86

69 8
5 1 5 14.5.2.106

70 21
13 − 7

2 − 1
2 14.5.2.51

71 18
11 − 2

3 − 10
3 14.5.2.32

72 33
20 − 2

3 − 1
2 14.5.2.99

73 17
10 − 5

2 − 1
2 14.5.2.55

74 17
10 2 − 11

4 14.5.2.31

75 12
7 1 − 13

8 14.5.2.50

76 12
7 1 − 1

2 14.5.2.48

77 7
4 − 1

2 1 14.5.2.63

78 7
4 0 1 14.5.2.62

79 23
13 2 − 17

7 14.5.2.59

80 9
5 − 2

3 − 1
2 14.5.2.93

81 13
7 − 3

4 1 14.5.2.77

82 13
7 − 1

2 1 14.5.2.73

83 2 −1 −1 14.5.2.7
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TABLE 14.7 (Continued)

Solvable cases of the generalized Emden–Fowler equation y′′xx = Axnym(y′x)
l

No l m n Equation

84 2 1 −2 14.5.2.16

85 11
5 − 1

2 − 5
2 14.5.2.107

86 9
4 − 2

3 − 11
6 14.5.2.112

87 7
3 − 7

6 − 1
2 14.5.2.76

88 5
2 − 5

2 − 1
2 14.5.2.42

89 5
2 − 15

8 1 14.5.2.81

90 5
2 − 17

10 − 13
10 14.5.2.57

91 5
2 − 11

7 − 10
7 14.5.2.29

92 5
2 − 20

13 1 14.5.2.83

93 5
2 − 5

4 1 14.5.2.79

94 5
2 − 4

5 − 11
5 14.5.2.109

95 5
2 0 1 14.5.2.78

96 3 −5 2 14.5.2.91

97 3 − 7
2 − 1

2 14.5.2.37

98 3 − 10
3 − 5

3 14.5.2.43

99 3 − 20
7 2 14.5.2.97

100 3 − 5
2 − 1

2 14.5.2.22

101 3 − 13
5 − 7

5 14.5.2.49

102 3 − 7
3 − 5

3 14.5.2.25

103 3 − 15
7 2 14.5.2.94

104 3 −2 −2 14.5.2.122

105 3 −2 −1 14.5.2.15

106 3 −2 − 1
2 14.5.2.119

107 3 −2 1 14.5.2.34

108 3 − 4
3 − 1

2 14.5.2.71

109 3 − 7
6 − 1

2 14.5.2.72

110 3 − 5
6 − 5

3 14.5.2.105

111 3 − 1
2 − 5

2 14.5.2.102

112 3 − 1
2 − 5

3 14.5.2.104

113 3 0 −4 14.5.2.67

114 3 0 − 5
2 14.5.2.10
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TABLE 14.7 (Continued)

Solvable cases of the generalized Emden–Fowler equation y′′xx = Axnym(y′x)
l

No l m n Equation

115 3 0 − 1
2 14.5.2.20

116 3 0 2 14.5.2.89

117 3 1 −7 14.5.2.74

118 3 1 −4 14.5.2.69

119 3 1 −2 14.5.2.120

120 3 1 − 5
3 14.5.2.23

121 3 1 − 7
5 14.5.2.47

122 3 1 − 1
2 14.5.2.36

123 3 1 0 14.5.2.21

124 3 2 − 5
3 14.5.2.40

125 3 3 −7 14.5.2.75

14.5.2 Exact Solutions

1. y′′xx = Aym(y′x)
l.

1◦. Solution in parametric form with m 6= −1, l 6= 2:

x=aC1−m−l
1

∫
(1±τm+1)

1
l−2 dτ+C2, y=bC2−l

1 τ, where A=±m+1

2− l a
l−2b1−m−l.

2◦. Solution in parametric form with m = −1, l 6= 2:

x=aC1

∫
τ

l
l−2 exp(∓τ2) dτ+C2, y=bC1 exp(∓τ2), where A=∓ 4b2

a2(2−l)
(
∓ a

2b

)l
.

3◦. Solution in parametric form with m 6= −1, l = 2:

x = C1

∫
τ
1−m
1+m exp(∓τ2) dτ + C2, y = bτ

2
m+1 , where A = ±(m+ 1)b−1−m.

4◦. Solution for m = −1, l = 2:

y =




(C1x+ C2)

1
1−A if A 6= 1,

C2 exp(C1x) if A = 1.

2. y′′xx = Axn(y′x)
l.

1◦. Solution in parametric form with n 6= −1, l 6= 1:

x=aC1−l
1 τ, y= bC2+n−l

1

∫
(1± τn+1)

1
1−l dτ+C2, where A=±n+ 1

1− l a
l−n−2b1−l.
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2◦. Solution in parametric form with n = −1, l 6= 1:

x=aC1 exp(∓τ2), y=bC1

∫
τ
3−l
1−l exp(∓τ2) dτ+C2, with A=∓ 4a2

b2(1−l)
(
∓ b

2a

)3−l
.

3◦. Solution in parametric form with n 6= −1, l = 1:

x = aτ
2

n+1 , y = C1

∫
τ
1−n
1+n exp(∓τ2) dτ + C2, where A = ∓(n+ 1)a1−n.

4◦. Solution for n = −1, l = 1:

y =

{
C1|x|A+1 + C2 if A 6= 1,

C1 ln |x|+ C2 if A = 1.

3. y′′xx = Axnym(y′x)
2n+m+3
n+m+2 .

Solution in parametric form with n 6= −1, m 6= −1:

x = exp
[∫ dτ

f(τ)
+ C2

]
, y = τ exp

[
− n+ 1

m+ 1

∫
dτ

f(τ)
− n+ 1

m+ 1
C2

]
,

where the function f = f(τ) is defined implicitly by the formula

[f + (σ − 1)τ ](f + στ)
σ

1−σ = C1 +
Aτm+2

n+m+ 2
, σ = − n+ 1

m+ 1
.

For the case n = −1, see equation 14.5.2.5. For m = −1, see equation 14.5.2.4.

4. y′′xx = Axny−1(y′x)
2.

Solution in parametric form with n 6= −1, n 6= 0:

x = aτ
1
n , y = ± exp

[∫
τ
1−n
n

( n

n+ 1
τ
n+1
n + nτ

1
n + C1

)−1
dτ + C2

]
,

where A = −a−n.

For the case n = −1, see equation 14.5.2.7. For n = 0, see equation 14.5.2.1.

5. y′′xx = Ax−1ymy′x.

Solution in parametric form with m 6= −1, m 6= 0:

x = ± exp
[∫

τ
1−m
m

( m

m+ 1
τ
m+1
m +mτ

1
m + C1

)−1
dτ + C2

]
, y = (Aτ)

1
m .

For the case m = −1, see equation 14.5.2.8. For m = 0, see equation 14.5.2.2.

6. y′′xx = Ax−1y−1(y′x)
l.

Solution in parametric form with l 6= 1, l 6= 2:

x=±
(
f− τ

λ

)−1
exp
[ 1
λ

∫
dτ

f(τ)
+C2

]
, y=± exp

[∫ dτ

f(τ)
+λC2

]
, λ=

l−1
l−2 ,

where the function f = f(τ) is defined implicitly by the formula

ln
( f
τ
− 1

λ

)
− τ

λf − τ = ±A
λ
τλ − ln τ + C1, λ =

l − 1

l − 2
.

For the case l = 2, see equation 14.5.2.7. For l = 1, see equation 14.5.2.8.
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7. y′′xx = Ax−1y−1(y′x)
2.

Solution in parametric form:

x = ±eτ , y = C2(∓Aτ + eτ + C1) exp
[
±A

∫
(∓Aτ + eτ + C1)

−1 dτ
]
.

8. y′′xx = Ax−1y−1y′x.

Solution in parametric form:

x = C2(±Aτ + eτ + C1) exp
[
∓A

∫
(±Aτ + eτ + C1)

−1 dτ
]
, y = ±eτ .

9. y′′xx = Axny−n−3(y′x)
3.

Solution in parametric form with n 6= −1:

x = aCn+1
1 τ

(∫ dτ√
1± τn+1

+ C2

)−1
, y = bCn−1

1

(∫ dτ√
1± τn+1

+ C2

)−1
,

where A = ∓n+ 1

2
a1−nbn+1.

For the case n = −1, see equation 14.5.2.15.

10. y′′xx = Axym(y′x)
3m+5
2m+3 .

Solution in parametric form with m 6= −3/2:

x = aC−2
1

{
(1± τµ+1)

1/2
[∫

(1± τµ+1)
−1/2

dτ + C2

]
− τ
}
,

y = bC
(µ+1)(µ−2)
1

[∫
(1± τµ+1)

−1/2
dτ + C2

]µ+2
,

where µ = − 2m+ 3

m+ 1
, A = − µb

1
µ+2

(µ+ 2)a

[
± (µ+ 1)a

2(µ+ 2)b

] 1
µ

.

11. y′′xx = Axny−
1
2 (y′x)

3n+4
2n+3 .

Solution in parametric form with n 6= −3/2:

x = aC
(µ+1)2

1 τµ+1
[∫

(1± τµ+1)−1/2 dτ + C2

]−µ−1
,

y = bC4
1

{
(1± τµ+1)

1/2
[∫

(1± τµ+1)
−1/2

dτ + C2

]
− τ
}2
,

where µ = − n

n+ 1
, A =

µ+ 3

a(µ + 1)
a

µ
µ+1 b

1
2

(
± a
b

) 1
µ+3

.

12. y′′xx = Axny(y′x)
3n+4
2n+3 .

Solution in parametric form with n 6= −3/2:

x = aC
(µ−1)(µ+2)
1

[∫
(1± τµ+1)−1/2 dτ + C2

]µ+2
,

y = bC−2
1

{
(1± τµ+1)

1/2
[∫

(1± τµ+1)
−1/2

dτ + C2

]
− τ
}
,
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where µ = − 2n+ 3

n+ 1
, A =

µa
1

µ+2

(µ+ 2)b

[
± (µ+ 1)b

2(µ+ 2)a

] 1
µ

.

13. y′′xx = Ax−
1
2 ym(y′x)

3m+5
2m+3 .

Solution in parametric form with m 6= −3/2:

x = aC4
1

{
(1± τµ+1)

1/2
[∫

(1± τµ+1)
−1/2

dτ + C2

]
− τ
}2
,

y = bC
(µ+1)2

1 τµ+1
[∫

(1± τµ+1)
−1/2

dτ + C2

]−µ−1
,

where µ = − m

m+ 1
, A = − µ+ 3

b(µ+ 1)
a
1
2 b

µ
µ+1

(
± b
a

) 1
µ+3

.

14. y′′xx = Axy−2y′x.

Solution in parametric form:

x = aC1

{
2τ
[∫

exp(∓τ2) dτ +C2

]
± exp(∓τ2)

}
, y = bC1

[∫
exp(∓τ2) dτ +C2

]
,

where A = ∓ 1
2a

−2b2.

15. y′′xx = Ax−1y−2(y′x)
3.

Solution in parametric form:

x = a exp(∓τ2)
[∫

exp(∓τ2) dτ + C2

]−1
, y = C1

[∫
exp(∓τ2) dτ + C2

]−1
,

where A = ±2a2.

16. y′′xx = Ax−2y(y′x)
2.

Solution in parametric form:

x = aC1

[∫
exp(∓τ2) dτ +C2

]
, y = bC1

{
2τ
[∫

exp(∓τ2) dτ +C2

]
± exp(∓τ2)

}
,

where A = ±a2b−2.

◆ In the solutions of equations 17–33, the following notation is used:

P2=±(τ2−1), P3= τ3−3τ+C2, P4=±(τ4−6τ2+4C2τ−3),

P6=±(τ6−15τ4+20C2τ
3−45τ2+12C2τ+27−8C2

2),

P9=7τ9−108τ7+84C2τ
6+378τ5−756C2τ

4+84(4C2
2+9)τ3

−756C2τ
2+567τ +4(4C2

2−27)C2.

17. y′′xx = Axy−1/2(y′x)
7/5.

Solution in parametric form:

x = aC1P2P3
−1/2, y = bC16

1 P4
2,

where A = ±15a−2b1/2
( a

16b

)2/5
.
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18. y′′xx = Axy−7/4(y′x)
7/5.

Solution in parametric form:

x = aC27
1 P3

−1/2P6, y = bC32
1 P4

4/3,

where A = ± 5

12
a−2b7/4

( a
9b

)2/5
.

19. y′′xx = Ax−5/2y−1/2(y′x)
10/7.

Solution in parametric form:

x = aC−1
1 P3

−1P4
2/3, y = bC27

1 P3
−1P6

2,

where A = 28a(ab)1/2
( a

27b

)3/7
.

20. y′′xx = Ax−1/2(y′x)
3.

Solution in parametric form:

x = aC4
1P2

2, y = bC3
1P3, where A = ± 4

9a
3/2b−2.

21. y′′xx = Ay(y′x)
3.

Solution in parametric form:

x = aC3
1P3, y = bC1τ, where A = −6ab−3.

22. y′′xx = Ax−1/2y−5/2(y′x)
3.

Solution in parametric form:

x = aC1P2
2P3

−1, y = bC−3
1 P3

−1,

where A = ∓ 4
9a

3/2b1/2.

23. y′′xx = Ax−5/3y(y′x)
3.

Solution in parametric form:

x = aC9
1P3

3/2, y = bC8
1P4, where A = ∓ 9

64a
8/3b−3.

24. y′′xx = Ax−1/2y(y′x)
8/5.

Solution in parametric form:

x = aC16
1 P4

2, y = bC1P2P3
−1/2,

where A = ∓15a1/2b−2
( b

16a

)2/5
.

25. y′′xx = Ax−5/3y−7/3(y′x)
3.

Solution in parametric form:

x = aC1P
3/2
3 P−1

4 , y = bC−8
1 P−1

4 ,

where A = ∓ 9
64a

8/3b1/3.
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26. y′′xx = Ax−7/4y(y′x)
8/5.

Solution in parametric form:

x = aC32
1 P4

4/3, y = bC27
1 P3

−1/2P6,

where A = ∓ 5

12
a7/4b−2

( b

9a

)2/5
.

27. y′′xx = Ax−1/2y−5/2(y′x)
11/7.

Solution in parametric form:

x = aC27
1 P3

−1P6
2, y = bC−1

1 P3
−1P4

2/3,

where A = −28b(ab)1/2
( b

27a

)3/7
.

28. y′′xx = Ax−11/7y−10/7(y′x)
1/2.

Solution in parametric form:

x = −aC−27
1 P−1

9 , y = bC1P
7/3
4 P−1

9 ,

where A = ± 4
√
3

1701
a1/14b27/14.

29. y′′xx = Ax−10/7y−11/7(y′x)
5/2.

Solution in parametric form:

x = aC1P
7/3
4 P−1

9 , y = −bC−27
1 P−1

9 ,

where A = ∓ 4
√
3

1701
a27/14b1/14.

30. y′′xx = Ax2y−11/4(y′x)
13/10.

Solution in parametric form:

x = −aC49
1 P

−1/3
4 P6, y = bC54

1 P
4/7
9 ,

where A = ± 5 · 27/1031/10
6

a−27/10b49/20.

31. y′′xx = Ax−11/4y2(y′x)
17/10.

Solution in parametric form:

x = aC54
1 P

4/7
9 , y = ∓bC49

1 P
−1/3
4 P6,

where A = ∓ 5 · 27/1031/10
6

a49/20b−27/10.

32. y′′xx = Ax−10/3y−2/3(y′x)
18/11.

Solution in parametric form:

x = aC−3
1 P−1

4 P
3/7
9 , y = bC294

1 P−1
4 P 3

6 ,

where A = ∓ 24/1199

2
a98/33b1/33.
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33. y′′xx = Ax−2/3y−10/3(y′x)
15/11.

Solution in parametric form:

x = aC294
1 P−1

4 P 3
6 , y = bC−3

1 P−1
4 P

3/7
9 ,

where A = ± 24/1199

2
a1/33b98/33.

34. y′′xx = Axy−2(y′x)
3.

1◦. Solution in parametric form with A < 1
4 :

x = τ(C1τ
ν +C2τ

−ν), y = τ2, where ν =
√
1− 4A.

2◦. Solution in parametric form with A = 1
4 :

x = τ(C1 ln |τ |+ C2), y = τ2.

3◦. Solution in parametric form with A > 1
4 :

x = τC1 sin(ν ln τ + C2), y = τ2, where ν =
√
4A− 1.

35. y′′xx = Ax−1/2y−1/2(y′x)
3/2.

Solution in parametric form:

x = ±τ2(C1τ
ν + C2τ

−ν)
2
, y = 1

4 τ
−2[(1 + ν)C1τ

ν + (1 − ν)C2τ
−ν ]2,

where A = ∓k2, ν = k−2(k4 + 4)1/2.

36. y′′xx = Ax−1/2y(y′x)
3.

Solution in parametric form:

x = aC2
1 exp(−2τ)

[
2 exp(3τ)− C2 sin

(√
3 τ
)
+
√
3C2 cos

(√
3 τ
)]2

,

y = bC1 exp(−τ)
[
exp(3τ) + C2 sin

(√
3 τ
)]
,

where A = −16a3/2b−3.

37. y′′xx = Ax−1/2y−7/2(y′x)
3.

Solution in parametric form:

x=
aC1e

−τ
[
2 exp(3τ)−C2 sin

(√
3 τ
)
+
√
3C2 cos

(√
3 τ
)]2

exp(3τ)+C2 sin
(√

3 τ
) , y=

bC−1
1 eτ

exp(3τ)+C2 sin
(√

3 τ
),

where A = −16(ab)3/2.

38. y′′xx = Axy−2/3(y′x)
7/5.

1◦. Solution in parametric form with A < 0:

x = aC1[cosh(τ +C2) cos τ ]
1/2[tanh(τ + C2)− tan τ ],

y = bC6
1 cosh3(τ + C2) cos

3 τ [tanh(τ + C2) + tan τ ]3,

where A = −5a−2b2/3
( a

12b

)2/5
.

2◦. Solution in parametric form with A > 0:

x=aC1[cosh τ−sin(τ+C2)]
−1/2[sinh τ−cos(τ+C2)], y= bC6

1 [sinh τ+cos(τ+C2)]
3,

where A = 5a−2b2/3
( a
6b

)2/5
.
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39. y′′xx = Ax−5/2y−1/2(y′x)
1/2.

Solution in parametric form:

x = aC−1
1 [cosh(τ +C2) cos τ ]

−1, y = bC1 cosh(τ +C2) cos τ [tanh(τ +C2)− tan τ ]2,

where A = −4ab.
40. y′′xx = Ax−5/3y2(y′x)

3.

1◦. Solution in parametric form with A > 0:

x = aC3
1 [cosh(τ + C2) cos τ ]

3/2, y = bC2
1 cosh(τ + C2) cos τ [tanh(τ + C2) + tan τ ],

where A = 3
16 a

8/3b−4.

2◦. Solution in parametric form with A < 0:

x = aC3
1 [cosh τ − sin(τ + C2)]

3/2, y = bC2
1 [sinh τ + cos(τ + C2)],

where A = − 3
4a

8/3b−4.

41. y′′xx = Ax−2/3y(y′x)
8/5.

1◦. Solution in parametric form with A > 0:

x = aC6
1 cosh3(τ + C2) cos

3 τ [tanh(τ + C2) + tan τ ]3,

y = bC1[cosh(τ + C2) cos τ ]
1/2[tanh(τ + C2)− tan τ ],

where A = 5a2/3b−2
( b

12a

)2/5
.

2◦. Solution in parametric form with A < 0:

x=aC6
1[sinh τ+cos(τ+C2)]

3, y=bC1[cosh τ−sin(τ+C2)]
−1/2[sinh τ−cos(τ+C2)],

where A = −5a2/3b−2
( b

6a

)2/5
.

42. y′′xx = Ax−1/2y−5/2(y′x)
5/2.

Solution in parametric form:

x = aC1 cosh(τ +C2) cos τ [tanh(τ +C2)− tan τ ]2, y = bC−1
1 [cosh(τ +C2) cos τ ]

−1,

where A = 4ab.

43. y′′xx = Ax−5/3y−10/3(y′x)
3.

1◦. Solution in parametric form with A > 0:

x = aC1[cosh(τ + C2) cos τ ]
1/2[tanh(τ + C2) + tan τ ]−1,

y = bC−2
1 [cosh(τ + C2) cos τ ]

−1[tanh(τ + C2) + tan τ ]−1,

where A = 3
16 a

8/3b4/3.

2◦. Solution in parametric form with A < 0:

x = aC1[cosh τ − sin(τ + C2)]
3/2[sinh τ + cos(τ + C2)]

−1,

y = bC−2
1 [sinh τ + cos(τ + C2)]

−1,

where A = − 3
4a

8/3b4/3.
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◆ In the solutions of equations 44–51, the following notation is used:

E=exp(3τ), S1=E+C2 sin
(√

3 τ
)
, S2=2E−C2 sin

(√
3 τ
)
+
√
3C2 cos

(√
3 τ
)
,

S3=2S1(S2)
′
τ−(S1)

′
τS2−S1S2, S4=2S1(S3)

′
τ−5(S1)

′
τS3+S1S3.

44. y′′xx = Axy−1/2(y′x)
9/7.

Solution in parametric form:

x = aC1E
−1/6S

−1/2
1 S2, y = bC8

1E
−4/3S2

3 , where A = 7a−2b1/2
( a

64b

)2/7
.

45. y′′xx = Axy−13/8(y′x)
9/7.

Solution in parametric form:

x = aC25
1 E

−5/6S
−1/2
1 S4, y = bC32

1 E
−16/15S

8/5
3 , where A = 7a−2b13/8

( 25a

256b

)2/7
.

46. y′′xx = Ax−7/2y−1/2(y′x)
18/13.

Solution in parametric form:

x=aC−1
1 E1/15S−1

1 S
2/5
3 , y=bC25

1 E
−5/3S−1

1 S2
4 , where A=−208a5/2b1/2

( a

25b

)5/13
.

47. y′′xx = Ax−7/5y(y′x)
3.

Solution in parametric form:

x = aC5
1E

−5/6S
5/2
1 , y = bC4

1E
−2/3S3, where A = − 5

1024a
12/5b−3.

48. y′′xx = Ax−1/2y(y′x)
12/7.

Solution in parametric form:

x = aC8
1E

−4/3S2
3 , y = bC1E

−1/6S
−1/2
1 S2, where A = −7a1/2b−2

( b

64a

)2/7
.

49. y′′xx = Ax−7/5y−13/5(y′x)
3.

Solution in parametric form:

x = aC1E
−1/6S

5/2
1 S−1

3 , y = bC−4
1 E2/3S−1

3 , where A = − 5
1024 a

12/5b3/5.

50. y′′xx = Ax−13/8y(y′x)
12/7.

Solution in parametric form:

x= aC32
1 E

−16/15S
8/5
3 , y = bC25

1 E
−5/6S

−1/2
1 S4, where A=−7a13/8b−2

( 25b

256a

)2/7
.

51. y′′xx = Ax−1/2y−7/2(y′x)
21/13.

Solution in parametric form:

x= aC25
1 E

−5/3S−1
1 S2

4 , y= bC−1
1 E1/15S−1

1 S
2/5
3 , where A=208a1/2b5/2

( b

25a

)5/13
.
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◆ In the solutions of equations 52–61, the following notation is used:

T1 = cosh(τ + C2) cos τ, T2 = tanh(τ + C2) + tan τ, T3 = tanh(τ + C2)− tan τ,

θ1 = cosh τ − sin(τ + C2), θ2 = sinh τ + cos(τ + C2), θ3 = sinh τ − cos(τ + C2),

T4 = 3T2T3 − 4, θ4 = 3θ2θ3 − 2θ21.

52. y′′xx = Axy−10/7(y′x)
7/5.

1◦. Solution in parametric form with A < 0:

x = aC9
1T

3/2
1 T4, y = bC14

1 T
7/3
1 T

7/3
2 , where A = − 5

9
a−2b10/7

( 9a

28b

)2/5
.

2◦. Solution in parametric form with A > 0:

x = aC9
1θ

−1/2
1 θ4, y = bC14

1 θ
7/3
2 , where A =

5

9
a−2b10/7

( 9a

14b

)2/5
.

53. y′′xx = Ax−5/2y−1/2(y′x)
13/10.

Solution in parametric form:

x = aC−1
1 T

−1/3
1 T

2/3
2 , y = bC9

1T
3
1 T

2
4 , where A = −20a(ab)1/2

( a
9b

)3/10
.

54. y′′xx = Ax−10/7y(y′x)
8/5.

1◦. Solution in parametric form with A > 0:

x = aC14
1 T

7/3
1 T

7/3
2 , y = bC9

1T
3/2
1 T4, where A =

5

9
a10/7b−2

( 9b

28a

)2/5
.

2◦. Solution in parametric form with A < 0:

x = aC14
1 θ

7/3
2 , y = bC9

1θ
−1/2
1 θ4, where A = − 5

9
a10/7b−2

( 9b

14a

)2/5
.

55. y′′xx = Ax−1/2y−5/2(y′x)
17/10.

Solution in parametric form:

x = aC9
1T

3
1 T

2
4 , y = bC−1

1 T
−1/3
1 T

2/3
2 , where A = 20b(ab)1/2

( b

9a

)3/10
.

56. y′′xx = Ax−17/10y−13/10(y′x)
1/2.

Solution in parametric form:

x = −aC−9
1 T−3

1 (T4 + 3T 2
2 )

−1(T4 − 3T 2
2 )

−1,

y = −bC1T
1/3
1 T

10/3
2 (T4 + 3T 2

2 )
−1(T4 − 3T 2

2 )
−1,

where A =
1

540
a1/5b9/5.
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57. y′′xx = Ax−13/10y−17/10(y′x)
5/2.

Solution in parametric form:

x = −aC1T
1/3
1 T

10/3
2 (T4 + 3T 2

2 )
−1(T4 − 3T 2

2 )
−1,

y = −bC−9
1 T−3

1 (T4 + 3T 2
2 )

−1(T4 − 3T 2
2 )

−1,

where A = − 1

540
a9/5b1/5.

58. y′′xx = Ax2y−17/7(y′x)
16/13.

1◦. Solution in parametric form with A < 0:

x = −aC50
1 T

5/3
1 T

−1/3
2 T4,

y = −bC63
1 T

21/10
1 (T4 + 3T 2

2 )
7/10(T4 − 3T 2

2 )
7/10,

where A = − 13

63
25210/13a−36/13b200/91.

2◦. Solution in parametric form with A > 0:

x = −aC50
1 θ

−1/3
2 θ4,

y = bC63
1 θ

−7/10
1 (4θ41 + 9θ42 − 12θ21θ2θ3 + 9θ22θ

2
3)

7/10,

where A =
13

63
12610/13a−36/13b200/91.

59. y′′xx = Ax−17/7y2(y′x)
23/13.

1◦. Solution in parametric form with A > 0:

x = −aC63
1 T

21/10
1 (T4 + 3T 2

2 )
7/10(T4 − 3T 2

2 )
7/10,

y = −bC50
1 T

5/3
1 T

−1/3
2 T4,

where A =
13

63
25210/13a200/91b−36/13.

2◦. Solution in parametric form with A < 0:

x = aC63
1 θ

−7/10
1 (4θ41 + 9θ42 − 12θ21θ2θ3 + 9θ22θ

2
3)

7/10,

y = −bC50
1 θ

−1/3
2 θ4,

where A = − 13

63
12610/13a200/91b−36/13.

60. y′′xx = Ax−13/3y−2/3(y′x)
27/17.

1◦. Solution in parametric form with A > 0:

x = −aC−3
1 T

−1/10
1 T−1

2 (T4 + 3T 2
2 )

3/10(T4 − 3T 2
2 )

3/10,

y = bC50
1 T

5
1 T

−1
2 T 3

4 ,

where A = 102 · 23/17a200/51b4/51.
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2◦. Solution in parametric form with A < 0:

x = −aC−3
1 θ

−3/10
1 θ−1

2 (4θ41 + 9θ42 − 12θ21θ2θ3 + 9θ22θ
2
3)

3/10,

y = −bC50
1 θ

−1
2 θ34,

where A = −51 · 210/17a200/51b4/51.

61. y′′xx = Ax−2/3y−13/3(y′x)
24/17.

1◦. Solution in parametric form with A < 0:

x = aC50
1 T

5
1 T

−1
2 T 3

4 ,

y = −bC−3
1 T

−1/10
1 T−1

2 (T4 + 3T 2
2 )

3/10(T4 − 3T 2
2 )

3/10,

where A = −102 · 23/17a4/51b200/51.

2◦. Solution in parametric form with A > 0:

x = −aC50
1 θ

−1
2 θ34,

y = −bC−3
1 θ

−3/10
1 θ−1

2 (4θ41 + 9θ42 − 12θ21θ2θ3 + 9θ22θ
2
3)

3/10,

where A = 51 · 210/17a4/51b200/51.

◆ In the solutions of equations 62–113, the following notation is used:

R=
√
±(4τ3 − 1), F1 =2τI(τ)+C2τ∓R, F2 = τ−1(RF1−1), F3 =4τF 2

1 ∓F 2
2 ,

where I(τ) =

∫
τ dτ

R
is the incomplete elliptic integral of the second kind in the form of

Weierstrass.

62. y′′xx = Ax(y′x)
7/4.

Solution in parametric form:

x = aC−3
1 R, y = bC5

1τ
−1F1, where A = ∓ 2

3a
−2(∓6a/b)3/4.

63. y′′xx = Axy−1/2(y′x)
7/4.

Solution in parametric form:

x = aC−1
1 F2, y = bC5

1τ
2F−2

1 , where A = ∓ 2
3a

−2b1/2(±3a/b)3/4.

64. y′′xx = Ax−1/2y(y′x)
8/7.

Solution in parametric form:

x = aC−16
1 F 2

3 , y = bC5
1F

−3/2
1 F2, where A = ∓ 7

16
a−1/2b−1

( 16a
3b

)1/7
.

65. y′′xx = Ax−7/6y−1/2(y′x)
2/3.

Solution in parametric form:

x = aC5
1F

−3
1 F 6

3 , y = bC1F
−3
1 (F2F3 − 8F 2

1 )
2, where A = ∓4a−5/6b3/2(a/b)2/3.
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66. y′′xx = Ax−3/4y(y′x)
8/7.

Solution in parametric form:

x=aC−32
1 F−4

3 , y=bC3
1F

−3/2
1 (F2F3−8F 2

1 ), where A=∓ 7

32
a−1/4b−1

( 32a
3b

)1/7
.

67. y′′xx = Ax−4(y′x)
3.

Solution in parametric form:

x = aC2
1τ

−1, y = bC5
1τ

−1F1, where A = ±6a5b−2.

68. y′′xx = Ay(y′x)
5/4.

Solution in parametric form:

x = aC5
1τ

−1F1, y = bC−3
1 R, where A = ± 2

3 b
−2(∓6b/a)3/4.

69. y′′xx = Ax−4y(y′x)
3.

Solution in parametric form:

x = aC3
1F

−1
1 , y = bC5

1τF
−1
1 , where A = ±6a5b−3.

70. y′′xx = Ax−1/2y(y′x)
5/4.

Solution in parametric form:

x = aC5
1τ

2F−2
1 , y = bC−1

1 F2, where A = ± 2
3a

1/2b−2(±3b/a)3/4.

71. y′′xx = Ax−1/2y−4/3(y′x)
3.

Solution in parametric form:

x = aC4
1F

2
2 , y = bC9

1F
3
1 , where A = ∓ 4

3a
3/2b−2/3.

72. y′′xx = Ax−1/2y−7/6(y′x)
3.

Solution in parametric form:

x = aC5
1F

−3
1 F 2

2 , y = bC9
1F

−3
1 , where A = ∓ 4

3a
3/2b−5/6.

73. y′′xx = Axy−1/2(y′x)
13/7.

Solution in parametric form:

x = aC5
1F

−3/2
1 F2, y = bC−16

1 F 2
3 , where A = ± 7

16
a−1b−1/2

( 16b
3a

)1/7
.

74. y′′xx = Ax−7y(y′x)
3.

Solution in parametric form:

x = aC3
1F

1/2
1 , y = bC8

1F3, where A = ∓ 3
64a

8b−3.

75. y′′xx = Ax−7y3(y′x)
3.

Solution in parametric form:

x = aC5
1F

1/2
1 F−1

3 , y = bC8
1F

−1
3 , where A = ∓ 3

64a
8b−5.
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76. y′′xx = Ax−1/2y−7/6(y′x)
7/3.

Solution in parametric form:

x = aC1F
−3
1 (F2F3 − 8F 2

1 )
2, y = bC5

1F
−3
1 F 6

3 , where A = ±4a3/2b−5/6(b/a)2/3.

77. y′′xx = Axy−3/4(y′x)
13/7.

Solution in parametric form:

x=aC3
1F

−3/2
1 (F2F3−8F 2

1 ), y= bC−32
1 F−4

3 , where A=± 7

32
a−1b−1/4

( 32b
3a

)1/7
.

◆ In the solutions of equations 78–113, the following notation is used:

τ =

∫
d℘√

±(4℘3 − 1)
− C2, f =

√
±(4℘3 − 1).

The function ℘= ℘(τ) is defined implicitly. The upper sign in the formulas corresponds to

the classical elliptic Weierstrass function ℘ = ℘(τ +C2, 0, 1). The solutions given below

are written in parametric form. One can assume as the parameter either τ , hence ℘= ℘(τ),
or ℘, hence τ = τ(℘).

78. y′′xx = Ax(y′x)
5/2.

Solution in parametric form:

x = aC−3
1 f, y = bC1τ, where A = ∓ 2

b

(
± 6

ab

)1/2
.

79. y′′xx = Axy−5/4(y′x)
5/2.

Solution in parametric form:

x = aC−1
1 (τf − ℘), y = bC2

1τ
4, where A = − 1

2
a−1b1/4

(
± 3a

2b

)1/2
.

80. y′′xx = Ax−2/3y−1/2(y′x)
6/5.

Solution in parametric form:

x = aC9
1τ

−3℘3, y = bC4
1 (τf − ℘)2, where A = ± 5

3
a−1/3b1/2

( a
4b

)1/5
.

81. y′′xx = Axy−15/8(y′x)
5/2.

Solution in parametric form:

x = aC3
1τ

−6(τ3f + 3τ2℘∓ 1), y = bC4
1τ

−8, where A = 1
8a

−1b7/8(∓3a/b)1/2.

82. y′′xx = Ax−2/3y−1/2(y′x)
22/15.

Solution in parametric form:

x = aC−1
1 τ3(τ2℘∓ 1)

3
, y = bC4

1τ
−12(τ3f + 3τ2℘∓ 1)

2
,

where A = −5a−1/3b1/2
(
± a

4b

)7/15
.
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83. y′′xx = Axy−20/13(y′x)
5/2.

Solution in parametric form:

x = aC1τ(τ
3f − 4τ2℘± 6), y = bC13

1 τ
13, where A = ∓ 2

13
a−1b7/13

(
± 6a

13b

)1/2
.

84. y′′xx = Ax−2/3y−1/2(y′x)
27/20.

Solution in parametric form:

x = aC−9
1 τ−18(τ2℘∓ 1)

3
, y = bC1τ

2(τ3f − 4τ2℘± 6)
2
,

where A =
20

3
a−1/3b1/2

(
± a

4b

)7/20
.

85. y′′xx = Ax(y′x)
8/5.

Solution in parametric form:

x = aC−3
1 f, y = bC7

1℘
−2(f ± 2τ℘2), where A = ∓ 5

6a
−2(3a/b)3/5.

86. y′′xx = Axy(y′x)
8/5.

Solution in parametric form:

x = aC−8
1 (τf +2℘), y = bC7

1℘(f ± 2τ℘2)
−1/2

, where A = 10
3 a

−2b−1(3a/b)3/5.

87. y′′xx = Axy5(y′x)
7/5.

Solution in parametric form:

x = aC−27
1 (τ2℘∓ 1)(f ± 2τ℘2)

−1/2
, y = bC8

1 (τf + 2℘)−1/3,

where A = −10a−2b−5(a/b)2/5.

88. y′′xx = Ax−1/2y−5/2(y′x)
4/5.

Solution in parametric form:

x = aC27
1 (τ2℘∓ 1)

2
(f ± 2τ℘2)

−1
, y = bC7

1 (f ± 2τ℘2)
−1

(τf + 2℘)4/3,

where A = −5a−3/2b7/2
( a
2b

)4/5
.

89. y′′xx = Ax2(y′x)
3.

Solution in parametric form:

x = aC2
1℘, y = bC−1

1 τ, where A = ∓6a−1b−2.

90. y′′xx = Ay(y′x)
1/2.

Solution in parametric form:

x = aC1τ, y = bC−3
1 f, where A = ± 2

a

(
± 6

ab

)1/2
.
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91. y′′xx = Ax2y−5(y′x)
3.

Solution in parametric form:

x = aC3
1τ

−1℘, y = bC1τ
−1, where A = ∓6a−1b3.

92. y′′xx = Ax−5/4y(y′x)
1/2.

Solution in parametric form:

x = aC2
1τ

4, y = bC−1
1 (τf − ℘), where A =

1

2
a1/4b−1

(
± 3b

2a

)1/2
.

93. y′′xx = Ax−1/2y−2/3(y′x)
9/5.

Solution in parametric form:

x = aC4
1 (τf − ℘)2, y = bC9

1τ
−3℘3, where A = ∓ 5

3
a1/2b−1/3

( b

4a

)1/5
.

94. y′′xx = Ax2y−15/7(y′x)
3.

Solution in parametric form:

x = aC1τ(τ
2℘∓ 1), y = bC7

1τ
7, where A = ∓ 6

49a
−1b1/7.

95. y′′xx = Ax−15/8y(y′x)
1/2.

Solution in parametric form:

x = aC4
1τ

−8, y = bC3
1τ

−6(τ3f + 3τ2℘∓ 1), where A = − 1
8a

7/8b−1(∓3b/a)1/2.

96. y′′xx = Ax−1/2y−2/3(y′x)
23/15.

Solution in parametric form:

x = aC4
1τ

−12(τ3f + 3τ2℘∓ 1)
2
, y = bC−1

1 τ3(τ2℘∓ 1)
3
,

where A = 5a1/2b−1/3
(
± b

4a

)7/15
.

97. y′′xx = Ax2y−20/7(y′x)
3.

Solution in parametric form:

x = aC6
1τ

−6(τ2℘∓ 1), y = bC7
1τ

−7, where A = ∓ 6
49a

−1b6/7.

98. y′′xx = Ax−20/13y(y′x)
1/2.

Solution in parametric form:

x= aC13
1 τ

13, y = bC1τ(τ
3f − 4τ2℘± 6), where A=± 2

13
a7/13b−1

(
± 6b

13a

)1/2
.

99. y′′xx = Ax−1/2y−2/3(y′x)
33/20.

Solution in parametric form:

x = aC1τ
2(τ3f − 4τ2℘± 6)

2
, y = bC−9

1 τ−18(τ2℘∓ 1)
3
,

where A = − 20

3
a1/2b−1/3

(
± b

4a

)7/20
.
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100. y′′xx = Ax−5/2(y′x)
3.

Solution in parametric form:

x = aC4
1℘

−2, y = bC7
1℘

−2(f ± 2τ℘2), where A = ±3a7/2b−2.

101. y′′xx = Ay(y′x)
7/5.

Solution in parametric form:

x = aC7
1℘

−2(f ± 2τ℘2), y = bC−3
1 f, where A = ± 5

6 b
−2(3b/a)3/5.

102. y′′xx = Ax−5/2y−1/2(y′x)
3.

Solution in parametric form:

x = aC3
1 (f ± 2τ℘2)

−1
, y = bC7

1℘
2(f ± 2τ℘2)

−1
, where A = ±3a7/2b−3/2.

103. y′′xx = Axy(y′x)
7/5.

Solution in parametric form:

x= aC7
1℘(f ± 2τ℘2)

−1/2
, y= bC−8

1 (τf+2℘), where A=− 10
3 a

−1b−2(3b/a)3/5.

104. y′′xx = Ax−5/3y−1/2(y′x)
3.

Solution in parametric form:

x = aC9
1 (f ± 2τ℘2)

3/2
, y = bC16

1 (τf + 2℘)2, where A = 1
6a

8/3b−3/2.

105. y′′xx = Ax−5/3y−5/6(y′x)
3.

Solution in parametric form:

x=aC7
1 (f ± 2τ℘2)

3/2
(τf + 2℘)−2, y=bC16

1 (τf + 2℘)−2, where A= 1
6a

8/3b−7/6.

106. y′′xx = Ax5y(y′x)
8/5.

Solution in parametric form:

x = aC8
1 (τf + 2℘)−1/3, y = bC−27

1 (τ2℘∓ 1)(f ± 2τ℘2)
−1/2

,

where A = 10a−5b−2(b/a)2/5.

107. y′′xx = Ax−5/2y−1/2(y′x)
11/5.

Solution in parametric form:

x = aC7
1 (f ± 2τ℘2)

−1
(τf + 2℘)4/3, y = bC27

1 (τ2℘∓ 1)
2
(f ± 2τ℘2)

−1
,

where A = 5a7/2b−3/2
( b

2a

)4/5
.

108. y′′xx = Ax−4/5y−11/5(y′x)
1/2.

Solution in parametric form:

x = aC−27
1

[
2(τ2℘+ 1)f + 8τ℘− τ3

]−1
,

y = bC−7
1 (τf + 2℘)5/3

[
2(τ2℘+ 1)f + 8τ℘2 − τ3

]−1
,

where A = − 2
√
2

5
a−7/10b27/10.
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109. y′′xx = Ax−11/5y−4/5(y′x)
5/2.

Solution in parametric form:

x = aC−7
1 (τf + 2℘)5/3

[
2(τ2℘+ 1)f + 8τ℘2 − τ3

]−1
,

y = bC−27
1

[
2(τ2℘+ 1)℘′ + 8τ℘− τ3

]−1
,

where A =
2
√
2

5
a27/10b−7/10.

110. y′′xx = Ax2y4(y′x)
17/11.

Solution in parametric form:

x = aC50
1 (τ2℘− 1)(τf + 2℘)−2/3,

y = bC−27
1

[
2(τ2℘+ 1)f + 8τ℘2 − τ3

]−1/5
,

where A = −22a−27/11b−50/11.

111. y′′xx = Ax4y2(y′x)
16/11.

Solution in parametric form:

x = aC−27
1

[
2(τ2℘+ 1)f + 8τ℘2 − τ3

]−1/5
,

y = bC50
1 (τ2℘− 1)(τf + 2℘)−2/3,

where A = 22a−50/11b−27/11.

112. y′′xx = Ax−11/6y−2/3(y′x)
9/4.

Solution in parametric form:

x = aC21
1 (τf + 2℘)−2

[
2(τ2℘+ 1)f + 8τ℘2 − τ3

]6/5
,

y = bC75
1 (τ2℘− 1)3(τf + 2℘)−2,

where A =
4
√
2

3
a425/132b−7/12.

113. y′′xx = Ax−2/3y−11/6(y′x)
3/4.

Solution in parametric form:

x = aC75
1 (τ2℘− 1)3(τf + 2℘)−2,

y = bC21
1 (τf + 2℘)−2

[
2(τ2℘+ 1)f + 8τ℘2 − τ3

]6/5
,

where A = − 4
√
2

3
a−7/12b425/132.

◆ In the solutions of equations 114 and 115, the following notation is used:

Z =

{
C1Jν(τ) + C2Yν(τ) for the upper sign,

C1Iν(τ) + C2Kν(τ) the lower sign,

where Jν(τ) and Yν(τ) are Bessel functions, and Iν(τ) and Kν(τ) are modified Bessel

functions.
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114. y′′xx = Axym(y′x)
3.

Solution in parametric form with m 6= −2:

x = τνZ, y = bτ2ν , where ν =
1

m+ 2
, A = ±

(m+ 2

2b

)2
.

For the case m = −2, see equation 14.5.2.28.

115. y′′xx = Ax−1/2y−1/2(y′x)
l.

Solution in parametric form with l 6= 3/2:

x = aτ2νZ2, y = bτ−2ν(τZ ′
τ + νZ)2,

where ν =
1− l
3− 2l

, A =
1

3− 2l

(
∓ b
a

) 3
2−l

.

For the case l = 3/2, see equation 14.5.2.29.

◆ In the solutions of equations 116–124, the following notation is used:

Z =

{
C1J1/3(τ) + C2Y1/3(τ) for the upper sign,

C1I1/3(τ) + C2K1/3(τ) for the lower sign,

U1 = τZ ′
τ +

1
3Z, U2 = U2

1 ± τ2Z2, U3 = ± 2
3 τ

2Z3 − 2U1U2,

where J1/3(τ) and Y1/3(τ) are Bessel functions, and I1/3(τ) and K1/3(τ) are modified

Bessel functions.

116. y′′xx = Axy−1/2(y′x)
3/2.

Solution in parametric form:

x = aτ−2/3Z−1U1, y = τ−4/3U2
2 , where A = − 2

a

(
∓ 3

a

)1/2
.

117. y′′xx = Axy−2(y′x)
3/2.

Solution in parametric form:

x = aτ−4/3Z−1U3, y = bτ−2/3U2, where A = −a−2b(±3ab)1/2.

118. y′′xx = Ax−2y−1/2(y′x)
3/2.

Solution in parametric form:

x = aτ−4/3Z−2U2, y = τ−8/3Z−2U2
3 , where A = ± 2

3a
3/2.

119. y′′xx = Ax−1/2y−2(y′x)
3.

Solution in parametric form:

x = aτ−4/3Z−2U2
1 , y = bτ−2/3Z−2, where A = ± 1

3a
3/2.

120. y′′xx = Ax−2y(y′x)
3.

Solution in parametric form:

x = aτ2/3Z2, y = bτ−2/3U2, where A = 9
2 (a/b)

3.
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121. y′′xx = Ax−1/2y(y′x)
3/2.

Solution in parametric form:

x = τ−4/3U2
2 , y = bτ−2/3Z−1U1, where A =

2

b

(
∓ 3

b

)1/2
.

122. y′′xx = Ax−2y−2(y′x)
3.

Solution in parametric form:

x = aτ4/3Z2U−1
2 , y = τ2/3Z−1U−1

2 , where A = 9
2a

3.

123. y′′xx = Ax−2y(y′x)
3/2.

Solution in parametric form:

x = aτ−2/3U2, y = bτ−4/3Z−1U3, where A = ab−2
(
±3ab

)1/2
.

124. y′′xx = Ax−1/2y−2(y′x)
3/2.

Solution in parametric form:

x = τ−8/3Z−2U2
3 , y = bτ−4/3Z−2U2, where A = ∓ 2

3 b
3/2.

125. y′′xx = Axny−n−3(y′x)
3n+4
2n+3 .

In the books by Zaitsev & Polyanin (1993, 1994) it was shown that this equation is reducible

to a Riccati equation whose solution is expressed in terms of associated Legendre functions.

14.5.3 Some Formulas and Transformations

◮ Symbolic notation. A particular solution.

For the sake of visualization, we use the symbolic notation

{n, m, l}

to denote the generalized Emden–Fowler equation

y′′xx = Axnym(y′x)
l.

Hereinafter we omit the insignificant parameter A (which can be reduced to ±1 by scaling

the variables in accordance with the rule x→ ax, y→ by, selecting appropriate constants

a and b).

If m+ l 6= 1, the generalized Emden–Fowler equation has a particular solution:

y = Bx
n+2−l
1−m−l , where B =

( n+ 2− l
1−m− l

) 1−l
m+l−1

[ n+m+ 1

A(1 −m− l)
] 1
m+l−1

.
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◮ Discrete transformations of the generalized Emden–Fowler equation.

1◦. Taking y as the independent variable and x as the dependent one, we obtain a general-

ized Emden–Fowler equation for x = x(y) with changed parameters:

x′′yy = −Aymxn(x′y)
3−l
.

Denote this transformation by F and represent it as follows:

{n, m, l} ← − − → {m, n, 3− l} transformation F .
The twofold transformation F yields the original equation.

2◦. For m 6= 0, n 6= −1, l 6= 1, the transformation t = (y′x)
1−l, w = xn+1 leads to a

generalized Emden–Fowler equation for x = x(y) with changed parameters:

w′′
tt = Bt

1
1−lw

− n
n+1 (w′

t)
2m+1
m ,

where B = − m

n+ 1

[A(1− l)
n+ 1

] 1
m

. Denote this transformation by G and represent it as

follows:

{n, m, l} 7−−−−−−→
{ 1

1−l , −
n

n+1
,
2m+1

m

}
transformation G.

The threefold transformation G yields the original equation.

Whenever the solution of the transformed equation is obtained in the form w = w(t),
the solution of the original equation can be written in parametric form as:

x = w
1

n+1 , y = k(w′
t)
− 1

m , where k =
[ n+ 1

A(1− l)
] 1
m
.

Different compositions of the transformations F and G generate six different gen-

eralized Emden–Fowler equations, whose parameters are shown in Figure 10.1 (see Sec-

tion 10.2.2).

3◦. In the special case l = 0, the transformation y = w/t, x = 1/t leads to an Emden–

Fowler equation with the independent variable raised to a different power:

w′′
tt = At−n−m−3wm.

Denote this transformation by H and represent it as follows:

{n, m, 0} ←−−−−−→ {−n−m− 3, m, 0} transformation H.
If l = 0, different compositions of the transformations F , G, and H generate 12

different generalized Emden–Fowler equations, whose parameters are shown in Figure 10.2

(see Section 10.2.2).

If l = 0 and n = 1, different compositions of the transformations F , G, and H gener-

ate 24 different generalized Emden–Fowler equations, whose parameters are presented in

Figure 10.3 (see Section 10.2.2).

4◦. In the special case n+m+ 3 = 0, the contact transformation t = y − xy′x, w = −y′x
leads to a generalized Emden–Fowler equation for w = w(t) with changed parameters:

{−m−3, m, l} 7−−−−−−→
{
−l, l−3, m+3

}
transformation Q.

If n+m+3= 0, different compositions of the transformations F , G, and Q generate

18 different generalized Emden–Fowler equations (see Section 12.3).
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◮ Reduction of the generalized Emden–Fowler equation to an Abel equation.

The transformation

z =
x

y
y′x, v = Axn−l+2ym+l−1

reduces the generalized Emden–Fowler equation to the equation

(zlv − z2 + z)v′z = [(m+ l − 1)z + n− l + 2]v.

Furthermore, using the substitution ξ = v − z2−l + z1−l, we obtain an Abel equation of

the second kind:

ξξ′z = [(m+2l−3)z+n−2l+3]z−lξ+[(m+l−1)z2+(n−m−2l+3)z−n+l−2]z1−2l.

14.6 Equations of the Form

y′′
xx = A1x

n1ym1(y′
x)
l1 + A2x

n2ym2(y′
x)
l2

14.6.1 Modified Emden–Fowler Equation y′′

xx = A1x
−1y′

x +A2x
nym

◮ Preliminary remarks. Classification table.

For the sake of clarity, below in this subsection we use the conventional notation

xy′′xx − ky′x = Axn+1ym

for the modified Emden–Fowler equation. For k = 0, see Section 14.3. For k 6= −1, the

substitution z = xk+1 leads to the Emden–Fowler equation:

y′′zz =
A

(k + 1)2
z
n−2k
k+1 ym,

which is discussed in Section 14.3.

The classification Table 14.8 represents all solvable equations whose solutions are out-

lined in Section 14.6.1. Equations are arranged in accordance with the growth of param-

eter m. The number of the equation sought is indicated in the last column in this table.

TABLE 14.8

Solvable cases of the modified Emden–Fowler equation xy′′xx − ky′x = Axn+1ym

No m n k Equation

1
arbitrary

(m 6= −1)
arbitrary

(n 6= −2)
1
2n 14.6.1.1

2
arbitrary

(m 6= −1)
arbitrary

(n 6= −2) −n+m+ 3

m+ 1
14.6.1.2

3
arbitrary

(m 6= −1)
arbitrary

(n 6= −2)
2n+m+ 3

1−m 14.6.1.3

4
arbitrary

(m 6= −1) −2 −1 14.6.1.6
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TABLE 14.8 (Continued)

Solvable cases of the modified Emden–Fowler equation xy′′xx − ky′x = Axn+1ym

No m n k Equation

5 −7 arbitrary

(n 6= −2)
1
3 (n− 1) 14.6.1.45

6 −7 arbitrary

(n 6= −2)
1
5 (n− 3) 14.6.1.46

7 −4 arbitrary

(n 6= −2)
1
2n 14.6.1.40

8 −4 arbitrary

(n 6= −2)
1
3 (n− 1) 14.6.1.42

9 −4 −2 −1 14.6.1.41

10 −2 arbitrary

(n 6= −2)
1
3 (n− 1) 14.6.1.28

11 −2 −2 arbitrary

(k 6= −1) 14.6.1.29

12 − 5
2

arbitrary

(n 6= −2)
1
2n 14.6.1.35

13 − 5
2

arbitrary

(n 6= −2)
1
3 (2n + 1) 14.6.1.37

14 − 5
2 −2 −1 14.6.1.36

15 − 5
3

arbitrary

(n 6= −2) −3n− 7 14.6.1.14

16 − 5
3

arbitrary

(n 6= −2)
1
2n 14.6.1.8

17 − 5
3

arbitrary

(n 6= −2)
1
2 (3n + 4) 14.6.1.9

18 − 5
3

arbitrary

(n 6= −2)
1
3 (n− 1) 14.6.1.13

19 − 5
3

arbitrary

(n 6= −2)
1
3 (2n + 1) 14.6.1.38

20 − 5
3

arbitrary

(n 6= −2)
1
4 (n− 2) 14.6.1.18

21 − 5
3

arbitrary

(n 6= −2) − 1
4 (3n + 10) 14.6.1.19

22 − 5
3

arbitrary

(n 6= −2)
1
7 (6n + 5) 14.6.1.39

23 − 5
3 −2 −1 14.6.1.22

24 − 7
5

arbitrary

(n 6= −2)
1
3 (n− 1) 14.6.1.24

25 − 7
5

arbitrary

(n 6= −2) − 1
3 (5n + 13) 14.6.1.25
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TABLE 14.8 (Continued)

Solvable cases of the modified Emden–Fowler equation xy′′xx − ky′x = Axn+1ym

No m n k Equation

26 −1 arbitrary

(n 6= −2) n+ 1 14.6.1.5

27 −1 arbitrary

(n 6= −2)
1
2n 14.6.1.4

28 −1 −2 arbitrary

(k 6= −1) 14.6.1.7

29 −1 −2 −1 14.6.1.20

30 − 1
2

arbitrary

(n 6= −2) −2n− 5 14.6.1.12

31 − 1
2

arbitrary

(n 6= −2)
1
2n 14.6.1.11

32 − 1
2

arbitrary

(n 6= −2)
1
2 (3n + 4) 14.6.1.43

33 − 1
2

arbitrary

(n 6= −2)
1
3 (n− 1) 14.6.1.16

34 − 1
2

arbitrary

(n 6= −2)
1
3 (2n + 1) 14.6.1.26

35 − 1
2

arbitrary

(n 6= −2) − 1
3 (2n+ 7) 14.6.1.17

36 − 1
2

arbitrary

(n 6= −2)
1
5 (6n + 7) 14.6.1.44

37 − 1
2 −2 arbitrary

(k 6= −1) 14.6.1.27

38 − 1
2 −2 −1 14.6.1.21

39 1
2

arbitrary

(n 6= −2)
1
2n 14.6.1.15

40 1
2

arbitrary

(n 6= −2) − 1
3 (2n+ 7) 14.6.1.10

41 1
2 −2 −1 14.6.1.23

42 2
arbitrary

(n 6= −2) −7n− 15 14.6.1.33

43 2
arbitrary

(n 6= −2)
1
2n 14.6.1.30

44 2
arbitrary

(n 6= −2) − 1
3 (n + 5) 14.6.1.32

45 2
arbitrary

(n 6= −2) − 1
6 (7n + 20) 14.6.1.34

46 2 −2 −1 14.6.1.31
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◮ Solvable equations and their solutions.

1. xy′′xx − 1
2
ny′x = Axn+1ym, m 6= −1, n 6= −2.

Solution in parametric form:

x = aC1−m
1

[∫
(1± τm+1)−1/2 dτ +C2

] 2
n+2

, y = bCn+2
1 τ,

where A = ± 1
8 (m+ 1)(n + 2)2a−n−2b1−m.

2. xy′′xx +
n+m+ 3

m+ 1
y′x = Axn+1ym, m 6= −1, n 6= −2.

Solution in parametric form:

x=aC1−m
1

[∫
(1±τm+1)

−1/2
dτ+C2

]m+1
n+2

, y=bCn+2
1 τ

[∫
(1±τm+1)

−1/2
dτ+C2

]−1
,

where A = ± (n+ 2)2

2(m+ 1)
a−n−2b1−m.

3. xy′′xx +
2n+m+ 3

m− 1
y′x = Axn+1ym, m 6= −1, n 6= −2.

Solution in parametric form:

x = exp
[ 1−m
n+ 2

C2

∫ (
C1 +

1

4
τ2 +

2B

m+ 1
τm+1

)−1/2
dτ
]
,

y = τ exp
[
C2

∫ (
C1 +

1

4
τ2 +

2B

m+ 1
τm+1

)−1/2
dτ
]
,

where A =
4(n + 2)2

(m− 1)2
B.

4. xy′′xx − 1
2
ny′x = Axn+1y−1, n 6= −2.

Solution in parametric form:

x = aC2
1

[∫
exp(∓τ2) dτ + C2

] 2
n+2

, y = bCn+2
1 exp(∓τ2),

where A = ∓ 1
2 (n+ 2)2a−n−2b2.

5. xy′′xx − (n+ 1)y′x = Axn+1y−1, n 6= −2.

Solution in parametric form:

x = exp
{ 2C2

n+ 2

∫ [
C1 +

1

4
τ2 +

2A

(n+ 2)2
ln |τ |

]−1/2
dτ
}
,

y = τ exp
{
C2

∫ [
C1 +

1

4
τ2 +

2A

(n+ 2)2
ln |τ |

]−1/2
dτ
}
.

6. xy′′xx + y′x = Ax−1ym, m 6= −1.

Solution in parametric form:

x = C2 exp
[∫

(C1 ± τm+1)−1/2 dτ
]
, y = bτ, where A = ± 1

2 b
1−m(m+ 1).
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7. xy′′xx − ky′x = Ax−1y−1, k 6= −1.

Solution in parametric form:

x =
{∫ [ 2A

(k + 1)2
ln τ + C1

]−1/2
dτ + C2

}− 1
k+1

,

y = τ
{∫ [ 2A

(k + 1)2
ln τ + C1

]−1/2
dτ + C2

}−1
.

8. xy′′xx − 1
2
ny′x = Axn+1y−5/3, n 6= −2.

Solution in parametric form:

x = aC8
1 (τ

3 ± 3τ +C2)
2

n+2 , y = bC3n+6
1 (τ2 ± 1)

3/2
,

where A = ± 1
12a

−n−2b8/3(n+ 2)2.

9. xy′′xx − 1
2
(3n+ 4)y′x = Axn+1y−5/3, n 6= −2.

Solution in parametric form:

x = aC8
1 (τ

3 ± 3τ + C2)
− 2

3n+6 , y = bC3n+6
1 (τ2 ± 1)

3/2
(τ3 ± 3τ + C2)

−1
,

where A = ± 3
4a

−n−2b8/3(n+ 2)2.

10. xy′′xx + 1
3
(2n+ 7)y′x = Axn+1y1/2, n 6= −2.

Solution in parametric form:

x = aC1

[∫ τ dτ√
±(4τ3 − 1)

+ C2

] 3
2n+4

, y = bC2n+4
1 τ2

[∫ τ dτ√
±(4τ3 − 1)

+ C2

]−1
,

where A = ± 16
3 a

−n−2b1/2(n+ 2)2.

11. xy′′xx − 1
2
ny′x = Axn+1y−1/2, n 6= −2.

Solution in parametric form:

x = aC3
1 (τ

3 − 3τ + C2)
2

n+2 , y = bC2n+4
1 (τ2 − 1)

2
,

where A = ± 1
9 (n+ 2)2a−n−2b3/2.

12. xy′′xx + (2n+ 5)y′x = Axn+1y−1/2, n 6= −2.

Solution in parametric form:

x = aC3
1 (τ

3 − 3τ +C2)
1

2n+4 , y = bC2n+4
1 (τ2 − 1)

2
(τ3 − 3τ + C2)

−1
,

where A = ± 16
9 (n+ 2)2a−n−2b3/2.

13. xy′′xx − 1
3
(n− 1)y′x = Axn+1y−5/3, n 6= −2.

Solution in parametric form:

x = aC8
1

[
±(τ4 − 6τ2 + 4C2τ − 3)

] 3
n+2 , y = bC3n+6

1 (τ3 − 3τ + C2)
3/2
,

where A = ± 1
64 (n+ 2)2a−n−2b8/3.
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14. xy′′xx + (3n+ 7)y′x = Axn+1y−5/3, n 6= −2.

Solution in parametric form:

x = aC8
1

[
±(τ4 − 6τ2 + 4C2τ − 3)

] 1
3n+6 ,

y = ±bC3n+6
1 (τ3 − 3τ + C2)

3/2
(τ4 − 6τ2 + 4C2τ − 3)

−1
,

where A = ± 81
64 (n+ 2)2a−n−2b8/3.

15. xy′′xx − 1
2
ny′x = Axn+1y1/2, n 6= −2.

Solution in parametric form:

x = aC1

[∫ τ dτ√
±(4τ3 − 1)

+C2

] 2
n+2

, y = bC2n+4
1 τ2,

where A = ±3a−n−2b1/2(n + 2)2.

16. xy′′xx − 1
3
(n− 1)y′x = Axn+1y−1/2, n 6= −2.

Solution in parametric form:

x =
[
C1e

2sτ + C2e
−sτ sin

(√
3 sτ

)] 3
n+2 ,

y =
{
2C1se

2sτ +C2se
−sτ
[√

3 cos
(√

3 sτ
)
− sin(

√
3 sτ)

]}2
,

where A = 16
9 s

3(n+ 2)2.

17. xy′′xx + 1
3
(2n+ 7)y′x = Axn+1y−1/2, n 6= −2.

Solution in parametric form:

x =
[
C1e

2sτ + C2e
−sτ sin

(√
3 sτ

)] 3
2n+4 ,

y =

{
2C1se

2sτ + C2se
−sτ
[√

3 cos
(√

3 sτ
)
− sin

(√
3 sτ

)]}2

C1e2sτ + C2e−sτ sin
(√

3 sτ
) ,

where A = 64
9 s

3(n+ 2)2.

18. xy′′xx − 1
4
(n− 2)y′x = Axn+1y−5/3, n 6= −2.

1◦. Solution in parametric form with A < 0:

x = aC8
1

[
cosh(τ + C2) cos τ

] 4
n+2

[
tanh(τ + C2) + tan τ

] 4
n+2 ,

y = bC3n+6
1

[
cosh(τ + C2) cos τ

]3/2
,

where A = − 3
256 a

−n−2b8/3(n+ 2)2.

2◦. Solution in parametric form with A > 0:

x = aC8
1

[
sinh τ + cos(τ + C2)

] 4
n+2 , y = bC3n+6

1

[
cosh τ − sin(τ +C2)

]3/2
,

where A = 3
64 a

−n−2b8/3(n+ 2)2.
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19. xy′′xx + 1
4
(3n+ 10)y′x = Axn+1y−5/3, n 6= −2.

1◦. Solution in parametric form with A < 0:

x = aC8
1

[
cosh(τ + C2) cos τ

] 4
3n+6

[
tanh(τ + C2) + tan τ

] 4
3n+6 ,

y = bC3n+6
1

[
cosh(τ + C2) cos τ

]1/2[
tanh(τ +C2) + tan τ

]−1
,

where A = − 27
256 a

−n−2b8/3(n+ 2)2.

2◦. Solution in parametric form with A > 0:

x = aC8
1

[
sinh τ + cos(τ + C2)

] 4
3n+6 ,

y = bC3n+6
1

[
cosh τ − sin(τ + C2)

]3/2[
sinh τ + cos(τ + C2)

]−1
,

where A = 27
64 a

−n−2b8/3(n+ 2)2.

20. xy′′xx + y′x = Ax−1y−1.

Solution in parametric form:

x = C2 exp
[∫

(2A ln |τ |+C1)
−1/2 dτ

]
, y = τ.

21. xy′′xx + y′x = Ax−1y−1/2.

Solution in parametric form:

x = exp(±τ3 − 3C1τ + C2), y = b(±τ2 − C1)
2
, where A = ± 4

9 b
3/2.

22. xy′′xx + y′x = Ax−1y−5/3.

Solution in parametric form:

x = exp(C1τ
3 ± 3τ + C2), y = (±3A/C1)

3/8(C1τ
2 ± 1)

3/2
.

23. xy′′xx + y′x = Ax−1y1/2.

Solution in parametric form:

x = C1 exp
[∫ τ dτ√

±(4τ3 − C1)

]
, y = bτ2, where A = ±12 b1/2.

◆ In the solutions of equations 24 and 25, the following notation is used:

S1 = C1e
2sτ +C2e

−sτ sin
(√

3 sτ
)
,

S2 = 2C1se
2sτ +C2se

−sτ
[√

3 cos
(√

3 sτ
)
− sin

(√
3 sτ

)]
,

S3 = S2
2 − 2S1(S2)

′
τ .

24. xy′′xx − 1
3
(n− 1)y′x = Axn+1y−7/5, n 6= −2.

Solution in parametric form:

x = aS
3

n+2
3 , y = bS

5/2
1 , where A = − 5

9216a
−n−2b12/5s−6(n+ 2)2.
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25. xy′′xx + 1
3
(5n+ 13)y′x = Axn+1y−7/5, n 6= −2.

Solution in parametric form:

x = aS
3

5n+10
3 , y = bS

5/2
1 S−1

3 , where A = − 125
9216a

−n−2b12/5s−6(n+ 2)2.

◆ In the solutions of equations 26–29, the following notation is used:

Z =

{
C1J1/3(τ) + C2Y1/3(τ) for the upper sign,

C1I1/3(τ) + C2K1/3(τ) for the lower sign,

where J1/3(τ) and Y1/3(τ) are Bessel functions, and I1/3(τ) and K1/3(τ) are modified

Bessel functions.

26. xy′′xx − 1
3
(2n+ 1)y′x = Axn+1y−1/2, n 6= −2.

Solution in parametric form:

x = aC3
1τ

1
n+2Z

3
n+2 , y = bC2n+4

1 τ−2/3(τZ ′
τ +

1
3Z)

2,

where A = ∓ 4
27a

−n−2b3/2(n+ 2)2.

27. xy′′xx − ky′x = Ax−1y−1/2, k 6= −1.

Solution in parametric form:

x = C1(τ
1/3Z)

− 2
k+1 , y = bτ−4/3Z−2(τZ ′

τ +
1
3Z)

2, where A = ∓ 1
3 b

3/2(k+1)2.

28. xy′′xx − 1
3
(n− 1)y′x = Axn+1y−2, n 6= −2.

Solution in parametric form:

x = aC3
1τ

− 2
n+2

[
(τZ ′

τ +
1
3Z)

2 ± τ2Z2
] 3
n+2 , y = bCn+2

1 τ2/3Z2,

where A = − 1
2a

−n−2b3(n+ 2)2.

29. xy′′xx − ky′x = Ax−1y−2, k 6= −1.

Solution in parametric form:

x = C1τ
2

3k+3
[
(τZ ′

τ +
1
3Z)

2 ± τ2Z2
]− 1

k+1 , y = bτ4/3Z2
[
(τZ ′

τ +
1
3Z)

2 ± τ2Z2
]−1

,

where A = − 9
2 b

3(k + 1)2.

◆ In the solutions of equations 30–39, the following notation is used:

τ =

∫
d℘√

±(4℘3 − 1)
− C2, f =

√
±(4℘3 − 1).

The function ℘ is defined implicitly by a first integral; the upper sign in the formulas cor-

responds to the classical Weierstrass elliptic function ℘ = ℘(τ + C2, 0, 1).



“K16435’ — 2017/9/28 — 15:05 — #712

686 SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS

30. xy′′xx − 1
2
ny′x = Axn+1y2, n 6= −2.

Solution in parametric form:

x = aC−1
1 τ

2
n+2 , y = bCn+2

1 ℘, where A = ± 3
2a

−n−2b−1(n+ 2)2.

31. xy′′xx + y′x = Ax−1y2.

Solution in parametric form:

x = C2e
τ , y = b℘(τ, 0, C1),

where A = ±6b−1, and the elliptic Weierstrass function ℘ = ℘(τ, 0, C1) is defined im-

plicitly by the integral τ =

∫ ℘

∞
(4z3 − C1)

−1/2
dz.

32. xy′′xx + 1
3
(n+ 5)y′x = Axn+1y2, n 6= −2.

Solution in parametric form:

x = aC−1
1 τ

3
n+2 , y = bCn+2

1 τ−1℘, where A = ± 2
3a

−n−2b−1(n+ 2)2.

33. xy′′xx + (7n+ 15)y′x = Axn+1y2, n 6= −2.

Solution in parametric form:

x = aC−1
1 τ

− 1
n+2 , y = bCn+2

1 τ(τ2℘∓ 1), where A = ±6a−n−2b−1(n+ 2)2.

34. xy′′xx + 1
6
(7n+ 20)y′x = Axn+1y2, n 6= −2.

Solution in parametric form:

x = aC−1
1 τ

6
7(n+2) , y = bCn+2

1 τ−6(τ2℘∓ 1), where A = ± 1
6a

−n−2b−1(n+ 2)2.

35. xy′′xx − 1
2
ny′x = Axn+1y−5/2, n 6= −2.

Solution in parametric form:

x=aC7
1℘

− 4
n+2 (f ± 2τ℘2)

2
n+2 , y=bC2n+4

1 ℘−2, where A=∓ 3
4a

−n−2b7/2(n+2)2.

36. xy′′xx + y′x = Ax−1y−5/2.

Solution in parametric form:

x = C2 exp[℘
−2(f ± 2τ℘2)], y = b℘−2,

where A = ∓3b7/2, and the elliptic Weierstrass function ℘ = ℘(τ, 0, C1) is defined

implicitly by the integral τ =

∫ ℘

∞
(4z3 − C1)

−1/2
dz.

37. xy′′xx − 1
3
(2n+ 1)y′x = Axn+1y−5/2, n 6= −2.

Solution in parametric form:

x = aC7
1℘

3
n+2 (f ± 2τ℘2)

− 3
2n+4 , y = bC2n+4

1 (f ± 2τ℘2)
−1
,

where A = ∓ 4
3a

−n−2b7/2(n+ 2)2.
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38. xy′′xx − 1
3
(2n+ 1)y′x = Axn+1y−5/3, n 6= −2.

Solution in parametric form:

x = aC8
1 (τf + 2℘)

3
n+2 , y = bC3n+6

1 (f ± 2τ℘2)
3/2
,

where A = − 2
27a

−n−2b8/3(n+ 2)2.

39. xy′′xx − 1
7
(6n+ 5)y′x = Axn+1y−5/3, n 6= −2.

Solution in parametric form:

x = aC8
1 (τf + 2℘)

− 7
3n+6 , y = bC3n+6

1 (f ± 2τ℘2)
3/2

(τf + 2℘)−2,

where A = − 6
49a

−n−2b8/3(n+ 2)2.

◆ In the solutions of equations 40–46, the following notation is used:

R =
√
±(4τ3 − 1), F1 = 2τI(τ) + C2τ ∓R, F2 = τ−1(RF1 − 1),

where I(τ) =

∫
τ dτ

R
is the incomplete elliptic integral of the second kind in the Weier-

strass form.

40. xy′′xx − 1
2
ny′x = Axn+1y−4, n 6= −2.

Solution in parametric form:

x = aC5
1 (τ

−1F1)
2

n+2 , y = bCn+2
1 τ−1, where A = ∓ 3

2a
−n−2b5(n+ 2)2.

41. xy′′xx + y′x = Ax−1y−4.

Solution in parametric form:

x = C2 exp
[
2

∫
τ dτ√

±(4τ3 − C1)
+C2∓

1

τ

√
±(4τ3 − C1)

]
, y = ∓(AC2

1/6)
1/5
τ−1.

42. xy′′xx − 1
3
(n− 1)y′x = Axn+1y−4, n 6= −2.

Solution in parametric form:

x = aC5
1 (τF

−1
1 )

3
n+2 , y = bCn+2

1 F−1
1 , where A = ∓ 2

3a
−n−2b5(n+ 2)2.

43. xy′′xx − 1
2
(3n+ 4)y′x = Axn+1y−1/2, n 6= −2.

Solution in parametric form:

x = aC3
1F

2
n+2
1 , y = bC2n+4

1 F 2
2 , where A = ±3a−n−2b3/2(n+ 2)2.

44. xy′′xx − 1
5
(6n+ 7)y′x = Axn+1y−1/2, n 6= −2.

Solution in parametric form:

x = aC3
1F

− 5
2n+4

1 , y = bC2n+4
1 F−3

1 F 2
2 , where A = ± 48

25a
−n−2b3/2(n+ 2)2.
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45. xy′′xx − 1
3
(n− 1)y′x = Axn+1y−7, n 6= −2.

Solution in parametric form:

x = aC8
1 (4τF

2
1 ∓ F 2

2 )
3

n+2 , y = bCn+2
1 F

1/2
1 , where A = ± 1

192 a
−n−2b8(n+ 2)2.

46. xy′′xx − 1
5
(n− 3)y′x = Axn+1y−7, n 6= −2.

Solution in parametric form:

x = aC8
1 (4τF

2
1 ∓ F 2

2 )
− 5

n+2 , y = bCn+2
1 F

1/2
1 (4τF 2

1 ∓ F 2
2 )

−1
,

where A = ± 3
1600 a

−n−2b8(n+ 2)2.

14.6.2 Equations of the Form y′′

xx = (A1x
n1ym1 +A2x

n2ym2)(y′

x)
l

See Section 14.4 for the case l = 0; see Section 14.5 for the cases A1 = 0 or A2 = 0.

◮ Classification table.

Table 14.9 presents all solvable equations whose solutions are outlined in Section 14.6.2.

Equations are arranged in accordance with the growth of l, the growth of m1 (for identi-

cal l), the growth of m2 (for identical l and m1, m1 ≥ m2), the growth of n1 (for identical

l, m1, and m2), and the growth of n2 (for identical l, m1, m2, and n1). The number of the

equation sought is indicated in the last column in this table.

TABLE 14.9

Solvable cases of the equation y′′xx =(A1x
n1ym1+A2x

n2ym2)(y′x)
l

l m1 m2 n1 n2 A1 A2 Equation

arbitrary

(l 6=2)
arbitrary

(m1 6=−1)
arbitrary

(m2 6=−1) 0 0 Any Any 14.6.2.1

m1+2n1+3

m1+n1+2
arbitrary arbitrary arbitrary

m2(n1+1)−m1+n1

m1+1
Any Any 14.6.2.98

arbitrary

(l 6=1) 0 0
arbitrary

(n1 6=−1)
arbitrary

(n2 6=−1) Any Any 14.6.2.5

arbitrary

(l 6=2)
arbitrary

(m1 6=−1) −1 0 0 Any Any 14.6.2.2

arbitrary

(l 6=2) 0 0
arbitrary

(n1 6=−1) −1 Any Any 14.6.2.6

3m1+5

2m1+3
arbitrary −m1−2 1 0 Any Any 14.6.2.21

m1+5

m1+3
arbitrary

m1−1
2

1 0 Any Any 14.6.2.94

3n1+4

n1+1
1 0 arbitrary −n1−2 Any Any 14.6.2.22

2(n1+2)

n1+3
1 0 arbitrary

n1−1
2

Any Any 14.6.2.95
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TABLE 14.9 (Continued)

Solvable cases of the equation y′′xx =(A1x
n1ym1+A2x

n2ym2)(y′x)
l

l m1 m2 n1 n2 A1 A2 Equation

arbitrary

(l 6=1, 2) 1 0 0 1 Any Any 14.6.2.20

1
2 − 1

4 − 7
4 0 1 Any Any 14.6.2.71

1
2 1 0 − 15

8 − 7
4 Any Any 14.6.2.81

1
2 1 0 − 15

8 − 13
8 Any Any 14.6.2.66

1
2 1 0 − 20

13 − 15
13 Any Any 14.6.2.68

1
2 1 0 − 20

13 − 14
13 Any Any 14.6.2.84

1
2 1 0 − 5

4 − 3
4 Any Any 14.6.2.64

1
2 1 0 − 5

4 − 1
2 Any Any 14.6.2.78

1
2 1 0 0 1 Any Any 14.6.2.62

1
2 1 0 0 2 Any Any 14.6.2.75

1 0 0
arbitrary

(n1 6=−1)
arbitrary

(n2 6=−1) Any Any 14.6.2.7

1 0 0
arbitrary

(n1 6=−1) −1 Any Any 14.6.2.8

1 0 −2 0 1 Any Any 14.6.2.25

1 1 0 0 1 Any Any 14.6.2.23

3
2

arbitrary arbitrary m1 m2 Any Any 14.6.2.97

3
2 0 −2 0 1 Any Any 14.6.2.107

3
2 0 − 1

2 0 1 Any Any 14.6.2.105

3
2 1 0 −2 0 Any Any 14.6.2.108

3
2 1 0 − 1

2 0 Any Any 14.6.2.106

2
arbitrary

(m1 6=−1)
arbitrary

(m2 6=−1) 0 0 Any Any 14.6.2.3

2
arbitrary

(m1 6=−1) −1 0 0 Any Any 14.6.2.4

2 1 0 −2 0 Any Any 14.6.2.26

2 1 0 0 1 Any Any 14.6.2.24

5
2 − 7

4 − 15
8 0 1 Any Any 14.6.2.80

5
2 − 13

8 − 15
8 0 1 Any Any 14.6.2.65

5
2 − 15

13 − 20
13 0 1 Any Any 14.6.2.67

5
2 − 14

13 − 20
13 0 1 Any Any 14.6.2.83

5
2 − 3

4 − 5
4 0 1 Any Any 14.6.2.63
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TABLE 14.9 (Continued)

Solvable cases of the equation y′′xx =(A1x
n1ym1+A2x

n2ym2)(y′x)
l

l m1 m2 n1 n2 A1 A2 Equation

5
2 − 1

2 − 5
4 0 1 Any Any 14.6.2.77

5
2 1 0 − 7

4 − 1
4 Any Any 14.6.2.72

5
2 1 0 0 1 Any Any 14.6.2.61

5
2 2 0 0 1 Any Any 14.6.2.74

3 arbitrary arbitrary −m1−3 −m2−3 Any Any 14.6.2.9

3 arbitrary arbitrary −2m1−3 −2m2−3 Any Any 14.6.2.93

3
arbitrary

(m1 6=−2) Any 1 0 Any Any 14.6.2.49

3 arbitrary −3 −m1−3 0 Any Any 14.6.2.19

3
arbitrary

(m1 6=−2) 0 1 −3 Any Any 14.6.2.51

3 −5 −6 1 3 Any Any 14.6.2.100

3 −4 −5 0 2 Any Any 14.6.2.76

3 −3 −5 0 1 Any Any 14.6.2.44

3 −3 −5 0 2 Any Any 14.6.2.58

3 −3 − 7
2 0 − 1

2 Any Any 14.6.2.28

3 − 14
5 − 18

5 2 3 Any Any 14.6.2.112

3 − 8
3 − 10

3 − 1
3 − 5

3 Any Any 14.6.2.38

3 − 5
2 −4 − 1

2 0 Any Any 14.6.2.86

3 − 5
2 − 7

2 − 1
2 − 1

2 Any Any 14.6.2.13

3 − 5
2 −3 − 1

2 0 Any Any 14.6.2.32

3 − 12
5 − 13

5 − 3
5 − 7

5 Any Any 14.6.2.30

3 − 7
3 − 10

3 − 5
3 − 5

3 Any Any 14.6.2.34

3 − 7
3 − 10

3 − 5
3

1
3 Any Any 14.6.2.88

3 − 7
3 −3 − 2

3 0 Any Any 14.6.2.70

3 − 7
3 − 8

3 − 5
3 − 1

3 Any Any 14.6.2.42

3 − 11
5 − 12

5 2 3 Any Any 14.6.2.113

3 −2 −n2−1 1 arbitrary
2(n2+1)

(n2+3)2
Any 14.6.2.132

3 −2 −3 −2 0 Any Any 14.6.2.104

3 −2 −3 −1 0 Any Any 14.6.2.12

3 −2 −3 1 2 − 6
25 Any 14.6.2.145
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TABLE 14.9 (Continued)

Solvable cases of the equation y′′xx =(A1x
n1ym1+A2x

n2ym2)(y′x)
l

l m1 m2 n1 n2 A1 A2 Equation

3 −2 −3 1 2 6
25 Any 14.6.2.144

3 −2 −3 − 1
2 0 Any Any 14.6.2.102

3 −2 −2 1 arbitrary
2(n2+1)

(n2+3)2
Any 14.6.2.116

3 −2 −2 1 −7 − 15
4 Any 14.6.2.117

3 −2 −2 1 −4 −6 Any 14.6.2.118

3 −2 −2 1 − 5
2 −12 Any 14.6.2.119

3 −2 −2 1 −2 −2 Any 14.6.2.120

3 −2 −2 1 − 5
3 − 63

4 Any 14.6.2.124

3 −2 −2 1 − 5
3 − 3

4 Any 14.6.2.123

3 −2 −2 1 − 5
3

9
100 Any 14.6.2.122

3 −2 −2 1 − 5
3

3
16 Any 14.6.2.121

3 −2 −2 1 − 7
5

5
36 Any 14.6.2.125

3 −2 −2 1 − 1
2 −20 Any 14.6.2.128

3 −2 −2 1 − 1
2

4
25 Any 14.6.2.127

3 −2 −2 1 − 1
2

2
9 Any 14.6.2.126

3 −2 −2 1 1
2

12
49 Any 14.6.2.129

3 −2 −2 2 1 Any − 6
25 14.6.2.131

3 −2 −2 2 1 Any 6
25 14.6.2.130

3 − 13
7 − 20

7 0 2 Any Any 14.6.2.82

3 − 12
7 − 20

7 0 2 Any Any 14.6.2.60

3 − 5
3 − 7

3 − 4
3 − 5

3 Any Any 14.6.2.92

3 − 8
5 − 13

5 − 7
5 − 7

5 Any Any 14.6.2.109

3 − 3
2 − 5

2 0 − 1
2 Any Any 14.6.2.90

3 − 3
2 −2 − 3

2 −2 Any Any 14.6.2.48

3 − 3
2 −2 0 − 1

2 Any Any 14.6.2.46

3 − 3
2 −2 1

2 1 Any 12
49 14.6.2.143

3 − 4
3 − 10

3 − 5
3 − 5

3 Any Any 14.6.2.36

3 − 4
3 − 8

3 − 5
3 − 1

3 Any Any 14.6.2.40

3 − 4
3 − 7

3 − 5
3 − 5

3 Any Any 14.6.2.14

3 − 4
3 − 4

3 0 − 1
2 Any Any 14.6.2.15
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TABLE 14.9 (Continued)

Solvable cases of the equation y′′xx =(A1x
n1ym1+A2x

n2ym2)(y′x)
l

l m1 m2 n1 n2 A1 A2 Equation

3 − 9
7 − 15

7 0 2 Any Any 14.6.2.59

3 − 7
6 − 5

3 − 1
2 0 Any Any 14.6.2.16

3 − 8
7 − 15

7 0 2 Any Any 14.6.2.79

3 −1 −2 −2 −2 Any Any 14.6.2.110

3 − 2
3 − 4

3 − 5
3 − 5

3 Any Any 14.6.2.115

3 − 1
2 −3 − 1

2 0 Any Any 14.6.2.53

3 − 1
2 −2 − 1

2 1 Any −20 14.6.2.141

3 − 1
2 −2 − 1

2 1 Any 4
25 14.6.2.134

3 − 1
2 −2 − 1

2 1 Any 2
9 14.6.2.137

3 − 1
2 − 3

2 − 1
2 0 Any Any 14.6.2.45

3 0 −5 −3 1 Any Any 14.6.2.52

3 0 −2 −3 −2 Any Any 14.6.2.56

3 0 −2 0 − 1
2 Any Any 14.6.2.54

3 0 − 3
2 − 1

2 0 Any Any 14.6.2.89

3 0 − 2
3 − 5

3 − 5
3 Any Any 14.6.2.114

3 0 − 1
2 0 − 1

2 Any Any 14.6.2.101

3 0 0 − 1
3 − 5

3 Any Any 14.6.2.39

3 0 0 0 −1 Any Any 14.6.2.11

3 0 0 0 − 2
3 Any Any 14.6.2.69

3 0 0 0 − 1
2 Any Any 14.6.2.31

3 0 0 2 0 Any Any 14.6.2.57

3 2
5 −2 − 7

5 1 Any 5
36 14.6.2.139

3 2
3 −2 − 5

3 1 Any − 63
4 14.6.2.147

3 2
3 −2 − 5

3 1 Any − 3
4 14.6.2.136

3 2
3 −2 − 5

3 1 Any 9
100 14.6.2.135

3 2
3 −2 − 5

3 1 Any 3
16 14.6.2.138

3 1 −2 −2 1 Any −2 14.6.2.133

3 1 0 −7 −3 Any Any 14.6.2.17

3 1 0 −4 −3 Any Any 14.6.2.10

3 1 0 −2 −3 Any Any 14.6.2.55
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TABLE 14.9 (Continued)

Solvable cases of the equation y′′xx =(A1x
n1ym1+A2x

n2ym2)(y′x)
l

l m1 m2 n1 n2 A1 A2 Equation

3 1 0 −2 − 3
2 Any Any 14.6.2.47

3 1 0 −2 0 Any Any 14.6.2.103

3 1 0 − 5
3 − 4

3 Any Any 14.6.2.91

3 1 0 − 5
3 − 1

3 Any Any 14.6.2.41

3 1 0 − 5
3

1
3 Any Any 14.6.2.87

3 1 0 − 7
5 − 3

5 Any Any 14.6.2.29

3 1 0 − 1
2 0 Any Any 14.6.2.27

3 1 0 0 − 1
2 Any Any 14.6.2.85

3 1 0 0 2 Any Any 14.6.2.73

3 1 0 1 −3 Any Any 14.6.2.50

3 1 0 1 0 Any Any 14.6.2.43

3 1 0 1 3 Any Any 14.6.2.99

3 3
2 −2 − 5

2 1 Any −12 14.6.2.146

3 2 0 −5 −5 Any Any 14.6.2.96

3 2 0 − 5
3 − 5

3 Any Any 14.6.2.35

3 2 0 − 5
3 − 1

3 Any Any 14.6.2.37

3 2 1 − 5
3 − 5

3 Any Any 14.6.2.33

3 3 −2 −4 1 Any −6 14.6.2.140

3 3 0 −7 −3 Any Any 14.6.2.18

3 4 3 −7 −7 Any Any 14.6.2.111

3 6 −2 −7 1 Any − 15
4 14.6.2.142

◮ Solvable equations and their solutions.

1. y′′xx = (A1y
m1 +A2y

m2)(y′x)
l, l 6= 2, m1 6= −1, m2 6= −1.

1◦. Solution in parametric form:

x = a

∫
(C1 + τm1+1 ± τm2+1)

1
l−2 dτ + C2, y = bτ,

where A1 =
m1 + 1

2− l al−2b1−m1−l, A2 = ±
m2 + 1

2− l al−2b1−m2−l.

2◦. Solution in parametric form:

x = a

∫
(C1 − τm1+1 ± τm2+1)

1
l−2 dτ + C2, y = bτ,
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where A1 =
m1 + 1

l − 2
al−2b1−m1−l, A2 = ±

m2 + 1

2− l al−2b1−m2−l.

2. y′′xx = (A1y
m + A2y

−1)(y′x)
l, l 6= 2, m 6= −1.

Solution: x =

∫ [
C1 +

A1(2− l)
m+ 1

ym+1 + (2− l)A2 ln y
] 1
l−2

dy + C2.

3. y′′xx = (A1y
m1 +A2y

m2)(y′x)
2, m1 6= −1, m2 6= −1.

Solution: x = C1

∫
exp
(
− A1

m1 + 1
ym1+1 − A2

m2 + 1
ym2+1

)
dy + C2.

4. y′′xx = (A1y
m + A2y

−1)(y′x)
2, m 6= −1.

Solution: x = C1

∫
y−A2 exp

(
− A1

m+ 1
ym+1

)
dy + C2.

5. y′′xx = (A1x
n1 +A2x

n2)(y′x)
l, l 6= 1, n1 6= −1, n2 6= −1.

1◦. Solution in parametric form:

x = aτ, y = b

∫ (
C1 + τn1+1 ± τn2+1

) 1
1−l dτ + C2,

where A1 =
n1 + 1

1− l a
l−n1−2b1−l, A2 = ±

n2 + 1

1− l a
l−n2−2b1−l.

2◦. Solution in parametric form:

x = aτ, y = b

∫ (
C1 − τn1+1 ± τn2+1

) 1
1−l dτ + C2,

where A1 =
n1 + 1

l − 1
al−n1−2b1−l, A2 = ±

n2 + 1

1− l a
l−n2−2b1−l.

6. y′′xx = (A1x
n + A2x

−1)(y′x)
l, l 6= 1, n 6= −1.

Solution: y =

∫ [
C1 +

A1(1− l)
n+ 1

xn+1 + (1− l)A2 lnx
] 1
1−l

dx+ C2.

7. y′′xx = (A1x
n1 +A2x

n2)y′x, n1 6= −1, n2 6= −1.

Solution: y = C1

∫
exp
( A1

n1 + 1
xn1+1 +

A2

n2 + 1
xn2+1

)
dx+ C2.

8. y′′xx = (A1x
n + A2x

−1)y′x, n 6= −1.

Solution: y = C1

∫
xA2 exp

( A1

n+ 1
xn+1

)
dx+C2.

9. y′′xx = (A1x
−m1−3ym1 + A2x

−m2−3ym2)(y′x)
3, m1 6= −2, m2 6= −2.

1◦. Solution in parametric form:

x = aτ
[∫ (

C1 + τ−m1−2 ± τ−m2−2
)−1/2

dτ + C2

]−1
,

y = b
[∫ (

C1 + τ−m1−2 ± τ−m2−2
)−1/2

dτ + C2

]−1
,

where A1 =
1
2a

m1+4b−m1−2(m1 + 2), A2 = ± 1
2a

m2+4b−m2−2(m2 + 2).
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2◦. Solution in parametric form:

x = aτ
[∫ (

C1 − τ−m1−2 ± τ−m2−2
)−1/2

dτ + C2

]−1
,

y = b
[∫ (

C1 − τ−m1−2 ± τ−m2−2
)−1/2

dτ + C2

]−1
,

where A1 = − 1
2a

m1+4b−m1−2(m1 + 2), A2 = ± 1
2a

m2+4b−m2−2(m2 + 2).

10. y′′xx = (A1x
−4y +A2x

−3)(y′x)
3.

1◦. Solution in parametric form:

x = aτ

(∫
dτ√

C1 + τ−3 ± τ−2
+C2

)−1

, y = b

(∫
dτ√

C1 + τ−3 ± τ−2
+ C2

)−1

,

where A1 =
3
2a

5b−3, A2 = ±a4b−2.

2◦. Solution in parametric form:

x = aτ

(∫
dτ√

C1 − τ−3 ± τ−2
+C2

)−1

, y = b

(∫
dτ√

C1 − τ−3 ± τ−2
+ C2

)−1

,

where A1 = − 3
2a

5b−3, A2 = ±a4b−2.

11. y′′xx = (A1 +A2x
−1)(y′x)

3.

Solution: y =

∫
(C1 − 2A1x− 2A2 lnx)

−1/2 dx+ C2.

12. y′′xx = (A1x
−1y−2 +A2y

−3)(y′x)
3.

Solution in parametric form:

x=τ

(∫
dτ√

C1−2A1 ln τ−2A2τ
+C2

)−1

, y=

(∫
dτ√

C1−2A1 ln τ−2A2τ
+C2

)−1

.

13. y′′xx = (A1x
−1/2y−5/2 +A2x

−1/2y−7/2)(y′x)
3.

Solution in parametric form:

x =
k2

F

{
2C1e

2kτ + C2e
−kτ
[√

3 cos(ωτ)− sin(ωτ)
]}2

, y =
1

F
,

where F = C1e
2kτ + C2e

−kτ sin(ωτ)− A1

A2
, A2 = −16k3, ω = k

√
3.

14. y′′xx = (A1x
−5/3y−4/3 +A2x

−5/3y−7/3)(y′x)
3.

Solution in parametric form:

x =
(

1
36A2τ

4+C1τ
3+C2τ

2+C3τ
)−1( 1

9A2τ
3+3C1τ

2+2C2τ+C3

)3/2
,

y =
(

1
36A2τ

4+C1τ
3+C2τ

2+C3τ
)−1

,

where A1 = 9C1C3 − 3C2
2 .
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◆ In the solutions of equations 15–18, the following notation is used:

R1=
√
C1+τ−3±τ−2, E1=

∫
dτ

R1
+C2, F1=τ−R1E1, H1=3τ3F 2

1+3(1±τ)E2
1,

R2=
√
C1−τ−3±τ−2, E2=

∫
dτ

R2
+C2, F2=τ−R2E2, H2=3τ3F 2

2+3(−1±τ)E2
2.

15. y′′xx = (A1y
−4/3 + A2x

−1/2y−4/3)(y′x)
3.

Solution in parametric form:

x = aF 2
k , y = bτ−3E3

k,

where A1 = ± 2
9ab

−2/3, A2 =
1
3a

3/2b−2/3(−1)k+1; k = 1 and k = 2.

16. y′′xx = (A1x
−1/2y−7/6 +A2y

−5/3)(y′x)
3.

Solution in parametric form:

x = aτ3E−3
k F 2

k , y = bτ3E−3
k ,

where A1 =
1
3a

3/2b−5/6(−1)k, A2 = ∓ 2
9ab

−1/3; k = 1 and k = 2.

17. y′′xx = (A1x
−7y +A2x

−3)(y′x)
3.

Solution in parametric form:

x = aτ−1/2E
1/2
k , y = bτ−3Hk,

where A1 =
1
36a

8b−3, A2 = ± 1
36a

4b−2; k = 1 and k = 2.

18. y′′xx = (A1x
−7y3 +A2x

−3)(y′x)
3.

Solution in parametric form:

x = aτ5/2E
1/2
k H−1

k , y = bτ3H−1
k ,

where A1 =
1
36a

8b−5, A2 = ∓ 1
36a

4b−2; k = 1 and k = 2.

◆ In the solutions of equations 19–22, the following notation is used:

R1=
√
C1±τγ+1+τ, E1=

∫
dτ

R1
+C2, F1=2R1−E1, H1=4(τ−R1F1)+E

2
1,

R2=
√
C1±τγ+1−τ, E2=

∫
dτ

R2
+C2, F2=2R2+E2, H2=4(τ−R2F2)−E2

2.

19. y′′xx = (A1x
−m−3ym + A2y

−3)(y′x)
3, m 6= −2.

Solution in parametric form:

x = aτE−1
k , y = bE−1

k , γ = −m− 3,

where A1 = ± 1
2a

m+4b−m−2(m+ 2), A2 =
1
2ab(−1)k; k = 1 and k = 2.
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20. y′′xx = (A1y +A2x)(y
′

x)
l, l 6= 1, l 6= 2.

Solution in parametric form:

x = aFk, y = bEk, γ =
1

l − 2
,

where A1 = ab−1A2(−1)k+1, A2 = −
γ

2ab

[
± (γ + 1)a

b

]1/γ
; k = 1 and k = 2.

21. y′′xx = (A1xy
m + A2y

−m−2)(y′x)
3m+5
2m+3 .

Solution in parametric form:

x = aHk, y = bEγ+2
k , γ = − 2m+ 3

m+ 1
,

where A1 =
γ

4(γ + 2)
a−1b

1
γ+2

[
∓ 2(γ + 1)a

(γ + 2)b

] 1
γ

, A2 = ab
− 2

γ+2A1(−1)k; k = 1 and

k = 2.

22. y′′xx = (A1x
ny +A2x

−n−2)(y′x)
3n+4
n+1 .

Solution in parametric form:

x = aEγ+2
k , y = bHk, γ = − 2n+ 3

n+ 1
,

where A1 = − γ

4(γ + 2)
a

1
γ+2 b−1

[
∓ 2(γ + 1)b

(γ + 2)a

] 1
γ

, A2 = a
− 2

γ+2 bA1(−1)k; k = 1 and

k = 2.

◆ In the solutions of equations 23–26, the following notation is used:

R1 =
√
C1+τ± ln τ , E1 =

∫
dτ

R1
+C2 , F1 =2R1−E1 , H1 =4(τ −R1F1)+E

2
1 ,

R2 =
√
C1−τ± ln τ , E2 =

∫
dτ

R2
+C2 , F2 =2R2+E2 , H2 =4(τ −R2F2)−E2

2 .

23. y′′xx = (A1y +A2x)y
′

x.

Solution in parametric form:

x = aFk, y = bEk,

where A1 = ab−1A2(−1)k, A2 = ± 1
2a

−2; k = 1 and k = 2.

24. y′′xx = (A1y +A2x)(y
′

x)
2.

Solution in parametric form:

x = aEk, y = bFk,

where A1 = ∓ 1
2 b

−2, A2 = a−1bA1(−1)k; k = 1 and k = 2.

25. y′′xx = (A1 +A2xy
−2)y′x.

Solution in parametric form:

x = aHk, y = bEk,

where A1 = ab−2A2(−1)k, A2 = ± 1
8a

−2b−2; k = 1 and k = 2.
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26. y′′xx = (A1x
−2y +A2)(y

′

x)
2.

Solution in parametric form:

x = aEk, y = bHk,

where A1 = ∓ 1
8a

2b−2, A2 = a−2bA1(−1)k; k = 1 and k = 2.

◆ In the solutions of equations 27–30, the following notation is used:

R1 = C1τ
k1 + C2τ

k2 + C3τ
k3 ,

R2 = (C1 + C2τ)e
kτ + C3e

ωτ ,

R3 = C1e
kτ + esτ (C2 sinωτ + C3 cosωτ),

Q1 = C1k1τ
k1 + C2k2τ

k2 + C3k3τ
k3 ,

Q2 = (kC1 + C2 + kC2τ)e
kτ + ωC3e

ωτ ,

Q3 = kC1e
kτ + esτ [(sC2 − ωC3) sinωτ + (sC3 + ωC2) cosωτ ],

S1 = τ(Q1)
′
τ , S2 = (Q2)

′
τ , S3 = (Q3)

′
τ ,

where k1, k2, and k3 (real numbers) or k and s± iω (one real and two complex numbers)

are roots of the cubic equation λ3 − 1
2B2λ − 1

2B1 = 0. The subscripts of the functions

Rm, Qm, and Sm (m = 1, 2, 3) are selected depending on the sign of the expression

∆ = 2B3
2 − 27B2

1 :

if ∆ > 0 subscript m = 1,

if ∆ = 0 subscript m = 2,

if ∆ < 0 subscript m = 3.

If 2B3
2 = 27B2

1 (subscript m = 2), then

k = ( 16B2)
1/2, ω = −2( 16B2)

1/2 if B1 < 0,

k = −( 16B2)
1/2, ω = 2( 16B2)

1/2 if B1 > 0.

Remark 14.4. The expressions for Rm, and Qm contain three constants C1, C2, and C3. One

of them can be arbitrarily fixed to let it be any nonzero number (for instance, we can set C3 = ±1),

while the other constants remain arbitrary.

27. y′′xx = (A1x
−1/2y + A2)(y

′

x)
3.

Solution in parametric form:

x = Q2
m, y = Rm, where A1 = −B1, A2 = −B2.

28. y′′xx = (A1y
−3 +A2x

−1/2y−7/2)(y′x)
3.

Solution in parametric form:

x = R−1
m Q2

m, y = R−1
m , where A1 = −B2, A2 = −B1.

29. y′′xx = (A1x
−7/5y + A2x

−3/5)(y′x)
3.

Solution in parametric form:

x = aR5/2
m , y = b(2Q2

m − 4RmSm +B2R
2
m),

where A1 =
5
32a

12/5b−3B−2
1 , A2 = −a−4/5bA1B2.
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30. y′′xx = (A1x
−3/5y−12/5 + A2x

−7/5y−13/5)(y′x)
3.

Solution in parametric form:

x = aR5/2
m

(
2Q2

m − 4RmSm +B2R
2
m

)−1
, y = b

(
2Q2

m − 4RmSm +B2R
2
m

)−1
,

where A1 = − 5
32a

8/5b2/5B−2
1 B2, A2 =

5
32a

12/5b3/5B−2
1 .

◆ In the solutions of equations 31 and 32, the following notation is used:

f1 =





C1e
kτ + C2e

−kτ − B1

B2
τ if B2 > 0,

C1 sin(kτ) + C2 cos(kτ)−
B1

B2
τ if B2 < 0,

f2 =





k(C1e
kτ − C2e

−kτ )− B1

B2
if B2 > 0,

k[C1 cos(kτ)− C2 sin(kτ)]−
B1

B2
if B2 < 0,

where k =
√

1
2 |B2|.

31. y′′xx = (A1 +A2x
−1/2)(y′x)

3.

Solution in parametric form:

x = f22 , y = f1, where A1 = −B2, A2 = −B1.

32. y′′xx = (A1x
−1/2y−5/2 +A2y

−3)(y′x)
3.

Solution in parametric form:

x = f−1
1 f22 , y = f−1

1 , where A1 = −B1, A2 = −B2.

◆ In the solutions of equations 33–36, the following notation is used:

For B1 > 0,

T1 = C1e
kτ + C2e

−kτ +C3 sin(kτ), k =
(
4
3B1

)1/4
,

T2 = k(C1e
kτ − C2e

−kτ ) + kC3 cos(kτ).

For B1 < 0,

T1 = esτ [C1 sin(sτ) + C2 cos(sτ)] + C3e
−sτ sin(sτ), s =

(
− 1

3B1

)1/4
,

T2 = sesτ [(C1 − C2) sin(sτ) + (C1 + C2) cos(sτ)]− sC3e
−sτ [sin(sτ)− cos(sτ)].

33. y′′xx = (A1x
−5/3y2 +A2x

−5/3y)(y′x)
3.

Solution in parametric form:

x = T
3/2
2 , y = T1 −

A2

2A1
,

where B1 = −A1, B2 = −A2; the constants C1, C2, and C3 are related by the constraint

C1C3 =
1
16A

−2
1 A2

2 if A1 > 0,

4C1C2 + C2
3 = 1

4A
−2
1 A2

2 if A1 < 0.
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34. y′′xx = (A1x
−5/3y−7/3 +A2x

−5/3y−10/3)(y′x)
3.

Solution in parametric form:

x =
(
T1 −

A1

2A2

)−1
T
3/2
2 , y =

(
T1 −

A1

2A2

)−1
,

where B1 = −A2, B2 = −A1; the constants C1, C2, and C3 are related by the constraint

C1C3 =
1
16A

2
1A

−2
2 if A2 > 0,

4C1C2 + C2
3 = 1

4A
2
1A

−2
2 if A2 < 0.

35. y′′xx = (A1x
−5/3y2 +A2x

−5/3)(y′x)
3.

Solution in parametric form:

x = T
3/2
2 , y = T1,

where B1 = −A1, B2 = −A2; the constants C1, C2, and C3 are related by the constraint

C1C3 = − 1
4A

−1
1 A2 if A1 > 0,

4C1C2 + C2
3 = − 1

2A
−1
1 A2 if A1 < 0.

36. y′′xx = (A1x
−5/3y−4/3 +A2x

−5/3y−10/3)(y′x)
3.

Solution in parametric form:

x = T−1
1 T

3/2
2 , y = T−1

1 ,

where B1 = −A2, B2 = −A1; the constants C1, C2, and C3 are related by the constraint

C1C3 = − 1
4A1A

−1
2 if A2 > 0,

4C1C2 + C2
3 = − 1

2A1A
−1
2 if A2 < 0.

◆ In the solutions of equations 37 and 38, the following notation is used:

1◦. For B1 > 0, B2 6= 0:

T1 = C1e
kτ +C2e

−kτ + C3 sinωτ, T2 = k(C1e
kτ − C2e

−kτ ) + ωC3 cosωτ,

where

k=
{

2
3 [(B

2
2+3B1)

1/2+B2]
}1/2

, ω=
{

2
3 [(B

2
2+3B1)

1/2−B2]
}1/2

, 4k2C1C2+ω
2C2

3 =0.

2◦. For −B2
2 < 3B1 < 0, B2 > 0:

T1=C1τ
k1+C2τ

−k1+C3τ
k2+C4τ

−k2 , T2=k1(C1τ
k1−C2τ

−k1)+k2(C3τ
k2−C4τ

−k2),

where

k1 =
{

2
3 [B2 + (B2

2 + 3B1)
1/2]
}1/2

, k2 =
{

2
3 [B2 − (B2

2 + 3B1)
1/2]
}1/2

,

(C1C2 + C3C4)(B
2
2 + 3B1)

1/2 + (C1C2 − C3C4)B2 = 0.

3◦. For −B2
2 < 3B1 < 0, B2 < 0:

T1 = C1 sinω1τ + C2 cosω1τ + C3 sinω2τ,

T2 = ω1(C1 cosω1τ − C2 sinω1τ) + ω2C3 cosω2τ,
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where

ω1 =
{
− 2

3 [B2 + (B2
2 + 3B1)

1/2]
}1/2

, ω2 =
{
− 2

3 [B2 − (B2
2 + 3B1)

1/2]
}1/2

,

ω2
1(C

2
1 + C2

2 )− ω2
2C

2
3 = 0.

4◦. For B2
2 + 3B1 = 0, B2 > 0:

T1 = (C1 + C2τ)e
kτ + (C3 +C4τ)e

−kτ ,

T2 = (kC1 + C2 + kC2τ)e
kτ − (kC3 − C4 + kC4τ)e

−kτ ,

where

k =
(
2
3B2

)1/2
, (C1C4 − C2C3)

(
2
3B2

)1/2
+ 2C2C4 = 0.

5◦. For B2
2 + 3B1 = 0, B2 < 0:

T1 = (C1 + C2τ) sinωτ + C3τ cosωτ,

T2 = (ωC1 + C3 + ωC2τ) cosωτ + (C2 − ωC3τ) sinωτ,

where

ω =
(
− 2

3B2

)1/2
, C1C3

(
− 2

3B2

)1/2
+ C2

2 + C2
3 = 0.

6◦. For 3B1 < −B2
2 :

T1 = ekτ (C1 sinωτ + C2 cosωτ) + C3e
−kτ sinωτ,

T2 = ekτ [(kC2 + ωC1) cosωτ + (kC1 − ωC2) sinωτ)] + C3e
−kτ (ω cosωτ − k sinωτ),

where

k =
{

1
3 [B2 + (−3B1)

1/2]
}1/2

, ω =
{

1
3 [−B2 + (−3B1)

1/2]
}1/2

,

C2B2 + C1(−B2
2 − 3B1)

1/2 = 0.

37. y′′xx = (A1x
−5/3y2 +A2x

−1/3)(y′x)
3.

Solution in parametric form:

x = T
3/2
2 , y = T1, where B1 = −A1, B2 = −A2.

38. y′′xx = (A1x
−1/3y−8/3 +A2x

−5/3y−10/3)(y′x)
3.

Solution in parametric form:

x = T−1
1 T

3/2
2 , y = T−1

1 , where B1 = −A2, B2 = −A1.

◆ In the solutions of equations 39–42, the following notation is used:

T1 =

{
C1e

ωτ + C2e
−ωτ +C3τ if B > 0,

C1 sinωτ + C2 cosωτ + C3τ if B < 0,

T2 =

{
ω(C1e

ωτ − C2e
−ωτ ) + C3 if B > 0,

ω(C1 cosωτ − C2 sinωτ) + C3 if B < 0,

where ω = | 43B|1/2.
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39. y′′xx = (A1x
−1/3 + A2x

−5/3)(y′x)
3.

Solution in parametric form:

x = T
3/2
2 , y = T1,

where B = −A1; the constants C1, C2, and C3 are related by the constraint

3(A1C
2
3 +A2)− 4A2

1(C
2
1 + C2

2 ) = 0 if A1 > 0,

3(A1C
2
3 +A2)− 16A2

1C1C2 = 0 if A1 < 0.

40. y′′xx = (A1x
−5/3y−4/3 +A2x

−1/3y−8/3)(y′x)
3.

Solution in parametric form:

x = T−1
1 T

3/2
2 , y = T−1

1 ,

where B = −A2; the constants C1, C2, and C3 are related by the constraint

3(A1 +A2C
2
3 )− 4A2

2(C
2
1 + C2

2 ) = 0 if A2 > 0,

3(A1 +A2C
2
3 )− 16A2

2C1C2 = 0 if A2 < 0.

41. y′′xx = (A1x
−5/3y + A2x

−1/3)(y′x)
3.

Solution in parametric form:

x =
(
T2 −

A1

2A2
τ
)3/2

, y = T1 −
A1

4A2
τ2,

where B = −A2; the constants C1, C2, and C3 are related by the constraint

3A2C
2
3 − 4A2

2(C
2
1 + C2

2 )− 9
16A

2
1A

−2
2 = 0 if A2 > 0,

3A2C
2
3 − 16A2

2C1C2 − 9
16A

2
1A

−2
2 = 0 if A2 < 0.

42. y′′xx = (A1x
−5/3y−7/3 +A2x

−1/3y−8/3)(y′x)
3.

Solution in parametric form:

x =
(
T1 −

A1

4A2
τ2
)−1(

T2 −
A1

2A2
τ
)3/2

, y =
(
T1 −

A1

4A2
τ2
)−1

,

where B = −A2; the constants C1, C2, and C3 are related by the constraint

3A2C
2
3 − 4A2

2(C
2
1 + C2

2 )− 9
16A

2
1A

−2
2 = 0 if A2 > 0,

3A2C
2
3 − 16A2

2C1C2 − 9
16A

2
1A

−2
2 = 0 if A2 < 0.

◆ In the solutions of equations 43–48, the following notation is used:

f =

{
J1/3(τ) for the upper sign (Bessel function),

I1/3(τ) for the lower sign (modified Bessel function),

g =

{
Y1/3(τ) for the upper sign (Bessel function),

K1/3(τ) for the lower sign (modified Bessel function),

H = C1f + C2g + βω
(
g

∫
f dτ − f

∫
g dτ

)
, ω =

{
1
2π for the upper sign,

−1 for the lower sign.
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43. y′′xx = (A1xy +A2)(y
′

x)
3.

Solution in parametric form:

x = τ1/3H, y = bτ2/3, where A1 = ± 9
4 b

−3, A2 = − 9
4 b

−2β.

44. y′′xx = (A1y
−3 +A2xy

−5)(y′x)
3.

Solution in parametric form:

x = τ−1/3H, y = bτ−2/3, where A1 = − 9
4 bβ, A2 = ± 9

4 b
3.

45. y′′xx = (A1x
−1/2y−1/2 +A2y

−3/2)(y′x)
3.

Solution in parametric form:

x = aτ−2/3(τH ′
τ +

1
3H)2, y = bτ2/3H2,

where A1 = ± 1
3a

3/2b−3/2, A2 =
1
2ab

−1/2β.

46. y′′xx = (A1y
−3/2 + A2x

−1/2y−2)(y′x)
3.

Solution in parametric form:

x = aτ−4/3H−2(τH ′
τ +

1
3H)2, y = bτ−2/3H−2,

where A1 =
1
2ab

−1/2β, A2 = ± 1
3a

3/2.

47. y′′xx = (A1x
−2y +A2x

−3/2)(y′x)
3.

Solution in parametric form:

x = aτ2/3H2, y = bτ−2/3
[
∓τ2H2 + 2βτH − (τH ′

τ +
1
3H)2

]
,

where A1 = − 9
2a

3b−3, A2 = −a−1/2bβA1.

48. y′′xx = (A1x
−3/2y−3/2 +A2x

−2y−2)(y′x)
3.

Solution in parametric form:

x = aτ4/3H2
[
∓τ2H2 + 2βτH − (τH ′

τ +
1
3H)2

]−1
,

y = bτ2/3
[
∓τ2H2 + 2βτH − (τH ′

τ +
1
3H)2

]−1
,

where A1 =
9
2a

5/2b−1/2β, A2 = − 9
2a

3.

49. y′′xx = (A1xy
m1 + A2y

m2)(y′x)
3, m1 6= −2.

Solution in parametric form:

x = τνH, y = bτ2ν , ν =
1

m1 + 2
,

where

H = C1f + C2g +
4b2βω

(m1 + 2)2

(
g

∫
τkf dτ − f

∫
τkg dτ

)
, k =

2m2 −m1 + 1

m1 + 2
;

f =

{
Jν(τ) for the upper sign (Bessel function),

Iν(τ) for the lower sign (modified Bessel function),

g =

{
Yν(τ) for the upper sign (Bessel function),

Kν(τ) for the lower sign (modified Bessel function),

A1 = ± 1
4 (m1 + 2)2b−m1−2, A2 = −b−m2β, ω =

{
1
2π for the upper sign,

−1 for the lower sign.



“K16435’ — 2017/9/28 — 15:05 — #730

704 SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS

◆ In the solutions of equations 50–56, the following notation is used:

Uν =

{
C1Jν(τ) for the upper sign (Bessel function),

C1Iν(τ) for the lower sign (modified Bessel function),

Vν =

{
C2Yν(τ) for the upper sign (Bessel function)),

C2Kν(τ) for the lower sign (modified Bessel function),

Zν = α1Uν + α2Vν , Xν = β1Uν + β2Vν , Fν = τZ ′
ν + νZν , Gν = τX ′

ν + νXν ,

N =

{
ZνXν if ∆ = −(α1β2 − α2β1)

2,

αU2
ν + βUνVν + γV 2

ν if ∆ = 4αγ − β2,

N1 =

{
ZνGν +XνFν if ∆ = −(α1β2 − α2β1)

2,

τN ′ + 2νN if ∆ = 4αγ − β2,

N2 = N2
1 ± 4τ2N2 + ω2∆, ω =

{
2/π for the upper sign,

−1 for the lower sign,

where the prime denotes differentiation with respect to τ .

50. y′′xx = (A1xy +A2x
−3)(y′x)

3.

Solution in parametric form:

x = aτ1/3N1/2, y = bτ2/3,

where ν = 1
3 , A1 = ± 9

4 b
−3, A2 = − 9

16a
4b−2ω2∆.

51. y′′xx = (A1xy
m + A2x

−3)(y′x)
3, m 6= −2.

Solution in parametric form:

x = aτνN1/2, y = bτ2ν ,

where ν =
1

m+ 2
, A1 = ± 1

4 b
−m−2(m+ 2)2, A2 = − 1

16a
4b−2ω2∆(m+ 2)2.

52. y′′xx = (A1x
−3 +A2xy

−5)(y′x)
3.

Solution in parametric form:

x = aτ−1/3N1/2, y = bτ−2/3,

where ν = 1
3 , A1 = − 9

16a
4b−2ω2∆, A2 = ± 9

4 b
3.

53. y′′xx = (A1x
−1/2y−1/2 +A2y

−3)(y′x)
3.

Solution in parametric form:

x = aτ−2/3N−1N2
1 , y = bτ2/3N,

where ν = 1
3 , A1 = ± 8

3a
3/2b−3/2, A2 = 2abω2∆.

54. y′′xx = (A1 +A2x
−1/2y−2)(y′x)

3.

Solution in parametric form:

x = aτ−4/3N−2N2
1 , y = bτ−2/3N−1,

where ν = 1
3 , A1 = 2ab−2ω2∆, A2 = ± 8

3a
3/2.
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55. y′′xx = (A1x
−2y +A2x

−3)(y′x)
3.

Solution in parametric form:

x = aτ2/3N, y = bτ−2/3N−1N2,

where ν = 1
3 , A1 =

9
128a

3b−3, A2 = − 9
64a

4b−2ω2∆.

56. y′′xx = (A1x
−3 +A2x

−2y−2)(y′x)
3.

Solution in parametric form:

x = aτ4/3N2N−1
2 , y = bτ2/3NN−1

2 ,

where ν = 1
3 , A1 = − 9

64a
4b−2ω2∆, A2 =

9
128a

3.

◆ In the solutions of equations 57–72, the following notation is used:

f1 =
√
±4℘3

1 − 2℘1 − C2, τ =

∫
d℘1√

±4℘3
1 − 2℘1 − C2

− C1;

f2 =
√
±4℘3

2 + 2℘2 − C2, τ =

∫
d℘2√

±4℘3
2 + 2℘2 − C2

− C1.

The functions ℘1 = ℘1(τ) and ℘2 = ℘2(τ) are defined implicitly by the above elliptic

integrals. For the upper signs, they are the classical elliptic Weierstrass functions ℘1 =
℘(τ + C1, 2, C2) and ℘2 = ℘(τ + C1, −2, C2).

57. y′′xx = (A1x
2 + A2)(y

′

x)
3.

Solution in parametric form:

x = a℘k, y = bτ,

where A1 = ∓6a−1b−2, A2 = ab−2(−1)k+1; k = 1 and k = 2.

58. y′′xx = (A1y
−3 +A2x

2y−5)(y′x)
3.

Solution in parametric form:

x = aτ−1℘k, y = bτ−1,

where A1 = ab(−1)k+1, A2 = ∓6a−1b3; k = 1 and k = 2.

59. y′′xx = (A1y
−9/7 + A2x

2y−15/7)(y′x)
3.

Solution in parametric form:

x = aτ(τ2℘k ∓ 1), y = bτ7,

where A1 =
1
49ab

−5/7(−1)k+1, A2 = ∓ 6
49a

−1b1/7; k = 1 and k = 2.

60. y′′xx = (A1y
−12/7 +A2x

2y−20/7)(y′x)
3.

Solution in parametric form:

x = aτ−6(τ2℘k ∓ 1), y = bτ−7,

where A1 =
1
49ab

−2/7(−1)k+1, A2 = ∓ 6
49a

−1b6/7; k = 1 and k = 2.
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61. y′′xx = (A1y +A2x)(y
′

x)
5/2.

Solution in parametric form:

x = a[fk − (−1)kτ ], y = bτ,

where A1 = ab−1A2(−1)k, A2 = −2a−1b−1(±6a/b)1/2; k = 1 and k = 2.

62. y′′xx = (A1y +A2x)(y
′

x)
1/2.

Solution in parametric form:

x = aτ, y = b[fk − (−1)kτ ],

where A1 = 2a−1b−1(±6b/a)1/2, A2 = a−1bA1(−1)k; k = 1 and k = 2.

63. y′′xx = (A1y
−3/4 + A2xy

−5/4)(y′x)
5/2.

Solution in parametric form:

x = a[2τfk − 2℘k + (−1)k+1τ2], y = bτ4,

where A1 = ab−1/2A2(−1)k , A2 = − 1
4a

−1b1/4(±3a/b)1/2; k = 1 and k = 2.

64. y′′xx = (A1x
−5/4y + A2x

−3/4)(y′x)
1/2.

Solution in parametric form:

x = aτ4, y = b[2τfk − 2℘k + (−1)k+1τ2],

where A1 =
1
4a

1/4b−1(±3b/a)1/2, A2 = a−1/2bA1(−1)k; k = 1 and k = 2.

65. y′′xx = (A1y
−13/8 +A2xy

−15/8)(y′x)
5/2.

Solution in parametric form:

x = aτ−6[2τ3fk + 6τ2℘k ∓ 2 + (−1)kτ4], y = bτ−8,

where A1 = ab−1/4A2(−1)k , A2 =
1
16a

−1b7/8
(
∓6a/b

)1/2
; k = 1 and k = 2.

66. y′′xx = (A1x
−15/8y +A2x

−13/8)(y′x)
1/2.

Solution in parametric form:

x = aτ−8, y = bτ−6[2τ3fk + 6τ2℘k ∓ 2 + (−1)kτ4],

where A1 = − 1
16a

7/8b−1
(
∓6b/a

)1/2
, A2 = a−1/4bA1(−1)k; k = 1 and k = 2.

67. y′′xx = (A1y
−15/13 +A2xy

−20/13)(y′x)
5/2.

Solution in parametric form:

x = aτ [5τ3fk − 20τ2℘k ± 30− (−1)kτ4], y = bτ13,

where A1 = ab−5/13A2(−1)k, A2 = −
2

65
a−1b7/13

(
± 30a

13b

)1/2
; k = 1 and k = 2.
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68. y′′xx = (A1x
−20/13y + A2x

−15/13)(y′x)
1/2.

Solution in parametric form:

x = aτ13, y = bτ [5τ3fk − 20τ2℘k ± 30− (−1)kτ4],

where A1 =
2

65
a7/13b−1

(
± 30b

13a

)1/2
, A2 = a−5/13bA1(−1)k; k = 1 and k = 2.

69. y′′xx = (A1 +A2x
−2/3)(y′x)

3.

Solution in parametric form:

x = a℘3
k, y = b[fk − (−1)kτ ],

where A1 = ∓ 1
2ab

−2, A2 =
1
12a

5/3b−2(−1)k+1; k = 1 and k = 2.

70. y′′xx = (A1x
−2/3y−7/3 +A2y

−3)(y′x)
3.

Solution in parametric form:

x = a℘3
k

[
fk − (−1)kτ

]−1
, y = b

[
fk − (−1)kτ

]−1
,

where A1 =
1
12a

5/3b1/3(−1)k+1, A2 = ∓ 1
2ab; k = 1 and k = 2.

71. y′′xx = (A1y
−1/4 + A2xy

−7/4)(y′x)
1/2.

Solution in parametric form:

x = a
(
f2k − τ2 ∓ 4℘3

k

)
, y = b

[
fk − (−1)kτ

]4/3
,

where A1 = ab−3/2A2, A2 =

{
±a−3b11/4(∓a/b)1/2 if k = 1,

±a−3b11/4(±a/b)1/2 if k = 2.

72. y′′xx = (A1x
−7/4y + A2x

−1/4)(y′x)
5/2.

Solution in parametric form:

x = a[fk − (−1)kτ ]4/3, y = b(f2k − τ2 ∓ 4℘3
k),

where A1 =

{
∓a11/4b−3(∓b/a)1/2 if k = 1,

∓a11/4b−3(±b/a)1/2 if k = 2,
A2 = a−3/2bA1.

◆ In the solutions of equations 73–92, the following notation is used:

The functions P1 and P2 are the general solutions of the four modifications of the first

Painlevé equation:

P ′′
1 = ±6P 2

1 + τ, P ′′
2 = ±6P 2

2 − τ

(in the case of the upper sign, the equation for P1 is the canonical form of the first Painlevé
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equation; see Section 3.4.2). In addition,

Q1 = ±6P 2
1 + τ,

R1 = 2P ′
1 − τ2,

S1 = 3τP ′
1 − 3P1 − τ3,

T1 = τ2P1 ∓ 1,

U1 = (P ′
1)

2 − 2P1Q1 ± 8P 3
1 ,

V1 = P ′
1Q

′
1 + P ′

1 −Q2
1,

W1 = τ3P ′
1 + 3τ2P1 ∓ 1 + τ5,

Z1 = 6(τ3P ′
1 − 4τ2P1 ± 6)− τ5,

Q2 = ±6P 2
2 − τ,

R2 = 2P ′
2 + τ2,

S2 = 3τP ′
2 − 3P2 + τ3,

T2 = τ2P2 ∓ 1,

U2 = (P ′
2)

2 − 2P2Q2 ± 8P 3
2 ,

V2 = P ′
2Q

′
2 − P ′

2 −Q2
2,

W2 = τ3P ′
2 + 3τ2P2 ∓ 1− τ5,

Z2 = 6(τ3P ′
2 − 4τ2P2 ± 6) + τ5,

where the prime denotes differentiation with respect to τ .

73. y′′xx = (A1y +A2x
2)(y′x)

3.

Solution in parametric form:

x = aPk, y = bτ,

where A1 = ab−3(−1)k , A2 = ∓6a−1b−2; k = 1 and k = 2.

74. y′′xx = (A1y
2 + A2x)(y

′

x)
5/2.

Solution in parametric form:

x = aRk, y = bτ,

where A1 = ab−2A2(−1)k+1, A2 = −2a−1b−1(±3a/b)1/2; k = 1 and k = 2.

75. y′′xx = (A1y +A2x
2)(y′x)

1/2.

Solution in parametric form:

x = aτ, y = bRk,

where A1 = 2a−1b−1(±3b/a)1/2, A2 = a−2bA1(−1)k+1; k = 1 and k = 2.

76. y′′xx = (A1y
−4 +A2x

2y−5)(y′x)
3.

Solution in parametric form:

x = aτ−1Pk, y = bτ−1,

where A1 = ab2(−1)k , A2 = ∓6a−1b3; k = 1 and k = 2.

77. y′′xx = (A1y
−1/2 + A2xy

−5/4)(y′x)
5/2.

Solution in parametric form:

x = aSk, y = bτ4,

where A1 = ab−3/4A2(−1)k+1, A2 = − 1
4a

−1b−1/4(±2a/b)1/2; k = 1 and k = 2.

78. y′′xx = (A1x
−5/4y + A2x

−1/2)(y′x)
1/2.

Solution in parametric form:

x = aτ4, y = bSk,

where A1 =
1
4a

−1/4b−1(±2b/a)1/2, A2 = a−3/4bA1(−1)k+1; k = 1 and k = 2.
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79. y′′xx = (A1y
−8/7 + A2x

2y−15/7)(y′x)
3.

Solution in parametric form:

x = aτTk, y = bτ7,

where A1 =
1
49ab

−6/7(−1)k, A2 = ∓ 6
49 a

−1b1/7; k = 1 and k = 2.

80. y′′xx = (A1y
−7/4 + A2xy

−15/8)(y′x)
5/2.

Solution in parametric form:

x = aτ−6Wk, y = bτ−8,

where A1 = ab−1/8A2(−1)k , A2 =
1
8a

−1b7/8(∓3a/b)1/2; k = 1 and k = 2.

81. y′′xx = (A1x
−15/8y +A2x

−7/4)(y′x)
1/2.

Solution in parametric form:

x = aτ−8, y = bτ−6Wk,

where A1 = − 1
8a

7/8b−1(∓3b/a)1/2, A2 = a−1/8bA1(−1)k; k = 1 and k = 2.

82. y′′xx = (A1y
−13/7 +A2x

2y−20/7)(y′x)
3.

Solution in parametric form:

x = aτ−6Tk, y = bτ−7,

where A1 =
1
49ab

−1/7(−1)k, A2 = ∓ 6
49 a

−1b6/7; k = 1 and k = 2.

83. y′′xx = (A1y
−14/13 +A2xy

−20/13)(y′x)
5/2.

Solution in parametric form:

x = aτZk, y = bτ13,

where A1 = ab−6/13A2(−1)k+1, A2 = −
2

13
a−1b7/13

(
± a

13b

)1/2
; k = 1 and k = 2.

84. y′′xx = (A1x
−20/13y + A2x

−14/13)(y′x)
1/2.

Solution in parametric form:

x = aτ13, y = bτZk,

where A1 =
2

13
a7/13b−1

(
± b

13a

)1/2
, A2 = a−6/13bA1(−1)k+1; k = 1 and k = 2.

85. y′′xx = (A1y +A2x
−1/2)(y′x)

3.

Solution in parametric form:

x = a(P ′
k)

2, y = bPk,

where A1 = ∓24ab−3, A2 = 2a3/2b−2(−1)k; k = 1 and k = 2.
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86. y′′xx = (A1x
−1/2y−5/2 +A2y

−4)(y′x)
3.

Solution in parametric form:

x = aP−1
k (P ′

k)
2, y = bP−1

k ,

where A1 = 2a3/2b1/2(−1)k , A2 = ∓24ab2; k = 1 and k = 2.

87. y′′xx = (A1x
−5/3y + A2x

1/3)(y′x)
3.

Solution in parametric form:

x = aP
3/2
k , y = bUk,

where A1 =
3
16a

8/3b−3, A2 = ∓8a−2bA1; k = 1 and k = 2.

88. y′′xx = (A1x
−5/3y−7/3 +A2x

1/3y−10/3)(y′x)
3.

Solution in parametric form:

x = aP
3/2
k U−1

k , y = bU−1
k ,

where A1 =
3
16a

8/3b1/3, A2 = ∓8a−2bA1; k = 1 and k = 2.

89. y′′xx = (A1x
−1/2 + A2y

−3/2)(y′x)
3.

Solution in parametric form:

x = aQ2
k, y = b(P ′

k)
2,

where A1 = ∓6a3/2b−2, A2 =
1
2ab

−1/2(−1)k+1; k = 1 and k = 2.

90. y′′xx = (A1y
−3/2 + A2x

−1/2y−5/2)(y′x)
3.

Solution in parametric form:

x = a(P ′
k)

−2Q2
k, y = b(P ′

k)
−2,

where A1 =
1
2ab

−1/2(−1)k+1, A2 = ∓6a3/2b1/2; k = 1 and k = 2.

91. y′′xx = (A1x
−5/3y + A2x

−4/3)(y′x)
3.

Solution in parametric form:

x = a(P ′
k)

3, y = bVk,

where A1 = − 1
36a

8/3b−3, A2 = a−1/3bA1(−1)k; k = 1 and k = 2.

92. y′′xx = (A1x
−4/3y−5/3 +A2x

−5/3y−7/3)(y′x)
3.

Solution in parametric form:

x = a(P ′
k)

3V −1
k , y = bV −1

k ,

where A1 =
1
36a

7/3b−1/3(−1)k+1, A2 = − 1
36a

8/3b1/3; k = 1 and k = 2.
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◆ In the solutions of equations 93–96, the following notation is used:

F = C2 exp
(∫ dτ√

R

)
, G = τ + 2

√
R+ 4B2,

H =

∫ (
C1 −

1

2A1A2
τ−4 − τ2

)−1/2
dτ +C2,

R =





C1 +
1

4
τ2 +

2B1

k1 + 1
τk1+1 +

2B2

k2 + 1
τk2+1 if k1 6= −1, k2 6= −1;

C1 +
1

4
τ2 +

2B1

k + 1
τk+1 + 2B2 ln |τ | if k = k1 6= −1, k2 = −1.

93. y′′xx = (A1x
−2m1−3ym1 + A2x

−2m2−3ym2)(y′x)
3.

Solution in parametric form:

x = τF 1/2, y = F,

where k1 = −2m1 − 3, k2 = −2m2 − 3, A1 = −B1, A2 = −B2.

94. y′′xx =
((
A1xy

m +A2y
m−1

2

))
(y′x)

m+5
m+3 .

Solution in parametric form:

x = aF−1/2G, y = bF
1

m+1 ,

where

k1 = k =−m+ 3

m+ 1
, k2 = 0, A1 =

kbk+1

(k + 1)a

[
− 4aB1

(k + 1)b

]1/k
, A2 =−4ab−

1
k+1A1B2.

95. y′′xx =
((
A1x

ny + A2x
n−1
2

))
(y′x)

2n+4
n+3 .

Solution in parametric form:

x = aF
1

n+1 , y = F−1/2G,

where k1 = k = −n+ 3

n+ 1
, k2 = 0, A1 = − k

k + 1
a

2
k+1 b−1

[
− 4bB1

(k + 1)a

]1/k
, A2 =

−4a−
1

k+1 bA1B2.

96. y′′xx = (A1x
−5y2 +A2x

−5)(y′x)
3.

Solution in parametric form:

x =
τ
√
−A2

cosH
, y =

√
A2

A1
tanH.

97. y′′xx = (A1x
m1ym1 + A2x

m2ym2)(y′x)
3/2.

Solution in parametric form:

x = C1τ
1/2 exp

(
− 1

2

∫
f dτ

τ
√
f2 + 4

)
, y = C−1

1 τ1/2 exp
( 1
2

∫
f dτ

τ
√
f2 + 4

)
,



“K16435’ — 2017/9/28 — 15:05 — #738

712 SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS

where

f =





τ−1/2
[
C2 +

A1

2(m1 + 1)
τm1+1 +

A2

2(m2 + 1)
τm2+1

]
if m1 6= −1, m2 6= −1,

τ−1/2
[
C2 +

A1

2(m1 + 1)
τm1+1 +

1

2
A2 ln τ

]
if m1 6= −1, m2 = −1.

98. y′′xx =
((
A1x

nym1 +A2x
m2(n+1)−m1+n

m1+1 ym2

))
(y′x)

m1+2n+3
m1+n+2 .

Solution in parametric form:

x = C1 exp
(∫ dτ

τz

)
, y = C

− n+1
m1+1

1 τ exp
(
− n+ 1

m1 + 1

∫
dτ

τz

)
,

where z = z(τ) is the solution of the algebraic equation

(
z−m1 + n+ 2

m1 + 1

)(
z− n+ 1

m1 + 1

) n+1
m1+n+2

= τ
− m1+1

m1+n+2
(
C2+

A1

m1 + n+ 2
τm1+1+F

)
,

F =





A2(m1 + 1)

(m1 + n+ 2)(m2 + 1)
τm2+1 if m2 6= −1,

A2

m1 + n+ 2
ln |τ | if m2 = −1.

◆ In the solutions of equations 99–108, the following notation is used:

The functions P1 and P2 are the general solutions of the four modifications of the second

Painlevé equation (with parameter a = 0):

P ′′
1 = τP1 ± 2P 3

1 , P ′′
2 = −τP2 ± 2P 3

2 .

In the case of the upper sign, the equation for P1 is the canonical form of the second

Painlevé equation (with parameter a = 0; see Section 3.4.3);

Q1 = τP 2
1 ± P 4

1 − (P ′
1)

2, R1 = P ′
1 ∓ P1Q1, S1 = 2P ′

1Q1 − P 3
1 ∓ P1Q

2
1,

Q2 = τP 2
2 ± P 4

2 − (P ′
2)

2, R2 = P ′
2 ± P2Q2, S2 = 2P ′

2Q2 + P 3
2 ± P2Q

2
2;

where the prime denotes differentiation with respect to τ .

99. y′′xx = (A1xy +A2x
3)(y′x)

3.

Solution in parametric form:

x = aPk, y = bτ,

where A1 = b3(−1)k , A2 = ∓2a−2b−2; k = 1 and k = 2.

100. y′′xx = (A1xy
−5 + A2x

3y−6)(y′x)
3.

Solution in parametric form:

x = aτ−1Pk, y = bτ−1,

where A1 = b3(−1)k , A2 = ∓2a−2b4; k = 1 and k = 2.
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101. y′′xx = (A1 + A2x
−1/2y−1/2)(y′x)

3.

Solutions in parametric form:

x = a(P ′
k)

2, y = bP 2
k , P ′

k = (Pk)
′
τ ,

where A1 = ∓2ab−2, A2 =
1
2a

3/2b−3/2(−1)k; k = 1 and k = 2.

102. y′′xx = (A1x
−1/2y−2 +A2y

−3)(y′x)
3.

Solutions in parametric form:

x = aP−2
k (P ′

k)
2, y = bP−2

k , P ′
k = (Pk)

′
τ ,

where A1 =
1
2a

3/2(−1)k, A2 = ∓2ab; k = 1 and k = 2.

103. y′′xx = (A1x
−2y + A2)(y

′

x)
3.

Solutions in parametric form:

x = aP 2
k , y = b

[
τP 2

k ± P 4
k − (P ′

k)
2
]
, P ′

k = (Pk)
′
τ ,

where A1 = 2a3b−3(−1)k, A2 = ±2ab−2(−1)k; k = 1 and k = 2.

104. y′′xx = (A1x
−2y−2 + A2y

−3)(y′x)
3.

Solutions in parametric form:

x = aP 2
k

[
τP 2

k ± P 4
k − (P ′

k)
2
]−1

, y = b
[
τP 2

k ± P 4
k − (P ′

k)
2
]−1

,

where A1 = −2a3, A2 = ∓2ab; k = 1 and k = 2.

105. y′′xx = (A1 + A2xy
−1/2)(y′x)

3/2.

Solutions in parametric form:

x = aP−1
k Rk, y = bQ2

k,

where A1 = ∓ab−1/2A2(−1)k, A2 =

{
2a−2b1/2(2a/b)1/2 if k = 1,

−2a−2b1/2(−2a/b)1/2 if k = 2.

106. y′′xx = (A1x
−1/2y +A2)(y

′

x)
3/2.

Solutions in parametric form:

x = aQ2
k, y = bP−1

k Rk,

where A1 =

{
−2a1/2b−2(2b/a)1/2 if k = 1,

2a1/2b−2(−2b/a)1/2 if k = 2,
A2 = ∓a−1/2bA1(−1)k .

107. y′′xx = (A1 + A2xy
−2)(y′x)

3/2.

Solutions in parametric form:

x = aSk, y = bQk,

where A1 = ∓ab−2A2(−1)k , A2 =

{
a−2b2(2a/b)1/2 if k = 1,

a−2b2(−2a/b)1/2 if k = 2.



“K16435’ — 2017/9/28 — 15:05 — #740

714 SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS

108. y′′xx = (A1x
−2y + A2)(y

′

x)
3/2.

Solutions in parametric form:

x = aQk, y = bSk,

where A1 =

{
−a2b−2(2b/a)1/2 if k = 1,

−a2b−2(−2b/a)1/2 if k = 2,
A2 = ∓a−2bA1(−1)k.

109. y′′xx = (A1x
−7/5y−8/5 + A2x

−7/5y−13/5)(y′x)
3.

Solution in parametric form:

x = aC5
1S

5/2
(
bC4

1F −
A1

A2

)−1
, y =

(
bC4

1F −
A1

A2

)−1
,

where S = C1e
2kτ +C2e

−kτ sin
(√

3 kτ
)
, F = (S′

τ )
2− 2SS′′

ττ , A2 =
5

1024 a
12/5b−3k−6.

110. y′′xx = (A1x
−2y−1 + A2x

−2y−2)(y′x)
3.

Solution in parametric form:

x = aC1τ
2/3Z2

{
bC1τ

−2/3
[
(τZ ′

τ +
1
3Z)

2 ± τ2Z2
]
− A1

A2

}−1
,

y =
{
bC1τ

−2/3
[
(τZ ′

τ +
1
3Z)

2 ± τ2Z2
]
− A1

A2

}−1
,

where

A2 =
9

2
a3b−3, Z =

{
C1J1/3(τ) + C2Y1/3(τ) for the upper sign,

C1I1/3(τ) + C2K1/3(τ) for the lower sign,

J1/3(τ) and Y1/3(τ) are Bessel functions, and I1/3(τ) and K1/3(τ) are modified Bessel

functions.

111. y′′xx = (A1x
−7y4 + A2x

−7y3)(y′x)
3.

Solution in parametric form:

x = aC3
1F

1/2
(
bC8

1G−
A1

A2

)−1
, y =

(
bC8

1G−
A1

A2

)−1
,

where R=
√
±(4τ3 − 1), F = 2τ

∫
τR−1 dτ +C2τ ∓R, G= 4τF 2∓ τ−2(RF −1)2,

A2 = ∓ 3
64a

8b−3.

◆ In the solutions of equations 112 and 113, the following notation is used:

E =

∫
(1± τ4)−1/2 dτ + C2, k2 = ±1;

the function E can be expressed in terms of elliptic integrals or lemniscate functions.
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112. y′′xx = (A1x
2y−14/5 + A2x

3y−18/5)(y′x)
3.

Solutions in parametric form:

x= aC4
1E

−4(τE−k), y= bC5
1E

−5, where A1 =∓ 6
25a

−1b4/5k, A2=∓ 2
25a

−2b8/5.

113. y′′xx = (A1x
2y−11/5 + A2x

3y−12/5)(y′x)
3.

Solutions in parametric form:

x= aC1E(τE−k), y = bC5
1E

5, where A1 =∓ 6
25a

−1b1/5k, A2 =∓ 2
25a

−2b2/5.

◆ In the solutions of equations 114 and 115, the following notation is used:

∆ = C2
2 − 2C1, R = (36∆ + 54Bτ − 2τ3)1/2, z = 3

∫
dτ

τR
,

W (z) =





√
−∆
C1

tan
(
±
√
−∆ z

)
+
C2

C1
if ∆ < 0;

√
∆

C1
tanh

(
∓
√
∆ z
)
+
C2

C1
if ∆ > 0;

∓ 1

C1z
−
√
2√
|C1|

if ∆ = 0, C2 < 0;

∓ 1

C1z
+

√
2√
|C1|

if ∆ = 0, C2 > 0.

114. y′′xx = (A1x
−5/3 + A2x

−5/3y−2/3)(y′x)
3.

Solutions in parametric form:

x = aτ−9/4(C1W
2 − 2C2W + 2)3/4(6C1W − 6C2 ∓R)3/2,

y = bτ−3/2(C1W
2 − 2C2W + 2)3/2,

where A1 = −24a8/3b−2C1, A2 = 36a8/3b−4/3B.

115. y′′xx = (A1x
−5/3y−2/3 + A2x

−5/3y−4/3)(y′x)
3.

Solutions in parametric form:

x = aτ−3/4(C1W
2 − 2C2W + 2)−3/4(6C1W − 6C2 ∓R)3/2,

y = bτ3/2(C1W
2 − 2C2W + 2)−3/2,

where A1 = 36a8/3b−4/3B, A2 = −24a8/3b−2/3C1.

116. y′′xx =
[[
2(n+ 1)

(n+ 3)2
x+ Axn

]]
y−2(y′x)

3, n 6= −3, n 6= −1.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.4 with

respect to x = x(y): x′′yy = y−2
[
− 2(n+ 1)

(n+ 3)2
x−Axn

]
.

117. y′′xx = (− 15
4
x+Ax−7)y−2(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.35 with

respect to x = x(y): x′′yy = y−2( 154 x−Ax−7).
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118. y′′xx = (−6x+Ax−4)y−2(y′x)
3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.31 with

respect to x = x(y): x′′yy = y−2(6x−Ax−4).

119. y′′xx = (−12x+ Ax−5/2)y−2(y′x)
3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.64 with

respect to x = x(y): x′′yy = y−2(12x−Ax−5/2).

120. y′′xx = (−2x+Ax−2)y−2(y′x)
3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.6 with

respect to x = x(y): x′′yy = y−2(2x−Ax−2).

121. y′′xx = ( 3
16
x+ Ax−5/3)y−2(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.26 with

respect to x = x(y): x′′yy = y−2(− 3
16x−Ax−5/3).

122. y′′xx = ( 9
100
x+ Ax−5/3)y−2(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.10 with

respect to x = x(y): x′′yy = y−2(− 9
100x−Ax−5/3).

123. y′′xx = (− 3
4
x+ Ax−5/3)y−2(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.12 with

respect to x = x(y): x′′yy = y−2( 34x−Ax−5/3).

124. y′′xx = (− 63
4
x+Ax−5/3)y−2(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.66 with

respect to x = x(y): x′′yy = y−2( 634 x−Ax−5/3).

125. y′′xx = ( 5
36
x+ Ax−7/5)y−2(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.29 with

respect to x = x(y): x′′yy = y−2(− 5
36x−Ax−7/5).

126. y′′xx = ( 2
9
x+Ax−1/2)y−2(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.14 with

respect to x = x(y): x′′yy = y−2(− 2
9x−Ax−1/2).

127. y′′xx = ( 4
25
x+ Ax−1/2)y−2(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.8 with

respect to x = x(y): x′′yy = y−2(− 4
25x−Ax−1/2).

128. y′′xx = (−20x+ Ax−1/2)y−2(y′x)
3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.33 with

respect to x = x(y): x′′yy = y−2(20x−Ax−1/2).
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129. y′′xx = ( 12
49
x+ Ax1/2)y−2(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.37 with

respect to x = x(y): x′′yy = y−2(− 12
49x−Ax1/2).

130. y′′xx = (Ax2 + 6
25
x)y−2(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.60 with

respect to x = x(y): x′′yy = y−2(−Ax2 − 6
25x).

131. y′′xx = (Ax2 − 6
25
x)y−2(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.62 with

respect to x = x(y): x′′yy = y−2(−Ax2 + 6
25x).

132. y′′xx =
[[
2(n+ 1)

(n+ 3)2
xy−2 +Axny−n−1

]]
(y′x)

3, n 6= −3, −1.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.5 with

respect to x = x(y): x′′yy = − 2(n+ 1)

(n+ 3)2
y−2x−Ay−n−1xn.

133. y′′xx = (Ax−2y − 2xy−2)(y′x)
3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.7 with

respect to x = x(y): x′′yy = 2y−2x−Ayx−2.

134. y′′xx = (Ax−1/2y−1/2 + 4
25
xy−2)(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.9 with

respect to x = x(y): x′′yy = − 4
25 y

−2x−Ay−1/2x−1/2.

135. y′′xx = (Ax−5/3y2/3 + 9
100
xy−2)(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.11 with

respect to x = x(y): x′′yy = − 9
100 y

−2x−Ay2/3x−5/3.

136. y′′xx = (Ax−5/3y2/3 − 3
4
xy−2)(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.13 with

respect to x = x(y): x′′yy = 3
4 y

−2x−Ay2/3x−5/3.

137. y′′xx = (Ax−1/2y−1/2 + 2
9
xy−2)(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.15 with

respect to x = x(y): x′′yy = − 2
9y

−2x−Ay−1/2x−1/2.

138. y′′xx = (Ax−5/3y2/3 + 3
16
xy−2)(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.27 with

respect to x = x(y): x′′yy = − 3
16 y

−2x−Ay2/3x−5/3.
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139. y′′xx = (Ax−7/5y2/5 + 5
36
xy−2)(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.30 with

respect to x = x(y): x′′yy = − 5
36 y

−2x−Ay2/5x−7/5.

140. y′′xx = (Ax−4y3 − 6xy−2)(y′x)
3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.32 with

respect to x = x(y): x′′yy = 6y−2x−Ay3x−4.

141. y′′xx = (Ax−1/2y−1/2 − 20xy−2)(y′x)
3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.34 with

respect to x = x(y): x′′yy = 20y−2x−Ay−1/2x−1/2.

142. y′′xx = (Ax−7y6 − 15
4
xy−2)(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.36 with

respect to x = x(y): x′′yy = 15
4 y

−2x−Ay6x−7.

143. y′′xx = (Ax1/2y−3/2 + 12
49
xy−2)(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.38 with

respect to x = x(y): x′′yy = − 12
49 y

−2x−Ay−3/2x1/2.

144. y′′xx = ( 6
25
xy−2 +Ax2y−3)(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.61 with

respect to x = x(y): x′′yy = −Ay−3x2 − 6
25 y

−2x.

145. y′′xx = (− 6
25
xy−2 +Ax2y−3)(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.63 with

respect to x = x(y): x′′yy = −Ay−3x2 + 6
25 y

−2x.

146. y′′xx = (Ax−5/2y3/2 − 12xy−2)(y′x)
3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.65 with

respect to x = x(y): x′′yy = 12y−2x−Ay3/2x−5/2.

147. y′′xx = (Ax−5/3y2/3 − 63
4
xy−2)(y′x)

3.

Taking y to be the independent variable, we obtain an equation of the form 14.4.2.67 with

respect to x = x(y): x′′yy = 63
4 y

−2x−Ay2/3x−5/3.

14.6.3 Equations of the Form
y′′

xx = σAxnym(y′

x)
l +Axn−1ym+1(y′

x)
l−1

◮ Classification table.

Table 14.10 presents all solvable equations whose solutions are outlined in Section 14.6.3.

Two-parameter families (in the space of the parameters n, m, and l), one-parameter fami-

lies, and isolated points are presented in a consecutive fashion. Equations are arranged in

accordance with the growth of l. The number of the equation sought is indicated in the last

column in this table.
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TABLE 14.10

Solvable cases of the equation y′′xx = σAxnym(y′x)
l + Axn−1ym+1(y′x)

l−1

l m n σ Equation

arbitrary

(l 6= 2)
arbitrary

(m 6= −1) −m− 1 −1 14.6.3.75

arbitrary

(l 6= 2)
1− l l − 2 −1 14.6.3.76

arbitrary

(l 6= 3)
−2 1 −1 14.6.3.79

arbitrary

(l 6= 1)
0 −1 −1 14.6.3.80

m+ 3

m+ 2

arbitrary

(m 6= −1,−2) 1 m+ 1 14.6.3.74

3n+ 2

n+ 1
0

arbitrary

(n 6= 0,−1)
1

n
14.6.3.73

1
arbitrary

(m 6= −1) −m− 2 −1 14.6.3.1

1 0
arbitrary

(n 6= −1)
1

n
14.6.3.23

1 1
arbitrary

(n 6= 0,−2)
2

n
14.6.3.37

3

2
0

arbitrary

(n 6= 0,−1)
1

n
14.6.3.41

2
arbitrary

(m 6= −1)
arbitrary

(n 6= 0)
−1 14.6.3.85

2
arbitrary

(m 6= −1) m+ 1 −1 14.6.3.82

2
arbitrary

(m 6= −1) −2m− 2 −1 14.6.3.83

2
arbitrary

(m 6= −1) −m+ 1

2
−1 14.6.3.84

2
arbitrary

(m 6= −1) 0 arbitrary 14.6.3.87

2 −1 arbitrary

(n 6= 0)
arbitrary 14.6.3.86

5

2

arbitrary

(m 6= −1,−2) 1 m+ 1 14.6.3.42

3
arbitrary

(m 6= −2) −m− 2 −1 14.6.3.3

3
arbitrary

(m 6= −2) 1 m+ 1 14.6.3.24

3
arbitrary

(m 6= −1,−3) 2
m+ 1

2
14.6.3.38
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TABLE 14.10 (Continued)

Solvable cases of the equation y′′xx = σAxnym(y′x)
l + Axn−1ym+1(y′x)

l−1

l m n σ Equation

0 −3 −1 2 14.6.3.65

0 −3 1
2 −4 14.6.3.61

0 −3 2 −1 14.6.3.35

0 0 −2 −1 14.6.3.48

0 0 −1 −2 14.6.3.50

0 0 −1 −1 14.6.3.33

0 0 − 2
5 − 5

2 14.6.3.59

0 0 2 1
2 14.6.3.63

1 −3 1 −1 14.6.3.15

1 −2 −2 1
2 14.6.3.51

1 −2 −1 arbitrary 14.6.3.71

1 −2 −1 −1 14.6.3.7

1 −2 −1 1 14.6.3.5

1 −2 − 1
2 2 14.6.3.55

1 −2 1
2 −1 14.6.3.13

1 −2 1 arbitrary 14.6.3.69

1 −2 1 −2 14.6.3.11

1 −2 1 −1 14.6.3.29

1 −1 −1 −1 14.6.3.2

1 − 1
2 −2 − 1

4 14.6.3.53

1 − 1
2 −1 −1 14.6.3.45

1 − 1
2 − 1

2 −1 14.6.3.31

1 − 1
2 1 1

2 14.6.3.57

1 0 −1 −1 14.6.3.77

1 0 1 arbitrary 14.6.3.67

1 0 1 −1 14.6.3.9

1 1 −4 − 1
2 14.6.3.21

1 1 −1 −2 14.6.3.39

1 1 −2 −1 14.6.3.25

1 1 1 1 14.6.3.17

3
2 0 −1 −1 14.6.3.27
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TABLE 14.10 (Continued)

Solvable cases of the equation y′′xx = σAxnym(y′x)
l + Axn−1ym+1(y′x)

l−1

l m n σ Equation

3
2 0 − 1

2 −2 14.6.3.43

3
2 0 1 1 14.6.3.19

2 −1 0 arbitrary 14.6.3.81

5
2 −2 1 −1 14.6.3.28

5
2 − 3

2 1 − 1
2 14.6.3.44

5
2 0 1 1 14.6.3.20

3 −5 2 −2 14.6.3.22

3 −3 −1 2 14.6.3.52

3 −3 1
2 −4 14.6.3.54

3 −3 2 −1 14.6.3.26

3 −2 −1 arbitrary 14.6.3.72

3 −2 −1 −1 14.6.3.8

3 −2 −1 1 14.6.3.6

3 −2 0 −1 14.6.3.4

3 −2 1
2 −1 14.6.3.46

3 −2 1 −1 14.6.3.78

3 −2 2 − 1
2 14.6.3.40

3 − 3
2 −1 1

2 14.6.3.56

3 − 3
2

1
2 −1 14.6.3.32

3 − 1
2 −1 −1 14.6.3.14

3 0 −2 −1 14.6.3.16

3 0 −1 arbitrary 14.6.3.70

3 0 −1 −1 14.6.3.30

3 0 −1 − 1
2 14.6.3.12

3 0 1
2 2 14.6.3.58

3 0 1 arbitrary 14.6.3.68

3 0 1 −1 14.6.3.10

3 0 2 1 14.6.3.18

4 −3 1 −1 14.6.3.47

4 −2 −2 1
2 14.6.3.66

4 −2 1 −1 14.6.3.34
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TABLE 14.10 (Continued)

Solvable cases of the equation y′′xx = σAxnym(y′x)
l + Axn−1ym+1(y′x)

l−1

l m n σ Equation

4 −2 1 − 1
2 14.6.3.49

4 − 1
2 −2 − 1

4 14.6.3.62

4 − 2
5 1 − 2

5 14.6.3.60

4 1 −2 −1 14.6.3.36

4 1 1 2 14.6.3.64

◮ Solvable equations and their solutions.

1. y′′xx = Ax−m−2ymy′x −Ax−m−3ym+1, m 6= −1.

Solution in parametric form:

x = aCm
1

(∫ dτ

1± τm+1
+ C2

)−1
, y = bCm+1

1 τ
(∫ dτ

1± τm+1
+ C2

)−1
,

where A = ∓(m+ 1)am+1b−m.

2. y′′xx = Ax−1y−1y′x − Ax−2.

Solution in parametric form:

x=C1

[∫
τ−1 exp(∓τ2) dτ+C2

]−1
, y=−A

2
exp(∓τ2)

[∫
τ−1 exp(∓τ2) dτ+C2

]−1
.

3. y′′xx = Ax−m−2ym(y′x)
3 −Ax−m−3ym+1(y′x)

2, m 6= −2.

Solution in parametric form:

x = aCm+2
1 τ

(∫ dτ

1± τ−m−2
+ C2

)−1
, y = bCm+3

1

(∫ dτ

1± τ−m−2
+ C2

)−1
,

where A = ±(m+ 2)am+3b−m−2.

4. y′′xx = Ay−2(y′x)
3 − Ax−1y−2(y′x)

2.

Solution in parametric form:

x=−A
2
exp(∓τ2)

[∫
τ−1 exp(∓τ2) dτ+C2

]−1
, y=C1

[∫
τ−1 exp(∓τ2) dτ+C2

]−1
.

◆ In the solutions of equations 5–12, the following notation is used:

f =

∫
exp(∓τ2) dτ + C2.

5. y′′xx = Ax−1y−2y′x + Ax−2y−1.

Solution in parametric form:

x = C1 exp(∓τ2)f−1, y = b[2τ ± exp(∓τ2)f−1], where A = ±2b2.
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6. y′′xx = Ax−1y−2(y′x)
3 + Ax−2y−1(y′x)

2.

Solution in parametric form:

x = a[2τ ± exp(∓τ2)f−1], y = C1 exp(∓τ2)f−1, where A = ∓2a2.

7. y′′xx = Ax−1y−2y′x − Ax−2y−1.

Solution in parametric form:

x = C1

[
2τf ± exp(∓τ2)

]−1
, y = bf

[
2τf ± exp(∓τ2)

]−1
, where A = ± 1

2 b
2.

8. y′′xx = Ax−1y−2(y′x)
3 − Ax−2y−1(y′x)

2.

Solution in parametric form:

x = af
[
2τf ± exp(∓τ2)

]−1
, y = C1

[
2τf ± exp(∓τ2)

]−1
, where A = ± 1

2a
2.

9. y′′xx = Axy′x −Ay.

Solution in parametric form:

x = aτ, y = C1[2τf ± exp(∓τ2)], where A = ∓2a−2.

10. y′′xx = Ax(y′x)
3 − Ay(y′x)

2.

Solution in parametric form:

x = C1[2τf ± exp(∓τ2)], y = bτ, where A = ∓2b−2.

11. y′′xx = 2Axy−2y′x −Ay−1.

Solution in parametric form:

x=aC1[2τ
2f±τ exp(∓τ2)±f ], y= bC1[2τf±exp(∓τ2)], where A=∓ 1

2 a
−2b2.

12. y′′xx = Ax−1(y′x)
3 − 2Ax−2y(y′x)

2.

Solution in parametric form:

x=aC1[2τf±exp(∓τ2)], y= bC1[2τ
2f±τ exp(∓τ2)±f ], where A=∓ 1

2 a
2b−2.

◆ In the solutions of equations 13–22, the following notation is used:

E =
√
τ(τ + 1)− ln

(√
τ +
√
τ + 1

)
+ C2, F = E

√
τ + 1

τ
− τ.

13. y′′xx = Ax1/2y−2y′x −Ax−1/2y−1.

Solution in parametric form:

x = aC4
1F

−2, y = bC3
1τ

−1EF−2, where A = −a−3/2b2.

14. y′′xx = Ax−1y−1/2(y′x)
3 − Ax−2y1/2(y′x)

2.

Solution in parametric form:

x = aC3
1τ

−1EF−2, y = bC4
1F

−2, where A = −a2b−3/2.
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15. y′′xx = Axy−3y′x − Ay−2.

Solution in parametric form:

x = aC3
1F

−1

√
τ + 1

τ
, y = bC2

1F
−1, where A = −2a−2b3.

16. y′′xx = Ax−2(y′x)
3 −Ax−3y(y′x)

2.

Solution in parametric form:

x = aC2
1F

−1, y = bC3
1F

−1

√
τ + 1

τ
, where A = −2a3b−2.

17. y′′xx = Axyy′x + Ay2.

Solution in parametric form:

x = aC−1
1 τ−1E−1(τF 2 + τ2F − E2), y = bC2

1F
−1, where A = a−2b−1.

18. y′′xx = Ax2(y′x)
3 + Axy(y′x)

2.

Solution in parametric form:

x = aC2
1F

−1, y = bC−1
1 τ−1E−1(τF 2 + τ2F − E2), where A = −a−1b−2.

19. y′′xx = Ax(y′x)
3/2 +Ay(y′x)

1/2.

Solution in parametric form:

x= aC−1
1

(
F

√
τ + 1

τ
−Eτ−1

)
, y = bC3

1F
−1

√
τ + 1

τ
, where A= 2a−2

(
− a
b

)1/2
.

20. y′′xx = Ax(y′x)
5/2 +Ay(y′x)

3/2.

Solution in parametric form:

x=aC3
1F

−1

√
τ + 1

τ
, y= bC−1

1

(
F

√
τ + 1

τ
−Eτ−1

)
, where A=−2b−2

(
− b
a

)1/2
.

21. y′′xx = Ax−4yy′x − 2Ax−5y2.

Solution in parametric form:

x = aC1τE
(
τF 2 + τ2F − E2

)−1
, y = bC3

1τEF
−1
(
τF 2 + τ2F − E2

)−1
,

where A = −2a3b−1.

22. y′′xx = 2Ax2y−5(y′x)
3 −Axy−4(y′x)

2.

Solution in parametric form:

x = aC3
1τEF

−1
(
τF 2 + τ2F − E2

)−1
, y = bC1τE

(
τF 2 + τ2F − E2

)−1
,

where A = −2a−1b3.
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23. y′′xx = Axny′x + nAxn−1y, n 6= −1.

Solution in parametric form:

x = aτ
1

n+1 , y = C1e
βτ
(∫

τ
− n

n+1 e−βτ dτ + C2

)
, where A = (n+ 1)a−n−1β.

24. y′′xx = Axym(y′x)
3 +

A

m+ 1
ym+1(y′x)

2, m 6= −2.

Solution in parametric form:

x=C1e
βτ
(∫

τ
−m+1

m+2 e−βτ dτ +C2

)
, y = bτ

1
m+2 , where A=−m+ 2

m+ 1
b−m−2β.

◆ In the solutions of equations 25–36, the following notation is used:

R =





τν + C2τ
−ν for the upper sign,

sin(ν ln τ) + C2 cos(ν ln τ) for the lower sign,

ln τ + C2 for ν = 0,

Q =





(1 + ν)τν + (1− ν)C2τ
−ν for the upper sign,

(1− νC2) sin(ν ln τ) + (C2 + ν) cos(ν ln τ) for the lower sign,

ln τ + 1 + C2 for ν = 0.

25. y′′xx = Ax−2yy′x − Ax−3y2.

Solution in parametric form:

x = aτ−2, y = bτ−2R−1Q, where ν = C1, A = ab−1.

The solution is valid for all three cases of the functions R and Q given above.

26. y′′xx = Ax2y−3(y′x)
3 − Axy−2(y′x)

2.

Solution in parametric form:

x = aτ−2R−1Q, y = bτ−2, where ν = C1, A = a−1b.

The solution is valid for all three cases of the functions R and Q given above.

27. y′′xx = Ax−1(y′x)
3/2 −Ax−2y(y′x)

1/2.

Solution in parametric form:

x = aτ−2, y = 1
2 bτ

−2
(
2QR−1 − 1± ν2), where ν = C1, A = (2a/b)1/2.

28. y′′xx = Axy−2(y′x)
5/2 −Ay−1(y′x)

3/2.

Solution in parametric form:

x = 1
2 aτ

−2(2QR−1 − 1± ν2), y = bτ−2, where ν = C1, A = (2b/a)1/2.

29. y′′xx = Axy−2y′x − Ay−1.

Solution in parametric form:

x = aC1τR, y = bC1τQ, where A = a−2b2(1∓ ν2).
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30. y′′xx = Ax−1(y′x)
3 −Ax−2y(y′x)

2.

Solution in parametric form:

x = aC1τQ, y = bC1τR, where A = a2b−2(1∓ ν2).

31. y′′xx = Ax−1/2y−1/2y′x − Ax−3/2y1/2.

Solution in parametric form:

x = aτ2R2, y = bτ2Q2, where ν = C1, A = a−1/2b1/2.

32. y′′xx = Ax1/2y−3/2(y′x)
3 − Ax−1/2y−1/2(y′x)

2.

Solution in parametric form:

x = aτ2Q2, y = bτ2R2, where ν = C1, A = a1/2b−1/2.

33. y′′xx = Ax−1 − Ax−2y(y′x)
−1.

Solution in parametric form:

x = aτ2R2, y = bτ2[Q2 + (1∓ ν2)R2], where ν = C1, A = 2a−1b.

34. y′′xx = Axy−2(y′x)
4 −Ay−1(y′x)

3.

Solution in parametric form:

x = aτ2[Q2 + (1∓ ν2)R2], y = bτ2R2, where ν = C1, A = 2ab−1.

35. y′′xx = Ax2y−3 − Axy−2(y′x)
−1.

Solution in parametric form:

x = aC1τR, y = bC1τ
[
Q2 + (1∓ ν2)R2

]1/2
, where A = 4(1 ∓ ν2)a−4b4.

36. y′′xx = Ax−2y(y′x)
4 −Ax−3y2(y′x)

3.

Solution in parametric form:

x = aC1τ
[
Q2 + (1∓ ν2)R2

]1/2
, y = bC1τR, where A = 4(1 ∓ ν2)a4b−4.

◆ In the solutions of equations 37–50, the following notation is used:

Z =

{
Jν(τ) + C2Yν(τ) for the upper sign,

Iν(τ) + C2Kν(τ) for the lower sign,

where Jν(τ) and Yν(τ) are Bessel functions, and Iν(τ) and Kν(τ) are modified Bessel

functions.

37. y′′xx = 2Axnyy′x + nAxn−1y2, n 6= 0, n 6= −2.

Solution in parametric form:

x = aC−1
1 τ2−2ν , y = bCn+1

1 τ−2νZ−1(τZ ′
τ + νZ),

where ν =
n+ 1

n+ 2
, A = −n+ 2

2
a−n−1b−1.
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38. y′′xx = (m+ 1)Ax2ym(y′x)
3 + 2Axym+1(y′x)

2, m 6= −1, m 6= −3.

Solution in parametric form:

x = aC−m−2
1 τ−2νZ−1(τZ ′

τ + νZ), y = bC1τ
2−2ν ,

where ν =
m+ 2

m+ 3
, A =

m+ 3

2
a−1b−m−2.

39. y′′xx = 2Ax−1yy′x −Ax−2y2.

Solution in parametric form:

x = C1τ
2, y = bτZ−1Z ′

τ , where ν = 0, A = − 1
2 b

−1.

40. y′′xx = Ax2y−2(y′x)
3 − 2Axy−1(y′x)

2.

Solution in parametric form:

x = aτZ−1Z ′
τ , y = C1τ

2, where ν = 0, A = − 1
2a

−1.

41. y′′xx = Axn(y′x)
3/2 + nAxn−1y(y′x)

1/2, n 6= 0, n 6= −1.

Solution in parametric form:

x = aC−1
1 τ4−2ν , y = bC2n+1

1 τ−2ν
[
Z−1(τZ ′

τ + νZ)± 1

2(1− ν) τ
2
]
,

where ν =
2n+ 1

n+ 1
, A = −(n+ 1)a−n−1

[
− 2a

(n+ 1)b

]1/2
.

42. y′′xx = (m+ 1)Axym(y′x)
5/2 +Aym+1(y′x)

3/2, m 6= −1, m 6= −2.

Solution in parametric form:

x = aC2m−3
1 τ−2ν

[
Z−1(τZ ′

τ + νZ)± 1

2(1− ν) τ
2
]
, y = bC1τ

4−2ν ,

where ν =
2m+ 3

m+ 2
, A = (m+ 2)b−m−2

[
− 2b

(m+ 2)a

]1/2
.

43. y′′xx = 2Ax−1/2(y′x)
3/2 −Ax−3/2y(y′x)

1/2.

Solution in parametric form:

x = C1τ
4, y = b(τZ−1Z ′

τ ± 1
2 τ

2), where ν = 0, A = − 1
2 (−b)

−1/2.

44. y′′xx = Axy−3/2(y′x)
5/2 − 2Ay−1/2(y′x)

3/2.

Solution in parametric form:

x = a(τZ−1Z ′
τ ± 1

2 τ
2), y = C1τ

4, where ν = 0, A = − 1
2 (−a)

−1/2.

45. y′′xx = Ax−1y−1/2y′x −Ax−2y1/2.

Solution in parametric form:

x = C1Z
−2, y = bτ2Z−2(Z ′

τ )
2, where ν = 0, A = −b1/2.
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46. y′′xx = Ax1/2y−2(y′x)
3 −Ax−1/2y−1(y′x)

2.

Solution in parametric form:

x = aτ2Z−2(Z ′
τ )

2, y = C1Z
−2, where ν = 0, A = −a1/2.

47. y′′xx = Axy−3(y′x)
4 −Ay−2(y′x)

3.

Solution in parametric form:

x = aZ−1(2τZ ′
τ ± τ2Z), y = C1Z

−1, where ν = 0, A = 4a.

48. y′′xx = Ax−2 − Ax−3y(y′x)
−1.

Solution in parametric form:

x = C1Z
−1, y = bZ−1(2τZ ′

τ ± τ2Z), where ν = 0, A = 4b.

49. y′′xx = Axy−2(y′x)
4 − 2Ay−1(y′x)

3.

Solution in parametric form:

x = aC1[τ
2(Z ′

τ )
2 + 2τZZ ′

τ ± τ2Z2], y = bC1Z
2, where ν = 0, A = 1

2ab
−1.

50. y′′xx = 2Ax−1 − Ax−2y(y′x)
−1.

Solution in parametric form:

x = aC1Z
2, y = bC1[τ

2(Z ′
τ )

2 + 2τZZ ′
τ ± τ2Z2], where ν = 0, A = 1

2a
−1b.

◆ In the solutions of equations 51–66, the following notation is used:

Z =

{
J1/3(τ) + C2Y1/3(τ) for the upper sign,

I1/3(τ) + C2K1/3(τ) for the lower sign,

U1 = τZ ′
τ +

1
3Z, U2 = U2

1 ± τ2Z2, U3 = ± 2
3 τ

2Z3 − 2U1U2,

where J1/3(τ) and Y1/3(τ) are Bessel functions, and I1/3(τ) and K1/3(τ) are modified

Bessel functions.

51. y′′xx = Ax−2y−2y′x + 2Ax−3y−1.

Solution in parametric form:

x = aC−2
1 τ4/3Z2U−1

2 , y = bC1τ
−2/3Z−1U−1

2 U3, where A = 2ab2.

52. y′′xx = 2Ax−1y−3(y′x)
3 + Ax−2y−2(y′x)

2.

Solution in parametric form:

x = aC−1
1 τ−2/3Z−1U−1

2 U3, y = bC2
1τ

4/3Z2U−1
2 , where A = −2a2b.

53. y′′xx = Ax−2y−1/2y′x − 4Ax−3y1/2.

Solution in parametric form:

x = aC−1
1 τ−4/3Z−2U2, y = bC2

1τ
−4/3Z−2U−2

2 U2
3 , where A = ∓ 2

3ab
1/2.
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54. y′′xx = 4Ax1/2y−3(y′x)
3 − Ax−1/2y−2(y′x)

2.

Solution in parametric form:

x = aC−2
1 τ−4/3Z−2U−2

2 U2
3 , y = bC1τ

−4/3Z−2U2, where A = ∓ 2
3a

1/2b.

55. y′′xx = 2Ax−1/2y−2y′x + Ax−3/2y−1.

Solution in parametric form:

x = aC4
1τ

−4/3Z−2U2
1 , y = bC1τ

−4/3Z−2U2, where A = ± 1
6a

−1/2b2.

56. y′′xx = Ax−1y−3/2(y′x)
3 + 2Ax−2y−1/2(y′x)

2.

Solution in parametric form:

x = aC1τ
−4/3Z−2U2, y = bC4

1τ
−4/3Z−2U2

1 , where A = ∓ 1
6a

2b−1/2.

57. y′′xx = Axy−1/2y′x + 2Ay1/2.

Solution in parametric form:

x = aC1τ
−2/3Z−1U1, y = bC4

1τ
−8/3Z−4U2

2 , where A = 2a−2b1/2.

58. y′′xx = 2Ax1/2(y′x)
3 +Ax−1/2y(y′x)

2.

Solution in parametric form:

x = aC4
1τ

−8/3Z−4U2
2 , y = bC1τ

−2/3Z−1U1, where A = −2a1/2b−2.

59. y′′xx = 5Ax−2/5 − 2Ax−7/5y(y′x)
−1.

Solution in parametric form:

x = aC5
1τ

−5/3Z−5/2U
5/2
1 , y = bC8

1τ
−8/3Z−4(U2

2 ± 4
3 τ

2Z3U1),

where A = 32
125 a

−8/5b.

60. y′′xx = 2Axy−2/5(y′x)
4 − 5Ay−7/5(y′x)

3.

Solution in parametric form:

x=aC8
1τ

−8/3Z−4(U2
2± 4

3 τ
2Z3U1), y= bC5

1τ
−5/3Z−5/2U

5/2
1 , where A= 32

125 ab
−8/5.

61. y′′xx = 4Ax1/2y−3 −Ax−1/2y−2(y′x)
−1.

Solution in parametric form:

x=aC8
1τ

−4/3Z−2U2
1 , y= bC5

1τ
−4/3Z−2(U2

2± 4
3 τ

2Z3U1)
1/2, where A=± 1

3a
−5/2b4.

62. y′′xx = Ax−2y−1/2(y′x)
4 − 4Ax−3y1/2(y′x)

3.

Solution in parametric form:

x=aC5
1τ

−4/3Z−2
(
U2
2± 4

3 τ
2Z3U1

)1/2
, y= bC8

1τ
−4/3Z−2U2

1 , where A=± 1
3a

4b−5/2.

63. y′′xx = Ax2 + 2Axy(y′x)
−1.

Solution in parametric form:

x = aC1τ
2/3ZU

−1/2
2 , y = bC4

1τ
−4/3Z−2U−2

2 (U2
3 − 4U3

2 ), where A = 32
9 a

−4b.
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64. y′′xx = 2Axy(y′x)
4 +Ay2(y′x)

3.

Solution in parametric form:

x = aC4
1τ

−4/3Z−2U−2
2 (U2

3 − 4U3
2 ), y = bC1τ

2/3ZU
−1/2
2 , where A = − 32

9 ab
−4.

65. y′′xx = 2Ax−1y−3 +Ax−2y−2(y′x)
−1.

Solution in parametric form:

x= aC4
1τ

4/3Z2U−1
2 , y= bC1τ

−2/3Z−1U−1
2

(
U2
3 −4U3

2

)1/2
, where A=− 8

9a
−1b4.

66. y′′xx = Ax−2y−2(y′x)
4 + 2Ax−3y−1(y′x)

3.

Solution in parametric form:

x = aC1τ
−2/3Z−1U−1

2

(
U2
3 − 4U3

2

)1/2
, y = bC4

1τ
4/3Z2U−1

2 , where A = 8
9a

4b−1.

◆ In the solutions of equations 67–72, the following notation is used:

M = C1Φ(λ,
1
2 ;±τ) + C2Ψ(λ, 12 ;±τ),

where Φ and Ψ are linearly independent solutions of the degenerate hypergeometric equa-

tion:

τM ′′
ττ + ( 12 ± τ)M

′
τ − λM = 0.

The function Φ = Φ(λ, 12 ,±τ) can be expressed in terms of a degenerate hypergeometric

series (see equation 14.1.2.70).

67. y′′xx = A1xy
′

x + A2y.

Solution in parametric form:

x = aτ1/2, y =M, where A1 = ±2a−2, A2 = ±4a−2λ.

68. y′′xx = A1x(y
′

x)
3 + A2y(y

′

x)
2.

Solution in parametric form:

x =M, y = bτ1/2, where A1 = ∓4b−2λ, A2 = ∓2b−2.

69. y′′xx = A1xy
−2y′x + A2y

−1.

Solution in parametric form:

x =M, y = ±bτ1/2M ′
τ , where A1 = ∓b2λ, A2 = ±b2

(
λ+ 1

2

)
.

70. y′′xx = A1x
−1(y′x)

3 + A2x
−2y(y′x)

2.

Solution in parametric form:

x = ±aτ1/2M ′
τ , y =M, where A1 = ∓a2

(
λ+ 1

2

)
, A2 = ±a2λ.

71. y′′xx = A1x
−1y−2y′x + A2x

−2y−1.

Solution in parametric form:

x =M−1, y = ±bτ1/2M−1M ′
τ , where A1 = ±b2λ, A2 = ± 1

2 b
2.
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72. y′′xx = A1x
−1y−2(y′x)

3 +A2x
−2y−1(y′x)

2.

Solution in parametric form:

x = ±aτ1/2M−1M ′
τ , y =M−1, where A1 = ∓ 1

2a
2, A2 = ∓a2λ.

73. y′′xx = Axn(y′x)
3n+2
n+1 + nAxn−1y(y′x)

2n+1
n+1 , n 6= 0, n 6= −1.

Solution in parametric form:

x = aC−2n−1
1

(∫ dτ

βτk + 1
+C2

)−1/n
, y = bCn2

1

(
τ −

∫
dτ

βτk + 1
− C2

)
,

where k = −n+ 1

n
, A =

n+ 1

n2β
a1−nb−2

(
−nbβ

a

) 1
n+1

.

74. y′′xx = A(m+ 1)xym(y′x)
m+3
m+2 + Aym+1(y′x)

1
m+2 , m 6= −1,−2.

Solution in parametric form:

x = aC
(m+1)2

1

(
τ −

∫
dτ

βτk + 1
− C2

)
, y = bC−2m−3

1

(∫ dτ

βτk + 1
+ C2

)− 1
m+1

,

where k = −m+ 2

m+ 1
, A = − m+ 2

(m+ 1)2β
a−2b−m

[
− a(m+ 1)β

b

] 1
m+2

.

75. y′′xx = Ax−m−1ym(y′x)
l − Ax−m−2ym+1(y′x)

l−1,

m 6= −1, l 6= 2, m+ l− 1 6= 0.

Solution in parametric form:

x = aC1 exp
( l − 2

m+ l − 1

∫
dτ

F

)
, y = bC1τ

l−2
m+l−1 exp

( l − 2

m+ l − 1

∫
dτ

F

)
,

where

F =
m+ l − 1

l − 2

(
β + C2τ

k
) 1
2−l − τ, k =

(m+ 1)(l − 2)

m+ l − 1
,

A = − (m+ 1)(m + l − 1)

(l − 2)3
am−1b1−mβ

[ (l − 2)a

(m+ l − 1)b

]l
.

76. y′′xx = Axl−2y1−l(y′x)
l − Axl−3y2−l(y′x)

l−1, l 6= 2.

Solution in parametric form:

x = C1 exp
(∫ dτ

F

)
, y = C2 exp

(
τ +

∫
dτ

F

)
,

where F = (2− l)
[
β + e(l−2)τ

] 1
2−l − 1, A = (2− l)2−lβ.

77. y′′xx = Ax−1y′x − Ax−2y.

Solution: y =

{
C1x+ C2|x|A if A 6= 1,

x
(
C1 + C2 ln |x|

)
if A = 1.
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78. y′′xx = Axy−2(y′x)
3 −Ay−1(y′x)

2.

Solution in implicit form: x =

{
C1y + C2|y|A if A 6= 1,

y
(
C1 + C2 ln |y|

)
if A = 1.

◆ In the solutions of equations 79 and 80, the following notation is used:

f =





1

β + 1
τβ+1 +

1

β
τβ + C2 if β 6= 0,

τ + ln |τ |+ C2 if β = 0.

79. y′′xx = Axy−2(y′x)
l −Ay−1(y′x)

l−1, l 6= 3.

Solution in parametric form:

x = aC1[τ
β+1 − (β +1)f ] exp

(
−
∫
τβ−1f−1 dτ

)
, y = bC1 exp

(
−
∫
τβ−1f−1 dτ

)
,

where β =
2− l
l − 3

, A = −al−3b3−l.

80. y′′xx = Ax−1(y′x)
l −Ax−2y(y′x)

l−1, l 6= 1.

Solution in parametric form:

x = aC1 exp
(
−
∫
τβ−1f−1 dτ

)
, y = bC1[τ

β+1 − (β +1)f ] exp
(
−
∫
τβ−1f−1 dτ

)
,

where β =
l − 2

1− l , A = −al−1b1−l.

81. y′′xx = A1y
−1(y′x)

2 +A2x
−1y′x.

Solution: y =





±(C1|x|A2+1 +C2)
A1−1 if A1 6= 1, A2 6= −1;

±(C1 ln |x|+ C2)
A1−1 if A1 6= 1, A2 = −1;

C2 exp(C1|x|A2+1) if A1 = 1, A2 6= −1;
C2|x|C1 if A1 = 1, A2 = −1.

◆ In the solutions of equations 82–84, the following notation is used:

U = exp
(∫ W dτ

τ
√
W 2 + 4

)
, W = C2τ

−1/2 exp
[ A

2(k + 1)
τk+1

]
.

82. y′′xx = Axm+1ym(y′x)
2 −Axmym+1y′x, m 6= −1.

Solution in parametric form:

x = C1τ
1/2U−1/2, y = C−1

1 τ1/2U1/2, k = m.

83. y′′xx = Ax−2m−2ym(y′x)
2 −Ax−2m−3ym+1y′x, m 6= −1.

Solution in parametric form:

x = C1τ
−1/2U1/2, y = C2

1U, k = m.
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84. y′′xx = Ax−
m+1

2 ym(y′x)
2 − Ax−

m+3
2 ym+1y′x, m 6= −1.

Solution in parametric form:

x = C2
1U, y = C1τ

−1/2U1/2, k = −m+ 3

2
.

85. y′′xx = Axnym(y′x)
2 − Axn−1ym+1y′x, m 6= −1, n 6= 0.

Solution in parametric form:

x = C1 exp
(∫ dτ

τF

)
, y = Ck

1 τ exp
(
k

∫
dτ

τF

)
, k = − n

m+ 1
,

where F = F (τ) is the solution of the transcendental equation

(F + k)k

(F + k − 1)k−1
= C2τ

−1 exp
( A

m+ 1
τm+1

)
.

86. y′′xx = A1x
ny−1(y′x)

2 +A2x
n−1y′x, n 6= 0.

Solution:

y=C1 exp
[∫

exp
(A2

n
xn
)
(F+C2)

−1dx
]
, where F =

∫
(1−A1x

n) exp
(A2

n
xn
)
dx.

87. y′′xx = A1y
m(y′x)

2 + A2x
−1ym+1y′x, m 6= −1.

Solution:

x=C1 exp

[∫
exp

(
−A1y

m+1

m+1

)
dy

F+C2

]
with F=

∫
(1+A2y

m+1) exp

(
−A1y

m+1

m+1

)
dy.

14.6.4 Other Equations (l1 6= l2)

◮ Classification table.

Table 14.11 presents all solvable equations whose solutions are outlined in Section 14.6.4.

Equations are arranged in accordance with the growth of l1 (l1 > l2). The number of the

equation sought is indicated in the last column in this table.

◮ Solvable equations and their solutions.

1. y′′xx = A1y
−1/2y′x + A2y

−1/2.

Solution in parametric form:

x = C1 exp(A1τ)−
A2

4A1
τ2 + C2, y =

[
A1C1 exp(A1τ)−

A2

2A1
τ
]2
.
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TABLE 14.11

Solvable cases of the equation y′′xx = A1x
n1ym1(y′x)

l1 + A2x
n2ym2(y′x)

l2 , l1 6= l2

l1 l2 m1 m2 n1 n2 Equation

arbitrary arbitrary arbitrary m1 0 0 14.6.4.3

arbitrary arbitrary 0 0 arbitrary n1 14.6.4.4

arbitrary arbitrary 1− l1 1− l2 l1 − 2 l2 − 2 14.6.4.9

arbitrary 3− l1 1− l1 l1 − 2 l1 − 2 1− l1 14.6.4.8

1 0 − 1
2 − 1

2 0 0 14.6.4.1

1 0 − 1
2 − 1

2 0 1 14.6.4.14

1 0 − 1
2 0 0 0 14.6.4.16

2 0 −1 1 arbitrary arbitrary 14.6.4.18

2 1 arbitrary arbitrary 0 −1 14.6.4.13

2 1
arbitrary

(m1 6= −1) 0 0
arbitrary

(n2 6= −1) 14.6.4.5

2 1
arbitrary

(m1 6= −1) 0 0 −1 14.6.4.7

2 1 −1 0 arbitrary arbitrary 14.6.4.12

2 1 −1 0 0
arbitrary

(n2 6= −1) 14.6.4.6

5
2

1
2 arbitrary m1 + 2 m1 + 2 m1 14.6.4.11

3 0
arbitrary*

(m1 6= −2) m1 + 3 m1 + 3 m1 14.6.4.10

3 1 arbitrary arbitrary 1 −1 14.6.4.19

3 2 0 0 − 1
2 − 1

2 14.6.4.2

3 2 0 0 0 − 1
2 14.6.4.17

3 2 1 0 − 1
2 − 1

2 14.6.4.15

∗ For m1 = −2, see Equation 14.6.4.8 with l = 3.

2. y′′xx = A1x
−1/2(y′x)

3 + A2x
−1/2(y′x)

2.

Solution in parametric form:

x =
[
A2C1 exp(−A2τ) +

A1

2A2
τ
]2
, y = C1 exp(−A2τ)−

A1

4A2
τ2 + C2.
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l1 + A2x
n2ym2(y′x)

l2 735

3. y′′xx = A1y
m(y′x)

l1 + A2y
m(y′x)

l2 .

1◦. Solution in parametric form with m 6= −1:

x = C2 +

∫ (
A1τ

l1 +A2τ
l2
)−1

f
− m

m+1 dτ, y = f
1

m+1 ,

where f = C1 + (m+ 1)

∫
τ
(
A1τ

l1 +A2τ
l2
)−1

dτ.

2◦. Solution in parametric form with m = −1:

x = C2 +

∫ (
A1τ

l1 +A2τ
l2
)−1

ef dτ, y = ef ,

where f = C1

∫
τ
(
A1τ

l1 +A2τ
l2
)−1

dτ.

4. y′′xx = A1x
n(y′x)

l1 +A2x
n(y′x)

l2 .

1◦. Solution in parametric form with n 6= −1:

x = f
1

n+1 , y = C2 +

∫
τ
(
A1τ

l1 +A2τ
l2
)−1

f
− n

n+1 dτ,

where f = C1 + (n+ 1)

∫ (
A1τ

l1 +A2τ
l2
)−1

dτ.

2◦. Solution in parametric form with n = −1:

x = ef , y = C2 +

∫
τ
(
A1τ

l1 +A2τ
l2
)−1

ef dτ,

where f = C1

∫ (
A1τ

l1 +A2τ
l2
)−1

dτ.

5. y′′xx = A1y
m(y′x)

2 +A2x
ny′x, n 6= −1, m 6= −1.

Solution:

∫
exp
(
− A1

m+ 1
ym+1

)
dy = C1

∫
exp
( A2

n+ 1
xn+1

)
dx+C2.

6. y′′xx = A1y
−1(y′x)

2 + A2x
ny′x, n 6= −1.

1◦. Solution for A1 6= 1:

y =
[
C1

∫
exp
( A2

n+ 1
xn+1

)
dx+ C2

]A1−1
.

2◦. Solution for A1 = 1:

y = C2 exp
[
C1

∫
exp
( A2

n+ 1
xn+1

)
dx
]
.

7. y′′xx = A1y
m(y′x)

2 +A2x
−1y′x, m 6= −1.

1◦. Solution for A2 6= −1:

x =
[
C1

∫
exp
(
− A1

m+ 1
ym+1

)
dy + C2

]−A2−1
.



“K16435’ — 2017/9/28 — 15:05 — #762

736 SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS

2◦. Solution for A2 = −1:

x = C2 exp
[
C1

∫
exp
(
− A1

m+ 1
ym+1

)
dy
]
.

8. y′′xx = A1x
l−2y1−l(y′x)

l + A2x
1−lyl−2(y′x)

3−l.

Solution in parametric form:

x=C2 exp
(∫ dτ

A1τ l +A2τ3−l − τ2 + τ

)
, y=C1 exp

(∫ τ dτ

A1τ l +A2τ3−l − τ2 + τ

)
.

9. y′′xx = A1x
l1−2y1−l1(y′x)

l1 + A2x
l2−2y1−l2(y′x)

l2 .

Solution in parametric form:

x = C2 exp
(∫ dτ

A1τ l1 +A2τ l2 − τ2 + τ

)
, y = C1 exp

(∫ τ dτ

A1τ l1 +A2τ l2 − τ2 + τ

)
.

10. y′′xx = Axm+3ym(y′x)
3 −Axmym+3, m 6= −2.

Solution in parametric form:

x = C1τ
1/2 exp

(
− 1

2

∫
V dτ

τ
√
V 2 + 4

)
, y = C−1

1 τ1/2 exp
( 1
2

∫
V dτ

τ
√
V 2 + 4

)
,

where V = τ−1/2 exp
( 3A

2m+ 4
τm+2

)[
C2 −A

∫
τm exp

( 3A

m+ 2
τm+2

)
dτ
]−1/2

.

11. y′′xx = Axm+2ym(y′x)
5/2 + Axmym+2(y′x)

1/2.

Solution in parametric form:

x = C1τ
1/2 exp

(
− 1

2

∫
V dτ

τ
√
V 2 + 4

)
, y = C−1

1 τ1/2 exp
( 1
2

∫
V dτ

τ
√
V 2 + 4

)
.

Here, the function V = V (τ) is defined in parametric form, τ = τ(u), V = V (u), as

follows:

1◦. For m 6= −1, m 6= −3/2:

τ = au
2

2m+3 , V =
b(2m+ 3)

2(m+ 1)
u−1Z−1(τZ ′

u + νZ),

where Z =

{
C2Jν(u) + Yν(u) for the upper sign,

C2Iν(u) +Kν(u) for the lower sign,
Jν(u) and Yν(u) are Bessel func-

tions, and Iν(u) and Kν(u) are modified Bessel functions,

ν =
m+ 1

2m+ 3
, a =

(
− 2m+ 2

Ab

)− 1
m+1

, ± (2m+ 3)2

8(m+ 1)2
b
2m+3
m+1 =

(
− 2m+ 2

A

) 1
m+1

.

2◦. For m = −1:

τ =
u2

2A2
, V =

A√
2
Z−1Z ′

u, where Z = C2J0(u) + Y0(u).
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l2 737

3◦. For m = −3/2:

τ = A2u−4, V =





1

2A

(1 + k)C2u
k + (1− k)u−k

C2uk + u−k
if A2 < 1

8 ,

1

2A

C2 lnu+ C2 + 1

C2 lnu+ 1
if A2 = 1

8 ,

1

2A

(C2 − k) sin(k lnu) + (1 + kC2) cos(k lnu)

C2 sin(k lnu) + cos(k lnu)
if A2 > 1

8 ,

where k =
√
|1− 8A2|.

12. y′′xx = A1x
n1y−1(y′x)

2 + A2x
n2y′x.

1◦. Solution for n2 6= −1:

y = C1 exp
(∫

F dx
)
,

where F = exp
(A2x

n2+1

n2 + 1

)[
C2 +

∫
(1−A1x

n1) exp
(A2x

n2+1

n2 + 1

)
dx
]−1

.

2◦. Solution for n2 = −1, A2 6= −1, A2 6= −n1 − 1:

y = C1 exp
[∫

xA2

(
C2 +

1

A2 + 1
xA2+1 − A1

n1 +A2 + 1
xn1+A2+1

)−1
dx
]
.

3◦. Solution for n2 = −1, A2 = −1:

y = C1 exp
[∫

x−1
(
C2 + lnx− A1

n1
xn1

)−1
dx
]
.

4◦. Solution for n2 = −1, A2 = −n1 − 1:

y = C1 exp
[∫

x−n1−1
(
C2 −

1

n1
x−n1 −A1 lnx

)−1
dx
]
.

13. y′′xx = A1y
m1(y′x)

2 +A2x
−1ym2y′x.

1◦. Solution for m1 6= −1:

x = C1 exp
(∫

F dy
)
,

where F = exp
(
−A1y

m1+1

m1 + 1

)[
C2 +

∫
(1 +A2y

m2) exp
(
−A1y

m1+1

m1 + 1

)
dy
]−1

.

2◦. Solution for m1 = −1, A1 6= 1, A1 6= m2 + 1:

x = C1 exp
[∫

y−A1

(
C2 +

1

1−A1
y1−A1 +

A2

m2 −A1 + 1
ym2−A1+1

)−1
dy
]
.

3◦. Solution for m1 = −1, A1 = 1:

x = C1 exp
[∫

y−1
(
C2 + ln y +

A2

m2
ym2

)−1
dy
]
.

4◦. Solution for m1 = −1, A1 = m2 + 1:

x = C1 exp
[∫

y−m2−1
(
C2 −

1

m2
y−m2 +A2 ln y

)−1
dy
]
.
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◆ In the solutions of equations 14 and 15, the following notations are used:

R =





C1τ
k1 + C2τ

k2 + C3τ
k3 if B2(8B

3
1 + 27B2) < 0,

C1τe
kτ + C2e

στ if 8B3
1 + 27B2 = 0,

C1e
kτ + C2e

ρτ cosωτ if B2(8B
3
1 + 27B2) > 0,

Q =





C1k1τ
k1 + C2k2τ

k2 + C3k3τ
k3 if B2(8B

3
1 + 27B2) < 0,

C1(1 + kτ)ekτ + C2σe
στ if 8B3

1 + 27B2 = 0,

C1ke
kτ + C2e

ρτ (ρ cosωτ − ω sinωτ) if B2(8B
3
1 + 27B2) > 0,

where k1, k2, and k3 (real numbers) or k and ρ± iω (one real and two complex numbers)

are roots of the cubic equation

λ3 −B1λ
2 − 1

2B2 = 0.

In the special case 8B3
1 = −27B2, we have k = 2

3B1 (multiple root) and σ = − 1
3B1

(simple root).

Remark 14.5. In the expressions forR andQ, the constantC3 can be set to any nonzero number

(for example, one can set C3 = ±1).

14. y′′xx = A1y
−1/2y′x +A2xy

−1/2.

Solution in parametric form:

x = R, y = Q2, where B1 = A1, B2 = A2.

15. y′′xx = A1x
−1/2y(y′x)

3 +A2x
−1/2(y′x)

2.

Solution in parametric form:

x = Q2, y = R, where B1 = −A2, B2 = −A1.

◆ In the solutions of equations 16 and 17, the following notations are used:

R =





τB1/2(C1τ
k + C2τ

−k) + C3 if B2
1 + 2B2 > 0,

C1τ exp(
1
2B1τ) + C2 if B2

1 + 2B2 = 0,

C1 exp(
1
2B1τ) cos(ωτ) + C2 if B2

1 + 2B2 < 0,

Q =





τB1/2[(C1(B1 + 2k)τk + C2(B1 − 2k)τ−k] if B2
1 + 2B2 > 0,

C1(B1τ + 2) exp( 12B1τ) if B2
1 + 2B2 = 0,

C1 exp(
1
2B1τ)[B1 cos(ωτ)− 2ω sin(ωτ)] if B2

1 + 2B2 < 0,

where k = 1
2

√
B2

1 + 2B2 and ω = 1
2

√
−(B2

1 + 2B2).

16. y′′xx = A1y
−1/2y′x +A2.

Solution in parametric form:

x = R, y = 1
4Q

2, where B1 = A1, B2 = A2.

17. y′′xx = A1(y
′

x)
3 + A2x

−1/2(y′x)
2.

Solution in parametric form:

x = 1
4Q

2, y = R, where B1 = −A2, B2 = −A1.
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18. y′′xx = A1x
n1y−1(y′x)

2 + A2x
n2y.

Solution: y = C1 exp
[
−
∫

w′
x dx

(A1xn1 − 1)w

]
, where w = w(x) is the general solution of

the second-order linear equation

(A1x
n1 − 1)w′′

xx −A1n1x
n1−1w′

x +A1x
n2(A1x

n1 − 1)2w = 0.

19. y′′xx = A1xy
m1(y′x)

3 +A2x
−1ym2y′x.

Solution: x = C1 exp
[∫ w′

y dy

(A2ym2 + 1)w

]
, where w = w(y) is the general solution of

the second-order linear equation

(A2y
m2 + 1)w′′

yy −A2m2y
m2−1w′

y −A1y
m1(A2y

m2 + 1)2w = 0.

14.7 Equations of the Form y′′
xx = f(x)g(y)h(y′

x)

See Section 14.3 for the case f(x) = constxn, g(y) = constym, h(w) = const.

See Section 14.5 for the case f(x) = constxn, g(y) = constym, h(w) = constwl.

14.7.1 Equations of the Form y′′

xx = f(x)g(y)

1. y′′xx = x−2
[[
− 2(m+ 1)

(m+ 3)2
y + Aym

]]
, m 6= −3, m 6= −1.

See equation 14.4.2.4.

2. y′′xx = x−2( 15
4
y +Ay−7).

See equation 14.4.2.35.

3. y′′xx = x−2(6y +Ay−4).

See equation 14.4.2.31.

4. y′′xx = x−2(12y +Ay−5/2).

See equation 14.4.2.64.

5. y′′xx = x−2(2y +Ay−2).

See equation 14.4.2.6.

6. y′′xx = x−2(− 3
16
y + Ay−5/3).

See equation 14.4.2.26.

7. y′′xx = x−2(− 9
100
y +Ay−5/3).

See equation 14.4.2.10.

8. y′′xx = x−2( 3
4
y + Ay−5/3).

See equation 14.4.2.12.
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9. y′′xx = x−2( 63
4
y +Ay−5/3).

See equation 14.4.2.66.

10. y′′xx = x−2(− 5
36
y + Ay−7/5).

See equation 14.4.2.29.

11. y′′xx = x−2(− 2
9
y +Ay−1/2).

See equation 14.4.2.14.

12. y′′xx = x−2(− 4
25
y + Ay−1/2).

See equation 14.4.2.8.

13. y′′xx = x−2(20y + Ay−1/2).

See equation 14.4.2.33.

14. y′′xx = x−2(− 12
49
y + Ay1/2).

See equation 14.4.2.37.

15. y′′xx = x−2(Ay2 − 6
25
y).

See equation 14.4.2.60.

16. y′′xx = x−2(Ay2 + 6
25
y).

See equation 14.4.2.62.

17. y′′xx = x−4/3(A+ By−1/2).

See equation 14.4.2.40.

18. y′′xx = (Ax4 +Bx3)y−7.

See equation 14.4.2.39.

19. y′′xx = (Ax2 +B)y−5.

See equation 14.4.2.16.

20. y′′xx = (Ax−1 +Bx−2)y−2.

See equation 14.4.2.28.

21. y′′xx = (Ax−7/3 + Bx−10/3)y−5/3.

See equation 14.4.2.48.

22. y′′xx = (Ax−4/3 + Bx−10/3)y−5/3.

See equation 14.4.2.49.

23. y′′xx = (Ax−4/3 + Bx−7/3)y−5/3.

See equation 14.4.2.24.

24. y′′xx = (Ax−2/3 + Bx−4/3)y−5/3.

See equation 14.4.2.90.
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25. y′′xx = (A+Bx−2/3)y−5/3.

See equation 14.4.2.89.

26. y′′xx = (Ax2 +B)y−5/3.

See equation 14.4.2.47.

27. y′′xx = (Ax2 +Bx)y−5/3.

See equation 14.4.2.46.

28. y′′xx = A(ax−2/3 + bx−5/3)2y−5/3.

This is a special case of equation 14.7.1.37 with c = 1 and d = 0.

29. y′′xx = (Ax−8/5 + Bx−13/5)y−7/5.

See equation 14.4.2.25.

30. y′′xx = (Ax−5/2 + Bx−7/2)y−1/2.

See equation 14.4.2.23.

31. y′′xx = A(ax5 + bx4)−1/2y−1/2.

This is a special case of equation 14.7.1.38 with c = 1 and d = 0.

32. y′′xx = A(ax15/8 + bx7/8)−4/3y−1/2.

This is a special case of equation 14.7.1.39 with c = 1 and d = 0.

33. y′′xx = A(ax7/3 + bx4/3)−15/7y2.

This is a special case of equation 14.7.1.40 with c = 1 and d = 0.

34. y′′xx = (ax2 + bx+ c)y−5/3.

The transformation x=x(t), y=(x′t)
3/2

leads to a third-order equation: 2x′tx
′′′
ttt−(x′′tt)2=

4
3 (ax

2 + bx+ c). Differentiating the latter equation with respect to t and dividing it by x′t,
we obtain a fourth-order constant coefficient linear equation: 3x′′′′tttt = 4ax+ 2b.

35. y′′xx = (ax−10/3 + bx−7/3 + cx−4/3)y−5/3.

The transformation x = 1/t, y = w/t leads to an equation of the form 14.7.1.34: w′′
tt =

(at2 + bt+ c)w−5/3.

36. y′′xx = k(ax2 + bx+ c)ny−2n−3.

This is a special case of equation 14.9.1.21 with f(u) = ku−2n. Setting u(x) =
y(ax2+bx+c)−1/2 and integrating the equation, we obtain a first-order separable equation:

(ax2 + bx+ c)2(u′x)
2 = ( 14 b

2 − ac)u2 − k
n+1u

−2n−2 + C1.

37. y′′xx = A(ax+ b)2(cx+ d)−10/3y−5/3.

The transformation ξ =
ax+ b

cx+ d
, w =

y

cx+ d
leads to an Emden–Fowler equation of the

form 14.3.1.9: w′′
ξξ = A∆−2ξ2w−5/3, where ∆ = ad− bc.
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38. y′′xx = A(ax+ b)−1/2(cx+ d)−2y−1/2.

The transformation ξ =
ax+ b

cx+ d
, w =

y

cx+ d
leads to an Emden–Fowler equation of the

form 14.3.1.25: w′′
ξξ = A∆−2ξ−1/2w−1/2, where ∆ = ad− bc.

39. y′′xx = A(ax+ b)−4/3(cx+ d)−7/6y−1/2.

The transformation ξ =
ax+ b

cx+ d
, w =

y

cx+ d
leads to an Emden–Fowler equation of the

form 14.3.1.17: w′′
ξξ = A∆−2ξ−4/3w−1/2, where ∆ = ad− bc.

40. y′′xx = A(ax+ b)−15/7(cx+ d)−20/7y2.

The transformation ξ =
ax+ b

cx+ d
, w =

y

cx+ d
leads to an Emden–Fowler equation of the

form 14.3.1.20: w′′
ξξ = A∆−2ξ−15/7w2, where ∆ = ad− bc.

41. y′′xx = A exp(ax2 + bx) exp(ky).

The substitution kw=ky+ax2+bx leads to an autonomous equation of the form 14.9.1.1:

w′′
xx = Aekw + 2ak−1.

14.7.2 Equations Containing Power Functions (h 6≡ const)

1. y′′xx =
[[
2(n+ 1)

(n+ 3)2
x+ Axn

]]
y−2(y′x)

3, n 6= −3, n 6= −1.

See equation 14.6.2.116.

2. y′′xx = (− 15
4
x+Ax−7)y−2(y′x)

3.

See equation 14.6.2.117.

3. y′′xx = (−6x+Ax−4)y−2(y′x)
3.

See equation 14.6.2.118.

4. y′′xx = (−12x+ Ax−5/2)y−2(y′x)
3.

See equation 14.6.2.119.

5. y′′xx = (−2x+Ax−2)y−2(y′x)
3.

See equation 14.6.2.120.

6. y′′xx = ( 3
16
x+Ax−5/3)y−2(y′x)

3.

See equation 14.6.2.121.

7. y′′xx = ( 9
100
x+ Ax−5/3)y−2(y′x)

3.

See equation 14.6.2.122.

8. y′′xx = (− 3
4
x+ Ax−5/3)y−2(y′x)

3.

See equation 14.6.2.123.
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9. y′′xx = (− 63
4
x+Ax−5/3)y−2(y′x)

3.

See equation 14.6.2.124.

10. y′′xx = ( 5
36
x+ Ax−7/5)y−2(y′x)

3.

See equation 14.6.2.125.

11. y′′xx = ( 2
9
x+ Ax−1/2)y−2(y′x)

3.

See equation 14.6.2.126.

12. y′′xx = ( 4
25
x+ Ax−1/2)y−2(y′x)

3.

See equation 14.6.2.127.

13. y′′xx = (−20x+Ax−1/2)y−2(y′x)
3.

See equation 14.6.2.128.

14. y′′xx = ( 12
49
x+ Ax1/2)y−2(y′x)

3.

See equation 14.6.2.129.

15. y′′xx = (Ax2 + 6
25
x)y−2(y′x)

3.

See equation 14.6.2.130.

16. y′′xx = (Ax2 − 6
25
x)y−2(y′x)

3.

See equation 14.6.2.131.

17. y′′xx = (A+Bx−1/2)y−4/3(y′x)
3.

See equation 14.6.2.15.

18. y′′xx = x−7(Ay4 +By3)(y′x)
3.

See equation 14.6.2.111.

19. y′′xx = x−5(Ay2 +B)(y′x)
3.

See equation 14.6.2.96.

20. y′′xx = x−2(Ay−1 + By−2)(y′x)
3.

See equation 14.6.2.110.

21. y′′xx = x−5/3(Ay−7/3 +By−10/3)(y′x)
3.

See equation 14.6.2.34.

22. y′′xx = x−5/3(Ay−4/3 +By−10/3)(y′x)
3.

See equation 14.6.2.36.

23. y′′xx = x−5/3(Ay−4/3 +By−7/3)(y′x)
3.

See equation 14.6.2.14.

24. y′′xx = x−5/3(Ay−2/3 +By−4/3)(y′x)
3.

See equation 14.6.2.115.
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25. y′′xx = x−5/3(A+ By−2/3)(y′x)
3.

See equation 14.6.2.114.

26. y′′xx = x−5/3(Ay2 + B)(y′x)
3.

See equation 14.6.2.35.

27. y′′xx = x−5/3(Ay2 + By)(y′x)
3.

See equation 14.6.2.33.

28. y′′xx = Ax−5/3(ay−2/3 + by−5/3)2(y′x)
3.

This is a special case of equation 14.7.2.37 with c = 1 and d = 0.

29. y′′xx = x−7/5(Ay−8/5 +By−13/5)(y′x)
3.

See equation 14.6.2.109.

30. y′′xx = x−1/2(Ay−5/2 +By−7/2)(y′x)
3.

See equation 14.6.2.13.

31. y′′xx = Ax−1/2(ay5 + by4)−1/2(y′x)
3.

This is a special case of equation 14.7.2.38 with c = 1 and d = 0.

32. y′′xx = Ax−1/2(ay15/8 + by7/8)−4/3(y′x)
3.

This is a special case of equation 14.7.2.39 with c = 1 and d = 0.

33. y′′xx = Ax2(ay7/3 + by4/3)−15/7(y′x)
3.

This is a special case of equation 14.7.2.40 with c = 1 and d = 0.

34. y′′xx = x−5/3(ay2 + by + c)(y′x)
3.

Taking y to be the independent variable, we obtain an equation of the form 14.7.1.34 with

respect to x = x(y): x′′yy = −(ay2 + by + c)x−5/3.

35. y′′xx = x−5/3(ay−10/3 + by−7/3 + cy−4/3)(y′x)
3.

Taking y to be the independent variable, we obtain an equation of the form 14.7.1.35 with

respect to x = x(y): x′′yy = −(ay−10/3 + by−4/3 + cy−4/3)x−5/3.

36. y′′xx = x−2n−3(ay2 + by + c)n(y′x)
3.

Taking y to be the independent variable, we obtain an equation of the form 14.9.1.21 (for

f(ξ) = −ξ−2n) with respect to x = x(y): x′′yy = −(ay2 + by + c)nx−2n−3.

37. y′′xx = Ax−5/3(ay + b)2(cy + d)−10/3(y′x)
3.

Taking y to be the independent variable, we obtain an equation of the form 14.7.1.37 with

respect to x = x(y): x′′yy = −A(ay + b)2(cy + d)−10/3x−5/3.

38. y′′xx = Ax−1/2(ay + b)−1/2(cy + d)−2(y′x)
3.

Taking y to be the independent variable, we obtain an equation of the form 14.7.1.38 with

respect to x = x(y): x′′yy = −A(ay + b)−1/2(cy + d)−2x−1/2.



“K16435’ — 2017/9/28 — 15:05 — #771

14.7. Equations of the Form y′′xx = f(x)g(y)h(y′x) 745

39. y′′xx = Ax−1/2(ay + b)−4/3(cy + d)−7/6(y′x)
3.

Taking y to be the independent variable, we obtain an equation of the form 14.7.1.39 with

respect to x = x(y): x′′yy = −A(ay + b)−4/3(cy + d)−7/6x−1/2.

40. y′′xx = Ax2(ay + b)−15/7(cy + d)−20/7(y′x)
3.

Taking y to be the independent variable, we obtain an equation of the form 14.7.1.40 with

respect to x = x(y): x′′yy = −A(ay + b)−15/7(cy + d)−20/7x2.

41. y′′xx = Ax−1/2y−2[(y′x)
2 + B2]1/2.

Solution in parametric form:

x = a(u2 − 1)−1(τu±R)2, y = bτ−1(u2 − 1)−1/2,

where R =
√
τ2 − 2τ−1 + C1, u = ∓ tanh

(
C2 +

∫
R−1 dτ

)
, A = − 1

2a
−1/2b2,

B = 1
2a

−1b.

42. y′′xx = Ax−1/2y−2[(y′x)
2 − B2]1/2.

Solution in parametric form:

x = a(u2 + 1)−1(τu±R)2, y = bτ−1(u2 + 1)−1/2,

where R =
√
C1 − τ2 − 2τ−1, u = ± tan

(
C2 +

∫
R−1 dτ

)
, A = − 1

2a
−1/2b2,

B = 1
2a

−1b.

43. y′′xx = Ax−1/2y−2[B2 − (y′x)
2]1/2.

Solution in parametric form:

x = a(1− u2)−1(τu∓R)2, y = bτ−1(1− u2)−1/2,

where R =
√
τ2 − 2τ−1 + C1, u = ± tanh

(
C2 +

∫
R−1 dτ

)
, A = − 1

2a
−1/2b2,

B = 1
2a

−1b.

44. y′′xx = Ax−2y−1/2(y′x)
2[(y′x)

2 + B2]1/2.

Solution in parametric form:

x = aτ−1(u2 − 1)−1/2, y = b(u2 − 1)−1(τu±R)2,

where R =
√
τ2 − 2τ−1 + C1, u = ∓ tanh

(
C2 +

∫
R−1 dτ

)
, A = − 1

4a
3b−3/2,

B = 2a−1b.

45. y′′xx = Ax−2y−1/2(y′x)
2[(y′x)

2 − B2]1/2.

Solution in parametric form:

x = aτ−1(1− u2)−1/2, y = b(1− u2)−1(τu∓R)2,

where R =
√
τ2 − 2τ−1 + C1, u = ± tanh

(
C2 +

∫
R−1 dτ

)
, A = − 1

4a
3b−3/2,

B = 2a−1b.
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46. y′′xx = Ax−2y−1/2(y′x)
2[B2 − (y′x)

2]1/2.

Solution in parametric form:

x = aτ−1(1 + u2)−1/2, y = b(1 + u2)−1(τu±R)2,

where R =
√
−τ2 − 2τ−1 + C1, u = ± tan

(
C2 +

∫
R−1 dτ

)
, A = − 1

4a
3b−3/2,

B = 2a−1b.

14.7.3 Equations Containing Exponential Functions (h 6≡ const)

◮ Preliminary remarks.

1◦. If l 6= 1−m, the equation

y′′xx = Aexym(y′x)
l (1)

has a particular solution:

y = Beλx, where λ =
1

1−m− l , B = (Aλl−2)λ.

2◦. If m 6= 0 and l 6= 1, equation (1) can be reduced with the aid of the transformation

t = (y′x)
1−l, w = ex

to a generalized Emden–Fowler equation with respect to w = w(t):

w′′
tt = Bt

1
1−lw−1(w′

t)
2m+1
m , (2)

where B = −m
[
A(1 − l)

] 1
m . Equations of the form (2) are outlined in Section 14.5.

Whenever the general solution w=w(t) of the Emden–Fowler equation (2) is obtained,

the solution of the original equation (1) can be written out in parametric form as:

x = lnw, y = k(w′
t)
− 1

m , where k =
[
A(1− l)

]− 1
m .

3◦. If l 6= n+ 2, the equation

y′′xx = Axney(y′x)
l (3)

has a particular solution:

y = λ ln(Bx), where λ = l − n− 2, B =
(
−λ

1−l

A

) 1
λ
.

4◦. Taking y to be the independent variable and x to be the dependent one, we obtain from

equation (3) an equation of the form (1) for x = x(y):

x′′yy = −Aeyxn(x′y)3−l.

5◦. If n 6= −1 and l 6= 1, equation (3) can be reduced with the aid of the transformation

t = (y′x)
1−l, u = xn+1
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to a generalized Emden–Fowler equation for u = u(t):

u′′tt = −
1

n+ 1
t

1
1−l u

− n
n+1 (u′t)

2
. (4)

Equations of this form are outlined in Section 14.5.

Whenever the general solution u= u(t) of the Emden–Fowler equation (4) is obtained,

the solution of the original equation (3) can be written out in parametric form as:

x = u
1

n+1 , y = − ln(u′t) + ln
n+ 1

A(1− l) .

◮ Solvable equations and their solutions.

1. y′′xx = aeλy .

Solution: y =





− 1

λ
ln

[
aλ

2C2
1

sin2(C1x+ C2)

]
if a < 0, λ < 0,

− 1

λ
ln

[
aλ

2C2
1

sinh2(C1x+ C2)

]
if a > 0, λ > 0,

− 1

λ
ln

[
− aλ

2C2
1

cosh2(C1x+C2)

]
if aλ < 0.

2. y′′xx = Aex(y′x)
l.

1◦. Solution in parametric form with l 6= 1:

x = ln
[
± 1

A(1− l)C
1−l
1 τ

]
, y = C1

∫
1

τ

(
1± τ

) 1
1−l dτ + C2.

2◦. Solution in parametric form with l = 1:

x = ln
(
± τ
A

)
, y = C1

∫
1

τ
exp(±τ) dτ +C2.

3. y′′xx = Aexym(y′x)
2.

1◦. Solution in parametric form with m 6= −1:

x =

∫
dτ

f
+ C2, y = τ exp

[
− 1

m+ 1

(∫ dτ

f
+ C2

)]
,

where the function f = f(τ) is defined implicitly by the relation

ln
( f
τ
− 1

m+ 1

)
− τ

(m+ 1)f − τ =
A

m+ 1
τm+1 − ln τ + C1.

2◦. Solution for m = −1:

y = C2 exp
(∫ dx

x+Aex + C1

)
.

4. y′′xx = Aexy.

1◦. Solution for A > 0:

y = C1I0
(
2
√
Aex/2

)
+ C2K0

(
2
√
Aex/2

)
,

where I0(z) and K0(z) are modified Bessel functions.

2◦. Solution for A < 0:

y = C1J0
(
2
√
−Aex/2

)
+ C2Y0

(
2
√
−Aex/2

)
,

where J0(z) and Y0(z) are Bessel functions.
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5. y′′xx = Aexy−1/2(y′x)
3/2.

Solution in parametric form:

x = τ2 − ln(Af), y = C1

[
2τf − exp(τ2)

]2
, where f =

∫
exp(τ2) dτ + C2.

6. y′′xx = Aexy(y′x)
3/2.

Solution in parametric form:

x = − ln
[
AC3

1

(√
τ2 + τ − f

)]
, y = 2C2

1

(
1− f

√
τ + 1

τ

)
,

where f = ln
(√
τ +
√
τ + 1

)
+ C2.

7. y′′xx = Aey(y′x)
l.

1◦. Solution in parametric form with l 6= 2:

x = C1

∫
1

τ
(1± τ)

1
l−2 dτ + C2, y = ln

[
± 1

A(2− l)C
l−2
1 τ

]
.

2◦. Solution in parametric form with l = 2:

x = C1

∫
1

τ
exp(∓τ) dτ + C2, y = ln

(
± τ
A

)
.

8. y′′xx = Axneyy′x.

1◦. Solution in parametric form with n 6= −1:

x = τ exp
[
− 1

n+ 1

(∫ dτ

f
+ C2

)]
, y =

∫
dτ

f
+ C2,

where the function f = f(τ) is defined implicitly by the relation

ln
( f
τ
− 1

n+ 1

)
− τ

(n+ 1)f − τ = − A

n+ 1
τn+1 − ln τ + C1.

2◦. Solution for n = −1:

x = C2 exp
(∫ dy

y −Aey + C1

)
.

9. y′′xx = Ax−1/2ey(y′x)
3/2.

Solution in parametric form:

x = C1

[
2τf − exp(τ2)

]2
, y = τ2 − ln(−Af), where f =

∫
exp(τ2) dτ + C2.

10. y′′xx = Axey(y′x)
3/2.

Solution in parametric form:

x = 2C2
1

(
1− f

√
τ + 1

τ

)
, y = − ln

[
AC3

1

(
f −

√
τ2 + τ

)]
,

where f = ln
(√
τ +
√
τ + 1

)
+ C2.
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11. y′′xx = Axey(y′x)
3.

1◦. Solution in parametric form with A > 0:

x = C1J0(2τ) + C2Y0(2τ), y = ln
(
τ/
√
A
)
,

where J0(z) and Y0(z) are Bessel functions.

2◦. Solution in parametric form with A < 0:

x = C1I0(2τ) + C2K0(2τ), y = ln
(
τ/
√
−A

)
,

where I0(z) and K0(z) are modified Bessel functions.

12. y′′xx = Aexey(y′x)
l.

Solution in parametric form:

x =

∫
dτ

fτ l
+ C2, y = ln

( f
A

)
−
∫

dτ

fτ l
− C2,

where f =





1

2− l τ
2−l +

1

1− l τ
1−l + C1 if l 6= 1, 2;

τ + ln |τ |+ C1 if l = 1;

ln |τ | − 1

τ
+ C1 if l = 2.

13. y′′xx = A exp(kx) exp(ay2 + by)(y′x)
3.

Taking y to be the independent variable, we obtain an equation of the form 14.7.1.41 with

respect to x = x(y): x′′yy = −A exp(ay2 + by) exp(kx).

14. y′′xx = Aexy−1/2(y′x)
3/2
√
y′x − 2B.

Solution in parametric form:

x = ln[aτ(cosh u)−1], y = B cosh2 u (τ tanh u±R)2,

where a = −A−1B−1/2, R =
√
2 ln τ + τ2 + C1, u = C2 ∓

∫
R−1 dτ .

15. y′′xx = Aexy−1/2(y′x)
3/2
√

2B − y′x.

Solution in parametric form:

x = ln[aτ(cos u)−1], y = B cos2 u (τ tan u±R)2,

where a = −A−1B−1/2, R =
√
2 ln τ − τ2 + C1, u = C2 ±

∫
R−1 dτ .

16. y′′xx = Ax−1/2eyy′x
√
y′x −B.

Solution in parametric form:

x =
1

2B
cos2 u (τ tanu±R)2, y = ln[bτ(cos u)−1],

where b = A−1
√
2, R =

√
2 ln τ − τ2 + C1, u = C2 ±

∫
R−1 dτ .
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17. y′′xx = Ax−1/2eyy′x
√
B − y′x.

Solution in parametric form:

x =
1

2B
cosh2 u (τ tanh u±R)2, y = ln[bτ(cosh u)−1],

where b = A−1
√
2, R =

√
2 ln τ + τ2 + C1, u = C2 ∓

∫
R−1 dτ .

14.7.4 Equations Containing Hyperbolic Functions (h 6≡ const)

1. y′′xx = Ax[cosh(λy)]−2y′x.

Solution in parametric form:

x = a cosh u (τ tanhu±R), y = u/λ,

where A = a−2, R =
√
2 ln τ + τ2 + C1, u = C2 ∓

∫
R−1 dτ .

2. y′′xx = Ax[sinh(λy)]−2y′x.

Solution in parametric form:

x = a sinh u (τ coth u±R), y = u/λ,

where A = a−2, R =
√
2 ln τ + τ2 + C1, u = C2 ∓

∫
R−1 dτ .

3. y′′xx = Ax cosh(λy)(y′x)
3/2.

Solution in parametric form:

x = a(u2 + 1)
−1/2

(τu±R), y = λ−1 ln
(
u+

√
u2 + 1

)
,

where A = 2a−2
√
aλ, R =

√
C1 − τ2 − 2τ−1, u = ± tan

(
C2 +

∫
R−1 dτ

)
.

4. y′′xx = Ax sinh(λy)(y′x)
3/2.

Solution in parametric form:

x = a(u2 − 1)
−1/2

(τu±R), y = ±λ−1 ln
(
u+

√
u2 − 1

)
,

where A = ±2a−2
√
aλ, R =

√
C1 + τ2 − 2τ−1, u = ∓ tanh

(
C2 +

∫
R−1 dτ

)
.

5. y′′xx = A cosh(λx)y(y′x)
3/2.

Solution in parametric form:

x = λ−1 ln(u+
√
u2 + 1), y = b(u2 + 1)

−1/2
(τu±R),

where A = −2b−2
√
bλ, R =

√
C1 − τ2 − 2τ−1, u = ± tan

(
C2 +

∫
R−1 dτ

)
.
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6. y′′xx = A sinh(λx)y(y′x)
3/2.

Solution in parametric form:

x = ±λ−1 ln(u+
√
u2 − 1), y = b(u2 − 1)

−1/2
(τu±R),

where A = ∓2b−2
√
bλ, R =

√
C1 + τ2 − 2τ−1, u = ∓ tanh

(
C2 +

∫
R−1 dτ

)
.

7. y′′xx = A[cosh(λx)]−2y(y′x)
2.

Solution in parametric form:

x = u/λ, y = b cosh u (τ tanhu±R),

where A = −b−2, R =
√
2 ln τ + τ2 + C1, u = C2 ∓

∫
R−1 dτ .

8. y′′xx = A[sinh(λx)]−2y(y′x)
2.

Solution in parametric form:

x = u/λ, y = b sinhu (τ coth u±R),

where A = −b−2, R =
√
2 ln τ + τ2 + C1, u = C2 ∓

∫
R−1 dτ .

14.7.5 Equations Containing Trigonometric Functions (h 6≡ const)

◆ In the solutions of equations 1–4, the following notation is used:

R =
√

2 ln τ − τ2 + C1, u = C2 ±
∫
R−1 dτ.

1. y′′xx = Ax[cos(λy)]−2y′x.

Solution in parametric form:

x = a cos u (τ tan u±R), y = u/λ, where A = a−2.

2. y′′xx = Ax[sin(λy)]−2y′x.

Solution in parametric form:

x = a sinu (τ cot u∓R), y = u/λ, where A = a−2.

3. y′′xx = A[cos(λx)]−2y(y′x)
2.

Solution in parametric form:

x = λ−1u, y = b cos u (τ tanu±R), where A = −b2.

4. y′′xx = A[sin(λx)]−2y(y′x)
2.

Solution in parametric form:

x = λ−1u, y = b sinu (τ cot u∓R), where A = −b2.
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◆ In the solutions of equations 5–8, the following notation is used:

R =
√
τ2 − 2τ−1 + C1, u = ± tanh

(
C2 +

∫
R−1 dτ

)
.

5. y′′xx = Ax cos(λy) (y′x)
3/2.

Solution in parametric form:

x = a
(
1− u2

)−1/2
(τu∓R), y = λ−1 arccos u, where A = 2a−2(−aλ)1/2.

6. y′′xx = Ax sin(λy) (y′x)
3/2.

Solution in parametric form:

x = a
(
1− u2

)−1/2
(τu∓R), y = λ−1 arccos u, where A = 2a−2(aλ)1/2.

7. y′′xx = A cos(λx) y(y′x)
3/2.

Solution in parametric form:

x = λ−1 arccos u, y = b
(
1− u2

)−1/2
(τu∓R), where A = −2b−2(−bλ)1/2.

8. y′′xx = A sin(λx) y(y′x)
3/2.

Solution in parametric form:

x = λ−1 arccos u, y = b
(
1− u2

)−1/2
(τu∓R), where A = −2b−2(bλ)1/2.

14.7.6 Some Transformations

For the sake of visualization, we also use the symbolic notation {f, g, h} to denote the

equation

y′′xx = f1(x)g1(y)h1(y
′
x). (1)

1◦. Taking y to be the independent variable and x to be the dependent one, we obtain an

equation of similar form for x = x(y):

x′′yy = g1(y)f1(x)h
∗
1(x

′
y), where h∗1(w) = −w3h1(1/w).

Denote this transformation by F .

2◦. The Bäcklund transformation

x̄ =

∫
dw

h1(w)
, ȳ =

∫
f1(x) dx, where w = y′x, (2)

leads to an equation of similar form for the function ȳ = ȳ(x̄):

ȳ′′x̄x̄ = f2(x̄)g2(ȳ)h2(ȳ
′
x̄),

where the functions f2, g2, and h2 are defined in terms of the original functions f1, g1,

and h1 parametrically by the relations

f2(x̄) = w, x̄ =

∫
dw

h1(w)
;

g2(ȳ) =
1

f1(x)
, ȳ =

∫
f1(x) dx;

h2(w̄) = −
1

[g1(y)]3
dg1
dy

, w̄ =
1

g1(y)
.
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Denote transformation (2) by G.

For equations of the form (1) in which f1, g1, and h1 are power functions of their

arguments, the transformation G (up to a constant factor) is considered in Section 14.5.3.

For equations (1) with exponential functions f1 and g1, the transformation G is discussed

in Section 14.7.3.

Whenever the solution ȳ = ȳ(x̄) of the transformed equation is found, the formulas

ȳ =

∫
f1(x) dx, ȳ′x̄ =

1

g1(y)
,

can be used to obtain the solution of the original equation (1) in parametric form, x= x(x̄),
y = y(x̄).

3◦. The twofold application of the transformation G to the original equation yields an

equation of similar form:
¯̄y′′¯̄x ¯̄x = f3(¯̄x)g3( ¯̄y)h3( ¯̄y

′
¯̄x),

where the functions f3, g3, and h3 are defined in terms of the original functions f1, g1,
and h1 perimetrically by

f3(¯̄x) =
1

g1(y)
, ¯̄x =

∫
g1(y) dy;

g3( ¯̄y) =
1

w
, ¯̄y =

∫
w dw

h1(w)
;

h3( ¯̄w) =
df1
dx

, ¯̄w = f1(x).

The threefold transformation G yields the original equation.

Different compositions of the transformations F and G generate six different equa-

tions of the analogous form, which are shown in Figure 10.4 (see Section 10.2.2).

4◦. In the special case g(y) = ym, h = 1, the transformation x =
1

τ
, y =

u

τ
leads to an

equation of similar form:

u′′ττ = τ−m−3f
( 1
τ

)
um.

Denote this transformation by H.

For g(y)= ym and h=1, different compositions of the transformations F , G, and H
generate twelve different equations of the form (1).

14.8 Some Nonlinear Equations with Arbitrary

Parameters

14.8.1 Equations Containing Power Functions

◮ Equations of the form f(x, y)y′′xx + g(x, y) = 0.

1. y′′xx = ay2 + bx.

The transformation y = bk3w, x= kz, where k = 61/5(ab)−1/5, leads to the first Painlevé

transcendent: w′′
zz = 6w2 + z (see Section 3.4.2).
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2. y′′xx = ay3 + bxy + c.

The transformation y = (2/a)1/2b1/3w, x= b−1/3z leads to the second Painlevé transcen-

dent: w′′
zz = 2w3 + zw + (a/2)1/2b−1c (see Section 3.4.3).

3. y′′xx = bxny + ay−3.

This is a special case of equation 14.9.1.2 with f(x) = −bxn.

4. y′′xx = axny + bkxk−1y−1 − b2x2ky−3.

This is a special case of equation 14.9.1.3 with f(x) = −axn and g(x) = bxk.

5. y′′xx = (ax2 + bx+ c)y−5.

This is a special case of equation 14.7.1.36 with n = 1.

6. y′′xx = abx−1y−1/2 + ax−2 + 2b2.

The solution is determined by the first-order equation ax(y′x+2by1/2)=w(x, y, C), where

the function w is defined implicitly by w − ln |w + a1/2| = a−1/2(y1/2 + bx)2 + C .

7. y′′xx = (ay2 + bxy + cx2 + αy + βx+ γ)−3/2, a 6= 0.

The substitution 2aw = 2ay + bx+ α leads to an equation of the form 14.9.1.21:

w′′
xx = w−3f

(
w√

Ax2 +Bx+ C

)
,

where f(ξ) = ξ3(aξ2 + 1)
−3/2

, A =
4ac− b2

4a
, B =

2aβ − bα
2a

, C =
4aγ − α2

4a
.

8. y′′xx = λy−1/3 + (ax2 + bx+ c)y−5/3.

The transformation x = x(t), y = (x′t)
3/2

leads to a third-order equation: 2x′tx
′′′
ttt −

(x′′tt)
2 = 4

3λ(x
′
t)
2 + 4

3 (ax
2 + bx + c). Differentiating the latter equation with respect to

t and dividing it by x′t, we arrive at a fourth-order constant coefficient linear equation:

3x′′′′tttt = 2λx′′tt + 4ax+ 2b.

9. y′′xx = λx−8/3y−1/3 + (ax−10/3 + bx−7/3 + cx−4/3)y−5/3.

The transformation x = 1/t, y = w/t leads to an equation of the form 148.1.8: w′′
tt =

λw−1/3 + (at2 + bt+ c)w−5/3.

10. y′′xx = (ay + bx+ c)n.

This is a special case of equation 14.9.1.4 with f(ξ) = ξn.

11. y′′xx = (ay + bx2)n + c.

The substitution aw = ay + bx2 leads to an autonomous equation of the form 14.9.1.1:

w′′
xx = anwn + c+ 2a−1b.

12. y′′xx = λx−2n−3(xy + a)n.

This is a special case of equation 14.9.1.15 with f(ξ) = λξn and b = c = 0.
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13. y′′xx = A(ax+ b)n(cx+ d)−n−m−3ym.

The transformation ξ =
ax+ b

cx+ d
, w =

y

cx+ d
leads to the Emden–Fowler equation

w′′
ξξ = A(ad− bc)−2ξnwm, whose solvable cases are outlined in Section 14.3.

14. y′′xx = cxmy−nk−m−3(ayn + bxn)k.

This is a special case of equation 14.9.1.8 with f(ξ) = cξ−nk−m−3(aξn + b)k.

15. y′′xx = cxmy−2nk−2m−3(ay2n + bxn)k.

This is a special case of equation 14.9.1.9 with f(ξ) = cξ−2nk−2m−3(aξ2n + b)
k
.

16. x2y′′xx = axnym+1 + by.

This is a special case of equation 14.9.1.11 with f(z) = az + b.

17. x2y′′xx = n(n+ 1)y + ax3n+2 + bxnm+3n+2ym.

This is a special case of equation 14.9.1.12 with f(ξ) = a+ bξm.

18. x2y′′xx = k(k+ 1)y + axkm+3k+2(bx2k+1 + c)
n
ym.

The transformation ξ = bx2k+1 + c, w = yxk leads to the Emden–Fowler equation

w′′
ξξ = ab−2(2k + 1)−2ξnwm, whose solvable cases are outlined in Section 14.3.

19. (ay + bx2)y′′xx = 1.

This is a special case of equation 14.8.1.11 with n = −1 and c = 0.

20. (x+ a)2y2y′′xx = bx.

The transformation ξ = ln
∣∣∣ x+ a

x

∣∣∣, w =
y

x
leads to an autonomous equation of the form

14.2.1.7: w′′
ξξ −w′

ξ = a−2w−2.

21. (y2 + ax2 + 2bx+ c)
2
y′′xx + sy = 0.

Dividing by the coefficient of y′′xx and multiplying by ax(xy′x − y) + b(2xy′x − y) + cy′x,

we arrive at an exact differential equation. Integrating the latter, we obtain a first-order

equation: (ax2 + 2bx+ c)(y′x)
2 − 2(ax+ b)yy′x + ay2 +

sy2

y2 + ax2 + 2bx+ c
= C.

22. (ax+ b)2(cx+ d)2y′′xx = sy + A(ax+ b)k(cx+ d)1−m−kym.

The transformation ξ=ln
( ax+ b

cx+ d

)
, w=

( ax+ b

cx+ d

) k
m−1 y

cx+ d
leads to an autonomous

equation: w′′
ξξ−(2n+1)w′

ξ+(n2+n−s∆−2)w=A∆−2wm, where n= k
m−1 , ∆=ad−bc.

23. (ax+ by + c)ny′′xx = k(αx+ βy + γ)n−1.

This is a special case of equation 14.9.1.16 with f(w) = kw1−n.

24. (ax+ by + c)ny′′xx = k(αx+ βy + γ)n−3.

This is a special case of equation 14.9.1.17 with f(w) = kw3−n.
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25. (ayn + bxn)y′′xx + cxn−3 = 0.

This is a special case of equation 14.9.1.8 with f(ξ) = −c(aξn + b)−1.

26. (ayn + bxn)y′′xx + cyn−3 = 0.

This is a special case of equation 14.9.1.8 with f(ξ) = −cξn−3(aξn + b)−1
.

27. (ay2n + bxn)y′′xx + cy2n−3 = 0.

This is a special case of equation 14.9.1.9 with f(ξ) = −cξ2n−3(aξ2n + b)
−1

.

28. (ayn + bxn)y′′xx + cxmyn−m−3 = 0.

This is a special case of equation 14.9.1.8 with f(ξ) = −cξn−m−3(aξn + b)−1
.

29. (ay2n + bxn)y′′xx + cxmy2n−2m−3 = 0.

This is a special case of equation 14.9.1.9 with f(ξ) = −cξ2n−2m−3(aξ2n + b)
−1

.

◆ See also equations 14.7.1.1–14.7.1.40.

◮ Equations of the form f(x, y)y′′xx + g(x, y)y′x + h(x, y) = 0.

30. y′′xx + 3yy′x + y3 + axny = 0.

This is a special case of equation 14.9.2.1 with f(x) = axn.

31. y′′xx + (ay + bxn)y′x + bnxn−1y = 0.

This is a special case of equation 14.9.2.4 with f(x) = bxn.

32. y′′xx + (2ay + bxn)y′x + abxny2 = cxm.

This is a special case of equation 14.9.2.5 with f(x) = bxn and g(x) = cxm.

33. xy′′xx = ny′x + bxmy + ax2n+1y−3.

This is a special case of equation 14.9.2.9 with f(x) = −bxm.

34. xy′′xx = ny′x + ax2n+1 + bx2n+1ym.

This is a special case of equation 14.9.2.20 with f(y) = a+ bym.

35. xy′′xx = −(n+ 1)y′x + axn−1 + bxnm+n−1ym.

This is a special case of equation 14.9.2.30 with f(ξ) = a+ bξm.

36. xy′′xx = (axkyn + k− 1)y′x.

Solution:
∫

dy

F (y) + C1
= C2 +

1

k
xk, where F (y) = a

1

n+ 1
yn+1.

37. x2y′′xx + xy′x = ayn + b.

This is a special case of equation 14.9.2.23 with f(y) = ayn + b.

38. x2y′′xx = −(n+m+ 1)xy′x − nmy + axnk+n−2myk.

This is a special case of equation 14.9.2.31 with f(ξ) = aξk.
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39. x2y′′xx + axy′x + by = cxnym.

The transformation x = ξα, y = ξβw, where α = ± 1√
D

, β = ± 1− a
2
√
D
− 1

2
, D =

(1 − a)2 − 4b, leads to the Emden–Fowler equation w′′
ξξ = cα2ξnα+mβ−β−2wm, whose

solvable cases are outlined in Section 14.3.

40. (ax2 + b)y′′xx + axy′x + cyn = 0.

This is a special case of equation 14.9.2.24 with f(y) = cyn.

◮ Equations of the form f(x, y)y′′xx + g(x, y)(y′x)
2 + h(x, y)y′x + r(x, y) = 0.

41. y′′xx = (y′x)
2 − 2axy′x + 2ay + b.

The substitution y = w + 1
2ax

2 leads to an autonomous equation of the form 14.9.3.25:

w′′
xx = (w′

x)
2 + 2aw − a+ b.

42. y′′xx = a(y′x + by + cx)2 + b2y + kx+ s.

The substitution w = y′x + by + cx leads to a Riccati equation:

w′
x = aw2 + bw + (k − bc)x+ c+ s.

43. y′′xx = axn(xy′x − y)2 + bxm.

This is a special case of equation 14.9.3.2 with f(x) = bxm, g(x) = 0, and h(x) = axn.

44. y′′xx = axn(y′x + by)2 + b2y + cxm.

The substitution w = y′x + by leads to a Riccati equation: w′
x = axnw2 + bw + cxm.

45. y′′xx = (a2x2 + a)y + bxn(y′x − axy)2 + cxm.

The substitution w = y′x − axy leads to a Riccati equation: w′
x = bxnw2 − axw + cxm.

46. y′′xx = (ax+ by + c)n[α(y′x)
2 + β]k.

This is a special case of equation 14.9.4.37 with f(u) = un and g(v) = (αv2 + β)k .

47. xy′′xx + ax(y′x)
2 + 1

2
y′x + by2 + cy + k = 0.

The substitution w(y) = x(y′x)
2 leads to a first-order linear equation: w′

y +2aw+2by2+
2cy + 2k = 0.

48. xy′′xx + ax(y′x)
2 − byky′x = 0.

Solution:∫
eay dy

F (y) + C1
= C2 + ln |x|, where F (y) = b

∫
eayyk dy +

1

a
eay.

49. xy′′xx + ax(y′x)
2 = (bxkyn + k − 1)y′x.

Solution: ∫
eay dy

F (y) + C1
= C2 +

1

k
xk, where F (y) = b

∫
eayyn dy.

50. x2y′′xx = 2y + axn(xy′x + y)2 + bxm.

The substitution w = xy′x + y leads to a Riccati equation: xw′
x = axnw2 + 2w + bxm.
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51. x2y′′xx = a(a+ 1)y + bxn(xy′x + ay)2 + cxm.

The substitution w=xy′x+ay leads to a Riccati equation: xw′
x= bx

nw2+(a+1)w+cxm.

52. yy′′xx = (y′x)
2 − a.

1◦. Solution (a is any):

y = C1 exp(C2x)−
a

4C1C2
2

exp(−C2x).

2◦. Solution for a < 0:

y = C1 sin

(
x
√
a√

C2
1 + C2

2

)
+ C2 cos

(
x
√
a√

C2
1 + C2

2

)
.

There are also singular solutions: y = ±x√a+ C .

53. yy′′xx − 1
4
(y′x)

2 = ax2 + bx+ c.

The substitution y = w4/3 leads to a special case of the equation 14.8.1.8 with λ = 0:

4w′′
xx = 3(ax2 + bx+ c)w−5/3.

54. 3yy′′xx − 2(y′x)
2 = ax2 + bx+ c.

The substitution y = w3 leads to an equation of the form 14.8.1.5:

9w′′
xx = (ax2 + bx+ c)w−5.

55. 2yy′′xx = (y′x)
2 + bxny2 − a.

This is a special case of equation 14.9.3.5 with f(x) = −bxn.

56. yy′′xx = n(y′x)
2 − ay4n−2 + bxmy2.

This is a special case of equation 14.9.3.8 with f(x) = −bxm.

57. yy′′xx = n(y′x)
2 + axky2 + bxmyn+1.

This is a special case of equation 14.9.3.9 with f(x) = −axk and g(x) = −bxm.

58. (n+ 2)yy′′xx − (n+ 1)(y′x)
2 = (ax2 + bx+ c)n.

The substitution y = wn+2 leads to an equation of the form 147.1.36:

w′′
xx =

1

(n + 2)2
(ax2 + bx+ c)nw−2n−3.

59. yy′′xx = (y′x)
2 + axnyy′x + bxmy2.

This is a special case of equation 14.9.3.7 with f(x) = −axn and g(x) = −bxm.

60. ayy′′xx + b(y′x)
2 + (xn + λ)myy′x = 0.

Solution: y
a+b
a = C1

∫
exp
[
− 1

a

∫
(xn + λ)m dx

]
dx+ C2.
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61. yy′′xx − (y′x)
2 = ay′′xx + by + c.

1◦. Solution:

y = C1 sinh(C3x) +C2 cosh(C3x) + a+ bC−2
3 ,

where the constants C1, C2, and C3 are related by the constraint

(C2
1 − C2

2 )C
2
3 + ab+ c+ b2C−2

3 = 0.

2◦. Solution:

y = C1 sin(C3x) + C2 cos(C3x) + a− bC−2
3 ,

where the constants C1, C2, and C3 are related by the constraint

(C2
1 + C2

2 )C
2
3 + ab+ c− b2C−2

3 = 0.

There is also a singular solution: y = −c/b.
62. yy′′xx − (y′x)

2 = a2y
′′

xx + a1y
′

x + a0y + b.

Particular solutions: y = Ceλx − ba−1
0 , where C is an arbitrary constant and λ = λ1,2 are

roots of the quadratic equation (a2a0 + b)λ2 + a1a0λ+ a20 = 0.

63. (y + ax)y′′xx = bxn(xy′x − y)2.

The substitution y = −ax + xz leads to the equation xzz′′xx + 2zz′x − bxn+3(z′x)
2 = 0.

Having set w = z′x/z, we obtain a Bernoulli equation: xw′
x+2w+ x(1− bxn+2)w2 = 0.

64. (2y + ax+ b)y′′xx − (y′x)
2 − ay′x + c = 0.

Solution:

y = C1x
2 + C2x+ C3,

where the constants C1, C2, and C3 are related by the constraint

4C1C3 − C2
2 + 2bC1 − aC2 + c = 0.

65. xyy′′xx = x(y′x)
2 − yy′x + axkys.

This is a special case of equation 14.9.4.64 with f(ξ) = aξ, g(ξ) = 1, k = n − 1, and

s = m+ 2.

66. y2y′′xx + y(y′x)
2 = ax+ b.

Having set 1/y = u′x(x), we obtain a third-order equation: −u′xu′′′xxx + 3(u′′xx)
2 =

(ax + b)(u′x)
5. Taking u to be the independent variable, we obtain a constant coefficient

linear equation for x = x(u): x′′′uuu = ax+ b.

67. (a2 − x2)(b2 − y2)y′′xx + (a2 − x2)y(y′x)
2 = x(b2 − y2)y′x.

Solution: arcsin
y

b
= C1 + C2 arcsin

x

b
.

68. (xy′x − y + a)y′′xx = b2(y
′

x)
2 + b1y

′

x + b0.

The contact transformation

X = y′x, Y = xy′x − y + a, Y ′
X = x, Y ′′

XX = 1/y′′xx,

where Y = Y (X), leads to a linear equation: (b2X
2 + b1X + b0)Y

′′
XX − Y = 0.

Inverse transformation:

x = Y ′
X , y = XY ′

X − Y + a, y′x = X, y′′xx = 1/Y ′′
XX .
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◮ Other equations.

69. y′′xx = axn(xy′x − y)m.

This is a special case of equation 14.9.4.58 with f(x) = axn and g(ξ) = ξm.

70. y′′xx = a2y + bxn(y′x + ay)m.

The substitution w = y′x + ay leads to a Bernoulli equation: w′
x = aw + bxnwm.

71. y′′xx = (a2x2 + a)y + bxn(y′x − axy)m.

The substitution w = y′x − axy leads to a Bernoulli equation: w′
x = −axw + bxnwm.

72. y′′xx = ax−n−3yn(xy′x − y)m.

This is a special case of equation 14.9.4.59 with f(ξ) = aξm.

73. y′′xx = ax−1yny′x(xy
′

x − y)m.

This is a special case of equation 14.9.4.60 with f(y) = ayn and g(ξ) = ξm.

74. y′′xx = axnk−1ymk−1(xy′x − y)
2n+m

n .

This is a special case of equation 14.9.4.24 with f(ξ) = aξk.

75. y′′xx = kxα(y′x)
β(xy′x − y)γ .

The Legendre transformation x = w′
t, y = tw′

t − w, where w = w(t), leads to the

generalized Emden–Fowler equation: w′′
tt =

1

k
t−βw−γ(w′

t)
−α
. Solvable equations of this

type are outlined in Section 14.3 and Section 14.5.

76. y′′xx = axn−1ym−1(y′x)
2n+m−nk

n+m (xy′x − y)k.

This is a special case of equation 14.9.4.25 with f(ξ) = aξ.

77. y′′xx = axn(xy′x − y) + bxm(xy′x − y)k.

This is a special case of equation 14.9.4.4 with f(x) = axn and g(x) = bxm.

78. x2y′′xx = 2y + axn(xy′x + y)m.

The substitution w = xy′x + y leads to a Bernoulli equation: xw′
x = 2w + axnwm.

79. x2y′′xx = n(n− 1)y + axn(xy′x − ny)k.

This is a special case of equation 14.9.4.3 with f(x) = axn−2.

80. x2y′′xx = a(a+ 1)y + bxn(xy′x + ay)m.

The substitution w = xy′x+ay leads to a Bernoulli equation: xw′
x = (a+1)w+ bxnwm.

81. (y′′xx)
2 = α(xy′x − y) + βy′x + γ.

Differentiating the equation with respect to x yields:

y′′xx(2y
′′′
xxx − αx− β) = 0. (1)

Equating the second factor to zero and integrating, one obtains:

y = 1
48αx

4 + 1
12βx

3 + C2x
2 + C1x+ C0. (2)
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The integration constants Ci and the parameters α, β, and γ are related by the constraint

4C2
2 = βC1 − αC0 + γ, which is obtained by substituting the above solution (2) into the

original equation.

In addition, there is a singular solution, which corresponds to setting the first factor

in (1) equal to zero:

y = C̃1x+ C̃0, where βC̃1 − αC̃0 + γ = 0.

82. (y′′xx)
2 + 2ayy′′xx + bxy′′xx + cy′′xx − a(y′x)

2 − by′x + k = 0.

Solution:

y = C1x
2 + C2x+ C3,

where the constants C1, C2, and C3 are related by the constraint 4C2
1 + a(4C1C3−C2

2 )−
bC2 + 2cC1 + k = 0.

14.8.2 Equations Containing Exponential Functions

◮ Equations of the form f(x, y)y′′xx + g(x, y) = 0.

1. y′′xx = aeλx+βy + b.

The substitution w = y + (λ/β)x leads to an autonomous equation of the form 14.9.1.1:

w′′
xx = aeβw + b.

2. y′′xx = aeλxyn.

The transformation z = eλxyn−1, w = y′x/y leads to a first-order equation:

z[(n − 1)w + λ]w′
z = az − w2.

3. y′′xx = axneλy .

The transformation z = xn+2eλy , w = xy′x leads to a first-order equation:

z(λw + n+ 2)w′
z = az + w.

4. y′′xx = beλxy + ay−3.

This is a special case of equation 14.9.1.2 with f(x) = −beλx.

5. y′′xx = λ2y + a exp[λ(n+ 3)x]yn.

This is a special case of equation 14.9.1.29 with f(ξ) = aξn.

6. y′′xx = λ2y + aeµxym, λ 6= 0.

The transformation ξ = e2λx, u = yeλx leads to the Emden–Fowler equation u′′ξξ =
a

4λ2
ξnum, where n =

µ− 3λ−mλ
2λ

, whose special cases are given in Section 14.3.

7. y′′xx = λ2y + aeλ(m+3)x(be2λx + c)nym, λ 6= 0.

The transformation ξ = be2λx + c, w = yeλx leads to the Emden–Fowler equation

w′′
ξξ =

a

4b2λ2
ξnwm, whose special cases are given in Section 14.3.
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8. y′′xx = λ2y + Aeλ(m+3)x(ae2λx + b)n(ce2λx + d)
−n−m−3

ym.

The transformation ξ =
ae2λx + b

ce2λx + d
, w =

yeλx

ce2λx + d
leads to the Emden–Fowler equation

w′′
ξξ = A(2∆λ)−2ξnwm, where ∆ = ad− bc (see Section 14.3).

9. y′′xx = a exp(αx2 + βx) exp(γy) + b.

The substitution w = y + (αx2 + βx)/γ leads to an autonomous equation of the form

14.9.1.1: w′′
xx = aeγw + b+ 2αγ−1.

10. x2y′′xx = axn+2ey + n.

This is a special case of equation 14.9.1.31 with f(ξ) = aξ.

◮ Equations of the form f(x, y)y′′xx + g(x, y)y′x + h(x, y) = 0.

11. y′′xx = ay′x + be2axyn.

This is a special case of equation 14.9.2.17 with f(y) = byn.

12. y′′xx = −ay′x + beanxyn−1.

This is a special case of equation 14.9.2.36 with f(ξ) = bξn−1.

13. y′′xx + ay′x + by = ceλxym.

The substitution ξ = ex leads to an equation of the form 148.1.39:

ξ2y′′ξξ + (a+ 1)ξy′ξ + by = cξλym.

14. y′′xx = −(µ+ ν)y′x − νµy + ae(nµ−2ν)xyn−1.

This is a special case of equation 14.9.2.37 with f(ξ) = aξn−1.

15. y′′xx = λy′x + bxy + ae2λxy−3.

This is a special case of equation 14.9.2.14 with f(x) = −bx.

16. y′′xx = λy′x + beµxy + ae2λxy−3.

This is a special case of equation 14.9.2.14 with f(x) = −beµx.

17. y′′xx = ay′x + b exp(2ax+ cyn).

This is a special case of equation 14.9.2.17 with f(y) = b exp(cyn).

18. y′′xx + 3yy′x + y3 + aeλxy = 0.

This is a special case of equation 14.9.2.1 with f(x) = aeλx.

19. y′′xx = axeyy′x + aey .

Solution: y = C1x− ln
(
−a
∫
xeC1xdx+ C2

)
.
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20. y′′xx = 2aexyy′x + aexy2.

Solution in parametric form:

x = ln
( τ2

2C1

)
, y = −a−1C1τ

−2Z−1(τZ ′
τ + Z).

Here, Z = C1J1(τ) + C2Y1(τ) or Z = C1I1(τ) + C2K1(τ), where J1(τ) and Y1(τ)
are Bessel functions, and I1(τ) and K1(τ) are modified Bessel functions.

21. y′′xx = axneyy′x + anxn−1ey .

Solution: y = C1x− ln
[
C2 − a

∫
xn exp(C1x) dx

]
.

22. y′′xx = aexy−1/2y′x + 2aexy1/2.

Solution in parametric form:

x=ln
(
±C1

a
f
)
∓τ2, y=C2

1

[
2τ±exp(∓τ2)f

]2
, where f =

[∫
exp(∓τ2) dτ+C2

]−1
.

23. y′′xx + (2ay + beλx)y′x + λbeλxy = 0.

Integrating yields a Riccati equation: y′x + ay2 + beλxy = C .

24. y′′xx =
((
aeβxy + β

))
y′x.

1◦. Solution:
2

a

∫
dy

y2 + C1
=

1

β
eβx + C2.

2◦. Solution in explicit form:

y =





√
C1 tan

[
a
√
C1

2

(
eβx

β
+ C2

)]
if C1 > 0,

−
√
|C1| tanh

[
a
√
|C1|
2

(
eβx

β
+ C2

)]
if C1 < 0,

− 2

a

(
eβx

β
+ C2

)−1

if C1 = 0.

25. y′′xx = aex+y(y′x + 1).

Solution: y = − ln
(
C1e

−C2x − a

1 + C2
ex
)
. To the limiting case C2 →−1 there corre-

sponds y = −x− ln(C1 − ax).

26. xy′′xx + y′x = axneλy .

This equation is encountered in combustion theory and hydrodynamics. The transformation

ξ = lnx, w = λy + (n + 1) ln x leads to an autonomous equation of the form 14.7.3.1:

w′′
ξξ = aλew.

Solution in parametric form:

x = exp[C1 ± f(t)], y =
t

λ
− n+ 1

λ
[C1 ± f(t)],
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where

f(t) =





1√
C2

ln

√
C2 + 2aλet −

√
C2√

C2 + 2aλet +
√
C2

if C2 > 0,

− 2√
2aλet

if C2 = 0,

2√
−C2

arctan

√
C2 + 2aλet√
−C2

if C2 < 0.

27. xy′′xx = ny′x + ax2n+1eλy .

This is a special case of equation 14.9.2.20 with f(y) = aeλy .

28. xy′′xx = ny′x + ax2n+1 exp(λym).

This is a special case of equation 14.9.2.20 with f(y) = a exp(λym).

29. x2y′′xx + xy′x = aeλy.

The substitution t = ln |x| leads to an equation of the form 14.7.3.1: y′′tt = aeλy.

Solution:

y = − 1

λ
ln

[
aλ

2C2
1

sin2(C1 ln |x|+ C2)

]
if aλ > 0,

y = − 1

λ
ln

[
aλ

2C2
1

sinh2(C1 ln |x|+ C2)

]
if aλ > 0,

y = − 1

λ
ln

[
− aλ

2C2
1

cosh2(C1 ln |x|+ C2)

]
if aλ < 0.

30. x2y′′xx + xy′x = aeλy + b.

This is a special case of equation 14.9.2.23 with f(y) = aeλy + b.

31. x2y′′xx + xy′x = kxneay + b.

This is a special case of equation 14.9.2.40 with f(ξ) = kξ + b.

32. (ax2 + b)y′′xx + axy′x + ceλy = 0.

This is a special case of equation 14.9.2.24 with f(y) = ceλy .

33. (ae2x + b)y′′xx + ae2xy′x + cyn = 0.

This is a special case of equation 14.9.2.34 with g(x) = ae2x + b and f(y) = −cyn.

34. (ae2x + b)y′′xx + ae2xy′x + ceλy = 0.

This is a special case of equation 14.9.2.34 with g(x) = ae2x + b and f(y) = −ceλy .

◮ Equations of the form f(x, y)y′′xx+ g(x, y)(y′x)
2+ h(x, y)y′x+ r(x, y) = 0.

35. y′′xx = a(y′x)
2 − be4ay + cxn.

This is a special case of equation 14.9.3.18 with f(x) = −cxn.

36. y′′xx = a(y′x)
2 − be4ay + ceλx.

This is a special case of equation 14.9.3.18 with f(x) = −ceλx.
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37. y′′xx = a(y′x)
2 + bxneay + cxm.

This is a special case of equation 14.9.3.17 with f(x) = −bxn and g(x) = −cxm.

38. y′′xx = a(y′x)
2 + beay+cx + kxm.

This is a special case of equation 14.9.3.17 with f(x) = −becx and g(x) = −kxm.

39. y′′xx = a(y′x)
2 + beay+λx + ceµx.

This is a special case of equation 14.9.3.17 with f(x) = −beλx and g(x) = −ceµx.

40. y′′xx + ayn(y′x)
2 + beλy + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = ayn and g(y) = beλy + c.

41. y′′xx + aeλy(y′x)
2 + byn + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = aeλy and g(y) = byn + c.

42. y′′xx + aeλy(y′x)
2 + beµy + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = aeλy and g(y) = beµy + c.

43. y′′xx = ayn(y′x)
2 + beλxy′x.

This is a special case of equation 14.9.3.38 with f(y) = ayn and g(x) = beλx.

44. y′′xx = aeλy(y′x)
2 + bxny′x.

This is a special case of equation 14.9.3.38 with f(y) = aeλy and g(x) = bxn.

45. y′′xx = aeλy(y′x)
2 + beµxy′x.

This is a special case of equation 14.9.3.38 with f(y) = aeλy and g(x) = beµx.

46. y′′xx = aeλx(xy′x − y)2 + beµx.

This is a special case of equation 14.9.3.2 with f(x) = beµx, g(x) = 0, and h(x) = aeλx.

47. yy′′xx − (y′x)
2 = aeλx.

The substitutions y = ± exp
(
1
2w + 1

2λx
)

lead to an autonomous equation of the form

14.7.3.1: w′′
xx = 2ae−w.

48. 2yy′′xx = (y′x)
2 + beλxy2 − a.

This is a special case of equation 14.9.3.5 with f(x) = −beλx.

49. yy′′xx = n(y′x)
2 − ay4n−2 + beλxy2.

This is a special case of equation 14.9.3.8 with f(x) = −beλx.

50. yy′′xx − (y′x)
2 = aeλxyk.

1◦. For k 6= 2, the substitution y = exp
(
w +

λ

2− k x
)

leads to an autonomous equation

of the form 14.7.3.1: w′′
xx = ae(k−2)w.

2◦. Solution for k = 2: ln |y| = C1x+ C2 + aλ−2eλx.
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51. yy′′xx = n(y′x)
2 + axmy2 + beλxyn+1.

This is a special case of equation 14.9.3.9 with f(x) = −axm and g(x) = −beλx.

52. yy′′xx = n(y′x)
2 + aeλxy2 + bxmyn+1.

This is a special case of equation 14.9.3.9 with f(x) = −aeλx and g(x) = −bxm.

53. yy′′xx = n(y′x)
2 + aeλxy2 + beµxyn+1.

This is a special case of equation 14.9.3.9 with f(x) = −aeλx and g(x) = −beµx.

54. yy′′xx − (y′x)
2 = a exp

((
βx2 + λx

))
.

The substitutions y = ± exp
(
1
2w + 1

2βx
2 + 1

2λx
)

lead to an autonomous equation of the

form 14.9.1.1: w′′
xx = 2ae−w − 2β.

55. yy′′xx − (y′x)
2 + ay2 = b exp

((
βx2 + λx

))
.

The substitutions y = ± exp
(
1
2w + 1

2βx
2 + 1

2λx
)

lead to an autonomous equation of the

form 14.9.1.1: w′′
xx = 2be−w − 2(a+ β).

56. yy′′xx − (y′x)
2 = a exp

((
βx2 + λx

))
yk.

1◦. For k 6= 2, the substitution y = exp
[
w +

1

2− k
(
βx2 + λx

)]
leads to an autonomous

equation of the form 14.9.1.1: w′′
xx = ae(k−2)w − 2β

2− k .

2◦. Solution for k = 2:

ln |y| = C1x+ C2 + a

∫ x

x0

(x− t) exp
(
βt2 + λt

)
dt.

57. yy′′xx − (y′x)
2 + ay2 = b exp

((
βx2 + λx

))
yk.

1◦. For k 6= 2, the substitution y = exp
[
w+

1

2− k
(
βx2 +λx

)]
leads to an autonomous

equation of the form 14.9.1.1: w′′
xx = be(k−2)w − a− 2β

2− k .

2◦. For k = 2, the substitutions y = ±ew lead to a second-order linear equation: w′′
xx =

b exp
(
βx2 + λx

)
− a.

Solution:

ln |y| = − a
2
x2 + C1x+ C2 + b

∫ x

x0

(x− t) exp
(
βt2 + λt

)
dt.

58. y′′xx + a(y′x)
2 − 1

2
y′x = ex(b2y

2 + b1y + b0).

The substitution w(y) = e−x(y′x)
2 leads to a first-order linear equation: w′

y + 2aw =
2b2y

2 + 2b1y + 2b0.

59. yy′′xx = (y′x)
2 + axnyy′x + beλxy2.

This is a special case of equation 14.9.3.7 with f(x) = −axn and g(x) = −beλx.

60. yy′′xx = (y′x)
2 + aeλxyy′x + bxny2.

This is a special case of equation 14.9.3.7 with f(x) = −aeλx and g(x) = −bxn.
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61. yy′′xx = (y′x)
2 + aeλxyy′x + beµxy2.

This is a special case of equation 14.9.3.7 with f(x) = −aeλx and g(x) = −beµx.

62. y′′xx + α(y′x)
2 =

((
beβx+γy + β

))
y′x.

1◦. Solution with γ 6= −α:
∫

eαy dy

F (y) + C1
= C2 +

1

β
eβx, where F (y) =

b

α+ γ
e(α+γ)y .

2◦. Solution with γ = −α:
∫

eαy dy

by + C1
= C2 +

1

β
eβx.

63. y′′xx = aeβx(y′x + by)2 + b2y + ceλx.

The substitution w = y′x + by leads to a Riccati equation: w′
x = aeβxw2 + bw + ceλx.

◮ Other equations.

64. y′′xx + beaxym(y′x)
3 + ay′x = 0.

This is a special case of equation 14.9.3.35 with f(y) = bym.

65. y′′xx + beax+λy(y′x)
3 + ay′x = 0.

This is a special case of equation 14.9.3.35 with f(y) = beλy .

66. y′′xx = aex(y′x)
3 + aexy(y′x)

2.

Solution: x = C1y − ln
(
a

∫
yeC1y dy + C2

)
.

67. y′′xx = axey(y′x)
3 + aey(y′x)

2.

Solution in parametric form:

x = C1e
−aτ
(∫

τ−1eaτ dτ + C2

)
, y = ln τ.

68. y′′xx = ax2ey(y′x)
3 + 2axey(y′x)

2.

Solution in parametric form:

x = a−1C1τ
−2Z−1(τZ ′

τ + Z), y = ln
( τ2

2C1

)
.

Here, Z = C1J1(τ) + C2Y1(τ) or Z = C1I1(τ) + C2K1(τ), where J1(τ) and Y1(τ)
are Bessel functions, and I1(τ) and K1(τ) are modified Bessel functions.

69. y′′xx = 2ax1/2ey(y′x)
3 + ax−1/2ey(y′x)

2.

Solution in parametric form:

x=C2
1

[
2τ±exp(∓τ2)f

]2
, y=ln

(
∓C1

a
f
)
∓τ2, where f =

[∫
exp(∓τ2) dτ+C2

]−1
.

70. y′′xx = anexyn−1(y′x)
3 + aexyn(y′x)

2.

Solution: x = C1y − ln
(
a

∫
yneC1y dy +C2

)
.
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71. y′′xx = aex+y[(y′x)
3 + (y′x)

2].

Solution: x=− ln
(
C1e

C2y+
a

1− C2
ey
)
. To the limiting case C2→ 1 there corresponds

x = −y − ln(C1 + ay).

72. y′′xx = aex(y′x)
3/2 + aexy(y′x)

1/2.

Solution in parametric form:

x = ln τ2, y = −2a−2τ−4
[
Z−1(τZ ′

τ + 2Z)∓ 1
2 τ

2
]
,

where

Z =

{
C1J2(τ) + C2Y2(τ) for the upper sign,

C1I2(τ) + C2K2(τ) for the lower sign,

J2(τ) and Y2(τ) are Bessel functions, and I2(τ) and K2(τ) are modified Bessel functions.

73. y′′xx = axey(y′x)
5/2 + aey(y′x)

3/2.

Solution in parametric form:

x = −2a−2τ−4
[
Z−1(τZ ′

τ + 2Z)∓ 1
2 τ

2
]
, y = ln τ2,

where

Z =

{
C1J2(τ) + C2Y2(τ) for the upper sign,

C1I2(τ) + C2K2(τ) for the lower sign,

J2(τ) and Y2(τ) are Bessel functions, and I2(τ) and K2(τ) are modified Bessel functions.

74. y′′xx = −ay′x + beamxyk(y′x)
m+2.

This is a special case of equation 14.9.4.17 with f(y) = −byk and n = m+ 2.

75. y′′xx = − a

m

2 − k

1 − k
y′x + beaxym−k+1(y′x)

k.

This is a special case of equation 14.9.4.31 with f(ξ) = bξ.

76. y′′xx = y′x + A exp[(n+ 2 − l)x]ym(y′x)
l.

The substitution ξ=ex leads to the generalized Emden–Fowler equation y′′ξξ=Aξ
nym(y′ξ)

l,

which is discussed in Section 14.5.

77. y′′xx = −(y′x)
2 +Axn exp[(m+ l− 1)y] (y′x)

l.

The substitution u = ey leads to the generalized Emden–Fowler equation u′′xx =
Axnum(u′x)

l, which is discussed in Section 14.5.

78. y′′xx =
a

n

1 − k

2 − k
(y′x)

2 + bxn+k−2eay(y′x)
k.

This is a special case of equation 14.9.4.30 with f(ξ) = bξ.

79. y′′xx = ayn(y′x)
2 + beλy(y′x)

k.

This is a special case of equation 14.9.4.13 with f(y) = ayn and g(y) = beλy .

80. y′′xx = aeλy(y′x)
2 + byn(y′x)

k.

This is a special case of equation 14.9.4.13 with f(y) = aeλy and g(y) = byn.
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81. y′′xx = aeλy(y′x)
2 + beµy(y′x)

k.

This is a special case of equation 14.9.4.13 with f(y) = aeλy and g(y) = beµy .

82. y′′xx = a2y + beβx(y′x + ay)k.

The substitution w = y′x + ay leads to a Bernoulli equation: w′
x = aw + beβxwk.

83. y′′xx = aex+y[(y′x)
k + (y′x)

k−1], k 6= 2.

Solution in parametric form:

x = τ −
∫

dτ

F
− C2, y =

∫
dτ

F
+ C2, where F =

[
a(2− k)eτ + C1

] 1
k−2 + 1.

84. y′′xx = axn(xy′x − y) + beλx(xy′x − y)k.

This is a special case of equation 14.9.4.4 with f(x) = axn and g(x) = beλx.

85. y′′xx = aeλx(xy′x − y) + bxn(xy′x − y)k.

This is a special case of equation 14.9.4.4 with f(x) = aeλx and g(x) = bxn.

86. y′′xx = aeλx(xy′x − y) + beµx(xy′x − y)k.

This is a special case of equation 14.9.4.4 with f(x) = aeλx and g(x) = beµx.

87. xy′′xx + y′x = axneλy(y′x)
m.

The transformation ζ = xy′x, w = xn−m+1eλy leads to a first-order linear equation:

aζmw′
ζ = λζ + n−m+ 1.

88. xy′′xx +my′x + axnm−2m+1eλy(y′x)
n = 0.

This is a special case of equation 14.9.4.14 with f(y) = aeλy .

89. xy′′xx + y′x = (axneλy + bxm−1)(y′x)
m.

The transformation ζ = xy′x, w = xn−m+1eλy leads to a first-order separable equation:

ζm(aw + b)w′
ζ = (λζ + n−m+ 1)w.

90. yy′′xx = (y′x)
2 + beaxyn(y′x)

k.

This is a special case of equation 14.9.4.68 with f(ξ) = bξ, g(ζ) = ζk, and n=m− k+2.

91. yy′′xx = (y′x)
2 + (aeλxyn + by2−m)(y′x)

m.

The transformation ξ = y′x/y, w = eλxyn+m−2 leads to a first-order separable equation:

ξm(aw + b)w′
ξ = [(n +m− 2)ξ + λ]w.

14.8.3 Equations Containing Hyperbolic Functions

◮ Equations with hyperbolic sine.

1. y′′xx = λ2y + a(sinhλx)−n−3yn.

This is a special case of equation 14.9.1.34 with f(ξ) = aξn.
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2. y′′xx = b sinh(λx) y + ay−3.

This is a special case of equation 14.9.1.2 with f(x) = −b sinh(λx).

3. y′′xx = α sinhn(ay + bx) + β.

This is a special case of equation 14.9.1.4 with f(w) = α sinhnw + β and c = 0.

4. y′′xx = a(y + b sinhx)n − b sinhx+ c.

The substitution w = y + b sinh x leads to an autonomous equation of the form 14.9.1.1:

w′′
xx = awn + c.

5. y′′xx + 3yy′x + y3 + a sinh(λx) y = 0.

This is a special case of equation 14.9.2.1 with f(x) = a sinh(λx).

6. y′′xx + ayn(y′x)
2 + b sinhm y + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = ayn and g(y) = b sinhm y + c.

7. y′′xx + a sinhn y (y′x)
2 + bym + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = a sinhn y and g(y) = bym + c.

8. y′′xx + a sinhn y (y′x)
2 + b sinhm(λy) + c = 0.

This is a special case of equation 14.9.3.25 with f(y)=a sinhny and g(y)=b sinhm(λy)+c.

9. y′′xx = ayn(y′x)
2 + b sinhm y (y′x)

k.

This is a special case of equation 14.9.4.13 with f(y) = ayn and g(y) = b sinhm y.

10. y′′xx = a sinhn y (y′x)
2 + bym(y′x)

k.

This is a special case of equation 14.9.4.13 with f(y) = a sinhn y and g(y) = bym.

11. xy′′xx = ny′x + ax2n+1 sinhm(λy).

This is a special case of equation 14.9.2.20 with f(y) = a sinhm(λy).

12. 2yy′′xx = (y′x)
2 + b sinhm(λx) y2 − a.

This is a special case of equation 14.9.3.5 with f(x) = −b sinhm(λx).

13. yy′′xx = n(y′x)
2 − ay4n−2 + b sinhm(λx) y2.

This is a special case of equation 14.9.3.8 with f(x) = −b sinhm(λx).

14. yy′′xx = n(y′x)
2 + axmy2 + b sinhk(λx) yn+1.

This is a special case of equation 14.9.3.9 with f(x) = −axm and g(x) = −b sinhk(λx).

15. yy′′xx = (y′x)
2 + axnyy′x + b sinhm(λx) y2.

This is a special case of equation 14.9.3.7 with f(x) = −axn and g(x) = −b sinhm(λx).

16. yy′′xx = (y′x)
2 + a sinhn(λx) yy′x + bxmy2.

This is a special case of equation 14.9.3.7 with f(x) = −a sinhn(λx) and g(x) = −bxm.

17. x2y′′xx + xy′x = a sinhn(λy) + b.

This is a special case of equation 14.9.2.23 with f(y) = a sinhn(λy) + b.

18. (ax2 + b)y′′xx + axy′x + sinhn(λy) + c = 0.

This is a special case of equation 14.9.2.24 with f(y) = sinhn(λy) + c.
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◮ Equations with hyperbolic cosine.

19. y′′xx = λ2y + a(cosh λx)−n−3yn.

This is a special case of equation 14.9.1.35 with f(ξ) = aξn.

20. y′′xx = b cosh(λx) y + ay−3.

This is a special case of equation 14.9.1.2 with f(x) = −b cosh(λx).

21. y′′xx = α coshn(ay + bx) + β.

This is a special case of equation 14.9.1.4 with f(w) = α coshnw + β and c = 0.

22. y′′xx = a(y + b cosh x)n − b cosh x+ c.

The substitution w = y + b cosh x leads to an autonomous equation of the form 14.9.1.1:

w′′
xx = awn + c.

23. y′′xx + 3yy′x + y3 + a cosh(λx) y = 0.

This is a special case of equation 14.9.2.1 with f(x) = a cosh(λx).

24. y′′xx + ayn(y′x)
2 + b coshm y + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = ayn and g(y) = b coshm y + c.

25. y′′xx + a coshn y (y′x)
2 + bym + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = a coshn y and g(y) = bym + c.

26. y′′xx + a coshn y (y′x)
2 + b coshm(λy) + c = 0.

This is a special case of equation 14.9.3.25 with f(y)=a coshny and g(y)=b coshm(λy)+c.

27. y′′xx = ayn(y′x)
2 + b coshm y (y′x)

k.

This is a special case of equation 14.9.4.13 with f(y) = ayn and g(y) = b coshm y.

28. y′′xx = a coshn y (y′x)
2 + bym(y′x)

k.

This is a special case of equation 14.9.4.13 with f(y) = a coshn y and g(y) = bym.

29. xy′′xx = ny′x + ax2n+1 coshm(λy).

This is a special case of equation 14.9.2.20 with f(y) = a coshm(λy).

30. 2yy′′xx = (y′x)
2 + b coshm(λx) y2 − a.

This is a special case of equation 14.9.3.5 with f(x) = −b coshm(λx).

31. yy′′xx = n(y′x)
2 − ay4n−2 + b coshm(λx) y2.

This is a special case of equation 14.9.3.8 with f(x) = −b coshm(λx).

32. yy′′xx = n(y′x)
2 + axmy2 + b coshk(λx) yn+1.

This is a special case of equation 14.9.3.9 with f(x) = −axm and g(x) = −b coshk(λx).

33. yy′′xx = (y′x)
2 + axnyy′x + b coshm(λx) y2.

This is a special case of equation 14.9.3.7 with f(x) = −axn and g(x) = −b coshm(λx).
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34. yy′′xx = (y′x)
2 + a coshn(λx) yy′x + bxmy2.

This is a special case of equation 14.9.3.7 with f(x) = −a coshn(λx) and g(x) = −bxm.

35. x2y′′xx + xy′x = a coshn(λy) + b.

This is a special case of equation 14.9.2.23 with f(y) = a coshn(λy) + b.

36. (ax2 + b)y′′xx + axy′x + coshn(λy) + c = 0.

This is a special case of equation 14.9.2.24 with f(y) = coshn(λy) + c.

◮ Equations with hyperbolic tangent.

37. y′′xx = b tanh(λx) y + ay−3.

This is a special case of equation 14.9.1.2 with f(x) = −b tanh(λx).

38. y′′xx = α tanhn(ay + bx) + β.

This is a special case of equation 14.9.1.4 with f(w) = α tanhnw + β and c = 0.

39. y′′xx + 3yy′x + y3 + a tanh(λx) y = 0.

This is a special case of equation 14.9.2.1 with f(x) = a tanh(λx).

40. y′′xx + ayn(y′x)
2 + b tanhm y + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = ayn and g(y) = b tanhm y + c.

41. y′′xx + a tanhn y (y′x)
2 + bym + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = a tanhn y and g(y) = bym + c.

42. y′′xx + a tanhn y (y′x)
2 + b tanhm(λy) + c = 0.

This is a special case of equation 14.9.3.25 with f(y)=a tanhny and g(y)=b tanhm(λy)+c.

43. y′′xx = ayn(y′x)
2 + b tanhm y (y′x)

k.

This is a special case of equation 14.9.4.13 with f(y) = ayn and g(y) = b tanhm y.

44. y′′xx = a tanhn y (y′x)
2 + bym(y′x)

k.

This is a special case of equation 14.9.4.13 with f(y) = a tanhn y and g(y) = bym.

45. xy′′xx = ny′x + ax2n+1 tanhm(λy).

This is a special case of equation 14.9.2.20 with f(y) = a tanhm(λy).

46. 2yy′′xx = (y′x)
2 + b tanhm(λx) y2 − a.

This is a special case of equation 14.9.3.5 with f(x) = −b tanhm(λx).

47. yy′′xx = n(y′x)
2 − ay4n−2 + b tanhm(λx) y2.

This is a special case of equation 14.9.3.8 with f(x) = −b tanhm(λx).

48. yy′′xx = n(y′x)
2 + axmy2 + b tanhk(λx) yn+1.

This is a special case of equation 14.9.3.9 with f(x) = −axm and g(x) = −b tanhk(λx).
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49. yy′′xx = (y′x)
2 + axnyy′x + b tanhm(λx) y2.

This is a special case of equation 14.9.3.7 with f(x) = −axn and g(x) = −b tanhm(λx).

50. yy′′xx = (y′x)
2 + a tanhn(λx) yy′x + bxmy2.

This is a special case of equation 14.9.3.7 with f(x) = −a tanhn(λx) and g(x) = −bxm.

51. x2y′′xx + xy′x = a tanhn(λy) + b.

This is a special case of equation 14.9.2.23 with f(y) = a tanhn(λy) + b.

52. (ax2 + b)y′′xx + axy′x + tanhn(λy) + c = 0.

This is a special case of equation 14.9.2.24 with f(y) = tanhn(λy) + c.

◮ Equations with hyperbolic cotangent.

53. y′′xx = b coth(λx) y + ay−3.

This is a special case of equation 14.9.1.2 with f(x) = −b coth(λx).

54. y′′xx = α cothn(ay + bx) + β.

This is a special case of equation 14.9.1.4 with f(w) = α cothnw + β and c = 0.

55. y′′xx + 3yy′x + y3 + a coth(λx) y = 0.

This is a special case of equation 14.9.2.1 with f(x) = a coth(λx).

56. y′′xx + ayn(y′x)
2 + b cothm y + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = ayn and g(y) = b cothm y + c.

57. y′′xx + a cothn y (y′x)
2 + bym + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = a cothn y and g(y) = bym + c.

58. y′′xx + a cothn y (y′x)
2 + b cothm(λy) + c = 0.

This is a special case of equation 14.9.3.25 with f(y)=a cothny and g(y)=b cothm(λy)+c.

59. y′′xx = ayn(y′x)
2 + b cothm y (y′x)

k.

This is a special case of equation 14.9.4.13 with f(y) = ayn and g(y) = b cothm y.

60. y′′xx = a cothn y (y′x)
2 + bym(y′x)

k.

This is a special case of equation 14.9.4.13 with f(y) = a cothn y and g(y) = bym.

61. xy′′xx = ny′x + ax2n+1 cothm(λy).

This is a special case of equation 14.9.2.20 with f(y) = a cothm(λy).

62. 2yy′′xx = (y′x)
2 + b cothm(λx) y2 − a.

This is a special case of equation 14.9.3.5 with f(x) = −b cothm(λx).

63. yy′′xx = n(y′x)
2 − ay4n−2 + b cothm(λx) y2.

This is a special case of equation 14.9.3.8 with f(x) = −b cothm(λx).
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64. yy′′xx = n(y′x)
2 + axmy2 + b cothk(λx) yn+1.

This is a special case of equation 14.9.3.9 with f(x) = −axm and g(x) = −b cothk(λx).

65. yy′′xx = (y′x)
2 + axnyy′x + b cothm(λx) y2.

This is a special case of equation 14.9.3.7 with f(x) = −axn and g(x) = −b cothm(λx).

66. yy′′xx = (y′x)
2 + a cothn(λx) yy′x + bxmy2.

This is a special case of equation 14.9.3.7 with f(x) = −a cothn(λx) and g(x) = −bxm.

67. x2y′′xx + xy′x = a cothn(λy) + b.

This is a special case of equation 14.9.2.23 with f(y) = a cothn(λy) + b.

68. (ax2 + b)y′′xx + axy′x + cothn(λy) + c = 0.

This is a special case of equation 14.9.2.24 with f(y) = cothn(λy) + c.

◮ Equations containing combinations of hyperbolic functions.

69. y′′xx = λ2y + a sinhn(λx) cosh−n−m−3(λx) ym.

The transformation ξ = tanh(λx), w =
y

cosh(λx)
leads to the Emden–Fowler equation

w′′
ξξ = aλ−2ξnwm, which is discussed in Section 14.3.

70. y′′xx = λ2y + a coshn(λx) sinh−n−m−3(λx) ym.

The transformation ξ = coth(λx), w =
y

sinh(λx)
leads to the Emden–Fowler equation

w′′
ξξ = aλ−2ξnwm, which is discussed in Section 14.3.

71. y′′xx = a(y′x sinhx− y cosh x)k + y.

The substitution w = y′x sinhx − y cosh x leads to a first-order separable equation: w′
x =

a sinh xwk.

72. y′′xx = a(y′x cosh x− y sinhx)k + y.

The substitution w = y′x coshx − y sinh x leads to a first-order separable equation: w′
x =

a cosh xwk .

73. sinhx y′′xx + 1
2

cosh x y′x = a sinh(λy) + b.

This is a special case of equation 14.9.2.34 with g(x) = sinh x and f(y) = a sinh(λy) + b.

74. cosh x y′′xx + 1
2

sinhx y′x = a cosh(λy) + b.

This is a special case of equation 14.9.2.34 with g(x) = cosh x and f(y) = a cosh(λy)+ b.

75. yy′′xx + (y′x)
2 + a sinh(βx)yy′x + b cosh(λx) + c = 0.

This is a special case of equation 14.9.3.6 with f(x)=a sinh(βx) and g(x)=b cosh(λx)+c.

76. yy′′xx − (y′x)
2 + a sinh(βx)yy′x + b cosh(λx)y2 = 0.

This is a special case of equation 14.9.3.7 with f(x) = a sinh(βx) and g(x) = b cosh(λx).
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14.8.4 Equations Containing Logarithmic Functions

◮ Equations of the form f(x, y)y′′xx + g(x, y)y′x + h(x, y) = 0.

1. y′′xx = by(ax+m ln y).

This is a special case of equation 14.9.1.27 with f(z) = b ln z.

2. y′′xx = bx−2(ay + n ln x).

This is a special case of equation 14.9.1.28 with f(z) = b ln z.

3. y′′xx = ax−3(ln y − ln x).

This is a special case of equation 14.9.1.8 with f(ξ) = a ln ξ.

4. y′′xx = ax−3/2(2 ln y − ln x).

This is a special case of equation 14.9.1.9 with f(ξ) = 2a ln ξ.

5. y′′xx = k lnn(ay + bx) + s.

This is a special case of equation 14.9.1.4 with f(w) = k lnnw + s and c = 0.

6. y′′xx = y−3
[[
2 ln y − ln(ax2 + c)

]]
.

This is a special case of equation 14.9.1.21 with f(w) = 2 lnw and b = 0.

7. x2y′′xx = x2(y + a ln x+ b)n + a.

This is a special case of equation 14.9.1.36 with f(ξ) = ξn.

8. x2y′′xx = n(n+ 1)y + ax3n+2(ln y + n ln x).

This is a special case of equation 14.9.1.12 with f(ξ) = a ln ξ.

9. x2y′′xx + 1
4
y + Ax

1−m
2 (a ln x+ b)nym = 0.

The transformation ξ = a lnx + b, w = yx−1/2 leads to the Emden–Fowler equation:

w′′
ξξ +Aa−2ξnwm = 0 (see Section 14.3).

10. xy′′xx = ny′x + ax2n+1 lnm(λy).

This is a special case of equation 14.9.2.20 with f(y) = a lnm(λy).

11. xy′′xx = −(n+ 1)y′x + axn−1(ln y + n ln x).

This is a special case of equation 14.9.2.30 with f(ξ) = a ln ξ.

12. xy′′xx = (ay + n ln x)y′x.

This is a special case of equation 14.9.2.39 with f(ξ) = ln ξ.

13. xy′′xx + x(2ay + ln x+ b)y′x + y = 0.

Integrating yields a Riccati equation: y′x + ay2 + (lnx+ b)y = C .

14. xy′′xx = a lnk(by)y′x.

This is a special case of equation 14.9.2.21 with f(y) = a lnk(by).

15. x2y′′xx + xy′x = a lnn(λy) + b.

This is a special case of equation 14.9.2.23 with f(y) = a lnn(λy) + b.

16. (ax2 + b)y′′xx + axy′x + c lnn(λy) = 0.

This is a special case of equation 14.9.2.24 with f(y) = c lnn(λy).
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◮ Other equations.

17. y′′xx + ayn(y′x)
2 + b lnm y + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = ayn and g(y) = b lnm y + c.

18. y′′xx = ayn(y′x)
2 + b lnm(λx) y′x.

This is a special case of equation 14.9.3.38 with f(y) = ayn and g(x) = b lnm(λx).

19. y′′xx + a lnn y (y′x)
2 + bym + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = a lnn y and g(y) = bym + c.

20. y′′xx = a lnn y (y′x)
2 + bxmy′x.

This is a special case of equation 14.9.3.38 with f(y) = a lnn y and g(x) = bxm.

21. y′′xx = a lnn y (y′x)
2 + b lnm(λx) y′x.

This is a special case of equation 14.9.3.38 with f(y) = a lnn y and g(x) = b lnm(λx).

22. y′′xx = ax−2y−1(y′x)
4 − 2ax−3 ln y (y′x)

3.

Solution in parametric form:

x = λ
[
(F ± 2τ)2 ± 4 ln(C1F )

]1/2
, y = C1F,

where F = exp(∓τ2)
[∫

exp(∓τ2) dτ + C2

]−1
, λ =

(
± 1

2aC
2
1

)1/4
.

23. y′′xx = 2a ln x y−3 − ax−1y−2(y′x)
−1.

Solution in parametric form:

x = C1F, y = λ
[
(F ± 2τ)2 ± 4 ln(C1F )

]1/2
,

where F = exp(∓τ2)
[∫

exp(∓τ2) dτ + C2

]−1
, λ =

(
± 1

2aC
2
1

)1/4
.

24. y′′xx = ayn(y′x)
2 + b lnm y (y′x)

k.

This is a special case of equation 14.9.4.13 with f(y) = ayn and g(y) = b lnm y.

25. y′′xx = a lnn y (y′x)
2 + bym(y′x)

k.

This is a special case of equation 14.9.4.13 with f(y) = a lnn y and g(y) = bym.

26. yy′′xx = n(y′x)
2 + axmy2 + b lnk(λx) yn+1.

This is a special case of equation 14.9.3.9 with f(x) = −axm and g(x) = −b lnk(λx).

27. yy′′xx = (y′x)
2 + a lnn(λx) yy′x + bxmy2.

This is a special case of equation 14.9.3.7 with f(x) = −a lnn(λx) and g(x) = −bxm.

28. yy′′xx = (y′x)
2 + axnyy′x + b lnm(λx) y2.

This is a special case of equation 14.9.3.7 with f(x) = −axn and g(x) = −b lnm(λx).

29. yy′′xx = (ax+ n ln y)(y′x)
2.

This is a special case of equation 14.9.3.40 with f(ξ) = ln ξ.
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14.8.5 Equations Containing Trigonometric Functions

◮ Equations with sine.

1. y′′xx = −λ2y + a(sinλx)ny−n−3.

This is a special case of equation 14.9.1.40 with f(ξ) = aξ−n−3.

2. y′′xx = −λ2y +A sinn(λx+ a) sinm(λx+ b) y−n−m−3.

The transformation ξ =
sin(λx+ a)

sin(λx+ b)
, w =

y

sin(λx+ b)
leads to the Emden–Fowler

equation: w′′
ξξ = A[λ sin(b− a)]−2ξnw−n−m−3 (see Section 14.3).

3. y′′xx = b sin(λx) y + ay−3.

This is a special case of equation 14.9.1.2 with f(x) = −b sin(λx).

4. y′′xx = α sinn(ay + bx) + β.

This is a special case of equation 14.9.1.4 with f(w) = α sinnw + β and c = 0.

5. y′′xx = a(y + b sin x)n + b sin x+ c.

The substitution w = y + b sinx leads to an autonomous equation of the form 14.9.1.1:

w′′
xx = awn + c.

6. y′′xx + 3yy′x + y3 + a sin(λx) y = 0.

This is a special case of equation 14.9.2.1 with f(x) = a sin(λx).

7. y′′xx + ayn(y′x)
2 + b sinm y + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = ayn and g(y) = b sinm y + c.

8. y′′xx = ayn(y′x)
2 + b sinm(λx) y′x.

This is a special case of equation 14.9.3.38 with f(y) = ayn and g(x) = b sinm(λx).

9. y′′xx = ayn(y′x)
2 + b sinm y (y′x)

k.

This is a special case of equation 14.9.4.13 with f(y) = ayn and g(y) = b sinm y.

10. y′′xx + a sinn y (y′x)
2 + bym + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = a sinn y and g(y) = bym + c.

11. y′′xx + a sinn y (y′x)
2 + b sinm(λy) + c = 0.

This is a special case of equation 14.9.3.25 with f(y)= a sinn y and g(y) = b sinm(λy)+c.

12. y′′xx = a sinn y (y′x)
2 + bxmy′x.

This is a special case of equation 14.9.3.38 with f(y) = a sinn y and g(x) = bxm.

13. y′′xx = a sinn y (y′x)
2 + b sinm(λx) y′x.

This is a special case of equation 14.9.3.38 with f(y) = a sinn y and g(x) = b sinm(λx).

14. y′′xx = a sinn y (y′x)
2 + bym(y′x)

k.

This is a special case of equation 14.9.4.13 with f(y) = a sinn y and g(y) = bym.
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15. xy′′xx = ny′x + ax2n+1 sinm(λy).

This is a special case of equation 14.9.2.20 with f(y) = a sinm(λy).

16. 2yy′′xx = (y′x)
2 + b sin(λx) y2 − a.

This is a special case of equation 14.9.3.5 with f(x) = −b sin(λx).

17. yy′′xx = n(y′x)
2 − ay4n−2 + b sin(λx) y2.

This is a special case of equation 14.9.3.8 with f(x) = −b sin(λx).

18. yy′′xx = n(y′x)
2 + axmy2 + b sink(λx) yn+1.

This is a special case of equation 14.9.3.9 with f(x) = −axm and g(x) = −b sink(λx).

19. yy′′xx = n(y′x)
2 + a sin(λx) y2 + b sin(µx) yn+1.

This is a special case of equation 14.9.3.9 with f(x) =−a sin(λx) and g(x) =−b sin(µx).

20. yy′′xx = (y′x)
2 + axnyy′x + b sinm(λx) y2.

This is a special case of equation 14.9.3.7 with f(x) = −axn and g(x) = −b sinm(λx).

21. yy′′xx = (y′x)
2 + a sinn(λx) yy′x + bxmy2.

This is a special case of equation 14.9.3.7 with f(x) = −a sinn(λx) and g(x) = −bxm.

22. x2y′′xx + xy′x = a sinn(λy) + b.

This is a special case of equation 14.9.2.23 with f(y) = a sinn(λy) + b.

23. (ax2 + b)y′′xx + axy′x + sinn(λy) + c = 0.

This is a special case of equation 14.9.2.24 with f(y) = sinn(λy) + c.

24. sin2 x y′′xx = n(n+ 1 − n sin2 x)y + a(sinx)nm+3n+2ym.

This is a special case of equation 14.9.1.44 with f(ξ) = aξm.

◮ Equations with cosine.

25. y′′xx = −λ2y + a(cosλx)ny−n−3.

This is a special case of equation 14.9.1.41 with f(ξ) = aξ−n−3.

26. y′′xx = −λ2y + A cosn(λx+ a) cosm(λx+ b) y−n−m−3.

The transformation ξ =
cos(λx+ a)

cos(λx+ b)
, w =

y

cos(λx+ b)
leads to the Emden–Fowler

equation: w′′
ξξ = A[λ sin(b− a)]−2ξnw−n−m−3 (see Section 14.3).

27. y′′xx = b cos(λx) y + ay−3.

This is a special case of equation 14.9.1.2 with f(x) = −b cos(λx).

28. y′′xx = α cosn(ay + bx) + β.

This is a special case of equation 14.9.1.4 with f(w) = α cosnw + β and c = 0.
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29. y′′xx = a(y + b cosx)n + b cos x+ c.

The substitution w = y + b cos x leads to an autonomous equation of the form 14.9.1.1:

w′′
xx = awn + c.

30. y′′xx + 3yy′x + y3 + a cos(λx) y = 0.

This is a special case of equation 14.9.2.1 with f(x) = a cos(λx).

31. y′′xx + ayn(y′x)
2 + b cosm y + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = ayn and g(y) = b cosm y + c.

32. y′′xx = ayn(y′x)
2 + b cosm(λx) y′x.

This is a special case of equation 14.9.3.38 with f(y) = ayn and g(x) = b cosm(λx).

33. y′′xx = ayn(y′x)
2 + b cosm y (y′x)

k.

This is a special case of equation 14.9.4.13 with f(y) = ayn and g(y) = b cosm y.

34. y′′xx + a cosn y (y′x)
2 + bym + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = a cosn y and g(y) = bym + c.

35. y′′xx + a cosn y (y′x)
2 + b cosm(λy) + c = 0.

This is a special case of equation 14.9.3.25 with f(y)=a cosn y and g(y)= b cosm(λy)+c.

36. y′′xx = a cosn y (y′x)
2 + bxmy′x.

This is a special case of equation 14.9.3.38 with f(y) = a cosn y and g(x) = bxm.

37. y′′xx = a cosn y (y′x)
2 + b cosm(λx) y′x.

This is a special case of equation 14.9.3.38 with f(y) = a cosn y and g(x) = b cosm(λx).

38. y′′xx = a cosn y (y′x)
2 + bym(y′x)

k.

This is a special case of equation 14.9.4.13 with f(y) = a cosn y and g(y) = bym.

39. xy′′xx = ny′x + ax2n+1 cosm(λy).

This is a special case of equation 14.9.2.20 with f(y) = a cosm(λy).

40. 2yy′′xx = (y′x)
2 + b cos(λx) y2 − a.

This is a special case of equation 14.9.3.5 with f(x) = −b cos(λx).

41. yy′′xx = n(y′x)
2 − ay4n−2 + b cos(λx) y2.

This is a special case of equation 14.9.3.8 with f(x) = −b cos(λx).

42. yy′′xx = n(y′x)
2 + axmy2 + b cosk(λx) yn+1.

This is a special case of equation 14.9.3.9 with f(x) = −axm and g(x) = −b cosk(λx).

43. yy′′xx = n(y′x)
2 + a cos(λx) y2 + b cos(µx) yn+1.

This is a special case of equation 14.9.3.9 with f(x)=−a cos(λx) and g(x) =−b cos(µx).

44. yy′′xx = (y′x)
2 + axnyy′x + b cosm(λx) y2.

This is a special case of equation 14.9.3.7 with f(x) = −axn and g(x) = −b cosm(λx).
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45. yy′′xx = (y′x)
2 + a cosn(λx) yy′x + bxmy2.

This is a special case of equation 14.9.3.7 with f(x) = −a cosn(λx) and g(x) = −bxm.

46. x2y′′xx + xy′x = a cosn(λy) + b.

This is a special case of equation 14.9.2.23 with f(y) = a cosn(λy) + b.

47. (ax2 + b)y′′xx + axy′x + cosn(λy) + c = 0.

This is a special case of equation 14.9.2.24 with f(y) = cosn(λy) + c.

48. cos2 x y′′xx = n(n+ 1 − n cos2 x)y + a(cosx)nm+3n+2ym.

This is a special case of equation 14.9.1.45 with f(ξ) = aξm.

◮ Equations with tangent.

49. y′′xx = b tan(λx) y + ay−3.

This is a special case of equation 14.9.1.2 with f(x) = −b tan(λx).

50. y′′xx = α tann(ay + bx) + β.

This is a special case of equation 14.9.1.4 with f(w) = α tannw + β and c = 0.

51. y′′xx + ayn(y′x)
2 + b tanm y + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = ayn and g(y) = b tanm y + c.

52. y′′xx = ayn(y′x)
2 + b tanm(λx) y′x.

This is a special case of equation 14.9.3.38 with f(y) = ayn and g(x) = b tanm(λx).

53. y′′xx = ayn(y′x)
2 + b tanm y (y′x)

k.

This is a special case of equation 14.9.4.13 with f(y) = ayn and g(y) = b tanm y.

54. y′′xx + a tann y (y′x)
2 + bym + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = a tann y and g(y) = bym + c.

55. y′′xx + a tann y (y′x)
2 + b tanm(λy) + c = 0.

This is a special case of equation 14.9.3.25 with f(y)=a tann y and g(y)= b tanm(λy)+c.

56. y′′xx = a tann y (y′x)
2 + bxmy′x.

This is a special case of equation 14.9.3.38 with f(y) = a tann y and g(x) = bxm.

57. y′′xx = a tann y (y′x)
2 + b tanm(λx) y′x.

This is a special case of equation 14.9.3.38 with f(y) = a tann y and g(x) = b tanm(λx).

58. y′′xx = a tann y (y′x)
2 + bym(y′x)

k.

This is a special case of equation 14.9.4.13 with f(y) = a tann y and g(y) = bym.

59. xy′′xx = ny′x + ax2n+1 tanm(λy).

This is a special case of equation 14.9.2.20 with f(y) = a tanm(λy).
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60. yy′′xx = n(y′x)
2 + axmy2 + b tank(λx) yn+1.

This is a special case of equation 14.9.3.9 with f(x) = −axm and g(x) = −b tank(λx).

61. yy′′xx = (y′x)
2 + axnyy′x + b tanm(λx) y2.

This is a special case of equation 14.9.3.7 with f(x) = −axn and g(x) = −b tanm(λx).

62. x2y′′xx + xy′x = a tann(λy) + b.

This is a special case of equation 14.9.2.23 with f(y) = a tann(λy) + b.

63. (ax2 + b)y′′xx + axy′x + tann(λy) + c = 0.

This is a special case of equation 14.9.2.24 with f(y) = tann(λy) + c.

◮ Equations with cotangent.

64. y′′xx = b cot(λx) y + ay−3.

This is a special case of equation 14.9.1.2 with f(x) = −b cot(λx).

65. y′′xx = α cotn(ay + bx) + β.

This is a special case of equation 14.9.1.4 with f(w) = α cotnw + β and c = 0.

66. y′′xx + ayn(y′x)
2 + b cotm y + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = ayn and g(y) = b cotm y + c.

67. y′′xx = ayn(y′x)
2 + b cotm(λx) y′x.

This is a special case of equation 14.9.3.38 with f(y) = ayn and g(x) = b cotm(λx).

68. y′′xx = ayn(y′x)
2 + b cotm y (y′x)

k.

This is a special case of equation 14.9.4.13 with f(y) = ayn and g(y) = b cotm y.

69. y′′xx + a cotn y (y′x)
2 + bym + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = a cotn y and g(y) = bym + c.

70. y′′xx + a cotn y (y′x)
2 + b cotm(λy) + c = 0.

This is a special case of equation 14.9.3.25 with f(y)=a cotn y and g(y)= b cotm(λy)+c.

71. y′′xx = a cotn y (y′x)
2 + bxmy′x.

This is a special case of equation 14.9.3.38 with f(y) = a cotn y and g(x) = bxm.

72. y′′xx = a cotn y (y′x)
2 + b cotm(λx) y′x.

This is a special case of equation 14.9.3.38 with f(y) = a cotn y and g(x) = b cotm(λx).

73. y′′xx = a cotn y (y′x)
2 + bym(y′x)

k.

This is a special case of equation 14.9.4.13 with f(y) = a cotn y and g(y) = bym.

74. xy′′xx = ny′x + ax2n+1 cotm(λy).

This is a special case of equation 14.9.2.20 with f(y) = a cotm(λy).
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75. yy′′xx = n(y′x)
2 + axmy2 + b cotk(λx) yn+1.

This is a special case of equation 14.9.3.9 with f(x) = −axm and g(x) = −b cotk(λx).

76. yy′′xx = (y′x)
2 + axnyy′x + b cotm(λx) y2.

This is a special case of equation 14.9.3.7 with f(x) = −axn and g(x) = −b cotm(λx).

77. x2y′′xx + xy′x = a cotn(λy) + b.

This is a special case of equation 14.9.2.23 with f(y) = a cotn(λy) + b.

78. (ax2 + b)y′′xx + axy′x + cotn(λy) + c = 0.

This is a special case of equation 14.9.2.24 with f(y) = cotn(λy) + c.

◮ Equations containing combinations of trigonometric functions.

79. y′′xx = −λ2y + a cosn(λx) sinm(λx) y−n−m−3.

The transformation ξ = cot(λx), w =
y

sin(λx)
leads to the Emden–Fowler equation:

w′′
ξξ = aλ−2ξnw−n−m−3 (see Section 14.3).

80. y′′xx = −λ2y + a sinn(λx)[sin(λx) + b cos(λx)]my−n−m−3.

The transformation ξ =1+b cot(λx), w=
y

sin(λx)
leads to the Emden–Fowler equation:

w′′
ξξ = a(bλ)−2ξmw−n−m−3 (see Section 14.3).

81. y′′xx = a(y′x sin x− y cosx)k − y.

The substitution w = y′x sinx − y cos x leads to a first-order separable equation: w′
x =

a sinxwk .

82. y′′xx = a(y′x cosx+ y sin x)k − y.

The substitution w = y′x cos x + y sinx leads to a first-order separable equation: w′
x =

a cos xwk .

83. y′′xx = 2(cosx)−2y + a(cotx)n+3yn.

This is a special case of equation 14.9.1.43 with f(ξ) = aξn.

84. y′′xx = 2(sin x)−2y + a(tanx)n+3yn.

This is a special case of equation 14.9.1.42 with f(ξ) = aξn.

85. y′′xx = (n+ 1)(tanx)y′x + ny + a(cosx)nm−2ym−1.

This is a special case of equation 14.9.2.44 with f(ξ) = aξm−1.

86. y′′xx + (2ay + b sin x)y′x + b(cosx)y = 0.

Integrating yields a Riccati equation: y′x + ay2 + b(sinx)y = C .

87. x2y′′xx + ax2 tanx y′x + n(ax tanx− n− 1)y = bxnm+2(cosx)2aym−3.

This is a special case of equation 14.9.2.47 with f(ξ) = bξm−3.
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88. sin x y′′xx + 1
2
cos x y′x = ayn + b.

This is a special case of equation 14.9.2.34 with g(x) = sinx and f(y) = ayn + b.

89. sin x y′′xx + 1
2
cos x y′x = a sinn(λy) + b.

This is a special case of equation 14.9.2.34 with g(x) = sinx and f(y) = a sinn(λy) + b.

90. sin x y′′xx + 1
2
cos x y′x = a cosn(λy) + b.

This is a special case of equation 14.9.2.34 with g(x) = sinx and f(y) = a cosn(λy) + b.

91. sin x y′′xx + 1
2
cos x y′x = a tann(λy) + b.

This is a special case of equation 14.9.2.34 with g(x) = sinx and f(y) = a tann(λy) + b.

92. yy′′xx + (y′x)
2 + a sin(βx)yy′x + b cos(λx) + c = 0.

This is a special case of equation 14.9.3.6 with f(x) = a sin(βx) and g(x) = b cos(λx)+c.

93. yy′′xx − (y′x)
2 + a sin(βx)yy′x + b cos(λx)y2 = 0.

This is a special case of equation 14.9.3.7 with f(x) = a sin(βx) and g(x) = b cos(λx).

14.8.6 Equations Containing the Combinations of Exponential,
Hyperbolic, Logarithmic, and Trigonometric Functions

1. y′′xx = λ2y + ae3λx(ln y + λx).

This is a special case of equation 14.9.1.29 with f(ξ) = a ln ξ.

2. y′′xx = −ay′x + beax(ln y + ax).

This is a special case of equation 14.9.2.36 with f(ξ) = b ln ξ.

3. y′′xx = ay′x + be2ax lnn(λy).

This is a special case of equation 14.9.2.17 with f(y) = b lnn(λy).

4. y′′xx = ay′x + be2ax sinn(λy).

This is a special case of equation 14.9.2.17 with f(y) = b sinn(λy).

5. y′′xx = ay′x + be2ax tann(λy).

This is a special case of equation 14.9.2.17 with f(y) = b tann(λy).

6. y′′xx + a tanx y′x + b(a tanx− b)y = cebmx(cosx)2aym−3.

This is a special case of equation 14.9.2.46 with f(ξ) = cξm−3.

7. y′′xx = a(y′x)
2 − be4ay + c sinh(λx).

This is a special case of equation 14.9.3.18 with f(x) = −c sinh(λx).

8. y′′xx = a(y′x)
2 + b coshn(λx)eay + cxm.

This is a special case of equation 14.9.3.17 with f(x) = −b coshn(λx) and g(x) = −cxm.

9. y′′xx = a(y′x)
2 + b lnn(λx)eay + cxm.

This is a special case of equation 14.9.3.17 with f(x) = −b lnn(λx) and g(x) = −cxm.



“K16435’ — 2017/9/28 — 15:05 — #810

784 SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS

10. y′′xx = a(y′x)
2 + b lnn(λx)eay + ceνx.

This is a special case of equation 14.9.3.17 with f(x) = −b lnn(λx) and g(x) = −ceνx.

11. y′′xx = a(y′x)
2 − be4ay + c sin(λx).

This is a special case of equation 14.9.3.18 with f(x) = −c sin(λx).

12. y′′xx = a(y′x)
2 + b sinn(λx)eay + cxm.

This is a special case of equation 14.9.3.17 with f(x) = −b sinn(λx) and g(x) = −cxm.

13. y′′xx = a(y′x)
2 + b sinn(λx)eay + ceνx.

This is a special case of equation 14.9.3.17 with f(x) = −b sinn(λx) and g(x) = −ceνx.

14. y′′xx + aeλy(y′x)
2 + b lnn y + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = aeλy and g(y) = b lnn y + c.

15. y′′xx + aeλy(y′x)
2 + b sinn y + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = aeλy and g(y) = b sinn y + c.

16. y′′xx = aeλy(y′x)
2 + b lnn(µx)y′x.

This is a special case of equation 14.9.3.38 with f(y) = aeλy and g(x) = b lnn(µx).

17. y′′xx = aeλy(y′x)
2 + b sinn(µx)y′x.

This is a special case of equation 14.9.3.38 with f(y) = aeλy and g(x) = b sinn(µx).

18. y′′xx = aeλy(y′x)
2 + b tann(µx)y′x.

This is a special case of equation 14.9.3.38 with f(y) = aeλy and g(x) = b tann(µx).

19. y′′xx + a lnn y (y′x)
2 + beλy + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = a lnn y and g(y) = beλy + c.

20. y′′xx = a lnn y (y′x)
2 + beλxy′x.

This is a special case of equation 14.9.3.38 with f(y) = a lnn y and g(x) = beλx.

21. y′′xx = a lnn y (y′x)
2 + b sinm(λx)y′x.

This is a special case of equation 14.9.3.38 with f(y) = a lnn y and g(x) = b sinm(λx).

22. y′′xx + a sinn y (y′x)
2 + beλy + c = 0.

This is a special case of equation 14.9.3.25 with f(y) = a sinn y and g(y) = beλy + c.

23. y′′xx = a sinn y (y′x)
2 + beλxy′x.

This is a special case of equation 14.9.3.38 with f(y) = a sinn y and g(x) = beλx.

24. y′′xx = a sinn y (y′x)
2 + b lnm(λx)y′x.

This is a special case of equation 14.9.3.38 with f(y) = a sinn y and g(x) = b lnm(λx).

25. y′′xx = a tann y (y′x)
2 + beλxy′x.

This is a special case of equation 14.9.3.38 with f(y) = a tann y and g(x) = beλx.
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26. y′′xx + beax cosh(λy)(y′x)
3 + ay′x = 0.

This is a special case of equation 14.9.3.35 with f(y) = b cosh(λy).

27. y′′xx + beax sin(λy)(y′x)
3 + ay′x = 0.

This is a special case of equation 14.9.3.35 with f(y) = b sin(λy).

28. xy′′xx = ax lnx eyy′x + aey .

Solution: y = − ln
[
eC1x

(
C2 −

a

C1

∫
x−1e−C1x dx

)
+

a

C1
lnx
]
.

29. yy′′xx = aex(y′x)
3 + aexy ln y (y′x)

2.

Solution: x = − ln
[
eC1y

(
C2 +

a

C1

∫
y−1e−C1y dy

)
− a

C1
ln y
]
.

30. yy′′xx = (y′x)
2 + aeλxyy′x + b sinn(νx)y2.

This is a special case of equation 14.9.3.7 with f(x) = −aeλx and g(x) = −b sinn(νx).

31. (ae2x + b)y′′xx + ae2xy′x = coshn(λy) + c.

This is a special case of equation 14.9.2.34 with g(x) = ae2x+b and f(y)= coshn(λy)+c.

32. (ae2x + b)y′′xx + ae2xy′x = tanhn(λy) + c.

This is a special case of equation 14.9.2.34 with g(x) = ae2x+b and f(y) = tanhn(λy)+c.

33. (ae2x + b)y′′xx + ae2xy′x = lnn(λy) + c.

This is a special case of equation 14.9.2.34 with g(x) = ae2x + b and f(y) = lnn(λy) + c.

34. (ae2x + b)y′′xx + ae2xy′x = sinn(λy) + c.

This is a special case of equation 14.9.2.34 with g(x) = ae2x+ b and f(y) = sinn(λy)+ c.

35. (ae2x + b)y′′xx + ae2xy′x = tann(λy) + c.

This is a special case of equation 14.9.2.34 with g(x) = ae2x+ b and f(y) = tann(λy)+ c.

36. sin x y′′xx + 1
2
cos x y′x = aeλy + b.

This is a special case of equation 14.9.2.34 with g(x) = sinx and f(y) = aeλy + b.

37. sin x y′′xx + 1
2
cos x y′x = a coshn(λy) + b.

This is a special case of equation 14.9.2.34 with g(x) = sinx and f(y) = a coshn(λy)+ b.

38. sin x y′′xx + 1
2
cos x y′x = a sinhn(λy) + b.

This is a special case of equation 14.9.2.34 with g(x) = sinx and f(y) = a sinhn(λy) + b.

39. sin x y′′xx + 1
2
cos x y′x = a tanhn(λy) + b.

This is a special case of equation 14.9.2.34 with g(x) = sinx and f(y) = a tanhn(λy) + b.

40. sin x y′′xx + 1
2
cos x y′x = a lnn y + b.

This is a special case of equation 14.9.2.34 with g(x) = sinx and f(y) = a lnn y + b.
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14.9 Equations Containing Arbitrary Functions

◆ Notation: f , g, h, ϕ, and ψ are arbitrary composite functions of their arguments indi-

cated in parentheses just after the function name (the arguments can depend on x, y, y′x).

14.9.1 Equations of the Form F (x, y)y′′

xx +G(x, y) = 0

◮ Arguments of arbitrary functions are algebraic and power functions of x and y.

1. y′′xx = f(y).

This autonomous equation arises in mechanics, combustion theory, and the theory of mass

transfer with chemical reactions. The substitution u(y)= y′x leads to a first-order separated

equation: uu′y = f(y).

Solution:

∫ [
C1 + 2

∫
f(y) dy

]−1/2
dy = C2 ± x.

Particular solutions: y = Ak, where Ak are roots of the algebraic (transcendental)

equation f(Ak) = 0.

2. y′′xx + f(x)y = ay−3.

Yermakov’s equation. Let w = w(x) be a nontrivial solution of the second-order linear

equation w′′
xx+f(x)w=0. The transformation ξ=

∫
dx

w2
, z=

y

w
leads to an autonomous

equation of the form 14.9.1.1: z′′ξξ = az−3.

Solution: C1y
2 = aw2 + w2

(
C2 +C1

∫
dx

w2

)2
.

⊙ Literature: V. P. Yermakov (1880).

3. y′′xx + f(x)y = g′x(x)y
−1 − g2(x)y−3.

Generalized Yermakov’s equation.

Solution: y = w
[
C + 2

∫
g(x) dx

w2

]1/2
, where w = w(x) is the general solution of

the linear equation w′′
xx + f(x)w = 0.

4. y′′xx = f(ay + bx+ c).

The substitution w = ay+ bx+ c leads to an equation of the form 14.9.1.1: w′′
xx = af(w).

5. y′′xx = f(y + ax2 + bx+ c).

The substitution w = y + ax2 + bx+ c leads to an equation of the form 14.9.1.1: w′′
xx =

f(w) + 2a.

6. y′′xx = f(y + axn + bx2 + cx)− an(n− 1)xn−2.

The substitution w = y + axn + bx2 + cx leads to an equation of the form 14.9.1.1:

w′′
xx = f(w) + 2b.

7. y′′xx = x−1f(yx−1).

Homogeneous equation. The transformation t=− ln |x|, z= y/x leads to an autonomous

equation: z′′tt − z′t = f(z). Reducing its order with the substitution w(z) = w′
t, we arrive

at the Abel equation ww′
z − w = f(w), which is discussed in Section 13.3.1.
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8. y′′xx = x−3f(yx−1).

The transformation ξ = 1/x, w = y/x leads to an equation of the form 14.9.1.1: w′′
ξξ =

f(w).

9. y′′xx = x−3/2f(yx−1/2).

Having set w = yx−1/2, we obtain d
dx (xw

′
x)

2 = 1
2ww

′
x+2f(w)w′

x. Integrating the latter

equation, we arrive at a separable equation.

Solution:

∫ [
C1 +

1
4w

2 + 2

∫
f(w) dw

]−1/2
dw = C2 ± lnx.

10. y′′xx = xk−2f(x−ky).

Generalized homogeneous equation.

1◦. The transformation t = lnx, z = x−ky leads to an autonomous equation of the form

14.9.6.2: z′′tt + (2k − 1)z′t + k(k − 1)z = f(z).

2◦. The transformation z = x−ky, w = xy′x/y leads to a first-order equation of the form:

z(w − k)w′
z = z−1f(z) + w − w2.

11. y′′xx = yx−2f(xnym).

Generalized homogeneous equation. The transformation z = xnym, w = xy′x/y leads to

a first-order equation: z(mw + n)w′
z = f(z) + w − w2.

12. y′′xx = n(n+ 1)x−2y + x3nf(yxn).

This is a special case of equation 14.9.1.46 with ψ = x−n.

13. y′′xx = x−3/2f(ayx−1/2 + bx1/2).

The substitution w = ay + bx leads to an equation of the form 14.9.1.9:

w′′
xx = ax−3/2f(wx−1/2).

14. x(x+ a)2y′′xx = f(y/x).

The transformation ξ = ln
∣∣∣x+ a

x

∣∣∣, z =
y

x
leads to an autonomous equation of the form

14.9.6.2: z′′ξξ − z′ξ = a−2f(z). Reducing its order with the substitution w(z) = z′ξ , we

arrive at an Abel equation of the second kind: ww′
z − w = a−2f(z). See Section 13.3.1

for information about an Abel equation of the second kind.

15. y′′xx =
1

x3
f
((
y

x
+

a

x2
+

b

x
+ c

))
.

The transformation ξ = 1/x, w = y/x leads to an equation of the form 14.9.1.5: w′′
ξξ =

f(w + aξ2 + bξ + c).

16. y′′xx =
1

ax+ by + c
f
((
ax+ by + c

αx+ βy + γ

))
.

This is a special case of equation 14.9.1.18.

1◦. For aβ − bα = 0, we have an equation of the form 14.9.1.4.
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2◦. For aβ − bα 6= 0, the transformation

z = x− x0, w = y − y0,

where x0 and y0 are the constants determined by the linear algebraic system of equations

ax0 + by0 + c = 0, αx0 + βy0 + γ = 0,

leads to a homogeneous equation of the form 14.9.1.7:

w′′
zz =

1

z
F
(w
z

)
, where F (ξ) =

1

a+ bξ
f
( a+ bξ

α+ βξ

)
.

17. y′′xx =
1

(ax+ by + c)3
f
((
ax+ by + c

αx+ βy + γ

))
.

This is a special case of equation 14.9.1.20.

1◦. For aβ − bα = 0, we have an equation of the form 14.9.1.4.

2◦. For aβ − bα 6= 0, the transformation

z = x− x0, w = y − y0,

where x0 and y0 are the constants determined by the linear algebraic system of equations

ax0 + by0 + c = 0, αx0 + βy0 + γ = 0,

leads to a solvable equation of the form 14.9.1.8:

w′′
zz =

1

z3
F
(w
z

)
, where F (ξ) =

1

(a+ bξ)3
f
( a+ bξ

α+ βξ

)
.

18. y′′xx =
1

a1x+ b1y + c1
f
((
a2x+ b2y + c2

a3x+ b3y + c3

))
.

Let the following condition be satisfied:

∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
= 0.

For a2b3 − a3b2 6= 0, the transformation

z = x− x0, w = y − y0,

where x0 and y0 are the constants determined by the linear algebraic system of equations

a2x0 + b2y0 + c2 = 0, a3x0 + b3y0 + c3 = 0,

leads to a homogeneous equation of the form 14.9.1.7:

w′′
zz =

1

z
F
(w
z

)
, where F (ξ) =

1

a1 + b1ξ
f
( a2 + b2ξ

a3 + b3ξ

)
.

19. y′′xx =
1

x2(ax+ by + c)
f
((
ax+ by + c

αx+ βy + γ

))
.

For aβ − bα 6= 0, the transformation

z = x− x0, w = y − y0,
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where x0 and y0 are the constants determined by the linear algebraic system of equations

ax0 + by0 + c = 0, αx0 + βy0 + γ = 0,

leads to an equation of the form 14.9.1.14:

z(z + x0)
2w′′

zz = F
(w
z

)
, where F (ξ) =

1

a+ bξ
f
( a+ bξ

α+ βξ

)
.

20. y′′xx =
1

(a1x+ b1y + c1)3
f
((
a2x+ b2y + c2

a3x+ b3y + c3

))
.

Let the following condition be satisfied:

∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
= 0.

For a2b3 − a3b2 6= 0, the transformation

z = x− x0, w = y − y0,

where x0 and y0 are the constants determined by the linear algebraic system of equations

a2x0 + b2y0 + c2 = 0, a3x0 + b3y0 + c3 = 0,

leads to a solvable equation of the form 14.9.1.8:

w′′
zz =

1

z3
F
(w
z

)
, where F (ξ) =

1

(a1 + b1ξ)3
f
(a2 + b2ξ

a3 + b3ξ

)
.

21. y′′xx = y−3f

((
y

√
ax2 + bx+ c

))
.

Setting u(x) = y(ax2 + bx+ c)−1/2 and integrating the equation, we obtain a first-order

separable equation:

(ax2 + bx+ c)2(u′x)
2 = ( 14 b

2 − ac)u2 + 2

∫
u−3f(u) du+C1.

22. (ax2 + bx+ c)3/2y′′xx = f

((
αy + βx+ γ

√
ax2 + bx+ c

))
.

Setting w = αy + βx + γ and denoting f(z) =
1

αz3
ϕ(z), we obtain an equation of the

form 14.9.1.21: w′′
xx = w−3ϕ

( w√
ax2 + bx+ c

)
.

23. (axn + b)y′′xx = an(n− 1)xn−2y + y−2f
((

y

axn + b

))
.

The transformation ξ =

∫
dx

(axn + b)2
, w =

y

axn + b
leads to an autonomous equation

of the form 14.9.1.1: w′′
ξξ = w−2f(w).
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24. y′′xx = (ax+ b)−2y−1/2f(y1/2 + cx) + 2c2.

The solution is determined by the first-order equation

(ax+ b)(y′x + 2c
√
y ) = ϕ(cx+

√
y ,C), (1)

where the function ϕ = (u,C) is the general solution of the Abel equation of the second

kind:

ϕϕ′
u − 2(au+ bc)ϕ = 2f(u).

Abel equations of this type are discussed in Section 13.3.3. By the change of variable

y1/2 = u− cx, equation (1) is reduced to the form 2(ax+ b)(u− cx)u′x = ϕ(u,C).

25.
√
x2 + 2ay y′′xx + f

(√
x2 + 2ay − x

)
= 0.

First integral in implicit form:

y′x = ϕ(u,C),
√
x2 + 2ay − x = u,

where the function ϕ = (u,C) is the general solution of the Abel equation of the second

kind

(aϕ − u)ϕ′
u = f(u).

With the transformation aϕ− u = −w(u), this equation is reduced to the canonical form

ww′
u − w = af(u).

Abel equations of this type are discussed in Section 13.3.1.

⊙ Literature: V. F. Zaitsev and L. V. Linchuk (2016).

26. (x+ b)2
√
x2 + 2ay y′′xx + f

(√
x2 + 2ay − x

)
= 0.

First integral in implicit form:

(x+ b)y′x −
x

a

(√
x2 + 2ay − x

)
= ϕ(u,C),

√
x2 + 2ay − x = u,

where the function ϕ = (u,C) is the general solution of the Abel equation of the second

kind

a(aϕ− bu)ϕ′
u = (aϕ− bu)u− af(u).

With the transformation aϕ(u)− bu = w(u), 1
1 2u

2 − bu+ c = τ , this equation is reduced

to the canonical form

ww′
τ − w = ∓ f

(
b±
√
b2 − 2c+ 2τ

)
√
b2 − 2c+ 2τ

.

Abel equations of this type are discussed in Section 13.3.1.

⊙ Literature: V. F. Zaitsev and L. V. Linchuk (2016).

27.
√
y2 − 2ax y′′xx + f

(
y −

√
y2 − 2ax

)
= 0.

First integral in implicit form:

y′x = ϕ(u,C), y −
√
y2 − 2ax = u.

The function ϕ = (u,C) is the general solution of the Abel equation of the second kind

(a− uϕ)ϕ′
u = f(u).

Abel equations of this type are discussed in Section 13.3.3.

⊙ Literature: V. F. Zaitsev and L. V. Linchuk (2016).
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28. (x+ b)2
√
y2 − 2ax y′′xx + f

(
y −

√
y2 − 2ax

)
= 0.

First integral in implicit form:

a(x+ b)y′x −
a

2

(
y +

√
y2 − 2ax

)
= ϕ(u,C), y −

√
y2 − 2ax = u.

The function ϕ = (u,C) is the general solution of the Abel equation of the second kind

ϕ′
u =

a2f(u)

a2b− uϕ +
a

2
.

Abel equations of this type are discussed in Section 13.3.3.

⊙ Literature: V. F. Zaitsev and L. V. Linchuk (2016).

29. y′′xx =
1

(x+ b)2
√
a2 + 4xy

Φ

(
y

√
a2 + 4xy − a

)
.

First integral in implicit form:

(x+ b)y′x −
y
√
a2 + 4xy√

a2 + 4xy − a
= ϕ(u,C),

y√
a2 + 4xy − a

= u.

The function ϕ = (u,C) is the general solution of the Abel equation of the second kind

ϕ′
u +

2Φ(u)

ϕ− 4bu2 − au + a = 0.

Abel equations of this type are discussed in Section 13.3.3.

⊙ Literature: V. F. Zaitsev and L. V. Linchuk (2016).

30. y′′xx =
1

√
a2 + 4xy

Φ

(
y

√
a2 + 4xy − a

)
.

First integral in implicit form:

y′x = ϕ(u,C),
y√

a2 + 4xy − a
= u.

The function ϕ = (u,C) is the general solution of the Abel equation of the second kind

ϕ′
u +

2Φ(u)

ϕ− 4u2
= 0.

Abel equations of this type are discussed in Section 13.3.3.

⊙ Literature: V. F. Zaitsev and L. V. Linchuk (2016).

31. y′′xx =
(cx+ d)n−1

(ax+ b)n+2
f

((
(ax+ b)ny

(cx+ d)n+1

))
.

The transformation ξ = ln
( ax+ b

cx+ d

)
, w=

(ax+ b)ny

(cx+ d)n+1
leads to an autonomous equation

of the form 14.9.6.2:

w′′
ξξ − (2n+ 1)w′

ξ + n(n+ 1)w = ∆−2f(w), where ∆ = ad− bc.
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◮ Arguments of the arbitrary functions are other functions.

32. y′′xx = e−axf(eaxy).

1◦. The substitution z= eaxy leads to an autonomous equation: z′′xx−2az′x+a2z= f(z).

2◦. The transformation z= eaxy, w= y′x/y leads to a first-order equation: z(w+a)w′
z =

z−1f(z)− w2.

33. y′′xx = yf(eaxym).

Equation invariant under “translation–dilatation” transformation. The transformation

z = eaxym, w = y′x/y leads to a first-order equation: z(mw + a)w′
z = f(z)− w2.

34. y′′xx = x−2f(xneay).

Equation invariant under “dilatation–translation” transformation. The transformation

z = xneay , w = xy′x leads to a first-order equation: z(aw + n)w′
z = f(z) + w.

35. y′′xx = λ2y + e3λxf(yeλx).

This is a special case of equation 14.9.1.46 with ψ = e−λx.

36. y′′xx = f(y + aeλx + b) − aλ2eλx.

The substitution w = y+ aeλx+ b leads to an equation of the form 14.9.1.1: w′′
xx = f(w).

37. x2y′′xx = x2f(xney) + n.

The substitution y = w − n lnx leads to an equation of the form 14.9.1.1: w′′
xx = f(ew).

38. y′′xx = f(y + a sinhx+ b) − a sinhx.

The substitution w=y+a sinh x+b leads to an equation of the form 14.9.1.1: w′′
xx=f(w).

39. y′′xx = f(y + a cosh x+ b) − a cosh x.

The substitution w = y + a cosh x + b leads to an equation of the form 14.9.1.1: w′′
xx =

f(w).

40. y′′xx = λ2y + (sinhλx)−3f
((

y

sinhλx

))
.

This is a special case of equation 14.9.1.46 with ψ = sinh λx.

41. y′′xx = λ2y + (cosh λx)−3f
((

y

coshλx

))
.

This is a special case of equation 14.9.1.46 with ψ = cosh λx.

42. x2y′′xx = x2f(y + a ln x+ b) + a.

The substitution w= y+a lnx+ b leads to an equation of the form 14.9.1.1: w′′
xx = f(w).

43. y′′xx = − y

x2 lnx
+

1

(lnx)3
f
((

y

lnx

))
.

This is a special case of equation 14.9.1.46 with ψ = lnx.

44. y′′xx = f(y + a sin x+ b) + a sin x.

The substitution w= y+a sinx+b leads to an equation of the form 14.9.1.1: w′′
xx = f(w).
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45. y′′xx = f(y + a cosx+ b) + a cosx.

The substitution w= y+a cosx+b leads to an equation of the form 14.9.1.1: w′′
xx = f(w).

46. y′′xx = −λ2y + (sinλx)−3f
((

y

sinλx

))
.

This is a special case of equation 14.9.1.46 with ψ = sinλx.

47. y′′xx = −λ2y + (cosλx)−3f
((

y

cosλx

))
.

This is a special case of equation 14.9.1.46 with ψ = cos λx.

48. y′′xx = 2(sin x)−2y + (tanx)3f(y tanx).

This is a special case of equation 14.9.1.46 with ψ = cot x.

49. y′′xx = 2(cosx)−2y + (cotx)3f(y cot x).

This is a special case of equation 14.9.1.46 with ψ = tan x.

50. sin2 x y′′xx = n(n+ 1 − n sin2 x)y + sin3n+2 xf(y sinn x).

The substitution x = ξ + π
2 leads to an equation of the form 14.9.1.45:

cos2 ξ y′′ξξ = n(n+ 1− n cos2 ξ)y + cos3n+2 ξf(y cosn ξ).

51. cos2 x y′′xx = n(n+ 1 − n cos2 x)y + cos3n+2 xf(y cosn x).

The transformation ξ =

∫
cos2n x dx, w = y cosn x leads to an autonomous equation of

the form 14.9.1.1: w′′
ξξ = f(w).

52. y′′xx =
ψ′′

xx

ψ
y + ψ−3f

((
y

ψ

))
, ψ = ψ(x).

The transformation ξ =

∫
dx

ψ2
, w =

y

ψ
leads to an equation of the form 14.9.1.1: w′′

ξξ =

f(w).

Solution:

∫ [
C1 + 2

∫
f(w) dw

]−1/2
dw = C2 ±

∫
dx

ψ2(x)
.

53. y′′xx =ϕ−3f
((
y

ϕ
+ψ

))
+
ϕ′′

xx

ϕ
y−ϕψ′′

xx−2ϕ′

xψ
′

x, ϕ=ϕ(x), ψ=ψ(x).

The transformation t =

∫
dx

ϕ2
, w =

y

ϕ
+ψ leads to an autonomous equation of the form

14.9.1.1: w′′
tt = f(w).

Solution:

∫
dw√

2F (w) +C1

= ±
∫

dx

ϕ2
+C2, where F (w) =

∫
f(w) dw.

14.9.2 Equations of the Form F (x, y)y′′

xx +G(x, y)y′

x +H(x, y) = 0

◮ Argument of the arbitrary functions is x.

1. y′′xx + 3yy′x + y3 + f(x)y = 0.

The substitution y = w
(∫

w dx
)−1

leads to a second-order linear equation: w′′
xx +

f(x)w = 0.
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2. y′′xx + 6yy′x + 4y3 + 4f(x)y + f ′

x(x) = 0.

The substitution y = w′
x/w leads to a third-order equation of the form 3.5.3.11: ww′′′

xxx+
3w′

xw
′′
xx + 4f(x)ww′

x + f ′x(x)w
2 = 0.

3. y′′xx + 3fyy′x + f2y3 + f ′

xy
2 + g(x)y = 0, f = f(x).

The substitution y = w
(∫

fw dx
)−1

leads to a second-order linear equation: w′′
xx +

g(x)w = 0.

4. y′′xx + [ay + f(x)]y′x + f ′

x(x)y = 0.

Integrating yields a Riccati equation: y′x + f(x)y + 1
2 ay

2 = C .

5. y′′xx + [2ay + f(x)]y′x + af(x)y2 = g(x).

On setting u = y′x + ay2, we obtain u′x + f(x)u = g(x). Thus, the original equation is

reduced to a first-order linear equation and a Riccati equation.

6. y′′xx + [3y + f(x)]y′x + y3 + f(x)y2 + g(x)y + h(x) = 0.

The substitution y = u′x/u leads to a third-order linear equation: u′′′xxx + f(x)u′′xx +
g(x)u′x + h(x)u = 0.

7. y′′xx + [y + 3f(x)]y′x − y3 + f(x)y2 + [f ′

x(x) + 2f2(x)]y = 0.

The transformation

y = F (x)w(z), z =

∫
F (x) dx, where F (x) = exp

[
−
∫
f(x) dx

]
,

leads to an autonomous equation of the form 14.2.3.2: w′′
zz + ww′

z − w3 = 0.

8. y′′xx − (n+ 1)g(x)yn−1y′x = f(x)y + g′x(x)y
n − g2(x)y2n−1.

Solution: y = w
[
C + (1 − n)

∫
g(x)wn−1 dx

] 1
1−n

, where w = w(x) is the general

solution of the second-order linear equation w′′
xx = f(x)w.

9. xy′′xx − ny′x + f(x)y = ax2n+1y−3.

The substitution w = yx−n/2 leads to Yermakov’s equation 14.9.1.2:

w′′
xx + x−2[xf(x)− 1

4n(n+ 2)]w = aw−3.

10. y′′xx + (2fy + g)y′x + f ′

xy
2 + g′xy = 0, f = f(x), g = g(x).

Integrating yields a Riccati equation: y′x + fy2 + gy = C .

11. y′′xx +
((
3fy +

g

y

))
y′x + f2y3 + f ′

xy
2 + (2fg + h)y + g′x +

g2

y
= 0.

Here, f = f(x), g = g(x), h = h(x).

Solution: y =
u′x

f(x)u
, where u = u(x) is the general solution of the linear equation:

u′′xx −
( f ′x
f

+
w′
x

w

)
u′x + fgu = 0,

and w = w(x) is the general solution of another linear equation: w′′
xx + h(x)w = 0.
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12. y′′xx + [3f(x)y + 2g(x) + h(x)y−1]y′x + f2(x)y3

+ [f ′

x(x) + 2f(x)g(x)]y2 + [g′x(x) + g2(x) + 2f(x)g(x)− p(x)]y

+ h′

x(x) + 2g(x)h(x) + h2(x)y−1 = 0.

The solution satisfies the Riccati equation y′x + f(x)y2 + [g(x) − z(x,C)]y + h(x) = 0,

where z = z(x,C) is the general solution of another Riccati equation: z′x + z2 = p(x).

13. y′′xx +
((
2fy + 2g − f

y
− 2g

y2

))
y′x + hy + f ′

x +
f2 + g′x

y
+

2fg

y2
+

g2

y3
= 0.

Here, f = f(x), g = g(x), and h = h(x).

The solution is determined by the Abel equation of the second kind yy′x = (lnw)′x y
2−

f(x)y − g(x), where w = w(x) is the general solution of the linear equation: w′′
xx +

h(x)w = 0. Abel equations of the second kind are discussed in Section 13.3.

14. y′′xx − λy′x + f(x)y = ae2λxy−3.

The substitution w = ye−λx/2 leads to Yermakov’s equation 14.9.1.2:

w′′
xx +

[
f(x)− 1

4λ
2
]
w = aw−3.

15. y′′xx + g′xy
′

x + fy = ae−2gy−3, f = f(x), g = g(x).

The substitution w = yeg/2 leads to Yermakov’s equation 14.9.1.2:

w′′
xx + [f − 1

4 (g
′
x)

2 − 1
2 g

′′
xx]w = aw−3.

16. y′′xx + λm tan(λx)y′x + f(x)y = a[cos(λx)]2my−3.

This is a special case of equation 14.9.2.15 with g = −m ln cos(λx).

◮ Argument of the arbitrary functions is y.

17. y′′xx = ay′x + e2axf(y).

Multiplying both sides by e−2ax, we obtain an equation of the form 14.9.2.34.

Solution:

∫ [
C1 + 2

∫
f(y) dy

]−1/2
dy = C2 ±

1

a
eax.

18. y′′xx = f(y)y′x.

Solution:

∫
dy

F (y) + C1
= C2 + x, where F (y) =

∫
f(y) dy.

19. y′′xx =
[[
eαxf(y) + α

]]
y′x.

The substitution w(y) = e−αxy′x leads to a first-order separable equation: w′
y = f(y).

Solution:

∫
dy

F (y) +C1
= C2 +

1

α
eαx, where F (y) =

∫
f(y) dy.

20. xy′′xx = ny′x + x2n+1f(y).

Multiplying both sides by x−2n−1, we obtain an equation of the form 14.9.2.34.
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1◦. Solution for n 6= −1:

∫ [
C1 + 2

∫
f(y) dy

]−1/2
dy = ± xn+1

n+ 1
+ C2.

2◦. Solution for n = −1:
∫ [

C1 + 2

∫
f(y) dy

]−1/2
dy = ± ln |x|+ C2.

21. xy′′xx = f(y)y′x.

The substitution w(y)=xy′x/y leads to a first-order linear equation: yw′
y=−w+1+f(y).

22. xy′′xx =
[[
xkf(y) + k − 1

]]
y′x.

Solution:

∫
dy

F (y) + C1
= C2 +

1

k
xk, where F (y) =

∫
f(y) dy.

23. x2y′′xx + xy′x = f(y).

The substitution x = ±et leads to an equation of the form 14.9.1.1: y′′tt = f(y).

24. (ax2 + b)y′′xx + axy′x + f(y) = 0.

The substitution ξ =

∫
dx√
ax2 + b

leads to an autonomous equation of the form 14.9.1.1:

y′′ξξ + f(y) = 0.

25. (ae2λx + b)y′′xx + aλe2λxy′x + f(y) = 0.

This is a special case of equation 14.9.2.34 with g(x) = ae2λx + b.

26. sin x y′′xx + 1
2
cos x y′x = f(y).

This is a special case of equation 14.9.2.34 with g = sinx.

27. cosx y′′xx − 1
2
sin x y′x = f(y).

This is a special case of equation 14.9.2.34 with g = cosx.

◮ Other arguments of the arbitrary functions.

28. y′′xx = f(y)y′x + g(x).

Integrating yields a first-order equation: y′x =

∫
f(y) dy +

∫
g(x) dx + C .

29. y′′xx + [f(x) + g(y)]y′x + f ′

x(x)y = 0.

Integrating yields a first-order equation: y′x + f(x)y +

∫
g(y) dy = C.

30. xy′′xx + (n+ 1)y′x = xn−1f(yxn).

The transformation ξ=xn, w=yxn leads to an autonomous equation of the form 14.9.1.1:

n2w′′
ξξ = f(w).
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31. x2y′′xx + (n+m+ 1)xy′x + nmy = xn−2mf(yxn).

1◦. For n 6=m, the transformation ξ = xn−m, w= yxn leads to an autonomous equation

of the form 14.9.1.1: (n−m)2w′′
ξξ = f(w).

2◦. For n = m, the transformation ξ = lnx, w = yxn leads to an autonomous equation

of the form 14.9.1.1: w′′
ξξ = f(w).

32. x2y′′xx = f(y/x)(xy′x − y).

This is a special case of equation 14.9.3.42 with g(x) = h(x) = 0.

33. x3y′′xx = f(y/x)(xy′x − y).

This is a special case of equation 14.9.4.61 with g(z) = z.

34. gy′′xx + 1
2
g′xy

′

x = f(y), g = g(x).

Integrating yields a first-order separable equation: g(x)(y′x)
2 = 2

∫
f(y) dy + C1.

Solution for g(x) ≥ 0:

∫ [
C1 + 2

∫
f(y) dy

]−1/2
dy = C2 ±

∫
dx√
g(x)

.

35. y′′xx − ϕ′

x

ϕ
y′x +

((
ϕ′

x

ϕ

ψ′

x

ψ
− ψ′′

xx

ψ

))
y =

ϕ2

ψ3
f
((
y

ψ

))
, ϕ = ϕ(x), ψ = ψ(x).

The transformation ξ =

∫
ϕ

ψ2
dx, w =

y

ψ
leads to an autonomous equation of the form

14.9.1.1: w′′
ξξ = f(w).

36. y′′xx = −ay′x + eaxf(yeax).

The transformation ξ = eax, w = yeax leads to an equation of the form 14.9.1.1: w′′
ξξ =

a−2f(w).

37. y′′xx + (µ+ ν)y′x + νµy = e(µ−2ν)xf(yeµx).

1◦. For µ 6=ν, the transformation ξ= e(µ−ν)x, w= yeµx leads to an autonomous equation

of the form 14.9.1.1: (µ− ν)2w′′
ξξ = f(w).

2◦. For µ = ν, the substitution w = yeµx leads to an autonomous equation of the form

14.9.1.1: w′′
ξξ = f(w).

38. xy′′xx − ny′x − a(ax+ n)y = x2n+1e3axf(yeax).

This is a special case of equation 14.9.2.35 with ϕ = xn and ψ = e−ax.

39. xy′′xx = f(xneay)y′x.

The transformation z = xneay , w = xy′x reduces this equation to a first-order separable

equation: z(aw + n)w′
z = [f(z) + 1]w.

40. x2y′′xx + xy′x = f(xneay).

The transformation z = xneay , w = xy′x reduces this equation to a first-order separable

equation: z(aw + n)w′
z = f(z).
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41. x2y′′xx − ax2y′x − n(ax+ n+ 1)y = x3n+2e2axf(yxn).

This is a special case of equation 14.9.2.35 with ϕ = eax and ψ = x−n.

42. y′′xx − ϕ′

x

ϕ
y′x − a

((
ϕ′

x

ϕ
+ a

))
y = e3axϕ2f

((
yeax

))
, ϕ = ϕ(x).

The transformation ξ =

∫
ϕe2ax dx, w = yeax leads to an equation of the form 14.9.1.1:

w′′
ξξ = f(w).

43. x2y′′xx + xy′x = f(y + a lnx+ b ln2 x).

The substitution x = et leads to an equation of the form 14.9.1.5: y′′tt = f(y + at+ bt2).

44. y′′xx − (n+ 1) tanx y′x − ny = cosn−2 x f(y cosn x).

This is a special case of equation 14.9.2.35 with ϕ = cos−n−1 x and ψ = cos−n x.

45. y′′xx+(m−n) tanx y′x−n[(m+1) tan2 x+1]y=cos2m+n x f(y cosn x).

This is a special case of equation 14.9.2.35 with ϕ = cosm−n x and ψ = cos−n x.

46. y′′xx + a tanx y′x + b(a tanx− b)y = cos2a x e3bxf(yebx).

This is a special case of equation 14.9.2.35 with ϕ = cosa x and ψ = e−bx.

47. x2y′′xx + ax2 tanx y′x + n(ax tanx− n− 1)y = x3n+2 cos2a x f(yxn).

This is a special case of equation 14.9.2.35 with ϕ = cosa x and ψ = x−n.

48. x2y′′xx − ax2 cot x y′x − n(ax cot x+ n+ 1)y = x3n+2 sin2a x f(yxn).

This is a special case of equation 14.9.2.35 with ϕ = sina x and ψ = x−n.

14.9.3 Equations of the Form

F (x, y)y′′

xx +
M∑

m=0

Gm(x, y)(y′

x)
m = 0 (M = 2, 3, 4)

◮ Argument of the arbitrary functions is x.

1. y′′xx = f(x)(y′x + ay)2 + a2y.

The substitution w = y′x + ay leads to a Bernoulli equation: w′
x = aw + f(x)w2.

2. y′′xx = f(x) + g(x)(xy′x − y) + h(x)(xy′x − y)2.

The substitution w(x) = xy′x − y leads to a Riccati equation: w′
x = xf(x) + xg(x)w +

xh(x)w2.

3. xy′′xx + (a+ 1)y′x = f(x)(xy′x + ay)2.

The substitution w = xy′x + ay leads to a first-order separable equation: w′
x = f(x)w2.

4. yy′′xx − (y′x)
2 = f(x).

1◦. The substitution y=aeλxw leads to a similar equation: ww′′
xx−(w′

x)
2=a−2e−2λxf(x).

2◦. The substitutions y = ±eu/2 lead to the equation u′′xx = 2f(x)e−u. For f(x) =
keαx

2+βx, see 14.7.1.41.
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5. 2yy′′xx − (y′x)
2 + f(x)y2 + a = 0.

1◦. Differentiating with respect to x, we obtain a third-order linear equation:

2y′′′xxx + 2f(x)y′x + f ′x(x)y = 0.

2◦. The substitution y = z2 leads to Yermakov’s equation 14.9.1.2: z′′xx+
1
4 f(x)z =

− 1
4az

−3.

3◦. If u and v are two solutions of the second-order linear equation 4y′′xx + f(x)y = 0,

which satisfy the condition (uv′x − u′xv)2 = a, then y = uv is a solution of the original

equation.

6. yy′′xx + (y′x)
2 + f(x)yy′x + g(x) = 0.

The substitution u = y2 leads to a linear equation: u′′xx + f(x)u′x + 2g(x) = 0.

7. yy′′xx − (y′x)
2 + f(x)yy′x + g(x)y2 = 0.

The substitution u = y′x/y leads to a first-order linear equation: u′x + f(x)u+ g(x) = 0.

8. yy′′xx − n(y′x)
2 + f(x)y2 + ay4n−2 = 0.

1◦. For n = 1, this is an equation of the form 14.9.3.7.

2◦. For n 6= 1, the substitution w = y1−n leads to Yermakov’s equation 14.9.1.2: w′′
xx +

(1− n)f(x)w + a(1− n)w−3 = 0.

9. yy′′xx − n(y′x)
2 + f(x)y2 + g(x)yn+1 = 0.

The substitution w = y1−n leads to a nonhomogeneous second-order linear equation:

w′′
xx + (1− n)f(x)w + (1− n)g(x) = 0.

10. yy′′xx + a(y′x)
2 + f(x)yy′x + g(x)y2 = 0.

The substitution w = ya+1 leads to a linear equation: w′′
xx+f(x)w

′
x+(a+1)g(x)w = 0.

11. yy′′xx−2(y′x)
2− (fy+2g)y′x+f

′

xy
2+g′xy = 0, f = f(x), g = g(x).

Integrating yields a Riccati equation: y′x + Cy2 + fy + g = 0.

12. yy′′xx − (y′x)
2 + (fy2 + g)y′x + f ′

xy
3 − g′xy = 0, f = f(x), g = g(x).

Integrating yields a Riccati equation: y′x + fy2 + Cy − g = 0.

13. y′′xx + (y′x)
2 + [2fy2 + 2(f + g)y + g + 2h]y′x + f2y4 + 2fgy3

+ (2f ′

x + g2 + 2fh)y2 + (g′x + 2gh)y + h′

x + h2 − p = 0.

Here, f = f(x), g = g(x), h = h(x), p = p(x).
The solution satisfies the Riccati equation y′x+ f(x)y

2+ g(x)y+h(x)− z(x,C) = 0,
where z = z(x,C) is the general solution of another Riccati equation: z′x + z2 = p(x).

14. yy′′xx = f(x)(y′x)
2.

The substitution w(x) = xy′x/y leads to a Bernoulli equation 1.1.5:

xw′
x = w + [f(x)− 1]w2.

15. yy′′xx + f(x)(y′x)
2 + g(x)yy′x + h(x)y2 = 0.

The substitution u = y′x/y leads to a Riccati equation: u′x + (1 + f)u2 + gu+ h = 0.
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16. (y + ax)y′′xx = f(x)(xy′x − y)2.

The substitution y = −ax+ xz leads to the equation xzz′′xx + 2zz′x − x3f(x)(z′x)2 = 0.
On setting w = z′x/z, we obtain a Bernoulli equation: xw′

x + 2w + [x− x3f(x)]w2 = 0.

17. y′′xx − a(y′x)
2 + f(x)eay + g(x) = 0.

The substitution w = e−ay leads to a nonhomogeneous linear equation: w′′
xx − ag(x)w =

af(x).

18. y′′xx − a(y′x)
2 + be4ay + f(x) = 0.

The substitution w = e−ay leads to Yermakov’s equation 14.9.1.2: w′′
xx − af(x)w =

abw−3.

19. y′′xx = f(x)(y′x sinhx− y cosh x)2 + y.

The substitution w = y′x sinh x− y cosh x leads to a first-order separable equation: w′
x =

sinh x f(x)w2.

20. y′′xx = f(x)(y′x cosh x− y sinh x)2 + y.

The substitution w = y′x cosh x− y sinh x leads to a first-order separable equation: w′
x =

cosh x f(x)w2.

21. y′′xx = f(x)(y′x sin x− y cosx)2 − y.

The substitution w = y′x sinx − y cos x leads to a first-order separable equation: w′
x =

sinx f(x)w2.

22. y′′xx = f(x)(y′x cosx+ y sinx)2 − y.

The substitution w = y′x cos x + y sinx leads to a first-order separable equation: w′
x =

cos x f(x)w2.

◮ Argument of the arbitrary functions is y.

23. y′′xx + a(y′x)
2 − 1

2
y′x = exf(y).

The substitution w(y)=e−x(y′x)
2 leads to a first-order linear equation: w′

y+2aw=2f(y).

24. y′′xx + α(y′x)
2 =

[[
eβxf(y) + β

]]
y′x.

Solution:
∫

eαy dy

F (y) + C1
= C2 +

1

β
eβx, where F (y) =

∫
eαyf(y) dy.

25. y′′xx + f(y)(y′x)
2 + g(y) = 0.

The substitution w(y) = (y′x)
2 leads to a first-order linear equation: w′

y + 2f(y)w +
2g(y) = 0.

26. y′′xx + f(y)(y′x)
2 − 1

2
y′x = exg(y).

The substitution w(y) = e−x(y′x)
2 leads to a first-order linear equation: w′

y + 2f(y)w =
2g(y).
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27. y′′xx = xf(y)(y′x)
3.

Taking y to be the independent variable, we obtain a linear equation with respect to x =
x(y): x′′yy = −f(y)x.

28. y′′xx + [xf(y) + g(y)](y′x)
3 + h(y)(y′x)

2 = 0.

Taking y to be the independent variable, we obtain a linear equation with respect to x =
x(y): x′′yy − h(y)x′y − f(y)x− g(y) = 0.

29. y′′xx + f(y)(y′x)
4 + g(y)(y′x)

2 + h(y) = 0.

The substitution w(y) = (y′x)
2 leads to a Riccati equation: w′

y + 2f(y)w2 + 2g(y)w +
2h(y) = 0 (see Section 13.2).

30. xy′′xx + ax(y′x)
2 − f(y)y′x = 0.

Solution:
∫

eay dy

F (y) + C1
= C2 + ln |x|, where F (y) =

∫
eayf(y) dy +

1

a
eay.

31. xy′′xx + 1
2
y′x = xf(y)(y′x)

2 + g(y).

The substitution w(y) = x(y′x)
2 leads to a first-order linear equation: w′

y = 2f(y)w +
2g(y).

32. xy′′xx + ax(y′x)
2 =

[[
xkf(y) + k − 1

]]
y′x.

Solution:
∫

eay dy

F (y) + C1
= C2 +

1

k
xk, where F (y) =

∫
eayf(y) dy.

33. x3y′′xx + [x4f(y) + a](y′x)
3 = 0.

Taking y to be the independent variable, we obtain an equation of the form 14.9.1.2 for

x = x(y): x′′yy − f(y)x− ax−3 = 0.

34. y′′xx = x−1[f(y) + g(y)(xy′x − y) + h(y)(xy′x − y)2]y′x.

The substitution w(y)=xy′x−y leads to a Riccati equation: w′
y = f(y)+g(y)w+h(y)w2 .

35. y′′xx + eaxf(y)(y′x)
3 + ay′x = 0.

The substitution ξ = e−ax leads to an equation of the form 14.9.4.36 with g(z) = az3:

y′′ξξ − af(y)(y′ξ)
3 = 0.

36. y′′xx + f(y)(y′x)
4 + g(y)(y′x)

2 + h(y) = 0.

The substitution w(y) = (y′x)
2 leads to a Riccati equation: w′

y + 2f(y)w2 + 2g(y)w +
2h(y) = 0.

37. xy′′xx + x2m+1f(y)(y′x)
4 +my′x = 0.

This is a special case of equation 14.9.4.18 with n = 4 and ϕ = x−m.
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◮ Other arguments of arbitrary functions.

38. y′′xx = f(y)(y′x)
2 + g(x)y′x.

Dividing by y′x, we obtain an exact differential equation. Its solution follows from the

equation:

ln |y′x| =
∫
f(y) dy +

∫
g(x) dx+ C.

Solving the latter for y′x, we arrive at a separable equation. In addition, y=C1 is a singular

solution, with C1 being an arbitrary constant.

39. y′′xx =
f(xnym)

xy
(xy′x − y)y′x.

The transformation z = xnym, w = xy′x/y reduces this equation to a first-order separable

equation: z(mw + n)w′
z = [f(z)− 1](w2 −w).

40. yy′′xx = f(eaxyn)(y′x)
2.

The transformation z = eaxyn, w = y′x/y reduces this equation to a first-order separable

equation: z(nw + a)w′
z = [f(z)− 1]w2.

41. x2y′′xx = f(y/x)(xy′x − y)(y′x)
2.

This is a special case of equation 14.9.4.20 with k = 2.

42. y′′xx = x−2(xy′x − y)
[[
f
((
y

x

))
+ g

((
y

x

))
y′x + h

((
y

x

))
(y′x)

2
]]

.

The transformation z = y/x, w = xy′x/y leads to a Riccati equation: zw′
z = z2h(z)w2 +

[zg(z) − 1]w + f(z).

43. y′′xx = x−5/2ϕ(yx−3/2)(y′x)
4.

This is a special case of equation 14.9.4.21 with n = −3/2, m = 1, and f(z) = zϕ(z).

14.9.4 Equations of the Form F (x, y, y′

x)y
′′

xx +G(x, y, y′

x) = 0

◮ Arguments of the arbitrary functions depend on x or y.

1. y′′xx = f(x)(y′x + ay)k + a2y.

The substitution w = y′x + ay leads to a Bernoulli equation: w′
x = aw + f(x)wk.

2. y′′xx + f(x)y′x + g(x)(y′x)
k = 0.

The substitution u(x) = y′x leads to a Bernoulli equation: u′x + f(x)u+ g(x)uk = 0.

3. y′′xx = n(n− 1)x−2y + f(x)(xy′x − ny)k.

The substitution w = xny′x − nxn−1y leads to a first-order separable equation: w′
x =

xn+k−nkf(x)wk.

4. y′′xx = f(x)(xy′x − y) + g(x)(xy′x − y)k.

The substitution w(x) = xy′x−y leads to a Bernoulli equation: w′
x = xf(x)w+xg(x)wk.
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5. xy′′xx + (a+ 1)y′x = f(x)(xy′x + ay)k.

The substitution w = xy′x + ay leads to a first-order separable equation: w′
x = f(x)wk .

6. y′′xx = a+ f(x)
√
(y′x)

2 − 2ay.

Setting u = y′x, we rewrite the equation as follows: (u′x − a)2[f(x)]−2 = u2 − 2ay.

Differentiating both sides with respect to x and dividing by (u′x − a), we obtain a second-

order linear equation: fu′′xx = f ′xu
′
x + f3u− af ′x.

There is also the solution: y = 1
2a(x+ C)2.

7. y′′xx = f(x)
√
y′x(xy

′

x − y).

The Legendre transformation x = w′
t, y = tw′

t − w leads to an equation of the form

14.9.4.40: w′′
tt =

1

f(w′
t)
√
tw

.

8. f1(x)y
′

xy
′′

xx + f2(x)yy
′′

xx + f3(x)(y
′

x)
2 + f4(x)yy

′

x + f5(x)y
2 = 0.

The substitution w(x) = y′x/y leads to the Abel equation

(f1w + f2)w
′
x + f1w

3 + (f2 + f3)w
2 + f4w + f5 = 0, where fk = fk(x).

9. y′′xx = f(x)(y′x sinhx− y cosh x)k + y.

The substitution w = y′x sinh x − y coshx leads to a first-order separable equation:

w′
x = sinh x f(x)wk.

10. y′′xx = f(x)(y′x cosh x− y sinh x)k + y.

The substitution w = y′x cosh x − y sinhx leads to a first-order separable equation:

w′
x = cosh x f(x)wk.

11. y′′xx = f(x)(y′x sin x− y cosx)k − y.

The substitution w = y′x sinx − y cos x leads to a first-order separable equation:

w′
x = sinx f(x)wk.

12. y′′xx = f(x)(y′x cosx+ y sinx)k − y.

The substitution w = y′x cos x + y sinx leads to a first-order separable equation:

w′
x = cos x f(x)wk .

13. y′′xx = f(y)(y′x)
2 + g(y)(y′x)

k.

The substitution w(y) = y′x leads to a Bernoulli equation: w′
y = f(y)w + g(y)wk−1.

14. xy′′xx + xnm−2m+1f(y)(y′x)
n +my′x = 0.

This is a special case of equation 14.9.4.18 with ϕ = x−m.

15. y′′xx = x−1
[[
f(y)(xy′x − y) + g(y)(xy′x − y)

k]]
y′x.

The substitution w(y) = xy′x − y leads to a Bernoulli equation: w′
y = f(y)w + g(y)wk.

16. y′′xx = f(y)(xy′x − y)
1/2

(y′x)
2.

The transformation x = tw′
t −w, y = −w′

t, where w = w(t), leads to an equation of the

form 14.9.4.40: w′′
tt =

1

f(−w′
t)
√
tw

.
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17. y′′xx + ea(n−2)xf(y)(y′x)
n + ay′x = 0.

This is a special case of equation 14.9.4.18 with ϕ = e−ax.

18. y′′xx + ϕ2−nf(y)(y′x)
n − ϕ′

x

ϕ
y′x = 0, ϕ = ϕ(x).

The substitution ξ =

∫
ϕ(x) dx leads to an equation of the form 14.9.4.36:

y′′ξξ + f(y)(y′ξ)
n = 0.

19. fy′′xx + 1
2
f ′

xy
′

x = fg(y)(y′x)
2 + fnh(y)(y′x)

2n, f = f(x).

The substitution ξ =

∫
dx√
f(x)

leads to an autonomous equation of the form 14.9.4.13:

y′′ξξ = g(y)(y′ξ)
2 + h(y)(y′ξ)

2n.

◮ Arguments of the arbitrary functions depend on x and y.

20. y′′xx = x−2f(y/x)(xy′x − y)(y′x)
k.

The transformation z = y/x, w = xy′x/y leads to a Bernoulli equation: zw′
z = −w +

zkf(z)wk.
There are particular solutions: y = Cx and y = C1 (for k > 0).

21. y′′xx =
f(xnym)

xy
(y′x)

2n+m
n+m .

The transformation z=xnym, w=xy′x/y yields: z(mw+n)w′
z = z

− 1
m+1 f(z)w

2n+m
n+m +

w−w2. We divide both sides of this equation by w
2n+m
n+m and introduce the new dependent

variable ζ = w
m

n+m − w− n
n+m . As a result, we obtain a first-order linear equation:

(n +m)zζ ′z = −ζ + z
− 1

n+m f(z).

22. y′′xx =
n− kn− km

km
x−1y′x + xk−1y−kf(xnym)(y′x)

k+1.

Passing on to the new variables z = xnym and w = xy′x/y, we arrive at a first-order

equation:

z(mw + n)w′
z =

n(1− k)
km

w − w2 + f(z)wk+1.

The substitution ζ=
m

1− k w
1−k− n

k
w−k leads to a linear equation: zζ ′z=

k − 1

m
ζ+f(z).

23. y′′xx =
m+ km+ kn

kn
y−1(y′x)

2 + xky−k−1f(xnym)(y′x)
k+2.

Passing on to the new variables z = xnym, w = xy′x/y, we arrive at a first-order equation:

z(mw + n)w′
z = w +

m(1 + k)

kn
w2 + f(z)wk+2.

The substitution ζ =
m

k
w−k+

n

k + 1
w−k−1 leads to a linear equation: zζ ′z =−

k + 1

n
ζ−

f(z).
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24. y′′xx =
f(xnym)

xy
(xy′x − y)

2n+m
n .

This is a special case of equation 14.9.4.25 with k =
2n+m

n
.

25. y′′xx =
f(xnym)

xy
(y′x)

2n+m−nk
n+m (xy′x − y)

k
.

The transformation z = xnym, w = xy′x/y leads to a first-order equation:

z(mw + n)w′
z = z

k−1
n+m f(z)w

2n+m−nk
n+m (w − 1)k + w − w2.

Multiplying both sides by w
− 2n+m

n+m and passing on to the new variable ζ = w
m

n+m −
w

− n
n+m , we arrive at a Bernoulli equation: (n+m)zζ ′z = −ζ + z

k−1
n+m f(z)ζk.

26. y′′xx = x−2(xy′x − y)
[[
f
((
y

x

))
y′x + g

((
y

x

))
(y′x)

k
]]

.

The transformation z = y/x, u = xy′x/y leads to a Bernoulli equation:

zu′z = [zf(z)− 1]u+ zkg(z)uk .

27. y′′xx = x−3(xy′x − y)
2
f
((
y

x

))
+ x−3(xy′x − y)

k
g
((
y

x

))
.

The transformation x = −1/t, y = −w/t leads to an autonomous equation of the form

14.9.4.13: w′′
tt = f(w)(w′

t)
2 + g(w)(w′

t)
k.

28. y′′xx =
f(xnym)

xy
(y′x)

2n+m−nk
n+m (xy′x − y)

k
+

g(xnym)

xy
y′x(xy

′

x − y).

The transformation z = xnym, w = xy′x/y, followed by the substitution ζ = w
m

n+m −
w

− n
n+m , leads to a Bernoulli equation: (n+m)zζ ′z = [g(z) − 1]ζ + z

k−1
n+m f(z)ζk.

29. y′′xx =
f(xnym)

xy
(y′x)

2n+m
n+m +

g(xnym)

xy
y′x(xy

′

x − y)

+
h(xnym)

xy
(y′x)

m
n+m (xy′x − y)

2
.

The transformation z = xnym, w= xy′x/y, followed by the substitution ζ(z) =w
m

n+m −
w

− n
n+m , leads to a Riccati equation: (n + m)zζ ′z = z

1
n+m h(z)ζ2 + [g(z) − 1]ζ +

z
− 1

n+m f(z).

30. y′′xx =
a

n

1 − k

2 − k
(y′x)

2 + xk−2f(xneay)(y′x)
k.

Passing on to the new variables z = xneay and w = xy′x, we have

z(aw + n)w′
z =

a

n

1− k
2− k w

2 + w + f(z)wk.

Multiplying both sides by w−k and introducing the new variable v =
a

2− k w
2−k +

n

1− k w
1−k, we obtain a first-order linear equation: zv′z =

1− k
n

v + f(z).
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31. y′′xx = − a

m

2 − k

1 − k
y′x + y1−kf(eaxym)(y′x)

k.

Passing on to the new variables z = eaxym and w = y′x/y, we have

z(mw + a)w′
z = −w2 − a

m

2− k
1− k w + f(z)wk.

Multiplying both sides by w−k and introducing the new variable v =
m

2− k w
2−k +

a

1− k w
1−k, we obtain a first-order linear equation: mzv′z = (k − 2)v +mf(z).

32. y′′xx = − a

m
y′x ln

((
y′

x

y

))
+ f(eaxym)y′x.

The transformation z = eaxym, w = y′x/y leads to a first-order equation:

z(mw + a)w′
z = −

a

m
w lnw − w2 + f(z)w.

Dividing both sides by w and passing on to the new variable v =mw+ a lnw, we obtain

a first-order linear equation: mzv′z = −v +mf(z).

33. y′′xx = x−2f(xneay) exp
((
− a

n
xy′x

))
.

The transformation z = xneay , w = xy′x leads to the first-order equation

z(aw + n)w′
z = w + f(z) exp

(
− a
n
w
)
,

which can be reduced, with the aid of the substitution ζ = w exp
( a
n
w
)

, to a linear equa-

tion: nzζ ′z = ζ + f(z).

34. y′′xx = − a

n
(y′x)

2 ln(xy′x) + f(xneay)(y′x)
2.

The transformation z = xneay , w = xy′x leads to the equation

z(aw + n)w′
z = w − a

n
w2 lnw + w2f(z).

Dividing both sides by w2 and passing on to the new variable v = a lnw − nw−1, we

obtain a first-order linear equation: nzv′z = −v + nf(z).

◮ Arguments of the arbitrary functions depend on x, y, and y′x.

35. y′′xx = f(x)g(y′x).

The substitution u(x) = y′x leads to a first-order separable equation: u′x = f(x)g(u).

36. y′′xx = f(y)g(y′x).

The substitution u(y) = y′x leads to a first-order separable equation: uu′y = f(y)g(u).

In addition, there may exist solutions of the form y =Ax+C , where A are roots of the

equation g(A) = 0, C is an arbitrary number, or y =B, where B are roots of the equation

f(B) = 0.
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37. y′′xx = f(ax+ by + c)g(y′x).

For b = 0, we have an equation of the form 14.9.4.35. For b 6= 0, the substitution u(x) =

y + (ax+ c)/b leads to an equation of the form 14.9.4.36: u′′xx = f(bu)g
(
u′x −

a

b

)
.

38. y′′xx = x−n−1f(xny′x).

The substitution w(x)=xny′x leads to a first-order separable equation: xw′
x= f(w)+nw.

39. y′′xx = y−2n−1f(yny′x).

The substitution w(y) = yny′x leads to a first-order separable equation: yww′
y = f(w) +

nw2.

40. y′′xx =
f(y′

x)√
xy

.

Setting u = y′x and passing on to the new variables t =

∫
du

f(u)
and w = 2

√
x, we

have y = (w′
t)
2. Differentiating the latter with respect to x, we obtain a second-order

linear equation: w′′
tt = g(t)w. Here, the function g(t) is defined parametrically: g = 1

4u,

t =

∫
du

f(u)
.

41. y′′xx =
f(y′

x)√
axy + b

.

Setting u= y′x, we rewrite the equation as follows:
[√
xu′x/f(u)

]−2
= ay+bx−1. Differ-

entiating both sides with respect to x and passing on to the new variables t =
1

2

∫
du

f(u)
,

z =
√
x, we obtain an equation of the form 14.9.1.2: z′′tt = au(t)z − bz−3.

42. y′′xx =
f(y′

x)√
ay + bx2

.

Setting u= y′x, we rewrite the equation as follows:
[
u′x/f(u)

]−2
= ay+bx2. Differentiat-

ing both sides with respect to x and passing on to the new variable t=

∫
du

f(u)
, we obtain

a second-order linear equation for x= x(t) integrable by quadrature: 2x′′tt = 2bx+au(t).

Here, the function u = u(t) is defined implicitly: t =

∫
du

f(u)
.

43. y′′xx =
f(y′

x)√
ax+ by2

.

Taking y to be the independent variable, we obtain an equation of the form 14.9.4.42 for

x = x(y): x′′yy = −(ax+ by2)
−1/2

f(1/x′y)(x
′
y)

3
.

44. y′′xx = (ax2 + bxy + cy2 + αx+ βy + γ)
−1/2

f(y′x).

The transformation x = At+Bu+C , y = Dt+ Pu+Q, where u = u(t), reduces this

equation by selecting appropriate constants A, B, C , D, P , and Q, to an equation of the

form 14.9.4.41, 2.9.4.42, or 2.9.4.43.
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45. y′′xx =
f(y′

x)√
axy + bx3/2 + cx

.

Setting u = y′x, we rewrite the equation as follows:
[√
xu′x/f(u)

]−2
= ay + b

√
x + c.

Differentiating both sides with respect to x and passing to the new variables t=
1

2

∫
du

f(u)
and z =

√
x, we obtain a second-order linear equation: 2z′′tt = 2au(t)z + b. Here, the

function u = u(t) is defined implicitly: t =
1

2

∫
du

f(u)
.

46. y′′xx =
f(y′

x)√
axy + by3/2 + cy

.

Taking y to be the independent variable, we obtain an equation of the form 14.9.4.45 for

x = x(y): x′′yy = −(axy + by3/2 + cy)
−1/2

f(1/x′y)(x
′
y)

3
.

47. y′′xx =
f(y′

x)√
axy + bx2 + cx3/2 + dx

.

The substitution aw = ay + bx leads to an equation of the form 14.9.4.45 for w = w(x):

w′′
xx =

f(w′
x − b/a)√

axw + cx3/2 + dx
.

48. y′′xx =
f(y′

x)√
axy + by2 + cy3/2 + dy

.

Taking y to be the independent variable, we obtain an equation of the form 14.9.4.47 for

x = x(y): x′′yy = −(axy + by2 + cy3/2 + dy)
−1/2

f(1/x′y)(x
′
y)

3
.

49. y′′xx = x−2(xy′x − y)f(y′x).

The Legendre transformation x = w′
t, y = tw′

t − w (y′x = t, y′′xx = 1/w′′
tt) leads to an

equation of the form 14.9.3.14: ww′′
tt = [f(t)]−1(w′

t)
2.

50. y′′xx =
[[
xf(y′x) + yg(y′x) + h(y′x)

]]
−1

.

The Legendre transformation x = w′
t, y = tw′

t − w (y′x = t, y′′xx = 1/w′′
tt) leads to a

second-order linear equation: w′′
tt = [f(t) + tg(t)]w′

t − g(t)w + h(t).

51. (xy′x + ay′x − y + b)y′′xx = f(y′x).

The contact transformation

X = y′x, Y = xy′x + ay′x − y + b, Y ′
X = x+ a, Y ′′

XX = 1/y′′xx,

where Y = Y (X), leads to a linear equation: f(X)Y ′′
XX − Y = 0.

Inverse transformation:

x = Y ′
X − a, y = XY ′

X − Y + b, y′x = X, y′′xx = 1/Y ′′
XX .
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52. f(y′x)y
′′

xx + g(y)y′x + h(x) = 0.

Integrating yields a first-order equation:
∫
f(u) du+

∫
g(y) dy +

∫
h(x) dx = C, where u = y′x.

53. y′′xx = a2y + f(x)g(y′x + ay).

The substitution w = y′x + ay leads to a first-order equation: w′
x = aw + f(x)g(w).

54. f(y′x + ax)y′′xx + (y′2x + 2ay)(y′′xx + a) = 0.

The contact transformation

X = y′x + ax, Y = 1
2 (y

′
x)

2 + ay, Y ′
X = y′x, Y ′′

XX =
y′′xx

y′′xx + a
,

where Y = Y (X), leads to a linear equation: f(X)Y ′′
XX + 2Y = 0.

Inverse transformation:

x =
1

a

(
X − Y ′

X

)
, y =

1

2a

[
2Y − (Y ′

X)2
]
, y′x = Y ′

X .

55. y′′xx = x−1f
((
y′x − y

x

))
.

The substitution w= y′x−
y

x
leads to a first-order separable equation: xw′

x =−w+f(w).

56. (xy′x − y)(x2y′′xx + axy′x − ay) = x2f
((
y′x + a

y

x

))
.

The contact transformation (a 6= −1)

X = y′x + a
y

x
, Y = xa+1y′x − xay, Y ′

X = xa+1, Y ′′
XX =

(a+ 1)xa+2

x2y′′xx + axy′x − ay
leads to a linear equation: f(X)Y ′′

XX = (a+ 1)Y .

Inverse transformation:

x = (Y ′
X)

1
a+1 , y =

1

a+ 1
(XY ′

X − Y )(Y ′
X)
− a

a+1 , y′x =
XY ′

X + aY

(a+ 1)Y ′
X

.

57. y′′xx = x−3f(xy′x − y)(y′x)
−1.

The Legendre transformation x = w′
t, y = tw′

t − w leads to an equation of the form

14.9.3.27: w′′
tt = t[f(w)]−1(w′

t)
3
.

58. y′′xx = f(x)g(xy′x − y).

The substitution w = xy′x− y leads to a first-order separable equation: w′
x = xf(x)g(w).

59. y′′xx = x−n−3ynf(xy′x − y).

The transformation x = 1/t, y = w/t leads to an autonomous equation of the form

14.9.4.36: w′′
tt = wnf(−w′

t).

60. y′′xx = x−1f(y)g(xy′x − y)y′x.

The substitution w(y)=xy′x−y leads to a first-order separable equation: w′
y = f(y)g(w).
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61. y′′xx = x−3f(y/x)g(xy′x − y).

The transformation x = 1/t, y = w/t leads to an autonomous equation of the form

14.9.4.36: w′′
tt = f(w)g(−w′

t).

62. x3y′xy
′′

xx + 2x2(y′x)
2 = f(xy′x + y).

The contact transformation

X = xy′x + y, Y = x2y′x, Y ′
X = x, Y ′′

XX =
1

xy′′xx + 2y′x
,

where Y = Y (X), leads to a linear equation: f(X)Y ′′
XX = Y .

Inverse transformation:

x = Y ′
X , y = X − Y

Y ′
X

, y′x =
Y

(Y ′
X)2

, y′′xx =
1

Y ′
XY

′′
XX

− 2Y

(Y ′
X)3

.

63. y′′xx =
y

x2
f
((
xy′

x

y

))
.

The substitution w(x) = xy′x/y leads to a first-order separable equation: xw′
x = f(w) +

w − w2.

64. y′′xx = y−1(y′x)
2 − x−1y′x + x−2yf(xnym)g

((
xy′

x

y

))
.

The transformation z = xnym, w = xy′x/y leads to a first-order separable equation:

z(mw + n)w′
z = f(z)g(w).

65. y′′xx = n(n− 1)x−2y + f(x)g(xny′x − nxn−1y).

The substitution w = xny′x − nxn−1y leads to a first-order separable equation: w′
x =

xnf(x)g(w).

66. x2y′′xx + axy′x − ay = xa+2f
((
xa+1y′x − xay

))
.

The contact transformation (a 6= −1)

X = y′x + a
y

x
, Y = xa+1y′x − xay, Y ′

X = xa+1, Y ′′
XX =

(a+ 1)xa+2

x2y′′xx + axy′x − ay

leads to an autonomous equation of the form 14.9.1.1: f(Y )Y ′′
XX = a+ 1.

Inverse transformation:

x = (Y ′
X)

1
a+1 , y =

1

a+ 1
(XY ′

X − Y )(Y ′
X)
− a

a+1 , y′x =
XY ′

X + aY

(a+ 1)Y ′
X

.

67. y′′xx = −x−1y′x + x−2f(xneay)g(xy′x).

The transformation z = xneay , w = xy′x leads to a first-order separable equation:

z(aw + n)w′
z = f(z)g(w).

68. y′′xx = y−1(y′x)
2 + yf(eaxym)g(y′x/y).

The transformation z = eaxym, w = y′x/y leads to a first-order separable equation:

z(mw + a)w′
z = f(z)g(w).
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69. (y′x + y)(y′′xx + y′x) = e−2xf(exy′x).

The contact transformation

X = exy′x, Y = y′x + y, Y ′
X = e−x, Y ′′

XX = − e−2x

y′′xx + y′x
,

where Y = Y (X), leads to a linear equation: f(X)Y ′′
XX = −Y .

Inverse transformation:

x = − lnY ′
X , y = Y −XY ′

X , y′x = XY ′
X .

70. y′′xx − y′x = e2xf
((
exy′x − exy

))((
y′′xx − y

))
.

1◦. The substitution w= y′x−y leads to a first-order equation: w′
x = e2xf(exw)(w′

x+w).

2◦. The contact transformation

X = ex(y′x − y), Y = (y′x)
2 − y2, Y ′

X = 2e−xy′x, Y ′′
XX = 2e−2x y

′′
xx − y′x
y′′xx − y

leads to a linear equation: Y ′′
XX = 2f(X).

71. y′′xx = f(x)g(y′x sinhx− y cosh x) + y.

The substitution w = y′x sinh x− y cosh x leads to a first-order separable equation: w′
x =

sinh x f(x)g(w).

72. y′′xx = f(x)g(y′x cosh x− y sinhx) + y.

The substitution w = y′x cosh x − y sinhx leads to a first-order separable equation:

w′
x = cosh x f(x)g(w).

73. y′′xx = f(x)g(y′x sin x− y cosx) − y.

The substitution w = y′x sinx − y cos x leads to a first-order separable equation:

w′
x = sinx f(x)g(w).

74. y′′xx = f(x)g(y′x cosx+ y sinx) − y.

The substitution w = y′x cos x + y sinx leads to a first-order separable equation:

w′
x = cos x f(x)g(w).

75. gy′′xx + 1
2
g′xy

′

x = f(y)h
((
y′x

√
g
))
, g = g(x).

The substitution w(y)= y′x
√
g leads to a first-order separable equation: ww′

y = f(y)h(w).

76. f
((
ay′2x − bx

))
y′′xx +

((
2ay′3x − 3by

))((
2ay′xy

′′

xx − b
))
= 0, b 6= 0.

The contact transformation

X = a(y′x)
2 − bx, Y = 2a(y′x)

3 − 3by, Y ′
X = 3y′x, Y ′′

XX =
3y′′xx

2ay′xy′′xx − b
leads to a linear equation: f(X)Y ′′

XX + 3Y = 0.

Inverse transformation:

x =
a

9b
(Y ′

X)2 − 1

b
X, y =

2a

81b
(Y ′

X)3 − 1

3b
Y, y′x =

1

3
Y ′
X , y′′xx =

3bY ′′
XX

2aY ′
XY

′′
XX − 9

.

77. y′′xx = f
((
y′2x + ay

))
.

The change of variable w(y) = (y′x)
2 + ay results in a first-order separable equation:

w′
y = 2f(w) + a.
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78. y′′xx = f(y)g
((
y′2x + 2ay

))
− a.

The change of variable w(y) = (y′x)
2 + 2ay results in a first-order separable equation:

w′
y = 2f(y)g(w).

79. y′′xx = f
((
y′2x − 2axy′x + 2ay

))
.

The substitution y = w + 1
2ax

2 leads to an autonomous equation of the form 14.9.4.78:

w′′
xx = f(w′2

x + 2aw) − a.

80. y′′xx − y′x = e2xf
((
y′2x − y2

))((
y′′xx − y

))
.

The contact transformation

X = ex(y′x − y), Y = (y′x)
2 − y2, Y ′

X = 2e−xy′x, Y ′′
XX = 2e−2x y

′′
xx − y′x
y′′xx − y

leads to an autonomous equation of the form 14.9.1.1: Y ′′
XX = 2f(Y ).

81. xy′′xx + 1
2
y′x = f

((
xy′2x + ay

))
.

The change of variable w(y) = x(y′x)
2 + ay leads to a first-order separable equation:

w′
y = 2f(w) + a.

82. y′′xx + 1
2
y′x = e−xf

((
exy′2x + ay

))
.

The substitution w(y) = ex(y′x)
2 + ay leads to a first-order separable equation:

w′
y = 2f(w) + a.

83. f
((
a(y′x)

k − bx
))
y′′xx =

[[
ak(y′x)

k+1 − b(k+ 1)y
]][[
ak(y′x)

k−1y′′xx − b
]]
.

The contact transformation (ab 6= 0, k 6= −1)

X=a(y′x)
k−bx, Y =ak(y′x)

k+1−b(k+1)y, Y ′
X=(k+1)y′x, Y ′′

XX=
(k+1)y′′xx

ak(y′x)k−1y′′xx−b
leads to a linear equation: f(X)Y ′′

XX = (k + 1)Y .

Inverse transformation:

x =
a(Y ′

X)k

b(k + 1)k
− X

b
, y =

ak(Y ′
X)k+1

b(k + 1)k+2
− Y

b(k + 1)
, y′x =

Y ′
X

k + 1
.

84. ϕy′′xx + 1
2
ϕ′

xy
′

x = f
((
ϕy′2x + ay

))
, ϕ = ϕ(x).

The substitution w(y) = ϕ(x)(y′x)
2 + ay leads to a first-order separated equation:

w′
y = 2f(w) + a.

85. ϕy′′xx + 1
2
ϕ′

xy
′

x = f(y)g
((
ϕy′2x + 2ay

))
− a, ϕ = ϕ(x).

The substitution w(y) = ϕ(x)(y′x)
2 + 2ay leads to a first-order separable equation:

w′
y = 2f(y)g(w).

86. y′′xx = xnym(y′x)
2n+m+3
n+m+2 F (ζ), ζ = (xy′x − y)(y′x)

−
n+1

n+m+2 .

The Legendre transformation x = w′
t, y = tw′

t − w leads to an equation of the form

14.9.4.25:

w′′
tt =

1

tw

[
taw

F (taw)

]
(w′

t)
2a+1−ab

a+1 (tw′
t − w)

b
, where a = − n+ 1

n+m+ 2
, b = −m.
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14.9.5 Equations Not Solved for Second Derivative

1. f(x)(y′′xx − a)2 = (y′x)
2 − 2ay + b.

Differentiating with respect to x, we obtain

(y′′xx − a)(2fy′′′xxx + f ′xy
′′
xx − 2y′x − af ′x) = 0. (1)

Equating the second factor to zero and making the transformation ξ =

∫
dx√
f

, w = y′x,

we arrive at a second-order constant coefficient linear equation of the form 14.1.9.1:

w′′
ξξ − w = 1

2af
′
x, (2)

whose right-hand side is to be expressed in terms of ξ. Substituting the solution of equa-

tion (2) into the original one, we obtain a relation connecting integration constants.

Equating the first factor in (1) to zero, we find the singular solution:

y =
1

2
a(x+ C)2 +

b

2a
.

2. f(x)(y′′xx − ay)2 = (y′x)
2 − ay2 + b.

Differentiating with respect to x, we obtain

(y′′xx − ay)[2f(y′′′xxx − ay′x) + f ′x(y
′′
xx − ay)− 2y′x] = 0.

Equating the second factor to zero, we arrive at a third-order linear equation:

2f(y′′′xxx − ay′x) + f ′x(y
′′
xx − ay)− 2y′x = 0.

Equating the first factor to zero, one can find the singular solution.

3. x = f(y′′xx).

The substitution w(x) = y′x leads to an equation of the form 13.8.1.7: x = f(w′
x).

4. y = f(y′′xx).

The substitution w(y) = 1
2 (y

′
x)

2 leads to an equation of the form 13.8.1.8: y = f(w′
y).

5. y = ax2 + bx+ c+ f(y′′xx).

The substitution w = y − ax2 − bx − c leads to an equation of the form 14.9.5.4: w =
f(w′′

xx + 2a).

6. xy′x = y + a(y′x)
2 + by′x + c+ f(y′′xx).

The Legendre transformation x = w′
t, y = tw′

t − w (y′x = t, y′′xx = 1/w′′
tt) leads to an

equation of the form 14.9.5.5: w = at2 + bt+ c+ f(1/w′′
tt).

7. f(y′′xx) + xy′′xx = y′x.

Solution: y = 1
2C1x

2 + xf(C1) + C2.
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8. f(y′′xx + y) = (y′′xx)
2 + (y′x)

2.

Differentiating with respect to x, we obtain

[f ′(y′′xx + y)− 2y′′xx](y
′′′
xxx + y′x) = 0.

From the equation y′′′xxx + y′x = 0, it follows that:

y = A sin(x+ C1) + C2, where A2 = f(C2).

Equating the expression in square brackets to zero, we arrive at the singular solution in

parametric form:

x =

∫
[2− f ′′uu(u)] du√
4f(u)−

[
f ′u(u)

]2 , y = u− 1
2 f

′
u(u).

9. y′x = yf(y′′xx/y).

The transformation t = y2, w = (y′x)
2 leads to an equation of the form 13.8.1.11: w =

tf2(w′
t).

10. yy′′xx = (y′x)
2 + f

((
y′′xx/y

))
.

1◦. Solution:

y = C1 exp(C2x) +
f(C2

2 )

4C1C
2
2

exp(−C2x).

2◦. Solution:

y = C1 sin(C3x) + C2 cos(C3x),

where the constants C1, C2, and C3 are related by the constraint

(C2
1 + C2

2 )C
2
3 + f(−C2

3) = 0.

3◦. Solutions: y = ±x
√
−f(0) + C .

11. y = xf(x3y′′xx).

The transformation x = 1/t, y = w/t leads to an equation of the form 14.9.5.4: w =
f(w′′

tt).

12. xy′x − y = f(xny′′xx).

This is a special case of equation 14.9.5.16 with ϕ = xn.

13. xy′x − y = f(eλxy′′xx).

This is a special case of equation 14.9.5.16 with ϕ = eλx.

14. xy′x − y = f(lnx y′′xx).

This is a special case of equation 14.9.5.16 with ϕ = lnx.

15. xy′x − y = f(sinx y′′xx).

This is a special case of equation 14.9.5.16 with ϕ = sinx.

16. xy′x − y = f(ϕy′′xx), ϕ = ϕ(x).

The transformation ξ =

∫
x

ϕ
dx, w = xy′x − y leads to an equation of the form 13.8.1.8:

w = f(w′
ξ).
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14.9.6 Equations of General Form

◮ Equations solved for the y′′xx containing arbitrary functions of two variables.

1. y′′xx = F (x, y′x).

The substitution w(x) = y′x leads to a first-order equation: w′
x = F (x,w).

2. y′′xx = F (y, y′x).

Autonomous equation. The substitution w(y) = y′x leads to a first-order equation: ww′
y =

F (y, w).

3. y′′xx = F (ax+ by, y′x).

The substitution bw = ax + by leads to an equation of the form 14.9.6.2: w′′
xx =

F
(
bw, w′

x −
a

b

)
.

4. y′′xx =
1

x
F
((
y

x
, y′x

))
.

Homogeneous equation. This is a special case of equation 14.9.6.6 with k = 1.

5. y′′xx =
1

ax+ by + c
F
((
ax+ by + c

αx+ βy + γ
, y′x

))
.

1◦. For aβ− bα= 0, the substitution bw = ax+ by+ c leads to an autonomous equation

of the form 14.9.6.2.

2◦. For aβ − bα 6= 0, the transformation

z = x− x0, w = y − y0,

where x0 and y0 are the constants determined by the linear algebraic system of equations

ax0 + by0 + c = 0, αx0 + βy0 + γ = 0,

leads to a homogeneous equation of the form 14.9.6.4:

w′′
zz =

1

z
Φ
(w
z
, w′

z

)
, where Φ(ξ, u) =

1

a+ bξ
F
( a+ bξ

α+ βξ
, u
)
.

6. y′′xx = xk−2F (x−ky, x1−ky′x).

Generalized homogeneous equation. The transformation t = lnx, w = x−ky leads to an

equation of the form 14.9.6.2: w′′
tt + (2k − 1)w′

t + k(k − 1)w = F (w, w′
t + kw).

7. y′′xx =
y

x2
F
((
xnym,

x

y
y′x

))
.

Generalized homogeneous equation. The transformation z = xnym, w = xy′x/y leads to

a first-order equation: z(mw + n)w′
z = F (z, w) + w − w2.

8. y′′xx = a2y + F (x, y′x + ay).

The substitution w = y′x + ay leads to a first-order equation: w′
x = aw + F (x,w).

9. y′′xx = (a2x2 + a)y + F (x, y′x − axy).

The substitution w = y′x − axy leads to a first-order equation: w′
x = −axw + F (x,w).



“K16435’ — 2017/9/28 — 15:05 — #842

816 SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS

10. y′′xx = F
((
x, y′x − y

x

))
.

The substitution w(x) = y′x −
y

x
leads to a first-order equation: xw′

x = −w+ xF (x,w).

11. y′′xx = F (x, xy′x − y).

The substitution w(x) = xy′x − y leads to a first-order equation: w′
x = xF (x,w).

12. y′′xx = x−2F (y, xy′x − y).

The substitution w(y) = xy′x − y leads to a first-order equation: (y + w)w′
y = F (y,w).

13. xy′′xx + (a+ 1)y′x = F (x, xy′x + ay).

The substitution w = xy′x + ay leads to a first-order equation: w′
x = F (x,w).

14. x2y′′xx = 2y + F (x, xy′x + y).

The substitution w = xy′x + y leads to a first-order equation: xw′
x = 2w + F (x,w).

15. x2y′′xx = a(a+ 1)y + F (x, xy′x + ay).

The substitution w= xy′x+ay leads to a first-order equation: xw′
x = (a+1)w+F (x,w).

16. y′′xx = 2ayy′x + F (x, y′x − ay2).

The substitution w = y′x − ay2 leads to a first-order equation: w′
x = F (x,w).

17. y′′xx = e−axF (eaxy, eaxy′x).

The substitution w = eaxy leads to a second-order autonomous equation of the form

14.9.6.2: w′′
xx − 2aw′

x + a2w = F (w, w′
x − aw).

18. y′′xx = yF (eaxym, y′x/y).

Equation invariant under “translation–dilatation” transformation. The transformation

z = eaxym, w = y′x/y leads to a first-order equation: z(mw + a)w′
z = F (z, w) − w2.

See also Section 8.3.4.

19. y′′xx = x−2F (xneay, xy′x).

Equation invariant under “dilatation–translation” transformation. The transformation

z = xneay , w = xy′x leads to a first-order equation: z(aw + n)w′
z = F (z, w) + w.

See also Section 8.3.4.

20. y′′xx = e2ayF (xeay, e−ayy′x).

The transformation z = xeay , w = e−ayy′x leads to a first-order equation: (azw+1)w′
z =

F (z, w) − aw2.

21. y′′xx = aeyy′x + F (x, y′x − aey).

The substitution w = y′x − aey leads to a first-order equation: w′
x = F (x,w).

22. y′′xx = (e2x + ex)y + F
((
x, y′x − exy

))
.

The substitution w = y′x − exy leads to a first-order equation: w′
x = −exw + F (x,w).
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23. y′′xx = F (x, y′x sinhx− y cosh x) + y.

The substitution w = y′x sinh x − y coshx leads to a first-order equation of the form:

w′
x = F (x,w) sinh x.

24. y′′xx = F (x, y′x cosh x− y sinhx) + y.

The substitution w = y′x cosh x − y sinhx leads to a first-order equation of the form:

w′
x = F (x,w) cosh x.

25. y′′xx = x−2F (ay+ b lnx, xy′x).

The transformation z= ay+b lnx, w= xy′x leads to a first-order equation: (aw+b)w′
z =

F (z, w) + w.

26. y′′xx = yF (ax+ b ln y, y′x/y).

The transformation z=ax+b ln y, w= y′x/y leads to a first-order equation: (bw+a)w′
z =

F (z, w) − w2.

27. y′′xx = F (x, y′x sinx− y cosx) − y.

The substitution w= y′x sinx−y cos x leads to a first-order equation: w′
x=F (x,w) sin x.

28. y′′xx = F (x, y′x cosx+ y sin x) − y.

The substitution w= y′x cos x+y sinx leads to a first-order equation: w′
x=F (x,w) cos x.

29. y′′xx = (ϕ2 + ϕ′

x)y + F (x, y′x − ϕy), ϕ = ϕ(x).

The substitution w = y′x − ϕy leads to a first-order equation: w′
x = −ϕw + F (x,w).

30. y′′xx =
ϕ′′

xx

ϕ
y + F

((
x, y′x − ϕ′

x

ϕ
y
))
, ϕ = ϕ(x).

The substitution w = y′x −
ϕ′
x

ϕ
y leads to a first-order equation: w′

x = −ϕ
′
x

ϕ
w+ F (x,w).

31. y′′xx = ϕyy
′

x + ϕx + F (x, y′x − ϕ), ϕ = ϕ(x, y).

The substitution w = y′x − ϕ(x, y) leads to a first-order equation: w′
x = F (x,w).

32. f2y′′xx + ff ′

xy
′

x = Φ(y, fy′x), f = f(x).

The substitution w(y) = fy′x leads to a first-order equation: ww′
y = Φ(y,w).

33. y′′xx = F (x, y).

Let F 6= ϕ(x)y + ψ(x), i.e., the equation is nonlinear. Then its order can be reduced by

one if the right-hand side of the equation has the following form:

F (x, y) = f−3/2E
{
Φ(u) +

∫ [
1
2 ff

′′′
xxx(u+ V ) + f1/2g′′xxE

−1
]
dx
}
, (1)

where

E = exp
(
k

∫
f−1 dx

)
, V =

∫
f−3/2gE−1 dx, u = f−1/2E−1y − V ;

Φ = Φ(u), f = f(x), and g = g(x) are arbitrary functions, and k is an arbitrary constant.

The integral in (1) can always be expressed in terms of E and V . The following cases

are possible:
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1◦. For f ′′′xxx 6= 0,

F (x, y)=f−3/2EΦ(u)+ 1
4 f

−2
[
2ff ′′xx−(f ′x)

2]
y+ 1

2 f
−2
(
2fg′x−f ′xg+2kg

)
+k2f−3/2EV.

2◦. For f = ax2 + bx+ c, f ′x 6= −2k, f ′x 6= 2
3k,

F (x, y) = f−3/2EΦ(u) + 1
2 f

−2
(
2fg′x − f ′xg + 2kg

)
+
(
k2 + 1

4∆
)
f−3/2EV,

where ∆ = 4ac− b2.

3◦. For f = β − 2kx,

F (x, y) = f−2[Φ(y +W ) + fg′x + 2kg], where W = −
∫
f−1g dx.

4◦. For f = 2
3kx+ β,

F (x, y) = Φ
(
f−2y − U

)
+ f−2

(
fg′x +

2
3kg

)
+ 8

9k
2U, where U =

∫
f−3g dx.

In all these cases, the transformation

t =

∫
f−1dx, u = f−1/2E−1y − V

leads to the autonomous equation u′′tt + 2ku′t + k2u = Φ(u), which is reducible, with the

aid of the substitution z(u) = u′t, to an Abel equation: zz′u + 2kz + k2u = Φ(u) (see

Section 13.3.1).

If k = 0, the solution of the original equation for case 1◦ is as follows:

∫
du√

2Ψ(u) + C1

= ±
∫

dx

f
+ C2, where Ψ(u) =

∫
Φ(u) du.

If k = 0, the solution of the original equation for case 2◦ is given by:

2

∫
du√

8Ψ(u)−∆u2 + C1

=±
∫

dx

ax2 + bx+ c
+C2, where Ψ(u)=

∫
Φ(u) du.

◮ Equations not solved for the y′′xx containing arbitrary functions of two variables.

34. y′′xx + ay′x + by = eλxF
((
y′x/y, y

′′

xx/y
))
.

1◦. The substitution y = eλxw leads to an autonomous equation:

w′′
xx + (2λ+ a)w′

x + (λ2 + aλ+ b)w = F
(
w′
x + λw, w′′

xx + 2λw′
x + λ2w

)
.

2◦. Particular solution: y = keλx, where k is a root of the algebraic (transcendental) equa-

tion k(λ2 + aλ+ b) = F (kλ, kλ2).

35. a1(y
′′

xx)
2 + a2y

′

xy
′′

xx + a3yy
′′

xx + a4(y
′

x)
2

+ a5yy
′

x + a6y
2 = eλxF

((
y′x/y, y

′′

xx/y
))
.

The substitution y = eλx/2w leads to an autonomous equation.
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36. y′′xx = y′xF1

((
y′x/y, y

′′

xx/y
))
+ yF2

((
y′x/y, y

′′

xx/y
))
+ eλxF3

((
y′x/y, y

′′

xx/y
))
.

The substitution y = eλxw leads to an autonomous equation.

37. F
((
xy′′xx, x

2y′′xx − xy′x + y
))
= 0.

Solution:

y = C1x lnx+ C2x+ C3,

where C2 is an arbitrary constant and the constants C1 and C3 are related by the constraint

F (C1, C3) = 0.

38. F (y′′xx/y, yy
′′

xx − y′2x ) = 0.

1◦. Solution:

y = C1 exp(C3x) + C2 exp(−C3x),

where the constants C1, C2, and C3 are related by the constraint F (C2
3 , 4C1C2C

2
3 ) = 0.

2◦. Solution:

y = C1 cos(C3x) + C2 sin(C3x),

where the constants C1, C2, and C3 are related by the constraint

F
(
−C2

3 ,−(C2
1 + C2

2 )C
2
3

)
= 0.

39. F (y3y′′xx, yy
′′

xx + y′2x ) = 0.

Solutions:

y = ±
√
C1x2 + 2C2x+ C3,

where the constants C1, C2, and C3 are related by the constraint F (C1C3 −C2
2 , C1) = 0.

40. F

((
y +

y′2
x

y′′
xx

, x+
y′

x − y′3
x

2y′′
xx

))
= 0.

Solutions can be found from the relation

(y − C1)
2 = 2C2(x−A) + C2

2 ,

where F (C1, A) = 0. The question of whether there are other solutions calls for further

investigation.

41. F
((
y
y′′

xx

y′

x

+ ay′x, y
a+1 y

′′

xx

y′

x

))
= 0.

A solution of this equation is any function that solves the first-order separable equation:

y′x = C1y
−a + C2,

where the constants C1 and C2 are related by the constraint F (aC2,−aC1) = 0.

42. F
((
y′′

xx

y′

x

+ y′x, e
y y

′′

xx

y′

x

))
= 0.

A solution of this equation is any function that solves the first-order separable equation:

y′x = C1e
−y + C2,

where the constants C1 and C2 are related by the constraint F (C2,−C1) = 0.
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◮ Equations containing arbitrary functions of three variables.

43. F (y′′xx, xy
′′

xx − y′x, x
2y′′xx − 2xy′x + 2y) = 0.

Solution:

y = C1x
2 + C2x+ C3,

where the constants C1, C2, and C3 are related by the constraint F (2C1,−C2, 2C3) = 0.

⊙ Literature: E. L. Ince (1964).

44. F
((
y′′xx, xy

′′

xx − y′x, 2yy
′′

xx − (y′x)
2
))
= 0.

Solution:

y = C1x
2 + C2x+ C3,

where the constants C1, C2, and C3 are related by the constraint

F (2C1,−C2, 4C1C3 − C2
2 ) = 0.

45. F
((
x3y′′xx, xy

′′

xx + 2y′x, x
2y′′xx + xy′x − y

))
= 0.

Solution:

y = C1x+ C2 +
C3

x
,

where the constants C1, C2, and C3 are related by the constraint F (2C3, 2C1,−C2) = 0.

46. F
((
xa+2y′′xx, xy

′′

xx + (a+ 1)y′x, x
2y′′xx + axy′x − ay

))
= 0.

Solution:

y = C1x
−a + C2x+ C3.

The constants C1, C2, and C3 are related by the constraint

F
(
a(a+ 1)C1, (a+ 1)C2, −aC3

)
= 0.

47. F
((
y3y′′xx, yy

′′

xx + y′2x , xyy
′′

xx + xy′2x − yy′x
))
= 0.

Solution:

y2 = C1x
2 + 2C2x+C3,

where the constants C1, C2, and C3 are related by the constraint

F (C1C3 − C2
2 , C1,−C2) = 0.

48. F
((
x, y′x − y, y′′xx − y, y′′xx − y′x

))
= 0.

The substitution w = y′x − y leads to a first-order equation: F (x,w,w′
x + w,w′

x) = 0.

49. F
((
x, y′x + ay, y′′xx − a2y, y′′xx + ay′x

))
= 0.

The substitution w = y′x + ay leads to a first-order equation: F (x,w,w′
x − aw,w′

x) = 0.

50. F

((
x− y′2

x + 1

y′′
xx

y′x, y +
y′2
x + 1

y′′
xx

,
(y′2

x + 1)3/2

y′′
xx

))
= 0.

It is known that all functions of the form (x−C1)
2+(y−C2)

2=A2, where A=A(C1, C2)
is determined from the algebraic (transcendental) equation F (C1, C2, A)=0, are solutions

of the original equation.
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51. F
((
exy′′xx, y

′′

xx + y′x, y − xy′x − (x+ 1)y′′xx
))
= 0.

Solution:

y = C1e
−x + C2x+ C3,

where the constants C1, C2, and C3 are related by the constraint F (C1, C2, C3) = 0.

52. F
((
y′′xx/y, yy

′′

xx − (y′x)
2,
((
y + y′x

√
y/y′′xx

))
exp

((
− x

√
y′′xx/y

))))
= 0.

Solution:

y = C1 exp(C3x) + C2 exp(−C3x),

where the constants C1, C2, and C3 are related by the constraint

F (C2
3 , 4C1C2C

2
3 , 2C1) = 0.

53. F
((
y′′xx − y, y′′xx sinh x− y′x cosh x, (y′′xx)

2 − (y′x)
2
))
= 0.

Solution:

y = C1 sinh x+ C2 cosh x+ C3,

where the constants C1, C2, and C3 are related by the constraint

F (−C3,−C1, C
2
1 − C2

2 ) = 0.

54. F
((
xy′′xx, x

2y′′xx − xy′x + y, y′x − y′′xxx ln x
))
= 0.

Solution:

y = C1x lnx+ C2x+ C3,

where the constants C1, C2, and C3 are related by the constraint F (C1, C3, C1 +C2) = 0.

55. F

((
y′′

xx

y′

x

, y′x − y
y′′

xx

y′

x

, x
y′′

xx

y′

x

− ln
(y′

x)
2

y′′

xx

))
= 0.

Solution:

y = C1 exp(C2x) + C3,

where the constants C1, C2, and C3 are related by the constraint

F (C2,−C2C3,− lnC1) = 0.

56. F
((
y′′xx + y, y′′xx sin x− y′x cosx, (y′′xx)

2 + (y′x)
2
))
= 0.

Solution:

y = C1 sinx+ C2 cos x+ C3,

where the constants C1,C2, and C3 are related by the constraint F (C3,−C1, C
2
1+C

2
2 )=0.

57. F
((
y, xy′2x , xy

′′

xx + 1
2
y′x
))
= 0.

The substitution w(y) = x(y′x)
2 leads to a first-order equation: F

(
y,w, 12w

′
y

)
= 0.

58. F
((
y, ϕy′2x , ϕy

′′

xx + 1
2
ϕ′

xy
′

x

))
= 0, ϕ = ϕ(x).

The substitution w(y) = ϕ(x)(y′x)
2 leads to a first-order equation: F

(
y,w, 12w

′
y

)
= 0.
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14.9.7 Equations Defined Parametrically

1. x = ϕ(t), y′′xx = ψ(t).

General solution in parametric form:

x = ϕ(t), y = C1ϕ(t) + C2 +

∫
f(t)ϕ′

t(t) dt,

f(t) =

∫
ψ(t)ϕ′

t(t) dt,

where C1 and C2 are arbitrary constants.

2. y = ϕ(t), y′′xx = ψ(t).

General solution in parametric form:

x =

∫
f(t) dt+ C1, y = ϕ(t),

f(t) = ±ϕ′
t(t)

[
2

∫
ψ(t)ϕ′

t(t) dt+ C2

]−1/2

,

where C1 and C2 are arbitrary constants.

3. y′x = ϕ(t), y′′xx = ψ(t).

General solution in parametric form:

x =

∫
ϕ′
t(t)

ψ(t)
dt+ C1, y =

∫
ϕ(t)ϕ′

t(t)

ψ(t)
dt+ C2,

where C1 and C2 are arbitrary constants.

4. y′x = a(t)x+ b(t), y′′xx = c(t).

The equation is reduced to the following system of equations for x = x(t) and y = y(t)
(see Section 3.2.8):

(c− a)x′t = a′tx+ b′t,

(c− a)y′t = (ax+ b)(a′tx+ b′t).

1◦. Let c− a 6≡ 0. Then the general solution of the first (linear) equation of the system

is

x = C1E + E

∫
b′t dt

E(c − a) , E = exp

(∫
a′t dt
c− a

)
,

where C1 is an arbitrary constant. Substituting this expression of x = x(t) into the second

equation yields a separable equation for y = y(t) (its solution is omitted).

2◦. Let c− a ≡ 0. Then the general solution of the original equation is

y =
1

2
a(C1)x

2 + b(C1)x+ C2,

where C1 and C2 are arbitrary constants. In addition, there is a one-parameter singular

solution:

x = − b
′
t

a′t
, y =

∫ (
b− ab′t

a′t

)
dt+ C.
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5. y′x = a(t)x+ ky + b(t), y′′xx = ka(t)x+ k2y + c(t).

The equation is reduced to the following system of equations for x = x(t) and y = y(t)
(see Section 3.2.8):

(c− a− kb)x′t = a′tx+ b′t,

(c− a− kb)y′t = (a′tx+ b′t)(ax+ ky + b).

1◦. Let c − a − kb 6≡ 0. Then the general solution of the first (linear) equation of the

system is

x = C1E + E

∫
b′t dt

E(c− a− kb) , E = exp

(∫
a′t dt

c− a− kb

)
,

where C1 is an arbitrary constant. Substituting this expression of x = x(t) into the second

equation yields a separable equation for y = y(t) (its solution is omitted).

2◦. Let c− a− kb ≡ 0. Then the general solution of the original equation is

y = C2e
kx − a(C1)

k
x− b(C1)

k
− a(C1)

k2
,

where C1 and C2 are arbitrary constants. In addition, there is a one-parameter singular

solution:

x = − b
′
t

a′t
, y = Cekt + ekt

∫
e−kt

(
b− ab′t

a′t

)
dt.

6. y′x = a(t)x, y′′xx = a(t) + b(t)x2y.

General solution in parametric form:

x = ±
[
2

∫
a′t(t)

b(t)ϕ(t)
dt+ C1

]1/2
,

y = ±ϕ(t), ϕ(t) =

[
2

∫
a(t)a′t(t
b(t)

) dt+ C2

]1/2
,

where C1 and C2 are arbitrary constants.

7. y′x = a(t)x, y′′xx = a(t)x+ b(t)x2yk.

General solution in parametric form:

x = ±
[
2

∫
a′t(t)

b(t)ϕk(t)
dt+ C1

]1/2
,

y = ±ϕ(t), ϕ(t) =

[
(k + 1)

∫
a(t)a′t(t
b(t)

) dt+ C2

] 1
k+1

,

where C1 and C2 are arbitrary constants.

8. y′x = a(t)y, y′′xx = b(t)y.

General solution in parametric form:

x =

∫
a′t(t) dt

b(t)− a2(t) + C1, y = C2 exp

[∫
a(t)a′t(t) dt
b(t)− a2(t)

]
,

where C1 and C2 are arbitrary constants.
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9. xy′x = y + a(t), y′′xx = b(t)xk.

General solution in parametric form:

x = ϕ(t), ϕ(t) =

[
(k + 2)

∫
a′t(t)
b(t)

dt+ C1

] 1
k+2

,

y = C2E(t) + E(t)

∫
a(t)a′t(t) dt

E(t)b(t)ϕk+2(t)
, E(t) = exp

[∫
a′t(t) dt

b(t)ϕk+2(t)

]
,

where C1 and C2 are arbitrary constants.

10. y′x = a(t)yk, y′′xx = b(t)y2k−1.

General solution in parametric form:

x =

∫
a′t(t)ϕ

1−k(t) dt

b(t)− ka2(t) + C1,

y = ϕ(t), ϕ(t) = C2 exp

[∫
a(t)a′t(t) dt
b(t)− ka2(t)

]
,

where C1 and C2 are arbitrary constants.

11. y′x = 2x
√
y h(t), y′′xx = 2x2h2(t)− 2

√
y λ(t).

General solution in parametric form:

x = C1E(t), E(t) = exp

[
−
∫

h′t(t) dt
h(t) + λ(t)

]
,

y =

[
C2 − C2

1

∫
h(t)h′t(t)
h(t) + λ(t)

E2(t) dt

]2
,

where C1 and C2 are arbitrary constants.

12. y′x = exg(y)h(t), y′′xx = e2xg(y)g′y(y)h
2(t) − exg(y)λ(t).

General solution in parametric form:

ex = C1E(t), E(t) = exp

[
−
∫

h′t(t) dt
h(t) + λ(t)

]
,

∫
dy

g(y)
= −C1

∫
h(t)h′t(t)
h(t) + λ(t)

E(t) dt + C2,

where C1 and C2 are arbitrary constants.

13. y′x = f(x)g(x, y, t), y′′xx = h(x)g(x, y, t).

General solution:

y = C1

∫
E(x) dx + C2, E(x) = exp

[∫
h(x)

f(x)
dx

]
,

where C1 and C2 are arbitrary constants.

The dependence t= t(x) is defined implicitly by the equation f(x)g(x, y, t)=C1E(x).
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14. y′x = f(x)g(x, y, t), y′′xx =
h(x)

g(x, y, t)
.

General solution:

y =

∫
E(x) dx + C2, E(x) = ±

[
2

∫
f(x)h(x) dx

]1/2
,

where C1 and C2 are arbitrary constants.

The dependence t = t(x) is defined implicitly by the equation E(x) = f(x)g(x, y, t).

14.9.8 Some Transformations

1. y′′xx + x−3F
((
1

x
,
y

x

))
= 0.

The transformation ξ = 1/x, w = y/x leads to the equation w′′
ξξ + F (ξ, w) = 0.

2. y′′xx = n(n+ 1)x−2y + x3nF (x2n+1, xny).

The transformation ξ = x2n+1, w = xny leads to the equation (2n+ 1)2w′′
ξξ = F (ξ, w).

3. y′′xx + (ax+ b)−3F
((
cx+ d

ax+ b
,

y

ax+ b

))
= 0.

The transformation ξ=
cx+ d

ax+ b
, w=

y

ax+ b
leads to the equation w′′

ξξ+∆−2F (ξ, w)=0,

where ∆ = ad− bc.
4. x2y′′xx + axy′x + by + F (x, y) = 0.

The transformation x = ξν , y = ξµw, where the parameters ν and µ are found from the

simultaneous algebraic equations

2µ+ 1 + (a− 1)ν = 0, µ2 + (a− 1)µν + bν2 = 0,

leads to an equation of the form

w′′
ξξ + ν2ξ−µ−2F (ξν , ξµw) = 0.

5. y′′xx = n(n+ 1)x−2y + x3nF (ax2n+1 + b, xny).

The transformation ξ = ax2n+1 + b, w = xny leads to the equation a2(2n + 1)2w′′
ξξ =

F (ξ, w).

6. y′′xx = λ2y + e3λxF (ae2λx + b, eλxy).

The transformation ξ= ae2λx+b, w= eλxy leads to the equation w′′
ξξ =(2aλ)−2F (ξ, w).

7. y′′xx = λ2y +
e3λx

(ce2λx + d)3
F

((
ae2λx + b

ce2λx + d
,

eλxy

ce2λx + d

))
.

The transformation ξ =
ae2λx + b

ce2λx + d
, w =

eλxy

ce2λx + d
leads to the equation

w′′
ξξ = (2∆λ)−2F (ξ, w), where ∆ = ad− bc.

8. y′′xx = λ2y + sinh−3(λx)F

((
coth(λx),

y

sinh(λx)

))
.

The transformation ξ= coth(λx), w=
y

sinh(λx)
leads to the equation w′′

ξξ=λ
−2F (ξ, w).
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9. y′′xx = λ2y + cosh−3(λx)F

((
tanh(λx),

y

cosh(λx)

))
.

The transformation ξ= tanh(λx), w=
y

cosh(λx)
leads to the equation w′′

ξξ=λ
−2F (ξ, w).

10. x2y′′xx + 1
4
y +

√
xF

((
a ln x+ b,

y
√
x

))
= 0.

The transformation ξ = a lnx+b, w=
y√
x

leads to the equation w′′
ξξ+a

−2F (ξ, w) = 0.

11. |x2 − 1|3/2y′′xx = F

((
ln

ax− a

x+ 1
,

y
√

|x2 − 1|

))
.

The transformation ξ = ln
ax− a
x+ 1

, w =
y√
|x2 − 1|

leads to the equation 4w′′
ξξ =

F (ξ, w) + w.

12. y′′xx + λ2y + sin−3(λx)F

((
cot(λx),

y

sin(λx)

))
= 0.

The transformation ξ = cot(λx), w =
y

sin(λx)
leads to an equation of the form

w′′
ξξ + λ−2F (ξ, w) = 0.

13. y′′xx + λ2y + cos−3(λx)F

((
tan(λx),

y

cos(λx)

))
= 0.

The transformation ξ = tan(λx), w =
y

cos(λx)
leads to an equation of the form

w′′
ξξ + λ−2F (ξ, w) = 0.

14. y′′xx + λ2y + sin−3(λx+ b)F

((
sin(λx+ a)

sin(λx+ b)
,

y

sin(λx+ b)

))
= 0.

The transformation ξ =
sin(λx+ a)

sin(λx+ b)
, w =

y

sin(λx+ b)
leads to the equation

w′′
ξξ + [λ sin(b− a)]−2F (ξ, w) = 0.

15. (x2 + 1)
3/2
y′′xx + F

((
arctan x+ b,

y
√
x2 + 1

))
= 0.

The transformation ξ = arctan x + b, w =
y√

x2 + 1
leads to the equation w′′

ξξ + w +

F (ξ, w) = 0.

16. (x2 + 1)
3/2
y′′xx + F

((
arccot x+ b,

y
√
x2 + 1

))
= 0.

The transformation ξ = arccot x + b, w =
y√

x2 + 1
leads to the equation w′′

ξξ + w +

F (ξ, w) = 0.
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17. y′′xx + F (x, y) = 0.

The transformation x = ϕ(z), y = w
√
aϕ′

z leads to the equation

w′′
zz +

[
1

2

ϕ′′′
zzz

ϕ′
z

− 3

4

(ϕ′′
zz

ϕ′
z

)2]
w + a−2(aϕ′

z)
3/2
F
(
ϕ, w

√
aϕ′

z

)
= 0.

The sign of the parameter a must coincide with that of the derivative ϕ′
z .

18. y′′xx + f(x, y)(y′x)
3 + g(x, y)(y′x)

2 = 0.

Taking y to be the independent variable, we obtain the following equation with respect

to x = x(y): x′′yy − g(x, y)x′y − f(x, y) = 0.

19. F (x, y, y′x, y
′′

xx) = 0.

Applying the Legendre transformation x= w′
t, y = tw′

t−w, where w = w(t), and using

the relations y′x = t and y′′xx = 1/w′′
tt, we arrive at the equation

F
(
w′
t, tw

′
t − w, t,

1

w′′
tt

)
= 0.

Given a solution of the original equation, the corresponding solution of the transformed

equation is written in parametric form as:

t = y′x, w = xy′x − y, where y = y(x).
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Chapter 15

Third-Order Ordinary
Differential Equations

15.1 Linear Equations

15.1.1 Preliminary Remarks

1◦. A homogeneous linear equation of the third order has the general form

f3(x)y
′′′
xxx + f2(x)y

′′
xx + f1(x)y

′
x + f0(x)y = 0. (1)

Let y0 = y0(x) be a nontrivial particular solution of this equation. The substitution

y = y0(x)

∫
z(x) dx

leads to a second-order linear equation:

f3y0z
′′ + (3f3y

′
0 + f2y0)z

′ + (3f3y
′′
0 + 2f2y

′
0 + f1y0)z = 0, (2)

where the prime denotes differentiation with respect to x.

2◦. Let y1 = y1(x) and y2 = y2(x) be two nontrivial linearly independent particular

solutions of equation (1). Then the general solution of this equation can be written in the

form:

y = C1y1 + C2y2 + C3

(
y2

∫
y1ψ dx− y1

∫
y2ψ dx

)
, (3)

where

ψ = exp
(
−
∫

f2
f3
dx
)(
y1y

′
2 − y′1y2

)−2
.

For specific equations described below in Sections 15.1.2–15.1.9, often only particular

solutions will be given, and the general solution can be obtained by formula (3).

3◦. A nonhomogeneous linear equation of the third-order has the form

f3(x)y
′′′
xxx + f2(x)y

′′
xx + f1(x)y

′
x + f0(x)y = g(x). (4)

829
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Let y1 = y1(x) and y2 = y2(x) be two linearly independent particular solutions of

the corresponding homogeneous equation (1). Then the general solution of equation (4) is

defined by formula (3) with:

ψ = ∆−2e−F
(
1 +

1

C3

∫
g

f3
∆eF dx

)
, where F =

∫
f2
f3
dx, ∆ = y1y

′
2 − y′1y2.

4◦. The substitution y= z exp
(
− 1

3

∫
f2
f3
dx
)

reduces equation (1) to a form from which

the second derivative is absent:

z′′′ +
(
−ϕ′

2 − 1
3ϕ

2
2 + ϕ1

)
z′ +

(
− 1

3ϕ
′′
2 − 1

3ϕ1ϕ2 +
2
27ϕ

3
2 + ϕ0

)
z = 0,

where ϕk = fk/f3 (k = 0, 1, 2).

15.1.2 Equations Containing Power Functions

◮ Equations of the form f3(x)y
′′′

xxx + f0(x)y = g(x).

1. y′′′xxx + λy = 0.

Solution:

y=

{
C1 + C2x+ C3x

2 if λ = 0,

C1 exp(−kx) + C2 exp
(
1
2kx

)
cos
(√

3
2 kx

)
+ C3 exp

(
1
2kx

)
sin
(√

3
2 kx

)
if λ 6= 0,

where k = λ1/3.

2. y′′′xxx + λy = ax2 + bx+ c.

Solution: y = w +
1

λ
(ax2 + bx + c), where w is the general solution of the equation

15.1.2.1: w′′′
xxx + λw = 0.

3. y′′′xxx = axy + b.

This is a special case of equation 17.1.2.3 with n = 3.

4. y′′′xxx + (ax+ b)y = 0.

For a=0, this is an equation of the form 15.1.2.1. For a 6=0, the substitution aξ= ax+b
leads to an equation of the form 15.1.2.3: y′′′ξξξ + aξy = 0.

5. y′′′xxx + ax3y = bx.

The substitution ξ = x2 leads to an equation of the form 15.1.2.126: 2ξy′′′ξξξ + 3y′′ξξ +
1
4aξy = 1

4 b.

6. y′′′xxx + (3a2x− a3x3)y = 0.

Integrating, we obtain a second-order nonhomogeneous linear equation: y′′xx + axy′x +
(a2x2 − a)y = C exp

(
1
2ax

2
)

(see 14.1.2.31 for the solution of the corresponding homo-

geneous equation).
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7. y′′′xxx = axβy.

This is a special case of equation 17.1.2.4 with n = 3.

1◦. For β = −9, −7, −6, −9/2, −3, −3/2, 1, and 3, see equations 15.1.2.17, 15.1.2.14,

15.1.2.11, 15.1.2.19, 15.1.2.10, 15.1.2.18, 15.1.2.3, and 15.1.2.5, respectively.

2◦. The transformation x = t−1, y = ut−2 leads to an equation of similar form: u′′′xxx =
−at−β−6u.

3◦. For β 6= −3, the transformation ξ = x(β+3)/3, w = xβ/3y leads to an equation of the

form 15.1.2.69: ξ3w′′′
ξξξ + (1− ν2)ξw′

ξ + (ν2 − 1− aν3ξ3)w = 0, where ν = 3
β+3 .

8. y′′′xxx + [a3x3n − 3a2nx2n−1 + an(n− 1)xn−2]y = 0.

Particular solution: y0=exp
(
− ax

n+1

n+ 1

)
. The substitution y=exp

(
− ax

n+1

n+ 1

)∫
z(x) dx

leads to a second-order linear equation of the form 14.1.2.47:

z′′xx − 3axnz′x + (3a2x2n − 3anxn−1)z = 0.

9. xy′′′xxx − a2(ax+ 3)y = 0.

Particular solution: y0 = xeax. The substitution y = xeax
∫
z(x) dx leads to a second-

order equation of the form 14.1.2.108: xz′′xx + 3(ax+ 1)z′x + 3a(ax+ 2)z = 0.

10. x3y′′′xxx = a(a2 − 1)y.

This is a special case of equation 15.1.2.175. Solution: y = x(C1x
n1 + C2x

n2 + C3x
a),

where n1 and n2 are roots of the quadratic equation n2 + an+ a2 − 1 = 0.

11. x6y′′′xxx = ay + bx2.

The transformation x = t−1, y = wt−2 leads to a constant coefficient linear equation of

the form 15.1.2.2: w′′′
ttt + aw + b = 0.

12. (x− a)3(x− b)3y′′′xxx − cy = 0, a 6= b.

The transformation t = ln
∣∣∣x− a
x− b

∣∣∣, w =
y

(x− b)2 leads to a constant coefficient linear

equation: (a− b)3(w′′′
ttt − 3w′′

tt + 2w′
t)− cw = 0.

13. (ax2 + bx+ c)3y′′′xxx = ky.

The transformation ξ =

∫
dx

ax2 + bx+ c
, w =

y

ax2 + bx+ c
leads to a constant coeffi-

cient linear equation: w′′′
ξξξ + (4ac− b2)w′

ξ = kw.

14. x7y′′′xxx = ay + bx3.

The transformation x = t−1, y = wt−2 leads to a linear equation of the form 15.1.2.3:

w′′′
ttt + atw + b = 0.

15. x7y′′′xxx + (ax+ b)y = 0.

The transformation x = t−1, y = wt−2 leads to a linear equation of the form 15.1.2.4:

w′′′
ttt − (bt+ a)w = 0.
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16. x9y′′′xxx + (a3 − 3a2x2)y = 0.

The transformation x = t−1, y = wt−2 leads to a linear equation of the form 15.1.2.6:

w′′′
ttt + (3a2t− a3t3)w = 0.

17. x9y′′′xxx = ay.

The transformation x = t−1, y = wt−2 leads to an equation of the form 15.1.2.5: w′′′
ttt +

at3w = 0.

18. x3/2y′′′xxx = ay.

This is a special case of equation 17.1.2.8 with n = 1.

19. x9/2y′′′xxx = ay.

This is a special case of equation 17.1.2.9 with n = 1.

◮ Equations of the form f3(x)y
′′′

xxx + f1(x)y
′

x + f0(x)y = g(x).

20. y′′′xxx + aby′x + a2x(3 − b− ax2)y = 0.

Integrating, we obtain a second-order nonhomogeneous linear equation: y′′xx + axy′x +
(a2x2 + ab − a)y = C exp

(
1
2ax

2
)

(see 14.1.2.31 for the solution of the corresponding

homogeneous equation).

21. y′′′xxx + axy′x + any = 0, n = 1, 2, 3, . . .

Solution: y = u
(n−1)
x , where u is the solution of the second-order linear equation u′′xx +

axu = C .

22. y′′′xxx + axy′x − 2ay = 0.

The substitution w= xy′x−2y leads to a second-order linear equation of the form 14.1.2.2:

w′′
xx + axw = 0.

23. y′′′xxx + axy′x + b(ax+ b2)y = 0.

Particular solution: y0 = e−bx. The substitution w = y′x + by leads to a second-order

linear equation of the form 14.1.2.12: w′′
xx − bw′

x + (ax+ b2)w = 0.

24. y′′′xxx + axy′x + (abx+ a+ b3)y = 0.

Integrating yields a second-order linear equation: y′′xx − by′x + (ax + b2)y = Ce−bx (see

14.1.2.108 for the solution of the corresponding homogeneous equation with C = 0).

25. y′′′xxx + (ax+ b)y′x + ay = 0.

Integrating yields a second-order nonhomogeneous linear equation: y′′xx +(ax+ b)y = C
(see 14.1.2.2 for the solution of the corresponding homogeneous equation).

26. y′′′xxx + (ax+ b)y′x − ay = 0.

Particular solution: y0 = ax+b. The transformation ξ= ax+b, z=
y′x

ax+ b
− ay

(ax+ b)2

leads to a second-order linear equation of the form 14.1.2.67: ξz′′ξξ + 3z′ξ + a−2ξ2z = 0.
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27. y′′′xxx + (ax+ b)y′x + 3ay = 0.

The substitution aξ = ax+ b leads to a linear equation of the form 15.1.2.21 with n = 3:

y′′′ξξξ + aξy′ξ + 3ay = 0.

28. y′′′xxx + (2ax+ b)y′x + ay = 0.

The substitution aξ = ax+ 1
2 b leads to a linear equation of the form 15.1.2.48 with n= 1:

y′′′ξξξ + 2aξy′ξ + ay = 0.

29. y′′′xxx + (ax− b2)y′x + abxy = 0.

The substitution w=y′x+by leads to a second-order linear equation of the form 14.1.2.108:

w′′
xx − bw′

x + axw = 0.

30. y′′′xxx + (ax− b2)y′x + a(bx+ 1)y = 0.

Integrating yields a second-order linear equation: y′′xx−by′x+axy=Ce−bx (see 14.1.2.108

for the solution of the corresponding homogeneous equation with C = 0).

31. y′′′xxx + (ax+ b)y′x + c(ax+ b+ c2)y = 0.

The substitution w= y′x+cy leads to a second-order linear equation of the form 14.1.2.12:

w′′
xx − cw′

x + (ax+ b+ c2)w = 0.

32. y′′′xxx + (ax+ b)y′x + cx(c2x2 + ax+ b− 3c)y = 0.

Particular solution: y0 = exp
(
− 1

2 cx
2
)
. The substitution y = exp

(
− 1

2 cx
2
) ∫

z(x) dx

leads to a second-order linear equation of the form 14.1.2.31:

z′′xx − 3cxz′x + (3c2x2 + ax+ b− 3c)z = 0.

33. y′′′xxx + ax2y′x + axy = 0.

This is a special case of equation 15.1.2.47 with n = 1.

34. y′′′xxx + ax2y′x − 2axy = 0.

The substitution w=xy′x−2y leads to a second-order linear equation of the form 14.1.2.7:

w′′
xx + ax2w = 0.

35. y′′′xxx − a2x2y′x + a2xy = 0.

Integrating yields a second-order linear equation: y′′xx + axy′x − ay = C exp
(
1
2ax

2
)

(see

14.1.2.108 for the solution of the corresponding homogeneous equation with C = 0).

36. y′′′xxx + ax2y′x + b(ax2 + b2)y = 0.

The substitution w= y′x+by leads to a second-order linear equation of the form 14.1.2.31:

w′′
xx − bw′

x + (ax2 + b2)w = 0.

37. y′′′xxx + (a− 1)b2x2y′x + b2x(abx2 + 2a+ 1)y = 0.

Integrating, we obtain a second-order nonhomogeneous linear equation: y′′xx − bxy′x +
(ab2x2 + b)y = C exp

(
− 1

2 bx
2
)

(see 14.1.2.31 for the solution of the corresponding ho-

mogeneous equation).
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38. y′′′xxx + (ax2 + b)y′x + 2axy = 0.

Integrating yields a second-order nonhomogeneous linear equation: y′′xx+(ax2+b)y=C
(see 14.1.2.4 for the solution of the corresponding homogeneous equation).

39. y′′′xxx + (ax2 − b2)y′x + ax(2 − bx)y = 0.

Integrating yields a second-order linear equation: y′′xx+by
′
x+ax

2y=Cebx (see 14.1.2.13

for the solution of the corresponding homogeneous equation with C = 0).

40. y′′′xxx + (ax2 + b)y′x + c(ax2 + b+ c2)y = 0.

The substitution w = y′x+ cy leads to a second-order linear equation of the form 14.1.2.13:

w′′
xx − cw′

x + (ax2 + b+ c2)w = 0.

41. y′′′xxx − (3b2x2 + a+ 3b)y′x + 2bx(b2x2 − a)y = 0.

1◦. Particular solutions with a > 0:

y1 = exp
(
1
2 bx

2 + x
√
a
)
, y2 = exp

(
1
2 bx

2 − x
√
a
)
.

2◦. Particular solutions with a < 0:

y1 = exp
(
1
2 bx

2
)
cos
(
x
√
|a|
)
, y2 = exp

(
1
2 bx

2
)
sin
(
x
√
|a|
)
.

3◦. Particular solutions with a = 0:

y1 = exp
(
1
2 bx

2
)
, y2 = x exp

(
1
2 bx

2
)
.

42. y′′′xxx + (ax2 + bx+ c)y′x + kx[(a+ k2)x2 + bx+ c− 3k]y = 0.

Particular solution: y0 = exp
(
− 1

2kx
2
)
. The substitution y = exp

(
− 1

2kx
2
) ∫

z(x) dx

leads to a second-order equation of the form 14.1.2.31:

z′′xx − 3kxz′x + [(a+ 3k2)x2 + bx+ c− 3k]z = 0.

43. y′′′xxx + (ax4 + bx)y′x − 2(ax3 + b)y = 0.

This is a special case of equation 15.1.2.49 with n = 2.

44. y′′′xxx + axny′x − 2axn−1y = 0.

The substitution w=xy′x−2y leads to a second-order linear equation of the form 14.1.2.7:

w′′
xx + axnw = 0.

45. y′′′xxx + axny′x + anxn−1y = 0.

Integrating yields a second-order nonhomogeneous linear equation: y′′xx+ axny = C (see

14.1.2.7 for the solution of the corresponding homogeneous equation).

46. y′′′xxx + axm+1y′x + a(m+ 3)xmy = 0.

The substitution x = t−1, y = wt−2 leads to an equation of the form 15.1.2.45 with

n = −m− 5: w′′′
ttt + at−m−5w′

t − a(m+ 5)t−m−6w = 0.
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47. y′′′xxx + ax2ny′x + anx2n−1y = 0.

Solution:

y = C1xJ
2
ν (u) + C2xJν(u)Yν(u) + C3xY

2
ν (u),

where ν =
1

2(n + 1)
, u =

√
a xn+1

2(n + 1)
; Jν(u) and Yν(u) are Bessel functions.

48. y′′′xxx + 2axny′x + anxn−1y = 0.

Solution: y = C1w
2
1 + C2w1w2 + C3w

2
2. Here, w1 and w2 are a fundamental set of

solutions of a second-order linear equation of the form 14.1.2.7: 2w′′
xx + axnw = 0.

49. y′′′xxx + (ax2n + bxn−1)y′x − 2(ax2n−1 + bxn−2)y = 0.

The substitution w=xy′x−2y leads to a second-order linear equation of the form 14.1.2.10:

w′′
xx + (ax2n + bxn−1)w = 0.

50. y′′′xxx + (ax2n + bxn−1)y′x
− c[(a+ c2)x3n + (b+ 3cn)x2n−1 + n(n− 1)xn−2]y = 0.

Particular solution: y0 = exp
( cxn+1

n+ 1

)
. The substitution y = exp

( cxn+1

n+ 1

) ∫
z(x) dx

leads to a second-order equation of the form 14.1.2.47:

z′′xx + 3cxnz′x + [(a+ 3c2)x2n + (b+ 3cn)xn−1]z = 0.

51. xy′′′xxx + ay′x + b(b2x+ a)y = 0.

The substitution w= y′x+by leads to a second-order linear equation of the form 14.1.2.108:

xw′′
xx − bxw′

x + (b2x+ a)w = 0.

52. xy′′′xxx + axy′x − [b(a+ b2)x+ a+ 3b2]y = 0.

Particular solution: y0=xe
bx. The substitution y=xebx

∫
z(x) dx leads to a second-order

linear equation of the form 14.1.2.108: xz′′xx + 3(bx+ 1)z′x + [(a+ 3b2)x+ 6b]z = 0.

53. xy′′′xxx + (b− a2x)y′x + aby = 0.

The substitution w=y′x+ay leads to a second-order linear equation of the form 14.1.2.108:

xw′′
xx − axw′

x + bw = 0.

54. xy′′′xxx + (ax2 + bx)y′x − 2(ax+ b)y = 0.

The substitution w=xy′x−2y leads to a second-order linear equation of the form 14.1.2.2:

w′′
xx + (ax+ b)w = 0.

55. xy′′′xxx + (ax3 + bx)y′x − 2(ax2 + b)y = 0.

The substitution w=xy′x−2y leads to a second-order linear equation of the form 14.1.2.4:

w′′
xx + (ax2 + b)w = 0.

56. (ax+ b)y′′′xxx + cy′x + k(ak2x+ bk2 + c)y = 0.

The substitution w=y′x+ky leads to a second-order linear equation of the form 14.1.2.108:

(ax+ b)w′′
xx − k(ax+ b)w′

x + (ak2x+ bk2 + c)w = 0.
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57. (ax+ 2)y′′′xxx − a3xy′x + 2a3y = 0.

Particular solutions: y1 = x2, y2 = e−ax.

58. (acx+ bc− a)y′′′xxx − c3(ax+ b)y′x + ac3y = 0.

Particular solutions: y1 = ax+ b, y2 = ecx.

59. (ax+ b)y′′′xxx + (cx+ d)y′x + s[(as2 + c)x+ bs2 + d]y = 0.

The substitution w=y′x+sy leads to a second-order linear equation of the form 14.1.2.108:

(ax+ b)w′′
xx − s(ax+ b)w′

x + [(as2 + c)x+ bs2 + d]w = 0.

60. (ax+ b)y′′′xxx + [(c− ak2)x+ d− bk2]y′x + k(cx+ d)y = 0.

The substitution w=y′x+ky leads to a second-order linear equation of the form 14.1.2.108:

(ax+ b)w′′
xx − k(ax+ b)w′

x + (cx+ d)w = 0.

61. (ax+ b)y′′′xxx − (a3x3 − 3a2x+ b3)y′x + abx(a2x2 − 3a− b2)y = 0.

Particular solutions: y1 = ebx, y2 = exp
(
− 1

2ax
2
)
.

62. x2y′′′xxx − 6y′x + ax2y + 2bx = 0.

The substitution y=x2w leads to an equation of the form 15.1.2.173: x3w′′′
xxx+6x2w′′

xx+
(ax3 − 12)w + 2b = 0.

63. x2y′′′xxx + (ax2 + bx−m2 −m)y′x + (m− 1)(ax+ b)y = 0.

The substitution w = xy′x + (m− 1)y leads to a second-order linear equation of the form

14.1.2.108: xw′′
xx − (m+ 1)w′

x + (ax+ b)w = 0.

64. x2y′′′xxx + (ax2 + bx+ c)y′x − k[(a+ k2)x2 + bx+ c]y = 0.

The substitution w=y′x−ky leads to a second-order linear equation of the form 14.1.2.135:

x2w′′
xx + kx2w′

x + [(a+ k2)x2 + bx+ c]w = 0.

65. x2y′′′xxx + (axn − b2 − b)y′x + a(b− 1)xn−1y = 0.

The substitution w=xy′x+(b−1)y leads to a second-order equation of the form 14.1.2.67:

xw′′
xx − (b+ 1)w′

x + axn−1w = 0.

66. x2y′′′xxx + (axn+1 − b2 − b)y′x + a(b− 1)xny = 0.

The substitution w = xy′x + (b − 1)y leads to a second-order linear equation of the form

14.1.2.67: xw′′
xx − (b+ 1)w′

x + axnw = 0.

67. x2y′′′xxx − 3axn+1(n+ axn+1)y′x + axn(n− n2 + 2a2x2n+2)y = 0.

1◦. Particular solutions with n 6= −1: y1 = exp
( axn+1

n+ 1

)
, y2 = x exp

( axn+1

n+ 1

)
.

2◦. Particular solutions with n = −1: y1 = xa, y2 = xa+1.

68. x(ax+ b)y′′′xxx + x(cx+ d)y′x − 2(cx+ d)y = 0.

The substitution w = xy′x − 2y leads to a second-order linear equation of the form

14.1.2.108: (ax+ b)w′′
xx + (cx+ d)w = 0.
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69. x3y′′′xxx + (1 − a2)xy′x + (bx3 + a2 − 1)y = 0.

For a = ±1, we have a constant coefficient equation of the form 15.1.2.1. For b = 0, we

obtain the Euler equation 15.1.2.175.

1◦. If b 6= 0 and a is a positive integer greater than 1, then the solution is:

y = x1−a
3∑

k=1

Ck exp(−λkx)Pk(x),

where λ1, λ2, and λ3 are roots of the cubic equation λ3 = b and Pk(x) are polynomials of

degree ≤ 3(a− 1).

2◦. Denote the solution of the original equation for arbitrary (including complex) a by ya.

Then the following recurrence relation holds:

ya+3 = bya + (2a+ 3)x−1y′′a − (a+ 1)(2a + 3)(x−2y′a − x−3ya), (1)

where the prime denotes differentiation with respect to x.

Since the functions y±1 = e−λx, corresponding to three values of λ determined by the

equation λ3 = b, form a fundamental set of solutions, formula (1) makes it possible to find

all yn for any integer values of n not divisible by 3. In particular, y2 = (x−1 + λ)e−λx,

where λ3 = b.

70. x3y′′′xxx + (4x3 + ax)y′x − ay = 0.

Solution: y = C1xJ
2
ν (x) + C2xJν(x)Yν(x) + C3xY

2
ν (x), where Jν(x) and Yν(x) are

Bessel functions; 4ν2 = 1− a.

71. x3y′′′xxx + x[ax2 + 3b(1 − b)]y′x + 2b(ax2 + b2 − 1)y = 0.

1◦. Particular solutions with a > 0: y1 = xb sin
(
x
√
a
)
, y2 = xb cos

(
x
√
a
)
.

2◦. Particular solutions with a < 0: y1 = xb exp
(
−x√−a

)
, y2 = xb exp

(
x
√−a

)
.

3◦. Particular solutions with a = 0: y1 = xb, y2 = xb+1.

72. x3y′′′xxx + x(ax2 + bx+ c)y′x + (k − 1)(ax2 + bx+ c+ k2 + k)y = 0.

The substitution w = xy′x + (k − 1)y leads to a second-order linear equation of the form

14.1.2.131: x2w′′
xx − (k + 1)xw′

x + (ax2 + bx+ c+ k2 + k)w = 0.

73. x3y′′′xxx + axny′x + (b− 1)(axn−1 + b2 + b)y = 0.

The substitution w = xy′x + (b − 1)y leads to a second-order linear equation of the form

14.1.2.132: x2w′′
xx − (b+ 1)xw′

x + (axn−1 + b2 + b)w = 0.

74. x3y′′′xxx + x(axn + b)y′x − 2(axn + b)y = 0.

The substitution w = xy′x − 2y leads to a second-order linear equation of the form

14.1.2.118: x2w′′
xx + (axn + b)w = 0.

75. x3y′′′xxx + x(axn + b− c)y′x + (c− 1)(axn + b+ c2)y = 0.

The substitution w = xy′x + (c − 1)y leads to a second-order linear equation of the form

14.1.2.132: x2w′′
xx − (c+ 1)xw′

x + (axn + b+ c2)w = 0.



“K16435’ — 2017/9/28 — 15:05 — #864

838 THIRD-ORDER ORDINARY DIFFERENTIAL EQUATIONS

76. x3y′′′xxx + (ax2n + 1 − n2)xy′x + [bx3n + a(n− 1)x2n + n2 − 1]y = 0.

The transformation ξ = xn/n, z = xn−1y leads to a constant coefficient linear equation:

z′′′ξξξ + az′ξ + bz = 0.

77. x2(ax+ b)y′′′xxx + (cx− bm2 − bm)y′x + (m− 1)(c+ am2 + am)y = 0.

The substitution w = xy′x + (m− 1)y leads to a second-order linear equation of the form

14.1.2.172: x(ax+ b)w′′
xx − (m+ 1)(ax+ b)w′

x + (c+ am2 + am)w = 0.

78. x(ax2 + bx+ c)y′′′xxx + xy′x − 2y = 0.

The substitution w = xy′x − 2y leads to a second-order linear equation of the form

14.1.2.179: (ax2 + bx+ c)w′′
xx + w = 0.

79. x5y′′′xxx = a(xy′x − 2y).

Solution: y =

{
x2
[
C1 + C2 exp

(√
a/x

)
+ C3 exp

(
−
√
a/x

)]
if a > 0,

x2
[
C1 + C2 cos

(√
−a/x

)
+ C3 sin

(√
−a/x

)]
if a < 0.

80. x6y′′′xxx + ax2y′x + (b− 2ax)y = 0.

The transformation x = t−1, y = wt−2 leads to a constant coefficient linear equation of

the form 15.1.2.82 with a2 = 0: w′′′
ttt + aw′

t − bw = 0.

◮ Equations of the form f3(x)y
′′′

xxx + f2(x)y
′′

xx + f1(x)y
′

x + f0(x)y = g(x).

81. y′′′xxx + 3ay′′xx + 3a2y′x + a3y = 0.

Solution: y = e−ax(C1 + C2x+ C3x
2).

82. y′′′xxx + a2y
′′

xx + a1y
′

x + a0y = 0.

A third-order constant coefficient linear equation.

Denote P (λ) = λ3 + a2λ
2 + a1λ+ a0.

1◦. Let the characteristic polynomial P (λ) be factorizable:

P (λ) = (λ− λ1)(λ− λ2)(λ− λ3), where λ1, λ2, and λ3 are real numbers.

Solution: y =





C1e
λ1x + C2e

λ2x +C3e
λ3x if all the roots λk are different,

(C1 + C2x)e
λ1x + C3e

λ3x if λ1 = λ2 6= λ3,

(C1 + C2x+ C3x
2)eλ1x if λ1 = λ2 = λ3.

2◦. Let P (λ) = (λ− λ1)(λ2 + 2b1λ+ b0), where b21 < b0.

Solution: y = C1e
λ1x + e−b1x(C2 cosµx+ C3 sinµx), where µ =

√
b0 − b21.

83. y′′′xxx + ay′′xx + (bx+ c)y′x + (abx+ ac+ b)y = 0.

Integrating yields a second-order linear equation: y′′xx + (bx+ c)y = Ce−ax (see 14.1.2.2

for the solution of the corresponding homogeneous equation with C = 0).

84. y′′′xxx + 3ay′′xx + 2(bx+ a2)y′x + b(2ax+ 1)y = 0.

This is a special case of equation 15.1.2.113 with n = 0 and m = 1.
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85. y′′′xxx + ay′′xx + (bx2 + cx+ d)y′x + a(bx2 + cx+ d)y = 0.

The substitution w = y′x + ay leads to a second-order linear equation of the form 14.1.2.6:

w′′
xx + (bx2 + cx+ d)w = 0.

86. y′′′xxx + ay′′xx + bxny′x + abxny = 0.

The substitution w = y′x + ay leads to a second-order linear equation of the form 14.1.2.7:

w′′
xx + bxnw = 0.

87. y′′′xxx + 3axy′′xx + 3a2x2y′x + (a3x3 + b)y = 0.

The substitution y = w exp
(
− 1

2ax
2
)

leads to a constant coefficient linear equation of the

form 15.1.2.82 with a2 = 0: w′′′
xxx − 3aw′

x + bw = 0.

88. y′′′xxx + axy′′xx + (abx+ a− b2)y′x + aby = 0.

Particular solutions: y1 = e−bx, y2 = e−bx
∫
exp
(
2bx− 1

2ax
2
)
dx.

89. y′′′xxx + 3axy′′xx + (2a2x2 + a+ b)y′x + abxy = 0.

Solution: y = C1w
2
1 + C2w1w2 + C3w

2
2. Here, w1 and w2 are linearly independent

solutions of a second-order equation of the form 14.1.2.28: w′′
xx + axw′

x +
1
4 bw = 0.

90. y′′′xxx + 3axy′′xx + (2a2x2 + 2bx+ a)y′x + b(2ax2 + 1)y = 0.

This is a special case of equation 15.1.2.113 with n = 1 and m = 1.

91. y′′′xxx + 3axy′′xx + 3(a2x2 + a)y′x + (a3x3 + bx+ c)y = 0.

The substitution y = exp
(
− 1

2ax
2
)
w leads to a linear equation of the form 15.1.2.4:

w′′′
xxx + [(b− 3a2)x+ c]w = 0.

92. y′′′xxx + 3axy′′xx + [2(a2 + b)x2 + a]y′x + 2bx(ax2 + 1)y = 0.

This is a special case of equation 15.1.2.113 with n = 1 and m = 2.

93. y′′′xxx + (ax+ b)y′′xx + (abx+ a+ c)y′x + bcy = 0.

Integrating yields a second-order linear equation: y′′xx+axy
′
x+cy=Ce−bx (see 14.1.2.28

for the solution of the corresponding homogeneous equation with C = 0).

94. y′′′xxx + (abx+ a+ b)y′′xx + ab2xy′x − ab2y = 0.

Particular solutions: y1 = x, y2 = e−bx.

95. y′′′xxx + (ax+ b)y′′xx + [(ab+ c)x+ a]y′x + c(bx+ 1)y = 0.

Integrating yields a second-order linear equation: y′′xx+axy
′
x+cxy=Ce

−bx (see 14.1.2.28

for the solution of the corresponding homogeneous equation with C = 0).

96. y′′′xxx + (ax+ b+ c)y′′xx + (acx+ bc+ s)y′x + s(ax+ b)y = 0.

Particular solutions: y1 = eλ1x, y2 = eλ2x, where λ1 and λ2 are roots of the quadratic

equation λ2 + cλ+ s = 0.
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97. y′′′xxx + (ax+ b)y′′xx + (cx+ 2a)y′x + a[(c− ab)x2 + b]y = 0.

Particular solution: y0 = exp
(
− 1

2ax
2
)
. The substitution y = exp

(
− 1

2ax
2
)∫

z(x) dx

leads to a second-order linear equation of the form 14.1.2.31:

z′′xx + (b− 2ax)z′x + [a2x2 + (c− 2ab)x− a]z = 0.

98. y′′′xxx + (ax+ b)y′′xx + (cx+ d)y′x + [acx2 + (ad+ bc)x+ c+ bd]y = 0.

Integrating yields a second-order linear equation: y′′xx+(cx+d)y =C exp
(
− 1

2ax
2− bx

)

(see 14.1.2.2 for the solution of the corresponding homogeneous equation with C = 0).

99. y′′′xxx + (ax+ b)y′′xx + (αx2 + βx+ γ)y′x
− k[αx2 + (ak+ β)x+ k2 + bk + γ]y = 0.

The substitution w= y′x−ky leads to a second-order linear equation of the form 14.1.2.31:

w′′
xx + (ax+ b+ k)w′

x + [αx2 + (ak + β)x+ k2 + bk + γ]w = 0.

100. y′′′xxx − x2y′′xx + (a+ b− 1)xy′x − aby = 0.

The following three series, converging for any x, make up a fundamental set of solutions:

y1 = 1 +

∞∑

n=1

ab(a− 3)(b− 3) . . . (a− 3n+ 3)(b − 3n + 3)

(3n)!
x3n,

y2 = x+

∞∑

n=1

(a− 1)(b− 1)(a− 4)(b− 4) . . . (a− 3n+ 2)(b − 3n+ 2)

(3n + 1)!
x3n+1,

y3 =
x2

2
+

∞∑

n=1

(a− 2)(b− 2)(a − 5)(b− 5) . . . (a− 3n+ 1)(b− 3n+ 1)

(3n+ 2)!
x3n+2.

101. y′′′xxx + axny′′xx − 2axn−2y = 0.

The substitution w=xy′x−2y leads to a second-order linear equation of the form 14.1.2.45:

w′′
xx + axnw′

x + axn−1w = 0.

102. y′′′xxx + axny′′xx − by′x − abxny = 0.

1◦. Particular solutions with b > 0: y1 = exp(−x
√
b), y2 = exp(x

√
b).

2◦. Particular solutions with b < 0: y1 = cos
(
x
√
−b
)
, y2 = sin

(
x
√
−b
)
.

103. y′′′xxx + axny′′xx − 2axn−1y′x + 2axn−2y = 0.

Particular solutions: y1 = x, y2 = x2.

104. y′′′xxx + axny′′xx + bxn−1y′x − 2(a+ b)xn−2y = 0.

The substitution w=xy′x−2y leads to a second-order linear equation of the form 14.1.2.45:

w′′
xx + axnw′

x + (a+ b)xn−1w = 0.

105. y′′′xxx + axny′′xx + abxny′x + b2(axn − b)y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2 = exp

(
− 1

2 bx
)
sin
(√

3
2 bx

)
.
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106. y′′′xxx + axny′′xx − (axn−1 − bx2)y′x + bx(axn+1 + 3)y = 0.

Particular solutions: y1 = cos
(
1
2x

2
√
b
)
, y2 = sin

(
1
2x

2
√
b
)
.

107. y′′′xxx + axny′′xx + (abxn + anxn−1 − b2)y′x + abnxn−1y = 0.

Particular solutions: y1 = e−bx, y2 = e−bx
∫
exp
(
2bx− a

n+1x
n+1
)
dx.

108. y′′′xxx + axny′′xx + bxmy′x − bxm−1y = 0.

Particular solution: y0 = x.

109. y′′′xxx + axny′′xx + bxmy′x + bxm−1(axn+1 +m)y = 0.

The substitution w = y′′xx + bxmy leads to a first-order linear equation: w′
x + axnw = 0.

110. y′′′xxx + axny′′xx − b(2axn + 3b)y′x + b2(axn + 2b)y = 0.

Particular solutions: y1 = ebx, y2 = xebx.

111. y′′′xxx + axny′′xx + (abxn − b2 + c)y′x + c(axn − b)y = 0.

Particular solutions: y1 = eλ1x, y2 = eλ2x, where λ1 and λ2 are roots of the quadratic

equation λ2 + bλ+ c = 0.

112. y′′′xxx + axny′′xx + (bxm − c2)y′x − c(acxn + bxm)y = 0.

Particular solution: y0 = ecx.

113. y′′′xxx + 3axny′′xx + (2a2x2n + 2bxm + anxn−1)y′x
+ b(2axn+m +mxm−1)y = 0.

Solution: y = C1w
2
1 + C2w1w2 + C3w

2
2. Here, w1 and w2 form a fundamental set of

solutions of the second-order linear equation: w′′
xx + axnw′

x +
1
2 bx

mw = 0.

114. y′′′xxx = (xn − a)y′′xx + (axn − b)y′x + bxny.

Particular solutions: y1 = eλ1x, y2 = eλ2x, where λ1 and λ2 are roots of the quadratic

equation λ2 + aλ+ b = 0.

115. y′′′xxx+(axn+b)y′′xx+(acxn+bc+m)y′x+(m+c2)(axn+b−c)y=0.

Particular solutions: y1 = eλ1x, y2 = eλ2x, where λ1 and λ2 are roots of the quadratic

equation λ2 + cλ+m+ c2 = 0.

116. y′′′xxx + (axn − b)y′′xx + cxmy′x − b(abxn + cxm)y = 0.

Particular solution: y0 = ebx.

117. y′′′xxx + (xn + a)y′′xx + (axn + bxm)y′x + abxmy = 0.

Particular solution: y0 = e−ax.

118. y′′′xxx + (axn + c)y′′xx + [acxn + (an+ b)xn−1]y′x
+ b[cxn−1 + (n− 1)xn−2]y = 0.

Integrating yields a second-order linear equation: y′′xx + axny′x + bxn−1y = Ce−cx (see

14.1.2.45 for the solution of the corresponding homogeneous equation with C = 0).
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119. y′′′xxx + (axn + bx)y′′xx + b(axn+1 + 2)y′x + abxny = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
2
)
, y2 = exp

(
− 1

2 bx
2
) ∫

exp
(
1
2 bx

2
)
dx.

120. y′′′xxx + (axn + bx)y′′xx + (abxn+1 + bcx+ b− c2)y′x
+ c(abxn+1 − acxn + b)y = 0.

Particular solutions: y1 = e−cx, y2 = e−cx
∫
exp
(
2cx− 1

2 bx
2
)
dx.

121. y′′′xxx + (abxn + axn−1 + b)y′′xx + ab2xny′x − ab2xn−1y = 0.

Particular solutions: y1 = x, y2 = e−bx.

122. y′′′xxx + (axn + bxm)y′′xx + cy′x + c(axn + bxm)y = 0.

1◦. Particular solutions with c > 0: y1 = cos
(
x
√
c
)
, y2 = sin

(
x
√
c
)
.

2◦. Particular solutions with c < 0: y1 = exp
(
−x√−c

)
, y2 = exp

(
x
√−c

)
.

123. y′′′xxx + (axn + bxm)y′′xx + (abxn+m + bcxm + bmxm−1 − c2)y′x
+ c(abxn+m − acxn + bmxm−1)y = 0.

Particular solutions: y1 = e−cx, y2 = e−cx
∫
exp
(
2cx− bxm+1

m+1

)
dx.

124. xy′′′xxx + 3y′′xx + axy = 0.

The substitution w=xy leads to a constant coefficient linear equation of the form 15.1.2.1:

w′′′
xxx + aw = 0.

125. xy′′′xxx − 3ny′′xx + axy = 0, n = 0, 1, 2, . . .

Solution: y = x3n+2
( 1

x2
d

dx

)n( w
x2

)
, where w is the general solution of equation

15.1.2.1: w′′′
xxx + aw = 0.

126. 2xy′′′xxx + 3y′′xx + axy = b, a 6= 0.

Solution: y=

4∑

ν=1

Cν

∫ λν

0

exz dz√
2z3 + a

, where λ1, λ2, and λ3 are roots of the cubic equation

2λ3 + a = 0; λ4 = −∞ for x > 0 and λ4 = +∞ for x < 0. In addition, the constants Cν

are related by the constraint
√
a (C1 +C2 +C3 +C4) + b = 0, and the integrals are taken

along straight lines.

127. xy′′′xxx + 3y′′xx + ax2y = b.

The substitution w = xy leads to an equation of the form 15.1.2.3: w′′′
xxx + axw = b.

128. xy′′′xxx + 3y′′xx + ax4y = bx.

The substitution w = xy leads to an equation of the form 15.1.2.5: w′′′
xxx + ax3w = bx.

129. xy′′′xxx + ay′′xx + aby′x + b3xy = 0.

The substitution w=y′x+by leads to a second-order linear equation of the form 14.1.2.108:

xw′′
xx + (a− bx)w′

x + b2xw = 0.
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130. xy′′′xxx + (a+ b)y′′xx − xy′x − ay = 0, a > 0, b > 0.

Solution:

y =

3∑

ν=1

Cν

∫ βν

γν

|t|a−1|t2 − 1|(b−2)/2e−tx dt,

where γ1 =−1, β1 = γ2 = 0, β2 = 1; for x> 0, γ3 = 1 and β3 =+∞; for x < 0, γ3 =−∞
and β3 = −1.

131. xy′′′xxx + ay′′xx + (b− c2)xy′x − c(ac+ bx)y = 0.

The substitution w=y′x−cy leads to a second-order linear equation of the form 14.1.2.108:

xw′′
xx + (cx+ a)w′

x + (bx+ ac)w = 0.

132. xy′′′xxx + ay′′xx + [(c− b2)x+ ab]y′x + c(a− bx)y = 0.

Particular solutions: y1 = eλ1x, y2 = eλ2x, where λ1 and λ2 are roots of the quadratic

equation λ2 + bλ+ c = 0.

133. xy′′′xxx + ay′′xx + bxny′x + b(a+ n− 1)xn−1y = 0.

The substitution w = y′′xx + bxn−1y leads to a first-order linear equation: xw′
x + aw = 0.

134. xy′′′xxx + (ax+ b)y′′xx − a2by = 0.

The substitution w=y′x+ay leads to a second-order linear equation of the form 14.1.2.108:

xw′′
xx + bw′

x − abw = 0.

135. xy′′′xxx + (ax+ b)y′′xx + cxy′x − cy = 0.

The substitution w=xy′x−y leads to a second-order linear equation of the form 14.1.2.108:

xw′′
xx + (ax+ b− 1)w′

x + cxw = 0.

136. xy′′′xxx + (ax+ 3)y′′xx + (bx+ 2a)y′x + (cx+ b)y = 0.

The substitution w=xy leads to a constant coefficient linear equation of the form 15.1.2.82:

w′′′
xxx + aw′′

xx + bw′
x + cw = 0.

137. xy′′′xxx + (ax+ 3)y′′xx + a(bx+ 2)y′x + b[b(a − b)x+ a]y = 0.

Solution: y = x−1
[
C1e

(b−a)x + C2e
−bx/2 cos

(√
3
2 bx

)
+ C3e

−bx/2 sin
(√

3
2 bx

)]
.

138. xy′′′xxx + [a(b+ 1)x+ b]y′′xx + a2bxy′x − a2by = 0.

Particular solutions: y1 = x, y2 = e−ax.

139. xy′′′xxx − (x+ 2a)y′′xx − (x− 2a− 1)y′x + (x− 1)y = 0.

Solution: y = C1e
x + xa+1[C2Ia+1(x) + C3Ka+1(x)], where Ia(x) and Ka(x) are

modified Bessel functions.

140. 2xy′′′xxx − 4(x+ a− 1)y′′xx + (2x+ 6a− 5)y′x + (1 − 2a)y = 0.

Solution: y = C1e
x + xaex/2[C2Ia(x/2) + C3Ka(x/2)], where Ia(z) and Ka(z) are

modified Bessel functions.
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141. 2xy′′′xxx+3(2ax+k)y′′xx+6(bx+ak)y′x+(2cx+3bk)y = 0, k > 0.

Solution:

y =
4∑

ν=1

Cν

∫ λν

0
exz[P (z)](k−2)/2 dz, C4 = −C1 − C2 − C3,

where P (z) = z3 + 3az2 + 3bz + c; λ1, λ2, and λ3 are roots of this polynomial, which

are assumed to be different; λ4 = −∞ for x > 0 and λ4 = +∞ for x < 0.

142. xy′′′xxx + (ax+ b)y′′xx + [(ac+ s− c2)x+ bc]y′x + s[(a− c)x+ b]y = 0.

Particular solutions: y1 = eλ1x, y2 = eλ2x, where λ1 and λ2 are roots of the quadratic

equation λ2 + cλ+ s = 0.

143. xy′′′xxx + (ax2 + b+ 2)y′′xx − ab(b+ 1)y = 0.

This is a special case of equation 15.1.2.145 with n = 2.

144. xy′′′xxx + (ax2 + b)y′′xx + 4axy′x + 2ay = 0.

Integrating the equation twice, we arrive at a first-order linear equation:

xy′x + (ax2 + b− 2)y = C1 + C2x.

145. xy′′′xxx + (axn + b+ 2)y′′xx − ab(b+ 1)xn−2y = 0.

The substitution w=xy′x+by leads to a second-order linear equation of the form 14.1.2.45:

w′′
xx + axn−1w′

x − a(b+ 1)xn−2w = 0.

146. xy′′′xxx + (axn + 3)y′′xx + (2axn−1 + bx)y′x + b(axn + 1)y = 0.

Particular solutions: y1 = x−1 cos
(
x
√
b
)
, y2 = x−1 sin

(
x
√
b
)
.

147. xy′′′xxx+(axn+1+3)y′′xx+a(bx+2)xny′x+b(abx
n+1+axn−b2x)y=0.

Particular solutions: y1=x
−1 exp

(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2=x

−1 exp
(
− 1

2 bx
)
sin
(√

3
2 bx

)
.

148. xy′′′xxx+(axn+3)y′′xx+(abxn+2axn−1−b2x)y′x+b(axn−1−b)y= 0.

Particular solutions: y1 = x−1, y2 = x−1e−bx.

149. (ax+ b)y′′′xxx + [b(a+ 1)x+ b2 + 1]y′′xx + b2xy′x − b2y = 0.

Particular solutions: y1 = x, y2 = e−bx.

150. (ax+ b)y′′′xxx + k(ax+ b)y′′xx + (cx+ d)y′x + k(cx+ d)y = 0.

The substitution w=y′x+ky leads to a second-order linear equation of the form 14.1.2.108:

(ax+ b)w′′
xx + (cx+ d)w = 0.

151. (ax+ b)y′′′xxx + (cx+ d)y′′xx + [(aλ+ cµ)x+ bλ+ dµ]y′x
+ (λ+ µ2)[(c− aµ)x+ d− bµ]y = 0.

Particular solutions: y1 = exp(s1x), y2 = exp(s2x), where s1 and s2 are roots of the

quadratic equation s2 + µs+ λ+ µ2 = 0.
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152. (ax+ b)y′′′xxx + (cx+ d)y′′xx − k[(3ak+ 2c)x+ 3bk + 2d]y′x
+ k2[(2ak + c)x+ 2bk + d]y = 0.

Particular solutions: y1 = ekx, y2 = xekx.

153. (ax+b)y′′′xxx+(cx+d)y′′xx+sx(ax+b)y
′

x+s[cx
2+(a+d)x+b]y=0.

The substitution w = y′′xx + sxy leads to a first-order linear equation: (ax + b)w′
x +

(cx+ d)w = 0.

154. (1−x)y′′′xxx+x(ax−2a+1)y′′xx+(−ax2+2a−1)y′x+2a(x−1)y=0.

Particular solutions: y1 = x2, y2 = ex.

155. (ax+ b)y′′′xxx + (cx+ d)y′′xx + sxn(ax+ b)y′x
+ sxn−1[cx2 + (an+ d)x+ bn]y = 0.

The substitution w = y′′xx + sxny leads to a first-order linear equation: (ax + b)w′
x +

(cx+ d)w = 0.

156. (ax− 1)y′′′xxx+x(abxn+1−2bxn −a2)y′′xx+(2bxn −a2bxn+2 +a2)y′x
+ 2ab(ax− 1)xny = 0.

Particular solutions: y1 = x2, y2 = eax.

157. x2y′′′xxx + 3xy′′xx − 3y′x + ax2y + b = 0.

Solution: y = (w/x)′x, where the function w = w(x) satisfies a constant coefficient linear

equation of the form 15.1.2.2: w′′′
xxx + aw = b.

158. x2y′′′xxx + 6xy′′xx + 6y′x + ax2y = b.

The substitution w = x2y leads to a constant coefficient linear equation of the form

15.1.2.2: w′′′
xxx + aw = b.

159. x2y′′′xxx−3(n+m)xy′′xx+3n(3m+1)y′x−x2y=0, m, n=1, 2, 3, . . .

Solution:

y =

n−1∏

µ=0

(δ − 3µ− 1)

m−1∏

ν=0

(δ − 3ν − 2)

3∑

k=1

Cke
ωkx, δ = x

d

dx
,

where the ωk are three roots of the cubic equation ω3 = 1.

160. x2y′′′xxx + 6xy′′xx + 6y′x + ax3y = b.

The substitution w= x2y leads to a linear equation of the form 15.1.2.3: w′′′
xxx+axw= b.

161. x2y′′′xxx − 2(n+1)xy′′xx − (ax2 − 6n)y′x+2axy = 0, n= 1, 2, 3, . . .

Solution:

y =

{
C1 + C2x

4 + C3x
2n+1 if a = 0,

C1(ax
2 − 4n+ 2) + C2e

x
√
aP (x) + C3e

−x
√
aQ(x) if a 6= 0,

where P (x) and Q(x) are some polynomials of degree ≤ 2n+ 2.
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162. x2y′′′xxx + 3xy′′xx + (4a2x2a + 1 − 4a2b2)y′x + 4a3x2a−1y = 0.

Solution: y = C1J
2
b (x

a) + C2Jb(x
a)Yb(x

a) + C3Y
2
b (x

a), where Jb(z) and Yb(z) are

Bessel functions.

163. x2y′′′xxx + ax2y′′xx + (bx+ c)y′x + a(bx+ c)y = 0.

The substitution w=y′x+ay leads to a second-order linear equation of the form 14.1.2.111:

x2w′′
xx + (bx+ c)w = 0.

164. x2y′′′xxx + ax2y′′xx + (bxn + c)y′x + a(bxn + c)y = 0.

The substitution w=y′x+ay leads to a second-order linear equation of the form 14.1.2.118:

x2w′′
xx + (bxn + c)w = 0.

165. x2y′′′xxx − (x+ a)xy′′xx + a(2x+ 1)y′x − a(x+ 1)y = 0.

Solution: y = C1e
x + x(a+1)/2

[
C2Ja+1

(
2
√
ax
)
+ C3Ya+1

(
2
√
ax
)]
, where Ja(z) and

Ya(z) are Bessel functions.

166. x2y′′′xxx − (x2 − 2x)y′′xx − (x2 + a2 − 1
4
)y′x + (x2 − 2x+ a2 − 1

4
)y = 0.

Solution: y = C1e
x+
√
x
[
C2Ia(x)+C3Ka(x)

]
, where Ia(x) and Ka(x) are modified

Bessel functions.

167. x2y′′′xxx − 2x(x− 1)y′′xx + (x2 − 2x+ 1
4
− a2)y′x + (a2 − 1

4
)y = 0.

Solution: y = C1e
x +
√
x ex/2

[
C2Ia(x/2) +C3Ka(x/2)

]
, where Ia(z) and Ka(z) are

modified Bessel functions.

168. x2y′′′xxx − 3(x− a)xy′′xx + [2x2 + 4(b− a)x+ a(2a− 1)]y′x
− 2b(2x− 2a+ 1)y = 0.

Solution: y=C1w
2
1+C2w1w2+C3w

2
2. Here,w1 andw2 are a fundamental set of solutions

of a second-order linear equation of the form 14.1.2.108: xw′′
xx + (a− x)w′

x + bw = 0.

169. x2y′′′xxx + x[(a+ c)x+ b]y′′xx + [(ac+ α)x2 + (bc+ β)x+ γ]y′x
+ c(αx2 + βx+ γ)y = 0.

The substitution w= y′x+cy leads to a second-order linear equation of the form 14.1.2.146

with n = 1: x2w′′
xx + x(ax+ b)w′

x + (αx2 + βx+ γ)w = 0.

170. x2y′′′xxx+(axn+1+bx)y′′xx+[a(b−2)xn+c]y′x+a(c−b+2)xn−1y=0.

Particular solutions: y1 = xm1 , y2 = xm2 , where m1 and m2 are roots of the quadratic

equation m2 + (b− 3)m+ c− b+ 2 = 0.

171. 2x(x− 1)y′′′xxx + 3(2x− 1)y′′xx + (2ax+ b)y′x + ay = 0.

Solution: y = C1w
2
1 + C2w1w2 + C3w

2
2. Here, w1 and w2 form a fundamental set of

solutions of the equation 2x(x − 1)w′′
xx + (2x− 1)w′

x +
(
1
2ax+ 1

4 b− 1
2

)
w = 0, which

is reduced, by means of the substitution x = cos2 ξ, to the Mathieu equation 2.1.6.29:

2w′′
ξξ = (a+ b− 2 + a cos 2ξ)w.
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172. (a2x
2 + a1x+ a0)y

′′′

xxx + (b1x+ b0)y
′′

xx + (c1x+ c0)y
′

x −mc1y = 0.

Here, c1 6= 0 and m is a positive integer. A solution of this equation is a polynomial of

degree m that can represented as follows:

y =

m∑

k=0

(
− 1

c1

)k{
xmIx−m−1[(ax2 + a1x+ a0)D

3 + (b1x+ b0)D
2 + c0D]

}k
xm,

where D =
d

dx
, Ixν =

xν+1

ν + 1
with ν 6= −1.

173. x3y′′′xxx + 6x2y′′xx + (ax3 − 12)y + 2b = 0.

Solution: y = (w/x2)′x, where w = w(x) satisfies a constant coefficient linear equation

of the form 15.1.2.2: w′′′
xxx + aw = b.

174. x3y′′′xxx + ax2y′′xx + bxy′x + (a− 2)by = 0.

This is a special case of equation 15.1.2.175. Solution: y = C1x
2−a + C2x

n1 + C3x
n2 ,

where n1 and n2 are roots of the quadratic equation n2 − n+ b = 0.

175. x3y′′′xxx + ax2y′′xx + bxy′x + cy = 0.

The Euler equation. The substitution t=ln |x| leads to a constant coefficient linear equation

of the form 15.1.2.82: y′′′ttt + (a− 3)y′′tt + (2− a+ b)y′t + cy = 0.

176. x3y′′′xxx + 3ax2y′′xx + 3a(a− 1)xy′x + [bx3 + a(a− 1)(a− 2)]y = 0.

The substitution w=xay leads to a constant coefficient linear equation of the form 15.1.2.1:

w′′′
xxx + bw = 0.

177. x3y′′′xxx + 3ax2y′′xx + 3a(a− 1)xy′x + [bxn + a(a− 1)(a− 2)]y = 0.

The substitution w = xay leads to an equation of the form 3.1.2.7: w′′′
xxx + bxn−3w = 0.

178. x3y′′′xxx + 3(1 − a)x2y′′xx + x[4b2c2x2c + 1 − 4ν2c2 + 3a(a− 1)]y′x
+ [4b2c2(c− a)x2c + a(4ν2c2 − a2)]y = 0.

Solution: y = C1x
aJ2

ν (bx
c) + C2x

aJν(bx
c)Yν(bx

c) + C3x
aY 2

ν (bx
c), where Jν(u) and

Yν(u) are Bessel functions.

179. x3y′′′xxx + (ax2 + b)y′′xx + 2(2a− 9)xy′x + 2(a− 6)y = 0.

Integrating the equation twice, we arrive at a first-order linear equation:

x3y′x + [(a− 6)x2 + b]y = C1 + C2x.

180. x3y′′′xxx + x2(ax+ b)y′′xx + cxy′x + c(ax+ b− 2)y = 0.

Particular solutions: y1 = xn1 , y2 = xn2 , where n1 and n2 are roots of the quadratic

equation n2 − n+ c = 0.

181. x3y′′′xxx+x
2(2ax+b)y′′xx+x(a

2x2+2abx+c)y′x+(a2bx2+bc−2c)y=0.

Particular solutions: y1 = e−axxn1 , y2 = e−axxn2 , where n1 and n2 are roots of the

quadratic equation n2 − n+ c = 0.
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182. x3y′′′xxx + axny′′xx + bxy′x + b(axn−2 − 2)y = 0.

Particular solutions: y1 = xm1 , y2 = xm2 , where m1 and m2 are roots of the quadratic

equation m2 −m+ b = 0.

183. x3y′′′xxx + x2(axn + b)y′′xx + x(axn + b− 1)y′x + (axn + b− 3)y = 0.

Particular solutions: y1 = cos(lnx), y2 = sin(lnx).

184. x3y′′′xxx + x2(axn + b+ c+ 1)y′′xx
+ x[αx2n + (ac+ β)xn + γ + bc]y′x + (c− 1)(αx2n + βxn + γ)y = 0.

The substitution w = xy′x + (c − 1)y leads to a second-order linear equation of the form

14.1.2.146: x2w′′
xx + x(axn + b)w′

x + (αx2n + βxn + γ)w = 0.

185. (ax+b)x3y′′′xxx+(cx+d)x2y′′xx+s(ax+b)xy
′

x+s[(c−2a)x+d−2b]y=0.

Particular solutions: y1 = xn1 , y2 = xn2 , where n1 and n2 are roots of the quadratic

equation n2 − n+ s = 0.

186. x6y′′′xxx + 6x5y′′xx − ay + 2bx = 0.

The substitution x = t−1 leads to an equation of the form 15.1.2.62:

t2y′′′ttt − 6y′t + at2y − 2bt = 0.

187. x2(xn + a)y′′′xxx + x(bxk+1 + 2nxn + cx)y′′xx
+ [2bkxk+1 + n(n− 1)xn]y′x + bk(k− 1)xky = 0.

Integrating the equation twice, we arrive at a first-order linear equation: (xn + a)y′x +
(bxk + c)y = C1 + C2x.

15.1.3 Equations Containing Exponential Functions

◮ Equations with exponential functions.

1. y′′′xxx − aeλx(a2e2λx + 3aλeλx + λ2)y = 0.

Particular solution: y0 = exp
( a
λ
eλx
)

. The substitution y = exp
( a
λ
eλx
)∫

z(x) dx leads

to a second-order linear equation of the form 14.1.3.27:

z′′xx + 3aeλxz′x + (3a2e2λx + 3aλeλx)z = 0.

2. y′′′xxx + aeλxy′x + aλeλxy = beµx.

Integrating yields a second-order linear equation: y′′xx+ae
λxy= bµ−1eµx+C (see 14.1.3.1

for the solution of the corresponding homogeneous equation with b = C = 0).

3. y′′′xxx + aeλxy′x + b(aeλx + b2)y = 0.

The substitution w = y′x+ by leads to a second-order linear equation of the form 14.1.3.10:

w′′
xx − bw′

x + (aeλx + b2)w = 0.

4. y′′′xxx + aeλxy′x + [a(λ− b)eλx − b3]y = 0.

Integrating yields a second-order linear equation: y′′xx + by′x + (aeλx + b2)y = Cebx (see

14.1.3.10 for the solution of the corresponding homogeneous equation with C = 0).
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5. y′′′xxx + (aeλx − b2)y′x + abeλxy = 0.

The substitution w = y′x+ by leads to a second-order linear equation of the form 14.1.3.10:

w′′
xx − bw′

x + aeλxw = 0.

6. y′′′xxx + (aeλx − b2)y′x + a(λ− b)eλxy = 0.

Integrating yields a second-order linear equation: y′′xx+by
′
x+ae

λxy=Cebx (see 14.1.3.10

for the solution of the corresponding homogeneous equation with C = 0).

7. y′′′xxx + (aeλx + b)y′x + c(aeλx + b+ c2)y = 0.

The substitution w = y′x+ cy leads to a second-order linear equation of the form 14.1.3.10:

w′′
xx − cw′

x + (aeλx + b+ c2)w = 0.

8. y′′′xxx + (ae2λx + beλx)y′x − c(ae2λx + beλx + c2)y = 0.

The substitution w = y′x− cy leads to a second-order linear equation of the form 14.1.3.27:

w′′
xx + cw′

x + (ae2λx + beλx + c2)w = 0.

9. y′′′xxx − 3aeλx(aeλx + λ)y′x + aeλx(2a2e2λx − λ2)y = 0.

Particular solutions: y1 = exp
(

a
λ e

λx
)

, y2 = x exp
(

a
λ e

λx
)

.

10. y′′′xxx − (3a2e2λx + 3aλeλx + b)y′x + aeλx(2a2e2λx − 2b− λ2)y = 0.

1◦. Particular solutions with b > 0:

y1 = exp
( a
λ
eλx − x

√
b
)
, y2 = exp

( a
λ
eλx + x

√
b
)
.

2◦. Particular solutions with b < 0:

y1 = exp
( a
λ
eλx
)
cos
(
x
√
−b
)
, y2 = exp

( a
λ
eλx
)
sin
(
x
√
−b
)
.

11. y′′′xxx + ay′′xx + beλxy′x + abeλxy = 0.

The substitution w = y′x + ay leads to a second-order linear equation of the form 14.1.3.1:

w′′
xx + beλxw = 0.

12. y′′′xxx + ay′′xx + (beλx + c)y′x + [b(a+ λ)eλx + ac]y = 0.

Integrating yields a second-order linear equation: y′′xx+(beλx+c)y=Ce−ax (see 14.1.3.2

for the solution of the corresponding homogeneous equation with C = 0).

13. y′′′xxx + ay′′xx + (be2λx + ceλx)y′x + a(be2λx + ceλx)y = 0.

The substitution w= y′x+ay leads to a second-order linear equation of the form 14.1.3.27:

w′′
xx + (be2λx + ceλx)w = 0.

14. y′′′xxx + aeλxy′′xx − b2(aeλx + b)y = 0.

The substitution w = y′x− by leads to a second-order linear equation of the form 14.1.3.27:

w′′
xx + (aeλx + b)w′

x + b(aeλx + b)w = 0.

15. y′′′xxx + aeλxy′′xx − by′x − abeλxy = 0.

1◦. Particular solutions with b > 0: y1 = exp
(
−x
√
b
)
, y2 = exp

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = cos
(
x
√
−b
)
, y2 = sin

(
x
√
−b
)
.
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16. y′′′xxx + aeλxy′′xx + abeλxy′x + b3y = 0.

The substitution w = y′x+ by leads to a second-order linear equation of the form 14.1.3.27:

w′′
xx + (aeλx − b)w′

x + b2w = 0.

17. y′′′xxx + aeλxy′′xx + abeλxy′x + b2(aeλx − b)y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2 = exp

(
− 1

2 bx
)
sin
(√

3
2 bx

)
.

18. y′′′xxx + aeλxy′′xx − b(2aeλx + 3b)y′x + b2(aeλx + 2b)y = 0.

Particular solutions: y1 = ebx, y2 = xebx.

19. y′′′xxx + aeλxy′′xx + (beµx − c2)y′x − c(aceλx + beµx)y = 0.

Particular solution: y0 = ecx.

20. y′′′xxx + aeλxy′′xx + (abeλx − b2 + c)y′x + c(aeλx − b)y = 0.

Particular solutions: y1 = eβ1x, y2 = eβ2x, where β1 and β2 are roots of the quadratic

equation β2 + bβ + c = 0.

21. y′′′xxx + aeλxy′′xx + [a(b+ λ)eλx − b2]y′x + abλeλxy = 0.

Particular solutions: y1 = e−bx, y2 = e−bx
∫
exp
(
2bx− a

λ e
λx
)
dx.

22. y′′′xxx + (aeλx + b)y′′xx − ab2eλxy = 0.

The substitution w = y′x+ by leads to a second-order linear equation of the form 14.1.3.27:

w′′
xx + aeλxw′

x − abeλxw = 0.

23. y′′′xxx + (aeλx + b)y′′xx − c2(aeλx + b+ c)y = 0.

The substitution w = y′x− cy leads to a second-order linear equation of the form 14.1.3.27:

w′′
xx + (aeλx + b+ c)w′

x + c(aeλx + b+ c)w = 0.

24. y′′′xxx + (aeλx + b)y′′xx + c(aeλx + b)y′x + c3y = 0.

The substitution w = y′x+ cy leads to a second-order linear equation of the form 14.1.3.27:

w′′
xx + (aeλx + b− c)w′

x + c2w = 0.

25. y′′′xxx + (beax + 2a)y′′xx − a(beax + a)y′x − 2a3y = 0.

Particular solutions: y1 = eax, y2 = e−ax + b/a.

26. y′′′xxx = (eλx − a)y′′xx + (aeλx − b)y′x + beλxy.

Particular solutions: y1 = eβ1x, y2 = eβ2x, where β1 and β2 are roots of the quadratic

equation β2 + aβ + b = 0.

27. y′′′xxx+(aeλx+b)y′′xx+(ceλx+d)y′x−s[(as+c)eλx+bs+d+s2]y = 0.

The substitution w= y′x−sy leads to a second-order linear equation of the form 14.1.3.27:

w′′
xx + (aeλx + b+ s)w′

x + [(as + c)eλx + bs+ d+ s2]w = 0.

28. y′′′xxx+(aeλx+b)y′′xx+(ce2λx+d)y′x−s(ce2λx+aseλx+bs+d+s2)y=0.

The substitution w= y′x−sy leads to a second-order linear equation of the form 14.1.3.27:

w′′
xx + (aeλx + b+ s)w′

x + (ce2λx + aseλx + bs+ d+ s2)w = 0.
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29. y′′′xxx + (aeλx + b)y′′xx + (ceλx + d)y′x − keλx[k(a+ k)e2λx

+ (aλ+ 3kλ+ bk + c)eλx + λ2 + bλ+ d]y = 0.

Particular solution: y0 =exp
( k
λ
eλx
)

. The substitution y=exp
( k
λ
eλx
)∫

z(x) dx leads

to a second-order linear equation of the form 14.1.3.27.

30. y′′′xxx + (2aeλx + b)y′′xx + aeλx(aeλx + 2b+ 3λ)y′x
+ aeλx[a(b+ 2λ)eλx + bλ+ λ2]y = 0.

Particular solutions: y1 = exp
(
− a
λ
eλx
)

, y2 = x exp
(
− a
λ
eλx
)

.

31. y′′′xxx + (aeλx − b)y′′xx + ceµxy′x − b(abeλx + ceµx)y = 0.

Particular solution: y0 = ebx.

32. y′′′xxx + (eλx + a)y′′xx + (aeλx + beµx)y′x + abeµxy = 0.

Particular solution: y0 = e−ax.

33. y′′′xxx + (aeλx + beµx)y′′xx + cy′x + c(aeλx + beµx)y = 0.

The substitution w = y′′xx + cy leads to a first-order linear equation:

w′
x + (aeλx + beµx)w = 0.

34. y′′′xxx + (aeλx + beνx)y′′xx + [abe(λ+ν)x + b(c+ ν)eνx − c2]y′x
+ c[abe(λ+ν)x − aceλx + bνeνx]y = 0.

Particular solutions: y1 = e−cx, y2 = e−cx

∫
exp
(
2cx− b

ν
eνx
)
dx.

35. y′′′xxx + aeλx(beµx + 2µ)y′′xx − µ[abe(λ+µ)x + µ]y′x − 2aµ3eλxy = 0.

Particular solutions: y1 = eµx, y2 = e−µx + b/µ.

36. (aex + b)y′′′xxx − aexy = 0.

Particular solution: y0 = aex + b.

37. (bceax + a+ c)y′′′xxx − (bc3eax + a3 + c3)y′x + ac(a2 − c2)y = 0.

Particular solutions: y1 = ecx, y2 = e−ax + b.

38. (aeλx + b)y′′′xxx + (ceλx + d)y′′xx + k(aeλx + b)y′x + k(ceλx + d)y = 0.

1◦. Particular solutions with k > 0: y1 = cos
(
x
√
k
)
, y2 = sin

(
x
√
k
)
.

2◦. Particular solutions with k < 0: y1 = exp
(
−x
√
−k
)
, y2 = exp

(
x
√
−k
)
.

◮ Equations with power and exponential functions.

39. y′′′xxx + aeλxy′x + bx(aeλx + b2x2 − 3b)y = 0.

Particular solution: y0 = exp
(
− 1

2 bx
2
)
.

40. y′′′xxx + (ax+ b)eλxy′x − aeλxy = 0.

Particular solution: y0 = ax+ b.
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41. y′′′xxx + (ax+ b)eλxy′x − 2aeλxy = 0.

Particular solution: y0 = (ax+ b)2.

42. y′′′xxx + aeλxy′′xx + bxny′x + bxn−1(axeλx + n)y = 0.

The substitution w = y′′xx + bxny leads to a first-order linear equation: w′
x + aeλxw = 0.

43. y′′′xxx + axeλxy′′xx + (bx2 − aeλx)y′x + bx(ax2eλx + 3)y = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
1
2x

2
√
b
)
, y2 = sin

(
1
2x

2
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
− 1

2x
2
√
−b
)
, y2 = exp

(
− 1

2x
2
√
−b
)
.

44. y′′′xxx + ax2eλxy′′xx − 2axeλxy′x + 2aeλxy = 0.

Particular solutions: y1 = x, y2 = x2.

45. y′′′xxx + (ax+ beλx)y′′xx + a(bxeλx + 2)y′x + abeλxy = 0.

Particular solutions: y1 = exp
(
− 1

2ax
2
)
, y2 = exp

(
− 1

2ax
2
) ∫

exp
(
1
2ax

2
)
dx.

46. y′′′xxx + (abxeλx + beλx + a)y′′xx + a2bxeλxy′x − a2beλxy = 0.

Particular solutions: y1 = x, y2 = e−ax.

47. y′′′xxx + axn(beλx + 2λ)y′′xx − λ(abxneλx + λ)y′x − 2aλ3xny = 0.

Particular solutions: y1 = eλx, y2 = e−λx + b/λ.

48. y′′′xxx + (axn − 2beλx)y′′xx − beλx(2axn − beλx + 3λ)y′x
+ beλx[axn(beλx − λ) + 2bλeλx − λ2]y = 0.

Particular solutions: y1 = exp
( b
λ
eλx
)

, y2 = x exp
( b
λ
eλx
)

.

49. xy′′′xxx + ay′′xx + x(beλx + c)y′x + [b(λx+ a)eλx + ac]y = 0.

The substitution w= y′′xx+(beλx+c)y leads to a first-order linear equation: xw′
x+aw=0.

50. xy′′′xxx + axeλxy′x − 2aeλxy = 0.

The substitution w= xy′x−2y leads to a second-order linear equation of the form 14.1.3.1:

w′′
xx + aeλxw = 0.

51. xy′′′xxx = (eλx − ax)y′′xx + (aeλx − bx)y′x + beλxy.

Particular solutions: y1 = eβ1x, y2 = eβ2x, where β1 and β2 are roots of the quadratic

equation β2 + aβ + b = 0.

52. xy′′′xxx+(axeλx+3)y′′xx+a(bx+2)eλxy′x+b(abxe
λx+aeλx−b2x)y=0.

Particular solutions:

y1 = x−1 exp
(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2 = x−1 exp

(
− 1

2 bx
)
sin
(√

3
2 bx

)
.

53. x2y′′′xxx+x(axe
λx+b)y′′xx+[a(b−2)xeλx+c]y′x+a(c−b+2)eλxy= 0.

Particular solutions: y1 = xn1 , y2 = xn2 , where n1 and n2 are roots of the quadratic

equation n2 + (b− 3)n+ c− b+ 2 = 0.
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54. x3y′′′xxx + bx2eλxy′′xx + axy′x + a(beλx − 2)y = 0.

Particular solutions: y1 = xn1 , y2 = xn2 , where n1 and n2 are roots of the quadratic

equation n2 − n+ a = 0.

55. x3y′′′xxx + x2(aeλx + b)y′′xx + x(abeλx + c− b)y′x + c(aeλx − 2)y = 0.

Particular solutions: y1 = xn1 , y2 = xn2 , where n1 and n2 are roots of the quadratic

equation n2 + (b− 1)n+ c = 0.

56. (aex + bx)y′′′xxx − aexy = 0.

Particular solution: y0 = aex + bx.

57. (aex + bx2)y′′′xxx − aexy = 0.

Particular solution: y0 = aex + bx2.

58. (axex + b)y′′′xxx + by = 0.

Particular solution: y0 = ax+ be−x.

59. (ax2ex + b)y′′′xxx + by = 0.

Particular solution: y0 = ax2 + be−x.

15.1.4 Equations Containing Hyperbolic Functions

◮ Equations with hyperbolic sine.

1. y′′′xxx + ay′′xx + b sinh2 x y′x + ab sinh2 x y = 0.

The substitution w = y′x + ay leads to a second-order linear equation of the form 14.1.4.1:

w′′
xx + b sinh2 xw = 0.

2. y′′′xxx + a sinhn(λx)y′′xx + by′x + ab sinhn(λx)y = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
x
√
b
)
, y2 = sin

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
−x
√
−b
)
, y2 = exp

(
x
√
−b
)
.

3. y′′′xxx + a sinhn(λx)y′′xx + bxmy′x + bxm−1[ax sinhn(λx) +m]y = 0.

The substitution w = y′′xx + bxmy leads to a first-order linear equation:

w′
x + a sinhn(λx)w = 0.

4. y′′′xxx + a sinhn(λx)y′′xx + ab sinhn(λx)y′x + b2[a sinhn(λx) − b]y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2 = exp

(
− 1

2 bx
)
sin
(√

3
2 bx

)
.

5. y′′′xxx+a sinhn(λx)y′′xx−b[2a sinhn(λx)+3b]y′x+b
2[a sinhn(λx)+2b]y=0.

Particular solutions: y1 = ebx, y2 = xebx.

6. y′′′xxx + a sinhnx y′′xx + (ab sinhnx+ c− b2)y′x + c(a sinhnx− b)y = 0.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + bλ+ c = 0.
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7. y′′′xxx + ax sinhnx y′′xx + (bx2 − a sinhnx)y′x + bx(ax2 sinhnx+ 3)y = 0.

Particular solutions: y1 = cos
(
1
2x

2
√
b
)
, y2 = sin

(
1
2x

2
√
b
)
.

8. y′′′xxx + ax2 sinhn(λx)y′′xx − 2ax sinhn(λx)y′x + 2a sinhn(λx)y = 0.

Particular solutions: y1 = x, y2 = x2.

9. y′′′xxx = (sinhnx− a)y′′xx + (a sinhnx− b)y′x + b sinhnx y.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + aλ+ b = 0.

10. y′′′xxx + (a sinhnx+ bx)y′′xx + b(ax sinhnx+ 2)y′x + ab sinhnx y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
2
)
, y2 = exp

(
− 1

2 bx
2
) ∫

exp
(
1
2 bx

2
)
dx.

11. xy′′′xxx + x(a sinh2 x+ b)y′x − 2(a sinh2 x+ b)y = 0.

The substitution w= xy′x−2y leads to a second-order linear equation of the form 14.1.4.1:

w′′
xx + (a sinh2 x+ b)w = 0.

12. x2y′′′xxx + (ax2 sinhnx+ bx)y′′xx + [a(b− 2)x sinhnx+ c]y′x
+ a(c− b+ 2) sinhnx y = 0.

Particular solutions: y1 = xm1 , y2 = xm2 , where m1 and m2 are roots of the quadratic

equation m2 + (b− 3)m+ c− b+ 2 = 0.

13. x3y′′′xxx + x2(a sinhnx+ b)y′′xx + x(ab sinhnx+ c− b)y′x
+ c(a sinhnx− 2)y = 0.

Particular solutions: y1 = xm1 , y2 = xm2 , where m1 and m2 are roots of the quadratic

equation m2 + (b− 1)m+ c = 0.

14. sinhnx y′′′xxx + ay′′xx + aby′x + b2(a− b sinhnx)y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2 = exp

(
− 1

2 bx
)
sin
(√

3
2 bx

)
.

15. sinhnx y′′′xxx + ay′′xx + b sinhnx y′x + aby = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
x
√
b
)
, y2 = sin

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
−x
√
−b
)
, y2 = exp

(
x
√
−b
)
.

16. sinhnx y′′′xxx + ay′′xx − b(2a+ 3b sinhnx)y′x + b2(a+ 2b sinhnx)y = 0.

Particular solutions: y1 = ebx, y2 = xebx.

17. sinhnx y′′′xxx + y′′xx + [(b− a2) sinhnx+ a]y′x + b(1 − a sinhnx)y = 0.

Particular solutions: y1 = eλ1x, y2 = eλ2x, where λ1 and λ2 are roots of the quadratic

equation λ2 + aλ+ b = 0.

18. sinhn(λx)y′′′xxx + ax2y′′xx − 2axy′x + 2ay = 0.

Particular solutions: y1 = x, y2 = x2.

19. sinhnx y′′′xxx + (a sinhnx+ ax+ 1)y′′xx + a2xy′x − a2y = 0.

Particular solutions: y1 = x, y2 = e−ax.
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20. sinhnx y′′′xxx + (ax sinhnx+ 1)y′′xx + a(x+ 2 sinhnx)y′x + ay = 0.

Particular solutions: y1 = exp
(
− 1

2ax
2
)
, y2 = exp

(
− 1

2ax
2
) ∫

exp
(
1
2ax

2
)
dx.

21. x sinhnx y′′′xxx+(3 sinhnx+x)y′′xx+(ax sinhnx+2)y′x+a(sinhnx+x)y=0.

Particular solutions: y1 = x−1 cos
(
x
√
a
)
, y2 = x−1 sin

(
x
√
a
)
.

22. x3 sinhnx y′′′xxx + ax2y′′xx − 2x sinhnx y′x + 2(2 sinhnx− a)y = 0.

Particular solutions: y1 = x−1, y2 = x2.

23. x3 sinhnx y′′′xxx + ax2y′′xx − 6x sinhnx y′x + 6(2 sinhnx− a)y = 0.

Particular solutions: y1 = x−2, y2 = x3.

24. x3 sinhnx y′′′xxx + ax2y′′xx + x(a− sinhnx)y′x + (a− 3 sinhnx)y = 0.

Particular solutions: y1 = cos(lnx), y2 = sin(ln x).

25. x3 sinhnx y′′′xxx + x2(sinhnx+ a)y′′xx + x[a− (b+ 1) sinhnx]y′x
+ b(2 sinhnx− a)y = 0.

Particular solutions: y1 = x−
√
b, y2 = x

√
b.

◮ Equations with hyperbolic cosine.

26. y′′′xxx + ay′′xx + b cosh(2x)y′x + ab cosh(2x)y = 0.

The substitution w = y′x + ay leads to a second-order linear equation of the form 14.1.4.9:

w′′
xx + b cosh(2x)w = 0.

27. y′′′xxx + ay′′xx + b cosh2 x y′x + ab cosh2 x y = 0.

The substitution w= y′x+ay leads to a second-order linear equation of the form 14.1.4.10:

w′′
xx + b cosh2 xw = 0.

28. y′′′xxx + a coshn(λx)y′′xx + by′x + ab coshn(λx)y = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
x
√
b
)
, y2 = sin

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
−x
√
−b
)
, y2 = exp

(
x
√
−b
)
.

29. y′′′xxx + a coshn(λx)y′′xx + bxmy′x + bxm−1[ax coshn(λx) +m]y = 0.

The substitution w = y′′xx + bxmy leads to a first-order linear equation:

w′
x + a coshn(λx)w = 0.

30. y′′′xxx + a coshn(λx)y′′xx + ab coshn(λx)y′x + b2[a coshn(λx)− b]y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2 = exp

(
− 1

2 bx
)
sin
(√

3
2 bx

)
.

31. y′′′xxx + a coshn(λx)y′′xx − b[2a coshn(λx) + 3b]y′x
+ b2[a coshn(λx) + 2b]y = 0.

Particular solutions: y1 = ebx, y2 = xebx.



“K16435’ — 2017/9/28 — 15:05 — #882

856 THIRD-ORDER ORDINARY DIFFERENTIAL EQUATIONS

32. y′′′xxx + a coshnx y′′xx + (ab coshnx+ c− b2)y′x + c(a coshnx− b)y = 0.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + bλ+ c = 0.

33. y′′′xxx + ax coshnx y′′xx + (bx2 − a coshnx)y′x + bx(ax2 coshnx+ 3)y = 0.

Particular solutions: y1 = cos
(
1
2x

2
√
b
)
, y2 = sin

(
1
2x

2
√
b
)
.

34. y′′′xxx + ax2 coshn(λx)y′′xx − 2ax coshn(λx)y′x + 2a coshn(λx)y = 0.

Particular solutions: y1 = x, y2 = x2.

35. y′′′xxx = (coshnx− a)y′′xx + (a coshnx− b)y′x + b coshnx y.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + aλ+ b = 0.

36. y′′′xxx + (a coshnx+ bx)y′′xx + b(ax coshnx+ 2)y′x + ab coshnx y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
2
)
, y2 = exp

(
− 1

2 bx
2
) ∫

exp
(
1
2 bx

2
)
dx.

37. xy′′′xxx + x[a cosh(2x) + b]y′x − 2[a cosh(2x) + b]y = 0.

The substitution w= xy′x−2y leads to a second-order linear equation of the form 14.1.4.9:

w′′
xx + [a cosh(2x) + b]w = 0.

38. xy′′′xxx + x(a cosh2 x+ b)y′x − 2(a cosh2 x+ b)y = 0.

The substitution w=xy′x−2y leads to a second-order linear equation of the form 14.1.4.10:

w′′
xx + (a cosh2 x+ b)w = 0.

39. xy′′′xxx = (coshnx− ax)y′′xx + (a coshnx− bx)y′x + b coshnx y.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + aλ+ b = 0.

40. x2y′′′xxx + (ax2 coshnx+ bx)y′′xx + [a(b− 2)x coshnx+ c]y′x
+ a(c− b+ 2) coshnx y = 0.

Particular solutions: y1 = xm1 , y2 = xm2 , where m1 and m2 are roots of the quadratic

equation m2 + (b− 3)m+ c− b+ 2 = 0.

41. x3y′′′xxx + x2(a coshnx+ b)y′′xx + x(ab coshnx+ c− b)y′x
+ c(a coshnx− 2)y = 0.

Particular solutions: y1 = xm1 , y2 = xm2 , where m1 and m2 are roots of the quadratic

equation m2 + (b− 1)m+ c = 0.

42. coshnx y′′′xxx + ay′′xx + aby′x + b2(a− b coshnx)y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2 = exp

(
− 1

2 bx
)
sin
(√

3
2 bx

)
.

43. coshnx y′′′xxx + ay′′xx + b coshnx y′x + aby = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
x
√
b
)
, y2 = sin

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
−x
√
−b
)
, y2 = exp

(
x
√
−b
)
.
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44. coshnx y′′′xxx + ay′′xx − b(2a+ 3b coshnx)y′x + b2(a+ 2b coshnx)y = 0.

Particular solutions: y1 = ebx, y2 = xebx.

45. coshnx y′′′xxx + y′′xx + [(b− a2) coshnx+ a]y′x + b(1− a coshnx)y = 0.

Particular solutions: y1 = eλ1x, y2 = eλ2x, where λ1 and λ2 are roots of the quadratic

equation λ2 + aλ+ b = 0.

46. coshn(λx)y′′′xxx + ax2y′′xx − 2axy′x + 2ay = 0.

Particular solutions: y1 = x, y2 = x2.

47. coshnx y′′′xxx + (a coshnx+ ax+ 1)y′′xx + a2xy′x − a2y = 0.

Particular solutions: y1 = x, y2 = e−ax.

48. coshnx y′′′xxx + (ax coshnx+ 1)y′′xx + a(x+ 2 coshnx)y′x + ay = 0.

Particular solutions: y1 = exp
(
− 1

2ax
2
)
, y2 = exp

(
− 1

2ax
2
) ∫

exp
(
1
2ax

2
)
dx.

49. x coshnx y′′′xxx + (3 coshnx+ x)y′′xx + (ax coshnx+ 2)y′x
+ a(coshnx+ x)y = 0.

Particular solutions: y1 = x−1 cos
(
x
√
a
)
, y2 = x−1 sin

(
x
√
a
)
.

50. x3 coshnx y′′′xxx + ax2y′′xx − 2x coshnx y′x + 2(2 coshnx− a)y = 0.

Particular solutions: y1 = x−1, y2 = x2.

51. x3 coshnx y′′′xxx + ax2y′′xx − 6x coshnx y′x + 6(2 coshnx− a)y = 0.

Particular solutions: y1 = x−2, y2 = x3.

52. x3 coshnx y′′′xxx + ax2y′′xx + x(a− coshnx)y′x + (a− 3 coshnx)y = 0.

Particular solutions: y1 = cos
(
ln |x|

)
, y2 = sin

(
ln |x|

)
.

53. x3 coshnx y′′′xxx + x2(coshnx+ a)y′′xx + x[a− (b+ 1) coshnx]y′x
+ b(2 coshnx− a)y = 0.

Particular solutions: y1 = x−
√
b, y2 = x

√
b.

◮ Equations with hyperbolic sine and cosine.

54. y′′′xxx + [a sinh(2x) + b]y′x + a cosh(2x)y = 0.

This is a special case of equation 15.1.9.26 with f(x) = 1
2 [a sinh(2x) + b].

55. y′′′xxx + [a sinh(2x) + b]y′x + 2a cosh(2x) y = 0.

Integrating yields a second-order linear equation: y′′xx + [a sinh(2x) + b]y = C.

56. y′′′xxx + [a cosh(2x) + b]y′x + a sinh(2x)y = 0.

Solution: y = C1w
2
1 + C2w1w2 + C3w

2
2. Here, w1 and w2 form a fundamental set of

solutions of the modified Mathieu equation 14.1.4.9: 4w′′
xx + [a cosh(2x) + b]w = 0.
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57. y′′′xxx + [a cosh(2x) + b]y′x + 2a sinh(2x) y = 0.

Integrating yields a second-order linear equation: y′′xx+[a cosh(2x)+b]y=C (see 14.1.4.9

for the solution of the corresponding modified homogeneous Mathieu equation withC=0).

58. y′′′xxx + (b cosh x− a2)y′x + b(sinhx− a cosh x)y = 0.

This is a special case of equation 15.1.9.29 with f(x) = b cosh x.

◮ Equations with hyperbolic tangent.

59. y′′′xxx − a3 tanh(ax)y = 0.

Particular solution: y0 = cosh(ax). The substitution y = cosh(ax)

∫
z(x) dx leads to a

second-order linear equation of the form 14.1.4.43: z′′xx + 3a tanh(ax)z′x + 3a2z = 0.

60. y′′′xxx = ay′x + (1 − a) tanhx y.

This is a special case of equation 15.1.9.30 with f(x) = a and g(x) = cosh x.

61. y′′′xxx − 3a2y′x + 2a3 tanh(ax)y = 0.

Particular solutions: y1 = cosh(ax), y2 = x cosh(ax).

62. y′′′xxx = a tanhnxy′x + tanhx(1 − a tanhnx)y.

This is a special case of equation 15.1.9.30 with f(x) = a tanhnx and g(x) = cosh x.

63. y′′′xxx + ay′′xx + [b tanh(λx) + c]y′x + a[b tanh(λx) + c]y = 0.

The substitution w= y′x+ay leads to a second-order linear equation of the form 14.1.4.22:

w′′
xx + [b tanh(λx) + c]w = 0.

64. y′′′xxx + ay′′xx − λ[2a tanh(λx) + 3λ]y′x
+ λ2[2a tanh2(λx) + 2λ tanh(λx)− a]y = 0.

Particular solutions: y1 = cosh(λx), y2 = x cosh(λx).

65. y′′′xxx − tanhx y′′xx − ay′x + a tanhx y = 0.

1◦. Solution for a > 0: y = C1 exp(−x
√
a) + C2 exp(x

√
a) + C3 cosh x.

2◦. Solution for a < 0: y = C1 cos(x
√−a) + C2 sin(x

√−a) + C3 coshx.

66. y′′′xxx + a tanhn(λx)y′′xx + bxmy′x + bxm−1[ax tanhn(λx) +m]y = 0.

The substitution w = y′′xx + bxmy leads to a first-order linear equation:

w′
x + a tanhn(λx)w = 0.

67. y′′′xxx + a tanhn(λx)y′′xx + ab tanhn(λx)y′x + b2[a tanhn(λx)− b]y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2 = exp

(
− 1

2 bx
)
sin
(√

3
2 bx

)
.

68. y′′′xxx + a tanhn(λx)y′′xx − b[2a tanhn(λx) + 3b]y′x
+ b2[a tanhn(λx) + 2b]y = 0.

Particular solutions: y1 = ebx, y2 = xebx.
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69. y′′′xxx + a tanhn(λx)y′′xx + [ab tanhn(λx) + c− b2]y′x
+ c[a tanhn(λx) − b]y = 0.

Particular solutions: y1 = exp(β1x), y2 = exp(β2x), where β1 and β2 are roots of the

quadratic equation β2 + bβ + c = 0.

70. y′′′xxx + axny′′xx − (2axn tanhx+ 3)y′x
+ [axn(2 tanh2 x− 1) + 2 tanh x]y = 0.

Particular solutions: y1 = cosh x, y2 = x cosh x.

71. y′′′xxx + a tanhnx y′′xx − (2a tanhn+1 x+ 3)y′x
+ (2a tanhn+2 x− a tanhnx+ 2 tanhx)y = 0.

Particular solutions: y1 = cosh x, y2 = x cosh x.

72. y′′′xxx + ax tanhnx y′′xx + (bx2 − a tanhnx)y′x + bx(ax2 tanhnx+3)y = 0.

Particular solutions: y1 = cos
(
1
2x

2
√
b
)
, y2 = sin

(
1
2x

2
√
b
)
.

73. y′′′xxx + ax2 tanhn(λx)y′′xx − 2ax tanhn(λx)y′x + 2a tanhn(λx)y = 0.

Particular solutions: y1 = x, y2 = x2.

74. y′′′xxx = (tanhnx− a)y′′xx + (a tanhnx− b)y′x + b tanhnx y.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + aλ+ b = 0.

75. y′′′xxx + (a tanhnx+ bx)y′′xx + b(ax tanhnx+ 2)y′x + ab tanhnx y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
2
)
, y2 = exp

(
− 1

2 bx
2
) ∫

exp
(
1
2 bx

2
)
dx.

76. y′′′xxx + [axn(tanhx− b) − b]y′′xx + [a(b2 − 1)xn − 1]y′x
+ b[axn(1− b tanhx) + 1]y = 0.

Particular solutions: y1 = ebx, y2 = cosh x.

77. y′′′xxx + [λ tanh(λx)(axn − 1)− axn−1]y′′xx − aλ2xny′x + aλ2xn−1y = 0.

Particular solutions: y1 = x, y2 = cosh(λx).

78. y′′′xxx + (a tanhn+1 x− ab tanhnx− b)y′′xx
+ [a(b2 − 1) tanhnx− 1]y′x + b(−ab tanhn+1 x+ a tanhnx+ 1)y = 0.

Particular solutions: y1 = ebx, y2 = cosh x.

79. x2y′′′xxx + (ax2 tanhnx+ bx)y′′xx + [a(b− 2)x tanhnx+ c]y′x
+ a(c− b+ 2) tanhnx y = 0.

Particular solutions: y1 = xm1 , y2 = xm2 , where m1 and m2 are roots of the quadratic

equation m2 + (b− 3)m+ c− b+ 2 = 0.

80. x3y′′′xxx + x2(a tanhnx+ b)y′′xx + x(ab tanhnx+ c− b)y′x
+ c(a tanhnx− 2)y = 0.

Particular solutions: y1 = xm1 , y2 = xm2 , where m1 and m2 are roots of the quadratic

equation m2 + (b− 1)m+ c = 0.
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81. tanhnx y′′′xxx + ay′′xx + aby′x + b2(a− b tanhnx)y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2 = exp

(
− 1

2 bx
)
sin
(√

3
2 bx

)
.

82. tanhnx y′′′xxx + ay′′xx + b tanhnx y′x + aby = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
x
√
b
)
, y2 = sin

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
−x
√
−b
)
, y2 = exp

(
x
√
−b
)
.

83. tanhnx y′′′xxx + ay′′xx − b(2a+ 3b tanhnx)y′x + b2(a+ 2b tanhnx)y = 0.

Particular solutions: y1 = ebx, y2 = xebx.

84. tanhnx y′′′xxx + y′′xx + [(b− a2) tanhnx+ a]y′x + b(1− a tanhnx)y = 0.

Particular solutions: y1 = eλ1x, y2 = eλ2x, where λ1 and λ2 are roots of the quadratic

equation λ2 + aλ+ b = 0.

85. tanhn(λx)y′′′xxx + ax2y′′xx − 2axy′x + 2ay = 0.

Particular solutions: y1 = x, y2 = x2.

86. tanhnx y′′′xxx + (a tanhnx+ ax+ 1)y′′xx + a2xy′x − a2y = 0.

Particular solutions: y1 = x, y2 = e−ax.

87. tanhnx y′′′xxx + (ax tanhnx+ 1)y′′xx + a(x+ 2 tanhnx)y′x + ay = 0.

Particular solutions: y1 = exp
(
− 1

2ax
2
)
, y2 = exp

(
− 1

2ax
2
) ∫

exp
(
1
2ax

2
)
dx.

88. x tanhnx y′′′xxx + (3 tanhnx+ x)y′′xx + (ax tanhnx+ 2)y′x
+ a(tanhnx+ x)y = 0.

Particular solutions: y1 = x−1 cos
(
x
√
a
)
, y2 = x−1 sin

(
x
√
a
)
.

89. x3 tanhnx y′′′xxx + ax2y′′xx − 2x tanhnx y′x + 2(2 tanhnx− a)y = 0.

Particular solutions: y1 = x−1, y2 = x2.

90. x3 tanhnx y′′′xxx + ax2y′′xx − 6x tanhnx y′x + 6(2 tanhnx− a)y = 0.

Particular solutions: y1 = x−2, y2 = x3.

91. x3 tanhnx y′′′xxx + ax2y′′xx + x(a− tanhnx)y′x + (a− 3 tanhnx)y = 0.

Particular solutions: y1 = cos
(
ln |x|

)
, y2 = sin

(
ln |x|

)
.

92. x3 tanhnx y′′′xxx + x2(tanhnx+ a)y′′xx
+ x[a− (b+ 1) tanhnx]y′x + b(2 tanhnx− a)y = 0.

Particular solutions: y1 = x−
√
b, y2 = x

√
b.

◮ Equations with hyperbolic cotangent.

93. y′′′xxx − a3 coth(ax)y = 0.

Particular solution: y0 = sinh(ax).The substitution y = sinh(ax)

∫
z(x) dx leads to a

second-order linear equation of the form 14.1.4.52: z′′xx + 3a coth(ax)z′x + 3a2z = 0.
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94. y′′′xxx = ay′x + (1 − a) coth x y.

This is a special case of equation 15.1.9.30 with f(x) = a and g(x) = sinh x.

95. y′′′xxx − 3a2y′x + 2a3 coth(ax)y = 0.

Particular solutions: y1 = sinh(ax), y2 = x sinh(ax).

96. y′′′xxx = a cothnx y′x + coth x(1 − a cothnx)y.

This is a special case of equation 15.1.9.30 with f(x) = a cothnx and g(x) = sinhx.

97. y′′′xxx + ay′′xx + [b coth(λx) + c]y′x + a[b coth(λx) + c]y = 0.

The substitution w= y′x+ay leads to a second-order linear equation of the form 14.1.4.44:

w′′
xx + [b coth(λx) + c]w = 0.

98. y′′′xxx + ay′′xx − λ[2a coth(λx) + 3λ]y′x
+ λ2[2a coth2(λx) + 2λ coth(λx)− a]y = 0.

Particular solutions: y1 = sinh(λx), y2 = x sinh(λx).

99. y′′′xxx − coth x y′′xx − ay′x + a coth x y = 0.

1◦. Solution for a > 0: y = C1 exp(−x
√
a ) + C2 exp(x

√
a ) + C3 sinhx.

2◦. Solution for a < 0: y = C1 cos(x
√
−a) + C2 sin(x

√
−a) + C3 sinhx.

100. y′′′xxx+(a coth x−ab−b)y′′xx+(ab2−a−1)y′x+b(−ab coth x+a+1)y=0.

Particular solutions: y1 = ebx, y2 = sinh x.

101. y′′′xxx + a cothn(λx)y′′xx + bxmy′x + bxm−1[ax cothn(λx) +m]y = 0.

The substitution w = y′′xx + bxmy leads to a first-order linear equation:

w′
x + a cothn(λx)w = 0.

102. y′′′xxx + a cothn(λx)y′′xx + ab cothn(λx)y′x + b2[a cothn(λx)− b]y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2 = exp

(
− 1

2 bx
)
sin
(√

3
2 bx

)
.

103. y′′′xxx + a cothn(λx)y′′xx − b[2a cothn(λx) + 3b]y′x
+ b2[a cothn(λx) + 2b]y = 0.

Particular solutions: y1 = ebx, y2 = xebx.

104. y′′′xxx + ax cothnx y′′xx + (bx2 − a cothnx)y′x + bx(ax2 cothnx+3)y = 0.

Particular solutions: y1 = cos
(
1
2x

2
√
b
)
, y2 = sin

(
1
2x

2
√
b
)
.

105. y′′′xxx + ax2 cothn(λx)y′′xx − 2ax cothn(λx)y′x + 2a cothn(λx)y = 0.

Particular solutions: y1 = x, y2 = x2.

106. y′′′xxx+ax
ny′′xx−(2axn coth x+3)y′x+[axn(2 coth2 x−1)+2 coth x]y=0.

Particular solutions: y1 = sinh x, y2 = x sinh x.
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107. y′′′xxx + a cothnx y′′xx − (2a cothn+1x+ 3)y′x
+ (2a cothn+2x− a cothnx+ 2 coth x)y = 0.

Particular solutions: y1 = sinh x, y2 = x sinh x.

108. y′′′xxx + (a cothnx+ bx)y′′xx + b(ax cothnx+ 2)y′x + ab cothnx y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
2
)
, y2 = exp

(
− 1

2 bx
2
) ∫

exp
(
1
2 bx

2
)
dx.

109. y′′′xxx + [λ coth(λx)(axn − 1)−axn−1]y′′xx −aλ2xny′x +aλ2xn−1y = 0.

Particular solutions: y1 = x, y2 = sinh(λx).

110. x2y′′′xxx + (ax2 cothnx+ bx)y′′xx + [a(b− 2)x cothnx+ c]y′x
+ a(c− b+ 2) cothnx y = 0.

Particular solutions: y1 = xm1 , y2 = xm2 , where m1 and m2 are roots of the quadratic

equation m2 + (b− 3)m+ c− b+ 2 = 0.

111. x3y′′′xxx + x2(a cothnx+ b)y′′xx + x(ab cothnx+ c− b)y′x
+ c(a cothnx− 2)y = 0.

Particular solutions: y1 = xm1 , y2 = xm2 , where m1 and m2 are roots of the quadratic

equation m2 + (b− 1)m+ c = 0.

112. cothnx y′′′xxx + ay′′xx + aby′x + b2(a− b cothnx)y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2 = exp

(
− 1

2 bx
)
sin
(√

3
2 bx

)
.

113. cothnx y′′′xxx + ay′′xx + b cothnx y′x + aby = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
x
√
b
)
, y2 = sin

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
−x
√
−b
)
, y2 = exp

(
x
√
−b
)
.

114. cothnx y′′′xxx + ay′′xx − b(2a+ 3b cothnx)y′x + b2(a+ 2b cothnx)y = 0.

Particular solutions: y1 = ebx, y2 = xebx.

115. cothnx y′′′xxx + y′′xx + [(b− a2) cothnx+ a]y′x + b(1 − a cothnx)y = 0.

Particular solutions: y1 = eλ1x, y2 = eλ2x, where λ1 and λ2 are roots of the quadratic

equation λ2 + aλ+ b = 0.

116. cothn(λx)y′′′xxx + ax2y′′xx − 2axy′x + 2ay = 0.

Particular solutions: y1 = x, y2 = x2.

117. cothnx y′′′xxx + (a cothnx+ ax+ 1)y′′xx + a2xy′x − a2y = 0.

Particular solutions: y1 = x, y2 = e−ax.

118. cothnx y′′′xxx + (ax cothnx+ 1)y′′xx + a(x+ 2 cothnx)y′x + ay = 0.

Particular solutions: y1 = exp
(
− 1

2ax
2
)
, y2 = exp

(
− 1

2ax
2
) ∫

exp
(
1
2ax

2
)
dx.
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119. x cothnx y′′′xxx + (3 cothnx+ x)y′′xx + (ax cothnx+ 2)y′x
+ a(cothnx+ x)y = 0.

Particular solutions: y1 = x−1 cos
(
x
√
a
)
, y2 = x−1 sin

(
x
√
a
)
.

120. x3 cothnx y′′′xxx + ax2y′′xx − 2x cothnx y′x + 2(2 cothnx− a)y = 0.

Particular solutions: y1 = x−1, y2 = x2.

121. x3 cothnx y′′′xxx + ax2y′′xx − 6x cothnx y′x + 6(2 cothnx− a)y = 0.

Particular solutions: y1 = x−2, y2 = x3.

122. x3 cothnx y′′′xxx + ax2y′′xx + x(a− cothnx)y′x + (a− 3 cothnx)y = 0.

Particular solutions: y1 = cos
(
lnx
)
, y2 = sin

(
lnx
)
.

123. x3 cothnx y′′′xxx + x2(cothnx+ a)y′′xx + x[a− (b+ 1) cothnx]y′x
+ b(2 cothnx− a)y = 0.

Particular solutions: y1 = x−
√
b, y2 = x

√
b.

15.1.5 Equations Containing Logarithmic Functions

◮ Equations with logarithmic functions.

1. y′′′xxx + a lnn(λx)y′′xx + by′x + ab lnn(λx)y = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
x
√
b
)
, y2 = sin

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
−x
√
−b
)
, y2 = exp

(
x
√
−b
)
.

2. y′′′xxx + a lnn x y′′xx + ab lnn x y′x + b2(a lnn x− b)y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2 = exp

(
− 1

2 bx
)
sin
(√

3
2 bx

)
.

3. y′′′xxx + a lnn(λx)y′′xx − b[2a lnn(λx) + 3b]y′x + b2[a lnn(λx) + 2b]y = 0.

Particular solutions: y1 = ebx, y2 = xebx.

4. y′′′xxx + a lnn x y′′xx + (ab lnn x+ c− b2)y′x + c(a lnn x− b)y = 0.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + bλ+ c = 0.

5. y′′′xxx + (a lnn x+ b)y′′xx + c y′x + c(a lnn x+ b)y = 0.

1◦. Particular solutions with c > 0: y1 = cos
(
x
√
c
)
, y2 = sin

(
x
√
c
)
.

2◦. Particular solutions with c < 0: y1 = exp
(
−x
√
−c
)
, y2 = exp

(
x
√
−c
)
.

6. y′′′xxx = (lnn x− a)y′′xx + (a lnn x− b)y′x + b lnn x y.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + aλ+ b = 0.

7. lnn x y′′′xxx + ay′′xx + aby′x + b2(a− b lnn x)y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2 = exp

(
− 1

2 bx
)
sin
(√

3
2 bx

)
.
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8. lnn x y′′′xxx + y′′xx + [(a− b2) lnn x+ b]y′x + a(1− b lnn x)y = 0.

Particular solutions: y1 = eλ1x, y2 = eλ2x, where λ1 and λ2 are roots of the quadratic

equation λ2 + bλ+ a = 0.

9. lnn x y′′′xxx + ay′′xx − b(2a+ 3b lnn x)y′x + b2(a+ 2b lnn x)y = 0.

Particular solutions: y1 = ebx, y2 = xebx.

10. lnn(λx)y′′′xxx + ay′′xx + b lnn(λx)y′x + aby = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
x
√
b
)
, y2 = sin

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
−x
√
−b
)
, y2 = exp

(
x
√
−b
)
.

◮ Equations with power and logarithmic functions.

11. y′′′xxx + (ax+ b) lnn(λx)y′x − a lnn(λx)y = 0.

Particular solution: y0 = ax+ b.

12. y′′′xxx + (ax+ b) lnn(λx)y′x − 2a lnn(λx)y = 0.

Particular solution: y0 = (ax+ b)2.

13. y′′′xxx + a lnn x y′′xx + (bx+ c) y′x + (abx lnn x+ ac lnn x+ b)y = 0.

Integrating yields a second-order linear equation: y′′xx+(bx+c)y=C exp
(
−a
∫
lnn x dx

)

(see 14.1.2.2 for the solution of the corresponding homogeneous equation with C = 0).

14. y′′′xxx + a lnn(λx)y′′xx + bxmy′x + bxm−1[ax lnn(λx) +m]y = 0.

The substitution w = y′′xx + bxmy leads to a first-order linear equation:

w′
x + a lnn(λx)w = 0.

15. y′′′xxx + ax lnn x y′′xx + (bx2 − a lnn x)y′x + bx(ax2 lnn x+ 3)y = 0.

Particular solutions: y1 = cos
(
1
2x

2
√
b
)
, y2 = sin

(
1
2x

2
√
b
)
.

16. y′′′xxx + (a lnn x+ bx)y′′xx + b(ax lnn x+ 2)y′x + ab lnn x y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
2
)
, y2 = exp

(
− 1

2 bx
2
) ∫

exp
(
1
2 bx

2
)
dx.

17. y′′′xxx + (ax lnn x+ b)y′′xx + a(bx− 1) lnn x y′x − ab lnn x y = 0.

The substitution w= y′x+by leads to a second-order linear equation of the form 14.1.5.13:

w′′
xx + ax lnn xw′

x − a lnn xw = 0.

18. y′′′xxx + (abx lnn x+ a lnn x+ b)y′′xx + ab2x lnn x y′x − ab2 lnn x y = 0.

Particular solutions: y1 = x, y2 = e−bx.

19. y′′′xxx + ax2 lnn(λx)y′′xx − 2ax lnn(λx)y′x + 2a lnn(λx)y = 0.

Particular solutions: y1 = x, y2 = x2.

20. xy′′′xxx + axy′′xx − b(bx ln2 x+ 1)y′x − ab(bx ln2 x+ 1)y = 0.

The substitution w = y′x+ay leads to a second-order linear equation of the form 14.1.5.3:

xw′′
xx − (b2x ln2 x+ b)w = 0.
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21. xy′′′xxx + a lnn(λx)y′′xx + bxy′x + ab lnn(λx)y = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
x
√
b
)
, y2 = sin

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
−x
√
−b
)
, y2 = exp

(
x
√
−b
)
.

22. xy′′′xxx + ax ln x y′′xx + (abx lnx− b2x+ a)y′x + aby = 0.

Particular solutions: y1 = e−bx, y2 = e−bx

∫
x−axe(a+2b)x dx.

23. xy′′′xxx = (lnn x− ax)y′′xx + (a lnn x− bx)y′x + b lnn x y.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + aλ+ b = 0.

24. xy′′′xxx + (ax lnn x+ 3)y′′xx + (2a lnn x+ bx)y′x + b(ax lnn x+ 1)y = 0.

Particular solutions: y1 = x−1 cos
(
x
√
b
)
, y2 = x−1 sin

(
x
√
b
)
.

25. xy′′′xxx + (ax lnn x+ 3)y′′xx + (abx lnn x+ 2a lnn x− b2x)y′x
+ b(a lnn x− b)y = 0.

Particular solutions: y1 = x−1, y2 = x−1e−bx.

26. xy′′′xxx + [a(b− lnx)xn + 2]y′′xx + axn−1y′x − axn−2y = 0.

Particular solutions: y1 = x, y2 = lnx− b+ 1.

27. x2y′′′xxx + a lnn(λx)y′′xx + bx2y′x + ab lnn(λx)y = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
x
√
b
)
, y2 = sin

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
−x
√
−b
)
, y2 = exp

(
x
√
−b
)
.

28. x2y′′′xxx + x2(a lnx+ b)y′′xx + 2axy′x − ay = 0.

Integrating the equation twice, we arrive at a first-order linear equation: y′x+(a ln x+b)y=
C1 + C2x.

29. x2y′′′xxx − 3ax[ax ln2(λx) + 1]y′x + a[2a2x2 ln3(λx) + 1]y = 0.

Particular solutions: y1 = exp
[
a

∫
ln(λx) dx

]
, y2 = x exp

[
a

∫
ln(λx) dx

]
.

30. x2y′′′xxx + x2(a lnx+ bx)y′′xx + 2x(bx+ a)y′x − ay = 0.

Integrating the equation twice, we arrive at a first-order linear equation:

y′x + (a ln x+ bx)y = C1 + C2x.

31. x2y′′′xxx + (ax2 lnn x+ bx)y′′xx + [a(b− 2)x lnn x+ c]y′x
+ a(c− b+ 2) lnn x y = 0.

Particular solutions: y1 = xm1 , y2 = xm2 , where m1 and m2 are roots of the quadratic

equation m2 + (b− 3)m+ c− b+ 2 = 0.
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32. x3y′′′xxx + x2(a lnx+ b)y′′xx + 2axy′x − ay = 0.

Integrating the equation twice, we obtain a first-order linear equation:

xy′x + (a ln x+ b− 2)y = C1 + C2x.

33. x3y′′′xxx + a lnn(λx)y′′xx + bx3y′x + ab lnn(λx)y = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
x
√
b
)
, y2 = sin

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
−x
√
−b
)
, y2 = exp

(
x
√
−b
)
.

34. x3y′′′xxx + ax2 lnn x y′′xx − 2xy′x + 2(2 − a lnn x)y = 0.

Particular solutions: y1 = x−1, y2 = x2.

35. x3y′′′xxx + ax2 lnn x y′′xx − 6xy′x + 6(2 − a lnn x)y = 0.

Particular solutions: y1 = x−2, y2 = x3.

36. x3y′′′xxx + x2(a lnx+ bx)y′′xx + 2x(bx+ a)y′x − ay = 0.

Integrating the equation twice, we obtain a first-order linear equation:

xy′x + (a ln x+ bx− 2)y = C1 + C2x.

37. x3y′′′xxx+x
2(a lnn x+b)y′′xx+x(ab ln

n x+c−b)y′x+c(a lnn x−2)y=0.

Particular solutions: y1 = xm1 , y2 = xm2 , where m1 and m2 are roots of the quadratic

equation m2 + (b− 1)m+ c = 0.

38. lnn x y′′′xxx + (ax lnn x+ 1)y′′xx + a(x+ 2 lnn x)y′x + ay = 0.

Particular solutions: y1 = exp
(
− 1

2ax
2
)
, y2 = exp

(
− 1

2ax
2
) ∫

exp
(
1
2ax

2
)
dx.

39. lnn x y′′′xxx + (a lnn x+ ax+ 1)y′′xx + a2x y′x − a2y = 0.

Particular solutions: y1 = x, y2 = e−ax.

40. lnn(λx)y′′′xxx + ax2y′′xx − 2axy′x + 2ay = 0.

Particular solutions: y1 = x, y2 = x2.

15.1.6 Equations Containing Trigonometric Functions

◮ Equations with sine.

1. y′′′xxx + a sin x y′x − b(a sin x+ b2)y = 0.

The substitution w = ebx/2(y′x − by) leads to a second-order linear equation of the form

14.1.6.2: w′′
xx +

(
a sinx+ 3

4 b
2
)
w = 0.

2. y′′′xxx + a sin2 x y′x − b(a sin2 x+ b2)y = 0.

The substitution w = ebx/2(y′x − by) leads to a second-order linear equation of the form

14.1.6.3: w′′
xx +

(
a sin2 x+ 3

4 b
2
)
w = 0.
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3. y′′′xxx + [a sin(λx) + b]y′x − c[a sin(λx) + b+ c2]y = 0.

The substitution w = ecx/2(y′x − cy) leads to a second-order linear equation of the form

14.1.6.2: w′′
xx +

[
a sin(λx) + b+ 3

4 c
2
]
w = 0.

4. y′′′xxx + ay′′xx + [b sin(λx) + c]y′x + a[b sin(λx) + c]y = 0.

The substitution w = y′x+ay leads to a second-order linear equation of the form 14.1.6.2:

w′′
xx + [b sin(λx) + c]w = 0.

5. y′′′xxx + ay′′xx + b sin2(λx)y′x + ab sin2(λx) y = 0.

The substitution w = y′x+ay leads to a second-order linear equation of the form 14.1.6.3:

w′′
xx + b sin2(λx)w = 0.

6. y′′′xxx + a sinn(λx)y′′xx − by′x − ab sinn(λx) y = 0.

1◦. Particular solutions with b > 0: y1 = exp
(
−x
√
b
)
, y2 = exp

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = cos
(
x
√
−b
)
, y2 = sin

(
x
√
−b
)
.

7. y′′′xxx + a sinn(λx)y′′xx + ab sinn(λx)y′x + b2[a sinn(λx)− b]y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2 = exp

(
− 1

2 bx
)
sin
(√

3
2 bx

)
.

8. y′′′xxx+a sinn(λx)y′′xx−b[2a sinn(λx)+3b]y′x+b
2[a sinn(λx)+2b]y= 0.

Particular solutions: y1 = ebx, y2 = xebx.

9. y′′′xxx + a sinnx y′′xx + (ab sinnx+ c− b2)y′x + c(a sinnx− b)y = 0.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + bλ+ c = 0.

10. y′′′xxx + a sinn(λx)y′′xx + bxmy′x + bxm−1[ax sinn(λx) +m]y = 0.

The substitution w = y′′xx + bxmy leads to a first-order linear equation:

w′
x + a sinn(λx)w = 0.

11. y′′′xxx + (a sinnx+ b)y′′xx + cy′x + c(a sinnx+ b)y = 0.

1◦. Particular solutions with c > 0: y1 = cos
(
x
√
c
)
, y2 = sin

(
x
√
c
)
.

2◦. Particular solutions with c < 0: y1 = exp
(
−x
√
−c
)
, y2 = exp

(
x
√
−c
)
.

12. y′′′xxx = (sinnx− a)y′′xx + (a sinnx− b)y′x + b sinnx y.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + aλ+ b = 0.

13. y′′′xxx + (a sinnx+ bx)y′′xx + b(ax sinnx+ 2)y′x + ab sinnx y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
2
)
, y2 = exp

(
− 1

2 bx
2
) ∫

exp
(
1
2 bx

2
)
dx.

14. y′′′xxx + ax sinnx y′′xx + (bx2 − a sinnx)y′x + bx(ax2 sinnx+ 3)y = 0.

Particular solutions: y1 = cos
(
1
2x

2
√
b
)
, y2 = sin

(
1
2x

2
√
b
)
.
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15. y′′′xxx +(abx sinnx+a sinnx+ b)y′′xx +ab2x sinnx y′x −ab2 sinnx y = 0.

Particular solutions: y1 = x, y2 = e−bx.

16. y′′′xxx + ax2 sinn(λx)y′′xx − 2ax sinn(λx)y′x + 2a sinn(λx) y = 0.

Particular solutions: y1 = x, y2 = x2.

17. xy′′′xxx + x[a sin(λx) + b]y′x − 2[a sin(λx) + b]y = 0.

The substitution w=xy′x−2y leads to a second-order linear equation of the form 14.1.6.2:

w′′
xx + [a sin(λx) + b]w = 0.

18. xy′′′xxx = (sinnx− ax)y′′xx + (a sinnx− bx)y′x + b sinnx y.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + aλ+ b = 0.

19. xy′′′xxx +(ax sinnx+3)y′′xx+(2a sinnx+ bx)y′x+ b(ax sinnx+1)y = 0.

Particular solutions: y1 = x−1 cos
(
x
√
b
)
, y2 = x−1 sin

(
x
√
b
)
.

20. x2y′′′xxx = (sinnx− ax2)y′′xx + (a sinnx− bx2)y′x + b sinnx y.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + aλ+ b = 0.

21. x3y′′′xxx + ax2 sinn(λx)y′′xx + bxy′x + b[a sinn(λx) − 2]y = 0.

Particular solutions: y1 = xm1 , y2 = xm2 , where m1 and m2 are roots of the quadratic

equation m2 −m+ b = 0.

22. sin2 x y′′′xxx + a sin2 x y′′xx + by′x + aby = 0.

The substitution w= y′x+ay leads to a second-order linear equation of the form 14.1.6.21:

sin2 xw′′
xx + bw = 0.

23. sinnx y′′′xxx + ay′′xx + aby′x + b2(a− b sinnx)y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2 = exp

(
− 1

2 bx
)
sin
(√

3
2 bx

)
.

24. sinnx y′′′xxx + ay′′xx + b sinnx y′x + aby = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
x
√
b
)
, y2 = sin

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
−x
√
−b
)
, y2 = exp

(
x
√
−b
)
.

25. sinnx y′′′xxx + ay′′xx − b(2a + 3b sinnx)y′x + b2(a+ 2b sinnx)y = 0.

Particular solutions: y1 = ebx, y2 = xebx.

26. sinnx y′′′xxx + y′′xx + [(b− a2) sinnx+ a]y′x + b(1 − a sinnx)y = 0.

Particular solutions: y1 = eλ1x, y2 = eλ2x, where λ1 and λ2 are roots of the quadratic

equation λ2 + aλ+ b = 0.

27. sinn(λx)y′′′xxx + ax2y′′xx − 2axy′x + 2ay = 0.

Particular solutions: y1 = x, y2 = x2.
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28. sinnx y′′′xxx + (a sinnx+ ax+ 1)y′′xx + a2xy′x − a2y = 0.

Particular solutions: y1 = x, y2 = e−ax.

29. sinnx y′′′xxx + (ax sinnx+ 1)y′′xx + a(x+ 2 sinnx)y′x + ay = 0.

Particular solutions: y1 = exp
(
− 1

2ax
2
)
, y2 = exp

(
− 1

2ax
2
) ∫

exp
(
1
2ax

2
)
dx.

30. x sinnx y′′′xxx+(3 sinnx+x)y′′xx+(ax sinnx+2)y′x+a(sin
nx+x)y= 0.

Particular solutions: y1 = x−1 cos
(
x
√
a
)
, y2 = x−1 sin

(
x
√
a
)
.

31. x3 sinnx y′′′xxx + ax2y′′xx − 2x sinnx y′x + 2(2 sinnx− a)y = 0.

Particular solutions: y1 = x−1, y2 = x2.

32. x3 sinnx y′′′xxx + ax2y′′xx − 6x sinnx y′x + 6(2 sinnx− a)y = 0.

Particular solutions: y1 = x−2, y2 = x3.

33. x3 sinnx y′′′xxx + ax2y′′xx + x(a− sinnx)y′x + (a− 3 sinnx)y = 0.

Particular solutions: y1 = cos(lnx), y2 = sin(ln x).

34. x3 sinnx y′′′xxx + x2(sinnx+ a)y′′xx
+ x[a− (b+ 1) sinnx]y′x + b(2 sinnx− a)y = 0.

Particular solutions: y1 = x−
√
b, y2 = x

√
b.

◮ Equations with cosine.

35. y′′′xxx + a cos(2x)y′x − b[a cos(2x) + b2]y = 0.

The substitution w = ebx/2(y′x − by) leads to a Mathieu equation of the form 14.1.6.29:

w′′
xx +

[
a cos(2x) + 3

4 b
2
]
w = 0.

36. y′′′xxx + [a cos(λx) + b]y′x − c[a cos(λx) + b+ c2]y = 0.

The transformation ξ = 1
2λx, w = ecx/2(y′x − cy) leads to the Mathieu equation 2.1.6.29:

w′′
ξξ + 4λ−2

[
a cos(2ξ) + b+ 3

4 c
2
]
w = 0.

37. y′′′xxx + ay′′xx + (b cos 2x+ c)y′x + a(b cos 2x+ c)y = 0.

The substitution w = y′x + ay leads to the Mathieu equation 2.1.6.29:

w′′
xx + (b cos 2x+ c)w = 0.

38. y′′′xxx + a cosn(λx)y′′xx + by′x + ab cosn(λx) y = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
x
√
b
)
, y2 = sin

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
−x
√
−b
)
, y2 = exp

(
x
√
−b
)
.

39. y′′′xxx + a cosn(λx)y′′xx + ab cosn(λx)y′x + b2[a cosn(λx) − b]y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2 = exp

(
− 1

2 bx
)
sin
(√

3
2 bx

)
.

40. y′′′xxx+a cosn(λx)y′′xx−b[2a cosn(λx)+3b]y′x+b
2[a cosn(λx)+2b]y=0.

Particular solutions: y1 = ebx, y2 = xebx.
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41. y′′′xxx + a cosnx y′′xx + (ab cosnx+ c− b2)y′x + c(a cosnx− b)y = 0.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + bλ+ c = 0.

42. y′′′xxx + a cosn(λx)y′′xx + bxmy′x + bxm−1[ax cosn(λx) +m]y = 0.

The substitution w = y′′xx + bxmy leads to a first-order linear equation:

w′
x + a cosn(λx)w = 0.

43. y′′′xxx + (a cosnx+ b)y′′xx + cy′x + c(a cosnx+ b)y = 0.

1◦. Particular solutions with c > 0: y1 = cos
(
x
√
c
)
, y2 = sin

(
x
√
c
)
.

2◦. Particular solutions with c < 0: y1 = exp
(
−x√−c

)
, y2 = exp

(
x
√−c

)
.

44. y′′′xxx = (cosnx− a)y′′xx + (a cosnx− b)y′x + b cosnx y.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + aλ+ b = 0.

45. y′′′xxx + (a cosnx+ bx)y′′xx + b(ax cosnx+ 2)y′x + ab cosnx y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
2
)
, y2 = exp

(
− 1

2 bx
2
) ∫

exp
(
1
2 bx

2
)
dx.

46. y′′′xxx + ax cosnx y′′xx + (bx2 − a cosnx)y′x + bx(ax2 cosnx+ 3)y = 0.

Particular solutions: y1 = cos
(
1
2x

2
√
b
)
, y2 = sin

(
1
2x

2
√
b
)
.

47. y′′′xxx+(abx cosnx+a cosnx+b)y′′xx+ab
2x cosnx y′x−ab2 cosnx y = 0.

Particular solutions: y1 = x, y2 = e−bx.

48. y′′′xxx + ax2 cosn(λx)y′′xx − 2ax cosn(λx)y′x + 2a cosn(λx) y = 0.

Particular solutions: y1 = x, y2 = x2.

49. xy′′′xxx + x(a cos 2x+ b)y′x − 2(a cos 2x+ b)y = 0.

The substitution w = xy′x − 2y leads to the Mathieu equation 14.1.6.29:

w′′
xx + (a cos 2x+ b)w = 0.

50. xy′′′xxx + x(a cos2 x+ b)y′x − 2(a cos2 x+ b)y = 0.

The substitution w = xy′x − 2y leads to a second-order linear equation of the form

14.1.6.30: w′′
xx + (a cos2 x+ b)w = 0.

51. xy′′′xxx = (cosnx− ax)y′′xx + (a cosnx− bx)y′x + b cosnx y.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + aλ+ b = 0.

52. xy′′′xxx+(ax cosnx+3)y′′xx+(2a cosnx+bx)y′x+b(ax cosnx+1)y = 0.

Particular solutions: y1 = x−1 cos
(
x
√
b
)
, y2 = x−1 sin

(
x
√
b
)
.
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53. x2y′′′xxx = (cosnx− ax2)y′′xx + (a cosnx− bx2)y′x + b cosnx y.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + aλ+ b = 0.

54. x3y′′′xxx + ax2 cosn(λx)y′′xx + bxy′x + b[a cosn(λx)− 2]y = 0.

Particular solutions: y1 = xm1 , y2 = xm2 , where m1 and m2 are roots of the quadratic

equation m2 −m+ b = 0.

55. cos2 x y′′′xxx + a cos2 x y′′xx + by′x + aby = 0.

The substitution x = ξ + π
2 leads to an equation of the form 3.1.6.22: sin2 ξ y′′′ξξξ +

a sin2 ξ y′′ξξ + by′ξ + aby = 0.

56. cosnx y′′′xxx + ay′′xx + aby′x + b2(a− b cosnx)y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2 = exp

(
− 1

2 bx
)
sin
(√

3
2 bx

)
.

57. cosnx y′′′xxx + ay′′xx + b cosnx y′x + aby = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
x
√
b
)
, y2 = sin

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
−x
√
−b
)
, y2 = exp

(
x
√
−b
)
.

58. cosnx y′′′xxx + ay′′xx − b(2a+ 3b cosnx)y′x + b2(a+ 2b cosnx)y = 0.

Particular solutions: y1 = ebx, y2 = xebx.

59. cosnx y′′′xxx + y′′xx + [(b− a2) cosnx+ a]y′x + b(1 − a cosnx)y = 0.

Particular solutions: y1 = eλ1x, y2 = eλ2x, where λ1 and λ2 are roots of the quadratic

equation λ2 + aλ+ b = 0.

60. cosn(λx)y′′′xxx + ax2y′′xx − 2axy′x + 2ay = 0.

Particular solutions: y1 = x, y2 = x2.

61. cosnx y′′′xxx + (a cosnx+ ax+ 1)y′′xx + a2xy′x − a2y = 0.

Particular solutions: y1 = x, y2 = e−ax.

62. cosnx y′′′xxx + (ax cosnx+ 1)y′′xx + a(x+ 2cosnx)y′x + ay = 0.

Particular solutions: y1 = exp
(
− 1

2ax
2
)
, y2 = exp

(
− 1

2ax
2
) ∫

exp
(
1
2ax

2
)
dx.

63. x cosnx y′′′xxx+(3 cosnx+x)y′′xx+(ax cosnx+2)y′x+a(cos
nx+x)y=0.

Particular solutions: y1 = x−1 cos
(
x
√
a
)
, y2 = x−1 sin

(
x
√
a
)
.

64. x3 cosnx y′′′xxx + ax2y′′xx − 2x cosnx y′x + 2(2 cosnx− a)y = 0.

Particular solutions: y1 = x−1, y2 = x2.

65. x3 cosnx y′′′xxx + ax2y′′xx − 6x cosnx y′x + 6(2 cosnx− a)y = 0.

Particular solutions: y1 = x−2, y2 = x3.

66. x3 cosnx y′′′xxx + ax2y′′xx + x(a− cosnx)y′x + (a− 3 cosnx)y = 0.

Particular solutions: y1 = cos(ln |x|), y2 = sin(ln |x|).
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67. x3 cosnx y′′′xxx + x2(cosnx+ a)y′′xx + x[a− (b+ 1) cosnx]y′x
+ b(2 cosnx− a)y = 0.

Particular solutions: y1 = |x|−
√
b, y2 = |x|

√
b.

◮ Equations with sine and cosine.

68. y′′′xxx + [a sin(λx) + b]y′x + aλ cos(λx) y = 0.

Integrating yields a second-order linear equation: y′′xx+[a sin(λx)+b]y=C (see 14.1.6.2

for the solution of the corresponding homogeneous equation with C = 0).

69. y′′′xxx + [a sin(λx)− b2]y′x + a[λ cos(λx) − b sin(λx)]y = 0.

By integrating and substituting w = yebx/2, we obtain a second-order nonhomogeneous

linear equation: w′′
xx +

[
a sin(λx) − 1

4 b
2
]
w = Ce3bx/2 (see 14.1.6.2 for the solution of

the corresponding homogeneous equation).

70. y′′′xxx + [a cos(2x) + b]y′x − a sin(2x) y = 0.

Solution: y = C1w
2
1 + C2w1w2 + C3w

2
2. Here, w1, w2 is a fundamental set of solutions

of the Mathieu equation 2.1.6.29: 4w′′
xx + [a cos(2x) + b]w = 0.

71. y′′′xxx + [a cos(2x) + b]y′x − 2a sin(2x) y = 0.

Integrating yields a nonhomogeneous Mathieu equation: y′′xx + [a cos(2x) + b]y = C.

72. y′′′xxx + [a cos(2x)− b2]y′x − a[b cos(2x) + 2 sin(2x)]y = 0.

By integrating and substituting w = yebx/2, we obtain a nonhomogeneous Mathieu equa-

tion: w′′
xx + [a cos(2x)− 1

4 b
2]w = Ce3bx/2.

73. y′′′xxx− 3a[a sin2(bx)+ b cos(bx)]y′x+a sin(bx)[b2+2a2 sin2(bx)]y = 0.

Particular solutions: y1 = exp
[
− a
b
cos(bx)

]
, y2 = x exp

[
− a
b
cos(bx)

]
.

74. a sin(λx)y′′′xxx + by′′xx + 3aλ2 sin(λx)y′x + 2aλ3 cos(λx)y = 0.

This is a special case of equation 15.1.9.105 with f(x) = 0.

75. sin(λx)y′′′xxx + [a+ (2λ+ 1) cos(λx)]y′′xx − (λ2 + 2λ) sin(λx)y′x
− λ2 cos(λx)y = 0.

This is a special case of equation 15.1.9.106 with f(x) = 0.

76. sin2x y′′′xxx + 3 sin x cosx y′′xx + [cos 2x+ 4ν(ν + 1) sin2x]y′x
+ 2ν(ν + 1) sin 2x y = 0.

Solution: y =C1y
2
1+C2y1y2+C3y

2
2. Here, y1, y2 form a fundamental set of solutions of

the Legendre equation 2.1.2.154, with the argument x of the functions y1 and y2 substituted

by cos x.
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◮ Equations with tangent.

77. y′′′xxx + a3 tan(ax) y = 0.

Integrating yields a second-order nonhomogeneous linear equation: y′′ξξ + tan ξ y′ξ − y =
C/ cos ξ, where ξ = ax (see 14.1.6.53 for the solution of the corresponding homogeneous

equation).

78. y′′′xxx − a3 tan(ax) y = 0.

Particular solution: y0 = cos(ax). The substitution y = cos(ax)

∫
z(x) dx leads to a

second-order linear equation of the form 14.1.6.53: z′′ξξ − 3 tan ξ z′ξ − 3z = 0, where

ξ = ax.

79. y′′′xxx + 3a2y′x + 2a3 tan(ax) y = 0.

Particular solutions: y1 = cos(ax), y2 = x cos(ax).

80. y′′′xxx + ay′x + (a− 1) tanx y = 0.

Particular solution: y0 = cosx. The substitution y = cos x

∫
z(x) dx leads to a second-

order linear equation: z′′xx − 3 tan x z′x + (a− 3)z = 0.

81. y′′′xxx + ay′x + λ(a− λ2) tan(λx) y = 0.

Particular solution: y0 = cos(λx). The substitution y = cos(λx)

∫
z(x) dx leads to a

second-order linear equation of the form 14.1.6.53: z′′ξξ − 3 tan ξ z′ξ + (aλ−2 − 3)z = 0,
where ξ = λx.

82. y′′′xxx + a tan2 x y′x − b(a tan2 x+ b2)y = 0.

The substitution w = ebx/2(y′x − by) leads to a second-order linear equation of the form

14.1.6.51: w′′
xx +

(
a tan2 x+ 3

4 b
2
)
w = 0.

83. y′′′xxx + [a tan2(λx) + b]y′x − c[a tan2(λx) + b+ c2]y = 0.

The transformation ξ = λx, w = ecx/2(y′x − cy) leads to an equation of the form 2.1.6.51:

w′′
ξξ + λ−2(a tan2 ξ + b+ 3

4 c
2)w = 0.

84. y′′′xxx + a tannx y′x + tanx(a tannx− 1)y = 0.

Particular solution: y0 = cosx. The substitution y = cos x

∫
z(x) dx leads to a second-

order linear equation: z′′xx − 3 tan x z′x + (a tannx− 3)z = 0.

85. y′′′xxx + ay′′xx + (b tan2 x+ c)y′x + a(b tan2 x+ c)y = 0.

The substitution w= y′x+ay leads to a second-order linear equation of the form 14.1.6.51:

w′′
xx + (b tan2 x+ c)w = 0.

86. y′′′xxx + ay′′xx + λ[3λ+ 2a tan(λx)]y′x
+ λ2{a[1 + 2 tan2(λx)] + 2λ tan(λx)}y = 0.

Particular solutions: y1 = cos(λx), y2 = x cos(λx).
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87. y′′′xxx + λ tan(λx)y′′xx − ay′x − aλ tan(λx) y = 0.

1◦. Solution for a > 0: y = C1 exp
(
−x√a

)
+ C2 exp

(
x
√
a
)
+C3 cos(λx).

2◦. Solution for a < 0: y = C1 cos
(
x
√
−a
)
+C2 sin

(
x
√
−a
)
+ C3 cos(λx).

88. y′′′xxx + a tan(λx)y′′xx + by′x + λ(aλ+ b− λ2) tan(λx) y = 0.

Particular solution: y0 =cos(λx). The transformation x=
z

λ
, y=cos(λx)

∫
w dx leads

to a second-order linear equation of the form 14.1.6.131: w′′
zz +

(
aλ−1 − 3

)
tan z w′

z +(
bλ−2 − 3− 2aλ−1 tan2 z

)
w = 0.

89. y′′′xxx + a tann(λx)y′′xx + by′x + ab tann(λx) y = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
x
√
b
)
, y2 = sin

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
−x
√
−b
)
, y2 = exp

(
x
√
−b
)
.

90. y′′′xxx + a tann(λx)y′′xx + ab tann(λx)y′x + b2[a tann(λx) − b]y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2 = exp

(
− 1

2 bx
)
sin
(√

3
2 bx

)
.

91. y′′′xxx+a tann(λx)y′′xx−b[2a tann(λx)+3b]y′x+b
2[a tann(λx)+2b]y=0.

Particular solutions: y1 = ebx, y2 = xebx.

92. y′′′xxx + a tannx y′′xx + (ab tannx+ c− b2)y′x + c(a tannx− b)y = 0.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + bλ+ c = 0.

93. y′′′xxx + a tann(λx)y′′xx + bxmy′x + bxm−1[ax tann(λx) +m]y = 0.

The substitution w = y′′xx + bxmy leads to a first-order linear equation:

w′
x + a tann(λx)w = 0.

94. y′′′xxx + (a tannx+ b)y′′xx + cy′x + c(a tannx+ b)y = 0.

1◦. Particular solutions with c > 0: y1 = cos
(
x
√
c
)
, y2 = sin

(
x
√
c
)
.

2◦. Particular solutions with c < 0: y1 = exp
(
−x
√
−c
)
, y2 = exp

(
x
√
−c
)
.

95. y′′′xxx = (tannx− a)y′′xx + (a tannx− b)y′x + b tannx y.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + aλ+ b = 0.

96. y′′′xxx + (a tannx+ bx)y′′xx + b(ax tannx+ 2)y′x + ab tannx y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
2
)
, y2 = exp

(
− 1

2 bx
2
) ∫

exp
(
1
2 bx

2
)
dx.

97. y′′′xxx + ax tannx y′′xx + (bx2 − a tannx)y′x + bx(ax2 tannx+ 3)y = 0.

Particular solutions: y1 = cos
(
1
2x

2
√
b
)
, y2 = sin

(
1
2x

2
√
b
)
.

98. y′′′xxx+(abx tannx+a tannx+b)y′′xx+ab
2x tannx y′x−ab2 tannx y=0.

Particular solutions: y1 = x, y2 = e−bx.
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99. y′′′xxx + ax2 tann(λx)y′′xx − 2ax tann(λx)y′x + 2a tann(λx) y = 0.

Particular solutions: y1 = x, y2 = x2.

100. y′′′xxx − [b(a+ tanx)xn + a]y′′xx + [b(a2 + 1)xn + 1]y′x
+ a[b(a tanx− 1)xn − 1]y = 0.

Particular solutions: y1 = eax, y2 = cos x.

101. y′′′xxx − (ab tannx+ b tann+1 x+ a)y′′xx + [b(a2 + 1) tannx+ 1]y′x
+ a(ab tann+1 x− b tannx− 1)y = 0.

Particular solutions: y1 = eax, y2 = cos x.

102. y′′′xxx + [λ tan(λx)(axn +1)+ axn−1]y′′xx − aλ2xny′x + aλ2xn−1y = 0.

Particular solutions: y1 = x, y2 = cos(λx).

103. xy′′′xxx + x(a tan2 x+ b)y′x − 2(a tan2 x+ b)y = 0.

The substitution w = xy′x − 2y leads to a second-order linear equation of the form

14.1.6.51: w′′
xx + (a tan2 x+ b)w = 0.

104. xy′′′xxx = (tannx− ax)y′′xx + (a tannx− bx)y′x + b tannx y.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + aλ+ b = 0.

105. xy′′′xxx+(ax tannx+3)y′′xx+(2a tannx+bx)y′x+b(ax tannx+1)y=0.

Particular solutions: y1 = x−1 cos
(
x
√
b
)
, y2 = x−1 sin

(
x
√
b
)
.

106. x2y′′′xxx = (tannx− ax2)y′′xx + (a tannx− bx2)y′x + b tannx y.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + aλ+ b = 0.

107. x3y′′′xxx + ax2 tann(λx)y′′xx + bxy′x + b[a tann(λx) − 2]y = 0.

Particular solutions: y1 = xm1 , y2 = xm2 , where m1 and m2 are roots of the quadratic

equation m2 −m+ b = 0.

108. tannx y′′′xxx + ay′′xx + aby′x + b2(a− b tannx)y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2 = exp

(
− 1

2 bx
)
sin
(√

3
2 bx

)
.

109. tannx y′′′xxx + ay′′xx + b tannx y′x + aby = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
x
√
b
)
, y2 = sin

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
−x
√
−b
)
, y2 = exp

(
x
√
−b
)
.

110. tannx y′′′xxx + ay′′xx − b(2a+ 3b tannx)y′x + b2(a+ 2b tannx)y = 0.

Particular solutions: y1 = ebx, y2 = xebx.

111. tannx y′′′xxx + y′′xx + [(b− a2) tannx+ a]y′x + b(1 − a tannx)y = 0.

Particular solutions: y1 = eλ1x, y2 = eλ2x, where λ1 and λ2 are roots of the quadratic

equation λ2 + aλ+ b = 0.
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112. tann(λx)y′′′xxx + ax2y′′xx − 2axy′x + 2ay = 0.

Particular solutions: y1 = x, y2 = x2.

113. tannx y′′′xxx + (a tannx+ ax+ 1)y′′xx + a2xy′x − a2y = 0.

Particular solutions: y1 = x, y2 = e−ax.

114. tannx y′′′xxx + (ax tannx+ 1)y′′xx + a(x+ 2 tannx)y′x + ay = 0.

Particular solutions: y1 = exp
(
− 1

2ax
2
)
, y2 = exp

(
− 1

2ax
2
) ∫

exp
(
1
2ax

2
)
dx.

115. x tannx y′′′xxx+(3 tannx+x)y′′xx+(ax tannx+2)y′x+a(tan
nx+x)y=0.

Particular solutions: y1 = x−1 cos
(
x
√
a
)
, y2 = x−1 sin

(
x
√
a
)
.

116. x3 tannx y′′′xxx + ax2y′′xx − 2x tannx y′x + 2(2 tannx− a)y = 0.

Particular solutions: y1 = x−1, y2 = x2.

117. x3 tannx y′′′xxx + ax2y′′xx − 6x tannx y′x + 6(2 tannx− a)y = 0.

Particular solutions: y1 = x−2, y2 = x3.

118. x3 tannx y′′′xxx + ax2y′′xx + x(a− tannx)y′x + (a− 3 tannx)y = 0.

Particular solutions: y1 = cos(lnx), y2 = sin(ln x).

119. x3 tannx y′′′xxx + x2(tannx+ a)y′′xx
+ x[a− (b+ 1) tannx]y′x + b(2 tannx− a)y = 0.

Particular solutions: y1 = x−
√
b, y2 = x

√
b.

◮ Equations with cotangent.

120. y′′′xxx + a3 cot(ax) y = 0.

The substitution x = t +
π

2a
leads to a linear equation of the form 15.1.6.78:

y′′′ttt − a3 tan(at) y = 0.

121. y′′′xxx − a3 cot(ax) y = 0.

The substitution x = t +
π

2a
leads to a linear equation of the form 15.1.6.77: y′′′ttt +

a3 tan(at) y = 0.

122. y′′′xxx + 3a2y′x − 2a3 cot(ax) y = 0.

Particular solutions: y1 = sin(ax), y2 = x sin(ax).

123. y′′′xxx + ay′x + (1 − a) cot x y = 0.

Particular solution: y0 = sinx.

124. y′′′xxx + a cot2 x y′x − b(a cot2 x+ b2)y = 0.

The substitution w = ebx/2(y′x − by) leads to a second-order linear equation of the form

14.1.6.81: w′′
xx +

(
a cot2 x+ 3

4 b
2
)
w = 0.



“K16435’ — 2017/9/28 — 15:05 — #903

15.1. Linear Equations 877

125. y′′′xxx + ay′′xx + (b cot2 x+ c)y′x + a(b cot2 x+ c)y = 0.

The substitution w= y′x+ay leads to a second-order linear equation of the form 14.1.6.81:

w′′
xx + (b cot2 x+ c)w = 0.

126. y′′′xxx + a cotnx y′x + cot x(1 − a cotnx)y = 0.

Particular solution: y0 = sinx.

127. y′′′xxx + ay′′xx + λ[3λ− 2a cot(λx)]y′x
+ λ2{a[1 + 2 cot2(λx)]− 2λ cot(λx)}y = 0.

Particular solutions: y1 = sin(λx), y2 = x sin(λx).

128. y′′′xxx − λ cot(λx)y′′xx − ay′x + aλ cot(λx) y = 0.

1◦. Solution for a > 0: y = C1 exp
(
−x√a

)
+ C2 exp

(
x
√
a
)
+C3 sin(λx).

2◦. Solution for a < 0: y = C1 cos
(
x
√
−a
)
+C2 sin

(
x
√
−a
)
+ C3 sin(λx).

129. y′′′xxx + a cotn(λx)y′′xx + ab cotn(λx)y′x + b2[a cotn(λx) − b]y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2 = exp

(
− 1

2 bx
)
sin
(√

3
2 bx

)
.

130. y′′′xxx+a cotn(λx)y′′xx−b[2a cotn(λx)+3b]y′x+b
2[a cotn(λx)+2b]y=0.

Particular solutions: y1 = ebx, y2 = xebx.

131. y′′′xxx + a cotnx y′′xx + (ab cotnx+ c− b2)y′x + c(a cotnx− b)y = 0.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + bλ+ c = 0.

132. y′′′xxx + a cotn(λx)y′′xx + bxmy′x + bxm−1[ax cotn(λx) +m]y = 0.

The substitution w = y′′xx + bxmy leads to a first-order linear equation:

w′
x + a cotn(λx)w = 0.

133. y′′′xxx + (a cotnx+ b)y′′xx + cy′x + c(a cotnx+ b)y = 0.

1◦. Particular solutions with c > 0: y1 = cos
(
x
√
c
)
, y2 = sin

(
x
√
c
)
.

2◦. Particular solutions with c < 0: y1 = exp
(
−x√−c

)
, y2 = exp

(
x
√−c

)
.

134. y′′′xxx = (cotnx− a)y′′xx + (a cotnx− b)y′x + b cotnx y.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + aλ+ b = 0.

135. y′′′xxx + ax cotnx y′′xx + (bx2 − a cotnx)y′x + bx(ax2 cotnx+ 3)y = 0.

Particular solutions: y1 = cos
(
1
2x

2
√
b
)
, y2 = sin

(
1
2x

2
√
b
)
.

136. y′′′xxx+(abx cotnx+a cotnx+b)y′′xx+ab
2x cotnx y′x−ab2 cotnx y=0.

Particular solutions: y1 = x, y2 = e−bx.

137. y′′′xxx + ax2 cotn(λx)y′′xx − 2ax cotn(λx)y′x + 2a cotn(λx) y = 0.

Particular solutions: y1 = x, y2 = x2.
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138. axy′′′xxx + [1 − λ(a+ 1)x cot(λx)]y′′xx − λ2xy′x + λ2y = 0.

Particular solutions: y1 = x, y2 = sin(λx).

139. xy′′′xxx + x(a cot2 x+ b)y′x − 2(a cot2 x+ b)y = 0.

The substitution w = xy′x − 2y leads to a second-order linear equation of the form

14.1.6.81: w′′
xx + (a cot2 x+ b)w = 0.

140. xy′′′xxx+(ax cotnx+3)y′′xx+(2a cotnx+bx)y′x+b(ax cotnx+1)y=0.

Particular solutions: y1 = x−1 cos
(
x
√
b
)
, y2 = x−1 sin

(
x
√
b
)
.

141. x2y′′′xxx = (cotnx− ax2)y′′xx + (a cotnx− bx2)y′x + b cotnx y.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + aλ+ b = 0.

142. x3y′′′xxx + ax2 cotn(λx)y′′xx + bxy′x + b[a cotn(λx)− 2]y = 0.

Particular solutions: y1 = xm1 , y2 = xm2 , where m1 and m2 are roots of the quadratic

equation m2 −m+ b = 0.

143. cotnx y′′′xxx + ay′′xx + aby′x + b2(a− b cotnx)y = 0.

Particular solutions: y1 = exp
(
− 1

2 bx
)
cos
(√

3
2 bx

)
, y2 = exp

(
− 1

2 bx
)
sin
(√

3
2 bx

)
.

144. cotnx y′′′xxx + ay′′xx + b cotnx y′x + aby = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
x
√
b
)
, y2 = sin

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
−x
√
−b
)
, y2 = exp

(
x
√
−b
)
.

145. cotnx y′′′xxx + ay′′xx − b(2a+ 3b cotnx)y′x + b2(a+ 2b cotnx)y = 0.

Particular solutions: y1 = ebx, y2 = xebx.

146. cotnx y′′′xxx + y′′xx + [(b− a2) cotnx+ a]y′x + b(1− a cotnx)y = 0.

Particular solutions: y1 = eλ1x, y2 = eλ2x, where λ1 and λ2 are roots of the quadratic

equation λ2 + aλ+ b = 0.

147. cotn(λx)y′′′xxx + ax2y′′xx − 2axy′x + 2ay = 0.

Particular solutions: y1 = x, y2 = x2.

148. cotnx y′′′xxx + (a cotnx+ ax+ 1)y′′xx + a2xy′x − a2y = 0.

Particular solutions: y1 = x, y2 = e−ax.

149. cotnx y′′′xxx + (ax cotnx+ 1)y′′xx + a(x+ 2 cotnx)y′x + ay = 0.

Particular solutions: y1 = exp
(
− 1

2ax
2
)
, y2 = exp

(
− 1

2ax
2
) ∫

exp
(
1
2ax

2
)
dx.

150. x cotnx y′′′xxx+(3 cotnx+x)y′′xx+(ax cotnx+2)y′x+a(cot
nx+x)y=0.

Particular solutions: y1 = x−1 cos
(
x
√
a
)
, y2 = x−1 sin

(
x
√
a
)
.

151. x3 cotnx y′′′xxx + ax2y′′xx − 2x cotnx y′x + 2(2 cotnx− a)y = 0.

Particular solutions: y1 = x−1, y2 = x2.
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152. x3 cotnx y′′′xxx + ax2y′′xx − 6x cotnx y′x + 6(2 cotnx− a)y = 0.

Particular solutions: y1 = x−2, y2 = x3.

153. x3 cotnx y′′′xxx + ax2y′′xx + x(a− cotnx)y′x + (a− 3 cotnx)y = 0.

Particular solutions: y1 = cos(lnx), y2 = sin(ln x).

154. x3 cotnx y′′′xxx + x2(cotnx+ a)y′′xx
+ x[a− (b+ 1) cotnx]y′x + b(2 cotnx− a)y = 0.

Particular solutions: y1 = x−
√
b, y2 = x

√
b.

15.1.7 Equations Containing Inverse Trigonometric Functions

1. y′′′xxx + ay′′xx + by′x + cy = arcsinkx.

This is a special case of equation 17.1.6.26.

2. y′′′xxx + arcsinkx y′′xx + ay′x + a arcsinkx y = 0.

1◦. Particular solutions with a > 0: y1 = cos
(
x
√
a
)
, y2 = sin

(
x
√
a
)
.

2◦. Particular solutions with a < 0: y1 = exp
(
−x
√
−a
)
, y2 = exp

(
x
√
−a
)
.

The substitution w = y′′xx+ay leads to a first-order linear equation: w′
x+arcsinkxw = 0.

3. y′′′xxx + arcsinkx y′′xx + axny′x + axn−1(x arcsinkx+ n)y = 0.

The substitution w= y′′xx+ax
ny leads to a first-order linear equation: w′

x+arcsinkxw=0.

4. y′′′xxx + arcsinkx y′′xx + a arcsinkx y′x + a2(arcsinkx− a)y = 0.

Particular solutions: y1 = exp
(
− 1

2ax
)
cos
(√

3
2 ax

)
, y2 = exp

(
− 1

2ax
)
sin
(√

3
2 ax

)
.

5. y′′′xxx + arcsinkx y′′xx − a(2 arcsinkx+ 3a)y′x + a2(arcsinkx+ 2a)y = 0.

Particular solutions: y1 = eax, y2 = xeax.

6. y′′′xxx + arcsinkx y′′xx + (a arcsinkx+ b− a2)y′x + b(arcsinkx− a)y = 0.

Particular solutions: y1 = eλ1x, y2 = eλ2x, where λ1 and λ2 are roots of the quadratic

equation λ2 + aλ+ b = 0.

7. y′′′xxx = (arcsinkx− a)y′′xx + (a arcsinkx− b)y′x + b arcsinkx y.

The substitution w= y′′xx+ay
′
x+by leads to a first-order linear equation: w′

x=arcsinkxw.

8. y′′′xxx +x arcsinkx y′′xx +(ax2 − arcsinkx)y′x +ax(x2 arcsinkx+3)y = 0.

Particular solutions: y1 = cos
(
1
2x

2√a
)
, y2 = sin

(
1
2x

2√a
)
.

9. y′′′xxx + (arcsinkx+ ax)y′′xx + a(x arcsinkx+ 2)y′x + a arcsinkx y = 0.

Particular solutions: y1 = exp
(
− 1

2ax
2
)
, y2 = exp

(
− 1

2ax
2
) ∫

exp
(
1
2ax

2
)
dx.
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10. y′′′xxx + x2 arcsinkx y′′xx − 2x arcsinkx y′x + 2 arcsinkx y = 0.

Solution:

y = C1x+ C2x
2 + C3

(
x2
∫
x−3ψ dx− x

∫
x−2ψ dx

)
,

where ψ = exp
(
−
∫
x2 arcsinkx dx

)
.

11. y′′′xxx + (ax arcsinkx+ arcsinkx+ a)y′′xx
+ a2x arcsinkx y′x − a2 arcsinkx y = 0.

Particular solutions: y1 = x, y2 = e−ax.

12. y′′′xxx + arccoskx y′′xx + ay′x + a arccoskx y = 0.

1◦. Particular solutions with a > 0: y1 = cos
(
x
√
a
)
, y2 = sin

(
x
√
a
)
.

2◦. Particular solutions with a < 0: y1 = exp
(
−x
√
−a
)
, y2 = exp

(
x
√
−a
)
.

The substitution w = y′′xx+ay leads to a first-order linear equation: w′
x+arccoskxw = 0.

13. y′′′xxx + arccoskx y′′xx + axny′x + axn−1(x arccoskx+ n)y = 0.

The substitution w=y′′xx+ax
ny leads to a first-order linear equation: w′

x+arccoskxw=0.

14. y′′′xxx + arccoskx y′′xx + a arccoskx y′x + a2(arccoskx− a)y = 0.

Particular solutions: y1 = exp
(
− 1

2ax
)
cos
(√

3
2 ax

)
, y2 = exp

(
− 1

2ax
)
sin
(√

3
2 ax

)
.

15. y′′′xxx +arccoskx y′′xx −a(2 arccoskx+3a)y′x +a2(arccoskx+2a)y = 0.

Particular solutions: y1 = eax, y2 = xeax.

16. y′′′xxx +arccoskx y′′xx +(a arccoskx+ b−a2)y′x + b(arccoskx−a)y = 0.

Particular solutions: y1 = eλ1x, y2 = eλ2x, where λ1 and λ2 are roots of the quadratic

equation λ2 + aλ+ b = 0.

17. y′′′xxx = (arccoskx− a)y′′xx + (a arccoskx− b)y′x + b arccoskx y.

The substitution w= y′′xx+ay
′
x+by leads to a first-order linear equation: w′

x=arccoskxw.

18. y′′′xxx+x arccoskx y′′xx+(ax2−arccoskx)y′x+ax(x
2 arccoskx+3)y=0.

Particular solutions: y1 = cos
(
1
2x

2√a
)
, y2 = sin

(
1
2x

2√a
)
.

19. y′′′xxx + (arccoskx+ ax)y′′xx + a(x arccoskx+ 2)y′x + a arccoskx y = 0.

Particular solutions: y1 = exp
(
− 1

2ax
2
)
, y2 = exp

(
− 1

2ax
2
) ∫

exp
(
1
2ax

2
)
dx.

20. y′′′xxx + x2 arccoskx y′′xx − 2x arccoskx y′x + 2arccoskx y = 0.

Solution:

y = C1x+ C2x
2 + C3

(
x2
∫
x−3ψ dx− x

∫
x−2ψ dx

)
,

where ψ = exp
(
−
∫
x2 arccoskx dx

)
.
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21. y′′′xxx + (ax arccoskx+ arccoskx+ a)y′′xx
+ a2x arccoskx y′x − a2 arccoskx y = 0.

Particular solutions: y1 = x, y2 = e−ax.

22. y′′′xxx + arctankx y′′xx + ay′x + a arctankx y = 0.

1◦. Particular solutions with a > 0: y1 = cos
(
x
√
a
)
, y2 = sin

(
x
√
a
)
.

2◦. Particular solutions with a < 0: y1 = exp
(
−x√−a

)
, y2 = exp

(
x
√−a

)
.

The substitution w = y′′xx+ ay leads to a first-order linear equation: w′
x+ arctankxw = 0.

23. y′′′xxx + arctankx y′′xx + axny′x + axn−1(x arctankx+ n)y = 0.

The substitution w= y′′xx+ax
ny leads to a first-order linear equation: w′

x+arctankxw=0.

24. y′′′xxx + arctankx y′′xx + a arctankx y′x + a2(arctankx− a)y = 0.

Particular solutions: y1 = exp
(
− 1

2ax
)
cos
(√

3
2 ax

)
, y2 = exp

(
− 1

2ax
)
sin
(√

3
2 ax

)
.

25. y′′′xxx + arctankx y′′xx − a(2 arctankx+ 3a)y′x + a2(arctankx+ 2a)y = 0.

Particular solutions: y1 = eax, y2 = xeax.

26. y′′′xxx + arctankx y′′xx + (a arctankx+ b− a2)y′x + b(arctankx− a)y = 0.

Particular solutions: y1 = eλ1x, y2 = eλ2x, where λ1 and λ2 are roots of the quadratic

equation λ2 + aλ+ b = 0.

27. y′′′xxx = (arctankx− a)y′′xx + (a arctankx− b)y′x + b arctankx y.

The substitution w= y′′xx+ay
′
x+by leads to a first-order linear equation: w′

x= arctankxw.

28. y′′′xxx +x arctankx y′′xx +(ax2 − arctankx)y′x + ax(x2 arctankx+3)y = 0.

Particular solutions: y1 = cos
(
1
2x

2√a
)
, y2 = sin

(
1
2x

2√a
)
.

29. y′′′xxx + (arctankx+ ax)y′′xx + a(x arctankx+ 2)y′x + a arctankx y = 0.

Particular solutions: y1 = exp
(
− 1

2ax
2
)
, y2 = exp

(
− 1

2ax
2
) ∫

exp
(
1
2ax

2
)
dx.

30. y′′′xxx + x2 arctankx y′′xx − 2x arctankx y′x + 2 arctankx y = 0.

Solution:

y = C1x+ C2x
2 + C3

(
x2
∫
x−3ψ dx− x

∫
x−2ψ dx

)
,

where ψ = exp
(
−
∫
x2 arctankx dx

)
.

31. y′′′xxx + (ax arctankx+ arctankx+ a)y′′xx
+ a2x arctankx y′x − a2 arctankx y = 0.

Particular solutions: y1 = x, y2 = e−ax.

32. y′′′xxx + arccotkx y′′xx + ay′x + a arccotkx y = 0.

1◦. Particular solutions with a > 0: y1 = cos
(
x
√
a
)
, y2 = sin

(
x
√
a
)
.

2◦. Particular solutions with a < 0: y1 = exp
(
−x
√
−a
)
, y2 = exp

(
x
√
−a
)
.

The substitution w = y′′xx+ ay leads to a first-order linear equation: w′
x+ arccotkxw = 0.
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33. y′′′xxx + arccotkx y′′xx + axny′x + axn−1(x arccotkx+ n)y = 0.

The substitution w= y′′xx+ax
ny leads to a first-order linear equation: w′

x+arccotkxw=0.

34. y′′′xxx + arccotkx y′′xx + a arccotkx y′x + a2(arccotkx− a)y = 0.

Particular solutions: y1 = exp
(
− 1

2ax
)
cos
(√

3
2 ax

)
, y2 = exp

(
− 1

2ax
)
sin
(√

3
2 ax

)
.

35. y′′′xxx + arccotkx y′′xx − a(2 arccotkx+ 3a)y′x + a2(arccotkx+ 2a)y = 0.

Particular solutions: y1 = eax, y2 = xeax.

36. y′′′xxx + arccotkx y′′xx + (a arccotkx+ b− a2)y′x + b(arccotkx− a)y = 0.

Particular solutions: y1 = eλ1x, y2 = eλ2x, where λ1 and λ2 are roots of the quadratic

equation λ2 + aλ+ b = 0.

37. y′′′xxx = (arccotkx− a)y′′xx + (a arccotkx− b)y′x + b arccotkx y.

The substitution w= y′′xx+ay
′
x+by leads to a first-order linear equation: w′

x= arccotkxw.

38. y′′′xxx + x arccotkx y′′xx + (ax2 − arccotkx)y′x + ax(x2 arccotkx+3)y = 0.

Particular solutions: y1 = cos
(
1
2x

2√a
)
, y2 = sin

(
1
2x

2√a
)
.

39. y′′′xxx + (arccotkx+ ax)y′′xx + a(x arccotkx+ 2)y′x + a arccotkx y = 0.

Particular solutions: y1 = exp
(
− 1

2ax
2
)
, y2 = exp

(
− 1

2ax
2
) ∫

exp
(
1
2ax

2
)
dx.

40. y′′′xxx + x2 arccotkx y′′xx − 2x arccotkx y′x + 2 arccotkx y = 0.

Solution:

y = C1x+ C2x
2 + C3

(
x2
∫
x−3ψ dx− x

∫
x−2ψ dx

)
,

where ψ = exp
(
−
∫
x2 arccotkx dx

)
.

41. y′′′xxx + (ax arccotkx+ arccotkx+ a)y′′xx
+ a2x arccotkx y′x − a2 arccotkx y = 0.

Particular solutions: y1 = x, y2 = e−ax.

42. xy′′′xxx + (ax2 + b)y′′xx + 4axy′x + 2ay = arcsinkx.

Integrating the equation twice, we arrive at a first-order linear equation:

xy′x + (ax2 + b− 2)y = C1 + C2x+

∫ x

x0

(x− t) arcsink t dt, x0 is any number.

43. xy′′′xxx + (x arcsinkx+ 3)y′′xx + (2 arcsinkx+ ax)y′x
+ a(x arcsinkx+ 1)y = 0.

Particular solutions: y1 = x−1 cos
(
x
√
a
)
, y2 = x−1 sin

(
x
√
a
)
.

44. xy′′′xxx + (x arccoskx+ 3)y′′xx + (2 arccoskx+ ax)y′x
+ a(x arccoskx+ 1)y = 0.

Particular solutions: y1 = x−1 cos
(
x
√
a
)
, y2 = x−1 sin

(
x
√
a
)
.
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45. xy′′′xxx+(x arctankx+3)y′′xx+(2 arctankx+ax)y′x+a(x arctankx+1)y=0.

Particular solutions: y1 = x−1 cos
(
x
√
a
)
, y2 = x−1 sin

(
x
√
a
)
.

46. xy′′′xxx+(x arccotkx+3)y′′xx+(2 arccotkx+ax)y′x+a(x arccotkx+1)y=0.

Particular solutions: y1 = x−1 cos
(
x
√
a
)
, y2 = x−1 sin

(
x
√
a
)
.

47. x3y′′′xxx + [(a+ 6)x2 + b]y′′xx + 2(2a+ 3)xy′x + 2ay = arcsinkx.

Integrating the equation twice, we arrive at a first-order linear equation:

x3y′x + (ax2 + b)y = C1 + C2x+

∫ x

x0

(x− t) arcsink t dt, x0 is any number.

48. x3y′′′xxx + x2 arcsinkxy′′xx − 2xy′x + 2(2 − arcsinkx)y = 0.

Particular solutions: y1 = x−1, y2 = x2.

49. x3y′′′xxx + x2 arcsinkx y′′xx − 6xy′x + 6(2 − arcsinkx)y = 0.

Particular solutions: y1 = x−2, y2 = x3.

50. x3y′′′xxx + x2 arcsinkx y′′xx + x(arcsinkx− 1)y′x + (arcsinkx− 3)y = 0.

Particular solutions: y1 = cos(lnx), y2 = sin(ln x).

51. x3y′′′xxx + x2(arcsinkx+ 1)y′′xx + x(arcsinkx− a− 1)y′x
− a(arcsinkx− 2)y = 0.

Particular solutions: y1 = x−
√
a, y2 = x

√
a.

52. x3y′′′xxx + x2(arcsinkx+ a)y′′xx + x(a arcsinkx+ b− a)y′x
+ b(arcsinkx− 2)y = 0.

Particular solutions: y1 = xn1 , y2 = xn2 , where n1 and n2 are roots of the quadratic

equation n2 + (a− 1)n+ b = 0.

53. x3y′′′xxx + x2 arccoskx y′′xx − 2xy′x + 2(2 − arccoskx)y = 0.

Particular solutions: y1 = x−1, y2 = x2.

54. x3y′′′xxx + x2 arccoskx y′′xx − 6xy′x + 6(2 − arccoskx)y = 0.

Particular solutions: y1 = x−2, y2 = x3.

55. x3y′′′xxx + x2 arccoskx y′′xx + x(arccoskx− 1)y′x + (arccoskx− 3)y = 0.

Particular solutions: y1 = cos(lnx), y2 = sin(ln x).

56. x3y′′′xxx + x2(arccoskx+ 1)y′′xx + x(arccoskx− a− 1)y′x
− a(arccoskx− 2)y = 0.

Particular solutions: y1 = x−
√
a, y2 = x

√
a.

57. x3y′′′xxx + x2(arccoskx+ a)y′′xx + x(a arccoskx+ b− a)y′x
+ b(arccoskx− 2)y = 0.

Particular solutions: y1 = xn1 , y2 = xn2 , where n1 and n2 are roots of the quadratic

equation n2 + (a− 1)n+ b = 0.
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58. x3y′′′xxx + x2 arctankx y′′xx − 2xy′x + 2(2 − arctankx)y = 0.

Particular solutions: y1 = x−1, y2 = x2.

59. x3y′′′xxx + x2 arctankx y′′xx − 6xy′x + 6(2 − arctankx)y = 0.

Particular solutions: y1 = x−2, y2 = x3.

60. x3y′′′xxx + x2 arctankx y′′xx + x(arctankx− 1)y′x + (arctankx− 3)y = 0.

Particular solutions: y1 = cos(lnx), y2 = sin(ln x).

61. x3y′′′xxx + x2(arctankx+ 1)y′′xx + x(arctankx− a− 1)y′x
− a(arctankx− 2)y = 0.

Particular solutions: y1 = x−
√
a, y2 = x

√
a.

62. x3y′′′xxx + x2(arctankx+ a)y′′xx + x(a arctankx+ b− a)y′x
+ b(arctankx− 2)y = 0.

Particular solutions: y1 = xn1 , y2 = xn2 , where n1 and n2 are roots of the quadratic

equation n2 + (a− 1)n+ b = 0.

63. x3y′′′xxx + x2 arccotkx y′′xx − 2xy′x + 2(2 − arccotkx)y = 0.

Particular solutions: y1 = x−1, y2 = x2.

64. x3y′′′xxx + x2 arccotkx y′′xx − 6xy′x + 6(2 − arccotkx)y = 0.

Particular solutions: y1 = x−2, y2 = x3.

65. x3y′′′xxx + x2 arccotkx y′′xx + x(arccotkx− 1)y′x + (arccotkx− 3)y = 0.

Particular solutions: y1 = cos(lnx), y2 = sin(ln x).

66. x3y′′′xxx + x2(arccotkx+ 1)y′′xx + x(arccotkx− a− 1)y′x
− a(arccotkx− 2)y = 0.

Particular solutions: y1 = x−
√
a, y2 = x

√
a.

67. x3y′′′xxx + x2(arccotkx+ a)y′′xx + x(a arccotkx+ b− a)y′x
+ b(arccotkx− 2)y = 0.

Particular solutions: y1 = xn1 , y2 = xn2 , where n1 and n2 are roots of the quadratic

equation n2 + (a− 1)n+ b = 0.

15.1.8 Equations Containing Combinations of Exponential,
Logarithmic, Trigonometric, and Other Functions

1. y′′′xxx = tanx y + aeλx(y′x + tanx y).

Particular solution: y0 = cos x.

2. y′′′xxx+ae
λxy′′xx+(2aeλx tanx+3)y′x+[aeλx(2 tan2 x+1)+2 tanx]y=0.

Particular solutions: y1 = cos x, y2 = x cos x.
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3. y′′′xxx+ae
λxy′′xx+(3−2aeλx cot x)y′x+[aeλx(2 cot2 x+1)−2 cot x]y=0.

Particular solutions: y1 = sinx, y2 = x sinx.

4. y′′′xxx + a coshnx y′′xx + (2a coshnx tanx+ 3)y′x
+ [a coshnx (2 tan2 x+ 1) + 2 tanx]y = 0.

Particular solutions: y1 = cos x, y2 = x cos x.

5. y′′′xxx + a coshnx y′′xx + (3− 2a coshnx cot x)y′x
+ [a coshnx (2 cot2 x+ 1) − 2 cot x]y = 0.

Particular solutions: y1 = sinx, y2 = x sinx.

6. y′′′xxx + a sinhnx y′′xx + (2a sinhnx tanx+ 3)y′x
+ [a sinhnx (2 tan2 x+ 1) + 2 tanx]y = 0.

Particular solutions: y1 = cos x, y2 = x cos x.

7. y′′′xxx + a sinhnx y′′xx + (3− 2a sinhnx cot x)y′x
+ [a sinhnx (2 cot2 x+ 1) − 2 cot x]y = 0.

Particular solutions: y1 = sinx, y2 = x sinx.

8. y′′′xxx + a tanhnx y′′xx + (2a tanhnx tanx+ 3)y′x
+ [a tanhnx (2 tan2 x+ 1) + 2 tanx]y = 0.

Particular solutions: y1 = cos x, y2 = x cos x.

9. y′′′xxx + a tanhnx y′′xx + (3− 2a tanhnx cot x)y′x
+ [a tanhnx (2 cot2 x+ 1) − 2 cot x]y = 0.

Particular solutions: y1 = sinx, y2 = x sinx.

10. y′′′xxx + a cothnx y′′xx + (2a cothnx tanx+ 3)y′x
+ [a cothnx (2 tan2 x+ 1) + 2 tanx]y = 0.

Particular solutions: y1 = cos x, y2 = x cos x.

11. y′′′xxx + a cothnx y′′xx + (3− 2a cothnx cot x)y′x
+ [a cothnx (2 cot2 x+ 1) − 2 cot x]y = 0.

Particular solutions: y1 = sinx, y2 = x sinx.

12. y′′′xxx + a lnnx y′′xx − (2a lnnx tanhx+ 3)y′x
+ [a lnnx (2 tanh2 x− 1) + 2 tanh x]y = 0.

Particular solutions: y1 = cosh x, y2 = x cosh x.

13. y′′′xxx + a lnnx y′′xx − (2a lnnx coth x+ 3)y′x
+ [a lnnx (2 coth2 x− 1) + 2 coth x]y = 0.

Particular solutions: y1 = sinh x, y2 = x sinh x.

14. y′′′xxx + a lnnx y′′xx + (2a lnnx tanx+ 3)y′x
+ [a lnnx (2 tan2 x+ 1) + 2 tanx]y = 0.

Particular solutions: y1 = cos x, y2 = x cos x.
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15. y′′′xxx + a lnnx y′′xx + (3− 2a lnnx cot x)y′x
+ [a lnnx (2 cot2 x+ 1) − 2 cot x]y = 0.

Particular solutions: y1 = sinx, y2 = x sinx.

16. y′′′xxx + a cosnx y′′xx − (2a cosnx tanhx+ 3)y′x
+ [a cosnx (2 tanh2 x− 1) + 2 tanh x]y = 0.

Particular solutions: y1 = cosh x, y2 = x cosh x.

17. y′′′xxx + a cosnx y′′xx − (2a cosnx coth x+ 3)y′x
+ [a cosnx (2 coth2 x− 1) + 2 coth x]y = 0.

Particular solutions: y1 = sinh x, y2 = x sinh x.

18. y′′′xxx + a sinnx y′′xx − (2a sinnx tanhx+ 3)y′x
+ [a sinnx (2 tanh2 x− 1) + 2 tanh x]y = 0.

Particular solutions: y1 = cosh x, y2 = x cosh x.

19. y′′′xxx + a sinnx y′′xx − (2a sinnx coth x+ 3)y′x
+ [a sinnx (2 coth2x− 1) + 2 coth x]y = 0.

Particular solutions: y1 = sinh x, y2 = x sinh x.

20. y′′′xxx + a tannx y′′xx − (2a tannx tanhx+ 3)y′x
+ [a tannx (2 tanh2 x− 1) + 2 tanh x]y = 0.

Particular solutions: y1 = cosh x, y2 = x cosh x.

21. y′′′xxx + a tannx y′′xx − (2a tannx coth x+ 3)y′x
+ [a tannx (2 coth2 x− 1) + 2 coth x]y = 0.

Particular solutions: y1 = sinh x, y2 = x sinh x.

22. y′′′xxx + a cotnx y′′xx − (2a cotnx tanhx+ 3)y′x
+ [a cotnx (2 tanh2 x− 1) + 2 tanh x]y = 0.

Particular solutions: y1 = cosh x, y2 = x cosh x.

23. y′′′xxx + a cotnx y′′xx − (2a cotnx coth x+ 3)y′x
+ [a cotnx (2 coth2 x− 1) + 2 coth x]y = 0.

Particular solutions: y1 = sinh x, y2 = x sinh x.

24. y′′′xxx+(beax+2a) coshnx y′′xx−a(beax coshnx+a)y′x−2a3 coshnx y=0.

Particular solutions: y1 = eax, y2 = e−ax + b/a.

25. y′′′xxx+(beax+2a) sinhnx y′′xx−a(beax sinhnx+a)y′x−2a3 sinhnx y= 0.

Particular solutions: y1 = eax, y2 = e−ax + b/a.

26. y′′′xxx+(beax+2a) tanhnx y′′xx−a(beax tanhnx+a)y′x−2a3 tanhnx y=0.

Particular solutions: y1 = eax, y2 = e−ax + b/a.

27. y′′′xxx+(beax+2a) cothnx y′′xx−a(beax cothnx+a)y′x−2a3 cothnx y=0.

Particular solutions: y1 = eax, y2 = e−ax + b/a.
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28. y′′′xxx + (beax + 2a) lnnx y′′xx − a(beax lnnx+ a)y′x − 2a3 lnnx y = 0.

Particular solutions: y1 = eax, y2 = e−ax + b/a.

29. y′′′xxx + (a lnnx− 2bex)y′′xx − bex(2a lnnx− bex + 3)y′x
+ bex[a lnnx (bex − 1) + 2bex − 1]y = 0.

Particular solutions: y1 = exp(bex), y2 = x exp(bex).

30. y′′′xxx + (a cosnx− 2bex)y′′xx − bex(2a cosnx− bex + 3)y′x
+ bex[a cosnx (bex − 1) + 2bex − 1]y = 0.

Particular solutions: y1 = exp(bex), y2 = x exp(bex).

31. y′′′xxx +(beax +2a) cosnx y′′xx − a(beax cosnx+ a)y′x − 2a3 cosnx y = 0.

Particular solutions: y1 = eax, y2 = e−ax + b/a.

32. y′′′xxx + (a sinnx− 2bex)y′′xx − bex(2a sinnx− bex + 3)y′x
+ bex[a sinnx (bex − 1) + 2bex − 1]y = 0.

Particular solutions: y1 = exp(bex), y2 = x exp(bex).

33. y′′′xxx + (beax + 2a) sinnx y′′xx − a(beax sinnx+ a)y′x − 2a3 sinnx y = 0.

Particular solutions: y1 = eax, y2 = e−ax + b/a.

34. y′′′xxx − [eλx(tanx+ a) + a]y′′xx + [(a2 + 1)eλx + 1]y′x
+ a[eλx(a tanx− 1) − 1]y = 0.

Particular solutions: y1 = eax, y2 = cos x.

35. y′′′xxx + [tanx (axeλx + 1) + aeλx]y′′xx − axeλxy′x + aeλxy = 0.

Particular solutions: y1 = x, y2 = cosx.

36. y′′′xxx + (a tannx− 2bex)y′′xx − bex(2a tannx− bex + 3)y′x
+ bex[a tannx (bex − 1) + 2bex − 1]y = 0.

Particular solutions: y1 = exp(bex), y2 = x exp(bex).

37. y′′′xxx+(beax +2a) tannx y′′xx −a(beax tannx+a)y′x− 2a3 tannx y = 0.

Particular solutions: y1 = eax, y2 = e−ax + b/a.

38. y′′′xxx + [eλx(cot x+ a) + a]y′′xx + [(a2 + 1)eλx + 1]y′x
+ a[eλx(1 − a cot x) + 1]y = 0.

Particular solutions: y1 = e−ax, y2 = sinx.

39. y′′′xxx + [aeλx − cot x (axeλx + 1)]y′′xx − axeλxy′x + aeλxy = 0.

Particular solutions: y1 = x, y2 = sinx.

40. y′′′xxx + (a cotnx− 2bex)y′′xx − bex(2a cotnx− bex + 3)y′x
+ bex[a cotnx (bex − 1) + 2bex − 1]y = 0.

Particular solutions: y1 = exp(bex), y2 = x exp(bex).
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41. y′′′xxx + (beax +2a) cotnx y′′xx − a(beax cotnx+ a)y′x − 2a3 cotnx y = 0.

Particular solutions: y1 = eax, y2 = e−ax + b/a.

42. y′′′xxx − [coshnx (tanx+ a) + a]y′′xx + [(a2 + 1) coshnx+ 1]y′x
+ a[coshnx (a tanx− 1) − 1]y = 0.

Particular solutions: y1 = eax, y2 = cos x.

43. y′′′xxx + [coshnx (cotx+ a) + a]y′′xx + [(a2 + 1) coshnx+ 1]y′x
+ a[coshnx (1 − a cot x) + 1]y = 0.

Particular solutions: y1 = e−ax, y2 = sinx.

44. y′′′xxx − [sinhnx (tanx+ a) + a]y′′xx + [(a2 + 1) sinhnx+ 1]y′x
+ a[sinhnx (a tanx− 1) − 1]y = 0.

Particular solutions: y1 = eax, y2 = cos x.

45. y′′′xxx + [sinhnx (cotx+ a) + a]y′′xx + [(a2 + 1) sinhnx+ 1]y′x
+ a[sinhnx (1 − a cot x) + 1]y = 0.

Particular solutions: y1 = e−ax, y2 = sinx.

46. y′′′xxx − [tanhnx (tanx+ a) + a]y′′xx + [(a2 + 1) tanhnx+ 1]y′x
+ a[tanhnx (a tanx− 1) − 1]y = 0.

Particular solutions: y1 = eax, y2 = cos x.

47. y′′′xxx + [tanhnx (cotx+ a) + a]y′′xx + [(a2 + 1) tanhnx+ 1]y′x
+ a[tanhnx (1 − a cot x) + 1]y = 0.

Particular solutions: y1 = e−ax, y2 = sinx.

48. y′′′xxx − [cothnx (tanx+ a) + a]y′′xx + [(a2 + 1) cothnx+ 1]y′x
+ a[cothnx (tanx− 1) − 1]y = 0.

Particular solutions: y1 = eax, y2 = cos x.

49. y′′′xxx + [cothnx (cotx+ a) + a]y′′xx + [(a2 + 1) cothnx+ 1]y′x
+ a[cothnx (1 − a cot x) + 1]y = 0.

Particular solutions: y1 = e−ax, y2 = sinx.

50. y′′′xxx + [a tannx (tanhx− b) − b]y′′xx + [a(b2 − 1) tannx− 1]y′x
+ b[a tannx(1− b tanhx) + 1]y = 0.

Particular solutions: y1 = ebx, y2 = cosh x.

51. y′′′xxx + (a tannx+ b tanhm x)y′′xx + cy′x + c(a tannx+ b tanhm x)y = 0.

1◦. Particular solutions with c > 0: y1 = cos
(
x
√
c
)
, y2 = sin

(
x
√
c
)
.

2◦. Particular solutions with c < 0: y1 = exp
(
−x√−c

)
, y2 = exp

(
x
√−c

)
.

52. y′′′xxx+ [a tannx(coth x− b) − b]y′′xx + [a(b2 − 1) tannx− 1]y′x
+ b[a tannx(1− b coth x) + 1]y = 0.

Particular solutions: y1 = ebx, y2 = sinh x.
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53. y′′′xxx + (a tannx+ b cothm x)y′′xx + cy′x + c(a tannx+ b cothm x)y = 0.

1◦. Particular solutions with c > 0: y1 = cos
(
x
√
c
)
, y2 = sin

(
x
√
c
)
.

2◦. Particular solutions with c < 0: y1 = exp
(
−x
√
−c
)
, y2 = exp

(
x
√
−c
)
.

54. y′′′xxx + [a cotnx(tanhx− b) − b]y′′xx + [a(b2 − 1) cotnx− 1]y′x
+ b[a cotnx(1− b tanhx) + 1]y = 0.

Particular solutions: y1 = ebx, y2 = cosh x.

55. y′′′xxx + a cotnx tanhm x y′′xx − by′x − ab cotnx tanhm x y = 0.

1◦. Particular solutions with b > 0: y1 = exp
(
−x
√
b
)
, y2 = exp

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = cos
(
x
√
−b
)
, y2 = sin

(
x
√
−b
)
.

56. y′′′xxx + [a cotnx(coth x− b) − b]y′′xx + [a(b2 − 1) cotnx− 1]y′x
+ b[a cotnx(1− b coth x) + 1]y = 0.

Particular solutions: y1 = ebx, y2 = sinh x.

57. y′′′xxx + (a cotnx+ b cothm x)y′′xx + cy′x + c(a cotnx+ b cothm x)y = 0.

1◦. Particular solutions with c > 0: y1 = cos
(
x
√
c
)
, y2 = sin

(
x
√
c
)
.

2◦. Particular solutions with c < 0: y1 = exp
(
−x√−c

)
, y2 = exp

(
x
√−c

)
.

58. y′′′xxx + [a lnnx (tanhx− b) − b]y′′xx + [a(b2 − 1) lnnx− 1]y′x
+ b[a lnnx (1− b tanhx) + 1]y = 0.

Particular solutions: y1 = ebx, y2 = cosh x.

59. y′′′xxx + a lnnx tanhm x y′′xx − by′x − ab lnnx tanhm x y = 0.

1◦. Particular solutions with b > 0: y1 = exp
(
−x
√
b
)
, y2 = exp

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = cos
(
x
√
−b
)
, y2 = sin

(
x
√
−b
)
.

60. y′′′xxx + [a lnnx (coth x− b) − b]y′′xx + [a(b2 − 1) lnnx− 1]y′x
+ b[a lnnx (1− b coth x) + 1]y = 0.

Particular solutions: y1 = ebx, y2 = sinh x.

61. y′′′xxx + (a lnnx+ b cothm x)y′′xx + cy′x + c(a lnnx+ b cothm x)y = 0.

1◦. Particular solutions with c > 0: y1 = cos
(
x
√
c
)
, y2 = sin

(
x
√
c
)
.

2◦. Particular solutions with c < 0: y1 = exp
(
−x
√
−c
)
, y2 = exp

(
x
√
−c
)
.

62. y′′′xxx − [lnnx (tanx+ a) + a]y′′xx + [(a2 + 1) lnnx+ 1]y′x
+ a[lnnx (a tanx− 1) − 1]y = 0.

Particular solutions: y1 = eax, y2 = cos x.

63. y′′′xxx + [lnnx (cot x+ a) + a]y′′xx + [(a2 + 1) lnnx+ 1]y′x
+ a[lnnx (1 − a cot x) + 1]y = 0.

Particular solutions: y1 = e−ax, y2 = sinx.
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64. y′′′xxx+ [a cosnx(tanhx− b) − b]y′′xx + [a(b2 − 1) cosnx− 1]y′x
+ b[a cosnx(1− b tanhx) + 1]y = 0.

Particular solutions: y1 = ebx, y2 = cosh x.

65. y′′′xxx + a cosnx tanhm x y′′xx + by′x + ab cosnx tanhm x y = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
x
√
b
)
, y2 = sin

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
−x
√
−b
)
, y2 = exp

(
x
√
−b
)
.

66. y′′′xxx + [a cosnx(cothx− b) − b]y′′xx + [a(b2 − 1) cosnx− 1]y′x
+ b[a cosnx(1− b coth x) + 1]y = 0.

Particular solutions: y1 = ebx, y2 = sinh x.

67. y′′′xxx + (a cosnx+ b cothm x)y′′xx + cy′x + c(a cosnx+ b cothm x)y = 0.

1◦. Particular solutions with c > 0: y1 = cos
(
x
√
c
)
, y2 = sin

(
x
√
c
)
.

2◦. Particular solutions with c < 0: y1 = exp
(
−x
√
−c
)
, y2 = exp

(
x
√
−c
)
.

68. y′′′xxx + [a sinnx(tanhx− b) − b]y′′xx + [a(b2 − 1) sinnx− 1]y′x
+ b[a sinnx(1− b tanhx) + 1]y = 0.

Particular solutions: y1 = ebx, y2 = cosh x.

69. y′′′xxx + a sinnx tanhm x y′′xx + by′x + ab sinnx tanhm x y = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
x
√
b
)
, y2 = sin

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
−x
√
−b
)
, y2 = exp

(
x
√
−b
)
.

70. y′′′xxx + [a sinnx (cothx− b) − b]y′′xx + [a(b2 − 1) sinnx− 1]y′x
+ b[a sinnx (1− b coth x) + 1]y = 0.

Particular solutions: y1 = ebx, y2 = sinh x.

71. y′′′xxx + (a sinnx+ b cothm x)y′′xx + cy′x + c(a sinnx+ b cothm x)y = 0.

1◦. Particular solutions with c > 0: y1 = cos
(
x
√
c
)
, y2 = sin

(
x
√
c
)
.

2◦. Particular solutions with c < 0: y1 = exp
(
−x√−c

)
, y2 = exp

(
x
√−c

)
.

72. xy′′′xxx + [ax2eλx(b− ln x) + 2]y′′xx + axeλxy′x − aeλxy = 0.

Particular solutions: y1 = x, y2 = lnx− b+ 1.

73. (eλx−1)y′′′xxx−(aeλx+tanx)y′′xx+(eλx+a2)y′x+a(a tanx−eλx)y=0.

Particular solutions: y1 = eax, y2 = cos x.

74. a coshnx y′′′xxx + [tanx (a coshnx+ x) + 1]y′′xx − xy′x + y = 0.

Particular solutions: y1 = x, y2 = cosx.

75. a coshnx y′′′xxx + [1 − cot x (a coshnx+ x)]y′′xx − xy′x + y = 0.

Particular solutions: y1 = x, y2 = sinx.
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76. a sinhnx y′′′xxx + [tanx (a sinhnx+ x) + 1]y′′xx − xy′x + y = 0.

Particular solutions: y1 = x, y2 = cosx.

77. a sinhnx y′′′xxx + [1 − cot x (a sinhnx+ x)]y′′xx − xy′x + y = 0.

Particular solutions: y1 = x, y2 = sinx.

78. a tanhnx y′′′xxx + [tanx (a tanhnx+ x) + 1]y′′xx − xy′x + y = 0.

Particular solutions: y1 = x, y2 = cosx.

79. a tanhnx y′′′xxx + [1 − cot x (a tanhnx+ x)]y′′xx − xy′x + y = 0.

Particular solutions: y1 = x, y2 = sinx.

80. a cothnx y′′′xxx + [tanx (a cothnx+ x) + 1]y′′xx − xy′x + y = 0.

Particular solutions: y1 = x, y2 = cosx.

81. a cothnx y′′′xxx + [1 − cot x (a cothnx+ x)]y′′xx − xy′x + y = 0.

Particular solutions: y1 = x, y2 = sinx.

82. a lnnx y′′′xxx + [tanh x (x− a lnnx) − 1]y′′xx − xy′x + y = 0.

Particular solutions: y1 = x, y2 = coshx.

83. a lnnx y′′′xxx + [coth x (x− a lnnx) − 1]y′′xx − xy′x + y = 0.

Particular solutions: y1 = x, y2 = sinhx.

84. a lnnx y′′′xxx + [tanx (a lnnx+ x) + 1]y′′xx − xy′x + y = 0.

Particular solutions: y1 = x, y2 = cosx.

85. a lnnx y′′′xxx + [1 − cot x (a lnnx+ x)]y′′xx − xy′x + y = 0.

Particular solutions: y1 = x, y2 = sinx.

86. a cosnx y′′′xxx + [tanhx (x− a cosnx) − 1]y′′xx − xy′x + y = 0.

Particular solutions: y1 = x, y2 = coshx.

87. a cosnx y′′′xxx + [coth x (x− a cosnx) − 1]y′′xx − xy′x + y = 0.

Particular solutions: y1 = x, y2 = sinhx.

88. ax cosnx y′′′xxx + (2a cosnx− x2 lnx+ bx2)y′′xx + xy′x − y = 0.

Particular solutions: y1 = x, y2 = lnx− b+ 1.

89. a sinnx y′′′xxx + [tanh x (x− a sinnx) − 1]y′′xx − xy′x + y = 0.

Particular solutions: y1 = x, y2 = coshx.

90. a sinnx y′′′xxx + [coth x (x− a sinnx) − 1]y′′xx − xy′x + y = 0.

Particular solutions: y1 = x, y2 = sinhx.

91. ax sinnx y′′′xxx + (2a sinnx− x2 lnx+ bx2)y′′xx + xy′x − y = 0.

Particular solutions: y1 = x, y2 = lnx− b+ 1.
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92. a tannx y′′′xxx + [tanhx (x− a tannx) − 1]y′′xx − xy′x + y = 0.

Particular solutions: y1 = x, y2 = coshx.

93. a tannx y′′′xxx + [coth x (x− a tannx) − 1]y′′xx − xy′x + y = 0.

Particular solutions: y1 = x, y2 = sinhx.

94. ax tannx y′′′xxx + (2a tannx− x2 ln x+ bx2)y′′xx + xy′x − y = 0.

Particular solutions: y1 = x, y2 = lnx− b+ 1.

95. a cotnx y′′′xxx + [tanhx (x− a cotnx) − 1]y′′xx − xy′x + y = 0.

Particular solutions: y1 = x, y2 = coshx.

96. a cotnx y′′′xxx + [coth x (x− a cotnx) − 1]y′′xx − xy′x + y = 0.

Particular solutions: y1 = x, y2 = sinhx.

97. ax cotnx y′′′xxx + (2a cotnx− x2 lnx+ bx2)y′′xx + xy′x − y = 0.

Particular solutions: y1 = x, y2 = lnx− b+ 1.

15.1.9 Equations Containing Arbitrary Functions

◆ Notation: f = f(x), g = g(x), and h = h(x) are arbitrary functions of x; a, b, c, n,

and λ are arbitrary parameters.

◮ Equations of the form f3(x)y
′′′

xxx + f1(x)y
′

x + f0(x)y = g(x).

1. y′′′xxx = f(x)y.

The transformation x = t−1, y = ut−2 leads to an equation of the same form: u′′′ttt =
−t−6f(1/t)u.

2. y′′′xxx = f
((
ax+ b

cx+ d

))
y

(cx+ d)6
.

The transformation ξ =
ax+ b

cx+ d
, w =

y

(cx+ d)2
leads to a simpler equation: w′′′

ξξξ =

∆−3f(ξ)w, where ∆ = ad− bc.

3. fy′′′xxx − f ′′′

xxxy = 0.

Particular solution: y0 = f . The substitution y = f

∫
z dx leads to a second-order linear

equation: fz′′xx + 3f ′xz
′
x + 3f ′′xxz = 0.

4. fy′′′xxx + f ′′′

xxxy = g.

Integrating yields a second-order linear equation: fy′′xx − f ′xy′x + f ′′xxy =

∫
g dx+ C.

5. y′′′xxx + fy′x − (af + a3)y = 0.

Particular solution: y0 = eax. The substitution w = y′x− ay leads to a second-order linear

equation: w′′
xx + aw′

x + (f + a2)w = 0.
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6. y′′′xxx + fy′x + ax(f + a2x2 − 3a)y = 0.

Particular solution: y0 = exp
(
− 1

2ax
2
)
. The substitution y = exp

(
− 1

2ax
2
) ∫

z(x) dx

leads to a second-order linear equation: z′′xx − 3axz′x + (f + 3a2x2 − 3a)z = 0.

7. y′′′xxx + (f − a2)y′x + afy = 0.

Particular solution: y0 = e−ax. The substitution w= y′x+ay leads to a second-order linear

equation: w′′
xx − aw′

x + fw = 0.

8. y′′′xxx + xfy′x − 2fy = 0.

Particular solution: y0 = x2. The substitution w = xy′x− 2y leads to a second-order linear

equation: w′′
xx + xfw = 0.

9. y′′′xxx + (ax+ b)fy′x − afy = 0.

Particular solution: y0 = ax+ b.

10. y′′′xxx + (ax+ b)fy′x − 2afy = 0.

Particular solution: y0 = (ax + b)2. The substitution w = (ax + b)y′x − 2ay leads to a

second-order linear equation: w′′
xx + (ax+ b)fw = 0.

11. y′′′xxx + (f − a2x2)y′x + ax(f − 3a)y = 0.

Particular solution: y0 = exp
(
− 1

2ax
2
)
. The substitution y = exp

(
− 1

2ax
2
) ∫

z(x) dx

leads to a second-order linear equation: z′′xx − 3axz′x + (2a2x2 − 3a+ f)z = 0.

12. y′′′xxx + (f − a2x2n)y′x − a[xnf + 3anx2n−1 + n(n− 1)xn−2]y = 0.

Particular solution: y0=exp
( a

n+1
xn+1

)
. Substituting y=exp

( a

n+1
xn+1

) ∫
z(x) dx

yields a second-order linear equation:

z′′xx + 3axnz′x + (2a2x2n + 3anxn−1 + f)z = 0.

13. xy′′′xxx + xfy′x − [(ax+ 1)f + a3x+ 3a2]y = 0.

Particular solution: y0 = xeax.

14. x2y′′′xxx + (xf − a2 − a)y′x + (a− 1)fy = 0.

Particular solution: y0=x
1−a. The substitution w=xy′x+(a−1)y leads to a second-order

linear equation: xw′′
xx − (a+ 1)w′

x + fw = 0.

15. x2y′′′xxx + [x(ax+ 1)f − 6]y′x + fy = 0.

Particular solution: y0 = a+ x−1.

16. x(x+ 1)y′′′xxx + x(f − x− 3)y′x − (x+ 1)fy = 0.

Particular solution: y0 = xex.

17. x3y′′′xxx + xfy′x + (a− 1)(f + a2 + a)y = 0.

Particular solution: y0=x1−a. The substitution w=xy′x+(a−1)y leads to a second-order

linear equation: x2w′′
xx − (a+ 1)xw′

x + (f + a2 + a)w = 0.
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18. x6y′′′xxx + x2fy′x + (a3 + af − 2xf)y = 0.

Particular solution: y0 = x2ea/x.

19. y′′′xxx + (f − a2e2λx)y′x − aeλx(f + 3aλeλx + λ2)y = 0.

Particular solution: y0 = exp
( a
λ
eλx
)
. The substitution y = exp

( a
λ
eλx
) ∫

z(x) dx leads

to a second-order linear equation: z′′xx + 3aeλxz′x + (f + 2a2e2λx + 3aλeλx)z = 0.

20. y′′′xxx + [(1 + beax)f − a2]y′x + afy = 0.

Particular solution: y0 = e−ax + b.

21. y′′′xxx = fy′x + tanhx (1 − f)y.

This is a special case of equation 15.1.9.30 with g(x) = cosh x.

22. y′′′xxx = fy′x + coth x (1 − f)y.

This is a special case of equation 15.1.9.30 with g(x) = sinh x.

23. y′′′xxx + fy′x + tanx (f − 1)y = 0.

Particular solution: y0 = cosx. The substitution y = cos x

∫
z(x) dx leads to a second-

order linear equation: z′′xx − 3 tan x z′x + (f − 3)z = 0.

24. y′′′xxx + fy′x + cot x (1 − f)y = 0.

Particular solution: y0 = sinx.

25. y′′′xxx + fy′x + f ′

xy = g.

Integrating yields a second-order linear equation: y′′xx + fy =

∫
g dx+ C.

26. y′′′xxx + 2fy′x + f ′

xy = 0.

Solution: y = C1w
2
1 + C2w1w2 + C3w

2
2. Here, w1 and w2 are linearly independent

solutions of the second-order linear equation: 2w′′
xx + fw = 0.

27. y′′′xxx + f ′

xy
′

x + f(2f ′

x − f2)y = 0.

Integrating yields a second-order linear equation: y′′xx + fy′x + f2y = C exp
(∫

f dx
)
.

28. y′′′xxx + (a− 1)f2y′x − [f ′′

xx − (2a+ 1)ff ′

x + af3]y = 0.

Integrating yields a second-order equation: y′′xx + fy′x+ (af2− f ′x)y = C exp
(∫

f dx
)
.

29. y′′′xxx + (f − a2)y′x + (f ′

x − af)y = 0.

The substitution w = y′′xx + ay′x + fy leads to a first-order linear equation: w′
x − aw = 0.

30. y′′′xxx =
g′′′xxx

g
y + f(x)

((
y′x − g′x

g
y
))

.

The substitution w = y′x −
g′x
g
y leads to a second-order linear equation.
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◮ Equations of the form f3(x)y
′′′

xxx + f2(x)y
′′

xx + f1(x)y
′

x + f0(x)y = g(x).

31. y′′′xxx + ay′′xx + by′x + cy = f(x).

This is a special case of equation 17.1.6.26 with n = 3.

32. y′′′xxx + ay′′xx + fy′x + afy = 0.

The substitution w = y′x + ay leads to a second-order linear equation: w′′
xx + fw = 0.

33. y′′′xxx + fy′′xx − a2(f + a)y = 0.

Particular solution: y0 = eax. The substitution w = y′x − ay leads to a second-order linear

equation: w′′
xx + (f + a)w′

x + a(f + a)w = 0.

34. y′′′xxx + fy′′xx + ay′x + afy = 0.

1◦. Particular solutions with a > 0: y1 = cos
(
x
√
a
)
, y2 = sin

(
x
√
a
)
.

2◦. Particular solutions with a < 0: y1 = exp
(
−x
√
−a
)
, y2 = exp

(
x
√
−a
)
.

The substitution w = y′′xx + ay leads to a first-order linear equation: w′
x + fw = 0.

35. y′′′xxx + fy′′xx + axny′x + axn−1(xf + n)y = 0.

The substitution w = y′′xx + axny leads to a first-order linear equation: w′
x + fw = 0.

36. y′′′xxx + fy′′xx + afy′x + a3y = 0.

The substitution w = y′x+ay leads to a second-order linear equation: w′′
xx+(f −a)w′

x+
a2w = 0.

37. y′′′xxx + fy′′xx + afy′x + a2(f − a)y = 0.

Particular solutions: y1 = exp
(
− 1

2ax
)
cos
(√

3
2 ax

)
, y2 = exp

(
− 1

2ax
)
sin
(√

3
2 ax

)
.

38. y′′′xxx + fy′′xx + gy′x + h = 0.

The substitution w= y′x leads to a second-order linear equation: w′′
xx+fw

′
x+gw+h= 0.

39. y′′′xxx + fy′′xx − a(2f + 3a)y′x + a2(f + 2a)y = 0.

Particular solutions: y1 = eax, y2 = xeax.

40. y′′′xxx + fy′′xx + xgy′x − gy = 0.

The substitution w = xy′x − y leads to a second-order equation: xw′′
xx + (xf − 1)w′

x +
x2gw = 0.

41. y′′′xxx + fy′′xx + (g − a2)y′x − a(af + g)y = 0.

Particular solution: y0 = eax. The substitution w = y′x−ay leads to a second-order linear

equation: w′′
xx + (f + a)w′

x + (af + g)w = 0.

42. y′′′xxx + fy′′xx + (af + b− a2)y′x + b(f − a)y = 0.

Particular solutions: y1 = eλ1x, y2 = eλ2x, where λ1 and λ2 are roots of the quadratic

equation λ2 + aλ+ b = 0.
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43. y′′′xxx + (f − a)y′′xx − a2fy = 0.

Particular solution: y0 = eax. The substitution w = y′x − ay leads to a second-order linear

equation: w′′
xx + fw′

x + afw = 0.

44. y′′′xxx = (f − a)y′′xx + (af − b)y′x + bfy.

Particular solutions: y1 = exp(λ1x), y2 = exp(λ2x), where λ1 and λ2 are roots of the

quadratic equation λ2 + aλ + b = 0. The substitution w = y′′xx + ay′x + by leads to a

first-order linear equation: w′
x = fw.

45. y′′′xxx + (f − a)y′′xx + gy′x − a(af + g)y = 0.

Particular solution: y0 = eax.

46. y′′′xxx + (f + a)y′′xx + (af + g)y′x + agy = 0.

Particular solution: y0 = e−ax.

47. y′′′xxx + xfy′′xx + (ax2 − f)y′x + ax(x2f + 3)y = 0.

Particular solutions: y1 = cos
(
1
2x

2√a
)
, y2 = sin

(
1
2x

2√a
)
.

48. y′′′xxx + (ax+ b)fy′′xx + xfy′x − 2fy = 0.

Particular solution: y0 = x2 + 2ax+ b.

49. y′′′xxx + (f + ax)y′′xx + a(xf + 2)y′x + afy = 0.

Particular solutions: y1 = exp
(
− 1

2ax
2
)
, y2 = exp

(
− 1

2ax
2
) ∫

exp
(
1
2ax

2
)
dx.

50. y′′′xxx + x2fy′′xx − 2xfy′x + 2fy = 0.

Particular solutions: y1 = x, y2 = x2.

Solution:

y = C1x+ C2x
2 + C3

(
x2
∫
x−3ψ dx− x

∫
x−2ψ dx

)
,

where ψ = exp
(
−
∫
x2f dx

)
.

51. y′′′xxx + (f + ax)y′′xx + (g + 2a)y′x + a[xg + (1− ax2)f ]y = 0.

Particular solution: y0 = exp
(
− 1

2ax
2
)
. The substitution w = y′x + axy leads to a second-

order linear equation: w′′
xx + fw′

x + (g − axf)w = 0.

52. y′′′xxx + (axf + f + a)y′′xx + a2xfy′x − a2fy = 0.

Particular solutions: y1 = x, y2 = e−ax.

53. y′′′xxx + (ax2 + bx+ c)fy′′xx − 2afy = 0.

Particular solution: y0 = ax2 + bx+ c.

54. y′′′xxx + x(xf + g)y′′xx − gy′x − 2fy = 0.

Particular solution: y0 = x2. The substitution w= xy′x−2y leads to a second-order linear

equation: w′′
xx + x(xf + g)w′

x + xfw = 0.
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55. y′′′xxx − x(ax+ b)fy′′xx + (b− a2)fy′x + 2afy = 0.

Particular solution: y0 = x2 + ax+ 1
2 (a

2 − b).

56. y′′′xxx − [(2x+ a)f + (x2 + ax+ b)g]y′′xx + 2fy′x + 2gy = 0.

Particular solution: y0 = x2 + ax+ b.

57. xy′′′xxx + 3y′′xx + x(ax2 + 1)fy′x − (ax2 − 1)fy = 0.

Particular solution: y0 = ax+ x−1.

58. xy′′′xxx + (ax2 + b)y′′xx + 4axy′x + 2ay = f(x).

Integrating the equation twice, we arrive at a first-order linear equation:

xy′x + (ax2 + b− 2)y = C1 + C2x+

∫ x

x0

(x− t)f(t) dt, x0 is any number.

59. xy′′′xxx + x(f − 2a)y′′xx + x(g+ a2)y′x − [a(ax+2)f + (ax+1)g]y = 0.

Particular solution: y0 = xeax.

60. xy′′′xxx + (xf + 3)y′′xx + (2f + ax)y′x + a(xf + 1)y = 0.

Particular solutions: y1 = x−1 cos(x
√
a), y2 = x−1 sin(x

√
a).

61. xy′′′xxx + (xf + 3)y′′xx + (ax+ 2)fy′x + a(axf + f − a2x)y = 0.

Particular solutions:

y1 = x−1 exp
(
− 1

2ax
)
cos
(√

3
2 ax

)
, y2 = x−1 exp

(
− 1

2ax
)
sin
(√

3
2 ax

)
.

62. xy′′′xxx + (xf + 3)y′′xx + (axf + 2f − a2x)y′x + a(f − a)y = 0.

Particular solutions: y1 = x−1, y2 = x−1e−ax.

63. xy′′′xxx + (xf + 3)y′′xx + (2f + axn+1)y′x + axn(xf + n+ 1)y = 0.

The substitution w=xy leads to an equation of the form 3.1.9.35: w′′′
xxx+fw

′′
xx+ax

nw′
x+

axn−1(xf + n)w = 0.

64. xy′′′xxx + (x2f + a+ 2)y′′xx − a(a+ 1)fy = 0.

Particular solution: y0 = x−a. The substitution w = xy′x + ay leads to a second-order

linear equation: w′′
xx + xfw′

x − (a+ 1)fw = 0.

65. xy′′′xxx + [x2(ax2 + 1)f + 3]y′′xx − 2fy = 0.

Particular solution: y0 = ax+ x−1.

66. xy′′′xxx + [x(ax2 − 1)f + x2(ax2 + 1)g + 3]y′′xx − 2fy′x − 2gy = 0.

Particular solution: y0 = ax+ x−1.

67. (ax− 1)y′′′xxx + x[(ax− 2)f − a2]y′′xx
+ [(2− a2x2)f + a2]y′x + 2a(ax− 1)fy = 0.

Particular solutions: y1 = x2, y2 = eax.
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68. x2y′′′xxx + xfy′′xx + [x(ax+ 1)g + 2f − 6]y′x + gy = 0.

Particular solution: y0 = a+ x−1.

69. x2y′′′xxx + x[x(ax+ 1)f + 3]y′′xx − 2fy = 0.

Particular solution: y0 = a+ x−1.

70. x2y′′′xxx + x(xf + a)y′′xx + [(a− 2)xf + b]y′x + (b− a+ 2)fy = 0.

By integrating, we obtain the second-order nonhomogeneous Euler equation 14.1.9.15:

x2y′′xx + (a− 2)xy′x + (b− a+ 2)y = C exp
(
−
∫
f dx

)
.

71. (ax+ b)xy′′′xxx + (αx+ β)y′′xx + xy′x + y = f .

Integrating yields a second-order linear equation: (ax+ b)xy′′xx+[(α− 2a)x+β− b]y′x+
(x+ 2a− α)y =

∫
f dx+ C .

72. x3y′′′xxx + ax2y′′xx + bxy′x + cy = f(x).

Nonhomogeneous Euler equation. The substitution t = ln |x| leads to an equation of the

form 15.1.9.31: y′′′ttt + (a− 3)y′′tt + (b− a+ 2)y′t + cy = f(±et).

73. x3y′′′xxx + (a+ 2)x2y′′xx + xfy′x + afy = 0.

Particular solution: y0 = x−a.

74. x3y′′′xxx + [(a+ 6)x2 + b]y′′xx + 2(2a+ 3)xy′x + 2ay = f(x).

Integrating the equation twice, we arrive at a first-order linear equation:

x3y′x + (ax2 + b)y = C1 + C2x+

∫ x

x0

(x− t)f(t) dt, x0 is any number.

75. x3y′′′xxx + x2(bx2a+1 − 3a)y′′xx + 2a(a+ 1)(2a+ 1)y = f(x).

Integrating the equation twice, we arrive at a first-order linear equation:

x−2ay′x+ (ax−2a−1+ b)y = C1 + C2x+

∫ x

x0

(x− t)t−2a−3f(t) dt, x0 is any number.

76. x3y′′′xxx + x2fy′′xx − 2xy′x + 2(2 − f)y = 0.

Particular solutions: y1 = x−1, y2 = x2.

77. x3y′′′xxx + x2fy′′xx − 6xy′x + 6(2 − f)y = 0.

Particular solutions: y1 = x−2, y2 = x3.

78. x3y′′′xxx + x2fy′′xx + x(f − 1)y′x + (f − 3)y = 0.

Particular solutions: y1 = cos(ln |x|), y2 = sin(ln |x|).

79. x3y′′′xxx + x2(f + 1)y′′xx + x(f − a− 1)y′x − a(f − 2)y = 0.

Particular solutions: y1 = x−
√
a, y2 = x

√
a.
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80. x3y′′′xxx + x2(f + a)y′′xx + x(af + b− a)y′x + b(f − 2)y = 0.

Particular solutions: y1 = xn1 , y2 = xn2 , where n1 and n2 are roots of the quadratic

equation n2 + (a− 1)n+ b = 0.

81. x3y′′′xxx + x2(f + a)y′′xx + x[g + (a− 1)f ]y′x + (a− 2)gy = 0.

Particular solution: y0 = x2−a. The substitution w = xy′x + (a− 2)y leads to a second-

order linear equation: x2w′′
xx + xfw′

x + gw = 0.

82. x3y′′′xxx+x
2(f+2ax)y′′xx+x(2axf+a

2x2+b)y′x+(a2x2f+bf−2b)y=0.

Particular solutions: y1 = e−axxn1 , y2 = e−axxn2 , where n1 and n2 are roots of the

quadratic equation n2 − n+ b = 0.

83. y′′′xxx + aeλxy′′xx − 3λ2y′x + 2λ3y = f(x).

Integrating the equation twice, we arrive at a first-order linear equation:

e−λxy′x + (a+ 2λe−λx)y = C1 + C2x+

∫ x

x0

(x− t)e−λtf(t) dt, x0 is any number.

84. y′′′xxx + (f + a)y′′xx + [af + (1 + beax)g]y′x + agy = 0.

Particular solution: y0 = e−ax + b.

85. y′′′xxx + (beax + 2a)fy′′xx − a(beaxf + a)y′x − 2a3fy = 0.

Particular solutions: y1 = eax, y2 = e−ax + b/a.

86. y′′′xxx + (f − 2aeλx)y′′xx − aeλx(2f − aeλx + 3λ)y′x
+ aeλx[(aeλx − λ)f + 2aλeλx − λ2]y = 0.

Particular solutions: y1 = exp
( a
λ
eλx
)

, y2 = x exp
( a
λ
eλx
)

.

87. y′′′xxx+(f−aeλx)y′′xx+(g−2aλeλx)y′x−aeλx[(aeλx+λ)f+g+λ2]y=0.

Particular solution: y0 = exp
( a
λ
eλx
)
. The substitution y = exp

( a
λ
eλx
)∫

z(x) dx

leads to a second-order linear equation:

z′′xx + (f + 2aeλx)z′x + (2aeλxf + g + a2e2λx + aλeλx)z = 0.

88. y′′′xxx − [(a+ c+ beax)f − a+ c]y′′xx
+ [(c2 − a2 + bceax)f − ac]y′x + ac(a+ c)fy = 0.

Particular solutions: y1 = ecx, y2 = e−ax + b/c.

89. eλxy′′′xxx+(2λeλx+βeµx+γ)y′′xx+(λ2eλx+2βµeµx)y′x+βµ
2eµxy=f(x).

Integrating the equation twice, we arrive at a first-order linear equation:

eλxy′x + (βeµx + γ)y = C1 + C2x+

∫ x

x0

(x− t)f(t) dt, x0 is any number.

90. y′′′xxx + fy′′xx + gy′x − λ[λf + tanh(λx)(g + λ2)]y = 0.

Particular solution: y0 = cosh(λx). The substitution y = cosh(λx)

∫
z(x) dx leads to a

second-order linear equation: z′′xx+[f+3λ tanh(λx)]z′x+[g+3λ2+2λf tanh(λx)]z =0.
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91. y′′′xxx + fy′′xx − λ[2f tanh(λx) + 3λ]y′x
+ λ2{[2 tanh2(λx)− 1]f + 2λ tanh(λx)}y = 0.

Particular solutions: y1 = cosh(λx), y2 = x cosh(λx).

92. y′′′xxx + fy′′xx − λ[2f coth(λx) + 3λ]y′x
+ λ2{[2 coth2(λx)− 1]f + 2λ coth(λx)}y = 0.

Particular solutions: y1 = sinh(λx), y2 = x sinh(λx).

93. y′′′xxx + [(tanhx− a)f − a]y′′xx + [(a2 − 1)f − 1]y′x
+ a[(1− a tanhx)f + 1]y = 0.

Particular solutions: y1 = eax, y2 = cosh x.

94. y′′′xxx+[(cothx−a)f−a]y′′xx+[(a2−1)f−1]y′x+a[(1−a coth x)f+1]y=0.

Particular solutions: y1 = eax, y2 = sinh x.

95. y′′′xxx + [λ tanh(λx)(xf − 1) − f ]y′′xx − λ2xfy′x + λ2fy = 0.

Particular solutions: y1 = x, y2 = cosh(λx).

96. y′′′xxx + [λ coth(λx)(xf − 1) − f ]y′′xx − λ2xfy′x + λ2fy = 0.

Particular solutions: y1 = x, y2 = sinh(λx).

97. xy′′′xxx + [x2(a− ln x)f + 2]y′′xx + xfy′x − fy = 0.

Particular solutions: y1 = x, y2 = lnx− a+ 1.

98. y′′′xxx + fy′′xx + gy′x + λ[λf + tan(λx)(g − λ2)]y = 0.

Particular solution: y0 = cos(λx). The substitution y = cos(λx)

∫
z(x) dx leads to a

second-order linear equation: z′′xx+ [f − 3λ tan(λx)]z′x + [g− 3λ2− 2λf tan(λx)]z = 0.

99. y′′′xxx + fy′′xx + λ[2f tan(λx) + 3λ]y′x
+ λ2{[1 + 2 tan2(λx)]f + 2λ tan(λx)}y = 0.

Particular solutions: y1 = cos(λx), y2 = x cos(λx).

100. y′′′xxx + fy′′xx + λ[3λ− 2f cot(λx)]y′x
+ λ2{[1 + 2 cot2(λx)]f − 2λ cot(λx)}y = 0.

Particular solutions: y1 = sin(λx), y2 = x sin(λx).

101. y′′′xxx−[(a+tanx)f+a]y′′xx+[(a2+1)f+1]y′x+a[(a tanx−1)f−1]y=0.

Particular solutions: y1 = eax, y2 = cos x.

102. y′′′xxx+[(cot x+a)f+a]y′′xx+[(a2+1)f+1]y′x+a[(1−a cot x)f+1]y=0.

Particular solutions: y1 = e−ax, y2 = sinx.

103. y′′′xxx + [f + λ tan(λx)(xf + 1)]y′′xx − λ2xfy′x + λ2fy = 0.

Particular solutions: y1 = x, y2 = cos(λx).
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104. y′′′xxx + [f − λ cot(λx)(xf + 1)]y′′xx − λ2xfy′x + λ2fy = 0.

Particular solutions: y1 = x, y2 = sin(λx).

105. a sin(λx)y′′′xxx + by′′xx + 3aλ2 sin(λx)y′x + 2aλ3 cos(λx)y = f(x).

Integrating the equation twice, we arrive at a first-order linear equation:

a sin(λx)y′x + [b− 2aλ cos(λx)]y = C1 +C2x+

∫ x

x0

(x− t)f(t) dt, x0 is any number.

106. sin(λx)y′′′xxx + [a+ (2λ+ 1) cos(λx)]y′′xx
− (λ2 + 2λ) sin(λx)y′x − λ2 cos(λx)y = f(x).

Integrating the equation twice, we arrive at a first-order linear equation:

sin(λx)y′x + [a+ cos(λx)]y = C1 +C2x+

∫ x

x0

(x− t)f(t) dt, x0 is any number.

107. (f − 1)y′′′xxx − [af + λ tan(λx)]y′′xx
+ (λ2f + a2)y′x + aλ[a tan(λx)− λf ]y = 0.

Particular solutions: y1 = eax, y2 = cos(λx).

108. y′′′xxx + fy′′xx + gy′x + (fg + g′x)y = 0.

Integrating yields a second-order linear equation: y′′xx + gy = C exp
(
−
∫
f dx

)
.

109. y′′′xxx + 3fy′′xx + (f ′

x + 2f2 + 2g)y′x + (2fg + g′x)y = 0.

Solution: y = C1w
2
1 + C2w1w2 + C3w

2
2. Here, w1, w2 is a fundamental set of solutions

of the second-order linear equation: w′′
xx + fw′

x +
1
2 gw = 0.

110. y′′′xxx + (f + g)y′′xx + (f ′

x + fg + h)y′x + (h′

x + gh)y = 0.

Integrating yields a second-order linear equation: y′′xx + fy′x + hy = C exp
(
−
∫
g dx

)
.

111. y′′′xxx + (f + g)y′′xx + (2g′x + fg + h)y′x + (g′′xx + fg′x + gh)y = 0.

The substitution w= y′x+gy leads to a second-order linear equation: w′′
xx+fw

′
x+hw=0.

15.2 Equations of the Form y′′′
xxx = Axαyβ(y′

x)
γ(y′′

xx)
δ

15.2.1 Classification Table

Table 15.1 presents below all solvable equations whose solutions are outlined in Sections

15.2.2–15.2.4. Two-parameter families (in the space of the parameters α, β, γ, and δ), one-

parameter families, and isolated points are represented in a consecutive fashion. Equations

are arranged in accordance with the growth of δ, the growth of γ (for identical δ), the

growth of β (for identical δ and γ), and the growth of α (for identical δ, γ, and β). The

number of the equation sought is indicated in the last column in this table.
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TABLE 15.1

Solvable equations of the form y′′′xxx = Axαyβ(y′x)
γ(y′′xx)

δ

δ γ β α Equation

arbitrary arbitrary 0 arbitrary 15.2.4.15*

arbitrary

(δ 6= 2)
arbitrary

(γ 6= −1) 0 0 15.2.4.1

γ + 4β + 5

γ + 2β + 3

arbitrary

(γ 6= −1)
arbitrary

(β 6= −1) 0 15.2.4.192

3γ + 7

2(γ + 2)

arbitrary

(γ 6= −2) − 1
2 0 15.2.4.10

3γ + 7

2(γ + 2)

arbitrary

(γ 6= −2) 1 0 15.2.4.7

arbitrary

(δ 6= 1, 2)
−1 −1 0 15.2.4.193

arbitrary

(δ 6= 2)
−1 0 0 15.2.4.11

3β + 4

2β + 3
0

arbitrary

(β 6= − 3
2 )

0 15.2.4.8

arbitrary

(δ 6= 3
2 )

0 − 1
2 0 15.2.4.99

arbitrary

(δ 6= 1)
1

arbitrary

(β 6= −1) 0 15.2.4.2

arbitrary

(δ 6= 1)
1 −1 0 15.2.4.13

arbitrary

(δ 6= 2)
1 1 0 15.2.4.4

3β + 4

2β + 3
3

arbitrary

(β 6= − 3
2 )

0 15.2.4.9

−1 3 − 7
5 0 15.2.4.186

−1 3 0 0 15.2.4.182

0
arbitrary

(γ 6= −1) 0 0 15.2.4.3

0 arbitrary − 1
4 (γ + 5) 0 15.2.4.189

0 −2β − 5
arbitrary

(β 6= −2) 0 15.2.4.5

0 −13 1 0 15.2.4.171

0 −13 3 0 15.2.4.173

0 −7 0 0 15.2.4.159

0 −7 1 0 15.2.4.163

* Given are formulas of reduction to the generalized Emden–Fowler equation.
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TABLE 15.1 (Continued)

Solvable equations of the form y′′′xxx = Axαyβ(y′x)
γ(y′′xx)

δ

δ γ β α Equation

0 −4 − 1
2 0 15.2.4.139

0 −4 0 0 15.2.4.135

0 −3 −2 0 15.2.4.107

0 −3 −1 0 15.2.4.30

0 −3 0 0 15.2.4.26

0 −3 1 0 15.2.4.103

0 − 7
3 − 10

3 0 15.2.4.82

0 − 7
3 − 7

3 0 15.2.4.42

0 − 7
3 − 4

3 0 15.2.4.52

0 − 7
3 − 5

6 0 15.2.4.145

0 − 7
3 − 1

2 0 15.2.4.143

0 − 7
3 0 0 15.2.4.48

0 − 7
3 1 0 15.2.4.38

0 − 7
3 2 0 15.2.4.76

0 − 9
5 − 13

5 0 15.2.4.70

0 − 9
5 1 0 15.2.4.66

0 −1 −2 0 15.2.4.22

0 −1 0 0 15.2.4.18

0 0 − 7
2 0 15.2.2.2

0 0 − 7
2 3 15.2.3.3

0 0 − 5
2 0 15.2.2.3

0 0 − 5
2 1 15.2.3.4

0 0 −2 0 15.2.2.6

0 0 − 4
3 − 4

3 15.2.3.5

0 0 − 4
3 0 15.2.2.4

0 0 − 5
4 − 3

2 15.2.3.7

0 0 − 5
4 0 15.2.2.8

0 0 − 7
6 − 5

3 15.2.3.6

0 0 − 7
6 0 15.2.2.5

0 0 − 1
2 −3 15.2.3.8

0 0 − 1
2 − 3

2 15.2.3.9
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TABLE 15.1 (Continued)

Solvable equations of the form y′′′xxx = Axαyβ(y′x)
γ(y′′xx)

δ

δ γ β α Equation

0 0 − 1
2 0 15.2.2.7

0 0 0 arbitrary 15.2.3.1

0 0 0 0 15.2.2.1

0 0 1 arbitrary 15.2.3.2

0 1 1 0 15.2.4.35

0 2 − 7
2 0 15.2.4.183

0 2 0 0 15.2.4.179

0 3
arbitrary

(β 6= −2) 0 15.2.4.97

0 3 −2 0 15.2.4.94

0 5 −5 0 15.2.4.117

0 5 − 20
7 0 15.2.4.129

0 5 − 15
7 0 15.2.4.123

0 5 0 0 15.2.4.113

1
2 − 17

5 − 4
5 0 15.2.4.151

1
2 − 13

7 − 11
7 0 15.2.4.58

1
2 − 8

5 − 17
10 0 15.2.4.88

1
2 0 − 5

2 0 15.2.4.80

1
2 3 − 15

8 0 15.2.4.126

1
2 3 − 20

13 0 15.2.4.132

1
2 3 − 5

4 0 15.2.4.120

1
2 3 0 0 15.2.4.116

2
3 0 − 7

6 0 15.2.4.175

3
4 − 8

3 − 2
3 0 15.2.4.156

4
5 −4 − 1

2 0 15.2.4.149

1
arbitrary

(γ 6= 1)
−1 0 15.2.4.158

1 −3 − 1
2 0 15.2.4.32

1 −3 1 0 15.2.4.24

1 −1 −1 0 15.2.4.195

1 1
arbitrary

(β 6= −1) 0 15.2.4.14
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TABLE 15.1 (Continued)

Solvable equations of the form y′′′xxx = Axαyβ(y′x)
γ(y′′xx)

δ

δ γ β α Equation

1 1 −1 0 15.2.4.17

1 1 1 0 15.2.4.21

8
7 3 − 3

4 0 15.2.4.177

8
7 3 − 1

2 0 15.2.4.169

6
5 0 − 2

3 0 15.2.4.121

16
13 − 27

7 2 0 15.2.4.90

5
4 −4 − 1

2 0 15.2.4.57

5
4 3 − 1

2 0 15.2.4.166

5
4 3 0 0 15.2.4.162

9
7 − 9

4 1 0 15.2.4.72

9
7 0 − 1

3 0 15.2.4.187

9
7 0 1 0 15.2.4.68

13
10 − 9

2 2 0 15.2.4.60

13
10 0 − 5

2 0 15.2.4.86

27
20 0 − 2

3 0 15.2.4.133

15
11 − 17

3 − 2
3 0 15.2.4.63

18
13 0 − 7

2 0 15.2.4.74

7
5 −7 1 0 15.2.4.54

7
5 − 5

2 1 0 15.2.4.45

7
5 − 13

7 1 0 15.2.4.84

7
5 − 1

3 1 0 15.2.4.78

7
5 0 1 0 15.2.4.40

7
5 1 1 0 15.2.4.50

7
5 3 0 0 15.2.4.138

7
5 3 1 0 15.2.4.142

7
5 11 1 0 15.2.4.147

24
17 − 23

3 − 2
3 0 15.2.4.93

10
7 0 − 5

2 0 15.2.4.43

16
11 5 4 0 15.2.4.154

22
15 0 − 2

3 0 15.2.4.127

3
2

arbitrary 1
2 (γ − 1) 0 15.2.4.191
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TABLE 15.1 (Continued)

Solvable equations of the form y′′′xxx = Axαyβ(y′x)
γ(y′′xx)

δ

δ γ β α Equation

3
2 −3 − 1

2 0 15.2.4.112

3
2 −3 1 0 15.2.4.109

3
2 0 −2 0 15.2.4.111

3
2 0 − 1

2 0 15.2.4.96

3
2 0 1 0 15.2.4.105

3
2 1 1 0 15.2.4.28

3
2 3 −2 0 15.2.4.110

3
2 3 − 1

2 0 15.2.4.106

3
2 3 0 0 15.2.4.29

23
15 − 1

3 − 1
2 0 15.2.4.128

17
11 9 2 0 15.2.4.153

11
7 −4 − 1

2 0 15.2.4.47

27
17 − 1

3 − 13
3 0 15.2.4.92

8
5 1 1 0 15.2.4.137

8
5 3 −4 0 15.2.4.55

8
5 3 − 7

4 0 15.2.4.46

8
5 3 − 10

7 0 15.2.4.85

8
5 3 − 2

3 0 15.2.4.79

8
5 3 − 1

2 0 15.2.4.41

8
5 3 0 0 15.2.4.51

8
5 3 1 0 15.2.4.141

8
5 3 5 0 15.2.4.148

21
13 −6 − 1

2 0 15.2.4.75

18
11 − 1

3 − 10
3 0 15.2.4.62

33
20 − 1

3 − 1
2 0 15.2.4.134

17
10 −4 − 1

2 0 15.2.4.87

17
10 5 − 11

4 0 15.2.4.61

12
7

1
3 − 1

2 0 15.2.4.188

12
7 3 − 13

8 0 15.2.4.73

12
7 3 − 1

2 0 15.2.4.69

7
4 0 − 5

2 0 15.2.4.56
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TABLE 15.1 (Continued)

Solvable equations of the form y′′′xxx = Axαyβ(y′x)
γ(y′′xx)

δ

δ γ β α Equation

7
4 0 1 0 15.2.4.165

7
4 1 1 0 15.2.4.161

23
13 5 − 17

7 0 15.2.4.91

9
5 − 1

3 − 1
2 0 15.2.4.122

13
7 − 1

2 1 0 15.2.4.178

13
7 0 1 0 15.2.4.170

2
arbitrary

(γ 6= −1) 0 0 15.2.4.12

2 −1 arbitrary

(β 6= 0)
0 15.2.4.157

2 −1 −1 0 15.2.4.194

2 −1 0 0 15.2.4.16

2 0 −2 0 15.2.4.33

2 3 −2 0 15.2.4.25

2 3 0 0 15.2.4.19

11
5 0 − 5

2 0 15.2.4.150

9
4 − 1

3 − 11
6 0 15.2.4.155

7
3 − 4

3 − 1
2 0 15.2.4.176

5
2 −4 − 1

2 0 15.2.4.81

5
2 − 11

4 1 0 15.2.4.125

5
2 − 12

5 − 13
10 0 15.2.4.89

5
2 − 15

7 − 10
7 0 15.2.4.59

5
2 − 27

13 1 0 15.2.4.131

5
2 − 3

2 1 0 15.2.4.119

5
2 − 3

5 − 11
5 0 15.2.4.152

5
2 1 1 0 15.2.4.115

3
arbitrary

(γ 6= −3) 1 0 15.2.4.98

3 −2β − 5
arbitrary

(β 6= −2) 0 15.2.4.6

3 arbitrary −γ − 2 0 15.2.4.190

3 −9 2 0 15.2.4.118

3 −6 − 1
2 0 15.2.4.65
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TABLE 15.1 (Continued)

Solvable equations of the form y′′′xxx = Axαyβ(y′x)
γ(y′′xx)

δ

δ γ β α Equation

3 −6 1
2 0 15.2.4.184

3 − 17
3 − 5

3 0 15.2.4.83

3 − 33
7 2 0 15.2.4.130

3 − 21
5 − 7

5 0 15.2.4.71

3 −4 − 1
2 0 15.2.4.37

3 − 11
3 − 5

3 0 15.2.4.44

3 − 23
7 2 0 15.2.4.124

3 −3 −2 0 15.2.4.108

3 −3 −1 0 15.2.4.23

3 −3 − 1
2 0 15.2.4.102

3 −3 1 0 15.2.4.95

3 − 5
3 − 5

3 0 15.2.4.53

3 − 5
3 − 1

2 0 15.2.4.167

3 − 4
3 − 1

2 0 15.2.4.168

3 −1 −2 0 15.2.4.31

3 − 2
3 − 5

3 0 15.2.4.146

3 0 − 5
2 0 15.2.4.140

3 0 − 5
3 0 15.2.4.144

3 0 − 1
2 0 15.2.4.101

3 0 1 −3 15.2.4.100

3 1 −4 0 15.2.4.160

3 1 − 5
2 0 15.2.4.136

3 1 −2 0 15.2.4.27

3 1 − 5
3 0 15.2.4.49

3 1 −1 0 15.2.4.20

3 1 − 1
2 0 15.2.4.34

3 1 1
2 0 15.2.4.180

3 1 2 0 15.2.4.114

3 3 −7 0 15.2.4.172

3 3 −4 0 15.2.4.164

3 3 −2 0 15.2.4.104
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TABLE 15.1 (Continued)

Solvable equations of the form y′′′xxx = Axαyβ(y′x)
γ(y′′xx)

δ

δ γ β α Equation

3 3 − 5
3 0 15.2.4.39

3 3 − 7
5 0 15.2.4.67

3 3 − 1
2 0 15.2.4.64

3 3 0 0 15.2.4.36

3 5 − 5
3 0 15.2.4.77

3 7 −7 0 15.2.4.174

4 − 9
5 1 0 15.2.4.185

4 1 1 0 15.2.4.181

In Sections 15.2.2–15.2.4, the value of the insignificant parameter A is in many cases

defined in the form of a function of two (one) auxiliary coefficients a and b,

A = ϕ(a, b) (1)

and the corresponding solutions are represented in parametric form,

x = f1(τ, C1, C2, C3, a), y = f2(τ, C1, C2, C3, b), (2)

where τ is the parameter, C1, C2, and C3 are arbitrary constants, and f1 and f2 are some

functions.

Having fixed the auxiliary coefficient sign a > 0 (or b > 0), one should express the

coefficient b in terms of both A and a with the help of

b = ψ(A, a).

Substituting this formula into (2) yields a solution of the equation under consideration

(where the specific numerical value of the coefficient a can be chosen arbitrarily). The case

a < 0 (or b < 0), which may lead to a branch of the solution or to a different domain of

definition of the variables x and y in (2), should be considered in a similar manner.

15.2.2 Equations of the Form y′′′

xxx = Ayβ

1. y′′′xxx = A.

Solution: y = 1
6Ax

3 + C2x
2 +C1x+ C0.

2. y′′′xxx = Ay−7/2.

Solution in parametric form:

x = aC3
1

∫ [
C1e

2στ + C2e
−στ sin

(√
3στ

)]−3/2
dτ + C3,

y = bC2
1

[
C1e

2στ + C2e
−στ sin

(√
3στ

)]−1
,

where A = −8a−3b9/2σ3.
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3. y′′′xxx = Ay−5/2.

Solution in parametric form:

x = aC7
1

∫
(τ3 − 3τ + C2)

−3/2 dτ + C3, y = bC6
1 (τ

3 − 3τ + C2)
−1,

where A = −6a−3b7/2.

4. y′′′xxx = Ay−4/3.

Solution in parametric form:

x = aC7
1

∫
R−1(2τI ∓R)2 dτ + C3, y = bC9

1 (2τI ∓R)3,

where R =
√
±(4τ3 − 1), I =

∫
τR−1 dτ + C2, A = ±18a−3b7/3.

5. y′′′xxx = Ay−7/6.

Solution in parametric form:

x = aC13
1

∫
R−1(2τI ∓R)−5/2 dτ + C3, y = bC18

1 (2τI ∓R)−3,

where R =
√
±(4τ3 − 1), I =

∫
τR−1 dτ + C2, A = ∓18a−3b13/6.

◆ In the solutions of equations 6 and 7, the following notation is used:

Z =

{
C1J1/3(τ) + C2Y1/3(τ) for the upper sign,

C1I1/3(τ) + C2K1/3(τ) for the lower sign,

where J1/3(τ) and Y1/3(τ) are Bessel functions, and I1/3(τ) and K1/3(τ) are modified

Bessel functions.

6. y′′′xxx = Ay−2.

Solution in parametric form:

x = aC1

∫
τ−1Z−2 dτ +C3, y = bC1τ

−2/3Z−2, where A = ± 4
3a

−3b3.

7. y′′′xxx = Ay−1/2.

Solution in parametric form:

x = aC1

∫
Z dτ +C3, y = bC2

1τ
2/3Z2, where A = ∓ 4

3a
−3b3/2.

8. y′′′xxx = Ay−5/4.

This is a special case of equation 15.2.4.189 with γ = 0.
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15.2.3 Equations of the Form y′′′

xxx = Axαyβ

For α = 0, see Section 3.2.2.

1. y′′′xxx = Axα.

Solution: y = Af(x) + C2x
2 + C1x+C0, where

f(x) =





xα+3

(α+ 1)(α + 2)(α + 3)
if α 6= −1, −2, −3;

1
2x

2 ln |x| − 3
4x

2 if α = −1;
−x ln |x|+ x if α = −2;
1
2 ln |x| if α = −3.

2. y′′′xxx = Axαy.

See equation 15.1.2.7.

3. y′′′xxx = Ax3y−7/2.

Solution in parametric form:

x = aC3
1

(∫
f−3/2 dτ + C3

)−1
, y = bC4

1f
−1
(∫

f−3/2 dτ + C3

)−2
,

where f = C1e
2στ + C2e

−στ sin
(√

3στ
)
, A = 8a−6b9/2σ3.

4. y′′′xxx = Axy−5/2.

Solution in parametric form:

x = aC7
1

[∫
(τ3 − 3τ + C2)

−3/2 dτ + C3

]−1
,

y = bC8
1 (τ

3 − 3τ + C2)
−1
[∫

(τ3 − 3τ + C2)
−3/2 dτ + C3

]−2
,

where A = 6a−4b7/2.

◆ In the solutions of equations 5 and 6, the following notation is used:

R =
√
±(4τ3 − 1), I =

∫
τR−1 dτ + C2.

5. y′′′xxx = Ax−4/3y−4/3.

Solution in parametric form:

x = aC7
1

[∫
R−1(2τI ∓R)2 dτ + C3

]−1
,

y = bC5
1 (2τI ∓R)3

[∫
R−1(2τI ∓R)2 dτ + C3

]−2
,

where A = ∓18a−5/3b7/3.
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6. y′′′xxx = Ax−5/3y−7/6.

Solution in parametric form:

x = aC13
1

[∫
R−1(2τI ∓R)−5/2 dτ + C3

]−1
,

y = bC8
1 (2τI ∓R)−3

[∫
R−1(2τI ∓R)−5/2 dτ + C3

]−2
,

where A = ∓18a−4/3b13/6.

7. y′′′xxx = Ax−3/2y−5/4.

Solution in parametric form:

x= aC3
1

(∫
τ−1/2z−1/2f3/4 dτ +C3

)−1
, y = bC2

1f
(∫

τ−1/2z−1/2f3/4 dτ +C3

)−2
,

where z = C2 +
1
4 τ

2 + 4Bτ1/2, f = exp
(∫

z−1/2 dτ
)

, A = 1
2Ba

−3/2b9/4.

8. y′′′xxx = Ax−3y−1/2.

Solution in parametric form:

x = C1

(∫
Z dτ + C3

)−1
, y = bτ2/3Z2

(∫
Z dτ + C3

)−2
,

where

A = ± 4
3 b

3/2, Z =

{
C1J1/3(τ) + C2Y1/3(τ) for the upper sign,

C1I1/3(τ) + C2K1/3(τ) for the lower sign,

J1/3(τ) and Y1/3(τ) are Bessel functions, and I1/3(τ) and K1/3(τ) are modified Bessel

functions.

9. y′′′xxx = Ax−3/2y−1/2.

Solution in parametric form:

x = aC3 exp
(
2

∫
P dτ

)
, x = bC3P

2 exp
(
2

∫
P dτ

)
.

Here,P = P (τ, C1, C2) is the general solution of the second Painlevé transcendent: P ′′
ττ =

±τP + 2P 3, and A = ± 1
4a

−3/2b3/2.

15.2.4 Equations with |γ| + |δ| 6= 0

1. y′′′xxx = A(y′x)
γ(y′′xx)

δ, γ 6= −1, δ 6= 2.

Solution in parametric form:

x=aCγ+δ−1
1

∫
τ−1/2

(
1±τ

γ+1
2

) 1
δ−2

dτ+C3, y=bCγ+2δ−3
1

∫ (
1±τ

γ+1
2

) 1
δ−2

dτ+C2,

where A = ± γ + 1

2− δ 2
δ−2aγ+2δ−3b1−γ−δ.
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2. y′′′xxx = Ayβy′x(y
′′

xx)
δ, β 6= −1, δ 6= 1.

Solution in parametric form:

x = aCβ+δ
1

∫ [∫ (
1± τβ+1

) 1
1−δ dτ + C2

]−1/2
dτ + C3, y = bC2δ−2

1 τ,

where A = ±β + 1

1− δ 2
δ−1a2δ−2b−β−δ.

◆ In the solutions of equations 3–10, the following notation is used:

R =
√

1± τm+1, E =

∫
(1± τm+1)

−1/2
dτ + C2, F = RE − τ.

3. y′′′xxx = A(y′x)
γ, γ 6= −1.

Solution in parametric form:

x = aCm
1

∫
τ−1/2R−1 dτ +C3, y = bCm−1

1 E,

where m =
γ − 1

2
, A = ±m+ 1

4
a2m−2b−2m.

4. y′′′xxx = Ayy′x(y
′′

xx)
δ, δ 6= 2.

Solution in parametric form:

x = aC3m+1
1

∫
E−1/2R−1 dτ + C3, y = bC2m+2

1 R,

where m =
1

δ − 2
, A = −8ma2b−3

[
± 2a2

(m+ 1)b

]1/m
.

5. y′′′xxx = Ayβ(y′x)
−2β−5, β 6= −2.

Solution in parametric form:

x = aCm−3
1

∫
τ−1/2E−3/2R−1 dτ + C3, y = bC2m−2

1 E−1,

where m = −β − 3, A = ± 1
4 (−1)−2m(m+ 1)a2m−2b3−m.

6. y′′′xxx = Ayβ(y′x)
−2β−5(y′′xx)

3, β 6= −2.

Solution in parametric form:

x = aCm+3
1

∫
E−3/2R−1F dτ +C3, y = bC2m+2

1 τE−1,

where m = β, A = ∓2(m+ 1)a−2m−2bm+3.

7. y′′′xxx = Ay(y′x)
γ(y′′xx)

3γ+7
2γ+4 , γ 6= −2.

Solution in parametric form:

x = aCm2+m+2
1

∫
E−m/2R−1 dτ + C3, y = bC4

1F,

where m = − 2(γ+2)

γ+1
, A = − 2mb−1

m+2

[
± (m+1)b

2a

] 2
m+2

[
± 4a2

(m+1)(m+2)b

] 1
m

.
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8. y′′′xxx = Ayβ(y′′xx)
3β+4
2β+3 , β 6= −3/2.

Solution in parametric form:

x = aCm2+2m−1
1

∫
τmE−m−2R−1 dτ + C3, y = bC

(m+1)2

1 τm+1E−m−1,

where m = − β

β + 1
, A = (m+ 3)a−1b

m
m+1

[
± 2a2

(m+ 1)2b

] 1
m+3

.

9. y′′′xxx = Ayβ(y′x)
3(y′′xx)

3β+4
2β+3 , β 6= −3/2.

Solution in parametric form:

x = aCm2+m−1
1

∫
Em+1F−1/2R−1 dτ + C3, y = bC

(m−1)(m+2)
1 Em+2,

where m = − 2β + 3

β + 1
, A =

m

(m+ 2)3
a2b

− 2m+1
m+1

[
± (m+ 1)(m+ 2)b

4a2

] 1
m

.

10. y′′′xxx = Ay−1/2(y′x)
γ(y′′xx)

3γ+7
2γ+4 , γ 6= −2.

Solution in parametric form:

x = aCm2+2m−7
1

∫
τ
m−1
2 R−1E

m+3
2 F dτ + C3, y = bC−8

1 F 2,

where m =
1− γ
1 + γ

, A = − 2(m+ 3)

m+ 1
b1/2

[
± a

(m+ 1)b

] 2
m+1

[
± (m+ 1)2b

2a2

] 1
m+3

.

11. y′′′xxx = A(y′x)
−1(y′′xx)

δ, δ 6= 2.

Solution in parametric form:

x = aC1

∫
τ

δ
δ−2 exp(∓τ2) dτ + C2, y = bC2

1

∫
τ

δ
δ−2 exp(∓2τ2) dτ + C3,

where A = ∓ 4b2

(2− δ)a4
(
∓ a

2

2b

)δ
.

12. y′′′xxx = A(y′x)
γ(y′′xx)

2, γ 6= −1.

Solution in parametric form:

x = aC1

∫
τ
1−γ
1+γ exp(∓τ2) dτ + C2, y = bC1

∫
τ
3−γ
1+γ exp(∓τ2) dτ + C3,

where A = ±(γ + 1)aγ+1b−γ−1.

13. y′′′xxx = Ay−1y′x(y
′′

xx)
δ, δ 6= 1.

Solution in parametric form:

x = aC1

∫
τ exp(∓τ2)

[∫
τ
3−δ
1−δ exp(∓τ2) dτ +C2

]−1/2

dτ +C3, y = bC2
1 exp(∓τ2),

where A =
1

1− δ (∓1)
−δa2δ−2b1−δ.



“K16435’ — 2017/9/28 — 15:05 — #941

15.2. Equations of the Form y′′′xxx = Axαyβ(y′x)
γ(y′′xx)

δ 915

14. y′′′xxx = Ayβy′xy
′′

xx, β 6= −1.

Solution in parametric form:

x = C1

∫
τ
1−β
1+β

[∫
τ
1−β
1+β exp(∓τ2) dτ + C2

]−1/2

dτ + C3, y = bτ
2

1+β ,

where A = ∓(β + 1)b−1−β .

15. y′′′xxx = Axα(y′x)
γ(y′′xx)

δ .

Solution in parametric form:

x = aCγ+δ−1
1 X(τ), y = bCγ+2δ−α−3

1

∫
Y (τ)

dX(τ)

dτ
dτ +C3.

Here, X = X(τ), Y = Y (τ) is the general solution of the generalized Emden–Fowler

equation:

Y ′′
XX = BXαY γ(Y ′

X)
δ
, where A = Baγ+2δ−α−3b1−γ−δ.

16. y′′′xxx = A(y′x)
−1(y′′xx)

2.

Solution: y =





1−A
(2−A)C1

(C1x+ C2)
2−A
1−A + C3 if A 6= 1, A 6= 2;

C2

C1
exp(C1x) + C3 if A = 1;

1

C1
ln(C1x+ C2) + C3 if A = 2.

17. y′′′xxx = Ay−1y′xy
′′

xx.

Solution: x =





∫
(C1y

A+1 + C2)
−1/2 dy + C3 if A 6= −1;

∫
(C1 ln y +C2)

−1/2 dy + C3 if A = −1.

18. y′′′xxx = A(y′x)
−1.

Solution in parametric form:

x=aC1

∫
exp(∓ 1

2 τ
2) dτ+C2, y=bC2

1

∫
exp(∓τ2) dτ+C3, where A=∓a−4b2.

19. y′′′xxx = A(y′x)
3(y′′xx)

2.

Solution in parametric form:

x = aC1

∫
τ−1/2 exp(∓τ2) dτ + C2, y = bC1

∫
exp(∓τ2) dτ + C3,

where A = ±4a4b−4.
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◆ In the solutions of equations 20–25, the following notation is used:

E =

∫
exp(∓τ2) dτ + C2, F = 2τE ± exp(∓τ2).

20. y′′′xxx = Ay−1y′x(y
′′

xx)
3.

Solution in parametric form:

x= aC1

∫
τ exp(∓τ2)E−1/2 dτ +C3, y = bC2

1 exp(∓τ2), where A=± 1
2a

4b−2.

21. y′′′xxx = Ayy′xy
′′

xx.

Solution in parametric form:

x = C1

∫
E−1/2 dτ + C3, y = bτ, where A = ∓2b−2.

22. y′′′xxx = Ay−2(y′x)
−1.

Solution in parametric form:

x = aC1

∫
E−3/2 exp

(
∓ 1

2 τ
2
)
dτ + C3, y = bC1E

−1, where A = ∓a−4b4.

23. y′′′xxx = Ay−1(y′x)
−3(y′′xx)

3.

Solution in parametric form:

x = C1

∫
E−3/2F exp(∓τ2) dτ + C3, y = bE−1 exp(∓τ2), where A = ∓8b2.

24. y′′′xxx = Ay(y′x)
−3y′′xx.

Solution in parametric form:

x = aC1

∫
E1/2 dτ + C3, y = bC2

1F, where A = ∓8a−4b2.

25. y′′′xxx = Ay−2(y′x)
3(y′′xx)

2.

Solution in parametric form:

x = aC1

∫
F−1/2 exp(∓τ2) dτ + C3, y = bC2

1E, where A = ±a4b−2.

◆ In the solutions of equations 26–33, the following notation is used:

E =
√
τ(τ + 1)− ln

(√
τ +
√
τ + 1

)
+ C2, R =

√
τ + 1

τ
, F = RE − τ.

26. y′′′xxx = A(y′x)
−3.

Solution in parametric form:

x = 2aC2
1

√
τ + 1 + C3, y = bC3

1E, where A = − 1
4a

−6b4.
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27. y′′′xxx = Ay−2y′x(y
′′

xx)
3.

Solution in parametric form:

x = aC1

∫
E−1/2 dτ + C3, y = bC4

1τ, where A = 2a4b−1.

28. y′′′xxx = Ayy′x(y
′′

xx)
3/2.

Solution in parametric form:

x = aC5
1

∫
τ−2R−1E−1/2 dτ + C3, y = bC2

1R, where A = −8a(−b)−5/2.

29. y′′′xxx = A(y′x)
3(y′′xx)

3/2.

Solution in parametric form:

x = aC7
1

∫
R−3/2 dτ + C3, y = bC6

1E, where A = 4a3(−b)−7/2.

30. y′′′xxx = Ay−1(y′x)
−3.

Solution in parametric form:

x = aC5
1

∫
τ−1/2R−1E−3/2 dτ + C3, y = bC6

1E
−1, where A = − 1

4a
−6b5.

31. y′′′xxx = Ay−2(y′x)
−1(y′′xx)

3.

Solution in parametric form:

x = aC−1
1

∫
R−1E−3/2F dτ + C3, y = bC2

1τE
−1, where A = 2a2b.

32. y′′′xxx = Ay−1/2(y′x)
−3y′′xx.

Solution in parametric form:

x = aC7
1

∫
τ−3/2R−1E1/2F dτ + C3, y = bC8

1F
2, where A = a−4b7/2.

33. y′′′xxx = Ay−2(y′′xx)
2.

Solution in parametric form:

x = aC−1
1

∫
τ−2R−1 dτ + C3, y = bC1τ

−1E, where A = 2ab.

34. y′′′xxx = Ay−1/2y′x(y
′′

xx)
3.

Solution in parametric form:

x = ±aC5
1

∫
τ(τ2 − 1)(τ3 − 3τ + C2)

−1/2
dτ + C3, y = bC8

1 (τ
2 − 1)

2
,

where A = ∓ 1
144 a

4b−5/2.
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35. y′′′xxx = Ayy′x.

Solution in parametric form:

x = aC−1
1

∫
(τ3 − 3τ + C2)

−1/2
dτ + C3, y = bC2

1τ, where A = 3a−2b−1.

36. y′′′xxx = A(y′x)
3(y′′xx)

3.

Solution in parametric form:

x = ± 2
5aC

5
1τ

1/2(τ2 − 5) +C3, y = bC6
1 (τ

3 − 3τ +C2), where A = − 8
243a

6b−5.

37. y′′′xxx = Ay−1/2(y′x)
−4(y′′xx)

3.

Solution in parametric form:

x = aC5
1

∫
(τ2 − 1)(τ3 − 3τ + C2)

−3/2
(τ4 − 6τ2 + 4C2τ − 3) dτ + C3,

y = bC2
1 (τ

2 − 1)
2
(τ3 − 3τ + C2)

−1
,

where A = ∓ 16
9 a

−1b5/2.

38. y′′′xxx = Ay(y′x)
−7/3.

Solution in parametric form:

x = aC7
1

∫
(τ3 − 3τ + C2)

1/4
dτ + C3, y = ±bC16

1 (τ4 − 6τ2 + 4C2τ − 3),

where A = ±72a−5b2(4b/a)1/3.

39. y′′′xxx = Ay−5/3(y′x)
3(y′′xx)

3.

Solution in parametric form:

x = ±aC5
1

∫
(τ2 − 1)(τ3 − 3τ + C2)

1/2
[±(τ4 − 6τ2 + 4C2τ − 3)]

−1/2
dτ + C3,

y = bC9
1 (τ

3 − 3τ + C2)
3/2,

where A = ∓8× 9−5a6b−10/3.

40. y′′′xxx = Ay(y′′xx)
7/5.

Solution in parametric form:

x = aC−7
1

∫
(τ3 − 3τ + C2)

−3/2
dτ +C3, y = ±bC1(τ

2 − 1)(τ3 − 3τ + C2)
−1/2

,

where A = ± 15

2
a−1b−1

( a2
2b

)2/5
.

41. y′′′xxx = Ay−1/2(y′x)
3(y′′xx)

8/5.

Solution in parametric form:

x = ±aC31
1

∫
[±(τ2 − 1)]

−1/2
(τ3 − 3τ +C2)

5/4
(τ4 − 6τ2 + 4C2τ − 3) dτ + C3,

y = bC32
1 (τ4 − 6τ2 + 4C2τ − 3)

2
,

where A = −15× 2−10a2b−5/2
( a2
2b

)3/5
.
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42. y′′′xxx = Ay−7/3(y′x)
−7/3.

Solution in parametric form:

x = aC17
1

∫
(τ3 − 3τ + C2)

1/4
[±(τ4 − 6τ2 + 4C2τ − 3)]

−3/2
dτ +C3,

y = ±bC16
1 (τ4 − 6τ2 + 4C2τ − 3)

−1
,

where A = ±72a−5b17/3(a/4)−1/3.

43. y′′′xxx = Ay−5/2(y′′xx)
10/7.

Solution in parametric form:

x = ±aC29
1

∫
(τ3 − 3τ + C2)

−3/2
(τ4 − 6τ2 + 4C2τ − 3)

−1/3
dτ + C3,

y = bC2
1 (τ

3 − 3τ +C2)
−1

(τ4 − 6τ2 + 4C2τ − 3)
2/3
,

where A = − 28

3
a−1b5/2

( 2a2
3b

)3/7
.

◆ In the solutions of equations 44–47, the following notation is used:

P6(τ) = ±(τ6 − 15τ4 + 20C2τ
3 − 45τ2 + 12C2τ + 27 − 8C2

2 ).

44. y′′′xxx = Ay−5/3(y′x)
−11/3(y′′xx)

3.

Solution in parametric form:

x = aC5
1

∫
(τ3 − 3τ + C2)

1/2
[±(τ4 − 6τ2 + 4C2τ − 3)]

−3/2
P6(τ) dτ + C3,

y = ±bC1(τ
3 − 3τ + C2)

3/2
(τ4 − 6τ2 + 4C2τ − 3)

−1
,

where A = ∓ 9
16 b

10/3(2a)−2/3.

45. y′′′xxx = Ay(y′x)
−5/2(y′′xx)

7/5.

Solution in parametric form:

x = aC11
1

∫
(τ3 − 3τ + C2)

−3/2
(τ4 − 6τ2 + 4C2τ − 3)

4/3
dτ + C3,

y = bC27
1 (τ3 − 3τ + C2)

−1/2
P6(τ),

where A =
405

8
a−3b

(
± b

2a

)1/2( a2
12b

)2/5
.

46. y′′′xxx = Ay−7/4(y′x)
3(y′′xx)

8/5.

Solution in parametric form:

x = ±aC37
1

∫
(τ3 − 3τ + C2)

5/4
(τ4 − 6τ2 + 4C2τ − 3)

1/3
[P6(τ)]

−1/2 dτ + C3,

y = bC64
1 (τ4 − 6τ2 + 4C2τ − 3)

4/3
,

where A = −45× 2−13a2b−5/4
( a2
12b

)3/5
.
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47. y′′′xxx = Ay−1/2(y′x)
−4(y′′xx)

11/7.

Solution in parametric form:

x = ±aC55
1

∫
(τ3 − 3τ + C2)

−3/2
(τ4 − 6τ2 + 4C2τ − 3)

5/3
P6(τ) dτ +C3,

y = bC54
1 (τ3 − 3τ + C2)

−1
[P6(τ)]

2,

where A = ∓28× 37a−5b9/2
( 2a2

3b

)4/7
.

48. y′′′xxx = A(y′x)
−7/3.

Solution in parametric form:

x = aC5
1

∫
(τ2 ± 1)

1/4
dτ +C3, y = bC8

1 (τ
3 ± 3τ +C2),

where A = ± 81
2 a

−5b3(3b/a)1/3.

49. y′′′xxx = Ay−5/3y′x(y
′′

xx)
3.

Solution in parametric form:

x = aC1

∫
τ(τ2 ± 1)

1/2
(τ3 ± 3τ + C2)

−1/2
dτ + C3, y = bC3

1 (τ
2 ± 1)

3/2
,

where A = ∓ 4
243 a

4b−4/3.

50. y′′′xxx = Ayy′x(y
′′

xx)
7/5.

Solution in parametric form:

x = aC3
1

∫
(τ2 ± 1)

−3/2
(τ3 ± 3τ + C2)

−1/2
dτ + C3, y = bC1τ(τ

2 ± 1)
−1/2

,

where A = ±5b−2
( 2a2

3b

)2/5
.

51. y′′′xxx = A(y′x)
3(y′′xx)

8/5.

Solution in parametric form:

x = aC9
1

∫
τ−1/2(τ2 ± 1)

5/4
dτ + C3, y = bC8

1 (τ
3 ± 3τ + C2),

where A = ∓ 4

27
a2b−3

( 2a2
3b

)3/5
.

52. y′′′xxx = Ay−4/3(y′x)
−7/3.

Solution in parametric form:

x = aC7
1

∫
(τ2 ± 1)

1/4
(τ3 ± 3τ + C2)

−3/2
dτ + C3, y = bC8

1 (τ
3 ± 3τ + C2)

−1
,

where A = ± 81
2 a

−5b13/3(3b/a)1/3.
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53. y′′′xxx = Ay−5/3(y′x)
−5/3(y′′xx)

3.

Solution in parametric form:

x = aC−1
1

∫
(±τ2 + C2τ − 1)(τ2 ± 1)

1/2
(τ3 ± 3τ + C2)

−3/2
dτ + C3,

y = bC1(τ
2 ± 1)3/2(τ3 ± 3τ + C2)

−1
,

where A = ∓ 4
27a

2b2/3(3b/a)2/3.

54. y′′′xxx = Ay(y′x)
−7(y′′xx)

7/5.

Solution in parametric form:

x=aC7
1

∫
(τ2±1)−3/2

(τ3±3τ+C2)
5/6

dτ+C3, y=bC9
1 (±τ2+C2τ−1)(τ2±1)−1/2

,

where A = ±5a−8b6(2a2/b)2/5.

55. y′′′xxx = Ay−4(y′x)
3(y′′xx)

8/5.

Solution in parametric form:

x = aC−1
1

∫
(τ2 ± 1)

5/4
(±τ2 + C2τ − 1)

−1/2
(τ3 ± 3τ + C2)

−2/3
dτ + C3,

y = bC8
1(τ

3 ± 3τ + C2)
1/3
,

where A = ∓5a2b(2a2/b)3/5.

56. y′′′xxx = Ay−5/2(y′′xx)
7/4.

Solution in parametric form:

x=aC−7
1

∫
(τ2±1)−3/2

(τ3±3τ+C2)
−1/3

dτ+C3, y=bC2
1(τ

2±1)−1
(τ3±3τ+C2)

2/3
,

where A = 4a−1b5/2
(
∓ a

2

2b

)3/4
.

57. y′′′xxx = Ay−1/2(y′x)
−4(y′′xx)

5/4.

Solution in parametric form:

x = aC17
1

∫
(±τ2 + C2τ − 1)(τ2 ± 1)

−3/2
(τ3 ± 3τ + C2)

2/3 dτ + C3,

y = bC18
1 (±τ2 + C2τ − 1)2(τ2 ± 1)−1,

where A = −64a−5b9/2
(
∓ a

2

2b

)1/4
.

◆ In the solutions of equations 58–63, the following notation is used:

P4 = τ4 − 6τ2 + 4C2τ − 3,

P6 = τ6 − 15τ4 + 20C2τ
3 − 45τ2 + 12C2τ − 8C2

2 + 27,

P9 = 7τ9 − 108τ7 + 84C2τ
6 + 378τ5 − 756C2τ

4+

+ 84(4C2
2 + 9)τ3 − 756C2τ

2 + 567τ + 4(4C2
2 − 27)C2.
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58. y′′′xxx = Ay−11/7(y′x)
−13/7(y′′xx)

1/2.

Solution in parametric form:

x = C3 + aC55
1

∫
P

5/6
4 P

−3/2
9 dτ, y = −bC54

1 P
−1
9 ,

where A = −294 · 636/7
√
6a−27/7b55/14.

59. y′′′xxx = Ay−10/7(y′x)
−15/7(y′′xx)

5/2.

Solution in parametric form:

x = C3 − aC29
1

∫
P

4/3
4 P 2

6P
−3/2
9 dτ, y = −bC2

1P
7/3
4 P−1

9 ,

where A =
8 · 71/7 · 35/14

√
2

1701
a−1/7b29/14.

60. y′′′xxx = Ay2(y′x)
−9/2(y′′xx)

13/10.

Solution in parametric form:

x = C3 − aC22
1

∫
P

−4/3
4 P

5/7
9 dτ, y = bC49

1 P
−1/3
4 P6,

where A =
80 · 29/10 · 31/5

729
a−49/10b11/5.

61. y′′′xxx = Ay−11/4(y′x)
5(y′′xx)

17/10.

Solution in parametric form:

x = C3 − aC59
1

∫
P

−13/6
4 P

−1/2
6 P

−3/7
9 dτ, y = bC108

1 P
4/7
9 ,

where A = − 5 · 23/5 · 33/10
1088391168

a27/5b−59/20.

62. y′′′xxx = Ay−10/3(y′x)
−1/3(y′′xx)

18/11.

Solution in parametric form:

x = C3 − aC50
1

∫
P

−3/2
4 P

1/2
6 P

−4/7
9 dτ, y = bC1P

−1
4 P

3/7
9 ,

where A = 99a−2/33b100/33.

63. y′′′xxx = Ay−2/3(y′x)
−17/3(y′′xx)

15/11.

Solution in parametric form:

x = C3 − aC−591
1

∫
P

−3/2
4 P 2

6 P
−11/14
9 dτ, y = bC588

1 P−1
4 P 3

6 ,

where A = −3168 · 22/3a−196/33b197/33.
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◆ In the solutions of equations 64–75, the following notation is used:

S1 = C1e
2kτ +C2e

−kτ sin(ωτ), ω = k
√
3,

S2 = 2kC1e
2kτ + kC2e

−kτ
[√

3 cos(ωτ)− sin(ωτ)
]
,

S3 = 4k2C1e
2kτ − 2k2C2e

−kτ
[√

3 cos(ωτ) + sin(ωτ)
]
,

S4 = S2
2 − 2S1S3, S5 = 5S2S4 + 32k3S3

1 .

64. y′′′xxx = Ay−1/2(y′x)
3(y′′xx)

3.

Solution in parametric form:

x = aC3
1

∫
S
−1/2
1 S2S3 dτ + C3, y = bC4

1S
2
2 , where A = −a6b−9/2k3.

65. y′′′xxx = Ay−1/2(y′x)
−6(y′′xx)

3.

Solution in parametric form:

x = aC3
1

∫
S
−3/2
1 S2S4 dτ + C3, y = bC2

1S
−1
1 S2

2 , where A = 16a−3b9/2k3.

66. y′′′xxx = Ay(y′x)
−9/5.

Solution in parametric form:

x = aC3
1

∫
S
3/4
1 dτ + C3, y = bC8

1S4, where A = −160a−4bk6(16bk3/a)4/5.

67. y′′′xxx = Ay−7/5(y′x)
3(y′′xx)

3.

Solution in parametric form:

x = aC3
1

∫
S
3/2
1 S2S

−1/2
4 dτ +C3, y = bC5

1S
5/2
1 , where A = 1

4 × 5−5a6b−18/5k−6.

68. y′′′xxx = Ay(y′′xx)
9/7.

Solution in parametric form:

x = aC−3
1

∫
S
−3/2
1 dτ + C3, y = bC1S

−1/2
1 S2, where A =

7

2
a−1b−1

( a2

8bk3

)2/7
.

69. y′′′xxx = Ay−1/2(y′x)
3(y′′xx)

12/7.

Solution in parametric form:

x = aC15
1

∫
S
9/4
1 S

−1/2
2 S4 dτ + C3, y = bC16

1 S
2
4 ,

where A = 7× 2−16a2b−5/2k−9
( a2

8bk3

)5/7
.

70. y′′′xxx = Ay−13/5(y′x)
−9/5.

Solution in parametric form:

x = aC9
1

∫
S
3/4
1 S

−3/2
4 dτ + C3, y = bC8

1S
−1
4 ,

where A = −160a−4b23/5k6(16bk3/a)4/5.
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71. y′′′xxx = Ay−7/5(y′x)
−21/5(y′′xx)

3.

Solution in parametric form:

x = aC3
1

∫
S
3/2
1 S

−3/2
4 S5 dτ + C3, y = bC1S

5/2
1 S−1

4 ,

where A =
5

512
a−1b17/5k−6

( b

2a

)1/5
.

72. y′′′xxx = Ay(y′x)
−9/4(y′′xx)

9/7.

Solution in parametric form:

x = aC9
1

∫
S
−3/2
1 S

6/5
4 dτ + C3, y = bC25

1 S
−1/2
1 S5,

where A =
35

8
a−3b

(
− 5b

2a

)1/4( a2

32bk3

)2/7
.

73. y′′′xxx = Ay−13/8(y′x)
3(y′′xx)

12/7.

Solution in parametric form:

x = aC39
1

∫
S
9/4
1 S

3/5
4 S

−1/2
5 dτ + C3, y = bC64

1 S
8/5
4 ,

where A = 175 × 2−22a2b−11/8k−9
( a2

32bk3

)5/7
.

74. y′′′xxx = Ay−7/2(y′′xx)
18/13.

Solution in parametric form:

x = aC27
1

∫
S
−3/2
1 S

−3/5
4 dτ + C3, y = bC2

1S
−1
1 S

2/5
4 ,

where A = − 208
5 a−1b7/2k3(2a2/b)5/13.

75. y′′′xxx = Ay−1/2(y′x)
−6(y′′xx)

21/13.

Solution in parametric form:

x = aC51
1

∫
S
−3/2
1 S

9/5
4 S5 dτ +C3, y = bC50

1 S
−1
1 S2

5 ,

where A = 208 × 55a−7b13/2k3(2a2/b)8/13.

◆ In the solutions of equations 76–93, the following notation is used:

T1 = cosh(τ + C2) cos τ, T2 = tanh(τ + C2) + tan τ, T3 = tanh(τ + C2)− tan τ,

θ1 = cosh τ − sin(τ + C2), θ2 = sinh τ + cos(τ + C2), θ3 = sinh τ − cos(τ + C2),

T4 = 3T2T3 − 4, θ4 = 3θ2θ3 − 2θ21.

76. y′′′xxx = Ay2(y′x)
−7/3.

1◦. Solution in parametric form:

x = aC1

∫
T
1/4
1 dτ + C3, y = bC4

1T1T2, where A = −3a−5b(2b/a)1/3.
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2◦. Solution in parametric form:

x = aC1

∫
θ
1/4
1 dτ +C3, y = bC4

1θ2, where A = 3
8 a

−5b(b/a)1/3.

77. y′′′xxx = Ay−5/3(y′x)
5(y′′xx)

3.

1◦. Solution in parametric form:

x = aC2
1

∫
T1T

−1/2
2 T3 dτ + C3, y = bC3

1T
3/2
1 , where A = 64 × 3−7a8b−16/3.

2◦. Solution in parametric form:

x = aC2
1

∫
θ
1/2
1 θ

−1/2
2 θ3 dτ +C3, y = bC3

1θ
3/2
1 , where A = −256× 3−7a8b−16/3.

78. y′′′xxx = Ay(y′x)
−1/3(y′′xx)

7/5.

1◦. Solution in parametric form:

x=aC−2
1

∫
T−1
1 T

1/2
2 dτ+C3, y=bC1T

1/2
1 T3, where A=− 5

2ab

( b

2a

)1/3( 2a2
3b

)2/5
.

2◦. Solution in parametric form:

x=aC−2
1

∫
θ
−3/2
1 θ

1/2
2 dτ+C3, y= bC1θ

−1/2
1 θ3, where A=

5

2ab

( b

2a

)1/3( 4a2
3b

)2/5
.

79. y′′′xxx = Ay−2/3(y′x)
3(y′′xx)

8/5.

1◦. Solution in parametric form:

x=aC11
1

∫
T
11/4
1 T 2

2 T
−1/2
3 dτ+C3, y= bC12

1 T
3
1 T

3
2 , where A=

5

432
a2b−7/3

( 2a2
3b

)3/5
.

2◦. Solution in parametric form:

x = aC11
1

∫
θ
5/4
1 θ22θ

−1/2
3 dτ +C3, y = bC12

1 θ
3
2, where A = − 5

54
a2b−7/3

( 4a2
3b

)3/5
.

80. y′′′xxx = Ay−5/2(y′′xx)
1/2.

1◦. Solution in parametric form:

x = aC3
1

∫
T
−3/2
1 dτ + C3, y = bC2

1T
−1
1 , where A = 2a−2b7/2(2/b)1/2.

2◦. Solution in parametric form:

x = aC3
1

∫
θ
−3/2
1 dτ + C3, y = bC2

1θ
−1
1 , where A = −a−2b7/2(−2/b)1/2.

81. y′′′xxx = Ay−1/2(y′x)
−4(y′′xx)

5/2.

1◦. Solution in parametric form:

x= aC3
1

∫
T
3/2
1 T 2

2 T3 dτ +C3, y = bC2
1T1T

2
3 , where A= −32a−2b7/2(b/2)−1/2.
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2◦. Solution in parametric form:

x= aC3
1

∫
θ
−3/2
1 θ22θ3 dτ +C3, y = bC2

1θ
−1
1 θ23, where A= 16a−2b7/2(−b/2)−1/2.

82. y′′′xxx = Ay−10/3(y′x)
−7/3.

1◦. Solution in parametric form:

x= aC5
1

∫
T
−5/4
1 T

−3/2
2 dτ +C3, y = bC4

1T
−1
1 T−1

2 , where A=−3a−5b20/3(2/a)1/3.

2◦. Solution in parametric form:

x = aC5
1

∫
θ
1/4
1 θ

−3/2
2 dτ + C3, y = bC4

1θ
−1
2 , where A = 3

8 a
−16/3b20/3.

83. y′′′xxx = Ay−5/3(y′x)
−17/3(y′′xx)

3.

1◦. Solution in parametric form:

x=aC2
1

∫
T1T

−3/2
2 T4 dτ+C3, y= bC1T

1/2
1 T−1

2 , where A=
3

16
a−2b14/3

( b

2a

)2/3
.

2◦. Solution in parametric form:

x=aC2
1

∫
θ
1/2
1 θ

−3/2
2 θ4 dτ+C3, y= bC1θ

3/2
1 θ−1

2 , where A=− 3

4
a−2b14/3

( b

2a

)2/3
.

84. y′′′xxx = Ay(y′x)
−13/7(y′′xx)

7/5.

1◦. Solution in parametric form:

x=aC2
1

∫
T
1/3
1 T

11/6
2 dτ+C3, y=bC9

1T
3/2
1 T4, where A=− 5

4
a−2
( 3b
2a

)6/7( 2a2
7b

)2/5
.

2◦. Solution in parametric form:

x=aC2
1

∫
θ
−3/2
1 θ

11/6
2 dτ+C3, y= bC9

1θ
−1/2
1 θ4, where A=

5

4
a−2
( 3b
2a

)6/7( 4a2
7b

)2/5
.

85. y′′′xxx = Ay−10/7(y′x)
3(y′′xx)

8/5.

1◦. Solution in parametric form:

x = aC19
1

∫
T
19/12
1 T

4/3
2 T

−1/2
4 dτ + C3, y = bC28

1 T
7/3
1 T

7/3
2 ,

where A =
45

16
× 7−3a2b−11/7

( 2a2
7b

)3/5
.

2◦. Solution in parametric form:

x = aC19
1

∫
θ
5/4
1 θ

4/3
2 θ

−1/2
4 dτ + C3, y = bC28

1 θ
7/3
2 ,

where A = − 45

2
× 7−3a2b−11/7

( 4a2
7b

)3/5
.
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86. y′′′xxx = Ay−5/2(y′′xx)
13/10.

1◦. Solution in parametric form:

x = aC−11
1

∫
T
−11/6
1 T

−1/3
2 dτ +C3, y = bC4

1T
−1/3
1 T

2/3
2 ,

where A = 20
3 a

−1b5/2(2a2/b)3/10.

2◦. Solution in parametric form:

x = aC−11
1

∫
θ
−3/2
1 θ

−1/3
2 dτ + C3, y = bC4

1θ
−1
1 θ

2/3
2 ,

where A = 10
3 a

−1b5/2(−2a2/b)3/10.

87. y′′′xxx = Ay−1/2(y′x)
−4(y′′xx)

17/10.

1◦. Solution in parametric form:

x = aC19
1

∫
T
19/6
1 T

8/3
2 T4 dτ + C3, y = bC18

1 T
3
1 T

2
4 ,

where A = −540a−5b9/2(2a2/b)7/10.

2◦. Solution in parametric form:

x = aC19
1

∫
θ
−3/2
1 θ

8/3
2 θ4 dτ + C3, y = bC18

1 θ
−1
1 θ24,

where A = −270a−5b9/2(−2a2/b)7/10.

88. y′′′xxx = Ay−17/10(y′x)
−8/5(y′′xx)

1/2.

Solution in parametric form:

x = C3 − aC19
1

∫
T
−19/6
1 T

4/3
2 (3T 2

2 − T4)−3/2(3T 2
2 + T4)

−3/2 dτ,

y = −bC18
1 T

−3
1 (3T 2

2 − T4)−1(3T 2
2 + T4)

−1,

where A = 200
√
2 · 603/5a−18/5b19/5.

89. y′′′xxx = Ay−13/10(y′x)
−12/5(y′′xx)

5/2.

Solution in parametric form:

x = C3 − aC11
1

∫
T
11/6
1 T

7/3
2 T 2

4 (T4 − 3T 2
2 )

−3/2(3T 2
2 + T4)

−3/2 dτ,

y = bC2
1T

1/3
1 T

10/3
2 (3T 2

2 − T4)−1(3T 2
2 + T4)

−1,

where A =

√
2 · 202/5 · 33/5

810
a−2/5b11/5.
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90. y′′′xxx = Ay2(y′x)
−27/7(y′′xx)

16/13.

1◦. Solution in parametric form:

x = C3 + aC37
1

∫
T
37/60
1 T

−4/3
2 (T 2

4 − 9T 4
2 )

13/20 dτ,

y = bC100
1 T

5/3
1 T

−1/3
2 T4,

where A = − 13

2239/91 · 334/7 · 73/13 a
−400/91b148/91.

2◦. Solution in parametric form:

x = C3 + aC37
1

∫
θ
−13/20
1 θ

−4/3
2 θ

−13/20
4 dτ,

y = bC100
1 θ

−1/3
2 (2θ21 − 3θ2θ3),

where A =
26 · 3358/91

73/13
a−400/91b148/91.

91. y′′′xxx = Ay−17/7(y′x)
5(y′′xx)

23/13.

1◦. Solution in parametric form:

x = C3 − aC38
1

∫
T
13/30
1 T

19/6
2 T

−1/2
4 (T 2

4 − 9T 4
2 )

−3/10 dτ,

y = bC63
1 T

21/10
1 (T 2

4 − 9T 4
2 )

7/10,

where A =
13

242/13 · 36 · 775/13 a
72/13b−304/91.

2◦. Solution in parametric form:

x = C3 + aC38
1

∫
θ
3/10
1 θ

19/6
2 (2θ21 − 3θ2θ3)

−1/2θ
−3/10
4 dτ,

y = bC63
1 θ

−7/10
1 θ

7/10
4 ,

where A =
13 · 220/13
36 · 775/13 a

72/13b−304/91.

92. y′′′xxx = Ay−13/3(y′x)
−1/3(y′′xx)

27/17.

1◦. Solution in parametric form:

x = C3 − aC78
1

∫
T
−13/5
1 T

−3/2
2 T

1/2
4 (T 2

4 − 9T 4
2 )

−7/10 dτ,

y = bC3
1T

−1/10
1 T−1

2 (T 2
4 − 9T 4

2 )
3/10,

where A = 51 · 23/17a−8/51b208/51.

2◦. Solution in parametric form:

x = C3 + aC78
1

∫
θ
7/10
1 θ

−3/2
2 (2θ21 − 3θ2θ3)

1/2θ
−7/10
4 dτ,

y = bC3
1θ

−3/10
1 θ−1

2 θ
3/10
4 ,

where A = −102 · 298/51a−8/51b208/51.
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93. y′′′xxx = Ay−2/3(y′x)
−23/3(y′′xx)

24/17.

1◦. Solution in parametric form:

x = C3 − aC101
1

∫
T
51/10
1 T

−3/2
2 T 2

4 (T
2
4 − 9T 4

2 )
17/20 dτ,

y = bC100
1 T 5

1 T
−1
2 T 3

4 ,

where A = 102a−400/51b404/51.

2◦. Solution in parametric form:

x = C3 +
a

2
C101
1

∫
θ
−17/20
1 θ

−3/2
2 (2θ21 − 3θ2θ3)

2θ
17/20
4 dτ,

y = bC100
1 θ−1

2 (2θ21 − 3θ2θ3)
3,

where A = −102 · 298/51a−8/51b208/51.

◆ In the solutions of equations 94–96, the following notation is used:

L1 = C1τ
k + C2τ

−k, N1 = (1 + k)C1τ
k + (1− k)C2τ

−k,

L2 = C1 ln τ + C2, N2 = C1 ln τ + C1 +C2,

L3 = C1 sin(k ln τ) + C2 cos(k ln τ), N3 = (C1 − kC2) sin(k ln τ)

+ (C2 + kC1) cos(k ln τ).

94. y′′′xxx = Ay−2(y′x)
3.

Solution in parametric form:

x=

∫
τ1/2L−1/2

m dτ +C3, y = τ2, where k =
√
|1 + 8A|, m=





1 if A > −1/8,
2 if A = −1/8,
3 if A < −1/8.

95. y′′′xxx = Ay(y′x)
−3(y′′xx)

3.

Solution in parametric form:

x =

∫
τ−1Nm dτ + C3, y = τLm, where k =

√
|A− 1|, m =





1 if A < 1,

2 if A = 1,

3 if A > 1.

96. y′′′xxx = Ay−1/2(y′′xx)
3/2.

Solution in parametric form:

x = ∓4
∫
τ2L1 dτ + C3, y = τ2L2

1, where k =
√
1 + 8A−2.

◆ In the solutions of equations 97–112, the following notation is used:

Z =

{
C1Jν(τ) + C2Yν(τ) for the upper sign,

C1Iν(τ) + C2Kν(τ) for the lower sign,

U1 = τZ ′
τ + νZ, U2 = U2

1 ± τ2Z2, U3 = ± 2
3 τ

2Z3 − 2U1U2,

where Jν(τ) and Yν(τ) are Bessel functions, and Iν(τ) and Kν(τ) are modified Bessel

functions.
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97. y′′′xxx = Ayβ(y′x)
3, β 6= −2.

Solution in parametric form:

x= C1

∫
τ
3ν−2
2 Z−1/2 dτ +C3, y = bτ2ν , where ν =

1

β + 2
, A=∓ 1

8ν2
b−β−2.

98. y′′′xxx = Ay(y′x)
γ(y′′xx)

3, γ 6= −3.

Solution in parametric form:

x=aC1

∫
τ−1U1 dτ+C3, y= bC1τ

νZ, where ν=
2

γ + 3
, A=± 1

ν2
aγ+3b−γ−3.

99. y′′′xxx = Ay−1/2(y′′xx)
δ, δ 6= 3/2.

Solution in parametric form:

x = aC1

∫
τ3ν−1Z dτ + C3, y = bC2

1τ
2νZ2,

where ν =
1− δ
3− 2δ

, A = ∓ 4a−3b3/2

3− 2δ

(
∓ a

2

2b

)δ
.

100. y′′′xxx = Ax−3y(y′′xx)
3.

Solution in parametric form:

x = aC1

∫
Z dτ + C3, y = bC2

1τ
−1/3

(
τZ2 − U1

∫
Z dτ − C3U1

)
,

where ν = 1
3 , A = 9

4a
6b−3.

101. y′′′xxx = Ay−1/2(y′′xx)
3.

Solution in parametric form:

x = aC1

∫
τZ dτ + C3, y = bC2

1τ
4/3Z2, where ν = 2

3 , A = − 1
6a

3b−3/2.

102. y′′′xxx = Ay−1/2(y′x)
−3(y′′xx)

3.

Solution in parametric form:

x=C1

∫
τ−2Z−2U1U2 dτ +C3, y= bτ−4/3Z−2U2

1 , where ν = 1
3 , A=± 4

3 b
3/2.

103. y′′′xxx = Ay(y′x)
−3.

Solution in parametric form:

x = aC1

∫
Z dτ + C3, y = bC2

1τ
−2/3U2, where ν = 1

3 , A = − 16
81a

−6b3.

104. y′′′xxx = Ay−2(y′x)
3(y′′xx)

3.

Solution in parametric form:

x = aC1

∫
ZU1U

−1/2
2 dτ + C3, y = bC2

1τ
2/3Z2, where ν = 1

3 , A = 9
32a

6b−3.



“K16435’ — 2017/9/28 — 15:05 — #957

15.2. Equations of the Form y′′′xxx = Axαyβ(y′x)
γ(y′′xx)

δ 931

105. y′′′xxx = Ay(y′′xx)
3/2.

Solution in parametric form:

x=C1

∫
τ−1Z−2 dτ+C3, y= bτ−2/3Z−1U1, where ν= 1

3 , A=2b−1(∓6/b)1/2.

106. y′′′xxx = Ay−1/2(y′x)
3(y′′xx)

3/2.

Solution in parametric form:

x = aC1

∫
Z5/2U

−1/2
1 U2 dτ + C3, y = bC1τ

−4/3U2
2 ,

where ν = 1
3 , A = ∓ 27

32a
3b−5/2(∓6/b)1/2.

107. y′′′xxx = Ay−2(y′x)
−3.

Solution in parametric form:

x = aC1

∫
τZU

−3/2
2 dτ +C3, y = bC1τ

2/3U−1
2 , where ν = 1

3 , A = − 16
81a

−6b6.

108. y′′′xxx = Ay−2(y′x)
−3(y′′xx)

3.

Solution in parametric form:

x = C1

∫
ZU

−3/2
2 U3 dτ + C3, y = bτ4/3Z2U−1

2 , where ν = 1
3 , A = 18b−3.

109. y′′′xxx = Ay(y′x)
−3(y′′xx)

3/2.

Solution in parametric form:

x = aC1

∫
τ−2Z−2U

3/2
2 dτ + C3, y = bC2

1τ
−4/3Z−1U3,

where ν = 1
3 , A = −8a−3b2(±6/b)1/2.

110. y′′′xxx = Ay−2(y′x)
3(y′′xx)

3/2.

Solution in parametric form:

x = aC1

∫
τZ5/2U

−1/2
3 dτ + C3, y = bC2

1τ
−2/3U2,

where ν = 1
3 , A = ± 27

8 a
3b−1(±6/b)1/2.

111. y′′′xxx = Ay−2(y′′xx)
3/2.

Solution in parametric form:

x=C1

∫
τ−1Z−2 dτ+C3, y= bτ−4/3Z−2U2, where ν= 1

3 , A=± 4
3 b

2(2b)−1/2.

112. y′′′xxx = Ay−1/2(y′x)
−3(y′′xx)

3/2.

Solution in parametric form:

x = aC1

∫
τ−3Z−2U

3/2
2 U3 dτ + C3, y = bC1τ

−8/3Z−2U2
3 ,

where ν = 1
3 , A = ∓ 256

3 a−3b7/2(2b)−1/2.
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◆ In the solutions of equations 113–156, the following notation is used:

τ =

∫
d℘√

±(4℘3 − 1)
− C2, f =

√
±(4℘3 − 1).

The function ℘ = ℘(τ) is defined implicitly by the above elliptic integral of the first kind.

For the upper sign, the function ℘ coincides with the classical elliptic Weierstrass function

℘=℘(τ+C2, 0, 1). In the solution given below, we can take ℘ to be the parameter instead

of τ and use the explicit dependence τ = τ(℘).

113. y′′′xxx = A(y′x)
5.

Solution in parametric form:

x = aC2
1

∫
℘−1/2 dτ + C3, y = bC1τ, where A = ±3a2b−4.

114. y′′′xxx = Ay2y′x(y
′′

xx)
3.

Solution in parametric form:

x = aC5
1

∫
τ−1/2f dτ +C3, y = bC4

1℘, where A = ∓24a4b−5.

115. y′′′xxx = Ayy′x(y
′′

xx)
5/2.

Solution in parametric form:

x = aC7
1

∫
τ−1/2℘2 dτ + C3, y = bC6

1f, where A = − 1
9a

3b−3(±3b)−1/2.

116. y′′′xxx = A(y′x)
3(y′′xx)

1/2.

Solution in parametric form:

x = aC5
1

∫
f−1/2 dτ + C3, y = bC2

1τ, where A = ±6ab−2(±3b)−1/2.

117. y′′′xxx = Ay−5(y′x)
5.

Solution in parametric form:

x = aC−1
1

∫
τ−3/2℘−1/2 dτ + C3, y = bC2

1τ
−1, where A = ±3a2b.

118. y′′′xxx = Ay2(y′x)
−9(y′′xx)

3.

Solution in parametric form:

x = aC5
1

∫
τ−3/2(τf − ℘) dτ + C3, y = bC6

1τ
−1℘, where A = ∓24a−6b5.

119. y′′′xxx = Ay(y′x)
−3/2(y′′xx)

5/2.

Solution in parametric form:

x = aC2
1

∫
τ−1℘2 dτ + C3, y = bC1(τf − ℘), where A = ∓ 1

2ab(±2/a)1/2.
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120. y′′′xxx = Ay−5/4(y′x)
3(y′′xx)

1/2.

Solution in parametric form:

x= aC5
1

∫
τ3(τf−℘)−1/2 dτ+C3, y = bC4

1τ
4, where A=± 3

16ab
−3/4(±3b)−1/2.

121. y′′′xxx = Ay−2/3(y′′xx)
6/5.

Solution in parametric form:

x = aC7
1

∫
τ−4℘2 dτ + C3, y = bC9

1τ
−3℘3, where A = ±5a−1b−2/3

( a2
18b

)1/5
.

122. y′′′xxx = Ay−1/2(y′x)
−1/3(y′′xx)

9/5.

Solution in parametric form:

x = aC−1
1

∫
τ5/2℘1/2(τf − ℘) dτ + C3, y = bC8

1 (τf − ℘)2,

where A = ∓5a−1b1/2
( 12b
a

)1/3( a2
18b

)4/5
.

123. y′′′xxx = Ay−15/7(y′x)
5.

Solution in parametric form:

x=aC13
1

∫
τ11/2(τ2℘∓ 1)

−1/2
dτ+C3, y= bC14

1 τ
7, where A=±3×7−4a2b−13/7.

124. y′′′xxx = Ay2(y′x)
−23/7(y′′xx)

3.

Solution in parametric form:

x = aC−5
1

∫
τ−7/2(τ3f + 3τ2℘∓ 1) dτ + C3, y = bC2

1τ(τ
2℘∓ 1),

where A = ∓ 24
49a

−2/7b−5/7.

125. y′′′xxx = Ay(y′x)
−11/4(y′′xx)

5/2.

Solution in parametric form:

x = aC1

∫
τ−3(τ2℘∓ 1)

2
dτ + C3, y = bC3

1τ
−6(τ3f + 3τ2℘∓ 1),

where A = ± 3
2 (±6b/a)3/4(∓6b)−1/2.

126. y′′′xxx = Ay−15/8(y′x)
3(y′′xx)

1/2.

Solution in parametric form:

x = aC5
1

∫
τ−6(τ3f + 3τ2℘∓ 1)

−1/2
dτ + C3, y = bC8

1τ
−8,

where A = ± 3
64ab

−1/8(∓6b)−1/2.
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127. y′′′xxx = Ay−2/3(y′′xx)
22/15.

Solution in parametric form:

x = aC3
1

∫
τ8(τ2℘∓ 1)

2
dτ + C3, y = bC1τ

3(τ2℘∓ 1)
3
,

where A = ∓15a−1/15b2/3(18b)−7/15.

128. y′′′xxx = Ay−1/2(y′x)
−1/3(y′′xx)

23/15.

Solution in parametric form:

x = aC9
1

∫
τ−29/2(τ3f + 3τ2℘∓ 1)(τ2℘∓ 1)

1/2
dτ + C3,

y = bC8
1τ

−12(τ3f + 3τ2℘∓ 1)
2
,

where A = ±15a−1b1/2
( 12b
a

)1/3( a2
18b

)8/15
.

129. y′′′xxx = Ay−20/7(y′x)
5.

Solution in parametric form:

x=aC4
1

∫
τ−5(τ2℘∓ 1)

−1/2
dτ+C3, y= bC7

1τ
−7, where A=±3×7−4a2b−8/7.

130. y′′′xxx = Ay2(y′x)
−33/7(y′′xx)

3.

Solution in parametric form:

x = aC5
1

∫
τ−7/2(τ3f − 4τ2℘± 6) dτ +C3, y = bC12

1 τ
−6(τ2℘∓ 1),

where A = ∓ 24
49a

−12/7b5/7.

131. y′′′xxx = Ay(y′x)
−27/13(y′′xx)

5/2.

Solution in parametric form:

x = aC−11
1

∫
τ−13/2(τ2℘∓ 1)

2
dτ + C3, y = bC2

1τ(τ
3f − 4τ2℘± 6),

where A = − 24
13 (6b/a)

1/13(±39b)−1/2.

132. y′′′xxx = Ay−20/13(y′x)
3(y′′xx)

1/2.

Solution in parametric form:

x = aC25
1

∫
τ23/2(τ3f − 4τ2℘± 6)

−1/2
dτ +C3, y = bC26

1 τ
13,

where A = ± 6
169 ab

−6/13(±39b)−1/2.

133. y′′′xxx = Ay−2/3(y′′xx)
27/20.

Solution in parametric form:

x = aC19
1

∫
τ−20(τ2℘∓ 1)

2
dτ + C3, y = bC18

1 τ
−18(τ2℘∓ 1)

3
,

where A = 20a−1b2/3
(
± a2

18b

)7/20
.
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134. y′′′xxx = Ay−1/2(y′x)
−1/3(y′′xx)

33/20.

Solution in parametric form:

x= aC11
1

∫
τ10(τ3f−4τ2℘±6)(τ2℘∓ 1)

1/2
dτ+C3, y= bC2

1τ
2(τ3f − 4τ2℘± 6)

2
,

where A = ∓20a−1b1/2
( 12b
a

)1/3(
± a2

18b

)13/20
.

135. y′′′xxx = A(y′x)
−4.

Solution in parametric form:

x = aC5
1

∫
℘−2 dτ + C3, y = bC7

1℘
−2(f ± 2τ℘2), where A = −192a−7b5.

136. y′′′xxx = Ay−5/2y′x(y
′′

xx)
3.

Solution in parametric form:

x = aC1

∫
f℘−2(f ± 2τ℘2)

−1/2
dτ + C3, y = bC8

1℘
−2, where A = ± 3

4a
4b−1/2.

137. y′′′xxx = Ayy′x(y
′′

xx)
8/5.

Solution in parametric form:

x = aC13
1

∫
℘3(f ± 2τ℘2)

−1/2
dτ +C3, y = bC6

1f, where A = ∓ 5

6
b−2
( a2
6b

)3/5
.

138. y′′′xxx = A(y′x)
3(y′′xx)

7/5.

Solution in parametric form:

x = aC17
1

∫
℘−3f−1/2 dτ + C3, y = bC14

1 ℘
−2(f ± 2τ℘2),

where A = ∓ 5
8a

2b−3
(

a2

6b

)2/5
.

139. y′′′xxx = Ay−1/2(y′x)
−4.

Solution in parametric form:

x = aC11
1

∫
℘dτ

(f ± 2τ℘2)3/2
+C3, y = bC14

1

℘2

f ± 2τ℘2
, where A = 192a−7b11/2.

140. y′′′xxx = Ay−5/2(y′′xx)
3.

Solution in parametric form:

x = aC−1
1

∫
(f ± 2τ℘2)

−3/2
(τf + 2℘) dτ + C3, y = bC6

1 (f ± 2τ℘2)
−1
,

where A = − 3
16a

3b1/2.
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141. y′′′xxx = Ay(y′x)
3(y′′xx)

8/5.

Solution in parametric form:

x = aC23
1

∫
℘−1/2(f ± 2τ℘2)

5/4
dτ + C3, y = bC16

1 (τf + 2℘),

where A =
10

27
a2b−4

( 2a2
3b

)3/5
.

142. y′′′xxx = Ay(y′x)
3(y′′xx)

7/5.

Solution in parametric form:

x = aC11
1

∫
(f ± 2τ℘2)

−3/2
(τf + 2℘)−1/2 dτ + C3, y = bC7

1℘(f ± 2τ℘2)
−1/2

,

where A = −10a2b−4
( 2a2

3b

)2/5
.

143. y′′′xxx = Ay−1/2(y′x)
−7/3.

Solution in parametric form:

x = aC23
1

∫
(f ± 2τ℘2)

1/4
(τf + 2℘) dτ + C3, y = bC32

1 (τf + 2℘)2,

where A = −648a−5b7/2(6b/a)1/3.

144. y′′′xxx = Ay−5/3(y′′xx)
3.

Solution in parametric form:

x = aC1

∫
℘(f ± 2τ℘2)

1/2
dτ + C3, y = bC9

1 (f ± 2τ℘2)3/2,

where A = ± 1
324 a

3b−1/3.

145. y′′′xxx = Ay−5/6(y′x)
−7/3.

Solution in parametric form:

x = aC25
1

∫
(f ± 2τ℘2)

1/4
(τf + 2℘)−2 dτ + C3, y = bC32

1 (τf + 2℘)−2,

where A = −648a−5b23/6(6b/a)1/3.

146. y′′′xxx = Ay−5/3(y′x)
−2/3(y′′xx)

3.

Solution in parametric form:

x = aC−1
1

∫
(τ2℘∓ 1)(f ± 2τ℘2)

1/2
(τf + 2℘)−2 dτ + C3,

y = bC7
1 (f ± 2τ℘2)

3/2
(τf + 2℘)−2,

where A = − 1
324 a

3b−1/3(6b/a)2/3.
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147. y′′′xxx = Ay(y′x)
11(y′′xx)

7/5.

Solution in parametric form:

x=aC31
1

∫
(f ± 2τ℘2)

−3/2
(τf+2℘)13/6 dτ+C3, y= bC27

1 (τ2℘∓1)(f ± 2τ℘2)
−1/2

,

where A = −20a10b−12(2a2/b)2/5.

148. y′′′xxx = Ay5(y′x)
3(y′′xx)

8/5.

Solution in parametric form:

x=aC43
1

∫
(τ2℘∓1)

−1/2
(f±2τ℘2)

5/4
(τf+2℘)−4/3 dτ +C3, y=bC16

1 (τf+2℘)−1/3,

where A = 20a2b−8(2a2/b)3/5.

149. y′′′xxx = Ay−1/2(y′x)
−4(y′′xx)

4/5.

Solution in parametric form:

x = aC47
1

∫
(τ2℘∓ 1)(f ± 2τ℘2)

−3/2
(τf + 2℘)4/3 dτ + C3,

y = bC54
1 (τ2℘∓ 1)

2
(f ± 2τ℘2)

−1
,

where A = −320a−7b11/2
( a2
4b

)4/5
.

150. y′′′xxx = Ay−5/2(y′′xx)
11/5.

Solution in parametric form:

x= aC−13
1

∫
(f±2τ℘2)

−3/2
(τf+2℘)1/3 dτ+C3, y = bC14

1 (f±2τ℘2)
−1

(τf+2℘)4/3,

where A =
5

4
ab3/2

( a2
4b

)1/5
.

151. y′′′xxx = Ay−4/5(y′x)
−17/5(y′′xx)

1/2.

Solution in parametric form:

x = C3 − aC47
1

∫
(τ℘′ + 2℘)7/6(2τ2℘℘′ + ℘′ + 8τ℘2 − τ3)−3/2 dτ,

y = bC54
1 (2τ2℘℘′ + ℘′ + 8τ℘2 − τ3)−1,

where A = −1250 · 52/5a−27/5b47/10.

152. y′′′xxx = Ay−11/5(y′x)
−3/5(y′′xx)

5/2.

Solution in parametric form:

x = C3 − aC13
1

∫
(τ2℘− 1)2(τ℘′ + 2℘)2/3

(τ3 − 2τ2℘℘′ − ℘′ − 8τ℘2)3/2
dτ,

y = −bC−14
1 (τ℘′ + 2℘)5/3(2τ2℘℘′ + ℘′ + 8τ℘2 − τ3)−1,

where A =
2 · 103/5
125

a7/5b13/10.
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153. y′′′xxx = Ay2(y′x)
9(y′′xx)

17/11.

Solution in parametric form:

x = C3 − aC127
1

∫
(τ3 − 2τ2℘℘′ − ℘′ − 8τ℘2)11/10

(τ℘′ + 2℘)5/3
dτ,

y = bC100
1 (τ2℘− 1)(τ℘′ + 2℘)−2/3,

where A = −11 · 217/11a100/11b−127/11.

154. y′′′xxx = Ay4(y′x)
5(y′′xx)

16/11.

Solution in parametric form:

x = C3 − aC52
1

∫
(τ℘′ + 2℘)7/3

(τ2℘− 1)1/2(2τ2℘℘′ + ℘′ + 8τ℘2 − τ3)6/5 dτ,

y = bC27
1 (2τ2℘℘′ + ℘′ + 8τ℘2 − τ3)−1/5,

where A = 11 · 2−16/11a54/11b−104/11.

155. y′′′xxx = Ay−11/6(y′x)
−1/3(y′′xx)

9/4.

Solution in parametric form:

x = C3 + aC−33
1

∫
(τ2℘− 1)1/2(2τ2℘℘′ + ℘′ + 8τ℘2 − τ3)1/5

(τ℘′ + 2℘)2
dτ,

y = bC42
1 (τ℘′ + 2℘)−2(2τ2℘℘′ + ℘′ + 8τ℘2 − τ3)6/5,

where A = 217/12 · 3−13/6 · a7/6b11/12.
156. y′′′xxx = Ay−2/3(y′x)

−8/3(y′′xx)
3/4.

Solution in parametric form:

x = C3 + aC129
1

∫
(τ2℘− 1)2(2τ2℘℘′ + ℘′ + 8τ℘2 − τ3)2/5

(τ℘′ + 2℘)2
dτ,

y = bC150
1 (τ2℘− 1)3(τ℘′ + 2℘)−2,

where A = −108 · 21/4 · 31/6 · a−25/6b43/12.

◆ In the solutions of equations 157 and 158, the following notation is used:

U =

∫
τk−1 dτ

z(τ)
, z =





1

k + 1
τk+1 +

1

k
τk + C2 if k 6= 0, k 6= −1;

τ + ln |τ |+ C2 if k = 0;

ln |τ | − 1

τ
+ C2 if k = −1.

157. y′′′xxx = Ayβ(y′x)
−1(y′′xx)

2, β 6= 0.

Solution in parametric form:

x = C1

∫
τ
1−β
β exp(− 1

2U) dτ + C3, y = bτ1/β , where k = 1/β, A = −2b−β .
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158. y′′′xxx = Ay−1(y′x)
γy′′xx, γ 6= 1.

Solution in parametric form:

x = aC1

∫
τ
2−γ
γ−1 z−1eU dτ + C3, y = eU , where k =

2

γ − 1
, A = aγ−1b1−γ .

◆ In the solutions of equations 159–188, the following notation is used:

R =
√
±(4τ3 − 1), I1 = 2τI ∓R, I2 = τ−1(RI1 − 1),

I3 = 4τI21 ∓ I22 , I4 = I2I3 − 8I21 , I5 = 2RI − τ2,

where I =

∫
τ dτ

R
+C2 is the incomplete elliptic integral of the second kind in the form

of Weierstrass.

159. y′′′xxx = A(y′x)
−7.

Solution in parametric form:

x = aC4
1

∫
τ−3/2R−1 dτ + C3, y = bC5

1τ
−1I1, where A = ∓3a−10b8.

160. y′′′xxx = Ay−4y′x(y
′′

xx)
3.

Solution in parametric form:

x = aC−1
1

∫
τ−3/2I

−1/2
1 dτ + C3, y = bC4

1τ
−1, where A = ±24a4b.

161. y′′′xxx = Ayy′x(y
′′

xx)
7/4.

Solution in parametric form:

x = aC11
1

∫
τ5/2I

−1/2
1 R−1 dτ + C3, y = bC6

1R, where A = ∓ 2

3
b−2
(
∓ a

2

3b

)3/4
.

162. y′′′xxx = A(y′x)
3(y′′xx)

5/4.

Solution in parametric form:

x= aC13
1

∫
τ−2R−3/2 dτ +C3, y = bC10

1 τ
−1I1, where A=−4a2b−3

(
∓ a

2

3b

)1/4
.

163. y′′′xxx = Ay(y′x)
−7.

Solution in parametric form:

x = aC7
1

∫
I
−3/2
1 R−1 dτ + C3, y = bC10

1 τI
−1
1 , where A = ∓3a−10b7.

164. y′′′xxx = Ay−4(y′x)
3(y′′xx)

3.

Solution in parametric form:

x = aC1

∫
τ−1/2I

−3/2
1 I2R

−1 dτ + C3, y = bC6
1I

−1
1 , where A = ±24a6b−1.
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165. y′′′xxx = Ay(y′′xx)
7/4.

Solution in parametric form:

x = aC7
1

∫
I21R

−1 dτ + C3, y = bC2
1I2, where A = −4a−1b−1

(
± a

2

6b

)3/4
.

166. y′′′xxx = Ay−1/2(y′x)
3(y′′xx)

5/4.

Solution in parametric form:

x=aC11
1

∫
τI−3

1 I
−1/2
2 R−1 dτ+C3, y=bC10

1 τ
2I−2

1 , where A=
1

2
a2b−5/2

(
± a

2

6b

)5/4
.

167. y′′′xxx = Ay−1/2(y′x)
−5/3(y′′xx)

3.

Solution in parametric form:

x=aC−1
1

∫
τI

−1/2
1 I2R

−1 dτ+C3, y= bC8
1I

2
2 , where A=∓ 1

27a
2b−1/2(12b/a)2/3.

168. y′′′xxx = Ay−1/2(y′x)
−4/3(y′′xx)

3.

Solution in parametric form:

x=aC1

∫
I
−5/2
1 I2I3R

−1 dτ+C3, y= bC10
1 I

−3
1 I22 , with A=∓ 16

27 a
2b−1/2(±3b/a)1/3.

169. y′′′xxx = Ay−1/2(y′x)
3(y′′xx)

8/7.

Solution in parametric form:

x = aC37
1

∫
I
7/4
1 I

−1/2
2 I3R

−1 dτ + C3, y = bC32
1 I

2
3 ,

where A = ∓7× 2−10a2b−5/2
(

a2

6b

)1/7
.

170. y′′′xxx = Ay(y′′xx)
13/7.

Solution in parametric form:

x= aC13
1

∫
I
−5/2
1 R−1 dτ +C3, y = bC5

1I
−3/2
1 I2, where A =

7

2
a−1b−1

( a2
6b

)6/7
.

171. y′′′xxx = Ay(y′x)
−13.

Solution in parametric form:

x = aC13
1

∫
I
3/4
1 R−1 dτ +C3, y = bC16

1 I3, where A = ±3× 225a−16b13.

172. y′′′xxx = Ay−7(y′x)
3(y′′xx)

3.

Solution in parametric form:

x = aC−1
1

∫
I
−1/2
1 I2I

−1/2
3 R−1 dτ + C3, y = bC3

1I
1/2
1 , where A = ∓12a6b2.
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173. y′′′xxx = Ay3(y′x)
−13.

Solution in parametric form:

x = aC11
1

∫
I
3/4
1 I

−3/2
3 R−1 dτ +C3, y = bC16

1 I
−1
3 , where A = ±3× 225a−16b11.

174. y′′′xxx = Ay−7(y′x)
7(y′′xx)

3.

Solution in parametric form:

x= aC1

∫
I
−1/2
1 I

−3/2
3 I4R

−1 dτ+C3, y= bC5
1I

1/2
1 I−1

3 , where A=∓192a10b−2.

175. y′′′xxx = Ay−7/6(y′′xx)
2/3.

Solution in parametric form:

x=aC9
1

∫
I
−5/2
1 I53R

−1 dτ+C3, y= bC10
1 I

−3
1 I63 , where A=±54a−3b13/6

( 2a2
9b

)2/3
.

176. y′′′xxx = Ay−1/2(y′x)
−4/3(y′′xx)

7/3.

Solution in parametric form:

x = aC3
1

∫
I
−5/2
1 I−1

3 I4R
−1 dτ +C3, y = bC2

1I
−3
1 I24 , where A = 8b1/2(2a/3)1/3.

177. y′′′xxx = Ay−3/4(y′x)
3(y′′xx)

8/7.

Solution in parametric form:

x = aC67
1

∫
I
7/4
1 I−5

3 I
−1/2
4 R−1 dτ + C3, y = bC64

1 I
−4
3 ,

where A = ∓7× 2−13a2b−9/4
( a2
12b

)1/7
.

178. y′′′xxx = Ay(y′x)
−1/2(y′′xx)

13/7.

Solution in parametric form:

x = aC19
1

∫
I
−5/2
1 I43R

−1 dτ + C3, y = bC3
1I

−3/2
1 I4,

where A =
7

2
a−1b−1

(
± 3b

a

)1/2( a2
12b

)6/7
.

179. y′′′xxx = A(y′x)
2.

Solution in parametric form:

x = aC−1
1

∫
R−1 dτ + C3, y = bC1

∫
τR−1 dτ + C2, where A = ±6a−1b−1.

180. y′′′xxx = Ay1/2y′x(y
′′

xx)
3.

Solution in parametric form:

x = aC7
1

∫
τI−1/2 dτ + C3, y = bC8

1τ
2, where A = ∓24a4b−7/2.
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181. y′′′xxx = Ayy′x(y
′′

xx)
4.

Solution in parametric form:

x = aC5
1

∫
τ2I−1/2R−1 dτ + C3, y = bC6

1R, where A = − 1
162a

6b−5.

182. y′′′xxx = A(y′x)
3(y′′xx)

−1.

Solution in parametric form:

x = aC−1
1

∫
τR−3/2 dτ + C3, y = bC2

1

∫
τR−1 dτ + C2, where A = 9a−2b−1.

183. y′′′xxx = Ay−7/2(y′x)
2.

Solution in parametric form:

x = aC5
1

∫
I−3/2R−1 dτ + C3, y = bC2

1I
−1, where A = ∓6a−1b5/2.

184. y′′′xxx = Ay1/2(y′x)
−6(y′′xx)

3.

Solution in parametric form:

x = aC7
1

∫
τI−3/2I5R

−1 dτ + C3, y = bC6
1τ

2I−1, where A = ∓48a−3b7/2.

185. y′′′xxx = Ay(y′x)
−9/5(y′′xx)

4.

Solution in parametric form:

x=aC11
1

∫
τ2I−1/4R−1 dτ+C3, y= bC16

1 I5, where A=− 2
1125a

4b−3(12b/a)4/5.

186. y′′′xxx = Ay−7/5(y′x)
3(y′′xx)

−1.

Solution in parametric form:

x = aC1

∫
τI3/2I

−1/2
5 R−1 dτ + C3, y = bC1I

5/2, where A = 36
5 a

−2b2/5.

187. y′′′xxx = Ay−1/3(y′′xx)
9/7.

Solution in parametric form:

x=aC1

∫
τ2I−5/2R−1 dτ+C3, y=bC9

1τ
3I−3/2, where A=

7

2
a−1b1/3

( a2
18b

)2/7
.

188. y′′′xxx = Ay−1/2(y′x)
1/3(y′′xx)

12/7.

Solution in parametric form:

x = aC23
1

∫
τ1/2I7/4I5R

−1 dτ + C3, y = bC32
1 I

2
5 ,

where A = − 7

4
a−1b1/2

( a
3b

)1/3( a2
18b

)5/7
.



“K16435’ — 2017/9/28 — 15:05 — #969

15.2. Equations of the Form y′′′xxx = Axαyβ(y′x)
γ(y′′xx)

δ 943

◆ In the solutions of equations 189 and 190, the following notation is used:

f = exp

(∫
dτ√
z

)
, z =





C2 +
1

4
τ2 +

2B

k + 1
τk+1 if k 6= −1,

C2 +
1

4
τ2 + 2B ln |τ | if k = −1.

189. y′′′xxx = Ay−
γ+5
4 (y′x)

γ .

Solution in parametric form:

x = aC3
1

∫
τ−1/2f3/4z−1/2 dτ + C3, y = bC4

1f,

where k = 1
2 (γ − 1), A = 1

2Ba
2(k−1)b

3
2
(1−k).

190. y′′′xxx = Ay−γ−2(y′x)
γ(y′′xx)

3.

Solution in parametric form:

x=a

∫
(τz−1/2+2) dτ+C3, y=C1τf

1/2, where k=−γ−2, A=−23−ka1−kB.

191. y′′′xxx = Ay
γ−1
2 (y′x)

γ(y′′xx)
3/2.

Solution in parametric form:

x = aC3
1

∫
V −

√
V 2 + 4

(τU)3/4
√
V 2 + 4

dτ + C3, y = bC2
1τ

1/2U1/2,

where

U = exp

(∫
V dτ

τ
√
V 2 + 4

)
, V =




τ−1/2

(
C2 +

B

γ + 1
τ
γ+1
2

)
if γ 6= −1,

τ−1/2(C2 +
1
2B ln |τ |) if γ = −1,

A = 23/2ab−
γ
2 − 1B(−2a/b)γ−1.

192. y′′′xxx = Ayβ(y′x)
γ(y′′xx)

γ+4β+5
γ+2β+3 , β 6= −1, γ 6= −1.

Solution in parametric form:

x = aCγ+β+2
1

∫
τ−3/2U

− γ+4β+5
2(γ+1) z−1 dτ + C3, y = bCγ+1

1 U,

where A = aγ−1b−β−γ
( 2a2
b

) 2(β+1)
γ+2β+3

B, U = exp
(∫ dτ

τz

)
; z = z(τ) is the solution of

the transcendental equation

(z + k − 1)(z + k)
k

1−k =
(
C2 +

2B

γ + 2β + 3
τ
γ+1
2

)
τ

1
k−1 , k = − 2(β + 1)

γ + 1
.

193. y′′′xxx = Ay−1(y′x)
−1(y′′xx)

δ, δ 6= 1, δ 6= 2.

Solution in parametric form:

x = aCδ−3
1

∫
τk−1U

2−k
2k z−1 dτ + C3, y = bC2δ−4

1 k(kz − τ)−1U1/k,
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where k =
δ − 1

δ − 2
, A =

1− k
2

a−4b3
(
− 2a2

b

)δ
B, U = exp

(∫ dτ

z

)
; z = z(τ) is the

solution of the transcendental equation

ln |kz − τ | − τ

kz − τ =
1

k
τk + C2.

194. y′′′xxx = Ay−1(y′x)
−1(y′′xx)

2.

Solution in parametric form:

x = ±C1

∫
eτz−1/2U−1/2 dτ + C3, y = ± 1

2 e
τ ,

where z = ∓Aτ + eτ + C2, U = exp
(
±A

∫
dτ

z

)
.

195. y′′′xxx = Ay−1(y′x)
−1y′′xx.

Solution in parametric form:

x=C1

∫
eτ/2U dτ+C3, y=±C1zU, where z=±Aτ+eτ+C2, U =exp

(
∓
∫
dτ

z

)
.

15.2.5 Some Transformations

Let us consider some transformations of the equation

y′′′xxx = Axαyβ(y′x)
γ(y′′xx)

δ .

1◦. In the special case γ = δ = 0, the transformation x = 1/t, y = w/t2 reduces the

equation

y′′′xxx = Axαyβ

to an equation of similar form (with other parameters):

w′′′
ttt = −At−α−2β−4wβ .

2◦. In the special case α = δ = 0, the transformation x = −
∫

dτ

[z(τ)]3/2
, y =

1

z(τ)
reduces the equation

y′′′xxx = Ayβ(y′x)
γ

to an equation of similar form (with other parameters):

z′′′τττ = Az−
2β+γ+5

2 (w′
τ )

γ
.

3◦. In the special case β = 0, the substitution u(x) = y′x brings the equation

y′′′xxx = Axα(y′x)
γ(y′′xx)

δ

to the generalized Emden–Fowler equation:

u′′xx = Axαuγ(u′x)
δ
,

which is discussed in Sections 14.3 and 14.5.
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4◦. In the special case α = 0, the substitution v(y) = (y′x)
2 reduces the equation

y′′′xxx = Ayβ(y′x)
γ(y′′xx)

δ

to the generalized Emden–Fowler equation:

v′′yy = A× 21−δyβv
γ−1
2 (v′y)

δ
,

which is discussed in Sections 14.3 and 14.5.

15.3 Equations of the Form y′′′
xxx = f(y)g(y′

x)h(y
′′
xx)

15.3.1 Equations Containing Power Functions

1. y′′′xxx = (ay + b)−5/2.

This is a special case of equation 15.3.1.2 with b2 − 4ac = 0. Three autonomous first

integrals two of which are functionally independent:

(ay + b)2(y′′xx)
2 − a(ay + b)(y′x)

2y′′xx +
1

4
a2(y′x)

4 − 2(ay + b)−1/2y′x = C1,

(ay + b)2y

b2
(y′′xx)

3 − (3ay + b)(ay + b)

2b2
(y′x)

2(y′′xx)
2+

+

[
(3ay + 2b)a

4b2
(y′x)

3 − 3y

(ay + b)1/2b2

]
y′xy

′′
xx −

a2

8b2
(y′x)

6+

+
9a3y3 + 26a2by2 + 25ab2y + 8b3

6(ay + b)7/2b2
(y′x)

3 − 3

2

2aby + b2

a2b3(ay + b)2
= C2,

(2ay − b)(ay + b)2

b3
(y′′xx)

3 − 3a2y(ay + b)

b3
(y′x)

2(y′′xx)
2+

+
3

b3

[
a2(2ay + b)

4
(y′x)

3 +
2ay − b

(ay + b)1/2

]
y′xy

′′
xx +

a3

4b3
(y′x)

6+

+
a(6a3y3 + 17a2by2 + 16ab2y + 5b3)

2b3(ay + b)7/2
(y′x)

3 − 3

2

4ay + b

ab3(ay + b)2
= C3.

2. y′′′xxx = (ay2 + by + c)−5/4.

This is a special case of equation 15.5.2.29 with f(w) = 1. Autonomous first integral:

(ay2 + by + c)
(
y′′xx
)2 − 1

2
(2ay + b)

(
y′x
)2
y′′xx +

a

4

(
y′x
)4 − 2(ay2 + by + c)−1/4y′x = C.

3. y′′′xxx = (Ayn +Bym)y′x.

This is a special case of equation 15.5.2.1 with f(y) = Ayn +Bym.

4. y′′′xxx = (Ayn +Bym)
[[
a(y′x)

3 + by′x
]]
.

This is a special case of equation 15.5.2.3 in which f(y) = b(Ayn + Bym) and g(y) =
a(Ayn +Bym).
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5. y′′′xxx = y−2

[[
− (m+ 1)

(m+ 3)2
(y′x)

3 + A(y′x)
2m+1

]]
, m 6= −3, m 6= −1.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.4:

w′′
yy = y−2

[
− 2(m+ 1)

(m+ 3)2
w + 2Awm

]
.

6. y′′′xxx = y−2
[[
15
8
(y′x)

3 + A(y′x)
−13

]]
.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.35:

w′′
yy = y−2( 154 w + 2Aw−7).

7. y′′′xxx = y−2
[[
3(y′x)

3 + A(y′x)
−7
]]
.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.31:

w′′
yy = y−2(6w + 2Aw−4).

8. y′′′xxx = y−2
[[
6(y′x)

3 + A(y′x)
−4
]]
.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.64:

w′′
yy = y−2(12w + 2Aw−5/2).

9. y′′′xxx = y−2
[[
(y′x)

3 +A(y′x)
−3
]]
.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.6:

w′′
yy = y−2(2w + 2Aw−2).

10. y′′′xxx = y−2
[[
− 3

32
(y′x)

3 + A(y′x)
−7/3

]]
.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.26:

w′′
yy = y−2(− 3

16w + 2Aw−5/3).

11. y′′′xxx = y−2
[[
− 9

200
(y′x)

3 + A(y′x)
−7/3

]]
.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.10:

w′′
yy = y−2(− 9

100w + 2Aw−5/3).

12. y′′′xxx = y−2
[[
3
8
(y′x)

3 +A(y′x)
−7/3

]]
.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.12:

w′′
yy = y−2( 34w + 2Aw−5/3).

13. y′′′xxx = y−2
[[
63
8
(y′x)

3 +A(y′x)
−7/3

]]
.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.66:

w′′
yy = y−2( 634 w + 2Aw−5/3).

14. y′′′xxx = y−2
[[
− 5

72
(y′x)

3 + A(y′x)
−9/5

]]
.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.29:

w′′
yy = y−2(− 5

36w + 2Aw−7/5).

15. y′′′xxx = y−2
[[
− 1

9
(y′x)

3 +A
]]
.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.14:

w′′
yy = y−2(− 2

9w + 2Aw−1/2).
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16. y′′′xxx = y−2
[[
− 2

25
(y′x)

3 + A
]]
.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.8:

w′′
yy = y−2(− 4

25w + 2Aw−1/2).

17. y′′′xxx = y−2
[[
10(y′x)

3 +A
]]
.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.33:

w′′
yy = y−2(20w + 2Aw−1/2).

18. y′′′xxx = y−2
[[
− 6

49
(y′x)

3 + A(y′x)
2
]]
.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.37:

w′′
yy = y−2(− 12

49w + 2Aw1/2).

19. y′′′xxx = y−2
[[
A(y′x)

5 − 3
25

(y′x)
3
]]
.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.60:

w′′
yy = y−2(2Aw2 − 6

25w).

20. y′′′xxx = y−2
[[
A(y′x)

5 + 3
25

(y′x)
3
]]
.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.62:

w′′
yy = y−2(2Aw2 + 6

25w).

21. y′′′xxx = y−4/3(Ay′x + B).

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.40:

w′′
yy = y−4/3(2A+ 2Bw−1/2).

22. y′′′xxx = (Ay4 + By3)(y′x)
−13.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.39:

w′′
yy = (2Ay4 + 2By3)w−7.

23. y′′′xxx = (Ay2 + B)(y′x)
−9.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.16:

w′′
yy = (2Ay2 + 2B)w−5.

24. y′′′xxx = (Ay−1 + By−2)(y′x)
−3.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.28:

w′′
yy = (2Ay−1 + 2By−2)w−2.

25. y′′′xxx = (Ay−7/3 +By−10/3)(y′x)
−7/3.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.48:

w′′
yy = (2Ay−7/3 + 2By−10/3)w−5/3.

26. y′′′xxx = (Ay−4/3 +By−10/3)(y′x)
−7/3.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.49:

w′′
yy = (2Ay−4/3 + 2By−10/3)w−5/3.
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27. y′′′xxx = (Ay−4/3 +By−7/3)(y′x)
−7/3.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.24:

w′′
yy = (2Ay−4/3 + 2By−7/3)w−5/3.

28. y′′′xxx = (Ay−2/3 +By−4/3)(y′x)
−7/3.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.90:

w′′
yy = (2Ay−2/3 + 2By−4/3)w−5/3.

29. y′′′xxx = (A+ By−2/3)(y′x)
−7/3.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.89:

w′′
yy = (2A+ 2By−2/3)w−5/3.

30. y′′′xxx = (Ay2 + B)(y′x)
−7/3.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.47:

w′′
yy = (2Ay2 + 2B)w−5/3.

31. y′′′xxx = (Ay2 + By)(y′x)
−7/3.

The substitution w(y) = (y′x)
2 leads to a second-order equation of the form 14.4.2.46:

w′′
yy = (2Ay2 + 2By)w−5/3.

32. y′′′xxx = (Ayn + Byk)y′x(y
′′

xx)
m.

This is a special case of equation 15.5.4.12 with f(y) = Ayn +Byk.

15.3.2 Equations Containing Exponential Functions

Tables 15.2–15.4 present the equations whose solutions are given in this subsection.

◆ In the solutions of equations 1–6, the following notation is used:

E =

∫
exp(τ2) dτ + C2, F = 2τE − exp(τ2),

G =

∫
(1± τ)k dτ

τ
+ C2, H =

∫
exp(∓τ) dτ

τ
+ C2.

1. y′′′xxx = Aeyy′x(y
′′

xx)
δ, δ 6= 1.

Solution in parametric form:

x = aC1

∫
τ−1G−1/2 dτ + C3, y = ln(bC2δ−2

1 τ),

where k =
1

1− δ , A = ± 1

2(1− δ) a
−2b−1(2a2)δ.

2. y′′′xxx = Aeyy′xy
′′

xx.

Solution in parametric form:

x = C1

∫
τ−1H−1/2 dτ +C3, y = ln

(
∓ τ
A

)
.
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TABLE 15.2

Solvable equations of the form

y′′′xxx = Aey(y′x)
γ(y′′xx)

δ

δ γ Equation

arbitrary

(δ 6= 1)
1 15.3.2.1

0 3 15.3.2.9

1 1 15.3.2.2

3
2 0 15.3.2.3

3
2 3 15.3.2.7

2
arbitrary

(γ 6= −1) 15.3.2.11

2 −1 15.3.2.13

TABLE 15.3

Solvable equations of the form

y′′′xxx = Ayβy′x exp[(y
′
x)

2](y′′xx)
δ

δ β Equation

arbitrary

(δ 6= 2)
0 15.3.2.4

1
arbitrary

(β 6= −1) 15.3.2.12

1 −1 15.3.2.14

3
2 − 1

2 15.3.2.5

3
2 1 15.3.2.8

2 0 15.3.2.6

3 1 15.3.2.10

TABLE 15.4

Other solvable equations of the type considered

Form of equation Equation

y′′′xxx = Aeyy′x exp[(y
′
x)

2](y′′xx)
δ 15.3.2.20

y′′′xxx = A(y′x)
γ exp(y′′xx), γ 6= −1 15.3.2.15

y′′′xxx = A(y′x)
−1 exp(y′′xx) 15.3.2.16

y′′′xxx = Ayβy′x exp(y
′′
xx), β 6= −1 15.3.2.17

y′′′xxx = Ay−1y′x exp(y
′′
xx) 15.3.2.18

y′′′xxx = Aeyy′x exp[(y
′
x)

2 + y′′xx] 15.3.2.19

3. y′′′xxx = Aey(y′′xx)
3/2.

Solution in parametric form:

x = C1

∫
E−1 dτ + C3, y = τ2 + ln

(√
2A−1E−1

)
.

4. y′′′xxx = Ay′x exp
[[
(y′x)

2
]]
(y′′xx)

δ, δ 6= 2.

Solution in parametric form:

x = aC1

∫
τ−1(1± τ)

1
δ−2 [ln(bCδ−2

1 τ)]
−1/2

dτ + C3, y = aC1G,

where k =
1

δ − 2
, A = ± 1

2− δ a
δ−3b−1.
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5. y′′′xxx = Ay−1/2y′x exp
[[
(y′x)

2
]]
(y′′xx)

3/2.

Solution in parametric form:

x = 4C1

∫
EF [τ2 + ln(aE−1)]

−1/2
dτ + C3, y = C1F

2, where A = −
√
2 a−1.

6. y′′′xxx = Ay′x exp
[[
(y′x)

2
]]
(y′′xx)

2.

Solution in parametric form:

x = C1

∫
τ−1 exp(∓τ)

[
ln
(
± τ
A

)]−1/2
dτ + C3, y = C1H.

◆ In the solutions of equations 7 and 8, the following notation is used:

E =
√
τ(τ + 1)− ln

[
C2

(√
τ +
√
τ + 1

)]
, R =

√
τ + 1

τ
,

F = 1−
√
τ + 1

τ
ln
[
C2

(√
τ +
√
τ + 1

)]
.

7. y′′′xxx = Aey(y′x)
3(y′′xx)

3/2.

Solution in parametric form:

x = aC1

∫
R−1E−1F−1/2 dτ +C3, y = − ln(bC−3

1 E), where A = 23/2a3b.

8. y′′′xxx = Ayy′x exp
[[
(y′x)

2
]]
(y′′xx)

3/2.

Solution in parametric form:

x = − 1
2 bC1

∫
τ−2R−1E [ln(aC

−3/2
1 E−1)]−1/2dτ + C3, y = bC1F,

where A = −4a−1b−3/2.

◆ In the solutions of equations 9 and 10, the following notation is used:

Z =

{
C1J0(τ) + C2Y0(τ) for the upper sign,

C1I0(τ) + C2K0(τ) for the lower sign,

where J0(τ) and Y0(τ) are Bessel functions, and I0(τ) and K0(τ) are modified Bessel

functions.

9. y′′′xxx = Aey(y′x)
3.

Solution in parametric form:

x = 2C1

∫
τ−1Z−1/2 dτ +C3, y = ln(∓ 1

8A
−1τ2).

10. y′′′xxx = Ayy′x exp
[[
(y′x)

2
]]
(y′′xx)

3.

Solution in parametric form:

x = C1

∫
Z ′
τ

[
ln
(
± τ

2

A

)]−1/2
dτ + C3, y = C1Z.
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11. y′′′xxx = Aey(y′x)
γ(y′′xx)

2, γ 6= −1.

Solution in parametric form:

x = a

∫
τ−1/2f−1 exp

( U

γ + 1

)
dτ + C3, y = U,

where A = 1
2a

γ+1k, U =

∫
dτ

f
+ C1; f = f(τ) is the solution of the transcendental

equation

ln(λf − τ)− τ

λf − τ =
k

λ
τλ + C2, λ =

γ + 1

2
.

12. y′′′xxx = Ayβy′x exp
[[
(y′x)

2
]]
y′′xx, β 6= −1.

Solution in parametric form:

x = a

∫
f−1

(
f − τ

β + 1

)
U−1/2 exp

(
− U

β + 1

)
dτ + C3, y = aτ exp

(
− U

β + 1

)
,

where A = a−β−1k, U =

∫
dτ

f
+ C1; f = f(τ) is the solution of the transcendental

equation

ln(λf − τ)− τ

λf − τ = − k
λ
τλ + C2, λ = β + 1.

13. y′′′xxx = Aey(y′x)
−1(y′′xx)

2.

Solution in parametric form:

x = C1

∫
W−1/2 dτ + C3, y = τ, where W = exp

(∫ dτ

τ − 2Aeτ + C2

)
.

14. y′′′xxx = Ay−1y′x exp
[[
(y′x)

2
]]
y′′xx.

Solution in parametric form:

x = C1

∫
τ−1/2(τ +Aeτ + C2)

−1W dτ + C3, y = C1W,

where W = exp
(∫ dτ

τ +Aeτ + C2

)
.

◆ In the solutions of equations 15–19, the following notation is used:

V = C1 −
1

λ
(m+ 1)(τ + 1)e−τ , M = C1 −

1

λ
(τ + 2)e−τ/2,

W =





C2 −
∫

ln
(
C1 −

λ

n+ 1
τn+1

)
dτ if n 6= −1,

C2 −
∫

ln(C1 − λ ln |τ |) dτ if n = −1,

N = lnM − 1

2λ

∫
e−τ/2M−1 dτ − 1

2
+ C2.

15. y′′′xxx = A(y′x)
γ exp(y′′xx), γ 6= −1.

Solution in parametric form:

x =
1

λ

∫
e−τV

− 2m+1
2m+2 dτ + C3, y =

2

λ

∫
e−τV

− m
m+1 dτ + C2,

where m = 1
2 (γ − 1), A = 2−γλ.
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16. y′′′xxx = A(y′x)
−1 exp(y′′xx).

Solution in parametric form:

x =
1

λ

∫
exp
(
−τ + 1

2V
)
dτ + C3, y =

2

λ

∫
exp
(
−τ + V

)
dτ + C2,

where m = 0, A = 2λ.

17. y′′′xxx = Ayβy′x exp(y′′xx), β 6= −1.

Solution in parametric form:

x =

∫
W−1/2 dτ + C3, y = 2τ, where n = β, A = 2−β−1λ.

18. y′′′xxx = Ay−1y′x exp(y′′xx).

Solution in parametric form:

x =

∫
W−1/2 dτ + C3, y = 2τ, where n = −1, A = λ.

19. y′′′xxx = Aeyy′x exp
[[
(y′x)

2 + y′′xx
]]
.

Solution in parametric form:

x =
1

2λ

∫
e−τ/2M−1N−1/2 dτ +C3, y =

1

2λ

∫
e−τ/2M−1 dτ +C2, where A = λ.

20. y′′′xxx = Aeyy′x exp[(y′x)
2](y′′xx)

δ.

Solution in parametric form:

x =

∫
τ−δz−1

(
ln
z

A
− U − C1

)−1/2
dτ + C3, y = U,

where

U =

∫
dτ

zτ δ
, z =





1

2− δ τ
2−δ +

1

1− δ τ
1−δ + C2 if δ 6= 2, δ 6= 1;

τ + ln |τ |+ C2 if δ = 1;

ln |τ | − 1

τ
+ C2 if δ = 2.

15.3.3 Other Equations

1. y′′′xxx = Ayy′x{cosh[λ(y′x)
2]}−2y′′xx.

The substitution y′x =
√
w(y) leads to a second-order equation of the form 14.7.4.1:

w′′
yy = Ay[cosh(λw)]−2w′

y.

2. y′′′xxx = Ayy′x{sinh[λ(y′x)
2]}−2y′′xx.

The substitution y′x =
√
w(y) leads to a second-order equation of the form 14.7.4.2:

w′′
yy = Ay[sinh(λw)]−2w′

y.
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3. y′′′xxx = Ayy′x cosh[λ(y′x)
2] (y′′xx)

3/2.

The substitution y′x =
√
w(y) leads to a second-order equation of the form 14.7.4.3:

w′′
yy =

√
2
2 Ay cosh(λw)(w′

y)
3/2.

4. y′′′xxx = Ayy′x sinh[λ(y′x)
2] (y′′xx)

3/2.

The substitution y′x =
√
w(y) leads to a second-order equation of the form 14.7.4.4:

w′′
yy =

√
2
2 Ay sinh(λw)(w′

y)
3/2.

5. y′′′xxx = A cosh(λy) (y′x)
3(y′′xx)

3/2.

The substitution y′x =
√
w(y) leads to a second-order equation of the form 14.7.4.5:

w′′
yy =

√
2
2 A cosh(λy)w(w′

y)
3/2.

6. y′′′xxx = A sinh(λy) (y′x)
3(y′′xx)

3/2.

The substitution y′x =
√
w(y) leads to a second-order equation of the form 14.7.4.6:

w′′
yy =

√
2
2 A sinh(λy)w(w′

y)
3/2.

7. y′′′xxx = A[cosh(λy)]−2(y′x)
3(y′′xx)

2.

The substitution y′x =
√
w(y) leads to a second-order equation of the form 14.7.4.7:

w′′
yy = 1

2A[cosh(λy)]−2w(w′
y)

2.

8. y′′′xxx = A[sinh(λy)]−2(y′x)
3(y′′xx)

2.

The substitution y′x =
√
w(y) leads to a second-order equation of the form 14.7.4.8:

w′′
yy = 1

2A[sinh(λy)]−2w(w′
y)

2.

9. y′′′xxx = A coshn(λy) y′x(y
′′

xx)
m.

This is a special case of equation 15.5.4.12 with f(y) = A coshn(λy).

10. y′′′xxx = A sinhn(λy) y′x(y
′′

xx)
m.

This is a special case of equation 15.5.4.12 with f(y) = A sinhn(λy).

11. y′′′xxx = A tanhn(λy) y′x(y
′′

xx)
m.

This is a special case of equation 15.5.4.12 with f(y) = A tanhn(λy).

12. y′′′xxx = A cothn(λy) y′x(y
′′

xx)
m.

This is a special case of equation 15.5.4.12 with f(y) = A cothn(λy).

13. y′′′xxx = A lnn(λy) y′x(y
′′

xx)
m.

This is a special case of equation 15.5.4.12 with f(y) = A lnn(λy).

14. y′′′xxx = Ayy′x{cos[λ(y′x)2]}−2y′′xx.

The substitution y′x =
√
w(y) leads to a second-order equation of the form 14.7.5.1:

w′′
yy = Ay[cos(λw)]−2w′

y .

15. y′′′xxx = Ayy′x{sin[λ(y′x)2]}−2y′′xx.

The substitution y′x =
√
w(y) leads to a second-order equation of the form 14.7.5.2:

w′′
yy = Ay[sin(λw)]−2w′

y.
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16. y′′′xxx = A[cos(λy)]−2(y′x)
3(y′′xx)

2.

The substitution y′x =
√
w(y) leads to a second-order equation of the form 14.7.5.3:

w′′
yy = 1

2A[cos(λy)]
−2w(w′

y)
2.

17. y′′′xxx = A[sin(λy)]−2(y′x)
3(y′′xx)

2.

The substitution y′x =
√
w(y) leads to a second-order equation of the form 14.7.5.4:

w′′
yy = 1

2A[sin(λy)]
−2w(w′

y)
2.

18. y′′′xxx = Ayy′x cos[λ(y′x)
2] (y′′xx)

3/2.

The substitution y′x =
√
w(y) leads to a second-order equation of the form 14.7.5.5:

w′′
yy =

√
2
2 Ay cos(λw)(w

′
y)

3/2.

19. y′′′xxx = Ayy′x sin[λ(y′x)
2] (y′′xx)

3/2.

The substitution y′x =
√
w(y) leads to a second-order equation of the form 14.7.5.6:

w′′
yy =

√
2
2 Ay sin(λw)(w

′
y)

3/2.

20. y′′′xxx = A cos(λy) (y′x)
3(y′′xx)

3/2.

The substitution y′x =
√
w(y) leads to a second-order equation of the form 14.7.5.7:

w′′
yy =

√
2
2 A cos(λy)w(w′

y)
3/2.

21. y′′′xxx = A sin(λy) (y′x)
3(y′′xx)

3/2.

The substitution y′x =
√
w(y) leads to a second-order equation of the form 14.7.5.8:

w′′
yy =

√
2
2 A sin(λy)w(w′

y)
3/2.

22. y′′′xxx = A cosn(λy) y′x(y
′′

xx)
m.

This is a special case of equation 15.5.4.12 with f(y) = A cosn(λy).

23. y′′′xxx = A sinn(λy) y′x(y
′′

xx)
m.

This is a special case of equation 15.5.4.12 with f(y) = A sinn(λy).

24. y′′′xxx = A tann(λy) y′x(y
′′

xx)
m.

This is a special case of equation 15.5.4.12 with f(y) = A tann(λy).

25. y′′′xxx = A cotn(λy) y′x(y
′′

xx)
m.

This is a special case of equation 15.5.4.12 with f(y) = A cotn(λy).

26. y′′′xxx = A(arcsin y)ny′x(y
′′

xx)
m.

This is a special case of equation 15.5.4.12 with f(y) = A(arcsin y)n.

27. y′′′xxx = A(arctan y)ny′x(y
′′

xx)
m.

This is a special case of equation 15.5.4.12 with f(y) = A(arctan y)n.
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15.4 Nonlinear Equations with Arbitrary Parameters

15.4.1 Equations Containing Power Functions

◮ Equations of the form f(x, y)y′′′xxx = g(x, y).

1. y′′′xxx = ayn.

See Section 3.2.2. The substitution w(y) = (y′x)
2 leads to the Emden–Fowler equation

w′′
yy = ±2aynw−1/2, which is discussed in Section 2.3.

2. y′′′xxx = axny−1.

This is a special case of equation 15.5.1.2 with f(x) = axn. On integrating the equation,

we have yy′′xx −
1

2
(y′x)

2 =
a

n+ 1
xn+1 + C.

3. y′′′xxx = axnym.

See Sections 15.2.3 and 15.2.5 (Item 1◦). The transformation z = xn+3ym−1, w = xy′x/y
leads to a second-order equation.

4. y′′′xxx = ay−5/2 + by−7/2.

Using the transformation given in 15.5.2.15 (Item 2◦), we reduce this equation to a constant

coefficient nonhomogeneous linear equation.

Solution in parametric form (b 6= 0):

x =

∫
dτ

[ϕ(τ)]3/2
+ C3, y =

1

ϕ(τ)
,

where ϕ(τ) = − a
b
+ C1e

−kτ + C2e
kτ/2 sin

kτ
√
3

2
, k = b1/3.

5. y′′′xxx = axy−5/2 + bx3y−7/2.

The transformation x = 1/t, y = w/t2 leads to an autonomous equation of the form

15.4.1.4: w′′′
ttt = −aw−5/2 − bw−7/2.

6. y′′′xxx = k(ay2 + by + c)−5/4.

This is a special case of equation 15.5.2.29 with f(u) = k.

7. y′′′xxx = x(ay2 + bx2y + cx4)−5/4.

This is a special case of equation 15.5.2.30 with f(ξ) ≡ 1.

8. y′′′xxx = k(y + ax2 + bx+ c)n.

The substitution z = y + ax2 + bx+ c leads to an equation z′′′xxx = kzn, whose solvable

cases are outlined in Section 15.2.2.

9. y′′′xxx = kyn(ax2 + bx+ c)−n−2.

This is a special case of equation 15.5.1.13 with f(w) = kwn.
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10. y′′′xxx = (ax+ b)n(cx+ d)−n−2m−4ym.

The transformation ξ =
ax+ b

cx+ d
, w =

y

(cx+ d)2
leads to a simpler equation: w′′′

ξξξ =

∆−3ξnwm, where ∆ = ad− bc (see Sections 15.2.2 and 15.2.3).

11. y′′′xxx = bx2n−1(x− a)−3y−n.

This is a special case of equation 15.5.1.11 with f(ξ) = bξ−n.

12. (y + ax2 + bx+ c)y′′′xxx = kxn.

The substitution w= y+ax2+bx+c leads to an equation of the form 15.4.1.2: ww′′′
xxx =

kxn.

◮ Equations of the form y′′′xxx = f(x, y, y′x).

13. y′′′xxx = ayny′x + bxm.

Integrating yields a second-order equation: y′′xx =
a

n+ 1
yn+1 +

b

m+ 1
xm+1 + C .

14. y′′′xxx = ax−n−2yny′x − ax−n−3yn+1.

This is a special case of equation 15.5.2.5 with f(ξ) = aξn.

15. y′′′xxx = ax−2n−4yny′x − 2ax−2n−5yn+1.

This is a special case of equation 15.5.2.8 with f(ξ) = aξn.

16. y′′′xxx = λy−3y′x + ay−5/2 + by−7/2.

The transformation x =

∫
[ϕ(τ)]−3/2 dτ , y = [ϕ(τ)]−1 leads to a constant coefficient

linear equation: ϕ′′′
τττ − λϕ′

τ + bϕ+ a = 0.

17. y′′′xxx = −x−2y′x + x−3y + ax1/2y−5/2.

This is a special case of equation 15.5.2.31 with f(ξ) = a.

18. y′′′xxx = −x−2y′x + x−3y + ax−3/4y−5/4.

This is a special case of equation 15.5.2.32 with f(ξ) = a.

19. y′′′xxx = ayny′x + bym(y′x)
3.

This is a special case of equation 15.5.2.3 with f(y) = ayn and g(y) = bym.

20. y′′′xxx = byn(y′x)
3 + a(y′x)

−5.

This is a special case of equation 15.5.2.4 with f(y) = byn.

21. y′′′xxx = (ay2 + by + c)
−

m+5
4 (y′x)

m.

This is a special case of equation 15.5.2.29 with f(ξ) = ξm.

22. y′′′xxx = −a3y + b(y′x + ay)n.

The substitution w= y′x+ay leads to a second-order autonomous equation: w′′
xx−aw′

x+
a2w = bwn.
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23. y′′′xxx = ax(xy′x − y)n.

This is a special case of equation 15.5.2.18 with f(ξ) = aξn.

24. y′′′xxx = ax−n−2(xy′x − y)n.

This is a special case of equation 15.5.2.23 with F (ξ) = aξn.

25. y′′′xxx = axn(xy′x − y)m.

The substitution w(x) = xy′x − y leads to a second-order generalized homogeneous equa-

tion: (w′
x/x)

′
x = axnwm.

26. y′′′xxx = axn(xy′x − y)m + bxk.

The substitution w(x) = xy′x− y leads to a second-order equation: (w′
x/x)

′
x = axnwm+

bxk.

27. y′′′xxx = axn−5y−n(xy′x − y)3.

This is a special case of equation 15.5.2.6 with f(ξ) = aξ−n.

28. y′′′xxx = ax−n−4(xy′x − 2y)n.

This is a special case of equation 15.5.2.24 with f(ξ) = aξn.

29. y′′′xxx = axn(xy′x − 2y)m + bxk.

The substitution w(x) = xy′x − 2y leads to a second-order equation: w′′
xx = axn+1wm +

bxk+1.

30. y′′′xxx = ax2n−7y−n(xy′x − 2y)3.

This is a special case of equation 15.5.2.9 with f(ξ) = aξ−n.

31. y′′′xxx = axnym(xy′x − 2y)l.

The transformation t = 1/x, z = y/x2 leads to an equation discussed in Section 15.2:

z′′′ttt = −a(−1)lt−n−2m−l−4zm(z′t)
l
.

◆ See also equations 15.3.1.2–15.3.1.30.

◮ Equations of the form f(x, y, y′x)y
′′′

xxx + g(x, y, y′x)y
′′

xx + h(x, y, y′x) = 0.

32. y′′′xxx + ayy′′xx − a(y′x)
2 = 0.

1◦. The substitution w(y)=(y′x)
2 leads to a second-order generalized homogeneous equa-

tion: ±√ww′′
yy + ayw′

y − 2aw = 0.

2◦. Particular solutions:
y = C1 exp(C2x)− a−1C2,

y = 6(ax+ C1)
−1.

33. y′′′xxx + ayy′′xx + by′′xx − a(y′x)
2 + cy′x = 0.

Particular solution: y = C1 exp(C2x)−
C2
2 + bC2 + c

aC2
.
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34. y′′′xxx + a2y
′′

xx + a1y
′

x + a0y = byy′′xx − b(y′x)
2 + k.

Particular solutions: y = Ceλx +
k

a0
, where C is an arbitrary constant and λ = λn are

roots of the cubic equation λ3 +
(
a2 −

bk

a0

)
λ2 + a1λ+ a0 = 0.

35. y′′′xxx =
ay′′

xx

by + c
+

d

(by + c)5/2
.

Autonomous first integral:

[
(by + c)y′′xx −

1

2
b(y′x)

2 − ay′x
]2
− 2bdy′x + 4ad

b
√
by + c

= C.

The equation in question is the only equation of the form y′′′xxx = f(y)y′′xx + g(y) that has

an autonomous first integral quadratic in the second derivative y′′xx.

36. y′′′xxx = axny′′xx + bxm(xy′x − y)k + cxs.

The substitution w(x)=xy′x−y leads to a second-order equation: (w′
x/x)

′
x=ax

n−1w′
x+

bxmwk + cxs.

37. y′′′xxx = ayy′xy
′′

xx − a(y′x)
3 + by′x.

1◦. Particular solution:

y = C1 exp(C3x) + C2 exp(−C3x),

where the constants C1, C2, and C2 are related by the constraint C2
3 −4aC1C2C

2
3 − b= 0.

2◦. Particular solution:

y = C1 cos(C3x) + C2 sin(C3x),

where the constants C1,C2, andC2 are related by the constraint C2
3−a(C2

1+C
2
2)C

2
3+b=0.

38. xy′′′xxx + 3y′′xx = axnyn.

The substitution w(x) = xy leads to the equation w′′′
xxx = awn, which is discussed in

Section 15.2.2.

39. xy′′′xxx − y′′xx − 2axyy′x + ay2 + b = 0.

Integrating yields a second-order equation: y′′xx = ay2 + Cx + b. The transformation

y = Ck3w, x = kz − b

C
, where k =

( 6

aC

)1/3
, leads to the first Painlevé transcendent:

w′′
zz = w2 + 6z (see Section 3.4.2).

40. xy′′′xxx + (a+ 2)y′′xx = b(xy′x + ay)n.

The substitution w = xy′x + ay leads to a second-order autonomous equation of the form

14.9.1.1: w′′
xx = bwn.

41. xy′′′xxx = − 3
2
y′′xx + ax−n−2y2n(2xy′x − y).

This is a special case of equation 15.5.3.37 with f(ξ) = aξ2n.
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42. xy′′′xxx = − 3
2
y′′xx + ax−n−3y2n(2xy′x − y)

3
.

This is a special case of equation 15.5.3.39 with f(ξ) = aξ2n.

43. xy′′′xxx + y′′xx = ax−n−3(xy′x − y)
n

.

This is a special case of equation 15.5.3.47 with f(ξ) = aξn.

44. xy′′′xxx + (1 − a)y′′xx = bx2a(xy′x − y)
n

.

This is a special case of equation 15.5.3.42 with f(ξ) = bξn.

45. x2y′′′xxx + 6xy′′xx + 6y′x = ax2nyn.

The substitution w(x) = x2y leads to the equation w′′′
xxx = awn, which is discussed in

Section 15.2.2.

46. yy′′′xxx + 1
2
y′xy

′′

xx = ax+ b.

The transformation x = x(t), y = (x′t)
2

leads to a fourth-order constant coefficient non-

homogeneous linear equation of the form 16.1.2.2: 2x′′′′tttt = ax+ b.

47. yy′′′xxx − 1
3
y′xy

′′

xx = ax+ b.

1◦. On integrating the equation, we obtain yy′′xx− 2
3 (y

′
x)

2 = 1
2ax

2 + bx+C. The substi-

tution y = w3 leads to a solvable equation of the form 14.8.1.5:

w′′
xx = 1

3

(
1
2 ax

2 + bx+ C
)
w−5.

2◦. Particular solution:

y = C1x
3 + C2x

2 + C3x+C4,

where the constants C1, C2, C3, and C4 are related by two constraints

4C1C3 − 4
3C

2
2 = a,

6C1C4 − 2
3C2C3 = b.

48. yy′′′xxx + 1
2
y′xy

′′

xx = Ax−5/3.

The transformation x= x(t), y= (x′t)
2 leads to an equation of the form 16.2.1.1: 2x′′′′tttt =

Ax−5/3.

49. yy′′′xxx = y′xy
′′

xx + ay′x.

Integrating yields a second-order constant coefficient linear equation: y′′xx = Cy − a.

Solutions:
y = C1 sinh(C3x) +C2 cosh(C3x) + aC−2

3 ,

y = C1 sin(C3x) + C2 cos(C3x)− aC−2
3 ,

y = − 1
2ax

2 + C1x+ C2.

50. yy′′′xxx − 2y′xy
′′

xx + 2axy′x − ay = 0.

Integrating yields a second-order equation: y′′xx = Cy2 + ax. The transformation

y =
1

Ck2
w, x = kz, where k =

( 6

aC

)1/5
,

leads to the first Painlevé transcendent: w′′
zz = w2 + 6z (see Section 3.4.2).

There is also the trivial solution y = 0.
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51. yy′′′xxx + 3y′xy
′′

xx + 4axyy′x + ay2 = 0.

Multiplying by y2, we arrive at an exact differential equation. Integrating it yields Yer-

makov’s equation 14.9.1.2: y′′xx + axy = Cy−3.

There is also the trivial solution y = 0.

52. yy′′′xxx + 1
2
y′xy

′′

xx = k
√
y y′′xx +my′x + a

√
y + bx+ c.

The transformation x = x(t), y = (x′t)
2

leads to a fourth-order constant coefficient non-

homogeneous linear equation:

2x′′′′tttt = ±2kx′′′ttt + 2mx′′tt ± ax′t + bx+ c.

Here, the plus sign corresponds to x′t > 0 and the minus sign to x′t < 0.

53. yy′′′xxx + 3y′xy
′′

xx + axnyy′x = bxm.

This is a special case of equation 15.5.3.10 with f(x) = axn and g(x) = bxm.

54. yy′′′xxx + 3y′xy
′′

xx + a[yy′′xx + (y′x)
2] = bxn.

This is a special case of equation 15.5.3.13 with f(x) = bxn.

55. yy′′′xxx − y′xy
′′

xx = a[yy′′xx − (y′x)
2] + bx+ c.

This is a special case of equation 15.5.3.16 with f(x) = a and g(x) = bx+ c. The substi-

tution w = yy′′xx − (y′x)
2 leads to a first-order linear equation: w′

x = aw + bx+ c.

56. yy′′′xxx + (3y′x + 2ay)y′′xx + 2a(y′x)
2 + a2yy′x = bxn.

This is a special case of equation 15.5.3.29 with f(x) = eax and g(x) = bxneax.

57. yy′′′xxx + (3y′x + axny)y′′xx + axn(y′x)
2 = 0.

This is a special case of equation 15.5.3.17 with f(x) = axn.

58. (y + a)y′′′xxx + by′xy
′′

xx + cyny′x = 0.

This is a special case of equation 15.5.3.21 with f(y) = cyn.

59. (y + ax)y′′′xxx − y′xy
′′

xx + bxy′′xx = 0.

A solution of this equation is any function that solves the first-order linear equation y′x =
C1y + (aC1 + b)x.

Particular solution: y = C2 exp(C1x)−
aC1 + b

C2
1

(C1x+ 1).

60. (y + ax)y′′′xxx = (y′x + a)y′′xx + bxy′x − by.

1◦. Integrating yields a second-order constant coefficient linear equation: y′′xx + Cy =
−(aC + b)x.

2◦. Solutions:

y = C1 sin(C3x) + C2 cos(C3x)− (a+ bC−2
3 )x if C = C2

3 > 0,

y = C1 sinh(C3x) + C2 cosh(C3x)− (a− bC−2
3 )x if C = −C2

3 < 0,

y = − 1
6 bx

3 + C1x+ C2 if C = 0.



“K16435’ — 2017/9/28 — 15:05 — #987

15.4. Nonlinear Equations with Arbitrary Parameters 961

61. (y + ax+ b)y′′′xxx − 1
3
y′xy

′′

xx + cy′′xx = kx+ s.

Particular solution:

y = C1x
3 + C2x

2 + C3x+C4,

where the constants C1, C2, C3, and C4 are related by two constraints

4C1C3 − 4
3C

2
2 + 6(a + c)C1 = k,

6C1C4 − 2
3C2C3 + 6bC1 + 2cC2 = s.

62. (y + ax+ b)y′′′xxx + 3(y′x + a)y′′xx = cxn.

This is a special case of equation 15.5.3.23 with f(x) = cxn.

63. xyy′′′xxx = xy′xy
′′

xx + ayy′′xx.

Integrating yields a second-order linear equation of the form 14.1.2.7: y′′xx = Cxay.

64. xyy′′′xxx = (ay + bxy′x)y
′′

xx.

Integrating yields the Emden–Fowler equation: y′′xx = Cxayb (see Section 15.3).

65. x(yy′′′xxx + 3y′xy
′′

xx) + a
[[
yy′′xx + (y′x)

2
]]
= bxn.

This is a special case of equation 15.5.3.25 with f(x) = bxn.

66. x2yy′′′xxx + x(3xy′x + 2ay)y′′xx + 2ax(y′x)
2 + a(a− 1)yy′x = bxn.

This is a special case of equation 15.5.3.29 with f(x) = xa and g(x) = bxn+a−2.

67. y2y′′′xxx − 3yy′xy
′′

xx + 2(y′x)
3 = axny3.

This is a special case of equation 15.5.3.26 with f(x) = axn.

68. y2y′′′xxx + 3myy′xy
′′

xx +m(m− 1)(y′x)
3 = axky2−m.

This is a special case of equation 15.5.3.27 with f(x) = axk and n = m+ 1.

69. y′xy
′′′

xxx − (y′′xx)
2 = ayy′′xx − a(y′x)

2 + b.

1◦. Particular solution:

y = C1 exp(C3x) + C2 exp(−C3x),

where the constants C1,C2, and C3 are related by the constraint 4C1C2(C
4
3+aC

2
3 )+b=0.

2◦. Particular solution:

y = C1 cos(C3x) + C2 sin(C3x),

where the constants C1, C2, and C3 are related by the constraint (C2
1 +C2

2 )(C
4
3 − aC2

3 ) +
b = 0.

3◦. Particular solutions: y = ±x
√
b/a+ C .
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◮ Other equations.

70. y′′′xxx = α
(
y′′xx

)2 − ay′′

xx

α(ay + b)
+

c

(ay + b)4
.

Autonomous first integral:
{[
α(ay + b)y′′xx + ay′x

]2
+

αc

(ay + b)2

}
e−2αy′x = C.

71. 2y′xy
′′′

xxx − (y′′xx)
2 = λ(y′x)

2 + ay2 + by + c.

Differentiating with respect to x and dividing by y′x, we arrive at a fourth-order constant

coefficient linear equation: 2y′′′′xxxx = 2λy′′xx + 2ay + b.

72. 2y′xy
′′′

xxx − 3(y′′xx)
2 = ay4−2n(y′x)

n.

This is a special case of equation 15.5.4.14 with f(ξ) = aξn.

73. 2y′xy
′′′

xxx − 3(y′′xx)
2 = ax2n−8y4−2n(y′x)

n.

This is a special case of equation 15.5.4.16 with f(ξ) = aξn.

74. 2y′xy
′′′

xxx − 3(y′′xx)
2 = axn−4y4−2n(y′x)

n.

This is a special case of equation 15.5.4.15 with f(ξ) = aξn.

75. 2y′xy
′′′

xxx − 3(y′′xx)
2 = axn(y′x)

2 + bym(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x) = axn and g(y) = bym.

76. 2y′xy
′′′

xxx − 3(y′′xx)
2 = ayn(y′x)

4 + bx−1ym(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = ayn and g(y) = bym.

77. 2y′xy
′′′

xxx − 3(y′′xx)
2 = axn(y′x)

2 + bxmy−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = axn and g(x) = bxm.

78. 2y′xy
′′′

xxx − (y′′xx)
2 = λxn(y′x)

2 + ay2 + 2by + c.

This is a special case of equation 15.5.4.5 with f(x) = −λxn.

79. xy′xy
′′′

xxx − 3x(y′′xx)
2 + 3y′xy

′′

xx = axyn(y′x)
4 + bym(y′x)

5.

This is a special case of equation 15.5.4.11 with f(y) = ayn and g(y) = bym.

80. y′′′xxx = ax−2n−5(xy′x − y)n(y′′xx)
3.

This is a special case of equation 15.5.4.18 with f(ξ) = aξn.

81. y′′′xxx = ax−4n−5(xy′x − y)n(y′′xx)
3.

This is a special case of equation 15.5.4.19 with f(ξ) = aξn.

82. y′′′xxx =
[[
ax−5 + bx3(xy′x − y)n

]]
(y′′xx)

3.

This is a special case of equation 15.5.4.17 with f(ξ) = bξn.

83. y′′′xxx =
[[
ax(y′x)

n + by(y′x)
m + c(y′x)

k
]]
(y′′xx)

3 + s(y′x)
l(y′′xx)

2.

This is a special case of equation 15.5.4.20 with f(ξ) = aξn, g(ξ) = bξm, h(ξ) = cξk, and

ϕ(ξ) = sξl.
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84. y′′′xxx = axn(y′′xx)
m + bxk(xy′x − y)l + cxs.

The substitution w(x) = xy′x − y leads to a second-order equation.

85. xy′′′xxx + y′′xx = axn(xy′x − y)m(y′′xx)
n.

This is a special case of equation 15.5.5.5 with f(z) = azm and g(ξ) = ξn.

86. y′′′xxx = Axn(y′x)
m(xy′x − y)

l
(y′′xx)

k.

The Legendre transformation x = w′
t, y = tw′

t − w (y′x = t) leads to the equation w′′′
ttt =

−Atmwl(w′
t)
n(w′′

tt)
3−k, which is discussed in Section 15.2.

87. y′′′xxx = ax(xy′x − y)n(y′′xx)
2 + bx(xy′x − y)m(y′′xx)

k.

This is a special case of equation 15.5.4.21 with f(ξ) = aξn and g(ξ) = bξm.

88. yy′′′xxx = y′xy
′′

xx + ay−n−m(y′x)
n(y′′xx)

m
[[
yy′′xx − (y′x)

2
]]
.

This is a special case of equation 15.5.5.7 with f(ξ) = aξn and g(ξ) = ξm.

89. (y′′′xxx)
2 = a(x2y′′xx − 2xy′x + 2y) + by′′xx + c.

Differentiating with respect to x, we obtain y′′′xxx(2y
′′′′
xxxx − ax2 − b) = 0. Equating the

second factor to zero and integrating, we find the solution:

y = 1
720 ax

6 + 1
48 bx

4 + C3x
3 + C2x

2 + C1x+C0.

The integration constants Ci and the parameters a, b, and c are related by:

36C2
3 = 2aC0 + 2bC2 + c.

This constraint is obtained by substituting the above solution into the original equation. In

addition, to the first factor there corresponds the solution y = C̃2x
2 + C̃1x + C̃0, where

the constants C̃i are related by the constraint 2aC̃0 + 2bC̃2 + c = 0.

15.4.2 Equations Containing Exponential Functions

◮ Equations of the form y′′′xxx = f(x, y, y′x).

1. y′′′xxx = aeλy .

Autonomous equation. This is a special case of equation 15.5.1.1 with f(y) = aeλy. The

substitution u(y) = (y′x)
2 leads to a second-order equation: u′′yy = ±2aeλyu−1/2. The

transformation z = eλyu−3/2, w = u′y/u leads to a first-order equation: z
(
λ− 3

2w
)
w′
z =

±2az − w2.

2. y′′′xxx = aeλy+βx.

The substitution w = y + (β/λ)x leads to an autonomous equation of the form 15.4.2.1:

w′′′
xxx = aeλw.

3. y′′′xxx = aeλxyn.

The transformation z = eλxyn−1, w = y′x/y leads to a second-order equation.
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4. y′′′xxx = axneλy .

The transformation z = xn+3eλy , w = xy′x leads to a second-order equation.

5. y′′′xxx = a(y + bex + c)n − bex.

The substitution w = y+ bex+ c leads to the equation w′′′
xxx = awn, whose solvable cases

are outlined in Section 15.2.2.

6. y′′′xxx = aeλyy′x.

Solution: C3 ± x =

∫ (
C2y +C1 + 2aλ−2eλy

)−1/2
dy.

7. y′′′xxx = aeλyy′x + beµx.

This is a special case of equation 15.5.2.2 with f(y) = aeλy and g(x) = beµx. Integrating

yields a second-order equation: y′′xx =
a

λ
eλy +

b

µ
eµx + C .

8. y′′′xxx = aeλyy′x + beµy(y′x)
3.

This is a special case of equation 15.5.2.3 with f(y) = aeλy and g(y) = beµy .

9. y′′′xxx = aeλyy′x + byn(y′x)
3.

This is a special case of equation 15.5.2.3 with f(y) = aeλy and g(y) = byn.

10. y′′′xxx = ayny′x + beλy(y′x)
3.

This is a special case of equation 15.5.2.3 with f(y) = ayn and g(y) = beλy .

11. y′′′xxx = beλy(y′x)
3 + a(y′x)

−5.

This is a special case of equation 15.5.2.4 with f(y) = beλy .

12. y′′′xxx = 2λ2(y′x)
3 + aeλmy(y′x)

m−5.

This is a special case of equation 15.5.2.34 with f(ξ) = aξm−6.

13. y′′′xxx = a3y + beλx(y′x − ay)n.

The substitution w=y′x−ay leads to a second-order equation: w′′
xx+aw

′
x+a

2w=beλxwn.

14. y′′′xxx = aeλx(xy′x − y)n.

The substitution w = xy′x − y leads to a second-order equation: (w′
x/x)

′
x = aeλxwn.

15. y′′′xxx = aeλx(xy′x − 2y)n.

The substitution w = xy′x − 2y leads to a second-order equation: w′′
xx = axeλxwn.

◮ Other equations.

16. y′′′xxx = −3y′′xx + aemxymy′x + aemxym+1 + 2y.

This is a special case of equation 15.5.3.33 with f(ξ) = aξm.

17. y′′′xxx + 3λy′xy
′′

xx + λ2(y′x)
3 = aeβx−λy .

This is a special case of equation 15.5.3.1 with f(x) = aeβx.
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18. y′′′xxx + 3λy′xy
′′

xx + λ2(y′x)
3 = axne−λy .

This is a special case of equation 15.5.3.1 with f(x) = axn.

19. xy′′′xxx + (1 − ax)y′′xx = be2ax(xy′x − y)
n

.

This is a special case of equation 15.5.3.44 with f(ξ) = bξn.

20. yy′′′xxx + 3y′xy
′′

xx = aeλx.

Solution: y2 = C2x
2 + C1x+ C0 + 2aλ−3eλx.

21. yy′′′xxx + 3y′xy
′′

xx = aeλy + b.

This is a special case of equation 15.5.3.8 with f(y) = aeλy + b.

22. yy′′′xxx + 3y′xy
′′

xx + aeλxyy′x = beµx.

This is a special case of equation 15.5.3.10 with f(x) = aeλx and g(x) = beµx.

23. yy′′′xxx + 3y′xy
′′

xx + aeλxyy′x = bxn.

This is a special case of equation 15.5.3.10 with f(x) = aeλx and g(x) = bxn.

24. yy′′′xxx + 3y′xy
′′

xx + axnyy′x = beλx.

This is a special case of equation 15.5.3.10 with f(x) = axn and g(x) = beλx.

25. yy′′′xxx + 3y′xy
′′

xx + a
[[
yy′′xx + (y′x)

2
]]
= beλx.

This is a special case of equation 15.5.3.13 with f(x) = beλx.

26. yy′′′xxx − y′xy
′′

xx = a
[[
yy′′xx − (y′x)

2
]]
+ beλx + c.

This is a special case of equation 15.4.3.16 with f(x) = a and g(x) = beλx + c. The

substitution w = yy′′xx− (y′x)
2 leads to a first-order linear equation: w′

x = aw+ beλx + c.

27. yy′′′xxx + (3y′x + 2ay)y′′xx + 2a(y′x)
2 + a2yy′x = beλx.

This is a special case of equation 15.5.3.29 with f(x) = eax and g(x) = be(λ+a)x.

28. yy′′′xxx + (3y′x + aeλxy)y′′xx + aeλx(y′x)
2 = 0.

This is a special case of equation 15.5.3.17 with f(x) = aeλx.

29. (y + a)y′′′xxx + by′xy
′′

xx + ceλyy′x = 0.

This is a special case of equation 15.5.3.21 with f(y) = ceλy .

30. (y + ax+ b)y′′′xxx + 3(y′x + a)y′′xx = keλx.

Solution: (y + ax+ b)2 = C2x
2 + C1x+ C0 + 2kλ−3eλx.

31. y2y′′′xxx − (y′x)
3 + ay2y′x = beλx.

Integrating yields a second-order equation: y2y′′xx − y(y′x)2 + 1
3ay

3 = bλ−1eλx + C. For

C = 0, we have an equation of the form 14.8.3.57 with k = −1: yy′′xx − (y′x)
2 + 1

3ay
2 =

bλ−1eλxy−1.
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32. y2y′′′xxx − (y′x)
3 + ay2y′x = bx exp(λx2).

Integrating yields a second-order equation: y2y′′xx−y(y′x)2+ 1
3ay

3= 1
2 bλ

−1 exp(λx2)+C.
For C=0, we have an equation of the form 14.8.3.5.7 with k=−1: yy′′xx−(y′x)2+ 1

3ay
2=

1
2 bλ

−1 exp(λx2)y−1.

33. y2y′′′xxx − 3yy′xy
′′

xx + 2(y′x)
3 = aeλxy3.

Solution: ln |y| = C2x
2 + C1x+ C0 + aλ−3eλx.

34. y2y′′′xxx + 3myy′xy
′′

xx +m(m− 1)(y′x)
3 = aeλxy2−m.

This is a special case of equation 15.5.3.27 with f(x) = aeλx and n = m+ 1.

35. x2yy′′′xxx + x(3xy′x + 2ay)y′′xx + 2ax(y′x)
2 + a(a− 1)yy′x = beλx.

This is a special case of equation 15.5.3.29 with f(x) = xa and g(x) = bxa−2eλx.

36. 2y′xy
′′′

xxx − (y′′xx)
2 = keλx(y′x)

2 + ay2 + 2by + c.

This is a special case of equation 15.5.4.5 with f(x) = −keλx.

37. 2y′xy
′′′

xxx − 3(y′′xx)
2 = aeλx(y′x)

2 + beµy(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x) = aeλx and g(y) = beµy .

38. 2y′xy
′′′

xxx − 3(y′′xx)
2 = aeλx(y′x)

2 + bym(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x) = aeλx and g(y) = bym.

39. 2y′xy
′′′

xxx − 3(y′′xx)
2 = axn(y′x)

2 + beµy(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x) = axn and g(y) = beµy .

40. 2y′xy
′′′

xxx − 3(y′′xx)
2 = aeλx(y′x)

2 + beµxy−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = aeλx and g(x) = beµx.

41. 2y′xy
′′′

xxx − 3(y′′xx)
2 = aeλx(y′x)

2 + bxny−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = aeλx and g(x) = bxn.

42. 2y′xy
′′′

xxx − 3(y′′xx)
2 = axn(y′x)

2 + beλxy−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = axn and g(x) = beλx.

43. 2y′xy
′′′

xxx − 3(y′′xx)
2 = aeλy(y′x)

4 + bx−1eµy(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = aeλy and g(y) = beµy .

44. 2y′xy
′′′

xxx − 3(y′′xx)
2 = aeλy(y′x)

4 + bx−1yn(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = aeλy and g(y) = byn.

45. 2y′xy
′′′

xxx − 3(y′′xx)
2 = ayn(y′x)

4 + bx−1eλy(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = ayn and g(y) = beλy .
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15.4.3 Equations Containing Hyperbolic Functions

◮ Equations with hyperbolic sine.

1. y′′′xxx = a sinh(λy)y′x.

Solution: C3 ± x =

∫ [
C2y + C1 + 2aλ−2 sinh(λy)

]−1/2
dy.

2. y′′′xxx = a sinh(λy)y′x + b sinh(µx).

This is a special case of equation 15.5.2.2 with f(y) = a sinh(λy) and g(x) = b sinh(µx).

Integrating yields a second-order equation: y′′xx =
a

λ
cosh(λy) +

b

µ
cosh(µx) + C .

3. y′′′xxx = a sinhn(λy)y′x + b sinh(µy)(y′x)
3.

This is a special case of equation 15.5.2.3 with f(y) = a sinhn(λy) and g(y) = b sinh(µy).

4. y′′′xxx = 1
2
λ2(y′x)

3 + a(sinhλy)−m−3(y′x)
2m+1.

This is a special case of equation 15.5.2.36 with f(ξ) = aξ2m.

5. yy′′′xxx + 3y′xy
′′

xx = a sinh(λx).

Solution: y2 = C2x
2 + C1x+ C0 + 2aλ−3 cosh(λx).

6. yy′′′xxx + 3y′xy
′′

xx = a sinhn(λx) + b.

This is a special case of equation 15.5.3.6 with f(x) = a sinhn(λx) + b.

7. yy′′′xxx + 3y′xy
′′

xx = a sinhn(λy) + b.

This is a special case of equation 15.5.3.8 with f(y) = a sinhn(λy) + b.

8. yy′′′xxx + 3y′xy
′′

xx + axnyy′x = b sinhm(λx).

This is a special case of equation 15.5.3.10 with f(x) = axn and g(x) = b sinhm(λx).

9. yy′′′xxx + 3y′xy
′′

xx + a
[[
yy′′xx + (y′x)

2
]]
= b sinhn(λx).

This is a special case of equation 15.5.3.13 with f(x) = b sinhn(λx).

10. yy′′′xxx + (3y′x + ay sinhn x)y′′xx + a sinhn x (y′x)
2 = 0.

This is a special case of equation 15.5.3.17 with f(x) = a sinhn x.

11. (y + a)y′′′xxx + by′xy
′′

xx + c sinhn(λy)y′x = 0.

This is a special case of equation 15.5.3.21 with f(y) = c sinhn(λy).

12. y2y′′′xxx + 3myy′xy
′′

xx +m(m− 1)(y′x)
3 = a sinhk(λx)y2−m.

This is a special case of equation 15.5.3.27 with f(x) = a sinhk(λx) and n = m+ 1.

◮ Equations with hyperbolic cosine.

13. y′′′xxx = a cosh(λy)y′x.

Solution: C3 ± x =

∫ [
C2y + C1 + 2aλ−2 cosh(λy)

]−1/2
dy.



“K16435’ — 2017/9/28 — 15:05 — #994

968 THIRD-ORDER ORDINARY DIFFERENTIAL EQUATIONS

14. y′′′xxx = a cosh(λy)y′x + b cosh(µx).

This is a special case of equation 15.5.2.2 with f(y) = a cosh(λy) and g(x) = b cosh(µx).

Integrating yields a second-order equation: y′′xx =
a

λ
sinh(λy) +

b

µ
sinh(µx) + C .

15. y′′′xxx = a coshn(λy)y′x + b cosh(µy)(y′x)
3.

This is a special case of equation 15.5.2.3 with f(y) = a coshn(λy) and g(y) = b cosh(µy).

16. y′′′xxx = ayny′x + b cosh(µy)(y′x)
3.

This is a special case of equation 15.5.2.3 with f(y) = ayn and g(y) = b cosh(µy).

17. y′′′xxx = b cosh(λy)(y′x)
3 + a(y′x)

−5.

This is a special case of equation 15.5.2.4 with f(y) = b cosh(λy).

18. y′′′xxx = 1
2
λ2(y′x)

3 + a(coshλy)−m−3(y′x)
2m+1.

This is a special case of equation 15.5.2.35 with f(ξ) = aξ2m.

19. yy′′′xxx + 3y′xy
′′

xx = a cosh(λx).

Solution: y2 = C2x
2 + C1x+ C0 + 2aλ−3 sinh(λx).

20. yy′′′xxx + 3y′xy
′′

xx = a coshn(λx).

This is a special case of equation 15.5.3.6 with f(x) = a coshn(λx).

21. yy′′′xxx + 3y′xy
′′

xx = a coshn(λy) + b.

This is a special case of equation 15.5.3.8 with f(y) = a coshn(λy) + b.

22. yy′′′xxx + 3y′xy
′′

xx + axnyy′x = b coshm(λx).

This is a special case of equation 15.5.3.10 with f(x) = axn and g(x) = b coshm(λx).

23. yy′′′xxx + 3y′xy
′′

xx + a
[[
yy′′xx + (y′x)

2
]]
= b coshn(λx).

This is a special case of equation 15.5.3.13 with f(x) = b coshn(λx).

24. yy′′′xxx + (3y′x + ay coshn x)y′′xx + a coshn x (y′x)
2 = 0.

This is a special case of equation 15.5.3.17 with f(x) = a coshn x.

25. (y + a)y′′′xxx + by′xy
′′

xx + c coshn(λy)y′x = 0.

This is a special case of equation 15.5.3.21 with f(y) = c coshn(λy).

26. y2y′′′xxx + 3myy′xy
′′

xx +m(m− 1)(y′x)
3 = a coshk(λx)y2−m.

This is a special case of equation 15.5.3.27 with f(x) = a coshk(λx) and n = m+ 1.

27. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a coshn(λx)(y′x)

2 + bym(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x) = a coshn(λx) and g(y) = bym.

28. 2y′xy
′′′

xxx − 3(y′′xx)
2 = axn(y′x)

2 + b coshm(λy)(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x) = axn and g(y) = b coshm(λy).
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29. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a coshn(λx)(y′x)

2 + b coshm(µx)y−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x)=a coshn(λx) and g(x)= b coshm(µx).

30. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a coshn(λx)(y′x)

2 + bxmy−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = a coshn(λx) and g(x) = bxm.

31. 2y′xy
′′′

xxx − 3(y′′xx)
2 = axn(y′x)

2 + b coshm(λx)y−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = axn and g(x) = b coshm(λx).

32. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a coshn(λy)(y′x)

4 + bx−1 coshm(µy)(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y)=a coshn(λy) and g(y)=b coshm(µy).

33. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a coshn(λy)(y′x)

4 + bx−1ym(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = a coshn(λy) and g(y) = bym.

34. 2y′xy
′′′

xxx − 3(y′′xx)
2 = ayn(y′x)

4 + bx−1 coshm(λy)(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = ayn and g(y) = b coshm(λy).

◮ Equations with hyperbolic tangent.

35. y′′′xxx = a tanh(λy)y′x.

This is a special case of equation 15.5.2.1 with f(y) = a tanh(λy).

36. y′′′xxx = a tanh(λy)y′x + b tanh(µx).

This is a special case of equation 15.5.2.2 with f(y) = a tanh(λy) and g(x) = b tanh(µx).

37. yy′′′xxx + 3y′xy
′′

xx = a tanhn(λx) + b.

This is a special case of equation 15.5.3.6 with f(x) = a tanhn(λx) + b.

38. yy′′′xxx + 3y′xy
′′

xx = a tanhn(λy) + b.

This is a special case of equation 15.5.3.8 with f(y) = a tanhn(λy) + b.

39. yy′′′xxx + 3y′xy
′′

xx + axnyy′x = b tanhm(λx).

This is a special case of equation 15.5.3.10 with f(x) = axn and g(x) = b tanhm(λx).

40. yy′′′xxx + 3y′xy
′′

xx + a
[[
yy′′xx + (y′x)

2
]]
= b tanhn(λx).

This is a special case of equation 15.5.3.13 with f(x) = b tanhn(λx).

41. yy′′′xxx + (3y′x + ay tanhn x)y′′xx + a tanhn x (y′x)
2 = 0.

This is a special case of equation 15.5.3.17 with f(x) = a tanhn x.

42. (y + a)y′′′xxx + by′xy
′′

xx + c tanhn(λy)y′x = 0.

This is a special case of equation 15.5.3.21 with f(y) = c tanhn(λy).

43. y2y′′′xxx + 3myy′xy
′′

xx +m(m− 1)(y′x)
3 = a tanhk(λx)y2−m.

This is a special case of equation 15.5.3.27 with f(x) = a tanhk(λx) and n = m+ 1.
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44. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a tanhn(λx)(y′x)

2 + b tanhm(µy)(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x)=a tanhn(λx) and g(y)=b tanhm(µy).

45. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a tanhn(λx)(y′x)

2 + bym(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x) = a tanhn(λx) and g(y) = bym.

46. 2y′xy
′′′

xxx − 3(y′′xx)
2 = axn(y′x)

2 + b tanhm(λy)(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x) = axn and g(y) = b tanhm(λy).

47. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a tanhn(λx)(y′x)

2 + b tanhm(µx)y−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x)=a tanhn(λx) and g(x)=b tanhm(µx).

48. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a tanhn(λx)(y′x)

2 + bxmy−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = a tanhn(λx) and g(x) = bxm.

49. 2y′xy
′′′

xxx − 3(y′′xx)
2 = axn(y′x)

2 + b tanhm(λx)y−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = axn and g(x) = b tanhm(λx).

50. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a tanhn(λy)(y′x)

4 + bx−1 tanhm(µy)(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y)=a tanhn(λy) and g(y)= b tanhm(µy).

51. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a tanhn(λy)(y′x)

4 + bx−1ym(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = a tanhn(λy) and g(y) = bym.

52. 2y′xy
′′′

xxx − 3(y′′xx)
2 = ayn(y′x)

4 + bx−1 tanhm(λy)(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = ayn and g(y) = b tanhm(λy).

◮ Equations with hyperbolic cotangent.

53. y′′′xxx = a coth(λy)y′x.

This is a special case of equation 15.5.2.1 with f(y) = a coth(λy).

54. y′′′xxx = a coth(λy)y′x + b coth(µx).

This is a special case of equation 15.5.2.2 with f(y) = a coth(λy) and g(x) = b coth(µx).

55. yy′′′xxx + 3y′xy
′′

xx = a cothn(λx) + b.

This is a special case of equation 15.5.3.6 with f(x) = a cothn(λx) + b.

56. yy′′′xxx + 3y′xy
′′

xx = a cothn(λy) + b.

This is a special case of equation 15.5.3.8 with f(y) = a cothn(λy) + b.

57. yy′′′xxx + 3y′xy
′′

xx + axnyy′x = b cothm(λx).

This is a special case of equation 15.5.3.10 with f(x) = axn and g(x) = b cothm(λx).

58. yy′′′xxx + 3y′xy
′′

xx + a
[[
yy′′xx + (y′x)

2
]]
= b cothn(λx).

This is a special case of equation 15.5.3.13 with f(x) = b cothn(λx).
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59. yy′′′xxx + (3y′x + ay cothn x)y′′xx + a cothn x (y′x)
2 = 0.

This is a special case of equation 15.5.3.17 with f(x) = a cothn x.

60. (y + a)y′′′xxx + by′xy
′′

xx + c cothn(λy)y′x = 0.

This is a special case of equation 15.5.3.21 with f(y) = c cothn(λy).

61. y2y′′′xxx + 3myy′xy
′′

xx +m(m− 1)(y′x)
3 = a cothk(λx)y2−m.

This is a special case of equation 15.5.3.27 with f(x) = a cothk(λx) and n = m+ 1.

62. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a cothn(λx)(y′x)

2 + b cothm(µy)(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x)=a cothn(λx) and g(y)=b cothm(µy).

63. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a cothn(λx)(y′x)

2 + bym(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x) = a cothn(λx) and g(y) = bym.

64. 2y′xy
′′′

xxx − 3(y′′xx)
2 = axn(y′x)

2 + b cothm(λy)(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x) = axn and g(y) = b cothm(λy).

65. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a cothn(λx)(y′x)

2 + b cothm(µx)y−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x)=a cothn(λx) and g(x)=b cothm(µx).

66. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a cothn(λx)(y′x)

2 + bxmy−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = a cothn(λx) and g(x) = bxm.

67. 2y′xy
′′′

xxx − 3(y′′xx)
2 = axn(y′x)

2 + b cothm(λx)y−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = axn and g(x) = b cothm(λx).

68. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a cothn(λy)(y′x)

4 + bx−1 cothm(µy)(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y)=a cothn(λy) and g(y)= b cothm(µy).

69. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a cothn(λy)(y′x)

4 + bx−1ym(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = a cothn(λy) and g(y) = bym.

70. 2y′xy
′′′

xxx − 3(y′′xx)
2 = ayn(y′x)

4 + bx−1 cothm(λy)(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = ayn and g(y) = b cothm(λy).

15.4.4 Equations Containing Logarithmic Functions

◮ Equations of the form y′′′xxx = f(x, y, y′x).

1. y′′′xxx = ay(λx+m ln y).

This is a special case of equation 15.5.1.16 with f(z) = a ln z.

2. y′′′xxx = ax−3(λy +m ln x).

This is a special case of equation 15.5.1.17 with f(z) = a ln z.

3. y′′′xxx = ax−4(ln y − 2 ln x).

This is a special case of equation 15.5.1.7 with f(z) = a ln z.
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4. y′′′xxx = a ln(λy)y′x.

This is a special case of equation 15.5.2.1 with f(y) = a ln(λy).

5. y′′′xxx = a ln(λy)y′x + b ln(µx).

This is a special case of equation 15.5.2.2 with f(y) = a ln(λy) and g(x) = b ln(µx).

6. y′′′xxx = a lnn(λy)y′x + b lnm(µy)(y′x)
3.

This is a special case of equation 15.5.2.3 with f(y) = a lnn(λy) and g(y) = b lnm(µy).

7. y′′′xxx = a lnn(λy)y′x + bym(y′x)
3.

This is a special case of equation 15.5.2.3 with f(y) = a lnn(λy) and g(y) = bym.

8. y′′′xxx = ayny′x + b lnm(λy)(y′x)
3.

This is a special case of equation 15.5.2.3 with f(y) = ayn and g(y) = b lnm(λy).

9. y′′′xxx = ax−3(ln y − ln x)(xy′x − y).

This is a special case of equation 15.5.2.5 with f(ξ) = a ln ξ.

10. y′′′xxx = ax−5(ln y − 2 lnx)(xy′x − 2y).

This is a special case of equation 15.5.2.8 with f(ξ) = a ln ξ.

11. y′′′xxx = ay−5/2(2 ln y′x − ln y).

This is a special case of equation 15.5.2.27 with f(ξ) = 2a ln ξ.

12. y′′′xxx = ay−5/4(4 ln y′x − ln y).

This is a special case of equation 15.5.2.28 with f(ξ) = 4a ln ξ.

13. y′′′xxx = a3y + b ln x (y′x − ay)n.

This is a special case of equation 15.5.2.16 with f(x,w) = bwn lnx.

14. y′′′xxx = a ln x (xy′x − y)n.

This is a special case of equation 15.5.2.20 with f(x,w) = awn lnx.

15. y′′′xxx = a ln x (xy′x − 2y)n.

This is a special case of equation 15.5.2.21 with f(x,w) = awn lnx.

◮ Other equations.

16. y′′′xxx = −3y′′xx + a(x+ ln y)n(y′x + y) + 2y.

This is a special case of equation 15.5.3.33 with f(ξ) = a lnn ξ.

17. xy′′′xxx = b(xy′x − y + a lnx)y′′xx.

This is a special case of equation 15.5.3.45 with f(ξ) = bξ.

18. yy′′′xxx + 3y′xy
′′

xx = a lnn(bx).

This is a special case of equation 15.5.3.6 with f(x) = a lnn(bx).
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19. yy′′′xxx + 3y′xy
′′

xx = a lnn(by).

This is a special case of equation 15.5.3.8 with f(y) = a lnn(by).

20. yy′′′xxx + 3y′xy
′′

xx + axnyy′x = b lnm(λx).

This is a special case of equation 15.5.3.10 with f(x) = axn and g(x) = b lnm(λx).

21. yy′′′xxx + 3y′xy
′′

xx + a
[[
yy′′xx + (y′x)

2
]]
= b lnn(λx).

This is a special case of equation 15.5.3.13 with f(x) = b lnn(λx).

22. (y + a)y′′′xxx + by′xy
′′

xx + c lnn(λy)y′x = 0.

This is a special case of equation 15.5.3.21 with f(y) = c lnn(λy).

23. y2y′′′xxx + 3myy′xy
′′

xx +m(m− 1)(y′x)
3 = a lnk(bx)y2−m.

This is a special case of equation 15.5.3.27 with f(x) = a lnk(bx) and n = m+ 1.

24. 2y′xy
′′′

xxx − 3(y′′xx)
2 = ay4(ln y′x − 2 ln y).

This is a special case of equation 15.5.4.14 with f(ξ) = a ln ξ.

25. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a lnn(λx)(y′x)

2 + b lnm(µy)(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x) = a lnn(λx) and g(y) = b lnm(µy).

26. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a lnn(λx)(y′x)

2 + bym(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x) = a lnn(λx) and g(y) = bym.

27. 2y′xy
′′′

xxx − 3(y′′xx)
2 = axn(y′x)

2 + b lnm(λy)(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x) = axn and g(y) = b lnm(λy).

28. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a lnn(λx)(y′x)

2 + b lnm(µx)y−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = a lnn(λx) and g(x) = b lnm(µx).

29. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a lnn x (y′x)

2 + bxmy−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = a lnn x and g(x) = bxm.

30. 2y′xy
′′′

xxx − 3(y′′xx)
2 = axn(y′x)

2 + b lnm(λx)y−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = axn and g(x) = b lnm(λx).

31. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a lnn(λy)(y′x)

4 + bx−1 lnm(µy)(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = a lnn(λy) and g(y) = b lnm(µy).

32. 2y′xy
′′′

xxx − 3(y′′xx)
2 = ayn(y′x)

4 + bx−1 lnm(λy)(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = ayn and g(y) = b lnm(λy).

33. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a lnn(λy)(y′x)

4 + bx−1ym(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = a lnn(λy) and g(y) = bym.

34. yy′′′xxx ln y − y′xy
′′

xx ln y′′xx + ay′xy
′′

xx = 0.

Integrating yields a second-order autonomous equation of the form 14.9.1.1: y′′xx = eayC .
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15.4.5 Equations Containing Trigonometric Functions

◮ Equations with sine.

1. y′′′xxx = a sin(λy)y′x.

Solution: C3 ± x =

∫ [
C2y + C1 − 2aλ−2 sin(λy)

]−1/2
dy.

2. y′′′xxx = a sin(λy)y′x + b sin(µx).

This is a special case of equation 15.5.2.2 with f(y) = a sin(λy) and g(x) = b sin(µx).

Integrating yields a second-order equation: y′′xx = − a
λ
cos(λy)− b

µ
cos(µx) + C .

3. y′′′xxx = a sinn(λy)y′x + b sin(µy)(y′x)
3.

This is a special case of equation 15.5.2.3 with f(y) = a sinn(λy) and g(y) = b sin(µy).

4. y′′′xxx = 1
2
λ2(y′x)

3 + a(sinλy)−m−3(y′x)
2m+1.

This is a special case of equation 15.5.2.36 with f(ξ) = aξ2m.

5. yy′′′xxx + 3y′xy
′′

xx = a sin(λx).

Solution: y2 = C2x
2 + C1x+ C0 + 2aλ−3 cos(λx).

6. yy′′′xxx + 3y′xy
′′

xx = a sinn(λx) + b.

This is a special case of equation 15.5.3.6 with f(x) = a sinn(λx) + b.

7. yy′′′xxx + 3y′xy
′′

xx = a sinn(λy) + b.

This is a special case of equation 15.5.3.8 with f(y) = a sinn(λy) + b.

8. yy′′′xxx + 3y′xy
′′

xx + axnyy′x = b sinm(λx).

This is a special case of equation 15.5.3.10 with f(x) = axn and g(x) = b sinm(λx).

9. yy′′′xxx + 3y′xy
′′

xx + a
[[
yy′′xx + (y′x)

2
]]
= b sinn(λx).

This is a special case of equation 15.5.3.13 with f(x) = b sinn(λx).

10. yy′′′xxx + (3y′x + ay sinn x)y′′xx + a sinn x (y′x)
2 = 0.

This is a special case of equation 15.5.3.17 with f(x) = a sinn x.

11. (y + a)y′′′xxx + by′xy
′′

xx + c sinn(λy)y′x = 0.

This is a special case of equation 15.5.3.21 with f(y) = c sinn(λy).

12. y2y′′′xxx + 3myy′xy
′′

xx +m(m− 1)(y′x)
3 = a sink(λx)y2−m.

This is a special case of equation 15.5.3.27 with f(x) = a sink(λx) and n = m+ 1.

◮ Equations with cosine.

13. y′′′xxx = a cos(λy)y′x.

Solution: C3 ± x =

∫ [
C2y + C1 − 2aλ−2 cos(λy)

]−1/2
dy.
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14. y′′′xxx = a cos(λy)y′x + b cos(µx).

This is a special case of equation 15.5.2.2 with f(y) = a cos(λy) and g(x) = b cos(µx).

Integrating, we obtain a second-order equation: y′′xx =
a

λ
sin(λy) +

b

µ
sin(µx) + C .

15. y′′′xxx = a cosn(λy)y′x + b cos(µy)(y′x)
3.

This is a special case of equation 15.5.2.3 with f(y) = a cosn(λy) and g(y) = b cos(µy).

16. y′′′xxx = ayny′x + b cos(µy)(y′x)
3.

This is a special case of equation 15.5.2.3 with f(y) = ayn and g(y) = b cos(µy).

17. y′′′xxx = b cos(λy)(y′x)
3 + a(y′x)

−5.

This is a special case of equation 15.5.2.4 with f(y) = b cos(λy).

18. y′′′xxx = 1
2
λ2(y′x)

3 + a(cosλy)−m−3(y′x)
2m+1.

This is a special case of equation 15.5.2.35 with f(ξ) = aξ2m.

19. yy′′′xxx + 3y′xy
′′

xx = a cos(λx).

Solution: y2 = C2x
2 + C1x+ C0 − 2aλ−3 sin(λx).

20. yy′′′xxx + 3y′xy
′′

xx = a cosn(λx).

This is a special case of equation 15.5.3.6 with f(x) = a cosn(λx).

21. yy′′′xxx + 3y′xy
′′

xx = a cosn(λy) + b.

This is a special case of equation 15.5.3.8 with f(y) = a cosn(λy) + b.

22. yy′′′xxx + 3y′xy
′′

xx + axnyy′x = b cosm(λx).

This is a special case of equation 15.5.3.10 with f(x) = axn and g(x) = b cosm(λx).

23. yy′′′xxx + 3y′xy
′′

xx + a
[[
yy′′xx + (y′x)

2
]]
= b cosn(λx).

This is a special case of equation 15.5.3.13 with f(x) = b cosn(λx).

24. yy′′′xxx + (3y′x + ay cosn x)y′′xx + a cosn x (y′x)
2 = 0.

This is a special case of equation 15.5.3.17 with f(x) = a cosn x.

25. (y + a)y′′′xxx + by′xy
′′

xx + c cosn(λy)y′x = 0.

This is a special case of equation 15.5.3.21 with f(y) = c cosn(λy).

26. y2y′′′xxx + 3myy′xy
′′

xx +m(m− 1)(y′x)
3 = a cosk(λx)y2−m.

This is a special case of equation 15.5.3.27 with f(x) = a cosk(λx) and n = m+ 1.

27. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a cosn(λx)(y′x)

2 + bym(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x) = a cosn(λx) and g(y) = bym.

28. 2y′xy
′′′

xxx − 3(y′′xx)
2 = axn(y′x)

2 + b cosm(λy)(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x) = axn and g(y) = b cosm(λy).
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29. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a cosn(λx)(y′x)

2 + b cosm(µx)y−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = a cosn(λx) and g(x) = b cosm(µx).

30. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a cosn(λx)(y′x)

2 + bxmy−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = a cosn(λx) and g(x) = bxm.

31. 2y′xy
′′′

xxx − 3(y′′xx)
2 = axn(y′x)

2 + b cosm(λx)y−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = axn and g(x) = b cosm(λx).

32. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a cosn(λy)(y′x)

4 + bx−1 cosm(µy)(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = a cosn(λy) and g(y) = b cosm(µy).

33. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a cosn(λy)(y′x)

4 + bx−1ym(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = a cosn(λy) and g(y) = bym.

34. 2y′xy
′′′

xxx − 3(y′′xx)
2 = ayn(y′x)

4 + bx−1 cosm(λy)(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = ayn and g(y) = b cosm(λy).

◮ Equations with tangent.

35. y′′′xxx = a tan(λy)y′x.

This is a special case of equation 15.5.2.1 with f(y) = a tan(λy).

36. y′′′xxx = a tan(λy)y′x + b tan(µx).

This is a special case of equation 15.5.2.2 with f(y) = a tan(λy) and g(x) = b tan(µx).

37. yy′′′xxx + 3y′xy
′′

xx = a tann(λx) + b.

This is a special case of equation 15.5.3.6 with f(x) = a tann(λx) + b.

38. yy′′′xxx + 3y′xy
′′

xx = a tann(λy) + b.

This is a special case of equation 15.5.3.8 with f(y) = a tann(λy) + b.

39. yy′′′xxx + 3y′xy
′′

xx + axnyy′x = b tanm(λx).

This is a special case of equation 15.5.3.10 with f(x) = axn and g(x) = b tanm(λx).

40. yy′′′xxx + 3y′xy
′′

xx + a
[[
yy′′xx + (y′x)

2
]]
= b tann(λx).

This is a special case of equation 15.5.3.13 with f(x) = b tann(λx).

41. yy′′′xxx + (3y′x + ay tann x)y′′xx + a tann x (y′x)
2 = 0.

This is a special case of equation 15.5.3.17 with f(x) = a tann x.

42. (y + a)y′′′xxx + by′xy
′′

xx + c tann(λy)y′x = 0.

This is a special case of equation 15.5.3.21 with f(y) = c tann(λy).

43. y2y′′′xxx + 3myy′xy
′′

xx +m(m− 1)(y′x)
3 = a tank(λx)y2−m.

This is a special case of equation 15.5.3.27 with f(x) = a tank(λx) and n = m+ 1.



“K16435’ — 2017/9/28 — 15:05 — #1003

15.4. Nonlinear Equations with Arbitrary Parameters 977

44. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a tann(λx)(y′x)

2 + b tanm(µy)(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x) = a tann(λx) and g(y) = b tanm(µy).

45. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a tann(λx)(y′x)

2 + bym(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x) = a tann(λx) and g(y) = bym.

46. 2y′xy
′′′

xxx − 3(y′′xx)
2 = axn(y′x)

2 + b tanm(λy)(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x) = axn and g(y) = b tanm(λy).

47. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a tann(λx)(y′x)

2 + b tanm(µx)y−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = a tann(λx) and g(x) = b tanm(µx).

48. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a tann(λx)(y′x)

2 + bxmy−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = a tann(λx) and g(x) = bxm.

49. 2y′xy
′′′

xxx − 3(y′′xx)
2 = axn(y′x)

2 + b tanm(λx)y−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = axn and g(x) = b tanm(λx).

50. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a tann(λy)(y′x)

4 + bx−1 tanm(µy)(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = a tann(λy) and g(y) = b tanm(µy).

51. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a tann(λy)(y′x)

4 + bx−1ym(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = a tann(λy) and g(y) = bym.

52. 2y′xy
′′′

xxx − 3(y′′xx)
2 = ayn(y′x)

4 + bx−1 tanm(λy)(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = ayn and g(y) = b tanm(λy).

◮ Equations with cotangent.

53. y′′′xxx = a cot(λy)y′x.

This is a special case of equation 15.5.2.1 with f(y) = a cot(λy).

54. y′′′xxx = a cot(λy)y′x + b cot(µx).

This is a special case of equation 15.5.2.2 with f(y) = a cot(λy) and g(x) = b cot(µx).

55. yy′′′xxx + 3y′xy
′′

xx = a cotn(λx) + b.

This is a special case of equation 15.5.3.6 with f(x) = a cotn(λx) + b.

56. yy′′′xxx + 3y′xy
′′

xx = a cotn(λy) + b.

This is a special case of equation 15.5.3.8 with f(y) = a cotn(λy) + b.

57. yy′′′xxx + 3y′xy
′′

xx + axnyy′x = b cotm(λx).

This is a special case of equation 15.5.3.10 with f(x) = axn and g(x) = b cotm(λx).

58. yy′′′xxx + 3y′xy
′′

xx + a
[[
yy′′xx + (y′x)

2
]]
= b cotn(λx).

This is a special case of equation 15.5.3.13 with f(x) = b cotn(λx).
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59. yy′′′xxx + (3y′x + ay cotn x)y′′xx + a cotn x (y′x)
2 = 0.

This is a special case of equation 15.5.3.17 with f(x) = a cotn x.

60. (y + a)y′′′xxx + by′xy
′′

xx + c cotn(λy)y′x = 0.

This is a special case of equation 15.5.3.21 with f(y) = c cotn(λy).

61. y2y′′′xxx + 3myy′xy
′′

xx +m(m− 1)(y′x)
3 = a cotk(λx)y2−m.

This is a special case of equation 15.5.3.27 with f(x) = a cotk(λx) and n = m+ 1.

62. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a cotn(λx)(y′x)

2 + b cotm(µy)(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x) = a cotn(λx) and g(y) = b cotm(µy).

63. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a cotn(λx)(y′x)

2 + bym(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x) = a cotn(λx) and g(y) = bym.

64. 2y′xy
′′′

xxx − 3(y′′xx)
2 = axn(y′x)

2 + b cotm(λy)(y′x)
4.

This is a special case of equation 15.5.4.7 with f(x) = axn and g(y) = b cotm(λy).

65. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a cotn(λx)(y′x)

2 + b cotm(µx)y−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = a cotn(λx) and g(x) = b cotm(µx).

66. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a cotn(λx)(y′x)

2 + bxmy−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = a cotn(λx) and g(x) = bxm.

67. 2y′xy
′′′

xxx − 3(y′′xx)
2 = axn(y′x)

2 + b cotm(λx)y−1(y′x)
5/2.

This is a special case of equation 15.5.4.8 with f(x) = axn and g(x) = b cotm(λx).

68. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a cotn(λy)(y′x)

4 + bx−1 cotm(µy)(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = a cotn(λy) and g(y) = b cotm(µy).

69. 2y′xy
′′′

xxx − 3(y′′xx)
2 = a cotn(λy)(y′x)

4 + bx−1ym(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = a cotn(λy) and g(y) = bym.

70. 2y′xy
′′′

xxx − 3(y′′xx)
2 = ayn(y′x)

4 + bx−1 cotm(λy)(y′x)
7/2.

This is a special case of equation 15.5.4.9 with f(y) = ayn and g(y) = b cotm(λy).

15.5 Nonlinear Equations Containing Arbitrary Functions

15.5.1 Equations of the Form F (x, y)y′′′

xxx +G(x, y) = 0

◮ Arguments of the arbitrary functions are x or y.

1. y′′′xxx = f(y).

The substitution w(y) = (y′x)
2 leads to a second-order equation: w′′

yy = ±2f(y)w−1/2.

In particular, with f(y) = ayn the obtained equation is an Emden–Fowler equation; see

Section 2.3.
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2. y′′′xxx = f(x)y−1.

1◦. On integrating the equation, we have yy′′xx− 1
2 (y

′
x)

2=

∫
f(x) dx+C. The substitution

y = w2 reduces the latter equation to the form w′′
xx = 1

2

[∫
f(x) dx+ C

]
w−3.

2◦. The transformation x = 1/t, y = u/t2 leads to an equation of the same form: u′′′ttt =
−t−2f(1/t)u−1.

3. y′′′xxx = x−3f(y).

The substitution t = ln |x| leads to an autonomous equation of the form 15.5.5.9: y′′′ttt −
3y′′tt + 2y′t = f(y).

4. (y + ax2 + bx+ c)y′′′xxx = f(x).

The substitution w= y+ax2+bx+c leads to an equation of the form 15.5.1.2: ww′′′
xxx =

f(x).

5. (ay + bex)y′′′xxx + bexy = f(x).

Integrating yields a second-order equation:

(ay + bex)y′′xx − 1
2a(y

′
x)

2 − bexy′x + bexy =

∫
f(x) dx+ C.

◮ Arguments of the arbitrary functions depend on x and y.

6. y′′′xxx = x−2f(yx−1).

The transformation t = ln |x|, w = yx−1 leads to an autonomous equation of the form

15.5.5.9: w′′′
ttt − w′

t = f(w).

7. y′′′xxx = x−4f(yx−2).

The transformation t = x−1, w = yx−2 leads to an autonomous equation of the form

15.5.1.1: w′′′
ttt = −f(w).

8. y′′′xxx = x−k−3f(xky).

Generalized homogeneous equation.

1◦. The transformation t = lnx, z = xky leads to an autonomous equation.

2◦. The transformation z = xky, w = xy′x/y leads to a second-order equation.

9. y′′′xxx = yx−3f(xnym).

Generalized homogeneous equation. The transformation z = xnym, w = xy′x/y leads to

a second-order equation.

10. y′′′xxx = f(y + ax3 + bx2 + cx+ k).

The substitution w = y+ax3+ bx2+ cx+k leads to an autonomous equation of the form

15.5.1.1: w′′′
xxx = f(w) + 6a.
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11. x(x− a)3y′′′xxx = f(yx−2), a 6= 0.

The transformation ξ = ln
∣∣∣x− a

x

∣∣∣, w =
y

x2
leads to an autonomous equation of the form

15.5.5.9: w′′′
ξξξ − 3w′′

ξξ + 2w′
ξ = a−3f(w).

12. y′′′xxx = (ax+ by + c)−2f
((
ax+ by + c

αx+ βy + γ

))
.

This is a special case of equation 17.2.6.19 with n = 3.

13. (ax2 + bx+ c)2y′′′xxx = f
((

y

ax2 + bx+ c

))
.

The transformation ξ =

∫
dx

ax2 + bx+ c
, w =

y

ax2 + bx+ c
leads to an autonomous

equation of the form 15.5.5.9: w′′′
ξξξ + (4ac− b2)w′

ξ = f(w).

14. y′′′xxx = y−2f
((

y

ax2 + bx+ c

))
.

Setting f(u) = u2f1(u), we have equation 15.5.1.13 with the function f1 (instead of f ).

15. y′′′xxx = eλxf(ye−λx).

This is a special case of equation 15.5.3.32 with a = b = c = 0. The substitution w(x) =
ye−λx leads to an autonomous equation.

16. y′′′xxx = yf(eλxym).

This is a special case of equation 15.5.5.21. The transformation z = eλxym, w(z) = y′x/y
leads to a second-order equation.

17. y′′′xxx = x−3f(xmeλy).

The transformation z = xmeλy, w(z) = xy′x leads to a second-order equation.

18. y′′′xxx = f(y + aeλx) − aλ3eλx.

The substitution w = y + aeλx leads to an autonomous equation of the form 15.5.1.1:

w′′′
xxx = f(w).

19. y′′′xxx = F (x, y).

The transformation x = 1/t, y = w/t2 leads to an equation of the same form: w′′′
ttt =

−t−4F (1/t, w/t2).

15.5.2 Equations of the Form F (x, y, y′

x)y
′′′

xxx +G(x, y, y′

x) = 0

◮ Arguments of the arbitrary functions depend on x and y.

1. y′′′xxx = f(y)y′x.

Solution: C3 ± x =

∫ [
C2y + C1 + 2

∫
F (y) dy

]−1/2
dy, where F (y) =

∫
f(y) dy.

2. y′′′xxx = f(y)y′x + g(x).

Integrating yields a second-order equation: y′′xx =

∫
f(y) dy +

∫
g(x) dx + C .
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3. y′′′xxx = f(y)y′x + g(y)(y′x)
3.

The substitution z(y) = (y′x)
2 leads to a second-order linear equation: z′′yy = 2g(y)z +

2f(y).

4. y′′′xxx = f(y)(y′x)
3 + a(y′x)

−5.

The substitution z(y) = ±(y′x)2 leads to Yermakov’s equation 2.9.1.2: z′′yy = 2f(y)z +
2az−3.

5. y′′′xxx = x−3f
((
y

x

))
(xy′x − y).

The transformation z = y/x, w = x−2(xy′x − y)2 leads to a second-order linear equa-

tion: w′′
zz = 2f(z) + 2. Integrating the latter equation twice, we arrive at a first-order

homogeneous equation for y(x):

y′x = z ±
[
z2 + C2z + C1 + 2

∫ z

z0

(z − t)f(t) dt
]1/2

, where z =
y

x
,

and z0 is an arbitrary number.

6. y′′′xxx = x−5f
((
y

x

))
(xy′x − y)

3
.

The transformation z = y/x, w = x−2(xy′x − y)2 leads to a second-order linear equation:

w′′
zz = 2f(z)w + 2.

7. y′′′xxx = x−3f
((
y

x

))
(xy′x − y) + x−5g

((
y

x

))
(xy′x − y)

3
.

This is a special case of equation 15.5.3.38 with k = −1. The transformation t = lnx,

z = y/x, followed by the substitution w(z) = (z′t)
2, leads to a second-order linear equa-

tion: w′′
zz = 2g(z)w + 2f(z) + 2.

8. y′′′xxx = x−5f
((
y

x2

))
(xy′x − 2y).

The transformation t = 1/x, z = y/x2 leads to an autonomous equation: z′′′ttt = f(z)z′t.
The substitution w(z) = (z′t)

2 then yields the second-order linear equation w′′
zz = 2f(z),

whose solution is given by:

w = C2z + C1 + 2

∫ z

z0

(z − ξ)f(ξ) dξ, z0 is an arbitrary number.

9. y′′′xxx = x−7f
((
y

x2

))
(xy′x − 2y)

3
.

The transformation t = 1/x, z = y/x2, followed by the substitution w(z) = (z′t)
2, leads

to a second-order linear equation: w′′
zz = 2f(z)w.

10. y′′′xxx = x−5f
((
y

x2

))
(xy′x − 2y) + x−7g

((
y

x2

))
(xy′x − 2y)

3
.

The transformation t = 1/x, z = y/x2, followed by the substitution w(z) = (z′t)
2, leads

to a second-order linear equation: w′′
zz = 2g(z)w + 2f(z).
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11. y′′′xxx + fy′x + gy = −3hy−4(y′x)
2 − 3(h′

xy
3 + 2h2)y−6y′x

− h3y−8 − 3hh′

xy
−5 − (fh+ h′′

xx)y
−2.

Here, f = f(x), g = g(x), and h = h(x) are arbitrary functions.

Solution: y = w
[
C + 3

∫
h(x) dx

w3

]1/3
, where w = w(x) is the general solution of

the linear equation: w′′′
xxx + f(x)w′

x + g(x)w = 0.

12. [ay + f(x)]y′′′xxx + g(y)y′x + f ′′′

xxx(x)y + h(x) = 0.

The equation admits a first integral:

[ay + f(x)]y′′xx − 1
2a(y

′
x)

2 − f ′x(x)y′x + f ′′xx(x)y +
∫
g(y) dy +

∫
h(x) dx = C.

◮ Arguments of the arbitrary functions depend on x, y, and y′x.

13. y′′′xxx = f(y′x).

Solution in parametric form:

x =

∫ τ

C2

dτ

ϕ(τ)
, y =

∫ τ

C3

τ dτ

ϕ(τ)
, where ϕ = ±

[
C1 + 2

∫
f(τ) dτ

]1/2
.

14. y′′′xxx = f(x, y′x).

The substitution w(x) = y′x leads to a second-order equation: w′′
xx = f(x,w).

15. y′′′xxx = f(y, y′x).

Autonomous equation (this is a special case of equation 15.5.5.9).

1◦. The substitution u(y) = (y′x)
2 leads to a second-order equation:

u′′yy = ±2u−1/2f(y,±u1/2).

2◦. The transformation

x =

∫
[ϕ(τ)]−3/2dτ, y = [ϕ(τ)]−1 (1)

leads to an analogous equation with respect to ϕ = ϕ(τ):

ϕ′′′
τττ = −ϕ−5/2f(ϕ−1, −ϕ−1/2ϕ′

τ ).

Note two important cases of transforming equations of special form:

y′′′xxx = f(y)
transformation (1)−−−−−−−−−→ ϕ′′′

τττ = −ϕ−5/2f(ϕ−1),

y′′′xxx = Ayn
transformation (1)−−−−−−−−−→ ϕ′′′

τττ = −Aϕ−n−5/2.

16. y′′′xxx = a3y + f(x, y′x − ay).

The substitution w=y′x−ay leads to a second-order equation: w′′
xx+aw

′
x+a

2w=f(x,w).
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17. y′′′xxx = (3a2x− a3x3)y + f(x, y′x + axy).

The substitution w = y′x + axy leads to a second-order equation:

w′′
xx − axw′

x + (a2x2 − 2a)w = f(x,w).

18. y′′′xxx = xf(xy′x − y).

The substitution z = xy′x − y leads to a second-order equation of the form 14.9.2.20 with

n = 1: xz′′xx = z′x + x3f(z).

19. y′′′xxx = x−3f(xy′x − y).

The transformation t= ln |x|, z = xy′x−y leads to the second-order autonomous equation

z′′tt − 2z′t = f(z), which is reduced, with the aid of the substitution w(z) = 1
2 z

′
t, to the

Abel equation ww′
z − w = 1

4 f(z) (for some functions f , solutions of this Abel equation

are given in Section 13.3.1).

20. y′′′xxx = f(x, xy′x − y).

The substitution w = xy′x − y leads to a second-order equation: (w′
x/x)

′
x = f(x,w).

21. y′′′xxx = f(x, xy′x − 2y).

The substitution w = xy′x − 2y leads to a second-order equation: w′′
xx = xf(x,w).

22. x3y′′′xxx = f(x, xy′x + ay)− a(a+ 1)(a+ 2)y.

The substitution w = xy′x + ay leads to a second-order equation:

x2w′′
xx − (a+ 2)xw′

x + (a+ 1)(a + 2)w = f(x,w).

23. y′′′xxx = x−2F
((
y′x − y

x

))
.

The substitution z = xy′x − y leads to the second-order equation xz′′xx = z′x + F (z/x),
which is a special case of the equation 14.9.4.22 with n=−1,m=1, k=−1, F (ξ)=ξf(ξ).

24. y′′′xxx = x−4f
((
y′x − 2

y

x

))
.

The transformation t = 1/x, z = y/x2 yields z′′′ttt = −f(−z′t). The substitution w = −z′t
leads to a second-order autonomous equation of the form 14.9.1.1: w′′

tt = f(w).

25. y′′′xxx =
1

x4
f
((
y

x2
, y′x − 2

y

x

))
.

The transformation t = 1/x, z = y/x2 leads to an equation of the form 15.5.2.15:

z′′′ttt = −f(z,−z′t), which admits, with the aid of the substitution w(z) = (z′t)
2, reduc-

tion of its order: w′′
zz = ±2w−1/2f(z,±w1/2).

26. y′′′xxx = yx−3f(xy′x/y).

The transformation z = xy′x/y, w = x2y′′xx/y leads to a first-order equation:

(w + z − z2)w′
z = 2w − zw + f(z).

27. y′′′xxx = y−5/2f

((
y′

x√
y

))
.

With the substitution w(y) = (y′x)
2, one can reduce this equation to an equation of the form

14.9.1.8: w′′
yy = y−3F (w/y), where F (ξ) = ±2ξ−1/2f(±ξ1/2).
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28. y′′′xxx = y−5/4f

((
y′

x

y1/4

))
.

The substitution w(y) = (y′x)
2 leads to an equation of the form 14.9.1.9:

w′′
yy = y−3/2F

(
wy−1/2

)
, where F (ξ) = ±ξ−1/2f(±ξ1/2).

29. y′′′xxx = (ay2 + by + c)
−5/4

f

((
y′

x

(ay2 + by + c)1/4

))
.

The substitution w(y) = (y′x)
2 leads to an equation of the form 14.9.1.21:

w′′
yy = w−3F

(
w√

ay2 + by + c

)
, where F (ξ) = ±2ξ5/2f(±ξ1/2).

30. y′′′xxx = x(ay2 + bx2y + cx4)
−5/4

f

((
xy′

x − 2y

(ay2 + bx2y + cx4)1/4

))
.

The transformation t = 1/x, z = y/x2 leads to an equation of the form 15.5.2.29:

z′′′ttt = −(az2 + bz + c)
−5/4

f

( −z′t
(az2 + bz + c)1/4

)
.

31. y′′′xxx = −x−2y′x + x−3y + x1/2y−5/2f

((
xy′

x − y
√
xy

))
.

The transformation t = lnx, z = y/x, followed by the substitution w(z) = (z′t)
2, leads

to a second-order equation of the form 14.9.1.8: w′′
zz = z−3F (w/z), where F (ξ) =

±2ξ−1/2f
(
±
√
ξ
)
.

32. y′′′xxx = −x−2y′x + x−3y + x−3/4y−5/4f

((
xy′

x − y

x3/4y1/4

))
.

The transformation t = lnx, z = y/x, followed by the substitution w(z) = (z′t)
2, leads

to a second-order equation of the form 14.9.1.9: w′′
zz = z−3/2F (wz−1/2), where F (ξ) =

±2ξ−1/2f
(
±
√
ξ
)
.

33. y′′′xxx = y′xf
((
y′2x + ay

))
.

The substitution w(y) = (y′x)
2 + ay leads to a second-order autonomous equation of the

form 14.9.1.1: w′′
yy = 2f(w).

34. y′′′xxx = 2λ2(y′x)
3 + e6λyf(eλyy′x)y

′

x.

This is a special case of equation 15.5.2.48 with ψ(y) = e−2λy .

35. y′′′xxx = 1
2
λ2(y′x)

3 + (cosh λy)−3f

((
y′

x√
coshλy

))
y′x.

This is a special case of equation 15.5.2.48 with ψ(y) = cosh λy.

36. y′′′xxx = 1
2
λ2(y′x)

3 + (sinhλy)−3f

((
y′

x√
sinhλy

))
y′x.

This is a special case of equation 15.5.2.48 with ψ(y) = sinh λy.
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37. y′′′xxx = y tanhx+ f(x, y′x − y tanhx).

This is a special case of equation 15.5.2.47 with ϕ(x) = cosh x.

38. y′′′xxx = (sinh y)−2(y′x)
3 + (tanh y)3f

((
y′x
√

tanh y
))
y′x.

This is a special case of equation 15.5.2.48 with ψ(y) = coth y.

39. y′′′xxx = y coth x+ f(x, y′x − y coth x).

This is a special case of equation 15.5.2.47 with ϕ(x) = sinh x.

40. y′′′xxx = −(cosh y)−2(y′x)
3 + (coth y)3f

((
y′x
√

coth y
))
y′x.

This is a special case of equation 15.5.2.48 with ψ(y) = tanh y.

41. y′′′xxx = − 1
2
λ2(y′x)

3 + (cosλy)−3f

((
y′

x√
cosλy

))
y′x.

This is a special case of equation 15.5.2.48 with ψ(y) = cos λy.

42. y′′′xxx = − 1
2
λ2(y′x)

3 + (sinλy)−3f

((
y′

x√
sinλy

))
y′x.

This is a special case of equation 15.5.2.48 with ψ(y) = sinλy.

43. y′′′xxx = y tanx+ f(x, y′x + y tanx).

This is a special case of equation 15.5.2.47 with ϕ(x) = cos x.

44. y′′′xxx = (sin y)−2(y′x)
3 + (tany)3f

((
y′x
√

tan y
))
y′x.

This is a special case of equation 15.5.2.48 with ψ(y) = cot y.

45. y′′′xxx = −y cot x+ f(x, y′x − y cot x).

This is a special case of equation 15.5.2.47 with ϕ(x) = sinx.

46. y′′′xxx = (cos y)−2(y′x)
3 + (cot y)3f

((
y′x
√

cot y
))
y′x.

This is a special case of equation 15.5.2.48 with ψ(y) = tan y.

47. y′′′xxx =
ϕ′′′

xxx

ϕ
y + f

((
x, y′x − ϕ′

x

ϕ
y
))
, ϕ = ϕ(x).

The substitution w = y′x −
ϕ′
x

ϕ
y leads to a second-order equation:

w′′
xx +

ϕ′
x

ϕ
w′
x +

[
2
ϕ′′
xx

ϕ
− (ϕ′

x)
2

ϕ2

]
w = f(x,w).

48. y′′′xxx =
1

2

ψ′′

yy

ψ
(y′x)

3 + ψ−3f

((
y′

x√
ψ

))
y′x, ψ = ψ(y).

The substitution z = (y′x)
2 leads to a second-order equation of the form 14.9.1.46:

z′′yy =
ψ′′
yy

ψ
z + 2ψ−3f

(
±
√
z

ψ

)
.
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49. y′′′xxx = F (x, y, y′x).

Let F 6= ϕ(x)y′x + ψ(x)y + χ(x), i.e., the equation is nonlinear. Then its order can be

reduced by one if the right-hand side of the equation has the following form:

F (x, y, y′x) = f−2E
{
Φ(u,w) +

∫ [
2ff ′′′xxxw + (f2f ′′′′xxxx + 2ff ′xf

′′′
xxx)u

− (2f ′′′xxxg + fg′′′xxx)E
−1 − (2ff ′xf

′′′
xxx + f2f ′′′′xxxx − 2kff ′′′xxx)V

]
dx
}
,

where

E = exp
(
−k
∫

dx

f

)
, V =

∫
g dx

f2E
, u =

y

fE
+ V, w =

fy′x − f ′xy + g

fE
− kV ;

Φ = Φ(u,w), f = f(x), and g = g(x) are arbitrary functions; k is an arbitrary constant.

In this case, the transformation t =

∫
f−1 dx, u = f−1E−1y + V, followed by the

substitution z(u) = u′t, leads to a second-order equation:

z2z′′uu + z(z′u)
2 − 3kzz′u + 3k2z − k3u = Φ(u, z − ku).

50. y′′′xxx = f(y)−3/2y′xΦ(u) +
2f(y)f ′′

yy(y) − [f ′

y(y)]
2

8f(y)2
(y′x)

3 +

f ′

y(y)g(y) − 2f(y)g′y(y)

4f(y)2
y′x.

The functions f(y), g(y), and Φ(u) are arbitrary and u = f−1/2(y′x)
2 +

∫
gf−3/2 dy.

Autonomous first integral:

f(y)(y′′xx)
2 +

[
− 1

2
f ′y(y)(y

′
x)

2 + g(y)

]
y′′xx+

+
1

16

[f ′y(y)]
2

f(y)
(y′x)

4 −
∫

Φ(u) du−
f ′y(y)g(y)

4f(y)
(y′x)

2 +
1

4

g(y)2

f(y)
= C.

51. y′′′xxx = y′x
[[
a
(
y′x
)2

+ f(y)
]]
g(y)− 1

2a
f ′′

yy(y)y
′

x.

The autonomous first integral P = P (y, y′x, y
′′
xx) satisfies the linear first-order partial dif-

ferential equation

∂P

∂y
+
[
g(y)− 2aω2

] ∂P
∂ω

= 0, ω =
2ay′x + f ′y(y)

a
(
y′x
)2

+ f(y)
,

which is reduced to a Riccati equation. Therefore, in a large number of cases, the first

integral can be expressed in terms of elementary or standard special functions. Its rep-

resentation is essentially dependent on the function g(y). For example, if g(y) = yk or

g(y) = ey, the second differential invariant is expressible in terms of Bessel functions; fur-

thermore, for the power-law function, we obtain a special Riccati equation and if k+3
k+2 is

half-integer, the first integral is an elementary function. For example, if k = 0, we get

P =
√
2ay − arctanh

2ay′′xx + f ′y(y)√
2a
[
C(y′x)2 + f(y)

] .
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15.5.3 Equations of the Form
F (x, y, y′

x)y
′′′

xxx +G(x, y, y′

x)y
′′

xx +H(x, y, y′

x) = 0

◮ The arbitrary functions depend on x or y.

1. y′′′xxx + 3λy′xy
′′

xx + λ2(y′x)
3 = f(x)e−λy.

Solution: eλy = C2x
2 + C1x + C0 +

λ

2

∫ x

x0

(x − t)2f(t) dt, where x0 is an arbitrary

number.

2. y′′′xxx = f(y)y′xy
′′

xx.

Integrating yields a second-order autonomous equation of the form 14.9.1.1: y′′xx = F (y),

where F (y) = C exp
[∫

f(y) dy
]
.

3. y′′′xxx =
[[
f(y)y′x + g(x)

]]
y′′xx.

Integrating yields a second-order equation: y′′xx = C exp
[∫

f(y) dy +

∫
g(x) dx

]
.

4. x3y′′′xxx + ax2y′′xx + bxy′x = f(y).

The substitution t = ln |x| leads to an autonomous equation of the form 15.5.5.9:

y′′′ttt + (a− 3)y′′tt + (b− a+ 2)y′t = f(y).

5. y(y′′′xxx + 3ay′′xx + 2a2y′x) = f(x).

Integrating yields a second-order equation:

2yy′′xx + 2ayy′x − (y′x)
2 = e−2ax

[
2

∫
e2axf(x) dx+ C

]
.

6. yy′′′xxx + 3y′xy
′′

xx = f(x).

Solution: y2 = C2x
2+C1x+C0+

∫ x

x0

(x− t)2f(t) dt, where x0 is an arbitrary number.

7. yy′′′xxx + ay′xy
′′

xx = f(x).

Integrating yields a second-order equation: yy′′xx +
1
2 (a− 1)(y′x)

2 =

∫
f(x) dx+ C .

8. yy′′′xxx + 3y′xy
′′

xx = f(y).

The substitution w = y2 leads to an autonomous equation of the form 15.5.1.1: w′′′
xxx =

2f
(
±√w

)
.

9. yy′′′xxx − y′xy
′′

xx = f(x)y2.

Integrating yields a second-order linear equation: y′′xx =
[∫

f(x) dx+ C
]
y.

10. yy′′′xxx + 3y′xy
′′

xx + f(x)yy′x = g(x).

The substitution w=yy′x leads to a second-order linear nonhomogeneous equation: w′′
xx+

f(x)w = g(x).
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11. yy′′′xxx + 3y′xy
′′

xx + 4f(x)yy′x + f ′

x(x)y
2 = 0.

Multiplying by y2, we arrive at an exact differential equation. Integrating it yields Yer-

makov’s equation 14.9.1.2: y′′xx + f(x)y = Cy−3.

There is also the trivial solution y = 0.

12. yy′′′xxx + ay′xy
′′

xx = f(y)y′x + g(x).

Integrating yields a second-order equation:

yy′′xx +
1
2 (a− 1)(y′x)

2 =

∫
f(y) dy +

∫
g(x) dx + C.

13. yy′′′xxx + 3y′xy
′′

xx + a
[[
yy′′xx + (y′x)

2
]]
= f(x).

Solution:

y2 = C3e
−ax + C2x+ C1 + 2

∫ x

x0

(x− t)e−atF (t) dt, where F (t) =

∫
eatf(t) dt,

x0 is an arbitrary number.

14. yy′′′xxx + (3y′x + 2ay)y′′xx + 2a(y′x)
2 + a2yy′x = f(x).

Integrating the equation twice, we arrive at a first-order separable equation:

eaxyy′x = C2x+ C1 +

∫ x

x0

(x− t)eatf(t) dt.

15. yy′′′xxx = y′xy
′′

xx + f(x)yy′′xx.

Integrating yields a second-order linear equation: y′′xx = C exp
[∫

f(x) dx
]
y.

16. yy′′′xxx − y′xy
′′

xx = f(x)
[[
yy′′xx − (y′x)

2
]]
+ g(x).

The substitution w=yy′′xx−(y′x)2 leads to a first-order linear equation: w′
x=f(x)w+g(x).

17. yy′′′xxx + [3y′x + f(x)y]y′′xx + f(x)(y′x)
2 = 0.

Solution: y2 = C3x+ C2 + C1

∫ x

x0

(x− t)e−F (t) dt, where F (t) =

∫
f(t) dt.

18. yy′′′xxx + [3y′x + f(x)y]y′′xx + f(x)(y′x)
2 + g(x)yy′x + h(x) = 0.

The substitution w = yy′x leads to a second-order linear nonhomogeneous equation:

w′′
xx + f(x)w′

x + g(x)w + h(x) = 0.

19. yy′′′xxx + (f − 1)y′xy
′′

xx + fgyy′x + g′xy
2 = 0, f = f(x), g = g(x).

A solution of this equation is any function that solves the second-order linear equation

y′′xx + g(x)y = 0.

20. (y + a)y′′′xxx + by′xy
′′

xx = f(x).

Having integrated the equation, we obtain (y+ a)y′′xx+
1
2 (b− 1)(y′x)

2 =

∫
f(x) dx+C.

For b 6= −1 , the substitution y = w
2

b+1 − a leads to the equation:

w′′
xx =

b+ 1

2

[∫
f(x) dx+ C

]
w

b−3
b+1

(with C = 0 and f(x) = λxn, see Section 14.3).
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21. (y + a)y′′′xxx + by′xy
′′

xx + f(y)y′x = 0.

Having integrated the equation, we obtain a second-order autonomous equation:

(y + a)y′′xx +
1
2 (b− 1)(y′x)

2 +

∫
f(y) dy = C,

which is reduced with the aid of the substitution w(y) = (y′x)
2 to a first-order linear equa-

tion:

(y + a)w′
y + (b− 1)w + 2

∫
f(y) dy = 2C.

22. (y + a)y′′′xxx + by′xy
′′

xx + f(y)y′x = g(x).

Having integrated the equation, we obtain a second-order equation:

(y + a)y′′xx +
1
2 (b− 1)(y′x)

2 +

∫
f(y) dy =

∫
g(x) dx + C.

23. (y + ax+ b)y′′′xxx + 3(y′x + a)y′′xx = f(x).

Solution: (y+ax+b)2 =C2x
2+C1x+C0+

∫ x

x0

(x−t)2f(t) dt, where x0 is an arbitrary

number.

24. [y + f(x)]y′′′xxx = [y′x + f ′

x(x)]y
′′

xx + af(x)y′x − af ′

x(x)y.

Integrating yields a second-order constant coefficient linear equation of the form 14.1.9.1:

y′′xx + Cy = −(a+ C)f(x). There is also the trivial solution y = 0.

25. x(yy′′′xxx + 3y′xy
′′

xx) + a
[[
yy′′xx + (y′x)

2
]]
= f(x).

Solution:

y2 = C3x
2−a + C2x+ C1 + 2

∫ x

x0

(x− t)t−aF (t) dt, where F (t) =

∫
ta−1f(t) dt;

x0 is an arbitrary number.

26. y2y′′′xxx − 3yy′xy
′′

xx + 2(y′x)
3 = f(x)y3.

Solution: ln |y| = C2x
2 + C1x + C0 +

1
2

∫ x

x0

(x − t)2f(t) dt, where x0 is an arbitrary

number.

27. y2y′′′xxx + 3(n− 1)yy′xy
′′

xx + (n− 1)(n− 2)(y′x)
3 = f(x)y3−n.

Solution for n 6= 0:

yn = C2x
2 + C1x+ C0 +

n

2

∫ x

x0

(x− t)2f(t) dt, where x0 is an arbitrary number.

For the case n = 0, see equation 15.5.3.26.
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28. y
((
fy′′′xxx + 3

2
f ′

xy
′′

xx + 1
2
f ′′

xxy
′

x

))
= g(x), f = f(x).

Having integrated the equation, we obtain a second-order equation:

2fyy′′xx + f ′xyy
′
x − f(y′x)2 = 2

∫
g(x) dx+ C.

29. fyy′′′xxx+(3fy′x+2f ′

xy)y
′′

xx+2f ′

x(y
′

x)
2+ f ′′

xxyy
′

x = g(x), f = f(x).

Integrating the equation twice, we arrive at a first-order separable equation: f(x)yy′x =

C2x+ C1 +

∫ x

x0

(x− t)g(t) dt.

30. y′′′xxx + fy′x + gy = −(n+ 2)hyn−1y′′xx
− (n− 1)(n+ 1)hyn−2(y′x)

2 − [(2n+ 1)h′

x + 3nh2yn−1]yn−1y′x
− h3y3n−2 − 3hh′

xy
2n−1 − (fh+ h′′

xx)y
n.

Here, f = f(x), g = g(x), and h = h(x) are arbitrary functions.

Solution: y = w
[
C + (1− n)

∫
h(x)wn−1 dx

] 1
1−n

, where w = w(x) is the general

solution of the linear equation: w′′′
xxx + f(x)w′

x + g(x)w = 0.

31. y′xy
′′′

xxx + f(x)y′xy
′′

xx + g(x)yy′′xx + h(x)(y′x)
2

+
[[
g′x(x) + f(x)g(x)

]]
yy′x + g2(x)y2 = 0.

The solution satisfies the second-order linear equation y′′xx−z(x,C)y′x+g(x)y=0, where

z=z(x,C) is the general solution of the Riccati equation z′x+z
2+f(x)z−g(x)+h(x)=0.

◮ Arguments of arbitrary functions depend on x and y.

32. y′′′xxx + ay′′xx + by′x + cy = eλxf(ye−λx).

The substitution w(x) = ye−λx leads to an autonomous equation of the form 15.5.5.9:

w′′′
xxx + (3λ+ a)w′′

xx + (3λ2 + 2aλ+ b)w′
x + (λ3 + aλ2 + bλ+ c)w = f(w).

33. y′′′xxx = −3y′′xx + 2y + f(exy)(y′x + y).

The transformation z = exy, w = e2x(y′x + y)2 leads to a second-order linear equation:

w′′
zz = 2f(z) + 6. Integrating the latter, we find the solution:

∫
dz√

3z2 + C2z + C1 + 2Φ(z)
=±x+C3, where z=exy, Φ(z)=

∫ [∫
f(z) dz

]
dz.

34. xy′′′xxx + 3y′′xx = f(xy).

The substitution w(x)=xy leads to an autonomous equation of the form 15.5.1.1: w′′′
xxx=

f(w).

35. x2y′′′xxx + 6xy′′xx + 6y′x = f(x2y).

The substitution w(x) = x2y leads to an autonomous equation of the form 15.5.1.1:

w′′′
xxx = f(w).
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36. x3y′′′xxx + ax2y′′xx + bxy′x = f(xmeλy).

The transformation t = lnx, λw = λy+mt leads to an autonomous equation of the form

15.5.5.9: w′′′
ttt + (a− 3)w′′

tt + (b− a+ 2)w′
t = f(eλw) +

m

λ
(b− a+ 2).

37. x3y′′′xxx = − 3
2
x2y′′xx + f

((
y

√
x

))
(2xy′x − y).

The transformation t=
y√
x

, z =
1

x

(
xy′x− 1

2 y
)2

leads to the second-order linear equation

2z′′tt = 8f(t) + 1, whose solution is given by:

z = 1
4 t

2 + C2t+ C1 + 4

∫ t

t0

(t− ξ)f(ξ) dξ, t0 is an arbitrary number.

Passing on to the variables x, t = yx−1/2, we obtain a separable equation.

38. x3y′′′xxx = −3(k + 1)x2y′′xx + k(k+ 1)(2k + 1)y

+ f(xky)(xy′x + ky) + x2kg(xky)(xy′x + ky)
3
.

The transformation t = lnx, z = xky, followed by the substitution w(z) = (z′t)
2, leads

to a second-order linear equation: w′′
zz = 2g(z)w + 2f(z) + 6k2 + 6k + 2.

39. x4y′′′xxx = − 3
2
x3y′′xx + f

((
y

√
x

))
(2xy′x − y)

3
.

The transformation t =
y√
x

, z =
1

x
(xy′x − 1

2 y)
2 leads to a second-order linear equation:

2z′′tt = 16f(t)z + 1
2 .

40. y2y′′′xxx = −3y2y′′xx + 2y3 + y2f(exy)(y′x + y) + g(exy)(y′x + y)3.

The substitution z(x) = exy, followed by reduction of the equation order and the substitu-

tion w(z)= (z′x)
2, leads to a second-order linear equation: w′′

zz =2z−2g(z)w+2f(z)+6.

◮ Arguments of arbitrary functions depend on x, y, and y′x.

41. xy′′′xxx = f(xy′x − y)y′′xx.

The substitution z = xy′x − y leads to a second-order equation of the form 14.9.2.21:

xz′′xx = [f(z) + 1]z′x.

42. xy′′′xxx + (1 − a)y′′xx = x2af(xy′x − y).

The substitution z = xy′x − y leads to a second-order equation of the form 14.9.2.20:

xz′′xx = az′x + x2a+1f(z).

43. xy′′′xxx + (a+ 2)y′′xx = f(x, xy′x + ay).

The substitution w = xy′x + ay leads to a second-order equation: w′′
xx = f(x,w).

44. xy′′′xxx + (1 − ax)y′′xx = e2axf(xy′x − y).

The substitution z = xy′x − y leads to a second-order equation of the form 14.9.2.17:

z′′xx − az′x = e2axf(z).
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45. xy′′′xxx = f(xy′x − y + a ln x)y′′xx.

The substitution z = xy′x − y leads to a second-order equation of the form 14.9.2.39:

xz′′xx =
[
f
(
ln(xaez)

)
+ 1
]
z′x.

46. x3y′′′xxx + x2y′′xx = f(xy′x − y).

The transformation t = ln |x|, z = xy′x − y leads to an autonomous equation of the form

14.9.6.2: z′′tt− z′t = f(z), which is reduced, with the aid of the substitution w = z′t, to the

Abel equation ww′
z − w = f(w) (see Section 13.3.1).

47. x4y′′′xxx + x3y′′xx = f
((
y′x − y

x

))
.

The substitution w(x) = xy′x − y leads to an equation of the form 14.9.1.8: w′′
xx =

x−3f(w/x).

15.5.4 Equations of the Form
F (x, y, y′

x)y
′′′

xxx +
∑
α

Gα(x, y, y
′

x)(y
′′

xx)
α = 0

◮ Arbitrary functions depend on x or y.

1. yy′′′xxx + (y′′xx)
2 − 1

4
(y′x)

2 − 1
4
yy′x − f(x)y2 = 0.

This is a special case of equation 15.5.4.4. The solution satisfies the second-order linear

equation y′′xx + 1
2 y

′
x − z(x,C)y = 0, where z = z(x,C) is the general solution of the

Riccati equation z′x + z2 − 1
2 z = f(x).

2. yy′′′xxx + (y′′xx)
2 − y′xy

′′

xx − f(x)y2 = 0.

The solution satisfies the second-order linear equation y′′xx − z(x,C)y = 0, where z =
z(x,C) is the general solution of the Riccati equation z′x + z2 = f(x).

3. yy′′′xxx + (y′′xx)
2 + [2h(x)− 1]y′xy

′′

xx + [f(x) + h(x)]yy′′xx
+ h(x)[h(x)− 1](y′x)

2 + [h′

x(x) + f(x)h(x)]yy′x = 0.

This is a special case of equation 15.5.4.4 with g(x) = 0. The solution satisfies the second-

order linear equation

y′′xx + h(x)y′x − z(x,C)y = 0,

where z(x,C) = F (x)
[
C +

∫
F (x) dx

]−1
, F (x) = exp

[
−
∫
f(x) dx

]
.

4. yy′′′xxx + (y′′xx)
2 + [2h(x)− 1]y′xy

′′

xx + [f(x) + h(x)]yy′′xx
+ h(x)[h(x)− 1](y′x)

2 + [h′

x(x) + f(x)h(x)]yy′x = g(x)y2.

The solution satisfies the second-order linear equation y′′xx+h(x)y
′
x−z(x,C)y =0, where

z = z(x,C) is the general solution of the Riccati equation z′x + z2 + f(x)z = g(x).

5. 2y′xy
′′′

xxx − (y′′xx)
2 + f(x)(y′x)

2 = ay2 + 2by + c.

Differentiating both sides of the equation with respect to x and dividing by y′x, we arrive at

a fourth-order linear equation: y′′′′xxxx + fy′′xx +
1
2 f

′
xy

′
x = ay + b.
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6. 2y′xy
′′′

xxx − (y′′xx)
2 − λy′xy

′′

xx + F (x)(y′x)
2 = eλx(ay2 + 2by + c).

Multiplying both sides by e−λx, we arrive at an equation of the form 15.5.4.13 with

f(x) = e−λx and g(x) = e−λxF (x).

7. 2y′xy
′′′

xxx − 3(y′′xx)
2 = f(x)(y′x)

2 + g(y)(y′x)
4.

Solution: ∫
dy

u2(y)
=

∫
dx

w2(x)
+ C,

where u = u(y) and w = w(x) are the general solutions of the second-order linear equa-

tions:

4u′′yy − g(y)u = 0 and 4w′′
xx + f(x)w = 0.

8. 2y′xy
′′′

xxx − 3(y′′xx)
2 = f(x)(y′x)

2 + g(x)y−1(y′x)
5/2.

The substitution w(x) =
y√
y′x

leads to a second-order nonhomogeneous linear equation:

4w′′
xx + f(x)w + g(x) = 0.

9. 2y′xy
′′′

xxx − 3(y′′xx)
2 = f(y)(y′x)

4 + x−1g(y)(y′x)
7/2.

Taking y to be the independent variable, we obtain an equation of the form 15.5.4.8 for

x = x(y): 2x′yx
′′′
yyy − 3(x′′yy)

2 = −f(y)(x′y)2 − g(y)x−1(x′y)
5/2.

10. 2xy′xy
′′′

xxx − x(y′′xx)
2 + ny′xy

′′

xx + F (x)(y′x)
2 = x1−n(ay2 + 2by + c).

Multiplying both sides by xn−1, we arrive at an equation of the form 15.5.4.13 with

f(x) = xn and g(x) = xn−1F (x).

11. xy′xy
′′′

xxx − 3x(y′′xx)
2 + 3y′xy

′′

xx = xf(y)(y′x)
4 + g(y)(y′x)

5.

Taking y to be the independent variable, we obtain an equation of the form 15.5.3.10 for

x = x(y): xx′′′yyy + 3x′yx
′′
yy = −g(y)− f(y)xx′y.

12. y′′′xxx = f(y)y′x(y
′′

xx)
m.

Solution for m 6= 1:

C3±x=
∫ {

2

∫ [
(1−m)F (y)+C2

] 1
1−m

dy+C1

}− 1
2
dy, where F (y)=

∫
f(y) dy.

Solution for m = 1:

C3 ± x =

∫ [
C2

∫
eF (y) dy + C1

]− 1
2
dy, where F (y) =

∫
f(y) dy.

13. 2fy′xy
′′′

xxx−f(y′′xx)2+f ′

xy
′

xy
′′

xx+g(x)(y
′

x)
2 = ay2+2by+c, f = f(x).

Differentiating both sides of the equation with respect to x and dividing by y′x, we arrive at

a fourth-order linear equation: fy′′′′xxxx +
3
2 f

′
xy

′′′
xxx + (g + 1

2 f
′′
xx)y

′′
xx +

1
2 g

′
xy

′
x = ay + b.
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◮ Arguments of arbitrary functions depend on x, y, and y′x.

14. 2y′xy
′′′

xxx − 3(y′′xx)
2 = y4f

((
y′

x

y2

))
.

The substitution w(x) = y(y′x)
−1/2 leads to a second-order autonomous equation of the

form 14.9.1.1: w′′
xx = F (w), where F (w) = − 1

4w
5f(w−2).

15. 2y′xy
′′′

xxx − 3(y′′xx)
2 = x−4y4f

((
xy′

x

y2

))
.

The substitution w(x) = y(y′x)
−1/2 leads to a second-order equation of the form 14.9.1.9:

w′′
xx = x−3/2F (wx−1/2), where F (ξ) = − 1

4 ξ
5f(ξ−2).

16. 2y′xy
′′′

xxx − 3(y′′xx)
2 = x−8y4f

((
x2y′

x

y2

))
.

The substitution w(x) = y(y′x)
−1/2 leads to a second-order equation of the form 14.9.1.8:

w′′
xx = x−3F (wx−1), where F (ξ) = − 1

4 ξ
5f(ξ−2).

17. y′′′xxx =
[[
x3f(xy′x − y) + ax−5

]]
(y′′xx)

3.

The Legendre transformation x = w′
t, y = tw′

t − w leads to an equation of the form

15.5.2.4: w′′′
ttt = −f(w)(w′

t)
3 − a(w′

t)
−5.

18. y′′′xxx = x−5f
((
xy′

x − y

x2

))
(y′′xx)

3.

The Legendre transformation x = w′
t, y = tw′

t − w leads to an equation of the form

15.5.2.27: w′′′
ttt = w−5/2F (w′

tw
−1/2), where F (ξ) = −ξ−5f(ξ−2).

19. y′′′xxx = x−5f
((
xy′

x − y

x4

))
(y′′xx)

3.

The Legendre transformation x = w′
t, y = tw′

t − w leads to an equation of the form

15.5.2.28: w′′′
ttt = w−5/4F (w′

tw
−1/4), where F (ξ) = −ξ−5f(ξ−4).

20. y′′′xxx = [xf(y′x) + yg(y′x) + h(y′x)](y
′′

xx)
3 + ϕ(y′x)(y

′′

xx)
2.

The Legendre transformation x = w′
t, y = tw′

t − w leads to a linear equation:

w′′′
ttt = −ϕ(t)w′′

tt − [f(t) + tg(t)]w′
t + g(t)w − h(t).

21. y′′′xxx = xf(xy′x − y)(y′′xx)
2 + xg(xy′x − y)(y′′xx)

k.

With the Legendre transformation x = w′
t, y = tw′

t − w, one can reduce this equation to

w′′′
ttt = −f(w)w′

tw
′′
tt − g(w)w′

t(w
′′
tt)

3−k. Further lowering the order with the substitution

z(w) =w′′
tt (z′w =w′′′

ttt/w
′
t), one obtains a Bernoulli equation: z′w =−f(w)z−g(w)z3−k .

15.5.5 Other Equations

◮ Equations of the form F (x, y, y′x, y
′′

xx)y
′′′

xxx +G(x, y, y′x, y
′′

xx) = 0.

1. y′′′xxx = f(y′′xx).

Solution in parametric form:

x =

∫ t

C1

dt1
f(t1)

, y =

∫ t

C2

dt1
f(t1)

∫ t1

C3

t2 dt2
f(t2)

.
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2. y′′′xxx = f(y)y′xg(y
′′

xx).

Integrating the equation and substituting w(y)= 1
2 (y

′
x)

2, we arrive at a first-order equation:

∫
dξ

g(ξ)
=

∫
f(y) dy + C, where ξ = w′

y.

Solving this equation for w′
y, we obtain a separable equation.

3. y′′′xxx = f(y)g(y′x)h(y
′′

xx).

The substitution w(y) = 1
2 (y

′
x)

2 leads to a second-order equation:

w′′
yy = f(y)ϕ(w)h(w′

y), where ϕ(w) = ± g
(
±
√
2w
)

√
2w

,

whose solvable cases for some functions f , g, and h are outlined in Section 14.7.

4. y′′′xxx = xf(xy′x − y)g(y′′xx).

The Legendre transformation x=w′
t, y = tw′

t−w, where w=w(t), leads to an equation

of the form 15.5.5.2: w′′′
ttt = −f(w)w′

tg(1/w
′′
tt)(w

′′
tt)

3.

5. xy′′′xxx + y′′xx = f(xy′x − y)g(xy′′xx).

The substitution w(x) = xy′x − y leads to an equation of the form 14.9.4.36: w′′
xx =

f(w)g(w′
x).

6. y′′′xxx = f(x)g(x2y′′xx − 2xy′x + 2y).

The substitution w(x) = x2y′′xx − 2xy′x + 2y leads to a first-order separable equation:

w′
x = x2f(x)g(w).

7. y′′′xxx =
y′

xy
′′

xx

y
+

[[
y′′xx − (y′

x)
2

y

]]
f

((
y′

x

y

))
g

((
y′′

xx

y

))
.

The transformation t = y′x/y, w = y′′xx/y leads to a first-order separable equation: w′
t =

f(t)g(w).

8. y′′′xxx = F (x, y′x, y
′′

xx).

The substitution u(x) = y′x leads to a second-order equation: u′′xx = F (x, u, u′x).

9. y′′′xxx = F (y, y′x, y
′′

xx).

Autonomous equation. The substitution w(y) = (y′x)
2 leads to a second-order equation:

w′′
yy = ± 2√

w
F
(
y, ±

√
w, 1

2w
′
y

)
.

10. y′′′xxx = yF (y′x/y, y
′′

xx/y).

This is a special case of equation 15.5.5.9. The transformation t= y′x/y, w = y′′xx/y leads

to a first-order equation: (w − t2)w′
t = −tw + F (t, w).
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11. y′′′xxx = x−k−3F (xky, xk+1y′x, x
k+2y′′xx).

Generalized homogeneous equation. The transformation t = lnx, z = xky, followed by

the substitution w(z) = (z′t)
2, leads to a second-order equation:

w′′
zz = ±3(k + 1)w−1/2w′

z − 6k2 − 12k − 4± 2k(k + 1)(k + 2)zw−1/2

± 2w−1/2F
(
z, ±w1/2 − kz, 1

2w
′
z ∓ (2k + 1)w1/2 + k(k + 1)z

)
.

12. y′′′xxx = yx−3F (xkym, xy′x/y, x
2y′′xx/y).

Generalized homogeneous equation. The transformation t = xkym, z = xy′x/y leads to a

second-order equation.

13. y′′′xxx = yx−3F (xy′x/y, x
2y′′xx/y).

This is a special case of equation 15.5.5.12. The transformation z = xy′x/y, w = x2y′′xx/y
leads to a first-order equation: (w + z − z2)w′

z = 2w − zw + F (z, w).

14. y′′′xxx = F (x, xy′x − y, y′′xx).

The substitution z=xy′x−y leads to a second-order equation: xz′′xx=z
′
x+x

2F (x, z, z′x/x).

15. y′′′xxx = f(x, y′′xx + y′x + y) + y.

The substitution w = y′′xx + y′x + y leads to a first-order equation: w′
x = f(x,w) + w.

16. y′′′xxx = f(x, y′′xx − y′x + y) − y.

The substitution w = y′′xx − y′x + y leads to a first-order equation: w′
x = f(x,w)− w.

17. y′′′xxx = F (x, y, y′x, y
′′

xx).

The Legendre transformation x = w′
t, y = tw′

t − w leads to the equation

w′′′
ttt = −F

(
w′
t, tw

′
t − w, t, 1/w′′

tt

)
(w′′

tt)
3.

18. y′′′xxx = y′xf(yy
′′

xx − y′2x ).

1◦. Particular solution:

y = C1 exp(C3x) + C2 exp(−C3x),

where the constants C1, C2, and C3 are related by the constraint C2
3 = f

(
4C1C2C

2
3

)
.

2◦. Particular solution:

y = C1 cos(C3x) + C2 sin(C3x),

where the constants C1,C2, andC3 are related by the constraint C2
3+f

(
−(C2

1+C
2
2)C

2
3

)
=

0.

19. y′xy
′′′

xxx − (y′′xx)
2 = f(yy′′xx − y′2x ).

1◦. Particular solution:

y = C1 exp(C3x) + C2 exp(−C3x),

where the three constants C1, C2, and C3 are related by the constraint 4C1C2C
4
3 +

f(4C1C2C
2
3 ) = 0.

2◦. Particular solution:

y = C1 cos(C3x) + C2 sin(C3x),

with C1, C2, and C3 related by the constraint (C2
1 +C2

2 )C
4
3 + f

(
−(C2

1 + C2
2 )C

2
3

)
= 0.
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20. y′′′xxx = e−λxF (eλxy, eλxy′x, e
λxy′′xx).

The substitution z = eλxy leads to an autonomous equation of the form 15.5.5.9:

z′′′xxx − 3λz′′xx + 3λ2z′x − λ3z = F (z, z′x − λz, z′′xx − 2λz′x + λ2z).

21. y′′′xxx = yF (eλxy, y′x/y, y
′′

xx/y).

Equation invariant under “translation–dilatation” transformation. The transformation

z = eλxy, w = y′x/y leads to a second-order equation:

z2(w+λ)2w′′
zz+z

2(w+λ)(w′
z)

2
+z(w+λ)(4w+λ)w′

z+w
3=F

(
z, w, z(w+λ)w′

z+w
2
)
.

22. y′′′xxx = x−3F (xmey, xy′x, x
2y′′xx).

Equation invariant under “dilatation–translation” transformation. The transformation

z = xmey , w = xy′x +m leads to a second-order equation:

z2w2w′′
zz + z2w(w′

z)
2
+ zw2w′

z − 3zww′
z + 2w − 2m = F (z, w−m, zww′

z −w +m).

◮ Equations of the form F (x, y, y′x, y
′′

xx, y
′′′

xxx) = 0.

23. yy′′′xxx − 1
3
y′xy

′′

xx = xf(y′′′xxx) + g(y′′′xxx).

Particular solution:

y = 1
6C1x

3 + 1
2C2x

2 + C3x+ C4,

where the constants C1, C2, C3, and C4 are related by two constraints

2C1C3 − C2
2 = 3f(C1),

3C1C4 − C2C3 = 3g(C1).

Here, C3 and C4 are defined in terms of two arbitrary constants C1 and C2.

24. yy′′′xxx − 1
3
y′xy

′′

xx = y′′xxf(y
′′′

xxx) + xg(y′′′xxx) + h(y′′′xxx).

Particular solution:

y = 1
6C1x

3 + 1
2C2x

2 + C3x+ C4,

where the constants C1, C2, C3, and C4 are related by two constraints

2
3C1C3 − 1

3C
2
2 = C1f(C1) + g(C1),

C1C4 − 1
3C2C3 = C2f(C1) + h(C1).

Here, C3 and C4 are defined in terms of two arbitrary constants C1 and C2.

25. F (x, yy′′xx − y′2x , yy
′′′

xxx − y′xy
′′

xx) = 0.

The substitution w = yy′′xx − (y′x)
2 leads to a first-order equation: F (x,w,w′

x) = 0.

26. F
((
y′′xx/y, yy

′′

xx − (y′x)
2, y′′′xxx/y

′

x, y
′

xy
′′′

xxx − (y′′xx)
2
))
= 0.

1◦. Particular solution:

y = C1 exp(C3x) + C2 exp(−C3x),
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where the constants C1, C2, and C3 are related by the constraint

F
(
C2
3 , 4C1C2C

2
3 , C

2
3 , −4C1C2C

4
3

)
= 0.

2◦. Particular solution:

y = C1 cos(C3x) + C2 sin(C3x),

where the constants C1, C2, and C3 are related by the constraint

F
(
−C2

3 ,−(C2
1 + C2

2 )C
2
3 ,−C2

3 ,−(C2
1 + C2

2 )C
4
3

)
= 0.

27. F
((
y′′

xx

y′

x

, y′x − y
y′′

xx

y′

x

,
y′′′

xxx

y′

x

))
= 0.

Particular solution:

y = C1 exp(C2x) + C3,

where C1 is an arbitrary constant and the constants C2 and C2 are related by the constraint

F (C2,−C2C3, C
2
2 ) = 0.

28. F
((
y
y′′′

xxx

y′

x

+ ay′′xx, y
a+1 y

′′′

xxx

y′

x

))
= 0.

A solution of this equation is any function that solves the following second-order au-

tonomous equation of the form 14.9.1.1:

y′′xx = C1y
−a + C2,

where the constants C1 and C2 are related by the constraint F (aC2,−aC1) = 0.

29. F
((
y′′′

xxx

y′

x

+ y′′xx, e
y y

′′′

xxx

y′

x

))
= 0.

A solution of this equation is any function that solves the following second-order au-

tonomous equation of the form 14.9.1.1:

y′′xx = C1e
−y + C2,

where the constants C1 and C2 are related by the constraint F (C2,−C1) = 0.

30. F
((

1

ϕ′

y

y′′′

xxx

y′

x

, y′′xx − ϕ

ϕ′

y

y′′′

xxx

y′

x

))
= 0, ϕ = ϕ(y).

A solution of this equation is any function that solves the following second-order au-

tonomous equation of the form 14.9.1.1:

y′′xx = C1ϕ(y) + C2,

where the constants C1 and C2 are related by the constraint F (C1, C2) = 0.

31. F (y′′xx, xy
′′

xx − y′x, 2yy
′′

xx − y′2x , y
′′′

xxx) = 0.

Particular solution:

y = C1x
2 + C2x+ C3,

where the constants C1, C2, and C3 are related by F (2C1,−C2, 4C1C3 − C2
2 , 0) = 0.

32. F (y′′′xxx, xy
′′′

xxx − y′′xx, x
2y′′′xxx − 2xy′′xx + 2y′x,

x3y′′′xxx − 3x2y′′xx + 6xy′x − 6y) = 0.

Solution:

y = C1x
3 + C2x

2 + C3x+C4,

where the constants C1, C2, C3, and C4 are related by F (6C1,−2C2, 2C3,−6C4) = 0.
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Chapter 16

Fourth-Order Ordinary
Differential Equations

16.1 Linear Equations

16.1.1 Preliminary Remarks

1◦. A nonhomogeneous linear equation of the fourth order has the form

f4y
′′′′
xxxx + f3y

′′′
xxx + f2y

′′
xx + f1y

′
x + f0y = g(x), fk = fk(x). (1)

Let y0 = y0(x) be a nontrivial particular solution of the corresponding homogeneous

equation (with g ≡ 0). Then the substitution

y = y0(x)

∫
z(x) dx (2)

leads to a third-order linear equation:

f4y0z
′′′+(4f4y

′
0+f3y0)z

′′+(6f4y
′′
0+3f3y

′
0+f2y0)z

′+(4f4y
′′′
0 +3f3y

′′
0+2f2y

′
0+f1y0)z= g,

where the prime denotes differentiation with respect to x.

2◦. Let y1 = y1(x) and y2 = y2(x) be two nontrivial linearly independent particular

solutions of equation (1) with g ≡ 0. Then the substitution

y = y1

∫
y2w dx− y2

∫
y1w dx

leads to a second-order linear equation:

f4∆1w
′′ + (3f4∆2 + f3∆1)w

′ + [f4(3∆3 + 2ε) + 2f3∆2 + f2∆1]w = g,

where

∆1 = y′1y2 − y1y′2, ∆2 = y′′1y2 − y1y′′2 , ∆3 = y′′′1 y2 − y1y′′′2 , ε = y′′1y
′
2 − y′1y′′2 .

See also Sections 4.1 and 4.2.

999
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16.1.2 Equations Containing Power Functions

◮ Equations of the form f4(x)y
′′′′

xxxx + f0(x)y = g(x).

1. y′′′′xxxx + ay = 0.

1◦. Solution for a = 0:

y = C1 + C2x+ C3x
2 + C4x

3.

2◦. Solution for a = 4k4 > 0:

y = C1 cosh kx cos kx+ C2 cosh kx sin kx+ C3 sinh kx cos kx+ C4 sinh kx sin kx.

3◦. Solution for a = −k4 < 0:

y = C1 cos kx+ C2 sin kx+ C3 cosh kx+ C4 sinh kx.

2. y′′′′xxxx + λy = ax3 + bx2 + cx+ s, λ 6= 0.

Solution: y =
1

λ
(ax3 + bx2 + cx + s) + w(x), where w(x) is the general solution of

equation 16.1.2.1: w′′′′
xxxx + λw = 0.

3. y′′′′xxxx = axy + b.

This is a special case of equation 17.1.2.3 with n = 4.

4. y′′′′xxxx = axβy.

This is a special case of equation 17.1.2.4 with n = 4. For β = −2, −4, −6, −8, and −9,

see equations 16.1.2.5, 16.1.2.6, 16.1.2.7, 16.1.2.8, and 16.1.2.12, respectively.

The transformation x = t−1, y = ut−3 leads to an equation of the same form: u′′′′tttt =
at−β−8u.

5. x2y′′′′xxxx = ay.

This is a special case of equation 17.1.2.6 with n = 2.

6. x4y′′′′xxxx = ay.

Solution:

y = C1x
k1 + C2x

k2 + C3x
k3 + C4x

k4 ,

k1,2 =
3
2 ±

(
5
4 +
√
a+ 1

)1/2
, k3,4 =

3
2 ±

(
5
4 −
√
a+ 1

)1/2
.

7. x6y′′′′xxxx = ay.

This is a special case of equation 17.1.2.7 with n = 2.

8. x8y′′′′xxxx = ay.

The transformation x = t−1, y = wt−3 leads to a constant coefficient linear equation of

the form 16.1.2.1: w′′′′
tttt = aw.

9. (ax+ b)4(cx+ d)4y′′′′xxxx = ky.

The transformation ξ = ln
∣∣∣ ax+ b

cx+ d

∣∣∣, w =
y

(cx+ d)3
leads to a constant coefficient linear

equation.
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10. (ax2 + bx+ c)4y′′′′xxxx = ky.

The transformation ξ =

∫
dx

ax2 + bx+ c
, w =

y

(ax2 + bx+ c)3/2
leads to a constant

coefficient linear equation: w′′′′
ξξξξ − 5

2Dw
′′
ξξ +

(
9
16D

2 − k
)
w = 0, where D = b2 − 4ac.

11. (ax+ b)2(cx+ d)6y′′′′xxxx = ky.

The transformation ξ=
ax+ b

cx+ d
, w=

y

(cx+ d)3
leads to an equation of the form 16.1.2.5:

ξ2w′′′′
ξξξξ = k∆−4w, where ∆ = ad− bc.

12. x9y′′′′xxxx = ay + bx4.

The transformation x = t−1, y = wt−3 leads to an equation of the form 16.1.2.3: 4wt =
atw + b.

13. (ax+ b)9y′′′′xxxx = (cx+ d)y.

The transformation ξ=
cx+ d

ax+ b
, w=

y

(ax+ b)3
leads to an equation of the form 16.1.2.3:

w′′′′
ξξξξ = ∆−4ξw, where ∆ = ad− bc.

◮ Equations of the form f4(x)y
′′′′

xxxx + f1(x)y
′

x + f0(x)y = g(x).

14. y′′′′xxxx + ay′x + by = 0.

This is a special case of equation 16.1.2.41 with a2 = a3 = 0.

15. y′′′′xxxx + 2ay′x − a2x2y = 0.

This is a special case of equation 16.1.2.25 with n = 1.

16. y′′′′xxxx + 4axy′x + (2a− a2x4)y = 0.

This is a special case of equation 16.1.2.25 with n = 2.

17. y′′′′xxxx + (a1x+ b1)y
′

x + (a2x+ b2)y = 0.

This is a special case of equation 17.1.2.35 with n = 4.

18. y′′′′xxxx + ax(2b− 3a− a2x2)y′x + b(2a− b+ a2x2)y = 0.

The substitution w = y′′xx − axy′x + by leads to a second-order equation of the form

14.1.2.31: w′′
xx + axw′

x + (2a− b+ a2x2)w = 0.

19. y′′′′xxxx + axky′x − axk−1y = bxn.

For b = 0, a particular solution is: y0 = x. The substitution z = xy′x − y leads to a

third-order linear equation.

20. y′′′′xxxx + axky′x − 2axk−1y = bxn.

For b = 0, a particular solution is: y0 = x2. The substitution z = xy′x − 2y leads to a

third-order linear equation.
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21. y′′′′xxxx + axky′x − 3axk−1y = bxn.

For b = 0, a particular solution is: y0 = x3. The substitution z = xy′x − 3y leads to a

third-order linear equation: z′′′xxx + axkz = bxn+1 (for b = 0, see 3.1.2.7).

22. y′′′′xxxx + axky′x + akxk−1y = bxn.

Integrating yields a third-order linear equation: y′′′xxx + axky =
b

n+ 1
xn+1 + C .

23. y′′′′xxxx + axky′x + a(k+ 3)xk−1y = 0.

The transformation x = t−1, y = wt−3 leads to an equation of the form 16.1.2.22 with

b = 0: w′′′′
tttt + ctmw′

t + cmtm−1w = 0, where c = −a, m = −k − 6.

24. y′′′′xxxx + bxky′x − a(a3 + bxk)y = 0.

This is a special case of equation 16.1.6.4 with f = bxk.

25. y′′′′xxxx + 2anxn−1y′x + a[n(n− 1)xn−2 − ax2n]y = 0.

The substitution w = y′′xx + axny leads to a second-order equation of the form 14.1.2.7:

w′′
xx − axnw = 0.

26. y′′′′xxxx + (ax+ b)xky′x − axky = 0.

Particular solution: y0 = ax+ b.

27. y′′′′xxxx + (ax+ b)xky′x − 2axky = 0.

Particular solution: y0 = (ax+ b)2.

28. y′′′′xxxx + (ax+ b)xky′x − 3axky = 0.

Particular solution: y0 = (ax+ b)3.

29. y′′′′xxxx + (axk + b3)y′x + abxky = 0.

Particular solution: y0 = e−bx.

30. xy′′′′xxxx + axk+1y′x − [a(x+ 1)xk + x+ 4]y = 0.

Particular solution: y0 = xex.

◮ Equations of the form f4(x)y
′′′′

xxxx + f2(x)y
′′

xx + f1(x)y
′

x + f0(x)y = g(x).

31. y′′′′xxxx + 2ay′′xx + a2y = 0.

Solution: y =

{
(C1 + C2x) cos(kx) + (C3 + C4x) sin(kx) if a = k2 > 0,

(C1 + C2x) exp(kx) + (C3 + C4x) exp(−kx) if a = −k2 < 0.

32. y′′′′xxxx + (a+ b)y′′xx + aby = 0.

The case a = b is given in 16.1.2.31. Let a 6= b.
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1◦. Solution for a = α2 > 0, b = β2 > 0:

y = C1 cos(αx) + C2 sin(αx) + C3 cos(βx) + C4 sin(βx).

2◦. Solution for a = α2 > 0, b = −β2 < 0:

y = C1 cos(αx) + C2 sin(αx) + C3 exp(βx) + C4 exp(−βx).

3◦. Solution for a = −α2 < 0, b = β2 > 0:

y = C1 exp(αx) + C2 exp(−αx) +C3 cos(βx) + C4 sin(βx).

4◦. Solution for a = −α2 < 0, b = −β2 < 0:

y = C1 exp(αx) +C2 exp(−αx) + C3 exp(βx) + C4 exp(−βx).

33. y′′′′xxxx + ay′′xx + bxny′x + bnxn−1y = sxm.

Integrating yields a third-order linear equation: y′′′xxx + ay′x + bxny =
s

m+ 1
xm+1 + C.

34. y′′′′xxxx − 2a2y′′xx + a4y − λ(ax− b)(y′′xx − a2y) = 0.

This equation arises in the turbulence theory. Setting z(x) = y′′xx − a2y, one obtains a

second-order linear equation of the form 14.1.2.12:

z′′xx − a2z − λ(ax− b)z = 0. (1)

Let the following boundary conditions be given:

y(0) = y′x(0) = 0, y(1) = y′x(1) = 0, (2)

The solution of the original equation satisfying the first two conditions in (2) can repre-

sented as:

2ay = eax
∫ x

0
e−axz dx− e−ax

∫ x

0
eaxz dx.

To meet the last two conditions in (2), one should take the solution of (1) that satisfies the

integral relations

∫ 1

0
e−axz dx =

∫ 1

0
eaxz dx = 0.

35. y′′′′xxxx + (ax2 + b)y′′xx − 2ay = 0.

Particular solution: y0 = ax2 + b.

36. y′′′′xxxx + axny′′xx + b(axn − b)y = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
x
√
b
)
, y2 = sin

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
−x
√
−b
)
, y2 = exp

(
x
√
−b
)
.

The substitution w=y′′xx+by leads to a second-order linear equation: w′′
xx+(axn−b)w=0.

37. y′′′′xxxx + axn+1y′′xx − 4axny′x + 6axn−1y = 0.

Particular solutions: y1 = x2, y2 = x3. The substitution w = x2y′′xx − 4xy′x + 6y leads

to a second-order linear equation of the form 14.1.2.7: w′′
xx + axn+1w = 0.
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38. y′′′′xxxx + 10axny′′xx + 10anxn−1y′x + [3an(n− 1)xn−2 + 9a2x2n]y = 0.

This is a special case of equation 16.1.6.25 with f = axn.

39. y′′′′xxxx + (axn + b)y′′xx + abxny = 0.

1◦. Particular solutions with b > 0: y1 = cos
(
x
√
b
)
, y2 = sin

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = exp
(
−x
√
−b
)
, y2 = exp

(
x
√
−b
)
.

The substitution w= y′′xx+by leads to a second-order linear equation of the form 14.1.2.7:

w′′
xx + axnw = 0.

40. x2y′′′′xxxx − 2(ax2 + 6)y′′xx + a(ax2 + 4)y = 0.

Particular solutions: y1 = x−1/2I1/2
(
x
√
a
)
, y2 = x−1/2K1/2

(
x
√
a
)
, where I1/2(z) and

K1/2(z) are modified Bessel functions.

◮ Other equations.

41. y′′′′xxxx + a3y
′′′

xxx + a2y
′′

xx + a1y
′

x + a0y = 0.

A fourth-order constant coefficient linear equation. For a0 =0, the substitution w(x) = y′x
leads to a third-order equation. Let a0 6= 0 and P (λ) = λ4 + a3λ

3 + a2λ
2 + a1λ+ a0 be

the characteristic polynomial.

1◦. Let P be factorizable, so that P (λ) = (λ− λ1)(λ− λ2)(λ− λ3)(λ− λ4), where λ1,

λ2, λ3, and λ4 are real numbers. The following cases are possible:

a) λi are all different, then

y = C1e
λ1x + C2e

λ2x + C3e
λ3x + C4e

λ4x;

b) λ1 = λ2; λ3 and λ4 are different and not equal to λ1, then

y = (C1 + C2x)e
λ1x + C3e

λ3x + C4e
λ4x;

c) λ1 = λ2 = λ3 6= λ4, then

y = (C1 + C2x+ C3x
2)eλ1x + C4e

λ4x;

d) λ1 = λ2 = λ3 = λ4, then

y = (C1 + C2x+ C3x
2 + C4x

3)eλ1x.

2◦. Let P (λ) = (λ− λ1)(λ− λ2)(λ2 + 2b1λ+ b0), where λ1 and λ2 are real numbers,

and b21 − b0 < 0. The following cases are possible:

a) λ1 6= λ2, then

y = C1e
λ1x +C2e

λ2x + e−b1x[C3 cos(µx) + C4 sin(µx)], µ =
√
b0 − b21;

b) λ1 = λ2, then

y = (C1 + C2x)e
λ1x + e−b1x[C3 cos(µx) + C4 sin(µx)], µ =

√
b0 − b21.

3◦. Let us assume that P (λ) = (λ2 + 2b1λ+ b0)(λ
2 + 2β1λ+ β0), where b21 − b0 < 0

and β21 − β0 < 0. The following cases are possible:



“K16435’ — 2017/9/28 — 15:05 — #1031

16.1. Linear Equations 1005

a) (b1 − β1)2 + (b0 − β0)2 6= 0, then

y = e−b1x[C1 cos(µx) + C2 sin(µx)] + e−β1x[C3 cos(νx) + C4 sin(νx)],

where µ =
√
b0 − b21, ν =

√
β0 − β21 ;

b) b1 = β1, b0 = β0, then

y = e−b1x[(C1 + C2x) cos(µx) + (C3 + C4x) sin(µx)], µ =
√
b0 − b21.

42. y′′′′xxxx + 4axy′′′xxx + 6a2x2y′′xx + 4a3x3y′x + a4x4y = 0.

Solution: y =
4∑

i=1
Ci exp(λix− 1

2ax
2), where the λi are roots of the biquadratic equation

λ4 − 6aλ2 + 3a2 = 0.

43. y′′′′xxxx + (ax+ b)y′′′xxx + [b(a+ c)x+ c]y′′xx + b2cxy′x − b2cy = 0.

Particular solutions: y1 = x, y2 = e−bx.

44. y′′′′xxxx = axny′′′xxx + by′x − abxny.

Particular solutions: yk = exp(λkx) (k = 1, 2, 3), where the λk are roots of the cubic

equation λ3 − b = 0.

45. y′′′′xxxx + axn+3y′′′xxx − 3axn+2y′′xx + 6axn+1y′x − 6axny = 0.

Particular solutions: y1 = x, y2 = x2, y3 = x3. The substitution w= x3y′′′xxx−3x2y′′xx+
6xy′x − 6y leads to a first-order linear equation: w′

x + axn+3w = 0.

46. y′′′′xxxx + axny′′′xxx + bxm+1y′′xx − 2bxmy′x + 2bxm−1y = 0.

Particular solutions: y1 = x, y2 = x2. The substitution w = x2y′′xx − 2xy′x + 2y leads

to a second-order linear equation: xw′′
xx + (axn+1 − 2)w′

x + bxm+2w = 0.

47. y′′′′xxxx + axny′′′xxx + bxmy′′xx + acxny′x + c(bxm − c)y = 0.

1◦. Particular solutions with c > 0: y1 = cos
(
x
√
c
)
, y2 = sin

(
x
√
c
)
.

2◦. Particular solutions with c < 0: y1 = exp
(
−x
√
−c
)
, y2 = exp

(
x
√
−c
)
.

The substitution w = y′′xx + cy leads to a second-order linear equation: w′′
xx + axnw′

x +
(bxm − c)w = 0.

48. y′′′′xxxx + axny′′′xxx + (bxm + c)y′′xx + acxny′x + bcxmy = 0.

1◦. Particular solutions with c > 0: y1 = cos
(
x
√
c
)
, y2 = sin

(
x
√
c
)
.

2◦. Particular solutions with c < 0: y1 = exp
(
−x
√
−c
)
, y2 = exp

(
x
√
−c
)
.

The substitution w = y′′xx + cy leads to a second-order linear equation: w′′
xx + axnw′

x +
bxmw = 0.

49. xy′′′′xxxx + 4y′′′xxx + axy = 0.

The substitution w(x) = xy leads to a constant coefficient linear equation of the form

16.1.2.1: w′′′′
xxxx + aw = 0.
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50. xy′′′′xxxx − 4ny′′′xxx + axy = 0, n = 1, 2, 3, . . .

Solution: y = x4n+3(x−3D)n(x−3w), where D = d
dx and w = w(x) is the general

solution of a linear constant coefficient equation of the form 16.1.2.1: w′′′′
xxxx + aw = 0.

51. x2y′′′′xxxx + 6xy′′′xxx + 6y′′xx − a2y = 0.

Equation of transverse vibrations of a pointed bar.

Solution: y =
1√
x

[
C1J1

(
2
√
ax
)
+C2Y1

(
2
√
ax
)
+C3I1

(
2
√
ax
)
+C4K1

(
2
√
ax
)]
,

where J1(z) and Y1(z) are Bessel functions, and I1(z) and K1(z) are modified Bessel

functions.

52. x2y′′′′xxxx + 2(a+ 2)xy′′′xxx + (a+ 1)(a+ 2)y′′xx − b4y = 0.

Solution: y = x−a/2
[
C1Ja

(
2b
√
x
)
+ C2Ya

(
2b
√
x
)
+ C3Ia

(
2b
√
x
)
+ C4Ka

(
2b
√
x
)]
,

where Ja(z) and Ya(z) are Bessel functions, and Ia(z) and Ka(z) are modified Bessel

functions.

53. x2y′′′′xxxx + 8xy′′′xxx + 12y′′xx + ax2y = 0.

The substitution w(x) = x2y leads to a constant coefficient linear equation of the form

16.1.2.1: w′′′′
xxxx + aw = 0.

54. x2y′′′′xxxx + 8xy′′′xxx + 12y′′xx = ax3y + b.

The substitution w(x) = x2y leads to an equation of the form 16.1.2.3: w′′′′
xxxx = axw+ b.

55. x2y′′′′xxxx + axy′′′xxx + (bxn+1 + c)y′′xx
+ (a− 4)bxny′x + b(c− 2a+ 6)xn−1y = 0.

The substitution w(x) = x2y′′xx + (a − 4)xy′x + (c − 2a + 6)y leads to a second-order

equation of the form 14.1.2.7: w′′
xx + bxn−1w = 0.

56. x3y′′′′xxxx + 2x2y′′′xxx − xy′′xx + y′x − a4x3y = 0.

Solution: y = C1J0(ax) + C2Y0(ax) + C3I0(ax) + C4K0(ax), where J0(z) and Y0(z)
are Bessel functions, and I0(z) and K0(z) are modified Bessel functions.

57. x4y′′′′xxxx + A3x
3y′′′xxx +A2x

2y′′xx +A1xy
′

x +A0y = 0.

The Euler equation. The substitution t = ln |x| leads to a constant coefficient linear equa-

tion of the form 16.1.2.41:

y′′′′tttt + (A3 − 6)y′′′ttt + (11− 3A3 +A2)y
′′
tt + (2A3 −A2 +A1 − 6)y′t +A0y = 0.

58. x4y′′′′xxxx + 2x3y′′′xxx − (2a2 + 1)x2y′′xx
+ (2a2 + 1)xy′x −

[[
b4x4 − a2(a2 − 4)

]]
y = 0.

This equation governs free transverse vibration modes of a thin round elastic plate. The

equation arises from separation of variables in the two-dimensional equation

∆∆w − b4w = 0,

where ∆ is the Laplace operator written in the polar coordinate system, with x being the

polar radius.

Solution: y =C1Ja(bx)+C2Ya(bx)+C3Ia(bx)+C4Ka(bx), where Ja(z) and Ya(z)
are Bessel functions, and Ia(z) and Ka(z) are modified Bessel functions. In applications,

one usually sets a = n, where n = 0, 1, 2, . . .
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⊙ The solution is specified by Popov (1998).

59. x4y′′′′xxxx − 2n(n+ 1)x2y′′xx
+ 4n(n+ 1)xy′x + [ax4 + n(n+ 1)(n+ 3)(n− 2)]y = 0.

Here, n is a positive integer and a 6= 0 (for a = 0, we have the Euler equation 16.1.2.57).

Solution: y = x−n
4∑

ν=1
Cν exp(λνx)Pν(x), where the λν are four different roots of the

equation λ4 + a = 0, and Pν(x) is some definite polynomial of degree ≤ 4n.

60. x4y′′′′xxxx + 2(2 − n)x3y′′′xxx + (1 − n)(2− n)x2y′′xx − a4x2ny = 0.

Solution: y =
√
x [C1J1/n(ξ) + C2Y1/n(ξ) + C3I1/n(ξ) + C4K1/n(ξ)], where ξ =

2(a/n)xn/2; Jν(ξ) and Yν(ξ) are Bessel functions, and Iν(ξ) and Kν(ξ) are modified

Bessel functions.

61. x4y′′′′xxxx + 6x3y′′′xxx + [4x4 + (7 − a2 − b2)x2]y′′xx
+ x(16x2 + 1 − a2 − b2)y′x + (8x2 + a2b2)y = 0.

Solution for ab 6=0: y=C1Jµ(x)Jν(x)+C2Jµ(x)Yν(x)+C3Yµ(x)Jν(x)+C4Yµ(x)Yν(x),
where Jµ(x) and Yµ(x) are Bessel functions; µ = 1

2 (a+ b) and ν = 1
2 (a− b).

62. x8y′′′′xxxx + 4x7y′′′xxx = ay.

The substitution w(x) = xy leads to an equation of the form 16.1.2.8: x8w′′′′
xxxx = aw.

16.1.3 Equations Containing Exponential and Hyperbolic Functions

◮ Equations with exponential functions.

1. y′′′′xxxx + a3y′x + beax(a2 − beax)y = 0.

The substitution w = y′′xx + ay′x + beaxy leads to a second-order linear equation of the

form 14.1.3.10: w′′
xx − aw′

x + (a2 − beax)w = 0.

2. y′′′′xxxx + aeλxy′x + aλeλxy = beµx.

Integrating yields a third-order linear equation: y′′′xxx + aeλxy = bµ−1eµx +C .

3. y′′′′xxxx + aeλxy′x − (abeλx + b4)y = 0.

Particular solution: y0 = ebx.

4. y′′′′xxxx + 2aλeλxy′x + a(λ2eλx − ae2λx)y = 0.

The substitution w = y′′xx + aeλxy leads to a second-order linear equation of the form

14.1.3.1: w′′
xx − aeλxw = 0.

5. y′′′′xxxx + (aeλx + b3)y′x + abeλxy = 0.

Particular solution: y0 = e−bx.

6. y′′′′xxxx + (ax+ b)eλxy′x − aeλxy = 0.

Particular solution: y0 = ax+ b.
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7. y′′′′xxxx + (ax+ b)eλxy′x − 2aeλxy = 0.

Particular solution: y0 = (ax+ b)2.

8. y′′′′xxxx + (ax+ b)eλxy′x − 3aeλxy = 0.

Particular solution: y0 = (ax+ b)3.

9. y′′′′xxxx + aeλxy′′xx − b(aeλx + b)y = 0.

1◦. Particular solutions with b > 0: y1 = exp
(
−x
√
b
)
, y2 = exp

(
x
√
b
)
.

2◦. Particular solutions with b < 0: y1 = cos
(
x
√
−b
)
, y2 = sin

(
x
√
−b
)
.

The substitution w= y′′xx−by leads to a second-order linear equation of the form 14.1.3.2:

w′′
xx + (aeλx + b)w = 0.

10. y′′′′xxxx + (a+ beλx)y′′xx + abeλxy = 0.

1◦. Particular solutions with a > 0: y1 = cos
(
x
√
a
)
, y2 = sin

(
x
√
a
)
.

2◦. Particular solutions with a < 0: y1 = exp
(
−x
√
−a
)
, y2 = exp

(
x
√
−a
)
.

The substitution w= y′′xx+ay leads to a second-order linear equation of the form 14.1.3.1:

w′′
xx + beλxw = 0.

11. y′′′′xxxx + 10aeλxy′′xx + 10aλeλxy′x + (3aλ2eλx + 9a2e2λx)y = 0.

This is a special case of equation 16.1.6.25 with f(x) = aeλx.

12. y′′′′xxxx + ay′′′xxx + beλxy′x + abeλxy = 0.

Particular solution: y0 = e−ax.

13. y′′′′xxxx = aeλxy′′′xxx + by′x − abeλxy.

Particular solutions: yk = eβkx (k = 1, 2, 3), where the βk are roots of the cubic equation

β3 − b = 0.

14. y′′′′xxxx + aeλxy′′′xxx + beµxy′′xx + aceλxy′x + c(beµx − c)y = 0.

1◦. Particular solutions with c > 0: y1 = cos
(
x
√
c
)
, y2 = sin

(
x
√
c
)
.

2◦. Particular solutions with c < 0: y1 = exp
(
−x
√
−c
)
, y2 = exp

(
x
√
−c
)
.

The substitution w = y′′xx + cy leads to a second-order linear equation: w′′
xx + aeλxw′

x +
(beµx − c)w = 0.

15. y′′′′xxxx + aeλxy′′′xxx + (beµx + c)y′′xx + aceλxy′x + bceµxy = 0.

1◦. Particular solutions with c > 0: y1 = cos
(
x
√
c
)
, y2 = sin

(
x
√
c
)
.

2◦. Particular solutions with c < 0: y1 = exp
(
−x
√
−c
)
, y2 = exp

(
x
√
−c
)
.

The substitution w=y′′xx+cy leads to a second-order equation: w′′
xx+ae

λxw′
x+be

µxw=0.

16. y′′′′xxxx + ax3eλxy′′′xxx − 3ax2eλxy′′xx + 6axeλxy′x − 6aeλxy = 0.

Particular solutions: y1 = x, y2 = x2, y3 = x3. The substitution w= x3y′′′xxx−3x2y′′xx+
6xy′x − 6y leads to a first-order linear equation: w′

x + ax3eλxw = 0.

17. xy′′′′xxxx + axeλxy′x − [a(x+ 1)eλx + x+ 4]y = 0.

Particular solution: y0 = xex.
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18. (aex + b)y′′′′xxxx = aexy.

Particular solution: y0 = aex + b.

19. (axm + bex + c)y′′′′xxxx = bexy, m = 1, 2, 3.

Particular solution: y0 = axm + bex + c.

20. (axmex + b)y′′′′xxxx = by, m = 0, 1, 2, 3.

Particular solution: y0 = axm + be−x.

21. y′′′′xxxx + b exp(λxn) y′′xx + a[b exp(λxn) − a]y = 0.

This is a special case of equation 16.1.6.20 with f(x) = b exp(λxn).

22. y′′′′xxxx + [a+ b exp(λxn)]y′′xx + ab exp(λxn) y = 0.

This is a special case of equation 16.1.6.21 with f(x) = b exp(λxn).

◮ Equations with hyperbolic functions.

23. y′′′′xxxx + a sinhn(λx) y′x + b[a sinhn(λx)− b3]y = 0.

Particular solution: y0 = e−bx.

24. y′′′′xxxx + [a sinhn(λx) + b3]y′x + ab sinhn(λx) y = 0.

Particular solution: y0 = e−bx.

25. y′′′′xxxx + (ax+ b) sinhn(λx)y′x − a sinhn(λx)y = 0.

Particular solution: y0 = ax+ b.

26. y′′′′xxxx + (ax+ b) sinhn(λx)y′x − 2a sinhn(λx)y = 0.

Particular solution: y0 = (ax+ b)2.

27. y′′′′xxxx + (ax+ b) sinhn(λx)y′x − 3a sinhn(λx)y = 0.

Particular solution: y0 = (ax+ b)3.

28. y′′′′xxxx + b sinhn(λx) y′′xx + a[b sinhn(λx)− a]y = 0.

This is a special case of equation 16.1.6.20 with f(x) = b sinhn(λx).

29. y′′′′xxxx + [a+ b sinhn(λx)]y′′xx + ab sinhn(λx) y = 0.

This is a special case of equation 16.1.6.21 with f(x) = b sinhn(λx).

30. (axm + b sinhx)y′′′′xxxx = b sinhx y, m = 1, 2, 3.

Particular solution: y0 = axm + b sinh x.

31. y′′′′xxxx + a coshn(λx) y′x + b[a coshn(λx)− b3]y = 0.

Particular solution: y0 = e−bx.

32. y′′′′xxxx + [a coshn(λx) + b3]y′x + ab coshn(λx) y = 0.

Particular solution: y0 = e−bx.
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33. y′′′′xxxx + (ax+ b) coshn(λx)y′x − a coshn(λx)y = 0.

Particular solution: y0 = ax+ b.

34. y′′′′xxxx + (ax+ b) coshn(λx)y′x − 2a coshn(λx)y = 0.

Particular solution: y0 = (ax+ b)2.

35. y′′′′xxxx + (ax+ b) coshn(λx)y′x − 3a coshn(λx)y = 0.

Particular solution: y0 = (ax+ b)3.

36. y′′′′xxxx + b coshn(λx) y′′xx + a[b coshn(λx)− a]y = 0.

This is a special case of equation 16.1.6.20 with f(x) = b coshn(λx).

37. y′′′′xxxx + [a+ b coshn(λx)]y′′xx + ab coshn(λx) y = 0.

This is a special case of equation 16.1.6.21 with f(x) = b coshn(λx).

38. (axm + b cosh x)y′′′′xxxx = b cosh x y, m = 1, 2, 3.

Particular solution: y0 = axm + b cosh x.

39. y′′′′xxxx = y + a(y′x cosh x− y sinhx).

The substitution w = y′x cosh x− y sinhx leads to a third-order linear equation.

40. y′′′′xxxx = y + a(y′x sinh x− y cosh x).

The substitution w = y′x sinh x− y coshx leads to a third-order linear equation.

41. y′′′′xxxx + a tanhn(λx) y′x + b[a tanhn(λx)− b3]y = 0.

Particular solution: y0 = e−bx.

42. y′′′′xxxx + [a tanhn(λx) + b3]y′x + ab tanhn(λx) y = 0.

Particular solution: y0 = e−bx.

43. y′′′′xxxx + (ax+ b) tanhn(λx)y′x − a tanhn(λx)y = 0.

Particular solution: y0 = ax+ b.

44. y′′′′xxxx + (ax+ b) tanhn(λx)y′x − 2a tanhn(λx)y = 0.

Particular solution: y0 = (ax+ b)2.

45. y′′′′xxxx + (ax+ b) tanhn(λx)y′x − 3a tanhn(λx)y = 0.

Particular solution: y0 = (ax+ b)3.

46. y′′′′xxxx + b tanhn(λx) y′′xx + a[b tanhn(λx) − a]y = 0.

This is a special case of equation 16.1.6.20 with f(x) = b tanhn(λx).

47. y′′′′xxxx + [a+ b tanhn(λx)]y′′xx + ab tanhn(λx) y = 0.

This is a special case of equation 16.1.6.21 with f(x) = b tanhn(λx).

48. y′′′′xxxx + a cothn(λx) y′x + b[a cothn(λx)− b3]y = 0.

Particular solution: y0 = e−bx.
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49. y′′′′xxxx + [a cothn(λx) + b3]y′x + ab cothn(λx) y = 0.

Particular solution: y0 = e−bx.

50. y′′′′xxxx + b cothn(λx) y′′xx + a[b cothn(λx)− a]y = 0.

This is a special case of equation 16.1.6.20 with f(x) = b cothn(λx).

51. y′′′′xxxx + [a+ b cothn(λx)]y′′xx + ab cothn(λx) y = 0.

This is a special case of equation 16.1.6.21 with f(x) = b cothn(λx).

16.1.4 Equations Containing Logarithmic Functions

1. y′′′′xxxx + a lnk x y′x − (ab lnk x+ b4)y = 0.

Particular solution: y0 = ebx.

2. y′′′′xxxx + (ax+ b) lnk(λx)y′x − a lnk(λx)y = 0.

Particular solution: y0 = ax+ b.

3. y′′′′xxxx + (ax+ b) lnk(λx)y′x − 2a lnk(λx)y = 0.

Particular solution: y0 = (ax+ b)2.

4. y′′′′xxxx + (ax+ b) lnk(λx)y′x − 3a lnk(λx)y = 0.

Particular solution: y0 = (ax+ b)3.

5. x2y′′′′xxxx + 2axy′x − a[1 + ax2 ln2(bx)]y = 0.

The substitution w = y′′xx + a ln(bx) y leads to a second-order linear equation: w′′
xx −

a ln(bx)w = 0.

6. y′′′′xxxx + b lnk(λx) y′′xx + a[b lnk(λx) − a]y = 0.

This is a special case of equation 16.1.6.20 with f(x) = b lnk(λx).

7. y′′′′xxxx + [a+ b lnk(λx)]y′′xx + ab lnk(λx) y = 0.

This is a special case of equation 16.1.6.21 with f(x) = b lnk(λx).

8. y′′′′xxxx + lnk(λx)(x2y′′xx − 2xy′x + 2y) = 0.

Particular solutions: y1 = x, y2 = x2.

9. y′′′′xxxx + lnk(λx)(x2y′′xx − 4xy′x + 6y) = 0.

Particular solutions: y1 = x2, y2 = x3.

10. y′′′′xxxx + ax2 lnk(λx)y′′xx − 2a lnk(λx)y = 0.

Particular solution: y0 = x2.

11. y′′′′xxxx + ay′′′xxx + b lnk(λx)y′x + ab lnk(λx)y = 0.

Particular solution: y0 = e−ax.
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16.1.5 Equations Containing Trigonometric Functions

◮ Equations with sine and cosine.

1. y′′′′xxxx + a sinn(λx) y′x + b[a sinn(λx)− b3]y = 0.

Particular solution: y0 = e−bx.

2. y′′′′xxxx + [a sinn(λx) + b3]y′x + ab sinn(λx) y = 0.

Particular solution: y0 = e−bx.

3. y′′′′xxxx + (ax+ b) sinn(λx)y′x − a sinn(λx)y = 0.

Particular solution: y0 = ax+ b.

4. y′′′′xxxx + (ax+ b) sinn(λx)y′x − 2a sinn(λx)y = 0.

Particular solution: y0 = (ax+ b)2.

5. y′′′′xxxx + (ax+ b) sinn(λx)y′x − 3a sinn(λx)y = 0.

Particular solution: y0 = (ax+ b)3.

6. y′′′′xxxx + a sinn(λx) y′′xx + b[a sinn(λx)− b]y = 0.

The substitution u=y′′xx+by leads to a second-order equation: u′′xx+[a sinn(λx)−b]u=0.

7. y′′′′xxxx + [a+ b sinn(λx)]y′′xx + ab sinn(λx) y = 0.

The substitution w = y′′xx+ay leads to a second-order equation: w′′
xx+ b sin

n(λx)w = 0.

8. y′′′′xxxx = a sinn(λx) y′′′xxx + by′x − ab sinn(λx) y.

Particular solutions: yk = eβkx (k = 1, 2, 3), where the βk are roots of the cubic equation

β3 − b = 0.

9. y′′′′xxxx + a sinn(λx) (x3y′′′xxx − 3x2y′′xx + 6xy′x − 6y) = 0.

This is a special case of equation 16.1.6.33 with f(x) = a sinn(λx).

10. x2y′′′′xxxx + a sinn(λx) (x2y′′xx − 4xy′x + 6y) = 0.

The substitution u = x2y′′xx − 4xy′x + 6y leads to a second-order linear equation: u′′xx +
a sinn(λx)u = 0.

11. (a sin x+ b)y′′′′xxxx = a sin x y.

Particular solution: y0 = a sinx+ b.

12. (ax+ b sin x)y′′′′xxxx = b sin x y.

Particular solution: y0 = ax+ b sinx.

13. (axm + b sin x)y′′′′xxxx = b sin x y, m = 2, 3.

Particular solution: y0 = axm + b sinx.

14. y′′′′xxxx + a cosn(λx) y′x + b[a cosn(λx) − b3]y = 0.

Particular solution: y0 = e−bx.
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15. y′′′′xxxx + [a cosn(λx) + b3]y′x + ab cosn(λx) y = 0.

Particular solution: y0 = e−bx.

16. y′′′′xxxx + (ax+ b) cosn(λx)y′x − a cosn(λx)y = 0.

Particular solution: y0 = ax+ b.

17. y′′′′xxxx + (ax+ b) cosn(λx)y′x − 2a cosn(λx)y = 0.

Particular solution: y0 = (ax+ b)2.

18. y′′′′xxxx + (ax+ b) cosn(λx)y′x − 3a cosn(λx)y = 0.

Particular solution: y0 = (ax+ b)3.

19. y′′′′xxxx + a cosn(λx) y′′xx + b[a cosn(λx)− b]y = 0.

The substitution u=y′′xx+by leads to a second-order equation: u′′xx+[a cosn(λx)−b]u=0.

20. y′′′′xxxx + [a+ b cosn(λx)]y′′xx + ab cosn(λx) y = 0.

The substitution u = y′′xx+ ay leads to a second-order equation: u′′xx + b cosn(λx)u = 0.

21. y′′′′xxxx = a cosn(λx) y′′′xxx + by′x − ab cosn(λx) y.

Particular solutions: yk = eβkx (k = 1, 2, 3), where the βk are roots of the cubic equation

β3 − b = 0.

22. y′′′′xxxx + a cosn(λx) (x3y′′′xxx − 3x2y′′xx + 6xy′x − 6y) = 0.

This is a special case of equation 16.1.6.33 with f(x) = a cosn(λx).

23. x2y′′′′xxxx + a cosn(λx) (x2y′′xx − 4xy′x + 6y) = 0.

The substitution u = x2y′′xx − 4xy′x + 6y leads to a second-order linear equation: u′′xx +
a cosn(λx)u = 0.

24. (a cos x+ b)y′′′′xxxx = a cos x y.

Particular solution: y0 = a cos x+ b.

25. (ax+ b cos x)y′′′′xxxx = b cos x y.

Particular solution: y0 = ax+ b cos x.

26. (axm + b cos x)y′′′′xxxx = b cosx y, m = 2, 3.

Particular solution: y0 = axm + b cos x.

27. y′′′′xxxx + 2ab cos(bx) y′x − a[b2 sin(bx) + a sin2(bx)]y = 0.

The substitution w = y′′xx+a sin(bx) y leads to a second-order linear equation of the form

14.1.6.2: w′′
xx − a sin(bx)w = 0.
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28. sin4 x y′′′′xxxx + 2 sin3 x cosx y′′′xxx + sin2 x (sin2 x− 3) y′′xx
+ sin x cos x (2 sin2 x+ 3) y′x + (a4 sin4 x− 3)y = 0.

Equation of a loaded rigid spherical shell. If a4 = 1−λ2, the equation can be rewritten as

LL(y)− λ2y = 0, where L ≡ d2

dx2
+ cot x

d

dx
− cot2 x.

This equation falls into two second-order equations:

L(y) + λy = 0, L(y)− λy = 0,

which differ only in the sign of the parameter λ. The transformation ξ = sin2 x, w =
y/sinx reduces the latter equations to the hypergeometric equations 2.1.2.171:

ξ(ξ − 1)w′′
ξξ + ( 52 ξ − 2)w′

ξ +
1
4 (1∓ λ)w = 0.

29. y′′′′xxxx = y + a(y′x sin x− y cos x).

The substitution w = y′x sinx− y cos x leads to a third-order linear equation.

30. y′′′′xxxx = y + a(y′x cos x+ y sin x).

The substitution w = y′x cos x+ y sinx leads to a third-order linear equation.

◮ Equations with tangent and cotangent.

31. y′′′′xxxx + ay′x + (a tanx− 1)y = 0.

Particular solution: y0 = cos x.

32. y′′′′xxxx + (ax+ b) tann(λx)y′x − a tann(λx)y = 0.

Particular solution: y0 = ax+ b.

33. y′′′′xxxx + (ax+ b) tann(λx)y′x − 2a tann(λx)y = 0.

Particular solution: y0 = (ax+ b)2.

34. y′′′′xxxx + (ax+ b) tann(λx)y′x − 3a tann(λx)y = 0.

Particular solution: y0 = (ax+ b)3.

35. y′′′′xxxx + a tann(λx) y′x + b[a tann(λx) − b3]y = 0.

Particular solution: y0 = e−bx.

36. y′′′′xxxx + [a tann(λx) + b3]y′x + ab tann(λx) y = 0.

Particular solution: y0 = e−bx.

37. y′′′′xxxx + b tann(λx) y′′xx + a[b tann(λx)− a]y = 0.

This is a special case of equation 16.1.6.20 with f(x) = b tann(λx).

38. y′′′′xxxx + [a+ b tann(λx)]y′′xx + ab tann(λx) y = 0.

This is a special case of equation 16.1.6.21 with f(x) = b tann(λx).
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39. y′′′′xxxx = a tann(λx) y′′′xxx + by′x − ab tann(λx) y.

Particular solutions: yk = eβkx (k = 1, 2, 3), where the βk are roots of the cubic equation

β3 − b = 0.

40. y′′′′xxxx + ay′x − (1 + a cot x)y = 0.

Particular solution: y0 = sinx.

41. y′′′′xxxx + (ax+ b) cotn(λx)y′x − a cotn(λx)y = 0.

Particular solution: y0 = ax+ b.

42. y′′′′xxxx + (ax+ b) cotn(λx)y′x − 2a cotn(λx)y = 0.

Particular solution: y0 = (ax+ b)2.

43. y′′′′xxxx + (ax+ b) cotn(λx)y′x − 3a cotn(λx)y = 0.

Particular solution: y0 = (ax+ b)3.

44. y′′′′xxxx + a cotn(λx) y′x + b[a cotn(λx) − b3]y = 0.

Particular solution: y0 = e−bx.

45. y′′′′xxxx + [a cotn(λx) + b3]y′x + ab cotn(λx) y = 0.

Particular solution: y0 = e−bx.

46. y′′′′xxxx + b cotn(λx) y′′xx + a[b cotn(λx) − a]y = 0.

This is a special case of equation 16.1.6.20 with f(x) = b cotn(λx).

47. y′′′′xxxx + [a+ b cotn(λx)]y′′xx + ab cotn(λx) y = 0.

This is a special case of equation 16.1.6.21 with f(x) = b cotn(λx).

48. y′′′′xxxx = a cotn(λx) y′′′xxx + by′x − ab cotn(λx) y.

Particular solutions: yk = eβkx (k = 1, 2, 3), where the βk are roots of the cubic equation

β3 − b = 0.

16.1.6 Equations Containing Arbitrary Functions

◮ Equations of the form f4(x)y
′′′′

xxxx + f1(x)y
′

x + f0(x)y = g(x).

1. y′′′′xxxx = f(x)y.

The transformation x = t−1, y = ut−3 leads to an equation of the same form: u′′′′tttt =
t−8f(1/t)u.

2. y′′′′xxxx = f
((
ax+ b

cx+ d

))
y

(cx+ d)8
.

The transformation z =
ax+ b

cx+ d
, u =

y

(cx+ d)3
leads to a simpler equation: u′′′′zzzz =

∆−4f(z)u, where ∆ = ad− bc.

3. fy′′′′xxxx − f ′′′′

xxxxy = 0, f = f(x).

Particular solution: y0 = f(x).
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4. y′′′′xxxx + fy′x − a(f + a3)y = 0, f = f(x).

Particular solution: y0 = eax.

5. y′′′′xxxx + (f + a3)y′x + afy = 0, f = f(x).

Particular solution: y0 = e−ax.

6. y′′′′xxxx + (ax+ b)f(x)y′x − af(x)y = 0.

Particular solution: y0 = ax+ b.

7. y′′′′xxxx + (ax+ b)f(x)y′x − 2af(x)y = 0.

Particular solution: y0 = (ax+ b)2.

8. y′′′′xxxx + (ax+ b)f(x)y′x − 3af(x)y = 0.

Particular solution: y0 = (ax + b)3. The substitution z = (ax + b)y′x − 3ay leads to a

third-order linear equation: z′′′xxx + (ax+ b)f(x)z = 0.

9. y′′′′xxxx + f(x)y′x + f ′

x(x)y = g(x).

Integrating yields a third-order linear equation: y′′′xxx + f(x)y =

∫
g(x) dx + C .

10. y′′′′xxxx + 2f ′

xy
′

x + (f ′′

xx − f2)y = 0, f = f(x).

The substitution w = y′′xx + f(x)y leads to a second-order equation: w′′
xx − f(x)w = 0.

11. xy′′′′xxxx + xf(x)y′x − [(x+ 1)f(x) + x+ 4]y = 0.

Particular solution: y0 = xex.

12. y′′′′xxxx + f(x)y′x + g(x)y + h(x) = 0.

The transformation x = t−1, y = wt−3 leads to an equation of the same form:

w′′′′
tttt − t−6f(1/t)w′

t +
[
3t−7f(1/t) + t−8g(1/t)

]
w + t−5h(1/t) = 0.

13. y′′′′xxxx = y + f(x)(y′x cosh x− y sinhx).

The substitution w = y′x cosh x− y sinhx leads to a third-order linear equation.

14. y′′′′xxxx = y + f(x)(y′x sinhx− y cosh x).

The substitution w = y′x sinh x− y coshx leads to a third-order linear equation.

15. y′′′′xxxx = y + f(x)(y′x sin x− y cosx).

The substitution w = y′x sinx− y cos x leads to a third-order linear equation.

16. y′′′′xxxx = y + f(x)(y′x cosx+ y sin x).

The substitution w = y′x cos x+ y sinx leads to a third-order linear equation.

17. y′′′′xxxx + fy′x + (f tanx− 1)y = 0, f = f(x).

Particular solution: y0 = cos x.

18. y′′′′xxxx + fy′x − (1 + f cotx)y = 0, f = f(x).

Particular solution: y0 = sinx.

19. y′′′′xxxx =
ϕ′′′′

xxxx

ϕ
y + f(x)

((
y′x − ϕ′

x

ϕ
y
))
, ϕ = ϕ(x).

The substitution w = y′x −
ϕ′
x

ϕ
y leads to a third-order linear equation.
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◮ Equations of the form f4(x)y
′′′′

xxxx + f2(x)y
′′

xx + f1(x)y
′

x + f0(x)y = g(x).

20. y′′′′xxxx + fy′′xx + a(f − a)y = 0, f = f(x).

1◦. Particular solutions with a > 0: y1 = cos
(
x
√
a
)
, y2 = sin

(
x
√
a
)
.

2◦. Particular solutions with a < 0: y1 = exp
(
−x√−a

)
, y2 = exp

(
x
√−a

)
.

The substitution w= y′′xx+ay leads to a second-order linear equation: w′′
xx+(f−a)w=0.

21. y′′′′xxxx + (f + a)y′′xx + afy = 0, f = f(x).

1◦. Particular solutions with a > 0: y1 = cos
(
x
√
a
)
, y2 = sin

(
x
√
a
)
.

2◦. Particular solutions with a < 0: y1 = exp
(
−x
√
−a
)
, y2 = exp

(
x
√
−a
)
.

The substitution w = y′′xx+ay leads to a second-order linear equation: w′′
xx+f(x)w = 0.

22. y′′′′xxxx + f(x)(x2y′′xx − 2xy′x + 2y) = 0.

Particular solutions: y1 = x, y2 = x2. The substitution z = x2y′′xx − 2xy′x + 2y leads

to a second-order linear equation: xz′′xx − 2z′x + x3f(x)z = 0.

23. y′′′′xxxx + f(x)(x2y′′xx − 4xy′x + 6y) = 0.

Particular solutions: y1 = x2, y2 = x3. The substitution w = x2y′′xx − 4xy′x + 6y leads

to a second-order linear equation: w′′
xx + x2f(x)w = 0.

24. y′′′′xxxx + (ax2 + bx+ c)f(x)y′′xx − 2af(x)y = 0.

Particular solution: y0 = ax2 + bx+ c.

25. y′′′′xxxx + 10fy′′xx + 10f ′

xy
′

x + (3f ′′

xx + 9f2)y = 0, f = f(x).

Solution:

y = C1w
3
1 + C2w

2
1w2 + C3w1w

2
2 + C4w

3
2,

where w1 and w2 are nontrivial linearly independent solutions of the second-order linear

equation: w′′
xx + fw = 0.

26. y′′′′xxxx+(f+g)y′′xx+2f ′

xy
′

x+(f ′′

xx+fg)y = 0, f = f(x), g = g(x).

The substitution w = y′′xx + fy leads to a second-order linear equation: w′′
xx + gw = 0.

◮ Other equations.

27. y′′′′xxxx + f(x)y′′′xxx + xg(x)y′x − 2g(x)y = 0.

Particular solution: y0 = x2.

28. y′′′′xxxx + f(x)y′′′xxx − 2a2y′′xx − a2f(x)y′x + a4y = 0.

Particular solutions: y1 = e−ax, y2 = eax.

29. y′′′′xxxx + fy′′′xxx+ gy′′xx+afy′x+a(g−a)y = 0, f = f(x), g = g(x).

1◦. Particular solutions with a > 0: y1 = cos
(
x
√
a
)
, y2 = sin

(
x
√
a
)
.

2◦. Particular solutions with a < 0: y1 = exp
(
−x
√
−a
)
, y2 = exp

(
x
√
−a
)
.

The substitution w= y′′xx+ay leads to a second-order equation: w′′
xx+fw

′
x+(g−a)w=0.
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30. y′′′′xxxx + fy′′′xxx+(g+a)y′′xx+afy′x+agy = 0, f = f(x), g = g(x).

1◦. Particular solutions with a > 0: y1 = cos
(
x
√
a
)
, y2 = sin

(
x
√
a
)
.

2◦. Particular solutions with a < 0: y1 = exp
(
−x√−a

)
, y2 = exp

(
x
√−a

)
.

The substitution w=y′′xx+ay leads to a second-order linear equation: w′′
xx+fw

′
x+gw=0.

31. y′′′′xxxx + f(x)y′′′xxx + g(x)y′′xx + xh(x)y′x − h(x)y = 0.

Particular solution: y0 = x.

32. y′′′′xxxx + f(x)y′′′xxx + g(x)(x2y′′xx − 2xy′x + 2y) = 0.

Particular solutions: y1 = x, y2 = x2. The substitution z = x2y′′xx− 2xy′x +2y leads to

a second-order linear equation: xz′′xx + [xf(x)− 2]z′x + x3g(x)z = 0.

33. y′′′′xxxx + f(x)(x3y′′′xxx − 3x2y′′xx + 6xy′x − 6y) = 0.

Particular solutions: y1 = x, y2 = x2, y3 = x3. The substitution w= x3y′′′xxx−3x2y′′xx+
6xy′x − 6y leads to a first-order linear equation: w′

x + x3f(x)w = 0.

34. y′′′′xxxx = f(x)y′′′xxx + ay′x − af(x)y.

Particular solutions: yk = eλkx (k = 1, 2, 3), where the λk are roots of the cubic equation

λ3 − a = 0.

35. y′′′′xxxx = (f − a)y′′′xxx + (af − b)y′′xx + (bf − c)y′x + cfy, f = f(x).

Particular solutions: yk = eλkx (k = 1, 2, 3), where the λk are roots of the cubic equation

λ3 + aλ2 + bλ+ c = 0.

36. y′′′′xxxx + (f + a)y′′′xxx + (af + g + axg)y′′xx + a2xgy′x − a2gy = 0,

f = f(x), g = g(x).

Particular solutions: y1 = x, y2 = e−ax.

37. y′′′′xxxx + (f3 + a)y′′′xxx + (f2 + af3)y
′′

xx + (f1 + af2)y
′

x + af1y = 0,

fn = fn(x) (n = 1, 2, 3).

Particular solution: y0 = e−ax.

38. xy′′′′xxxx + 4y′′′xxx + axy = f(x).

The substitution w(x) = xy leads to a constant coefficient nonhomogeneous linear equa-

tion: w′′′′
xxxx + aw = f(x).

39. x2y′′′′xxxx + axy′′′xxx + (x2f + b)y′′xx
+ (a− 4)xfy′x + (b− 2a+ 6)fy = 0, f = f(x).

The substitution w = x2y′′xx + (a− 4)xy′x + (b− 2a+ 6)y leads to a second-order linear

equation: w′′
xx + fw = 0.

40. x4y′′′′xxxx + ax3y′′′xxx + xf(x)y′x + (a− 3)f(x)y = 0.

Particular solution: y0 = x3−a.
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41. y′′′′xxxx + 6fy′′′xxx + (4f ′

x + 11f2 + 10g)y′′xx
+ (f ′′

xx + 7ff ′

x + 6f3 + 30fg + 10g′x)y
′

x

+ 3(2f ′

xg + 5fg′x + 6f2g + g′′xx + 3g2)y = 0.

Here f = f(x) and g = g(x). Solution:

y = C1w
3
1 + C2w

2
1w2 + C3w1w

2
2 + C4w

3
2,

where w1 and w2 are nontrivial linearly independent solutions of the second-order linear

equation: w′′
xx + fw′

x + gw = 0.

42. (fy′′xx)
′′

xx = 0, f = f(x).

Equation of transverse vibrations of a bar. Solution:

y = C1 + C2x+

∫ x

x0

x− t
f(t)

(C3 + C4t) dt.

16.2 Nonlinear Equations

16.2.1 Equations Containing Power Functions

◮ Equations of the form y′′′′xxxx = f(x, y).

1. y′′′′xxxx = Ay−5/3.

Multiply both sides of the equation by y5/3 and differentiate the resulting expression with

respect to x to obtain

3yy(5)x + 5y′xy
′′′′
xxxx = 0.

Integrating this equation three times, we arrive at the chain of equalities:

3yy′′′′xxxx + 2y′xy
′′′
xxx − (y′′xx)

2 = 2C2, (1)

3yy′′′xxx − y′xy′′xx = 2C2x+ C1, (2)

3yy′′xx − 2(y′x)
2 = C2x

2 + C1x+ C0, (3)

where C0, C1, and C2 are arbitrary constants. By eliminating the highest derivatives from

(1)–(3) with the help of the original equation, we obtain a first-order equation:

(2Py′x − 3P ′
xy)

2 = 9(C2
1 − 4C0C2)y

2 − 2P 3 + 54APy4/3,

where P =C2x
2+C1x+C0. The substitution y=(P/w)3/2 leads to a separable equation,

the integration of which finally yields:

∫ [
9(C2

1 − 4C0C2) + 54Aw − 2w3
]−1/2 dw

w
±
∫

dx

3P
= C3.

2. y′′′′xxxx = Aym.

This is a special case of equation 16.2.6.1 with f(w) = Aym.
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1◦. By integrating, we obtain

2y′xy
′′′
xxx − (y′′xx)

2 =
2A

m+ 1
ym+1 +

4

3
C,

where C is an arbitrary constant (m 6= −1). The substitution w(y) = (y′x)
3/2 leads to a

second-order equation:

w′′
yy =

( 3A

2m+ 2
ym+1 + C

)
w−5/3.

The value C = 0 corresponds to the Emden–Fowler equation, whose integrable cases

are specified in Section 2.3 for some values of m (to those cases there correspond three-

parameter families of particular solutions of the original equation).

2◦. Particular solution: y =
[ 8(m+ 1)(m+ 3)(3m + 1)

A(m− 1)4

] 1
m−1 (

x+ C
) 4
1−m .

3. y′′′′xxxx = ax−3m−5ym.

The transformation x = t−1, y = t−3w(t) leads to an equation of the form 16.2.1.2:

w′′′′
tttt = awm.

4. y′′′′xxxx = ax−
3m+5

2 ym.

This is a special case of equation 16.2.6.5 with f(w) = awm.

5. y′′′′xxxx = axnym.

Generalized homogeneous equation.

1◦. The transformation t = xn+4ym−1, u = xy′x/y leads to a third-order equation.

2◦. The transformation x = z−1, y = z−3w(z) leads to an equation of the same form:

w′′′′
zzzz = z−n−3m−5wm.

6. y′′′′xxxx = (ay + bxk)m, k = 0, 1, 2, 3.

The substitution aw= ay+bxk leads to an equation of the form 16.2.1.2: w′′′′
xxxx= amwm.

7. x3m+1(ax+ b)4y′′′′xxxx = cym.

This is a special case of equation 16.2.6.10 with f(w) = cwm.

8. y′′′′xxxx = (ax2 + bx+ c)
−

3m+5
2 ym.

This is a special case of equation 16.2.6.12 with f(w) = wm.

◮ Equations of the form y′′′′xxxx = f(x, y, y′x).

9. y′′′′xxxx = ayny′x + bxk.

By integrating, we find y′′′xxx =
a

n+ 1
yn+1 +

b

k + 1
xk+1 + C. For b = 0, the order of

this equation can be reduced by one with the help of the substitution w(y) = y′x.
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10. y′′′′xxxx = ax− 4(xy′x − y)n.

The transformation t = ln |x|, w = xy′x − y leads to a third-order autonomous equation:

w′′′
ttt − 5w′′

tt + 6w′
t = awn.

11. y′′′′xxxx = axn(xy′x − y)k.

This is a special case of equation 16.2.6.23 with f(x,w) = axnwk . The substitution w =
xy′x − y leads to a third-order generalized homogeneous equation: (w′

x/x)
′′
xx = axnwk.

12. y′′′′xxxx = axn(xy′x − 2y)k.

This is a special case of equation 16.2.6.24 with f(x,w) = axnwk . The substitution w =
xy′x − 2y leads to a third-order generalized homogeneous equation: xw′′′

xxx − w′′
xx =

axn+2wk .

13. y′′′′xxxx = axn(xy′x − 3y)k.

This is a special case of equation 16.2.6.25 with f(x,w) = axnwk . The substitution w =
xy′x − 3y leads to a third-order generalized homogeneous equation: w′′′

xxx = axn+1wk.

14. y′′′′xxxx = a4y + bxn(y′x − ay)k.

The substitution u= y′x−ay leads to a third-order equation: u′′′xxx+au
′′
xx+a

2u′x+a
3u=

bxnuk.

◮ Equations of the form y′′′′xxxx = f(x, y, y′x, y
′′

xx).

15. y′′′′xxxx + ay′′xx = byn + c.

This is a special case of equation 16.2.6.33 with f(y) = byn + c.

16. y′′′′xxxx − 5
2
ay′′xx + 9

16
a2y = by−5/3.

The transformation ξ = ex
√
a, w(ξ) = ξ3/2y leads to an autonomous equation of the form

16.2.1.1: w′′′′
ξξξξ = a−2bw−5/3.

17. y′′′′xxxx + ay′′xx + by = cyy′′xx − c(y′x)
2 + k.

1◦. Particular solution:

y = C1 sinh(C4x) + C2 cosh(C4x) + C3,

where the constants C1, C2, C3, and C4 are related by two constraints

C4
4 + (a− cC3)C

2
4 + b = 0,

c(C2
2 − C2

1 )C
2
4 − bC3 + k = 0.

2◦. Particular solution:

y = C1 sin(C4x) + C2 cos(C4x) + C3,

where the constants C1, C2, C3, and C4 are related by two constraints

C4
4 − (a− cC3)C

2
4 + b = 0,

c(C2
1 + C2

2 )C
2
4 + bC3 − k = 0.

18. y′′′′xxxx + ayy′′xx + by′′xx − a(y′x)
2 + cy′x = 0.

Particular solution: y = C1 exp(C2x)−
C3
2 + bC2 + c

aC2
.
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19. y′′′′xxxx = ay2y′′xx − ay(y′x)
2 + by.

1◦. Particular solution:

y = C1 exp(C3x) + C2 exp(−C3x),

where the constants C1, C2, and C2 are related by the constraint C4
3 −4aC1C2C

2
3 − b= 0.

2◦. Particular solution:

y = C1 cos(C3x) + C2 sin(C3x),

where the constants C1,C2, andC2 are related by the constraint C4
3+a(C

2
1+C

2
2)C

2
3−b=0.

3◦. There are also solutions y = ±x
√
b/a+C and y = 0.

20. y′′′′xxxx + a(y′x)
ny′′xx = byk + c.

This is a special case of equation 16.2.6.34 with f(u) = aun and g(y) = byk + c.

21. y′′′′xxxx = ax−2(xy′x − y)ny′′xx.

This is a special case of equation 16.2.6.35 with f(w) = awn.

22. yy′′′′xxxx − (y′′xx)
2 = 0.

1◦. Particular solutions:

y = C1x+ C2,

y = C1(x+ C2)
−3/2,

y = C1 exp(C3x) + C2 exp(−C3x),

y = C1 cos(C3x) + C2 sin(C3x).

2◦. Integrating the equation twice, we arrive at a second-order equation:

yy′′xx − (y′x)
2 = C1x+C2.

The substitution z = C1x+ C2 leads to a generalized homogeneous equation.

23. yy′′′′xxxx − (y′′xx)
2 + ay + b = 0.

Particular solutions:

y = C1 exp(λx) + C2 exp(−λx)− b/a, λ = (a2/b)1/4;

y = C1 sin(λx) +C2 cos(λx)− b/a, λ = (a2/b)1/4.

24. yy′′′′xxxx − (y′′xx)
2 + ay′′xx = 0.

1◦. Integrating the equation two times, we obtain a second-order equation: yy′′xx−(y′x)
2+

ay = C1x+ C2.

2◦. Particular solutions:

y = C1 exp(C3x) + C2 exp(−C3x)− aC−2
3 ,

y = C1 sin(C3x) + C2 cos(C3x) + aC−2
3 ,

y = C1x+ C2.

25. yy′′′′xxxx − (y′′xx)
2 = a[yy′′xx − (y′x)

2] + b.

1◦. The substitution w(x) = yy′′xx − (y′x)
2 leads to a second-order constant coefficient

linear equation of the form 14.1.9.1: w′′
xx = aw + b.
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2◦. Particular solutions:

y = C1 exp
(
C2x

)
− b

4aC1C
2
2

exp
(
−C2x

)
if a 6= 0,

y = C1 exp
(
x
√
a
)
− b

4a2C1

(
−x
√
a
)
+C2 if a > 0,

y = C1 sin
(
λx
)
+ C2 cos

(
λx
)
, λ2 =

b

a(C2
1 + C2

2 )
if ab > 0,

y =

√
−b
a

sin
(
x
√
−a+ C1

)
+ C2 if a < 0, b < 0,

y = ±x
√
b/a+ C1 if ab > 0.

26. yy′′′′xxxx − (y′′xx)
2 = a

[[
yy′′xx − (y′x)

2
]]
+ bxk + c.

The substitution w(x) = yy′′xx − (y′x)
2 leads to a second-order constant coefficient nonho-

mogeneous linear equation of the form 14.1.9.1: w′′
xx = aw + bxk + c.

27. yy′′′′xxxx − 1
6
(y′′xx)

2 = ax2 + bx+ c.

Particular solution:

y = 1
24C1x

4 + 1
6C2x

3 + 1
2C3x

2 + C4x+ C5,

where the constants C1, C2, C3, C4, and C5 are related by three constraints

1
3C1C3 − 1

6C
2
2 = a,

C1C4 − 1
3C2C3 = b,

C1C5 − 1
6C

2
3 = c.

28. y′′′′xxxx = a2y + b(y′′xx + ay)k.

The substitution w = y′′xx + ay leads to a second-order autonomous equation of the form

14.9.1.1: w′′
xx = aw + bwk.

29. y′′′′xxxx = ay
[[
yy′′xx − (y′x)

2
]]n

.

This is a special case of equation 16.2.6.42 with f(w) = 0 and g(w) = awn.

◮ Equations of the form y′′′′xxxx = f(x, y, y′x, y
′′

xx, y
′′′

xxx).

30. y′′′′xxxx + a3y
′′′

xxx + a2y
′′

xx + a1y
′

x + a0y = byy′′xx − b(y′x)
2 + k.

Particular solutions: y=C exp(λnx)+ka
−1
0 , where C is an arbitrary constant and λ=λn

are roots of the algebraic equation λ4 + a3λ
3 +

(
a2 −

bk

a0

)
λ2 + a1λ+ a0 = 0.

31. y′′′′xxxx + ayy′′′xxx = bxn.

Integrating, we arrive at a third-order equation: y′′′xxx+ayy
′′
xx−

1

2
a(y′x)

2=
b

n+ 1
xn+1+C .
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32. y′′′′xxxx + ayy′′′xxx − ay′xy
′′

xx = 0.

This equation arises in hydrodynamics.

1◦. Particular solutions:
y = C1x+ C2,

y = C1 exp(C2x)− a−1C2,

y = 6(ax+ C1)
−1.

2◦. Integrating, we arrive at a third-order autonomous equation:

y′′′xxx + ayy′′xx − a(y′x)2 = C.

⊙ Literature: A. D. Polyanin and V. F. Zaitsev (2002).

33. y′′′′xxxx + ayy′′′xxx − ay′xy
′′

xx = by.

Particular solutions:

y = C1 exp(λx) + C2 exp(−λx), λ = b1/4,

y = C1 sin(λx) + C2 cos(λx), λ = b1/4.

34. y′′′′xxxx + ayy′′′xxx + b(y′x)
ny′′xx = cxk + d.

This is a special case of equation 16.2.6.50 with f(u) = bun and g(x) = cxk + d.

35. y′′′′xxxx = ayny′xy
′′′

xxx.

This is a special case of equation 16.2.6.51 with f(y) = ayn.

36. xy′′′′xxxx + 4y′′′xxx = ax−5/3y−5/3.

The substitution w(x) = xy leads to an equation of the form 16.2.1.1: w′′′′
xxxx = aw−5/3.

37. xy′′′′xxxx + 4y′′′xxx = a(xy)k.

The substitution w(x) = xy leads to an equation of the form 16.2.1.2: w′′′′
xxxx = awk .

38. xy′′′′xxxx + 2y′′′xxx = a(xy′x − y)k.

The substitution w(x)=xy′x−y leads to a third-order equation: w′′′
xxx=aw

k (Section 15.2

presents its solutions for k = − 7
2 , − 5

2 , −2, − 4
3 , − 7

6 , − 1
2 , 0, and 1).

39. xy′′′′xxxx + (a+ 3)y′′′xxx = bxn(xy′x + ay)k.

The substitution w = xy′x + ay leads to a third-order generalized homogeneous equation:

w′′′
xxx = bxnwk.

40. x2y′′′′xxxx + 8xy′′′xxx + 12y′′xx = ax−10/3y−5/3.

The substitution w(x) = x2y leads to an equation of the form 16.2.1.1: w′′′′
xxxx = aw−5/3.

41. x4y′′′′xxxx + 6x3y′′′xxx + 7x2y′′xx + xy′x = ay−5/3.

The substitution t = ln |x| leads to an equation of the form 16.2.1.1: y′′′′xxxx = ay−5/3.

42. yy′′′′xxxx = ay′xy
′′′

xxx.

Having integrated this equation, we obtain the third-order equation y′′′xxx = Cya, whose

solvable cases are specified in Section 15.2.2.
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43. yy′′′′xxxx − y′xy
′′′

xxx = axny2.

Integrating yields a third-order linear equation: y′′′xxx =
( a

n+ 1
xn+1 + C

)
y.

44. yy′′′′xxxx − y′xy
′′′

xxx = ay′x.

Integrating yields a third-order nonhomogeneous linear equation with constant coefficients:

y′′′xxx = Cy − a.

45. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = axn.

This is a special case of equation 16.2.6.58 with f(x) = axn.

46. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = ay−10/3.

The substitution w = y2 leads to an equation of the form 16.2.1.1: w′′′′
xxxx = 2aw−5/3.

47. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = ayn.

The substitution w = y2 leads to an equation of the form 16.2.1.2: w′′′′
xxxx = 2awn/2.

48. yy′′′′xxxx + 2
3
y′xy

′′′

xxx − 1
3
(y′′xx)

2 = a.

This is a special case of equation 16.2.6.59 with a = 2
3 and f(x) = a. Integrating the

equation twice, we arrive at a second-order equation of the form 14.8.1.54:

3yy′′xx − 2(y′x)
2 = 3

2ax
2 + C1x+ C2.

49. yy′′′′xxxx + 3
2
y′xy

′′′

xxx + 1
2
(y′′xx)

2 = a.

Integrating the equation twice, we arrive at a second-order equation of the form 14.8.1.53:

yy′′xx − 1
4 (y

′
x)

2 = 1
2ax

2 + C1x+ C2.

50. yy′′′′xxxx + 3
2
y′xy

′′′

xxx + 1
2
(y′′xx)

2 = (ax+ b)y−1/2.

The transformation x = x(t), y = (x′t)
2

leads to a constant coefficient linear equation:

2x
(5)
t = ax+ b.

51. yy′′′′xxxx − y′xy
′′′

xxx = axnyy′′′xxx.

Integrating yields a third-order linear equation: y′′′xxx = C exp
( a

n+ 1
xn+1

)
y.

52. xyy′′′′xxxx − x(y′′xx)
2 = a.

Integrating the equation twice, we arrive at a second-order equation:

yy′′xx − (y′x)
2 = ax ln |x|+ C1x+ C2.

53. xyy′′′′xxxx = xy′xy
′′′

xxx + ayy′′′xxx.

Integrating yields a third-order linear equation of the form 15.1.2.7: y′′′xxx = Cxay.
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54. y3y′′′′xxxx = 4y2y′xy
′′′

xxx + 3y2(y′′xx)
2 − 6(y′x)

4.

This is a special case of equation 16.2.6.67 with f ≡ 0.

Solution in parametric form:

x = ±
∫

dx√
2ξ4 + C2ξ + C1

+ C3, y = C4 exp

(
±
∫

ξ dξ√
2ξ4 + C2ξ + C1

)
.

55. y′′xxy
′′′′

xxxx = a(y′′′xxx)
2.

Solution: y =




C0 + C1x+ (C2 + C3x)

3−2a
1−a if a 6= 1,

C0 + C1x+ C2 exp(C3x) if a = 1.

56. y′′xxy
′′′′

xxxx − 1
2
(y′′′xxx)

2 = α(xy′x − y) + βy′x + γ.

Differentiating with respect to x yields

y′′xx
[
y(5)x − αx− β

]
= 0. (1)

Equating the second factor in (1) with zero and integrating it, we find the solution:

y = α
x6

6!
+ β

x5

5!
+ C4x

4 +C3x
3 + C2x

2 + C1x+ C0.

The constants Ck and parameters α, β, and γ are related by the constraint

48C2C4 − 18C2
3 = −αC0 + βC1 + γ,

obtained by means of substituting the solution into the original equation.

The other solution, which corresponds to setting the first factor in (1) to zero, is given

by:

y = C̃1x+ C̃0, where αC̃0 − βC̃1 − γ = 0.

57. y′′′′xxxx = ayky′x(y
′′′

xxx)
s.

This is a special case of equation 16.2.6.72 with f(y) = ayk and g(w) = ws. For k = −1
and s = 1, see equation 16.2.1.42.

The first integral has the form:

1

1− s (y
′′′
xxx)

1−s − a

k + 1
yk+1 = C if k 6= −1, s 6= 1; (1)

ln |y′′′xxx| −
a

k + 1
yk+1 = C if k 6= −1, s = 1; (2)

1

1− s (y
′′′
xxx)

1−s − a ln |y| = C if k = −1, s 6= 1. (3)

For C = 0, equality (1) is changing to the equation

y′′′xxx =

[
a(1 − s)
k + 1

] 1
1−s

y
k+1
1−s ,

which is discussed in Section 15.2.2 (the solutions given there generate 3-parametric fami-

lies of particular solutions of the original equation for k = (1− s)β − 1, where β = − 7
2 ,

− 5
2 , −2, − 4

3 , − 7
6 , − 1

2 , 0, and 1).

58. a1(y
′′′′

xxxx)
2 + (a2y

′′′

xxx + a3y
′′

xx + 6a4y + a5x+ a6)y
′′′′

xxxx + b1(y
′′′

xxx)
2

+ (b2x+ b3)y
′′′

xxx − a4(y
′′

xx)
2 + b4y

′′

xx + b5x
2 + b6x+ b7 = 0.

There are particular solutions of the form y = C1x
4 +C2x

3 +C3x
2 + C4x+C5, where

the five constants C1, C2, C3, C4, and C5 are related by three constraints.
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16.2.2 Equations Containing Exponential Functions

◮ Equations of the form y′′′′xxxx = f(x, y).

1. y′′′′xxxx = aeλy + b.

This is a special case of equation 16.2.6.1 with f(y) = aeλy + b.

2. y′′′′xxxx = aeλy+βx + b.

The substitution w = y + (β/λ)x leads to an autonomous equation of the form 16.2.6.1:

w′′′′
xxxx = aeλw + b.

3. y′′′′xxxx = ax− 4eλy .

This is a special case of equation 16.2.6.2 with f(y) = aeλy . The substitution t = ln |x|
leads to an autonomous equation.

4. y′′′′xxxx = axkeλy .

This is a special case of equation 16.2.6.15 with f(w) = aw and m = k + 4.

5. y′′′′xxxx = aeλxyn.

This is a special case of equation 16.2.6.14 with f(w) = aw and m = n− 1.

6. y′′′′xxxx = a exp(λy + βx2) + b.

The substitution w = y + (β/λ)x2 leads to an autonomous equation of the form 16.2.6.1:

w′′′′
xxxx = aeλw + b.

7. y′′′′xxxx = a(y + bex)−5/3 − bex.

The substitution w = y+ bex leads to an equation of the form 16.2.1.1: w′′′′
xxxx = aw−5/3.

8. y′′′′xxxx = a(y + bex)m − bex.

The substitution w = y + bex leads to an equation of the form 16.2.1.2: w′′′′
xxxx = awm.

◮ Other equations.

9. y′′′′xxxx = aeλyy′x + beβx.

Integrating yields a third-order equation: y′′′xxx =
a

λ
eλy +

b

β
eβx + C .

10. y′′′′xxxx = a4y + beλx(y′x − ay)k.

This is a special case of equation 16.2.6.27 with f(x,w) = beλxwk.

11. y′′′′xxxx = beλx(xy′x − y)k.

This is a special case of equation 16.2.6.23 with f(x,w) = beλxwk.

12. y′′′′xxxx = beλx(xy′x − 2y)k.

This is a special case of equation 16.2.6.24 with f(x,w) = beλxwk.

13. y′′′′xxxx = beλx(xy′x − 3y)k.

This is a special case of equation 16.2.6.25 with f(x,w) = beλxwk.
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14. yy′′′′xxxx − (y′′xx)
2 = aeλx.

1◦. Integrating the equation twice, we arrive at a second-order equation:

yy′′xx − (y′x)
2 = aλ−2eλx + C1x+C2.

For C1 = C2 = 0, it is an equation of the form 14.8.3.47.

2◦. Particular solution: y = C exp(λx) +
a

Cλ4
.

15. yy′′′′xxxx − (y′′xx)
2 − ay′x + beλx = 0.

1◦. Integrating yields a third-order equation: yy′′′xxx − y′xy′′xx − ay + bλ−1eλx = C .

2◦. Particular solutions:

y = C exp(λx) +
aCλ− b
Cλ4

,

y =
b

2aλ
exp(λx) + C exp(−λx)− a

λ3
.

16. yy′′′′xxxx − (y′′xx)
2 − ay′′xx + beλx = 0.

1◦. Integrating the equation two times, we obtain a second-order equation: yy′′xx−(y′x)
2−

ay + C1x+ C2 + bλ−2eλx = 0.

2◦. Particular solution: y = C exp(λx) +
aCλ2 − b
Cλ4

.

17. yy′′′′xxxx − (y′′xx)
2 = a[yy′′xx − (y′x)

2] + beλx.

1◦. The substitution w(x) = yy′′xx − (y′x)
2 leads to a second-order constant coefficient

linear equation of the form 14.1.9.1: w′′
xx = aw + beλx.

2◦. Particular solution: y = C exp(λx) +
b

Cλ2(λ2 − a) .

18. yy′′′′xxxx − ay′′′xxx − (y′′xx)
2 + beλx = 0.

1◦. Integrating the equation two times, we obtain a second-order equation: yy′′xx−(y′x)
2−

ay′x + C1x+ C2 + bλ−2eλx = 0.

2◦. Particular solutions:

y = C exp(λx) +
aCλ3 − b
Cλ4

,

y =
b

2aλ3
exp(λx) + C exp(−λx)− a

λ
.

19. y′′′′xxxx = aeλyy′xy
′′′

xxx.

This is a special case of equation 16.2.6.51 with f(y) = aeλy .

20. y′′′′xxxx = (aeλyy′x + beβx)y′′′xxx.

This is a special case of equation 17.2.6.58 with n = 4, f(y) = aeλy , and g(x) = beβx.

21. y′′′′xxxx − 4λy′′′xxx + 6λ2y′′xx − 4λ3y′x + λ4y = a exp
((
8
3
λx
))
y−5/3.

The substitution w(x)= ye−λx leads to an equation of the form 16.2.1.1: w′′′′
xxxx=aw

−5/3.
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22. y′′′′xxxx − 4λy′′′xxx + 6λ2y′′xx − 4λ3y′x + λ4y = aeλ(1−m)xym.

The substitution w(x) = ye−λx leads to an equation of the form 16.2.1.2: w′′′′
xxxx = awm.

23. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = aeλx.

Solution: y2 = C3x
3 +C2x

2 + C1x+ C0 + 2aλ− 4eλx.

24. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = aeλy + b.

This is a special case of equation 16.2.6.60 with f(y) = aeλy + b.

16.2.3 Equations Containing Hyperbolic Functions

◮ Equations with hyperbolic sine.

1. y′′′′xxxx = a sinhm(λy) + b.

This is a special case of equation 16.2.6.1 with f(y) = a sinhm(λy) + b.

2. y′′′′xxxx = a sinh(λy + βx) + b.

The substitution w = y + (β/λ)x leads to an autonomous equation of the form 16.2.6.1:

w′′′′
xxxx = a sinh(λw) + b.

3. y′′′′xxxx = a(y + b sinhx)2 − b sinhx.

The substitution w = y + b sinh x leads to an autonomous equation of the form 16.2.6.1:

w′′′′
xxxx = aw2.

4. y′′′′xxxx = ax− 4 sinhm(λy).

This is a special case of equation 16.2.6.2 with f(y) = a sinhm(λy).

5. y′′′′xxxx = a sinh(λy)y′x + b sinh(βx).

Integrating yields a third-order equation: y′′′xxx =
a

λ
cosh(λy) +

b

β
cosh(βx) + C .

6. y′′′′xxxx = a4y + b sinh(λx)(y′x − ay)k.

This is a special case of equation 16.2.6.27 with f(x,w) = b sinh(λx)wk.

7. y′′′′xxxx = b sinh(λx)(xy′x − y)k.

This is a special case of equation 16.2.6.23 with f(x,w) = b sinh(λx)wk.

8. y′′′′xxxx = b sinh(λx)(xy′x − 2y)k.

This is a special case of equation 16.2.6.24 with f(x,w) = b sinh(λx)wk.

9. y′′′′xxxx = b sinh(λx)(xy′x − 3y)k.

This is a special case of equation 16.2.6.25 with f(x,w) = b sinh(λx)wk.

10. yy′′′′xxxx − (y′′xx)
2 = a sinh(λx).

1◦. Integrating the equation twice, we arrive at a second-order equation: yy′′xx − (y′x)
2 =

aλ−2 sinh(λx) + C1x+ C2.

2◦. Particular solution: y = C sinh(λx) +
a

Cλ4
.



“K16435’ — 2017/9/28 — 15:05 — #1056

1030 FOURTH-ORDER ORDINARY DIFFERENTIAL EQUATIONS

11. yy′′′′xxxx − (y′′xx)
2 − ay′x + b sinh(λx) = 0.

1◦. Integrating yields a third-order equation: yy′′′xxx − y′xy′′xx − ay + bλ−1 cosh(λx) = C .

2◦. Particular solution: y =
b

λ(a2 − C2λ6)

[
Cλ3 sinh(λx) + a cosh(λx)

]
+ C .

12. yy′′′′xxxx − (y′′xx)
2 − ay′′xx + b sinh(λx) = 0.

1◦. Integrating the equation two times, we obtain a second-order equation: yy′′xx−(y′x)
2−

ay + C1x+ C2 + bλ−2 sinh(λx) = 0.

2◦. Particular solution: y = C sinh(λx) +
aCλ2 − b
Cλ4

.

13. yy′′′′xxxx − (y′′xx)
2 = a[yy′′xx − (y′x)

2] + b sinh(λx) + c.

The substitution w(x) = yy′′xx − (y′x)
2 leads to a second-order constant coefficient nonho-

mogeneous linear equation of the form 14.1.9.1: w′′
xx = aw + b sinh(λx) + c.

14. yy′′′′xxxx − ay′′′xxx − (y′′xx)
2 + b sinh(λx) = 0.

1◦. Integrating the equation two times, we obtain a second-order equation: yy′′xx−(y′x)
2−

ay′x + C1x+ C2 + bλ−2 sinh(λx) = 0.

2◦. Particular solution: y =
b

λ3(a2 − C2λ2)

[
Cλ sinh(λx) + a cosh(λx)

]
+ C .

15. y′′′′xxxx = a sinhk(λy)y′xy
′′′

xxx.

This is a special case of equation 16.2.6.51 with f(y) = a sinhk(λy).

16. yy′′′′xxxx − y′xy
′′′

xxx = a sinh(λx)y2.

This is a special case of equation 16.2.6.57 with f(x) = a sinh(λx). Integrating yields a

third-order linear equation: y′′′xxx =
[ a
λ

cosh(λx) +C
]
y.

17. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = a sinh(λx).

Solution: y2 = C3x
3 + C2x

2 + C1x+ C0 + 2aλ− 4 sinh(λx).

18. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = a sinhk(λy) + b.

This is a special case of equation 16.2.6.60 with f(y) = a sinhk(λy) + b.

◮ Equations with hyperbolic cosine.

19. y′′′′xxxx = a coshm(λy) + b.

This is a special case of equation 16.2.6.1 with f(y) = a coshm(λy) + b.

20. y′′′′xxxx = a cosh(λy + βx) + b.

The substitution w = y + (β/λ)x leads to an autonomous equation of the form 16.2.6.1:

w′′′′
xxxx = a cosh(λw) + b.

21. y′′′′xxxx = a(y + b cosh x)2 − b cosh x.

The substitution w = y + b cosh x leads to an autonomous equation of the form 16.2.6.1:

w′′′′
xxxx = aw2.
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22. y′′′′xxxx = ax− 4 coshm(λy).

This is a special case of equation 16.2.6.2 with f(y) = a coshm(λy).

23. y′′′′xxxx = a cosh(λy)y′x + b cosh(βx).

Integrating yields a third-order equation: y′′′xxx =
a

λ
sinh(λy) +

b

β
sinh(βx) + C .

24. y′′′′xxxx = a4y + b cosh(λx)(y′x − ay)k.

This is a special case of equation 16.2.6.27 with f(x,w) = b cosh(λx)wk .

25. y′′′′xxxx = b cosh(λx)(xy′x − y)k.

This is a special case of equation 16.2.6.23 with f(x,w) = b cosh(λx)wk .

26. y′′′′xxxx = b cosh(λx)(xy′x − 2y)k.

This is a special case of equation 16.2.6.24 with f(x,w) = b cosh(λx)wk .

27. y′′′′xxxx = b cosh(λx)(xy′x − 3y)k.

This is a special case of equation 16.2.6.25 with f(x,w) = b cosh(λx)wk .

28. yy′′′′xxxx − (y′′xx)
2 = a cosh(λx).

1◦. Integrating the equation twice, we arrive at a second-order equation: yy′′xx − (y′x)
2 =

aλ−2 cosh(λx) + C1x+ C2.

2◦. Particular solution: y = C cosh(λx) +
a

Cλ4
.

29. yy′′′′xxxx − (y′′xx)
2 − ay′x + b cosh(λx) = 0.

1◦. Integrating yields a third-order equation: yy′′′xxx − y′xy′′xx − ay + bλ−1 sinh(λx) = C .

2◦. Particular solution: y =
b

λ(a2 − C2λ6)

[
Cλ3 cosh(λx) + a sinh(λx)

]
+ C .

30. yy′′′′xxxx − (y′′xx)
2 − ay′′xx + b cosh(λx) = 0.

1◦. Integrating the equation two times, we obtain a second-order equation: yy′′xx−(y′x)
2−

ay + C1x+ C2 + bλ−2 cosh(λx) = 0.

2◦. Particular solution: y = C cosh(λx) +
aCλ2 − b
Cλ4

.

31. yy′′′′xxxx − (y′′xx)
2 = a[yy′′xx − (y′x)

2] + b cosh(λx) + c.

The substitution w(x) = yy′′xx − (y′x)
2 leads to a second-order constant coefficient nonho-

mogeneous linear equation of the form 14.1.9.1: w′′
xx = aw + b cosh(λx) + c.

32. yy′′′′xxxx − ay′′′xxx − (y′′xx)
2 + b cosh(λx) = 0.

1◦. Integrating the equation two times, we obtain a second-order equation: yy′′xx−(y′x)
2−

ay′x + C1x+ C2 + bλ−2 cosh(λx) = 0.

2◦. Particular solution: y =
b

λ3(a2 − C2λ2)

[
Cλ cosh(λx) + a sinh(λx)

]
+ C .
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33. y′′′′xxxx = a coshk(λy)y′xy
′′′

xxx.

This is a special case of equation 16.2.6.51 with f(y) = a coshk(λy).

34. yy′′′′xxxx − y′xy
′′′

xxx = a cosh(λx)y2.

This is a special case of equation 16.2.6.57 with f(x) = a cosh(λx). Integrating yields a

third-order linear equation: y′′′xxx =
[ a
λ

sinh(λx) + C
]
y.

35. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = a cosh(λx).

Solution: y2 = C3x
3 + C2x

2 +C1x+ C0 + 2aλ− 4 cosh(λx).

36. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = a coshk(λy) + b.

This is a special case of equation 16.2.6.60 with f(y) = a coshk(λy) + b.

◮ Equations with hyperbolic tangent.

37. y′′′′xxxx = a tanhm(λy) + b.

This is a special case of equation 16.2.6.1 with f(y) = a tanhm(λy) + b.

38. y′′′′xxxx = a tanh(λy + βx) + b.

The substitution w = y + (β/λ)x leads to an autonomous equation of the form 16.2.6.1:

w′′′′
xxxx = a tanh(λw) + b.

39. y′′′′xxxx = ax− 4 tanhm(λy).

This is a special case of equation 16.2.6.2 with f(y) = a tanhm(λy).

40. y′′′′xxxx = a tanh(λy)y′x + b tanh(βx).

This is a special case of equation 16.2.6.21 with f(y) = a tanh(λy) and g(x) = b tanh(βx).

41. y′′′′xxxx = a4y + b tanh(λx)(y′x − ay)k.

This is a special case of equation 16.2.6.27 with f(x,w) = b tanh(λx)wk.

42. y′′′′xxxx = b tanh(λx)(xy′x − y)k.

This is a special case of equation 16.2.6.23 with f(x,w) = b tanh(λx)wk.

43. y′′′′xxxx = b tanh(λx)(xy′x − 2y)k.

This is a special case of equation 16.2.6.24 with f(x,w) = b tanh(λx)wk.

44. y′′′′xxxx = b tanh(λx)(xy′x − 3y)k.

This is a special case of equation 16.2.6.25 with f(x,w) = b tanh(λx)wk.

45. y′′′′xxxx = y + a(y′x − y tanhx)k.

This is a special case of equation 17.2.6.32 with f(x, u) = auk and ϕ(x) = cosh x.

46. y′′′′xxxx = a tanhk(λy)y′xy
′′′

xxx.

This is a special case of equation 16.2.6.51 with f(y) = a tanhk(λy).
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47. yy′′′′xxxx − y′xy
′′′

xxx = a tanh(λx)y2.

This is a special case of equation 16.2.6.57 with f(x) = a tanh(λx).

48. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = a tanhk(λx) + b.

This is a special case of equation 16.2.6.58 with f(x) = a tanhk(λx) + b.

49. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = a tanhk(λy) + b.

This is a special case of equation 16.2.6.60 with f(y) = a tanhk(λy) + b.

◮ Equations with hyperbolic cotangent.

50. y′′′′xxxx = a cothm(λy) + b.

This is a special case of equation 16.2.6.1 with f(y) = a cothm(λy) + b.

51. y′′′′xxxx = a coth(λy + βx) + b.

The substitution w = y + (β/λ)x leads to an autonomous equation of the form 16.2.6.1:

w′′′′
xxxx = a coth(λw) + b.

52. y′′′′xxxx = ax− 4 cothm(λy).

This is a special case of equation 16.2.6.2 with f(y) = a cothm(λy).

53. y′′′′xxxx = a coth(λy)y′x + b coth(βx).

This is a special case of equation 16.2.6.21 with f(y) = a coth(λy) and g(x) = b coth(βx).

54. y′′′′xxxx = a4y + b coth(λx)(y′x − ay)k.

This is a special case of equation 16.2.6.27 with f(x,w) = b coth(λx)wk.

55. y′′′′xxxx = b coth(λx)(xy′x − y)k.

This is a special case of equation 16.2.6.23 with f(x,w) = b coth(λx)wk.

56. y′′′′xxxx = b coth(λx)(xy′x − 2y)k.

This is a special case of equation 16.2.6.24 with f(x,w) = b coth(λx)wk.

57. y′′′′xxxx = b coth(λx)(xy′x − 3y)k.

This is a special case of equation 16.2.6.25 with f(x,w) = b coth(λx)wk.

58. y′′′′xxxx = y + a(y′x − y coth x)k.

This is a special case of equation 17.2.6.32 with f(x, u) = auk and ϕ(x) = sinh x.

59. y′′′′xxxx = a cothk(λy)y′xy
′′′

xxx.

This is a special case of equation 16.2.6.51 with f(y) = a cothk(λy).

60. yy′′′′xxxx − y′xy
′′′

xxx = a coth(λx)y2.

This is a special case of equation 16.2.6.57 with f(x) = a coth(λx).

61. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = a cothk(λx) + b.

This is a special case of equation 16.2.6.58 with f(x) = a cothk(λx) + b.

62. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = a cothk(λy) + b.

This is a special case of equation 16.2.6.60 with f(y) = a cothk(λy) + b.
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16.2.4 Equations Containing Logarithmic Functions

◮ Equations of the form y′′′′xxxx = f(x, y).

1. y′′′′xxxx = a lnm(λy) + b.

This is a special case of equation 16.2.6.1 with f(y) = a lnm(λy) + b.

2. y′′′′xxxx = a ln(λy + βx) + b.

The substitution w = y + (β/λ)x leads to an autonomous equation of the form 16.2.6.1:

w′′′′
xxxx = a ln(λw) + b.

3. y′′′′xxxx = a ln(λy + βx2) + b.

The substitution w = y + (β/λ)x2 leads to an autonomous equation of the form 16.2.6.1:

w′′′′
xxxx = a ln(λw) + b.

4. y′′′′xxxx = ax− 4 lnm(λy).

This is a special case of equation 16.2.6.2 with f(y) = a lnm(λy).

5. y′′′′xxxx = ay(λx+m ln y).

This is a special case of equation 16.2.6.14 with f(w) = a lnw.

6. y′′′′xxxx = ax− 4(λy +m ln x).

This is a special case of equation 16.2.6.15 with f(w) = a lnw.

7. y′′′′xxxx = ax−3(ln y − lnx).

This is a special case of equation 16.2.6.3 with f(w) = a lnw.

8. y′′′′xxxx = ax−5(ln y − 3 lnx).

This is a special case of equation 16.2.6.4 with f(w) = a lnw.

9. y′′′′xxxx = ax−5/2(2 ln y − 3 lnx).

This is a special case of equation 16.2.6.5 with f(w) = 2a lnw.

10. y′′′′xxxx = axn−4(ln y − n lnx).

This is a special case of equation 16.2.6.6 with f(w) = a lnw and k = −n.

◮ Other equations.

11. y′′′′xxxx = a4y + b ln(λx)(y′x − ay)k.

This is a special case of equation 16.2.6.27 with f(x,w) = b ln(λx)wk .

12. y′′′′xxxx = b ln(λx)(xy′x − y)k.

This is a special case of equation 16.2.6.23 with f(x,w) = b ln(λx)wk .

13. y′′′′xxxx = b ln(λx)(xy′x − 2y)k.

This is a special case of equation 16.2.6.24 with f(x,w) = b ln(λx)wk .



“K16435’ — 2017/9/28 — 15:05 — #1061

16.2. Nonlinear Equations 1035

14. y′′′′xxxx = b ln(λx)(xy′x − 3y)k.

This is a special case of equation 16.2.6.25 with f(x,w) = b ln(λx)wk .

15. yy′′′′xxxx − (y′′xx)
2 = a ln(λx).

This is a special case of equation 16.2.6.36 with f(x) = a ln(λx).

16. xy′′′′xxxx + 4y′′′xxx = a(lnx+ ln y).

The substitution w(x) = xy leads to an equation of the form 16.2.6.1: w′′′′
xxxx = a lnw.

17. y′′′′xxxx = a ln(λy)y′xy
′′′

xxx.

This is a special case of equation 16.2.6.51 with f(y) = a ln(λy).

18. yy′′′′xxxx − y′xy
′′′

xxx = a ln(λx)y2.

Integrating yields a third-order linear equation: y′′′xxx =
[
ax ln(λx)− ax+ C

]
y.

19. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = a lnm(λx) + b.

This is a special case of equation 16.2.6.58 with f(x) = a lnm(λx) + b.

20. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = a lnm(λy) + b.

This is a special case of equation 16.2.6.60 with f(y) = a lnm(λy) + b.

16.2.5 Equations Containing Trigonometric Functions

◮ Equations with sine.

1. y′′′′xxxx = a sinm(λy) + b.

This is a special case of equation 16.2.6.1 with f(y) = a sinm(λy) + b.

2. y′′′′xxxx = a sin(λy + βx) + b.

The substitution w = y + (β/λ)x leads to an autonomous equation of the form 16.2.6.1:

w′′′′
xxxx = a sin(λw) + b.

3. y′′′′xxxx = a(y + b sin x)2 − b sin x.

The substitution w = y + b sinx leads to an autonomous equation of the form 16.2.6.1:

w′′′′
xxxx = aw2.

4. y′′′′xxxx = ax− 4 sinm(λy).

This is a special case of equation 16.2.6.2 with f(y) = a sinm(λy).

5. y′′′′xxxx = a sin(λy)y′x + b sin(βx).

Integrating yields a third-order equation: y′′′xxx = − a
λ
cos(λy)− b

β
cos(βx) + C .

6. y′′′′xxxx = a4y + b sin(λx)(y′x − ay)k.

This is a special case of equation 16.2.6.27 with f(x,w) = b sin(λx)wk.

7. y′′′′xxxx = b sin(λx)(xy′x − y)k.

This is a special case of equation 16.2.6.23 with f(x,w) = b sin(λx)wk.
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8. y′′′′xxxx = b sin(λx)(xy′x − 2y)k.

This is a special case of equation 16.2.6.24 with f(x,w) = b sin(λx)wk.

9. y′′′′xxxx = b sin(λx)(xy′x − 3y)k.

This is a special case of equation 16.2.6.25 with f(x,w) = b sin(λx)wk.

10. yy′′′′xxxx − (y′′xx)
2 = a sin(λx).

1◦. Integrating the equation twice, we arrive at a second-order equation: yy′′xx − (y′x)
2 =

−aλ−2 sin(λx) + C1x+C2.

2◦. Particular solution: y = C sin(λx) +
a

Cλ4
.

11. yy′′′′xxxx − (y′′xx)
2 − ay′x + b sin(λx) = 0.

1◦. Integrating yields a third-order equation: yy′′′xxx − y′xy′′xx − ay − bλ−1 cos(λx) = C .

2◦. Particular solution: y = − b

λ(a2 + C2λ6)

[
a cos(λx) + Cλ3 sin(λx)

]
+ C .

12. yy′′′′xxxx − (y′′xx)
2 − ay′′xx + b sin(λx) = 0.

1◦. Integrating the equation two times, we obtain a second-order equation: yy′′xx−(y′x)
2−

ay + C1x+ C2 − bλ−2 sin(λx) = 0.

2◦. Particular solution: y = C sin(λx)− b+ aCλ2

Cλ4
.

13. yy′′′′xxxx − (y′′xx)
2 = a[yy′′xx − (y′x)

2] + b sin(λx) + c.

The substitution w(x) = yy′′xx − (y′x)
2 leads to a second-order constant coefficient nonho-

mogeneous linear equation of the form 14.1.9.1: w′′
xx = aw + b sin(λx) + c.

14. yy′′′′xxxx − ay′′′xxx − (y′′xx)
2 + b sin(λx) = 0.

1◦. Integrating the equation two times, we obtain a second-order equation: yy′′xx−(y′x)
2−

ay′x + C1x+ C2 − bλ−2 sin(λx) = 0.

2◦. Particular solution: y =
b

λ3(a2 + C2λ2)

[
a cos(λx)− Cλ sin(λx)

]
+ C .

15. y′′′′xxxx = a sink(λy)y′xy
′′′

xxx.

This is a special case of equation 16.2.6.51 with f(y) = a sink(λy).

16. yy′′′′xxxx − y′xy
′′′

xxx = a sin(λx)y2.

This is a special case of equation 16.2.6.57 with f(x) = a sin(λx). Integrating yields a

third-order linear equation: y′′′xxx =
[
C − a

λ
cos(λx)

]
y.

17. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = a sin(λx).

Solution: y2 = C3x
3 + C2x

2 + C1x+ C0 + 2aλ− 4 sin(λx).

18. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = a sink(λy) + b.

This is a special case of equation 16.2.6.60 with f(y) = a sink(λy) + b.
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◮ Equations with cosine.

19. y′′′′xxxx = a cosm(λy) + b.

This is a special case of equation 16.2.6.1 with f(y) = a cosm(λy) + b.

20. y′′′′xxxx = a cos(λy + βx) + b.

The substitution w = y + (β/λ)x leads to an autonomous equation of the form 16.2.6.1:

w′′′′
xxxx = a cos(λw) + b.

21. y′′′′xxxx = a(y + b cos x)2 − b cosx.

The substitution w = y + b cos x leads to an autonomous equation of the form 16.2.6.1:

w′′′′
xxxx = aw2.

22. y′′′′xxxx = ax− 4 cosm(λy).

This is a special case of equation 16.2.6.2 with f(y) = a cosm(λy).

23. y′′′′xxxx = a cos(λy)y′x + b cos(βx).

Integrating yields a third-order equation: y′′′xxx =
a

λ
sin(λy) +

b

β
sin(βx) + C .

24. y′′′′xxxx = a4y + b cos(λx)(y′x − ay)k.

This is a special case of equation 16.2.6.27 with f(x,w) = b cos(λx)wk .

25. y′′′′xxxx = b cos(λx)(xy′x − y)k.

This is a special case of equation 16.2.6.23 with f(x,w) = b cos(λx)wk .

26. y′′′′xxxx = b cos(λx)(xy′x − 2y)k.

This is a special case of equation 16.2.6.24 with f(x,w) = b cos(λx)wk .

27. y′′′′xxxx = b cos(λx)(xy′x − 3y)k.

This is a special case of equation 16.2.6.25 with f(x,w) = b cos(λx)wk .

28. yy′′′′xxxx − (y′′xx)
2 = a cos(λx).

1◦. Integrating the equation twice, we arrive at a second-order equation: yy′′xx − (y′x)
2 =

−aλ−2 cos(λx) + C1x+ C2.

2◦. Particular solution: y = C cos(λx) +
a

Cλ4
.

29. yy′′′′xxxx − (y′′xx)
2 − ay′x + b cos(λx) = 0.

1◦. Integrating yields a third-order equation: yy′′′xxx − y′xy′′xx − ay + bλ−1 sin(λx) = C .

2◦. Particular solution: y =
b

λ(a2 + C2λ6)

[
a sin(λx)− Cλ3 cos(λx)

]
+ C .

30. yy′′′′xxxx − (y′′xx)
2 − ay′′xx + b cos(λx) = 0.

1◦. Integrating the equation two times, we obtain a second-order equation: yy′′xx−(y′x)
2−

ay + C1x+ C2 − bλ−2 cos(λx) = 0.

2◦. Particular solution: y = C cos(λx)− aCλ2 + b

Cλ4
.
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31. yy′′′′xxxx − (y′′xx)
2 = a[yy′′xx − (y′x)

2] + b cos(λx) + c.

The substitution w(x) = yy′′xx − (y′x)
2 leads to a second-order constant coefficient nonho-

mogeneous linear equation of the form 14.1.9.1: w′′
xx = aw + b cos(λx) + c.

32. yy′′′′xxxx − ay′′′xxx − (y′′xx)
2 + b cos(λx) = 0.

1◦. Integrating the equation two times, we obtain a second-order equation: yy′′xx−(y′x)
2−

ay′x + C1x+ C2 − bλ−2 cos(λx) = 0.

2◦. Particular solution: y = − b

λ3(a2 + C2λ2)

[
Cλ cos(λx) + a sin(λx)

]
+ C .

33. y′′′′xxxx = a cosk(λy)y′xy
′′′

xxx.

This is a special case of equation 16.2.6.51 with f(y) = a cosk(λy).

34. yy′′′′xxxx − y′xy
′′′

xxx = a cos(λx)y2.

This is a special case of equation 16.2.6.57 with f(x) = a cos(λx). Integrating yields a

third-order linear equation: y′′′xxx =
[ a
λ
sin(λx) +C

]
y.

35. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = a cos(λx).

Solution: y2 = C3x
3 + C2x

2 + C1x+ C0 + 2aλ− 4 cos(λx).

36. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = a cosk(λy) + b.

This is a special case of equation 16.2.6.60 with f(y) = a cosk(λy) + b.

◮ Equations with tangent.

37. y′′′′xxxx = a tanm(λy) + b.

This is a special case of equation 16.2.6.1 with f(y) = a tanm(λy) + b.

38. y′′′′xxxx = a tan(λy + βx) + b.

The substitution w = y + (β/λ)x leads to an autonomous equation of the form 16.2.6.1:

w′′′′
xxxx = a tan(λw) + b.

39. y′′′′xxxx = ax− 4 tanm(λy).

This is a special case of equation 16.2.6.2 with f(y) = a tanm(λy).

40. y′′′′xxxx = a tan(λy)y′x + b tan(βx).

This is a special case of equation 16.2.6.21 with f(y) = a tan(λy) and g(x) = b tan(βx).

41. y′′′′xxxx = a4y + b tan(λx)(y′x − ay)k.

This is a special case of equation 16.2.6.27 with f(x,w) = b tan(λx)wk .

42. y′′′′xxxx = b tan(λx)(xy′x − y)k.

This is a special case of equation 16.2.6.23 with f(x,w) = b tan(λx)wk .

43. y′′′′xxxx = b tan(λx)(xy′x − 2y)k.

This is a special case of equation 16.2.6.24 with f(x,w) = b tan(λx)wk .
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44. y′′′′xxxx = b tan(λx)(xy′x − 3y)k.

This is a special case of equation 16.2.6.25 with f(x,w) = b tan(λx)wk .

45. y′′′′xxxx = y + a(y′x + y tanx)k.

This is a special case of equation 17.2.6.32 with f(x, u) = auk and ϕ(x) = cos x.

46. y′′′′xxxx = a tank(λy)y′xy
′′′

xxx.

This is a special case of equation 16.2.6.51 with f(y) = a tank(λy).

47. yy′′′′xxxx − y′xy
′′′

xxx = a tan(λx)y2.

This is a special case of equation 16.2.6.57 with f(x) = a tan(λx).

48. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = a tank(λx) + b.

This is a special case of equation 16.2.6.58 with f(x) = a tank(λx) + b.

49. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = a tank(λy) + b.

This is a special case of equation 16.2.6.60 with f(y) = a tank(λy) + b.

◮ Equations with cotangent.

50. y′′′′xxxx = a cotm(λy) + b.

This is a special case of equation 16.2.6.1 with f(y) = a cotm(λy) + b.

51. y′′′′xxxx = a cot(λy + βx) + b.

The substitution w = y + (β/λ)x leads to an autonomous equation of the form 16.2.6.1:

w′′′′
xxxx = a cot(λw) + b.

52. y′′′′xxxx = ax− 4 cotm(λy).

This is a special case of equation 16.2.6.2 with f(y) = a cotm(λy).

53. y′′′′xxxx = a cot(λy)y′x + b cot(βx).

This is a special case of equation 16.2.6.21 with f(y) = a cot(λy) and g(x) = b cot(βx).

54. y′′′′xxxx = a4y + b cot(λx)(y′x − ay)k.

This is a special case of equation 16.2.6.27 with f(x,w) = b cot(λx)wk .

55. y′′′′xxxx = b cot(λx)(xy′x − y)k.

This is a special case of equation 16.2.6.23 with f(x,w) = b cot(λx)wk .

56. y′′′′xxxx = b cot(λx)(xy′x − 2y)k.

This is a special case of equation 16.2.6.24 with f(x,w) = b cot(λx)wk .

57. y′′′′xxxx = b cot(λx)(xy′x − 3y)k.

This is a special case of equation 16.2.6.25 with f(x,w) = b cot(λx)wk .

58. y′′′′xxxx = y + a(y′x − y cot x)k.

This is a special case of equation 17.2.6.32 with f(x, u) = auk and ϕ(x) = sinx.
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59. y′′′′xxxx = a cotk(λy)y′xy
′′′

xxx.

This is a special case of equation 16.2.6.51 with f(y) = a cotk(λy).

60. yy′′′′xxxx − y′xy
′′′

xxx = a cot(λx)y2.

This is a special case of equation 16.2.6.57 with f(x) = a cot(λx).

61. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = a cotk(λx) + b.

This is a special case of equation 16.2.6.58 with f(x) = a cotk(λx) + b.

62. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = a cotk(λy) + b.

This is a special case of equation 16.2.6.60 with f(y) = a cotk(λy) + b.

16.2.6 Equations Containing Arbitrary Functions

◮ Equations of the form y′′′′xxxx = f(x, y).

1. y′′′′xxxx = f(y).

Autonomous equation. By integrating, we obtain 2y′xy
′′′
xxx − (y′′xx)

2 = 2

∫
f(y) dy + 2C .

The substitution w(y) = |y′x|3/2 leads to a second-order equation:

2wy = 3
2

[∫
f(y) dy + C

]
w−5/3.

2. y′′′′xxxx = x− 4f(y).

This is a special case of equation 16.2.6.55 with a1 = a2 = a3 = 0. The substitution

t = ln |x| leads to an autonomous equation.

3. y′′′′xxxx = x−3f(y/x).

Homogeneous equation. The transformation t = lnx, w = y/x leads to an autonomous

equation of the form 16.2.6.79.

4. y′′′′xxxx = x−5f(yx−3).

The transformation x = t−1, y = wt−3 leads to an autonomous equation of the form

16.2.6.1: w′′′′
tttt = f(w).

5. y′′′′xxxx = x−5/2f(yx−3/2).

The transformation x = et, y = x3/2w leads to an autonomous equation of the form

16.2.6.33: w′′′′
tttt − 5

2w
′′
tt = − 9

16w + f(w).

6. y′′′′xxxx = x−k−4f(xky).

Generalized homogeneous equation.

1◦. The transformation t = lnx, z = xky leads to an autonomous equation.

2◦. The transformation z = xky, w = xy′x/y leads to a third-order equation.
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7. y′′′′xxxx = yx− 4f(xkym).

Generalized homogeneous equation. The transformation z = xkym, w = xy′x/y leads to

a third-order equation.

8. y′′′′xxxx = f(y + a3x
3 + a2x

2 + a1x+ a0).

The substitution w= y+a3x
3+a2x

2+a1x+a0 leads to an equation of the form 16.2.6.1:

w′′′′
xxxx = f(w).

9. y′′′′xxxx = f(y + ax4).

The substitution w=y+ax4 leads to an equation of the form 16.2.6.1: w′′′′
xxxx=f(w)+24a.

10. x(ax+ b)4y′′′′xxxx = f(yx−3).

The transformation ξ = ln
∣∣∣ ax+ b

x

∣∣∣, w=
y

x3
leads to an autonomous equation of the form

16.2.6.79.

11. y′′′′xxxx = (ax+ by + c)−3f

((
ax+ by + c

αx+ βy + γ

))
.

This is a special case of equation 17.2.6.19 with n = 4.

12. y′′′′xxxx = (ax2 + bx+ c)−5/2f

((
y

(ax2 + bx+ c)3/2

))
.

1◦. The transformation ξ =

∫
dx

ax2 + bx+ c
, w =

y

(ax2 + bx+ c)3/2
leads to an au-

tonomous equation of the form 16.2.6.33 with respect to w = w(ξ):

w′′′′
ξξξξ − 5

2∆w
′′
ξξ +

9
16∆

2w = f(w), where ∆ = b2 − 4ac.

Therefore, having integrated the latter equation, we obtain

w′
ξw

′′′
ξξξ − 1

2 (w
′′
ξξ)

2 − 5
4∆(w′

ξ)
2
= − 9

32∆
2w2 +

∫
f(w) dw + C.

The substitution z(w) = |w′
ξ|
3/2

leads to a second-order equation:

z′′ww = 15
8 ∆z−1/3 + 3

2

[
− 9

32∆
2w2 +

∫
f(w) dw + C

]
z−5/3.

2◦. The first integral of the original equation has the form:

(Py′x − 3
2P

′
xy)y

′′′
xxx − 1

2P (y
′′
xx)

2 + 1
2P

′
xy

′
xy

′′
xx + 3ayy′′xx − 2a(y′x)

2 =

∫
f(w) dw +C,

where P = ax2 + bx+ c, w = yP−3/2.

13. y′′′′xxxx = eλxf(ye−λx).

This is a special case of equation 16.2.6.47 with a = b = c = 0. The substitution w(x) =
ye−λx leads to an autonomous equation.

14. y′′′′xxxx = yf(eλxym).

The transformation z = eλxym, w(z) = y′x/y leads to a third-order equation.
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15. y′′′′xxxx = x− 4f(xmeλy).

The transformation z = xmeλy, w(z) = xy′x leads to a third-order equation.

16. y′′′′xxxx = f(y + aex) − aex.

The substitution w = y + aex leads to an equation of the form 16.2.6.1: w′′′′
xxxx = f(w).

17. y′′′′xxxx = f(y + a cosh x) − a cosh x.

The substitution w = y + a cosh x leads to an autonomous equation of the form 16.2.6.1:

w′′′′
xxxx = f(w).

18. y′′′′xxxx = f(y + a sinhx) − a sinhx.

The substitution w = y + a sinh x leads to an autonomous equation of the form 16.2.6.1:

w′′′′
xxxx = f(w).

19. y′′′′xxxx = f(y + a cosx) − a cosx.

The substitution w = y + a cos x leads to an autonomous equation of the form 16.2.6.1:

w′′′′
xxxx = f(w).

20. y′′′′xxxx = f(y + a sin x)− a sin x.

The substitution w = y + a sinx leads to an autonomous equation of the form 16.2.6.1:

w′′′′
xxxx = f(w).

◮ Equations of the form y′′′′xxxx = f(x, y, y′x).

21. y′′′′xxxx = f(y)y′x + g(x).

By integrating, we find y′′′xxx =

∫
f(y) dy +

∫
g(x) dx + C. For g(x) ≡ 0, the order of

this equation can reduced by one with the help of the substitution w(y) = y′x.

22. y′′′′xxxx = x− 4f(xy′x − y).

The transformation t = ln |x|, w = xy′x − y leads to a third-order autonomous equation:

w′′′
ttt − 5w′′

tt + 6w′
t = f(w).

23. y′′′′xxxx = f(x, xy′x − y).

The substitution w = xy′x − y leads to a third-order equation: (w′
x/x)

′′
xx = f(x,w).

24. y′′′′xxxx = f(x, xy′x − 2y).

The substitution w= xy′x−2y leads to a third-order equation: xw′′′
xxx−w′′

xx = x2f(x,w).

25. y′′′′xxxx = f(x, xy′x − 3y).

The substitution w = xy′x − 3y leads to a third-order equation: w′′′
xxx = xf(x,w).

26. y′′′′xxxx = yx− 4f(xy′x/y).

The transformation z = xy′x/y, w = x2y′′xx/y leads to a second-order equation.

27. y′′′′xxxx = a4y + f(x, y′x − ay).

The substitution w= y′x−ay leads to a third-order equation: w′′′
xxx+aw

′′
xx+a

2w′
x+a

3w=
f(x,w).
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28. y′′′′xxxx = f(x, y′x sinhx− y cosh x) + y.

The substitution w = y′x sinh x− y coshx leads to a third-order equation.

29. y′′′′xxxx = f(x, y′x cosh x− y sinh x) + y.

The substitution w = y′x cosh x− y sinhx leads to a third-order equation.

30. y′′′′xxxx = f(x, y′x sin x− y cosx) + y.

The substitution w = y′x sinx− y cos x leads to a third-order equation.

31. y′′′′xxxx = f(x, y′x cosx+ y sinx) + y.

The substitution w = y′x cos x+ y sinx leads to a third-order equation.

32. y′′′′xxxx =
ϕ′′′′

xxxx

ϕ
y + f

((
x, y′x − ϕ′

x

ϕ
y
))
, ϕ = ϕ(x).

The substitution w = y′x −
ϕ′
x

ϕ
y leads to a third-order equation.

◮ Equations of the form y′′′′xxxx = f(x, y, y′x, y
′′

xx).

33. y′′′′xxxx + ay′′xx = f(y).

Having integrated this equation, we obtain 2y′xy
′′′
xxx−(y′′xx)2+a(y′x)2=2

∫
f(y) dy+2C,

where C is an arbitrary constant. The substitution w(y) = |y′x|3/2 leads to a second-order

equation:

w′′
yy = − 3

4aw
−1/3 + 3

2

[∫
f(y) dy + C

]
w−5/3.

34. y′′′′xxxx + f(y′x)y
′′

xx = g(y).

Having integrated this equation, we obtain a third-order autonomous equation:

2y′xy
′′′
xxx − (y′′xx)

2 + 2F (y′x) = 2

∫
g(y) dy + 2C, where F (u) =

∫
uf(u) du.

The substitution w(y) = y′x leads to a second-order equation.

35. y′′′′xxxx = x−2f(xy′x − y)y′′xx.

The transformation t = ln |x|, w = xy′x − y leads to a third-order equation:

w′′′
ttt − 5w′′

tt + 6w′
t = f(w)w′

t.

Integrating it, we obtain a second-order autonomous equation:

w′′
tt − 5w′

t + 6w =

∫
f(w) dw + C.

The substitution z(w) = 1
5w

′
t leads to an Abel equation of the second kind:

zz′w − z = 1
25

[
−6w +

∫
f(w) dw + C

]

(see Section 13.3.1).
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36. yy′′′′xxxx − (y′′xx)
2 = f(x).

Integrating the equation twice, we arrive at a second-order equation:

yy′′xx − (y′x)
2 =

∫ x

0
(x− t)f(t) dt+ C1x+ C2.

37. yy′′′′xxxx − (y′′xx)
2 = f(x)[yy′′xx − (y′x)

2] + g(x).

This is a special case of equation 16.2.6.93. The substitution w(x) = yy′′xx − (y′x)
2 leads

to a second-order linear equation: w′′
xx = f(x)w + g(x).

38. y′′′′xxxx = a2y + f(y′′xx + ay).

The substitution w = y′′xx + ay leads to a second-order autonomous equation of the form

14.9.1.1: w′′
xx = aw + f(w).

39. y′′′′xxxx = f(y, y′′xx).

The substitution w(y) = ±(y′x)2 leads to a third-order equation: ww′′′
yyy + 1

2w
′
yw

′′
yy =

2f
(
y,± 1

2w
′
y

)
.

40. y′′′′xxxx = a2y + f(x, y′′xx + ay).

The substitution w = y′′xx + ay leads to a second-order equation: w′′
xx = aw + f(x,w).

41. y′′′′xxxx = yf
((
yy′′xx − y′2x

))
.

This is a special case of equation 16.2.6.42.

42. y′′′′xxxx = y′′xxf
((
yy′′xx − y′2x

))
+ yg

((
yy′′xx − y′2x

))
.

1◦. Particular solution:

y = C1 exp(C3x) + C2 exp(−C3x),

where the constants C1, C2, and C3 are related by the constraint

C4
3 − C2

3f(4C1C2C
2
3 )− g(4C1C2C

2
3 ) = 0.

2◦. Particular solution:

y = C1 cos(C3x) + C2 sin(C3x),

where the constants C1, C2, and C3 are related by the constraint

C4
3 + C2

3f(−C2
1C

2
3 − C2

2C
2
3 )− g(−C2

1C
2
3 − C2

2C
2
3) = 0.

43. y′′′′xxxx = xmf(x2y′′xx − 2xy′x + 2y).

The substitution w = x2y′′xx−2xy′x+2y leads to a second-order equation: xw′′
xx−2w′

x =
xm+3f(w). For m= −4, the substitution z(w) = 1

3xw
′
x leads to an Abel equation of the

second kind: zz′w − z = 1
9 f(w) (see Section 13.3.1).

44. y′′′′xxxx = f(x, xy′x − y, y′′xx).

The substitution w(x) = xy′x − y leads to a third-order equation.



“K16435’ — 2017/9/28 — 15:05 — #1071

16.2. Nonlinear Equations 1045

45. y′′′′xxxx = f(x, x2y′′xx − 2xy′x + 2y).

The substitution w = x2y′′xx−2xy′x+2y leads to a second-order equation: xw′′
xx−2w′

x =
x3f(x,w).

46. y′′′′xxxx = y′xf
((
y′′

xx

y′
x

, y′x − y
y′′

xx

y′
x

))
.

Particular solution: y = C1 exp(C2x) + C3, where C1 is an arbitrary constant and the

constants C2 and C2 are related by the constraint C3
2 = f(C2,−C2C3).

◮ Equations of the form y′′′′xxxx = f(x, y, y′x, y
′′

xx, y
′′′

xxx).

47. y′′′′xxxx + ay′′′xxx + by′′xx + cy′x = eλxf(ye−λx).

The substitution w(x) = ye−λx leads to an autonomous equation:

w′′′′
xxxx + (4λ+ a)w′′′

xxx + (6λ2 + 3aλ+ b)w′′
xx

+ (4λ3 + 3aλ2 + 2bλ+ c)w′
x + (λ4 + aλ3 + bλ2 + cλ)w = f(w),

which can be reduced to a third-order equation by means of the substitution z(w) = w′
x.

For a = −4λ and c = 8λ3 − 2bλ, the above equation coincides, up to notation, with

equation 16.2.6.33 and can be reduced to a second-order equation.

48. y′′′′xxxx + ayy′′′xxx = f(x).

Integrating, we arrive at a third-order equation: y′′′xxx+ayy
′′
xx− 1

2a(y
′
x)

2 =

∫
f(x) dx+C .

49. y′′′′xxxx + ayy′′′xxx − ay′xy
′′

xx = f(x).

Integrating, we arrive at a third-order equation: y′′′xxx+ayy
′′
xx−a(y′x)2 =

∫
f(x) dx+C .

50. y′′′′xxxx + ayy′′′xxx + f(y′x)y
′′

xx = g(x).

Integrating, we arrive at a third-order equation:

y′′′xxx + ayy′′xx − 1
2a(y

′
x)

2 + F (y′x) =
∫
g(x) dx + C, where F (u) =

∫
f(u) du.

51. y′′′′xxxx = f(y)y′xy
′′′

xxx.

Integrating, we arrive at a third-order autonomous equation of the form 15.5.1.1: y′′′xxx =

C exp
[∫

f(y) dy
]
.

52. xy′′′′xxxx + 4y′′′xxx = f(xy).

The substitution w(x) = xy leads to an equation of the form 16.2.6.1: w′′′′
xxxx = f(w).

53. xy′′′′xxxx + (a+ 3)y′′′xxx = f(x, xy′x + ay).

The substitution w = xy′x + ay leads to a third-order equation: w′′′
xxx = f(x,w).

54. x2y′′′′xxxx + 8xy′′′xxx + 12y′′xx = f(x2y).

The substitution w(x) = x2y leads to an autonomous equation of the form 16.2.6.1:

w′′′′
xxxx = f(w).
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55. x4y′′′′xxxx + a3x
3y′′′xxx + a2x

2y′′xx + a1xy
′

x = f(y).

The substitution t = ln |x| leads to an autonomous equation:

y′′′′tttt + (a3 − 6)y′′′ttt + (11− 3a3 + a2)y
′′
tt + (2a3 − a2 + a1 − 6)y′t = f(y), (1)

the order of which can be lowered with the help of the substitution w(y) = y′t. For a3 = 6
and a1 = a2 − 6, equation (1) coincides, up to notation, with equation 16.2.6.33 and can

be reduced to a second-order equation.

56. x4y′′′′xxxx + ax3y′′′xxx + bx2y′′xx + cxy′x + sy = x−kf(yxk).

The transformation t = lnx, w = yxk leads to an autonomous equation of the form

16.2.6.79.

57. yy′′′′xxxx − y′xy
′′′

xxx = f(x)y2.

Integrating yields a third-order linear equation: y′′′xxx =
[∫

f(x) dx+ C
]
y.

58. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = f(x).

Solution: y2 = C3x
3 + C2x

2 + C1x+ C0 +
1
3

∫ x

x0

(x− t)3f(t) dt.

59. yy′′′′xxxx + ay′xy
′′′

xxx + (a− 1)(y′′xx)
2 = f(x).

Integrating the equation two times, we obtain a second-order equation:

yy′′xx +
a− 2

2
(y′x)

2 = C1x+ C0 +

∫ x

x0

(x− t)f(t) dt.

60. yy′′′′xxxx + 4y′xy
′′′

xxx + 3(y′′xx)
2 = f(y).

The substitution w = y2 leads to an equation of the form 16.2.6.1: w′′′′
xxxx = 2f

(
±√w

)
.

61. yy′′′′xxxx − y′xy
′′′

xxx = f(x)yy′′′xxx.

Integrating yields a third-order linear equation: y′′′xxx = C exp
[∫

f(x) dx
]
y.

62. yy′′′′xxxx + y′xy
′′′

xxx = f(x)yy′′′xxx.

Integrating yields a third-order equation of the form 15.5.1.2: yy′′′xxx=C exp
[∫

f(x) dx
]
.

63. yy′′′′xxxx +(f − 1)y′xy
′′′

xxx + fgyy′x + g′xy
2 = 0, f = f(x), g = g(x).

The functions that solve the third-order linear equation y′′′xxx + g(x)y = 0 are solutions of

the given equation.

64. yy′′′′xxxx+(4y′x+fy)y
′′′

xxx+3(y′′xx)
2+3fy′xy

′′

xx+g(x) = 0, f = f(x).

The substitution w = (yy′x)
′′
xx leads to a first-order linear equation: w′

x + fw + g = 0.

Solution:

y2 = C2x
2 + C1x+ C0 +

∫ x

x0

(x− t)2w(t) dt,

where w(x) = e−F (x)
[
C3 −

∫
eF (x)g(x) dx

]
, F (x) =

∫
f(x) dx; x0 is an arbitrary

number.
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65. yy′′′′xxxx + (4y′x + fy)y′′′xxx + 3(y′′xx)
2

+ (3fy′x + gy)y′′xx + g(y′x)
2 + hyy′x + s = 0.

Here, f = f(x), g = g(x), h = h(x), s = s(x). The substitution w = yy′x leads to a

third-order nonhomogeneous linear equation: w′′′
xxx + fw′′

xx + gw′
x + hw + s = 0.

66. (y + ax+ b)y′′′′xxxx + 4(y′x + a)y′′′xxx + 3(y′′xx)
2 = f(x).

Solution: (y + ax+ b)2 = C3x
3 + C2x

2 + C1x+ C0 +
1
3

∫ x

x0

(x− t)3f(t) dt.

67. yy′′′′xxxx = 4y′xy
′′′

xxx + 3(y′′xx)
2 − 6

(y′

x)
4

y2
+
[[
yy′′xx − (y′x)

2
]]
f
((
y′

x

y

))
.

The transformation ξ =
y′x
y

, w =
y′′xx
y
−
( y′x
y

)2
leads to a second-order linear equation

with respect to w2: (w2)′′ξξ = 24ξ2 + 2f(ξ). Integrating it, we obtain

w2 = C2ξ + C1 + 2ξ4 + 2

∫ ξ

ξ0

(ξ − t)f(t) dt.

Taking into account that ξ′x = w, y′x = ξy, y′ξ = ξy/w, we find the solution in parametric

form:

x =

∫
dξ

w
+ C3, y = C4 exp

(∫ ξ dξ

w

)
,

where w = ±
[
C2ξ + C1 + 2ξ4 + 2

∫ ξ

ξ0

(ξ − t)f(t) dt
]1/2

.

68. y2y′′′′xxxx − 2yy′xy
′′′

xxx + f(x)y2y′′′xxx + 2(y′x)
2y′′xx − f(x)yy′xy

′′

xx

+2f ′

x(x)y
2y′′xx+2f(x)(y′x)

3+[f2(x)−2f ′

x(x)]y(y
′

x)
2+f ′′

xx(x)y
2y′x=0.

The solution satisfies the second-order linear equation y′′xx + f(x)y′x− z(x,C1, C2)y = 0,

where z = z(x,C1, C2) is the Weierstrass elliptic function determined by the second-order

autonomous equation z′′xx + z2 = 0.

69. y2y′′′′xxxx − 2yy′xy
′′′

xxx + f(x)y2y′′′xxx + 2(y′x)
2y′′xx

− f(x)yy′xy
′′

xx + 2f ′

x(x)y
2y′′xx + 2f(x)(y′x)

3

+ [f2(x) − 2f ′

x(x)]y(y
′

x)
2 + f ′′

xx(x)y
2y′x = Axy3.

The solution satisfies the second-order linear equation y′′xx + f(x)y′x− z(x,C1, C2)y = 0,

where z = z(x,C1, C2) is the solution of the first Painlevé transcendent z′′xx + z2 = Ax.

70. y2y′′′′xxxx − 2yy′xy
′′′

xxx + [a+ f(x)]y2y′′′xxx − y(y′′xx)
2

− [3a+ f(x)]yy′xy
′′

xx + 2(y′x)
2y′′xx + [af(x) + g(x)]y2y′′xx

+ 2a(y′x)
3 − af(x)y(y′x)

2 + ag(x)y2y′x = h(x)y3.

The solution satisfies the second-order linear equation y′′xx + ay′x − z(x,C1, C2)y = 0,
where z = z(x,C1, C2) is the solution of the second-order linear equation z′′xx+ f(x)z′x+
g(x)z = h(x).

71. y′′xxy
′′′′

xxxx − 3(y′′′xxx)
2 = f(xy′x − y)(y′′xx)

5.

The Legendre transformation x=u′t, y= tu′t−u leads to an equation of the form 16.2.6.1:

u′′′′tttt = −f(u).
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72. y′′′′xxxx = f(y)y′xg(y
′′′

xxx).

Integrating yields a third-order autonomous equation:
∫

dw

g(w)
=

∫
f(y) dy + C, where w = y′′′xxx,

the order of which can be lowered by means of the substitution z(y) = y′x.

73. xy′′′′xxxx + 2y′′′xxx = (xy′′xx)
−5f

((
xy′′

xx√
xy′

x − y

))
.

The substitution w(x) = xy′x − y leads to a third-order equation of the form 15.5.2.27:

w′′′
xxx = w−5/2F

( w′
x√
w

)
, where F (ξ) = ξ−5f(ξ).

74. x2y′′′′xxxx + 2xy′′′xxx = f(x2y′′xx − 2xy′x + 2y)g(x2y′′′xxx).

The substitution w(x) = x2y′′xx − 2xy′x + 2y leads to a second-order equation of the form

14.9.4.36: w′′
xx = f(w)g(w′

x).

75. y′′′′xxxx = f(x)g(x3y′′′xxx − 3x2y′′xx + 6xy′x − 6y).

The substitution w(x) = x3y′′′xxx − 3x2y′′xx + 6xy′x − 6y leads to a first-order separable

equation: w′
x = x3f(x)g(w).

◮ Other equations.

76. yy′′′′xxxx − 1
6
(y′′xx)

2 = x2f1(y
′′′′

xxxx) + xf2(y
′′′′

xxxx) + f3(y
′′′′

xxxx).

Particular solution:

y = 1
24C1x

4 + 1
6C2x

3 + 1
2C3x

2 + C4x+ C5,

where the constants C1, C2, C3, C4, and C5 are related by three constraints

1
3C1C3 − 1

6C
2
2 = f1(C1),

C1C4 − 1
3C2C3 = f2(C1),

C1C5 − 1
6C

2
3 = f3(C1).

77. yy′′′′xxxx − 1
6
(y′′xx)

2 = y′′′xxxf1(y
′′′′

xxxx) + y′′xxf2(y
′′′′

xxxx)

+ x2f3(y
′′′′

xxxx) + xf4(y
′′′′

xxxx) + f5(y
′′′′

xxxx).

Particular solution:

y = 1
24C1x

4 + 1
6C2x

3 + 1
2C3x

2 + C4x+ C5,

where the constants C1, C2, C3, C4, and C5 are related by three constraints

1
3C1C3 − 1

6C
2
2 = 1

2C1f2(C1) + f3(C1),

C1C4 − 1
3C2C3 = C1f1(C1) +C2f2(C1) + f4(C1),

C1C5 − 1
6C

2
3 = C2f1(C1) +C3f2(C1) + f5(C1).

78. y′′′′xxxx = F (x, y′x, y
′′

xx, y
′′′

xxx).

The substitution w(x) = y′x leads to a third-order equation: w′′′
xxx = F (x, w, w′

x, w
′′
xx).
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79. y′′′′xxxx = F (y, y′x, y
′′

xx, y
′′′

xxx).

Autonomous equation. The substitution w(y) = (y′x)
2 leads to a third-order equation:

ww′′′
yyy +

1
2w

′
yw

′′
yy = 2F (y, ±√w, 1

2w
′
y, ± 1

2

√
ww′′

yy).

80. y′′′′xxxx = x−3F (y/x, y′x, xy
′′

xx, x
2y′′′xxx).

Homogeneous equation. The transformation t = lnx, w = y/x leads to an autonomous

equation of the form 16.2.6.79.

81. y′′′′xxxx = x−k−4F (xky, xk+1y′x, x
k+2y′′xx, x

k+3y′′′xxx).

Generalized homogeneous equation. The transformation t = lnx, w = xky leads to an

autonomous equation of the form 16.2.6.79.

82. y′′′′xxxx = F (x, xy′x − y, y′′xx, y
′′′

xxx).

This is a special case of equation 17.2.6.78 with n = 4. The substitution w = xy′x − y
leads to a third-order equation.

83. y′′′′xxxx = F (x, xy′x − 2y, y′′′xxx).

The substitution w = xy′x − 2y leads to a third-order equation: ζ ′x = F (x, w, ζ), where

ζ = w′′
xx/x.

84. y′′′′xxxx = F (x, x2y′′xx − 2xy′x + 2y, y′′′xxx).

The substitution w(x)=x2y′′xx−2xy′x+2y leads to a second-order equation: (x−2w′
x)

′
x=

F (x,w, x−2w′
x).

85. y′′′′xxxx = yF
((
y′

x

y
,
y′′

xx

y
,
y′′′

xxx

y

))
.

The transformation ξ =
y′x
y

, w =
y′′xx
y
−
( y′x
y

)2
leads to a second-order equation:

w2w′′
ξξ + w(w′

ξ)
2 + 4ξww′

ξ + 3w2 + 6ξ2w + ξ4 = F (ξ, w + ξ2, ww′
ξ + 3ξw + ξ3).

86. y′′′′xxxx = yx− 4F
((
xkym,

xy′

x

y
,
x2y′′

xx

y
,
x3y′′′

xxx

y

))
.

Generalized homogeneous equation. The transformation t = xkym, z =
xy′x
y

leads to a

third-order equation.

87. y′′′′xxxx = yx− 4F
((
xy′

x

y
,
x2y′′

xx

y
,
x3y′′′

xxx

y

))
.

The transformation z =
xy′x
y

, w =
x2y′′xx
y

leads to a second-order equation.

88. y′′′′xxxx = y′xF
((
y′′

xx

y′

x

, y′x − y
y′′

xx

y′

x

,
y′′′

xxx

y′

x

))
.

Autonomous equation. This is a special case of equation 16.2.6.79.

Particular solution:

y = C1 exp(C2x) + C3,

where C1 is an arbitrary constant and the constants C2 and C2 are related by the constraint

C3
2 = F (C2,−C2C3, C

2
2 ).
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89. y′′′′xxxx = e−αxF
((
eαxy, eαxy′x, e

αxy′′xx, e
αxy′′′xxx

))
.

This equation is invariant under “translation–dilatation” transformation. The substitution

u = eαxy leads to an autonomous equation of the form 16.2.6.79.

90. y′′′′xxxx = x− 4F (xmeαy, xy′x, x
2y′′xx, x

3y′′′xxx).

The transformation z = xmeαy , w = xy′x leads to a third-order equation.

91. y′′′′xxxx = yF
((
eαxym,

y′

x

y
,
y′′

xx

y
,
y′′′

xxx

y

))
.

The transformation z = eαxym, w = y′x/y leads to a third-order equation.

92. F (y′′xx/y, yy
′′

xx − y′2x , y
′′′

xxx/y
′

x, y
′′′′

xxxx/y) = 0.

Autonomous equation. This is a special case of equation 16.2.6.79.

1◦. Particular solution:

y = C1 exp(C3x) + C2 exp(−C3x),

where C1, C2, and C2 are related by the constraint F
(
C2
3 , 4C1C2C

2
3 , C

2
3 , C

4
3

)
= 0.

2◦. Particular solution:

y = C1 cos(C3x) + C2 sin(C3x),

with C1, C2, and C2 related by the constraint F
(
−C2

3 ,−(C2
1 + C2

2 )C
2
3 ,−C2

3 , C
4
3

)
= 0.

93. F
((
x, yy′′xx − (y′x)

2, yy′′′xxx − y′xy
′′

xx, yy
′′′′

xxxx − (y′′xx)
2
))
= 0.

The substitution w(x) = yy′′xx − (y′x)
2 leads to a second-order equation of the form

F (x,w,w′
x, w

′′
xx) = 0.

94. F
((
y′′′′

xxxx

y′
x

, y
y′′′′

xxxx

y′
x

− y′′′xxx

))
= 0.

A solution of this equation is any function that solves the third-order linear equation:

y′′′xxx = C1y + C2,

where the constants C1 and C2 are related by the constraint F (C1,−C2) = 0.

95. F (x, y′′xx + ay, y′′′′xxxx − a2y, y′′′′xxxx + ay′′xx) = 0.

The substitution u=y′′xx+ay leads to a second-order equation: F (x, u, u′′xx−au, u′′xx)=0.
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Chapter 17

Higher-Order Ordinary
Differential Equations

17.1 Linear Equations

17.1.1 Preliminary Remarks

In this chapter, we denote higher derivatives by y
(n)
x to mean dny/dxn.

1◦. The general solution of a homogeneous linear equation of the nth-order

fn(x)y
(n)
x + fn−1(x)y

(n−1)
x + · · ·+ f1(x)y

′
x + f0(x)y = 0 (1)

has the form:

y = C1y1(x) + C2y2(x) + · · ·+ Cnyn(x). (2)

Here, y1(x), y2(x), . . . , yn(x) make up a fundamental set of solutions (the yk are linearly

independent solutions; yk 6≡ 0); C1, C2, . . . , Cn are arbitrary constants.

2◦. Let y0= y0(x) be a nontrivial particular solution of equation (1). Then the substitution

y = y0(x)

∫
z(x) dx

leads to a linear (n− 1)st-order equation for z(x).
Let y1 = y1(x) and y2 = y2(x) be two nontrivial linearly independent particular

solutions of equation (1) with g ≡ 0. Then the substitution

y = y1

∫
y2w dx− y2

∫
y1w dx

leads to a linear (n− 2)nd-order equation for w = w(x).

3◦. Further information about higher-order linear equations can be found in Chapter 4.

17.1.2 Equations Containing Power Functions

◮ Equations of the form fn(x)y
(n)
x + f0(x)y = g(x).

1. y(6)x + ay = 0.

1◦. Solution for a = 0:

y = C1 + C2x+ C3x
2 + C4x

3 + C5x
4 + C6x

5.

1051
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2◦. Solution for a = k6 > 0:

y = C1 cos kx+ C2 sin kx+ cos
(
1
2kx

)(
C3 cosh ξ + C4 sinh ξ

)

+ sin
(
1
2kx

)(
C5 cosh ξ + C6 sinh ξ

)
, where ξ =

√
3
2 kx.

3◦. Solution for a = −k6 < 0:

y = C1 cosh kx+ C2 sinh kx+ cosh
(
1
2kx

)(
C3 cos ξ + C4 sin ξ

)

+ sinh
(
1
2 kx

)(
C5 cos ξ + C6 sin ξ

)
, where ξ =

√
3
2 kx.

2. y(2n)
x = a2ny.

Solution:

y = C1e
ax + C2e

−ax +
n−1∑

k=1

eϕk(Ak cos θk +Bk sin θk),

where ϕk = ax cos
kπ

n
, θk = ax sin

kπ

n
; C1, C2, Ak, Bk (k = 1, 2, . . . , n − 1) are

arbitrary constants.

3. y(n)
x = axy + b, a > 0.

Solution:

y =

n∑

ν=0

Cνεν

∫ ∞

0
exp
[
ενxt−

tn+1

a(n+ 1)

]
dt, εν = exp

( 2πνi

n+ 1

)
,

where

n∑

ν=0

Cν =
b

a
and i2 = −1.

4. y(n)
x = axβy.

For specific β, see equations 17.1.2.2, 17.1.2.3 (with b = 0), 17.1.2.5 to 17.1.2.9, and

17.1.2.10 (with b = 0).

1◦. Let n ≥ 2, β > −n, and (n+ β)(s+1) 6= 1, 2, . . . , n− 1, where s = 0, 1, . . . Then

the equation has n solutions that can be represented as:

yj(x) = xj−1En,1+β/n,(β+j−1)/n

(
axβ+n

)
, j = 1, 2, . . . , n. (1)

Here, En,m,l(z) is a Mittag-Leffler type special function defined by:

En,m,l(z) = 1 +

∞∑

k=1

bkz
k,

bk =
k−1∏

s=0

Γ
(
n(ms+ l) + 1

)

Γ
(
n(ms+ l + 1) + 1

) =
k−1∏

s=0

1

[n(ms+ l) + 1] . . . [n(ms+ l) + n]
,

(2)

where Γ(ξ) is the gamma function, l is an arbitrary number, and m > 0.

If β ≥ 0, solutions (1) are linearly independent. Series expansions of (1) are convenient

for small x.
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2◦. Let n≥ 2, β <−n, and (n+β)(s+1) 6=−1, −2, . . . , −(n−1), where s= 0, 1, . . .
Then the equation in question has n solutions that can be represented as:

yj(x) = xj−1En,−1−β/n,−1−(β+j)/n

(
a(−1)nxβ+n

)
, j = 1, 2, . . . , n, (3)

where En,m,l(z) is the Mittag-Leffler type special function defined by (2). If β ≤ −2n,

solutions (3) are linearly independent. Series expansions of (3) are convenient for large x.

3◦. The transformation x = t−1, y = wt1−n leads to an equation of similar form:

w
(n)
t = a(−1)n+1t−2n−βw.

⊙ Literature: M. Saigo and A. A. Kilbas (2000).

5. x2ny(n)
x = ay.

The transformation x = t−1, y = wt1−n leads to a constant coefficient linear equation:

w
(n)
t = (−1)naw.

6. xny(2n)
x = ay.

Solution:

y = xn/2
n∑

k=1

[
Ck1In

(
2βk
√
x
)
+ Ck2Kn

(
2βk
√
x
)]
,

where In(z) and Kn(z) are modified Bessel functions; β1, β2, . . . , βn are roots of the

equation βn =
√
a.

7. x3ny(2n)
x = ay.

The transformation x = t−1, y = wt1−2n leads to an equation of the form 17.1.2.6:

tnw
(2n)
t = aw.

8. xn+1/2y(2n+1)
x = ay.

Solution:

y = x(2n+1)/4
2n∑

k=0

Ck

[
J−n−1/2

(
2βk
√
x
)
+ iJn+1/2

(
2βk
√
x
)]
,

where Jm(z) are Bessel functions; β0, β1, . . . , β2n are roots of the equation β2n+1 =−ai;
i2 = −1.

9. x3n+3/2y(2n+1)
x = ay.

The transformation x = t−1, y = wt−2n leads to a linear equation of the form 17.1.2.8:

tn+1/2w
(2n+1)
t = −aw.

10. x2n+1y(n)
x = ay + bxn.

The transformation x = t−1, y = wt1−n leads to a linear equation of the form 17.1.2.3:

w
(n)
t = (−1)n(atw + b).
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11. (ax+ b)2n+1y(n)
x = (cx+ d)y.

The transformation ξ =
cx+ d

ax+ b
, w =

y

(ax+ b)n−1
leads to an equation of the form

17.1.2.3: w
(n)
ξ = ∆−nξw, where ∆ = bc− ad.

12. (ax+ b)n(cx+ d)ny(n)
x = ky.

1◦. The transformation ξ = ln
ax+ b

cx+ d
, w =

y

(cx+ d)n−1
leads to a constant coefficient

linear equation.

2◦. The transformation ζ =
ax+ b

cx+ d
, w =

y

(cx+ d)n−1
leads to the Euler equation

17.1.2.39: ζnw
(n)
ζ = k∆−nw, where ∆ = ad− bc.

13. (ax2 + bx+ c)ny(n)
x = ky.

The transformation ξ =

∫
dx

ax2 + bx+ c
, w = y(ax2 + bx+ c)

1−n
2 leads to a constant

coefficient linear equation.

14. (ax+ b)n(cx+ d)3ny(2n)
x = ky.

The transformation ξ =
ax+ b

cx+ d
, w =

y

(cx+ d)2n−1
leads to an equation of the form

17.1.2.6: ξnw
(2n)
ξ = k∆−2nw, where ∆ = ad− bc.

15. (ax+ b)n+1/2(cx+ d)3n+3/2y(2n+1)
x = ky.

The transformation ξ =
ax+ b

cx+ d
, w =

y

(cx+ d)2n
leads to an equation of the form

17.1.2.8: ξn+1/2w
(2n+1)
ξ = k∆−2n−1w, where ∆ = ad− bc.

◮ Equations of the form fn(x)y
(n)
x + f1(x)y

′

x + f0(x)y = g(x).

16. y(n)
x + axky′x + akxk−1y = 0.

Integrating yields an (n− 1)st-order linear equation: y
(n−1)
x + axky = C .

17. y(n)
x + axk+1y′x − a(n− 1)xky = 0.

The substitution z = xy′x− (n− 1)y leads to an (n− 1)st-order linear equation: z
(n−1)
x +

axk+1z = 0.

18. y(n)
x + axk+1y′x + a(k+ n)xky = 0.

The transformation x = t−1, y = wt1−n leads to an equation of the form 17.1.2.16:

w
(n)
t + btνw′

t + bνtν−1w = 0, where b = a(−1)n+1, ν = 1− k − 2n.

19. y(n)
x + (ax+ b)xky′x − axky = 0.

Particular solution: y0 = ax+ b.
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20. y(n)
x + (ax+ b)xky′x − 2axky = 0.

Particular solution: y0 = (ax+ b)2.

21. y(n)
x + (ax+ b)xky′x − 3axky = 0.

Particular solution: y0 = (ax+ b)3.

22. y(n)
x + (ax+ b)xky′x − a(n− 1)xky = 0.

Particular solution: y0 = (ax+ b)n−1. The substitution z = (ax+ b)y′x−a(n−1)y leads

to an (n− 1)st-order linear equation: z
(n−1)
x + (ax+ b)xkz = 0.

23. y(n)
x + axk+1y′x − amxky = 0, m = 1, 2, . . . , n− 1.

Particular solution: y0 = xm . The substitution z = xy′x−my leads to an (n− 1)st-order

linear equation:

Dn−m−1
( z(m)

x

x

)
+ axkz = 0, where D =

d

dx
.

◮ Other equations.

24. y(2n)
x = any + bxk(y′′xx − ay).

This is a special case of equation 17.1.6.18 with f(x)= bxk. The substitution w= y′′xx−ay
leads to a (2n− 2)nd-order linear equation: w

(2n−2)
x + aw

(2n−4)
x + · · ·+ an−1w = bxkw.

25. y(n)
x + an−1y

(n−1)
x + · · · + a1y

′

x + a0y = 0.

Constant coefficient homogeneous linear equation. To solve this equation, determine the n
roots of the characteristic equation:

λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = 0.

If the roots λ1, λ2, . . . , λn are all real and different, then the general solution of the original

equation is:

y = C1 exp(λ1x) + C2 exp(λ2x) + · · ·+ Cn exp(λnx).

The general case, which involves the cases of multiple and/or complex roots of the

characteristic equation, is discussed in Section 4.1.1.

26. y(n)
x + axky(m)

x − (abmxk + bn)y = 0.

Particular solution: y0 = ebx.

27. y(n)
x + (axk − bn−m)y(m)

x − abmxky = 0.

Particular solution: y0 = ebx.

28. y(n)
x + ay(n−1)

x + bxmy′x + abxmy = 0.

Particular solution: y0 = e−ax.

29. xy(n)
x − nmy(n−1)

x + axy = 0, n = 2, 3, 4, . . . , m = 1, 2, 3, . . .

Solution:

y = x(m+1)n−1
(
x1−n d

dx

)m
(x1−nw),

where w is the general solution of the constant coefficient linear equation: w
(n)
x + aw = 0.
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30. xy(n)
x + ny(n−1)

x = axy + b.

The substitution w = xy leads to a constant coefficient linear equation: w
(n)
x = aw + b.

31. xy(n)
x + ny(n−1)

x = ax2y + b.

The substitution w = xy leads to an equation of the form 17.1.2.3: w
(n)
x = axw + b.

32. xy(n)
x + (n−m− 1)y(n−1)

x + axky′x − amxk−1y = 0.

Particular solution: y0 = xm.

33. xy(n)
x + axky(m)

x − (axk + amxk−1 + x+ n)y = 0.

Particular solution: y0 = xex.

34. xy(n)
x =

n−1∑
ν=0

[(aAν+1 − Aν)x+ Aν+1]y
(ν)
x .

Here, An = 1, A0 = 0; a and Aν are arbitrary numbers (ν = 1, 2, . . . , n− 1).

Denote f(λ) =
n−1∑
ν=0

Aν+1λ
ν . Let the roots λ1, λ2, . . . , λn−1 of the algebraic equation

f(λ) = 0 be all different, and f(a) 6= 0. Then the solution is as follows:

y = C1e
λ1x + C2e

λ2x + · · · + Cn−1e
λn−1x + Cne

ax
[
x− f ′a(a)

f(a)

]
.

35.
n∑

ν=0
(aνx+ bν)y

(ν)
x = 0.

The Laplace equation. Particular solutions:

yk =

∫ βk

αk

1

P (t)
exp
[
xt+

∫
Q(t)

P (t)
dt
]
dt,

where P (t) =
n∑

ν=0
aνt

ν , Q(t) =
n∑

ν=0
bνt

ν ; αk and βk are found from the condition

exp
(
xt+

∫
Q(t)

P (t)
dt
)∣∣∣

βk

αk

= 0.

In many cases, the path of integration has to be chosen on the complex plane.

36. x2y(n)
x + 2nxy(n−1)

x + n(n− 1)y(n−2)
x = ax2y + b.

The substitution w = x2y leads to a constant coefficient linear equation: w
(n)
x = aw + b.

37. x2y(n)
x + 2nxy(n−1)

x + n(n− 1)y(n−2)
x = ax3y + b.

The substitution w = x2y leads to an equation of the form 17.1.2.3: w
(n)
x = axw + b.

38. x(x+m)y(n)
x + x(axk − x− n)y(m)

x − a(x+m)xky = 0.

Particular solution: y0 = xex.
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39. anx
ny(n)

x + an−1x
n−1y(n−1)

x + · · · + a1xy
′

x + a0y = 0.

Euler equation. If all roots λk (k = 1, 2, . . . , n) of the algebraic equation

n∑

ν=1

aνλ(λ− 1) . . . (λ− ν + 1) = −a0

are different, the general solution of the original differential equation is given by:

y = C1|x|λ1 + C2|x|λ2 + · · ·+ Cn|x|λn .

In the general case, the substitution t = ln |x| leads to a constant coefficient linear

equation of the form 17.1.2.25:

n∑

ν=1

aνD(D − 1) . . . (D − ν + 1)y = −a0y, where D =
d

dx
.

40. x2n+1y(n)
x + nx2ny(n−1)

x = axy.

The substitution w = xy leads to an equation of the form 17.1.2.5: x2nw
(n)
x = aw.

41. x2n+1y(n)
x + nx2ny(n−1)

x = ay.

The substitution w = xy leads to an equation of the form 17.1.2.10: x2n+1w
(n)
x = aw.

42. xny(2n)
x + 2nxn−1y(2n−1)

x = ay.

The substitution w = xy leads to an equation of the form 17.1.2.6: xnw
(2n)
x = aw.

43. x3ny(2n)
x + 2nx3n−1y(2n−1)

x = ay.

The substitution w = xy leads to an equation of the form 17.1.2.7: x3nw
(2n)
x = aw.

44. xn+1y(2n+1)
x + (2n+ 1)xny(2n)

x = a
√
x y.

The substitution w = xy leads to an equation of the form 17.1.2.8: xn+1/2w
(2n+1)
x = aw.

45. x3n+3/2y(2n+1)
x + (2n+ 1)x3n+1/2y(2n)

x = ay.

The substitution w= xy leads to an equation of the form 17.1.2.9: x3n+3/2w
(2n+1)
x = aw.

46. Pn−1(x)y
(n)
x +Pn−2(x)y

(n−1)
x +· · ·+P1(x)y

′′

xx+(a1x+b1)y
′

x−ma1y=0.

Here, the Pν(x) are polynomials of degree ≤ ν, m is a positive integer, a1 6= 0.

A particular solution of this equation is the polynomial of degree m that can be written

as:

y0 =

m∑

k=0

(
− 1

a1

)k
[xmIx−m−1(Pn−1D

n + · · · + P1D
2 + b1D)]kxm,

where D =
d

dx
, Ixν =

xν+1

ν + 1
with ν 6= −1.

⊙ Literature: E. Kamke (1977).
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47. [anx
n + Pn−1(x)]y

(n)
x + · · · + [a1x+ P0(x)]y

′

x + a0y = 0.

Here, the Pν(x) are polynomials of degree ≤ ν.

Assume that for some integer m ≥ 0:

n∑

ν=0

Cν
mν! aν = 0, where Cν

m =
m!

ν! (m− ν)! ,

and m is the least of the numbers satisfying this condition. Then there exists a solution in

the form of a polynomial of degree m such that no polynomial of a smaller degree satisfies

the original equation.

⊙ Literature: E. Kamke (1977).

48.
[[
xP (δ) −Q(δ)

]]
y = 0, δ ≡ x

d

dx
.

Here, P = P (z) and Q = Q(z) are arbitrary polynomials of degree p and q, respectively.

Suppose Q(z + 1) = (z + 1)Q1(z + 1), where the polynomial Q1(z + 1) is such that

P (z) and Q1(z + 1) do not have common factors. Then the original equation admits a

formal solution in the power series form:

y0 =
∞∑

n=0

Anx
n, where

An+1

An
=

P (n)

Q(n+ 1)
.

⊙ Literature: H. Bateman and A. Erdélyi (1953, Vol. 1).

17.1.3 Equations Containing Exponential and Hyperbolic Functions

◮ Equations with exponential functions.

1. y(n)
x + (ax+ b)eλxy′x − aeλxy = 0.

Particular solution: y0 = ax+ b.

2. y(n)
x + (ax+ b)eλxy′x − 2aeλxy = 0.

Particular solution: y0 = (ax+ b)2.

3. y(n)
x + (ax+ b)eλxy′x − 3aeλxy = 0.

Particular solution: y0 = (ax+ b)3.

4. y(n)
x + (ax+ b)eλxy′x − (n− 1)aeλxy = 0.

Particular solution: y0 = (ax+ b)n−1. The substitution z = (ax+ b)y′x−a(n−1)y leads

to an (n− 1)st-order linear equation: z
(n−1)
x + (ax+ b)eλxz = 0.

5. y(n)
x + axeλxy′x − ameλxy = 0, m = 1, 2, . . . , n− 1.

Particular solution: y0 = xm.

6. y(2n)
x = any + beλx(y′′xx − ay).

This is a special case of equation 17.1.6.18 with f(x) = beλx. The substitution w = y′′xx−
ay leads to a (2n−2)nd-order linear equation: w

(2n−2)
x +aw

(2n−4)
x +· · ·+an−1w= beλxw.
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7. y(n)
x + (aeλx − bn−m)y(m)

x − abmeλxy = 0.

Particular solution: y0 = ebx.

8. y(n)
x + ay(n−1)

x + beλxy′x + abeλxy = 0.

Particular solution: y0 = e−ax.

9. y(n)
x + aeλxy(m)

x − (abmeλx + bn)y = 0.

Particular solution: y0 = ebx.

10. y(n)
x =

n−1∑
k=0

(Ak+1e
λx + bAk+1 − Ak)y

(k)
x .

Here, An = 1, A0 = 0; b and Ak are arbitrary numbers (k = 1, 2, . . . , n− 1).

Particular solutions: ym = eµmx, where the µm are roots of the polynomial equation
n−1∑
k=0

Ak+1µ
k = 0.

11. xy(n)
x + axeλxy(m)

x − [a(x+m)eλx + x+ n]y = 0.

Particular solution: y0 = xex.

12. xy(n)
x + (n−m− 1)y(n−1)

x + axeλxy′x − ameλxy = 0.

Particular solution: y0 = xm.

13. x(x+m)y(n)
x + x(aeλx − x− n)y(m)

x − a(x+m)eλxy = 0.

Particular solution: y0 = xex.

14. (axm + bex + c)y(n)
x = bexy, m = 0, 1, . . . , n− 1.

Particular solution: y0 = axm + bex + c.

15. (axmex + b)y(n)
x = (−1)nby, m = 0, 1, . . . , n− 1.

Particular solution: y0 = axm + be−x.

16.
((
aex +

n−1∑
k=0

bkx
k
))
y(n)
x = aexy.

Particular solution: y0 = aex +
n−1∑
k=0

bkx
k.

◮ Equations with hyperbolic functions.

17. y(2n)
x = any + b sinhk(λx)(y′′xx − ay).

This is a special case of equation 17.1.6.18 with f(x) = b sinhk(λx).

18. y(n)
x + a sinhk x y(m)

x − (abm sinhk x+ bn)y = 0.

Particular solution: y0 = ebx.

19. y(n)
x + (a sinhk x− bn−m)y(m)

x − abm sinhk x y = 0.

Particular solution: y0 = ebx.
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20. y(n)
x + (ax+ b) sinhm(λx)y′x − a sinhm(λx)y = 0.

Particular solution: y0 = ax+ b.

21. xy(n)
x + ax sinhk x y(m)

x − [a(x+m) sinhk x+ x+ n]y = 0.

Particular solution: y0 = xex.

22. y(2n)
x = any + b coshk(λx)(y′′xx − ay).

This is a special case of equation 17.1.6.18 with f(x) = b coshk(λx).

23. y(n)
x + a coshk x y(m)

x − (abm coshk x+ bn)y = 0.

Particular solution: y0 = ebx.

24. y(n)
x + (a coshk x− bn−m)y(m)

x − abm coshk x y = 0.

Particular solution: y0 = ebx.

25. y(n)
x + (ax+ b) coshm(λx)y′x − a coshm(λx)y = 0.

Particular solution: y0 = ax+ b.

26. xy(n)
x + ax coshk x y(m)

x − [a(x+m) coshk x+ x+ n]y = 0.

Particular solution: y0 = xex.

27. y(2n)
x = y + a(y′x cosh x− y sinhx).

The substitution w = y′x cosh x− y sinhx leads to a (2n − 1)st-order linear equation.

28. y(2n)
x = y + a(y′x sinhx− y cosh x).

The substitution w = y′x sinh x− y coshx leads to a (2n − 1)st-order linear equation.

29. y(n)
x + a tanhk x y(m)

x − (abm tanhk x+ bn)y = 0.

Particular solution: y0 = ebx.

30. y(n)
x + (a tanhk x− bn−m)y(m)

x − abm tanhk x y = 0.

Particular solution: y0 = ebx.

31. y(n)
x + (ax+ b) tanhm(λx)y′x − a tanhm(λx)y = 0.

Particular solution: y0 = ax+ b.

32. xy(n)
x + ax tanhk x y(m)

x − [a(x+m) tanhk x+ x+ n]y = 0.

Particular solution: y0 = xex.

33. y(n)
x + a cothk x y(m)

x − (abm cothk x+ bn)y = 0.

Particular solution: y0 = ebx.

34. y(n)
x + (a cothk x− bn−m)y(m)

x − abm cothk x y = 0.

Particular solution: y0 = ebx.

35. y(n)
x + (ax+ b) cothm(λx) y′x − a cothm(λx) y = 0.

Particular solution: y0 = ax+ b.

36. xy(n)
x + ax cothk x y(m)

x − [a(x+m) cothk x+ x+ n]y = 0.

Particular solution: y0 = xex.
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17.1.4 Equations Containing Logarithmic Functions

1. y(2n)
x = any + b ln x(y′′xx − ay).

This is a special case of equation 17.1.6.18 with f(x) = b lnx.

2. y(n)
x + a lnk x y(m)

x − (abm lnk x+ bn)y = 0.

Particular solution: y0 = ebx.

3. y(n)
x + (a lnk x− bn−m)y(m)

x − abm lnk x y = 0.

Particular solution: y0 = ebx.

4. y(n)
x + ay(n−1)

x + b lnk(λx)y′x + ab lnk(λx)y = 0.

Particular solution: y0 = e−ax.

5. y(n)
x + (ax+ b) lnk(λx)y′x − a lnk(λx)y = 0.

Particular solution: y0 = ax+ b.

6. y(n)
x + (ax+ b) lnk(λx)y′x − 2a lnk(λx)y = 0.

Particular solution: y0 = (ax+ b)2.

7. y(n)
x + (ax+ b) lnk(λx)y′x − 3a lnk(λx)y = 0.

Particular solution: y0 = (ax+ b)3.

8. y(n)
x + (ax+ b) lnk(λx)y′x − a(n− 1) lnk(λx)y = 0.

Particular solution: y0 = (ax+ b)n−1.

9. y(n)
x + ax lnk(λx)y′x − am lnk(λx)y = 0, m = 1, 2, . . . , n− 1.

Particular solution: y0 = xm.

10. xy(n)
x + ax lnk(λx)y(m)

x − [a(x+m) lnk(λx) + x+ n]y = 0.

Particular solution: y0 = xex.

17.1.5 Equations Containing Trigonometric Functions

◮ Equations with sine and cosine.

1. y(n)
x + a sink x y(m)

x − (abm sink x+ bn)y = 0.

Particular solution: y0 = ebx.

2. y(n)
x + (a sink x− bn−m)y(m)

x − abm sink x y = 0.

Particular solution: y0 = ebx.

3. y(n)
x + ay(n−1)

x + b sinm(λx)y′x + ab sinm(λx)y = 0.

Particular solution: y0 = e−ax.

4. y(n)
x + (ax+ b) sinm(λx)y′x − a sinm(λx)y = 0.

Particular solution: y0 = ax+ b.
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5. y(n)
x + (ax+ b) sinm(λx)y′x − 2a sinm(λx)y = 0.

Particular solution: y0 = (ax+ b)2.

6. y(n)
x + (ax+ b) sinm(λx)y′x − 3a sinm(λx)y = 0.

Particular solution: y0 = (ax+ b)3.

7. y(2n)
x = any + b sink(λx)(y′′xx − ay).

This is a special case of equation 17.1.6.18 with f(x) = b sink(λx).

8. xy(n)
x + ax sink(λx)y(m)

x − [a(x+m) sink(λx) + x+ n]y = 0.

Particular solution: y0 = xex.

9. (axm + b sin x)y(n)
x = b sin

((
x+ 1

2
πn
))
y, m = 0, 1, . . . , n− 1.

Particular solution: y0 = axm + b sinx.

10.
((
a sin x+

n−1∑
k=0

bkx
k
))
y(n)
x = a sin

((
x+ 1

2
πn
))
y.

Particular solution: y0 = a sinx+
n−1∑
k=0

bkx
k.

11. y(n)
x + a cosk x y(m)

x − (abm cosk x+ bn)y = 0.

Particular solution: y0 = ebx.

12. y(n)
x + (a cosk x− bn−m)y(m)

x − abm cosk x y = 0.

Particular solution: y0 = ebx.

13. y(n)
x + ay(n−1)

x + b cosm(λx)y′x + ab cosm(λx)y = 0.

Particular solution: y0 = e−ax.

14. y(n)
x + (ax+ b) cosm(λx)y′x − a cosm(λx)y = 0.

Particular solution: y0 = ax+ b.

15. y(n)
x + (ax+ b) cosm(λx)y′x − 2a cosm(λx)y = 0.

Particular solution: y0 = (ax+ b)2.

16. y(n)
x + (ax+ b) cosm(λx)y′x − 3a cosm(λx)y = 0.

Particular solution: y0 = (ax+ b)3.

17. y(2n)
x = any + b cosk(λx)(y′′xx − ay).

This is a special case of equation 17.1.6.18 with f(x) = b cosk(λx).

18. xy(n)
x + ax cosk(λx)y(m)

x − [a(x+m) cosk(λx) + x+ n]y = 0.

Particular solution: y0 = xex.

19. (axm + b cos x)y(n)
x = b cos

((
x+ 1

2
πn
))
y, m = 0, 1, . . . , n− 1.

Particular solution: y0 = axm + b cos x.
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20.
((
a cosx+

n−1∑
k=0

bkx
k
))
y(n)
x = a cos

((
x+ 1

2
πn
))
y.

Particular solution: y0 = a cos x+
n−1∑
k=0

bkx
k.

21. y(2n)
x = (−1)ny + a(y′x sin x− y cosx).

The substitution w = y′x sinx− y cos x leads to a (2n− 1)st-order linear equation.

22. y(2n)
x = (−1)ny + a(y′x cosx+ y sinx).

The substitution w = y′x cos x+ y sinx leads to a (2n− 1)st-order linear equation.

◮ Equations with tangent and cotangent.

23. y(n)
x + a tank x y(m)

x − (abm tank x+ bn)y = 0.

Particular solution: y0 = ebx.

24. y(n)
x + (a tank x− bn−m)y(m)

x − abm tank x y = 0.

Particular solution: y0 = ebx.

25. y(n)
x + ay(n−1)

x + b tanm(λx)y′x + ab tanm(λx)y = 0.

Particular solution: y0 = e−ax.

26. y(n)
x + (ax+ b) tanm(λx)y′x − a tanm(λx)y = 0.

Particular solution: y0 = ax+ b.

27. y(n)
x + (ax+ b) tanm(λx)y′x − 2a tanm(λx)y = 0.

Particular solution: y0 = (ax+ b)2.

28. y(n)
x + (ax+ b) tanm(λx)y′x − 3a tanm(λx)y = 0.

Particular solution: y0 = (ax+ b)3.

29. xy(n)
x + ax tank(λx)y(m)

x − [a(x+m) tank(λx) + x+ n]y = 0.

Particular solution: y0 = xex.

30. y(n)
x + a cotk x y(m)

x − (abm cotk x+ bn)y = 0.

Particular solution: y0 = ebx.

31. y(n)
x + (a cotk x− bn−m)y(m)

x − abm cotk x y = 0.

Particular solution: y0 = ebx.

32. y(n)
x + ay(n−1)

x + b cotm(λx)y′x + ab cotm(λx)y = 0.

Particular solution: y0 = e−ax.

33. y(n)
x + (ax+ b) cotm(λx)y′x − a cotm(λx)y = 0.

Particular solution: y0 = ax+ b.
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34. y(n)
x + (ax+ b) cotm(λx)y′x − 2a cotm(λx)y = 0.

Particular solution: y0 = (ax+ b)2.

35. y(n)
x + (ax+ b) cotm(λx)y′x − 3a cotm(λx)y = 0.

Particular solution: y0 = (ax+ b)3.

36. xy(n)
x + ax cotk(λx)y(m)

x − [a(x+m) cotk(λx) + x+ n]y = 0.

Particular solution: y0 = xex.

17.1.6 Equations Containing Arbitrary Functions

◮ Equations of the form fn(x)y
(n)
x + f1(x)y

′

x + f0(x)y = g(x).

1. y(n)
x = f(x).

Solution: y =

n−1∑

ν=0

Cνx
ν +

∫ x

x0

(x− t)n−1

(n− 1)!
f(t) dt, where x0 is an arbitrary number.

2. y(n)
x = f(x)y.

The transformation x = t−1, y = wt1−n leads to an equation of similar form: w
(n)
t =

(−1)nt−2nf(1/t)w.

3. y(n)
x = (cx+ d)−2nf

((
ax+ b

cx+ d

))
y.

The transformation ξ =
ax+ b

cx+ d
, w =

y

(cx+ d)n−1
leads to a simpler equation: w

(n)
ξ =

∆−nf(ξ)w, where ∆ = ad− bc.

4. fy(n)
x − f (n)

x y = 0, f = f(x).

Particular solution: y0 = f(x).

5. fy(2n+1)
x + f (2n+1)

x y = g(x), f = f(x).

First integral:

2n∑

k=0

(−1)kf (2n−k)
x y(k)x =

∫
g(x) dx + C .

6. y(n)
x + (ax+ b)f(x)y′x − af(x)y = 0.

Particular solution: y0 = ax+ b.

7. y(n)
x + (ax+ b)f(x)y′x − 2af(x)y = 0.

Particular solution: y0 = (ax+ b)2.

8. y(n)
x + (ax+ b)f(x)y′x − 3af(x)y = 0.

Particular solution: y0 = (ax+ b)3.

9. y(n)
x + (ax+ b)f(x)y′x − (n− 1)af(x)y = 0.

Particular solution: y0 = (ax+ b)n−1. The substitution z = (ax+ b)y′x−a(n−1)y leads

to an (n− 1)st-order linear equation: z
(n−1)
x + (ax+ b)f(x)z = 0.
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10. y(n)
x + xf(x)y′x −mf(x)y = 0, m = 1, 2, . . . , n− 1.

Particular solution: y0 = xm. The substitution z = xy′x−my leads to an (n− 1)st-order

equation:

Dn−m−1
( z(m)

x

x

)
+ f(x)z = 0, where D =

d

dx
.

11. y(n)
x + f(x)y′x + g(x)y + h(x) = 0.

The transformation x = t−1, y = wt1−n leads to an equation of similar form:

w
(n)
t + (−1)nt−2n

{
−t2f(1/t)w′

t +
[
(n− 1)tf(1/t) + g(1/t)

]
w + tn−1h(1/t)

}
= 0.

12. y(n)
x + f(x)y′x + f ′

x(x)y = g(x).

Integrating yields an (n− 1)st-order linear equation: y(n−1)
x + f(x)y =

∫
g(x) dx + C .

13. y(2n)
x = y + f(x)(y′x cosh x− y sinhx).

The substitution w = y′x cosh x− y sinhx leads to a (2n − 1)st-order linear equation.

14. y(2n)
x = y + f(x)(y′x sinh x− y cosh x).

The substitution w = y′x sinh x− y coshx leads to a (2n − 1)st-order linear equation.

15. y(2n)
x = (−1)ny + f(x)(y′x sin x− y cos x).

The substitution w = y′x sinx− y cos x leads to a (2n− 1)st-order linear equation.

16. y(2n)
x = (−1)ny + f(x)(y′x cos x+ y sin x).

The substitution w = y′x cos x+ y sinx leads to a (2n− 1)st-order linear equation.

17. y(n)
x =

ϕ
(n)
x

ϕ
y + f(x)

((
y′x − ϕ′

x

ϕ
y
))
, ϕ = ϕ(x).

The substitution w = y′x −
ϕ′
x

ϕ
y leads to an (n− 1)st-order linear equation.

◮ Other equations.

18. y(2n)
x = any + f(x)(y′′xx − ay).

The substitution w = y′′xx − ay leads to a (2n − 2)nd-order linear equation:

w(2n−2)
x + aw(2n−4)

x + · · ·+ an−1w = f(x)w.

19. y(n)
x + f(x)(x2y′′xx − 2xy′x + 2y) = 0.

Particular solutions: y1 = x, y2 = x2. The substitution z = x2y′′xx− 2xy′x +2y leads to

a linear equation of the (n− 2)nd-order.

20. y(n+2)
x + f(x)[x2y′′xx − 2nxy′x + n(n+ 1)y] = 0.

The substitution w(x) = x2y′′xx−2nxy′x+n(n+1)y leads to an nth-order linear equation:

w
(n)
x + x2f(x)w = 0.
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21. y(2n)
x = a2y + f(x)[y(n)

x + ay].

The substitution w= y
(n)
x +ay leads to an nth-order linear equation: w

(n)
x = [f(x)+a]w.

22. y(n)
x + f(x)y(m)

x − [an + amf(x)]y = 0.

Particular solution: y0 = eax.

23. y(n)
x + (f − an−m)y(m)

x − amfy = 0, f = f(x).

Particular solution: y0 = eax.

24. y(n)
x + ay(n−1)

x + fy′x + afy = 0, f = f(x).

Particular solution: y0 = e−ax.

25. y(n)
x + f(x)y(n−1)

x + g(x)y(n−2)
x + h(x) = 0.

The substitution w(x) = y
(n−2)
x leads to a second-order linear equation: w′′

xx+ f(x)w
′
x+

g(x)w + h(x) = 0.

26. y(n)
x + an−1y

(n−1)
x + · · · + a1y

′

x + a0y = f(x).

Constant coefficient nonhomogeneous linear equation. The general solution of this equa-

tion is the sum of the general solution of the corresponding homogeneous equation (see

5.1.2.25) and any particular solution of the nonhomogeneous equation.

If the roots λ1, λ2, . . . , λn of the characteristic equation

λn + an−1λ
n−1 + · · · + a1λ+ a0 = 0

are all different, the original equation has the general solution:

y =

n∑

ν=1

Cνe
λνx +

n∑

ν=1

eλνx

P ′
λ(λν)

∫
f(x)e−λνx dx

(with complex roots, the real part should be taken).

Section 4.1.2 lists the forms of particular solutions corresponding to some special forms

of the right-hand side function of the nonhomogeneous linear equation.

27. y(n)
x + f(x)

n−1∑
k=0

(−1)kk!Ck
n−1x

n−k−1y(n−k−1)
x = 0.

Here, Ck
m =

m!

k! (m− k)! are binomial coefficients.

Particular solutions: ym = xm, where m = 1, 2, . . . , n− 1.

The substitution z =
n−1∑
k=0

(−1)kk!Ck
n−1x

n−k−1y(n−k−1)
x leads to a first-order linear

equation: z′x+x
n−1f(x)z = 0. Having solved this equation, we obtain an (n− 1)st-order

linear equation of the form 17.1.6.34 for y(x).

28. y(n)
x =

n−1∑
k=0

(ak+1f − ak)y
(k)
x .

Here, f = f(x); an = 1, a0 = 0; ak are arbitrary numbers (k = 1, 2, . . . , n− 1).

Particular solutions: yk = eλkx (k = 1, 2, . . . , n − 1), where the λk are roots of the

polynomial equation
n−1∑
k=0

ak+1λ
k = 0.
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29. xy(n)
x + (a+ n− 1)y(n−1)

x = f(x)(xy′x + ay).

The substitution w=xy′x+ay leads to an (n−1)st-order linear equation: w
(n−1)
x =f(x)w.

30. xy(n)
x + xfy(m)

x − [(x+m)f + x+ n]y = 0, f = f(x).

Particular solution: y0 = xex.

31. xy(n)
x + ny(n−1)

x = x1−2nf(1/x)y + x−n−1g(1/x).

The transformation t = x−1, w = yx2−n leads to an nth-order linear equation: w
(n)
t =

(−1)n[f(t)w + g(t)].

32. x2y(n+2)
x +αxy(n+1)

x +βy(n)
x + f(x)[x2y′′xx+(α− 2n)xy′x+(β−αn+

n2 + n)y] = 0.

The substitution w(x) = x2y′′xx+(α−2n)xy′x+(β−αn+n2+n)y leads to an nth-order

linear equation: w
(n)
x + f(x)w = 0.

33. x(x+m)y(n)
x + x(f − x− n)y(m)

x − (x+m)fy = 0, f = f(x).

Particular solution: y0 = xex.

34. xny(n)
x + bn−1x

n−1y(n−1)
x + · · · + b1xy

′

x + b0y = f(x).

Nonhomogeneous Euler equation. The substitution x = aet (a 6= 0) leads to a constant

coefficient nonhomogeneous linear equation of the form 17.1.6.26.

35. xny(n)
x + (n−m− 1)xn−1y(n−1)

x + xfy′x −mfy = 0, f = f(x).

Particular solution: y0 = xm.

36. xny(n)
x + xmfy(m)

x − (n!Cn
a +m!Cm

a f)y = 0.

Here, f = f(x), Cn
a =

Γ(a+ 1)

n! Γ(a− n+ 1)
are binomial coefficients, and Γ(a) is the gamma

function.

Particular solution: y0 = xa.

37. xmy(n)
x =

n−1∑
k=0

[xm(ak+1f − ak) + ak+1]y
(k)
x .

Here, f = f(x); an = 1, a0 = 0; m and ak are arbitrary numbers (k = 1, 2, . . . , n− 1).

Particular solutions: yk = eλkx (k = 1, 2, . . . , n − 1), where the λk are roots of the

polynomial equation
n−1∑
k=0

ak+1λ
k = 0.

38. sin x y(n)
x +sin x f(x)y(m)

x −
[[
sin

((
x+ 1

2
πn
))
+f(x) sin

((
x+ 1

2
πm

))]]
y=0.

Particular solution: y0 = sinx.

39. cosx y(n)
x +cosxf(x)y(m)

x −
[[
cos

((
x+ 1

2
πn
))
+f(x) cos

((
x+ 1

2
πm

))]]
y=0.

Particular solution: y0 = cos x.

40.
n∑

k=2

fk(x)y
(k)
x = g(x)(xy′x − y).

Particular solution: y0 = x. The substitution w(x) = xy′x− y leads to an (n− 1)st-order

linear equation.
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41.
n∑

k=m+1

fk(x)y
(k)
x = g(x)(xy′x −my), m = 1, 2, . . . , n− 1.

Particular solution: y0 = xm. The substitution w(x) = xy′x −my leads to an (n− 1)st-

order linear equation.

42.
n∑

k=3

fk(x)y
(k)
x = g(x)(x2y′′xx − 2xy′x + 2y).

Particular solutions: y1 = x, y2 = x2. The substitution w(x) = x2y′′xx − 2xy′x + 2y
leads to an (n− 2)nd-order linear equation.

43.
n∑

k=4

fk(x)y
(k)
x = g(x)(x3y′′′xxx − 3x2y′′xx + 6xy′x − 6y).

Particular solutions: y1 = x, y2 = x2, y3 = x3. The substitution w(x) = x3y′′′xxx −
3x2y′′xx + 6xy′x − 6y leads to an (n− 3)rd-order linear equation.

44.
n∑

k=m+1

fk(x)y
(k)
x + g(x)

m∑
k=0

(−1)kk!Ck
mx

m−ky(m−k)
x = 0.

Here, Ck
m =

m!

k! (m− k)! are binomial coefficients.

Particular solutions: ys = xs, where s = 1, 2, . . . , m.

The substitution z =
m∑

k=0

(−1)kk!Ck
mx

m−ky
(m−k)
x leads to an (n − m)th-order linear

equation:
n∑

k=m+1

fk(x)D
k−m−1

(
x−mz′x

)
+ g(x)z = 0, where D = d/dx.

45.
n∑

k=0

(fk − afk+1)y
(k)
x = 0.

Here, fk = fk(x) (k = 1, 2, . . . , n); fn+1 ≡ f0 ≡ 0.

Particular solution: y0 = eax.

46.
n∑

k=0

xk[fk + (k−m)fk+1]y
(k)
x = 0.

Here, fk = fk(x) (k = 1, 2, . . . , n); fn+1 ≡ f0 ≡ 0.

Particular solution: y0 = xm.

17.2 Nonlinear Equations

17.2.1 Equations Containing Power Functions

◮ Fifth- and sixth-order equations.

1. y(5)x = ayy′′′′xxxx − a(y′′xx)
2 + bx+ c.

This is a special case of equation 17.2.6.1 with f(x) = ax+ b.

2. yy(5)x = ax+ b.

This is a special case of equation 17.2.6.17 with n = 2 and f(x) = ax+ b.
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3. yy(5)x = ay′xy
′′′′

xxxx.

1◦. For a 6= −1, integrating the equation two times, we arrive at a third-order autonomous

equation: y′xy
′′′
xxx − 1

2 (y
′′
xx)

2 = C1y
a+1 +C2. The substitution w(y) = 1

2 (y
′
x)

2 leads to a

second-order equation:

ww′′
yy − 1

4 (w
′
y)

2 = 1
2C1y

a+1 + 1
2C2.

For a = 1, this is a solvable equation of the form 2.8.1.53.

2◦. For a = −1, integrating the equation two times, we arrive at a third-order autonomous

equation: y′xy
′′′
xxx − 1

2 (y
′′
xx)

2 = C1 ln |y|+C2.

3◦. Particular solution: y = C1x
3 + C2x

2 + C3x+ C4.

4. 3yy(5)x + 5y′xy
′′′′

xxxx = 0.

This is a special case of equation 17.2.1.3 with a=− 5
3 . Integrating the equation three times,

we arrive at a second-order equation: 3yy′′xx−2(y′x)2=C1x
2+C2x+C3. The substitution

y=w3 leads to a solvable equation of the form 14.8.1.5: w′′
xx =

1
9 (C1x

2+C2x+C3)w
−5.

5. 2yy(5)x + 5y′xy
′′′′

xxxx + 5y′′xxy
′′′

xxx = 0.

This is a special case of equation 17.2.6.4 with a= 5
2 and f(x)=0. Integrating the equation

three times, we arrive at a second-order equation of the form 14.8.1.53: yy′′xx − 1
4 (y

′
x)

2 =
C1x

2 + C2x+ C3.

6. yy(5)x + ay′xy
′′′′

xxxx + (3a− 5)y′′xxy
′′′

xxx = 0.

Integrating the equation three times, we obtain a second-order nonlinear equation: yy′′xx +
1
2 (a− 3)(y′x)

2 = C1x
2 + C2x+ C3.

7. yy(5)x + ay′xy
′′′′

xxxx + by′′xxy
′′′

xxx = 0.

Integrating yields a fourth-order equation: yy′′′′xxxx+(a−1)y′xy′′′xxx+ 1
2 (1−a+b)(y′′xx)2=C .

8. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = axn.

This is a special case of equation 17.2.6.2 with f(x) = axn.

9. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = ayn.

This is a special case of equation 17.2.6.3 with f(y) = ayn.

10. y(6)x = Ay−7/5.

This is a special case of equation 17.2.1.12 with n = 3.

Multiplying by y7/5 and differentiating with respect to x, we obtain 5yy
(7)
x +7y′xy

(6)
x =

0. Having integrated this equation three times, we arrive at the chain of equations:

5yy(6)x + 2y′xy
(5)
x − 2y′′xxy

′′′′
xxxx + (y′′′xxx)

2 = 2C2, (1)

5yy(5)x − 3y′xy
′′′′
xxxx + y′′xxy

′′′
xxx = 2C2x+ C1, (2)

5yy′′′′xxxx − 8y′xy
′′′
xxx +

9
2 (y

′′
xx)

2 = C2x
2 + C1x+ C0, (3)

where C0, C1, and C2 are arbitrary constants. Eliminating the highest derivatives from

(1)–(3), with the aid of the original equation, we obtain a third-order equation that can be

reduced to a second-order equation.

11. yy(6)x + 6y′xy
(5)
x + 15y′′xxy

′′′′

xxxx + 10(y′′′xxx)
2 = axn.

This is a special case of equation 17.2.6.6 with f(x) = axn.
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◮ Equations of the form y(n)
x = f(x, y).

12. y(2n)
x = Ay

1+2n
1−2n .

Multiply both sides by y
2n+1
2n−1 and differentiate with respect to x. As a result, we obtain

(2n − 1)yy(2n+1)
x + (2n + 1)y′xy

(2n)
x = 0.

Three integrals containing arbitrary constants C0, C1, and C2 are presented in 5.2.6.62,

where one should let f ≡ 0. Eliminating the highest derivatives from those integrals and

the original equation, one can always obtain a (2n − 3)rd-order equation. With the aid of

the transformation

t =

∫
dx

P
, w = yP

1−2n
2 , where P = C2x

2 + C1x+C0,

this equation can be reduced to the autonomous form 17.2.6.77. Therefore, the substitution

z(w) = w′
t finally leads to a (2n− 4)th-order equation with respect to z = z(w).

13. y(2n)
x = ayk + b, k 6= −1.

This is a special case of equation 17.2.6.8. Integrating yields a (2n − 1)st-order equation:

n−1∑

m=1

(−1)my(m)
x y(2n−m)

x +
1

2
(−1)n

[
y(n)x

]2
= − a

k + 1
yk+1 − by + C,

where C is an arbitrary constant. Furthermore, the order of the obtained autonomous equa-

tion can be reduced by one by the substitution w(y) = y′x.

14. y(n)
x = ax−nym.

This is a special case of equation 17.2.6.11 with f(y) = aym.

15. y(n)
x = axkym.

1◦. The transformation x = t−1, y = t1−nw(t) leads to an equation of the same form:

w
(n)
t = (−1)nAt−k−(n−1)m−n−1wm.

2◦. The transformation ξ = xn+kym−1, z = xy′x/y leads to an (n− 1)st-order equation.

16. yy(2n+1)
x = axk + b.

This is a special case of equation 17.2.6.17 with f(x) = axk + b.

17. y(n)
x = xm−nm−n−1(ay + bxn−1)m.

This is a special case of equation 17.2.6.13 with f(w) = (aw + b)m.

18. y(2n)
x = x

m−2nm−2n−1
2

((
ay + bx

2n−1
2

))m
.

This is a special case of equation 17.2.6.14 with f(w) = (aw + b)m.

19. y(n)
x = (ay + bxk)m; k = 1, 2, . . . , n− 1.

The substitution aw = ay + bxk leads to an autonomous equation of the form 17.2.6.8:

w
(n)
x = amwm (see also 5.2.1.12 and 5.2.1.13 with b = 0).
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20. y(n)
x = (ax2 + bx+ c)

m−nm−n−1
2 ym.

This is a special case of equation 17.2.6.22 with f(w) = wm.

21. y(n)
x = (ax+ b)−n(cx+ d)m−nm−1ym.

This is a special case of equation 17.2.6.21 with f(w) = wm.

◮ Equations of the form y(n)
x = f(x, y, y′x, y

′′

xx).

22. y(n)
x = ayky′x + bxm.

This is a special case of equation 17.2.6.34 with f(y) = ayk and g(x) = bxm. Integrating

yields an (n− 1)st-order equation: y(n−1)
x =

a

k + 1
yk+1 +

b

m+ 1
xm+1 + C .

23. y(n)
x = any + b(y′x − ay)k.

This is a special case of equation 17.2.6.38 with f(x,w) = bwk. The substitution w =
y′x − ay leads to an (n− 1)st-order autonomous equation:

w(n−1)
x + aw(n−2)

x + · · ·+ an−1w = bwk.

24. y(n)
x = axm−ny1−m(y′x)

m.

This is a special case of equation 17.2.6.37 with f(w) = awm.

25. y(n)
x = axm(xy′x − y)k.

This is a special case of equation 17.2.6.39 with f(x,w) = axmwk . The substitution

w = xy′x − y leads to an (n− 1)st-order equation.

26. y(n)
x = axk(xy′x −my)l.

Here, m is a positive integer and n ≥ m+ 1. The substitution w = xy′x −my leads to an

(n− 1)st-order equation: ζ
(n−m−1)
x = axkwl, where ζ = w

(m)
x /x.

27. y(2n)
x + ay′′xx + by = cyy′′xx − c(y′x)

2 + k.

1◦. Particular solution:

y = C1 sinh(C4x) + C2 cosh(C4x) + C3,

where the constants C1, C2, C3, and C4 are related by two constraints

C2n
4 + (a− cC3)C

2
4 + b = 0,

c(C2
2 − C2

1 )C
2
4 − bC3 + k = 0.

2◦. Particular solution:

y = C1 sin(C4x) + C2 cos(C4x) + C3,

where the constants C1, C2, C3, and C4 are related by two constraints

C2n
4 − (a− cC3)C

2
4 + b = 0,

c(C2
1 + C2

2 )C
2
4 + bC3 − k = 0.

28. y(n)
x + ayy′′xx − a(y′x)

2 + by′′xx + cy′x = 0.

Particular solution: y = C1 exp(C2x)−
Cn−1
2 + bC2 + c

aC2
.
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29. y(2n)
x = any + b(y′′xx − ay)k.

This is a special case of equation 17.2.6.50 with f(x,w) = bwk. The substitution w =

y′′xx − ay leads to a (2n− 2)nd-order autonomous equation: w
(2n−2)
x + aw

(2n−4)
x + · · ·+

an−1w = bwk.

30. y(n)
x = axm(xy′x − y)k(y′′xx)

l.

The substitution w(x) = xy′x − y leads to an (n− 1)st-order equation:

dn−2

dxn−2

(w′
x

x

)
= axm−lwk(w′

x)
l
.

31. y(2n)
x = ay

((
yy′′xx − y′2x

))k
.

This is a special case of equation 17.2.6.52 with f(w) = 0 and g(w) = awk.

◮ Other equations.

32. y(n)
x = ayy′′′′xxxx − a(y′′xx)

2.

1◦. Integrating the equation two times, we obtain an (n− 2)nd-order equation:

y(n−2)
x = ayy′′xx − a(y′x)2 + C1x+ C2.

2◦. Particular solutions:

y = C1 exp(C3x) + C2 exp(−C3x) + a−1Cn−4
3 if n is an even number,

y = C1 sin(C3x) + C2 cos(C3x) + (−1)n/2a−1Cn−4
3 if n is an even number,

y = C1 exp(C2x) + a−1Cn−4
2 if n is an odd number,

y = C1x+ C2 if n ≥ 2 is any number.

33. y(n)
x = ayy′′′′xxxx − a(y′′xx)

2 + bx+ k.

This is a special case of equation 17.2.6.54 with f(x) = bx + k. Integrating the equation

two times, we obtain an (n − 2)nd-order equation: y
(n−2)
x = ayy′′xx − a(y′x)2 + 1

6 bx
3 +

1
2kx

2 + C1x+ C2.

34. y(2n)
x = a2y + b[y(n)

x + ay]k.

The substitution w = y
(n)
x + ay leads to an nth-order autonomous equation: w

(n)
x =

aw + bwk.

35. y(n)
x + axy(n−1)

x + 2byy′x + abxy2 + cx = 0.

The functions that solve the (n − 1)st-order autonomous equation y
(n−1)
x = −by2 − c/a

are solutions of the original equation.

36. y(n)
x + ayy(n−1)

x + by′x + aby2 + cy = 0.

The functions that solve the (n − 1)st-order constant coefficient nonhomogeneous linear

equation y
(n−1)
x + by = −c/a are solutions of the original equation.
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37. xy(n)
x + ny(n−1)

x = axmym.

This is a special case of equation 17.2.6.59 with f(w) = awm.

38. xy(n)
x + (a+ n− 1)y(n−1)

x = b(xy′x + ay)k.

This is a special case of equation 17.2.6.60 with f(x,w) = bwk. The substitution w =

xy′x + ay leads to an (n− 1)st-order autonomous equation: w
(n−1)
x = bwk.

39. x2y(n)
x + 2nxy(n−1)

x + n(n− 1)y(n−2)
x = ax2mym.

This is a special case of equation 17.2.6.61 with f(w) = awm.

40. yy(2n+1)
x = ay′xy

(2n)
x .

The equation admits two different (with a 6= −1) first integrals:

y(2n)x = C̃1y
a,

yy(2n)x + (a+ 1)
n−1∑

m=1

(−1)my(m)
x y(2n−m)

x + 1
2 (−1)

n(a+ 1)
[
y(n)x

]2
= C̃2,

where C̃1 and C̃2 are arbitrary constants. Eliminating the highest derivative from the first

integrals, we arrive at a (2n− 1)st-order autonomous equation:

n−1∑

m=1

(−1)my(m)
x y(2n−m)

x + 1
2 (−1)

n
[
y(n)x

]2
= C1y

a+1 + C2,

where C1=−
C̃1

a+ 1
, C2=

C̃2

a+ 1
. The order of the obtained equation next can be lowered

by the standard substitution w(y) = y′x.

41. (2n− 1)yy(2n+1)
x + (2n+ 1)y′xy

(2n)
x = axm.

This is a special case of equation 17.2.6.62 with f(x) = axm.

42. yy(n)
x − y′xy

(n−1)
x = ay2.

Integrating yields an (n − 1)st-order linear equation: y
(n−1)
x = (ax + C)y. The transfor-

mation z = x+ C/a brings it to an equation of the form 17.1.2.3 with b = 0.

43. yy(n)
x = y′xy

(n−1)
x + ay′x.

Integrating yields an (n−1)st-order constant coefficient nonhomogeneous linear equation:

y
(n−1)
x = Cy − a.

44.

n∑

k=0

aky
(k)
x = byy′′xx − b(y′x)

2 + k.

Particular solutions: y = Ceλx + ka−1
0 , where C is an arbitrary constant and λ are roots

of the algebraic equation a0
n∑

k=0

akλ
n = bkλ2.

45. xyy(n)
x = (xy′x + ay)y(n−1)

x .

Integrating yields an (n− 1)st-order linear equation of the form 17.1.2.4: y
(n−1)
x = Cxay.
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46. (y + axm−1)y(n)
x − y(m)

x y(n−m)
x + bxm−1y(m)

x = 0, n > m.

The functions that solve the (n−m)th-order linear equation

y(n−m)
x = Cy + (aC + b)xm−1

are solutions of the original equation.

47. y(n−2)
x y(n)

x = a
[[
y(n−1)
x

]]2
.

Solution: y =




C0 + C1x+ · · ·+ Cn−3x

n−3 + (Cn−2 + Cn−1x)
n−2+

1
1−a if a 6= 1,

C0 + C1x+ · · ·+ Cn−3x
n−3 + Cn−2 exp(Cn−1x) if a = 1.

48. y(n)
x = ayky′x

[[
y(n−1)
x

]]m
.

This is a special case of equation 17.2.6.73 with f(y) = yk, g(w) = awm.

49. y(n)
x = axm1ym2(y′x)

m3 · · · (y(n−1)
x )mn+1 .

Generalized homogeneous equation. The transformation ξ = xλyµ, w = xy′x/y, where

λ = n+m1 −m3 − 2m4 − · · · − (n− 1)mn+1, µ = m2 +m3 + · · · +mn+1 − 1,

leads to an (n− 1)st-order equation.

50.
((√

y
d

dx

))n−1
(y′x) = ax+ b.

The transformation x = x(t), y = (x′t)
2

leads to a constant coefficient linear equation:

2x
(n+1)
t = ax+ b.

51. 2

n−1∑

m=1

(−1)my(m)
x y(2n−m)

x + (−1)n
[[
y(n)
x

]]2
+ λ(y′x)

2 = ay2 + by + c.

Differentiating both sides with respect to x and dividing by y′x, we arrive at a constant

coefficient linear equation: 2y
(2n)
x − 2λy′′xx + 2ay + b = 0.

52. 2

n−1∑

m=1

(−1)my(m)
x y(2n−m)

x + (−1)n
[[
y(n)
x

]]2
= α(xy′x − y) + βy′x + γ.

Differentiating both sides of the equation with respect to x, we have

y′′xx
[
2y(2n−1)

x − αx− β
]
= 0. (1)

Equate the second factor to zero to obtain:

y =
αx2n

2(2n)!
+

βx2n−1

2(2n − 1)!
+

2n−2∑

k=0

Ckx
k.

The integration constants Ck and parameters α, β, and γ are related by

2

n−1∑

m=2

(−1)mm! (2n−m)!CmC2n−m + (−1)n(n!)2C2
n = βC1 − αC0 + γ,

which is obtained as a result of substituting the above solution into the original equation.

In addition, there is a solution corresponding to equating the first factor in (1) to zero:

y = C̃1x+ C̃0, where βC̃1 − αC̃0 + γ = 0.
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53. 2

n−1∑

m=1

(−1)my(m)
x y(2n−m)

x + (−1)n
[[
y(n)
x

]]2
+ s(y′′xx)

2

= α(xy′x − y) + βy′x + γ, n ≥ 3.

For the case s = 0, see equation 17.2.1.52. Let now s 6= 0. Differentiating the equation

with respect to x, we have

y′′xx
[
2y(2n−1)

x + 2sy′′′xxx − αx− β
]
= 0.

Equate the second factor to zero and integrate to obtain:

y =
αx4

48s
+
βx3

12s
+ C2x

2 + C1x+ C0 +

∫∫∫
w dxdx dx,

where w = w(x) is the general solution of a linear constant coefficient linear equation

of the form 17.1.2.2: w
(2n−4)
x + sw = 0. The constants of integration are related by the

constraint that results from substituting the obtained solution into the original equation.

In addition, there is the solution y = C̃1x+ C̃0, where the constants of integration are

related by βC̃1 − αC̃0 + γ = 0.

54.

n∑

m=1

am

{{
2

m−1∑

ν=1

(−1)νy(ν)x y(2m−ν)
x + (−1)m

[[
y(m)
x

]]2}}
= αy2 + 2βy + γ.

Differentiating with respect to x, we arrive at a constant coefficient linear equation:

n∑
m=1

amy
(2m)
x + αy + β = 0.

17.2.2 Equations Containing Exponential Functions

◮ Fifth- and sixth-order equations.

1. y(5)x = ayy′′′′xxxx − a(y′′xx)
2 + beλx.

1◦. This is a special case of equation 17.2.6.1 with f(x) = beλx. Integrating the equation

two times, we obtain a third-order equation: y′′′xxx= ayy′′xx−a(y′x)2+C1x+C2+bλ
−2eλx.

2◦. Particular solutions:

y = C exp(λx) +
Cλ5 − b
aCλ4

,

y =
b

2λ5
exp(λx) + C exp(−λx)− λ

a
.

2. y(5)x = aeλyy′xy
′′′′

xxxx.

Integrating yields a fourth-order autonomous equation of the form 17.2.6.8 with n = 4:

y′′′′xxxx = C exp
( a
λ
eλy
)

.

3. yy(5)x = aeλx + b.

This is a special case of equation 17.2.6.17 with n = 2 and f(x) = aeλx + b.
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4. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = aeλx.

Solution: y2 = C4x
4 + C3x

3 + C2x
2 + C1x+C0 + 2aλ−5eλx.

5. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = aeλy .

This is a special case of equation 17.2.6.3 with f(y) = aeλy .

6. y(6)x = aeλy + b.

This is a special case of equation 17.2.6.8 with n = 6 and f(y) = aeλy + b.

7. yy(6)x + 6y′xy
(5)
x + 15y′′xxy

′′′′

xxxx + 10(y′′′xxx)
2 = aeλx.

This is a special case of equation 17.2.6.6 with f(x) = aeλx.

◮ Equations of the form y(n)
x = f(x, y).

8. y(n)
x = aeλy + b.

This is a special case of equation 17.2.6.8 with f(y) = aeλy + b.

9. y(n)
x = aeλy+βx + b.

This is a special case of equation 17.2.6.9 with m = 1. The substitution w = y + (β/λ)x

leads to an autonomous equation of the form 17.2.6.8: w
(n)
x = aeλw + b.

10. y(n)
x = ax−neλy .

This is a special case of equation 17.2.6.11 with f(y) = aeλy .

11. y(n)
x = axkeαy .

This is a special case of equation 17.2.6.26 with f(w) = aw and m = k + n.

12. y(n)
x = Aeαxym.

This is a special case of equation 17.2.2.23 with m = m1 and m2 = m3 = · · · = mn = 0.

13. yy(2n+1)
x = aeλx + b.

This is a special case of equation 17.2.6.17 with f(x) = aeλx + b.

14. y(n)
x = a exp(λy + βxm) + b, m = 1, 2, . . . , n− 1.

The substitution w = y+(β/λ)xm leads to an autonomous equation of the form 17.2.6.8:

w
(n)
x = aeλw + b.

◮ Other equations.

15. y(n)
x = aeλyy′x + beβx.

Integrating yields an (n− 1)st-order equation: y(n−1)
x =

a

λ
eλy +

b

β
eβx + C .
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16. y(n)
x = ayy′′′′xxxx − a(y′′xx)

2 + beλx.

1◦. This is a special case of equation 17.2.6.54 with f(x) = beλx. Integrating the equation

two times, we obtain an (n − 2)nd-order equation: y
(n−2)
x = ayy′′xx − a(y′x)2 + C1x +

C2 + bλ−2eλx.

2◦. Particular solutions:

y = C exp(λx) +
Cλn − b
aCλ4

(n is any number),

y =
b

2λn
exp(λx) + C exp(−λx)− λn−4

a
(n is an odd number).

17. y(n)
x = any + beλx(y′x − ay)k.

This is a special case of equation 17.2.6.38 with f(x,w) = beλxwk.

18. y(n)
x = beλx(xy′x − y)k.

This is a special case of equation 17.2.6.39 with f(x,w) = beλxwk.

19. (2n− 1)yy(2n+1)
x + (2n+ 1)y′xy

(2n)
x = aeλx.

This is a special case of equation 17.2.6.62 with f(x) = aeλx.

20. y(n)
x = aeλyy′xy

(n−1)
x .

This is a special case of equation 17.2.6.57 with f(y) = aeλy .

21. y(n)
x = (aeλyy′x + beβx)y(n−1)

x .

This is a special case of equation 17.2.6.58 with f(y) = aeλy and g(x) = beβx.

22. y(n)
x = aeλyy′x

[[
y(n−1)
x

]]m
.

This is a special case of equation 17.2.6.73 with f(y) = aeλy and g(w) = wm.

23. y(n)
x = Aeαxym1(y′x)

m2 . . .
((
y(n−1)
x

))mn
.

The substitution w(x) = yeβx, where β =
α

m1 +m2 + · · ·+mn − 1
, leads to an au-

tonomous equation of the form 17.2.6.77.

24. y(n)
x = Aeαyxm1(y′x)

m2(y′′xx)
m3 . . .

((
y(n−1)
x

))mn
.

The transformation z = xσeαy , w = xy′x, where σ = n+m1−m2− 2m3− 3m4−· · ·−
(n− 1)mn, leads to an (n− 1)st-order equation.

17.2.3 Equations Containing Hyperbolic Functions

◮ Equations with hyperbolic sine.

1. y(5)x = ayy′′′′xxxx − a(y′′xx)
2 + b sinh(λx).

1◦. This is a special case of equation 17.2.6.1 with f(x) = b sinh(λx). Integrating the

equation two times, we obtain a third-order equation: y′′′xxx = ayy′′xx − a(y′x)2 + C1x +
C2 + bλ−2 sinh(λx).

2◦. Particular solution: y =
b

λ4(λ2 − a2C2)

[
aC sinh(λx) + λ cosh(λx)

]
+ C .
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2. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = a sinh(λx).

Solution: y2 = C4x
4 + C3x

3 + C2x
2 + C1x+C0 + 2aλ−5 cosh(λx).

3. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = a sinhm(λx) + b.

This is a special case of equation 17.2.6.2 with f(x) = a sinhm(λx) + b.

4. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = a sinhm(λy) + b.

This is a special case of equation 17.2.6.3 with f(y) = a sinhm(λy) + b.

5. yy(6)x + 6y′xy
(5)
x + 15y′′xxy

′′′′

xxxx + 10(y′′′xxx)
2 = a sinhm(λx).

This is a special case of equation 17.2.6.6 with f(x) = a sinhm(λx).

6. y(n)
x = a sinhm(λy) + b.

This is a special case of equation 17.2.6.8 with f(y) = a sinhm(λy) + b.

7. y(n)
x = ax−n sinhm(λy).

This is a special case of equation 17.2.6.11 with f(y) = a sinhm(λy).

8. yy(2n+1)
x = a sinhm(λx) + b.

This is a special case of equation 17.2.6.17 with f(x) = a sinhm(λx) + b.

9. y(n)
x = ayy′′′′xxxx − a(y′′xx)

2 + b sinh(λx).

1◦. This is a special case of equation 17.2.6.54 with f(x) = b sinh(λx). Integrating the

equation two times, we obtain an (n − 2)nd-order equation: y
(n−2)
x = ayy′′xx − a(y′x)2 +

C1x+ C2 + bλ−2 sinh(λx).

2◦. Particular solutions:

y = C sinh(λx) +
Cλn − b
aCλ4

if n is an even number,

y =
b

λ2n−4 − a2C2λ4
[
aC sinh(λx) + λn−4 cosh(λx)

]
+ C if n is an odd number.

10. (2n− 1)yy(2n+1)
x + (2n+ 1)y′xy

(2n)
x = a sinhm(λx) + b.

This is a special case of equation 17.2.6.62 with f(x) = a sinhm(λx) + b.

11. y(n)
x = a sinhk(λy)y′xy

(n−1)
x .

This is a special case of equation 17.2.6.57 with f(y) = a sinhk(λy).

12. yy(n)
x − y′xy

(n−1)
x = a sinh(λx)y2.

This is a special case of equation 17.2.6.64 with f(x) = a sinh(λx). Integrating yields an

(n− 1)st-order linear equation: y(n−1)
x =

[ a
λ

cosh(λx) + C
]
y.
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◮ Equations with hyperbolic cosine.

13. y(5)x = ayy′′′′xxxx − a(y′′xx)
2 + b cosh(λx).

1◦. This is a special case of equation 17.2.6.1 with f(x) = b cosh(λx). Integrating the

equation twice yields the third-order equation

y′′′xxx = ayy′′xx − a(y′x)2 + C1x+ C2 + bλ−2 cosh(λx).

2◦. Particular solution: y =
b

λ4(λ2 − a2C2)

[
aC cosh(λx) + λ sinh(λx)

]
+ C .

14. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = a cosh(λx).

Solution: y2 = C4x
4 + C3x

3 + C2x
2 + C1x+C0 + 2aλ−5 sinh(λx).

15. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = a coshm(λx) + b.

This is a special case of equation 17.2.6.2 with f(x) = a coshm(λx) + b.

16. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = a coshm(λy) + b.

This is a special case of equation 17.2.6.3 with f(y) = a coshm(λy) + b.

17. yy(6)x + 6y′xy
(5)
x + 15y′′xxy

′′′′

xxxx + 10(y′′′xxx)
2 = a coshm(λx).

This is a special case of equation 17.2.6.6 with f(x) = a coshm(λx).

18. y(n)
x = a coshm(λy) + b.

This is a special case of equation 17.2.6.8 with f(y) = a coshm(λy) + b.

19. y(n)
x = ax−n coshm(λy).

This is a special case of equation 17.2.6.11 with f(y) = a coshm(λy).

20. yy(2n+1)
x = a coshm(λx) + b.

This is a special case of equation 17.2.6.17 with f(x) = a coshm(λx) + b.

21. y(n)
x = ayy′′′′xxxx − a(y′′xx)

2 + b cosh(λx).

1◦. This is a special case of equation 17.2.6.54 with f(x) = b cosh(λx). Integrating the

equation twice yields the (n − 2)nd-order equation

y(n−2)
x = ayy′′xx − a(y′x)2 + C1x+ C2 + bλ−2 cosh(λx).

2◦. Particular solutions:

y = C cosh(λx) +
Cλn − b
aCλ4

if n is an even number,

y =
b

λ2n−4 − a2C2λ4
[
aC cosh(λx) + λn−4 sinh(λx)

]
+ C if n is an odd number.

22. (2n− 1)yy(2n+1)
x + (2n+ 1)y′xy

(2n)
x = a coshm(λx) + b.

This is a special case of equation 17.2.6.62 with f(x) = a coshm(λx) + b.

23. y(n)
x = a coshk(λy)y′xy

(n−1)
x .

This is a special case of equation 17.2.6.57 with f(y) = a coshk(λy).

24. yy(n)
x − y′xy

(n−1)
x = a cosh(λx)y2.

This is a special case of equation 17.2.6.64 with f(x) = a cosh(λx). Integrating yields an

(n− 1)st-order linear equation: y(n−1)
x =

[ a
λ

sinh(λx) + C
]
y.
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◮ Equations with hyperbolic tangent.

25. y(5)x = ayy′′′′xxxx − a(y′′xx)
2 + b tanh(λx) + c.

This is a special case of equation 17.2.6.1 with f(x) = b tanh(λx) + c.

26. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = a tanhm(λx) + b.

This is a special case of equation 17.2.6.2 with f(x) = a tanhm(λx) + b.

27. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = a tanhm(λy) + b.

This is a special case of equation 17.2.6.3 with f(y) = a tanhm(λy) + b.

28. yy(6)x + 6y′xy
(5)
x + 15y′′xxy

′′′′

xxxx + 10(y′′′xxx)
2 = a tanhm(λx).

This is a special case of equation 17.2.6.6 with f(x) = a tanhm(λx).

29. y(n)
x = a tanhm(λy) + b.

This is a special case of equation 17.2.6.8 with f(y) = a tanhm(λy) + b.

30. y(n)
x = ax−n tanhm(λy).

This is a special case of equation 17.2.6.11 with f(y) = a tanhm(λy).

31. yy(2n+1)
x = a tanhm(λx) + b.

This is a special case of equation 17.2.6.17 with f(x) = a tanhm(λx) + b.

32. y(2n)
x = y + a(y′x − y tanhx)k.

This is a special case of equation 17.2.6.47 with f(x, u) = auk and ϕ(x) = cosh x.

33. y(2n+1)
x = y tanhx+ a(y′x − y tanh x)k.

This is a special case of equation 17.2.6.47 with f(x, u) = auk and ϕ(x) = cosh x.

34. (2n− 1)yy(2n+1)
x + (2n+ 1)y′xy

(2n)
x = a tanhm(λx) + b.

This is a special case of equation 17.2.6.62 with f(x) = a tanhm(λx) + b.

35. y(n)
x = a tanhk(λy)y′xy

(n−1)
x .

This is a special case of equation 17.2.6.57 with f(y) = a tanhk(λy).

36. yy(n)
x − y′xy

(n−1)
x = a tanh(λx)y2.

This is a special case of equation 17.2.6.64 with f(x) = a tanh(λx).

◮ Equations with hyperbolic cotangent.

37. y(5)x = ayy′′′′xxxx − a(y′′xx)
2 + b coth(λx) + c.

This is a special case of equation 17.2.6.1 with f(x) = b coth(λx) + c.

38. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = a cothm(λx) + b.

This is a special case of equation 17.2.6.2 with f(x) = a cothm(λx) + b.

39. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = a cothm(λy) + b.

This is a special case of equation 17.2.6.3 with f(y) = a cothm(λy) + b.
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40. yy(6)x + 6y′xy
(5)
x + 15y′′xxy

′′′′

xxxx + 10(y′′′xxx)
2 = a cothm(λx).

This is a special case of equation 17.2.6.6 with f(x) = a cothm(λx).

41. y(n)
x = a cothm(λy) + b.

This is a special case of equation 17.2.6.8 with f(y) = a cothm(λy) + b.

42. y(n)
x = ax−n cothm(λy).

This is a special case of equation 17.2.6.11 with f(y) = a cothm(λy).

43. yy(2n+1)
x = a cothm(λx) + b.

This is a special case of equation 17.2.6.17 with f(x) = a cothm(λx) + b.

44. y(2n)
x = y + a(y′x − y coth x)k.

This is a special case of equation 17.2.6.47 with f(x, u) = auk and ϕ(x) = sinh x.

45. y(2n+1)
x = y coth x+ a(y′x − y coth x)k.

This is a special case of equation 17.2.6.47 with f(x, u) = auk and ϕ(x) = sinh x.

46. (2n− 1)yy(2n+1)
x + (2n+ 1)y′xy

(2n)
x = a cothm(λx) + b.

This is a special case of equation 17.2.6.62 with f(x) = a cothm(λx) + b.

47. y(n)
x = a cothk(λy)y′xy

(n−1)
x .

This is a special case of equation 17.2.6.57 with f(y) = a cothk(λy).

48. yy(n)
x − y′xy

(n−1)
x = a coth(λx)y2.

This is a special case of equation 17.2.6.64 with f(x) = a coth(λx).

17.2.4 Equations Containing Logarithmic Functions

◮ Equations of the form y(n)
x = f(x, y).

1. y(n)
x = a lnm(by) + c.

This is a special case of equation 17.2.6.8 with f(y) = a lnm(by) + c.

2. yy(2n+1)
x = a lnm(bx).

This is a special case of equation 17.2.6.17 with f(x) = a lnm(bx).

3. y(n)
x = y(αx+m ln y + b).

This is a special case of equation 17.2.6.25 with f(w) = lnw + b.

4. y(n)
x = x−n(αy +m ln x+ b).

This is a special case of equation 17.2.6.26 with f(w) = lnw + b.

5. y(n)
x = ax−n lnm(by).

This is a special case of equation 17.2.6.11 with f(y) = a lnm(by).

6. y(n)
x = ax−n−1[ln y + (1 − n) ln x].

This is a special case of equation 17.2.6.13 with f(w) = a lnw.
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7. y(n)
x = ax−n−k(ln y + k lnx).

This is a special case of equation 17.2.6.15 with f(w) = a lnw.

8. y(n)
x = ayx−n(m ln y + k ln x).

This is a special case of equation 17.2.6.16 with f(w) = a lnw.

9. y(2n)
x = ax−

2n+1
2 [2 ln y + (1 − 2n) ln x].

This is a special case of equation 17.2.6.14 with f(w) = 2a lnw.

10. y(n)
x = (ax2 + c)

−
n+1
2 [2 ln y + (1 − n) ln(ax2 + c)].

This is a special case of equation 17.2.6.22 with b = 0 and f(w) = 2 lnw.

11. y(n)
x = beαx(ln y − αx).

This is a special case of equation 17.2.6.24 with f(w) = b lnw.

◮ Other equations.

12. y(n)
x = ay′x ln y + b ln x.

This is a special case of equation 17.2.6.34 with f(y) = a ln y and g(x) = b lnx.

13. y(n)
x = any + b lnx (y′x − ay)k.

This is a special case of equation 17.2.6.38 with f(x,w) = bwk lnx.

14. y(n)
x = a lnx (xy′x − y)k.

This is a special case of equation 17.2.6.39 with f(x,w) = awk lnx.

15. y(n)
x = a lnx (xy′x − 2y)k.

This is a special case of equation 17.2.6.40 with m = 2 and f(x,w) = awk lnx.

16. y(n)
x = ayy′′′′xxxx − a(y′′xx)

2 + b ln x+ c.

This is a special case of equation 17.2.6.54 with f(x) = b lnx+ c.

17. xy(n)
x + ny(n−1)

x = a lnx+ a ln y.

This is a special case of equation 17.2.6.59 with f(w) = a lnw.

18. x2y(n)
x + 2nxy(n−1)

x + n(n− 1)y(n−2)
x = 2a ln x+ a ln y.

This is a special case of equation 17.2.6.61 with f(w) = a lnw.

19. yy(n)
x − y′xy

(n−1)
x = ay2 ln x.

This is a special case of equation 17.2.6.64 with f(w) = a ln x.

20. (2n− 1)yy(2n+1)
x + (2n+ 1)y′xy

(2n)
x = a lnm(bx) + c.

This is a special case of equation 17.2.6.62 with f(x) = a lnm(bx) + c.

21. y(n)
x = a lnk(by) y′xy

(n−1)
x .

This is a special case of equation 17.2.6.57 with f(y) = a lnk(by).

22. y(n)
x = aymy′x ln y(n−1)

x .

This is a special case of equation 17.2.6.73 with f(y) = aym and g(w) = lnw.
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17.2.5 Equations Containing Trigonometric Functions

◮ Equations with sine.

1. y(5)x = ayy′′′′xxxx − a(y′′xx)
2 + b sin(λx).

1◦. This is a special case of equation 17.2.6.1 with f(x) = b sin(λx). Integrating the

equation twice, we obtain a third-order equation:

y′′′xxx = ayy′′xx − a(y′x)2 + C1x+ C2 − bλ−2 sin(λx).

2◦. Particular solution: y = − b

λ4(a2C2 + λ2)

[
aC sin(λx) + λ cos(λx)

]
+ C .

2. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = a sin(λx).

Solution: y2 = C4x
4 + C3x

3 + C2x
2 + C1x+C0 − 2aλ−5 cos(λx).

3. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = a sinm(λx) + b.

This is a special case of equation 17.2.6.2 with f(x) = a sinm(λx) + b.

4. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = a sinm(λy) + b.

This is a special case of equation 17.2.6.3 with f(y) = a sinm(λy) + b.

5. yy(6)x + 6y′xy
(5)
x + 15y′′xxy

′′′′

xxxx + 10(y′′′xxx)
2 = a sinm(λx).

This is a special case of equation 17.2.6.6 with f(x) = a sinm(λx).

6. y(n)
x = a sinm(λy) + b.

This is a special case of equation 17.2.6.8 with f(y) = a sinm(λy) + b.

7. y(n)
x = ax−n sinm(λy).

This is a special case of equation 17.2.6.11 with f(y) = a sinm(λy).

8. yy(2n+1)
x = a sinm(λx) + b.

This is a special case of equation 17.2.6.17 with f(x) = a sinm(λx) + b.

9. y(n)
x = ayy′′′′xxxx − a(y′′xx)

2 + b sin(λx).

1◦. This is a special case of equation 17.2.6.54 with f(x) = b sin(λx). Integrating the

equation two times, we obtain an (n − 2)nd-order equation: y
(n−2)
x = ayy′′xx − a(y′x)2 +

C1x+ C2 − bλ−2 sin(λx).

2◦. Particular solutions:

y=C sin(λx)+
(−1)n/2Cλn−b

aCλ4
if n is even,

y=− b

λ2n−4+a2C2λ4
[
aC sin(λx)+(−1)

n−1
2 λn−4 cos(λx)

]
+C if n is odd.

10. (2n− 1)yy(2n+1)
x + (2n+ 1)y′xy

(2n)
x = a sinm(λx) + b.

This is a special case of equation 17.2.6.62 with f(x) = a sinm(λx) + b.
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11. y(n)
x = a sink(λy)y′xy

(n−1)
x .

This is a special case of equation 17.2.6.57 with f(y) = a sink(λy).

12. yy(n)
x − y′xy

(n−1)
x = a sin(λx)y2.

This is a special case of equation 17.2.6.64 with f(x) = a sin(λx). Integrating yields an

(n− 1)st-order linear equation: y(n−1)
x =

[
C − a

λ
cos(λx)

]
y.

◮ Equations with cosine.

13. y(5)x = ayy′′′′xxxx − a(y′′xx)
2 + b cos(λx).

1◦. This is a special case of equation 17.2.6.1 with f(x) = b cos(λx). Integrating the

equation twice, we obtain a third-order equation:

y′′′xxx = ayy′′xx − a(y′x)2 + C1x+ C2 − bλ−2 cos(λx).

2◦. Particular solution: y = − b

λ4(a2C2 + λ2)

[
aC cos(λx)− λ sin(λx)

]
+ C .

14. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = a cos(λx).

Solution: y2 = C4x
4 + C3x

3 + C2x
2 + C1x+C0 + 2aλ−5 sin(λx).

15. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = a cosm(λx) + b.

This is a special case of equation 17.2.6.2 with f(x) = a cosm(λx) + b.

16. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = a cosm(λy) + b.

This is a special case of equation 17.2.6.3 with f(y) = a cosm(λy) + b.

17. yy(6)x + 6y′xy
(5)
x + 15y′′xxy

′′′′

xxxx + 10(y′′′xxx)
2 = a cosm(λx).

This is a special case of equation 17.2.6.6 with f(x) = a cosm(λx).

18. y(n)
x = a cosm(λy) + b.

This is a special case of equation 17.2.6.8 with f(y) = a cosm(λy) + b.

19. y(n)
x = ax−n cosm(λy).

This is a special case of equation 17.2.6.11 with f(y) = a cosm(λy).

20. yy(2n+1)
x = a cosm(λx) + b.

This is a special case of equation 17.2.6.17 with f(x) = a cosm(λx) + b.

21. y(n)
x = ayy′′′′xxxx − a(y′′xx)

2 + b cos(λx).

1◦. This is a special case of equation 17.2.6.54 with f(x) = b cos(λx). Integrating the

equation two times, we obtain an (n − 2)nd-order equation: y
(n−2)
x = ayy′′xx − a(y′x)2 +

C1x+ C2 − bλ−2 cos(λx).
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2◦. Particular solutions:

y=C cos(λx)+
(−1)n/2Cλn−b

aCλ4
if n is even,

y=− b

λ2n−4+a2C2λ4
[
aC cos(λx)+(−1)

n+1
2 λn−4 sin(λx)

]
+C if n is odd.

22. (2n− 1)yy(2n+1)
x + (2n+ 1)y′xy

(2n)
x = a cosm(λx) + b.

This is a special case of equation 17.2.6.62 with f(x) = a cosm(λx) + b.

23. y(n)
x = a cosk(λy)y′xy

(n−1)
x .

This is a special case of equation 17.2.6.57 with f(y) = a cosk(λy).

24. yy(n)
x − y′xy

(n−1)
x = a cos(λx)y2.

This is a special case of equation 17.2.6.64 with f(x) = a cos(λx). Integrating yields an

(n− 1)st-order linear equation: y(n−1)
x =

[ a
λ
sin(λx) + C

]
y.

◮ Equations with tangent.

25. y(5)x = ayy′′′′xxxx − a(y′′xx)
2 + b tan(λx) + c.

This is a special case of equation 17.2.6.1 with f(x) = b tan(λx) + c.

26. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = a tanm(λx) + b.

This is a special case of equation 17.2.6.2 with f(x) = a tanm(λx) + b.

27. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = a tanm(λy) + b.

This is a special case of equation 17.2.6.3 with f(y) = a tanm(λy) + b.

28. yy(6)x + 6y′xy
(5)
x + 15y′′xxy

′′′′

xxxx + 10(y′′′xxx)
2 = a tanm(λx).

This is a special case of equation 17.2.6.6 with f(x) = a tanm(λx).

29. y(n)
x = a tanm(λy) + b.

This is a special case of equation 17.2.6.8 with f(y) = a tanm(λy) + b.

30. y(n)
x = ax−n tanm(λy).

This is a special case of equation 17.2.6.11 with f(y) = a tanm(λy).

31. yy(2n+1)
x = a tanm(λx) + b.

This is a special case of equation 17.2.6.17 with f(x) = a tanm(λx) + b.

32. y(2n)
x = (−1)ny + a(y′x + y tanx)k.

This is a special case of equation 17.2.6.47 with f(x, u) = auk and ϕ(x) = cos x.

33. y(2n+1)
x = (−1)n+1y tanx+ a(y′x + y tanx)k.

This is a special case of equation 17.2.6.47 with f(x, u) = auk and ϕ(x) = cos x.

34. (2n− 1)yy(2n+1)
x + (2n+ 1)y′xy

(2n)
x = a tanm(λx) + b.

This is a special case of equation 17.2.6.62 with f(x) = a tanm(λx) + b.
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35. y(n)
x = a tank(λy)y′xy

(n−1)
x .

This is a special case of equation 17.2.6.57 with f(y) = a tank(λy).

36. yy(n)
x − y′xy

(n−1)
x = a tan(λx)y2.

This is a special case of equation 17.2.6.64 with f(x) = a tan(λx).

◮ Equations with cotangent.

37. y(5)x = ayy′′′′xxxx − a(y′′xx)
2 + b cot(λx) + c.

This is a special case of equation 17.2.6.1 with f(x) = b cot(λx) + c.

38. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = a cotm(λx) + b.

This is a special case of equation 17.2.6.2 with f(x) = a cotm(λx) + b.

39. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = a cotm(λy) + b.

This is a special case of equation 17.2.6.3 with f(y) = a cotm(λy) + b.

40. yy(6)x + 6y′xy
(5)
x + 15y′′xxy

′′′′

xxxx + 10(y′′′xxx)
2 = a cotm(λx).

This is a special case of equation 17.2.6.6 with f(x) = a cotm(λx).

41. y(n)
x = a cotm(λy) + b.

This is a special case of equation 17.2.6.8 with f(y) = a cotm(λy) + b.

42. y(n)
x = ax−n cotm(λy).

This is a special case of equation 17.2.6.11 with f(y) = a cotm(λy).

43. yy(2n+1)
x = a cotm(λx) + b.

This is a special case of equation 17.2.6.17 with f(x) = a cotm(λx) + b.

44. y(2n)
x = (−1)ny + a(y′x − y cot x)k.

This is a special case of equation 17.2.6.47 with f(x, u) = auk and ϕ(x) = sinx.

45. y(2n+1)
x = (−1)ny cot x+ a(y′x − y cot x)k.

This is a special case of equation 17.2.6.47 with f(x, u) = auk and ϕ(x) = sinx.

46. (2n− 1)yy(2n+1)
x + (2n+ 1)y′xy

(2n)
x = a cotm(λx) + b.

This is a special case of equation 17.2.6.62 with f(x) = a cotm(λx) + b.

47. y(n)
x = a cotk(λy)y′xy

(n−1)
x .

This is a special case of equation 17.2.6.57 with f(y) = a cotk(λy).

48. yy(n)
x − y′xy

(n−1)
x = a cot(λx)y2.

This is a special case of equation 17.2.6.64 with f(x) = a cot(λx).
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17.2.6 Equations Containing Arbitrary Functions

◮ Fifth- and sixth-order equations.

1. y(5)x = ayy′′′′xxxx − a(y′′xx)
2 + f(x).

Integrating the equation two times, we obtain a third-order equation:

y′′′xxx=ayy
′′
xx−a(y′x)2+C1x+C2+

∫ x

x0

(x−t)f(t) dt, where x0 is an arbitrary number.

2. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = f(x).

Solution:

y2 = C4x
4 + C3x

3 + C2x
2 + C1x+ C0 +

1

12

∫ x

x0

(x− t)4f(t) dt,

where x0 is an arbitrary number.

3. yy(5)x + 5y′xy
′′′′

xxxx + 10y′′xxy
′′′

xxx = f(y).

The substitution w = y2 leads to an autonomous equation of the form 17.2.6.8:

w
(5)
x = 2f

(
±√w

)
.

4. yy(5)x + ay′xy
′′′′

xxxx + (3a− 5)y′′xxy
′′′

xxx = f(x).

Integrating the equation three times, we obtain a second-order equation:

yy′′xx +
a− 3

2
(y′x)

2 = C2x
2 + C1x+C0 +

1

2

∫ x

x0

(x− t)2f(t) dt,

where x0 is an arbitrary number.

5. (a+ y)y(5)x + by′xy
′′′′

xxxx + cy′′xxy
′′′

xxx = f(x).

Integrating yields a fourth-order equation:

(a+ y)y′′′′xxxx + (b− 1)y′xy
′′′
xxx +

1

2
(1− b+ c)(y′′xx)

2 =

∫
f(x) dx+ C.

6. yy(6)x + 6y′xy
(5)
x + 15y′′xxy

′′′′

xxxx + 10(y′′′xxx)
2 = f(x).

Solution: y2 = C5x
5 + C4x

4 + C3x
3 + C2x

2 + C1x+ C0 +
1

60

∫ x

x0

(x− t)5f(t) dt.

7. y(6)x = (ax2 + bx+ c)−7/2f
((
y(ax2 + bx+ c)−5/2

))
.

This is a special case of equation 17.2.6.22 with n = 6.

◮ Equations of the form y(n)
x = f(x, y).

8. y(n)
x = f(y).

Autonomous equation. This is a special case of equation 17.2.6.77.

1◦. The substitution w(y) = y′x leads to an (n− 1)st-order equation.

2◦. For even n = 2m, the first integral of the equation is:

m−1∑

k=1

(−1)ky(k)x y(2m−k)
x + 1

2 (−1)
m
[
y(m)
x

]2
+

∫
f(y) dy = C.

Furthermore, the order of the obtained equation can be reduced by one by the substitution

w(y) = y′x.
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9. y(n)
x = f(y + axm), m = 0, 1, . . . , n− 1.

The substitution w = y + axm leads to an autonomous equation of the form 17.2.6.8:

w
(n)
x = f(w).

10. y(n)
x = f

((
y + anx

n + an−1x
n−1 + . . .+ a0

))
.

The substitution w = y + anx
n + an−1x

n−1 + · · ·+ a0 leads to an autonomous equation

of the form 17.2.6.8: w
(n)
x = ann! + f(w).

11. y(n)
x = x−nf(y).

The substitution t = ln |x| leads to an autonomous equation of the form 17.2.6.77.

12. y(n)
x = x1−nf(y/x).

Homogeneous equation. This is a special case of equation 17.2.6.83. The transformation

t = lnx, w = y/x leads to an autonomous equation of the form 17.2.6.77.

13. y(n)
x = x−n−1f(x1−ny).

The transformation x = t−1, y = t1−nw leads to an autonomous equation of the form

17.2.6.8: w
(n)
t = (−1)nf(w).

14. y(2n)
x = x−

2n+1
2 f

((
x

1−2n
2 y

))
.

The transformation x = et, y = x
2n−1
2 w(t) leads to an autonomous equation of the form

17.2.6.68, whose order can be reduced by two.

15. y(n)
x = x−n−kf(yxk).

This is a special case of equation 17.2.6.86.

1◦. The transformation t = lnx, z = yxk leads to an autonomous equation of the form

17.2.6.77.

2◦. The transformation z = yxk, w = xy′x/y leads to an (n− 1)st-order equation.

16. y(n)
x = yx−nf(xkym).

This is a special case of equation 17.2.6.89. The transformation t = xkym, w = xy′x/y
leads to an (n− 1)st-order equation.

17. yy(2n+1)
x = f(x).

Integrating yields a 2nth-order equation:

2

n−1∑

m=0

(−1)my(m)
x y(2n−m)

x + (−1)n
[
y(n)x

]2
= 2

∫
f(x) dx+C,

where the notation y
(0)
x ≡ y is used.

18. y(n)
x = f(x, y).

The transformation x = z−1, y = z1−nw(z) leads to an equation of the same form:

w
(n)
z = (−1)nz−n−1f(z−1, z1−nw).
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19. y(n)
x = (ax+ by + c)1−nf

((
ax+ by + c

αx+ βy + γ

))
.

1◦. For aβ− bα = 0, the substitution bw = ax+ by+ c leads to an autonomous equation

of the form 17.2.6.8.

2◦. For aβ − bα 6= 0, the transformation

z = x− x0, w = y − y0,

where x0 and y0 are the constants which are determined by solving the linear algebraic

system

ax0 + by0 + c = 0,

αx0 + βy0 + γ = 0,

leads to a homogeneous equation of the form 17.2.6.12:

w(n)
z = z1−nF

(w
z

)
, where F (ξ) = (a+ bξ)1−nf

( a+ bξ

α+ βξ

)
.

20. y(n)
x = (a1x+ b1y + c1)

1−nf

((
a2x+ b2y + c2

a3x+ b3y + c3

))
.

Suppose the following condition holds:

∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
= 0.

For a2b3 − a3b2 6= 0, the transformation

z = x− x0, w = y − y0,

where x0 and y0 are the constants determined by the linear algebraic system

a2x0 + b2y0 + c2 = 0,

a3x0 + b3y0 + c3 = 0,

leads to a homogeneous equation of the form 17.2.6.12:

w(n)
z = z1−nF

(w
z

)
, where F (ξ) = (a1 + b1ξ)

1−nf
( a2 + b2ξ

a3 + b3ξ

)
.

21. (ax+ b)n(cx+ d)y(n)
x = f

((
y

(cx+ d)n−1

))
.

The transformation ξ = ln
∣∣∣ ax+ b

cx+ d

∣∣∣, w =
y

(cx+ d)n−1
leads to an autonomous equation

of the form 17.2.6.77.

22. y(n)
x = (ax2 + bx+ c)

−
1+n
2 f

((
y(ax2 + bx+ c)

1−n
2
))

.

1◦. The transformation

t =

∫
dx

ax2 + bx+ c
, w = y(ax2 + bx+ c)

1−n
2 (1)

leads to an autonomous equation with respect to w=w(t), which admits reduction of order

by the substitution z(w) = w′
t.
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2◦. Let n = 2m be an even integer (m = 1, 2, 3, . . . ). In this case, transformation (1)

yields an equation of the form 17.2.6.68, whose order can be reduced by two.

Setting P = ax2 + bx + c, y = wP
2m−1

2 and multiplying both sides of the original

equation by w′
x = P− 1+2m

2

(
Py′x +

1− 2m

2
P ′
xy
)
, we obtain

(
Py′x +

1− 2m

2
P ′
xy
)
y(2m)
x = f(w)w′

x.

Integrating both sides of this equality with respect to x (the left-hand side is integrated by

parts), we have

m−2∑

k=0

(−1)kψ(k)
x y(2m−1−k)

x + (−1)m−1

∫
ψ(m−1)
x y(m+1)

x dx =

∫
f(w) dw + C, (2)

where

ψ(k)
x =

dk

dxk

(
Py′x+

1− 2m

2
P ′
xy
)
= Py(k+1)

x +
(
k−m+

1

2

)
P ′
xy

(k)
x +ak(k−2m)y(k−1)

x

(remember that n = 2m). It can be shown that the integrand on the left-hand side of (2) is

a total differential. Finally, we arrive at the first integral

m−2∑

k=0

(−1)k
[
Py(k+1)

x +
(
k−m+ 1

2

)
P ′
xy

(k)
x +ak(k−2m)y(k−1)

x

]
y(2m−1−k)
x

+(−1)m−1
{

1
2P
[
y(m)
x

]2− 1
2P

′
xy

(m−1)
x y(m)

x +a(1−m2)y(m−2)
x y(m)

x + 1
2am

2
[
y(m−1)
x

]2}

=

∫
f(w) dw+C.

23. y(n)
x = y

1+n
1−n f

((
y(ax2 + bx+ c)

1−n
2
))

.

1◦. Setting f(u) = u
n+1
n−1 f1(u), we have equation 17.2.6.22 with the function f1 (instead

of f ).

2◦. The transformation x = z−1, y = z1−nw(z) leads to an equation of similar form:

w(n)
z = (−1)nw

1+n
1−n f

(
w(cz2 + bz + a)

1−n
2
)

.

24. y(n)
x = eαxf(ye−αx).

The substitution w(x) = ye−αx leads to an autonomous equation of the form 17.2.6.77.

25. y(n)
x = yf(eαxym).

The transformation z = eαxym, w(z) = y′x/y leads to an (n − 1)st-order equation.

26. y(n)
x = x−nf(xmeαy).

The transformation z = xmeαy , w(z) = xy′x leads to an (n− 1)st-order equation.

27. y(n)
x = f(y + aeλx) − aλneλx.

The substitution w(x) = y + aeλx leads to an autonomous equation of the form 17.2.6.8:

w
(n)
x = f(w).
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28. y(2n)
x = f(y + a cosh x)− a cosh x.

The substitution w(x)=y+a cosh x leads to an autonomous equation of the form 17.2.6.8:

w
(2n)
x = f(w).

29. y(2n)
x = f(y + a sinh x)− a sinhx.

The substitution w(x)= y+a sinh x leads to an autonomous equation of the form 17.2.6.8:

w
(2n)
x = f(w).

30. y(2n+1)
x = f(y + a cosh x)− a sinhx.

The substitution w(x)=y+a cosh x leads to an autonomous equation of the form 17.2.6.8:

w
(2n+1)
x = f(w).

31. y(2n+1)
x = f(y + a sinh x)− a cosh x.

The substitution w(x)= y+a sinh x leads to an autonomous equation of the form 17.2.6.8:

w
(2n+1)
x = f(w).

32. y(n)
x = f(y + a cosx) − a cos

((
x+ 1

2
πn
))
.

The substitution w(x) = y+a cos x leads to an autonomous equation of the form 17.2.6.8:

w
(n)
x = f(w).

33. y(n)
x = f(y + a sin x)− a sin

((
x+ 1

2
πn
))
.

The substitution w(x) = y+a sinx leads to an autonomous equation of the form 17.2.6.8:

w
(n)
x = f(w).

◮ Equations of the form y(n)
x = f(x, y, y′x).

34. y(n)
x = f(y)y′x + g(x).

Integrating yields an (n− 1)st-order equation: y(n−1)
x =

∫
f(y) dy +

∫
g(x) dx + C .

35. y(n)
x = f(x, y′x).

The substitution w(x) = y′x leads to an (n− 1)st-order equation: w
(n−1)
x = f(x,w).

36. y(n)
x = f(y, y′x).

Autonomous equation. This is a special case of equation 17.2.6.77.

The substitution w(y) = y′x leads to an (n− 1)st-order equation.

37. y(n)
x = yx−nf(xy′x/y).

The transformation z = xy′x/y, w = x2y′′xx/y leads to an (n− 2)nd-order equation.

38. y(n)
x = any + f(x, y′x − ay).

The substitution w = y′x − ay leads to an (n− 1)st-order equation:

w(n−1)
x + aw(n−2)

x + · · ·+ an−1w = f(x,w).

39. y(n)
x = f(x, xy′x − y).

The substitution w = xy′x − y leads to an (n − 1)st-order equation:
dn−2

dxn−2

(w′
x

x

)
=

f(x,w).
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40. y(n)
x = f

((
x, xy′x −my

))
.

Here, m is a positive integer and n ≥ m+ 1. The substitution w = xy′x −my leads to an

(n− 1)st-order equation: ζ
(n−m−1)
x = f(x,w), where ζ = w

(m)
x /x.

41. xny(n)
x = f(x, xy′x + ay) − (a)ny.

Here, (a)n = a(a+ 1) . . . (a + n − 1) is the Pochhammer symbol. The substitution w =
xy′x + ay leads to an (n− 1)st-order equation.

42. y(n)
x =f

((
x, Pmy

′

x−P ′

my
))
, Pm=

m∑

k=0

akx
k, P ′

m=
m∑

k=0

akkx
k−1, n>m.

The substitution w = Pmy
′
x − P ′

my leads to an (n− 1)st-order equation.

43. y(2n)
x = y + f(x, y′x cosh x− y sinhx).

The substitution w = y′x cosh x− y sinhx leads to a (2n − 1)st-order equation.

44. y(2n)
x = y + f(x, y′x sinhx− y cosh x).

The substitution w = y′x sinh x− y coshx leads to a (2n − 1)st-order equation.

45. y(2n)
x = (−1)ny + f(x, y′x sinx− y cosx).

The substitution w = y′x sinx− y cos x leads to a (2n− 1)st-order equation.

46. y(2n)
x = (−1)ny + f(x, y′x cosx+ y sin x).

The substitution w = y′x cos x+ y sinx leads to a (2n− 1)st-order equation.

47. y(n)
x =

ϕ
(n)
x

ϕ
y + f

((
x, y′x − ϕ′

x

ϕ
y
))
, ϕ = ϕ(x).

The substitution w = y′x −
ϕ′
x

ϕ
y leads to an (n− 1)st-order equation.

◮ Equations of the form y(n)
x = f(x, y, y′x, y

′′

xx).

48. y(n)
x = f(x, xy′x − y, y′′xx).

This is a special case of equation 17.2.6.78. The substitution w(x) = xy′x − y leads to an

(n− 1)st-order equation.

49. y(n)
x = f(x, x2y′′xx − 2xy′x + 2y).

This is a special case of equation 17.2.6.81. The substitution w(x) = x2y′′xx − 2xy′x + 2y
leads to an (n− 2)nd-order equation.

50. y(2n)
x = any + f(x, y′′xx − ay).

The substitution w = y′′xx − ay leads to a (2n − 2)nd-order equation:

w(2n−2)
x + aw(2n−4)

x + · · · + an−1w = f(x,w).

51. y(2n)
x = yf

((
yy′′xx − y′2x

))
.

This is a special case of equation 17.2.6.52.
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52. y(2n)
x = y′′xxf

((
yy′′xx − y′2x

))
+ yg

((
yy′′xx − y′2x

))
.

1◦. Particular solution:

y = C1 exp(C3x) + C2 exp(−C3x),

where the constants C1, C2, and C3 are related by the constraint

C2n
3 − C2

3f(4C1C2C
2
3 )− g(4C1C2C

2
3 ) = 0.

2◦. Particular solution:

y = C1 cos(C3x) + C2 sin(C3x),

where the constants C1, C2, and C3 are related by the constraint

(−1)nC2n
3 + C2

3f(−C2
1C

2
3 − C2

2C
2
3 )− g(−C2

1C
2
3 − C2

2C
2
3 ) = 0.

53. y(n)
x = y′xf

((
y′′

xx

y′

x

, y′x − y
y′′

xx

y′

x

))
.

Particular solution: y = C1 exp(C2x) + C3, where C1 is an arbitrary constant and the

constants C2 and C2 are related by the constraint Cn−1
2 = f(C2,−C2C3).

◮ Equations of the form f(x,y)y(n)
x +g(x,y,y′x)y

(n−1)
x =h

(
x,y,y′x, . . . ,y

(n−2)
x

)
.

54. y(n)
x = ayy′′′′xxxx − a(y′′xx)

2 + f(x).

Integrating the equation two times, we obtain an (n− 2)nd-order equation:

y(n−2)
x =ayy′′xx−a(y′x)2+C1x+C2+

∫ x

x0

(x−t)f(t) dt, where x0 is an arbitrary number.

55. y(2n)
x = a2y + f

((
x, y(n)

x + ay
))
.

The substitution w = y
(n)
x + ay leads to an nth-order equation: w

(n)
x = aw + f(x,w).

56. y(n)
x = f

((
y(n−2)
x

))
.

Having set u(x) = y
(n−2)
x , we obtain a second-order equation u′′xx = f(u), whose solution

has the form:

x =

∫
du

ϕ(u)
+ C2, where ϕ(u) = ±

[
C1 + 2

∫
f(u) du

]1/2
.

Expressing u in terms of x and integrating the resulting relation n− 2 times, we find y.

Solution in parametric form:

x =

∫ u

C2

du

ϕ(u)
, y =

∫ u

C3

du1
ϕ(u1)

∫ u1

C4

du2
ϕ(u2)

. . .

∫ un−4

Cn−1

dun−3

ϕ(un−3)

∫ un−3

Cn

un−2 dun−2

ϕ(un−2)
.

57. y(n)
x = f(y)y′xy

(n−1)
x .

Integrating yields an (n− 1)st-order autonomous equation of the form 17.2.6.8:

y(n−1)
x = F (y), where F (y) = C exp

[∫
f(y) dy

]
.

58. y(n)
x =

[[
f(y)y′x + g(x)

]]
y(n−1)
x .

Integrating yields an (n− 1)st-order equation: y(n−1)
x = C exp

[∫
f(y) dy+

∫
g(x) dx

]
.
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59. xy(n)
x + ny(n−1)

x = f(xy).

The substitution w(x) = xy leads to an autonomous equation of the form 17.2.6.8:

w
(n)
x = f(w).

60. xy(n)
x + (a+ n− 1)y(n−1)

x = f(x, xy′x + ay).

The substitution w = xy′x + ay leads to an (n− 1)st-order equation: w
(n−1)
x = f(x,w).

61. x2y(n)
x + 2nxy(n−1)

x + n(n− 1)y(n−2)
x = f(x2y).

The substitution w(x) = x2y leads to an autonomous equation of the form 17.2.6.8:

w
(n)
x = f(w).

62. (2n− 1)yy(2n+1)
x + (2n+ 1)y′xy

(2n)
x = f(x).

Having integrated the equation, we obtain

(2n− 1)yy(2n)x + 2

n−1∑

k=1

(−1)k+1y(k)x y(2n−k)
x + (−1)n+1

[
y(n)x

]2
=

∫
f(x) dx+ 2C2.

The second integration leads to a (2n− 1)st-order equation:

n−1∑

k=0

(2n − 1− 2k)(−1)ky(k)x y(2n−1−k)
x = 2C2x+ C1 +

∫ x

x0

(x− t)f(t) dt.

The third integration leads to a (2n − 2)nd-order equation:

n−2∑

k=0

(k + 1)(2n − k − 1)(−1)ky(k)x y(2n−2−k)
x +

1

2
(−1)n−1n2

[
y(n−1)
x

]2

= C2x
2 + C1x+ C0 +

1

2

∫ x

x0

(x− t)2f(t) dt.

63. (2n− 1)yy(2n+1)
x + (2n+ 1)y′xy

(2n)
x = f(y)y′x + g(x).

Integrating yields an (n− 1)st-order equation:

(2n−1)yy(2n)x +2

n−1∑

k=1

(−1)k+1y(k)x y(2n−k)
x +(−1)n+1

[
y(n)x

]2
=

∫
f(y) dy+

∫
g(x) dx+C.

64. yy(n)
x − y′xy

(n−1)
x = f(x)y2.

Integrating yields an (n− 1)st-order linear equation: y(n−1)
x =

[∫
f(x) dx+ C

]
y.

65. yy(n)
x = y′xy

(n−1)
x + f(x)yy(n−1)

x .

Integrating yields an (n− 1)st-order linear equation: y(n−1)
x = C exp

[∫
f(x) dx

]
y.

66. yy(n)
x +(f − 1)y′xy

(n−1)
x + fgyy′x + g′xy

2 = 0, f = f(x), g = g(x).

This equation is solved by the functions that are solutions of the (n − 1)st-order linear

equation y
(n−1)
x + g(x)y = 0.

67. [y + f(x)]y(n)
x = [y′x + f ′

x(x)]y
(n−1)
x + af(x)y′x − af ′

x(x)y.

Integrating yields an (n−1)st-order constant coefficient nonhomogeneous linear equation:

y
(n−1)
x − Cy = (C − a)f(x). There is also the trivial solution y = 0.
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68.

n∑

m=1

amy
(2m)
x = f(y).

The first integral has the form:

n∑

m=1

am

{m−1∑

ν=1

(−1)νy(ν)x y(2m−ν)
x +

1

2
(−1)m

[
y(m)
x

]2
}
+

∫
f(y) dy = C,

where C is an arbitrary constant. Furthermore, the order of the obtained equation can be

reduced by one by the substitution w(y) = y′x.

69.

n∑

m=1

amx
my(m)

x = f(y).

The substitution t = ln |x| leads to an autonomous equation of the form 17.2.6.77.

70. y

n∑

m=0

amy
(2m+1)
x = f(x).

Integrating yields a 2nth-order equation:

n∑

m=0

am

{
2
m−1∑

ν=0

(−1)νy(ν)x y(2m−ν)
x + (−1)m

[
y(m)
x

]2
}

= 2

∫
f(x) dx+ C,

where y
(0)
x stands for y.

71.

n∑

m=0

amy
(m)
x y(2n+1−m)

x = f(x).

The first integral has the form:

2

n−1∑

m=0

Amy
(m)
x y(2n−m)

x +An

[
y(n)x

]2
= 2

∫
f(x) dx+ C,

where

Am =
m∑
k=0

(−1)m+kak = am − am−1 + am−2 − · · · .

If the condition

An = 2
n−1∑
m=0

(−1)n−1+mAm

is satisfied, the obtained equation can be integrated two times more (in particular, see equa-

tion 17.2.6.62).

◮ Equations of the form y(n)
x = f

(
x, y, y′x, . . . , y

(n−1)
x

)
.

72. y(n)
x = f

((
y(n−1)
x

))
.

Having set u(x) = y
(n−1)
x , we obtain a first-order equation u′x = f(u). Further, find u

from the relation x =

∫
du

f(u)
+ C1. Then the (n− 1)-fold integration yields y.

Solution in parametric form:

x =

∫ u

C1

du

f(u)
, y =

∫ u

C2

du1
f(u1)

∫ u1

C3

du2
f(u2)

. . .

∫ un−3

Cn−1

dun−2

f(un−2)

∫ un−2

Cn

un−1 dun−1

f(un−1)
.
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73. y(n)
x = f(y)y′xg

((
y(n−1)
x

))
.

Integrating yields an (n− 1)st-order equation:
∫

dw

g(w)
=

∫
f(y) dy + C, where w = y(n−1)

x .

Furthermore, the order of this equation can be reduced by one by the substitution z(y)=y′x.

74. y(n)
x =

[[
f(y)y′x + g(x)

]]
h(y(n−1)

x ).

Integrating yields an (n− 1)st-order equation:
∫

dw

h(w)
=

∫
f(y) dy +

∫
g(x) dx +C, w = y(n−1)

x .

75. y(n)
x = f

((
x, y(n−2)

x , y(n−1)
x

))
.

The substitution w(x) = y
(n−2)
x leads to a second-order equation: w′′

xx = f(x,w,w′
x).

◮ Equations of the general form F
(
x, y, y′x, . . . , y

(n)
x

)
= 0.

76. F
((
x, y′x, y

′′

xx, . . . , y
(n)
x

))
= 0.

The equation does not depend on y explicitly. Hence, the substitution w(x) = y′x leads to

an (n− 1)st-order equation:

F
(
x, w, w′

x, . . . , w
(n−1)
x

)
= 0.

77. F
((
y, y′x, y

′′

xx, . . . , y
(n)
x

))
= 0.

Autonomous equation. It does not depend on x explicitly. The substitution w(y)= y′x leads

to an (n−1)st-order equation. The derivatives of the original equation and the transformed

one are related by

y′′xx = ww′
y, y′′′xxx = w2w′′

yy + w(w′
y)

2, . . . , y(n)x = w
(
y(n−1)
x

)′
y
.

78. F
((
x, xy′x − y, y′′xx, y

′′′

xxx, . . . , y
(n)
x

))
= 0.

The substitution w(x) = xy′x − y leads to an (n− 1)st-order equation:

F
(
x, w, ζ, ζ ′x, . . . , ζ

(n−2)
x

)
= 0, where ζ = w′

x/x.

79. F
((
x, xy′x − 2y, y′′′xxx, y

′′′′

xxxx, . . . , y
(n)
x

))
= 0.

The substitution w = xy′x − 2y leads to an (n− 1)st-order equation:

F
(
x, w, ζ, ζ ′x, . . . , ζ

(n−3)
x

)
= 0, where ζ = w′′

xx/x.

80. F
((
x, xy′x −my, y(m+1)

x , y(m+2)
x , . . . , y(n)

x

))
= 0,

n ≥ m+ 1, m = 1, . . . , n− 1.

The substitution w = xy′x −my leads to an (n− 1)st-order equation:

F
(
x, w, ζ, ζ ′x, . . . , ζ

(n−m−1)
x

)
= 0, where ζ = w(m)

x /x.

81. F
((
x, x2y′′xx − 2xy′x + 2y, y′′′xxx, . . . , y

(n)
x

))
= 0.

The substitution w(x) = x2y′′xx − 2xy′x + 2y leads to an (n− 2)nd-order equation:

F
(
x, w, ζ, ζ ′x, . . . , ζ

(n−3)
x

)
= 0, where ζ = x−2w′

x.
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82.

m∑

k=0

(−1)kk!Ck
mx

m−ky(m−k)
x = F (x, y(m+1)

x , . . . , y(n)
x ).

Here, Ck
m =

m!

k! (m− k)! are binomial coefficients.

The substitution w(x) =
m∑
k=0

(−1)kk!Ck
mx

m−ky
(m−k)
x leads to an (n − m)th-order

equation; the derivatives on the right-hand side are calculated in consecutive manner using

the formula y
(m+1)
x = x−mw′

x.

83. F
((
y

x
, y′x, xy

′′

xx, . . . , x
n−1y(n)

x

))
= 0.

Homogeneous equation. The transformation t = lnx, w = y/x leads to an autonomous

equation of the form 17.2.6.77.

84. F
((
ax+ by + c

αx+ βy + γ
, y′x, . . . , (ax+ by + c)n−1y(n)

x

))
= 0.

1◦. For aβ− bα= 0 , the substitution bw = ax+ by+ c leads to an autonomous equation

of the form 17.2.6.77.

2◦. For aβ − bα 6= 0, the transformation

z = x− x0, w = y − y0,
where x0 and y0 are the constants determined by the linear algebraic system

ax0 + by0 + c = 0, αx0 + βy0 + γ = 0,

leads to a homogeneous equation of the form 17.2.6.83:

F
( a+ bw/z

α+ βw/z
, w′

z, . . . , (a+ bw/z)n−1zn−1w(n)
z

)
= 0.

85. F
((
a1x+ b1y + c1

a2x+ b2y + c2
, y′x, . . . , (a3x+ b3y + c3)

n−1y(n)
x

))
= 0.

Let the following condition hold:

∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
= 0.

For a1b2 − a2b1 6= 0, the transformation

z = x− x0, w = y − y0,
where x0 and y0 are the constants determined by the linear algebraic system

a1x0 + b1y0 + c1 = 0, a2x0 + b2y0 + c2 = 0,

leads to a homogeneous equation of the form 17.2.6.83:

F
( a1 + b1w/z

a2 + b2w/z
, w′

z, . . . , (a3 + b3w/z)
n−1zn−1w(n)

z

)
= 0.

86. F
((
xky, xk+1y′x, . . . , x

k+ny(n)
x

))
= 0.

Generalized homogeneous equation. The transformation t = lnx, w = xky leads to an

autonomous equation of the form 17.2.6.77.
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87. F

((
xy′

x

y
,
x2y′′

xx

y
, . . . ,

xny
(n)
x

y

))
= 0.

Generalized homogeneous equation. The transformation z = xy′x/y, w = x2y′′xx/y leads

to an (n− 2)nd-order equation.

88. F

((
y′x − y

y′′

xx

y′
x

,
y′′

xx

y′
x

,
y′′′

xxx

y′
x

, . . . ,
y
(n)
x

y′
x

))
= 0.

Autonomous equation. Particular solution: y=C1 exp(C2x)+C3, whereC1 is an arbitrary

constant and the constants C2 and C3 are related by F (−C2C3, C2, C
2
2 , . . . , C

n−1
2 ) = 0.

89. F

((
xkym,

xy′

x

y
,
x2y′′

xx

y
, . . . ,

xny
(n)
x

y

))
= 0.

Generalized homogeneous equation. The transformation t = xkym, z = xy′x/y leads to

an (n− 1)st-order equation.

90. F

((
y
(n)
x

y′

x

, y
y
(n)
x

y′

x

− y(n−1)
x

))
= 0.

A solution of this equation is any function that satisfies the (n − 1)st-order constant coef-

ficient linear equation y
(n−1)
x = C1y + C2, where the constants C1 and C2 are related by

the constraint F (C1,−C2) = 0.

91. F

((
y
(n)
x

y
(k)
x

, x1−ky
y
(n)
x

y
(k)
x

− x1−ky(n−k)
x

))
= 0, n > k.

A solution of this equation is any function that satisfies the (n− k)th-order linear equation

y
(n−k)
x = C1y +C2x

k−1, where the constants C1 and C2 are related by F (C1,−C2) = 0.

92. F
((
x, y(n)

x − y, y(m)
x − y

))
= 0.

The substitution w = y′x − y reduces the order of the equation by one.

93. F
((
y(n)
x − y, y(2n)

x − y, y(2n)
x − y(n)

x

))
= 0.

The substitution u = y
(n)
x − y leads to an nth-order autonomous equation of the form

F
(
u, u

(n)
x + u, u

(n)
x

)
= 0.

94. F
((
x, y(n)

x + ay, y(2n)
x − a2y, y(2n)

x + ay(n)
x

))
= 0.

The substitution u= y
(n)
x +ay leads to an nth-order equation F

(
x, u, u

(n)
x −au, u(n)x

)
=0.

95. F
((
eαxy, eαxy′x, e

αxy′′xx, . . . , e
αxy(n)

x

))
= 0.

Equation invariant under “translation–dilatation” transformation. The substitution

u = eαxy leads to an autonomous equation of the form 17.2.6.77.

96. F

((
eαxym,

y′

x

y
,
y′′

xx

y
, . . . ,

y
(n)
x

y

))
= 0.

Equation invariant under “translation–dilatation” transformation. The transformation

z = eαxym, w = y′x/y leads to an (n − 1)st-order equation. See also Section 5.2.4 (the

first paragraph).

97. F
((
xmeαy, xy′x, x

2y′′xx, . . . , x
ny(n)

x

))
= 0.

Equation invariant under “dilatation–translation” transformation. The transformation

z = xmeαy , w = xy′x leads to an (n − 1)st-order equation. See also Section 5.2.4 (the

second paragraph).
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Chapter 18

Some Systems of Ordinary
Differential Equations

18.1 Linear Systems of Two Equations

18.1.1 Systems of First-Order Equations

1. x′

t = ax+ by, y′t = cx+ dy.

System of two constant-coefficient first-order linear homogeneous differential equations.

Let us write out the characteristic equation

λ2 − (a+ d)λ+ ad− bc = 0 (1)

and find its discriminant

D = (a− d)2 + 4bc. (2)

1◦. Case ad− bc 6= 0. The origin of coordinates x= y = 0 is the only one stationary point;

it is
a node if D = 0;

a node if D > 0 and ad− bc > 0;

a saddle if D > 0 and ad− bc < 0;

a focus if D < 0 and a+ d 6= 0;

a center if D < 0 and a+ d = 0.

1.1. Suppose D > 0. The characteristic equation (1) has two distinct real roots, λ1
and λ2. The general solution of the original system of differential equations is expressed as

x = C1be
λ1t + C2be

λ2t,

y = C1(λ1 − a)eλ1t + C2(λ2 − a)eλ2t,

where C1 and C2 are arbitrary constants.

1.2. Suppose D < 0. The characteristic equation (1) has two complex conjugate roots,

λ1,2 = σ± iβ. The general solution of the original system of differential equations is given

by

x = beσt
[
C1 sin(βt) + C2 cos(βt)

]
,

y = eσt
{
[(σ − a)C1 − βC2] sin(βt) + [βC1 + (σ − a)C2] cos(βt)

}
,

where C1 and C2 are arbitrary constants.

1099
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1.3. Suppose D=0 and a 6= d. The characteristic equation (1) has two equal real roots,

λ1 = λ2. The general solution of the original system of differential equations is

x = 2b

(
C1 +

C2

a− d + C2t

)
exp

(
a+ d

2
t

)
,

y = [(d− a)C1 + C2 + (d− a)C2t] exp

(
a+ d

2
t

)
,

where C1 and C2 are arbitrary constants.

1.4. Suppose a = d 6= 0 and b = 0. Solution:

x = C1e
at, y = (cC1t+C2)e

at.

1.5. Suppose a = d 6= 0 and c = 0. Solution:

x = (bC1t+ C2)e
at, y = C1e

at.

2◦. Case ad − bc = 0 and a2 + b2 > 0. The whole of the line ax + by = 0 consists of

singular points. The system in question may be rewritten in the form

x′t = ax+ by, y′t = k(ax+ by).

2.1. Suppose a+ bk 6= 0. Solution:

x = bC1 + C2e
(a+bk)t, y = −aC1 + kC2e

(a+bk)t.

2.2. Suppose a+ bk = 0. Solution:

x = C1(bkt− 1) + bC2t, y = k2bC1t+ (bk2t+ 1)C2.

2. x′

t = a1x+ b1y + c1, y′t = a2x+ b2y + c2.

The general solution of this system is given by the sum of any one of its particular solutions

and the general solution of the corresponding homogeneous system (see system 18.1.1.1).

1◦. Suppose a1b2 − a2b1 6= 0. A particular solution:

x = x0, y = y0,

where the constants x0 and y0 are determined by solving the linear algebraic system of

equations

a1x0 + b1y0 + c1 = 0, a2x0 + b2y0 + c2 = 0.

2◦. Suppose a1b2 − a2b1 = 0 and a21 + b21 > 0. Then the original system can be rewritten

as

x′t = ax+ by + c1, y′t = k(ax+ by) + c2.

2.1. If σ = a+ bk 6= 0, the original system has a particular solution of the form

x = bσ−1(c1k − c2)t− σ−2(ac1 + bc2), y = kx+ (c2 − c1k)t.
2.2. If σ = a+ bk = 0, the original system has a particular solution of the form

x = 1
2 b(c2 − c1k)t

2 + c1t, y = kx+ (c2 − c1k)t.
3. x′

t = f(t)x+ g(t)y, y′t = g(t)x+ f(t)y.

Solution:

x = eF (C1e
G +C2e

−G), y = eF (C1e
G − C2e

−G),
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where C1 and C2 are arbitrary constants, and

F =

∫
f(t) dt, G =

∫
g(t) dt.

4. x′

t = f(t)x+ g(t)y, y′t = −g(t)x+ f(t)y.

Solution:

x = F (C1 cosG+ C2 sinG), y = F (−C1 sinG+ C2 cosG),

where C1 and C2 are arbitrary constants, and

F = exp

[∫
f(t) dt

]
, G =

∫
g(t) dt.

5. x′

t = f(t)x+ g(t)y, y′t = ag(t)x+ [f(t) + bg(t)]y.

The transformation

x = exp

[∫
f(t) dt

]
u, y = exp

[∫
f(t) dt

]
v, τ =

∫
g(t) dt

leads to a system of constant coefficient linear differential equations of the form 18.1.1.1:

u′τ = v, v′τ = au+ bv.

6. x′

t = f(t)x+ g(t)y, y′t = a[f(t) + ah(t)]x+ a[g(t)− h(t)]y.

Let us multiply the first equation by −a and add it to the second equation to obtain

y′t − ax′t = −ah(t)(y − ax).
By setting U = y − ax and then integrating, one obtains

y − ax = C1 exp

[
−a
∫
h(t) dt

]
, (∗)

where C1 is an arbitrary constant. On solving (∗) for y and on substituting the resulting

expression into the first equation of the system, one arrives at a first-order linear differential

equation for x.

7. x′

t = f(t)x+ g(t)y, y′t = h(t)x+ p(t)y.

1◦. Let us express y from the first equation and substitute into the second one to obtain a

second-order linear equation:

gx′′tt − (fg + gp+ g′t)x
′
t + (fgp− g2h+ fg′t − f ′tg)x = 0. (1)

This equation is easy to integrate if, for example, the following conditions are met:

1) fgp− g2h+ fg′t − f ′tg = 0;

2) fgp− g2h+ fg′t − f ′tg = ag, fg + gp + g′t = bg.

In the first case, equation (1) has a particular solution u = C = const. In the second case,

it is a constant-coefficient equation.

A considerable number of other solvable cases of equation (1) can be found in Sec-

tion 14.1.
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2◦. Suppose a particular solution of the system in question is known,

x = x0(t), y = y0(t).

Then the general solution can be written out in the form

x(t) = C1x0(t) + C2x0(t)

∫
g(t)F (t)P (t)

x20(t)
dt,

y(t) = C1y0(t) + C2

[
F (t)P (t)

x0(t)
+ y0(t)

∫
g(t)F (t)P (t)

x20(t)
dt

]
,

where C1 and C2 are arbitrary constants, and

F (t) = exp

[∫
f(t) dt

]
, P (t) = exp

[∫
p(t) dt

]
.

18.1.2 Systems of Second-Order Equations

1. x′′

tt = ax+ by, y′′tt = cx+ dy.

System of two constant-coefficient second-order linear homogeneous differential equations.

The characteristic equation has the form

λ4 − (a+ d)λ2 + ad− bc = 0.

1◦. Case ad− bc 6= 0.

1.1. Suppose (a − d)2 + 4bc 6= 0. The characteristic equation has four distinct roots

λ1, . . . , λ4. The general solution of the system in question is written as

x = C1be
λ1t + C2be

λ2t + C3be
λ3t + C4be

λ4t,

y = C1(λ
2
1 − a)eλ1t + C2(λ

2
2 − a)eλ2t + C3(λ

2
3 − a)eλ3t + C4(λ

2
4 − a)eλ4t,

where C1, . . . , C4 are arbitrary constants.

1.2. Solution with (a− d)2 + 4bc = 0 and a 6= d:

x = 2C1

(
bt+

2bk

a− d

)
ekt/2 + 2C2

(
bt− 2bk

a− d

)
e−kt/2 + 2bC3te

kt/2 + 2bC4te
−kt/2,

y = C1(d− a)tekt/2 + C2(d− a)te−kt/2 + C3[(d− a)t+ 2k]ekt/2

+ C4[(d− a)t− 2k]e−kt/2,

where C1, . . . , C4 are arbitrary constants and k =
√

2(a+ d).
1.3. Solution with a = d 6= 0 and b = 0:

x = 2
√
aC1e

√
a t + 2

√
aC2e

−√
a t,

y = cC1te
√
a t − cC2te

−√
a t + C3e

√
a t + C4e

−√
a t.

1.4. Solution with a = d 6= 0 and c = 0:

x = bC1te
√
a t − bC2te

−√
a t +C3e

√
a t + C4e

−√
a t,

y = 2
√
aC1e

√
a t + 2

√
aC2e

−√
a t.

2◦. Case ad− bc = 0 and a2 + b2 > 0. The original system can be rewritten in the form

x′′tt = ax+ by, y′′tt = k(ax+ by).
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2.1. Solution with a+ bk 6= 0:

x = C1 exp
(
t
√
a+ bk

)
+ C2 exp

(
−t
√
a+ bk

)
+ C3bt+ C4b,

y = C1k exp
(
t
√
a+ bk

)
+ C2k exp

(
−t
√
a+ bk

)
− C3at− C4a.

2.2. Solution with a+ bk = 0:

x = C1bt
3 + C2bt

2 +C3t+ C4,

y = kx+ 6C1t+ 2C2.

2. x′′

tt = a1x+ b1y + c1, y′′tt = a2x+ b2y + c2.

The general solution of this system is expressed as the sum of any one of its particular

solutions and the general solution of the corresponding homogeneous system (see sys-

tem 18.1.2.1).

1◦. Suppose a1b2 − a2b1 6= 0. A particular solution:

x = x0, y = y0,

where the constants x0 and y0 are determined by solving the linear algebraic system of

equations

a1x0 + b1y0 + c1 = 0, a2x0 + b2y0 + c2 = 0.

2◦. Suppose a1b2 − a2b1 = 0 and a21 + b21 > 0. Then the system can be rewritten as

x′′tt = ax+ by + c1, y′′tt = k(ax+ by) + c2.

2.1. If σ = a+ bk 6= 0, the original system has a particular solution

x = 1
2 bσ

−1(c1k − c2)t2 − σ−2(ac1 + bc2), y = kx+ 1
2 (c2 − c1k)t

2.

2.2. If σ = a+ bk = 0, the system has a particular solution

x = 1
24 b(c2 − c1k)t

4 + 1
2 c1t

2, y = kx+ 1
2 (c2 − c1k)t

2.

3. x′′

tt − ay′t + bx = 0, y′′tt + ax′

t + by = 0.

This system is used to describe the horizontal motion of a pendulum taking into account

the rotation of the earth.

Solution with a2 + 4b > 0:

x = C1 cos(αt) + C2 sin(αt) +C3 cos(βt) + C4 sin(βt),

y = −C1 sin(αt) + C2 cos(αt)− C3 sin(βt) + C4 cos(βt),

where C1, . . . , C4 are arbitrary constants and

α = 1
2a+

1
2

√
a2 + 4b, β = 1

2a− 1
2

√
a2 + 4b.

4. x′′

tt + a1x
′

t + b1y
′

t + c1x+ d1y = k1e
iωt,

y′′tt + a2x
′

t + b2y
′

t + c2x+ d2y = k2e
iωt.

Systems of this type often arise in oscillation theory (e.g., oscillations of a ship and a

ship gyroscope). The general solution of this constant-coefficient linear nonhomogeneous

system of differential equations is expressed as the sum of any one of its particular solutions

and the general solution of the corresponding homogeneous system (with k1 = k2 = 0).
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1◦. A particular solution is sought by the method of undetermined coefficients in the form

x = A∗e
iωt, y = B∗e

iωt.

On substituting these expressions into the system of differential equations in question, one

arrives at a linear nonhomogeneous system of algebraic equations for the coefficients A∗
and B∗.

2◦. The general solution of a homogeneous system of differential equations is determined

by a linear combination of its linearly independent particular solutions, which are sought

using the method of undetermined coefficients in the form of exponential functions,

x = Aeλt, y = Beλt.

On substituting these expressions into the system and on collecting the coefficients of the

unknowns A and B, one obtains

(λ2 + a1λ+ c1)A+ (b1λ+ d1)B = 0,

(a2λ+ c2)A+ (λ2 + b2λ+ d2)B = 0.

For a nontrivial solution to exist, the determinant of this system must vanish. This require-

ment results in the characteristic equation

(λ2 + a1λ+ c1)(λ
2 + b2λ+ d2)− (b1λ+ d1)(a2λ+ c2) = 0,

which is used to determine λ. If the roots of this equation, k1, . . . , k4, are all distinct, then

the general solution of the original system of differential equations has the form

x=−C1(b1λ1+d1)e
λ1t−C2(b1λ2+d1)e

λ2t−C3(b1λ1+d1)e
λ3t−C4(b1λ4+d1)e

λ4t,

y =C1(λ
2
1+a1λ1+c1)e

λ1t+C2(λ
2
2+a1λ2+c1)e

λ2t

+C3(λ
2
3+a1λ3+c1)e

λ3t+C4(λ
2
4+a1λ4+c1)e

λ4t,

where C1, . . . , C4 are arbitrary constants.

5. x′′

tt = a(ty′t − y), y′′tt = b(tx′

t − x).

The transformation

u = txt − x, v = ty′t − y (1)

leads to a first-order system:

u′t = atv, v′t = btu.

The general solution of this system is expressed as

with ab > 0:

{
u(t) = C1a exp

(
1
2

√
ab t2

)
+ C2a exp

(
− 1

2

√
ab t2

)
,

v(t) = C1

√
ab exp

(
1
2

√
ab t2

)
− C2

√
ab exp

(
− 1

2

√
ab t2

)
;

with ab < 0:

{
u(t) = C1a cos

(
1
2

√
|ab| t2

)
+ C2a sin

(
1
2

√
|ab| t2

)
,

v(t) = −C1

√
|ab| sin

(
1
2

√
|ab| t2

)
+ C2

√
|ab| cos

(
1
2

√
|ab| t2

)
,

(2)

where C1 and C2 are arbitrary constants. On substituting (2) into (1) and integrating, one

arrives at the general solution of the original system in the form

x = C3t+ t

∫
u(t)

t2
dt, y = C4t+ t

∫
v(t)

t2
dt,

where C3 and C4 are arbitrary constants.
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6. x′′

tt = f(t)(a1x+ b1y), y′′tt = f(t)(a2x+ b2y).

Let k1 and k2 be roots of the quadratic equation

k2 − (a1 + b2)k + a1b2 − a2b1 = 0.

Then, on multiplying the equations of the system by appropriate constants and on adding

them together, one can rewrite the system in the form of two independent equations:

z′′1 = k1f(t)z1, z1 = a2x+ (k1 − a1)y;
z′′2 = k2f(t)z2, z2 = a2x+ (k2 − a1)y.

Here, a prime stands for a derivative with respect to t.

7. x′′

tt = f(t)(a1x
′

t + b1y
′

t), y′′tt = f(t)(a2x
′

t + b2y
′

t).

Let k1 and k2 be roots of the quadratic equation

k2 − (a1 + b2)k + a1b2 − a2b1 = 0.

Then, on multiplying the equations of the system by appropriate constants and on adding

them together, one can reduce the system to two independent equations:

z′′1 = k1f(t)z
′
1, z1 = a2x+ (k1 − a1)y;

z′′2 = k2f(t)z
′
2, z2 = a2x+ (k2 − a1)y.

Integrating these equations and returning to the original variables, one arrives at a linear

algebraic system for the unknowns x and y:

a2x+ (k1 − a1)y = C1

∫
exp
[
k1F (t)

]
dt+ C2,

a2x+ (k2 − a1)y = C3

∫
exp
[
k2F (t)

]
dt+ C4,

where C1, . . . , C4 are arbitrary constants and F (t) =

∫
f(t) dt.

8. x′′

tt = af(t)(ty′t − y), y′′tt = bf(t)(tx′

t − x).

The transformation

u = txt − x, v = ty′t − y (1)

leads to a system of first-order equations:

u′t = atf(t)v, v′t = btf(t)u.

The general solution of this system is expressed as

if ab> 0,





u(t)=C1a exp

(√
ab

∫
tf(t) dt

)
+C2a exp

(
−
√
ab

∫
tf(t) dt

)
,

v(t)=C1

√
ab exp

(√
ab

∫
tf(t) dt

)
−C2

√
ab exp

(
−
√
ab

∫
tf(t) dt

)
;

if ab< 0,





u(t)=C1a cos

(√
|ab|

∫
tf(t) dt

)
+C2a sin

(√
|ab|

∫
tf(t) dt

)
,

v(t)=−C1

√
|ab| sin

(√
|ab|

∫
tf(t) dt

)
+C2

√
|ab| cos

(√
|ab|

∫
tf(t) dt

)
,

(2)

where C1 and C2 are arbitrary constants. On substituting (2) into (1) and integrating, one

obtains the general solution of the original system

x = C3t+ t

∫
u(t)

t2
dt, y = C4t+ t

∫
v(t)

t2
dt,

where C3 and C4 are arbitrary constants.
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9. t2x′′

tt+a1tx
′

t+b1ty
′

t+c1x+d1y=0, t2y′′tt+a2tx
′

t+b2ty
′

t+c2x+d2y=0.

Linear system homogeneous in the independent variable (an Euler-type system).

1◦. The general solution is determined by a linear combination of linearly independent

particular solutions that are sought by the method of undetermined coefficients in the form

of power-law functions

x = A|t|k, y = B|t|k.
On substituting these expressions into the system and on collecting the coefficients of the

unknowns A and B, one obtains

A+ (b1k + d1)B = 0,

(a2k + c2)A+ [k2 + (b2 − 1)k + d2]B = 0.

For a nontrivial solution to exist, the determinant of this system must vanish. This require-

ment results in the characteristic equation

[k2 + (a1 − 1)k + c1][k
2 + (b2 − 1)k + d2]− (b1k + d1)(a2k + c2) = 0,

which is used to determine k. If the roots of this equation, k1, . . . , k4, are all distinct, then

the general solution of the system of differential equations in question has the form

x=−C1(b1k1+d1)|t|k1−C2(b1k2+d1)|t|k2−C3(b1k1+d1)|t|k3−C4(b1k4+d1)|t|k4 ,
y=C1[k

2
1+(a1−1)k1+c1]|t|k1 +C2[k

2
2+(a1−1)k2+c1]|t|k2

+C3[k
2
3+(a1−1)k3+c1]|t|k3 +C4[k

2
4+(a1−1)k4+c1]|t|k4 ,

where C1, . . . , C4 are arbitrary constants.

2◦. The substitution t = σeτ (σ 6= 0) leads to a system of constant-coefficient linear dif-

ferential equations:

x′′ττ + (a1 − 1)x′τ + b1y
′
τ + c1x+ d1y = 0,

y′′ττ + a2x
′
τ + (b2 − 1)y′τ + c2x+ d2y = 0.

10. (αt2 + βt+ γ)2x′′

tt = ax+ by, (αt2 + βt+ γ)2y′′tt = cx+ dy.

The transformation

τ =

∫
dt

αt2 + βt+ γ
, u =

x√
|αt2 + βt+ γ|

, v =
y√

|αt2 + βt+ γ|
leads to a constant-coefficient linear system of equations of the form 18.1.2.1:

u′′ττ = (a− αγ + 1
4β

2)u+ bv,

v′′ττ = cu+ (d− αγ + 1
4β

2)v.

11. x′′

tt = f(t)(tx′

t−x)+g(t)(ty′t−y), y′′tt = h(t)(tx′

t−x)+p(t)(ty′t−y).

The transformation

u = txt − x, v = ty′t − y (1)

leads to a linear system of first-order equations

u′t = tf(t)u+ tg(t)v, v′t = th(t)u+ tp(t)v. (2)

In order to find the general solution of this system, it suffices to know any one of its partic-

ular solutions (see system 18.1.1.7).
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For solutions of some systems of the form (2), see systems 18.1.1.3–18.1.1.6.

If all functions in (2) are proportional, that is,

f(t) = aϕ(t), g(t) = bϕ(t), h(t) = cϕ(t), p(t) = dϕ(t),

then the introduction of the new independent variable τ =

∫
tϕ(t) dt leads to a constant-

coefficient system of the form 18.1.1.1.

2◦. Suppose a solution of system (2) has been found in the form

u = u(t, C1, C2), v = v(t, C1, C2), (3)

where C1 and C2 are arbitrary constants. Then, on substituting (3) into (1) and integrating,

one obtains a solution of the original system:

x = C3t+ t

∫
u(t, C1, C2)

t2
dt, y = C4t+ t

∫
v(t, C1, C2)

t2
dt,

where C3 and C4 are arbitrary constants.

18.2 Linear Systems of Three and More Equations

1. x′

t = ax, y′t = bx+ cy, z′t = dx+ ky + pz.

Solution:
x = C1e

at,

y =
bC1

a− c e
at + C2e

ct,

z =
C1

a− p
(
d+

bk

a− c
)
eat +

kC2

c− p e
ct + C3e

pt,

where C1, C2, and C3 are arbitrary constants.

2. x′

t = cy − bz, y′t = az − cx, z′t = bx− ay.

1◦. First integrals:

ax+ by + cz = A, (1)

x2 + y2 + z2 = B2, (2)

where A and B are arbitrary constants. It follows that the integral curves are circles formed

by the intersection of planes (1) and spheres (2).

2◦. Solution:
x = aC0 + kC1 cos(kt) + (cC2 − bC3) sin(kt),

y = bC0 + kC2 cos(kt) + (aC3 − cC1) sin(kt),

z = cC0 + kC3 cos(kt) + (bC1 − aC2) sin(kt),

where k =
√
a2 + b2 + c2 and the three of four constants of integration C0, . . . , C3 are

related by the constraint

aC1 + bC2 + cC3 = 0.

3. ax′

t = bc(y − z), by′t = ac(z − x), cz′t = ab(x− y).

1◦. First integral:

a2x+ b2y + c2z = A,

where A is an arbitrary constant. It follows that the integral curves are plane curves.
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2◦. Solution:
x = C0 + kC1 cos(kt) + a−1bc(C2 − C3) sin(kt),

y = C0 + kC2 cos(kt) + ab−1c(C3 − C1) sin(kt),

z = C0 + kC3 cos(kt) + abc−1(C1 − C2) sin(kt),

where k =
√
a2 + b2 + c2 and three of the four constants of integration C0, . . . , C3 are

related by the constraint

a2C1 + b2C2 + c2C3 = 0.

4. x′

t = (a1f + g)x+ a2fy + a3fz,

y′t = b1fx+ (b2f + g)y + b3fz, z
′

t = c1fx+ c2fy + (c3f + g)z.

Here, f = f(t) and g = g(t).
The transformation

x= exp

[∫
g(t) dt

]
u, y = exp

[∫
g(t) dt

]
v, z = exp

[∫
g(t) dt

]
w, τ =

∫
f(t) dt

leads to the system of constant coefficient linear differential equations

u′τ = a1u+ a2v + a3w, v′τ = b1u+ b2v + b3w, w′
τ = c1u+ c2v + c3w.

5. x′

t = h(t)y − g(t)z, y′t = f(t)z − h(t)x, z′t = g(t)x− f(t)y.

1◦. First integral:

x2 + y2 + z2 = C2,

where C is an arbitrary constant.

2◦. The system concerned can be reduced to a Riccati equation (see Kamke, 1977).

6. x′

k = ak1x1 + ak2x2 + · · · + aknxn; k = 1, 2, . . . , n.

System of n constant-coefficient first-order linear homogeneous differential equations.

The general solution of a homogeneous system of differential equations is determined

by a linear combination of linearly independent particular solutions, which are sought by

the method of undetermined coefficients in the form of exponential functions,

xk = Ake
λt; k = 1, 2, . . . , n.

On substituting these expressions into the system and on collecting the coefficients of the

unknowns Ak, one obtains a linear homogeneous system of algebraic equations:

ak1A1 + ak2A2 + · · ·+ (akk − λ)Ak + · · ·+ aknAn = 0; k = 1, 2, . . . , n.

For a nontrivial solution to exist, the determinant of this system must vanish. This require-

ment results in a characteristic equation that serves to determine λ.

18.3 Nonlinear Systems of Two Equations

18.3.1 Systems of First-Order Equations

1. x′

t = xnF (x, y), y′t = g(y)F (x, y).

Solution:

x = ϕ(y),

∫
dy

g(y)F (ϕ(y), y)
= t+ C2,
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where

ϕ(y) =





[
C1 + (1− n)

∫
dy

g(y)

] 1
1−n

if n 6= 1,

C1 exp
[∫ dy

g(y)

]
if n = 1,

C1 and C2 are arbitrary constants.

2. x′

t = eλxF (x, y), y′t = g(y)F (x, y).

Solution:

x = ϕ(y),

∫
dy

g(y)F (ϕ(y), y)
= t+ C2,

where

ϕ(y) =





− 1

λ
ln
[
C1 − λ

∫
dy

g(y)

]
if λ 6= 0,

C1 +

∫
dy

g(y)
if λ = 0,

C1 and C2 are arbitrary constants.

3. x′

t = F (x, y), y′t = G(x, y).

Autonomous system of general form.

Suppose

y = y(x,C1),

where C1 is an arbitrary constant, is the general solution of the first-order equation

F (x, y)y′x = G(x, y).

Then the general solution of the system in question results in the following dependence for

the variable x: ∫
dx

F (x, y(x,C1))
= t+ C2.

4. x′

t = f1(x)g1(y)Φ(x, y, t), y′t = f2(x)g2(y)Φ(x, y, t).

First integral: ∫
f2(x)

f1(x)
dx−

∫
g1(y)

g2(y)
dy = C, (∗)

where C is an arbitrary constant.

On solving (∗) for x (or y) and on substituting the resulting expression into one of the

equations of the system concerned, one arrives at a first-order equation for y (or x).

5. x = tx′

t + F (x′

t, y
′

t), y = ty′t +G(x′

t, y
′

t).

Clairaut system.

The following are solutions of the system:

(i) straight lines

x = C1t+ F (C1, C2), y = C2t+G(C1, C2),

where C1 and C2 are arbitrary constants;

(ii) envelopes of these lines;

(iii) continuously differentiable curves that are formed by segments of curves (i) and (ii).
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18.3.2 Systems of Second-Order Equations

1. x′′

tt = xf(ax− by) + g(ax− by), y′′tt = yf(ax− by) + h(ax− by).

Let us multiply the first equation by a and the second one by −b and add them together to

obtain the autonomous equation

z′′tt = zf(z) + ag(z) − bh(z), z = ax− by. (1)

We will consider this equation in conjunction with the first equation of the system,

x′′tt = xf(z) + g(z). (2)

Autonomous equation (1) can be treated separately; its general solution can be written out

in implicit form (see Eq. 14.9.1.1). The function x = x(t) can be determined by solving

the linear equation (2), and the function y = y(t) is found as y = (ax− z)/b.
2. x′′

tt = xf(y/x), y′′tt = yg(y/x).

A periodic particular solution:

x = C1 sin(kt) + C2 cos(kt), k =
√
−f(λ),

y = λ[C1 sin(kt) + C2 cos(kt)],

where C1 and C2 are arbitrary constants and λ is a root of the transcendental (algebraic)

equation

f(λ) = g(λ). (1)

2◦. Particular solution:

x = C1 exp(kt) + C2 exp(−kt), k =
√
f(λ),

y = λ[C1 exp(kt) + C2 exp(−kt)],
where C1 and C2 are arbitrary constants and λ is a root of the transcendental (algebraic)

equation (1).

3. x′′

tt = kxr−3, y′′tt = kyr−3, where r =
√
x2 + y2.

Equation of motion of a point mass in the xy-plane under gravity.

Passing to polar coordinates by the formulas

x = r cosϕ, y = r sinϕ, r = r(t), ϕ = ϕ(t),

one may obtain the first integrals

r2ϕ′
t = C1, (r′t)

2 + r2(ϕ′
t)
2 = −2kr−1 +C2, (1)

where C1 and C2 are arbitrary constants. Assuming that C1 6= 0 and integrating further,

one finds that

r[C cos(ϕ− ϕ0)− k] = C2
1 , C2 = C2

1C2 + k2.

This is an equation of a conic section. The dependence ϕ(t) may be found from the first

equation in (1).

4. x′′

tt = xf(r), y′′tt = yf(r), where r =
√
x2 + y2.

Equation of motion of a point mass in the xy-plane under a central force.

Passing to polar coordinates by the formulas

x = r cosϕ, y = r sinϕ, r = r(t), ϕ = ϕ(t),
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one may obtain the first integrals

r2ϕ′
t = C1, (r′t)

2 + r2(ϕ′
t)
2 = 2

∫
rf(r) dr + C2,

where C1 and C2 are arbitrary constants. Integrating further, one finds that

t+ C3 = ±
∫

r dr√
2r2F (r) + r2C2 − C2

1

, ϕ = C1

∫
dt

r
+C4, (∗)

where C3 and C4 are arbitrary constants and

F (r) =

∫
rf(r) dr.

It is assumed in the second relation in (∗) that the dependence r = r(t) is obtained by

solving the first equation in (∗) for r(t).

5. x′′

tt + a(t)x = x−3f(y/x), y′′tt + a(t)y = y−3g(y/x).

Generalized Ermakov system.

1◦. First integral:

1

2
(xy′t − yx′t)2 +

∫ y/x[
uf(u)− u−3g(u)

]
du = C,

where C is an arbitrary constant.

2◦. Suppose ϕ = ϕ(t) is a nontrivial solution of the second-order linear differential equa-

tion

ϕ′′
tt + a(t)ϕ = 0. (1)

Then the transformation

τ =

∫
dt

ϕ2(t)
, u =

x

ϕ(t)
, v =

y

ϕ(t)
(2)

leads to the autonomous system of equations

u′′ττ = u−3f(v/u), v′′ττ = v−3g(v/u). (3)

3◦. Particular solution of system (3) is

u = A
√
C2τ2 + C1τ + C0, v = Ak

√
C2τ2 + C1τ + C0, A =

[
f(k)

C0C2 − 1
4C

2
1

]1/4
,

where C0, C1, and C2 are arbitrary constants, and k is a root of the algebraic (transcenden-

tal) equation

k4f(k) = g(k).

6. x′′

tt = f(y′t/x
′

t), y′′tt = g(y′t/x
′

t).

1◦. The transformation

u = x′t, w = y′t (1)

leads to a system of the first-order equations

u′t = f(w/u), w′
t = g(w/u). (2)

Eliminating t yields a homogeneous first-order equation, whose solution is given by∫
f(ξ) dξ

g(ξ)− ξf(ξ) = ln |u|+ C, ξ =
w

u
, (3)

where C is an arbitrary constant. On solving (3) for w, one obtains w = w(u,C). On

substituting this expression into the first equation of (2), one can find u = u(t) and then

w=w(t). Finally, one can determine x= x(t) and y= y(t) from (1) by simple integration.
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2◦. The Suslov problem. The problem of a point particle sliding down an inclined rough

plane is described by the equations

x′′tt = 1− kx′t√
(x′t)

2 + (y′t)
2
, y′′tt = −

ky′t√
(x′t)

2 + (y′t)
2
,

which correspond to a special case of the system in question with

f(z) = 1− k√
1 + z2

, g(z) = − kz√
1 + z2

.

The solution of the corresponding Cauchy problem under the initial conditions

x(0) = y(0) = x′t(0) = 0, y′t(0) = 1

leads, for the case k = 1, to the following dependences x(t) and y(t) written in parametric

form:

x = − 1
16 +

1
16 ξ

4− 1
4 ln ξ, y = 2

3 − 1
2 ξ− 1

6 ξ
3, t= 1

4 − 1
4 ξ

2− 1
2 ln ξ (0 ≤ ξ ≤ 1).

7. x′′

tt = xΦ(x, y, t, x′

t, y
′

t), y′′tt = yΦ(x, y, t, x′

t, y
′

t).

1◦. First integral:

xy′t − yx′t = C,

where C is an arbitrary constant.

Remark 18.1. The function Φ can also be dependent on the second and higher derivatives with

respect to t.

2◦. Particular solution: y = C1x, where C1 is an arbitrary constant and the function x =
x(t) is determined by the ordinary differential equation

x′′tt = xΦ(x,C1x, t, x
′
t, C1x

′
t).

8. x′′

tt+x
−3f(y/x)=xΦ(x, y, t, x′

t, y
′

t), y
′′

tt+y
−3g(y/x)=yΦ(x, y, t, x′

t, y
′

t).

First integral:

1

2
(xy′t − yx′t)2 +

∫ y/x[
u−3g(u) − uf(u)

]
du = C,

where C is an arbitrary constant.

Remark 18.2. The function Φ can also be dependent on the second and higher derivatives with

respect to t.

9. x′′

tt = F (t, tx′

t − x, ty′t − y), y′′tt = G(t, tx′

t − x, ty′t − y).

1◦. The transformation

u = txt − x, v = ty′t − y (1)

leads to a system of first-order equations

u′t = tF (t, u, v), v′t = tG(t, u, v). (2)

2◦. Suppose a solution of system (2) has been found in the form

u = u(t, C1, C2), v = v(t, C1, C2), (3)

where C1 and C2 are arbitrary constants. Then, substituting (3) into (1) and integrating,

one obtains a solution of the original system,

x = C3t+ t

∫
u(t, C1, C2)

t2
dt, y = C4t+ t

∫
v(t, C1, C2)

t2
dt.

3◦. If the functions F and G are independent of t, then, on eliminating t from system (2),

one arrives at a first-order equation

g(u, v)u′v = F (u, v).
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18.4 Nonlinear Systems of Three or More Equations

18.4.1 Systems of Three Equations

1. ax′

t = (b− c)yz, by′t = (c− a)zx, cz′t = (a− b)xy.

First integrals:

ax2 + by2 + cz2 = C1,

a2x2 + b2y2 + c2z2 = C2,

where C1 and C2 are arbitrary constants. On solving the first integrals for y and z and on

substituting the resulting expressions into the first equation of the system, one arrives at a

separable first-order equation.

2. ax′

t = (b− c)yzF (x, y, z, t),

by′t = (c− a)zxF (x, y, z, t), cz′t = (a− b)xyF (x, y, z, t).

First integrals:

ax2 + by2 + cz2 = C1,

a2x2 + b2y2 + c2z2 = C2,

where C1 and C2 are arbitrary constants. On solving the first integrals for y and z and on

substituting the resulting expressions into the first equation of the system, one arrives at a

separable first-order equation; if F is independent of t, this equation will be separable.

3. x′

t = cF2 − bF3, y′t = aF3 − cF1, z′t = bF1 − aF2,

where Fn = Fn(x, y, z).

First integral:

ax+ by + cz = C1,

where C1 is an arbitrary constant. On eliminating t and z from the first two equations of

the system (using the above first integral), one arrives at the first-order equation

dy

dx
=
aF3(x, y, z) − cF1(x, y, z)

cF2(x, y, z) − bF3(x, y, z)
, where z =

1

c
(C1 − ax− by).

4. x′

t = czF2 − byF3, y′t = axF3 − czF1, z′t = byF1 − axF2.

Here, Fn = Fn(x, y, z) are arbitrary functions (n = 1, 2, 3).

First integral:

ax2 + by2 + cz2 = C1,

where C1 is an arbitrary constant. On eliminating t and z from the first two equations of

the system (using the above first integral), one arrives at the first-order equation

dy

dx
=
axF3(x, y, z) − czF1(x, y, z)

czF2(x, y, z) − byF3(x, y, z)
, where z = ±

√
1

c
(C1 − ax2 − by2).

5. x′

t = x(cF2 − bF3), y′t = y(aF3 − cF1), z′t = z(bF1 − aF2).

Here, Fn = Fn(x, y, z) are arbitrary functions (n = 1, 2, 3).

First integral:

|x|a|y|b|z|c = C1,

where C1 is an arbitrary constant. On eliminating t and z from the first two equations of

the system (using the above first integral), one may obtain a first-order equation.
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6. x′

t = h(z)F2 − g(y)F3, y′t = f(x)F3−h(z)F1, z′t = g(y)F1 − f(x)F2.

Here, Fn = Fn(x, y, z) are arbitrary functions (n = 1, 2, 3).

First integral: ∫
f(x) dx+

∫
g(y) dy +

∫
h(z) dz = C1,

where C1 is an arbitrary constant. On eliminating t and z from the first two equations of

the system (using the above first integral), one may obtain a first-order equation.

7. x′′

tt=
∂F

∂x
, y′′tt=

∂F

∂y
, z′′tt=

∂F

∂z
, where F =F (r), r=

√
x2 + y2 + z2.

Equations of motion of a point particle under gravity.

The system can be rewritten as a single vector equation:

r′′tt = gradF or r′′tt =
F ′(r)
r

r,

where r = (x, y, z).

1◦. First integrals:

(r′t)
2 = 2F (r) + C1 (law of conservation of energy),

[r× r′t] = C (law of conservation of areas),

(r · C) = 0 (all trajectories are plane curves).

2◦. Solution:

r = a r cosϕ+ b r sinϕ.

Here, the constant vectors a and b must satisfy the conditions

|a| = |b| = 1, (a · b) = 0,

and the functions r = r(t) and ϕ = ϕ(t) are given by

t=

∫
r dr√

2r2F (r)+C1r
2−C2

3

+C2, ϕ=C3

∫
dr

r
√
2r2F (r)+C1r

2−C2
3

, C3= |C|.

8. x′′

tt = xF, y′′tt = yF, z′′tt = zF, where F = F (x, y, z, t, x′

t, y
′

t, z
′

t).

First integrals (laws of conservation of areas):

zy′t − yz′t = C1,

xz′t − zx′t = C2,

yx′t − xy′t = C3,

where C1, C2, and C3 are arbitrary constants.

Corollary of the conservation laws:

C1x+ C2y + C3z = 0.

This implies that all integral curves are plane curves.

Remark 18.3. The function F can also be dependent on the second and higher derivatives with

respect to t.

9. x′′

tt=F1, y′′tt=F2, z′′tt=F3, where Fn=Fn(t, tx
′

t−x, ty′t−y, tz′t−z).

1◦. The transformation

u = txt − x, v = ty′t − y, w = tz′t − z (1)



“K16435’ — 2017/9/28 — 15:05 — #1141

18.4. Nonlinear Systems of Three or More Equations 1115

leads to the system of first-order equations

u′t = tF1(t, u, v, w), v′t = tF2(t, u, v, w), w′
t = tF3(t, u, v, w). (2)

2◦. Suppose a solution of system (2) has been found in the form

u(t) = u(t, C1, C2, C3), v(t) = v(t, C1, C2, C3), w(t) = w(t, C1, C2, C3), (3)

whereC1,C2, andC3 are arbitrary constants. Then, substituting (3) into (1) and integrating,

one obtains a solution of the original system:

x = C4t+ t

∫
u(t)

t2
dt, y = C5t+ t

∫
v(t)

t2
dt, z = C6t+ t

∫
w(t)

t2
dt,

where C4, C5, and C6 are arbitrary constants.

18.4.2 Dynamics of a Rigid Body with a Fixed Point∗

◮ Kinematic and dynamic Euler equations.

The motion (rotation) of a rigid about a fixed point under the action of external forces is

governed by a system of six first-order coupled ODEs:

Ap′t + (C −B)qr =M1, (1)

Bq′t + (A− C)pr =M2, (2)

Cr′t + (B −A)pq =M3, (3)

p = ψ′
t sin θ sinϕ+ θ′t cosϕ, (4)

q = ψ′
t sin θ cosϕ− θ′t sinϕ, (5)

r = ψ′
t cos θ + ϕ′

t, (6)

where p, q, and r are the components of the body’s angular velocity in a moving orthonor-

mal reference frame, ξηζ , rigidly connected with the body and formed by the principal axes

of inertia (the origin placed at the fixed point); xyz is a fixed orthonormal reference frame

with origin at the same point; A, B, and C are the moments of inertia about the principal

axes; and M1, M2, and M3 are the components of the moment of external forces in the

frame ξηζ , which usually depend of the Euler angles ψ, θ, and ϕ defining the position of

the moving frame relative to the fixed one. The entries of the rotation matrix, [aij ], are

expressed in terms of the Euler angles as follows:

a11 = cosϕ cosψ − sinϕ cos θ sinψ, (7)

a11 = − sinϕ cosψ − cosϕ cos θ sinψ, (8)

a13 = − sin θ sinϕ, (9)

a21 = cosϕ sinψ + sinϕ cos θ cosψ, (10)

a22 = − sinϕ sinψ + cosϕ cos θ cosψ, (11)

a23 = − sin θ cosϕ, (12)

a31 = sinϕ sin θ, (13)

a32 = cosϕ sin θ, (14)

a33 = cos θ. (15)

∗This section was written by Alexander Fomichev.
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It is required to determine p, q, and r as functions of ψ, θ, and ϕ and time t from system

(1)–(6).

From now on, the following quantities will be used in this section: m is the mass of the

body, r is the position vector of the center of mass, K = (K1,K2,K3)
T = (Ap,Bq,Cr)T

is the angular momentum of the body (in the frame ξηζ), γ = (γ1, γ2, γ3) is a vertical

unit vector (γ21 + γ22 + γ23 = 1), which is introduced when the body is in a homogeneous

gravitational field so that the direction of γ is opposite to the gravitational acceleration g,

with g = |g|.
Equations (1)–(3) are known as Euler’s dynamic equations and (4)–(6) as Euler’s kine-

matic equations. In general, system (1)–(6) cannot be solved by quadrature. However, there

are three special cases where the system is reduced to quadratures for any initial conditions;

this is due to the availability of first integrals, which do not exist in the general case. The

three solvable cases are discussed below.

◮ Euler’s case.

Euler’s case takes place when the body has an arbitrary shape and the external moments are

all zero:

M1 =M2 =M3 = 0. (16)

With formulas (16), the dynamic equations (1)–(3) can be solved independently of the

kinematic equations.

To be specific, we assume that A≥ B ≥ C and A> C (the case A= B = C is trivial).

System (1)–(3) with (16) has the following first integrals:

Ap2 +Bq2 + Cr2 = 2T (conservation of energy),

A2p2 +B2q2 + C2r2 = K2 (conservation of angular momentum),

where T > 0 and K are arbitrary constants. In Euler’s case, the angular momentum K is

constant in the fixed frame xyz.

For A > C , p and r can always be expressed via q:

p = ±
√
a− bq2, r = ±

√
c− dq2, (17)

with the constants a, b, c, and d expressible in terms of the initial parameters of the problem.

Substituting (17) into the equation for q yields

bq′t ± (A− C)
√

(a− bq2)(c − dq2) = 0.

Integrating gives the solution in implicit form

t− t0 = ±
B

A− C

∫ q

0

dq√
(a− bq2)(c− dq2)

.

Effectively, the problem is reduced to the inversion of an elliptic integral, resulting in

expressions of p(t), q(t), and r(t) in terms of elliptic functions of time.

To solve the kinematic equations, it is convenient to direct the z-axis of the fixed frame
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along the constant angular momentum K, in which case we obtain

K1 = K sin θ sinϕ,

K2 = K sin θ cosϕ, =⇒ cos θ(t) =
Cr(t)

K
, =⇒ cosϕ(t) =

Bq(t)

K sin θ(t)
,

K3 = K cos θ,

ψ(t) = ψ0 +

∫ t

0

p(t) sinϕ(t) + q(t) cosϕ(t)

sin θ(t)
dt.

This solution is known to have geometric interpretations suggested by Poinsot and Mac-

Cullagh (e.g., see Zhuravlev (1996), Borisov and Mamaev (2001), and Teodorescu (2009)).

◮ Lagrange’s case.

The body, which is in a homogeneous gravitational field, is dynamically symmetric and its

center of mass lies on the dynamic symmetry axis (the ζ-azis). Then, in equations (1)–(3),

one should set

A = B, M = (M1,M2,M3)
T = mg(r× γ). (18)

The easiest way to integrate the equations is to use the Euler angles. System (1)–(6)

with (18) admits the following three first integrals:

K3 = const (conservation of the angular momentum projection onto the ζ-axis);

(K · γ) = K1γ1 +K2γ2 +K3γ3 = C1 (conservation of the angular momentum

projection onto the direction of γ);

h

2
(θ′t)

2 +
K2

3

2C
+

(C1 −K3 cos θ)
2

2A sinθ
+mgl cos θ = h = const (energy integral).

The availability of these integrals reduces the problem to the equation

(θ′t)
2 = 2h− K2

3

C
− (C1 −K3 cos θ)

2

sinθ
− 2 cos θ,

which is obtained if one sets A =mgl = 1 (without loss of generality). With the change of

variable u = cos θ, this equation can be reduced to the elliptic quadrature

u′t =
√
R(u),

R(u) = 2(h1 − u)(1−u2)− (C1 −K3u)
2, h1 = h− K2

3

2C
.

To determine the full motion of the system, one has to integrate the following two

equations:

ψ′
t =

C1 −K3u

1− u2 , ϕ′
t =

( 1

C
− 1
)
K3 +

C1 −K3u

1− u2 .

Depending on the initial data and specific parameters of the problem, the solution de-

fines four types of motion, in one of which the axis of the top asymptotically tends to a

vertical positions.
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◮ Sofia Kovalevskaya’s case.

The body is dynamically symmetric with A = B and, in addition, the condition A = 2C
holds. The center of mass lies in the equatorial plane of the inertia ellipsoid (its center

at the fixed point) and its position in the frame ξηζ is r = (L, 0, 0)T . The system is in a

homogeneous gravitational field, so that M = mg(r × γ). For simplicity, we assume that

A = 1, mg = 1, and L = 1.

This case is much more complex than the previous two, both in the way how the equa-

tions are integrated and from the viewpoint of the qualitative analysis of the motion. The

Euler equations (1)–(6) admit the following three first integrals:

(K · γ) = K1γ1 +K2γ2 +K3γ3 = c = const (conservation of the

angular momentum projection onto the vertical);
1
2 (K

2
1 +K2

2 +K2
3 )− Lγ1 = h = const (energy integral);

(
K2

1 +K2
2

2
+ γ1x

)2
+ (K1K2 + γ2x)

2 = k = const (integral having

no clear physical meaning).

The equations of motion are integrated using Kovalevskaya’s variables (s1, s2), which

are defined as follows:

s1 =
R−
√
R1R2

2(z1 − z2)2
, s2 =

R+
√
R1R2

2(z1 − z2)2
,

z1 = Kξ + iKη, z2 = Kξ − iKη , i2 = −1,
R = R(z1, z2) =

1
4 z

2
1z

2
2 − 1

2h(z
2
1 + z22) + c(z1 + z2) +

1
4k

2 − 1,

R1 = R(z1, z1), R2 = R(z2, z2).

In these variables, the equations of motion become

ds1
dt

=

√
P (s1)

s1 − s2
,

ds2
dt

=

√
P (s2)

s2 − s1
, (19)

where

P (s) =
[
(2s + 1

2h)
2 − 1

16 k
2
][
4s3 + 2hs2 + 1

16 (4h
2 − k2 + 4)s + 1

16 c
2
]
.

By eliminating t, system (19) can be reduced to a separable equation, which is easy to

integrate. As a results, equations (19) also convert into separable equations.

⊙ Literature for Section 18: C. G. J. Jacobi (1884), S. Kowalewsky (1889, 1890), J. L. Lagrange (1889),

F. Klein and A. Sommerfeld (1965), E. Kamke (1977), J. R. Ray and J. L. Reid (1979), V. F. Zhuravlev (1996),

A. V. Borisov and I. S. Mamaev (2001), A. P. Markeev (2001), V. Ph. Zhuravlev (2001), F. R. Gantmakher

(2002), D. M. Klimov and V. Ph. Zhuravlev (2002), A. D. Polyanin (2006), A. D. Polyanin and A. V. Manzhirov

(2007), P. P. Teodorescu (2009).
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Chapter 19

Symbolic and Numerical
Solutions of ODEs with Maple

19.1 Introduction

19.1.1 Preliminary Remarks

In recent years, with the development of computers, supercomputers, computer algebra sys-

tems (such as MapleTM and Mathematicar), and interactive programming environments for

scientific computing (such as MATLABr), there has been an increasing trend in mathemati-

cal research towards modern and powerful computational methods for analytical, symbolic,

numerical, and graphical solution of ODEs. Moreover, the use of mathematical computer

packages is now a standard part of the modern undergraduate and graduate curriculum and

an important tool in the core curriculum in mathematics, science, and engineering.

Maple is a general-purpose computer algebra system in which symbolic computation

can readily be combined with exact and approximate (floating-point) numerical compu-

tation as well as with arbitrary-precision numerical computation. Maple provides power-

ful scientific graphics capabilities [for details, see Kreyszig (1994), Corless (1995), Heck

(2003), Richards (2002), Abel (2005), Meade et al. (2009), Shingareva and Lizárraga-

Celaya (2011), etc.].

In general, Maple offers the most comprehensive software support available for differ-

ential equations. For example, in Maple (Ver. ≥ 15) we can (in one step) obtain symbolic

solutions of 97.5% of the 1345 solvable linear and nonlinear ODEs in the classical hand-

book by Kamke (1977) [see Maplesoft (2012)] with the aid of the general ODE solver

dsolve. Moreover, one can obtain solutions (of various types) to ODEs: in one step (au-

tomatically), i.e., without all details of the mathematical methods applied, or step by step,

i.e., with control of the choice of the solution strategy at each step, or by hand, i.e., by

developing appropriate procedures and functions for solving ODEs.

In this chapter, following the most important ideas and methods, we propose and de-

velop new computer algebra ideas and methods to obtain analytical, symbolic, numerical,

and graphical solutions for studying ordinary differential equations. We compute analytical

and numerical solutions in terms of predefined functions (which are an implementation of

known methods for solving ODEs) and develop new procedures for constructing new solu-

1121
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tions using Maple. We show a very helpful role that computer algebra systems play in the

analytical derivation of numerical methods, computing numerical solutions, and comparing

numerical and analytical solutions.

Remark 19.1. The first concept of Maple and its initial versions were developed by the Sym-

bolic Computation Group at the University of Waterloo in the early 1980s. The Maplesoft company

was created in 1988. Maple was mainly developed in research labs at Waterloo University and at

the University of Western Ontario [see Char et al. (1992) and Geddes, Czapor, and Labahn (1992)],

with important contributions from research groups at other universities worldwide.

19.1.2 Brief Introduction to Maple

◮ Maple’s conventions and terminology.

In this chapter, we use the following conventions introduced in Maple:

• Cn (n = 1, 2, . . .), for arbitrary constants

• Fn, for arbitrary functions

• c[n], for arbitrary constants arising in separation of variables

• s, for the parameter in the characteristic system

• &where, for the solution structure

• ε, for a Lie group parameter

Also we introduce the following notation for the Maple solutions:

• Eqn, for equations (n = 1, 2, . . .)
• ODEn, for ODEs

• IVPn, for initial value problems

• BVPn, for boundary value problems

• Soln, for solutions

• Trn, for transformations

• Sysn, for systems

• ICn, BCn, for initial and boundary conditions

• Ln, for lists of expressions

• Gn, for graphs of solutions

• ops, for options (various optional arguments) in predefined functions

• vars, for independent variables

• funcs, for dependent variables (indeterminate functions)

◮ Most important features.

The most important features of Maple are as follows: fast symbolic and numerical com-

putation and interactive visualization; simplicity of use; simplicity of incorporating new

user-defined capabilities; understandability, open-source software development path; avail-

ability for almost all operating systems; powerful programming language, intuitive syntax,

and easy debugging; extensive library of mathematical functions and specialized packages;

free resources and the collaborative character of development (for example, see Maple Web

Site www.maplesoft.com (MWS), Maple Application Center MWS/applications,

Maple Community MWS/community, Student Help Center MWS/studentcenter,

and Teacher Resource Center MWS/TeacherResource).

www.maplesoft.com


“K16435’ — 2017/9/28 — 15:05 — #1149

19.1. Introduction 1123

◮ Basic parts.

Maple consists of three parts: the interface, the kernel (basic computational engine), and

the library.

The interface and the kernel (written in C programming language) form a smaller part

of the system (they are loaded when a Maple session is started).

The interface handles the input of mathematical expressions, output display, plotting of

functions, and support of other user communication with the system. The user interface is

the Maple worksheet.

The kernel interprets the user input, carries out basic algebraic operations, and deals

with storage management.

The library consists of two parts, the main library and additional packages. The main

library (written in the Maple programming language) includes many functions in which

most of the common mathematical knowledge of Maple resides.

◮ Basic concepts.

The prompt symbol (>) indicates where to type a Maple expression or function; pressing

Enter after a semicolon (;) or colon (:) symbol∗ at the end of the expression tells Maple to

evaluate the expression, display the result (no result is displayed after a colon), and insert a

new prompt.

Maple contains a complete online help system and a command line help system, which

can be used, e.g., by typing ?NameOfFunction or help(NameOfFunction); or

?help; reference information can also be accessed by using the Helpmenu, by highlight-

ing a function and then pressing Ctrl-F1 or F1 or F2 (for Ver. ≥ 9), and by pressing

Ctrl-F2.

Maple worksheets are files that keep track of the working process and organize it as a

collection of expandable groups (see ?worksheet, ?shortcut). It is best to begin a

new worksheet (or a new problem) with the statement restart to clean Maple’s memory.

All examples and problems in the book are assumed to begin with restart.

Previous results (during a session) can be referenced with symbols % (the last result),

%% (the next-to-last result), and %%...% (k times) (the kth next-to-last result).

Comments can be included with the sharp symbol # and all characters following it up

to the right end of a line. Also text can be inserted with Insert→ Text.

Incorrect response. If you get no response or an incorrect response, you may have

entered or executed a function incorrectly. Correct the function or interrupt the computation

(click the stop button in the Tool Bar menu).

Maple source code can be viewed for most of the functions, general and specialized

(package functions); e.g., interface(verboseproc=2); print(factor);

Palettes can be used for building or editing mathematical expressions without needing

to remember the Maple syntax.

The Maplet User Interface (for Ver. ≥ 8) consists of Maplet applications that are col-

lections of windows, dialogs, and actions (see ?Maplets).

∗In earlier versions of Maple and in Classic Worksheet Maple, we have to end an expression with a colon

or semicolon. In these chapters, we follow this tradition in every example and problem.
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A number of specialized functions are available in various specialized packages (sub-

packages) (see ?index[package], with).

Numerical approximations: numerical approximation of expr to 10 significant digits,

evalf(expr); global change of precision Digits:=n (see ?environment); local

change of precision, evalf(expr,n); numerical approximation to expr using a binary

hardware floating-point system, evalhf(expr); performing numerical approximations

using hardware or software floating-point systems, UseHardwareFloats:= value

(for details, see ?UseHardwareFloats,?environment).

19.1.3 Maple Language

◮ Basic elements of the Maple language.

Maple language is a high-level programming language, which is well-structured and com-

prehensible. It supports a large collection of data structures, or Maple objects (functions,

sequences, sets, lists, arrays, tables, matrices, vectors, etc.), and operations on these objects

(type-testing, selection, composition, etc.). Maple procedures in the library are available in

readable form. The library can be supplemented with locally developed user programs and

packages.

Arithmetic operators: + - * / ˆ , logic operators: and, or, xor, implies, not,

relation operators: <, <=, >, >=, =, <>.

A variable name is a combination of letters, digits, and the underline symbol ( ), start-

ing from a letter; e.g., a12 new.

Abbreviations for longer Maple functions or any expressions: alias, for example,

alias(H=Heaviside); diff(H(t),t); to remove this abbreviation, type the fol-

lowing: alias(H=H);

Maple is case sensitive; i.e., there is a difference between lowercase and uppercase

letters; e.g., evalf(Pi) and evalf(pi) are different commands.

Various reserved keywords, symbols, names, and functions: these words cannot be

used as variable names; e.g., operator keywords, additional language keywords, and global

names that start with ( ) (see ?reserved, ?ininames, ?inifncs, ?names).

The assignment/unassignment operators: a variable can be “free” (with no assigned

value) or can be assigned any value (symbolic or numeric) by the assignment operators

a:=b or assign(a=b). To unassign (clear) an assigned variable (see ?:= and ?'),

type, e.g., x:='x', evaln(x), or unassign('x').

The difference between the operators (:=) and (=) is as follows: the operator A:=B is

used to assign B to the variable A, and the operator A=B is used to indicate equality (not

assignment) between the left- and right-hand sides (see ?rhs), e.g., Equation:=A=B;

Equation; rhs(Equation); lhs(Equation);

The range operator (..), an expression of type range expr1..expr2; for example,

a[i]$ i=1..9; plot(sin(x),x=-Pi..Pi);

Statements are keyboard input instructions executed by Maple (e.g., break, by, do,

end, for, function, if, proc, restart, return, save, and while).

The statement separators are the semicolon (;) and colon (:). The result of a statement

followed with a semicolon (;) will be displayed, and it will not be displayed if it is followed
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by a colon (:); e.g., plot(sin(x),x=0..Pi); plot(sin(x),x=0..Pi):

An expression is a valid statement and is formed as a combination of constants, vari-

ables, operators, and functions. Every expression is represented as a tree structure in which

each node (and leaf) has a particular data type. For the analysis of any node and branch, the

functions type, whattype, nops, and op can be used. A Boolean expression is formed

with logical operators and relation operators.

An equation is represented using the binary operator (=) and has two operands, the

left-hand side, lhs, and the right-hand side, rhs.

Inequalities are represented using relation operators and have two operands, the left-

hand side, lhs, and the right-hand side, rhs.

A string is a sequence of characters having no value other than itself; it cannot be

assigned to, and will always evaluate to itself. For instance, x:="string"; sqrt(x);

is an invalid function. Names and strings can be used with the convert and printf

functions.

Maple is sensitive to types of brackets and quotes.

Types of brackets: parentheses for grouping expressions, (x+9)*3, and for delimiting

the arguments of functions, sin(x); square brackets for constructing lists, [a,b,c],

vectors, matrices, and arrays; curly brackets for constructing sets, {a,b,c}.
Types of quotes: forward-quotes to delay the evaluation of expression, 'x+9+1', to

clear variables, x:='x'; back-quotes to form a symbol or a name, `the name:=7`;

k:=5; print(`the value of k is`,k); double quotes to create strings; and a

single double quote " to delimit strings.

Types of numbers: integer, rational, real, complex, root; e.g., -55, 5/6, 3.4, -2.3e4,

Float(23,-45), 3-4*I, Complex(2/3,3); RootOf( Zˆ3-2,index=1);

Predefined constants: symbols for commonly used mathematical constants, gamma,

Pi, I, true, false, infinity, FAIL, exp(1) (see ?ininames, ?constants).

Functions or function expressions have the form f(x) or expr(args) and represent

a function call, or an application of a function (or procedure) to arguments (args). Active

functions (beginning with a lowercase letter) are used for computing; e.g., diff, int,

limit. Inert functions (beginning with a capital letter) are used for showing steps in the

problem-solving process; e.g., Diff, Int, Limit.

Library functions (or predefined functions) and user-defined functions.

Predefined functions: most of the well-known functions are predefined by Maple, and

they are known to some Maple functions (e.g., diff, evalc, evalf, expand,series,

simplify). Numerous special functions are defined (see ?FunctionAdvisor)∗.
User-defined functions: the functional operator (->) (see ?->); for example, the func-

tion f(x) = sinx is defined as f:=x->sin(x);

Alternative definitions of functions: unapply converts an expression to a function, and

a procedure is defined with proc.

Evaluation of function f(x) at x = a, {x = a, y = b}; e.g., f(a); subs(x=a,

f(x)); eval(f(x),x=a);

In Maple language, there are two forms of modularity: procedures and modules.

∗The FunctionAdvisor is the computer algebra handbook for mathematical functions.
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A procedure (see ?procedure) is a block of statements which one needs to use re-

peatedly. A procedure can be used to define a function (if the function is too complicated to

be written with the use of the arrow operator) or to create a matrix, graph, or logical value.

A module (see ?module) is a generalization of the procedure concept. While a pro-

cedure groups a sequence of statements into a single statement (block of statements), a

module groups related functions and data.

In Maple language, there are essentially two control structures, the selection structure

if and the repetition structure for.

Maple objects, sequences, lists, sets, tables, arrays, vectors, and matrices are used for

representing more complicated data.

Sequences a1,a2,a3, lists [a1,a2,a3], and sets {a1, a2, a3} are groups of ex-

pressions. Maple preserves the order and repetitions in sequences and lists and does not

preserve them in sets. The order in sets can change during a Maple session.

A table is a group of expressions represented in tabular form. Each entry has an index

(an integer or any arbitrary expression) and a value (see ?table).

An array is a table with an integer range of indices (see ?Array). In Maple, arrays

can be of any dimension (depending of computer memory).

A vector is a one-dimensional array with a positive integer range of indices (for details,

see ?vector, ?Vector).

A matrix is a two-dimensional array with a positive integer range of indices (for details,

see ?matrix, ?Matrix).

◮ Different types of symbolic notation for derivatives.

In Maple, it is possible to work with derivatives written in the Leibniz, Lagrange, and

Arbogast notation. Maple has two different types of symbolic notation for derivatives [for

details, see Shingareva and Lizárraga-Celaya (2015)], D and diff, which can be used for

derivatives of single- and multivariable expressions and functions.

• The functional derivative notation (or the differential operator notation):

D(f), D[1$2](f), ..., D[1$n](f), D[1](f)(t),

D[1$2](f)(t), ..., D[1$n](f)(t)

or

D(f), (D@@2)(f), ..., (D@@n)(f), D(f)(t),

(D@@2)(f)(t), ..., (D@@n)(f)(t)

The function f(t) can be defined explicitly; e.g., f:=x->sin(x). According to the

defined Maple output, it is the Arbogast notation. The Arbogast notation can be converted

to the Leibniz notation with the aid of convert; e.g., convert(D(f)(x),diff).

The symbol f is the name of a function, the symbol D(f) is the name of the derivative

function, and the symbol D(f)(t) is the value of the derivative function.
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• The expression derivative notation:

diff(y(x),x), diff(y(x),x$2), ..., diff(y(x),x$n)

The expression y(x) can be defined explicitly; e.g., y:=sin(x). According to the de-

fined Maple output, it can be the Leibniz or Lagrange notation, depending on the settings

in the statement interface(typesetting=A), where, respectively, A=standard

or A=extended. The symbol y is the name of an expression in x, and the symbolic no-

tation diff(y(x),x) denotes the name of the expression for its derivative. Also, the

Lagrange notation can be displayed in another way if we indicate the following statements:

with(PDEtools),declare(y(x),prime=x),∗ and for returning to the Leibniz no-

tation, we indicate OFF.

Remark 19.2. It should be noted that there is a function convert that permits switching

between the functional and expression derivative notation; e.g., convert(D(y)(x),diff),

convert(diff(y(x),x),D).

⊙ Literature for Section 18.1: E. Kamke (1977), J. A. van Hulzen and J. Calmet (1983), A. G. Akritas (1989),

B. W Char, K. O. Geddes, G. H. Gonnet, M. B. Monagan, and S. M. Watt (1992), S. R. Czapor, K. O. Geddes,

and G. Labahn (1992), J. H. Davenport, Y. Siret, and E. Tournier (1993), E. Kreyszig and E. J. Normington

(1994), R. M. Corless (1995), D. Zwillinger (1997), M. J. Wester (1999), D. Richards (2002), A. Heck (2003),

M. L. Abel and J. P. Braselton (2005), A. D. Polyanin and V. F. Zaitsev (2003), C.-K. Cheung, D. B. Meade,

S. J. M. May, and G. E. Keough (2009), I. K. Shingareva and C. Lizárraga-Celaya (2009, 2011, 2015), Maple-

soft (2012).

19.2 Analytical Solutions and Their Visualizations

19.2.1 Exact Analytical Solutions in Terms of Predefined Functions

The computer algebra system Maple has various predefined functions based on symbolic

algorithms for constructing analytical solutions of ODEs [see a more detailed description

in Cheb-Terrab et al. (1997)]. Although predefined functions are an implementation of

known methods for solving ODEs, this permits solving ordinary differential equations and

obtaining solutions automatically (in terms of predefined functions) as well as developing

new methods and procedures for constructing new solutions.

Consider the most relevant related functions for finding all possible analytical solutions

of a given ODE problem.

dsolve(ODE); dsolve(ODE,y(x),ops); dsolve(ODE,Lie);

dsolve({ODE,ICs},y(x),ops); dsolve[interactive](ODE,ops);

dsolve(ODE,y(x),’formal_series’,’coeffs’=CoeffType);

dsolve(ODE,y(x),’formal_solution’,’coeffs’=CoeffType,ops);

dsolve(ODE,y(x),method=transform); odetest(Sol,ODE,y(x));

with(DEtools); odeadvisor(ODE); particularsol(ODE,y(x));

dchange(rules,ODE); riccatisol(ODE,y(x)); intfactor(ODE);

infolevel[dsolve]:=L;with(PDEtools);declare(y(x),prime=x);

Solve(ODE,vars,ops);

∗We declare that y(x) will be displayed as y, and the derivatives of the expressions with respect to x will

be displayed in the Lagrange notation.
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Remark 19.3. infolevel[dsolve]:=L (L∈ N) prints useful information for solving

ODEs in Maple (the default value is 1). One can set a value of L before working with the solver

dsolve. Maple conventions are L = 2, 3 for general information (including technique or algo-

rithm being used) and L = 4, 5 for more detailed information (how the problem is being solved).

• dsolve, solving ODEs of various types (the main general ODE solver); for more

details see ?dsolve

• dsolve can solve different types of ODE problems, e.g., find analytical solutions:

dsolve,ODE, finding closed-form solutions for a single ODE or a system of

ODEs∗

dsolve,ICs, solving ODEs or a system of ODEs with given initial or bound-

ary conditions

dsolve,formal series, finding formal power series solutions for a lin-

ear ODE with polynomial coefficients

dsolve,formal solution, finding formal solution for a linear ODE with

polynomial coefficients

dsolve,method, finding solutions using integral transforms

dsolve,Lie, solving ODEs using the Lie method of symmetries

dsolve,series, finding series solutions for ODE problems

• dsolve[interactive], interactive symbolic and numeric solving of ODEs

• odetest, verifying explicit and implicit solutions for ODEs

• DEtools (package), a collection of functions for working with ODEs and their

solutions; e.g.,

odeadvisor, classifying ODEs and suggesting solution methods

riccatisol, finding solutions of a first-order Riccati ODE

particularsol, finding a particular solution of a nonlinear ODE (or a lin-

ear nonhomogeneous ODE) without computing its general solution

intfactor, looking for integrating factors for a given ODE

• PDEtools (package), a collection of functions for working with PDEs and ODEs

and their solutions; e.g.,

declare,prime, declaring a function for the prime notation

dchange, performing change of variables in ODEs

Solve, finding exact, series, or numerical solutions of equations or systems (of

algebraic or differential equations, including inequalities and initial and bound-

ary conditions)

∗See Section 19.2.4 for systems of ODEs.
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◮ Verification of exact solutions.

Assume that we have obtained exact solutions and wish to verify whether these solutions

are exact solutions of given ODEs.

Example 19.1. First-order nonlinear ODE. Special Riccati equation. Verification of solutions.

For the first-order nonlinear ODE, the special Riccati equation

y′x = ay2 + bxn,

we can verify that the solutions

y(x) = − 1

a

w′
x

w
,

where

w(x) =
√
x

[
C1Jv

(√
ab

k
xk

)
+ C2Yv

(√
ab

k
xk

)]
, k =

1

2
(n+ 2), v =

1

2k
,

are exact solutions of the special Riccati equation as follows:

with(PDEtools): declare(y(x),w(x),prime=x);

k:=(n+2)/2; v:=1/(2*k); q:=1/k*sqrt(a*b);

w(x):=sqrt(x)*(C1*BesselJ(v,q*xˆk)+C2*BesselY(v,q*xˆk));

ODE1:=diff(y(x),x)=a*(y(x))ˆ2+b*xˆn;

Sol1:=y(x)=-1/a*diff(w(x),x)/w(x); Test1:=odetest(Sol1,ODE1);

Here a, b, and n are real parameters (ab 6= 0, n 6= −2), Jv(x) and Yv(x) are the Bessel functions,

and C1 and C2 are arbitrary constants.

◮ Finding and verification of exact solutions.

Let us find exact solutions and verify whether these solutions are exact solutions of given

ODEs.

Example 19.2. First-order linear ODE. Finding and verification of the general solution.

For the first-order linear ODE of the general form,

g(x)y′x = f1(x)y + f0(x),

we can find and verify that the solution

y(x) = CeF + eF
∫
e−F f0(x)

g(x)
dx, where F =

∫
f1(x)

g(x)
dx,

is the general solution of the first-order linear ODE as follows:

with(PDEtools): declare(y(x),prime=x);

ODE1:=g(x)*diff(y(x),x)=f1(x)*y(x)+f0(x); F:= int(f1(x)/g(x),x);

Sol1:=subs(_C1=C,expand(dsolve(ODE1,y(x))));

Test1:=odetest(Sol1,ODE1);

where f0(x), f1(x), and g(x) are arbitrary functions, C is an arbitrary constant, and the Maple

result reads:

Sol1 := y (x) = e

∫
f1 (x)

g (x)
dx




∫
f0 (x)

g (x) e

∫
f1 (x)

g (x)
dx

dx


 + e

∫
f1 (x)

g (x)
dx
C
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Example 19.3. Clairaut’s equation. Finding and verification of solutions.

For Clairaut’s equation

y = xy′x + f(y′x),

we can find and verify that

y(x) = Cx+ f(C) and x(t) = −f ′
t, y(t) = −tf ′

t + f(t)

are, respectively, the general solution and a parametric solution (which is a singular solution) of this

equation as follows:

with(PDEtools): with(DEtools): declare(y(x),prime=x);

ODE1:=y(x)=x*diff(y(x),x)+f(diff(y(x),x));

Sol1:=y(x)=C*x +f(C); Sol2:=subs({_C1=C,_T=t},[dsolve(ODE1,y(x))]);

Test1:=odetest(Sol1,ODE1); Test2:=odetest(Sol2[2],ODE1);

clairautsol(ODE1, y(x)); parametricsol(ODE1);

eliminate({op(Sol2[2])}, t);

Here f(x) is an arbitrary function and C is an arbitrary constant.

Example 19.4. Nonlinear ODE of the first order. Particular solutions.

The particular solutions y(x) = ± 2
3

√
3

√
x
√
ax of the nonlinear first-order ODE

y2(y′x)
2 − ax = 0 (a > 0)

can be found and tested as follows:

with(PDEtools): with(DEtools): declare(y(x),prime=x);

ODE1:=y(x)ˆ2*diff(y(x),x)ˆ2-a*x=0;

Sol1:=[particularsol(ODE1,y(x))]; n:=nops(Sol1);

for i from 1 to n do Test[i]:=odetest(Sol1[i],ODE1); od;

◮ Graphical solutions.

Consider the most relevant related functions for plotting solutions of ordinary differential

equations.

Sol:=rhs(dsolve(ODE,y(x),ops)); S:=unapply(Sol1,x,pars);

plot(S,xR,yR,ops); SolN:=dsolve(ODE,numeric,vars,ops);

with(plots): odeplot(SolN,vars,tR,ops);

plot([x(t),y(t),tR],xR,ops); implicitplot(f(x,y)=c,xR,yR);

with(DETools); DEplot(ODEs,vars,tR,IC,xR,yR,ops);

DEplot3d(ODEs,vars,tR,IC,xR,yR,zR,ops);

dfieldplot(ODEs,vars,tR,xR,yR,ops);

phaseportrait(ODEs,vars,tR,IC,ops);

Remark 19.4. Here tR, xR, and yR are the ranges of the independent and dependent variables,

t=t1..t2, x=x1..x2, and y=y1..y2.

• plots,odeplot, constructing graphs or animations of 2D and 3D solution curves

obtained from the numerical solution (dsolve,numeric; see Section 19.4)
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Figure 19.1: Graphical solutions of the Bernoulli equation y′x − 5
x y = −x5y2.

• DEtools,DEplot,DEplot3d, constructing graphs or animations of 2D and 3D

solutions of a single ODE (of any order) or a system of first-order ODEs using nu-

merical methods

• DEtools,dfieldplot, plotting direction field to a system of first-order ODEs

• DEtools,phaseportrait, constructing phase portraits (solutions curves) for a

single higher-order ODE or a system of first-order ODEs with initial conditions by

numerical methods

Example 19.5. Nonlinear ODE of the first order. The Bernoulli equation. Graphical solutions.

For the Bernoulli equation

y′x + f(x)y = g(x)ya,

where a 6= 0, 1, we can find the general solution (Sol1), and the Maple result reads:

Sol1 := e−
∫
f(x) dx

(
−a
∫
g(x)e−(

∫
f(x) dx)(a−1) dx+ C1+

∫
g(x)e−(

∫
f(x) dx)(a−1) dx

)− 1
a−1

We generate graphical solutions of the Bernoulli equation (presented in Fig. 19.1) for a particular

case, for example, f(x) = −5/x, g(x) = −x5, a = 2, as follows:

with(DEtools): declare(y(x),prime=x); with(plots):

ODE1:=diff(y(x),x)+f(x)*y(x)=g(x)*y(x)ˆa;

Sol1:=simplify(rhs(dsolve(ODE1,y(x))));

Sol11:=simplify(value(subs(f(x)=-5/x, g(x)=-xˆ5,a=2,Sol1)));

S1:=unapply(Sol11,x,_C1); xR:=x=-1..1; yR:=-1..1;

ops:=color=[red,blue,magenta];

plot([S1(x,1),S1(x,2),S1(x,-1)],xR,yR,ops);

Remark 19.5. Throughout the book, graphical solutions cannot be presented in color for tech-

nical reasons: this would result in an essential increase in the book price.
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◮ ODE classification and solution methods suggestion.

In Maple, there is a variety of functions for solving various classes of ODEs. The func-

tion odeadvisor of the DEtools package permits classifying a given ODE according

to standard reference books [e.g., see Boyce and DiPrima (2004), Ince (1956), El’sgol’ts

(1961), Murphy (1960), Kamke (1977), Zwillinger (1997), Polyanin and Zaitsev (2003)]

and suggests methods for solving it (for more detail, see ?DEtools, ?odeadvisor).

Example 19.6. ODE of the first order. Classification and method suggestion.

The separable first-order ODE

y′x = sin2 x

(
y

1− y

)

can be classified and analyzed and follows:

with(PDEtools): declare(y(x),prime=x); with(DEtools):

infolevel[dsolve]:=3; ODE1:=diff(y(x),x)=y(x)*sin(x)ˆ2/(1-y(x));

odeadvisor(ODE1); odeadvisor(ODE1,[Abel]); odeadvisor(ODE1,[separable]);

Sol11:=dsolve(ODE1,y(x)); Sol12:=separablesol(ODE1,y(x));

Here infolevel[dsolve]:=3 prints useful information for solving an ODE (the technique

or algorithm being used).

Example 19.7. ODE of the first order. Classification and method suggestion.

The homogeneous first-order ODE

(x2 − xy)y′x + y2 = 0

can be classified and analyzed as follows:

with(PDEtools): declare(y(x),prime=x); with(DEtools):

infolevel[dsolve]:=3; ODE1:=(xˆ2-y(x)*x)*diff(y(x),x)+y(x)ˆ2=0;

odeadvisor(ODE1); Sol1:=dsolve(ODE1,y(x));

Sol2:=genhomosol(ODE1,y(x)); Sol3:=particularsol(ODE1,y(x));

Here the predefined function genhomosol determines whether the given ODE is a general ho-

mogeneous ODE of the first order, and if so, a solution is obtained.

◮ Order reduction as a result of dsolve.

For some second-order and higher-order ODEs, the order of the ODE can be reduced (with-

out obtaining a final solution) with the aid of the predefined function dsolve. In this case,

the result can be expressed using ODESolStruc. Then we can obtain a solution for

the reduced ODE in various forms (e.g., as an exact solution using predefined functions

available in DEtools package or as a series or numerical solution). If we have obtained

a solution of the reduced ODE, then a solution of the original problem can be built us-

ing DEtools,buildsol or constructed numerically or by using analytical approximate

methods.

Example 19.8. Second-order nonlinear ODE. The van der Pol equation. Order reduction.

Order reduction for the van der Pol equation

y′′xx + a(y2 − 1)y′x + by = 0 (a, b ∈ R),

can be found and tested as follows:
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with(PDEtools): declare(y(x),prime=x);

ODE1:=diff(y(x),x$2)+a*(y(x)ˆ2-1)*diff(y(x),x)+b*y(x)=0;

Sol1:=dsolve(ODE1,y(x));

where the Maple result reads:

Sol1 := y (x) = a&where

[{(

d

d a
b ( a)

)

b ( a) + b ( a) a2a− a b ( a) + b a = 0

}

,

{

a = y (x) , b ( a) =
d

dx
y (x)

}

,

{

x =

∫

( b ( a))−1 d a + C1 , y (x) = a

}]

This result (in general, the function ODESolStruc) has two arguments.

The first argument is the structure (written in terms of new variables) introduced by dsolve

during the solving process. It can be selected using Struc1:=op([2,1],Sol1).

The second argument is a list with three sets: the reduced ODE written in terms of new variables,

the transformation of variables used in the reduction process, and the inverse transformation.

The notation of the functionODESolStruc uses the symbols‘&where‘ for displaying the

first operand and the second operand with the list including the reduced ODE and the transformation

equations.

The structure can be verified using odetest; the reduced ODE and the transformation equa-

tions can be selected as follows:

Test1:=odetest(Sol1,ODE1); ODERed:=op([2,2,1,1],Sol1);

TR:=op([2,2,2],Sol1); TRInv:=op([2,2,3],Sol1);

varsNew:=map(lhs,TR); varsOld:=map(lhs,TRInv);

The van der Pol equation is reduced to a first-order ODE of Abel type. This can be verified

using DEtools[odeadvisor](ODERed).

The original ODE can be obtained by performing a change of variables (with the function

PDEtools,dchange) in the reduced equation (ODERed) using the transformation (TR) and,

vice versa, the reduced equation (ODERed) can be obtained from the original ODE (ODE1) by

changing variables using the inverse transformation (TRInv) as follows:

vdPol:=collect(PDEtools[dchange](TR,ODERed),[diff,a]);

vdPolRed:=expand(PDEtools[dchange](TRInv,vanderPol,[_a,_b(_a)]));

◮ Constructing exact explicit and implicit solutions.

If an exact solution is given as a function of the independent variable, then the solution

is said to be explicit. For some differential equations, explicit solutions cannot be deter-

mined, but we can obtain an implicit form of the solution, i.e., an equation that involves no

derivatives and relates the dependent and independent variables.

dsolve(ODE1,y(x),explicit); dsolve(ODE1,y(x),implicit);

implicitplot(f(x,y)=c,x=x1..x2,y=y1..y2,ops);

Example 19.9. First-order separable ODE. Exact implicit solutions. Graphical solutions.

For the first-order separable ODE

y′x +
x2

y
= 0,
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we can construct the explicit (Sol1) and implicit (Sol2) solutions

y = ± 1

3

√
−6x3 + 9C1, y2 +

2

3
x3 − C1 = 0

and plot the graph of the implicit solution as follows:

with(PDEtools): declare(y(x),prime=x); with(plots):

ODE1:=diff(y(x),x)+xˆ2/y(x)=0; Sol1:=dsolve(ODE1,y(x));

Sol2:=dsolve(ODE1,y(x),implicit);

G:=subs({y(x)=y},lhs(Sol2)); Gs:=seq(subs(_C1=i,G),i=-5..5);

contourplot({Gs},x=-5..5,y=-10..10,color=blue);

Here C1 is an arbitrary constant.

Example 19.10. Second-order nonlinear ODE. Exact implicit solutions.

For the second-order nonlinear ODE

y′′xx = Ax
(y′x)

3

y2
−A (y′x)

2

y
,

we can construct and simplify the implicit (Sol4) solution

(A− 1)x− C1y + C2y
A = 0 (A 6= 1)

as follows:

with(PDEtools): declare(y(x),prime=x); with(plots):

ODE1:=diff(y(x),x$2)=A*x/y(x)ˆ2*diff(y(x),x)ˆ3-A/y(x)*diff(y(x),x)ˆ2;

Sol1:=dsolve(ODE1,y(x),implicit); Sol2:=expand(lhs(Sol1))=0;

Sol3:=expand(Sol2*y(x)); Sol4:=collect(Sol3,x); odetest(Sol4,ODE1);

◮ Constructing exact parametric solutions.

Frequently, differential equations can be solved for the independent variable x in terms

of the parameter t, and then x(t) can be used to obtain an equation for the dependent

variable y(t). For example, the general solution of the equation y′x = f(x, y) can be found

in implicit form, Φ(x, y, C) = 0, or in parametric form, x= x(t, C), y= y(t, C). In Maple,

we can construct and visualize exact parametric solutions with the aid of the following

predefined functions:

dsolve(ODE,y(x),parametric,implicit);

with(DEtools): parametricsol(ODE,y(x),ops);

plot([x(t),y(t),t=t1..t2],x1..x2,y1..y2,ops);

Example 19.11. First-order nonlinear ODE. Exact parametric solutions. Graphical solutions.

For the first-order nonlinear ODE

(y′x)
2 + ay′x + by = 0,

we can construct and visualize exact parametric solutions (Sol1–Sol5), e.g.,

x(t) =
Cb − a ln(t)− 2t

b
, y(t) = − t(t+ a)

b
,

as follows:
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with(PDEtools): with(DEtools): declare(y(x),prime=x); with(plots):

ODE1:=(diff(y(x),x))ˆ2 +a*diff(y(x),x)+b*y(x)=0;

Sol1:=parametricsol(ODE1,y(x));

Sol2:=dsolve(ODE1,y(x),implicit,parametric);

Sol3:=simplify(subs(_C1=C,_T=t,Sol1),symbolic);

Sol4:=simplify(parametricsol(ODE1,y(x),explicit),symbolic);

Sol5:=combine(parametricsol(ODE1,y(x),Lie),symbolic);

tR:=t=0.1..40; tr1:={a=20,b=10}; P1:=subs(tr1,op(Sol3));

P2:=[rhs(P1[1]),rhs(P1[2]),tR]; valG:={seq(subs(C=i,P2),i=-5..5)}:

plot(valG,view=[-10..10,-10..10],axes=boxed);

◮ Constructing exact solutions of higher-order ODEs.

Consider the most relevant related functions for constructing exact solutions of higher-order

ordinary differential equations.

dsolve(ODE,y(x),ops); dsolve(ODE,y(x),output=basis,ops);

with(DEtools); constcoeffsols(ODE,y(x));ratsols(ODE,y(x));

expsols(ODE,y(x)); polysols(ODE,y(x));eulersols(ODE,y(x));

• dsolve,output=basis, finding a fundamental set of solutions of linear ODEs

(homogeneous and nonhomogeneous, with constant and variable coefficients)

• DEtools,constcoeffsols, finding a fundamental set of solutions of linear

ODEs with constant coefficients

• DEtools,eulersols,expsols,polysols,ratsols, finding linearly in-

dependent solutions of an appropriate form (Eulerian, exponential, polynomial, or

rational)

Example 19.12. Higher-order linear homogeneous ODEs with constant coefficients.

For the fourth-order linear homogeneous ODE with constant coefficients

y′′′′x + a1y
′′′
x + a2y

′′
x + a3y

′ + a4y = 0,

where the constant coefficients are a1 = 1, a2 = −1, a3 = 5, a4 = −2 and all solutions are of

exponential form, we can determine a fundamental set of solutions (Sol2)
{
e(

√
2−1)x, e−(

√
2+1)x, ex/2 cos

(√7
2
x
)
, ex/2 sin

(√7
2
x
)}

as follows:

with(PDEtools): with(DEtools): with(LinearAlgebra): with(VectorCalculus):

declare(y(x),prime=x); with(plots): ODE1:=diff(y(x),x$4)

+a[1]*diff(y(x),x$3)+a[2]*diff(y(x),x$2)+a[3]*diff(y(x),x)+a[4]*y(x)=0;

ODE2:=subs({a[1]=1,a[2]=-1,a[3]=5,a[4]=-2},ODE1);

Sol1:=dsolve(ODE2,y(x)); Sol2:=dsolve(ODE2,y(x),output=basis);

Sol3:=expsols(ODE2,y(x)); Sol4:=constcoeffsols(ODE2,y(x));

Also, we can verify that these functions are solutions of the given ODE (Test1) and that these

functions are linearly independent (Test2)∗:

∗Verifying that the Wronskian (the determinant of the Wronskian matrix) has the nonzero value.
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Test1:=seq(odetest(y(x)=Y,ODE2),Y=Sol2);

A:=Wronskian(Sol2,x); Test2:=simplify(Determinant(A));

The superposition principle can be applied for constructing a general solution, since any linear

combination of solutions of a homogeneous linear ODE is again a solution of the ODE. The general

solution of the nth-order linear ODE is

y(x) =

n∑

i=1

Ciyi(x),

where yi(x) (i = 1, . . . , n) is a fundamental set of solutions and Ci are arbitrary constants. By

applying the superposition principle to the fourth-order linear homogeneous ODE with constant

coefficients, we obtain the general solution as follows:

SolGen:=y(x)=add(C[i]*Sol2[i],i=1..nops(Sol2));

odetest(SolGen,ODE2);

Example 19.13. Higher-order linear equation with variable coefficients. The Euler equation.

For the fourth-order linear homogeneous ODE with variable coefficients, the Euler equation

a1x
4y′′′′x + a2x

3y′′′x + a3x
2y′′x + a4xy

′ + a5y = 0,

where a1 = 1, a2 = 14, a3 = 55, a4 = 65, a5 = 16, we can determine a fundamental set of solutions

(Sol2) {
1

x2
,
ln(x)

x2
,
ln(x)2

x2
,
ln(x)3

x2

}

as follows:

with(PDEtools): with(DEtools): with(LinearAlgebra): with(VectorCalculus):

declare(y(x),prime=x); with(plots): ODE1:=a[1]*xˆ4*diff(y(x),x$4)

+a[2]*xˆ3*diff(y(x),x$3)+a[3]*xˆ2*diff(y(x),x$2)+a[4]*x*diff(y(x),x)

+a[5]*y(x)=0; ODE2:=subs({a[1]=1,a[2]=14,a[3]=55,a[4]=65,a[5]=16},ODE1);

Sol1:=dsolve(ODE2,y(x)); Sol2:=dsolve(ODE2,y(x),output=basis);

Sol3:=eulersols(ODE2,y(x)); Sol4:=ratsols(ODE2,y(x));

Test1:=seq(odetest(y(x)=Y,ODE2),Y=Sol2);

A:=Wronskian(Sol2,x); Test2:=simplify(Determinant(A));

As in the previous example, we verify that these functions are solutions of the given ODE

(Test1) and that these functions are linearly independent (Test2). Since the Wronskian has

the nonzero value 12x−14 for x 6= 0, it follows that these four functions are a fundamental set of

solutions for this Euler equation on any interval that does not contain the origin.

Example 19.14. Higher-order linear nonhomogeneous ODEs. General solution.

The general solution y(x) of a nonhomogeneous linear ODE can be written as the sum of a

particular solution yp(x) of the nonhomogeneous equation and the general solution of the corre-

sponding homogeneous equation. The general solution of the homogeneous equation is a linear

combination of the solutions in a fundamental set of solutions. The general solution of the nth-

order nonhomogeneous linear ODE has the form:

y(x) = yp(x) +
n∑

i=1

Ciyi(x), (19.2.1.1)

where yi(x) (i = 1, . . . , n) is a fundamental set of solutions and Ci are arbitrary constants.
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Consider the fourth-order linear nonhomogeneous ODE with constant coefficients

y′′′′x + a1y
′′′
x + a2y

′′
x + a3y

′ + a4y = sinx,

where the constant coefficients are a1 = 1, a2 = −1, a3 = 5, a4 = −2. First, we determine

a fundamental set of solutions (FundSet1) of the corresponding homogeneous ODE and form

the general solution of the homogeneous ODE (SolGenHom). Then we obtain a particular solu-

tion of the nonhomogeneous equation (SolPartNonHom) and form the general solution of the

nonhomogeneous ODE (SolGenNonHom) according to Eq.(19.2.1.1),

y(x) = C1e
x/2 sin

(√7
2
x
)
+ C2e

x/2 cos
(√7

2
x
)
+ C3e

(
√
2−1)x + C4e

−(
√
2+1)x − 1

4
cosx,

as follows:

with(PDEtools): with(DEtools): with(LinearAlgebra): with(VectorCalculus):

declare(y(x),prime=x); with(plots):

ODE1:=diff(y(x),x$4)+a[1]*diff(y(x),x$3)+a[2]*diff(y(x),x$2)

+a[3]*diff(y(x),x)+a[4]*y(x)=sin(x);

ODE2:=subs({a[1]=1,a[2]=-1,a[3]=5,a[4]=-2},ODE1);

FundSet1:=dsolve(eval(ODE2,rhs(ODE2)=0),y(x),output=basis);

SolGenHom:=dsolve(eval(ODE2,rhs(ODE2)=0),y(x));

SolPartNonHom:=particularsol(ODE2,y(x));

SolGenNonHom:=y(x)=rhs(SolGenHom)+rhs(SolPartNonHom);

Then we verify that this function is a solution of the given ODE (Test1) and compare the

solution SolGenNonHom (as the result of our construction procedure) with the solution Sol1

(which is a 2-element list, where the first element is a fundamental set of solutions and the second

element is a particular solution) and the general solution Sol2 (as the result from dsolve). It

should be noted that these solutions are the same:

Test1:=odetest(SolGenNonHom,ODE2);

Sol1:=dsolve(ODE2,y(x),output=basis); Sol2:=dsolve(ODE2,y(x));

19.2.2 Exact Analytical Solutions of Mathematical Problems

◮ Initial value problems.

In many applications it is required to solve an initial value problem or a Cauchy problem,

i.e., a problem consisting of a differential equation supplemented by one or more initial

conditions (which must be satisfied by the solutions). The number of conditions coincides

with the order of the equation. Therefore, we have to determine a particular solution that

satisfies the given initial conditions.

Consider some initial value problems modeling various processes and phenomena.

Example 19.15. Malthus model. Cauchy problem. Analytical and graphical solutions.

A basic model for population growth consists of a first-order linear ODE and an initial condition.

It has the form

y′t = ky, y(0) = y0 (k > 0)

and was proposed in 1798 by the English economist Thomas Malthus. Here k > 0 is a constant

representing the rate of growth (the difference between the birth rate and the death rate). The

increase in the population is proportional to the total number of people.

We can obtain the solution of this mathematical problem,

y(t) = y0e
kt,

which predicts exponential growth of the population, as follows:
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Figure 19.2: Exact solution (solid line) and numerical solution (points) of the Cauchy prob-

lem (19.2.2.1).

with(PDEtools): declare(y(t),prime=t);

ODE1:=diff(y(t),t)=k*y(t); IC1:=y(0)=y[0];

Sol1:=dsolve({ODE1,IC1},y(t)); Test1:=odetest(Sol1,ODE1);

Example 19.16. Linear ODE. Cauchy problem. Analytical, numerical, and graphical solutions.

Consider the following second-order linear nonhomogeneous ODE with variable coefficients

and with initial conditions:

y′′xx + xy′x + y = cosx, y(0) = 0, y′x(0) = 0. (19.2.2.1)

Exact analytical and numerical solutions can be constructed as follows:

FunctionAdvisor(erf):

Digits:=15: with(PDEtools): declare(y(x),prime=x);

ODE1:=diff(y(x),x$2)+x*diff(y(x),x)+y(x)=cos(x);

IC1:=y(0)=0,D(y)(0)=0; Sol1:=dsolve({ODE1,IC1},y(x));

Test1:=odetest(Sol1,ODE1);

SolN:=dsolve({ODE1,IC1},y(x),type=numeric):

The analytical solution has the following form:

y(x)=−
√
2π

4
e−(x−1)(x+1)/2

[
2 erf

(√
2

2

)
+ erf

(
I
√
2(x+ I)

2

)
+ erf

(
I
√
2(I − x)
2

)]
,

where erf is a special function (for more details, see FunctionAdvisor(erf)) and I is the

imaginary unit.∗

To obtain real graphical solutions, we make the following additional manipulations with the

analytical solution obtained (see the Maple script below, the variable s[k]):

1. eval(rhs(Sol1),x=i), evaluating y(x) on a set of points of the interval [−10, 10] (with

the predefined function eval); e.g., the result at the point x = −10 reads:

− 1
2
e−50√π e

1
2
√
2 erf

(√
2

2

)
− 1

4

√
π e

1
2
√
2
(
−erf

(
5 I

√
2 +

√
2

2

)
− erf

(
−5 I

√
2 +

√
2

2

))
e−50.

∗The letter I is Maple’s notation for the imaginary unit i.
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Figure 19.3: Exact solution and the 2-D vector field of the Cauchy problem (19.2.2.2).

2. evalf(eval(rhs(Sol1),x=i)), approximating the resulting complex numbers using

floating-point arithmetic (with the predefined function evalf); e.g., the result at the point x=−10
reads: −0.0458265478887548− 0.0 I .

3. fnormal(evalf(eval(rhs(Sol1),x=i))), carrying out floating-point normal-

ization (with the predefined function fnormal).

4. simplify(fnormal(evalf(eval(rhs(Sol1),x=i))),zero), removing a zero

imaginary part of the complex floating-point numbers (with the predefined functionsimplify, the

option zero); e.g., the result at the point x = −10 reads: −0.0458265478887548.

Finally, we compare the analytical and numerical solutions as follows:

with(plots): k:=0: xR:=x=-10..10;

for i from -10 to 10 by 0.1 do

k:=k+1: X[k]:=i:

s[k]:=simplify(fnormal(evalf(eval(rhs(Sol1),x=i))),zero);

od:

N:=k; Seq1:=seq([X[i],s[i]],i=1..N):

G1:=plot([Seq1],style=line,color="MidnightBlue"):

G2:=odeplot(SolN,xR,style=point,color=red,symbolsize=15):

display({G1,G2});

As we see in Fig. 19.2, the analytical and numerical solutions are in good agreement.

Example 19.17. First-order linear ODE. Cauchy problem. Analytical and graphical solutions.

For the first-order linear ODE, with the initial condition,

y′x − 2y = 3x, y(0) = n, (19.2.2.2)

we can determine the exact solution (Sol1)

y(x) = − 3

2
x− 3

4
+ e2x

(
n+

3

4

)

and construct the direction field (see Fig. 19.3) as follows:
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with(plots): N:=7; Sols:=Vector(N,0): Gr:=NULL:

setoptions(grid=[30,30]);

IVP1:={D(y)(x)-2*y(x)=3*x,y(0)=n}; Sol1:=dsolve(IVP1,y(x));

for i from 1 to N do Sols[i]:=subs(n=-3+(i-1),Sol1); od:

Sols; SList:=['rhs(Sols[i])' $ 'i'=1..N];

for i from 1 to N do

G||i:=plot(SList[i],x=0..2.5,color=blue): Gr:= Gr,G||i: od:

VField:=fieldplot([1,3*x+2*y],x=0..2.5,y=-600..600):

display({Gr,VField},axes=boxed);

◮ Boundary value problems.

Consider two-point linear boundary value problems that consist of a second-order ODE

and boundary conditions at the two endpoints of an interval [a, b]. Some (simple) boundary

value problems can be solved (with the aid of Maple) analytically as initial value problems

except that the value of the function and its derivatives are given at two values of x (the

independent variable) instead of one.

We note that an initial value problem has a unique solution, while a boundary value

problem may have more than one solution or no solutions at all.

Boundary conditions can be divided into three classes:

(i) the Dirichlet conditions (or first-type boundary conditions),

y(a) = g1, y(b) = g2
(ii) the Neumann boundary conditions (or second-type boundary conditions),

y′x(a) = g1, y′x(b) = g2
(iii) the Robin boundary conditions (or third-type boundary conditions),

α1y(a) + β1y
′
x(a) = g1, α2y(b) + β2y

′
x(b) = g2

Boundary conditions can be homogeneous (if g1 = g2 = 0) and nonhomogeneous (oth-

erwise).

Example 19.18. Boundary value problem. Analytical and graphical solutions.

For a second-order linear homogeneous ODE with constant coefficients and with boundary

conditions (the nonhomogeneous Dirichlet conditions),

y′′xx + a1y = 0, y(a) = g1, y(b) = g2, (19.2.2.3)

where a1 = 2, a = 0, b = π, g1 = 1, g2 = 0, we can determine the particular analytical solution

(Sol1)

y(x) = − cos(
√
2π) sin(

√
2x)

sin(
√
2π)

+ cos(
√
2x)

and construct the graphical solution as follows:

BVP1:={diff(y(x),x$2)+a[1]*y(x)=0,y(a)=g[1],y(b)=g[2]};

BVP2:=subs({a[1]=2,a=0,b=Pi,g[1]=1,g[2]=0},BVP1);

Sol1:=dsolve(BVP2,y(x));

plot(rhs(Sol1),x=0..Pi,axes=boxed,color=blue,thickness=3);

Modifying the boundary conditions (the nonhomogeneous Neumann conditions), we obtain the

following:

y′′xx + a1y = 0, y′x(a) = g1, y′x(b) = g2, (19.2.2.4)
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where a1 = 2, a = 0, b = π, g1 = 1, g2 = 0, and the particular analytical solution (Sol2)

y(x) =
1

2

√
2 sin(

√
2x) +

1

2

√
2 cos(

√
2π) cos(

√
2x)

sin(
√
2π)

can be constructed as follows:

BVP3:={diff(y(x),x$2)+a[1]*y(x)=0,D(y)(a)=g[1],D(y)(b)=g[2]};

BVP4:=subs({a[1]=2,a=0,b=Pi,g[1]=1,g[2]=0},BVP3);

Sol2:=dsolve(BVP4,y(x));

plot(rhs(Sol2),x=0..Pi,axes=boxed,color=blue,thickness=3);

For solving more complicated boundary value problems, we can follow a numerical

approach (see Section 19.4.5).

◮ Eigenvalue problems.

Consider eigenvalue problems, i.e., boundary value problems that include a parameter λ.

The parameter values for which the problem is solvable are called eigenvalues of the prob-

lem, and for each eigenvalue, the solution y = y(x) (y 6≡ 0) that satisfies the problem is

called the corresponding eigenfunction. We will find eigenvalues and eigenfunctions for

some eigenvalue problems.

The sufficiently general form of eigenvalue problems reads:

a2(x)y
′′
xx + a1(x)y

′
x + [a0(x) + λ]y = 0, a < x < b,

and the boundary conditions at the endpoints x= a and x= b (see the previous paragraph).

The transformation

p(x) = exp

[∫
a1(x)

a2(x)
dx

]
, q(x) =

a0(x)

a2(x)
p(x), s(x) =

p(x)

a2(x)

reduces this equation to the differential equation

[p(x)y′x]
′
x + [q(x) + λs(x)]y = 0.

This form of the equation is called the self-adjoint form.

Example 19.19. Eigenvalue problem. Dirichlet boundary conditions. Analytical solution.

Consider a Sturm–Liouville eigenvalue problem consisting of a second-order linear homoge-

neous ODE with constant coefficients and a parameter λ with homogeneous Dirichlet boundary

conditions,

y′′xx + λy = 0, y(0) = 0, y(π) = 0. (19.2.2.5)

If we apply the predefined function dsolve,

ODE1:=diff(y(x),x$2)+lambda*y(x)=0;

dsolve({ODE1,y(0)=0,y(Pi)=0},y(x));

we obtain the trivial solution, y(x) = 0, and cannot solve the eigenvalue problem.

However, we can solve such problems step by step with the aid of Maple as follows.

1. We find the characteristic equation (EqChar) for the given ODE, m2 + λ = 0; the charac-

teristic roots are m = ±
√
−λ (RootsChar):
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ExpSol:=exp(m*x);

EqChar:=collect(eval(ODE1,y(x)=ExpSol),exp)/ExpSol;

RootsChar:=solve(EqChar,m);

2. There are two cases (λ= 0 and λ 6= 0). Consider the first case: λ= 0. The differential equa-

tion is y′′xx = 0 (Eq1), and the solution (Sol1) of this equation with the first boundary condition is

y(x) = C1x. By applying the second boundary condition to this solution, we obtain the equation

C1π = 0 (Eq2), so C1 = 0 and we obtain the trivial solution y(x) = 0. Thus, λ = 0 is not an

eigenvalue:

Eq1:= eval(ODE1,lambda=0);

Sol1:=dsolve({Eq1,y(0)=0},y(x));

Eq2:=eval(rhs(Sol1),x=Pi)=0;

3. Consider the case of λ 6= 0 and apply the first boundary condition. The resulting solution

(Sol3) is y(x) = C sin(
√
λx). By applying the second boundary condition, we obtain the tran-

scendental equation C sin(
√
λπ) = 0 (Sol4). For solving this equation correctly, we add the

environment variable EnvAllSolutions:=true and finally obtain the eigenvalues

λn = n2 (n = 1, 2, . . .)

and the eigenfunctions

yn(x) = C sin(nx)

as follows:

Sol2:=rhs(dsolve({ODE1,y(0)=0},y(x)));

param:=remove(has,indets(Sol2),{lambda,x})[1];

Sol3:=eval(Sol2,param=C);

Sol4:=eval(Sol3,x=Pi)=0;

_EnvAllSolutions := true;

Sol5:=solve(Sol4,lambda); var:=indets(Sol5)[1];

EVals:=eval(Sol5,var=n);

EFun:=simplify(eval(Sol3,lambda=EVals),symbolic);

19.2.3 Different Types of Analytical Solutions

By applying Maple predefined functions, we find exact solutions (general, explicit, implicit,

parametric, particular, separable, and symmetric) of various types of ODEs. The results are

presented in Table 19.1 below, where

p(t) =
√

2 t2 − 2 t+ 1, q(t) = arctan(2 t− 1),

R(x, y) =
√
e2x − y2 + 2y − 1, w(x) =

(√
2

2
x+ C1

) √
2√

C2
2 + 1

,

r1(t) = t
1

n+1 (t−n−1)−
1

n+1 , r2(t) = t−
n

n+1 (t−n−1)−
1

n+1 .

JacobiSN(u, k) is the Jacobi elliptic function sn(u, k). The ordinary differential equations

and various types of analytical solutions are defined in Maple as follows:

with(PDEtools): with(DEtools): declare(y(x),prime=x,quiet);

alias(y=y(x)); Eq1:=x*diff(y,x)+y=x; dsolve(Eq1,y);

Eq2:=diff(y,x)+y=exp(x); dsolve(Eq2,y,[linear]); linearsol(Eq2,y);
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Table 19.1.

Maple predefined functions and exact solutions of various types of ODEs

No. ODE Exact solution Maple function

1 xy′x + y = x y =
x

2
+

C1

x
dsolve(Eq1,y)

2 y′x + y = ex y =
C1

ex
+

1

2
ex dsolve(Eq2,y,[linear])

3 yy′x − y + 1
2
x = 0 x (t) =−2

Ce−q(t) (t−1)

p(t)
, y (t) =

Ce−q(t)

p(t)
parametricsol(Eq3,y)

4 y′x =
y2 + xy

x2
C1 =

x

y
+ ln (x) dsolve(Eq4,y,implicit)

5 y′x =
1 + ey

x ln(x)ey
y = ln (−1 + ln (x) C1 ) separablesol(Eq5,y)

6 y′x(x− y) + y = 0 y1,2 =
x C1 ±

√
x2 C12 + 1

C1
genhomosol(Eq6,y)

7 ln(xy) +
x

y
y′x = 0 y =

1

x
e−

C1−x
x exactsol(Eq7,y)

8 y+(2x−yey)y′x=0 xy2 −
(
y2 − 2 y + 2

)
ey + C1 = 0 firint(mu*Eq8)

9 y′x − 1

4
y =

x

y
y1,2 = ±

√
ex/2 C1 − 4x − 8 bernoullisol(Eq9,y)

10 y′x=x2y2+
1

x
y+x4 y= −

x
(
−C sin

(
x4

4

)
+ cos

(
x4

4

))

C cos
(

x4

4

)
+ sin

(
x4

4

) riccatisol(Eq10,y)

11 y2(y′x)
2 − x = 0 y= ± 2

3

√
3
√

x3/2 particularsol(Eq11,y)

12 xy′x − (y′x)
2 = y

{
y=1/4 x2, y=− C1

2+x C1
}

Solve(Eq14,y)

13 yy′x − y = e2x − 1 C1 − R (x, y) + arctan

(
y − 1

R (x, y)

)
= 0 abelsol(Eq13,y)

14 x2y′′xx + xy′x + y =
1

x2
y=sin (ln x) C2+cos (ln x) C1+

1

5x2
liesol(Eq12,y)

15 y′′xx + y − y3 = 0 y=C2

√
2

√
(C2

2 + 1)−1JacobiSN (w(x), C2) dsolve(Eq15,y)

16 y′′xx=yy′x +
1

2
y3 y=

√
5 − 1

−x + C1
, y=−

√
5 + 1

−x+ C1
particularsol(Eq16)

17 y′′xx = 2yy′x C1 arctan
(
yC1

)
−x−C2=0 dsolve(Eq17,y,implicit)

18 y′′xx = e−yy′x y= ln

(
eC1C2eC1x + 1

C1

)
dsolve(Eq18,y,useint)

19 y′′xx = sin(y2)y′x

∫
1∫

sin
(
y
2
)

dy + C1

dy−x−C2=0 dsolve(Eq19,y,useInt)

20 y′′xx = yny′x y(t)=r1(t)e
C2
n , x(t)=−

∫
r2(t) dt

eC2
+C1 parametricsol(Eq20,y)
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Eq3:=y*diff(y,x)-y+x/2=0; Sol1:=dsolve(Eq3,y,parametric);

Sol2:=subs(_T=t,_C1=C,Sol1); parametricsol(Eq3,y);

Eq4:=diff(y,x)=(yˆ2+x*y)/xˆ2; dsolve(Eq4,y,implicit); isolate(Sol41,_C1);

Eq5:=diff(y,x)=(1+exp(y))/(exp(y)*x*ln(x)); dsolve(Eq5,y,[separable]);

separablesol(Eq5,y);

Eq6:=diff(y,x)*(x-y)+y=0; dsolve(Eq6,y,[homogeneous]); genhomosol(Eq6,y);

Eq7:=ln(x*y)+(x/y)*diff(y,x)=0; simplify(dsolve(Eq7,y,[exact]),symbolic);

exactsol(Eq7,y);

Eq8:=y+(2*x-y*exp(y))*diff(y,x)=0; odeadvisor(Eq8); mu:=intfactor(Eq8);

odeadvisor(mu*Eq8); dsolve(mu*Eq8,y,[exact]); exactsol(mu*Eq8,y);

firint(mu*Eq8);

Eq9:=diff(y,x)-y/4=x/y; dsolve(Eq9,y,[Bernoulli]); bernoullisol(Eq9,y);

Eq10:=diff(y,x)-xˆ2*yˆ2-1/x*y-xˆ4=0;

Sol1:=subs(_C1=C,riccatisol(Eq10,y)); dsolve(Eq10,y,[Riccati]);

Eq11:=yˆ2*diff(y,x)ˆ2-x=0; particularsol(Eq11,y);

Eq12:=x*diff(y,x)-diff(y,x)ˆ2=y; Solve(Eq14,y); clairautsol(Eq14,y);

Eq13:=y*diff(y,x)-y=exp(2*x)-1; simplify(dsolve(Eq13,y,[Abel]),symbolic);

abelsol(Eq13,y);

Eq14:=xˆ2*diff(y,x$2)+x*diff(y,x)+y=xˆ(-2); odeadvisor(Eq12);

dsolve(Eq12,y,Lie); liesol(Eq12,y);

Eq15:=diff(y,x$2)+y-yˆ3=0; subs(_C1=C[1],_C2=C[2],dsolve(Eq15,y));

Eq16:=diff(y,x$2)=y*diff(y,x)+yˆ3/2;subs(_C1=C[1],[particularsol(Eq16)]);

Eq17:=diff(y,x$2)=2*y*diff(y,x);

subs(_C1=C[1],_C2=C[2],dsolve(Eq17,y,implicit));

Eq18:=diff(y,x$2)=exp(-y)*(diff(y,x));

Sol1:=subs(_C1=C[1],_C2=C[2],dsolve(Eq18,y,useint));

Eq19:=diff(y,x$2)=sin(yˆ2)*(diff(y,x));

Sol1:=[dsolve(Eq19,y,useInt)]; Sol2:=subs(_C1=C[1],_C2=C[2],Sol1[2]);

Eq20:=diff(y,x$2)=yˆn*(diff(y,x));

Sol1:=simplify(subs(_T=t,_C1=C[1],_C2=C[2],parametricsol(Eq20,y)));

19.2.4 Analytical Solutions of Systems of ODEs

The computer algebra system Maple has various predefined functions based on symbolic

algorithms for constructing analytical solutions of systems of ODEs [see a more detailed

description in Cheb-Terrab et al. (1997)].

Consider the most relevant related functions for finding analytical solutions of a given

ODE system.

dsolve({ODEs},{funcs}); dsolve({ODEs,ICs},{funcs},ops);

dsolve({ODEs},{funcs},method=transform);

dsolve({ODEs},{funcs},’series’,ops);

odetest({Sols},{ODEs},{funcs});

dsolve[interactive]({ODEs}); with(DEtools);

autonomous(ODEs,{funcs},x); rtaylor(ODEs,ops);

convertsys(ODEs,ICs,{funcs},x,ops); rifsimp(ODEs,ops);

• DEtools,autonomous, determining if a set of ODEs is strictly autonomous

• DEtools,convertsys, converting a system of one or more ODEs to a system of

first-order ODEs
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• DEtools,rifsimp, simplifying overdetermined polynomially nonlinear systems

of ODEs

• DEtools,rtaylor, obtaining local Taylor series expansions for all dependent

variables in the system of ODEs

◮ Linear systems of ODEs.

For first-order linear systems of ODEs, it is possible to find the general solution and the par-

ticular solution for any initial condition (with the aid of the predefined function dsolve).

Higher-order linear ODEs or systems can be converted into systems of first-order ODEs

(with the aid of the predefined function convertsys) and then solved.

Example 19.20. First-order liner system of two ODEs. Analytical solution.

Consider the general first-order linear system of two ODEs with constant coefficients

u′x = a0 + a1u+ a2v, v′x = b0 + b1u+ b2v,

where u(x) and v(x) are the unknown functions and the values of the coefficients are a0 =1, a1 =1,

a2 = −1, b0 = 1, b1 = 1, and b2 = 1.

By applying the predefined function dsolve, we find the general solution

u (x) = −1 + ex ( C1 cos(x) + C2 sin(x)) ,

v (x) = −ex (− C1 sin(x) + C2 cos(x))

of this linear system and verify it as follows:

ODE1:=diff(u(x),x)=a[0]+a[1]*u(x)+a[2]*v(x):

ODE2:=diff(v(x),x)=b[0]+b[1]*u(x)+b[2]*v(x): Sys1:={ODE1,ODE2};

Coeffs:={a[0]=1,a[1]=1,a[2]=-1,b[0]=1,b[1]=1,b[2]=1};

Sys2:=eval(Sys1,Coeffs);

SolGen1:=dsolve(Sys2,{u(x),v(x)}); odetest(SolGen1,Sys2);

u_x=eval(u(x),SolGen1); v_x=eval(v(x),SolGen1);

Example 19.21. First-order linear system of two ODEs. Cauchy problem. Analytical solution.

Consider the following first-order linear system of two ODEs with initial conditions:

u′x = a0 + a1u+ a2v, v′x = b0 + b1u+ b2v, u(x0) = u0, v(x0) = v0,

where u = u(x) and v = v(x) are the unknown functions and the values of the coefficients are

a0 = −1, a1 = 1, a2 = −1, b0 = 1, b1 = −1, and b2 = 1. For a first-order two-dimensional system

in u(x) and v(x), each initial condition can be specified in the formIC= {u(x0)= u0, v(x0)= v0}
(e.g., u(0) = 0, v(0) = 1). One solution curve is generated for each initial condition. The solution

of the initial value problem (IVP1) can be found as follows:

ODE1:=diff(u(x),x)=a[0]+a[1]*u(x)+a[2]*v(x):

ODE2:=diff(v(x),x)=b[0]+b[1]*u(x)+b[2]*v(x): Sys1:={ODE1,ODE2};

Coeffs:={a[0]=-1,a[1]=1,a[2]=-1,b[0]=1,b[1]=-1,b[2]=1};

Sys2:=eval(Sys1,Coeffs); SolGen1:=dsolve(Sys2,{u(x),v(x)});

u_x=eval(u(x),SolGen1); v_x=eval(v(x),SolGen1);

odetest(SolGen1,Sys2); IC:={u(0)=0,v(0)=1}; IVP1:=Sys2 union IC;

SolPart1:=dsolve(IVP1,{u(x),v(x)}); odetest(SolPart1,IVP1);

Alternatively, the solution of this initial value problem can be found step by step as follows:
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Eq1:=eval(eval(SolGen1,x=0),IC); Eq2:=solve(Eq1,{_C1,_C2});

SolPart2:=eval(SolGen1,Eq2); odetest(SolPart2,IVP1);

u_xP=eval(u(x),SolPart2); v_xP=eval(v(x),SolPart2);

We substitute the initial condition (IC) into the general solution (SolGen1) and obtain equa-

tions (Eq1) for the unknowns C1 and C2, which can be solved for these constants of integration

(Eq2). The particular solution (SolPart2) of this initial value problem reads:

u (x) = 1− e2x, v (x) = e2 x

This particular solution SolPart2 coincides with the solution SolPart1.

◮ Nonlinear systems of ODEs.

For more complicated first-order or higher-order nonlinear systems of ODEs, a straight-

forward application of the predefined function dsolve may give no solutions (general or

particular). Therefore, one can introduce some transformations, make some manipulations

with the original Cauchy problem, reduce it to a modified Cauchy problem, and finally

obtain analytical solutions in terms of the new variables and the original variables. Let us

show this in the following example.

Example 19.22. System of ODEs. Cauchy problem. Analytical and graphical solutions.

Consider the following second-order nonlinear system of two ODEs with initial conditions:

u′′xx = −au′x
√
(u′x)

2 + (v′x)
2, v′′xx = −av′x

√
(u′x)

2 + (v′x)
2,

u(0) = 0, v(0) = 0, u′x(0) = U0 sinφ, v′x(0) = U0 cosφ,

where u = u(x) and v = v(x) are the unknown functions and the parameter values are a = 5,

U0 = 10, and φ = π/10. The solution of the initial value problem (IVP1) can be found step by

step as follows:

with(PDEtools): declare(u(x),v(x),U(x),prime=x):

xR:=0..20; IC_U:=U(0)=U[0]; Sys1:=

{diff(u(x),x$2)=-a*diff(u(x),x)*sqrt(diff(u(x),x)ˆ2+diff(v(x),x)ˆ2),

diff(v(x),x$2)=-a*diff(v(x),x)*sqrt(diff(u(x),x)ˆ2+diff(v(x),x)ˆ2)};

IC:={u(0)=0, v(0)=0, D(u)(0)=U[0]*sin(phi), D(v)(0)=U[0]*cos(phi)};

IVP1:=Sys1 union IC; dsolve(IVP1,{u(x),v(x)});

tr1:=U(x)=sqrt(diff(u(x),x)ˆ2+diff(v(x),x)ˆ2); Eq1:=diff(tr1,x);

Eq2:=simplify(eval(Eq1,Sys1),symbolic);

ODE1:=subs(rhs(tr1)ˆ2=U(x)ˆ2,Eq2); Sol1:=dsolve({ODE1,IC_U},U(x));

Sys2:=subs(rhs(tr1)=rhs(Sol1),Sys1);

IVP2:=Sys2 union IC; Sol2:=simplify(dsolve(IVP2),symbolic);

simplify(odetest(Sol2,IVP1),symbolic); SolG:=[op(Sol2)];

plot(eval([rhs(SolG[1]),rhs(SolG[2])],{U[0]=10,a=5,phi=Pi/10}),x=xR);

In this problem, a straightforward application of the predefined function dsolve does not

give a solution. Therefore, we introduce the transformation (tr1), U(x) =
√
(u′x)

2 + (v′x)
2. Then

we find the derivative (Eq1), U ′
x =

2u′xu
′′
xx + 2v′xv

′′
xx

2
√
(u′x)

2 + (v′x)
2

. Substituting the second derivatives u′′xx,

v′′xx of the original system into the expression for U ′
x, we obtain the differential equation (ODE1),

U ′
x = −aU2. Solving this simple differential equation with the initial condition U(0) = U0, we

obtain the solution (Sol1), U(x) =
U0

1 + aU0x
. Substituting this expression for U(x), which is



“K16435’ — 2017/9/28 — 15:05 — #1173

19.2. Analytical Solutions and Their Visualizations 1147

equal to
√
(u′x)

2 + (v′x)
2 (according to tr1), into the original system (Sys1) and considering the

initial conditions, we obtain the modified Cauchy problem (IVP2)

u′′xx = − aU0 u
′
x

aU0x+ 1
, v′′xx = − aU0 v

′
x

aU0x+ 1
,

u(0) = 0, v(0) = 0, u′x(0) = U0 sinφ, v′x(0) = U0 cosφ.

Solving this Cauchy problem, we obtain the analytical particular solution (Sol2)

u(x) =
1

a
sinφ ln(axU0 + 1), v(x) =

1

a
cosφ ln(axU0 + 1)

and then verify that it is an exact particular solution (Sol2) of the original Cauchy problem (IVP1)

and plot the graphs of u(x) and v(x).

19.2.5 Integral Transform Methods for ODEs

In Maple, integral transforms (e.g., Fourier, Hilbert, Laplace, and Mellin integral trans-

forms) can be studied with the aid of the inttrans package. Methods of integral trans-

forms can be applied to the solution of many initial value problems. The most important

predefined functions for finding analytical solutions of a given Cauchy problem are the

following:

dsolve({ODE,IC},y(x),method=transform,ops);

dsolve({ODEs,IC},{funcs},method=transform,ops).

Here transform can be laplace, fourier, fouriercos, or fouriersin.

• DEtools,method, finding analytical solutions using integral transforms (Laplace

or Fourier)

◮ Linear ODEs and systems of ODEs with constant coefficients.

Methods of integral transforms can be applied for solving the nth-order linear ODE with

constant coefficients and with initial conditions,

any
(n)
x + an−1y

(n−1)
x + . . .+ a1y

′
x + a0y = f(x), x > 0,

y(0) = y0, y′x(0) = y1, . . . , y(n−1)
x (0) = yn−1,

and systems of linear ODEs with constant coefficients coupled by initial conditions. Con-

sider some examples.

Example 19.23. First-order linear ODE. Initial value problem. Laplace transform.

For the first-order linear ODE with the initial condition

y′x + ay = e−ax, y(0) = 1,

the exact solution

y(x) = (x+ 1)e−ax

of the initial value problem can be obtained (with the aid of the predefined function dsolve) and

verified as follows:
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with(PDEtools): declare(y(x),prime=x): with(inttrans);

ODE1:=diff(y(x),x)+a*y(x)=exp(-a*x); IC:=y(0)=1; IVP1:={ODE1,IC};

SolPart1:=dsolve(IVP1,y(x)); SolPart2:=dsolve(IVP1,y(x),method=laplace);

odetest(SolPart1,IVP1); odetest(SolPart2,IVP1);

Alternatively, the exact solution of this initial value problem can be found step by step and

verified as follows:

with(PDEtools): declare(y(x),prime=x): with(inttrans);

ODE1:=diff(y(x),x)+a*y(x)=exp(-a*x); IC:=y(0)=1; IVP1:={ODE1,IC};

Eq1:=laplace(ODE1,x,p); Eq2:=subs(IC,Eq1);

Eq3:=solve(Eq2,laplace(y(x),x,p)); SolPart1:=invlaplace(Eq3,p,x);

The graphical solution can be obtained for some value of the parameter a (e.g., a = 7) as follows:

SolPart2:=subs(a=7,SolPart1); plot(SolPart2,x=0..1,color=blue);

Example 19.24. First-order linear system of ODEs. Initial value problem. Laplace transform.

By applying the Laplace transform, we solve the initial value problem

u′x − 2v = x, 4u+ v′x = 0, u(0) = 1, v(0) = 0

and verify the exact solution

u(x) = 1
8 + 7

8 cos(2
√
2x), v(x) = − 7

8

√
2 sin(2

√
2x)− 1

2x,

as follows:

with(PDEtools): declare(u(x),v(x),prime=x): with(inttrans):

IC:={u(0)=1,v(0)=0}; ODESys1:={D(u)(x)-2*v(x)=x,4*u(x)+D(v)(x)=0};

IVP1:=ODESys1 union IC; Sol1:=dsolve(IVP1,{u(x),v(x)});

Sol2:=dsolve(IVP1,{u(x),v(x)},method=laplace); odetest(Sol1,IVP1);

Alternatively, the exact and graphical solutions of this initial value problem can be found step

by step and verified as follows:

Eq1:=laplace(ODESys1,x,s); Eq2:=subs(IC,Eq1);

Eq3:=solve(Eq2,{laplace(u(x),x,s),laplace(v(x),x,s)});

Sol3:=invlaplace(Eq3,s,x); assign(Sol3):

plot([u(x),v(x),x=0..Pi],color=blue,thickness=3);

Example 19.25. First-order linear systems of ODEs. Initial value problem. Laplace transform.

Generalizing the procedure, consider the system of first-order linear ODEs

(yi)
′
x = ai1y1 + ai2y2 + · · ·+ ainyn + fi(x), x > 0 (i = 1, . . . , n)

with the initial conditions

yi(0) = yi0 (i = 1, . . . , n),

where aij (i = 1, . . . , n; j = 1, . . . , n) are constants, fi(x) are given functions, and the unknown

functions y1(x), . . . , yn(x) are defined on x ∈ [0,∞].
Let n = 2. We find the exact solution of the Cauchy problem

(y1)
′
x = y2, (y2)

′
x = −y1 − 2y2 + x, x > 0,

y1(0) = 1, y2(0) = 1

by applying the integral transform method. Also, we verify and plot this solution on some interval

[a, b] as follows:
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with(PDEtools): declare(u(x),v(x),prime=x): with(inttrans):

with(plots): a:=0: b:=2:

ODESys1:=diff(u(x),x)=v(x),diff(v(x),x)=x-u(x)-2*v(x);

IC:=u(0)=1,v(0)=1; IVP1:={ODESys1,IC};

Sol1:=sort(dsolve(IVP1,{u(x),v(x)},method=laplace));

uEx:=unapply(rhs(Sol1[1]),x); vEx:=unapply(rhs(Sol1[2]),x);

uG1:=plot(uEx(x),x=a..b,color=red):

vG1:=plot(vEx(x),x=a..b,color=blue): display({uG1,vG1});

Remark 19.6. If we consider an nth-order ODE (n > 1) with n initial conditions,

any
(n)
x + an−1y

(n−1)
x + . . .+ a1y

′
x + a0y = f(x), x > 0,

y(0) = y0, y′x(0) = y1, . . . , y(n−1)
x (0) = yn−1,

then we can find exact solutions of this higher-order ODE by transforming it into an equivalent

system of n first-order equations (with the predefined function DEtools,convertsys) and

by applying integral transform methods to this system of ODEs.

◮ Linear ODEs with variable coefficients.

Some initial value problems consisting of linear ODEs with variable coefficients can be

solved (in a similar way) by the method of integral transforms. However, integral trans-

forms do not provide a general method for solving ODEs with variable coefficients.

Example 19.26. Linear ODE with variable coefficients. Cauchy problem. Laplace transform.

For the second-order linear ODE with variable coefficients and initial conditions

y′′xx + 2xy′x − 4y = 2, y(0) = 0, y′x(0) = 0,

the exact solution

y(x) = x2

of the initial value problem can be obtained (with the aid of the predefined function dsolve) and

verified as follows:

with(PDEtools): declare(y(x),prime=x): with(inttrans):

with(plots): ODE1:=diff(y(x),x,x)+2*x*diff(y(x),x)-4*y(x)=2;

IC:=y(0)=0,D(y)(0)=0; IVP1:={ODE1,IC};

Sol1:=dsolve(IVP1,{y(x)},method=laplace); odetest(Sol1,IVP1);

19.2.6 Constructing Solutions via Transformations

Transformation methods are the most powerful analytic tools for studying differential equa-

tions. Nowadays, transformations of different types can be computed with the aid of com-

puter algebra systems, such as Maple or Mathematica.

In general, transformations can be divided into two groups: (i) transformations of the

independent and dependent variables and (ii) transformations of the independent variables

as well as the dependent variables and their derivatives. We will consider various types of

transformations relating ODEs, e.g., point and contact transformations.

Transformation methods permit finding transformations under which an ODE is invari-

ant and new variables (independent and dependent) with respect to which the differential

equations become simpler, e.g., linear.
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Consider the most important functions for performing transformations of ODEs:

with(PDEtools): dchange(tr1,expr1,ops);

with(DEtools): convert(ODE1,ODEtype,y(x),ops);

• PDEtools,dchange, performing transformations (changes of variables) in math-

ematical expressions (ODEs, PDEs, multiple integrals, integro-differential equations,

limits, etc.) or procedures

• DEtools,convert, converting ODEs to other ODEs of different type. The pa-

rameter ODEtype can be one of the following conversion types: y x, Riccati,

linearODE, NormalForm, Abel, Abel RNF, FirstKind, SecondKind,

DESol, MobiusX, MobiusY, and MobiusR

◮ Point transformations.

Now consider the most important transformations of ODEs, namely, point transformations

(transformations of independent and dependent variables). Point transformations can be

linear transformations (translation transformations, scaling transformations, rotation trans-

formations, etc.) and nonlinear transformations of independent and dependent variables.

These transformations and their combinations can be applied to simplify nonlinear ODEs,

linearize them, and reduce them to normal, canonical, or invariant forms.

Example 19.27. The Bernoulli equation. Transformation and general integral.

Consider the first-order nonlinear ODE, the Bernoulli equation

g(x)y′x − f1(x)y − fn(x)yn = 0,

where n 6=0, 1. By applying the transformation of the dependent variableX=x, Y (X)=[y(x)]1−n,

we obtain the linear equation (Eq8)

(1− n) f1(X)Y + (1− n) fn(X)− g(X)Y ′
X = 0.

Then we obtain the general integral with respect to Y (X) (Sol1) and test it (Test1).

Finally, we find the general integral of the original equation (with respect to y(x)) (Sol2) and

test it (Test2):

with(PDETools): declare(y(x),Y(X),prime=x,prime=X);

tr1:={X=x,Y(X)=y(x)ˆ(1-n)}; tr2:=simplify(solve(tr1,{x,y(x)}),symbolic);

Eq1:=g(x)*diff(y(x),x)-f[1](x)*y(x)-f[n](x)*y(x)ˆn=0;

Eq2:=dchange(tr2,Eq1,[X,Y(X)]); Eq3:=expand(simplify(Eq2,symbolic));

Eq4:=map(simplify,lhs(Eq3),symbolic); Eq5:=map(`*`,Eq4,(n-1));

Eq6:=map(`*`,Eq5,Y(X)ˆ(n/(n-1))); Eq7:=map(simplify,Eq6,symbolic);

Eq8:=collect(Eq7,[f[1](X),f[n](X),Y(X)]); Sol1:=dsolve(Eq8=0,Y(X));

Test1:=odetest(Sol1,Eq8); Sol2:=subs(tr1,Sol1); Test2:=odetest(Sol2,Eq1);

Example 19.28. First-order ODE reducible to a homogeneous ODE. A linear transformation.

Consider the first-order equation

y′x = f

(
a1x+ b1y + c1
a2x+ b2y + c2

)
,
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where ai, bi, ci (i = 1, 2) are real constants. This equation can be reduced to a homogeneous

equation and integrated. Consider the case where

D =

∣∣∣∣∣
a1 b1

a2 b2

∣∣∣∣∣ ≡ a1b2 − a2b1 6= 0.

By applying the transformation∗

x = X + x0, y(x) = Y (X) + y0 (19.2.6.1)

of the independent and dependent variables, where x0 and y0 are constants, which can be uniquely

determined (since D 6= 0) by solving the linear algebraic system

a1x0 + b1y0 + c1 = 0, a2x0 + b2y0 + c2 = 0,

we obtain the differential equation (Eq2)

Y ′
X = f

(
b1Y + a1X

b2Y + a2X

)

for Y = Y (X), which can be reduced to the homogeneous equation

Y ′
X = f

(
b1Y/X + a1
b2Y/X + a2

)

and then integrated:

with(PDEtools): declare(y(x),Y(X),prime=x,prime=X);

Sol0:=solve({a1*x0+b1*y0+c1=0,a2*x0+b2*y0+c2=0},{x0,y0});

ODE1:=diff(y(x),x)=f((a1*x+b1*y(x)+c1)/(a2*x+b2*y(x)+c2));

tr1:={x=X+x0,y(x)=Y(X)+y0}: Eq1:=dchange(tr1,ODE1,[X,Y(X)]);

Eq2:=simplify(subs(Sol0,Eq1)); Ex1:=op(1,rhs(Eq2));

tr2:=Ex1=expand(numer(Ex1)/X)/expand(denom(Ex1)/X);

Eq3:=subs(tr2,Eq2);

Now consider a particular case of point transformations, the hodograph transformation,

i.e., a transformation interchanging the roles of the dependent and independent variables

in an ODE. The hodograph transformation is used for simplifying nonlinear differential

equations and nonlinear systems or converting them into linear ones.

Example 19.29. First-order nonlinear ODE. Hodograph transformation.

Consider the nonlinear first-order ODE

y + (2x− yey)y′x = 0.

By applying the hodograph transformation y(x) = X , x = Y (X) (tr1), we reduce this nonlinear

ODE to the linear equation XY ′
X −XeX + 2Y = 0 (Eq2):

with(PDEtools): with(DEtools): declare(y(x),Y(X),prime=x,prime=X);

ODE1:=y(x)+(2*x-y(x)*exp(y(x)))*diff(y(x),x)=0; tr1:={y(x)=X,x=Y(X)};

Eq1:=dchange(tr1,ODE1,[X,Y(X)]); Eq2:=numer(lhs(factor(Eq1)))=0;

∗Equations (19.2.6.1) can be interpreted as a translation of orthogonal coordinate axes to the new origin

(x0, y0) that is the point of intersection of the lines a1x+ b1y+ c1 = 0 and a2x+ b2y+ c2 = 0 (for the case

in which the lines are not parallel).
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The original nonlinear equation can be solved in implicit form, and the reduced equation, in

explicit form. In Maple’s notation (Sol1, Sol2), we have

x−
(

y2 − 2 y + 2
)

ey + C1

y2
= 0,

[

Y (X) =

(

X2 − 2X + 2
)

eX + C1

X2

]

.

Alternatively, we can perform the hodograph transformation by applying the predefined function

DEtools,convert,y x and rewrite the resulting equation in the same notation (Eq3, Eq4).

Finally, we verify all the solutions obtained:

Sol1:=dsolve(ODE1,y(x)); Sol2:=[dsolve(Eq2,Y(X))];

Eq3:=numer(lhs(normal(convert(ODE1,y_x,implicit))))=0;

Eq4:=subs({y=X,x(y)=Y(X)},Eq3);

odetest(Sol1,ODE1); odetest(Sol2,Eq2);

◮ Contact transformations.

For an ODE of general form with the independent variable x and the dependent variable

y = y(x), a contact transformation can be represented in the form

x = F (X,Y, Y ′
x), y = G(X,Y, Y ′

x), y′x = H(X,Y, Y ′
X ),

where the functions F (X,Y, Y ′
x) and G(X,Y, Y ′

x) are chosen so that the derivative y′x does

not depend on Y ′′
xx.

Consider some examples of contact transformations that reduce complicated nonlinear

ODEs to equations of a simpler form.

Example 19.30. Nonlinear first-order equation. Contact transformation.

Consider the nonlinear first-order ODE

y′x(y
′
x + ax)n + b

(
(y′x)

2 + 2ay
)m

+ c = 0.

By applying the contact transformation (tr3)

x = 1
a (X − y

′
x), y = 1

2a

(
Y − (Y ′

X)2
)
, y′x = 1

2Y
′
X ,

we reduce this nonlinear ODE to the separable ODE (Eq2)

1
2X

nY ′
X + bY m + c = 0

and obtain the exact solution as follows:

with(PDEtools): with(DEtools): declare(y(x),Y(X),prime=x,prime=X);

D1:=diff(y(x),x); ODE1:=D1*(D1+a*x)ˆn+b*(D1ˆ2+2*a*y(x))ˆm+c=0;

tr1:={x=(X-diff(y(x),x))/a,y(x)=(Y(X)-(diff(y(x),x))ˆ2)/(2*a)};

tr2:=diff(y(x),x)=diff(Y(X),X)/2; tr3:=subs(tr2,tr1);

Eq1:=dchange(tr3,ODE1,[X,Y(X)]); Eq2:=simplify(Eq1,symbolic);

odeadvisor(Eq2); Sol1:=dsolve(Eq2,Y(X)); odetest(Sol1,Eq2);

Example 19.31. Nonlinear first-order equation. Legendre transformation.

Consider the nonlinear first-order ODE

xf(y′x) + yg(y′x) + h(y′x) = 0,
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where f(y′x), g(y
′
x) and h(y′x) are arbitrary functions. By applying the Legendre transformation

x = Y ′
X , y = XY ′

X − Y, y′x = X,

we reduce this nonlinear ODE to the linear ODE (Eq2)

(
Xg(X) + f(X)

)
Y ′
X − Y g(X) + h(X) = 0

and obtain the exact solution as follows:

with(PDEtools): with(DEtools): declare(y(x),Y(X),prime=x,prime=X);

D1:=diff(y(x),x); ODE1:=x*f(D1)+y(x)*g(D1)+h(D1)=0;

tr1:={x=diff(Y(X),X),y(x)=-Y(X)+X*diff(Y(X),X)};

Eq1:=dchange(tr1,ODE1,[X,Y(X)]); Eq2:=collect(Eq1,diff);

odeadvisor(Eq2); Sol1:=dsolve(Eq2,Y(X)); odetest(Sol1,Eq2);

⊙ Literature for Section 18.2: E. L. Ince (1956), G. M. Murphy (1960), L. E. El’sgol’ts (1961), E. Kamke

(1977), E. S. Cheb-Terrab, L. G. S. Duarte, and L. A. C. P. da Mota (1997), D. Zwillinger (1997), A. D. Polyanin

and V. F. Zaitsev (2003), W. E. Boyce and R. C. DiPrima (2004).

19.3 Group Analysis of ODEs

19.3.1 Solution Strategies and Predefined Functions

It is well known that there exist many theoretical methods for solving ODEs. Moreover,

nowadays there exist many computational methods for solving ODEs. Among computa-

tional methods, there are various computer algebra methods for solving ODEs; an overview

of such methods can be found in [MacCallum (1995)]. Some of these methods have been

implemented in Maple, and all the methods are provided by the general solver dsolve.

The main idea of the Lie symmetry approach is to transform differential equations to

standard equations that we know how to solve.

In Maple, one can solve ODEs without specifying a method or specifying one of the

embedded methods. In the first case, the system has a proper strategy for testing and an-

alyzing a given ODE and can select an appropriate method depending on some options in

dsolve. For example, these options include type=numeric for numerical solutions,

type=series for Taylor series solutions, type=formal series for formal power

series solutions of linear ODEs with polynomial coefficients, type=formal solution

for formal solutions of homogeneous linear differential equations with polynomial coeffi-

cients, and method=integral transform for solutions by integral transform meth-

ods.

If it is necessary to find an analytical solution of an ODE, Maple’s strategy is as follows:

• Solve the ODE by applying classification methods, i.e., by verifying whether the

ODE matches a recognizable pattern for which a solution method is implemented

(e.g., quadrature, linear, separable, Bernoulli, Riccati, etc.). If there is a matching

pattern, then the corresponding method is applied.

• If the classification methods fail, then apply Lie symmetry methods (which suggest

finding generators of symmetry groups, integrating the ODE, or reducing its order).
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In Maple, it is possible to change this strategy by introducing the option class (only

classification methods) or Lie (only Lie symmetry methods).

Example 19.32. The Emden–Fowler equation. Exact solutions by the Lie symmetry method.

By applying the two Maple strategies, i.e., classification methods and Lie symmetry methods,

to the Emden–Fowler equation

y′′xx = Axnym,

where n = −6 and m = 3, we obtain distinct forms of exact solutions (SolLie, SolClass):

− 1

x
±2

∫
y
x 1
√

2A f 4−2 C1
d f− C2=0, y= C2 JacobiSN

((

− 1

2

√
−2A

x
+ C1

)

C2, I

)

x

with(DEtools): with(PDEtools): declare(y(x),prime=x,quiet);

alias(y=y(x)); ODE1:=diff(y,x$2)=A*xˆn*yˆm; ODE6:=subs(n=-6,m=3,ODE1);

infolevel[symgen]:=1; odeadvisor(ODE6);

SolLie:=dsolve(ODE6,Lie,implicit); SolClass:=dsolve(ODE6,class);

Group analysis of ODEs can be performed in Maple: in one step (with dsolve), or

step by step (by applying a specific predefined function to each of the symmetry steps), or

by hand (by developing appropriate procedures and functions).

In Maple, ODEs can be studied with the aid of the predefined function dsolve (which

includes symmetry methods for all differential orders) and a collection of predefined func-

tions that implement symmetry methods [for details, see Olver (1986), Bluman and Kumei

(1989), Stephani (1989)] in the packages DEtools and PDEtools. In this section, we

study the main symmetry methods with the aid of predefined functions and packages [see

Cheb-Terrab, Duarte, and da Mota (1997, 1998), Cheb-Terrab and Roche (1998), and Cheb-

Terrab and Kolokolnikov (2003)].

The most relevant predefined functions for performing group analysis of ODEs and

finding exact solutions by the Lie symmetry approach are the following:

dsolve(ODE,y(x)); dsolve(ODE,y(x),Lie);

dsolve(ODE,y(x),way=val,HINT=[val],method);

with(DEtools): Sym1:=symgen(ODE,y(x),way=val,HINT=[val]);

symtest(Sym,ODE,y(x)); transinv([Sym],y(x),Y(X));

invariants([Sym],k,y(x),ops); buildsym(Sol,y(x),ops);

reduce_order(ODE,[Sym],y(x),ops); equinv([Sym],y(x),n);

buildsol(ODESolStruc,SolRedODE); canoni([Sym],y(x),s(r));

infgen([Sym],k,y(x),ODE); eta_k([Sym],k,y(x),ODE);

with(PDEtools): InfinitesimalGenerator(Sym,y(x));

InfinitesimalGenerator(Sym,y(x),prolongation=k,ops);

DeterminingPDE(ODE,typeofsymmetry=val,notation=val,ops);

Here Sym is a symmetry (or symmetries), ODESolStructure is an analytical solu-

tion obtained by dsolve and expressed in terms of ODESolStruc (for details, see Sec-

tion 19.2.1), and SolReducedODE is a solution of the reduced ODE (which is a part of

ODESolStruc).
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• dsolve,Lie, computing an analytical solution by applying the Lie method of sym-

metries

• DEtools (package), several functions for performing Lie group analysis; e.g.,

symgen, looking for a symmetry generator for a given ODE

symtest, testing a given symmetry

transinv, looking for the set of transformations of variables that leave the

ODE invariant, i.e., the one-parameter Lie invariance group of the ODE

reduce order, reducing the order of an ODE using symmetries (or solu-

tions)

equinv, looking for the most general ODE invariant under a symmetry group

(or different symmetry groups)

buildsol, finding a solution of an ODE using order reduction and a solution

of the reduced ODE

canoni, determining a pair of canonical coordinates for a given Lie symmetry

group

invriants, calculating differential invariants of a given one-parameter Lie

group

buildsym, building the symmetry generator given a solution of an ODE

infgen, finding the infinitesimal generator of a one-parameter Lie group (with

k-prolongation)

eta k, determining the k-prolongation of the infinitesimals of a one-parameter

Lie group

• PDEtools (package), some functions for performing Lie group analysis; e.g.,

InfinitesimalGenerator, finding the infinitesimal generator (default is

a differential operator procedure)

DeterminingPDE, computing the symmetry determining equation (admitted

by a given ODE) that splits into a PDE system

19.3.2 Constructing Point Groups

Consider symmetries that are point transformations, that is, diffeomorphisms of the plane.

Example 19.33. Simplest ODE. Symmetries. One-parameter Lie group. Infinitesimal generator.

For the first-order ODE

y′x = F (x)

with an arbitrary function F (x):
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• We obtain the symmetries (Sym1) [ ξ=0, η=1], i.e., the infinitesimals ξ(x, y) and η(x, y)
of a one-parameter Lie point transformation group that leaves the given ODE invariant, and

verify these symmetries (Test1).

• We obtain the one-parameter ( α) Lie point transformation group (in this case, the transla-

tion group) {X = x, Y = y+ α} (tr1) and verify the invariance of the given ODE under

this one-parameter Lie group, Y ′
X = F (X).

• We obtain the infinitesimal generator (or infinitesimal operator) (G) of the group,G=f→ ∂

∂y
.

with(DEtools): with(PDEtools): declare(Y(X),prime=X);

ODE1:=diff(y(x),x)=F(x); odeadvisor(ODE1);

Sym1:=symgen(ODE1); Test1:=symtest(Sym1,ODE1,y(x));

tr1:=transinv(Sym1,y(x),Y(X)); itr1:=solve(tr1,{x,y(x)});

ODE1Inv:=dchange(itr1,ODE1,[X,Y(X)]);

G:=InfinitesimalGenerator(Sym1,y(x)); G(f(x,y));

Example 19.34. The Blasius equation. One-parameter point transformation group.

Consider a third-order nonlinear ODE, e.g., the Blasius equation

y′′′xxx = −yy′′xx.

By applying the predefined function symgen with the option way=formal, we compute only all

point symmetries (Sym1) [ ξ = 1, η = 0], [ ξ = x, η = −y], i.e., the infinitesimals ξ(x, y)
and η(x, y) of a one-parameter Lie point transformation group that leaves the given ODE invariant.

Then we obtain the characteristic functionsQi and the infinitesimal generatorsGi (i = 1, 2),

Q1 = −p, Q2 = −y − px, G1 = ∂x, G2 = x∂x − y∂y,

of these point symmetries as follows:

with(DEtools): with(PDEtools): declare(y(x),prime=x);

ODE1:=diff(y(x),x$3)=-y(x)*diff(y(x),x$2);

Sym1:=[symgen(ODE1,y(x),way=formal)]; N1:=nops(Sym1);

for i from 1 to N1 do

Q||i:=subs(Sym1[i],_eta-diff(y(x),x)*_xi);

G||i:=infgen(Sym1[i],0,y(x));

od;

19.3.3 Constructing Exact Solutions

Following the Lie symmetry approach, we can construct exact solutions of ODEs (in one

step) by applying the predefined function dsolve,Lie with various options. For exam-

ple, the option method in dsolve(ODE,y(x),way=val,HINT=[val],method)

can be one of the types: fat, can, can2, gon, gon2, dif, where

• fat, building an integrating factor

• can, reducing the order of the ODE by one (canonical coordinates of the invariance

group)

• can2, reducing a second-order ODE to a quadrature (two pairs of infinitesimals, a

2-D subalgebra)
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• gon, reducing a second-order ODE to a quadrature (a normal form of the symmetry

generator in the space of first integrals)

• gon2, reducing a second-order ODE to a quadrature (two pairs of infinitesimals and

normal forms of the symmetry generators in the space of first integrals)

• dif, applying differential invariants

Remark 19.7. Two methods (fat, can) can be applied to first-order ODEs; six methods

(can—dif) can be applied to second-order ODEs; one method (can) can be applied to higher-

order ODEs. The methods gon, gon2, and dif can work with point and dynamical symmetries.

Example 19.35. First-order nonlinear ODE. The Riccati equation. General solution.

For the Riccati equation

y′x = xy2 − 2
y

x
− 1

x3
, (19.3.3.1)

which is a first-order nonlinear ODE, we construct the general solution (Sol1, Sol2)

y =
x2 + C1

x2(−x2 + C1)
, y = − C1x2 + 1

x2( C1x2 − 1)

by applying different methods (integration factor and canonical coordinates) as follows:

with(DEtools): with(PDEtools): declare(y(x),Y(X),prime=x,prime=X);

ODE1:=diff(y(x),x)=x*y(x)ˆ2-2*y(x)/x-1/xˆ3; odeadvisor(ODE1);

Sol1:=dsolve(ODE1,'fat'); Sol2:=dsolve(ODE1,'can');

Test1:=odetest(Sol1,ODE1); Test2:=odetest(Sol2,ODE1);

Alternatively, for constructing (step by step) exact solutions of ODEs it is possible to apply

various predefined functions (contained in the packages DEtools and PDEtools) at

each step of the solution process.

Example 19.36. The Riccati equation. Canonical coordinates. General solution.

For the Riccati equation (19.3.3.1), we construct the general solution as follows:

(i) We determine all the symmetries (Sym1)
[

[

ξ =
1

x
, η = −2

1

x4

]

,
[

ξ = 0, η = x4

(

y +
1

x2

)2]

,
[

ξ = 0, η = x2y2 − 1

x2

]

,

[

ξ = − x

2
, η = y

]

,
[

ξ = − 1

4
x3, η = yx2 +

1

2

]

]

of the one-parameter Lie point transformation group that leaves this ODE invariant and verify these

symmetries (Test1).

(ii) We select the simplest symmetry Sym1[4], find the corresponding one-parameter Lie

point transformation group (tr1)
{
X = xe− α/2, Y = e αy (x)

}
,

and verify the invariance of the ODE under this one-parameter Lie group (ODE1Inv), Y ′
X =XY 2−

2Y/X − 1/X3.

(iii) We find the infinitesimal generator (G) of the group,G = f→− 1

2
x
( ∂

∂x
f
)
+ y
( ∂

∂y
f
)

.

(iv) We determine the canonical coordinates (trCan)
{
r = yx2, s(r) = −2 ln (x)

}
.

(v) We reduce the original Riccati equation to the simpler equation (ODE3) s′r = −
2

r2 − 1
and

obtain its general solution.



“K16435’ — 2017/9/28 — 15:05 — #1184

1158 SYMBOLIC AND NUMERICAL SOLUTIONS OF ODES WITH MAPLE

(vi) We rewrite the canonical coordinates r and s in terms of x and y and find the general

solution (GenSol3) of the Riccati equation, y = − 1

x2
tanh

(
ln(x) + 1

2 C1
)
, which coincides

with the result obtained with dsolve, y =
1

x2
tanh

(
− ln(x) + C1

)
.

with(DEtools): with(PDEtools): declare(y(x),Y(X),prime=x,prime=X);

ODE1:=diff(y(x),x)=x*y(x)ˆ2-2*y(x)/x-1/xˆ3; odeadvisor(ODE1);

Sym1:=[symgen(ODE1,way=all)]; Test1:=map(symtest,Sym1,ODE1,y(x));

Sym:=Sym1[4]; tr1:=simplify(transinv(Sym,y(x),Y(X)));

itr1:=simplify(solve(tr1,{x,y(x)}));

ODE1Inv1:=dchange(itr1,ODE1,[X,Y(X)],simplify);

ODE1Inv:=expand(ODE1Inv1/exp(-3/2*(_alpha)));

G:=InfinitesimalGenerator(Sym,y(x)); G(f(x,y));

trCan:=canoni(Sym,y(x),s(r));itrCan:=op(1,[solve(trCan,{x,y(x)})]);

ODE2:=dchange(itrCan,ODE1,[r,s(r)],simplify);

ODE3:=op(solve(ODE2,{diff(s(r),r)})); GenSol1:=dsolve(ODE3,s(r));

GenSol2:=dchange(trCan,GenSol1,{x,y(x)},simplify);

GenSol3:=y(x)=solve(GenSol2,y(x)); Test2:=odetest(GenSol3,ODE1);

GenSol0:=dsolve(ODE1,y(x));

19.3.4 Order Reduction of ODE

It is well known that an nth-order ODE

y(n)x = f(x, y, y′x, . . . , y
(n−1)
x ) (n ≥ 2)

invariant under a one-parameter Lie transformation group (with infinitesimal generator) can

be reduced to an (n − 1)st-order ODE [see Bluman and Kumei (1989)]. This can be done

by two methods, order reduction by canonical coordinates or order reduction by differential

invariants.

Example 19.37. Second-order nonlinear ODE. Emden–Fowler equation. Order reduction.

Consider a second-order nonlinear ODE, e.g., the Emden–Fowler equation

y′′xx = Axnym (m = 3, n = −6).

First, we determine all the symmetries (Sym1) of the one-parameter Lie point transformation groups

(tr1, tr2)

X = xe α, Y = e2 αy; X = − x

αx− 1
, Y = − y

αx− 1
,

that leave this ODE invariant and verify these symmetries:

with(DEtools): with(PDEtools): declare(y(x),Y(X),prime=x,prime=X);

ODE:=diff(y(x),x$2)=A*xˆn*(y(x))ˆm; ODE1:=subs(m=3,n=-6,ODE);

odeadvisor(ODE1); Sym1:=[symgen(ODE1)]; map(symtest,Sym1,ODE1,y(x));

tr1:=transinv(Sym1[1],y(x),Y(X)); itr1:=solve(tr1,{x,y(x)});

ODE1I:=dchange(itr1, ODE1,[X,Y(X)]);

simplify(isolate(ODE1I,diff(Y(X),X)),symbolic);

tr2:=transinv(Sym1[2],y(x),Y(X)); itr2:=solve(tr2,{x,y(x)});

ODE2I:=dchange(itr2, ODE1,[X,Y(X)]); isolate(ODE2I,diff(Y(X),X));
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Then, for each symmetry (Sym1[1], Sym1[2])

[ ξ = x, η = 2y], [ ξ = x2, η = xy],

we obtain the differential invariants (Inv11, Inv12, Inv21, Inv22)∗

I0 =
y

x2
, I1 =

x2

y1 x− 2y
, I0 =

y

x2
, I1 =

y1

x
,

I0 =
y

x
, I1 =

1

y1 x− y , I0 =
y

x
, I1 = − y1 x+ y (19.3.4.1)

and the reduced ODEs (ODE11, ODE12, ODE21, ODE22) by applying the two methods, reduction

of order by canonical coordinates (can) and order reduction by differential invariants (dif):

Y ′
X = (−AX3 + 2X)Y 3 + 3Y 2, Y ′

X =
AX3 − Y
Y − 2X

,

Y ′
X = −Y 3AX3, Y ′

X = A
X3

Y
.

The second-order Emden–Fowler equation is reduced to first-order ODEs of various types (Abel-

type equations and separable equations):

for i from 1 to 2 do

Inv||i||1:=invariants(Sym1[i],y(x),can);

Inv||i||2:=invariants(Sym1[i],y(x),dif);

RedOr||i||1:=reduce_order(ODE1,Sym1[i],Y(X),can);

RedOr||i||2:=reduce_order(ODE1,Sym1[i],Y(X),dif);

ODE||i||1:=op([2,1,1],rhs(RedOr||i||1)); odeadvisor(ODE||i||1);

ODE||i||2:=op([2,1,1],rhs(RedOr||i||2)); odeadvisor(ODE||i||2);

od;

Moreover, it is possible to find the most general ODE (in our case, of the second order, ODE13)

y′′xx = F1

(
(y′xx− y)

x2

y2

)
y3

x6

that is simultaneously invariant under this set of symmetries (Sym1[1], Sym1[2]). Here F1 is

an arbitrary function of its argument. Then we obtain the reduced equations (ODE1331, ODE1332,

ODE2331, ODE2332) by applying the two methods, order reduction by canonical coordinates

(can) and order reduction by differential invariants (dif):

(Y 1)′X1 = −Y 13 F1

(
1

X12Y 1

)
X13, Y 2 = − 1

X2(X22 F1(1/X2)− 2)
,

(Y 1)′X1 = F1

(
− Y 1

X12

)
X13

Y 1
, Y 2 =

F1(−X2)

X2
.

The most general second-order ODE can be reduced to first-order homogeneous ODEs and algebraic

equations:

ODE13:=equinv(Sym1,y(x),2); odeadvisor(ODE13);

Red131:=reduce_order(ODE13,Sym1[1],Y(X),can);

Red132:=reduce_order(ODE13,Sym1[1],Y(X),can);

Red133:=reduce_order(ODE13,Sym1,Y1(X1),Y2(X2),can,in_sequence);

ODE1331:=op([2,1,1],rhs(Red133[1]));

ODE1332:=op([2,1,1],rhs(Red133[2]));

∗In Maple’s notation, y1 stands for y′x.
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Red231:=reduce_order(ODE13,Sym1[2],Y(X),dif);

Red232:=reduce_order(ODE13,Sym1[2],Y(X),dif);

Red233:=reduce_order(ODE13,Sym1,Y1(X1),Y2(X2),dif,in_sequence);

ODE2331:=op([2,1,1],rhs(Red233[1]));

ODE2332:=op([2,1,1],rhs(Red233[2]));

odeadvisor(ODE1331); odeadvisor(ODE2331);

⊙ Literature for Section 18.3: P. J. Olver (1986), G. W. Bluman and S. Kumei (1989), H. Stephani (1989),

M. A. H. MacCallum (1995), E. S. Cheb-Terrab, L. G. S. Duarte, and L. A. C. P da Mota (1997, 1998),

E. S. Cheb-Terrab and A. D. Roche (1998), E. S. Cheb-Terrab and T. Kolokolnikov (2003).

19.4 Numerical Solutions and Their Visualizations

Although there exist various exact methods for special classes of differential equations,

in general one cannot obtain an exact solution of a differential equation in closed form.

Moreover, the functions and data in differential equation problems are frequently defined

at discrete points. Therefore, we have to study numerical approximation methods for dif-

ferential equations.

Consider various numerical and approximate analytical methods for initial value prob-

lems, boundary value problems, and eigenvalue problems for ordinary differential equa-

tions.

19.4.1 Numerical Solutions in Terms of Predefined Functions

Consider the most important functions for finding numerical solutions of a given ODE

problem.

dsolve(ODEs,numeric,vars,ops);dsolve(numeric,procops,ops);

with(DEtools); dsolve(ODEs,numeric,method=m,ops);

with(plots): dsolve(ODEs,numeric,output=n,ops);

dsolve[interactive](ODEs,ops);

NS:=dsolve(ODE,numeric,vars); odeplot(NS,vars,tR,ops);

• dsolve,numeric, finding numerical solutions of ODE problems

• dsolve,method, finding numerical solutions of ODE problems using one of the

numerical methods rkf45, ck45, rosenbrock, bvp, rkf45 dae, ck45 dae,

rosenbrock dae, dverk78, lsode, gear, taylorseries, mebdfi, or

classical

• dsolve,procops, for specifying the input system in procedure form (instead of

specifying ODEs)

• dsolve,output, for obtaining the output from dsolve in various formats, e.g.,

as a procedure (with the default keyword procedurelist), as a list of equations

of the form variable=procedure (with the keyword listprocedure), and

as a list of equations of the form operator=procedure (with operator)
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Figure 19.4: Numerical solutions of the Cauchy problem (19.4.1.1).

• dsolve[interactive], interactive numerical solution of ODEs

• odeplot (the plots package), constructing graphs or animations of two-dimen-

sional and three-dimensional solution curves obtained from the numerical solution

• DETools package, for working with graphical presentation of solutions of ODEs,

where numerical methods are used for computing trajectories (e.g., dfieldplot,

phaseportrait,DEplot, DEplot3d)

Remark 19.8. For more comprehensive details on numerical methods embedded in Maple (for

solving ODEs) and graphical representation of solutions, we refer to Sections 19.4.2 and 19.2.1.

Example 19.38. Cauchy problem. Numerical and graphical solutions.

For the Cauchy problem (with several initial conditions)

y′x = pym + qxn, y(0) = y0 (19.4.1.1)

on the interval [a, b] (a = 0, b = 9) with parameters p = 1, q = −1, m = 2, n = 1, and

y0 = {0, 0.2, 0.5, 0.729, 0.75, 0.8− 4}, we find numerical and graphical solutions (see Fig. 19.4) as

follows:

with(plots): setoptions(scaling=constrained); N:=7;

ODE:=diff(y(x),x)=p*(y(x))ˆm+q*xˆn;

IC:=[y(0)=0,y(0)=0.2,y(0)=0.5,y(0)=0.729,y(0)=0.75,y(0)=0.8,y(0)=-4];

a:=0; b:=9; p:=1; q:=-1; n:=1; m:=2;

Tn:=type=numeric; Op:=output=operator;

for i from 1 to N do

Sol||i:=dsolve([ODE,IC[i]],Tn,Op):

G||i:=plot(rhs(Sol||i[2](t)),t=a..b,axes=boxed,gridlines=true):

od:

display([seq(G||i,i=1..N)],view=[a..b,-5..5]);
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19.4.2 Numerical Methods Embedded in Maple

In Maple, one can obtain numerical solutions of ODEs and systems of ODEs

• without specifying a method (automatically),

• specifying one of the predefined methods (described in Tables 19.2–19.6),

• specifying various other options in dsolve,numeric.

In Maple, it is possible to solve different types of problems:

• initial value problems (nonstiff, stiff, and complex-valued with a real-valued inde-

pendent variable),

• boundary value problems (linear and nonlinear),

• initial value problems for differential algebraic equations (nonstiff and stiff),

• initial value problems for delay differential equations (nonstiff and stiff).

The default result of dsolve,numeric is a procedure (which can be used to obtain

numerical values and visualizations).

The default methods are:

• rkf45, the Runge–Kutta–Fehlberg method (for nonstiff initial value problems), and

rosenbrock, the Rosenbrock method (for stiff initial value problems);

• bvp, the finite difference method with Richardson extrapolation (for linear and non-

linear boundary value problems);

• rkf45 dae, the modified Runge–Kutta–Fehlberg method (nonstiff initial value

problems for differential algebraic equations), and rosenbrock dae, the modified

Rosenbrock method (stiff initial value problems for differential algebraic equations);

• rkf45, the Runge–Kutta–Fehlberg method (nonstiff initial value problems for delay

differential equations), and rosenbrock, the Rosenbrock method (stiff initial value

problems for delay differential equations).

The numerical methods for initial value problems embedded in Maple (except for the

classical methods∗) control the discretization error (for more details, see options abserr,

relerr, minstep, maxstep, and initstep).

The classical methods do not estimate the discretization error, and the step size is fixed.

However, there is no best numerical method for initial value problems.

The efficiency depends on various parameters (e.g., the order, the step size, the dis-

cretization error, tolerances, and accuracy).

For example, for greater accuracy, a higher-order method (dverk78) is more appro-

priate.

∗See Table 19.6 for details.
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However, rkf45 is more efficient than the higher-order method dverk78 for modest

tolerances, and dverk78 is more efficient for stringent tolerances.

The lsode method adapts the order and the step size; therefore, it is efficient over a

wide range of tolerances.

More detailed information about numerical methods for initial value problems embed-

ded in Maple is presented in Table 19.2.

Remark 19.9. The following abbreviations in Tables 19.2–19.6 are adopted: IVP, initial value

problem; BDF, backward differentiation formula; IVP–DAE, initial value problem for differential

algebraic equations, IVP–DDE, initial value problem for delay differential equations.

Table 19.2.

Numerical methods for initial value problems embedded in Maple

with brief description and some references

Numerical method Brief description References

rkf45

The Runge–Kutta–Fehlberg method

with 4-degree interpolant. Order: 4-5.

Explicit default method for nonstiff IVP without singularities.

Adaptive method with a control of the discretization error.

Enright et al. (1986)

Fehlberg (1970)

Shampine and Corless (2000)

ck45

The Cash–Karp Runge–Kutta method

with 4-degree interpolant. Order: 4–5.

Explicit method for nonstiff IVP.

Adaptive method with a control of the discretization error.

Enright et al. (1986)

Cash and Karp (1990)

Forsythe et al. (1977)

rosenbrock

The Rosenbrock Runge–Kutta method

with 3-degree interpolant. Order: 3-4.

Implicit default method for stiff IVP.

Adaptive method with a control of the discretization error.

Hairer and Wanner (1996)

Shampine and Corless (2000)

Forsythe et al. (1977)

dverk78

The continuous Runge–Kutta method.

Order: 7-8. Explicit method for nonstiff IVP.

High-accuracy solutions can be obtained.

Adaptive method with a control of the discretization error.

Enright (1991)

Verner (1978)

Forsythe et al. (1977)

lsode

The Livermore method for stiff IVP. 8 submethods:
adamsfunc, adamsfull, adamsdiag, adamsband,
backfunc, backfull, backdiag, backband.
Adaptive method (order, step size),

high-accuracy, a wide range of tolerances.

Hindmarsh (1983)

Forsythe et al. (1977)

Shampine and Corless (2000)

gear

The Gear single-step extrapolation method for stiff IVP.

2 submethods: bstoer (Burlirsch–Stoer rational
extrapolation), polyextr (polynomial extrapolation).

Adaptive method (order, step size), high-accuracy solutions.

Gear (1971)

Shampine and Gear (1979)

Shampine and Corless (2000)

taylorseries

Taylor series method for nonstiff IVP. High-accuracy solutions

(takes more time). 2 submethods: lazyseries
(lazy series expansion), series (local series expansion).

Adaptive method with a control of the discretization error.
The order can be specified.

Barton et al. (1972)

Forsythe et al. (1977)

Shampine and Corless (2000)

classical

Classical numerical methods (for education). 8 submethods:
foreuler, heunform, impoly, rk2, rk3,
rk4, adambash, abmoulton.
Fixed step size, without error estimation or correction.

Boyce and DiPrima (2004)

Conte and de Boor (1980)

Fox and Mayers (1987)

There are two forms of introducing numerical methods for solving boundary value prob-

lems, method=bvp and method=bvp[submethod] (a specific submethod for solving

boundary value problems).
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The available methods are quite general and work on a variety of boundary value prob-

lems:

• linear and nonlinear (with fixed, periodic, and nonlinear boundary conditions),

• nonstiff boundary value problems,

• boundary value problems without singularities in higher-order derivatives,

• boundary value problems with undetermined parameters.

The submethods for boundary value problems embedded in Maple are presented in

Table 19.3.

Table 19.3.

Numerical methods for boundary value problems embedded in Maple

with brief description and some references

Numerical method Brief description References

traprich
Trapezoid method with Richardson extrapolation enhancement.

More efficient for typical problems.

Richardson extrapolation is generally faster.

Ascher et al. (1995)

Ascher and Petzold (1998)

trapdefer
Trapezoid method with deferred correction enhancement.

More efficient for typical problems.

Deferred corrections uses less memory on difficult problems.

Ascher et al. (1995)

Ascher and Petzold (1998)

midrich

Midpoint method with Richardson extrapolation enhancement.

Can work with end-point singularities.

Richardson extrapolation is generally faster.

Ascher et al. (1995)

Ascher and Petzold (1998)

middefer

Midpoint method with deferred correction enhancement.

Can work with end-point singularities.

Deferred corrections uses less memory on difficult problems.

Ascher et al. (1995)

Ascher and Petzold (1998)

In general, the extension methods for solving initial value problems for differential alge-

braic equations are very similar to the standard methods for initial value problems (see

Table 19.2).

More detailed information about numerical methods for solving initial value problems

for differential algebraic equations embedded in Maple is presented in Table 19.4.

More detailed information about numerical methods for solving initial value problems

for delay differential equations embedded in Maple is presented in Table 19.5.

◮ Classical numerical methods embedded in Maple.

The classical numerical methods embedded in Maple for solving ODEs are

• the forward Euler method,

• the Heun method (the improved Euler method),

• the improved polygon method (the modified Euler method),

• the second-order classical Runge–Kutta method, the third-order classical Runge–

Kutta method,
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Table 19.4.

Numerical methods for initial value problems for differential-algebraic

equations embedded in Maple with description and references

Numerical method Brief description References

rkf45 dae

The modified Runge–Kutta–Fehlberg method

with 4-degree interpolant. Order: 4-5.

An extension of rkf45 method
for nonstiff real-valued IVP-DAE.

Enright et al. (1986)

Fehlberg (1970)

Shampine and Corless (2000)

ck45 dae

The modified Cash–Karp Runge–Kutta method

with 4-degree interpolant. Order: 4-5.

An extension of ck45 method
for nonstiff real-valued IVP-DAE.

Enright et al. (1986)

Cash and Karp (1990)

Forsythe et al. (1977)

rosenbrock dae

The modified Rosenbrock Runge–Kutta method

with 3-degree interpolant. Order: 3-4.

An extension of an implicit rosenbrock method

for stiff real-valued IVP-DAE.

Hairer and Wanner (1996)

Shampine and Corless (2000)

Forsythe et al. (1977)

mebdfi
The modified extended BDF implicit method.

For real-valued stiff IVP-DAE
and for DAE of index 2 and lower.

Cash (1983)

Cash (1992)

Forsythe et al. (1977)

Table 19.5.

Numerical methods for initial value problems for delay differential equations

embedded in Maple with description and references

Numerical method Brief description References

rkf45
The Runge–Kutta–Fehlberg method with 4-degree interpolant.

Order: 4-5. For nonstiff real-valued IVP-DDE
with constant and variable delays.

Enright et al. (1986)

Fehlberg (1970)

Shampine and Corless (2000)

ck45
The Cash–Karp Runge–Kutta method with 4-degree interpolant.

Order: 4-5. For nonstiff real-valued IVP-DDE
with constant and variable delays.

Enright et al. (1986)

Cash and Karp (1990)

Forsythe et al. (1977)

rosenbrock

The Rosenbrock Runge–Kutta method with 3-degree interpolant.

Order: 3-4. The implicit method.

For stiff real-valued IVP-DDE with constant and variable delays.

Hairer and Wanner (1996)

Shampine and Corless (2000)

Forsythe et al. (1977)

• the fourth-order classical Runge–Kutta method, the Adams–Bashforth method (a

predictor method),

• the Adams–Bashforth–Moulton method (a predictor-corrector method).

However, there are some restrictions associated with these classical methods: they use

a static (fixed) step size and provide no error estimation or correction.

The default classical method is the forward Euler method.

More detailed information about the classical numerical methods embedded in Maple

is presented in Table 19.6.

Let us describe the classical methods for the first-order ODE y′x=f(x, y). We introduce

the following notation: Yi is the value of the solution at point Xi, h is the fixed step size

Xi −Xi−1, and the value Yn+1 of the solution at Xn+1 is being computed.
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Table 19.6.

Classical numerical methods embedded in Maple

with brief description and some references

Numerical method Brief description References

foreuler The forward Euler method (the default submethod).
Order: 1. Single-step explicit method for nonstiff IVP.

Boyce and DiPrima (2004)

Conte and de Boor (1980)

heunform The Heun method (the improved Euler method).

Order: 2. Single-step explicit method for nonstiff IVP.

Boyce and DiPrima (2004)

Conte and de Boor (1980)

impoly The improved polygon method (the modified Euler method).

Order: 2. Single-step explicit method for nonstiff IVP.

Boyce and DiPrima (2004)

Conte and de Boor (1980)

rk2 The second-order classical Runge–Kutta method.

Order: 2. Single-step explicit method for nonstiff IVP.

Boyce and DiPrima (2004)

Conte and de Boor (1980)

rk3 The third-order classical Runge–Kutta method.

Order: 3. Single-step explicit method for nonstiff IVP.

Boyce and DiPrima (2004)

Conte and de Boor (1980)

rk4 The fourth-order classical Runge–Kutta method.

Order: 4. Single-step explicit method for nonstiff IVP.

Boyce and DiPrima (2004)

Conte and de Boor (1980)

adambash The Adams–Bashforth method (or a predictor method).

Order: 4. Explicit 4-step method for nonstiff IVP.

Boyce and DiPrima (2004)

Lambert (1973)

abmoulton The Adams–Bashforth–Moulton method. Order: 4.
Implicit 3-step predictor-corrector method for nonstiff IVP.

Boyce and DiPrima (2004)

Fox and Mayers (1987)

The forward Euler method foreuler is specified by the equation

Yn+1 = Yn + hf(Xn, Yn).

The Heun method (or the improved Euler method) heunform applies the forward Eu-

ler method (as a predictor) and the trapezoid rule (as a corrector); it is specified by the

equations

Yp = Yn + hf(Xn, Yn), Yn+1 = Yn + 1
2h (f(Xn, Yn) + f(Xn+1, Yp)) .

The improved polygon method (or the modified Euler method) impoly is specified by the

equation

Yn+1 = Yn + hf
(
Xn + 1

2h, Yn + 1
2hf(Xn, Yn)

)
.

The second-order classical Runge–Kutta method rk2 is specified by the equations

k1 = f(Xn, Yn), k2 = f(Xn + h, hk1 + Yn), Yn+1 = Yn + 1
2h(k1 + k2).

The third-order classical Runge–Kutta method rk3 is specified by the equations

k1 = f(Xn, Yn), k2 = f(Xn + 1
2h, Yn + 1

2hk1),

k3 = f (Xn + h, Y n+ h(−k1 + 2k2)) , Yn+1 = Yn + 1
6h(k1 + 4k2 + k3).

The fourth-order classical Runge–Kutta method rk4 is specified by the equations

k1 = f(Xn, Yn), k2 = f(Xn + 1
2h, Yn + 1

2hk1), k3 = f(Xn + 1
2h, Yn + 1

2hk2),

k4 = f(Xn + h, hk3 + Yn) Yn+1 = Yn + 1
6h(k1 + 2k2 + 2k3 + k4).
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The Adams–Bashforth method (a predictor method) adambash is specified by the equa-

tion

Yn+1=Yn+
h
24 (55f(Xn, Yn)−59f(Xn−1, Yn−1)+37f(Xn−2, Yn−2)−9f(Xn−3, Yn−3)).

The Adams–Bashforth–Moulton method (a predictor-corrector method) abmoulton is

specified by the equations

Yn+1=Yn+
h
24 (9f(Xn+1, Yn+1)+19f(Xn, Yn)−5f(Xn−1, Yn−1)+f(Xn−2, Yn−2)) ,

where f(Xn+1, Yn+1) is found by applying the Adams–Bashforth method (the predictor)

and then the Adams–Bashforth–Moulton method (the corrector).

The adambash and abmoulton are multistep methods, which require the initial con-

dition and three other starting values (equally spaced). These starting values can be ob-

tained by computing the first 3 steps with the rk4 method. The final step values (for fixed

spacing) use the rk4 method as well.

Example 19.39. Cauchy problem. Exact solution. Classical numerical methods.

For the Cauchy problem

y′x = pym + qxn, y(0) = y0 (19.4.2.1)

on the interval [a, b] (a = 0, b = 9) with parameters p = 1, q = −1, m = 2, n = 1, and y0 = 0.729,

we find the exact solution (SolEx) and numerical solutions using the Euler method, the improved

Euler method (the Heun method), and the Runge–Kutta method and compare the graphical solutions

as follows:

with(plots): IVP1:={diff(y(x),x)=p*(y(x))ˆm+q*xˆn, y(0)=0.729};

Tn:=type=numeric; S:=stepsize=0.17; a:=0; b:=9; p:=1; q:=-1;

n:=1; m:=2; C:=[color=magenta,color=red,color=green,color=blue]:

SolEx:=unapply(rhs(dsolve(IVP1,y(x))),x);

EulM:=dsolve(IVP1,y(x),Tn,method=classical[foreuler],S);

HeunM:=dsolve(IVP1,y(x),Tn,method=classical[heunform],S);

RK4M:=dsolve(IVP1,y(x),Tn,method=classical[rk4],S);

G1:=plot(SolEx(x),x=a..b,C[1]): G2:=odeplot(EulM,[x,y(x)],C[2]):

G3:=odeplot(HeunM,[x,y(x)],C[3]):G4:=odeplot(RK4M,[x,y(x)],C[4]):

display({G1,G2,G3,G4},view=[a..b,0..3]);

The exact solution (SolEx) of this nonlinear Cauchy problem reads:

y(x) = − (r/q)Ai(1)(x) + Bi(1)(x)

(r/q)Ai(x) + Bi(x)
,

where r=243 35/6π+500
(
Γ
(
2
3

))2
32/3, q=500

6
√
3
(
Γ
(
2
3

))2−243 π
3
√
3, the special functions

Ai(x) and Bi(x) are the Airy functions, and Ai(1)(x) and Bi(1)(x) are their first derivatives.

We can see (Fig. 19.5) that the numerical solution obtained by the Runge–Kutta method is in

good agreement with the exact solution. To get a good approximation to the solution, we can modify

the step size for the Euler method (e.g., S1:=stepsize=0.0001) and the Heun method (e.g.,

S2:=stepsize=0.01) and introduce a new parameter MF:=maxfun=500000 for increasing

the total number of evaluations of the right-hand side of the ODE for any single call to the procedure

returned by dsolve. For example, we write out the modified version:
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Figure 19.5: Exact solution of the Cauchy problem (19.4.2.1) and numerical approxima-

tions (obtained by the Euler, Heun, and Runge–Kutta methods).

with(plots): IVP1:={diff(y(x),x)=p*(y(x))ˆm+q*xˆn, y(0)=0.729};

Tn:=type=numeric; S:=stepsize=0.17; S1:=stepsize=0.0001;

S2:=stepsize=0.01; MF:=maxfun=500000; a:=0; b:=9; p:=1; q:=-1;

n:=1; m:=2; C:=[color=magenta,color=red,color=green,color=blue]:

SolEx:=unapply(rhs(dsolve(IVP1,y(x))),x);

EulM:=dsolve(IVP1,y(x),Tn,method=classical[foreuler],S1,MF);

HeunM:=dsolve(IVP1,y(x),Tn,method=classical[heunform],S2,MF);

RK4M:=dsolve(IVP1,y(x),Tn,method=classical[rk4],S,MF);

G1:=plot(SolEx(x),x=a..b,C[1]): G2:=odeplot(EulM,[x,y(x)],C[2]):

G3:=odeplot(HeunM,[x,y(x)],C[3]):G4:=odeplot(RK4M,[x,y(x)],C[4]):

display({G1,G2,G3,G4},view=[a..b,0..3]);

19.4.3 Initial Value Problems: Examples of Numerical Solutions

◮ Preliminary remarks.

In general, the ordinary differential equation y′x = f(x, y) admits infinitely many solu-

tions y = y(x). To find one of them, we have to add a condition of the form y(x0) = y0
(x0 = a), where y0 is a given value called the initial data.

Consider some examples of initial value problems.

◮ Linear initial value problems.

Example 19.40. First-order linear ODE. Analytical, numerical, and graphical solutions.

For the first-order linear initial value problem

y′x = −y cos(x2), y(0) = 1 (19.4.3.1)

on the interval [a, b] (a = 0, b = 10), we find infinitely many exact solutions

y(x) = C e

√
2π

2
FresnelC(

√
2x/
√
π)
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Figure 19.6: Exact solution of the Cauchy problem (19.4.2.1) and numerical approxima-

tions (obtained by the Euler, the Heun, and the Runge–Kutta methods).

admitted by this ordinary differential equation and plot some of them (Sols). Here the special

function FresnelC(x) is the Fresnel cosine integral. Then we plot the unique exact solution of

the Cauchy problem with the vector field (DEplot). Finally, we compute the numerical solution

(SolN) of the Cauchy problem, plot it together with the exact solution (G1, G2), and compare the

results as follows:

with(DETools):with(plots):setoptions(axes=boxed,numpoints=200);

ODE1:=D(y)(x)=-y(x)*cos(xˆ2); IC:=y(0)=1; IVP1:={ODE1,IC};

a:=0; b:=10; SolEx1:=dsolve(ODE1,y(x));

Sols:={seq(subs(_C1=i,rhs(SolEx1)),i=-b..b)}; plot(Sols,x=a..b);

DEplot(ODE1,y(x),x=a..b,[[0,1]],y=0..3);

SolEx2:=dsolve(IVP1,y(x)); SolN:=dsolve(IVP1,numeric,y(x));

G:=array(1..2); G[1]:=odeplot(SolN,[x,y(x)],a..b,color=blue):

G[2]:=plot(rhs(SolEx2),x=a..b,color=red): display(G);

We can see (Fig. 19.6) that the numerical solution is in good agreement with the exact solution.

Example 19.41. Second-order linear ODE. Analytical, numerical, and graphical solutions.

For the second-order linear initial value problem

y′′xx − y′x + (x− 1)y = 0, y(0) = 1, y′x(0) = 0

on the interval [a, b] (a = 0, b = 10), we find the exact solution (Sol1)

y(x)=
1

2

ex/2
(
Bi(x1)Ai(c)−Ai(x1)Bi(c)− 2Bi(x1)Ai

(1)(c) + 2Ai(x1)Bi
(1)(c)

)

Bi(1)(c)Ai(c)− Bi(c)Ai(1)(c)
,

where x1 =
5
4 −x, c= 5

4 , the special functions Ai(x) and Bi(x) are the Airy functions, and Ai(1)(x)

and Bi(1)(x) are their first derivatives. The numerical solution (Sol2) and the graphical solutions

(array G) can be obtained as follows:

with(plots): setoptions(axes=boxed,scaling=unconstrained,numpoints=200);

G:=Array(1..3); ODE1:=diff(y(x),x$2)-diff(y(x),x)+(x-1)*y(x)=0;

IC1:=D(y)(0)=0,y(0)=1; a:=0; b:=10; C:=[blue,red,magenta];
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Sol1:=dsolve({ODE1,IC1},y(x)); Sol2:=dsolve({ODE1,IC1},y(x),numeric);

G[1]:=odeplot(Sol2,[x,y(x)],a..b,color=C[1]):

G[2]:=plot(rhs(Sol1),x=a..b,color=C[2]):

G[3]:=odeplot(Sol2,[y(x),diff(y(x),x)],0..10,color=C[3]): display(G);

◮ Nonlinear initial value problems.

Example 19.42. First-order nonlinear ODE. Numerical and graphical solutions.

For the nonlinear initial value problem

y′x = −exy cos(x2), y(0) = p

on the interval [a, b] (a= 0, b= 10), we find the numerical and graphical solutions for various initial

conditions y(0) = p, where p = 0.1 i (i = 1, 2, ..., 5), as follows:

with(plots): R:=0..10;

Ops:=numpoints=100,color=blue,thickness=2,axes=boxed;

SolNG:=proc(IC) local Eq,EqIC,L1,SolN,ICN,i;

Eq:=D(y)(x)=-exp(y(x)*x)*cos(xˆ2); L1:=NULL; ICN:=nops(IC);

for i from 1 to ICN do

EqIC:=evalf(y(0)=IC[i]); SolN:=dsolve({Eq,EqIC},y(x),type=numeric);

L1:=L1,odeplot(SolN,[x,y(x)],R,Ops):

od; display([L1]);

end:

List1:=[seq(0.1*i,i=1..5)]; SolNG(List1);

Example 19.43. First-order nonlinear Cauchy problem. Numerical and graphical solutions.

Consider the initial value problem for the nonlinear differential equation

y′x = 1−
√
1− qx2y2, y(0) = p, (19.4.3.2)

where p ∈ R and q > 0.

The existence domain of solutions of this differential equation with q > 0 is given by the in-

equality x2y2 ≤ 1/q.

The differential equation in the Cauchy problem (19.4.3.2) has the equilibrium point y = 0.

The solutions of the Cauchy problem for this equation with the initial conditions y(0) = p behave

differently depending on the sign of p.

If p < 0, then the solutions are infinitely extendible to the right. If p > 0, then the solutions

approach the boundary of the existence domain at some x (that is, they are not infinitely extendible

to the right). Therefore, the equilibrium position y = 0 is unstable, because, in any neighborhood

of y = 0, there exist solutions that are not infinitely extendible.

For q = 1, several numerical solutions of the Cauchy problem (19.4.3.2) for various values of p
are presented in Fig. 19.7 (left) for p > 0 and in Fig. 19.7 (right) for p < 0.

For example, for p > 0 we take the values 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and for p < 0 we take the

values −0.2,−0.4,−0.6,−0.8,−1.0,−1.2. The solutions are valid for x ≥ 0 and are presented on

the interval [a, b], where a = 0 and b = 3 or b = 9. Also in these figures we draw the boundary of

the existence domain of solutions, xy = ±1.

To generate Fig. 19.7 (left), where q = 1 and p = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, we can write the

following program:

with(plots): R1:=0..3; R2:=0..9; Q1:=0..3; Q2:=-2..0.1;

Ops:=numpoints=100,color=blue,thickness=2,axes=boxed;

SolNG:=proc(IC,q,R) local Eq,EqIC,L1,SolN,ICN,i;
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Figure 19.7: Numerical solutions of the Cauchy problem (19.4.3.2) for q = 1, p > 0 (left)

and p < 0 (right).

Eq:=D(y)(x)=1-sqrt(1-q*xˆ2*y(x)ˆ2); L1:=NULL; ICN:=nops(IC);

for i from 1 to ICN do

EqIC:=evalf(y(0)=IC[i]); SolN:=dsolve({Eq,EqIC},y(x),type=numeric);

L1:=L1,odeplot(SolN,[x,y(x)],R,Ops):

od; display([L1]);

end:

List1:=[seq(0.2*i,i=1..6)]; List2:=[seq(-0.2*i,i=1..6)];

G1:=SolNG(List1,1,R1): G2:=plot(1/x,x=R1,Q1): display({G1,G2});

G3:=SolNG(List2,1,R2): G4:=plot(-1/x,x=R2,Q2): display({G3,G4});

19.4.4 Initial Value Problems: Constructing Numerical Methods and
Solutions

Alternatively, numerical methods and solutions of initial value problems can be constructed

(step by step) and analyzed as follows.

◮ Single-step methods.

First, consider one of the classical methods, the forward Euler method, or the explicit Eu-

ler method. This method belongs to a family of single-step methods, which compute the

numerical solution Yi+1 at the node Xi+1 knowing the information related only to the pre-

vious node Xi.

The strategy of these methods is to divide the integration interval [a, b] into N subinter-

vals of length h = (b− a)/N , which is called the discretization step. Then at the nodes Xi

(0≤ i≤N ) we compute the unknown value Yi, which approximates the exact value y(Xi);
i.e., Yi ≈ y(Xi). The set of values {Y0 = y0, Y1, . . . , YN} is the numerical solution. The

formula for the explicit Euler method reads:

Yi+1 = Yi + hF (Xi, Yi), Y0 = y(X0), i = 0, . . . , N − 1.

Example 19.44. The Euler method. Analytical, numerical, and graphical solutions.

For the Cauchy problem

y′x = pym + qxn, y(0) = 0.5 (19.4.4.1)
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Figure 19.8: Exact solution (solid line) and numerical solution (points, the solution is ob-

tained by the explicit Euler method) of the Cauchy problem (19.4.4.1).

on the interval [a, b] (a = 0, b = 2) with parameters p = 1, q = −1, m = 2, and n = 1, we find

the exact solution (SolEx) and a numerical solution (F1) using the explicit Euler method, com-

pare the results, plot the exact and numerical solutions (see Fig. 19.8), and determine the absolute

computational error at each step as follows:

with(plots): ODE1:=diff(y(x),x)=p*(y(x))ˆm+q*xˆn; IC:=y(0)=0.5;

a:=0; b:=2; p:=1; q:=-1; n:=1; m:=2; N:=40;

IVP1:={ODE1,IC}; SolEx:=unapply(rhs(dsolve(IVP1,y(x))),x);

F:=(x,y)->p*yˆm+q*xˆn; h:=evalf((b-a)/N); X:=x->a+x*h;

Y:=proc(n) option remember; Y(n-1)+h*F(X(n-1),Y(n-1)) end;

Y(0):=0.5; F1:=[seq([X(i),Y(i)],i=0..N)]; Array(F1);

for i from 0 to N do

print(i,X(i),Y(i),evalf(SolEx(X(i))),evalf(abs(Y(i)-SolEx(X(i)))));

od;

G1:=plot(SolEx(x),x=a..b): G2:=plot(F1,style=point,color=red):

display({G1,G2});

There is a general way to determine the order of convergence of a numerical method.

If we know the errors Ei (i = 1, . . . , N ) depending on the values hi of the discretization

parameter (in our case, hi is the discretization step of the Euler method) and assume that

Ei = Chpi and Ei−1 = Chpi−1, then

p =
log(Ei/Ei−1)

log(hi/hi−1)
, i = 2, . . . , N. (19.4.4.2)

Example 19.45. The Euler method. The order of convergence.

For the same Cauchy problem

y′x = pym + qxn, y(0) = 0.5

(as in the previous example) on the interval [a, b] (a = 0, b = 2) with parameters p = 1, q = −1,

m= 2, and n= 1, we obtain a numerical solution by applying the explicit Euler method for various
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values of the discretization step h and, according to formula (19.4.4.2), verify that the order of

convergence of the explicit Euler method is 1:

ODE1:=diff(y(x),x)=p*(y(x))ˆm+q*xˆn; IC:=y(0)=0.5;

a:=0; b:=2; p:=1; q:=-1; n:=1; m:=2; N:=40;

IVP1:={ODE1,IC};

Euler:=proc(IVP::set,a,b,p,q,n,m,N) local h,xL,X,Y,F,F1,SolEx,EN;

h:=(b-a)/N; X:=xL->a+xL*h; F:=(x,y)->p*yˆm+q*xˆn;

SolEx:=unapply(rhs(dsolve(IVP,y(x))),x);

Y:=proc(xL) option remember; Y(xL-1)+h*F(X(xL-1),Y(xL-1)) end;

Y(0):=0.5; EN:=[seq(abs(Y(i)-evalf(SolEx(X(i)))),i=0..N)];

RETURN(EN); end:

L1:=NULL: N1:=4:

for k from 1 to 12 do

E||k:=Euler(IVP1,0,2,1,-1,1,2,N1): print(E||k[N1+1]);

L1:=L1,E||k[N1+1]; N1:=N1*2;

od: Ers:=[L1]; NErs:=nops(Ers);

p:=[seq(evalf(abs(log(Ers[i]/Ers[i-1])/log(2))),i=2..NErs)];

Runge–Kutta methods are single-step methods that involve several evaluations of the

function f(x, y) and none of its derivatives on every interval [Xi,Xi+1].
In general, explicit or implicit Runge–Kutta methods can be constructed in arbitrary

order according to the formulas. Consider the s-stage explicit Runge–Kutta method

k1 = f(xn, yn), k2 = f(xn + c2h, yn + a2,1k1h), . . . ,

ks = f
(
xn + csh, yn +

s−1∑

i=1

as,j kj

)
,

Yn+1 = Yn + h

s∑

i=1

biki, Y0 = y0, n = 0, . . . N − 1.

Example 19.46. Higher-order methods. Derivation of explicit Runge–Kutta methods.

Let us perform analytical derivation of the best-known Runge–Kutta methods.

h0:=h=0; alias(F=f(x,y(x)),Fx=D[1](f)(x,y(x)),

Fy=D[2](f)(x,y(x)),Fxx=D[1,1](f)(x,y(x)),Fxy=D[1,2](f)(x,y(x)),

Fyy=D[2,2](f)(x,y(x)),Fyyy=D[2,2,2](f)(x,y(x)),

Fxxx=D[1,1,1](f)(x,y(x)),Fxyy=D[1,2,2](f)(x,y(x)),

Fxxy=D[1,1,2](f)(x,y(x))); D(y):=x->f(x,y(x));

For s = 1, we obtain the Euler method (Sol), where b1 = 1:

s:=1; P1:=convert(taylor(y(x+h),h0,s+1),polynom);

P2:=expand((P1-y(x))/h); k1:=taylor(f(x,y(x)),h0,s);

P3:=expand(convert(taylor(add(b[i]*k||i,i=1..s),h0,s),polynom));

Eq1:=P2-P3; Eq2:={coeffs(Eq1,[h,F])};Sol:=solve(Eq2,indets(Eq2));

For s = 2, we obtain the 2-stage modified Euler method (Sol1), where

a2,1 = 1
2 , b1 = 0, b2 = 1, c2 = 1

2 ,

the 2-stage improved Euler method (Sol2), where

a2,1 = 1, b1 = b2 = 1
2 , c2 = 1,

and the 2-stage Heun method (Sol3), where

a2,1 = 2
3 , b1 = 1

4 , b2 = 3
4 , c2 = 2

3 :
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s:=2; P1:=convert(taylor(y(x+h),h0,s+1),polynom);

P2:=expand((P1-y(x))/h); k1:=taylor(f(x,y(x)),h0,s);

k2:=taylor(f(x+c[2]*h,y(x)+h*add(a[2,i]*k||i,i=1..2-1)),h0,s);

P3:=expand(convert(taylor(add(b[i]*k||i,i=1..s),h0,s),polynom));

Eq1:=P2-P3; Eq2:={coeffs(Eq1,[h,F,Fx,Fy])}; Eq3:={}:

for i from 2 to s do Eq3:=Eq3 union{c[i]=add(a[i,j],j=1..i-1)}; od;

Sol1:=solve(Eq2 union Eq3 union {c[2]=1/2},indets(Eq2));

Sol2:=solve(Eq2 union Eq3 union {b[2]=1/2},indets(Eq2));

Sol3:=solve(Eq2 union Eq3 union {b[2]=3/4},indets(Eq2));

For s = 3, we obtain the 3-stage Heun method (Sol), where

a2,1 = 1
3 , a3,1 = 0, a3,2 = 2

3 , b1 = 1
4 , b2 = 0, b3 = 3

4 , c2 = 1
3 , c3 = 2

3 :

s:=3; P1:=taylor(y(x+h),h0,s+1);

P2:=expand(convert(expand((P1-y(x))/h),polynom));

k1:=taylor(f(x,y(x)),h0,s):

k2:=taylor(f(x+c[2]*h,y(x)+h*(add(a[2,i]*k||i,i=1..2-1))),h0,s);

k3:=taylor(f(x+c[3]*h,y(x)+h*(add(a[3,i]*k||i,i=1..3-1))),h0,s);

P3:=expand(convert(taylor(add(b[i]*k||i,i=1..s),h0,s),polynom)):

Eq1:=P2-P3: Eq2:={coeffs(Eq1,[h,F,Fx,Fy,Fxx,Fxy,Fyy])}; Eq3:={}:

for i from 2 to s do Eq3:=Eq3 union {c[i]=add(a[i,j],j=1..i-1)}; od;

Sol:=solve(Eq2 union Eq3 union {b[1]=1/4,c[2]=1/3},indets(Eq2));

For s = 4, we obtain the fourth-order Runge–Kutta method (Sol), where

a2,1 = 1
2 , a3,1 = 0, a3,2 = 1

2 , a4,1 = 0, a4,2 = 0, a4,3 = 1,

b1 = 1
6 , b2 = 1

3 , b3 =
1
3 , b4 = 1

6 , c2 = 1
2 , c3 = 1

2 , c4 = 1 :

s:=4; P1:=taylor(y(x+h),h0,s+1);

P2:=expand(convert(expand((P1-y(x))/h),polynom));

k1:=taylor(f(x,y(x)),h0,s):

k2:=taylor(f(x+c[2]*h,y(x)+h*(add(a[2,i]*k||i,i=1..2-1))),h0,s);

k3:=taylor(f(x+c[3]*h,y(x)+h*(add(a[3,i]*k||i,i=1..3-1))),h0,s);

k4:=taylor(f(x+c[4]*h,y(x)+h*(add(a[4,i]*k||i,i=1..4-1))),h0,s);

P3:=expand(convert(taylor(add(b[i]*k||i,i=1..s),h0,s),polynom)):

Eq1:=P2-P3:

Eq2:={coeffs(Eq1,[h,F,Fx,Fy,Fxx,Fxy,Fyy,Fxxx,Fxxy,Fxyy,Fyyy])};

Eq3:={}:

for i from 2 to s do Eq3:=Eq3 union {c[i]=add(a[i,j],j=1..i-1)}; od;

Sol:=solve(Eq2 union Eq3 union

{b[1]=1/6,c[2]=1/2,a[3,2]=1/2},indets(Eq2));

◮ Multistep methods.

There are more sophisticated methods that achieve a high order of accuracy by considering

several values (Yi, Yi−1, . . . ) to determine Yi+1. One of the most notable methods is the

explicit four-step fourth-order Adams–Bashforth method

Yi+1=Yi+
h

24

(
55F (Ti, Yi)−59F (Ti−1, Yi−1)+37F (Ti−2, Yi−2)−9F (Ti−3, Yi−3)

)
.

Example 19.47. Cauchy problem. The explicit Adams–Bashforth method.
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Figure 19.9: (Left) Exact solution (solid line) and numerical solution (points; the solution

is obtained by the Adams–Bashforth method) of the Cauchy problem (19.4.4.3). (Right)

The absolute computational error (at each step).

For the Cauchy problem

y′x = pym + qxn, y(0) = 0.5 (19.4.4.3)

on the interval [a, b] (a = 0, b = 2) with parameters p = 1, q = −1, m = 2, and n = 1, we find the

exact solution (SolEx) and a numerical solution (F1) by the explicit Adams–Bashforth method

and plot them (see Fig. 19.8). Finally, we compute the absolute computational error on [a, b] (at

each step) and plot it (F2) as follows:

with(plots): a:=0; b:=2; p:=1; q:=-1; n:=1; m:=2; N:=40;

ODE1:=diff(y(x),x)=p*(y(x))ˆm+q*xˆn; ICs:=y(0)=0.5; IVP1:={ODE1,ICs};

SolEx:=unapply(rhs(dsolve(IVP1,y(x))),x); F:=(x,y)->p*yˆm+q*xˆn;

h:=evalf((b-a)/N); X:=x->a+x*h;

Y_AB:= proc(n) option remember; Y_AB(n-1)+h/24*(55*F(X(n-1),Y_AB(n-1))

-59*F(X(n-2),Y_AB(n-2))+37*F(X(n-3),Y_AB(n-3))-9*F(X(n-4),Y_AB(n-4)));

end:

Y_AB(0):=0.5: Y_AB(1):=evalf(SolEx(X(1))); Y_AB(2):=evalf(SolEx(X(2)));

Y_AB(3):=evalf(SolEx(X(3))); F1:=[seq([X(i),Y_AB(i)],i=0..N)];

for i from 0 to N do

print(X(i),evalf(SolEx(X(i))),Y_AB(i),evalf(abs(Y_AB(i)-SolEx(X(i))))):

od:

G1:=plot(SolEx(x),x=a..b): G2:=plot(F1,style=point,color=red):

F2:=[seq([X(i),abs(Y_AB(i)-evalf(SolEx(X(i))))],i=0..N)];

display({G1,G2}); plot(F2);

We can see (Fig. 19.9) that the numerical solution is in good agreement with the exact solution.

Another important example of multistep methods is the implicit three-step fourth-order

Adams–Bashforth–Moulton method

Yi+1 = Yi +
h

24

(
9F (Ti+1, Yi+1) + 19F (Ti, Yi)− 5F (Ti−1, Yi−1) + F (Ti−2, Yi−2)

)
.



“K16435’ — 2017/9/28 — 15:05 — #1202

1176 SYMBOLIC AND NUMERICAL SOLUTIONS OF ODES WITH MAPLE

Figure 19.10: (Left) Exact solution (solid line) and numerical solution (points; the solution

is obtained by the Adams–Bashforth–Moulton method) of the Cauchy problem (19.4.4.4).

(Right) The absolute computational error (at each step).

Example 19.48. Cauchy problem. The implicit Adams–Bashforth–Moulton method.

For the Cauchy problem

y′x = pym + qxn, y(0) = 0.5 (19.4.4.4)

on the interval [a, b] (a=0, b=2) with parameters p=1, q=−1,m=2, and n=1, we find the exact

solution (SolEx) and numerical solutions (F1) by applying the implicit Adams–Moulton method,

compare the results and the graphical solutions, find the absolute computational error on [a, b] (at

each step), and plot it (F2) as follows:

with(plots): with(codegen): a:=0; b:=2; p:=1; q:=-1; n:=1; m:=2; N:=20;

ODE1:=diff(y(x),x)=p*(y(x))ˆm+q*xˆn; ICs:=y(0)=0.5; IVP1:={ODE1,ICs};

SolEx:=unapply(rhs(dsolve(IVP1,y(x))),x); F:=(x,y)->p*yˆm+q*xˆn;

h:=evalf((b-a)/N); X:=x->a+x*h;

Eq1:=Y_ABM(i)-Y_ABM(i-1)-h/24*(9*F(X(i),Y_ABM(i))+19*F(X(i-1),

Y_ABM(i-1))-5*F(X(i-2),Y_ABM(i-2))+F(X(i-3),Y_ABM(i-3)));

Eq2:=[solve(Eq1,Y_ABM(i))]; Y_ABM:=makeproc(Eq2[2],i); Y_ABM(0):=0.5;

Y_ABM(1):=evalf(SolEx(X(1))); Y_ABM(2):=evalf(SolEx(X(2)));

Y_ABM(3):=evalf(SolEx(X(3))); F1:=[seq([X(i),Y_ABM(i)],i=0..N)];

for i from 0 to N do

print(X(i),evalf(SolEx(X(i))),Y_ABM(i),

evalf(abs(Y_ABM(i)-SolEx(X(i))))): od:

G1:=plot(SolEx(x),x=a..b): G2:=plot(F1,style=point,color=red):

display({G1,G2});

F2:=[seq([X(i),abs(Y_ABM(i)-evalf(SolEx(X(i))))],i=0..N)]; plot(F2);

19.4.5 Boundary Value Problems: Examples of Numerical Solutions

A two-point boundary value problem includes an ODE (of order ≥ 2) and the value of the

solution at two distinct points. Note a difference between initial value problems and bound-

ary value problems: initial value problems (with well-behaved functions) have unique so-

lutions; i.e., they are “well posed”; but boundary value problems (with well-behaved func-

tions) may have more than one solution or no solution (see Example 19.50).
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Consider some examples of boundary value problems applying embedded numerical

methods and constructing step-by-step solutions.

◮ Linear boundary value problems.

Example 19.49. Boundary value problem. Analytical, numerical, and graphical solutions.

Consider the following second-order linear nonhomogeneous ODE with variable coefficients

and with boundary conditions:

y′′xx + xy′x + y = cos(x), y(a) = 0, y(b) = 1, (19.4.5.1)

where a = 0 and b = 2. Analytical, numerical, and graphical solutions (Sol1, Sol2, G1, G2) can

be constructed as follows:

Digits:=15: with(PDEtools): declare(y(x),prime=x);

a:=0; b:=2; ODE1:=diff(y(x),x$2)+x*diff(y(x),x)+y(x)=cos(x);

BC1:=y(a)=0,y(b)=1; Sol1:=dsolve({ODE1,BC1},y(x));

Test1:=odetest(Sol1,ODE1);

Sol2:=dsolve({ODE1,BC1},y(x),type=numeric);

with(plots): k:=0: xR:=x=a..b;

for i from a to b by 0.1 do

k:=k+1: X[k]:=i:

s[k]:=simplify(fnormal(evalf(eval(rhs(Sol1),x=i))),zero);

od:

N:=k; Seq1:=seq([X[i],s[i]],i=1..N):

G1:=plot([Seq1],style=line,color="MidnightBlue"):

G2:=odeplot(Sol2,xR,style=point,color=red,symbolsize=15):

display({G1,G2});

By comparing the results, we can conclude that the analytical and numerical solutions are in

good agreement.

Example 19.50. Two-point boundary value problem for a linear ODE. No solution.

Solving a boundary value problem for the second-order linear homogeneous ODE with constant

coefficients

y′′xx + π2y = 0, y(a) = α, y(b) = β, (19.4.5.2)

where a = 0, b = 1, α = 1, and β = 1, we can find the general solution of the equation. However,

the boundary conditions cannot be satisfied (for any choice of the arbitrary constants occurring in

the solution). Therefore, there is no solution of this problem:

with(PDEtools): declare(y(x),prime=x);

a:=0; b:=1; alpha:=1; beta:=1; ODE1:=diff(y(x),x$2)+Piˆ2*y(x)=0;

BC1:=y(a)=alpha,y(b)=beta; Sol1:=dsolve({ODE1,BC1},y(x));

SolGen:=dsolve(ODE1,y(x)); Eq1:=eval(SolGen,x=a);

Eq2:=eval(SolGen,x=b); sys1:={rhs(Eq1)=alpha,rhs(Eq2)=beta};

solve(sys1,{_C1,_C2});

Consider the boundary value problem for the second-order ODE

y′′xx = f(x, y, y′x), y(a) = α, y(b) = β.

We assume that the functions f(x, y, u), fy(x, y, u), and fu(x, y, u) are continuous in

the open domain D = {a ≤ x ≤ b, −∞ < y < ∞, −∞ < u < ∞}. If fy(x, y, u) > 0
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and there exist constants M and K such that |fy(x, y, u)| ≤ M and |fu(x, y, u)| ≤ K for

all (x, y, u) ∈ D, then the boundary value problem has a unique solution.

For the special case in which the function f(x, y, u) is linear, i.e.,

f(x, y, y′x) = p(x)y′x + q(x)y + r(x),

the boundary value problem has a unique solution if p(x), q(x), and r(x) are continuous

in [a, b] and q(x) > 0.

Linear shooting methods employ the numerical methods (discussed above) for solving

initial value problems; e.g.,

u′′xx = p(x)u′x + q(x)u+ r(x), u(a) = α, u′x(a) = 0;

v′′xx = p(x)v′x + q(x)v, v(a) = 0, v′x(a) = 1,

where x ∈ [a, b], and the solution of the original boundary value problem is

y(x) = u(x) + v(x)
β − u(b)
v(b)

.

Example 19.51. Boundary value problems. Linear shooting methods.

For the linear boundary value problem

y′′xx = − 2

x
y′x +

2

x2
y + x3, y(1) = 1, y(2) = 2, (19.4.5.3)

we can find the exact solution (SolEx), a numerical solution (F1) by applying the linear shooting

method, compare the results, and plot the exact and numerical solutions (G1, G2) as follows:

with(plots): Fu1:=(x,u1,u2)->u2: Fu2:=(x,u1,u2)->-2/x*u2+2/xˆ2*u1+xˆ3:

Fv1:=(x,v1,v2)->v2: Fv2:=(x,v1,v2)->-2/x*v2+2/xˆ2*v1:

N:=10: a:=1: b:=2: h:=evalf((b-a)/N); X:=i->a+h*i; alpha:=1; beta:=2;

ODE1:=(D@@2)(y)(x)+2/x*D(y)(x)-2/xˆ2*y(x)-xˆ3; BCs:=y(a)=alpha,y(b)=beta;

BVP1:={ODE1,BCs}; SolEx:=unapply(rhs(dsolve(BVP1,y(x))),x);

RK41:=proc(i,F1,F2,K) local k1,k2,k3,k4,m1,m2,m3,m4; option remember;

k1:=h*F1(X(i-1),RK41(i-1,F1,F2,RK41),RK41(i-1,F1,F2,RK42));

m1:=h*F2(X(i-1),RK41(i-1,F1,F2,RK41),RK41(i-1,F1,F2,RK42));

k2:=h*F1(X(i-1)+h/2,RK41(i-1,F1,F2,RK41)+k1/2,RK41(i-1,F1,F2,RK42)+m1/2);

m2:=h*F2(X(i-1)+h/2,RK41(i-1,F1,F2,RK41)+k1/2,RK41(i-1,F1,F2,RK42)+m1/2);

k3:=h*F1(X(i-1)+h/2,RK41(i-1,F1,F2,RK41)+k2/2,RK41(i-1,F1,F2,RK42)+m2/2);

m3:=h*F2(X(i-1)+h/2,RK41(i-1,F1,F2,RK41)+k2/2,RK41(i-1,F1,F2,RK42)+m2/2);

k4:=h*F1(X(i-1)+h,RK41(i-1,F1,F2,RK41)+k3,RK41(i-1,F1,F2,RK42)+m3);

m4:=h*F2(X(i-1)+h,RK41(i-1,F1,F2,RK41)+k3,RK41(i-1,F1,F2,RK42)+m3);

if K=RK41 then evalf(RK41(i-1,F1,F2,RK41)+1/6*(k1+2*k2+2*k3+k4));

else evalf(RK41(i-1,F1,F2,RK42)+1/6*(m1+2*m2+2*m3+m4)); fi; end;

RK41(0,Fu1,Fu2,RK41):=alpha; RK41(0,Fu1,Fu2,RK42):=0;

RK41(0,Fv1,Fv2,RK41):=0; RK41(0,Fv1,Fv2,RK42):=1;

C:=(beta-RK41(N,Fu1,Fu2,RK41))/RK41(N,Fv1,Fv2,RK41);

Y:=proc(i) option remember;

evalf(RK41(i,Fu1,Fu2,RK41)+C*RK41(i,Fv1,Fv2,RK41));

end:

array([seq([RK41(i,Fu1,Fu2,RK41),RK41(i,Fv1,Fv2,RK41),Y(i),

evalf(SolEx(X(i))),abs(Y(i)-evalf(SolEx(X(i))))],i=0..N)]);

F1:=[seq([X(i),Y(i)],i=0..N)]; G1:=plot(SolEx(x),x=a..b,color=red):

G2:=plot(F1,style=point,color=blue): display({G1,G2});
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Let us apply the finite difference method for approximating the solution of the linear

boundary value problem

y′′xx = p(x)y′x + q(x)y + r(x), y(a) = α, y(b) = β.

The basic idea of finite difference methods is to replace the derivatives in differential

equations by appropriate finite differences. We choose an equidistant grid Xi = a + ih
(i= 0, . . . , N+1) on [a, b] with step size h= (b−a)/(N +1) (N ∈N), where X0 = a and

XN+1=b. The differential equation must be satisfied at any internal nodeXi (i=1, . . . , n),

and by approximating this set of N equations and by replacing the derivatives with appro-

priate finite differences, we obtain the system of equations

Yi+1 − 2Yi + Yi−1

h2
= p(Xi)

Yi+1 − Yi−1

2h
+ q(Xi)Yi + r(Xi), Y0 = α, YN+1 = β

for the approximate values Yi of the exact solution y(Xi). This linear system admits a

unique solution, because the matrix of the system is an N ×N symmetric positive definite

tridiagonal matrix.

Example 19.52. Approximations by finite differences.

For the linear boundary value problem (19.4.5.1), we can find the exact solution (SolEx) and a

numerical solution (F1) by the finite difference method, compare the results, and plot the exact and

numerical solutions (G1, G2) as follows:

with(plots): a:=1; b:=2; alpha:=1; beta:=2; N:=10; h:=(b-a)/(N+1);

ODE1:=(D@@2)(y)(x)=-2/x*diff(y(x),x)+2/xˆ2*y(x)+xˆ3;

BCs:=y(a)=alpha,y(b)=beta; BVP1:={ODE1,BCs};

SolEx:=unapply(rhs(dsolve(BVP1,y(x))),x); X:=i->a+i*h;

p:=x->-2/x; q:=x->2/xˆ2; r:=x->xˆ3; SEq:={}:

for i from 1 to N do

SEq:=SEq union {-(1+h/2*p(X(i)))*Y(i-1)+(2+hˆ2*q(X(i)))*Y(i)

-(1-h/2*p(X(i)))*Y(i+1)=-hˆ2*r(X(i))};

od: SEq;

Y_DF:=convert(solve(SEq,{'Y(i)'$'i'=1..N}),list);

Y_DFBC:=evalf(subs({Y(0)=alpha,Y(N+1)=beta},Y_DF));

array([seq([rhs(Y_DFBC[i]),evalf(SolEx(X(i))),

rhs(Y_DFBC[i])-evalf(SolEx(X(i)))],i=1..N)]);

F1:=[seq([X(i),rhs(Y_DFBC[i])],i=1..N),[X(0),alpha],[X(N+1),beta]];

G1:=plot(SolEx(x),x=a..b,color=red):

G2:=plot(F1,style=point,color=blue): display({G1,G2});

◮ Nonlinear boundary value problems.

In addition to the nonlinear boundary value problem

y′′xx = f(x, y, y′x), y(a) = α, y(b) = β, (19.4.5.4)

consider the initial value problem

y′′xx = f(x, y, y′x), y(a) = α, y′x(a) = s, (19.4.5.5)

where x ∈ [a, b]. The real parameter s describes the initial slope of the solution curve.
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Let f(x, y, u) be a continuous function satisfying the Lipschitz condition with respect

to y and u. Then, by the Picard–Lindelöf theorem, for each s there exists a unique solution

y(x, s) of the above initial value problem.

To find a solution of the nonlinear boundary value problem, we choose a value of the

parameter s such that y(b, s) = β; i.e., we have to solve the nonlinear equation F (s) =
y(b, s)− β = 0 by applying one of the known numerical methods.

Example 19.53. Nonlinear boundary value problem. Nonlinear shooting methods.

For the nonlinear boundary value problem

y′′xx = −y2, y(0) = 0, y(2) = 1, (19.4.5.6)

we find a numerical solution by applying the nonlinear shooting method (ShootNL) and plot the

numerical results obtained with (ShootNL) for various values of the parameter s and the numerical

solution obtained with the predefined function (dsolve,numeric) as follows:

with(plots): a:=0.; b:=2.; alpha:=0.; beta:=1.; sR:=0.5..1;

ODE1:=diff(y(x),x$2)+y(x)ˆ2=0; BCs:=y(a)=alpha,y(b)=beta;

Op:=output=listprocedure; Opt:=thickness=2;

IC:=[0.6,0.5,1,0.8,0.85,R]; k:=nops(IC);

ShootNL:=proc(x,s) local yN, ICs;

ICs:=y(0)=0,D(y)(0)=s; yN:=rhs(dsolve({ODE1,ICs},numeric,Op)[2]);

RETURN(evalf(yN(x))); end; ShootNL(b,0.1); ShootNL(b,0.5);

plot(['ShootNL(b,s)',beta],'s'=sR);

R:=fsolve('ShootNL(2,s)=1','s'=sR); ShootNL(b,R)=beta;

plot('ShootNL(x,R)','x'=a..b,color=red,Opt);

for i from 1 to k do

G||i:=plot('ShootNL(x,IC[i])','x'=a..b,axes=boxed,Opt,

color=COLOR(RGB,rand()/10ˆ12,rand()/10ˆ12,rand()/10ˆ12)):

od: display({seq(G||i,i=1..k)});

plot(rhs(dsolve({ODE1,BCs},y(x),numeric,Op)[2]),a..b);

Let us apply the finite difference method for approximating the solution of the nonlinear

boundary value problem (19.4.5.4). We choose an equidistant grid Xi = a + ih (i =
0, . . . , N + 1) on [a, b] with step size h = (b− a)/(N + 1), where X0 = a and XN+1 = b
(N ∈ N). By approximating the nonlinear boundary value problem, we arrive at the system

of nonlinear equations

Yi+1 − 2Yi + Yi−1

h2
= f

(
Xi, Yi,

Yi+1 − Yi−1

2h

)
, Y0 = α, YN+1 = β

for the approximate values Yi of the exact solution y(Xi). To solve this system of nonlinear

equations, we can apply the Newton method.

Example 19.54. Nonlinear boundary value problem. Approximations by finite differences.

For the nonlinear boundary value problem (19.4.5.6), we find the numerical solution by applying

the predefined function (Sol):

with(plots): with(LinearAlgebra): with(codegen): Nmax:=100:

epsilon:=10ˆ(-4); f:=(x,y,dy)->y(x)ˆ2; a:=0: b:=2: N:=20:

h:=evalf((b-a)/(N+1)); alpha:=0: beta:=1: Op:=output=listprocedure;

ODE1:=diff(y(x),x$2)=-y(x)ˆ2; BCs:=y(a)=alpha,y(b)=beta;

BVP1:={ODE1,BCs}; Sol:=rhs(dsolve(BVP1,y(x),numeric,Op)[2]);
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We find a numerical solution by applying the finite difference method (F1):

FNewton:=W->W-convert(J(seq(W[i],i=1..N)),Matrix)ˆ(-1).<

seq(F[k](seq(W[i],i=1..N)),k=1..N)>; Y[0]:=<seq(0,i=1..N)>:

Z||0:=alpha; Z||(N+1):=beta;

for i from 1 to N do

X||i:=a+i*h; Eq||i:=(Z||(i+1)-2*Z||i+Z||(i-1))/(hˆ2)

+f(X||i,Z||i,(Z||(i+1)-Z||(i-1))/(2*h)); od:

SeqEq:=seq(Eq||i,i=1..N): SeqVar:=seq(Z||i,i=1..N):

for i from 1 to N do F[i]:=unapply(Eq||i,[SeqVar]): od:

J:=JACOBIAN([seq(F[i],i=1..N)],result_type=array):

for i from 1 to Nmax do

Y[i]:=FNewton(Y[i-1]);

if max(seq(abs(F[m](seq(Y[i][k],k=1..N))),m=1..N))>=epsilon

then print(i,seq(Y[i][k],k=1..N)):

else Iend:=i: lprint(`the results is`); print(Iend);

for k from 1 to N do

X:=k->a+k*h; print(X(k),Y[i][k],Sol(X(k)),

evalf(abs(Y[i][k]-Sol(X(k))))): od: break: fi:

od:

F1:=[seq([X(k),Y[Iend][k]],k=1..N),[X(0),alpha],[X(N+1),beta]]:

We compare the results and plot the numerical solutions (G1 and G2) as follows:

G1:=plot(Sol(x),x=a..b,color=red):

G2:=plot(F1,style=point,color=blue): display({G1,G2});

19.4.6 Eigenvalue Problems: Examples of Numerical Solutions

An eigenvalue problem is a linear boundary value problem with homogeneous boundary

conditions where the differential equation depends on a parameter. The homogeneous

boundary conditions imply that there exists a trivial solution of the problem. However,

there exist nontrivial solutions called eigenfunctions (or sometimes eigenmodes). The cor-

responding special values of the parameter are called eigenvalues (or sometimes eigenfre-

quencies).

Eigenvalue problems play an important role in the solution of linear PDEs. When exact

solutions of difficult eigenvalue problems are unavailable, various approximation meth-

ods (e.g., the Rayleigh–Ritz method, the finite element method, the shooting method, the

Galerkin method, difference methods, and iteration methods) can be applied for approxi-

mating the leading and most significant eigenvalues and eigenfunctions.

In this section, we consider an approximation method, i.e., an iteration method (which

is based on applying the Maple predefined function dsolve,numeric for solving IVPs

for differential equations) for determining the first few eigenvalues and eigenfunctions. In

the following examples, we apply the iteration method to the Sturm–Liouville eigenvalue

problem (previously considered in Section 19.2.2) for approximating the lowest eigenval-

ues.

Example 19.55. Sturm–Liouville eigenvalue problem. Neumann boundary conditions.

For the Sturm–Liouville eigenvalue problem

y′′xx + λy = 0, y′x(a) = 0, y′x(b) = 0, (19.4.6.1)
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i.e., a homogeneous linear two-point boundary value problem with the parameter λ and with the

homogeneous Neumann boundary conditions, where a = 0 and b = π, we obtain a numerical

approximation (with the aid of dsolve,numeric) to the first eigenvalue as follows:

a:=0; b:=Pi; c:=1; IC:=y(a)=c,D(y)(a)=0;

for i from 1 to 10 do

m[i]:=0.9+i/60; ODE[i]:=diff(y(x),x$2)+m[i]*y(x)=0;

IVP[i]:={ODE[i],IC}; solN[i]:=dsolve(IVP[i],numeric,range=a..b):

print(i,evalf(m[i]),solN[i](b));

od:

y1:=rhs(solN[6](a)[3]); y2:=rhs(solN[6](b)[3]); lambda[1]:=m[6];

Note that, setting the initial conditions y(a) = c, y′x(a) = 0 (IC), where c is a constant (guessing

value) for the additional initial condition y(a) = c, we make several iterations guessing the values

of mi and compute numerical values of y′x at x = b.
The idea of this approach is to find a value of mi at which y′x(b) = 0; we denote such a value

by m6 = λ1,

i=6, λ1=1.000000000, [x=3.14159265358979, y(x)=−1.00000032552861, y′x=−4.15500041790299e−8].

Finally, we determine the subsequent eigenvalues as follows:

for i from 1 to 10 do

lambda[i]:=iˆ2; ODE[i]:=diff(y(x),x$2)+lambda[i]*y(x)=0;

IVP[i]:={ODE[i],IC}; solN[i]:=dsolve(IVP[i],numeric,range=a..b):

print(i,evalf(lambda[i]),solN[i](b));

od:

One can improve numerical results by applying linear interpolation, which we consider

in the next example.

Example 19.56. Sturm–Liouville eigenvalue problem. Mixed boundary conditions.

For the Sturm–Liouville eigenvalue problem

y′′xx + λ2y = 0, y(a) = 0, y′x(b) = 0, (19.4.6.2)

i.e., a homogeneous linear two-point boundary value problem with the parameter λ and with the ho-

mogeneous mixed boundary conditions, where a=0 and b=1, we obtain numerical approximations

(with the aid of dsolve,numeric) to the first eigenvalue as in the previous example:

a:=0; b:=1; c:=1; IC:=y(a)=0,D(y)(a)=c;

for i from 1 to 10 do

m[i]:=1+i/10; ODE[i]:=diff(y(x),x$2)+m[i]ˆ2*y(x)=0;

IVP[i]:={ODE[i],IC}; solN[i]:=dsolve(IVP[i],numeric,range=a..b):

print(i,evalf(m[i]),solN[i](b));

od:

Note that c is a constant (guessing value) for the additional initial condition y′x(a) = c (see the

previous eigenvalue problem).

The idea of this approach is to find a value of mi for which y′x(b) = 0.

Then, by carrying out linear interpolation for m5 and m6,

i=5, m5=1.500000000, [x=1., y(x)=.664996771484993, y′x=0.707372139709869e−1]

i=6, m6=1.000000000, [x=1., y(x)=.624733611966352, y′x=− 0.291995039651808e−1]

we obtain the first eigenvalue λ1 = 1.56978798301350,

i=1, λ1=1.56978798301350, [x=1., y(x)=.637028489521006, y′x=0.100836279208973e−2]



“K16435’ — 2017/9/28 — 15:05 — #1209

19.4. Numerical Solutions and Their Visualizations 1183

y1:=rhs(solN[5](1)[3]); y2:=rhs(solN[6](1)[3]);

Y:=[y1,y2]; L:=[m[5],m[6]];

lambda[1]:=CurveFitting:-ArrayInterpolation(L,Y,0);

Finally, we determine the subsequent eigenvalues as follows:

for i from 1 to 10 do

lambda[i]:=lambda[1]+Pi*(i-1);

ODE[i]:=diff(y(x),x$2)+lambda[i]ˆ2*y(x)=0; IVP[i]:={ODE[i],IC};

solN[i]:=dsolve(IVP[i],numeric,range=a..b):

print(i,evalf(lambda[i]),solN[i](b));

od:

Also, changing the values of a and b, we can find a numerical approximation to the first eigenvalue

as in the previous example (without linear interpolation):

i=5, λ1=1.500000000, [x=3.14159265358979, y(x)=−.666667014283704, y′x=−5.28423594247093e−8].

a:=0; b:=Pi; c:=1; IC:=y(0)=0,D(y)(0)=c;

for i from 1 to 10 do

m[i]:=1+i/10; ODE[i]:=diff(y(x),x$2)+m[i]ˆ2*y(x)=0;

IVP[i]:={ODE[i],IC}; solN[i]:=dsolve(IVP[i],numeric,range=a..b):

print(i,evalf(m[i]),solN[i](b));

od:

lambda:=m[5];

19.4.7 First-Order Systems of ODEs. Higher-Order ODEs. Numerical
Solutions

◮ First-order systems of ODEs.

Consider a system of first-order ordinary differential equations with the initial conditions

(yi)
′
x = fi

(
x, y1, . . . , yn

)
, yi(a) = yi0 (i = 1, . . . , n).

The unknown functions are y1(x), . . . , yn(x), and x ∈ [a, b].
To obtain numerical solutions, we can apply a predefined function or, alternatively, con-

struct solutions step by step by applying one of the known numerical methods (developed

for a single equation) to each equation in the system.

Let us numerically solve some first-order linear and nonlinear systems of ODEs.

Example 19.57. Linear system. Cauchy problem. Exact, numerical, and graphical solutions.

For the first-order linear system with the initial conditions

u′x = v, v′x = x− u− 2v, u(a) = α, v(a) = β, (19.4.7.1)

where a = 0, b = 2, α = 1, and β = 1, we find the exact solution (SolEx) for x ∈ [a, b] as follows:

with(plots): C:=[color=red, color=blue]; N:=10: a:=0: b:=2:

alpha:=1; beta:=1; h:=evalf((b-a)/N); X:=x->a+x*h;

F1:=(x,u,v)->v; F2:=(x,u,v)->x-u-2*v;

ODEsys:=diff(u(x),x)=v(x),diff(v(x),x)=x-u(x)-2*v(x);

IC:=u(a)=alpha,v(a)=beta; IVP1:={ODEsys,IC};

SolEx:=sort(dsolve(IVP1,{u(x),v(x)},method=laplace));

uEx:=unapply(rhs(SolEx[1]),x); vEx:=unapply(rhs(SolEx[2]),x);
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Then we find a numerical solution (uF1, vF1) by applying the explicit fourth-order Runge–Kutta

method:

RK41:=proc(i,F1,F2,K) local k1,k2,k3,k4,m1,m2,m3,m4; option remember;

k1:=h*F1(X(i-1),RK41(i-1,F1,F2,RK41),RK41(i-1,F1,F2,RK42));

m1:=h*F2(X(i-1),RK41(i-1,F1,F2,RK41),RK41(i-1,F1,F2,RK42));

k2:=h*F1(X(i-1)+h/2,RK41(i-1,F1,F2,RK41)+k1/2,RK41(i-1,F1,F2,RK42)+m1/2);

m2:=h*F2(X(i-1)+h/2,RK41(i-1,F1,F2,RK41)+k1/2,RK41(i-1,F1,F2,RK42)+m1/2);

k3:=h*F1(X(i-1)+h/2,RK41(i-1,F1,F2,RK41)+k2/2,RK41(i-1,F1,F2,RK42)+m2/2);

m3:=h*F2(X(i-1)+h/2,RK41(i-1,F1,F2,RK41)+k2/2,RK41(i-1,F1,F2,RK42)+m2/2);

k4:=h*F1(X(i-1)+h,RK41(i-1,F1,F2,RK41)+k3,RK41(i-1,F1,F2,RK42)+m3);

m4:=h*F2(X(i-1)+h,RK41(i-1,F1,F2,RK41)+k3,RK41(i-1,F1,F2,RK42)+m3);

if K=RK41 then evalf(RK41(i-1,F1,F2,RK41)+1/6*(k1+2*k2+2*k3+k4));

else evalf(RK41(i-1,F1,F2,RK42)+1/6*(m1+2*m2+2*m3+m4)); fi;

end;

RK41(0,F1,F2,RK41):=1: RK41(0,F1,F2,RK42):=1:

array([seq([X(i),RK41(i,F1,F2,RK41),evalf(uEx(X(i))),

RK41(i,F1,F2,RK42),evalf(vEx(X(i)))],i=0..N)]);

uF1:=[seq([X(i),RK41(i,F1,F2,RK41)],i=0..N)];

vF1:=[seq([X(i),RK41(i,F1,F2,RK42)],i=0..N)];

Finally, we compare the results and plot the exact and numerical solutions (uG1, vG1, uG2, and

vG2) as follows:

uG1:=plot(uEx(x),x=a..b,C[1]): vG1:=plot(vEx(x),x=a..b,C[2]):

uG2:=plot(uF1,style=point,C[1]): vG2:=plot(vF1,style=point,C[2]):

display({uG1,uG2,vG1,vG2});

Example 19.58. Nonlinear system. Cauchy problem. Numerical and graphical solutions.

For the first-order nonlinear system with the initial conditions

u′x = uv, v′x = u+ v, u(a) = α, v(a) = β, (19.4.7.2)

where a = 0, b = 1, α = 1, and β = 1, we obtain numerical and graphical solutions as follows:

with(plots): setoptions(scaling=unconstrained); A:=Array(1..3);

a:=0; b:=1; alpha:=1; beta:=1; IC:={u(a)=alpha,v(a)=beta};

ODE:={D(u)(x)=u(x)*v(x),D(v)(x)=u(x)+v(x)};

Sol:=dsolve(ODE union IC,numeric,output=operator);

A[1]:=plot(rhs(Sol[2](x)),x=a..b): A[2]:=plot(rhs(Sol[3](x)),x=a..b):

A[3]:=plot({rhs(Sol[2](x)),rhs(Sol[3](x))},x=a..b): display(A);

◮ Higher-order ODEs.

If we consider an ordinary differential equation of order n (n > 1) with n initial conditions

y(n)x = f(x, y, y′x, . . . , y
(n−1)
x ),

y(a) = y0, y′x(a) = y1, . . . , y(n−1)
x (a) = yn−1,

then we can always obtain solutions of this higher-order differential equation by transform-

ing it into an equivalent system of n first-order differential equations and by applying an

appropriate numerical method to this system of differential equations.
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Figure 19.11: Graphical solutions of the van der Pol equation y′′xx + µ(y2 − 1)y′x + y = 0
(the equivalent system of two first-order ODEs).

Example 19.59. Van der Pol equation. Cauchy problem. Numerical and graphical solutions.

For the van der Pol equation with the initial conditions

y′′xx + µ(y2 − 1)y′x + y = 0, y(a) = α, y′x(a) = β, (19.4.7.3)

where x∈ [a, b], a=0, b=60,α=1, and β=0, by applying the functionDEtools,convertsys,

we transform the second-order ODE into an equivalent system of two first-order differential equa-

tions (Sys1). In Maple’s notation, we have
[

[YP1 = Y2, YP2 = −µ
(

Y1
2 − 1

)

Y2 − Y1], [Y1 = y (x) , Y2 =
d

dx
y (x)], 0, [1, 0]

]

.

The first component of this list is a system of first-order equations, and the second is the defini-

tions of new variables; then the initial point and the initial conditions are presented. Changing the

notation, we write
[

[u′
x = v, v′x = −µ(u2 − 1)v − u], [u = y(x), v = y′x], x0 = 0, [u(x0) = 1, v(x0) = 0]

]

.

Then, applying a classical numerical method (e.g., Euler’s method, by default) to this system

of differential equations, we obtain a numerical solution (SolEuler) and graphical solutions, a

phase portrait of the solution, and a plot of u(x), v(x) (see Fig. 19.11) as follows:

with(DEtools): with(plots); a:=0; b:=60; mu:=evalf(1/8);

alpha:=1; beta:=0;

ODE1:=((D@@2)(y))(x)+mu*((y(x))ˆ2-1)*(D(y))(x)+y(x)=0;

IC1:=y(a)=alpha,(D(y))(a)=beta;

Sys1:=convertsys(ODE1,[IC1],y(x),x); Sys1[1];

Sys2:=diff(u(x),x)=v(x),diff(v(x),x)=-mu*((u(x))ˆ2-1)*v(x)-u(x);

IC2:=u(a)=alpha,v(a)=beta; IVP2:={Sys2,IC2};

SolEuler:=dsolve(IVP2,[u(x),v(x)],numeric,method=classical);

SolEuler(0); SolEuler(1);

odeplot(SolEuler,[u(x),v(x)],a..b,numpoints=500);

odeplot(SolEuler,[[x,u(x)],[x,v(x)]],a..b,labels=[`x`,``],

legend=[`u(x)`,`v(x)`]);

⊙ Literature for Section 18.4: E. Fehlberg (1970), C. W. Gear (1971), J. R. Ockendon and A. B. Taylor

(1971), D. Barton, I. M. Willers and R. V. M. Zahar (1972), J. D. Lambert (1973), G. E. Forsythe, M. A. Mal-

colm and C. B. Moler (1977), J. H. Verner (1978), L. F. Shampine and C. W. Gear (1979), S. D. Conte and C. de
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Boor (1980), J. R. Cash (1983, 1992), A. C. Hindmarsh (1983), W. H. Enright, K. R. Jackson, S. P. Nørsett

and P. G. Thomsen (1986), L. Fox and D. F. Mayers (1987), J. R. Cash and A. H. Karp (1990), W. H. Enright

(1991), U. Ascher, R. Mattheij and R. Russell (1995), I. K. Shingareva (1995), E. Hairer and G. Wanner (1996),

U. Ascher and L. Petzold (1998), L. F. Shampine and R. M. Corless (2000), W. E. Boyce and R. C. DiPrima

(2004), D. J. Evans and K. R. Raslan (2005).
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Chapter 20

Symbolic and Numerical
Solutions of ODEs with
Mathematica

20.1 Introduction

20.1.1 Brief Introduction to Mathematica

◮ Preliminary remarks.

Mathematicar is a general-purpose computer algebra system in which symbolic compu-

tation can readily be combined with exact, approximate (floating-point), and arbitrary-

precision numerical computation. Mathematica provides powerful scientific graphics capa-

bilities [for details, see Bahder (1994), Getz and Helmstedt (2004), Gray (1994), Gray and

Glynn (1991), Green, Evans, and Johnson (1994), Ross (1995), Shingareva and Lizárraga-

Celaya (2009), Vvedensky (1993), Zimmerman and Olness (1995), etc.].

The first concept of Mathematica and its first versions were developed by Stephen Wol-

fram in 1979–1988. The Wolfram Research company, which continues to develop Mathe-

matica, was founded in 1987 [Wolfram (2002, 2003)].

In Mathematica, as in Maple, one can find symbolic, numerical, and graphical solutions

of ordinary differential equations.

◮ Mathematica’s conventions and terminology.

In this chapter, we use the following conventions introduced in Mathematica:

• C[n] (n = 1, 2, . . .), for arbitrary constants or arbitrary functions

In general, arbitrary parameters can be specified, e.g., F1, F2, . . . , by applying the

option GeneratedParameters->(Subscript[F,#]&) of the predefined function

DSolve.

Also we introduce the following notation for the Mathematica solutions:

• eqn, for equations (n = 1, 2, . . .)

• oden, for ODEs

• ivpn, for initial value problems

1187
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• bvpn, for boundary value problems

• soln, for solutions

• trn, for transformations

• sysn, for systems

• icn, bcn, for initial and boundary conditions

• listn, ln, for lists of expressions

• gn, for graphs of solutions

• ops, options (various optional arguments) in predefined functions

• vars, independent variables

• funcs, dependent variables (indeterminate functions)

◮ Most important features.

The most important features of Mathematica are fast symbolic, numerical, acoustic, and

parallel computation; static and dynamic computation, and interactive visualization; it can

incorporate new user-defined capabilities; it is available for almost all operating systems;

it has a powerful and logical programming language; there is an extensive library of math-

ematical functions and specialized packages; an interactive mathematical typesetting sys-

tem is available; and there are numerous free resources (e.g., see the Mathematica Learn-

ing Center, www.wolfram.com/support/learn; Wolfram Demonstrations Project,

demonstrations.wolfram.com; Wolfram Library Archive, library.wolfram.

com; Wolfram Information Center, library.wolfram.com/infocenter; Wolfram

Community, community.wolfram.com, etc.).

◮ Basic parts.

Mathematica consists of two basic parts: the kernel, computational engine, and the inter-

face, front end. These two parts are separate but communicate with each other via the

MathLink protocol.

The kernel interprets the user input and performs all computations. The kernel assigns

the labels In[number] to the input expression and Out[number] to the output. These

labels can be used for keeping the computation order. In this chapter, we do not include

these labels in the examples.

The result of the kernel’s work can be viewed with the function InputForm. The

interface between the user and the kernel is called the front end and is used to display

the input and the output generated by the kernel. The medium of the front end is the

Mathematica notebook.

There are significant changes to numerous Mathematica functions incorporated in the

new versions of the system. The description of important differences for Ver. < 6 and

Ver. ≥ 6 is reported in the literature [e.g., see Shingareva and Lizárraga-Celaya (2009)].∗

Mathematica Ver. 10 (launched in 2014) is the first version based on the complete

Wolfram Language and has more than 700 new functions (e.g., finite element analysis, en-

hanced PDEs, symbolic delay differential equations, hybrid differential equations, highly

∗A complete list of all changes can be found in the Documentation Center and on the Wolfram Web Site

www.wolfram.com.

www.wolfram.com/support/learn
www.wolfram.com
Community.wolfram.com
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automated machine learning, integrated geometric computation, advanced geographic com-

putation, and expanded random process framework); it integrates with the Wolfram Cloud,

introduces the Mathematica Online version, and provides access to the expanded Wolfram

Knowledgebase.

◮ Basic concepts.

If we type a Mathematica command and press the RightEnter key or Shift+ Enter

(or Enter to continue the command on the next line), Mathematica evaluates the com-

mand, displays the result, and inserts a horizontal line (for the next input).

Mathematica contains many sources of online help, e.g., the Wolfram Documentation

Center, Wolfram Demonstrations Project (for Ver. ≥ 6), Mathematica Virtual Book (for

Ver. ≥ 7), and the Help menu; one can mark a function and press F1; to type ?func,

??func, Options[func]; to use the symbols (?) and (*); e.g., ?Inv*, ?*Plot, or

?*our*.

Mathematica notebooks are electronic documents that may contain Mathematica out-

put, text, and graphics (see ?Notebook). One can work with many notebooks simulta-

neously. A Mathematica notebook consists of a list of cells. Cells are indicated along the

right edge of the notebook by brackets. Cells can contain subcells, and so on. The kernel

evaluates a notebook cell by cell. There are various types of cells: input cells (for evalua-

tion) and text cells (for comments); Title, Subtitle, Section, Subsection, etc., can be found

in the menu Format→ Style.

Previous results (during a session) can be referred to with symbols % (the last result),

%% (the next-to-last result), and so on.

Comments can be included within the characters (*comments*).

Incorrect response: if some functions take an “infinite” computation time, you may

have entered or executed the command incorrectly. To terminate a computation, you can

use Evaluation→ Quit Kernel→ Local.

Palettes can be used for building or editing mathematical expressions, texts, and graph-

ics, and allow one to access the most common mathematical symbols by mouse clicks.

In Mathematica, there exist many specialized functions and modules that are not loaded

initially. They must be loaded separately from files in the Mathematica directory. These

files are of the form filename.m. The full name of a package consists of a context

and a short name, and it is written as context`short. To load a package correspond-

ing to a context, type <<context`. To get a list of the functions in a package, type

Names["context`*"].

Numerical approximations: N[expr], expr//N (numerical approximation of expr

to 6 significant digits); N[expr,n], NumberForm[expr,n] (numerical approxima-

tion of the expression to n significant digits); ScientificForm[expr,n], scientific

notation of numerical approximation of expr to n significant digits.

20.1.2 Mathematica Language

Mathematica language is a very powerful programming language based on systems of

transformation rules and on functional, procedural, and object-oriented programming tech-
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niques [see Maeder (1996)]. This distinguishes it from traditional programming languages.

It supports a large collection of data structures, or Mathematica objects (functions, se-

quences, sets, lists, arrays, tables, matrices, vectors, etc.), and operations on these objects

(type-testing, selection, composition, etc.). The library can be extended with custom pro-

grams and packages.

In Mathematica Version 10, a new concept is introduced, namely, the complete Wol-

fram Language. It has a vast depth of built-in algorithms and knowledge, all accessible

automatically through unified symbolic language. The main idea of the Wolfram Language

is to build as much knowledge (about algorithms and the world) as possible into the lan-

guage.

Symbol refers to a token with a specified name, e.g., an expression, function, object,

optional value, result, or argument name. The name of symbol is a combination of letters,

digits, or certain special characters not beginning with a digit; e.g., a12new. Once defined,

a symbol retains its value until it is changed or removed.

Expression is a symbol that represents an ordinary Mathematica expression expr in

readable form. The head of expr can be obtained with Head[expr]. The structure

and various forms of an expression expr can be analyzed with the predefined functions:

TreeForm, FullForm[expr],InputForm[expr].

A Boolean expression is formed with logical operators and relation operators.

Basic arithmetic operators and the corresponding functions:

+ - * / ˆ , Plus, Subtract, Minus, Times, Divide, Power.

Logic and relation operators and their equivalent functions: &&, ||, !, =>, ==, !=

<, >, <= >=, And, Or, Xor, Not, Implies, Equal, Unequal, Less, Greater,

LessEqual, GreaterEqual.

Mathematica is case sensitive, i.e., distinguishes lowercase and uppercase letters; e.g.,

Sin[Pi] and sin[Pi] are different. All Mathematica functions begin with a capital

letter. Some functions (e.g., PlotPoints) use more than one capital. To avoid conflicts,

it is best to begin with a lower-case letter for all user-defined symbols.

The result of each calculation is displayed, but it can be suppressed by using a semicolon

(;); e.g., Plot[Sin[x],x,0,2*Pi]; a=9; b=3; c=a*b.

Patterns: Mathematica language is based on pattern matching. A pattern is an ex-

pression that contains an underscore character ( ). The pattern can stand for any expres-

sion. Patterns can be constructed from templates; e.g., x , x /;cond, pattern?test,

x :IniValue, xˆn , x ˆn , f[x ], f [x ].

Basic transformation rules: ->, :>, =, :=, ˆ:=, ˆ=.

The rule lhs->rhs transforms lhs to rhs. Mathematica regards the left-hand side as

a pattern. The rule lhs:>rhs transforms lhs to rhs evaluating rhs only after the rule

is actually used. The assignment lhs=rhs (or Set) specifies that the rule lhs->rhs

should be used whenever it applies. The assignment lhs:=rhs (or SetDelayed) spec-

ifies that lhs:>rhs should be used whenever it applies; i.e., lhs:=rhs does not eval-

uate rhs immediately but leaves it unevaluated until the rule is actually called. The rule

lhsˆ:=rhs assigns rhs to be the delayed value of lhs and associates the assignment

with symbols that occur at level one in lhs. The rule lhsˆ=rhs assigns rhs to be the

value of lhs and associates the assignment with symbols that occur at level one in lhs.

Transformation rules are useful for making substitutions without making the definitions
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permanent and are applied to an expression using the operator /. (ReplaceAll) or //.

(ReplaceRepeated).

The difference between the operators (=) and (==) is as follows: the operator lhs=rhs

is used to assign rhs to lhs, and the equality operator lhs==rhs indicates equality (not

assignment) between lhs and rhs.

Unassignment of definitions:

Clear[symb], ClearAll[symb], Remove[symb], symb=.;

Clear["Global`*"]; ClearAll["Global`*"]; Remove["`*"];

(to clear all global symbols defined in a Mathematica session)

?symb, ?`* (to recall a symbol’s definition)

ClearAll["Global‘*"];Remove["Global‘*"]; is a useful initialization to

start working on a problem.

An equation is represented using the binary operator == and has two operands, the

left-hand side lhs and the right-hand side rhs.

Inequalities are represented using relational operators and have two operands, the left-

hand side lhs and the right-hand side rhs.

A string is a sequence of characters having no value other than itself and can be used as

labels for graphs, tables, and other displays. The strings are enclosed within double-quotes;

e.g., "abc".

Data types: every expression is represented as a tree structure in which each node (and

leaf) has a particular data type. A variety of functions can be used for the analysis of any

node and branch; e.g., Length, Part, and a group of functions ending in the letter Q

(DigitQ, IntegerQ, etc.).

Types of brackets: parentheses for grouping, (x+9)*3; square brackets for function

arguments, Sin[x]; curly brackets for lists, {a,b,c}.
Types of quotes: back-quotes for context mark, format string character, number mark,

precision mark, and accuracy mark; double quotes for strings.

Types of numbers: integer, rational, real, complex, and root; e.g., -5, 5/6, -2.3ˆ-4,

ScientificForm[-2.3ˆ-4],3-4*I, Root[#ˆ2+#+1&,2].

Mathematical constants: symbols for definitions of selected mathematical constants;

e.g., Catalan, Degree, E, EulerGamma, I, Pi, Infinity, GoldenRatio; for

example, {60Degree//N, N[E,30]}.
Two classes of functions: pure functions and functions defined in terms of a variable

(predefined and user-defined functions).

Pure functions are defined without a reference to any specific variable. The arguments

are labeled #1, #2, . . . , and an ampersand (&) is used at the end of the definition. Most

of the mathematical functions are predefined. Mathematica includes all common special

functions of mathematical physics.

The names of mathematical functions are complete English words (e.g., Conjugate)

or, for a few very common functions, the traditional abbreviations (e.g., Mod). The names

of functions associated with a person’s name have the form PersonSymbol; for example,

the Legendre polynomials Pn(x) is denoted LegendreP[n,x].

User-defined functions are defined using the pattern x ; e.g., the function f(x) =expr
of one variable is defined as f[x ]:=expr;
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Evaluation of a function or an expression without assigning a value can be performed

using the replacement operator /.; e.g., f[a], expr/.x->a.

Function application: expr//func is equivalent to fun[expr].

A module is a local object that consists of several functions which one needs to use

repeatedly (see ?Module). A module can be used to define a function (if the function

is too complicated to write by using the notation f[x ]:=expr), to create a matrix, a

graph, a logical value, etc. Block is similar to Module; the main difference between

them is that Block treats the values assigned to symbols as local but the names as global,

whereas Module treats the names of local variables as local. With is similar to Module;

the important difference between them is that With uses local constants that are evaluated

only once, but Module uses local variables whose values may change many times.

The Mathematica language includes the following two types control structures: the se-

lection structures (If, Which, Switch) and the repetition structures (Do, While, For).

Mathematica objects: lists are the fundamental objects in Mathematica. The other

objects (for example, sets, matrices, tables, vectors, arrays, tensors, and objects contain-

ing data of mixed type) are represented as lists. A list is an ordered set of objects sepa-

rated by commas and enclosed in curly braces, {elements}, or defined with the func-

tion List[elements]. Nested lists are lists that contain other lists. There are many

functions which manipulate lists, and here we review some of the most basic ones. Sets

are represented as lists. Vectors are represented as lists; vectors are simple lists. Vectors

can be expressed as single columns with ColumnForm[list,horiz,vert]. Tables,

matrices, and tensors are represented as nested lists. There is no difference between the

way they are stored: they can be generated using the functions MatrixForm[list],

TableForm[list], or using the nested list functions. Matrices and tables can also be

conveniently generated using the Palettes or Insert menu. A matrix is a list of vectors.

A tensor is a list of matrices with the same dimension.

◮ Various types of symbolic notation for derivatives.

Mathematica differentiates between functions and expressions. Therefore, the differen-

tial operator notation was introduced to denote the derivatives of functions. There exist

three forms of representation of derivatives in Mathematica [for details, see Shingareva

and Lizárraga (2015)]:

1. The brief form in terms of pure functions:

f
′, f

′′, . . . , f
(n).

2. The brief form in terms of variables of functions:

f
′[x], f

′′[x], . . . , f
(n)[x].

3. The respective full forms of the two previous kinds of derivative notation:

Derivative[1][f], Derivative[2][f], . . . , Derivative[n][f],

Derivative[1][f][x], Derivative[2][f][x], . . . , Derivative[n][f][x].

According to Mathematica output, this notation corresponds to the Lagrange notation.



“K16435’ — 2017/9/28 — 15:05 — #1219

20.2. Analytical Solutions and Their Visualizations 1193

⊙ Literature for Section .1: J. A. van Hulzen and J. Calmet (1983), A. G. Akritas (1989), T. Gray and J. Glynn

(1991), J. H. Davenport, Y. Siret, and E. Tournier (1993), D. D. Vvedensky (1993), T. B. Bahder (1994),

J. W. Gray (1994), E. Green, B. Evans, and J. Johnson (1994), C. C. Ross (1995), R. L. Zimmerman and

F. Olness (1995), R. E. Maeder (1996), M. J. Wester (1999), S. Wolfram (2002, 2003) C. Getz and J. Helmstedt

(2004), I. K. Shingareva and C. Lizárraga-Celaya (2009, 2015).

20.2 Analytical Solutions and Their Visualizations

20.2.1 Exact Analytical Solutions in Terms of Predefined Functions

◮ The predefined function DSolve.

The computer algebra system Mathematica has the unique function DSolve that permits

obtaining analytical (symbolic) solutions for most classes of ODEs whose solutions are

given in standard textbooks and reference books [see Murphy (1960), El’sgol’ts (1961),

Hartman (1964), Ince (1956), Matveev (1967), Petrovskii (1970), Simmons (1972), Kamke

(1977), Birkhoff and Rota (1978)]. Although the predefined function is an implementation

of known methods for solving ODEs [e.g., see. Zwillinger (1997), Polyanin and Zaitsev

(2003), Boyce and DiPrima (2004), Polyanin and Manzhirov (2007)], it permits solving

ODEs and obtaining solutions automatically as well as developing new methods and pro-

cedures for constructing new solutions.

The predefined function DSolve is a general analytical differential equation solver.

DSolve can solve the following types of differential equations: ODEs (ordinary differ-

ential equations), PDEs (partial differential equations), and DAEs (differential-algebraic

equations).

DSolve[ODE,y[x],x] DSolve[{ODE1,...},{y1[x],...},x]

DSolve[ODE,y[x],x,GeneratedParameters->(Subscript[c,#]&)]

DSolve[ODE,y,x] DSolve[{ODE1,...},{y1,...},x]

DSolve[{ODEs,ICs},y[x],x] DSolve[{ODEs,ICs},y,x]

• DSolve, finding the general solution y[x] or y (expressed as a “pure” function)

for a single ODE or a system of ODEs

• DSolve,ICs, solving an ordinary differential equation or system with given initial

or boundary conditions

Remark 20.1. When solving some ODEs, Mathematica generates warning messages. These

warning messages can be ignored or suppressed with the Off function, or some other alternative

methods can be applied.

Example 20.1. First-order separable and homogeneous ODEs. Analytical solutions.

The DSolve function can use the Solve function (for obtaining an analytical solution) that

can use inverse functions (when solving transcendental equations). For example, for the separable

and homogeneous first-order ODEs

y′x =
y sin2 x

1− y , (x2 − xy)y′x + y2 = 0,
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the warning messages

Solve::ifun: Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution

information. >>

can be ignored or suppressed as follows:

ClearAll["Global`*"]; Remove["Global`*"];

Off[InverseFunction::ifun]; Off[General::stop]; Off[Solve::ifun];

ODE1=D[y[x],x]==y[x]*Sin[x]ˆ2/(1-y[x])

ODE2=(xˆ2-y[x]*x)*D[y[x],x]+y[x]ˆ2==0

{DSolve[DSolve[ODE1,y[x],x],DSolve[ODE2,y[x],x]}

Alternatively, we can obtain the solution of ODE1 (sol1) by applying the function Reduce

through the function Solve with the option Method->Reduce and by suppressing another long

message via Off[Solve::useq], or we can obtain the solution of ODE2 (sol2) by transform-

ing the original ODE into an ODE in terms of the inverse function x[y] as follows:

ClearAll["Global`*"]; Remove["Global`*"]; Off[Solve::useq];

ops=Options[Solve]; SetOptions[Solve,Method->Reduce];

ODE1=D[y[x],x]==y[x]*Sin[x]ˆ2/(1-y[x]);sol1=DSolve[ODE1,y[x],x]

SetOptions[Solve,ops];

sol2=DSolve[{(x[y]ˆ2-y[x]*x[y])*D[y[x],x]+y[x]ˆ2==0}/.{y[x]->y,

y'[x]->1/x'[y]},x[y],y]

where the Mathematica result for sol2 reads:
{{

x[y] → y

C[1] + Log[y]

}}

◮ Verification of exact solutions.

Let us assume that we have obtained exact solutions and we wish to verify whether these

solutions are exact solutions of given ODEs.

Example 20.2. First-order nonlinear ODE. Special Riccati equation. Verification of solutions.

For a first-order nonlinear ODE, the special Riccati equation

y′x = ay2 + bxn,

we can verify that the solutions

y(x) = − 1

a

w′
x

w
,

where

w(x) =
√
x

[
C1Jv

(√
ab

k
xk

)
+ C2Yv

(√
ab

k
xk

)]
, k =

1

2
(n+ 2), v =

1

2k
,

are exact solutions of the special Riccati equation as follows:

{k=(n+2)/2, v=1/(2*k), q=1/k*Sqrt[a*b]}

w[X_]:=Sqrt[X]*(c[1]*BesselJ[v,q*Xˆk]+c[2]*BesselY[v,q*Xˆk]); w[x]

ode1=D[y[x],x]==a*(y[x])ˆ2+b*xˆn

sol1=(y->Function[x,-1/a*D[W,x]/W])/.W->w[x]

test1=(ode1/.sol1)/.{n->1,a->1,b->1}//FullSimplify
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Here a, b, n∈R (ab 6=0 and n 6=−2) are real parameters, Jv(x) and Yv(x) are the Bessel functions,

and C1 and C2 are arbitrary constants.

Example 20.3. First-order linear ODE. Finding and verification of the general solution.

For the first-order linear ODE

g(x)y′x = f1(x)y + f0(x),

we can find and verify that the solution

y(x) = CeF + eF
∫
e−F f0(x)

g(x)
dx, where F =

∫
f1(x)

g(x)
dx,

is the general solution of the first-order linear ODE as follows:

{ode1=g[x]*D[y[x],x]==f1[x]*y[x]+f0[x]}

{sol1=DSolve[ode1,y[x],x]/.C[1]->C//Flatten, trD=D[sol1,x]}

test1=(ode1/.sol1/.trD)//FullSimplify

Here f0(x), f1(x), and g(x) are arbitrary functions, and C is an arbitrary constant.

The Mathematica result reads:























y[x] → Ce

∫ x

1

f1[K[1]]

g[K[1]]
dK[1]

+ e

∫ x

1

f1[K[1]]

g[K[1]]
dK[1] ∫ x

1

e
−
∫ K[2]

1

f1[K[1]]

g[K[1]]
dK[1]

f0[K[2]]

g[K[2]]
dK[2]























Example 20.4. Clairaut’s equation. Finding and verification of solutions.

For Clairaut’s equation

y = xy′x + f(y′x),

we can find and verify that

y(x) = Cx+ f(C)

is the general solution of this equation as follows:

ode1=y[x]==x*D[y[x],x]+f[D[y[x],x]]

{sol1=y[x]->c*x+f[c], trD1=D[sol1,x]}

{sol2=DSolve[ode1,y[x],x]/.C[1]->c//Flatten, trD2=D[sol2,x]}

{test1=ode1/.sol1/.trD1, test2=ode1/.sol2/.trD2}

Here f(x) is an arbitrary function and C is an arbitrary constant.

Alternatively, finding and verifying the exact solution can be performed in terms of a pure

function as follows:

{ode1=y[x]==x*D[y[x],x]+f[D[y[x],x]], sol1=y->Function[x,c*x+f[c]]}

{sol2=DSolve[ode1,y,x]/.C[1]->c//Flatten}

{test1=ode1/.sol1, test2=ode1/.sol2}
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◮ Graphical solutions.

Consider the most relevant related functions for plotting solutions of ordinary differential

equations.

SetOptions[plotFun,ops] Plot[sol1,{x,x1,x2},ops]

Plot[Evaluate[{sol1[x],sol2[x],...}/.solSys],ops]

ParametricPlot[{sol1[x],sol2[x]},{x,x1,x2},ops]

ContourPlot[Evaluate[sol1,sol2],{x,x1,x2},{y,y1,y2},ops]

VectorPlot[{vx,vy},{x,x1,x2},{y,y1,y2},ops]

StreamPlot[{vx,vy},{x,x1,x2},{y,y1,y2},ops]

GraphicsGrid[{{g1,g2,...},...,gn}]

Here sol1, sol2, solSys are solutions of ODEs and systems of ODEs, and g1, . . . ,

gn are 2D graphics of solutions constructed by using various predefined functions (e.g.,

Plot).

• SetOptions, setting various options for a predefined plot function plotFun

• Plot, ParametricPlot, ContourPlot, constructing various types of graphs

of solutions of ODEs

• GraphicsGrid, aligning various plots (constructed by using various predefined

functions plotFun)

• VectorPlot, generating a vector plot of the vector field {vx, vy}
• StreamPlot, generating a stream plot of the vector field {vx, vy}

Example 20.5. Nonlinear ODE of the first order. The Bernoulli equation. Graphical solutions.

Graphical solutions of the Bernoulli equation

y′x + f(x)y = g(x)ya,

where a 6= 0, 1, can be generated for a particular case (e.g., f(x) = −5/x, g(x) = −x5, and a = 2)

as follows:

SetOPtions[Plot,PlotStyle->{Thickness[0.01]},PlotRange->All]

{f=-5/x, g=-xˆ5, a=2, ode1=D[y[x],x]+f*y[x]==g*y[x]ˆa}

sol1=DSolve[ode1,y[x],x]/.C[1]->c

S1[X_,C_]:=sol1[[1,1,2]]/.{x->X,c->C}; S1[x,c]

Plot[Evaluate[{S1[x,1],S1[x,2],S1[x,-1]}],{x,-1,1},PlotRange->{-1,1},

PlotStyle->{Blue,Purple,Orange}]

In Mathematica, there are many options available for plotting graphs, which can de-

termine the final picture (in more detail, see Options[Plot], Options[Plot3D]);

e.g., light modeling, legends, axis control, titles, gridlines, colors, etc. The general rule for

defining options is

Plot[f[x],{x,x1,x2},opName->value,...]

Plot3D[f[x,y],{x,x1,x2},{y,y1,y2},opName->value,...]

Here opName is the option name.

There are many predefined functions for color graphs. For example, the functions:
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Figure 20.1: Exact solutions together with the direction field associated with sys-

tem (20.2.1.1).

• RGBColor, Hue, GrayLevel, for defining color models

• Lighter, Darker, Blend, ColorNegate, for derived colors

• ColorData, for color schemes

• Red, Blue, Purple, Green, for named colors

• ColorSetter, ColorSlider, for interactive color controls

• Opacity, Directive, Glow, for graphics directives

• Lighting, FrameStyle, GridLinesStyle, for graphics options

• ColorFunction,PlotStyle, ColorRules, for plotting options

• RandomColor, ColorReplace, ColorConvert, for color operations

The list of all colors can be obtained by typing ColorData["Legacy"]["Names"]

(193 predefined named colors), and the RGB formula of a particular color, e.g., Coral,

by typing ColorData["Legacy"]["Coral"] . Additionally, all predefined color

schemes can be inserted by using Palettes->ColorSchemes, and the RGB formula

for color graphs can be computed by using Insert->Color.

However, throughout the book, graphical solutions cannot be presented in color for

technical reasons: this would result in an essential increase in the book price.

Example 20.6. First-order constant-coefficients linear system of ODEs. Graphical solutions.

For the first-order linear system of differential equations with constant coefficients

u′x = u+ 3v, v′x = −2u+ v, (20.2.1.1)

we plot the solutions together with the direction field associated with the system as follows (see

Fig. 20.1):

sys3={u'[x]==u[x]+3*v[x],v'[x]==-2*u[x]+v[x]};

sol=Table[DSolve[sys3,{u[x],v[x]},x]/.{C[1]->i,C[2]->j},{i,1,5},{j,1,5}];

g1=Table[ParametricPlot[Evaluate[{sol[[i,j,1,1,2]],sol[[i,j,1,2,2]]},

{x,-3,3}],PlotStyle->Hue[0.7],Frame->True,Background->LightBlue],

{i,1,5},{j,1,5}];

g2=VectorPlot[{u+3*v,-2*u+v},{u,-10,10},{v,-10,10},

ColorFunction->Function[{x},Hue[x]]];

Show[g1,g2,AspectRatio->1,Frame->True,PlotRange->{{-10,10},{-10,10}}]
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◮ Dynamic computation and visualization.

In Mathematica (for Ver. ≥ 6), a new kind of manipulation of Mathematica expressions,

dynamic computation and visualization, has been introduced allowing to create dynamic

and control interfaces of various types. Numerous new functions for producing interac-

tive elements (or various dynamic and control interfaces) have been developed within a

Mathematica notebook (for more details, see the Documentation Center, “Introduction to

Manipulate,” “Introduction to Dynamic,” “Dynamic and Control,” “Interactive Manipula-

tion,” “How to: Build an Interactive Application,” etc.).

Let us mention the most important of them:

Dynamic[expr] DynamicModule[{x=x0,...},expr]

Slider[Dynamic[x]] Slider[x,{x1,x2,xStep}] Pane[expr]

Manipulate[expr,{x,x1,x2,xStep}] TabView[{expr1,...}]

Manipulator[expr,{x,x1,x2}] Animator[x,{x1,x2,dx}]

SlideView[{expr1,expr2,...}]

• Dynamic, DynamicModule, representing an object that displays as the dynam-

ically updated current value of expr; the object can be interactively changed or

edited

• Slider, Slider,Dynamic, representing sliders of various configurations

• Manipulate, Manipulator generating a version of expr with controls added

to allow interactive manipulations of the value of x etc.

Example 20.7. The Airy equation. Cauchy problem. Dynamic and control objects.

Let us create various dynamic and control objects, for example, for the exact solution of the

Cauchy problem

y′′xx − xy = 0, y(0) =
1√
2π
, y′(0) =

q√
2π
, q ∈ R,

for the Airy equation as follows:

r=10; SetOptions[Plot,PlotRange->{{-r,r},{-r,r}},ImageSize->500];

{ODE=y''[x]-x*y[x]==0,ic={y[0]==1/Sqrt[2*Pi],

y'[0]==q/Sqrt[2*Pi]}, ivp={ODE,ic}//Flatten}

sol=DSolve[ivp,y[x],x]

F[X_,Q_]:=sol[[1,1,2]]/.{x->X,q->Q}; F[x,q]

{Slider[Dynamic[q1]], Dynamic[Plot[F[x1,q1],{x1,-r,r}]]}

TabView[Table[Plot[F[x2,q2],{x2,-r,r}],{q2,0,r}]]

SlideView[Table[Plot[F[x3,q3],{x3,-r,r}],{q3,0,r}]]

Manipulate[N[F[x4,q4]],{q4,3,10,1},{x4,-r,r}]

where ivp is the abbreviation for initial value problems (see Section 20.1.1).

Example 20.8. The Lorenz system. Cauchy problem. Dynamic and control objects.

Let us create dynamic and control objects, for example, for the numerical solution of the Cauchy

problem for the nonlinear system of first-order ODEs, e.g., the Lorenz system

x′t = σ(y − x), y′t = ρx− y − xz, z′t = xy − βz,
x(0) = 1, y(0) = 15, z(0) = 10, (20.2.1.2)
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Figure 20.2: Dynamic and control objects for the Lorenz system (20.2.1.2).

where σ, ρ, and β are the system parameters. The Lorenz system is an example of a dissipative

chaotic system with a strange attractor. These features can be observed for certain values of the

system parameters and initial conditions. This system models an unstable thermally convecting

fluid (heated from below) and also arises in other simplified models.

One can study the behavior of the system by varying the system parameters σ, ρ, and β and

observe the strange attractor (see Figure 20.2) as follows:

Manipulate[

tN=10; sys1={x'[t]==\[Sigma]*(y[t]-x[t]),

y'[t]==\[Rho]*x[t]-y[t]-x[t]*z[t], z'[t]==x[t]*y[t]-\[Beta]*z[t]};

ic={x[0]==1,y[0]==15,z[0]==10}; ivp={sys1,ic}//Flatten;

solN=NDSolve[ivp,{x,y,z},{t,0,tN},MaxSteps->2000];

gr={x[t],y[t],z[t]}/.solN;

ParametricPlot3D[Evaluate[gr],{t,0,tN},PlotRange->All,PlotPoints->500],

{{\[Sigma],15},1,20},{{\[Beta],3},1,10},{{\[Rho],28},10,30}]

Example 20.9. The Legendre equation. Cauchy problem. Dynamic object without controls.

Let us create a dynamic object without controls and the animation frame, for example, for the

exact solution of the boundary value problem

(1− x2)y′′xx − 2xy′x + n(n+ 1)y = 0, y(−0.9) = −1, y(0.9) = 1 (20.2.1.3)

for the Legendre equation, where −0.9 < x < 0.9 and n = 0, 1, 2, . . .

r=0.9; {ODE=(1-xˆ2)*y''[x]-2*x*y'[x]+n*(n+1)*y[x]==0,

ic={y[-r]==-1,y[r]==1}, ivp={ODE,ic}//Flatten}

sol=DSolve[ivp,y[x],x]

F[X_,N_]:=sol[[1,1,2]]/.{x->X,n->N}; F[x1,n1]

Row[{Pane[Animator[Dynamic[n1],{0,7}],{0,20,0.1}],

Dynamic[Plot[Evaluate[F[x1,n1]],{x1,-r,r},

PlotRange->{{-1,1},{-20,20}},ImageSize->500]]}]
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Figure 20.3: Exact implicit solutions for the first-order separable ODE (20.2.1.4).

◮ Constructing exact explicit and implicit solutions.

In Mathematica, exact solutions of ODEs can be obtained (in one step) with the aid of the

predefined function DSolve only in explicit or implicit form. The system will display only

one of these forms. If an ODE has an implicit form of a solution, the result can contain an

unevaluated Solve object or InverseFunction object.

The design of DSolve is modular (i.e., the algorithms for various classes of problems

work independently) and internal (i.e., the solution process performs internally).

DSolve[ODE,y[x],x] DSolve[{ODE1,ODE2,...},{y1[x],...},x]

DSolve[ODE,y,x] DSolve[{ODE1,ODE2,...},{y1,...},x]

ContourPlot[f[x,y]==c,{x,x1,x2},{y,y1,y2},ops]

ContourPlot[{f1[x,y]==c1,...},{x,x1,x2},{y,y1,y2},ops]

Example 20.10. First-order separable ODE. Exact implicit solutions. Graphical solutions.

For the first-order separable ODE

y′x +
x2

y
= 0, (20.2.1.4)

we can construct the explicit one-step solution (sol1) and implicit step-by-step solution (sol2)

and plot graphics of the implicit solution (see Fig. 20.3) as follows:

{ode1=D[y[x],x]+xˆ2/y[x]==0, sol1=DSolve[ode1,y[x],x]}

eq1=sol1[[1,1]]/.Rule->Equal

{sol20=Thread[eq1ˆ2,Equal]//Simplify, sol2=sol20/.{6*C[1]->c}}

{g=sol2/.y[x]->Y, gs=Table[g/.c->i,{i,-5, 5}]}

ContourPlot[Evaluate[gs],{x,-5,5},{Y,-10,10},PlotRange->Automatic]

The Mathematica results (for sol1 and sol2) read:
{{

y[x] → −
√

2

3

√

−x3 + 3C[1]

}

,

{

y[x] →
√

2

3

√

−x3 + 3C[1]

}}

, 2x3 + 3y[x]2 == c

Here C[1] is an arbitrary constant.
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Example 20.11. Second-order nonlinear ODE. Exact implicit solutions.

For the second-order nonlinear ODE

y′′xx = Ax
(y′x)

3

y2
−A (y′x)

2

y
,

we can construct the implicit (sol3) solution

(1−A)x − C1y + C2y
A = 0 (A 6= 1)

as follows:

ode1=D[y[x],{x,2}]==A*x/y[x]ˆ2*D[y[x],x]ˆ3-A/y[x]*D[y[x], x]ˆ2

{sol1=DSolve[ode1,y[x],x], sol2=sol1[[1]]}

eq1=Assuming[x>0,FullSimplify[sol2]]

eq2=FullSimplify[Thread[eq1*(A-1),Equal]]

eq3=eq2[[1,1]]==eq2[[2]]-eq2[[1,2]]

{eq4=Thread[Exp[eq3],Equal], eq5=eq4/.eq4[[1]]->c20/.C[1]->C1}

eq6=Thread[eq5/eq5[[2,2]],Equal]//Expand

{eq7=Collect[Thread[eq6/c20,Equal]//Expand,x], sol3=eq7/.c20->1/C2}

◮ Constructing exact solutions of higher-order ODEs.

Exact solutions of higher-order ODEs can be constructed with the aid of the predefined

function DSolve. The design of DSolve has a hierarchical structure, and the solution

of complicated problems is reduced to the solution of simpler problems (for which various

methods are implemented). For example, higher-order ODEs are solved by reducing their

order.

Example 20.12. Higher-order linear homogeneous ODEs with constant coefficients.

For the fourth-order linear homogeneous ODE with constant coefficients

y′′′′x + a1y
′′′
x + a2y

′′
x + a3y

′ + a4y = 0,

where the constant coefficients are a1 = 1, a2 = −1, a3 = 5, and a4 = −2 and all solutions are of

exponential form, we can determine the fundamental set of solutions (sol2)
{
e(

√
2−1)x, e−(

√
2+1)x, ex/2 cos

(√7
2
x
)
, ex/2 sin

(√7
2
x
)}

as follows:

{ode1=D[y[x],{x,4}]+a[1]*D[y[x],{x,3}]+a[2]*D[y[x],{x,2}]+a[3]*D[y[x],x]

+a[4]*y[x]==0, ode2=ode1/.{a[1]->1,a[2]->-1,a[3]->5,a[4]->-2}}

{sol1=DSolve[ode2,y[x],x], sol2=DeleteCases[CoefficientList[

sol1[[1,1,2]],Table[C[i],{i,1,4}]]//Flatten,0]}

Also, we can verify that these functions are solutions of the given ODE (test1) and that these

functions are linearly independent (test2):∗

trD[y_,s_,x_,n_]:=D[y[x],{x,n}]->D[s,{x,n}];

test1[i_]:=ode2/.y[x]->sol2[[i]]/.Table[trD[y,sol2[[i]],x,j],

{j,1,4}]//Simplify; Table[test1[i],{i,1,4}]

test2=Wronskian[sol2,x]

∗By verifying that the Wronskian (the determinant of the Wronskian matrix) has a nonzero value.
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The superposition principle can be applied for constructing a general solution, because any

linear combination of solutions of a homogeneous linear ODE is again a solution of the ODE. The

general solution of the nth-order linear ODE is

y(x) =
n∑

i=1

Ciyi(x),

where yi(x) (i = 1, . . . , n) is a fundamental set of solutions and Ci are arbitrary constants. By

applying the superposition principle to the fourth-order linear homogeneous ODE with constant

coefficients, we obtain the general solution as follows:

solGen=y[x]->Sum[C[i]*sol2[[i]],{i,1,4}]

test3=ode2/.solGen/.Table[trD[y,solGen[[2]],x,j],{j,1,4}]//Simplify

Example 20.13. Higher-order linear ODEs with variable coefficients. The Euler equation.

For a fourth-order linear homogeneous ODE with variable coefficients, the Euler equation

a1x
4y′′′′x + a2x

3y′′′x + a3x
2y′′x + a4xy

′ + a5y = 0,

where a1 = 1, a2 = 14, a3 = 55, a4 = 65, and a5 = 16, we can determine the fundamental set of

solutions (sol2) {
1

x2
,
ln(x)

x2
,
ln(x)2

x2
,
ln(x)3

x2

}

as follows:

ode1=a[1]*xˆ4*D[y[x],{x,4}]+a[2]*xˆ3*D[y[x],{x,3}]+a[3]*xˆ2*D[y[x],

{x,2}]+a[4]*x*D[y[x],x]+a[5]*y[x]==0

ode2=ode1/.{a[1]->1,a[2]->14,a[3]->55,a[4]->65,a[5]->16}

{sol1=DSolve[ode2,y[x],x], sol2=DeleteCases[CoefficientList[

sol1[[1,1,2]],Table[C[i],{i,1,4}]]//Flatten,0]}

trD[y_,s_,x_,n_]:=D[y[x],{x,n}]->D[s,{x, n}];

test1[i_]:=ode2/.y[x]->sol2[[i]]/.Table[trD[y,sol2[[i]],x,j],

{j,1,4}]//Simplify; Table[test1[i],{i,1,4}]

test2=Wronskian[sol2,x]

As in the previous example, we verify that these functions are solutions of the given ODE

(test1) and that these functions are linearly independent (test2). Since the Wronskian has the

nonzero value 12x−14 if x 6=0, it follows that these four functions are a fundamental set of solutions

for this Euler equation on any interval that does not contain the origin.

Example 20.14. Constant-coefficient linear nonhomogeneous ODEs. General solution.

The general solution y(x) of a nonhomogeneous linear ODE can be written as the sum of a

particular solution yp(x) of the nonhomogeneous equation and the general solution of the cor-

responding homogeneous equation. The general solution of the homogeneous equation is a linear

combination of the solutions in a fundamental set of solutions. The general solution of the nth-order

nonhomogeneous linear ODE has the form

y(x) = yp(x) +
n∑

i=1

Ciyi(x), (20.2.1.5)

where yi(x) (i = 1, . . . , n) is a fundamental set of solutions and Ci are arbitrary constants.

Consider the fourth-order linear nonhomogeneous ODE with constant coefficients

y′′′′x + a1y
′′′
x + a2y

′′
x + a3y

′ + a4y = sin(x),
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where the constant coefficients are a1 = 1, a2 = −1, a3 = 5, and a4 = −2. First, we determine

a fundamental set of solutions (fundSet1) of the corresponding homogeneous ODE and form

the general solution of the homogeneous ODE (solGenHom). Then we obtain a particular solu-

tion of the nonhomogeneous equation (solPartNonHom) and form the general solution of the

nonhomogeneous ODE (solGenNonHom) according to Eq. (20.2.1.5),

y(x) = C1e
x/2 sin

(√7
2
x
)
+ C2e

x/2 cos
(√7

2
x
)
+ C3e

(
√
2−1)x + C4e

−(
√
2+1)x − 1

4
cos(x),

as follows:

ode1=D[y[x],{x,4}]+a[1]*D[y[x],{x,3}]+a[2]*D[y[x],{x,2}]+a[3]*D[y[x],

x]+a[4]*y[x]==Sin[x]

ode2=ode1/.{a[1]->1,a[2]->-1,a[3]->5,a[4]->-2}

{sol1=DSolve[ode2[[1]]==0,y[x],x], fundSet1=DeleteCases[CoefficientList[

sol1[[1,1,2]],Table[C[i],{i,1,4}]]//Flatten,0]}

{solGenHom=DSolve[ode2[[1]]==0,y[x],x], solPartNonHom=y[x]->-Cos[x]/4}

solGenNonHom=y[x]->solGenHom[[1,1,2]]+solPartNonHom[[2]]

Then we verify that this function is a solution of the given ODE (test1) and compare the

solution solGenNonHom (as a result of our construction procedure) with the solution sol1 (5-

element list) and the general solution sol2 (as the result from DSolve). It should be noted that

these solutions are the same:

trD[y_,s_,x_,n_]:=D[y[x],{x,n}]->D[s,{x, n}];

test1=ode2/.solGenNonHom/.Table[trD[y,solGenNonHom[[2]],x,j],

{j,1,4}]//Simplify

sol2=DSolve[ode2,y[x],x]//FullSimplify

sol1=DeleteCases[CoefficientList[sol2[[1,1,2]],Table[C[i],

{i,1,4}]]//Flatten,0]

20.2.2 Analytical Solutions of Mathematical Problems

◮ Initial value problems (Cauchy problems).

In many applications it is required to solve an initial value problem or a Cauchy problem,

i.e., a problem consisting of the differential equation supplemented by one or more initial

conditions (which must be satisfied by the solutions). The number of the conditions equals

the order of the equation. Therefore, we have to determine a particular solution that satisfies

the given initial conditions.

Consider some initial value problems that model various processes and phenomena.

Example 20.15. Malthus model. Cauchy problem. Analytical and graphical solutions.

A basic model for population growth, the Malthus model, consists of a first-order linear ODE

and an initial condition,

y′t = ky, y(0) = y0 (k > 0).

Here k (k > 0) is a constant representing the rate of growth (the difference between the birth rate

and the death rate). The increase in the population is proportional to the total number of people.

We can obtain the particular solution

y(t) = y0e
kt

of this mathematical problem, which predicts exponential growth of the population, as follows:
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trD[y_,s_,x_,n_]:=D[y[x],{x,n}]->D[s,{x,n}];

{ode1=D[y[t],t]==k*y[t], ic1=y[0]==y0}

sol1=DSolve[{ode1,ic1},y[t],t]

test1=ode1/.sol1/.trD[y,sol1[[1,1,2]],t,1]

Example 20.16. Linear ODE. Cauchy problem. Analytical, numerical, and graphical solutions.

Consider a second-order linear nonhomogeneous ODE with variable coefficients and with the

initial conditions

y′′xx + xy′x + y = cos(x), y(0) = 0, y′x(0) = 0. (20.2.2.1)

Analytical and numerical solutions can be constructed as follows:

trD[y_,s_,x_,n_]:=D[y[x],{x,n}]->D[s,{x,n}];

{ode1=D[y[x],{x,2}]+x*D[y[x],x]+y[x]==Cos[x], ic1={y[0]==0,y'[0]==0}}

sol1=DSolve[{ode1,ic1},y[x],x]

test1=ode1/.sol1/.Table[trD[y,sol1[[1,1,2]],x,j],{j,1,2}]//Simplify

sol2=NDSolve[{ode1,ic1},y[x],{x,-10,10}]; solN=sol2[[1,1,2]];

The analytical solution (sol1) has the following form in the Mathematica notation:
{{

y[x] → − 1

2
e

1
2
− x2

2

√

π

2

(

2Erf

[

1√
2

]

− iErfi

[−i+ x√
2

]

+ iErfi

[

i+ x√
2

])}}

where i is the imaginary unit, Erf is the error function erf(z) (special function), and Erfi is the

imaginary error function erf(iz)/i.
To obtain real graphical solutions, we make the following additional manipulations with the

analytical solution obtained (see the Mathematica script below, the variable s[k]):

1. We evaluate y(x) on a set of points of the interval [−10, 10] and approximate the resulting

complex numbers using floating-point arithmetic (with the predefined function N); e.g., the result at

the point x = −10 reads −0.0458265+ 0. i.
2. We remove the zero imaginary part of the complex floating point numbers (with the prede-

fined function Chop); e.g., the result at the point x = −10 reads: −0.0458265.

Finally, we compare the analytical and numerical solutions as follows:

k=0; Do[{k=k+1; X[k]=m; s[k]=N[sol1[[1,1,2]]/.x->m]},{m,-10,10,0.1}]; n=k

seq1=Table[{X[m],(s[m]//Chop)},{m,1,n}]

g1=ListLinePlot[seq1,PlotStyle->{Blue,Thickness[0.01]}];

g2=Plot[solN,{x,-10,10},PlotStyle->{Red,Dashed,Thickness[0.007]}];

Show[{g1,g2}]

Example 20.17. First-order linear ODE. Cauchy problem. Analytical and graphical solutions.

For the first-order linear ODE with the initial condition

y′x − 2y = 3x, y(0) = n, (20.2.2.2)

we can determine the particular analytical solution (sol1)

y(x) = − 3

2
x− 3

4
+ e2x

(
n+

3

4

)

and construct the direction field as follows:

nN=7; SetOptions[Plot,GridLines->{Automatic,Automatic}];

ivp1={y'[x]-2*y[x]==3*x,y[0]==n}

sol1=DSolve[ivp1,y[x],x]//Expand
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sols=Table[sol1/.n->-3+(i-1),{i,1,nN}]//Flatten

sList=Table[sols[[i,2]],{i,1,nN}]

Do[g[i]=Plot[sList[[i]],{x,0,2.5},PlotStyle->Blue],{i,1,nN}];

gr=Table[g[i],{i,1,nN}];

vField=VectorPlot[{1,3*x+2*y},{x,0,2.5},{y,-600,600},

VectorScale->0.00015,VectorColorFunction->"Rainbow"];

Show[{gr, vField},PlotRange->All,Frame->True,AspectRatio->1]

◮ Boundary value problems.

Consider two-point boundary value problems that consist of a second-order ODE and

boundary conditions at the two endpoints of an interval [a, b]. Some (simple) boundary

value problems can be solved (with the aid of Mathematica) analytically just as initial value

problems except that the value of the function and its derivatives are given at two values

of x (the independent variable) rather than one.

Example 20.18. Two-point boundary value problem. Analytical and graphical solutions.

For the second-order linear homogeneous ODE with constant coefficients with the boundary

conditions (the nonhomogeneous Dirichlet conditions)

y′′xx + a1y = 0, y(a) = g1, y(b) = g2, (20.2.2.3)

where a1 = 2, a = 0, b = π, g1 = 1, and g2 = 0, we can determine the particular analytical solution

(sol1)

y(x) = cos(
√
2x) − cot(

√
2π) sin(

√
2x)

and construct a graphical solution as follows:

bvp1={D[y[x],{x,2}]+a[1]*y[x]==0,y[a]==g[1],y[b]==g[2]}

bvp2=bvp1/.{a[1]->2,a->0,b->Pi,g[1]->1,g[2]->0}

sol1=DSolve[bvp2,y[x],x]

Plot[sol1[[1,1,2]],{x,0,Pi},Frame->True,

PlotStyle->{Blue,Thickness[0.01]}]

where bvp1 and bvp2 are the abbreviations for boundary value problems (see Section 20.1.1).

By modifying the boundary conditions (the nonhomogeneous Neumann conditions), we obtain

the following:

y′′xx + a1y = 0, y′x(a) = g1, y′x(b) = g2, (20.2.2.4)

where a1 = 2, a = 0, b = π, g1 = 1, and g2 = 0, and the particular analytical solution (Sol2)

y(x) =
1

2

(√
2 cos(

√
2 x) cot(

√
2 π) +

√
2 sin(

√
2x)

)

can be constructed as follows:

bvp3={D[y[x],{x,2}]+a[1]*y[x]==0,y'[a]==g[1],y'[b]==g[2]}

bvp4=bvp3/.{a[1]->2,a->0,b->Pi,g[1]->1,g[2]->0}

sol2=DSolve[bvp4,y[x],x]

Plot[sol2[[1,1,2]],{x,0,Pi},Frame->True,PlotStyle->{Blue,Thickness[0.01]}]

For solving more complicated boundary value problems, we can follow a numerical

approach (see Section 20.3.5).
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◮ Eigenvalue problems.

Consider eigenvalue problems, i.e., boundary value problems that include a parameter λ.

The parameter values that satisfy the differential equation are called eigenvalues of the

problem, and for each eigenvalue, the solution y(x) (y(x) 6= 0) that satisfies the problem

is called the corresponding eigenfunction. We will find eigenvalues and eigenfunctions for

some eigenvalue problems.

A sufficiently general form of linear eigenvalue problems reads:

a2(x)y
′′
xx + a1(x)y

′
x + [a0(x) + λ]y = 0, a < x < b,

and boundary conditions must be posed at the endpoints x = a and x = b (see the previous

paragraph).

Example 20.19. Eigenvalue problem. Dirichlet boundary conditions. Analytical solution.

Consider a Sturm–Liouville eigenvalue problem consisting of a second-order linear homoge-

neous ODE with constant coefficients and a parameter λ with the homogeneous Dirichlet boundary

conditions,

y′′xx + λy = 0, y(0) = 0, y(π) = 0. (20.2.2.5)

If we apply the predefined function DSolve,

{ode1=D[y[x],{x,2}]+lambda*y[x]==0,

DSolve[{ode1,y[0]==0,y[Pi]==0},y[x],x]}

then we obtain the trivial solution y(x) = 0 and cannot solve the eigenvalue problem.

However, we can solve such problems step by step with the aid of Mathematica as follows.

1◦ We find the characteristic equation (eqChar)m2 + λ = 0 for the given ODE; the charac-

teristic roots are m = ±i
√
λ (rootsChar):

trD[y_,s_,x_,n_]:=D[y[x],{x,n}]->D[s,{x,n}]; expSol=Exp[m*x]

eqChar0=ode1/.y[x]->expSol/.Table[trD[y,expSol,x,j],{j,1,2}]//Simplify

{eqChar=Thread[eqChar0/expSol,Equal], rootsChar=Solve[eqChar,m]}

2◦ There are two cases (λ=0 and λ 6=0). Consider the first case, λ=0. The differential equation

is y′′xx = 0 (eq1), and the solution (sol1) of this equation with the first boundary condition is

y(x) = C[2]x. By applying the second boundary condition to this solution, we obtain the equation

C[2]π = 0 (eq2), so C[2] = 0 and we arrive at the trivial solution y(x) = 0. Thus, λ = 0 is not an

eigenvalue:

{eq1=ode1/.lambda->0, sol1=DSolve[{eq1,y[0]==0},y[x],x]}

eq2=(sol1[[1,1,2]]/.x->Pi)==0

3◦ Consider the case of λ 6= 0 and apply the first boundary condition. The resulting solution

(sol3) is y(x) = c sin(
√
λx). By applying the second boundary condition, we obtain the transcen-

dental equation c sin(
√
λπ) = 0 (sol4). By solving this equation (using Reduce), we determine

the eigenvalues λn = n2 (n = 1, 2, . . .) and the eigenfunctions yn(x) = c sin(nx):

{sol20=DSolve[{ode1,y[0]==0},y[x],x], sol2=sol20[[1,1,2]]}

{param=Select[sol2,FreeQ[#,lambda]&], sol3=sol2/.param->c}

sol4=(sol3/.x->Pi)==0,

sol50=Reduce[sol4 && lambda>0 && c!=0, lambda, Reals]

{sol51=Thread[sol50[[2,1,3]]/4,Equal], sol5=sol51[[2]]}

{var=Variables[sol5], eVals=sol5/.var[[1]]->n}

eFun=Assuming[n>=1,Simplify[sol3/.lambda->eVals]]
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20.2.3 Analytical Solutions of Systems of ODEs

The predefined function DSolve can be used for finding analytical solutions of a given

ODE system (linear or nonlinear; linear with constant or variable coefficients; homoge-

neous or nonhomogeneous).

DSolve[{odeSys},{y1[x],...},x] DSolve[{odeSys},{y1,...},x]

DSolve[{odeSys,ICs},{y1[x],...},x]

DSolve[{odeSys,ICs},{y1,...},x]

LaplaceTransform[odeSys,x,p]/.{ICs}

ParametricPlot[{xSol,ySol},{x,x1,x2},ops]

• DSolve, finding the general solution y1[x], y2[x], . . . or y1, y2, . . . (expressed

as a “pure” function) for a system of ODEs

• DSolve,ICs, solving a system of ODEs with given initial or boundary conditions

◮ Linear systems of ODEs.

For first-order linear systems of ODEs, one can find the general solution and the particular

solution for any initial condition (with the aid of the predefined function DSolve). For

higher-order linear ODEs or systems of ODEs, one can convert them to a system of first-

order ODEs and then solve them.

Example 20.20. First-order linear system of two ODEs. Analytical solution.

Consider the general first-order two-dimensional linear system of ODEs with constant coeffi-

cients

u′x = a0 + a1u+ a2v, v′x = b0 + b1u+ b2v,

where u(x) and v(x) are unknown functions and the coefficients are a0 = 1, a1 = 1, a2 = −1,

b0 = 1, b1 = 1, and b2 = 1.

By applying the predefined function DSolve, we find the general solution

u (x) = −1 + ex (C1 cos(x) + C2 sin(x)) ,

v (x) = −ex (C2 cos(x) − C1 sin(x))

of this linear system and verify it as follows:

ode1=D[u[x],x]==a[0]+a[1]*u[x]+a[2]*v[x]

ode2=D[v[x],x]==b[0]+b[1]*u[x]+b[2]*v[x]

coeffs={a[0]->1,a[1]->1,a[2]->-1,b[0]->1,b[1]->1,b[2]->1}

{sys1={ode1,ode2}, sys2=sys1/.coeffs}

{solGen1=DSolve[sys2,{u,v},x], test1=sys2/.solGen1//Simplify}

Map[FullSimplify,

{uX=u[x]->solGen1[[1,1,2,2]],vX=v[x]->solGen1[[1,2,2,2]]}]

Example 20.21. First-order linear system of two ODEs. Cauchy problem. Analytical solution.

Consider the following first-order two-dimensional linear system of ODEs with initial condi-

tions:

u′x = a0 + a1u+ a2v, v′x = b0 + b1u+ b2v, u(x0) = u0, v(x0) = v0,
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where u(x) and v(x) are unknown functions and the coefficients are a0 = −1, a1 = 1, a2 = −1,

b0 = 1, b1 =−1, and b2 = 1. For a first-order two-dimensional system in u(x) and v(x), each initial

condition can be specified in the form ic= {u(x0) = u0, v(x0) = v0} (e.g., u(0) = 0, v(0) = 1).

One solution curve is generated for each initial condition. The solution of the initial value problem

(ivp1) can be found as follows:

ode1=D[u[x],x]==a[0]+a[1]*u[x]+a[2]*v[x]

ode2=D[v[x],x]==b[0]+b[1]*u[x]+b[2]*v[x]

coeffs={a[0]->-1,a[1]->1,a[2]->-1,b[0]->1,b[1]->-1,b[2]->1}

{sys1={ode1,ode2}, sys2=sys1/.coeffs}

{solGen1=DSolve[sys2,{u,v},x], test1=sys2/.solGen1//Simplify}

Map[FullSimplify,

{uX=u[x]->solGen1[[1,1,2,2]],vX=v[x]->solGen1[[1,2,2,2]]}]

{ic={u[0]==0,v[0]==1}, ivp1=Union[sys2,ic]}

{solPart1=DSolve[ivp1,{u,v},x], test2=ivp1/.solPart1//Simplify}

Alternatively, the solution of this initial value problem can be found step by step as follows:

ic1=ic/.Equal->Rule

eq1={u[x]==uX[[2]],v[x]==vX[[2]]}/.x->0/.ic1//Simplify

{eq2=Solve[eq1,{C[1],C[2]}], solPart2=Map[Simplify,{uX,vX}/.eq2]}

test21=Map[FullSimplify,sys2/.solPart2/.D[solPart2,x]]

test22=(Flatten[solPart2/.x->0])===ic1

{uXP==solPart2[[1,1,2]],vXP==solPart2[[1,2,2]]}

We substitute the initial condition (ic) into the general solution (solGen1) and obtain equa-

tions (eq1) for the unknowns C[1] and C[2], which can be solved for these constants of inte-

gration (eq2). The particular solution (solPart2) of this initial value problem reads:

u (x) = 1− e2x, v (x) = e2x.

This particular solution solPart2 is equal to the solution solPart1.

◮ Nonlinear systems of ODEs.

For more complicated first-order or higher-order nonlinear systems of ODEs, a straight-

forward application of the predefined function dsolve may give no solutions (general or

particular). Therefore, one can introduce some transformations, make some manipulations

with the original Cauchy problem, reduce it to a modified Cauchy problem, and finally ob-

tain analytical solutions in terms of new variables and the original variables. Let us show

this in the following example.

Example 20.22. Second-order nonlinear system of ODEs. Analytical and graphical solutions.

Consider the following second-order two-dimensional nonlinear system of ODEs subject to

initial conditions:

u′′xx = −au′x
√
(u′x)

2 + (v′x)
2, v′′xx = −av′x

√
(u′x)

2 + (v′x)
2,

u(0) = 0, v(0) = 0, u′x(0) = U0 sinφ, v′x(0) = U0 cosφ,

where u(x) and v(x) are unknown functions and the parameter values are a = 5, U0 = 10, and

φ = π/10. The solution of the initial value problem (ivp1) can be found step by step as follows:
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sys1={D[u[x],{x,2}]==-a*D[u[x],x]*Sqrt[D[u[x],x]ˆ2+D[v[x],x]ˆ2],

D[v[x],{x,2}]==-a*D[v[x],x]*Sqrt[D[u[x],x]ˆ2+D[v[x],x]ˆ2]}

ic={u[0]==0,v[0]==0,u'[0]==U0*Sin[phi],v'[0]==U0*Cos[phi]}

{ivp1=Union[sys1,ic], DSolve[ivp1,{u[x],v[x]},x]}

tr1=U[x]->Sqrt[D[u[x],x]ˆ2+D[v[x],x]ˆ2]

{eq1=D[tr1,x], eq2=eq1/.(sys1/.Equal->Rule)//Simplify}

ode1=eq2/.tr1[[2]]ˆ2->U[x]ˆ2

sol1=DSolve[{(ode1/.Rule->Equal),U[0]==U0},U[x],x]

{sys2=sys1/.tr1[[2]]->sol1[[1,1,2]], ivp2=Union[sys2,ic]}

sol2=DSolve[ivp2,{u,v},x]

test1=Assuming[{U0>0,x>0,a>0},ivp1/.sol2//FullSimplify]

solG={sol2[[1,1,2,2]],sol2[[1,2,2,2]]}

Plot[Evaluate[solG/.{U0->10,a->5,phi->Pi/10}],{x,0,20}]

In this problem, a straightforward application of the predefined functionDSolve does not give

a solution. Therefore, we introduce the transformation (tr1), U(x) =
√
(u′x)

2 + (v′x)
2. Then we

find the derivative (eq1), U ′
x =

2u′xu
′′
xx + 2v′xv

′′
xx

2
√
(u′x)

2 + (v′x)
2

. By substituting the second derivatives u′′xx and

v′′xx from the original system into the expression forU ′
x, we obtain the differential equation (ode1),

U ′
x = −aU2. By solving this simple differential equation with the initial condition U(0) = U0, we

obtain the solution (sol1) U(x) =
U0

1 + aU0x
. By substituting this expression for U(x), which is

equal to
√
(u′x)

2 + (v′x)
2 (according to tr1), into the original system (sys1) and by taking into

account the initial conditions, we obtain the modified Cauchy problem (ivp2)

u′′xx = − aU0 u
′
x

aU0x+ 1
, v′′xx = − aU0 v

′
x

aU0x+ 1
,

u(0) = 0, v(0) = 0, u′x(0) = U0 sinφ, v′x(0) = U0 cosφ.

By solving this Cauchy problem, we obtain the analytical particular solution (sol2)

u(x) =
1

a
sinφ ln(axU0 + 1), v(x) =

1

a
cosφ ln(axU0 + 1)

and then verify that it is an exact particular solution (sol2) of the original Cauchy problem (ivp1)

and plot the graphs of u(x), v(x).

20.2.4 Integral Transform Methods for ODEs

In Mathematica, integral transforms (Laplace, Fourier, and Z-transforms) can be studied

with the aid of several predefined functions.

For example, the Laplace integral transforms are defined by the two predefined func-

tions LaplaceTransform,InverseLaplaceTransform.

Integral transform methods can be applied to many initial value problems.

◮ Linear ODEs and systems of ODEs with constant coefficients.

Integral transform methods can be applied for solving the nth-order linear ODE with con-

stant coefficients and with initial conditions

any
(n)
x + an−1y

(n−1)
x + . . .+ a1y

′
x + a0y = f(x),

y(0) = α0, y′x(0) = α1, . . . , y(n−1)
x (0) = αn−1
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Figure 20.4: Analytical solution of the nonhomogeneous Cauchy problem for the second-

order linear ODE (20.2.4.1).

and to systems of linear ODEs with constant coefficients and with initial conditions. Con-

sider some examples.

Example 20.23. First-order linear ODE. Initial value problem. Laplace transform.

For the first-order linear ODE with the initial condition

y′x + ay = e−ax, y(0) = 1,

the analytical particular solution

y(x) = (x+ 1)e−ax

of the initial value problem can be obtained and verified as follows:

ode={y'[x]+a*y[x]==Exp[-a*x]}

eq1=LaplaceTransform[ode,x,s]/.{y[0]->1}

eq2=Solve[eq1,LaplaceTransform[y[x],x,s]]

sol1=Map[InverseLaplaceTransform[#,s,x]&,eq2,{3}]

trD=D[sol1,x]//Flatten

sol2=DSolve[{ode,y[0]==1},y,x]

{test1=ode/.sol2, test2=ode/.sol1/.trD}

The graphical solution can be obtained for some value of the parameter a (e.g., a = 7) as follows:

Plot[Evaluate[y[x]/.sol1/.{a->7}],{x,0,1},

PlotStyle->{Hue[0.7],Thickness[0.01]}]

Example 20.24. Second-order linear ODE. Cauchy problem. Laplace transform.

For the second-order linear ODE with the initial conditions

ay′′xx + by = f(x), y(0) = 0, y′x(0) = 0, (20.2.4.1)

where f(x) = H(x) − H(x − π) is a given function representing a source term,∗ the analytical

particular solution

y(x) =
1

b

{
1− cos

[√
bx√
a

]
+

(
−1 + cos

[√
b(x− π)√

a

])
H(x− π)

}

and graphical solutions (see Figure 20.4) of the nonhomogeneous Cauchy problem can be obtained

and verified as follows:

∗Here H(x) is the Heaviside step function.
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SetOptions[Plot,PlotStyle->{Hue[0.8],Thickness[0.01]}];

f[x_]:=HeavisideTheta[x]-HeavisideTheta[x-Pi]; tr1={a->5,b->10}

ode={a*y''[x]+b*y[x]==f[x]}

eq1=LaplaceTransform[ode,x,s]/.{y[0]->0,y'[0]->0}

eq2=Solve[eq1,LaplaceTransform[y[x],x,s]]

eq3=eq2[[1,1,2]]

sol1=InverseLaplaceTransform[eq3,s,x]

trD=D[sol1,{x,2}]//Flatten//FullSimplify

sol2={y[x]->PiecewiseExpand[sol1/.HeavisideTheta->UnitStep]}

sol3=DSolve[{ode,y[0]==0,y'[0]==0},y[x],x]//Simplify//Flatten

{sol1//FullSimplify,f1=sol1/.tr1}

Plot[f1,{x,0,10*Pi}]

Plot[Evaluate[sol3[[1,2]]/.tr1],{x,0,10*Pi}]

test1=Assuming[x>0,Simplify[ode/.y[x]->sol1/.y''[x]->trD]]

Example 20.25. Constant-coefficient linear system. Cauchy problem. Laplace transform.

By applying the Laplace transform, we solve the initial value problem

u′x − 2v = x, 4u+ v′x = 0, u(0) = 1, v(0) = 0

and verify the analytical solution

u(x) = 1
8 + 7

8 cos(2
√
2x), v(x) = − 1

2x− 7
8

√
2 sin(2

√
2x)

as follows:

odeSys={u'[x]-2*v[x]==x,4*u[x]+v'[x]==0}

eq1=LaplaceTransform[odeSys,x,s]

eq2=Solve[eq1,{LaplaceTransform[u[x],x,s],LaplaceTransform[v[x],x,s]}]

sol1=Map[InverseLaplaceTransform[#,s,x]&,eq2,{3}]/.{u[0]->1,v[0]->0}

sol2=DSolve[{odeSys,u[0]==1,v[0]==0},{u[x],v[x]},x]//Simplify

ParametricPlot[Evaluate[{u[x],v[x]}/.sol1],{x,0,Pi},

PlotStyle->{Hue[0.5],Thickness[0.01]},AspectRatio->1]

Example 20.26. First-order linear systems of ODEs. Initial value problem. Laplace transform.

Generalizing this procedure, consider the system of first-order linear ODEs

(yi)
′
x = ai1y1 + ai2y2 + · · ·+ ainyn + fi(x), x > 0 (i = 1, . . . , n)

with the initial conditions

yi(0) = yi0 (i = 1, . . . , n),

where aij (i = 1, . . . , n; j = 1, . . . , n) are constants, fi(x) are given functions, and the unknown

functions y1(x), . . . , yn(x) are defined on x ∈ [0,∞].
Let n = 2. We find the exact solution of the Cauchy problem

(y1)
′
x = y2, (y2)

′
x = −y1 − 2y2 + x, x > 0,

y1(0) = 1, y2(0) = 1

by applying the integral transform method. Also, we verify and plot this solution on some interval

[a, b] as follows:

{a=0,b=2, odeSys={D[u[x],x]==v[x],D[v[x],x]==x-u[x]-2*v[x]},

ICs={u[0]==1,v[0]==1}, IVP1=Flatten[{odeSys,ICs}]}

eq1=LaplaceTransform[odeSys,x,s]

eq2=Solve[eq1,{LaplaceTransform[u[x],x,s],LaplaceTransform[v[x],x,s]}]

sol1=Map[InverseLaplaceTransform[#,s,x]&,eq2,{3}]/.{u[0]->1,v[0]->1}
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sol2=Sort[DSolve[IVP1,{u[x],v[x]},x]]

{sol1,sol2}//Simplify

uExt[x1_]:=sol2[[1,1,2]]/.{x->x1}; vExt[x1_]:=sol2[[1,2,2]]/.{x->x1};

uG1=Plot[uExt[x],{x,a,b},PlotStyle->Red,PlotRange->All];

vG1=Plot[vExt[x],{x,a,b},PlotStyle->Blue,PlotRange->All];

Show[{uG1,vG1}]

Remark 20.2. If we consider an nth-order ODE (n > 1) with n initial conditions

any
(n)
x + an−1y

(n−1)
x + . . .+ a1y

′
x + a0y = f(x), x > 0,

y(0) = y0, y′x(0) = y1, . . . , y(n−1)
x (0) = yn−1,

then we can find exact solutions of this higher-order ODE by transforming it into an equivalent

system of n first-order equations (with the predefined function DEtools,convertsys) and

by applying integral transform methods to this system of ODEs.

20.2.5 Constructing Solutions via Transformations

Transformation methods are the most powerful analytic tools for studying differential equa-

tions. In general, transformations can be divided into two parts: transformations of the in-

dependent variables and dependent variables; transformations of the independent variables,

dependent variables, and their derivatives. We will consider various types of transforma-

tions, e.g., point and contact transformations, relating ODEs.

Transformation methods permit finding transformations under which an ODE is in-

variant and new variables (independent and dependent) with respect to which differential

equations become simpler, e.g., linear.

In Mathematica, transformations of various types can be computed by defining new

functions (a predefined function does not exist).

For example, if f(x) is some function, the transformation of the independent variable,

f ′x(x)→ f ′x(g(x)), i.e., the chain rule, can be computed as follows:

D[f[x],x]/.f->(f[g[#]]&)

◮ Point transformations.

Now consider the most important transformations of ODEs, namely, point transformations

(transformations of independent and dependent variables). Point transformations can be

linear point transformations (translation transformations, scaling transformations, and ro-

tation transformations) and nonlinear transformations of the dependent variables. These

transformations and their combinations can be applied to simplify nonlinear ODEs, lin-

earize them, and reduce them to normal, canonical, or invariant form.

Example 20.27. The Bernoulli equation. Transformation and general integral.

Consider the first-order nonlinear ODE, the Bernoulli equation

g(x)y′x − f1(x)y − fn(x)yn = 0,

where n 6=0, 1. By applying the transformationX=x, Y (X)= [y(x)]1−n (seq2) of the dependent

variable, we obtain the linear equation (eq4)

(1− n) f1(X)Y + (1 − n) fn(X)− g(X)Y ′
X = 0

and the general integral with respect to Y (X) (sol1). Finally, we find the general integral of the

original equation (with respect to y(x)) (sol2) as follows:
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Off[Solve::ifun]; $Assumptions={n\[Element]Integers, n!=1, Y[X]!=0}

{tr1={X==x,Y[X]==y[x]ˆ(1-n)}, tr2=Solve[tr1,{x,y[x]}]}

eq1=g[x]*D[y[x],x]-f1[x]*y[x]-fn[x]*y[x]ˆn==0

eq2=eq1/.{y->((1/y[#])ˆ(1/(n-1))&)}/.x->X/.y->Y

eq3=eq2//PowerExpand

eq4=Thread[eq2*(n-1),Equal]//PowerExpand//FullSimplify

sol1=DSolve[eq4,Y[X],X]

{tr11=tr1/.Equal->Rule, sol2=sol1/.tr11//FullSimplify}

Example 20.28. First-order ODE reducible to a homogeneous ODE. A linear transformation.

Consider the first-order equation

y′x = f

(
a1x+ b1y + c1
a2x+ b2y + c2

)
,

where ai, bi, and ci (i = 1, 2) are real constants. These equations can be reduced to a homogeneous

equation and integrated. Consider the case in which

D = det

∣∣∣∣
a1 b1

a2 b2

∣∣∣∣ ≡ a1b2 − a2b1 6= 0.

By applying the transformations of the independent and dependent variables∗ (ode1T)

x = X + x0, y(x) = Y (X) + y0, (20.2.5.1)

where x0 and y0 are constants and can be uniquely determined (since D 6= 0) by solving the linear

algebraic system

a1x0 + b1y0 + c1 = 0, a2x0 + b2y0 + c2 = 0,

we obtain the differential equation (eq2)

Y ′
X = f

(
b1Y + a1X

b2Y + a2X

)

for Y = Y (X), which can be reduced to the homogeneous equation (eq3)

Y ′
X = f

(
b1Y/X + a1
b2Y/X + a2

)

and integrated:

sol0=Solve[{a1*x0+b1*y0+c1==0,a2*x0+b2*y0+c2==0},{x0,y0}]

{tr1={x->X+x0,y[x]->Y[X]+y0},tr11=tr1/.Rule->Equal,

tr2=Solve[tr11,{X,Y[X]}]}

ode1[X_]:=D[y[X],X]==f[(a1*X+b1*y[X]+c1)/(a2*X+b2*y[X]+c2)];

ode1T[Y_]:=((ode1[x]/.y->Function[{x},y[x-x0]+y0])/.tr1)/.{y->Y};

{ode1[x], eq1=ode1T[Y]//PowerExpand, eq2=eq1/.sol0//Simplify}

ex1=eq2[[1,1,1]]

tr2=ex1->(Numerator[ex1]/X // Expand)/(Denominator[ex1]/X // Expand)

eq3=eq2/.tr2

∗Equations (20.2.5.1) can be interpreted as a translation of orthogonal coordinate axes to the new origin

(x0, y0) that is the point of intersection of the lines a1x+ b1y+ c1 = 0 and a2x+ b2y+ c2 = 0 (for the case

in which the lines are not parallel).
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◮ Contact transformations.

A contact transformation is a transformation that acts on the space of the independent vari-

able, the dependent variable, and its first derivative. For an ODE of general form with the

independent variable x and the dependent variable y = y(x), a contact transformation can

be represented in the form

x = F (X,Y, Y ′
x), y = G(X,Y, Y ′

x), y′x = H(X,Y, Y ′
X ),

where the functions F (X,Y, Y ′
x) and G(X,Y, Y ′

x) are chosen so that the derivative y′x does

not depend on Y ′′
xx.

Consider some examples of contact transformations reducing complicated nonlinear

ODEs to equations of a simpler form.

Example 20.29. Nonlinear first-order equation. Contact transformation.

Consider the nonlinear first-order ODE

y′x(y
′
x + ax)n + b

(
(y′x)

2 + 2ay
)m

+ c = 0,

where a, b, c,m, and n are arbitrary parameters. By applying the contact transformation (trF)

x = 1
a (X − y

′
x), y = 1

2a

(
Y − (Y ′

X)2
)
, y′x = 1

2Y
′
X ,

we reduce this nonlinear ODE to the separable ODE (eq2)

XnY ′
X + 2bY m + 2c = 0

and obtain the exact solution as follows:

{d1=D[y[x],x], ode1=d1*(d1+a*x)ˆn+b*(d1ˆ2+2*a*y[x])ˆm+c==0}

{tr1={x->(X-d1)/a, y[x]->(Y[X]-(d1)ˆ2)/(2*a)},

tr2=D[y[x],x]->D[Y[X],X]/2,tr3=tr1/.tr2, trF={tr3,tr2}//Flatten}

{eq2=ode1/.trF//FullSimplify, sol1=DSolve[eq2,Y[X],X]}

Example 20.30. Nonlinear first-order equation. Legendre transformation.

Consider the nonlinear first-order ODE

xf(y′x) + yg(y′x) + h(y′x) = 0,

where f(z), g(z), and h(z) are arbitrary functions. By applying the Legendre transformation

x = Y ′
X , y = XY ′

X − Y, y′x = X,

we reduce nonlinear ODE to the linear ODE (eq2)
(
Xg(X) + f(X)

)
Y ′
X − Y g(X) + h(X) = 0

and obtain the exact solution as follows:

{d1=D[y[x],x], ode1=x*f[d1]+y[x]*g[d1]+h[d1]==0}

{legTr={x->D[Y[X],X], y[x]->-Y[X]+X*D[Y[X],X]}, legd1={D[y[x],x]->X}}

legendreTr={legTr,legd1}//Flatten

eq2=ode1/.legendreTr//FullSimplify

sol1=DSolve[eq2,Y[X],X]

⊙ Literature for Section .2: G. M. Murphy (1960), L. E. El’sgol’ts (1961), P. Hartman (1964), E. L. Ince

(1956), N. M. Matveev (1967), I. G. Petrovskii (1970), G. F. Simmons (1972), E. Kamke (1977), G. Birkhoff

and G. C. Rota (1978), D. Zwillinger (1997), A. D. Polyanin and V. F. Zaitsev (2003), W. E. Boyce and

R. C. DiPrima (2004), A. D. Polyanin and A. V. Manzhirov (2007).
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20.3 Numerical Solutions and Their Visualizations

It is well known that there exist many differential equations for which one cannot find exact

solutions in terms of elementary or special functions. For example, Maple and Mathematica

cannot find an analytic solution for the first-order nonlinear ODE

y′x = ax(y + x)−n,

where a ∈ R and n ∈ N,

infolevel[dsolve]:=3; a:=1; n:=-2;

dsolve(diff(y(x),x)=a*x*(y(x)+x)ˆ(-n),y(x));

{a=1, n=2}; DSolve[y'[x]==a*x*(y[x]+x)ˆ(-n),y[x],x]

We can study this ODE following other approaches, e.g., the geometric-qualitative ap-

proach (performing phase plane analysis to find the qualitative behavior of solutions), the

approximate analytical approach (finding approximate analytical solutions), or the numer-

ical approach (finding numerical solutions).

In this section, we follow the numerical approach and consider various numerical ap-

proximation methods for initial value problems, boundary value problems, and eigenvalue

problems for ordinary differential equations.

20.3.1 Numerical Solutions in Terms of Predefined Functions

The predefined function NDSolve is a general numerical differential equation solver.

DSolve can solve the following types of differential equations: ordinary differential equa-

tions, partial differential equations, and differential-algebraic equations.

NDSolve[{edo1,edo2,...,edoN},y,{x,x1,x2},ops]

NDSolve[{edo1,edo2,...,edoN},{y1,...,yN},{x,x1,x2},ops]

s=NDSolve[{ODEs,ICs},y,{x,x1,x2},ops] s1=Evaluate[y[x]/.s]

NDSolve[{ODEs,ICs},y[x],{x,x1,x2},ops] Plot[s1,{x,x1,x2}]

NDSolve[{ODEs,ICs},y,{x,x1,x2},Method->m]

NDSolve[{ODEs,ICs},y,{t,t1,t2},Method->{m,Method->subM}]

VectorPlot[{vx,vy},{x,x1,x2},{y,y1,y2},ops]

• NDSolve, finding numerical solutions of ODE problems

• NDSolve,Method, finding numerical solutions of ODE problems using one of the

numerical methods embedded in Mathematica

• VectorFieldPlot, constructing vector fields

Remark 20.3. For more comprehensive details on numerical methods embedded in Mathe-

matica (for solving ODEs) and graphical representation of solutions, we refer to Sections 20.3.2

and 20.2.1.

Note that the predefined function NDSolve represents solutions for the function y(x)
(or the functions yi(x)) as InterpolatingFunction objects; i.e., the solution is rep-

resented as a list of possible solutions for y(x), where the function y(x) is determined
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Figure 20.5: Numerical solutions of the Cauchy problem (20.3.1.1).

numerically via InterpolatingFunction. NDSolve finds numerical solutions iter-

atively and computes numerical values for y(x) only at specific values of x between x1 and

x2, and then uses InterpolatingFunction to interpolate between these values of x.

Example 20.31. First-order ODE. Cauchy problem. Numerical and graphical solutions.

For the Cauchy problem (with several initial conditions)

y′x = pym + qxn, y(0) = y0 (20.3.1.1)

on the interval [a, b] (a = 0, b = 9) with parameters p = 1, q = −1, m = 2, n = 1, and y0 =
{0, 0.729, 0.5, 0.2,−4, 0.69, 0.72}, we find numerical and graphical solutions (see Fig. 20.5) as

follows:

SetOptions[Plot,ImageSize->500,AspectRatio->1,Frame->True,

Axes->False];

{nD=50,nN=7,a=0,b=9,p=1,q=-1,n=1,m=2}

ODE={y'[x]==p*y[x]ˆm+q*xˆn}

IC={y[0]==0,y[0]==729/1000,y[0]==1/2,y[0]==1/5,y[0]==-4,

y[0]==69/100,y[0]==72/100}

IVP=Union[ODE,IC]

Do[eq[i]=NDSolve[{ODE,IC[[i]]},y,{x,a,b},Method->

{"StiffnessSwitching",Method->{"ExplicitRungeKutta",Automatic}},

WorkingPrecision->nD,MaxSteps->500000,AccuracyGoal->15,

PrecisionGoal->15]; sol[i]=eq[i][[1,1,2]];

Print[Table[{x,sol[i][x]},{x,a,b,1}]//TableForm];

g[i]=Plot[Evaluate[sol[i][x]],{x,a,b},PlotStyle->Hue[0.25+0.1*i],

PlotRange->{{a,b},All},GridLines->{Automatic,Automatic}],{i,1,nN}];

Show[Table[g[i],{i,1,nN}]]

Note that in the process of computing numerical solutions for nonlinear ODEs (and systems of

ODEs), various complicated phenomena can appear (e.g., round-off errors, singularities, and stiff-

ness properties). In these cases, we can include additional options (for NDSolve), e.g., Method,

WorkingPrecision, MaxSteps, AccuracyGoal, and PrecisionGoal.
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20.3.2 Numerical Methods Embedded in Mathematica

In Mathematica, one can numerically solve various types of problems:

• Initial value problems (nonstiff, stiff, and complex-valued with a real-valued inde-

pendent variable)

• Boundary value problems (linear and nonlinear)

• Initial value problems for differential algebraic equations (nonstiff and stiff)

• Initial value problems for delay differential equations (nonstiff and stiff)

Mathematica has a large collection of numerical methods for solving differential equa-

tions. These methods permit obtaining numerical solutions for a single differential equation

(or a system of ODEs):

• without specifying a method;

• specifying one of the embedded methods (described in Tables 20.1–20.3) and various

appropriate options for the selected embedded method, i.e., configuring a method via

various options;

• constructing a new special-purpose class of methods by using predefined numerical

methods as building blocks;

• adding new additional numerical methods into NDSolve.

One can do this owing to a special modular design and unification of the collection of

methods.

The methods are hierarchical (i.e., one method can call another).

There exist classes of methods (e.g., ExplicitRungeKutta class). For a given

class of methods, we can specify numerical schemes, orders, the coefficients of the method,

etc. Each class of methods has appropriate options that can be obtained, e.g., for the class

ExplicitRungeKuttamethods, as follows:

Options[NDSolve‘ExplicitRungeKutta]

Also there exists an automatic step size selection and a method order selection. For

example, we can select the class ExplicitRungeKutta methods, and Mathematica

will automatically select (depending on a given problem) an appropriate order, relative and

absolute local error tolerances, and an initial step size estimate.

• NDSolve,Method->Automatic, finding numerical solutions of ODE problems

without specification of a method (automatically); NDSolve will choose a method

that should be appropriate for a given differential equation

• NDSolve,Method->m, finding numerical solutions of ODE problems specifying

one of the basic numerical methods (see Table 20.1)

• NDSolve,Method->{c,Method->subMeth}, finding numerical solutions of

ODE problems using one of the controller numerical methods (see Table 20.2) and

submethods (see Table 20.3)
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Figure 20.6: Numerical solution of the Cauchy problem (20.3.2.1) calculated by embedding

the classical explicit fourth-order Runge–Kutta method.

Moreover, there exist mechanisms for constructing and embedding a new method (or

a special-purpose class of methods) by using predefined numerical methods and various

options as building blocks and for adding new additional methods.

Example 20.32. First-order nonlinear ODE. Cauchy problem. Embedding new methods.

The classical explicit fourth-order Runge–Kutta method can be embedded in Mathematica to

obtain numerical solutions of the nonlinear Cauchy problem

y′x = −y2 sin(x2), y(0) = −1 (20.3.2.1)

as follows:

{ode1=y'[x]==-y[x]ˆ2*Sin[xˆ2], ics=y[0]==-1,

ivp1={ode1,ics}//Flatten}

ClassicalRungeKutta/:NDSolve`InitializeMethod[

ClassicalRungeKutta,___]:=ClassicalRungeKutta[];

ClassicalRungeKutta[___]["Step"[f_,x_,h_,y_,yp_]]:=

Block[{ySol,k1,k2,k3,k4},

k1=yp; k2=f[x+1/2*h,y+1/2*h*k1];

k3=f[x+1/2*h,y+1/2*h*k2]; k4=f[x+h,y+h*k3];

ySol=h*(1/6*k1+1/3*k2+1/3*k3+1/6*k4); {h,ySol}];

sol=NDSolve[ivp1,y,{x,0,10},Method->ClassicalRungeKutta,

StartingStepSize->0.1]

Plot[y[x]/.sol,{x,0,10},PlotRange->All]

Also, the implicit second-order Runge–Kutta method can be embedded in Mathematica by using

predefined numerical methods and various options as building blocks) to obtain numerical solutions

of the same nonlinear Cauchy problem as follows:

implicitMidpoint={"FixedStep",

Method->{"ImplicitRungeKutta",

"Coefficients"->"ImplicitRungeKuttaGaussCoefficients",



“K16435’ — 2017/9/28 — 15:05 — #1245

20.3. Numerical Solutions and Their Visualizations 1219

"DifferenceOrder"->2,

"ImplicitSolver"->{"FixedPoint",

"AccuracyGoal"->MachinePrecision,

"PrecisionGoal"->MachinePrecision,

"IterationSafetyFactor"->1}}};

{ode1=y'[x]==-y[x]ˆ2*Sin[xˆ2],ics=y[0]==-1,

ivp1={ode1,ics}//Flatten}

eq1=NDSolve[ivp1,y,{x,0,10},Method->implicitMidpoint,

StartingStepSize->0.01]; solN=eq1[[1,1,2]]

Table[{x,solN[x]},{x,0,10}]//TableForm

Plot[solN[x],{x,0,10},PlotStyle->Blue,PlotRange->All]

The default methods are:

• LSODA approach, switching between a nonstiff Adams (multistep Adams-Moulton)

method and a stiff Gear BDF (Backward Difference Formula) method

• Chasing method, the Gelfand–Lokutsiyevskii for linear boundary value problems

• IDA, general purpose solver based on repeated BDF and Newton iteration methods

for initial value problems for differential algebraic equations

• LSODA approach and the step method for initial value problems for delay differential

equations

Remark 20.4. LSODA is a version of the LSODE (the Livermore Solver for Ordinary Differ-

ential Equations). Since the 1980s, LSODE has been part of the solver collection ODEPACK.

More detailed information about numerical methods embedded in Mathematica is pre-

sented in Table 20.1 (basic numerical methods), Table 20.2 (controller methods), and Ta-

ble 20.3 (submethods).

Table 20.1.

Basic numerical methods embedded in Mathematica

Numerical method Brief description References

Adams The predictor-corrector Adams method. Order: 1-12. Boyce and DiPrima (1992)

BDF

The implicit BDF (backward differentiation formulas)

methods. Order: 1-5. Conte and de Boor (1980)

ExplicitRungeKutta

The explicit pairs of Runge–Kutta methods

Order: 2(1)-9(8). Features: adaptive, FSAL strategy

local extrapolation mode, with stiffness detection,

proportional-integral step-size controller (stiff ODEs).

Gustafsson (1991)

Shampine (1994)

Sofroniou & Spaletta (2004)

Bogacki & Shampine (1989)

ImplicitRungeKutta

Families of implicit Runge–Kutta methods.

The Gauss–Legendre methods. Order: arbitrary.

Features: self-adjoint, with generic framework,

arbitrary order, arbitrary precision.

Golub & Van Loan (1996)

Shampine (1994)

Sofroniou & Spaletta (2004)

Bogacki & Shampine (1989)

SymplecticPartitioned

RungeKutta

Families of explicit symplectic partitioned

Runge–Kutta methods for separable Hamiltonian

systems. Order: 1–10.

Sanz-Serna & Calvo (1994)

McLachlan & Atela (1992)

Sofroniou & Spaletta (2005)
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Table 20.2.

Controller methods embedded in Mathematica

Numerical method Brief description References

Composition Composing a list of submethods.

Features: an arbitrary number of submethods.

Hairer, Lubich, Wanner (2002)

Sofroniou & Spaletta (2005,2006).

Splitting

Splitting equations and applying submethods.

Features: an arbitrary number of submethods,

a generalization of the composition method.

Strang (1968), Marchuk (1968)

Trotter (1959)

DoubleStep
A single application of Richardson’s

extrapolation. Features: adaptive (step size),

a special case of extrapolation.

Deuflhard (1985)

Gragg (1965), Shampine (1987)

Hairer & Lubich (1988)

EventLocator
Methods that respond to specified events.

Features: event location
for detecting discontinuities, periods, etc.

Brent (2002), Dekker (1969)

Extrapolation
Gragg–Bulirsch–Stoer extrapolation method.

Features: polynomial extrapolation,

adaptive (order and step size).

Bulirsch & Stoer (1964)

Hairer, Nørsett, Wanner (1993)

Hairer & Wanner (1996)

FixedStep
Carrying out numerical integration

using a constant step size.

Features: for any one-step integration method.
Deuflhard, Hairer, Zugck (1987)

OrthogonalProjection
Projecting solutions

to fulfill orthogonal constraints.

Features: preserving orthonormality of solutions.

Dieci, Russel, Van Vleck (1994)

Dieci & Van Vleck (1999)

Del Buono & Lopez (2001)

Projection
Projecting solutions

to fulfill general constraints.

Features: invariant-preserving method.

Ascher & Petzold (1991)

Hairer (2000)

Hairer, Lubich, Wanner (2002)

StiffnessSwitching
Switching from explicit to implicit methods

if stiffness is detected
(in the middle of the integration).

Petzold (1983)

Butcher (1990)

Cohen & Hindmarsh (1996)

Table 20.3.

Submethods embedded in Mathematica

Numerical method Brief description References

ExplicitEuler Explicit forward Euler method. Boyce & DiPrima (2004)

ExplicitMidpoint One-step explicit midpoint rule method. Conte & de Boor (1980)

ExplicitModified

Midpoint Midpoint rule method with Gragg smoothing. Gragg (1965)

LocallyExact Numerical approximation to locally exact symbolic solution. Murphy (1960)

LinearlyImplicit

Euler Linearly implicit Euler method. Lubich (1989)

LinearlyImplicit

Midpoint Linearly implicit midpoint rule method. Bader & Deuflhard (1983)

LinearlyImplicit

ModifiedMidpoint Linearly implicit Bader-smoothed midpoint rule method. Shampine & Baca (1983)
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Figure 20.7: Numerical solution in the coordinate plane (left) and in the phase plane (right)

for equation (20.3.3.1).

20.3.3 Initial Value Problems: Examples of Numerical Solutions

In general, an ordinary differential equation

y′x = f(x, y)

can admit infinitely many solutions y = y(x). To find one of them, we have to add a

condition of the form y(x0) = y0, where y0 is a given value called the initial data. Thus,

consider the Cauchy problem

y′x = f(x, y(x)), x0 < x ≤ b;
y(x0) = y0.

According to the fundamental Picard–Lindelöf existence and uniqueness theorem for ini-

tial value problems (with the assumptions that f(x, y) is a given continuous function with

respect to (x, y) Lipschitz continuous with respect to y), the initial value problem has a

unique solution.

Consider some examples of initial value problems.

◮ Linear initial value problems.

Example 20.33. Linear initial value problem. Analytical, numerical, and graphical solutions.

For the first-order linear initial value problem

y′x = −y cos(x2), y(0) = 1

on the interval [a, b] (a = 0, b = 10), we find infinitely many solutions (exSol1) admitted by

this ordinary differential equation and plot some of them (sols); then we obtain the unique exact

solution (exSol2) of the Cauchy problem with the vector field (VectorPlot).

In the Mathematica notation, these solutions (exSol1 and exSol2) read:
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where FresnelC is the Fresnel integral C(z) =

∫ z

0

cos
(
1
2πt

2
)
dt. Finally, we plot the exact and

numerical solutions (exSol2, solN) of the Cauchy problem and compare the results as follows:

SetOptions[Plot,PlotRange->All,PlotStyle->Thickness[0.01],

ImageSize->300]; a=0; b=10;

{ODE1=y'[x]==-y[x]*Cos[xˆ2],IC=y[0]==1,IVP1={ODE1,IC}}

exSol1=DSolve[ODE1,y[x],x]

sols=Table[exSol1[[1,1,2]]/.{C[1]->i},{i,-b,b}]

Plot[sols,{x,a,b},PlotRange->Automatic]

eq2=DSolve[IVP1,y[x],x]; exSol2=eq2[[1,1,2]]

eq3=NDSolve[IVP1,y,{x,a,b}]; solN=eq3[[1,1,2]]

Table[{x,solN[x]},{x,a,b}]//TableForm

g1=Plot[exSol2,{x,a,b},PlotStyle->Hue[0.6]];

g2=Plot[solN[x],{x,a,b},PlotStyle->Hue[0.8]];

GraphicsRow[{g1,g2}]

g3=VectorPlot[{1,-Y*Cos[Tˆ2]},{T,a,b},{Y,0,1},Axes->Automatic,

AspectRatio->1]; Show[g2,g3,PlotRange->{All,{0.3,1}}]

Example 20.34. Second-order linear ODE. Numerical and graphical solutions.

For the second-order linear initial value problem

y′′xx − y′x + (x− 1)y = 0, y(0) = 1, y′x(0) = 0 (20.3.3.1)

on the interval [a, b] (a = 0, b = 10), we find the numerical solution (sol1) and the graphical

solutions (presented in Fig. 20.7) as follows:

SetOptions[ParametricPlot,AspectRatio->1,PlotRange->All,

PlotStyle->Thickness[0.01],Frame->True];

SetOptions[Plot,PlotRange->All,PlotStyle->Thickness[0.01],

ImageSize->300,Frame->True]; a=0; b=10;

{IC1={y'[0]==0,y[0]==1},ODE1=D[y[x],{x,2}]-D[y[x],x]+(x-1)*y[x]==0,

IVP1={ODE1,IC1},lCol={Blue,Red}}

eq1=NDSolve[IVP1,y,{x,a,b}]; sol1=eq1[[1,1,2]]

g1=Plot[sol1[x],{x,a,b},PlotStyle->lCol[[1]]];

g2=ParametricPlot[Evaluate[{sol1[x],D[sol1[x],x]}],{x,a,b},

PlotStyle->lCol[[2]]]; GraphicsGrid[{{g1,g2}}]

◮ Nonlinear initial value problems.

Example 20.35. Nonlinear initial value problem. Numerical and graphical solutions.

For the initial value problem

y′x = −exy cos(x2), y(0) = p (20.3.3.2)

for a first-order nonlinear ODE on the interval [a, b] (a = 0, b = 10), we find the numerical and

graphical solutions (see Figure 20.8) of the problem for various initial conditions y(0) = p, where

p = 0.1 i (i = 1, 2, ..., 5), as follows:

eq=y'[x]==-Exp[y[x]*x]*Cos[xˆ2]; a=0; b=4*Pi;

Do[{IC={y[0]==0.1*i}; sN=NDSolve[{eq,IC},y[x],{x,a,b},

MaxSteps->1000]; solN[x_]:=sN[[1,1,2]];

g[i]=Plot[solN[x],{x,a,b},PlotStyle->Hue[0.5+i*0.07]];},{i,1,5}]

Show[Table[g[i],{i,1,5}],Axes->False,PlotRange->All]
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Figure 20.8: Numerical solutions of the nonlinear initial value problem (20.3.3.2).

20.3.4 Initial Value Problems: Constructing Numerical Methods
and Solutions

Alternatively, numerical methods and solutions of initial value problems can be constructed

(step by step) and analyzed as follows.

◮ Single-step methods.

First, consider one of the classical methods, the forward Euler method, or explicit Eu-

ler method. This method belongs to a family of single-step methods, which compute the

numerical solution Yi+1 at the node Xi+1 knowing information related to the previous

node Xi alone.

The strategy of these methods is to divide the integration interval [a, b] into N subin-

tervals of length h = (b − a)/N called the discretization step. Then at the nodes Xi

(0≤ i≤N ) we compute the unknown values Yi which approximate the exact values y(Xi);
i.e., Yi ≈ y(Xi). The set of values {Y0 = y0, Y1, . . . , YN} is the numerical solution. The

formula for the explicit Euler method reads:

Yi+1 = Yi + hF (Xi, Yi), Y0 = y(X0), i = 0, . . . , N−1.

Example 20.36. The Euler method. Analytical, numerical, and graphical solutions.

For the Cauchy problem

y′x = pym + qxn, y(0) = 0.5 (20.3.4.1)

on the interval [a, b] (a = 0, b = 2) with parameters p = 1, q = −1, m = 2, and n = 1, we

find the exact solution (extSol) and the numerical solution (F1) using the explicit Euler method,

compare the results, plot the exact and numerical solutions (g1, g2), see Fig. 20.9, and determine

the absolute computational error at each step as follows:
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Figure 20.9: Exact solution (solid line) and numerical solution (points; the solution is

obtained by the explicit Euler method) of the Cauchy problem (20.3.4.1).

SetOptions[Plot,PlotRange->All,PlotStyle->Thickness[0.02],

ImageSize->300,Frame->True]; nD=10;

{a=0,b=2,p=1,q=-1,n=1,m=2,nN=40,h=N[(b-a)/nN,nD],

Y=Table[0,{i,1,nN+1}]}

{ODE1=D[y[x],x]==p*y[x]ˆm+q*xˆn,IC=y[0]==1/2,IVP1={ODE1,IC}}

extSol[x1_]:=DSolve[IVP1,y[x],x][[1,1,2]]/.{x->x1}//Simplify;

extSol[x]

F[x_,y_]:=p*yˆm+q*xˆn; X=Table[a+i*h,{i,0,nN}]; Y[[1]]=N[1/2,nD];

Do[Y[[i+1]]=N[Y[[i]]+h*F[X[[i]],Y[[i]]],nD],{i,1,nN}];

F1=Table[{X[[i+1]],Y[[i+1]]},{i,0,nN}]

Do[Print[PaddedForm[k,3]," ",PaddedForm[X[[k]],{15,10}]," ",

PaddedForm[Y[[k]],{15,10}]," ",

PaddedForm[N[extSol[X[[k]]]]//Chop,{15,10}]," ",

PaddedForm[N[Abs[Y[[k]]-extSol[X[[k]]]],nD],{15,10}]],{k,2,nN+1}];

g1=Plot[extSol[x1],{x1,a,b},PlotStyle->Blue];

g2=ListPlot[F1,PlotStyle->{PointSize[.02],Hue[0.9]}]; Show[{g1,g2}]

There is a general way to determine the order of convergence of a numerical method. If

we know the errors Ei (i = 1, . . . , N ) corresponding to the values hi of the discretization

parameter (in our case, hi is the discretization step of the Euler method) and assume that

Ei = Chpi and Ei−1 = Chpi−1, then

p =
log(Ei/Ei−1)

log(hi/hi−1)
, i = 2, . . . , N. (20.3.4.2)

Example 20.37. The Euler method. The order of convergence.

For the same Cauchy problem

y′x = pym + qxn, y(0) = 0.5

(as in the previous example) on the interval [a, b] (a = 0, b = 2) with parameters p = 1, q = −1,

m= 2, and n= 1, we obtain a numerical solution by applying the explicit Euler method for various

values of the discretization step h and, according to formula (20.3.4.2), verify that the order of

convergence of the explicit Euler method is 1:
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$RecursionLimit=Infinity; $HistoryLength=0; nD=10;

F[x_,y_]:=p*yˆm+q*xˆn; a=0; b=2; p=1; q=-1; n=1; m=2; nN=40;

{ODE1=D[y[x],x]==p*y[x]ˆm+q*xˆn, IC=y[0]==1/2, IVP1={ODE1,IC}}

extSol[x1_]:=DSolve[IVP1,y[x],x][[1,1,2]]/.{x->x1}; extSol[x]

Euler[a_,b_,n_]:=Module[{h,x,Y,EN}, h=N[(b-a)/n,nD];

Y[0]=N[1/2,nD]; X[x_]:=a+x*h;

Do[Y[i_]:=Y[i]=N[Y[i-1]+h*F[X[i-1],Y[i-1]],nD],{i,1,n}];

EN=Table[N[Abs[Y[i]-N[extSol[X[i]],nD]],nD],{i,1,n}];EN];

L1={}; n1=4;

Do[Er[k]=Euler[a,b,n1]; Print[Last[Er[k]]]; L1=Append[L1,Last[Er[k]]];

n1=n1*2,{k,1,12}]; {Ers=L1, NErs=Length[Ers]}

p=Table[N[Abs[Log[Ers[[i]]/Ers[[i-1]]]/Log[2]],nD],{i,2,NErs}]

Runge–Kutta methods are single-step methods that involve several evaluations of the

function f(x, y) and none of its derivatives on every interval [Xi,Xi+1].
In general, explicit or implicit Runge–Kutta methods can be constructed with arbitrary

order according to the formulas. Consider the s-stage explicit Runge–Kutta method

k1 = f(xn, yn), k2 = f(xn + c2h, yn + a2,1k1h), . . . ,

ks = f
(
xn + csh, yn +

s−1∑

i=1

as,j kj

)
,

Yn+1 = Yn + h
s∑

i=1

biki, Y0 = y0, n = 0, . . . N − 1.

Example 20.38. Higher-order methods. Derivation of explicit Runge–Kutta methods.

Let us perform analytical derivation of the best-known Runge–Kutta methods.

subsF={Dt[F]->Dt[f[x,y[x]]]};

subs1={D[y[x],x]->F};

subs2={D[y[x],{x,2}]->Dt[f[x,y[x]]]};

subs3={D[y[x],{x,3}]->Dt[Dt[f[x,y[x]]]]};

subs4={D[y[x],{x,4}]->Dt[Dt[Dt[f[x,y[x]]]]]};

sD={f[x,y[x]]->F,Dt[x]->1,(D[f[x,x1],x]/.{x1->y[x]})->Fx,

(D[f[x,x1],x1]/.{x1->y[x]})->Fy,(D[f[x,x1],{x,2}]/.{x1->y[x]})->Fxx,

(D[f[x,x1],x1,x]/.{x1->y[x]})->Fxy,(D[f[x,x1],{x1,2}]/.{x1->y[x]})->Fyy,

(D[f[x,x1],{x1,3}]/.{x1->y[x]})->Fyyy,

(D[f[x,x1],{x,3}]/.{x1->y[x]})->Fxxx,

(D[f[x,x1],x,x1,x1]/.{x1->y[x]})->Fxyy,

(D[f[x,x1],x,x,x1]/.{x1->y[x]})->Fxxy};

For s = 1, we obtain the Euler method (sol), where b1 = 1:

{s=1, l1={h,F},

p1=Normal[Series[y[x+h],{h,0,s}]]/.subs1,

p2=Expand[(p1-y[x])/h], k[1]=Series[f[x,y[x]],{h,0,s}]/.sD,

p3=Expand[Normal[Series[Sum[b[i]*k[i],{i,1,s}],{h,0,s}]]]/.sD,

eq1=p2-p3, eq2=DeleteCases[Flatten[CoefficientList[eq1,l1]],_0]}

sol=Solve[eq2==0,Variables[eq2]]

For s = 2, we obtain the 2-stage modified Euler method (sol1), where

a2,1 =
1

2
, b1 = 0, b2 = 1, c2 =

1

2
,
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the 2-stage improved Euler method (sol2), where

a2,1 = 1, b1 = b2 =
1

2
, c2 = 1,

or the 2-stage Heun method (sol3), where

a2,1 =
2

3
, b1 =

1

4
, b2 =

3

4
, c2 =

2

3
:

{s=2, l2={h,F,Fx,Fy},

p1=Normal[Series[y[x+h],{h,0,s}]]/.subs2/.subs1/.sD,

p2=Expand[(p1-y[x])/h]}

{k[1]=Series[f[x,y[x]],{h,0,s}]/.sD,

k[2]=Series[f[x+c[2]*h,y[x]+h*Sum[a[2,i]*k[i],{i,1,1}]],{h,0,s-1}]/.sD}

{p3=Expand[Normal[Series[Sum[b[i]*k[i],{i,1,s}],{h,0,s}]]]/.sD,

eq1=p2-p3, eq21=DeleteCases[Flatten[CoefficientList[eq1,l2]],_0],

eq2=Map[Thread[#1==0,Equal]&,eq21]}

eq3={}; Do[eq3=Append[eq3,{c[i]==Sum[a[i,j],{j,1,i-1}]}],{i,2,s}];

{s1=Flatten[{eq2,eq3,{c[2]==1/2}}], s2=Flatten[{eq2,eq3,{b[2]==1/2}}],

s3=Flatten[{eq2,eq3,{b[2]==3/4}}]}

{sol1=Solve[s1,Variables[eq2]], sol2=Solve[s2,Variables[eq2]],

sol3=Solve[s3,Variables[eq2]]}

For s = 3, we obtain the 3-stage Heun method (sol), where

a2,1 =
1

3
, a3,1 = 0, a3,2 =

2

3
, b1 =

1

4
, b2 = 0, b3 =

3

4
, c2 =

1

3
, c3 =

2

3
:

{s=3, l3={h,F,Fx,Fy,Fxx,Fxy,Fyy},

p1=Normal[Series[y[x+h],{h,0,s}]]/.subs3/.subs2/.subs1/.sD,

p2=Expand[Normal[Expand[(p1-y[x])/h]]]}

{k[1]=Series[f[x,y[x]],{h,0,s}]/.sD, k[2]=Series[f[x+c[2]*h,

y[x]+h*(Sum[a[2,i]*k[i],{i,1,1}])],{h,0,s-1}]/.sD,

k[3]=Series[f[x+c[3]*h,

y[x]+h*(Sum[a[3,i]*k[i],{i,1,2}])],{h,0,s-1}]/.sD}

{p3=Expand[Normal[Series[Sum[b[i]*k[i],{i,1,s}],{h,0,s}]]],

eq1=p2-p3, eq21=DeleteCases[Flatten[CoefficientList[eq1,l3]],_0],

eq2=Map[Thread[#1==0,Equal]&,eq21]}

eq3={}; Do[eq3=Append[eq3,{c[i]==Sum[a[i,j],{j,1,i-1}]}],{i,2,s}];

s1=Flatten[{eq2,eq3,{b[1]==1/4},{c[2]==1/3}}]

sol1=Solve[s1,Variables[eq2]]

For s = 4, we obtain the fourth-order Runge–Kutta method∗ (Sol), where

a2,1 =
1

2
, a3,1 = 0, a3,2 =

1

2
, a4,1 = 0, a4,2 = 0, a4,3 = 1,

b1 =
1

6
, b2 =

1

3
, b3 =

1

3
, b4 =

1

6
, c2 =

1

2
, c3 =

1

2
, c4 = 1 :

{s=4, l4={h,F,Fx,Fy,Fxx,Fxy,Fyy,Fxxx,Fxxy,Fxyy,Fyyy},

p1=Normal[Series[y[x+h],{h,0,s}]]/.subs4/.subs3/.subs2/.subs1/.sD,

p2=Expand[Normal[Expand[(p1-y[x])/h]]]}

{k[1]=Series[f[x,y[x]],{h,0,s}]/.sD, k[2]=Series[f[x+c[2]*h,

y[x]+h*(Sum[a[2,i]*k[i],{i,1,1}])],{h,0,s-1}]/.sD,

k[3]=Series[f[x+c[3]*h,

∗This method was introduced by Runge in 1895.
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Figure 20.10: The absolute computational error (at each step) for the exact solution and

a numerical solution (obtained by the Adams–Bashforth method) of the Cauchy prob-

lem (20.3.4.3).

y[x]+h*(Sum[a[3,i]*k[i],{i,1,2}])],{h,0,s-1}]/.sD,

k[4]=Series[f[x+c[4]*h,

y[x]+h*(Sum[a[4,i]*k[i],{i,1,3}])],{h,0,s-1}]/.sD}

{p3=Expand[Normal[Series[Sum[b[i]*k[i],{i,1,s}],{h,0,s}]]]/.sD,

eq1=p2-p3, eq21=DeleteCases[Flatten[CoefficientList[eq1,l4]],_0],

eq2=Map[Thread[#1==0,Equal]&,eq21]}

eq3={}; Do[eq3=Append[eq3,{c[i]==Sum[a[i,j],{j,1,i-1}]}],{i,2,s}];

s1=Flatten[{eq2,eq3,{b[1]==1/6},{c[2]==1/2},{a[3,2]==1/2}}];

sol1=Solve[s1,Variables[eq2]]

◮ Multistep methods.

There are more sophisticated methods that achieve a high order of accuracy by considering

several values (Yi, Yi−1, . . . ) to determine Yi+1. One of the most notable methods is the

explicit four-step fourth-order Adams–Bashforth method

Yi+1=Yi+
h

24

(
55F (Xi, Yi)−59F (Xi−1, Yi−1)+37F (Xi−2, Yi−2)−9F (Xi−3, Yi−3)

)
.

Example 20.39. Cauchy problem. The explicit Adams–Bashforth method.

For the Cauchy problem

y′x = pym + qxn, y(0) = 0.5 (20.3.4.3)

on the interval [a, b] (a = 0, b = 2) with parameters p = 1, q = −1, m = 2, and n = 1, we find the

exact solution (extSol) and the numerical solution (F1) by the explicit Adams–Bashforth method

and plot them. Finally, we compute the absolute computational error on [a, b] at each step (F2), and

plot it (see Fig. 20.10) as follows:

nD=20; {a=0,b=2,p=1,q=-1,n=1,m=2,nN=40,h=N[(b-a)/nN,nD],

YAB=Table[0,{i,1,nN+1}]}
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Figure 20.11: The absolute computational error (at each step) for the exact solution and

a numerical solution (obtained by the Adams–Bashforth–Moulton method) of the Cauchy

problem (20.3.4.4).

ODE1=D[y[x],x]==p*y[x]ˆm+q*xˆn

{IC=y[0]==1/2, IVP1={ODE1,IC}}

extSol[x1_]:=DSolve[IVP1,y[x],x][[1,1,2]]/.{x->x1}; extSol[x]

F[x_, y_]:=p*yˆm+q*xˆn;

X=Table[a+i*h,{i,0,nN}];

YAB[[1]]=N[1/2,nD]; YAB[[2]]=N[extSol[X[[2]]],nD];

YAB[[3]]=N[extSol[X[[3]]],nD]; YAB[[4]]=N[extSol[X[[4]]],nD];

Do[YAB[[i+1]]=N[YAB[[i]]+h/24*(55*F[X[[i]],YAB[[i]]]-59*F[X[[i-1]],

YAB[[i-1]]]+37*F[X[[i-2]],YAB[[i-2]]]-9*F[X[[i-3]],YAB[[i-3]]]),nD],

{i,4,nN}];

F1=Table[{X[[i+1]],YAB[[i+1]]//Chop},{i,0,nN}]

Do[Print[PaddedForm[i,3]," ",PaddedForm[X[[i]],{15,10}]," ",

PaddedForm[YAB[[i]]//Chop,{15,10}]," ",

PaddedForm[N[extSol[X[[i]]],nD]//Chop,{15,10}]," ",

PaddedForm[N[Abs[YAB[[i]]-extSol[X[[i]]]],nD],{15,10}]],{i,2,nN+1}];

g0=Plot[extSol[x1],{x1,a,b},PlotStyle->Blue];

g1=ListPlot[F1,PlotStyle->{PointSize[.02],Hue[0.9]}]; Show[{g0,g1}]

F2=Table[{X[[i+1]],Abs[YAB[[i+1]]-N[extSol[X[[i+1]]],nD]]},{i,1,nN}];

ListPlot[F2,Joined->True,PlotStyle->Hue[0.99],PlotRange->All]

Another important example of multistep methods is the implicit three-step fourth-order

Adams–Bashforth–Moulton method

Yi+1 = Yi +
h

24

(
9F (Xi+1, Yi+1) + 19F (Xi, Yi)− 5F (Xi−1, Yi−1) + F (Xi−2, Yi−2)

)
.

Example 20.40. Cauchy problem. The implicit Adams–Bashforth–Moulton method.

For the Cauchy problem

y′x = pym + qxn, y(0) = 0.5 (20.3.4.4)

on the interval [a, b] (a = 0, b = 2) with parameters p = 1, q = −1, m = 2, and n = 1, we find the

exact solution (extSol) and a numerical solutions (F1) by the implicit Adams–Moulton method,
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compare the results and the graphical solutions, find the absolute computational error on [a, b] at

each step (F2), and plot it (see Fig. 20.11) as follows:

nD=20; {a=0,b=2,p=1,q=-1,n=1,m=2,nN=40,h=(b-a)/nN}

YAM=Table[0,{i,1,nN+1}]

{ODE1=D[y[x],x]==p*y[x]ˆm+q*xˆn,IC=y[0]==1/2,IVP1={ODE1,IC}}

extSol[x1_]:=DSolve[IVP1,y[x],x][[1,1,2]]/.{x->x1}; extSol[x]

F[x_,y_]:=p*yˆm+q*xˆn; X[x_]:=a+x*h;

X1=Table[a+i*h,{i,0,nN}];

{eq1=Y[i]-Y[i-1]-h/24*(9*F[X[i],Y[i]]+19*F[X[i-1],Y[i-1]]

-5*F[X[i-2],Y[i-2]]+F[X[i-3],Y[i-3]]),

eq21=Solve[eq1==0,Y[i]][[1,1,2]],eq2=Expand[eq21]}

YAM[[1]]=N[1/2,nD]; YAM[[2]]=N[extSol[X1[[2]]],nD];

YAM[[3]]=N[extSol[X1[[3]]],nD]; YAM[[4]]=N[extSol[X1[[4]]],nD];

Do[YAM[[i+1]]=N[eq2/.{Y[i-1]->YAM[[i]],Y[i-2]->YAM[[i-1]],

Y[i-3]->YAM[[i-2]]},nD],{i,4,nN}];

F1=Table[{N[X1[[i+1]],nD],YAM[[i+1]]//Chop},{i,0,nN}]

Do[Print[PaddedForm[i,3]," ",PaddedForm[N[X1[[i]],nD],{15,10}]," ",

PaddedForm[YAM[[i]]//Chop,{15,10}]," ",

PaddedForm[N[extSol[X1[[i]]],nD]//Chop,{15,10}]," ",

PaddedForm[N[Abs[YAM[[i]]-extSol[X1[[i]]]],nD],{15,10}]],{i,2,nN+1}];

g0=Plot[extSol[x1],{x1,a,b},PlotStyle->Blue];

g1=ListPlot[F1,PlotStyle->{PointSize[.02],Hue[0.9]}]; Show[{g0,g1}]

F2=Table[{X1[[i+1]],Abs[YAM[[i+1]]-N[extSol[X1[[i+1]]],nD]]},{i,1,nN}];

ListPlot[F2,Joined->True,PlotStyle->Hue[0.99],PlotRange->All]

20.3.5 Boundary Value Problems: Examples of Numerical Solutions

◮ Preliminary remarks.

Let us numerically solve two-point boundary value problems. A two-point boundary value

problem includes an ODE (of order ≥ 2) and the value of the solution at two distinct

points. Note a difference between initial value problems and boundary value problems:

initial value problems (with well-behaved functions) have unique solutions; i.e., they are

“well-posed”; but boundary value problems (with well-behaved functions) may have more

than one solution or no solution at all (see Example 20.42).

Consider some examples of boundary value problems applying embedded methods and

constructing step-by-step solutions.

◮ Linear boundary value problems.

Example 20.41. Boundary value problem. Analytical, numerical, and graphical solutions.

Consider the following second-order linear nonhomogeneous ODE with variable coefficients

(see the initial value problem for this ODE in Example 20.16) and with boundary conditions:

y′′xx + xy′x + y = cos(x), y(a) = 0, y(b) = 1, (20.3.5.1)

where a = 0, b = 2. Analytical, numerical, and graphical solutions (sol1, sol2, solN, g1, g2)

can be constructed as follows:

{a=0, b=2, h=0.1, ODE1=D[y[x],{x,2}]+x*D[y[x],x]+y[x]==Cos[x],

BC={y[a]==0,y[b]==1}, BVP1={ODE1,BC}//Flatten}
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Figure 20.12: Exact and numerical solutions of the boundary value problem (20.3.5.1).

{sol1=DSolve[BVP1,y,x], test1=ODE1/.sol1//FullSimplify}

{sol2=DSolve[BVP1,y[x],x], solN=NDSolve[BVP1,y,{x,a,b}][[1,1,2]]}

k=0; Do[{k=k+1; X[k]=m; s[k]=N[sol2[[1,1,2]]/.x->m]},{m,a,b,h}]; n=k

seq1=Table[{X[m],(s[m]//Chop)},{m,1,n}]

g1=ListLinePlot[seq1,PlotStyle->{Blue,Thickness[0.01]}];

g2=Plot[solN[x],{x,a,b},PlotStyle->{Red,Dashed,Thickness[0.03]}];

Show[{g1,g2}]

Comparing the results, we conclude that the analytical and numerical solutions (see Fig. 20.12) are

in good agreement.

Example 20.42. Two-point linear boundary value problem. No solution.

Solving a boundary value problem for the second-order linear homogeneous ODE with constant

coefficients

y′′xx + π2y = 0, y(a) = α, y(b) = β, (20.3.5.2)

where a = 0, b = 1, α = 1, and β = 1, we can find the general solution of the equation. However,

the boundary conditions cannot be satisfied (for any choice of the constants occurring in the general

solution). Therefore, there is no solution of this problem:

{a=0, b=1, alpha=1, beta=1, ODE1=D[y[x],{x,2}]+Piˆ2*y[x]==0,

BC={y[a]==alpha,y[b]==beta}, BVP1={ODE1,BC}//Flatten}

{sol1=Dsolve[BVP1,y,x], sol2=Dsolve[BVP1,y[x],x]}

{solGen=DSolve[ODE1,y[x],x], eq1=solGen/.x->a, eq2=solGen/.x->b}

sys1={eq1[[1,1,2]]==alpha, eq2[[1,1,2]]==beta}

Solve[sys1, {C[1], C[2]}]

Consider the boundary value problem for the second-order linear ODE

y′′xx = p(x)y′x + q(x)y + r(x), y(a) = α, y(b) = β, (20.3.5.3)

where a≤ x≤ b. This problem has a unique solution if p(x), q(x), and r(x) are continuous

and q(x) > 0.
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Linear shooting methods employ numerical methods (discussed above) for solving two

initial value problems

u′′xx = p(x)u′x + q(x)u+ r(x), u(a) = α, u′x(a) = 0,

v′′xx = p(x)v′x + q(x)v, v(a) = 0, v′x(a) = 1,

and the solution of the original boundary value problem is

y(x) = u(x) + v(x)
β − u(b)
v(b)

, a ≤ x ≤ b.

Example 20.43. Boundary value problems. Linear shooting methods.

For the linear boundary value problem

y′′xx = − 2

x
y′x +

2

x2
y + x3, y(1) = 1, y(2) = 2, (20.3.5.4)

the exact solution (extSol)

y[x] → 30

49x2
+

69x

196
+

x5

28

can be obtained as follows:

nD=10; Fu1[x_,u1_,u2_]:=u2; Fu2[x_,u1_,u2_]:=-2/x*u2+2/xˆ2*u1+xˆ3;

Fv1[x_,v1_,v2_]:=v2; Fv2[x_,v1_,v2_]:=-2/x*v2+2/xˆ2*v1;

{n=10, a=1, b=2, h=N[(b-a)/n,nD], X=Table[a+h*i,{i,0,n}],

alpha=1, beta=2, RK41u=Table[0,{i,0,n}], RK42u=Table[0,{i,0,n}],

RK41v=Table[0,{i,0,n}], RK42v=Table[0,{i,0,n}], Y=Table[0,{i,0,n}]}

{ODE1=D[y[x],{x,2}]+2/x*D[y[x],x]-2/xˆ2*y[x]-xˆ3==0,

BC={y[a]==alpha,y[b]==beta}, BVP1={ODE1,BC}}

extSol[x1_]:=Expand[DSolve[BVP1,y[x],x][[1,1,2]]]/.{x->x1};

extSol[x]

Then we find the numerical solution (F1) by applying the linear shooting method, compare the

results, and plot the exact and numerical solutions (g1, g2) as follows:

{RK41u[[1]]=alpha, RK42u[[1]]=0, RK41v[[1]]=0, RK42v[[1]]=1}

Do[k1=h*Fu1[X[[i]], RK41u[[i]], RK42u[[i]]];

m1=h*Fu2[X[[i]], RK41u[[i]], RK42u[[i]]];

k2=h*Fu1[X[[i]]+h/2, RK41u[[i]]+k1/2, RK42u[[i]]+m1/2];

m2=h*Fu2[X[[i]]+h/2, RK41u[[i]]+k1/2, RK42u[[i]]+m1/2];

k3=h*Fu1[X[[i]]+h/2, RK41u[[i]]+k2/2, RK42u[[i]]+m2/2];

m3=h*Fu2[X[[i]]+h/2, RK41u[[i]]+k2/2, RK42u[[i]]+m2/2];

k4=h*Fu1[X[[i]]+h, RK41u[[i]]+k3, RK42u[[i]]+m3];

m4=h*Fu2[X[[i]]+h, RK41u[[i]]+k3, RK42u[[i]]+m3];

RK41u[[i+1]]=N[RK41u[[i]]+1/6*(k1+2*k2+2*k3+k4),nD];

RK42u[[i+1]]=N[RK42u[[i]]+1/6*(m1+2*m2+2*m3+m4),nD],{i,1,n}];

Do[k1=h*Fv1[X[[i]], RK41v[[i]], RK42v[[i]]];

m1=h*Fv2[X[[i]], RK41v[[i]], RK42v[[i]]];

k2=h*Fv1[X[[i]]+h/2, RK41v[[i]]+k1/2, RK42v[[i]]+m1/2];

m2=h*Fv2[X[[i]]+h/2, RK41v[[i]]+k1/2, RK42v[[i]]+m1/2];

k3=h*Fv1[X[[i]]+h/2, RK41v[[i]]+k2/2, RK42v[[i]]+m2/2];

m3=h*Fv2[X[[i]]+h/2, RK41v[[i]]+k2/2, RK42v[[i]]+m2/2];

k4=h*Fv1[X[[i]]+h, RK41v[[i]]+k3, RK42v[[i]]+m3];
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m4=h*Fv2[X[[i]]+h, RK41v[[i]]+k3, RK42v[[i]]+m3];

RK41v[[i+1]]=N[RK41v[[i]]+1/6*(k1+2*k2+2*k3+k4),nD];

RK42v[[i+1]]=N[RK42v[[i]]+1/6*(m1+2*m2+2*m3+m4),nD],{i,1,n}];

C1=(beta-RK41u[[n+1]])/RK41v[[n+1]]

Do[Y[[i]]=N[RK41u[[i]]+C1*RK41v[[i]],nD],{i,1,n+1}];

Do[Print[PaddedForm[i,3]," ",PaddedForm[RK41u[[i+1]],{12,10}]," ",

PaddedForm[RK41v[[i+1]],{12,10}]," ",

PaddedForm[Y[[i+1]],{12,10}]," ",

PaddedForm[N[extSol[X[[i+1]]],nD],{12,10}]," ",

PaddedForm[Abs[Y[[i+1]]-N[extSol[X[[i+1]]],nD]],{12,10}]],{i,0,n}];

F1=Table[{X[[i+1]],Y[[i+1]]},{i,0,n}]

g1=Plot[extSol[x1],{x1,a,b},PlotStyle->Hue[0.99]];

g2=ListPlot[F1,PlotStyle->{PointSize[.02],Hue[0.7]}]; Show[{g1,g2}]

Let us apply the finite difference method for approximating the solution of the linear

boundary value problem (20.3.5.3)

y′′xx = p(x)y′x + q(x)y + r(x), y(a) = α, y(b) = β.

The basic idea of finite difference methods is to replace the derivatives in the differential

equations by appropriate finite differences. We choose an equidistant grid Xi = a + ih
(i = 0, . . . , N + 1) on [a, b] with step size h = (b− a)/(N + 1) (N ∈ N), where X0 = a
and XN+1 = b.

The differential equation must be satisfied at any internal node Xi (i = 1, . . . , n), and

by approximating this set of N equations and by replacing the derivatives with appropriate

finite differences, we obtain the system of equations

Yi+1 − 2Yi + Yi−1

h2
= p(Xi)

Yi+1 − Yi−1

2h
+ q(Xi)Yi + r(Xi), Y0 = α, YN+1 = β

for the approximate values Yi of the exact solution y(Xi). This linear system admits a

unique solution, because the matrix of the system is an N ×N symmetric positive definite

tridiagonal matrix.

Example 20.44. Approximations by finite differences.

For the linear boundary value problem (20.3.5.1), we can find the exact solution (extSol) and

a numerical solution (F1) by the finite difference method, compare the results, and plot the exact

and numerical solutions (g1, g2) as follows:

sEq={}; {nD=10, a=1, b=2, alpha=1, beta=2, n=10,

h=(b-a)/(n+1), X=Table[a+i*h,{i,0,n}]}

{ODE1=D[y[x],{x,2}]==-2/x*D[y[x],x]+2/xˆ2*y[x]+xˆ3,

BC={y[a]==alpha,y[b]==beta}, BVP1={ODE1,BC}}

extSol[x1_]:=Expand[(DSolve[BVP1,y[x],x]/.{x->x1})[[1,1,2]]];

p[x_]:=-2/x; q[x_]:=2/xˆ2; r[x_]:=xˆ3; extSol[x]

Do[sEq=Append[sEq, {-(1+h/2*p[X[[i+1]]])*Y[i-1]

+(2+hˆ2*q[X[[i+1]]])*Y[i]-(1-h/2*p[X[[i+1]]])*Y[i+1]==

-hˆ2*r[X[[i+1]]]}],

{i,1,n}]; sEqs=Flatten[sEq]

{Yvars=Table[Y[i],{i,1,n}], YDF=Solve[sEqs,Yvars],

YDF1=Yvars/.YDF, YDFN=N[YDF1/.{Y[0]->alpha,Y[n+1]->beta},nD]}

Do[Print[PaddedForm[YDFN[[1,i]],{12,10}]," ",

PaddedForm[N[extSol[X[[i+1]]],nD],{12,10}]," ",
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PaddedForm[YDFN[[1,i]]-N[extSol[X[[i+1]]],nD],{12,10}]],

{i,1,n}]; F1=Table[{X[[i+1]],YDFN[[1,i]]},{i,1,n}]

F11=Append[Append[F1,{a,alpha}],{b,beta}]

g1=Plot[Evaluate[extSol[x1]],{x1,a,b},PlotStyle->Hue[0.99]];

g2=ListPlot[F11,PlotStyle->{PointSize[.02],Hue[0.7]}];

Show[{g1,g2}]

◮ Nonlinear boundary value problems.

In addition to the nonlinear boundary value problem

y′′xx = f(x, y, y′x), y(a) = α, y(b) = β, (20.3.5.5)

consider the initial value problem

y′′xx = f(x, y, y′x), y(a) = α, y′x(a) = s, (20.3.5.6)

where a ≤ x ≤ b. The real parameter s describes the initial slope of the solution curve.

Let f(x, y, u) be a continuous function satisfying the Lipschitz condition with respect

to y and u. Then, by the Picard–Lindelöf theorem, for each s there exists a unique solution

y(x, s) of the above initial value problem.

To find a solution of the nonlinear boundary value problem, we choose the parameter s
such that y(b, s) = β; i.e., we have to solve the nonlinear equation F (s) = y(b, s)− β = 0
by applying one of the known numerical methods.

Example 20.45. Nonlinear boundary value problem. Nonlinear shooting methods.

For the nonlinear boundary value problem

y′′xx = −y2, y(0) = 0, y(2) = 1, (20.3.5.7)

we find a numerical solution by applying the nonlinear shooting method (ShootNL) and plot the

numerical results obtained with (ShootNL):

{a=0, b=2, alpha=0, beta=1, epsilon=N[1/50000,10], h1=1/10000}

{ODE1={D[y[x],{x,2}]+y[x]ˆ2==0}, BC={y[a]==alpha,y[b]==beta}}

shootNL[s_]:=Module[{IC}, IC={y[0]==0,(D[y[x],x]/.{x->0})==s};

IVP1=Flatten[{ODE1,IC}]; yN1=NDSolve[IVP1,y,{x,a,b}];

yN=y[x]/.yN1];

{N[shootNL[1/10]/.{x->b}],N[shootNL[1/2]/.{x->b}]}

g1=Plot[beta,{x,1/2,1},PlotStyle->Green];

g2=Plot[N[shootNL[s]/.{x->b}],{s,1/2,1},PlotStyle->Red];

Show[{g1,g2},PlotRange->{0.,1.05}]

For various values of the parameter s, we have:

Do[R=N[shootNL[s]/.{x->b}]; If[Abs[N[R[[1]]-beta]]<epsilon,

{sN=s,RN=R[[1]],Break[]}],{s,1/2,1,h1}];

Print["\n",PaddedForm[N[sN],{12,9}]," ",PaddedForm[RN,{12,9}]];

N[shootNL[sN]/.{x->b}]==N[beta]

Plot[Evaluate[N[shootNL[RN]]],{x,a,b},PlotStyle->{Red,Thickness[0.01]}]

{ICs={6/10,5/10,1,8/10,85/100,RN}, k=Length[ICs]}

Do[g[i]=Plot[Evaluate[N[shootNL[ICs[[i]]]]],{x,a,b},Frame->True,

PlotStyle->{Hue[0.15*i],Thickness->0.01},PlotRange->{0.,1.2}],{i,1,k}];

Show[Table[g[i],{i,1,k}]]
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Alternatively, we present the numerical solution obtained with the predefined function (NDSolve)

as follows:

{yNB1=NDSolve[Flatten[{ODE1,BC}],y,{x,a,b}], yNB=Evaluate[y[x]/.yNB1]}

Plot[yNB,{x,a,b},PlotStyle->Red]

Let us apply the finite difference method for approximating the solution of the nonlinear

boundary value problem (20.3.5.5). Just as in the linear case, we choose an equidistant grid

Xi = a + ih (i = 0, 1, . . . , N + 1) on [a, b] with step size h = (b − a)/(N + 1), where

X0 = a and XN+1 = b. By approximating the nonlinear boundary value problem, we arrive

at the system of nonlinear equations

Yi+1 − 2Yi + Yi−1

h2
= f

(
Xi, Yi,

Yi+1 − Yi−1

2h

)
, Y0 = α, YN+1 = β

for the approximate values Yi of the exact solution y(Xi). To solve this system of nonlinear

equations, we can apply the Newton method.

Example 20.46. Nonlinear boundary value problem. Approximations by finite differences.

For the nonlinear boundary value problem (considered in Example 20.45)

y′′xx = −y2, y(0) = 0, y(2) = 1, (20.3.5.8)

we find the numerical solution (sol) by applying the predefined function (NDSolve):

nD=20; JacobianMatrix[f_List?VectorQ,x_List]:=

Outer[D,f,x]/;Equal@@(Dimensions/@{f,x});

{a=0, b=2, n=8, h=N[(b-a)/(n+1),nD], alpha=0, beta=1, nMax=100,

epsilon=N[10ˆ(-4),nD], X=N[Table[a+i*h,{i,0,n+1}],nD]}

ODE1=D[y[x],{x,2}]==-y[x]ˆ2

{BC={y[a]==alpha,y[b]==beta}, BVP1={ODE1,BC}}

sol=NDSolve[BVP1,y,{x,a,b}]

{solN=Evaluate[y[x]/.sol][[1]], N[solN/.{x->2},nD]}

subs0={y[X[[1]]]->alpha, y[X[[n+2]]]->beta}

seqEq1=Expand[Table[(y[X[[i+1]]]-2*y[X[[i]]]+y[X[[i-1]]])/(hˆ2)

+(y[X[[i]]])ˆ2,{i,2,n+1}]]

{seqEq=seqEq1/.subs0, seqVar=Variables[seqEq], nV=Length[seqVar],

seqVar1=Table[Subscript[Z,i],{i,1,nV}]}

subs=Table[seqVar[[i]]->seqVar1[[i]],{i,1,nV}]

F[seqVar1_List]:=Table[seqEq[[i]]/.Table[seqVar[[i]]->seqVar1[[i]],

{i,1,nV}],{i,1,nV}]; F[seqVar]

J=JacobianMatrix[F[seqVar],seqVar]

JInv[seqVar1_List?VectorQ]:=(Inverse[JacobianMatrix[F[seqVar],

seqVar]])/.Table[seqVar[[i]]->seqVar1[[i]],{i,1,nV}];

FNewton[W_List?VectorQ]:=W-JInv[Table[W[[i]],{i,1,nV}]].Table[

F[Table[W[[i]],{i,1,nV}]][[k]],{k,1,nV}];

Y=Table[Table[0,{k,1,nV}],{i,1,nMax}];

Y[[1]]=Table[N[10ˆ(-10),nD],{i,1,nV}];

We find the numerical solution (F1) by applying the finite difference method:

Do[Y[[i]]=FNewton[Y[[i-1]]]; Print[i," ",Y[[i]]];

If[Max[N[Abs[Table[F[Y[[i]]][[m]],{m,1,nV}]],nD]]<epsilon,

{iEnd=i,Break[]}],{i,2,7}];
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{Print[iEnd],Print["\n The result is"]}

Do[Print[X[[k+1]]," ",Y[[iEnd]][[k]]," ",

N[solN/.{x->X[[k+1]]},nD]," ",

N[Abs[Y[[iEnd]][[k]]-N[solN/.{x->X[[k+1]]},nD]],nD]],{k,1,nV}];

F1=Table[{X[[k+1]],Y[[iEnd]][[k]]},{k,1,n}]

F11=Append[Append[F1,{a,alpha}],{b,beta}]

We compare the results and plot the numerical solutions (g1, g2) as follows:

g1=Plot[Evaluate[solN],{x,a,b},PlotStyle->Hue[0.99]];

g2=ListPlot[F11,PlotStyle->{PointSize[.02],Hue[0.7]}]; Show[{g1,g2}]

Note that the above numerical solution obtained with the aid of symbolic-numerical computa-

tions in Mathematica can be produced for small values of the partition parameter n; e.g., n= 8. For

n > 10, we have written another version of the solution:

nD=20; {a=0, b=2, n=20, h=N[(b-a)/(n+1),nD], alpha=0, beta=1,

nMax=100, epsilon=N[10ˆ(-4),nD], X=N[Table[a+i*h,{i,0,n+1}],nD]}

{ODE1=D[y[x],{x,2}]==-y[x]ˆ2,BC={y[a]==alpha,y[b]==beta}, BVP1={ODE1,BC}}

{sol=NDSolve[BVP1,y,{x,a,b}], solN=Evaluate[y[x]/.sol][[1]],

N[solN/.{x->2},nD]}

subs0={y[X[[1]]]->alpha, y[X[[n+2]]]->beta}

seqEq1=Expand[Table[(y[X[[i+1]]]-2*y[X[[i]]]+y[X[[i-1]]])/(hˆ2)

+(y[X[[i]]])ˆ2,{i,2,n+1}]]

{seqEq=seqEq1/.subs0, seqVar=Variables[seqEq],

subsInitial=Table[{seqVar[[i]],0.},{i,1,n}]}

eqs=Map[Thread[#1==0,Equal]&,seqEq]

sol1=FindRoot[eqs,subsInitial,WorkingPrecision->nD]

F1=Table[{sol1[[k,1,1]], sol1[[k,2]]},{k,1,n}]

F11=Append[Append[F1,{a,alpha}],{b,beta}]

g1=Plot[Evaluate[solN],{x,a,b},PlotStyle->Hue[0.99]];

g2=ListPlot[F11,PlotStyle->{PointSize[.02],Hue[0.7]}]; Show[{g1,g2}]

20.3.6 Eigenvalue Problems: Examples of Numerical Solutions

It is well known that eigenvalue problems play an important role in various methods for

solving linear problems for PDEs (e.g., the method of separation of variables for PDEs).

When we cannot find exact solutions of difficult eigenvalue problems, various approxi-

mation methods (e.g., the Rayleigh–Ritz method, the finite element method, the shooting

method, the Galerkin method, difference methods, and iteration methods) can be applied

for approximating the leading and most significant eigenvalues and eigenfunctions [see

Akulenko and Nesterov (2005)].

In this section, we consider an elegant and useful approximation method, namely the

Rayleigh–Ritz method (which is based on the variational approach) for determining the

first few eigenvalues and eigenfunctions.

In particular, for a specific problem (in a given region) it is important to approximate

the first (lowest) eigenvalue as accurately as possible.

In the following example, we apply the Rayleigh–Ritz method to the Sturm–Liouville

eigenvalue problem (previously considered in Section 20.2.2) for approximating two lowest

eigenvalues.
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Example 20.47. Eigenvalue problem. Rayleigh–Ritz method. Dirichlet boundary conditions.

For the Sturm–Liouville eigenvalue problem

y′′xx + λy = 0, y(a) = 0, y(b) = 0, (20.3.6.1)

i.e., a homogeneous linear two-point boundary value problem with parameter λ and with the ho-

mogeneous Dirichlet boundary conditions, where a ≤ x ≤ b, a = 0, b = π, p(x) = 1, w(x) = 1,

and q(x) = 0, we apply the Rayleigh–Ritz method for finding approximations to eigenvalues and

eigenfunctions.

First, we define trial functions (f1, f2, f3), the Rayleigh quotients for trial functions (appr1,

appr2), and the exact and approximate eigenfunctions with normalization (eEF, aEF1, aEF2,

aEF3) as follows:

{a=0, b=Pi, n=1}

f1[x_]:=x*(b-x);

f2[x_]:=x*(b-x)+c*(x*(b-x))ˆ2;

f3[x_]:=x*(b-x)*(c+x); f1[x]; f2[x]; f3[x];

appr1[f_,x_]:=Integrate[-f[x]*D[f[x],{x,2}],{x,a,b}]/Integrate[

(f[x])ˆ2,{x,a,b}];

appr2[f1_,f2_,x_]:=Integrate[f1[x]*f2[x],{x,a,b}];

eEF[x_,n_]:=Sin[n*x]/Sqrt[Integrate[(Sin[n*x])ˆ2,{x,a,b}]];

aEF1[x_]:=f1[x]/Sqrt[Integrate[(f1[x])ˆ2,{x,a,b}]];

aEF2[x_]:=(f2[x]/.sol2)/Sqrt[Integrate[(f2[x]/.sol2)ˆ2,{x,a,b}]];

aEF3[x_]:=(f3[x]/.sol3)/Sqrt[Integrate[(f3[x]/.sol3)ˆ2,{x,a,b}]];

Then we estimate the first eigenvalue and find the first and second approximations to the first eigen-

value (EV11, EV12) and to the second eigenvalue (EV2):

EV11=N[appr1[f1,x],15]

sol2=FindRoot[D[appr1[f2,x],c]==0//FullSimplify,{c,0}]

EV12=N[appr1[f2,x]/.sol2,15]

sol3=Solve[appr2[f1,f3,x]==0,c]

EV2=N[appr1[f3,x]/.sol3,15]

Finally, we compare the exact eigenfunction (eEF) and the corresponding approximations aEF1,

aEF2, aEF3 to eigenfunctions (see Figure 20.13):

SetOptions[Plot,AxesLabel->{"x","EF"}, PlotStyle->{Hue[0.8],

Dashing[{0.02,0.03}],Thickness[0.01]},

PlotLegends->{"exactEF","approxEF"}];

Plot[Evaluate[{eEF[x,1],aEF1[x]}],{x,a,b}]

Plot[Evaluate[{eEF[x,1],aEF2[x]}],{x,a,b}]

Plot[Evaluate[{eEF[x,2],-aEF3[x]}],{x,a,b}]

20.3.7 First-Order Systems of ODEs. Higher-Order ODEs. Numerical
Solutions

◮ First-order systems of ODEs.

Consider the system of first-order ordinary differential equations with the initial conditions

(yi)
′
x = fi

(
x, y1, . . . , yn

)
, yi(a) = yi0 (i = 1, . . . , n).
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Figure 20.13: The first two eigenfunctions (exact) and their approximations (first, second,

and first) for the Sturm–Liouville problem (20.3.6.1).

The unknown functions are y1(x), . . . , yn(x), and a ≤ x ≤ b.
To obtain numerical solutions, we can apply predefined functions or, alternatively, con-

struct solutions step by step by applying one of the known numerical methods (developed

for a single equation) to each equation in the system.

Let us numerically solve some first-order linear and nonlinear systems of ODEs.

Example 20.48. Linear system. Cauchy problem. Exact, numerical, and graphical solutions.

For the first-order linear nonhomogeneous system with the initial conditions

u′x = v, v′x = x− u− 2v, u(a) = α, v(a) = β, (20.3.7.1)

where a ≤ x ≤ b, a = 0, b = 2, α = 1, and β = 1, the exact solution (extSol)

{{

u[x] → e−x (3− 2ex + 3x+ exx) , v[x] → e−x (ex − 3x)
}}

can be obtained as follows:

F1[x_,u_,v_]:=v; F2[x_,u_,v_]:=x-u-2*v; nD=10;

{n=10, a=0, b=2, h=N[(b-a)/n,nD], X=Table[a+i*h,{i,0,n}],

RK41=Table[0,{i,0,n}], RK42=Table[0,{i,0,n}]}

{ODEsys={D[u[x],x]==v[x], D[v[x],x]==x-u[x]-2*v[x]},

IC={u[0]==1,v[0]==1}, IVP1=Flatten[{ODEsys,IC}]}

extSol=Sort[DSolve[IVP1,{u[x],v[x]},x]]

uExt[x1_]:=extSol[[1,1,2]]/.{x->x1};

vExt[x1_]:=extSol[[1,2,2]]/.{x->x1};

Then we find a numerical solution (uF1, vF1) by applying the explicit fourth-order Runge–Kutta

method:

{RK41[[1]]=1, RK42[[1]]=1}

Do[k1=h*F1[X[[i]],RK41[[i]],RK42[[i]]];

m1=h*F2[X[[i]],RK41[[i]],RK42[[i]]]; k2=h*F1[X[[i]]+h/2,

RK41[[i]]+k1/2,RK42[[i]]+m1/2]; m2=h*F2[X[[i]]+h/2,

RK41[[i]]+k1/2,RK42[[i]]+m1/2]; k3=h*F1[X[[i]]+h/2,

RK41[[i]]+k2/2,RK42[[i]]+m2/2]; m3=h*F2[X[[i]]+h/2,

RK41[[i]]+k2/2,RK42[[i]]+m2/2]; k4=h*F1[X[[i]]+h,

RK41[[i]]+k3, RK42[[i]]+m3]; m4=h*F2[X[[i]]+h,

RK41[[i]]+k3, RK42[[i]]+m3];
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Figure 20.14: Exact and numerical solutions of the Cauchy problem (20.3.7.1) for the first-

order linear system.

RK41[[i+1]]=N[RK41[[i]]+1/6*(k1+2*k2+2*k3+k4),nD];

RK42[[i+1]]=N[RK42[[i]]+1/6*(m1+2*m2+2*m3+m4),nD], {i,1,n}];

Do[Print[PaddedForm[i,3]," ",PaddedForm[X[[i+1]],{12,10}]," ",

PaddedForm[RK41[[i+1]],{12,10}]," ",

PaddedForm[N[uExt[X[[i+1]]],nD],{12,10}]," ",

PaddedForm[RK42[[i+1]],{12,10}]," ",

PaddedForm[N[vExt[X[[i+1]]],nD],{12,10}]], {i,0,n}];

uF1=Table[{X[[i+1]],RK41[[i+1]]},{i,0,n}]

vF1=Table[{X[[i+1]],RK42[[i+1]]},{i,0,n}]

Finally, we compare the results and plot the exact and numerical solutions (uG1, vG1, uG2, vG2)

as follows:

uG1=Plot[uExt[x1],{x1,a,b},PlotStyle->Red,PlotRange->All];

vG1=Plot[vExt[x1],{x1,a,b},PlotStyle->Blue,PlotRange->All];

uG2=ListPlot[uF1,PlotStyle->{PointSize[.02],Hue[0.99]}];

vG2=ListPlot[vF1,PlotStyle->{PointSize[.02],Hue[0.7]}];

Show[{uG1,uG2,vG1,vG2}]

Example 20.49. Nonlinear system. Cauchy problem. Numerical and graphical solutions.

For the first-order nonlinear system with the initial conditions

u′x = uv, v′x = u+ v, u(a) = α, v(a) = β, (20.3.7.2)

where a ≤ x ≤ b, a = 0, b = 1, α = 1, and β = 1, we obtain numerical and graphical solutions as

follows:

SetOptions[Plot,ImageSize->300,AspectRatio->1,Frame->True,Axes->False];

{ODE={u'[x]==u[x]*v[x],v'[x]==u[x]+v[x]},IC={u[0]==1,v[0]==1}}

eq1=NDSolve[{ODE,IC},{u,v},{x,0,1}];

{solNu=eq1[[1,1,2]],solNv=eq1[[1,2,2]]}

Table[{x,solNu[x]},{x,0,1,0.1}]//TableForm

Table[{x,solNv[x]},{x,0,1,0.1}]//TableForm

g1=Plot[solNu[x],{x,0,1},PlotStyle->{Hue[0.8],Thickness[0.01]}];

g2=Plot[solNv[x],{x,0,1},PlotStyle->{Hue[0.9],Thickness[0.01]}];

g12=Show[g1,g2,AspectRatio->1,Frame->True,ImageSize->300];

GraphicsGrid[{{g1,g2},{g12}}]
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◮ Higher-order ODEs.

For the ordinary differential equation of order n (n > 1) with n initial conditions

y(n)x = f(x, y, y′x, . . . , y
(n−1)
x ),

y(a) = y0, y′x(a) = y1, . . . , y(n−1)
x (a) = yn−1,

we can always obtain solutions by transforming the equation to an equivalent system of n
first-order differential equations and by applying an appropriate numerical method to this

system of differential equations.

Example 20.50. Van der Pol equation. Cauchy problem. Numerical and graphical solutions.

For the van der Pol equation with the initial conditions

y′′xx + µ(y2 − 1)y′x + y = 0, y(a) = α, y′x(a) = β, (20.3.7.3)

where a ≤ x ≤ b, a = 0, b = 60, α = 1, and β = 0, we transform the second-order ODE to the

equivalent system of two first-order differential equations (sys2)

[u′x = v, v′x = −µ(u2 − 1)v − u], u(x0) = 1, v(x0) = 0,

where u = y(x), v = y′x, and x0 = 0. Then, by applying a classical numerical method (e.g., Euler’s

method) to this system of differential equations, we obtain a numerical solution (solEuler), and

a graphical solution, a phase portrait of the solution, and a plot of u(x) and v(x) as follows:

SetOptions[ParametricPlot,PlotRange->All,AspectRatio->1];

{nD=10, a=0, b=60, mu=N[1/8,nD], alpha=1, beta=0}

{ODE1=D[y[x],{x,2}]+mu*(y[x]ˆ2-1)*D[y[x],x]+y[x]==0,

IC1={y[a]==alpha,y'[a]==beta}, IVP1={ODE1,IC1}//Flatten}

{sys2={D[u[x],x]==v[x], D[v[x],x]==-mu*(u[x]ˆ2-1)*v[x]-u[x]},

IC2={u[a]==alpha,v[a]==beta},IVP2={sys2,IC2}//Flatten}

solEuler=NDSolve[IVP2,{u,v},{x,a,b},StartingStepSize->0.01,

Method->{"FixedStep",Method->"ExplicitEuler"}];

{solNu=solEuler[[1,1,2]], solNv=solEuler[[1,2,2]]}

Table[{x,solNu[x]},{x,a,b}]//TableForm;

Table[{x,solNv[x]},{x,a,b}]//TableForm;

{solNu[0], solNv[0], solNu[1.], solNv[1.]}

ParametricPlot[{solNu[x],solNv[x]},{x,a,b},

PlotStyle->{Hue[0.8],Thickness[0.007]}]

ParametricPlot[{{x,solNu[x]},{x,solNv[x]}},{x,a,b},PlotStyle->{Hue[0.8],

Dashing[{0.02,0.03}],Thickness[0.02]},PlotLegends->{"u[x]","v[x]"}]

20.3.8 Phase Plane Analysis for First-Order Autonomous Systems

In general, a first-order 2D autonomous system of ODEs has the form

u′t = f(u, v), v′t = g(u, v).

For a 2D system in u(t) and v(t), each initial condition (IC) (for producing one solution

curve) can be specified in two forms, [t0, u(t0), v(t0)] or [u(t0) = u0, v(t0) = v0].
The phase portrait of a first-order autonomous system of ODEs consists of solutions of

the system in the phase space, where the solutions u(t) and v(t) are presented as parametric

equations for the curve v(u).
In Mathematica, the predefined functions ParametricPlot and VectorPlot can

be applied to create the phase portrait.

Consider some examples for performing phase plane analysis for first-order autonomous

systems of ODEs (linear and nonlinear).
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◮ First-order linear autonomous systems.

Example 20.51. First-order linear autonomous system of ODEs. Phase portrait animated.

For the first-order linear autonomous system of ODEs with the initial conditions

u′t = πu− 2v, v′t = 4u− v, u(0) = 1
2C, v(0) = 1

2C,

whereC ∈ [−1, 0], we create an animation (with the aid of the predefined functionsListAnimate

and ParametricPlot) of tracing the trajectory in the phase portrait as follows:

{g={}, n=50, subs={u[t]->u,v[t]->v}}

sys1={u'[t]==Pi*u[t]-2*v[t],v'[t]==4*u[t]+v[t]}

IC={u[0]==-1/2*C1,v[0]==1/2*C1}

{fu=sys1[[1,2]]/.subs, fv=sys1[[2,2]]/.subs}

vf=VectorPlot[{fu,fv},{u,-40,40},{v,-40,40},Frame->True,ColorFunction->

Function[{u},Hue[u]],PlotRange->{{-40,40},{-40,40}}];

ivp1=Table[Flatten[{sys1,IC}],{C1,-1,0,1/n}];

sols=Table[NDSolve[ivp1[[i]],{u[t],v[t]},{t,0,Pi}],{i,1,n}];

l1=Table[{cu=u[t]/.sols[[i,1]],cv=v[t]/.sols[[i,1]]},{i,1,n}];

Do[g=Append[g,Show[vf,Evaluate[ParametricPlot[l1[[i]],{t,0,Pi},

AspectRatio->1,PlotStyle->{Blue,Thickness[0.01]},PlotRange->

{{-40,40},{-40,40}}]]]],{i,1,n}]; ListAnimate[g]

◮ First-order nonlinear autonomous systems.

Example 20.52. First-order nonlinear autonomous system of ODEs. Phase portrait.

Consider one application of first-order nonlinear autonomous systems of ODEs, namely, the

dynamical system that describes the evolution of the amplitude and the slow phase of a fluid under

the subharmonic resonance:

v′t=−νv+εu
[
δ+ 1

4− 1
2φ2(u

2+v2)+ 1
4φ4(u

2+v2)2
]
,

u′t=−νu+εv
[
−δ+ 1

4+
1
2φ2(u

2+v2)− 1
4φ4(u

2+v2)2
]
.

(20.3.8.1)

This system has been obtained by performing averaging transformations [for more details, see Shin-

gareva (1995)]. Here ν is the fluid viscosity, ε is the small parameter, φ2 and φ4 are the second and

the fourth corrections to the nonlinear wave frequency, and δ is the off-resonance detuning.

Choosing the corresponding parameter values (for the six regions where the solution exists), we

can obtain phase portraits. For example, here we create a phase portrait (presented in Figure 20.15)

for one region (where the solution exists) with the corresponding parameter values as follows:

{delta=-1/2, phi2=1, phi4=1, nu=0.005, epsilon=0.1}

eq1=-nu*v[t]+epsilon*u[t]*(delta+1/4-phi2/2*(u[t]ˆ2+v[t]ˆ2)

+phi4/4*(u[t]ˆ2+v[t]ˆ2)ˆ2)

eq2=-nu*u[t]+epsilon*v[t]*(-delta+1/4+phi2/2*(u[t]ˆ2+v[t]ˆ2)

-phi4/4*(u[t]ˆ2+v[t]ˆ2)ˆ2)

IC={{0,1.1033},{0,-1.1033},{1.1055,0},{-1.1055,0},{0,1.613},

{0,-1.613}}

n=Length[IC]

Do[{sys[i]={v'[t]==eq1,u'[t]==eq2,v[0]==IC[[i,1]],u[0]==IC[[i,2]]};

sols=NDSolve[sys[i],{u,v},{t,-48,400}]; cv=v/.sols[[1]];

cu=u/.sols[[1]]; c[i]=ParametricPlot[Evaluate[{cu[t],cv[t]}],

{t,-48,400},PlotStyle->{Hue[0.1*i+0.2],Thickness[.001]}];},

{i,1,n}]

{fv=eq1/.{v[t]->v,u[t]->u}, fu=eq2/.{v[t]->v,u[t]->u}}

fd=VectorPlot[{fu,fv},{u,-2.2,2.2},{v,-2.2,2.2},Frame->True,

ColorFunction->Function[{u},Hue[u]]]; Show[fd,Table[c[i],{i,1,6}]]
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Figure 20.15: Phase portrait of the first-order nonlinear autonomous system (20.3.8.1).

20.3.9 Numerical-Analytical Solutions

In this section, we show the very helpful role of computer algebra systems for analytical

derivation of numerical methods, for combining the analytical approach (and methods)

with numerical computations (and methods) for solving mathematical problems of various

types, and for comparing exact, approximate analytical, and numerical solutions.

Consider some examples of an analytical-numerical approach (variational and projec-

tion methods) for constructing exact and approximate analytical and numerical solutions of

two-point boundary value problems.

◮ Variational methods. The Ritz method.

Consider a two-point linear boundary value problem, i.e., a second-order linear nonhomo-

geneous ODE with the mixed boundary conditions,

−[p(x)y′x]′x + q(x)y = f(x), y(a) = α, y′x(b) = β,

where a ≤ x ≤ b. We assume that p(x) is a continuously differentiable function, q(x)
and f(x) are continuous functions, p(x) ≥ 0, and q(x) ≥ 0. Then there exists a unique

twice continuously differentiable solution y(x) if and only if y(x) is the unique function

minimizing the functional

J [y] =

∫ b

a

{
p(x)(y′x)

2 + q(x)y2 − 2f(x)y
}
dx.

In the Ritz method (which belongs in variational methods), by introducing an approximate

analytical solution y(x) in the form of a linear combination of the basis functions φi(x),

y(x) = C1φ1(x) + . . .+ CNφN (x),

we obtain a quadratic form in the unknown coefficients Ci. By minimizing this quadratic

form, we determine the coefficients Ci and the approximate analytical solution y(x).
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Figure 20.16: Exact solution, approximate analytical solution, and their difference for the

two-point linear boundary value problem with mixed boundary conditions (20.3.9.1).

Example 20.53. Linear boundary value problem. Mixed boundary conditions. The Ritz method.

For the two-point linear boundary value problem with the mixed boundary conditions

y′′xx − y = sin(x), y(a) = α, y′x(b) = β, (20.3.9.1)

where a ≤ x ≤ b, a = 0, b = π, α = 0, and β = 0, we find the exact solution y(x) (SolEx) and

the approximate analytical solution Y (x) (SolApp) by the Ritz method, compare the results, and

plot the solutions SolEx and SolApp and their difference SolEx-SolApp (see Figure 20.16) as

follows:

nD=10; {a=0,b=Pi,n=8,h=N[(b-a)/n,nD], alpha=0, beta=0}

f[x_]:=Sin[x]; p[x_]:=1; q[x_]:=1;

{ODE1={-p[x]*D[y[x],{x,2}]+q[x]*y[x]-f[x]==0},

BCs={y[a]==alpha,(D[y[x],x]/.{x->b})==beta},BVP1={ODE1,BCs}}

SolEx[x1_]:=FullSimplify[ExpToTrig[(DSolve[BVP1,y[x],x]/.

{x->x1})[[1,1,2]]]]; SolEx[x]

Do[phi[i]=Cos[i*X]-1,{i,1,n}];

Y[X1_]:=Sum[c[i]*phi[i],{i,1,n}]/.{X->X1}; Y[X]

{J=Integrate[Expand[p[x]*D[Y[X],X]ˆ2+q[x]*Y[X]ˆ2-2*f[X]*Y[X]],{X,a,b}],

V=D[J,{Variables[J]}]}

CL=Flatten[Solve[Map[Thread[#1==0,Equal]&,V],Variables[J]]]

SolApp[X1_]:=(Y[X]/.CL)/.{X->X1}; SolApp[x]

g1=Plot[Evaluate[SolEx[x]],{x,a,b},PlotStyle->Red];

g2=Plot[Evaluate[SolApp[x]],{x,a,b},PlotStyle->Blue];

g3=Plot[Evaluate[SolEx[x]-SolApp[x]],{x,a,b},PlotStyle->Green];

Show[{g1,g2,g3},PlotRange->{-0.1,0.6}]

◮ Projection methods. The Galerkin method.

Consider the same linear boundary value problem as in the previous section written in the

operator form

L[y] + f(x) = 0, y(a) = α, y′x(b) = β,
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where y = y(x), a ≤ x ≤ b, and L[y] = [p(x)y′x]
′
x + q(x)y is a linear differential operator.

We assume that all the functions occurring in the problem are square integrable. Note that

not every differential equation admits the minimization of a functional, and we consider a

more powerful and general method for solving differential equations, the Galerkin method

that belongs to the projection methods; i.e., the equation to be approximated is projected

onto a finite-dimensional function subspace.

In the Galerkin method (as in the Ritz method), we also introduce the approximate

analytical solution y(x) in the form of a linear combination of the basis functions φi(x),

y(x) = C1φ1(x) + . . .+ CNφN (x),

and we choose the unknown coefficients Ci such that the residual

r(x) = L[y(x)] + f(x)

is orthogonal to the space spanned by the basis functions φi(x),

∫ b

a
r(x)φi(x) dx = 0, i = 1, . . . , N ;

i.e., the Galerkin equations are reduced to the solution of a system of linear equations.

Example 20.54. Linear boundary value problem. Mixed boundary conditions. Galerkin method.

For the two-point linear boundary value problem with the mixed boundary conditions

y′′xx + sin(x) = y, y(a) = α, y′x(b) = β,

where a ≤ x ≤ b, a = 0, b = π, α = 0, and β = 0, we find the exact solution (SolEx) and the

approximate analytical solution (SolApp) by the Galerkin method, compare the results, and plot

the solutions (SolEx, SolApp) and their difference (SolApp-SolEx) as follows:

nD=10; f[x_]:=-Sin[x]; p[x_]:=x; q[x_]:=xˆ2;

ODE1[x1_]:=p[x]*D[y[x],{x,2}]-q[x]*y[x]-f[x]==0/.{x->x1};

{a=0,b=Pi,n=8,h=N[(b-a)/n,nD],alpha=0,beta=0}

{BCs={y[a]==alpha,(D[y[x],x]/.{x->b})==beta},BVP1={ODE1[x],BCs}}

SolEx[x1_]:=FullSimplify[ExpToTrig[(DSolve[BVP1,y[x],x]/.

{x->x1})[[1,1,2]]]]; SolEx[x]

Do[phi[i]=Cos[i*t]-1,{i,1,n}];

Y[t1_]:=Sum[c[i]*phi[i],{i,1,n}]/.{t->t1}; Y[t]

Eq1=Expand[ODE1[t]/.{y[t]->Y[t],D[y[t],{t,2}]->D[Y[t],{t,2}]}]

Eqs=Table[Integrate[Expand[Eq1[[1]]*phi[i]],{t,a,b}],{i,1,n}]

CL=Flatten[Solve[Map[Thread[#1==0,Equal]&,Eqs],Variables[Eqs]]]

SolApp[t1_]:=(Y[t]/.CL)/.{t->t1}; Expand[N[SolApp[t],nD]]

g1=Plot[Evaluate[SolEx[t]],{t,a,b},PlotStyle->Red];

g2=Plot[Evaluate[SolApp[t]],{t,a,b},PlotStyle->Blue];

g3=Plot[Evaluate[SolApp[t]-SolEx[t]],{t,a,b},PlotStyle->Green];

Show[{g1,g2,g3},PlotRange->{-0.1,0.6}]

⊙ Literature for Section .3: H. F. Trotter (1959), G. M. Murphy (1960), R. Bulirsch and J. Stoer (1964),

W. B. Gragg (1965), G. Strang (1968), G. I. Marchuk (1968), T. J. Dekker (1969), R. P. Brent (1973), L. R. Pet-

zold (1983), G. Bader and P. Deuflhard (1983), L. F. Shampine and L. S. Baca (1983), P. Deuflhard (1985),

P. Deuflhard, E. Hairer and J. Zugck (1987), L. F. Shampine (1987), E. Hairer and Ch. Lubich (1988), P. Bo-

gacki and L. F. Shampine (1989), C. Lubich (1989), J. C. Butcher (1990), K. Gustafsson (1991), J. Candy
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and R. Rozmus (1991), U. Ascher and L. Petzold (1991), R. I. McLachlan and P. Atela (1992), E. Hairer,

S. P. Norsett, and G. Wanner (1993), L. F. Shampine (1994), L. Dieci, R. D. Russel and E. S. Van Vleck

(1994), J. M. Sanz-Serna and M. P. Calvo (1994), I. K. Shingareva (1995), E. Hairer and G. Wanner (1996),

G. H. Golub and C. F. van Loan (1996), S. D. Cohen and A. C. Hindmarsh (1996), L. Dieci and E. S. Van Vleck

(1999), E. Hairer (2000), N. Del Buono and L. Lopez (2001), E. Hairer, Ch. Lubich and G. Wanner (2002),

M. Sofroniou and G. Spaletta (2004, 2005, 2006), L. D. Akulenko and S. V. Nesterov (2005).
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Chapter 21

Symbolic and Numerical
Solutions of ODEs with MATLAB

21.1 Introduction

21.1.1 Preliminary Remarks

In the previous two chapters, we paid special attention to analytical solutions of ordinary

differential equations and systems owing to the availability of the computer algebra systems

Maple and Mathematica in modern mathematics.

Frequently, the functions and data in ODE problems are defined at discrete points and

equations are too complicated, so it is not possible to construct analytical solutions. There-

fore, we have to study and develop numerical approximation methods for ordinary differen-

tial equations [e.g., see Gear (1971), Shampine and Gordon (1975), Forsythe et al. (1977),

Conte and de Boor (1980), Fox and Mayers (1987), Kahaner et al. (1989), Shampine

(1994), Ascher et al. (1995), Shampine and Reichelt (1997), Shampine et al. (2003), Lee

and Schiesser (2004)].

Following the most important ideas and methods, we apply and develop numerical

methods to obtain numerical and graphical solutions for studying ordinary differential

equations.

Nowadays, for this purpose one can use computers and supercomputers extensively ap-

plying convenient and powerful computational software, e.g., an interactive programming

environment for scientific computing, MATLABr, which provides integrated symbolic and

numerical computation and graphics visualization in a high-level programming language.

Additionally, MATLAB’s excellent graphics capabilities can help one understand the re-

sults and analyze the solution properties.

In this chapter, we turn our attention to numerical methods for solving ordinary differen-

tial equations using MATLAB. Since numerical and analytical methods are complementary

techniques for investigating solutions of differential equations, we will also consider some

essential analytical tools provided in MATLAB.

MATLAB has an extensive library of predefined functions for solving ordinary differen-

tial equations. We compute symbolic and numerical solutions using MATLAB’s predefined

functions (which implement known methods for solving ordinary differential equations)

1245
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and develop new MATLAB procedures for constructing symbolic and numerical solutions.

Remark 21.1. The numerical methods embedded in MATLAB can solve only first-order ODEs

or systems of first-order ODEs. To obtain solutions of nth-order ODEs (where the order is n > 1)

by applying predefined functions, we have to rewrite higher-order ODEs as an equivalent system of

first-order ODEs.

21.1.2 Brief Introduction to MATLAB

◮ MATLAB’s conventions and terminology.

In this chapter, we use the following conventions introduced in MATLAB:

• Cn (n = 1, 2, . . .), for arbitrary constants

• the letter D, the differential operator (should not be used for symbolic variables)

• Dc, for a dependent variable (in differential equations), where c is any character

• the letter t, the independent variable (by default) for the predefined function dsolve

Also we introduce the following notation for the MATLAB solutions:

• Eqn, for equations (n = 1, 2, . . .)
• ODEn, for ODEs

• Soln, for solutions

• Exprn, for expressions

• Strn, for string expressions

• ODESysn, for systems of ODEs

• ICn, BCn, for initial and boundary conditions

• IVPn, BVPn, for initial and boundary value problems

• Ln, for lists of expressions

• Gn, for graphs of solutions

• ops, val, for various optional arguments in predefined functions and their values

• vars, for independent variables

• funcs, for dependent variables (indeterminate functions)

◮ Basic description.

MATLAB (short for “matrix laboratory”) is not a general purpose programming language

as Maple and Mathematica. MATLAB is an interactive programming environment that

provides powerful high-performance numerical computing, excellent graphics visualiza-

tion, symbolic computing capabilities, and capabilities for writing new software programs

using a high-level programming language.

The Symbolic Math Toolbox (Ver. ≥ 4.9), based on the muPAD symbolic kernel, pro-

vides symbolic computations and variable-precision arithmetic. Earlier versions of the

Symbolic Math Toolbox are based on the Maple symbolic kernel.

Simulink (short for “simulation and link”), also included in MATLAB, offers modeling,

simulation, and analysis of dynamical systems (e.g., signal processing, control, communi-

cations, etc.) under a graphical user interface (GUI) environment.

The first concept of MATLAB and its original version (written in Fortran) was devel-

oped by Prof. Cleve Moler at the University of New Mexico in the late 1970s to provide

his students with a simple interactive access (without having to learn Fortran) to LINPACK
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and EISPACK software.∗ Over the next several years, this original version of MATLAB

had spread within the applied mathematics community. In early 1983, Jack Little (an en-

gineer), together with Cleve Moler and Steve Bangert, developed a professional version

of MATLAB (written in C and integrated with graphics). The company MathWorks was

created in 1984 and headquartered in Natick, Massachusetts, to continue its development.

◮ Most important features.

The most important features of MATLAB are as follows:

• interactive user interface;

• a combination of comprehensive mathematical and graphics functions with a powerful

high-level language in an easy-to-use environment;

• fast numerical computation and visualization, especially for performing matrix opera-

tions [e.g., see Higham (2008)];

• easy usability and great flexibility in data manipulation;

• symbolic computing capabilities via the Symbolic Math Toolbox (Ver. < 4.9 or Ver.≥
4.9), based on the Maple or muPAD symbolic kernel, respectively;

• the basic data element is an array that does not require dimensioning;

• a large library of functions for a wide range of applications;

• it is easy to incorporate new user-defined capabilities (toolboxes consisted of M-files

and written for specific applications);

• understandable and available for almost all operating systems;

• powerful programming language, intuitive and concise syntax, and easy debugging;

• Simulink, as an integral part of MATLAB, provides modeling, simulation, and analysis

of dynamical systems;

• free resources, such as MathWorks Web Site (www.mathworks.com), MathWorks

Education Web Site (www.mathworks.com/education), MATLAB newsgroup

(comp.soft-sys.matlab), etc.

◮ Basic parts.

MATLAB consists of five parts:

• The Development Environment, a set of tools that facilitate using MATLAB functions

and files (e.g., graphical user interfaces and the workspace).

• The Mathematical Function Library, a vast collection of computational algorithms.

• The MATLAB language, a high-level matrix/array language (with flow control state-

ments, functions, data structures, input/output, and object-oriented programming fea-

tures).

• The MATLAB graphics system, which includes high-level functions (for 2D/3D data

visualization, image processing, animation, etc.) and low-level functions (for fully cus-

tomizing the graphics appearance and constructing complete graphical user interfaces).

• The Application Program Interface (API), a library for writing C and Fortran programs

that interact with MATLAB.

∗LINPACK and EISPACK is a collection of Fortran subroutines, developed by Cleve Moler and his several

colleagues, for solving linear equations and eigenvalue problems, respectively.

www.mathworks.com
www.mathworks.com/education
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◮ Basic concepts.

The prompt symbol >> indicates where to type a MATLAB command; typing a statement

and pressing Return or Enter at the end starts the evaluation of the command, displays

the result, and inserts a new prompt; the semicolon (;) symbol at the end of the command

tells MATLAB to evaluate the command but not display any result.

In MATLAB, the cursor cannot be moved to the desired line (unlike Maple and Math-

ematica) but, for simple problems, corrections can be made by pressing the up or down

arrow key to scroll through the list of (recently used) functions and then the left or

right arrow key to change the text. Also, corrections can be made using copy/paste

of the previous lines located in the Command Window or Command History.

The previous result (during a session) can be referred to with the variable ans (the last

result). MATLAB prints the answer and assigns the value to ans, which can be used for

further calculations.

MATLAB has many forms of help: a complete online help system with tutorials and

reference information for all functions; the command-line help system, which can be ac-

cessed by using the Helpmenu, pressing F1, selecting Help->Demos, or entering Help

and selecting Functions->Alphabetical List or Index, Search, MATLAB->

Mathematics; or by typing helpbrowser, lookfor (e.g., lookfor plot) or

help FunctionName, doc FunctionName, etc.

In MATLAB (Ver. 7), a new feature for correctly typing function names has been added.

One can type only the first few letters of the function and then press the TAB key (to see all

available functions and complete typing the function).

MATLAB desktop appears, containing tools (graphical user interfaces) for manag-

ing files, variables, and applications. The default configuration of desktop includes var-

ious tools, e.g., Command Window, Command History, Workspace, Find Files,

Current Directory (for more details, see demo MATLAB desktop), etc. One can

modify the arrangement of tools and documents.

For a new problem, it is best to begin with the statement clear all for cleaning all

variables from MATLAB’s memory. All examples and problems in the book assume that

they begin with clear all.

A MATLAB program can be typed at the prompt >> or, alternatively (e.g., for more

complicated problems), by creating an M-file (with .m extension) using MATLAB editor

(or using another text editor). MATLAB editor is invoked by typing edit at the prompt.

M-files are files that contain code in the MATLAB language. There are two kinds of

M-files: script M-files (which do not accept input arguments or return output data) and

function M-files (which can accept input arguments and return output arguments).

In the process of working with various M-files, it is necessary to define the path, which

can be done by selecting File->Set Path->Add Folder or via the cd function.

The structure of a MATLAB program or source code is as follows: the main program

or script and the necessary user-defined functions. The execution starts by typing the file

name of the main program.

Incorrect response. If you get no response or an incorrect response, you may have en-

tered or executed the function incorrectly. Correct the function or interrupt the computation

by entering debug mode and setting breakpoints: select the following on the Desktop menu:
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Debug->Open M-files when Debugging

Debug->Stop if Errors/Warnings

Also, one can detect erroneous or unexpected behavior in a program with the aid of

MATLAB functions, e.g., break, warning, and error.

Palettes can be used, e.g., for building or editing graphs (Figure Palette), dis-

playing the names of the GUI components (Component Palette), etc.

MATLAB graphical user interface development environment (GUIDE) provides a set

of tools for creating graphical user interfaces (GUIs). These tools greatly simplify the

construction of GUIs, e.g., layout the GUI components (panels, buttons, menus, etc.) and

program the GUI.

MATLAB consists of a family of add-on toolboxes, which are collections of functions

(M-files) and extend the MATLAB environment to solve particular classes of problems.

The toolboxes can be standard or specialized (see Contents in Help). Nowadays,

many specialized toolboxes are available. MATLAB can be augmented by a number of

toolboxes consisting of M-files and written for specific applications.

21.1.3 MATLAB Language

MATLAB language is a high-level procedural dynamic and imperative programming lan-

guage (similar to Fortran 77, C, and C++), with powerful matrix/array operations, con-

trol statements, functions, data structures, input/output, and object-oriented programming

features. In addition, it is an interpreted language, similar to Maple and Mathematica

[e.g., see Shingareva and Lizárraga-Celaya (2009)]; i.e., the instructions are translated

into machine language and executed in real time (one at a time). MATLAB language

allows programming-in-the-small (coding or creating programs for performing small-scale

tasks) and programming-in-the-large (creating complete large and complex application pro-

grams). It supports a large collection of data structures or MATLAB classes and operations

among these classes.

In linear algebra, there exist two types of operations with vectors/matrices: operations

based on the mathematical structure of vector spaces and element-by-element operations on

vectors/matrices as in data arrays. This difference can be made in the name of the operation

or the name of the data structure. In MATLAB, separate operations are defined (for matrix

and array manipulation), but the data structures array and vector/matrix are the

same. But, for example, in Maple the situation is opposite: the operations are the same, but

the data structures are different.

Arithmetic operators: scalar operators (+ - * / ˆ), matrix multiplication/power (* ˆ),

array multiplication/power (.* .ˆ), matrix left/right division (\ /), and array division (./).

Logical operators: and (&), or (|), exclusive or (xor), and not (˜).

Relational operators: less/greater than (< >), less/greater than or equal to (<= >=), and

equal/not equal (== ˜=).

A variable name is a character string of letters, digits, and underscores such that it

begins with a letter and its length is bounded by N=namelengthmax (e.g., N = 63).

Punctuation marks are not allowed (see genvarname function). Variable declaration is

not necessary in MATLAB, but all variables must be given initial values; e.g., a12 new=9.

A variable can change in the calculation process, e.g., from integer to real (and vice versa).
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MATLAB is case sensitive, and there is a difference between lowercase and uppercase

letters, e.g., pi and Pi.

Various reserved keywords, symbols, names, and functions, for example, reserved key-

words and function names, cannot be used as variable names (see isvarname, which

-all, isreserved, iskeyword).

A string variable is enclosed by single quotes and belongs to the char class (e.g.,

x='string'), and the function sin(x) is invalid. Strings can be used with convert-

ing, formatting, and parsing functions (e.g., see cellstr, char, sprintf, fprintf,

strfind, findstr).

MATLAB provides three basic types of variables: local variables, global variables,

and persistent variables.

The operator “set equal to” (=). A variable in MATLAB (in contrast to Maple and

Mathematica) cannot be “free” (with no assigned value) and must be assigned any initial

value by the operator “set equal to” (=).

The difference between the operators “set equal to” (=) and “equal” (==) is that the op-

erator var=val is used to assign val to the variable var, while val1==val2 compares

two values; e.g., A=3; B=3; A==B.

Statements are input instructions from the keyboard that are executed by MATLAB

(e.g., for i=1:N s=s+i*2; end). A MATLAB statement may begin at any position in

a line and may continue indefinitely in the same line, or may continue in the next line, by

typing by three dots (...) at the end of the current line. White spaces between words in a

statement are ignored; a number cannot be split into two pieces separated by a space.

The statement separator semicolon (;). The result of a statement followed with a semi-

colon (;) will not be displayed. If the semicolon is omitted, the results will be printed on

the screen; e.g., x=-pi:pi/3:pi; and x=-pi:pi/3:pi.

Multiple statements in a line: two or more statements may be written in the same line

if they are separated with semicolons.

Comments can be included with the percentage sign % and all characters following it

up to the end of a line. Comments at the start of a code have a special significance: they

are used by MATLAB to provide the entry for the help manual for a particular script. The

block comment operators, %{ %}, can be used for writing comments that require more than

one line.

An expression is a valid statement and is formed as a combination of numbers, variables,

operators, and functions. The arithmetic operators have different precedences (increasing

precedence + - * / ˆ). Precedence is altered by parentheses (expressions within parenthe-

ses are evaluated before expressions outside parentheses).

A Boolean or logical expression is formed with logical and relational operators; e.g.,

x>0. Logical expressions are used in if, switch, and while statements. The logical

values, true and false, are represented by numerical values, 1 and 0, respectively.

A regular expression is a string of characters that defines a pattern (for details, see help

pattern). For example, 'Math?e\w*'. Regular and dynamic expressions can be used

to search text for a group of words that matches the pattern (e.g., for parsing or replacing a

subset of characters within text).

MATLAB is sensitive to types of brackets and quotes (for details, see help paren,

help punct).
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Types of brackets:

Square brackets, [ ], for constructing vectors and matrices, for example, A1=[1 2 3],

A2=[1, 2, 3], A3=[1, 2; 4,5]. For multiple assignment statements, for example

A4=[1,5;2,6], [L,U]=lu(A4).

Parentheses, ( ), for grouping expressions, (5+9)*3, for delimiting the arguments

of functions, sin(5), for vector and matrix elements, A1(2), A3(1,1), A2([1 2]);

in logical expressions, A1(A1>2).

Curly brackets, { }, for working with cell arrays; e.g., C1={int8(3) 2.59 'A'},
C1{1}, X(2,1)={[1 3; 4 6]}.

Dot-parentheses, .( ), for working with a structure via a dynamic field name; e.g.,

S.F1=1; S.F2=2; F='F1'; val1=S.(F).

Quotes:

Forward-quotes, (' '), for creating strings, for example, T='the name=7;' k=5;

disp('the value of k is'); disp(k),

A single forward-quote and dot single forward-quote, (' .'), for matrix transposition

(the complex conjugate/nonconjugate transpose of a matrix), A1=[1+i,i;-i,1-i];

A1'; A.'.

Types of numbers. Numbers are stored (by default) as double-precision floating point

(class double). To operate with integers, it is necessary to convert from double to the

integer type (e.g., classes int8, int16, int32), x=int16(12.3),str='MATLAB',

int8(str). Mathematical operations that involve integers and floating-point numbers

result in an integer data type. Real numbers can be stored as double-precision floating

point (by default) or single-precision floating point; e.g., x1=3.25, x2=single(x1),

x3=double(x2) (for details, see whos, isfloat, class). Complex numbers can be

created as z1=1+2*i, z2=complex(1,2). Rational numbers can be formed by setting

the format to rational; e.g., x=3.25; format rational x format. To check

the current format setting, we type get(0,'format').

Predefined constants: symbols for definitions of commonly used mathematical con-

stants; e.g., true, false, pi, i, j, Inf, inf, NaN (not a number), exp(1), the Euler

constant γ, -psi(1), eps.

In MATLAB, there are predefined functions and user-defined functions. Predefined

functions are divided into built-in functions and library functions:

• Built-in functions are precompiled executable programs and run much more efficiently

(see help elfun, help elmat).

• Library functions are stored as M-files (in the libraries or toolboxes), which are avail-

able in readable form (see which, type, exist). MATLAB can be complemented

with locally user-developed M-files and toolboxes.

Many functions are overloaded (i.e., have an additional implementation of an existing

function) so that they handle different classes (e.g., which -all plot).

Numerous special functions are defined; e.g., help bessel, help specfun.

User-defined functions can be created as M-files (see help ’function’) or as

anonymous functions.

A User-defined function written in an M-file (with the extension .m) must contain only

one function. It is best to have the same name for the function name and the file name. The
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process of creating functions is as follows: create and save an M-file using a text editor,

then call the function in the main program (or in Command Window).

Functions written in M-files have the following forms:

function OArg=FunName(IArg); FunBody; end, or

function [OArg1,OArg2,. . .]=FunName(IArg1,IArg2,. . .);

FunBody; end

where OArg and IArg are the output arguments and the input arguments, respectively.

For example, the function y = sinx is defined as follows:

function f=SinFun(x); f=sin(x); end

Evaluation of functions: FunName(Args).

For example, for the sine function we have cd('c:/mypath'); SinFun(pi/2);

type SinFun.

Anonymous functions create simple functions without storing functions to files. Anony-

mous functions can be constructed either in the Command Window or in any function or

script; e.g., the function f(x) = sinx is defined as f=@(x) sin(x); f(pi/2).

A function handle, @, is one of the standard MATLAB data types that provides call-

ing functions indirectly, e.g., to call a subfunction when outside the file that defines that

function (see class function handle) .

Nested functions are allowed in MATLAB; i.e., one or more functions or subfunctions

within another function can be defined in MATLAB. In this case, the end statements are

necessary.

MATLAB language has the following control structures: the selection structures if,

switch, try and the repetition structures for, while.

MATLAB does not have a module system in the traditional form: it has a system based

on storing scripts and functions in M-files and placing them into directories (see cd func-

tion for changing the current directory, help ..).

MATLAB data structures or classes, vectors, matrices, and arrays, are used to represent

more complicated data. There are 15 fundamental classes, which are in the form of a

matrix or array: double, single, int8, uint8, int16, uint16, int32, uint32,

int64, uint64, char, logical, function handle, struct, and cell. The

numerical values are represented (by default) as floating-point double precision (float

double). One can construct various composite data types (e.g., sequences, lists, sets,

tables, etc.) using the classes struct and cell.

Vectors are ordered lists of numbers separated by commas or spaces inside [ ]; no

dimensioning is required. But vector and array indices can only be positive and nonzero.

The notation X=[1:0.1:9] stands for a vector of numbers from 1 to 9 in increments

of 0.1 (see help colon).

Matrices are rectangular arrays of numbers (row/column vectors are special cases of

matrices).

⊙ Literature for Section .1: C. W. Gear (1971), L. F. Shampine and M. K. Gordon (1975), G. E. Forsythe,

M. A. Malcolm, and C. B. Moler (1977), S. D. Conte and C. de Boor (1980), L. Fox and D. F. Mayers (1987),

D. Kahaner, C. B. Moler, and S. Nash (1989), L. F. Shampine (1994), U. M. Ascher, R. M. M. Mattheij, and

R. D. Russell (1995), L. F. Shampine and M. W. Reichelt (1997), L. F. Shampine, I. Gladwell, and S. Thompson

(2003), H. J. Lee and W. E. Schiesser (2004), N. J. Higham (2008), I. K. Shingareva and C. Lizárraga-Celaya

(2009).
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21.2 Analytical Solutions and Their Visualizations

21.2.1 Analytical Solutions in Terms of Predefined Functions

The Symbolic Toolbox provides various predefined functions for solving, plotting, and

manipulating symbolic mathematical equations. If we solve ordinary differential equations,

we can obtain explicit or implicit exact solutions [e.g., see Murphy (1960), Kamke (1977),

Zwillinger (1997), Polyanin and Manzhirov (2007)]. Consider the most relevant related

functions for finding analytical solutions of a given ODE problem.

syms y(x); Sol1=dsolve(ODE) Sol2=dsolve(’ODE’,’var’)

Sol3=dsolve(ODE,ICs) Sol4=dsolve(ODE,ICs,ops,val)

• x=sym(’x’), y=sym(’y’), declaring symbolic objects (one at a time)

• syms y(x), declaring symbolic objects (all at once)

• dsolve, finding closed-form solutions for a single ODE, where ODE is a symbolic

equation containing diff or a string with the letter D (for the derivatives); for more

details, see help dsolve

• dsolve, ODE, ICs, solving an ODE with given initial or boundary conditions

• dsolve, ODE, ICs, ops, val, specifying additional options and their values for solv-

ing ODEs

◮ Verification of exact solutions.

Let us assume that we have obtained exact solutions and we wish to verify whether these

solutions are exact solutions of given ODEs.

Example 21.1. First-order nonlinear ODE. Special Riccati equation. Verification of solutions.

For the first-order nonlinear ODE, the special Riccati equation

y′x = ay2 + bxn,

we can verify that the solutions

y(x) = − 1

a

w′
x

w
,

where

w(x) =
√
x

[
C1Jv

(√
ab

k
xk

)
+ C2Yv

(√
ab

k
xk

)]
, k =

1

2
(n+ 2), v =

1

2k
,

are exact solutions of the special Riccati equation as follows:

syms x y w k n v q a b C1 C2; k=(n+2)/2; v=1/(2*k); q=1/k*sqrt(a*b);

w=sqrt(x)*(C1*besselj(v,q*xˆk)+C2*bessely(v,q*xˆk));

y=-1/a*diff(w,x)/w; Test1=simplify(diff(y,x)-a*yˆ2-b*xˆn)

Here a, b, n ∈ R (ab 6= 0, n 6= −2) are real parameters, Jv(x) and Yv(x) are the Bessel functions,

and C1 and C2 are arbitrary constants.
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◮ Finding and verification of exact solutions.

Let us find exact solutions and verify whether these solutions are exact solutions of given

ODEs.

Example 21.2. First-order linear ODE. Finding and verification of the general solution.

For the first-order linear ODE

g(x)y′x = f1(x)y + f0(x),

we can find and verify that the solution

Sol1 = e

∫

f1(x)

g(x)
dx













∫

e
−

∫

f1(x)

g(x)
dx

f0(x)

g(x)
dx













+C3 e

∫

f1(x)

g(x)
dx

presented here as the MATLAB result (for Sol1) is the general solution of this ODE as follows:

syms x g(x) y(x) f1(x) f0(x) Sol1(x);

ODE1='g(x)*Dy-f1(x)*y-f0(x)==0';

Sol1=expand(dsolve(ODE1,'x'))

pretty(Sol1)

Test1=simplify(g(x)*diff(Sol1,x)-f1(x)*Sol1-f0(x))

latex(Sol1)

Here f0(x), f1(x), and g(x) are arbitrary functions, and C3 is an arbitrary constant.

Remark 21.2. It should be noted that in this example and in what follows, when we solve a

differential equation using the predefined function dsolve (without specifying initial or boundary

conditions), we obtain the solution with an arbitrary parameter name (in this case, C3). Since the

solution of this problem has just one parameter, the name of the arbitrary constant should be C1

(according to standard mathematical notation). We think this is an example of stylistic negligence

and should be corrected in the future.

Example 21.3. Clairaut’s equation. Finding and verifying solutions.

For Clairaut’s equation

y = xy′x + f(y′x),

we can find and verify that

y(x) = Cx+ f(C)

is the general solution of this equation as follows:

syms x y(x) f(x) Sol1(x);

ODE1='y-x*Dy-f(Dy)==0';

Sol1=expand(dsolve(ODE1,'x'))

Test1=simplify(Sol1-x*diff(Sol1,x)-f(diff(Sol1,x))==0)

Here f(x) is an arbitrary function and C is an arbitrary constant.

Example 21.4. Linear ODE of the second order. Exact explicit solution.

The exact explicit solution

y(x)=
C3Mk,µ(z)

(
a−2b
4a ,− 1

4 , ax− a
2 − ax2

2

)

√
e

ax(x−2)
2

√
x−1

+
C4Wk,µ(z)

(
a−2b
4a ,− 1

4 , ax− a
2 − ax2

2

)

√
e

ax(x−2)
2

√
x−1
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of the second-order linear ODE

y′′xx + a(x− 1)y′x + by = 0 (a, b ∈ R)

can be found and tested as follows:

syms a b x y(x) f(x) Sol1(x);

ODE1='D2y+a*(x-1)*Dy+b*y==0';

Sol1=dsolve(ODE1,'x')

Test1=simplify(diff(Sol1,x,x)+a*(x-1)*diff(Sol1,x)+b*Sol1==0)

Here Mk,µ(z) andWk,µ(z) are the Whittaker M and W functions, denoted by whittakerM(k, µ, z)
and whittakerW(k, µ, z), respectively, in MATLAB.

Remark 21.3. In this example, we have the arbitrary constants C3 and C4 instead of C1 and

C2; for details, see Remark 21.2 (stylistic negligence of MATLAB).

◮ Graphical solutions.

Consider the most relevant related functions for plotting solutions of ordinary differential

equations.

x=linspace(x1,x2,n); Y= eval(vectorize(y)); plot(x,Y,ops);

ezplot(func); ezplot(func,[x1,x2]);

ezplot(func,[x1,x2,y1,y2]); ezplot(funcX,funcY,[t1,t2]);

fcontour(func,[x1,x2,y1,y2],ops);

• linspace, generating a linear space vector

• vectorize, converting symbolic objects into strings

• eval, evaluating strings (character arrays and symbolic objects)

• plot, constructing a 2-D line plot of the data in Y versus the corresponding values

in X

• ezplot, constructing plots of the expression func(x) over the default domain

−2π < x < 2π, where func(x) is an explicit function of x

Example 21.5. Linear ODE of the first order. Graphical solutions.

Graphical solutions of the linear first-order ODE

y′x = y + cos(x)x2

can be generated as follows:

clear all; close all; echo on; format long;

syms x y(x); ODE1='Dy==y+cos(x)*xˆ2'; Sol1=dsolve(ODE1,'x')

x = 0:0.01:2; Y = [];

for i=-2:2 C3=i+i*2;

Y=[Y;C3*exp(x)+((x+1).*(cos(x)+sin(x)-x.*cos(x)+x.*sin(x)))/2]; end

plot(x,Y(1,:),'k-',x,Y(2,:),'k-.',x,Y(3,:),'k--',...

x,Y(4,:),'k.',x,Y(5,:),'k:','LineWidth',1);

grid on; xlabel('x'); ylabel('y'); title('Solutions of the

first-order linear ODE');

legend('C3=-2','C3=-1','C3=0','C3=1','C3=2');

set(gca,'FontSize',12); set(gca,'FontName','Arial');

set(gca,'LineWidth',1); shg
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Figure 21.1: Graphical solutions of the linear equation y′x = y + cos(x)x2.

Since we obtain the analytical solution (Sol1)

Sol1 =

C3*exp(x) + ((x + 1)*(cos(x) + sin(x) - x*cos(x) + x*sin(x)))/2,

where C3 is an arbitrary constant, we generate several graphical solutions of this ODE and present

them in Fig. 21.1.

Example 21.6. Linear second-order ODE with constant coefficients. Graphical solutions.

Graphical solutions of the linear second-order ODE with constant coefficients and with the

initial conditions

y′′xx − 9y′x + 5y = sinx, y(0) = 0, y′x(0) = −1
can be generated (by using the predefined functions plot and ezplot) as follows:

clear all; close all; echo on; format long; syms x y(x);

ODE1='D2y-9*Dy+5*y==sin(x)'; ICs='y(0)=0,Dy(0)=-1';

Sol1=dsolve(ODE1,ICs,'x') x=linspace(0,1,40);

Y=eval(vectorize(Sol1)); figure(1); plot(x,Y) figure(2);

ezplot(Sol1,[0,1]) title('Solution of the second-order linear ODE')

◮ Constructing exact explicit and implicit solutions.

If an exact solution is given as a function of the independent variable, then the solution is

said to be explicit. For some differential equations, explicit solutions cannot be determined;

however, we can obtain an implicit form of the solution, i.e., an equation that involves no

derivatives and relates the dependent and independent variables.

dsolve(ODE1,’x’); ezplot(impSol==0,[x1,x2],ops);

ezcontour(func,[x1,x2,y1,y2],name,value);

Example 21.7. First-order separable ODE. Exact implicit solutions. Graphical solutions.

For the first-order separable ODE

y′x +
x2

y
= 0, (21.2.1.1)
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Figure 21.2: Implicit solutions of the first-order separable ODE (21.2.1.1).

we can construct the explicit (Sol1) and implicit (Sol2) solutions

y = ±
√
2

√
− x

3

3
+ C4, y2 +

2

3
x3 − 2C4 = 0,

respectively, and plot the graphs of the implicit solution as follows:

clear all; close all; echo on; format long; syms x y(x) z; Y=[];

ODE1='Dy+xˆ2/y==0'; Sol1=dsolve(ODE1,'x') Sol2=zˆ2==Sol1(1)ˆ2 for

i=-10:10 C4=i; Y=[Y;subs(Sol2)]; end for i=1:21

h=ezplot(Y(i),[-pi,pi]); hold on; set(h,'color',[0 0 0]); end grid

on; xlabel('x'); ylabel('y'); title('Implicit solutions of

separable ODE'); set(gca,'FontSize',12);

set(gca,'FontName','Arial'); set(gca,'LineWidth',1); shg; hold off

Here C4 is an arbitrary constant.

Example 21.8. First-order nonlinear ODE. Exact implicit solutions. Graphical solutions.

For the first-order nonlinear ODE

y′x(1 + y2) = sinx,

we can construct the implicit solution (Sol1)

Sol1 = RootOf(z3 + 3z − 3C4 + 3 cos(x), z),

where the function RootOf represents the symbolic set of roots of the expression z3 + 3z −
3C4 + 3 cos(x) with respect to the variable z. Also, we plot the graphs of the implicit solution

(see Fig. 21.2) as follows:

clear all; close all; echo on; format long; syms x y(x) z; Y = [];

ODE1='Dy*(1+yˆ2)=sin(x)'; Sol1=dsolve(ODE1,'x') for i=-10:10 C4=i;

Y=[Y;subs(zˆ3+3*z-3*C4+3*cos(x)==0)]; end for i=1:21

ezplot(Y(i),[-pi,pi]); hold on; end grid on; xlabel('x');

ylabel('y'); title('Implicit solutions of nonlinear ODE'); shg;

hold off
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Here the arbitrary constant is C4 (instead of C1); see Remark 21.2. In this case (the predefined

function dsolve), we have the warning: “Explicit solution could not be found; implicit solution

returned.” This result means that the solution in implicit form reads

y3 + 3y − 3C4 + 3 cosx = 0.

◮ Constructing exact solutions of higher-order ODEs.

One can construct exact solutions of higher-order ordinary differential equations by apply-

ing the predefined function dsolve.

Example 21.9. Higher-order linear homogeneous ODEs with constant coefficients.

For the fourth-order linear homogeneous ODE with constant coefficients

y′′′′x + a1y
′′′
x + a2y

′′
x + a3y

′ + a4y = 0,

where the constant coefficients are a1 = 1, a2 = −1, a3 = 5, and a4 = −2 and all solutions are of

exponential form, we can determine the general solution (Sol1)

y(x) = C3ex/2 cos
(√7

2
x
)
+ C4ex/2 sin

(√7
2
x
)
+ C5e(

√
2−1)x + C6e−(

√
2+1)x

as follows:

clear all; close all; echo on; format long;

syms x y(x); ODE1='D4y+D3y-D2y+5*Dy-2*y==0';

Sol1=dsolve(ODE1,'x'); pretty(Sol1)

Example 21.10. Higher-order linear homogeneous ODEs with nonconstant coefficients.

For the fourth-order linear homogeneous ODE with nonconstant coefficients, the Euler equation

a1x
4y′′′′x + a2x

3y′′′x + a3x
2y′′x + a4xy

′ + a5y = 0,

where a1 = 1, a2 = 14, a3 = 55, a4 = 65, and a5 = 16, we can determine the general solution

(Sol1)

y(x) =
C3 ln(x)2

x2
+
C4 ln(x)3

x2
+
C5 ln(x)

x2
+
C6

x2

as follows:

clear all; close all; echo on; format long; syms x y(x);

ODE1='xˆ4*D4y+14*xˆ3*D3y+55*xˆ2*D2y+65*x*Dy+16*y==0';

Sol1=dsolve(ODE1,'x'); pretty(Sol1)

The general solution y = y(x) of a nonhomogeneous linear ODE can be written as

the sum of a particular solution yp(x) of the nonhomogeneous equation and the general

solution of the corresponding homogeneous equation. The general solution of the homo-

geneous equation is a linear combination of the solutions in a fundamental set of solutions.

The general solution of the nth-order nonhomogeneous linear ODE has the form

y = yp(x) +

n∑

i=1

Ciyi(x), (21.2.1.2)

where yi(x) (i = 1, . . . , n) is a fundamental set of solutions and Ci are arbitrary constants.
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Example 21.11. Higher-order linear nonhomogeneous ODEs with constant coefficients.

Consider the fourth-order linear nonhomogeneous ODE with constant coefficients

y′′′′x + a1y
′′′
x + a2y

′′
x + a3y

′ + a4y = sin(x),

where the constant coefficients are a1 = 1, a2 = −1, a3 = 5, a4 = −2.

First, we determine the general solution of the homogeneous ODE (SolGenHom). Then we

write out a particular solution of the nonhomogeneous equation (SolPartNonHom) and form

the general solution of the nonhomogeneous ODE (SolGenNonHom) according to Eq.(21.2.1.2),

y(x) = C3ex/2 cos
(√7

2
x
)
+ C4ex/2 sin

(√7
2
x
)
+ C5e(

√
2−1)x + C6e−(

√
2+1)x − 1

4
cos(x),

as follows:

clear all; close all; echo on; format long; syms x y(x);

ODE1='D4y+D3y-D2y+5*Dy-2*y==0';

ODE2='D4y+D3y-D2y+5*Dy-2*y==sin(x)';

SolGenHom=dsolve(ODE1,'x'); pretty(SolGenHom)

SolPartNonHom=-cos(x)/4;

SolGenNonHom=SolGenHom+SolPartNonHom; pretty(SolGenNonHom)

Finally, we find the general solution of the given ODE and compare the solutionSolGenNonHom

(as a result of our construction procedure) to the solution SolGenNonHom1 (as a result of

dsolve). It should be noted that these solutions (SolGenNonHom and SolGenNonHom1 )

are the same:

SolGenNonHom1=simplify(dsolve(ODE2,'x')); pretty(SolGenNonHom1)

21.2.2 Analytical Solutions of Mathematical Problems

◮ Initial value problems.

In many applications, it is required to solve an initial value problem or a Cauchy problem,

i.e., a problem consisting of a differential equation supplemented with one or more initial

conditions (which must be satisfied by the solutions). The number of conditions equals the

order of the equation. Therefore, we have to determine a particular solution that satisfies

the given initial conditions.

Consider some initial value problems that model various processes and phenomena [see

Lin and Segel (1998)].

Example 21.12. Malthus model. Cauchy problem. Analytical and graphical solutions.

A basic model for population growth consists of a first-order linear ODE and an initial condition

and has the form

y′t = ky, y(0) = y0 (k > 0),

where k (k > 0) is a constant representing the rate of growth (the difference between the birth rate

and the death rate). The increase in the population is proportional to the total number of people.

We can obtain the particular solution

y(t) = y0e
kt

of this mathematical problem, which predicts exponential growth of the population, as follows:
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clear all; close all; echo on; format long; syms k t y(t);

ODE1='Dy==k*y'; IC1='y(0)==y0';

Sol1=dsolve(ODE1,IC1,'t')

Test1=simplify(diff(Sol1,t)-k*Sol1)

Example 21.13. First-order linear ODE with nonconstant coefficients. Cauchy problem.

For the first-order linear ODE with nonconstant coefficients and with the initial condition

y′x − 2y = 3x, y(0) = n, (21.2.2.1)

we can determine the particular analytical solution (Sol1)

y(x) = − 3

2
x− 3

4
+ e2x

(
n+

3

4

)

and construct it for various values of the parameter n as follows:

clear all; close all; echo on; format long; syms n x y(x);

N=7; ODE1='Dy-2*y==3*x'; IC1='y(0)==n';

Sol1=dsolve(ODE1,IC1,'x')

for i=1:N n=-3+(i-1); Sols(i)=subs(Sol1); end

Sols

for i=1:N h=ezplot(eval(vectorize(Sols(i))),[0,2.5]); hold on;

set(h,'color',[0 0 0]);

end grid on; xlabel('x'); ylabel('y'); title('Analytical solutions

of Cauchy problem'); set(gca,'FontSize',12);

set(gca,'FontName','Arial'); set(gca,'LineWidth',1); shg; hold off

◮ Boundary value problems.

Consider the two-point linear boundary value problems that consist of the second-order

ODE

F(x, y, y′x, y′′xx) = 0

and boundary conditions at the two endpoints of an interval [a, b] [e.g., see Bailey et al.

(1968)]. Some (simple) boundary value problems can be solved (with the aid of MATLAB)

analytically as initial value problems except that the value of the function and its derivatives

are given at two values of x (the independent variable) rather than one. Note that an initial

value problem has a unique solution, while a boundary value problem may have more than

one solution or no solution at all.

Boundary conditions can be homogeneous (if the prescribed values are zero) and non-

homogeneous (otherwise) and can be divided into three classes, the Dirichlet conditions,

the Neumann boundary conditions, and the Robin boundary conditions.

Example 21.14. Second-order linear homogeneous ODE. Boundary value problem.

For the second-order linear homogeneous ODE with constant coefficients and with the boundary

conditions (the nonhomogeneous Dirichlet conditions)

y′′xx + a1y = 0, y(a) = g1, y(b) = g2, (21.2.2.2)

where a1 = 2, a = 0, b = π, g1 = 1, and g2 = 0, we can determine the particular analytical solution

(Sol1)

y(x) = − cos(
√
2π) sin(

√
2x)

sin(
√
2π)

+ cos(
√
2x)

and construct the graphical solution as follows:
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clear all; close all; echo on; format long; syms x y(x);

ODE1='D2y+2*y==0'; BC1='y(0)==1,y(pi)==0';

Sol1=dsolve(ODE1,BC1,'x') h1=ezplot(Sol1,[0,pi]) set(h1,'color',[0

0 0]); grid on; xlabel('x'); ylabel('y'); title({'Analytical

solution of boundary value problem.',...

'Dirichlet boundary conditions.'});

set(gca,'FontSize',12); set(gca,'FontName','Arial');

set(gca,'LineWidth',1); shg;

Modifying the boundary conditions (the nonhomogeneous Neumann conditions), we obtain the

following:

y′′xx + a1y = 0, y′x(a) = g1, y′x(b) = g2, (21.2.2.3)

where a1 = 2, a = 0, b = π, g1 = 1, and g2 = 0, and the particular analytical solution (Sol2)

y(x) =
1

2

√
2 sin(

√
2x) +

1

2

√
2 cos(

√
2π) cos(

√
2x)

sin(
√
2π)

can be constructed as follows:

clear all; close all; echo on; format long; syms x y(x);

ODE2='D2y+2*y==0'; BC2='Dy(0)==1,Dy(pi)==0';

Sol2=dsolve(ODE2,BC2,'x') h2=ezplot(Sol2,[0,pi]) set(h2,'color',[0

0 0]); grid on; xlabel('x'); ylabel('y'); title({'Analytical

solution of boundary value problem.',...

'Neumann boundary conditions.'});

set(gca,'FontSize',12); set(gca,'FontName','Arial');

set(gca,'LineWidth',1); shg;

For solving more complicated boundary value problems, we can follow the numerical

approach (see Section 21.3.3).

21.2.3 Analytical Solutions of Systems of ODEs

One can find analytical solutions of a given ODE system by applying the predefined func-

tion dsolve:

Y=dsolve(ODESys) Y=dsolve(ODESys,ICs,ops,val)

[y1,...,yN]=dsolve(ODESys) [y1,...,yN]=dsolve(ODESys,ICs)

[y1,...,yN]=dsolve(ODESys,ICs,ops,val)

• Y=dsolve(ODESys), solving a system of ODEs with the result being a structure

array that contains the solutions

• Y=dsolve(ODESys,ICs,ops,val), solving a system of ODEs with initial (or

boundary) conditions and additional options (specified by one or more pair argu-

ments ops, val)

• [y1,...,yN]=dsolve(ODESys), solving a system of ODEs and assigning the

solutions to the variables y1,...,yN

• [y1,...,yN]=dsolve(ODESys,ICs,ops,val), solving a system of ODEs

with initial (or boundary) conditions and additional options (specified by one or more

pair arguments ops, val)
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Figure 21.3: Exact solutions of the first-order linear system of ODEs (21.2.3.1).

◮ Linear systems of ODEs.

For first-order linear systems of ODEs, one can find the general solution and the particular

solution for any initial condition (with the aid of the predefined function dsolve). For

higher-order linear ODEs or systems of ODEs, one can convert them to a system of first-

order ODEs and then solve them.

Example 21.15. First-order two-dimensional linear system of ODEs. Analytical solution.

Consider the general first-order two-dimensional linear system of ODEs with constant coeffi-

cients

u′x = a0 + a1u+ a2v, v′x = b0 + b1u+ b2v, (21.2.3.1)

where u(x) and v(x) are unknown functions and the coefficients are a0 = 1, a1 = 1, a2 = −1,

b0 = 1, b1 = 1, and b2 = 1.

By applying the predefined function dsolve, we find the general solution

u (x) = −1 + ex (C2 cos(x) + C3 sin(x)) ,

v (x) = −ex (C3 cos(x) − C2 sin(x))

of this linear system; then we verify and plot it for certain values of the parametersC2 and C3 (see

Fig. 21.3) as follows:

clear all; close all; echo on; format long; syms x u(x) v(x);

ODE1='Du==1+u-v', ODE2='Dv==1+u+v' [uS,vS]=dsolve(ODE1,ODE2,'x')

Test1=simplify(diff(uS,x)-1-uS+vS)

Test2=simplify(diff(vS,x)-1-uS-vS) C2=1; C3=-1; uSP=subs(uS),

vSP=subs(vS) x=linspace(0,6.5,50); ux=eval(vectorize(uSP));

vx=eval(vectorize(vSP)); plot(x,ux,'k-',x,vx,'k-.','LineWidth',2)

grid on; xlabel('x'); ylabel('u,v'); title('Solutions of the

first-order linear system of ODEs') legend('u(x)','v(x)');

set(gca,'FontSize',12); set(gca,'FontName','Arial');

set(gca,'LineWidth',1); shg
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Example 21.16. First-order two-dimensional linear system of ODEs. Cauchy problem.

Consider the following first-order two-dimensional linear system of ODEs with initial condi-

tions:
u′x = a0 + a1u+ a2v, v′x = b0 + b1u+ b2v,

u(x0) = u0, v(x0) = v0,
(21.2.3.2)

where u(x) and v(x) are unknown functions and the coefficients are a0 = −1, a1 = 1, a2 = −1,

b0 = 1, b1 =−1, and b2 = 1. For a first-order two-dimensional system in u(x) and v(x), each initial

condition can be specified in the form IC= {u(x0) = u0, v(x0) = v0} (e.g., u(0) = 0, v(0) = 1).

One solution curve is generated for each initial condition. The solution of the initial value problem

(IVP1) can be found as follows:

clear all; close all; echo on; format long; syms x u(x) v(x);

ODE1='Du==-1+u-v', ODE2='Dv==1-u+v' [uS,vS]=dsolve(ODE1,ODE2,'x')

Test1=simplify(diff(uS,x)-1-uS+vS)

Test2=simplify(diff(vS,x)-1-uS-vS) IC='u(0)==0,v(0)==1';

[uC,vC]=dsolve(ODE1,ODE2,IC,'x') simplify(uC), simplify(vC)

x=linspace(0,6.5,50); ux=eval(vectorize(uC));

vx=eval(vectorize(vC)); plot(x,ux,'k-',x,vx,'k-.','LineWidth',2)

grid on; xlabel('x'); ylabel('u,v'); title('Exact solutions of the

Cauchy problem for ODE system') legend('u(x)','v(x)');

set(gca,'FontSize',12); set(gca,'FontName','Arial');

set(gca,'LineWidth',1); shg

⊙ Literature for Section .2: G. M. Murphy (1960), P. B. Bailey, L. F. Shampine, and P. E. Waltman (1968),

C. C.Lin and L. A. Segel (1998), D. Zwillinger (1997), A. D. Polyanin and A. V. Manzhirov (2007).

21.3 Numerical Solutions of ODEs

Since 2000, MATLAB has become one of the most important problem-solving environ-

ments (PSEs) for scientists, professors, and students.

The first implementation of numerical methods for solving ODEs, RKF45 [see Shamp-

ine and Watts (1977, 1979)], was a FORTRAN program (based on the explicit Runge–

Kutta formulas F (4, 5) of Fehlberg), which is widely used in general scientific computation

(GSC). It is the foundation of the predefined functions for solving initial value problems

rkf45 (in Maple), NDSolve (in Mathematica), and ode45 (in MATLAB).

MATLAB ODE Suite was then developed [Shampine & Reichelt (1997)] with further

evolutions [Shampine et al. (1999), Kierzenka & Shampine (2001), Shampine & Thompson

(2001)]. MATLAB ODE Suite (replacing ode45 since Ver. 5) is different in many aspects;

e.g., it is based on the explicit Runge–Kutta (4, 5) formulas, the Dormand–Prince pair.

Frequently, it is not possible to solve nonlinear (or complicated) systems of ODEs aris-

ing in realistic problems by applying analytical solution methods. In this section, we con-

sider various numerical approximation methods for initial value problems, boundary value

problems, and eigenvalue problems for ordinary differential equations.

21.3.1 Numerical Solutions via Predefined Functions

MATLAB has several predefined functions for finding numerical solutions of a given ODE

problem. These predefined functions are very effective, and they have a common syntax

(i.e., it is easy to use them).
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◮ Numerical methods embedded in MATLAB for initial value problems.

Let us refer to numerical methods embedded in MATLAB or predefined functions for solv-

ing some type of problems as solvers.

The syntax, common to all solvers (predefined functions for solving initial value prob-

lems), is as follows:

[outputs]=SolverName(inputs)

[IndVar,DepVar]=SolverName(ODEfun,InInteg,ICs,ops)

• ODEfun, a given function containing the derivatives (specified as a scalar or vector

function)

• ICs, initial conditions (specified as a scalar or vector)

• InInteg, the interval of integration (specified as a vector)

• ops, option structure (specified as a structure array)

• IndVar, evaluation points (specified as a column vector)

• DepVar, numerical solution (specified as an array)

• SolverName, one of the numerical methods embedded in MATLAB

The solvers for initial value problems implement a variety of methods. All the solvers

for initial value problems of MATLAB require first-order ODEs or systems of first-order

ODEs. More detailed information about numerical methods for initial value problems is

presented in Table 21.1 (for variable-step solvers embedded in MATLAB) and in Table 21.2

(for fixed-step solvers available in Simulink or on the internet).

Remark 21.4. The following abbreviations in Tables 21.1–21.3 are adopted: IVP, initial value

problem; BVP, boundary value problem; BDF, backward-differentiation formula; IVP–DAE, ini-

tial value problem for differential-algebraic equations; IVP–DDE, initial value problem for delay

differential equations.

Fixed-step numerical methods for solving initial value problems are available in Simu-

link (for modeling and generating code for real-time systems) or on the internet.

Example 21.17. Cauchy problem with several initial conditions.

For the Cauchy problem (with several initial conditions)

y′x = y + x2, {y(0) = 0, y(0) = 0.5, y(0) = 1} (21.3.1.1)

on the interval [a, b] (a = 0, b = 2), we find the numerical and graphical solutions (see Fig. 21.4) as

follows:

clear all; close all; echo on; format long; InInteg=[0 2]; y01=0;

y02=0.5; y03=1; [x,y1]=ode45(@(x,y) y+xˆ2,InInteg,y01);

[x,y2]=ode45(@(x,y) y+xˆ2,InInteg,y02); [x,y3]=ode45(@(x,y)

y+xˆ2,InInteg,y03);

plot(x,y1,'k-o',x,y2,'k-.',x,y3,'k--','LineWidth',1) grid on;

xlabel('x'); ylabel('y'); title({'Numerical solutions of Cauchy

problem.',...

'Several initial conditions.'});

legend('IC1=0','IC2=0.5','IC3=1')

set(gca,'FontSize',12); set(gca,'FontName','Arial');

set(gca,'LineWidth',1); shg
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Table 21.1.

Variable-step numerical methods for initial value problems embedded in MATLAB

with brief description and some references

Numerical method Brief description References

ode45

Explicit one-step Runge–Kutta (4, 5) formula,

the Dormand–Prince pair. Variable step.

Method for nonstiff IVP. Order of accuracy: medium (4-5).

Apply as a “first step” for most problems.

Enright et al. (1986)

Fehlberg (1970)

Shampine and Corless (2000)

ode23

Explicit one-step Runge–Kutta (2, 3) formula,

the Bogacki–Shampine pair. Variable step.

Method for nonstiff IVP. Order of accuracy: low (2-3).

Enright et al. (1986)

Cash and Karp (1990)

Forsythe et al. (1977)

ode113

Multistep Adams–Bashforth–Moulton method.

Variable step. Method for nonstiff IVP.

Order of accuracy: low to high (1-13).

Hairer and Wanner (1996)

Shampine and Corless (2000)

Forsythe et al. (1977)

ode15s

Implicit multistep BDF formulas (the Gear method).

Method for stiff IVP (and IVP-DAEs). Variable step.

Order of accuracy: low to medium (1-5).

Apply if ode45 fails (or inefficient).

Enright (1989)

Verner (1978)

Forsythe et al. (1977)

ode23s

Implicit one-step method.

The modified Rosenbrock formula.
Method for stiff IVP. Order of accuracy: low (2).

Hindmarsh (1983)

Forsythe et al. (1977)

Shampine and Corless (2000)

ode23t

Implicit one-step method. Method for stiff IVP.

The trapezoidal rule using a “free” interpolant.

Order of accuracy: low (2).

IVP-DAEs can be solved with ode23t.

Hosea and Shampine (1996)

Shampine et. al (1999)

ode23tb

Implicit Runge–Kutta formula with 2 stages (TR–BDF2).

The first stage: trapezoidal rule (TR),

the second stage: BDF of order 2 (BDF2).

Method for moderately stiff IVP. Order of accuracy: low (2).

Barton et al. (1971)

Forsythe et al. (1977)

Shampine and Corless (2000)

ode15i

Order: variable (1–5).

for fully implicit problems f(x, y, y′x) = 0,

for IVP-DAE of index 1.
Order of accuracy: low.

Boyce and DiPrima (2004)

Conte and de Boor (1980)

Fox and Mayers (1987)

◮ Numerical methods embedded in MATLAB for boundary value problems.

One can obtain a solution of a given boundary value problem of the form

y′x = f(x, y), g
(
a, b, y(a), y(b)

)
= 0, or

y′x = f(x, y, p), g
(
a, b, y(a), y(b), p

)
= 0,

where p is the vector of unknown parameters and f is a continuous function on [a, b] and a

Lipschitz function in y and has a continuous first derivative there.

In MATLAB, there exist two predefined functions for solving boundary value problems,

bvp4c and bvp5c. These solvers have been developed by Kierzenka and Shampine [see

Kierzenka and Shampine (2001)] and require first-order ODEs or systems of first-order

ODEs.

The solvers bvp4c and bvp4c can solve boundary value problems with unknown

parameters, multi-point boundary value problems, and a class of singular boundary value
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Table 21.2.

Fixed-step numerical methods for initial value problems

with brief description and some references

Numerical method Brief description References

ode1

Explicit one-step Euler’s method, Euler1.

Method for nonstiff IVP. Order of accuracy: 1.

Fixed-step method.

Enright et al. (1986)

Fehlberg (1970)

Shampine and Corless (2000)

ode2

Explicit one-step Heun’s method, Euler2.

Method for nonstiff IVP. Order of accuracy: 2.

Fixed-step method.

Enright et al. (1986)

Cash and Karp (1990)

Forsythe et al. (1977)

ode3

Explicit one-step Bogacki–Shampine formula, RK3.

Method for nonstiff IVP. Order of accuracy: 3.

Fixed-step method.

Hairer and Wanner (1996)

Shampine and Corless (2000)

Forsythe et al. (1977)

ode4

Explicit fourth-order Runge–Kutta formula, RK4.

Method for nonstiff IVP. Order of accuracy: 4.

Fixed-step method.

Enright (1989)

Verner (1978)

Forsythe et al. (1977)

ode5

Explicit one-step Dormand–Prince formula, RK5.

Method for nonstiff IVP. Order of accuracy: 5.

Fixed-step method.

Hindmarsh (1983)

Forsythe et al. (1977)

Shampine and Corless (2000)

ode87

Explicit one-step Dormand–Prince formula, RK8(7).

Method for nonstiff IVP. Order of accuracy: 8.

Fixed-step method.

Hosea and Shampine (1996)

Shampine et. al (1999)

ode14x

Implicit one-step Newton’s method with extrapolation.

Method for stiff IVP. Order of accuracy: variable.

Fixed-step method.

Lubich (1989)

Deuflhrd et al. (1987)

Hairer and Wanner (1996)
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Figure 21.4: Numerical solutions of the initial value problem (21.3.1.1) with several initial

conditions (IC1, IC2, IC3).

problems. The difference between the solvers bvp4c and bvp5c is in the meaning of

error tolerances. The function bvp5c controls the true error |y(x) − Y (x)|∗ directly, and

the function bvp4c controls the true error indirectly; i.e., it controls the discrepancy |Y ′
x−

f(x, Y (x))|.
∗Y (x) is an approximate solution.
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Table 21.3.

Numerical methods for boundary value problems embedded in MATLAB

with brief description and some references

Numerical method Brief description References

bvp4c

Implicit three-stage Lobatto IIIa formula. Order of accuracy: 4.

Mesh selection, error control are based on the discrepancy.

Collocation polynomials provide C1[a, b]-continuous solutions.

Enright et al. (1986)

Fehlberg (1970)

Shampine and Corless (2000)

bvp5c

Implicit four-stage Lobatto IIIa formula. Order of accuracy: 5.

Mesh selection, error control are based on the discrepancy.

Collocation polynomials provide C1[a, b]-continuous solutions.

Enright et al. (1986)

Cash and Karp (1990)

Forsythe et al. (1977)

More detailed information about numerical methods for boundary value problems em-

bedded in MATLAB is presented in Table 21.3.

The syntax, common to these predefined functions for solving boundary value prob-

lems, is as follows:

Sol=SolverName(ODEfun,BCfun,SolIG,ops)

SolIG=bvpinit(x,yIG,params) yk=deval(Sol,xk)

• ODEfun is a given function f(x, y, p) (specified as a scalar or vector function); it

can include unknown parameters p (specified as a scalar or a vector).

• BCfun is a function that computes the discrepancy in the boundary conditions (BCs).

For example, for two-point boundary conditions of the form g
(
y(a), y(b), p

)
= 0,

BCfun can have the form Res=BCfun(ya,yb,params), where ya and yb are

column vectors corresponding to y(a) and y(b) and Res is a column vector.

• IG is a structure containing the initial guess for the numerical solution, where IG.x

are ordered nodes of the initial mesh, IG.y is the initial guess for the solution, and

IG.parameters is a vector for specifying the initial guess for unknown parame-

ters. The boundary conditions are a=IG.x(1) and b=IG.x(end). A guess for

the solution at the node IG.x(i) is IG.y(:,i). It can be formed by using the

function bvpinit (for specifying the boundary points).

• ops is the option structure (specified as a structure array); it can be formed by using

the function bvpset.

• Sol is the numerical solution structure, where Sol.x is a mesh (selected by the

solver), Sol.y is an approximation to y(x) at the mesh points, Sol.yp is an ap-

proximation to y′x at the mesh points, and Sol.parameters are the resulting val-

ues for the unknown parameters.

• deval evaluates the solution at specific points xk on the interval [a, b].

• SolverName is one of the numerical methods for solving boundary value problems.
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Figure 21.5: Several exact solutions of equation (21.3.2.1).

21.3.2 Initial Value Problems: Examples of Numerical Solutions

Consider some examples of initial value problems.

◮ Linear initial value problems.

Example 21.18. First-order linear Cauchy problem. Analytical, numerical, graphical solutions.

For the first-order linear initial value problem

y′x = −y cos(x), y(0) = 1 (21.3.2.1)

on the interval [a, b] (a = 0, b = 4π), we find infinitely many solutions (Sols) of the ordinary

differential equation and plot some of them (see Fig. 21.5). Then we obtain the unique exact solution

(Sol1) and an approximate numerical solution (with ode23 solver) of the Cauchy problem and

plot them (see the first graph in Fig. 21.6) as follows:

clear all; close all; echo on; format long;

syms x y(x) z; Z=[]; ODE1='Dy==-y*cos(x)'; IC1='y(0)==1';

Sols=dsolve(ODE1,'x')

for i=-4*pi:4*pi C3=i; Z=[Z;subs(Sols)]; end

figure(1); K=21; for i=1:K h=ezplot(Z(i),[-4*pi,4*pi,-40,40]); hold on;

set(h,'color',[0 0 0]); end

grid on; xlabel('x'); ylabel('y'); title('Exact solutions of

first-order linear initial value problem');

Sol1=dsolve(ODE1,IC1,'x') figure(2); ezplot(Sol1,[0,4*pi])

title('Exact solution of linear initial value problem'); N=46;

x=linspace(0,4*pi,N); Y=eval(vectorize(Sol1)); InInteg=[0 4*pi];

y0=1; [x,y]=ode23(@(x,y) -y*cos(x),InInteg,y0); figure(3);

plot(x,Y,'k-',x,y,'k-o'); grid on; xlabel('x'); ylabel('y');

title('Exact and numerical solutions of Cauchy problem');

legend('Exact','Numerical'); set(gca,'FontSize',12);

set(gca,'FontName','Arial'); set(gca,'LineWidth',1); shg

Remark 21.5. Here the MATLAB notation ’k-’ and ’k-o’ (for the predefined function

plot) denotes the line styles of the two solutions, the solid line (-) of black color (k) for the

exact solution, and the line with marker type (-o) of black color (k) for the numerical solution.



“K16435’ — 2017/9/28 — 15:05 — #1295

21.3. Numerical Solutions of ODEs 1269

x

0 2 4 6 8 10 12 14

y

0

0.5

1

1.5

2

2.5

3
Exact and numerical solutions to Cauchy problem

Exact

Numerical

x

0 2 4 6 8 10 12 14

y

0

0.5

1

1.5

2

2.5

3
New Partition. Exact and numerical solutions

Exact

Numerical

Figure 21.6: New partition. Exact and numerical solutions of the Cauchy prob-

lem (21.3.2.1).

Each numerical solver has a certain partition of the interval [a, b], and we obtain a value of

y at each point in this partition. For this problem, we choose the solver ode23, the interval of

integration is [0, 4π], and the number of points for this solver is N = 46. To plot the numerical and

analytical solutions, we have to use the same number of points.

If we would like to increase the accuracy of our approximate solution (see the second graph in

Fig. 21.6), we can specify the partition of values, e.g., N = 50, as follows:

N=50; x=linspace(0,4*pi,N); Y=eval(vectorize(Sol1));

InInteg=0:(4/49*pi):(4*pi); y0=1;

[x,y]=ode23(@(x,y) -y*cos(x),InInteg,y0);

figure(4); plot(x,Y,'k-',x,y,'k-o'); grid on; xlabel('x'); ylabel('y');

title('New Partition. Exact and numerical solutions');

legend('Exact','Numerical'); set(gca,'FontSize',12);

set(gca,'FontName','Arial'); set(gca,'LineWidth',1); shg

◮ Nonlinear initial value problems.

Example 21.19. First-order nonlinear Cauchy problem. Numerical and graphical solutions.

For the nonlinear initial value problem

y′x = −exy cos(x2), y(0) = p

on the interval [a, b] (a = 0, b = 4π), we find the numerical and graphical solutions of the problem

for various initial conditions y(0) = p, where p = 0.1 i (i = 1, 2, ..., 5), as follows:

clear all; close all; echo on; format long;

ICs=[0.1:0.1:0.5]; InInteg=[0 4*pi];

for n=1:5 [x,Y]=ode45(@(x,y) -exp(y*x)*cos(xˆ2),InInteg,ICs); end

for i=1:5

h=plot(x,Y(:,i),'k-'); hold on; set(h,'color',[0 0 0]);

end grid on; xlabel('x'); ylabel('y'); title('Numerical solutions

of nonlinear Cauchy problem'); set(gca,'FontSize',12);

set(gca,'FontName','Arial'); set(gca,'LineWidth',1); shg; hold off
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Figure 21.7: Numerical solutions of the Cauchy problem (21.3.2.2) for q = 1, p > 0 (left)

and p < 0 (right).

Example 21.20. First-order nonlinear Cauchy problem. Numerical and graphical solutions.

Consider the initial value problem for the nonlinear differential equation

y′x = 1−
√
1− qx2y2, y(0) = p, (21.3.2.2)

where p ∈ R and q > 0.

The existence domain for the solutions of this differential equation with q > 0 is given by the

inequality x2y2 ≤ 1/q.

The differential equation in the Cauchy problem (21.3.2.2) has the equilibrium point y = 0.

The solutions of the Cauchy problem for this equation with the initial condition y(0) = p behave

differently depending on the sign of p.

If p < 0, then the solutions are infinitely extendible to the right. If p > 0, then the solutions

approach the boundary of the existence domain at some x (that is, they are not infinitely extendible

to the right). Therefore, the equilibrium position y = 0 is unstable, because in any neighborhood of

y = 0 there exist solutions that are not infinitely extendible.

For q = 1, several numerical solutions of the Cauchy problem (21.3.2.2) for various values of p
are presented in Fig. 21.7 (left) for p > 0 and in Fig. 21.7 (right) for p < 0.

For example, for p > 0 we take the values 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and for p < 0 we take the

values −0.2,−0.4,−0.6,−0.8,−1.0,−1.2. The solutions are valid for x ≥ 0 and are presented on

the interval [a, b], where a = 0 and b = 3 or b = 9. In these figures, we also draw the boundary

xy = ±1 of the existence domain of solutions.

To generate Fig. 21.7 (left), where q = 1 and p = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, we can write the

following program:

clear all; close all; echo on; format long;

a=0; b=3; IC=[0.2:0.2:1.2]; InInteg=[a b]; c=0; d=3; Lstyle=['-'];

for n=1:6

[x,Y]=ode45(@(x,y) (1.-sqrt(1.-(1.).*x.ˆ2.*y.ˆ2)),InInteg,IC);

end

for i=1:6

h=plot(x,Y(:,i),Lstyle); hold on; axis([a b c d]);

set(h,'color',[0 0 0],'linewidth',1);

z=ezplot('1/x',[a,b]); set(z,'color',[0 0 0],'linewidth',3);

hold on; axis([a b c d]);

end

grid on; xlabel('x'); ylabel('y');
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Figure 21.8: Real numerical solutions of the Cauchy problem (21.3.2.2) for q = 1, p > 0.

title('q=1; IC=[0.2, 0.4, 0.6, 0.8, 1.0, 1.2]; xy=1;');

set(gca,'FontSize',12); set(gca,'FontName','Arial');

set(gca,'LineWidth',1); shg; hold off

However, the solutions presented in Fig. 21.7 (left) are wrong, since the real solutions do not exist

if xy > 1. The correct solutions for this case are presented in Fig. 21.8. There is no possibility of

simple correction of this situation for all solvers for initial value problems embedded in MATLAB.

Therefore, we have to write another program for this case, for example, as follows:

clear all; close all; echo on; format long;

a=0; b=3; IC=[0.2:0.2:1.2]; c=0; d=3; hold on;

b1=2.4028792; b2=1.6394157; b3=1.2629138; b4=1.0282819;

b5=.86598559; b6=.74669500;

IC1=0.2; IC2=0.4; IC3=0.6; IC4=0.8; IC5=1.0; IC6=1.2;

InInteg1=0:0.1:b1; InInteg2=0:0.1:b2; InInteg3=0:0.1:b3;

InInteg4=0:0.1:b4; InInteg5=0:0.1:b5; InInteg6=0:0.1:b6;

g=@(x,y) 1.-sqrt(1.-(1.).*x.ˆ2.*y.ˆ2);

[x1,Y1]=ode15s(g,InInteg1,IC1); [x2,Y2]=ode15s(g,InInteg2,IC2);

[x3,Y3]=ode15s(g,InInteg3,IC3); [x4,Y4]=ode15s(g,InInteg4,IC4);

[x5,Y5]=ode15s(g,InInteg5,IC5); [x6,Y6]=ode15s(g,InInteg6,IC6);

h1=plot(x1,Y1,'k-'); h2=plot(x2,Y2,'k-'); h3=plot(x3,Y3,'k-');

h4=plot(x4,Y4,'k-'); h5=plot(x5,Y5,'k-'); h6=plot(x6,Y6,'k-');

z1=ezplot('1/x',[a,b]); set(z1,'color',[0 0 0],'linewidth',3);

axis([a b c d]); grid on; xlabel('x'); ylabel('y');

title('q=1; IC=[0.2, 0.4, 0.6, 0.8, 1.0, 1.2]; xy=1');

set(gca,'FontSize',12); set(gca,'FontName','Arial');

set(gca,'LineWidth',1); shg; hold off

With the aid of Maple, we have evaluated the values bi (i = 1, . . . , 6) to the right of which the

solution becomes complex (see Chapter 18).

To generate Fig. 21.7 (right), where q = 1 and p=−0.2,−0.4,−0.6,−0.8,−1.0,−1.2, we can

write the following program:

clear all; close all; echo on; format long;

a=0; b=9; IC=[-2/10 -4/10 -6/10 -8/10, -1, -12/10];

InInteg=[a b]; c=-2; d=0.1;

for n=1:6
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[x,Y]=ode45(@(x,y) (1-sqrt(1-(1)*(x.*y).ˆ2)),InInteg,IC);

end

for i=1:6

h=plot(x,Y(:,i),'-'); hold on; axis([a b c d]);

set(h,'color',[0 0 0],'linewidth',1);

z=ezplot('-1/x',[a,b]); set(z,'color',[0 0 0],'linewidth',3);

hold on; axis([a b c d]);

end

grid on; xlabel('x'); ylabel('y');

title('q=1; IC=[-0.2, -0.4, -0.6, -0.8, -1.0, -1.2]; xy=-1');

set(gca,'FontSize',12); set(gca,'FontName','Arial');

set(gca,'LineWidth',1); shg; hold off

21.3.3 Boundary Value Problems: Examples of Numerical Solutions

Let us numerically solve two-point boundary value problems. A two-point boundary value

problem includes an ODE (of order ≥ 2) and the values of the solution at two distinct

points.

Consider some examples of boundary value problems applying embedded methods and

constructing step-by-step solutions.

◮ Linear boundary value problems.

Example 21.21. Second-order linear nonhomogeneous ODE with nonconstant coefficients.

Consider a second-order linear nonhomogeneous ODE with nonconstant coefficients and with

the boundary conditions

y′′xx + xy′x + y = cos(x), y(a) = 0, y(b) = 1, (21.3.3.1)

where a=0 and b=2. Numerical and graphical solutions (solN, figure(1), and figure(2))

can be constructed as follows:

1. We rewrite the boundary value problem (21.3.3.1) as the first-order system

(y1)
′
x = y2, (y2)

′
x = cosx− xy2 − y1,

where y1 = y and y2 = y′x, and define this system in the M-file (bvp1.m) as follows:

function dydx=bvp1(x,y); dydx=[y(2); cos(x)-x*y(2)-y(1)]; end

2. We write the boundary conditions in the M-file (bc1.m) as the residues of the boundary con-

ditions. For the boundary conditions y(a) = 0 and y(b) = 1, the residues are ya(1) and yb(1).
The variables ya and yb represent the solution at x = a and x = b respectively. The symbol 1

in parentheses indicates the first component of the vector (e.g., if we have the boundary condition

y′x(a) = 1, we have to write ya(2)− 1).

function res=bc1(ya,yb); res=[ya(1); yb(1)-1]; end

3. We solve the boundary value problem by specifying an initial guess [y(0), y′x(0)] (where y(0) is

known and y′x(0) is a guess) for the initial value problem and a grid of x values. Thus, a family of

initial value problems is solved such that the boundary conditions are satisfied. Finally, we find the

numerical solution (see Fig. 21.9) of the boundary value problem with the solver bvp4c as follows:
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Figure 21.9: Numerical solution of the boundary value problem (21.3.3.1) and its deriva-

tive.

clear all; close all; echo on; format long;

solInit1=bvpinit(linspace(0,2,5),[0 0]);

solN=bvp4c(@bvp1,@bc1,solInit1); x=linspace(0,2,100);

y=deval(solN,x); figure(1); plot(x,y(1,:),'k-o'); grid on;

xlabel('x'); ylabel('y'); title('Numerical solution of boundary

value problem'); set(gca,'FontSize',12);

set(gca,'FontName','Arial'); set(gca,'LineWidth',1); shg;

figure(2); plot(x,y(2,:),'k.'); grid on; xlabel('x'); ylabel('y');

title('Derivative of the numerical solution');

set(gca,'FontSize',12); set(gca,'FontName','Arial');

set(gca,'LineWidth',1); shg;

Example 21.22. Second-order linear ODE. Boundary value problem. No solution.

Solving a boundary value problem for the second-order linear homogeneous ODE with constant

coefficients

y′′xx + π2y = 0, y(a) = α, y(b) = β, (21.3.3.2)

where a = 0, b = 1, α = 1, and β = 1, we can find the general solution. However, the boundary

conditions cannot be satisfied for any choice of the constants (see Chapter 18). Therefore, there

exists no solution of this boundary value problem. In MATLAB, this can be observed with the

following functions (M-files bvp2.m and bc2.m):

function dydx=bvp2(x,y); dydx=[y(2); -piˆ2*y(1)]; end

function res=bc2(ya,yb); res=[ya(1)-1; yb(1)-1]; end

and the main program:

clear all; close all; echo on; format long;

solInit2=bvpinit(linspace(0,1,5),[0 0]);

solN=bvp4c(@bvp2,@bc2,solInit2); x=linspace(0,1,100);

solN.x, solN.y(1,:), solN.y(2,:)

Note that the solution is written as a structure whose first component sol.x gives the x values,

and the second component sol.y of the structure is a matrix, where the first row contains the

values of y(x) (at the x grid points) and the second row contains the values of y′x.

The results solN.y(1,:) tell us that the solution y(x) is wrong (with unexpected behavior):
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Figure 21.10: Nonuniqueness of numerical solutions of the nonlinear boundary value prob-

lem (21.3.3.3).

ans = 1.0e+04 *

Columns 1 through 5

0.000100000000000 0.714160289360580 1.400775911995384 2.588166088502601

3.381556897420243

Columns 6 through 10

3.589840740907997 3.660169584376011 3.589840740907997 3.381556897420243

2.588166088502601

Columns 11 through 13

1.400775911995384 0.714160289360580 0.000100000000000

◮ Nonlinear boundary value problems.

In addition to the nonlinear boundary value problem

y′′xx = f(x, y, y′x), y(a) = α, y(b) = β,

consider the initial value problem

y′′xx = f(x, y, y′x), y(a) = α, y′x(a) = s,

where x ∈ [a, b]. The real parameter s describes the initial slope of the solution curve.

Let f(x, y, u) be a continuous function satisfying the Lipschitz condition with respect

to y and u. Then, by the Picard–Lindelöf theorem, for each s there exists a unique solution

y(x, s) of the above initial value problem.

To find a solution of the nonlinear boundary value problem, we choose a value of the

parameter s such that y(b, s) = β; i.e., we have to solve the nonlinear equation F (s) =
y(b, s)− β = 0 by applying one of the known numerical methods.

Example 21.23. Second-order nonlinear ODE. Boundary value problem. Nonuniqueness.

Solving a boundary value problem for the second-order nonlinear ODE

y′′xx + k|y| = 0, y(a) = α, y(b) = β, (21.3.3.3)

where a= 0, b= 4, α= 0, β =−4, and k = 1, we can find two numerical solutions by applying the

bvp4c solvers twice with distinct guess functions (solInit1, solInit1), where IG1=0.1 and
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Figure 21.11: Nonuniqueness of numerical solutions of the nonlinear boundary value prob-

lem (21.3.3.4).

IG2= −0.1 are two distinct initial guesses. In MATLAB, this can be observed with the following

functions (M-files bvp3.m, bc3.m):

function dydx=bvp3(x,y); dydx=[y(2); -1*abs(y(1))]; end

function res=bc3(ya,yb); res=[ya(1); yb(1)+4]; end

and the main program:

clear all; close all; echo on; format long;

a=0; b=4; N=100; IG1=0.1; IG2=-0.1;

solInit1=bvpinit(linspace(a,b,N),[0 IG1]);

solInit2=bvpinit(linspace(a,b,N),[0 IG2]);

solN1=bvp4c(@bvp3,@bc3,solInit1);

solN2=bvp4c(@bvp3,@bc3,solInit2);

x=linspace(a,b,N); y1=deval(solN1,x); y2=deval(solN2,x);

figure(1);

plot(x,y1(1,:),'k-.',x,y2(1,:),'k-','LineWidth',3);

grid on; xlabel('x'); ylabel('y');

legend('IG1=0.1','IG2=-0.1');

set(gca,'FontSize',12); set(gca,'FontName','Arial');

set(gca,'LineWidth',1); shg;

The two numerical solutions of this boundary value problem are presented in Fig. 21.10.

Example 21.24. Second-order nonlinear ODE. Boundary value problem. Nonuniqueness.

Solving a boundary value problem for the second-order nonlinear ODE

y′′xx + k(1 + y2) = 0; y(a) = α, y(b) = β, (21.3.3.4)

where a=0, b=3, α=0, β=0, and k=2, we can find two positive numerical solutions by applying

the bvp5c solvers twice with distinct guess functions (solInit1 and solInit1), where IG1=
0.1 and IG2= 1.0 are two distinct initial guesses. In this case, we apply the other MATLAB solver

(bvp5c), since the solver bvp4c does not approach any reasonable accuracy (e.g., 1e − 1). Also,

we include some options (see function odeset), e.g., NonNegative, RelTol, and AbsTol. In

MATLAB, this can be observed with the following functions (M-files bvp4.m, bc4.m):

function dydx=bvp4(x,y); dydx=[y(2); -2*(1+y(1).ˆ2)]; end

function res=bc4(ya,yb); res=[ya(1); yb(1)]; end
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and the main program:

clear all; close all; echo on; format long;

a=0; b=2.2; N=100; IG1=0.1; IG2=1.;

options=odeset('NonNegative',1,'RelTol',1e-1,'AbsTol',1e-1);

solInit1=bvpinit(linspace(a,b,N),[0 IG1]);

solInit2=bvpinit(linspace(a,b,N),[0 IG2]);

solN1=bvp5c(@bvp4,@bc4,solInit1,options);

solN2=bvp5c(@bvp4,@bc4,solInit2,options);

x=linspace(a,b,N); y1=deval(solN1,x); y2=deval(solN2,x);

figure(1);

plot(x,y1(1,:),'k-.',x,y2(1,:),'k-','LineWidth',3);

grid on; xlabel('x'); ylabel('y');

legend('IG1=0.1','IG2=1.0');

set(gca,'FontSize',12); set(gca,'FontName','Arial');

set(gca,'LineWidth',1); shg;

The two numerical solutions of this boundary value problem are presented in Fig. 21.11.

21.3.4 Eigenvalue Problems: Examples of Numerical Solutions

Consider eigenvalue problems, i.e., boundary value problems that include a real parameter.

Discrete values of the parameter that satisfy the ODE are called eigenvalues of the problem.

For each eigenvalue λn, there exists a nontrivial solution yn(x) that satisfies the problem,

and it is called the eigenfunction associated with λn. The set of real eigenvalues is infinite,

and the set of eigenfunctions is complete.

Consider the Sturm–Liouville system or Sturm–Liouville eigenvalue problem, i.e., the

second-order linear homogeneous differential equation

(
p(x)y′x

)′
x
+
(
q(x) + λw(x)

)
y = 0, a < x < b,

together with the boundary conditions

β1y(a) + β2y
′
x(a) = 0, β3y(b) + β4y

′
x(b) = 0.

If p(x), q(x), and w(x) are continuous functions and if both p(x) and w(x) are positive

on [a, b], then the Sturm–Liouville eigenvalue problem is called regular. Let us find the

eigenvalues and eigenfunctions for some regular Sturm–Liouville eigenvalue problems.

Example 21.25. Sturm–Liouville problem. Homogeneous Dirichlet boundary conditions.

We solve the Sturm–Liouville eigenvalue problem

y′′xx + λy = 0, y(a) = 0, y(b) = 0, (21.3.4.1)

i.e., a homogeneous linear two-point boundary value problem with a parameter λ and with the

homogeneous Dirichlet boundary conditions,∗ where a≤x≤b, a=0, b=π, p(x)=1,w(x)=1, and

q(x)= 0, by applying the predefined function bvp4c. In MATLAB, this eigenvalue problem can be

solved, e.g., for the first two eigenvalues and the corresponding eigenfunctions with the following

functions (M-files evp1.m, evp1bc1.m, evp1Guess1, evp1bc2.m, and evp1Guess2):

∗These boundary conditions are called separated conditions, for which there exist a complete set of orthog-

onal eigenfunctions.
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function dydx=evp1(x,y,lambda); dydx=[y(2);-lambda*y(1)]; end

function res=evp1bc1(ya,yb,lambda); res=[ya(1);yb(1);yb(2)+1]; end

function res=evp1bc2(ya,yb,lambda); res=[ya(1);yb(1);yb(2)-1]; end

function v=evp1Guess1(x); v=[sin(x);cos(x)]; end

function v=evp1Guess2(x); v=[cos(x);sin(x)]; end

and the main program:

clear all; close all; echo on; format long;

a=0; b=pi; N=10; lambda=0.5;

solInit1=bvpinit(linspace(a,b,N),@evp1Guess1,lambda);

solInit2=bvpinit(linspace(a,b,N),@evp1Guess2,lambda);

solN1=bvp4c(@evp1,@evp1bc1,solInit1);

solN2=bvp4c(@evp1,@evp1bc2,solInit2);

fprintf('The first eigenvalue = %15.6f.\n',solN1.parameters)

fprintf('The second eigenvalue = %15.6f.\n',solN2.parameters)

x=linspace(a,b); y1=deval(solN1,x); y2=deval(solN2,x);

figure(1); plot(x,y1(1,:),'k-','LineWidth',3);

axis([0 pi 0 1]); grid on; xlabel('x'); ylabel('y');

figure(2); plot(x,y2(1,:),'k-','LineWidth',3);

axis([0 pi -0.6 0.6]); grid on; xlabel('x'); ylabel('y');

set(gca,'FontSize',12); set(gca,'FontName','Arial');

set(gca,'LineWidth',1); shg;

Note that the predefined function bvp4c makes it easy to solve Sturm–Liouville problems in-

volving unknown parameters. If there are unknown parameters, we have to include estimates for

them (as the third argument of bvpinit). Also, we have to include the vector of unknown pa-

rameters (as the third argument of the functions for evaluating the ODEs and the discrepancy in the

boundary conditions). If there are unknown parameters, then the solution structure (in our problem,

solN1, solN2) has the parameters field, which contains the vector of parameters computed by

the solver bvp4c.

When solving boundary value problems with bvp4c, we have to provide a guess for the solu-

tion. The guess is included in bvp4c as a structure formed by the function bvpinit. The first

argument of bvpinit is a guess for the mesh. In our problem, we try 10 equally spaced points in

[0, π]. The second argument is a guess for the solution on the specified mesh. In our problem, the

solution has two components, y(x) and y′x, and we try a function guess, e.g., [sin(x), cos(x)]. We

guess that λ is about 0.5.

As a result, we have the first eigenvalue λ1 ≈ 1.000028 and the second eigenvalue λ2 ≈
4.000130.

The first two eigenfunctions of this Sturm–Liouville problem are presented in Fig. 21.12.

Example 21.26. Sturm–Liouville problem. Homogeneous Neumann boundary conditions.

We solve the Sturm–Liouville eigenvalue problem

y′′xx + λy = 0, y′x(a) = 0, y′x(b) = 0, (21.3.4.2)

i.e., a homogeneous linear two-point boundary value problem with the parameter λ and with the

homogeneous Neumann boundary conditions, where a ≤ x ≤ b, a = 0, b = π, p(x) = 1, w(x) = 1,

and q(x) = 0, by applying the predefined function bvp4c. In MATLAB, this eigenvalue problem

can be solved, e.g., for the second and third eigenvalues and the corresponding eigenfunctions,

with the following functions (M-files evp2.m, evp2bc1.m, evp2Guess1, evp2bc2.m, and

evp2Guess2):
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Figure 21.12: The first two eigenfunctions of the Sturm–Liouville problem (21.3.4.1).

function dydx=evp2(x,y,lambda); dydx=[y(2);-lambda*y(1)]; end

function res=evp2bc1(ya,yb,lambda); res=[ya(2);yb(2);yb(1)+1]; end

function res=evp2bc2(ya,yb,lambda); res=[ya(2);yb(2);yb(1)-1]; end

function v=evp2Guess1(x); v=[cos(x);sin(x)]; end

function v=evp2Guess2(x); v=[sin(x);cos(x)]; end

and the main program:

clear all; close all; echo on; format long;

a=0; b=pi; N=10; lambda1=0.5; lambda2=3.5;

solInit1=bvpinit(linspace(a,b,N),@evp2Guess1,lambda1);

solInit2=bvpinit(linspace(a,b,N),@evp2Guess2,lambda2);

solN1=bvp4c(@evp2,@evp2bc1,solInit1);

solN2=bvp4c(@evp2,@evp2bc2,solInit2);

fprintf('The second eigenvalue = %15.6f.\n',solN1.parameters)

fprintf('The third eigenvalue = %15.6f.\n',solN2.parameters)

x=linspace(a,b); y1=deval(solN1,x); y2=deval(solN2,x);

figure(1); plot(x,y1(1,:),'k-','LineWidth',3);

axis([0 pi -1 1]); grid on; xlabel('x'); ylabel('y');

figure(2); plot(x,y2(1,:),'k-','LineWidth',3);

axis([0 pi -1 1]); grid on; xlabel('x'); ylabel('y');

set(gca,'FontSize',12); set(gca,'FontName','Arial');

set(gca,'LineWidth',1); shg;

As a result, we have the second eigenvalue λ2 ≈ 1.000028 and the third eigenvalue λ3 ≈
4.000130. The second and third eigenfunctions of this Sturm–Liouville problem are presented in

Fig. 21.13.

⊙ Literature for Section .3: E. Fehlberg (1970) D. Barton, I. M. Willer, and R. V. M. Zahar (1971) G. E. For-

sythe, M. A. Malcolm, and C. B. Moler (1977), L. F. Shampine and H. A. Watts (1977), J. H. Verner (1978),

L. F. Shampine and H. A. Watts (1979), S. D. Conte and C. de Boor (1980), A. C. Hindmarsh (1983), H. W. En-

right, K. R. Jackson, S. P. Norsett, P. G. Thomsen (1986), L. Fox and D. F. Mayers (1987), P. Deuflhard,

B. Fiedler, P. Kunkel (1987), Ch. Lubich (1989), W. H. Enright (1989), J. R. Cash and A. H. Karp (1990),

M. E. Hosea and L. F. Shampine (1996), E. Hairer and G. Wanner (1996), L. F. Shampine and M. W. Reichelt

(1997), L. F. Shampine et. al (1999), L. F. Shampine, M. W. Reichelt, and J. Kierzenka (1999), L. F. Shampine

and R. M. Corless (2000), J. Kierzenka and L. F. Shampine (2001), L. F. Shampine and S. Thompson (2001),

W. E. Boyce and R. C. DiPrima (2004).
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Figure 21.13: The second and third eigenfunctions of the Sturm–Liouville problem

(21.3.4.2).

21.4 Numerical Solutions of Systems of ODEs

In this section, we numerically solve initial value problems for systems of differential equa-

tions of various classes in MATLAB [e.g., see Murphy (1960), Lapidus et al.(1973), Kamke

(1977), MacDonald (1989), Lambert (1991), Zwillinger (1997), Polyanin and Manzhirov

(2007)]. We consider the following classes of ODE systems: first-order linear and nonlin-

ear systems of two ODEs, higher-order ODEs with transformations to first-order systems

of ODEs, first-order systems of general form, and second-order systems. To this end, we

define differential systems in M-files.

21.4.1 First-Order Systems of Two Equations

Consider the system of two first-order ordinary differential equations with the initial con-

ditions

u′x = f1(x, u, v), v′x = f2(x, u, v), u(a) = u0, v(a) = v0.

The unknown functions are u(x) and v(x), and x ∈ [a, b].
To obtain numerical solutions, we can apply predefined functions or, alternatively, con-

struct solutions step by step by applying known numerical methods to each equation of the

system.

Let us numerically solve some first-order systems of two differential equations (linear

and nonlinear).

◮ First-order linear systems.

Example 21.27. First-order linear system. Exact, numerical, and graphical solutions.

For the first-order linear system with the initial conditions

u′x = v, v′x = x− u− 2v, u(a) = α, v(a) = β, (21.4.1.1)

where a ≤ x ≤ b, a = 0, b = 2, α = 1, and β = 1, we compute the numerical solution Y (where

Y(:,1) and Y(:,2) are u and v, respectively) by applying the predefined function ode45, com-
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Figure 21.14: The numerical and exact solutions of the linear Cauchy problem (21.4.1.1).

pare the numerical results with the exact solution (uEx, vEx)∗, and plot the exact and numerical

solutions. We write the MATLAB M-file containing the differential system (sys1.m):

function Yprime=sys1(x,Y); Yprime=[Y(2);x-Y(1)-2*Y(2)]; end

and the main program:

clear all; close all; echo on; format long;

Y0=[1 1]; X=[0,2]; [x,Y]=ode45(@sys1,X,Y0)

plot(x,Y(:,1),'ko','MarkerSize',9);

hold on; grid on; axis([0 2 -1 2]);

plot(x,Y(:,2),'kd','MarkerSize',9);

uEx=x+(3.*x+3).*exp(-x)-2; vEx=-3.*x.*exp(-x)+1;

plot(x,uEx,'k-','LineWidth',1); plot(x,vEx,'k--','LineWidth',3);

grid on; xlabel('x'); ylabel('u,v');

legend('u-Num','v-Num','u-Exact','v-Exact');

set(gca,'FontSize',12); set(gca,'FontName','Arial');

set(gca,'LineWidth',1); shg; hold off;

◮ First-order nonlinear systems.

Example 21.28. First-order nonlinear system. Numerical and graphical solutions.

For the first-order nonlinear system with the initial conditions

u′x = uv, v′x = u+ v, u(a) = α, v(a) = β, (21.4.1.2)

where a = 0, b = 1, α = 1, and β = 1, we obtain the numerical solution Y (where Y(:,1) and

Y(:,2) are u and v, respectively) by applying the predefined function ode45 and plot the results.

We write the MATLAB M-file containing the differential system (sys2.m):

function Yprime=sys2(x,Y); Yprime=[Y(1)*Y(2);Y(1)+Y(2)]; end

and the main program:

∗For more details, see Chapter 18.
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Figure 21.15: The numerical solution of the nonlinear Cauchy problem (21.4.1.2).

clear all; close all; echo on; format long;

Y0=[1 1]; X=[0,1]; [x,Y]=ode45(@sys2,X,Y0)

plot(x,Y(:,1),'k-o','MarkerSize',7); hold on;

plot(x,Y(:,2),'k-d','MarkerSize',7); axis([0 1 0 20]);

grid on; xlabel('x'); ylabel('u,v'); legend('u-Num','v-Num');

set(gca,'FontSize',12); set(gca,'FontName','Arial');

set(gca,'LineWidth',1); shg; hold off;

◮ Higher-order ODEs.

If we consider an ordinary differential equation of order n (n > 1) with n initial conditions

y(n)x = f(x, y, y′x, . . . , y
(n−1)
x ) (x ∈ [a, b]),

y(a) = y0, y′x(a) = y1, . . . , y(n−1)
x (a) = yn,

then we can always obtain solutions of this higher-order differential equation by transform-

ing it to an equivalent system of n first-order differential equations and by applying an

appropriate numerical method (e.g., ode45) to this system of differential equations. To

this end, we can apply the predefined function odeToVectorField and then generate

a MATLAB function from the symbolic expression obtained (i.e., the system of first-order

differential equations) by applying the predefined function matlabFunction:

V=odeToVectorField(eqn1,...,eqnN)

[V,Y]=odeToVectorField(eqn1,...,eqnN)

mFun=matlabFunction(V,’vars’,{’x’,’Y’})

where V is a symbolic vector representing the resulting system of first-order differential

equations, Y is a symbolic vector representing the substitutions made during the transfor-

mation, and M is a MATLAB function generated from a symbolic expression.

Example 21.29. Van der Pol equation. Cauchy problem. Numerical and graphical solutions.
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For the van der Pol equation with the initial conditions

y′′xx + µ(y2 − 1)y′x + y = 0, y(a) = α, y′x(a) = β, (21.4.1.3)

where x ∈ [a, b], a = 0, b = 60, α = 1, β = 0, and µ = 1
8 , we can compute a numerical solution as

follows:

1. By applying the predefined function odeToVectorField, we transform the second-order

ODE into an equivalent system of two first-order differential equations (Sys1):

Sys1=[Y[2]; -Y[1]-Y[2]*(Y[1]ˆ2/8-1/8)].

2. By applying the predefined function matlabFunction,∗ we generate a MATLAB function

(mFun) from this system of first-order differential equations:

mFun=@(x,Y)[Y(2); -Y(1)-Y(2).*(Y(1).ˆ2.*(1.0./8.0)-1.0./8.0)].

3. By applying the MATLAB numerical solver ode45

solN=ode45(mFun,[a b],IC)

to this system of differential equations, we obtain a numerical solution (solN) and graphical solu-

tions, a phase portrait of the solution, and a graph of u(x) and v(x) (see Fig. 21.16) as follows:

clear all; close all; echo on; format long;

a=0; b=60; N=500; alpha=1; beta=0; IC=[1 0];

syms x y(x) Sys1

Sys1=odeToVectorField(diff(y,2)+(1/8)*(yˆ2-1)*diff(y)+y==0)

mFun=matlabFunction(Sys1,'vars',{'x','Y'})

solN=ode45(mFun,[a b],IC);

x=linspace(a,b,N); yN=deval(solN,x);

figure(1);

plot(yN(1,:),yN(2,:),'k-','LineWidth',1);

grid on; xlabel('u'); ylabel('v'); axis([-2.5 2.5 -2.5 2.5]);

figure(2);

plot(x,yN(1,:),'k-','LineWidth',1); hold on;

plot(x,yN(2,:),'k-.','LineWidth',1); axis([a b -2.5 2.5]);

grid on; xlabel('x'); ylabel('u,v'); legend('u(x)','v(x)');

set(gca,'FontSize',12); set(gca,'FontName','Arial');

set(gca,'LineWidth',1); shg; hold off;

21.4.2 First-Order Systems of General Form

Consider the first-order system of differential equations of general form with the initial

conditions

(y′x)i = fi
(
x, y1, . . . , yn

)
, yi(a) = (y0)i (i = 1, . . . , n).

The unknown functions are y1(x), . . . , yn(x), and x∈ [a, b]. To obtain numerical solutions,

we can apply predefined functions or, alternatively, construct solutions step by step by

applying known numerical methods.

As an example, consider the Lorenz system, which is a dissipative chaotic system with a

strange attractor. These features can be observed for certain values of the system parameters
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Figure 21.16: Graphical solutions of the van der Pol equation y′′xx + µ(y2 − 1)y′x + y = 0
(the equivalent system of two first-order ODEs).
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Figure 21.17: Graphical solutions of the Lorenz system (21.4.2.1).

and initial conditions. This system models an unstable thermally convecting fluid (heated

from below) and also arises in other simplified models.

Example 21.30. The Lorenz system. Cauchy problem. Numerical and graphical solutions.

For the nonlinear system of first-order ODEs, e.g., the Lorenz system [see Sparrow (1982)],

x′t = σ(y − x), y′t = ρx− y − xz, z′t = xy − βz,
x(0) = 1, y(0) = 15, z(0) = 10,

(21.4.2.1)

where σ, ρ, and β are the system parameters, one can investigate the behavior of the system by

varying the system parameters σ, ρ, and β and observe the strange attractor.

We obtain the numerical solution W (where W(:,1), W(:,2), and W(:,3) are x(t), y(t), and

z(t)), respectively, by applying the predefined function ode45 and plot the results.

We write the MATLAB M-file containing the differential system (sys3.m):

function Wprime=sys3(t,W); sigma=15; beta=3; rho=28;

Wprime=[sigma*(W(2)-W(1);rho*W(1)-W(2)-W(1)*W(3);-beta*W(3)+W(1)*W(2)];

end

∗The MATLAB predefined functions for solving initial value problems do not accept symbolic expressions

(as an input), and so we have to convert the system obtained to a MATLAB function.
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and the main program:

clear all; close all; echo on; format long;

a=0; b=20; W0=[1 15 -10]; t=[a,b];

[t,W]=ode45(@sys3,t,W0)

figure(1);

plot(W(:,1),W(:,3),'k-','LineWidth',1);

grid on; xlabel('x'); ylabel('z');

figure(2);

subplot(3,1,1); plot(t,W(:,1),'k-','LineWidth',1)

xlabel('t'); ylabel('x');

subplot(3,1,2); plot(t,W(:,2),'k-','LineWidth',1)

xlabel('t'); ylabel('y');

subplot(3,1,3); plot(t,W(:,3),'k-','LineWidth',1)

xlabel('t'); ylabel('z');

set(gca,'FontSize',12); set(gca,'FontName','Arial');

set(gca,'LineWidth',1); shg;

The Lorenz strange attractor (the plot of z versus x) and each component of the solution (x, y,

z as functions of t) are presented in Fig. 21.17.

Remark 21.6. If a given problem (including a single differential equation or a system of dif-

ferential equations) is of order 2 or higher, we have to convert this problem into an equivalent sys-

tem of first-order differential equations and apply an appropriate numerical method (e.g., ode45)

to this system of differential equations. For this conversion, we can apply the predefined func-

tion odeToVectorField and then generate a MATLAB function from the symbolic expression

obtained (i.e., a system of first-order differential equations) by applying the predefined function

matlabFunction.

⊙ Literature for Section .4: . M. Murphy (1960), L. Lapidus, R. C. Aiken, and Y. A. Liu (1973), E. Kamke

(1977), C. Sparrow (1982), N. MacDonald (1989), J. D. Lambert (1991), D. Zwillinger (1997), A. D. Polyanin

and A. V. Manzhirov (2007).
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Chapter S1

Elementary Functions
and Their Properties

◆ Throughout Chapter S1, it is assumed that n is a positive integer unless otherwise spec-

ified.

S1.1 Power, Exponential, and Logarithmic Functions

S1.1.1 Properties of the Power Function

Basic properties of the power function:

xαxβ = xα+β , (x1x2)
α = xα1x

α
2 , (xα)β = xαβ,

for any α and β, where x > 0, x1 > 0, x2 > 0.

Differentiation and integration formulas:

(xα)′ = αxα−1,

∫
xα dx =





xα+1

α+ 1
+ C if α 6= −1,

ln |x|+ C if α = −1.

The Taylor series expansion in a neighborhood of an arbitrary point:

xα =
∞∑

n=0

Cn
αx

α−n
0 (x− x0)n for |x− x0| < |x0|,

where Cn
α =

α(α− 1) . . . (α− n+ 1)

n!
are binomial coefficients.

S1.1.2 Properties of the Exponential Function

Basic properties of the exponential function:

ax1ax2 = ax1+x2 , axbx = (ab)x, (ax1)x2 = ax1x2 ,

where a > 0 and b > 0.

1287
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Number e, base of natural (Napierian) logarithms, and the function ex:

e = lim
n→∞

(
1 +

1

n

)n
= 2.718281 . . . , ex = lim

n→∞

(
1 +

x

n

)n
.

The formula for passing from an arbitrary base a to the base e of natural logarithms:

ax = ex lna.

The inequality

ax1 > ax2 ⇐⇒
{
x1 > x2 if a > 1,

x1 < x2 if 0 < a < 1.

The limit relations for any a > 1 and b > 0:

lim
x→+∞

ax

|x|b =∞, lim
x→−∞

ax|x|b = 0.

Differentiation and integration formulas:

(ex)′ = ex,

∫
ex dx = ex + C;

(ax)′ = ax ln a,

∫
ax dx =

ax

ln a
+ C.

The expansion in power series:

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+ · · · =

∞∑

k=0

xk

k!
.

S1.1.3 Properties of the Logarithmic Function

By definition, the logarithmic function is the inverse of the exponential function. The

following equivalence relation holds:

y = loga x ⇐⇒ x = ay,

where a > 0, a 6= 1.

Basic properties of the logarithmic function:

aloga x = x, loga(x1x2) = loga x1 + loga x2,

loga(x
k) = k loga x, loga x =

logb x

logb a
,

where x > 0, x1 > 0, x2 > 0, a > 0, a 6= 1, b > 0, b 6= 1.

The simplest inequality:

loga x1 > loga x2 ⇐⇒
{
x1 > x2 if a > 1,

x1 < x2 if 0 < a < 1.
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For any b > 0, the following limit relations hold:

lim
x→+∞

loga x

xb
= 0, lim

x→+0
xb loga x = 0.

The logarithmic function with the base e (base of natural logarithms or Napierian base)

is denoted by

loge x = lnx,

where e = lim
n→∞

(
1 +

1

n

)n
= 2.718281 . . .

Formulas for passing from an arbitrary base a to the Napierian base e:

loga x =
lnx

ln a
.

Differentiation and integration formulas:

(lnx)′ =
1

x
,

∫
lnx dx = x lnx− x+ C.

Expansion in power series:

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+
x5

5
− · · · =

∞∑

k=1

(−1)k−1 x
k

k
, |x| < 1;

ln

(
x+ 1

x− 1

)
=

2

x
+

2

3x3
+

2

5x5
+

2

7x7
+ · · · = 2

∞∑

k=1

1

(2k − 1)x2k−1
, |x| > 1;

lnx = 2

(
x− 1

x+ 1

)
+

2

3

(
x− 1

x+ 1

)3
+

2

5

(
x− 1

x+ 1

)5
+

2

7

(
x− 1

x+ 1

)7
+ · · ·

= 2

∞∑

k=1

1

2k − 1

(
x− 1

x+ 1

)2k−1

, x > 0.

S1.2 Trigonometric Functions

S1.2.1 Simplest Relations

sin2 x+ cos2 x = 1, tan x cot x = 1,

sin(−x) = − sinx, cos(−x) = cosx,

tan x =
sinx

cos x
, cot x =

cos x

sinx
,

tan(−x) = − tanx, cot(−x) = − cot x,

1 + tan2 x =
1

cos2 x
, 1 + cot2 x =

1

sin2 x
.
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S1.2.2 Reduction Formulas

sin(x± 2nπ) = sinx,

sin(x± nπ) = (−1)n sinx,

sin
(
x± 2n+ 1

2
π
)
= ±(−1)n cos x,

sin
(
x± π

4

)
=

√
2

2
(sinx± cos x),

tan(x± nπ) = tanx,

tan
(
x± 2n+ 1

2
π
)
= − cot x,

tan
(
x± π

4

)
=

tan x± 1

1∓ tanx
,

cos(x± 2nπ) = cos x,

cos(x± nπ) = (−1)n cos x,

cos
(
x± 2n + 1

2
π
)
= ∓(−1)n sinx,

cos
(
x± π

4

)
=

√
2

2
(cos x∓ sinx),

cot(x± nπ) = cot x,

cot
(
x± 2n+ 1

2
π
)
= − tanx,

cot
(
x± π

4

)
=

cot x∓ 1

1± cot x
,

where n = 1, 2, . . .

S1.2.3 Relations between Trigonometric Functions of Single
Argument

sinx = ±
√
1− cos2 x = ± tanx√

1 + tan2 x
= ± 1√

1 + cot2 x
,

cos x = ±
√
1− sin2 x = ± 1√

1 + tan2 x
= ± cot x√

1 + cot2 x
,

tanx = ± sinx√
1− sin2 x

= ±
√
1− cos2 x

cosx
=

1

cot x
,

cot x = ±
√

1− sin2 x

sinx
= ± cos x√

1− cos2 x
=

1

tan x
.

The sign before the radical is determined by the quarter in which the argument takes its

values.

S1.2.4 Addition and Subtraction of Trigonometric Functions

sinx+ sin y = 2 sin
(x+ y

2

)
cos
( x− y

2

)
,

sinx− sin y = 2 sin
(x− y

2

)
cos
( x+ y

2

)
,

cos x+ cos y = 2cos
( x+ y

2

)
cos
(x− y

2

)
,

cos x− cos y = −2 sin
(x+ y

2

)
sin
( x− y

2

)
,

sin2 x− sin2 y = cos2 y − cos2 x = sin(x+ y) sin(x− y),
sin2 x− cos2 y = − cos(x+ y) cos(x− y),

tan x± tan y =
sin(x± y)
cos x cos y

, cot x± cot y =
sin(y ± x)
sinx sin y

,

a cos x+ b sinx = r sin(x+ ϕ) = r cos(x− ψ).
Here r =

√
a2 + b2, sinϕ = a/r, cosϕ = b/r, sinψ = b/r, and cosψ = a/r.
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S1.2.5 Products of Trigonometric Functions

sinx sin y = 1
2 [cos(x− y)− cos(x+ y)],

cos x cos y = 1
2 [cos(x− y) + cos(x+ y)],

sinx cos y = 1
2 [sin(x− y) + sin(x+ y)].

S1.2.6 Powers of Trigonometric Functions

cos2 x = 1
2 cos 2x+ 1

2 ,

cos3 x = 1
4 cos 3x+ 3

4 cos x,

cos4 x = 1
8 cos 4x+ 1

2 cos 2x+ 3
8 ,

cos5 x = 1
16 cos 5x+ 5

16 cos 3x+ 5
8 cos x,

sin2 x = − 1
2 cos 2x+ 1

2 ,

sin3 x = − 1
4 sin 3x+ 3

4 sinx,

sin4 x = 1
8 cos 4x− 1

2 cos 2x+ 3
8 ,

sin5 x = 1
16 sin 5x− 5

16 sin 3x+ 5
8 sinx,

cos2n x =
1

22n−1

n−1∑

k=0

Ck
2n cos[2(n− k)x] +

1

22n
Cn
2n,

cos2n+1 x =
1

22n

n∑

k=0

Ck
2n+1 cos[(2n − 2k + 1)x],

sin2n x =
1

22n−1

n−1∑

k=0

(−1)n−kCk
2n cos[2(n− k)x] +

1

22n
Cn
2n,

sin2n+1 x =
1

22n

n∑

k=0

(−1)n−kCk
2n+1 sin[(2n − 2k + 1)x].

Here n = 1, 2, . . . and Ck
m =

m!

k! (m− k)! are binomial coefficients (0! = 1).

S1.2.7 Addition Formulas

sin(x± y) = sinx cos y ± cos x sin y,

cos(x± y) = cos x cos y ∓ sinx sin y,

tan(x± y) = tan x± tan y

1∓ tan x tan y
,

cot(x± y) = 1∓ tan x tan y

tanx± tan y
.
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S1.2.8 Trigonometric Functions of Multiple Arguments

cos 2x = 2cos2 x−1 = 1−2 sin2 x,

cos 3x = −3 cos x+4cos3 x,

cos 4x = 1−8 cos2 x+8cos4 x,

cos 5x = 5cos x−20 cos3 x+16 cos5 x,

sin 2x = 2 sin x cos x,

sin 3x = 3 sin x−4 sin3 x,

sin 4x = 4cos x (sinx−2 sin3 x),

sin 5x = 5 sin x−20 sin3 x+16 sin5 x,

cos(2nx) = 1+

n∑

k=1

(−1)k4k n
2(n2−1) . . . [n2−(k−1)2]

(2k)!
sin2k x,

cos[(2n+1)x] = cos x

{
1+

n∑

k=1

(−1)k

× [(2n+1)2−1][(2n+1)2−32] . . . [(2n+1)2−(2k−1)2]

(2k)!
sin2k x

}
,

sin(2nx) = 2n cos x

[
sinx+

n∑

k=1

(−1)k4k (n
2−1)(n2−22) . . . (n2−k2)

(2k−1)!
sin2k−1 x

]
,

sin[(2n+1)x] = (2n+1)

{
sinx+

n∑

k=1

(−1)k

× [(2n+1)2−1][(2n+1)2−32] . . . [(2n+1)2−(2k−1)2]

(2k+1)!
sin2k+1 x

}
,

tan 2x =
2 tan x

1−tan2 x
, tan 3x =

3 tan x−tan3 x

1−3 tan2 x
, tan 4x =

4 tan x−4 tan3 x

1−6 tan2 x+tan4 x
,

where n = 1, 2, . . .

S1.2.9 Trigonometric Functions of Half Argument

sin2
x

2
=

1− cos x

2
, cos2

x

2
=

1 + cos x

2
,

tan
x

2
=

sinx

1 + cos x
=

1− cos x

sinx
, cot

x

2
=

sinx

1− cos x
=

1 + cos x

sinx
,

sinx =
2 tan x

2

1 + tan2 x
2

, cosx =
1− tan2 x

2

1 + tan2 x
2

, tanx =
2 tan x

2

1− tan2 x
2

.

S1.2.10 Differentiation Formulas

d sinx

dx
= cos x,

d cos x

dx
= − sinx,

d tan x

dx
=

1

cos2 x
,

d cot x

dx
= − 1

sin2 x
.

S1.2.11 Integration Formulas
∫

sinx dx = − cos x+ C,

∫
cos x dx = sinx+ C,

∫
tan x dx = − ln | cos x|+ C,

∫
cot x dx = ln | sinx|+ C,

where C is an arbitrary constant.
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S1.2.12 Expansion in Power Series

cos x = 1− x2

2!
+
x4

4!
− x

6

6!
+ · · ·+(−1)n x2n

(2n)!
+ · · · (|x| <∞),

sinx = x− x
3

3!
+
x5

5!
− x

7

7!
+ · · ·+(−1)n x2n+1

(2n+1)!
+ · · · (|x| <∞),

tan x = x+
x3

3
+

2x5

15
+

17x7

315
+ · · ·+ 22n(22n−1)|B2n|

(2n)!
x2n−1+ · · · (|x| < π/2),

cot x =
1

x
−
(
x

3
+
x3

45
+

2x5

945
+ · · ·+ 22n|B2n|

(2n)!
x2n−1+ · · ·

)
(0 < |x| < π),

1

cos x
= 1+

x2

2
+

5x4

24
+

61x6

720
+ · · ·+ (−1)nE2n

(2n)!
x2n+ · · · (|x| < π/2),

1

sinx
=

1

x
+
x

6
+

7x3

360
+ · · ·+ (−1)n−12(22n−1−1)B2n

(2n)!
x2n−1+ · · · (0 < |x| < π),

where Bn and En are Bernoulli and Euler numbers (see Sections 30.1.3 and 30.1.4).

S1.2.13 Representation in the Form of Infinite Products

sinx = x

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
. . .

(
1− x2

n2π2

)
. . .

cos x =

(
1− 4x2

π2

)(
1− 4x2

9π2

)(
1− 4x2

25π2

)
. . .

(
1− 4x2

(2n + 1)2π2

)
. . .

S1.2.14 Euler and de Moivre Formulas. Relationship with Hyperbolic
Functions

ey+ix = ey(cos x+ i sinx), (cos x+ i sinx)n = cos(nx) + i sin(nx), i2 = −1,
sin(ix) = i sinh x, cos(ix) = cosh x, tan(ix) = i tanh x, cot(ix) = −i coth x.

S1.3 Inverse Trigonometric Functions

S1.3.1 Definitions of Inverse Trigonometric Functions

Inverse trigonometric functions (arc functions) are the functions that are inverse to the

trigonometric functions. Since the trigonometric functions sinx, cos x, tanx, cot x are

periodic, the corresponding inverse functions, denoted by Arcsin x, Arccos x, Arctanx,

Arccot x, are multi-valued. The following relations define the multi-valued inverse trigono-

metric functions:
sin
(
Arcsin x

)
= x, cos

(
Arccos x

)
= x,

tan
(
Arctanx

)
= x, cot

(
Arccot x

)
= x.

These functions admit the following verbal definitions: Arcsinx is the angle whose sine is

equal to x; Arccos x is the angle whose cosine is equal to x; Arctan x is the angle whose

tangent is equal to x; Arccot x is the angle whose cotangent is equal to x.
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The principal (single-valued) branches of the inverse trigonometric functions are de-

noted by

arcsinx ≡ sin−1 x (arcsine is the inverse of sine),

arccos x ≡ cos−1 x (arccosine is the inverse of cosine),

arctan x ≡ tan−1 x (arctangent is the inverse of tangent),

arccot x ≡ cot−1 x (arccotangent is the inverse of cotangent)

and are determined by the inequalities

− π
2 ≤ arcsinx ≤ π

2 , 0 ≤ arccos x ≤ π (−1 ≤ x ≤ 1);

− π
2 < arctan x < π

2 , 0 < arccot x < π (−∞ < x <∞).

The following equivalent relations can be taken as definitions of single-valued inverse

trigonometric functions:

y = arcsin x, − 1 ≤ x ≤ 1 ⇐⇒ x = sin y, − π

2
≤ y ≤ π

2
;

y = arccos x, − 1 ≤ x ≤ 1 ⇐⇒ x = cos y, 0 ≤ y ≤ π;
y = arctan x, −∞ < x < +∞ ⇐⇒ x = tan y, − π

2
< y <

π

2
;

y = arccot x, −∞ < x < +∞ ⇐⇒ x = cot y, 0 < y < π.

The multi-valued and the single-valued inverse trigonometric functions are related by

the formulas
Arcsinx = (−1)n arcsin x+ πn,

Arccos x = ± arccos x+ 2πn,

Arctanx = arctan x+ πn,

Arccot x = arccot x+ πn,

where n = 0, ±1, ±2, . . .

S1.3.2 Simplest Formulas

sin(arcsinx) = x, cos(arccos x) = x,

tan(arctan x) = x, cot(arccot x) = x.

S1.3.3 Some Properties

arcsin(−x) = − arcsinx,

arctan(−x) = − arctan x,

arccos(−x) = π − arccos x,

arccot(−x) = π − arccot x,

arcsin(sinx) =

{
x− 2nπ if 2nπ − π

2 ≤ x ≤ 2nπ + π
2 ,

−x+ 2(n + 1)π if (2n+ 1)π − π
2 ≤ x ≤ 2(n + 1)π + π

2 ,

arccos(cos x) =

{
x− 2nπ if 2nπ ≤ x ≤ (2n + 1)π,

−x+ 2(n + 1)π if (2n+ 1)π ≤ x ≤ 2(n + 1)π,

arctan(tan x) = x− nπ if nπ − π
2 < x < nπ + π

2 ,

arccot(cot x) = x− nπ if nπ < x < (n+ 1)π.
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S1.3.4 Relations between Inverse Trigonometric Functions

arcsinx+ arccos x = π
2 , arctan x+ arccot x = π

2 ;

arcsinx =





arccos
√
1− x2 if 0 ≤ x ≤ 1,

− arccos
√
1− x2 if −1 ≤ x ≤ 0,

arctan
x√

1− x2
if −1 < x < 1,

arccot

√
1− x2
x

− π if −1 ≤ x < 0;

arccos x =





arcsin
√
1− x2 if 0 ≤ x ≤ 1,

π − arcsin
√
1− x2 if −1 ≤ x ≤ 0,

arctan

√
1− x2
x

if 0 < x ≤ 1,

arccot
x√

1− x2
if −1 < x < 1;

arctan x =





arcsin
x√

1 + x2
for any x,

arccos
1√

1 + x2
if x ≥ 0,

− arccos
1√

1 + x2
if x ≤ 0,

arccot
1

x
if x > 0;

arccot x =





arcsin
1√

1 + x2
if x > 0,

π − arcsin
1√

1 + x2
if x < 0,

arctan
1

x
if x > 0,

π + arctan
1

x
if x < 0.

S1.3.5 Addition and Subtraction of Inverse Trigonometric Functions

arcsinx+ arcsin y = arcsin
(
x
√

1− y2 + y
√

1− x2
)

for x2 + y2 ≤ 1,

arccos x± arccos y = ± arccos
[
xy ∓

√
(1− x2)(1− y2)

]
for x± y ≥ 0,

arctan x+ arctan y = arctan
x+ y

1− xy for xy < 1,

arctan x− arctan y = arctan
x− y
1 + xy

for xy > −1.
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S1.3.6 Differentiation Formulas

d

dx
arcsin x =

1√
1− x2

,
d

dx
arccos x = − 1√

1− x2
,

d

dx
arctan x =

1

1 + x2
,

d

dx
arccot x = − 1

1 + x2
.

S1.3.7 Integration Formulas

∫
arcsinx dx = x arcsin x+

√
1− x2 + C,

∫
arccos x dx = x arccos x−

√
1− x2 + C,

∫
arctan x dx = x arctan x− 1

2
ln(1 + x2) + C,

∫
arccot x dx = x arccot x+

1

2
ln(1 + x2) + C,

where C is an arbitrary constant.

S1.3.8 Expansion in Power Series

arcsinx = x+
1

2

x3

3
+

1× 3

2× 4

x5

5
+

1× 3× 5

2× 4× 6

x7

7
+ · · ·

+
1× 3× · · · × (2n − 1)

2× 4× · · · × (2n)

x2n+1

2n + 1
+ · · · (|x| < 1),

arctan x = x− x3

3
+
x5

5
− x7

7
+ · · ·+ (−1)n−1 x

2n−1

2n− 1
+ · · · (|x| ≤ 1),

arctan x =
π

2
− 1

x
+

1

3x3
− 1

5x5
+ · · · + (−1)n 1

(2n − 1)x2n−1
+ · · · (|x| > 1).

The expansions for arccos x and arccot x can be obtained from the relations arccos x =
π
2 − arcsinx and arccot x = π

2 − arctan x.

S1.4 Hyperbolic Functions

S1.4.1 Definitions of Hyperbolic Functions

Hyperbolic functions are defined in terms of the exponential functions as follows:

sinh x =
ex − e−x

2
, cosh x =

ex + e−x

2
,

tanh x =
ex − e−x

ex + e−x
, coth x =

ex + e−x

ex − e−x
.
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S1.4.2 Simplest Relations

cosh2 x− sinh2 x = 1,

sinh(−x) = − sinhx,

tanhx =
sinh x

coshx
,

tanh(−x) = − tanhx,

1− tanh2 x =
1

cosh2 x
,

tanh x coth x = 1,

cosh(−x) = coshx,

coth x =
cosh x

sinhx
,

coth(−x) = − coth x,

coth2 x− 1 =
1

sinh2 x
.

S1.4.3 Relations between Hyperbolic Functions of Single Argument
(x ≥ 0)

sinh x =
√

cosh2 x− 1 =
tanh x√

1− tanh2 x
=

1√
coth2 x− 1

,

cosh x =
√

sinh2 x+ 1 =
1√

1− tanh2 x
=

coth x√
coth2 x− 1

,

tanh x =
sinh x√

sinh2 x+ 1
=

√
cosh2 x− 1

cosh x
=

1

coth x
,

coth x =

√
sinh2 x+ 1

sinh x
=

cosh x√
cosh2 x− 1

=
1

tanh x
.

S1.4.4 Addition and Subtraction of Hyperbolic Functions

sinh x+ sinh y = 2 sinh
(x+ y

2

)
cosh

(x− y
2

)
,

sinh x− sinh y = 2 sinh
(x− y

2

)
cosh

(x+ y

2

)
,

cosh x+ cosh y = 2 cosh
(x+ y

2

)
cosh

( x− y
2

)
,

cosh x− cosh y = 2 sinh
(x+ y

2

)
sinh

(x− y
2

)
,

sinh2 x− sinh2 y = cosh2 x− cosh2 y = sinh(x+ y) sinh(x− y),
sinh2 x+ cosh2 y = cosh(x+ y) cosh(x− y),
(cosh x± sinh x)n = cosh(nx)± sinh(nx),

tanh x± tanh y =
sinh(x± y)
coshx cosh y

, coth x± coth y = ± sinh(x± y)
sinhx sinh y

,

where n = 0, ±1, ±2, . . .

S1.4.5 Products of Hyperbolic Functions

sinhx sinh y = 1
2 [cosh(x+ y)− cosh(x− y)],

coshx cosh y = 1
2 [cosh(x+ y) + cosh(x− y)],

sinhx cosh y = 1
2 [sinh(x+ y) + sinh(x− y)].
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S1.4.6 Powers of Hyperbolic Functions

cosh2 x= 1
2 cosh 2x+ 1

2 ,

cosh3 x= 1
4 cosh 3x+ 3

4 coshx,

cosh4 x= 1
8 cosh 4x+ 1

2 cosh 2x+ 3
8 ,

cosh5 x= 1
16 cosh 5x+ 5

16 cosh 3x+ 5
8 coshx,

sinh2 x= 1
2 cosh 2x− 1

2 ,

sinh3 x= 1
4 sinh 3x− 3

4 sinh x,

sinh4 x= 1
8 cosh 4x− 1

2 cosh 2x+ 3
8 ,

sinh5 x= 1
16 sinh 5x− 5

16 sinh 3x+ 5
8 sinhx,

cosh2n x=
1

22n−1

n−1∑

k=0

Ck
2n cosh[2(n−k)x]+ 1

22n
Cn

2n,

cosh2n+1 x=
1

22n

n∑

k=0

Ck
2n+1 cosh[(2n−2k+1)x],

sinh2n x=
1

22n−1

n−1∑

k=0

(−1)kCk
2n cosh[2(n−k)x]+ (−1)n

22n
Cn

2n,

sinh2n+1 x=
1

22n

n∑

k=0

(−1)kCk
2n+1 sinh[(2n−2k+1)x].

Here n = 1, 2, . . . and Ck
m are binomial coefficients.

S1.4.7 Addition Formulas

sinh(x± y) = sinh x cosh y ± sinh y cosh x,

cosh(x± y) = cosh x cosh y ± sinh x sinh y,

tanh(x± y) = tanh x± tanh y

1± tanhx tanh y
,

coth(x± y) = coth x coth y ± 1

coth y ± coth x
.

S1.4.8 Hyperbolic Functions of Multiple Argument

cosh 2x= 2 cosh2 x− 1,

cosh 3x=−3 coshx+4 cosh3 x,

cosh 4x= 1− 8 cosh2 x+8 cosh4 x,

cosh 5x= 5 coshx− 20 cosh3 x+16 cosh5 x,

sinh 2x= 2 sinhx cosh x,

sinh 3x= 3 sinhx+4 sinh3 x,

sinh 4x= 4 coshx(sinh x+2 sinh3 x),

sinh 5x= 5 sinhx+20 sinh3 x+16 sinh5 x.

cosh(nx) = 2n−1 coshn x+
n

2

[n/2]∑

k=0

(−1)k+1

k+1
Ck−2

n−k−22
n−2k−2(coshx)n−2k−2,

sinh(nx) = sinh x

[(n−1)/2]∑

k=0

2n−k−1Ck
n−k−1(coshx)n−2k−1.

Here Ck
m are binomial coefficients and [A] stands for the integer part of the number A.
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S1.4.9 Hyperbolic Functions of Half Argument

sinh
x

2
= sign x

√
cosh x− 1

2
, cosh

x

2
=

√
coshx+ 1

2
,

tanh
x

2
=

sinh x

cosh x+ 1
=

cosh x− 1

sinhx
, coth

x

2
=

sinh x

coshx− 1
=

cosh x+ 1

sinh x
.

S1.4.10 Differentiation Formulas

d sinh x

dx
= cosh x,

d cosh x

dx
= sinhx,

d tanh x

dx
=

1

cosh2 x
,

d coth x

dx
= − 1

sinh2 x
.

S1.4.11 Integration Formulas
∫

sinhx dx = cosh x+ C,

∫
cosh x dx = sinh x+ C,

∫
tanhx dx = ln cosh x+ C,

∫
coth x dx = ln | sinh x|+ C,

where C is an arbitrary constant.

S1.4.12 Expansion in Power Series

coshx = 1+
x2

2!
+
x4

4!
+
x6

6!
+ · · ·+ x2n

(2n)!
+ · · · (|x| <∞),

sinh x = x+
x3

3!
+
x5

5!
+
x7

7!
+ · · ·+ x2n+1

(2n+1)!
+ · · · (|x| <∞),

tanhx = x− x
3

3
+

2x5

15
− 17x7

315
+ · · ·+(−1)n−1 2

2n(22n−1)|B2n|x2n−1

(2n)!
+ · · · (|x| < π/2),

cothx =
1

x
+
x

3
− x

3

45
+

2x5

945
−· · ·+(−1)n−1 2

2n|B2n|x2n−1

(2n)!
+ · · · (|x| < π),

1

coshx
= 1− x

2

2
+

5x4

24
− 61x6

720
+ · · ·+ E2n

(2n)!
x2n+ · · · (|x| < π/2),

1

sinhx
=

1

x
− x

6
+

7x3

360
− 31x5

15120
+ · · ·+ 2(22n−1−1)B2n

(2n)!
x2n−1+ · · · (0 < |x| < π),

where Bn and En are Bernoulli and Euler numbers (see Sections 30.1.3 and 30.1.4).

S1.4.13 Representation in the Form of Infinite Products

sinh x = x

(
1 +

x2

π2

)(
1 +

x2

4π2

)(
1 +

x2

9π2

)
. . .

(
1 +

x2

n2π2

)
. . .

cosh x =

(
1 +

4x2

π2

)(
1 +

4x2

9π2

)(
1 +

4x2

25π2

)
. . .

(
1 +

4x2

(2n + 1)2π2

)
. . .
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S1.4.14 Relationship with Trigonometric Functions

sinh(ix) = i sinx, cosh(ix) = cos x, i2 = −1,
tanh(ix) = i tan x, coth(ix) = −i cot x.

S1.5 Inverse Hyperbolic Functions

S1.5.1 Definitions of Inverse Hyperbolic Functions

Inverse hyperbolic functions are the functions that are inverse to hyperbolic functions. The

following notation is used for inverse hyperbolic functions:

arcsinh x ≡ sinh−1 x (inverse of hyperbolic sine),

arccosh x ≡ cosh−1 x (inverse of hyperbolic cosine),

arctanh x ≡ tanh−1 x (inverse of hyperbolic tangent),

arccoth x ≡ coth−1 x (inverse of hyperbolic cotangent).

Inverse hyperbolic functions can be expressed in terms of logarithmic functions:

arcsinh x = ln
(
x+
√
x2+1

)
(x is any); arccosh x = ln

(
x+
√
x2−1

)
(x ≥ 1);

arctanh x =
1

2
ln

1+x

1−x (|x| < 1); arccoth x =
1

2
ln
x+1

x−1
(|x| > 1).

Here only one (principal) branch of the function arccosh x is listed, the function itself being

double-valued. In order to write out both branches of arccosh x, the symbol ± should be

placed before the logarithm on the right-hand side of the formula.

S1.5.2 Simplest Relations

arcsinh(−x) = − arcsinh x, arctanh(−x) = − arctanh x, arccoth(−x) = − arccoth x.

S1.5.3 Relations between Inverse Hyperbolic Functions

arcsinhx = arccosh
√
x2 + 1 = arctanh

x√
x2 + 1

,

arccosh x = arcsinh
√
x2 − 1 = arctanh

√
x2 − 1

x
,

arctanhx = arcsinh
x√

1− x2
= arccosh

1√
1− x2

= arccoth
1

x
.

S1.5.4 Addition and Subtraction of Inverse Hyperbolic Functions

arcsinhx± arcsinh y = arcsinh
(
x
√

1 + y2 ± y
√

1 + x2
)
,

arccosh x± arccosh y = arccosh
[
xy ±

√
(x2 − 1)(y2 − 1)

]
,

arcsinhx± arccosh y = arcsinh
[
xy ±

√
(x2 + 1)(y2 − 1)

]
,

arctanh x± arctanh y = arctanh
x± y
1± xy , arctanhx± arccoth y = arctanh

xy ± 1

y ± x .
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S1.5.5 Differentiation Formulas

d

dx
arcsinh x =

1√
x2 + 1

,

d

dx
arctanh x =

1

1− x2 (x2 < 1),

d

dx
arccosh x =

1√
x2 − 1

,

d

dx
arccoth x =

1

1− x2 (x2 > 1).

S1.5.6 Integration Formulas
∫

arcsinh x dx = x arcsinh x−
√

1 + x2 + C,
∫

arccosh x dx = x arccosh x−
√
x2 − 1 +C,

∫
arctanh x dx = x arctanh x+

1

2
ln(1− x2) +C,

∫
arccoth x dx = x arccoth x+

1

2
ln(x2 − 1) +C,

where C is an arbitrary constant.

S1.5.7 Expansion in Power Series

arcsinh x = x− 1

2

x3

3
+

1×3

2×4

x5

5
−· · ·

+(−1)n 1×3×· · ·× (2n−1)

2×4×· · ·× (2n)

x2n+1

2n+1
+ · · · (|x| < 1),

arcsinh x = ln(2x)+
1

2

1

2x2
+

1×3

2×4

1

4x4
+ · · ·

+
1×3×· · ·× (2n−1)

2×4×· · ·× (2n)

1

2nx2n
+ · · · (|x| > 1),

arccosh x = ln(2x)− 1

2

1

2x2
− 1×3

2×4

1

4x4
−· · ·

− 1×3×· · ·× (2n−1)

2×4×· · ·× (2n)

1

2nx2n
−· · · (|x| > 1),

arctanh x = x+
x3

3
+
x5

5
+
x7

7
+ · · ·+ x2n+1

2n+1
+ · · · (|x| < 1),

arccoth x =
1

x
+

1

3x3
+

1

5x5
+

1

7x7
+ · · ·+ 1

(2n+1)x2n+1
+ · · · (|x| > 1).

⊙ References for Chapter S1: M. Abramowitz and I. A. Stegun (1964), A. P. Prudnikov, Yu. A. Brychkov,

and O. I. Marichev (1986), D. G. Zill and J. M. Dewar (1990), M. Kline (1998), R. Courant and F. John

(1999), I. S. Gradshteyn and I. M. Ryzhik (2000), G. A. Korn and T. M. Korn (2000), C. H. Edwards and

D. Penney (2002), D. Zwillinger (2002), E. W. Weisstein (2003), I. N. Bronshtein and K. A. Semendyayev

(2004), M. Sullivan (2004), H. Anton, I. Bivens, and S. Davis (2005), R. Adams (2006).
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Chapter S2

Indefinite and
Definite Integrals

S2.1 Indefinite Integrals

◆ Throughout Section S2.1, the integration constant C is omitted for brevity.

S2.1.1 Integrals Involving Rational Functions

◮ Integrals involving a+ bx

1.

∫
dx

a+ bx
=

1

b
ln |a+ bx|.

2.

∫
(a+ bx)ndx =

(a+ bx)n+1

b(n+ 1)
, n 6= −1.

3.

∫
x dx

a+ bx
=

1

b2
(
a+ bx− a ln |a+ bx|

)
.

4.

∫
x2 dx

a+ bx
=

1

b3

[ 1
2
(a+ bx)2 − 2a(a+ bx) + a2 ln |a+ bx|

]
.

5.

∫
dx

x(a+ bx)
= − 1

a
ln
∣∣∣ a+ bx

x

∣∣∣.

6.

∫
dx

x2(a+ bx)
= − 1

ax
+

b

a2
ln
∣∣∣ a+ bx

x

∣∣∣.

7.

∫
x dx

(a+ bx)2
=

1

b2

(
ln |a+ bx|+ a

a+ bx

)
.

8.

∫
x2 dx

(a+ bx)2
=

1

b3

(
a+ bx− 2a ln |a+ bx| − a2

a+ bx

)
.

9.

∫
dx

x(a+ bx)2
=

1

a(a+ bx)
− 1

a2
ln
∣∣∣ a+ bx

x

∣∣∣.

10.

∫
x dx

(a+ bx)3
=

1

b2

[
− 1

a+ bx
+

a

2(a+ bx)2

]
.

1303
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◮ Integrals involving a+ x and b+ x

1.

∫
a+ x

b+ x
dx = x+ (a− b) ln |b+ x|.

2.

∫
dx

(a+ x)(b+ x)
=

1

a− b ln
∣∣∣ b+ x

a+ x

∣∣∣, a 6= b. For a= b, see Integral 2 with n=−2
in Section S2.1.

3.

∫
x dx

(a+ x)(b+ x)
=

1

a− b
(
a ln |a+ x| − b ln |b+ x|

)
.

4.

∫
dx

(a+ x)(b+ x)2
=

1

(b− a)(b+ x)
+

1

(a− b)2 ln
∣∣∣ a+ x

b+ x

∣∣∣.

5.

∫
x dx

(a+ x)(b+ x)2
=

b

(a− b)(b+ x)
− a

(a− b)2 ln
∣∣∣ a+ x

b+ x

∣∣∣.

6.

∫
x2 dx

(a+ x)(b+ x)2
=

b2

(b− a)(b+ x)
+

a2

(a− b)2 ln |a+ x|+ b2 − 2ab

(b− a)2 ln |b+ x|.

7.

∫
dx

(a+ x)2(b+ x)2
= − 1

(a− b)2
( 1

a+ x
+

1

b+ x

)
+

2

(a− b)3 ln
∣∣∣ a+ x

b+ x

∣∣∣.

8.

∫
x dx

(a+ x)2(b+ x)2
=

1

(a− b)2
( a

a+ x
+

b

b+ x

)
+

a+ b

(a− b)3 ln
∣∣∣ a+ x

b+ x

∣∣∣.

9.

∫
x2 dx

(a+ x)2(b+ x)2
= − 1

(a− b)2
( a2

a+ x
+

b2

b+ x

)
+

2ab

(a− b)3 ln
∣∣∣ a+ x

b+ x

∣∣∣.

◮ Integrals involving a2 + x2

1.

∫
dx

a2 + x2
=

1

a
arctan

x

a
.

2.

∫
dx

(a2 + x2)2
=

x

2a2(a2 + x2)
+

1

2a3
arctan

x

a
.

3.

∫
dx

(a2 + x2)3
=

x

4a2(a2 + x2)2
+

3x

8a4(a2 + x2)
+

3

8a5
arctan

x

a
.

4.

∫
dx

(a2 + x2)n+1
=

x

2na2(a2 + x2)n
+

2n− 1

2na2

∫
dx

(a2 + x2)n
; n = 1, 2, . . .

5.

∫
x dx

a2 + x2
=

1

2
ln(a2 + x2).

6.

∫
x dx

(a2 + x2)2
= − 1

2(a2 + x2)
.

7.

∫
x dx

(a2 + x2)3
= − 1

4(a2 + x2)2
.

8.

∫
x dx

(a2 + x2)n+1
= − 1

2n(a2 + x2)n
; n = 1, 2, . . .

9.

∫
x2 dx

a2 + x2
= x− a arctan

x

a
.

10.

∫
x2 dx

(a2 + x2)2
= − x

2(a2 + x2)
+

1

2a
arctan

x

a
.
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11.

∫
x2 dx

(a2 + x2)3
= − x

4(a2 + x2)2
+

x

8a2(a2 + x2)
+

1

8a3
arctan

x

a
.

12.

∫
x2 dx

(a2 + x2)n+1
= − x

2n(a2 + x2)n
+

1

2n

∫
dx

(a2 + x2)n
; n = 1, 2, . . .

13.

∫
x3 dx

a2 + x2
=
x2

2
− a2

2
ln(a2 + x2).

14.

∫
x3 dx

(a2 + x2)2
=

a2

2(a2 + x2)
+

1

2
ln(a2 + x2).

15.

∫
x3 dx

(a2 + x2)n+1
= − 1

2(n− 1)(a2 + x2)n−1
+

a2

2n(a2 + x2)n
; n = 2, 3, . . .

16.

∫
dx

x(a2 + x2)
=

1

2a2
ln

x2

a2 + x2
.

17.

∫
dx

x(a2 + x2)2
=

1

2a2(a2 + x2)
+

1

2a4
ln

x2

a2 + x2
.

18.

∫
dx

x(a2 + x2)3
=

1

4a2(a2 + x2)2
+

1

2a4(a2 + x2)
+

1

2a6
ln

x2

a2 + x2
.

19.

∫
dx

x2(a2 + x2)
= − 1

a2x
− 1

a3
arctan

x

a
.

20.

∫
dx

x2(a2 + x2)2
= − 1

a4x
− x

2a4(a2 + x2)
− 3

2a5
arctan

x

a
.

21.

∫
dx

x3(a2 + x2)2
= − 1

2a4x2
− 1

2a4(a2 + x2)
− 1

a6
ln

x2

a2 + x2
.

22.

∫
dx

x2(a2 + x2)3
= − 1

a6x
− x

4a4(a2 + x2)2
− 7x

8a6(a2 + x2)
− 15

8a7
arctan

x

a
.

23.

∫
dx

x3(a2 + x2)3
= − 1

2a6x2
− 1

a6(a2 + x2)
− 1

4a4(a2 + x2)2
− 3

2a8
ln

x2

a2 + x2
.

◮ Integrals involving a2 − x2

1.

∫
dx

a2 − x2 =
1

2a
ln
∣∣∣ a+ x

a− x
∣∣∣.

2.

∫
dx

(a2 − x2)2 =
x

2a2(a2 − x2) +
1

4a3
ln
∣∣∣ a+ x

a− x
∣∣∣.

3.

∫
dx

(a2 − x2)3 =
x

4a2(a2 − x2)2 +
3x

8a4(a2 − x2) +
3

16a5
ln
∣∣∣ a+ x

a− x
∣∣∣.

4.

∫
dx

(a2 − x2)n+1
=

x

2na2(a2 − x2)n +
2n− 1

2na2

∫
dx

(a2 − x2)n ; n = 1, 2, . . .

5.

∫
x dx

a2 − x2 = − 1

2
ln |a2 − x2|.

6.

∫
x dx

(a2 − x2)2 =
1

2(a2 − x2) .

7.

∫
x dx

(a2 − x2)3 =
1

4(a2 − x2)2 .
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8.

∫
x dx

(a2 − x2)n+1
=

1

2n(a2 − x2)n ; n = 1, 2, . . .

9.

∫
x2 dx

a2 − x2 = −x+
a

2
ln
∣∣∣ a+ x

a− x
∣∣∣.

10.

∫
x2 dx

(a2 − x2)2 =
x

2(a2 − x2) −
1

4a
ln
∣∣∣ a+ x

a− x
∣∣∣.

11.

∫
x2 dx

(a2 − x2)3 =
x

4(a2 − x2)2 −
x

8a2(a2 − x2) −
1

16a3
ln
∣∣∣ a+ x

a− x
∣∣∣.

12.

∫
x2 dx

(a2 − x2)n+1
=

x

2n(a2 − x2)n −
1

2n

∫
dx

(a2 − x2)n ; n = 1, 2, . . .

13.

∫
x3 dx

a2 − x2 = −x
2

2
− a2

2
ln |a2 − x2|.

14.

∫
x3 dx

(a2 − x2)2 =
a2

2(a2 − x2) +
1

2
ln |a2 − x2|.

15.

∫
x3 dx

(a2 − x2)n+1
= − 1

2(n− 1)(a2 − x2)n−1
+

a2

2n(a2 − x2)n ; n = 2, 3, . . .

16.

∫
dx

x(a2 − x2) =
1

2a2
ln
∣∣∣ x2

a2 − x2
∣∣∣.

17.

∫
dx

x(a2 − x2)2 =
1

2a2(a2 − x2) +
1

2a4
ln
∣∣∣ x2

a2 − x2
∣∣∣.

18.

∫
dx

x(a2 − x2)3 =
1

4a2(a2 − x2)2 +
1

2a4(a2 − x2) +
1

2a6
ln
∣∣∣ x2

a2 − x2
∣∣∣.

◮ Integrals involving a3 + x3

1.

∫
dx

a3 + x3
=

1

6a2
ln

(a+ x)2

a2 − ax+ x2
+

1

a2
√
3

arctan
2x− a
a
√
3

.

2.

∫
dx

(a3 + x3)2
=

x

3a3(a3 + x3)
+

2

3a3

∫
dx

a3 + x3
.

3.

∫
x dx

a3 + x3
=

1

6a
ln
a2 − ax+ x2

(a+ x)2
+

1

a
√
3

arctan
2x− a
a
√
3

.

4.

∫
x dx

(a3 + x3)2
=

x2

3a3(a3 + x3)
+

1

3a3

∫
x dx

a3 + x3
.

5.

∫
x2 dx

a3 + x3
=

1

3
ln |a3 + x3|.

6.

∫
dx

x(a3 + x3)
=

1

3a3
ln
∣∣∣ x3

a3 + x3

∣∣∣.

7.

∫
dx

x(a3 + x3)2
=

1

3a3(a3 + x3)
+

1

3a6
ln
∣∣∣ x3

a3 + x3

∣∣∣.

8.

∫
dx

x2(a3 + x3)
= − 1

a3x
− 1

a3

∫
x dx

a3 + x3
.

9.

∫
dx

x2(a3 + x3)2
= − 1

a6x
− x2

3a6(a3 + x3)
− 4

3a6

∫
x dx

a3 + x3
.



“K16435’ — 2017/9/28 — 15:05 — #1333

S2.1. Indefinite Integrals 1307

◮ Integrals involving a3 − x3

1.

∫
dx

a3 − x3 =
1

6a2
ln
a2 + ax+ x2

(a− x)2 +
1

a2
√
3

arctan
2x+ a

a
√
3

.

2.

∫
dx

(a3 − x3)2 =
x

3a3(a3 − x3) +
2

3a3

∫
dx

a3 − x3 .

3.

∫
x dx

a3 − x3 =
1

6a
ln
a2 + ax+ x2

(a− x)2 − 1

a
√
3

arctan
2x+ a

a
√
3

.

4.

∫
x dx

(a3 − x3)2 =
x2

3a3(a3 − x3) +
1

3a3

∫
x dx

a3 − x3 .

5.

∫
x2 dx

a3 − x3 = − 1

3
ln |a3 − x3|.

6.

∫
dx

x(a3 − x3) =
1

3a3
ln
∣∣∣ x3

a3 − x3
∣∣∣.

7.

∫
dx

x(a3 − x3)2 =
1

3a3(a3 − x3) +
1

3a6
ln
∣∣∣ x3

a3 − x3
∣∣∣.

8.

∫
dx

x2(a3 − x3) = − 1

a3x
+

1

a3

∫
x dx

a3 − x3 .

9.

∫
dx

x2(a3 − x3)2 = − 1

a6x
− x2

3a6(a3 − x3) +
4

3a6

∫
x dx

a3 − x3 .

◮ Integrals involving a4 ± x4

1.

∫
dx

a4 + x4
=

1

4a3
√
2
ln
a2 + ax

√
2 + x2

a2 − ax
√
2 + x2

+
1

2a3
√
2

arctan
ax
√
2

a2 − x2 .

2.

∫
x dx

a4 + x4
=

1

2a2
arctan

x2

a2
.

3.

∫
x2 dx

a4 + x4
= − 1

4a
√
2
ln
a2 + ax

√
2 + x2

a2 − ax
√
2 + x2

+
1

2a
√
2

arctan
ax
√
2

a2 − x2 .

4.

∫
dx

a4 − x4 =
1

4a3
ln
∣∣∣ a+ x

a− x
∣∣∣+ 1

2a3
arctan

x

a
.

5.

∫
x dx

a4 − x4 =
1

4a2
ln
∣∣∣ a

2 + x2

a2 − x2
∣∣∣.

6.

∫
x2 dx

a4 − x4 =
1

4a
ln
∣∣∣ a+ x

a− x
∣∣∣− 1

2a
arctan

x

a
.

S2.1.2 Integrals Involving Irrational Functions

◮ Integrals involving x1/2

1.

∫
x1/2 dx

a2 + b2x
=

2

b2
x1/2 − 2a

b3
arctan

bx1/2

a
.

2.

∫
x3/2 dx

a2 + b2x
=

2x3/2

3b2
− 2a2x1/2

b4
+

2a3

b5
arctan

bx1/2

a
.
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3.

∫
x1/2 dx

(a2 + b2x)2
= − x1/2

b2(a2 + b2x)
+

1

ab3
arctan

bx1/2

a
.

4.

∫
x3/2 dx

(a2 + b2x)2
=

2x3/2

b2(a2 + b2x)
+

3a2x1/2

b4(a2 + b2x)
− 3a

b5
arctan

bx1/2

a
.

5.

∫
dx

(a2 + b2x)x1/2
=

2

ab
arctan

bx1/2

a
.

6.

∫
dx

(a2 + b2x)x3/2
= − 2

a2x1/2
− 2b

a3
arctan

bx1/2

a
.

7.

∫
dx

(a2 + b2x)2x1/2
=

x1/2

a2(a2 + b2x)
+

1

a3b
arctan

bx1/2

a
.

8.

∫
x1/2 dx

a2 − b2x = − 2

b2
x1/2 +

2a

b3
ln
∣∣∣ a+ bx1/2

a− bx1/2
∣∣∣.

9.

∫
x3/2 dx

a2 − b2x = − 2x3/2

3b2
− 2a2x1/2

b4
+
a3

b5
ln
∣∣∣ a+ bx1/2

a− bx1/2
∣∣∣.

10.

∫
x1/2 dx

(a2 − b2x)2 =
x1/2

b2(a2 − b2x) −
1

2ab3
ln
∣∣∣ a+ bx1/2

a− bx1/2
∣∣∣.

11.

∫
x3/2 dx

(a2 − b2x)2 =
3a2x1/2 − 2b2x3/2

b4(a2 − b2x) − 3a

2b5
ln
∣∣∣ a+ bx1/2

a− bx1/2
∣∣∣.

12.

∫
dx

(a2 − b2x)x1/2 =
1

ab
ln
∣∣∣ a+ bx1/2

a− bx1/2
∣∣∣.

13.

∫
dx

(a2 − b2x)x3/2 = − 2

a2x1/2
+

b

a3
ln
∣∣∣ a+ bx1/2

a− bx1/2
∣∣∣.

14.

∫
dx

(a2 − b2x)2x1/2 =
x1/2

a2(a2 − b2x) +
1

2a3b
ln
∣∣∣ a+ bx1/2

a− bx1/2
∣∣∣.

◮ Integrals involving (a+ bx)p/2

1.

∫
(a+ bx)p/2 dx =

2

b(p+ 2)
(a+ bx)(p+2)/2.

2.

∫
x(a+ bx)p/2 dx =

2

b2

[
(a+ bx)(p+4)/2

p+ 4
− a(a+ bx)(p+2)/2

p+ 2

]
.

3.

∫
x2(a+bx)p/2 dx =

2

b3

[
(a+bx)(p+6)/2

p+6
− 2a(a+bx)(p+4)/2

p+4
+
a2(a+bx)(p+2)/2

p+2

]
.

◮ Integrals involving (x2 + a2)1/2

1.

∫
(x2 + a2)1/2 dx =

1

2
x(a2 + x2)1/2 +

a2

2
ln
[
x+ (x2 + a2)1/2

]
.

2.

∫
x(x2 + a2)1/2 dx =

1

3
(a2 + x2)3/2.

3.

∫
(x2+a2)3/2 dx=

1

4
x(a2+x2)3/2+

3

8
a2x(a2+x2)1/2+

3

8
a4 ln

∣∣x+(x2+a2)1/2
∣∣.
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4.

∫
1

x
(x2 + a2)1/2 dx = (a2 + x2)1/2 − a ln

∣∣∣ a+ (x2 + a2)1/2

x

∣∣∣.

5.

∫
dx√
x2 + a2

= ln
[
x+ (x2 + a2)1/2

]
.

6.

∫
x dx√
x2 + a2

= (x2 + a2)1/2.

7.

∫
(x2 + a2)−3/2 dx = a−2x(x2 + a2)−1/2.

◮ Integrals involving (x2 − a2)1/2

1.

∫
(x2 − a2)1/2 dx =

1

2
x(x2 − a2)1/2 − a2

2
ln
∣∣x+ (x2 − a2)1/2

∣∣.

2.

∫
x(x2 − a2)1/2 dx =

1

3
(x2 − a2)3/2.

3.

∫
(x2−a2)3/2 dx= 1

4
x(x2−a2)3/2− 3

8
a2x(x2−a2)1/2+ 3

8
a4 ln

∣∣x+(x2−a2)1/2
∣∣.

4.

∫
1

x
(x2 − a2)1/2 dx = (x2 − a2)1/2 − a arccos

∣∣∣ a
x

∣∣∣.

5.

∫
dx√
x2 − a2

= ln
∣∣x+ (x2 − a2)1/2

∣∣.

6.

∫
x dx√
x2 − a2

= (x2 − a2)1/2.

7.

∫
(x2 − a2)−3/2 dx = −a−2x(x2 − a2)−1/2.

◮ Integrals involving (a2 − x2)1/2

1.

∫
(a2 − x2)1/2 dx =

1

2
x(a2 − x2)1/2 + a2

2
arcsin

x

a
.

2.

∫
x(a2 − x2)1/2 dx = − 1

3
(a2 − x2)3/2.

3.

∫
(a2 − x2)3/2 dx =

1

4
x(a2 − x2)3/2 + 3

8
a2x(a2 − x2)1/2 + 3

8
a4 arcsin

x

a
.

4.

∫
1

x
(a2 − x2)1/2 dx = (a2 − x2)1/2 − a ln

∣∣∣ a+ (a2 − x2)1/2
x

∣∣∣.

5.

∫
dx√
a2 − x2

= arcsin
x

a
.

6.

∫
x dx√
a2 − x2

= −(a2 − x2)1/2.

7.

∫
(a2 − x2)−3/2 dx = a−2x(a2 − x2)−1/2.
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◮ Integrals involving arbitrary powers. Reduction formulas

1.

∫
dx

x(axn + b)
=

1

bn
ln
∣∣∣ xn

axn + b

∣∣∣.

2.

∫
dx

x
√
xn + a2

=
2

an
ln
∣∣∣ xn/2√

xn + a2 + a

∣∣∣.

3.

∫
dx

x
√
xn − a2

=
2

an
arccos

∣∣∣ a

xn/2

∣∣∣.

4.

∫
dx

x
√
ax2n + bxn

= − 2
√
ax2n + bxn

bnxn
.

◆ The parameters a, b, p, m, and n below in Integrals 5–8 can assume arbitrary values,

except for those at which denominators vanish in successive applications of a formula.

Notation: w = axn + b.

5.

∫
xm(axn + b)p dx =

1

m+ np+ 1

(
xm+1wp + npb

∫
xmwp−1 dx

)
.

6.

∫
xm(axn+ b)p dx=

1

bn(p+ 1)

[
−xm+1wp+1+(m+n+np+1)

∫
xmwp+1 dx

]
.

7.

∫
xm(axn + b)p dx =

1

b(m+ 1)

[
xm+1wp+1 − a(m+ n+ np+1)

∫
xm+nwp dx

]
.

8.

∫
xm(axn+ b)p dx=

1

a(m+ np+ 1)

[
xm−n+1wp+1−b(m−n+1)

∫
xm−nwp dx

]
.

S2.1.3 Integrals Involving Exponential Functions

1.

∫
eax dx =

1

a
eax.

2.

∫
ax dx =

ax

ln a
.

3.

∫
xeax dx = eax

( x
a
− 1

a2

)
.

4.

∫
x2eax dx = eax

(x2
a
− 2x

a2
+

2

a3

)
.

5.

∫
xneax dx= eax

[ 1
a
xn− n

a2
xn−1+

n(n−1)
a3

xn−2−· · ·+(−1)n−1 n!

an
x+(−1)n n!

an+1

]
,

n = 1, 2, . . .

6.

∫
Pn(x)e

ax dx = eax
n∑

k=0

(−1)k
ak+1

dk

dxk
Pn(x), where Pn(x) is an arbitrary polynomial

of degree n.

7.

∫
dx

a+ bepx
=
x

a
− 1

ap
ln |a+ bepx|.

8.

∫
dx

aepx + be−px
=





1

p
√
ab

arctan

(
epx
√
a

b

)
if ab > 0,

1

2p
√
−ab

ln

(
b+ epx

√
−ab

b− epx
√
−ab

)
if ab < 0.
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9.

∫
dx√

a+ bepx
=





1

p
√
a
ln

√
a+ bepx −√a√
a+ bepx +

√
a

if a > 0,

2

p
√−a arctan

√
a+ bepx√−a if a < 0.

S2.1.4 Integrals Involving Hyperbolic Functions

◮ Integrals involving cosh x

1.

∫
cosh(a+ bx) dx =

1

b
sinh(a+ bx).

2.

∫
x cosh x dx = x sinh x− cosh x.

3.

∫
x2 cosh x dx = (x2 + 2) sinh x− 2x cosh x.

4.

∫
x2n cosh x dx = (2n)!

n∑

k=1

[
x2k

(2k)!
sinh x− x2k−1

(2k − 1)!
cosh x

]
.

5.

∫
x2n+1 cosh x dx = (2n + 1)!

n∑

k=0

[
x2k+1

(2k + 1)!
sinhx− x2k

(2k)!
cosh x

]
.

6.

∫
xp cosh x dx = xp sinh x− pxp−1 cosh x+ p(p− 1)

∫
xp−2 coshx dx.

7.

∫
cosh2 x dx = 1

2x+ 1
4 sinh 2x.

8.

∫
cosh3 x dx = sinh x+ 1

3 sinh3 x.

9.

∫
cosh2n x dx = Cn

2n

x

22n
+

1

22n−1

n−1∑

k=0

Ck
2n

sinh[2(n − k)x]
2(n− k) , n = 1, 2, . . .

10.

∫
cosh2n+1 x dx =

1

22n

n∑

k=0

Ck
2n+1

sinh[(2n − 2k + 1)x]

2n− 2k + 1
=

n∑

k=0

Ck
n

sinh2k+1 x

2k + 1
,

n = 1, 2, . . .

11.

∫
coshp x dx =

1

p
sinh x coshp−1 x+

p− 1

p

∫
coshp−2 x dx.

12.

∫
cosh ax cosh bx dx =

1

a2 − b2 (a cosh bx sinh ax− b cosh ax sinh bx).

13.

∫
dx

cosh ax
=

2

a
arctan

(
eax
)
.

14.

∫
dx

cosh2n x
=

sinh x

2n− 1

[
1

cosh2n−1 x

+

n−1∑

k=1

2k(n− 1)(n − 2) . . . (n− k)
(2n− 3)(2n − 5) . . . (2n− 2k − 1)

1

cosh2n−2k−1 x

]
, n = 1, 2, . . .
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15.

∫
dx

cosh2n+1 x
=

sinh x

2n

[
1

cosh2n x

+

n−1∑

k=1

(2n − 1)(2n − 3) . . . (2n − 2k + 1)

2k(n− 1)(n − 2) . . . (n− k)
1

cosh2n−2kx

]
+

(2n− 1)!!

(2n)!!
arctan sinhx,

n = 1, 2, . . .

16.

∫
dx

a+ b cosh x
=





− signx√
b2 − a2

arcsin
b+ a cosh x

a+ b cosh x
if a2 < b2,

1√
a2 − b2

ln
a+ b+

√
a2 − b2 tanh(x/2)

a+ b−
√
a2 − b2 tanh(x/2)

if a2 > b2.

◮ Integrals involving sinh x

1.

∫
sinh(a+ bx) dx =

1

b
cosh(a+ bx).

2.

∫
x sinh x dx = x cosh x− sinhx.

3.

∫
x2 sinh x dx = (x2 + 2) cosh x− 2x sinh x.

4.

∫
x2n sinhx dx = (2n)!

[ n∑

k=0

x2k

(2k)!
cosh x−

n∑

k=1

x2k−1

(2k − 1)!
sinh x

]
.

5.

∫
x2n+1 sinh x dx = (2n + 1)!

n∑

k=0

[
x2k+1

(2k + 1)!
coshx− x2k

(2k)!
sinh x

]
.

6.

∫
xp sinh x dx = xp cosh x− pxp−1 sinh x+ p(p− 1)

∫
xp−2 sinhx dx.

7.

∫
sinh2 x dx = − 1

2x+ 1
4 sinh 2x.

8.

∫
sinh3 x dx = − cosh x+ 1

3 cosh3 x.

9.

∫
sinh2n x dx=(−1)nCn

2n

x

22n
+

1

22n−1

n−1∑

k=0

(−1)kCk
2n

sinh[2(n−k)x]
2(n−k) , n=1, 2, . . .

10.

∫
sinh2n+1 x dx =

1

22n

n∑

k=0

(−1)kCk
2n+1

cosh[(2n − 2k + 1)x]

2n− 2k + 1

=

n∑

k=0

(−1)n+kCk
n

cosh2k+1 x

2k + 1
, n = 1, 2, . . .

11.

∫
sinhp x dx =

1

p
sinhp−1 x cosh x− p− 1

p

∫
sinhp−2 x dx.

12.

∫
sinh ax sinh bx dx =

1

a2 − b2
(
a cosh ax sinh bx− b cosh bx sinh ax

)
.

13.

∫
dx

sinh ax
=

1

a
ln
∣∣∣tanh

ax

2

∣∣∣.
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14.

∫
dx

sinh2n x
=

cosh x

2n− 1

[
− 1

sinh2n−1 x
+

n−1∑

k=1

(−1)k−1 Ank

sinh2n−2k−1 x

]
,

Ank =
2k(n− 1)(n − 2) . . . (n− k)

(2n − 3)(2n − 5) . . . (2n − 2k − 1)
n = 1, 2, . . .

15.

∫
dx

sinh2n+1 x
=

cosh x

2n

[
− 1

sinh2n x
+

n−1∑

k=1

(−1)k−1 Ank

sinh2n−2k x

]

+ (−1)n (2n − 1)!!

(2n)!!
ln tanh

x

2
, Ank =

(2n − 1)(2n − 3) . . . (2n − 2k + 1)

2k(n − 1)(n − 2) . . . (n− k) ,

n = 1, 2, . . .

16.

∫
dx

a+ b sinh x
=

1√
a2 + b2

ln
a tanh(x/2) − b+

√
a2 + b2

a tanh(x/2) − b−
√
a2 + b2

.

17.

∫
Ax+B sinh x

a+ b sinh x
dx =

B

b
x+

Ab−Ba
b
√
a2 + b2

ln
a tanh(x/2) − b+

√
a2 + b2

a tanh(x/2) − b−
√
a2 + b2

.

◮ Integrals involving tanh x or coth x

1.

∫
tanh x dx = ln coshx.

2.

∫
tanh2 x dx = x− tanh x.

3.

∫
tanh3 x dx = − 1

2 tanh2 x+ ln cosh x.

4.

∫
tanh2n x dx = x−

n∑

k=1

tanh2n−2k+1 x

2n− 2k + 1
, n = 1, 2, . . .

5.

∫
tanh2n+1 x dx = ln cosh x−

n∑

k=1

(−1)kCk
n

2k cosh2k x
= ln cosh x−

n∑

k=1

tanh2n−2k+2 x

2n− 2k + 2
,

n = 1, 2, . . .

6.

∫
tanhp x dx = − 1

p− 1
tanhp−1 x+

∫
tanhp−2 x dx.

7.

∫
coth x dx = ln |sinh x|.

8.

∫
coth2 x dx = x− coth x.

9.

∫
coth3 x dx = − 1

2 coth2 x+ ln |sinh x|.

10.

∫
coth2n x dx = x−

n∑

k=1

coth2n−2k+1 x

2n− 2k + 1
, n = 1, 2, . . .

11.

∫
coth2n+1 x dx = ln |sinh x| −

n∑

k=1

Ck
n

2k sinh2k x
= ln |sinh x| −

n∑

k=1

coth2n−2k+2 x

2n− 2k + 2
,

n = 1, 2, . . .

12.

∫
cothp x dx = − 1

p− 1
cothp−1 x+

∫
cothp−2 x dx.
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S2.1.5 Integrals Involving Logarithmic Functions

1.

∫
ln ax dx = x ln ax− x.

2.

∫
x lnx dx = 1

2x
2 lnx− 1

4x
2.

3.

∫
xp ln ax dx =





1

p+ 1
xp+1 ln ax− 1

(p+ 1)2
xp+1 if p 6= −1,

1
2 ln

2 ax if p = −1.

4.

∫
(ln x)2 dx = x(lnx)2 − 2x lnx+ 2x.

5.

∫
x(ln x)2 dx = 1

2x
2(ln x)2 − 1

2x
2 lnx+ 1

4x
2.

6.

∫
xp(lnx)2 dx =





xp+1

p+ 1
(lnx)2 − 2xp+1

(p+ 1)2
lnx+

2xp+1

(p+ 1)3
if p 6= −1,

1
3 ln

3 x if p = −1.

7.

∫
(ln x)n dx =

x

n+ 1

n∑

k=0

(−1)k(n+ 1)n . . . (n − k + 1)(ln x)n−k, n = 1, 2, . . .

8.

∫
(ln x)q dx = x(lnx)q − q

∫
(lnx)q−1 dx, q 6= −1.

9.

∫
xn(ln x)m dx =

xn+1

m+ 1

m∑

k=0

(−1)k
(n+ 1)k+1

(m+ 1)m. . . (m− k + 1)(ln x)m−k ,

n,m = 1, 2, . . .

10.

∫
xp(lnx)q dx =

1

p+ 1
xp+1(lnx)q − q

p+ 1

∫
xp(lnx)q−1 dx, p, q 6= −1.

11.

∫
ln(a+ bx) dx =

1

b
(ax+ b) ln(ax+ b)− x.

12.

∫
x ln(a+ bx) dx =

1

2

(
x2 − a2

b2

)
ln(a+ bx)− 1

2

(
x2

2
− a

b
x

)
.

13.

∫
x2 ln(a+ bx) dx =

1

3

(
x3 − a3

b3

)
ln(a+ bx)− 1

3

(
x3

3
− ax2

2b
+
a2x

b2

)
.

14.

∫
lnx dx

(a+ bx)2
= − lnx

b(a+ bx)
+

1

ab
ln

x

a+ bx
.

15.

∫
lnx dx

(a+ bx)3
= − lnx

2b(a+ bx)2
+

1

2ab(a+ bx)
+

1

2a2b
ln

x

a+ bx
.

16.

∫
lnx dx√
a+ bx

=





2

b

[
(ln x− 2)

√
a+ bx+

√
a ln

√
a+ bx+

√
a√

a+ bx−√a

]
if a > 0,

2

b

[
(ln x− 2)

√
a+ bx+ 2

√
−a arctan

√
a+ bx√
−a

]
if a < 0.

17.

∫
ln(x2 + a2) dx = x ln(x2 + a2)− 2x+ 2a arctan(x/a).

18.

∫
x ln(x2 + a2) dx = 1

2

[
(x2 + a2) ln(x2 + a2)− x2

]
.
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19.

∫
x2 ln(x2 + a2) dx = 1

3

[
x3 ln(x2 + a2)− 2

3x
3 + 2a2x− 2a3 arctan(x/a)

]
.

S2.1.6 Integrals Involving Trigonometric Functions

◮ Integrals involving cosx (n = 1, 2, . . . )

1.

∫
cos(a+ bx) dx =

1

b
sin(a+ bx).

2.

∫
x cos x dx = cos x+ x sinx.

3.

∫
x2 cos x dx = 2x cos x+ (x2 − 2) sin x.

4.

∫
x2n cos x dx = (2n)!

[ n∑

k=0

(−1)k x2n−2k

(2n−2k)! sinx+
n−1∑

k=0

(−1)k x2n−2k−1

(2n−2k−1)! cosx
]

.

5.

∫
x2n+1 cos x dx = (2n+1)!

n∑

k=0

[
(−1)k x2n−2k+1

(2n − 2k + 1)!
sinx+

x2n−2k

(2n − 2k)!
cos x

]
.

6.

∫
xp cos x dx = xp sinx+ pxp−1 cos x− p(p− 1)

∫
xp−2 cos x dx.

7.

∫
cos2 x dx = 1

2x+ 1
4 sin 2x.

8.

∫
cos3 x dx = sinx− 1

3 sin
3 x.

9.

∫
cos2n x dx =

1

22n
Cn
2nx+

1

22n−1

n−1∑

k=0

Ck
2n

sin[(2n − 2k)x]

2n− 2k
.

10.

∫
cos2n+1 x dx =

1

22n

n∑

k=0

Ck
2n+1

sin[(2n − 2k + 1)x]

2n− 2k + 1
.

11.

∫
dx

cos x
= ln

∣∣∣tan
( x
2
+
π

4

)∣∣∣.

12.

∫
dx

cos2 x
= tan x.

13.

∫
dx

cos3 x
=

sinx

2 cos2 x
+

1

2
ln
∣∣∣tan

( x
2
+
π

4

)∣∣∣.

14.

∫
dx

cosn x
=

sinx

(n− 1) cosn−1 x
+
n− 2

n− 1

∫
dx

cosn−2 x
, n > 1.

15.

∫
x dx

cos2n x
=

n−1∑

k=0

Ank
(2n−2k)x sin x−cos x

cos2n−2k+1 x
+

2n−1(n−1)!
(2n−1)!!

(
x tanx+ln |cos x|

)
,

Ank =
(2n−2)(2n−4) . . . (2n−2k+2)

(2n−1)(2n−3) . . . (2n−2k+3)

1

(2n−2k+1)(2n−2k) .

16.

∫
cos ax cos bx dx =

sin
[
(b− a)x

]

2(b − a) +
sin
[
(b+ a)x

]

2(b+ a)
, a 6= ±b.
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17.

∫
dx

a+ b cos x
=





2√
a2 − b2

arctan
(a− b) tan(x/2)√

a2 − b2
if a2 > b2,

1√
b2 − a2

ln

∣∣∣∣

√
b2 − a2 + (b− a) tan(x/2)√
b2 − a2 − (b− a) tan(x/2)

∣∣∣∣ if b2 > a2.

18.

∫
dx

(a+ b cos x)2
=

b sinx

(b2 − a2)(a+ b cos x)
− a

b2 − a2
∫

dx

a+ b cos x
.

19.

∫
dx

a2 + b2 cos2 x
=

1

a
√
a2 + b2

arctan
a tan x√
a2 + b2

.

20.

∫
dx

a2 − b2 cos2 x =





1

a
√
a2 − b2

arctan
a tan x√
a2 − b2

if a2 > b2,

1

2a
√
b2 − a2

ln

∣∣∣∣

√
b2 − a2 − a tan x√
b2 − a2 + a tan x

∣∣∣∣ if b2 > a2.

21.

∫
eax cos bx dx = eax

(
b

a2 + b2
sin bx+

a

a2 + b2
cos bx

)
.

22.

∫
eax cos2 x dx =

eax

a2 + 4

(
a cos2 x+ 2 sin x cos x+

2

a

)
.

23.

∫
eax cosn x dx =

eax cosn−1 x

a2 + n2
(a cos x+ n sinx) +

n(n− 1)

a2 + n2

∫
eax cosn−2 x dx.

◮ Integrals involving sin x (n = 1, 2, . . . )

1.

∫
sin(a+ bx) dx = − 1

b
cos(a+ bx).

2.

∫
x sinx dx = sinx− x cos x.

3.

∫
x2 sinx dx = 2x sin x− (x2 − 2) cos x.

4.

∫
x3 sinx dx = (3x2 − 6) sinx− (x3 − 6x) cos x.

5.

∫
x2n sinx dx=(2n)!

[ n∑

k=0

(−1)k+1 x2n−2k

(2n−2k)! cos x+
n−1∑

k=0

(−1)k x2n−2k−1

(2n−2k−1)! sinx
]

.

6.

∫
x2n+1 sinx dx = (2n + 1)!

n∑

k=0

[
(−1)k+1 x2n−2k+1

(2n − 2k + 1)!
cosx

+ (−1)k x2n−2k

(2n− 2k)!
sinx

]
.

7.

∫
xp sinx dx = −xp cos x+ pxp−1 sinx− p(p− 1)

∫
xp−2 sinx dx.

8.

∫
sin2 x dx = 1

2x− 1
4 sin 2x.

9.

∫
x sin2 x dx = 1

4x
2 − 1

4x sin 2x− 1
8 cos 2x.

10.

∫
sin3 x dx = − cosx+ 1

3 cos
3 x.
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11.

∫
sin2n x dx =

1

22n
Cn
2nx+

(−1)n
22n−1

n−1∑

k=0

(−1)kCk
2n

sin[(2n − 2k)x]

2n− 2k
,

where Ck
m =

m!

k! (m− k)! are binomial coefficients (0! = 1).

12.

∫
sin2n+1 x dx =

1

22n

n∑

k=0

(−1)n+k+1Ck
2n+1

cos[(2n − 2k + 1)x]

2n− 2k + 1
.

13.

∫
dx

sinx
= ln

∣∣∣tan x
2

∣∣∣.

14.

∫
dx

sin2 x
= − cot x.

15.

∫
dx

sin3 x
= − cos x

2 sin2 x
+

1

2
ln
∣∣∣tan x

2

∣∣∣.

16.

∫
dx

sinn x
= − cosx

(n− 1) sinn−1 x
+
n− 2

n− 1

∫
dx

sinn−2 x
, n > 1.

17.

∫
x dx

sin2n x
=−

n−1∑

k=0

Ank
sinx+(2n−2k)x cos x

sin2n−2k+1 x
+

2n−1(n−1)!
(2n−1)!!

(
ln |sinx|−x cot x

)
,

Ank =
(2n−2)(2n−4) . . . (2n−2k+2)

(2n−1)(2n−3) . . . (2n−2k+3)

1

(2n−2k+1)(2n−2k) .

18.

∫
sin ax sin bx dx =

sin[(b− a)x]
2(b− a) − sin[(b+ a)x]

2(b+ a)
, a 6= ±b.

19.

∫
dx

a+ b sinx
=





2√
a2 − b2

arctan
b+ a tan x/2√

a2 − b2
if a2 > b2,

1√
b2 − a2

ln

∣∣∣∣
b−
√
b2 − a2 + a tan x/2

b+
√
b2 − a2 + a tan x/2

∣∣∣∣ if b2 > a2.

20.

∫
dx

(a+ b sinx)2
=

b cos x

(a2 − b2)(a+ b sinx)
+

a

a2 − b2
∫

dx

a+ b sinx
.

21.

∫
dx

a2 + b2 sin2 x
=

1

a
√
a2 + b2

arctan

√
a2 + b2 tanx

a
.

22.

∫
dx

a2 − b2 sin2 x =





1

a
√
a2 − b2

arctan

√
a2 − b2 tanx

a
if a2 > b2,

1

2a
√
b2 − a2

ln

∣∣∣∣

√
b2 − a2 tanx+ a√
b2 − a2 tanx− a

∣∣∣∣ if b2 > a2.

23.

∫
sinx dx√

1 + k2 sin2 x
= − 1

k
arcsin

k cos x√
1 + k2

.

24.

∫
sinx dx√

1− k2 sin2 x
= − 1

k
ln
∣∣k cos x+

√
1− k2 sin2 x

∣∣.

25.

∫
sinx

√
1 + k2 sin2 x dx = − cosx

2

√
1 + k2 sin2 x− 1 + k2

2k
arcsin

k cos x√
1 + k2

.

26.

∫
sinx

√
1− k2 sin2 x dx = − cosx

2

√
1− k2 sin2 x

− 1− k2
2k

ln
∣∣k cos x+

√
1− k2 sin2 x

∣∣.
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27.

∫
eax sin bx dx = eax

( a

a2 + b2
sin bx− b

a2 + b2
cos bx

)
.

28.

∫
eax sin2 x dx =

eax

a2 + 4

(
a sin2 x− 2 sin x cos x+

2

a

)
.

29.

∫
eax sinn x dx =

eax sinn−1 x

a2 + n2
(a sinx− n cos x) + n(n− 1)

a2 + n2

∫
eax sinn−2 x dx.

◮ Integrals involving sin x and cosx

1.

∫
sin ax cos bx dx = − cos[(a+ b)x]

2(a+ b)
− cos

[
(a− b)x

]

2(a− b) , a 6= ±b.

2.

∫
dx

b2 cos2 ax+ c2 sin2 ax
=

1

abc
arctan

( c
b
tan ax

)
.

3.

∫
dx

b2 cos2 ax− c2 sin2 ax =
1

2abc
ln
∣∣∣ c tan ax+ b

c tan ax− b
∣∣∣.

4.

∫
dx

cos2n x sin2m x
=

n+m−1∑

k=0

Ck
n+m−1

tan2k−2m+1 x

2k − 2m+ 1
, n,m = 1, 2, . . .

5.

∫
dx

cos2n+1 x sin2m+1 x
=Cm

n+m ln |tanx|+
n+m∑

k=0

Ck
n+m

tan2k−2m x

2k−2m , n,m=1, 2, . . .

◮ Reduction formulas

◆ The parameters p and q below can assume any values, except for those at which the

denominators on the right-hand side vanish.

1.

∫
sinp x cosq x dx = − sinp−1 x cosq+1 x

p+ q
+
p− 1

p+ q

∫
sinp−2 x cosq x dx.

2.

∫
sinp x cosq x dx =

sinp+1 x cosq−1 x

p+ q
+
q − 1

p+ q

∫
sinp x cosq−2 x dx.

3.

∫
sinp x cosq x dx =

sinp−1 x cosq−1 x

p+ q

(
sin2 x− q − 1

p+ q − 2

)

+
(p− 1)(q − 1)

(p + q)(p+ q − 2)

∫
sinp−2 x cosq−2 x dx.

4.

∫
sinp x cosq x dx =

sinp+1 x cosq+1 x

p+ 1
+
p+ q + 2

p+ 1

∫
sinp+2 x cosq x dx.

5.

∫
sinp x cosq x dx = − sinp+1 x cosq+1 x

q + 1
+
p+ q + 2

q + 1

∫
sinp x cosq+2 x dx.

6.

∫
sinp x cosq x dx = − sinp−1 x cosq+1 x

q + 1
+
p− 1

q + 1

∫
sinp−2 x cosq+2 x dx.

7.

∫
sinp x cosq x dx =

sinp+1 x cosq−1 x

p+ 1
+
q − 1

p+ 1

∫
sinp+2 x cosq−2 x dx.
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◮ Integrals involving tanx and cot x

1.

∫
tan x dx = − ln |cos x|.

2.

∫
tan2 x dx = tanx− x.

3.

∫
tan3 x dx = 1

2 tan
2 x+ ln |cos x|.

4.

∫
tan2n x dx = (−1)nx−

n∑

k=1

(−1)k(tanx)2n−2k+1

2n − 2k + 1
, n = 1, 2, . . .

5.

∫
tan2n+1 x dx = (−1)n+1 ln |cos x| −

n∑

k=1

(−1)k(tan x)2n−2k+2

2n− 2k + 2
, n = 1, 2, . . .

6.

∫
dx

a+ b tanx
=

1

a2 + b2
(
ax+ b ln |a cos x+ b sinx|

)
.

7.

∫
tan x dx√
a+ b tan2 x

=
1√
b− a

arccos

(√
1− a

b
cos x

)
, b > a, b > 0.

8.

∫
cot x dx = ln |sinx|.

9.

∫
cot2 x dx = − cot x− x.

10.

∫
cot3 x dx = − 1

2 cot
2 x− ln |sinx|.

11.

∫
cot2n x dx = (−1)nx+

n∑

k=1

(−1)k(cot x)2n−2k+1

2n− 2k + 1
, n = 1, 2, . . .

12.

∫
cot2n+1 x dx = (−1)n ln |sinx|+

n∑

k=1

(−1)k(cot x)2n−2k+2

2n− 2k + 2
, n = 1, 2, . . .

13.

∫
dx

a+ b cot x
=

1

a2 + b2
(
ax− b ln |a sinx+ b cos x|

)
.

S2.1.7 Integrals Involving Inverse Trigonometric Functions

1.

∫
arcsin

x

a
dx = x arcsin

x

a
+
√
a2 − x2.

2.

∫ (
arcsin

x

a

)2
dx = x

(
arcsin

x

a

)2
− 2x+ 2

√
a2 − x2 arcsin

x

a
.

3.

∫
x arcsin

x

a
dx =

1

4
(2x2 − a2) arcsin x

a
+
x

4

√
a2 − x2.

4.

∫
x2 arcsin

x

a
dx =

x3

3
arcsin

x

a
+

1

9
(x2 + 2a2)

√
a2 − x2.

5.

∫
arccos

x

a
dx = x arccos

x

a
−
√
a2 − x2.

6.

∫ (
arccos

x

a

)2
dx = x

(
arccos

x

a

)2
− 2x− 2

√
a2 − x2 arccos

x

a
.
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7.

∫
x arccos

x

a
dx =

1

4
(2x2 − a2) arccos x

a
− x

4

√
a2 − x2.

8.

∫
x2 arccos

x

a
dx =

x3

3
arccos

x

a
− 1

9
(x2 + 2a2)

√
a2 − x2.

9.

∫
arctan

x

a
dx = x arctan

x

a
− a

2
ln(a2 + x2).

10.

∫
x arctan

x

a
dx =

1

2
(x2 + a2) arctan

x

a
− ax

2
.

11.

∫
x2 arctan

x

a
dx =

x3

3
arctan

x

a
− ax2

6
+
a3

6
ln(a2 + x2).

12.

∫
arccot

x

a
dx = x arccot

x

a
+
a

2
ln(a2 + x2).

13.

∫
x arccot

x

a
dx =

1

2
(x2 + a2) arccot

x

a
+
ax

2
.

14.

∫
x2 arccot

x

a
dx =

x3

3
arccot

x

a
+
ax2

6
− a3

6
ln(a2 + x2).

S2.2 Tables of Definite Integrals

◆ Throughout Section S2.2 it is assumed that n is a positive integer, unless otherwise

specified.

S2.2.1 Integrals Involving Power-Law Functions

◮ Integrals over a finite interval

1.

∫ 1

0

xn dx

x+ 1
= (−1)n

[
ln 2 +

n∑

k=1

(−1)k
k

]
.

2.

∫ 1

0

dx

x2 + 2x cos β + 1
=

β

2 sin β
.

3.

∫ 1

0

(
xa + x−a

)
dx

x2 + 2x cos β + 1
=

π sin(aβ)

sin(πa) sin β
, |a| < 1, β 6= (2n+ 1)π.

4.

∫ 1

0
xa(1− x)1−a dx =

πa(1− a)
2 sin(πa)

, −1 < a < 1.

5.

∫ 1

0

dx

xa(1− x)1−a
=

π

sin(πa)
, 0 < a < 1.

6.

∫ 1

0

xa dx

(1− x)a =
πa

sin(πa)
, −1 < a < 1.

7.

∫ 1

0
xp−1(1− x)q−1 dx ≡ B(p, q) =

Γ(p)Γ(q)

Γ(p + q)
, p, q > 0.

8.

∫ 1

0
xp−1(1− xq)−p/q dx =

π

q sin(πp/q)
, q > p > 0.
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9.

∫ 1

0
xp+q−1(1− xq)−p/q dx =

πp

q2 sin(πp/q)
, q > p.

10.

∫ 1

0
xq/p−1(1− xq)−1/p dx =

π

q sin(π/p)
, p > 1, q > 0.

11.

∫ 1

0

xp−1 − x−p

1− x dx = π cot(πp), |p| < 1.

12.

∫ 1

0

xp−1 − x−p

1 + x
dx =

π

sin(πp)
, |p| < 1.

13.

∫ 1

0

xp − x−p

x− 1
dx =

1

p
− π cot(πp), |p| < 1.

14.

∫ 1

0

xp − x−p

1 + x
dx =

1

p
− π

sin(πp)
, |p| < 1.

15.

∫ 1

0

x1+p − x1−p

1− x2 dx =
π

2
cot
(πp

2

)
− 1

p
, |p| < 1.

16.

∫ 1

0

x1+p − x1−p

1 + x2
dx =

1

p
− π

2 sin(πp/2)
, |p| < 1.

17.

∫ 1

0

dx√
(1 + a2x)(1− x)

=
2

a
arctan a.

18.

∫ 1

0

dx√
(1− a2x)(1− x)

=
1

a
ln

1 + a

1− a .

19.

∫ 1

−1

dx

(a− x)
√
1− x2

=
π√
a2 − 1

, 1 < a.

20.

∫ 1

0

xn dx√
1− x

=
2 (2n)!!

(2n+ 1)!!
, n = 1, 2, . . .

21.

∫ 1

0

xn−1/2 dx√
1− x =

π (2n− 1)!!

(2n)!!
, n = 1, 2, . . .

22.

∫ 1

0

x2n dx√
1− x2

=
π

2

1× 3× · · · × (2n− 1)

2× 4× · · · × (2n)
, n = 1, 2, . . .

23.

∫ 1

0

x2n+1 dx√
1− x2

=
2× 4× · · · × (2n)

1× 3× · · · × (2n+ 1)
, n = 1, 2, . . .

24.

∫ 1

0

xλ−1 dx

(1 + ax)(1 − x)λ =
π

(1 + a)λ sin(πλ)
, 0 < λ < 1, a > −1.

25.

∫ 1

0

xλ−1/2 dx

(1 + ax)λ(1− x)λ = 2π−1/2Γ
(
λ+ 1

2

)
Γ
(
1− λ

)
cos2λ k

sin[(2λ− 1)k]

(2λ− 1) sin k
,

k = arctan
√
a, − 1

2 < λ < 1, a > 0.

◮ Integrals over an infinite interval

1.

∫ ∞

0

dx

ax2 + b
=

π

2
√
ab

.
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2.

∫ ∞

0

dx

x4 + 1
=
π
√
2

4
.

3.

∫ ∞

0

xa−1 dx

x+ 1
=

π

sin(πa)
, 0 < a < 1.

4.

∫ ∞

0

xλ−1 dx

(1 + ax)2
=

π(1− λ)
aλ sin(πλ)

, 0 < λ < 2.

5.

∫ ∞

0

xλ−1 dx

(x+ a)(x+ b)
=
π(aλ−1 − bλ−1)

(b− a) sin(πλ) , 0 < λ < 2.

6.

∫ ∞

0

xλ−1(x+ c) dx

(x+ a)(x+ b)
=

π

sin(πλ)

(
a− c
a− b a

λ−1 +
b− c
b− a b

λ−1

)
, 0 < λ < 1.

7.

∫ ∞

0

xλ dx

(x+ 1)3
=
πλ(1− λ)
2 sin(πλ)

, −1 < λ < 2.

8.

∫ ∞

0

xλ−1 dx

(x2 + a2)(x2 + b2)
=

π
(
bλ−2 − aλ−2

)

2
(
a2 − b2

)
sin(πλ/2)

, 0 < λ < 4.

9.

∫ ∞

0

xp−1 − xq−1

1− x dx = π[cot(πp)− cot(πq)], p, q > 0.

10.

∫ ∞

0

xλ−1 dx

(1 + ax)n+1
= (−1)n

πCn
λ−1

aλ sin(πλ)
, Cn

λ−1 =
(λ− 1)(λ− 2) . . . (λ− n)

n!
,

0 < λ < n+ 1.

11.

∫ ∞

0

xm dx

(a+ bx)n+1/2
=2m+1m!

(2n − 2m− 3)!!

(2n − 1)!!

am−n+1/2

bm+1
, a, b>0, m<b− 1

2 ,

n,m = 1, 2, . . .

12.

∫ ∞

0

dx

(x2 + a2)n
=
π

2

(2n− 3)!!

(2n− 2)!!

1

a2n−1
, n = 1, 2, . . .

13.

∫ ∞

0

(x+ 1)λ−1

(x+ a)λ+1
dx =

1− a−λ

λ(a− 1)
, a > 0.

14.

∫ ∞

0

xa−1 dx

xb + 1
=

π

b sin(πa/b)
, 0 < a ≤ b.

15.

∫ ∞

0

xa−1 dx

(xb + 1)2
=

π(a− b)
b2 sin[π(a− b)/b] , a < 2b.

16.

∫ ∞

0

xλ−1/2 dx

(x+ a)λ(x+ b)λ
=
√
π
(√
a+
√
b
)1−2λ Γ(λ− 1/2)

Γ(λ)
, λ > 0.

17.

∫ ∞

0

1− xa
1− xb x

c−1 dx =
π sinA

b sinC sin(A+ C)
, A =

πa

b
, C =

πc

b
; a+ c < b,

c > 0.

18.

∫ ∞

0

xa−1 dx

(1 + x2)1−b
= 1

2B
(
1
2a, 1− b− 1

2 a
)
, 1

2a+ b < 1, a > 0.

19.

∫ ∞

0

x2m dx

(ax2 + b)n
=
π(2m− 1)!! (2n − 2m− 3)!!

2 (2n − 2)!! ambn−m−1
√
ab

, a, b > 0, n > m+ 1.

20.

∫ ∞

0

x2m+1 dx

(ax2 + b)n
=

m! (n −m− 2)!

2(n − 1)!am+1bn−m−1
, ab > 0, n > m+ 1 ≥ 1.
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21.

∫ ∞

0

xµ−1 dx

(1 + axp)ν
=

1

paµ/p
B
(µ
p
, ν − µ

p

)
, p > 0, 0 < µ < pν.

22.

∫ ∞

0

(√
x2 + a2 − x

)n
dx =

nan+1

n2 − 1
, n = 2, 3, . . .

23.

∫ ∞

0

dx(
x+
√
x2 + a2

)n =
n

an−1(n2 − 1)
, n = 2, 3, . . .

24.

∫ ∞

0
xm
(√

x2 + a2 − x
)n
dx =

m!nan+m+1

(n−m− 1)(n −m+ 1) . . . (n+m+ 1)
,

n,m = 1, 2, . . . , 0 ≤ m ≤ n− 2.

25.

∫ ∞

0

xm dx(
x+
√
x2 + a2

)n =
m!n

(n−m− 1)(n −m+ 1) . . . (n+m+ 1)an−m−1
,

n = 2, 3, . . .

S2.2.2 Integrals Involving Exponential Functions

1.

∫ ∞

0
e−ax dx =

1

a
, a > 0.

2.

∫ 1

0
xne−ax dx =

n!

an+1
− e−a

n∑

k=0

n!

k!

1

an−k+1
, a > 0, n = 1, 2, . . .

3.

∫ ∞

0
xne−ax dx =

n!

an+1
, a > 0, n = 1, 2, . . .

4.

∫ ∞

0

e−ax

√
x
dx =

√
π

a
, a > 0.

5.

∫ ∞

0
xν−1e−µx dx =

Γ(ν)

µν
, µ, ν > 0.

6.

∫ ∞

0

dx

1 + eax
=

ln 2

a
.

7.

∫ ∞

0

x2n−1 dx

epx − 1
= (−1)n−1

( 2π
p

)2nB2n

4n
, n = 1, 2, . . . ; the Bm are Bernoulli

numbers (see Section S4.1.3).

8.

∫ ∞

0

x2n−1 dx

epx + 1
= (1− 21−2n)

( 2π
p

)2n |B2n|
4n

, n = 1, 2, . . . ; the Bm are Bernoulli

numbers.

9.

∫ ∞

−∞

e−px dx

1 + e−qx
=

π

q sin(πp/q)
, q > p > 0 or 0 > p > q.

10.

∫ ∞

0

eax + e−ax

ebx + e−bx
dx =

π

2b cos
(πa
2b

) , b > a.

11.

∫ ∞

0

e−px − e−qx

1− e−(p+q)x
dx =

π

p+ q
cot

πp

p+ q
, p, q > 0.

12.

∫ ∞

0

(
1− e−βx

)ν
e−µx dx =

1

β
B
(µ
β
, ν + 1

)
.
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13.

∫ ∞

0
exp
(
−ax2

)
dx =

1

2

√
π

a
, a > 0.

14.

∫ ∞

0
x2n+1 exp

(
−ax2

)
dx =

n!

2an+1
, a > 0, n = 1, 2, . . .

15.

∫ ∞

0
x2n exp

(
−ax2

)
dx =

1× 3× · · · × (2n − 1)
√
π

2n+1an+1/2
, a > 0, n = 1, 2, . . .

16.

∫ ∞

−∞
exp
(
−a2x2 ± bx

)
dx =

√
π

|a| exp
( b2

4a2

)
.

17.

∫ ∞

0
exp
(
−ax2 − b

x2

)
dx =

1

2

√
π

a
exp
(
−2
√
ab
)
, a, b > 0.

18.

∫ ∞

0
exp
(
−xa

)
dx =

1

a
Γ
( 1
a

)
, a > 0.

S2.2.3 Integrals Involving Hyperbolic Functions

1.

∫ ∞

0

dx

cosh ax
=

π

2|a| .

2.

∫ ∞

0

dx

a+ b cosh x
=





2√
b2 − a2

arctan

√
b2 − a2
a+ b

if |b| > |a|,
1√

a2 − b2
ln
a+ b+

√
a2 − b2

a+ b−
√
a2 + b2

if |b| < |a|.

3.

∫ ∞

0

x2n dx

cosh ax
=
( π
2a

)2n+1
|E2n|, a > 0; the Em are Euler numbers

(see Section S4.1.4).

4.

∫ ∞

0

x2n dx

cosh2 ax
=
π2n(22n − 2)

|a|(2a)2n |B2n|; the Bm are Bernoulli numbers

(see Section S4.1.3).

5.

∫ ∞

0

cosh ax

cosh bx
dx =

π

2b cos
(πa
2b

) , b > |a|.

6.

∫ ∞

0
x2n

cosh ax

cosh bx
dx =

π

2b

d2n

da2n
1

cos
(
1
2πa/b

) , b > |a|, n = 1, 2, . . .

7.

∫ ∞

0

cosh ax cosh bx

cosh(cx)
dx =

π

c

cos
( πa
2c

)
cos
(πb
2c

)

cos
( πa
c

)
+ cos

(πb
c

) , c > |a|+ |b|.

8.

∫ ∞

0

x dx

sinh ax
=

π2

2a2
, a > 0.

9.

∫ ∞

0

dx

a+ b sinh x
=

1√
a2 + b2

ln
a+ b+

√
a2 + b2

a+ b−
√
a2 + b2

, ab 6= 0.

10.

∫ ∞

0

sinh ax

sinh bx
dx =

π

2b
tan
(πa
2b

)
, b > |a|.

11.

∫ ∞

0
x2n

sinh ax

sinh bx
dx =

π

2b

d2n

dx2n
tan
(πa
2b

)
, b > |a|, n = 1, 2, . . .
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12.

∫ ∞

0

x2n

sinh2 ax
dx =

π2n

a2n+1
|B2n|, a > 0; the Bm are Bernoulli numbers.

S2.2.4 Integrals Involving Logarithmic Functions

1.

∫ 1

0
xa−1 lnn x dx = (−1)nn! a−n−1, a > 0, n = 1, 2, . . .

2.

∫ 1

0

lnx

x+ 1
dx = −π

2

12
.

3.

∫ 1

0

xn lnx

x+ 1
dx = (−1)n+1

[
π2

12
+

n∑

k=1

(−1)k
k2

]
, n = 1, 2, . . .

4.

∫ 1

0

xµ−1 lnx

x+ a
dx =

πaµ−1

sin(πµ)

[
ln a− π cot(πµ)

]
, 0 < µ < 1.

5.

∫ 1

0
|lnx|µ dx = Γ(µ + 1), µ > −1.

6.

∫ ∞

0
xµ−1 ln(1 + ax) dx =

π

µaµ sin(πµ)
, −1 < µ < 0.

7.

∫ 1

0
x2n−1 ln(1 + x) dx =

1

2n

2n∑

k=1

(−1)k−1

k
, n = 1, 2, . . .

8.

∫ 1

0
x2n ln(1 + x) dx =

1

2n+ 1

[
ln 4 +

2n+1∑

k=1

(−1)k
k

]
, n = 0, 1, . . .

9.

∫ 1

0
xn−1/2 ln(1 + x) dx =

2 ln 2

2n + 1
+

4(−1)n
2n + 1

[
π −

n∑

k=0

(−1)k
2k + 1

]
, n = 1, 2, . . .

10.

∫ ∞

0
ln
a2 + x2

b2 + x2
dx = π(a− b), a, b > 0.

11.

∫ ∞

0

xp−1 lnx

1 + xq
dx = − π

2 cos(πp/q)

q2 sin2(πp/q)
, 0 < p < q.

12.

∫ ∞

0
e−µx lnx dx = − 1

µ
(C + lnµ), µ > 0, C = 0.5772 . . .

S2.2.5 Integrals Involving Trigonometric Functions

◮ Integrals Over a Finite Interval

1.

∫ π/2

0
cos2n x dx =

π

2

1× 3× · · · × (2n − 1)

2× 4× · · · × (2n)
, n = 1, 2, . . .

2.

∫ π/2

0
cos2n+1 x dx =

2× 4× · · · × (2n)

1× 3× · · · × (2n + 1)
, n = 1, 2, . . .
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3.

∫ π/2

0
x cosn x dx = −

m−1∑

k=0

(n− 2k + 1)(n − 2k + 3) . . . (n− 1)

(n− 2k)(n − 2k + 2) . . . n

1

n− 2k

+





π

2

(2m− 2)!!

(2m− 1)!!
if n = 2m− 1,

π2

8

(2m− 1)!!

(2m)!!
if n = 2m,

m = 1, 2, . . .

4.

∫ π

0

dx

(a+b cos x)n+1
=

π

2n(a+b)n
√
a2−b2

n∑

k=0

(2n−2k−1)!! (2k−1)!!
(n−k)! k!

( a+b
a−b

)k
,

a > |b|.

5.

∫ π/2

0
sin2n x dx =

π

2

1× 3× · · · × (2n − 1)

2× 4× · · · × (2n)
, n = 1, 2, . . .

6.

∫ π/2

0
sin2n+1 x dx =

2× 4× · · · × (2n)

1× 3× · · · × (2n + 1)
, n = 1, 2, . . .

7.

∫ π

0
x sinµ x dx =

π2

2µ+1

Γ(µ+ 1)
[
Γ
(
µ+ 1

2

)]2 , µ > −1.

8.

∫ π/2

0

sinx dx√
1− k2 sin2 x

=
1

2k
ln

1 + k

1− k .

9.

∫ π/2

0
sin2n+1 x cos2m+1 x dx =

n!m!

2(n+m+ 1)!
, n,m = 1, 2, . . .

10.

∫ π/2

0
sinp−1 x cosq−1 x dx = 1

2B
(
1
2 p,

1
2 q
)
.

11.

∫ 2π

0
(a sinx+ b cos x)2n dx = 2π

(2n − 1)!!

(2n)!!

(
a2 + b2

)n
, n = 1, 2, . . .

12.

∫ π

0

sinx dx√
a2 + 1− 2a cos x

=

{
2 if 0 ≤ a ≤ 1,

2/a if 1 < a.

13.

∫ π/2

0
(tan x)±λ dx =

π

2 cos
(
1
2πλ

) , |λ| < 1.

14.

∫ a

0

cos(xt) dt√
a2 − t2

=
π

2
J0(ax), J0(z) is the Bessel function (see Section S4.6).

15.

∫ a

0

t sin(xt) dt√
a2 − t2

=
π

2
aJ1(ax), J1(z) is the Bessel function.

16.

∫ 2π

0
cos(a cos x) dx = 2πJ0(a), J0(z) is the Bessel function.

17.

∫ 2π

0
sin(a cos x) dx = 0.

◮ Integrals over an infinite interval

1.

∫ ∞

0

cos ax√
x

dx =

√
π

2a
, a > 0.
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2.

∫ ∞

0

cos ax− cos bx

x
dx = ln

∣∣∣ b
a

∣∣∣, ab 6= 0.

3.

∫ ∞

0

cos ax− cos bx

x2
dx = 1

2π(b− a), a, b ≥ 0.

4.

∫ ∞

0
xµ−1 cos ax dx = a−µΓ(µ) cos

(
1
2πµ

)
, a > 0, 0 < µ < 1.

5.

∫ ∞

0

cos ax

b2 + x2
dx =

π

2b
e−ab, a, b > 0.

6.

∫ ∞

0

cos ax

b4 + x4
dx =

π
√
2

4b3
exp

(
− ab√

2

)[
cos

(
ab√
2

)
+ sin

( ab√
2

)]
, a, b > 0.

7.

∫ ∞

0

cos ax

(b2 + x2)2
dx =

π

4b3
(1 + ab)e−ab, a, b > 0.

8.

∫ ∞

0

cos ax dx

(b2 + x2)(c2 + x2)
=
π
(
be−ac − ce−ab

)

2bc
(
b2 − c2

) , a, b, c > 0.

9.

∫ ∞

0
cos
(
ax2
)
dx =

1

2

√
π

2a
, a > 0.

10.

∫ ∞

0
cos
(
axp
)
dx =

Γ(1/p)

pa1/p
cos

π

2p
, a > 0, p > 1.

11.

∫ ∞

0

sin ax

x
dx =

π

2
sign a.

12.

∫ ∞

0

sin2 ax

x2
dx =

π

2
|a|.

13.

∫ ∞

0

sin ax√
x

dx =

√
π

2a
, a > 0.

14.

∫ ∞

0
xµ−1 sin ax dx = a−µΓ(µ) sin

(
1
2πµ

)
, a > 0, 0 < µ < 1.

15.

∫ ∞

0
sin
(
ax2
)
dx =

1

2

√
π

2a
, a > 0.

16.

∫ ∞

0
sin
(
axp
)
dx =

Γ(1/p)

pa1/p
sin

π

2p
, a > 0, p > 1.

17.

∫ ∞

0

sinx cos ax

x
dx =





π
2 if |a| < 1,
π
4 if |a| = 1,

0 if 1 < |a|.

18.

∫ ∞

0

tan ax

x
dx =

π

2
sign a.

19.

∫ ∞

0
e−ax sin bx dx =

b

a2 + b2
, a > 0.

20.

∫ ∞

0
e−ax cos bx dx =

a

a2 + b2
, a > 0.

21.

∫ ∞

0
xe−ax sin bx dx =

2ab

(a2 + b2)2
, a > 0.
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22.

∫ ∞

0
xe−ax cos bx dx =

a2 − b2
(a2 + b2)2

, a > 0.

23.

∫ ∞

0
xne−ax sin bx dx = (−1)n ∂n

∂an

(
b

a2 + b2

)
, a > 0, n = 1, 2, . . . .

24.

∫ ∞

0
xne−ax cos bx dx = (−1)n ∂n

∂an

(
a

a2 + b2

)
, a > 0, n = 1, 2, . . . .

25.

∫ ∞

0
exp
(
−ax2

)
cos bx dx =

1

2

√
π

a
exp
(
− b

2

4a

)
, a > 0.

26.

∫ ∞

0
x exp

(
−ax2

)
sin bx dx =

√
π b

4a3/2
exp
(
− b

2

4a

)
, a > 0.

27.

∫ ∞

0
cos(ax2) cos bx dx =

√
π

8a

[
cos

(
b2

4a

)
+ sin

(
b2

4a

)]
, a, b > 0.

28.

∫ ∞

0
cos(ax2) sin bx dx =

√
π

2a

[
cos

(
b2

4a

)
C

(
b2

4a

)
− sin

(
b2

4a

)
S

(
b2

4a

)]
,

a, b > 0 and C(z) and S(z) are Fresnel integrals.

29.

∫ ∞

0
sin(ax2) cos bx dx =

√
π

8a

[
cos

(
b2

4a

)
− sin

(
b2

4a

)]
, a, b > 0.

30.

∫ ∞

0
sin(ax2) sin bx dx =

√
π

2a

[
cos

(
b2

4a

)
C

(
b2

4a

)
+ sin

(
b2

4a

)
S

(
b2

4a

)]
,

a, b > 0 and C(z) and S(z) are Fresnel integrals.

31.

∫ ∞

0

1

x2
sin(ax2) cos bx dx =

bπ

2

[
S

(
b2

4a

)
− C

(
b2

4a

)
+
√
πa sin

(
b2

4a
+
π

4

)]
,

a, b > 0 and C(z) and S(z) are Fresnel integrals.

32.

∫ ∞

0
(cos ax+ sin ax) cos(b2x2) dx =

1

b

√
π

8
exp

(
− a

2

2b

)
, a, b > 0.

33.

∫ ∞

0

(
cos ax+ sin ax

)
sin(b2x2) dx =

1

b

√
π

8
exp
(
− a

2

2b

)
, a, b > 0.

S2.2.6 Integrals Involving Bessel Functions

◮ Integrals over an infinite interval

1.

∫ ∞

0
Jν(ax) dx =

1

a
, a > 0, Re ν > −1.

2.

∫ ∞

0
cos(xu)J0(tu) du =





1√
t2 − x2

if x < t,

0 if x > t.

3.

∫ ∞

0
sin(xu)J0(tu) du =




0 if x < t,

1√
x2 − t2

if x > t.

4.

∫ ∞

0
cos(xu)J1(tu) du =





1

t
if x < t,

− t√
x2 − t2(x+

√
x2 − t2 )

if x > t.
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5.

∫ ∞

0

sin(tu)J0(au)

u2 + b2
du=

sinh(bt)

b
K0(ab), b > 0, 0< t < a, K0(z) is the modified

Bessel function (see Section S4.7).

6.

∫ ∞

0

u sin(tu)J0(au)

u2 + b2
du =

π

2
e−btI0(ab), b > 0, a < t <∞, I0(z) is the modified

Bessel function.

7.

∫ ∞

0

sin(tu)J1(au)

u2 + b2
du =

π

2b
e−btI1(ab), b > 0, a < t <∞, I1(z) is the modified

Bessel function.

8.

∫ ∞

0

u sin(tu)J1(au)

u2 + b2
du= sinh(bt)K1(ab), b> 0, 0<t<a, K1(z) is the modified

Bessel function.

9.

∫ ∞

0

J1(au)√
u2 + b2

du =
1− e−ab

ab
, a > 0, Re b > 0.

◮ Other integrals

1.

∫ 1

0
uJ0(xu) du =

J1(x)

x
.

2.

∫ a

0

J1(bx) dx√
a2 − x2

=
1− cos(ab)

ab
, a > 0.

3.

∫ t

0

uJ0(xu) du√
t2 − u2

=
sin(xt)

x
.

4.

∫ ∞

t

J1(xu) du√
u2 − t2

=
sin(xt)

x
, x > 0, t > 0.

⊙ References for Chapter S2: H. B. Dwight (1961), I. S. Gradshteyn and I. M. Ryzhik (2000), A. P. Prud-

nikov, Yu. A. Brychkov, and O. I. Marichev (1986, 1988), D. Zwillinger (2002), I. N. Bronshtein and K. A. Se-

mendyayev (2004).
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Chapter S3

Tables of Laplace
and Inverse Laplace Transforms

S3.1 Tables of Laplace Transforms

S3.1.1 General Formulas

No Original function, f(x) Laplace transform, f̃(p) =

∫ ∞

0

e−pxf(x) dx

1 af1(x) + bf2(x) af̃1(p) + bf̃2(p)

2 f(x/a), a > 0 af̃(ap)

3

{
0 if 0 < x < a,

f(x− a) if x > a
e−apf̃(p)

4 xnf(x); n = 1, 2, . . . (−1)n
dn

dpn
f̃(p)

5
1

x
f(x)

∫ ∞

p

f̃(q) dq

6 eaxf(x) f̃(p− a)

7 sinh(ax)f(x) 1
2

[
f̃(p− a)− f̃(p+ a)

]

8 cosh(ax)f(x) 1
2

[
f̃(p− a) + f̃(p+ a)

]

9 sin(ωx)f(x) − i
2

[
f̃(p− iω)− f̃(p+ iω)

]
, i2 = −1

10 cos(ωx)f(x) 1
2

[
f̃(p− iω) + f̃(p+ iω)

]
, i2 = −1

11 f(x2)
1√
π

∫ ∞

0

exp

(
− p2

4t2

)
f̃(t2) dt

12 xa−1f
( 1

x

)
, a > −1

∫ ∞

0

(t/p)a/2Ja
(
2
√
pt

)
f̃(t) dt

13 f(a sinhx), a > 0

∫ ∞

0

Jp(at)f̃(t) dt

14
f(x+ a) = f(x)
(periodic function)

1

1− eap

∫ a

0

f(x)e−px dx

15
f(x+ a) = −f(x)
(antiperiodic function)

1

1 + e−ap

∫ a

0

f(x)e−px dx

1331
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No Original function, f(x) Laplace transform, f̃(p) =

∫ ∞

0

e−pxf(x) dx

16 f ′
x(x) pf̃(p)− f(+0)

17 f (n)
x (x) pnf̃(p)−

n∑

k=1

pn−kf (k−1)
x (+0)

18 xmf (n)
x (x), m ≥ n

(
− d

dp

)m[
pnf̃(p)

]

19
dn

dxn

[
xmf(x)

]
, m ≥ n (−1)mpn

dm

dpm
f̃(p)

20

∫ x

0

f(t) dt f̃(p)

p

21

∫ x

0

(x− t)f(t) dt
1

p2
f̃(p)

22

∫ x

0

(x− t)νf(t) dt, ν > −1 Γ(ν + 1)p−ν−1f̃(p)

23

∫ x

0

e−a(x−t)f(t) dt
1

p+ a
f̃(p)

24

∫ x

0

sinh
[
a(x− t)

]
f(t) dt af̃(p)

p2 − a2

25

∫ x

0

sin
[
a(x− t)

]
f(t) dt af̃(p)

p2 + a2

26

∫ x

0

f1(t)f2(x− t) dt f̃1(p)f̃2(p)

27

∫ x

0

1

t
f(t) dt

1

p

∫ ∞

p

f̃(q) dq

28

∫ ∞

x

1

t
f(t) dt

1

p

∫ p

0

f̃(q) dq

29

∫ ∞

0

1√
t
sin

(
2
√
xt

)
f(t) dt

√
π

p
√
p
f̃
( 1

p

)

30
1√
x

∫ ∞

0

cos
(
2
√
xt

)
f(t) dt

√
π√
p
f̃
( 1

p

)

31

∫ ∞

0

1√
πx

exp
(
− t2

4x

)
f(t) dt

1√
p
f̃
(√
p
)

32

∫ ∞

0

t

2
√
πx3

exp
(
− t2

4x

)
f(t) dt f̃

(√
p
)

33 f(x)− a

∫ x

0

f
(√

x2 − t2
)
J1(at) dt f̃

(√
p2 + a2

)

34 f(x) + a

∫ x

0

f
(√

x2 − t2
)
I1(at) dt f̃

(√
p2 − a2

)
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S3.1.2 Expressions with Power-Law Functions

No Original function, f(x) Laplace transform, f̃(p) =

∫ ∞

0

e−pxf(x) dx

1 1
1

p

2

{
0 if 0 < x < a,

1 if a < x < b,
0 if b < x

1

p

(
e−ap − e−bp

)

3 x
1

p2

4
1

x+ a
−eap Ei(−ap)

5 xn, n = 1, 2, . . .
n!

pn+1

6 xn−1/2, n = 1, 2, . . .
1 · 3 . . . (2n− 1)

√
π

2npn+1/2

7
1√
x+ a

√
π

p
eap erfc

(√
ap

)

8

√
x

x+ a

√
π

p
− π

√
aeap erfc

(√
ap

)

9 (x+ a)−3/2 2a−1/2 − 2(πp)1/2eap erfc
(√
ap

)

10 x1/2(x+ a)−1 (π/p)1/2 − πa1/2eap erfc
(√
ap

)

11 x−1/2(x+ a)−1 πa−1/2eap erfc
(√
ap

)

12 xν , ν > −1 Γ(ν + 1)p−ν−1

13 (x+ a)ν , ν > −1 p−ν−1e−apΓ(ν + 1, ap)

14 xν(x+ a)−1, ν > −1 keapΓ(−ν, ap), k = aνΓ(ν + 1)

15 (x2 + 2ax)−1/2(x+ a) aeapK1(ap)

S3.1.3 Expressions with Exponential Functions

No Original function, f(x) Laplace transform, f̃(p) =

∫ ∞

0

e−pxf(x) dx

1 e−ax (p+ a)−1

2 xe−ax (p+ a)−2

3 xν−1e−ax, ν > 0 Γ(ν)(p+ a)−ν

4
1

x

(
e−ax − e−bx) ln(p+ b)− ln(p+ a)

5
1

x2

(
1− e−ax

)2
(p+ 2a) ln(p+ 2a) + p ln p− 2(p+ a) ln(p+ a)

6 exp
(
−ax2), a > 0 (πb)1/2 exp

(
bp2

)
erfc(p

√
b ), a =

1

4b

7 x exp
(
−ax2

)
2b − 2π1/2b3/2p erfc(p

√
b ), a =

1

4b

8 exp(−a/x), a ≥ 0 2
√
a/pK1

(
2
√
ap

)

9
√
x exp(−a/x), a ≥ 0 1

2

√
π/p3

(
1 + 2

√
ap

)
exp

(
−2

√
ap

)

10
1√
x
exp(−a/x), a ≥ 0

√
π/p exp

(
−2

√
ap

)
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No Original function, f(x) Laplace transform, f̃(p) =

∫ ∞

0

e−pxf(x) dx

11
1

x
√
x
exp(−a/x), a > 0

√
π/a exp

(
−2

√
ap

)

12 xν−1 exp(−a/x), a > 0 2(a/p)ν/2Kν

(
2
√
ap

)

13 exp
(
−2

√
ax

)
p−1 − (πa)1/2p−3/2ea/p erfc

(√
a/p

)

14
1√
x
exp

(
−2

√
ax

)
(π/p)1/2ea/p erfc

(√
a/p

)

S3.1.4 Expressions with Hyperbolic Functions

No Original function, f(x) Laplace transform, f̃(p) =

∫ ∞

0

e−pxf(x) dx

1 sinh(ax)
a

p2 − a2

2 sinh
2(ax)

2a2

p3 − 4a2p

3
1

x
sinh(ax)

1

2
ln
p+ a

p− a

4 xν−1
sinh(ax), ν > −1 1

2
Γ(ν)

[
(p− a)−ν − (p+ a)−ν]

5 sinh
(
2
√
ax

) √
πa

p
√
p
ea/p

6
√
x sinh

(
2
√
ax

)
π1/2p−5/2( 1

2
p+ a

)
ea/p erf

(√
a/p

)
− a1/2p−2

7
1√
x

sinh
(
2
√
ax

)
π1/2p−1/2ea/p erf

(√
a/p

)

8
1√
x

sinh
2
(√
ax

)
1
2
π1/2p−1/2

(
ea/p − 1

)

9 cosh(ax)
p

p2 − a2

10 cosh
2(ax)

p2 − 2a2

p3 − 4a2p

11 xν−1
cosh(ax), ν > 0 1

2
Γ(ν)

[
(p− a)−ν + (p+ a)−ν]

12 cosh
(
2
√
ax

) 1

p
+

√
πa

p
√
p
ea/p erf

(√
a/p

)

13
√
x cosh

(
2
√
ax

)
π1/2p−5/2( 1

2
p+ a

)
ea/p

14
1√
x

cosh
(
2
√
ax

)
π1/2p−1/2ea/p

15
1√
x

cosh
2(√ax

)
1
2
π1/2p−1/2

(
ea/p + 1

)
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S3.1.5 Expressions with Logarithmic Functions

No Original function, f(x) Laplace transform, f̃(p) =

∫ ∞

0

e−pxf(x) dx

1 ln x
− 1

p
(ln p+ C),

C = 0.5772 . . . is the Euler constant

2 ln(1 + ax) − 1

p
ep/a Ei(−p/a)

3 ln(x+ a)
1

p

[
ln a− eap Ei(−ap)

]

4 xn lnx, n = 1, 2, . . .

n!

pn+1

(
1 + 1

2
+ 1

3
+ · · ·+ 1

n
− ln p− C

)
,

C = 0.5772 . . . is the Euler constant

5
1√
x
lnx −

√
π/p

[
ln(4p) + C

]

6 xn−1/2 ln x, n = 1, 2, . . .

kn
pn+1/2

[
2 + 2

3
+ 2

5
+ · · ·+ 2

2n−1
− ln(4p)− C

]
,

kn = 1 · 3 · 5 . . . (2n− 1)

√
π

2n
, C = 0.5772 . . .

7 xν−1 ln x, ν > 0
Γ(ν)p−ν

[
ψ(ν)− ln p

]
,

ψ(ν) is the logarithmic derivative of the gamma function

8 (ln x)2
1

p

[
(ln x+ C)2 + 1

6
π2

]
, C = 0.5772 . . .

9 e−ax ln x − ln(p+ a) + C
p+ a

, C = 0.5772 . . .

S3.1.6 Expressions with Trigonometric Functions

No Original function, f(x) Laplace transform, f̃(p) =

∫ ∞

0

e−pxf(x) dx

1 sin(ax)
a

p2 + a2

2 |sin(ax)|, a > 0
a

p2 + a2
coth

( πp
2a

)

3 sin2n(ax), n = 1, 2, . . .
a2n(2n)!

p
[
p2 + (2a)2

][
p2 + (4a)2

]
. . .

[
p2 + (2na)2

]

4 sin2n+1(ax), n = 1, 2, . . .
a2n+1(2n+ 1)![

p2 + a2
][
p2 + 32a2

]
. . .

[
p2 + (2n+ 1)2a2

]

5 xn sin(ax), n = 1, 2, . . .
n! pn+1

(
p2 + a2

)n+1

∑

0≤2k≤n

(−1)kC2k+1
n+1

( a
p

)2k+1

6
1

x
sin(ax) arctan

( a
p

)

7
1

x
sin2(ax) 1

4
ln
(
1 + 4a2p−2)
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No Original function, f(x) Laplace transform, f̃(p) =

∫ ∞

0

e−pxf(x) dx

8
1

x2
sin2(ax) a arctan(2a/p)− 1

4
p ln

(
1 + 4a2p−2

)

9 sin
(
2
√
ax

) √
πa

p
√
p
e−a/p

10
1

x
sin

(
2
√
ax

)
π erf

(√
a/p

)

11 cos(ax)
p

p2 + a2

12 cos2(ax)
p2 + 2a2

p
(
p2 + 4a2

)

13 xn cos(ax), n = 1, 2, . . .
n! pn+1

(
p2 + a2

)n+1

∑

0≤2k≤n+1

(−1)kC2k
n+1

( a
p

)2k

14
1

x

[
1− cos(ax)

]
1
2
ln
(
1 + a2p−2)

15
1

x

[
cos(ax)− cos(bx)

] 1

2
ln
p2 + b2

p2 + a2

16
√
x cos

(
2
√
ax

)
1
2
π1/2p−5/2(p− 2a)e−a/p

17
1√
x
cos

(
2
√
ax

) √
π/p e−a/p

18 sin(ax) sin(bx)
2abp[

p2 + (a+ b)2
][
p2 + (a− b)2

]

19 cos(ax) sin(bx)
b
(
p2 − a2 + b2

)
[
p2 + (a+ b)2

][
p2 + (a− b)2

]

20 cos(ax) cos(bx)
p
(
p2 + a2 + b2

)
[
p2 + (a+ b)2

][
p2 + (a− b)2

]

21
ax cos(ax)− sin(ax)

x2
p arctan

a

x
− a

22 ebx sin(ax)
a

(p− b)2 + a2

23 ebx cos(ax)
p− b

(p− b)2 + a2

24 sin(ax) sinh(ax)
2a2p

p4 + 4a4

25 sin(ax) cosh(ax)
a
(
p2 + 2a2

)

p4 + 4a4

26 cos(ax) sinh(ax)
a
(
p2 − 2a2

)

p4 + 4a4

27 cos(ax) cosh(ax)
p3

p4 + 4a4
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S3.1.7 Expressions with Special Functions

No Original function, f(x) Laplace transform, f̃(p) =

∫ ∞

0

e−pxf(x) dx

1 erf(ax)
1

p
exp

(
b2p2

)
erfc(bp), b =

1

2a

2 erf
(√
ax

) √
a

p
√
p+ a

3 eax erf
(√
ax

) √
a√

p (p− a)

4 erf
(
1
2

√
a/x

) 1

p

[
1− exp

(
−√

ap
)]

5 erfc
(√
ax

) √
p+ a−√

a

p
√
p+ a

6 eax erfc
(√
ax

) 1

p+
√
ap

7 erfc
(
1
2

√
a/x

) 1

p
exp

(
−√

ap
)

8 Ci(x)
1

2p
ln(p2 + 1)

9 Si(x)
1

p
arccot p

10 Ei(−x) − 1

p
ln(p+ 1)

11 J0(ax)
1√

p2 + a2

12 Jν(ax), ν > −1
aν√

p2 + a2
(
p+

√
p2 + a2

)ν

13 xnJn(ax), n = 1, 2, . . . 1 · 3 · 5 . . . (2n− 1)an
(
p2 + a2

)−n−1/2

14 xνJν(ax), ν > − 1
2 2νπ−1/2Γ

(
ν + 1

2

)
aν

(
p2 + a2

)−ν−1/2

15 xν+1Jν(ax), ν > −1 2ν+1π−1/2Γ
(
ν + 3

2

)
aνp

(
p2 + a2

)−ν−3/2

16 J0
(
2
√
ax

) 1

p
e−a/p

17
√
xJ1

(
2
√
ax

) √
a

p2
e−a/p

18 xν/2Jν
(
2
√
ax

)
, ν > −1 aν/2p−ν−1e−a/p

19 I0(ax)
1√

p2 − a2

20 Iν(ax), ν > −1
aν√

p2 − a2
(
p+

√
p2 − a2

)ν

21 xνIν(ax), ν > − 1
2 2νπ−1/2Γ

(
ν + 1

2

)
aν

(
p2 − a2

)−ν−1/2

22 xν+1Iν(ax), ν > −1 2ν+1π−1/2Γ
(
ν + 3

2

)
aνp

(
p2 − a2

)−ν−3/2
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No Original function, f(x) Laplace transform, f̃(p) =

∫ ∞

0

e−pxf(x) dx

23 I0
(
2
√
ax

) 1

p
ea/p

24
1√
x
I1
(
2
√
ax

) 1√
a

(
ea/p − 1

)

25 xν/2Iν
(
2
√
ax

)
, ν > −1 aν/2p−ν−1ea/p

26 Y0(ax) − 2

π

arcsinh(p/a)√
p2 + a2

27 K0(ax)
ln
(
p+

√
p2 − a2

)
− ln a

√
p2 − a2

⊙ Literature for Section S3.1: G. Doetsch (1950, 1956, 1958), H. Bateman and A. Erdélyi (1954), V. A.

Ditkin and A. P. Prudnikov (1965), F. Oberhettinger and L. Badii (1973), A. P. Prudnikov, Yu. A. Brychkov,

and O. I. Marichev (1992, Vol. 4).

S3.2 Tables of Inverse Laplace Transforms

S3.2.1 General Formulas

No Laplace transform, f̃(p) Inverse transform, f(x) =
1

2πi

∫ c+i∞

c−i∞
epxf̃(p) dp

1 f̃(p+ a) e−axf(x)

2 f̃(ap), a > 0
1

a
f
( x
a

)

3 f̃(ap+ b), a > 0
1

a
exp

(
− b

a
x
)
f
( x
a

)

4 f̃(p− a) + f̃(p+ a) 2f(x) cosh(ax)

5 f̃(p− a)− f̃(p+ a) 2f(x) sinh(ax)

6 e−apf̃(p), a ≥ 0

{
0 if 0 ≤ x < a,

f(x− a) if a < x.

7 pf̃(p)
df(x)

dx
if f(+0) = 0

8
1

p
f̃(p)

∫ x

0

f(t) dt

9
1

p+ a
f̃(p) e−ax

∫ x

0

eatf(t) dt

10
1

p2
f̃(p)

∫ x

0

(x− t)f(t) dt

11
f̃(p)

p(p+ a)

1

a

∫ x

0

[
1− ea(x−t)]f(t) dt

12
f̃(p)

(p+ a)2

∫ x

0

(x− t)e−a(x−t)f(t) dt

13
f̃(p)

(p+ a)(p+ b)

1

b − a

∫ x

0

[
e−a(x−t) − e−b(x−t)

]
f(t) dt
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No Laplace transform, f̃(p) Inverse transform, f(x) =
1

2πi

∫ c+i∞

c−i∞
epxf̃(p) dp

14
f̃(p)

(p+ a)2 + b2
1

b

∫ x

0

e−a(x−t) sin
[
b(x− t)

]
f(t) dt

15
1

pn
f̃(p), n = 1, 2, . . .

1

(n− 1)!

∫ x

0

(x− t)n−1f(t) dt

16 f̃1(p)f̃2(p)

∫ x

0

f1(t)f2(x− t) dt

17
1√
p
f̃
( 1

p

) ∫ ∞

0

cos
(
2
√
xt

)
√
πx

f(t) dt

18
1

p
√
p
f̃
( 1

p

) ∫ ∞

0

sin
(
2
√
xt

)
√
πt

f(t) dt

19
1

p2ν+1
f̃
( 1

p

) ∫ ∞

0

(x/t)νJ2ν
(
2
√
xt

)
f(t) dt

20
1

p
f̃
( 1

p

) ∫ ∞

0

J0
(
2
√
xt

)
f(t) dt

21
1

p
f̃
(
p+

1

p

) ∫ x

0

J0
(
2
√
xt− t2

)
f(t) dt

22
1

p2ν+1
f̃
(
p+

a

p

)
, − 1

2
< ν ≤ 0

∫ x

0

( x− t

at

)ν

J2ν
(
2
√
axt− at2

)
f(t) dt

23 f̃
(√
p
) ∫ ∞

0

t

2
√
πx3

exp
(
− t2

4x

)
f(t) dt

24
1√
p
f̃
(√
p
) 1√

πx

∫ ∞

0

exp
(
− t2

4x

)
f(t) dt

25 f̃
(
p+

√
p
) 1

2
√
π

∫ x

0

t

(x− t)3/2
exp

[
− t2

4(x − t)

]
f(t) dt

26 f̃
(√

p2 + a2
)

f(x)− a

∫ x

0

f
(√

x2 − t2
)
J1(at) dt

27 f̃
(√

p2 − a2
)

f(x) + a

∫ x

0

f
(√

x2 − t2
)
I1(at) dt

28
f̃
(√

p2 + a2
)

√
p2 + a2

∫ x

0

J0
(
a
√
x2 − t2

)
f(t) dt

29
f̃
(√

p2 − a2
)

√
p2 − a2

∫ x

0

I0
(
a
√
x2 − t2

)
f(t) dt

30 f̃
(√

(p+ a)2 − b2
)

e−axf(x) + be−ax

∫ x

0

f
(√

x2 − t2
)
I1(bt) dt

31 f̃(ln p)

∫ ∞

0

xt−1

Γ(t)
f(t) dt

32
1

p
f̃(ln p)

∫ ∞

0

xt

Γ(t+ 1)
f(t) dt

33 f̃(p− ia) + f̃(p+ ia), i2 = −1 2f(x) cos(ax)

34 i
[
f̃(p− ia)− f̃(p+ ia)

]
, i2 = −1 2f(x) sin(ax)

35
df̃(p)

dp
−xf(x)
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No Laplace transform, f̃(p) Inverse transform, f(x) =
1

2πi

∫ c+i∞

c−i∞
epxf̃(p) dp

36
dnf̃(p)

dpn
(−x)nf(x)

37 pn
dmf̃(p)

dpm
, m ≥ n (−1)m

dn

dxn

[
xmf(x)

]

38

∫ ∞

p

f̃(q) dq
1

x
f(x)

39
1

p

∫ p

0

f̃(q) dq

∫ ∞

x

f(t)

t
dt

40
1

p

∫ ∞

p

f̃(q) dq

∫ x

0

f(t)

t
dt

S3.2.2 Expressions with Rational Functions

No Laplace transform, f̃(p) Inverse transform, f(x) =
1

2πi

∫ c+i∞

c−i∞
epxf̃(p) dp

1
1

p
1

2
1

p+ a
e−ax

3
1

p2
x

4
1

p(p+ a)
1

a

(
1− e−ax)

5
1

(p+ a)2
xe−ax

6
p

(p+ a)2 (1− ax)e−ax

7
1

p2 − a2
1

a
sinh(ax)

8
p

p2 − a2
cosh(ax)

9
1

(p+ a)(p+ b)
1

a− b

(
e−bx − e−ax)

10
p

(p+ a)(p+ b)
1

a− b

(
ae−ax − be−bx

)

11
1

p2 + a2
1

a
sin(ax)

12
p

p2 + a2
cos(ax)

13
1

(p+ b)2 + a2
1

a
e−bx sin(ax)

14
p

(p+ b)2 + a2 e−bx
[
cos(ax)− b

a
sin(ax)

]

15
1

p3
1
2
x2

16
1

p2(p+ a)
1

a2
(
e−ax + ax− 1

)

17
1

p(p+ a)(p+ b)

1

ab(a− b)

(
a− b+ be−ax − ae−bx)

18
1

p(p+ a)2
1

a2
(
1− e−ax − axe−ax)

19
1

(p+ a)(p+ b)(p+ c)
(c− b)e−ax + (a− c)e−bx + (b− a)e−cx

(a− b)(b− c)(c− a)
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No Laplace transform, f̃(p) Inverse transform, f(x) =
1

2πi

∫ c+i∞

c−i∞
epxf̃(p) dp

20
p

(p+ a)(p+ b)(p+ c)
a(b− c)e−ax + b(c− a)e−bx + c(a− b)e−cx

(a− b)(b− c)(c− a)

21
p2

(p+ a)(p+ b)(p+ c)

a2(c− b)e−ax + b2(a− c)e−bx + c2(b− a)e−cx

(a− b)(b− c)(c− a)

22
1

(p+ a)(p+ b)2
1

(a− b)2
[
e−ax − e−bx + (a− b)xe−bx

]

23
p

(p+ a)(p+ b)2
1

(a− b)2
{
−ae−ax + [a+ b(b− a)x

]
e−bx}

24
p2

(p+ a)(p+ b)2
1

(a− b)2
[
a2e−ax + b(b− 2a − b2x+ abx)e−bx

]

25
1

(p+ a)3
1
2
x2e−ax

26
p

(p+ a)3 x
(
1− 1

2
ax

)
e−ax

27
p2

(p+ a)3
(
1− 2ax+ 1

2
a2x2)e−ax

28
1

p(p2 + a2)
1

a2
[
1− cos(ax)

]

29
1

p
[
(p+ b)2 + a2

] 1

a2 + b2

{
1− e−bx

[
cos(ax) +

b

a
sin(ax)

]}

30
1

(p+ a)(p2 + b2)
1

a2 + b2

[
e−ax +

a

b
sin(bx)− cos(bx)

]

31
p

(p+ a)(p2 + b2)
1

a2 + b2
[
−ae−ax + a cos(bx) + b sin(bx)

]

32
p2

(p+ a)(p2 + b2)

1

a2 + b2
[
a2e−ax − ab sin(bx) + b2 cos(bx)

]

33
1

p3 + a3

e−ax − eax/2

3a2
[
cos(kx)−

√
3 sin(kx)

]
,

k = 1
2
a
√
3

34
p

p3 + a3
− e−ax − eax/2

3a

[
cos(kx) +

√
3 sin(kx)

]
,

k = 1
2
a
√
3

35
p2

p3 + a3
1
3
e−ax + 2

3
eax/2 cos(kx), k = 1

2
a
√
3

36
1(

p+ a)
[
(p+ b)2 + c2]

e−ax − e−bx cos(cx) + ke−bx sin(cx)

(a− b)2 + c2
,

k =
a− b

c

37
p(

p+ a)
[
(p+ b)2 + c2]

−ae−ax + ae−bx cos(cx) + ke−bx sin(cx)

(a− b)2 + c2
,

k =
b2 + c2 − ab

c
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No Laplace transform, f̃(p) Inverse transform, f(x) =
1

2πi

∫ c+i∞

c−i∞
epxf̃(p) dp

38
p2(

p+ a)
[
(p+ b)2 + c2]

a2e−ax+(b2+c2−2ab)e−bx cos(cx)+ke−bx sin(cx)

(a−b)2+c2 ,

k = −ac− bc+
ab2 − b3

c

39
1

p4
1
6
x3

40
1

p3(p+ a)
1

a3
− 1

a2
x+

1

2a
x2 − 1

a3
e−ax

41
1

p2(p+ a)2
1

a2
x
(
1 + e−ax)+ 2

a3
(
e−ax − 1

)

42
1

p2(p+ a)(p+ b)
− a+ b

a2b2
+

1

ab
x+

1

a2(b− a)
e−ax +

1

b2(a− b)
e−bx

43
1

(p+ a)2(p+ b)2
1

(a− b)2

[
e−ax

(
x+

2

a− b

)
+ e−bx

(
x− 2

a− b

)]

44
1

(p+ a)4
1
6 x

3e−ax

45
p

(p+ a)4
1
2
x2e−ax − 1

6
ax3e−ax

46
1

p2(p2 + a2)
1

a3
[
ax− sin(ax)

]

47
1

p4 − a4
1

2a3
[
sinh(ax)− sin(ax)

]

48
p

p4 − a4
1

2a2
[
cosh(ax)− cos(ax)

]

49
p2

p4 − a4
1

2a

[
sinh(ax) + sin(ax)

]

50
p3

p4 − a4
1

2

[
cosh(ax) + cos(ax)

]

51
1

p4 + a4
1

a3
√
2

(
cosh ξ sin ξ − sinh ξ cos ξ

)
, ξ =

ax√
2

52
p

p4 + a4
1

a2
sin

( ax√
2

)
sinh

( ax√
2

)

53
p2

p4 + a4
1

a
√
2

(
cos ξ sinh ξ + sin ξ cosh ξ

)
, ξ =

ax√
2

54
1

(p2 + a2)2
1

2a3
[
sin(ax)− ax cos(ax)

]

55
p

(p2 + a2)2
1

2a
x sin(ax)

56
p2

(p2 + a2)2
1

2a

[
sin(ax) + ax cos(ax)

]

57
p3

(p2 + a2)2
cos(ax)− 1

2
ax sin(ax)

58
1

[(p+ b)2 + a2]2
1

2a3
e−bx[sin(ax)− ax cos(ax)

]

59
1

(p2 − a2)(p2 − b2)
1

a2 − b2

[ 1
a

sinh(ax)− 1

b
sinh(bx)

]
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No Laplace transform, f̃(p) Inverse transform, f(x) =
1

2πi

∫ c+i∞

c−i∞
epxf̃(p) dp

60
p

(p2 − a2)(p2 − b2)
cosh(ax)− cosh(bx)

a2 − b2

61
p2

(p2 − a2)(p2 − b2)

a sinh(ax)− b sinh(bx)

a2 − b2

62
p3

(p2 − a2)(p2 − b2)

a2 cosh(ax)− b2 cosh(bx)

a2 − b2

63
1

(p2 + a2)(p2 + b2)

1

b2 − a2

[ 1
a
sin(ax)− 1

b
sin(bx)

]

64
p

(p2 + a2)(p2 + b2)
cos(ax)− cos(bx)

b2 − a2

65
p2

(p2 + a2)(p2 + b2)

−a sin(ax) + b sin(bx)

b2 − a2

66
p3

(p2 + a2)(p2 + b2)
−a2 cos(ax) + b2 cos(bx)

b2 − a2

67
1

pn
, n = 1, 2, . . .

1

(n− 1)!
xn−1

68
1

(p+ a)n
, n = 1, 2, . . .

1

(n− 1)!
xn−1e−ax

69
1

p(p+ a)n
, n = 1, 2, . . .

a−n[1− e−axen(ax)
]
,

en(z) = 1 +
z

1!
+ · · ·+ zn

n!

70
1

p2n + a2n
, n = 1, 2, . . .

− 1

na2n

n∑

k=1

exp(akx)
[
ak cos(bkx)− bk sin(bkx)

]
,

ak = a cosϕk, bk = a sinϕk, ϕk =
π(2k − 1)

2n

71
1

p2n − a2n
, n = 1, 2, . . .

1

na2n−1
sinh(ax) +

1

na2n

n∑

k=2

exp(akx)

×
[
ak cos(bkx)− bk sin(bkx)

]
,

ak = a cosϕk, bk = a sinϕk, ϕk =
π(k − 1)

n

72
1

p2n+1 + a2n+1
, n = 0, 1, . . .

e−ax

(2n+ 1)a2n
− 2

(2n+ 1)a2n+1

n∑

k=1

exp(akx)

×
[
ak cos(bkx)− bk sin(bkx)

]
,

ak = a cosϕk, bk = a sinϕk, ϕk =
π(2k − 1)

2n+ 1

73
1

p2n+1 − a2n+1
, n = 0, 1, . . .

eax

(2n+ 1)a2n
+

2

(2n+ 1)a2n+1

n∑

k=1

exp(akx)

×
[
ak cos(bkx)− bk sin(bkx)

]
,

ak = a cosϕk, bk = a sinϕk, ϕk =
2πk

2n+ 1

74

Q(p)

P (p)
,

P (p) = (p− a1) . . . (p− an);
Q(p) is a polynomial of degree

≤ n− 1; ai 6= aj if i 6= j

n∑

k=1

Q(ak)

P ′(ak)
exp

(
akx

)

(prime stands for differentiation)
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No Laplace transform, f̃(p) Inverse transform, f(x) =
1

2πi

∫ c+i∞

c−i∞
epxf̃(p) dp

75

Q(p)

P (p)
,

P (p) = (p− a1)
m1 . . . (p− an)

mn ;
Q(p) is a polynomial of degree

< m1 +m2 + · · ·+mn − 1;
ai 6= aj if i 6= j

n∑

k=1

mk∑

l=1

Φkl(ak)

(mk − l)! (l − 1)!
xmk−l exp

(
akx

)
,

Φkl(p) =
dl−1

dpl−1

[
Q(p)

Pk(p)

]
, Pk(p) =

P (p)

(p− ak)mk

76

Q(p) + pR(p)

P (p)
,

P (p) = (p2 + a21) . . . (p
2 + a2n);

Q(p) and R(p) are polynomials

of degree ≤ 2n− 2; al 6= aj , l 6= j

n∑

k=1

Q(iak) sin(akx) + akR(iak) cos(akx)

akPk(iak)
,

Pm(p) =
P (p)

p2 + a2m
, i2 = −1

S3.2.3 Expressions with Square Roots

No Laplace transform, f̃(p) Inverse transform, f(x) =
1

2πi

∫ c+i∞

c−i∞
epxf̃(p) dp

1
1√
p

1√
πx

2
√
p− a−

√
p− b

ebx − eax

2
√
πx3

3
1√
p+ a

1√
πx

e−ax

4

√
p+ a

p
− 1 1

2
ae−ax/2[I1

(
1
2
ax

)
+ I0

(
1
2
ax

)]

5

√
p+ a

p+ b

e−ax

√
πx

+ (a− b)1/2e−bx
erf

[
(a− b)1/2x1/2]

6
1

p
√
p 2

√
x

π

7
1

(p+ a)
√
p+ b

(b− a)−1/2e−ax
erf

[
(b− a)1/2x1/2

]

8
1√

p (p− a)

1√
a
eax erf

(√
ax

)

9
1

p3/2(p− a)
a−3/2eax erf

(√
ax

)
− 2a−1π−1/2x1/2

10
1√
p+ a π−1/2x−1/2 − aea

2x
erfc

(
a
√
x
)

11
a

p
(√
p+ a

) 1− ea
2x

erfc
(
a
√
x
)

12
1

p+ a
√
p ea

2x
erfc

(
a
√
x
)

13
1

(√
p+

√
a
)2 1− 2√

π
(ax)1/2 + (1− 2ax)eax

[
erf

(√
ax

)
− 1

]

14
1

p
(√
p+

√
a
)2

1

a
+

(
2x− 1

a

)
eax erfc

(√
ax

)
− 2√

πa

√
x
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No Laplace transform, f̃(p) Inverse transform, f(x) =
1

2πi

∫ c+i∞

c−i∞
epxf̃(p) dp

15
1

√
p
(√
p+ a

)2 2π−1/2x1/2 − 2axea
2x

erfc
(
a
√
x
)

16
1

(√
p+ a

)3
2√
π
(a2x+ 1)

√
x− ax(2a2x+ 3)ea

2x
erfc

(
a
√
x
)

17 p−n−1/2, n = 1, 2, . . .
2n

1 · 3 . . . (2n− 1)
√
π
xn−1/2

18 (p+ a)−n−1/2 2n

1 · 3 . . . (2n− 1)
√
π
xn−1/2e−ax

19
1√

p2 + a2
J0(ax)

20
1√

p2 − a2
I0(ax)

21
1√

p2 + ap+ b
exp

(
− 1

2
ax

)
J0

[
(b− 1

4
a2

)1/2
x
]

22
(√

p2 + a2 − p
)1/2 1√

2πx3
sin(ax)

23
1√

p2 + a2

(√
p2 + a2 + p

)1/2 √
2√
πx

cos(ax)

24
1√

p2 − a2

(√
p2 − a2 + p

)1/2 √
2√
πx

cosh(ax)

25
(√

p2 + a2 + p
)−n

na−nx−1Jn(ax)

26
(√

p2 − a2 + p
)−n

na−nx−1In(ax)

27
(
p2 + a2

)−n−1/2 (x/a)nJn(ax)

1 · 3 · 5 . . . (2n− 1)

28
(
p2 − a2

)−n−1/2 (x/a)nIn(ax)

1 · 3 · 5 . . . (2n− 1)

S3.2.4 Expressions with Arbitrary Powers

No Laplace transform, f̃(p) Inverse transform, f(x) =
1

2πi

∫ c+i∞

c−i∞
epxf̃(p) dp

1 (p+ a)−ν , ν > 0
1

Γ(ν)
xν−1e−ax

2
[
(p+ a)1/2 + (p+ b)1/2

]−2ν
, ν > 0

ν

(a− b)ν
x−1 exp

[
− 1

2
(a+ b)x

]
Iν
[
1
2
(a− b)x

]

3
[
(p+ a)(p+ b)

]−ν
, ν > 0

√
π

Γ(ν)

( x

a− b

)ν−1/2

exp
(
− a+ b

2
x
)
Iν−1/2

( a− b

2
x
)

4
(
p2 + a2

)−ν−1/2
, ν > − 1

2

√
π

(2a)νΓ(ν + 1
2
)
xνJν(ax)

5
(
p2 − a2

)−ν−1/2
, ν > − 1

2

√
π

(2a)νΓ(ν + 1
2
)
xνIν(ax)

6 p
(
p2 + a2

)−ν−1/2
, ν > 0

a
√
π

(2a)νΓ
(
ν + 1

2

) xνJν−1(ax)
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No Laplace transform, f̃(p) Inverse transform, f(x) =
1

2πi

∫ c+i∞

c−i∞
epxf̃(p) dp

7 p
(
p2 − a2

)−ν−1/2
, ν > 0

a
√
π

(2a)νΓ
(
ν + 1

2

) xνIν−1(ax)

8

[
(p2 + a2)1/2 + p

]−ν
=

a−2ν
[
(p2 + a2)1/2 − p

]ν
, ν > 0

νa−νx−1Jν(ax)

9

[
(p2 − a2)1/2 + p

]−ν
=

a−2ν[p− (p2 − a2)1/2
]ν
, ν > 0

νa−νx−1Iν(ax)

10 p
[
(p2 + a2)1/2 + p

]−ν
, ν > 1 νa1−νx−1Jν−1(ax)− ν(ν + 1)a−νx−2Jν(ax)

11 p
[
(p2 − a2)1/2 + p

]−ν
, ν > 1 νa1−νx−1Iν−1(ax)− ν(ν + 1)a−νx−2Iν(ax)

12

(√
p2 + a2 + p

)−ν

√
p2 + a2

, ν > −1 a−νJν(ax)

13

(√
p2 − a2 + p

)−ν

√
p2 − a2

, ν > −1 a−νIν(ax)

S3.2.5 Expressions with Exponential Functions

No Laplace transform, f̃(p) Inverse transform, f(x) =
1

2πi

∫ c+i∞

c−i∞
epxf̃(p) dp

1 p−1e−ap, a > 0
{
0 if 0 < x < a,

1 if a < x

2 p−1
(
1− e−ap

)
, a > 0

{
1 if 0 < x < a,

0 if a < x

3 p−1(e−ap − e−bp), 0 ≤ a < b

{
0 if 0 < x < a,

1 if a < x < b,
0 if b < x

4 p−2(e−ap − e−bp), 0 ≤ a < b

{
0 if 0 < x < a,

x− a if a < x < b,
b− a if b < x

5 (p+ b)−1e−ap, a > 0
{
0 if 0 < x < a,

e−b(x−a) if a < x

6 p−νe−ap, ν > 0





0 if 0 < x < a,
(x− a)ν−1

Γ(ν)
if a < x

7 p−1(eap − 1
)−1

, a > 0 f(x) = n if na < x < (n+ 1)a; n = 0, 1, 2, . . .

8 ea/p − 1

√
a

x
I1
(
2
√
ax

)

9 p−1/2ea/p
1√
πx

cosh
(
2
√
ax

)

10 p−3/2ea/p
1√
πa

sinh
(
2
√
ax

)

11 p−5/2ea/p
√

x

πa
cosh

(
2
√
ax

)
− 1

2
√
πa3

sinh
(
2
√
ax

)

12 p−ν−1ea/p, ν > −1 (x/a)ν/2Iν(2
√
ax

)

13 1− e−a/p

√
a

x
J1

(
2
√
ax

)
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No Laplace transform, f̃(p) Inverse transform, f(x) =
1

2πi

∫ c+i∞

c−i∞
epxf̃(p) dp

14 p−1/2e−a/p 1√
πx

cos
(
2
√
ax

)

15 p−3/2e−a/p 1√
πa

sin
(
2
√
ax

)

16 p−5/2e−a/p 1

2
√
πa3

sin
(
2
√
ax

)
−

√
x

πa
cos

(
2
√
ax

)

17 p−ν−1e−a/p, ν > −1 (x/a)ν/2Jν(2
√
ax

)

18 exp
(
−√

ap
)
, a > 0

√
a

2
√
π
x−3/2 exp

(
− a

4x

)

19 p exp
(
−√

ap
)
, a > 0

√
a

8
√
π
(a− 6x)x−7/2 exp

(
− a

4x

)

20
1

p
exp

(
−√

ap
)
, a ≥ 0 erfc

( √
a

2
√
x

)

21
√
p exp

(
−√

ap
)
, a > 0

1

4
√
π
(a− 2x)x−5/2 exp

(
− a

4x

)

22
1√
p
exp

(
−√

ap
)
, a ≥ 0

1√
πx

exp
(
− a

4x

)

23
1

p
√
p
exp

(
−√

ap
)
, a ≥ 0

2
√
x√
π

exp
(
− a

4x

)
−

√
a erfc

( √
a

2
√
x

)

24
exp

(
−k

√
p2 + a2

)
√
p2 + a2

, k > 0

{
0 if 0 < x < k,

J0
(
a
√
x2 − k2

)
if k < x

25
exp

(
−k

√
p2 − a2

)
√
p2 − a2

, k > 0

{
0 if 0 < x < k,

I0
(
a
√
x2 − k2

)
if k < x

S3.2.6 Expressions with Hyperbolic Functions

No Laplace transform, f̃(p) Inverse transform, f(x) =
1

2πi

∫ c+i∞

c−i∞
epxf̃(p) dp

1
1

p sinh(ap)
, a > 0

f(x) = 2n if a(2n− 1) < x < a(2n+ 1);
n = 0, 1, 2, . . . (x > 0)

2
1

p2 sinh(ap)
, a > 0

f(x) = 2n(x − an) if a(2n− 1) < x < a(2n+ 1);
n = 0, 1, 2, . . . (x > 0)

3
sinh(a/p)√

p

1

2
√
πx

[
cosh

(
2
√
ax

)
− cos

(
2
√
ax

)]

4
sinh(a/p)

p
√
p

1

2
√
πa

[
sinh

(
2
√
ax

)
− sin

(
2
√
ax

)]

5 p−ν−1
sinh(a/p), ν > −2 1

2
(x/a)ν/2

[
Iν
(
2
√
ax

)
− Jν

(
2
√
ax

)]

6
1

p cosh(ap)
, a > 0

f(x) =

{
0 if a(4n− 1) < x < a(4n+ 1),
2 if a(4n+ 1) < x < a(4n+ 3),

n = 0, 1, 2, . . . (x > 0)

7
1

p2 cosh(ap)
, a > 0

x− (−1)n(x− 2an) if 2n− 1 < x/a < 2n+ 1;
n = 0, 1, 2, . . . (x > 0)
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No Laplace transform, f̃(p) Inverse transform, f(x) =
1

2πi

∫ c+i∞

c−i∞
epxf̃(p) dp

8
cosh(a/p)√

p

1

2
√
πx

[
cosh

(
2
√
ax

)
+ cos

(
2
√
ax

)]

9
cosh(a/p)

p
√
p

1

2
√
πa

[
sinh

(
2
√
ax

)
+ sin

(
2
√
ax

)]

10 p−ν−1
cosh(a/p), ν > −1 1

2
(x/a)ν/2

[
Iν
(
2
√
ax

)
+ Jν

(
2
√
ax

)]

11
1

p
tanh(ap), a > 0

f(x) = (−1)n−1
if 2a(n− 1) < x < 2an;

n = 1, 2, . . .

12
1

p
coth(ap), a > 0

f(x) = (2n− 1) if 2a(n− 1) < x < 2an;
n = 1, 2, . . .

13 arccoth(p/a)
1

x
sinh(ax)

S3.2.7 Expressions with Logarithmic Functions

No Laplace transform, f̃(p) Inverse transform, f(x) =
1

2πi

∫ c+i∞

c−i∞
epxf̃(p) dp

1
1

p
ln p − ln x− C, C = 0.5772 . . . is the Euler constant

2 p−n−1 ln p

(
1 + 1

2
+ 1

3
+ · · ·+ 1

n
− ln x− C

) xn

n!
,

C = 0.5772 . . . is the Euler constant

3 p−n−1/2 ln p
kn

[
2 + 2

3
+ 2

5
+ · · ·+ 2

2n−1
− ln(4x)− C

]
xn−1/2,

kn =
2n

1 · 3 · 5 . . . (2n− 1)
√
π
, C = 0.5772 . . .

4 p−ν ln p, ν > 0

1

Γ(ν)
xν−1

[
ψ(ν)− ln x

]
,

ψ(ν) is the logarithmic derivative of the gamma function

5
1

p
(ln p)2 (ln x+ C)2 − 1

6
π2, C = 0.5772 . . .

6
1

p2
(ln p)2 x

[
(ln x+ C − 1)2 + 1− 1

6
π2]

7
ln(p+ b)

p+ a
e−ax

{
ln(b− a)− Ei

[
(a− b)x

]
}

8
ln p

p2 + a2
1

a
cos(ax)Si(ax) +

1

a
sin(ax)

[
ln a− Ci(ax)

]

9
p ln p

p2 + a2
cos(ax)

[
ln a− Ci(ax)

]
− sin(ax)Si(ax)

]

10 ln
p+ b

p+ a

1

x

(
e−ax − e−bx

)

11 ln
p2 + b2

p2 + a2
2

x

[
cos(ax)− cos(bx)

]

12 p ln
p2 + b2

p2 + a2
2

x

[
cos(bx) + bx sin(bx)− cos(ax)− ax sin(ax)

]

13 ln
(p+ a)2 + k2

(p+ b)2 + k2
2

x
cos(kx)(e−bx − e−ax

)

14 p ln
( 1

p

√
p2 + a2

)
1

x2

[
cos(ax)− 1

]
+
a

x
sin(ax)

15 p ln
( 1

p

√
p2 − a2

)
1

x2

[
cosh(ax)− 1

]
− a

x
sinh(ax)
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S3.2.8 Expressions with Trigonometric Functions

No Laplace transform, f̃(p) Inverse transform, f(x) =
1

2πi

∫ c+i∞

c−i∞
epxf̃(p) dp

1
sin(a/p)√

p

1√
πx

sinh
(√

2ax
)
sin

(√
2ax

)

2
sin(a/p)

p
√
p

1√
πa

cosh
(√

2ax
)
sin

(√
2ax

)

3
cos(a/p)√

p

1√
πx

cosh
(√

2ax
)
cos

(√
2ax

)

4
cos(a/p)

p
√
p

1√
πa

sinh
(√

2ax
)
cos

(√
2ax

)

5
1√
p
exp

(
−√

ap
)
sin

(√
ap

) 1√
πx

sin
( a

2x

)

6
1√
p
exp

(
−√

ap
)
cos

(√
ap

) 1√
πx

cos
( a

2x

)

7 arctan
a

p
1

x
sin(ax)

8
1

p
arctan

a

p
Si(ax)

9 p arctan
a

p
− a 1

x2

[
ax cos(ax)− sin(ax)

]

10 arctan
2ap

p2 + b2
2

x
sin(ax) cos

(
x
√
a2 + b2

)

S3.2.9 Expressions with Special Functions

No Laplace transform, f̃(p) Inverse transform, f(x) =
1

2πi

∫ c+i∞

c−i∞
epxf̃(p) dp

1 exp
(
ap2

)
erfc

(
p
√
a
) 1√

πa
exp

(
− x2

4a

)

2
1

p
exp

(
ap2

)
erfc

(
p
√
a
)

erf

(
x

2
√
a

)

3 erfc
(√
ap

)
, a > 0

{ 0 if 0 < x < a,√
a

πx
√
x− a

if a < x

4 eap erfc
(√
ap

) √
a

π
√
x (x+ a)

5
1√
p
eap erfc

(√
ap

) 1√
π(x+ a)

6 erf
(√

a/p
) 1

πx
sin

(
2
√
ax

)

7
1√
p
exp(a/p) erf

(√
a/p

) 1√
πx

sinh
(
2
√
ax

)

8
1√
p
exp(a/p) erfc

(√
a/p

) 1√
πx

exp
(
−2

√
ax

)

9 p−aγ(a, bp), a, b > 0

{
xa−1 if 0 < x < b,
0 if b < x



“K16435’ — 2017/9/28 — 15:05 — #1376

1350 TABLES OF LAPLACE AND INVERSE LAPLACE TRANSFORMS

No Laplace transform, f̃(p) Inverse transform, f(x) =
1

2πi

∫ c+i∞

c−i∞
epxf̃(p) dp

10 γ(a, b/p), a > 0 ba/2xa/2−1Ja
(
2
√
bx

)

11 a−pγ(p, a) exp
(
−ae−x)

12 K0(ap), a > 0

{
0 if 0 < x < a,

(x2 − a2)−1/2 if a < x

13 Kν(ap), a > 0






0 if 0 < x < a,

cosh
[
ν arccosh(x/a)

]
√
x2 − a2

if a < x

14 K0

(
a
√
p
) 1

2x
exp

(
− a2

4x

)

15
1√
p
K1

(
a
√
p
) 1

a
exp

(
− a2

4x

)

⊙ Literature for Section S3.2: G. Doetsch (1950, 1956, 1958), H. Bateman and A. Erdélyi (1954), I. I.

Hirschman and D. V. Widder (1955), V. A. Ditkin and A. P. Prudnikov (1965), A. P. Prudnikov, Yu. A. Brychkov,

and O. I. Marichev (1992, Vol. 5).
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Chapter S4

Special Functions
and Their Properties

◆ Throughout Chapter S4, it is assumed that n is a positive integer unless otherwise spec-

ified.

S4.1 Some Coefficients, Symbols, and Numbers

S4.1.1 Binomial Coefficients

◮ Definitions

Ck
n =

(n
k

)
=

n!

k! (n− k)! , where k = 1, . . . , n;

C0
a = 1, Ck

a =
(a
k

)
= (−1)k (−a)k

k!
=
a(a− 1) . . . (a− k + 1)

k!
, where k = 1, 2, . . .

Here a is an arbitrary real number.

◮ Generalization. Some properties

General case:

Cb
a =

Γ(a+ 1)

Γ(b+ 1)Γ(a − b+ 1)
, where Γ(x) is the gamma function

Properties:

C0
a = 1, Ck

n = 0 for k = −1,−2, . . . or k > n,

Cb+1
a =

a

b+ 1
Cb
a−1 =

a− b
b+ 1

Cb
a, Cb

a + Cb+1
a = Cb+1

a+1,

1351
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Cn
−1/2 =

(−1)n
22n

Cn
2n = (−1)n (2n− 1)!!

(2n)!!
,

Cn
1/2 =

(−1)n−1

n22n−1
Cn−1
2n−2 =

(−1)n−1

n

(2n − 3)!!

(2n − 2)!!
,

C2n+1
n+1/2 = (−1)n2−4n−1Cn

2n, Cn
2n+1/2 = 2−2nC2n

4n+1,

C1/2
n =

22n+1

πCn
2n

, Cn/2
n =

22n

π
C(n−1)/2
n .

S4.1.2 Pochhammer Symbol

◮ Definition

(a)n = a(a+ 1) . . . (a+ n− 1) =
Γ(a+ n)

Γ(a)
= (−1)n Γ(1− a)

Γ(1− a− n) .

◮ Some properties (k = 1, 2, . . . )

(a)0 = 1, (a)n+k = (a)n(a+ n)k, (n)k =
(n + k − 1)!

(n− 1)!
,

(a)−n =
Γ(a− n)
Γ(a)

=
(−1)n
(1− a)n

, where a 6= 1, . . . , n;

(1)n = n!, (1/2)n = 2−2n (2n)!

n!
, (3/2)n = 2−2n (2n + 1)!

n!
,

(a+mk)nk =
(a)mk+nk

(a)mk
, (a+ n)n =

(a)2n
(a)n

, (a+ n)k =
(a)k(a+ k)n

(a)n
.

S4.1.3 Bernoulli Numbers

◮ Definition

The Bernoulli numbers are defined by the recurrence relation

B0 = 1,

n−1∑

k=0

Ck
nBk = 0, n = 2, 3, . . .

Numerical values:

B0 = 1, B1 = − 1
2 , B2 =

1
6 , B4 = − 1

30 , B6 =
1
42 , B8 = − 1

30 ,

B10 =
5
66 , . . . ; B2m+1 = 0 for m = 1, 2, . . .

All odd-numbered Bernoulli numbers but B1 are zero; all even-numbered Bernoulli num-

bers have alternating signs.

The Bernoulli numbers are the values of Bernoulli polynomials at x= 0: Bn =Bn(0).
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◮ Generating function

Generating function:

x

ex − 1
=

∞∑

n=0

Bn
xn

n!
, |x| < 2π.

This relation may be regarded as a definition of the Bernoulli numbers.

The following expansions may be used to calculate the Bernoulli numbers:

tan x =

∞∑

n=1

|B2n|
22n(22n − 1)

(2n)!
x2n, |x| < π

2
;

cot x =
∞∑

n=0

(−1)nB2n
22n

(2n)!
x2n−1, |x| < π.

S4.1.4 Euler Numbers

◮ Definition

The Euler numbers En are defined by the recurrence relation

n∑

k=0

C2k
2nE2k = 0 (even numbered),

E2n+1 = 0 (odd numbered),

where n = 0, 1, . . .
Numerical values:

E0 = 1, E2 = −1, E4 = 5, E6 = −61, E8 = 1385, E10 = −50251, . . . ,

E2n+1 = 0 for n = 0, 1, . . .

All Euler numbers are integers, the odd-numbered Euler numbers are zero, and the even-

numbered Euler numbers have alternating signs.

The Euler numbers are expressed via the values of Euler polynomials at x = 1/2:

En = 2nEn(1/2), where n = 0, 1, . . .

◮ Generating function. Integral representation

Generating function:

ex

e2x + 1
=

∞∑

n=0

En
xn

n!
, |x| < 2π.

This relation may be regarded as a definition of the Euler numbers.

Representation via a definite integral:

E2n = (−1)n22n+1

∫ ∞

0

t2ndt

cosh(πt)
.
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S4.2 Error Functions. Exponential and Logarithmic

Integrals

S4.2.1 Error Function and Complementary Error Function

◮ Integral representations

Definitions:

erf x =
2√
π

∫ x

0
exp(−t2) dt (error function, also called the probability integral),

erfc x = 1− erf x =
2√
π

∫ ∞

x
exp(−t2) dt (complementary error function).

Properties:

erf(−x) = − erf x; erf(0) = 0, erf(∞) = 1; erfc(0) = 1, erfc(∞) = 0.

◮ Expansions as x → 0 and x → ∞. Definite integral

Expansion of erf x into series in powers of x as x→ 0:

erf x =
2√
π

∞∑

k=0

(−1)k x2k+1

k! (2k + 1)
=

2√
π
exp
(
−x2

) ∞∑

k=0

2kx2k+1

(2k + 1)!!
.

Asymptotic expansion of erfc x as x→∞:

erfc x =
1√
π
exp
(
−x2

)[M−1∑

m=0

(−1)m
(
1
2

)
m

x2m+1
+O

(
|x|−2M−1

)]
, M = 1, 2, . . .

Integral: ∫ x

0
erf t dt = x erf x− 1

2
+

1

2
exp(−x2).

S4.2.2 Exponential Integral

◮ Integral representations

Definition:

Ei(x) =

∫ x

−∞

et

t
dt = −

∫ ∞

−x

e−t

t
dt for x < 0,

Ei(x) = lim
ε→+0

(∫ −ε

−∞

et

t
dt+

∫ x

ε

et

t
dt

)
for x > 0.
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Other integral representations:

Ei(−x) = −e−x

∫ ∞

0

x sin t+ t cos t

x2 + t2
dt for x > 0,

Ei(−x) = e−x

∫ ∞

0

x sin t− t cos t
x2 + t2

dt for x < 0,

Ei(−x) = −x
∫ ∞

1
e−xt ln t dt for x > 0,

Ei(x) = C + lnx+

∫ x

0

et − 1

t
dt for x > 0,

where C = 0.5772 . . . is the Euler constant.

◮ Expansions as x → 0 and x → ∞

Expansion into series in powers of x as x→ 0:

Ei(x) =





C + ln(−x) +
∞∑

k=1

xk

k! k
if x < 0,

C + lnx+

∞∑

k=1

xk

k! k
if x > 0.

Asymptotic expansion as x→∞:

Ei(−x) = e−x
n∑

k=1

(−1)k (k − 1)!

xk
+Rn, Rn <

n!

xn
.

S4.2.3 Logarithmic Integral

◮ Integral representations

Definition:

li(x) ==





∫ x

0

dt

ln t
if 0 < x < 1,

lim
ε→+0

(∫ 1−ε

0

dt

ln t
+

∫ x

1+ε

dt

ln t

)
if x > 1.

◮ Limiting properties. Relation to the exponential integral

For small x,

li(x) ≈ x

ln(1/x)
.

For large x,

li(x) ≈ x

lnx
.
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Asymptotic expansion as x→ 1:

li(x) = C + ln |lnx|+
∞∑

k=1

lnk x

k! k
.

Relation to the exponential integral:

li x = Ei(lnx), x < 1;

li(ex) = Ei(x), x < 0.

S4.3 Sine Integral and Cosine Integral. Fresnel Integrals

S4.3.1 Sine Integral

◮ Integral representations. Properties

Definition:

Si(x) =

∫ x

0

sin t

t
dt, si(x) = −

∫ ∞

x

sin t

t
dt = Si(x)− π

2
.

Specific values:

Si(0) = 0, Si(∞) =
π

2
, si(∞) = 0.

Properties:

Si(−x) = − Si(x), si(x) + si(−x) = −π, lim
x→−∞

si(x) = −π.

◮ Expansions as x → 0 and x → ∞

Expansion into series in powers of x as x→ 0:

Si(x) =
∞∑

k=1

(−1)k+1x2k−1

(2k − 1) (2k − 1)!
.

Asymptotic expansion as x→∞:

si(x) =− cos x

[M−1∑

m=0

(−1)m(2m)!

x2m+1
+O

(
|x|−2M−1

)]

+ sinx

[N−1∑

m=1

(−1)m(2m− 1)!

x2m
+O

(
|x|−2N

)]
,

where M,N = 1, 2, . . .
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S4.3.2 Cosine Integral

◮ Integral representation

Definition:

Ci(x) = −
∫ ∞

x

cos t

t
dt = C + lnx+

∫ x

0

cos t− 1

t
dt,

where C = 0.5772 . . . is the Euler constant.

◮ Expansions as x → 0 and x → ∞

Expansion into series in powers of x as x→ 0:

Ci(x) = C + lnx+
∞∑

k=1

(−1)kx2k
2k (2k)!

.

Asymptotic expansion as x→∞:

Ci(x) = cos x

[M−1∑

m=1

(−1)m(2m− 1)!

x2m
+O

(
|x|−2M

)]

+ sinx

[N−1∑

m=0

(−1)m(2m)!

x2m+1
+O

(
|x|−2N−1

)]
,

where M,N = 1, 2, . . .

S4.3.3 Fresnel Integrals

◮ Integral representation

Definitions:

S(x) =
1√
2π

∫ x

0

sin t√
t
dt =

√
2

π

∫ √
x

0
sin t2 dt,

C(x) =
1√
2π

∫ x

0

cos t√
t
dt =

√
2

π

∫ √
x

0
cos t2 dt.

◮ Expansions as x → 0 and x → ∞

Expansion into series in powers of x as x→ 0:

S(x) =

√
2

π
x

∞∑

k=0

(−1)kx2k+1

(4k + 3) (2k + 1)!
,

C(x) =

√
2

π
x

∞∑

k=0

(−1)kx2k
(4k + 1) (2k)!

.
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Asymptotic expansion as x→∞:

S(x) =
1

2
− cos x√

2πx
P (x)− sinx√

2πx
Q(x),

C(x) =
1

2
+

sinx√
2πx

P (x)− cos x√
2πx

Q(x),

P (x) = 1− 1× 3

(2x)2
+

1× 3× 5× 7

(2x)4
− · · · , Q(x) =

1

2x
− 1× 3× 5

(2x)3
+ · · · .

S4.4 Gamma Function, Psi Function, and Beta Function

S4.4.1 Gamma Function

◮ Integral representations. Simplest properties

The gamma function, Γ(z), is an analytic function of the complex argument z everywhere

except for the points z = 0, −1, −2, . . .

For Re z > 0,

Γ(z) =

∫ ∞

0
tz−1e−t dt.

For −(n+ 1) < Re z < −n, where n = 0, 1, 2, . . . ,

Γ(z) =

∫ ∞

0

[
e−t −

n∑

m=0

(−1)m
m!

]
tz−1 dt.

Simplest properties:

Γ(z + 1) = zΓ(z), Γ(n+ 1) = n!, Γ(1) = Γ(2) = 1.

Fractional values of the argument:

Γ
( 1
2

)
=
√
π,

Γ
(
− 1

2

)
= −2

√
π,

Γ
(
n+

1

2

)
=

√
π

2n
(2n− 1)!!,

Γ
( 1
2
− n

)
= (−1)n 2n

√
π

(2n − 1)!!
.

◮ Euler, Stirling, and other formulas

Euler formula

Γ(z) = lim
n→∞

n!nz

z(z + 1) . . . (z + n)
(z 6= 0,−1,−2, . . . ).

Symmetry formulas:

Γ(z)Γ(−z) = − π

z sin(πz)
, Γ(z)Γ(1 − z) = π

sin(πz)
,

Γ
( 1
2
+ z
)
Γ
( 1
2
− z
)
=

π

cos(πz)
.
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Multiple argument formulas:

Γ(2z) =
22z−1

√
π

Γ(z)Γ
(
z +

1

2

)
,

Γ(3z) =
33z−1/2

2π
Γ(z)Γ

(
z +

1

3

)
Γ
(
z +

2

3

)
,

Γ(nz) = (2π)(1−n)/2nnz−1/2
n−1∏

k=0

Γ
(
z +

k

n

)
.

Asymptotic expansion (Stirling formula):

Γ(z) =
√
2π e−zzz−1/2

[
1 + 1

12 z
−1 + 1

288 z
−2 +O(z−3)

]
(|arg z| < π).

S4.4.2 Psi Function (Digamma Function)

◮ Definition. Integral representations

Definition:

ψ(z) =
d ln Γ(z)

dz
=

Γ′
z(z)

Γ(z)
.

The psi function is the logarithmic derivative of the gamma function and is also called the

digamma function.

Integral representations (Re z > 0):

ψ(z) =

∫ ∞

0

[
e−t − (1 + t)−z

]
t−1 dt,

ψ(z) = ln z +

∫ ∞

0

[
t−1 − (1− e−t)−1

]
e−tz dt,

ψ(z) = −C +
∫ 1

0

1− tz−1

1− t dt,

where C = −ψ(1) = 0.5772 . . . is the Euler constant.

Values for integer argument:

ψ(1) = −C, ψ(n) = −C +
n−1∑

k=1

k−1 (n = 2, 3, . . . ).

◮ Properties. Asymptotic expansion as z → ∞

Functional relations:

ψ(z)− ψ(1 + z) = − 1

z
,

ψ(z)− ψ(1 − z) = −π cot(πz),

ψ(z)− ψ(−z) = −π cot(πz)− 1

z
,

ψ
(
1
2 + z

)
− ψ

(
1
2 − z

)
= π tan(πz),

ψ(mz) = lnm+
1

m

m−1∑

k=0

ψ
(
z +

k

m

)
.



“K16435’ — 2017/9/28 — 15:05 — #1386

1360 SPECIAL FUNCTIONS AND THEIR PROPERTIES

Asymptotic expansion as z →∞ (|arg z| < π):

ψ(z) = ln z − 1

2z
− 1

12z2
+

1

120z4
− 1

252z6
+ · · · = ln z − 1

2z
−

∞∑

n=1

B2n

2nz2n
,

where the B2n are Bernoulli numbers.

S4.4.3 Beta Function

◮ Integral representation. Relationship with the gamma function

Definition:

B(x, y) =

∫ 1

0
tx−1(1− t)y−1 dt,

where Rex > 0 and Re y > 0.

Relationship with the gamma function:

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

◮ Some properties

B(x, y) = B(y, x);

B(x, y + 1) =
y

x
B(x+ 1, y) =

y

x+ y
B(x, y);

B(x, 1− x) = π

sin(πx)
, 0 < x < 1;

1

B(n,m)
= mCn−1

n+m−1 = nCm−1
n+m−1,

where n and m are positive integers.

S4.5 Incomplete Gamma and Beta Functions

S4.5.1 Incomplete Gamma Function

◮ Integral representations. Recurrence formulas

Definitions:

γ(α, x) =

∫ x

0
e−ttα−1 dt, Reα > 0,

Γ(α, x) =

∫ ∞

x
e−ttα−1 dt = Γ(α)− γ(α, x).

Recurrence formulas:

γ(α+ 1, x) = αγ(α, x) − xαe−x,

γ(α+ 1, x) = (x+ α)γ(α, x) + (1− α)xγ(α − 1, x),

Γ(α+ 1, x) = αΓ(α, x) + xαe−x.
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Special cases:

γ(n+ 1, x) = n!

[
1− e−x

( n∑

k=0

xk

k!

)]
, n = 0, 1, . . . ;

Γ(n+ 1, x) = n! e−x
n∑

k=0

xk

k!
, n = 0, 1, . . . ;

Γ(−n, x) = (−1)n
n!

[
Γ(0, x) − e−x

n−1∑

k=0

(−1)k k!

xk+1

]
, n = 1, 2, . . .

◮ Expansions as x → 0 and x → ∞. Relation to other functions

Asymptotic expansions as x→ 0:

γ(α, x) =

∞∑

n=0

(−1)nxα+n

n! (α+ n)
,

Γ(α, x) = Γ(α)−
∞∑

n=0

(−1)nxα+n

n! (α+ n)
.

Asymptotic expansions as x→∞:

γ(α, x) = Γ(α) − xα−1e−x

[M−1∑

m=0

(1− α)m
(−x)m +O

(
|x|−M

)]
,

Γ(α, x) = xα−1e−x

[M−1∑

m=0

(1− α)m
(−x)m +O

(
|x|−M

)] (
− 3

2π < arg x < 3
2π
)
.

Asymptotic formulas as α→∞:

γ(x, α) = Γ(α)
[
Φ
(
2
√
x−
√
α−1

)
+O

( 1√
α

)]
, Φ(x) =

1√
2π

∫ x

−∞
exp
(
− 1

2
t2
)
dt;

γ(x, α) = Γ(α)
[
Φ
(
3
√
α z
)
+O

( 1

α

)]
, z =

( x
α

)1/3
−1+

1

9α
.

Representation of the error function, complementary error function, and exponential

integral in terms of the gamma functions:

erf x =
1√
π
γ
( 1
2
, x2

)
, erfc x =

1√
π
Γ
( 1
2
, x2

)
, Ei(−x) = −Γ(0, x).

S4.5.2 Incomplete Beta Function

◮ Integral representation

Definitions:

Bx(a, b) =

∫ x

0
ta−1(1− t)b−1 dt, Ix(a, b) =

Bx(a, b)

B(a, b)
,

where Re a > 0 and Re b > 0, and B(a, b) = B1(a, b) is the beta function.
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◮ Some properties

Symmetry:

Ix(a, b) + I1−x(b, a) = 1.

Recurrence formulas:

Ix(a, b) = xIx(a− 1, b) + (1− x)Ix(a, b− 1),

(a+ b)Ix(a, b) = aIx(a+ 1, b) + bIx(a, b+ 1),

(a+ b− ax)Ix(a, b) = a(1 − x)Ix(a+ 1, b− 1) + bIx(a, b+ 1).

S4.6 Bessel Functions (Cylindrical Functions)

S4.6.1 Definitions and Basic Formulas

◮ Bessel functions of the first and the second kind

The Bessel function of the first kind, Jν(x), and the Bessel function of the second kind,

Yν(x) (also called the Neumann function), are solutions of the Bessel equation

x2y′′xx + xy′x + (x2 − ν2)y = 0

and are defined by the formulas

Jν(x) =

∞∑

k=0

(−1)k(x/2)ν+2k

k! Γ(ν + k + 1)
, Yν(x) =

Jν(x) cos πν − J−ν(x)

sinπν
. (1)

The formula for Yν(x) is valid for ν 6= 0, ±1, ±2, . . . (the cases ν 6= 0, ±1, ±2, . . . are

discussed in what follows).

The general solution of the Bessel equation has the form Zν(x) = C1Jν(x) +C2Yν(x)
and is called the cylinder function.

◮ Some formulas

2νZν(x) = x[Zν−1(x) + Zν+1(x)],

d

dx
Zν(x) =

1

2
[Zν−1(x)− Zν+1(x)] = ±

[ ν
x
Zν(x)− Zν±1(x)

]
,

d

dx
[xνZν(x)] = xνZν−1(x),

d

dx
[x−νZν(x)] = −x−νZν+1(x),

(
1

x

d

dx

)n

[xνJν(x)] = xν−nJν−n(x),

(
1

x

d

dx

)n

[x−νJν(x)] = (−1)nx−ν−nJν+n(x),

J−n(x) = (−1)nJn(x), Y−n(x) = (−1)nYn(x), n = 0, 1, 2, . . .
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◮ Bessel functions for ν = ±n± 1
2

, where n = 0, 1, 2, . . .

J1/2(x) =

√
2

πx
sinx,

J3/2(x) =

√
2

πx

(
1

x
sinx− cos x

)
,

J−1/2(x) =

√
2

πx
cos x,

J−3/2(x) =

√
2

πx

(
− 1

x
cos x− sinx

)
,

Jn+1/2(x) =

√
2

πx

[
sin
(
x− nπ

2

) [n/2]∑

k=0

(−1)k(n+ 2k)!

(2k)! (n − 2k)! (2x)2k

+ cos
(
x− nπ

2

) [(n−1)/2]∑

k=0

(−1)k(n+ 2k + 1)!

(2k + 1)! (n − 2k − 1)! (2x)2k+1

]
,

J−n−1/2(x) =

√
2

πx

[
cos
(
x+

nπ

2

) [n/2]∑

k=0

(−1)k(n+ 2k)!

(2k)! (n − 2k)! (2x)2k

− sin
(
x+

nπ

2

) [(n−1)/2]∑

k=0

(−1)k(n+ 2k + 1)!

(2k + 1)! (n − 2k − 1)! (2x)2k+1

]
,

Y1/2(x) = −
√

2

πx
cos x,

Yn+1/2(x) = (−1)n+1J−n−1/2(x),

Y−1/2(x) =

√
2

πx
sinx,

Y−n−1/2(x) = (−1)nJn+1/2(x),

where [A] is the integer part of the number A.

◮ Bessel functions for ν = ±n, where n = 0, 1, 2, . . .

Let ν = n be an arbitrary integer. The relations

J−n(x) = (−1)nJn(x), Y−n(x) = (−1)nYn(x)

are valid. The function Jn(x) is given by the first formula in (1) with ν = n, and Yn(x)
can be obtained from the second formula in (1) by proceeding to the limit ν → n. For

nonnegative n, Yn(x) can be represented in the form

Yn(x) =
2

π
Jn(x) ln

x

2
− 1

π

n−1∑

k=0

(n− k − 1)!

k!

( 2
x

)n−2k

− 1

π

∞∑

k=0

(−1)k
( x
2

)n+2k ψ(k + 1) + ψ(n + k + 1)

k! (n + k)!
,

where ψ(1) = −C, ψ(n) = −C +
n−1∑
k=1

k−1, C = 0.5772 . . . is the Euler constant, and

ψ(x) = [ln Γ(x)]′x is the logarithmic derivative of the gamma function, also known as the

digamma function.
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◮ Wronskians and similar formulas

W (Jν , J−ν) = −
2

πx
sin(πν), W (Jν , Yν) =

2

πx
,

Jν(x)J−ν+1(x) + J−ν(x)Jν−1(x) =
2 sin(πν)

πx
,

Jν(x)Yν+1(x)− Jν+1(x)Yν(x) = −
2

πx
.

Here, the notation W (f, g) = fg′x − f ′xg is used.

S4.6.2 Integral Representations and Asymptotic Expansions

◮ Integral representations

The functions Jν(x) and Yν(x) can be represented in the form of definite integrals (for

x > 0):

πJν(x) =

∫ π

0
cos(x sin θ − νθ) dθ − sinπν

∫ ∞

0
exp(−x sinh t− νt) dt,

πYν(x) =

∫ π

0
sin(x sin θ − νθ) dθ −

∫ ∞

0
(eνt + e−νt cos πν) e−x sinh t dt.

For |ν| < 1
2 , x > 0,

Jν(x) =
21+νx−ν

π1/2Γ( 12 − ν)

∫ ∞

1

sin(xt) dt

(t2 − 1)ν+1/2
,

Yν(x) = −
21+νx−ν

π1/2Γ( 12 − ν)

∫ ∞

1

cos(xt) dt

(t2 − 1)ν+1/2
.

For ν > − 1
2 ,

Jν(x) =
2(x/2)ν

π1/2Γ( 12 + ν)

∫ π/2

0
cos(x cos t) sin2ν t dt (Poisson’s formula).

For ν = 0, x > 0,

J0(x) =
2

π

∫ ∞

0
sin(x cosh t) dt, Y0(x) = −

2

π

∫ ∞

0
cos(x cosh t) dt.

For integer ν = n = 0, 1, 2, . . . ,

Jn(x) =
1

π

∫ π

0
cos(nt− x sin t) dt (Bessel’s formula),

J2n(x) =
2

π

∫ π/2

0
cos(x sin t) cos(2nt) dt,

J2n+1(x) =
2

π

∫ π/2

0
sin(x sin t) sin[(2n + 1)t] dt.
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◮ Asymptotic expansions as |x| → ∞

Jν(x) =

√
2

πx

{
cos
( 4x− 2νπ − π

4

)[M−1∑

m=0

(−1)m(ν, 2m)(2x)−2m +O(|x|−2M )

]

− sin
( 4x− 2νπ − π

4

)[M−1∑

m=0

(−1)m(ν, 2m+ 1)(2x)−2m−1 +O(|x|−2M−1)

]}
,

Yν(x) =

√
2

πx

{
sin
( 4x− 2νπ − π

4

)[M−1∑

m=0

(−1)m(ν, 2m)(2x)−2m +O(|x|−2M )

]

+ cos
( 4x− 2νπ − π

4

)[M−1∑

m=0

(−1)m(ν, 2m+ 1)(2x)−2m−1 +O(|x|−2M−1)

]}
,

where (ν,m) =
1

22mm!
(4ν2 − 1)(4ν2 − 32) . . . [4ν2 − (2m− 1)2] =

Γ( 12 + ν +m)

m! Γ( 12 + ν −m)
.

For nonnegative integer n and large x,

√
πx J2n(x) = (−1)n(cos x+ sinx) +O(x−2),

√
πxJ2n+1(x) = (−1)n+1(cos x− sinx) +O(x−2).

◮ Asymptotic for large ν (ν → ∞)

Jν(x) ≃
1√
2πν

( ex
2ν

)ν
, Yν(x) ≃ −

√
2

πν

( ex
2ν

)−ν
,

where x is fixed,

Jν(ν) ≃
21/3

32/3Γ(2/3)

1

ν1/3
, Yν(ν) ≃ −

21/3

31/6Γ(2/3)

1

ν1/3
.

◮ Integrals with Bessel functions

Let F (a, b, c;x) be the hypergeometric series (see Section S4.10.1). Then

∫ x

0
xλJν(x) dx =

xλ+ν+1

2ν(λ+ ν + 1)Γ(ν + 1)
F

(
λ+ ν + 1

2
,
λ+ ν + 3

2
, ν + 1; −x

2

4

)
,

where Re(λ+ ν) > −1, and

∫ x

0
xλYν(x) dx =− cos(νπ)Γ(−ν)

2νπ(λ+ ν + 1)
xλ+ν+1 F

(
λ+ ν + 1

2
, ν + 1,

λ+ ν + 3

2
; −x

2

4

)

− 2νΓ(ν)

λ− ν + 1
xλ−ν+1 F

(
λ− ν + 1

2
, 1− ν, λ− ν + 3

2
; −x

2

4

)
,

where Reλ > |Re ν| − 1.
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S4.6.3 Zeros and Orthogonality Properties of Bessel Functions

◮ Zeros of Bessel functions

Each of the functions Jν(x) and Yν(x) has infinitely many real zeros (for real ν). All zeros

are simple, except possibly for the point x = 0.

The zeros γm of J0(x), i.e., the roots of the equation J0(γm) = 0, are approximately

given by

γm = 2.4 + 3.13 (m − 1) (m = 1, 2, . . . ),

with a maximum error of 0.2%.

◮ Orthogonality properties of Bessel functions

1◦. Let µ = µm be positive roots of the Bessel function Jν(µ), where ν > −1 and m =
1, 2, 3, . . . Then the set of functions Jν(µmr/a) is orthogonal on the interval 0 ≤ r ≤ a
with weight r:

∫ a

0
Jν

(µmr
a

)
Jν

(µkr
a

)
r dr =

{
0 if m 6= k,
1
2a

2
[
J ′
ν(µm)

]2
= 1

2a
2J2

ν+1(µm) if m = k.

2◦. Let µ = µm be positive zeros of the Bessel function derivative J ′
ν(µ), where ν > −1

and m = 1, 2, 3, . . . Then the set of functions Jν(µmr/a) is orthogonal on the interval

0 ≤ r ≤ a with weight r:

∫ a

0
Jν

(µmr
a

)
Jν

(µkr
a

)
r dr =




0 if m 6= k,

1

2
a2
(
1− ν2

µ2m

)
J2
ν (µm) if m = k.

3◦. Let µ = µm be positive roots of the transcendental equation µJ ′
ν(µ) + sJν(µ) = 0,

where ν > −1 and m= 1, 2, 3, . . . Then the set of functions Jν(µmr/a) is orthogonal on

the interval 0 ≤ r ≤ a with weight r:

∫ a

0
Jν

(µmr
a

)
Jν

(µkr
a

)
r dr =




0 if m 6= k,

1

2
a2
(
1 +

s2 − ν2
µ2m

)
J2
ν (µm) if m = k.

4◦. Let µ = µm be positive roots of the transcendental equation

Jν(λmb)Yν(λma)− Jν(λma)Yν(λmb) = 0 (ν > −1, m = 1, 2, 3, . . .).

Then the set of functions

Zν(λmr) = Jν(λmr)Yν(λma)− Jν(λma)Yν(λmr), m = 1, 2, 3, . . . ;

satisfying the conditions Zν(λma) = Zν(λmb) = 0 is orthogonal on the interval a ≤ r ≤ b
with weight r:

∫ b

a
Zν(λmr)Zν(λkr)r dr =




0 if m 6= k,

2

π2λ2m

J2
ν (λma)− J2

ν (λmb)

J2
ν (λmb)

if m = k.
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5◦. Let µ = µm be positive roots of the transcendental equation

J ′
ν(λmb)Y

′
ν(λma)− J ′

ν(λma)Y
′
ν(λmb) = 0 (ν > −1, m = 1, 2, 3, . . .).

Then the set of functions

Zν(λmr) = Jν(λmr)Y
′
ν(λma)− J ′

ν(λma)Yν(λmr), m = 1, 2, 3, . . . ;

satisfying the conditions Z ′
ν(λma) = Z ′

ν(λmb) = 0 is orthogonal on the interval a ≤ r ≤ b
with weight r:

∫ b

a

Zν(λmr)Zν(λkr)r dr =





0 if m 6= k,

2

π2λ2m

[(
1− ν2

b2λ2m

) [
J ′
ν(λma)

]2
[
J ′
ν(λmb)

]2 −
(
1− ν2

a2λ2m

)]
if m = k.

S4.6.4 Hankel Functions (Bessel Functions of the Third Kind)

◮ Definition

The Hankel functions of the first kind and the second kind are related to Bessel functions

by

H(1)
ν (z) = Jν(z) + iYν(z),

H(2)
ν (z) = Jν(z)− iYν(z),

where i2 = −1.

◮ Expansions as z → 0 and z → ∞

Asymptotics for z → 0:

H
(1)
0 (z) ≃ 2i

π
ln z, H(1)

ν (z) ≃ − i

π

Γ(ν)

(z/2)ν
(Re ν > 0),

H
(2)
0 (z) ≃ − 2i

π
ln z, H(2)

ν (z) ≃ i

π

Γ(ν)

(z/2)ν
(Re ν > 0).

Asymptotics for |z| → ∞:

H(1)
ν (z) ≃

√
2

πz
exp
[
i
(
z − 1

2πν − 1
4π
)]

(−π < arg z < 2π),

H(2)
ν (z) ≃

√
2

πz
exp
[
−i
(
z − 1

2πν − 1
4π
)]

(−2π < arg z < π).

S4.7 Modified Bessel Functions

S4.7.1 Definitions. Basic Formulas

◮ Modified Bessel functions of the first and the second kind

The modified Bessel functions of the first kind, Iν(x), and the modified Bessel functions of

the second kind, Kν(x) (also called the Macdonald function), of order ν are solutions of
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the modified Bessel equation

x2y′′xx + xy′x − (x2 + ν2)y = 0

and are defined by the formulas

Iν(x) =

∞∑

k=0

(x/2)2k+ν

k! Γ(ν + k + 1)
, Kν(x) =

π

2

I−ν(x)− Iν(x)
sin(πν)

,

(see below for Kν(x) with ν = 0, 1, 2, . . . ).

◮ Some formulas

The modified Bessel functions possess the properties

K−ν(x) = Kν(x), I−n(x) = (−1)nIn(x) (n = 0, 1, 2, . . . ),

2νIν(x) = x[Iν−1(x)− Iν+1(x)], 2νKν(x) = −x[Kν−1(x)−Kν+1(x)],

d

dx
Iν(x) =

1

2
[Iν−1(x) + Iν+1(x)],

d

dx
Kν(x) = −

1

2
[Kν−1(x) +Kν+1(x)].

◮ Modified Bessel functions for ν = ±n± 1
2

, where n = 0, 1, 2, . . .

I1/2(x) =

√
2

πx
sinhx, I−1/2(x) =

√
2

πx
cosh x,

I3/2(x) =

√
2

πx

(
− 1

x
sinh x+ cosh x

)
, I−3/2(x) =

√
2

πx

(
− 1

x
cosh x+ sinh x

)
,

In+1/2(x) =
1√
2πx

[
ex

n∑

k=0

(−1)k(n+ k)!

k! (n − k)! (2x)k − (−1)ne−x
n∑

k=0

(n + k)!

k! (n − k)! (2x)k
]
,

I−n−1/2(x) =
1√
2πx

[
ex

n∑

k=0

(−1)k(n+ k)!

k! (n− k)! (2x)k + (−1)ne−x
n∑

k=0

(n+ k)!

k! (n− k)! (2x)k
]
,

K±1/2(x) =

√
π

2x
e−x, K±3/2(x) =

√
π

2x

(
1 +

1

x

)
e−x,

Kn+1/2(x) = K−n−1/2(x) =

√
π

2x
e−x

n∑

k=0

(n+ k)!

k! (n− k)! (2x)k .

◮ Modified Bessel functions for ν = n, where n = 0, 1, 2, . . .

If ν = n is a nonnegative integer, then

Kn(x) = (−1)n+1In(x) ln
x

2
+

1

2

n−1∑

m=0

(−1)m
(x
2

)2m−n (n−m− 1)!

m!

+
1

2
(−1)n

∞∑

m=0

( x
2

)n+2m ψ(n+m+ 1) + ψ(m+ 1)

m! (n+m)!
,

where ψ(z) is the logarithmic derivative of the gamma function; for n = 0, the first sum is

dropped.
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◮ Wronskians and similar formulas

W (Iν , I−ν) = −
2

πx
sin(πν), W (Iν ,Kν) = −

1

x
,

Iν(x)I−ν+1(x)− I−ν(x)Iν−1(x) = −
2 sin(πν)

πx
,

Iν(x)Kν+1(x) + Iν+1(x)Kν(x) =
1

x
,

where W (f, g) = fg′x − f ′xg.

S4.7.2 Integral Representations and Asymptotic Expansions

◮ Integral representations

The functions Iν(x) and Kν(x) can be represented in terms of definite integrals:

Iν(x) =
xν

π1/22νΓ(ν + 1
2 )

∫ 1

−1
exp(−xt)(1− t2)ν−1/2 dt (x > 0, ν > − 1

2 ),

Kν(x) =

∫ ∞

0
exp(−x cosh t) cosh(νt) dt (x > 0),

Kν(x) =
1

cos
(
1
2πν

)
∫ ∞

0
cos(x sinh t) cosh(νt) dt (x > 0, −1 < ν < 1),

Kν(x) =
1

sin
(
1
2πν

)
∫ ∞

0
sin(x sinh t) sinh(νt) dt (x > 0, −1 < ν < 1).

For integer ν = n,

In(x) =
1

π

∫ π

0
exp(x cos t) cos(nt) dt (n = 0, 1, 2, . . . ),

K0(x) =

∫ ∞

0
cos(x sinh t) dt =

∫ ∞

0

cos(xt)√
t2 + 1

dt (x > 0).

◮ Asymptotic expansions as x → ∞

Iν(x) =
ex√
2πx

{
1 +

M∑

m=1

(−1)m (4ν2 − 1)(4ν2 − 32) . . . [4ν2 − (2m− 1)2]

m! (8x)m

}
,

Kν(x) =

√
π

2x
e−x

{
1 +

M∑

m=1

(4ν2 − 1)(4ν2 − 32) . . . [4ν2 − (2m− 1)2]

m! (8x)m

}
.

The terms of the order of O(x−M−1) are omitted in the braces.

◮ Integrals with modified Bessel functions

Let F (a, b, c;x) be the hypergeometric series (see Section S4.10.1). Then

∫ x

0
xλIν(x) dx =

xλ+ν+1

2ν(λ+ ν + 1)Γ(ν + 1)
F

(
λ+ ν + 1

2
,
λ+ ν + 3

2
, ν + 1;

x2

4

)
,
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where Re(λ+ ν) > −1, and
∫ x

0
xλKν(x) dx =

2ν−1Γ(ν)

λ− ν + 1
xλ−ν+1F

(
λ− ν + 1

2
, 1− ν, λ− ν + 3

2
;
x2

4

)

+
2−ν−1Γ(−ν)
λ+ ν + 1

xλ+ν+1F

(
λ+ ν + 1

2
, 1 + ν,

λ+ ν + 3

2
;
x2

4

)
,

where Reλ > |Re ν| − 1.

S4.8 Airy Functions

S4.8.1 Definition and Basic Formulas

◮ Airy functions of the first and the second kind

The Airy function of the first kind, Ai(x), and the Airy function of the second kind, Bi(x),
are solutions of the Airy equation

y′′xx − xy = 0

and are defined by the formulas

Ai(x) =
1

π

∫ ∞

0
cos
(
1
3 t

3 + xt
)
dt,

Bi(x) =
1

π

∫ ∞

0

[
exp
(
− 1

3 t
3 + xt

)
+ sin

(
1
3 t

3 + xt
)]
dt.

Wronskian: W{Ai(x),Bi(x)} = 1/π.

◮ Relation to the Bessel functions and the modified Bessel functions

Ai(x) = 1
3

√
x
[
I−1/3(z)− I1/3(z)

]
= π−1

√
1
3xK1/3(z), z = 2

3x
3/2,

Ai(−x) = 1
3

√
x
[
J−1/3(z) + J1/3(z)

]
,

Bi(x) =
√

1
3x
[
I−1/3(z) + I1/3(z)

]
,

Bi(−x) =
√

1
3x
[
J−1/3(z) − J1/3(z)

]
.

S4.8.2 Power Series and Asymptotic Expansions

◮ Power series expansions as x → 0

Ai(x) = c1f(x)− c2g(x),
Bi(x) =

√
3 [c1f(x) + c2g(x)],

f(x) = 1 +
1

3!
x3 +

1× 4

6!
x6 +

1× 4× 7

9!
x9 + · · · =

∞∑

k=0

3k
(
1
3

)
k

x3k

(3k)!
,

g(x) = x+
2

4!
x4 +

2× 5

7!
x7 +

2× 5× 8

10!
x10 + · · · =

∞∑

k=0

3k
(
2
3

)
k

x3k+1

(3k + 1)!
,

where c1 = 3−2/3/Γ(2/3) ≈ 0.3550 and c2 = 3−1/3/Γ(1/3) ≈ 0.2588.
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◮ Asymptotic expansions as x → ∞

For large values of x, the leading terms of asymptotic expansions of the Airy functions are

Ai(x) ≃ 1
2π

−1/2x−1/4 exp(−z), z = 2
3x

3/2,

Ai(−x) ≃ π−1/2x−1/4 sin
(
z + π

4

)
,

Bi(x) ≃ π−1/2x−1/4 exp(z),

Bi(−x) ≃ π−1/2x−1/4 cos
(
z + π

4

)
.

S4.9 Degenerate Hypergeometric Functions (Kummer

Functions)

S4.9.1 Definitions and Basic Formulas

◮ Degenerate hypergeometric functions Φ(a, b; x) and Ψ(a, b; x)

The degenerate hypergeometric functions (Kummer functions) Φ(a, b;x) and Ψ(a, b;x) are

solutions of the degenerate hypergeometric equation

xy′′xx + (b− x)y′x − ay = 0.

In the case b 6= 0, −1, −2, −3, . . . , the function Φ(a, b;x) can be represented as Kum-

mer’s series:

Φ(a, b;x) = 1 +

∞∑

k=1

(a)k
(b)k

xk

k!
,

where (a)k = a(a+ 1) . . . (a+ k − 1), (a)0 = 1.

Table S4.1 presents some special cases where Φ can be expressed in terms of simpler

functions.

The function Ψ(a, b;x) is defined as follows:

Ψ(a, b;x) =
Γ(1− b)

Γ(a− b+ 1)
Φ(a, b;x) +

Γ(b− 1)

Γ(a)
x1−bΦ(a− b+ 1, 2− b; x).

Table S4.2 presents some special cases where Ψ can be expressed in terms of simpler

functions.

◮ Kummer transformation and linear relations

Kummer transformation:

Φ(a, b;x) = exΦ(b− a, b;−x),
Ψ(a, b;x) = x1−bΨ(1 + a− b, 2 − b;x).
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TABLE S4.1

Special cases of the Kummer function Φ(a, b; z)

a b z Φ Conventional notation

a a x ex

1 2 2x
1

x
ex sinh x

a a+1 −x ax−aγ(a, x)

Incomplete gamma function

γ(a, x)=

∫ x

0

e−tta−1 dt

1

2

3

2
−x2

√
π

2
erf x

Error function

erf x=
2√
π

∫ x

0

exp(−t2) dt

−n 1

2
x2

2

n!

(2n)!

(
− 1

2

)−n

H2n(x)
Hermite polynomials

Hn(x)= (−1)nex
2 dn

dxn

(
e−x2)

,

n=0, 1, 2, . . .−n 3

2
x2

2

n!

(2n+1)!

(
− 1

2

)−n

H2n+1(x)

−n b x
n!

(b)n
L(b−1)

n (x)

Laguerre polynomials

L(α)
n (x)=

exx−α

n!

dn

dxn

(
e−xxn+α

)
,

α= b−1,

(b)n = b(b+1) . . . (b+n−1)

ν+
1

2
2ν+1 2x Γ(1+ν)ex

( x
2

)−ν

Iν(x) Modified Bessel functions

Iν(x)
n+1 2n+2 2x Γ

(
n+

3

2

)
ex

( x
2

)−n− 1
2
In+ 1

2
(x)

TABLE S4.2

Special cases of the Kummer function Ψ(a, b; z)

a b z Ψ Conventional notation

1−a 1−a x exΓ(a, x)

Incomplete gamma function

Γ(a, x)=

∫ ∞

x

e−tta−1 dt

1

2

1

2
x2

√
π exp(x2) erfcx

Complementary error function

erfcx=
2√
π

∫ ∞

x

exp(−t2) dt

1 1 −x −e−x
Ei(x)

Exponential integral

Ei(x)=

∫ x

−∞

et

t
dt

1 1 − ln x −x−1
li x

Logarithmic integral

lix=

∫ x

0

dt

t

1

2
− n

2

3

2
x2 2−nx−1Hn(x)

Hermite polynomials

Hn(x)= (−1)nex
2 dn

dxn

(
e−x2)

,

n=0, 1, 2, . . .

ν+
1

2
2ν+1 2x π−1/2(2x)−νexKν(x)

Modified Bessel functions

Kν(x)
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Linear relations for Φ:

(b− a)Φ(a− 1, b;x) + (2a− b+ x)Φ(a, b;x)− aΦ(a+ 1, b;x) = 0,

b(b− 1)Φ(a, b − 1;x)− b(b− 1 + x)Φ(a, b;x) + (b− a)xΦ(a, b+ 1;x) = 0,

(a− b+ 1)Φ(a, b;x) − aΦ(a+ 1, b;x) + (b− 1)Φ(a, b − 1;x) = 0,

bΦ(a, b;x)− bΦ(a− 1, b;x) − xΦ(a, b+ 1;x) = 0,

b(a+ x)Φ(a, b;x) − (b− a)xΦ(a, b+ 1;x) − abΦ(a+ 1, b;x) = 0,

(a− 1 + x)Φ(a, b;x) + (b− a)Φ(a− 1, b;x)− (b− 1)Φ(a, b− 1;x) = 0.

Linear relations for Ψ:

Ψ(a− 1, b;x) − (2a− b+ x)Ψ(a, b;x) + a(a− b+ 1)Ψ(a + 1, b;x) = 0,

(b− a− 1)Ψ(a, b− 1;x) − (b− 1 + x)Ψ(a, b;x) + xΨ(a, b+ 1;x) = 0,

Ψ(a, b;x) − aΨ(a+ 1, b;x) −Ψ(a, b− 1;x) = 0,

(b− a)Ψ(a, b;x)− xΨ(a, b+ 1;x) + Ψ(a− 1, b;x) = 0,

(a+ x)Ψ(a, b;x) + a(b− a− 1)Ψ(a+ 1, b;x) − xΨ(a, b+ 1;x) = 0,

(a− 1 + x)Ψ(a, b;x) −Ψ(a− 1, b;x) + (a− c+ 1)Ψ(a, b− 1;x) = 0.

◮ Differentiation formulas and Wronskian

Differentiation formulas:

d

dx
Φ(a, b;x) =

a

b
Φ(a+1, b+1;x),

d

dx
Ψ(a, b;x) = −aΨ(a+1, b+1;x),

dn

dxn
Φ(a, b;x) =

(a)n
(b)n

Φ(a+n, b+n;x),

dn

dxn
Ψ(a, b;x) = (−1)n(a)nΨ(a+n, b+n;x).

Wronskian:

W (Φ,Ψ) = ΦΨ′
x − Φ′

xΨ = − Γ(b)

Γ(a)
x−bex.

◮ Degenerate hypergeometric functions for n = 0, 1, 2, . . .

Ψ(a, n+ 1;x) =
(−1)n−1

n! Γ(a− n)

{
Φ(a, n+1;x) ln x+

(n− 1)!

Γ(a)

n−1∑

r=0

(a− n)r
(1 − n)r

xr−n

r!

+
∞∑

r=0

(a)r
(n+ 1)r

[
ψ(a + r)− ψ(1 + r)− ψ(1 + n+ r)

]xr
r!

}
,

where n = 0, 1, 2, . . . (the last sum is dropped for n = 0), ψ(z) = [ln Γ(z)]′z is the

logarithmic derivative of the gamma function,

ψ(1) = −C, ψ(n) = −C +
n−1∑

k=1

k−1,

where C = 0.5772 . . . is the Euler constant.



“K16435’ — 2017/9/28 — 15:05 — #1400

1374 SPECIAL FUNCTIONS AND THEIR PROPERTIES

If b < 0, then the formula

Ψ(a, b;x) = x1−bΨ(a− b+ 1, 2− b; x)

is valid for any x.

For b 6= 0, −1, −2, −3, . . . , the general solution of the degenerate hypergeometric

equation can be represented in the form

y = C1Φ(a, b;x) + C2Ψ(a, b;x),

and for b = 0, −1, −2, −3, . . . , in the form

y = x1−b
[
C1Φ(a− b+ 1, 2− b; x) + C2Ψ(a− b+ 1, 2− b; x)

]
.

S4.9.2 Integral Representations and Asymptotic Expansions

◮ Integral representations

Φ(a, b;x) =
Γ(b)

Γ(a) Γ(b− a)

∫ 1

0
extta−1(1− t)b−a−1 dt (for b > a > 0),

Ψ(a, b;x) =
1

Γ(a)

∫ ∞

0
e−xtta−1(1 + t)b−a−1 dt (for a > 0, x > 0),

where Γ(a) is the gamma function.

◮ Asymptotic expansion as |x| → ∞

Φ(a, b;x) =
Γ(b)

Γ(a)
exxa−b

[ N∑

n=0

(b− a)n(1− a)n
n!

x−n + ε

]
, x > 0,

Φ(a, b;x) =
Γ(b)

Γ(b− a) (−x)
−a

[ N∑

n=0

(a)n(a− b+ 1)n
n!

(−x)−n + ε

]
, x < 0,

Ψ(a, b;x) = x−a

[ N∑

n=0

(−1)n (a)n(a− b+ 1)n
n!

x−n + ε

]
, −∞ < x <∞,

where ε = O(x−N−1).

◮ Integrals with degenerate hypergeometric functions
∫

Φ(a, b;x) dx =
b− 1

a− 1
Ψ(a− 1, b − 1;x) + C,

∫
Ψ(a, b;x) dx =

1

1− aΨ(a− 1, b− 1;x) + C,

∫
xnΦ(a, b;x) dx = n!

n+1∑

k=1

(−1)k+1(1− b)kxn−k+1

(1− a)k(n− k + 1)!
Φ(a− k, b− k;x) + C,

∫
xnΨ(a, b;x) dx = n!

n+1∑

k=1

(−1)k+1xn−k+1

(1− a)k(n− k + 1)!
Ψ(a− k, b− k;x) + C.



“K16435’ — 2017/9/28 — 15:05 — #1401

S4.10. Hypergeometric Functions 1375

S4.9.3 Whittaker Functions

The Whittaker functions Mk,µ(x) and Wk,µ(x) are linearly independent solutions of the

Whittaker equation:

y′′xx +
[
− 1

4 + kx−1 +
(
1
4 − µ

2
)
x−2

]
y = 0.

The Whittaker functions are expressed in terms of degenerate hypergeometric functions as

Mk,µ(x) = xµ+1/2e−x/2Φ
(
1
2 + µ− k, 1 + 2µ; x

)
,

Wk,µ(x) = xµ+1/2e−x/2Ψ
(
1
2 + µ− k, 1 + 2µ; x

)
.

S4.10 Hypergeometric Functions

S4.10.1 Various Representations of the Hypergeometric Function

◮ Representations of the hypergeometric function via hypergeometric series

The hypergeometric function F (α, β, γ;x) is a solution of the Gaussian hypergeometric

equation

x(x− 1)y′′xx + [(α+ β + 1)x− γ]y′x + αβy = 0.

For γ 6= 0, −1, −2, −3, . . . , the function F (α, β, γ;x) can be expressed in terms of the

hypergeometric series:

F (α, β, γ;x) = 1 +

∞∑

k=1

(α)k(β)k
(γ)k

xk

k!
, (α)k = α(α+ 1) . . . (α+ k − 1),

which certainly converges for |x| < 1.

If γ is not an integer, then the general solution of the hypergeometric equation can be

written in the form

y = C1F (α, β, γ;x) + C2x
1−γF (α− γ + 1, β − γ + 1, 2− γ; x).

Table S4.3 shows some special cases where F can be expressed in terms of elementary

functions.

◮ Integral representation

For γ > β > 0, the hypergeometric function can be expressed in terms of a definite integral:

F (α, β, γ;x) =
Γ(γ)

Γ(β) Γ(γ − β)

∫ 1

0
tβ−1(1− t)γ−β−1(1− tx)−α dt,

where Γ(β) is the gamma function.
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TABLE S4.3

Some special cases where the hypergeometric function

F (α, β, γ; z) can be expressed in terms of elementary functions.

α β γ z F

−n β γ x

n∑

k=0

(−n)k(β)k
(γ)k

xk

k!
, where n = 1, 2, . . .

−n β −n−m x

n∑

k=0

(−n)k(β)k
(−n−m)k

xk

k!
, where n = 1, 2, . . .

α β β x (1− x)−α

α
1

2
α+1

1

2
α x (1+x)(1−x)−α−1

α α+
1

2
2α+1 x

(
1+

√
1− x

2

)−2α

α α+
1

2
2α x

1√
1−x

(
1+

√
1−x

2

)1−2α

α α+
1

2

3

2
x2

(1+ x)1−2α − (1−x)1−2α

2x(1− 2α)

α α+
1

2

1

2
− tan2 x cos2α x cos(2αx)

α α+
1

2

1

2
x2 1

2

[
(1+ x)−2α +(1− x)−2α

]

α α− 1

2
2α x 22α−1(1+

√
1− x

)1−2α

α 2−α
3

2
sin2 x

sin[(2α− 2)x]

(α− 1) sin(2x)

α 1−α
1

2
−x2

(√
1+x2 + x

)2α−1
+
(√

1+ x2− x
)2α−1

2
√
1+ x2

α 1−α
3

2
sin2 x

sin[(2α− 1)x]

(α− 1) sin(2x)

α 1−α
1

2
sin2 x

cos[(2α− 1)x]

cos x

α −α 1

2
−x2 1

2

[(√
1+x2 + x

)2α
+
(√

1+x2 − x
)2α]

α −α 1

2
sin2 x cos(2αx)

1 1 2 −x 1

x
ln(x+1)

1

2
1

3

2
x2

1

2x
ln

1+x

1−x
1

2
1

3

2
−x2 1

x
arctanx

1

2

1

2

3

2
x2 1

x
arcsin x

1

2

1

2

3

2
−x2 1

x
arcsinh x

n+1 n+m+1 n+m+ l+2 x

(−1)m(n+m+ l+1)!

n! l! (n+m)! (m+ l)!

dn+m

dxn+m

{
(1− x)m+l d

lF

dxl

}
,

F = − ln(1− x)

x
, n,m, l = 0, 1, 2, . . .
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S4.10.2 Basic Properties

◮ Linear transformation formulas

F (α, β, γ;x) = F (β, α, γ;x),

F (α, β, γ;x) = (1− x)γ−α−βF (γ − α, γ − β, γ; x),

F (α, β, γ;x) = (1− x)−αF
(
α, γ − β, γ; x

x− 1

)
,

F (α, β, γ;x) = (1− x)−βF
(
β, γ − α, γ; x

x− 1

)
.

◮ Gauss’s linear relations for contiguous functions

(β−α)F (α, β, γ;x)+αF (α+1, β, γ;x)−βF (α, β+1, γ;x) = 0,

(γ−α−1)F (α, β, γ;x)+αF (α+1, β, γ;x)−(γ−1)F (α, β, γ−1; x) = 0,

(γ−β−1)F (α, β, γ;x)+βF (α, β+1, γ; x)−(γ−1)F (α, β, γ−1;x) = 0,

(γ−α−β)F (α, β, γ;x)+α(1−x)F (α+1, β, γ;x)−(γ−β)F (α, β−1, γ;x) = 0,

(γ−α−β)F (α, β, γ;x)−(γ−α)F (α−1, β, γ; x)+β(1−x)F (α, β+1, γ;x) = 0.

◮ Differentiation formulas

d

dx
F (α, β, γ;x) =

αβ

γ
F (α+ 1, β + 1, γ + 1; x),

dn

dxn
F (α, β, γ;x) =

(α)n(β)n
(γ)n

F (α+ n, β + n, γ + n; x),

dn

dxn
[
xγ−1F (α, β, γ;x)

]
= (γ − n)nxγ−n−1F (α, β, γ − n; x),

dn

dxn
[
xα+n−1F (α, β, γ;x)

]
= (α)nx

α−1F (α+ n, β, γ; x),

where (α)n = α(α + 1) . . . (α+ n− 1).

See Abramowitz and Stegun (1964) and Bateman and Erdélyi (1953, Vol. 1) for more

detailed information about hypergeometric functions.

S4.11 Legendre Polynomials, Legendre Functions,

and Associated Legendre Functions

S4.11.1 Legendre Polynomials and Legendre Functions

◮ Implicit and recurrence formulas for Legendre polynomials and functions

The Legendre polynomials Pn(x) and the Legendre functions Qn(x) are solutions of the

second-order linear ordinary differential equation

(1− x2)y′′xx − 2xy′x + n(n+ 1)y = 0.
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The Legendre polynomials Pn(x) and the Legendre functions Qn(x) are defined by the

formulas

Pn(x) =
1

n! 2n
dn

dxn
(x2 − 1)n,

Qn(x) =
1

2
Pn(x) ln

1 + x

1− x −
n∑

m=1

1

m
Pm−1(x)Pn−m(x).

The polynomials Pn = Pn(x) can be calculated using the formulas

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1),

P3(x) =
1

2
(5x3 − 3x), P4(x) =

1

8
(35x4 − 30x2 + 3),

Pn+1(x) =
2n + 1

n+ 1
xPn(x)−

n

n+ 1
Pn−1(x).

The first five functions Qn = Qn(x) have the form

Q0(x) =
1

2
ln

1+x

1−x , Q1(x) =
x

2
ln

1+x

1−x −1,

Q2(x) =
1

4
(3x2−1) ln

1+x

1−x −
3

2
x, Q3(x) =

1

4
(5x3−3x) ln

1+x

1−x −
5

2
x2+

2

3
,

Q4(x) =
1

16
(35x4−30x2+3) ln

1+x

1−x −
35

8
x3+

55

24
x.

The polynomials Pn(x) have the explicit representation

Pn(x) = 2−n

[n/2]∑

m=0

(−1)mCm
n C

n
2n−2mx

n−2m,

where [A] stands for the integer part of a number A.

◮ Integral representation. Useful formulas

Integral representation of the Legendre polynomials (Laplace integral):

Pn(x) =
1

π

∫ π

0

(
x±

√
x2 − 1 cos t

)n
dt, x > 1.

Integral representation of the Legendre polynomials (Dirichlet–Mehler integral):

Pn(cos θ) =

√
2

π

∫ θ

0

cos
[
(n + 1

2

)
ψ
]
dψ√

cosψ − cos θ
, 0 < θ < π, n = 0, 1, . . .

Integral representation of the Legendre functions:

Qn(x) = 2n
∫ ∞

x

(t− x)n
(t2 − 1)n+1

dt, x > 1.
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Properties:

Pn(−x) = (−1)nPn(x),

Qn(−x) = (−1)n+1Qn(x).

Recurrence relations:

(n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0,

(x2 − 1)
d

dx
Pn(x) = n

[
xPn(x)− Pn−1(x)

]
=
n(n+ 1)

2n+ 1

[
Pn+1(x)− Pn−1(x)

]
.

Values of the Legendre polynomials and their derivatives at x = 0:

P2m(0) = (−1)m (2m− 1)!!

2mm!
, P2m+1(0) = 0,

P ′
2m(0) = 0, P ′

2m+1(0) = (−1)m (2m+ 1)!!

2mm!
.

Asymptotic formula as n→∞:

Pn(cos θ) ≈
(

2

πn sin θ

)1/2
sin

[(
n+

1

2

)
θ +

π

4

]
, 0 < θ < π.

◮ Zeros and orthogonality of the Legendre polynomials

The polynomials Pn(x) (with natural n) have exactly n real distinct zeros; all zeros lie on

the interval −1 < x < 1. The zeros of Pn(x) and Pn+1(x) alternate with each other. The

function Qn(x) has exactly n+ 1 zeros, which lie on the interval −1 < x < 1.

The functions Pn(x) form an orthogonal system on the interval −1 ≤ x ≤ 1, with

∫ 1

−1
Pn(x)Pm(x) dx =




0 if n 6= m,

2

2n + 1
if n = m.

◮ Generating functions

The generating function for Legendre polynomials is

1√
1− 2sx+ s2

=

∞∑

n=0

Pn(x)s
n (|s| < 1).

The generating function for Legendre functions is

1√
1− 2sx+ s2

ln

[
x− s+

√
1− 2sx+ s2√
1− x2

]
=

∞∑

n=0

Qn(x)s
n (|s| < 1, x > 1).
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S4.11.2 Associated Legendre Functions with Integer Indices
and Real Argument

◮ Formulas for associated Legendre functions. Differential equation

The associated Legendre functions Pm
n (x) of order m are defined by the formulas

Pm
n (x) = (1− x2)m/2 d

m

dxm
Pn(x), n = 1, 2, 3, . . . , m = 0, 1, 2, . . .

It is assumed by definition that P 0
n(x) = Pn(x).

Properties:

Pm
n (x) = 0 if m > n, Pm

n (−x) = (−1)n−mPm
n (x).

The associated Legendre functions Pm
n (x) have exactly n − m real zeros, which and

lie on the interval −1 < x < 1.

The associated Legendre functions Pm
n (x) with low indices:

P 1
1 (x) = (1−x2)1/2, P 1

2 (x) = 3x(1−x2)1/2, P 2
2 (x) = 3(1−x2),

P 1
3 (x) =

3
2 (5x

2− 1)(1−x2)1/2, P 2
3 (x) = 15x(1−x2), P 3

3 (x) = 15(1−x2)3/2.

The associated Legendre functions Pm
n (x) with n > m are solutions of the linear ordi-

nary differential equation

(1− x2)y′′xx − 2xy′x +

[
n(n+ 1)− m2

1− x2
]
y = 0.

◮ Orthogonality of the associated Legendre functions

The functions Pm
n (x) form an orthogonal system on the interval −1 ≤ x ≤ 1, with

∫ 1

−1
Pm
n (x)Pm

k (x) dx =





0 if n 6= k,
2

2n+ 1

(n+m)!

(n−m)!
if n = k.

The functions Pm
n (x) (with m 6= 0) are orthogonal on the interval −1 ≤ x≤ 1 with weight

(1− x2)−1, that is,

∫ 1

−1

Pm
n (x)P k

n (x)

1− x2 dx =





0 if m 6= k,
(n+m)!

m(n−m)!
if m = k.

S4.11.3 Associated Legendre Functions. General Case

◮ Definitions. Basic formulas

In the general case, the associated Legendre functions of the first and the second kind,

Pµ
ν (z) and Qµ

ν (z), are linearly independent solutions of the Legendre equation

(1− z2)y′′zz − 2zy′z +

[
ν(ν + 1)− µ2

1− z2
]
y = 0,
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where the parameters ν and µ and the variable z can assume arbitrary real or complex

values.

For |1− z| < 2, the formulas

Pµ
ν (z) =

1

Γ(1− µ)
( z + 1

z − 1

)µ/2
F
(
−ν, 1 + ν, 1− µ; 1− z

2

)
,

Qµ
ν (z) = A

( z − 1

z + 1

) µ
2
F
(
−ν, 1 + ν, 1 + µ;

1− z
2

)

+B
( z + 1

z − 1

) µ
2
F
(
−ν, 1 + ν, 1− µ; 1− z

2

)
,

A = eiµπ
Γ(−µ) Γ(1 + ν + µ)

2Γ(1 + ν − µ) , B = eiµπ
Γ(µ)

2
, i2 = −1,

are valid, where F (a, b, c; z) is the hypergeometric series (see Section S4.10).
For |z| > 1,

Pµ
ν (z) =

2−ν−1Γ(− 1
2−ν)√

π Γ(−ν−µ) z−ν+µ−1(z2−1)−µ/2F
( 1+ν−µ

2
,
2+ν−µ

2
,
2ν+3

2
;

1

z2

)

+
2νΓ( 12 +ν)

Γ(1+ν−µ) z
ν+µ(z2−1)−µ/2F

(
− ν+µ

2
,
1−ν−µ

2
,
1−2ν
2

;
1

z2

)
,

Qµ
ν (z) = eiπµ

√
π Γ(ν+µ+1)

2ν+1Γ(ν+ 3
2 )

z−ν−µ−1(z2−1)µ/2F
( 2+ν+µ

2
,
1+ν+µ

2
,
2ν+3

2
;
1

z2

)
.

The functions Pν(z) ≡ P 0
ν (z) and Qν(z) ≡ Q0

ν(z) are called the Legendre functions.

For n = 1, 2, . . . ,

Pn
ν (z) = (z2 − 1)n/2

dn

dzn
Pν(z), Qn

ν (z) = (z2 − 1)n/2
dn

dzn
Qν(z).

◮ Relations between associated Legendre functions

Pµ
ν (z) = Pµ

−ν−1(z), Pn
ν (z) =

Γ(ν + n+ 1)

Γ(ν − n+ 1)
P−n
ν (z), n = 0, 1, 2, . . . ,

Pµ
ν+1(z) =

2ν + 1

ν − µ+ 1
zPµ

ν (z)−
ν + µ

ν − µ+ 1
Pµ
ν−1(z),

Pµ
ν+1(z) = Pµ

ν−1(z) + (2ν + 1)(z2 − 1)1/2Pµ−1
ν (z),

(z2 − 1)
d

dz
Pµ
ν (z) = νzPµ

ν (z) − (ν +m)Pµ
ν−1(z),

Qµ
ν (z) =

π

2 sin(µπ)
eiπµ

[
Pµ
ν (z) −

Γ(1 + ν + µ

Γ(1 + ν − µ)P
−µ
ν (z)

]
,

Qµ
ν (z) = eiπµ

(π
2

)1/2
Γ(ν + µ+ 1)(z2 − 1)−1/4P

−ν−1/2
−µ−1/2

(
z√

z2 − 1

)
, Re z > 0.

◮ Integral representations

For Re(−µ) > Re ν > −1,

Pµ
ν (z) =

2−ν(z2 − 1)−µ/2

Γ(ν + 1)Γ(−µ − ν)

∫ ∞

0
(z + cosh t)µ−ν−1(sinh t)2ν+1 dt,
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where z does not lie on the real axis between −1 and∞.

For µ < 1/2,

Pµ
ν (z) =

2µ(z2 − 1)−µ/2

√
π Γ( 12 − µ)

∫ π

0

(
z +

√
z2 − 1 cos t

)ν+µ
(sin t)−2µ dt,

where z does not lie on the real axis between −1 and 1.

For Re ν > −1 and Re(ν + µ+ 1) > 0,

Qµ
ν (z) = eπµi

Γ(ν + µ+ 1)(z2 − 1)−µ/2

2ν+1Γ(ν + 1)

∫ π

0

(
z + cos t

)µ−ν−1
(sin t)2ν+1 dt,

where z does not lie on the real axis between −1 and 1.

For n = 0, 1, 2, . . . ,

Pn
ν (z) =

Γ(ν + n+ 1)

πΓ(ν + 1)

∫ π

0

(
z +

√
z2 − 1 cos t

)ν
cos(nt) dt, Re z > 0;

Qn
ν (z) = (−1)n Γ(ν + n+ 1)

2ν+1Γ(ν + 1)
(z2 − 1)−n/2

∫ π

0
(z + cos t)n−ν−1(sin t)2ν+1 dt.

Note that z 6= x, −1 < x < 1, and Re ν > −1 in the latter formula for Qn
ν (z).

◮ Modified associated Legendre functions

The modified associated Legendre functions, on the cut z = x, −1< x < 1, of the real axis

are defined by the formulas

Pµ
ν (x) =

1
2

[
e

1
2
iµπPµ

ν (x+ i0) + e−
1
2
iµπPµ

ν (x− i0)
]
,

Qµ
ν (x) =

1
2 e

−iµπ
[
e−

1
2
iµπQµ

ν (x+ i0) + e
1
2
iµπQµ

ν (x− i0)
]
.

Notation:

Pν(x) = P0
ν(x), Qν(x) = Q0

ν(x).

◮ Trigonometric expansions

For−1<x< 1, the modified associated Legendre functions can be represented in the form

of the trigonometric series:

Pµ
ν (cos θ) =

2µ+1

√
π

Γ(ν+µ+1)

Γ(ν+ 3
2 )

(sin θ)µ
∞∑

k=0

( 12 +µ)k(1+ν+µ)k

k! (ν+ 3
2 )k

sin[(2k+ν+µ+1)θ],

Qµ
ν (cos θ) =

√
π 2µ

Γ(ν+µ+1)

Γ(ν+ 3
2 )

(sin θ)µ
∞∑

k=0

( 12 +µ)k(1+ν+µ)k

k! (ν+ 3
2 )k

cos[(2k+ν+µ+1)θ],

where 0 < θ < π.
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◮ Some relations for the modified associated Legendre functions

For 0 < x < 1,

Pµ
ν (−x) = Pµ

ν (x) cos[π(ν + µ)]− 2π−1Qµ
ν (x) sin[π(ν + µ)],

Qµ
ν (−x) = −Qµ

ν (x) cos[π(ν + µ)]− 1
2πP

µ
ν (x) sin[π(ν + µ)].

For −1 < x < 1,

P
µ
ν+1(x) =

2ν + 1

ν − µ+ 1
xPµ

ν (x)−
ν + µ

ν − µ+ 1
P
µ
ν−1(x),

P
µ
ν+1(x) = P

µ
ν−1(x)− (2ν + 1)(1 − x2)1/2Pµ−1

ν (x),

P
µ
ν+1(x) = xPµ

ν (x)− (ν + µ)(1− x2)1/2Pµ−1
ν (x),

d

dx
Pµ
ν (x) =

νx

x2 − 1
Pµ
ν (x)−

ν + µ

x2 − 1
P
µ
ν−1(x).

Wronskian:

Pµ
ν (x)

d

dx
Qµ

ν (x)−Qµ
ν (x)

d

dx
Pµ
ν (x) =

k

1− x2 , k = 22µ
Γ
( ν+µ+1

2

)
Γ
( ν+µ+2

2

)

Γ
( ν−µ+1

2

)
Γ
( ν−µ+2

2

) .

For n = 1, 2, . . . ,

Pn
ν (x) = (−1)n(1− x2)n/2 d

n

dxn
Pν(x), Qn

ν (x) = (−1)n(1− x2)n/2 d
n

dxn
Qν(x).

S4.12 Parabolic Cylinder Functions

S4.12.1 Definitions. Basic Formulas

◮ Differential equation

Formulas for the parabolic cylinder functions.

The Weber parabolic cylinder function Dν(z) is a solution of the linear ordinary differ-

ential equation:

y′′zz +
(
− 1

4 z
2 + ν + 1

2

)
y = 0,

where the parameter ν and the variable z can assume arbitrary real or complex values.

Another linearly independent solution of this equation is the function D−ν−1(iz); if ν is

noninteger, then Dν(−z) can also be taken as a linearly independent solution.

The parabolic cylinder functions can be expressed in terms of degenerate hypergeomet-

ric functions as

Dν(z) = exp
(
− 1

4 z
2
)[
21/2

Γ
(
1
2

)

Γ
(
1
2 − ν

2

)Φ
(
− ν

2 ,
1
2 ;

1
2 z

2
)
+

Γ
(
− 1

2

)

Γ
(
− ν

2

) zΦ
(
1
2 − ν

2 ,
3
2 ;

1
2 z

2
)]
.
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◮ Special cases

For nonnegative integer ν = n, we have

Dn(z) =
1

2n/2
exp

(
− z

2

4

)
Hn

(
z√
2

)
, n = 0, 1, 2, . . . ;

Hn(z) = (−1)n exp
(
z2
) dn
dzn

exp
(
−z2

)
,

where Hn(z) is the Hermitian polynomial of order n.

Connection with the error function:

D−1(z) =

√
π

2
exp

(
z2

4

)
erfc

(
z√
2

)
,

D−2(z) =

√
π

2
z exp

(
z2

4

)
erfc

(
z√
2

)
− exp

(
− z

2

4

)
.

S4.12.2 Integral Representations, Asymptotic Expansions,
and Linear Relations

◮ Integral representations and the asymptotic expansion

Integral representations:

Dν(z) =
√

2/π exp
(
1
4 z

2
) ∫ ∞

0
tν exp

(
− 1

2 t
2
)
cos
(
zt− 1

2πν
)
dt for Re ν > −1,

Dν(z) =
1

Γ(−ν) exp
(
− 1

4 z
2
) ∫ ∞

0
t−ν−1 exp

(
−zt− 1

2 t
2
)
dt for Re ν < 0.

Asymptotic expansion as |z| → ∞:

Dν(z) = zν exp
(
− 1

4 z
2
)[ N∑

n=0

(−2)n
(
− ν

2

)
n

(
1
2 − ν

2

)
n

n!

1

z2n
+O

(
|z|−2N−2

)]
,

where |arg z| < 3
4π and (a)0 = 1, (a)n = a(a+ 1) . . . (a+ n− 1) for n = 1, 2, 3, . . .

◮ Recurrence relations

Dν+1(z) − zDν(z) + νDν−1(z) = 0,

d

dz
Dν(z) +

1

2
zDν(z)− νDν−1(z) = 0,

d

dz
Dν(z)−

1

2
zDν(z) +Dν+1(z) = 0.
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S4.13 Elliptic Integrals

S4.13.1 Complete Elliptic Integrals

◮ Definitions. Properties. Conversion formulas

Complete elliptic integral of the first kind:

K(k) =

∫ π/2

0

dα√
1− k2 sin2 α

=

∫ 1

0

dx√
(1− x2)(1− k2x2)

.

Complete elliptic integral of the second kind:

E(k) =

∫ π/2

0

√
1− k2 sin2 αdα =

∫ 1

0

√
1− k2x2√
1− x2

dx.

The argument k is called the elliptic modulus (k2 < 1).

Notation:

k′ =
√

1− k2, K′(k) = K(k′), E′(k) = E(k′),

where k′ is the complementary modulus.

Properties:

K(−k) = K(k), E(−k) = E(k);

K(k) = K′(k′), E(k) = E′(k′);

E(k)K′(k) + E′(k)K(k) − K(k)K′(k) =
π

2
.

Conversion formulas for complete elliptic integrals:

K

(
1− k′
1 + k′

)
=

1 + k′

2
K(k),

E

(
1− k′
1 + k′

)
=

1

1 + k′
[
E(k) + k′K(k)

]
,

K

(
2
√
k

1 + k

)
= (1 + k)K(k),

E

(
2
√
k

1 + k

)
=

1

1 + k

[
2E(k) − (k′)2K(k)

]
.

◮ Representation of complete elliptic integrals in series form

Representation of complete elliptic integrals in the form of series in powers of the modu-

lus k:

K(k) =
π

2

{
1 +

(
1

2

)2
k2 +

(
1× 3

2× 4

)2
k4 + · · ·+

[
(2n− 1)!!

(2n)!!

]2
k2n + · · ·

}
,

E(k) =
π

2

{
1−

(
1

2

)2 k2
1
−
(
1× 3

2× 4

)2 k4
3
− · · · −

[
(2n− 1)!!

(2n)!!

]2 k2n

2n − 1
− · · ·

}
.
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Representation of complete elliptic integrals in the form of series in powers of the comple-

mentary modulus k′ =
√
1− k2:

K(k) =
π

1+k′

{
1+

(
1

2

)2(
1−k′
1+k′

)2
+

(
1×3

2×4

)2(
1−k′
1+k′

)4

+ · · ·+
[
(2n−1)!!

(2n)!!

]2(
1−k′
1+k′

)2n
+ · · ·

}
,

K(k) = ln
4

k′
+

(
1

2

)2(
ln

4

k′
− 2

1×2

)
(k′)2+

(
1×3

2×4

)2(
ln

4

k′
− 2

1×2
− 2

3×4

)
(k′)4

+

(
1×3×5

2×4×6

)2(
ln

4

k′
− 2

1×2
− 2

3×4
− 2

5×6

)
(k′)6+ · · · ;

E(k) =
π(1+k′)

4

{
1+

1

22
−
(
1−k′
1+k′

)2
+

12

(2×4)2

(
1−k′
1+k′

)4

+ · · ·+
[
(2n−3)!!

(2n)!!

]2(
1−k′
1+k′

)2n
+ · · ·

}
,

E(k) = 1+
1

2

(
ln

4

k′
− 1

1×2

)
(k′)2+

12×3

22×4

(
ln

4

k′
− 2

1×2
− 1

3×4

)
(k′)4

+
12×32×5

22×42×6

(
ln

4

k′
− 2

1×2
− 2

3×4
− 1

5×6

)
(k′)6+ · · · .

◮ Differentiation formulas. Differential equations

Differentiation formulas:

dK(k)

dk
=

E(k)

k(k′)2
− K(k)

k
,

dE(k)

dk
=

E(k)− K(k)

k
.

The functions K(k) and K′(k) satisfy the second-order linear ordinary differential equa-

tion
d

dk

[
k(1− k2) dK

dk

]
− kK = 0.

The functions E(k) and E′(k) − K′(k) satisfy the second-order linear ordinary differential

equation

(1− k2) d
dk

(
k
dE

dk

)
+ kE = 0.

S4.13.2 Incomplete Elliptic Integrals (Elliptic Integrals)

◮ Definitions. Properties

Elliptic integral of the first kind:

F (ϕ, k) =

∫ ϕ

0

dα√
1− k2 sin2 α

=

∫ sinϕ

0

dx√
(1 − x2)(1− k2x2)

.

Elliptic integral of the second kind:

E(ϕ, k) =

∫ ϕ

0

√
1− k2 sin2 α dα =

∫ sinϕ

0

√
1− k2x2√
1− x2

dx.
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Elliptic integral of the third kind:

Π(ϕ, n, k)=

∫ ϕ

0

dα

(1− n sin2 α)
√

1− k2 sin2 α
=

∫ sinϕ

0

dx

(1− nx2)
√

(1− x2)(1− k2x2)
.

The quantity k is called the elliptic modulus (k2 < 1), k′ =
√
1− k2 is the complemen-

tary modulus, and n is the characteristic parameter.

Complete elliptic integrals:

K(k) = F
( π
2
, k
)
, E(k) = E

( π
2
, k
)
,

K′(k) = F
(π
2
, k′
)
, E′(k) = E

( π
2
, k′
)
.

Properties of elliptic integrals:

F (−ϕ, k) = −F (ϕ, k), F (nπ ± ϕ, k) = 2nK(k)± F (ϕ, k);
E(−ϕ, k) = −E(ϕ, k), E(nπ ± ϕ, k) = 2nE(k)± E(ϕ, k).

◮ Conversion formulas

Conversion formulas for elliptic integrals (first set):

F

(
ψ,

1

k

)
= kF (ϕ, k),

E

(
ψ,

1

k

)
=

1

k

[
E(ϕ, k) − (k′)2F (ϕ, k)

]
,

where the angles ϕ and ψ are related by sinψ = k sinϕ, cosψ =
√

1− k2 sin2 ϕ.

Conversion formulas for elliptic integrals (second set):

F

(
ψ,

1−k′
1+k′

)
= (1+k′)F (ϕ, k),

E

(
ψ,

1−k′
1+k′

)
=

2

1+k′
[
E(ϕ, k)+k′F (ϕ, k)

]
− 1−k′

1+k′
sinψ,

where the angles ϕ and ψ are related by tan(ψ − ϕ) = k′ tanϕ.

Transformation formulas for elliptic integrals (third set):

F

(
ψ,

2
√
k

1+k

)
= (1+k)F (ϕ, k),

E

(
ψ,

2
√
k

1+k

)
=

1

1+k

[
2E(ϕ, k)−(k′)2F (ϕ, k)+2k

sinϕ cosϕ

1+k sin2 ϕ

√
1−k2 sin2 ϕ

]
,

where the angles ϕ and ψ are related by sinψ =
(1 + k) sinϕ

1 + k sin2 ϕ
.
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◮ Trigonometric expansions

Trigonometric expansions for small k and ϕ:

F (ϕ, k) =
2

π
K(k)ϕ − sinϕ cosϕ

(
a0 +

2

3
a1 sin

2 ϕ+
2× 4

3× 5
a2 sin

4 ϕ+ · · ·
)
,

a0 =
2

π
K(k) − 1, an = an−1 −

[
(2n − 1)!!

(2n)!!

]2
k2n;

E(ϕ, k) =
2

π
E(k)ϕ − sinϕ cosϕ

(
b0 +

2

3
b1 sin

2 ϕ+
2× 4

3× 5
b2 sin

4 ϕ+ · · ·
)
,

b0 = 1− 2

π
E(k), bn = bn−1 −

[
(2n − 1)!!

(2n)!!

]2 k2n

2n− 1
.

Trigonometric expansions for k → 1:

F (ϕ, k) =
2

π
K′(k) ln tan

(
ϕ

2
+
π

4

)
− tanϕ

cosϕ

(
a′0 −

2

3
a′1 tan

2 ϕ+
2× 4

3× 5
a′2 tan

4 ϕ− · · ·
)
,

a′0 =
2

π
K′(k)− 1, a′n = a′n−1 −

[
(2n− 1)!!

(2n)!!

]2
(k′)2n;

E(ϕ, k) =
2

π
E
′(k) ln tan

(
ϕ

2
+
π

4

)
+

tanϕ

cosϕ

(
b′0 −

2

3
b′1 tan

2 ϕ+
2× 4

3× 5
b′2 tan

4 ϕ− · · ·
)
,

b′0 =
2

π
E′(k)− 1, b′n = b′n−1 −

[
(2n− 1)!!

(2n)!!

]2
(k′)2n

2n− 1
.

S4.14 Elliptic Functions

An elliptic function is a function that is the inverse of an elliptic integral. An elliptic func-

tion is a doubly periodic meromorphic function of a complex variable. All its periods can

be written in the form 2mω1 + 2nω2 with integer m and n, where ω1 and ω2 are a pair of

(primitive) half-periods. The ratio τ = ω2/ω1 is a complex quantity that may be considered

to have a positive imaginary part, Im τ > 0.

Throughout the rest of this section, the following brief notation will be used: K= K(k)
and K′ = K(k′) are complete elliptic integrals with k′ =

√
1− k2.

S4.14.1 Jacobi Elliptic Functions

◮ Definitions. Simple properties. Special cases

When the upper limit ϕ of the incomplete elliptic integral of the first kind

u =

∫ ϕ

0

dα√
1− k2 sin2 α

= F (ϕ, k)

is treated as a function of u, the following notation is used:

u = amϕ.

Naming: ϕ is the amplitude and u is the argument.
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Jacobi elliptic functions:

snu = sinϕ = sin amu (sine amplitude),

cnu = cosϕ = cos amu (cosine amplitude),

dnu =

√
1− k2 sin2 ϕ =

dϕ

du
(delta amplitude).

Along with the brief notations snu, cnu, dnu, the respective full notations are also used:

sn(u, k), cn(u, k), dn(u, k).
Simple properties:

sn(−u) = − snu, cn(−u) = cnu, dn(−u) = dnu;

sn2 u+ cn2 u = 1, k2 sn2 u+ dn2 u = 1, dn2 u− k2 cn2 u = 1− k2,

where i2 = −1.

Jacobi functions for special values of the modulus (k = 0 and k = 1):

sn(u, 0) = sinu, cn(u, 0) = cos u, dn(u, 0) = 1;

sn(u, 1) = tanh u, cn(u, 1) =
1

cosh u
, dn(u, 1) =

1

cosh u
.

Jacobi functions for special values of the argument:

sn( 12K, k) =
1√

1 + k′
, cn( 12K, k) =

√
k′

1 + k′
, dn( 12K, k) =

√
k′;

sn(K, k) = 1, cn(K, k) = 0, dn(K, k) = k′.

◮ Reduction formulas

sn(u± K) = ± cnu

dnu
, cn(u ± K) = ∓k′ sn u

dnu
, dn(u ± K) =

k′

dnu
;

sn(u± 2K) = − snu, cn(u ± 2K) = − cnu, dn(u ± 2K) = dnu;

sn(u+ iK′) =
1

k snu
, cn(u + iK′) = − i

k

dnu

sn u
, dn(u + iK′) = −i cnu

snu
;

sn(u+ 2iK′) = sn u, cn(u + 2iK′) = − cnu, dn(u + 2iK′) = − dnu;

sn(u+ K+ iK′) =
dnu

k cnu
, cn(u + K+ iK′) = − ik′

k cnu
, dn(u + K+ iK′) = ik′

sn u

cnu
;

sn(u+ 2K+ 2iK′) = − snu, cn(u + 2K+ 2iK′) = cn u, dn(u + 2K+ 2iK′) = − dnu.

◮ Periods, zeros, poses, and residues

TABLE S4.4

Periods, zeros, poles, and residues of the Jacobian elliptic functions (m, n = 0, ±1, ±2, . . . ; i2 = −1)

Functions Periods Zeros Poles Residues

sn u 4mK+2nK′i 2mK+2nK′i 2mK+(2n+1)K′i (−1)m
1

k

cn u (4m+2n)K+2nK′i (2m+1)K+2nK′i 2mK+(2n+1)K′i (−1)m−1 i

k

dn u 2mK+4nK′i (2m+1)K+(2n+1)K′i 2mK+(2n+1)K′i (−1)n−1i
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◮ Double-argument formulas

sn(2u) =
2 snu cnu dn u

1− k2 sn4 u
=

2 snu cn u dnu

cn2 u+ sn2 u dn2 u
,

cn(2u) =
cn2 u− sn2 u dn2 u

1− k2 sn4 u
=

cn2 u− sn2 u dn2 u

cn2 u+ sn2 u dn2 u
,

dn(2u) =
dn2 u− k2 sn2 u cn2 u

1− k2 sn4 u
=

dn2 u+ cn2 u (dn2 u− 1)

dn2 u− cn2 u (dn2 u− 1)
.

◮ Half-argument formulas

sn2
u

2
=

1

k2
1− dnu

1 + cnu
=

1− cnu

1 + dnu
,

cn2
u

2
=

cnu+ dnu

1 + dnu
=

1− k2
k2

1− dnu

dnu− cnu
,

dn2
u

2
=

cnu+ dnu

1 + cnu
= (1− k2) 1− cnu

dn u− cnu
.

◮ Argument addition formulas

sn(u± v) = snu cn v dn v ± sn v cnu dnu

1− k2 sn2 u sn2 v
,

cn(u± v) = cnu cn v ∓ snu sn v dn u dn v

1− k2 sn2 u sn2 v
,

dn(u± v) = dnu dn v ∓ k2 snu sn v cnu cn v

1− k2 sn2 u sn2 v
.

◮ Conversion formulas

Table S4.5 presents conversion formulas for Jacobi elliptic functions. If k > 1, then

k1 = 1/k < 1. Elliptic functions with real modulus can be reduced, using the first set

of conversion formulas, to elliptic functions with a modulus lying between 0 and 1.

◮ Descending Landen transformation (Gauss’s transformation)

Notation:

µ =

∣∣∣∣
1− k′
1 + k′

∣∣∣∣, v =
u

1 + µ
.

Descending transformations:

sn(u, k) =
(1 + µ) sn(v, µ2)

1 + µ sn2(v, µ2)
, cn(u, k) =

cn(v, µ2) dn(v, µ2)

1 + µ sn2(v, µ2)
,

dn(u, k) =
dn2(v, µ2) + µ− 1

1 + µ− dn2(v, µ2)
.
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TABLE S4.5

Conversion formulas for Jacobi elliptic functions. Full notation is used: sn(u, k), cn(u, k), dn(u, k)

u1 k1 sn(u1, k1) cn(u1, k1) dn(u1, k1)

ku
1

k
k sn(u, k) dn(u, k) cn(u, k)

iu k′ i
sn(u, k)

cn(u, k)

1

cn(u, k)

dn(u, k)

cn(u, k)

k′u i
k

k′
k′

sn(u, k)

dn(u, k)

cn(u, k)

dn(u, k)

1

dn(u, k)

iku i
k′

k
ik

sn(u, k)

dn(u, k)

1

dn(u, k)

cn(u, k)

dn(u, k)

ik′u
1

k′
ik′

sn(u, k)

cn(u, k)

dn(u, k)

cn(u, k)

1

cn(u, k)

(1+k)u 2
√
k

1+k

(1+k) sn(u, k)

1+k sn2(u, k)

cn(u, k) dn(u, k)

1+k sn2(u, k)

1−k sn2(u, k)

1+k sn2(u, k)

(1+k′)u
1−k′
1+k′

(1+k′) sn(u, k) cn(u, k)

dn(u, k)

1− (1+k′) sn2(u, k)

dn(u, k)

1− (1−k′) sn2(u, k)

dn(u, k)

◮ Ascending Landen transformation

Notation:

µ =
4k

(1 + k)2
, σ =

∣∣∣ 1− k
1 + k

∣∣∣, v =
u

1 + σ
.

Ascending transformations:

sn(u, k) = (1 + σ)
sn(v, µ) cn(v, µ)

dn(v, µ)
, cn(u, k) =

1 + σ

µ

dn2(v, µ)− σ
dn(v, µ)

,

dn(u, k) =
1− σ
µ

dn2(v, µ) + σ

dn(v, µ)
.

◮ Series representation

Representation Jacobi functions in the form of power series in u:

snu = u− 1

3!
(1 + k2)u3 +

1

5!
(1 + 14k2 + k4)u5

− 1

7!
(1 + 135k2 + 135k4 + k6)u7 + · · · ,

cnu = 1− 1

2!
u2 +

1

4!
(1 + 4k2)u4 − 1

6!
(1 + 44k2 + 16k4)u6 + · · · ,

dnu = 1− 1

2!
k2u2 +

1

4!
k2(4 + k2)u4 − 1

6!
k2(16 + 44k2 + k4)u6 + · · · ,

amu = u− 1

3!
k2u3 +

1

5!
k2(4 + k2)u5 − 1

7!
k2(16 + 44k2 + k4)u7 + · · · .

These functions converge for |u| < |K(k′)|.
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Representation Jacobi functions in the form of trigonometric series:

snu =
2π

kK
√
q

∞∑

n=1

qn

1− q2n−1
sin

[
(2n − 1)

πu

2K

]
,

cnu =
2π

kK
√
q

∞∑

n=1

qn

1 + q2n−1
cos

[
(2n − 1)

πu

2K

]
,

dnu =
π

2K
+

2π

K

∞∑

n=1

qn

1 + q2n
cos

(
nπu

K

)
,

amu =
πu

2K
+ 2

∞∑

n=1

1

n

qn

1 + q2n
sin

(
nπu

K

)
,

where q = exp(−πK′/K), K = K(k), K′ = K(k′), and k′ =
√
1− k2.

◮ Derivatives and integrals

Derivatives:

d

du
snu = cnu dn u,

d

du
cnu = − snu dn u,

d

du
dnu = −k2 snu cnu.

Integrals: ∫
snu du =

1

k
ln(dnu− k cnu) = − 1

k
ln(dnu+ k cnu),

∫
cnu du =

1

k
arccos(dn u) =

1

k
arcsin(k snu),

∫
dnu du = arcsin(snu) = amu.

The arbitrary additive constant C in the integrals is omitted.

S4.14.2 Weierstrass Elliptic Function

◮ Infinite series representation. Some properties

The Weierstrass elliptic function (or Weierstrass ℘-function) is defined as

℘(z) = ℘(z|ω1, ω2) =
1

z2
+
∑

m,n

[
1

(z − 2mω1 − 2nω2)2
− 1

(2mω1 + 2nω2)2

]
,

where the summation is assumed over all integer m and n, except for m = n = 0. This

function is a complex, double periodic function of a complex variable z with periods 2ω1

and 2ω1:
℘(−z) = ℘(z),

℘(z + 2mω1 + 2nω2) = ℘(z),

where m, n = 0, ±1, ±2, . . . and Im(ω2/ω1) 6= 0. The series defining the Weierstrass

℘-function converges everywhere except for second-order poles located at zmn = 2mω1 +
2nω2.
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Argument addition formula:

℘(z1 + z2) = −℘(z1)− ℘(z2) +
1

4

[
℘′(z1)− ℘′(z2)
℘(z1)− ℘(z2)

]2
.

◮ Representation in the form of a definite integral

The Weierstrass function ℘=℘(z, g2, g3)=℘(z|ω1, ω2) is defined implicitly by the elliptic

integral:

z =

∫ ∞

℘

dt√
4t3 − g2t− g3

=

∫ ∞

℘

dt

2
√

(t− e1)(t− e2)(t− e3)
.

The parameters g2 and g3 are known as the invariants.

The parameters e1, e2, e3, which are the roots of the cubic equation 4z3−g2z−g3 = 0,

are related to the half-periods ω1, ω2 and invariants g2, g3 by

e1 = ℘(ω1), e2 = ℘(ω1 + ω2), e1 = ℘(ω2),

e1 + e2 + e3 = 0, e1e2 + e1e3 + e2e3 = − 1
4 g2, e1e2e3 =

1
4 g3.

Homogeneity property:

℘(z, g2, g3) = λ2℘(λz, λ−4g2, λ
−6g3).

◮ Representation as a Laurent series. Differential equations

The Weierstrass ℘-function can be expanded into a Laurent series:

℘(z) =
1

z2
+
g2
20
z2 +

g3
28
z4 +

g22
1200

z6 +
3g2g3
6160

z8 + · · · = 1

z2
+

∞∑

k=2

akz
2k−2,

ak =
3

(k − 3)(2k + 1)

k−2∑

m=2

amak−m for k ≥ 4, 0 < |z| < min(|ω1|, |ω2|).

The Weierstrass ℘-function satisfies the first-order and second-order nonlinear differ-

ential equations:

(℘′
z)

2 = 4℘3 − g2℘− g3,
℘′′
zz = 6℘2 − 1

2 g2.

◮ Connection with Jacobi elliptic functions

Direct and inverse representations of the Weierstrass elliptic function via Jacobi elliptic

functions:

℘(z) = e1 + (e1 − e3)
cn2 w

sn2w
= e2 + (e1 − e3)

dn2w

sn2w
= e3 +

e1 − e3
sn2w

;

snw =

√
e1 − e3
℘(z)− e3

, cnw =

√
℘(z) − e1
℘(z) − e3

, dnw =

√
℘(z)− e2
℘(z)− e3

;

w = z
√
e1 − e3 = Kz/ω1.
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The parameters are related by

k =

√
e2 − e3
e1 − e3

, k′ =

√
e1 − e2
e1 − e3

, K = ω1

√
e1 − e3, iK′ = ω2

√
e1 − e3.

S4.15 Jacobi Theta Functions

S4.15.1 Series Representation of the Jacobi Theta Functions.
Simplest Properties

◮ Definition of the Jacobi theta functions

The Jacobi theta functions are defined by the following series:

ϑ1(v) = ϑ1(v, q) = ϑ1(v|τ) = 2

∞∑

n=0

(−1)nq(n+1/2)2 sin[(2n+ 1)πv]

= i

∞∑

n=−∞
(−1)nq(n−1/2)2eiπ(2n−1)v,

ϑ2(v) = ϑ2(v, q) = ϑ2(v|τ) = 2

∞∑

n=0

q(n+1/2)2 cos[(2n+ 1)πv] =

∞∑

n=−∞
q(n−1/2)2eiπ(2n−1)v,

ϑ3(v) = ϑ3(v, q) = ϑ3(v|τ) = 1 + 2

∞∑

n=0

qn
2

cos(2nπv) =

∞∑

n=−∞
qn

2

e2iπnv,

ϑ4(v) = ϑ4(v, q) = ϑ4(v|τ) = 1 + 2

∞∑

n=0

(−1)nqn2

cos(2nπv) =

∞∑

n=−∞
(−1)nqn2

e2iπnv,

where v is a complex variable and q = eiπτ is a complex parameter (τ has a positive

imaginary part).

◮ Simplest properties

The Jacobi theta functions are periodic entire functions that possess the following proper-

ties:

[l] ϑ1(v) odd, has period 2, vanishes at v = m+ nτ ;

ϑ2(v) even, has period 2, vanishes at v = m+ nτ + 1
2 ;

ϑ3(v) even, has period 1, vanishes at v = m+ (n+ 1
2 )τ +

1
2 ;

ϑ4(v) even, has period 1, vanishes at v = m+ (n+ 1
2 )τ .

Here, m, n = 0, ±1, ±2, . . .

Remark S4.1. The theta functions are not elliptic functions. The very good convergence of their

series allows the computation of various elliptic integrals and elliptic functions using the relations

given above in Section S4.15.1.
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S4.15.2 Various Relations and Formulas. Connection with Jacobi
Elliptic Functions

◮ Linear and quadratic relations

Linear relations (first set):

ϑ1

(
v +

1

2

)
= ϑ2(v), ϑ2

(
v +

1

2

)
= −ϑ1(v),

ϑ3

(
v +

1

2

)
= ϑ4(v), ϑ4

(
v +

1

2

)
= ϑ3(v),

ϑ1

(
v +

τ

2

)
= ie−iπ

(
v+ τ

4

)
ϑ4(v), ϑ2

(
v +

τ

2

)
= e−iπ

(
v+ τ

4

)
ϑ3(v),

ϑ3

(
v +

τ

2

)
= e−iπ

(
v+ τ

4

)
ϑ2(v), ϑ4

(
v +

τ

2

)
= ie−iπ

(
v+ τ

4

)
ϑ1(v).

Linear relations (second set):

ϑ1(v|τ + 1) = eiπ/4ϑ1(v|τ), ϑ2(v|τ + 1) = eiπ/4ϑ2(v|τ),
ϑ3(v|τ + 1) = ϑ4(v|τ), ϑ4(v|τ + 1) = ϑ3(v|τ),

ϑ1

( v
τ

∣∣∣− 1

τ

)
=

1

i

√
τ

i
eiπv

2/τϑ1(v|τ), ϑ2

( v
τ

∣∣∣− 1

τ

)
=

√
τ

i
eiπv

2/τϑ4(v|τ),

ϑ3

( v
τ

∣∣∣− 1

τ

)
=

√
τ

i
eiπv

2/τϑ3(v|τ), ϑ4

( v
τ

∣∣∣− 1

τ

)
=

√
τ

i
eiπv

2/τϑ2(v|τ).

Quadratic relations:

ϑ21(v)ϑ
2
2(0) = ϑ24(v)ϑ

2
3(0)− ϑ23(v)ϑ24(0),

ϑ21(v)ϑ
2
3(0) = ϑ24(v)ϑ

2
2(0)− ϑ22(v)ϑ24(0),

ϑ21(v)ϑ
2
4(0) = ϑ23(v)ϑ

2
2(0)− ϑ22(v)ϑ23(0),

ϑ24(v)ϑ
2
4(0) = ϑ23(v)ϑ

2
3(0)− ϑ22(v)ϑ22(0).

◮ Representation of the theta functions in the form of infinite products

ϑ1(v) = 2q0q
1/4 sin(πv)

∞∏

n=1

[
1− 2q2n cos(2πv) + q4n

]
,

ϑ2(v) = 2q0q
1/4 cos(πv)

∞∏

n=1

[
1 + 2q2n cos(2πv) + q4n

]
,

ϑ3(v) = q0

∞∏

n=1

[
1 + 2q2n−1 cos(2πv) + q4n−2

]
,

ϑ4(v) = q0

∞∏

n=1

[
1− 2q2n−1 cos(2πv) + q4n−2

]
,

where q0 =
∞∏
n=1

(1− q2n).
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◮ Connection with Jacobi elliptic functions

Representations of Jacobi elliptic functions in terms of the theta functions:

snw =
ϑ3(0)

ϑ2(0)

ϑ1(v)

ϑ4(v)
, cnw =

ϑ4(0)

ϑ2(0)

ϑ2(v)

ϑ4(v)
, dnw =

ϑ4(0)

ϑ3(0)

ϑ3(v)

ϑ4(v)
, w = 2Kv.

The parameters are related by

k =
ϑ22(0)

ϑ23(0)
, k′ =

ϑ24(0)

ϑ23(0)
, K =

π

2
ϑ23(0), K′ = −iτK.

S4.16 Mathieu Functions and Modified Mathieu

Functions

S4.16.1 Mathieu Functions

◮ Mathieu equation and Mathieu functions

The Mathieu functions cen(x, q) and sen(x, q) are periodic solutions of the Mathieu equa-

tion

y′′xx + (a− 2q cos 2x)y = 0.

Such solutions exist for definite values of parameters a and q (those values of a are referred

to as eigenvalues). The Mathieu functions are listed in Table S4.6.

TABLE S4.6

The Mathieu functions cen = cen(x, q) and sen = sen(x, q) (for odd n, functions

cen and sen are 2π-periodic, and for even n, they are π-periodic); definite

eigenvalues a = an(q) and a = bn(q) correspond to each value of parameter q

Mathieu functions
Recurrence relations

for coefficients

Normalization

conditions

ce2n =

∞∑

m=0

A2n
2m cos 2mx

qA2n
2 = a2nA

2n
0 ;

qA2n
4 =(a2n−4)A2n

2 −2qA2n
0 ;

qA2n
2m+2 =(a2n−4m2)A2n

2m

−qA2n
2m−2, m≥ 2

(A2n
0 )2+

∞∑

m=0

(A2n
2m)2

=

{
2 if n=0,

1 if n≥ 1

ce2n+1 =
∞∑

m=0

A2n+1
2m+1 cos(2m+1)x

qA2n+1
3 =(a2n+1−1−q)A2n+1

1 ;

qA2n+1
2m+3 = [a2n+1−(2m+1)2]A2n+1

2m+1

−qA2n+1
2m−1, m≥ 1

∞∑

m=0

(A2n+1
2m+1)

2 =1

se2n =
∞∑

m=0

B2n
2m sin 2mx,

se0 =0

qB2n
4 =(b2n−4)B2n

2 ;

qB2n
2m+2 =(b2n−4m2)B2n

2m

−qB2n
2m−2, m≥ 2

∞∑

m=0

(B2n
2m)2 =1

se2n+1 =
∞∑

m=0

B2n+1
2m+1 sin(2m+1)x

qB2n+1
3 =(b2n+1−1−q)B2n+1

1 ;

qB2n+1
2m+3 = [b2n+1−(2m+1)2]B2n+1

2m+1

−qB2n+1
2m−1, m≥ 1

∞∑

m=0

(B2n+1
2m+1)

2 =1
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◮ Properties of the Mathieu functions

The Mathieu functions possess the following properties:

ce2n(x, −q) = (−1)n ce2n
(π
2
− x, q

)
, ce2n+1(x, −q) = (−1)n se2n+1

(π
2
− x, q

)
,

se2n(x, −q) = (−1)n−1 se2n
(π
2
− x, q

)
, se2n+1(x, −q) = (−1)n ce2n+1

(π
2
− x, q

)
.

Selecting a sufficiently large number m and omitting the term with the maximum number

in the recurrence relations (indicated in Table S4.6), we can obtain approximate relations

for eigenvalues an (or bn) with respect to parameter q. Then, equating the determinant of

the corresponding homogeneous linear system of equations for coefficients An
m (or Bn

m) to

zero, we obtain an algebraic equation for finding an(q) (or bn(q)).

For fixed real q 6= 0, eigenvalues an and bn are all real and different, while

if q > 0 then a0 < b1 < a1 < b2 < a2 < · · · ;
if q < 0 then a0 < a1 < b1 < b2 < a2 < a3 < b3 < b4 < · · · .

The eigenvalues possess the properties

a2n(−q) = a2n(q), b2n(−q) = b2n(q), a2n+1(−q) = b2n+1(q).

Tables of the eigenvalues an = an(q) and bn = bn(q) can be found in Abramowitz and

Stegun (1964, Chapter 20).

The solution of the Mathieu equation corresponding to eigenvalue an (or bn) has n zeros

on the interval 0 ≤ x < π (q is a real number).

◮ Asymptotic expansions as q → 0 and q → ∞
Listed below are two leading terms of the asymptotic expansions of the Mathieu func-
tions cen(x, q) and sen(x, q), as well as of the corresponding eigenvalues an(q) and bn(q),
as q → 0:

ce0(x, q) =
1√
2

(
1− q

2
cos 2x

)
, a0(q) = −

q2

2
+

7q4

128
;

ce1(x, q) = cosx− q
8
cos 3x, a1(q) = 1+q;

ce2(x, q) = cos 2x+
q

4

(
1− cos 4x

3

)
, a2(q) = 4+

5q2

12
;

cen(x, q) = cosnx+
q

4

[
cos(n+2)x

n+1
− cos(n−2)x

n−1

]
, an(q) = n2+

q2

2(n2−1) (n ≥ 3);

se1(x, q) = sinx− q
8
sin 3x, b1(q) = 1−q;

se2(x, q) = sin 2x−q sin 4x
12

, b2(q) = 4− q2

12
;

sen(x, q) = sinnx− q
4

[
sin(n+2)x

n+1
− sin(n−2)x

n−1

]
, bn(q) = n2+

q2

2(n2−1) (n ≥ 3).
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Asymptotic results as q →∞ (−π/2 < x < π/2):

an(q) ≈ −2q+2(2n+1)
√
q+ 1

4 (2n
2+2n+1),

bn+1(q) ≈ −2q+2(2n+1)
√
q+ 1

4 (2n
2+2n+1),

cen(x, q) ≈ λnq−1/4 cos−n−1 x
[
cos2n+1 ξ exp(2

√
q sinx)+sin2n+1 ξ exp(−2√q sinx)

]
,

sen+1(x, q) ≈ µn+1q
−1/4 cos−n−1 x

[
cos2n+1 ξ exp(2

√
q sinx)−sin2n+1 ξ exp(−2√q sinx)

]
,

where λn and µn are some constants independent of the parameter q, and ξ = 1
2x+ π

4 .

The Mathieu functions are discussed in the books by McLachlan (1947), Whittaker &

Watson (1952), Bateman & Erdélyi (1955, vol. 3), and Abramowitz & Stegun (1964) in

more detail.

S4.16.2 Modified Mathieu Functions

The modified Mathieu functions Cen(x, q) and Sen(x, q) are solutions of the modified

Mathieu equation

y′′xx − (a− 2q cosh 2x)y = 0,

with a = an(q) and a = bn(q) being the eigenvalues of the Mathieu equation (see Section

S4.16.1).

The modified Mathieu functions are defined as

Ce2n+p(x, q) = ce2n+p(ix, q) =

∞∑

k=0

A2n+p
2k+p cosh[(2k + p)x],

Se2n+p(x, q) = −i se2n+p(ix, q) =

∞∑

k=0

B2n+p
2k+p sinh[(2k + p)x],

where p may be equal to 0 and 1, and coefficients A2n+p
2k+p and B2n+p

2k+p are indicated in

Section S4.16.1.

S4.17 Orthogonal Polynomials

All zeros of each of the orthogonal polynomials Pn(x) considered in this section are real

and simple. The zeros of the polynomials Pn(x) and Pn+1(x) alternate.

For Legendre polynomials, see Section S4.11.1.

S4.17.1 Laguerre Polynomials and Generalized Laguerre
Polynomials

◮ Laguerre polynomials

The Laguerre polynomials Ln =Ln(x) satisfy the second-order linear ordinary differential

equation

xy′′xx + (1− x)y′x + ny = 0
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and are defined by the formulas

Ln(x) =
1

n!
ex

dn

dxn
(
xne−x

)
=

(−1)n
n!

[
xn − n2xn−1 +

n2(n− 1)2

2!
xn−2 + · · ·

]
.

The first four polynomials have the form

L0(x) = 1, L1(x) = −x+ 1, L2(x) =
1
2 (x

2 − 4x+ 2),

L3(x) =
1
6 (−x

3 + 9x2 − 18x+ 6).

To calculate Ln(x) for n ≥ 2, one can use the recurrence formulas

Ln+1(x) =
1

n+ 1

[
(2n+ 1− x)Ln(x)− nLn−1(x)

]
.

The functions Ln(x) form an orthonormal system on the interval 0 < x < ∞ with

weight e−x: ∫ ∞

0
e−xLn(x)Lm(x) dx =

{
0 if n 6= m,

1 if n = m.

The generating function is

1

1− s exp
(
− sx

1− s
)
=

∞∑

n=0

Ln(x)s
n, |s| < 1.

◮ Generalized Laguerre polynomials

The generalized Laguerre polynomials Lα
n = Lα

n(x) (α > −1) satisfy the equation

xy′′xx + (α+ 1− x)y′x + ny = 0

and are defined by the formulas

Lα
n(x) =

1

n!
x−αex

dn

dxn
(
xn+αe−x

)

=

n∑

m=0

Cn−m
n+α

(−x)m
m!

=

n∑

m=0

Γ(n+ α+ 1)

Γ(m+ α+ 1)

(−x)m
m! (n −m)!

.

Notation: L0
n(x) = Ln(x).

Special cases:

Lα
0 (x) = 1, Lα

1 (x) = α+ 1− x, L−n
n (x) = (−1)n x

n

n!
.

To calculate Lα
n(x) for n ≥ 2, one can use the recurrence formulas

Lα
n+1(x) =

1

n+ 1

[
(2n+ α+ 1− x)Lα

n(x)− (n+ α)Lα
n−1(x)

]
.
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Other recurrence formulas:

Lα
n(x) = Lα

n−1(x) + Lα−1
n (x),

d

dx
Lα
n(x) = −Lα+1

n−1(x),

x
d

dx
Lα
n(x) = nLα

n(x)− (n+ α)Lα
n−1(x).

The functions Lα
n(x) form an orthogonal system on the interval 0<x<∞ with weight

xαe−x: ∫ ∞

0
xαe−xLα

n(x)L
α
m(x) dx =

{
0 if n 6= m,
Γ(α+n+1)

n! if n = m.

The generating function is

(1− s)−α−1 exp
(
− sx

1− s
)
=

∞∑

n=0

Lα
n(x)s

n, |s| < 1.

S4.17.2 Chebyshev Polynomials and Functions

◮ Chebyshev polynomials of the first kind

The Chebyshev polynomials of the first kind Tn = Tn(x) satisfy the second-order linear

ordinary differential equation

(1− x2)y′′xx − xy′x + n2y = 0 (S4.17.2.1)

and are defined by the formulas

Tn(x) = cos(n arccos x) =
(−2)nn!
(2n)!

√
1− x2 dn

dxn
[
(1− x2)n− 1

2

]

=
n

2

[n/2]∑

m=0

(−1)m (n−m− 1)!

m! (n− 2m)!
(2x)n−2m (n = 0, 1, 2, . . . ),

where [A] stands for the integer part of a number A.

An alternative representation of the Chebyshev polynomials:

Tn(x) =
(−1)n

(2n− 1)!!
(1− x2)1/2 d

n

dxn
(1− x2)n−1/2.

The first five Chebyshev polynomials of the first kind are

T0(x) = 1, T1(x) = x, T2(x) = 2x2−1, T3(x) = 4x3−3x, T4(x) = 8x4−8x2+1.

The recurrence formulas:

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 2.
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The functions Tn(x) form an orthogonal system on the interval −1 < x < 1, with

∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =





0 if n 6= m,
1
2π if n = m 6= 0,

π if n = m = 0.

The generating function is

1− sx
1− 2sx+ s2

=

∞∑

n=0

Tn(x)s
n (|s| < 1).

The functions Tn(x) have only real simple zeros, all lying on the interval −1 < x < 1.

The normalized Chebyshev polynomials of the first kind, 21−nTn(x), deviate from zero

least of all. This means that among all polynomials of degree n with the leading coeffi-

cient 1, it is the maximum of the modulus max
−1≤x≤1

|21−nTn(x)| that has the least value, the

maximum being equal to 21−n.

◮ Chebyshev polynomials of the second kind

The Chebyshev polynomials of the second kind Un =Un(x) satisfy the second-order linear

ordinary differential equation

(1− x2)y′′xx − 3xy′x + n(n+ 2)y = 0

and are defined by the formulas

Un(x) =
sin[(n+ 1) arccos x]√

1− x2
=

2n(n+ 1)!

(2n + 1)!

1√
1− x2

dn

dxn
(1− x2)n+1/2

=

[n/2]∑

m=0

(−1)m (n−m)!

m! (n − 2m)!
(2x)n−2m (n = 0, 1, 2, . . . ).

The first five Chebyshev polynomials of the second kind are

U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1,

U3(x) = 8x3 − 4x, U4(x) = 16x4 − 12x2 + 1.

The recurrence formulas:

Un+1(x) = 2xUn(x)− Un−1(x), n ≥ 2.

The generating function is

1

1− 2sx+ s2
=

∞∑

n=0

Un(x)s
n (|s| < 1).

The Chebyshev polynomials of the first and second kind are related by

Un(x) =
1

n+ 1

d

dx
Tn+1(x).
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◮ Chebyshev functions of the second kind

The Chebyshev functions of the second kind,

U0(x) = arcsinx,

Un(x) = sin(n arccos x) =

√
1− x2
n

dTn(x)

dx
(n = 1, 2, . . . ),

just as the Chebyshev polynomials, also satisfy the differential equation (S4.17.2.1).

The first five Chebyshev functions are

U0(x) = 0, U1(x) =
√

1− x2, U2(x) = 2x
√

1− x2,
U3(x) = (4x2 − 1)

√
1− x2, U5(x) = (8x3 − 4x)

√
1− x2.

The recurrence formulas:

Un+1(x) = 2xUn(x)− Un−1(x), n ≥ 2.

The functions Un(x) form an orthogonal system on the interval −1 < x < 1, with

∫ 1

−1

Un(x)Um(x)√
1− x2

dx =

{
0 if n 6= m or n = m = 0,
1
2π if n = m 6= 0.

The generating function is

√
1− x2

1− 2sx+ s2
=

∞∑

n=0

Un+1(x)s
n (|s| < 1).

S4.17.3 Hermite Polynomials

◮ Various representations of the Hermite polynomials

The Hermite polynomials Hn =Hn(x) satisfy the second-order linear ordinary differential

equation

y′′xx − 2xy′x + 2ny = 0

and is defined by the formulas

Hn(x) = (−1)n exp
(
x2
) dn
dxn

exp
(
−x2

)
=

[n/2]∑

m=0

(−1)m n!

m! (n− 2m)!
(2x)n−2m.

The first five polynomials are

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12x, H4(x) = 16x4 − 48x2 + 12.
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Recurrence formulas:

Hn+1(x) = 2xHn(x)− 2nHn−1(x), n ≥ 2;

d

dx
Hn(x) = 2nHn−1(x).

Integral representation:

H2n(x) =
(−1)n22n+1

√
π

exp
(
x2
) ∫ ∞

0
exp
(
−t2
)
t2n cos(2xt) dt,

H2n+1(x) =
(−1)n22n+2

√
π

exp
(
x2
) ∫ ∞

0
exp
(
−t2
)
t2n+1 sin(2xt) dt,

where n = 0, 1, 2, . . .

◮ Orthogonality. The generating function. An asymptotic formula

The functions Hn(x) form an orthogonal system on the interval −∞ < x < ∞ with

weight e−x2
:

∫ ∞

−∞
exp
(
−x2

)
Hn(x)Hm(x) dx =

{
0 if n 6= m,
√
π 2nn! if n = m.

Generating function:

exp
(
−s2 + 2sx

)
=

∞∑

n=0

Hn(x)
sn

n!
.

Asymptotic formula as n→∞:

Hn(x) ≈ 2
n+1
2 n

n
2 e
− n

2 exp
(
x2
)
cos
(√

2n + 1x− 1
2πn

)
.

◮ Hermite functions

The Hermite functions hn(x) are introduced by the formula

hn(x) = exp
(
− 1

2
x2
)
Hn(x) = (−1)n exp

( 1
2
x2
) dn

dxn
exp
(
−x2

)
, n = 0, 1, 2, . . .

The Hermite functions satisfy the second-order linear ordinary differential equation

h′′xx + (2n+ 1− x2)h = 0.

The functions hn(x) form an orthogonal system on the interval −∞ < x < ∞ with

weight 1:
∫ ∞

−∞
hn(x)hm(x) dx =

{
0 if n 6= m,
√
π 2nn! if n = m.
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S4.17.4 Jacobi Polynomials and Gegenbauer Polynomials

◮ Jacobi polynomials

The Jacobi polynomials, Pα,β
n (x), are solutions of the second-order linear ordinary differ-

ential equation

(1− x2)y′′xx +
[
β − α− (α+ β + 2)x

]
y′x + n(n+ α+ β + 1)y = 0

and are defined by the formulas

Pα,β
n (x) =

(−1)n
2nn!

(1− x)−α(1 + x)−β dn

dxn

[
(1− x)α+n(1 + x)β+n

]

= 2−n
n∑

m=0

Cm
n+αC

n−m
n+β (x− 1)n−m(x+ 1)m,

where the Ca
b are binomial coefficients.

The generating function:

2α+βR−1(1−s+R)−α(1+s+R)−β =
∞∑

n=0

Pα,β
n (x)sn, R=

√
1− 2xs+ s2, |s|<1.

The Jacobi polynomials are orthogonal on the interval −1 ≤ x ≤ 1 with weight

(1− x)α(1 + x)β:

∫ 1

−1
(1− x)α(1 + x)βPα,β

n (x)Pα,β
m (x) dx

=





0 if n 6= m,

2α+β+1

α+ β + 2n + 1

Γ(α+ n+ 1)Γ(β + n+ 1)

n! Γ(α+ β + n+ 1)
if n = m.

For α > −1 and β > −1, all zeros of the polynomial Pα,β
n (x) are simple and lie on the

interval −1 < x < 1.

◮ Gegenbauer polynomials

The Gegenbauer polynomials (also called ultraspherical polynomials), C
(λ)
n (x), are solu-

tions of the second-order linear ordinary differential equation

(1− x2)y′′xx − (2λ + 1)xy′x + n(n+ 2λ)y = 0

and are defined by the formulas

C(λ)
n (x) =

(−2)n
n!

Γ(n+ λ) Γ(n+ 2λ)

Γ(λ) Γ(2n + 2λ)
(1− x2)−λ+1/2 d

n

dxn
(1− x2)n+λ−1/2

=

[n/2]∑

m=0

(−1)m Γ(n−m+ λ)

Γ(λ)m! (n − 2m)!
(2x)n−2m.
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Recurrence formulas:

C
(λ)
n+1(x) =

2(n + λ)

n+ 1
xC(λ)

n (x)− n+ 2λ− 1

n+ 1
C

(λ)
n−1(x);

C(λ)
n (−x) = (−1)nC(λ)

n (x),
d

dx
C(λ)
n (x) = 2λC

(λ+1)
n−1 (x).

The generating function:

1

(1− 2xs+ s2)λ
=

∞∑

n=0

C(λ)
n (x)sn.

The Gegenbauer polynomials are orthogonal on the interval −1 ≤ x ≤ 1 with weight

(1− x2)λ−1/2:

∫ 1

−1
(1− x2)λ−1/2C(λ)

n (x)C(λ)
m (x) dx =





0 if n 6= m,
πΓ(2λ+ n)

22λ−1(λ+ n)n! Γ2(λ)
if n = m.

S4.18 Nonorthogonal Polynomials

S4.18.1 Bernoulli Polynomials

◮ Definition. Basic properties

The Bernoulli polynomials Bn(x) are introduced by the formula

Bn(x) =

n∑

k=0

Ck
nBkx

n−k (n = 0, 1, 2, . . . ),

where Ck
n are the binomial coefficients and Bn are Bernoulli numbers (see Section S4.1.3).

The Bernoulli polynomials can be defined using the recurrence relation

B0(x) = 1,

n−1∑

k=0

Ck
nBk(x) = nxn−1, n = 2, 3, . . .

The first six Bernoulli polynomials are given by

B0(x) = 1, B1(x) = x− 1
2 , B2(x) = x2 − x+ 1

6 , B3(x) = x3 − 3
2x

2 + 1
2x,

B4(x) = x4 − 2x3 + x2 − 1
30 , B5(x) = x5 − 5

2x
4 + 5

3x
3 − 1

6x.

Basic properties:

Bn(x+ 1)−Bn(x) = nxn−1, B′
n+1(x) = (n+ 1)Bn(x),

Bn(1− x) = (−1)nBn(x), (−1)nEn(−x) = En(x) + nxn−1,

where the prime denotes a derivative with respect to x, and n = 0, 1, . . .
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Multiplication and addition formulas:

Bn(mx) = mn−1
m−1∑

k=0

Bn

(
x+

k

m

)
,

Bn(x+ y) =
n∑

k=0

Ck
nBk(x)y

n−k,

where n = 0, 1, . . . and m = 1, 2, . . .

◮ Generating function. Fourier series expansions. Integrals

The generating function is expressed as

text

et − 1
≡

∞∑

n=0

Bn(x)
tn

n!
(|t| < 2π).

This relation may be used as a definition of the Bernoulli polynomials.
Fourier series expansions:

Bn(x) = −2
n!

(2π)n

∞∑

k=1

cos(2πkx− 1
2πn)

kn
(n = 1, 0 < x < 1; n > 1, 0 ≤ x ≤ 1);

B2n−1(x) = 2(−1)n (2n− 1)!

(2π)2n−1

∞∑

k=1

sin(2kπx)

k2n−1
(n = 1, 0 < x < 1; n > 1, 0 ≤ x ≤ 1);

B2n(x) = 2(−1)n (2n)!

(2π)2n

∞∑

k=1

cos(2kπx)

k2n
(n = 1, 2, . . . , 0 ≤ x ≤ 1).

Integrals: ∫ x

a
Bn(t) dt =

Bn+1(x)−Bn+1(a)

n+ 1
,

∫ 1

0
Bm(t)Bn(t) dt = (−1)n−1 m!n!

(m+ n)!
Bm+n,

where m and n are positive integers and Bn are Bernoulli numbers.

S4.18.2 Euler Polynomials

◮ Definition. Basic properties

Definition:

En(x) =

n∑

k=0

Ck
n

Ek

2n

(
x− 1

2

)n−k
(n = 0, 1, 2, . . . ),

where Ck
n are the binomial coefficients and En are Euler numbers.

The first six Euler polynomials are given by

E0(x) = 1, E1(x) = x− 1
2 , E2(x) = x2 − x, E3(x) = x3 − 3

2x
2 + 1

4 ,

E4(x) = x4 − 2x3 + x, E5(x) = x5 − 5
2x

4 + 5
2x

2 − 1
2 .
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Basic properties:

En(x+ 1) + En(x) = 2xn, E′
n+1 = (n+ 1)En(x),

En(1− x) = (−1)nEn(x), (−1)n+1En(−x) = En(x)− 2xn,

where the prime denotes a derivative with respect to x, and n = 0, 1, . . .

Multiplication and addition formulas:

En(mx) = mn
m−1∑

k=0

(−1)kEn

(
x+

k

m

)
, n = 0, 1, . . . , m = 1, 3, . . . ;

En(mx) = −
2

n+ 1
mn

m−1∑

k=0

(−1)kEn+1

(
x+

k

m

)
, n = 0, 1, . . . , m = 2, 4, . . . ;

En(x+ y) =
n∑

k=0

Ck
nEk(x)y

n−k, n = 0, 1, . . .

◮ Generating function. Fourier series expansions. Integrals

The generating function is expressed as

2ext

et + 1
≡

∞∑

n=0

En(x)
tn

n!
(|t| < π).

This relation may be used as a definition of the Euler polynomials.

Fourier series expansions:

En(x) = 4
n!

πn+1

∞∑

k=0

sin
(
(2k + 1)πx− 1

2πn
)

(2k + 1)n+1
(n = 0, 0 < x < 1; n > 0, 0 ≤ x ≤ 1);

E2n(x) = 4(−1)n (2n)!

π2n+1

∞∑

k=0

sin
(
(2k + 1)πx

)

(2k + 1)2n+1
(n = 0, 0 < x < 1; n > 0, 0 ≤ x ≤ 1);

E2n−1(x) = 4(−1)n (2n− 1)!

π2n

∞∑

k=0

cos
(
(2k + 1)πx

)

(2k + 1)2n
(n = 1, 2, . . . , 0 ≤ x ≤ 1).

Integrals:

∫ x

a
En(t) dt =

En+1(x)− En+1(a)

n+ 1
,

∫ 1

0
Em(t)En(t) dt = 4(−1)n(2m+n+2 − 1)

m!n!

(m+ n+ 2)!
Bm+n+2,

where m, n= 0, 1, . . . and Bn are Bernoulli numbers. The Euler polynomials are orthog-

onal for even n+m.
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Connection with the Bernoulli polynomials:

En−1(x) =
2n

n

[
Bn

(x+ 1

2

)
−Bn

( x
2

)]
=

2

n

[
Bn(x)− 2nBn

(x
2

)]
,

where n = 1, 2, . . .

⊙ References for Chapter S4: H. Bateman and A. Erdélyi (1953, 1955), N. W. McLachlan (1955), M. Abra-

mowitz and I. A. Stegun (1964), W. Magnus, F. Oberhettinger, and R. P. Soni (1966), I. S. Gradshteyn and

I. M. Ryzhik (2000), G. A. Korn and T. M. Korn (2000), S. Yu. Slavyanov and W. Lay (2000), D. Zwillinger

(2002), A. D. Polyanin and V. F. Zaitsev (2003), E. W. Weisstein (2003), A. D. Polyanin and A. V. Manzhirov

(2007), F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (2010).
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Bateman, H. and Erdélyi, A., Higher Transcendental Functions, Vol. 3, McGraw-Hill, New York,

1955.
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Conte, R., The Painlevé approach to nonlinear ordinary differential equations. In: The Painlevé
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α-condition, 70

A

Abel equation, 18–24

first kind, 18

canonical form, 19

general form, 18

integrable cases, 18

normal form, 19

second kind, 20

canonical form, 21

general form, 20

general solution, 23

integrable cases, 20

normal form, 21

Abel equations, 394–455

first kind, exact solutions, 431

second kind, exact solutions, 394

Adams methods, 68

Adams type predictor–corrector method, 70

Adams–Bashforth formula, 68

Adams–Bashforth method, 68, 1167

fourth order, 68

Adams–Bashforth–Moulton method, 1165–

1167, 1175

Adams–Moulton implicit formula, 68

Airy equation, 520, 1370

Airy function, 100, 520, 1167, 1169, 1370

first kind, 1370

second kind, 1370

algebraic branch points, 158

algebraic equations, 279

generalized reciprocal, 281

of even degree, 280

of odd degree, 281

palindromic, 280

reciprocal, 280

reciprocal of even degree, 280

reciprocal of odd degree, 281

with even powers, 279

algebraic form of Mathieu equation, 540

algebraic systems of equations, 279

algorithm of finding first integrals of ODEs, 334

amplitude (Jacobi elliptic functions), 1388

analytical solutions in terms of predefined

functions, 1253

Andronov–Hopf bifurcations, 267

approximate analytic methods, 49

approximate solution for boundary value

problem, 181

approximation function, 181

approximation of Frank-Kamenetskii, 142, 148,

149

approximation of order m, numerical methods,

63

arc length transformation, 83, 85, 194

Arrhenius law, 149

ascending Landen transformation, 1391

associated Legendre functions, 550, 1380

first kind, 550, 1380

modified, 1382

second kind, 550, 1380

with integer indices and real argument, 1380

asymptotic solutions

fourth-order linear ODEs, 213

higher-order linear ODEs, 214

second-order linear ODEs, 99

asymptotically stable solution, 25, 251

attracting point, 264

attractor, 264

autonomous equations, 33, 605–618

autonomous systems of ODEs, 249

general form, 1109

reduction to systems of lower dimension, 249

averaging method

for equations of special form, 175

general scheme, 176

Van der Pol–Krylov–Bogolyubov scheme,

175

axisymmetric problem of combustion the-

ory, 149

B

backward sweep, 118

Bäcklund transformations, 160, 752

formal operators and nonlocal variables, 323

basic elements of Maple language, 1124

Bernoulli equation, 10, 368

Bernoulli numbers, 1352

1427
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Bernoulli polynomials, 1405

Bessel equation, 99, 533, 1362

modified, 534

nonhomogeneous, 596

Bessel formula, 1364

Bessel function, 402, 486, 533

first kind, 18, 533, 1362

modified, 18, 402, 486, 534

second kind, 18, 533, 1362

third kind, 1367

Bessel functions, 1362

beta function, 1360

incomplete, 1361

bifurcation, 263

boundary value problems, 270

complex focus of first order, 267

diagrams, 273

double saddle-node, 268

dynamical systems, phase portrait, 263

limit cycle, 269

parameter, 264

point, 264

theory, 263

bifurcations

Andronov–Hopf, 267

boundary value problems, 273

linear boundary value problems, 270

nonlinear boundary value problems, 270

second-order dynamical systems, 265

systems of first degree of nonroughness, 266

binomial coefficients, 1291, 1351

binomial equation, 213, 214

Blasius equation, 1156

blow-up problems, 192

with logarithmic singularity, 194

with power-law singularity, 28

blow-up solution, 11, 28, 81

monotonic, 82, 192, 193

non-monotonic, 85, 194

with logarithmic singularity, 28

with power-law singularity, 28, 81, 192

blow-up time, 28

boundary conditions

Dirichlet, 103

first-kind, 103, 187

mixed, 104

Neumann, 103, 1140

nonlinear, 188

nonlocal, 104

Robin, 104

second-kind, 103, 188

third-kind, 104, 188

boundary value problem

approximate solution, 181

first, 103, 187

Erbe–Hu–Wang theorem, 141

existence theorems, 134

lower solution, 135

nonexistence theorem, 140

numerical solution, 191

reduction to mixed boundary value problem,

275

theorems on existence of two solutions, 141

upper solution, 135

lower solution, 135

mixed, 104

Erbe–Hu–Wang theorem, 148

nonexistence theorem, 146, 147

theorems on existence of two solutions, 147,

151

nonlinear of combustion theory, 142

second, 103, 188

third, 104, 137, 188

Erbe–Hu–Wang theorem, 151

upper solution, 135

with modulus of unknown, 145

boundary value problems, 103, 133, 1140, 1205,

1260

boundary conditions of first kind, 103, 187

boundary conditions of mixed kind, 104

boundary conditions of second kind, 103, 188

boundary conditions of third kind, 104, 188

existence and uniqueness theorem

second-order ODE, 137

existence theorems, 133

Green function, 103

linear, 1177, 1229, 1272

boundary conditions of first kind, 103, 187

boundary conditions of mixed kind, 104

boundary conditions of second kind, 103,

188

boundary conditions of third kind, 104, 188

linear equations with nonlinear boundary

conditions, 152

mixed, 104, 273

nonexistence theorems, 133

nonlinear, 1179, 1233, 1274

nonlinear boundary conditions, 188

numerical solutions, 1176, 1229, 1272

on unbounded interval, 105

reduction to integral equations, 137

uniqueness theorems, 133, 134
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with degeneration at boundary, 105

Bubnov–Galerkin method, 182

Burgers–Huxley equation, 300

Butcher methods, 72

C

C-discriminant curve, 7

canonical form, 95

first-order equations defined parametrically,

40

Riccati equation, 16

second-order equations defined parametri-

cally, 130

canonical substitutions, 21

Cauchy formula for ODE, 202

Cauchy problem, see also initial value problem,

see also initial value problems

blow-up solutions, 28

constant-coefficient linear ODEs, 209

examples of numerical solutions, 1168

existence and uniqueness theorem, 123, 217

existence and uniqueness theorem for

second-order linear ODE, 96

lower solution, 59

numerical solution for nth-order ODEs, 224

numerical solution for parametrically defined

equations, 190

parametric continuity of solutions, 6

reduction to integral equation, 203

reduction to integro-differential equation, 210

uniqueness and existence theorems, 4

upper solution, 59

Cauchy problems admitting non-unique

solutions, 36

center, 238

Chaplygin theorem, 58

characteristic equation, 197, 1055, 1066

for system of ODEs, 228

characteristic index, 571

characteristic index of closed trajectory, 266

characteristic polynomial, 838

of difference scheme, 70

characteristic value of linear integral equa-

tion, 138

Chebyshev functions of second kind, 1402

Chebyshev nodes, 215

Chebyshev polynomial, 537

first kind, 538, 1400

second kind, 539, 1401

Chetaev theorem of instability, 254

Clairaut equation, 39, 505

Clairaut system, 1109

class of Nagumo functions, 136

classification of equilibrium points, 235

classification of second-order ODEs, 158

classification of singular points of linearized

system, 265

collocation method, 183, 215

complementary error function, 1354, 1372

complementary modulus, 1385, 1387

complete elliptic integral

first kind, 613, 1385

second kind, 615, 1385

completely integrable Pfaffian equation, 45, 46

condition for integrability by single relation,

45

conditional capacity

of exact solution, 291

of exact solutions to nonlinear PDEs, 290

conservation laws, 334, 625

consistency method for two equations, 306

constant coefficient linear coupled ODEs, 235

constant coefficient linear equation

homogeneous nth-order, 197, 1055

homogeneous second-order, 94, 521

nonhomogeneous nth-order, 198, 1066

nonhomogeneous second-order, 96

contact group, 322

contact transformations, 42, 322, 1152, 1214

general form, 42

linear in derivative, 43

nonlinear in derivative, 44

continuous one-parameter Lie group

of point transformations, 313

of tangential transformations, 322

convergence condition of approximate

method, 51

convergence theorem, 215

convergence, Lax theorem, 73

conversion formulas

elliptic integrals, 1385, 1387

Jacobi elliptic functions, 1390

cosine integral, 1357

Coulomb law, 459

Crocco type transformations, 129

curve

C-discriminant, 7

integral, 3

singular integral, 7

t-discriminant, 7
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cylindrical function, 533, 1362, see also Bessel

function

cylindrical functions, see Bessel functions

D

D’Alembert method, 233

Darboux equation, 11, 496

de Moivre formulas, 1293

degenerate hypergeometric equation, 527

degenerate hypergeometric functions, see

Kummer functions

differential constraint, 302

of arbitrary order, 306

differential equation

Abel, 18–24

first kind, 18

first kind, canonical form, 19

first kind, general form, 18

first kind, normal form, 19

second kind, 20

second kind, canonical form, 21

second kind, general form, 20

second kind, normal form, 21

Airy, 520, 1370

Bernoulli, 10, 368

Bessel, 533, 1362

nonhomogeneous, 596

binomial, 213, 214

Blasius, 1156

Burgers–Huxley, 300

Clairaut, 505

Darboux, 11, 496

degenerate hypergeometric, 527

Duffing, 173, 613

Emden–Fowler, 619

generalized, 652

modified, 678

Euler, 533

nonhomogeneous, 596, 898, 1067

nth order, 202

fifth Painlevé, 167

first Painlevé, 158

first-order

Bernoulli, 10, 368

separable, 367

for prolate spheroidal wave functions, 550

fourth Painlevé, 165

Gaussian hypergeometric, 541, 1375

Halm, 548

hypergeometric, 541, 1375

degenerate, 527

invariant under dilatation–translation trans-

formation, 431, 498, 792, 816, 997,

1098

invariant under translation–dilatation trans-

formation, 431, 498, 792, 816, 997, 1050,

1098

Lagrange, 39

Lagrange–d’Alembert, 505

Lamé, in form of Jacobi, 592

Lamé, in form of Weierstrass, 592

Laplace, 211

second-order of special form, 212

Legendre, 538, 549

Lienard, 613

linear

fourth-order constant coefficient, 1004

nth-order constant coefficient, 197, 1055

second-order constant coefficient, 94, 521

third-order constant coefficient, 838

logistic, 25

Mathieu, 383, 571, 1396

algebraic form, 540

modified, 561, 1398

modified Mathieu, 561, 1398

of damped vibrations, 521

of forced oscillations, 568, 570

with friction, 595

without friction, 595

of free oscillations, 519

of loaded rigid spherical shell, 1014

of oblate spheroidal wave functions, 550

of oscillations of mathematical pendulum, 615

of theory of diffusion boundary layer, 524

of transverse vibrations of bar, 1019

of transverse vibrations of pointed bar, 1006

Painlevé

fifth, 167

first, 158

fourth, 165

second, 160

sixth, 169

third, 162

Pfaffian, 44

completely integrable, 45, 46

not satisfying integrability condition, 48

quasi-homogeneous, 429

Rayleigh, 616

Riccati, 13

general form, 13
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special, 17

Riemann, 551

second Painlevé, 160

separable, 367

sixth Painlevé, 169

third Painlevé, 162

trinomial, 214

Whittaker, 532, 1375

Yermakov, 249, 786

differential equations

Abel, 394–455

first kind, exact solutions, 431–455

second kind, exact solutions, 394–430

admitting reduction of order, 218

autonomous, 33, 605–618

chemical reactors, 429

combustion theory, 429

containing arbitrary functions, 389, 392, 595,

599, 786, 820, 892, 1015, 1040, 1064, 1087

defined parametrically, 40, 129, 822

containing arbitrary functions, 515

first-order, 3–92, 367–518

containing algebraic and power functions

with respect to y′x, 490

integrable by quadrature, 4

fourth-order, 999–1050

fourth-order linear, 999–1019

with arbitrary functions, 1015–1019

with exponential functions, 1007–1009

with hyperbolic functions, 1009–1011

with logarithmic functions, 1011

with power functions, 1000–1007

with sine and cosine, 1012–1014

with tangent and cotangent, 1014–1015

with trigonometric functions, 1012–1014

fourth-order nonlinear, 1019–1050

with arbitrary functions, 1040–1050

with cosine, 1037–1038

with cotangent, 1039–1040

with exponential functions, 1027–1029

with hyperbolic cosine, 1030–1032

with hyperbolic cotangent, 1033

with hyperbolic functions, 1029–1033

with hyperbolic sine, 1029–1030

with hyperbolic tangent, 1032–1033

with logarithmic functions, 1034–1035

with power functions, 1019–1026

with sine, 1035–1036

with tangent, 1038–1039

with trigonometric functions, 1035–1036

higher-order, 197–225, 1051–1098, 1184,

1239, 1281

higher-order linear, 197–216, 1051–1068

with arbitrary functions, 1064–1068

with exponential functions, 1058–1059

with hyperbolic functions, 1059–1060

with logarithmic functions, 1061

with power functions, 1051–1058

with sine and cosine, 1061–1063

with tangent and cotangent, 1063–1064

with trigonometric functions, 1061–1063

higher-order nonlinear, 217–226, 1068–1098

admitting reduction of order, 218

with arbitrary functions, 1087–1098

with cosine, 1084–1085

with cotangent, 1086

with exponential functions, 1075–1077

with hyperbolic cosine, 1079

with hyperbolic cotangent, 1080–1081

with hyperbolic functions, 1077–1081

with hyperbolic sine, 1077–1078

with hyperbolic tangent, 1080

with logarithmic functions, 1081–1082

with power functions, 1068–1075

with sine, 1083–1084

with tangent, 1085–1086

with trigonometric functions, 1083–1086

invariant under scaling-translation transfor-

mations, 126, 220

Lie, 314

Monge, 345

Navier–Stokes, 129

not solved for derivative, 7, 37, 503

not solved for second derivative, 813

nth-order

autonomous, 219

homogeneous in both variables, 219

homogeneous in independent variable, 219

homogeneous in unknown function, 219

linear, containing arbitrary functions, 1064

nonlinear, containing arbitrary functions,

1087

not containing x explicitly, 219

of arbitrary order, 197–226, 1051–1098

of general form, 103, 126, 220, 815, 1096

of theory of nonlinear oscillations, 430, 610

of third degree in y′x, 478

Pfaffian, 44

completely integrable, 45, 46

not satisfying integrability condition, 48

quasi-homogeneous, 429
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differential equations (continued)

Riccati

containing arccosine, 387

containing arccotangent, 389

containing arcsine, 387

containing arctangent, 388

containing cosine, 383

containing cotangent, 385

containing exponential functions, 375

containing hyperbolic functions, 378–380

containing inverse trigonometric functions,

387–389

containing logarithmic functions, 380

containing power functions, 369

containing sine, 382

containing tangent, 384

containing trigonometric functions,

382–386

exact solutions, 368–393

with hyperbolic sine and cosine, 378

with hyperbolic tangent and cotangent, 380

second-order, 123–196, 519–828

second-order autonomous, 124

second-order homogeneous

in both variables, 125

in dependent variable, 125

in independent variable, 125

second-order linear, 519–605

asymptotic solutions, 102

with arbitrary functions, 595–605

with arccosine, 581

with arccotangent, 584

with arcsine, 580

with arctangent, 582

with cosine, 570

with cotangent, 575

with exponential functions, 553–559

with hyperbolic cosine, 561

with hyperbolic cotangent, 564

with hyperbolic functions, 560–564

with hyperbolic sine, 560

with hyperbolic tangent, 562

with inverse trigonometric functions,

580–585

with logarithmic functions, 565–567

with power functions, 519–552

with sine, 568

with tangent, 573

with trigonometric functions, 568–579

second-order nonlinear, 605–828

with arbitrary functions, 786–828

with arbitrary functions of three variables,

820, 821

with cosine, 778–780

with cotangent, 781–782

with exponential functions, 761–768

with hyperbolic cosine, 771–772

with hyperbolic cotangent, 773–774

with hyperbolic functions, 769–774

with hyperbolic sine, 769–770

with hyperbolic tangent, 772–773

with logarithmic functions, 775–776

with power functions, 753–760

with sine, 777–778

with tangent, 780–781

with trigonometric functions, 777–782

second-order not containing x explicitly, 124

second-order not containing y explicitly, 124

second-order not containing y′x, 100

second-order not solved for y′′xx, 818

solved for derivative, 3, 8, 123, 217

solved for highest derivative, 217

third-order, 829–998

third-order linear

with arbitrary functions, 892–901

with cosine, 869–872

with cotangent, 876–879

with exponential functions, 848–853

with hyperbolic cosine, 855–857

with hyperbolic cotangent, 860–863

with hyperbolic functions, 853–862

with hyperbolic sine, 853–855

with hyperbolic sine and cosine, 857–858

with hyperbolic tangent, 858–860

with inverse trigonometric functions,

879–884

with logarithmic functions, 863–864

with power and exponential functions,

851–853

with power and logarithmic functions,

864–866

with power functions, 830–848

with sine, 866–869

with sine and cosine, 872

with tangent, 873–876

with trigonometric functions, 866–879

third-order nonlinear, 901–998

with arbitrary functions, 978–998

with cosine, 974–976

with cotangent, 977–978

with exponential functions, 963–966

with hyperbolic cosine, 967–969
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with hyperbolic cotangent, 970–971

with hyperbolic functions, 967–971

with hyperbolic sine, 967

with hyperbolic tangent, 969–970

with logarithmic functions, 971–973

with power functions, 955–963

with sine, 974

with tangent, 976–977

with trigonometric functions, 974–978

underdetermined, 345

with coefficients having pole at some point,

98

with separable variables, 8

with separated variables, 8

differential inequalities, 57

mth-order, 315

differential variable, 82

differential-algebraic equations, 40, 81, 130,

191, 262

digamma function, 1359, 1363

Dirichlet conditions, 103, 1140, 1260

Dirichlet–Mehler integral, 1378

discrete group method, 355

based on inclusion method, 364

based on RF-pairs, 358

for point transformations, 355

discrete point group of transformations, 355

discrete transformations of generalized

Emden–Fowler equation,677

discriminant of characteristic equation, 236

dispersion equation, 231

Duffing equation, 173, 613

Duhamel integral, 200

dynamic computation, 1198

dynamical system, 263, 439

nonrough, 264, 266

phase portrait, 263

rough, 264, 266

E

eigenfrequencies, 1181

eigenfunctions, 110, 1181

of integral equation, 139

eigenmodes, 1181

eigenvalue problems, 110, 1141, 1206

numerical solutions, 1181, 1235, 1276

eigenvalues, 110, 1181

of Mathieu equation, 571

elementary functions, 1287

elementary symmetric polynomial, 282

elementary theory of using invariants, 277

elements of bifurcation theory, 263

elements of stability theory, 250

elliptic functions, 1388

elliptic integral

first kind, 932, 1385, 1386

second kind, 1385, 1386

incomplete, 405, 608, 623, 638, 939

third kind, 1387

elliptic integrals, 1385

elliptic modulus, 1387

elliptic Weierstrass function, 607

Emden–Fowler equation, 619

generalized, 652

discrete transformations, 677

equation

Abel, 18–24

first kind, 18

first kind, canonical form, 19

first kind, general form, 18

first kind, normal form, 19

second kind, 20

second kind, canonical form, 21

second kind, general form, 20

second kind, normal form, 21

Airy, 520, 1370

Bernoulli, 10, 368

Bessel, 533, 1362

nonhomogeneous, 596

binomial, 213, 214

Blasius, 1156

Burgers–Huxley, 300

Clairaut, 505

Darboux, 11, 496

degenerate hypergeometric, 527

dispersion, 231

Duffing, 173, 613

Emden–Fowler, 619

generalized, 652

modified, 678

Euler, 533

nonhomogeneous, 596, 898, 1067

nth order, 202

fifth Painlevé, 167

first Painlevé, 158

first-order

Bernoulli, 10, 368

separable, 367

for prolate spheroidal wave functions, 550

fourth Painlevé, 165

Gaussian hypergeometric, 541, 1375
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equation (continued)

Halm, 548

hypergeometric, 541, 1375

degenerate, 527

invariant under dilatation–translation

transformation, 498, 792, 816, 997, 1098

invariant under translation–dilatation trans-

formation, 498, 792, 816, 997, 1050,

1098

Lagrange, 39

Lagrange–d’Alembert, 505

Lamé, in form of Jacobi, 592

Lamé, in form of Weierstrass, 592

Laplace, 211

second-order of special form, 212

Legendre, 538, 549

Lienard, 613

linear

fourth-order constant coefficient, 1004

nth-order constant coefficient, 197, 1055

second-order constant coefficient, 94, 521

third-order constant coefficient, 838

logistic, 25

Mathieu, 383, 571, 1396

algebraic form, 540

modified, 561, 1398

modified Mathieu, 561, 1398

of damped vibrations, 521

of forced oscillations, 568, 570

with friction, 595

without friction, 595

of free oscillations, 519

of loaded rigid spherical shell, 1014

of oblate spheroidal wave functions, 550

of oscillations of mathematical pendulum, 615

of theory of diffusion boundary layer, 524

of transverse vibrations of bar, 1019

of transverse vibrations of pointed bar, 1006

Painlevé

fifth, 167

first, 158

fourth, 165

second, 160

sixth, 169

third, 162

palindromic, 280

Pfaffian, 44

completely integrable, 45, 46

not satisfying integrability condition, 48

quasi-homogeneous, 429

Rayleigh, 616

Riccati, 13

general form, 13

special, 17

Riemann, 551

second Painlevé, 160

separable, 367

sixth Painlevé, 169

third Painlevé, 162

trinomial, 214

Whittaker, 532, 1375

Yermakov, 249, 786

equations

Abel, 394–455

first kind, exact solutions, 431–455

second kind, exact solutions, 394–430

admitting reduction of order, 218

algebraic, 279

generalized reciprocal, 281

of even degree, 280

of odd degree, 281

palindromic, 280

reciprocal, 280

reciprocal of even degree, 280

reciprocal of odd degree, 281

with even powers, 279

autonomous, 33, 605–618

chemical reactors, 429

combustion theory, 429

containing arbitrary functions, 389, 392, 595,

599, 786, 820, 892, 1015, 1040, 1064, 1087

defined parametrically, 40, 129, 822

containing arbitrary functions, 515

differential

first-order, 3–92, 367–518

fourth-order, 999–1050

higher-order, 197–226, 1051–1098

of arbitrary order, 197–226, 1051–1098

second-order, 123–196, 519–828

third-order, 829–998

differential-algebraic equations, 40, 129

first-order, 3–92, 367–518

containing algebraic and power functions

with respect to y′x, 490

integrable by quadrature, 4

fourth-order, 999–1050

fourth-order linear, 999–1019

with arbitrary functions, 1015–1019

with exponential functions, 1007–1009

with hyperbolic functions, 1009–1011

with logarithmic functions, 1011

with power functions, 1000–1007
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with sine and cosine, 1012–1014

with tangent and cotangent, 1014–1015

with trigonometric functions, 1012–1014

fourth-order nonlinear, 1019–1050

with arbitrary functions, 1040–1050

with cosine, 1037–1038

with cotangent, 1039–1040

with exponential functions, 1027–1029

with hyperbolic cosine, 1030–1032

with hyperbolic cotangent, 1033

with hyperbolic functions, 1029–1033

with hyperbolic sine, 1029–1030

with hyperbolic tangent, 1032–1033

with logarithmic functions, 1034–1035

with power functions, 1019–1026

with sine, 1035–1036

with tangent, 1038–1039

with trigonometric functions, 1035–1036

higher-order, 197–225, 1051–1098, 1184,

1239, 1281

higher-order linear, 197–216, 1051–1068

with arbitrary functions, 1064–1068

with exponential functions, 1058–1059

with hyperbolic functions, 1059–1060

with logarithmic functions, 1061

with power functions, 1051–1058

with sine and cosine, 1061–1063

with tangent and cotangent, 1063–1064

with trigonometric functions, 1061–1063

higher-order nonlinear, 217–226, 1068–1098

admitting reduction of order, 218

with arbitrary functions, 1087–1098

with cosine, 1084–1085

with cotangent, 1086

with exponential functions, 1075–1077

with hyperbolic cosine, 1079

with hyperbolic cotangent, 1080–1081

with hyperbolic functions, 1077–1081

with hyperbolic sine, 1077–1078

with hyperbolic tangent, 1080

with logarithmic functions, 1081–1082

with power functions, 1068–1075

with sine, 1083–1084

with tangent, 1085–1086

with trigonometric functions, 1083–1086

integro-differential, 210

invariant under scaling-translation transfor-

mations, 126, 220

Lie, 314

Monge, 345

Navier–Stokes, 129

not solved for derivative, 7, 37, 503

not solved for second derivative, 813

nth-order

autonomous, 219

homogeneous in both variables, 219

homogeneous in independent variable, 219

homogeneous in unknown function, 219

linear, containing arbitrary functions, 1064

nonlinear, containing arbitrary functions,

1087

not containing x explicitly, 219

of general form, 103, 126, 220, 815, 1096

of theory of nonlinear oscillations, 430, 610

of third degree in y′x, 478

Pfaffian, 44

completely integrable, 45, 46

not satisfying integrability condition, 48

quasi-homogeneous, 429

reciprocal, 280

of even degree, 280

of odd degree, 281

Riccati

containing arccosine, 387

containing arccotangent, 389

containing arcsine, 387

containing arctangent, 388

containing cosine, 383

containing cotangent, 385

containing exponential functions, 375

containing hyperbolic functions, 378–380

containing inverse trigonometric functions,

387–389

containing logarithmic functions, 380

containing power functions, 369

containing sine, 382

containing tangent, 384

containing trigonometric functions,

382–386

exact solutions, 368–393

with hyperbolic sine and cosine, 378

with hyperbolic tangent and cotangent, 380

second-order autonomous, 124

second-order homogeneous

in both variables, 125

in dependent variable, 125

in independent variable, 125

second-order linear, 519–605

asymptotic solutions, 102

with arbitrary functions, 595–605

with arccosine, 581

with arccotangent, 584
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equations (continued)

second-order linear, 519–605

with arcsine, 580

with arctangent, 582

with cosine, 570

with cotangent, 575

with exponential functions, 553–559

with hyperbolic cosine, 561

with hyperbolic cotangent, 564

with hyperbolic functions, 560–564

with hyperbolic sine, 560

with hyperbolic tangent, 562

with inverse trigonometric functions,

580–585

with logarithmic functions, 565–567

with power functions, 519–552

with sine, 568

with tangent, 573

with trigonometric functions, 568–579

second-order nonlinear, 605–828

with arbitrary functions, 786–828

with arbitrary functions of three variables,

820, 821

with cosine, 778–780

with cotangent, 781–782

with exponential functions, 761–768

with hyperbolic cosine, 771–772

with hyperbolic cotangent, 773–774

with hyperbolic functions, 769–774

with hyperbolic sine, 769–770

with hyperbolic tangent, 772–773

with logarithmic functions, 775–776

with power functions, 753–760

with sine, 777–778

with tangent, 780–781

with trigonometric functions, 777–782

second-order not containing x explicitly, 124

second-order not containing y explicitly, 124

second-order not containing y′x, 100

second-order not solved for y′′xx, 818

solved for derivative, 3, 8, 123, 217

solved for highest derivative, 217

third-order, 829–998

third-order linear

with arbitrary functions, 892–901

with cosine, 869–872

with cotangent, 876–879

with exponential functions, 848–853

with hyperbolic cosine, 855–857

with hyperbolic cotangent, 860–863

with hyperbolic functions, 853–862

with hyperbolic sine, 853–855

with hyperbolic sine and cosine, 857–858

with hyperbolic tangent, 858–860

with inverse trigonometric functions,

879–884

with logarithmic functions, 863–864

with power and exponential functions,

851–853

with power and logarithmic functions,

864–866

with power functions, 830–848

with sine, 866–869

with sine and cosine, 872

with tangent, 873–876

with trigonometric functions, 866–879

third-order nonlinear, 901–998

with arbitrary functions, 978–998

with cosine, 974–976

with cotangent, 977–978

with exponential functions, 963–966

with hyperbolic cosine, 967–969

with hyperbolic cotangent, 970–971

with hyperbolic functions, 967–971

with hyperbolic sine, 967

with hyperbolic tangent, 969–970

with logarithmic functions, 971–973

with power functions, 955–963

with sine, 974

with tangent, 976–977

with trigonometric functions, 974–978

underdetermined, 345

with coefficients having pole at some point,

98

with separable variables, 8

with separated variables, 8

equilibrium points, 25

of autonomous system, 249

Erbe–Hu–Wang theorem, 141, 148, 151, 152

first boundary value problem, 141

mixed boundary value problem, 148

third boundary value problem, 151

Ermakov equation, 249

Ermakov system, 249

error estimate

of approximate method, 51

of approximate solutions, 52

error function, 1354, 1372, 1384

complementary, 1354, 1372

essential singularities, 158

estimates of convergence range, 49

Euler constant, 534, 1359, 1363, 1373
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Euler equation, 94, 533, 847, 1006, 1057, 1258

nth order, 202, 1057

Euler formula for gamma function, 1358

Euler formulas, 1293

Euler method

explicit, 1171, 1223

forward, 1171, 1220

implicit, 64

modified, 64, 256, 260, 1166, 1173, 1225

of polygonal lines, 64

Euler numbers, 1353

Euler polynomials, 1406

Euler system of ODEs, 243

exact analytical solutions in terms of predefined

functions,1127, 1193, 1253

exact differential equation

first-order, 12, 498

second-order, 127

exact second-order equations, 127

exact solutions

for Abel equations of first kind, 431–455

for Abel equations of second kind, 394–430

for arbitrary order equations, 197–226,

1051–1098

for Burgers–Huxley equation, 300–301

for Emden–Fowler equation, 619

for equations invariant under dilatation–

translation transformation, 498, 792, 816,

997, 1098

for equations invariant under translation–

dilatation transformation, 498, 792, 816,

997, 1050, 1098

for fifth Painlevé equation, 167–169

for first-order equations, 3–92, 367–518

for fourth Painlevé equation, 165

for fourth-order equations, 999–1050

for fourth-order linear equations, 999–1018

for fourth-order nonlinear equations,

1019–1050

for generalized Emden–Fowler equation, 652

for higher-order equations, 1051–1098

for Laplace equation, 211, 212

for linear equations of fourth-order, 999–1018

for linear equations of higher-order,

1051–1068

for linear equations of second-order, 519–602

for linear equations of third-order, 829–900

for modified Emden–Fowler equation, 678

for nonlinear equations of first-order, 367–518

for nonlinear equations of fourth-order,

1019–1050

for nonlinear equations of higher-order,

1068–1098

for nonlinear equations of second-order,

605–828

for nonlinear equations of third-order,

901–998

for Pfaffian equation, 45, 46

for Riccati equations, 369–391

for second Painlevé equation, 162–164

for second-order equations, 123–196,

519–828

for second-order linear equations, 519–605

for second-order nonlinear equations,

605–828

for sixth Painlevé equation, 170

for special Riccati equation, 17

for third Painlevé equation, 165–166

for third-order equations, 829–998

for third-order linear equations, 829–900

for third-order nonlinear equations, 901–998

existence and uniqueness theorem

second-order linear ODE, Cauchy problem,

96

second-order ODE, boundary value problems,

137

systems of ODEs, 245

existence theorem, 4, 7, 96, 123

first boundary value problems, 134, 135

Peano, 4

second-order linear ODE, 96

third boundary value problems, 137

exp-function method, 297

explicit Euler method, 1171

explicit single-step method, 63

exponential integral, 1354, 1372

extrapolation methods, 68

F

factorization, 95

factorization method, 335

factorization principle, 326, 346

general case, 329

special case, 326

fifth Painlevé equation, 167

fifth- and sixth-order equations, 1068, 1069,

1075, 1076, 1087

first boundary value problem, 103

existence theorems, 134

lower solution, 135

numerical solution, 191
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first boundary value problem (continued)

reduction to mixed boundary value problem,

275

upper solution, 135

first integral, 334

of system of ODEs, 247

first integrals, 334, 625–627

first method

for reducing order of equations, 319

for successive refinement of estimates, 59

first Painlevé equation, 158

first RF-pair, 358

first-order equation

Bernoulli, 10, 368

Clairaut, 505

Darboux, 11, 496

Lagrange, 39

Lagrange–d’Alembert, 505

logistic, 25

first-order equations, 3–92, 367–518

Abel, 394–455

first kind, exact solutions, 431

second kind, exact solutions, 394

containing algebraic and power functions with

respect to y′x, 490

containing arbitrary functions, 389, 392

defined parametrically, 40

not solved for derivative, 7, 37, 503

Pfaffian, 44

completely integrable, 45, 46

not satisfying integrability condition, 48

quasi-homogeneous, 429

Riccati

containing arccosine, 387

containing arccotangent, 389

containing arcsine, 387

containing arctangent, 388

containing cosine, 383

containing cotangent, 385

containing exponential functions, 375

containing hyperbolic functions, 378–380

containing inverse trigonometric functions,

387–389

containing logarithmic functions, 380

containing power functions, 369

containing sine, 382

containing tangent, 384

containing trigonometric functions,

382–386

exact solutions, 368–393

with hyperbolic sine and cosine, 378

with hyperbolic tangent and cotangent, 380

with separable variables, 8

with separated variables, 8

first-order exact differential equation, 12, 498

first-order linear autonomous systems, 1240

first-order linear equations with arbitrary

functions, 389, 392

first-order linear ODEs containing arbitrary

functions, 389,392

first-order linear systems, 1279

first-order nonlinear autonomous systems, 1240

first-order nonlinear systems, 1280

first-order ODE

with separable variables, 8

with separated variables, 8

first-order ODEs, 3–92, 367–518

containing algebraic and power functions with

respect to y′x, 490

containing arbitrary functions, 389, 392

first-order systems of ODEs, 1183, 1236, 1279,

1282

numerical solutions, 1183, 1236

of general form, 1282

first-order systems of two equations, 1279

first-type boundary conditions, 103, 1140

fixed singular points of solutions to ODEs, 157

formal operators, 324

formula

Adams–Bashforth, 68

implicit, 68

Bessel, 1364

Cauchy for ODE, 202

conversion, 1385, 1387, 1390, 1391

de Moivre, 1293

Euler for gamma-function, 1358

Liouville, 95, 201, 241

for system of ODEs, 241

Poisson, 1364

Post–Widder, 208

Stirling, 1359

formulas

Euler, 1293

forward Euler method, 1166, 1171

forward sweep, 118

fourth Painlevé equation, 165

fourth-order classical Runge–Kutta method,

1166

fourth-order constant coefficient linear

equation, 1004

fourth-order equations, 999–1050
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fourth-order linear equation

arises in turbulence theory, 1003

constant coefficient, 1004

Euler, 1006

of loaded rigid spherical shell, 1014

of transverse vibrations of bar, 1019

of transverse vibrations of pointed bar, 1006

trinomial, 214

fourth-order linear equations, 999–1019

with arbitrary functions, 1015–1019

with exponential functions, 1007–1009

with hyperbolic functions, 1009–1011

with logarithmic functions, 1011

with power functions, 1000–1007

with sine and cosine, 1012–1014

with tangent and cotangent, 1014–1015

with trigonometric functions, 1012–1014

fourth-order nonlinear equation

arises in hydrodynamics, 1024

autonomous, 1040, 1049

generalized homogeneous, 1020, 1040, 1041,

1049

homogeneous, 1040, 1049

invariant under translation–dilatation

transformation, 1050

fourth-order nonlinear equations, 1019–1050

with arbitrary functions, 1040–1050

with cosine, 1037–1038

with cotangent, 1039–1040

with exponential functions, 1027–1029

with hyperbolic cosine, 1030–1032

with hyperbolic cotangent, 1033

with hyperbolic functions, 1029–1033

with hyperbolic sine, 1029–1030

with hyperbolic tangent, 1032–1033

with logarithmic functions, 1034–1035

with power functions, 1019–1026

with sine, 1035–1036

with tangent, 1038–1039

with trigonometric functions, 1035–1036

fourth-order Runge–Kutta method, 260, 1166,

1174, 1218

Frank-Kamenetskii approximation, 142, 148,

149

Fresnel cosine integral, 1169

Fresnel integrals, 1357

function

Bessel, of first kind, 533, 1362

Bessel, of second kind, 533, 1362

Bessel, of third kind, 1367

beta, 1360

incomplete, 1361

digamma, 1359

elliptic Weierstrass, 607

gamma, 1358

incomplete, 1360, 1372

Green, 107

modified, 108, 109

incomplete beta, 1361

incomplete gamma, 1360, 1372

Jacobi elliptic, 592, 615, 1388

logistic, 299

Macdonald, 1367

Mittag-Leffler type, 1052

modified Green, 108, 109

Neumann, 1362

regularizing, 85, 193

parabolic cylinder, 1383

psi, 1359

sigmoid, 299

Weber, 1383

Weierstrass, 1392

functions

degenerate hypergeometric, 1371, 1373

Gegenbauer, 537, 540

Hankel, 1367

Hermite, 1403

hypergeometric, 1375

Kummer, 1371, 1373

Legendre, 1377

associated, 1380

associated, of first kind, 1380

associated, of second kind, 1380

second kind, 538

Mathieu, 571, 1396, 1397

modified Mathieu, 1398

Whittaker, 1375

fundamental solutions for system of ODEs, 241

fundamental system of solutions, 100, 101, 213,

214

G

G′/G-expansion method, 311

Galerkin method, 182, 1243

gamma function, 527, 1358

Gauss relations for contiguous functions, 1377

Gauss transformation, 1390

Gaussian hypergeometric equation, 541, 1375

Gegenbauer functions, 537, 540

Gegenbauer polynomials, 539, 1404

general Riccati equation, 13, 16
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general scheme

of averaging method, 176

of method of matched asymptotic expansions,

179

of method of two-scale expansions, 178

of using invariants for solving mathematical

equations, 279

general solution

of Airy equation, 520

of Bernoulli equation, 10, 368

of Bessel equation, 533

of Clairaut equation, 505

of damped vibrations equation, 521

of Darboux equation, 11, 496

of degenerate hypergeometric equation, 527

of Duffing equation, 613

of Euler equation, 533

of forced oscillations

with friction equation, 595

without friction equation, 595

of forced oscillations equation, 568, 570

of free oscillations equation, 519

of Gaussian hypergeometric equation, 541

of Halm equation, 548

of hypergeometric

degenerate equation, 527

of hypergeometric equation, 541

of Lagrange equation, 39

of Lagrange–d’Alembert equation, 505

of Legendre equation, 538, 549

of linear

fourth-order constant coefficient equation,

1004

nth-order constant coefficient equation, 197,

1055

second-order constant coefficient equation,

94, 521

third-order constant coefficient equation,

838

of loaded rigid spherical shell equation, 1014

of oblate spheroidal wave functions equation,

550

of oscillations of mathematical pendulum

equation, 615

of prolate spheroidal wave functions equation,

550

of separable equation, 367

of theory of diffusion boundary layer equation,

524

of transverse vibrations of bar equation, 1019

of transverse vibrations of pointed bar

equation, 1006

of Whittaker equation, 532

of Yermakov equation, 786

general solution of differential equation, 3, 123,

217, 242

generalized Emden–Fowler equation, 652

generalized Ermakov system, 1111

generalized homogeneous equation, 9, 126, 220,

430, 495, 787,815, 979, 996, 1020, 1040,

1041, 1049, 1074, 1098

generalized Jentzch theorem, 139

generalized Laguerre polynomials, 1399

generalized reciprocal equations of even

degree, 281

generalized reciprocal polynomial equation, 281

generalized Yermakov equation, 786

global order of approximation, 63

graphical solutions, 1130, 1196, 1255

Green function, 107

group analysis of ODEs, 1153

group analysis of second-order ODEs, 316

group methods for ODEs, 313

growth exponent, 204

H

Halm equation, 548

Hamming predictor-corrector method, 71

Hankel functions, 1367

Hermite functions, 1403

Hermite polynomials, 522, 1372, 1402

Heun equation, 545

Heun method, 64, 1166

higher-order equations, 197–225, 1051–1098,

1184, 1239, 1281

linear, 197–216, 1051–1068

with arbitrary functions, 1064–1068

with exponential functions, 1058–1059

with hyperbolic functions, 1059–1060

with logarithmic functions, 1061

with power functions, 1051–1058

with sine and cosine, 1061–1063

with tangent and cotangent, 1063–1064

with trigonometric functions, 1061–1063

nonlinear, 217–226, 1068–1098

admitting reduction of order, 218

with arbitrary functions, 1087–1098

with cosine, 1084–1085

with cotangent, 1086

with exponential functions, 1075–1077

with hyperbolic cosine, 1079
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with hyperbolic cotangent, 1080–1081

with hyperbolic functions, 1077–1081

with hyperbolic sine, 1077–1078

with hyperbolic tangent, 1080

with logarithmic functions, 1081–1082

with power functions, 1068–1075

with sine, 1083–1084

with tangent, 1085–1086

with trigonometric functions, 1083–1086

higher-order linear equation

constant coefficient homogeneous, 1055

constant coefficient nonhomogeneous, 1055

Euler, 1067

higher-order nonlinear equation

autonomous, 1087, 1096, 1098

generalized homogeneous, 1088, 1097, 1098

homogeneous, 1097

invariant under dilatation–translation

transformation, 1098

invariant under translation–dilatation

transformation, 1098

hodograph transformation, 7, 82, 192, 357, 1151

homogeneous and generalized homogeneous

equations, 9

homogeneous boundary conditions, 104

homogeneous equation, 9, 125, 219, 368, 437,

786, 1049, 1088,1097

linear, 93, 197, 200, 519

with respect to independent variable, 430

homogeneous linear equation, 93

general solution, 197, 200

of second order, 519

homogeneous linear systems of higher-order

ODEs, 231

homogeneous systems of linear first-order

ODEs, 240

hyperbolic functions, 1296

of half argument, 1299

of multiple argument, 1298

hyperbolic point, 237

hypergeometric equation, 541, 1375

hypergeometric functions, 1375

hypergeometric series, 541, 1375

hysteresis, 264

hysteresis parameters, 149

I

ill-conditioned linear problem, 120

ill-conditioned problems, 73

implicit single-step method, 63

improved Euler method, 1166, 1173, 1226

improved polygon method, 1166

incomplete beta function, 1361

incomplete elliptic integral of second kind, 405,

608, 623, 638,939

incomplete elliptic integrals, 1386

incomplete gamma function, 1360, 1372

indefinite integrals, 1303

infinitesimal generator, 314

infinitesimal operator, 314, 323

initial condition, 4

initial value problem, 4

initial value problems, 1137, 1171, 1203, 1223,

1259

linear, 1168, 1221, 1268

nonlinear, 1170, 1222, 1269

numerical solutions, 1168, 1221, 1268

instability by first approximation, 252

integrable combinations, 248

for autonomous systems of ODEs, 248

integral curve, 3

integral transform methods for ODEs, 1147,

1209

integrals

involving a+ bx, 1303

involving (a+ bx)p/2, 1308

involving a2 + x2, 1304

involving a2 − x2, 1305

involving (a2 − x2)1/2, 1309

involving a3 + x3, 1306

involving a3 − x3, 1307

involving a4 ± x4, 1307

involving arbitrary powers, 1310

involving Bessel functions, 1328

involving cosx, 1315

involving coshx, 1311

involving cosx, 1318

involving cotx, 1319

involving exponential functions, 1310, 1323

involving hyperbolic functions, 1311, 1324

involving inverse trigonometric functions,

1319

involving irrational functions, 1307

involving logarithmic functions, 1314, 1325

involving power-law functions, 1320

involving rational functions, 1303

involving sinx, 1316

involving sinhx, 1312

involving tanx, 1319

involving tanhx, 1313

involving trigonometric functions, 1315, 1325
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integrals (continued)

involving x1/2, 1307

involving (x2 + a2)1/2, 1308

involving (x2 − a2)1/2, 1309

over finite interval, 1320, 1325

over infinite interval, 1321, 1326, 1328

with Bessel functions, 1365

with degenerate hypergeometric functions,

1374

with modified Bessel functions, 1369

integrating factor, 13

Pfaffian equation, 46

integro-differential equations, 210

invariance condition, 315

invariant of group, 314

invariant of operator, 314

invariant of transformation, 278

inverse hyperbolic functions, 1300

inverse Laplace transform, 204

inverse problems, 315, 341

inverse transforms of rational functions, 206

inverse trigonometric functions, 1293

iteration methods, 185

J

Jacobi elliptic function, 592, 615, 1388

Jacobi equation, 424

Jacobi polynomials, 541, 1404

Jacobi theta functions, 1394

K

Kummer series, 527, 1371

Kummer transformation, 1371

Kummer–Liouville transformation, 96

L

Lagrange equation, 39

Lagrange–d’Alembert equation, 505

Laguerre polynomials, 1372, 1398

generalized, 1398

Lamé equation

in form of Jacobi, 592

in form of Weierstrass, 592

Landen transformation, see Gauss transforma-

tion

Laplace equation, 211, 1056

second-order of special form, 212

Laplace integral, 212, 1378

Laplace transform, 204

inverse, 204

Lax theorem, 73

least squared error method, 185

least squares method, 183

Legendre equation, 538, 549

Legendre functions, 1377

associated, 1380

first kind, 1380

second kind, 1380

with integer indices and real argument, 1380

second kind, 538

Legendre polynomials, 538, 1377

Legendre transformation, 43, 477

lemniscate functions, 646

Lie equations, 314

Lie group method, 313

Lie–Bäcklund groups, 323

Lie–Bäcklund symmetries generated by first

integrals, 337

Lienard equation, 613

limit theorems for inverse transforms, 207

linear boundary value problems, 1177, 1229,

1272

boundary conditions of first kind, 103, 187

boundary conditions of mixed kind, 104

boundary conditions of second kind, 103, 188

boundary conditions of third kind, 104, 188

linear constant coefficient coupled ODEs, 235

linear equation, first-order, 10, 368

linear equations, 519, 829, 999, 1051

with constant coefficients, 197, 1147

with variable coefficients, 200, 1209

linear initial value problems, 1168, 1221, 1268

linear ODE

fourth-order constant coefficient, 1004

nth-order constant coefficient, 197, 1055

second-order constant coefficient, 94, 521

third-order constant coefficient, 838

linear ODEs, 93–122, 197–216, 519–604,

829–900, 999–1050

homogeneous

arbitrary order, 197, 200

fourth order, 999

nth-order, 197, 200

second-order, 93

third-order, 859

nonhomogeneous

arbitrary order, 198, 201, 202

fourth order, 999

nth-order, 198, 201, 202
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second-order, 96

third-order, 859

linear systems of ODEs, 227–244, 1099-1108,

1145, 1207, 1262

with constant coefficients, 1147, 1209

linear systems of three and more ODEs, 1107

linear systems of two ODEs, 1099

Liouville formula, 95, 201, 241

for system of ODEs, 241

Lipschitz condition, 5, 49, 58, 246

Lipschitz constant, 5, 61, 134

local one–parameter Lie group of transforma-

tions, 313

local order of approximation, 63

logarithmic branch points, 158

logarithmic derivative of gamma function, 528,

534, 535, 1363,1368

logarithmic integral, 1355, 1372

logistic differential equation, 25

logistic equation, 25

logistic function, 299

lower solution

boundary value problem, 135

Cauchy problem, 59

Lyapunov function, 253

Lyapunov stability, 250

asymptotic stability, 250

Lyapunov theorem

of asymptotic stability, 254

of stability, 254

M

Macdonald function, 1367

main properties of Laplace transform, 205

Malthus model, 1137

Malthusian population model, 26

Maple, 1121, 1122

conventions and terminology, 1122

language, 1124

Mathematica, 1187

conventions and terminology, 1187

language, 1189

Mathieu equation, 383, 571, 1396

algebraic form, 540

Mathieu functions, 571, 1396, 1397

modified, 1398

MATLAB, 1246

conventions and terminology, 1246

language, 1249

mesh increment, 62

mesh nodes, 62

method

Adams type predictor–corrector, 70

Adams–Bashforth, 68, 1167

fourth order, 68

Adams–Bashforth–Moulton, 1167

arc length transformation, 83, 85, 194

averaging

for equations of special form, 175

general scheme, 176

Van der Pol–Krylov–Bogolyubov scheme,

175

based on differential variable, 82, 193

based on hodograph transformation, 82, 89,

192

based on introduction of new independent

variable t = −y′x, 89

based on nonlocal transformations, 84, 193

based on special Rosenbrock scheme, 86, 91

based on use of equivalent system of

equations, 90

Bubnov–Galerkin, 182

collocation, 183, 215

consistency for two equations, 306

D’Alembert, 233

differential constraints, 302

direct expansion in powers of small parameter,

173

discrete group, 355

based on inclusion method, 364

based on RF-pairs, 358

for point transformations, 355

Euler, 64, 255, 259

explicit, 1171

implicit, 64

modified, 64, 256, 260, 1166

of polygonal lines, 64, 255, 259

exp-function, 297

expansion in powers of independent variable,

154

explicit Euler, 1171

explicit single-step, 63

factorization, 335

for construction of contact transformations,

43

for construction of solvable equations of

general form, 222

for reducing order of equations, 319, 320

for successive refinement of estimates, 59, 61

forward Euler, 1166, 1171

fourth-order Runge–Kutta, 260, 1166
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method (continued)

G′/G-expansion, 311

Galerkin, 182, 1243

group, 313

Hamming predictor–corrector, 71

Heun, 64, 1166

implicit single-step, 63

improved Euler, 1166

improved polygon, 1166

integral transform, 1147, 1209

integration by differentiation, ODEs not

solved for derivative, 37

invariants, 277

least squared error, 185

least squares, 183

Lie group, 313

Lindstedt–Poincaré, 174

logistic function, 299

matched asymptotic expansions, 178

Milne, 69

Milne predictor–corrector, 71

modified Euler, 64, 256, 260, 1166

modified shooting, 117

moment, 182

multistep, 68, 1174, 1227

modified, 72

Newton–Kantorovich, 50

Numerov (for Cauchy problem), 116

Nyström, 69

of accelerated convergence (eigenvalue

problems), 119

of matched asymptotic expansions, 179

of simplest equation, 311

of two-scale expansions, 178

partitioning domain, 184

Picard, 49

power-law functions, 293

predictor, 1167

predictor–corrector, 70, 186, 1167

Q-expansion, 299

regular expansion in small parameter, 56, 173

regular series expansions with respect to

independent variable, 154

Ritz, 1241

Runge–Kutta

fourth-order, 65, 256, 260, 1166

general scheme, 66

second-order, 1166

third-order, 1166

scaled parameters, 174

series expansion in independent variable, 53,

154

shooting, 187, 1178, 1180, 1231, 1233

simplest equation, 297

sine-cosine, 297

sinh-cosh, 296

successive approximations, 49

Cauchy problem, 185

sweep, 118

tanh-coth, 295

Taylor series expansion in independent

variable, 53

two-scale expansions

Cole–Kevorkian scheme, 177

Van der Pol equation, 177

undetermined coefficients, 292

methods

Adams, 68

approximate analytic, 49

based on auxiliary equations, 74

Butcher, 72

extrapolation, 68

for construction of particular solutions, 289

for first-order ODEs, 3

for linear ODEs of arbitrary order, 197

for linear systems of ODEs, 227

for nonlinear ODEs of arbitrary order, 217

for nonlinear systems of ODEs, 245

for Pfaffian equations, 46

for second-order linear ODEs, 93

for second-order nonlinear ODEs, 123

iteration, 185

modified multistep, 72

multistep, 68, 1174, 1227

modified, 72

numerical

embedded in Maple, 1162, 1164

embedded in Mathematica, 1217

embedded in MATLAB for boundary value

problems, 1265

embedded in MATLAB for initial value

problems, 1264

for equations defined implicitly or

parametrically, 190

perturbation, 171

projection, 181, 1242, 1243

single-step, 63, 1171, 1223

variational, 1241

Milne method, 69

Milne predictor–corrector method, 71

Mittag-Leffler type special function, 1052
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mixed boundary value problem, 104, 273

Erbe–Hu–Wang theorem, 148

nonexistence theorem, 146, 147

theorems on existence of two solutions, 147,

151

theorems on nonexistence of solutions, 145

mixed-type boundary conditions, 104

model for population growth, 1137

model problem having three solutions, 150

modified associated Legendre functions, 1382

modified Bessel equation, 534

modified Bessel function, 1367, 1368

of first kind, 534, 1367

of second kind, 534, 1367

modified Emden–Fowler equation, 678

modified Euler method, 64, 256, 260, 1166

modified Green function, 108, 109

modified Mathieu equation, 561, 1398

modified Mathieu functions, 1398

modified multistep methods, 72

modified shooting method (boundary value

problems), 117

moment method, 182

Monge equations, 345

monotonic blow-up solution, 82, 192, 193

movable critical points, 158

movable singular points of solutions, 157

mth-order differential invariant, 315

multistep methods, 68, 1174, 1227

modified, 72

N

Nagumo-type theorem, 135

natural oscillations, 232

Navier–Stokes equations, 129

Neumann boundary conditions, 103, 1140

Neumann function, 1362

Newton–Kantorovich method, 50

Nöther theorem, 339

nonautonomous equations, 29, 34

nonexistence theorem

for first boundary value problem, 140

for mixed boundary value problem, 146, 147

nonhomogeneous Bessel equation, 596

nonhomogeneous Euler equation, 596, 898,

1067

nonhomogeneous higher-order linear sys-

tems, 233

nonhomogeneous linear equations

arbitrary order, 198, 201, 202

fourth order, 999

nth-order, 198, 201, 202

second-order, 96

third-order, 859

nonhomogeneous linear systems, 242

higher-order ODEs, 233

of first-order equations, 230, 242

nonhomogeneous systems of linear first-order

equations, 230,242

nonlinear boundary value problem in combus-

tion theory, 142

nonlinear boundary value problems, 1179, 1233,

1274

nonlinear equations

arbitrary order, methods, 217–226

fourth-order, exact solutions, 1019–1050

higher-order, exact solutions, 1068–1098

involving linear homogeneous differential

forms, 128, 221

second-order, exact solutions, 605–828

second-order, methods, 123–196

third-order, exact solutions, 901–998

nonlinear initial value problems, 1170, 1222,

1269

nonlinear systems of ODEs, 1146, 1208

nonlinear systems of three or more equa-

tions, 1116

nonlinear systems of two equations, 1108–1112

nonlocal exponential operator, 325

nonlocal variable, 85

non-monotonic blow-up solution, 85, 194

nonorthogonal polynomials, 1405

nonrough dynamical systems, 264, 266

normal coordinates, 232

normal form, Abel equation of first-kind, 19,

431

normal form, second-order ODEs, 95

nth-order equations containing arbitrary

functions, 1064,1087

number e, 1288, 1289

numbers

Bernoulli, 1352

Euler, 1353

numerical integration

equations defined implicitly, 80, 191, 225

equations defined parametrically, 79, 224

equations with fixed singular points, 76

nth-order ODEs, 224

problems with blow-up solutions, 256, 260

problems with root singularity, 258, 261
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numerical methods

embedded in Maple, 1162, 1164

embedded in Mathematica, 1217

embedded in MATLAB for boundary value

problems, 1265

embedded in MATLAB for initial value

problems, 1264

for equations defined implicitly or parametri-

cally, 190

numerical solution

blow-up problems, 81, 192

with logarithmic singularity, 86

of Cauchy problem for nth-order ODEs, 224

of Cauchy problem for parametrically defined

equations, 190

of equations defined implicitly or parametri-

cally, 224

of problems with root singularity, 88

numerical solutions

first-order systems of ODEs, 1183, 1236

in terms of predefined functions, 1160, 1215,

1263

initial value problems, 1168, 1221, 1268

of ODEs, 1263

of systems of ODEs, 1279

visualizations, 1160, 1215

numerical-analytical solutions, 1241

Numerov method (Cauchy problem), 116

Nyström method, 69

O

ODE

Burgers–Huxley, 300

classification, 1132

first-order

with separable variables, 8

with separated variables, 8

ODEs

containing arbitrary functions, 389, 392, 595,

599, 786, 820, 892, 1015, 1040, 1064, 1087

fourth-order, 999–1050

fourth-order linear, 999–1019

with arbitrary functions, 1015–1019

with exponential functions, 1007–1009

with hyperbolic functions, 1009–1011

with logarithmic functions, 1011

with power functions, 1000–1007

with sine and cosine, 1012–1014

with tangent and cotangent, 1014–1015

with trigonometric functions, 1012–1014

fourth-order nonlinear, 1019–1050

with arbitrary functions, 1040–1050

with cosine, 1037–1038

with cotangent, 1039–1040

with exponential functions, 1027–1029

with hyperbolic cosine, 1030–1032

with hyperbolic cotangent, 1033

with hyperbolic functions, 1029–1033

with hyperbolic sine, 1029–1030

with hyperbolic tangent, 1032–1033

with logarithmic functions, 1034–1035

with power functions, 1019–1026

with sine, 1035–1036

with tangent, 1038–1039

with trigonometric functions, 1035–1036

higher-order, 197–225, 1051–1098, 1184,

1239, 1281

higher-order linear, 197–216, 1051–1068

with arbitrary functions, 1064–1068

with exponential functions, 1058–1059

with hyperbolic functions, 1059–1060

with logarithmic functions, 1061

with power functions, 1051–1058

with sine and cosine, 1061–1063

with tangent and cotangent, 1063–1064

with trigonometric functions, 1061–1063

higher-order nonlinear, 217–226, 1068–1098

admitting reduction of order, 218

with arbitrary functions, 1087–1098

with cosine, 1084–1085

with cotangent, 1086

with exponential functions, 1075–1077

with hyperbolic cosine, 1079

with hyperbolic cotangent, 1080–1081

with hyperbolic functions, 1077–1081

with hyperbolic sine, 1077–1078

with hyperbolic tangent, 1080

with logarithmic functions, 1081–1082

with power functions, 1068–1075

with sine, 1083–1084

with tangent, 1085–1086

with trigonometric functions, 1083–1086

nth-order

autonomous, 219

homogeneous in both variables, 219

homogeneous in independent variable, 219

homogeneous in unknown function, 219

linear, containing arbitrary functions, 1064

nonlinear, containing arbitrary functions,

1087

not containing x explicitly, 219
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Riccati

containing arccosine, 387

containing arccotangent, 389

containing arcsine, 387

containing arctangent, 388

containing cosine, 383

containing cotangent, 385

containing exponential functions, 375

containing logarithmic functions, 380

containing power functions, 369

containing sine, 382

containing tangent, 384

with hyperbolic sine and cosine, 378

with hyperbolic tangent and cotangent, 380

second-order

autonomous, 124

homogeneous in both variables, 125

homogeneous in dependent variable, 125

homogeneous in independent variable, 125

not solved for y′′xx, 818

second-order linear, 519–605

asymptotic solutions, 102

with arbitrary functions, 595–605

with arccosine, 581

with arccotangent, 584

with arcsine, 580

with arctangent, 582

with cosine, 570

with cotangent, 575

with exponential functions, 553–559

with hyperbolic cosine, 561

with hyperbolic cotangent, 564

with hyperbolic functions, 560–564

with hyperbolic sine, 560

with hyperbolic tangent, 562

with inverse trigonometric functions,

580–585

with logarithmic functions, 565–567

with power functions, 519–552

with sine, 568

with tangent, 573

with trigonometric functions, 568–579

second-order nonlinear, 605–828

with arbitrary functions, 786–828

with arbitrary functions of three variables,

820, 821

with cosine, 778–780

with cotangent, 781–782

with exponential functions, 761–768

with hyperbolic cosine, 771–772

with hyperbolic cotangent, 773–774

with hyperbolic functions, 769–774

with hyperbolic sine, 769–770

with hyperbolic tangent, 772–773

with logarithmic functions, 775–776

with power functions, 753–760

with sine, 777–778

with tangent, 780–781

with trigonometric functions, 777–782

second-order not containing x explicitly, 124

second-order not containing y explicitly, 124

second-order not containing y′x, 100

third-order, 829–998

third-order linear

with arbitrary functions, 892–901

with cosine, 869–872

with cotangent, 876–879

with exponential functions, 848–853

with hyperbolic cosine, 855–857

with hyperbolic cotangent, 860–863

with hyperbolic functions, 853–862

with hyperbolic sine, 853–855

with hyperbolic sine and cosine, 857–858

with hyperbolic tangent, 858–860

with inverse trigonometric functions,

879–884

with logarithmic functions, 863–864

with power and exponential functions,

851–853

with power and logarithmic functions,

864–866

with power functions, 830–848

with sine, 866–869

with sine and cosine, 872

with tangent, 873–876

with trigonometric functions, 866–879

third-order nonlinear, 901–998

with arbitrary functions, 978–998

with cosine, 974–976

with cotangent, 977–978

with exponential functions, 963–966

with hyperbolic cosine, 967–969

with hyperbolic cotangent, 970–971

with hyperbolic functions, 967–971

with hyperbolic sine, 967

with hyperbolic tangent, 969–970

with logarithmic functions, 971–973

with power functions, 955–963

with sine, 974

with tangent, 976–977

with trigonometric functions, 974–978

with constraints, 40
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one-dimensional problem on thermal explo-

sion, 148

one-parameter Lie group of transforma-

tions, 313, 1156

one-parameter Rosenbrock scheme, 86

operator in canonical form, 324

operator of total derivative, 315

order of approximation of numerical method, 62

order reduction of ODEs, 1158

order reduction of ODEs), 284

orthogonal polynomials, 1398

orthogonality properties

of associated Legendre functions, 1380

of Bessel functions, 1366

of Legendre polynomials, 1379

P

Padé approximants, 156

Painlevé equation

fifth, 167

first, 158

fourth, 165

second, 160

sixth, 169

third, 162

Painlevé transcendental functions, 158

Painlevé transcendents, 158

palindromic equation, 280

palindromic polynomial, 280

parabolic cylinder functions, 1383

particular solution, 3

particular solutions, rational, 161, 162, 165,

167, 170

Peano existence theorem for system of

ODEs, 245

perturbation methods, 171

Pfaffian equations, 44

completely integrable, 46

not satisfying integrability condition, 48

phase plane, 250

first-order autonomous systems, 1239

phase portrait of dynamical system, 263

phase space, 263

phase trajectory, 263

phase variables, 250, 263

plane problem of combustion theory

for Arrhenius law, 149

for Frank-Kamenetskii approximation, 148

Pochhammer symbol, 1352

point

algebraic branch, 158

attracting, 264

bifurcation, 264

equilibrium point, 25, 26

fixed singular, 76, 157

hyperbolic, 237

logarithmic branch, 158

movable critical, 158

movable singular, 157

singular, 157

movable, 157

stable spiral, 238

stationary, 25, 249

transition, 100

turning, 273

unstable spiral, 238

point transformations, 6, 307, 313, 1150, 1212

points

equilibrium, classification, 235

equilibrium, for autonomous system, 249

singular, classification, 265

Poisson formula, 1364

polynomial

characteristic, 838

elementary symmetric, 282

palindromic, 280

reciprocal, 280

symmetric bivariate, 282

polynomial solutions of Riccati equation, 15

polynomials

Bernoulli, 1405

Euler, 1406

Gegenbauer, 539, 1404

generalized Laguerre, 1399

Jacobi, 541, 1404

Laguerre, 1372, 1398

generalized, 1398

Legendre, 538, 1377

nonorthogonal, 1405

orthogonal, 1398

ultraspherical, 1404

positive definite kernel, 139

positive property solutions, 138

Post–Widder formula, 208

power-law functions method, 293

predefined function dsolve, 1193

predictor method, 1167

predictor–corrector method, 70, 186, 1167

principle

factorization, 326
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Rayleigh–Ritz, 112, 119

superposition, 201

homogeneous system, 227, 240, 241

nonhomogeneous system, 243

probability integral, 1354

problem

boundary value

approximate solution, 181

axisymmetric in combustion theory, 149

lower solution, 135

nonlinear of combustion theory, 142

upper solution, 135

with modulus of unknown, 145

Cauchy, 4, 28, 33, 1137, 1203, 1259

constant-coefficient linear ODEs, 209

existence and uniqueness theorem, 123, 217

existence and uniqueness theorem for

second-order linear ODE, 96

lower solution, 59

numerical solution for nth-order ODEs, 224

numerical solution for parametrically

defined equations, 190

reduction to integral equation, 203

reduction to integro-differential equation,

210

uniqueness and existence theorems, 4

upper solution, 59

first boundary value, 103, 187

Erbe–Hu–Wang theorem, 141

existence theorems, 134

lower solution, 135

nonexistence theorem, 140

numerical solution, 191

reduction to mixed boundary value problem,

275

theorem on existence of two solutions, 141

theorem on nonexistence of solutions, 139

upper solution, 135

initial value (Cauchy problem), 4, 1137

mixed boundary value, 104

Erbe–Hu–Wang theorem, 148

nonexistence theorem, 146, 147

theorems on existence of two solutions, 147,

151

theorems on nonexistence of solutions, 145

nonlinear boundary value of combustion

theory, 142

on bending of flexible electrode in electrostatic

field, 150

on convective mass transfer with heteroge-

neous chemical reaction, 154

on electron beam passing between two

electrodes, 143

on thermal explosion

for Arrhenius law, 149

in cylindrical vessel, 149

in plane channel, 148

one-dimensional on thermal explosion, 148

plane

combustion theory, Arrhenius law, 149

combustion theory, Frank-Kamenetskii

approximation, 148

second boundary value, 103, 188

Sturm–Liouville, 110

third boundary value, 104, 137, 188

Erbe–Hu–Wang theorem, 151

theorems on existence of two solutions, 151

well-conditioned linear, 120

problems

blow-up, 192

with logarithmic singularity, 194

with power-law singularity, 28

boundary value, 103, 133, 1140, 1205, 1260

bifurcations, 270, 273

existence and uniqueness theorem,

second-order ODE, 137

existence theorems, 133

Green function, 103

linear, 1177, 1229, 1272

linear equations with nonlinear boundary

conditions, 152

linear, bifurcations, 270

linear, boundary conditions of first kind,

103, 187

linear, boundary conditions of mixed kind,

104

linear, boundary conditions of second kind,

103, 188

linear, boundary conditions of third kind,

104, 188

mixed, 104, 273

nonexistence theorems, 133

nonlinear, 1179, 1233, 1274

nonlinear boundary conditions, 188

numerical methods embedded in MATLAB,

1265

numerical solutions, 1176, 1229, 1272

on unbounded interval, 105

reduction to integral equations, 137

sweep method, 118

uniqueness theorems, 133, 134

with degeneration at boundary, 105
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problems (continued)

boundary value of first kind, 103, 187

boundary value of mixed kind, 104

boundary value of second kind, 103, 188

boundary value of third kind, 104, 188

Cauchy with non-unique solutions, 36

eigenvalue, 110, 1141, 1206

numerical solutions, 1181, 1235, 1276

first boundary value

existence theorem, 134

ill-conditioned, 73

initial value, 1137, 1171, 1203, 1223, 1259

linear, 1168, 1221, 1268

nonlinear, 1170, 1222, 1269

numerical methods embedded in MATLAB,

1264

numerical solutions, 1168, 1221, 1268

inverse, 315, 341

linear boundary value, 1177, 1229, 1272

boundary conditions of first kind, 103, 187

boundary conditions of mixed kind, 104

boundary conditions of second kind, 103,

188

boundary conditions of third kind, 104, 188

linear initial values, 104, 273, 1168, 1221,

1268

nonlinear boundary value, 1179, 1233, 1274

bifurcations, 270

nonlinear initial value, 1170, 1222, 1269

numerical integration

for blow-up solutions, 81, 192, 256, 260

for blow-up with logarithmic singularity, 86

for root singularity, 88, 258, 261

qualitative features, for nonlinear boundary

conditions, 152

well-conditioned, 73, 120

with boundary conditions

involving values of unknown (or/and its

derivative) at both endpoints of interval,

104

of first kind, 112

of second kind, 113

of third kind, 114

with mixed boundary conditions, 114

with nonlinear boundary conditions, 188

with nonlocal condition, 104

projection methods, 181, 1242, 1243

prolonged operator, 314, 315

properties

of exponential function, 1287

of integral equations with positive kernel.

Jentzch theorem, 138

of logarithmic function, 1288

of Mathieu functions, 1397

of nonhomogeneous linear ODEs, 97

of power function, 1287

psi function, 1359

Q

Q-expansion method, 299

qualitative features

of problems with nonlinear boundary

conditions, 152

of Runge–Kutta schemes, 67

quasi-homogeneous equations, 429

R

rational particular solutions, 161, 162, 165, 167,

170

Rayleigh equation, 616

Rayleigh–Ritz principle, 112, 119

reciprocal equations, 280

of even degree, 280

of odd degree, 281

reciprocal polynomial, 280

reduction of Abel equation of first kind

to Abel equation of second kind, 19

to canonical form, 19

reduction of Abel equation of second kind

to Abel equation of first kind, 22

to canonical form, 21

reduction of boundary value problems to

integral equations, 137

reduction of bounded interval to unit inter-

val, 107

reduction of Cauchy problem for ODEs to

integral equations, 203

reduction of generalized Emden–Fowler

equation to Abel equation,678

reduction of nonautonomous system of ODEs to

autonomous system of ODEs,247

reduction of nth-order ODE to system of

first-order ODEs, 218

reduction of quasilinear equations to normal

form, 129

reduction of Riccati equation

to canonical form, 16

to second-order linear equation, 16
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reduction of second-order linear ODE

to canonical form, 95

to Riccati equation, 95

reduction of standard ODEs to parametric

differential equations,133

reduction of systems of ODEs to single

ODE, 246

reduction to constant-coefficient ODE, 96

regularizing function, 85, 193

relations between associated Legendre

functions, 1381

representation

of complete elliptic integrals in series form,

1385

of Green function in terms of particular

solutions, 108

of hypergeometric function via hypergeomet-

ric series, 1375

of inverse Laplace transforms

as asymptotic expansions, 208

as convergent series, 207

of theta functions in form of infinite products,

1395

RF-pair

first, 358

second, 359

Riccati equation, 13, 368

nonlinear transformation, 16

polynomial solutions, 15

special, 17

Riccati equations

with arccosine, 387

with arccotangent, 389

with arcsine, 387

with arctangent, 388

with cosine, 383

with cotangent, 385

with exponential functions, 375

with hyperbolic functions, 378–380

with hyperbolic sine and cosine, 378

with hyperbolic tangent and cotangent, 380

with inverse trigonometric functions, 387–389

with logarithmic functions, 380

with power functions, 369

with sine, 382

with tangent, 384

with trigonometric functions, 382–386

Riemann equation, 551

Ritz method, 1241

Robin boundary conditions, 104, 1140

root singularity index, 89

Rosenbrock scheme

one-parameter, 86

special complex, 86

rough dynamical systems, 264, 266

rough limit cycles, 266

Runge–Kutta method, 186

general scheme, 66

of fourth-order, 65, 256

of second-order, 1166

S

saddle, 237

scaling transformation, 7

second boundary value problem, 103

second method

for reducing order of equations, 320

for successive refinement of estimates, 61

second Painlevé equation, 160

second RF-pair, 359

second-order constant coefficient linear

ODE, 94, 521

second-order equation

of general form, 186

of special form, 187

second-order equations

homogeneous, 430

invariant under some transformations, 431

second-order exact differential equation, 127

second-order linear equation

Airy, 520, 1370

Bessel, 533, 1362

nonhomogeneous, 596

constant coefficient, 94, 521

degenerate hypergeometric, 527

Euler, 533

nonhomogeneous, 596, 898, 1067

nth order, 202

for prolate spheroidal wave functions, 550

Gaussian hypergeometric, 541, 1375

Halm, 548

hypergeometric, 541, 1375

degenerate, 527

Lamé, in form of Jacobi, 592

Lamé, in form of Weierstrass, 592

Laplace, 211

second-order of special form, 212

Legendre, 538, 549

Mathieu, 383, 571, 1396

algebraic form, 540

modified, 561, 1398
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second-order linear equation (continued)

modified Mathieu, 561, 1398

of damped vibrations, 521

of diffusion boundary layer, 524

of forced oscillations, 568, 570

with friction, 595

without friction, 595

of free oscillations, 519

of oblate spheroidal wave functions, 550

Riemann, 551

Whittaker, 532, 1375

second-order linear equations, 519–605

asymptotic solutions, 102

with arbitrary functions, 595–605

with arccosine, 581

with arccotangent, 584

with arcsine, 580

with arctangent, 582

with cosine, 570

with cotangent, 575

with exponential functions, 553–559

with hyperbolic cosine, 561

with hyperbolic cotangent, 564

with hyperbolic functions, 560–564

with hyperbolic sine, 560

with hyperbolic tangent, 562

with inverse trigonometric functions, 580–585

with logarithmic functions, 565–567

with power functions, 519–552

with sine, 568

with tangent, 573

with trigonometric functions, 568–579

second-order nonlinear equation

Burgers–Huxley, 300

Duffing, 173, 613

Emden–Fowler, 619

generalized, 652

modified, 678

invariant under dilatation–translation

transformation, 792, 816

invariant under translation–dilatation

transformation, 792, 816

Lienard, 613

of chemical reactors, 429

of combustion theory, 429

of oscillations of mathematical pendulum, 615

Painlevé

fifth, 167

first, 158

fourth, 165

second, 160

sixth, 169

third, 162

Rayleigh, 616

Yermakov, 249, 786

second-order nonlinear equations, 605–828

with arbitrary functions, 786–828

of three variables, 820, 821

with cosine, 778–780

with cotangent, 781–782

with exponential functions, 761–768

with hyperbolic cosine, 771–772

with hyperbolic cotangent, 773–774

with hyperbolic functions, 769–774

with hyperbolic sine, 769–770

with hyperbolic tangent, 772–773

with logarithmic functions, 775–776

with power functions, 753–760

with sine, 777–778

with tangent, 780–781

with trigonometric functions, 777–782

second-type boundary conditions, 103, 1140

secular terms, 174

self-adjoint form of equations, 107

semi-explicit DAEs, 40

separable equation, 367

series representation of Jacobi theta func-

tions, 1394

shift transformation, 1150

shooting method, 187

sigmoid function, 299

simplest equation method, 311

simplification of boundary conditions, 106

sine integral, 1356

sine-cosine method, 297

single-step methods, 63, 1171, 1223

Runge–Kutta methods, 61

with second-order approximation, 64

singular integral curve, 7

singular points of solutions, 157

singular solutions, 7

sink, 236, 239

sixth Painlevé equation, 169

solution

approximate, for boundary value problem,

181

asymptotically stable, 25, 251

blow-up, 11, 28, 81

monotonic, 82, 192, 193

non-monotonic, 85, 194

with logarithmic singularity, 28

with power-law singularity, 28, 81, 192
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general

for homogeneous linear equation, 197, 200

of differential equation, 3, 123, 217, 242

in implicit form, 3

in parametric form, 3

in terms of Bessel functions, 161, 164

in terms of solutions of Riccati equation, 166

indefinitely extensible to right, 26

lower

boundary value problem, 135

Cauchy problem, 59

numerical

blow-up problems, 81, 192

blow-up problems with logarithmic

singularity, 86

for Cauchy problem for nth-order ODEs,

224

for Cauchy problem for parametrically

defined equations, 190

for equations defined implicitly or

parametrically, 224

for first boundary value problem, 191

for problems with root singularity, 88

of linear ODEs using Laplace integral, 212

of linear ODEs using Laplace transform, 211

particular, 3

rational, 161, 162, 165, 167, 170

singular, 7

spatially localized, 33

stable, 25

asymptotically, 25, 251

unstable, 25, 250

upper

of Cauchy problem, 59

to boundary value problem, 135

with root singularity, 89

solution methods for Pfaffian equations, 46

solutions

asymptotic, for fourth-order linear ODEs, 213

asymptotic, for higher-order linear ODEs, 214

asymptotic, for second-order linear ODEs, 99,

102

exact

Abel equation of first kind, 431

Abel equation of second kind, 394

linear equations of fourth-order, 999–1018

linear equations of higher-order, 1051–1068

linear equations of second-order, 519–602

linear equations of third-order, 829–900

nonlinear equations of first-order, 367–518

nonlinear equations of fourth-order,

1019–1050

nonlinear equations of higher-order,

1068–1098

nonlinear equations of second-order,

605–828

nonlinear equations of third-order, 901–998

Riccati equation, 368–393

exact analytical

in terms of predefined functions, 1127, 1193

exact polynomial

Riccati equation, 15

fundamental, for system of ODEs, 241

graphical, 1130, 1196, 1255

in form of ratio of exponential polynomials,

301

in form of Taylor series, 159

in terms of elliptic function, 170

in terms of hypergeometric functions, 170

in terms of Whittaker functions, 169

numerical

first-order systems of ODEs, 1183, 1236

in terms of predefined functions, 1160,

1215, 1263

initial value problems, 1168, 1221, 1268

of ODEs, 1263

of systems of ODEs, 1279

visualizations, 1160, 1215

numerical-analytical, 1241

particular, rational, 161, 162, 165, 167, 170

symbolic

with Maple, 1121

with Mathematica, 1187

with MATLAB, 1245

traveling wave, 289

with root singularity, 88

with singular points, 157

source, 236, 239

spatially localized solution, 33

special function

Mittag-Leffler type, 1052

special functions, 1351–1407

special methods based on auxiliary equations, 74

special numerical methods, 74

special Riccati equation, 17, 369, 1129

spheroidal wave functions, 550

spiral sink, 238

spiral source, 238

stability, 72

by first approximation, 251

of numerical methods, 72

stable difference scheme, 72
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stable focus, 238

stable node, 236, 239

stable solution, 25

stable spiral point, 238

standard numerical methods, 61

stationary point, 25, 249

step size, numerical methods, 62

Stirling formula, 1359

Stoermer rule, 187

structure of admissible operator for second-

order ODEs, 316

structure of general solution of linear ODE, 200

Sturm comparison theorem on zeros of

solutions, 115

Sturm–Liouville problem, 110

superposition principle, 201

homogeneous system, 227, 240, 241

nonhomogeneous system, 243

sweep coefficients, 118

sweep method (boundary value problems), 118

symbolic notation for derivatives, 1126

symbolic solutions of ODEs

with Maple, 1121

with Mathematica, 1187

with MATLAB, 1245

symmetric bivariate polynomial, 282

symmetries of equations, 277

system

Clairaut, 1109

of n constant-coefficient first-order linear

homogeneous ODEs, 1108

of special type resulting from single nth-order

ODE, 260

of two constant-coefficient first-order linear

homogeneous ODEs, 1099

of two constant-coefficient second-order

linear homogeneous ODEs, 1102

systems

autonomous, 249

general form, 1109

reduction to systems of lower dimension,

249

involving three or more ODEs, 259

of algebraic equations, 282

of first degree of nonroughness with one

parameter, 266

of first-order linear homogeneous ODEs, 227,

228

of first-order ODEs, 248, 1099, 1109

of linear constant-coefficient ODEs, 227

of linear variable-coefficient ODEs, 240

of ODEs, 1144, 1207, 1261

of second-order ODEs, 248, 1102, 1110

of two equations, 255

solved for derivative, 245

T

t-discriminant curve, 7

tables

definite integrals, 1320

inverse Laplace transforms, 1338

Laplace transforms, 1331

tangential group, 322

tanh-coth methods, 295

theorem

Erbe–Hu–Wang, 141, 148, 151, 152

first boundary value problem, 141

mixed boundary value problem, 148

third boundary value problem, 151

existence and uniqueness, 96

instability by first approximation, 252

Jentzch, 138, 139

Lax, 73

Lyapunov, asymptotic stability, 254

Lyapunov, stability, 254

Nagumo-type, 135

Nöther, 339

on estimates of solutions, 115

on nonexistence of solutions to first boundary

value problem, 139

on roughness of dynamical system, 266

stability by first approximation, 251

Sturm on zeros of solutions, 115

theorems

of stability and instability, 254

by first approximation, 251

on estimates and zeros of solutions, 115

on existence of two solutions

for first boundary value problem, 141

for mixed boundary value problem, 147

for third boundary value problem, 151

on nonexistence of solutions for mixed

problem, 145

on smoothness and parametric continuity of

solutions, 6

on stability or instability of equilibrium

points, 26

on symmetries of first integrals, 337

thermal explosion

for Arrhenius law, 149

in cylindrical vessel, 149
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third boundary value problem, 104, 137

Erbe–Hu–Wang theorem, 151

theorems on existence of two solutions, 151

third Painlevé equation, 162

third-order constant coefficient linear ODE, 838

third-order equations, 829–998

third-order linear equation

constant coefficient, 838

Euler, 847

third-order linear equations

with arbitrary functions, 892–901

with cosine, 869–872

with cotangent, 876–879

with exponential functions, 848–853

with hyperbolic cosine, 855–857

with hyperbolic cotangent, 860–863

with hyperbolic functions, 853–862

with hyperbolic sine, 853–855

with hyperbolic sine and cosine, 857–858

with hyperbolic tangent, 858–860

with inverse trigonometric functions, 879–884

with logarithmic functions, 863–864

with power and exponential functions,

851–853

with power and logarithmic functions,

864–866

with power functions, 830–848

with sine, 866–869

with sine and cosine, 872

with tangent, 873–876

with trigonometric functions, 866–879

third-order nonlinear equation

autonomous, 982, 995

Blasius, 1156

generalized homogeneous, 979, 996

invariant under dilatation–translation

transformation, 997

invariant under translation–dilatation

transformation, 997

third-order nonlinear equations, 901–998

with arbitrary functions, 978–998

with cosine, 974–976

with cotangent, 977–978

with exponential functions, 963–966

with hyperbolic cosine, 967–969

with hyperbolic cotangent, 970–971

with hyperbolic functions, 967–971

with hyperbolic sine, 967

with hyperbolic tangent, 969–970

with logarithmic functions, 971–973

with power functions, 955–963

with sine, 974

with tangent, 976–977

with trigonometric functions, 974–978

third-order Runge–Kutta method, 1166

third-type boundary conditions, 104, 1140

topological structure of phase portrait, 264

topologically equivalent dynamical systems, 264

transform

inverse Laplace, 204

Laplace, 204

transformation

arc length, 83, 85, 194

Gauss, 1390

Kummer, 1371

Kummer–Liouville, 96

Landen, 1390

Legendre, 43, 477

scaling, 7

shift, 1150

translation, 7

von Mises, 129

transformations preserving form of equa-

tions, 283

transition point, 100

translation transformation, 7

traveling wave solutions, 289

trigonometric functions, 1289

of half argument, 1292

of multiple arguments, 1292

trinomial equation, 214

turning points, 273

two linear constant-coefficient coupled

ODEs, 235

two-term asymptotic expansions for second-

order linear ODEs,100

U

ultraspherical polynomials, 1404

underdetermined equations, 345

uniqueness theorems for boundary value

problems, 134

universal invariant, 314

unstable focus, 238

unstable node, 236, 239

unstable solution, 25, 250

unstable spiral point, 238

upper solution

of Cauchy problem, 59

to boundary value problem, 135

use of Laplace transform for solving linear

systems of ODEs,234
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use of particular solutions

to construct general solution, 15, 23

to construct self-transformations, 22

using of local groups for reducing order of

ODEs, 319

using of particular solutions for reducing order

of ODEs, 200

V

Van der Pol equation, 177, 618, 1132

Van der Pol oscillator, 610

variational methods, 1241

Volterra integral equation of second kind, 203

von Mises transformation, 129

W

wave functions, spheroidal, 550

Weber equation, 520

Weber parabolic cylinder function, 1383

Weierstrass elliptic function, 1392

well-conditioned linear problem, 120

well-conditioned problems, 73, 120

Whittaker equation, 532, 1375

Whittaker functions, 1375

Wronskian determinant, 94, 108, 201, 241

for system of ODEs, 241

Y

Yermakov equation, 249, 786

Z

zeros of Bessel functions, 1366

zeros of Legendre polynomials, 1379
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